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École doctorale n◦626 Dénomination (EDIPP)
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valuable insights, critical feedback, and constructive criticism. Your collective expertise
enriched this study and provided valuable perspectives that have contributed to its overall
quality.

I owe a profound debt of gratitude to my family for their endless love and unwavering
belief in my abilities. Mom and Dad, your sacrifices and encouragement have been my
driving force, and I dedicate this achievement to you. To my wife Fatma, thank you for
your understanding and support, even when I was buried in research. To my sister Chaima
and her beloved family and my brother Soltane, thank you for your daily support despite
the distance that separated us.

My heartfelt thanks go to my friends and peers who have been my pillars of strength
throughout this journey. Your camaraderie, late-night study sessions, and words of encour-
agement made the challenges bearable and the successes sweeter.

I would like to acknowledge the financial support provided by Carnot Institute and
Telecom SudParis, which made this research possible. Your investment in my education
is deeply appreciated. I would like to thank the support of Erasmus+ and the French
Embassy in Sweden | the French Institute in Sweden, which made my doctoral mobility to
the Royal Institute of Technology (KTH), Stockholm, Sweden, possible.

To Professor György Dán who generously shared his time and his insights for this study
and hosted me for 6 months at KTH, I extend my heartfelt appreciation. Your contributions
were integral to the completion of this research, and your willingness to participate was

3



truly remarkable. I deeply thank my fellow at KTH Feridun Tütüncüoglu as well, with
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Résumé : Dans cette thèse, nous considérons
le Edge Computing (EC) comme un environne-
ment multi-tenant où les Opérateurs Réseau (NOs)
possèdent des ressources en périphérie déployées
dans les stations de base, les bureaux centraux et/ou
les boı̂tiers intelligents, les virtualisent, et permettent
aux Fournisseurs de Services tiers (SPs) - ou te-
nants - de distribuer une partie de leurs applica-
tions en périphérie afin de répondre aux demandes
des utilisateurs. Les SPs aux besoins hétérogènes
coexistent en périphérie, allant des Communications
Ultra-Fiables à Latence Ultra-Basse (URLLC) pour le
contrôle des véhicules ou des robots, à la Commu-
nication de Type Machine Massive (mMTC) pour l’In-
ternet des Objets (IoT) nécessitant un grand nombre
de dispositifs connectés, en passant par les ser-
vices multimédias tels que la diffusion vidéo et la
Réalité Augmentée/Virtuelle (AR/VR), dont la qualité
d’expérience dépend fortement des ressources dispo-
nibles. Les SPs orchestrent indépendamment leur en-
semble de microservices, exécutés dans des conte-
neurs, qui peuvent être facilement répliqués, migrés
ou arrêtés. Chaque SP peut s’adapter aux ressources
allouées par le NO, en décidant s’il doit exécuter
des microservices sur les appareils, les nœuds en
périphérie ou dans le cloud. L’objectif de cette thèse
est de promouvoir l’émergence de déploiements réels
du “véritable” EC dans de vrais réseaux, en mon-
trant l’utilité que les NOs peuvent tirer de l’EC. Nous
croyons que cela peut contribuer à encourager l’en-
gagement concret et les investissements des NOs
dans l’EC. À cette fin, nous proposons de conce-
voir de nouvelles stratégies basées sur les données
qui allouent efficacement les ressources entre les
SPs hétérogènes, en périphérie, appartenant au NO,
afin d’optimiser ses objectifs pertinents, tels que la

réduction des coûts, la maximisation des revenus et
l’amélioration de la Qualité de Service (QoS) perçue
par les utilisateurs finaux, en termes de latence, de
fiabilité et de débit, tout en répondant aux exigences
des SPs. Cette thèse présente une perspective sur
la manière dont les NOs, les seuls propriétaires de
ressources en périphérie, peuvent extraire de la va-
leur grâce à la mise en œuvre de l’EC dans un envi-
ronnement multi-tenant. En promouvant cette vision
de l’EC et en la soutenant par des résultats quan-
titatifs et une analyse approfondie, cette thèse four-
nit principalement aux NOs des conclusions suscep-
tibles d’influencer les stratégies de décision concer-
nant le déploiement futur de l’EC. Cela pourrait favo-
riser l’émergence de nouvelles applications à faible
latence et à forte intensité de données, telles que
la réalité augmentée haute résolution, qui ne sont
pas envisageables dans le cadre actuel du Cloud
Computing (CC). Une autre contribution de la thèse
est qu’elle propose des solutions basées sur des
méthodes novatrices exploitant la puissance de l’opti-
misation basée sur les données. En effet, nous adap-
tons des techniques de pointe issues de l’Appren-
tissage par Renforcement (RL) et de la prise de
décision séquentielle au problème pratique de l’al-
location des ressources en EC. Ce faisant, nous
parvenons à réduire le temps d’apprentissage des
stratégies adoptées à des échelles compatibles avec
la dynamique de l’EC, grâce à la conception soignée
de modèles d’estimation intégrés au processus d’ap-
prentissage. Nos stratégies sont conçues de manière
à ne pas violer les garanties de confidentialité essen-
tielles pour que les SPs acceptent d’exécuter leurs
calculs en périphérie, grâce à l’environnement multi-
tenant.
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We consider in this thesis Edge Computing (EC) as
a multi-tenant environment where Network Operators
(NOs) own edge resources deployed in base stations,
central offices and/or smart boxes, virtualize them and
let third party Service Providers (SPs) - or tenants
- distribute part of their applications in the edge in
order to serve the requests sent by the users. SPs
with heterogeneous requirements coexist in the edge,
ranging from Ultra-Reliable Low Latency Communica-
tions (URLLC) for controlling cars or robots, to mas-
sive Machine Type Communication (mMTC) for Inter-
net of Things (IoT) requiring a massive number of
connected devices, to media services, such as video
streaming and Augmented/Virtual Reality (AR/VR),
whose quality of experience is strongly dependant on
the available resources. SPs independently orches-
trate their set of microservices, running on containers,
which can be easily replicated, migrated or stopped.
Each SP can adapt to the resources allocated by the
NO, deciding whether to run microservices in the de-
vices, in the edge nodes or in the cloud. We aim in
this thesis to advance the emergence of real deploy-
ments of the “true” EC in real networks, by showing
the utility that NOs can collect thanks to EC. We be-
lieve that this can contribute to encourage concrete
engagement and investments engagement of NOs in
EC. For this, we point to design novel data-driven stra-
tegies that efficiently allocate resources between he-
terogeneous SPs, at the edge owned by the NO, in
order to optimize its relevant objectives, e.g., cost re-

duction, revenue maximization and better Quality of
Service (QoS) perceived by end users, in terms of la-
tency, reliability and throughput, while satisfying the
SPs requirements. This thesis presents a perspec-
tive on how NOs, the sole owners of resources at
the far edge (e.g., at base stations), can extract va-
lue through the implementation of EC within a multi-
tenant environment. By promoting this vision of EC
and by supporting it via quantitative results and ana-
lysis, this thesis provides, mainly to NOs, findings
that can influence decision strategies about the fu-
ture deployment of EC. This might foster the emer-
gence of novel low-latency and data-intensive appli-
cations, such as high resolution augmented reality,
which are not feasible in the current Cloud Compu-
ting (CC) setting. Another contribution of the thesis it
that it provides solutions based on novel methods that
harness the power of data-driven optimization.We in-
deed adapt cutting-edge techniques from Reinforce-
ment Learning (RL) and sequential decision making
to the practical problem of resource allocation in EC.
In doing so, we succeed in reducing the learning time
of the adopted strategies up to scales that are com-
patible with the EC dynamics, via careful design of
estimation models embedded in the learning process.
Our strategies are conceived in order not to violate the
confidentiality guarantees that are essential for SPs to
accept running their computation at the EC, thanks to
the multi-tenant setting.

Institut Polytechnique de Paris
91120 Palaiseau, France



Abstract

We consider in this thesis Edge Computing (EC) as a multi-tenant environment where Net-
work Operators (NOs) own edge resources deployed in base stations, central offices and/or
smart boxes, virtualize them and let third party Service Providers (SPs) - or tenants - dis-
tribute part of their applications in the edge in order to serve the requests sent by the users.
SPs with heterogeneous requirements coexist in the edge, ranging from Ultra-Reliable Low
Latency Communications (URLLC) for controlling cars or robots, to massive Machine
Type Communication (mMTC) for Internet of Things (IoT) requiring a massive number
of connected devices, to media services, such as video streaming and Augmented/Virtual
Reality (AR/VR), whose quality of experience is strongly dependant on the available re-
sources. SPs independently orchestrate their set of microservices, running on containers,
which can be easily replicated, migrated or stopped. Each SP can adapt to the resources
allocated by the NO, deciding whether to run microservices in the devices, in the edge
nodes or in the cloud. We aim in this thesis to advance the emergence of real deployments
of the “true” EC in real networks, by showing the utility that NOs can collect thanks to
EC. We believe that this can contribute to encourage concrete engagement and investments
engagement of NOs in EC. For this, we point to design novel data-driven strategies that
efficiently allocate resources between heterogeneous SPs, at the edge owned by the NO, in
order to optimize its relevant objectives, e.g., cost reduction, revenue maximization and
better Quality of Service (QoS) perceived by end users, in terms of latency, reliability and
throughput, while satisfying the SPs requirements.

This thesis presents a perspective on how NOs, the sole owners of resources at the far
edge (e.g., at base stations), can extract value through the implementation of EC within
a multi-tenant environment. By promoting this vision of EC and by supporting it via
quantitative results and analysis, this thesis provides, mainly to NOs, findings that can
influence decision strategies about the future deployment of EC. This might foster the
emergence of novel low-latency and data-intensive applications, such as high resolution
augmented reality, which are not feasible in the current Cloud Computing (CC) setting.

Another contribution of the thesis it that it provides solutions based on novel methods
that harness the power of data-driven optimization.We indeed adapt cutting-edge tech-
niques from Reinforcement Learning (RL) and sequential decision making to the practical
problem of resource allocation in EC. In doing so, we succeed in reducing the learning
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time of the adopted strategies up to scales that are compatible with the EC dynamics, via
careful design of estimation models embedded in the learning process. Our strategies are
conceived in order not to violate the confidentiality guarantees that are essential for SPs
to accept running their computation at the EC, thanks to the multi-tenant setting.
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Résumé

Dans cette thèse, nous considérons le Edge Computing (EC) comme un environnement
multi-tenant où les Opérateurs Réseau (NOs) possèdent des ressources en périphérie
déployées dans les stations de base, les bureaux centraux et/ou les bôıtiers intelligents,
les virtualisent, et permettent aux Fournisseurs de Services tiers (SPs) - ou tenants - de
distribuer une partie de leurs applications en périphérie afin de répondre aux demandes des
utilisateurs. Les SPs aux besoins hétérogènes coexistent en périphérie, allant des Commu-
nications Ultra-Fiables à Latence Ultra-Basse (URLLC) pour le contrôle des véhicules ou
des robots, à la Communication de Type Machine Massive (mMTC) pour l’Internet des Ob-
jets (IoT) nécessitant un grand nombre de dispositifs connectés, en passant par les services
multimédias tels que la diffusion vidéo et la Réalité Augmentée/Virtuelle (AR/VR), dont
la qualité d’expérience dépend fortement des ressources disponibles. Les SPs orchestrent
indépendamment leur ensemble de microservices, exécutés dans des conteneurs, qui peu-
vent être facilement répliqués, migrés ou arrêtés. Chaque SP peut s’adapter aux ressources
allouées par le NO, en décidant s’il doit exécuter des microservices sur les appareils, les
nœuds en périphérie ou dans le cloud.

L’objectif de cette thèse est de promouvoir l’émergence de déploiements réels du
“véritable” EC dans de vrais réseaux, en montrant l’utilité que les NOs peuvent tirer
de l’EC. Nous croyons que cela peut contribuer à encourager l’engagement concret et les
investissements des NOs dans l’EC. À cette fin, nous proposons de concevoir de nouvelles
stratégies basées sur les données qui allouent efficacement les ressources entre les SPs
hétérogènes, en périphérie, appartenant au NO, afin d’optimiser ses objectifs pertinents,
tels que la réduction des coûts, la maximisation des revenus et l’amélioration de la Qualité
de Service (QoS) perçue par les utilisateurs finaux, en termes de latence, de fiabilité et de
débit, tout en répondant aux exigences des SPs.

Cette thèse présente une perspective sur la manière dont les NOs, les seuls propriétaires
de ressources en périphérie, peuvent extraire de la valeur grâce à la mise en œuvre de
l’EC dans un environnement multi-tenant. En promouvant cette vision de l’EC et en la
soutenant par des résultats quantitatifs et une analyse approfondie, cette thèse fournit
principalement aux NOs des conclusions susceptibles d’influencer les stratégies de décision
concernant le déploiement futur de l’EC. Cela pourrait favoriser l’émergence de nouvelles
applications à faible latence et à forte intensité de données, telles que la réalité augmentée
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haute résolution, qui ne sont pas envisageables dans le cadre actuel du Cloud Computing
(CC).

Une autre contribution de la thèse est qu’elle propose des solutions basées sur des
méthodes novatrices exploitant la puissance de l’optimisation basée sur les données. En
effet, nous adaptons des techniques de pointe issues de l’Apprentissage par Renforce-
ment (RL) et de la prise de décision séquentielle au problème pratique de l’allocation
des ressources en EC. Ce faisant, nous parvenons à réduire le temps d’apprentissage des
stratégies adoptées à des échelles compatibles avec la dynamique de l’EC, grâce à la concep-
tion soignée de modèles d’estimation intégrés au processus d’apprentissage. Nos stratégies
sont conçues de manière à ne pas violer les garanties de confidentialité essentielles pour
que les SPs acceptent d’exécuter leurs calculs en périphérie, grâce à l’environnement multi-
tenant.

10



Contents

Acknowledgements 3

Abstract 7
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Chapter 1

General Introduction

1.1 Edge Computing

5G is pushing toward “Intelligent Networks”, which are not only able to transfer flows of
data but also to serve computational needs. In previous decades, cloud services reshaped
the landscape of computing power and data storage, moving them from users and orga-
nizations locations to data centers. However, there is now a noticeable shift that might
appear as a reversal, in the sense of bringing resources back to the local scale, driven by
the surging popularity of Edge Computing (EC) in the scientific community.

Over the past several years, organizations have been flocking to the cloud in pursuit
of its numerous benefits, propelling the rapid expansion of Cloud Computing (CC). The
industry value surged from 90 billion dollar in 2015 to a staggering 312 billion dollars in
2020 [2]. Yet, in parallel, EC has been steadily gaining ground in the research commu-
nity [3].

To those unfamiliar with the concept, this may appear as a regressive move. After all
the excitement surrounding the cloud, why would organizations turn to semi-local edge
servers? However, the rationale behind this choice is straightforward and readily apparent:
edge servers are not meant to replace the cloud. Instead, they serve distinct purposes
requiring smaller, decentralised servers with smaller response times, a characteristic not
typically associated with the cloud.

As CC gained widespread adoption [4], it allowed companies to focus on their core
business functions while entrusting computing tasks to specialized firms skilled in data
management, storage, and analysis, such as Google, Amazon and Microsoft. Nevertheless,
over time, the limitations of CC became increasingly evident. In the research literature
authors started to pinpoint that latency from CC is too high for new services, such as
high-resolution augmented reality [5]. Another concern related to the very high traffic that
CC generates [6]. Moreover, privacy concerns in cloud computing are a pressing issue as
more individuals and organizations entrust their sensitive data to remote servers [7, 8].
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This growing demand for a solution gave rise to what we now recognize as EC. The term
“edge” in its name reflects the strategic positioning of servers at the edge of the network,
e.g., base stations, access points, central offices. This is in stark contrast to conventional
computing paradigms, conducted on centralized servers and data centers. This is also in
contrast with CC, which relies on distant servers located sometimes thousands of miles
away from end users. Edge servers differ from their conventional counterparts found in
data centers in that they are smaller in scale and, instead of being concentrated in central
facilities, they are strategically dispersed across various locations. This distribution brings
them into closer proximity to the devices that either generate data or require rapid access
to it.

