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Sommaire Exécutif 

 

La sécheresse est un phénomène naturel associé à des pénuries extrêmes de précipitations entraînant 

des déficits hydriques. La diminution de la quantité d'eau présente dans le sol a un impact sur 

l'approvisionnement en eau des plantes. Elle a des conséquences diverses et complexes sur les 

écosystèmes et menace la qualité et la durabilité de leurs services écosystémiques. Les sécheresses ont 

des conséquences graves pour les agroécosystèmes, y compris les prairies gérées. En effet, le déficit 

en eau met en péril la capacité des agroécosystèmes et des prairies gérées à assurer la sécurité 

alimentaire (Jiang and Wang, 2022 ; O'Mara, 2012 ; Soussana et al., 2013). Les prairies sont des 

écosystèmes dominés par les graminées, avec une couverture limitée d'arbustes et de plantes pérennes 

ligneuses dépassant 5 mètres de hauteur (Suttie et al., 2005). Elles fournissent des services 

écosystémiques, tels que la production de lait et de viande pour nourrir les animaux (Jiang and Wang, 

2022 ; O'Mara, 2012) et le piégeage du carbone (Bai et Cotrufo, 2022 ; Bardgett et al., 2021 ; Jones 

and Donnelly, 2004), qui contribuent à l'atténuation du changement climatique et à l'habitat de la 

biodiversité pour la faune et la flore (Binder et al., 2018; van Oijen et al., 2018). Une meilleure 

compréhension des facteurs qui influencent la sensibilité, la résistance et la résilience à la sécheresse 

des prairies gérées permettra d'orienter les mesures d'atténuation. 

De nombreuses études ont mené des expériences de sécheresse en conditions plus ou moins 

contrôlées, i.e. en pots, en mésocosmes ou sur le terrain afin de mieux comprendre les processus 

associés aux réponses des prairies à la sécheresse (Ogbaga et al., 2020). Par exemple, les organes des 

tissus végétaux et les plantes présentent un stress lié au déficit hydrique sous la forme de changements 

anormaux dans leurs propriétés physiologiques (Volaire, 2018). Les impacts négatifs sont visibles dans 

le développement des feuilles et des racines (Volaire, 2018). Les plantes présentent une diminution 

des activités photosynthétiques et révèlent des taux de sénescence plus rapides. Les changements dans 

les processus physiologiques dus à la sécheresse varient en fonction des capacités et des stratégies de 

croissance des plantes (Volaire et al., 2009). L'importance des propriétés du sol a été mise en évidence 

sur différentes espèces de graminées et dans différents milieux pédologiques (Buttler et al., 2019). Les 

interactions entre les populations végétales mettent en évidence l'influence des diversités 

taxonomiques et fonctionnelles (Schnabel et al., 2021) et de la composition des communautés 

végétales (Fry et al., 2021) sur la réponse à la sécheresse. Les pratiques de gestion influencent 

également la réponse des prairies à la sécheresse. Par exemple, il a été constaté que la fertilisation 

azotée atténue l'impact de la sécheresse dans une expérience en mésocosme avec des sols riches en 

argile à Münster, en Allemagne (Klaus et al., 2020). Cependant, la fertilisation azotée a des effets 

néfastes sur les communautés de prairies si elle est excessive en période de sécheresse (Klaus et al., 

2020). Zwicke et al. (2013), dans une expérience menée avec des espèces typiques des prairies 

tempérées françaises de moyenne montagne, ont montré que des coupes fréquentes peuvent renforcer 

l'impact négatif de la sécheresse, mais Deléglise et al. (2015) ont constaté que le pâturage augmente 

davantage l'impact de la sécheresse que la fauche dans les prairies montagneuses de Suisse. Malgré les 

contributions significatives de ces études sur les effets de la sécheresse sur les prairies, les approches 

expérimentales en conditions contrôlées et sur le terrain sont encore limitées dans leur couverture 

spatiale et temporelle. De plus, comme elles sont assez déconnectées des conditions réelles, en raison 

de certaines limitations de leurs configurations, il a été démontré que les expériences sous-estiment 

l'impact de la sécheresse sur les prairies (Kröel-Dulay et al. 2022). D'autres approches sont donc 

nécessaires pour mieux évaluer les réactions de la végétation aux déficits hydriques. 

Le développement de produits et de techniques de télédétection (RS) ouvre des voies prometteuses 

pour la recherche sur les écosystèmes. Les informations sur la réflectance recueillies par les capteurs 

optiques des satellites permettent d'estimer les propriétés de la végétation sur la base de la théorie du 

transfert radiatif (Drusch and Crewell, 2006 ; Turner et al., 2003). Les surfaces terrestres, telles que la 
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végétation, absorbent ou réfléchissent une certaine quantité d'énergie électromagnétique provenant du 

soleil ou de sources artificielles. Les capteurs embarqués à bord des satellites détectent différents 

niveaux d'énergie réfléchie en fonction de l'état de la végétation. Une feuille saine absorbe le rouge et 

le bleu et réfléchit le vert et le proche infrarouge, tandis qu'une feuille stressée absorbe davantage le 

proche infrarouge et réfléchit le rouge et le bleu. De même, une feuille très humide absorbe davantage 

dans l'infrarouge court, entre 1 500 et 2 300 nanomètres (nm), et réfléchit le signal lorsque la feuille 

devient sèche (Summy et al., 2003). 

En complément des expériences traditionnelles de déficit hydrique et des observations sur le terrain, 

cette thèse de doctorat visait principalement à tirer parti du potentiel des séries temporelles d'images 

satellite pour améliorer les connaissances sur la réponse des prairies gérées à la sécheresse dans des 

conditions réelles. Elle a d'abord passé en revue les approches méthodologiques actuelles pour 

l'évaluation de la réponse des prairies à la sécheresse à l'aide de la RS et a analysé les intrants, les 

applications, les avantages et les inconvénients de chaque approche (chapitre 1). Il a ensuite été évalué 

la variabilité et les facteurs de la sensibilité des prairies à la sécheresse à l'échelle régionale (Massif 

central) à l'aide d'une approche d'inférence statistique (chapitre 2). Elle a déterminé l'influence du 

pédoclimat, des pratiques de gestion, de la diversité de la végétation et des structures des communautés 

sur la sensibilité des prairies à travers cinq échelles de temps d'intégration de la sécheresse. Enfin, cette 

thèse a analysé les différences de résistance et de résilience des prairies à la sécheresse en cas de fauche 

ou de pâturage à l'aide d'un modèle basé sur les processus qui assimile les données de réflectance 

satellitaire (chapitre 3). 

L'examen de l'état de l'art des études sur la réaction des prairies à l'évaluation de la sécheresse à 

l'aide de la télédétection (chapitre 1) a débuté par une recherche d'articles dans le Web of Science le 

31 janvier 2022. Les mots-clés utilisés ont permis de trouver 304 articles, puis un processus de 

sélection a mis en évidence l'utilisation de la télédétection pour quantifier les propriétés des prairies et 

identifier ou évaluer les épisodes de sécheresse. Après le processus de sélection, la collection d'articles 

a été réduite à 64 articles. 

L'évaluation des impacts de la sécheresse sur les prairies, basée sur les RS, a révélé l'existence de 

cinq approches méthodologiques. Avec des complexités et des apports croissants, ces approches ont 

été classées comme suit : seuil de l'indice de végétation (VI), comparaison des années, analyse des 

séries temporelles, inférences statistiques et modélisation mécaniste. L'approche de loin la plus 

courante est l'inférence statistique, qui consiste à déduire l'impact de la sécheresse à partir de la relation 

statistique entre la réflectance de la végétation obtenue par les satellites et les indices météorologiques 

de sécheresse en utilisant des ensembles de séries temporelles météorologiques à long terme. 

Les résultats de cette analyse bibliographique ont révélé l'utilisation générique du terme "réponse" 

dans les études d'évaluation, la distribution mondiale inégale des études de RS évaluant la réponse des 

prairies à la sécheresse et les différences de réponse des prairies par rapport à d'autres écosystèmes et 

entre les différents types de prairies. La réponse est un terme qui peut faire référence à la résistance, à 

la résilience ou à la récupération. Seuls certains contextes dans les discussions de l'article examiné ont 

permis de déterminer l'utilisation spécifique du terme "réponse". En conséquence, cette thèse a suivi 

les définitions proposées et l'utilisation des concepts de stabilité et de résilience par Van Meerbeek et 

al. (2021). Les défis identifiés dans la revue se sont concentrés sur le décalage entre les échelles 

spatiales et temporelles de la réflectance de la végétation et les indicateurs ou indices de sécheresse ; 

la gamme temporelle limitée ; et les impacts mixtes de la sécheresse et d'autres impacts de perturbation. 

Les possibilités présentées ont mis en évidence la nécessité de comparer les études entre les types de 

prairies et les régions biogéographiques, d'utiliser des produits et des techniques de RS nouveaux et 

existants, et d'évaluer la réponse en fonction d'autres propriétés des prairies. En fin de compte, 

l'utilisation d'une terminologie commune pour la "réponse" et la normalisation plus poussée des 

paramètres d'évaluation permettront d'améliorer les comparaisons mondiales des réponses des prairies. 
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En conclusion, l'examen de l'état des connaissances a révélé les approches méthodologiques 

existantes pour l'évaluation de la réponse des prairies à la sécheresse à l'aide de la télédétection et a 

mis en évidence des biais et des lacunes dans la distribution mondiale des études. Elle a appelé à 

l'identification de l'utilisation spécifique de la "réponse" afin de normaliser et de comparer les études 

d'évaluation. Enfin, le chapitre 1 a présenté les possibilités offertes par les données et les techniques 

de télédétection en constante évolution. 

Le chapitre 2 a deux objectifs principaux, à savoir quantifier la sensibilité des prairies gérées à la 

sécheresse à cinq échelles de temps d'intégration de la sécheresse, et évaluer l'influence du pédoclimat, 

des pratiques de gestion agricole et de la diversité de la végétation sur cette sensibilité.  

De nombreuses études basées sur la télédétection et portant sur la sensibilité de la végétation à la 

sécheresse ont révélé l'importance de la capacité de rétention d'eau du sol (Ji et Peters, 2003), de la 

topographie (Cartwright, 2020), de la gestion agricole (Burrell et al., 2020) et de la diversité de la 

végétation (De Keersmaecker et al., 2015). Toutefois, l'influence relative des différents facteurs 

moteurs (c'est-à-dire la diversité pédoclimatique, la gestion et la végétation) n'a pas encore été évaluée 

simultanément. 

Le chapitre 2 a une couverture à l’échelle régionale et nécessite des informations sur les conditions 

hétérogènes des prairies. Les données de terrain sur la caractérisation des parcelles de prairies 

proviennent de trois projets menés dans la région du Massif central entre 2008 et 2019 (Galliot et al., 

2020). La gravité de la sécheresse a été évaluée à l'aide d'un indice standardisé modifié de 

précipitations et d'évapotranspiration (SPEI). Ensuite, les anomalies des indices de végétation (VI), 

dérivées d'images Landsat multitemporelles, ont été soumises au même processus d'extraction et de 

normalisation que l'indice SPEI modifié. Les images Landsat ont été sélectionnées en raison de leur 

longue couverture temporelle. 

Dans cette étude, nous avons d'abord évalué les sensibilités de toutes les parcelles de prairies à l'aide 

d'une approche d'inférence statistique. Les sensibilités des prairies ont été basées sur la relation linéaire 

entre les anomalies normalisées de la VI et l'indice SPEI. Environ 24 VI ont été testés dans la dérivation 

de la sensibilité à la sécheresse. Ensuite, nous avons utilisé une procédure de sélection de modèles pour 

déterminer les facteurs les plus significatifs de la sensibilité des prairies à la sécheresse à partir de trois 

catégories de facteurs pédoclimatiques, de gestion et de diversité de la végétation. Une répartition de 

la variance des facteurs les plus significatifs, à partir du modèle final, a permis de rendre compte de 

l'influence globale de chaque facteur sur la sensibilité des prairies à la sécheresse. 

Les résultats du premier objectif ont révélé un coefficient de variation moyen de 27 % pour les cinq 

échelles temporelles. Ensuite, la VI a été la source la plus importante de variation des sensibilités 

estimées par rapport à l'échelle de calcul de la sécheresse et à la variabilité géographique. 

Les sensibilités dérivées de l'indice de différence normalisé de l'eau (NDWI) et de l'indice global 

d'humidité de la végétation (GVMI) ont présenté les pentes les plus élevées et la meilleure adéquation 

entre les anomalies VI normalisées et l'indice SPEI modifié. Cependant, malgré la forte réactivité des 

anomalies de ces deux indices basés sur l'humidité avec l'indice SPEI modifié, leurs valeurs R2 

maximales n'ont pas dépassé 0,35. 

Conformément aux attentes, les facteurs pédoclimatiques, comme la capacité de rétention d'eau du 

sol, ont été les principaux facteurs d'atténuation de la sensibilité à la sécheresse. Toutefois, ce qui est 

nouveau, c'est que ces facteurs n'exercent une grande influence que sur des périodes courtes, 

inférieures ou égales à 30 jours. Ensuite, les facteurs de gestion ont été significatifs sur toutes les 

échelles de temps. L'influence la plus forte a été observée à partir de la date de la première utilisation 

de la prairie par le pâturage, une utilisation tardive augmentant la sensibilité à la sécheresse. Enfin, les 

facteurs liés à la diversité de la végétation et à la structure des communautés ont atténué l'impact de la 

sécheresse à long terme, mais les effets étaient faibles à modérés. Les résultats de la répartition de la 
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variance suggèrent des effets en cascade complexes entre les pratiques de gestion et la diversité de la 

végétation et la structure des communautés, qui doivent encore être étudiés. 

En conclusion, le chapitre 2 a révélé la grande variabilité de la sensibilité des prairies à la sécheresse 

dans la région du Massif central grâce à la télédétection. Il a souligné l'importance de l'échelle de temps 

d'intégration de la sécheresse lors de l'évaluation de l'influence des facteurs déterminants de la 

sensibilité à la sécheresse. Outre les effets en cascade, le chapitre 2 a également soulevé des questions 

essentielles sur l'importance de la date de première utilisation de la prairie par le pâturage, peu étudiée 

à toutes les échelles temporelles, et de la moyenne pondérée par la communauté de la masse des graines 

à des échelles temporelles courtes. 

Certaines limites de l'évaluation régionale étaient liées à la relation bruitée entre les anomalies VI 

normalisées et l'indice SPEI modifié, et à l'incapacité de l'approche d'inférence statistique à distinguer 

les composantes de résistance et de résilience de la réponse ou de la sensibilité des prairies à la 

sécheresse. 

Le chapitre 3 de cette thèse a fourni une évaluation plus complète des réponses des prairies. Il visait 

à comparer la résistance et la résilience à la sécheresse des parcelles de prairies fauchées et pâturées. 

Pour ce faire, cette étude d'évaluation locale a créé et utilisé un modèle simple et parcimonieux de la 

dynamique de l'indice de surface foliaire verte (LAI). Ce modèle simple est basé sur trois composantes 

: la croissance de la végétation, la sénescence et l'impact du prélèvement de l'herbe par la gestion 

agricole. Les paramètres du modèle reflètent l'augmentation maximale quotidienne de l'indice foliaire 

(gmax), l'eau maximale disponible pour les plantes (wmax), le taux de sénescence (smax) et le pic de 

floraison. Un modèle à une couche, basé sur les précipitations et l'évapotranspiration, a été considéré 

pour la disponibilité de l'eau. Les entrées du modèle ont été limitées à trois facteurs climatiques et deux 

facteurs de gestion. La gestion a été incorporée dans le modèle sur la base des résultats du chapitre 2. 

Le chapitre 3 a été réalisé à l'échelle d'une exploitation ou l’échelle locale et nécessitait des facteurs 

environnementaux homogènes. Les données détaillées sur la gestion des prairies utilisées pour cette 

étude proviennent du projet Systèmes d'élevage ALlaitants herbagers : Adapter le type génétique et 

MIXer les espèces pour renforcer leur durabilité (SALAMIX), qui s'est déroulé de 2015 à 2020 (Prache 

et al., sous presse). Le SPEI modifié a été utilisé pour évaluer et identifier les événements de sécheresse 

à partir d'une station météorologique de terrain sur le site. Leurs sévérités respectives (sans unité) ont 

été basées sur l'aire sous la courbe à partir du seuil de sécheresse. Le modèle PROSAIL et la méthode 

d'inversion par table de recherche, ainsi que les données Sentinel 2, ont été utilisés pour estimer la 

dynamique observée de l'indice LAI. 

Les valeurs LAI dérivées du satellite ont été assimilées dans le modèle simple pendant la phase 

d'étalonnage. Deux approches de calibration des paramètres ont également été testées pour le modèle. 

La première était l'approche d'étalonnage des paramètres fixes, qui utilisait une valeur pour les quatre 

paramètres pendant toute la période de simulation (2016 à 2020). La seconde est l'approche de 

calibration des paramètres variables dans le temps, qui tente de reproduire les changements possibles 

de la capacité de croissance (gmax) qui peuvent être dus à des changements dans la composition de la 

végétation et/ou dans le stockage des ressources. 

Une procédure de validation interne et externe du modèle a permis de déterminer le meilleur modèle 

sur la base des deux approches d'étalonnage. A partir de là, nous avons simulé avec le meilleur modèle 

le LAI de prairies gérées dans deux conditions, à savoir : les conditions ambiantes (avec la présence 

de sécheresse), et les conditions sans stress hydrique. Les deux simulations ont permis de déterminer 

le rapport logarithmique de réponse à la sécheresse. L'étude a estimé la résistance et la résilience des 

prairies gérées selon la formule de Van Meerbeek et al. (2021). 

L'approche d'étalonnage de gmax variable dans le temps a donné de meilleurs résultats que 

l'étalonnage de paramètres fixes dans la validation interne du modèle. Cependant, aucune distinction 
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claire n'a été trouvée dans la validation externe du modèle. En conséquence, les conditions de stress 

hydrique ambiant et sans stress hydrique ont été simulées à l'aide du modèle d'étalonnage gmax 

variable dans le temps. 

La relation négative entre la résistance des prairies gérées et la gravité de la sécheresse était celle 

attendue. Cependant, la présence d'un seuil de sécheresse qui a entraîné une relation négative non 

linéaire est une nouveauté. Le seuil de gravité de la sécheresse de 80 peut correspondre soit à des 

sécheresses d'une durée supérieure à 40 jours avec une valeur SPEI modifiée constante de -2,0 

(extrêmement sec), soit à des sécheresses d'une durée de 80 jours avec une valeur SPEI constante de -

1,0 (modérément sec). La résistance des prairies fauchées et des prairies pâturées n'était pas 

significativement différente. En ce qui concerne la résilience et la sévérité de la sécheresse, une 

diminution de la résilience a été observée après le seuil de 80 jours de sécheresse. Ici et en accord avec 

les expériences de terrain de Deléglise et al. (2015) et de Bütof et al. (2012), le pâturage était 

légèrement plus résilient que la fauche. 

En conclusion, de bons ajustements ont été obtenus avec le modèle parcimonieux basé sur les 

processus du LAI vert assimilé avec Sentinel 2 dans le cadre de la validation interne du modèle. Le 

modèle a démontré la valeur de l'approche d'étalonnage des paramètres variables dans le temps, qui 

nécessite des modèles plus complexes. Cependant, l'absence de différence significative entre le 

pâturage et la fauche était inattendue. 

Enfin, le chapitre 3 doit être considéré comme des résultats préliminaires en raison du nombre limité 

d'enclos de prairies (6 sur 33) considérés dans l'analyse. Une autre limite a été l'hypothèse forte selon 

laquelle les pratiques de gestion sont restées inchangées pour les conditions de stress hydrique ambiant 

et sans stress hydrique. Dans ces dernières, la production élevée de biomasse, due à l'absence de 

sécheresse, devrait encourager une utilisation plus fréquente de l'herbe. 

En résumé, cette thèse de doctorat a réalisé des études évaluant la réponse des prairies à la 

sécheresse à l'aide de la télédétection, ce qui a mis en évidence les approches méthodologiques 

existantes, les lacunes et les opportunités. Elle a mené deux études complémentaires sur la réponse des 

prairies à la sécheresse, à savoir : les évaluations à l'échelle régionale et locale en utilisant des modèles 

linéaires et un modèle simple basé sur le processus assimilé avec les données Sentinel 2, 

respectivement. Le chapitre 2 ou l'évaluation régionale a révélé l'importance des échelles temporelles 

de la sécheresse dans l'évaluation de la sensibilité des prairies à la sécheresse. Il a mis en évidence 

l'influence significative des pratiques de gestion à toutes les échelles temporelles et a appelé à une 

étude plus approfondie sur les facteurs de gestion et de diversité de la végétation. Le chapitre 3, ou 

l'évaluation à l'échelle locale à l'aide d'un modèle simple basé sur des processus et assimilé à des 

données satellitaires, s'appuie sur les résultats et les limites de l'évaluation régionale. Le chapitre 3 a 

abordé la relation bruitée en utilisant le rapport de réponse logarithmique à la sécheresse sur la base de 

trajectoires simulées avec le modèle. La réponse logarithmique a permis de déterminer les 

composantes de résistance et de résilience de la réponse des prairies à la sécheresse selon la formule 

de Van Meerbeek et al. (2021). Les résultats préliminaires du chapitre 3 mettent en évidence la bonne 

adéquation des modèles parcimonieux basés sur les processus. Il reste nécessaire d'inclure des 

dynamiques écologiques plus réalistes dans le modèle. Aucune différence significative n'a été trouvée 

dans la résistance et la résilience des prairies fauchées et pâturées. Cependant, les prairies pâturées ont 

révélé une résilience à la sécheresse légèrement supérieure à celle des prairies fauchées, ce qui est 

cohérent avec les expériences menées sur le terrain. 

Dans l'ensemble, le modèle linéaire du chapitre 2 et le modèle basé sur les processus du chapitre 3 

peuvent être interchangés si l'on dispose respectivement de données sur les caractéristiques des prairies 

et les informations détaillées de gestions agricoles. La prise en compte d'autres facteurs plus liés à la 

réponse à la sécheresse, tels que la longueur des racines, la surface spécifique des racines et d'autres 

caractéristiques des plantes, pourrait améliorer les évaluations. Le chapitre 2 peut également prendre 
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en compte les conditions microclimatiques générées par la couverture végétale environnante. Le 

chapitre 3 peut envisager deux directions de développement en incorporant des processus 

écophysiologiques plus détaillés ou en reflétant l'influence de la dynamique des communautés 

végétales sur la productivité et la réaction à la sécheresse des prairies gérées. 
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Executive Summary 

 

Drought is a natural phenomenon associated with extreme precipitation shortages leading to water 

deficits. The decrease in the amount of water is exhibited in the soil and impacts the water supply for 

plants. It causes various and complex consequences on ecosystems and threatens the quality and 

sustainability of their ecosystem services. Droughts have serious implications for agroecosystems, 

including managed grasslands. Indeed, the deficit in available water for agroecosystems and managed 

grasslands endangers their ability to address food security (Jiang and Wang, 2022; O'Mara, 2012; 

Soussana et al., 2013). Grasslands are graminoid-dominated ecosystems with limited shrubs and 

woody perennial covers exceeding 5 meters in height (Suttie et al., 2005). They provide ecosystem 

services, such as the production of milk and meat as feed to animals (Jiang and Wang, 2022; O'Mara, 

2012), and carbon sequestration (Bai and Cotrufo, 2022; Bardgett et al., 2021; Jones and Donnelly, 

2004) supporting the mitigation of Climate Change and biodiversity habitat for fauna and flora (Binder 

et al., 2018; van Oijen et al., 2018). A better understanding of factors that influence the sensitivity, 

resistance, and resilience to drought of managed grasslands will help guide mitigation measures. 

Many studies have conducted controlled pot, mesocosm, or field drought experiments to better 

understand the processes associated with grassland responses to drought (Ogbaga et al., 2020). For 

example, plant tissue organs and individual plants exhibit water deficit stress as anomaly changes in 

their physiological properties (Volaire, 2018). The negative impacts are visible in the development of 

leaves and roots (Volaire, 2018). Plants exhibit a decrease in photosynthetic activities and reveal faster 

plant senescence rates. Changes in the physiological processes due to drought vary based on plant 

capabilities and growth strategies (Volaire et al., 2009). The importance of soil properties is 

highlighted with the comparison of the growth of prominent grass species in different soil mediums 

(Buttler et al., 2019). The interactions among plant populations demonstrate the influence of taxonomic 

and functional diversities (Schnabel et al., 2021) and vegetation community composition (Fry et al., 

2021) on the response to drought. Management practices also influence the response of grasslands to 

drought. For example, it has been found that Nitrogen fertilization mitigates drought impact in a 

mesocosm experiment with clay-rich soils in Münster, Germany (Klaus et al., 2020). However, 

Nitrogen fertilization causes detrimental effects on grassland communities if done excessively during 

drought (Klaus et al., 2020).  Zwicke et al. (2013) in an experiment conducted with species typical of 

French temperate grasslands showed that frequent cuts may enhance drought impact, but Deléglise et 

al. (2015) found that grazing increases drought impact more than mowing in the mountainous 

grasslands of Switzerland. Despite the significant contributions of these grassland-drought studies, 

controlled and field water deficit experimental approaches are restricted still in their spatial and 

temporal coverages. Moreover, as they are disconnected from real-life conditions, due to some 

limitations of their setups, it has been shown that experiments underestimate the impact of drought on 

grasslands (Kröel-Dulay et al. 2022). Thus, additional approaches are needed to provide a better 

assessment of vegetation responses to water deficits. 

The development of remote sensing (RS) products and techniques opens promising avenues for 

ecosystem research. The reflectance information collected by optical satellite sensors allows the 

estimation of vegetation properties based on the radiative transfer theory (Drusch and Crewell, 2006; 

Turner et al., 2003). Surfaces on the Earth, such as vegetation, either absorb or reflect a certain amount 

of electromagnetic energy from the sun or artificial sources. Sensors, onboard the satellites, detect 

different levels of reflected energy depending on the vegetation condition. A healthy leaf absorbs red 

and blue, and reflects green and near-infrared reflectance, while a stressed leaf absorbs more near-

infrared and reflects the visible red and blue. Similarly, high leaf moisture absorbs more shortwave-

infrared reflectance, between 1,500 and 2,300 nanometers (nm), and reflects the signal as the leaf turns 

dry (Summy et al., 2003). 
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Complementary to traditional water deficit experiments and field observations, this Ph.D. thesis 

primarily aimed to take advantage of the potential of satellite image time series for improving 

knowledge on the response of managed grasslands to drought in real-life conditions. It first reviewed 

the current methodological approaches for the assessment of grassland response to drought using RS 

and analyzed the inputs, applications, advantages, and disadvantages of each approach (Chapter 1). 

Then it assessed the variability and drivers of grassland sensitivity to drought at a regional scale (the 

Massif central region) using a statistical inference approach (Chapter 2). It determined the influence 

of pedoclimate, management practices, and vegetation diversity and community structures on 

grassland sensitivity across five drought integration timescales. Finally, this thesis analyzed 

differences in grassland resistance and resilience to drought under mowing or grazing using a process-

based model that assimilates satellite reflectance data (Chapter 3).  

The state-of-the-art review of studies on grassland response to drought assessment using remote 

sensing (Chapter 1) was initiated with an article search in the Web of Science on 31 January 2022. The 

implemented keywords resulted in 304 articles, then a screening process highlighted the use of RS in 

quantifying grassland properties and identifying or assessing drought events. After the screening 

process, the article collection was reduced to 64 preliminary articles.  

The RS-based assessment of drought impacts on grasslands revealed the existence of five 

methodological approaches. With increasing complexities and inputs, these approaches were classified 

as vegetation index (VI) threshold, year comparison, time series analysis, statistical inferences, and 

mechanistic modelling. By far, the most common approach is statistical inference, which consists of 

inferring the impact of drought from the statistical relationship between vegetation satellite reflectance 

and meteorological drought indices using long-term time series datasets.  

The findings of this bibliographic analysis revealed the generic use of “response” in the assessment 

studies; the uneven global distribution of RS studies assessing grassland response to drought; and the 

differences in responses of grasslands compared to other ecosystems and among different grassland 

types. Response is a term that can refer to either resistance, resilience, or recovery. Only certain 

contexts in the discussions of the reviewed article allowed the determination of the specific use of 

“response”. Accordingly, this thesis followed the proposed definitions and use of stability and 

resilience concepts by Van Meerbeek et al. (2021). The identified challenges in the review focused on 

the mismatch between the spatial and temporal scales of the vegetation reflectance and drought 

indicators or indices; the limited temporal range; and the mixed impacts of drought and other 

disturbance impacts. The presented opportunities highlighted the need for study comparisons among 

grassland types and biogeographic regions; the utilization of new and existing RS products and 

techniques; and the assessment of response based on other grassland properties. Ultimately, the use of 

common terminology for “response” and the further standardization of assessment parameters will 

lead to better global comparisons of grassland responses. 

In conclusion, the state-of-the-art review revealed the existing methodological approaches for the 

assessment of grassland response to drought using remote sensing and found biases and gaps in the 

global distribution of studies. It called for the identification of the specific use of “response” to 

standardize and compare assessment studies. Finally, Chapter 1 presented opportunities from the 

continuously developing RS data and techniques.  

Chapter 2 has two main objectives, namely, to quantify the sensitivity of managed grassland to 

drought at five drought integration timescales, and to assess the influence of the pedoclimate, 

agricultural management practices, and vegetation diversity on said sensitivity.  

Multiple remote sensing-based studies on vegetation sensitivity to drought revealed the importance 

of soil water holding capacity (Ji and Peters, 2003), topography (Cartwright, 2020), agricultural 

management (Burrell et al., 2020), and vegetation diversity (De Keersmaecker et al., 2015). However, 
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the relative influence of different driving factors (i.e., pedoclimatic, management, and vegetation 

diversity) has yet to be assessed at the same time.  

Chapter 2 has regional coverage and requires information on heterogeneous grassland conditions. 

The input field data on grassland parcel characterizations were from three conducted programs and 

projects in the Massif central region from 2008 to 2019 (Galliot et al., 2020). Drought severity was 

assessed using a modified Standardized Precipitation and Evapotranspiration Index (SPEI). Then the 

anomalies of vegetation indices (VI), derived from multi-temporal Landsat images, underwent the 

same extraction and standardization process of the modified SPEI. Landsat images were selected 

because of their long temporal coverage. 

In this study, we first assessed the sensitivities of all grassland plots using a statistical inference 

approach. Grassland sensitivities were based on the linear relationship of standardized VI anomalies 

and drought severity index. About 24 VI were tested in the derivation of sensitivity to drought. Then, 

we used a model selection procedure to determine the most significant drivers of grassland sensitivity 

to drought from three categories of pedoclimate, management, and vegetation diversity factors. A 

variance partitioning of the significant driving factors, from the final model, accounted for the overall 

influence of each category on grassland sensitivity to drought.  

The results of the first objective revealed a 27% mean coefficient of variation across the five 

timescales. Then VI was the most important source of variation of the estimated sensitivities compared 

to drought timescale of computation, and geographic variability. 

The Normalized Difference Water Index (NDWI) and the Global Vegetation Moisture Index 

(GVMI) derived sensitivities exhibited the highest slopes and goodness-of-fit between the standardized 

VI anomalies and modified SPEI. However, despite the high responsiveness of the anomalies of these 

two moisture-based indices with the modified SPEI, their maximum R2 values did not exceed 0.35.  

Within expectation, pedoclimatic factors, like the soil water holding capacity, were key mitigating 

drivers of sensitivity to drought. However, something new is its high influence only in short timescales 

equal to and less than 30 days. Then, management factors were significant across all timescales. The 

highest influence was from the date of first use, where late use increased drought sensitivity. Finally, 

vegetation diversity and community structure factors mitigated drought impact at long timescales, but 

the effects were weak to moderate. The findings of the variance partitioning suggest complex 

cascading effects between management practices and vegetation diversity and community structure 

that still need to be addressed.  

In conclusion, Chapter 2 revealed the high variability of grassland sensitivity to drought in the 

Massif central region using remote sensing. It underscored the importance of drought integration 

timescale when assessing the influence of driving factors of sensitivity to drought. Apart from the 

cascading effects, Chapter 2 also raised key questions on the importance of the understudied date of 

first use across all timescales and the community weighted mean of seed mass at short timescales. 

Some limitations of the regional assessment were related to the noisy relationship between the 

standardized VI anomalies and modified SPEI, and the inability of the statistical inference approach 

to distinguish the resistance and resilience components of the grassland response or sensitivity to 

drought.  

Chapter 3 of this thesis provided a more comprehensive assessment of grassland responses. It aimed 

to compare the resistance and resilience to drought of mowed and grazed grassland paddocks. To do 

so, this local assessment study created and used a simple and parsimonious process-based model of 

the dynamics of the green leaf area index (LAI). The simple process-based model is based on three 

components including vegetation growth, senescence, and impact of herbage uptake. The model 

parameters reflected the daily maximum increase in LAI (gmax), maximum available water for plants 

(wmax), rate of senescence (smax), and the peak of flowering. A one-layer bucket model, based on 
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precipitation and evapotranspiration, was considered for the water availability. Model inputs were 

limited to three climatic and two management factors. Management was incorporated into the model 

based on the results of Chapter 2. 

Chapter 3 was conducted on a farm or local scale and required homogeneous environmental factors. 

The detailed grassland management data for this study was from the Systèmes d’élevage ALlaitants 

herbagers : Adapter le type génétique et MIXer les espèces pour renforcer leur durabilité (SALAMIX) 

project, which was conducted from 2015 to 2020 (Prache et al., in press). The modified SPEI was used 

to assess and identify drought events based on a field meteorological station on the site. Their 

respective drought severities (unitless) were based on the area under the curve from the drought 

threshold. The PROSAIL model and look-up table inversion method, together with Sentinel 2 data, 

were used to estimate the observed dynamics of LAI.  

The satellite-derived LAI values were assimilated in the simple model during the calibration phase. 

Two parameter calibration approaches were also tested for the model. First was the fixed parameter 

calibration approach, which used one value for all four parameters during the entire period of 

simulation (2016 to 2020). The second was the time-varying parameter calibration approach, which 

attempts to replicate the possible changes in growth capacity (gmax) that may be due to changes in 

vegetation composition and/or resource storage.  

An internal and external model validation procedure determined the better model based on the two 

calibration approaches. From here, we simulated with the better model the LAI of managed grasslands 

under two conditions, namely: the ambient (with the presence of drought), and the without water stress 

conditions. The two simulations allowed the determination of the logarithmic drought response ratio. 

The study estimated the resistance and resilience of managed grasslands according to the formula in 

Van Meerbeek et al. (2021).  

The time-varying gmax calibration approach performed better than the fixed parameter calibration 

in the internal model validation. However, no clear distinction was found in the external model 

validation. Accordingly, the ambient and without water stress conditions were simulated using the 

time-varying gmax calibration model. 

The negative relationship between the resistance of the managed grasslands and drought severity 

was within expectation. However, something new was the presence of a drought threshold that resulted 

in a non-linear negative relationship. The drought severity threshold of 80 can either be droughts with 

durations longer than 40 days with a constant modified SPEI value of -2.0 (extremely dry) or durations 

of 80 days with a constant -1.0 SPEI value (moderately dry). Then, the resistance between mowed and 

grazed grasslands was not significantly different. While for resilience and drought severity, a decrease 

in resilience was observed after the 80 drought threshold. Here and consistent with the field 

experiments in Deléglise et al. (2015) and in Bütof et al. (2012), grazing was slightly more resilient 

than mowing.  

In conclusion, good fits were obtained with the parsimonious process-based model of green LAI 

assimilated with Sentinel 2 under the internal model validation. The model demonstrated the value of 

the time-varying parameter calibration approach, which calls for more complex models. However, the 

lack of a significant difference between grazing and mowing was unexpected.  

Finally, Chapter 3 should be considered as preliminary results due to the limited number of 

grassland paddocks (6 of 33) in the analysis. Another limitation was the strong assumption that 

management practices remained unchanged for both the ambient and without water stress conditions. 

During the latter, the high production of biomass, due to the absence of drought, is expected to 

encourage more frequent herbage use. 

In summary, this Ph.D. thesis conducted a review of studies assessing grassland response to drought 

using remote sensing, which highlighted existing methodological approaches, gaps, and opportunities. 
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It conducted two complementary studies on grassland response to drought, namely: the regional and 

local scale assessments using linear models and a simple process-based model assimilated with 

Sentinel 2 data, respectively. Chapter 2 or the regional assessment revealed the importance of drought 

timescales in grassland sensitivity to drought assessment. It highlighted the significant influence of 

management practices across all the timescales and called for further investigation into the partition of 

explained variance shared by management and vegetation diversity drivers. Chapter 3, or the local 

scale assessment using a simple process-based model assimilated with satellite data was built on the 

results and limitations of the regional assessment. Chapter 3 addressed the noisy relationship using the 

logarithmic response ratio to drought based on simulated trajectories with the model. The log response 

ratio allowed the determination of the resistance and resilience components of the grassland response 

to drought according to the formula by Van Meerbeek et al. (2021). Chapter 3 preliminary results 

highlight the good fit of parsimonious process-based models. There remains the need to include more 

realistic ecological dynamics in the model. No significant differences were found in the resistance and 

resilience of mowed and grazed grasslands. However, grazed grasslands revealed slightly higher 

resilience to drought than mowed ones which is consistent with field-conducted experiments. 

Overall, the linear model of Chapter 2 and the process-based model of Chapter 3 can be 

interchanged if data on grassland characteristics and detailed management records, respectively, are 

available. Consideration of other drivers more related to the response to drought, such as root length, 

specific root area, and other plant traits, may improve the assessments. Chapter 2 may also account for 

microclimate conditions generated by surrounding vegetation cover. Chapter 3 may consider two 

directions for development by incorporating either more detailed eco-physiological processes or 

reflecting the influence of vegetation community dynamics on the productivity and response to drought 

of managed grasslands. 
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Résumé 

 

Les sécheresses deviennent plus fréquentes et intenses avec le changement climatique, ce qui 

menace la durabilité des services écosystémiques fournis par de nombreux agroécosystèmes, y compris 

les prairies gérées, dans de nombreuses régions du monde. L’anticipation et l’atténuation des effets de 

la sécheresse ont motivé les recherches scientifiques en agronomie, écophysiologie et écologie. Pour 

mieux comprendre les processus associés à la réponse des prairies aux sécheresses, de nombreuses 

études ont mené des expérimentations en pot, en mésocosme ou sur le terrain. Malgré leur rôle 

primordial dans l’élaboration de nos connaissances actuelles, ces approches font face à des limitations 

cruciales comme leur étendue spatio-temporelle restreinte et leur disjonction des conditions réelles. Le 

développement de produits et de techniques de télédétection ouvre des pistes prometteuses pour le 

suivi des écosystèmes terrestres et leur réponse aux diverses sources de perturbations. En complément 

des expérimentations plus classiques sur la sécheresse et des observations sur le terrain, cette thèse a 

pour objectif de tirer parti des données de télédétection satellitaires à long terme pour évaluer la 

variabilité et les déterminants de la réponse des prairies à la sécheresse dans les systèmes agricoles du 

Massif central. Pour ce faire, cette thèse examine d’abord les approches méthodologiques actuelles 

pour l’évaluation de la réponse des prairies à la sécheresse par télédétection. Elle révise ensuite à 

déterminer la variabilité et les facteurs de sensibilité des prairies à la sécheresse à l’échelle régionale. 

Enfin, elle approfondit l’analyse de ces réponses en s’affrichissant de facteurs confondants, grâce à 

l’assimilation de données de télédétection à un modèle simple de croissance des prairies permanentes 

gérées. 

La revue bibliographique des analyses par télédétection des effets de la sécheresse sur les prairies 

a révélé l’existence de cinq approches méthodologiques alternatives. De loin, l’approche 

méthodologique la plus courante appelée ici « inférence statistique » consiste à inférer l’impact de la 

sécheresse à partir de la relation statistique entre la réflectance de la végétation et les indices 

météorologiques de sécheresse à l’aide de données chronologiques à long terme. Cette analyse 

bibliographique a également montré que la plupart des recherches ont été menées dans les Grandes 

Plaines (Amérique du Nord) et le Plateau mongol (Asie centrale) laissant de nombreux vides 

biogéographiques, en particulier dans les régions tempérées de l’Europe occidentale. 

La deuxième partie de cette thèse souligne la forte variabilité de la réponse des prairies gérées 

tempérées dans une région montagneuse hétérogène (le Massif central en France). Plus important 

encore, cette variabilité pourrait s’expliquer par un ensemble de facteurs pédoclimatiques, la diversité 

végétale et les pratiques de gestion. Conformément à l’attendu, certains facteurs pédologiques et 

topographiques, comme la capacité de rétention en eau du sol, ont été identifiés comme des facteurs 

d’atténuation clés des effets de la sécheresse. En outre, nos résultats ont montré une sensibilité plus 

faible des prairies préférentiellement fauchées plutôt que pâturées et avecune utilisation précoce. Pour 

les sécheresses longues et peu fréquentes, la diversité végétale a eu d’importants effets atténuants, mais 

nos conclusions suggèrent des effets en cascade complexes entre les pratiques de gestion et la structure 

des communautés végétales qui doivent encore être examinés. 

Enfin, la dernière partie de cette thèse a fourni une évaluation plus complète des réponses des 

prairies à la sécheresse en décomposant ses composantes de résistance et de résilience et en isolant 

l’impact de la sécheresse des influences confondantes des événements de gestion (coupe ou rotations 

de pâturage) et la phénologie de la végétation. Pour ce faire, l’information sur la réflectance du satellite 

Sentinel 2 a été assimilée dans la phase de calibrage d’un modèle simple basé sur un processus simulant 

la dynamique de l’indice de surface foliaire vert. Avec des pratiques de gestion détaillées et des 

données météorologiques comme variables d’entrée, les simulations des pâturages et des prairies 

fauchées dans des conditions normales et avec un approvisionnement en eau illimité ont permis 

d'extraire les composantes de résistance et de résilience de la réponse des prairies à des événements de 
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sécheresse de gravité variable entre 2016 et 2020. Les pâturages et les prairies fauchées ne présentaient 

pas de différences significatives en termes de résistance à la sécheresse. Cependant, les pâturages ont 

montré une résilience légèrement supérieure à celle des prairies fauchées. 

En conclusion, cette thèse appuie l’avantage des séries chronologiques d’images satellites pour 

évaluer la réponse des prairies aménagées à la sécheresse comme approche complémentaire aux 

expérimentations en conditions contrôlées et aux observations sur le terrain. Les résultats ont confirmé 

une plus grande sensibilité à la sécheresse des pâturages que des prairies fauchées et le rôle atténuant 

de la diversité végétale dans des conditions réelles en utilisant l'approche de l'inférence statistique. 

Cependant, la grande variabilité de la sensibilité des prairies à la sécheresse dans l’espace et dans le 

temps suggère des interactions complexes entre les facteurs déterminants et la nécessité de séparer les 

effets de la sécheresse des autres sources de perturbation des signaux de télédétection. L’assimilation 

des données de télédétection à un simple modèle de prairies offre une nouvelle perspective à cet égard. 

En priorité, les développements de futurs modèles devraient se concentrer sur l’intégration du rôle de 

la diversité végétale et de sa dynamique dans la modulation des impacts de la sécheresse sur les stades 

de végétation. 

