Déterminants de l'incidence de la borréliose de Lyme en France : une approche statistique spatiale et mathématique

Par Wen Fu Résumé de la thèse en Français surveillance data from the Rhône-Alpes region in a Bayesian framework. The results of the model estimated that tick bite rates were highest at an optimal soil temperature of 18°C. The percentage of infected cases reported per year ranged from 0.16% to 0.68%, whereas the increase in case reports since 2016 may be attributed to health-seeking behaviours probably resulting from an increased public awareness of ticks.

Caution should be exercised in interpreting these results due to the relative limitations and possible biases in the available data. Nevertheless, the present work provides quantitative evidence on the temporal and spatial determinants of LB at national level, highlighting the importance of environmental factors and tick bites, which could shed light on future research.

Résumé

La borréliose de Lyme (LB) est une zoonose causée par le spirochète Borrelia burgdorferri sensu lato, transmise par les tiques dures (Ixodidae). C'est la maladie transmise par les tiques la plus courante dans les régions tempérées de l'hémisphère nord. Les variations géographiques et saisonnières de son incidence sont liées à la transmission de Borrelia dans le cycle environnement-tique-hôte et à l'hétérogénéité des systèmes de surveillance mis en place.

L'objectif de cette thèse est d'améliorer notre compréhension sur la distribution et la transmission de la LB en analysant des données de surveillance de la LB en France, à l'aide de modèles statistiques spatiales et de la modélisation mathématique.

La surveillance de la LB en France depuis 2009 nous a permis d'explorer les schémas de la maladie et d'identifier les déterminants pertinents de sa distribution spatio-temporelle.

Parallèlement, nous avons évalué et analysé des données environnementales liées à l'écologie des tiques et des données anthropiques liées aux interactions entre tiques et humains.

La plupart des cas de LB ont été signalés après 2016. Nous avons exploré les schémas spatio-temporels des cas de 2016 à 2019 en utilisant la fonction K spatio-temporelle et les statistiques de balayage de Kulldorff (Fu et al., 2021). Les résultats ont montré que des clusters spatiaux à haut risque ont été observés dans le centre et l'est de la France, avec un rayon maximal de 97 km. Ils sont présentés dans une fenêtre temporelle entre mai et août, allant d'un mois en 2016-2017 à trois mois en 2018-2019. Une interaction spatio-temporelle forte sur 16 km et 7 jours a en outre été détectée en 2018, suggérant une transmission locale plus élevée de l'agent pathogène.

Les facteurs associés à l'occurrence spatio-temporelle de la LB (y compris l'environnement, l'hôte animal et la fréquence de l'exposition humaine aux tiques) ont été étudiés dans un même modèle spatio-temporel en deux parties (Fu et al., 2023). Les effets aléatoires spatiaux et temporels ont été définis avec un modèle Besag-York-Mollie et un modèle saisonnier. Les coefficients ont été estimés par inférence bayésienne. Les résultats ont indiqué que la présence de LB saisonnière était positivement associée à une forte densité de végétation (NDVI ≥ 0.6), tandis que l'augmentation de l'incidence était associée à une probabilité plus élevée de présence de cervidés (> 60 %), à des températures modérées du sol (15-22°C), à une saturation modérée de l'air (1.5-5 mmHg) et à une fréquence plus élevée de signalements de piqûres de tiques. Les projections pour 2016-2021 ont montré un schéma spatial et saisonnier similaire, avec un risque plus élevé de LB entre Avril et Septembre, et une augmentation de l'incidence dans certaines parties de l'est, du centre-ouest et du sud-ouest de la France.

Afin de comprendre la transmission de la LB dans les zones endémiques durant la période 2009-2021, nous avons utilisé un modèle compartimental déterministe, à temps discret et à pas quotidien. Le modèle a été ajusté aux données de surveillance de la région Rhône-Alpes dans un cadre bayésien. Les résultats du modèle ont montré que les taux de piqûres de tiques étaient les plus élevés à une température optimale du sol de 18°C. Le pourcentage de cas infectés rapportés par an variait de 0.16% à 0.68%. L'augmentation du nombre de cas signalés depuis 2016 pourrait être attribuée à davantage de comportements de prévention, due à une sensibilisation accrue du public aux tiques.

Ces résultats doivent être interprétés avec prudence en raison des limites relatives et des biais possibles dans les données disponibles. Néanmoins, les études présentées fournissent des informations quantitatives sur les déterminants de la LB, soulignant l'importance des facteurs environnementaux et des piqûres de tiques.

Introduction

La borréliose de Lyme (LB) est la zoonose transmise par les tiques la plus courante dans les régions tempérées de l'hémisphère nord [1,2]. Elle est causée par des spirochètes du complexe Borrelia (B.) burgdorferi sensu lato (s.l.) et transmise à l'homme par piqûre de tique infectieuse (Ixodes spp.) [1,2]. Des études récentes ont estimé l'incidence à environ 476 000 cas de LB par an aux États-Unis et 85 000 cas de LB par an en Europe, avec des variations importantes de l'incidence au niveau régional et saisonnier [3,4]; Cependant, les différences entre les systèmes de surveillance, Les définitions de cas et la méthodologie utilisées peuvent limiter la comparabilité des estimations d'incidence. Certaines espèces d'Ixodes (I.) spp. sont considérées comme des vecteurs compétents de B. burgdorferi s.l., notamment I. scapularis et I. pacificus en Amérique du Nord, et I. ricinus et I. persulcatus en Europe et Asie [5].

Parallèlement à LB, la tique Ixodes transmet d'autres agents pathogènes responsables de l'encéphalite à tiques, de la babésiose et de l'anaplasmose granulocytaire humaine, qui revêtent une grande importance pour la santé humaine et animale [6,7]. Cette thèse de doctorat vise à mieux comprendre l'endémicité de la LB en France en utilisant les données de surveillance collectées par le Réseau Sentinelles, combinées à des méthodes de statistiques spatiales et de modélisation mathématique. Pour atteindre cet objectif, nous avons mené trois études analytiques dont les buts étaient : 1) de décrire les schémas spatiaux et temporels des cas et de rechercher les clusters à haut risque ; 2) d'identifier et de quantifier les facteurs biotiques et abiotiques associés à la survenue saisonnière de la LB ; et 3) de comprendre la transmission de la LB dans les zones à haut risque et d'estimer le taux de piqûres de tiques et la proportion de cas couverts par la surveillance. Dans cette thèse, les six chapitres suivants ont été rédigés. Le chapitre 1 présente une vue d'ensemble de l'épidémiologie de la maladie de Lyme en France et des études de modélisation internationales. Le chapitre 2 décrit les données utilisées pour mener les trois analyses, notamment les données de surveillance de la maladie de Lyme et les facteurs potentiels à étudier (par exemple : anthropiques et environnementaux), leurs sources, leurs descriptions et les hypothèses liées à l'apparition de la maladie. Le chapitre 3 décrit la distribution spatiale et temporelle de la LB et l'identification des clusters à haut risque à l'aide de statistiques descriptives et exploratoires (article publié dans Pathogens en avril 2021 [8]).

Le chapitre 4 présente un modèle statistique spatio-temporel permettant d'identifier et de quantifier l'impact des facteurs météorologiques, environnementaux et de l'hôte animal, ainsi que la fréquence de l'exposition humaine aux piqûres de tiques, sur l'incidence saisonnière de la LB (article publié dans Eurosurveillance en avril 2023 [9]). Le chapitre 5 utilise la modélisation mathématique pour comprendre la transmission de la LB dans la région à haut risque Rhône-Alpes en tant qu'étude pilote. Le chapitre 6 résume les principaux résultats, les points forts et les limites de l'étude et suggère des orientations pour les recherches futures.

Chapitre 1. La borréliose de Lyme, avec un focus en France : étiologie, épidémiologie et progrès

Située en Europe occidentale, la France métropolitaine s'étend entre 5°W-10°E et 41°N-52°N, couvrant une gamme variée de paysages et de climats [10]. La grande diversité topographique, météorologique et faunistique constitue un environnement idéal pour la diffusion de maladies transmises par les tiques. À ce jour, environ 40 espèces de tiques sont présentes en France, la tique I. ricinus étant particulièrement abondante et répartie sur l'ensemble du territoire [11,12]. L'hétérogénéité géographique des agents pathogènes transmis par les tiques a également été observée, avec des différences marquées dans les taux d'infection des tiques pour différents agents pathogènes [13]. Par exemple, Borrelia afzelii, Borrelia garinii, Anaplasma phagocytophilum ont une prévalence élevée dans le nord-est de la France, tandis que Borrelia miyamotoi est localement concentrée sur la côte méditerranéenne [13][14][15][16][17].

À ce jour, des cas de LB ont été rapportés dans toutes les régions, avec un plus grand nombre de cas dans le nord-est, le centre-est et le centre-ouest de la France [8]. L'évolution naturelle de l'infection par la LB est divisée en trois phases: infection localisée précoce, infection disséminée précoce et infection disséminée tardive, qui se manifeste par une variété de tissus et d'organes, y compris la peau, les articulations, le coeur et le système nerveux [18]. L'érythème migrant est la manifestation cutanée la plus fréquente (> 95%) et est pathognomonique [19].

Le cycle épidémiologique de la LB implique des interactions complexes entre l'agent pathogène Borrelia spp., le vecteur I. ricinus et ses hôtes [20][21][22]. La tique I. ricinus a besoin d'un repas sanguin pour chacun des trois stades de développement qui suivent l'éclosion : les larves, les nymphes et les adultes. Les larves se nourrissent de sang de petits rongeurs et d'oiseaux, qui sont considérés comme des réservoirs pour Borrelia spp. [23,24]; si les larves infectées se métamorphosent en nymphes qui vont infecter d'autres hôtes animaux au cours de leur prochain repas sanguin. Alors que les tiques adultes, principalement les femelles adultes, ont besoin d'un autre repas sanguin avant de pondre, les cerfs sont considérés comme l'hôte de reproduction principal d' I. ricinus en Europe, ce qui contribue à maintenir l'abondance des tiques au niveau local [25][26][27]. L'Homme, en tant qu'hôte accidentel, exposé aux habitats des tiques lors d'activités de plein air, est susceptible de contracter la LB [25]. En outre, les conditions météorologiques et les aires végétalisées jouent un rôle important dans la transmission des pathogènes entre les tiques et leurs hôtes [28]. Les mesures préventives consistent à éviter les piqûres de tiques par une protection physique et chimique [19]. Il n'existe actuellement aucun vaccin humain contre la LB [19].

Les statistiques spatiales et la modélisation mathématique sont largement utilisées dans la recherche de la LB, les premières servant généralement à cartographier et à identifier les facteurs biotiques et abiotiques associés au risque de LB, tandis que la modélisation mathématique se concentre davantage sur l'exploration de la dynamique des tiques et des agents pathogènes transmis par les tiques, ainsi que sur leurs interactions avec l'environnement [29,30].

Chapitre 2. Description des données de surveillance de la borréliose de Lyme et des facteurs potentiels à explorer

Données de surveillance de la maladie de Lyme. La surveillance nationale de la LB a débuté en 2009 par le réseau Sentinelles (https://www.sentiweb.fr/) [31]. Le réseau est constitué de médecins généralistes volontaires (ci-après dénommés SGP) répartis sur l'ensemble du territoire de France métropolitaine, qui participent à la surveillance de neufs indicateurs de santé (y compris LB) en rapportant chaque semaine le nombre de cas vus en consultation [32,33]. La définition de cas de la LB utilisée par le réseau Sentinelles est basée sur le Groupe d'étude européen sur la maladie de Lyme (ESGBOR), en plus, chaque cas rapporté est ensuite validé par un groupe d'expert. Les critères de diagnostic étaient 1) la présence d'un érythème migrant ou 2) la présence d'au moins une manifestation de LB disséminée confirmée par test ELISA et Western blot [18]. Les taux d'incidence sont estimés au niveau départemental, régional, et national par le réseau avec les calculs en détails sur http://www.sentiweb.fr/1384.pdf [34,35].

De 2009 à 2022, 2 252 cas de LB ont été rapportés par les médecins Sentinelles, avec la majorité (>60%) étant déclarés entre mai et août de chaque année. Les taux d'incidence nationaux estimés semblent avoir augmenté après 2016, avec des fluctuations d'une année sur l'autre depuis (42/100 000 habitants en 2009; 84/100 000 habitants en 2016) [36].

Données sur l'activité humaine en plein air.

Pl@ntNet (https://plantnet.org/) est un projet de science participative visant à encourager les citoyens à prendre des photos de plantes et à les partager sur la plateforme afin de contribuer à la collecte d'informations sur la biodiversité [37].

Le projet a été créé en 2010 par quatre organismes de recherche français (le CIRAD, l'Inria, l'INRAE et l'IRD). Chaque image téléchargée enregistre le lieu et la date de la prise de vue, et seules les photos de plantes d'extérieur ont été conservées [38]. Nous émettons donc l'hypothèse que les données de Pl@ntNet peuvent être utilisées comme une approximation de l'indice d'activité humaine en plein air. Dans le chapitre 5, nous intégrons cet indice d'activité dans un modèle mathématique permettant de comprendre la transmission de la LB dans la région Rhône-Alpes en France. Pour celui-ci, nous avons extrait des données (la date et les coordonnées géographiques des images) pour la région Rhône-Alpes de 2018 à 2022, obtenant un total de 83 876 téléchargements. Les données antérieures à 2018 ont été exclues en raison de la croissance exponentielle du nombre d'utilisateurs. En supposant que les résidents locaux ont des patrons similaires d'activité de plein air au cours des différentes années, nous avons d'abord calculé les moyennes des images téléchargées quotidiennes sur la période de cinq ans, puis utilisé le lissage loess pour obtenir une distribution continue, calculé l'étendue optimale basée sur le critère d'information bayésien (BIC) et enfin normalisé toutes les valeurs quotidiennes pour obtenir un indice de 0 à 1.

Données sur les piqûres de tiques chez l'Homme.

CiTIQUE (https://www.citique.fr/web) est un programme de recherche participative citoyenne qui implique le public dans la collecte d'informations sur les tiques et les piqûres de tiques [39]. Il a été organisé par l'INRAE et lancé en juillet 2017. Les données collectées par CiTIQUE ont été utilisées dans un modèle spatiotemporel présenté au chapitre 4. L'objectif du modèle était d'identifier et de quantifier l'association entre la fréquence des piqûres de tiques signalées et l'incidence saisonnière de la LB. Nous avons analysé les rapports de piqûres de tiques humaines collectés entre 2017-2021 (plus de 46 000 rapports), en extrayant les informations sur la date du rapport et la localisation GPS (WGS84). Pour prendre en compte que la proportion de la population potentiellement à risque varie en fonction de la proportion d'habitats propices aux tiques dans chaque département, nous avons calculé les proportions pondérées des rapports de piqûres de tiques par département et par saison en fonction de la surface d'espaces vertes. Les données sur la population proviennent de l'INSEE [40] et les données sur les espaces verts proviennent de Corine Land Cover 2018 [41].

Données sur la sensibilisation du public aux tiques.

Des études ont montré la pertinence de l'utilisation de Google trends pour surveiller la tendance de Lyme [42,43] 

Données environnementales.

Les données environnementales collectées par les satellites permettent de connaitre les variations localisées sur de vastes zones géographiques dans le cadre de l'évaluation des risques de LB [44]. Nous avons utilisé la température du sol de l'ensemble de données ERA5 publiée par le Centre européen pour les prévisions météorologiques à moyen terme (ECMWF) [45] et les avons utilisées pour calculer le déficit de saturation de l'air, ainsi que l'indice de végétation (NDVI) du Copernicus Global Land Service [46]. Dans les modèles spatio-temporels présentés au chapitre 4, le NDVI, la température du sol et le déficit de saturation de l'air ont été utilisés comme proxys pour les nymphes (présence et activité de recherche des hôtes) afin d'étudier leur relation avec l'apparition de Lyme. En outre, la température du sol a été utilisé dans le modèle mathématique présenté au chapitre 5, en agrégeant les moyennes maximales quotidiennes par région et a été utilisé pour construire une fonction de taux de piqûre de tique dépendant de la température.

Données sur l'hôte animal.

La présence d'animaux sauvages, en particulier de cervidés et de rongeurs, dans des habitats propices aux tiques Ixodes, sont des facteurs clés qui influencent le risque de LB [47][48][49][50][51][52][53][54]; les premiers contribuant à maintenir les populations de tiques et les seconds servant de réservoirs pour les bactéries Borrelia capables d'infecter les tiques. En raison de l'absence de données de démographie sur les cervidés et les rongeurs à l'échelle nationale, nous avons utilisé des données de modélisation prédictive pour ces animaux hôtes [55][56][57].

Dans notre étude, nous avons supposé que la présence de cervidés suggérait que les populations locales de tiques étaient relativement plus abondantes que dans les zones sans. L'indice de diversité des rongeurs a été utilisé comme référence pour l'infection par la tique Borrelia. Ces deux facteurs ont été inclus dans la modélisation spatio-temporelle du chapitre 4 afin de tester leur association avec la présence de LB.

Chapitre 3. Schémas spatio-temporels de la borréliose de Lyme en France

Ce travail a été publiée sous le titre : Fu Wen, Bonnet Camille, Septfons Alexandra, La fonction K spatio-temporelle et la statistique de balayage de Kulldorf ont été mises en oeuvre séparément pour chaque année afin d'évaluer l'interaction spatio-temporelle entre les cas signalés et les clusters de recherche. Pour calculer la fonction K spatio-temporelle, un cas est utilisé comme unité d'analyse contenant les coordonnées GPS du centre de la commune du médecin ayant reporté le cas et la date de report du cas. Nous avons choisi une distance maximale de 50 km et une durée de 90 jours pour le test. K(s,t) représente le nombre cumulé attendu de cas de LB à la distance s et au temps t divisé par l'intensité λ, par rapport aux cas précédents sélectionnés au hasard [59]. K(s) et K(t) sont définis comme la fonction K dans l'espace et la fonction K dans le temps, respectivement. L'hypothèse nulle est que la différence entre K(s,t) et K(s)K(t) est égale à 0. En revanche, si leur différence est supérieure à 0, cela signifie qu'il existe une interaction spatio-temporelle entre les cas [59]. Une simulation de 999 Monte Carlo a été utilisée pour tester si les interactions spatio-temporelles se produisent par hasard (rejet de l'hypothèse nulle avec une valeur de p < 0,05) et pour tester si la date de déclaration de chaque cas est réattribuée de manière aléatoire aux cas dont les positions sont supposées être fixes [60]. Ensuite, le logiciel SaTScan [61] a été utilisé pour rechercher des clusters spatiaux et spatio-temporels à haut risque pour chaque année séparément. Le rayon maximal de la fenêtre d'analyse spatiale était de 100 km et le rayon maximal de la fenêtre d'analyse temporelle était de 14 à 90 jours (pour la détection des clusters spatio-temporelles uniquement). L'hypothèse nulle est que le risque d'observer un cas à l'intérieur ou à l'extérieur de la fenêtre est égal [61,62]. La signification statistique des clusters identifiés a été évaluée par 999 simulations de Monte Carlo. Les grappes ne se chevauchant pas et identifiées comme significatives sur la base du coefficient de Gini ont été retenues [63].