Overall, EC has high potential utility in various domains, including:

• Autonomous Driving: Autonomous vehicle technology, while still in its nascent
stages, relies heavily on onboard computers that make decisions within a narrow
scope. To achieve a level of autonomy where human intervention is not needed, in-
terconnected networks of autonomous vehicles working in unison to prevent collisions
and accidents are necessary. Until now, the only concrete example of autonomous
cars having “Full Self-Driving Capability” is Tesla [9] (yet, not all Tesla cars come
with this feature). Tesla self-driving cars rely on in-car computers, which is imprac-
tical due to their high cost for the manufacturer and their maintenance-upgrade cost
for drivers, i.e., drivers are asked to replace the hardware whenever an upgrade avail-
able [10]. Edge servers, on the other hand, could be a good candidate for reducing
such costs in autonomous driving [11].

• Next Generation Smart Grid: To eradicate the issues from Internet of Things (IoT) in
conventional smart grid, EC is a technology of great potential for an next generation
smart grid. The IoT devices for smart grid collect massive datasets [12] that are
difficult to process because the cloud servers are situated in a distant geographic
area. For instance, 1 million smart meters installed in the smart grid would result
in 35.04 billion records, equivalent to 2920 Tb [13, Table 1]. The networking system
is stressed when raw data collected from IoT devices are transmitted to the cloud
because of the increases in latency and reaction time. The data collected from an
SG may contain private data, and as the data are sent to a third-party cloud server
it may pose the risk of privacy breach. The EC solution shows huge potential to
remove these problems which are presented by current smart grid systems. Another
perk of EC is that it can reduce the network load to a great extent by shrinking the
volume of transmitted data.

• Healthcare Systems: Healthcare providers are rapidly digitizing their operations and
increasingly relying on IoT devices and connected medical equipment [14]. The pro-
liferation of the Internet of Medical Things (IoMT) and growing use of wearables for
the collection of physiological data and bio-signals is leading to an emergence of new
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distributed computing paradigms, such as EC, that combines wearable devices with
IoMT for scalable remote tele-treatment and telecare [15, 16, 17].

• Augmented Reality (AR)/Virtual Reality (VR): EC might be the perfect match for
AR/VR applications due to its ability to minimize latency, to reduce upstream traffic
to/from the Internet, to ensure scalability, and to offer offline functionality (no need
to browse the Internet since resources are installed at the edge of the network). Low
latency is the key factor of reliable AR/VR application. In fact, for general indus-
trial applications, video streams with a frame rate greater than 60 Hz and 1280×720
High Definition (HD) resolution are desirable [18]. While CC manages to achieve
50 to 100 ms latency in best case scenarios [5], EC in the other hand, could run at
< 20 ms [19, 18] and meet the requirements mentioned above. These advantages col-
lectively contribute to delivering smoother, more immersive, and responsive AR/VR
experiences, making EC an essential technology for the growth and success of AR/VR
applications in the near future.

In summary, EC has attracted a lot of attention in research community during the last
decade (see Figure 1 of [20]) and is starting to have commercial interest of technology big
players.

1.2 Barriers Towards the “True” Edge

A deployment recently labeled as “Edge Computing” comes from Amazon with “AWS for
the Edge” and “Lambda@Edge” services [21, 22]. These services are currently deployed
by many businesses, such as Hulu [23], an American subscription video-on-demand service,
and Volkswagen Group [24], Europe’s largest car maker. Nevertheless, this “edge” is still far
from the edge of our vision. In fact, it nothing but a closer cloud to end users. Although
it is claimed that the mentioned deployments reduce latency, they still require passing
through the Internet.

In our vision, the“true” edge exists in the closest possible point to the end user’s device
that enables services without accessing the Internet at every data exchange.Such points are
Central Offices, cellular network Base Stations, WiFi access points, the Internet “boxes”
deployed by operators in households’ premises. Such network locations are generally owned
by Network Operators (NOs). Even big actors, such as Amazon or Google, cannot arrive,
at least up to now, so close to the users. For this reason, we believe Network Operators
have the key to the Edge. We also believe this is an unprecedented business opportunity
for them. Unfortunately, we do not have concrete elements to claim that NOs are actually
exploiting such an opportunity.

The main barrier for the deployment of our vision of EC is the huge cost, for NOs, to
equip thousands of edge locations with computational capabilities, such as CPU, memory,
GPUs and the huge maintenance cost. The prohibitive cost of EC is a significant consider-
ation for organizations looking to harness the potential benefits of decentralized processing.
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The expenses associated with infrastructure, hardware, networking, maintenance, and scal-
ability challenges can be substantial. Setting up and maintaining distributed edge servers,
ensuring reliable connections, and managing security measures all contribute to the finan-
cial burden [25]. The need for customization and integration further add to the overall
expenditure. While the advantages of reduced latency and enhanced data privacy are com-
pelling, organizations must carefully weigh these benefits against the higher upfront and
ongoing costs to make informed decisions about adopting EC solutions. Therefore, NOs
will engage in EC investment only if they can collect corresponding revenues. For this
reason, we focus in this thesis in strategies devoted to maximize the utility of NOs, in the
form of upstream traffic reduction, revenue from pricing EC resources or increase Quality
of Service (QoS) for the customers.

Collecting utility is however not trivial. Network operators are “in the middle” between
users and Service Providers (SPs), where the former wish to consume the services provided
by the latter. We believe that to get value from EC, network operators need to “open their
egde” to third party service providers, via virtualization techniques. In this framework,
the main decision of the NO is how to partition the limited resources at the edge between
service providers.

1.3 General Setting

In this thesis we consider, in general, a scenario where a Network Operator (NO) owns
edge resources deployed in base stations, central offices and/or smart boxes (as depicted
in Figure 1.1), virtualizes them and lets third party SPs - or tenants - distribute part of
their applications in the edge in order to serve the requests sent by the users. SPs with
heterogeneous requirements coexist in the edge, ranging from Ultra Reliable Low Latency
Communication (URLLC) for controlling cars or robots, to massive Machine Type Com-
munication (mMTC) for IoT requiring a massive number of connected devices, to media
services, such as video streaming and AR/VR, whose quality of experience is impacted by
the available resources. SPs independently orchestrate their set of microservices, running
on containers, which can be easily replicated, migrated or stopped (for instance, Netflix
launches hundreds of thousands of containers daily [26]). This enables service elastic-
ity [27], i.e., each SP can adapt to the resources allocated by the NO, deciding whether to
run microservices in the devices, in the edge nodes or in the cloud.

In this general setting, we consider that end users pay the NO if their requests are
processed at the edge (as in the classic business model of the NO, end users are charged
for communication services, i.e., calls, messages and data). We also assume that users pay
SPs to consume their services (either by explicit fees, or by enduring advertisement). Since
such payment typically does not involve the NO, on which we focus in this thesis, we do
not consider such a payment. Moreover, we do not consider any payment made by SPs to
the NO. This is motivated by the fact that in some cases, i.e., when resource in question
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Figure 1.1: General setting of the thesis
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is storage, the NO has interest in providing this resource for free. Indeed, by letting SPs
cache their most popular content at the edge, the NO can reduce upstream traffic (we
develop this motivation in more detail in Section 3.1). There is another reason why we
believe payment from SPs should not be the main criterion for allocating edge resources
among them, and it concerns “edge democracy”. In fact, payment made by SPs to the NO
may result in few giant SPs monopolising the market and taking over all resources at the
edge. We instead aim to adapt resource allocation to the traffic generated by users.

In this context, our scenario can be described as a bi-level optimization problem, where
in the upper level the NO only decides the amount of resources (memory, storage, band-
width, CPU cycles) to allocate to each SP and in the lower level each SP adapts to the
granted resources by orchestrating its microservices accordingly. In other words, to a cer-
tain action (allocation decision) of the NO, a relative reaction (orchestration or decision of
resource partitioning between content or users) of SPs follows. This reaction depends on
SPs’ requirements and on information inaccessible to the NO. Indeed, we assume the data
and the processing of each SP to be confidential: a SP does not want to share them with
the other SPs, nor with the NO. Therefore, the NO does not know the requests received
by each SP, its status, its configuration, etc. Otherwise stated, SPs are “black boxes” for
the NO, which receive and send encrypted traffic. The NO can only base its allocation
decisions on monitoring information, resource usage [28] or metrics inferred from the en-
crypted traffic [29]. For this reason, the classical approach of first-model-then-optimize is
inapplicable in our work, which brings us to the use of Artificial Intelligence. The bi-level
optimization problem description above holds for Chapter 3 and Chapter 4. In Chapter 5,
the setting is very similar, but to the decision of the NO, the reaction of wireless devices
follow (instead of the reaction of SPs).

1.4 Novelty

While most related work assumes a single service running at the edge, one of the points
of novelty of this thesis is that we consider instead EC as a multi-tenant environment.
Note that that multi-tenancy is more cost-effective than single-tenancy, for the resource
owners, i.e., NOs and for the tenants.

First, by sharing edge resources, resource owners can reduce capital and operational
expenses by avoiding the cost of setting up and maintaining separate edge deployments for
each individual tenant.

Second, the multi-tenant edge environment will save the SPs the effort and the cost to
deploy and maintain themselves the resources at the edge. This effort is currently born by
few SPs, such as Netflix and Google.1 They place some of their servers directly at Internet
Service Providers (ISPs)’ access networks. But smaller ISPs, with less economic power and

1See Netflix Open Connect [30] and Google Global Cache [31].
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bargaining power faced with NOs, would surely not be able to deploy such a widespread
infrastructure.

Third, multi-tenancy enables higher utilization of the resources in edge servers (as in
cloud servers) and offers greater flexibility for tenants, i.e., they can dynamically adapt
the usage of the allocated resources as they wish, based on their specific needs and their
observed workload, making it easier to adapt to changing workloads and requirements.

Fourth, multi-tenancy allows guaranteeing confidentiality to the SPs, as the NO does
not deal directly with user requests, which instead are handled by SPs, as if computation
were running in private premises. The NO just needs to observe aggregated information,
such as upstream traffic.

This multi-tenant setting may involve the establishment of Service Level Agreements
(SLAs) between the NO and the SPs that specify QoS guarantees, in terms of parameters,
such as latency, throughput, and reliability. These SLAs may also introduce some con-
straints on the flexibility of resource allocation for the NO. For instance, certain resources
may be reserved for specific SPs, limiting the dynamic allocation of those resources based
on immediate demand. This compels NOs to adapt to changing demands while providing
SPs with the assurance of minimum service levels.

While CC is inherently multi-tenant, it is essential to emphasize that resource allo-
cation in a multi-tenant context within EC presents unique challenges and nuances that
have not received comprehensive exploration. At first glance, it might appear that all the
necessary groundwork has been laid in the cloud environment. However, it is of paramount
importance to underscore that multi-tenancy in EC represents a relatively uncharted ter-
ritory in terms of research and development. What sets multi-tenant resource allocation
in EC apart from its cloud counterpart are the distinctive characteristics and requirements
of EC. These include factors like the geographically distributed nature of edge devices, the
limited resources at the edge (contrary to practically “unlimited” resources in the cloud),
their varying computational capabilities, stringent latency constraints, and the need for
real-time processing. Elucidating these differentiating factors is crucial to conveying the
novelty of this thesis and significance of addressing multi-tenant resource allocation in the
context of EC.

In this vision, multi-tenant EC and Open Radio Access Network (Open-RAN) [32]
can be strategically linked to create a dynamic and flexible ecosystem. Open-RAN is a
network architecture which enables the deployment of multi-operator radio access network.
While multi-tenant EC provides the resources in the access network for multiple tenants,
Open-RAN complements this by extending the concept of disaggregation to the radio
access network, enabling the flexible integration of diverse and inter-operable Radio Access
Network (RAN) components from different vendors. This integration of multi-tenant EC
and Open-RAN may enhance the agility and responsiveness of the network. It allows
for the deployment of edge applications and services that require low-latency processing,
while simultaneously optimizing the radio access network through the open and modular
architecture of Open-RAN. The collaboration between these two paradigms could enable
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NOs to deliver customized and efficient solutions tailored to the specific requirements of
various SPs.

1.5 Goals of the PhD

The overarching aim of this thesis is to advance the emergence of real deployments of the
“true” Edge Computing (EC) (as we define it in Section 1.2) in real networks, by showing
the utility that Network Operators (NOs) can collect thanks to EC. We believe that this
can contribute to encourage concrete engagement and investments engagement of NOs in
EC, which go beyond press announcement or marketing messages [33].

The goal we set to fulfill the overarching aim is to design novel data-driven strategies
that efficiently allocate resources between heterogeneous SPs, at the edge owned by the
NO, in order to optimize its relevant objectives, e.g., cost reduction (Chapter 3), revenue
maximization (Chapter 5) and better QoS perceived by end users, in terms of latency,
reliability and throughput (Chapter 4), while satisfying the SPs requirements.

Achieving this goal is particularly challenging when dealing with encrypted traffic be-
cause encryption conceals the nature and content of the data being transmitted. This
opacity limits the NO’s ability to discern the type of traffic, impeding informed decisions
regarding resource allocation. Therefore, we rely in our solutions on Artificial Intelligence
(AI) methods.

1.6 Methodology

1.6.1 Optimization Problems and Methods

Our approach is bottom-up. As depicted in Figure 1.2, when proposing a resource allocation
strategy, we usually start by formalizing the scenario and the objective in an optimization
framework. In Chapters 3 and 5 we use the framework of Markov Decision Process (MDP).
In Chapter 4 we first use the framework of submodular optimization and then cast the
problem as a MDP.

Our resource allocation problem is studied incrementally.
At first, in Chapter 3, we suppose that the NO owns one single resource, namely storage,

and aims to allocate it among multiple video streaming SPs on an up and running system,
for the sake of one objective: reduce upstream traffic under encrypted traffic. Hence, the
use of Reinforcement Learning (RL).

Second, we raise the challenge to two resources in Chapter 4, where the NO allocates
memory and CPU between heterogeneous Mobile Augmented Reality (MAR) SPs in order
to maximize the QoS perceived by end users. Note that in these two first chapters, we
consider a relation between the NO and the SPs while users are assumed to be just the
source of data (traffic) and we do not model their relation between the users and the NO,
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Figure 1.2: Evaluation methodology used in this thesis

nor between the users and the SPs. Moreover, we consider no payments made by the SPs
to the NO, and hence no pricing strategies are provided (as motivated in Section 1.3).

Finally, we extend our formulation to include pricing in Chapter 5. We model the
relation between the end users and the NO: end users pay the NO for memory and CPU
they are using at the edge. We develop a ready-to-use strategy based on RL and Bayesian
Neural Networks (BNNs), that maximizes the NO revenue taking into consideration the
users response to such strategy. We consider in this chapter that the end users are executing
applications (an application is a set of functions) provided by certain SPs and the resources
allocated by the NO to users running the same application are aggregated as if they were
allocated to the SP offering the application.

During the thesis, we observe that the main disadvantage of RL, which we principally
propose as a solution, is its slow training phase. Therefore, when training RL online, on a
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system that is up and running, learning a strategy only on actually observed system tran-
sitions, i.e., jumping from a state to another, is not sufficient. Indeed (i) such transitions
happen at every time slot (for instance 1/4 of second) and (ii) RL training usually requires
thousands of transitions. This means that training a good RL policy online would require
too much time, due to the exploration required during training.

