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Introduction

Self-Mixing Interferometry (SMI) (also called Optical Feedback Interferometry) has been

studied extensively in the last five decades in various sensing applications such as vi-

bration, absolute distance, velocimetry, micro-scale flow monitoring, several biomedical

purposes and acoustic pressure imaging. Sensors under the SMI technique have the laser

diode as the light source, the interferometer, and the detector. The light from the laser

diode propagates towards a distant target where it is partially reflected or back-scattered

before being re-injected into the active cavity of the laser. When the laser diode experi-

ences the external optical feedback, the reflected light imprinted with information from

the distant target or from the external cavity medium induces perturbations to the op-

erating parameters of the laser such as optical power, lasing frequency and the terminal

voltage of the laser. For SMI measurement sensors such as harmonic motion and abso-

lute distance applications, the fringe counting method is basically used to determine the

target’s displacement and distance respectively. However, it has been reported in recent

years that a fringe disappearance phenomenon may occur at high feedback levels which

can then strongly affect the reliability of the sensor.

Two different approaches to modelling the SMI phenomenon have been developed:

the three-mirror cavity and the introduction of a slight perturbation of the rate equation

that is also known as the Lang and Kobayashi model. For sensing applications purpose,

the rate equation model is most often invoked and considering the frequency domain of

the physical quantities (velocity, vibration, etc...) to be measured in these applications;

the rate equations are simplified under the steady-state conditions. Such approximation

can be made when the natural frequencies of the laser relaxation frequency and the

natural resonant frequency of the external cavity. However, initial conditions and fast

response of the laser can only be taken into account using a dynamic version of the

rate equation model. In practice, most continuous-wave SMI systems operate in this
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quasi-static regime which can be described in a single equation. The single equation that

describes the phase condition imposed by the optical feedback is usually referred to as

the excess phase equation and is applicable to single-mode lasers.

One of the most important and most useful parameters in the excess phase equation is

the feedback parameter C that is used to categorise the regime of the laser under optical

feedback. When the feedback level C is less or equal to 1, the excess phase equation

presents only one solution and, the laser modal behaviour is stable. At the contrary, when

the feedback level C is greater than 1, the excess phase equation has several solutions

and more complex phenomena are observed such as hysteresis effect (the fringes in one

or the other displacement direction are of different amplitudes), presence of multiple

emission frequencies (including the unstable frequencies), mode hopping and what is at

stake in the present dissertation: the fringe disappearance phenomenon.

The feedback parameter C is directly involved in the interferometric fringe disappear-

ance phenomenon. However, to the best of our knowledge, no accurate explanations or

theories on the mechanism of this phenomenon have been published so far.

In addition, measuring the distance between the laser source and the target based on

self-mixing interferometry has been researched almost exclusively in the weak feedback

regime; so it is still limited in practice where we need to limit the reflectivity level of

the backscattered light from the target before entering into the laser inner cavity. Such a

limitation is quite restraining for Light Detection and Ranging (LiDAR) applications for

which other types of the interferometer are preferred. However, self-mixing interferom-

etry is the only configuration that is self-aligned and does not need the extended mirrors

or arm nor an external detector which could provide advantages in terms of costing or

reliability in numerous LiDAR applications. We develop the theory describing how inter-

ferometric fringes disappear in the SMI laser sensors. The new approach in the modelling

of the fringe disappearance phenomenon allows the determination of the feedback C val-

ues for which a pair of fringes are expected to disappear and as a consequence correlates

the number of missing fringes to the value of C. This approach is validated both by a be-

havioural model of the laser under the optical feedback and by a series of measurements

in the SMI absolute distance measurement.

The interferometric fringe disappearance has, so far, always been treated based on

the observation of harmonic motion displacement signals. The core issue in this configu-

ration is the unfeasibility to maintain a constant feedback level C over the target course

due mostly to speckle or an imperfect alignment.

In this thesis, a novel approach that depicts the mechanism of interferometric fringes

disappearance is proposed that highlights with a new perspective the impact of the cou-

pling strength between the laser diode and the external cavity on the number of missing
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fringes. An absolute distance measurement has been set where the laser diode is operated

with modulation of the injection current. As compared to the vibration sensing scheme,

the absolute distance approach guarantees a stable feedback parameter C thus allowing

for more repeatable experimental conditions. The observed experimental results show an

agreement with the proposed model on the fringe disappearance phenomenon which is

based on the excess phase equation. The fringe disappearance phenomenon also occurs

with the simulation of the rate equations where the coupling strength is proportional to

the feedback parameter C.

Another often encountered problem in the distance measurement application is the

displacement of the target (or of the sensor) that induces a Doppler shift. This Doppler

shift will impact the number of fringes and their period/frequency. Such a phenomenon

will occur in a self-mixing interferometer but this problem has almost not been treated in

literature. Based on the modelling of the laser under optical feedback, we have carried

out an extensive study on the combined effect of distance and velocity induced interfer-

ometric fringes. We show through a set of the experiment that it is possible to determine

the distance and the speed of moving target at the same time.

The thesis manuscript has been written with the following structure.

A description of the non-contact distance measurement techniques is presented in

Chapter 1. While sonar transmits acoustic waves, radar sends out electromagnetic waves

in the radio-frequency range. The principle of both systems in distance measurement

is based on the time of flight. With the introduction of optical technology, distance

measurement techniques based on light waves such as triangulation, time of flight, and

interferometry have been studied for many decades and used in various applications. In

recent years, an optical distance measurement technique has been used the laser itself

both as a source and a detector and it is called Self-Mixing Interferometry that will be

discussed in this thesis. A state of the art of the SMI methods and performances in the

absolute distance measurement application is presented in this chapter.

Chapter 2 describes the theory of the laser with external optical feedback first with

the three-mirror cavity model in the quasi-static approximation then using the dynamic

model derived from the rate equations. Both fundamental models can be used to char-

acterise the self-mixing sensors in various sensing configurations but we show in the

following chapters that some behaviour of the laser under feedback can only be taken

into account using the dynamic model. This chapter aims especially to provide an insight

into the laser field phase behaviour under the weak and the moderate regimes, where

the fringe disappearance occurs. The resolution of the excess phase equation based on

the boundary method gives an explicit demonstration of this phenomenon and of its

dependency to the optical feedback level.
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Chapter 3 discusses the use of self-mixing interferometry for metrology in absolute

distance application and the behaviour of laser diode under different optical feedback

regimes. The measurement of distance based on the SMI technique can be achieved when

the laser emission frequency is modulated with an ostensibly triangle waveform. This

frequency modulation can easily be obtained by modulating the laser injection current.

With a fixed amplitude of current modulation at a certain frequency modulation, the SMI

output power waveform monitored by the internal PD results in a triangle waveform with

small ripples on the modulation ramp that are the interferometric fringes. This chapter

also shows the validation of the proposed model on fringe disappearance phenomenon

in chapter 2 through the experimental results. There is also an important demonstration

both experimentally and theoretically that the number of missing fringes in the SMI

signal can be different between the first modulation ramp as compared to the others, or

just after the laser experience a discontinuity in its feedback condition.

Chapter 4 explores the combination of target’s distance and velocity measurement

based on the self-mixing interferometry and the behaviour of the laser phase in two dif-

ferent scenarios where the distance beat frequency is superior and inferior to the Doppler

frequency. With this technique, it is possible to discriminate the direction of the tar-

get’s velocity. In this chapter, we also proposed to evaluate the feasibility of profiling a

rough target surface as a basic method for this application and designed an experimental

methodology.

Finally, the thesis is brought to a close with concluding remarks.
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Introduction to Distance
Measurement

Distance is characterised as a quantity between two separate points. Measuring distance

is probably one of the earliest measurements that have been performed by humans, and

it becomes essential for many areas of science and technical applications. The standard

direct measurement of distance, which designates the direct comparison of the distance

with an adjusted ruler, is the oldest and most well-known method; but it is not appli-

cable in many cases. Consequently, various indirect distance measurement procedures

are expanded over the centuries where any distance can be obtained depending on mea-

surement techniques rather than to access the distance itself by using physical contact.

The most critical subgroup of indirect distance measurement is a non-contact distance

measurement, as many technical applications require distance measurement through the

non-physical contact between the source and the object. Furthermore, the non-contact

measurement technique has the advantages that the contamination of the contact point

does not occur to the measuring device; however, errors of the measurement are likely to

rise because of several factors (for example, the surrounding environment and the mea-

surement methods). Then the non-contact distance measurement becomes one of the

most interesting research topics as many areas of technology relies on the ability of accu-

rate determination. There are several techniques of non-contact distance measurement

such as using sonar, radar and optical-based methods as shown in Figure 1.1. With the

introduction of optical technology, non-contact distance measurement methods based on

light waves have been studied for many decades and used in various applications such

as automotive industrial, metrology and non-contact surface profiling due to their ability

to make a highly accurate and precise measurement. Beside of measuring the physi-

cal length between the source and object, some of the optical techniques are capable of

measuring the related parameters such as displacement, surface’s profile, velocity, and
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vibration. Variations in parameters of the laser light such as power density, polarisation,

wavelength, spectrum, phase, and light propagation direction after interacting with a

target can provide the information on a variety of processes. Each individual technique

of non-contact distance measurement will be described in the following sections.

Non-contact distance measurement techniques

Sonar Radar Optical methods

Stereo vision Time of flight Interferometry

Michelson Self-mixing

Figure 1.1: Non-contact distance measurement techniques.

1.1 | Sonar and Radar

1.1.1 | Sonar
Sonar (Sound Navigation And Ranging) systems are used to navigate, communicate with

detectable objects on or under the surface of the water application. The knowledge

and understanding of underwater sound were discovered in 1490 by Leonardo Da Vinci

where he wrote: “If you cause your ship to stop, and place the head of a long tube in the

water and place the outer extremity to your ear, you will hear ships at a great distance

from you.” It was then invented and developed in 1912 as a direct consequence of the

loss of Titanic in the basic requirement of detecting icebergs in 2 miles distance [13]. The

principle of distance measurement with sonar technology is based on the time of flight

(TOF) of the sound wave that propagates from the sonar device and travels forward to the

object [14]. As shown in Figure 1.2, the sound as an acoustic wave travels through the

supporting medium (air, water, etc.) with the propagation speed towards an object and

then the wave is partially reflected. The reflection of the wave is detected that enables to

measure the time between the sending to the receiving of the sound impulse [13]. The

distance between the sonar device and the reflector can be estimated as follows,

Lext = υ.
τTOF

2
, (1.1)
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where Lext is the distance from the sonar device as a transmitter to the object as a target

in meter (m), τTOF is the time delay between the sending and the receiving wave to

the measurement signal in second (s) and υsound is the velocity of the propagation wave

in meter per second (m/s). The sound propagation velocity in the air can be defined

as [14],

υsound,air = 331.4

√
T + 273

273
m/s, (1.2)

where T is the temperature in degree Celsius in the measuring condition.

Figure 1.2: Principle of sonar distance measurement.

Sonar has been used in various applications and its frequencies range from infrasonic

to above a megahertz. Normally, the lower frequencies are used for long-distance ap-

plications, while higher frequencies are used for shorter distance as it provides better

resolution [13, 15]. For example, a frequency of 20 Hz has been used for long-distance

sonars in submarines, while over 40 kHz of ultrasonic distance sensors are used in the

automotive and industrial field and up to 1 MHz−40 MHz are found in diagnostic ultra-

sonic imaging in the medical ultrasound or diagnostic sonography.

The main disadvantages of this technology are the wide beam that causes poor direc-

tional resolution, the low repetition rate of the measurement resulting from the compar-

ative slow propagation speed of sound in comparison to the electromagnetic wave and

optical sensors and the random fluctuations that can be detected in the echo propagation

time which depends on the measuring environment [16].

1.1.2 | Radar
Radar (Radio Detection and Ranging) technology for the distance measurement, again,

based on TOF measurement. The difference between sonar and radar is that radar
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uses electromagnetic waves in the radio-frequency range. Here, the radio signal of mi-

crowaves is used as a measuring signal whose TOF between the source of the wave and

the object is detected [17].

High accurate distance measurement, in this case, requires a high-speed and very ac-

curate evaluation electronics as the propagation velocity of electromagnetic waves travels

at the speed of light (c ≈ 3× 108 m s−1) leading to a very short time delay between the

emitted as received impulses. The distance measurement resolution and the characteris-

tics of the received signal rely on the shape of the pulse which is often tailored to achieve

better performance.

Radar distance measurement is used in a variety of applications ranging from short

to very long distance. Examples are distance measurement for automatic cruise control

in automobiles (up to 250 m) and air traffic surveillance (up to 500 km). Frequency

modulation is another form and more accurate of the distance measurement based on

Radar technique. Beside of the distance measurement, radar has the advantage of having

the ability to measure the velocity of the target by evaluating the Doppler shift of the

signal and it also can tell whether the object was in motion or stationary. Beside of those

advantages, the radar system also faces some disadvantages such as their poor angular

resolution properties, wide and no target specific beam range that leads to not be able to

distinguish or resolve multiple targets.

1.2 | Triangulation
Triangulation optical method to determine the distance between the sensor and the ob-

ject is based on the consideration of the geometries triangles that was used around 600

BC to measure the height of the pyramid of Giza and the distance to a ship at sea [18].

Triangulation technique is a geometrical approach where the target is at one point of

the triangle while another two points are known by the measurement device. Then the

distance between the source and the target can be calculated by determining the angle

of the triangle. With the presence of optical technology, triangulation method can pro-

vide the depth information and generate 3D image data of a scene using a standard 2D

imaging system. Two very common triangulation-based optics are passive triangulation

(known as stereo vision) and active triangulation.

1.2.1 | Stereo vision
With the conception of roughly estimating the distance and size of an object with the

human eyes approach, the stereo vision method has been adapted by using two cameras
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to observe a scene from several viewpoints for building a 3D description. Stereo vision is

considered as a passive technique as the measuring system does not illuminate the target;

instead, the reflected light from the target is either reflected ambient light or the light

produced by the target itself. Figure 1.3(a) shows two cameras aligned on a common

axis separated by a distance b that observe an object while the two observation angles

α and β from the right and left camera, respectively, are known. The distance from the

cameras axis to the observed object, Lext, can be calculated by the disparity equations

which are written as [19],

p = x1 − x2
= f. tanα− f. tanβ

= f.
y + b/2

Lext
− f.y − b/2

Lext

= b.
f

Lext
. (1.3)

(a) (b)

Figure 1.3: Principle of triangulation-based optical sensors: (a) Passive Triangulation
(Stereo Vision); (b) Active Triangulation.

The distance Lext in Eq. (1.3) can be simply calculated by replacing the disparity p

of the object with the positions x1 and x2 of the imaging sensor camera 1 and camera 2,
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respectively; so that,

Lext =
b.f

p
=

b.f

x1 − x2
. (1.4)

The disadvantage of this method is the requirement of two cameras. The larger the

distance to be measured is, the longer the requirement basis width between two cameras

becomes in order to maintain the resolution of the measurement. The resolution of this

technique can be found as,

∆Lext =
b.f

p2
.∆p =

L2
ext

b.f
.∆p. (1.5)

Shadowing effects may be the typical problems with this system, but it can be minimised

by enlarging the number of cameras known as multiple viewpoint triangulation systems

where this improvement has to be paid for by an enormous increase in computation.

Stereo vision method can be useful for certain defined scenes, preferably chosen with

rich contrast and relatively flat surfaces for the identification of identical points in the

two pictures. For this reason, for some typical scenes, it may not be suitable for the

measurement.

1.2.2 | Active triangular
Contrary to the stereo vision technique, active triangulation uses only one camera to

capture the scene and a light source instead of a second camera where it is used to

illuminate the object to be measured as shown in Figure 1.3(b). Thus again, a form of

the triangle is composed by a camera, a light source at the distance b, and the object

to be measured. The direction of the light source by means of the angle α has to be

known to measure the distance Lext. The detecting camera, either a position sensitive

detector (PSD) or colour coded triangulation (CDD), is used to determine the location of

the object. Moreover, the determination of the distance here is very similar to the stereo

vision technique in Eq. (1.3); so that,

Lext =
b.f

p
=

b.f

f. tanα− x2
. (1.6)

Small distance to be measured, a large triangulation basic width b and a good resolu-

tion detector ∆x2 are required to obtain a high resolution in this technique. The distance

resolution can be determined by,

∆Lext =
d2

b.f
.∆x2. (1.7)

Commercial device available for active triangular distance measurement sensors inte-

grates the light source and the detector in the same package which results in a limitation
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of the measuring ability, approximately from 10 mm to 1 m [18]. It generally uses a

laser diode as the light source which the measurement resolution is depending on the

laser beam size and the detector pixel size. Similar to the stereo vision technique, the

resolution is limited where the highest resolution may be found close to the minimum

sensing distance. It is interesting to know that when the measuring object increases the

distance, the measurement resolution also continuously decreases.

The advantage of this sensor is its low price and fast measurement (tens or hundreds

of kiloHertz refreshing rate are possible). Besides these advantages, this method has a

limitation as they are not operating well with transparent objects (such as glass, water

or liquid surfaces) offering a poor visibility of the laser spot. Another problem of this

approach is the sensitivity towards the ambient light that may disturb the measurement.

Triangulation distance measurement systems are available in various application from

millimetre range (depth in focus) to 100 km range (photogrammetry). The main diffi-

culty of this system is that for a better resolution, the size has to be increased since it

needs a large triangulation base. However, the larger the triangulation base is the more

the systems are restricted by shadowing effects. Furthermore, the 3D triangulation is

more expensive since the fast LCD projectors are required in the active triangulation as

well as the ability of computation.

1.3 | Time of flight
Besides using sound waves (SONAR) or microwaves (RADAR) presented in section 1.1

to measure the distance with Time of Flight (TOF) methods, several TOF distance mea-

surement procedures using light are also developed. With a similar concept, photons are

emitted from the light source to the measured object to compute the distance by calcu-

lating the time which they need to propagate to the object and return to the detector

device [20]. The active light source and the receiver are normally located close to each

other which facilitates a compact setup and avoids the effect of shadowing. One of the

well-known distance measurement based on TOF using light is LiDAR. LiDAR was orig-

inally understood as laser radar but is nowadays used as a general acronym meaning

light detection and ranging [1, 21]. The introduction of the LiDAR principle dates back

before the invention of the laser. In 1938, the measurement of cloud base heights was

conducted for the first time by using the pulses of light [21]. Then the rapid development

of modern LiDAR technology began with the invention of the laser in 1960. Ever since,

LiDARs have been developed and used in many applications with the progress in optical

and electronic technology, in particular laser technology. A LiDAR consists essentially
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of five subsystems: (1) a transmitter that generates short light pulses with lengths of a

few to several hundred nanoseconds and specific spectral properties, i.e., in all practical

cases a laser; (2) a transmitter optic (a beam expander) is used to reduce the diver-

gence of the light beam and to reduce the area density of the laser pulse energy before

it is sent out into the atmosphere; (3) a receiver optic is used to collects the photons

backscattered from the atmosphere and focuses it onto the detector ; (4) a detector; and

(5) an electronic system for data acquisition, processing, evaluation, display, and stor-

age. The LiDAR’s configuration is displayed in Figure 1.4. Most LiDARs have additional

components depending on the type and purpose. There are two types of LiDAR’s system:

(1) monostatic where the transmitter and the receiver are at the same location; and (2)

bistatic where the transmitter and the receiver are separated by a fixed distance (usually

more than several tens of meters) and a continuous wave laser can be used as a light

source. TOF based on optical system use either direct TOF pulsed based method or indirect
TOF phase-shift based method, and both principle methods have their specific advantages

and disadvantages which will be discussed in the following sections.

Figure 1.4: Essential optical components of a LiDAR system [1].

1.3.1 | Pulsed based direct TOF distance measurement
The direct TOF distance measurement methods take into account the time of flight of

a single light pulse to determine the distance between the source and the object. The

actual time determination is achieved by correlation of a start and stop signal by using

a high-speed counter. The emitted pulse (typically 2 ns - 50 ns) goes through to a beam

splitter which directs some fraction of the light to the first photodetector as an indication

of start pulse to the counter, and the remaining fraction of light travels to the target in

a medium with refractive index next. The back-scattered light from the target travels

back to the second photodetector to produce the stop pulse for the counter. Then, the
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1.3. Time of flight

travelling time between the start and stop pulses is the TOF and the distance between

the source and the target can be determined by [22],

Lext = c
τTOF

2
. (1.8)

Figure 1.5: Principle of direct TOF distance measurement method [2].

Due to the complexity of detection and evaluation electronics such as the time jitter

of the photodetectors, a variation of rising time and the electronic noise in the pulse,

high-resolution measurement using this technique is a challenging issue even when the

target is stationary. The pluses typically have durations of a few nanoseconds or some-

times even below 1 ns when using particularly compact lasers, e.g. monolithic passively

Q-switched microchip lasers. Then a fast photodiode to capture the back-scattered light

from the target is needed which is generally for very low received optical powers result-

ing from the large observation distances. As the distance of target increases, the beam

divergence may lead to a substantially increased spot on the object, and atmospheric

distortions cause decreasing the amount of back-scattered light illuminating the second

photodetector which results in the stop pulse to be noisier contributing to the alteration

of measurement resolution.

The improvement of the distance measurement based on this technique depends on

several factors :
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� A higher amount of energy can be transmitted in a very short time. However more

concerned about the safety of the measurement environment is to expect which is

a limited criterion for some measurement applications.

� A telescope can be used to increase the beam radius at the output aperture and

reduce the beam divergence. The same telescope may be used to collect more light

from the object. However, this approach may be limited by compactness and low

weight requirement of the device.

� With some precisely aligned mirror or a kind of retroreflector set on the target,

the light signal is much stronger but many applications require the operation with

diffusely scattering objects.

� Eventually, the sensitivity of the photodetector, optical bandpass filtering and signal

processing are key elements in the sensor performance.

1.3.2 | Phase-shift based indirect TOF distance measurement
The technique based on phase-shift estimation is based on the evaluation of the phase

difference between the intensity-modulated transmitted and received waves. The source

(i.e., laser or LED) emits the light pulses at a specific wavelength and frequency in which

the intensity is modulated (commonly with sinusoidal modulation waveform), and the

backscattered light to the detector has a phase shift with regards to the emitted one.

The phase shift is used to determine the distance rather than directly measuring a light

pulse’s round-trip time. It can be determined as [23],

Lext = c
ϕT

4π
, (1.9)

where T represents the full period of the signal modulation. Since the distance measure-

ment is now made through a phase-shift measurement, the resolution δφ of the latter

will necessarily have an impact on the resolution δLext of the first. Both parameters are

indeed linked by,

δLext =
c

2

δϕT

2π
, (1.10)

Since the transmitted and received signals are periodic with the same frequency, then

the observed phase-shift is limited between 0 and 2π. This method is more likely suitable

for short-distance measurement in the tens of meters range. It is reported recently that

this technique was able to measure the absolute inter-vehicles distances up to 25 m with a

resolution under 10 cm, and up to 30 m with 30 cm resolution at a refresh rate of 267 Hz.

The measurement range can be increased up to 50 m with an error over 1 m [23].
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Figure 1.6: Principle of phase-shift distance measurement method [2].

1.4 | Interferometry
Interferometry is a very precise technique to measure the distance. This technique is

based on the interference of the optical waves. The basic principle of distance measure-

ment using interferometry was demonstrated for the first time by Michelson in 1892

when the wavelength of the red light from cadmium of the International Prototype Me-

tre was measured [24]. There are many types of interferometers using various tech-

niques; mostly laser is used as a light source and it normally is monochromatic and

mono-directional. The basic principle of the interferometer technique is a superposition

of two optical waves with the same wavelength. The resulting intensity of this superpo-

sition is determined by the difference in phase of those two optical waves. Each design

of interferometer is suited to a particular environment and situation and it has certain

advantages and disadvantages.

1.4.1 | Michelson interferometry

A basic representation of an interferometry technique is Michelson interferometry that a

light wave with a certain lasing frequency coming from a light source is divided at a semi-

transparent mirror or beam splitter into two parts−the reference arm and the measuring

arm, schematically shown in Figure 1.7. The first part is deflected towards a mirror

called a reference target with the calibrated distance and then is reflected back. The

second part travels from the semi-transparent mirror to the measuring object as a target

and some fraction of lights backscatters. The reflected light from both the reference and

the measuring target recombines at the semi-transparent mirror into a single resulting

wave and travels to the detector [25]. The detected signal by the detector contains the

relative distance information of the measuring target. By evaluating the phase shift, ∆ϕ,
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of this signal, the relative distance can be calculated by,

∆Lext = c
∆τTOF

2
= c

∆ϕ

4π

1

νth
, (1.11)

where νth is the lasing emission frequency and ∆Lext is the variation of the target dis-

tance and also represents the optical path difference (OPD). The OPD ∆Lext is indeed

double the difference in distance between the two arms of the interferometer system, as

the light beam travels the distance as a round-trip. Then the distance can be measured

as [26],

∆Lext = 2(LR − Lext), (1.12)

where Lext is the measuring distance of the movable target and LR is the distance of the

reference arm.