Sur la période 2016-2019, nous avons identifié une interaction spatio-temporelle significative en 2018 (p-value = 0,02), mais pas pour les autres années (2016,2017,2019). Le résultat de K fonction suggère un excès de risque dans des zones localisées (dans un rayon de 16 km) de la région Auvergne-Rhône-Alpes en juillet-août ; en moyenne, le nombre cumulé de cas observés dans un rayon de 16 km centré sur le site du cas signalé est, respectivement, au moins trois fois plus élevé que le nombre de cas attendu dans l'hypothèse d'une absence 
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Introduction to Lyme borreliosis

Lyme borreliosis (LB) is the most prevalent tick-borne zoonosis reported in temperate regions of the northern hemisphere, caused by spirochetes of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex and transmitted to humans through the bite of infectious hard tick Ixodes spp. [1,2]. Recent studies have shown approximately 476,000 LB cases per year in the United States and an estimated 85,000 cases annually in Europe, with clear inter-regional, intraregional and seasonal variations in incidence [3,4]. However, heterogeneous surveillance coverage, under-and over-diagnosis in medical systems, together with the different statistical methods used can bias these incidence estimates. Several species of Ixodes (I.) spp. are considered as competent vectors for B. burgdorferi s.l., including I. scapularis and I. pacificus, distributed in northern America; and I. ricinus and I. persulcatus present in Eurasia [5]. In addition to B. burgdorferi s.l., Ixodes spp. can transmit other bacteria (e.g., Anaplasma phagocytophilum), viruses (e.g., tick-borne encephalitis virus) and protozoa (e.g., Babesia spp.) but with varying vectorial capacities, showing important implications for human and animal health [6,7].

The historical literature on Lyme borreliosis pictures a progressive understanding of its clinical presentations and aetiology. As early as 1883, Alfred Buchwald, a German physician, first described a clinical skin lesion that was retrospectively identified as chronic atrophic dermatitis (ACA) associated with LB [8]. This manifestation was not linked to ticks until 1909, when the Swedish dermatologist Arvid Afzelius saw a female patient who had developed the skin lesion after a tick bite [9], thus raising awareness. Later, in 1922, two French neurologists, Charles Garin and Antoine Bujadoux, reported not only the presence of skin rash at the site of the tick bite but also neurological symptoms in patients [10]. Half a century on, LB was first recognized as a distinct clinical entity in 1975, when a cluster of suspected juvenile rheumatoid arthritis emerged in the small town of "Old Lyme" (Connecticut, USA). The American rheumatologist Allen Steere conducted a retrospective epidemiological study of 51 cases, revealing the relationship between the presence of arthritis and tick bites [11,12]. Steere's findings provided further support for the infectious hypothesis and drew comparisons with the dermatological and neurological syndromes described in Europe [12]. In 1981, the causative agent associated with this infection has been discovered by the Swiss-American entomologist and bacteriologist Willy Burgdorfer in the gut of ticks Ixodes scapularis collected from the endemic area [13]. The next year, this disease was reported in the New England Journal of Medicine and officially named "Lyme disease" [14].

The first chapter of this thesis aims to provide an overall picture of Lyme borreliosis in France, including on pathogen genotypes, human infection manifestations and diagnosis, the main vector Ixodes ricinus, wild reservoirs and animal hosts, prevention campaign, as well as a review on modelling techniques used for LB study. This background information is necessary for the comprehension of the subsequent objectives of the thesis on the epidemiological surveillance (Chapter 2) and modelling works towards understanding the disease incidence distribution (Chapters 3, 4, 5). More details on these objectives will be presented at the end of Chapter 1.

Chapter 1. Lyme borreliosis, with a focus on France: etiology, epidemiology and progress

Located in Western Europe, Metropolitan France spans between 5°W-10°E and 41°N-52°N, covering a diverse range of landscapes and climates [15]. The rich topographic, meteorological and faunal diversity provides an ideal environment for the occurrence of tickborne diseases (TBDs). To date, about 40 species of ticks can be found in France, with the hard tick species Ixodes ricinus, being particularly abundant and distributed throughout the entire country [16,17]. Geographical heterogeneity of tick-borne pathogens was also observed, with distinct differences in the prevalence of tick infections for different pathogens [18]. For example, Borrelia afzelii, Borrelia garinii, Anaplasma phagocytophilum have a high prevalence in the northeastern France, while Borrelia miyamotoi is locally concentrated on the Mediterranean coast [18][19][20][21][22].

As early as 2009, when the French Institute of Health (Institut de veille sanitaire, InVS) prioritised non-food-borne zoonoses, Lyme borreliosis (LB) was ranked as a top human health concern (Table 1) [23]. This has guided and fueled nationwide disease surveillance, estimates of national/regional incidence, development of reliable diagnostic methods, increased public awareness of preventive measures, and intensified research on tick vectors and Borrelia [23].

To date, approximately 70% of European countries have LB surveillance, with France providing publicly available data on case reports and estimates of incidence based on the national sentinel network [24]. The entire European continent does not yet have a homogeneous surveillance system, making inter-regional comparisons controversial [24,25]. [23]. mayonii [26][27][28][29]. The high biodiversity of the genus Borrelia is distributed between 4°W and 20°E, where most of the French territory overlaps [30].

Table 1. Classification the priority of non-food-borne zoonoses in France, 2009

Spirochetes are characterised by a wall structure consisting of a protoplasmic cylinder, an outer membrane space containing an inner flagellum and an outer membrane with more than one hundred polypeptides and lipoproteins [31]. Borrelia bacteria varies in length from 4 to 30 µm and in diameter from 0.2 to 0.5 µm. The presence of a variety of surface proteins, such as

OspA, OspC and OspE on the Borrelia wall, indicates their adaptability to different hosts and environments [31]. Ticks as vector can acquire Borrelia spp. from wild animals or from already infected ticks by the co-feeding route [32]. Once ingested, Borrelia spirochetes are usually stored in the tick's midgut [33]. At the next feeding, the spirochetes multiply and express outer surface protein C (OspC) during contact with blood, which is then transferred to the tick's salivary glands [33]. This process takes several hours to several days, depending on the genotype of Borrelia (e.g. <24 hours for B. afzelii and >48 hours for B. burgdorferi s.s.) [34].

The spirochetes are first deposited on the skin of the host with the tick's saliva and can transfer with body fluids to other tissues and organs, manifesting different clinical features [35].

The geographical distribution of the different Borrelia genospecies reported may be related to the composition of the vectors, the diversity of reservoir host communities and habitats, as well as to the extent of entomological data collection in different regions, and therefore the results of their analyses may differ [36,37]. Field surveys conducted in endemic areas of France found that B. afzelii and B. garinii to be the most common genospecies accounting for over 70% of tick infections, followed by B. burgdorferi s.s. at about 10%, while other Borrelia species, such as B. valaisiana, and B. lusitaniae, were detected less frequently [38,39]. Human can be inoculated with several pathogenic agents (e.g., two Borrelia spp. or in conjugation with other tick-borne viruses) from one tick bite [40]. Knowledge on genospecies of Borrelia spp. and their manifestations in humans is relevant for the diagnosis of LB cases presenting with non-specific symptoms [41].

Human infection: clinical signs and diagnosis

Humans contract LB through the bite of an infected Ixodes tick. The clinical manifestations are thought to be related to both the genetic species of B. burgdorferi s.l. and the immune response of the host [42]. The natural course of infection follows different stages, called early localized, early disseminated, and late disseminated that may involve a variety of tissues and organs, including the skin, joints, heart and nervous system [26].

A characteristic rash called erythema migrans (EM) occurs within days to weeks after the infectious bite and can appear in both the early localised (single) and disseminated stages (multiple) [43]. EM usually presents as a round or oval rash with pink to red outer edges and a well-defined centre, but may also present in some atypical forms [44,45]. Dissemination can occur also in absence of early cutaneous manifestation or when early symptoms are unnoticed and without treatment [44][45][46]. In the early stages of dissemination, the main manifestations are neurological and rheumatological disorders [46]. Early neurological impairments are meningitis (resulting in radicular pain and/or damage to one or more cranial nerves) or, more rarely, isolated meningitis, meningomyelitis or meningoencephalitis [44][45][46]. Lyme arthritis, usually isolated, is a solitary or sporadic form of arthritis that almost always affects the knee joint [44][45][46]. Late disseminated stages may manifest as chronic encephalomyelitis and axonal sensory polyneuropathy, most often associated with cerebrospinal fluid abnormalities; chronic atrophic dermatitis (ACA), an asymmetric inflammatory lesion on the convex surfaces of the extremities accompanied by an atrophic process [47]; and acute, recurrent or chronic arthritis [46].

The most common symptoms observed in LB cases in France are cutaneous manifestations [48]. Following this, neurological impairment is the most reported symptom in late disseminated forms. In a 10-year cohort of hospitalised cases, more than half (51%) had neurological manifestations, followed by arthritis (13%) and cardiac complications (7%) [49].

EM alone can be a clinical diagnosis for LB [50]. For non-specific manifestations suggestive of late-stage LB, serological testing in combination with enzyme immunoassay (ELISA) and

Western blot analysis is recommended to confirm the diagnosis [44,51]. Other direct biological diagnostic techniques, such as bacterial culture, polymerase chain reaction (PCR) tests, molecular genotyping and whole genome sequencing, can also be used [51].

Treatment usually consists of a course of antibiotics such as β-lactams, cyclins or macrolides for two to four weeks, depending on the clinical situation [26,44].

The vector: Ixodes ricinus

The hard tick Ixodes (I.) ricinus belongs to the family Ixodidae, order Arachnida, phylum Arthropoda, is the main vector responsible for Borrelia transmission in France [52].

The life cycle of I. ricinus consists of three post-egg stages: larva, nymph, adult males and females. Each stage requires one blood meal, with male I. ricinus feed as larvae and nymphs but taking occasionally small blood meals as adult [45].

Ixodes exhibit a range of variations in their appearance and size, which predominantly depend on their developmental stage and feeding status [17,26,53]. Adult females can reach a length of 3-5 mm, while males are slightly smaller, measuring 2.5-4 mm [26]. When engorged with blood, ticks can increase in size up to 10 times their original size, with females growing even to 10 mm or more, while males do not generally reach this size [26,53]. In addition, the tick's colour may transition from brown to grey-blue [26]. Both male and female ticks have hard exoskeletons covered with short, sharp spines that help them to attach to their hosts [53].

The mouthparts of the tick are located at the front of the body and are revealed when feeding on blood [53]. Blood meals are vital to the development of ticks, and specialized structures such as Haller's organ on the first pair of legs, enabling them to locate hosts [54]. By sensing the carbon dioxide, heat and odour emitted by the host, a phenomenon often referred to as 'questing' for tick's host seeking behaviour [55]. Larvae quest for host (e.g., small rodents) and feed for 3-5 days, whereas nymphs and adults often climb on vegetation and wait for host (e.g., big mammals) to pass by and feed for 3-10 days [17,44,55]. After mating, the female adult ticks lay 2000 to 3000 eggs before the demise [17]. The life cycle of I. ricinus can range from several months to three years [53].

I. ricinus is the common vector for a variety of zoonotic pathogens such as Borrelia spp., tick-borne encephalitis (TBE) virus, Rickettsia spp., babesia spp., and Anaplasma phagocytophilum [20,[56][57][58][59][60]. In France, I. ricinus tick is usually active from March to October, with a diapause during the winter, and may remain active throughout the year with a mild winter [45,61]. The ability of I. ricinus tick to transmit Borrelia spp.to hosts is influenced by a range of factors, including intrinsic to the tick (e.g. probing behaviour, stagnation period, host preference, mating strategy and tick density), as well as extrinsic biotic and abiotic factors (e.g. climatic conditions, vegetation type and management, as well as host behaviour, abundance, susceptibility, tick burden and storage capacity) [35,42,62,63]. It has been suggested that ticks infected with Borrelia may actually have a greater ability to find hosts [42]. Tick-host interactions are particularly important for Borrelia transmission dynamics, and the efficiency of transmission can vary depending on the genetic species of Borrelia, the feeding duration, and the host immunity [62,[64][START_REF] Carrat | Epidemiologic Mapping using the "Kriging" Method: Application to an Influenza-like Epidemic in France[END_REF][START_REF] Kempf | Assortative pairing in Ixodes ricinus (Acari: Ixodidae), the european vector of lyme borreliosis[END_REF][START_REF] Brunner | Estimating reservoir competence of borrelia burgdorferi hosts: Prevalence and infectivity, sensitivity, and specificity[END_REF][START_REF] Estrada-Peña | Tick-borne pathogens, transmission rates and climate change[END_REF][START_REF] Jaenson | Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden[END_REF][START_REF] Randolph | Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology[END_REF][START_REF] Beytout | Lyme borreliosis incidence in two French departments: correlation with infection of Ixodes ricinus ticks by Borrelia burgdorferi sensu lato[END_REF].

Ixodes ricinus shows a geographically heterogeneous distribution in France, with relatively few Ixodes ricinus occurring along the Mediterranean coast where the summer climate is usually hot and dry [START_REF] Gilot | Première contribution à l'étude écologique d'"Ixodes ricinus" (Linné, 1758) (Acarina, Ixodoidea) dans le Sud-Est de la France[END_REF], whereas the highest densities of Ixodes ricinus have been reported in the northeast (81.9 ticks per 100 m 2 ) [START_REF] Goldstein | Epidémiologie vectorielle de la borréliose de Lyme en France[END_REF]. Cross-sectional studies in endemic areas have shown that Ixodes tick densities remained largely stable between 2003 and 2016, with only a few sites experiencing momentary increases (e.g., Murbach in 2013), which may be due to long winters and rainy springs affecting rodent densities [38,[START_REF] Gray | The Fecundity of Ixodes Ricinus (L.) (Acarina: Ixodidae) and the Mortality of its Developmental Stages Under Field Conditions[END_REF]. Shrubs, deciduous and mixed forests are considered the preferred habitat for Ixodes ticks, but they can also be found in public and private gardens in urban areas [63,[START_REF] Mathews-Martin | Questing tick abundance in urban and peri-urban parks in the French city of Lyon[END_REF][START_REF] Ehrmann | Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments[END_REF][START_REF] Vourc'h G | Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France[END_REF]. Ticks spend most of their life cycle in the environment, with each stage dependent on a complex combination of climatic variables, with the questing ticks being highly susceptible to the effects of temperature and humidity [START_REF] Estrada-Peña | Climate, niche, ticks, and models: What they are and how we should interpret them[END_REF][START_REF] Ogden | Investigation of Relationships Between Temperature and Developmental Rates of Tick Ixodes scapularis (Acari: Ixodidae) in the Laboratory and Field[END_REF].

Details of the temperature and humidity effects on questing ticks are described in the environmental data in Section 2.3 of Chapter 2.

Borrelia reservoirs and tick maintenance hosts

Ixodes (I.) ricinus has a wide range of animal hosts, with over 300 vertebrate species identified in Europe, including small rodents, passerines, reptiles and large mammals [START_REF] Humair | The wild hidden face of Lyme borreliosis in Europe[END_REF][START_REF] Milne | The ecology of the sheep tick, Ixodes ricinus L. Host relationships of the tick: Part 2. Observations on hill and moorland grazings in northern England[END_REF][START_REF] Gem | European Reservoir Hosts of Borrelia burgdorferi sensu lato[END_REF].

Small rodents are frequently infested by the immature stages of I. ricinus, i.e. larvaes and nymphs [START_REF] Mihalca | The role of rodents in the ecology of ixodes ricinus and associated pathogens in central and Eastern Europe[END_REF]. Mice (species Apodemus (A.) flavicollis; A. sylvaticus; A. agrarius) and vole (Myodes glareolus) are the main reservoirs for this spirochete complex, especially for Borrelia afzelii [START_REF] Kurtenbach | Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands[END_REF][START_REF] Humair | Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals[END_REF][START_REF] Huegli | Apodemus species mice are reservoir hosts of Borrelia garinii OspA serotype 4 in Switzerland[END_REF]. In addition, the Siberian chipmunk (Eutamias sibiricus), an introduced rodent species in peri-urban forests in France [START_REF] Pisanu | Introduced Siberian chipmunks are more heavily infested by ixodid ticks than are native bank voles in a suburban forest in France[END_REF], is also heavily infested by I. ricinus and appears to be associated with higher biodiversity of Borrelia spp. (B. afzelii, B. burgdorferi sensu stricto and B. garinii), while the native rodents are usually of only one species (B. afzelii) [START_REF] Marsot | Introduced Siberian chipmunks (Tamias sibiricus barberi) contribute more to lyme borreliosis risk than native reservoir rodents[END_REF][START_REF] Marchant | Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France[END_REF][START_REF] Vourc'h G | Borrelia burgdorferi Sensu Lato in Siberian Chipmunks (Tamias sibiricus) Introduced in Suburban Forests in France[END_REF].

Besides, edible dormice (Glis glis), garden dormice (Eliomys quercinus), hares and rabbits (Lepus(L.) europaeus, L. timidus, and Oryctolagus cuniculus) have also been found to be reservoirs of Borrelia spp. [START_REF] Tälleklint | Maintenance by Hares of European Borrelia burgdorferi in Ecosystems Without Rodents[END_REF][START_REF] Dantas-Torres | Ticks infesting the endangered Italian hare (Lepus corsicanus) and their habitat in an ecological park in southern Italy[END_REF].

Birds also play an important role in LB epidemiology. A French study showed that ground-feeding birds such as blackbirds (Turdus merula), song thrush (Turdus philomelos),

Eurasian wren (Troglodytes troglodytes), and tree pipit (Anthus trivialis) have relatively high prevalence of Borrelia infection and were highly infected with larval I. ricinus [START_REF] Rataud | Diversity of Tick-Borne Pathogens in Tick Larvae Feeding on Breeding Birds in France[END_REF]. Other birds like robins (Erithacus rubecula), and pheasants (Phasianus colchicus) have also been confirmed their reservoir role in other European regions [34,[START_REF] Humair | Ixodes ricinus immatures on birds in a focus of Lyme borreliosis[END_REF][START_REF] Dubska | Synanthropic birds influence the distribution of borrelia species: Analysis of ixodes ricinus ticks feeding on passerine birds[END_REF][START_REF] Dubska | Differential Role of Passerine Birds in Distribution of Borrelia Spirochetes, Based on Data from Ticks Collected from Birds during the Postbreeding Migration Period in Central Europe[END_REF][START_REF] Hppdwrg | An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes -PubMed[END_REF][START_REF] Kurtenbach | Competence of pheasants as reservoirs for Lyme disease spirochetes[END_REF][START_REF] Sormunen | Ticks (Acari: Ixodidae) parasitizing migrating and local breeding birds in Finland[END_REF] Understanding the distribution, diversity and abundance of competent and noncompetent animal hosts, as well as the impact of their interactions on the circulation of Borrelia in nature, may help to explain the heterogeneity of human LB distribution [116,117].