In both Chapter 3 and Chapter 5 we remove this barrier using the same modeling
“trick”: we use actually observed transitions to train a model of the system (in Chapter 3
this model is based on simple regression, while in Chapter 5 this model is composed by a
pair of Bayesian Neural Networks). Then, we train RL on “fictional transitions” generated
by such a model. This has the great advantage that we can now generate thousands of
fictional transitions in a small span of time, as such transitions do not need to be applied
to the real system. This allows boosting the sample efficiency of our learning process, i.e.,
relatively few observations are needed to learn a good policy.
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1.6.2 Evaluation

We evaluate our proposed strategies by means of theoretical analysis and simulation.
In Chapter 3 we compare the results of our data-driven approach with the theoretical

optimum that could be achieved in the ideal assumption of having perfect knowledge about
request load.

In Chapter 4, the considered multiple-resource allocation problem is proved to be NP-
hard. We formulate it as a sub-modular maximization problem with multi-dimensional
knapsack constraint, and we solve it with the so-called streaming algorithm, in the case
where all system parameters are known. We then propose a learning approach and compare
it with the streaming algorithm.

The same methodology is followed for resource allocation and pricing problem in Chap-
ter 5. We then show that the problem can be cast as a Hidden Parameter Markov Decision
Process (HiP-MDP) and proposed a dual BNN approximator as a solution. We compare
our pricing policy with state-of-the-art strategies present in the literature.

Overall, in our work we start from theory to end in simulation. The final goal is, in
any case, to propose implementable strategies, which we evaluate by means of simulation
of realistic scenarios.

1.7 Contribution of the Thesis

This thesis gives a vision of how NOs, the only entities owning the resources in the far edge,
can get value from the deployment of EC in a multi-tenant setting. In such a setting the
NO makes edge resources available to third party SPs and intelligently allocate resources
among them. The relevant objectives of the NO we optimize in this thesis are upstream
traffic reduction, revenue maximization and better QoS perceived by end users.

We believe that, by promoting this vision of EC and by supporting it via quantitative
results and analysis, this thesis provides, mainly to NOs, findings that can impact (and
hopefully encourage) decision strategies about the future deployment of EC. This might
foster the emergence of novel low-latency and data-intensive applications, such as high
resolution augmented reality, which are not feasible in the current CC setting.

We consider that another contribution of the thesis it that it applies novel methods that
harness the power of data-driven optimization. We indeed adapt cutting-edge techniques
from RL and sequential decision making to the practical problem of resource allocation in
EC. In doing so, we succeed in reducing the learning time of the adopted strategies up to
scales that are compatible with the EC dynamics, via careful design of estimation models
embedded in the learning process (Chapters 3 and 5). We also prove important analytical
properties of our strategies (e.g., convergence in Chapter 3).

We also emphasize that our strategies are conceived in order not to violate the confi-
dentiality guarantees that are essential for SPs to accept running their computation at the
EC, thanks to the multi-tenant setting.

30



1.8 Thesis Organization

The remainder of this thesis is organized as follows:

• State of the Art. Chapter 2 reviews the resource allocation and pricing strategies
conceived in the literature and implemented in production networks.

• Cache Allocation for Multi-tenant EC. Chapter 3 solves the problem of cache
allocation at the edge among several SPs, where the aim is not only to minimize the
cost, in terms of miss rate, but also to optimize the way to achieve that, through
minimizing perturbations, assuming encrypted, not all cacheable content: a major
challenge of in-network caching. We introduce a model-based RL algorithm designed
for real-time cache allocation at the edge, on an up and running system. We start
with the establishment of theoretical foundations, demonstrating the algorithm con-
vergence towards an absorbing discrete optimal state. Subsequently, we conduct an
extensive set of simulations, comparing our dynamic allocation approach to other
strategies, including a method from the state of the art and model-free RL. Our
simulations clearly illustrate that our algorithm consistently converges to a configu-
ration close to the theoretical optimal solution. Convergence is much faster than the
compared allocation strategies thus substantially reducing overall system costs.

• Multiple-resource Allocation for Multi-tenant EC. Chapter 4 tackles the re-
source allocation at EC between SPs competing over multiple, limited resources, e.g.,
CPU and memory. We model the users dynamics in terms of an Erlang-type queu-
ing model, we formulate resource allocation problem as a sub-modular maximization
problem subject to multiple knapsack constraints and solve it via an approximation
algorithm with provable optimality gap, under perfect knowledge of system param-
eters. We formulate the problem as a sequential decision making problem, when
system parameters are unknown, and we cast it as MDP and propose deep RL to
solve it. Our numerical results quantify the performance of the deep RL algorithm
and the approximation algorithm in terms of the probability that users get served
by the Edge, as opposed to being blocked and re-directed towards the Cloud which
entails larger delay and hence lesser QoS.

• Resource Pricing for Serverless EC Chapter 5 considers the problem of pric-
ing in serverless EC under dynamic workloads of individual users, as opposed to the
previous two chapters where the interaction was between SPs and NO. We first for-
mulate the problem of maximizing the revenue of the operator as a sequential decision
making problem under uncertainty. We then show that the problem can be cast as
a HiP-MDP and proposed a dual BNN approximator as a solution. The proposed
solution is a form of transfer learning; after pre-training on synthetic traces, it adapts
fast to previously unseen workloads. Our results show that the proposed solution ac-
celerates learning and achieves superior performance compared to the state of the art.
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Furthermore, our results show that non-linear pricing models could benefit edge de-
ployment, as they encourage users to request computational resources sparingly, and
thereby effectively increasing the number of concurrent users that can be served. The
work contained in this chapter results from a collaboration with Prof. György Dán
from the Royal Institute of Technology (KTH), Sweden, and Feridun Tütüncüoglu,
PhD student at KTH where I carried out this work during my doctoral mobility in
KTH in Spring 2023.
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Chapter 2

Context and State of the Art

2.1 Edge Computing Ecosystem

Within the intricate ecosystem of Edge Computing (EC), several key actors play pivotal
roles, contributing to its dynamic growth and development. First and foremost are the tech-
nology giants and cloud providers such as Amazon Web Services (AWS) [34, 35, 21, 22],
Microsoft Azure and Google Cloud, who are investing heavily in EC infrastructure and ser-
vices [36], [37]. Lastly, startups and innovative tech companies are driving experimentation
and pushing the boundaries of EC applications. For instance, Akamai [38] offers, among
other services, Edge Content Delivery Network (CDN) that lower overhead with pre-built
edge applications that run capabilities integrated on CDN, serverless computing that boost
performance and user experience by enabling developers to build web applications closer
to end users.

However, apart from the “marketing” appeal, the exact meaning of the term “edge”
employed by the aforementioned companies (and others) is not clear. In fact, these de-
ployments are far from the very edge, i.e., the last point before the device of the end user.
Without downgrading the efforts done by Amazon, Microsoft, Google and Akamai, we
can describe their deployments as “closer cloud”, as they require anyways going through
the Internet, since their servers generally sit not far from the users (e.g., behind Internet
Exchange Points) but not very close (e.g., in cellular base stations or WiFi access points). 1

Observe that the far edge is owned by the NO as it is the only actor in the network that
owns base stations, central offices and smart boxes (the ones that come with household
Internet subscriptions).

1We discuss here only solutions that allow third party SPs to run their computation in the Edge.
Therefore, Netflix Open Connect and Google Global Cache are outside of the scope of our discussion here,
as they only carry content of Netflix and Google, respectively. We have already discussed the limitations
related to these solutions in Section 1.4.
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Another key player, in this vision of the edge, is tower companies.2 In fact, they can use
some of their existing tower sites or infrastructure to host edge servers. Since tower compa-
nies often have experience in site acquisition (identifying and evaluating suitable locations
for towers), zoning (classifying areas for towers placements), and permitting (obtaining the
necessary approvals) processes. They can help identify suitable locations for edge servers,
navigate regulatory requirements, and streamline the deployment of edge infrastructure.
Since, in our vision, tower companies have a role in EC similar to NOs, we will just focus
on NOs in this thesis. For what concerns the methods that we propose here, NOs and
tower companies are interchangeable, mutatis mutandis.

Collaborations between cloud providers and telecommunications companies are becom-
ing increasingly common to offer seamless edge services, for instance Google Cloud and
Orange have recently announced a strategic partnership, part of which is dedicated to edge
computing [39]. However the limit of this agreement is that only Google will use that edge
and not all the third party SPs, which is an issue we raised in Section 1.4.

Furthermore, hardware manufacturers, ranging from chip makers like Intel and NVIDIA
to device manufacturers like Dell and HP, are designing specialized hardware optimized
for EC workloads [40], [41], [42], [43]. Such hardware is characterized by its compact-
ness, energy consumption efficiency and high processing power (GPU, CPU and memory).
Moreover, this kind of hardware is optimized for data analytics, deep learning and machine
learning (for instance Nvidia Jetson Nano [43] is CUDA-X-native which makes it suitable
for AI and robotics).

In the software domain, open-source communities are actively contributing to EC
ecosystems by developing edge-focused platforms and frameworks. Projects like Kuber-
netes K3s [44] and OpenStack are adapting to the demands of edge environments. In fact,
K3s is designed to be minimalistic and resource-efficient. It has a smaller memory and
CPU footprint compared to K8s, making it better suited for edge devices with limited
computing resources. Moreover, K3s supports offline installation, which can be essential in
edge scenarios where internet connectivity may be unreliable or unavailable. This ensures
that edge clusters can be set up without reliance on external repositories.

That being said, some parts of the research community are still doubting the potentials
of EC. For instance, authors of [20] observe that cloud providers are expanding their data
centers to many countries. Furthermore, cloud providers are establishing (and incorporat-
ing) specialized facilities to tackle edge needs, such as CloudFront, and thus there is no real
need for EC. They claim that the effectiveness of EC is limited to a few applications, such
as traffic monitoring, gaming, AR/VR, etc. Assuming that the measurements provided
in this survey are precise, we believe in any case that the mentioned applications are not

2Tower companies, also known as cell tower companies or telecom tower companies, are specialized firms
that own, operate, and manage telecommunications infrastructure, specifically cell towers and related assets.
These companies play a crucial role in the wireless telecommunications industry by providing infrastructure
to NOs.
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limited, as they have their place in the market (for instance the size of AR market is 42.20
billion in 2022 [45]).

The ecosystem of EC forms a dynamic and intricate web of interconnected devices and
services at the edge of traditional cloud infrastructure. However, the efficient utilization of
resources in this environment is crucial to ensure optimal performance, as resource at the
edge are scarce (contrary to resources in the cloud, which are so abundant that they can be
considered by the cloud users as practically infinite). This necessitates resource allocation
strategies particularly tailored for the limited resources and low latency requirements that
characterize EC. This is the subject of this thesis.

High data rate is a key requirement for the successful deployment and operation of
5G [46] and future 6G [47]. Using edge servers, rather than the cloud reduces the traffic
amount across the connection between small cells and the core network. Hence, (i) the
bandwidth of the connection can be increased to prevent bottleneck; and (ii) the traffic
amount in the core network is reduced.

2.2 Terminology

The terminology surrounding Edge Computing has not yet converged to a well established
vocabulary, upon which all agree. Many researchers consider that Edge Computing refers
to the practice of processing data closer to the source, reducing latency and bandwidth
usage [48]. This definition is not wrong, but very general and lacks precision. In fact if
you replace Edge by “Fog”, “Mobile Edge” or “Cloudlet” in this definition, it will hold.
This section is here to eliminate this ambiguity and answer the question where is the
Edge?, at least for us, for what concerns this thesis. As we mention in Section 1.3, in
our vision, the edge is owned by the NO and exists in central offices, base stations and
smart boxes. When resources are deployed in base stations, we can use the term “Mobile
Edge Computing” (MEC) [49]. “Cloudlet” corresponds to the case where the resources
are deployed in the smart boxes delivered by the NO [50]. Fog computing [51] extends
this idea, introducing a hierarchical structure where data processing occurs not only at
this edge, the way we define it above, but also in intermediary fog nodes, between edge
and cloud. In this thesis, when we use the term Edge Computing, we will mean MEC or
Cloudlet, interchangeably.

2.3 State-of-the-art in the Scientific Literature

We give in this section a comprehensive overview of the current landscape within the field
of resource allocation in EC with a focus on (i) cache allocation: as we start the thesis by
solving the problem of caching at the edge in Chapter 3, (ii) multiple-resource allocation in
EC: as it is very relevant to Chapter 4 and Chapter 5 where we study the case of multiple
resources, (iii) data-driven methods for resource allocation: as we base our solutions on
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data-driven optimization and (iv) resource pricing: since Chapter 5 solves the problem of
dynamic pricing in EC.

2.3.1 Cache Allocation

Edge caching has been extensively studied in the literature as experts recognize its po-
tential to reduce data latency and enhance traffic efficiency. By deploying caches closer
to users and devices, this approach promises faster content delivery, more responsive data
retrieval and reduction of upstream traffic. Cache space is often perceived as a single re-
source, where either (i) all stored objects belong exclusively to one Service Provider (SP),
or (ii) when multiple SPs are involved, objects are stored indiscriminately without differ-
entiation between SPs. However, we advocate for an alternative approach known as cache
partitioning. Cache partitioning involves allocating distinct portions of cache space to in-
dividual SPs. This approach provides several advantages, including the fact that each SP
is isolated from the others, thus guaranteeing to the SP that its data remain confidential.

Hence, instead of describing research in caching strategies in general, we only focus
here in the research concerning cache partitioning problems.

In the approach of [52], each cache can be partitioned into slices with each slice dedicated
to a content provider. However, they need information about the system conditions in
order to solve it (e.g., request rate for each content provider). We assume instead that no
information is available and that optimization is done by observing the changes in upstream
traffic induced by perturbing the allocation.

In [53], authors formulate collaborative joint resource allocation problem as an Inte-
ger Linear Program (ILP) that minimizes the backhaul network cost, subject to capacity
constraints. Multiple edge nodes collaborate to orchestrate the allocation of cache and com-
putation resource (jointly) for only one SP. However, in our work MEC is a multi-tenant
environment as we motivate in Section 1.4.

Authors of [54] study optimal content caching problem in EC, assuming content pop-
ularity is unknown and the instantaneous demands are observed only for those contents
stored in the cache memory. They model this problem as a Combinatorial Multi-Armed
Bandit with Switching Cost (CMAB-SC) problem. Similar to our RL framework, in MAB
problems, an agent with partial system knowledge repeatedly takes actions to maximize
accumulated rewards over time, while acquiring new knowledge. In our case, due to encryp-
tion, the NO can only allocate cache slots to SPs without knowing their content, allowing
SPs to decide what to store. Our assumption is more realistic, as today SPs generally
require that their traffic stays encrypted and unknown to the NO.

In [55], the authors propose a resource pricing framework for one NO and several SPs,
knowing the demand of the users. We instead do not know what users request. Also, our
focus is on resource allocation and not pricing, we assume that SPs do not pay for the
resources (as motivated in Section 1.3).
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In [56], the MEC network is assumed to have multiple cache servers to assist SPs, each
with its own set of users. Each cache server acts as a rational selfish player, in a bargaining
game, aiming to maximize its utility by making strategies of local self caching. In [57],
authors also consider sharing cache between SPs, by applying coalitional game theory.
They assume that the cache resources at the edge are owned by a central office equipped
as a data center connecting multiple NOs and each NO pays for these resources to make
them available for SPs. The NO also pays SPs to convince them to use the cache at the
edge and lets them decide how much resources they get. This may seem counter-intuitive,
as we expect that the NO will get paid when it provides certain resource. They justify this
by the fact that the interest of the NO is to minimize its expenses: the authors show that
if the NO does not pay SPs to use the cache, the NO will end up paying more, in order to
carry the large amount of traffic from SPs. However, our allocation decision is centralized
by the NO, who owns the resources, and we do not require any payment (as explained in
Section 1.3).

