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Abstract
Incomplete multi-view data clustering is a research direction that attracts attention in the
fields of data mining and machine learning. In practical applications, we often face sit-
uations where only part of the modal data can be obtained or there are missing values.
Data fusion is an important method for incomplete multi-view information mining. Solv-
ing for incomplete multi-view information mining in a targeted manner, achieving flexible
collaboration between visible views and shared hidden views, and improving the robustness
have become quite challenging. This thesis focuses on three aspects: hidden data mining,
collaborative fusion, and enhancing the robustness of clustering. The main contributions
are as follows:

1. Hidden data mining for incomplete multi-view data: existing algorithms cannot make
full use of the observation of information within and between views, resulting in the loss
of a large amount of valuable information, and so we propose a new incomplete multi-view
clustering model IMC-NLT (Incomplete Multi-view Clustering Based on NMF and Low-
Rank Tensor Fusion) based on non-negative matrix factorization and low-rank tensor fusion.
IMC-NLT first uses a low-rank tensor to retain view features with a unified dimension.
Using a consistency measure, IMC-NLT captures a consistent representation across multiple
views. Finally, IMC-NLT incorporates multiple learning into a unified model such that
hidden information can be extracted effectively from incomplete views. We conducted
comprehensive experiments on five real-world datasets to validate the performance of IMC-
NLT. The overall experimental results demonstrate that the proposed IMC-NLT performs
better than several baseline methods, yielding stable and promising results.

2. Collaborative fusion for incomplete multi-view data: our approach to address this
issue is Incomplete Multi-view Co-Clustering by Sparse Low-Rank Representation (CCIM-
SLR). The algorithm is based on sparse low-rank representation and subspace representa-
tion, in which jointly-missing data is filled using data within a modality and related data
from other modalities. To improve the stability of clustering results for multi-view data
with different missing degrees, CCIM-SLR uses the �-norm model, which is an adjustable
low-rank representation method. CCIM-SLR can alternate between learning the shared
hidden view, visible view, and cluster partitions within a co-learning framework. An it-
erative algorithm with guaranteed convergence is used to optimize the proposed objective
function. Compared with other baseline models, CCIM-SLR achieved the best performance
in the comprehensive experiments on the five benchmark datasets, particularly on those
with varying degrees of incompleteness.

3. Enhancing the clustering robustness for incomplete multi-view data: we offer a fusion
of graph convolution and information bottlenecks (Incomplete Multi-view Representation
Learning Through Anchor Graph-based GCN and Information Bottleneck – IMRL-AGI).
First, we introduce the information bottleneck theory to filter out the noise data with irrel-
evant details and retain only the most relevant feature items. Next, we integrate the graph
structure information based on anchor points into the local graph information of the state
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fused into the shared information representation and the information representation learning
process of the local specific view, a process which can balance the robustness of the learned
features and improve the robustness. Finally, the model integrates multiple representations
with the help of information bottlenecks, reducing the impact of redundant information
in the data. Extensive experiments are conducted on several real-world datasets, and the
results demonstrate the superiority of IMRL-AGI. Specifically, IMRL-AGI shows significant
improvements in clustering and classification accuracy, even in the presence of high view
missing rates (e.g. 10.23% and 24.1% respectively on the ORL dataset). Furthermore,
experiment results demonstrate the robustness of IMRL-AGI across different view missing
rates (e.g. the NMI values ranging from 82.52% to 86.49% on the ORL dataset).

Keywords

Hidden Data Mining, Non-negative matrix factorization, Collaborative Fusion, Low-Rank
Tensor, Sparse Low-Rank Representation, Information Bottleneck, Anchor Graph GCN



Résumé
Le regroupement de données multivues incomplètes est un axe de recherche majeur dans
le domaines de l’exploration de données et de l’apprentissage automatique. Dans les appli-
cations pratiques, nous sommes souvent confrontés à des situations où seule une partie des
données modales peut être obtenue ou lorsqu’il y a des valeurs manquantes. La fusion de
données est une méthode clef pour l’exploration d’informations multivues incomplètes. Ré-
soudre le problème de l’extraction d’informations multivues incomplètes de manière ciblée,
parvenir à une collaboration flexible entre les vues visibles et les vues cachées partagées,
et améliorer la robustesse sont des défis. Cette thèse se concentre sur trois aspects : l’ex-
ploration de données cachées, la fusion collaborative et l’amélioration de la robustesse du
regroupement. Les principales contributions sont les suivantes :

1) Exploration de données cachées pour les données multi-vues incomplètes : les algo-
rithmes existants ne peuvent pas utiliser pleinement l’observation des informations dans et
entre les vues, ce qui entraîne la perte d’une grande quantité d’informations. Nous propo-
sons donc un nouveau modèle de regroupement multi-vues incomplet IMC-NLT (Incomplete
Multi-view Clustering Based on NMF and Low-Rank Tensor Fusion) basé sur la factorisation
de matrices non négatives et la fusion de tenseurs de faible rang. IMC-NLT utilise d’abord
un tenseur de faible rang pour conserver les caractéristiques des vues avec une dimension
unifiée. En utilisant une mesure de cohérence, IMC-NLT capture une représentation cohé-
rente à travers plusieurs vues. Enfin, IMC-NLT intègre plusieurs apprentissages dans un
modèle unifié afin que les informations cachées puissent être extraites efficacement à partir
de vues incomplètes. Des expériences sur cinq jeux de données ont validé les performances
d’IMC-NLT.

2) Fusion collaborative pour les données multivues incomplètes : notre approche pour
résoudre ce problème est le regroupement multivues incomplet par représentation à faible
rang. L’algorithme est basé sur une représentation éparse de faible rang et une représen-
tation de sous-espace, dans laquelle les données manquantes sont complétées en utilisant
les données d’une modalité et les données connexes d’autres modalités. Pour améliorer la
stabilité des résultats de clustering pour des données multi-vues avec différents degrés de
manquants, CCIM-SLR utilise le modèle �-norm, qui est une méthode de représentation
à faible rang ajustable. CCIM-SLR peut alterner entre l’apprentissage de la vue cachée
partagée, la vue visible et les partitions de clusters au sein d’un cadre d’apprentissage
collaboratif. Un algorithme itératif avec convergence garantie est utilisé pour optimiser la
fonction objective proposée.

3) Amélioration de la robustesse du regroupement pour les données multivues incom-
plètes : nous proposons une fusion de la convolution graphique et des goulots d’étrangle-
ment de l’information (apprentissage de la représentation multivues incomplète via le goulot
d’étranglement de l’information). Nous introduisons la théorie du goulot d’étranglement de
l’information afin de filtrer les données parasites contenant des détails non pertinents et
de ne conserver que les éléments les plus pertinents. Nous intégrons les informations sur
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la structure du graphe basées sur les points d’ancrage dans les informations sur le graphe
local. Le modèle intègre des représentations multiples à l’aide de goulets d’étranglement de
l’information, réduisant ainsi l’impact des informations redondantes dans les données. Des
expériences approfondies sont menées sur plusieurs ensembles de données du monde réel, et
les résultats démontrent la supériorité de IMRL-AGI. Plus précisément, IMRL-AGI montre
des améliorations significatives dans la précision du clustering et de la classification, même
en présence de taux élevés de données manquantes par vue (par exemple, 10,23 % et 24,1
% respectivement sur l’ensemble de données ORL). De plus, les résultats des expériences
démontrent la robustesse de l’IMRL-AGI à travers différents taux de vues manquantes (par
exemple, les valeurs de NMI variant de 82,52 % à 86,49 % sur le jeu de données ORL).

Mots-clés

Exploration de données cachées, Factorisation matricielle non négative, Fusion coopérative,
Tenseurs de bas rang, Représentation á faible rang parcimonieuse, la théorie de goulot
d’étranglement de l’information, réseaux convolutifs de graphes d’ancrage
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1.1 Motivation

In recent times, a significant volume of data has been distributed across various domains,
originating from different views, perspectives, or angles. For instance, users on social media
share diverse types of content, encompassing text, images, and videos. Similarly, medical
imaging equipment can capture data from various views, including X-ray images and tissue
density information. In the realm of autonomous driving, sensors collect data from differ-
ent views, such as cameras, radars, and lidars. These examples illustrate the acquisition
of multifaceted data or multi-view data, contributing to providing insights for potential
applications [1].

The acquisition of multi-view data is important due to its ability to offer more compre-
hensive and accurate data from many perspectives. As a result, multi-view data can provide
significant advantages for research and applications across diverse domains. Nonetheless, it
is essential to note that each set of view data should possess distinct features, formats, and
semantics. This heterogeneity introduces challenges to the analysis and processing of data.
One possible approach to address this diversity is multi-view clustering. Through the appli-
cation of multi-view clustering techniques, we can uncover the interrelations among distinct
views, thereby gaining insights into the underlying structure of the data. By employing
multi-view clustering techniques, we can present the interrelations among distinct views,
thus enhancing our understanding of the data’s inherent structure. Therefore, we are able
to amalgamate data from different views, exploring latent data insights, and consequently,
utilizing valuable insights for further research and application scenarios.

In real-world scenarios, multi-view data generation involves various factors such as occur-
rences of missing values, noise interference, or even manifest incompleteness. This inherent
data incompleteness creates a huge challenge for traditional multi-view clustering methods,
as these conventional approaches may struggle to efficiently handle the presence of miss-
ing or incomplete data. Therefore, the rationale behind introducing incomplete multi-view
clustering is to effectively address the issue of missing data in real-world scenarios. Hence,
we propose a novel clustering methodology that aims to optimize the utilization of avail-
able limited information, effectively uncovering the underlying structural patterns of latent
information to utilize in real-world applications.

However, to overcome the challenge of clustering incomplete multi-view data, simple
missing value handling approaches are not efficient. One reason is that in real-world appli-
cations, some important perspectives are undocumented or inadequately described. These
hidden pieces of information may contain vital insights essential for data analysis and com-
prehension. Therefore, focusing on the exploration of hidden data has emerged as an impor-
tant motivation within the area of incomplete multi-view clustering research. By effectively
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extracting knowledge from these missing sources, we anticipate achieving enhanced preci-
sion and comprehensiveness in clustering results. This, in turn, will empower us to gain a
deeper understanding of the complex relationships built in multi-view data.

Moreover, the integration of fusion clustering techniques presents another potent solu-
tion to address the challenges posed by incomplete multi-view data. Traditional single-view
clustering methods pose several limitations when dealing with multi-view data, as they of-
ten fail to fully integrate the information across different views. However, the introduction
of fusion clustering techniques offers promising research that strengthens data from diverse
views into a cohesive representation. Fusion clustering can uncover the interconnections
and associations between different views and is capable of overcoming the incompleteness of
information among views, thereby facilitating effective clustering of cross-view data. Such
fusion approaches can enhance the reliability and interpretability of clustering outcomes.

In summary, incomplete multi-view clustering, as a methodology to address the incom-
pleteness of multi-view data, holds significant research significance and practical applica-
tion value [2]. By surpassing the limitations of traditional multi-view clustering methods in
handling missing data, incomplete multi-view clustering exhibits potent capabilities in real-
world multi-view data analysis tasks. Its distinctive approach and feature fusion strategies
hold the potential to bring about novel breakthroughs in fields like data mining, knowledge
discovery, and pattern recognition. This paper aims to present innovative solutions to the
complexities posed by issues such as complex view omissions, high missing rates, and la-
tent information within missing views in incomplete multi-view data. Our objective is to
fully exploit incomplete multi-view data and empirically validate the performance and ap-
plication prospects of these methodologies across diverse domains. Through this research,
we aspire to contribute to the advancement of multi-view clustering algorithms, offering
valuable insights into both societal and scientific endeavours.

1.2 Objectives of the Thesis

In this section, we outline the primary research objectives of my thesis, each encompassing
specific issues to be addressed. This manuscript primarily introduces three distinct solutions
aimed at tackling the challenges posed by incomplete multi-view clustering. To achieve these
objectives, we conducted the following key research efforts:

• To address the issue of mining latent information from incomplete multi-view data, we
propose a method based on Non-Negative Matrix Factorization (NMF) and low-rank
tensor decomposition.

• To devise a more flexible collaborative learning model based on visible views and
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shared latent views, we introduce a strategy founded on sparse low-rank represen-
tation. This enables the construction of an incomplete multi-view joint clustering
model.

• In order to enhance the robustness of the incomplete multi-view clustering approach,
we explored methods based on the information bottleneck principle and the Graph
Convolutional Network (GCN) with an anchor graph

1.3 Contributions of the Thesis

Incomplete multi-view clustering plays a crucial role in big data analysis and mining. How-
ever, it faces several challenges, including complex multi-view missing situations, high miss-
ing rates, and redundancy issues within view data. Complex modal data missing refers to
situations where some samples may exist in certain views but are missing in others, or data
in different views may have varying features, dimensions, or quality levels. High missing
rates indicate that a significant amount of crucial information for many samples is severely
missing across different modalities. High redundancy, on the other hand, signifies that mul-
tiple modalities contain a substantial amount of similar or repetitive information, leading
to data redundancy and increased complexity in data processing and analysis.

Hence, this research focuses on addressing these three key challenges in multi-view data:
complex view data missing, high missing rates, and redundancy problems. To tackle these
challenges, a series of algorithms, including incomplete multi-view clustering by NMF and
low-rank tensor, incomplete multiview co-clustering by sparse low-rank representation, and
incomplete multi-view representation learning via information bottleneck and anchor graph
GCN, have been proposed. The specific research contributions are as follows:

C1: To address the challenge of complex missing situations from incomplete multi-view
data, our primary contribution resides in the proposal of a method known as in-
complete multi-view clustering using Non-negative matrix factorization and a low-
rank tensor (IMC-NLT ). This method synergies Non-Negative Matrix Factorization
(NMF) and low-rank tensor techniques, establishing a comprehensive framework for
incomplete multi-view clustering. This framework adeptly navigates through mul-
tiple constraints, including lack of valuable latent information within the data, ex-
cessive sensitivity to model parameters, and the complexity of effectively handling
samples with incomplete views. To provide a more detailed exposition of our research
accomplishments, we further dissect our principal contribution into four pivotal sub-
contributions. Each sub-contribution encompasses distinctive methods and procedural
implementations.
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C1.1: We introduce a novel and efficient incomplete multi-view clustering model, named
IMC-NLT, designed to handle incomplete view data. To the best of our knowl-
edge, IMC-NLT is the first incomplete multi-view clustering method that in-
tegrates the low-dimensional representation generated by a rapid and effective
dimensionality reduction technique with a low-rank tensor model.

C1.2: To address missing multi-view data in various scenarios, IMC-NLT employs low-
rank constraints and a tensor model constructed from incomplete multi-view
data. As a result, it effectively captures the correlations among instances within
views and across different views.

C1.3: The proposed approach demonstrates robustness in handling globally extracted
consistency information. Particularly, consistency representation learning effec-
tively quantifies the inconsistencies among consistent information acquired from
different perspectives. Under this mechanism, IMC-NLT efficiently filters out
noisy data, thereby generating accurate multi-view consistency representations.

C1.4: We conducted comprehensive experiments on multi-view benchmark datasets
collected from various application domains to evaluate the effectiveness of IMC-
NLT. The results indicate that IMC-NLT outperforms baseline methods. Fur-
thermore, IMC-NLT exhibits lower sensitivity to its parameters, showcasing ex-
cellent generalization performance in the context of incomplete multi-view clus-
tering.

C2: To design a more flexible collaborative learning model that addresses the high miss-
ing rates , we incorporate a strategy based on sparse low-rank representation. This
approach is called a co-clustering method for incomplete multiview data by sparse low-
rank representation (CCIM-SLR). This method adeptly addresses the intricate task
of generating clustering outcomes from multi-view data featuring missing views and
varying degrees of missing data points. We further divide our principal contribution
into four distinct sections, offering comprehensive elaborations on each segment.

C2.1: This paper presents CCIM-SLR, a novel approach to incomplete multi-view clustering
that leverages a low-rank sparse representation matrix to recover data from missing
samples. CCIM-SLR utilizes association information between missing samples and
observed samples within views, as well as their association information between views.

C2.2: To improve the stability of clustering results for multi-view data with different missing
degrees, CCIM-SLR uses the �-norm model, which is an adjustable low-rank repre-
sentation method. �-norm shows the accuracy of achieving a low-rank representation
and the stability of data recovery.
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C2.3: CCIM-SLR learns both a visible view and a hidden view within a co-learning frame-
work in an end-to-end manner, using a mutual interplay between the view data re-
covery and a clustering process. This approach avoids the need for post-processing
steps such as k-means for final clustering assignment results.

C2.4: CCIM-SLR has been validated through both theoretical proofs and experiments.
Based on the experimental results, CCIM-SLR outperformed state-of-the-art approaches
on the five incomplete multi-view datasets. The robustness of CCIM-SLR has been
demonstrated through experiments on incomplete multi-view datasets with different
missing rates of data points.

C3: In order to solve the redundancy issues of incomplete multi-view clustering methodolo-
gies, we introduce the concepts of information bottleneck and anchor graph Generative
Adversarial Networks (GAN). Subsequently, we present an approach for incomplete
multi-view representation learning that is grounded in information bottleneck princi-
ples and anchor graph Graph Convolutional Network (GCN). This approach adeptly
handles all forms of incomplete view data, while maintaining robustness across var-
ious levels of data completeness. To provide a lucid exposition of the mechanisms
intrinsic to each sub-contribution, we have diligently structured and expounded upon
each distinct sub-contribution point.

C3.1: We propose a novel framework called IMRL-AGI for multi-view representation learn-
ing in the presence of incomplete data. This framework combines information bot-
tlenecks and anchor graph GCN. To the best of our knowledge, this is the first time
that information bottleneck is integrated with anchor graph GCN for addressing in-
complete multi-view representation learning.

C3.2: We introduce the maximization of mutual information constraints to enhance the
correlation between the view information obtained from the common representation
and the view information derived through the anchor graph GCN.

C3.3: IMRL-AGI enhances the robustness and diversity of information bottleneck represen-
tations in downstream tasks by minimizing the mutual information between different
views derived from the common representation and between the representation of the
original view and the common representation.

C3.4: We extensively evaluated the performance of IMRL-AGI on three real-world datasets.
Particularly, IMRL-AGI shows significant improvements in clustering and classifica-
tion accuracy even with high view missing rates (e.g. 10.23% and 24.1% respectively
on the ORL dataset). Furthermore, experiment results demonstrate the robustness of
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IMRL-AGI under different view missing rates (e.g. the NMI values from 82.52% to
86.49% on ORL dataset).
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low-rank tensor." Expert Systems with Applications (2023).

• Xu Yuan, Shaokui Gu, Liang Zhao, and Zhenjiao Liu, "Mining Multi-View Clustering
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(2023).
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with Applications (2023).

• Zhikui Chen, Kai Lou, Zhenjiao Liu, Yue Li, Yiming Luo, and Liang Zhao "Joint
Long and Short Span Self-Attention Network for Multi-view Classification." Expert
Systems with Applications (2023).

• Zhenjiao Liu, Zhikui Chen, Kai Lou, Praboda Rajapaksha, Liang Zhao, and Noel
Crespi. "CCIM-SLR: Incomplete Multiview Co-Clustering by Sparse Low-Rank Rep-
resentation." Multimedia Tools and Applications (2023).

Conference Papers

• Zhenjiao Liu, Xiao Wang, Xiaodi Huang, Guanlin Li, Ke Sun and Zhikui Chen. "In-
complete Multi-view Representation Learning Through Anchor Graph-based GCN
and Information Bottleneck." IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE ICASSP, 2024.

• Shaokui Gu, Xu Yuan, Liang Zhao, Zhenjiao Liu, Yan Hu, and Zhikui Chen. "MVCIR-
net: Multi-view Clustering Information Reinforcement Network." The 31th ACM In-
ternational Conference on Multimedia (ACM MM). ACM, 2023.

Under Review

• Liang Zhao, Wang Xiao, and Zhenjiao Liu. "Learnable Graph Guided Deep Multi-
view Representation Learning via Information Bottleneck." IEEE Transactions on



26 1.5. RELATIONSHIP OF PUBLICATIONS WITH CONTRIBUTIONS

Neural Networks and Learning Systems.

Working Paper

• Zhenjiao Liu, Zhikui Chen, Praboda Rajapaksha, and Noel Crespi. "Incomplete
Multi-view Clustering based on Dual Weight Mechanism and Cluster Separation."
IEEE Transactions on Cybernetics.

1.5 Relationship of Publications with Contributions

In this section, we provide the relationships of publications with contributions.

• The publication ’IMC-NLT: Incomplete multi-view clustering by NMF and low-rank
tensor’ corresponds to Contributions C1, C1.1, C1.2, C1.3, and C1.4 in Chapter 3.

• The submitted paper ’CCIM-SLR: Incomplete Multi-view Co-Clustering by Sparse
Low-Rank Representation’ corresponds to Contributions C2, C2.1, C2.2, C2.3, and
C2.4 in Chapter 4.

• The submitted paper titled ’Incomplete Multi-view Representation Learning via Infor-
mation Bottleneck and Anchor Graph GCN’ corresponds to Contributions C3, C3.1,
C3.2, C3.3, and C3.4 in Chapter 5.

1.6 Outline of the Thesis

The thesis is structured into five chapters.

• Chapter 1 describes the background of research topics, motivation, contributions of
this thesis, a summary of each chapter, and the outline of my thesis.

• Chapter 2 presents the background and related technologies relevant to the main topics
of this thesis, i.e., multi-view data analysis, data missing and processing, hidden data
mining, and cluster fusion techniques.

• Chapter 3 introduces a method based on NMF and low-rank tensor, which encom-
passes three mechanisms: incomplete multi-view data filling and decomposition, the
multi-view collaborative fusion of low-rank tensor, and consensus representation learn-
ing. Performance tests were conducted on relevant incomplete multi-view datasets.

• Chapter 4 illustrates the application of sparse low-rank representation and co-clustering
for addressing incomplete multi-view clustering challenges, which encompasses two
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mechanisms: shared hidden subspace learning based on SRRS and incomplete multi-
view co-clustering by sparse low-rank representation. We conducted numerous rele-
vant experiments to validate the effectiveness of the method.

• Chapter 5 outlines the utilization of information bottleneck and anchor graph GCN
techniques for addressing incomplete multi-view representation learning. Additionally,
it aims to assess the effectiveness of incomplete multi-view representation learning
across various degrees of missing data within the datasets.

• Chapter 6 summarizes the thesis and discusses possible future directions relevant to
my research works.
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2.1 Overview

In this chapter, we present the background and relevant technologies concerning our pa-
per’s focus—incomplete multi-view clustering with hidden data mining and fusion clustering
techniques. We will present key subsections that contain important concepts and techniques
closely tied to the study of incomplete multi-view clustering. Furthermore, we will conduct
an independent and detailed discussion of relevant research to thoroughly explore their
practical applications and roles within the incomplete multi-view clustering techniques.

2.2 Multi-view Data Analysis

To date, multi-view data has extensively penetrated various industries. Different domains
exhibit diverse data patterns, including but not limited to images, texts, audio, and more.
In the domain of medical research, multi-view data analysis finds concrete applications in
disease localization through image recognition, disease prediction, and the formulation of
treatment strategies. In the field of finance, multi-view data is commonly employed for
detecting market trends, evaluating investment risks, and conducting fraud detection in fi-
nancial contexts. In manufacturing, the integration of data from different production stages
facilitates quality control, production optimization, and supply chain management. In so-
cial media, multi-view data analysis aids in sentiment analysis of users and personalized
recommendations. Furthermore, multi-view analysis demonstrates its applicability in di-
verse areas such as pollution monitoring, traffic scheduling, energy, and more. In summary,
multi-view data analysis plays a pivotal role across various industries, providing substantial
support to societal development.

In the preceding section, we have already discussed the significance and application do-
mains of multi-view data analysis. Next, we explain the fundamental concepts of multi-view
data, which will lay the foundation for our comprehensive understanding and application
of analytical methods for multi-view data. In this section, we will explore the core concepts
of multi-view data, containing the relationships and characteristics among different views.
Moreover, we will investigate a key task in multi-view data analysis, namely, multi-view
clustering. As an important data analysis technique, multi-view clustering amalgamates in-
formation from various views to achieve holistic data comprehension and pattern extraction.
We will specify the groundwork and related studies in the following sections.

2.2.1 Fundamental Concepts of Multi-View Data

Multi-view data refers to data originating from diverse sources or views, with variations
in content, feature representations, or perspectives. These views can encompass a range
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Figure 2.1: Illustration of the multi-view representation diagram. Three shapes (hexagon, rect-
angle, and pentagram) and four colors (blue, orange, yellow, and red) are employed to distinguish
between different views and samples, with instances of the same color belonging to the same sample.

of data types, such as images, text, audio, and more. In the context of multi-view data
analysis, our focus is on harnessing the interplay of these distinct views to attain a more
comprehensive grasp of the data and yield more accurate analytical outcomes [3] [4] [5].
To better illustrate the characteristics of multi-view data, we have crafted Figure 2.1. As
depicted in Figure 2.1, it presents a schematic representation of multi-view depiction.

2.2.2 Relevant Techniques for Multi-view Clustering

In the current era of data-driven advancements, multi-view data has found extensive appli-
cations across various domains, ranging from social network analysis to biomedical research.
Multi-view data presents a wealth of information, offering opportunities for an in-depth un-
derstanding of phenomena and issues. However, with the continuous proliferation of data
sources and viewpoints, multi-view data analysis faces a host of challenges.

In this chapter, we delve into technologies closely aligned with multi-view data analysis,
aiming to address challenges such as data integration, feature extraction, and cross-view
correlations. We will explore methods based on subspaces [6] [7] [8] [9] [10], matrix factor-
ization [11] [12] [13] [14], graph-based integration [15] [16] [17] [18] [19] [20] [21], as well as
deep learning techniques [22] [23] [24] [25]. This comprehensive approach seeks to provide
a deeper and more comprehensive perspective for multi-view data analysis. Through these
methodologies, we are poised to better unearth latent information within multi-view data,



32 2.2. MULTI-VIEW DATA ANALYSIS

thereby attaining more precise analytical outcomes and insights.