Figure 1.7: Principle of Michelson interferometer.

With up to λ/100 the achievable distance resolution is in the range of a few nanome-

tres. The problem is only possible within a range of half-wavelength. To solve this

problem, several techniques based on Michelson interferometry has been proposed.

1.4.1.1 | Multiple wavelength interferometry

Multiple wavelength interferometry technique was first proposed by Benoit [27]. The

typical system setup is based on Michelson interferometer. It is performed by comparing a

mechanical length (or a distance in space) against a known wavelength of light. Typically,
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the optical components are arranged such that the light beam double-passes the required

distance are half-wavelengths. Then, the target distance can be expressed as [28],

Lext =
1

2
λth(i+ ε), (1.13)

where λth is the laser emission frequency, i is the integer order and ε is the fraction order

of interference (0 < ε < 1). The concept of this technique is based on the observation

of the interference intensities of two or multiple light waves. In the case of two beams

interference, the interference intensity can be written as,

I = I0

[
1 + γ cos

(2πnext
λth/2

(z1 − z2)
)]
, (1.14)

where γ is the interference contrast and z1−z2 is the difference between two optical path-

ways and next represents the external refractive index within the path. Once the movable

mirror is moving, the interference fringes cross a detector are countable. However, due

to the short wavelength of light, the distance between the two measuring points has to

be smaller than a half-wavelength. Then single-wavelength interferometry has been pro-

posed by using two different wavelengths, λ1 and λ2; so the difference between the two

interferometric phases act as a single phase of a synthetic wavelength that is expressed as

Λ = λ1λ2/(λ1 − λ2) which is longer than both optical wavelengths. The fringe counting

method is not necessary within half of this synthetic wavelength which then the resolu-

tion of the distance measurement is uncertainty increased. The errors of measurement in

this technique include the alignment of the path, the variation of the laser wavelength,

the effect of the refractive index and the accuracy of the fringe interpolation performed

in computation.

1.4.1.2 | Wavelength scanning interferometry

Wavelength scanning interferometry is another optical interferometric technique to mea-

sure the absolute distance which is dating back to the 1980s [29, 30] and it is continu-

ously studied until more recently. A typical wavelength scanning interferometry setup

is based on the Michelson interferometry technique as shown in Figure 1.7. Wave-

length scanning/shifting interferometry, frequency sweeping/scanning interferometry,

swept wavelength interferometry, optical frequency domain reflectometry, frequency mod-

ulated continuous wave and variable synthetic wavelength are all the synonym terms

which rely on the same basic principle. When the intensity of the reference target and

the measuring target are combined at the semi-transparent mirror, the intensity of the
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interference pattern on the detector can be found as [31],

I(t) = I1 + I2 +
√
I1I2 cos

(2πνLext

c

)
, (1.15)

where I1 and I2 are the intensity in each arm of the interferometer and v represents the

laser emission frequency. The term 2πνLext/c is known as the phase of the interferometer

and is denoted by ϕ. The principle of the wavelength scanning interferometry is that by

scanning the fluctuation of the frequency of light, ∆ν. Then the variation in the phase

can be written as,

∆ϕ =
2π

c
Lext∆ν. (1.16)

There are two main approaches to calculate the OPD. The first method is to determine

the changes in the phase and frequency, then calculate the OPD directly [32]. The sec-

ond method, which is more common [33, 34], is to calculate the unknown optical path

difference with two combined interferometers, one of which (known as the reference

interferometer) has a pre-determined OPD. Then the dividing between the two different

phases gives,
∆ϕM

∆ϕR
=
Lext

LR
, (1.17)

where ∆ϕR and ∆ϕM are the phases fluctuation of the reference and measuring interfer-

ometer, respectively.

The disadvantages of the wavelength scanning interferometry are the non-linear laser

tuning and the sensitivity to the vibration and environmental disturbances during mea-

surement. Various approaches have been proposed to reduce the non-linear effect during

tuning. Then, the heterodyne technique has been used to reduce the disturbance due to

the environment of measurement. Recently, wavelength scanning frequency and multiple

wavelength interferometry have been combined to measure the absolute distance.

Both described techniques are based on the Michelson interferometry where the ex-

ternal arms (mirrors) and an external photodiode are required. The disadvantage of

this technique is that the precise alignment is required between the laser, beam splitter,

reference mirror, and photodiode. The error of absolute distance measurement tends

to increase with this configuration setup. However, new optical distance measurement

based on interferometry can solve this problem where the sensor and the measured ob-

ject are self-aligned. This technique is called self-mixing interferometry where the laser

itself acts both as a source and a detector and this technique will be presented in this

thesis.
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1.4.2 | Self-mixing interferometry
1.4.2.1 | Definition and applications

In recent years, a new optical distance measurement technique has been used the laser

itself both as a source and a detector. This technique is commonly called Self-Mixing

Interferometry (SMI) or Laser Feedback Interferometry (LFI) [11, 35]. The optical feed-

back effect is especially troublesome in semiconductor laser diode due to their very high

gain and low facet reflectivity. Some researchers view the extreme sensitivity of the

laser diode due to the external optical feedback as an opportunity rather than a nui-

sance. The self-mixing interferometry has been researched extensively in the last five

decades in various sensing applications [11, 36] such as vibration [37, 38], absolute

distance [4, 9], velocimetry [39, 40], micro-scale flow monitoring [41], several biomed-

ical purposes [42, 43] and acoustic pressure imaging [44]. Sensors based on the SMI

technique have the laser diode as the light source, the interferometer and the detector.

All lasers with self-mixing systems operate based on the same basic principle: the light

from the laser diode propagates towards a distant target where it is partially reflected or

backscattered before being re-injected into the active cavity of the laser. When the laser

diode experiences the external optical feedback, the re-injected light imprints with infor-

mation from the target through the perturbation of the laser operating parameters such

as gain, optical power, lasing frequency and the terminal voltage of the laser [11, 45].

This detection technique also leads to a lower cost and higher robustness as it does not re-

quire any reference arm or external detector, it is an almost self-aligned setup. Figure 1.8

gives a schematic of the self-mixing interferometer.

Figure 1.8: Principle of Self-Mixing interferometry.

1.4.2.2 | Historical development of the SMI effect in distance measurement

The SMI phenomenon was first demonstrated after the invention of the laser by King &

Steward in 1963 [46]. They observed the variation in the output power of a He-Ne laser

when the distance of the external mirror changes and the output power was periodic

with the distance to the external mirror with a period of half wavelength of the laser.

19



Chapter 1. Introduction to Distance Measurement

The effect was observed when as little as 0.1% of the emitted radiation was reflected

from the external mirror placed up to 10 m from the operating laser in continuous wave

mode. Later, Barchert & Raab observed the change in behaviour of the threshold car-

rier density in the semiconductor laser in 1968 [47]. In the same year, Morosov et al.
also reported that the change in the threshold of a semiconductor laser was dependent

on the distance to the external mirror and that it affects its dynamical properties [48].

However, there was no theoretical model that could accurately describe the fundamental

of the dynamical operation of a semiconductor laser under the optical feedback until it

was addressed by the work of Land and Kobayashi in 1980 [49]. They presented the

famous core model for a semiconductor laser experiencing optical feedback that induces

dynamical changes in the carrier density. In the same paper, Lang and Kobayashi also

explained that this information could be used to describe the dynamical behaviour in the

laser output power under the optical feedback.

Later, researchers began to recognise that the SMI could also be used for metrology

applications. The first demonstration was done by Dandridge et al. in 1980 by using

the semiconductor laser with the optical feedback to measure the displacement of a tar-

get [50]. The output power of the semiconductor laser showed periodically of the target

distance for a constant operating injection current. Moreover, in 1984, Chrunside used

optical feedback with a CO2 laser to measure velocity [51].

In 1986, Shinohara et al. demonstrated laser Doppler velocimetry using the SMI in

a semiconductor laser introducing the term "self-mixing" [52]. In the same year, Beheim

et al. demonstrated the SMI absolute distance and velocity measurement by modulating

the laser emission frequency [53]. When the laser emission frequency without optical

feedback called free-running frequency, νth, is tuned by modulating the laser injection

current, and the laser itself experience with the optical feedback, mode hops occur which

produce the discontinuities in the laser output power and are readily detected by differ-

entiating the signal from the laser power monitor. Beheim proposed the determination

of the distance between the laser and the target and the velocity by counting the num-

ber of mode hops Nf that resulted from a laser frequency variation of magnitude ∆νth.

When the object is fixed at a distant target with any motion, the number of mode hops

at the optical output power in each semi-period of the triangle modulation waveform is

normally equal; and the distance between the laser and the target can be determined as,

Lext =
c

4∆νth
(Nf1 +Nf2), (1.18)

However, the object moves along the longitudinal axis of the laser beam either moving

forward or backward to the laser, the number of mode hops at the optical power in each

semi-period of the triangle modulation waveform is no longer equal; and this lets us
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determine the velocity of the target that is expressed as,

υ =
λth
4T

(Nf2 −Nf1) (1.19)

where Nf1 and Nf1 are the number of mode hops during the upward and downward of

the triangle modulation.

In their experiment, a single-mode laser diode lasing at 845 nm and a monitoring

photodiode within the laser package are used to determine the distance and velocity of

the target. The laser diode is modulated with the triangle waveform of 6 mA of amplitude

at around 35 Hz of frequency modulation. Two different kinds of the target are used in

this experiment−white paper and Scotchlite (a flexible retro-reflective material with high

reflectivity). They observed that the accuracy decreases with the external distance of the

target, i.e, from 60 to 100 cm the uncertainty in the mode hops Nf is ±2, and from 110

to 150 cm the uncertainty is ±4.

In the same paper, they introduced the combined effect of target motion and laser

injection current modulation based on self-mixing technique. The target was placed on

a motor-driven translator at a 9 cm range and moved in the direction of z-axis along the

longitudinal dimension of the laser cavity with a speed of ±210 µm s−1. In the presence

of the motion target, the number of mode hops between the upward and downward

triangle modulation in the output power got different results. Based on these results, the

external distance from the target and its velocity can be calculated at the same time. This

article became a fundamental of the research in self-mixing interferometry with the laser

frequency modulation for absolute distance measurement.

In 1990, Sinohara et al. used the same technique by modulating the laser diode

injection current in a symmetrical triangle waveform [54]. However, instead of using the

number of mode hops in the optical output power to measure the external distance, they

measured the mode hop time interval in the purpose of obtaining higher accuracy and

wide dynamic range simultaneously. The absolute distance in Eq. (1.20) is computed as,

Lext =
cT

4∆νthTM
, (1.20)

where TM is the mean value of the N1 +N2 mode hops time interval and it is expressed

as,
1

TM
=

(N1/T1 +N2/T2)

2
, (1.21)

In addition, they also improved the measurement resolution by reshaping the cur-

rent modulation waveform using an RC integrator. Their experimental resulted in high

precision of ±0.13% in a wide dynamic range of 0.2 m to 1 m of the external distance.
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Both Sinohara and Beheim used the current modulation to change the laser frequency.

The laser emission frequency and the injection current are linked through a parameter

known as frequency modulation coefficient (GHz/mA). This parameter has been stud-

ied by Chrisphe Gorecki in 1996 [3]. In his experiment, a Sharp LT080 laser lasing at

782 nm was linearly modulated to evaluate the frequency modulation coefficient. His

experimental results show that the frequency modulation coefficient slowly decreases

between 50 Hz and 5 kHz, and tends to decrease sharply from 5 kHz to 1 MHz as shown

in Figure 1.9. He explained that optical feedback may seriously impact the dynamic prop-

erties of the laser diode. It had also been demonstrated by Lang and Kobayashi that the

laser diode output power and the wavelength vary with the distance between the laser

diode and the external reflecting surface [49].

Figure 1.9: Frequency modulation coefficient of short-external-cavity Sharp LT080
laser [3].

Gouaux et al., in 1998, have improved the measurement accuracy to ±1.5 mm with

the external distance range from 50 cm to 2 m by taken into account of the thermal effects

in laser diode [4]. In their experiment, a laser diode lasing at 799 nm of wavelength was

operated with an injection current of 100 mA and modulated with a triangle waveform

under an optical frequency excursion of 36 GHz. Without the current reshaping, the laser

emission frequency did not change linearly with the injection current which resulted in

resolution ±4.16 mm of distance measurement while using the fringe-counting method.

To improve this measurement resolution, the influence of the current-reshaping ther-

mal effect can be removed by the introduction of the complex transfer function. This

reshaped laser injection current gave the laser emission frequency purely triangle. How-

ever, their measurement results were determined when the laser diode was operated in

weak optical feedback by means of the feedback parameter C < 1. For stronger feedback,
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Figure 1.10: Laser optical power with hysteresis for an absolute distance measurement
both theoretical and experimental result [4].

the experimental results showed that the laser diode remained in single mode, however,

the optical power showed hysteresis as shown in Figure 1.10.

In the same year, based on the experiment of Gouaux’s paper, Bosch et al. designed a

self-mixing type scanning range finder to construct three-dimensional (3D) images of an

object [55]. In their experiment, the target, a plastic screw, was located 1.971 m away

from the laser diode. Then the 3D image was obtained with a size of 100× 100 pixels as

shown in Figure 1.11.

Later, in 2000, Wang et al. proposed a new method by using the same laser injection

current modulation technique, but the Fast Fourier Transform was applied to determine

the external distance [5]. An experiment using two external mirrors−a reference mirror

at the distance L1 and a target’s mirror at an unknown distance L2 is shown in Fig-

ure 1.12.

As it is a double external cavity, the frequency of the fringes are defined as,

f1 =
2∆νthL1

cT
, (1.22)

f2 =
2∆νthL2

cT
. (1.23)

By knowing the external distance of the reference mirror, the unknown external dis-

tance being measured can be determined as,

L2 = L1
f2
f1
. (1.24)

In this experiment, a laser diode lasing at 780 nm was operated with 50 mA of in-

jection current and modulated with the amplitude of 3.5 mA at 100 Hz in a sawtooth

waveform.
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(a) (b)

Figure 1.11: (a) Front view of the screw reconstructed, (b) Another view of the target
being obtained by image processing [4].

Figure 1.12: Self-mixing interferometers with double external cavities [5].

Figure 1.13(a) depicts the signal obtained by the double external cavities self-mixing

interference and the plot of Figure 1.13(b) is the Fourier spectrum of the signal in (a).

The distance measurement L2 depends on the resolution in the determination of the

signal frequency. The measurement accuracy was achieved at 2.5 mm with the absolute

distance to be measured up to 1.25 m.

The self-mixing sensing system normally uses the photocurrent from an integrated

photodiode as a detector. Then, in 2005, Lim et al. demonstrated that an alternative

way by using the laser junction voltage as the source of the SMI signal can be used

to determine the distance between the laser and the target [6]. This discovery led to

potential cost saving with reductions in component costs and complexity while the same

information can be obtained as the photodetector. In their experiment, the Vertical-Cavity
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Figure 1.13: Experimental result by double external cavities [5].

Figure 1.14: Block diagram of experimental result, signals from the photodetector and
laser junction voltage are used to determine the distance between the laser and the
target [6].

Surface-Emitting Laser (VCSEL) lasing at 850 nm was modulated with 0.1 mA current

amplitude at 100 Hz frequency modulation in triangle waveform. The signal from both

photodetector and laser junction voltage were obtained in this experiment as shown in

Figure 1.14.

Further, both current and voltage signals were sent to the differentiator circuits, and

an FFT algorithm was applied to produce a power spectrum array. From Figure 1.15, it

was clear that both the current and the voltage waveform contain the same frequency
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Figure 1.15: Experimental time-domain signal (a) and its frequency spectrum (b) at the
target distance of 30 cm method [6].

component even though the result from the voltage waveform in the time domain was

much noisier. The accuracy and precision from the two measurement systems were quite

similar both in the time domain and frequency domain.

In 2006, Guo et al. demonstrated a new distance measurement technique based

on the self-mixing effect by modulating the wavelength and the phase of the laser [7].

Wavelength modulation of the laser beam was obtained by modulating the injection cur-

rent of the laser diode and phase modulation of the laser is obtained by an electro-optic

crystal (EOC) in the external cavity as shown in Figure 1.16. The laser’s wavelength

was modulated with the current amplitude of 0.1 mA at 20 Hz of frequency modulation

and the laser’s phase was modulated with 1.2 rad at 2 kHz frequency modulation. Then

the absolute distance of the external target was determined by Fourier analysis method.

The experimental results showed that an accuracy of ±0.3 mm could be achieved for an

absolute distance of target ranging from 277 mm to 477 mm.

The distance measurement based on self-mixing was generally reported using a single-

mode laser. In 2007, Tucker et al. demonstrated the effect of coexisting transverse modes

on the measurement of the distance between the laser and the target [8]. They used two

different VCSEL lasers: a single-mode VCSEL and a multi-mode VCSEL commercially

lasing at 850 nm. Both lasers were operated with 4.5 mA of injection current where it

resulted in different frequency modulation coefficients due to the transverse mode wave-

lengths without feedback, λM. To measure the distance between the laser and the target,

both VSCELs were fixed to an optical rail and modulated in triangle waveform at 75 Hz
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Figure 1.16: Experimental setup with double modulation−wavelength and phase [7].

of frequency modulation.

The single-mode VSCEL was modulated with a current sweep of 0.064 mA which

corresponded to a frequency sweep of 8.42 GHz. The results from the single mode VCSEL

shown in Figures 1.17(a) and (b) illustrate the time-domain with the external distance of

36.5 cm and 36.6 cm, respectively. In the same figure, the fast Fourier transform (FFT)

were applied to both time-domain results to determine the beat frequencies. Clearly,

there is no significant change in the amplitude of the time-domain waveform. However,

the results shown in Figures 1.18(a) and (b) show the effect of multiple transverse modes

with the multi-mode VCSEL laser that was modulated with a current sweep of 0.287 mA

corresponding to a frequency sweep of 8.53 GHz. The same target distances as the

single-mode VCSEL are used, and the results showed that the peak’s amplitude in the

time-domain waveform vary due to the different FM coefficients of the transverse modes

by means of different wavelengths. Furthermore, the position of the maximum and

minimum amplitudes for the peaks vary with the distance target.

Theoretically, the distance measurement resolution based on the self-mixing effect is

limited with the conventional counting the number of interferometric fringes technique

in the output power. The resolution can be improved by increasing the extent of the laser

frequency modulation. However, continuous thermal wavelength tuning by injection

current in Fabry-Pérot laser is typically limited to about 0.1 nm by longitudinal mode

hopping and the attainable resolution cannot be better than a few millimetres for a single-

shot measurement.

Furthermore, in practice, noises are presented, i.e., shot noise, where the measure-

ment resolution is getting worse. In 2012, Norgia et al. published a paper where the

resolution of the distance measurement was improved [9]. The injection current of the
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(a) (b)

Figure 1.17: Derivative of the total output power waveform (light) and FFT (dark) with
the single-mode VCSEL at (a) 36.5 cm and (b) 36.6 cm [8].

(a) (b)

Figure 1.18: Derivative of the total output power waveform (light) and FFT (dark) with
the multi-mode VCSEL at (a) 36.5 cm and (b) 36.6 cm [8].

laser diode was modulated in a triangle waveform where it was reduced the duty cycle of

the waveform about 10% (5% at the beginning and another 5% at the end of the triangle

modulation waveform) as shown in Figure 1.19 .

In their experiment, they were strictly working when the feedback parameter C < 1.

They explained that the accuracy of distance measurement strongly depends on the wave-

length modulation coefficient. However, this parameter is not constant throughout the

electrical frequency modulation which impacts the fringes beat frequency in the output

power. In their experiment, they decided to work in the dashed circle shown in the Fig-

ure 1.20 which is ranging about 300 Hz to a few kHz. The measurement results were
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Figure 1.19: The shape of laser current modulation [9].

Figure 1.20: Experimental results of wavelength modulation coefficient in function of
frequency modulation [9].

improved with resolution better than 100 µm for external distances up to 2 m.

The non-linearity in laser frequency under injected current tuning strongly affects the

distance measurement resolution as shown by many researchers above. In 2014, Kou et
al. demonstrated a method to linearise the laser emission frequency to attain higher mea-

surement resolution [10]. The non-linearity between the laser emission frequency and

the injection was demonstrated with the effect of temperature and carrier concentration.

Figure 1.21 shows the effect of the non-linearity between the laser emission frequency

and the injection current that results in non-constant of the beat frequencies.

Figures 1.22(a) and (b) represent the effect of current tuning on the spectral width

of the beating signal. The proposed current reshaping method was proposed to improve

the distance resolution to better than 20 µm over the range of 2.4−20.4 cm.

As described above about the absolute distance based on self-mixing technique, most

experiments and results were obtained when the laser diode was operated in the weak

regime by means of very low light re-injecting into the inner cavity of the laser diode.
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Chapter 1. Introduction to Distance Measurement

Figure 1.21: Experimental setup with double modulation−wavelength and phase [10].

(a) (b)

Figure 1.22: (a) Power spectra of the beat signal with and without current reshaping.(b)
Reshaped current versus original current [10].

However, when a high proportion of light from the external target backscatters into the

laser cavity, the distance measurement has not been covered yet. The next chapter will

describe the theory of the laser with external optical feedback first with the three-mirror

cavity model in the quasi-static approximation then using the dynamic model derived

from the rate equations. Both fundamental models can be used to characterise the self-

mixing sensors in various sensing configurations but we show in the following chapters

that some behaviour of the laser under feedback can only be taken into account using the

dynamic model. The next chapter will also aim especially to provide an insight into the

laser field phase behaviour under the weak and the moderate regimes, where the fringe

disappearance occurs. The resolution of the excess phase equation based on the bound-

ary method gives an explicit demonstration of this phenomenon and its dependency to

the optical feedback level.
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Modelling the Fringe Disappearance
in a Self-Mixing Sensor

Two different approaches to modelling the SMI phenomenon have been developed: the

three-mirror cavity [56] and the perturbation of the rate equation [49]. The 1980 work

of Lang and Kobayashi presented the core model for a semiconductor laser experiencing

optical feedback that captures the essence of laser dynamics under feedback [49]. This

model has remained the foundation for phenomenological models of these systems to

the present day and it is acknowledged to provide a realistic physical model. For sens-

ing application purpose, the rate equation model is most often invoked and considering

the frequency domain of these applications; the rate equations are simplified under the

steady-state conditions. Such approximation can be made when the temporal changes in

the stimulus are slow relative to the natural frequencies of the laser relaxation frequency

and the natural resonant frequency of the external cavity [57]. The single equation that

describes the phase condition imposed by the optical feedback is usually referred to as

the excess phase equation and is applicable to single-mode lasers [58].

One of the most important and useful parameters in the excess phase equation is

the feedback parameter C as it can be used to qualitatively categorise the regime of

the laser under optical feedback [57, 59, 60, 61]. When the feedback level C ≤ 1, the

laser behaviour is stable. Most of the research publications have been reported when

the laser diode under the optical feedback is operated in this regime. On the other

hand, when the feedback level C > 1, more complex phenomena are observed such

as hysteresis effect, presence of multiple emission frequencies (including the unstable

frequencies [57]), apparent splitting of the emission line due to mode hopping [61], and

interferometric fringe disappearance phenomenon [35].

A well-accepted approach in the community describes the regimes of the laser diode
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Chapter 2. Modelling the Fringe Disappearance in a Self-Mixing Sensor

under optical feedback, based on the number of excess phase’s solutions or the value

of feedback parameter C so that: weak feedback (0.1 < C < 1, only one solution),

moderate feedback (1 < C < 4.6, up to three solutions) and strong feedback (C > 4.6,

more than five solutions) [35, 36, 62, 63, 64, 65, 66]. The feedback parameter C is

directly involved in the interferometric fringe disappearance phenomenon, and Bernal et
al. [67] works have described that this phenomenon depends on the regimes described

above, i.e., fringes start disappearing only in the strong feedback regime, while Yu et
al. [68] demonstrated that the number of fringes is divided by 2 in region 2 (7.8 < C <

14.0), 3 in region 3 (14.0 < C < 20.3) and so on. Other publications proposed that two

pairs of interferometric fringes for a complete period of modulation disappear when there

is a variation of C by 2π [69, 70]. However, to the best of our knowledge, no accurate

explanations or theories on the mechanism of this phenomenon have been published so

far.

The literature mentioned above on interferometric fringe disappearance always treated

the phenomenon based on the observation made for harmonic motion displacement ap-

plications. The core issue in this configuration is the unfeasibility to maintain a constant

feedback level C over the target course due mostly to speckle or imperfect alignment.