 

Mots-clés : résilience, télédétection, SPEI, modèle mécaniste, échelles de temps, sécheresse 

météorologique   
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Abstract 

 

Drought events are becoming more frequent and severe with climate change, threatening the 

sustainability of ecosystem services provided by many agroecosystems, including managed grasslands 

in many regions of the world. The anticipation and mitigation of drought impacts have motivated 

scientific researches in agronomy, ecophysiology, and ecology. To better understand the processes 

associated with grassland responses to drought, many studies have conducted controlled pot, 

mesocosm, or field experiments. Despite their crucial role in building our current knowledge, these 

approaches face critical limitations such as their restricted spatio-temporal coverage and their 

disconnection from real-life conditions. The development of remote sensing (RS) products and 

techniques opens promising avenues for monitoring terrestrial ecosystems and their response to 

various sources of disturbances. As a complement to more traditional drought experiments and field 

observations, this Ph.D. thesis aimed at taking advantage of long-term satellite RS data, together with 

climate and field data, to assess the variability and drivers of grassland response to drought in 

agricultural systems in the Massif central. To do so, this thesis first reviewed the current 

methodological approaches for the assessment of grassland response to drought using RS. It addresses 

the central objective of determining the variability and drivers of grassland sensitivity to drought at 

the regional scale. Finally, it sought to comprehensively analyze the impact of drought, amidst the 

confounding factors, by assimilation of RS data with a simple model of grassland growth. 

The review of RS-based analyses of drought impacts on grasslands revealed the existence of five 

alternative methodological approaches. By far, the most common one called here as the “statistical 

inference” approach consists of inferring the impact of drought from the statistical relationship 

between vegetation reflectance and meteorological drought indices using long time series datasets. 

This bibliographic analysis also showed that most of the researches were conducted in the Great Plains 

(North America) and Mongolian Plateau (Central Asia) leaving many biogeographic gaps, particularly 

in the temperate regions of Western Europe. 

 The second part of this thesis emphasized the strong variability of the response of temperate 

managed grasslands across a heterogeneous mountainous region (the Massif central, France). Most 

importantly, such variability could be explained by a set of pedoclimatic factors, vegetation diversity, 

and management practices. As expected, some soil and topographic factors, like the soil water holding 

capacity, were identified as key mitigating factors of drought impacts. In addition, our results showed 

lower sensitivity of grasslands predominantly mown rather than grazed and with early herbage uptake. 

For long and infrequent drought events, vegetation diversity had significant mitigating effects, but our 

findings suggest complex cascading effects between management practices and plant community 

structure that still need to be addressed.  

Finally, the last part of this thesis provided a more comprehensive assessment of grassland 

responses to drought by decomposing its resistance and resilience components and by isolating the 

impact of drought from the confounding influences of management events (cutting or grazing 

rotations) and vegetation phenology. To do so, Sentinel 2 satellite reflectance information was 

assimilated in the calibration phase of a simple process-based model simulating the dynamics of the 

green Leaf Area Index. With detailed management practices and meteorological data as input 

variables, the simulations of pastures and meadows under normal conditions and unlimited water 

supply allowed the extraction of the resistance and resilience components of grassland response to 

drought events of varying severity between 2016 and 2020. Pastures and meadows were insignificantly 

different in terms of resistance to drought. However, pastures showed slightly higher resilience than 

meadows. 
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In conclusion, this thesis supports the benefit of satellite image time series for assessing the response 

of managed grasslands to drought as a complementary approach to controlled experiments and field 

observations. The results detected higher sensitivity to drought of pastures than meadows and the 

mitigating role of vegetation diversity in real-life conditions using the statistical inference approach. 

However, the high variability of grassland sensitivity to drought in space and time suggests complex 

interactions between the driving factors and the need to separate drought effects from other sources of 

disturbance in RS signals. The assimilation of RS data with a simple grassland model offers a new 

perspective in this respect. In priority, future model developments should focus on incorporating the 

role of vegetation diversity and its dynamics in modulating drought impacts on vegetation states. 

 

Keywords: resilience, remote sensing, SPEI, mechanistic model, time scales, meteorological drought  
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GENERAL INTRODUCTION 

 

A. Under the context of climate change and drought  

The Intergovernmental Panel on Climate Change (IPCC) revealed that human-induced climate 

change started as early as the 1980s (Hansen et al., 2006; Houghton et al., 1990). Climate change is a 

statistically significant shift in the mean and variability of climatic properties caused by natural 

unpredictability and the influence of anthropogenic activities (Pielke, 2004). 

The degradation of ecosystems and the decline of biodiversity due to the increasing temperature 

and occurrence of extreme climatic events are among the impacts of climate change (Clarke et al., 

2022; Hansen et al., 2012; IPCC, 2022). For example, climate change has caused shifts in the 

distribution of plant species to higher elevation gradients due to changes in environmental properties 

(Davis and Shaw, 2001; Van der Putten, 2012). Climate change impairs the realization of ecosystem 

processes like carbon, water and nutrient cycles, water use, and community dynamics (Grimm et al., 

2013; Yvon-Durocher et al., 2010), which is hampered also by biodiversity decline (Beier et al., 2012; 

Loreau et al., 2001; Tilman et al., 2014).   

One critical aspect of climate change is the increase in frequency, intensity, and duration of droughts 

(Leng et al., 2015; Mukherjee et al., 2018; Sperry and Love, 2015). Drought events occur with a drastic 

reduction of precipitation and higher air temperature and solar radiation that leads to faster 

evapotranspiration rates that result in deficits in the climatic water balance (Dai, 2011). Drought 

threatens system productivity and longevity due to water stress impacts on plants and ecosystems 

(Porporato et al., 2001). The altered water supply to rain-fed agroecosystems, due to variabilities in 

precipitation and temperature, threatens food security (Bandara and Cai, 2014; Muluneh, 2021). 

 

1. Managed grasslands  

Grasslands are graminoid-dominated ecosystems with limited cover of tall shrubs and woody 

perennials that exceed 5 meters in height (Suttie et al., 2005; Xu and Guo, 2015). They cover about 20 

to 40% of the Earth’s terrestrial surface (Bardgett et al., 2021; Dixon et al., 2014) and are distributed 

in various topographic and climatic regions of the world (Dixon et al., 2014; Godde et al., 2020; Xu 

and Guo, 2015). Grassland distribution depends on local climate, soil, water, topography, and 

disturbance regimes that prevent the course of the ecological succession from pioneer stages dominated 

by herbs and grasses to mature stages dominated by trees (Petermann and Buzhdygan, 2021). Alpine 

and tundra grasslands are maintained by cold seasons that naturally hinder the development of woody 

ecosystems. Tropical regions have wet and dry seasons that promote vegetation growth, thus requiring 
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fire or other forms of disturbance to maintain grassland cover (Dixon et al., 2014; Strömberg and 

Staver, 2022). Flooded plains impede the recruitment of trees by preventing seed germination with 

water inundation. Aside from these natural determinants of distribution, anthropogenic activities play 

an extensive role in the maintenance of grasslands, through grazing of livestock and agriculture 

practices. The need to address the food security demands of the human population influences the 

greater use of pastures and meadows for milk and meat production.  

The grassland classifications change between regions of the world (Bai and Cotrufo, 2022; Pellaton 

et al., 2022). Concerning agricultural management, graminoid-dominated ecosystems are classified as 

natural, semi-natural, and improved grasslands (Bengtsson et al., 2019; Chang et al., 2021). Improved 

grasslands resemble agricultural lands due to intensive management practices (plowing and sowing) 

for high production yield (Pilgrim et al., 2010). On the other side, natural grasslands are free from 

anthropogenic management pressures (Parr et al., 2014). In between these two extreme types, semi-

natural or managed grasslands are characterized by either sown mixtures or spontaneous vegetation 

dynamics, influenced by agricultural practices of herbage usage by grazing or mowing and nutrient 

fertilization. The grazing and mowing activities in managed grasslands may promote higher 

biodiversity depending on their intensity (Pulungan et al., 2019) and prevent the growth of unwanted 

invasive plant species (Kun et al., 2021). 

Managed grasslands provide key ecosystem services that benefit both humans and the environment. 

The most obvious is the provisioning service, which allows billions of employment opportunities 

related to meat and milk production (Jiang and Wang, 2022; O'Mara, 2012; Soussana et al., 2013). 

Regarding, regulating services, grasslands sequester and store about 34% of terrestrial carbon, where 

about 90% is below ground (Bai and Cotrufo, 2022; Bardgett et al., 2021; Jones and Donnelly, 2004). 

Managed grasslands contribute also to the cultural landscape and recreational activities despite their 

main use for production (Dengler et al., 2014; Pellaton et al., 2022). Part of these services is supported 

by high biodiversity hosted by grasslands (Binder et al., 2018; van Oijen et al., 2018), which can reach, 

for example, a maximum of 89 plant species per m2 (Wilson et al., 2012).  

Compared to other ecosystems and within agroecosystems, grasslands are negatively impacted by 

drought (Deng et al., 2021; Ji and Peters, 2003; Teuling et al., 2010; Tollerud et al., 2018). The 

aboveground and belowground grassland biomass can decrease by at least 25% due to drought and 

heat stress during the summer season (De Boeck et al., 2008; Gao et al., 2019). Drought impacts lead 

to the reduced coverage, quantity, and quality of grasslands and their ecosystem services, which 

eventually leads to scarcity of herbage for livestock, lesser milk and meat production, and a decline in 

economic benefits. The estimated economic losses from the grassland yield start at about a 28% 

reduction in profits based on 5-year drought field experiments (Finger et al., 2013). Grasslands turn 
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from carbon sinks to sources beyond the ecosystem respiration threshold of 0.171 μmol m−2 s−1 of 

carbon due to drought based on a net ecosystem productivity regression model of grasslands in Inner 

Mongolia, China (Zhang et al., 2020).  

Managed grasslands are widely distributed all over the world and contribute to the conservation of 

biodiversity and numerous provisioning, supporting, regulating, and cultural services. Grasslands are 

threatened by the increased severity and frequency of drought events that negatively impact their 

biodiversity and ecosystem services (Thornton et al., 2009; Zhang et al., 2021). Better knowledge of 

how these agroecosystems respond to droughts is necessary to predict and mitigate the drought impacts 

under different environmental contexts (Mejía and Wetzel, 2023). 

 

2. Drought assessment 

Drought is a natural hazard generally associated with extreme precipitation and water shortages 

(Mishra and Singh, 2010). It has various and complex consequences on ecosystems and human 

societies (Mishra and Singh, 2010; Slette et al., 2019). Drought covers a variety of definitions (Palmer, 

1965; Slette et al., 2019) that can be classified according to the level of integration of water deficit 

consequences (Figure 1). The first level, defined as the climatological or meteorological drought, refers 

to the deficit in the climatic water balance, i.e., the difference between precipitation and potential 

evapotranspiration (Zargar et al., 2011). Then, agricultural drought refers to the consequences of 

meteorological droughts on soil water availability for plants (Cao et al., 2022; Zargar et al., 2011). 

Depending on the actual evapotranspiration (i.e., plant-specific water consumption) and the water 

holding capacity of the soil, a given deficit of the climatic water balance result in soil moisture stress 

that negatively affects the individual plant. Afterward, the hydrological drought refers to the deficiency 

of water to the surfaces or sub-surfaces of streams, lakes, other bodies of water, and wetlands. (Zargar 

et al., 2011). The sources of water recharge in hydro systems are mainly from precipitation, soil 

infiltration, and surface run-offs, which are thus affected by meteorological and agricultural droughts. 

Lastly, socioeconomic drought refers to the unavailability of water supply for basic societal water 

demand, such as for hydroelectric power generation and human use and consumption (Zargar et al., 

2011).  

Drought can be classified as a pulse type of disturbance (Hoover and Rogers, 2016). It is a stress 

that results to pulse type of response of ecosystem variable state. A general interest of this Ph.D. thesis 

is to understand the response of grassland vegetation to drought. Accordingly, drought impact was 

characterized, in the following chapters, as the deficit of the climatic water balance or as a 

meteorological drought. Then the vegetation response to drought was characterized as the negative 

change of variable states (i.e., standing biomass, growth, vegetation moisture content) or detectable 
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signs of plant water stress exhibited under agricultural drought events. The decreased soil water content 

in single plants due to agricultural drought leads to reduced photosynthesis causing declined leaf 

growth and lamina turgescence, eventually leading to lamina mortality (Volaire et al., 2009). The 

impacts on a single plant are then visible in ecosystems as fluctuations in the gross primary production, 

microbial activity, and soil respiration (Burri et al., 2018; Lei et al., 2020).  

 

 

 

 

Meteorological droughts occur more frequently and induce other types of droughts (Hao and Signh, 

2015; Rahmat et al., 2015; Zargar et al., 2011). The World Meteorological Organization (WMO) and 

Global Water Partnership (GWP; 2016) have summarized and assessed the use of various drought 

indices and indicators for drought identification and quantification. The largest number of drought 

indices refer specifically to the meteorological drought (WMO and GWP, 2016). Such indices are 

based on the precipitations or the climatic water balance. The climatic water balance is computed as 

the difference between precipitation (P) and the potential evapotranspiration (PET) variables over a 

given period (Allen et al., 1998; Yang et al., 2021). Depending on the method used, PET can account 

Figure 1. Chronological relationship of the four main types of drought and their respective indicators. The 

image was modified from the National Drought Mitigation Center (NDMC; https://drought.unl.edu) 
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for the influence of additional climatic variables such as temperature, solar radiation, and wind velocity 

(Allen et al., 1998; Yang et al., 2021). The Thornthwaite (1948), Hargreaves (1975), and Penman-

Monteith (Monteith, 1965) methods are the three commonly used formulas to generate PET (Allen et 

al., 1998; Yang et al., 2021). The Thornthwaite (1948) equation is based on the air temperature and 

duration of sunlight. While the Hargreaves (1975) method requires the minimum and maximum air 

temperature and extra-terrestrial radiation. Lastly, the Penman-Monteith method, which is 

recommended by the Food and Agriculture Organization of the United Nations (FAO; Allen et al., 

1998), requires data on air temperature, wind speed, solar radiation, and air vapor pressure. When 

certain input data are unavailable, the Thornthwaite and Hargreaves methods are used as alternatives.  

Among the existing meteorological drought indices (Kchouk et al., 2021; Yihdego et al., 2019; 

Zargar et al., 2011), authors have widely used the Standardized Precipitation Index (SPI; McKee et al. 

1993), and the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 

2010) (Wei et al., 2021). The SPI and SPEI are based on the normalized time series anomalies of 

precipitation; and climatic water balance, respectively (Chamorro et al., 2020; Stagge et al., 2015). 

When PET is available, SPEI should be preferred as it performs better than SPI (Hayes et al., 2012; 

Ojha et al., 2021). 

Both the SPI and SPEI allow the integration of the respective climatic variables into monthly 

timescales usually from 1 month to 2 years (Salehnia et al., 2017). The integration timescales reflect 

the frequency and duration of drought. For example, 3 months or less integration has been used to 

assess short-term but frequent droughts, and greater than 4 for long-term but rare droughts (Faye, 2022; 

Yihdego et al., 2019).  

The time series of drought indices such as SPI and SPEI enable the identification and 

characterization (Figure 2) of drought events (Pei et al., 2020). The main drought characteristics are 

their intensity, duration, and severity (McKee et al., 1993; Mishra, et al., 2007; Ojha et al., 2021). The 

drought duration is the length of time (e.g., days) of drought events. It begins when the drought index 

value goes below a given threshold and ends when the index is above the threshold (Dracup et al., 

1980; Mishra, et al., 2007). Then the drought intensity is the mean value of the drought index below 

the threshold. It is quantified by dividing drought severity index and duration (Dracup et al., 1980; Lee 

et al., 2017; Mishra, et al., 2007). The drought severity is the total area below the drought threshold 

within the drought duration (Lee et al., 2017; Mishra, et al., 2007). The assessments of these drought 

characteristics allow quantitative comparisons between different drought events. 
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3. Grassland responses 

Ecological resistance and resilience are two prominent components of ecosystem responses to 

disturbances, including drought. In the early 1970s, resistance was a synonymous term to ecological 

resilience (Gunderson, 2000; Holling, 1973, 1996), while resilience was synonymous with engineering 

resilience and stability (Gunderson, 2000; Holling, 1973, 1996). According to these definitions, high 

ecosystem resistance is the ability of a system to remain slightly changed or unchanged during a 

disturbance. Resilience and recovery refer to a positive trajectory of the system toward the previous 

state after disturbances. In some studies, both resistance and resilience are considered ecosystem 

responses to disturbance, which to a certain extent, also reflect ecosystem stability (Hossain and Li, 

2021). In most cases, the concepts of stability and resilience exhibit blurred distinctions in ecological 

studies. Some authors have attempted to clarify these concepts with the assessment of stability 

definitions (Grimm and Wissel, 1997; Pimm, 1984), measured metrics (Kéfi, et al., 2019; Pimm et al., 

2019), and consistency of their use (Donohue et al., 2016). Among the most recent attempt, Van 

Meerbeek et al. (2021) considered stability as the main ecological concept and categorized resistance, 

resilience, recovery, latitude, and tolerance as properties of ecological stability (Figure 3). In this Ph.D. 

thesis, I adopted these definitions of resistance and resilience for the assessment of the grassland 

response to a particular disturbance, which is the meteorological drought. 

 

Figure 2. Illustration of the drought characteristics of duration, intensity, and severity 

(Mishra et al., 2007; the image was modified from Leng et al., 2020). 
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Two ecosystem states are presented in Figure 3, namely: the alternative stable or stressed state (bold 

green line), where the ecosystem has a larger tolerance to disturbances, such as drought, and the new 

reference state or changed state (bold red line), where drought impact is larger than the ecosystem 

tolerance. The changes in ecosystem states are based on the basin of attraction region of the resilience 

concept (Holling, 1996; Walker et al., 2004). This Ph.D. thesis focused on the alternative stable state 

(green line), where grasslands retained their identity as grassland ecosystems. 

In the stability framework, resistance is the ability of the ecosystem state to withstand disturbance 

(Van Meerbeek et al., 2021). While both resilience and recovery are associated with the positive 

trajectories from the stressed state toward the pre-drought reference state. Resilience specifically refers 

to the rate of return to the reference state, while recovery is achieved when a 100% return to the 

reference state is attained (Van Meerbeek et al., 2021). The latitude is estimated as the difference 

between the reference state condition and the identified threshold before major changes in the system 

are observed. Tolerance, on the other hand, refers to the maximum disturbance endured by the system 

without change in the reference state.  

The quantifications of stability properties are based on changes in the ecosystem state. The reference 

state, before a disturbance, serves as a baseline for the resistance and resilience quantifications. 

Resistance is the distance between the reference state and the disturbed state due to a disturbance. 

Ecosystems are characterized by low resistance when the gap between reference and disturbed states 

is considerably large. The resilience of the ecosystem starts with the positive trajectory from the 

Figure 3. Illustration of the stability properties as response to drought. The tolerance was excluded in the plot 

due to need for quantified drought severity. The image was adapted from Van Meerbeek et al., 2021. 
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disturbed state or when the disturbance, such as drought, has ended. A high resilience is depicted by a 

steep slope towards the reference or new reference state of the system.  

Beyond the correct assessment of vegetation response to drought, and with a considerably sound 

decomposition of its components (resilience, resistance, and recovery), one important issue of this 

thesis is to assess the variability of grassland response to drought and identify the drivers of said 

variability.  

 

B. The potential of remote sensing for studying drought impacts on grasslands. 

Grassland response to drought is an important topic in ecology, ecophysiology, and agronomy that 

has encouraged multiple studies. A large body of the corresponding literature reports on pot or field 

experiments where water inputs can be easily controlled and mixed with other treatments aiming at 

revealing drivers of vegetation response to drought from the molecular scale to paddock management 

regimes. More recently, and due to rapid technological developments, remote sensing has been used 

for assessing the response of a variety of ecosystems to a variety of disturbances. I here aim to show 

the potential of remote sensing as a complementary approach to controlled experiments and field 

observations for assessing grassland response to drought and its drivers. 

 

1. Drought experiments of different scales 

Drought-related experiments in laboratories, growth chambers, greenhouses, and research fields 

provide key knowledge on the response of plants to drought (Ogbaga et al., 2020). The scale of drought 

experiments, such as pot, mesocosm, and field, partly dictates the monitored plant characteristics or 

processes (Volaire, 2018). For example, plant tissue organs and individuals exhibit the response to 

water deficit stress as anomaly changes in the physiological properties (Volaire, 2018). Then the shift 

of organization level to population, and vegetation communities allows the detection of response to 

drought from ecological properties (Volaire, 2018).  
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a. Pot experiments 

Pot experiments involve the growing of plants in small volumes of soil in small containers under 

different levels of stress (Hohmann et al., 2016). Such an experiment replicates drought impact by 

imposing water deficits on the pot set-ups (Turner, 2019). Due to the restrictions from pot containers, 

the investigated plant responses to water deficit are related to physiological changes in individual 

plants (Hohmann et al., 2016). The monitored parameters are usually related to processes involved in 

the development of leaves and roots (Volaire, 2008). The results of conducted pot experiments were 

able to reveal the dynamics of plant senescence (Volaire et al., 2009) and decrease in photosynthetic 

processes (Fariaszewska et al., 2017; Staniak et al., 2020) during induced water stress. They further 

revealed the crucial role of carbohydrates stored by plants during mild environmental conditions for 

their recovery after drought (Karsten and MacAdam, 2001). The use of nutrients and ecophysiological 

changes in plants are related to inherent plant growth strategies (Balachowski and Volaire, 2017). To 

exhibit tolerance to water stress, specific plants demonstrate conservative growth strategies by 

decreasing productivity through smaller specific leaf areas and specific root lengths (Balachowski and 

Volaire, 2017). Pot experiments have demonstrated the important role of soil properties in grassland 

response to drought (Buttler et al., 2019). For example, using ryegrass (Lolium prenne, L.), Buttler et 

al. (2019) determined that the soils with high soil organic matter (SOM) were more resistant to drought 

than soils with low SOM. These results were explained based on the available soil microbes, which 

influence nutrient availability, in the high SOM soils. Then also with ryegrass and soils from forest 

and grassland, Zhao et al. (2008) found higher sensitivity of ryegrass to water deficit when grown on 

grassland soil than forest soil. This was exhibited by a greater reduction of the leaf relative water and 

chlorophyll contents. Pot experiments are not usually designed to assess the impact of droughts on the 

response of higher levels of organization than the plant individual or population, Barkaoui and Volaire 

(2023) found that heterospecific plant-plant interactions positively modify their tolerance to drought 

and their recovery.  

However, one main concern with pot experiments is the implementation of water stress on the plant, 

which is related to the soil medium (lack of porosity), and pot size and shape (water retention and root 

growth)(Turner, 2019). Usually, pot experiments have faster drying than in real-life soil conditions 

(Earl, 2003; Ogbaga et al., 2020; Turner, 2019).  

 

b. Mesocosm experiments 

Mesocosm experiments, similar to microcosms, are bordered, partially enclosed, or large container 

outdoor experiments (Crossland and La Point, 1992; Odum, 1984). It aims to replicate to some extent 

natural environmental conditions and ecological effects (Crossland and La Point, 1992; Ledger et al., 
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2013). Accordingly, the simulation of drought-induced impacts involves the use of rainfall 

manipulation shelters (Karlowsky et al., 2018). Mesocosm experiments shift towards the population 

and community organizational levels. They address the role of different facets of the plant community 

structure in their response to drought and sought to test theoretical predictions related to the role of 

diversity (De Boeck et al., 2018; Loreau, 2010) on grassland stability against drought. 

Among the different facets of the plant community structure (Keddy, 2007), drought experiments 

focus on species composition, species diversity, functional identity, and functional diversity. The first 

two facets rely on the collection of the co-occurring species in the grassland of interest in terms of 

what they are, how many, and in which proportion. Functional identity and diversity rely on the pattern 

of trait values exhibited by the species. A trait is defined as a measure of plant morphology, physiology, 

or phenology that impacts the performance of plant individuals in terms of survival, vegetation 

biomass, vegetation reproductive outputs, and ultimately their fitness (Violle, 2007). Trait values of 

different species can then be integrated at the community level. The first community metric is the mean 

trait value weighted by the species abundance (Diaz et al 1998, Garnier 2004). Because of the 

weighting term, it reflects the functional identity of the dominant species. The diversity of trait values 

within a community can be appreciated with numerous metrics, sometimes redundant or 

complementary (Mouchet et al., 2010). They usually represent one or mix several of the following 

aspects: richness (i.e., the total volume of the trait space occupied by the species), divergence (i.e., the 

variance in the distribution of species abundances in this volume), or evenness (i.e., the regularity of 

the distribution of species abundances in the same volume) (Villéger 2008).    

Drought experiments have largely focused on the role of species richness. Indeed, theoretical 

developments on the role of the diversity-stability relationship are largely grounded on the number of 

co-occurring species (Loreau, 2010; McCann, 2000). It is also easier to manipulate than taxonomic 

and functional metrics based on species abundance. The positive effect of species richness on stability 

predicted by theoretical developments is not always supported by drought mesocosm experiments. 

Some authors have found the diversity buffering effect during induced drought events (Hernandez and 

Picon-Cochard, 2014; Niboyet et al., 2017; Padilla et al., 2019), but not during post-drought recovery 

(Hernandez and Picon-Cochard, 2014; Kreyling et al., 2017; Padilla et al., 2019). In a review, De 

Boeck et al. (2018) also concluded that the response of above-ground biomass to drought is not 

significantly influenced by species richness.  

Beyond the influence of the number of species, the positive effect of diversity on community 

stability, related to the insurance hypothesis, may theoretically be associated with different responses 

of species to environmental changes (Loreau et al., 2021; Yachi and Loreau, 1999) suggesting a link 

between the diversity of plant functional attributes and stability. Yet, there are still few experimental 



General Introduction 

38 

 

tests of the role of functional diversity on vegetation response to drought, sometimes supporting 

(Schnabel et al., 2021) or refuting its positive role (Miller et al., 2019).  

The composition of communities is also well recognized to influence the grassland response to 

drought. Fry et al. (2021) tested two plant community compositions to determine their effect on the 

resilience of root functional traits to drought. The plant community that resembles intensive 

management demonstrated higher drought resilience than the diverse plant community of extensive 

management (Fry et al., 2021). The authors further showed that this effect was related to differences 

in root traits between the two types of communities, more exploitative root traits for the plant 

community composition that resembled intensively managed grasslands.  

Beyond playing a role in the stability of broad vegetation properties like biomass, plant community 

composition may also change due to droughts. It has been found that drought-induced reduction in the 

biomass of native species may enhance the growth of invasive species (Manea et al., 2016).   

Mesocosms experiments have also been used to assess the effect of some management practices but 

are usually restricted to fertilization and/or artificial cuts. A mesocosm experiment on the influence of 

Nitrogen fertilization during drought has recommended the avoidance of excessive N fertilization to 

dry soils to prevent the risk of nitrate leaching (Klaus et al., 2020). Cuttings were implemented to 

maintain the conditions within mesocosm set-ups and extract biomass at the before, during, and after 

stages of induced drought (Hernandez and Picon-Cochard, 2014). 

The weaknesses of mesocosm experiments are related to the logistical restrictions necessary for 

experimental set-ups (Ledger et al., 2013; Lütke Schwienhorst et al., 2022). Then despite the outdoor 

experimental set-ups, which allow natural light, air temperature, and humidity, the presence of 

experiment enclosures still limits the replication of real-life conditions (Stewart et al., 2013).  

Finally, in some instances, pot and mesocosm experiments show blurred distinctions due to many 

possible ways to conduct experimental manipulations. In a microcosm experiment using pots, Xu et 

al. (2022) showed the possible interaction between species richness and functional dispersion (Fdis). 

But Fdis only mediated the impact of species richness on ecosystem functioning, while species richness 

demonstrated the insurance effect against drought impact (Xu et al., 2022). Then the principal 

components of the community-weighted means of leaf carbon content and plant height traits 

contributed to the facilitation of conservative growth strategies of Caragana microphylla Lam. (Xu et 

al., 2022). Pot experiments may be conducted indoors, inside greenhouses, or under outdoor 

conditions. While mesocosms can also be conducted in similar locations depending on the questions 

being investigated. In terms of scale, mesocosms may involve the use of containers, which share 

similar techniques with pot experiments. Nevertheless, we highlight the knowledge of how each 

method/approach/design focuses on specific levels of organization.  
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c. Field experiments 

Field experiments generally involve the control of the amount of rainfall with shelters placed over 

established grasslands. Compared to pot and mesocosm experiments, field experiments allow the 

investigation of the influence of herbage use treatments (Deléglise et al., 2015; Munjonji et al., 2020; 

Volaire, 1994; Zwicke et al., 2013) on grassland response to drought. It has been shown that grazed 

grasslands were more negatively responsive to drought than mowed grasslands in mountain areas of 

Switzerland (Deléglise et al., 2015). Regarding fertilization effects, results from different studies were 

mixed. Consistent with mesocosm experiments, some studies support the negative influence of 

excessive nutrient addition on the grassland response to drought (Bharath et al., 2020; Rose et al., 

2012), while other studies did not find any significant effect of fertilization (Vogel et al., 2012; Weisser 

et al., 2017).  

The influence of community structure has also been largely investigated in field drought 

experiments, usually reporting that grassland diversity can buffer drought impacts on grasslands 

(Griffin-Nolan et al., 2019; Isbell et al., 2015). Barkaoui et al. (2016) found that by manipulating the 

composition of Mediterranean perennial herbaceous species that the functional identity, related to the 

root morphology, had more influence on the community response to drought than their functional 

diversity. 

Under water-limited conditions, plant growth promotes changes in plant traits as a response to 

stressed conditions (Berdugo et al., 2022). The functional diversity of grasslands, measured as 

functional dispersion, showed lower sensitivity to water-limited climate variabilities in ultramafic 

rocks and soils (Harrison et al., 2020). The interannual precipitation variability also increases the 

functional diversity of the grasslands (Gherardi and Sala, 2015; Harrison et al, 2020). At the same 

time, high functional diversity mitigates the alternating wet and dry (or drought) interannual 

precipitation variability on grassland primary production over a six-year experiment (Gherardi and 

Sala, 2015). The presence of three plant functional types was unable to exhibit the species richness 

buffering effect (Zwicke et al., 2013) found in mesocosm experiments (Hernandez and Picon-Cochard, 

2014; Niboyet et al., 2017; Padilla et al., 2019). Zwicke et al. (2013) highlighted that the role of 

stability drivers, such as nitrogen, requires longer experiment durations (> 3 years) to detect the 

influence on grassland resilience. Similar to mesocosm experiments, the role of functional diversity 

on grassland response to drought requires additional examinations compared to measures of species 

richness and diversity, which have been a long-running part of ecosystem stability studies (de Bello et 

al., 2021).  
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Drought field experiments share restricted spatial coverage and limited replication of real-life 

conditions. It has also been argued that these studies should be correctly termed as water deficit 

experiments, instead of drought experiments (Ogbaga et al., 2020). Because these experiments are 

unable to replicate the increased temperature and evapotranspiration rate. Grassland drought 

experiments (in pots, mesocosms, or fields) have provided significant knowledge on the effect of 

drought at different organizational levels, namely the plant individual, and the mixtures of interacting 

plants of conspecifics (population) or heterospecific (communities) composition. From the results from 

multiple experiments, we can presume that the response of grassland to drought depends on three main 

types of factors including the (i) soil properties, like the water holding capacity, the (ii) plant 

community structure (composition and diversity of species and functional traits), and (iii) management 

practices related to fertilization and regimes of herbage use (by mowing or grazing). 

 

2. Shortfalls of grassland-drought experiments and field observations 

Observation and controlled or semi-controlled experiments are of utmost value for analyzing 

drought impacts on grasslands and understanding the mechanisms underlying their resistance and 

resilience. Whether they were set up in pots, in mesocosms, or the field, experiments provide 

significant knowledge on grassland responses to drought at the local scale. However, they face several 

shortfalls. Some of the experiment shortfalls can be considered similar to the shortfalls of biodiversity 

knowledge (Cardoso et al., 2011; Hortal et al., 2015; Ribeiro et al. 2016).  

First and related to the Prestonian shortfall of biodiversity knowledge, drought experiments, and 

field observations have restricted knowledge of the spatial and/or temporal coverages (Leuzinger et 

al., 2015). Beyond the obvious spatial restriction of experiments and observatories, drought 

experiments, especially pots, and mesocosms, are usually performed under short durations (Beier et 

al., 2012; Hoover et al., 2018). Thus, short-term experiments have limited capacity to consider the 

consequences of long-term or repeated drought events (Beier et al., 2012; Leuzinger et al., 2011). On 

the other hand, observational studies may be conducted for longer duration, but with low record 

frequency which may lead to poorly evaluated vegetation responses. The second shortfall is the 

Hutchinsonian shortfall of biodiversity knowledge, which pertains to the poor assessment of the global 

variability of ecosystem responses to changes in abiotic conditions. Despite coordinated experiments 

and large-scale observations (i.e., Drought-Net / Smith et al., 2015), grassland responses to drought 

have been studied in a limited number of combinations of pedoclimatic contexts, management regimes, 

and levels of biodiversity (Leuzinger et al., 2011; Vicca et al., 2012). Lastly, drought experiments 

reduce real-life complexity by essence. Although such reduction is necessary for establishing cause-
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and-effect relationships, drought experiments lead to an underestimation of grassland biomass 

compared to observation drought studies (Kröel -Dulay et al., 2022).  

Anticipating and/or mitigating the impact of droughts on managed grasslands require 

complementary approaches to assess the variability of vegetation responses in real-life conditions and 

multiple contexts. The foundation of this thesis lies in the potential of remote sensing to move beyond 

the limits of drought experiments and ground observations identified above. 

 

3. Satellite remote sensing data and techniques 

 

a. A brief introduction to remote sensing data 

Among the existing technologies, remote sensing has the potential to determine the response of 

ecosystems to disturbances on large spatial extents for the past few decades (Li et al., 2014; Soubry et 

al., 2021; Xu and Guo, 2015). Remote sensing is the science of acquiring information about an object 

or area of interest without physical contact with the said object or area. In this thesis, I focused on the 

use of satellite-based remote sensing due to its wider and more consistent spatio-temporal coverage 

compared to cameras and sensors attached to unmanned aerial vehicles (Alvarez-Vanhard et al., 2021) 

or mounted to ground monitoring set-ups. 

In 1960, the Television Infrared Observation Satellite (TIROS)-1 was launched into space as the 

very first observational satellite to monitor the Earth’s meteorological condition (Tatem et al., 2008). 

Then in 1972, the Landsat 1 satellite was launched to monitor forest and agriculture resources (Tatem 

et al., 2008). Since then, the development of new sensors and the launch of new satellites have 

continuously progressed, increasing exponentially the quality and quantity of images of the Earth’s 

surface.  

There are two main types of satellite images depending on the sensor being used (Ali et al., 2016; 

Turner et al., 2003; Weiss et al., 2020). The optical remote sensing images are collected using passive 

sensors that receive the reflected natural radiation that bounces from the Earth’s surface from the sun 

(Turner et al., 2003). Meanwhile, microwave remote sensing images are collected using active sensors 

that receive reflected artificial energy that is emitted from the sensor towards the Earth’s surface and 

back. The received intensities of energy signals are recorded in channels or bands at distinct ranges of 

the electromagnetic spectrum and are interpreted using the radiative transfer principle (Drusch and 

Crewell, 2006; Turner et al., 2003).  

Optical satellite images record object reflectance in the visible and infrared reflectance bands 

between 0.4 and 14 micrometres (µm) spectral wavelengths (Figure 4). These reflectance values are 

related to the biophysical and biochemical vegetation properties that can be used to assess the presence 
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of multiple vegetation stresses (Campbell et al., 2007; Carter, 1993; Ramoelo et al., 2015). On the 

other hand, microwave or radar images provide information for longer wavelengths at 0.75 to 30 

centimetres (cm). The radar bands are linked mainly to the vegetation's physical and moisture 

properties (Figure 4) (Hill et al., 2005).  

Optical images are more commonly used than microwave images, even though the presence of 

clouds hinders the clear view of features on the Earth (Ali et al., 2016; Hill et al., 2005). One reason 

for favoring optical images rather than microwave images is that microwave images require 

challenging and multiple pre-processing (Hill et al., 2005; Schumann, 2020). In addition, reliable 

images are hardly obtained in highly mountainous areas (Vreugdenhil et al., 2022).  

 

 

 

Remote sensing data have varying characteristics that determine their use. Focusing on optical 

images, the main characteristics are spatial, temporal, spectral, and radiometric resolutions. The spatial 

resolution relates to the ground area covered by each pixel of the images. Belward and Skøien (2015) 

proposed five classes of spatial resolutions, namely (i) the low spatial resolution at 250.0 m and above, 

(ii) moderate resolution at 40.0 to 249.9 m, (iii) medium resolution at 10.0 to 39.9 m, (iv) the high 

resolution at 5.0 to 9.9 m; and lastly, (v) the very high spatial resolution for images at 0.5 to 4.9 m. 

The high and very high spatial resolutions allow for more detailed measurements of grassland features 

and have been used to assess the species richness and composition of grasslands (Fauvel et al., 2020; 

Hall et al., 2010; Lu and He, 2014). Then, the low spatial resolutions are commonly preferred for large 

or even global-scale grassland monitoring or mapping (Gong et al., 2013; Klein Goldewijk et al., 

2007). The temporal resolution, on the other hand, is the number of days before the satellite revisits 

the same location on the Earth’s surface. A satellite 1-day revisit is a high temporal resolution and 

allows the capture of the daily changes in vegetation conditions. The spectral resolution is the number 

and width of the reflectance bands (Govender et al., 2007). The higher number and finer width of bands 

Figure 4. Differences of reflectance band wavelengths between optical images and microwave images. Image was 

adapted from Turner et al., 2003. 
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allow better identification of objects on the Earth’s surface (Govender et al., 2007). Optical satellite 

images commonly usually encompass visible and near infrared wavelengths. Then the width of each 

band influences the accuracy of estimated vegetation properties. The radiometric resolution is the 

fourth but seldom presented characteristic. It is the distinction of grey-scale values, or bit size, for a 

satellite image reflectance band. The radiometric resolution determines thus the amount of information 

within each band.  

The last decades have experienced the launch of multiple satellite missions orbiting the planet 

(Kramer and Cracknell, 2008). There are varying resolutions for each of the satellite sensors depending 

on the satellite mission (Ustin and Gamon, 2010) (Appendix A). Optical satellite sensors have varying 

spatial, temporal, and spectral resolutions (Figure 5). The Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor, Landsat missions, and Sentinel 2 satellite are among the top five 

satellite sensors for grassland monitoring (Reinermann et al., 2020). These satellite images provide 

global spatial coverage and are easy to use and provide derived products that are made directly 

available like atmospherically corrected images, gross primary productivity, land cover, and global 

water reservoir, which are all freely accessible. The continuous missions, operation, distribution, and 

no-charge access to remote sensing products are due to government funding of respective countries 

(Zhu et al., 2019) or organizations. New satellite sensors like the Vegetation and Environment 

monitoring on a New MicroSatellite (VENuS) have limited mission coverage (Upreti et al., 2020), but 

improved characteristics like high spatial and temporal resolutions of 5m and 2 days (Baba et al., 

2020). Meanwhile, the very high spatial and temporal resolution satellite sensors are generally 

managed by private companies and entail additional cost to acquire (i.e., Quickbird and WorldView 

by Digital Globe; IKONOS and GeoEye by Space Imaging) (Bayik et al., 2016). 

Among the existing remote sensing data, this Ph.D. thesis used satellite-based remote sensing to 

assess the response of grasslands to drought across multiple years. Doing so, it took advantage of the 

freely accessible optical images, which encourages duplicability of the thesis without additional cost. 

The best spatial and temporal satellite image resolutions that support the thesis objectives (see 

Section C) were considered. It was with close consideration of the inherent limitations and trade-offs 

of satellite image resolutions and operational mission continuity. The high daily revisit of MODIS is 

at the expense of low spatial resolution. The medium spatial resolution of Landsat is paired with 16 

days of revisit time. Then the high spatial and temporal resolutions of Sentinel 2 are constrained by 

the short temporal operation for image acquisition. 
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b. The link between vegetation properties and satellite reflectance 

The electromagnetic radiations received by the sensors are key to determining vegetation properties 

(Campbell et al., 2007; Carter, 1993; Ramoelo et al., 2015). Electromagnetic radiation is first emitted 

by the sun. Upon contact with the vegetation surface, the different wavelengths of electromagnetic 

radiation are either reflected, absorbed, or transmitted (Figure 6; Summy et al., 2003). Depending on 

the leaf chlorophyll content, the radiations in the green and near infrared regions of the electromagnetic 

spectrum are mostly reflected while in the red and blue they are absorbed by the pigments and 

converted into chemical energy (i.e., the photosynthesis) Gitelson et al., 2002). The reflected GREEN 

band explains the visible green color of the leaves. However, if the leaves are under stress, such as 

drought, the activity of the chlorophyll layers either stops or declines. This causes a change in the 

leaves from green to yellow or brown. As a consequence, the decrease in leaf conditions can be 

detected by remote sensing due to the lower absorption of RED and BLUE reflectance and the drop in 

reflected GREEN and NIR (Gitelson et al., 2002). 

 

Figure 5. Spatial, temporal, and spectral resolutions of selected optical satellite-sensors used for 

ecological and environmental studies. The resolution values were collected from the descriptions 

of each satellite-sensors or missions. A summary is presented in Appendix A. 
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The radiative transfer theory establishes the link between the plant chlorophyll content and satellite 

reflectance bands. This theory mathematically accounts for energy conservation with matter 

(Knyazikhin et al., 2005). Accordingly, there are radiative transfer models (RTM) that use the reflected 

solar radiation from matter to generate their reflectance signature (Figure 7). Concerning plants, RTMs 

have been developed at the leaf level and canopy level (Mohammed et al., 2019). Apart from the 

chlorophyll contents, the leaf reflectance signature depends on brown pigments, dry matter, carotenoid 

contents, and leaf equivalent water thickness (LEWT) (Jacquemoud, 1993; Jacquemoud and Baret, 

1990). The canopy reflectance further depends on soil wetness information, leaf area index (LAI), and 

leaf angle distribution parameters. Finally, the reflectance signatures are affected by external 

parameters namely the satellite and solar angles (Jacquemoud, 1993; Verhoef, 1984). 

 

Figure 6. Radiative transfer principle of the visible and infrared reflectance bands on a leaf surface.  

Depending on the characteristics of the object’s surface, the amount of absorbed, reflected, and 

transmitted energy will change. A healthy leaf will absorb more RED and reflect more NIR 

reflectance.  Image was adapted from Summy et al., 2003. 
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The relationship between the spectral signatures and the vegetation properties at the leaf and canopy 

levels was the basis for the development of spectral or vegetation indices. The vegetation indices are 

transformations, using mathematical equations of selected reflectance bands to acquire proximal 

information on the properties of ground vegetation. For instance, the so-called Normalize Difference 

Vegetation Index (NDVI; Rouse et al., 1974) is used as a standardized estimate of vegetation 

productivity and greenness. It is derived using the RED and NIR reflectance bands, which are sensitive 

to the leaf chlorophyll pigments and LAI. The vegetation moisture content, on the other hand, can be 

estimated using the Land Surface Water Index (LSWI; Xiao et al., 2004). The LSWI also uses the NIR, 

which responds to the structural properties of the vegetation, and the SWIR1, which responds to the 

leaf water status. A large number of vegetation indices have been developed for estimating vegetation 

greenness, productivity, cover, senescence, chlorophyll content, moisture content, and plant nitrogen 

content (Bajgain et al., 2015; Davidson et al., 2006; Wu, 2014). 