Epidemiological cycle of vector-pathogen-host

Epidemiological cycles of Lyme borreliosis involve complex interactions between the causative agent Borrelia burgdorferi sensu lato (s.l.), the tick vector Ixodes ricinus, and the hosts (animal and humans) (Figure 2). Ixodes ricinus requires a blood meal at all three life stages after hatching (larvae, nymphs and adults) [53]. Larvae feed on small mammals (such as rodents), which are reservoirs for B. burgdorferi s.l. [START_REF] Kurtenbach | Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands[END_REF][START_REF] Humair | Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals[END_REF][START_REF] Huegli | Apodemus species mice are reservoir hosts of Borrelia garinii OspA serotype 4 in Switzerland[END_REF][START_REF] Rataud | Diversity of Tick-Borne Pathogens in Tick Larvae Feeding on Breeding Birds in France[END_REF]. After a blood meal, larvae acquire infection and moult into nymphs. Compared to larvae, nymphs have a wider range of blood meal hosts and are the tick stage often found attached to humans [45,119]. If an infected tick attaches to a human and feeds on blood for more than 18-24 hours, the pathogen could be transmitted. 

Prevention measures and education campaigns

In the absence of a marketed vaccine, avoidance of tick bites remains the most effective measure against LB infection [48]. From 2009 to 2022, a total of 2,252 confirmed LB case reports were recorded by the national sentinel network. The most common clinical manifestation among the cases was erythema migrans (EM, more than 95%), which is in line with other European countries, such

as Germany [193] and Belgium [194]. Figure 4A shows the annual number of cases, which seems to have increased since 2016 onwards; given that the number of SGPs and their participation may vary in different years, time trends using adjusted incidence estimates will be presented later. The number of cases reported per month is shown in Figure 4B, with the majority of cases (>60%) reported between May and August each year, and similar seasonal characteristics reported in other European countries such as Croatia [195] and Germany [193]. Cases were reported in the location of the commune in which the SGPs operated (the smallest administrative unit; there are more than 30,000 communes in metropolitan France). In Figure 5A, each circle represents the centre of each commune and its size reflects the number of cases reported over the entire time period. We observe that, overall, the number of reported cases is higher in the east of France than in the west. Then, the number of cases were aggregated at the regional level (administrative level, NUTS 1) for each year in Figure 5B, which shows that LB has been reported in all regions to date, with the GE and ARA regions reporting more cases per year, and appearing to have a higher number of cases reported between 2016 and 2020 than in the other time periods. The incidence rate was estimated by the national sentinel network, and this information is available for all monitored health indicators, including LB. It was calculated from reported cases, adjusted for the number and participation of SGPs, as well as the total number of licensed GPs and the population size in the area, as done in [191,197]. In order to standardise the reporting of SGPs over time and to convert the raw data into weekly reported numbers, preprocessing consisted of calculating the weekly participation of SGPs and reallocating the number of cases each week. Assuming that SGP participation was consistent throughout the surveillance period, weekly participation was calculated in proportion to the number of days covered to determine the weight for that week (e.g., if an SGP participated for 3 days in a given week, the participation for that week would be 3 divided by 7). The number of cases in that week was estimated from the given weight. Incidence was then estimated in two steps:

calculating the average number of cases per full-time surveillance week and estimating the total number of cases seen by all GPs. This process assumes that SGPs were a random sample and that their reporting activity was representative for all GPs in the given area and given period.

Finally, the weekly incidence rate per 100,000 population was calculated by department, region and nationally. More detailed calculations are available in http://www.sentiweb.fr/1384.pdf.

The national incidence rate of LB remained stable during 2009-2015 (average incidence of 43 per 100,000 people), increased in 2016 (84 [70;98] per 100,000 people), and peaked in 2018 (104 [91;117] per 100,000 people) [191]. The incidence of LB appeared to decrease after 2018, rebounded in 2020, and then dropped again (Figure 6A). The overall trend was more fluctuating after 2016 than in previous years. LB incidence was also calculated for different clinical presentations by the national sentinel network (Figure 6B), with erythema migrans (orange line) accounting for the vast majority of reported cases, so the estimated incidence was closest to the total incidence for all presentations. Disseminated LB (pink line) was uncommon in primary care cases and therefore had the lowest estimated incidence [49,191]. In our analyses, LB surveillance data were used as outcome variables. In the cluster detection analyses presented in Chapter 3, we used the number of reported cases, the communes in which the cases were reported, and the reporting date. In the spatio-temporal statistical model presented in Chapter 4, we used weekly estimates of incidence rates and then aggregated by quarter (each three months of a year) at the department level. In the mathematical models presented in Chapter 5, we used the number of reported cases per month at the regional level.

The datasets presented next in this chapter are the explanatory variables used in the corresponding studies and their hypotheses related to the epidemiology of LB.

Anthropogenic data influencing LB incidence: outdoor activity, tickbite and awareness

The use of Pl@ntNet data as a proxy for human outdoor activity

Outdoor activity for work or leisure is an important driver of LB risk. A number of studies have found that people with a higher seroprevalence of LB are forestry workers, farmers, and orienteers, etc., and LB has been categorized as an occupationally exposed disease [20,[198][199][200][201]]. However, an epidemiologic review showed that the occupational risk of LB was not significant when compared to groups that may be at lower risk of LB but engage in outdoor recreational activities [202]. Thus, understanding human outdoor activity patterns may provide valuable insights for LB risk assessment.

Pl@ntNet (https://plantnet.org/) is a participatory science project aimed at encouraging citizens to take photos of plants and share them on the platform to help collect biodiversity Therefore, we hypothesize that Pl@ntNet data can be used as a proxy for the human daily outdoor activity index.

In Chapter 5, we incorporate this daily outdoor activity index into a mathematical model towards understanding LB transmission in the Rhône-Alpes region of France (administrative level, NUTS 2), and a detailed description of the data processing follows.

We extracted these data (i.e., date and geographic coordinates of uploaded images) for the Rhône-Alpes region from 2018 to 2022, obtaining a total of 83, 876 events. Data prior to 2018 were excluded due to the exponential growth in the number of users. By assuming that local residents have similar patterns of outdoor activity across the years, we first calculated the daily averages of photos over the five-year period, and then calculated the optimal span based on the Bayesian Information Criterion (BIC) and employed the loess smoothing to obtain a continuous distribution, and finally normalized all the daily values to obtain an index of 0-1 over the course of a year. Each day of the year has a value between 0 and 1, which can be interpreted as the probability or frequency of people being outdoors on that day. The peak period for human outdoor activity appears to be around May-June, with another small peak from July-September;

while November-February shows a low level of outdoor activity (Figure 7).

The use of tick-bite information, obtained from a citizen science programme

As mentioned in the previous section, citizen science contributes to greater geographic coverage and more promise for acquisition of large-scale data. Interactive visual maps illustrating temporal trends, regional distribution, and environments where tick bites occur are available on the website https://ci-tique-tracker.sk8.inrae.fr/. Yet, the number of reports may be influenced by some factors, in particular the level of participation of citizens in the CiTIQUE programme in different regions, and caution is needed in interpreting the results. Nonetheless, several studies in the US have used citizen science data to predict LB risk by mapping tick Ixodes scapularis distribution and compared their results with those of traditional surveillance data [213-215], which showed consistency. This demonstrates the value of citizen science data and the potential for using these data in LB risk assessment.

Data collected by CiTIQUE were used in a model presented in Chapter 4 which aim to identify and quantify the association between the frequency of tick bite reports and seasonal incidences of LB. We analysed human tick bite reports collected between 2017-2021, extracting information on reporting date and GPS location (WGS84) (Figure 8). We used all tick bite reports due to the unavailability of tick species in each report. However, in a random sample (at least 150 ticks randomly selected from each region of France), 96% of the humanattached ticks were morphologically and genetically identified as Ixodes ricinus (unpublished information from CiTIQUE), and we therefore assumed that Ixodes ricinus was the predominant tick species for the majority of bites in the data. Taking into account factors such as suitable habitat for ticks and population size, there are differences between departments (administrative level, NUTS 3) that result in people being at different risk of being bitten by ticks, and therefore different numbers of reported tick bites.

We assumed that the population at risk was the product of the number of residents in the department 𝐻 𝑑 and the cumulative percentage of recreational green space 𝐺 𝑑 . We first calculated the departmental quarterly averaged population-weighted of tick bite reports Nh (d, q) per 100,000 inhabitants. To improve comparability across time, we then calculated the corresponding proportion P(d,q) as follows.

𝑁 ℎ (𝑑, 𝑞) = 𝑁(𝑑, 𝑞) 10 The averaged proportions 2017-2019 were used for model construction; while data for 2020 and 2021 were processed accordingly and used for model validation, respectively.

The use of Google Trends data as proxy of public awareness

Health-seeking behaviour in the form of online search engine queries is considered to be an indicator that people may be infected with a specific disease, by reflecting real-time We hypothesised that the Google Trends index could be used as an indicator of citizens' access to information, thus reflecting their preference to seek medical care after a tick bite. To obtain Google Trends data related to LB in France, we selected two keywords "tique" (French for tick) (red line) and "Lyme" (blue line) for national searches between 1 January 2009 and 31

December 2022, respectively. This was then compared with the monthly LB case reports (grey bars) provided by the national sentinel network, as shown in the time trend graph (Figure 9). Google Trends data for both keywords between 2009 and 2022 show a clear seasonal pattern, with peak search periods between April and September each year. The difference is that the search trend for the keyword "Tique" shows a single peak each year and minimal fluctuations in the curve, whereas the search trend for the keyword "Lyme" fluctuates more within the year, with double peaks and sub-peaks occurring. Considering that media reports can influence online search behaviour, we checked for unusual peaks exhibited by the keyword "Lyme", such as the 2020 search volume peak occurring in January of that year, i.e., winter, which is usually considered to be a time period of low tick activity. It was suggested that wellknown singer Justin Bieber posted on social media about his diagnosis of Lyme disease on 8

January 2020 (111 million followers on twitter [226]), which caused a sharp increase in searches for "Lyme" worldwide, including in France. However, the keyword "Tique" did not show similar anomalies. Therefore, to minimise the noise caused by the media, we decided to retain only the Google Trends data for "Tique" as an indicator of public awareness of seeking medical care.

The temporal trend of this indicator was incorporated into a mathematical model, which will be presented in Chapter 5, aiming to understand the transmission of LB in endemic areas of France (Rhone-Alpes region). In this chapter, this indicator was used to create a reporting function to estimate the fraction of infections reported to the national sentinel network from 2009 to 2021. In addition, we analysed Google Trends data for the keyword "Tique" and quantified the data for the departments and seasons for the period 2016-2019 (Annex 3). We aimed to include this variable (with seasonal and departmental variations) into the spatiotemporal model presented in Chapter 4 and explore its relationship with LB seasonal incidences.

However, we conducted a univariate model test and the result was not statistically significant, so this variable was not ultimately included in the multivariate modelling study in Chapter 4. We extracted soil temperature (ST) level 1 (0 to 7 cm at the surface) from the ERA5-Land dataset [235], processed the data according to the time units of the different studies in were found in the eastern and south-western mountainous areas (i.e., Alps and Pyrenees) and on the west coast of Brittany, whereas high SD values were found on the Mediterranean coast.

Environmental data from satellite remote sensing

The Normalized Difference Vegetation Index (NDVI) reflects the microclimate of vegetation, is associated with water availability for free-living ticks, and has therefore been shown to be a good predictor of tick distribution in many studies [138,238,[241][242][243]. This index was used as a proxy for the presence of tick in the spatio-temporal statistical model (Chapter 4)

to explore its relationship with LB presence. The NDVI was also calculated as a quarterly mean in accordance with the same processing as ST and SD, as shown in Figure 13, that vegetation was most active in the spring and was present in almost all parts of the country (with the exception of the Alpes), whereas in the summer and fall, highly active vegetation was markedly unevenly distributed in different regions. Existing studies have provided a large number of candidate variables for environmental factors associated with LB, suggesting multiple roles for environmental influences on ticks, hosts, and their interactions during LB transmission [START_REF] Ehrmann | Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments[END_REF]167,236,244]. In this regard, we also explored other variables such as forest type, land cover, duration of daylight, rainfall (number of dry days), relative humidity (number of days exceeding 80%) and elevation. However, these variables were not included in our final model (Chapter 4) for at least one of the following reasons: 1) high correlation with the variables already used, 2) extremely limited spatial variability, and 3) lack of statistical significance in univariate tests. For some other variables, we did not have access to nationwide data sources and therefore did not consider these, such as bench tree seeds [245]. The criteria regarding the inclusion of continuous or categorical variables as covariates in the model were also analysed by means of univariate analysis, and the selection was based on the widely applicable information criterion (WAIC) [246], or the results of existing field studies on the variables in question. Pearson correlation analysis was first used to test the correlation between the candidate covariates and only candidate covariates with coefficients less than 0.7 were retained in the model.

Animal host data obtained from prediction models

The presence of wildlife, especially deer and rodents, in suitable Ixodes tick habitat, the former helping to maintain tick populations and the latter serving as reservoirs for Borrelia We extracted data for France and visualised both deer species in Figure 14. The spatial distribution of suitable habitat was similar for roe deer and red deer, with a higher proportion of suitable habitat for roe deer than for red deer, suggesting that roe deer may have a higher probability and density of occurrence in France. 

Discussion and perspective

Surveillance case data provide quantitative information on the national distribution of LB. Systematic data collection, collation and improved incidence calculations by the national sentinel network help to obtain long-term, consistent disease data. However, the quality of surveillance data depends on the representativeness of the SGPs. In calculating incidence rates, adjustments are made at the area level for temporal and geographic heterogeneity in the number of SGPs and their participation in surveillance; while reporting bias at the individual level is difficult to quantify. In addition, the estimated incidence rates do not reflect the full picture of LB infections in France since the surveillance data capture only symptomatic cases (>95% EM)

and do not include asymptomatic LB infection, furthermore, patients with disseminated manifestations of LB could be more likely to present to hospitals. Nonetheless, when compared with the other two sources of LB data, i.e., the national hospital discharge database (PMSI) and the electronic medical record (EMR), all three showed similar spatial and temporal patterns [49,158], suggesting the reliability of the national surveillance data.

The use of citizen science to collect data offers new opportunities for LB research, with the advantage of being able to reach a larger geographic area and population through public participation, thus capturing relevant information on tick exposure risk on a large scale. For example, in our study, the PlantNet data were used as a proxy for human outdoor activity, and CiTIQUE data were used to calculate the frequency of human tick bite reports. However, data collected by citizen science need to consider the presence of population selection bias; for example, Internet coverage and use frequency can filter out a portion of the population; besides, the target group for CiTIQUE is likely to be more conscious of ticks than the general population, and, for both, media campaigns and public willingness can lead to geographic differences in participation.

Google Trends data captures public search trends for specific keywords, and changes in public awareness of specific diseases can be inferred. Therefore, it was used as a proxy for public health awareness of tick and tick-borne diseases in our study. The choice of search terms may affect the interpretation of the data, e.g. when comparing the trends of the keywords "Tique" and "Lyme", the fluctuation of the data could be influenced by the noise of events and media reports. Attention to keyword selection can reduce this bias. In addition, Google Trends data do not reflect searcher intent and contextual information, so caution is needed in interpreting associations between search behavior and actual healthcare-seeking behavior.

Satellite remote sensing appears to better capture the subtle environmental constraints exhibited by tick populations than the sparse information collected by standard weather stations [138]. We prioritized soil temperature, saturation deficit, and NDVI as they have shown good predictive power for tick density and LB risk in previous studies [62,110,230,237,243,254,255].

Considering that these studies used different environmental data collection methods (e.g., thermo-hygrometer, radar observations, satellite images), were executed in different landscape areas (e.g., mountainous, forested, and agricultural areas), and used different data processing and statistical models. We therefore conducted a nationwide study in France to investigate and quantify these environmental factors in relation to LB incidence for comparison (Chapter 4).

Animal host information was derived from predictive models, and the index of deer presence was used as a proxy for tick abundance; however, deer density information was not [258]. However, this is only data on the number of deer hunted, field abundance data is not recorded and how to relate deer numbers to field abundance remains to be understood. As for rodents, we used species richness data as a proxy for Borrelia infection rates and were unable to capture seasonal changes in rodent densities and their infection rates [START_REF] Humair | Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals[END_REF]259]. In addition, rodents and deer may be driven to migrate by localized changes in habitat structure, leading to associated shifts in the risk of tick-borne diseases [108], while the data we used were timefixed, a decade in the past, and the results need to be discussed with particular caution.

In conclusion, the national-scale datasets that we acquired offer a unique comprehensive perspective on exploring the factors associated with LB. These datasets cover anthropogenic, environmental, and animal host factors and by integrating diverse data sources and employing statistical models, we have been able to predict seasonal LB occurrence (Chapter 4). Future research could further complement and enhance data collection in several aspects. First, encouraging more GPs to participate in monitoring activities, especially in areas with low numbers of SGPs, would help to improve the representativeness of the collected LB cases. With regard to data collected through citizen science, media campaigns could also be used to encourage more citizen participation, while improving the algorithms of software applications to improve the accuracy of the data collected. In terms of animal data, future studies could conduct field studies at multiple sites to comprehensively collect information on rodents and deer (including distribution, species, and abundance); given the resource-intensive nature of collecting genuine animal data on a large scale, species distribution modeling in conjunction with satellite data could also be used to predict the current presence of animal hosts at the national scale, thereby providing more realistic information for future LB research.

Chapter 3. Spatio-temporal patterns of Lyme borreliosis in

France

The analysis presented in this chapter has been published as: Chapter 1 provides an overview of the epidemiological context of Lyme borreliosis (LB), focusing on metropolitan France, as well as on international modeling studies; and

Chapter 2 describes the datasets available at the national level related to LB. This chapter aims to characterize the spatio-temporal pattern of LB in France and to investigate the spatiotemporal interactions in case reports for quantifying excess risk, to search for high-risk clusters as well as to generate hypotheses on the occurrence of clusters. 

Article summary

Space-time K-function analysis

For each year, the space-time K function was calculated to assess the spatio-temporal interactions among LB case reports. A case serves as a unit of analysis containing the GPS coordinates of the reported commune centroid (converted to Cartesian units, kilometers) and the date of the report (converted to the number of days in a year). We chose a maximum distance of 50 km and 90 days for the test. 𝐾(𝑠, 𝑡) denotes the cumulative expected number of LB cases within a distance s from a previously randomly selected case and over a time t divided by the

intensity λ [261]. 𝐾(𝑠, 𝑡) = 𝜆 -1 𝛦 (3.1)
where E is the number of extra cases occurring within distance s and time t of a random case report, and λ defined as the average number of cases per unit of distance and per unit of time.

Under the null hypothesis of no space-time interaction, 𝐾(𝑠, 𝑡) should be equal to the product of 𝐾(𝑠) and 𝐾(𝑡).

𝐾(𝑠, 𝑡) = 𝐾(𝑠)𝐾(𝑡)

𝐾(𝑠) and 𝐾(𝑡) are defined as the space K-function and the time K-function, respectively, and represent the expected number of cases only occurs in the space dimension (within a distance s) or in the time dimension (within a time t), divided by their intensity λ per unit s or t. The null hypothesis is the difference between 𝐾(𝑠, 𝑡) and 𝐾(𝑠)𝐾(𝑡) should be equal to 0. Alternatively, if their difference, denoted as 𝐷(𝑠, 𝑡) is greater than 0, this implies the existence of a spatialtemporal interaction among cases.