2.2.2.1 Subspace-Based Multi-view Clustering Methods

Subspace-based methods play a crucial role in the analysis of multi-view data. These tech-
niques leverage the inherent distribution properties of data in low-dimensional subspaces
to achieve clustering and correlation. By mapping data from various views onto a shared
subspace, subspace-based methods capture both the commonalities and differences among
multi-view data, enabling more precise analyses. In this chapter, we will provide a com-
prehensive overview of several prevalent subspace-based multi-view clustering approaches,
including methods based on local subspaces [7], shared subspaces [8], and subspace methods
involving both consistency and specificity [9] [10].

The approach based on local subspaces primarily aims to address the diversity inherent
in different views. It concentrates on the local subspaces within each view. For instance, Gao
et al. [7] introduced a multi-view subspace clustering method that simultaneously performs
clustering on the subspace representation of each view. Additionally, the method employs a
shared clustering structure to ensure consistency among different views, ultimately leading
to the attainment of multi-view clustering results.

The approach based on shared subspaces has the capability to integrate information
from different views into a common subspace, thus comprehensively capturing the intrinsic
structure of the data. For instance, Zhang et al. [8] employed this approach to uncover
underlying complementary information from multi-view data while simultaneously explor-
ing latent representations. By harnessing the complementarity among multiple views, the
learned shared latent representation depicts the data more comprehensively than individual
views, thereby enhancing the accuracy and robustness of the subspace representation.

The approach based on the interplay of consistency and specificity within subspaces ex-
cels at balancing commonalities and differences during the clustering process. This equilib-
rium contributes to the generation of more stable and robust clustering outcomes, mitigating
the instability stemming from inter-view disparities. For instance, Luo et al. [9] introduced
a novel multi-view subspace clustering method (CSMSC) that leverages both consistency
and specificity for subspace representation learning. The multi-view self-representation con-
structed by this method not only amalgamates shared consistent representations but also
integrates view-specific representations. As a result, more precise clustering outcomes can
be achieved.

2.2.2.2 Non-negative Matrix Factorization-Based Multi-view Clustering

The multi-view clustering methods based on non-negative matrix factorization primarily
decompose the multi-view data matrices into non-negative basis matrices and weight ma-
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trices, thereby mapping the multi-view data into a low-dimensional representation space.
This low-dimensional representation not only aids in reducing the dimensionality of the
data but also captures the shared structures and features of the multi-view data. In this
section, we will provide a detailed overview of several common multi-view clustering meth-
ods based on non-negative matrix factorization, including traditional non-negative matrix
factorization-based multi-view clustering [11], graph regularized non-negative matrix fac-
torization approaches [12] [13], and deep model-based non-negative matrix factorization
methods for multi-view clustering [14].

Methods based on traditional non-negative matrix factorization effectively extract fea-
tures and representations from multi-view data, enabling a better capture of the data’s
underlying structures and patterns. This aids in revealing both shared characteristics and
differences among the multi-view data. The non-negativity property typically exhibited by
representations obtained from non-negative matrix factorization enhances interpretability
and facilitates the understanding of data meaning and associations. For instance, Liu et
al. [11] introduced a novel multi-view clustering algorithm based on non-negative matrix
factorization (NMF), aiming to achieve a harmonious and consistent clustering solution
across multiple perspectives. This is achieved by seeking appropriate factorizations through
a constrained joint matrix factorization process, guiding the clustering solutions of each
view towards a common consensus rather than directly fixing them.

The graph regularization non-negative matrix factorization approach not only effectively
preserves local structural information within the data but also enables feature selection
through graph structures, thus effectively filtering out noise and redundant information.
Furthermore, graph regularization methods often exhibit adaptability, allowing them to
flexibly learn the graph’s structure, and adjust its weights, and connections based on the
data’s characteristics. This adaptability is beneficial in accommodating different types of
multi-view data.

For instance, addressing this challenge, Li et al. [12], inspired by feature selection and
graph regularization concepts, proposed a novel NMF-based unified representation learning
framework. Within this framework, they incorporated two specifically designed graph regu-
larization terms to obtain high-quality representations of multi-view data. Simultaneously,
they constructed a unified NMF-based optimization problem to achieve improved consensus
and complementary representations. Ultimately, they devised an alternating optimization
algorithm to address this non-convex optimization problem.

The method of multi-view clustering based on non-negative matrix factorization with
deep models enhances the capability of learning higher-level and abstract feature repre-
sentations. This enables a more effective capture of the intricate structures and patterns
within the data, facilitating the extraction of more distinctive features and ultimately im-
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proving the performance of multi-view clustering. Deep models typically consist of multiple
hierarchical layers, with each layer being adept at extracting features at varying levels of
abstraction. Within the context of multi-view clustering, this multi-layer feature extrac-
tion contributes to a more comprehensive understanding of the data’s diversity and shared
characteristics. For example, Wang et al. [14] proposed a multi-view clustering algorithm
based on deep learning to address challenges in multi-view clustering. In this approach, two
types of activation functions were initially designed to limit the range of elements in the
low-dimensional matrix, thus eliminating constraints. Subsequently, the stochastic gradient
descent (SGD) algorithm was employed for element updates, with learning rates guiding
parameter adjustments. After obtaining the corresponding weight and bias matrices, these
were integrated with the activation functions to construct a deep network. This network
was employed to update the elements within the low-dimensional matrix corresponding to
each view, ultimately resulting in the derivation of the final consensus matrix.

2.2.2.3 Graph-Based Integration Multi-view Clustering

Graph fusion-based multi-view clustering methods often focus on the local structure of
data, specifically the similarity relationships between samples. By preserving the local
structure, these methods are better equipped to capture the underlying distribution of the
data, leading to more accurate clustering outcomes. Simultaneously, the graph information
from different views can complement each other. As a result, graph fusion-based approaches
are capable of integrating information from multiple views to comprehensively depict the
characteristics of the data, thereby enhancing the accuracy of clustering. Graph fusion-
based multi-view clustering methods can be categorized into several subtypes, including
weight learning-based graph fusion methods [15] [16], neighborhood graph learning-based
graph fusion methods [17] [18], and one-step clustering-based graph fusion methods [19].

Graph fusion-based weight learning methods for multi-view clustering effectively lever-
age information from multiple views, preserve local structures, achieve information com-
plementarity, and adaptively learn graph weights. This reduces dependence on pre-defined
graph structures and yields superior performance in multi-view clustering tasks. For in-
stance, Wang et al. [15] proposed an innovative multi-view fusion technique that automat-
ically assigns weights to each data graph matrix to derive a unified graph matrix. A rank
constraint is also imposed on the Laplacian matrix of the unified matrix without introduc-
ing tuning parameters, facilitating the natural partitioning of data points into the desired
number of clusters.

Graph fusion-based neighborhood graph learning approach for multi-view clustering
liberates itself from the typical constraints of predefining view-specific graph structures,
a limitation of conventional multi-view clustering methods. This innovative methodology
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is capable of reducing the dependence on predetermined graph structures, thus enhancing
the robustness of the technique. For instance, Du et al. [17]introduced a novel multi-view
clustering method known as Robust and Optimal Neighborhood Graph Learning (RONGL)
for multi-view clustering. Specifically, an initial graph is constructed for each view. To
better represent relationships among samples within each view, an optimal graph with k

connected components is sought in the neighborhood of each initial graph, where k corre-
sponds to the number of clusters. Subsequently, the optimal graph is reconstructed using
self-representation matrices. Finally, all self-representation matrices are stacked into a ten-
sor, and a tensor low-rank constraint is applied to maximize the enhancement of consistent
features and explore high-order relationships among optimal graphs.

Graph fusion-based one-step clustering approach for multi-view clustering can directly
obtain clustering results from the fused graph structure, eliminating the need for additional
post-processing steps like K-means clustering. This simplifies the process and enhances effi-
ciency. For instance, Zhan et al. [19] address the multi-view clustering problem by seamlessly
integrating graph structures from different views to fully exploit the geometric properties
of the underlying data structure. The proposed method is based on the assumption that
the intrinsic underlying graph structure assigns corresponding connected components in
each graph to the same cluster. Different graphs from multiple views are integrated using
the Hadamard product, as different views often share the same underlying structure across
views. Moreover, this method directly derives cluster indicators from the graph itself, with-
out the necessity of performing further graph cutting or K-means clustering algorithms.

2.2.2.4 Deep Learning-Based Multi-view Clustering

Deep-based multi-view clustering methods, leveraging advantages such as high-level feature
representation, feature fusion, shared representation learning, end-to-end learning, flexi-
bility, adaptability, and data augmentation, have proven to be effective in enhancing the
performance of multi-view clustering. These methods find applications in analyzing and
utilizing complex multi-view data. Deep-based multi-view clustering approaches can be
categorized into deep autoencoder-based multi-view clustering methods [20] [21] [22], deep
neural network-based multi-view clustering methods [23] [24], and deep clustering-based
multi-view clustering methods [25].

Deep autoencoders can be employed not only for feature learning but also for repre-
sentation learning. Through the encoding layers of the autoencoder, data is mapped to
a lower-dimensional representation space, which can provide more compact and discrimi-
native feature representations for clustering. For instance, Li et al. [21] proposed a novel
multi-view clustering method known as Deep Adversarial Multi-view Clustering (DAMC)
network to learn the intrinsic structure embedded within multi-view data. Specifically,
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this model utilizes deep autoencoders to learn latent representations shared across multiple
views, while also leveraging adversarial training to further capture data distribution and
disentangle the latent space.

Multi-view clustering methods based on deep neural networks can progressively extract
multi-level abstract feature representations of data through multiple hidden layers. This
enables the model to learn higher-level and more discriminative features, aiding in better
differentiation of different data categories. Simultaneously, multi-view data can be input
into different branches of neural networks, with each branch learning a view-specific rep-
resentation. These representations can then be fused at higher layers of the network, thus
fully utilizing complementary information from different views. For example, Zhao et al. [24]
proposed a novel Deep Probability Multi-View Feature Learning (DPMFL) method to ad-
dress these challenges. Specifically, this method designs a probabilistic matrix factorization
(PMF) algorithm that assumes data follow Gaussian distribution during noise and dimen-
sion reduction, serving as data preprocessing. Additionally, considering the success of Deep
Neural Networks (DNN) in the field of machine learning, this method integrates DNN with
PMF and subspace self-representation to achieve effective consistency and specific multi-
view feature learning.

The deep clustering approach based on multi-view data enables end-to-end learning,
starting from raw data and progressively acquiring feature representations and clustering
information through a sequence of network layers, ultimately attaining optimal clustering
outcomes. This streamlines the entire process and enhances model optimization. For in-
stance, Huang et al. [25] introduced a self-supervised graph attention network for Deep
Weighted Multi-View Clustering (SGDMC), which leverages self-supervised information to
enhance the effectiveness of graph-based deep Multi-View Clustering (MVC) models from
two aspects. Firstly, this method devises a novel attention allocation approach that con-
siders node attribute similarity and self-supervised information, thereby comprehensively
assessing the interconnectedness of distinct nodes. Secondly, to mitigate the adverse im-
pact of noisy samples and differences in cluster structures, the approach further devises a
sample-weighting strategy based on attention graphs, along with addressing the divergence
between global pseudo-labels and local cluster assignments for each individual view.

2.3 Data Missing and Processing

In the era of big data, with the continuous growth of data, the issue of missing data during
the data acquisition process has become increasingly common. The presence of missing
data has significant implications for practical applications, making the handling of such
data a prominent research concern in the field of big data processing. This chapter aims to
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systematically expound the factors leading to data incompleteness and categorize the types
of data incompleteness.

2.3.1 Reasons for Data Missing

Data missing is a common issue in the era of big data applications, and its causes are diverse.
Firstly, data collection processes can be prone to device malfunctions or transmission errors,
resulting in data loss. Secondly, human errors during data recording, such as operational
mistakes or input errors, can also lead to data gaps. Furthermore, the complexities of
different domains contribute to varying missing data reasons across diverse fields. For
instance, the medical field may involve privacy protection needs, while the financial sector
may face complexities in data transactions. Additionally, certain data could exhibit partial
information loss due to special conditions or incomplete observations. In summary, data
missing can stem from various factors including technological glitches, human involvement,
and domain-specific characteristics. A thorough understanding of these causes is crucial for
devising effective data processing and imputation strategies [26] [27].

2.3.2 Classification of Data Missing

When dealing with data missing, a crucial approach involves categorizing the nature of
the missing data, aiming to better comprehend and address different types of missingness.
Data missingness can be divided into two main categories: random missing and non-random
missing. Random missing refers to instances where the absence of data is unrelated to
the characteristics of the observed values, possibly stemming from device malfunctions,
transmission errors, and the like. Conversely, non-random missing denotes that the data’s
absence correlates with attributes or features of the observed values, typically occurring
under specific conditions, such as certain questions being omitted by some respondents in
survey questionnaires. Furthermore, data missingness can be classified as complete missing
or partial missing. Complete missing implies that all attributes of a particular observed
value are missing, while partial missing indicates the absence of some attributes within an
observed value. By comprehending the distinct categories of data missing, tailored strategies
can be employed to handle and rectify the data, ultimately enhancing the accuracy and
reliability of data analysis and applications [28] [29] [30].

2.3.3 Methods for Handling Missing Values

Currently, the methods for handling missing values can be broadly categorized into three
types, as illustrated in Figure 2.2: deletion, imputation, and preservation without modifi-
cation [31]. Among these three approaches, the choice can be made based on the specific



38 2.3. DATA MISSING AND PROCESSING

Figure 2.2: The Main Method of Missing Data Processing.

nature of the missing data.

2.3.3.1 Deletion Method

The most basic method for handling missing data mainly involves the simple deletion ap-
proach, where instances containing missing values or attribute values within instances are
removed [32].

Instance Deletion involves the removal of a specific research object’s data record from the
dataset when it contains missing values. This approach is suitable only when the number of
instances with missing values is exceedingly small, as excessive removal of instances due to
missing values can lead to significant data loss and consequently compromise the dataset’s
integrity, thereby impacting the accuracy of subsequent experimental results.

Attribute Deletion entails the removal of a particular attribute from instances in the
dataset when that attribute is missing. However, if a substantial number of instances lack
attribute information, excessive attribute deletion can occur, undermining the meaningful-
ness of the research.
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2.3.3.2 Imputation Method

Currently, various imputation methods have been proposed in the academic community
to address the issue of missing data. These methods can be broadly categorized into two
main classes: statistical methods and machine learning methods [33]. Statistical methods
are based on assumptions made about the data itself and rely on the original dataset
for imputation. However, these methods often do not consider the characteristics of the
data, potentially leading to imputed values being influenced by other data objects. On
the other hand, machine learning methods primarily involve clustering or classifying the
missing raw data before performing imputation. In the following sections, we will provide a
detailed overview of several commonly used specific methods. The methods mainly include
filling manually, mean imputation, expectation maximization imputation, and clustering
imputation.

The manual filling method primarily relies on the characteristics of the dataset itself for
imputation. This approach is often the quickest and most accurate for filling many missing
data points. However, when dealing with exceptionally large dataset sizes and a substantial
amount of missing data, not only does it consume a significant amount of time, but it also
increases the risk of errors. Additionally, this method’s feasibility is considerably reduced
for other users of the dataset.

The mean imputation method is a common approach for handling missing data, and its
fundamental idea is to replace missing values with the mean of the corresponding instances
or attributes from the available data. However, it’s important to note that this method is
suitable when the data’s variables follow or approximate a normal distribution. If the dis-
tribution of the data doesn’t meet this requirement, using the mode or median of instances
or attributes can be considered for filling in the missing values [34]. Despite being widely
used for imputing missing values, the mean imputation method has limitations and is best
suited for simple research scenarios with smaller data scales and fewer missing values. In
more complex research scenarios, the effectiveness of the mean imputation method becomes
more limited [35] [36].

The EM algorithm (Expectation-Maximization algorithm) was originally proposed by
Dempster et al. [37]. This method involves alternating between two computational steps.
Firstly, in the Expectation step, existing estimates of hidden variables are used to calculate
their maximum likelihood estimates. Secondly, in the Maximization step, the parameter
values are computed by maximizing the maximum likelihood value obtained from the pre-
vious step. The parameter estimates found during the Maximization step are used in the
next Expectation step calculation, facilitating an iterative alternating process.

Cluster-based imputation is one of the most widely employed methods in current re-
search for handling missing data. This approach begins by grouping the dataset using clus-
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tering techniques, followed by performing similarity-based imputation within each group.
Taking the classic K-means clustering-based imputation algorithm as an example, the pro-
cess involves initially dividing the original dataset into complete and missing data subsets.
Clustering is then performed on the complete data subset, resulting in K clusters. Subse-
quently, the similarity between the missing data objects and the centroids of the K clusters
is computed. Finally, the missing values of the target object are imputed with the mean
attribute values of the most similar cluster [38].

2.3.3.3 Non-Processing Method

This non-imputation method can directly learn from the original data [39] [40]. Among
these, Bayesian networks, artificial neural networks, and rough set theory are commonly
used non-imputation methods.

Bayesian networks are graphical models used to represent dependencies between vari-
ables [41]. However, their utilization is constrained by the high requirement for domain
knowledge.

Artificial neural networks effectively address the issue of missing values using methods
such as radial basis functions. Nevertheless, the complex and less interpretable nature of
the learning process in neural network models poses limitations.

On the other hand, rough set theory is a mathematical tool for handling uncertainty
and incomplete information. It aids in identifying patterns, regularities, and relationships
within data, thereby facilitating partial data completion [42].

2.4 Hidden Data Mining in Incomplete Multi-view Data

An incomplete view refers to the situation in which data contains missing, incomplete, or
inaccurate information, resulting in the inability to present the data in its entirety [2]. As
shown in Figure 2.3, an example of incomplete multiview data is presented, containing
data from three samples: cat, dog, and bird. Each instance was originally described by
three modalities: text, image, and video. However, upon observation, it is noted that two
instances each lack data from one modality. The purpose of this chapter is to introduce the
role of hidden data mining in incomplete multiview data. This approach involves analyzing
and extracting latent patterns, regularities, and information from multiple modalities to fill
in missing data and reveal interrelationships among the data. This method contributes to a
more comprehensive understanding of the dataset and enhances the accuracy of tasks such
as prediction, classification, and clustering.

Existing methods for hidden data mining in incomplete multi-view data can be catego-
rized from two perspectives. One classification approach is based on hidden data recovery,
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Figure 2.3: Illustration of Incomplete Multiview Data.

where the existing methods can be divided into two main groups. The first group of meth-
ods focuses on addressing the incomplete learning problem by recovering missing views or
missing connections between samples. The second group of methods, on the other hand,
does not specifically aim to recover missing view information; instead, they concentrate
on capturing partially aligned information among the available views. Another classifica-
tion approach is based on the adopted modeling perspectives, and the existing methods
can be classified into four categories: matrix factorization (MF)-based incomplete multi-
view learning [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53], kernel learning-based in-
complete multi-view learning [54] [55] [56] [57] [58] [59], graph learning-based incomplete
multi-view learning [60] [61] [62] [63] [64]and deep learning-based incomplete multi-view
learning [65] [66] [67].

2.4.1 Matrix Factorization (MF)-based Incomplete Multi-view Cluster-
ing

The matrix factorization-based approach for incomplete multiview clustering possesses mul-
tiple advantages. Firstly, this method effectively leverages the correlations and complemen-
tary information among multiview data by representing data in a low-dimensional latent
feature space, thereby capturing the inherent structure of the data more accurately. Sec-
ondly, matrix factorization can handle scenarios with missing views, generating meaningful
clustering results even when partial view data is absent. Furthermore, this approach is
grounded in solid mathematical theory, providing it with high interpretability and stability
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Figure 2.4: Partial Multiview Data. Geometric shapes in four different colors (i.e., rectangle,
triangle, hexagram, circle) and four distinct hollow geometric shapes represent non-missing and
missing samples, respectively.

in the field of multiview clustering. Lastly, the method demonstrates strong scalability,
adapting well to various data types and numbers of views, offering a potent tool for an-
alyzing complex multiview data. Consequently, the matrix factorization-based approach
to incomplete multiview clustering boasts significant advantages in enhancing clustering
performance, managing missing data, and maintaining stability. Next, we will present two
categories of matrix factorization-based incomplete multiview clustering methods, catego-
rized based on the different types of data being addressed.

2.4.1.1 MF-Based Approaches for Partial Multiview Data

To address this type of missing data as depicted in Figure 2.4, MF-based approaches for
partial multiview data were proposed.

For instance, to address such partial data missing scenarios, a novel multi-view clustering
method called Partial Multiview Subspace Clustering (PMSC) was introduced by Xu et
al. [45]. This method aims to tackle the issue of partial multi-view scenarios. Unlike
most of the existing partial multi-view clustering methods, the proposed approach not only
learns a novel representation of the original data but also simultaneously explores the latent
space and performs data reconstruction to acquire a subspace representation. The learned
subspace representation uncovers the latent subspace structure embedded within the raw
data, resulting in a more comprehensive data depiction. Furthermore, the method enforces
non-negativity on the subspace representation, providing an intuitive weight interpretation
among distinct data points.
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Figure 2.5: Arbitrary Missing Views. Geometric shapes in four different colors (i.e., rectangle,
triangle, hexagram, circle) and four distinct hollow geometric shapes represent non-missing and
missing samples, respectively.

2.4.1.2 MF-Based Approaches for Arbitrary Missing Views

To tackle this type of missing data depicted in Figure 2.5, MF-based approaches were
proposed for dealing with Arbitrary Missing Views.

For instance, Hu et al. [48] proposed a doubly aligned incomplete multi-view clustering
(DAIMC) based on weighted semi-nonnegative matrix factorization (semi-NMF). Specif-
ically, DAIMC leverages the provided instance alignment information to learn a shared
latent feature matrix for all views. Additionally, DAIMC employs L2,1-norm-regularized
regression to establish a consensus basis matrix, aiming to mitigate the impact of missing
instances.

2.4.2 Kernel Learning-based Incomplete Multi-view Clustering

Kernel learning methods can address incomplete kernel matrices through appropriate strate-
gies, thereby tackling the issue of missing views and effectively handling common data in-
completeness in practical applications. Most kernel learning-based incomplete multiview
clustering methods focus on recovering the missing rows and columns of kernel matrices to
address the incomplete learning problem. Based on the primary techniques used to tackle
this incompleteness, we categorize existing kernel learning-based incomplete multiview clus-
tering methods into two groups: the first group employs Laplacian regularization and kernel
canonical correlation analysis (KCCA), while the second group utilizes the multiple kernel
k-means algorithm.
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2.4.2.1 Laplacian Regularization and KCCA-Based Incomplete Multi-view Clus-
tering

Incomplete multiview clustering (IMC) methods based on Laplacian regularization and
Kernel Canonical Correlation Analysis (KCCA) typically start by completing the kernel
matrices and then proceed to learn the latent representations of all views using KCCA.
For instance, Shao et al. [55] proposed an approach called "Collective Kernel Learning"
to address this issue. This method aims to infer hidden sample similarities from multiple
incomplete datasets. The approach collectively completes the kernel matrices of incomplete
datasets by optimizing the alignment of shared instances across the datasets.

2.4.2.2 Multiple Kernel K-means-Based Incomplete Multi-view Clustering

Compared to traditional methods, the approach based on multiple kernel K-means exhibits
improved capability in handling incomplete multiview data, where certain views might
exhibit missing data. By integrating multiple kernel functions, the algorithm can effectively
capture existing information, thereby enhancing clustering accuracy. For instance, Liu et al.
[58] identified that existing MKC algorithms struggle to effectively handle situations where
certain rows and columns are missing in the base kernel matrix. Therefore, they introduced
a straightforward yet effective algorithm to address this issue. Unlike previous methods
that typically involve completing the incomplete kernel matrix first and then applying the
standard MKC algorithm to the completed matrix, their proposed approach integrates
kernel matrix completion and clustering into a unified learning process. Importantly, their
algorithm doesn’t mandate the presence of at least one complete base kernel matrix across
all samples. Additionally, this algorithm has the capability to adaptively impute incomplete
kernel matrices and fuse them to better support clustering. Furthermore, they enhanced
the algorithm by encouraging mutual completion among the incomplete kernel matrices.

2.4.3 Graph Learning based Incomplete Multi-view Clustering

Graph-based learning enables the integration of available information from diverse views,
contributing to the establishment of more robust and comprehensive data representations.
This facilitates a better capture of the intrinsic data structure, even in the presence of in-
complete views. Furthermore, graph-based approaches can accommodate varying degrees
of view completeness. This category of methods can effectively impute missing information
based on the available data from other views, particularly excelling when confronted with
substantial data incompleteness. Regarding the diverse correlated representations of multi-
view data obtained through graph-based approaches, we categorize this method primarily
into two classes, denoted as graph-based incomplete multiview clustering with consensus
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representation and graph-based incomplete multiview clustering with consensus graph rep-
resentation.

2.4.3.1 Graph-Based Incomplete Multiview Clustering with Consensus Repre-
sentation

When data is provided by multiple views with existing correlations and complementary
information among these views, the approach of multiple-view consensus representation ex-
cels at amalgamating this information, thereby enhancing the cohesiveness and accuracy
of data representation. This is particularly advantageous for tasks that involve multiple
types of features or stem from diverse data sources. For instance, Wen et al. [63] proposed
a general framework for incomplete multiview clustering. This method is the first to utilize
graph learning and spectral clustering techniques to learn a consensus representation for
incomplete multiview clustering. Firstly, due to the effective performance of low-rank rep-
resentation in discovering the intrinsic subspace structure of data, the method employs it
to adaptively construct a graph for each view. Secondly, spectral constraints are applied to
achieve low-dimensional representations for each view based on spectral clustering. Thirdly,
the method introduces a co-regularization term to further learn a common representation
for samples across all views, followed by using k-means to partition the data into respective
groups. Lastly, an efficient iterative algorithm is provided to optimize this model.