The fringe disappearance phenomenon in SMI measurement sensors will have a signifi-

cant effect on SMI measurement sensors. As a result, the fringe counting methods will

not always be accurate when the laser diode is operated in C > 1.

In this chapter, the theory of the semiconductor laser experiencing optical feedback

and the theory describing how interferometric fringes disappear in the SMI sensor are

presented.

2.1 | Three-mirror model
A vast majority of the theoretical modelling of SMI is based on the three-mirror model.

In order to better understand this model, it should first be described by considering the

operation of the laser diode itself with no optical feedback normally which is known as

the free-running state single-mode laser diode.

A stand-alone laser diode can be modelled by a classic Fabry-Pérot cavity depicted in

Figure 2.1, consisting of two mirrors, M1 and M2, with corresponding electric field am-

plitude reflection coefficients, r1 and r2, and an amplification medium with a refractive

index, nin, within the active cavity of length Lin [56]. The light emission is made in the

form of an electromagnetic wave which is assumed to be a plane wave travelling from

the mirror M1 in the z-axis direction along the longitudinal dimension of the laser cavity
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2.1. Three-mirror model

with z = 0 at the laser facet M1 and to z = Lin at the laser facet M2.

The optical power will be amplified due to stimulated emission both in the forward

direction (i.e., Pf(z)) and the backward direction (Pb(z)). The forward propagation

optical power inside the laser cavity, Pf(z) can be expressed as follows [56],

Pf(z) = Pf,0 exp(gz − αsz), (2.1)

where g is the material gain in stimulated emission, αs is the coefficient representing the

losses mainly due to absorption by the carrier within the laser cavity, as well as scattering

losses. There are two main conditions to ensure the existence of a laser emission: the

minimum gain which is related to the number of free carrier in the active area and the

phase condition that determines the frequency to be emitted by the laser. The forward

travelling complex electric field that propagates from z = 0 to z = Lin is denoted as Ef(z)

with Pf(z) ≈ |Ef(z)|2 yielding,

Ef(z) = Ef,0 exp(−jβz +
1

2
(g − αs)z), (2.2)

where β is the phase constant of the optical wave. The backward travelling wave ampli-

tude, Eb(z), after reflecting on the laser facet mirror M2 can be determined in a similar

fashion and it is expressed as,

Eb(z) = Eb,0 exp(−jβ(Lin − z) +
1

2
(g − αs)(Lin − z)). (2.3)

Figure 2.1: Schematic of two-mirror model of an optical cavity.

Furthermore, the amplitude reflection coefficient r1 of the laser facet M1 links the

incident forward travelling wave Ef(z = 0) and the reflected backward travelling wave

Eb(z = 0). It is also considered that the wave Ef(z = Lin) and Eb(z = Lin) are also

linked to the amplitude reflection coefficient r2 of the laser facet M2 [35]. The relations

are expressed as,

Ef(z = 0) = Ef,0 = r1Eb(z = 0) on interface M1, (2.4)
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Eb(z = Lin) = Eb,0 = r2Ef(z = Lin) on interface M2. (2.5)

From Eqs. (2.2) to (2.5), the stationary condition for the laser oscillation is written

as,

r1r2 exp(−2jβLin + (g − αs)Lin) = 1. (2.6)

The absolute value of Eq. (2.6) yields a condition for the required gain g, while the

phase yields a condition for the phase constant β. Solving this equation leads to express

the threshold gain, gth = g, as,

gth = αs +
1

Lin
ln(

1

r1r2
). (2.7)

With the multiple round-trips of the wave, a number of electric fields can propagate

with the same amplitude. The total of the electric fields in the laser intracavity is equal

to the superposition of each field in the cavity. The laser will have the maximum output

power when all the fields in the cavity have the same amplitude. So the phase constant

can be written as,

βLin = iπ, i = integer. (2.8)

The phase constant β depends on the emission frequency νth. Then the effective

refractive index inside the laser cavity for the lasing mode, nin, can be introduced as [56],

nin = c
β

ωth
, (2.9)

where c is the speed of light in vacuum, and ωth = 2πνth is the angular frequency. Thus

the possible emission frequencies νth are expressed as,

νth =
ic

2Linnin
. (2.10)

By nature, a Fabry-Pérot laser has several frequencies of emissions and is called a

multi-mode laser, however, modern laser diodes such as DFB, VCSEL and others intro-

duce a Bragg selective filter in the cavity that selects a unique lasing frequency to be

emitted. In this case, the laser is called single-mode and for simplicity purpose, the mod-

elling od the self-mixing effect described below is done under the single-mode emission

condition.

The two-mirror model is extended to the three-mirror model when the laser diode

experience the optical feedback. The classical representation of the laser diode under

the optical feedback is presented in Figure 2.2. Light leaves the internal cavity through

the laser facet mirror M2 and travels the external cavity of physical length Lext with the

effective refractive index next to the surface of the target which is regarded as a third
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2.1. Three-mirror model

Figure 2.2: Schematic of the laser diode under optical feedback. Solid line with arrows
indicates the beam light direction both in the internal and external cavity.

mirror M3. The external round-trip propagation time is τext and the ratio between the

emitted light field amplitude and the re-injected light field amplitude rext [11, 35, 56].

The light at the mirror M2 and the re-injected backscattered light from the external

target is combined into a single term by considering the mirror M2 and the target re-

garded as the third mirror as a single equivalent mirror with a new amplitude reflection

coefficient, req, and it is written as,

req(ν) = r2 + ε(1− |r2|2)rext exp(−j2πντext), (2.11)

where ν represents the emission frequency of the laser with optical feedback, |ε| ≤ 1

accounts for the reinjection factor which is not negligible since there are scattering and

absorption losses of light through optical components and the diffraction loss of light

due to a collimator lens usually put in front of the laser facet [11, 57] and τext is the

round-trip time of flight through the external cavity, and it can be expressed as [11],

τext = next
2Lext

c
. (2.12)

The expression in (2.11) does not account for multiple reflections within the external

cavity which is justified for |r2rext| � 1 including both the weak optical feedback |rext| �
|r2| and the strong optical feedback |rext| � |r2| [56]. So the equivalent amplitude

reflection can be rewritten as a single complex term,

req(ν) = |req(ν)| exp(−jϕr), (2.13)

where |req(v)| is the amplitude of the equation and ϕr is the inverse of the phase of the

equivalent amplitude reflection coefficient. Under the weak optical feedback, <|req(ν)| �
=|req(ν)| [71]; so that,

|req(ν)| = <|req(ν)| = r2

[
1 + κext cos(2πντext)

]
, (2.14)

35



Chapter 2. Modelling the Fringe Disappearance in a Self-Mixing Sensor

where

ϕr = κext sin(ωτext), (2.15)

and

κext = ε
rext
r2

(1− |r2|2). (2.16)

κext is the feedback coupling coefficient to the external cavity and is indicative of the

quantity of light being coupled into the laser cavity.

The fluctuation in the reflectivity of the laser facet M2 due to the external optical

feedback leads to changes in the properties of the light emitted from the laser including

the emission frequency, the linewidth, the threshold gain an consequently the output

power. By considering that there is only a single longitudinal mode of operation, the

amplitude condition for lasing with the equivalent mirror is,

r1|req| exp
[
(g − αs)Lin

]
= 1. (2.17)

The round-trip phase within the laser diode cavity have to be equal to an integer

multiple of 2π yielding the phase condition,

2βLin + ϕr = 2πm. (2.18)

By using the effective refractive index nin in Eq. (2.9) and the expression ω = 2πν,

then the expression in Eq. (2.18) can be re-written as,

4πνninLin

c
+ ϕr = 2πm. (2.19)

Then the gain with the optical feedback, gc, can be written as,

gc = αs +
1

Lin
ln(

1

r1r2
[
1 + κext cos(2πντext)

]). (2.20)

The variation in the threshold gain under optical feedback, ∆g, is

∆g = (gc − gth) = −κext
Lin

cos(2πντext). (2.21)

Without optical feedback (the phase ϕr = 0), the emission frequency ν = νth is

obtained. Under the optical feedback, the emission frequency ν changes as well as the

the threshold gain in Eq. (2.21), and thus the refractive index. Then, the total change of

effective refractive index is [56],

∆(ninν) = νth∆nin + (ν − νth)nin, (2.22)

∆nin =
∂nin
∂N

(N −Nth) +
∂nin
∂ν

(ν − νth). (2.23)
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where νth = mc/2nthLin is the emission frequency at threshold of the laser, and nth is

the laser cavity effective refractive index at threshold. N and Nth are the carrier density

and carrier density at threshold of the laser, respectively.

The variation of the effective refractive index with the carrier density is expressed

as [56],
∂nin
∂N

(N −Nth) = − αc

4πνth
(g − gth), (2.24)

where α represents the linewidth enhancement factor of the laser diode. It should be

noticed that the value α depends on the type and laser materials, and the value was

reported in the range from 3−7 for semiconductor laser, while this value is almost zero

for other lasers [56]. By using the Eqs. (2.22)−(2.24), the variation of round-trip phase

under optical feedback which is commonly known as the three-mirror model can be

written as [56],

∆ϕc =
4πLin

c

[
− αc

4π
(g − gth) + νth

∂nin
∂ν

(ν − νth) + nin(ν − νth)
]

+ ϕr. (2.25)

The relation between the effective refractive index and the emission frequency leads

to define the effective group refractive index, ng, as [56],

ng = nin + ν
∂nin
∂ν

. (2.26)

The expression of the three-mirror model can be rewritten as,

∆ϕc =
4πngLin

c
(ν − νth) + α(g − gth)Lin + ϕr. (2.27)

By linking the Eqs. (2.16), (2.21) and (2.27), the three-mirror model now reduces to,

∆ϕc =
4πngLin

c
(ν − νth) + κext

[
sin(2πντext) + α cos(2πντext)

]
. (2.28)

Introducing the round-trip delay of the solitary laser diode, τin, we get the three-

model model expression as,

∆ϕc = 2πτin(ν − νth) + κext
√

1 + α2 sin(2πντext + arctanα), (2.29)

where

τin = ng
2Lin

c
. (2.30)

Considering that ∆ϕc = 0 for the compound cavity’s frequency ν, by multiplying the

factor of the external cavity round-trip time τext and the internal cavity round-trip time

τin, and introducing the feedback parameter C which describes how effective optical
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feedback changes the behaviour of the laser diode under optical feedback, the three-

mirror model can be written as [56],

∆ϕc = 2πτext(ν − νth) + C sin(2πντext + arctanα), (2.31)

where

C =
τext
τin

κext
√

1 + α2. (2.32)

Every parameter is important for describing the characteristics of the laser diode un-

der the optical feedback; however, one important and most useful parameter to figure

out the characteristics is the feedback parameter C which is proportional to the reflectiv-

ity of the external mirror as well as the target distance (or external cavity length Lext).

To better understand the feedback parameter C, the three-mirror model in Eq. (2.32) is

expressed to solve the possible optical frequencies by considering ∆ϕc = 0. The laser

diode under optical feedback can be categorised into the following five regimes [11, 36,

56, 57, 72],

� Regime I: Very Small feedback or weak feedback (C ≤ 1) with a single emission

frequency and a broadening or narrowing of the linewidth of the laser oscillation

depending on the phase of the feedback.

� Regime II: Moderate feedback (C > 1) which is caused to have multiple emission

frequencies and instability, and mode hopping while the laser is still dependent on

the phase of the feedback.

� Regime III: Strong feedback (C � 1) which results in a return to single emission

frequency under feedback, and the laser diode is still dependent on the phase of

the feedback.

� Regime IV: Chaotic regime where the relaxation oscillation becomes undamped,

the laser linewidth is significantly broadened the laser evolves into unstable oscil-

lations in a coherence collapse state. The level of noise is significantly enhanced

under this condition, and the laser remains partially dependent on the phase of the

feedback.

� Regime V: Return to stability where the internal and the external cavities behave

like a single cavity and the laser oscillates in a single mode. The linewidth of

the laser is extremely narrowed, and the laser is independent of the phase of the

feedback.
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(a)

(b)

Figure 2.3: (a) Simulation of the three-mirror model versus change in emission frequency
for different feedback levels. The dash line is the axis when the laser diode does not ex-
perience with the optical feedback. Unique solution can be found when the feedback
parameter C is smaller than one while multiple solutions (both stable and unstable so-
lution) can be found when the feedback parameter C is greater than one. (b) Operating
regimes of LFI, after [11]. Region I, weak feedback; region II, moderate feedback; region
III, strong feedback; region IV, chaos with islands of stability; region V, external cavity.

In this dissertation, We will limit our analysis of the phase behaviour of the laser

under the weak and moderate/strong feedback regime as these regimes correspond to

the realistic use of the phenomenon for sensing purposes.
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2.2 | Dynamic model of laser under feedback
The dynamics of the laser under the optical feedback can be more accurately described

with the derivation of the rate equation model. The dynamical model has the ability

to perform the detail of the laser diode for small perturbation both stability and insta-

bility [57]. The laser diode under the optical feedback shows the unstable oscillations

for a certain range of optical feedback level which means it is very interesting not only

the viewpoint of fundamental physics but also for real-life applications since the optical

feedback effects appear almost everywhere in optical systems such as optical communi-

cation systems, optical data storage and optical measurement. The rate equations for the

laser diode under optical feedback can be explained by firstly considering the dynamic

operation of the stand-alone laser.

There are two conventions to deal with the quantities of carriers and photons in the

subsequent equations. One is using carrier and photon numbers, and another one is

using carrier and photon densities. Here, we choose to develop the modelling using the

carrier and photon densities, but we will express the complete set of equations for both

conventions. It is interesting to notice that the phase condition for both conventions does

not change.

To derive the rate equation of laser diode, we first considered the gain at the lasing

condition which the same equation gives the round-trip gain within the laser cavity for

the steady-state laser oscillation condition as [56],

G = r1r2 exp
(
− 2jβLin + (g − αs)Lin

)
. (2.33)

For dynamic operation of the laser, the emission frequency is a function of time. To

simplify the following analysis, we assume that there is only a single longitudinal mode

of operation, and the gain and loss coefficient are frequency independent parameters.

The carrier density N deviates from the threshold carrier density value Nth. Under these

conditions, the effective refractive index nin can be linearised as [56],

nin = nth +
∂nin
∂ν

(ν − νth) +
∂nin
∂N

(N −Nth), (2.34)

where nth is the effective refractive index at threshold. By replacing the expression of the

optical frequency ν with the optical frequency at threshold νth, and using the Eq. (2.24),

the relation between the laser oscillation frequency and the carrier density of laser can

be written as,

ν − νth = −νth
ng

∂nin
∂N

(N −Nth). (2.35)
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The wave number β in Eq. (2.9) can be extended as,

β =
ωth

c

(
nth +

∂nin
∂N

(N −Nth) +
ng
ωth

(ω − ωth)
)
. (2.36)

By replacing the wave number β into the Eq. (2.33), the gain can be rewritten as,

G = r1r2 exp
(
− j 2ωth

c

[
nth +

∂nin
∂N

(N −Nth) +
ng
ωth

(ω−ωth)
]
Lin + (g−αs)Lin

)
. (2.37)

The gain G can be split up into two terms−the frequency independent term, G1, and

the frequency dependent term, G2, where G = G1G2 so that

G1 = r1r2 exp(−j 2ωthLin

c

∂nin
∂N

(N −Nth) + (g − αs)Lin), (2.38)

G2 = exp(−j 2ωthLinnin
c

− j 2ωthLinng
c

(ω − ωth)). (2.39)

The frequency independent term G1 can be separated into real and imaginary parts

in the following forms,

G1 = r1r2 exp((g − αs)Lin) exp(−jϕG), (2.40)

where

ϕG =
2ωthLin

c

∂nin
∂N

(N −Nth). (2.41)

The first term argument of exponential function of the frequency dependent term

gain G2 in Eq. (2.39) is related to the emission frequency for lasing in Eq. (2.10) at

threshold which term 2ωthLinnth/c must be equal to an integer multiple of 2π. The

second term argument of exponential function can be reduced by using the internal

round-trip propagation time expression τin. Then the term G2 can be reduced to,

G2 = exp(−jτinω) exp(jτinωth). (2.42)

In order to analyse the field dynamics operation of the laser, the complex time-

dependent electric field of the forward travelling wave at z = 0, Ef,0(t), will be con-

sidered. Since the change in the emission frequency is small enough, the electric field

essentially oscillates at the threshold, ω = ωth. This assumption is commonly known as

the slowly-varying complex amplitude. This allows the change in the amplitude of the

electric field to be easily describe by a slowly-varying complex amplitude Êf,0 [56],

Ef,0(t) = Êf,0(t) exp(jωtht). (2.43)

Then the electric field with a round-trip in the laser cavity can be expressed as,

Ef,0(t) = G1G2Ef,0(t) = G1 exp(jωthτin) exp(−jωτin)Ef,0(t). (2.44)
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Since an exponential term contains a factor of frequency in the phase, it is equivalent

to a time delay in the time domain: d/dt = jω. The exponential exp(−jωτin) term then

requires the time-shifting property of τin.

Êf,0(t) exp(jωtht) = G1 exp(jωthτin)Êf,0(t− τin) exp(jωth(t− τin)). (2.45)

This leads to the conclusion that,

Êf,0(t) = G1Êf,0(t− τin). (2.46)

This equation tells us that the slowly-varying amplitude is equal to its original value

at the start of the previous round-trip multiplied by the gain G1. To express the rate

of variation of the electric field amplitude, it is possible to describe the time-delayed

function of the electric field in Eq. (2.46); so that,

Êf,0(t− τin) = Êf,0(t)− τin
dÊf,0(t)

dt
. (2.47)

Then by using the expression Êf,0(t − τin) = Êf,0(t)/G1 in Eq. (2.46), rate equation

for the complex amplitude of the slowly-varying electric field is,

dÊf,0(t)

dt
=

1− 1/G1

τin
Êf,0(t). (2.48)

Since the frequency dependent gain G1 is very close to unity for the laser oscillation,

we approximate the gain from Eq. (2.40) as,

1

G1
= exp(ln(

1

r1r2
)− (g − αs)Lin + jϕG)

≈ 1 + ln(
1

r1r2
)− (g − αs)Lin + jϕG. (2.49)

By using the expression of the round-trip time of flight inside the laser cavity τin and

combining the expressions in Eqs. (2.35) with (2.41), the rate equation for the electric

field in Eq (2.48) can be rewritten as,

dÊf,0(t)

dt
=
[
j
ϕG

τin
+
gLin

τin
− αsLin + ln(1/r1r2)

τin

]
Êf,0(t)

=
[
(ω − ωth) +

1

2

(
g
( c

ng
− 1

τph

))]
Êf,0(t). (2.50)

where τph is the photon lifetime which is proportional to the threshold gain gth and it is

defined as [12],
1

τph
=

c

ng

[
αs +

1

Lin
ln(

1

r1r2
)
]
. (2.51)
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In practice, the optical output power P is measured and is proportional to the square

of the magnitude of the complex electric field such that P ∼ |Ef,0|2. Moreover, the op-

tical output power is also proportional to the photon density inside the laser cavity S.

Therefore, to model the rate of change in the laser output power, it is convenient to

introduce a normalised complex field amplitude E(t) =
√
S(t) exp(jϕ(t)), where ϕ(t)

corresponds to the phase of the slowly varying amplitude of the forward travelling elec-

tric fields Êf,0(t), yielding instead of Eq. (2.48); so the absolute square of the magnitude

of this field corresponds to the photon density S inside the laser cavity,

S(t) = E(t)E∗(t) = |E(t)|2, (2.52)

where ∗ denotes as the conjugate complex value. Therefore, the rate equation for the

electric field is,
dE(t)

dt
=
[
j(ω − ωth) +

1

2

(
g
c

ng
− 1

τph

)]
E(t). (2.53)

The rate equation for the photon density can now be solved with the following rela-

tion,

dS(t)

dt
=
d(E(t)E∗(t))

dt
= E(t)

dE∗(t)

dt
+ E∗(t)

dE(t)

dt

=
(
g
c

ng
− 1

τph

)
S(t). (2.54)

It should be noticed that the term g = Γgst, where gst is the stimulated gain coeffi-

cient, and Γ is the confinement factor which is a consequence of the photon and carrier

population occupying different volumes such that Γ = V/VP (V is the cavity volume

and VP is the effective cavity volume occupied by photons) [11, 56]. Due to the group

velocity vg = c/ng, the general form gain G can be modified by linearising the logarithm

of the stimulated gain coefficient, and it is expressed as [11],

G = vggst = vga(N −Ntr), (2.55)

where Ntr is the transparency carrier density in the laser cavity and a is the differential

gain. Then the rate equation of photon density can be simply written as [11],

dS(t)

dt
=
(

ΓG− 1

τph

)
S(t). (2.56)

In order to obtain the rate equation for the phase, ϕ(t), of the slowly varying envelope

of the electric field, note that

ϕ(t) = arctan(
=(E(t))

<(E(t))
). (2.57)
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Differentiating this equation, we obtain,

dϕ(t)

dt
=

1

[<(E(t))]2 + [=(E(t))]2
×
[
=
(dE(t)

dt

)
<(E(t))−<

(dE(t)

dt

)
=(E(t))

]
(2.58)

It should be noticed that the two complex numbers−x and y, the natural algorithm

can be written as =(x)<(y) − <(x)=(y) = =(y∗x) and using the Eq. (2.52), the rate

equation of phase is obtained as [11],

dϕ(t)

dt
=

1

S(t)

[
=
(
E∗(t)

dE(t)

dt

)]
(2.59)

Using the expression (2.53), the phase rate equation is then,

dϕ(t)

dt
= ω − ωth

= −ωth

ng

∂nin
∂N

(N(t)−Nth), (2.60)

By inserting Eq. (2.23) with the expression of the photon lifetime term in Eq. (2.51)

and the gain term in Eq. (2.55), then the rate equation of phase in Eq. (2.60) is rewritten

as,
dϕ(t)

dt
=

1

2
α
(

ΓG− 1

τph

)
, (2.61)

To complete the description of the laser operation under dynamical operation, it is re-

quired the variation of the carrier density in the laser cavity. According to the Eqs. (2.56)

and (2.61), the carrier density can be written as,

dN(t)

dt
=
ηiI

qV
− N(t)

τn
−GS(t), (2.62)

where ηi is the operation current injection efficiency, q is the electron charge, I is the

operating current of the laser diode and τn represents the carrier lifetime.

The phase and amplitude condition for a laser diode with external reflections have

been considered with the steady-state condition in Section 2.1. In this section, we will

now turn to the dynamic condition of the laser diode under the optical feedback. In the

steady state condition model for the laser under optical feedback, a complex reflection

mirror, which is combined with the target mirror and the front mirror of laser facet, has

been used. A similar analysis is also applied to the rate equations model for the optical

feedback except that the time-dependent of the amplitude of the electric field is required.

The equivalent reflected coefficient of the three-mirror model in Eq. (2.13) remains

the same in the rate equation except that the laser oscillates at the threshold frequency

due to the slow-varying complex amplitude. The amplitude of the electric field that is
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injected into the laser cavity at a time t is E(t − τext). To conclude this effect into the

rate equation, the feedback term in the equivalent reflected coefficient is multiplied by

E(t−τext) instead of E(t). According to the Eq. (2.60), the rate equation with the optical

feedback of the electric field is,

dE(t)

dt
=
(
j(ω − ωth) +

1

2
(ΓG− 1

τph
)
)
E(t) +

κext
τin

E(t− τext) exp(−jωthτext). (2.63)

The modified rate equations for the laser under optical feedback for the photon den-

sity and the optical phase can be written by using the relations in Eqs. (2.54) and (2.61),

and the rate equation of carrier density in Eq. (2.62) remains the same. So the rate

equations in term of density with the optical feedback of laser diode can be described as,

dS(t)

dt
=
(

ΓG− 1

τph

)
S(t) +

2κext
τin

√
S(t)S(t− τext) cos

[
ωthτext + ϕ(t)− ϕ(t− τext)

]
dϕ(t)

dt
=

1

2

(
ΓG− 1

τph

)
− κext

τin

√
S(t− τext)/S(t) sin

[
ωthτext + ϕ(t)− ϕ(t− τext)

]
dN(t)

dt
=
ηiI

qV
− N(t)

τn
−GS(t).

(2.64)

Eq. (2.64) is the standard set of rate equations expressed in terms of densities. To

change the equations from density to number, the confinement factor must be used in

this converting. So we use the term of S̃ and Ñ as photon number and carrier number re-

spectively. The photon number is expressed as, S̃ = VPS and carrier number is described

as Ñ = V N .