𝐷(𝑠, 𝑡) = 𝐾(𝑠, 𝑡) -𝐾(𝑠)𝐾(𝑡)

(3.3) 𝐷 0 (𝑠, 𝑡) = 𝐷(𝑠, 𝑡)/[𝐾(𝑠)𝐾(𝑡)] (3.4) 
Since the value of 𝐷(𝑠, 𝑡) increases naturally with the distance and time interval, it is commonly interpreted using the ratio 𝐷 0 (𝑠, 𝑡) in equation (3.4). A value of 𝐷 0 (𝑠, 𝑡) greater than 1 indicates that the cumulative number of cases observed under the null hypothesis of no spatiotemporal interactions is at least twice that expected [261]. The greater the value of 𝐷 0 (𝑠, 𝑡), the stronger the spatio-temporal interaction. A 999 Monte Carlo simulation was used to verify that spatio-temporal interactions did not occur by chance (the null hypothesis was rejected with a pvalue < 0.05) and that the reported date of each case would be randomly reassigned to cases assumed to be fixed in location [272].

Over the 2016-2019 period, we found a significant spatio-temporal interaction in 2018 (p value = 0.02), while this significance was not observed in the other years (2016,2017,2019).

Specifically, for 2018, our analysis of 𝐷 0 (𝑠, 𝑡) values indicated that localized areas (within a radius of 16 km) in the Auvergne-Rhône-Alpes region (ARA) exhibited excess risk (𝐷 0 (𝑠, 𝑡)

> 2) during a week in July-August. In the following week, the strength of this interaction decreased from 2 to 1 as the radius distance reached 34 km (excess risk, 1 < 𝐷 0 (𝑠, 𝑡) < 2). This suggests that, on average, the cumulative number of cases observed within a 16 km and 34 km radius centered on the location of the reported case is at least three times and twice, respectively, the number of cases expected under the assumption of no spatio-temporal interaction.

A discrete Poisson model based on the Kulldorf' scan statistic

LB cases aggregated at a commune-level had a Poisson distribution. For cluster detection, SaTScan software [273] was used to search for high-risk spatial clusters and spatiotemporal clusters separately in each year. A circular spatial scanning window with a maximum radius of 100 kilometers was used along with a temporal scanning window spanning 14 to 90 days (for spatio-temporal clustering only). It was assumed that LB cases in each commune had the same probability of consulting any general practitioner (GP), regardless of whether or not they were a sentinel GP (SGP). Under the Poisson assumption, the expected number of cases in each commune is proportional to its population size, and adjusted for the ratio of SGPs to all GPs in that commune. The null hypothesis is the likelihood of observing a case inside and outside the specific scan window should be equal with the function denoted as Clusters with the highest log-likelihood ratio values were considered as the most likely clusters, whereas the others were considered as secondary clusters and ranked in order based on their ratios [273].

A total of 16 significant purely spatial clusters and 7 spatio-temporal clusters have been identified in the northeast (GE), west-central (NA) and east-central (ARA). During the four

Discussion

From 2016 to 2019, LB cases reported a similar spatio-temporal pattern, with high-risk clusters mainly found in the Grand Est, Auvergne Rhône-Alpes and Nouvelle Aquitaine regions, i.e. north-east, east-central and south-central France, and high-risk temporal windows reported in late May and late August of each year. This corresponds to the high-risk regions identified by other descriptive studies (comparison of hospitalization data and electronic medical records) [49,158]. These results may indicate consistency between years in the surveillance activities being carried out by sentinel general practitioners (SGPs) in these regions. However, it is important to emphasize that our cluster detection was performed individually each year, and therefore changes in the size and location of clusters between the years do not represent temporal trends in disease occurrence.

Limits on data used and methodology had been discussed in #Article 1. However, in our analysis, one high-risk purely spatial clusters identified in 2019 were located in the Alpes-Maritimes (PACA region, southeastern France), which is usually considered a low-risk area for LB because several previous studies have shown that the Mediterranean climate (dry, hot summers) and the forest micro-environment (wilted leaves) are unsuitable for Ixodes ricinus [17,[START_REF] Gilot | Première contribution à l'étude écologique d'"Ixodes ricinus" (Linné, 1758) (Acarina, Ixodoidea) dans le Sud-Est de la France[END_REF]. Therefore, we first verified that these cases were bitten in the same department where they were reported, and that the SGPs reporting these cases had been conducting continuous 

Spatial interpolation by ordinary kriging method

In applying the ordinary kriging method, we assumed that the difference in LB incidence between two sites depends only on the distance between them [279]. We first estimated the semivariance function, which is defined by the following equation:

𝛾 ̂(ℎ) = 1 2𝑁 (ℎ) 
∑ (𝑍(𝑥 𝑖 + ℎ, 𝑦 𝑖 + ℎ) -𝑍(𝑥 𝑖 , 𝑦 𝑖 ))

2 𝑁(ℎ) 𝑖=1 (4.1) where Z (xi, yi) denotes the observed LB incidence at coordinates (xi, yi) and N(h) is the number of pairs of observations at a distance h from each other. The computation of 𝛾 ̂(ℎ) is repeated sequentially for 2h, 3h, ... , kh, By default, k is set up to 10. We then fitted the observed semivariogram with a spherical model and estimated the parameters of the theoretical model.

{ 𝛾(ℎ) = 0 𝑓𝑜𝑟 ℎ = 0 𝛾(ℎ) = 𝐶 0 + 𝐶 1 { 3 2 ℎ 𝐶 2 - 1 2 ( ℎ 𝐶 2 ) 3 } 𝑓𝑜𝑟 0 < ℎ < 𝐶 2 𝛾(ℎ) = 𝐶 0 + 𝐶 1 𝑓𝑜𝑟 ℎ ≥ 𝐶 2 (4.2)
𝐶 0 is the value of nugget parameter, representing the variability observed at a smaller scale than the minimum sampling interval or the measure errors, while the sill parameter is given by 𝐶 0 + 𝐶 1 that is, the maximum semivariance 𝛾(ℎ) . 𝐶 2 suggests that beyond this distance, the observations are independent of each other and are no longer spatially correlated [279].

We plotted the experimental and fitted spherical models using average LB incidence from 2016 to 2019 and observed spatial autocorrelation in LB distribution over a distance of 110 km (Figure 16), and then plotted the smoothed kriging incidence for the corresponding quarters in Figure 17. We analysed a total of 25,168 units with kriging incidence as the dependent variable and collapsed soil temperature, saturation deficit, NDVI, deer presence index, rodent species richness and frequency of human exposure to tick bites at the same spatial and temporal resolution according to the different epidemiological hypotheses tested in the twopart spatial and temporal models, respectively. See # Article 2 for model details.

Results showed that higher NDVI (≥ 0.6) was positively associated with seasonal LB presence, whereas a deer presence index (> 60%), mild soil temperature (15-22°C), moderate air unsaturation (1.5-5 mmHg), and higher tick bite frequency were associated with increased incidence. The projections maps revealed a higher risk of LB in April-September of each year, with higher incidence in parts of eastern, midwestern, and southwestern France. We tested air saturation deficit, soil temperature and NDVI in relation to the seasonal occurrence of LB, and the results showed a positive correlation over a range of specific values.

Although we also tested the rainfall variable, this was not retained in the final multivariate model as it did not show significance nor did it improve the model. We hypothesised that rainless days would be associated with human outdoor activity, but rainfall has also been used as a variable associated with tick activity in other studies, and their results showed no correlation as well [284]. We were not able to obtain available tick data to include in the model, however, some studies have shown that combining suitable vegetation indices with climatic variables can be used equally well as a proxy variable for ticks [138,285]. For example, the use of NDVI and temperature, combined with the use of geostatistics (cokriging) and remote sensing as a predictive tool for tick distribution in the USA and Canada yielded results that closely matched the actual tick record with a sensitivity of 0.97 and a specificity of 0.89 [285].

As well, the combination of temperature and NDVI resulted in the successful prediction of spatial patterns of tick-borne encephalitis virus foci on a continental scale [138]. In addition, the distribution map of LB incidence in France predicted by our modelling results has a similar geographical distribution pattern to that of the distribution map of suitable habitat for Ixodes ricinus predicted by the European Centre for Disease Control (ECDC) using a spatial distribution model (https://www.ecdc.europa.eu/en/infectious-disease-topics/related-publichealth-topics/disease-vectors/prevention-and-control) [148,150]. Another study used multicriteria analysis to map suitable habitat for Ixodes ricinus in France, which also overlapped with our predicted areas of human LB occurrence [147]. These show that in the absence of tick field data, our predictive map still seems to capture the distribution of Ixodes ricinus well, and to our knowledge, this is the first attempt to predict LB incidence in France, suggesting that our study is of reference value. However, it should be cautioned that the reliability of using these factors to map the predicted risk of LB, a complex zoonotic disease, remains to be discussed, and thus caution is needed when interpreting the results.

We assumed that the total tick density remained constant across each year, and that the aggregated temperature and saturation deficits by season reflected only the density of active ticks in each season, i.e., if temperatures were similar across seasons in different years, the density of active ticks was assumed to be the same, which may be different from the actual situation. For example, extreme weather changes (e.g., heavy rainfall) can affect the survival as well as the parasitism patterns of ticks and their animal hosts [START_REF] Estrada-Peña | Climate, niche, ticks, and models: What they are and how we should interpret them[END_REF], thereby affecting the distribution or transmission of LB, and our choice of seasonal resolution dilutes these effects.

Furthermore, a study in the United States has shown that differences in perceptions of Lyme disease risk between long-term endemic and recently endemic areas can lead to different conclusions from risk factor analysis using only climatic variables as predictors [286]. We had thus tested a public awareness index from Google Trends data which aggregated by department and season (Annex 3), which did not show significance in univariate analyses of the model and was therefore excluded. However, the CiTIQUE data we used contain information on the frequency of human exposure to tick bites in different regions, indirectly reflecting public awareness of ticks and the risk of tick-borne diseases, which, combined with meteorological and animal data, showed a positive correlation with increased incidence in the gamma part of our model. Additionally, the PlantNet data used to generate the proxy for human outdoor activity patterns were sourced after we had completed this statistical modelling and therefore

were not able to be included in this study at that time.

In conclusion, this is the first nationwide prediction of LB incidences, providing us with quantitative evidence of the risk factors that determine the seasonal and spatial distribution of LB in France, in addition to highlighting key factors such as soil temperature, saturation deficit and frequency of human tick bites, which provide guidance for mathematical modelling of future LB studies.

Chapter 5. Modelling the transmission of Lyme borreliosis in an endemic region of France

Introduction

In previous chapters, we found that Rhône-Alpes (RA) region was considered a highrisk cluster for case reporting (Chapter 3) and that the incidence of Lyme borreliosis (LB) had increased (Chapter 4). In this chapter, we present a pilot study using RA region with the objective of understanding the transmission of LB in endemic areas of France.

We aimed to estimate (i) the tick-biting rate; (ii) the optimal daily maximum soil temperature corresponding to peak tick activity; and (iii) the fraction of infections reported to the national sentinel network. To this end, we developed a mathematical compartmental model to describe the transmission of LB to humans and introduced a temperature-driven tick bite function and a reporting fraction function. In a Bayesian framework, we estimated the parameters by fitting the model to surveillance data collected from the national sentinel network in the RA region from 2009-2021.

𝑅 𝑡+1 = 𝛾𝐸2 𝑡 + (1 -𝜔 -𝜇)𝑅 𝑡 (4) 
At each time t, the proportion of infected cases flowed to the reported group was defined

𝐷 𝑡-𝑙 2 = 𝑞𝜌 𝑡 (𝐸2 𝑡+1 -𝐸2 𝑡 ) (5) 
where 𝐸2 𝑡+1 -𝐸2 𝑡 represented the number of new infections per day, defined as, 𝐼𝑛𝑐𝐸2, that we calculated and plotted as a reference for the incidence of LB for RA region.

Temperature-driven tick-biting function

We assumed that tick questing activity occurs at a temperature of 8°C (STmin) [110,231] at which point tick bites may occur but at the lowest threshold (βbaseline). As ST increased, the number of active ticks increased and biting rates rose until the optimal temperature threshold for tick activity (STopt) was reached [292]. At the optimal temperature threshold (STopt), both active tick density and bite rate peaked (βmax). When the ST value was higher than this threshold, the number of active ticks started to decrease and βt decreased [292]. Therefore, we assumed a bell-shaped relationship between biting rate βt and STt, as shown in Figure 20. We We used a function similar to the shape of the gamma distribution to define the temperature-driven biting function with three parameters a, b, and c.

𝑓 (𝑥) = 𝑐 𝑥 𝑎-1 𝑒 -𝑏𝑥 (6) 
by solving the f(STmin)= βbaseline and f(STopt)= βmax, we can calculate the shape parameter a, the rate parameter b and the scaling factor c, as follows

𝑎 = 1 + 𝑙𝑜𝑔( 𝛽 𝑚𝑎𝑥 𝛽 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) 𝑙𝑜𝑔( 𝑆𝑇 𝑜𝑝𝑡 𝑆𝑇 𝑚𝑖𝑛 )+ 𝑆𝑇 𝑚𝑖𝑛 𝑆𝑇 𝑜𝑝𝑡 -1 (7) 𝑏 = 𝑎-1 𝑆𝑇 𝑜𝑝𝑡 (8) 𝑐 = 𝛽 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆𝑇 𝑚𝑖𝑛 1-𝑎 𝑒𝑥𝑝 (𝑏𝑆𝑇 𝑚𝑖𝑛 ) (9) 
in addition, we tested the time lag between ST and tick biting activity set to 0, 7, 14, 21 and 30 days, ultimately retaining a 7-day time lag in the model. Thus, the biting rate at day t (βt) depended on the value of ST at day t-lag1 as shown in

𝛽 𝑡 = 𝑐[𝑆𝑇 𝑡-𝑙𝑎𝑔 1 𝑎-1 𝑒𝑥 𝑝(-𝑏𝑆𝑇 𝑡-𝑙𝑎𝑔 1 )] (10) 
where βt represents the biting rate at each day t, STt-lag1 denotes the soil temperature at seven days prior to day t. STmin and βbaseline, were fixed as input in the model (Table 2), whereas STopt, βmax were estimated from the data.

Reporting fraction function

The fraction of LB cases reported to the national sentinel network has not been estimated. It depends on a number of factors, such as the level of involvement of sentinel GPs and local public awareness of ticks. Here, we defined a function of the reporting fraction of 𝜌 𝑡 , which consisted of three components:

𝜌 𝑡 = 𝐺 𝑚 𝑅𝑖 𝑎 𝑘 (11) 
Gm denotes the index of public awareness of tick in RA region for each month, estimated using Google Trends data (Figure 18C, see Section 2.2.3 for details of the calculations); Ria represents the participation of Sentinel GPs (SGPs) for each year, using the ratio of the number of SGPs to the number of all licensed GPs; and k is a scaling factor estimated from the data, fixed over time.

Parameterization

We aimed to estimate three parameters by fitting the model to the data, two of which were related to ST-driven biting rate (βmax, STopt), and another parameter (k) defined in the reporting fraction function.

Other parameters were fixed input. They related to the natural history of infection, human demographics and anthropogenic activities, and were obtained using current knowledge of the epidemiology of LB (Table 2). We assumed that the total population of the RA region remained constant during the study period, with equal birth and death rates. Regarding the course of LB infection, we used erythema migrans (EM) as a reference, since more than 95% of surveillance cases were EM [191]. Based on the information that we obtained on LB in France, we assumed that after an infectious tick bite, about 16% (q) of people develop the skin rash of LB (i.e., EM), and that these people were more likely to visit a GP [293]. The average time to EM emergence was set at 14 days (1/ δ) and the average time to recovery was also 14 days (1/ γ) [1]. Comparative studies on the difference between antibiotic treatment and natural recovery are scarce, and similarly, acquired immunity to LB infection is unclear. A US study of hospitalised patients with recurrent LB infections showed that strain-specific acquired immunity takes at least 6 years to be lost [294]. We assumed a time to acquired immunity loss of 3 years (1/ ω) in our model.

Regarding tick activity, we used the nymphal stage as a reference, since nymphs are responsible for most human cases [25]. Empirical results from field surveys of tick ecology and temperature were available, e.g., the relationship between density and temperature of questing nymphs, the minimum temperature at which nymphs begin host-seeking activity is 8°C [110],

and we defined the temperature-driven biting rate function based on this information. 

Model fitting and parameter estimation

We fitted the simulated monthly number of reported cases 𝑛 𝑐𝑎𝑠𝑒,𝑚 to the monthly number of monitored case reports 𝑦 𝑚 within a Bayesian framework to estimate the parameters 𝜃 = {𝛽 𝑚𝑎𝑥 , 𝑆𝑇 𝑜𝑝𝑡 , 𝑘}. The number of monthly monitored case reports 𝑦 𝑚 followed a Poisson distribution and the corresponding log-likelihood is presented as follows

𝑦 𝑚 ~𝑃𝑜𝑖𝑠(𝑛 𝑐𝑎𝑠𝑒,𝑚 ) (12) 
𝐿𝑜𝑔𝐿𝑖𝑘(𝑑𝑎𝑡𝑎|𝜃) = ∑ 𝐿𝑜𝑔𝐿𝑖𝑘 𝑚 (𝑦 𝑚 |𝜃) 𝑚𝑜𝑛𝑡ℎ (13) 𝐿𝑜𝑔𝐿𝑖𝑘 𝑚 (𝑦 𝑚 |𝜃) = ∑ (𝑦 𝑚 )𝑙𝑜𝑔𝑛 𝑐𝑎𝑠𝑒,𝑚 -𝑛 𝑐𝑎𝑠𝑒,𝑚 -log(𝑦 𝑚 !) 𝑚𝑜𝑛𝑡ℎ ( 14)

Prior distribution

The maximum biting rate parameter βmax was chosen using an informative normal prior based on the information available in the literature [198,199] on seroprevalence in the general population and assumed to be stable over the year [298]. For the optimal soil temperature STopt, we also used an informative normal prior distribution with a mean of 15°C and a standard deviation of 2. The estimated scaling factor k was set between 0 and 1 using a uniform distribution.

Posterior distribution

We used the Monte Carlo Markov chain Metropolis-Hastings algorithm [299] to sample from the posterior distributions of the parameters θ, after having defined the likelihoods and priors of the parameters. The initial parameters of the chain were randomly sampled from their respective prior distributions and then compared to the proposed distributions (which were either accepted or rejected at each step) until a converged posterior distribution was obtained for each parameter. We performed 50,000 simulations for each parameter, and all operations were implemented in the fitR package for R version 4.0.5 [196].