2.4.3.2 Graph-Based Incomplete Multiview Clustering with Consensus Graph
Representation

When the relationships and structures of data are crucial for the success of a task, graph-
based consensus representation methods excel in capturing the relationships among data
points. Especially in fields such as network analysis, social networks, and bioinformat-
ics, graph-based consensus representation can reveal intricate interaction patterns among
the data. For example, Zhou et al. [62] proposed a novel graph-based method for incom-
plete multi-view clustering (GIMC) to address this task. GIMC is capable of effectively
constructing complete graphs for each view with the assistance of other views, and auto-
matically assigning weights to each constructed graph to learn a consensus graph, thereby
obtaining the final clustering results.

2.4.4 Deep Learning-based Incomplete Multi-view Clustering

Deep learning models possess the ability to adapt to varying degrees of data incompleteness.
Through training, these models can automatically learn valuable features from partial views,
thereby exhibiting strong robustness when dealing with incomplete data. Furthermore, deep
learning methods can tailor their network structures and loss functions to accommodate
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diverse tasks and data characteristics. This flexibility enables them to address a wide range
of incomplete multi-view clustering problems with excellent scalability. In this section,
we will primarily introduce several existing methods that utilize deep models to tackle
incomplete multi-view clustering.

2.4.4.1 Incomplete multi-view clustering via deep semantic mapping

Based on deep semantic mapping, the method is capable of learning high-level, semantically-
rich feature representations by extracting valuable information from incomplete views, en-
abling more accurate clustering. For example, Zhao et al. [65] proposed a method known
as Deep Incomplete Multi-view Clustering (DIMC), which integrates constraints from an
intrinsic geometric structure with incomplete multi-view samples. To bridge the gap be-
tween each view and the common representation, they trained multi-view deep coupled
networks to map high-level semantic features. Additionally, to preserve the local invariance
of each view, they constructed an affinity graph-based regularizer for encoding geometric
information.

2.4.4.2 Partial multi-view clustering via consistent GAN

The advantage of using Generative Adversarial Networks (GANs) is that they can generate
realistic data samples to fill in missing data points from partial or incomplete views. This
enhances data completeness and availability, enabling a more accurate capture of the under-
lying structure and patterns during the clustering process. Additionally, GAN architecture
and loss functions can be flexibly adjusted based on different problems and data charac-
teristics. This versatility allows the method to adapt to various incomplete multi-view
clustering scenarios and exhibit excellent performance in diverse contexts. For instance,
Wang et al. [66] introduced a novel Consistent Generative Adversarial Network (CGAN)
for partial multi-view clustering. This method learns a shared low-dimensional representa-
tion that is capable of generating missing view data and capturing a more effective common
structure from partial multi-view data for clustering purposes. Diverging from the majority
of existing approaches, this method employs the shared representation encoded by one view
to generate the missing data of the corresponding view through a generative adversarial
network. Subsequently, encoder and clustering networks are employed.

2.4.4.3 Adversarial incomplete multi-view clustering

The advantage of adversarial incomplete multi-view clustering methods lies in their ability
to effectively handle missing data through an adversarial learning framework. By introduc-
ing generators and discriminators, these methods can generate missing data from partial
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or incomplete views, while enhancing data consistency and integrity through adversarial
training. This contributes to a more accurate capture of hidden patterns and structures
within the data, leading to improved clustering performance. Leveraging the power of ad-
versarial training, these methods can adapt to various scenarios of missing data, offering
robust and effective solutions for multi-view clustering. For example, Xu et al. [67] proposed
a method called Adversarial Incomplete Multiview Clustering (AIMC). Unlike most exist-
ing methods that solely learn new representations based on existing views, AIMC aims to
simultaneously seek the common latent space of multi-view data and perform missing data
inference. Specifically, the method employs a combination of element-wise reconstruction
and Generative Adversarial Networks (GANs) to infer missing data. These techniques aim
to capture both the overall structure and deeper semantic understanding. Furthermore, an
alignment clustering loss is designed to improve the clustering structure.
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3.1 Introduction

With the development of data acquisition technology, sources and types of data are be-
coming more diverse. The collected data were characterized by multiple views. Complex
data features can be better understood by fusing information from multi-view data. A
common approach is multi-view clustering. The basic idea of this type of approach is
that multi-view data are strongly related and complementary to each other in different
ways [68] [69] [70] [71] [72] [73] [74] [75] . However, not all data will contain complete multi-
view data. We consider land data as an example, often consisting of data with different
views, such as symbols, text, and graphics. In reality, some land data may have the format
of graphics but lack text or symbols. As such, incomplete multi-view data were formed [76]
. That is, a dataset has an arbitrary loss of view with only some instances containing all
views.

Specifically, incomplete multi-view clustering methods can be roughly grouped into four
categories. Based on a filling strategy, the methods of the first category [58] [47] [77] [51]
usually start by selecting a suitable padding algorithm and then applying existing multi-
view learning methods to incomplete multi-view datasets populated by padding algorithms.
For example, Shao et al. [77] first filled incomplete samples by averaging the eigenvalues
and using regularised weighted non-negative matrix decomposition to learn a subspace. The
methods in the second category [78] [79] [80] [81] [44] ignore incomplete view information
in the process of learning potential representations. Quanz et al. [78] pushed clustering
solutions for different views from the same example to the standard membership matrix to
simultaneously generate the underlying geometric structure of the views. Learning from a
single view, the third method [82] [83] attempts to learn a unified model for all views. Yuan
et al. [83] built a separate classifier for each data source. This model learns different base
classifiers for different data sources. Based on a classifier, the method uses a single column
of prediction scores to represent each source and then combines the estimated incomplete
prediction scores with the available prediction scores. Thus, a multi-source fusion model
was built. The methods of the last category [84] [85] [86] [65] use deep models for incomplete
multiview clustering. For example, Tran et al. [87] proposed a cascaded residual autoencoder
(CRA) to complement the incomplete multi-view. By stacking the residual autoencoders,
the residuals between the current prediction and the original data were obtained by iterative
simulation of the algorithm.

Although many methods have been proposed to address the incomplete problem of
multi-view clustering, they have some limitations. For example, as mentioned by [88],
the first limitation is that most approaches do not make full use of the information of
observation instances inside and between views, resulting in missing valuable information.
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Second, some models are sensitive to the choice of parameters and are less robust [89],
which restricts their availability in real-world scenarios. Third, existing methods cannot
effectively handle samples with incomplete views, which inevitably reduces the performance
of the IMC [63].

To overcome these limitations, in this paper, we propose a unified framework for in-
complete multiview clustering using non-negative matrix factorization (NMF) and the low-
rank tensor, called IMC-NLT. Specifically, IMC-NLT first utilizes NMF to learn a low-
dimensional representation for all the views. In this way, not only is the dimensionality of
the data reduced but also non-negative numerical effects with strong explanatory power can
be obtained. Using the prior information of a low-rank tensor, IMC-NLT can capture the
higher-order and complementary information embedded in the multi-view data. Finally,
a new cost function is introduced to measure consistent information across views, using a
linear kernel that measures similarities. The contributions of this study are summarised as
follows.

• We propose a novel and efficient incomplete multi-view clustering model called IMC-
NLT to handle incomplete view data. To the best of our knowledge, IMC-NLT is
the first incomplete multi-view clustering method that combines the low-dimensional
representation generated by the fast and effective dimension-reduction method with
a low-rank tensor model.

• To populate missing multi-view data in various cases, IMC-NLT uses a low-rank con-
straint and a tensor model constructed from incomplete multi-view data. As such, it
can capture the correlations among instances within and between views well.

• The proposed method is robust to globally extracted consistency information. In
particular, consistent representation learning can effectively measure the disagreement
between consistent information obtained from different perspectives. IMC-NLT can
effectively filter out noisy data under these views, producing an accurate multi-view
consistent representation.

• We conducted comprehensive experiments on multi-view benchmark datasets collected
in different application fields to evaluate the effectiveness of the IMC-NLT. The results
showed that IMC-NLT is superior to baseline methods. Furthermore, IMC-NLT has
low sensitivity to its parameters, which demonstrates excellent generalization perfor-
mance for incomplete multi-view clustering.

The remainder of this paper is organised as follows: Section 3.2 describes the related
work and background. Section 3.3 describes the proposed IMC-NLT algorithm. Sections
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3.4 and 3.5 present the theoretical analysis of IMC-NLT and evaluation results of the per-
formance of IMC-NLT, respectively. In Section 3.6, we report the experiments on the
parameters and convergence of IMC-NLT. Finally, Section 3.7 concludes the paper.

3.2 Related Work and Background

In this section, we present two studies closely related to the proposed method. First, we
present the basics of low-rank tensor-based models for multi-view learning. Here, we review
incomplete multi-view clustering based on matrix factorization.

3.2.1 Multi-view Learning Based on Low-rank Tensor

A low-rank tensor can effectively capture hidden information as a valid technique for an-
alyzing high-dimensional data. There are many examples of low-rank tensors used for
multi-view clustering [90] [91]. Zhang et al. [91] proposed a subspace clustering method
called low-rank tensor-constrained multi-view subspace clustering (LT-MSC). LT-MSC can
be described by the following equation:

min
Z(v),E(v)

kZk
⇤
+ �kEk2,1

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, ..., V,

Z =  (Z(1), Z(2), ..., Z(v)),

E = [E(1);E(2); ...;E(v)],

(3.1)

where X(v) is the v-th view of data. Note that X(v) = X(v)Z(v) + E(v). The formula can
learn the subspace representation matrix Z(v) by exploiting the self-expressive properties
of the data; � is a positive penalty parameter, and E(v) is the reconstruction error matrix.
Imposing the L2,1 regularizer on E(v) can urge the data in each column of matrix E(v)

to be close to 0. kZk
⇤

is the tensor kernel norm constraint added to Z. The tensor Z

consists of subspace representation Z(v). The model obtains the low-rank tensor using a
self-representation multi-view.

Similar to previous research methods, Xu et al. [90] proposed a method called low-rank
tensor-constrained co-regularised multi-view spectral clustering(LTCSPC). The objective
function of the LTCSPC is as follows:

min
F (v)2Rn⇥c

mX

v=1

↵(v)Tr(F (v)TL(v)F (v)) + kFk!,~ (3.2)

where we have
↵(v) = 1

�
(2
q
Tr(F (v)TL(v)F (v))) (3.3)



54 3.2. RELATED WORK AND BACKGROUND

In Equation 3.3, ↵(v) is the weight of each view and ! is the singular value-weighted
coefficient. LTCSPC calculates F (v) according to the standard spectral clustering and
data X(v) with m views. To use the high-order structure and complement, we denote the
indicator matrix as F (v)

2 Rn⇥c, where n is the number of samples, and c is the number of
categories. The slice of tensor F consists of the indicator matrix F (v). L(v) is the Laplacian
matrix. kFk!,~ is the weighted nuclear norm constraint added to F 2 Rn⇥m⇥c, which is
defined as:

kFk!,~ =
cX

i=1

kF̄ (i)
k!,⇤ =

cX

i=1

min(n,m)X

j=1

!j ⇤ �j(F̄
(i)) (3.4)

where F̄ (i)
2 Rn⇥m, �j(F̄ (i)) is the j-th largest singular value of F̄ (i), and !j is the j-th

element of the vector !. Although these methods can elegantly model different views, they
improve the clustering accuracy while reducing the redundancy of the learning subspace
representation. In addition, they are only applicable to complete multi-view data, and
cannot handle incomplete cases.

3.2.2 Incomplete Multi-view Clustering Based on Matrix Factorization

In this section, we review two classical methods: one-pass incomplete multi-view cluster-
ing(OPIMC) [50] and partial multi-view clustering(PVC) [43].

OPIMC applies regularized matrix factorization (RMF) [91] and weighted matrix fac-
torization (WMF) [92] to produce multi-view clustering results. The objective function of
the OPIMC is written as:

J =
nvX

v=1

{

[N/s]X

t=1

��� (X(v)
t � U (v) V T

t )W (v)
t

���
2

F
+ ↵

���U (v)
���
2

F
}

s.t. Vik 2 {0, 1},
KX

k=1

Vik = 1, 8i = 1, 2, ..., N

(3.5)

where X(v)
t denotes the t-th data chunk in the v-th view. Assume that each view is composed

of blocks of size s. V 2 RN⇥K is a clustering indicator matrix, and K represents the number
of categories of the data. If the instance belongs to one category, it is marked as 1; otherwise,
it is 0. U (v) and Vt are the low-rank regularized factor matrix and the clustering indicator
matrix for the t-th data chunk, respectively. ↵ is a non-negative parameter. Where N

denotes the number of instances. Furthermore, to achieve a high calculation cost when the
number of instances and categories are large, the model applies a 1-of-K coding constraint
to V , where W (v)

t is a diagonally weighted matrix of the t-th data chunk. OPIMC can
directly obtain the clustering results at the end of the iteration.
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PVC is an incomplete multi-view clustering method that uses NMF. It constructs a
specific latent space for unaligned instances and a shared latent space for aligned instances.
These shared and specific representations were used together for clustering. PVC was
formalized as follows:

min
P(c),P̂ (1),P̂ (2),U(1),U(2)

����


Xc

(1)

X̂(1)

�
�


Pc

P̂ (1)

�
U (1)

����
2

F

+

����


Xc

(2)

X̂(2)

�
�


Pc

P̂ (2)

�
U (2)

����
2

F

+�
�� P̄ (1)

��
1
+ �

�� P̄ (2)
��
1

s.t.U (1)
� 0, U (2)

� 0, P̄ (1)
� 0

P̄ (2)
� 0

(3.6)

In Equation 3.6, Xc
(1) and Xc

(2) represent instance data that exists in both views, X̂(1)

represents instance data that exists only in the first view, and X̂(2) represents instance data
that exists only in the second view. Pc represents the low-dimensional representation of the
common views after matrix decomposition. P̂ (1) and P̂ (2) represent individual potential
representation parts of each view. U (v) is the basis matrix of the view, P̄ (1) = [Pc; P̂ (1)]

and P̄ (2) = [PcP̂ (2)] are the latent representation of instances in the latent space. � is the
positive tradeoff parameter. The grouping result was obtained by establishing a potential
subspace.

3.3 Proposed IMC-NLT

To cluster incomplete multi-views, we present a new incomplete multi-view clustering model
called IMC-NLT. It consists of three parts: incomplete multi-view data filling and decom-
position, multi-view fusion of low-rank tensor, and consensus representation learning. The
framework for the IMC-NLT is illustrated in Figure 3.1.

3.3.1 Incomplete Multi-view Data Filling and Decomposition

To align the dimensions of multi-view data in a way that better reflects the structure of
incomplete data, we used NMF to build a multi-view data model with a unified dimension
and maintain information about the data space and feature space. The model is as follows:

min
H(v)

VX

v=1

n
(v)
o +n

(v)
cpX

i=1

�����

"
Y (v)
oi

Y (v)
cpi

#
�

"
H(v)

oi

H(v)
cpi

#
Q(v)

i

�����

2

F

s.t. H(v)
� 0, Q(v)

� 0, H(v) = T
h
H(v)

o ;H(v)
cp

i
(3.7)
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Figure 3.1: Overview of IMC-NLT. IMC-NLT consists of six major components: (a) Incomplete
multi-view data input; (b) Pre-filing and dimensionality reduction of incomplete view data; (c)
Construction of a tensor structure with unified view dimensions. (d) Singular value decomposition
visualization; (e) The Low-rank tensor fusion implements data filling; and (f) Consensus represen-
tation.

An example is shown in Figure 3.2, where matrix Y (v)
o 2 Rn

(v)
o ⇥d(v) is the matrix of

complete instances selected from the original view X(v)
2 Rn(v)

⇥d(v) . n(v) is the number of
instances when the view is complete, n(v)

o is the number of instances in each view that are
not missing, and d(v) represents the original feature dimension of multi-view data. Y (v)

cp 2

Rn
(v)
cp ⇥d(v) is a matrix of incomplete instances selected from the original view. n(v)

cp is the
number of instances incomplete in the multi-view data. To better reflect the structure of
incomplete data and better fill in incomplete values, we filled the incomplete view data
instances matrix Y (v)

cp with 0. The main purpose of dividing the available part Y (v)
o and

missing part Y (v)
cp is to emphasize the filling of the missing part of the data using the proposed

low-rank tensor model. The zero matrices represent the missing part of the data, whereas
the change in the zero matrices reflects the data recovery function of the model proposed
in this study. By introducing the decomposition model, we constructed the following low-
dimensional representation structure: H(v)

o 2 Rn
(v)
o ⇥t is the low-dimensional representation

matrix formed by the complete instances, where t represents the unified dimension number
after the dimension reduction. The selection of the feature dimension t depends on the
existing algorithms for multi-view data-sharing features based on NMF [93]. H(v)

cp 2 Rn
(v)
cp ⇥t

is a low-dimensional representation matrix formed by the incomplete instances. Q(v)
2

Rt⇥d(v) is the coefficient matrix after non-negative factorization. T is a reconstruction
operation of the modal matrix after the low-dimensional representation of each data view.
The purpose of this is to arrange incomplete modal data after dimensionality reduction in
the original order of the instance arrangement.
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Figure 3.2: Example of incomplete multi-view data filling and decomposition.

3.3.2 Multi-view Collaborative Fusion of Low-rank Tensor

In the previous section, we completed the unified transformation of the data dimensions
between views and pre-filling of missing data. In this section, we introduce a low-rank
tensor-filling model that can better capture high-order correlations between viewing data.
This process consists of two parts:1) the construction of the tensor, and 2) addition of
low-rank constraints to the tensor.

An intuitive example is shown in Figure 3.3., where H(v) is the low-dimensional repre-
sentation matrix after incomplete multi-view data-filling and decomposition. A third-order
tensor model was constructed using the enumeration method. Its construction is as follows:

H =  (H(1), H(2), ...,H(v)) (3.8)

operation  represents listing the reduced-dimensional second-order structure matrix H(v)

in view order to construct a third-order tensor H.
After obtaining the tensor model, we use tensor kernel parametrization to approximate

the tensor low-rank representation. The optimization model is as follows:

min
H

kHk
⇤ (3.9)

To make the objective function separable, we introduced the auxiliary variable Km to
solve the optimization problem in Equation 3.9. The formula used is as follows:



58 3.3. PROPOSED IMC-NLT

Figure 3.3: Example of restoring incomplete data based on a low-rank tensor.

min
H(v),Km

MX

m=1

�m kKmk⇤

s.t.km = Pmh,m = 1, 2, ...,M,

H =  (H(1), H(2), ...,H(v))

(3.10)

where �m represents the strength of the low-rank tensor constraint and km is the vectoriza-
tion of the matrix Km. Pm is the alignment matrix used to align the corresponding elements
between H(m) and Km, and H(m) is the matrix obtained by unfolding tensor H along the
m-th mode, defined as unfoldm(H)= H(m) 2 RIm⇥(I1⇥...Im�1⇥Im+1...IM ). The vectorization
of tensor H is denoted as h. This process can recover incomplete data based on effective
association information.

3.3.3 Consensus representation learning

Generally, an incomplete multi-view clustering algorithm based on the fusion strategy gives
the clustering results a more explicit physical meaning. However, existing incomplete multi-
view clustering algorithms based on fusion strategies still suffer from several shortcomings:1)
during the construction of the model, the fusion results are obtained separately from each
view, and the similarity features between views are ignored, resulting in incomplete ex-
traction of essential features for multi-view data; and 2) the semantic consistency features
between the fused views are not fully considered. Therefore, we introduce a consistent rep-
resentation model for our algorithm, which seeks a consensus representation from different
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perspectives, as follows:

J = min�1

VX

v=1

no+ncpX

i=1

�����

"
Y (v)
oi

Y (v)
cpi

#
�

"
H(v)

oi

H(v)
cpi

#
Q(v)

i

�����

2

F

+

�mkKmk⇤ + �2⇤(H
(v), U)

s.t.Pmh = km,m = 1, 2, ...,M,H(v) = T
h
H(v)

o ;H(v)
cp

i
,

<⌦(Y
(v)) = <⌦(X

(v)), H(v)TH(v) = I,

H =  (H(1), H(2), ...,H(v)), UU (T ) = I,

H(v)
� 0, Q(v)

� 0

(3.11)

where U denotes the learned consensus representation. This representation can effectively
fuse each instance of information from all views. �1 and �2 are positive penalty parameters
for adjusting the impact of each term in all objective functions. The function ⇤ produces a
consistent representation matrix, and H(v) is the incomplete view data processed by filling
the low-rank tensor model. <⌦ represents a mapping operation, which maps the complete
instance part of the view to matrix Y (v)

o and the incomplete part of the view to matrix Y (v)
cp .

To form a consistent representation of U , we utilised the measurement formula ⇤(H(v), U)

to measure the degree of inconsistency between U and H(v) [94]:

⇤(H(v), U) =

�����
SU

kSUk
2
F

�
SH(v)

kSH(v)k
2
F

�����

2

F

(3.12)

where SU is the similarity matrix of U and SH(v) is the similarity matrix of H(v). This
function can produce a better fusion representation by minimizing the gap between multi-
view and consistent representations. Furthermore, we use the linear kernel, that is, SU =

UUT , which is the standard of a similarity measurement [94]. Based on the fact that
kSUk

2
F = c, and kSH(v)k

2
F = c, the value of c in the formula is equal to the number of

categories of multi-view data. Most of the algorithm settings were the same, and their
effectiveness has been verified [94]. we rewrite Equation 3.12 as:

⇤(H(v), U) =
2(c� Tr(H(v)H(v)TUUT ))

c2
(3.13)

Because c is a constant, it can be omitted when calculating to obtain the final consistency
expression in Equation 3.14

⇤(H(v), U) = �Tr(H(v)H(v)TUUT ) (3.14)
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3.3.4 Objective Function and Optimization

Putting Equations 3.7, 3.10, and 3.14 together, we can obtain the following objective func-
tion:

J = min�1

VX

v=1

no+ncpX

i=1

�����

"
Y (v)
oi

Y (v)
cpi

#
�

"
H(v)

oi

H(v)
cpi

#
Q(v)

i

�����

2

F

+

�mkKmk⇤ � �2

VX

v=1

Tr(H(v)H(v)TUUT )

s.t.Pmh = km,m = 1, 2, ...,M,H(v) = T
h
H(v)

o ;H(v)
cp

i

<⌦(Y
(v)) = <⌦(X

(v)), H(v)TH(v) = I,

H =  (H(1), H(2), ..., H(v)), UU (T ) = I,

H(v)
� 0, Q(v)

� 0

(3.15)

This objective function is a non-convex function; therefore, it cannot be optimized
directly. As such, we can minimize the objective function by iteratively solving the following
subproblems: The specific process is as follows.

H(v)-sub-problem: By fixing all the other variables, we set the derivative to H(v) as
follows:

D(H(v)) = �2�1(Y
(v)
�HQ)Q(T )

� 2�2(UU (T )H(v))+

MX

m=1

B(v)
m �

MX

m=1

A(v)
m (MI)(�1)

(3.16)

A(v)
m = ⌦(v)(↵m), B(v)

m = ⌦(v)(km). (3.17)

It is difficult to use the KKT condition because of the complexity of D(H(v)). We chose
the traditional gradient descent method to update the data.

H(v)t+1
= H(v)t

� ⌧(D(H(v))). (3.18)

where ⌧ denotes the step size. In terms of targeting, there are several M ways to expand the
M-order tensor. Our model pair uses unfolding of the three modalities. ↵m is the Lagrange
multiplier corresponding to the constraint Pmh = km. Where I is the identity matrix.
Operator ⌦(v)(.) only selects N ⇥N elements corresponding to the v-th views and reshapes
them to the N ⇥N dimensional matrices A(v)

m and B(v)
m corresponding to H(v).

h-sub-problem: We update h directly for each element in H(v) by replacing it directly:

h⇤  H(v). (3.19)
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Q(v)-sub-problem: When other variables are fixed, the subproblem process for updating
Q(v) is as follows:

min
VX

v=1

n0X

i=1

���Y (v)
oi �H(v)

oi Q(v)
���
2

F
(3.20)

Q(v) = Q(v) H(v)T
o Y (v)

o

H(v)T
o H(v)

o Q(v)
. (3.21)

U -sub-problem: When other variables are fixed, the subproblem process for updating U

is as follows:

min
UTU=I

��2

VX

v=1

Tr(H(v)H(v)TUUT ), (3.22)

max
UTU=I

Tr(
VX

v=1

UT (H(v)H(v)T )U). (3.23)

These problems can be computed simply using eigenvalue decomposition. The best
solution for variable U is the eigenvector set corresponding to the first c largest eigenvalues
of the matrix (

PV
v=1H

(v)H(v)T ).
Km-sub-problem: The formula for the sub-problem Km is as follows:

K⇤

m = argmin
Gm

�mkKmk⇤ + µ�(↵m, Pmh� km)

= proxtr�m
(⌦(m)(Pmh+ ↵m)).

(3.24)

Here, we define �(↵m, Pmh � km) =
1

2
kPmh� kmk

2
F + h↵m, Pmh � kmi, where h., .i is

the inner product of a matrix, and µ is a positive penalty parameter. The ⌦(m)(Pmh+↵m)

operator converts the vector Pmh+↵m into a matrix with the corresponding modal expan-
sion. �m = (�m/µ) is the threshold value for the soft-threshold operation of the spectrum.
proxtr�m

(L) = Umax(S � �m, 0)V T with L = UST T is the singular value decomposition
(SVD) of the matrix L, and the max operation is performed element-wise. Intuitively, the
solution is truncated according to the subspace representation tensor H.

km-sub-problem: We update km by Km:

k⇤m  Km. (3.25)

↵m-subproblem: The variable ↵m is updated by:

↵⇤

m = ↵m + (Pmh� km). (3.26)
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3.4 Theoretical Analysis of IMC-NLT

The complete procedure of IMC-NLT is summarized in Algorithm 1. The values of variables
H(v), Q(v), Km, km, ↵m, µ, and U are updated iteratively until the number of iterations
reaches the maximum, or the difference between the target values in two consecutive steps
is less than the set threshold ". In the following, we analyze the computational cost and
the convergence properties.