So the rate equations in term of number with the optical feedback of laser diode can

be written as,

dS̃(t)

dt
=
(

ΓG− 1

τph

)
S̃(t) +

2κext
τin

√
S̃(t)S̃(t− τext) cos

[
ωthτext + ϕ(t)− ϕ(t− τext)

]
dϕ(t)

dt
=

1

2

(
ΓG− 1

τph

)
− κext

τin

√
S̃(t− τext)/S̃(t) sin

[
ωthτext + ϕ(t)− ϕ(t− τext)

]
dÑ(t)

dt
=
ηiI

q
− Ñ(t)

τn
−GS̃(t)

(2.65)

As mentioned in Section 2.1, the SMI signal is observed by monitoring the fluctua-

tions in either the laser output power (through the photodiode inside the package), or

its terminal voltage. Linking optical output power variation to the rate equations model

can be obtained as simple as noting that photon density is proportional to output optical

power. By assuming that the rate of stimulated emission is approximately equal to the in-

verse of the photon lifetime above the threshold, and spontaneous emission is negligible,
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then the total optical power emitted from both laser facets can be found as [11, 12],

PTotal(t) = ~ωvgαmVPS(t) = ~ωvg
1

2Lin
ln(

1

r1r2
)VPS(t), (2.66)

where ~ is the reduced Plank’s constant, and αm is effective mirror loss which is propor-

tional to the length of the laser cavity and the reflectivity coefficients of laser’s two facets.

The laser terminal voltage, VT, can be determined by [73],

VT(t) =
2kBT

q
ln(

N(t)

Ni
), (2.67)

where kB is Boltzmann’s constant and Ni represents the intrinsic carrier density of the

active region.

The dynamic rate equation model for a laser diode with optical feedback can be

investigated by numerically solving the above equation. In the rate equations model for

a solitary laser diode, the phase does not affect the other variables, which means the

laser diode is only described by photon density S and the carrier density N . However, it

is not a suitable option for self-mixing, since the phase is proportional to other variables

as shown in the equation above.

Under steady state condition, the rate equation can be reduced to excess phase equa-

tion. It occurs when the photon density S and the carrier density N change slowly and

the frequency of system stimuli (in the form of changing current I, external cavity round-

trip time τext, or the coupling strength κext) are slow relative to the natural frequencies

of the system−the laser relaxation frequency and the natural resonant frequency of the

external cavity. The steady-state solutions for S(t) = Ss, ϕ(t) = (ω−ωth)t, andN(t) = Ns

from Eq. (2.64) can be written as [57, 74],

Ss =
ηiI/qV −Ns/τn
vga(Ns −Ntr)

, (2.68)

ω − ωth =
1

2
α
(

ΓG− 1

τph

)
− κext

τin
sin(ωτext), (2.69)

Ns = Ntr +
1

Γvgaτph
− 2κext

Γvgaτin
cos(ωτext). (2.70)

Assuming the linear gain function in Eq. (2.55) and noting that, at threshold, the

cavity gain is equal to material losses 1/τph, one obtains,

Ns = Nth −
2κext

Γvgaτin
cos(ωτext). (2.71)

The photon density in Eq. (2.64) at the steady-state condition can be written as,

0 =
(

ΓG− 1

τph

)
+

2κext
τin

cos(ωτext). (2.72)
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Combining the Eqs. (2.69) and (2.72) leads to,

ω − ωth = −ακext
τin

cos(ωτext)−
κext
τin

sin(ωτext). (2.73)

The expression in Eq. (2.73) can be simplify by using the trigonometric formulas,

A cos(ωt)+B sin(ωt) =
√

(A2 +B2) cos(ω−arctan(B/A)), arctan(1/θ) = π/2−arctan θ,

and cos(θ − π/2) = sin θ, with the term of feedback parameter C in Eq. (2.32), then we

obtain,

ϕFB − ϕs + C sin(ϕFB + arctanα) = 0, (2.74)

where ϕFB
def
= ωτext represents a phase response, corresponding to the actual phase accu-

mulated on transmission through the external cavity and ϕs
def
= ωthτext is a phase stimulus,

corresponding to the phase accumulated on through the external cavity when the laser

was not experiencing optical feedback [11]. In practice, the phase response ϕFB is not

directly observable; so the observation of variation in laser power or variation in volt-

age across the laser terminal is experimentally performed. As we know that the optical

power is proportional to the photon number and by considering the carrier rate equation

in steady state (and a linear gain function), the optical power at steady state then can be

found as [11],

Ps ∝ Ss =
1

G

(ηiI
qV
− Ns

τn

)
. (2.75)

By using the photon density and the carrier density at steady-state in the Eqs. (2.68)

and (2.71) respectively, the optical power at steady-state can be rewritten as,

Ps ∝
( ηiI
qV
− Nth

τin︸ ︷︷ ︸
Ps,1

+
2κext

Γvgaτinτn
cosϕFB︸ ︷︷ ︸

Ps,2

) Γτph
1− 2κextτph cosϕFB/τin

. (2.76)

By considering that 2κextτph � 1, and noting that (1− x)−1 ≈ (1 + x) for x� 1, and

normally the term Ps,1 � Ps,2, the optical power then becomes,

Ps ∝ Γτph

(ηiI
qV
− Nth

τn

)(
1 +

κextτph
τin

cosϕFB

)
. (2.77)

This equation of the laser’s power under the SMI phenomenon will then be used to

plot figures in this thesis when using the excess phase equation by modifying the laser

injection current if needed in any form of modulation.

2.3 | Phase condition
When the laser diode is operated under moderate/strong feedback regimes, the dynamics

of the laser leads to several lasing solutions among which some are stable while others
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are unstable [57]. The number of solutions of laser in the excess phase equation is

defined by the value of the feedback parameter C in (2.31) and (2.74). An example of

the evolution of the laser phase and its associated solutions for different values of the

feedback parameter C is shown in Figure 2.3. For the sensing application, the external

round-trip phase at the free-running state, also called the phase stimulus, changes over

time either because of the modulation of the laser injection current or the change of the

external round-trip propagation time (i.e., the variation of external cavity length or the

fluctuation of the external refractive index).

2.3.1 | When C ≤ 1

When the feedback parameter C is less or equal to one, the excess phase equation has

a unique solution and it is dynamically stable. The relationship between phase stimulus

and phase response is a simple monotonic function. The self-mixing laser is considered

operating in weak feedback regime [57, 67].

Figure 2.4: Plot of the excess phase equation for C = 0.7, and α = 5. The red broken
line is the axis where there is no optical feedback, and the black solid line indicates the
solution path of ϕFB.

Figure 2.4 shows that the solution of the excess phase equation are segments of curves

C(m−1), C(m), C(m+1) where m is an integer. Each segment is symmetrical to the point

with coordinates [ϕs = 2πm − arctanα,ϕFB = 2πm − arctanα] [75]. The solutions ex-
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2.3. Phase condition

hibit path without any hysteresis effect which increases the phase ϕFB by 2π per segment

of curve.

(a) (b)

Figure 2.5: Plot the behaviour of cosϕFB under the feedback level C = 0.7. (a) In case of
the phase stimulus decreases over time; (b) In case of the phase stimulus increases over
time.

The orientation of the optical power function strongly depends on the shape of the

phase response ϕFB. In the numerical simulation shown in Figure 2.5(a), it is assumed

that the phase stimulus ϕs increases, i.e., the target is moving away from the laser. In

contrary, if the phase stimulus ϕs decreases, the laser output power shows the reversed

waveform which is shown in Figure 2.5(b). Therefore in case of SMI harmonic motion

application, the direction of the target’s moment can be determined from the shape of

the waveform of the output power.

It is interesting to highlight that increasing the level of feedback C, the shape of the

signal can be deformed from a sinusoidal for C � 1, to a non-symmetrical sinusoidal-like

shape for 0.1 < C < 1 as shown in Figure 2.5.

2.3.2 | When C > 1

When the feedback parameter C is greater than one, the laser under optical feedback is

considered operating in moderate or strong feedback regime, multiple solutions can be

found. The relation between ϕFB and ϕs becomes more complex but it is still maintaining

the same symmetrical point for each curve.

Figure 2.6 shows the numerical simulation with the feedback parameter C is greater

than one that the stable solutions of each curve indicated in the solid line region increases

over the feedback level C. This phenomenon creates unstable solutions in the phase

response and boundaries−high and low for each curve segment C. Their boundaries of

each curve segment C can be calculated as being zero of the first derivative of excess
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Figure 2.6: Plot of the excess phase equation for C = 3, and α = 5. The red broken
line is the axis where there is no optical feedback, and the black solid and broken lines
indicate the region of stable and unstable solution of ϕFB respectively.

phase equation [57, 75],

0 =
d

dϕFB
[ϕFB − ϕs + C sin(ϕFB + arctanα)]

= 1 + C cos(ϕFB + arctanα).

(2.78)

By using the sign of the second derivative at the solution to identify the low and high

boundary of the curve C(m) in the phase response, we get,

ϕFB,L = (2m− 1)π + arccos(1/C)− arctanα for the low boundary (2.79)

ϕFB,H = (2m+ 1)π − arccos(1/C)− arctanα for the high boundary (2.80)

Then by inserting the phase response of Eq. (2.79) and Eq. (2.80) into the excess

phase equation, the corresponding value of the phase stimulus can be found; and by

using the trigonometric identity, sin(arccosα) =
√

1− α2; we obtain,

ϕs,L = (2m− 1)π + arccos(1/C)− arctanα−
√
C2 − 1, (2.81)

ϕs,H = (2m+ 1)π − arccos(1/C)− arctanα+
√
C2 − 1. (2.82)

Furthermore, the length of the stable solutions segments per segment of the curve

C(m) varies with the feedback parameter C and it can be calculated as,

ϕFB,H − ϕFB,L = 2π − 2 arccos(1/C), (2.83)
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2.3. Phase condition

ϕs,H − ϕs,L = 2π − 2 arccos(1/C) + 2
√
C2 − 1. (2.84)

The expression (2.84) shows that the stable solution from the low to the high bound-

ary of the phase stimulus is increasing with the feedback parameter C and is always

greater than 2π. On the contrary, the stable solution of phase response in (2.83) gets

smaller when the level of feedback C increases; and this phenomenon results in the

discrepancy of the fringes amplitudes.

Figure 2.7 illustrates the laser phase behaviour in the case of a linear triangular mod-

ulation of the phase stimulus with an amplitude of 6π−from 2π to 8π (Figure 2.7(a))

when the parameter C is bigger than one. The solution to the excess phase equation and

physical behaviour is then plotted in Figure 2.7(b).

(a)

ϕs

2π 4π 6π 8π

ϕ
F
B

2π

4π

6π

8π

H
I

J
K

L
M

N
A

B

C
D

E
F

G

2π

2π

(b)

Figure 2.7: Plot (a) show the phase stimulus ϕs is modulated in triangle waveform with
a period T and plot (b) is the resulting of phase response ϕFB with the change of ϕs from
8π to 2π, the feedback parameter C = 3, and α = 5. The thin dotted lines shows the
unstable solutions to the excess phase equation, the thick solid and dotted lines trace the
locus of solution in plot (b) to the phase stimulus in plot (a).

The lasing phase starts dwelling solution from point A to B when the phase stimulus

ϕs decreases, then jumps infallibly to the next closest solution in the vicinity of the other

curve by means of point C and continues to D - E - F - G and H. At H, the minimum value

of the phase stimulus (ϕs = 2π) is reached. Then the phase stimulus ϕs increases for

another half of ramp of modulation, the lasing phase dwells solution from point H to I,

then jumps to in the vicinity of region J and continues with the path K - L - M - N and

back to A at the maximum value of the phase stimulus (ϕs = 8π). It is to be highlighted

that from each jumping point to the low or high boundary the stimulus phase changes

lengthen 2π.
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2.3.3 | Fringes disappearance mechanism
The SMI phase behaviour described in the previous subsection is fundamental to explain

the interferometric fringe disappearance phenomenon. The novelty of our approach to

the fringe disappearance mechanism in SMI is that we use the phase boundary method.

An interferometric fringe disappears whenever the low or high boundary of the stable

solution exceeds the limit of the phase stimulus’s minimum and maximum respectively.

Figure 2.8 depicts the phenomenon in the case of a phase stimulus triangle modulation

with the amplitude of 6π (same as for Figure 2.7). Figure 2.8(a) represents the phase’s

behaviour of the SMI under the optical feedback C = 3 which results in the derivative of

optical output power in Figure 2.8(b). Under this feedback and as discussed the phase’s

dwelling in the previous section, there are no boundaries of stable solution that are

reached within the idem of the phase stimulus. Then Figures 2.8(c) and 2.8(d) represent

the phase paths and the derivative of output power for C = 4.6 whereas the lowest

phase boundary would correspond to a phase stimulus that is the range of the actual

stimulus thus leading to one missing fringe at each ramp (increasing decreasing) of the

modulation. The phase paths and derivative of output power plotted in Figures 2.8(e)

and 2.8(f) are computed for C = 7.5 where the highest phase boundary of the third

stable region exceeds the maximum of the phase stimulus. An other fringe disappears

at each ramp of the modulation leaving a single transition over the 6π of modulation.

Eventually, for a parameter C = 10, no more phase transitions are within the range of

the modulation and no interferometric fringes appear as shown in Figures 2.8(g) and

2.8(h).

It is to be highlighted that the absence of fringes is a consequence of a high feedback

parameter C combined with a limited phase stimulus range (6π), as with an extended

modulation range, fringes would have remained (for example, 12π modulation amplitude

would have induced three fringes for the same C = 10 as shown in Figure 2.9). Thus

the so-called strong optical feedback regime [36] is not literally a laser regime as it

depends mostly on the stimulus modulation (i.e., the bias current modulation or the

target displacement amplitudes).

2.3.4 | Feedback parameter C and fringe disappearance
The simulation shows that the low boundaries of the curve segments C at the left side

always reach to the minimum of the phase stimulus as shown in Figure 2.9. In contrary,

the high boundaries of the curve segments C at the right side always reach to the max-

imum of the phase stimulus. This can theoretically calculate the value of the feedback
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.8: Numerical simulation with 6π phase stimulus’s amplitude modulation. Plots
(a), (c), (e), (g) are the phase behaviours under different feedback parameters C. Plots
(b), (d), (f), and (h) are the results of derivative of output power under different feed-
back parameters C which correspond to (a), (c), (e), (g) respectively. (a) and (b) are
plotted with C = 3; (c) and (d) are plotted with C = 4.6; (e) and (f) are plotted with C
= 7.5; (g) and (h) are plotted with C = 10.
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(a) (b)

Figure 2.9: Numerical simulation with 12π phase stimulus’s amplitude modulation. Plot
(a) is the phase behaviour under different feedback parameters C = 10. Plot (b) is the
result of derivative of output power which correspond to (a).

parameter C for which a fringe will disappear. For that, it is necessary to determine the

integer number m that contains between 0 and ϕs(t) and this number satisfies the simple

inequality as [75],

2π(m− 1)− arctanα ≤ ϕs ≤ 2π(m+ 1)− arctanα. (2.85)

Then it gives,

m = round
(ϕs + arctanα

2π

)
. (2.86)

The minimum and maximum number (mmin and mmax) are determined by the value

of the phase stimulus’s minimum ϕs,min and maximum ϕs,max, respectively. It is inter-

esting to be highlighted that the number of interferometric fringes in the SMI system

can also be found by subtraction the calculated maximum and minimum of integer

(mmax − mmin). The pair of missing interferometric fringe occurs when either the low

boundary or the high boundary exceeds the minimum or the maximum of the phase

stimulus, respectively.

2.3.4.1 | The low boundary

After determining the integer number mmin from Eq. (2.86), let’s consider that the low

boundary of curve C(mmin) is for a given C value at the limit of the phase stimulus. The

low boundary of the next curve C(mmin + 1) will reach the lower phase stimulus bound

when,

ϕs,L(mmin + 1) = ϕs,min. (2.87)

Using Eq. (2.81) with mmin + 1, then we get,

(2mmin + 1)π + arccos(1/C)− arctanα−
√
C2 − 1 = ϕs,min. (2.88)
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2.3.4.2 | The high boundary

THe same calculation is now done for the high boundaries of curves segment C. Let’s

consider that for a given C value, the high boundary of the curve C(mmax) is just at the

phase stimulus’s bound; then the high boundary of the previous curve C(mmax − 1) will

reach this bound when C increases so that,

ϕs,H(mmax − 1) = ϕs,max. (2.89)

Using the high boundary of phase stimulus in Eq. (2.82) with mmax − 1, we obtain,

(2mmax − 1)π − arccos(1/C)− arctanα+
√
C2 − 1 = ϕs,max. (2.90)

Numerical solving for the Eq. (2.88) and Eq. (2.90) can easily be found; so that the

feedback parameter C where the first and second pair of interferometric fringes disap-

pear in a complete period of modulation can be found. Since fringes are lost alternatively

at the lower end and the higher end of the stimulus, the increment of ∆C of the feedback

parameter C results in the loss of two interferometric fringe which can be written as,

∆C = Ck+2 − Ck, (2.91)

where k is whole number that indicates the number of disappeared pair of interferometric

fringe. By considering that for a given feedback parameter C, themmin+1 stable solution

limit (respectively mmax−1) will be equal to the stimulus limit ϕs,L(mmin +2, C+∆C) =

ϕs,min (respectively ϕs,H(mmax − 2, C + ∆C) = ϕs,min) for a given feedback parameter

C + ∆C. Then we get,

√
(C + ∆C)2 − 1− arccos

1

(C + ∆C)
=
√
C2 − 1− arccos

1

C
+ 2π. (2.92)

Figure 2.10 shows the graphical solution of equation (2.92) where it can be observed

that ∆C is a function of C evidentially reaching 2π for large C values.

By assuming that the two interferometric fringes disappear in increasing of the feed-

back parameter C in 2π, then the number of fringes disappearance gives the value of

feedback parameter C in between two values and it can be expressed as,

(k − 1)π + 1 ≤ C ≤ (k + 1)π + 1. (2.93)

With the example of simulation result shown in Figure 2.8(f), two interferomet-

ric fringes have disappeared for semi-period of modulation at the derivative of output

power; then we can estimate that this SMI system would be operated under the feedback

level: π + 1 ≤ C ≤ 3π + 1 (4.14 ≤ C ≤ 10.42).
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C

0 2π 4π 6π 8π 10π

∆
C

2π

6.8 7.78 14.10 20.39 26.68

0 to 2 fringes
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2 to 4 fringes
missing

4 to 6 fringes
missing

6 to 8 fringes
missing

...

Figure 2.10: Evolution of the increment of C that results in the loss of two more fringes
as a function of C and definition of the C ranges for which a pair of fringes have disap-
peared.

2.4 | Conclusion

The fringe disappearance phenomenon can be explained by the resolution of the excess

phase equation considering the boundary method that has been exposed in this chapter.

The main cause of the exceeding the low-high boundary of a curve C is due to the feed-

back parameter C. The parameter C is proportional to the coupling strength κext varies

mainly with the reflection coefficient of the target (the fraction of light coupled back into

the lasing mode). The increase of the feedback parameter C in moderate/strong optical

feedback regime exceeds the stable solution that can trespass the phase stimulus’s bound-

ary. The interferometric fringes are lost alternatively at the lower end and the higher end

that results in space before a solid interferometric fringe appears in the optical output

power. Then, in phase stimulus and phase response plane, each jumping point to the low

or high boundary the stimulus phase by means the space between two interferometric

fringes lengthen 2π. The number of missing interferometric fringes can be predicted by

a proposed model, i.e., the value of feedback parameter C between 1 and 7.78, zero to

two fringes are predicted to disappear in the output power. This interferometric fringe

disappearance boundary method generated from the excess phase equation is also ap-

plied to the rate equations. However, it is interesting to know that the disappearance of

interferometric fringe does not depend only with the feedback parameter C by means of
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the coupling strength between the target and the laser cavity, but it is also known that it

is proportional to the laser’s structure and the photon lifetime. It means that the exactly

defined parameter feedback C where an interferometric fringe disappears in the excess

phase equation may not be applied in the rate equations (the photon lifetime and the

carrier lifetime are proportional to carrier density and photon density, respectively). To

validate this proposed model, an experiment of the self-mixing absolute distance applica-

tion will be conducted in the next chapter. In addition, this experiment will demonstrate

for the first time in SMI absolute distance measurement that interferometric fringes may

disappear. Missing those fringes in the output power can strongly affect the measurement

resolution.
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Absolute Distance Measurement

This chapter discusses the use of self-mixing interferometry for metrology in absolute dis-

tance applications and the behaviour of the laser diode that performs in this application

thoroughly. Distance measurement under the SMI technique is traditionally modelled

with the three-mirror model by means of the excess phase equation. However, it can

also be modelled with the rate equation based on Lang and Kobayashi equation which

will present in section 3.1. Later, we also show the behaviour of the laser phase when

it operated in the moderate/strong optical feedback regime in section 3.2 in both mod-

els. Finally, the experimental results will be conducted and validated with the describing

theories proposed in Chapter 2.

3.1 | Modelling
Measuring based on the SMI technique, the emission frequency of the laser at free-

running state diode needs to be modulated which is typically achieved by modulating

the laser bias injection current with the triangle waveform [4]. With a fixed amplitude

of current modulation at a certain frequency modulation, the SMI output power wave-

form monitored by the internal PD results in a triangle waveform with small ripples on

the modulation ramp. Those small ripples correspond to the longitudinal modes in the

external cavity whose numbers or time spacing between the ripples are proportional to

the distance between the laser and the target [76]. The relationship between injection

current and laser emission frequency at free-running state is generally considered as lin-

ear which is not entirely correct in practice. Thermal and plasma effects are presented

when the injection current is modulated in any waveform and we will explain thoroughly

about these effects in further sections. The laser emission frequency without the optical

feedback, νth, varies with the laser emission frequency. To model this effect, the fre-
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Chapter 3. Absolute Distance Measurement

quency modulation coefficient, Ω, is introduced which indicates the linear relationship

between the laser injection current and the laser emission frequency without the optical

feedback is taken into account. This parameter is usually expressed in GHz/mA [76, 77],

and the exact value depends on the type and materials of the laser diode itself and must

be determined experimentally.

The variation in the laser emission frequency, 4νth, is related to the laser bias injec-

tion current, 4I,

4νth = Ω4I. (3.1)

Modulating the laser injection current of the active region results in a modulation

of both the photon density and the carrier density which then modulates the laser gain.

Thus, the rate equations are based on the slowly-varying envelope approximation (SVEA)

where the change in laser emission frequency are written as a function of time. So, un-

der the optical feedback, the laser emission frequency is not just functioned with time

varying from the modulated bias injection current, νth(t), but instead with time in pres-

ence of the feedback that is expressed in νth(t− τext) term. Then the rate equations with

optical feedback and laser emission frequency modulation are conventionally written in

the form, 

dS(t)

dt
=
(

ΓG− 1

τph

)
S(t) +

2κext
τin

√
S(t)S(t− τext) cosϕR

dϕ(t)

dt
=

1

2

(
ΓG− 1

τph

)
− κext

τin

√
S(t− τext)/S(t) sinϕR

dN(t)

dt
=
ηi
(
I +4I(t)

)
qV

− N(t)

τn
−GS(t),

(3.2)

where

ϕR = ωth(t− τext)τext + ϕ(t)− ϕ(t− τext), (3.3)

and

ωth(t) = ωth + 2π4νth(t) (3.4)

where ωth = 2πνth is angular lasing frequency in the absence of optical feedback at

threshold.

A simulation of the rate equations for SMI absolute distance in this section is per-

formed with the In-Plane laser parameters given in Table 3.1 and assuming that the

In-plane laser diode is operated with an injection current of 60 mA and has -3 GHz/mA

of frequency modulation coefficient [77], the laser modulation with 0.5 mA peak-to-peak

amplitude at 50 Hz produces a SMI signal for the absolute distance that can be plotted.

In this simulation, the fourth order Runge-Kutta numerical integration method is used

to solve these rate equations [78]. For the initial condition, the values of the photon
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Table 3.1: In-Plane laser parameters [12].

Symbol Comment Value

λth Laser wavelength at threshold 1550 nm

r1, r2 Reflection coefficient of the laser mirrors M1 and M2 0.56

Lin Laser cavity length 250 µm

α Linewidth enhancement factor 3

ng Laser cavity group refractive index 4.2

nin Laser cavity (effective) refractive index 3.253

nth Laser cavity effective refractive index at threshold 3.16

a Differential gain 5.34× 10−16 cm2

Γ Optical confinement factor, Γ = V/Vrmp 0.032

αm Effective mirror loss 45.6 cm−1

ηi Current injection efficiency 0.9

τph Photon lifetime 2.77 ps

τn Carrier lifetime 2.71 ns

V Cavity volume 4× 10−12 cm3

Vp Effective cavity volume occupied by photons 1.25× 10−10 cm3

Ntr Carrier density in the laser cavity at transparency 1.8× 1018 cm−3

and carrier density in the absence of the optical feedback are first calculated without

the presence of the feedback term by setting all the rate equations to zero. As we dis-

cussed before, the rate equations will give us a great detail of the complex behaviour of

a laser experiencing optical feedback. Figure 3.1 shows the SMI output power under the

feedback level C = 0.7 resulting from the numerical simulation.