The potential of satellite remote sensing in quantifying and monitoring grassland properties has 

been largely demonstrated (Ali et al., 2016; Reinermann et al., 2020; Wang et al., 2022). The 

relationship between vegetation reflectance has been assessed for several grassland properties 

including productivity, moisture content, and stress conditions (Andreatta et al., 2022a; Bajgain et al., 

2015). For example, Zha et al. (2003) used Landsat-derived NDVI to map the percent grass cover of 

semi-natural grasslands in western China. Using a classification confusion matrix, they obtained an 

Figure 7. Spectral signature of two different grassland health conditions. The spectral signatures were generated using 

the of the PROSAIL radiative transfer model, where only the chlorophyll contents (Chl a+b), leaf area index 

(LAI), and leaf equivalent water thickness (LEWT) were contrastingly tuned. The shaded wavelength ranges 

represent the Sentinel 2 reflectance bands as an example. Along the electromagnetic spectrum, the visible bands 

(Red, Green, and Blue) are associated with the Chl a+b (Jacquemoud et al., 2000). While the NIR and SWIR 

bands are sensitive to LAI and LEWT, respectively. 
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overall accuracy of 89%. With the use of radiative transfer model inversions and Landsat data, Yin et 

al. (2016) obtained an R2 of 0.85, with a root-mean-square error (RMSE) of 0.43 between the estimated 

and field-measured canopy chlorophyll content of arid grasslands. Using Sentinel 2 for the model 

inversion, Schwieder et al. (2020) showed an R2 of 0.90, with a normalized RMSE of 0.47 between 

the estimated and measured biomass of a temperate managed grassland. Then with Sentinel 2 time 

series observations, Kolecka et al. (2018) mapped and detected mowing events in the grasslands of 

Switzerland with a classification overall accuracy of 77% (metric from Congalton, 1991).   

The reflectance signals of satellite optical images provide significant estimates of biophysical and 

biochemical vegetation properties that are susceptible to being impacted by droughts. Grassland 

properties can be retrieved from vegetation reflectance with vegetation indices and the inversion of 

radiative transfer models of the leaf and canopy among other methods. Several authors have 

demonstrated the successful application of remote sensing to assess drought impacts. However, apart 

from the various review on the use of remote sensing for grassland monitoring, there is a lack of a 

focused review on the assessment methods for grassland response to drought. This review gap limits 

the comparison between assessment studies and prevents the selection of appropriate methods in 

answering key grassland responses to drought questions.  

 

C. Thesis objectives and plan 

Drought events are expected to be more frequent and intense due to climate change. At the same 

time, this increases the threat of drought to the sustainability of natural ecosystems and 

agroecosystems. Among the affected agroecosystems, managed grasslands cover about one-third of 

the global terrestrial areas and are distributed in almost all biogeographic regions of the world. Since 

they provide key ecosystems services and host a wide range of biodiversity, the threats of drought on 

managed grasslands motivates numerous research in various scientific fields (agronomy, ecology, 

ecophysiology, environmental management, and related fields) with the ultimate goal to provide 

warning for imminent drought impacts and promote measures for grassland resistance and recovery 

from drought. 

A large body of research analyzed the impacts of drought on grasslands by setting controlled 

experiments in pots, mesocosms, or grassland fields. They provided a better understanding of the 

sequence of eco-physiological processes occurring during droughts and recovery. They further 

acknowledge the influence of multiple factors modulating the resistance and resilience capacity of 

grasslands which can be categorized into pedoclimatic factors, vegetation diversity, and management 

practices. However, the controlled and constrained set-ups of experiments have led to shortfalls, 

especially in their low spatio-temporal coverage of grassland responses and the application of artificial 



General Introduction 

48 

 

conditions, which limit the generalization of their results to real-life conditions. Satellite remote 

sensing can fill these shortfalls as they cover large spatio-temporal extents and represent vegetation 

properties sensitive to drought impacts. Together with time series of drought severities derived from 

basic meteorological records (precipitation, temperature, radiations, and/or potential 

evapotranspiration), satellite image time series can assess the dynamics of several vegetation properties 

in response to drought. 

The primary motivation of this thesis was to take advantage of the potential of satellite image time 

series for improving knowledge on the response of managed grasslands to drought in real-life 

conditions. To do so, this thesis pursues three main objectives. 

 

a. The recent developments of remote sensing based environmental monitoring goes with various 

and scattered scientific developments. There is thus a need to first review the current approaches 

developed for assessing drought impacts on grasslands to select the best analytical designs 

specific to the two following objectives.  

b. The central objective is to quantify the variability of grassland sensitivity to drought at a regional 

scale and identify the drivers of such variability using satellite image time series of 30 years. 

The Massif central in France is used as a case study where managed grasslands cover a large 

geographic area, which is among the highest in Western Europe. 

c. Since long-term optical image time series are usually of low frequency, due to cloud cover and 

low revisits, they can hardly be used to decompose the response of grasslands to drought into 

its resistance and resilience components. The last objective aims to develop a more 

comprehensive assessment of grassland response to drought by the assimilation of satellite data 

with a simple model of grassland growth. This requires detailed knowledge of grassland 

management events. In this regard, a farm experiment conducted between 2016 and 2020 was 

used as a case study. 

 

The design of this Ph.D. thesis (Figure 8) is centralized on the dynamics of grassland vegetation 

properties in response to drought. The framework identifies the influence of environmental, biological, 

climatic, and anthropogenic factors on vegetation dynamics. It highlights how different sources of 

data, namely: satellite images, field measurements, and meteorological data can be combined to better 

understand vegetation dynamics during and after droughts. 
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This Ph.D. thesis has six main components. This General introduction is followed by the General 

data and methods, which describe the data used, their sources, and some analyses conducted to justify 

their selection for the respective research objectives. The three chapters of this thesis correspond to the 

specific objectives. Chapter 1 is the review classification and analysis of the existing remote sensing 

approaches to assess grassland response to drought. Chapter 2 is a regional-scale assessment of 

grassland sensitivity to drought. It presents the variability of grassland sensitivities within the Massif 

central regions and the relative importance of the pedoclimate, vegetation diversity, and management 

practices in modulating these sensitivities. Then, Chapter 3 aims at providing a more comprehensive 

assessment of drought impacts on vegetation dynamics within the influence of grassland management 

and plant phenology. It starts with the presentation of a parsimonious process-based model of grassland 

growth assimilated with Sentinel 2 data. As a result of a simulation protocol, results on the resistance 

and resilience capacity of mown and grazed grasslands are presented. The final component of this 

thesis is General synthesis. 

As a logical flow (Figure 9), Chapter 1 (the review of grassland response to drought assessment 

using remote sensing) supports the selection of analytical methods for Chapters 2 (regional scale 

assessment of grassland sensitivity to drought) and 3 (local scale grassland response to isolated drought 

Figure 8. Conceptual diagram relating the drought impacts, their drivers, and ways to assess it with remote 

sensing data of the Ph.D. thesis. 
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impact). Chapter 3 further attempts to move beyond the limitations of Chapter 2 inherent to the use of 

long satellite times series over regional scales. 

 

 

  

Figure 9. Connectivity of the three research chapters toward the main objective of this Ph.D. thesis. 
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GENERAL DATA AND METHODS 

 

This component presents additional details on preliminary analyses conducted for the selection of 

the best input data (especially satellite products) and methods. Specifically, I focus here on the second 

and third objectives of the Ph.D. thesis (i.e., data analysis at the Massif central area and data from local 

experiments at the Herbipôle experimental site). The second objective, or Chapter 2, aimed to assess 

the variability and drivers of grassland sensitivity to drought from pedoclimatic, vegetation diversity, 

and management practices at the regional scale. Then the third objective, or Chapter 3, aimed to 

evaluate the responses of managed grasslands to isolated drought impact at the local scale. The first 

research objective, or Chapter 1, was a literature review of the assessment approaches of grassland 

response to drought using remote sensing. The initial step for Chapter 1 involved the examination of 

published journal articles from the Web of Science. Additional details are provided in Chapter 1. 

 

D. Study areas 

Overall, the research activities of this Ph.D. thesis were conducted within the Massif central region 

(45°18'48.10"N, 2°54'30.43"E; Figure 10) of France at two spatial scales. The first study, dedicated to 

objective 2 (Chapter 2), is at the regional scale and it aimed to capture the “real-life” conditions of 

managed grasslands. Located at the central portion of the Massif central, the wide area coverage 

supports the availability of heterogeneous environmental, climatic, and soil properties needed for the 

second objective. The other study, dedicated to objective 3 (Chapter 3), is at the local scale, as it 

requires detailed and accurate grassland monitoring data. Contrary to the regional study, the closely 

managed grassland parcels provide homogenous but still realistic field conditions, which are necessary 

to address the third objective. 

 

1. The Massif central region 

The Massif central region is administratively composed of the Auvergne-Rhône-Alpes, Bourgogne-

Franche-Comté, Nouvelle-Aquitaine, and Occitanie regions. It is a mountainous area with 85,000 km2 

of coverage that features highly heterogeneous topographic, geologic, pedologic, climatic, and 

vegetation characteristics (Galliot et al., 2020; Hulin et al., 2019a). The region has 41,000 km2 of 

agricultural land areas (Surface Agricole Utile, SAU). Where about 60% of the SAU is always covered 

by perennial grasslands (Surface Toujours en Herbe, STH; Agreste, 2017). These grasslands host 

relatively high biodiversity that supports the quality and quantity of agricultural products from the 

region (Galliot et al., 2020; Hulin et al., 2019b). 
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The Massif central has an average elevation of 700 meters above sea level (a.s.l.) with the lowest 

and highest elevations at 300 and 1,885 m a.s.l., respectively. The region is comprised of about 11 soil 

units (Appendix B). The cambisols, which represent 62% of the region [European Soil Data Centre 

(ESDAC); Panagos et al., 2022], are widely distributed within the region. The central and eastern 

portions of the region are of volcanic origin and date to the early 65 million years (Gorshkov and 

Gaudemer, 2019; Soubrand-Colin et al., 2007; Quantin, 2004). Located in the central and eastern 

portions are andosols and podzols, which were each 6% of the whole Massif central (ESDAC; Panagos 

et al., 2022; Quantin, 2004). To the northern part of the region are albeluvisols (6%), phaeozems 

(<1%), and vertisols (< 1%); then to the west and south are luvisols (6%). Present also in the southern 

part are regosols (1%). The leptosols (6%) are situated in the central and southern portions of the region 

(ESDAC; Panagos et al., 2022). The histosols (< 1%) were scattered sparsely across the Massif central, 

Figure 10. Location map of the two study sites for Chapters 2 (regional spatial scale) and 3 (local 

spatial scale) objectives of this thesis. Data sources: Massif central boundary: 

https://www.prefectures-regions.gouv.fr/auvergne-rhone-alpes; and country boundaries: 

https://datacatalog.worldbank.org/. 
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and the fluvisols (2%) were found along the river channels of the region (ESDAC; Panagos et al., 

2022). The formation and distribution of these soil units are attributed partly to the varying effects of 

long-term climatic conditions on the pyroclastic materials of the region (Quantin, 2004; Soubrand-

Colin et al., 2007). Then the climatic zones across the Massif central varies from oceanic in the 

northern and western areas, mountainous and semi-continental for the central areas, and Mediterranean 

near the southeastern areas (Joly et al., 2010).  

The parcel data of 143 temperate managed grasslands, with 396 corresponding vegetation plots, 

were available for the Massif central region. The grassland parcels are composed of 95% permanent 

grasslands and 5% temporary grasslands. These are topographically distributed between 272 to 1,442 

m a.s.l. with an average elevation of 890 m a.s.l. The parcels have surface areas that range from 0.06 

to 36.61 hectares (ha) with an average area of 4.12 ha. The implemented herbage uses among the 

parcels were grazing (52%) and mowing (48%). Being located in the central part of the Massif central 

region, the dominant soil types of the grassland parcels are andosols (45%), followed by cambisols 

(30%) and podzols (14%). The remaining 11% were combinations of leptosols, luvisols, fluvisols, and 

albeluvisols. The vegetation plots were irregularly distributed among the grassland parcels based on 

the parcel surface area. The sizes of the vegetation plots range from 2 to 100 square meters (m2) with 

an average of 25 m2. In each plot, phytosociological surveys were conducted together with the 

characterization of the plot elevation, slope, and aspect. 

 

2. The Herbipôle experimental site 

The Herbipôle is an experimental Unit of the French National Research Institute for Agriculture, 

Food, and Environment (INRAE). It implements farm-scale experiments for research projects. The 

Herbipôle experimental site (45°38'7.64"N, 2°45'4.77"E; Figure 10), in Laqueuille, Puy-de-Dôme, 

France, is one of the three sites managed by the Herbipôle Unit. This site is composed of permanent 

grasslands, distributed between 1,000 and 1,450 m a.s.l., and covers a total area of 560 ha with 

homogenous basaltic andosols (Prache, 2017; Sepchat et al., 2020; Vazeille et al., 2018). The climate 

is characterized by an annual precipitation of 1,100 mm and an annual mean temperature of 8.0°C. 

Despite, the homogenous environmental and climatic conditions of the site, some parcels are bordered 

by trees, shrubs, and rock surfaces. 

The data used for the purpose of this Ph.D. thesis were part of the Systèmes d’élevage ALlaitants 

herbagers: Adapter le type génétique et MIXer les espèces pour renforcer leur durabilité (SALAMIX) 

project implemened on the Herbipôle site in Laqueuille. Conducted between May 2015 and November 

2020, the SALAMIX project has access to 118 ha of permanent grassland managed under an organic 

farming system (Prache et al., in press; Vazeille et al., 2018; Veysset et al., 2016). There are 33 
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paddocks in all, and the area of each paddock ranged from 1.52 to 8.55 ha with an average of 3.56 ha. 

About 18 paddocks were solely used for grazing, while 15 paddocks were dominantly used for mowing 

followed by grazing depending on the remaining grassland biomass.  

 

E. Field measurements of managed grasslands 

To address the second and third objectives of this thesis, various field measurements were necessary 

with varying types of information and level of detail. The assessment of variability and drivers of 

grassland sensitivity to drought using remote sensing (Chapter 2) required several farm observations 

with heterogeneous grassland parcel characteristics related to pedoclimate, vegetation diversity, and 

management practices. However, the high number of observations, such as for management, was at 

the expense of detailed and continuous field monitoring, and data collection. Meanwhile, the 

evaluation of managed grassland resistance and resilience to drought impact using a process-based 

model (Chapter 3) required more detailed parcel data. For example, the type of herbage use, and the 

specific dates and duration of use were essential in creating the dynamic model of vegetation growth. 

To summarize, the field data used in this thesis were based on four completed research projects 

implemented within the Massif central region. All the projects monitored temperate managed 

grasslands at varying scales, details, and durations. 

 

1. Data for regional assessment of drought sensitivity drivers 

A large set of data was collected during the course of three projects implemented at regional scale 

in the Massif central from 2008 to 2019. Specifically, these were the (i) Prairies Appellations d'Origine 

Protégées (Prairies AOP; 2008 – 2012), (ii) Vers une approche Territoriale de l’Autonomie Fourragère 

et des services rendus par les systèmes fourragers à dominante herbagère en production fromagère 

AOP de Montagne (ATOUS; 2014 – 2017), and (iii) Les prairies du Massif central, un Atout 

Economique pour cOnstruire des systèmes d’éLEvage performants (AEOLE; 2016 – 2019). 

Implemented at different durations, the AEOLE project consolidated the parcel data from the Prairies 

AOP and ATOUS projects. The AEOLE then continued to characterize the managed grassland and 

focused on demonstrating the importance of grassland diversity for improving the quality and 

production of the main agricultural products of the region, which are milk and cheese (Carrère et al., 

2012; Hulin et al., 2019a). The three projects monitored a total of 143 parcels from 70 grassland farms, 

using the same standardized protocols (Galliot et al., 2020). Each parcel was initially selected to 

represent the heterogeneity of vegetation, soil, climate, and farming system in the region. While 

phytosociological surveys were conducted in 396 vegetation plots. Other criteria for the farm selection 
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were the willingness of the farmers to participate in the projects and the lack of change in their 

respective management practices for several years (Galliot et al., 2020). 

For each of the 143 parcels, there were four conducted surveys depicting (i) farm livestock and 

management practices; (ii) soil physical and chemical properties; (iii) vegetation composition and 

phytosociology; and (iv) biomass yield and forage quality (Galliot et al., 2020). For this thesis, the 

focus was on management practices, soil characterization, and vegetation composition.  

The management practices were monitored from 2008 to 2009 for herbage use and nitrogen 

fertilization. Then from 2016 to 2017, additional Nitrogen (N) fertilization practices were recorded. 

The Prairies AOP project first gathered from the farms the amount of N fertilization inputs (i.e., organic 

and inorganic), common management practices (i.e., grazing or mowing), and the dates of management 

implementation from the first to the third use, if possible (Galliot et al., 2020). The parcels received an 

average total (organic and inorganic) N of 80.18 kg ha-1 per year and were used at least once per year 

either by mowing or grazing. 

The INRAE – UREP protocols were implemented for the soil analysis of 138 parcels. Each parcel 

was represented by one homogeneous soil sample, which consisted of four samples taken from the 

topsoil (0 -10 cm) layer during the fall season (Galliot et al., 2020). The soil pH of the parcels ranged 

from 4.9 to 7.3 with an average of 5.8. Soil pH, percent soil organic carbon and nitrogen, and carbon 

to nitrogen ratio for all parcels were calculated after measurements by elemental analysis (Carlo-Erba, 

It). The soil samplings were conducted under two projects and both during the fall seasons in 2009 and 

2016 (Galliot et al., 2020). Most of the extracted soil properties, such as soil texture (i.e., percent clay, 

sand, loam); soil organic matter content; bulk density; potassium, magnesium, and phosphorus 

contents; rock origin, and rock type, were collected for 74 of the 143 parcels under the Prairies AOP 

project in 2009 (Galliot et al., 2020). 

The Conservatoire Botanique National du Massif central (CBN) organized and processed the 

vegetation surveys from involved botanical conservatories (Le Hénaff, 2021). Specifically, the CBN 

Massif central surveyed the grasslands within Puy-de-Dôme, Ardèche, Cantal, and Haute-Loire; the 

CBN Midi Pyrénées surveyed Aveyron; and CBN Méditerranéen surveyed Lozère. About 400 

vegetation plots were assessed for phytosociological analysis (Galliot et al., 2020). However, the lack 

of recorded geographic location resulted in the use of 396 vegetation plots in this thesis. The 

phytosociological approach implied variations in the size of the vegetation plot being surveyed. In this 

case, the abundance of plant species was recorded in plots that ranged from 2 to 100 m² with a mean 

of 25 m² (Galliot et al., 2020), while the number of recorded plant species per plot ranged from 5 to 55 

species (Galliot et al., 2020). The AEOLE project determined the species richness and rarity index of 

each plot. Then for this thesis, the computation of the taxonomic Shannon diversity and Simpson’s 
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diversity indices were based on the phytosociological survey data. While the traits for the plant 

community weight mean (CWM), and functional dispersion (Fdis) were extracted from existing trait 

databases of Baseflor (Julve, 1998) and DIVGRASS (Carboni et al., 2016; Violle et al., 2015). 

In this thesis, the data from the three consolidated regional projects provided the collection of 

grassland management practices; soil and topographic conditions; and vegetation taxonomic diversity 

and species richness of the parcels and plots. These factors were hypothesized to show direct and 

indirect influences on the response to drought. 

 

2. Data for grassland productivity modelling under drought conditions 

The third objective of this Ph.D. thesis, which focuses on the evaluation of the resistance and 

resilience of managed grasslands to drought, was possible with the data collected from the Herbipôle 

experimental site in Laqueuille, Puy-de-Dôme, France during the SALAMIX project between 2015 

and 2020. SALAMIX evaluated the economic, agricultural, and environmental performance of three 

farming systems of sheep, cattle, and their combination. The grassland paddocks were dedicated to 

one of the three tested farming systems for the entire course of the project and with either grazing or 

mowing treatments. The project was composed of 11 parcels (6 pastures and 5 mowed parcels) per 

farming system (Vazeille et al., 2018; Veysset et al., 2016) or a total of 33 paddocks with a total 

paddock area of 117.47 ha. 

The SALAMIX project conducted regular monitoring of the grassland paddock productivity and 

management. The vegetation height was measured from about 80 to 100 equally spaced points per ha 

along a fixed transect line inside the paddocks. Either a herbometer or a stick was used for the 

measurements. The herbometer estimates the vegetation height based on the pressed volume of 

vegetation to estimate biomass combined with density. While for the meter stick, the recorded height 

is based on the highest part of the vegetation touching the stick and on the identification of touched 

vegetal organ to evaluate the vegetation structure. The biomass of each paddock was obtained from at 

least four quadrats with a dimension of 70 cm x 70 cm. The geographic coordinate location of these 

quadrats allowed the repeated sampling at or near the same point. The field measurements of grassland 

biomass and height were conducted four to six times annually before the entry of animals or the date 

of cutting. The detailed paddock management data were based on the diligent recording of the mowing 

duration and cutting dates.  

Together with the SALAMIX data, this thesis used the HerbValo method (Delagarde et al., 2017; 

2018) to determine the mowing and grazing impacts. Developed in 2015, HerbValo is a computational 

method that (i) directly accounts for the removed biomass from cutting events, and (ii) considers the 

number of grazing days; animal daily grass intake; grazing severity, and supplemental feeding to the 



General Data and Methods 

58 

 

estimate grazing impact (Delagarde et al., 2017; 2018). Equation 1 shows the simple HerbValo formula 

for one harvest or cycle (Delagarde et al., 2017). 

 

𝐼(𝑡) = [{(𝐶𝐼/𝑉𝐸)𝑐𝑜𝑟𝑆𝐸𝑉} − ∑(𝑄𝐶𝑖 × 𝑇𝑆𝑖)]                            Equation 1 

 

Where: the grass intake (I) for a given time is based on the grazing rate [ratio of animal intake 

capacity (CI) and grass ingestability (VE)] and grazing severity. Then the total amount of 

supplementary fodder (e.g., dried hays), which is based on the quantity of consumed 

complementary fodder (QC) and rate of substation between grass and fodder (TS), is further 

deducted to get the grass intake (Delagarde et al., 2017). 

 

Chapter 3 took advantage of the rarely available detailed management calendar dates. To evaluate 

the resistance and resilience of managed grassland to drought, the initial investigation started with six 

paddocks that equally represented the mowing and grazing treatments. These were used in the creation, 

calibration, and evaluation of the vegetation growth dynamic model. 

 

F. Climate data and drought severity 

Consistent with the use of different field-measured data, Chapters 2 and 3 used climate data with 

varying spatial coverage and accuracy. Chapter 2 required regional climate data for the assessment of 

the drought severity of all grassland parcels and vegetation plots, while Chapter 3 benefited from the 

high accuracy of climatic variable records from a field meteorological station. 

 

1. Climate data records 

The first climate data source was the Système d'Analyse Fournissant des Renseignements 

Atmosphériques à la Neige (SAFRAN) data model, which provided hourly to daily gap-free records 

of climatic variables, as early as 1958. The Météo-France, specifically the Centre National de 

Recherches Météorologiques (CNRM) Unit produced the SAFRAN data, which covers the whole of 

France. SAFRAN consists of 8 km-sized grids in a Network Common Data Form (NetCF) format and 

has a Lambert-II coordinate system projection (Durand et al., 1993; Le Moigne, 2002). Accordingly, 

the SAFRAN data can be converted into other data formats, such as shapefiles or raster, and 

transformed into table data file format (Le Moigne, 2002). This climate data model originated from 

climatic variables from ground meteorological stations, which were then interpolated to estimate the 

climate across mountainous regions covered in snow (Durand et al., 1993). The specific climatic 
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parameters accessed for Chapter 2 were the Penman-Monteith potential evapotranspiration (in mm); 

solid and liquid precipitation (in mm); and mean, maximum, and minimum temperatures (in °C).  

The second source of climate data was the multiple field meteorological stations distributed across 

France and managed by Météo-France and their respective partners. The meteorological stations 

provide hourly to daily climate records of precipitation (in mm); mean, maximum, and minimum 

temperature (in degree C); calculated solar radiation (in J cm-2); and Penman-Monteith potential 

evapotranspiration (in mm). Overall, the oldest climatic records were from 1981, however, the 

temporal length and availability of observations vary between stations.  

Chapter 2 was supported by the spatial and temporal coverage of the SAFRAN climate data model. 

Amidst the available meteorological stations within the Massif central, the distribution of the stations 

was unable to cover all the managed grassland parcels. For instance, the distance between the parcels 

and meteorological stations often largely exceeded 8 km (Figure 11). The length of climate records 

per meteorological station varied depending on the date of establishment and operation. With the 

SAFRAN data model, all parcels have more than 35 years of daily climatic variable records. The World 

Meteorological Organization (WMO) recommended a 30-year length of climate data to establish the 

climate normal condition for meteorological studies (Marchi et al., 2020; Rigal et al. 2019).  

The SAFRAN data were compared to the field meteorological station measurements to determine 

its accuracy and to assess its suitability for the regional assessment of drought severity. A total of 91 

out of 187 meteorological stations were situated within the Massif central region (Figure 11). Each 

SAFRAN grid with corresponding meteorological stations was paired and correlated. Multiple 

meteorological stations within the same SAFRAN grid were averaged before the correlation procedure. 

The obtained R2 for daily precipitation, potential evapotranspiration, and mean temperature were 0.84, 

0.88, and 0.96, respectively.  

Chapter 3 used the climate records from the Laqueuille field meteorological station (45°38'35.88"N; 

2°44'3.73"E), which was within the Herbipôle experimental site. The Laqueuille meteorological 

station provided site-specific daily climate records as early as July 1995. Despite the 25-year length of 

climate observations, the field-collected climate data were used to obtain high accuracy in the drought 

severity assessment. The meteorological station climate data allowed the more realistic simulation of 

the process-based dynamic model of vegetation growth. 
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2. Drought severity assessment 

A modified daily version of the Standardized Precipitation and Evapotranspiration Index (SPEI) 

was used to assess the meteorological drought severities of both Chapters 2 and 3. The classic SPEI is 

based on the long-term monthly time series of the climatic water balance (Di), which is the difference 

between precipitation (P) and potential evapotranspiration (PET). Using the available Penman-

Monteith PET, the temperature, humidity, radiation, and wind speed were incorporated in the 

computation of drought severity. Moreover, SPEI allows the integration of climatic water balance at 

different timescales from 1, 3, 6, 9, 12 to 24 months (Beguería et al., 2014; Vicente-Serrano et al., 

2010). An annual drought timescale corresponds to the integration of the climatic water balance for a 

given month and the 11 previous months. 

 

Equation 2 

where i = month/s 

 

The SPEI standardization process involves the fitting of the D time series into a log-logistic 

distribution using a three-parameter probability distribution function. The probability distribution of 

Figure 11. Location of the field meteorological stations within and outside the Massif central 

region and the grassland 143 parcels in relation to the extracted SAFRAN data for this 

thesis. The SAFRAN data is consist of 8 km grids. 

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖 
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D is then standardized to obtain the SPEI value using the approximation of Abramowitz and Stegun 

(1965). The statistical distribution seeks to define the normal expectation. Negative SPEI values 

indicate a deficit from the water balance normal conditions. SPEI values lower than the -1.0 threshold 

are considered drought months. Accordingly, positive SPEI values indicate a surplus of precipitation.  

However, the monthly drought assessment of SPEI presents concerns that are unaligned with 

Chapters 2 and 3 of this thesis. First, the abrupt change in SPEI values between consecutive months 

(Figure 12. a) excludes the detection of short-term (< 1 month) grassland response to drought (Salehnia 

et al., 2018; Wang et al., 2015). Then the monthly inputs result in a lesser number of observations that 

lead to a weak goodness-of-fit in the probability distribution of climatic water balance during the SPEI 

standardization step if the time series is too short (Figure 12. b). In this respect, it is recommended by 

WMO to use at least a 30-year long time series or at best a 50-year long time series. 

To address the concerns regarding the abrupt change and the weak goodness-of-fit, I changed the 

climatic water balance time resolution from monthly to daily and calculated the daily SPEI using a 

moving window. To do so, I used the method from Russo et al. (2014) where instead of accounting for 

just the same dates across years (Equation 3), the calculation for a given day includes the same date 

across the years and days before and after (Equation 4). In the equations, A represents the dataset of 

climatic water balance (P - PET), with d the given day or date of interest; y the year, and i is the 

considered days around d. I presented in Figure 12 the comparison between the classic and the 

modified SPEI and the improved probability distribution goodness-of-fit of the climatic water balance. 

 

 

Equation 3 

 

 

Equation 4 

 

 

Figure 12 shows the improvements between the classic and modified SPEI. The change from 

monthly to daily time resolution captured the minor drying and wetting events and showed better 

transitions between months. Then the new set of data increased the number of observations and 

improved the goodness-of-fit for the log-logistic distribution step in the SPEI standardization 

procedure. 

𝐴𝑖 = ⋃ ⋃ 𝐷𝑦,𝑖

𝑑+15

𝑖=𝑑−15

2020

𝑦=1996

 

𝐴𝑑 = ⋃ 𝐷𝑦,𝑑

2020

𝑦=1996
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In summary, the SAFRAN data allowed the assessment of drought severity of all the grassland 

parcels and plots distributed across the Massif central region for Chapter 2. While the site-specific 

meteorological station near the local farm study site provided the much-needed high-accuracy drought 

severity assessment for Chapter 3. The modified daily SPEI was used to quantify the drought severity 

for both Chapters. 

 

G. Satellite image time series  

This thesis is highly motivated by the potential of satellite remote sensing products and techniques 

for vegetation monitoring. In this section, I justify the use of optical satellite images, present the 

selection of satellite data from two main sources, and highlight the reflectance-based remote sensing 

techniques that were implemented for Chapters 2 and 3 of this thesis.  

 

Figure 12. Comparison of (a) the trajectories of the SPEI-1 and modified SPEI-30 at the 1-month equivalent 

timescales for the sample years of 2009 and 2019, and (b) the probability distributions focusing on 

April, May, and June. The modified SPEI improved the time resolution, SPEI transition (highlighted 

with the solid box) and goodness-of-fit of the probability distribution for the month of April 

(highlighted with the dashed-line box). The climatic data used in the assessment was from the 

Laqueuille meteorological station record from 1996 to 2020. 
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1. Optical satellite images for the study 

The optical satellite images were selected over the microwave images based on the availability of 

satellite data and the multiple vegetation properties that can be estimated from reflectance bands. 

Accordingly, the selected images were the satellite sensors of the Landsat missions, Sentinel 2 MSI, 

and VENµS (Vegetation and Environment monitoring on a New MicroSatellite; Hagolle et al., 2010). 

The Chapter 2 regional assessment of grassland sensitivity to drought required long-term satellite 

observations in establishing the baseline reference condition of the grassland parcels in the Massif 

central. Landsat missions demonstrated comparability in their basic spatial, temporal, and spectral 

resolutions and improvements in radiometric resolution through the years (Wulder et al., 2022). The 

30 m spatial resolution of Landsat depicted vegetation heterogeneities among the parcels, which were 

more than 30 m apart. Despite the inability of the Landsat 16-day temporal resolution to capture the 

daily and even weekly changes in grassland conditions, Landsat missions compensated with the long 

temporal range of 50 years starting from 1972 to 2022. The Landsat spectral resolution allows the 

computation of vegetation indices with the availability of the visible reflectance bands of RED, 

GREEN, and BLUE; and the near- and shortwave-infrared bands (NIR and SWIR). 

The Chapter 3 local scale evaluation of managed grassland resistance and resilience to drought, on 

the other hand, requires satellite images with medium to high spatial and temporal resolutions. The 

high spatial resolution decreases the probability of mixed pixels in representing grasslands on the 

ground. Mixed pixels refer to the convergence of multiple land cover features in a one-pixel unit 

(Foschi, 1994). Then to maximize the use of the detailed management records of the SALAMIX 

project, temporal resolutions higher than a week allowed the finer detection of grassland development. 

Sentinel 2 images have medium spatial resolutions of 10, 20, or 60 m depending on the reflectance 

band. Sentinel 2 is composed of two Earth-orbiting satellites that were launched separately on 23 June 

2015 and 7 March 2017. Each satellite has a 10-day revisit, which when combined improves the 

temporal resolution to 5 days. In terms of spectral resolution, Sentinel 2 has 13 bands, ranging from 

visible to shortwave infrared. Compared to Landsat images, Sentinel 2 has a red-edge band, which 

improves the estimation of chlorophyll (Delegido et al., 2011). Thus far, Sentinel 2 is a freely available 

remote sensing product with overall high spatial, temporal, and spectral resolutions. 

Lastly, another satellite mission considered in this thesis was the Vegetation and Environment 

monitoring on a New MicroSatellite or VENµS. This satellite was jointly developed by the French 

Centre National d'Etudes Spatiales (CNES) and the Israeli Space Agency. It collected high spatial 

resolution (5 m) images with high revisit frequency (2 days) from 2017 to 2020. The VENµS spatial 

coverage is limited to 130 selected experimental sites distributed globally (Baba et al., 2020; Bessin et 

al., 2022; Upreti et al., 2020). VENµS is composed of 12 spectral bands, which uniquely have a digital 



General Data and Methods 

64 

 

elevation model band (Baba et al., 2020; Upreti et al., 2020). The visible, red-edge, and near-infrared 

bands are also available with VENµS similar to Sentinel 2. Unfortunately, the moisture-sensitive 

shortwave infrared bands are lacking.  

Each satellite image satisfies the research requirements of Chapters 2 and 3. Specifically, the long-

term temporal range of Landsat missions and the high frequency of revisit of Sentinel 2 and VENµS. 

The comparison of the spatial and temporal resolutions, and temporal range of Landsat, Sentinel 2, 

and VENµS images are summarized in Figure 13. While the spectral resolutions and equivalent 

reflectance bands of the three satellite images are summarized in Appendix C.  

 

 

 

2. Comparative assessment of satellite data sources 

The Landsat and Sentinel 2 images are freely accessible from the official websites of host agencies 

(e.g., https://earthexplorer.usgs.gov/ for Landsat and Sentinel 2; and https://scihub.copernicus.eu/dhus 

for Sentinel 2). Similarly, online cloud services, such as the Google Earth Engine (GEE; Amani et al., 

2020; Gorelick et al., 2017), Amazon Web Services (AWS; Ferreira et al., 2020; Lee et al., 2010), the 

Microsoft Planetary Computer, and the Data and Information Access Services (DIAS), store and grant 

access to the consolidated collections of multiple remote sensing data and products. National research 

organizations, such as the Theia Data and Service Center (https://www.theia-land.fr; referred to in this 

thesis as Theia) for France, implement improvements and provide similar access to data and products 

Figure 13. Comparison of the medium to high spatial resolution (from left to right) of Landsat 8, Sentinel 2, 

and VENµS satellite images. The images show paddocks from the SALAMIX project at the Herbipôle 

experimental site (Laqueuille, Puy-de-Dôme, France). 
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generally intended for the needs and use of their country. For instance, the VENµS (Vegetation and 

Environment monitoring on a New MicroSatellite) data, which was under the joint Israel and France 

partnership, are accessible through the Theia website.  

This thesis considered two remote sensing product sources, namely the GEE and Theia due to the 

cloud services and implemented image improvements, respectively. Initially, the goal was to use only 

one source of remote sensing data. However, the lack of concrete references regarding the advantages 

and disadvantages of each source prevented the selection of only one data source. Thus, part of this 

thesis involved the comparative assessment of GEE and Theia.  

To do so, the comparative assessment used Landsat images covering the Herbipôle experimental 

site in Laqueuille, Puy de Dôme, Massif central, France. The obtained Landsat images were cropped 

to an extent of 2.7 km x 3.6 km, which covers the SALAMIX parcels (Figure 14). Then the parameters 

considered in the assessment were (i) the download and storage requirements, (ii) the image 

availability, (iii) the spatial agreement, (iv) the cloud and shadow masking algorithm, and (v) the 

reflectance band values.  

  

 

 

For the first criterion of image download and storage requirement, Landsat images from 01 January 

2015 to 01 November 2020 were downloaded. Both downloads were performed on a personal 

computer under the R environment using the reticulate and TheiaR packages for GEE and Theia, 

Figure 14. Extent of the SALAMIX paddocks featuring the NDVI values. The NDVI was generated 

from the 7 January 2015 Landsat 8 image, which was downloaded from Theia Data and 

Service Center. 
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respectively. The GEE mainly functions under the Phyton language. The reticulate package (Ushey et 

al., 2022) allows the use of Python scripts in R. Unfortunately, the rgee package, which is specifically 

designed for the use of GEE in R (Aybar et al., 2022) was unavailable during the conduct of the 

comparative assessment. The download of satellite reflectance from GEE was completed in less than 

10 minutes. No digital storage of all the Landsat files was necessary with GEE due to the cloud 

processing service. Instead, the values of the reflectance bands of each Landsat image were 

summarized in a table data format, which has a file size of at least 0.01 gigabytes. While the extraction 

from Theia lasted for approximately two weeks due to repeated disconnections from the Theia server. 

The theiaR package enabled the direct download and management of satellite images from the Theia 

website (Laviron, 2022). The Landsat files from Theia amounted to 22.4 gigabytes (GB) of digital 

storage on a personal computer.  

The two data sources provided an unequal number of Landsat images (Figure 15) from 2015 to 

2020. The GEE provided 106 images, which included Landsat scenes with greater than 90% cloud 

cover. Meanwhile, Theia provided 66 images, due to the exclusion of Landsat scenes with greater than 

90% cloud cover. The oldest available Landsat observations in GEE and Theia were from 1972 and 

2009, respectively. 

 

 

 

The spatial agreements were compared using 30 m grids generated from the pixels of two sets of 

Landsat images from GEE and Theia (Figure 16). The spatial disagreement was highest at 16.80 m 

between the GEE and Theia Landsat 5 and 7 and it was 13.23 m for Landsat 8. However, despite the 

low disagreement between the newer Landsat 8 images, the geometric comparison lacks a true spatial 

Figure 15. Extracted Theia and GEE Landsat 5, 7, and 8 images from 01 January 2015 to 

01 November 2020. The gaps along the observations were due to the percent cloud 

cover. 
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reference. Possible sources of errors were related to the post-processing and successive projection 

transformations of the original images.  

 

 

 

In terms of the masking algorithms, GEE, specifically, USGS, uses the Land Surface Reflectance 

Code (LaSRC), while Theia uses the MACCS-ATCOR Joint Algorithm (MAJA; Hagolle et al., 2017). 

The LaSRC was developed by the University of Maryland together with the National Aeronautics and 

Space Administration (NASA) of the United States of America, while MAJA was developed by the 

Centre d’Etudes Spatiales de la Biosphère (CESBIO) joint research Unit of France (Hagolle et al., 

2017; Skakun et al., 2022). The comparison was performed with a contingency table of all the cloud 

and shadow pixels based on the QA_Pixel layer to demonstrate the agreement of masked pixels 

between the LaSRC and MAJA algorithms (Figure 17).  

Figure 16. Spatial agreement assessment between GEE and Theia using Landsat 5 & 7 (left) and 8 (right) 

images. The irregular polygon FF5 is one of the SALAMIX paddocks for mowing. 
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The mask agreement revealed that cloud detection was variable in time, and it offers a total 

agreement of 80% based on image observations from 01 January 2015 to 01 November 2020. No clear 

advantage between the performance of the two algorithms was observed with Landsat in this 

comparative assessment. Nevertheless, the LaSRC classified 11.2% of pixels as clouds, which were 

not detected by MAJA. Conversely, the MAJA classified 8.3% of the pixels as clouds, which were not 

detected by LaSRC.  

The authors found that both the LaSRC and MAJA algorithms have fluctuating performances in 

cloud detection when tested with different datasets (Skakun et al., 2022). In the assessment of five 

masking algorithms that included LaSRC and MAJA, the results showed no significant difference 

among algorithm performances in the detection of clouds or shadows (Tarrio et al., 2020). 

Nevertheless, the use of MAJA on Sentinel 2 images revealed a more balanced cloud and shadow 

masking compared to LaSRC (Tarrio et al., 2020).   

The final parameter in this comparative assessment was the reflectance band values, which were 

based on clear or cloud- and shadow-free, pixels within the SALAMIX paddocks (Figure 18). Overall, 

the reflectance values of the visible (BLUE; GREEN, and RED) and NIR bands were highly correlated 

with R2 values of 0.98 and 0.91, respectively. These were accompanied by a mean slope of 1.09 and 

an absolute mean intercept of 0.005 for all four bands. While the SWIR 1 and SWIR 2 bands were 

correlated still highly with R2 values of 0.88 and 0.87, respectively, accompanied by a mean slope of 

1.025 and a mean intercept of 0.005. Apart from the individual bands, three vegetation indices were 

derived to determine the correlation of transformed reflectance bands. These indices were the NDVI 

= (NIR - RED) / (NIR + RED); EVI = 2.5 * ([NIR - RED] / [NIR + 6 * RED - 7.5 * BLUE + 1]); and 

NMDI = (NIR – [SWIR1 - SWIR2]) / (NIR + [SWIR1 - SWIR2]). The obtained vegetation index 

Figure 17. Comparison of cloud mask agreement between GEE and Theia Landsat 8 images. The 

two triangles at the bottom of the plot highlight dates when cloud detection was erratic. 
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correlations were high with an average R2 of 0.95. The slope and intercept remained close to 1 and 0, 

respectively. 

The data source assessment used and compared the parameters of data acquisition and quality 

(Table 1). Although conclusions were uncertain for some parameters, the obtained insights were used 

for practical consideration.  

 

 

 

 

 

 

Figure 18. Correlation of the GEE- and Theia-obtained Landsat visible and infrared bands (B2: BLUE; 

B3: GREEN; B4: RED, B5 = NIR, and B6 = SWIR1 and B7 = SWIR2) and vegetation indices. 

Observations within the plots were clear pixel values from multiple dates. The colors correspond 

to the clustering of observation dates. Where the red and yellow corresponds to the most and least 

amount of data, respectively. 
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Table 1. Summary of the parameters used in the comparison of GEE and Theia data sources. The 

assessment used images covering the SALAMIX paddocks from 2015 to 2020. 

 

Parameter Results 

Download Time on a single 

personal computer 
GEE (less than 10 minutes) < Theia (approximately two weeks) 

Storage requirement GEE (cloud processing / 0.01 gigabytes) < Theia (22.4 gigabytes) 

Image availability (2015 to 

2020) 

GEE (106 images) > Theia (66 images) 

Temporal coverage GEE (since 1972) > Theia (since 2009) 

Cloud and shadow masking LaSRC: cloud > shadows // MAJA: cloud = shadow 

Spatial agreement  Inconclusive result due to inherent error and lack of proper reference 

Reflectance bands  Reflectance values were highly correlated 

 

 

For Chapter 2, the regional study of 143 grassland parcels required multiple image scenes and long 

temporal coverage, which was provided by the Landsat collection in GEE. The download and storage 

parameters were related to the Landsat scene file size. GEE provides Landsat in its original coverage, 

which is larger than Theia Landsat. The Theia Landsat scene is resized based on Sentinel 2 spatial 

coverage (Skakun et al., 2017). About five Landsat scenes were needed to characterize all the grassland 

parcels distributed in the region. Then from 1985 to 2019, about 1,900 Landsat images of unique dates 

were available for the Chapter 2 study. The majority of the Landsat images were found during the 

growing season (March to November). Accordingly, the wide spatial (Figure 19. a) and long temporal 

(Figure 19. b) coverages, together with the short download time of Landsat images, which are without 

strong consequences on data quality, led to the selection of GEE. 
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The Theia Data and Service Center was considered the data source for Chapter 3. The delay in the 

download time was manageable when the connection to the Theia server was closely monitored. The 

local study site was covered by one small scene of Sentinel 2 and VENµS. But most of all, VENµS 

images were unavailable in GEE. In terms of data quality, there was an overall equal detection of 

clouds and shadows with the MAJA (Hagolle et al., 2017) when used on Sentinel 2 (Tarrio et al., 

2020). 