3.4.1 Computational complexity

Algorithm 1 IMC-NLT

Require: Incomplete multi-view dataset X(v), parameters �m, �1, �2, µ, maximum number
of iterations tmax, the threshold " = 10�7.

Ensure: The resulting clusters.
1: Initialize ⇢ = 1.1,maxµ = 1010;
2: Initialize H(1),H(2)...,H(v);
3: Initialize Q(1),Q(2)...,Q(v);
4: Initialize K1=0,...,KM=0;
5: Initialize ↵1=↵2...,↵M=0;
6: while not converge do
7: for v = 1 to V do
8: Update H(v) via Eq. (3.18);
9: Update Q(v) by solving Eq. (3.21);

10: end for
11: Update Km via Eq. (3.24);
12: Update km by solving Eq. (3.25);
13: Update ↵m via Eq. (3.26);
14: Update µ by µ = min(⇢µ; maxµ ) ;
15: Update U via Eq. (3.23);
16: Check the convergence conditions:
17:

���Jt+1�Jt
Jt

��� < ";
18: Until (3.15) reaches the maximum number of iterations tmax or convergence.
19: end while
20: Apply K-means to U for producing the resulting clusters.

We calculated complexity in five steps. In the first step of mechanical filling, the time
cost was O(

PV
v=1 n

v
odv). In the second step of the SVT operation on the tensor, we use

Lemma 1 for the complexity calculation:
Lemma 1 [95]. Let A = QB 2 Rm⇥n, where Q 2 Rm⇥n has orthonormal columns.

Then, we have:
S⌧ (A) = QS⌧ (B), (3.27)
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where S⌧ (.) is the SVT operator with time cost O(n3). In order to reduce the expensive
cost, we perform the SVT operation on the smaller matrix B 2 Rn⇥n instead, if the matrix
Q 2 Rm⇥n is available(m � n). In the third step of recomposing the tensors into vectors,
the time cost is O(

PV
v=1 n

vc). In the fourth step of derivative gradient descent, the vector
reconstitution tensors can be approximated as O(n2c + cndv). The time cost is O(n3) for
the fifth step of calculating eigenvalues and eigenvectors.

Therefore, the computational complexity of IMC-NLT proposed in this study is O(
PV

v=1 n
v
odv+

nvc+ l(n3 + n2c+ cndv + n3)), where l is the iteration number. Because c is usually much
smaller than dv and n, the overall complexity can be approximated as O(ln3). To ensure
that the algorithm achieves faster convergence and better experimental results, we obtained
H(v) and Q(v) through the non-negative matrix factorization of Y (v).

3.4.2 Convergence Analysis

In this section, we demonstrate the convergence of the IMC-NLT iterative algorithm.

Theorem 1. The objective function of the IMC-NLT: J(H(v), Q(v),Km, U,↵m) in (3.15)
is bounded. The proposed optimization algorithm monotonically reduced the value of the
objective function.

Proof. Because this is the sum of norms with positive penalty parameters, problem
(3.15) is bounded from below: (H(v), Q(v), U) obtained by formulas (3.18), (3.21), and
(3.23) are the minimum points corresponding to subproblems (3.16), (3.20), and (3.22).
For the subproblem of solving Km, the fast method of formula (3.24) is used for the ap-
proximate matrix inversion calculation. h and km are updated by directly substituting the
corresponding elements. Intuitively, multiplier ↵m is updated according to the updating
rule of multipliers.

Let
�
H(v), Q(v),Km, U,↵m

 
t=1

be a bounded monotonically decreasing sequence deter-
mined by Theorem 1. According to the bounded monotone convergence theorem [96], the
objective function monotonically decreases and is bounded.

Theorem 2. Algorithm 1 converges to a minimum under the updating of the value of
J(H(v), Q(v),Km, U,↵m) in each optimization step.

Proof. Suppose that
�
H(v), Q(v),Km, U,↵m

 
t

and
�
H(v), Q(v),Km, U,↵m

 
t+1

rep-
resent the iterative sequence of the (t) and (t + 1) times of problem (3.15), respectively.
According to the previous sub-problem optimization steps, we can conclude that these sub-
problems are not only convex optimization problems but also have closed solutions. By
solving the above sub-problems one by one, we can get the following formula:
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J(H(v)
t , Q(v)

t , (Km)t, Ut, (↵m)t) � J(H(v)
t+1, Q

(v)
t , (Km)t, Ut, (↵m)t)

�J(H(v)
t+1, Q

(v)
t+1, (Km)t, Ut, (↵m)t) � J(H(v)

t+1, Q
(v)
t+1, (Km)t+1, Ut, (↵m)t)

�J(H(v)
t+1, Q

(v)
t+1, (Km)t+1, Ut+1, (↵m)t) � J(H(v)

t+1, Q
(v)
t+1, (Km)t+1, Ut+1, (↵m)t+1)

(3.28)

Equation (3.28) proves that the decrement of the objective function is achieved through
the iterative updating of variables in sequence

�
H(v), Q(v),Km, U,↵m

 
t
. So we have com-

pleted the proof of Theorem 2.
The above two theorems ensure that by using the proposed optimization method, the

objective function is monotonically decreasing and bounded. Meanwhile, the sequence is
continuously optimized and can converge to the minimum value.

3.5 Experimental Evaluation

In this section, we evaluate the effectiveness of the IMC-NLT in comparison with the ex-
perimental results of the baseline algorithm on five incomplete multi-view datasets.

3.5.1 Datasets

Table 3.1 lists the five datasets widely used in our experiments.

Table 3.1: Statistics of the datasets

Dataset Clusters Views Instances Features

SensIT300 3 2 300 50/50
Statlog 7 2 2310 9/10

Wisconsin 5 2 265 1703/265
WebKB 2 2 1051 1840/3000

Caltech101-7 7 6 1474 48/40/254/1984/512/928

• SensIT3001: Data collected from distributed sensors in an intelligent transportation
system. A total of 300 instances were divided into three categories, which corre-
sponded to three types of transportation in real life. Each data instance has two
information views: sound information recorded by a sensor, and vibration informa-
tion, in which each view contains 50-dimensional characteristic attributes.

1https://github.com/Liuzhenjiao123/multiview-data-sets/blob/master/sensIT300.mat
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• Statlog2: An image segmentation dataset was randomly selected from a database of
images from seven categories. The images were manually segmented to create classifi-
cation for each pixel. Collected by the vision group at the University of Massachusetts,
this dataset contains 2310 instances with corresponding categories under two views.
The characteristic dimension of one view is nine, whereas the characteristic dimension
of the other view is 10.

• Wisconsin 3: A set of webpages collected from the University of Wisconsin website.
The five types of webpages are student, project, course, staff, and faculty. Each has
two views: the content view and the reference view. In the content view, each webpage
consists of 1703 words. The reference view is described by the reference relationships
between a page and other pages.

• WebKB 4: A set of course and non-course documents. Each document has two
representations: the text content of the webpage and the anchor text with links to
other webpages pointing to the webpage. Based on the page representation, 3000
features were selected. For linked representations, 1840 features were generated.

• Caltech101-75: Caltech101-7 is a subset of the real dataset Caltech101 with seven
categories, which are from various categories such as football, camera, and chair. This
dataset contains six views: Gabor, WM, Centrist, HOG, GIST, and LBP.

Specifically, we used the SensIT300, Starlog, Wisconsin, and WebKB datasets to build
incomplete multi-view data. In our experiments, approximately 10%, 30%, and 50% of the
instances were randomly deleted from each view of the four databases. For the accuracy of
the results, we perform standard validation on these datasets [97], and produced the results
of the average calculation. All of the experimental codes were developed using MATLAB
2015a running on an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz with 16-GB RAM with
the Win 10 system.

3.5.2 Baseline methods

Against the five datasets, IMC-NLT was compared with five IMC methods: IMSC-AGL [63],
DAIMC [48], UEAF [98], IMC-GRMF [46], and HCP-IMSC [99].

• IMSC-AGL An algorithm first exploits low-rank representations for multi-view adap-
tive learning of graphs and then uses spectral constraints to obtain better low-dimensional
representations.

2https://github.com/Liuzhenjiao123/multiview-data-sets/tree/master
3https://lig-membres.imag.fr/grimal/data.html
4https://github.com/Liuzhenjiao123/dataset4
5https://github.com/Liuzhenjiao123/data5
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• DAIMC Incomplete multi-view clustering algorithm based on weighted semi-non-
negative matrix factorization (semi-NMF). It exploits a weight matrix to adapt to
a variety of incomplete cases and uses L2,1 -norm regularization to obtain a cluster-
friendly basis matrix shared by views.

• UEAF A unified and robust embedding alignment model for incomplete multi-view
clustering. To maintain the consistency of the local semantics of the view and infer
incomplete information, it learns the local structure shared by the views by reversing
the graph regularization.

• IMC-GRMF Incomplete multi-view clustering method based on matrix factoriza-
tion. For better integration, IMC-GRMF uses the local information of each view to
facilitate fusion of the complementary information of views to obtain a shared repre-
sentation. Orthogonal constraints can effectively handle out-of-sample problems.

• HCP-IMSC This is an incomplete multi-view clustering method that is based on
hypergraph induction and tensor decomposition. It effectively uses the correlation
of high-order information to recover missing data and combines the affinity matrix,
tensor decomposition, and missing-view recovery into one framework.

3.5.3 Evaluation metrics

The resulting clusters by the algorithms in the experiments are evaluated by normalized
mutual information (NMI) [100], clustering accuracy (ACC) [101], Adjusted Rand index
(ARI) [102], and F1 Score (F1) [103]. A higher value of these metrics indicates a higher
cluster quality. The NMI is defined as follows:

NMI =

PC
i=1

PC
j=1Ni,j ln

Ni,j

NiN̂js

(
PC

i=1Ni ln
Ni

N
)(
PC

j=1 N̂j ln
N̂j

N
)

(3.29)

where N is the number of instances in a complete view, Ni is the number of instances in
the i-th cluster, N̂j is the number of instances of the j-th label, and Ni,j is the number of
samples that exist in both the i-th cluster and j-th clusters. The ACC measures the quality
of clusters as follows:

ACC =

PN
i=1 �(map(ri), li)

N
(3.30)

where ri is the cluster label of xi, li is the exact class label, and N is the number of
samples. When x=y, �(x, y) is equal to 1; otherwise, it is 0. Map(ri) is the optimal
permutation mapping function obtained. The ARI is formulated as:
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Table 3.2: Mean NMIs, ACCs, ARIs and F1 of different methods on SensIT300 , Statlog
and Wisconsin datasets

Dataset Method \ PER NMI ACC ARI F1

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

SensIT300 IMSC-AGL 0.23 0.21 0.16 0.66 0.63 0.61 0.25 0.21 0.17 0.51 0.48 0.45
SensIT300 DAIMC 0.21 0.18 0.16 0.64 0.61 0.59 0.23 0.18 0.16 0.49 0.46 0.45
SensIT300 UEAF 0.21 0.18 0.16 0.65 0.61 0.59 0.24 0.18 0.16 0.51 0.45 0.44
SensIT300 IMC-GRMF 0.16 0.08 0.06 0.61 0.51 0.47 0.17 0.08 0.06 0.45 0.39 0.37
SensIT300 HCP-IMSC 0.32 0.30 0.21 0.72 0.65 0.57 0.35 0.30 0.22 0.56 0.50 0.48
SensIT300 IMC-NLT 0.32 0.28 0.25 0.69 0.66 0.61 0.31 0.24 0.19 0.54 0.51 0.49

Statlog IMSC-AGL 0.44 0.42 0.38 0.55 0.54 0.48 0.79 0.31 0.29 0.43 0.41 0.41
Statlog DAIMC 0.47 0.41 0.34 0.57 0.51 0.45 0.71 0.27 0.19 0.46 0.39 0.33
Statlog UEAF 0.49 0.38 0.35 0.48 0.46 0.44 0.81 0.24 0.18 0.41 0.36 0.32
Statlog IMC-GRMF 0.11 0.21 0.14 0.28 0.38 0.31 0.68 0.15 0.08 0.22 0.28 0.22
Statlog HCP-IMSC 0.51 0.46 0.40 0.58 0.54 0.49 0.38 0.32 0.26 0.48 0.44 0.39
Statlog IMC-NLT 0.63 0.56 0.48 0.68 0.62 0.58 0.54 0.45 0.35 0.61 0.53 0.45

Wisconsin IMSC-AGL 0.21 0.19 0.14 0.43 0.39 0.34 0.17 0.11 0.08 0.51 0.33 0.32
Wisconsin DAIMC 0.31 0.27 0.24 0.51 0.44 0.46 0.25 0.17 0.17 0.49 0.39 0.39
Wisconsin UEAF 0.36 0.41 0.34 0.61 0.57 0.51 0.35 0.34 0.25 0.51 0.51 0.44
Wisconsin IMC-GRMF 0.26 0.19 0.11 0.44 0.37 0.33 0.15 0.11 0.05 0.45 0.34 0.31
Wisconsin HCP-IMSC 0.27 0.24 0.26 0.50 0.40 0.49 0.21 0.17 0.20 0.42 0.39 0.40
Wisconsin IMC-NLT 0.48 0.39 0.37 0.74 0.68 0.69 0.48 0.38 0.32 0.67 0.61 0.59

WebKB IMSC-AGL 0.66 0.31 0.5 0.95 0.83 0.91 0.79 0.41 0.68 0.93 0.77 0.88
WebKB DAIMC 0.61 0.52 0.42 0.93 0.90 0.85 0.70 0.64 0.51 0.91 0.88 0.84
WebKB UEAF 0.68 0.71 0.65 0.95 0.96 0.95 0.81 0.82 0.79 0.93 0.93 0.93
WebKB IMC-GRMF 0.52 0.34 0.03 0.92 0.92 0.61 0.68 0.52 0.04 0.89 0.84 0.59
WebKB HCP-IMSC 0.71 0.68 0.61 0.95 0.93 0.92 0.82 0.79 0.77 0.93 0.92 0.91
WebKB IMC-NLT 0.71 0.65 0.53 0.96 0.94 0.92 0.83 0.77 0.66 0.94 0.93 0.90

ARI =
RI � E[RI]

(max(RI)� E[RI])
(3.31)

where E[RI] resents the expected value of RI and RI is a random index used to measure
the similarity between two clusters. It is defined as follows:

RI =
TP + TN

TP + FP + FN + TN
(3.32)

where TP is the true positive, TN is the true negative, FP is false positive, and FN is false
negative. The F1 is defined as:

F1 = 2⇥
precision⇥ recall

precision+ recall
(3.33)

where precision =
TP

TP + FP
, and recall =

TP

TP + FN
.

3.5.4 Evaluations on Clustering Performance and Discussion

In our experiment, we selected 10%, 30%, and 50% of the total number of instances to
randomly delete them from each view of the five datasets. Table 3.2 shows the average
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Table 3.3: Mean NMIs, ACCs, ARIs and F1 of different clustering methods on SensIT300
, Statlog and Wisconsin datasets

Dataset Method \ PER NMI ACC ARI F1

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

SensIT300 K-means 0.32 0.28 0.25 0.69 0.66 0.61 0.31 0.24 0.19 0.54 0.51 0.49
SensIT300 Fuzzy 0.32 0.27 0.25 0.68 0.61 0.64 0.28 0.21 0.22 0.54 0.49 0.49
SensIT300 Spectral 0.35 0.31 0.27 0.71 0.68 0.62 0.33 0.31 0.21 0.57 0.56 0.51

Statlog K-means 0.63 0.56 0.48 0.68 0.62 0.58 0.54 0.45 0.35 0.61 0.53 0.45
Statlog Fuzzy 0.43 0.27 0.25 0.51 0.36 0.36 0.31 0.13 0.14 0.41 0.29 0.29
Statlog Spectral 0.62 0.44 0.36 0.54 0.45 0.33 0.38 0.28 0.09 0.51 0.38 0.29

Wisconsin K-means 0.48 0.39 0.37 0.74 0.68 0.69 0.48 0.38 0.32 0.67 0.61 0.59
Wisconsin Fuzzy 0.42 0.35 0.31 0.59 0.45 0.46 0.39 0.28 0.21 0.57 0.42 0.42
Wisconsin Spectral 0.40 0.39 0.33 0.58 0.66 0.59 0.36 0.43 0.32 0.54 0.61 0.51

WebKB K-means 0.71 0.65 0.53 0.96 0.94 0.92 0.83 0.77 0.66 0.94 0.93 0.90
WebKB Fuzzy 0.69 0.55 0.54 0.96 0.93 0.93 0.83 0.72 0.71 0.94 0.91 0.91
WebKB Spectral 0.68 0.54 0.89 0.96 0.92 0.92 0.82 0.66 0.66 0.94 0.90 0.89

Table 3.4: Two incomplete multi-view clustering methods based on tensor models show
different performances in terms of ACC, F1, Running time (seconds), and computational
complexity with 90% incomplete instances of each view on the Caltech101-7 dataset

Dataset Method ACC F1 Running time (seconds) computational complexity

Caltech101-7 HCP-IMSC 0.37 0.40 106.04 O(V n3 + V (n� no)3 + cnV log(V ) + cn2V )
Caltech101-7 IMC-NLT 0.43 0.45 92.75 O(n3)

(a) (b)

Figure 3.4: Cluster structure illustration on two incomplete multi-view datasets. (a) Stat-
log with 10% incomplete instances of each view, (b) visualization on WebKB with 10%
incomplete

performance of NMI, ACC, ARI, and F1 for the five different methods on the five incomplete
multi-view datasets. From this table, we can observe the following results.

1) The performance of HCP-IMSC was better than that of other incomplete multi-view
clustering methods on most datasets. This indicates that the tensor-based model can achieve
incomplete multi-view clustering, which preserves the high-order correlation advantage. In
addition, compared to HCP-IMSC, our IMC-NLT can produce good results from most
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(a) (b)

Figure 3.5: Robust performance on two incomplete multi-view datasets: (a) SensIT300 (b)
Wisconsin

datasets with high missing rates. This verifies that building a tensor model directly from
prepopulated modal data can better recover missing data and reduce the impact of noise.

2) Compared with the other five algorithms, the IMC-NLT has obvious advantages. For
example, on the statlog and Wisconsin datasets, according to various clustering indicators,
IMC-NLT performs the best. When the missing rate of the Wisconsin dataset was set
to 10%, our algorithm achieved an ACC score that was approximately 13% higher than
that of the second-best method. Although the advantages of our algorithm on SensIT300
and Webkb are not as prominent as those of the above datasets, the difference between
our method and other superior algorithms is not evident in most cases. The IMC-NLT is
relatively stable for datasets with different missing rates.

3) From Table 3.2, we can see that our method is superior to other views based on
recovery methods such as UEAF. This shows that IMC-NLT not only effectively utilises the
specific information of each view but also builds a unified structure to effectively maintain
the semantic relationships among the different views. Therefore, IMC-NLT can capture
useful information with complex interactions between views to recover the missing data.

4) The proposed IMC-NLT method was more robust than the DAIMC, IMSC-AGL, and
IMC-GRMF methods. Our method neither indirectly obtains consensus representations
from individual expressions of all viewpoints, such as DAIMC, nor is it constrained by the
existing incomplete data. At the same time, it prevents the IMSC-AGL from extracting
hidden information from incomplete and complex data. Our method is suitable for various
complex missing situations, and ensures the filling effect of complex missing situations
through an effective filling mechanism.
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(a) (b)

(c) (d)

Figure 3.6: NMI versus parameters � and µ of IMC-NLT on different datasets with various
percentages of incomplete instances of each view (a) SensIT300 with 50%, (b) Statlog with
10%, (c) Wisconsin with 50%, and (d) WebKB with 10% .

3.5.5 Clustering Performance on Three Clustering Methods

Table 3.3 reports the performance of the fusion effect on three clustering algorithms. Com-
pared with other incomplete multi-view clustering algorithms, the overall experimental re-
sult of applying K-means is the best, followed by Fuzzy clustering and spectral clustering.
Again, our algorithm has demonstrated excellent performance in incomplete multi-view data
filling and later fusion.

3.5.6 Visualization of Clustering Results

To further demonstrate the advantages of the IMC-NLT algorithm, we visualised the dis-
tributions of experimental clustering results. For example, on the Statlog and WebKB
datasets, the IMC-NLT algorithm can produce different colour clusters with obvious group-
ing structures, as illustrated in Figure 3.4 .
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(a) (b)

(c) (d)

Figure 3.7: NMI versus parameters �1 and �2 of IMC-NLT on the four datasets with various
percentages of incomplete instances with each view, respectively. (a) SensIT300 with 50%,
(b) Statlog with 10%, (c) Wisconsin with 50%. and (d) WebKB with 10%.

3.5.7 The effectiveness of IMC-NLT on large-scale datasets

The performances of the two methods for incomplete multi-view clustering based on the
tensor model are presented in Table 3.4. From this table, we observe that our method
demonstrates certain advantages in terms of clustering indicators, running time, and com-
plexity. In addition, the proposed method performed well on larger datasets.

3.5.8 Robustness Analysis

To investigate the robustness of the proposed algorithm, we examined the clustering results
of the IMC-NLT algorithm on SensIT300 and Wisconsin datasets with different missing
rate intervals of 5%, as shown in Figure 3.5. In terms of accuracy, our method remains
relatively robust as the missing rate of data points increases. This shows the capacity of
the IMC-NLT to handle missing data filling.
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3.6 Parameters and Convergence of IMC-NLT

3.6.1 Parameter sensitivity analysis

This section presents several comparative experiments to demonstrate the effects of different
IMC-NLT parameter values. We focus mainly on the following parameters of IMC-NLT: the
non-negative matrix decomposition control parameter �1, feature orthogonal constraints to
limit the control parameter �2, and low-rank force coding. We set the M parameters inside
to be equal, that is, �1= .. =�M= �, and accordingly, tune the parameter � and Lagrange
operator control parameter µ.

1) Parameters � and µ: We show the NMI versus the two parameters � and µ on the
datasets of SensIT300, Statlog, Wisconsin, and WebKB with different incomplete-view rates
in Figure 3.6. For example, on the Statlog dataset, the experimental results showed that
the best performance was achieved when � ranges between {0,9} and µ between {1,11}. In
this study, we find that our algorithm achieves the best clustering when � takes values in
the range of {1,6} and µ in the range of {8,10} by using a latticework search. Meanwhile,
on the Statlog and WebKB datasets, IMC-NLT exhibited low sensitivity to its parameters.

2) Parameters �1 and �2: From Figure 3.7, we can observe that parameters �1 and
�2 are insensitive to the Statlog and WebKB datasets. For SensIT300, the algorithm per-
forms well when the parameters �1 and �2 are between {20,21} and {2�1, 21}, respectively.
Similarly, there is a certain parameter sensitivity in the Wisconsin dataset. When the pa-
rameters �1 and �2 are between {2�2,20} and {21, 22}, respectively, IMC-NLT achieves
good performance.

The adaptive selection of various parameters for different datasets to reach their optimal
values is problematic. Determine the most suitable parameters for the proposed IMC-NLT
model. We solve this problem by choosing a combination strategy to find the optimal
parameters. Specifically, we first fixed the insensitive parameters to set �1 and �2 with a
fixed value range, and then ran IMC-NLT with different values of � and µ. As such, the
optimal parameter value set of the algorithm is obtained, experiments are conducted, and
the results are compared and reported.

3.6.2 Convergence analysis

To better deal with the complex objective function, we split the objective function into
several subproblems and use an iterative optimization algorithm to monotonically decrease
it until convergence. The objective function values are plotted in Figure 3.8 according to
the corresponding NMI with the number of iterations (within 30 iterations). As shown, the
loss of the objective function decreases monotonically and converges to a stationary point.
This ensures the convergence of the proposed optimization method.
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Figure 3.8: The objective function loss and NMI v.s. iterations on (a) SensIT300 with 10%
incomplete instances of each view.

3.7 Conclusion

This section presents a novel algorithm for incomplete multi-view clustering, named IMC-
NLT, which is based on Non-negative Matrix Factorization (NMF) and low-rank tensor
fusion. IMC-NLT relies on both the modal unified dimensional structure and low-rank ten-
sor. IMC-NLT can effectively integrate the information hidden in datasets with the same
view and between views. Moreover, IMC-NLT not only deals effectively with various incom-
plete data but also has low sensitivity to its parameters. We have carried out comprehensive
experiments on the five representative data sets by comparing IMC-NLT with state-of-the-
art algorithms. The experimental results have shown that our method can achieve good
clustering results with stability.

As a future extension, this research aims to integrate the low-rank tensor filling model
with deep learning models to obtain more efficient view representations for incomplete
multi-view clustering.
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4.1 Introduction

In recent years, the availability of multiview data has increased significantly. However, the
success of the current multiview learning approaches heavily relies on complete and consis-
tent data from various sources [104] [105] [106] [3] [107] [108]. Unfortunately, in real-world
scenarios, multi-view data often suffer from incompleteness due to various factors, includ-
ing missing views and data points. Moreover, the degree of such data incompleteness varies
depending on the context. For instance, during land multi-view data acquisition, sensor
acquisition failure can easily lead to incomplete optical and SAR image view data. In the
medical field, collecting multi-view medical data with missing records of patients with dif-
ferent degrees is often necessary due to privacy concerns. To tackle these issues, incomplete
multiview clustering (IMVC) fuses information between multiple views of complex missing
data. However, IMVC is challenging in real-world scenarios. Many approaches have been
proposed to address IMVC to date, which can be grouped into shallow and deep multiview
clustering models.

Shallow IMVC models are limited to low-level features, which can result in samples
representing the same object being restricted to the same potential representation in the
potential subspace [43] [44] [109]. In contrast, deep IMVC models employ a view-specific
depth encoder and a graphics embedding strategy to effectively capture high-level features
and local structure of each view simultaneously [110]. While both shallow and deep ap-
proaches to IMVC have been successful in real-world applications, there are still several
limitations that need to be addressed. First, many existing approaches fail to consider
both global and local incomplete multiview information. Second, although data recovery
and cluster partitions are essential for IMVC, many existing methods do not combine them
effectively. Third, existing deep learning-based IMVC methods have issues with training
stability and clustering performance. Finally, some existing approaches to IMVC do not
demonstrate their robustness on datasets with missing views and varying degrees of missing
data points.