Results

By fitting the model to the LB surveillance data, the optimal soil temperature for tick activity was estimated to be STopt = 18°C (95% credible interval [CrI] [17; 19.5]), and the maximum biting rate, at STopt, was βmax = 0.12*10 -2 tick bites per day (95% CrI [0.11*10 -2 ; 0.14*10 -2 ]) (Table 3). Optimal soil temperatures can occur from early May to early October each year, suggesting a higher risk of tick bites during this period than at other months. The scaling factor k being a component of the reporting fraction function was estimated at 0.50 (95% CrI [0.45-0.55]) (Table 3). As shown in Figure 21, using the estimated value of k, we calculated the percentage of LB infections reported to the national sentinel network each year, and is ranged from 0.16% to 0.68%. We observed an increase in the percentage reported since 2009 (pt=0.16%), with higher percentages reported in the two years 2018 (0.68%) and 2019 (0.67%), and a decrease in 2021 (0.20%). The posterior density distributions of each parameter obtained by performing 50 000

MCMC simulations of the model. Using the estimated parameters, we plotted the predictions of the model as shown in Figure 22. The simulated number of reported cases per month was well fitted to the observed data, reflecting the seasonal pattern and inter-annual variation in case reporting. The model predicted the peak period of case reporting to be June/July of each year. The temperature-driven tick bite function obtained from the data is shown in Figure 24B. The predicted incidence of infected cases in the RA region showed a clear seasonal pattern (Figure 24C), with some fluctuations between years, but the overall trend was stable. 

Discussion

We present in this chapter a mathematical model to understand the transmission of LB A number of limitations need to be considered. First, we simplified the course of LB infection by not considering the various symptom forms. Given that the vast majority of patients in primary care presented with erythema migrans (EM) [191], we only referred to the course of EM when selecting model input parameters such as incubation period [297]. In addition, we considered that patients with symptoms of disseminated late LB were more likely to go to a hospital or specialist, whereas a relatively small proportion of such cases were encountered in primary care. Second, in studies of SIR models of infectious disease, the separation of asymptomatic and symptomatic patients into two compartments has often been seen, whereas the clinical documentation of asymptomatic LB infections is very limited. Therefore, in our study, the infected group (asymptomatic and asymptomatic) as a whole was not distinguished.

However, we introduced the percentage of LB infection cases presenting with EM symptoms when the infected group entered the reported group, and assumed that only symptomatic patients would visit a doctor. For the purposes of our model and parameter estimates, distinguishing between symptomatic and asymptomatic patients did not necessarily affect the model results. Third, in the absence of tick information, we used temperature as a surrogate for the density of active ticks. The statistical model presented in Chapter 4 showed that a temperature range of 15 to 22 °C was positively associated with seasonal incidence of LB.

However, temperatures in the study were aggregated at a small scale (resolution ≈ 22 km 2 ). In the present study, we used mean soil temperatures aggregated at the regional level, so caution is needed in interpreting the optimal temperature results estimated by the model. Finally, we assumed a three-year period of immune loss. A document on LB published by the WHO This chapter summarises the main findings of this thesis, highlights the limitations of the results, and provides recommendations for future research.

Main findings and contributions to the field

Chapter 1. Lyme borreliosis is a zoonotic disease caused by infection with the Borrelia burgdorferi sensu lato complex and transmitted to humans through the infectious tick bites.

Ixodes ricinus is the main vector in France and widely distributed throughout the country. Lyme borreliosis has been classified as one of the prioritised vector-borne diseases of public concern and has been under nationwide surveillance since 2009. Estimated national incidence rates appear to have increased after 2016, with fluctuations between the years (42/100,000 population in 2009; 84/100,000 population in 2016) [191]. Small rodents and birds are competent reservoirs for Borrelia, while large ungulates such as deer are non-competent hosts but help maintain local tick density. Humans, as incidental hosts, exposed to tick habitats during outdoor activity lead to the chance to contract LB infection. Preventive measures focus on avoiding tick bites through physical and chemical protection. Educational campaigns targeting the public are conducted at the national and regional levels to raise awareness of ticks and tick-borne diseases.

Currently no human vaccine for LB exists. In terms of LB research, both spatial statistics and mathematical modelling are widely used, with spatial statistics commonly used for mapping and identifying biotic and abiotic factors associated with LB risk, while mathematical modelling focuses more on exploring the dynamics of ticks and tick-borne pathogens, and the interactions between both and the environment. 2021. The daily maximum soil temperature (ST) seems to be able to well predict the disease transmission, with the higher LB risk period occurring from early May to early October each year. The optimal ST for peak tick activity was estimated at 18°C (95% confidence interval:

17°C-19.5°C). Our model estimated that only 0.16%-0.68% of infections were reported to the national sentinel network each year, with the fraction of reports trending upwards from 2009, peaked in 2018-2019, and decreased in 2021.

Limitations

Statistical and mathematical methods used in the analysis chapters (Chapters 3, 4 and 5), the data used and the chosen resolution of the study (i.e. commune, gird cell and region) was limited by a number of factors and the results need to be interpreted with caution.

Limitations on data availability

First, the LB surveillance data used is collected by the national sentinel network through SGPs distributed across the country, whose reporting activities are voluntary. In the sentinel network, LB is one of the nine health indicators currently monitored, for which surveillance started in 2009. Other indicators, such as influenza-like symptoms have been monitored since 1984 [191]. We observed that the peak season of SGPs' participation in surveillance occurred during the winter months, whereas SGPs' participation during the summer season, which is the one of interest for LB, was relatively low, probably contributing to the underreporting of LB cases. In addition, the estimation of incidence rates was performed based on the assumption that SGPs were randomly sampled and that their activity was representative of all licensed French GPs in a given area and given period. However, we noticed that at the departmental level, in the presence of only an individual SGP, his reporting activity would directly lead to an overestimation or underestimation of incidence rates at the departmental level. Second, for data collected by citizen science, such as tick bite reports from the CiTIQUE project, if we had access to the number of downloads of the Signalement TIQUE app or hits on the website for each department, this could be used as a denominator to adjust the frequency of tick bite reports for each department, however, this information is not available. In addition, the CiTIQUE project involves not only individuals but also certain associations (e.g., hunters, nature enthusiasts, etc.) who may collate tick bite reports and upload them together to the platform in a uniform manner, resulting in a large number of reports occurring on the same day at the same GPS location. We therefore aggregated CiTIQUE data at the departmental level in our study, rather than opting to use a finer resolution. Thirdly, we used animal host data (including deer presence and rodent species) from predictive models that date back a decade. The reliability of these data and their consistency with the actual conditions in France remain uncertain. Human activities, changes in land use, deforestation and reforestation efforts can lead to alterations in the habitats of these animals, potentially triggering migrations and affecting local species diversity. However, we were not able to find more suitable alternatives to incorporate them into our model. Finally, due to the lack of vector data, we can only make assumptions in combination with available environmental data.

Impact on methods used and results obtained

In the spatio-temporal cluster detection analysis (Chapter 3), the primary limitation was that the actual location of the LB case was unknown, and thus the centroid of the commune of the SGP reporting the case was used as a surrogate for the geographic coordinate, assuming that the LB case was in the same commune as the SGP. The results of the high-risk clustering do not necessarily reflect the high-risk areas where LB occurs. Interpretation of clusters consisting of a single commune or two communes requires caution, and artificial clusters may be generated due to the migration of cases between communes.

In our spatio-temporal determinants study (Chapter 4), the first limitation related to the available scale of incidence data. To ensure statistical power, the smallest available level from the national sentinel network is the departmental incidence rate. Given this limitation, we divided France into 1573 grid cells and used the kriging method to estimate and smooth incidence rates in unknown locations, resulting in gridded data with higher resolution.

However, the risk of over-or underestimation of incidence must be recognised. In addition, we kept the frequency of tick bite reports at the departmental level, assuming that all grid cells within the same department were similar, which did not allow for the capture of subtle differences within departments. A third limitation is the lack of up-to-date data on rodents and deer, whose distribution may have changed over the past decade and our results may be subject to inaccurate estimates of risk factors.

Regarding the mathematical modelling study of LB transmission in the Rhône-Alpes region (Chapter 5), the framework of the model could be improved on several aspects. For the current simplified model, one of the main constraints is the lack of up-to-date serological data from the general population. The seroprevalence assumption in our model was based on serological data from reference populations in Switzerland and the Netherlands [198,199],

which date back three decades, and if the actual seroprevalence in the endemic areas was higher, exceeding the current assumption of 5%, then the tick biting rate could be underestimated.

Another limitation was the unavailability of data on tick vectors, and as an alternative we used temperature as a proxy for the density of active ticks. However, the use of regionally aggregated temperature data may not adequately reflect local tick activity, so caution is needed when interpreting the results.

Recommendations for future research

The complexity of the LB epidemiology lies in the interactions between the environment, ticks, animal hosts and humans, which still need to be further understood and demonstrated. To date, LB remains the most prevalent tick-borne disease in temperate regions of the northern hemisphere. The most effective preventive measure is to avoid tick bites, while human-related vaccines are still under development. Existing studies recognise that the composition of the local habitat, including vegetation cover, the proportion of Borrelia reservoir host species, the presence of breeding hosts (i.e. deer), and a favourable climate can positively influence the density and activity of infected ticks, leading to a higher risk of LB. Of these, temperature, saturation deficit, and NDVI appear to be important environmental parameters that have shown relevance in previous tick field studies as well as in our LB incidence projections, and merit particular attention in future modelling efforts of LB dynamics. In addition, many studies have used only environmental data or a combination of environmental and animal data to quantify the acarological risk, rarely incorporating anthropogenic factors. Human outdoor activities and exposure to tick bites are important component to be considered accurately, while the level of public awareness to the risk of tick bite and the precautions taken against tick bites can influence the reporting of LB cases between regions. Understanding the spatio-temporal heterogeneity of LB distribution therefore requires a unified approach to studying these factors within a single framework, and therein lies the value of our spatio-temporal modelling study. Combined with mathematical modelling of endemic LB transmission, both indicated the importance of anthropogenic factors in tick-borne disease risk assessment.

Future studies need to enhance field data collection, including information on tick

Ixodes ricinus distribution and infection rates, as well as Borrelia reservoirs and animal hosts, such as rodents, birds, and deer; and human serological data collection, especially in the general population, for which such data are scarce. The collection, improvement and refinement of LBrelated data is essential for the development of mathematical models to evaluate and quantify the risk of tick-borne pathogens transmission to humans.

Conclusion

The goal of this PhD work was to better understand the factors underlying the endemicity of LB in France. Our PhD work highlights areas and seasons at higher LB risk, investigates and quantifies environmental factors associated with LB incidence, and points the importance of accounting for anthropogenic data for the prediction of tick-borne diseases. The model on LB transmission in a high-risk area suggests that the increase in reported cases in recent years may be due to increased public health awareness of ticks and potentially more health-seeking behaviours. Caution should be exercised in interpreting these results due to the relative limitations and possible biases of the available data. However, previously published studies have not examined the spatial and temporal determinants of LB at the national level as well as the transmission of LB in endemic areas, and these results could inform future research.

  . Nous avons émis l'hypothèse que l'index Google Trends pourrait être utilisé comme référence pour le public à la recherche d'informations après une piqûre de tique. Pour obtenir des données Google Trends relatives à la LB en France, nous avons testé deux mots-clés "tique" et "Lyme" pour une recherche nationale entre 2009 et 2021. Après comparaison, nous avons décidé de ne garder que "tiques" comme mot-clé de tendance temporelle. La métrique Google Trends est une valeur comprise entre 0 et 100, que nous avons régularisée sur un intervalle compris entre 0 et 1 et incorporée dans le modèle mathématique du chapitre 5. Dans ce modèle, l'indicateur a été utilisé pour créer une fraction de rapport afin d'estimer la proportion de cas déclarés par rapport au nombre total d'infections LB dans la région Rhône-Alpes.

Figoni

  Figoni Julie, Métras Raphaëlle. Analyses spatio-temporelles exploratoires des cas de borréliose de Lyme déclarés en France, 2016-2019. Pathogens 2021, 10, 444. https://doi.org/10.3390/ pathogens10040444. Cette étude vise à caractériser le schéma spatio-temporel des cas de LB en France et à étudier les interactions spatio-temporelles entre les cas rapportés par les médecins Sentinelles afin de quantifier l'excès de risque, de rechercher des clusters à haut risque et de générer des hypothèses sur l'occurrence des clusters. Comme l'analyse de ce travail a été menée en 2020 et publiée début 2021. Les données de surveillance les plus récentes disponibles à ce moment-là remontaient à 2019, et nous avons choisi les années 2016-2019 pour notre analyse pour les raisons suivantes : 1) la majorité des cas pendant la période de surveillance à partir de 2009 ont été signalés après 2016; 2) la France a publié un plan national contre les maladies transmises par les tiques et de la borréliose de Lyme en 2016 [58], ce qui a pu affecté la sensibilisation du public et la prise en charge des patients; 3) peu d'études avaient exploré les schémas de distribution des cas dans l'espace et dans le temps après 2016.

Chapitre 4 .

 4 d'interactions spatio-temporelles. Un total de 16 clusters spatiaux et de 7 clusters spatiotemporels à haut risque a été identifié au cours de la période de quatre ans. Les principaux clusters spatiaux ont été identifiés dans le centre et le nord-est de la France et ont un rayon allant jusqu'à 97 km. En 2017-2019, des clusters spatiaux ont également été détectés dans des zones plus méridionales (près des Alpes et de la côte méditerranéenne). Les clusters spatiotemporels se produisent entre mai et août, avec des fenêtres temporelles de 1 à 3 mois en 2016-2017 et 2018-2019. La présence des hôtes animaux, des vecteurs, des facteurs météorologiques et du comportement humain est essentielle pour mieux élucider les schémas spatiaux et temporels de la LB. Pour cette raison, nous avons mené l'étude suivante, qui utilise un modèle statistique spatio-temporel pour identifier et quantifier les déterminants spatiaux et temporels de la distribution saisonnière de la LB. Étudier l'impact des facteurs environnementaux, des hôtes animaux et des facteurs anthropiques sur le risque de Lyme
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Figure 1 .

 1 Figure 1. Photograph of the tick Ixode ricinus. (5A) Nymphs of Ixodes ricinus tick (gorged: left; ungorged: right). (5B) The three developmental stages of the ungorged Ixodes ricinus tick (from left to right): adult (female), nymph and larva. The rigid cuticle remains limited to the anterior part of the body in adult females, but covers the entire dorsal surface in adult males. This image is licensed for reuse by Copyright © 2013 Elsevier Masson SAS [26].

Figure 2 .

 2 Figure 2. Transmission of Borrelia burgdorferi sensu lato (sl) that cause Lyme borreliosis.
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 23182 Modelling of tick-borne pathogens transmissionModelling of tick-borne pathogens investigates the transmission dynamics of Borrelia between ticks and their hosts as well as their patterns of interaction with the environment: this includes exploring the potential presence of pathogens in the environment and whether the spread of pathogens can be controlled by adjusting host population densities[181,182]; employing differential equation modelling approaches to explore the transmission rate of pathogens and to estimate the relevant parameters [112]; and combining tick population models with host infection models to investigate their impact on disease transmission [183]. Other studies have explored the impact of climate change on disease patterns and predicted invasion rates of pathogens following the emergence of ticks in the region [174,184,185]. Modelling the transmission of LB to humans Mathematical models have made efforts to explore tick population dynamics and pathogen transmission, but relatively limited information is available in relation to human infections [171], with a few examples such as the SIRS model used to describe the transmission of LB and the persistence of infections [186]; and structural equation models have also been used to estimate the risk of contracting LB after a tick bite [187]. In conclusion, the use of modelling techniques in LB research help to enrich our knowledge on disease spatial patterns, tick population dynamics and pathogen transmission dynamics [170,171]. Spatial statistics can be used for a variety of applications, such as mapping, identifying high-risk disease areas and performing risk factor analyses, the results of which can provide insights to guide targeted interventions, develop effective public health strategies and optimize resource allocation. Mathematical models, on the other hand, provide a window to the interactions among ticks, pathogens, hosts and the environments. The use of spatial statistics and mathematical modelling is a valuable tool to further improve our understanding of LB distribution patterns, their spatio-temporal determinants, and endemic transmission in France. Aim of the PhD thesis Chapter 1 reviewed the epidemiological background of LB in France and international modelling studies, showing that although LB is one of the tick-borne diseases of key interest in France, with field studies confirming the wide distribution of the tick Ixodes ricinus and the presence of multiple Borrelia spp., a very limited number of studies attempt to model LB incidence and their underlying factors.This doctoral study aims to enhance the understanding of the endemicity of Lyme borreliosis (LB) in France using surveillance data collected by the national sentinel network, combined with spatial statistics and mathematical modeling methods. To achieve this goal, three research analyses were implemented: 1) to characterize the spatial and temporal patterns of reported cases and search for high-risk clusters; 2) to identify and quantify the biotic and abiotic factors that are associated with the presence and increased incidence of LB; and 3) to understand the transmission of LB to humans in a high-risk area and to estimate the rate of tick bites and the proportion of surveillance coverage in the national sentinel network.Chapter 2 provides a description of the data used to enable the three analyses, including LB surveillance data and potential epidemiological drivers be explored (e.g., anthropogenic and environment factors), their sources, descriptions, and hypotheses related to the occurrence of LB. Chapter 3 investigates the spatial and temporal patterns of LB and searches for high-risk spatial and spatio-temporal clusters using descriptive and exploratory statistical methods.Chapter 4 presents a spatio-temporal statistical model for identifying and quantifying the effects of environment, animal host and human exposure to tick bites on the seasonal occurrence of LB. Chapter 5 uses a mathematical model to understand the transmission of LB in the Rhône-Alpes region, a high-risk area in France, in order to estimate tick bite rates and surveillance coverage of the national sentinel network. Chapter 6 summarises the main findings as well as strengths and limitations, and provides recommendations for further research. Description of Lyme borreliosis surveillance data and potential drivers to be explored

2. 1 .

 1 Lyme borreliosis surveillance dataStarted in 1984, the Réseau Sentinelles (French national sentinel network) is a surveillance and research network in primary care (general practice and paediatric) in France developed in collaboration with the French public health agency (Santé publique France)[188].The network consists of volunteer general practitioners (hereafter referred to as SGPs) located across the country who are involved in ongoing monitoring, collecting real-time information on targeted health indicators (Figure3)[189,190]. There are two paths for SGPs to report cases seen in consultations: either through the website (https://medecin.sentiweb.fr/) or by download the "jSentinel" software. For each login, SGPs are required to declare the number of observed cases for all monitored health indicators during the period since the last connection. To avoid memory bias, the interval between two nearly logins should not exceed 12 days, otherwise the SGP will need to reset the surveillance period for the current declaration[191]. By 2022, the national sentinel network is monitoring nine health indicators, include acute diarrhea, acute respiratory infection (ARI), chickenpox, herpes zoster, mumps, pertussis, sexually transmitted infection, suicidal attempts and Lyme borreliosis [192]. As of January 1, 2023, the number of SGPs involved in continuous surveillance activities in 2022 was 543 (608 in 2021), representing 1% of the total number of GPs in France [191].

Figure 3 .