Figure 19. Comparison of the spatial coverage of Theia and GEE Landsat scenes (a) and 

availability of Landsat observations per season (b) from 1985 to 2019. 

a. 

b. 
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At the end of the comparative assessment, further investigations were needed to provide a clear 

distinction between GEE and Theia as sources of satellite data and products. Unfortunately, said 

investigation is not part of the scope of this thesis. Nevertheless, both data sources were used based on 

their contributions to Chapters 2 and 3.  

 

3. Vegetation properties from reflectance bands 

Optical satellite images are composed of reflectance bands, which are correlated to vegetation 

properties based on the radiative energy from the sun or artificial sources reflected by objects and 

received by satellite sensors. For this thesis, the use of vegetation indices and the inversion of a 

radiative transfer model were used to determine the vegetation properties of temperate managed 

grasslands in Chapters 2 and 3.  

Chapter 2 generated and tested a total of 24 vegetation indices (Appendix D). Specific vegetation 

indices are based on the transformation of selected reflectance bands that highlight vegetation 

properties. The Global Vegetation Moisture Index (GVMI) incorporates the SWIR2, which is 

responsive to the moisture in leaves, at the 1,500 to 2,500 nanometer (nm) wavelength range (Ceccato 

et al., 2002).  

Chapter 3 used the PROSAIL model and the Look-Up Table (LUT) inversion technique to estimate 

the Leaf Area Index (LAI) of managed grasslands. The PROSAIL model has exhibited high 

performance among existing RTMs when implemented in homogenous and heterogeneous grassland 

and cropland covers (Atzberger et al. 2015; Darvishzadeh et al., 2008; Jacquemoud et al., 2009). It is 

the combination of two radiative transfer models, namely the PROSPECT, a leaf optical properties 

model, and the Scattering by Arbitrary Inclined Leaves (SAIL), a plant canopy reflectance model 

(Figure 20). Overall, PROSAIL requires a total of 14 input parameters (Table 2). The PROSPECT 

model yields an estimate of the leaf's radiative reflectance and transmittance based on the functions of 

the leaf's biophysical and biochemical properties. Accordingly, the output leaf optical property 

estimation serves as a direct input for the SAIL model component. Meanwhile, SAIL estimates the 

radiative transfer in the vegetation canopy, or simply the canopy reflectance, based on leaf-based 

parameters, soil reflectance, and the pathway of the electromagnetic radiation – by the satellite viewing 

angles.  

Several methods are available for the inversion RTM results. Iterative optimization, LUT, artificial 

neural networks, and support vector machine regression are some of the available inversion methods 

(Darvishzadeh et al., 2008; Weiss et al., 2000). Each method aims to maximize the fit between the 

simulated and observed reflectance trajectories of a given biophysical or biochemical property. The 
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LUT was determined to be a fast, simple, and robust inversion method (Darvishzadeh et al., 2008; 

Weiss et al., 2000). It is a computational simple minimization technique that aims to generate a 

reference table of leaf parameter combinations that best fit the reflectance signature (Berger et al., 

2018; Jacquemoud et al., 2009). 

 

 

 

Table 2. Summary of the specific inputs for the PROSAIL model (PROSPECT + SAIL models). 

 

Specific model Input parameter Annotation Unit 

 

PROSPECT  

(Leaf optical 

properties model) 

Brown pigment content Cbrown unit less 

Dry Matter Content Cm g cm−2 

Equivalent Water Thickness Cw Cm 

Leaf chlorophyll a + b content Cab μg cm−2 

Carotenoid content Car μg cm−2 

Leaf structural coefficient N unit less 

 

SAIL 

(Canopy 

reflectance model) 

Dry/Wet soil factor Psoil unit less 

Leaf Area index LAI m2 m−2 

Leaf angle distribution type TypeLidf unit less 

Leaf angle distribution function lidfa unit less 

Leaf angle distribution function lidfb unit less 

Hotspot parameter hspot m m−1 

Solar zenith angle tts degrees 

Observer zenith angle ttp degrees 

Relative azimuth angle psi degrees 

 

 

Various authors have demonstrated the use of PROSAIL inversion with available satellite images. 

For instance, the model inversions with Landsat 8, Sentinel 2 and 3, MODIS, and VENµS resulted in 

the estimation of chlorophyll content, leaf area index (LAI), above-ground biomass as leaf dry matter 

Figure 20. Illustration of the relationship between the PROSPECT and SAIL model. It shows a visual 

description of each model, and the inputs (Table 2) necessary to perform the simulation. The image 

was from Berger et al., 2018.  
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content, canopy moisture content, and the fraction of vegetation cover of croplands, wheat, grasslands, 

and saltmarsh (Darvishzadeh et al., 2008; He et al., 2019; Jiao et al., 2021; Upreti et al., 2020; Verrelst 

et al., 2012, 2015; Yin et al., 2016).  

For Chapter 2, grassland sensitivity was based on the most responsive vegetation property proxy 

from the evaluated 24 Landsat-derived vegetation indices. The available field measurements of the 

three regional projects were insufficient to perform multiple PROSAIL model inversions of the 

heterogeneous parcels.  

Chapter 3 successfully used the PROSAIL inversion with the LUT method to estimate the LAI of 

each paddock. The PROSAIL inversion was performed for both Sentinel 2 and VENµS images. 

However, the inversion with VENµS showed inconsistencies in the estimated LAI, which was depicted 

by the large standard deviation compared to Sentinel 2 during processing (Figure 21). One hypothesis 

for the erroneous estimation of LAI is related to the multiple viewing angles for the respective VENµS 

reflectance bands. These multiple angles were not incorporated in the initial VENµS angle extraction 

script of this thesis. Nevertheless, the available Sentinel 2 trajectories were sufficient enough for use 

with a process-based model. Vegetation indices were considered also for Chapter 3, however, there 

was a low correlation between the vegetation indices and available ground measures of biomass and 

height. 

 

 

 

H. Summary of selected data 

Presented here in the General data and methods were the selected input data associated with Chapter 

2 or the regional assessment of the variability and drivers of grassland sensitivity to drought using 

long-term time series of vegetation indices, and Chapter 3, or the local evaluation of managed 

grassland resistance and resilience to drought impact, based on a process-based model of vegetation 

Figure 21. LAI observations derived from the PROSAIL inversion of Sentinel 2 and VENµS images covering one 

sample mowed parcel under the SALAMIX project. The vertical red lines are mowing dates, while the blue 

shades are grazing events. 



General Data and Methods 

75 

 

growth with the assimilation of Sentinel 2-derived LAI. Essentially, Chapters 2 and 3 were conducted 

with contrasting site spatial coverage, temporal range, and management data details; different sources 

of climate and satellite data; and remote sensing techniques (Table 3); but similar drought severity 

measures and objectives to determine grassland response to drought. 

 

Table 3. Summary of the respective field, climate, and remote sensing data inputs for Chapters 2 and 3. 

 

General Inputs 

Chapter 2 

Regional empirical analysis 

of variability and drivers 

of grassland sensitivity to drought 

Chapter 3 

Local-scale process-based modelling 

for analyzing grassland response 

to isolated drought impacts 

Sites : Massif central Herbipôle experimental site 

Field data Source/s Scale Source/s Scale 

Management Prairies AOP Parcel  

(600 to 366,100 m²) 

SALAMIX 

(HerbValo) 

Paddock 

(15,200 to 85,500 m²) 

Soil Prairies AOP and 

AEOLE 

Parcel  

(600 to 366,100 m²) 

- - 

Biodiversity Prairies AOP, 

ATOUS, AEOLE, 

and plant 

databases 

Plot  

(2 to 100 m²) 

- - 

Climatic data SAFRAN  Daily Meteorological 

station 

Daily 

Remote Sensing data Source/s Resolution Source/s Resolution 

Landsat mission 

(1985 to 2019) 

Google Earth 

Engine 

30 m (spatial), 

16 days (temporal) 

- - 

Sentinel 2  

(2015 to 2020) 

- - Theia Data and 

Service Center 

20 m (spatial), 

5 days (temporal) 

Vegetation property 

quantification method 

Vegetation 

indices 

- PROSAIL 

inversion 

- 

 

 

Chapter 2 was the regional study conducted within the Massif central. It used multiple field 

measurements, related to the soil, climate, and topographic factors; vegetation diversity; and herbage 

use. Data were obtained from the completed Prairies AOP, ATOUS, and AEOLE projects. Chapter 2 

assessed drought severity using the modified SPEI based on the SAFRAN climate data model and 

quantified the vegetation conditions of 143 parcels using the vegetation indices from Landsat 

observations. Both SAFRAN and Landsat were selected due to the large spatial and long-term temporal 

coverages.  

Chapter 3, on the other hand, was conducted within the local scale Herbipôle experimental site. The 

parsimonious process-based model of grassland LAI benefited from the detailed herbage usage 

calendar, grazing animal records, and homogenous environmental conditions of the SALAMIX 

project. Chapter 3 generated the modified SPEI based on the field-collected climate records. Lastly, 
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the high spatial and temporal resolution of Sentinel 2 supported the calibration of the grassland LAI 

model. 

Lastly, amidst the lack of description regarding Chapter 1, presented in Figure 22 are the input data 

for all three research chapters of this thesis. The selected field, climate, and satellite data for Chapters 

2 and 3 were summarized to highlight the contrasting, different, and similar parts of each research.  

  

 

Figure 22. Summary of inputs for the respective research objectives. 
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ASSESSMENT OF DROUGHT IMPACT ON GRASSLANDS  

USING REMOTE SENSING TECHNIQUES. A REVIEW  

 

 

 

From the conceptual diagram, Chapter 1 focuses on the central question of how drought 

impacts or influences on grassland vegetation properties were assessed so far. It 

considers studies that estimated grassland properties based on satellite data and 

quantified the meteorological type of drought. 
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CHAPTER 1. ASSESSMENT OF DROUGHT IMPACT ON GRASSLANDS USING 

REMOTE SENSING TECHNIQUES. A REVIEW 

 

Abstract  

 

Droughts are expected to occur more frequently and severely because of climate change. The 

impacts of drought are felt in almost all regions of the world. Unfortunately, drought threatens 

grasslands and its associated ecosystem services. Understanding grassland response to drought 

provides opportunities to improve grassland resistance and resilience. Ground-based experiments 

provide key knowledge on how grasslands respond to drought. However, these methods are limited in 

replicating real-life conditions at larger spatial coverage and longer durations. In this literature review, 

we highlight the potential of remote sensing technology in assessing grassland response to drought. 

We focused on articles that investigated drought impacts on grasslands by using remote sensing data. 

We classified the response assessment approaches into five categories, underline the gaps and bias in 

the global distribution of assessment studies, and call for a more specific use of “response”. The 

assessment of grassland response to drought integrates satellite reflectance, as a proxy, and drought 

severity. Challenges arise with the mismatch in data scales and observation lengths. Uncertainties also 

exist within the satellite reflectance due to confounding field factors and multiple disturbances. Finally, 

avenues for future research regarding grassland response to drought are related to the infrequently 

studied grassland types and regions. Then compared to grassland monitoring, the list of utilized RS 

data and monitored grassland properties for response assessment thus far is limited. 

 

Keywords: response; satellite data; statistical inference; biomes; time series; vegetation index   



Chapter 1 

79 

 

1.1. Introduction  

Grasslands are ecosystems dominated by graminoid plant species with limited presence of tall – 

above 5 meters – woody perennials and shrubs (Suttie et al., 2005; White, 1983; Xu and Guo, 2015). 

They provide key ecosystem services for food production that accounts for billions of employment 

opportunities (Jiang and Wang, 2022; O'Mara, 2012), carbon regulation and storage of about 34% of 

the terrestrial carbon (Bai and Cotrufo, 2022; Jones and Donnelly, 2004), biodiversity as habitats, 

cultural and recreational activities (Bengtsson et al., 2019; Pellaton et al., 2022; Zisenis et al., 2011), 

and energy source as biomass fuel (Tilman et al., 2006). Grasslands cover approximately 35 to 40% 

or 52.5 M km2 of the Earth’s terrestrial areas (Bardgett et al., 2021; Dixon et al., 2014). 

Although many grassland types are maintained by certain levels of disturbance regimes (e.g., 

agricultural activities, fire, etc.), extreme disturbances are detrimental to the maintenance of 

ecosystems (Newbold et al., 2016; Strömberg and Staver, 2022). More specifically, drought, which is 

a natural phenomenon experienced by almost every climatic region of the world (Carroll et al., 2021; 

Dai, 2011; Mishra and Singh, 2010; Zargar et al., 2011), is expected to have more extreme and frequent 

occurrences along with climate change (IPCC, 2021). 

Drought negatively impacts grasslands (Howden et al., 2007), and results in a decrease in the 

quantity and quality of grasslands, their ecosystem services (Chang et al., 2021; Hofer et al., 2016; 

Zwicke et al., 2013) and associated biodiversity (Doležal et al., 2022; Tilman and Haddi, 1992). 

Understanding how grasslands respond to drought can help in mitigating and anticipating adverse 

drought impacts. So far most of the knowledge on drought impacts on grasslands is inherited from 

controlled experiments and field observations (De Boeck et al., 2015; Gilgen and Buchmann, 2009; 

Kröel-Dulay et al., 2022; Volaire, 2018; Wellstein et al., 2017). 

Pot, mesocosm, and field drought experiments provide focus and close monitoring of changes in 

grassland properties in response to manipulated water availability to the plants, which induce drought-

like conditions (Knapp, Hoover, et al., 2015; Stampfli et al., 2017). Drought experiments improve our 

knowledge of the influence of soil properties, plant biodiversity, and management practices on 

response to drought at the population and community organizational levels (Buttler et al., 2019; 

Deléglise et al., 2015; Isbell et al., 2015). It reveals the ecophysiological and strategic response 

mechanisms from the individual to community level induced by drought (Volaire, 2018; Zwicke et al., 

2015) However, grasslands are open systems that experience heterogeneous drought effects across 

space and time. To account for these spatio-temporal variations, long-term coordinated networks of 

rainfall manipulation experiments, such as the Drought-Net (Knapp et al., 2017), are conducted in 

grassland plots in different ecoregions. However, despite the numerous and widely distributed 

experimental sites over the world, coordinated experiments still face a lack of standardized spatio-
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temporal coverage and real-life natural complexities due to constraints of the imposed set-ups. 

Furthermore, experimental studies underestimate the impact of drought on grassland biomass 

compared to observational studies (Kröel -Dulay et al., 2022). 

As an alternative, remote sensing (RS) expands beyond the spatio-temporal limitations of controlled 

experiments and permits the recognition of a wide range of biogeographic and agronomic situations. 

RS is a technology that measures the properties of any objects without physical contact by using 

sensors that are mounted on satellites; manned or unmanned aerial vehicles; and ground-based setups 

(McVicar and Jupp, 1998). One simple application is the visualization, interpretation, and comparison 

(Ali et al., 2016; Svoray et al., 2013) of vegetation greenness using satellite images and vegetation 

indices (Figure 1– 1) covering an area of interest. 

 

 

  

Under drought conditions, plant physiological changes occur at the gene and tissue levels with 

consequences on higher organizational levels (e.g., organ and individual). The impacts from long or 

Figure 1– 1. Comparison of years with the absence (2021 – left) and presence (2022 – right) of 

drought using Sentinel 2 images covering the southern portions of the Massif central region, 

France. The top images are True Color Image Composite, while the bottom images are the 

Normalized Difference Vegetation Index (NDVI), where values close to 1.0 are healthy 

vegetation cover and below 0.3-0.2 are dry vegetation and bare soils or water bodies. The 

map relief information was extracted from a 25m x 25m Digital Elevation Model (DEM; 

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1). The Sentinel 2 data were 

obtained from https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/. 

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
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severe droughts decrease the water available in the soil for plant use. This leads to the dehydration of 

leaves, which negatively affects leaf chlorophyll contents, and leads to a loss in canopy greenness 

(Ommen et al., 1999; Sanchez et al., 1983).  At the same time, stomatal apertures close to maintain 

moisture, but prevents entry of carbon dioxide (CO2; Taylor et al., 2012). The limited water, CO2, and 

decreased chlorophyll performance due to drought hinder and halt the photosynthetic activity (Abbasi 

et al., 2014; Taylor et al., 2012). At prolonged durations and depending on the plants’ inherent drought 

tolerance capacity, the productivity of grasslands is expected to critically decrease. At the same time, 

the rate of plant senescence is expected to increase with drought (Volaire et al., 2009).  

The RS application of optical images for vegetation monitoring is based on the connection of the 

plant's physiological condition introduced above and the reflected radiative energy (Turner et al., 

2003).  Indeed, sensors receive the reflected energy, which contains the reflectance measures of 

specific wavelengths (Drusch and Crewell, 2006; Turner et al., 2003) related to the vegetation moisture 

content, leaf chlorophyll contents, biomass, and leaf area index (LAI) among other vegetation 

properties (Gitelson et al., 2003; Sims and Gamon, 2002). The chlorophyll contents, which relate to 

the greenness of leaves, are detected in the visible light spectrum (400 to 700 nm). Then the leaf area 

index (LAI) and plant structure properties can be retrieved in the NIR (range 800-2500 nm). While the 

influence of leaf moisture on vegetation reflectance is strong in the shortwave infrared (SWIR; 1,400 

to 3,000 nm) and to a lesser extent in the near-infrared (NIR; 700 to 1,400 nm) wavelengths.  

Therefore, the combination and transformation of selected bands can be used to generate reflectance 

spectra or vegetation indices (VI) that estimate grassland properties from space and across time. 

Among the variety of VI (Andreatta et al., 2022; Bajgain et al., 2015; Zhou et al., 2014), one commonly 

used VI is the Normalized Difference Vegetation Index (NDVI), which is a proxy for vegetation 

greenness, productivity, cover, and biomass (Wang et al., 2022). More specific indices were developed 

to monitor moisture content, like the Normalized Difference Water Index (NDWI; Gao, 1996; Xiao et 

al., 2004) and Global Vegetation Moisture Index (GVMI; Ceccato et al., 2002) among others.  

The potential of optical remote sensing data has encouraged the development of a tremendous 

number of ecosystem monitoring studies over the last decades. To synthesize their findings, several 

reviews have underscored the importance of RS for monitoring different types of terrestrial ecosystems 

(Shoshany, 2000), such as forests (Gleason and Im, 2011; Masek et al., 2015), savannas (Fundisi et 

al., 2022), mangroves (Kuenzer et al., 2011), peatlands (Minasny et al., 2019), wetlands (Guo et al., 

2017), and agroecosystems (Atzberger, 2013; Bégué et al., 2018; Huang et al., 2022; Kuenzer and 

Knauer, 2013; Ozdogan et al., 2010; Weiss et al., 2020). Other reviews focused on the general 

assessment of ecosystem health in response to environmental changes (Li et al., 2014; Soubry et al., 

2021; Xu and Guo, 2015; Yi and Jackson, 2021) or specific disturbances. For instance, the use of RS 

https://www.webofscience.com/wos/author/record/1710974
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in the assessment of forest ecosystem responses to fire (Chu and Guo, 2013), hurricanes (Lugo, 2008), 

insect infestation (Senf et al., 2017), and deforestation (Gao et al., 2020) were reviewed. Closer to our 

topic, other authors synthesized the knowledge of data and techniques for monitoring grassland 

ecosystems (Ali et al., 2016; Reinermann et al., 2020; Svoray et al., 2013; Wang et al., 2022), in 

response to management practices (Reinermann et al., 2020), shrub and woody plant invasion (Cao et 

al., 2019; Soubry and Guo, 2022), or climate changes (Li et al., 2018; Wang et al., 2022). Reviews on 

the use of remote sensing for the monitoring drought and water stress on terrestrial ecosystems were 

conducted for forests (Deshayes et al., 2006; Konings et al., 2021; Zhang et al., 2013) and croplands 

(Gerhards et al., 2019). Then instead of the use of RS on specific ecosystems, authors focused on the 

RS techniques and indices related to drought impacts (AghaKouchak et al., 2015; Alahacoon and 

Edirisinghe, 2022; Hazaymeh and Hassan, 2016; Inoubli et al., 2020; Jiao et al., 2021) 

According to this collection of reviews of RS applications for environmental sciences, there is 

currently no specific synthesis of the remote sensing researches conducted, so far, on the assessment 

of drought impacts on grasslands. We filled this gap and specifically aimed to (i) identify and classify 

the different approaches used to achieve the assessment goals, the associated inputs, their advantages, 

and limitations; (ii) summarize key findings emerging from these studies; and (iii) highlight challenges 

and opportunities for future studies.  

To do so, this study initially started with a collection of 304 articles from the Web of Science on 31 

January 2022 based on the search criteria of [(“remote sensing” OR “earth observation” OR satellite) 

AND (grassland* OR pasture* OR meadow* OR steppe* OR rangeland*) AND (impact OR effect 

OR response OR resilience) AND drought NOT forest NOT wetland]. Then a three-stage screening 

process was implemented to obtain 64 preliminary articles. The screening retained meteorological 

drought studies that identified or quantified drought events and trajectories and investigated studies on 

grassland response to drought,  Essentially, the articles used RS as the main source of data or 

complements the determination of grassland response to drought.  

 

1.2. Classification of the assessment approaches 

Assessing grassland response to drought is a process that involves the monitoring of conditions of 

grassland properties and determining its connection to the trajectory of drought severity. We identified 

five different approaches, classified into (i) vegetation index threshold, (ii) year comparison, (iii) time 

series analysis, (iv) statistical inferences, and (v) mechanistic modelling.  
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1.2.1. Vegetation index threshold 

Vegetation indices (VIs) are the transformation of selected reflectance bands contingent on the 

vegetation property being monitored (Bajgain et al., 2015; Sishodia et al., 2020; Zhou et al., 2014). 

The use of the VI threshold is the most basic approach to assessing grassland response to drought. It 

aims at comparing various grassland sites that experience the same meteorological drought event. 

Drought is considered to impact vegetation when site-specific VI thresholds or ranges are exceeded. 

Usually, independent information on drought is discarded except for defining the VI threshold. For 

instance, Nejadrekabi et al. (2022) determined that MODIS-extracted NDVI values from 0.12 to 0.18 

correspond to drought-affected vegetation based on spatial statistic techniques and multiple vegetation 

sites in Khuzestan, Iran. Vanegas et al. (2014) and Bajgain et al. (2015) determined that a negative 

Land Surface Water Index (LSWI) value indicates drought impact on the grasslands of Oklahoma, 

USA. To strengthen the drought impact identification, they added a short temporal criterion that the 

negative LSWI should last for at least 8 days. 

The quantified grassland response from the use of VI thresholds presents two main concerns. First, 

VI values can be under the influence of other natural or anthropogenic disturbances like pest 

infestations, plant diseases, or herbage use. For instance, the simplified detection of mowing events 

follows the same application of the VI threshold (Bégué et al., 2018; Garioud et al., 2019; Reinermann 

et al., 2022) making hard the attribution of an extremely high or low value (depending on the VI being 

considered) to one or the other source of disturbances. Second, VI values are region- or site-specific, 

restricting their application to the global scales.  

 

1.2.2. Year comparison 

This approach is based on the comparison of vegetation reflectance of at least two different or 

contrasting years. The independent information on drought is here only used to identify drought years 

or sometimes to quantify drought severity for a given year with dedicated indices. The RS-based 

assessment of drought impact is done by computing the difference between the RS signal recorded for 

a reference – normal or wet year – and for the drought year (Twumasi et al., 2003; Wagle et al., 2019). 

Generally, the years compared are either discontinuous years, resulting in the analysis of independent 

drought events, or short consecutive years, illustrating immediate changes between reference and 

drought years. 

The main drawbacks of this approach lie in (i) the definition of a proper baseline of grassland status 

under normal conditions, which cannot be properly estimated from the selection of one year or one 

growing season; (ii) the uncertainty on the level of drought severity for the selected drought year in 

connection to the unaccounted years; (iii) the comparison of discontinuous years may hide the delayed 
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or lingering impacts of drought (De Boeck et al., 2018; Müller and Bahn, 2022; Wu et al., 2017); and 

(iv) the comparison of adjacent years may not adequately represent the dynamics of vegetation in 

response to drought, including the resistance and recovery phases.  

 

1.2.3. Time series analysis 

The time series analysis accounts for the dynamic nature of grasslands. This approach uses RS 

signal trajectories instead of state comparison as the previous approach, and information on drought 

as continuous observations of climate variables or drought severity indices. The analysis of grassland 

response to drought is based on the disruptions in the paired grassland long-term satellite reflectance 

and drought trajectories. For instance, an abrupt decline in the satellite-based VI is generally 

interpreted as a consequence of stressful conditions (Brookshire and Weaver, 2014; Kowalski et al., 

2022; Wei et al., 2022). The magnitude of this decline is used also as an indicator of ecological 

resistance. As drought impacts persist after the end of the drought event, the slope of a gradual increase 

in reflectance trajectory is used as an indicator of resilience.  

As examples of the time series approach, in the Mongolian plateau, Bao et al. (2014) highlighted 

that after an increasing phase of NDVI values from 1982 to 1994 in steppes, alpine steppes, and desert 

steppes, vegetation greenness declined between 1995 and 2012 due to a significant decline in 

precipitation. Consistently, Tong et al. (2017) identified an increase in drought impacts in the mid-90s, 

in Xilingol, China, which was adjacent to the Mongolian plateau. 

The time series analysis approach allows the determination of the ecosystem reference conditions, 

which is usually defined as the overall mean of the dynamic long-term reflectance observations 

(Garbulsky and Paruelo, 2004; Pollock et al., 2012; Stoddard et al., 2006), typically 30 years, as 

adapted from climatic studies (Marchi et al., 2020; Rigal et al. 2019). Other authors have defined 

ecosystem reference conditions as pristine or slightly disturbed conditions free from anthropogenic 

influences (Hess et al., 2020; Pollock et al., 2012; Stoddard et al. 2006). But basic levels of 

anthropogenic influence are recognized as components of agroecosystems (Rendon et al., 2020).  

The time series data provides additional extractable grassland parameters. Kang et al. (2018) 

extracted the start of season (SOS), length of season (LOS), and end of season (EOS) matrices based 

on the NDVI time series to study drought impacts on grassland phenology and productivity. Long time 

series of satellite images have also been used to generate new indices measuring vegetation response 

to drought. For instance, the Vegetation Health Index (VHI; Kogan, 2006) is derived from the time 

series of NDVI or EVI. It follows the formula VHI = a*VCI + (1-a)*TCI. Where the coefficient 

represents the contribution of VCI or Vegetation Condition Index (a) and TCI or Temperature 

Condition Index (1 - a) to the total vegetation health (Kogan, 2006). The VCI follows the formula VCI 
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= 100*(NDVI – NDVImin) / (NDVImax – NDVImin) and estimates the vegetation condition (Kogan, 

1990). The NDVI minimum (min) and maximum (max) values are based on the time series 

observations under investigation. Essentially, VCI reflects the impact of weather on vegetation. Then 

following a similar formula of TCI = 100*(BTmax – BT) / (BTmax – BTmin), the TCI estimates the 

drought condition based on the weather stress (Kogan, 1995). The BT or brightness temperature is 

based on thermal infrared bands and established conversion tables (Kogan, 1995). Both the VCI and 

TCI are standardized indices based on historic minimum, maximum, and observed NDVI values from 

satellite image time series observations.  

A limitation of this approach is the need for a long and continuous time series with sufficiently 

frequent records. Generally, various meteorological data meet this requirement with very few gaps. 

But for satellite images, the number of usable observations is greatly dependent on the temporal 

resolution and percent of clear pixels that may prevent the implementation of this approach in some 

parts of the world or some periods of the year.  

 

1.2.4. Statistical inference 

The statistical inference refers to the interpretation of drought effects on grassland vegetation from 

the statistical relationship (usually linear) between vegetation indices and drought indicators (e.g., 

precipitation, temperature) or severity index [e.g., Standardized Precipitation Index (SPI), 

Standardized Precipitation Evapotranspiration Index (SPEI), or Palmer’s Drought Severity Index 

(PDSI)] or standardized measures (e.g., anomalies or Z-score; Wilcox et al., 2017; Zhang et al., 2017). 

The inference can be based on a coefficient of correlation (r), the slope, or the coefficient of 

determination of a linear model (Byrne et al., 2017; Hermanns et al., 2021; Li et al., 2016).  Therefore, 

a high correlation or slope is interpreted as the high sensitivity of grasslands to drought severity (Han 

et al., 2018). Key to the statistical inference is the number of paired observations of vegetation 

reflectance and drought indicators. As an example, Wang et al. (2019) revealed a 0.58 coefficient of 

determination between the global net primary production (NPP), derived from MODIS, and the self-

calibrating Palmer drought severity index (scPDSI) from 1982 to 2008, with a decrease of NPP while 

drought severity increased.  

Together with the slopes and correlations, the use of standardized grassland reflectance values may 

provide a further understanding of the origin of the response. Nutini et al. (2010) proposed a scheme 

that attributes the standardized measures of grassland reflectance and drought severity with climate-

driven events based on quadrant clustering (Figure 1– 2). Observations located in quadrant 3 (+, +) 

and quadrant 1 (-, -) can be associated with climatic influences, while observations in quadrants 2 and 

4 can be associated with abnormal conditions unexplained by climate events.  
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A further step in the use of the quadrant location is the analysis of their temporal changes. 

Washington-Allen et al. (2008) and Kowalski et al. (2023) observed the movement of grassland 

properties across time in the quadrant scheme. Movements towards climate drying Q1 from the normal 

condition depict grassland resistance to drought. Before the end of a drought, grassland resilience is 

portrayed by the movement to the anomaly greening Q2. At the end of a drought and the start of more 

favorable climatic conditions, grasslands positioned in the quadrant are expected to move toward 

recovery (Q3). In some cases, the inability to demonstrate resilience and recover from climate drying 

leads to mortality, which is a critically negative outcome (Q4).  

The statistical inference approach underlines the development of a new class of vegetation indices. 

Brown et al. (2008) created the Vegetation Drought Response Index (VegDRI), which combines the 

NDVI values and drought severity indices like PDSI and SPI. Zhang et al. (2019) evaluated similar 

indices but combined MODIS products of greenness indices and temperature or photosynthetically 

active radiation as a proxy of vegetation and drought conditions, respectively. 

Although statistical inference is the most used approach (Figure 1– 3), it suffers from three main 

limitations. First, it requires large datasets for the best estimation of the relationship between VIs and 

drought indices or proxies. Second, this relationship is usually noisy because of the influence of other 

stress factors (Bao et al., 2014; De Keersmaecker et al., 2015; Zhu et al., 2020). Third, it assumes a 

Figure 1– 2. Grassland response scheme adapted from Nutini et al. 2010. 



Chapter 1 

87 

 

linear relationship between grassland reflectance and drought variables, which is likely not a general 

case (Griffin -Nolan et al., 2018).  

 

 

 

1.2.5. Mechanistic modelling 

Mechanistic models can be used to simulate the dynamics of grasslands properties (i.e., gross 

primary productivity or GPP; leaf area index or LAI; etc) and their responses to environmental 

changes. Assimilated with RS data, they can be applied in a wide range of situations and may provide 

a comprehensive assessment of drought impacts. 

We found only a few examples of the implementation of such an approach to analyze drought 

impacts on grassland. These studies differ in the assimilation method of RS data into their vegetation 

model. First, Bayat et al. (2018) derived several grassland properties like LAI, leaf chlorophyll 

contents, leaf water content, leaf dry matter content, leaf inclination distribution function, and 

senescent material content, from images (MODIS) with the inversion of several radiative transfer 

models. They used these parameters as input for the Soil-Canopy Observation of Photosynthesis and 

Energy fluxes (SCOPE) for predicting drought effect on GPP and ET. Second, Hermance et al. (2015) 

directly used NDVI (MODIS) and daily rainfall to simulate the biomass of semi-arid shortgrass steppes 

of North America. The phenomenological model considered the temperature, at the start and end of 

the season, and the efficiency of water use as parameters. The simulated grassland biomass trajectory 

is then assessed with the time series analysis approach.   

Figure 1– 3. Distribution of studies among the five approaches identified for assessing 

grassland response to drought based on the article collection (n= 64). 
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Zhang et al. (2019) demonstrated the benefit of RS assimilation into vegetation models by 

comparing the performance of three satellite-based light-use efficiency (LUE) models, against five 

statistical models based on RS data only, under the presence and absence of drought conditions in the 

temperate steppes of northern China. They showed higher performance of process-based models than 

statistical models and interpreted it as a consequence of explicit modelling of effects.  

Although RS data assimilation in the vegetation model provides a comprehensive assessment of 

drought impacts, they also face severe limitations, which may explain the low contribution of this 

approach in our article collection. The use of mechanistic models is data-demanding, especially when 

complex processes are being simulated. Contrastingly, excessive model simplification threatens the 

accuracy of simulated output (Vogeler et al., 2023). Since models are often designed according to 

certain environmental conditions and time periods, a consequence is that they require constant 

parameter recalibration when implemented on other sites at different conditions and time periods 

(Pogačar et al., 2022; Siehoff et al., 2011). 

 

The approaches for grassland response to drought assessment were summarized in Figure 1– 4. The 

use of VI in monitoring grassland response is common to all approaches. The subsequent analyses 

increase in complexity, as well as data requirements, from the year comparison to the mechanistic 

modelling approaches. As RS-based methodologies, the application to large spatial extents is inherent 

to each approach and is mainly limited by the availability of input data and computation time, which 

is typically the case when assimilating RS products into mechanistic models.  

 

1.3. Key findings from grassland response to drought assessments 

RS has consistently supported the assessment of grassland response to drought by providing local 

regional and global historic estimates of grassland reflectance data together with drought indices and 

indicators. In connection to the classified approaches, key collective points from the conducted studies 

can be highlighted. 
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1.3.1. How grassland “response” to drought is used? 

Very few authors explicitly defined what represents “response” in their studies. Common to all 

approaches is the assessment of response as a change in vegetation state after drought. For the use of 

the VI threshold, the response to drought is a numeric index variable representing the presence or 

absence of drought impact on the vegetation. While for the year comparison, the gap in grassland 

reflectance between the reference and drought year is often interpreted as an indication of resistance – 

rather than of resilience. The time series analysis and mechanistic modelling approaches allow the 

extraction of both resistance and resilience components as analyzed trajectories across years (e.g., Y. 

Liu et al., 2021). Moreover, the use of mechanistic modelling provides gap-free trajectories and 

detailed drought impact assessments – based on simulations under normal climatic conditions and 

drought – of grassland properties (e.g., LAI, biomass, GPP). Lastly, the statistical inference approach 

acknowledges the rate of change in reflectance due to a unit of decrease in the climatic water balance 

or precipitation (Knapp, Carroll, et al., 2015). Thus, such an estimate can be interpreted as an indication 

of grassland “sensitivity” to drought. In case the study is conducted with data of low temporal 

resolution it is usually difficult to know whether each estimate corresponds to the resistance or 

resilience phase. However, when the temporal resolution of the dataset increases and with the known 

chronological trajectory of grassland reflectance. Some authors have moved beyond the sole 

Figure 1– 4. Schemes of the classified approaches for grassland response to drought assessment showing the 

respective inputs and complexities. Specifically, these approaches are a) VI threshold; b) year comparison; 

c) time series analyses; d) statistical inference; and e) mechanistic modelling. 
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interpretation of the sensitivity and proposed a mixed framework with the time series approach such 

as with the interpretative scheme of Nuttini et al. (2010). The direction of the slope indicates resistance 

when subsequent observations cluster toward the climate-drying quadrant (Figure 1 - 2). Then it 

indicates resilience when subsequent observations cluster toward the climate-greening quadrant.  

 

1.3.2. Unequal geographical distribution of study sites 

Grasslands are distributed in various topographic and climatic regions of the world, where the 

majority are in temperate and arid biomes (Dixon et al., 2014; Godde et al., 2020; Xu and Guo, 2015). 

From the article collection, studies on grassland response to drought were conducted in sites distributed 

in 30 countries globally (Figure 1– 5).  

 

 

 

Most of the studied grassland sites were found in the United States of America (USA) and the 

People’s Republic of China. This corresponds to the large grassland cover in these respective countries 

(Dixon et al., 2014; Xu and Guo, 2015). In addition, these two countries are highly exposed to drought 

hazards (see Carrão et al., 2016) and both have experienced multiple droughts (see Meza et al., 2020). 

Similarly, other countries in the article collection, such as Australia, Argentina, Northeast Brazil, 

Figure 1– 5. Distribution and coverage of study sites extracted from the selected article collection. Some studies 

considered multiple sites, explaining a total number of 85 sites for 64 articles. 
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Southern Europe, and Southern Africa region, have high exposure and have experienced multiple 

drought events. 

In terms of biomes, the study sites were located in temperate (48%), desert and xeric (20%), 

montane (13%), tropical and subtropical (10%), Mediterranean (7%), boreal (1%), and flooded (1%) 

grassland regions. The global biome classification was based on the works of Dinerstein et al. (2017), 

who updated the terrestrial ecoregion map of Olson et al. (2001) using various papers at that time.  

The biogeographic distribution of the study sites, where RS-based assessments of grassland 

response to drought were conducted, reflects the global distribution of grasslands. However, this leads 

to several understudied grassland types. Among the biogeographic gaps, the temperate managed 

grasslands of Western Europe may require particular attention. Indeed, the agricultural management, 

composition, diversity, and lifecycle of the associated vegetation largely differ from arid grasslands 

and the Great Plains of the USA and Canada. The knowledge emerging from the current collection of 

studies can hardly be transposed to anticipate/mitigate drought impacts in temperate regions of Europe. 

If compared to rainfall manipulation experiments, the concentrations of experiments on grassland 

response to drought are largely found in the USA, and in the central European region, which remains 

understudied using RS-based approaches (see Matos et al., 2020). 

 

1.3.3. Varied responses of grasslands to drought 

As presented in the previous section, grasslands are globally distributed in various regions with 

heterogeneous conditions. Thus, responses to drought or climatic variations are expected to be different 

with other ecosystems and among grasslands, depending on the specific grassland type and biome.   

 

1.3.3.1. Comparison of responses between grasslands and other ecosystems 

All the approaches developed so far to assess the response of grasslands to drought are deemed 

applicable to other ecosystems. Such transferability of the methods has encouraged some authors to 

compare the impacts of drought between grasslands and other ecosystems, mostly crop systems.  

In the southern portion of the Great Plains, Ji and Peters (2003) found that NDVIs of croplands 

were better related to precipitation than of grasslands (with R² of 0.67 and 0.58, respectively) based on 

the 3-month SPI. However, the slope of this relationship was steeper for grasslands, indicating greater 

sensitivity. In the northwestern portion of the Great Plain, Tollerud et al. (2018) confirmed that 

grasslands were more affected by drought than croplands (commonly wheat) based on the VegDRI. 

Similarly, in Eastern Cape, South African, Graw et al., (2017) demonstrated the same pronounced 

response of grasslands than commercial and communal managed croplands during a drought year.  
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In northern China, Kang et al. (2018) demonstrated that anomaly measures of grassland phenology 

and productivity using the NDVI from 1982 to 2012, were significantly correlated with specific 

measures of the Standardized Precipitation Evapotranspiration Index (SPEI). Specifically, these were 

the EOS anomaly and autumn SPEI (r = 0.19), the LOS anomaly and annual SPEI (r = 0.41), and 

integrated growing season NDVI (iNDVI) and annual SPEI (r = 0.54). They confirmed the high 

sensitivity of grassland compared to other land covers dominated by shrublands, barren vegetation, 

and cropland. Xu et al. (2021) supported the high response of grasslands to drought compared to 

croplands, forests, deserts, and wetlands using solar-induced fluorescence (SIF) and SPEI. They 

further revealed the greater sensitivity of grasslands in arid and semi-arid regions of northern China,  

All comparisons from different studies concluded the high responsiveness of grassland to drought 

compared to other agroecosystems. However, these comparisons were mostly conducted against the 

general land cover of croplands and in arid or semi-arid regions of Asia. In a global meta-analysis of 

manipulative experiments in terrestrial ecosystems, grasslands were consistently more responsive to 

drought than croplands, shrublands, and temperate forests based on parameters like the soil carbon 

pool, plant carbon pool, aboveground and below-ground plant carbon pool, and aboveground net 

primary production (Zhou et al., 2016). When grasslands were compared to shrubs and forests, the 

response ratio changes depending on the measured parameters (Deng et al., 2021). Grasslands were 

most responsive in 9 out of 22 parameters that include root biomass, dissolved organic carbon, 

nitrification, and nitrogen mineralization (Deng et al., 2021). 

 

1.3.3.2. Responses among grassland types 

Different grassland types are expected to have varying responses to drought (Wilcox et al. 2015). 

Grasslands can be classified based on their specific locations (e.g., climatic regions) and management. 

In eastern Inner Mongolia, Liu et al. (2012) confirmed that meadows were more sensitive (r = 0.53) to 

drought than the steppe (r = 0.45), and desert grasslands (r = 0.48) based on NDVI and SPI correlations 

from 2006 to 2010. Along an elevational gradient, He (2014) showed that Canadian upland grasslands 

were more sensitive than lowland grasslands to accumulated precipitation (R2 = 0.41 and 0.09), to 

climate moisture index (R2 = 0.45 and 0.14) and to modified Palmer drought severity index (R2 = 0.53 

and 0.21).  

As for management, Thoma et al. (2016) revealed that grazed grasslands exhibit an earlier response 

to drought than abandoned grasslands, which were previously grazed for the last 14 years. Wagle et 

al. (2019) recommended the burning of grasslands to obtain better forage harvest compared to the 

absence of burning. However, during drought, burning provided the opposite effect due to the loss of 

available water in the soil.  
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The results of remote sensing studies are consistent with the field experiments. Lei et al., (2022) 

used field flux measurements and the Biome-BGC model to determine that meadows have a higher 

NPP decline rate than desert grasslands due to drought in the Inner Mongolian temperate grassland 

region of China from 1964 to 2012. However, steppe grasslands have the highest NPP decline rate 

than meadows and desert grasslands, which was attributed to their northern geographic distribution 

(Lei et al., 2022).  

There are expected differences between grazed and mown grasslands due to factors such as herbage 

uptake method and timing (Moinet et al., 2019). Bütof et al., (2012) found that mown pastures have 

higher resilience to climate change, while pasture or grazed grasslands have lower survival during low 

precipitation levels (Bütof et al., 2012). Consistently, Deléglise et al. (2015) found that grazed 

grasslands were more sensitive to induced drought than mowed grasslands. While for mown 

grasslands, cutting frequency affects the speed of recovery for permanent grassland, with high-

frequency cutting showing lower recovery than low-frequency cutting after drought events (Zwicke et 

al., 2013; Vogel et al., 2012). 

Despite the agreement with the results of ground-based drought experiments, RS-based studies, 

sometimes, fail to account for detailed experiment conditions and treatments. For example, mapping 

and quantifying the number of species within the grassland community faces accuracy concerns due 

to vegetation and spectral uncertainties (Rapinel et al., 2018) and the presence of other factors within 

the grassland area of concern. Accordingly, the continuous development of satellite sensors provides 

an avenue for further research.  