To address the limitations discussed above, we propose a novel framework called In-
complete Multiview Co-Clustering by Sparse Low-Rank Representation (CCIM-SLR). Our
approach learns a low-rank sparse representation matrix for each view, which is then used
to fill in missing samples within each view. This process is achieved through the use of
association information between missing and observed samples within a particular view,
as well as by considering the association relationships between samples in different views
through learning common subspace representations. Furthermore, by introducing the filled
view data and the learned implicit view data in a clustering process, the data recovery pro-
cess and the clustering process can complement each other and lead to improved clustering
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results. To ensure even more accurate data recovery, we use the adjustable low-rank ap-
proximation representation model �-norm, which replaces the traditional kernel norm that
can only produce low-rank feature representations under certain conditions.

In summary, the contributions of this paper are as follows.

• This paper presents CCIM-SLR, a novel approach to incomplete multi-view clustering
that leverages a low-rank sparse representation matrix to recover data from missing
samples. CCIM-SLR utilizes association information between missing samples and
observed samples within views, as well as their association information between views.

• To improve the stability of clustering results for multi-view data with different missing
degrees, CCIM-SLR uses the �-norm model, which is an adjustable low-rank repre-
sentation method. �-norm shows the accuracy of achieving a low-rank representation
and the stability of data recovery.

• CCIM-SLR learns both a visible view and a hidden view within a co-learning frame-
work in an end-to-end manner, using a mutual interplay between the view data re-
covery and a clustering process. This approach avoids the need for post-processing
steps such as k-means for final clustering assignment results.

• CCIM-SLR has been validated through both theoretical proofs and experiments.
Based on the experimental results, CCIM-SLR outperformed state-of-the-art approaches
on the five incomplete multiview datasets. The robustness of CCIM-SLR has been
demonstrated through experiments on incomplete multi-view datasets with different
missing rates of data points.

The remainder of this paper is organized as follows: Section 4.2 provides a review of
related work, while Section 4.3 outlines the proposed method and methodologies used in
this work. Section 4.4 reports the experimental results of our CCIM-SLR, together with
comparisons of other methods. This paper concludes in Section 4.5.

4.2 Related Work and Background

In this section, we review related work and describe some background on IMVC.

4.2.1 Related work

As mentioned before, the current approaches to IMVC can be grouped into shallow and
deep ones. As a shallow approach, Guo J et al. [111] proposed a simple and easy-to-
implement method that can reconstruct samples and intersample relations through anchors
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and fully integrates intraview and interview similarities. In the literature, a weighted semi-
nonnegative matrix factorization-based method was proposed to reduce the influence of
view incompleteness in clustering [48]. Wen et al. [112] developed a new graph regular-
ization matrix decomposition model to consider the local geometric information and the
unbalanced resolution of incomplete multiview observations. Wen et al. [14] proposed intro-
ducing a local retention reconstruction term to infer missing views so that all views can be
naturally aligned and adding an adaptive weighting strategy for capturing the importance
of different views. In [113], feature space-based missing-view inference and manifold space-
based similarity graph learning were proposed to better explore the potential information
of missing views. Liang et al. [114] developed a reproduced representation; on this basis, a
set of incomplete graphs was used to make full use of the geometric structure of the data.
Yin et al. [115] introduced a cosine similarity metric to further enhance the preservation
of the flow structure of the original multiview, called incomplete multiview clustering with
cosine similarity (IMCCS).

As for deep approaches to IMVC, Xu et al. [67] designed an adversarial incomplete
multiview clustering (AIMC) method that captures the overall structure and obtains a
deeper semantic understanding by seeking the common potential space of multiview data
and inferring incomplete data at the same time. Xu et al. [116] proposed to establish
a new multi-view clustering complementarity mechanism that can obtain supplementary
information and be regarded as supervisory information with high confidence. Therefore,
this method achieves the consistency information of multi-view clustering. To solve the
incomplete multiview problem by explicitly generating the data of missing views, Wang Q
et al. [117] applied adaptive fusion and a cycle consistency generation model for incomplete
multiview clustering. The deep IMVC model can take into account high representation
ability and save time and space. For example, in [118], an adaptive partial graph learning
and fusion (APGLF) method was proposed to capture the local data structure of both
within-view and cross-view. A generative adversarial network-based model was proposed
by Wang et al. [76], which can effectively generate incomplete view data and capture better
common structures in IMVC.

While both shallow and deep approaches to IMVC have been successful in real-world
applications, there are still several limitations that need to be addressed. First, many ex-
isting approaches fail to consider both global and local incomplete multi-view information.
Second, although data recovery and cluster partitions are essential for IMVC, many existing
methods do not combine them effectively. Third, existing deep learning-based IMVC meth-
ods have issues with training stability and clustering performance. Finally, some existing
approaches to IMVC do not demonstrate their robustness on datasets with missing views
and varying degrees of missing data points.
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Except for the shallow and deep approaches to IMVC, the incomplete multiview cluster-
ing algorithm with low-rank sparsity [119] [120] and the multiview algorithm with one-step
clustering [121] [122] [123] have shown good advantages in the field of the multiview study.
However, these approaches can further be improved by overcoming some limitations as
mentioned before. Before presenting our proposed approach of CCIM-SLR, we need to pro-
vide two background works: 1) sparse low-rank representation through multiview subspace
(SRRS) learning; and 2) multiview clustering with the cooperation of visible and hidden
views.

4.2.2 Sparse low-rank representation through multiview subspace (SRRS)
learning

SRRS has a significant effect on incomplete multiview data recovery [119]. For a dataset of
incomplete multiview X = {X(1), X(2), ...X(v)

}, SRRS imputes missing values of all views
by the following expression:

min
{R(v),E(v)},H

sX

v=1

B(R(v), E(v))

s.t.8v,Pv( bR(v)Xo
(v)) = H + E(v), H>H = I

(4.1)

where R(v)
2 Rm̄(v)

⇥m(v) is the sparse low-rank representation matrix, m̄(v) is the missing
samples, and m(v) is the observed samples. E(v)

2 Rm⇥t is the noise matrix, m is the
number of all samples (m=m̄(v)+m(v)), t is the unified dimension of the subspace, X(v)

o is
the matrix constructed from the observed samples, and bR(v)

2 Rm⇥m(v) is composed of the
matrix R(v) and the identity matrix constructed from the indices of the observed samples.
Pv( bR(v)X(v)

o ): Rm⇥d(v)
! Rm⇥t represents an operator that projects the samples of all

views into the corresponding subspace. SRRS learns that the common representation of
all views is H 2 Rm⇥t, and adding constraints to H can effectively avoid trivial solutions.
B(R(v), E(v)) is defined as follows:

B(R(v), E(v)) = �1kR
(v)
k1 + �2kR

(v)
k⇤ + �3kE

(v)
k1 (4.2)

where �1, �2 and �3 are the parameters and kR(v)
k1 and kR(v)

k⇤ represent the sparse and
low-rank constraints on R(v), respectively. To reduce the influence of the noise matrix
and make the subspace representations robust, we add a sparse constraint to E. SRRS
is a technique that can impute missing values by taking into account both intraview and
inter-view relations.
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4.2.3 Multiview clustering with the cooperation of visible and hidden
views

Another important work is the multiview clustering model, called multiview clustering with
the cooperation of visible and hidden views (MV-Co-VH) [121]. MV-Co-VH is a clustering
method that integrates and optimizes both visible and hidden views:

min J(U,Z, eZ,w) = �
cX

i=1

mX

j=1

uijkhj � ezjk2

+ (1� �)
sX

v=1

w(v)

cX

i=1

mX

j=1

uijkxj
(v)
� zj

(v)
k
2
+ ⌘

sX

v=1

w(v) lnw(v)

s.t.
CX

i=1

uij = 1, uij 2 (0, 1), 1 6 j 6 m

SX

v=1

w(v) = 1, 0 6 w(v) 6 1, H � 0

(4.3)

where � is a parameter, matrix U 2 Rc⇥m is the cluster indicator matrix, c denotes the
number of categories, and m represents the number of samples. If uij=1, sample j belongs
to cluster i; otherwise, uij =0. Z={Z(1), Z(2), Z(3).....Z(v)

} is the cluster center matrix
for each view. w=[!1,!2, ...!s] contains the weight of each view. H 2 Rm⇥t denotes the
shared hidden view of all views. t is the sample dimension of the hidden view. eZ represents
the corresponding clustering center matrix from the hidden view. From (4.3), MV-Co-VH
is a method for extracting hidden views from multiview data through nonnegative matrix
factorization. It is also a multiview clustering framework that combines explicit and implicit
views to obtain clustering results in one step.

4.3 The Proposed CCIM-SLR

In this section, we describe our CCIM-SLR method, which learns recovery data from the
global and local structures of their original data with incomplete multiview. Apart from
that, a one-step clustering strategy is also adopted to produce clustering results that com-
bine shared hidden space and visible view effectively. CCIM-SLR comprises two parts: 1)
shared hidden subspace learning based on SRRS; and 2) incomplete multiview co-clustering
by SRRS.

The components and the pipeline of CCIM-SLR are illustrated in Figure 4.1. As shown,
the proposed framework mainly includes three key modules, i.e., the data input module,
missing data recovery module, and collaborative learning module. These modules are de-
scribed in detail in the following sections.
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Figure 4.1: Overview of CCIM-SLR. CCIM-SLR consists of six major components: (a)
Date Input; (b) Missing Data Recovery; (c) Shared Subspace Representation Learning; (d)
Visible View Partition; (e) Hidden View; and (f) Collaborative Learning.

4.3.1 Shared hidden subspace learning based on SRRS

The low-rank sparse representation-based methods have widely been used to recover missing
data [124] [125] [126]. As such, we introduce the �-norm [127], which is a nonconvex low-
rank representation method. Specifically, the �-norm for matrix R is defined as follows:

kRk� =
X

i=1

(1 + �)✏Ri

� + ✏Ri

(4.4)

In Equation (4.4), � is a penalty parameter, and the i-th singular value of the SVD
decomposition of the matrix R is denoted as ✏i. However, the �-norm applies only to the
processing of single-view data. To extend to multiview data, we introduce the �-norm [120]
to implement the low-rank constraint on matrix R(v), with the following formula:

kR(v)
kG =

sX

v=1

✏(v)i

✏(v)i + �
(4.5)

where ✏(v)i is the i-th singular value of matrix R(v), and if � ! 0, we have kR(v)
kG !

rank (R(v)). An appropriate value of � (e.g., � = 0.001) is chosen in such as way that
a value that is closer to the genuine rank is obtained. Figure 4.2 shows the approximate
ranks obtained with different norms. The experimental results show that when �=0.001,
the obtained results are closest to the true rank. To obtain the incomplete multiview shared
hidden subspace of data, we combine the above terms into one model as follows:
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Figure 4.2: The performance of different functions on rank estimation changes with the
change in positive singular value ✏(v)i (true rank is 1).

min
{R(v),E(v),A(v),H}

sX

v=1

�1kR
(v)
k1 + �2kR

(v)
kG + �3kE

(v)
k2,1 + �4kA

(v)
k2,1

s.t.8v,Pv( bR(v)X(v)
o ) = H + E(v), H>H = I,X(v) = bR(v)X(v)

o

H � 0

(4.6)

where �1, �2, �3 and �4 are the weight parameters for the data X =
�
X(1), ...X(v)

 
, X(v) =

[X(v)
cp ;X(v)

o ] denotes multiview data, X(v)
cp 2 Rm̄(v)

⇥d(v) represents the matrix consisting of
missing samples, X(v)

o 2 Rm(v)
⇥d(v) represents the matrix consisting of observed samples,

d(v) is the sample dimension of the v-th view, m̄(v) is missing samples, and m(v) is the
observed samples. The total number of samples is m (m=m̄(v)+m(v)). H 2 Rm⇥t stands
for the obtained subspace representation of a hidden view, and t is the unified dimension
of the subspace. The orthogonal constraint H>H = I makes the bases independent of each
other.

To fully utilize the data observed in other views to recover missing data, we formulate
the missing sample linear reconstruction as Equation ( 4.7):

8v,X(v) = bR(v)X(v)
o (4.7)

where bR(v)
2 Rm⇥m(v) is composed of the matrix R(v), and the identity matrix constructed
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from the indices of the observed samples. To acquire a better representation of subspace
H, we utilize the following operation:

Pv( bR(v)X(v)
o ) = bRvX(v)

o A(v)

= H + E(v)
(4.8)

where E(v)
2 Rm⇥t is the noise matrix from the original space to subspace H(v), and A(v)

2 Rd(v)⇥t is the linear transformation matrix that converts the original spatial data to
subspace H(v). To guarantee the sparsity of the data, we add L1 constraints [128] to the
matrix R. In addition, the L2,1 norm third and fourth terms of Equation (4.6)) are added
to discard irrelevant features.

Similar to the method proposed by [119], our proposed model (Equation (4.6)) recovers
data using constraints on linear representations. Most importantly, Equation (4.6) intro-
duces the �-norm to impose low-rank constraints on the linear representation matrix. Such
a cutting-edge nonconvex low-rank representation method can better capture the correlation
between samples than the kernel norm.

4.3.2 Incomplete multiview co-clustering by sparse low-rank representa-
tion

Most of the existing incomplete multiview learning methods based on subspaces are two-
step multiview clustering methods (Step 1: subspace acquisition, and Step 2: clustering).
These methods do not effectively combine the clustering process with the filling process.
Therefore, we integrate clustering results and shared hidden subspace learning into the same
objective function as expressed in Equation (4.9)).

min
{R(v),E(v),A(v),H,Z(v), eZ}

�
cX

i=1

mX

j=1

uijkhj � ezik2

+ (1� �)
sX

v=1

cX

i=1

mX

j=1

uijkxj
(v)
� zi

(v)
k
2

+
sX

v=1

(�1kR
(v)
k1 + �2kR

(v)
kG + �3kE

(v)
k2,1 + �4kA

(v)
k2,1)

s.t.8v,Pv( bR(v)X(v)
o ) = H + E(v), H>H = I,X(v) = bR(v)X(v)

o

H � 0,
cX

i=1

uij = 1, uij 2 (0, 1), 1 6 j 6 m

(4.9)

where � is the clustering model weight parameter, U 2 {0, 1}c⇤m is the partition matrix, c is
the number of clusters, and m is the number of complete samples. When sample j belongs
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to class i, uij=1, and 0 otherwise. eZ= [ez1, ez2, ....ezc] and Z(v)=
h
z(v)1 , z(v)2 , ....z(v)c

i
are the

cluster center of the hidden view and cluster centers of each view, respectively.

In Equation (4.9), the first two terms are about the partition matrix with a clustering
algorithm, the goal of which is to obtain the global and local partitions of all incomplete
views. With the joint optimization model, we can capture the correlations between and
within the intraview and interview samples through their sparse low-rank representation and
the hidden view, respectively. By alternating the process of data recovery and clustering,
we can obtain a high-performance padding matrix.

4.3.3 Optimization procedure

This section presents the Alternating Direction Method of Multipliers (ADMMs) as a so-
lution for the problem stated in Equation (4.9). For that, we introduce several auxiliary
variables to transform Equation (4.9) into the following expression:

min
{R(v),E(v),A(v),H,Z(v), eZ}

�
cX

i=1

mX

j=1

uijkhj � ezik2

+ (1� �)
sX

v=1

cX

i=1

mX

j=1

uijkxj
(v)
� zi

(v)
k
2

+
sX

v=1

(�1kQ
(v)
k1 + �2kM

(v)
kG + �3kE

(v)
k2,1 + �4kA

(v)
k2,1)

s.t.8v,Pv( bR(v)X(v)
o ) = H + E(v), H>H = I,X(v) = bR(v)X(v)

o

H � 0,
CX

i=1

uij = 1, uij 2 (0, 1), 1 6 j 6 m

R(v) = Q(v), R(v) = M (v)

(4.10)

Therefore, the augmented Lagrangian function of Equation (4.10) is equivalent to the fol-
lowing function:
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L = �
cX

i=1

mX

j=1

uijkhj � ezik2 + (1� �)
sX

v=1

cX

i=1

mX

j=1

uijkxj
(v)
� zi

(v)
k
2

+
sX

v=1

(�1kQ
(v)
k1 + �2kM

(v)
kG + �3kE

(v)
k2,1 + �4kA

(v)
k2,1)

+
µ

2

sX

v=1

(

�����R
(v)
�Q(v) +

C(v)
2

µ

�����

2

F

+

�����R
(v)
�M (v) +

C(v)
3

µ

�����

2

F

+

�����
bR(v)X(v)

o A(v)
�H � E(v) +

C(v)
1

µ

�����

2

F

)

(4.11)

where C(v)
1 , C(v)

2 , C(v)
3 are Lagrange multipliers and µ is a penalty parameter. Then, we can

solve all unknown variables in the objective function ((4.11)) by alternative optimization as
follows:

Update variable R(v): By removing irrelevant terms and fixing the other variables, the
function becomes:

L(R(v)) =

�����R
(v)
�Q(v) +

C(v)
2

µ

�����

2

F

+

�����R
(v)
�M (v) +

C(v)
3

µ

�����

2

F

+

�����
bR(v)X(v)

o A(v)
�H � E(v) +

C(v)
1

µ

�����

2

F

(4.12)

The partial derivative of L(R(v)) with respect to R(v) is given by:

@L(R(v))

@(R(v))
=

@(
���R(v)

� S(v)
1

���
2

F
)

@(R(v))
+

@
���R(v)

� S(v)
2

���
2

F

@(R(v))

+
@
���R(v)X(v)

o A(v) + ◆(S(v)
3 )

���
2

F

@(R(v))

= 2(R(v)
� S(v)

1 ) + 2(R(v)
� S(v)

2 ) + 2R(v)X(v)
o A(v)A(v)TXo

(v)T

+ 2◆(S(v)
3 )A(v)TXo

(v)T

(4.13)

where S(v)
1 = Q(v)

�
C

(v)
2
µ , S(v)

2 = M (v)
�

C
(v)
3
µ , S(v)

3 = �H �E(v)+
C

(v)
1
µ , and the ◆ operation

refers to selecting the row to represent the missing sample from the matrix according to the
index of the missing sample.

By setting @L(R(v))/@(R(v)) = 0, the optimal R(v) can be obtained as follows:
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R(v) =
�◆(S(v)

3 )A(v)TX(v)T
o + S(v)

1 + S(v)
2

2I +Xo
(v)A(v)A(v)TXo

(v)T
(4.14)

Update variable Q(v): By eliminating irrelevant terms and holding the other variables
constant, Q(v) can be computed as follows:

min
{Q(v)}

�1

���Q(v)
���
1
+

µ

2

�����R
(v)
�Q(v) +

C(v)
2

µ

�����

2

F

(4.15)

Equation (4.15) can be computed as [129] :

Q(v) = #�1
µ

(R(v) +
C(v)
2

µ
) (4.16)

Update variable M (v): By removing irrelevant terms and fixing the other variables in
Equation (4.11), we can calculate M (v) as follows:

M (v) = argmin
{M(v)}

�2kM
(v)
kG +

µ

2

���M (v)
� P (v)

���
2

F
(4.17)

where P (v) = R(v) +
C

(v)
3
µ . We set the nonconvex surrogate of rank(M (v)) as kM (v)

kG. It is
difficult to obtain the solution from Equation (4.17) because it is a nonconvex function. It
can be solved for a nonconvex function through regularization techniques and the difference
of convex (DC) programming proposed by Moreau-Yosida [130]. Hence, the subproblem
becomes:

M (v)t+1
= argmin

{M(v)t}

�2kM
(v)t
kG +

µt

2

���M (v)t
� P (v)t

���
2

F
(4.18)

To solve Equation (4.18), we develop Theorem 1 and provide the proof as below.
Theorem 1. Let P = U⌃PV T be the singular value decomposition(SVD) of P , where

⌃P = diag(�P ). Set F (M (v)) = kM (v)t
kG = f � �M .

min
{M(v)}

F (M (v)) +
µ

2

���M (v)
� P

���
2

F
(4.19)

Therefore, the problem of the next optimal solution is transformed into M⇤ = U⌃⇤

MV T ,
where ⌃⇤

M = diag(�⇤) and �⇤ = proxf,µ(�P ), and proxf,µ(�P ) is the MoreauYosida opera-
tor, as follows:

proxf,µ(�P ) = argmin
{�}

f(�) +
µ

2
k� � �P k

2
2 (4.20)
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Proof. Given P = U⌃PV T , ⌃P = UTPV , and recording D(v) = U (v)TM (v)V (v). Since
it has the same singular value as M (v), the formula is converted as follows:

F (M (v)) +
µ

2

���M (v)
� P

���
2

F
, (4.21)

=F (D(v)) +
µ

2

���D(v)
� ⌃P

���
2

F
, (4.22)

�F (⌃(v)
D ) +

µ

2

���⌃(v)
D � ⌃P

���
2

F
, (4.23)

=F (⌃(v)
M ) +

µ

2

���⌃(v)
M � ⌃P

���
2

F
, (4.24)

=f(�) +
µ

2
k� � �P k

2
2 , (4.25)

�f(�⇤) +
µ

2
k�⇤
� �P k

2
2 , (4.26)

It should be noted that Equation (4.22) is valid because the Frobenius norm is unitarily
invariant. Equation (4.23) is based on the Hoffman-Wielandt inequality and Equation (4.24)
holds as we have ⌃(v)

M = ⌃D. Thus, Equation (4.24) is the lower bound of Equation (4.21) as
⌃(v)
D = ⌃(v)

M = M (v) = U (v)TD(v)V (v) holds, and the SVD of D(v) is D(v) = U (v)T⌃(v)
D V (v).

When we perform a minimization operation on Equation (4.25), we obtain �⇤. Therefore,
we have D⇤ = Udiag(�⇤)V T , the optimal solution to Equation (4.19). We have completed
the proof of Theorem 1.

Through the inspiration from the Moreau-Yosida regularization technique and the differ-
ence of convex (DC) programming, we transform Equation (4.18) to address the difference
between two convex functions. The concave term is iterated for optimization in each itera-
tion. Then, the optimization formula is as follows:

�t+1 = argmin f(�t) +
µt

2

���t
� �t

P

��2
2

(4.27)

which admits a closed-form solution [131], as shown in Equation (4.28).

�t+1 = (�t
T �

't

µt
)+ (4.28)

at point �t, the gradient representation of f(·) is denoted as 't = @f(�t) and U (v)diag(�t
P )

(v)V (v)T

is the singular value decomposition of (R(v) +
C

(v)
3
µ ). Through optimization iterations, the

final convergence obtains the best advantage �⇤. The solution can be derived as follows:
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M (v)t+1
= U (v)diag(�(v)⇤)V (v)T . (4.29)

Update variable E(v): after removing the irrelevant terms and fixing the other variables,
the subproblem becomes:

L(E(v)) = �3

���E(v)
���
2,1

+
µ

2

���E(v)
� S(v)

4

���
2

F
(4.30)

where S(v)
4 = bRvX(v)

o A(v)
�H +

C
(v)
1
µ , by setting @L(E(v))/@(E(v)) = 0, the solution can be

derived as follows:

E(v) =
µS(v)

4

�3Y (v) + µI
(4.31)

where Y (v) = diag

⇢
1���e(v)1

���
2

, 1���e(v)2

���
2

, ... 1���e(v)1

���
n

�
, e(v)i represents the i-th row vector of E(v).

Update variable A(v): by removing the irrelevant terms and fixing the other variables,
we can calculate A(v) as follows:

L(A(v)) = �4

���A(v)
���
2,1

+
µ

2

��� bR(v)X(v)
o A(v) + S(v)

3

���
2

F
(4.32)

where S(v)
3 = �H � E +

C
(v)
1
µ . By setting @L(A(v))/@(A(v))= 0, we can obtain the optimal

A(v) as follows:

A(v) =
�µX(v)T

o bR(v)TS(v)
3

�4G(v) + µX(v)T
o bR(v)T bR(v)X(v)

o

(4.33)

where G(v) = diag

⇢
1���a(v)1

���
2

, 1���a(v)2

���
2

, ... 1���a(v)1

���
n

�
, and a(v)i is the i-th row vector of A(v).

Update variable H: by removing the irrelevant terms and fixing the other variables, we
can calculate H as follows:

L(H) = �
cX

i=1

mX

j=1

uij khj � ezik2 +
µ

2

sX

v=1

✓���B(v)
�H

���
2

F

◆
(4.34)

where B(v) = bRvX(v)
o A(v)

� E(v) +
C

(v)
1
µ . By setting @L(H)/@(H) = 0, we can obtain the

optimal H as follows:

H =
2�

Pc
i=1 UinZit + µ

Ps
v=1B

(v)
nt

2�
Pc

i=1 Uin + µs
(4.35)

Update variable U : We also use the K-means algorithm and Euclidean distance to mea-
sure the similarity between samples. If the distance from the i-th sample to the j-th cluster
center is smaller than the distance to other cluster centers, the element in the matrix uij
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is 1, and 0 otherwise. According to our proposed model, the distance Dij can be expressed
as:

Dij = �
cX

i=1

mX

j=1

uij khj � ezik2 + (1� �)
sX

i=1

cX

i=1

mX

j=1

uij
���x(v)j � z(v)i

���
2

(4.36)

According to the K-means algorithm, the specific update method of matrix U is as
follows:

uij =

(
1, 8k 2 [1,m] and k 6= j, Dij  Dik

0, 9k 2 [1,m], Dij � Dik

(4.37)

Update variable Z(v): To update the variable Z(v), we can calculate it by removing
irrelevant terms and holding other variables constant, as shown below:

L(Z(v)) = (1� �)
cX

i=1

mX

j=1

uij
���x(v)j � z(v)i

���
2

(4.38)

Z(v) can be solved as follows:

z(v)i =

PN
j uijx

(v)
jPN

j=1 uij
(4.39)

Update variable eZ: by removing the irrelevant terms and fixing the other variables, we
can calculate eZ as follows:

L( eZ) = �
cX

i=1

mX

j=1

uij khj � ezik2 (4.40)

eZ can be solved as follows:

ezi =
PN

j uijhj
PN

j=1 uij
(4.41)

Update Variables C(v)
1 , C(v)

2 , C(v)
3 : We update C(v)

1 , C(v)
2 , C(v)

3 as follows:

C(v)
1 = C(v)

1 + µ( bR(v)X(v)
o A(v)

�H � E(v)) (4.42)

C(v)
2 = C(v)

2 + µ(R(v)
�Q(v)) (4.43)

C(v)
3 = C(v)

3 + µ(R(v)
�M (v)) (4.44)

Update Variables µ: we update µ by:

µ = min(⇢µ, µ0) (4.45)

where ⇢ and µ0 represent preset parameters.
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4.3.4 Complexity analysis of CCIM-SLR

As discussed in Section 4.3.3, the computational expense of our algorithm is mainly due to
operations such as matrix inversion and singular value decomposition of self-matrices. The
algorithm of CCIM-SLR is summarized in Algorithm 1. The computational complexities
of Steps 8, 10, and 11 in Algorithm 2 are approximately O(m(v)3), O( m̄(v)m(v)2), and
O(m(v)3), respectively. Therefore, the complexity of the entire optimization of the algorithm
is approximately O(⌧(2m(v)3 + m̄vm(v)2)), where ⌧ is the number of iterations, m̄(v) is the
number of missing samples, and m(v) is the number of observed samples of the view.