 3 Figure 3. (A) Location of sentinel general practitioners (SGPs, blue dots) participating in continuous surveillance compared to all GPs (gray dots) in metropolitan France in 2022; (B) Number of SGPs who participated in continuous surveillance during the year between 1984 and 2022, all health indicators confounded. Figures are sourced from the national sentinel network published in the 2022 activity bulletin [191]. The national surveillance for Lyme borreliosis was launched in the first week of January 2009. Case definitions were based on the guidelines of the European Study Group on Lyme Borreliosis (ESGBOR), and the diagnostic criteria were 1) the presence of erythema migrants

Figure 4 .

 4 Figure 4. (A) The annual number of Lyme borreliosis (LB) cases reported to the national sentinel network, France, 2009-2022; A total of 2252 cases, with73 in 2009, 79 in 2010, 94 in 2011, 85 in 2012, 113 in 2013, 77 in 2014, 104 in 2015, 194 in 2016, 204 in 2017, 288 in 2018, 230 in 2019, 347 in 2020, 210 in 2021, 154 in 2022; (B) The number of LB cases reported per month , France, 2009-2022. More than 60% cases were reported between May and August of each year. Figures were produced with the ggplot2 package in R version 4.0.5 [196] using data from the national sentinel network [192].

Figure 5 .

 5 Figure 5. (A) Number of reported cases of Lyme borreliosis (LB) at the commune level in France for the entire period 2009-2022. Circles represent the location of communal centres. The larger the circle, the more cases are present throughout the time period. The size of the circle varies from 1 to 14 cases. (B) Number of LB cases reported annually by region in France, 2009-2022. This multifigure panel was produced with the leaflet, SpatialEpiApp and ggplot2 packages in R version 4.0.5 [196] using data from the national sentinel network [192].

Figure 6 .

 6 Figure 6. (A) Evolution of the annual incidence rate of Lyme borreliosis (LB) cases attending general practices in metropolitan France from 2009 to 2022 (95% confidence interval). (B) Evolution of the annual incidence of LB cases attending general practice in metropolitan France by clinical form from 2009 to 2022 (95% confidence interval).Figures are sourced from the national sentinel network published in the 2022 activity bulletin [191].

  information[203]. The project was created in 2010 by four French research organizations (CIRAD, Inria, INRAE and IRD). To date, the Pl@ntNet platform has users all over the world, with the largest number of users in France (4.4 million user accounts), Germany (1.8 million user accounts) and Italy (1 million user accounts). Each uploaded image records the geographic location and time (hereafter referred to as an event). Interactive visual maps of the regional distribution of users and the geographic and temporal trends of events can be found on the website https://www.gbif.org/fr/publisher/da86174a-a605-43a4-a5e8-53d484152cd3/metrics. All images collected were validated and only photos of outdoor plants were retained and uploaded to the Global Biodiversity Information Facility (GBIF) for open-source use[204].

Figure 7 .

 7 Figure 7. The index of daily human outdoor activity, exemplified by the Rhône-Alpes region of France (y-axis, right). x-axis represents the number of days in a year, y-axis (left) is the actual number of images uploaded per day in the region; y-axis (right) is the normalised value of the actual number. This figure was plotted with the ggplot2 package in R version 4.0.5 [196] using data from Pl@ntNet [205].

Figure 8 .

 8 Figure 8. Human tick bite reports in France, 2017 to 2021. Each blue dot represents a tick bite report and the corresponding GPS coordinates. We excluded reports with either missing value in the GPS coordinates and outside the French borders. The total annual number used for graphing is as follows: 2017 (2,896 reports), 2018 (7,509 reports), 2019 (5,368 reports), 2020 (18,564 reports), and 2021 (11,812 reports). Beware that the CiTIQUE perojet was launched in July 2017 and thus the report numbers collected in 2017 was not for an entire year. This multifigure panel was produced with the ggplot2 package in R version 4.0.5 [196] using data from CiTIQUE [211].

  epidemiological circumstances and aiding in the early detection of disease [218]. Google Trends (GT) has been used to predict the prevalence of several infectious diseases such as influenza, Ebola, dengue and acquired immunodeficiency syndrome (AIDS) [219-222]. Recent studies have also applied Google Trends to Lyme disease to assess its use as a tick-borne disease surveillance tool [223,224]. Trend data for specific health problems at specific times and geographic areas can be easily obtained through a combination of the Google Trends search engine and keywords [225].

Figure 9 .

 9 Figure 9. Monthly search volume in Google Trends for the keywords "Tique (French for tick)" (red) and "Lyme" (blue) compared to monthly reports of Lyme borreliosis cases (grey bars), France, 2009-2022. The Google Trends index ranges from 0 to 100, specifying a maximum search volume of 100 and other searches in decreasing order [225]. The two blue question marks on the trend for the keyword "Lyme" represent media-impacting events, the first being the release of a national plan prevent the Lyme borreliosis in France in September 2016 [133], and the second being the January 2020 tweet by celebrity Justin Bieber on his personal social media account that he had been diagnosed with Lyme disease [226]. This figure was produced with the ggplot2 package in R version 4.0.5 [196] using data from the national sentinel network [192] and Google Trends [225].

Chapters 4 and 5 .

 5 ST was used as a proxy for density of active ticks because tick field data were not available. In the spatiotemporal statistical model in Chapter 4, the seasonal mean maximum of ST was calculated at a resolution of approximately 22 km 2 per pixel to explore its relationship with seasonal LB incidence. As shown in Figure10for the years 2016-2019. ST show a clear seasonal and geographic pattern, with generally higher ST values across the country from July to September, particularly hot along the Mediterranean coast, and lower values from January to March, with the lowest ST near the Alps. The inter-annual variability of ST over the four-year period is hardly noticeable. In addition, in the mathematical model of Chapter 5, the daily average maximum ST was used to create a temperature-driven tick biting function to estimate the biting rate per day and the corresponding optimal ST for the peak tick activity. The Rhône-Alpes, located in east-central France, was chosen as the study area, where the average daily maximum temperature from 2009 to 2022 is displayed in Figure11.

Figure 10 .

 10 Figure 10.Seasonal variation of soil temperature in France, 2016-2019. Each row from top to bottom represents each year from 2016 to 2019. Each column from left to right indicates the winter (January to March), spring (April to June), summer (July to September) and autumn (October to December) of each year. Red indicates areas with higher temperatures, while grayish yellow indicates areas with lower temperatures. This figure was produced with raster and ggplot2 package in R version 4.0.5 [196] using the ERA5 dataset[235].

Figure 11 .

 11 Figure 11. Daily average maximum soil temperature, Rhône-Alpes, France, 2009 to 2022. This figure was produced with ggplot2 package in R version 4.0.5 [196] using the ERA5-Land dataset[235].

Figure 13 .

 13 Figure 13. Seasonal variation of the normalized difference vegetation index (NDVI), France, 2016-2019. Each row from top to bottom represents each year from 2016 to 2019. Each column from left to right indicates the winter (January to March), spring (April to June), summer (July to September) and autumn (October to December) of each year. Green (closer to 1) indicates areas with highly active green plants. This figure was produced with raster and ggplot2 package in R version 4.0.5 [196] using data from the Copernicus Global Land Service [229].

  bacteria capable of infecting ticks, are key factors influencing LB risk [104,106-108,247-250]. Due to the unavailability of genuine data on deer and rodents at a national scale, we used predictive modeling data for these animal hosts [251-253]. In our study, we assumed that the presence of deer indicated a relatively higher abundance of ticks locally than in those places where deer were absent. The deer presence index used was taken from publicly available data published by the Oxford Environmental Research Group (ERGO) [251,252]. The researchers used three different modeling techniques: generalized multiple regression, random forests, and the Food and Agriculture Organization of the United Nations (FAO) FARMS regression tool, the latter developed for livestock density modeling, which combines deer observations (EMMA database, GBIF, IUCN Red List dataset) along with land cover and associated climatic variables, to generate predictions of red deer or roe deer habitats across Europe [251,252].

Figure 14 .

 14 Figure 14. (A) Proportion of predicted suitable habitat for red deer (Cervus elaphus); (B) Proportion of predicted suitable habitat for roe deer (Capreolus capreolus), at a spatial resolution of 1 km 2 . 100% indicates that deer are present and 0 indicates that they are absent. This figure was produced with raster and ggplot2 package in R version 4.0.5 [196] using published open data [251,252].

Figure 15 .

 15 Figure 15. Predicted rodent species richness index at a spatial resolution of 1 km 2 . In total, thereare five rodent species: Apodemus (A.) agrarius, A. flavicollis, A. sylvaticus, Microtus arvalis, Clethrionomys glareolus. This figure was produced with raster and ggplot2 package in R version 4.0.5 [196] using published open data [253].

  represented[251,252]. The deer presence/absence index and deer density were two of the most tested indices in studies investigating comparative tick-deer relationships[256]. Among them, in a Dutch study, deer presence appeared to be a determinant of Ixodes ricnus abundance in forested areas, whereas deer density had no significant correlation [109], similarly, an Italian study noted that roe deer density had a negligible importance in predicting tick abundance, whereas there was a positive effect on tick abundance when this species was present[110]. In a Norwegian study, the distribution of red deer and its broad space use had an important influence on the local tick distribution[257]. However, studies in the United States have found that when deer densities are reduced through hunting activities, tick populations decrease and residents of the area report fewer cases of Lyme disease[256]. We therefore reviewed a document on ungulate wildlife hunting data published by the European Food Safety Authority (EFSA) in 2022 and extracted data for France, where the corresponding number of roe deer and red deer hunted per 10 km 2 in mainland France varied from 0 to 3 per year from 2015 to 2020

  This study was conducted in 2020 and published in early 2021[260]. The most recent surveillance data available at that time was up to 2019, and we chose the years 2016-2019 for our analysis for several reasons: 1) the majority of cases during the surveillance period from 2009 onwards were reported after 2016 (Section 2.1); 2) France released a national plan to prevent tick-borne diseases and Lyme borreliosis in 2016[133]. Considering whether public awareness and health-seeking behaviors were affected by this policy before and after the time point remains to be discussed (Chapter 5), we preferred cases after the year 2016; 3) few studies had explored the patterns of case distribution in space and in time. To achieve our research goals, the space-time K-function and a discrete Poisson model based on Kulldorf's scan statistics were used. These approaches are often used for spatio-temporal exploration of infectious diseases [261-267], where applications to Lyme disease have been documented, e.g., in the United States [268,269], Canada [270] and Denmark [271]. Details of the methodology and the result of our study are presented below.

  𝐶 is the total number of cases, c and E[c] are the observed and expected number of cases within the window under the null hypothesis, respectively. I() is an indicator function and when I() is equal to 1 indicates that more cases observed inside the scan window than expected under the null hypothesis [273,274]. The statistical significance of the identified clusters was assessed by 999 Monte Carlo simulations (a p-value less than 0.05). Nonoverlapping clusters identified as significant based on the Gini coefficient were retained [275].

  surveillance activities throughout the study period. Hypotheses about the role of introduced animal reservoirs and human activities in local recreational areas in leading to the emergence of clusters have been proposed but not yet tested. Shortly after our analyses, two additional studies related to the risk of LB in the Alpes-Maritimes became available, using different data sources (i.e., field-collected ticks and hospitalization data), and their results provide new perspectives on the PACA clusters we identified, as discussed below: 1) one study on tick risk assessment in Alpes-Maritimes was published in November 2021[276]. The study conducted field sampling at several sites within the department between June 2017 and June 2020 and found a total of 1,232 ticks, the majority of which (70%) were identified as Ixodes ricinus, which is consistent with the results of field surveys carried out in the Piemonte region in Italy (which borders the Alpes-Maritimes, and the two sites are located on opposite sides of the Alps)[277]. In addition, the causative pathogen Borrelia was also identified in the collected Ixodes ticks[276]. This finding confirms the presence of vectors and pathogens that can cause LB in Alpes-Maritimes, making it possible that the increase in the number of reported cases reflects an increased risk of LB in this area, under the assumption that the activity of local SGPs has remained stable over the years. 2) another study on LB risk assessment in Alpes-Maritimes was published in March 2022[278]. A total of 255 presumptive LB referrals were recorded between January 2016 and January 2020 at the specialized center for Lyme borreliosis, department of infectious diseases, university hospital of Nice. Of these, 45 (18%) were categorized as confirmed LB cases (erythema migrans(28); neurological symptoms(11); arthritis (6)), with half of the patients claiming to have been bitten by ticks and all residing in rural areas of Alpes-Maritimes. These hospitalisation data provide additional evidence and highlight the need for further attention to LB risk in the region.In conclusion, the continuous surveillance by the national sentinel network offers the possibility of exploring the spatio-temporal patterns of LB across the country, which, in combination with regional information from other sources, allows comparisons to be made between LB endemic areas in France and contributes to a deeper understanding and further investigations. It also raises the need to identify the factors that determine spatio-temporal patterns of LB. Using available data and prior knowledge, we present in Chapter 4 the first nationwide investigation and quantification of climatic, vegetation and animal host-related variables associated with the seasonal occurrence of LB, combined with information on human exposure to tick bites.

Figure 16 .

 16 Figure 16. Schematic (left) and spherical model (right) for Kriging spatial interpolation. In left plot, the red dots represent the centre of each department i.e. the assumed geographic coordinates of the incidence in that department, and the blue dots indicate the geographic location of the kriging incidence that we want to estimate. In right plot, fitted spherical model (red line) and estimated point pairs (blue dots) (right). An autocorrelation exists in the distribution of cases at a range of 110 km. This figure was produced with ggplot2 package in R version 4.0.5 [196] using data from the national sentinel network [192].

Figure 17 .

 17 Figure 17. Smoothed maps of quarterly kriging Lyme borreliosis incidence, France, 2016-2019. Panels A-D show 2016 kriged values, E-H show 2017 kriged values, I-L show 2018 kriged values and M-P show 2019 kriged values. Each column from left to right indicates the winter (January to March), spring (April to June), summer (July to September) and autumn October to December) of each year. The darker red areas indicate those with a higher kriged incidence, while grey areas indicate those with low kriged LB incidence. This figure was produced with ggplot2 package in R version 4.0.5 [196] using data from the national sentinel network [192].

  identified two pairs of points, x1 (xa, ya) and x2 (xb, yb), where xa represents the minimum temperature value STmin corresponding to the lowest biting rate βbaseline; xb represents the optimal temperature value STopt corresponding to the maximum biting rate βmax.

Figure 20 .

 20 Figure 20. The temperature-driven tick-biting function is illustrated as an example. The x-axis represents the average daily maximum soil temperature (°C) and the y-axis represents the biting rate (number of humans bitten by ticks (per person per day)). The figure was produced with the ggplot2 package in R version 4.0.5 [196].

Figure 22 .

 22 Figure 22. Model predictions over the period 2009-2021, Rhône-Alps, France. Predicted monthly cases reports (Median, black line) and their 95% credible interval (95%Crl, green); Observed monthly values (dark dots) refers to cases reported to the national sentinel network. This figure was produced with the ggplot2 package in R version 4.0.5 [196] using model results and data from the national sentinel network [192].

Figure 23 .

 23 Figure 23. Model simulation (50 000 MCMC runs) and the posterior density distribution of the three parameters estimated (optimal soil temperature, the maximal biting rate, and scaling factor k). This figure was produced with the ggplot2 package in R version 4.0.5 [196] using model results.

Figure 24 .

 24 Figure 24. Model trajectories of 2500 simulations. (A) Predicted seroprevalence in Rhône-Alpes, France, 2009-2021. Assumed seroprevalence rate (set at 5%, black dots) sourced from [198,199]. Predicted seroprevalence estimates (orange) range from 4% to 5.5%. (B) Temperature-driven tick biting rate function. X-axis represents daily maximum soil temperature and y-axis represents the tick biting rate. The rate of tick bites depends on the temperature of the day, with the highest rate of bites occurring at a temperature of 18 °C. (C) Estimated incidence of infected cases in the Rhône-Alpes region of France from 2009-2021. The median value (purple line) and its 95% credible interval (pink area) were reported. Projections of LB infection cases showed a clear seasonal pattern, peaking in June and July of each year, with some fluctuations between years, but the overall trend was stable. This figure was produced with the ggplot2 package in R version 4.0.5 [196] using model results.

  The aim of this PhD thesis was to improve the understanding of the endemicity of Lyme borreliosis (LB) in France using surveillance data, combined with spatial statistics and mathematical modelling methods. Specific objectives were fulfilled to this end, including: an introduction to LB epidemiology, with a focus on France, and review on the modelling work done internationally with regard to LB (Chapter 1); a description of the LB-related datasets available at the national level, their sources and hypotheses (Chapter 2); an exploratory spatiotemporal analysis of reported cases from 2016-2019 to find high-risk clusters and hypothesise about their emergence (Chapter 3 (Fu et al. 2021)); A statistical spatio-temporal modelling approach to investigate and quantify the environmental, animal host and anthropogenic factors associated with seasonal LB occurrence at the national level (Chapter 4 (Fu et al. 2023)); and finally a pilot study on the understanding of LB transmission to humans in endemic areas of France for the period 2009-2021 (Chapter 5).

Chapter 2 .Chapter 3 .Chapter 4 .Chapter 5 .