Figure 3.1(a) shows the triangle-modulated laser injection. This variation of the

driving current produces an assumed linear variation in the laser emission frequency as

shown in Figure 3.1(b). In the presence of optical feedback under C = 0.7, the SMI

output power results in the triangle waveform with a number of low-contrast ripples in

each ramp of triangle modulation that is proportional to the external cavity length as

shown in Figure 3.1(c). Then the small ripples output power can be made more distinct

by derivating the output power waveform which then results in a series of sharp peaks

as shown in Figure 3.1(d).

The classical method to calculate the distance between the laser and the target is by

counting the integer number of observed interferometric fringes. Assuming that these

61



Chapter 3. Absolute Distance Measurement

Time (ms)

0 10 20

In
je
ct
io
n
C
u
rr
en
t
(m

A
)

60

60.5

(a) (b)

Time (ms)

0 10 20

O
u
tp
u
t
P
o
w
er

(m
W

)

120

120.2

120.4

120.6

120.8

(c) (d)

Figure 3.1: (a) Simulation of modulated injection current in triangle waveform varies
from 60 mA to 60.5 mA at frequency modulation of 50 Hz−the increase and decrease
ramp depicted in solid and broken line, respectively. (b) Simulation of laser emission
frequency changes over time with the given FM coefficient −3 GHz/mA and the ampli-
tude of current modulation 0.5 mA peak-to-peak. (c) Simulation of optical output power
of SMI signal with the small ripples in triangle waveform under the optical feedback
C = 0.7 within the given parameter. (d) Simulation of the derivative of output optical
power resulting from plot (c).

numbers for each half of the triangle waveform are Nf,1 and Nf,2, respectively, then the

number of fringes recording during one complete period, T , is Nf = Nf,1 + Nf,2. So the

external cavity of physical length can be calculated by [35],

Lext =
cNf

44IΩnext
, (3.5)

where next is the refractive index of the medium in the external cavity. It is interesting

to notice that the refractive index is dependent on temperature, pressure, humidity and

CO2 proportion [79, 80]. Automation of the counting fringes method is to set a threshold

level where each peak with an amplitude over this level can be counted.

The other method that is considered more accurate to determine the distance is to

calculate the average time between the fringes tavg. This method can be done by first
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3.2. Fringe disappearance in absolute distance

counting the number of fringes and then divide it by the time between the first and

the last fringe. The distance between the laser and the target can be finally calculated

as [76],

Lext =
c

44IΩnextfmtavg
. (3.6)

There are numerous problems that arise when using this method in practice. In some

cases, the heights of the fringes are not always constant where the signal is very noisy

and thus requires a higher threshold and leads to the loss of some fringes in the counting.

This phenomenon occurs in particular when increasing the distance, a high amplitude of

current modulation causing the laser light dimmer at low current, poor reflectivity from

the target and the transient response or thermal effect [76].

To counter this problem, an alternative algorithm has been described that uses the

frequency domain. This method computes the average frequency of the fringes. The

frequency is the inverse of the average time, tavg, in Eq. (3.6) and the distance between

the laser and the target can be determined by rearranging Eq. (3.6) to give,

Lext =
cfb

44IΩnextfm
, (3.7)

where fb is the distant fringe frequency. The FFT method is usually considered as more

robust than the spacing average time method for low signal levels and too noisy signal.

On the other hand, it usually requires more computing resources. In the next section, we

will discuss about the fringe disappearance phenomenon in SMI absolute distance.

3.2 | Fringe disappearance in absolute distance
The interferometric fringe phenomenon in the absolute distance application occurs when

the feedback parameter C is greater than one by means of moderate/strong optical feed-

back regime. In this section, we will discuss the behaviour of laser under these regimes

in the absolute distance application. An interferometric fringe will appear if there is a

transition of the stable solutions between two curves C in the phase, and an interfer-

ometric fringe will disappear when the transition point of the curve C makes it to the

boundary of phase stimulus by means of its minimum or maximum. We will discuss this

behaviour with both models-the excess phase equation and the rate equations for SMI

absolute distance application.
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3.2.1 | Laser behaviour under the excess phase equation
The core of the excess phase equation is to solve the phase response ϕFB, and this param-

eter is inevitably depended on the phase stimulus ϕs, the feedback parameter C and the

linewidth enhancement factor α. As we mentioned before, the linewidth enhancement

factor α is usually modelled as a constant. So the phase response varies dependently

only with the phase stimulus and the feedback parameter C. In the self-mixing absolute

distance application, the laser injection current is modulated with a fixed peak-to-peak

amplitude at a certain frequency modulation which then lengthens the phase stimulus

with fixed boundaries which is written as,

ϕs(t) = 2πτext
[
νth +4νth(t)

]
, (3.8)

By using the same simulation parameters in section 3.1, Figure 3.2 displays the be-

haviour of the laser phase and the derivative of output power resulting from the dwelling

of the lasing mode in the phase.

ϕs

ϕs,min ϕs,max

ϕ
F
B

B

A

(a) (b)

Figure 3.2: The behaviour of the laser diode phase under weak optical feedback C = 0.7.
(a) Plot phase response in function of phase stimulus. (b) Plot the derivative of output
power resulting from the dwelling stable solution from (a).

The numerical simulation depicted in Figure 3.2(a) displays that the phase stimuli are

composed of ten segments of the curve C. Under the weak feedback regime, the lasing

frequency does not show any anti-mode, so the lasing mode will dwell the stable solution

in the phase stimuli without any mode hopping. The dwelling solutions of the lasing

mode results in ten small ripples in the SMI output power which are then converted into

the sharp peaks in the derivative of output power as shown in Figure 3.2(b). When the

phase stimulus decreases over time for a semi-period of the triangle waveform indicated

in solid line as shown in Figure 3.2(b), the lasing mode will delve the stable solution

starting from the point A (the maximum of the phase stimulus ϕs,max) to point B (the
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3.2. Fringe disappearance in absolute distance

minimum of the phase stimulus ϕs,min) where the laser solution is no longer valid. At this

point, the lasing mode will seek stable solutions from point B back to A in the way that

the phase stimulus increases over time for another semi-period of the triangle waveform

as indicated in broken lines. As a consequence, the derivative of output power displayed

the same number of observed interferometric fringe between each half of the triangle

waveform.

By using the Eq. (2.86) the integer number m of the curve C in the operation can

be found. With the previous simulation, it gives mmin = 1289864 and mmax = 1289764

where it results in exactly ten interferometric fringes by subtracting its values. This result

matches perfectly with the observed number of fringes in the derivative of output power.

With these value of integer m, the value of the feedback C where the first and second

interferometric fringe per semi-period of modulation can theoretically be found through

the Eqs. (2.88) and (2.90). Numerical solution for these equations gives that the first and

second pair fringes would be disappeared in the SMI output power when the feedback

parameter C reaches to 2.20 and 6.97, respectively. By applying these values, C1 and C2,

in the previous simulations, the laser phase behaviours and the SMI derivative of output

powers can be re-plotted as shown in Figure 3.3.

With the feedback parameter C = 2.20, Figure 3.3(a) shows that the lasing frequency

displays both the stable and unstable solution. As observed, the highest boundary ex-

tends to the maximum of phase stimulus which results in the disappearance a pair of

interferometric fringes in the derivative of output power. The lasing mode starts delving

the stable solution from point A (ϕs,max) to B (ϕs,min) with nine transitions as indicated

in thick solid lines when the phase stimulus linearly decreases over time. Later, when

the phase stimulus linearly increases for another half of the triangle waveform, the las-

ing mode seeks for the stable solutions from point B back to A in a different path with

another nine transitions as indicated in the thick broken lines. This occurrence gives

the change in shape and amplitude of the interferometric fringes at the output power as

shown in Figure 3.3(b).

With further increasing value of the parameter feedback C to 6.97, another pair of

interferometric fringes are missing in the derivative of output power. Figure 3.3(c) dis-

plays that the stable solutions of each curve are wider, and the lowest boundary enlarges

to the minimum of phase stimulus. The dwelling of the lasing mode shows in a similar

manner to the previous simulation with eight transitions of stable solutions that later

results in eight interferometric fringes in the output power for each half of the triangle

waveform as shown in Figure 3.3(d).

The next value of feedback parameter C (third and so on) where the interferometric

fringes would be disappeared can be determined in a similar fashion. Once the feedback
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Figure 3.3: Simulation self-mixing absolute distance that the thick solid and broken lines
indicate the direction of the phase stimulus during the decreasing and increasing respec-
tively. (a) Plot of phase response ϕFB in function of phase stimulus ϕs under the optical
feedback C = 2.20. (b) Plot of derivative of output power in the result from the dwelling
phase in (a). (c) Plot of phase response ϕFB in function of phase stimulus ϕs under the
optical feedback C = 6.97. (d) Plot of derivative of output power in the result of from
the dwelling phase in (c).

parameter C equals to 32.16, the lasing mode will dwell on the stable solution back and

forth on the same single curve by means of no more transitions of the stable solutions.

So, the output power will result in no interferometric fringe and the distance calculation

cannot be produced.

3.2.2 | Laser behaviour under the rate equations
In the section 3.2.1, we have seen that the first two pair of interferometric fringes will

disappear when the feedback parameter C equals to 2.20 and 6.97, respectively. With the

simulation parameters in Figure 3.1, the output power results in ten fringes for each half

of the triangle waveform under the weak feedback regime. When the laser is in mod-

erate/strong feedback regimes, the observed number of interferometric fringes in the
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3.2. Fringe disappearance in absolute distance

output power is different between the first modulation ramp and the others. Figure 3.4

depicts the situation when the laser diode first experiences the current modulation under

the moderate/strong feedback regimes. The lasing mode does not follow the stable solu-

tion from point A as described in the previous section, but it starts from the starting point

S. It should be noticed that both points A and S are at the same coordinate of the phase

stimulus. So from point S, the lasing mode will seek stable solutions to point B with ten

transitions when the phase stimulus linear decreases for the semi-period of modulation

indicated in thick solid lines. Then, the lasing mode will follow the stable solution from

point B with the linear increasing portion of the phase stimulus. However, the stable

solution at the starting point S is never reached and the point A will be the maximum

phase stimuli after only nine transitions will occur as indicated in the thick broken lines.

For the following modulation cycles, the lasing mode will follow the stable frequency

solution from point A back and forth between A and B. As a result, ten fringes shall be

observed for the first half of the triangle waveform and nine fringes for the following

modulation ramps as seen in Figure 3.4(b).

In a similar fashion, with a feedback C equals to 6.97, Figure 3.5(a) shows that the

lasing mode will start from the starting point S to B and back to A for the first triangle

waveform indicated in thick solid and broken lines, respectively, which then results in

nine and eight fringes in the first modulation cycle output power. Later, for the following

modulation cycle, the lasing mode will navigate back and forth between A and B resulting

in eight fringes in each half of the triangle waveform as seen in Figure 3.5(b).

For the moderate values of the factor C simulated in Figures 3.4 and 3.5, the first

half of the triangle waveform results in one more fringe to the number of fringes in the

next following modulation ramps. However, the number of excess fringes in the first

modulation ramp does vary with the coupling factor C. As discussed in the previous sec-

tion, when the feedback parameter C increases to a larger value, no more interferometric

fringes appear in the laser power. For example, with a value of feedback level C = 32.16,

the computation of rate equations shown in Figure 3.6 essentially results in five observed

fringes in the first half of the triangle waveform while no fringe appears in the following

modulation ramps as shall be expected from the description in the previous simulations.
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(a)

(b)

Figure 3.4: Simulation of output power from the rate equations under feedback param-
eter C = 2.20. (a) Plot of the phase response ϕFB in function of the phase stimulus
ϕs; the thick solid and broken lines indicate the direction of the phase stimulus during
decreasing and increasing respectively. (b) Plot of derivative of output power resulting
from the evolution of the phase in (a).

3.3 | Experiments

3.3.1 | Feedback power ratio profile
The feedback parameter C in the excess phase equation or the coupling coefficient in the

rate equation has proven to have a major effect on the self-mixing sensors signal shape

and amplitude as well as the measurement resolution and the stability of laser diode.

The variation of the feedback parameter C mainly depends on the external reflection co-

efficient of the fraction of light coupled back in the laser cavity. In practice, the coupling

coefficient does not only depend on the target surface but also the external length of the
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(a)

(b)

Figure 3.5: Simulation of output power from the rate equations under feedback param-
eter C = 6.97. (a) Plot of the phase response ϕFB in function of the phase stimulus
ϕs; the thick solid and broken lines indicate the direction of the phase stimulus during
decreasing and increasing respectively. (b) Plot of derivative of output power resulting
from the evolution of the phase in (a).

target Lext. Therefore, an experiment of the variations in the target surface’s reflectivity

and the external cavity length is accomplished.

The experimental setup is displayed in Figure 3.7. It consists of a DFB laser diode

(L1550P5DFB) lasing at 1550 nm with a package including a monitoring photodiode that

is associated to a collimating lens which focuses the laser beam onto the target surface.

A 50/50 beam splitter is used to split the incident light beam from the laser−half goes

to a tilt mirror to avoid the reflected light back to the beam splitter, and another half

traverses the distance target to the target’s surface. Then the beam splitter collects the

50% of the reflected light from the traget in the front-end detector of a power-meter
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(a)

(b)

Figure 3.6: Simulation of output power from the rate equations under feedback param-
eter C = 32.16. (a) Plot of the phase response ϕFB in function of the phase stimulus
ϕs; the thick solid and broken lines indicate the direction of the phase stimulus during
decreasing and increasing respectively. (b) Plot of derivative of output power resulting
from the evolution of the phase in (a).

through a collimating lens with the same model and it is installed with the same distance

as the one located in front of the laser diode. The different target surfaces used for this

experiment are a white paper, flat metal, microprismatic reflective tape and microsphere

reflective tape. Each of the surfaces is installed on a long range translation stage. Thus,

the laser beam is always pointing on the same area of the target surface. The feedback

power ratios profile are measured with distances ranging from 20 cm to 1.5 m. The laser

diode is operated with 17.5 mA injection current about 3 times its threshold current.

Then the target power reflectivity Rext can be calculated as,

Rext =
PFB

2P0
, (3.9)

70



3.3. Experiments

Figure 3.7: Experimental setup for measuring the target surface’s reflectivity.

where P0 is the half of unperturbed emitted power from the laser diode through the beam

splitter and PFB represents the half reflected power from the target. Then the amplitude

reflection coefficient can easily be found as,

rext =
√
Rext. (3.10)
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Figure 3.8: Amplitude reflectivity coefficient for different surface−white paper, flat
metal, microprismatic reflective tape, and microsphere reflective tape.

Different target surfaces at the same distance from the laser result in different ampli-

tude reflectivities as shown in Figure 3.8. Furthermore, when the distance between the

laser and the target increases, the amplitude reflectivity of the target decreases. However,

it does not mean that the feedback parameter C also decreases over the distance in the

same way as the amplitude reflection coefficient. The feedback parameter C is also pro-

portional to the external round-trip propagation time that is related to the external cavity
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length as seen in Eq. (2.32). Assuming that the laser diode in this experiment is driven

with the parameters of Table 3.1, with the constant of the loss re-injection factor of 0.1,

and the half of the amplitude reflection coefficient (due to the 50/50 beam splitter−half

goes back and re-injects into the laser cavity and other half goes to the power-meter),

the expression of the feedback parameter C in Eq. (2.32) gives the results of each target

surface.
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Figure 3.9: Variation of feedback parameter C as a function of the external cavity Lext

with different target’s surfaces. (a) White paper. (b) Metal. (c) Microprismatic reflective
tape. (d) Microsphere reflective tape.

It should be highlighted that different spots on the same surface and external cavity

length may result in different amplitude reflection coefficient due to the speckle effect.

Moreover, it is interesting to notice that the external amplitude reflection coefficient from

the target is also changed due to the optical components i.e., the collimating lens used

in front of the laser facet.
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3.3.2 | Frequency modulation coefficient
The parameter known as FM coefficient symbolises the variation between the laser injec-

tion current and the emission frequency, it needs to be determined experimentally as it

depends on the type, material, structure of the laser diode and the process of fabrication.

In this experiment, the FM coefficient is determined through the expression (3.6) by

counting the number of fringes for a given external cavity length Lext. To determine is

set the value of this parameter more precisely, the laser diode under the optical feedback

should be in the weak regime with the target surface covered by white paper located at

the distance of 1.2 m from the laser facet that ensures a high number of interferometric

fringes. The laser is biased with an injection current of 20 mA (around 3.34 times its

threshold current of 6 mA) and modulated with a 8 mA peak-to-peak amplitude in tri-

angle waveform. The photodetected signal from the photodiode is then converted to a

voltage by a transimpedance amplifier with a gain of 40 dB and a selective bandwidth

ranging from 40 Hz to 300 kHz.

Figure 3.10: Block Diagram of experimental setup: laser and photodetector are in the
same package; the laser bias injection current is modulated in triangle waveform from
the function generator, and the target is a white paper located at 1.2 m from the laser
facet.

The FM coefficient measurements are done for different modulation frequency rang-

ing from 100 mHz to 1 kHz in order to determine its dependency to the frequency of the

modulation signal. Figure 3.11 shows the results of SMI signal with different modulation

frequency−100 mHz and 1 kHz. To determine the FM coefficient, the observed fringes

in the SMI signal are counted. The number is then divided by the time between the first
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and the last detected fringes. This has to be done two times for a full cycle of the trian-

gle waveform-increase and decrease ramp. The computed FM coefficients are plotted in

Figure 3.12.

(a) (b)

Figure 3.11: Experimental SMI signals resulting from modulating the laser with different
modulation frequency when the target is fixed at 1.2 m from the target: (a) 100 mHz.
(b) 1 kHz.

Figure 3.12: Experimental measurement of FM coefficient as a function of modulation
frequency.

These results show that the FM coefficient decreases with the increase of frequency

modulation. It should be highlighted that the change between the modulation ramps

induces ring oscillation in the SMI signal. With higher frequency modulations and it

becomes larger in time causing the reducing the number of interferometric fringes as

shown in Figure 3.11(b) when the laser diode is modulated with 1 kHz of modulation
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frequency compare to the 100 mHz modulation frequency shown in Figure 3.11(a). The

next section will discuss how the bias injection current changes the SMI absolute distance

measurement.

3.3.3 | Laser injection current
As we can see in Eq. (2.77), the SMI output power is proportional to the laser injection

current in any form of modulation. As we will demonstrate in this section, it also largely

affect the behaviour of the SMI sensor. The changes in the injection current affect the

lasing wavelength by two different processes−the plasma effect and the thermal effect.

The plasma effect refers to the impact of injection current in the refractive index of the

material inside the laser diode which in turn affects the laser wavelength. Otherwise,

the thermal effects are the result of the heat being built up inside the laser cavity which

causes the changes to various properties of the laser diode including the intracavity Lin

and the refractive index of the cavity by means of the optical gain profile. Those changes

properties are proportional to the laser emission frequency. It is very interesting to high-

light that the thermal effect seems to be dominant when the laser diode is modulated at

lower frequencies. On the other hand, the plasma effect becomes dominant when the

laser diode is modulated at higher frequencies [56].

First, we investigate the influence of the laser injection current on the number of

interferometric fringes in the SMI signal. By using the same experimental setup shown in

Figure 3.10, the laser diode is biased with different values of DC current and modulated

with 10 mA peak-to-peak of amplitude at 50 Hz of frequency with triangle waveform.

The target is a white paper that is fixed at 1.2 m from the laser. The SMI signals with

different values of laser injections current are shown in Figure 3.13.

As can be seen in Figure 3.13, the number of interferometric fringes in the SMI signal

changes with the laser biasing current while the other parameters (Lext, modulation

amplitude and frequency, ...) are kept constant. The SMI signal results in twenty-five

interferometric fringes in each half of the triangle waveform when the laser diode is

operated with injection current 12.5 mA. However, this number changes to twenty-six,

twenty-eight and twenty-nine when the laser diode is injected with the current of 15 mA,

17.5 mA and 20 mA, respectively.

Figure 3.14 shows the SMI signals for the same distance between the laser and the

target from the previous experiment, but we covered the target surface with the micro-

sphere reflective tape instead of white paper. When the laser diode is operated with

12 mA of laser injection current (2 times of its threshold), the SMI signal exhibit a

chaotic behaviour in Figure 3.14(a); while, for the same feedback level, the SMI signal
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(a) (b)

(c) (d)

Figure 3.13: The results of experiment of SMI absolute distance with different injection
currents under 10 mA peak-to-peak of current amplitude at 50 Hz frequency modulation
with the target distance of 1.2 m. (a) 12.5 mA. (b) 15 mA. (c) 17.5 mA. (d) 20 mA.
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Figure 3.14: The results of experiment of SMI absolute distance with different injection
currents under 10 mA peak-to-peak of current amplitude at 50 Hz of the frequency mod-
ulation. (a) 12 mA. (b) 20 mA.

keep showing interferometric fringe when the laser is operated with 20 mA of injection

current (3.35 times of its threshold) in Figure 3.14(b).
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3.3.4 | Distant fringe frequency
The non-linearity between the laser injection current and the laser emission frequency

produces a non-linear emission frequency ramping while the current is modulated in a

linear fashion by a triangle signal. A 5 mA peak-to-peak of current amplitude at 10 Hz

frequency modulates a 20 mA biased laser diode. The target surface covered by a white

paper is fixed at 1.5 m from the laser facet. The SMI signal results in twenty-one visible

fringes for each half of the triangle waveform.
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Figure 3.15: Experimental signal acquisition for the distance of 1.5 m with 20 mA injec-
tion current: (a) The input voltage to the driving circuit which then converted in to a
current with corresponding current fluctuation of 5 mA peak-to-peak triangle modula-
tion at 10 Hz of frequency; (b) the SMI distant signal resulting from a linear modulated
current ramping.

The fringe frequency in each half of the triangle waveform keeps increasing over time.

Considering the fb,1 and fb,2 are the fringe frequencies during the increase and decrease

ramp of the modulation, the expression (3.7) can be rewritten as,

fb,1 = fb,2 = τext
dνth
dt

. (3.11)

We suppose that the modulated emission frequency resulting from the linear current

modulation in the triangle waveform is νth(t) = νth + A. exp(t/τ), where A is either

positive or negative depending on the laser emission frequency modulation ramps. Then

the fringe frequencies in (3.11) can be re-written in the function of time as,

fb,1 = fb,2 =
τext.A

τ
exp(t/τ). (3.12)

Since the derivations of both fb,1 and fb,2 have the same sign, then the fringe frequen-

cies in each half of the triangle waveform are expected to increase over time. Figure 3.16

sketches a linear triangle modulation in laser injection current that results in non-linear
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in the laser emission frequency. As a result, the fringe frequencies in the SMI signal are

not constant and keeps increasing over time. This can also be seen experimentally in the

SMI signal shown in Figure 3.15(b) where the fringe frequencies for both modulation

ramps keep increasing.

(a)

(b)

(c)

Figure 3.16: An assuming plot: (a) A full cycle of linear triangle modulation of injection
current in function of time. (b) The non-linearity of the laser frequency caused by linear
modulation of triangle waveform. (c) The result of non-constant of fringe frequency in
the optical output power.

With the experimental result in Figure 3.15(b) and the assuming the interpretation

depicted in Figure 3.16, parameters A and τ in Eq. (3.12) can be determined by applying

the curve fitting toolbox in MATLAB to fit the curve of the fringe frequency resulting

from the SMI signal. With the curve fitting toolbox, it gives Aτext/τ = 362.67 and τ =

0.132. As the target is fixed at a distance of 1.5 m from the laser, the external round-

trip propagation time results in 10 ns with the external refractive index next = 1. By

applying these values of A and τ into the expression of laser emission frequency without

feedback, then into the excess phase equation, the derivative of output power can be
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plotted in Figure 3.17(b).
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Figure 3.17: (a) Plot the measurement result of fringe frequency indicated in black solid
lines and the curve fitting from MATLAB Toolbox indicated in the red solid line. (b) Plot
SMI absolute distance with the obtained parameters in (a) under the optical feedback
level C = 0.9.

The simulation of the SMI derivated signal shows twenty-one interferometric fringes

in each half of the triangle waveform which agrees to the experimental result in Fig-

ure 3.15(b). Moreover, the simulation result also demonstrates that the fringe frequen-

cies are varying in both ramps of modulation. This variation will affect on the measure-

ment resolution and it will be discussed later.