Recently, authors of [58] considered the problem where the NO is aiming to allocate
applications images at the edge, in a cache with limited capacity. The NO decides the
amount of cache to give to each application in order to maximize its profit. The problem
is solved via a Stackelberg game. Each placement has a cost for the NO. Users have
computational tasks to be executed, each associated to one application. A user device can
decide to offload a task at the edge, if the correspondent image is cached there, and in
this case, it pays the NO. Otherwise, it executes the task locally, with a certain energy
cost. Users want to execute their tasks within latency constraints, while minimizing their
payments. The authors work under complete information assumption, i.e., the system
parameters and utilities are assumed to be known by the NO, while in our work this
information is unknown.

2.3.2 Multi-resource Allocation at the Edge

In Chapter 4, we extend our work from one resource to multiple resource allocation, i.e.,
from cache to memory and CPU.

In [59], the authors consider an EC system under network slicing in which the wireless
devices generate latency sensitive computational tasks. The allocation of wireless and
computing resources to a set of autonomous wireless devices in an EC system is considered
in [60]. They model the interaction between the NO, which manages the allocation of
wireless and computing resources, and devices. In order to minimize completion time, the
latter decide autonomously whether to use shared resources for offloading computing tasks
so as to minimize their own completion times or to compute tasks locally.

In [61], authors establish a software-defined networking based architecture for
edge/cloud computing services in 5G networks to manage on-demand computing resource
in order to satisfy time-varying computational tasks.

38



A dynamic provisioning of computing resources is considered in [62]. Computing re-
sources are provisioned as VM instances on the fly. The authors propose two allocation
and pricing mechanisms based on greedy algorithm and linear programming based approx-
imation.

A main common assumption of [59, 60, 61, 62] is that user devices submit tasks to
the NO and such tasks consume resources to be executed and transmitted. Contention for
resources is then modeled among user devices. However, we consider that these models
are not appropriate for MEC in our vision (Section 1.3), since all traffic between devices
and SPs is encrypted to maintain confidentiality and the NO does not have control over it.
Therefore the contention for resources is, in our vision, between SPs and not between tasks
submitted by users. In our assumption, the NO can only decide how to allocate resources
among SPs and then users devices interact directly with SPs, outside the control of the
NO.

In [63], the authors assume that each SP explicitly requests a certain amount of re-
sources (e.g., memory, CPU and link capacity) and consider the difference between the
resources requested and the resources actually allocated to them. The decision maker
(the NO) in their work aims to maximize the fairness of the resources allocation. We in-
stead assume that the NO allocates its mobile edge resources so as to satisfy its own goals
(upstream traffic minimization in our case), without requiring to receive explicit resource
requests from SPs.

An explicit request of SPs of the amount of resources they are willing to consume is
also required in [27] and [64]. The former relies on a heuristic for resolution and assumes
that SPs are truthful and declare the resources they really need. The latter makes use of
Monte-Carlo Tree Search and SPs pay proportionally to the resources they are granted.
We do not need such assumptions in our work.

Similar to us, but in the context of network slicing, in [65] the NO jointly allocates
CPU and bandwidth to several tenants, one per slice, in order to minimize an objective
function relevant to the NO (energy, in their case). However, they assume the NO knows
the expected load of requests of each tenant and the requirements of each request, while
we do not require this assumption in our work (Chapter 4).

In [66], the authors propose a market-based framework for efficiently allocating re-
sources of heterogeneous capacity-limited edge nodes to multiple competing SPs. Each SP
is a player. Given a price vector of the resources, each SP aims to maximize its utility
subject to a certain budget constraint. The authors assume that this utility function is
known (see Section 4.2 of [66]). However, in our case the utility (opposite to cost) func-
tion is unknown. Moreover, we maximize the utility of the NO (not SPs), who owns the
resources.

In [67], multiple edge servers and only one SP are considered. The resources on these
edge servers are managed by multiple NOs. The SP has a budget to use resources at the
edge. The end-users subscribed to this SP submit computation jobs subject to delay con-
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straints. An algorithm is proposed to allocate resources at each time-slot to the submitted
jobs. While their work considers only one SP, we consider multiple SPs and one NO.

2.3.3 Data-driven Methods for Resource Allocation

The main limit of most of the aforementioned work is that they assume that an exact
characterization of the system is known, i.e., all the quantities and dependencies involved
in the resource allocation problem are known in advance. This is not the case for this thesis,
where we generally assume the NO does not know the expression of the cost (or reward)
function (upstream traffic in Chapter 3, blocking probability in Chapter 4 and revenue in
Chapter 5) that we want to minimize (or to maximize). We thus need to resort to data-
driven approaches, which can drive cost functions toward the minimum in the absence of
a known characterization of the system, based solely on monitoring information.

RL has been used for resource allocation in the context of MEC in, for instance, [68, 69,
70, 71, 72]. Joint management of the communication and computation resources using deep
RL is considered in [68]. In [69], the authors consider a cluster with multiple resource types
and use deep RL to choose one or more of the waiting jobs to schedule at each time step.
In [70], the authors solve the problem of allocating GPU at the edge to run deep neural
networks to maximize the QoS of the prediction model. Authors of [71] use a RL approach
to allocate CPU time, virtual CPUs and memory, to Virtual Machines (VMs). In [72],
authors propose deep RL for allocating resources in a network slicing scenario. Contrary
to our approach, the authors of the works mentioned above pre-train the RL algorithm
offline on a simulated system before using it on the actual one. We instead assume that
no information to build a simulator is available and we train our algorithm online, directly
acting on the hot and running system in Chapter 3 ad Chapter 5. This imposes on us a
more parsimonious learning strategy as we need to ensure that the system is not heavily
perturbed during training.

In [73], the authors present a RL algorithm for resource auto-scaling in clouds: re-
sources are assumed to be unlimited, however the goal is to allocate to each SP an amount
of resources that does not exceed its needs. In our case, instead, resources are scarce, allo-
cating resources to one SP means allocating less for another. This implies that we cannot
decide how much resource to allocate to each SP in isolation. Therefore, our solutions need
to always take allocation decisions for all SPs at the same time.

To the best of our knowledge, the only data-driven method we can compare against for
partitioning a finite amount of cache among several SPs with encrypted content allocation
(Chapter 3) is Simultaneous Perturbation Stochastic Approximation (SPSA) [28]. The
authors do so based on stochastic optimization. However, they need to continuously perturb
the allocation, generating spurious upstream traffic that may be non-negligible. We instead
include traffic perturbation into the cost function (Section 3.2.3), thus managing to keep
it low, which allows us to outperform [28], as shown in Section 3.6.
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2.3.4 Resource Allocation and Pricing

As opposed to Chapter 3 and Chapter 4, where we treated the resource allocation problem
without payment, we focus in Chapter 5 on resources in EC via pricing strategies. The
commercial adoption of EC will require pricing schemes that cater for the financial interests
of the operators and of the users. Pricing in EC is particularly challenging as it has to take
into account the limited amount of edge resources (contrary to the cloud where resources are
“infinite”) as well as the stochasticity of user workloads due to location-specific workload
characteristics and differences in user activity. Note that by statistically multiplexing
requests coming from different locations, the peaks from one location may be compensated
by off-peak in others. In EC instead, all requests are local, and there is no aggregation
that can limit variation, as it happens in the cloud.

Several approaches have been proposed for the network operator for allocating and
pricing its limited resources at the edge to different tenants.

Auctions [74, 75, 62] lack transparency, as the price at which resources are allocated is
not announced in advance, but it is determined by the set of bids. Similar to our setting,
in [76] users queue if all EC resources are currently occupied, and the operator needs to
find a trade off between accepting more users, thus increasing revenue, and avoiding long
waiting times, affecting user QoS. However, [76] assumes that the operator uses admission
control by suggesting users to join or balk, while prices are considered to be given. We
instead explore this trade-off by means of dynamic pricing, which can clearly provide higher
revenue than just admission control.

Pricing is often studied via game theory (Stackelberg [77, 78, 79, 80] or coalitional
games [81]) where the network operator sets prices and Wireless Devices (WDs) take of-
floading decisions. In [77, 78, 81] and [80] calculating the optimal price requires prior
information about EC traffic characteristics, which is unrealistic. More realistic is the
setting of [82], where the operator has incomplete information, i.e., it only knows the dis-
tribution of WDs’ traffic characteristics. However, in reality, not even such distributions
are known, and they would vary over time. In [79] pricing decisions are taken under the
assumption that if too many users use an edge server, such a server will fail and nobody
can use it anymore. Linear pricing is learned via RL in [83] for stationary traffic, which
our proposed solution outperforms.

Recently proposed dynamic pricing schemes are based on learning and require no a-
priori knowledge about user traffic [84, 85, 86], but suffer from three main limitations.
First, the training phase is very long, which makes these approaches infeasible in practice,
since training requires exploration of prices, which can lead to revenue loss for a long period
of time. The “Spot” pricing proposed in [84] requires training on 104 servers, while the
number of training epochs (i.e., days) is 400 in [85, Figure 1]. The number of training
epochs are not reported for the RL agent of [86] and the Multi-agent RL of [87] (which also
performs price discrimination, when the NO charges different prices for the same resources
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to different users based on their willingness to pay, such pricing scheme is unfair and lead
to economic inequality).

Second, pricing is linear, which we show to result in reduced revenue in EC. Third,
the RL algorithm in [85] does not include the current utilization of edge resources into the
state. Therefore, the algorithm cannot capture the congestion on resources and thus, the
only trend that the algorithm can learn is that of a repetitive workload, whose dynamic
is the same from a day to another. The algorithm has no means to perform well on
unseen workloads, which our proposed approach is capable of (resource utilization is directly
correlated to the dynamics of the workload because the level of resource utilization depends
on how the workload behaves and how it fluctuates over time).

The RL-based resource load-aware dynamic pricing in [86] needs only one day of training
data, but adopts a simple linear pricing structure with only 8 possible prices. A mean field
approximation, assuming an infinite number of edge servers, is used to obtain asymptotic
results about load-aware dynamic pricing [88], which are however of limited practical use
in the problem we consider with a single edge node.

2.4 Position of the Thesis in the State-of-the-art

While previous research has mostly focused on resource allocation in single-tenant scenar-
ios or disregarded the complexities introduced by encrypted traffic and uncertain workload
patterns, this thesis develops resource allocations strategies that address the challenges
posed by coexisting tenants with diverse resource demands while ensuring the confiden-
tiality of data through encryption. Furthermore, the incorporation of uncertainty factors,
such as varying workload dynamics brings practical relevance to our strategies based on
AI methods.
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Chapter 3

Cache Allocation for Multi-tenant
Edge Computing

3.1 Introduction

Caching plays a pivotal role in addressing the imminent challenge of data generation sur-
passing current Internet capacities [89]. As we look to the future, the priority is to efficiently
fulfill (mobile) user requests directly at the network’s edge. This approach significantly di-
minishes the need for upstream traffic and minimizes latency associated with requests to
and from remote server locations. Edge Computing (EC) emerges as a crucial strategy,
involving the deployment of storage to nodes strategically positioned at the edge of the
network [90].

Since more than 80% of the Internet traffic might be represented by content delivery,
and in particular video [91], EC might be particularly relevant for these applications. This
is testified by the fact that big players in video content delivery are already deploying EC
solution. The most notable example is represented by Netflix Open Connect Appliance
(OCA) [26]: Netflix installs its own hardware servers into the access networks of some
Network Operators (NOs). By remotely controlling such servers, Netflix can place there the
most popular content, which can then be served directly by the servers, without producing
upstream Internet traffic. Google Global Cache employs a similar system [92]. While
this solution seems today very effective, it is costly in the sense that only big players can
afford installing their own piece of hardware into access networks. Hence, multi-tenant EC
(Section 1.3) is particularly interesting for all the others, as it is probably the only way for
small or medium Service Providers (SPs) to reach the edge of the network. Moreover, it is
impossible to install one hardware server per service in the edge nodes very close to final
users, e.g., in their WiFi access points or home “smart boxes”.

Indeed, the very edge of the network is owned by the NO, which is the only one that can
deploy storage close to the users. On the other hand, the services consumed by the latter,
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Figure 3.1: Evolution of the number of users of major video streaming SPs [1]

e.g., video streaming, are typically provided by third party SPs, such as Netflix, Amazon
Prime Video, HBO, etc. Hence, the question is how to let SPs run their applications close
to the users if the storage is not owned by them, but by the NO. We position our work
in the framework of multi-tenant EC [27]: the NO virtualizes the storage resources at the
edge, partitions them and allocates them to the SPs (tenants).

Storage is becoming increasingly precious in the face of the current and future traffic
deluge (see the evolution of the number of users of major video streaming SPs in Figure 3.1).
Upstream traffic can be very costly for the NO: it requires (i) network infrastructure to carry
it and (ii) specific arrangement with other Internet Providers to receive such traffic from
the Internet.1 Therefore, reducing upstream traffic can help the NO save on expenses. In
fact, the cost of bandwidth is the cost of all transport and routing equipment dimensioned
to carry busy period traffic between given points in the network with adequate quality of
service. This cost is proportional to peak demand [57].

1In some cases, the NO could be connected to the Internet via a Transit Internet Provider, which requires
to be paid [93]. In other cases, the NO could have peering agreements with an Internet Provider, where
traffic can be exchanged for free, but cannot anyways exceed certain limits specified in the agreement [94].
Another alternative for the NO is to join Internet Exchange Points (IXPs) [95]. In this case, the price
the NO pays increases with the requested “port capacity”, which increases with the upstream traffic [96,
Section VI.4].
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Figure 3.2: Cache allocation and upstream traffic (Origin servers → Edge) with multiple
Service Providers (SPs).

Providing cache resources at the edge for free to SPs helps address this issue, otherwise
the NO would have to invest more money in more bandwidth to carry remote SPs traffic,
which is proven to be more costly in [57]. The authors of [57] suggest that it is a good
financial incentive created by the NOs for the SPs to place their content in the free allocated
cache deployed at the edge of the network.

We assume that the NO owns storage at the edge nodes and uses it as cache. However,
the NO cannot operate caching directly, as classically assumed, as all the traffic is encrypted
by the SPs, and so it is impossible for the NO to know which objects are requested, for
instance which ones are the most popular ones, nor whether they are cacheable (for instance
online video broadcast is not cacheable as chunks become obsolete few seconds after they
are produced). We thus assume that the NO allocates storage among SPs and lets each SP
decide what to cache within the allocated space, as depicted in Figure 3.2.2 Our aim is to

2As in classic content caching, we assume the SPs do not pay the NO for the cache: cache is used by
SPs for free, and the NO compensates the initial storage deployment cost with upstream traffic reduction.
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solve the problem for the NO to optimally allocate cache storage among several SPs, i.e.,
deciding how many cache slots should be allocated to each SP, in order to minimize the
upstream traffic, i.e., the traffic from the Internet to the edge node, without knowing the
nature of the traffic of the SPs. Other objectives, which are out of the scope of this chapter,
could be improving user Quality of Experience [29], reducing power consumption [97],
maximizing throughput and/or fairness [98], etc.

Since traffic is encrypted (the confidentiality of the data and the processing of each SP
can be guaranteed by state-of-the art memory encryption technologies, like Intel SGX [99]),
the NO can only base its allocation decision on data-driven strategies consisting in trial
and error : the NO continuously perturbs cache allocation and observes induced variation
on the upstream traffic. We formulate this problem as a Markov Decision Process (MDP)
and we use online model-based Reinforcement Learning (MB-RL) to solve it: while RL
is usually trained offline and then applied to a real system, we instead train RL on the
system while it is up and running. Therefore, we are not only interested in finding a good
cache allocation, but also in how to find it. Indeed, while the only way for the NO to learn
how to optimize the allocation is to continuously perturb it, we also need to keep the cost
of such perturbations small. Our contributions can be summarized as follows:

1. We propose a MB-RL agent for cache allocation among third-party SPs. Starting
from no knowledge of the system, the agent constructs a model of the upstream
traffic based on observations. Then, the agent learns an optimal policy on such a
model, while at the same time continuously updating the model-based on observed
traffic. Our RL agent includes the following features: memory replay, learning rate
scheduling and decaying exploration probability (epsilon-greedy).