 2345 The national sentinel network, consisting of general practitioners across the country, provided robust long-term LB surveillance data (since 2009) as a response variable for our research. Whereas the citizen engagement in science project and web search engine provided anthropogenic data, i.e. human outdoor activity proxy (PlantNet project), human tick bite information (CiTIQUE project), public awareness index on ticks and tick-borne diseases (Google Trends); remote sensing satellites provided high resolution environmental data (such as climate, vegetation, and land cover) related to the ecology of ticks; animal predictive modelling provided data on deer presence and rodent species richness as a proxy for tick abundance and infection rates. Altogether, the above constitutes a unique LB-related dataset to fulfill our objectives. To explore the spatial and temporal distribution patterns of LB in metropolitan France, we used surveillance data from 2016 to 2019 (most LB cases were reported after 2016 and few exploratory statistical studies were available). The main spatial clusters reported each year are located in central and north-eastern France, with a maximum radius of 97 km in 2017-2019; smaller spatial clusters were also detected further south (near the Alps and Mediterranean coastline). Spatio-temporal clusters occurred between May and August, with windows of one to three months in 2016-2017 and 2018-2019. In 2018, a strong spatio-temporal interaction was detected over 16 km and 7 days in Auvergne-Rhône-Alpes region, suggesting an intense disease transmission at local scale. Continuous improvement of surveillance and consideration of animal hosts, vectors, meteorological factors, and human behaviour are key to further elucidating spatio-temporal patterns of LB. By integrating environmental, animal, meteorological and anthropogenic factors, we explored the determinants of spatial and seasonal variations in LB in France from 2016 to 2021, and then mapped seasonal LB risk projections. Investigation of factors associated with the seasonal occurrence of Lyme borreliosis (LB) in France showed that higher values of the normalised difference vegetation index (NDVI, >0.6), were positively associated with the presence of LB, whereas the presence index of deer (>60%), mild soil temperatures(15-22 °C), moderate air under-saturation (1.5-5 mmHg) and higher tick bite frequency were associated with increased incidence. Predictive maps showed a higher risk of LB in April-September, with higher incidence in parts of eastern, west-central and south-western France. Using a combination of information on climate (soil temperature and precipitation), daily patterns of human outdoor activity, and the change in public health awareness of tick and tick-borne diseases over time, a mathematical model was developed to explore the transmission of LB in an endemic region (Rhône-Alpes) of France from 2009 to

  

  

  

  

  

Modélisation de la transmission de la borréliose de Lyme dans une région endémique de France

  Ce travail a été publiée sous le titre suivant : Fu Wen, Bonnet Camille, Septfons Alexandra, Figoni Julie, Durand Jonas, Frey-Klett Pascale, Rustand Denis, Jaulhac Benoît, Métras Raphaëlle. Déterminants spatiaux et saisonniers de l'incidence de la borréliose de Lyme Cette étude combine des informations sur l'environnement (température, déficit de saturation, végétation), sur les hôtes animaux (présence de cerfs, richesse en espèces de rongeurs) et sur l'exposition humaine aux piqûres de tiques dans le but d'identifier et de quantifier les déterminants de la variabilité spatiale et saisonnière de la LB en France de 2016

	66. Rustand D, Niekerk J Van, Tournigand C, Briollais L. Bayesian Estimation of Two-Abstract
	Chapitre 6. Conclusion Part Joint Models for a Longitudinal Semicontinuous Biomarker and a Terminal Event Lyme borreliosis (LB), a zoonosis caused by the spirochete bacteria Borrelia with R-INLA : Interests for Cancer Clinical Trial Evaluation arXiv : 2010 . 13704v2 [ stat . ME ] 19 Apr 2021. 2021; 1-18. burgdorferri sensu lato and transmitted by hard ticks (family Ixodidae), is the most commonly Determinants of Lyme borreliosis incidence in France: a reported tick-borne disease in temperate regions of the northern hemisphere. Disease incidence à 2021. Nous avons utilisé les taux d'incidence hebdomadaires (/100 000 habitants) estimés par Suite au modèle statistique spatial précédent identifiant les facteurs associés à Ce travail de thèse a pour objectif de mieux comprendre l'endémicité de la maladie de 67. Blangiardo M, Cameletti M, Baio G. A tutorial in spatial and spatio-temporal models shows geographic and seasonal variations, resulting from the transmission of Borrelia in its spatial statistical and mathematical approach Lyme en France à partir des données de surveillance collectées par le réseau Sentinelles, with R-INLA. : 1-38. environment-tick-host cycle, and from the heterogeneity of surveillance systems in different le réseau Sentinelles pour chaque département et agrégés trimestriellement (24 trimestres de 2016 à 2021). Afin de maintenir la variation spatiale locale dans des variables telles que l'environnement et en lien avec l'hôte animal, nous avons divisé la France en 1 573 cellules de l'incidence de Lyme, nous avons initié ce travail, en utilisant la région Rhône-Alpes comme région pilote pour contribuer à l'apport de connaissance sur la transmission de LB de 2009 à 2021 dans les zones endémiques de France. combinées à des informations environnementales, animales et anthropiques, en utilisant des regions. The aim of this thesis is to improve our understanding of the distribution and 68. Martino S, Rue H. Implementing Approximate Bayesian Inference using Integrated méthodes statistiques spatiales et de modélisation mathématique. Trois études originales (deux transmission of LB using French national surveillance data combined with spatial statistics and Nested Laplace Approximation: a manual for the inla program. publiées et une en préparation) ont été menées pour atteindre cet objectif. Les deux premières mathematical modelling. grille d'une taille d'environ 22 km 2 en tant qu'unités d'étude. Nous avons d'abord estimé études ont permis de mieux comprendre la distribution spatiale et temporelle hétérogène de la 69. Application Tique. [cited 7 Aug 2023]. Available: https://zecke-tique-tick.ch/fr/app-The nationwide surveillance of LB in France, which began in 2009, provides the
	LB en France et ses déterminants. Les clusters à haut risque de LB identifiés au cours de la tique/ opportunity to explore disease patterns and identify relevant determinants of its spatial and
	période d'étude étaient principalement situés dans le nord-est, le centre-est et le centre du pays. 70. TicksNet. [cited 7 Aug 2023]. Available: https://epistat.sciensano.be/ticks/ temporal distribution. Meanwhile, we assessed and analysed environmental data relating to tick
	La fenêtre temporelle de risque élevé se situait entre mai et août de chaque année. Pour la Wen Fu ecology and anthropogenic data relating to tick-human interactions.
	première fois à l'échelle nationale, nous avons identifié et quantifié les facteurs associés à la Most LB cases were reported after 2016. We explored the spatio-temporal patterns of
	présence saisonnière de LB, notamment l'indice de végétation (NDVI), la température du sol et cases from 2016 to 2019 using the space-time K-function and Kulldorff's scan statistics (Fu et
	les déficits de saturation de l'air, ainsi que la présence de cerfs et l'abondance des espèces de al., 2021). Results showed that high-risk spatial clusters were reported in central and eastern
	rongeurs. Parmi ces facteurs, la température du sol est apparue comme un bon prédicteur de France with a maximum radius of 97 km. Clusters appeared in a time window between May
	l'activité des tiques dans les zones à haut risque examinées dans le cadre de la troisième étude. and August, ranging from one month in 2016-2017 to three months in 2018-2019. In addition, Doctoral Thesis in Public Health Il convient d'être prudent dans l'interprétation de ces résultats en raison notamment des limites liées aux données disponibles (par exemple, les données de collecte de la science citoyenne, les a strong spatio-temporal interaction over 16 km and 7 days was detected in 2018, suggesting a Specialty: Biostatistics and Biomathematics higher local transmission process.
	données sur les animaux hôtes, etc). Cela souligne également la nécessité de collecter à l'avenir Factors associated with the spatio-temporal occurrence of LB (including the
	des données de terrain sur la répartition et la densité dees tique Ixodes ricinus, des rongeurs et environment, animal host, and frequency of human exposure to ticks) were integrated into a
	des oiseaux, ainsi que des données sérologiques provenant de la population générale. unified framework by a two-part spatio-temporal model (Fu et al., 2023). Spatial and temporal
	Cependant, les études publiées précédemment n'ont pas fourni de preuves quantitatives relatives random effects were defined using a Besag-York-Mollie model and a seasonal model. The
	à la LB, et les résultats de ces études permettent d'éclairer les recherches futures. coefficients were estimated using a Bayesian approach. Results indicated that the presence of
	seasonal LB was positively associated with a higher vegetation density (NDVI ≥ 0.6), while
	increased incidence was associated with a higher probability of deer presence (> 60%), mild
	soil temperatures (15-22°C), moderate air saturation (1.5-5 mmHg), and more frequent tick
	bite reports. Projections for 2016-2021 showed similar spatial and seasonal patterns, with a
	higher risk of LB in April-September, and an increase in incidence in parts of eastern, west-October 2023 central and south-western France.
	en	France, To understand the transmission of LB in endemic areas over the period 2009-2021, we 2016 à 2021. Euro Surveill. 2023;28(14):pii=2200581.
	Sorbonne Université used a deterministic, discrete-time, daily-step compartmental model. The model was fitted to

https://doi.org/10.2807/1560-7917. ES.2023.

28.14.2200581 

l'incidence saisonnière du krigeage dans chaque cellule de grille en tant que variable indépendante en utilisant l'interpolation spatiale du krigeage ordinaire et un modèle sphérique

[64,[START_REF] Carrat | Epidemiologic Mapping using the "Kriging" Method: Application to an Influenza-like Epidemic in France[END_REF]

. Un modèle spatio-temporel en deux parties a ensuite été construit qui comprenait une partie logistique (présence ou absence de LB, la présence étant définie comme la présence d'au moins un cas de LB) et une partie gamma (l'incidence de la LB, avec toutes les valeurs positives)

[START_REF] Kempf | Assortative pairing in Ixodes ricinus (Acari: Ixodidae), the european vector of lyme borreliosis[END_REF]

. Les effets aléatoires spatiaux et temporels ont été estimés à l'aide du modèle Besag-York-Mollie et du modèle saisonnier

[START_REF] Brunner | Estimating reservoir competence of borrelia burgdorferi hosts: Prevalence and infectivity, sensitivity, and specificity[END_REF]

. Les coefficients ont été estimés à l'aide de l'approximation de Laplace composite imbriquée dans un cadre bayésien

[START_REF] Estrada-Peña | Tick-borne pathogens, transmission rates and climate change[END_REF]

. Le modèle a utilisé les données de 2016 à 2019 et les données de 2020 et 2021 ont été utilisées pour valider le modèle, puis les résultats du modèle ont été utilisés pour cartographier le risque saisonnier de LB.

Les résultats du modèle ont montré que des valeurs plus élevées de l'indice de végétation normalisé (NDVI > 0.6) étaient positivement associées à la présence de LB, tandis que l'indice de présence de cerfs (>60%), des températures au sol douces (15-22°C), des déficits de saturation de l'air modérés (1.5-5 mmHg) et une fréquence plus élevée de piqûres de tiques étaient associés à une augmentation de l'incidence. Les cartes prédictives ont montré un risque plus élevé de LB d'avril à septembre, avec une incidence plus élevée dans les régions de l'est, du centre-ouest et du sud-ouest de la France. Notre étude fournit des preuves quantitatives permettant aux autorités nationales de santé publique de planifier des activités de prévention ciblées afin de réduire le fardeau de la LB et de renforcer la surveillance. Les limites inhérentes aux données utilisées suggèrent que nos résultats doivent être interprétés avec prudence et qu'une collecte de données sur les vecteurs et les hôtes réservoirs est nécessaire. Cette approche pourrait être testée dans d'autres régions où la LB est endémique (par exemple en Suisse

[START_REF] Jaenson | Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden[END_REF]

,

en Belgique

[START_REF] Randolph | Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology[END_REF]

, etc., où des données sur les piqûres de tiques sont également disponibles). En outre, nous avons mis en évidence des facteurs clés qui doivent être davantage explorés lors de l'utilisation de la modélisation mathématique pour étudier la complexité de la dynamique de transmission de la LB, telles que la température du sol et les activités humaines.

Chapitre 5.

Un modèle compartimental déterministe à pas de temps quotidien a été élaboré en combinant des informations climatiques (température du sol et précipitations), un indice de l'activité humaine quotidienne en plein air (données PlantNet) et un indice de la sensibilisation du public aux tiques (données Google Trends). Nous avons introduit une fonction de taux de piqûre dépendant de la température du sol avec une distribution Gamma et une fraction de rapport. En ajustant ce modèle aux cas de LB rapportés mensuellement, nous avons cherché à estimer (i) les taux de piqûres de tiques, (ii) les températures optimales du sol correspondant au pic d'activité des tiques, et (iii) les fractions d'infection rapportés au réseau Sentinelles.

Les résultats de notre modélisation indiquent une température optimale du sol de 18°C (intervalle crédible à 95% (95%Crl): 17°C ;19.5°C) pour un pic d'activité des tiques, correspondant à un taux de piqûre maximal de 0.12*10 -2 (95% CrI [0.11*10 -2 ; 0.14*10 -2 ]). La température maximale quotidienne moyenne du sol est un bon indicateur de l'activité de recherche d'hôtes des tiques Ixodes, ce qui montre que le risque le plus élevé de cas de LB peut survenir entre début mai et début octobre chaque année, en fonction des variations de température au cours de l'année. Nous avons calculé le pourcentage d'infections à LB qui ont été prises en compte dans l'estimation du réseau Sentinelles en tant que cas rapportés pour chacune de ces années, allant de 0,16% à 0,68%. Cette fraction de rapport n'a cessé d'augmenter depuis le début de la surveillance en 2009, avec une hausse encore plus prononcée après la publication du Plan national Lyme en 2016, jusqu'à atteindre un pic en 2018 et 2019. Notre modèle peut être testé dans d'autres régions endémiques, telles que la Lorraine et l'Alsace dans le nord-est de la France. En comparant les paramètres estimés, nous pourrons mieux comprendre si la transmission de la LB est similaire dans les différentes régions et confirmer la performance prédictive de l'utilisation de la température comme indicateur. En outre, nous pouvons utiliser le modèle climatique mondial CMIP5 et deux scénarios climatiques (RCP4.5 et RCP8.5) pour prédire les tendances futures de l'incidence de LB et fournir des informations aux agences régionales locales de santé publique.
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. Causative agent: Borrelia burgdorferi sensu lato

  

	1.1		
	Priority	Important	Moderately important
	Lyme borreliosis	Tick-borne encephalitis	Human anaplasmosis
	Chikungunya	Yellow fever	Babesiosis
	Dengue	Q fever	Bartonellosis
	Crimean-Congo fever	Rift Valley fever	Ebola
		Psuttacosis	Mediterranean spotted fever
		Tularemia	Marburg haemorrhagic fever
			Lassa fever
			Hepatitis E
			Rickettsioses
			Exanthematic typhus

The Borrelia (B.) burgdorferi sensu lato (s.l.) complex is a group of spirochete bacteria, for which 22 genospecies have been named to date, half of which have shown potential pathogenicity

[26]

. Eight genotypes have been reported to infect humans, namely B. garinii, B. afzelii, B. spielmanii, B. burgdorferi s.s, B. bavariensis, B. valaisiana, B. lusitaniae and B.

  The assessment of LB burden in different areas, such as urban, suburban, or rural, requires the identification of populations at risk and different types of risk, taking into account the ecosystem context, such as vegetation, climate, vectors, and host community composition, in addition to information on human outdoor activities[63,120,122]. Environmental changes resulting from human activities such as deforestation, reforestation, hunting and species introductions can have an impact on tick-borne zoonoses[123]. Recent reports of the expanding geographic distribution of Ixodes ricinus in some European countries emphasise the importance of continuous surveillance and preventive measures[25,124,125].

Deer are considered the primary breeding host for female adults and help maintain local tick densities, which are not a competent reservoir for B. burgdorferi s.l.

[104]

. In addition, favourable weather conditions and vegetated habitats play an important role in tick host-pathogen transmission

[4]

.

In epidemiology, risk is defined as the likelihood of adverse outcomes resulting from a hazard under conditions of exposure and susceptibility

[120]

. Thus, the risk of LB infection in humans usually depends on the acarological hazard, i.e., distribution and density of infected ticks of the genus Ixodes spp. as well as on the risk of human exposure to tick bites

[121]

.

Modeling techniques used on Lyme borreliosis research 1.7.1. Spatial statistics

  Insupport of these actions, information resources on tick-borne diseases, such as posters, flyers, and digital media, were made and disseminated to the public.Vector control should also be implemented in localised endemic areas. For example, timely removal of the potential tick habitats, such as forest leaf litter, dead wood and undergrowth, which subsequently reduce tick populations[136]. In some state-owned forests, tick warning message boards have been installed to remind walkers and hikers to take additional precautions to reduce the risk of tick bites[126]. In addition, control measures for wildlife (especially deer) have been developed to fence them off from areas of human activity[126]. are available in a number of countries (see section 2.2.2 for a detailed list of countries with tick bite mapping). In addition, public awareness of LB and their adoption of relevant protective measures against the disease were assessed and mapped through some studies[161,162]. Lastly, relatively few mapping studies have been conducted on the causative pathogen, and a Europe-wide literature review documented the biodiversity distribution of permutation scanning statistics were used to identify high-risk clusters of reported cases of tick-borne infections [164]; a spatial autocorrelation analysis indicated that counties with more Lyme disease cases were clustered in parts of western Wisconsin, USA[149]; and a retrospective space-time scan statistics identified a temporal high-risk cluster in the Lombardy region of Italy, which had a 3.73-fold higher relative risk of LB during the 2008-2015 period compared with the entire study period[START_REF] Hanincová | Fitness variation of Borrelia burgdorferi sensu stricto strains in Mice[END_REF]. In addition, risk factor analyses typically use statistical models to determine the relationship between biotic (e.g., vegetation) or abiotic (e.g., temperature) factors in relation to LB risk[138,146,166,167]. Spatio-temporal statistical modeling can also be used to predict disease prevalence or incidence, including serological studies using sentinel animals [168], and to predict future LB burden in the context of climate change[169]. In addition, the models also use experimental data to predict the developmental time of ticks in relation to temperature, i.e., from egg to larva, larva to nymph, nymph to adult, and adult egg-laying, for each stage of development and compare them with field data[179,180].

	Spatial statistics plays a key role in understanding the spatial patterns of tick-borne
	diseases [138]. By analyzing the geographical distribution, clustering, and determinants of these
	diseases, the results from spatial statistics approaches can help informing targeted interventions,
	public health strategies, and resource allocation [139,140]. Collected data containing
	geographic information can be considered spatial data, which can usually be divided into three
	categories: areal (gridded) data, geostatistical data and point pattern data [141]. These data
	sources have information that is simultaneously spatially and temporally referenced, while
	Borrelia spp. [30].

The most recommended physical protection is to wear lightcoloured long sleeves and trousers when visiting tick-infested areas and to ensure that trousers are tucked into socks

[126]

. Chemical protection, such as repellents, is considered an additional protective measure that does not kill the tick directly but disrupts the tick's ability to detect the host [127]; acaricide spraying is not allowed in France for environmental reasons

[48]

. Some repellents, such as natural ones made from eucalyptus, tomato and coconut, can be applied directly to the skin, while other synthetic repellents are sprayed on clothing

[128,129]

. In addition, residents of endemic areas should be aware of the risk of exposure by regularly mowing their lawns or cutting tall grass around their homes to reduce tick habitats

[126]

. Pet owners need to groom and carefully inspect their pets after bringing them to tick habitats to prevent scattered ticks from infecting humans

[130]

.

After exposure to tick habitat, a physical examination should be performed immediately to eliminate unattached ticks and locate attached ticks to reduce the risk of infection

[131]

; this involves prompt removal of attached ticks using specialised tweezers and disinfection of bite wounds

[48,132]

. In addition, patients should be advised to seek medical attention if they develop cutaneous or other symptoms days or weeks after tick removal

[132]

.

Collective measures are developed and implemented by national and regional health authoritie

[133,134]

. These measures include education campaigns to inform the public about the importance of tick-borne diseases and the importance of taking effective measures to prevent tick bites

[133]

. Educational activities are not limited to at-risk populations such as forest workers and hunters, but are aimed at the entire public as well as travelers

[135]

. Another important aspect is that France has developed a national diagnostic and treatment plan to improve and standardise patient care [137], and improve existing diagnostic tests. Surveillance activities on LB cases have evolved from small-scale in localised endemic areas to a steady implementation nationwide. In addition, a centre specialised in the treatment of tick-related diseases (Centre National Référence de Borrélia, CNR) has been established in the Grand Est region to support the development, evaluation and improvement of clinical diagnostics, therapeutic strategies and vaccine development [137]. Lastly, increased research on tick-borne diseases plays an integral role in furthering prevention and control [133]. These initiatives aim to deepen the understanding of tick and tickpathogens in France, and the key factors affecting the presence and incidences of tick-borne diseases, particularly Lyme borreliosis, which are essential for developing targeted measures to prevent and reduce the disease burden.