3.3.5 | Fringe disappearance experiment
A block diagram of the experimental setup is depicted in Figure 3.18. The two variable

optical attenuators (Thorlabs NDC-50S-1 and NDC-50S-3) are displayed along the laser-

target path to control the back-scattered light intensity. A 50/50 beam splitter is used

to split the incident light beam from the laser−half goes to a tilt mirror to avoid the
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reflected light back to the beam splitter and maintain the SMI system in a single cavity

mode, and another half traverses the distance target to another mirror via the two vari-

able optical attenuators. Then the beam splitter collects 50% of the reflected light from

the target in the front-end detector of a power-meter through a collimating lens. The

target is a protected silver mirror (Thorlabs PF10-03-P01) located at a distance of 1.5 m

from the sensor. The laser diode is operated with a bias current of 20 mA (around 3.34

times its threshold current of 6 mA) and modulated with a 5 mA peak-to-peak amplitude

triangle waveform. The photodetected signal then is converted to the voltage by a tran-

simpedance amplifier with a gain of 40 dB and a selective bandwidth ranging from 40 Hz

to 300 kHz thus allowing to reject the triangle modulation of frequency 10 Hz.

Figure 3.18: Block diagram of experimental setup. Laser and photodiode are in the same
package.

Two parameters are characterized experimentally: the FM coefficient Ω and the am-

plitude reflectivity of the back-scattered light rext for the different attenuation conditions

in the external cavity. The frequency modulation coefficient is estimated through the ex-

perimental results of counting the interferometric fringes in the weak feedback regime,

and it results -430 MHz/mA at 10 Hz of frequency modulation.

The two variable optical attenuators propose eight different attenuation values re-

sulting in sixty-four different feedback levels. Without any attenuators, the amplitude

reflectivity coefficient rext is measured to be 30.12%. The lowest amplitude reflectivity is

0.24%, and twenty-one interferometric fringes per ramp of the triangle modulation are

observed. The output power keeps resulting with twenty-one fringes with the target’s
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amplitude reflectivity up to 1.79%. When the amplitude reflectivity is 2.37%, a pair of

fringes disappears, then another pair of fringes disappears for a reflectivity of 2.97%. The

fringes keep on disappearing as the reflectivity increases, and once it reaches to 25.54%,

all the twenty one fringes are lost.

Figure 3.19 shows some experimental results with different reflectivities: 1.77%,

2.37%, 2.97%, 8.61%, 13.06%, 15.86%, 21.08% and 25.54%. The experiment in Fig-

ure 3.19(a) shows twenty-one interferometric fringes at the output with 1.77% of am-

plitude reflectivity while for the different reflectivities. Figures 3.19(b), and 3.19(c), the

number of fringes decreases to twenty and nineteen respectively. Then fifteen, eleven,

nine and three interferometric fringes appears in the output power when the reflectiv-

ity coefficient continues to increase as shown in Figures 3.19(d), Figures 3.19(e), Fig-

ures 3.19(f), and Figures 3.19(g) respectively. In the Figure3.19(h), no interferometric

fringe appears which means twenty-one fringes are lost.

Using the feedback parameter C in Eq. (2.32), the excess phase equation in Eq. (2.74)

to solve the phase response, the phase stimulus in Eq. (3.8) and the output optical power

in Eq. (2.77) with realistic intrinsic parameters in Table 3.1, the reinjection loss factor ε,

with the values measured for the FM coefficient and the reflectivities rext and the MAT-

LAB scripts, Figure 3.20 shows the simulation of the derivative of laser power for one

period of modulation. The simulation results show a good agreement with the experi-

mental results in particular as concerning the number of missing fringes in each case.

In order to validate the expression in (2.92), the evolution of the interferometric

fringes disappearance as a function of the feedback parameter C is plotted in Figure 3.21,

both experimentally and theoretically taking optimized value C1 = 4.84 and C2 = 7.44

as the value where the first and the second fringes would have disappeared. As can

be observed, the model depicted by Eq. (2.92) is in great agreement with the observed

experimental results, and thus they validate the explanation of fringe disappearance.

It should be highlighted that the experiments in this section are achieved without the

initial condition when the laser diode first experiences the current modulation. So the

number of interferometric fringes in each half of the triangle waveform is equal.

3.3.6 | Fringes disappearance behaviour
The fringe disappearance behaviour in the SMI absolute distance has been theoretically

discussed with the rate equations in Section 3.2.2. The number of missing fringes is not

always the same between the first and the following ramp of the triangle waveform in the

output power when the laser first experience with current modulation. This behaviour in

the simulation is also observed in practice. The same experimental setup in Figure 3.18
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.19: Experimental SMI signal acquisition for the distance of 1.5 m with different
target’s amplitude reflectivities. (a) 1.77%. (b) 2.37%. (c) 2.97%. (d) 8.61%. (e)
13.06%. (f) 15.86%. (g) 21.08%. (h) 25.54%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.20: Simulation SMI output power in time for the distance of 1.5 m with different
target’s amplitude reflectivities. (a) 1.77%. (b) 2.37%. (c) 2.97%. (d) 8.61%. (e)
13.06%. (f) 15.86%. (g) 21.08%. (h) 25.54%.
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Figure 3.21: The behaviour of the interferometric fringe disappearance and the feedback
parameterC. The thin solid lines show the result of interferometric fringes disappearance
in theory and the marker points shows the results of the experiment.

is used for the demonstration. The target is a mirror that fixed at a distance of 1.2 m.

The laser diode is operated with a bias injection current of 20 mA and modulated with

a 5 mA peak-to-peak amplitude at 1 Hz frequency with the triangle waveform. The FM

coefficient is calculated to be -543 MHz/mA in this measurement condition.

With a very low reflection from the target, the SMI signal would have resulted in 22

interferometric fringes in each ramp of the triangle modulation. With high re-injected

lights from the target, the SMI output power experiences the fringe missing phenomenon,

and Figure 3.22 demonstrates some of the experimental results of the SMI signals under

three different external reflection coefficients including the initial condition where the

laser diode first experiences with the current modulation.

Figure 3.22(a) displays the SMI signal with fourteen and seven observed interfero-

metric fringes in the first then the following ramp of the triangle modulation. By ignoring

the first modulation ramp, fourteen fringes have been disappeared in the SMI signal. This

number of missing fringes can be used to estimate the feedback C through the graph dis-

played in Figure 2.10 or the expression (2.92).

With fourteen of missing fringes per each half of the triangle waveform, the laser

with the optical feedback should be operated under the feedback level C between 13π +

1 < C < 15π + 1. Using a feedback level C = 47 into the model SMI derivative of

output power is plotted in Figure 3.23(a) where it shows a good agreement with the

experimental result.
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With a similar approach with the experimental result shown in Figure 3.22(b), only

three fringes appear in the second and following modulation ramp while twelve fringes

appear in the first ramp of the modulation signal. So, eighteen fringes are considered as

missing fringes in the SMI signal; then the feedback level C should be in between 17π +

1 < C < 19π+ 1. By applying C = 60 to the SMI absolute distance rate equation, output

power numerical solution infallibly corresponds to the experimental result as shown in

Figure Figure 3.23(b). Last but not least the experimental result of the SMI output shown

in Figure 3.22(c), the first half of the triangle waveform displays ten interferometric

fringes, but no fringes can be observed in the following ramps. The laser should be

operated under the feedback parameter C greater than 22π+1. Then we try the feedback

C = 75 to the distance rate equation, the simulation result displayed in Figure 3.23(c)

corresponds to the experimental result shown in Figure. 3.22(c).

As discussed and explained in Section 3.2.2 with the experimental results in Fig-

ure 3.22 and simulation results in Figure 3.23, it is clear that that the lasing mode in

the moderate/strong feedback regimes would dwell the stable solution starting from the

high beginning of the phase stimulus. It is interesting to notice that if the current mod-

ulation is paused for a period of time and the laser diode does not turn off, the lasing

mode would keep the previous solution path. It means if the laser injection current is

re-modulated, the lasing mode will dwell on the stable solution back and forth with the

same path from the previous modulation cycle.

Figure 3.24(a) displays the extension of injection current triangle modulation includ-

ing a period of constant time. The laser injection current is first modulated with two

cycles in the triangle waveform then stays constant for a period of time without any form

of modulation before being re-modulated with another two more cycles of the triangle

waveform with the same amplitude and frequency modulation. Figure 3.24(b) shows

the simulation of the SMI absolute distance rate equations resulting from the current

modulation in Figure 3.24(a).

As we can see in the simulation result, the derivated power of the first and second

cycle of triangle modulation gives the same result depicted in Figure 3.23(a); then no

fringe appears when the injection current remains constant for an amount of time (caus-

ing no fluctuation in laser emission frequency). Later, when the laser injection current

is re-modulated again, the derivative of output power produces in the same number of

fringes as in the second modulation cycle of the previous modulation phase. It can be ex-

plained as the lasing mode does not jump back to the initial condition the lasing solution,

but dwells the stable path as in the previous modulation.

Figure 3.25(a) shows the experimental result with the current modulation of Fig-

ure 3.24(a) that shows a good an agreement with the simulation result depicted in Fig-
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Figure 3.22: Experimental SMI signal acquisition for the target distance of 1.2 m with
different amplitude reflection coefficients when the laser diode is operated with 20 mA
of injection current and 5 mA of current’s amplitude at 1 Hz of frequency modulation.

ure 3.24(b).

However, if there is any perturbation in the lasing frequency after being modulated

the injection current, the lasing mode will restart from the lasing solution of the ini-
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(a)

(b)

(c)

Figure 3.23: Simulation SMI output power in time for the distance of 1.2 m with different
values feedback parameter C. (a) C = 47. (b) C = 60. (c) C = 75.
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Figure 3.24: (a) Plot laser diode bias injection current in triangle waveform and constant.
(b) Plot SMI absolute distance through the rate equation with the form of injection cur-
rent in (a) under the feedback parameter C = 47.

tial condition that corresponds the highest/lowest stable solution of the phase stimulus

(depending on increasing or decreasing portion sweeping). Figure 3.25(b) displays the

experimental result when the perturbations occur at a time where the laser injection cur-

rent is constant without any form of modulation. The perturbations are caused by an

object inserted between the laser and the target. The perturbation causes the lasing solu-

tion to return back to the initial condition where fourteen interferometric fringes appear

on the half of the triangle waveform in the SMI signal−the same observed number of

fringes when the laser first experiences current modulation.
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Figure 3.25: Experimental SMI signal acquisition with the same target’s amplitude re-
flectivities. (a) Without any perturbation during the propagation of light between the
laser and the target. (b) With perturbation occurring during light propagation which
then restarts the lasing mode from the previous solution path.

3.3.7 | Measurement error

The experiment setup is described in Figure 3.10. The target is located at distances rang-

ing from 20 cm to 1.5 m from the sensor. The target surface is covered by microprismatic

reflective tape. The laser diode is operated with 20 mA of injection current and mod-

ulated with 10 mA peak-to-peak amplitude at 100 Hz frequency. The FM coefficient is

experimentally measured to be -354 MHz/mA through the average time spacing between

the fringes method and at the distance of 1.2 m in the weak feedback regime; this value

will be used to determine the external cavity distance in this section.

With raw current modulation, the laser emission frequency does not linearly vary
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with the bias injection current. The non-linearity between the bias injection current and

the laser emission frequency produces the unevenly spaces between fringes in the output

power, and this variation decreases the measurement resolution. With high amplitude

reflectivity form the external target at a certain distance, the fringe missing phenomenon

will occur at the beginning for an amount of time before a solid fringe would appear

in the SMI signal. This phenomenon causes a huge error in the distance calculation

while using the fringe counting method. Then, the alternative method, the average time

spacing between the fringes, is used to determine the distance in this case.

(a) (b)

Figure 3.26: The results of distant measurement of the microprismatic reflective tape
with different methods of calculation. (a) The counting number of appeared interfer-
ometric fringes. (b) The average time spacing between the appeared interferometric
fringes.

At 20 cm and 30 cm, the SMI signal displays no and one interferometric fringe, re-

spectively. It is important to note that the average time spacing between the fringes

method needs at least two consecutive fringes in the output power. When the distance

between the laser and the target is getting longer, the SMI signal starts showing more

fringes with the fringe missing phenomenon at the beginning of the ramp. With the

fringe counting method, the measurement resolution shows huge errors compared to the

actual distance (more than 20 cm); while the average time spacing between the fringe

method can improve the measurement resolution up to less than 10 cm absolute error.

However, this measurement resolution remains quite low as compared to the actual

distance, and this is because of the non-linear relationship between the laser injection

current and the laser emission frequency that causes the fringe frequencies to rise up

over time for each half of the triangle modulation. The wider space at the beginning of

the SMI signal caused by the fringe missing phenomenon results in lowering the average

time space between the fringes. As shown in Figure 3.26(b), the measured distances are

indeed bigger than the actual distances.
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With the assumption discussed in subsection 3.3.4, the fringe frequency is exponen-

tially increased with time and thus, the variation of the laser emission frequency can

also be found. In order to take into account this phenomenon, the FM coefficient can be

expressed as an exponential function of time for a given modulation ramp. We propose

to consider the variation of the variation of laser emission frequency in Eq. (3.1) and an

exponential variation νth(t) = νth +A. exp(t/τ), so the FM coefficient gives,

Ω(t) =
( |νth,max − νth,min|

4I

)
. exp(t/τ). (3.13)

(a) (b)

Figure 3.27: (a) Experimental result of fringe frequency at the distance of 1.2 m when
the laser diode is modulated with amplitude 10 mA peak-to-peak at 100 Hz frequency
modulation indicated in black solid lines, and MATLAB curve fitting is used to define the
constant parameter A and τ indicated in red solid line. (b) Laser emission frequency in
function of time resulting from curve fitting parameters in (a).

From the fringe frequencies in the SMI signal, while the laser is operated under the

weak feedback regime resulting from the triangle waveform modulation, a curve fitting

is applied to find the parameters A and τ in the expression (3.12) as shown in Fig-

ure 3.27(a). Then the change in laser emission frequency resulting from modulating the

laser injection current can be plotted which then its minimum and maximum value can

be determined as shown in Figure 3.27(b). So the exponential graph of the FM coeffi-

cient in Eq. (3.13) is plotted as shown in Figure 3.28, and it is then used to calculate the

distance between the laser and the target. The time location of the first solid observed

interferometric fringe corresponds to the value of the FM coefficient where it is used

to calculate the distance, i.e., Ω = −403 GHz/mA given from the result of SMI signal

demi-period of modulation at the distance of 1 m where the interferometric fringe disap-

pearance occurs in this case. From the distance of 40 cm, more than two interferometric

fringes are presented in each ramp of modulation which lets us to determine the fringe
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Figure 3.28: Determine FM coefficient value from the plot FM coefficient in function
of time resulting from curve fitting of the laser emission frequency with the SMI signal
demi-period of modulation when the target covered by the microprismatic reflective tape
is fixed at a distance of 1 m.

frequency for the distance’s calculation. Each experiment results in different FM coef-

ficient; and Figure 3.29 exposes the different results of measurement error calculation

between the FM coefficient compensation and the constant value of FM coefficient (i.e.,

Ω= -354 MHz/mA).

The new measurement error of the distance between the laser and the target covered

by reflective tape in this experiment can be improved to a few centimetres with the

average time spacing method including the compensation of the FM coefficient as shown

in Figure 3.29.

3.4 | Conclusion
The measurement of distance based on the SMI technique can be achieved when the laser

emission frequency is modulated with an ostensibly triangle waveform. This frequency

modulation can easily be obtained by modulating the laser injection current. However,
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Figure 3.29: Measurement error with time spacing method: the solid black line measured
with Ω= -354 MHz/mA and the solid red line measured with the exponential of the FM
coefficient resulting from the fringe frequency under the weak optical feedback regime.

in practice, the laser emission frequency does not linearly change with the laser injection

current due to the plasma and thermal effects produced inside the laser cavity. To deter-

mine the distance between the sensor and the target, a few methods can be used such as

counting the number of the appeared interferometric fringes in the SMI signal, averaging

time spacing between fringes and the fringe frequency resulting from the FFT. However,

at least two observable fringes are needed to measure the with the average time spacing

method. The absolute distance measurement with the SMI sensor is far from the triv-

ial because it is subject to various undesirable effects which are not encountered with a

conventional interferometric system. Different target surfaces will outcome the number

and location of the observed fringes differently. The higher amplitude reflection coef-

ficient from the external target causes more fringes to disappear or, in the worst case,

produces the chaotic behaviour in the SMI signal. The missing fringes in the SMI signal

caused by the level of back-scattered light from the target can be explained theoretically

by the factor feedback C in Chapter 2. The experimental results of fringe disappearance

behaviour conducted with the absolute distance measurement by controlling the level of

back-scattered light from the target with two variable optical attenuators show a good

validation with a proposed model in Chapter where two interferometric fringes disappear

in the SMI signal with the increment in feedback level C by 2π. One important remark

is the behaviour of the fringe disappearance in the SMI signal sensor. The number of

missing fringes in the SMI signal can be different between the first modulation ramp

and the others. The reason for this situation can be explained with the stable solution

in the excess phase equation when there are multiple stable solutions at the same co-

ordinate of the phase stimulus either the maximum or the minimum. The lasing mode
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will start from the lowest stable solution at the minimum of the phase stimulus or the

highest stable solution at the maximum of the phase stimulus depending on its direction

whether it is increasing or decreasing. Then the lasing solution will follow the stable

path back and forth between two points resulting in the same number of interferometric

fringes for following ramps of modulation. However, if any perturbation occurs in the

laser frequency after the laser being modulated the injection current, the lasing mode

will restart from the lasing solution of the initial condition. With raw current modula-

tion, the laser emission frequency does not linearly vary with the bias injection current.

The non-linearity between the bias injection current and the laser emission frequency

produces the unevenly spaces between fringes in the SMI signal where the fringe fre-

quency is exponentially increased with time. From this variation, the FM coefficient is

also assumed varying with time. So, the measurement error when the fringe disappear-

ance phenomenon occurs in the SMI signal can be compensated by choosing a value of

the right FM coefficient. The FM coefficient of the measurement is determined at the

time when the first solid interferometric fringe appears. It should be highlighted that

the exponential graph of FM coefficient needs to be plotted and it depends on the laser

diode, the amplitude of current modulation, and the modulation frequency.

Furthermore, in many distance measurement applications, the target or the sensor is

in motion where the Doppler is added into the system. So, the objective of chapter 4 is

therefore to analyse the interaction between these two effects in the SMI technique.
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4

Combined Distance and Velocity
Measurement

Today a number of different optical techniques capable of measuring target’s distance

and velocity or both exist. The most obvious optical method for measuring the velocity

of a moving target is to use the Doppler effect where light reflected from the moving

target will be shifted in frequency in proportion to the velocity of the target. A well-

known optical technique to measure the Doppler frequency is LiDAR (Light detection

and ranging). Traditional LiDARs use the time difference between pulses to measure

velocity. In contrary, the target’s velocity measurement based on the SMI technique uses

the interference of the light inside the laser cavity and the backscattered light containing

the Doppler information from the moving target. Measuring both the target’s distance

and verity is also possible with the SMI technique. By modulating current supplied to

the laser diode in triangle waveform which results in modulating the laser emission fre-

quency, both target’s distance and velocity can be determined from the measured two

beat frequencies at the output power. Measuring the distance and velocity of a system

gives fundamental information about its behaviour and also how it may evolve over time.

Because of the capability of measuring the distance and velocity at the same time, it is

possible to determine the profile and speed of the moving target.

Before going further to the application of measuring the external cavity length and the

target velocity at the same time, we should first explore the velocity alone. The velocity

of the target can be modelled with two different approaches−the target moves along the

longitudinal axis of the laser beam (that is the case for displacement or vibration) and the

target translates at a fixed distance from the laser (that is the case of many applications,

rotating target, flowing target, etc.). In the first case, the external cavity length varies in

time, and the external round-trip propagation time is then rewritten as,
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Chapter 4. Combined Distance and Velocity Measurement

τext(t) = next
2
(
Lext + υ(t)

)
c

, (4.1)

where υ is the displacement speed of the target along the optical axis.

With this application, the direction of the moving target (backwards or forwards the

laser facet) along the longitudinal axis of the laser beam is easily interpreted as described

in Chapter 2.

However, in case of the fixed target that has the velocity (i.e., rotating disc, flow

measurement), the target is stationary over time but has instantaneous velocity along

the longitudinal axis of the laser beam which imparts a frequency shift to light incident

upon it. The laser diode as a monochromatic propagates the light on the surface of the

rotating target at the distance Lext between the laser and the target, and the light then

scatters off the target which creates a Doppler shift. We will detail this in the following

section.

4.1 | Laser Doppler
The Doppler measurement technique based on the laser was first demonstrated by many

researchers in the late 1970s [81, 82, 83]. The velocity information from the scattering

rotating or translating target is contained in the scattered fields due to the Doppler effect.

4.1.1 | Modelling
The configuration of the SMI Doppler velocimetry is illustrated in Figure 4.1. When the

laser beam (characterised by the wavelength λth and the emission frequency νth), travels

towards the target surface located at the external cavity length Lext before being back-

scattered and re-injected into the laser cavity. It should be highlighted that the incident

wave at νth, propagation time is τext/2. The reflected wave from the target will take a

propagation time τext/2 before entering the laser intracavity.

Based on the Land and Kobayashi model for SMI Doppler shifted presented by Za-

kian et al. [84] and Nicolić et al. [85], once the emission frequency from the laser in-

terferes with the Doppler frequency and backscatters and recombines with the initial

emission frequency inside the laser. Then, the phase stimulus of the excess phase equa-

tion in (2.74) is then transformed as,

ϕs(t) =
(
ωs +

ΩD

2

)
τext − ΩD(t), (4.2)
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4.1. Laser Doppler

Figure 4.1: The principle of self-mixing interferometer for velocimetry application with
a translating target. Solid line with arrows indicates the beam light direction both in the
internal and external cavity.

where ΩD = 2πfD is the angular frequency produced by the Doppler effect, and fD is the

Doppler frequency which is expressed as [11, 86],

fD = next
2υ cos θ

λth
, (4.3)

where υ is the speed of the target and θ is the angle between the laser beam axis and the

target velocity vector.

Using the laser diode parameters in Table 3.1, the SMI signal output power is plotted

in Figure 4.2 through the expression (2.77) with a feedback parameter C = 0.7 for the

excess phase equation and given physical parameters such as the speed of the rotating

disc υ = 2 mm/s, the angle between the laser beam axis and the target velocity θ =

30◦, the external cavity length Lext = 1 m and the external refractive index next = 1.

Figure 4.2 displays the simulation results of the SMI optical output power in the time

and frequency domain.
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Figure 4.2: Simulation self-mixing velocimetry power under the optical feedback C =
0.7: (a) In the time domain. (b) In the frequency domain.

The signal spectral analysis can be applied to determine the Doppler frequency as
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shown in Figure 4.2(b). The strongest peak in the frequency domain corresponds to the

Doppler frequency as calculated through the expression (4.3).

Any fluctuation in the feedback parameter C in the system causes the changes in

signal amplitude and appearance, and this can be observed in Figure 4.3. The shape

of the fringes is almost sinusoidal when the feedback parameter C is very small and

translates to sawtooth-like waveform the feedback parameter C is greater than one. This

shape of sawtooth-like in the observed output signal can be explained with transitions

of the stable solutions in the behaviour of cosϕFB exactly as in the case of the laser

modulation or vibration depicted in chapters 2 and 3.
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Figure 4.3: Simulation self-mixing velocimetry power under different optical feedback
parameter C.

As the distance between the laser and the target is fixed, then there is only Doppler

frequency that drives changes in the SMI output signal. As the target velocity moves in

one direction either its projection is seen as is positive or negative, the phase stimulus

will change also in one direction either increasing or decreasing. As the interferomet-

ric fringe disappearance phenomenon explained in the previous chapters occurs also in

this situation but the fringes will be lost only at the beginning of the displacement when

the laser diode is operated under the moderate/strong optical feedback regime. Con-

sequently, this phenomenon is hard to be observed in actual velocity sensing schemes

where the Doppler effect induces a huge amount of fringes.

As we know that the frequency-shifted in the optical feedback is produced by the

Doppler shift in the incident laser frequency; then the rate equation for the electric field
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in Eq. (2.63) is modified as [84],

dE(t)

dt
=
(
j(ω − ωth) +

1

2

(
ΓG− 1

τph

))
E(t) +

κext
τin

E(t− τext) exp(−jϕD1(t)), (4.4)

where

ϕD1(t) =
(
ωth + πfD

)
τext − 2πfD(t). (4.5)

Therefore, this leads to the changes in rate equations for the carrier number, photon

number and the phase in Eq. (2.64), and it can be written as,

dS(t)

dt
=
(

ΓG− 1

τph

)
S(t) +

2κext
τin

√
S(t)S(t− τext) cosϕD2

dϕ(t)

dt
=

1

2

(
ΓG− 1

τph

)
− κext

τin

√
S(t− τext)/S(t) sinϕD2

dN(t)

dt
=
ηiI

qV
− N(t)

τn
−GS(t),

(4.6)

where

ϕD2 =
(
ωth + πfD

)
τext − 2πfDt+ ϕ(t)− ϕ(t− τext). (4.7)

By applying the same simulation parameters from the case in Figure 4.2, the SMI

output power signal has the interferometric fringe’s form in the time domain and results

in the same Doppler beat frequency in the frequency domain as the simulation result

with the excess phase equation.