Algorithm 2 CCIM-SLR

Require: Incomplete multi-view dataset X(v), and parameters �, �1, �2, �3, �4, ⇢, and µ0

Ensure: The resulting clusters
1: Initialize H;
2: Initialize U ;
3: Initialize E(v);
4: Initialize V (v);
5: Initialize eV ;
6: while not converge do
7: for v = 1 to V do
8: Update R(v) via Eq. (4.14);
9: Update Q(v) via Eq. (4.16);

10: Update M (v) via Eq. (4.29);
11: Update E(v) via Eq. (4.31);
12: Update A(v) via Eq. (4.33);
13: Update Z(v) via Eq. (4.39);
14: Update C(v)

1 via Eq. (4.42);
15: Update C(v)

2 via Eq. (4.43);
16: Update C(v)

3 via Eq. (4.44);
17: end for
18: Update H via Eq. (4.35);
19: Update U via Eq. (4.37);
20: Update eZ by solving Eq. (4.41);
21: Update µ by µ = min(⇢µ; maxµ ) ;
22: end while

4.3.5 Convergence analysis of CCIM-SLR

In addition to the update step of M (v), the other steps are easily found to be bounded.
Therefore, we analyze the effect of the update step of M (v) on our objective function.

We write kM (v)
kG as K(M (v)) in Eq. ((4.9)):
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min J(M (v), R(v), C(v)
3 , µ) =

sX

v=1

(K(M (v)) +
µ

2

���M (v)
�R(v)

���
2

F

+ <
C(v)
3

µ
,M (v)

�R(v) >)

(4.46)

where < ., . > represents the sum of the products of corresponding components between
two matrices.

Lemma 1. M (v)t and R(v)t are bounded if
P

1

t=1
(µt

�µt�1)
2(µt�1)2 < 1.

Proof. With some algebra, we can obtain:

J(M (v)t , R(v)t , C(v)t

3 , µt)

= J(M (v)t , R(v)t , C(v)t�1

3 , µt�1)

+
(µt
� µt�1)

2

���M (v)
�R(v)

���
2

F

+ Tr[(C(v)t

3 � C(v)t�1

3 )(M (v)
�R(v))]

= J(M (v)t , R(v)t , C(v)t�1

3 , µt�1)

+
(µt
� µt�1)

2(µt�1)2

���(C(v)t

3 � C(v)t�1

3 )
���
2

F

(4.47)

Then,
J(M (v)t+1

, R(v)t+1

, C(v)t

3 , µt)

J(M (v)t+1
, R(v)t , C(v)t

3 , µt)

J(M (v)t , R(v)t , C(v)t

3 , µt)

J(M (v)t , R(v)t , C(v)t�1

3 , µt�1)

+
(µt
� µt�1)

2(µt�1)2

���(C(v)t

3 � C(v)t�1

3 )
���
2

F

(4.48)

By iterating the above inequality (4.48) t times, we obtain:

J(M (v)t+1
, R(v)t+1

, C(v)t

3 , µt)

J(M (v)1 , R(v)1 , C(v)0

3 , µ0)

+
tX

i=1

(µi
� µi�1)

2(µi�1)2

���(C(v)t

3 � C(v)t�1

3 )
���
2

F

(4.49)

As
���(C(v)t

3 � C(v)t�1

3 )
���
2

F
is bounded, the other terms included in the right-hand side of

the inequality are also bounded. Therefore, J(M (v)t+1
, R(v)t+1

, C(v)t

3 , µt) is upper bounded.
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In addition, we have

J(M (v)t+1
, R(v)t+1

, C(v)t

3 , µt) +
1

2µt

���(C(v)t

3 )
���
2

F

=K(M (v)t+1
) +

µt

2

�����M
(v)t+1

�R(v)t+1

+
C(v)t

3

µt

�����

2

F

(4.50)

By observing several terms on the right side of Equation (4.50), we find that each of
them is finite, so M (v)t+1 and R(v)t+1

are also finite respectively. Therefore,
n
M (v)t

o
and

n
R(v)t

o
are also bounded.

Lemma 2. Let
n
M (v)t , R(v)t , C(v)t

3

o
be the sequence and

n
M (v)⇤ , R(v)⇤ , C(v)⇤

3

o
be an

accumulation point. Then
n
M (v)⇤ , R(v)⇤

o
is a stationary point if we have limt!1 µt

⇣
R(v)t+1

�R(v)t
⌘
!

0.
Proof. The sequence

n
M (v)t , R(v)t , C(v)t

3

o
is bounded as shown in Lemma 2. By the

Bolzano-Weierstrass theorem, at least one accumulation point must exist in this sequence,
e.g.,

n
M (v)⇤ , R(v)⇤ , C(v)⇤

3

o
. Therefore, we presume that

n
M (v)t , R(v)t , C(v)t

3

o
itself con-

verges to
n
M (v)⇤ , R(v)⇤ , C(v)⇤

3

o
.

Since R(v)t
�M (v)t= (C(v)t

3 � C(v)t�1

3 )/µt�1 holds, we have limt!1R(v)t
�M (v)t = 0.

Therefore, the primal feasibility condition is fulfilled.
For M (v)t+1 , it holds that

@M
⇣
M (v)t+1

, R(v)t , C(v)t

3 , µt
⌘
|M(v)t+1

=@MK
⇣
M (v)t+1

⌘
+ C3

(v)t + µt
⇣
R(v)t

�M (v)t
⌘

=@MK
⇣
M (v)t+1

⌘
+ C3

(v)t+1
+ µt

⇣
R(v)t+1

�R(v)t
⌘
= 0

(4.51)

If the singular value decomposition of M (v) is U (v) diag
⇣
�(v)
i

⌘
V (v)T according to The-

orem 1,
@MK

⇣
M (v)t+1

⌘
|M(v)t+1= U diag

⇣
⌧ (v)

⌘
V (v)T , (4.52)

where ⌧i = �/(� + �i)2 when �i 6= 0; else, it acts as 1/�. Since �i 2 (0,1/�] is fi-
nite, @MK

⇣
M (v)t+1

⌘
|M(v)t+1 is bounded. C(v)t

3 is bounded as a Lagrange multiplier.

µt
⇣
R(v)t+1

�R(v)t
⌘

is bounded. Under the assumption that limt!1 µt
⇣
R(v)t+1

�R(v)t
⌘
!

0,

@MK
⇣
M (v)⇤

⌘
+ C3

(v)⇤ = 0 (4.53)

Hence,
n
M (v)⇤ , R(v)⇤ , C(v)⇤

3

o
satisfies the Karush–Kuhn–Tucker conditions of J(M (v)t+1

, R(v)t+1
, C(v)t

3 ).

Therefore,
n
M (v)⇤ , R(v)⇤

o
is the point satisfying the condition.
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4.4 Experiments

This section reports in detail the performance evaluation of CCIM-SLR by comparing it
with the state-of-the-art methods against five real-world datasets. Furthermore, we present
experimental results on the proposed optimization approach, and its convergence property
to demonstrate the efficiency of CCIM-SLR and the robustness of CCIM-SLR.

4.4.1 Datasets

To validate the clustering performance of the proposed method under different data dimen-
sions, we used the five representative datasets in our experiments. The statistics of the
datasets are listed in Table 4.1.

Table 4.1: Statistics of the datasets

Dataset Clusters Views samples Features

SensIT300 3 2 300 50/50
Statlog 7 2 2310 9/10

Wisconsin 5 2 265 1703/265
WebKB 2 2 1051 1840/3000

Yale 15 3 165 4096/3304/ 6750

• SensIT3001 [132]: SensIT300 contains sensory data collected from an intelligent
transportation system targeting three vehicle types. This is one of the main datasets
used in many research papers to evaluate the performance of clustering algorithms.
This dataset consists of 300 samples under three different classes with two views, and
the sample data in each view consists of features of 50 dimensions respectively. The
three classes are three types of transportation, while the views are split into vibration
information and sound view obtained through sensor transmission.

• Statlog2 [133]: The Statlog dataset was collected by the Vision Group, University
of Massachusetts. The total number of samples in this dataset is 2310. The dataset
contains seven kinds of outdoor images that were hand-segmented to create a classi-
fication for every pixel. Each sample in the dataset has feature dimensions of either
9 or 10.

• Wisconsin 3 [134]: The Wisconsin dataset is a real-world multiview dataset that
contains 256 samples with different descriptions from 5 different categories (Student

1https://github.com/Liuzhenjiao123/multiview-data-sets/blob/master/sensIT300.mat
2https://github.com/Liuzhenjiao123/multiview-data-sets/tree/master
3https://lig-membres.imag.fr/grimal/data.html
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Pages, Program Pages, Course Pages, Staff Pages, and Faculty and Staff Pages). The
content view and reference view are the two types of views identified from each sample,
with 1703 and 265 feature dimensions, respectively.

• WebKB 4 [135]: The WebKB dataset consists of 1051 samples under 2 classes. Each
sample in this dataset corresponds to two types of features: i) those derived from the
textual content of the web page, and ii) those derived from the anchor text containing
links to other web pages. In this dataset, the dimension of the linked representation
is 1840, while the other dimension is 3000.

• Yale 5 [136]: The Yale dataset is a collection of 165 pictures from 15 people. The
pictures are distinguished by different expressions, gestures, and lights. The Yale
dataset contains three views. The feature dimensions of each view are 4096, 3304,
and 6750, respectively.

4.4.2 Baseline approaches

To validate the performance of the proposed CCIM-SLR, we compared it with five IMC
methods: IMC-GRMF [46], IMSC-AGL [63], UEAF [98], DAIMC [48], and HCP-IMSC [99].

• IMC-GRMF: The IMC-GRMF method uses the orthogonal matrix factorization
technique to learn the latent subspace. The local information of each view is in-
corporated to help fuse the complementary information of views, which results in a
better-shared representation.

• IMSC-AGL: The IMSC-AGL method utilizes low-rank representations of adaptive
learning of graphs in a multiview scenario. To obtain more refined low-dimensional
representations, this model employs a number of spectral constraints.

• UEAF: The UEAF model is designed for incomplete multiview clustering and serves
as a unified and robust embedding alignment approach. Differing from other meth-
ods, UEAF infers incomplete information by maintaining the consistency of the local
structure of the views and learning the local structure shared among multiple views
through reversing graph regularization.

• DAIMC: The DAIMC method is characterized by weighted semi-NMF: semi-nonnegative
matrix factorization, which learns a weight matrix that can be adapted to multiple in-
complete cases. This model performs an L2,1 regularization to obtain a supplemental
cluster-friendly matrix representation that can be shared by views.

4https://github.com/Liuzhenjiao123/dataset4
5http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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• HCP-IMSC: The HCP-IMSC method uses higher-order information to improve the
clustering performance of incomplete multiview. Tensor decomposition is adopted in
the process of capturing higher-order association relations. Then, under hypergraph-
induced superLaplace regularization, the missing view samples are restricted to be
reconstructed by neighboring samples.

4.4.3 Experimental setups

We removed 10%, 30%, 50%, 70%, and 90% of the sample data in each view from the
five datasets with the incomplete view. Specifically, all IMC-GRMF, IMSC-AGL, UEAF,
DAIMC, and HCP-IMSC perform post-clustering operations (e.g., K-means) based on ob-
tained latent representations to produce their final clustering results. Considering that the
clustering results of K-means are affected by the initialization of seed points, we performed
K-means 10 times in the experiment to obtain the average value. For setting the parameters
of the compared methods, we choose the values within the parameter ranges specified in
the original papers.

4.4.4 Evaluation metrics

In our experiments, we used four performance metrics to evaluate the clustering perfor-
mances: NMI - Normalized mutual information [99], ACC - Accuracy [101], ARI - Adjusted
Rand index [102], and F-scores [103].

• NMI - Normalized mutual information: The NMI indicator measures the quality
of clusters defined as:

NMI =

PC
i=1

PC
j=1Ni,j ln

Ni,j

NiN̂js

(
PC

i=1Ni ln
Ni

N
)(
PC

j=1 N̂j ln
N̂j

N
)

(4.54)

where N is the number of samples in a complete view, Ni and N̂j are the numbers of
samples in the i-th cluster and the number of samples of the j-th label, respectively.
The number of samples in the intersection between the i-th cluster and j-th label is
represented by Ni,j .

• ACC - Accuracy: ACC measures the cluster quality. ACC is estimated by:

ACC =

PN
i=1 �(map(ri), li)

N
(4.55)
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(a) (b)

(c) (d)

Figure 4.3: NMI (%) versus parameter � of the proposed CCIM-SLR on the (a) SensIT300
dataset with 10% incomplete samples of each view, (b) Statlog dataset with 10% incomplete
samples of each view, (c) Wisconsin dataset with 10% incomplete samples of each view, and
(d) WebKB dataset with 10% incomplete samples of each view.

where N is the number of samples, ri and li are a predicted cluster label of xi and
the corresponding ground-true label, respectively. If x=y, then �(x, y) = 1, and 0
otherwise. map(ri) represents the function of the optimal permutation mapping.

• ARI - Adjusted Rand index (ARI): ARI is a performance evaluation indicator
of the clustering model. A larger value indicates a better clustering result. ARI is
calculated using the following four indicators: 1) A true positive (TP) represents true
positive, 2) A true negative (TN) means true negative, 3) A false-positive (FP) is
false-positive, and 4) A false-negative (FN) is false-negative. ARI is formulated as:

ARI =
2⇥ (TP · TN � FN · FP )

(TP + FN)(TN + FN) + (TP + FP )(FP + TN)
(4.56)

• F-scores: The F-score integrates the recall and precision of a classifier into a single
metric that compares the performances of two classifiers:

F � score = 2⇥
precision⇥ recall

precision+ recall
(4.57)
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(a) (b)

(c) (d)

Figure 4.4: NMI (%) versus parameters �1 and �2 of the proposed CCIM-SLR on the (a)
SensIT300 dataset with 10% incomplete samples of each view, (b) Statlog dataset with 10%
incomplete samples of each view, (c) Wisconsin dataset with 10% incomplete samples of
each view, and (d) WebKB dataset with 10% incomplete samples of each view.

where precision =
TP

TP + FP
, and recall =

TP

TP + FN
.

4.4.5 Comparisons of the performance of clustering and discussion

Table 4.2 lists the evaluation scores of NMI, ACC, ARI, and F-score and the results of
different IMC baseline methods and our proposed method on the five datasets with different
missing ratios. From this table, we can make the following important observations.

1) Based on the experiments, our proposed CCIM-SLR achieved the best performance
compared with all other state-of-the-art methods. In particular, our method achieved
96.63% accuracy on the WebKB dataset with missing 10% samples. Compared to the
proposed CCIM-SLR, IMSC-AGL obtained comparable results on the Yale dataset. How-
ever, CCIM-SLR still shows its superiority on other datasets with an increased missing
rate.

2) Although UEAF exhibits good performance in terms of metric scores, it lacks robust-
ness. The main reason for this is that performing well, UEAF must satisfy the condition
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Table 4.2: Mean NMIs(%), ACCs(%), ARIs(%) and F-score(%) of different methods on
SensIT300 , Statlog , Wisconsin , WebKB and Yale datasets

Dataset Method \ PER NMI ACC ARI F-score

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

SensIT300 IMSC-AGL 22.50 19.86 16.20 14.40 15.00 65.74 62.73 60.00 58.00 56.33 24.78 21.31 17.24 14.56 15.18 49.85 47.69 44.93 43.37 43.60
SensIT300 DAIMC 20.44 17.29 15.67 10.58 8.89 64.08 60.63 59.18 51.90 50.12 22.54 17.87 16.27 10.43 8.28 48.68 45.73 44.80 41.28 40.59
SensIT300 UEAF 21.23 17.83 15.85 14.09 15.00 65.00 60.67 59.33 58.00 56.00 23.74 17.93 16.05 15.11 12.92 49.52 45.35 44.10 43.32 41.92
SensIT300 IMC-GRMF 15.50 8.36 5.65 4.74 2.19 60.20 51.00 47.33 39.13 35.67 16.51 8.45 5.72 4.18 0.07 44.85 38.98 36.99 36.57 47.59
SensIT300 HCP-IMSC 32.17 30.08 21.22 18.67 15.32 72.12 65.17 57.86 57.33 56.67 32.17 30.16 21.35 18.67 15.12 56.12 50.15 48.05 46.59 43.88
SensIT300 Ours 32.70 26.88 24.65 19.93 17.37 68.13 67.00 64.07 61.27 57.27 29.27 26.84 24.51 19.86 15.21 53.79 51.57 50.30 47.12 44.39

Statlog IMSC-AGL 10.81 20.51 13.51 8.76 3.08 27.45 37.69 30.95 24.11 17.92 5.91 15.09 7.63 2.28 0.27 21.71 27.89 21.59 18.96 18.77
Statlog DAIMC 47.35 39.59 34.15 30.49 26.61 56.66 51.29 44.52 41.19 35.26 36.11 27.27 18.80 18.01 13.56 45.98 38.65 32.63 30.99 27.52
Statlog UEAF 48.83 37.61 34.98 32.61 29.83 48.09 46.10 43.51 37.40 39.18 25.62 23.60 18.28 13.48 10.42 40.48 35.90 32.40 29.54 27.34
Statlog IMC-GRMF 43.93 41.76 38.21 31.07 30.31 54.68 53.84 47.45 36.36 40.61 33.85 30.46 28.53 18.14 16.97 43.43 40.69 39.45 30.62 29.41
Statlog HCP-IMSC 50.43 46.16 40.21 36.05 32.51 57.12 53.84 49.45 45.06 39.56 38.12 32.11 26.31 20.17 17.32 48.23 44.19 39.25 34.42 30.25
Statlog Ours 50.53 45.22 41.43 37.39 33.84 57.52 53.97 49.76 45.36 41.40 39.02 34.09 29.98 24.93 20.09 48.52 44.45 40.66 36.14 32.15

Wisconsin IMSC-AGL 20.98 18.81 14.10 13.64 12.24 42.66 38.87 34.34 34.72 32.57 16.56 11.10 8.29 5.01 5.76 41.04 33.01 32.02 32.11 32.57
Wisconsin DAIMC 29.87 26.52 24.04 22.10 16.75 51.39 43.77 45.66 48.83 44.00 24.96 16.95 16.52 15.88 12.70 46.01 39.37 39.02 40.87 36.07
Wisconsin UEAF 35.94 40.14 34.25 33.71 29.21 60.75 57.35 50.56 55.47 45.28 34.56 34.00 25.34 26.25 16.06 53.18 50.78 44.07 47.57 41.32
Wisconsin IMC-GRMF 25.69 18.57 10.63 7.9 6.2 43.69 37.21 33.28 39.17 44.10 14.52 9.87 5.22 4.80 0.51 40.04 33.78 30.51 34.16 45.97
Wisconsin HCP-IMSC 27.21 24.13 26.63 25.53 23.63 50.16 40.11 49.32 44.15 38.11 21.12 17.41 20.32 17.01 14.13 42.14 39.18 40.21 14.78 37.42
Wisconsin Ours 42.33 35.35 36.45 28.90 24.68 65.51 60.98 54.26 44.45 43.92 42.32 35.57 27.56 17.93 14.24 59.10 54.17 47.38 39.72 40.14

WebKB IMSC-AGL 65.50 30.11 50.13 35.22 7.1 95.05 82.78 91.34 85.06 62.13 79.36 40.73 67.53 46.84 5.83 92.74 76.54 87.62 79.25 59.30
WebKB DAIMC 60.57 52.35 41.54 44.96 38.16 93.14 90.67 84.64 90.56 88.79 69.79 63.84 50.72 59.51 53.33 90.89 88.30 83.63 87.80 85.73
WebKB UEAF 68.41 70.05 64.51 59.63 61.76 95.43 95.62 94.86 94.10 94.57 80.97 81.77 78.60 75.31 76.99 93.23 93.48 92.47 91.55 92.26
WebKB IMC-GRMF 51.70 34.37 2.8 9.1 2.9 92.01 87.82 61.08 78.21 71.36 67.85 52.22 4.36 21.92 10.11 88.59 83.80 59.61 74.87 68.52
WebKB HCP-IMSC 71.11 68.23 61.12 53.92 45.72 95.12 93.21 92.08 91.72 86.86 82.12 79.21 77.12 67.45 52.75 93.12 92.60 91.13 87.23 81.23
WebKB Ours 73.31 72.25 69.57 67.52 57.99 96.63 96.44 95.87 95.61 93.82 85.53 84.77 82.61 81.33 73.85 94.99 93.88 94.77 93.60 91.30

Yale IMSC-AGL 68.49 65.67 70.38 65.71 68.80 67.09 62.55 68.97 61.33 64.36 44.52 43.71 47.32 44.46 46.97 59.75 56.67 62.06 56.33 60.12
Yale DAIMC 57.16 53.68 54.26 44.24 41.36 53.21 50.18 48.79 37.21 34.42 32.44 26.87 25.21 14.49 11.36 44.83 42.32 41.42 31.36 28.92
Yale UEAF 61.21 61.87 61.02 60.84 61.97 55.21 55.88 54.85 55.15 55.58 37.81 38.70 37.91 36.84 38.31 50.85 50.93 49.89 50.02 51.14
Yale IMC-GRMF 63.67 64.12 56.58 46.55 45.27 57.64 58.24 48.30 37.82 36.06 41.75 42.22 32.40 19.04 17.38 53.65 53.71 44.67 33.52 31.67
Yale HCP-IMSC 64.42 63.77 58.51 53.36 47.92 56.85 60.85 54.79 53.36 47.92 41.60 41.38 35.07 27.81 20.56 52.28 53.12 47.07 40.88 33.90
Yale Ours 66.58 72.37 69.76 65.74 64.12 65.55 63.79 67.73 62.41 60.21 43.12 54.19 46.13 45.02 43.46 57.79 63.87 62.14 56.95 56.78

that the feature dimensions of all views are larger than the cluster number. From this
perspective, our method has stronger robustness in handling complex types of incomplete
multiview.

3) In general, DAIMC ignores padding for missing views. As a result, the achieved
NMI score of our proposed CCIM-SLR is 28.03% higher than that of DAIMC in a case in
which 50% of samples in the Webkb dataset are missing. CCIM-SLR uses an advanced
filling mechanism. The experimental results show that this mechanism can result in better
clustering performance.

4) Compared with IMC-GRMF, CCIM-SLR can maintain meaningful semantic relation-

Table 4.3: Ablation study of the CCIM-SLR performance (%) on SensIT300 , Wisconsin,
and WebKB datasets

Dataset Method \ PER NMI ACC F-score

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

SensIT300 Ablation-1 19.84 15.22 12.78 10.11 6.06 61.82 57.13 55.06 51.06 46.13 47.60 44.18 41.81 39.90 37.46
SensIT300 Ablation-2 20.19 15.41 13.14 7.1 4.2 56.82 53.61 47.13 42.41 56.67 47.85 44.24 42.18 37.55 35.78
SensIT300 Ours 32.70 26.88 24.65 19.93 17.37 68.13 67.00 64.07 61.27 57.27 53.79 51.57 50.30 47.12 44.39

Wisconsin Ablation-1 39.75 36.18 33.71 27.13 24.19 62.64 53.50 51.84 42.86 42.19 53.86 47.25 47.13 39.05 37.98
Wisconsin Ablation-2 37.20 38.01 31.43 27.67 23.25 60.75 55.39 51.92 44.08 41.88 52.39 49.59 45.25 39.70 38.21
Wisconsin Ours 42.33 35.35 32.45 28.90 24.68 65.51 60.98 54.26 44.45 43.92 59.10 54.17 47.38 39.72 40.14

WebKB Ablation-1 68.33 57.15 49.34 41.11 4.1 94.53 88.69 85.11 56.17 50.12 92.09 84.78 80.71 57.82 56.77
WebKB Ablation-2 63.82 41.49 26.64 14.12 5.23 93.92 83.93 73.26 57.51 57.01 91.32 78.06 66.19 57.84 61.71
WebKB Ours 73.31 72.25 69.57 67.52 57.99 96.63 96.44 95.87 95.61 93.82 94.99 93.88 94.77 93.60 91.30
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Table 4.4: Two incomplete multi-view clustering methods based on association models
exhibit differences in ACCs(%), F-scores(%), running time (seconds), and computational
complexity when applied to datasets SensIT300 and Statlog, with 50% incomplete samples
in each view. mo denotes the number of observed samples.