1.7. purely spatial data can be considered as temporal aggregations or snapshots in time of spatiotemporal processes [142]. The following are common in mapping studies related to LB: First, tick distribution mapping studies have been implemented at local, national and continental European level [143-148]. This involved predicting tick distribution, including the presence/absence of ticks and the proportion of suitable tick habitat. Statistical relationships between tick distribution data and predicted covariate values were established through field collection of tick data, incorporation of environmental data, application of Geographic Information Systems (GIS) and spatial statistical modelling [138,146,149]. These relationships were then applied to covariate maps in order to derive a tick distribution model with a probability of existence consistent with the resolution of the covariate maps [150]. Second, spatially descriptive analyses of human LB distribution are also available at the local area and national level, using surveillance data, hospitalisation data and laboratory-collected data, including case counts or incidence estimates [151-160]. Third, risk maps of human exposure to tick bites Cluster analysis is also important in spatial epidemiological studies. By combining the distribution of human case data with spatial scanning techniques, which helps to identify and search for high-risk and low-risk areas [163]. For example, in Tennessee, USA, retrospective spatio-temporal 1.7.2. Mathematical modelling Mathematical modeling has contributed to a better understanding of tick population dynamics and their complex interactions with environment and animal hosts [170,171]. These models can be divided into three broad categories: modelling of tick population dynamics, modelling of tick-borne pathogens, and modelling the transmission of LB to humans. 1) Mathematical models of tick population dynamics Tick population dynamics models focused on the effects of environmental factors (e.g., ambient temperature, habitat, and host density) on tick populations [172-174]. These models are based on field observations of tick life cycle changes within seasons in different geographic regions to predict when tick densities are likely to peak during the year [175,176]. Model types included simulation models [172,177], modified matrix models [178] and stochastic models [179].

  This chapter describes the LB-related datasets available on a national scale that were used in the study and is divided into four sections. Section 2.1 introduces the French national sentinel network and LB surveillance data. Section 2.2 presents anthropogenic data relevant to humans, or human-tick interactions, such as a proxy for human outdoor activity (section 2.2.1), reports of tick bites on human (section 2.2.2), and an index of public awareness of ticks and tick-borne diseases (section 2.2.3). Section 2.3 describes environmental data related to tick ecology, including climate and vegetation. Section 2.4 provides animal host data related to tick densities and infection rates. Section 2.5 discusses all data used and their limitations.

  𝐷 is the department, and 𝑞=1, 2, …, 𝑄 represents each quarter. 𝑁(𝑑, 𝑞) is the average number of tick bites reported in department 𝑑 and in quarter 𝑞. In equation (2.1), we adjusted the population weight of department 𝑑 to obtain the number of quarterly reported tick bites per 100,000 inhabitants, denoted as 𝑁 ℎ (𝑑, 𝑞). In equation (2.2) the population-adjusted tick bite reports 𝑁 ℎ was aggregated for all department and all quarters. We then calculated in equation (2.3) the quarterly proportion of tick bite reports 𝑃(𝑑, 𝑞) in each department.

	𝐷	𝑄	
	𝑁 ℎ = ∑ ∑ 𝑁 ℎ (𝑑, 𝑞)	(2.2)
	𝑑=1	𝑞=1	
	𝑃(𝑑, 𝑞) =	𝑁 ℎ (𝑑, 𝑞) 𝑁 ℎ	(2.3)
	where 𝑑=1, 2, …,		
		-5 𝐻 𝑑 𝐺 𝑑	(2.1)

Here 𝑄 = 4, as we used the available data during 2017-19 to calculate the average for four quarters (in order January to March (winter), April to June (spring), July to September (summer), October to December (autumn)). 𝐻 𝑑 is the number of inhabitants in department d, Gd represent the cumulative percentages of recreational areas in that department where people are likely to encounter tick bites. The land types (from Corine Land Cover 2018 [216]) selected for calculating Gd are as follows: Broad-leaved forest (CLC code 311), Coniferous forest (CLC code 312), Mixed forest (CLC code 313), Transitional woodland-shrub (CLC code 324), Moors and heathland (CLC code 322), Natural grasslands (CLC code 321), Land principally occupied by agriculture, with significant areas of natural vegetation (CLC code 243), Pastures (CLC code 231), Green urban areas (CLC code 141), Sport and leisure facilities (CLC code 142). Demographic data were obtained from the 2017 national census [217].

  Satellite image data combined with spatial statistics are often used to analyze the distribution of vector-borne diseases in epidemiological studies[227]. Environmental data collected by remote sensing satellites are capable to capture the localized nuances over large

	geographic areas in LB risk assessments [138]. We extracted meteorological data from the fifth
	generation of the European Reanalysis (ERA5) dataset published by the European Center for
	Medium-Range Weather Forecasts (ECMWF) [228] and the Vegetation Index from the
	Copernicus Global Land Service [229].
	Near-surface temperature and saturation deficit (an index that combines temperature and

relative humidity to measure the drying power of the atmosphere) appear to be the factors that most affect the survival, development, and questing activity (host-seeking behavior) of the arthropod Ixodes (I.) ricinus

[138,230]

. This has been demonstrated in numerous field studies and laboratory tests. It is considered that I. ricinus require daily maximum temperatures above 7-8°C to initiate questing activity [110,231], and then the density of active ticks gradually increases with increasing temperature, levelling off at 15-17°C [232]. Laboratory studies have shown that temperature is linearly related to the metabolic activity of I. ricinus [233]; higher temperatures shorten the developmental period of I. ricinus [79]; and temperatures exceeding 28°C (under dry conditions) may result in mortality of Ixodes ticks. However, these temperature thresholds are not strictly limited and are also influenced by other environmental factors such as humidity and vegetation, as well as being related to the intrinsic regulatory mechanisms of ticks living at different altitudes [234]. For example, laboratory conditions experimenting with temperature thresholds for the activity of I. ricinus collected from different altitudes in Clermont-Ferrand (mountainous region of central France) yielded different results (9.3 °C for ticks living at low altitude vs. 6.9 °C for those living at high altitude) [234].

  Fu Wen, Bonnet Camille, Septfons Alexandra, Figoni Julie, Métras Raphaëlle. Exploratory space-time analyses of reported Lyme borreliosis cases in France, 2016-2019. Pathogens 2021, 10, 444. https://doi.org/10.3390/ pathogens10040444
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  and kriging geostatistical techniques can predict values at unobserved points based on the spatial structure of the observed data; good performance was shown in a previous application to influenza data collected by the national sentinel network[280]. We have considered the use of stochastic partial differential equations (SPDE models) for spatial modelling, but this is generally more applicable to spatial studies of point data, such as estimating air quality across an entire region using air pollution indices collected at multi-site weather stations[281]. In our study, it is preferred to consider that it is the average climate and environment within the habitat coverage that positively influences the presence of ticks and their animal hosts, hence the use of the Besag model is more suitable for gridded spatial data[282,283].

Table 2 . Model parameters, input or estimated by fitting model to data.
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	Parameter description	Notation	Input value/	Unit	Source/
			Estimated		Assumed
	Demographics				
	Population size	N	6 174 040	N/A	[295]
	Human birth rate	ν	1/ (82*365)	Day -1	[296]
	Human death rate	μ	1/ (82*365)	Day -1	[296]
	Natural history of Lyme borreliosis infection			
	Average rate of erythema	δ	1/14	Day -1	[297]
	migrans appearance				
	Proportion of developing	𝑞	16	%	[293]
	erythema migran				
	Average recovery rate	γ	1/14	Day -1	[1]

Table 3 . Results of estimated parameters, mean value and 95% Credible interval (Crl) Parameter description Notation Mean 95% Crl
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	Scaling factor for reporting fractions	k	0.50	[0.45; 0.55]

Optimum temperature (°C) STopt 18 [17; 19.5] Biting rate at optimum temperature βmax 0.12*10 -2 [0.11*10 -2 ; 0.14*10 -2 ]

Figure 21. Estimated fraction of LB infections reported to the national sentinel network case each year, 2009 to

  

2021, Rhône-Alpes, France. Reported fractions increased since 2009, with the highest in 2018 and 2019 and 2020, followed by a decrease in 2021. The reporting percentages for each year are as follows: 0.16% in 2009; 0.16% in 2010; 0.22% in 2011; 0.22% in 2012; 0.28% in 2013; 0.28% in 2014; 0.32% in 2015; 0.42% in 2016; 0.51% in 2017; 0.68% in 2018; 0.67% in 2019; 0.59% in 2020; 0.20% in 2021. This figure was produced with the ggplot2 package in R version 4.0.5 [196] using model results.

  reports may occur from early May to early October each year, depending on temperature variations during the year. We calculated the fraction of cases reported to the national sentinel network which ranged from 0.16% to 0.68% per year. This fraction of reported cases has risen steadily since the start of surveillance campaigns in 2009, and even more markedly after the release of the national Lyme plan in 2016, until it peaked in 2018-2019.

	in Rhône-Alpes (RA), an endemic LB region. By fitting the model to 2009-2021 LB
	surveillance data within a Bayesian framework, our modeling results suggest that the optimal
	soil temperature (STopt) for the peak tick activity was 18°C (95% Crl [17°C; 19.5°C]),
	corresponding to a maximum bite rate of 0.12*10 -2 (95% CrI [0.11*10 -2 ; 0.14*10 -2 ]). The peak
	of LB case

  Regional Office for Europe mentioned that 'neither subclinical nor symptomatic infections provide immunity'[4]. In contrast, studies conducted in the United States have demonstrated the presence of strain-specific immunity in Lyme disease patients[294,300]. Both IgM and IgG antibodies against Borrelia have been observed to persist for months to years[301]. Moreover, a study in the USA involving hospitalised patients with recurrent LB infections showed that the loss of strain-specific acquired immunity took at least 6 years[294]. It has also been noted that people in endemic areas were at higher risk of being re-infected with LB (in the presence of several Borrelia spp)[302][303][304]. As data on human seroprevalence and relevant information on the course of LB infection become more explicit, we can modify assumptions and improve the model. Furthermore, our findings on the fraction of surveillance case reports suggest that less than 1% of LB infections were detected by the national sentinel network. In comparison, other studies, such as a French study using the same surveillance network detected 31% of people

	, RCP4.5
	and RCP8.5) provided by global climate models (e.g., the CMIP5 model) [169]. To further
	improve the model, additional data collection is essential, including human seroprevalence data,
	tick and host dynamics data. We could ultimately incorporate tick vectors as compartments in
	the model framework if the data become available.

with COVID-19-like symptoms

[305]

. Another study using surveillance data and sera data during an outbreak of Rift Valley Fever (a vector-bone and zoonotic disease as well) in Mayotte (a French Overseas Island) showed that 1.2% of overall infections were detected by surveillance

[306]

. This suggests that the proportion of infections detected by surveillance systems relate to a number of factors, such as the natural course of infection, the disease epidemiology (sporadic, endemic or epidemic), the functionality of the surveillance system.

Our model could be tested in other endemic areas such as Lorraine and Alsace in northeastern France, and estimated parameters could be compared, to understand whether the pattern of LB transmission is similar across geographic regions. In addition, we can project future LB burden by combining temperature information under different climate scenarios (e.g.
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Saturation deficit (SD) is also a key factor influencing tick questing activity and its density [110,[236][237][238][239]. A Swiss study found that most tick activity occurred between 2 mmHg and 7 mmHg, with a decrease in tick activity when SD was higher than 5 mmHg [240]; another Italian study showed that the density of questing nymphs declined after SD reached a specific threshold of 7.39 mmHg [237]. Differences in threshold results in experiments could be related to the altitude of the study site. We calculated SD = (1-RH/100)*4.9463*exp( 0.0621*AT) based on air temperature (AT) and relative humidity (RH) [110]; and used SD as a proxy for the density of questing nymphs, which was incorporated in the spatio-temporal statistical model in Chapter 4. Seasonal variations of SD are shown in Figure 12. The SD data were processed in the same way as the ST data described earlier. Areas with higher SD values generally reflect higher AT and lower RH. Over the four-year period, SD values were generally low across the country in winter and autumn (i.e. October to March); relatively high in spring (i.e. April to June), when temperatures recovered; and marked regional differences in SD values in summer (i.e. July to September). Comparatively low SD values years 2016-2019, NA spatial clusters persisted with a radius of about 69 km (2016-2018) and 95 km (2019). The GE spatial clusters reported in 2016 mainly involved Alsace in the east, bordering Germany and Switzerland, however, the GE one detected in 2017 was farther south, spanning the area of Bourgogne-Franche-Comté (BFC). In 2018-2019, the GE spatial clusters maintained a similar location and size (87.6km and 92.5 km). In addition, the location and size of the ARA spatial cluster varied between the years, with the 2016 cluster including only one commune, while the 2018 cluster included 25 communes with a radius up to 88.3 km. In 2019, a spatial cluster consisting of two communes appeared along the Mediterranean coast in Alpes-Maritimes, which had never been seen in previous years. Spatio-temporal clusters were reported mainly in GE and ARA, partially overlapping with spatial clusters, with the largest ones reported in 2018-2019 occurring in ARA, with a radius of 96 km, over a period of three months (late May to late August). See #Article 1 for cluster visualisation maps. Whereas the previous chapter (Chapter 3) identified high-risk clusters for 2016-2019 and developed hypotheses regarding the existence of these clusters, this chapter describes the use of a two-part spatio-temporal statistical model to explore and quantify the factors associated with the seasonal occurrence of LB in 2016-2019, and then the results of the model are used to predict the incidence maps for 2020-2021.

Full article (#Article 1): Exploratory space-time analyses of reported

Article summary

Epidemiological analysis studies explored factors associated with LB risk using different modelling approaches (section 1.7). Field studies have focused on exploring biotic and abiotic factors (e.g., temperature, vegetation, and presence of deer) that influence the ecology of Ixodes ricinus (section 2.3 and 2.4). In addition, exposure to tick bites is a key factor contributing to LB infection in humans (section 2.2.2). However, few studies have explored the impact of environmental, animal and human exposure to tick bites on LB incidence in a unified framework. Here, we used a two-part spatio-temporal model that combines these factors to examine and quantify the seasonal occurrence and incidence of LB across France. We used incidence rates estimated at the departmental level by the national sentinel network and aggregated by quarter (the year is divided into four quarters, with winter from January to March; spring from April to June; summer from July to September; and autumn from October to December). The map of France was divided into 1573 grid cells, with a grid cell size of approximately 22 km 2 , which served as the unit of study. We first estimated the seasonal incidence of each grid cell using ordinary kriging and a spherical model as follows.

Methods

Study area

The Rhône-Alpes region (RA, administrative level, NUTS2) is located in east-central France and has a population of approximately 6.7 million (the 2020 census, Insee [287]), making it one of the most populous and largest regions in France. The region is mainly influenced by a mountainous and semi-continental climate characterized by cold winters and mild summers with a high number of rainfall days throughout the year [15]. In addition, it is rich in woodland resources (with a standing wood volume of more than 200 m 3 /ha), including both deciduous and coniferous forests, dominated by spruce, pine and oak [288].

Lyme borreliosis datasets

Surveillance case reports

We extracted cases collected by the national sentinel networks in the RA region between January 2009 and December 2021, for a total of 544 case reports. Case definitions followed the guidelines of the European Study Group on Lyme Borreliosis (ESGBOR), and the diagnostic criteria for LB cases were the presence of EM or at least one disseminated manifestation, confirmed by ELISA and Western blotting (see Annex 1 for the complete diagnostic criteria for LB cases). The majority of cases were reported in June and July of each year, accounting for approximately 39% of reports, with the highest annual number of cases occurring in 2018 and the lowest in 2015 (Figure 18A). We summarised the number of cases per month and used it for model fitting.

Anthropogenic data

Human outdoor activity index

To understand people's propensity to be outdoors, we used data from the citizen science project PlantNet (https://plantnet.org/), which aims to encourage the public to contribute to botanical biodiversity by collecting photographs of plants [203]. Each uploaded photo contained GPS location and date information, and photos were filtered for outdoor plants only.

We therefore used these data to generate a proxy for human outdoor activity patterns. We extracted a total of 83,876 photo reports from the RA region over the past five years (2018-2022), assuming that local residents had similar patterns of outdoor activity over these years.

We first calculated the average number of photos uploaded per day and then used loess smoothing and normalization to obtain a continuous distribution. The derived outdoor activity index was a daily value between 0 and 1 (constant across years). Figure 18B shows that the peak period for human outdoor activity appears to be around May-June, with another small peak from July-September; while November-February shows a low level of outdoor activity.

Public health awareness on tick

To assess changes in public awareness of ticks and tick-borne diseases, Google Trends (GT) search queries occurring in the RA from January 1, 2009 to December 31, 2021, for the keyword "tique" (French for tick) were extracted and summarized by month (Figure 18 C). The GT index ranged from 0 to 100, with the highest number of searches being 100 and then decreasing in order. We divided the GT Index by 100 to obtain a value between 0 and 1, referred to as the public awareness index Gm, and used this to define the reporting fraction function (see the "Reporting fraction" section in "Methods" for details). The peak volume of searches for tick terms occurred between May and July each year, and the total search volume increased after 2016 compared with those from 2009 to 2015 (Figure 18 C). 

Environmental data

Soil temperature and precipitation

Daily mean maximum soil temperatures (ST) and daily precipitation (PP) were calculated for the period January 1, 2009 to December 31, 2021 for the RA area, respectively.

Daily ST values were used as a proxy for daily tick activity to define the tick bite function (see "Methods" for details on the temperature-driven tick bite function). PP was used to adjust the human outdoor index by providing more real-time information about weather conditions. A day with a PP value greater than 1 mm was considered to be a wet day and people were more likely to stay indoors (the outdoor activity index for this day would be replaced by 0.0002), otherwise we retained the index value for this day as estimated from the PlantNet data. ST was derived from the ERA5-Land dataset [235] and PP from the E-OBS dataset [289], both published by the European Center for Medium-Range Weather Forecasts (ECMWF) [290].

Land cover

We assumed that the population exposed to LB in the RA region is proportional to the surface of suitable habitat for ticks, and therefore adjusted the population at risk to be derived 

Model framework

We used a discrete-time, daily step, deterministic compartmental model to describe the transmission of LB in RA, incorporating information on climate (soil temperature and precipitation), an index of human outdoor activity, and an index of public health awareness. A schematic representation of the main components of the model is shown in Figure 19. The population was categorized into four groups: susceptible (S), tick-bite exposed (E1), infected (E2), and recovered (R). The reported group (D) was a subset of the infected group (E2) as determined by the reporting fraction function (see reporting fraction function in Methods for more details). The proportion of susceptible individuals (S) entering the tick-bite exposed group (E1) each day depended on two parameters: the proportion of people who were outdoors on day t (αt) and the rate of tick bites on that day (βt). In addition, it was assumed that only the (h) portion of exposed tick bites in group E1 were infected bites, and that individuals would develop LB at an average rate (δ) and enter group E2, whereas the other (1-h) portion were uninfected bites, and that individuals would return to group S. In group E2, there were both asymptomatic and symptomatic cases, and we hypothesized that only the (q) portion of cases that were clinically symptomatic would visit their GPs and thus been reported to the national sentinel network at a fraction ρt. It was expected that E2 recovered at an average rate (γ) and entered the recovery group R. After losing antibody protection, recovered individuals returned to the susceptible group S.

The model was run at a daily time step and the simulated number of reported cases were aggregated by month and fitted to the surveillance data. The difference equations for the model are as follows: This variable has been tested but not included in the final model presented in Chapter 4.