 

1.4. Challenges and opportunities 

 

1.4.1. Challenges  

Among the various challenges in the assessment of grassland response to drought with RS, we here 

focus on (i) the mismatch between the spatial resolutions of reflectance data and those of drought 

indicators, (ii) the limited length of time period of assessment, and (iii) the mixed impacts of drought 

and other types of disturbances. 

 

1.4.1.1. Mismatch in the data units and resolutions between reflectance and drought 

Inconsistencies in the spatial and temporal resolutions of grassland reflectance and drought 

indicators or indices are usually addressed by data transformations or changes in the temporal units. 

For instance, the commonly used SPEI and SPI are expressed with a monthly temporal unit. To perform 

analysis, the RS signals are transformed from daily to monthly, or annual, temporal units using 
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procedures such as the maximum-value composite (MVC) and extraction of the mean. The decrease 

in temporal units prevents the consideration of daily changes in the grassland condition.  Similarly, 

possible inaccuracies are present in the spatial resolution mismatch of grassland reflectance and 

climate data.  The commonly used satellite images ranged from 30 m to 1 km, while gridded climate 

data models, such as the Climate Hazard Group InfraRed Precipitation with Station (CHIRPS), usually 

have lower resolutions (i.e., 5.6 km), Climate data from field measurements are generally interpolated 

to better present a given region, however, this procedure is prone to uncertainties from the influence 

of local topographic features. Climate-related studies perform either upscaling or downscaling of the 

spatial resolution of climate data models to address the need for the analyses (e.g., Dong et al., 2019; 

Hofmann et al., 2022; Nutini et al., 2010). In contrast to the climate data models, field meteorological 

stations are expected to provide site-specific measurements.  

 

1.4.1.2. Limited length of time period of assessment 

Most of the studies from the article collection, except those implementing the VI threshold and year 

comparison approaches, used two data sources: the reflectance data for grassland conditions and the 

climatic data upon which drought indices are computed, coming as time series. The length of the time 

period considered is a crucial aspect of the analyses, first to assess the variability of drought impacts 

in time by having robust observations in the statistical inferences of grassland sensitivity, and second 

to determine the vegetation reflectance under normal conditions or the reference state. The assessment 

of grassland response to drought is mostly limited by the temporal range of the RS data, and rarely by 

the climate data (Figure 1– 6).  The temporal range of grassland reflectance data depends on the 

lifespan and launch date of the sensor and satellites. For example, despite the important spectral and 

optical properties of Sentinel 2 data for vegetation monitoring, it was launched in 2015. This limits its 

use for assessing drought impact compared to the Landsat missions that started in 1972. Such data 

requirement also explains the predominant use of satellite data compared to airborne or Unmanned 

Aerial Vehicle (UAV) images which usually offer at best very short time series. 

Future studies on grassland response to drought should consider a standardized temporal range or 

time unit. A minimum time length requirement would allow for better comparisons among studies, 

leading to efficient use in meta-analyses. For instance, the WMO recommends a 30-year climatic data 

time series for determining normal climatic conditions (Marchi et al., 2020; Rigal et al. 2019; WMO, 

2012). Such recommendations may be extended to the statistical inference approach.  
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1.4.1.3. Mixed impacts from drought and other disturbances 

One key issue in the RS-based assessment of drought impact is that vegetation reflectance may be 

influenced by various anthropogenic and environmental factors at the same time. Thus resulting in 

confounded RS signals. For instance, an abrupt decrease in reflectance value in some parts of the light 

spectrum may be due to drought, as well as the impact of mowing events (Kolecka et al., 2018) or 

phenological senescence. Dube and Pickup (2001) used spatial assumptions of grazing locations to 

quantify the anthropogenic and drought impacts of rangelands in Botswana, Africa. Then, only two 

other studies assessed the impact of multiple sources of disturbance and focused on drought and fire 

in the tallgrass prairie (Villarreal et al., 2016; Wagle et al., 2019). Liu et al. (2017) suggested the need 

to account for water management activities to better explain the increasing vegetation cover reflectance 

despite more frequent drought from 1961 to 2012 in Qinghai Province, China. However, these studies 

did not quantify the specific impact contributions of each disturbance.  

Drought impact assessment is prone to uncertainties that partly result from the confounding effects 

of multiple sources of disturbance (Wagle et al., 2019). The availability of models and the use of 

multiple data sources can provide the means to detect the specific influences of these confounding 

factors.  

 

Figure 1– 6. Length of grassland reflectance and drought time periods in response assessment studies. Data 

were extracted from the article collection of this review. 
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1.4.2. Opportunities 

 

1.4.2.1. Need for further comparison between grassland types and regions. 

In this review, grasslands were considered synonymous with rangelands, pastures, meadows, 

steppes, and prairies. Several studies in the article collection have stressed the variability of grassland 

responses among several grassland types. However, these pertained mostly to grassland types found 

in arid regions and, in a lesser proportion, in temperate regions. Possible reasons for the limited remote 

sensing studies in the tropical and subtropical biomes are the low probability of drought occurrence 

(Bhaga et al., 2020) and the limited number of RS data observations due to cloud cover (Carter et al., 

2000). Nevertheless, drought impacts are expected to be different due to climatic factors (e.g., seasons) 

and environmental conditions (e.g., presence of trees). With the influence of climate change, drought 

frequencies are expected to increase in tropical grasslands, while drought events are expected to occur 

during the summer in temperate and boreal grasslands (Long and Hutchin, 1991). The establishment 

of baseline studies would be crucial for future assessments. This review highlights that within one type 

of grassland and/or biogeographic regions, the variability of drought impacts between different 

grassland management regimes remains to be unassessed. 

 

1.4.2.2. Exploration of new and existing RS data and techniques 

Various RS data and products are continuously being developed with the advancement in sensor 

technologies and algorithms (Masek et al., 2020). The RS data used so far mainly focused on optical 

satellite images from the MODIS Terra/Aqua, Landsat missions, NOAA AVHRR, and SPOT 

missions. The spatial resolution of these sensors ranges from 30 m to about 1,000 m, while the temporal 

resolution ranges from daily to 16 days. Despite these resolution ranges, none of these satellite products 

have both high spatial and temporal resolutions. Accordingly, each emphasizes trade-offs between the 

two resolutions.  

In the last decade, Sentinel 2 – composed of two satellites – was launched to monitor Earth systems 

with new optical satellite images of 10 m and 5-day, spatial and temporal resolutions, respectively. 

These higher resolutions allow for a better assessment of grassland heterogeneity and temporal 

changes. However, as with any optical satellite product, it still faces the reduction of image availability 

due to cloud cover. Sentinel 1, a microwave RS product that collects Synthetic aperture radar (SAR) 

images can address this issue (Clementini et al., 2020). Abdel-Hamid et al. (2020) demonstrated its 

potential with the correlation of backscatter coefficients with the Landsat NDVI of grasslands of 

Eastern Cape, South Africa. NDVI and the VH backscattering correlation yielded R2 of 0.79 and 0.89, 

under the presence and absence of drought conditions, respectively. Sentinel missions have for now 



Chapter 1 

97 

 

been underexploited because of their lack of historical depth but will become a key source of data for 

future studies. 

The solar-induced fluorescence (SIF) is another rarely used RS data in grassland response to 

drought assessment. SIF reflects chlorophyll fluorescence based on a narrow range in the 

electromagnetic wavelength. A low SIF reflects the high absorption of radiation by healthy chlorophyll 

contents of leaves.  

None of the studies of this review used satellite hyperspectral images, which was consistent with 

the previously conducted reviews on RS application for grassland monitoring (Ali et al., 2016; 

Reinermann et al., 2020; Wang et al., 2022). This was probably due to hyperspectral images being 

expensive to acquire and having high computational needs when processing large and complex data 

(Wambugu et al., 2021). Then the available products (e.g., CHRIS-PROBA, PRISMA, HysIS) show 

limited spatial and temporal coverage (Filchev, 2014; Qian, 2021).  

Instead, Hermanns et al. (2021), used airborne RS – with the HySpex VNIR-1800 sensor – in 2018 

and 2019 to determine grassland response to drought in Saxony-Anhalt, Germany. Together with the 

additional value from multiple narrow wavelengths, this study brings to light the potential of 

determining the spectral signature of drought-stressed grasslands.  

Shafran-Nathan et al. (2013) have demonstrated that vertical photography, with mounted cameras 

on the field, can estimate vegetation cover of 1 m x 1 m grassland plots at very high spatial and 

temporal resolution during successive drought years. They concluded that herbaceous plants prioritize 

productivity over spatial plant cover during the two-year drought in a dry environment by applying a 

finer and more detailed scale.  

The RS products that have been used so far for assessing drought impacts on grassland show the 

trade-off between spatiotemporal coverage of the images and resolutions (spectral, temporal, and 

spatial). Recent developments in data fusion may allow assessments to move beyond these limitations. 

For example, merging images from different missions can generate long and fewer gaps time series of 

RS data (Bao et al., 2014; Clementini et al., 2020).  Most importantly, recent data fusion techniques 

have allowed to generate NDVI images of 30 m spatial resolution with daily frequency from Landsat 

and MODIS products with the use of the spatial and temporal adaptive reflectance fusion model 

(STARFM; Gao et al., 2006; H. Liu et al., 2021).  

The approaches identified in this review use parametric methods. The recent development of 

machine learning techniques opens new avenues for assessing the non-linear response of grasslands to 

drought and understanding complex influences of driving factors to drought response. Zhou et al. 

(2022) used a linear and non-linear approach to account for the combined impact of climate change 

and anthropogenic activities in determining the vegetation response to drought. Their results revealed 
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that vegetation response was highly variable in space. The use of machine learning in grassland 

response to drought assessment is limited still for now. But it has been used in ecosystems of similar 

structure to grasslands. Hendrawan et al. (2023) demonstrated the use of a machine learning (random 

forest) algorithm in understanding the sensitivity and drivers of cropland productivity to drought. For 

grasslands, Schucknecht et al. (2022) confirmed the improvements of machine learning algorithms 

(i.e., Gradient Boosting Machine and Random Forest) in estimating grassland biomass using airborne 

hyperspectral data. 

 

1.4.2.3. Expansion of monitored grassland properties 

Studies on grassland response to drought have mostly monitored changes in grassland properties 

related to primary productivity. Greenness-based indices are used directly or as inputs to other indices 

and models. However, many other VIs, RS products, and reflectance bands can represent other 

grassland properties such as moisture content, and phenology. Bajgain et al. (2015) demonstrated the 

higher sensitivity of LSWI to drought compared to NDVI and EVI, while Kang et al. (2018) completed 

their analyses with phenological metrics like the start of season, end of season, and length of season, 

which were highly correlated to drought severity.   

Different grassland properties are expected to have different responses to drought. For example, 

Han et al. (2018) revealed that aboveground biomass (AGB; R2 = 0.80) was more responsive than leaf 

area index (LAI; R2 = 0.56), to the ratio of transpiration and evapotranspiration (T/ET). Thus, 

monitoring multiple properties at the same time can improve our understanding of grassland responses 

to drought. However, RS-based assessments of the response of key grassland properties are still 

missing such as soil carbon stock, and nitrogen content. Carbon storage in the soil is among the 

ecosystem services provided by grasslands. However, this service is under threat due to the impact of 

drought on plant processes and soil conditions. Vegetation diversity is recognized to influence the 

response to drought (Wagg et al., 2017; Xu et al., 2022) but although to modulate the effect of drought 

on productivity (Craven et al., 2016; Grange et al., 2021; Isbell et al., 2015). Unfortunately, the 

mitigating effect of vegetation diversity is sometimes absent (De Boeck et al., 2018; Grace et al., 2007) 

or negatively impacts resistance to drought as exhibited by aboveground productivity (Vogel et al., 

2012; Weisser et al., 2017).  RS-based studies should thus consider biodiversity as another grassland 

property to relate to spatio-temporal differences in RS signals during and after droughts. Remote 

sensing has the capacity to estimate grassland properties aside from productivity. Existing RS products 

and techniques allow the determination of soil carbon (Angelopoulou et al., 2019; Ayala Izurieta et 

al., 2022) and vegetation diversity (Fauvel et al., 2020; Thornley et al., 2023). These two factors are 
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among the important grassland parameters that can help understand grassland response to drought (Lei 

et al., 2016; Lüscher et al., 2022; Reinthaler et al., 2021). 

Finally, we once again emphasize the importance of disentangling the drought impact from other 

disturbances with the use of RS and multiple data sources. A detailed understanding of the response 

of multiple grassland properties to drought should increase our scientific knowledge for mitigating or 

anticipating drought impacts.  

 

1.5. Conclusion 

This literature review synthesizes the use of remote sensing in the assessment of grassland response 

to drought. We highlighted five different assessment approaches with their basic principles, required 

inputs, and concerns. This also indicated the preference for RS optical images, in contrast to microwave 

images. We identified several knowledge gaps that may guide the future of remotely sensed 

assessments of grassland response to drought. The uneven global distribution of studies stresses the 

need to put more attention to tropical and subtropical grasslands, as well as temperate grasslands in 

Western Europe, compared to the arid and semi-arid grasslands of Asia and temperate grasslands of 

North America. Despite several RS studies comparing drought responses between different types of 

ecosystems (including grasslands) or between broad classes of grasslands, additional investigations 

are needed to confirm or contradict field experiment results comparing similar grasslands but with 

different management regimes or biodiversity levels. One key limitation of current studies stands is 

the disentanglement of drought impacts from confounding factors within RS signals. We recognized 

that the use of existing and new RS product developments opens new avenues for addressing this.  
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VARIABILITY AND DRIVERS OF GRASSLAND SENSITIVITY 

TO DROUGHT AT DIFFERENT TIMESCALES 

USING SATELLITE IMAGE TIME SERIES 

 

 

 

Chapter 2 is the core research of this thesis. It aims at assessing the grassland sensitivity 

to drought in the Massif central and most importantly identify the drivers of such 

sensitivities. Three categories of drivers were considered ranging from vegetation 

diversity, management practices, and soil and topography.  
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CHAPTER 2. VARIABILITY AND DRIVERS OF GRASSLAND SENSITIVITY    

TO DROUGHT AT DIFFERENT TIMESCALES USING SATELLITE 

IMAGE TIME SERIES 

 

Abstract  

 

Drought is expected to increase in frequency and severity with climate change, leading to more 

intense impacts on grasslands and their associated ecosystem services. Complementary to ground 

experiments, remote sensing technologies allow for the study of drought impacts with large spatio-

temporal coverage in real-life conditions. We aimed to quantify the variability of grassland sensitivity 

to drought using a long-term satellite image time series of 394 temperate permanent grassland plots to 

identify factors influencing these sensitivities. Accordingly, we assessed the slope of the linear 

relationship between satellite-based vegetation status, using the standardized anomalies of the 

vegetation indices (VIs), and drought severity, using a modified version of the Standardized 

Precipitation Evapotranspiration Index (SPEI), from 1985 to 2019. The process was repeated for 24 

VIs and five SPEI timescales. We then conducted a linear model selection procedure, using the 

grassland sensitivity derived from the most responsive VIs (i.e., VIs for which anomalies indicated a 

tighter linear relationship with the modified SPEI), to identify which grassland properties influenced 

sensitivity to drought. A total of 29 properties, grouped into pedoclimate, agricultural management, 

and vegetation diversity factors, were derived from ground measurements. Overall, we demonstrated 

that the influence of predictors on grassland sensitivity to drought varied across the drought integration 

timescales. Our results highlighted the significant mitigating effect of soil water holding capacity on 

sensitivity to drought for short timescales of fewer than 30 days. The date of first herbage use by 

farmers was positively related to grassland sensitivity to drought across all timescales. We also 

demonstrated that higher vegetation diversity significantly reduced sensitivity to drought. However, 

for the long timescales of drought integration, such influence was mainly redundant with management 

(i.e., the shared partition of variance) suggesting complex cascading effects between agricultural 

practices and plant community structure that still need to be addressed comprehensively in future 

studies.    

 

Keywords: Meteorological drought; Remote sensing; Time scales; Grassland response; NDWI; GVMI 
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2.1. Introduction 

Meteorological droughts – in other words, deficits in the climatic water balance – of varying 

severity, frequency, and duration affect several components of agroecosystems, with serious 

consequences for agricultural production and environmental health (Howden et al., 2007). Similar to 

other agroecosystems, managed grasslands are influenced by drought impacts. The increasing 

frequency and severity of drought threaten the multiple ecosystem services – provision, regulation, 

and cultural – provided by grasslands and their associated biodiversity (Bengtsson et al., 2019; Chang 

et al., 2021; Hofer et al., 2016; Zwicke et al., 2013). Grasslands contribute significantly to milk and 

meat production (O'Mara, 2012) and provide an estimated one billion jobs around the world (Buisson 

et al., 2022). In addition to provisioning services, grasslands securely store an estimated 30.6% of 

terrestrial carbon below ground in the roots and soil (Bai and Cotrufo, 2022; Lei et al., 2016) and host 

a large number of species, some of which are endangered (Dengler et al., 2014). Unfortunately, 

extreme drought events are well recognized to be detrimental to grassland biodiversity and ecosystem 

function (Newbold et al., 2016; Strömberg and Staver, 2022). One of the most evident consequences 

is the reduction of net ecosystem productivity, which reduces agricultural production but also converts 

grasslands from sinks to sources of carbon (Ciais et al., 2005; Lei et al., 2016; Nagy et al., 2007; Zhang 

et al., 2020).  

Knowledge of grassland sensitivity to drought and its determinants has emerged from field 

experiments and, more recently, from Earth surface observations. Field observations and semi-

controlled experiments have provided, thus far, the most comprehensive insights regarding grassland 

properties that either promote or suppress vegetation sensitivity to drought. The most obvious 

properties, or drivers, are related to pedoclimatic conditions. Higher sensitivity to drought has been 

found in grasslands that are topographically exposed to solar radiation (Yang et al., 2020), situated at 

low elevations (Catorci et al., 2021; Gharun et al., 2020), and found on soils with low water retention 

capacity (Buttler et al., 2019). Additionally, grassland management practices, which refer to the 

modalities of fertilizer application and herbage usage by mowing and/or grazing, have been tested 

partially and sometimes have revealed mixed effects. High fertilizer addition can either increase 

sensitivity to drought (Bharath et al., 2020; Klaus et al., 2016; Rose et al., 2012) or have no effect 

(Vogel et al., 2012; Weisser et al., 2017). More frequent mowing events have been related to stronger 

negative effects of drought (Vogel et al. 2012; Weisser et al., 2017; Zwicke et al., 2013), and grazing 

has been associated with greater sensitivity to drought than mowing (Deléglise et al., 2015). Finally, 

experimental studies have further highlighted the mixed influences of grassland diversity. Higher 

taxonomic or functional diversity has often been associated with lower sensitivity to drought (Grange 

et al., 2021; Griffin-Nolan et al., 2019; Isbell et al., 2015; Kreyling et al., 2017), but some studies have 
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indicated an opposite effect of species richness (Vogel et al., 2012; Weisser et al., 2017) or the absence 

of effect (De Boeck et al., 2018). According to these findings from drought experiments conducted in 

managed grasslands, the properties influencing vegetation sensitivity to water deficit can be 

categorized into pedoclimatic, management, and biodiversity drivers. 

Despite their incontestable scientific value, the results provided by semi-controlled experiments 

conducted at the field level reveal some limitations. These experiments are, in essence, restricted in 

their design (e.g., limited combinations of rainfall regimes, levels of diversity, type of soils, etc.) and 

geographic coverage. These limitations hinder the analysis of complex combinations of potential 

drivers that prevail in real-life conditions (Fraser et al., 2013; Matos et al., 2020) and prevent the 

generalization of the results to all biogeographic contexts on Earth. In addition, those experiments 

usually report limited temporal coverage of grassland responses to drought over one or a few 

successive growing seasons (Hoover and Rogers, 2016). Although coordinated and long-term 

observations and experiments (Fraser et al., 2013; Knapp et al., 2017a, 2017b; Lemoine et al., 2016) 

push those limitations, spatially and temporally wider analyses of existent grasslands are needed. 

The rapid development of Earth observation techniques tremendously increases both spatial and 

temporal coverage of agroecosystem monitoring (Ali et al., 2016; Anderson, 2018; Arun Kumar et al., 

2021; Reinermann et al., 2020). Therefore, recent studies have assessed the response of natural 

ecosystems and agricultural lands to drought severity using satellite images at a wide range of spatial 

scales (Jiao et al., 2019; Maurer et al., 2020; Vicente-Serrano, 2007; Vicente-Serrano et al., 2013). 

Such assessment is based either on the quantification of the relationship between the local satellite 

reflectance and climatic variables (Cabello et al., 2012; Graw et al., 2017; Nanzad et al., 2019), or it is 

based on the satellite product anomalies and the computed standardized drought indices (e.g., Li et al., 

2015; Li et al., 2022; Ye et al., 2020). Consequently, these relationships depict the sensitivity of 

vegetated surfaces to drought events (Vicente-Serrano, 2013). Afterward, remotely sensed sensitivity 

can be related to geographic variations of a set of environmental parameters, considered to be the 

hypothetical drivers of vegetation response to drought.  

Remote sensing (RS) analyses of drought effects on vegetated surfaces are based on various 

methodological choices. Regarding drought estimates, studies frequently used the Standardized 

Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Palmer 

Drought Severity Index (PDSI). From here, the standardized precipitation indices can be used to 

determine drought severity at different timescales (Vicente-Serrano et al., 2010; Nanzad et al., 2019), 

but are seldom considered in studies (Almeida-Ñauñay, et al., 2022; An et al., 2020; Dong et al., 2019; 

Zhao et al., 2018). Research that considered multiple drought timescales has identified grassland and 

cultivated vegetation response to drought to be best correlated at a timescale of one to three months 



Chapter 2 

 

117 

 

(e.g., Almeida-Ñauñay et al., 2022; An et al., 2020; Zhao et al., 2018). However, these studies used 

monthly meteorological data. Finer climate data resolution, such as weekly or daily, is needed to reveal 

more accurate impacts of meteorological variations on vegetation property changes (Salehnia et al., 

2018; Wang et al., 2015). Regarding RS-based vegetation condition estimates, studies generally used 

the Normalized Difference Vegetation Index (NDVI) or the Enhanced Vegetation Index (EVI), or their 

derivatives, such as the Vegetation Condition Index (VCI), and the Vegetation Health Index (VHI; 

Graw et al., 2017; Kogan et al., 2004; Picoli et al., 2019; Vicente-Serrano, 2007). Aside from these 

greenness-based satellite proxies, indices related to the hydric status of vegetation, such as the 

Normalized Difference Water Index (NDWI) or Land Surface Water Index (LSWI), have emerged in 

other studies (Bajgain et al., 2015; Picoli et al., 2019). However, vegetation indices (VI), such as the 

NDVI, are used to represent multiple vegetation properties and do not always perform well in the 

assessment of drought when implemented in other ecoregions (Bajgain et al., 2015; Ebrahimi et al., 

2010; Maurer et al., 2020). These discrepancies in methodological choices between studies limit the 

generalization of the published results and their comparison. 

Thus far, the RS studies have attempted to identify the drivers of vegetation sensitivity to drought 

through a focus on specific categories of drivers, namely, the abiotic environment, land management, 

and vegetation properties, usually in isolation. Some of these categories have been understudied in 

grasslands. The investigated drivers are topographic factors for forests and shrublands (Cartwright et 

al., 2020), and soil properties, such as the soil water holding capacity for different land covers (Ji and 

Peters, 2003; Thoma et al., 2019). Some studies further considered the influence of land use (Burrell 

et al., 2020; Munson et al., 2016; Tollerud et al., 2020) and, in the case of grasslands, the type of 

agricultural management (Burrell et al., 2020; Catorci et al., 2021; Graw et al., 2017; Wagle et al., 

2019). A final group of studies has highlighted the importance of vegetation cover (De Keersmaecker 

et al., 2015) and vegetation diversity (De Keersmaecker et al., 2016; van Rooijen et al., 2015) through 

the lens of taxonomic diversity rather than functional diversity. These studies have contributed to a 

better understanding of why some types of vegetation are more sensitive to drought than others, 

although the influence of abiotic factors in grassland deserves more attention. However, an important 

gap of knowledge remains in the assessment of the relative influences of these different drivers – 

classified as pedoclimatic, agricultural management, and biodiversity factors – at the same time. 

In this study, we pursued two main objectives. First, we aimed to quantify the sensitivity of managed 

grassland to drought at various timescales using satellite-based VI anomalies that were best related to 

irregularities of climatic water balance (i.e., SPEI). This was conducted over 34 years for a vast 

geographic region predominantly covered by typical Western European grasslands managed for cattle 

and sheep breeding. Second, we aimed to assess the relative influence of pedoclimate, agricultural 



Chapter 2 

 

118 

 

management practices, and vegetation diversity factors on grassland sensitivity to drought. To do so, 

RS-based assessments of sensitivity to drought were analysed against 29 grassland descriptors 

measured at the ground level for the 394 vegetation plots of the study area.   

 

2.2. Material and methods 

 

2.2.1. Study area 

The Massif central is a mountainous region ranging from 300 to 1,885 metres above sea level in 

France. It exhibits four climatic zones: mountainous and semi-continental in the major center areas, 

with influences of oceanic climate in both the northern and western parts and of Mediterranean climate 

near the southeastern part (Joly et al., 2010). The mean annual cumulative precipitation, between 1985 

and 2019, was 1,067 millimetres (mm) with a standard deviation of 348 mm, while the mean annual 

temperature was 9.3 °C with a standard deviation of 1.96°C. The 85,000 square kilometres (km2) 

region is covered mostly by managed perennial grasslands representing 60% of agricultural areas, 

which comprise one-third of the French permanent grasslands.  

Our analyses included a total of 143 grassland parcels. These parcels were homogenous areas of 

management with heterogeneous vegetation, topography, and soil characteristics. An average of three 

vegetation plots were distributed within each grassland parcel (minimum of one and maximum of 10 

plots). The subsequent analyses, therefore, were based on the 394 vegetation plots distributed among 

the 143 parcels (Figure 2– 1). These plots have an average area of 25 square metres (m2) and range 

from 2 to 100 m2. The sampling design aimed to represent the main types of grassland vegetation 

within the Massif central region (Galliot et al., 2020; Hulin et al, 2012, 2019; Le Hénaff et al., 2021). 

 

2.2.2. Data 

We collected satellite images and meteorological data from 1985 to 2019 for each of the 394 

vegetation plots to quantify the temporal changes in vegetation reflectance and drought severity, 

respectively. We further characterized the pedoclimate, agricultural management practices, and 

vegetation diversity of these plots from ground observations collected by several projects implemented 

in the region during the period of interest. 
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2.2.2.1. Drought estimates over the 1985–2019 period 

We built the time series of the local climatic water balance, computed as the difference between 

precipitation and potential evapotranspiration (P-PET), during the 1985–2019 period. To do so, we 

used the meteorological records from the Système d’Analyse Fournissant des Renseignements Adaptés 

à la Nivologie (SAFRAN) data for France (Durand et al., 1993). SAFRAN provides daily information 

on a set of meteorological parameters in NetCDF or as a raster with a spatial resolution of 8 km x 8 

km. We checked the local uncertainty of the SAFRAN estimates with spatially accurate daily records 

from a set of 140 local meteorological stations within the Massif central region (Météo-France). Our 

Figure 2– 1. Distribution of the grassland parcels and vegetation plots in the Massif central 

region (France). The main map depicts the topographic elevation and relief from a 

25 m x 25 m digital elevation model of the Copernicus Land Monitoring Service 

(http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-dem-

v1.1/view). The lower right inset map presents the vegetation plots found with a 

parcel, together with the Landsat 30m x 30m pixel grid. 
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comparisons revealed tight linear relationships between the two data sources, validating the use of 

SAFRAN for assessing local variations of the climatic water balance in the study area (– A). 

 

Modified standardized precipitation evapotranspiration index (SPEI)  

We then quantified the drought severity with a modified version of SPEI. The original version of 

this index is based on the long-term time series of the climatic water balance (Di), which is the 

difference between the monthly precipitation (P) and potential evapotranspiration (PET) 

measurements integrated over a given timescale of one, three, six, nine, 12 and 24 months (Beguería 

et al., 2014; Pei et al., 2020; Vicente-Serrano et al., 2010; Zargar et al., 2011). For example, a seasonal 

or three-month drought timescale is the integration of Di at a given month and the two preceding 

months. 

 

where i = month    Equation 1 

 

To compare the surplus and deficit of the water balance between different sites with different 

climates or dates, the aggregated Di values are standardized. To do so, the D time series is fitted into a 

log-logistic distribution using a three-parameter probability distribution function. The probability 

distribution of D is standardized to obtain the SPEI using the approximation of Abramowitz and Stegun 

(1965). The statistical distribution seeks to define the normal expectation. Negative SPEI values 

indicate a deficit of the water balance with respect to normal conditions, while positive values indicate 

a surplus of precipitation. Since the SPEI is multi-scalar, we could analyse the effect of different types 

of droughts (Vicente-Serrano, 2010) and discriminate between short and frequent water deficits 

(shortest timescales) and long and infrequent water deficits (longest timescales). 

To address our objectives, we modified the classic SPEI in two ways. First, changes in grassland 

growth and conditions due to drought and precipitation occur at daily temporal scales (Salehnia et al., 

2018; Wang et al., 2015). Consequently, the impacts of short-duration droughts (i.e., fewer than 30 

days) will not be properly estimated by the monthly classic SPEI, especially when such brief drought 

events are distributed between two consecutive months. Accordingly, we used daily climate data and 

integrated for a given day the difference between P and PET over the 15, 30, 60, 90, or 120 preceding 

days. Second, the small number of D observations can lead to a weak goodness-of-fit in the probability 

distribution step. In climate studies, the World Meteorological Organization (WMO) recommended a 

30-year period of climatic data when establishing climatic normal (Marchi et al., 2020; Rigal et al. 

2019). However, the climatic water balance across the years rarely exhibits a good and smooth 

distribution. Thus, instances with the classic SPEI may result in abrupt changes between months or 

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖 
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large differences between two months. For the modification, encouragement was found from Russo et 

al. (2014) by defining a new set of data, Ad, in the following:  

 

 

         Equation 2 

 

 

with d, a given day, and Dy,i, the water balance of day i in year y. This new set of data A (Equation 

2) exhibits an increase in the number of observations, which helps improve the goodness-of-fit of the 

log-logistic distribution used for the standardization procedure of the SPEI.  

 

2.2.2.2. Standardized anomalies of vegetation reflectance over the 1985–2019 period 

Similar to the estimation of drought severity with a modified version of the SPEI, we computed the 

standardized anomalies of local vegetation reflectance indices. We first extracted the reflectance bands 

of Landsat 4, 5, 7, and 8 throughout 1985–2019 for each of the 394 vegetation plots from Google Earth 

Engine (Gorelick et al., 2017) using the reticulate package in R (Ushey et al., 2022). Landsat images 

offer a sufficiently fine spatial resolution (30 m x 30 m) to account for vegetation heterogeneity – in 

other words, they discriminate between different vegetation plots within the same parcel, as depicted 

in Figure 2– 1, and temporal resolution (16 days) to monitor vegetation reflectance changes for a 

growing season. These extractions resulted in a mean number of 519 cloud- and snow-free images per 

vegetation plot. 

We then computed the standardized reflectance anomalies of all 24 VIs (Appendix 2– B) related to 

vegetation properties, such as greenness, cover, moisture content, and senescence (Bajgain et al., 2015; 

Davidson et al., 2006; Wu, 2014). Here, we adapted the same standardization procedure of our 

modified SPEI to quantify the deviation of VIs of a given clear day – in other words, free of clouds or 

snow cover – to the statistical distribution of VIs of the same day plus the 15 days before and after 

over the period of 1985–2019. This standardization allowed the spatio-temporal comparisons among 

plots. 

 

2.2.2.3. Local properties of the grasslands 

The local descriptions of the 394 vegetation plots were inherited from several past projects that 

collected information on management activities, botanical composition, soil properties, and 

topographic conditions between 2008 and 2019 (Galliot et al., 2020; Hulin et al., 2019).  

 

𝐴𝑑 = ⋃ ⋃ 𝐷𝑦,𝑖

𝑑+15

𝑖=𝑑−15

2019

𝑦=1985
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2.2.2.3.1. Pedoclimate 

At the parcel level, the soil properties were assessed with a total of 11 physical and chemical 

parameters. We considered direct soil measures such as the pH; carbon-to-nitrogen ratio; concentration 

of phosphorus, potassium, and magnesium; soil organic carbon; and soil organic nitrogen. We further 

derived variables that are well-recognized to influence the response of vegetation to meteorological 

drought. First, we computed the soil water holding capacity (SWHC) from the quantified percentage 

of clay, percentage of sand, and bulk density using a pedotransfer function developed and validated 

for French soils (Román Dobarco et al., 2019). Second, we derived the aspect (expressed as 0 to 180 

degrees from north to south, respectively), elevation (in metres above sea level), and the Terrain 

Wetness Index (TWI; Beven and Kirkby, 1979; Böhner and Selige, 2006) of the vegetation plots from 

the 25 m x 25 m spatial resolution digital elevation model from the Copernicus Land Monitoring 

Service. 

 

2.2.2.3.2. Agricultural management  

Management information was collected in two phases; the first was in 2008–2009, then in 2016–

2017. This information included the amount of nitrogen (N) fertilization, specific dates of use, and 

type of use. We assumed from field experience and some farmer interviews that these agricultural 

practices had seen minimal changes over the past 30 years, especially the use of herbage, and, 

therefore, may be representative of grassland management for the entire period of 1985–2019. We then 

summarized these data to obtain: (i) the total amount of nitrogen fertilization from the applied organic 

and inorganic nitrogen, expressed in kg ha-1; (ii) the average number of uses per year based on the 

number of grazing rotations and harvesting dates; (iii) the prominent type of use, computed as the 

difference between the total number of grazing and mowing events for a two-year period, with positive 

values indicating the predominance of grazing, negative values the predominance of mowing, and zero 

equal numbers of grazing and mowing events; and (iv) the date of first use expressed in cumulative 

growing degree days. This was computed as the sum of the growing degree days of the date of first 

grazing or mowing event recorded for two years of monitoring and then averaged. Expressing the date 

of first use in thermal time instead of Julian days allowed the comparison between vegetation plots 

distributed along a large elevation gradient (Perronne et al., 2019), and minimize the effect of between-

year variability of meteorological conditions. Indeed, the farmers manage their parcels according to 

the grass growth which may lead to variation in calendar dates of management events between years 

but not in cumulative growing degree days, or at least to a lesser extent.  
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2.2.2.3.3. Vegetation diversity 

Botanical surveys were conducted at the level of vegetation plots, in which all species were 

identified, and their local abundances were estimated visually. From these relevés (surveys), we first 

derived taxonomic diversity indices: species richness, the Shannon diversity index, and Simpson’s 

diversity index. Then, we used a trait database compiled for 1,300 plant species of open habitats of the 

Massif central (Baseflor in Julve, 1998; DIVGRASS in Carboni et al., 2016; Choler et al., 2014), 

together with the plot botanical records, to assess local functional indices. We considered plant traits 

associated with growth syndromes (specific leaf area [SLA] and plant height), phenology (first 

flowering and length of flowering periods in months), and reproductive ability (seed mass). We 

computed the community weighted mean (CWM) of each trait, which is recognized to be associated 

with ecosystem functions (Garnier et al., 2004; Grime, 1998) and grassland response to drought (Pérez-

Ramos et al., 2012). We further assessed the functional diversity, which has been linked to the 

ecosystem stability (Hallett et al., 2017), of each vegetation plot. We used the functional dispersion 

index (Nunes et al., 2017) of each trait, plus a two-dimensional functional space composed of plant 

height and SLA to summarize plant growth syndromes. 

 

2.2.3. Statistical analyses 

The simplified workflow indicating the various analytical stages needed to quantify grassland 

sensitivity to drought and to identify its drivers is presented in Figure 2– 2. It includes variable inputs 

and the variable selection procedure in the candidate statistical models. 

 

2.2.3.1. Computing remotely sensed grassland sensitivity to drought 

Some studies have used statistical inference methods to relate grassland response with climatic 

variables (De Keersmaecker et al., 2016; Nanzad et al., 2019; Thoma et al., 2019) or drought severity 

(Jiao et al., 2019; Jiao et al., 2021; Li et al., 2015; Li et al. 2022; Maurer et al., 2020). Similar to these 

studies, we assessed the grassland sensitivity to drought as the slope of the linear relationship between 

the standardized VI anomalies and the modified SPEI (Li et al., 2022). As depicted in Figure 2– 3, in 

the case of vegetation insensitive to drought, we expect this slope to be not significantly different from 

zero and positive in the case of sensitive vegetation to drought. This was done for each of the 394 

vegetation plots using time series data in the period 1985–2019 (Appendix 2– C). The slopes per plot 

were estimated with a mean number of 519 paired values of the standardized VI anomalies and the 

modified SPEI falling within the growing season from March to November.  
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 Figure 2– 3. Low and high grassland sensitivities to drought for two selected timescales of different sample 

plots. (The threshold for low sensitivity or insensitivity is 0.1.) 

Response variable: vegetation plot sensitivity to drought 

Vegetation Indices 
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values (1985-2019) 
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Figure 2– 2. Simplified workflow for assessing grassland sensitivity and its drivers. Grassland sensitivity to drought, 

from Objective 1, was used as the response variable for Objective 2. The selected diversity, pedoclimate, and 

management factors from the respective sub-models served as the explanatory variables. 
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The process described above was repeated for the 24 VIs across the five drought timescales, 

specifically, for 15, 30, 60, 90, and 120 days. We then assessed how the various VIs and drought 

timescales affected the estimated sensitivities to drought. To do so, we performed a two-way ANOVA 

with VIs and timescales as factors. The variance of the residuals, therefore, indicates the fluctuation 

among plots amid the variation due to methodological choices. 

The slope of the linear relationship between the standardized VI anomaly and the modified SPEI, 

used as an estimate of grassland sensitivity to drought, was assigned as the dependent variable in the 

subsequent analyses that sought to identify the drivers of grassland response to drought. 

 

2.2.3.2. Statistical modelling of grassland sensitivity to drought 

We conducted a linear model selection procedure to quantify the influence of pedoclimatic 

characteristics, agricultural management, and vegetation diversity on the sensitivity to drought of the 

394 vegetation plots. We assigned the grassland sensitivity to drought – in other words, the slope of 

the linear relationship between the standardized VI anomaly and the modified SPEI – as the response 

variable and the pedoclimate, management, and diversity factors as the explanatory variables (Figure 

2– 2). We compiled a total of 29 candidate variables (Table 2– 1), all of which were pre-selected based 

on their biological meaning and possible effect on grassland response to drought, as described in the 

local properties section (4.2.2.3). To avoid possible multicollinearity, we first computed pairs 

correlation between the 29 variables. For pairs with a Pearson correlation greater than 0.5, which is 

more conservative than the recommended 0.7 threshold (Graham, 2003), we removed the variable with 

the less tangible biological meaning. Then, we conducted a two-stage selection procedure to seek the 

most explanatory model of vegetation plot sensitivity to drought. The first stage entailed selecting sub-

models for each of the three categories of explanatory variables, where vegetation plot sensitivities 

were also used as the response variable. In doing so, we optimized the inclusion of the best predictors 

in the final model with similar weights between each category. The second stage consisted of selecting 

the final linear model with all categories of the previously selected predictors. For both stages, we 

performed backward and forward stepwise selection based on the Akaike Information Criterion (AIC), 

which aims to maximize the goodness-of-fit of the final model and minimize its complexity (Venables 

and Ripley, 2002). Such a procedure may lead to competing models, with similar complexity and close 

explanatory power but a different combination of predictors. These models have differences in AIC of 

less than 4 (Burnham and Anderson, 2004). Among these models, we selected the ones with the 

greatest power of prediction to detect all significant drivers. To compare the effect size of various 

predictors, we computed the beta coefficients from the selected models. Finally, we partitioned the 

variance explained by pedoclimate, management, and vegetation diversity factors by partial 
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regressions of the final model. The partitions explained by the explanatory categories were assessed 

with the unbiased adjusted R² (Peres-Neto et al., 2006). 

Note that these analyses were repeated for the most responsive VI-derived sensitivities and at five 

different timescales of the modified SPEI. Since these analyses were conducted in the linear regression 

framework, we visually checked for homogeneity of variances and normality of the residuals 

(Appendix 2– D).  

Lastly, all analyses were performed within the R environment (R core Team 2021). 

 

Table 2– 1. List of the 29 grassland local properties used to predict grassland sensitivity to drought of the vegetation plots 

distributed in the Massif central region, France.  

 

Type Variable Unit Definition 
Level of 

measurement 

P
ed

o
cl

im
at

e 

SWHC cm3 cm-3 Total water amount that the soil can store for 

plant use, computed using a pedotransfer function 

Parcel* 

C: N - Ratio of carbon and nitrogen contents in the soil Parcel* 

K20 % of fine dry soil Soil potassium content available for plants Parcel* 

MgO % of fine dry soil Soil magnesium content available for plants Parcel* 

P2O5 % of fine dry soil Soil phosphorus content available for plants Parcel* 

pH - Acidity or alkalinity of the soil Parcel* 

SON % Nitrogen content available in the soil organic 

matter 

Parcel* 

SOC % Carbon content available in the soil organic 

matter 

Parcel* 

TWI - Topographic wetness index was extracted using 

the SAGA TWI algorithm in QGIS 

Plot** 

North- or south-

facing slopes (or 

aspect) 

degree Azimuth direction of land surface exposure Plot** 

Altitude m.a.s.l. Vertical distance from the Earth’s surface to a 

point of interest 

Plot** 

A
g
ri

cu
lt

u
ra

l 
 

m
an

ag
em

en
t 

Date of first use degree Actual date of first defoliation or harvest; variable 

expressed in cumulative growing degree days  

Parcel*** 

Type of use count Number of uses as either more grazing (+), more 

mowing (-), or equal number (zero) 

Parcel*** 

Mean number of 

uses 

count Mean of the total number of mowing and grazing 

dates 

Parcel*** 

Nitrogen 

fertilization 

g.ha-1 Total organic and inorganic nitrogen applied in 

the field 

Parcel*** 

V
eg

et
at

io
n
 d

iv
er

si
ty

 

CWM length of 

flowering 

month Community weighted mean of flowering period 

duration 

Plot**** 

CWM first 

flowering 

month Community weighted mean of start of flowering 

period 

Plot**** 

CWM seed mass mg Community weighted mean of seed mass Plot**** 

CWM plant 

height 

m Community weighted mean of plant height Plot**** 

CWM SLA m².kg-1 Community weighted mean of specific leaf area  Plot**** 

Fdis length of 

flowering 

- Functional dispersion of flowering period 

duration  

Plot**** 

Fdis first 

flowering 

- Functional dispersion of start of flowering 

duration 

Plot**** 

Fdis seed mass - Functional dispersion of seed mass  Plot**** 
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Fdis plant height - Functional dispersion of plant height Plot**** 

Fdis SLA - Functional dispersion of specific leaf area Plot**** 

Fdis growth - Functional dispersion of growth syndromes  Plot**** 

Species richness - Number of individual species in a community Plot**** 

Simpson's 

diversity index 

- Taxonomic measure relative to abundance within 

a community 

Plot**** 

Shannon 

diversity index 

- Taxonomic measure of diversity within a 

community 

Plot**** 

* Field measurements 

** European Union Digital Elevation Model 

*** Farmer interview 

**** Botanic relevés and trait database. 

 

 

2.3. Results 

 

2.3.1. Variations of grassland sensitivity to drought  

The estimated grassland sensitivity to drought differed according to multiple sources of variation, 

which could be decomposed between (i) the influence of the VI being used to assess vegetation 

reflectance anomalies, (ii) the timescale of computation of the modified SPEI, and (iii) the variability 

between vegetation plots, in other words, geographic variability. A two-way ANOVA revealed a 

significant effect of the VI being used (F [24, 49,224] = 2,643, p < 0.001) with a sum of squares of 

589.46 and a significant effect of the timescale (F [1, 49,224] = 4,358, p < 0.001) with a sum of square 

of 40.5. The sum of squares of the residuals, corresponding to the geographic variation between 

vegetation plots, was 454.4. From this analysis, we can conclude that the VI being used was the most 

important source of variation of the estimated sensitivities to drought in our study, closely followed 

by geographic variability, while the timescale was a far less important source of variation. 