Dataset Method ACC F-score Running time (seconds) computational complexity

SensIT300 HCP-IMSC 57.86 48.05 1.4312 O(sm3 + s(m�mo)3 + cmslog(s) + cm2s)

SensIT300 CCIM-SLR 64.07 50.30 1.4284 O(⌧(2m(v)3 + m̄vm(v)2 ))
Statlog HCP-IMSC 49.45 39.25 219.9447 O(sm3 + s(m�mo)3 + cmslog(s) + cm2s)

Statlog CCIM-SLR 49.76 40.66 62.7427 O(⌧(2m(v)3 + m̄vm(v)2 ))

(a) (b)

(c) (d)

Figure 4.5: NMI (%) versus parameters �3 and �4 of the proposed CCIM-SLR on the (a)
SensIT300 dataset with 10% incomplete samples of each view; (b) Statlog dataset with 10%
incomplete samples of each view; (c) Wisconsin dataset with 10% incomplete samples of
each view; and (d) WebKB dataset with 10% incomplete samples of each view.

ships between the original view by building a consistent structure. In particular, clustering
performance on the datasets with large differences in sample dimensions between Wisconsin
and WebKB. CCIM-SLR can handle all kinds of incomplete data, which is much better than
IMC-GRMF.

5) From Table 4.2, the performance of HCP-IMSC in terms of several metric scores is
superior to other compared methods, which shows the advantage of capturing high-order
correlation. In a case of an increasing missing rate, CCIM-SLR, however, can produce
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(a) (b)

(c) (d)

Figure 4.6: NMI (%) versus parameters µ and ⇢ of the proposed CCIM-SLR on the (a)
SensIT300 dataset with 10% incomplete samples of each view, (b) Statlog dataset with 10%
incomplete samples of each view, (c) Wisconsin dataset with 10% incomplete samples of
each view, and (d) WebKB dataset with 10% incomplete samples of each view.

(a) (b)

Figure 4.7: Comparisons of robustness experiments on SensIT300 and Statlog Datasets.

excellent incomplete multiview clustering results.
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4.4.6 Parameter sensitivity of CCIM-SLR

Comparative experiments are performed in this section to investigate the sensitivity of each
parameter of CCIM-SLR. Because the NMI index can objectively evaluate the accuracy of
the comparison between a community division and the standard division, we use NMI to
determine the range of parameters under satisfactory clustering results. Our main focus
is on the following parameters in Equation (4.9): clustering model weight parameter �,
sparsity term parameter �1, low-rank term parameter �2, noise term parameter �3, flexible
term parameter �4, and Lagrange operator control parameters µ and ⇢.

1) Parameter �: Figure 4.3 shows the NMI (%) scores for different scales of � parameters.
Our proposed CCIM-SLR achieved satisfactory performances on the SensIT300, Statlog,
Wisconsin, and WebKB datasets when � was in the range of [0, 0.9], [0, 0.9], [0, 0.9], and
[0.6, 0.9], respectively. Based on the results, the best values for the � parameter should
range between [0.6, 0.9]. These values are used in further experiments.

2) Parameters �1 and �2: We explored the details of parameters �1 and �2 in Equation
(4.9) by applying CCIM-SLR to the SensIT300, Starlog, Wisconsin, and WebKB datasets
with a 10% incomplete-view rate, as shown in Figure 4.4. In our analyses, the performance
of our algorithm is shown to be insensitive to �1 and �2 parameters. As shown in Figure
4.4, the values of the indicators of clustering do not change significantly as the values of the
parameters change.

3) Parameters �3 and �4: We evaluated the NMI score for different values of �3 and �4

parameters in Equation (4.9) on the SensIT300, Statlog, Wisconsin, and WebKB datasets
with an incomplete-view rate of 10%. Figure4.5 depicts the best clustering results. Based
on the experiments, the most suitable values for the candidate parameters �3 and �4 range
from [1,10] and [0.1,100], respectively.

4) Parameters µ and ⇢: Figure4.6 shows the NMI versus µ and ⇢ parameters in Equation
(4.45) on the SensIT300, Statlog, Wisconsin, and WebKB datasets with an incomplete-view
rate of 10%. The experimental results show that if µ ranges from [0.5,10] and ⇢ from [1,1.1],
our CCIM-SLR performed best.

4.4.7 Ablation study

To investigate the impact of each component of CCIM-SLR on its overall performance, we
performed two ablation experiments on the three datasets. Specifically, we removed the
hidden view from the clustering part in Ablation 1. Ablation 2 replaced the adjustable
�-norm with the traditional kernel norm to produce a low-rank representation. The ex-
periment results are reported in Table 4.3. From this table, we can find that although
the NMI score of Ablation 2 is 2.66% higher than that of CCIM-SLR at a missing rate of
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30%, CCIM-SLR still performed well in all other cases. This indicates that the adjustable
low-rank representation �-norm can obtain better filling performance than the traditional
kernel norm. In addition to this, we can find that clustering with the removed hidden views
produced the worst results, which indicates that the fusion results of multiview directly
affect the clustering results.

4.4.8 Robustness experiments

To further demonstrate the robustness of the proposed CCIM-SLR algorithm, we conducted
experiments on two datasets, SensIT300 and Statlog, with varying degrees of missing data.
Specifically, we set missing rates to (50%, 40%, 60%, 70%, and 80%) and (40%, 40%, 80%,
60%, and 70%) for SensIT300 and Statlog, respectively.

In Figure 4.7a, we compare the clustering performance of CCIM-SLR, HCP-IMSC, and
IMC-GRMF on the SensIT300 dataset across the different missing rates. Our proposed
algorithm is the most stable, except for the 40% missing rate. Similarly, in Figure 4.7b,
we show the clustering performance of CCIM-SLR, HCP-IMSC, and UEAF on the Statlog
dataset with the above-mentioned missing rates. Our proposed algorithm still performs the
best, except for the 40% missing rate.

Overall, our experimental results demonstrate that CCIM-SLR is robust and performs
well on datasets with varying degrees of missing data.

4.4.9 Experiments on the convergence of CCIM-SLR

As presented in Section 4.3.3, the objective function of CCIM-SLR is divided into several
subproblems, with each subproblem being analytically solved. The CCIM-SLR algorithm
adopts an alternating iterative optimization procedure. The objective function monoton-
ically decreases until it converges. As shown in Figure 4.8, the experimental results have
demonstrated the correctness of the theoretical proofs in Section 4.3.5.

4.4.10 The effectiveness of CCIM-SLR on the datasets

As shown in Table 4.4, the performance of two methods that utilize association information
to constrain the reconstruction of missing view samples is presented. This is evaluated
in terms of clustering metrics, execution time, and complexity. The experimental results
indicate that CCIM-SLR has the best overall efficiency.

4.5 Conclusion

In reality, datasets that are collected often contain data samples with incomplete multiview,
and the number of such samples varies significantly. This presents a challenge for cluster-
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(a) (b)

Figure 4.8: Objective function values versus the iteration steps of CCIM-SLR on the (a)
Statlog and (b) WebKB face databases, in which 10% samples are randomly selected as the
paired samples.

ing methods. To address this issue, a novel incomplete multiview clustering method called
CCIM-SLR has been presented in this paper based on a sparse low-rank representation.
In particular, CCIM-SLR measures the correlations between samples with the same views
using sparse low-rank learning, while also capturing the correlations between different views
through shared hidden view learning. Moreover, the proposed method learns the shared
hidden space, visible view, and cluster partition alternatively, thus avoiding the sensitivity
of postprocessing methods like K-means to initial parameter values. This improves per-
formance, as demonstrated through both theoretical proof and experimental comparison
with advanced methods for IMVC on five representative datasets. The experimental results
showed that our CCIM-SLR achieved good performance, especially on datasets with an
increasing number of incomplete samples.
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5.1 Introduction

In the era of big data, the presence of multiple modalities in data is prevalent [137] [138]
[139] [140] [141]. However, it is common for data to be missing during the data collection
process [142]. As depicted in Figure 5.1(a) and Figure 5.1(b), two common types of missing
data patterns can be observed [2] [63] [143]. One type is characterized by many instances
containing all views, while some instances have only one view. The other type involves
randomly missing views. Therefore, a number of algorithms for incomplete multiview rep-
resentation learning (IMRL) have been proposed to learn consistent representations in the
presence of missing views [144] [119].

The existing algorithms for IMRL can be broadly categorized into two categories based
on their key strategies for handling missing data. The first category entails the removal of
samples that lack particular views, followed by the clustering of the remaining samples that
have complete observations of all views [2]. However, this approach has limitations as it
completely excludes samples with missing views from data analysis or clustering algorithms.
As a result, subsequent clustering algorithms may fail to capture the underlying correlations
among certain instances. For example, in the context of medical diagnosis, we consider
various examinations and clinical data as different views. However, due to uncontrollable
factors, patients may have missing data in certain views. If we employ the first category
of methods to address this issue, it has the following drawbacks: inaccurate diagnosis of
patients with missing view data and further impact on the diagnostic results of other patients
due to the loss of relevant data.

The second category involves filling the missing views with either 0 or the measured
value of instances, followed by processing the data using conventional multiview clustering
methods [44] [98] [114]. For example, Wen et al. [98] introduce reconstruction items to
fill in missing data and ensure natural alignment among views. This approach leverages
available information from non-missing views and hidden information from missing views
for shared representation learning. However, the limitation of this category is that setting
missing views to fixed values may introduce bias and result in the loss of true information
contained in the missing views, consequently impacting the quality of clustering results.

In summary, both the deletion and imputation methods commonly used for handling
incomplete multi-view data suffer from the same problem: they disregard the underlying
real information within the missing data. As depicted in Figure 5.1(c), these methods solely
rely on simple processing techniques for fusing multi-view data [2] [98] [55].

In the real world, datasets often not only contain incomplete data but also exhibit vary-
ing degrees of incompleteness. This poses a significant challenge in developing algorithms
that can effectively utilize the available information within the missing data instead of dis-
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Figure 5.1: (a) Many instances contain all views, while some instances have only one view.
(b) Incomplete multiview data with arbitrary missing instances. (c) Most previous IMRL
methods. (d) Our Method.

carding it. Moreover, these algorithms need to be robust enough to handle different levels
of data completeness.

To address this challenge, we propose a novel approach to IMRL from a data compression
perspective (Figure 5.1(d)). Instead of deleting instances or filling in missing instances,
our method learns a shared low-dimensional representation by minimizing or maximizing
the mutual information between different views. This approach offers several advantages:
Firstly, compressing the data allows for the preservation of a greater amount of useful
information while mitigating redundancy and noise interference. Secondly, our approach
mitigates the impact on clustering outcomes by avoiding the introduction of inaccurate
information through instance imputation methods. Finally, compressed data fusion methods
typically employ dimensionality reduction techniques for representation and fusion, thereby
reducing data complexity and storage requirements.

In summary, the main contributions of this paper are as follows:

• We propose a novel framework called IMRL-AGI for multi-view representation learn-
ing in the presence of incomplete data. This framework combines information bot-
tlenecks and anchor graph GCN. To the best of our knowledge, this is the first time
that information bottleneck is integrated with anchor graph GCN for addressing in-
complete multi-view representation learning.

• We introduce the maximization of mutual information constraints to enhance the
correlation between the view information obtained from the common representation
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and the view information derived through anchor graph GCN.

• IMRL-AGI enhances the robustness and diversity of information bottleneck represen-
tations in downstream tasks by minimizing the mutual information between different
views derived from the common representation and between the representation of the
original view and the common representation

• We extensively evaluated the performance of IMRL-AGI on three real-world datasets.
Particularly, IMRL-AGI shows significant improvements in clustering and classifica-
tion accuracy even with high view missing rates (e.g. 10.23% and 24.1% respectively
on the ORL dataset). Furthermore, experiment results demonstrate the robustness of
IMRL-AGI under different view missing rates (e.g. the NMI values from 82.52% to
86.49% on ORL dataset).

The rest of this paper is organized as follows. Section 5.2 presents an overview of the
related work. In Section 5.3 our proposed IMRL-AGI is described in detail. The experi-
mental results and analysis are presented in Section 5.4. Finally, a summary is provided in
Section 5.5.

5.2 Related Work

The methods for incomplete multiview representation learning can be roughly divided into
shallow methods and deep methods.

The shallow methods can be further classified into three categories. The first category
is graph-based learning methods [145] [146]. These methods construct affinity matrices or
graphs using the relationships between instances and assign clusterings through the rela-
tionships in the graphs. The second category is based on non-negative matrix factorization
(NMF) methods [3] [43]. The third category is kernel-based methods [147] [55], which use
the kernel matrix of complete views to complete the kernel matrix of incomplete views,
thereby completing clustering allocation.

The deep methods typically use interpolation strategies to fill in missing data values,
which can be roughly divided into two categories. The first category of deep methods mainly
generates missing view data by generative adversarial networks [67] [148]. The second
category of deep methods is to recover the missing multi-view data through contrastive
learning [149] [150].

In addition to shallow and deep methods, the anchor graph-based shallow methods have
demonstrated their effectiveness in approximating the complete instance graph. They have
been widely utilized in several incomplete multi-view clustering methods [111] [151] [152]. In
particular, Guo et al. [111] propose an Anchor-based Partial Multi-view Clustering (APMC)
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by reconstructing inter-instance relationships. This approach provides a straightforward yet
powerful strategy for leveraging anchors for clustering tasks.

Methods based on information bottleneck are widely recognized as an effective deep
method for obtaining a minimal and sufficient representation of multi-view data [153] [152]
[154]. CMIB-Nets [153] is one of the representative models that address multi-view represen-
tation learning problems using information bottlenecks. On the other hand, GCN is a deep
learning model that extracts features from graph data. Additionally, GCN demonstrates
its capability in effectively handling data with missing values [155].

However, the anchor-based methods still have certain limitations as they fail to consider
the redundancy present in the views. Similarly, the information bottleneck-based methods
have not been effectively applied to handling missing views. To address these gaps, we
propose a novel framework that combines information bottlenecks and anchor Graph GCN.
Our framework aims to effectively reduce redundant information in view representations
while also tackling the challenges posed by various missing views in the data.

5.3 Proposed IMRL-AGI

In this section, we describe the proposed IMRL-AGI in detail. As shown in Figure 5.2,
IMRL-AGI mainly consists of three components: 1) view-specific representations; 2) shared
representations; and 3) incomplete multi-view representation with information bottlenecks.
We start by explaining the relevant symbols.

Let X = {X(1), X(2), ...X(v)
} represent the original incomplete multi-view dataset. Here,

X(v)
2 Rn(v)⇥d(v) represents the data of the v-th view, where n(v) and d(v) represent the

number of instances and dimensions of each view, respectively. Given two random variables
B and C, their mutual correlation is quantified using mutual information I(B,C) [156].

5.3.1 View-specific representation construction

In order to better learn a specific representation of views, we construct an affinity matrix
for each view, which is based on the anchor information between the views. In addition,
we introduce GCN to facilitate feature learning of each view. Moreover, the construction
method can be easily extended to encompass more than two views.

5.3.1.1 Anchor-based similarity reconstruction

Although the sources of multiview data are different, there can be consistent similarities
between certain data points within a view. As a result, we identify the common instances
that appear in both views as anchors and compute similarity matrices for each view based
on these anchors. This approach differs from previous methods that calculate a unified
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Figure 5.2: Overview of IMRL-AGI. It consists of four major components: (a) graph con-
struction ; (b) view-specific encoding; (c) multi-view encoding; and (d) downstream task
finetuning.

Figure 5.3: Construction of the Anchor-based similarity matrix.
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similarity matrix using anchors [111]. Given the uniqueness of each view, our objective is to
preserve the intrinsic feature information while ensuring consistency among multiple views
as much as possible. Thus, we construct separate similarity graph structures for each view.
Taking the similarity matrix of view 1 as an example, the construction process is illustrated
in Figure 5.3.

We choose the instances x3, x4 and x5 present in both view 1 and view 2 as anchor
points, which we place into the corresponding anchor point set U (v) of the respective view.
This set is denoted as

n
U (v)
i

ol

i=1
, where l represents the number of common instances

occurring simultaneously in both views.
In order to obtain the final similarity matrix of view 1, we follow a four-step process.

The first step is to calculate the similarity matrix Z(11) between all instances of view 1 and
their own anchor points, which are selected from their own instances. In the second step, we
calculate the similarity matrix Z(12) between all instances of view 1 and the anchor points
from view 2. Finally, the third step is to calculate the similarity matrix Z(21) between all
instances of view 2 and the anchor points from view 1. The fourth step is to calculate the
similarity matrix Z(22) between all instances in view 2 and the anchor points from view 2.
The similarity calculation process for instances from the same view and their corresponding
anchors is as follows:

Z(vv)
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⇣
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(5.1)

Here, hii(v) is the index set of the view instance corresponding to the selected anchor. The
function D

⇣
x(v)i , u(v)j

⌘
is the distance function that measures the instance and the anchor.

The kernel method is capable of capturing the nonlinear relationships within data, thereby
enhancing the accuracy and efficiency of clustering algorithms. For the truncated similarity,
we employ a Gaussian kernel function K�(·), which is defined as follows:

K�(x
(v)
i , u(v)j ) = exp

⇣
�D

2
⇣
x(v)i , u(v)j

⌘
/�2

⌘
(5.2)

For the sake of universality, we set � to 1. In a similar manner to calculating Z(11), we
use the same method to obtain Z(12), Z(21), and Z(22). As shown in Figure 5.3, we can
obtain the final instance-anchor similarity matrix Z(1) by fusing the matrices as follows:
Z(1) = [Z̃(12); Z̃(1); Z̃(21)]. Here, Z̃(1) represents the average of the similarity measures in
Z(11), Z(12), Z(21), and Z(22), which contain common instances and different sets of anchor
points chosen for different views. Z̃(12) and Z̃(21) represent the average similarity values
between the anchor and the exclusively shared instances of Z(11) and Z(12) and between the
anchors and the exclusively shared instances of Z(21), and Z(22), respectively.
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In order to obtain the similarity matrix between all instances based on anchor graphs,
we employ the low-rank approximation method mentioned in [111]. The following function
is used for this calculation:

F (v) = Z(v)⇤(v)�1
Z(v)T (5.3)

where ⇤(v) = diag
⇣
Z(v)T 1

⌘
is a diagonal matrix.

5.3.1.2 Feature learning of graph convolutional neural network

To encode each incomplete multiview data, we use a graph convolutional neural network
f (v)
gcn to capture view-specific information. This network operates on the input data X(v)

from the incomplete view itself, along with an anchor-based similarity graph structure F (v).
By employing this approach, we can obtain the specific representation S(v) for the v-th view
through the following function:

S(v) = f (v)
gcn

⇣
X(v), F (v)

⌘
(5.4)

Equation (5.4) mainly focuses on extracting graph structure information using anchor
similarity, thereby ensuring consistent information across views. Consequently, to ensure
that the learned view-specific representation contains more structural information about the
views, we incorporate a loss function based on the decoder network structure f (v)

de . This loss
function aims to minimize the distance between the view representation and the structural
representation, both derived from the anchor similarity graph in the metric space. The
specific form of the loss function for learning S(v) is as follows:

Ls =
VX

v=1

���X(v)
� f (v)

de

⇣
S(v)

⌘���
2

F
(5.5)

In our model, we aim to learn specific view information S(v) that preserves inter-view
consistency and intra-view specificity. This is achieved by utilizing Equation (5.4) and
Equation (5.5).

5.3.2 Construct shared representation

In order to obtain a more representative, robust, and generalizable data representation
that takes into account information bottlenecks, we introduced the incomplete multiview
common representation denoted as H. At the same time, to better capture the data dis-
tribution of shared view H within a specific view, we use a reconstruction network f (v).
This network facilitates the conversion between shared and multiview representations. The
conversion function can be expressed as follows:
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H(v) = f (v)(H) (5.6)

Equation (5.6) focuses on obtaining the corresponding multiview representation infor-
mation using the common representation of multiview. In order to ensure that the shared
representation contains as much meaningful information as possible from the view-specific
information S(v), we use the following reconstruction loss Lh to enhance the consistency
between specific view information and specific view information obtained based on the com-
mon representations. The formulation of the reconstruction loss is as follows:

Lh = min
H

VX

v=1

���S(v)
� f (v)(H)

���
2

F
(5.7)

5.3.3 Incomplete multiview information bottleneck representation

This section mainly consists of three modules: extracting view-specific via an information
bottleneck, learning the diversity of multiview information via an information bottleneck,
and reducing redundant features via an information bottleneck.

5.3.3.1 Extracting view-specific via an information bottleneck

Based on previous studies [153], maximizing the information bottleneck of two variables
involves seeking a shared representation that maximizes the relevant information of these
two variables. In Figure 5.2, we ensure the accuracy of extracting specific view information
by maximizing H(v) and S(v) as follows:

max
H

VX

v=1

I
⇣
H(v), S(v)

⌘
(5.8)

With respect to the initial term I
�
H(v), S(v)

�
, we can apply the definition of the mutual

information as follow:
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(5.9)

Let q
�
s(v) | h(v)

�
be a variational approximation of p

�
s(v) | h(v)

�
. Since the Kullback-

Leibler divergence is always positive, we have:
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So, we have a lower bound:
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In the actual calculation, maximizing mutual information can be regarded as a lower-
bound problem [156].

5.3.3.2 Learning diversity of multiview information via information bottleneck

In order to ensure the diversity of multiview information, we expect the representation
information derived from different views within a shared representation to be statistically
independent of each other. As illustrated in Figure 5.2, given v views (v � 2), we establish
pairwise relationships denoted as

�v
2

�
for all views. We denote the constructed view pairs

as (i, m), where i 6= m. To achieve this independence, we minimize the mutual information
between the specific view representation H(m) and the specific view representation H(i)

derived from the shared representation. The corresponding function is as follows:

min I
⇣
H(i), H(m)

⌘
(5.12)

Based on the definition of mutual information calculation, we can obtain the following
formula:
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�
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�
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(5.13)

Let r
�
H(i)

�
represent the variational approximation of this margin. Thus, we have:
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Hence, we can compute the upper bound using the following expression:
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(5.15)

Since mutual information is always non-negative, the problem of minimizing mutual
information can be viewed as seeking a tighter upper bound [156]. We cannot decrease the
value of mutual information to a negative number or an arbitrarily small value. Therefore,
the problem of minimizing mutual information can be interpreted as the pursuit of an upper
bound.

5.3.3.3 Reducing unnecessary redundant features via information bottleneck

Algorithm 3 IMRL-AGI

Require: Incomplete multi-view dataset X={X(v), ..., X(v)
}.

Ensure: The incomplete multi-view common representation H.
1: Generate the anchor point set U (v);
2: Construct the similarity matrix Z(v) between each instance in the view and the anchor

point set;
3: Construct the similarity matrix F (v) between each view instance by Eq. (5.3);
4: Initialize the incomplete multi-view common representation H;
5: Initialize the neural networks f (v)

gcn, f (v)
de , and f (v) with appropriate parameters;

6: while Eq. (5.20) not convergent do do
7: Calculate S(v) by Eq. (5.4);
8: Calculate H(v) by Eq. (5.6);
9: Calculate the loss of incomplete multi-view representation learning by Eq. (5.20);

10: Update f (v)
gcn, f (v)

de , and f (v) using backpropagation;
11: Update H using backpropagation;
12: end while
13: Return the incomplete multi-view common representation H.

To enhance feature extraction and improve downstream tasks, we minimize the mutual
information between the original view and the common representation. This process helps
reduce noise and irrelevant information, allowing for the extraction of crucial and distinctive
features from raw data. As a result, it improves the performance and generalization ability of
downstream clustering and classification. Referring to Figure 5.2, we minimize the mutual
information between the original view data X(v) and H in order to discard redundant
information. Since our goal is to minimize mutual information, we utilize the calculation
method described in the previous section. As such, we arrive at the following equation:
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5.3.3.4 The Overall Objective Function of IMRL-AGI

To ensure the coherence of the three modules aforementioned, we integrate them into a
unified learning model as follows:
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The integration of S(v), H(m), and X(v) can be approximated using Monte Carlo sam-
pling [157]. Here is the equation for the approximation:
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Next, we apply the reparameterization technique [158] to rewrite the function:

p
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⌘
d h(v) = p
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"(v)1
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d"(v)1 (5.19)

where h(v)=g1
�
s(v), "1

�
. Therefore, we learn incomplete multiview representations using
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information bottlenecks, with the objective function Lr formulated as follows:
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In Algorithm 5.3.3.3, we outline the complete updating procedures of the proposed
IMRL-AGI.

5.4 Experiments

In this section, we conducted experiments to compare the performance of the proposed
algorithm, IMRL-AGI, against other comparative baselines on commonly used datasets.
We also provided a comprehensive analysis of the experimental results. The IMRL-AGI
algorithm was implemented using the Basesklearn and PyTorch libraries. In addition, all
of the implemented algorithms were executed on a Windows computing platform equipped
with an NVIDIA 3090 GPU.