2. We analytically prove that the allocation converges to a state close to the optimum
and stays there with probability 1 for an infinite horizon.

3. We show in simulation the performance of our method under different scenario pa-
rameters and show that it outperforms the state of the art Simultaneous Perturbation
Stochastic Approximation (SPSA) [28]. We also show the benefits of using MB-RL
over model-free Reinforcement Learning (MF-RL).

The remainder of this chapter is organized as follows. In Section 3.2, we present our
system model. In Section 3.3, we present the MDP formulation of our problem. Section 3.4
and Section 3.5 discuss the theoretical properties and motivate the use of RL, respectively.
In Section 3.6, we show our simulation results. Our simulation code is available as open
source.3 Section 3.7 concludes the chapter.
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Notation Description

P Number of SPs (Section 3.2)
K Cache total capacity (Section 3.2)
Np Catalog size of SP p (Section 3.2.1)
ζp Cacheability of SP p (Section 3.2.1)
ω Exogenous conditions (Section 3.2.2)
θ Cache allocation (Section 3.2)
a Action of the NO (Section 3.2)
θp Number of slots given to SP p (Section 3.2)
θ∗ Optimal allocation (Section 3.2.3)
∆ Perturbation (Section 3.3.1)
θprop Proportional allocation (Section 3.6.2)
λ Total request rate (Section 3.2.1)
fp Probability that a request is for SP p (Section 3.2.1)
ρc,p Popularity of object c of SP p (Section 3.2.1)
λc,p Request rate for object c of SP p (Section 3.2.1)
Cnom,p(θp, ω) Nominal cost for SP p (Section 3.2.2)
Cnom(θ, ω) Nominal cost (Section 3.2.2)
Cpert(a) Perturbation cost (Section 3.2.3)
C(k) Instantaneous cost (Section 3.2.3)
S State space (Section 3.3.1)
Aθθθ Action space (Section 3.3.1)
α(k) Learning rate at time slot k (3.12)

γ(k) Discount factor at time slot k (3.12)

ϵ(k) Epsilon at time slot k (Section 3.3.3)

Ĉnom,p(θp) Model of nominal cost for SP p (Section 3.3.2)

Ĉnom(θ) Model of total nominal cost (Section 3.3.2)

M(k) Memory at time slot k (Section 3.3.3)
Nmem Mini-batch size for memory (Section 3.3.3)
Nmodel Mini-batch size for model (Section 3.3.2)

Table 3.1: Frequently used notations in Chapter 3
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3.2 System Model

We consider a system that consists of a NO that owns cache space K at an edge node,
for instance at the base station, and of P SPs providing services such as video streaming
service. Time is slotted. The NO can share its cache space among the P SPs, and we

denote by θ
(k)
p the cache space allocated to SP p in time slot k. We consider that cache

space is an integer K and each slot can store one object. We denote by θ(k) = (θ
(k)
1 ,...,θ

(k)
P )

the allocation at time slot k and we define the set of feasible allocations

T ≜

θ|
P∑

p=1

θp ≤ K, θp ∈ Z+

 (3.1)

Table 3.1 summarizes the most frequently used notations in this chapter.

3.2.1 Request pattern

We consider that each SP p has a catalog of Np cacheable objects. We use the tuple (c, p),
c = 1, 2, . . . , Np to refer to object c of SP p. Requests for objects arrive with rate λ. We
denote by fp the probability that a given request is for an object offered by SP p, and hence
the request arrival rate for objects of SP p is λ· fp. To capture the fact that not all objects of
an SP may be cacheable (e.g., live streams and broadcasts), we denote by ζp the probability
that a request to SP p is for a cacheable object, and we refer to this as its cacheability. For
a cacheable object (c, p), we denote by ρc,p its popularity, i.e., the probability that, among
the requests for all cacheable objects of SP p, the request is for object c. Under this model,
a cacheable object (c, p) receives requests at rate λc,p = λ · fp · ζp · ρc,p.

We adopt the common assumption in the literature that all objects have the same
size [57, 28, 52]. Objects may represent, for instance, chunks of videos. We consider that
the arrival process is stationary. In practice, object popularity and request rate change
smoothly over time, and as we will show in Section 3.6.2 our algorithm can converge
fast enough (15 minutes, see Figure 3.6) to be able to consider the arrival process to be
stationary.

3.2.2 Cost model

We consider the cost of the NO due to upstream traffic, which could be incurred for two
reasons. First, for a given cache partitioning θ, the cache misses cause upstream traffic:
if a request arrives, which is for an object that is not cached, such an object must be
downloaded from the Internet. We call the resulting cost the nominal cost. Observe that
for any allocation θ, the nominal cost is a random variable parameterized by parameters
that are unknown/not observable by the NO, i.e., the requests of users for video objects

3https://github.com/Ressource-Allocation/Cache-Allocation-Project
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that could changes over time. We denote these unknown parameters, which represent
exogenous conditions that are not under the control of the NO, by ω. We express this
dependence, for any θ, by using the notation Cnom,p(θ, ω) for the nominal cost due to SP
p. We denote the total nominal cost due to all SPs by Cnom(θ, ω).

Cnom :RP ×X → R
(θ, ω)→ Cnom(θ, ω)

where X is any topological space.
The total nominal cost due to all SPs, at time slot k, is

Cnom(θ
(k), ω) =

P∑
p=1

Cnom,p(θ
(k), ω) (3.2)

The second source of upstream traffic is due to changing the cache partitioning between
the SPs. We refer to the corresponding cost as perturbation cost. To express the pertur-
bation cost, let us denote by a(k) = θ(k+1) − θ(k) the perturbation vector, i.e., the change

in cache partitioning of the NO at time slot k. If θ
(k+1)
p > θ

(k)
p then SP p will download

θ
(k+1)
p − θ

(k)
p > 0 objects from the Internet to its allocated storage. We can thus express

the perturbation cost as:

Cpert(a
(k)) =

P∑
p=1

[θ(k+1)
p − θ(k)p ]+, (3.2bis)

where [.]+ denotes the max(., 0). The instantaneous cost C(k) at time slot k is then

C(k) ≜ Cnom(θ
(k), ω) + Cpert(a

(k)), (3.3)

and the cumulative cost over Z time slots as:

Ccum(Z) =

Z∑
k=1

C(k) (3.4)

3.2.3 Problem formulation

Since for any θ, the total nominal cost Cnom(θ, ω) is a random variable, whose randomness
comes from ω. The NO aims to minimize its expected value:

θ∗ ∈ argmin
θ∈T

Eω

[
Cnom(θ, ω)

]
(3.5)
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We emphasize that Eω

[
Cnom(θ, ω)

]
is never observable directly, only a realization

Cnom(θ, ω) is. The latter can be considered as a noisy observation of Eω

[
Cnom(θ, ω)

]
,

i.e., ∀θ ∈ T

Cnom(θ, ω) = Eω

[
Cnom(θ, ω)

]
+ η, (3.6)

where η is a random variable.
The problem (3.5) is a contextual bandit problem, where ω is the context. Algorithms

for solving contextual bandit problems rely on experimenting with different cache alloca-
tions, and hence they will involve perturbation cost that they do not take into account.
Hence it is more reasonable to consider the following optimization problem:

π∗ = argmin
π∈Π

lim
Z→∞

1

Z

Z∑
k=1

E[C(k)] (3.7)

where Π is is the set of causal allocation policies, i.e., policies that are designed to make
decisions based on a causal relationships between actions, states of the environment, and
the resulting rewards.

An allocation policy π is a function π(a|θ) defining the decisions of the NO: whenever
the NO observes state θ, it will choose an action a with probability π(a|θ). During training,
the NO starts with a certain policy π(0)(·) and then adjusts it, based on the measured cost,
in order to approach the optimal policy π∗.

Note that, despite the fact that the spurious traffic generated by perturbations adds to
the cost, perturbations are the only way for the NO to discover how to optimize the “black-
box” function θ → Eω

[
Cnom(θ, ω)

]
. Indeed, by observing the effects of perturbations on

the nominal cost, the NO can accumulate knowledge that can be used to drive the system
close to the optimal allocation θ∗. Therefore, in our data-driven approach, rather than
directly solving (3.5), which would be infeasible for the reasons stated above, our aim is to
find a sequence of perturbations {a(k)} in order to minimize the expected mean cumulative
cost (3.4).

Observe that the NO problem is a sequential decision making problem under uncer-
tainty, where the uncertainty is due to the randomness of the users requests. In what
follows we propose an allocation policy based on RL. We will show that, by applying it,
we converge close to the optimal allocation (3.5). Note that, for any initial allocation θ(0),
the sequence {a(k)} deterministically induces a sequence of states {θ(k)}:

θ(k+1) = θ(k) + a(k) (3.8)

We refer to {θ(k),a(k)} as a state-action sequence. Adopting the standard terminology
from the literature [100, Section 4.1], the observations of the NO are based on a bandit
feedback model, in that at every time-slot k the NO observes only the cost (3.3) of the
state-action pair visited in that time-slot and not the others.
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3.3 Data-driven Optimization

3.3.1 MDP formulation

Our cache allocation problem can be formulated as a deterministic MDP. The set of states
S consists of all the allocation vectors that we can visit. To reduce the complexity of the
problem, we adopt a discretization step ∆ ∈ N, i.e., the amount by which we change the
allocation, and define S as:

S =

θθθ = (θ1, . . . , θP )|
P∑

p=1

θp ≤ K, θp multiple of ∆

 (3.9)

The discretization step ∆ constitutes a precision/complexity trade-off. A smaller value
of ∆ increases the precision of the allocation since it allows converging to a discrete solution
closer to the optimal one (Section 3.6.1); it however increases the complexity of the problem
since it expands the space of states. Observe that S ⊂ T (3.1). When in state θθθ, the NO
can pick an action from the following action space:

Aθθθ =
{
a = ∆ · (ep − ep′)|θθθ + a ∈ S, p, p′ = 1, . . . , P

}
(3.10)

where ep is the p-th element of the standard basis of Rp.
We will use the terms allocation/state and action/perturbation interchangeably. There-

fore, an action a of the NO consists in adding ∆ units of storage to a certain SP p and
removing the same amount from another SP p′. The null action corresponds to not chang-
ing the allocation (which happens in (3.10) when p = p′). Thanks to (3.8), the transition
from a state to another is deterministic.

Our objective function accounts for both nominal cost as well as perturbation cost and
is given by:

Cγ
cum = lim

Z→∞
E

 Z∑
k=0

γ(k) ·
(
Cnom(θ

(k), ω) + Cpert(a
(k))
)

︸ ︷︷ ︸
Instantaneous cost C(k)


θ(k) ∈ S
a(k) ∈ A

(3.11)

where 0 < γ < 1 is a hyper-parameter called discount factor.

3.3.2 Online model-based Reinforcement Learning

To properly characterize MB-RL, we first need individual definitions of planning and Re-
inforcement Learning. We can distinguish them based on the assumptions related to the
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knowledge about the system: planning methods assume that a model of the system (nomi-
nal cost Eω

[
Cnom(θ, ω)

]
vs. allocation θ, in our case) is available (a-priori or via learning),

which allows the agent to repeatedly plan forward from any state θ using the model. In
contrast, for RL in its simplest form (i.e., MF-RL) this model is not present, so the agent
can have information about the instantaneous cost of a certain allocation, only by physi-
cally visiting it. MB-RL [101, Section 8] combines both approaches. In MB-RL, “learning”
happens at two locations in the decision algorithm: 1) to learn the model of the system,
and 2) to learn the policy telling us which actions to take from any state.

Since we do not know the form of the function θ → Eω

[
Cnom(θ, ω)

]
, the first step of

model-based RL involves learning it from observed data. For that, we construct for each SP

p a model Ĉ
(k)
nom,p(θp) that will approximate the expected nominal cost Eω

[
Cnom,p(θp, ω)

]
for any θp, at time slot k. We thus obtain a model Ĉ

(k)
nom(θ) ≜

∑P
p=1 Ĉ

(k)
nom,p(θp) that

approximates the nominal cost Eω

[
Cnom(θ, ω)

]
, at time slot k. Note that the estimation

model θ → Ĉ
(k)
nom(θ),∀θ ∈ S, is updated at each time slot k.

At each time slot k, we perform the Bellman Optimality Equation update:

Q(k)(θ(k),a(k)) = (1− α(k)) ·Q(θ(k),a(k)) + α(k) ·

(
C(k) + γ(k) min

a∈A
θ(k+1)

Q(k)(θ(k+1),a)

)
(3.12)

Then, we take the last measured value Cnom,p(θ
(k)
p , ω) and do the following:

• We construct model Ĉ
(k)
nom(θ).

• Then, we sample Nmodel random state-action pairs from the state space S and action
space A. Let us call

{
(θ[i],a[i]),θ[i] ∈ S,a[i] ∈ Aθ[i]

}
i=1,...,Nmodel

such samples. For

each i-th sample, we predict a cost Ĉ [i] = Ĉnom(θ
[i]) + Cpert(a

[i]). Note that in
this way we are able to make predictions on state-action pairs that have not been
visited yet, exploiting “similar” pairs observed in the past. Note that Cpert(a

[i]) is

a deterministic constant (3.2bis) while Ĉnom(θ
[i]) is an estimation obtained with our

model.

• We finally perform Nmodel Q-table updates, as in (3.12), using Ĉ [i] calculated above
in place of C(k) of formula (3.12).

Algorithm 1 represents our approach to solve the considered cache allocation problem.
In line 20 of Algorithm 1, we estimate a model of the nominal cost from the collected
observations. Such a model is then used to perform additional updates of the Q-table.
It will be required in the proof of Theorem 7.1.2.3 (Appendix 7) that this model has to
be unbiased, in order to avoid driving Q-table updates in the wrong direction. A simple
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empirical average of the observed nominal costs would be an unbiased model, but we need
to collect many samples before empirical averages are sufficiently close to the expected
value of the nominal cost. Moreover, if we only use empirical averages, at the beginning
of the learning process, we would have a lot of allocations that have not yet been visited,
and thus empirical averages would not be available. For this reason, in the first iterations
we perform regression on the collected observations. By doing so, we can also estimate
the nominal cost of the allocations not yet visited, by exploiting observations of similar
allocations. This mechanism “accelerates” the updates of the Q-table at the beginning. To
obtain unbiasedness, we then gradually abandon the regression model and we adopt the
empirical averages.

We now formally describe how we estimate the cost model in Line 20 of Algorithm 1. Up

to a certain time slot Kreg, model Ĉ
(k)
nom,p(θp) is obtained by regression using Dp as dataset.

Let us denote Ĉ
(k)
nom,p,reg(θp) the model obtained by regression. Then, we gradually replace

Ĉ
(k)
nom,p,reg(θp) with the empirical mean:

C
(k)
nom,p(θp) ≜

1

|K(k)
p,θp
|

∑
k′∈K(k)

p,θp

C(k′)
nom,p(θp, ω

(k′)) (3.13)

where K(k)
p,θp

is the set of time-slots k′ ≤ k, in which SP p has been allocated θp slots.

We define our model at time slot k for any θp ∈ [0,K] as:

Ĉ(k)
nom,p(θp) ≜



Ĉ
(k)
nom,p,reg(θp)

if k ≤ Kreg

or K(k)
p,θp

= ∅

1

|K(k)
p,θp

|
Ĉ

(k)
nom,p,reg(θp)

+

(
1− 1

|K(k)
p,θp

|

)
C̄

(k)
nom,p(θp)

otherwise

(3.14)

Similar to (3.2), the cost estimated by the model is Ĉ
(k)
nom(θ) ≜

∑p
p=1 Ĉ

(k)
nom,p(θp) and

the empirical mean of the nominal cost measured is C̄
(k)
nom(θ) ≜

∑p
p=1 C̄

(k)
nom,p(θp).

The following theorem ensures that the model (3.14) is an unbiased estimator of the
nominal cost.