Among the 24 VIs used to quantify grassland sensitivity to drought, the Normalized Difference 

Water Index (NDWI) and the Global Vegetation Moisture Index (GVMI) exhibited the highest slopes 

and goodness-of-fit between the standardized VI anomalies and the modified SPEI (Figure 2– 4). This 

indicates that both VIs were the best to reveal vegetation response to variation in the climatic water 

balance. The slope values between the NDWI and the GVMI were highly correlated (r = 0.98) and 

ranged between -0.1 and 0.58. However, values between -0.1 and 0.1 were not significantly different 

from 0. Therefore, slopes below or equal to 0.1 are interpreted as insensitivity to drought. Slope values 

above 0.1 indicate that negative values of the modified SPEI – in other words, climatic water balance 

lower than the normal expectation – are associated with negative NDWI or GVMI anomalies – in other 

words, the NDWI or the GVMI lower than the normal expectation. Therefore, positive slopes above 

0.1 are interpreted as a negative response (i.e., sensitivity) of vegetation to drought (Figure 2– 3). 
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Despite the high responsiveness of the anomalies of these two moisture-based indices with the 

modified SPEI, their maximum R2 values were 0.35.  

 

 

 

The vegetation sensitivity to drought, as estimated with the NDWI or the GVMI, varied somewhat 

between the timescales of calculation of the modified SPEI (Figure 2– 5). The mean sensitivity 

increased from 15 to 60 days, and then slightly decreased for 90 and 120 days. Then, the geographic 

variation of sensitivity to drought (i.e., between vegetation plots) was similar between all timescales 

with a standard deviation ranging from +/- 0.07 to 0.093. 

 Figure 2– 4. Comparison of grassland sensitivity to drought estimated from several satellite-

based VIs. The variability represented by the violin plots includes the fluctuation 

among the 394 vegetation plots and the five drought timescales. The descriptions of 

the VIs are available in Appendix 2– B. Grouping labels at the top of the graphs are 

Tukey test results. 



Chapter 2 

 

129 

 

 

 

2.3.2. Drivers of grassland sensitivity to drought  

The best models depicting the effect of the pedoclimatic factors, management, and vegetation 

diversity on grassland sensitivity to drought estimated either with the NDWI or the GVMI were very 

close (Appendix 2– E). The obtained R2 for the NDWI and the GVMI ranged from 0.35 to 0.62 and 

0.37 to 0.59, respectively, depending on the timescale of calculation of the modified SPEI. For both 

indices, the highest R2 values were obtained from the short timescales of 30 and 15 days, while R2 

values below 0.5 were obtained for the timescale > 60 days.  

Hereinafter, we present the averaged model beta coefficients and averaged variance partitions 

between the two selected indices in Figure 2– 6 and Figure 2– 7, respectively. Overall, we found 

different sets of selected explanatory variables and explanatory powers depending on the timescale of 

calculation of the modified SPEI.  

 Figure 2– 5. Variability of grassland sensitivity to drought, as estimated from the 

linear relationship between the standardized reflectance anomaly, using 

the NDWI (top) and the GVMI (bottom), and standardized meteorological 

water balance index (modified SPEI), compared among the different 

drought timescales. Variability was measured with the standard deviation 

(std) among the vegetation plots (n = 394) per timescale computation. 

Grouping labels at the top of the graphs are Tukey test results. 
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We distinguished among three groups of predictors based on the beta coefficients across the five 

timescales. The first group included four variables with similar effects, whatever the timescale 

considered. The date of first use by farmers had a strong (beta coefficient >0.35) positive effect on 

grassland sensitivity to drought, with delayed use in the growing season associated with high 

sensitivity to drought. The type of use – dominance of mowing or grazing – had a moderate and 

positive effect (0.10 < beta coefficient < 0.35), except for the 15 days timescale. This must be 

interpreted as a greater sensitivity to drought in grazed than in mown grasslands. The nitrogen 

fertilization had a moderate but negative or mitigating effect (-0.35 < beta coefficient < -0.10) on 

sensitivity except for the 120 days timescale. It also exhibited a slightly more negative beta coefficient 

for the 15 days timescale.  

The second group included predictors with a stronger effect at short timescales of 15 and 30 days. 

The most important in terms of effect size was the SWHC, which exhibited the strongest mitigating 

effect on grassland sensitivity to drought (-0.58 and -0.56). South-facing slopes, a radiation exposure 

parameter, had a moderate positive effect (0.26 and 0.19), while the CWM seed mass had a moderate 

but negative effect (-0.17 and -0.14) for the short timescales. Finally, the soil content of MgO had a 

moderate positive effect (0.25) for the shortest timescale of 15 days and a weak effect (below 0.1) for 

other timescales.  

The third group involved five predictors with higher effects for long timescales. However, these 

predictors had an overall weak (beta coefficient <|0.10|) to moderate effect on grassland sensitivity. 

Four of them were descriptors of vegetation diversity. In order of importance, the functional dispersion 

of growth syndromes (Fdis (growth)), had an increasing but moderate negative effect (-0.35 < beta 

coefficient < -0.10) on sensitivity as the timescale increased. The CWM SLA had constant weak and 

negative effects from the 60 to 120 days timescales. The CWM plant height also had a weak negative 

effect (-0.09) but only for the 120 days timescale, and the Shannon diversity index had a weak positive 

effect (0.08) for the 90 and 120 days timescales. The fifth predictor of this group was the TWI with a 

weak (-0.07) and moderate (-0.14) negative effect on grassland sensitivity for 60 and 120 days 

timescales, respectively. Finally, the soil pH revealed an opposite weak effect for long timescales. 
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The highlighted variations in effect size with the timescale of the calculation of the SPEI translated 

into changes in the partitions of variance explained by the pedoclimate, management, and diversity of 

vegetation plots (Figure 2– 7; Appendix 2– F). The pure partition of the pedoclimate was the most 

important for the short timescales of 15 and 30 days with 32.59% and 38.02%, respectively. These led 

to the higher explanatory power of the final models with 57.57% and 68.69% of the variation of 

sensitivity to drought explained at the 15 and 30 days timescales, respectively, compared with the 

36.06%, 22.21%, and 38.22% explained total variances at the timescales of 60, 90, and 120 days. Other 

 Figure 2– 6. Beta coefficients of model predictors of grassland sensitivity to drought averaged 

between the NDWI- and GVMI-based models at different timescales. Negative beta 

coefficients reduce sensitivity to drought, while positive values increase sensitivity. 
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pure partitions did not change noticeably across the five timescales. The pure management effect 

explained approximately 15% of the total variance for all timescales. Then the partitions associated 

with diversity effects summed between 10% and 20% over the timescales but were largely shared with 

the management effect.  

 

 

 

2.4. Discussion 

Using long-term satellite image time series and meteorological data, we demonstrated the 

significant variability of grassland sensitivity to drought over a vast geographic region dominated by 

open habitats maintained for cattle and sheep grazing. We further quantified the influence of a set of 

factors related to the pedoclimate, agricultural management, and vegetation diversity on the assessed 

vegetation responses. We found that their relative effect and explanatory power varied with the 

duration and frequency of drought events.  

 

2.4.1. Quantifying geographic variations of grassland sensitivity to drought 

We improved the current satellite-based methods of quantification of vegetation response to drought 

in two ways. First, we demonstrated, based on the comparison of 24 VIs, that indices accounting for 

SWIR bands (shortwave infrared bands between 1.57 and 1.65 nanometres (nm) for SWIR1 and 

 
Figure 2– 7. Variance partitioning of the model predictors of grassland sensitivity to 

drought. The average NDWI- and GVMI-based model values at different 

timescales were used. Model predictors were grouped into pedoclimate, 

management, and diversity categories. 
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between 2.11 and 2.29 nm for SWIR2) outperformed other indices for detecting the effects of 

meteorological drought on vegetated surfaces. Indeed, indices such as the NDWI and the GVMI were 

specifically developed for remote sensing of vegetation water content (Ceccato et al., 2002; Gao 1996;) 

and have an immediate response to moisture changes, while greenness indices – specifically, NDVI – 

exhibit lagged effects (Liu et al., 2017; Tong et al., 2017) and are not directly related to the hydric 

status of vegetation, especially during moderate drought intensity (Bajgain et al., 2015; Chandrasekar 

et al., 2010; Gu et al., 2007). Although many studies have proved the usefulness of greenness indices 

such as NDVI (Catorci et al., 2021; De Keersmaecker et al., 2016; Ji and Peters, 2003; Nanzad et al., 

2019) or EVI (Cabello et al., 2012; Cartwright et al., 2020; Munson et al., 2016; Zhou et al., 2019), 

these were outperformed by moisture-based indices in this study. Second, we highlighted the 

importance of the timescale of calculation of standardized drought severity indices such as the SPEI. 

The estimated sensitivities differed significantly between timescales ranging from 15 to 120 days. 

Generally, previous studies have considered only one timescale (Horion et al., 2019; Hossain and Li, 

2021; Lu et al., 2021; Ma et al., 2016; Maurer et al., 2020). Other studies that scrutinized multiple 

timescales considered much coarser ones, than we did, with monthly meteorological data (Almeida-

Ñauñay et al., 2022; Li et al., 2015; Liu et al., 2017; Xu et al., 2021).  

Despite recent developments, satellite-based assessments of vegetation response to drought may 

still suffer from a few limitations. First, the relationships between VI anomalies and the modified SPEI 

were noisy overall. Indeed, anomalies of grassland reflectance may arise from multiple natural 

phenomena, including pest attacks (e.g., voles increasing bare soil), vegetation diseases, or 

compositional changes in the vegetation. Anomalies of the climatic water balance index (SPEI) were 

computed from the SAFRAN data with fine daily temporal resolution but coarse spatial resolution (8 

km x 8 km grid). Despite the high correlation with field meteorological stations (Appendix 2– A), our 

estimates of the modified SPEI still may not fully capture the fine-scale climatic variations, especially 

in mountainous regions. Second, our procedure for calculating the long-term normal reflectance of 

each day and each vegetation plot tolerates the 30-day variation of grazing and mowing events between 

years. We assumed that management practices were closely similar from 1985 to 2019, however, we 

cannot guarantee that sporadic changes in management over time have not occurred. Further 

developments may address this issue in two ways: (i) detection of management events with fine 

temporal resolution satellite products (e.g., Sentinel 1 and 2; Griffiths et al., 2020; Kolecka et al., 2018; 

Lobert et al., 2021), although the temporal extents of Sentinel images are currently too short – in other 

words, eight years for Sentinel 1 and seven years for Sentinel 2 – to estimate the normal vegetation 

reflectance along the growing season, or (ii) precise recording of the daily sequence of practices along 

the growing season with the help of farmers. Regarding other sources of disturbance, new RS 
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techniques should be developed to better discriminate the spectral signature of drought from other 

natural or anthropogenic disturbances and stresses (McDowell et al., 2015). Despite these 

methodological limitations, we argue that our procedure provided at least an unbiased, although noisy, 

estimate of grassland sensitivity to drought. This allowed us to provide a better understanding of its 

main drivers. 

 

2.4.2. The strong pedoclimatic influence prevails at short timescales 

We revealed the buffering effects of the soil water holding capacity (SWHC; Buttler et al., 2019; 

Thoma et al., 2019) and topographic exposure to solar radiation (Gharun et al., 2020; Jiao et al., 2021; 

Yang et al., 2020) on vegetation sensitivity to climatic water balance deficit, as demonstrated by 

previous studies. These were highly expected. However, our findings further indicated that these strong 

buffering effects hold true only for short and frequent droughts, then completely vanish from the 60 

days timescale (Bodner et al., 2015; Finn et al., 2018). Interestingly, for longer timescales, our results 

revealed the emerging but moderate role of the TWI. This indicates that large-scale hydrological 

processes related to land surface topography may relay local pedoclimatic buffers when the water 

deficit becomes too long, which may have implications for the management of agricultural drains. 

Indeed, such land preparation either hampers or promotes horizontal movements of water in soils. 

Depending on the topographic context, the removal of an existing drain or the installation of new ones 

may thus help mitigate the impact of drought on grasslands. 

The influence of soil chemical properties also prevailed for the short timescale. High values of MgO 

and C:N ratio increased sensitivity to drought, especially for the 15-day timescale, but the MgO 

influence was still significant for longer timescales. Magnesium limitation is recognized to impede 

several ecophysiological processes that enhance drought tolerance (Shao et al., 2021; Tränkner and 

Jaghdani, 2019; Waraich et al., 2011). In this respect our results are contradictory. A first alternative 

explanation is that the selection of soil magnesium (Mg) concentration in our model does not reflect 

an effect of this chemical component on vegetation sensitivity to drought but is a consequence of 

repeated droughts in some of the vegetation plots. Indeed, it has been demonstrated that, under water 

deficit conditions, Mg accumulates in the soil because of a reduced plant uptake (Sardans et al., 2008). 

A second alternative explanation is the influence of an unknown factor correlated with soil Mg 

concentration. The soil C:N ratio response is directly modified by N fertilization (Soussana and 

Lemaire, 2014), and it is expected to mirror fertilization response to drought sensitivity, but in the 

opposite way because N is the denominator. 
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2.4.3. On the importance of herbage use 

The date of first use by farmers was the primary management factor explaining grassland sensitivity 

to drought for whatever timescale of SPEI was considered. This was expressed in thermal time 

(cumulative growing degree days). Doing so, the date of first use better reflects grassland phenology 

than calendar dates and allows comparisons among plots located at different altitudes while it 

minimizes the influence of between-year variation of meteorological conditions. Our results indicated 

that late agricultural uses during the growing season were associated with higher sensitivity to drought. 

The effect of the date of first use on grassland sensitivity to drought has not been tested in isolation 

thus far; instead, it is often mixed with cutting frequency (Zwick et al., 2013). We may still interpret 

our result in light of the timing of herbage use and the occurrence of droughts during the growing 

season. The timing of drought occurrence has already been highlighted to play a key role in drought 

impacts on grasslands (Denton et al., 2017; Edwards and Chapman, 2011; Hahn et al., 2021). Although 

droughts do not have identical occurrences between years, they often occur in late spring and summer 

in the Massif central. Thus, late uses are more likely to coincide with strong water deficits. However, 

it is well recognized that defoliation combined with water stress depletes carbohydrate reserves on 

which plant regrowth and stress tolerance depend (Kahmen et al., 2005; Volaire et al., 1994) and 

lessens the maintenance of aboveground productivity (Ma et al., 2020). Additionally, the influence of 

the date of use of farmers may also arise indirectly from its effect on plant community structure, as we 

discuss in the next section.  

We further found strong evidence of greater sensitivity of vegetation to drought in preferentially 

grazed paddocks than in preferentially mown ones. It should be noted that usually mown grasslands 

may be grazed early in spring or during the autumn regrowth. Our results confirm previous findings 

from grassland experiments (Deléglise et al., 2015). The role of repeated defoliation by grazers along 

the course of the growing season, compared to sudden cuts, tends to maintain grassland vegetation in 

the vegetative phase (Bloor et al., 2020; Lei et al., 2016). As a result, plants allocate fixed carbon to 

leaf regrowth at the expense of carbohydrate storage and root growth necessary to ensure soil water 

and nutrient uptake, which can reduce their tolerance to drought (Amiard et al., 2003; Frank, 2007; Xu 

et al., 2013). Nevertheless, further research is needed to determine whether grazing pressure has 

additive or combined effects on the drought response of grasslands (Ruppert et al., 2015). 

 

2.4.4. The joint influence of vegetation diversity and agricultural management 

Overall, vegetation diversity explained a substantial part of the variance of grassland sensitivity to 

drought. Several descriptors had weak to moderate individual effects, but once they were summed 

together, they had substantial effects, especially for longer timescales. Such effects were largely shared 
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with agricultural management. In this respect, we interpret the role of vegetation diversity on grassland 

sensitivity to drought together with the effect of N fertilization and the date of first use. 

Our results suggest a complex cascade of effects involving the influence of N fertilization on 

vegetation diversity and the influence of vegetation diversity on drought tolerance. We found that the 

Shannon diversity index increased grassland sensitivity to drought, whereas functional diversity and 

N fertilization had the opposite effect. Regarding taxonomic diversity and N fertilization, our findings 

seem to contradict those of several grassland experiments (Kübert et al., 2019; Bharath et al., 2020; 

Meng et al., 2021). However, N fertilization is also recognized to reduce taxonomic diversity (Humbert 

et al., 2016; Louault et al., 2017; Niu et al., 2014; Socher et al., 2013) but, at the same time, increase 

functional diversity of growth syndromes and the CWM SLA (Louault et al., 2017; Niu et al., 2014). 

Nevertheless, greater functional diversity of growth syndromes may result in greater asynchrony of 

species responses to drought, which has been related to better grassland resilience (Loreau and de 

Mazancourt, 2013; Muraina et al., 2021). The role of functional diversity has even been suggested to 

be more important than the potential effect of taxonomic diversity on grassland stability (Valencia et 

al., 2020). Therefore, the positive effect of the Shannon diversity index that emerged from our results 

may be interpreted as a spurious effect. We must warn that this conclusion should be taken with caution 

for management recommendations. Indeed, the effect of N fertilization in other contexts or at much 

higher levels of application may reduce species richness to a greater extent and result in a reduction of 

grassland functional diversity and, ultimately, an increase in grassland sensitivity to drought.  

Beyond the direct influence of the date of first use on sensitivity to drought, as discussed in the 

preceding section, the greater sensitivity of late-use grasslands may also be mediated by changes in 

vegetation. Our results do not allow us to infer the underlying causal relationships. Delays in mowing 

or grazing have been demonstrated to increase taxonomic diversity when postponed from early to late 

spring or summer (Humbert et al., 2012). However, taxonomic diversity had only a weak effect in our 

study and, thus far, the consequences of delaying mowing or grazing on functional diversity remain 

unknown. Otherwise, delayed mowing or grazing may favor species with late phenology and reduce 

light use efficiency (Gaujour et al., 2012), which may result in a lower CWM SLA. This is consistent 

with our finding that lower drought sensitivity was associated with high SLA. However, SLA reduction 

usually works as a phenotypic adjustment to water stress (Wellstein et al., 2017), which contradicts 

our results. 

Finally, we found that plant communities with heavier seeds were associated with lesser sensitivity 

to drought. This has already been reported in semi-arid grasslands (Martínez-López et al., 2020) 

dominated by annual species. Indeed, in stressful conditions, the post-drought establishment and 

survival of seedlings are more successful for large seeds that contain more reserves. Regeneration in 
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permanent grasslands is mostly clonal and, in normal conditions, depends more on buds than seeds 

(Benson and Hartnett, 2006). However, in a long-term drought experiment conducted in mountainous 

grasslands dominated by perennials, Stampfli and Zeiter (2004) found that post-drought vegetation 

dynamics were driven largely by recruitment from seeds. We were unable to clearly discriminate how 

the CWM seed mass was influenced by agricultural practices. Our result highlights the need to conduct 

new studies on drought mitigation through agricultural management, with an explicit focus on how 

different practices influence the composition and diversity of the regeneration syndromes of grassland 

species. 

 

2.5. Conclusions 

Our study revealed high variability of satellite-based vegetation sensitivity to drought, at different 

timescales, across a wide geographic region dominated by permanent grasslands maintained for cattle 

and sheep breeding, using moisture-based reflectance indices retrieved from Landsat images. Through 

the indices, vegetation was most responsive to drought for the 60 and 90 days timescales. We 

demonstrated that variations of satellite-based sensitivity to drought within and between grassland 

parcels can be explained by pedoclimatic, agricultural management, and vegetation diversity factors. 

We underlined that the soil water holding capacity (SWHC) worked logically as a strong buffer for 

meteorological droughts but only for the shortest time scales of fewer than 30 days. Additionally, 

agricultural management had also a strong influence, either independent or largely shared with 

vegetation diversity. This suggests complex indirect effects involving changes in functional 

composition and diversity of the grassland plant communities. Accordingly, such complexity may be 

disentangled by future experimental studies focusing on the ecological consequences of the timing of 

herbage use, tests of interactions between several management practices, and analyses of multivariate 

causal relationships. Finally, a better RS-based assessment of vegetation sensitivity to drought is 

required to discriminate between drought events and other types of disturbances, whether natural or 

agricultural. 
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Appendices 

 
Appendix 2– A. Precipitation, potential evapotranspiration, and mean temperature correlation between the SAFRAN and 

field meteorological stations within the Massif central region. 

 
Climatic variables R2 Slope Intercept 

Precipitation (P) 0.80 0.84 0.25 mm 

Potential evapotranspiration (PET) 0.88 0.90 0.24 mm 

Mean temperature 0.96 0.90 -1.33 °C 

 

 
Appendix 2– B. Satellite reflectance indices used in the study. Input bands were the blue (B), green (G), red (R), near-

infrared (NIR), and shortwave infrared (SWIR) 1 and 2. 

 

Index Formula Purpose / Description References 

NDVI (NIR - R) / (NIR + R) Commonly used for vegetation 

biomass (green)  

Rouse et al., 1974 

ARVI (NIR – [(2 * R) - B]) / 

(NIR + [(2 * R) - B]) 

Less sensitive to atmospheric 

effects compared to NDVI 

Kaufman and Tanré, 

1992 

DVI NIR – R Differentiates vegetation and 

soil.   

Richardson and 

Wiegand, 1977 

EVI 2.5 * ([NIR - R] / 

[NIR + 6 * R - 7.5 * B + 1]) 

For canopy conditions in high 

biomass areas 

Huete et. al., 2002 

EVI2 2.5 * ([NIR - R] / 

[NIR + (2.4 * R) + 1]) 

EVI without the blue band Jiang et al., 2008 

GCI (NIR / G) - 1 For chlorophyll estimation Gitelson et al., 2003 

GEMI n * (1 - 0.25 * n) – [(R - 0.125) / (1 

- R)] 

where, n = [2 * (NIR2 - R2) + (1.5 * 

NIR) + (0.5 * R)] / (NIR + R + 0.5) 

For vegetation cover; non-linear 

index 

Pinty and Verstraete, 

1992 

GNDVI (NIR - G)] / (NIR + G) For chlorophyll estimation; 

NDVI uses the Green instead of 

Red band 

Gitelson et al., 1996 

GVMI ([NIR + 0.1] – [SWIR2 + 0.02]) / 

([NIR + 0.1] + [SWIR2 + 0.02]) 

For vegetation water content Ceccato et al. (2002) 

IPVI NIR / (NIR + R) For vegetation biomass Crippen, 1990 

MSR ([NIR / R] - 1) / sqrt([NIR / R] + 1) For biophysical parameters Chen, 1996 

MTVI2 (1.5 * [1.2 * (NIR - G)] – [2.5 * (R 

- G)]) / sqrt([(2 * NIR) + 1]2 – [6 * 

NIR - (5 * sqrt(R)) - 0.5]) 

For green leaf area index (LAI) 

estimation 

Haboudane et al., 

2004 

NDSVI (SWIR1 - R) / (SWIR1 + R) For senescence detection Qi et al., 2002 

NDWI (NIR - SWIR1) / (NIR + SWIR1) For vegetation liquid water 

content; similar formula with 

Land Surface Water Index 

(LSWI) 

Gao, 1996; Xiao et 

al., 2004 
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NLI (NIR2 - R) / (NIR2 + R) For vegetation cover; accounts 

for leaf angle distribution 

Goel and Quin, 1994 

NMDI (NIR – [SWIR1 - SWIR2]) / (NIR 

+ [SWIR1 - SWIR2]) 

For soil and vegetation moisture Wang and Qu, 2007 

NRI (G - R) / (G + R) For plant nitrogen status Filella et al., 1995 

OSAVI (NIR - R) / (NIR + R + 0.16) For vegetation health; minimizes 

soil effect; standardized 

vegetation condition of 0.16 

Rondeaux et al., 

1996 

SAVI (1 + L) * ([NIR – R] / [NIR + R + 

L]) 

Vegetation: Low (L = 1) 

Intermediate (L = 0.5) 

High (L = 0.25) 

For vegetation health; minimizes 

soil effect 

Huete, 1988 

SIPI (NIR - B) / (NIR + B) For vegetation phenology (bulk 

carotenoids to chlorophyll ratio) 

Penuelas et al., 2011 

SLAVI NIR / (R + SWIR2) For specific leaf area Lymburner et al., 

2000 

SRVI or 

SR 

NIR / R For leaf area index Jordan, 1969 

TVI sqrt (NDVI + 0.5) For green leaf area index (LAI) 

estimation 

McDaniel and Haas, 

1982 

VARI (G - R) / (G + R - B) Less sensitive to atmospheric 

effects; based on ARVI 

Gitelson et al., 2002 

 

 
Appendix 2– C. Time series of drought (top) and vegetation (bottom) conditions from 1985 to 2019 of one sample plot. 
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Appendix 2– D. Plots for the visual tests of the homogeneity of variances and normality of the residuals of the final NDWI- 

and GVMI-based models. 
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Appendix 2– E. NDWI- and GVMI-based model summaries and beta coefficients. 

 
Modified SPEI 15 days  NDWI    GVMI  

Predictors 
Beta 

coefficient 
t value Pr(>|t|)  Beta 

coefficient 
t value Pr(>|t|) 

Date of first use 0.4391 5.546 0 
 

0.3758 5.344 0 

Type of use 0.0989 1.05 0.2956 
 

- - - 

Nitrogen fertilization -0.1905 -2.517 0.0131 
 

-0.2872 -3.953 0.0001 

Mean number of uses 0.1063 1.372 0.1725 
 

0.1226 1.538 0.1267 

SWHC -0.4728 -6.714 0 
 

-0.6793 -7.757 0 

MgO 0.1673 2.188 0.0305 
 

0.3356 4.189 0.0001 

C:N - - - 
 

0.3815 3.859 0.0002 

TWI -0.0576 -0.84 0.4025 
 

-0.0885 -1.291 0.1993 

South-facing slope 0.2393 3.562 0.0005 
 

0.2729 3.936 0.0001 

CWM (seed mass) -0.1614 -1.964 0.0518 
 

-0.1932 -2.422 0.0169 

CWM (height) -0.1173 -1.404 0.1629 
 

-0.1123 -1.367 0.1741 

CWM (SLA) - - - 
 

0.0736 0.934 0.3523 

Fdis (growth) -0.0782 -1.003 0.3177 
 

-0.1011 -1.296 0.1974 

Shannon diversity index -0.1253 -1.522 0.1306 
 

-0.0934 -1.126 0.2625 

 R2:   0.519   R2:   0.5235  

 Adjusted R2: 0.4724   Adjusted R2: 0.4731  

  

       

Modified SPEI 30 days  NDWI    GVMI  

Predictors 
Beta 

coefficient 
t value Pr(>|t|)  Beta 

coefficient 
t value Pr(>|t|) 

Date of first use 0.4628 6.446 0 
 

0.4442 5.803 0 

Type of use 0.221 2.648 0.0091 
 

0.2269 2.434 0.0164 

Nitrogen fertilization -0.1645 -2.285 0.024 
 

-0.177 -2.388 0.0185 

Mean number of uses 0.1109 1.618 0.1083 
 

0.0774 1.072 0.286 

SWHC -0.5526 -8.839 0 
 

-0.5577 -8.532 0 

pH 0.0562 0.839 0.4032 
 

0.0729 1.031 0.3044 

MgO 0.1144 1.625 0.1067 
 

0.1579 2.174 0.0316 

South-facing slope 0.2006 3.373 0.001 
 

0.188 3.058 0.0027 

CWM (seed mass) -0.1538 -2.322 0.0219 
 

-0.1426 -2.079 0.0397 

CWM (SLA) - - - 
 

-0.0841 -1.184 0.2387 

Fdis (seed) -0.1466 -2.49 0.0141 
 

- - - 

Fdis (growth) -0.0893 -1.341 0.1825 
 

-0.0613 -0.906 0.3669 

Shannon diversity index -0.0488 -0.684 0.4953  -0.0867 -1.168 0.245 

 R2:   0.62   R2:   0.5955  

 Adjusted R2: 0.5833   Adjusted R2: 0.5563  

        

Modified SPEI 60 days  NDWI    GVMI  

Predictors 
Beta 

coefficient 
t value Pr(>|t|)  Beta 

coefficient 
t value Pr(>|t|) 

Date of first use 0.3587 3.971 0.0001 
 

0.3748 4.202 0.0001 

Type of use 0.1982 1.773 0.0786 
 

0.2625 2.362 0.0197 

Nitrogen fertilization -0.1708 -1.894 0.0605 
 

-0.1732 -1.903 0.0593 

pH 0.1435 1.642 0.1031 
 

0.1798 2.141 0.0342 

MgO 0.1363 1.667 0.0979 
 

0.1086 1.301 0.1957 

C:N - - - 
 

-0.1223 -1.422 0.1575 

TWI - - - 
 

-0.1348 -1.821 0.071 

CWM (seed mass) -0.2145 -2.469 0.0149 
 

-0.1494 -1.834 0.069 

CWM (SLA) -0.0817 -0.901 0.3694 
 

-0.1698 -1.868 0.0641 

Fdis lengthflow 0.0711 0.79 0.4312 
 

- - - 

Fdis (growth) -0.1606 -1.819 0.0714 
 

-0.0823 -1.005 0.3169 

Shannon diversity index 0.1009 1.128 0.2615  0.0499 0.55 0.5836 

 R2:   0.3709   R2:   0.4039  

 Adjusted R2: 0.321   Adjusted R2: 0.3514   
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Modified SPEI 90 days  NDWI    GVMI  

Predictors 
Beta 

coefficient 
t value Pr(>|t|)  Beta 

coefficient 
t value Pr(>|t|) 

Date of first use 0.394 4.374 0 
 

0.3875 4.311 0 

Type of use 0.1533 1.355 0.178 
 

0.2089 1.927 0.0562 

Nitrogen fertilization -0.1206 -1.407 0.1618 
 

-0.1759 -1.94 0.0546 

Mean number of uses -0.0922 -1.016 0.3118 
 

-0.0876 -0.957 0.3405 

pH - - - 
 

0.0768 0.884 0.3786 

MgO 0.1078 1.263 0.2089 
 

0.1064 1.244 0.2159 

TWI - - - 
 

-0.119 -1.549 0.124 

CWM (seed mass) -0.0992 -1.058 0.2922 
 

- - - 

CWM (height) -0.1471 -1.547 0.1243 
 

-0.1107 -1.304 0.1946 

CWM (SLA) -0.1027 -1.204 0.2307 
 

-0.1722 -2.004 0.0472 

Fdis (growth) -0.2052 -2.353 0.0202 
 

-0.1495 -1.736 0.0851 

Shannon diversity index 0.1652 1.809 0.0729 
 

0.1166 1.25 0.2137 

 R2:   0.3531   R2:   0.3755  

 Adjusted R2: 0.3018   Adjusted R2: 0.3206  

  

       

Modified SPEI 120 days  NDWI    GVMI  

Predictors 
Beta 

coefficient 
t value Pr(>|t|)  Beta 

coefficient 
t value Pr(>|t|) 

Date of first use 0.5767 6.859 0 
 

0.5008 5.793 0 

Type of use 0.2317 2.272 0.0248 
 

0.2372 2.274 0.0247 

Nitrogen fertilization - - - 
 

-0.1021 -1.168 0.2449 

Mean number of uses -0.0714 -0.807 0.4213 
 

-0.0796 -0.904 0.3676 

SWHC -0.138 -1.807 0.0731 
 

- - - 

pH -0.1856 -2.302 0.023 
 

-0.115 -1.376 0.1712 

MgO 0.1643 1.975 0.0505 
 

0.123 1.495 0.1374 

TWI -0.1372 -1.815 0.072 
 

-0.1413 -1.908 0.0587 

CWM (seed mass) -0.0859 -0.966 0.3362 
 

- - - 

CWM (height) -0.19 -1.943 0.0543 
 

-0.1135 -1.314 0.1913 

CWM (firstflow) 0.0899 1.031 0.3046 
 

- - - 

Fdis (seed) -0.0783 -1.058 0.2919 
 

-0.0416 -0.551 0.5828 

Fdis (growth) -0.2099 -2.582 0.011 
 

-0.1531 -1.844 0.0676 

Shannon diversity index 0.1714 1.989 0.049 
 

0.113 1.245 0.2154 

 R2:   0.4541   R2:   0.4285  

 Adjusted R2: 0.3965   Adjusted R2: 0.3732  
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Appendix 2– F. Variance partitioning of NDWI- and GVMI-based models across timescales. 
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GRASSLANDS BY ASSIMILATION OF SENTINEL 2 IMAGES  

WITH A PARSIMONIOUS MODEL OF VEGETATION GROWTH 

 

 

 

Chapter 3 attempts to move beyond some limitations highlighted in the previous chapter. 

It used a process-based model assimilated with satellite data to better acknowledge 

grassland resistance and resilience to drought in mown and grazed grasslands.  
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CHAPTER 3. ANALYZING DROUGHT IMPACTS ON TEMPERATE MANAGED 

GRASSLANDS BY ASSIMILATION OF SENTINEL 2 IMAGES 

WITH A PARSIMONIOUS MODEL OF VEGETATION GROWTH 

 

Abstract 

 

Droughts negatively impact the temperate managed grasslands leading to a decrease in the quality 

and delivery of ecosystem services. Various studies and drought experiments have provided key 

knowledge on the eco-physiological response of grasslands to drought and highlighted the role of soil, 

water, and agricultural practices. However, these experiments have limited spatial and temporal 

coverages and are constrained by experimental setups. We developed a parsimonious process-based 

model of grassland green leaf area index (Lg) assimilated with Sentinel 2 time series observations to 

expand the knowledge on grassland response to drought. Our model is driven by climatic trajectories 

and management impact. It consists of four parameters related to phenological growth and senescence, 

and management practices. It features a time-varying parameter that replicates the dynamic growth of 

managed grasslands across seasons and under the impacts of herbage uptake and drought. We analyzed 

the grassland resistance and resilience to drought using the log response ratio (LRR) from model 

simulated normal meteorological and unlimited water supply conditions. The use of the time-varying 

parameter increased the internal validation of our model. However, the external validation was low 

possibly due to the scale discrepancy between field and satellite-based measurements. Our model 

showed that grassland resistance and resilience changed after exceeding a drought event severity of 

80. We found no significant difference between the resistance of mowed and grazed paddocks, but we 

faintly observed that grazed paddocks were more resilient to drought than mowed ones. Overall, our 

parsimonious model predicted Lg with the assimilation of Sentinel 2. To improve our model, we face 

the dilemma of prioritizing the ease of use with parsimony or increasing the explanatory power by 

adding the dynamics of nutrient cycles and vegetation diversity. 

 

Keywords: LAI, PROSAIL, LUT, radiative transfer model, response, resistance, resilience  
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3.1. Introduction 

Droughts threaten temperate managed grasslands and decrease the quality and delivery of their 

ecosystem services (Craine et al., 2012; Hofer et al., 2016; Jung et al., 2020; Lei et al., 2016; Srivastava 

et al., 2018). Various studies were conducted in controlled or semi-controlled field experiments to 

determine how droughts impact managed grasslands (Deléglise et al., 2015; Leuzinger et al., 2011; 

Vogel et al. 2012; Volaire et al., 2020). These experiments have provided key scientific understandings 

from the eco-physiological responses driving plant individual responses to the role of plant community 

structure and the effects of different agricultural practices. 

However, drought experiments face two important shortcomings (Fraser et al., 2013; Kröel-Dulay 

et al., 2022; Leuzinger et al., 2011; Matos et al., 2020a). The first is their inability to cover the large 

diversity of grassland types and contexts, because of their restricted spatio-temporal coverage and the 

second is the setup of unrealistic field conditions, due to inherent experimental constraints, leading to 

misestimated drought impacts (Kröel-Dulay et al., 2022; Leuzinger et al., 2011; Vicca et al., 2012).  

Remote sensing products and techniques have the capacity to expand the spatio-temporal coverage 

of drought experiments (Kerr and Ostrovsky, 2003; Li et al., 2014; Soubry et al., 2021; Xu and Guo, 

2015) and focus on the real-life conditions of the managed grasslands in farm systems. Various remote 

sensing products estimate the biophysical and biochemical properties of vegetation based on the 

reflectance values received by satellite sensors from the Earth’s surface. To determine the grassland 

response to drought, one approach consists of analyzing the trajectories of long-term satellite image 

time series (SITS) of vegetation reflectance paired with drought severity measures (Bao et al., 2014; 

Buras et al., 2019; Ivits et al., 2014; Tong et al., 2017). Within the SITS, the abrupt changes in the 

reflectance trajectories are explained by the corresponding drought severity. The vegetation reflectance 

serves as a proxy for vegetation properties, such as productivity, greenness, moisture content, etc., in 

the form of vegetation indices or other types of information derived from reflectance bands. The 

statistical inference approach, on the other hand, quantifies the response to drought from the linear 

relationship between vegetation reflectance and drought severity indices (Nanzad et al., 2019; Smith 

et al., 2017; Wilcox et al., 2017; Wang et al., 2019). It has been recently used to complement 

knowledge from controlled experiments on the role of pedoclimatic factors, vegetation diversity, and 

management practices in enhancing or reducing drought impacts on grassland vegetation at a regional 

scale (Luna et al., 2023). However, the relationship between vegetation reflectance and drought 

severity usually suffers from detrimental noise and analysis concerns (Luna et al., 2023). The observed 

changes in the vegetation reflectance following drought can also be under the influence of other co-

occurring disturbances – such as pest or plant disease infections (Terentev et al., 2022; Zhang et al., 

2019); fire outbreaks (Dwyer et al., 2000; Rogers et al., 2020; Wang et al., 2004); management 
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practices of mowing or grazing (Kowalski et al., 2022; 2023; Estel et al., 2018; Reinermann et al., 

2020); or the natural phenological development of the vegetation (Reed et al., 1994; Dronova and 

Taddeo, 2022). In addition, gaps in time series analyses due to clouds (Whitcraft et al., 2015) or 

satellite temporal resolution (Villarreal et al., 2016), limit the quantification of resistance or recovery 

to drought due to missed reflectance peaks, and valleys. To improve the understanding of drought 

impact on grassland with remote sensing, it is thus necessary to isolate pure drought effects from 

confounding or interacting factors and distinguish between resistance and resilience capacities for 

different types of grasslands and especially between grasslands managed under different agricultural 

practices. 

Assimilation of RS products with process-based models (Cuddington et al., 2013; Meroni et al., 

2019) has the potential to improve model predictions in agroecosystems (Dorigo et al., 2007; Jin et al., 

2018). Since better predictions of mechanistic models support our understanding of ecological 

phenomena (Mouquet et al., 2015), when used together with RS data they may help in isolating drought 

impacts from other processes like management practices or phenological changes in case they are 

explicitly considered in the model design.  

Numerous mechanistic models of grasslands have been developed (see review in Taubert et al., 

2012). They have been successfully used for predicting the vegetation cover, growth, and productivity 

(GrasProg in Peters et al., 2022; GrazeGro in Barrett et al., 2005; LINGRA in Schapendonk et al., 

1998; STICS-Prairie in Di Bella et al., 2004; VISTOCK in Bellini et al., 2023) and nutrient and energy 

fluxes (DALEC-Grass in Myrgiotis et al., 2020; PaSiM in Riedo et al., 1998 and Schmid et al., 2001; 

SAFY-CO2 in Pique et al., 2020) for different management conditions (ORCHIDEE-GM in Chang et 

al., 2013; PaSiM in Graux et al., 2009) and under the impacts of drought (ModVege in Jouven et al., 

2006a; 2006b; Calanca et al., 2016; SCOPE in van der Tol et al., 2009; Bayat et al., 2018). Some of 

them have already been assimilated with satellite products like SAFY – but for crops – and SCOPE. 

The SCOPE model has been applied to grasslands and other ecosystems to compare model simulation 

in drought and non-drought conditions (Bayat et al., 2018). The main drawback of all these models is 

that they are highly data-demanding. They require time series observations of many input variables 

and the calibration of dozens of parameters. As a result, these models were mostly applied in grassland 

observatories, (Chang et al., 2013; Pique et al., 2020), field experiments (Calanca et al., 2016; 

Myrgiotis et al., 2020; Peters et al., 2022) sometimes equipped with flux towers (Bayat, 2018; Graux 

et al., 2009). This makes difficult the assimilation of these models with satellite data for simulating 

vegetation growth of many grasslands in farms, where data are usually scarce. More parsimonious 

models are thus needed. One example of a model of lower complexity is the eco-hydrological model 

proposed by Choler et al. (2010). It simulates the coupled dynamics of vegetation cover and soil water 
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content with five parameters only. Estimates of the fractional vegetation cover derived from MODIS-

NDVI were used for parameter calibration. This approach successfully predicted the dynamics of semi-

arid perennial grasslands, in Queensland - Australia, in response to spatio-temporal variations of water 

supply. The application of such a low-dimensional model in temperate managed grassland impacted 

by drought requires two main modifications. First, it should explicitly account for the effect of 

agricultural practices and especially herbage uptakes. Second, it should simulate phenological changes 

inherent to temperate perennials.  

In this study, we thus aimed to (i) develop a parsimonious model of vegetation growth in temperate 

managed grasslands, (ii) calibrate and validate it with the use of satellite image time series, (iii) 

quantify resistance and resilience of grasslands to drought events from model simulations, and (iv) 

compare the vegetation response to drought between contrasted management practices. 

To do so, we first developed a simple process-based model simulating the daily dynamics of the green 

leaf area index (𝐿𝑔) and the amount of water available for plants. The green leaf area index (𝐿𝑔) was 

chosen as the targeted vegetation state variable because of its role in the use of water by plants (Allen 

et al., 1998; Chen and Wang, 2012), its response to changes in phenological stages (Corbari et al., 

2017), and its signature on vegetation reflectance spectra (Gitelson et al., 2003; Mourad et al., 2020). 

Then we used Sentinel 2–derived 𝐿𝑔 generated from the inversion of the radiative transfer model 

PROSAIL (Atzberger et al., 2015) to calibrate the model. Finally, we analyzed, from model 

simulations, the differences in resistance and resilience to drought between mowed and grazed 

paddocks.    

 

3.2. Data and methodology 

 

3.2.1. Study site and field data 

This study focused on the Herbipôle experimental site (45°38'7.64"N, 2°45'4.77"E) of the French 

Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) located 

at Laqueuille within the Massif central region, France. The site covers 560 ha of temperate permanent 

grasslands between 1,000 and 1,450 m a.s.l. (Prache, 2017; Vazeille et al., 2018) thus exposed to a 

mountain climate (Joly et al., 2010). The average annual precipitation is about 1,100 mm, and the 

average minimum and maximum temperatures are 4.63°C and 11.67°C, respectively.  