5.4.1 Descriptions of datasets

Table 5.1: Mean ACCs (%) of different methods on the Notting-Hill, ORL, and Yale datasets

Dataset Rate HCP_IMSC DAIMC UEAF IMC-GRMF Ours

Notting-Hill

0.1
0.3
0.5
0.7
0.9

73.45±0.00
79.64±0.00
80.45±0.19
80.18±0.00
82.18±0.00

73.76±6.15
74.69±7.22
73.64±4.29
71.49±4.06
75.82±6.27

81.78±0.11
82.18±0.00
82.73±0.00
82.13±0.00
82.36±0.00

77.58±0.08
69.27±0.00
70.36±0.00
71.25±0.05
75.82±0.00

81.80±0.32
78.89±0.72
83.69±0.18
82.15±1.54
85.64±3.83

ORL

0.1
0.3
0.5
0.7
0.9

58.33±1.31
60.88±1.71
65.03±1.48
64.08±2.27
68.40±2.00

65.42±1.68
66.50±2.41
67.30±4.92
67.67±2.23
68.53±2.51

53.05±2.05
55.58±1.98
55.98±2.18
55.15±1.94
55.67±2.31

33.62±0.95
40.00±2.90
52.33±1.63
59.38±2.21
69.30±3.02

72.17±2.02
72.38±2.15
74.10±1.99
77.90±1.81
75.05±1.75

Yale

0.1
0.3
0.5
0.7
0.9

42.48±2.48
48.48±3.22
54.79±3.09
60.25±3.65
56.85±1.93

34.42±3.40
37.21±2.30
48.79±4.17
50.18±3.06
53.21±4.40

55.58±4.46
55.15±3.08
54.85±2.90
55.88±3.10
55.21±4.16

36.06±1.06
37.82±2.17
48.30±3.36
58.24±1.42
57.64±1.03

59.52±1.55
59.09±2.32
60.85±1.28
60.30±0.82
58.55±0.91
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Table 5.2: Mean NMIs (%) of different methods on the Notting-Hill, ORL and Yale datasets

Dataset Rate HCP_IMSC DAIMC UEAF IMC-GRMF Ours

Notting-Hill

0.1
0.3
0.5
0.7
0.9

71.25±0.00
68.74±0.13
77.17±0.37
76.90±0.00
78.89±0.00

73.00±3.83
72.47±3.13
74.70±3.02
70.61±2.56
74.03±3.98

74.26±0.31
73.75±0.00
76.08±0.00
76.36±0.00
76.29±0.00

72.11±0.18
72.51±0.00
75.81±0.00
76.94±0.19
79.65±0.00

74.28±0.63
75.12±1.05
78.63±0.80
78.99±1.43
82.17±3.21

ORL

0.1
0.3
0.5
0.7
0.9

75.49±0.70
77.38±0.82
80.81±0.88
81.11±1.01
83.91±0.92

80.05±0.86
80.90±0.66
83.43±2.17
84.18±1.21
84.79±0.96

72.68±1.34
75.25±1.26
75.67±1.33
75.35±0.73
75.81±0.95

55.82±0.89
61.04±1.77
70.51±1.01
76.38±1.21
82.79±1.06

82.52±0.86
83.54±0.66
84.49±0.85
87.50±0.67
86.49±0.41

Yale

0.1
0.3
0.5
0.7
0.9

47.92±1.59
53.36±2.49
54.79±3.09
63.77±2.43
64.42±1.11

41.36±3.43
44.24±1.75
54.26±2.75
53.68±1.83
57.16±3.99

61.97±2.93
60.84±1.64
61.02±1.10
61.87±2.24
61.21±2.32

45.27±0.60
46.55±1.73
56.58±2.17
64.12±1.73
63.67±0.99

63.62±1.14
63.91±1.34
64.99±1.36
64.32±1.03
62.65±0.74

• Notting-Hill:1 The Notting Hill dataset is a facial datasetextracted from the movie
"Notting Hill" dataset. It mainly consists of facial images of 5 actors, with each actor
having 110 images. The datapoint in the dataset contains three views, each with
dimensions of 2000, 3304, and 6750.

• ORL:2 The ORL facial dataset is a collection of 400 images, divided into 40 categories.
The dataset is organized based on variations in lighting, facial expressions, and facial
details. It also has three views, each with dimensions of 4096, 3304, and 6750.

• Yale:3 The Yale dataset contains 165 images of 15 individuals. Each person has 11
facial images with different expressions, postures, and lighting conditions. Similar
to the ORL dataset, the Yale dataset also has three views with the same feature
dimension as the ORL dataset views.

5.4.2 Incomplete percentage settings

We constructed different incomplete percentage settings for the above multi-view datasets.
We denoted the percentage proportion of randomly selected instances as p. The datasets
were set with p vales of {10%, 30%, 50%, 70%, 90%}. We saved the instances associated
with the indexes in all views using the randomly selected instance indexes. Then, we evenly
distributed the remaining instances to each view based on the number of views.

1https://github.com/Multiviewdate?tab=repositories
2https://www.kaggle.com/datasets/att-database-of-faces
3http://www.uk.research.att.com/facedatabase.html
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5.4.3 Compared methods

To evaluate the clustering performance of representations obtained by IMRL-AGI, we com-
pared it with four state-of-the-art IMC methods: HCP_IMSC [99], DAIMC [48], IMC_GRMF
[46], and UEAF [98].

(a) (b) (c)

Figure 5.4: Performance comparison of different methods on the ORL dataset in terms of
classification

Table 5.3: Ablation study of different representations in relation to the clustering task

Metrics RATE F
(⇤)

S
(1)

S
(2)

S
(3)

H

ACCs

0.1
0.3
0.5
0.7
0.9

60.55±0.00
57.27±0.00
40.18±0.00
57.58±0.50
57.45±2.36

77.43±0.25
76.78±0.08
82.00±0.00
82.00±0.00
83.27±0.00

66.42±1.24
55.11±1.18
65.24±5.61
57.04±0.49
74.51±8.00

66.60±2.06
70.73±0.00
84.13±1.65
74.95±0.11
83.20±2.92

81.80±0.32
78.89±0.72
83.62±1.09
83.20±0.59
85.64±3.83

NMIs

0.1
0.3
0.5
0.7
0.9

57.45±0.00
49.00±0.00
24.00±0.00
48.27±2.22
52.21±6.43

66.29±0.45
70.46±0.16
73.24±0.00
74.10±0.24
78.33±0.00

54.49±1.55
37.31±1.13
65.14±2.34
42.05±0.41
71.29±1.96

62.66±1.07
62.45±0.00
72.40±1.97
66.31±0.01
76.00±1.68

74.28±0.63
75.12±1.05
78.17±0.30
76.33±0.34
82.17±3.21

F1s

0.1
0.3
0.5
0.7
0.9

63.88±0.00
62.18±0.00
47.83±0.00
59.05±1.25
62.23±3.26

72.14±0.36
76.62±0.13
77.01±0.00
76.69±0.08
80.10±0.00

59.09±1.43
47.01±1.43
67.52±2.15
48.42±0.41
72.51±1.89

65.70±1.05
66.61±0.00
75.71±2.42
69.93±0.00
78.39±2.04

77.66±0.44
79.60±1.16
81.03±0.49
78.75±0.30
83.62±3.55

ARIs

0.1
0.3
0.5
0.7
0.9

46.45±0.00
29.24±0.00
6.40±0.00
33.35±3.12
35.56±7.93

67.75±0.99
67.44±0.24
73.24±0.00
73.70±0.12
76.74±0.00

45.28±2.13
27.48±0.83
51.93±3.82
29.48±0.65
60.97±3.61

54.34±2.04
57.51±0.00
72.55±4.02
63.58±0.01
74.63±3.57

74.18±0.56
71.77±0.97
77.15±0.87
75.93±0.34
81.36±4.20

• HCP_IMSC: HCP_IMSC focuses on learning low-rank tensor representations in
tensors constructed from incomplete multi-view affinity matrices. It employs weighted
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fusion to combine the affinity matrices of different views into a consistent affinity
matrix. Additionally, hypergraphs are used to effectively recover missing data.

• DAIMC: DAIMC is a decomposition-based method that learns a shared latent fea-
ture space using instance alignment information. It incorporates a weight indicator
matrix to reveal the missing information about the internal instances within each
view. The introduction of the L2,1-Norm on the regression coefficient matrix ensures
consistency in the learned basis matrix.

• IMC_GRMF: IMC_GRMF introduces reconstruction operations to preserve the
original data geometry and incorporates binary weights for data normalization. It
includes orthogonalization processing to handle out-of-instance data and adds a regu-
larisation term to enforce consistency in the representation of paired instances across
different views.

• UEAF: UEAF first introduces reconstruction items to fill in missing data and ensure
natural alignment among views. It leverages available information from non-missing
views and hidden information from missing views for shared representation learning.
The method incorporates reverse graph rules to capture the local structure information
and employs an adaptive weighting strategy to capture the importance of different
views.

5.4.4 Evaluation metrics

In our experiments, we utilized five commonly used indicators to measure the performance of
clustering and classification, including Accuracy(ACC) [101], Normalized Mutual Informa-
tion(NMI) [100], Adjusted Rand Index (ARI) [102], F1 score (F1) [103], and precision [104].

5.4.5 Evaluation on cluster performance

In Table 5.1 to 5.2, we report the experimental results on three datasets. The overall results
demonstrated that our method consistently outperformed the other methods, especially
when the Yale dataset had only 10% completeness. Compared with the latest algorithm
HCP_IMSC, our method IMRL-AGI achieved a 17.04% higher accuracy (ACC) value. This
indicates that the incomplete multi-view representation data obtained through information
bottlenecks and anchor graph GCN is beneficial for image clustering tasks.

Furthermore, as the completeness percentage increased, our method still maintained
stable and excellent performance across different completeness levels, while other methods
showed relatively large fluctuations. For example, on the ORL dataset, the NMI value of
IMRL-AGI remained stable in the range of 82.52%-86.49% as the completeness varied. This
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stability can be attributed to the minimization of different view information in the common
representation and the mutual information between the original view information and the
multi-view common representation. As a result, the obtained representation by IMRL-AGI
is robust and generalizable for the subsequent clustering tasks.

According to Table 5.1 to 5.2, we can observe that as the integrity of the dataset changes,
the clustering performances of HCP_IMSC, UEAF, and our proposed method IMRL-AGI
are better than these of DAIMC and IMC_GRMF. This indicates that introducing affin-
ity matrices to capture instances and view feature correlations is an effective method for
obtaining view feature information and beneficial for the subsequent clustering tasks.

5.4.6 Evaluation on classification performance

In this experiment, we evaluated the classification performance of our method, DAIMC and
IMC-GRMF using K-Nearest Neighbor classifiers on the ORL dataset with three incomplete
multi-view representations obtained. The completeness levels were set from 10% to 90%
with an interval of 20%. We used ACC, F-score, and accuracy as evaluation indicators to
assess the effectiveness of classification. According to Figure 5.4, our method consistently
performed the best in classification across all completeness levels. Moreover, our method
exhibits better overall robustness while maintaining excellent performance. For example,
considering accuracy, the difference between the highest and lowest values obtained by our
method is 6.57%, whereas the difference for DAIMC is 21%. This indicates that our method
has significantly better robustness compared to DAIMC. Therefore, our method not only
achieves superior classification results but also demonstrates more stability and consistency
across different completeness levels.

5.4.7 Ablation study

We conducted ablation experiments to investigate the role of the feature values obtained in
each step. Clustering operations were performed on the selected optimal graph structure
data F (⇤), specific view feature representation data S(v), and shared feature representation
H, respectively. The results of these experiments are presented in Table 5.3. From the
experimental results, it is evident that the shared feature representations learned through
the IMRL-AGI method exhibit the best overall clustering performance. The second-best
performance is observed with the specific view feature representation data S(v).

On the other hand, the obtained optimal graph structure data F (⇤) yields the worst
performance. This suggests that the combination of anchor graph and GCN plays a crucial
role in obtaining the best-shared feature representation H based on information bottlenecks.
The shared feature representation obtained through the IMRL-AGI method proves to be
the most effective in improving clustering performance.
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5.5 Conclusions

This paper presents a novel framework for learning incomplete multi-view common repre-
sentations from the perspective of information theory. The proposed method, IMRL-AGI,
follows a two-step process to reconstruct the instances relationships and extract feature
information from views. In the first step, IMRL-AGI utilizes anchors to reconstruct the
relationships between instances. In the second step, a graph convolutional neural network
(GCN) based on anchor graphs is designed to extract feature information from views. To
further improve the extraction of view information, IMRL-AGI maximizes the mutual in-
formation representation between the view information derived from the shared representa-
tion and the view modification information obtained using anchor graph GCN. In addition,
IMRL-AGI imposes constraints on the minimum mutual information between different ex-
tracted view information and between the original view information and the multi-view
shared representation. Experimental results show that our method has achieved good per-
formance compared to existing methods in both clustering and classification tasks.
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6.1 Implications of Findings

In my research, we have identified various challenges and possible solutions for incomplete
multi-view clustering, which has significant relevance for data analysis and mining across
various domains. The following outlines the key significance of our research.

1) Pioneering Innovative Solutions: Incomplete multi-view clustering, as a relatively
emerging field, has not yet received comprehensive research attention. My research ad-
dresses this gap by concentrating on resolving three key issues: complex missing situations
from incomplete multi-view, high missing data rate handling, and the redundancy issues
of incomplete multi-view. Consequently, it furnishes a broader array of methods and tech-
niques for dealing with incomplete multi-view data.

2) Practical Applications: In real-life scenarios, a substantial amount of data is often
incomplete, particularly when dealing with multi-view data. My research outcomes can
be readily applied across various domains, including healthcare, social network analysis,
and financial risk management, thereby enhancing the efficiency of addressing practical
problems.

3) Advancements in Data Mining: Research in incomplete multi-view clustering con-
tributes to the progress of the data mining field. My proposed methods and algorithms
in this thesis offer valuable tools to fellow researchers, assisting them in the more effective
handling of incomplete multi-view data and gaining profound insights from it.

4) Inspiration for Future Research: This study provides guidance for future research
initiatives. Our work highlights key issues within the field of incomplete multi-view cluster-
ing and offers solutions. This will encourage other researchers to delve deeper and enhance
existing methods.

6.2 Challenges and Limitations

In the era of big data, incomplete multi-view clustering has emerged as an important field of
research. Focusing on the complexities of multi-view data such as missing data, high rates
of missing information, and excessive redundancy, this research confronts numerous issues
and challenges. My research initiated to introduce several approaches for handling complex
missing data, high rates of missing information, and excessive redundancy in incomplete
multi-view data and experimented with related data fusion methods. Despite making some
progress in the field of incomplete multi-view clustering, we still face many challenges and
limitations that need to be further addressed in the future.

1) The tensor model established in Chapter III effectively integrates high-order represen-
tations from different views, resulting in a consistent final representation. However, in the
subsequent clustering process, it is susceptible to the influence of initial values due to being
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executed separately. Therefore, better integration of the tensor model and clustering model
becomes one of the research directions that needs exploration in the future of incomplete
multi-view clustering research.

2) In Chapter IV of this thesis, a low-rank and sparse-based incomplete multi-view clus-
tering model is constructed. This method not only applies low-rank sparse representation
but also takes into account both local and global multi-view structures. However, in many
practical applications, obtaining labels for missing data may be challenging, leading to the
issue of data mismatch. Therefore, considering both incompleteness and data mismatch
comprehensively is expected to be a significant focus of future research.

3) Faced with the redundancy issue in incomplete multi-view data, Chapter IV of this
dissertation proposes an Information Bottleneck-based approach for incomplete multi-view
clustering. This method further obtains a consistent final representation by maximiz-
ing and minimizing different multi-view correlations. Multi-view data typically consists
of high-dimensional features, thereby increasing the computational complexity of cluster-
ing. Therefore, future research may consider combining the Information Bottleneck method
with dimensionality reduction techniques, such as Principal Component Analysis (PCA) or
t-SNE, to reduce data dimensionality while preserving essential information.

4) Incomplete multi-view clustering faces several challenges and limitations in terms of
data. Firstly, data from different views may exhibit disparities in feature representation,
scale, or quality, potentially leading to inconsistent or inaccurate clustering results. Sec-
ondly, the collection and integration of data can be constrained, as some view-specific data
may be challenging to acquire or subject to restrictions due to privacy or security concerns.
These factors collectively impact the effectiveness and feasibility of incomplete multi-view
clustering.

6.3 Future Research Directions

While methods for incomplete multi-view clustering (IMC) have become a focal point of
research for many, there are still some issues that have not been effectively addressed.

1) In-depth Theoretical Research: Further in-depth research on the theory of IMC is
needed, exploring issues related to its properties, convergence, and other aspects.

2) Enhancing Method Robustness and Efficiency: In the future, it is imperative to con-
duct in-depth research on enhancing the robustness of IMC methods. This will facilitate
better handling of diverse forms of data missingness and noise. Furthermore, optimizing
methods to enhance computational efficiency represents a pivotal avenue for future explo-
ration.

3) The Challenge of Scalability: In practical clustering tasks, the volume of data samples
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involved is often substantial. However, many IMC methods encounter significant challenges
in terms of computational complexity and memory costs, especially those based on kernel
and graph techniques. As a result, existing IMC approaches are ill-suited for handling large-
scale datasets. Therefore, it is of paramount importance to devise efficient methodologies
that simultaneously address efficiency and performance for large-scale IMC tasks.

4) Imbalance and Mismatch in Data: The issue of imbalance and mismatch in data
poses a challenge. Due to the random absence of views, instances across different views
often exhibit not only varying quantities but also uncertain degrees of correspondence.
Furthermore, substantial disparities in feature dimensions and magnitudes exist among
different views. Regrettably, prevailing IMC methods have consistently overlooked the
holistic consideration of this array of factors, detrimentally impacting clustering outcomes.
Therefore, there is a burgeoning research direction within the IMC domain to devise more
robust clustering models by accounting for the imbalance and mismatch properties of data.

6.4 Conclusion

This study addresses the issue of incomplete multi-view clustering by introducing three
innovative approaches. Firstly, we propose a novel algorithm named IMC-NLT, which
relies on Non-Negative Matrix Factorization (NMF) and low-rank tensor fusion. IMC-NLT
effectively integrates information within the same view and across views, leveraging modal
unified dimensionality and low-rank tensors. This method not only handles various types
of incomplete data proficiently but also exhibits reduced sensitivity to its parameters.

Secondly, we present a method termed CCIM-SLR, based on sparse matrix techniques,
to tackle multi-view clustering challenges. By employing sparse low-rank learning, CCIM-
SLR quantifies correlations among samples within the same view and captures correlations
across different views, thus achieving lower-dimensional representations. CCIM-SLR learns
shared latent space and visible views, while mitigating post-processing sensitivity, such as
initial parameter values for K-means, through alternating partitioning clustering.

Lastly, we introduce an innovative framework, IMRL-AGI, for learning joint represen-
tations from incomplete multi-views. IMRL-AGI follows a two-step strategy: initially, it
reconstructs instance relationships using anchor points; subsequently, it employs a Graph
Convolutional Network (GCN) based on the anchor graph to extract feature information
from the views. To enhance view information extraction, IMRL-AGI maximizes the mutual
information between shared representations derived view information and view refinement
information obtained through anchors. Moreover, IMRL-AGI considers minimal mutual
information among different extraction views, as well as the relationship between original
view information and multi-view shared representations.
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In conclusion, this study’s three proposed methods offer innovative solutions for in-
complete multi-view clustering challenges. These methods effectively capture inter-view
correlations and shared features, making valuable contributions to the field of multi-view
data analysis.
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Title : Incomplete Multi-view Data Clustering with Hidden Data Mining and Fusion Techniques

Keywords : Hidden Data Mining, Non-negative matrix factorization, Collaborative Fusion, Low-Rank Tensor,
Sparse Low-Rank Representation, Information Bottleneck, Anchor Graph GCN

Abstract :
Incomplete multi-view data clustering is a research di-
rection that attracts attention in the fields of data mi-
ning and machine learning. In practical applications,
we often face situations where only part of the mo-
dal data can be obtained or there are missing values.
Data fusion is an important method for incomplete
multi-view information mining. Solving for incomplete
multi-view information mining in a targeted manner,
achieving flexible collaboration between visible views
and shared hidden views, and improving the robust-
ness have become quite challenging. This thesis fo-
cuses on three aspects : hidden data mining, collabo-
rative fusion, and enhancing the robustness of cluste-
ring. The main contributions are as follows :
1. Hidden data mining for incomplete multi-view data :
existing algorithms cannot make full use of the obser-
vation of information within and between views, resul-
ting in the loss of a large amount of valuable infor-
mation, and so we propose a new incomplete multi-
view clustering model IMC-NLT (Incomplete Multi-
view Clustering Based on NMF and Low-Rank Ten-
sor Fusion) based on non-negative matrix factoriza-
tion and low-rank tensor fusion. IMC-NLT first uses a
low-rank tensor to retain view features with a unified
dimension. Using a consistency measure, IMC-NLT
captures a consistent representation across multiple
views. Finally, IMC-NLT incorporates multiple learning
into a unified model such that hidden information can
be extracted effectively from incomplete views. We
conducted comprehensive experiments on five real-
world datasets to validate the performance of IMC-
NLT. The overall experimental results demonstrate
that the proposed IMC-NLT performs better than se-
veral baseline methods, yielding stable and promising
results.
2. Collaborative fusion for incomplete multi-view data :
our approach to address this issue is Incomplete
Multi-view Co-Clustering by Sparse Low-Rank Re-
presentation (CCIM-SLR). The algorithm is based on
sparse low-rank representation and subspace repre-
sentation, in which jointly-missing data is filled using

data within a modality and related data from other
modalities. To improve the stability of clustering re-
sults for multi-view data with different missing de-
grees, CCIM-SLR uses the Γ-norm model, which is
an adjustable low-rank representation method. CCIM-
SLR can alternate between learning the shared hid-
den view, visible view, and cluster partitions within
a co-learning framework. An iterative algorithm with
guaranteed convergence is used to optimize the pro-
posed objective function. Compared with other ba-
seline models, CCIM-SLR achieved the best perfor-
mance in the comprehensive experiments on the five
benchmark datasets, particularly on those with va-
rying degrees of incompleteness.
3. Enhancing the clustering robustness for incomplete
multi-view data : we offer a fusion of graph convolution
and information bottlenecks (Incomplete Multi-view
Representation Learning Through Anchor Graph-
based GCN and Information Bottleneck – IMRL-AGI).
First, we introduce the information bottleneck theory
to filter out the noise data with irrelevant details and
retain only the most relevant feature items. Next, we
integrate the graph structure information based on
anchor points into the local graph information of the
state fused into the shared information representation
and the information representation learning process
of the local specific view, a process which can balance
the robustness of the learned features and improve
the robustness. Finally, the model integrates multiple
representations with the help of information bottle-
necks, reducing the impact of redundant information
in the data. Extensive experiments are conducted
on several real-world datasets, and the results de-
monstrate the superiority of IMRL-AGI. Specifically,
IMRL-AGI shows significant improvements in cluste-
ring and classification accuracy, even in the presence
of high view missing rates (e.g. 10.23% and 24.1%
respectively on the ORL dataset). Furthermore, expe-
riment results demonstrate the robustness of IMRL-
AGI across different view missing rates (e.g. the NMI
values ranging from 82.52% to 86.49% on the ORL
dataset).



Titre : Clustering de données multivues incomplétes à l’aide de techniques de mining de données cachées et
de fusion
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Résumé : Le regroupement de données multivues in-
complètes est un axe de recherche majeur dans le
domaines de l’exploration de données et de l’appren-
tissage automatique. Dans les applications pratiques,
nous sommes souvent confrontés à des situations où
seule une partie des données modales peut être ob-
tenue ou lorsqu’il y a des valeurs manquantes. La fu-
sion de données est une méthode clef pour l’explora-
tion d’informations multivues incomplètes. Résoudre
le problème de l’extraction d’informations multivues
incomplètes de manière ciblée, parvenir à une col-
laboration flexible entre les vues visibles et les vues
cachées partagées, et améliorer la robustesse sont
des défis. Cette thèse se concentre sur trois aspects :
l’exploration de données cachées, la fusion collabo-
rative et l’amélioration de la robustesse du regrou-
pement. Les principales contributions sont les sui-
vantes :
1) Exploration de données cachées pour les données
multi-vues incomplètes : les algorithmes existants
ne peuvent pas utiliser pleinement l’observation des
informations dans et entre les vues, ce qui en-
traı̂ne la perte d’une grande quantité d’informations.
Nous proposons donc un nouveau modèle de re-
groupement multi-vues incomplet IMC-NLT (Incom-
plete Multi-view Clustering Based on NMF and Low-
Rank Tensor Fusion) basé sur la factorisation de ma-
trices non négatives et la fusion de tenseurs de faible
rang. IMC-NLT utilise d’abord un tenseur de faible
rang pour conserver les caractéristiques des vues
avec une dimension unifiée. En utilisant une mesure
de cohérence, IMC-NLT capture une représentation
cohérente à travers plusieurs vues. Enfin, IMC-NLT
intègre plusieurs apprentissages dans un modèle
unifié afin que les informations cachées puissent être
extraites efficacement à partir de vues incomplètes.
Des expériences sur cinq jeux de données ont validé
les performances d’IMC-NLT.
2) Fusion collaborative pour les données multi-
vues incomplètes : notre approche pour résoudre
ce problème est le regroupement multivues incom-
plet par représentation à faible rang. L’algorithme est

basé sur une représentation éparse de faible rang
et une représentation de sous-espace, dans laquelle
les données manquantes sont complétées en utilisant
les données d’une modalité et les données connexes
d’autres modalités. Pour améliorer la stabilité des
résultats de clustering pour des données multi-vues
avec différents degrés de manquants, CCIM-SLR
utilise le modèle Γ-norm, qui est une méthode de
représentation à faible rang ajustable. CCIM-SLR
peut alterner entre l’apprentissage de la vue cachée
partagée, la vue visible et les partitions de clusters
au sein d’un cadre d’apprentissage collaboratif. Un al-
gorithme itératif avec convergence garantie est utilisé
pour optimiser la fonction objective proposée.
3) Amélioration de la robustesse du regroupement
pour les données multivues incomplètes : nous pro-
posons une fusion de la convolution graphique et
des goulots d’étranglement de l’information (appren-
tissage de la représentation multivues incomplète via
le goulot d’étranglement de l’information). Nous intro-
duisons la théorie du goulot d’étranglement de l’in-
formation afin de filtrer les données parasites conte-
nant des détails non pertinents et de ne conserver
que les éléments les plus pertinents. Nous intégrons
les informations sur la structure du graphe basées
sur les points d’ancrage dans les informations sur le
graphe local. Le modèle intègre des représentations
multiples à l’aide de goulets d’étranglement de l’infor-
mation, réduisant ainsi l’impact des informations re-
dondantes dans les données. Des expériences ap-
profondies sont menées sur plusieurs ensembles de
données du monde réel, et les résultats démontrent
la supériorité de IMRL-AGI. Plus précisément, IMRL-
AGI montre des améliorations significatives dans la
précision du clustering et de la classification, même
en présence de taux élevés de données manquantes
par vue (par exemple, 10,23 % et 24,1 % respective-
ment sur l’ensemble de données ORL). De plus, les
résultats des expériences démontrent la robustesse
de l’IMRL-AGI à travers différents taux de vues man-
quantes (par exemple, les valeurs de NMI variant de
82,52 % à 86,49 % sur le jeu de données ORL).

Institut Polytechnique de Paris
91120 Palaiseau, France