Theorem 3.3.2.1. For any SP p and allocated cache slots θp our model converges uni-
formly to the expected value of the nominal cost, i.e.,

u
lim
k→∞

Ĉ(k)
nom(·) = Eω

[
Cnom(·, ω)

]
(3.15)

where symbol limu indicates that

lim
k→∞
∥Ĉ(k)

nom(·)− Eω

[
Cnom(·, ω)

]
∥∞ = 0 (3.16)
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Proof. Let us consider a SP p and a number θp of allocated slots and prove point-wise
convergence first. As k goes to ∞, the number of times SP p has been allocated θp

increases, i.e., limk→∞ |K
(k)
p,θp
| =∞. For k > Kreg,

Ĉ(k)
nom,p(θp) =

1

|K(k)
p,θp
|
Ĉ(k)
nom,p,reg(θp)+

1− 1

|K(k)
p,θp
|

 C̄(k)
nom,p(θp)

k→∞−−−→ C̄(k)
nom,p(θp)

Using the law of large numbers (Definition 7.1 of [102]), we can write for any SP p, ∀θp

lim
k→∞

C
(k)
nom,p(θp) = Eω

[
Cnom,p(θp, ω)

]
. (3.17)

Hence,
lim
k→∞

Ĉ(k)
nom,p(θp) = Eω

[
Cnom,p(θp, ω)

]
,

which easily implies that

lim
k→∞

Ĉ(k)
nom(θ) = Eω

[
Cnom(θ, ω)

]
,∀θ ∈ S.

Since S is a finite set, point-wise convergence implies [103, Proposition 1] uniform
convergence.

3.3.3 Additional enhancements

We now report some enhancements that considerably improve the performance of our
algorithm.

Learning rate scheduling

The hyper-parameter α(k) in (3.12) tells the magnitude of step that is taken towards the
solution. α(k) should not be too big a number as it may continuously oscillate around
the minima and it should not be too small of a number else it will take a lot of time
and iterations to reach the minima. As in [28], we decrease it slowly, because initially
when we are at a totally random point in solution space we need to take big leaps towards
the solution and later when we come close to it, we make small jumps and hence small
improvements to finally reach the minima.

α(k) = α(k−1) ·
(
1− 1

1 +M + k

) 1
2
+ξ

(3.18)

where M and ξ are positive constants, used to tune the slope of decrease.
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Experience replay

In the simplest implementation of Q-learning, the measurement made in a certain time-slot
is used to update the Q-table in that time-slot only and is never used again. However, the
set of previous measurements (i.e., the past “experience”) could be further exploited to
improve the Q-table update in future time-slots. To this aim, Experience Replay has been
proposed [104]. At any time-slot k, in addition to using the measured instantaneous cost
C(k) to update the Q-table in (3.12), we also store this measurement in the form of a triplet(
θ(k),a(k), C(k)

)
, which we call experience. The set of experiences accumulated in this way

is called memory. Formally, let us define the memory as:

M(k) = {(θ(0),a(0), C0), . . . , (θ
(k),a(k), C(k))}

Whenever we update the Q-table, additionally to performing (3.12) using the current
observation, we also sample the memory randomly for a mini-batch of experiences of size
Nmem and we use these random samples as entries for the Q-table by applying (3.12).

ϵ stretched exponential decay

The value of ϵ(k) is the probability of taking a random action (exploration) instead of the
best so far, at any time-slot k. We impose, motivated by [105], the following decay:

ϵ(k) =

ϵ0 −
[

0.9·ϵ0
cosh(e−

k−A·Z
B·Z )

+ k·C
Z

]
if k ≤ Z

ϵ(Z)

k−Z otherwise

(3.19)

where ϵ0 is the initial value of ϵ, A, B and C are hyper parameters and Z is a time horizon,
after which the behavior of the decrease change. Indeed, bigger value of Z (longer horizon)
implies that the value of ϵ goes smaller in the exploitation phase. This decay provides:

• sufficient time for exploration at the beginning.

• preference to exploitation (with respect to exploration) in the end (quasi-
deterministic policy).

• smooth transition while switching from exploration to exploitation.

The parameter A decides whether to spend more time on Exploration or on Exploita-
tion. For values of A below 0.5, RL would be spending less time exploring and more time
exploiting. For values of A above 0.5, we force RL to explore more. The parameter B
decides the slope of transition region from Exploration to Exploitation. Parameter C con-
trols the steepness of left (exploration) and right (exploitation) tails of the curve of the ϵ(k)

evolution. The higher the value of C, the steeper are the left and right tails of the curve.
Algorithm 1 describes how we combine model-based RL with the enhancements cited

above.
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Algorithm 1: k-th step of Model-based RL

1 α(k) ← calculate the value of α via formula (3.18);

2 ϵ(k) ← calculate the value of ϵ via formula (3.19);

3 with probability ϵ(k): a(k) ← random action ; // ϵ-greedy policy

4 with probability 1− ϵ(k): a(k) ← best action from Q(k)(θ(k),a) ;

5 θ(k+1) ← θ(k) + a(k);

6 C(k) ← Cnom(θ
(k), ω) + Cpert(a

(k));

7 Q(k)(θ(k),a(k))←
(1− α(k)) ·Q(k)(θ(k),a(k)) + α(k) ·

(
C(k) + γmina∈A

θ(k+1)
Q(k)(θ(k+1),a)

)
;

// update Q(k)

8 ///////////////
9 /// Memory replay

10 M(k) ←M(k−1) ∪ {(θ(k),a(k), Cnom(θ
(k)))};

11 for Nmem times ; // Simulate state-action pairs from the memory

12 do

13 (θrd,ard, Crd
nom)← random element fromM(k);

14 θ′rd ← θrd + ard;

15 Q(k)(θrd,ard)←
(1−α(k)) ·Q(k)(θrd,ard)+α(k) ·

(
Crd
nom + Cpert(a

rd) + γmina∈A
θ′rd

Q(k)(θ′rd,a)
)

; // update Q(k)

16 end
17 ///////////////
18 /// Model training and inference

19 D(k)
p ← D(k−1)

p ∪ {(θ(k)p , Cnom,p(θ
(k)
p )}, ∀ SP p; // collect realization of Cnom,p(θ

(k)
p )

20 Ĉ
(k)
nom,p(θp)← estimate model from D(k)

p ;
21 for Nmodel times ; // Simulate state-action pairs taken randomly from state space

and action space

22 do

23 θrd ← random state from S;
24 ard ← random action from Aθrd ;

25 θ′rd ← θrd + ard;

26 Compute Ĉ
(k)
nom,p(θrdp ), ∀ SP p ; // predict the nominal cost using the model

27 Ĉ ←
∑P

p=1 Ĉnom,p(θ
rd
p )) + Cpert(a

rd);

28 Q(k)(θrd,ard)← (1−α(k)) ·Q(k)(θrd,ard)+α(k) ·
(
Ĉ + γmina∈A

θ′rd
Q(k)(θ′rd,a)

)
; // update Q(k) based on fictitious transitions

29 end
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3.4 Theoretical Properties

In this section we will present the memory complexity of our algorithm (Section 3.4.1) and
then we will prove that the system will converge to a discretely optimal state and will stay
in that state with probability 1 as time goes to infinity (Section 3.4.2).

3.4.1 Memory complexity

Definition 3.9 of state space and definition 3.10 of action space imply that the size of
the state space S is O((K/∆)P ) and of the action space A is O(P 2). Therefore, the
memory required to store the Q-table is O((K/∆)P · P 2). Increasing the number of SPs
P will increase the complexity of the system in terms of state space size and action space
size. The computational complexity will also increase, but not proportionally. In fact, the
convergence speed is less affected by the sizes of the state and action spaces because the
model will allow the agent to update the policy based on fictional allocations that are not
really visited in the real environment. In what follows, we assume that the number of SPs
getting a cache slice is limited (3 or 4). The dependence on P is a limited issue under this
assumption. Observe that we can counter-fight the linear increase of memory complexity
with respect to the cache size K by increasing the elementary allocation ∆.

3.4.2 Convergence

Since we are using a model that approximates the expected nominal cost Eω

[
Cnom(θ, ω)

]
(Section 3.3.2) alongside Q-Learning, with other enhancements used, mentioned in Sec-
tion 3.3.3, we cannot simply rely on the property of convergence of classical Q-learning
(Theorem 2 of [106] or [107]) to justify the convergence of our algorithm. The following
theorem characterizes the main property of our algorithm: we provide in this section a
sketch of the proof, and we present the full proof in a separate section, due to its length
(see Appendix 7). In our algorithm we make use of a discretization constant ∆, which may
be larger than 1. The latter limits the state space S (3.9) and consequently prevents us
from reaching the optimal allocation θ∗ defined by (3.5). We can thus only reach

θ̂
∗ ∈ argmin

θ∈S
Eω

[
Cnom(θ, ω)

]
, (3.20)

which we call discretely optimal allocation.
The following theorem, proved in Appendix 7, shows that our allocation converges to

the discretely optimal one.

Theorem 3.4.2.1. If the discount factor γ is sufficiently close to 1

lim
k→∞

θ(k) = θ̂
∗
with probability 1.
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Sketch of the proof. The main steps to prove the above theorem are:

• We prove that our Q-table Q(k), resulting from Algorithm 1, converges to the optimal
Q-table Q∗ with probability 1 (see Section 7.1.2).

• We prove that the sequence of actions and states induced by Q∗ has an absorbing
state that is the discretely optimal state θ̂

∗
(see Section 7.1.3).

• We prove that the sequence of states and actions induced by our Q-table Q(k) (as-
suming no more exploration) also follows Q∗ (see Section 7.1.4).

• We prove that the sequence of states and actions {θ(k),a(k)} that we take online,
based on Algorithm 1, converges with probability 1 to the sequence induced by our
Q-table Q(k) (assuming no more exploration)(see Section 7.1.5).

• Finally, we show that this sequence {θ(k),a(k)}, taken online based on Algorithm 1,
converges with probability 1 to a sequence induced by Q∗.

We now establish a theoretical bound to describe how fast or accurate our algorithm
converge to approach the optimal allocation. For this, let us define the discretization gap
G∆ as the loss induced by the fact that we do not allocate cache slot by slot, but only in
multiples of the discretization step ∆:

G∆ = Eω

[
Cnom(θ̂

∗
, ω)
]
− Eω

[
Cnom(θ

∗, ω)
]

(3.21)

Intuitively, the larger the discretization step ∆, the larger the discretization gap G∆.
A consequence of Theorem 3.4.2.1 is the following:

Corollary 3.4.2.2. Let us denote by Ccum(Z) and C∗
cum(Z) the cumulative cost (3.4)

obtained with our algorithm and with the optimal theoretical allocation θ∗, respectively.
The difference between the two converges in expectation to the discretization gap:

lim
Z→∞

1

Z
E [Ccum(Z)− C∗

cum(Z)] = G∆

Therefore, a trade-off emerges: one the one hand, discretization allows us to reduce the
memory complexity, i.e., state space and action space (Section 3.4.1), on the other hand
it keeps allocations at a finite distance from the theoretical optimal cost. We will however
see in the numerical results (Section 3.6) that this distance is in practice very small.

The following bound shows this dependence between ∆ and G∆.

Proposition 3.4.2.3. Suppose objects of SP p are ordered from the most to the least
popular. Hence,

G∆ ≤
P∑

p=1

∆∑
c=1

λc,p.
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3.5 Discussion on the Use of RL

We now briefly discuss why we preferred our RL setting over other possible methodologies.
First of all, we rule out all the static optimization techniques that require full information,
due to the online and stochastic nature of the problem at hand.

SPSA has been applied in [108] for instance to optimize systems in a stochastic envi-
ronment. However, the objective of such method is just to converge towards the optimum
and no cost is considered for perturbation. Therefore, SPSA continuously perturbs the
system along multiple directions. In real situations, perturbing a system can prevent it
from working properly or engenders high cost (as in our problem). Our RL formulation
allows to naturally include the cost of perturbation in the optimization problem and to
consider the trade-off between converging fast toward the optimum and limiting the extent
and frequencies of perturbations.

We could also interpret our allocation problem at hand as a “black-box optimization”:
we have an unknown system whose cost function is unknown (Cnom(θ, ω) in our case) and
we aim to find the optimal solution θ∗. In such problems, Bayesian Optimization techniques
[109] trade off exploration against exploitation to pick the states to visit, observe the cost
at those states and decide the next state to visit, up to finding the optimum. However, such
techniques suffer from the same limitation of SPSA: they are meant for offline problems,
where the objective is to retrieve the minimum of the cost function at the end of the
optimization and the cost of jumping from one state to another is not quantified nor
directly minimized. Our RL framework not only allows us to reach an allocation close to
the optimum at the end, but also implicitly optimizes the path of states visited during the
optimization.

Lyapunov Optimization (LO) has also been used for allocation problems [97, 98]. How-
ever, these works assume that the expression of the cost or reward function (Cnom(θ, ω)
in our case) is known, the only unknown information is the sequence of future realizations
ω of the environment. We do not need to rely on such a strong assumption, as RL allows
to optimize the system even if the expression of the cost function remains unknown. We
indeed estimate such an expression online, based on observation (see Section 3.3.2).

The Markov Decision Process (MDP) underlying our RL method is a Deterministic
Markov Decision Process (DMDP), as the transition from one state to another is deter-
ministic in our case. In [110], transitions are unknown (although deterministic) and authors
use model-free Q-learning to solve the MDP. However, we focus on an infinite-horizon de-
terministic control system with an approximation model for the reward (cost).

Our problem can be described as a Multi-Armed Bandit with Switching Cost (MAB-
SC) [111, 112]. In that context, we would need to interpret each allocation vector as
an arm and the perturbation cost as a switching cost. We indeed solve in our case this
MAB-SC problem via model-based RL and as any randomized strategy, our algorithm is
subject to the bounds derived in this context (Theorem 1 of [112]). We resort to model-
based RL instead of other algorithms proposed in the MAB context, like EXP3 [113], as
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we can naturally embed in our algorithm the model θ → Ĉnom(θ) of the nominal cost
θ → Eω

[
Cnom(θ, ω)

]
, inferred via simple regression, which would not be as immediate to

do using other MAB algorithms. Observe that, as in [114], our problem is not a contextual
MAB, as the actions determine the states.

We do not frame our problem as an adversarial MAB [115] either. Indeed, the focus
of adversarial MAB is on worst-case analysis: performance bounds are provided under the
assumptions that the environment (the parameter ω in our case) or even the actual cost
function expression Cnom(θ, ω) are chosen by an adversary in order to “hurt” the decision
maker (the NO in our case) and to increase the cost of the system as much as possible.
In such a setting, [116, Theorem 3.1] shows that it is impossible to effectively optimize a
DMDP such as ours. For our case, adversarial analysis is too pessimistic, as the worst case
(in our case it would be for instance users generating a huge amount of requests only for
unpopular non-cached objects) would have a negligible probability to occur. We instead
adopt a stochastic setting, where the realizations ω of the environment are taken from an
unknown probability distribution that is independent of the NO decisions and we study the
“average” behavior of the system, i.e., the expected value of the cost and the probability
to converge close to the optimum.

Online decision problems have been presented in an adversarial setting: relevant to our
case is Smoothed Online Convex Optimization (SOCO) [117, 118], which aims to optimize
the cost of a system by also taking into account the perturbation cost to jump from one
state to another. However, such algorithms are studied in an adversarial setting, while we
are in a stochastic setting, as mentioned above.

While we propose model-based RL by constructing a model that approximates the
nominal cost (Section 3.3.2), one could wonder why not use Dynamic Programming (DP).
We motivate our approach by the fact that model-based RL can be more sample-efficient
than DP. In DP, we typically need to perform a complete backup of the value function for
all states in each iteration, which can be computationally expensive and require a large
number of samples. In contrast, model-based RL can use the learned model of the nominal
cost function to plan and make decisions, often requiring fewer samples to achieve good
performance. Furthermore, in this chapter, model-based RL is used in conjunction with
model-free method, allowing for the exploitation of the strengths of both approaches. It
uses the learned model for planning and exploration, while still using model-free updates
for fine-tuning and policy improvement.