For the SALAMIX project, 118 ha of permanent grassland of this site managed on organic farming 

are divided into 33 paddocks, which were either dedicated to hay production, hence are mostly mowed 
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in spring and early summer, or to light grazing with cattle, sheep or cattle and sheep in combination 

(Prache et al., 2023).  

The grassland paddocks were monitored between May 2015 and November 2020. The vegetation 

biomass (sorted in green and senescent tissues) and height were recorded in each paddock before the 

start of each grazing rotation or cut. Biomass and height were determined from at least four sampling 

quadrats in each paddock, which were 70 cm x 70 cm in dimension and with known geographic 

coordinates. Detailed records of the herbage uptake calendar were done during the entire period and 

for each paddock separately. It included dates of mowing events, the entry and exit dates of grazing 

animals, and the type and number of animals. 

For this study, we randomly selected three mowed and three grazed paddocks (Figure 3– 1). The 

selected mowed paddocks have an average area of 4.08 ha and were cut at least once annually during 

the summer season (June to August). In addition, each mowing was occasionally grazed late in summer 

and in fall. The selected grazed paddocks have an average area of 2.80 ha and were grazed 1 to 6 times 

annually with an average of three grazing events. 

 

 

 

Figure 3– 1. Configuration of the 33 paddocks under the SALAMIX project. 

Highlighted are the six selected mowed and grazed paddocks used in the 

model development. 
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A field meteorological station (45°38'35.88"N; 2°44'3.73"E) was situated in close proximity to the 

Herbipôle experimental site (Figure 3– 1). The meteorological station provided daily records of climate 

variables – such as precipitation, temperature, solar radiation, potential evapotranspiration, and 

humidity – as early as July 1995. For this study, we used the daily climate data as inputs for the model 

and drought severity assessment. We used the 25-year-long climate data to assess the normal water 

balance of each day of the year and compute the daily SPEI (Vicente Serrano et al., 2010) as an 

indicator of meteorological drought. 

 

3.2.2. Assessment of Green Leaf Area Index (𝐿𝑔) from satellite images 

The time series of the green Leaf Area Index (𝐿𝑔) for each biomass monitoring location (quadrats) 

of each selected paddock, were derived by the inversion of the PROSAIL radiative transfer model 

using Sentinel 2 images (Atzberger et al., 2015; Boegh et al., 2013; Darvishzadeh et al., 2008; Wang 

et al., 2019) downloaded from the Theia Data and Service Center (France). Sentinel 2 MultiSpectral 

Instrument (MSI) is an optical satellite that provides images with spatial resolutions of 10, 20, and 60 

m and a 5-day collection revisit. We used an average of 182 Sentinel 2 images, which range from 177 

to 186 snow and cloud-free observations depending on the paddock considered, covering May 2015 to 

November 2020 time period.  

PROSAIL is composed of the PROSPECT (leaf) and SAIL (canopy) models. PROSPECT provides 

leaf reflectance and transmittance to SAIL. The direct inputs for the PROSAIL are the biophysical and 

biochemical leaf properties of chlorophyll, dry matter, and brown pigment contents; equivalent water 

thickness; leaf angles, LAI, and the satellite and sun viewing angles (see Jacquemoud et al., 2009). 

The output of SAIL is the reflectance signature of the vegetation canopy. Intentionally, the merging of 

PROSPECT and SAIL allowed for a better inversion of reflectance signature to estimate the leaf 

properties (Baret et al., 1992; Jacquemoud, 1993; Jacquemoud et al., 2009).  

The retrieval of the biophysical and biochemical leaf properties with the inversion of PROSAIL 

was done with the look-up-table method (LUT; Jacquemoud et al., 2009). The LUT method is a simple 

minimization technique that requires multiple computations to generate a reference table of leaf 

parameter combinations and their associated reflectance signature (Berger et al., 2018; Jacquemoud et 

al., 2009). For this study, we followed the recommended LUT size of 100,000 parameter combinations 

(Richter et al., 2009; Weiss et al., 2000). The parameter combinations originated from independent 

random draws of parameter values from uniform distributions (Darvishzadeh et al., 2008). The best 30 

parameter combinations were selected using the relative root mean square error (RRMSE) as the cost 

function. We then averaged the LAI values from this selection (He et al., 2019). The repetition of this 
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procedure for each date and location allowed to generate time series of Lg for each paddock during the 

2016-2020 period. 

 

3.2.3. A simple dynamic model of grassland green leaf area index (𝐿𝑔) 

We developed a simple model of the dynamics of green LAI (𝐿𝑔) in interaction with the dynamics 

of the soil available water content (W), considered as a minimum system to represent drought impacts 

on temperate managed grasslands. At each daily timestep, 𝐿𝑔 is updated (Eq. 1) according to the 

balance between three basic processes: vegetation growth (𝑔), senescence (s), and herbage uptake by 

mowing or grazing (d).  

 

𝐿𝑔(𝑡 + 1) = 𝐿𝑔(𝑡) + 𝑔(𝑡) − 𝑠(𝑡) − 𝑑(𝑡) Eq. 1 

 

The daily increase in 𝐿𝑔 [i.e., 𝑔(𝑡) in Eq. 1] is modelled as a reduction of the maximum potential 

growth of the grassland (𝑔𝑚𝑎𝑥) by three functions (Figure 3– 2. a, b, c) representing (i) temperature 

limitation (𝑓1) according to Yan and Hunt (1999),  (ii) water limitation (𝑓2) depending on the product 

between the actual evapotranspiration (𝐸𝑎) and the instantaneous water use efficiency (IWUE) of the 

vegetation and (iii) an empirical function of the seasonal pattern of temperate grassland growth (𝑓3) 

representing changes in reserve storage and mobilization with the sum of growing degree days (𝐺𝐷𝐷∑) 

following Jouven et al. (2006a). Accordingly, 𝑔(𝑡) is defined as: 

 

𝑔(𝑡) = 𝑔𝑚𝑎𝑥 × 𝑓1(𝑇(𝑡)) × 𝑓2(𝐸𝑎(𝑡)) × 𝑓3 (𝐺𝐷𝐷∑(𝑡)) Eq. 2 

 

The calculation of the actual evapotranspiration (𝐸𝑎) is written as: 

 

𝐸𝑎(𝑡) = {

𝐸𝑚𝑎𝑥(𝑡)                    𝑊∗ ≤ 𝑊(𝑡) < 𝑊𝑚𝑎𝑥

𝐸𝑚𝑎𝑥(
𝑊(𝑡)

𝑊∗
)                  0 ≤ 𝑊(𝑡) <  𝑊∗

 

Eq. 3 

 

Where 𝐸𝑚𝑎𝑥 represents the evapotranspiration under conditions of full water availability. While 𝑊 

is above a given threshold 𝑊∗, the evapotranspiration is unlimited. Below this threshold 𝐸𝑎 decreases 

linearly until 𝑊 equal 0 (Calanca et al., 2016). Note that 𝑊 represents the soil water content available 

for plants. Therefore, 𝑊 = 0 means that the soil water content is at its wilting point in the soil layer 

where plant roots are distributed. 
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𝐸𝑚𝑎𝑥(𝑡) is given by the adjustment of the potential evapotranspiration of the reference surface 

(𝐸0(𝑡)), as provided by meteorological stations, to 𝐿𝑔(𝑡) according to Smith (2012) and following: 

 

𝐸𝑚𝑎𝑥(𝑡) = 𝐸0(𝑡) (𝑚𝑎𝑥 {0,  [𝑙𝑛(𝐿𝑔 (𝑡) + 1)]
0.4

}) Eq. 4 

 

𝑊 is modelled as a simple one-layer bucket model (Eq. 5 and 6) where gain in water depends on 

precipitation (𝑃), and losses depend on actual evapotranspiration (𝐸𝑎) and runoff (𝑅): 

 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝑃(𝑡) − 𝐸𝑎(𝑡) −  𝑅(𝑡) Eq. 5 

with 

𝑅(𝑡) = ma x( 0,  (𝑃(𝑡) − 𝐸𝑎(𝑡)) − (𝑊𝑚𝑎𝑥 − 𝑊(𝑡))) Eq. 6 

 

The senescence 𝑠(𝑡) is defined as the product of a senescence rate (𝑠0), 𝐿𝑔(𝑡), the absolute 

temperature of the day and an empirical function inherited from Jouven et al. (2006a) depicting the 

influence of plant phenology (Eq. 7). Accordingly, the senescence is proportional to heat and frost but 

minimal around 0°C. Along the course of the growing season, the senescence is null until the first 

cohort of leaves starts to senesce, which depends on the leaf lifespan (𝐿𝐿𝑆) expressed in growing 

degree days (GDD). Then, the senescence increases linearly until the peak of flowering and remains 

at its maximum as the 𝐺𝐷𝐷∑ further increases (Figure 3– 2. d).  

 

𝑠(𝑡) = 𝐿𝑔 × 𝑠0 × |𝑇°(𝑡)| × 𝑓3(𝐺𝐷𝐷∑(𝑡)) Eq. 7 

 

In our model, the influence of management on the dynamics of 𝐿𝑔 lies on the simulation of herbage 

utilization by mowing or grazing according to: 

 

𝑑(𝑡) = { 
𝐿𝑔(𝑡) − (𝐿𝑔(𝑡) − 𝐿𝑔,𝑙𝑖𝑚)                               𝑚𝑜𝑤𝑖𝑛𝑔

𝐿𝑔(𝑡) − 𝑚𝑎𝑥(𝐿𝑔(𝑡) − 𝐿𝑔,𝑙𝑖𝑚,  𝑐 × 𝐼(𝑡))     𝑔𝑟𝑎𝑧𝑖𝑛𝑔
 

Eq. 8 

 

Where  𝐿𝑔,𝑙𝑖𝑚 stands for the remaining 𝐿𝑔 after cutting and the limit below which animals cannot 

graze. Under grazing, decrease in 𝐿𝑔 is given by the conversion of animal intake (𝐼(𝑡)), expressed in 

kgMS-1.ha-1, into 𝐿𝑔 with a coefficient 𝑐. Animal intake is calculated with the HerbValo method, which 
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accounts for the animal intake capacity, herbage ingestability, grazing severity, and the potential use 

of animal food supplements. See Delagarde et al. (2017) for more details. 

 

 

 

Finally, the daily update of the sum of growing degree days (𝐺𝐷𝐷∑) is given by: 

 

𝐺𝐷𝐷∑(𝑡 + 1) = { 

200                                                                              𝑚𝑜𝑤𝑖𝑛𝑔

(1 − 𝑝) (𝐺𝐷𝐷∑(𝑡) +  𝑇𝑔(𝑡)) + 𝑝 × 200            𝑔𝑟𝑎𝑧𝑖𝑛𝑔

𝐺𝐷𝐷∑(𝑡) +  𝑇𝑔(𝑡)                                                            𝑒𝑙𝑠𝑒

 

 

Eq. 9 

with  

𝑇𝑔(𝑡) = {
 0                                        𝑑𝑜𝑦 ≤ 60

max(0, min(20, 𝑇(𝑡)))          𝑒𝑙𝑠𝑒
 

Eq. 10 

and 

𝑝 =
𝑑(𝑡)

(𝐿𝑔(𝑡) − 𝐿𝑔,𝑙𝑖𝑚)
 

Eq. 11 

 

Figure 3– 2. Empirical function modulating growth (a, b, c) and senescence (d). (a) the effect of 

temperature on growth (𝑓1 in Eq. 2); (b) the effect of the actual evapotranspiration (𝐸𝑎) on 

growth with 𝐼𝑊𝑈𝐸 representing the instantaneous water use efficiency (𝑓2 in Eq. 2); (c) the 

seasonal pattern of growth depending on the sum of growing degree days (𝑓3 in Eq. 2); and 

(d) the seasonal pattern of senescence (𝑓4 in Eq. 7). 
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The 𝐺𝐷𝐷∑ represents the temperature-dependent development of plants along the growing season, 

which depends on the range of efficient temperature for growth, typically between 0°C and 20°C for 

temperate grasslands (Eq. 10) and reset to 0 during the winter (Cros et al., 2003). After management 

events, the vegetation starts a new cycle of development and  𝐺𝐷𝐷∑ is set to 200 °C for the entire 

grassland area under mowing (Bossuyt et al., 2018; Kuinchtner et al., 2021; Rivington et al., 2008) or 

in proportion 𝑝 to the grassland area that is fully grazed by animals (Eq. 9 and Eq. 10).  

 

3.2.4. Model calibration and validation 

We assimilated the observed 𝐿𝑔 derived from Sentinel 2 with the model described above using a 

calibration procedure (Dorigo et al., 2007; Villaverde et al., 2022). To optimize the identifiability of 

the model and thus the quality of the calibration procedure, we first fixed a set of parameters. The 

influence of phenology on growth and senescence was inherited from Jouven et al. (2006a) and implied 

a total of six parameters (the peak of flowering, the leaf lifespan, the start and end of the flowering 

period, and the minimum and maximum values of the seasonal factor, see Figure 3– 2). Jouven et al. 

(2006a) used the functional typology of temperate grass species developed by Duru et al. (2007) as a 

reference for defining those parameters. Using this same typology, we derived simple empirical 

relationships predicting the value of five of these parameters based on the peak of flowering expressed 

in growing degree days (GDD) (Appendix 3– A). Then, we fixed 𝑊∗ = 0.4, since Calanca et al. (2006) 

showed that such an assumption provided a similar result to more complex parametrization of the 

effect of hydric stress in similar mountainous grasslands. We also fixed the coefficient 𝑐 =  0.0012 

(in m².m-2/KgMS.ha-1) of conversion of aboveground biomass into LAI based on previous simulations 

of the PaSIM model performed for nearby grasslands (Ma et al., 2015). The 𝐿𝑔,𝑙𝑖𝑚 was fixed to 0.36 

based on field knowledge of the remaining aboveground biomass after mowing and severe grazing 

converted into LAI with 𝑐. Finally, we further fixed 𝐼𝑊𝑈𝐸 =  0.2 (in mm-1) to control the 

identifiability of the model. Indeed, several combinations of 𝐼𝑊𝑈𝐸 and 𝑔max values can lead to the 

same net daily increase of LAI for the same meteorological conditions. 𝐼𝑊𝑈𝐸 = 0.2 results in 

maximum potential growth for 5 mm of evapotranspiration and allows to keep realistic daily increase 

of LAI. All these assumptions result in a set of five input variables and four parameters for calibration 

(Table 3– 1). 
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Table 3– 1. Input variables and parameters for calibration (underlined) of the dynamical model of LAI. 

 

Inputs/parameters Description Unit Source 
E0 Daily potential evapotranspiration of the 

reference surface 
mm Meteorological stations 

T Daily mean temperature °C Meteorological stations 
P Daily precipitation mm Meteorological stations 
I Animal intake KgMS.d-1 Field data (HerbValo) 

Cuts Binary data of mowing events - Field data 
𝑔max Maximum daily increase in LAI m².m-2  

Peak Peak of flowering °C.d  

Wmax Maximum available water for plants mm  

𝑠max Basic rate of LAI decrease (senescence) m².m-2.°C-1  

 

 

The calibration procedure, similar to the LUT method, first consisted in selecting, for each of the 6 

paddocks separately, the best parameter combinations from 30,000 random draws of parameter values 

from prior uniform distributions (Table 3– 3). The ranges for 𝑔max and 𝑠max were selected from a 

previous investigation of the model to avoid unrealistic LAI estimates and trajectories. For instance, 

the maximum LAI observed in European grasslands in Gilmanov et al. (2007) was 7 m2.m−2. Then, 

the range of Peak values covers the phenological attributes of the functional typology of grassland 

species of Duru et al. (2007). The 𝑊𝑚𝑎𝑥 range was estimated for low-water retention soil with a 

shallow rooting depth (15 cm) and high-water retention soil with a deep rooting depth (60 cm). From 

the 30,000 model simulations, we selected the best 30 parameter combinations with the lowest mean 

squared error (MSE) between the observed 𝐿𝑔 (Sentinel 2-derived) and the model predictions, used as 

a cost function. We checked whether the best parameter estimates converged from a visual inspection 

of their posterior distribution (Appendix 3– B). 

The calibration procedure depicted above considers parameter values to be fixed during the 2016-

2020 period. However, some of them (i.e., 𝑔max, 𝑊𝑚𝑎𝑥 and 𝑠𝑚𝑎𝑥)  should be viewed as an integrated 

parameter influenced by the vegetation composition and/or nutrient availability, are not expected to 

remain constant through time but rather to be influenced by past events from the preceding growth 

periods. Since the model outputs are mostly sensitive to changes in 𝑔max (Appendix 3– C), we focused 

our attention on this parameter. Indeed, disturbances or physical stresses promote changes in 

vegetation composition or influence the storage of nutrients and carbohydrates necessary for initiating 

forthcoming vegetation growth (Cibils and Coughenour, 2001; Pouget et al., 2021; Schmid et al., 

2022). The variability of precipitation is also known to modify the soil nutrient supply in time and thus 

growth potential (Knapp et al., 2008). As these processes were not included in the model for simplicity, 

𝑔max should ideally be re-calibrated for each growth period. Therefore, we conducted a time-varying 
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parameter calibration of 𝑔max, with all the other parameters set as fixed values, inherited from the 

previous calibration procedure. Growth periods were based on the changing of seasons or management 

events that reinitialize the plant life cycle to the vegetative stage. Accordingly, a new growth period 

starts at the end of each winter or after the occurrence of cuts or heavy grazing. The best parameter 

combinations were selected using the same procedure as for the fixed parameter calibration except that 

we used 3,000 random draws of 𝑔max. 

We assessed the goodness-of-fit between the observed 𝐿𝑔 derived from Sentinel 2 and the model 

predictions, for each paddock, and for both the fixed and time-varying parameter calibration. For such 

internal validation of the model, we reported the R², intercept (with 95% confidence intervals), and 

slope (with 95% confidence intervals) of standard major axis regressions (Warton et al., 2006). In 

addition, we considered the mean absolute error (MAE), the maximum absolute error (MaxAE), the 

mean relative error (MRE), and the root mean square error (RMSE) of model predictions. For external 

validation, we further regressed the predicted 𝐿𝑔 to field measurements of the vegetation standing 

biomass, senescent biomass, and height records since ground measurements of LAI were unavailable. 

Only ten to fourteen measurements were available for each paddock. Therefore, we merged all data 

and built a mixed-effect model for testing a potential random effect of paddock identity. 

 

3.2.5. Drought response assessment and comparison between mowing and grazing 

We used model simulations to assess the response of the studied managed grassland paddocks to 

the drought events occurring between 2016 and 2020 and to decompose it into its resistance and 

resilience components. 

 We first assessed the severity of the drought events. To do so, we used the climatic records from 

the field meteorological station and computed a modified daily version of the Standardized 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010; modifications from Luna 

et al., 2023).  

We assessed the start of drought events as the date when the modified SPEI turns negative and the 

end of drought events as the next date when the modified SPEI became positive again (Table 3– 2; 

McKee et al., 1993; Vicente-Serrano et al., 2010). This allowed the computation of the duration of the 

drought events and their severity (DS) following 𝐷𝑆 = ∑ 𝑚𝑆𝑃𝐸𝐼𝑑
𝑒𝑛𝑑
𝑑=𝑠𝑡𝑎𝑟𝑡  (Haile et al., 2020; McKee 

et al., 1993). Drought events no longer than 10 days, outside the growing season (March to November), 

and of moderate intensity (no modified SPEI value below -1.5 during the drought) were excluded from 

the subsequent analyses.  

 



Chapter 3 

 

168 

 

Table 3– 2. Modified SPEI rating adapted from SPI (McKee et al., 1993). 

 
Values Water balance category 

≥ 2.0 Extremely wet 

1.5 < modified SPEI ≤ 2.0 Severely wet 

1.0 < modified SPEI ≤ 1.5 Moderately wet 

0.0 < modified SPEI ≤ 1.0 Slightly wet 

-1.0 < modified SPEI ≤ 0.0 Slightly dry 

-1.5 < modified SPEI ≤ -1.0 Moderately dry 

-2.0 < modified SPEI ≤ -1.5 Severely dry 

≤ -2.0 Extremely dry 

 

 

Second, we used the best set of parameter values of each paddock to simulate 𝐿𝑔 under two 

conditions, namely under normal (or observed) meteorological and unlimited water supply (i.e.,  𝑊 is 

fixed at 𝑊𝑚𝑎𝑥) conditions. The logarithm of the ratio of 𝐿𝑔 between these two simulations reflects thus 

the instantaneous response to drought (Log Response Ratio or LRR; Figure 3– 3). From the trajectories 

of LRR, we computed two metrics reflecting grassland resistance and resilience to each drought event 

in compliance with the definitions of Van Meerbeek et al. (2021). The resistance was defined as the 

minimum LRR during the drought event and normalized between 0 and 1, with 0 indicating no 

reduction of 𝐿𝑔 in observed meteorological conditions compared to unlimited water supply and 1 as a 

reduction of 95% of 𝐿𝑔. The resilience was derived from the slope between the minimal LRR during 

the drought event and complete recovery or the next drought event (Figure 3– 3).  

To identify the determinants of grassland resistance and resilience to drought, we fitted linear 

regression models of the resistance and resilience metrics with drought severity per type of 

management and their interaction. 
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3.3. Results 

 

3.3.1. Fixed and time-varying parameter calibrations 

A visual inspection of the posterior distribution of the parameter estimates indicates convergence 

toward one single optimum value for all paddocks (Appendix 3– B). From the 30,000 random draws 

of parameter values, we used the mean of the best 30 parameter combinations per paddock for the 

fixed parameter calibration of the model (Table 3– 3). 

 
Table 3– 3. Summary of initial and calibrated model parameters. 

 
 Parameters FF1a FR2 a FS1 a PE1 b PR2 b PS1 b 

𝑔𝑚𝑎𝑥 prior distribution 𝑈(0.05, 0.25) 𝑈(0.05, 0.25) 

 posterior mean 0.105 0.121 0.127 0.165 0.233 0.119 

𝑊𝑚𝑎𝑥 prior distribution 𝑈(15, 90) 𝑈(15, 90) 

 posterior mean 86 88 77 76 81 81 

   Peak prior distribution 𝑈(1000, 1800) 𝑈(1000, 1800) 
 posterior mean 1110 1083 1082 1023 1018 1044 

𝑠𝑚𝑎𝑥 prior distribution 𝑈(0.001,0.005) 𝑈(0.001,0.005) 
 posterior mean 0.00144 0.00146 0.00223 0.00456 0.00475 0.00232 

a Mowed paddocks, b Grazed paddocks 

 

 

The internal validation of the model showed that the two calibration procedures, namely the fixed 

parameter calibration and the time-varying 𝑔𝑚𝑎𝑥 calibration provided unbiased estimates of Lg (Table 

Figure 3– 3. Quantification of the resistance (Rst) and resilience (Rsl) of the managed 

grassland based on the logarithm of the drought response ratio (LRR). 
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3– 4). Indeed, for both calibration procedures, the relationship between the observed and predicted Lg 

was very close to the 1:1 line (Appendix 3– D). However, regarding the dispersion around the 

regression line, the time-varying 𝑔𝑚𝑎𝑥 outperformed the fixed parameter calibration with a mean R² 

of 0.83, as opposed to a mean of 0.66. This also translated to an average reduction of 0.15 of the mean 

absolute error; 0.60 of the max absolute error; 0.14 of the mean relative error; and 0.18 of the root-

mean-square error between the fixed and time-varying parameter calibration. In addition, the model 

showed slightly better predictive accuracy for mowed paddocks than grazed ones (Table 3– 4) with a 

difference of 0.035 mean absolute error; 0.175 max absolute error; 0.07 mean relative error; and 0.06 

root mean square error.   

 

Table 3– 4. Assessment of the goodness-of-fit between the predicted and observed Lg for the internal validation 

of the mowed and grazed paddocks. 

 

Goodness-of-fit 

measures: 
FF1  FR2  FS1  

Mowed paddocks Fixed Time-varying Fix Time-varying Fixed Time-varying 

MAE 0.39 0.25 0.46 0.26 0.44 0.33 

MaxAE 1.50 1.14 3.29 1.35 1.66 1.84 

MRE 0.33 0.20 0.30 0.18 0.29 0.22 

RMSE 0.51 0.33 0.61 0.36 0.56 0.43 

R² 0.74 0.89 0.69 0.89 0.71 0.81 

Intercept 0.39 0.01 0.33 0.06 -0.15 -0.01 

95% CI for intercept (0.26, 0.51) (-0.09, 0.11) (0.18, 0.48) (-0.05, 0.17) (-0.33, 0.02) (-0.15, 0.13) 

Slope 0.79 0.98 0.79 0.96 1.00 0.97 

95% CI for slope (0.73, 0.86) (0.93, 1.03) (0.73, 0.86) (0.91, 1.01) (0.92, 1.09) (0.91, 1.05) 

 PE1  PR2  PS1  

Grazed paddocks Fixed Time-varying Fixed Time-varying Fixed Time-varying 

MAE 0.48 0.33 0.57 0.41 0.34 0.21 

MaxAE 1.93 1.41 2.36 2.74 2.35 1.04 

MRE 0.39 0.23 0.33 0.24 0.51 0.25 

RMSE 0.61 0.43 0.76 0.59 0.49 0.30 

R² 0.48 0.78 0.61 0.74 0.72 0.90 

Intercept 0.04 -0.31 -0.44 -0.33 0.24 -0.08 

95% CI for intercept (-0.16, 0.23) (-0.45, -0.16) (-0.7, -0.19) (-0.51, -0.15) (0.11, 0.37) (-0.17, 0.01) 

Slope 0.97 1.13 1.21 1.05 0.88 1.02 

95% CI for slope (0.86, 1.08) (1.05, 1.22) (1.1, 1.34) (0.97, 1.14) (0.81, 0.95) (0.97, 1.07) 
Mean Absolute Error (MAE), Max Absolute Error (MaxAE), Mean Relative Error; Root Mean Square Error (RMSE) 

 

 

The external validation of the model, where the predicted Lg was compared to ground 

measurements of biomass and vegetation height, showed mixed results. We built a mixed model of 

total biomass, senescent biomass, and vegetation height (measured with an herbometer) where the 

predicted Lg had a fixed effect and paddock ID a random effect on the intercept. The analyses yielded 

marginal (marg) R² values (i.e., the variance explained by the fixed factor) of below 0.40 and 
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conditional (cond) R² values (i.e., the variance explained by both fixed and random factors) below 0.52 

for both calibration procedure (Table 3– 5). Among the three field measurements, the total biomass 

yielded the highest conditional R² at 0.515 for the fixed parameters and 0.473 for the time-varying 

𝑔𝑚𝑎𝑥. The lowest conditional R² of 0.037 was between the predicted Lg of the time-varying 𝑔𝑚𝑎𝑥 and 

vegetation height. Beyond the goodness-of-fit of these mixed-effect models, the signs of the estimated 

fixed effects (the predicted Lg) were consistent with basic expectations: positive for height and total 

biomass and negative for the senescent biomass. 

 

Table 3– 5. Summary of the external validation of the model. The p-values of the random intercept effect were assessed. 

  

Calibration Total biomass Senescent biomass 
Vegetation height 

(herbometer) 

Fixed parameter 
         

Fixed effect b SE tvalue b SE tvalue b SE tvalue  
465.53 81.63 5.704*** -57.39 11.09 -5.12*** 1.19 0.36 0.0017** 

Random effects sd 
  

sd 
  

sd 
  

Paddock ID 

(intercept) 

598.9*** 
  

44.1 
  

1.929*** 
  

Residual 804.7 
  

80.2 
  

2.893 
  

          
Fit R² marg R² cond 

 
R² marg R² cond 

 
R² marg R² cond 

 

 
0.247 0.515 

 
0.322 0.479 

 
0.13 0.4 

 

Time-varying 

parameter 

         

Fixed effect b SE tvalue b SE tvalue b SE tvalue  
498.06 81.46 6.114*** -59.16 12.43 -4.76*** 1.49 0.38 3.929*** 

Random effects sd 
  

sd 
  

sd 
  

Paddock ID 

(intercept) 

427.2* 
  

44.53 
  

2.426* 
  

Residual 809.2 
  

82.57 
  

8.051 
  

          
Fit R² marg R² cond 

 
R² marg R² cond 

 
R² marg R² cond 

 

 
0.327 0.473 

 
0.27 0.435 

 
0.181 0.37 

 

        
 

 

As an additional qualitative assessment of the reliability of the model, the posterior distributions of 

the parameter (Appendix 3– B) agreed with some general characteristics of the grasslands under study. 

The 𝑊𝑚𝑎𝑥 did not vary much between the paddocks and was overall high, which is consistent with the 

overall high and homogeneous soil water holding capacity across the site and deep rooting. The 

senescence and growth rates were slightly higher for the grazed paddocks, which is also consistent 

with the tendency of grazing to promote compensatory growth associated with the high rate of plant 

tissue turnover (Järemo and Palmqvist, 2001; McIntyre et al., 1995; McIntyre et al., 1999; 

McNaughton, 1983; Stowe et al., 2000). However, the estimated peak of flowering was early for all 

paddock, which is not in accordance with the phenology of the dominant grass species of the site, 
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namely Agrostis capillaris, Festuca rubra, and Anthoxanthum odoratum, which are expected to flower 

later in the growing season. 

 

3.3.2. Quantification of severe drought events 

We identified eight drought events during the growing season of 2016 to 2020 (Figure 3– 4). The 

top four drought events with DS values above 80 started between July and August until October and 

November of the early fall seasons (Appendix 3– E). The year 2018 had the most severe drought event 

(DS=165.5), followed by the years 2020 and 2019 with DS = 146.2 and DS =122.8, respectively. 

Although the years 2016 and 2017 are also considered as drought years in western and central Europe 

(García-Herrera et al., 2019) our assessment showed lower DS values compared to 2018 to 2020. Our 

analysis revealed that the drought event severities were mainly dependent on drought duration and 

timing (summer) rather than intensity (Appendix 3– F). 

 

 

 

3.3.3. Managed grassland response to drought 

Within expectations, the Logarithm of the drought Response Ratio (LRR) was mostly negative 

during and right after the severe drought events. The vegetation was not responsive mostly for 

moderate spring droughts and the light summer drought of 2018. Surprisingly, the LRR became 

positive (especially in one grazed paddock labeled PE1) after the most severe summer drought of 2016, 

2018, and 2019 during the fall and winter, indicating that 𝐿𝑔was greater for simulation with observed 

meteorological conditions than under an unlimited water supply (Figure 3– 5). 

Figure 3– 4. The quantified drought severity of the growing season as the sum of the integral area of the drought 

intensity and duration based on the modified SPEI trajectories from 2016 to 2020. 
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We found that the resistance (assessed as the normalized minimum LRR during the drought events) 

was negatively related to drought severity; however, this relationship was not linear (Figure 3– 6), with 

a clear threshold of drought severity around 80, corresponding to events shorter than 75 days. Below 

this threshold, the resistance remained high with a mean of 0.93 while above this threshold the 

resistance was also homogeneously distributed around a mean value of 0.6. We did not find any 

significant difference in resistance between the two types of management, be it below and/or above 

the threshold of drought severity of c.a. 80.  

 

Figure 3– 5. Response ratio of all the selected paddocks. The black solid continuous lines represent the trajectories of 

the response ratio. The inverted triangles indicate the mowing dates and the short horizontal ticks the grazing 

periods. The colored areas depict drought intensity according to the modified SPEI. 
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Considering the resilience to all drought events, we found no relationship between drought severity 

and no management effect (Figure 3– 7). However, the pattern was different below and above the same 

threshold of drought severity (DS = 80). Below it, the resilience was low. Since both resistance and 

resilience metrics account for the minimum LRR during drought events, this result suggests that even 

for light drought impacts the vegetation needs a minimum time to fully recover.  For drought events 

of high severity (above the 80 threshold) we found a decrease in resilience with drought severity.  

Despite a p-value of 0.2 for the interaction between drought severity and management in our analysis, 

the grazed paddocks were slightly more resilient than mowed ones for drought events, while both 

management showed the same low level of resilience for the most severe droughts. 

 

 

 

Figure 3– 6. Resistance to drought as a function of drought severity. 

Figure 3– 7. Resilience component of the grassland response to drought (a). The decreasing resilience trend after 

the threshold of DS = 80 is highlighted (b). The grassland resilience to drought was based on the LRR. 
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3.4. Discussion 

We created a simple dynamic model simulating daily changes in green LAI (𝐿𝑔) for temperate 

managed grasslands using inputs from field meteorological stations, Sentinel 2 long-term observations, 

and management data from the SALAMIX project and HerbValo method. Since the simulated 

trajectories of 𝐿𝑔 were close to the observations derived from Sentinel 2 by inversion of the PROSAIL 

radiative transfer model, we used our model to assess the resistance and resilience of grasslands facing 

fluctuating drought severities between 2016 and 2020. Overall, we found insignificant differences in 

drought responses between mowed and grazed paddocks. However, our results revealed that grazed 

paddocks were slightly more resilient than mowed paddocks when drought is too severe.  

 

Our dynamic model was able overall to predict the trajectories of 𝐿𝑔 derived from Sentinel 2 time 

series but performed better when calibrating 𝑔𝑚𝑎𝑥 as a time-varying parameter, as already highlighted 

in other contexts (Reyes et al., 2017; Thirel et al., 2015). Such calibration counterbalances the overall 

simplicity of our model which hinders basic vegetation properties to evolve during the simulation. 

Indeed, different types of disturbances, like climatic extremes or management practices, or stresses, 

like heat and frosts, modify the amount of stored carbohydrates in plant tissues (Janeček et al., 2015; 

Kahmen et al., 2005; Volaire et al., 1994), or the mineralization of soil nutrients and thus their 

availability for plants (Borken and Matzner, 2009; Deng et al., 2021; Larsen et al., 2011).  As a 

consequence, the rate of daily growth for the next growth period, after drought and other disturbances, 

is expected to change (Schnyder and de Visser, 1999). In addition to changes in physiological and 

biochemical processes influencing vegetation growth rate at short time scale, species turnover within 

the course of the growing season may be high, especially after management events (Pouget et al., 

2021). The calibration of time-varying parameters can be logically supported by some ecological 

arguments. However, we did not find any clear pattern of changes in  𝑔𝑚𝑎𝑥  during the season with 

management or droughts events (Appendix 3– G). This does not necessarily invalidate the calibration 

approach but reflects the complexity of vegetation changes resulting from the sequence of diverse 

environmental changes of different natures and magnitudes. However, a potential disadvantage of 

time-varying parameter calibration is the risk of overfitting. More precisely, grazed paddocks were in 

our case subject to frequent and short rotations. The 𝑔𝑚𝑎𝑥 was repeatedly fitted for short periods with 

very few 𝐿𝑔 observations so that changes in 𝑔𝑚𝑎𝑥 may not reflect the role of hidden ecological 

processes and even possibly flaw the vegetation response to drought intended to be simulated by the 

model. Other methods of time-varying parameter estimation should be considered to avoid this risk of 

overfitting (Sawada, 2022). 
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The external validation of our model did not result in a tight relationship between the predicted 𝐿𝑔 

and ground measurements of biomass or vegetation height. Such low goodness-of-fit was unexpected. 

Indeed, LAI is linked to the amount of solar energy captured by the leaves, which allows for a good 

approximation of photosynthetic activity and productivity (Ruimy et al., 1999; Verrelst et al. 2016), 

and ultimately of biomass production (Prieto-Blanco et al., 2009; Yu et al.,2018). We attribute our 

poor external validation to the discrepancy in the scale of ground measurements and Sentinel 2-based 

estimation of 𝐿𝑔. The total biomass was recorded in quadrats with a 70 cm x 70 cm dimension or about 

0.50 m2 area. However, 𝐿𝑔 estimates of the same location were based on 20 m x 20 m Sentinel 2 pixels 

amounting to 400 m2 area on the ground. Grassland vegetation can be highly heterogeneous within 

grasslands even at a very fine spatial scale (Adler et al., 2001; Bloor et al., 2020). Thus, biomass 

estimates over 400m² from half-meter square sampling might be critical. Better validation of the model 

predictions should ideally include several well-distributed ground measurements of the 𝐿𝑔 in the 

targeted Sentinel 2 pixels. Destructive methods should in this case be preferred to optical ones, which 

usually underestimate LAI (Brenner et al., 1995; Bréda, 2003) and in order to separate green from dead 

leaves. Then on the other hand, the SWIR 1 and 2 reflectance bands, which have the 20 m x 20 m 

spatial resolution, may be excluded as inputs in the PROSAIL radiative transfer model to reduce the 

represented ground area from 400 m2 to 100 m2. Indeed, the retrieval of LAI using the inversion of 

PROSAIL showed no significant improvement with the addition of SWIR bands (Punalekar et al., 

2018). 

 

The experimental site experienced extreme drought events from the years 2018 to 2020. These 

identified years were consistent with conducted drought assessment studies in Europe (Blauhut et al., 

2021; Hari et al., 2020; Rakovec et al., 2022). From here, the close link between predicted and Sentinel 

2-derived 𝐿𝑔 allowed us to analyze the resistance and resilience to drought events of the six paddocks 

under study, despite the inconclusive external validation of the model.  

Normally, in grassland response to drought studies, exceeding a drought intensity threshold results 

in a change in the ecosystem state or to mortality (Breshears et al., 2016; Matos et al., 2020b). In a 

multiple ecosystem response to drought study, an SPEI threshold of -1.0 revealed drought impacts 

(Chen et al., 2022). In our results, we observed changes in grassland resistance and resilience after a 

given drought severity threshold. Both responses demonstrated a declining trend upon exceeding DS 

80. We showed that drought severity was positively correlated with drought duration (Appendix 3– 

D). For example, we found that the resilience or the rate of recovery decreased with increasing drought 

severity, intensified by drought duration, from the same threshold. Our result confirms the findings by 
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Volaire et al. (2009) from a growth chamber pot experiment. More severe senescence and meristem 

damages occur for longer durations of water deficits (Volaire et al., 2009; 2014). Then the drop in 

resistance can be related to the function f2 (in Eq. 2), which has been validated by Calanca et al., 2006, 

but were unable to reproduce the progressive effect of drought duration or severity found in 

experimental studies (Gao et al., 2019). In a long-term field experiment, mowing grasslands removes 

the canopy cover and exposes the soil, thus increasing evaporation rates, removing available water in 

the soil, and lowering resistance to drought (Vogel et al., 2012). The high number of species in 

relationship to productivity increases the competition for soil resources (N and water) leading to their 

depletion under severe drought thus decreasing resistance (Luo et al., 2023; Vogel et al., 2012). Our 

model was unable to inform which process better explains the low resistance due to the lack of 

biodiversity and nutrient components. 

No significant differences between the two management treatments were detected in our study. 

Nevertheless, we suspect a slightly higher resilience in grazed paddocks to drought than in mown ones. 

Bütof et al. (2012) found the same ranking between pasture and meadows but further found that mown 

pastures had greater resilience to drought. In their case, these grasslands were first grazed and then 

mown. It was the opposite in our case. Then in terms of the timing, mown pastures are grazed in the 

late season (Dormann et al., 2017), as opposed to cuts during the first herbage uptake in our mowed 

paddocks. This big difference in the timing of cuts may support the similarity of our results to Deléglise 

et al. (2015). In the field experiment they conducted in the Swiss Jura mountains; grazed grasslands 

have slightly better resilience than mowed ones. At this stage, we cannot classify, with certainty, our 

mowed paddocks as meadows or mown pastures. We call for further investigation on determining 

which modalities of mowing and grazing mixtures provide the best resistance and resilience. Finally, 

our results are unfortunately based on a limited number of paddocks, which considerably reduces the 

power of the statistical comparisons between the two management regimes. Extending the simulation 

protocol to the 27 remaining paddocks may lead to different conclusions. 

 

Our assessment of resilience and resistance to drought was based on the dynamics of the log-

response ratio between 𝐿𝑔 simulation under normal or observed meteorological conditions (i.e., 

including meteorological drought) and 𝐿𝑔 simulation under unlimited water supply. As expected, when 

severe drought occurred the LRR was negative. More surprisingly, the LRR became positive (greater 

𝐿𝑔 under drought than under unlimited water supply) in fall and winter following severe summer 

drought. One possible reason might be related to unrealistic grazing intensities in simulations under an 

unlimited water supply. Indeed, we did not modify the herbage uptake by animals between the 
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simulations of the normal and drought conditions. Thus, the applied biomass removal under normal 

conditions was applied also under the unlimited water supply scenario. This removal would have been 

larger (either through a larger stocking rate, longer grazing periods, or application of a second cut in 

mowing paddocks) in the absence of drought. The proportion of removed biomass is thus likely too 

low, keeping the vegetation in a mature phase where senescence predominates on growth and green 

tissues vanish. Conversely, under drought conditions grazing or cutting renewed the vegetation to a 

vegetative stage leading to higher green tissue than under the unlimited water supply scenario. An 

alternative explanation is that drought events may trigger over-compensation of grassland growth 

(Zhou et al., 2022), but such effects are not likely to last for long periods as found in our simulation 

results. 

 

The result of this study supports the benefit of using a parsimonious process-based model that 

assimilates Sentinel 2 reflectance data for the assessment of managed grassland resistance and 

resilience to drought. The model is promising but may require additional developments to simulate 

temporal changes in the parameters related to the vegetation properties. For instance, considering the 

diversity of ecological syndromes exhibited by the plant species may help in explaining different 

resistance and resilience capacities between successive drought events and between different paddocks 

subjected to changes in management practices (Fry et al., 2021; Manea et al., 2016; Pouget et al., 2021; 

Stampfli and Zeiter, 2004). In addition, we considered the soil as a simple stock of water. The 

performance of the model may be further improved by accounting for the dynamics of the soil nutrient 

availability, which is recognized to be impacted by water deficits (Dujardin et al., 2012; Knapp et al., 

2008). Indeed, during drought, the availability of nutrients, such as nitrogen, to plants is limited but 

nitrogen becomes excessively available right after droughts (Dujardin et al., 2012; Hofer et al., 2017; 

Lucci, 2019; Knapp et al., 2008). This further entails the inclusion of the practice of fertilization as a 

path for nutrient inputs. Ultimately, we raise the dilemma of trade-offs and priorities in the 

developments to better understand grassland response to drought and the challenges of increased model 

complexity. Models should remain reasonable for large-scale applications as permitted by satellite 

optical images.  
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Appendices 

 
Appendix 3– A. Empirical relationship reference for the derivation of the Peak parameter. The figure was adapted from 

Duru et al., 2007. The Peak of flowering and Leaf life span are measured in terms of degree days ( ̊ C.d). 
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Appendix 3– B. Posterior distribution of the model parameters during the calibration phase. The derivation process 

originated from a uniform distribution (grey line). Multiple simulations of different parameter combinations were 

conducted for each paddock. The means of the best 30 parameter combinations were used as the calibrated parameter 

values. We conducted a visual inspection to determine if the best parameter estimates were within the expected parameter 

ranges. Both Wmax and Peak were similar across all paddocks due to homogenous environmental and vegetation 

composition. The gmax and smax were expected to be influenced by management activities. 
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Appendix 3– C. Bar plots of the PCA generalised sensitivity indices of the LAI model. The light bars represent the main 

sensitivity of the indices and the dark bars the total sensitivity (including interactions with other parameters). The different 

panels represent different paddocks with different management regimes.  