The rate equations for Doppler-shifted optical feedback in (4.6) presents with a

single-frequency component. However, optical feedback from fluid and rough surfaces

in motion consists of multiple frequency-shifted components spectrale close to one an-

other [85]. So these rate equations have been modified by Nikolić et al. by adding the

independently and uniformly distribution phase over 2π radian, and it can be written as,

dS(t)

dt
=
(

ΓG− 1

τph

)
S(t) +

2κext
τin

√
S(t)S(t− τext)γ

k∑
k=1

Ak cosϕD3,k

dϕ(t)

dt
=

1

2

(
ΓG− 1

τph

)
− κext

τin

√
S(t− τext)/S(t)γ

k∑
k=1

Ak sinϕD3,k

dN(t)

dt
=
ηiI

qV
− N(t)

τn
−GS(t),

(4.8)

where

ϕD3,k =
(
ωth + πfD,k

)
τext − 2πfD,kt+ ϕ(t)− ϕ(t− τext) + ϑk, (4.9)

where ϑk is an independently and uniformly distributed phase over 2π radian, ϑk ∼
U(0, 2π), that is added to each ϕD3,k. γ is the scaling factor and it is necessary to ensure

that the optical feedback power level has a root-mean-square value equal to that of a
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single sinusoid, regardless of the number K of frequency components. Figure 4.4 shows

the simulation results in the time and frequency domain of the SMI frequency shift dis-

tribution from the rate equations in (4.8) under the feedback parameter C = 0.7 and the

Doppler frequency ranging between 25 kHz and 26 kHz.

(a)

(b)

Figure 4.4: Simulation self-mixing power resulting from the Doppler shift distribution
based on the rate equations. (a) In the time domain. (b) PSD of the self-mixing power
variations in (a).

In reality, the uniform amplitude of SMI output signals in the time domain is caused

by the Speckle effect that normally resulting from the reflection of coherent light at the

rough surface with a complicated structure, such as a piece of paper, white paint, a

display screen, or a metallic surface. We will validate this effect by using a piece of white

paper in our experiment in the next section.

4.1.2 | Experiment and validation
The experimental setup is displayed in Figure 4.5. It consists of a DFB laser diode

(L1550P5DFB) lasing at 1550 nm with a package−included a monitoring photodiode

is associated to a collimating lens with focuses the laser beam onto the rotating target
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4.1. Laser Doppler

surface which is covered by a white paper. An angle of 80◦ between the laser beam axis

and the target velocity vector is set. The laser diode is operated with a bias injection

current of 20 mA (about 3.34 times its threshold current of 6 mA). The photodetected

signal from the photodiode is then converted to a voltage by transimpedence amplifier.

The distance between the laser and the target is 1 m and the target spins with DC motor

in the clockwise direction.

Figure 4.5: Experimental setup for self-mixing Doppler shift with the rotating target.

Figure 4.6 displays the experimental results of the SMI frequency shift distribution

which shows an agreement to the numerical simulation shown in Figure 4.4. The ampli-

tude of the signal varies over time, and it can be explained that the white paper surface

is rough. It is interesting to notice that not only the speckle effect has effects on the

amplitude of SMI signal but it also has been shown that the numerical aperture (NA) of

the focusing lens allows different intensities of light from different angles to be mixed

with the original laser light [87].

Next experiment, we replace the white paper target surface with the microprism re-

flective tape at the same external cavity length between the laser and the target, the

speed of rotating and the angle between the laser beam axis and the target velocity vec-

tor. The result in Figure 4.7(a) shows the SMI signal with a series of interferometric

fringes which greatly varies over time. However, it is interesting to mention that the

reflective tape reflection coefficient fluctuates very quickly compared to the white paper.

Any variation in the external reflection coefficient modulates the feedback parameter C

which then varies not only the amplitude signal but also the beat frequency at the SMI

output signal. The rapid changes in the reflection coefficient from the microprism tape

surface results in no detected peak of Doppler frequency in the PSD frequency domain

displayed in Figure 4.7(b).

The similar experimental result was also done in [88] where the external physical
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Figure 4.6: Experimental results of Doppler shift with the white paper surface. (a) The
self-mixing signal in the time domain. (b) PSD of of the self-mixing power variations
obtained from (a).

length of the target changes constantly along the laser beam axis instead of a stationary

target. Their explanation describes clearly that the speckle effect results in variation in

the feedback parameter C. Other experimental results about the speckle effect can also

be found in [89, 90].

By default, the spectral analysis of the SMI signal does not provide information on

the direction of the velocity vector direction. However, as will be discussed in the next

section, the direction can be obtained when modulating the laser wavelength through its

injection current.

4.2 | Measurement of the target distance and velocity
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Figure 4.7: Experimental results of Doppler shift with the microprism reflective tape
surface. (a) The self-mixing signal in the time domain. (b) PSD of of the self-mixing
power variations obtained from (a).

4.2.1 | Modelling

If the laser emission frequency is modulated to produce a periodic triangle frequency

sweep by means of modulating the laser injection current, an estimation of the external

cavity length and of the target velocity are possible calculated at the same time. It should

be noticed that the increasing linear sweep of lasing frequencies is seen as a linear ex-

tension of the external cavity, while the decreasing sweep is seen as a reduction of the

external cavity.

As we described in Chapter 3, modulating the laser injection current which then

modulates the laser emission frequency in triangle waveform, the SMI output power

results in a triangle waveform with low contrast ripples on each ramp of modulation by

the interferometric fringe. Those fringes correspond to the longitudinal modes in the

external cavity whose frequency spacing are proportional to the distance between the

laser and the target.
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Combining the two physical stimuli, the Doppler shift for a stationary target in Eq. (4.2)

and the triangle laser emission frequency at the free-running state in Eq. (3.1), into a sin-

gle phase stimulus that can be expressed in function of time as,

ϕs(t) = 2πτext

(
νth + ∆νth(t) +

fD
2

)
− ΩD(t). (4.10)

The SMI output power can thus be computed by applying the modulated phase stimu-

lus in Eq. (4.10) into the excess phase equation in Eq. (2.74) to solve the phase response

which is related to the SMI output power in Eq. (2.77). Besides the excess phase equa-

tion model, this application of the Doppler shift from a stationary target with triangular

laser emission frequency sweeping can also be modelled with the rate equation. It is

expressed as,

dS(t)

dt
=
(

ΓG− 1

τph

)
S(t) +

2κext
τin

√
S(t)S(t− τext) cosϕD4

dϕ(t)

dt
=

1

2

(
ΓG− 1

τph

)
− κext

τin

√
S(t− τext)/S(t) sinϕD4

dN(t)

dt
=
ηiI

qV
− N(t)

τn
−GS(t),

(4.11)

where

ϕD4 =
(
ωth(t− τext) +

ΩD

2

)
τext − ΩDt+ ϕ(t)− ϕ(t− τext) (4.12)

The SMI output power can thus be calculated with the rate equation using a fourth

order Runge-Kutta algorithm, and the same procedure described in the previous absolute

distance chapter. The Doppler shift leads to an asymmetry in the number of interferomet-

ric fringes observed in each half of the triangle waveform that can be used to discriminate

the displacement.

It is important to highlight that using a rotating disk as the target, the distance be-

tween the laser and the target is stationary, then the distance beat frequency fd remains

constant. The Doppler beat frequency fD is proportional to the target velocity and the

angle between the laser beam axis and the target velocity vector. Then, two cases must

be considered−when the distance beat frequency is superior to the Doppler frequency

and when the distance beat frequency is inferior to the Doppler frequency.

4.2.1.1 | When |fd| > |fD|

For the simulation in Figure 3.1, at the external distance of 1 m with a given FM coef-

ficient of -3 GHz/mA, and the laser diode is modulated with an amplitude of 0.5 mA

peak-to-peak in triangle waveform at 50 Hz frequency modulation, the distance beat
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4.2. Measurement of the target distance and velocity

frequency is 1 kHz with twenty interferometric fringes for a complete period of trian-

gle modulation waveform in the SMI output power. Then, with a velocity of the target

0.35 mm/s and the angle 30◦, the Doppler frequency results in 391.10 Hz.

The number of fringe in each half of the triangle waveform strongly depends on the

Doppler shift frequency and the direction of the target. The different number of interfer-

ometric fringe in the SMI signal results from the asymmetrical of the phase stimulus as

shown in Figure 4.8.
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Figure 4.8: Simulation laser phase stimulus for the rotating target. (a) In the clockwise
direction with the speed υ = +0.35 mm/s. (b) In the anticlockwise direction with the
speed υ = -0.35 mm/s.

In Figure 4.8(a), when the Doppler frequency is positive (rotating clockwise direc-

tion), the decreasing phase stimulus sweeping in the first half of the triangle waveform

is longer than the increasing phase sweeping in the other half of the triangle waveform.

On the other hand, when the Doppler frequency is negative (rotating anticlockwise direc-

tion), the decreasing phase stimulus sweeping in the first half of the triangle waveform

is shorter than the increasing one in the other half of the triangle waveform as shown in

Figure 4.8(b). Both cases of rotating directions in Figures 4.8(a) and (b) result in a differ-

ent number of interferometric fringes in the SMI output signal as shown in Figures 4.9(a)

and (b), respectively.

The classical method to calculate the external cavity length and the target velocity is

by counting the integer number of the observed interferometric fringes in the SMI output

signal for a full cycle of triangle waveform. Assuming that the number of observed

fringes for the first and second half period of the triangle waveform are Nf,1 and Nf,2,

respectively, the target velocity and distance can be determined as [4],

Lext =
c

4∆IΩnext

(
Nf,1 +Nf,2

)
, (4.13)

105



Chapter 4. Combined Distance and Velocity Measurement

Time (ms)

O
u
tp
u
t
P
o
w
er

(m
W

)

120

120.2

120.4

120.6

120.8

(a)

Time (ms)

O
u
tp
u
t
P
o
w
er

(m
W

)

120

120.2

120.4

120.6

120.8

(b)

(c) (d)

Figure 4.9: Simulation self-mixing power resulting from modulating the phase stimulus
in the triangle waveform under the feedback parameter C = 0.7 in different velocity
directions. (a) In the clockwise direction with the speed υ = +0.35 mm/s. (b) In the
anticlockwise direction with the speed υ = -0.35 mm/s.

υ =
λthfm
2 cos θ

(
Nf,1 −Nf,2

)
. (4.14)

As seen in Eq. (4.14), the direction of the target (clockwise or anticlockwise in the

case of the rotating target and linear extension or contraction of the external cavity) can

be discriminated as the number of observed fringes is not equal between each half of the

triangle waveform. It is interesting to notice that the sum of observed interferometric

fringes for a full cycle of the triangle waveform always equals the number of appeared

fringes in a triangle period in SMI absolute distance measurement.

As discussed in Chapter 3, the alternative methods can also be used to determine the

external cavity and the target velocity in this case. Assuming that the average spacing

times between fringes for the first and second half of the triangle waveform are tb,1

and tb,2, respectively, then the corresponding average beat frequencies are fb,1 and fb,2.

Applying the FFT to the SMI output power, the first strongest peak is ignored due to

the frequency modulation of the triangle waveform; then the next two strongest peaks
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corresponds to the average beat frequency of interferometric fringes during the linear

increasing and decreasing output power sweep of the SMI signal. So, the distance beat

frequency and the Doppler beat frequency can be defined as ??,

fd =
fb,1 + fb,2

2
, (4.15)

fD =
fb,1 − fb,2

2
, (4.16)

Thus the external cavity of physical length and the target velocity can be rewritten

as,

Lext =
c

8∆IΩfm

(
fb,1 + fb,2

)
, (4.17)

υ =
λth

4 cos θ

(
fb,1 − fb,2

)
. (4.18)

Figure 4.10: FFT of the simulated self-mixing velocimetry output power resulting from
the triangular frequency sweeping.

Figure 4.10 shows the plot of FFT for the SMI output power which results in 600 Hz

and 1400 Hz for the first and second strongest peak. It should be highlighted that the

sign of the Doppler beat frequency may not be discriminated when applying the FFT to

a full cycle period of triangle modulation of the SMI signal. It cannot tell that the first

or second peak corresponds to the first or second beat frequency in the output power.

However, if we apply the FFT to each semi-period of triangle modulation of SMI signal

by knowing that fb,1 is the beat frequency when the injection current increases and fb,2
is the beat frequency when the injection current decreases, the direction of the moving

target is easy to determine.

107



Chapter 4. Combined Distance and Velocity Measurement

4.2.1.2 | When |fd| < |fD|

With the given target velocity of 2 mm/s and the angle between the laser beam axis and

the target velocity of 30◦, the Doppler frequency would result in 2.23 kHz. With the same

simulation parameters as in the previous section and the 2.23 kHz of Doppler frequency,

the phase stimulus in (4.10) can be plotted for both cases as shown in Figure 4.11.
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Figure 4.11: Simulation laser phase stimulus for the rotating target. (a) In the clockwise
direction with the speed υ = +2 mm/s. (b) In the anticlockwise direction with the speed
υ = -2 mm/s.

As seen in Figure 4.11(a) with a positive Doppler shift when the bias injection cur-

rent increases, the phase stimulus linearly decreases. Then when the injection current

decreases, the phase stimulus does not inversely increase, but instead continuously de-

creases until the end of the triangle modulation. However, when the Doppler shift is

negative, the phase stimulus keeps increasing for a full cycle of triangle modulation as

shown in Figure 4.11(b). In this case, the length between the ϕs,min and ϕs,max depends

on the value of Doppler frequency which is then affected to the number of interferomet-

ric fringes in the optical output power. The derivative of the SMI output power will result

in a series of interferometric fringes which are all positive or negative depending on the

Doppler shift sign and thus on the translation direction as shown in Figure 4.12.

The external cavity length and the target velocity can be determined by using the

observed fringes counting method as [4],

Lext =
c

4∆IΩnext

(
|Nf,1 −Nf,2|

)
, (4.19)

υ =
λthfm
2 cos θ

(
Nf,1 +Nf,2

)
. (4.20)

Furthermore, the external cavity of physical length and the target velocity can also

be determined with the frequency domain method by applying the FFT as shown in

108



4.2. Measurement of the target distance and velocity

Time (ms)

O
u
tp
u
t
P
o
w
er

(m
W

)

120

120.2

120.4

120.6

120.8

(a)

Time (ms)

O
u
tp
u
t
P
o
w
er

(m
W

)

120

120.2

120.4

120.6

120.8

(b)

(c) (d)

Figure 4.12: Simulation self-mixing power resulting from modulating the phase stimulus
in the triangle waveform under the feedback parameter C = 0.7 in different velocity
directions. (a) In the clockwise direction with the speed υ = +2 mm/s. (b) In the
anticlockwise direction with the speed υ = -2 mm/s.

Figure 4.13: FFT of the simulated self-mixing velocimetry output power resulting from
the triangular frequency sweeping.
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Figure 4.13. The first two strongest of the average beat frequency peaks in the FFT

are used to determine the distance and Doppler beat frequency; those can be expressed

as [4],

fd =
|fb,1 − fb,2|

2
, (4.21)

fD =
fb,2 + fb,1

2
. (4.22)

Then, the external cavity length and the target velocity can be calculated as,

Lext =
c

8∆IΩfm

(
|fb,1 − fb,2|

)
, (4.23)

υ =
λth

4 cos θ

(
fb,1 + fb,2

)
. (4.24)

The next section, we will see the behaviour of SMI signal in different optical feedback

regimes.

4.2.2 | Phase behaviour
The SMI output powers described in the previous section were simulated under the weak

feedback regime. However, when the laser diode is operated under moderate/strong

feedback, interferometric fringe disappearance phenomenon appears in the SMI output

signal. So, in this section, we will present the SMI phase behaviour in this application for

both cases discussed in the previous section.

4.2.2.1 | When |fd| > |fD|

As we have discussed before in Chapters 2 and 3, the phase response ϕFB in the excess

phase equation mainly depends on the phase stimulus ϕs and the feedback parameter

C as the linewidth enhancement factor α is usually modelled as a constant. It should

be noted that the phase stimulus is fixed by the emission frequency, the external cavity

length and the Doppler frequency. Using the simulation in Section 4.2, we vary the

feedback parameter C to see the evolution of the SMI phase behaviour in different optical

feedback regimes.

The variation between the increasing and decreasing portions of the phase stimulus

for each half of the triangle waveform is not symmetrical because of the presence of

Doppler shift. The portion of the phase stimulus for the first half of the triangle wave-

form varies more than the other half portion. To ease further demonstration, the laser

injection current in this section is modulated with two periods of triangle waveforms.
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Figure 4.14: (a) Plot the triangle laser phase stimulus sweeping in the function of time
when the distance beat frequency is superior to the Doppler frequency. (b) The lasing
mode in phase behaviour under the optical feedback parameter C = 0.7.

The modulation of the injection current results in the change of the phase stimulus as

shown in Figure 4.14(a). The first cycle of modulation is indicated in the thick blue solid

lines while the second cycle of modulation is indicated in the red one.

Figure 4.14(b) displayed the SMI phase behaviour with a feedback parameter C =

0.7. The phase stimulus for the first half period of modulation results in 14 segments

of the curve C while for the other half period 6 segments of the curve C are generated.

Under the weak feedback regime, the lasing mode will start dwelling the stable solution

from point A (the maximum of the phase stimulus ϕs1,max), then goes down to point B

(the minimum of the phase stimulus ϕs1,min), crosses 14 segments of the curve C without

any mode hopping. Unlike the absolute distance application, when the laser injection

current decreases for another half period, the lasing mode does not turn back with the
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same solution path to point A, but it keeps dwelling just 6 segments of the curve C and

stops at point C. For a new cycle of modulation, the lasing mode does not jump back to

point A but starts dwelling the stable solution from point C where it has stopped from

the previous modulation cycle (the maximum of phase stimulus for the second cycle,

ϕs2,max). From point C, the lasing mode will dwell the stable solution to point D (the

minimum of phase stimulus for the second cycle, ϕs2,min) with 14 curves C and backs to

point E for another 6 curves C for a new cycle of triangle modulation.

When the laser diode is operated under the moderate/strong feedback, anti-mode or

unstable solution occurs in the lasing mode, and the interferometric fringe disappearance

phenomenon will also happen. In the next simulation, we will set the parameter C to

31.26. The interferometric fringes appear only in the first half of the triangle waveform

in the SMI output power.

As seen in Figure 4.15(a), only linear decreasing portion of the phase stimulus still

displays the transitions of the stable solution in the lasing mode. When the phase stimu-

lus decreases for the first half of the triangle waveform, the lasing mode dwells the stable

solution from point A, goes down to point B with 10 transitions between curve C which

result in 10 interferometric fringes at the output power indicated in solid blue lines. On

the other hand, when the phase stimulus increases for another half of the triangle wave-

form, there is no transition of the stable solution; but lasing mode just dwells the stable

solution on the same curve from point B to point C.

Later, for a new cycle of the triangle modulation, the lasing mode will dwell the stable

solution starting from point C where it has stopped from the previous modulation cycle

to point D with another 7 modes hopping and goes to point E without any mode hopping

indicated in thick red solid lines. Then, the SMI output power for these two modulation

cycles can be plotted with the rate equation under the feedback level C = 31.26 shown in

Figure 4.15(b). We can see clearly that there is no interferometric fringe when the phase

stimulus linear increases over time.

With the missing fringe occurs in the SMI output power, the calculation error of the

external cavity length and the target velocity is very high while using the counting fringes

method. The determination of those parameters should be performed with the average

time spacing or FFT method.

4.2.2.2 | When |fd| < |fD|

When the Doppler beat frequency is superior to the distance beat frequency, the modu-

lated phase stimulus’s form is no more a triangle waveform; it will keep either increasing

or decreasing slope for a complete modulation period. For the positive Doppler frequency,

112



4.2. Measurement of the target distance and velocity

ϕs

ϕs2,min ϕs1,min ϕs2,max ϕs1,max

ϕ
F
B

D

B C

A

E
First Cycle

Second Cycle

(a) Plot the dwelling path solutions of phase stimulus and
phase response.

(b) Plot derivative of the output power in resulting from the
dwelling solution path in (a).

Figure 4.15: (a) Plot the lasing mode behaviour resulting from the triangular phase
stimulus sweeping under the feedback parameter C = 31.26. (b) Simulation the self-
mixing power resulting from dwelling of the lasing mode in (a).

the phase stimulus is decreasing over time as shown in Figure 4.16(a); on the contrary,

the phase stimulus is increasing over time when the Doppler beat frequency is negative.

These circumstances give the extension of the segment of the curves C because of the

sweeping portion of the phase stimulus. The number of extension curves mainly de-

pends on the Doppler beat frequency while considering that the distance beat frequency

is constant.

Under the weak optical feedback regime, the lasing mode seeks for the stable solution

commencing from point A, then passes by point B and C for the first cycle of the triangle

modulation indicated in the thick blue solid line. Later, the lasing mode will continue to

decrease from point C to D, then E for the second cycle of modulation indicated in thick

red solid line as shown in Figure 4.16(b). With this SMI phase behaviour of the stable
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Figure 4.16: (a) Plot the triangle laser phase stimulus sweeping in the function of time
when the distance beat frequency is inferior to the Doppler frequency. (b) The lasing
mode in phase behaviour under the optical feedback parameter C = 0.7.

mode dwelling under the feedback parameter C = 0.7, the derivative of the output

power would result in a series of interferometric fringes where all of the spikes observed

are negative shown in Figure 4.12(b).

However, when the laser diode performs under the moderate/strong optical feedback

regime, the stable solution’s line of each curve are getting wider where the interfero-

metric fringe disappearance phenomenon would occur only at the beginning in the SMI

output signal. The reason that the fringe missing phenomenon happens only at the be-

ginning of the signal is because of the ostensibly decreasing of the phase stimulus over

time. Figure 4.17(a) displayed the dwelling of the lasing mode in stable solutions in the

same manner as the previous simulation; from point A to B, C, D, then E for two cycles of

the triangle modulation. The SMI output signal resulting from the dwelling of the lasing
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(a) Plot the dwelling path solutions of phase stimulus and
phase response.

(b) Plot derivative of the output power in resulting from the
dwelling solution path in (b).

Figure 4.17: (a) Plot the lasing mode behaviour resulting from the triangular phase
stimulus sweeping under the feedback parameter C = 26. (b) Simulation the self-mixing
power resulting from dwelling of the lasing mode in (a).

mode is presented in Figure 4.17(b).

4.2.3 | Experimental validation
As discussed in Chapter 3, the modulating laser emission frequency is easy to obtain

by modulating the laser injection current. In this experiment, the FM coefficients are

re-measured while varying the frequency modulations through the Eq. (3.6) in the SMI

absolute distance application with the same experimental setup illustrated in Figure 4.14

as we change the electronics card and the laser diode in this experiment. The reason

behind this changing is that we need a faster and high-frequency bandwidth to adapt

the rotating target in our experiments. The laser diode (ML920J11S-01) with a package-
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included a monitoring photodiode is associated to a collimating lens which focuses the

laser beam on the target surface which is a white paper. The laser diode is operated with

a bias injection current of 15 mA (about 2 times of its threshold current) and modulated

with an amplitude of 5 mA peak-to-peak with a triangle waveform. The target is sta-

tionary at a distance of 1 m from the laser. The photodetected signal from the packaged

photodiode is then converted to a voltage by a transimpedance amplifier with a selective

bandwidth ranging from 150 kHz to 10 MHz.

In SMI absolute distance application, the derivative of the output signal will result

in a series of sharp peaks in each half of the triangle waveform. The interferometric

fringes are then detected by setting a threshold height. Later, the counted fringe number

is then divided by the time spacing between the first and the last detected fringe to give

the average spacing time. The FM coefficients are measured with different frequency

modulation ranging from 1 kHz to 25 kHz; then results are plotted in Figure 4.18. It

is interesting to highlight that the number of interferometric fringes decreases at higher

frequency modulation, as a result of the decay of the FM coefficient.

Frequency Modulation (kHz)

100 101 102

F
M

C
o
effi

ci
en
t
(d
B
)

-14

-12

-10

-8

-6

-4

-2

0

Figure 4.18: Plot the experimental results of FM coefficients in function of frequency
modulations.

The experiment setup for the SMI absolute distance and target velocity by triangular

frequency sweeping is depicted in Figure 4.19. The laser diode is injected with a bias

current of 15 mA and modulated with an amplitude of 5 mA peak-to-peak at 5 kHz of

frequency modulation. The laser beam focuses on the target surface through a collimat-

ing lens. The target is a disc that rotates thanks to the DC motor that is fixed at 1 m

from the laser, so that it creates a 60◦ angle between the laser beam axis and the target
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velocity vector. The disc surface is covered first by a white paper, then with a microprism

reflective tape to obtain a higher reflection coefficient.