We have performed some performance analysis using R-learning instead of Q-learning.
However, we observed worse achieved cost (which confirms previous findings from the
literature [119]) and we omit the obtained results.
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3.6 Numerical Results

We now evaluate the performance of our RL allocation θ(k) through simulations developed
in Python and compare it to two static allocations, i.e.,

• the theoretical optimal allocation θ∗, which would ideally be computed by an ora-
cle who knows exactly the content popularity and thus the expression of function
θ → Eω

[
Cnom(θ, ω)

]
.

• the proportional allocation θprop where θp is proportional to the rate of requests λp

directed to SP p.

We also compare it to two dynamic allocation strategies, namely

• model-free RL (with all the enhancements mentioned in Section 3.3.3).

• SPSA [28].

We consider a network with 3 SPs. We set the overall request arrival rate to λ = 4000
requests per second (in the same order of magnitude of requests supported in one edge
location of Amazon CloudFront [35]). Each of these requests is directed to SP 1, 2 or 3
with probabilities 0.75, 0.25 and 0.05, respectively. We set the cacheability (Section 3.2.1)
of SP1, SP2 and SP3 to ζ1 = 0.4, ζ2 = 0.9 and ζ3 = 0.9, respectively. Each SP has a
catalog of N1 = N2 = N3 = 107 cacheable objects. Content popularity in each catalog
follows Zipf’s law with exponents β1 = 1.2, β2 = 0.4 and β3 = 0.2, respectively (Figure 3.5).
The total cache size is K = 5 ·106. For the discretization step ∆, we found out that a good
complexity vs. precision trade-off was to set it to K/50. To limit perturbations, we give
a higher “weight” to the null action. Indeed, when we take a random action, we set the
probability of choosing any non-null action to only 1/P 2 and all the remaining probability
is for the null-action. The simulation time is set to Z = 6 hours. The length of a time-slot
is 0.25 second. We choose such value to have 1000 requests per time-slot. We found that
this value is a good compromise since very large values can lead to overfitting and delayed
learning and small values may lead to high uncertainty and slower learning.

We plot a normalized cost, i.e., the amount of objects downloaded from the Internet
(either as a result of an edge cache miss or of an allocation perturbation) divided by the
total amount of objects requested by the users. All curves are averaged with a sliding
window of 10 min.

3.6.1 Hyper-parameters pre-tuning

We now discuss some preliminary tuning that we performed in experimentation not shown
in this chapter on the features indicated in Section 3.3.3.
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Figure 3.3: Evolution of ϵ and α vs. time

1. We set the discount factor γ to 0.99, i.e., very close to 1 to give importance to future
rewards and prevent myopic decisions.

2. For α, the learning rate, we found that convergence was slow when it was fixed.
Therefore, we adopt learning rate scheduling, which starts at 0.9 and decreases fol-
lowing (3.18) to 0.2, with M = 3600 and ξ = 0.01. The variation of α is illustrated
in Figure 3.3.

3. We make ϵ decay as in (3.19) with A = 0.3, B = 0.1 and C = 0.01. Z = 6 hours. These
hyper-parameters have been chosen empirically after experimentation and provide a
good compromise between exploration and exploitation. Figure 3.3 shows the decay
of ϵ.

4. Regarding the size Nmem of the mini-batch of experiences, we found that small fixed
values were not allowing to exploit past experience, on the other hand, with large
values past experience was dominating too much the updates. We obtained the best
performance by scheduling N as follows:

N (k)
mem =

Nmax

cosh(e−
k−A·Z
B·Z )

+
k · C
Z

(3.22)

where Nmax = 100, A = 0.15, B = 0.3, C = 0.7, Z = 6 hours. The choice of Nmem

is illustrated in Figure 3.4.

5. For Nmodel, we take at each time-slot Nmodel = 50 samples on which we will apply
the model Ĉnom(θ).
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Figure 3.4: Choice of Nmem

3.6.2 Convergence close to the optimum

The behavior of our algorithm is well illustrated by Figure 3.6: Our MB-RL algorithm
learns the system in only 15 minutes and converges to a cost close to the theoretical
optimum. This rapid convergence is achieved thanks to the accurate model we obtain
by regression (Figure 3.7) and that we use to estimate the nominal cost for any given
allocation (even if that allocation is not visited). Although this chapter focuses on a
stationary scenario, the results suggest that the fast convergence of our MB-RL algorithm
could allow us to adapt even if the system parameters change over time. For instance,
even if the request pattern is non stationary, our model can adapt to any new request
pattern in 15 minutes. For model-free Reinforcement Learning (MF-RL), instead, we do
not construct a model while learning the system behavior and we update the Q-table solely
by perturbing the system via relatively many suboptimal actions in a first phase, in order
to learn it. For this reason, perturbation cost is high up to 135 minutes. (see Figure 3.9a)
After that, we start to exploit the collected knowledge and we limit perturbation.

Furthermore, our RL algorithm outperforms SPSA used in [28], which converges to
the optimal allocation in 45 minutes but never stays at the optimal allocation due to
the continuous perturbations it has to apply to estimate the sub-gradient of the objective
function.

Note that if we apply “brute force” solution to find the optimal allocation θ∗, assuming
optimistically that only 1 second is enough to compute the expected nominal cost for a
given allocation, we would need(

K

∆

)P

=

(
K

K/50

)P

=

{
503 seconds ≈ 34 hours, if P = 3

504 seconds ≈ 1736 hours ≈ 2 months, if P = 4
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Figure 3.6: Evolution of the total instanta-
neous cost C(k)

We now compare the cost C(k) induced by our policy with the cost of the static pro-
portional allocation θprop (proportional to the rate of requests directed to each SP). Note
that while our method deals with both nominal and perturbation costs (3.3), the static
θprop does not apply any perturbation to the system. We define the gain of our policy with
respect to θprop as:

Gk
prop =

Cnom(θprop, ω)− C(k)

Cnom(θprop, ω)
(3.23)

Figure 3.8 shows that our solution reaches a gain of 60% in less than 45 minutes with
respect to θprop.

To confirm our findings, we plot in Figure 3.9a the perturbation cost Cpert(a
(k)) for the

model-based and model-free versions of our algorithm and for SPSA. Results confirm that
after 15 minutes, Cpert(a

(k)) is practically null on an average 10 minute window for the
model-based RL which means that we no longer drastically change the allocation. In the
case of model-free RL, instead, we have to wait about 3 hours for the system to stabilize and
the perturbations to be negligible. This validates two findings: (i) our MB-RL algorithm
converges to a cache configuration and moves from there with a small probability, according
to Theorem 3.4.2.1 and (ii) model-based RL converges 10 times faster than model-free RL.
Observe that for SPSA, Cpert(a

(k)) is always higher than in our RL algorithms (both model-
free and model-based), which is expected since SPSA consists in continuously perturbing
the allocation.

We map in Figure 3.9b each value of C(k) with the nature of the action taken at the
time-slot k: each black point represents a random action which means the agent is exploring
the environment. The large number of black points in the beginning confirms that the first
phase is an exploration phase and it corresponds to the high value of ϵ, then the number of
perturbations starts to decrease as the value of ϵ decreases in order to limit the exploration
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Figure 3.7: Model Ĉnom,p(θp), p = 2
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Figure 3.8: Gain of MB-RL with respect to proportional allocation θprop

as stated in Section 3.3.3. We plot in the same figure the cumulative number of random
actions: we observe that it increases rapidly in the first 90 minutes and then starts to
stabilize in the rest of the simulation.

We plot in Figure 3.10 the evolution of the allocation θ(k) of the MB-RL algorithm over
time (center), the proportional allocation θprop (left) and the optimal allocation θ∗ (right).
Note that we start by θ0 = θprop. The results show that we converge to an allocation
θ̂
∗
close to θ∗ and we almost stay in this allocation, which matches our theoretical result

stated in Theorem 3.4.2.1.
In Figure 3.10b, we plot, per each timeslot k, how many times the current state θ(k)

has been visited in the past. We see that between 0 and 15 minutes a lot of states are
visited few times, which corresponds to the exploration phase: the agent keeps jumping
from one state to another to learn the optimal policy. After 15 minutes, the time in which
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Figure 3.9: System perturbation

our algorithm converges, we observe an almost linear behaviour: the agent keeps visiting
the same allocation θ̂

∗
(the absorbing state). The few points that we observe out of the

linear behaviour represent the few random actions taken by the agent because ϵ > 0. As
long as the value of ϵ is non zero, the agent will choose a random action at some point,
even after reaching θ̂

∗
. The figure shows that our RL agent exploits more and more the

good states, but never completely ceases visiting other states for exploration purposes.

3.6.3 Fairness

Let us denote with xp =
θp

ζp·λ·fp the slots given to SP p, normalized to its amount of
cacheable requests. We compute the fairness of the system with the Jain’s fairness index
[120] as follows:

J (x1, . . . , xP ) ≜
(
∑P

p=1 xp)
2

P ·
∑P

p=1 x
2
p

(3.24)

Our results show that cache sharing strategy with our MB-RL allocation (0.7 fairness)
is much fairer than the optimal allocation θ∗ (0.36 fairness), at almost the same total cost
(see Figure 3.6). It is also close to that of the proportional allocation θprop (0.85 fairness)
albeit being much better in terms of cost. Note that we are also close to the ideal maximum
fairness achieved by the proportional allocation not taking into account cacheability, i.e.,
if all contents were cacheable (i.e., ζp = 1, p = 1, .., P ). The latter is 1, by construction, as
it is proportional to the rate of requests directed to each SP; on the other hand, it is an
artificial measure, as it ignores cacheability.
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(a) Evolution of the allocation vs. time (b) Number of times current θ is visited

Figure 3.10: System evolution for MB-RL

3.6.4 Sensitivity analysis

We next study how the performance of our solution is affected by the request rate λ and
the cache capacity K. In Figure 3.11 we plot the average cost 1

ZCcum(Z) (3.4) of MB-RL
and MF-RL algorithm, after Z = 6 hours, and compare it to the static proportional and
optimal allocations.

Let us first focus on the request rate λ. A small λ implies that only few requests
are observed in each time slot, which may result in a high noise, as defined in (3.6),
and ultimately affects the accuracy of the update of the Q-table and slows down the
convergence. We thus expect any data-driven approach to perform best with large λ. This
is evident for MF-RL and SPSA (Figure 3.11a), whose cost is far from the optimum for
λ ≤ 1000 req/s. It is however interesting to observe that MB-RL performs relatively well
even with few requests per second. This shows that embedding the inferred model into the
RL agent increases the sample efficiency of our method.

Figure 3.11b shows the average cost measured over Z = 6 hours for various cache sizes
K ∈ {5 · 104, 5 · 105, 5 · 106} and a fixed request rate λ = 4 · 103req/s. It confirms that the
gains of our MB-RL algorithm hold for different cache sizes, and shows that gain increases
for larger caches. Indeed, for a small cache size there is not much to optimize: the cost
is high with both proportional and optimal allocations, so even if MB-RL and MF-RL
position themselves between the two, the improvement in cost is negligible.

Compared to SPSA, we observe in Figure 3.11 that our algorithm performs better in
any configuration of the system.

We finally verify that the good performance of MB-RL is maintained when increasing
the number of SPs. We simulate a scenario in the same conditions as in Section 3.6.2 but
we change the number of SPs to P = 4. Each of the requests is directed to SP 1, 2, 3
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or 4 with probabilities 0.60, 0.20, 0.10 and 0.10, respectively. We set the cacheability of
SP1, SP2, SP3 and SP4 to ζ1 = 0.5, ζ2 = 0.7, ζ3 = 0.9 and ζ4 = 0.9, respectively. Each
SP has a catalog of N1 = N2 = N3 = N4 = 107 cacheable objects. Content popularity in
each catalog follows Zipf’s law with exponents β1 = 2.2, β2 = 0.4, β3 = 0.1 and β4 = 0.1,
respectively. The total cache size is K = 5 · 106. The simulation time is maintained at
Z = 6 hours. The length of a time-slot is maintained at 0.25 second and total request
rate at λ = 4000 requests per second.

As in Section 3.6.2, we plot in Figure 3.12 the total cost C(k) of our MB-RL algorithm,
the optimal allocation θ∗, MF-RL and SPSA for 4 SPs. The results show that our algorithm
rapidly converges close to optimal cost, outperforming SPSA and MF-RL.

3.7 Conclusion

This chapter proposes a model-based RL algorithm for online cache allocation at the edge
between several SPs, where the aim is not only to minimize the cost, in terms of miss rate,
but also to optimize the way to achieve that, through minimizing perturbations, assuming
encrypted, not all cacheable content: a major challenge of in-network caching. We first
proved that our algorithm converges to an absorbing discrete optimal state with probability
1 in an infinite horizon. We then compared via extensive simulations our dynamic allocation
to two static allocations: (i) theoretical optimal one, which would be computed by an oracle
who knows exactly the content popularity and thus the expression of the cost function, and
(ii) proportional one where proportionality is with respect to the probabilities of requesting
content from each SP. We also compared our model-based RL algorithm to two dynamic
allocation strategies: (iii) model-free RL and (iv) state of the art SPSA. Simulations in
several scenarios show that our algorithm converges to a configuration close to the optimal
one, much faster than the compared allocation strategies. This allows to drastically reduce
overall system cost. In the next chapter, we will extend our work to multiple resource
allocation in EC.
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Chapter 4

Multiple-resource Allocation for
Multi-tenant Edge Computing

4.1 Introduction

Mobile Augmented Reality (MAR) has become one of the most emerging applications,
accompanied by the development of mobile devices and wireless communication. In MAR,
the human perception of the world can be enhanced by merging virtual information (gener-
ated from object detection, classification, or tracking) with the real environment via mobile
devices [121]. However, it is difficult for a mobile device to offer the abundant computation
and energy required by MAR applications.

Big Tech players started already to develop their own AR devices since 2013 when
Google announced its open beta of Google Glass [122] followed by the HoloLens [123]
and HoloLens 2 [124] from Microsoft in 2016 and 2019, respectively. Meta Group (for-
merly Facebook) joined the competition with Virtual Reality (VR) headsets: the Oculus
Quest [125] in 2019 and Oculus Quest 2 [126] in 2020.

While the production of AR/VR dedicated hardware seems very effective to run AR/VR
applications properly, it is costly in the sense that only big players can afford producing
their own devices. Hence, multi-tenant EC is particularly interesting for all the other
players, as it is probably the only way for small or medium AR Service Providers (SPs)
to run their applications at the edge of the network. The development of EC and 5G can
eliminate the obstacle to deploying the MAR service. In the concept of EC [49], computing
and storage resources are deployed at the edge of the access network. Several MAR clients
on mobile devices can send MAR requests that contain original data captured by sensors
and cameras to the Edge Computing (EC) server. Furthermore, dedicated computing
hardware (e.g., Graphics Processing Unit (GPU) and Central Processing Unit (CPU)) and
software (e.g., computer vision-based algorithms) can process these data in the EC server
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and then return the results, such as object classification or space coordinate information,
to the mobile devices.

The use of the EC for MAR has attracted extensive attention from the research com-
munity and industry recently [127, 128], which mainly focus on architecture design and
deployment. However, scheduling the MAR requests received from several competing MAR
clients on one EC server is critical and challenging. We address in this chapter the issue of
resource allocation of a Network Operator (NO) to competing, heterogeneous SPs in the
case of multiple, limited resources at the Edge. We first model the arrivals and service
dynamics of the flows using Erlang queuing model. We then formulate the resource allo-
cation problem, when all system parameters are known, as a sub-modular maximization
under Knapsack constraints problem and we propose an implementation of the so-called
streaming algorithm to solve it. We obtain a ( 1

1+2d−ϵ)-approximate optimal value, where d
is the number of resource types and ϵ is a controllable error term. When system parameters
are unknown by the NO, we cast the problem as a sequential decision making problem. We
formulate it as a Markov Decision Process (MDP) and use state-of-the-art deep Reinforce-
ment Learning algorithm, namely Deep Q Network (DQN) [129] to solve it. We eventually
provide numerical results to show that the performance of the RL algorithm significantly
approaches the performance of the streaming algorithm and outperforms baseline resource
allocation policy.