 

 

The model was run for combinations of parameter values set according to a full factorial design 

with 5 levels for each of the 4 parameters of the model. The levels ranged between values reported in 

the table3 - 3 of the main text. Then, the variability of the model outputs was decomposed in d 

canonical dynamics representing basic trajectories. Finally, ANOVA-based sensitivity indices were 

computed for each basic trajectory. These were summarized with the global sensitivity index that 

averages the sensitivity indices of the first two components weighted by their contribution to the total 

inertia.  
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Appendix 3– D. Model validation per paddock based on the relationship between the model-predicted Lg and Sentinel 2-

derived observed Lg.  
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Appendix 3– E. Analysis of drought event timing or occurrence. Drought timing reflects the seasonality of drought events 

within a year which is quantified as the number of days. The seasons in the region were winter (December to February), 

spring (March to May), summer (June to August), and fall (September to November).  

 

 

 

Appendix 3– F. Analysis of drought events based on all the available drought observations. Drought event severity depends 

mostly on drought duration. Drought timing reflects the seasonality of drought events within a year which is quantified as 

the number of days. 
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Appendix 3– G. Trajectories of the time-varying gmax calibrations (black solid horizontal lines) for all paddocks. The 

vertical broken lines are mowing event dates, while the blue polygons are the grazing event durations. 
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GENERAL SYNTHESIS 

 

I. Summary  

The main objective of this Ph.D. thesis was to take advantage of the potential of satellite image time 

series to improve knowledge of the response of managed grasslands to drought in real-life conditions 

and with large spatial and temporal coverages. A better understanding of the response of grasslands to 

drought promotes avenues to find solutions (agricultural practices, soil and climatic conditions, and 

plant functional diversity and community structure) to mitigate their negative effects and ensure the 

sustainability of ecosystem services. 

To do so, I first reviewed and classified existing methodological assessment approaches of 

grassland response to drought that used remote sensing data and techniques. Then, based on this 

review, I selected the most appropriate approach to quantify the variability of grassland sensitivity to 

drought at the regional scale. This second chapter moved beyond the current knowledge by further 

identifying the drivers of said variability from a group of pedoclimatic factors, vegetation diversity, 

and management practices. The third chapter better decomposed the resistance and resilience 

capacities of managed grassland facing natural droughts using a parsimonious grassland growth model 

that assimilates satellite data.  

Finally, this thesis focused on the overlapping elements of the remote sensing of vegetation 

properties, the ecology of agriculturally managed grasslands, and the climatology of drought severity.  

 

J. Principal results 

In Chapter 1, this thesis highlighted two main results from the review of current studies assessing 

grassland response to drought using remote sensing. First, the assessment approaches were classified 

into five groups, namely: (i) vegetation index threshold, (ii) year comparison, (iii) time series analysis, 

(iv) statistical inference, and (v) mechanistic modelling. The use of vegetation indices is a common 

component of all approaches, but each approach exhibits a varying number of inputs and complexity 

of analyses. The vegetation index threshold compares the response of grassland sites to the same 

drought event. As the most basic approach, it encounters difficulties in attributing drought impact from 

other disturbances. The year comparison requires at least two years with contrasting conditions (e.g., 

wet/normal, and dry, drought presence or absence). It quantifies drought impact as the difference 

between the vegetation index of the years of interest. However, this approach faces uncertainties in 

determining the true baseline or reference condition and drought severity level concerning the deferred 

years during comparison. The time series analysis addresses the uncertainties with the baseline and 
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drought severity levels. The time series analysis accounts for the inherent dynamic of grasslands and 

drought, and it analyses grassland response to drought based on the paired anomalies of long-term 

satellite reflectance and drought severity trajectories. Accordingly, its limitation lies in the required 

robustness and completeness of observations. Statistical inference is the most used approach that 

determines grassland response to drought from the statistical relationship of vegetation indices and 

drought severity. It requires multiple observations to establish a strong correlation. Despite the 

determined grassland response, it fails to properly differentiate between grassland resistance and 

resilience to drought. The mechanistic modelling approach allows the simulation of gap-free dynamics 

of grassland properties. With the assimilation of remote sensing data, comprehensive assessments of 

grassland resistance and resilience to drought can be done, especially in the absence of field data. 

Unfortunately, the informative output of models necessitates multiple types of data related to complex 

processes and requires constant parameter recalibration when implemented in other sites with different 

conditions. Despite the advantages and limitations of these assessment approaches, their application 

greatly depends on the research objectives and available data.  

The thesis results filled the gap in the review of grassland response to drought assessment using 

remote sensing and showed consistency among existing reviews on the use of remote sensing for 

ecosystem studies. Similar approaches are used to estimate grassland biomass or classify land cover 

from satellite images, and to link satellite observations and field measurements. The use of vegetation 

index for grassland property estimates or grassland type and other ecosystem classification involves 

multiple thresholds and classification algorithms (Ali et al., 2016; Reinermann et al., 2020; Wang et 

al., 2022). Time series remote sensing data, despite the presence of gaps, provide better estimates of 

biomass (Ali et al., 2016; Reinermann et al., 2020; Wang et al., 2022) than single date estimates. 

Regression models, which are under the statistical inference approach, provide linkages between in 

situ measurements and satellite reflectance information (Ali et al., 2016; Wang et al., 2022). The 

simulation models correspond to mechanistic modelling with the use of remote sensing data to predict 

grassland growth parameters together with climate information (Ali et al., 2016; Reinermann et al., 

2020). Despite these similarities among approaches, the review recognizes the difference between 

remote sensing use for grassland monitoring and grassland response to drought assessment. Then it 

focused on the description of the grassland response to drought assessment methods. Furthermore, this 

thesis closely provided and demonstrated the advantages and disadvantages of available assessment 

approaches for a given objective.    

Second, the review identified that conducted studies on grassland response to drought using remote 

sensing were concentrated in the Mongolia Plateau in Central Asia and Great Plains in North America. 

Despite the coverage of studies on temperate grasslands, the potential of remote sensing for assessing 
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grassland response to drought has not been applied to all biogeographic regions of the world with few 

studies in the temperate regions of Western Europe. In a review of forest and grassland ecosystem 

health assessments using remote sensing, Soubry et al. (2021) found that assessment studies were 

mostly located in North America, Central Asia, and Western Europe. They identified disturbance 

regimes for forests and grasslands and found that the top five ecological stressors were climate change, 

grazing, fire regime, insect infestation, and invasive species and weeds (Soubry et al., 2021). However, 

among the climate change stressors, drought was reflected only in the forest and grassland of North 

America (Hoover et al., 2014; Olthof and King, 2000; Soubry et al., 2021). Reinermann et al. (2020), 

whose focus was on the use of remote sensing for grassland monitoring, also showed a small number 

of studies in the Western European region. In terms of manipulated rainfall experiments conducted on 

grasslands, Matos et al. (2020) found the concentration of study sites within North America and 

Western Europe. Ultimately, this thesis provided additional comprehension of the response of 

temperate managed grasslands located in parts of Western Europe. Doing so contributes to the better 

acknowledgment of the variability of grassland response to drought in space and time (Cardoso et al., 

2011; Hortal et al., 2015; Ribeiro et al. 2016). 

 

In Chapter 2, the regional assessment revealed that temperate managed grasslands have a large 

variability of sensitivity to drought within the mountainous Massif central region. This stresses the 

need to address the Hutchinson shortfall, which relates to a lack of knowledge of the variability of 

grassland response to drought, and the potential of remote sensing for said use. Field experiments have 

provided evidence on the variability of grassland response to drought (Cherwin and Knapp, 2012; 

Heisler-White et al.  2009; Knapp, Carroll, et al., 2015), but are limited by the unique implementation 

of drought-induced treatments, monitored variables, and by the spatial and temporal scales of the 

studies (Fraser et al., 2013). Field experiments implemented guidelines on the standardization of 

methodologies to address some of these concerns (Knapp et al., 2012). However, monitoring and 

observation of multiple grassland sites entail additional coordination (Knapp, Hoover, et al., 2015; 

Knapp et al., 2017). Chapter 2 also demonstrated that the use of remote sensing simplified the need for 

guidelines with standardized measures of grassland properties and drought severities over large spatial 

and temporal scales despite the inherent but manageable limitations of the Landsat satellite sensor 

being used for this purpose. The Landsat limitations are related to the temporal resolution, availability 

of cloud- and snow-free images, and scan-line corrector failure (Loveland et al., 2008).  

Chapter 2 further identified the drivers of such variability among pedoclimatic factors, vegetation 

diversity, and management practices. Within expectations, the soil water holding capacity 

demonstrated its mitigating influence on grassland sensitivity to drought. Zhao et al. (2008) 
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demonstrated the importance of soil available water for plants using pot experiments. The water 

stressed soil condition yielded low values across parameters, such as leaf relative water, and 

chlorophyll contents (Zhao et al., 2008). Forte et al. (2023) performed a mesocosm experiment using 

grassland monoliths under different drought treatments. Soil moisture supports vegetation resprouting 

best during early drought conditions under larger water availability for growth (Forte et al., 2023). 

This chapter also found that high vegetation functional diversity decreased sensitivity to drought. This 

result confirms several experimental studies (Gherardi and Sala, 2015; Loreau et al., 2021; Schnabel 

et al., 2021; Yachi and Loreau, 1999) that revealed that high functional diversity provides a mitigating 

influence on grassland response to climatic variabilities, such as drought. Accordingly, the regional 

remote sensing study was able to detect complementary results to drought experiments.  

On the opposite side, grazing increased sensitivity to drought, and the early use of grasslands also 

promoted higher sensitivity. However, Chapter 2 highlighted the inability of the statistical inference 

approach to differentiate between ecosystem resistance and resilience. For example, Bütof et al. (2012) 

and Deléglise et al. (2015) conducted field experiments that showed the high resilience or recovery of 

grazed grasslands compared to mowed ones.   

Overall, the identified drivers of grassland response to drought (regional scale) demonstrated the 

complementarity between remote sensing studies and field experiment results. Chapter 2 revealed 

possible complex interactions between these drivers, which the correlations did not disentangle. The 

grazing and mowing practices, the influence of phenological developments of vegetation, and the 

occurrence of drought all coincide during the summer of the growing season. Nevertheless, these 

confounding factors may initiate new drought experiments. Caution should be drawn to the Chapter 2 

result regarding the mitigating effect of nitrogen fertilization on grassland sensitivity to drought. N 

fertilization promotes the growth of selected tall grasses (Fiala et al., 2011; Xiong et al., 2018), and 

may increase the functional diversity and modify community weighted means of growth syndromes 

and specific leaf area, respectively (Niu et al., 2014). However, excessive N fertilization is ill-advised 

in grasslands during drought to avoid the risk of nitrate leaching (Klaus et al., 2020). Furthermore, N 

fertilization may further decrease species richness, which could ultimately lead to reduced grassland 

functional diversity (Kübert et al., 2019). Other management practices, such as grazing and mowing, 

also facilitate vegetation diversity, thus indicating cascading effects toward grassland sensitivity to 

drought. 

As a new aspect in grassland sensitivity to drought studies, we revealed the importance of drought 

timescales. The strong mitigating effect of soil water holding capacity to sensitivity was highly 

prominent during drought timescales of 30 days or less. The mitigating effects of vegetation diversities 

and community structure were found at varying timescales. The influence of community weighted 
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mean (CWM) of seed mass was detected from 60 days or less. While the effect of CWM of specific 

leaf area (SLA) and functional dispersion of growth syndromes were observed at drought timescales 

of 60 days or more. All management practices influenced the sensitivity of grasslands to drought at all 

timescales.  

Drought experiments are generally conducted with a short time scale within homogenous 

environmental conditions to maximize treatment effects (Yuan et al., 2017). Observational studies 

allow the inclusion of time scales in the assessment of response to drought (Yuan et al., 2017). 

Accordingly, remote sensing permits the consideration of time scales as well. 

The regional assessment found a noisy relationship between vegetation index anomalies and 

drought severity indices. This suggests the role of confounding factors, such as the co-occurrence of 

grazing or mowing and drought, or the influence of other types of disturbances like vole infestation, 

or the occurrence of plant diseases. During the analysis, the regional assessment assumed constant 

values of species composition, leaf traits and thus functional diversity, and management practices. 

Whereas there are expected uncertainties regarding their values across time. 

 

 Chapter 3 further explored the influence of management practices on the grassland response to 

drought with the use of a process-based modelling approach assimilated with Sentinel 2 remote sensing 

data. It disentangled drought impact from other processes and moved beyond by assessing the 

resistance and resilience of managed grasslands to drought.  

To do so, a simple model, with few parameters to calibrate and few input variables, was required. 

Such a model, together with satellite data, has already been used to simulate the dynamics of vegetation 

cover and soil water content in semi-arid tropical grasslands in Australia (Choler et al., 2010). 

However, it did not incorporate the influence of management or phenological processes which are of 

great importance in our system under study.  

As highlighted in Chapter 1 and demonstrated in Chapter 2, the statistical inference approach was 

unable to decompose grassland responses into resistance and resilience due to the inherent 

characteristics of the approach and the absence of chronological trajectory information. The presence 

of data gaps and low temporal resolutions of satellite observations also contributed to the low accuracy 

in the determination of resistance and resilience. Thus, the interpretation of the results in Chapter 2 

was limited to the overall grassland sensitivity and was unable to account for the different components 

of drought responses. This is of great importance because nutrient fertilization stimulates grassland 

resistance and resilience differently (Bharath et al., 2020).  

This thesis succeeded in developing a simple process-based model of grassland green leaf area 

index (LAI) trajectories assimilated with Sentinel 2 time series observations. Climatic variables and 
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herbage use by grassland paddock management were the inputs of the model, and the maximal 

potential growth, the maximal amount of soil available water, phenology, and senescence rates were 

the four main model parameters. The local assessment used this simple model to simulate true climatic 

conditions (including drought periods) and non-drought conditions. Then it used a log response ratio 

to obtain both resistance and resilience of mowed and grazed paddocks. Chapter 3 found that both 

resistance and resilience showed a decreasing trend after a given threshold of drought severity of 80, 

which corresponds to a drought length longer than 40 days, with a constant modified SPEI of -2.0, or 

54 days, with constant modified SPEI of -1.5. There was no significant difference between mowed and 

grazed paddocks for both the resistance and resilience capacities, but resilience was slightly higher for 

grazed paddocks than mowed ones. This result contrasts with Chapter 2 where we found that grazing 

promoted higher sensitivity to drought than mowing and findings from previous field experiments 

(e.g., Deléglise et al., 2015).  Indeed, repeated grazing is expected to impede the storage of 

carbohydrates in plants and thus decrease the resilience of vegetation after drought (Zwicke et al., 

2015; Volaire et al., 2020). Beyond the different approaches for assessing grassland response to 

drought between field/pot experiments, linear model (Chapter 2), and the simulation protocol (Chapter 

3), the unexpected result may arise from the role of patchy grazing that is recognized to increase the 

spatial heterogeneity of vegetation (Adler et al., 2001; Bloor et al., 2020; Lei et al., 2016). Such spatial 

heterogeneity can result in higher functional diversity at the pixel/paddock scale (Bloor and Pottier, 

2014) and ultimately improve grassland resilience to drought (Barkaoui et al., 2016; Folke et al., 2004; 

Standish et al., 2014).  

Grazing results in a longer accumulation of seeds in the soil due to trampling and distributed open 

patches from uneven grassland vegetation cover (Jacquemyn et al., 2011; Müller et al., 2014), and 

consumed seeds by animals may germinate within manure (Gilhaus et al., 2017). 

Some studies reported a negative effect of grazing on the soil seed bank (Dutoit and Alard 1995; 

Loydi et al., 2012, Sternberg et al., 2003). The impact of grazing on seed bank density is unclear and 

needs further investigations, especially comparisons with different mowing regimes. In conclusion, 

different processes may lead to greater resilience either under grazing or mowing. Future researches 

should be set up to disentangle the possible actions of grazing on ecophysiological processes and 

community assembly with opposite consequences on grassland resilience to drought. 

 

K. Limitations of the thesis 

This thesis used satellite image time series for the assessment of grassland sensitivity and response 

to drought. Unfortunately, satellite-sensor products that offer a long historical collection of 

observations, such as MODIS and Landsat, lack high spatial, temporal, and spectral resolutions all at 
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once (Appendix A). In the regional assessment, despite the daily revisits of MODIS, it has a low spatial 

resolution between 250 m to 500 m for seven basic bands related to vegetation properties. Then the 

high spatial (at most 10 m) and temporal (five days) resolutions of Sentinel 2 were available only at a 

short temporal range that started on 23 June 2015. Landsat image collection, which covers the year 

1985 to 2019 and has a higher spatial resolution of 30 m, was considered in the regional grassland 

sensitivity to drought assessment despite the lower temporal resolution of 16 days. The difference in 

resolutions also limited the ability of the thesis to properly compare the used satellite image time series 

in Chapters 2 (Landsat) and 3 (Sentinel 2).  

The relationship between the vegetation index anomalies and drought indices was noisy. Satellite-

sensor data may be filtered and pre-processed to account for the occurrence of other disturbances 

linked to ground data. Recent studies have shown that mowing events can be detected for temperate 

managed grasslands using Sentinel 2 (Andreatta et al., 2022b), combinations of Sentinel 2 and Landsat 

8 (Schwieder et al., 2022), and even combinations of optical and microwave satellite data (Lobert et 

al., 2021). Unfortunately, the detection of grazing rotations with remote sensing is more challenging 

due to the selective removal of biomass by animals (De Vroey et al., 2022) which results in the 

heterogeneity of grassland reflectance signals (Lobert et al., 2021). Furthermore, intensive grazing 

rotations commonly reflect mowing-like reflectance signals (De Vroey et al., 2021). Detailed 

management data are lacking for large grassland areas and over long periods. Even records of the 

influence of multiple disturbances with possible interactions (pests, diseases, and fires) are seldom 

available. This shortfall strongly limits the use of modelling approaches at very large scales. Methods 

exist for the determination of these specific disturbances, such as pest or plant disease infections 

(Terentev et al., 2022; Zhang et al., 2019); and fire (Dwyer et al., 2000; Rogers et al., 2020; Wang et 

al., 2004). 

The simplicity of the grassland growth model of Chapter 3 was at the cost of a poor description of 

the processes influencing grassland dynamics. The model mainly focuses on the influence of soil 

available water for plants, phenological growth based on climatic variables, and herbage uptake 

practices. Thus, the model failed to account for soil nutrient cycles, and for the fine-scale dynamics of 

community composition which influences vegetation regrowth. At best, this model indirectly 

considered temporal changes of grassland basic properties with the time-varying parameter calibration 

approach.  

The look-up table (LUT) is characterized as a fast, simple, and robust inversion method of radiative 

transfer models (Darvishzadeh et al., 2008; Weiss et al., 2000). However, the 30,000 random parameter 

simulations still posed computation challenges with multiple observations and pixels per paddock. 

Then if higher inversion accuracy is needed, the size of LUT simulations should be increased to 50,000 
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or more; however, this entails additional computation power (Weiss et al., 2000). Due to this 

computational concern, only the results from six paddocks, representing the two grassland 

management treatments, were presented. The lack of significant difference between the grazed and 

mowed paddocks may be due to the low number of observations. 

 

L. Perspectives 

This thesis has provided research avenues that can further expand the understanding of grassland 

response to drought using remote sensing. From a global point of view, the remote sensing-based 

assessment of drought impacts on grassland should be conducted to cover other grassland types from 

all regions of the world. Then the determination of the influence of various combinations of 

pedoclimatic factors, level of diversity, and management practices will lead to the comparison of 

results. Then the drivers of grassland response to drought may further be explored with new additional 

factors. The 29 grassland and local properties considered in this thesis, specifically in Chapter 2, were 

limited to the data availability and commonly considered vegetation-related diversity metrics and 

traits. Other traits more related to drought and factors external to the grasslands are to be considered. 

Finally, the methodological developments for the simple process-based model may take two directions 

of improvement. 

Both the regional grassland sensitivity to drought assessment and process-based modelling 

assimilated with remote sensing data were driven by data availability. The use of linear models, in the 

regional assessment, was due to the lack of detailed management data, which hindered the 

implementation of the process-based model on the regional scale. In addition, the Landsat data, due to 

the 16-day temporal resolution, may not provide a good fit for the model in such a long time period. 

Satellite images with higher temporal resolutions may provide solutions, but their use will be 

dependent on the scale of the study (e.g., MODIS). Except for the detailed management data, the local 

scale process-based model lacks the characterization of the individual paddocks (i.e., soil and 

vegetation conditions) preventing the identification of significant drivers to grassland resistance and 

resilience. Overall, the regional assessment supported the identification of drivers to be included in the 

local scale process-based model. These drivers were the management practices and water availability 

in the soil for plants. 

For the analysis of the drivers of grassland sensitivity to drought, the influence of management 

practices is one big challenge due to the diversity of implementation schemes and differences in 

monitored properties. For example, in Deléglise et al. (2015) the experimental blocks were either 

grazed six times or mowed three times per growing season. In Bütof et al. (2012), the frequency of 

pasture was unindicated, despite the three times per season use of meadows, fertilization is applied. In 
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the regional assessment of this thesis, the prominent management practice was considered per 

grassland parcels. In the local-scale assessment, grazing and mowing were done once or twice per 

growing season. Then grazing is implemented in the mowed paddocks based on the availability of 

vegetation biomass. These studies also monitored different properties such as forage production in 

Deléglise et al. (2015), the biomass growth rate in Bütof et al. (2012), and leaf area index (LAI) and 

vegetation index sensitivity in this thesis. Consequently, additional studies focusing on the influence 

of management practices on grassland response to drought are needed to clearly determine the 

influences of grazing and mowing. 

The interactions between drivers should also be studied. The quantification of the cascading effects 

of drivers can ascertain the overall influence of factors on grassland response to drought. However, 

both these avenues will require substantial data for fitting more complex statistical models. Other plant 

traits more related to the response to drought should be prioritized. For example, root traits, such as 

root surface area and root length, directly influence the amount of water available to the plant. 

Grasslands are open systems. Drivers that influence the response to drought are not limited to 

grasslands and include adjacent systems or features. The dry and warm topographic microclimate 

improves the stability and vegetation composition of calcareous grasslands in Germany (Mazalla et 

al., 2022). Ecosystems such as forests and grasslands generate microclimates that mitigate 

macroclimate warming (Bernath-Plaisted et al., 2023; Davis et al., 2018; De Frenne et al., 2013). Then 

the edges of ecosystems or ecotones also provide mitigating microclimate conditions (D’Odorico et 

al., 2013; Süle et al., 2018).  Similarly, the proximity to water ponds increases grassland resistance to 

drought (Chen et al., 2022). Interestingly, consideration of the surrounding systems can enhance the 

understanding of grassland response to drought. 

New developments with remote sensing technologies related to satellite sensors and algorithms 

(e.g., Cao et al., 2021; Chiarito et al., 2021; Morais et al., 2021) are expected to provide improvements 

in the quality and accuracy of vegetation monitoring. Currently, existing remote sensing products and 

techniques, such as SAR images (Abdel-Hamid et al., 2020), fusion of optical image sources (Gao et 

al., 2006; H. Liu et al., 2021), and merging of SAR and optical data (Potočnik Buhvald et al., 2022; 

Garioud et al., 2020; Lobert et al., 2021) have been used for grassland monitoring and mapping. Image 

correction techniques help improve the accuracy of grassland monitoring (Ren et al., 2023). However, 

these are still unrealized for the assessment of grassland response to drought. 

The increasing rate of advancement and number of satellites launched into space was a trend that 

started as early as the 1980s (Kramer and Cracknell, 2008). New satellite sensors, specifically, the 

nano- and microsatellites, continue to show advancements for environmental and ecosystem 

monitoring (Ustin and Middleton, 2021). Potential assessments of grassland response to drought with 
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a focus on the new and seldomly used satellite sensor products can first validate the technological 

developments, and produce new results with improved spatial, temporal, and spectral resolutions. 

The simple process-based model of Chapter 3 requires additional improvements to represent the 

dynamics of the potential growth of grasslands (Reyes et al., 2017; Thirel et al., 2015). We can include 

additional eco-physiological processes to account for the nutrient availability, cycling, and use, which 

are connected with the water in the plant and soil (Henneron et al., 2019), or include grassland 

community species diversity dynamics or plant functional groups (Piseddu et al., 2022) to reflect the 

specific influence of plant strategies or traits on the ecosystem functioning related to growth under 

drought. Related to the time-varying growth parameter, the changes in the amount of used and stored 

carbohydrate reserves can be included to accurately simulate the plant regrowth after defoliation or 

change in seasons (Volaire, 1995; Boschma et al., 2003; Dube and Gwarazimba, 2000). Unfortunately, 

accounting for the soil-plant interactions and species-specific contributions to growth poses the risk of 

very complex models that should ideally be avoided to establish model identifiability and simplify the 

calibration process. 

On the other hand, ecological processes have already been accounted for in complex models. This 

thesis provides value by once again demonstrating the use of satellite data in process-based models. 

Methods of satellite data assimilation can be either as calibration, forcing, or updating (Dorigo et al., 

2007). Remote sensing can serve as an alternative source of inputs for existing models. 

 

M. Recommendations for future studies 

The generic term “response” has been used in the majority of the grassland response to drought 

studies. Fortunately, the selected assessment approaches help in determining how “response” is 

defined. Van Meerbeek et al. (2021) have positioned resistance, resilience, and recovery as properties 

of ecological stability. The vegetation index threshold reveals grassland resistance to drought. Year 

comparison, with some uncertainty, shows either resistance or resilience. The time series analysis, 

together with the mechanistic modelling, both allow detailed quantification of ecological stability 

properties. Then the statistical inference is mainly limited to the quantitative response or qualitative 

sensitivity. I recommend the avoidance of the generic use of “response”, especially if the selected 

approach allows the identification of resistance, resilience, and recovery. This will result in the 

increased comparability of studies of drought impact across different grassland types.  

The spatial and temporal scales of studies and resolutions of data influence the results of the 

grassland response to drought assessment. Maintaining similar grassland reflectance and drought 

severity scales and resolutions can help avoid possible noise from mismatches. For instance, a weekly 

or higher temporal scale of grassland reflectance would provide more observations when paired with 
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drought severity indices modified into a daily time unit. Such grassland observations may be possible 

under cloud-free conditions or if highly correlated microwave and optical image observations are 

available. Ultimately, the spatial and temporal scales are crucial in the analysis and interpretation of 

results in remote sensing and ecological studies (Andreatta et al., 2022a; Gamon et al., 2020; Levin, 

1992; Pescador et al., 2021).  

In the assessment of grassland resistance, and resilience or recovery to drought using the statistical 

inference and mechanistic modelling approaches, multiple data sources provide improvements in the 

interpretation of results. However, this entails challenges in terms of data acquisition and 

standardization. I recommend the maximization of existing models and data sources in the 

quantification of drought severity. Similar to Chapter 2, programs and projects should be built on the 

existing datasets of previous research activities on the same site. Field collection methods should be 

replicable and standardized to allow the association with long-term satellite reflectance data of 

grasslands. But we discourage the use of satellite-based assessment of drought using vegetation 

indices. This generally indicates drought impact on vegetation, rather than actual drought severity.   

Finally, this thesis successfully presented the potential of the mechanistic modelling approach for 

the assessment of grassland resistance and resilience to drought. I recommend the collection of long-

term and detailed grassland parcel and environmental data or at least the grassland management data. 

Then we promote the consideration of parsimony or simplicity of the process-based models to avoid 

the difficulty of acquiring multiple data associated with the inputs and parameters of complex models 

but still provide near-accurate simulations. The assessment of grassland response components to 

drought using process-based models should be as simple as possible to allow focus on the 

investigations of drivers.  
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GENERAL APPENDICES 

 

Appendix A. Summary of optical satellite-sensor resolutions. 

 

 

Satellite 
Sensor Duration  

Spatial 

(m) 

Temporal 

(days) 

Spectral 

range  

(µm) 

Spectral 

bands 

(count) 

Radio-

metric 

(bit) 

METOP-A/B  Global Ozone Monitoring 

Experiment-2 (GOME-2) 

2006 to 

present 

80000 × 

40000 

 1.5 0.24 to 0.79 15 16 

NOAA 6 to 

19 of NOAA 

- POES /  

Advanced Very High-

Resolution Radiometer 

(AVHRR) 

1979 to 2019 1000 1 0.58 to 12.5 4 to 6 16 

NOAA-20  Visible Infrared Imaging 

Radiometer Suite (VIIRS) 

2017 to 

present 

375; 750 1 0.41 to 12.0 22 12 

Terra and 

Aqua  

Moderate Resolution 

Imaging 

Spectroradiometer 

(MODIS) 

2000 to 

present 

250; 500; 

1000 

1 to 2; 16 0.41 to 

14.23 

36 12 

Landsat 1 to 

5 

Multispectral Scanner 

System (MSS)  

1972 to 1999 60 16 0.5 to 1.1 4 6 

Landsat 4 to 

5 

Thematic Mapper (TM) 1982 to 2013 30; 120 16 0.45 to 12.5 7 8 

Landsat 7 Enhanced Thematic 

Mapper (ETM) +  

1999 to 2022 

(science 

mission) 

15; 30; 60 16 0.45 to 12.5 8 9 

Landsat 8 

and 9 

Operational Land Imager 

(OLI) and Thermal 

Infrared Sensor (TIRS) 

2013 to 

present 

15; 30; 

100 

16; 8 0.43 to 

12.51 

11 12 

Satellite pour 

l'Observation 

de la Terre 

(SPOT) 1 to 

5 

High Resolution Visible 

(HRV);  

High Resolution in the 

Visible and Infrared 

(HRVIR);  

High Resolution 

Geometry (HRG) 

1986 to 2015 2.5; 10; 

20 

26 0.48 to 1.75 5 8 

SPOT 4 and 

5 

VEGETATION  1998 – 2014 1 000 26 0.44 to 1.65 4 8 

SPOT 6 and 

7 

New Astrosat Optical 

Modular Instrument 

(NAOMI);  

2012 and 2014 

(launched 

dates)  

1.5; 6 26 0.45 to 0.89 5 12 

Sentinel 2A 

and 2B 

Multi-Spectral Imager 

(MSI) 

2015 and 2017 

to present 

10; 20; 60 5 0.44 to 2.19 13 12 

Venµs VENµS SuperSpectral 

Camera (VSSC) 

2017 to 2020 5 2 0.42 to 0.91 12 10 

IKONOS  Multispectral and 

panchromatic sensor 

1999 – 2015  0.82; 3.28 3 0.40 to 0.90 5 16 

QuickBird  Multispectral and 

panchromatic sensor 

2001–2015 2.62; 0.65 1 to 3.5 0.45 to 0.90 5 16 

WorldView-

1/2/3/4  

Multispectral and 

panchromatic sensor 

2007 – present 0.31; 1.24 1 0.45 to 0.90 1.7 11 

RapidEye RapidEye Earth-imaging 

System 

2008 – 2015 5 1 0.44 to 0.85 5 8 

Planet SuperDove or PSB.SD 2016 to 2022 3 1 0.43 to 0.88 3 8 
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Appendix B. Distribution of soil units in the Massif central region (ESDAC).  
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Appendix C. Summary of the reflectance bands of Landsat 8, Sentinel 2, and VENųS. The central wavelengths are the 

mean of the minimum and maximum band values. 

 

Band Description 
Landsat 8 

bands 

Central 

Wavelength 

(nm) 

Sentinel 2 

bands 

Central 

Wavelength 

(nm) 

VENųS 

bands 

Central 

Wavelength 

(nm) 

(Atmospheric correction) * 
    

1 415 

Coastal 1 443 1 443 2 440 

Blue 2 482 2 490 3 490 

Green 3 562 3 560 4 555 

(Land)* 
    

5 620 

(DEM)* 
    

6 620 

Red 4 655 4 665 7 667 

Red edge 
  

5 705 8 702 

Red edge 
  

6 740 9 742 

Red edge 
  

7 783 10 782 

Near-infrared (NIR)   8 842 
  

Narrow NIR 5 865 8A 865 11 865 

Water Vapor 
  

9 945 12 910 

Shortwave infrared 

(SWIR) Cirrus 

  
10 1,375 

  

SWIR1 6 1,610 11 1,61 
  

SWIR2 7 2,200 12 2,190 
  

Panchromatic 8 590 
    

Cirrus 9 1,375 
 

Thermal infrared (TIRS) 1 10 10,800 
   

TIRS 2 11 12,000 
    

* VENųS band description (https://venus.cnes.fr/en/VENUS/index.html 
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Appendix D. Satellite reflectance indices used in the study. Input bands were the blue (B), green (G), red (R), near-

infrared (NIR), and shortwave infrared (SWIR) 1 and 2. 

 
Index Formula Purpose / Description References 

NDVI (NIR - R) / (NIR + R) Commonly used for vegetation 

biomass (green)  

Rouse et al., 1974 

ARVI (NIR – [(2 * R) - B]) / 

(NIR + [(2 * R) - B]) 

Less sensitive to atmospheric 

effects compared to NDVI 

Kaufman and 

Tanré, 1992 

DVI NIR – R Differentiates vegetation and soil.   Richardson and 

Wiegand, 1977 

EVI 2.5 * ([NIR - R] / 

[NIR + 6 * R - 7.5 * B + 1]) 

For canopy conditions in high 

biomass areas 

Huete et. al., 2002 

EVI2 2.5 * ([NIR - R] / 

[NIR + (2.4 * R) + 1]) 

EVI without the blue band Jiang et al., 2008 

GCI (NIR / G) - 1 For chlorophyll estimation Gitelson et al., 

2003 

GEMI n * (1 - 0.25 * n) – [(R - 0.125) / (1 - 

R)] 

where, n = [2 * (NIR2 - R2) + (1.5 * 

NIR) + (0.5 * R)] / (NIR + R + 0.5) 

For vegetation cover; non-linear 

index 

Pinty and 

Verstraete, 1992 

GNDVI (NIR - G)] / (NIR + G) For chlorophyll estimation; NDVI 

uses the Green instead of Red 

band 

Gitelson et al., 

1996 

GVMI ([NIR + 0.1] – [SWIR2 + 0.02]) / 

([NIR + 0.1] + [SWIR2 + 0.02]) 

For vegetation water content Ceccato et al. 

(2002) 

IPVI NIR / (NIR + R) For vegetation biomass Crippen, 1990 

MSR ([NIR / R] - 1) / sqrt([NIR / R] + 1) For biophysical parameters Chen, 1996 

MTVI2 (1.5 * [1.2 * (NIR - G)] – [2.5 * (R - 

G)]) / sqrt([(2 * NIR) + 1]2 – [6 * 

NIR - (5 * sqrt(R)) - 0.5]) 

For green leaf area index (LAI) 

estimation 

Haboudane et al., 

2004 

NDSVI (SWIR1 - R) / (SWIR1 + R) For senescence detection Qi et al., 2002 

NDWI (NIR - SWIR1) / (NIR + SWIR1) For vegetation liquid water 

content; similar formula to Land 

Surface Water Index (LSWI) 

Gao, 1996; Xiao 

et al., 2004 

NLI (NIR2 - R) / (NIR2 + R) For vegetation cover; accounts for 

leaf angle distribution 

Goel and Quin, 

1994 

NMDI (NIR – [SWIR1 - SWIR2]) / (NIR + 

[SWIR1 - SWIR2]) 

For soil and vegetation moisture Wang and Qu, 

2007 

NRI (G - R) / (G + R) For plant nitrogen status Filella et al., 1995 

OSAVI (NIR - R) / (NIR + R + 0.16) For vegetation health; minimizes 

soil effect; standardized 

vegetation condition of 0.16 

Rondeaux et al., 

1996 

SAVI (1 + L) * ([NIR – R] / [NIR + R + 

L]) 

Vegetation: Low (L = 1) 

Intermediate (L = 0.5) 

High (L = 0.25) 

For vegetation health; minimizes 

soil effect 

Huete, 1988 

SIPI (NIR - B) / (NIR + B) For vegetation phenology (bulk 

carotenoids to chlorophyll ratio) 

Penuelas et al., 

2011 

SLAVI NIR / (R + SWIR2) For specific leaf area Lymburner et al., 

2000 

SRVI or SR NIR / R For leaf area index Jordan, 1969 

TVI sqrt (NDVI + 0.5) For green leaf area index (LAI) 

estimation 

McDaniel and 

Haas, 1982 

VARI (G - R) / (G + R - B) Less sensitive to atmospheric 

effects; based on ARVI 

Gitelson et al., 

2002 
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Assessment of grassland sensitivity to drought in the Massif central region 

using remote sensing 
 

Luna, D., Pottier, J., Picon-Cochard, C. 

Université Clermont Auvergne, INRAE -VetAgro Sup, UREP, 63000 Clermont-Ferrand, France 

 

Abstract 

 

Drought is a natural phenomenon that is expected to increase in frequency and duration with climate 

change, leading to more intense disturbance of ecosystems like grasslands. Moreover, the sensitivity 

of grasslands to drought is expected to differentiate across wide spatial extents. To assess and explain 

these sensitivity variations, knowledge of several grasslands and local parameters must be considered. 

Our study focused on 143 permanent grasslands in the Massif Central Region of Metropolitan France. 

With the use of satellite remote sensing, we quantified the relationship between vegetation index 

anomalies and a modified version of the Standardized Precipitation-Evapotranspiration Index (mSPEI) 

to acquire grassland sensitivity values. The anomalies are estimates of the historic long-term 

fluctuations of grassland vegetation reflectance to climatic water balance from 1985 to 2019. A model 

selection procedure was implemented to determine whether the derived sensitivities can be attributed 

to explanatory variables such as vegetation diversity, pedoclimatic conditions, or management 

practices. Then a variance partitioning of the included explanatory variables was performed. Our 

results highlight the key influence of available soil available water capacity and time of first use on 

grassland sensitivity to drought of the selected parcels in the region, but also of plant functional 

diversity. 

 

Keywords: drought, mSPEI, grassland response, sensitivity, remote sensing, vegetation index  

 

Introduction 

 

The Intergovernmental Panel for Climate Change has projected an overall increasing trend in the 

global temperature due to climate change, together with more frequent and longer extreme climatic 

events (IPCC, 2021). Among these events, droughts have large-scale impacts on ecosystems like 

grasslands. However, the grassland responses or sensitivities to drought are expected to vary across 

wide spatial extents depending on the grassland's local properties. A better understanding of grassland 

drought sensitivity, over large extents outside of controlled experiments, may help promote 

agricultural practices supporting grassland stability. To do so, remote-sensing technologies offer new 

opportunities for fine-resolution monitoring of grasslands (Reinermann et al., 2020). This study aims 

to assess the variability of grassland drought sensitivity over the Massif central using remotely sensed 

vegetation dynamics and highlight key drivers of sensitivity, including pedoclimate, biodiversity, and 

agricultural management. 

 

Materials and methods 

 

We analysed the drought sensitivity of 394 plots from 143 permanent grassland parcels distributed 

over the Massif central (AOP field surveys, 2008-2019) using satellite-based remote sensing. To do 

so, we first mapped the severity of drought events from 1985 to 2019, with a modified version of the 

Standardized Precipitation-Evapotranspiration Index (mSPEI; Beguería, et al. 2010) computed from 

the daily climatic data provided by the Système d'Analyse Fournissant des Renseignements 

Atmosphériques à la Neige (SAFRAN) meteorological data of France. Then, we derived standardized 

vegetation index (VI) anomalies over the same period. These anomalies are values of the departure of 
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VI from their long-term daily mean. The VI time series were calculated from Landsat images from 

1985 to 2019. Finally, we quantified grassland drought sensitivity, during the growing season (March 

to November), as the regression slope between the standardized VI anomalies and mSPEI (Ji and 

Peters, 2003). From 25 computed VIs and based on a Principal Component Analysis (PCA), we 

selected the Normalized Multi-band Drought Index (NMDI), which was developed for monitoring soil 

and vegetation moisture (Wang and Qu 2007). To better understand the drivers of grassland drought 

sensitivity, we implemented a statistical model selection procedure with drought sensitivity as the 

response variable. The explanatory variables, derived from the field surveys and the Copernicus Land 

Monitoring services’ high-resolution digital elevation model, pertain to three categories: 1) 

management practices, 2) vegetation diversity, denoted by the taxonomic and functional indices plus 

the community weighted mean of traits related to growth, phenology, and reproduction, and 3) 

pedoclimatic conditions, depicted by soil physical and chemical properties (including soil available 

water capacity or AWC), terrain wetness index and aspect. Lastly, we performed a variance 

partitioning of the model explanatory variables to quantify their relative influences. 

 

Results and Discussion 

 

In our study, we found a large variability of 

satellite-sensed drought sensitivities of the Massif 

central grasslands (Figure 1) with a 35.62% 

coefficient of variation. The model selection 

procedure led to a final sensitivity model with seven 

explanatory variables and an R-squared of 0.52 

(Table 1). According to the variance partitioning 

(Figure 2), pedoclimatic factors explained the largest 

part (35%) of variation. From these factors, AWC 

had a strong negative effect on drought sensitivity. 

Expectedly, higher soil water retention capacity 

mitigates meteorological drought. In contrast, a 

south-facing slope promoted sensitivity most likely 

due to higher solar radiation exposure (local 

underestimation of mSPEI) compared to north-

facing slopes. Management factors explained 23% 

of the total variation. From the model, delayed first 

uses resulted in higher drought sensitivity. Such 

factor has been understudied so far, hindering a clear 

understanding of its effect on grassland drought sensitivity. Grasslands that were preferentially grazed 

(type of use) showed higher drought sensitivity in contrast to rather mowed grasslands. This is 

consistent with the field experiment by Deléglise, et al. (2015), where drought conditions in grazing  

 
Table 1. Final sensitivity model (R-squared is 0. 5242) and variance partitioning results. 

 
Category Explanatory variable Beta coefficient t value Pr(>|t|) 

Pedoclimate 
AWC (topsoil) -0.5396292 -8.603 2.27e-14 
South-facing slope 

(aspect) 
0.2355297 3.656 0.000372 

Management 

Time of first use (as GDD) 0.5163540 7.081 8.23e-11 
Type of use (grazing or 

mowing) 
0.2936155 3.812 0.000213 

Mean number of uses 0.1295399 1.853 0.066173 

Diversity 
Fdis: plant growth form -0.1600510 -2.379 0.018819 
CWM: plant height -0.1416316 -1.978 0.050051 

Figure 1. Spatial (top) and statistical (bottom) 
distributions of drought sensitivities in the 
Massif central. Sensitivities are the slope of the 
linear relationship of the standardized (std) VI 
anomaly and mSPEI. 
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plots led to lower annual biomass than in mowing plots. The mean number of uses per year also 

increased sensitivity. When grasslands are frequently used throughout the growing season, stored 

carbohydrates, which are necessary for plant regrowth, may 

become limited during drought events (Fulkerson and Donaghy, 

2001). Our model also underlined the role of diversity (9%), 

which is mostly shared with the pedoclimatic and management 

factors. We found that more diverse plant growth strategies 

promoted lesser drought sensitivity, as already shown in 

experimental studies (Weisser, et al. 2017). In addition, grassland 

plots with taller plants, or higher CWM height, exhibited lower 

drought sensitivity, as confirmed by Nunes, et al. (2017). 

 

Conclusion 

 

Using remote sensing, we assessed drought sensitivities of a 

wide range of grasslands across the Massif central region. These 

sensitivities were highly variable, but the majority of these variabilities could be explained by 

pedoclimatic, diversity, and management factors. AWC had the largest influence. We also underlined 

the role of diversity shared with pedoclimate and management on grassland drought sensitivity, which 

is in line with previous grassland-drought field experiments. We here further assessed the relative 

importance of these drivers in real agricultural systems.  
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