Figure 4.19: Block diagram of experimental setup. Laser and photodiode are in the same
package, and the target is metal disc that can be rotated through the DC motor.

Figure 4.20 displays experimental results of the SMI signal when the distance beat

frequency is superior to the Doppler beat frequency in different directions with a differ-

ent surface. In the clockwise rotating direction, the number of interferometric fringes in

the first half of the triangle modulation exceeds the number of fringe in the other half

as shown in Figures 4.20(a) and (c). As expected, when the target rotates in the anti-

clockwise direction, the opposite phenomenon is observed as shown in Figures 4.20(c)

and (d). The SMI signals in Figures 4.20(a) and (b) are obtained with the white paper

surface that generates no interferometric fringe disappearance. At the contrary, there are

some missing interferometric fringes when the target is the reflective tape as displayed

in Figures 4.20(c) and (d). It should be highlighted that those experimental results do

not include the initial condition when the laser diode experiences the early current mod-

ulation. It is interesting to notice that the number of missing fringes between each half

period modulation should be the same even the phase sweeping portions is not symmet-

rical.

The external cavity length and the target velocity in these experiments are calculated

by using the average time between two consecutive fringes. The SMI output signal in Fig-

ure 4.20(a) results in an external cavity of 1.007 m and a Doppler frequency of 64.2 kHz,

while Figures 4.20(b), (c) and (d) result in the distance of 0.9421 m, 1.16 m and 1.15 m;
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Figure 4.20: Experimental SMI signal acquisition when the distance beat frequency is
superior to the Doppler frequency in different velocity directions and target surfaces.
(a) and (b) The target as a white paper surface rotates in clockwise and anticlockwise,
respectively. (c) and (d) The target as a microprism reflective tape surface rotates in
clockwise and anticlockwise, respectively.

and Doppler frequencies of -75.9 kHz, 58.4 kHz and -60.4 kHz, respectively. With the

white paper target surface, the measurement resolution of the distance is up to several

centimetres as no interferometric fringe disappearance during the data acquisition but it

raises up to more than 10 cm with the microprism reflective tape surface.

In the other case, when the distance beat frequency is inferior to the Doppler fre-

quency, the interferometric fringes in the SMI signal appears either all positive or neg-

ative depending on the direction of rotation, the external cavity length is reduced to

30 cm; while the angle between the laser axis and the velocity vector is set to 30◦. All

other parameters are kept constant as compared to the previous setup.

Measured SMI signals are plotted in Figures 4.21(a) and (b) for the white paper

surface, and in Figures 4.21(c) and (d) for the reflective tape. By ignoring the initial

condition of the first stage of laser current modulation, the fringe missing phenomenon

does not occur at the beginning of the SMI signal even with high reflectivity from the

microprism reflective tape surface. When the target rotates in the clockwise direction,

all of the spikes observed in Figures 4.21(a) and (c) are positive. In contrary, when the
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Figure 4.21: Experimental SMI signal acquisition when the distance beat frequency is
inferior to the Doppler frequency in different velocity directions and target surfaces. (a)
and (b) The target as a white paper surface rotates in clockwise and anticlockwise, re-
spectively. (c) and (d) The target as a microprism reflective tape surface rotates in clock-
wise and anticlockwise, respectively.

target rotates in the anticlockwise direction, all of the spikes observed in Figures 4.21(b)

and (d) are negative.

The experimental SMI signal results in almost the same number of interferometric

fringes between the white paper and microprism reflective tape surface. The main dif-

ference between these signals is the fringe’s amplitude. The result in Figure 4.21(a)

gives a distance of 30.65 cm between the laser and the target through the average

time spacing between fringes method, while Figures 4.21(b), (c) and (d) give 31.07 cm,

29.24 cm and 32.89 cm, respectively. The measurement resolution of distance is still lim-

ited to a few centimetres; again because of the non-linearity of the emission frequency

through the linear modulation of the laser injection current. In addition, all the exper-

imental results give almost the same Doppler beat frequency which is around 110 kHz.
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4.3 | Profiling

4.3.1 | Distance measurement
With the methodology and theoretical background presented in this chapter, we propose

to measure the profile of a translating (rotating) target. This technique is based on the

triangle frequency sweeping as described in this chapter. For measurement accuracy

reason, it needs high bandwidth electronics and a laser diode with a large frequency

modulation coefficient. To demonstrate the feasibility of this technique, the experimental

setup in Figure 4.19 is reused. First, different distances between the laser and the target

ranging from 128 cm to 133 cm are measured when the target is fixed without any

movement. While doing this, we can know the measurement resolution for the absolute

distance before the target rotates. The target surface is the microprism reflective tape

cover on the rotating disc. An attenuator is used along the path between the laser facet

and the target to decrease the backscattered reflection coefficient thus avoiding fringe

disappearance. The laser diode is operated with the injection current of 15 mA and

modulated with an amplitude of 10 mA peak-to-peak at 5 kHz.
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Figure 4.22: Experimental results of SMI distance signal by triangular frequency sweep-
ing.

Each distance is measured ten times consecutively. Figure 4.22 shows the SMI signal

with ten cycles of the triangle waveform at a distance of 128 cm in the time domain. Each

modulation cycle, the SMI signal displays a series of interferometric fringes in each half

of the triangle waveform as shown in Figure 4.23(a). The average time spacing between

fringes by means of the average beat frequency is used to calculate the distance. The

process of the external cavity distance determination is accomplished within three steps.

First, the locations of the interferometric fringes in each half of the triangle waveform
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are detected with the Matlab toolbox findpeaks as seen in Figure 4.23(b). Then, the

beat frequencies on each half of the triangle waveform are determined. The analysis

area for each half of the triangle waveform does not include the high ring peaks caused

by the changing of modulation ramps which normally happens at the beginning of the

modulation ramp. As described in Chapter 3, when the laser injection current is rawly

modulated without any pre-distortion of the modulating waveform, the beat frequencies

on each ramp are not constant. Moreover, noises are present in the signal; so any high

peak of the noise that is higher than the threshold can be detected causing errors in the

evaluation of the distance as shown in the first fringes of Figure 4.23(b). In some cases,

the peak cannot be detected because its height is smaller than the threshold. These errors

of peaks detection decrease the measurement resolution. To solve this problem, the

range of useful beat frequencies is chosen based on their occurrence rate. Figure 4.23(c)

displays an example of a histogram from detected frequencies in Figure 4.23(b). The beat

frequencies ranging from 300 kHz and 500 kHz which are the most frequently detected

are chosen to determine the average beat frequency.

Figure 4.24 displays the result of the distance measurement by using the average beat

frequency detection. The resolution of each distance is still limited to the centimetre. It

is interesting to note that an interferometric fringe corresponds to 1.63 cm. With the

presence of noises caused by the electronic circuit and the non-linearity between the

laser injection current and the laser emission frequency, the measurement resolution can

be worse than 1.63 cm.

4.3.2 | Velocity measurement
The second experiment is to determine the Doppler frequency of the target alone with-

out any current modulation. The same laser diode is operated with 15 mA of injection

current, and the target as a metal disc rotates in the clockwise direction thanks to the

DC motor feeder with a 10 V supply voltage. The target position is fixed at the angle

of 45◦ between the laser beam axis and the target velocity vector. The target surface is

covered by reflective tape, and an attenuator is fixed as in the previous experiment. It

is interesting to notice that the SMI signal exhibits the same Doppler frequency at any

given external cavity length. Figure 4.25(a) shows the SMI Doppler signal in the time do-

main where it displays a series of interferometric fringes with different amplitude due to

speckle interferences. The Doppler frequency in this experiment can be found by apply-

ing the FFT to the SMI signal in the time domain, and it results in 275 kHz as displayed

in Figure 4.25(b).
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Figure 4.23: (a) Experimental results of SMI distance signal for one cycle of the triangle
waveform. (b) Peaks detection of half-period of the triangular SMI waveform. (c) His-
togram of beat frequencies resulting peak detections in (b).
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Figure 4.24: Distance measurements resulting from the SMI triangular frequency sweep-
ing ranging from 128 cm to 133 cm.

4.3.3 | Distance and velocity measurement

The external cavity length and the target velocity can be determined at the same time

by combining the two applications above. The same laser diode is operated with the

same bias current of 15 mA and modulated with 10 mA peak-to-peak amplitude at 5 kHz

triangle modulation. The target rotates by a DC motor supplied with 10 V, and the

target surface is covered by a microprism reflective tape. The laser lights travel to target

through the same attenuator used in previous sections.

Each external cavity distance and target velocity are measured ten times consecu-

tively. Figure 4.26 displayed the SMI signal for ten cycles of the modulation triangle at

the distance of 128 cm between the laser and the target when the target rotates pro-

ducing a 275 kHz of Doppler frequency shift. At each modulation cycle, the number of

observed interferometric fringes for each half of the triangle waveform is different as

shown in Figure 4.27, this is because of the combined effect of modulated light’s wave-

length and the Doppler shift. The target distances and velocities in this experiment are

determined by using the average beat frequency method. In this experiment, the data ac-

quisition for each modulation cycle is 100 k sampling rates. The fringe detection method

used in Section 4.3.1 is applied for each half of the modulation cycle. Figure 4.28(a)

shows that a series of interferometric fringes in the signal of the SMI signal for the first

half of the triangle waveform is detected from which results in the beat frequencies his-

togram shown in Figure 4.28(b). For another half of the triangle waveform, the number

interferometric fringes are displayed less than the first half as shown in Figure 4.28(c),

and the beat frequencies are plotted in the histogram in Figure 4.28(d). We see that a

few of the peaks which are caused by noises are detected at the beginning of the signal;
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Figure 4.25: Experimental results of Doppler shift with the reflective tape surface. (a)
The self-mixing signal in the time domain. (b) PSD of of the self-mixing power variations
obtained from (a).

then those frequencies are rejected for the calculation process. The distances between

the laser and the target are determined through the Eq. (4.17) with the actual distance

ranging from 128 cm to 133 cm, while the Doppler beat frequencies of each distance are

done with the Eq. (4.18). Figure 4.29 and Figure 4.30 depicts the SMI results for the

target distance and velocity, respectively.

This accuracy of the proposed method in this section is still limited due to few rea-

sons such as small frequency modulation coefficient of the laser diode, the limitation of

bandwidth from the electronics card, and the non-linearity between the laser injection

current and the laser emission frequency when we modulate the laser injection current

in triangle waveform. However, based on the showing results, it is possible to determine

the target’s profile and also velocity when the target is in motion.
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Figure 4.26: Experimental results of SMI signal of distance and velocity by triangular
frequency sweeping.
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Figure 4.27: Experimental results of SMI signal of distance and velocity for one cycle of
the triangle waveform.

4.4 | conclusion
The measurement of the external cavity length and the target velocity based on the SMI

technique can be achieved by combining the absolute distance method that has been ex-

tensively described in previous chapters which produces a modulation of the laser power

with a beat frequency related to the target distance, and the power modulation induced

by the Doppler shift that affects the backscattered wave and which beat frequency is re-

lated to the target velocity. In order to combine the two applications into one, we propose

a system where the laser emission frequency is modulated with triangle waveform and

where the two different beat frequencies are determined by the signal processing thus

allowing for the determination of the external distant target and the target’s velocity at
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Figure 4.28: (a) Peak detections of the first half self-mixing signal of the triangle wave-
form. (b) Histogram of the beat frequencies resulting from (a). (c) Peak detections of
the other half self-mixing signal of the triangle waveform. (d) Histogram of the beat
frequencies resulting from (d).
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Figure 4.29: Distance measurements resulting from the SMI triangular frequency sweep-
ing ranging from 128 cm to 133 cm when the target rotates.
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Figure 4.30: Doppler frequency measurement resulting from the SMI triangular fre-
quency sweeping when the target is fixed at the distances ranging from 128 cm to 133 cm.

the same time. Two scenarios were evaluated considering the distance beat frequency

can be either superior or inferior to the Doppler beat frequency. Moreover, the fringe dis-

appearance phenomenon that was depicted in chapter 2 and 3 is predicted by the model

and observed experimentally in the case where the distance beat frequency is superior to

the Doppler frequency. This phenomenon is highly dependent on the feedback parameter

C, and it can be explained by the analysis of the phase behaviour based on the excess

phase equation.

Analysing the SMI output signal on each slope of the triangle modulation is inter-

esting as it gives us an advantage of discriminating the direction of the target’s velocity.

We investigate this property both using time domain analysis and spectral domain when

applying the FFT to each semi-period of triangle modulation in the optical output power.

As an application of the property to measure simultaneously the distance and the

target velocity, we proposed to evaluate the feasibility of profiling a rough target surface.

We have proposed the basic method for this application and designed an experimental

methodology. However, the target profiling based on modulating the laser emission fre-

quency needs future researches as the resolution that was obtained (in the centimetre

range) may be insufficient in most of the applications. improvement of the laser fre-

quency modulation through the injection current, in terms of dynamic, responsivity, and

linearity would be clearly required in such an application.
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Conclusions

The objectives of my Ph.D were two folds: first to re-investigate and develop the use of

the laser diode under the optical feedback in different regimes and with a focus on the

absolute distance application, and second to investigate the case where the distant target

is moving and to evaluate the feasibility of a combined sensor for both velocity and

distance by self-mixing interferometry. Thus, taking advantage of the main specificity

of the SMI technique−it is a compact and self-aligned system, such a sensor based on

a single laser diode could be of major interest for autonomous mobile systems in the

domains of robotics, automotive, etc...

Chapter 1 gave a presentation to the usual methods for distance measurement based

on sound, electromagnetic waves, and optical waves. Those methods of measurement

have been used in different areas and purposes of application. For example, sonars

based on the sound wave are used to detect objects underwater while radars based on

the electromagnetic wave are used to determine long distant objects such as aircraft,

ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. How-

ever, sensors based on optic waves have various techniques such as stereo-vision, time

of flight (LiDAR) and interferometry. Among the interferometry sensing family is self-

mixing interferometry where the laser itself acts as a source and a sensor due to the

high sensitivity to optical feedback of the laser diode. This detection technique leads to

low-cost and robust as it does not need any reference arm or external detector, it is a

self-aligned setup. The distant measurement resolution based on this technique has been

improved over the years. However, those measurements were achieved with very low

back-scattered light from the target and there are few research publications concerning

the distance measurement with high back-scattered light power.

In chapter 2, we present an advanced study on the laser feedback interferometry the-

ory. A classic model known as the three-mirror model as well as the rate equations de-
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rived from the Lang and Kobayashi model are described in detail. The rate equations can

be reduced to a single equation known as the excess phase equation. The most important

parameter in the excess phase equation is the feedback parameter C. This parameter is

very important as its value defines the optical feedback regimes of the laser which have

a major impact on the behaviour of the laser diode. Re-investigating the behaviour of

the laser diode in weak and moderate/strong optical feedback regimes allowed for a

better understanding of the self-mixing technique. Those behaviours can be described

with the excess phase equation or the rate equations. We have focused our study on a

rarely described phenomenon that occurs when the laser is in a moderate/strong feed-

back regime: the disappearance of interferometric fringes. We have demonstrated that

the number of missing interferometric fringes strongly depends on the feedback param-

eter C. The model proposed in this chapter shows that two interferometric fringes per

semi-period of the modulation disappear if the coupling parameter C is increased by

a value close to 2π. We also investigate the dependency of this phenomenon to other

parameters such as the laser injection current, the type of the laser, and the working

environment.

Chapter 3 and 4 presented the application models and experimental results obtained.

All experimental set-ups were described in detail.

Chapter 3 focused on studies of the self-mixing absolute distance measurement. The

measurement of absolute distance between the source and the target based on the SMI

technique can be achieved when the laser emission frequency is typically modulated

with triangle waveform. This modulation can be easily obtained by directly modulating

the laser injection current. However, in practice, the laser emission frequency does not

vary linearly with the injection current due to the plasma and thermal effect inside the

laser inner cavity. That non-linear relationship tends to vary the beat frequencies in the

SMI signal which then decreases the measurement resolution. The missing fringe phe-

nomenon impacts the determination of the distance between the laser and the target with

the classical method by counting the number of fringes and affecting the measurement

resolution. Also, in this chapter, many experiments were conducted. Two parameters

that fix the coupling coefficient C were calibrated for a combination of target surface

(white paper, metal, reflective tapes with microspheres and microprims) and the target

to sensor distances. As C also relies on laser intrinsic parameters, such a calibration does

not give the C values, but it is possible from one configuration to the other to estimate

precisely the change in C.

One of the other important parameters in the distance measurement is the frequency

modulation coefficient that symbolises the relationship between the laser injection cur-

rent and its emission frequency. This parameter normally depends on the laser type,
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material, structure and the process of fabrication, and requires to be determined exper-

imentally. With a DFB laser (L1550P5DFB) lasing at 1550 nm, our experiments showed

that the value of laser FM coefficient decreases with the increase of frequency modula-

tion. We have performed a characterization with the frequency ranging from 100 mHz

to 1 kHz by counting interferometric fringes in the output power. Before going further

in the validation of our model as regarding the interferometric fringe disappearance, we

have evaluated the effect of the bias injection current on the number of interferometric

fringes in the output power. We also investigate the linearity between the laser injection

current and the laser emission frequency. Reshaping the laser injection current has been

proposed by many researchers to improve the measurement resolution. However, even

with the missing fringes in the output power, an alternative method without reshaping

current was proposed in this thesis to improve the measurement resolution by using the

curve fitting of the beat frequencies resulting from the SMI signal. To validate the pro-

posed model of fringes disappearance in Chapter 2, two variable optical attenuators were

used to control the back-scattered light intensity from the target. We observed that our

model was in great agreement with our experimental results. However, we also observed

that the number of fringes was different in each half of the triangle modulation in the

cases where the laser first experiences a large and brutal change of feedback condition

from the target. This was due to the initial condition where the laser bias injection cur-

rent was first modulated. This behaviour can be explained in our model by the dwelling

of the lasing mode in the laser phase behaviour. After the initial condition, the lasing

phase condition will keep the lasing path even if the laser injection current pauses and

is-re-modulated again with the same amplitude and frequency. On the other hand, if

there is any perturbation in the phase stimulus at any time during the light propagation,

the laser solution will change the path and restart from the initial condition.

When the target moves along the longitudinal axis of the laser beam or if it trans-

lates or rotates, the back-scattered light contains the Doppler shift. The combination

of Doppler and distance measurement were discussed in Chapter 4 both in theory and

experiment. Normally, the Doppler frequency in SMI is determined by a simple spec-

tral analysis. In our experiment, the external cavity distance and the velocity of the

target can be determined at the same time by triangular frequency sweeping technique.

The number of interferometric fringe on each ramp of triangle modulation at the optical

power varies with the Doppler frequency. This inequality of the fringe’s number gives us

a chance to calculate the external distant target and the target’s velocity at the same time.

Two possible cases were investigated: (1) when the distance beat frequency is superior

to the Doppler frequency, and (2) when the distance beat frequency is inferior to the

Doppler frequency. In both cases we used either the counting of the observed fringes or
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the average time spacing method or a spectral analysis performed after an FFT algorithm

was applied to determine the distance between the laser and the target.

Moreover, with the advantage of measuring the absolute distance and the target ve-

locity at the same time, the target’s profile and the target’s speed can be identified. This

measurement technique can be achieved with a very high-performance electronic de-

vice with low noise and high bandwidth, a linear frequency sweeping by reshaping or

pre-distorting the laser injection current and a high-performance laser diode with a large

variation between the laser injection current and the laser emission frequency to produce

more interferometric fringes in the SMI signal to achieve a better resolution. This opens

up additional opportunities for data analysis and the application of the sensor. For fur-

ther research, this application can be used to replace LiDAR where SMI is a self-aligned

setup sensor, compact and more robust.

132



Bibliography

[1] Takashi Fujii and Tetsuo Fukuchi. Laser remote sensing. CRC press, 2005.

[2] Maric Josip and Siedersbeck Alfons. Time-of-flight (ToF) measurement using pulse
lasers. OSRAM Opto Semiconductors, 11 2018.

[3] Christophe Gorecki. Range finding using frequency-modulated interferometry with

a monomode external-cavity laser diode. Japanese journal of applied physics,
35(5R):2833, 1996.

[4] F. Gouaux, N. Servagent, and T. Bosch. Absolute distance measurement with an

optical feedback interferometer. Appl. Opt., 37(28):6684–6689, Oct 1998.

[5] Ming Wang, Takahiko Sato, Guanming Lai, and Shigenobu Shinohara. Self-mixing

interferometry for distance and displacement measurement by fourier transform

method. In Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors
Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, volume

3945, pages 193–200. International Society for Optics and Photonics, 2000.

[6] Yah Leng Lim, Karl Bertling, Pierre Rio, JR Tucker, and AD Rakic. Displacement and

distance measurement using the change in junction voltage across a laser diode due

to the self-mixing effect. In Photonics: Design, Technology, and Packaging II, volume

6038, page 60381O. International Society for Optics and Photonics, 2006.

[7] Dongmei Guo and Ming Wang. New absolute distance measurement technique with

a self-mixing interferometer. In Journal of Physics: Conference Series, volume 48,

page 1381. IOP Publishing, 2007.

133



Bibliography
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Résumé / Abstract 
Title: Self-mixing interferometry for absolute distance measurement: modelling and 
experimental demonstration of intrinsic limitation  

Abstract: The fringe disappearance phenomenon in the self-mixing interferometry occurs whenever 
the external round-trip phase at free-running state is modulated by either external modulation such as 
external cavity length changes or internal modulation when the laser injection current is modulated 
with a high back-scattered light power. This phenomenon has been observed by many authors in the 
context of harmonic motion or vibration application. The core issue in this configuration is the 
unfeasibility to maintain a constant feedback level over the target course due mostly to speckle or an 
imperfect alignment. To the best of our knowledge, no accurate explanations or theories on the 
mechanism on the fringe disappearance phenomenon have been published so far. In this thesis, a 
novel approach that depicts the mechanism of interferometric fringes disappearance is proposed that 
highlights with a new perspective the impact of the coupling strength between the laser diode and the 
external cavity on the number of missing fringes. An absolute distance measurement has been set 
where the laser diode is operated with modulation of the injection current in the triangle waveform. 
As compared to the vibration sensing scheme, the absolute distance approach guarantees a stable 
feedback level thus allowing for more repeatable experiment conditions. The observed experimental 
results show an agreement with the proposed model on this phenomenon which is based on the 
excess phase equation. There is also a remarkable demonstration both experimentally and 
theoretically that the number of missing fringes in the SMI signal can be different between the first 
modulation ramp as compared to others.  

Keywords: Self-mixing interferometry, laser feedback interferometry, optical feedback, fringe 
disappearance, absolute distance measurement, mathematical model, optical sensor.  

——————————————————————————————————————————— 

Titre: Interférométrie à rétro-injection optique pour la mesure de distance absolue : 
modélisation et démonstration expérimentale des limites intrinsèques  

Résumé: Le phénomène de disparition des franges dans l'interférométrie à rétro-injection optique se 
produit chaque fois que la phase externe de laser à l'état de fonctionnement libre est modulée par 
une modulation externe telle que des changements de longueur de cavité externe ou une modulation 
interne, c’est-à-dire le courant d'injection laser est modulé, avec un retour élevé de la puissance 
lumineuse de la cible. Ce phénomène a été observé par de nombreux auteurs dans le cadre de 
l'application de mouvements harmoniques ou de vibrations. Le problème dans cette configuration est 
l'impossibilité de maintenir un niveau de rétro-injection optique constant sur la cible en raison 
principalement de l’effet Speckle ou d'un alignement imparfait. A notre connaissance, aucune 
explication ou théorie précise sur le mécanisme du phénomène de disparition de franges n'a été 
publiée à ce jour. Dans cette thèse, une nouvelle approche qui décrit le mécanisme de disparition des 
franges interférométriques est proposée qui met en évidence avec une nouvelle perspective l'impact 
de la force de couplage entre la diode laser et la cavité externe sur le nombre de franges disparus. 
Une mesure de distance absolue a été définie où le courant d'injection de diode laser est modulé 
dans la forme de triangulaire. Par rapport au schéma de détection des vibrations, l'approche de 
distance absolue garantit un niveau de rétro-injection optique stable permettant ainsi des conditions 
d'expérience plus reproductibles. Les résultats expérimentaux observés montrent une concordance 
avec le modèle proposé sur ce phénomène qui est basé sur l'équation de phase. Il y a aussi une 
démonstration remarquable à la fois expérimentalement et théoriquement que le nombre de franges 
disparus dans le signal SMI peut être différent entre la première rampe de modulation par rapport aux 
autres.  

Mots-clés: Interférométrie à rétro-injection optique, disparition de franges, mesure de distance 
absolue, modèle mathématique, capteur optique 
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