The remainder of this chapter is organized as follows. We describe in Section 4.2 our
system model. We formulate the sub-modular maximization problem under Knapsack
constraints in Section 4.3 and describe the proposed algorithm to solve it. In Section 4.4,
we formulate the problem as a MDP and describe the proposed algorithm to solve this
MDP. In Section 4.5, we show our simulation results. We draw conclusions in Section 4.6.

4.2 System Model and Problem Formulation

We consider a setting with one NO, owning a set of resources R = {memory, CPU} and
willing to share them between P different SPs (Figure 4.1). Each SP can then use its
assigned share as if it had a dedicated hardware deployed in the edge.

Table 4.1 summarizes the frequently used notations in this chapter.

4.2.1 Request Pattern and Augmented Reality Setting

MAR users of SP p, p = 1, ..., P arrive to the EC server following a Poisson process with
rate λp expressed in users/s. Once a user of any SP p is connected to the edge server, a
session is created. This session is valid for a period of time denoted by Tp during which the
user can perform a sequence of interactions within that MAR application. A single session
can contain multiple activities running while the user is connected. Each SP runs in the
edge a virtual server, e.g., a Kubernetes POD [130]. A MAR user establishes a session
with the virtual server of the respective SP. Within that session, it sends a stream of image
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Figure 4.1: Considered scenario

processing requests. When users point their MAR device toward an object, pre-processed
video frames are sent from the MAR device cameras to the edge server. These frames are
delivered to the AR tracker to determine the user’s position with respect to the physical
surroundings. Given the tracking results, virtual coordinates of the environment can be
established by the mapper. Then, the internal objects in video frames are identified by the
object recognizer with robust features, running in the edge server. The MAR device finally
downloads information about the object from the edge server. The AR information is
presented in a 3-D “experience” superimposed on the object. What users see, then, is part
real and part virtual. Since MAR needs high data rates, ultra-low latency and the possible
use of lightweight devices, performing processing at the edge of 5G mobile networks can
help guarantee the requirements of MAR applications (Section III-F of [121]).

We assume that a session of a single user of SP p requires a certain amount zrp of
resource for every type r ∈ R, e.g., CPU and memory. If the SP does not have at the
edge such amount of resources available, the user will establish a session with the cloud,
suffering longer delay. Once a user of SP p completes their service at the edge, his session
will be closed and he leaves the EC system. Please note that users can leave the system
when they decide, this does not deny that we can define an average service rate for SP p
expressed in users/s denoted by µp =

1
Tp
.

4.2.2 Resource Partitioning

The NO owns CPU and memory at the edge of the network, for instance, in a server co-
located with a (micro) base station or central offices at the metropolitan scale. It allocates
a total capacity KCPU of CPU and a total capacity Kmem of memory among the P SPs.
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Parameter Definition

R Set of resources (Section 4.2)
P Number of SPs (Section 4.2)
T Number of time slots (Section 4.4.1)
KCPU Total capacity of CPU (Section 4.2.2)
Kmem Total capacity of memory (Section 4.2.2)
λp Users arrival rate for SP p (Section 4.2.1)
µp Users service rate for SP p (Section 4.2.1)
zrp Amount of resource r required by one user of SP p (Section 4.2.1)

Np Number of users of SP p if it has all the resources (Section 4.2.3)
Bp Blocking probability of SP p (Section 4.2.4)

UE
Utility of a user who establishes a session directly in the edge (Sec-
tion 4.2.4)

UC
Utility of a user who establishes a session directly in remote cloud (Sec-
tion 4.2.4)

Vp Set of users of SP p if it has all the resources on the edge (Section 4.3)

Decision
Variable

Definition

θ⃗ Allocation vector (Section 4.2.2)

θrp Amount of resource r given to SP p on the edge node (Section 4.2.3)

np
Maximum number of users of SP p served at the edge given resources
(θrp)r∈R (Section 4.2.3)

Sp
Set of users of SP p served at the edge given resources (θrp)r∈R (Sec-
tion 4.3)

Table 4.1: Frequently used notations in Chapter 4

The allocation is a vector θ⃗ = ( ⃗θCPU, ⃗θmem) where each vector θ⃗r is the allocation of
resource r ∈ R. For simplicity, in this chapter we consider R = {CPU, mem}. Therefore,
the allocation has a form as follows:

θ⃗ = (θCPU
1 , . . . , θCPU

P , θmem
1 , . . . , θmem

P ) (4.1)

We define the set of all possible allocations as:

T ≜

θ⃗|
P∑

p=1

θrp ≤ Kr, θrp ∈ Z+, r ∈ R

 (4.2)

73



4.2.3 Service Model

We model our system as an Erlang queue [131] which models Poisson arrivals, exponentially
distributed service time, and a number of servers equal to the number of places in the
system, i.e., users are either directly served at the edge or directed to the cloud. In our
case, users of SP p arrive to the edge according to a Poisson distribution with mean arrival
rate λp, they remain in the system for an exponentially distributed duration, Tp. The
number of servers in our case refers to the maximum number of sessions that the edge can
accommodate for each SP, as determined next. Each user of SP p has fixed requirements
(zrp)r∈R and fixed allocation (θrp)r∈R during service. We denote by np(⃗θθθ) the maximum
number of users that can be served at the edge for a SP p when the resource allocation
decided by the NO is θ⃗θθ = (θrp)p=1..P,r∈R. Each user of each SP p will receive an amount zrp
of the resource r for their session. Hence the maximum number of sessions np(⃗θθθ) each SP

p can establish at the edge when the allocation from the NO is θ⃗θθ must satisfy:

np(⃗θθθ) · zrp ≤ θrp, p = 1 . . . P, r ∈ R. (4.3)

Therefore, np(⃗θθθ) is:

np(⃗θθθ) =

⌊
min
r∈R

(
θrp
zrp

)⌋
, p = 1 . . . P (4.4)

where ⌊.⌋ is the floor function giving as output the greatest integer less than or equal to(
θrp
zrp

)
.

Let us denote by Np the number of users of SP p served at the edge if all the resources
are allocated only to this SP p.

Np =

⌊
min
r∈R

(
Kr

zrp

)⌋
, p = 1 . . . P (4.5)

4.2.4 Utility Model

A user of SP p is served directly by the edge if the latter can satisfy the requirements
zmem
p and zCPU

p . Otherwise, the corresponding session is not accepted (we say that it is
“blocked”, following the terminology from queuing theory) and directed to a remote cloud
server. Using Erlang (equation (3.45) of [131]), the probability for a user of SP p to be
blocked is

Bp(θ⃗) =

A
np(θ⃗)
p

np(θ⃗)!∑np(θ⃗)
i=0

Ai
p

i!

, p = 1 . . . P (4.6)
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where Ap =
λp

µp
. The probability for a user of SP p to have his/her session established with

the edge is thus:

B̄p(θ⃗) = 1−Bp(θ⃗). (4.7)

The utility perceived by a user who establishes a session directly in the edge is UE ,
while if the session is with the cloud, the utility is UC . Such utilities take into account
the impact on the Quality of Service (QoS) of the delay to process every user request,
accounting for a larger delay to reach the cloud. Hence, UE > UC > 0. For simplicity, we
assume that UE and UC are the same for all SPs. Since 1 − Bp indicates the fraction of
users of SP p establishing sessions with the edge, the expected value of the utility perceived
by a user of SP p is, by the theorem of total probability:

EUp(θ⃗) = P(session established with the edge) · UE

+ P(session established with the cloud) · UC

= B̄p(θ⃗) · UE + (1− B̄p(θ⃗)) · UC

= (UE − UC) · B̄p(θ⃗) + UC

(4.8)

By the theorem of total expectation, the utility perceived by a generic user is

EU(θ⃗) =

p∑
p=1

EUp(θ⃗) · P(new user is for SPp)

=

p∑
p=1

wp · EUp(θ⃗)

(4.9)

where

wp =
λp∑P

p′=1 λp′
.

4.2.5 Optimization Problem

The NO aims to maximize the expected value of the utility perceived by a generic user:

max
θ⃗θθ

EU(θ⃗)

s.t.
P∑

p=1

θrp ≤ Kr, ∀r ∈ R
(4.10)
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Replacing EUp(θ⃗) with its value found in (4.8) and observing that (UE − UC) and UC

are positive constants, the optimization problem becomes:

max
θ⃗θθ

P∑
p=1

wpB̄p(θ⃗)

s.t.
P∑

p=1

θrp ≤ Kr, ∀r ∈ R

(4.11)

Thanks to (4.3) and (4.6), we can express the problem in terms of n⃗ = (n1, . . . , nP )

instead of θ⃗θθ:

max
n⃗nn

f(n⃗nn) =

P∑
p=1

wpB̄p(n⃗)

s.t.
P∑

p=1

np · zrp ≤ Kr, ∀r ∈ R

(4.12)

where B̄p(n⃗) ≜ 1−
A

np
p

np!∑np

i=0
Ai

p

i!

, p = 1 . . . P (4.13)

Observe that f(n⃗) is the probability for a generic user to be served with a session with
the edge node. This shows that improving the expected user utility (4.10) is equivalent to
maximizing the probability of establishing a session with the edge (4.12).

4.3 Sub-modular Optimization

In this section we will solve the problem of memory-CPU allocation as if the NO has the
knowledge of all the system parameters. We will describe our problem (4.12) in terms of
sub-modular optimization problem, by interpreting a user session established with the edge
node as an item (we will use this terminology in (4.19)). Let

Vp = {1, 2, . . . , Np} (4.14)

be the set of candidate sessions of SP p that could coexist in the edge if all resources were
given to this SP p. Since in reality resources at the edge are not given to one SP only, we
need to choose a subset of sessions Sp ⊆ Vp to allocate to each SP p. This choice induces
a certain probability of establishing a session with the edge:

B̄p(Sp) = 1−
A

|Sp|
p

|Sp|!∑|Sp|
i=0

Ai
p

i!

(4.15)
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With slight abuse of notation, in the formula above we use the notation B̄p(·) as
in (4.13), to emphasize that the two quantities are conceptually the same thing, by setting
np = |Sp|. Let

V ≜
P⋃

p=1

Vp (4.16)

be the set of all candidate sessions, hence, |V| = N =
∑P

p=1Np. And let

S =
P⋃

p=1

Sp ⊆ V (4.17)

be the set of sessions allocated, which will represent our decision variable.
For each SP p, we define a non-negative set function fp, taking as input all possible

subsets S of V, as follows:

fp(S) ≜ wp · B̄p(S ∩ Vp) ∈ [0, 1]

Function fp represents the probability, for a user that arrives, to be of SP p and to

be served with a session at the edge. We define f(S) ≜
∑P

p=1 fp(S). It indicates, for any
arriving user, the probability to be served with a session at the edge.

For any subset S of V, we denote the characteristic vector of S by:

xS = (xS1,1, . . . , xS1,N1 , . . . , xSP ,1, . . . , xSP ,NP
)T , (4.18)

where for any j ∈ [1, Np] and p = 1, ..., P :

xSp,j =

{
1, if the j-th item of Vp is in Sp
0, otherwise

(4.19)

For S ⊆ V and v ∈ V, the marginal gain in f when adding v to set S is defined as:

∆f (v|S) ≜ f(S ∪ {v})− f(S), (4.20)

which quantifies the increase in f(S) when v is added into subset S.
We introduce now the d-knapsack constraint where d = |R|. Let k = (K1, . . . ,Kd)T

be the resource capacity vector and Zp = (zrp,j) denote a d×Np matrix, whose (r, j)-th
entry zrp,j > 0 is the weight of the j-th item of Vp in terms of resource r. Since we have
assumed in Section 4.2.3 that all users of SP p require the same amount of each resource,
zrp,j = zrp for all the items in Vp, the constraint in (4.12) can be expressed as follows:

Z · xS ≤ k, (4.21)
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where Z = (Z1, . . . ,ZP ) ∈ Rd×
∑

p Np and xS ∈ {0, 1}
∑

p Np× 1.
Problem (4.12) becomes:

max
S

f(S) =
P∑

p=1

fp(Sp)

s.t. ZXS ≤ k
(4.22)

Without loss of generality, for 1 ≤ i ≤ d, 1 ≤ j ≤ N , we assume that zrp ≤ Kr. That
is, no item has a larger weight than the corresponding knapsack budget, since otherwise
such an item would never be selected into S.

We are now ready to study the properties of formulation (4.22). To do so, we recall
two common definitions from set-function theory [132].

Definition 4.3.0.1. A function f is sub-modular if it satisfies that ∆f (v|B) ≤ ∆f (v|A),
for any A ⊆ B ⊆ V and v ∈ V \ B.

Definition 4.3.0.2. A function f is monotone if for any S ⊆ V and v ∈ V, ∆f (v|S) ≥ 0.

Theorem 4.3.0.3. Function f in (4.22) is monotone and sub-modular.

Proof. Let S ⊆ V and v ∈ V. Suppose in particular that v ∈ Vp′ .

∆f (v|S) =f(S ∪ {v})− f(S)

=
∑
p ̸=p′

fp(Sp) + fp′(Sp′ ∪ {v})−
P∑

p=1

fp(Sp)

=fp′(Sp′ ∪ {v})− fp′(Sp′)
=wp′ · B̄p′(Sp′ ∪ {v})− wp′ · B̄p′(Sp′)
≥0,

where the last inequality can be obtained by simple calculus from (4.15). This shows that
function f is monotone.

Let us consider sets A ⊆ B ⊆ V and a vector v ∈ V \ B.

∆f (v|B)−∆f (v|A) =[f(B ∪ {v})− f(B)]− [f(A ∪ {v})− f(A)]
=[f(B ∪ {v})− f(A ∪ {v})] + [f(A)− f(B)]

Having A ⊆ B, we can write ∃Q ⊆ V/B = A ∪Q. Hence:
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Algorithm 2: Streaming Algorithm for sub-modular maximization problem un-
der Knapsack constraints

Data: d, zrp,K
r, λp, µp

Result: S∗
1 m← 0;

2 Q ← {[1 + (1 + 2d)ϵ]l|l ∈ Z};
3 for v ∈ Q do
4 Sv ← ∅;
5 end
6 for 1 ≤ j ≤ N do
7 for 1 ≤ i ≤ d do
8 m← max{m, f({j})/zi,j};
9 end

10 Q ← {[1 + (1 + 2d)ϵ]l|l ∈ Z,
m

1+(1+2d)ϵ ≤ [1 + (1 + 2d)ϵ]l ≤ 2Km};
11 for v ∈ Q do

12 if ∃i ∈ [1, d], zi,j ≥ K
2 and f({j})

zi,j
≥ 2v

K(1+2d) then

13 Sv ← {j};
14 break;

15 end

16 if ∀i ∈ [1, d],
∑

l∈S∪{j} zi,l ≤ K and
∆f (j|S)

zi,j
≥ 2v

K(1+2d) then

17 Sv ← Sv ∪ {j};
18 end

19 end

20 end
21 S∗ ← argmaxSv ,v∈Q f(Sv);

[f(B ∪ {v})− f(A ∪ {v})] + [f(A)− f(B)]
= [f(A ∪Q ∪ {v})− f(A ∪ {v})] + [f(A)− f(A ∪Q)]
≤ [f(A) + f(Q∪ {v})− f(A)− f({v})]
+ [f(A)− f(A ∪Q)]
≤ [f(Q∪ {v})− f({v})] + [f(A)− f(A)− f(Q)]
= f(Q∪ {v})− [f({v}) + f(Q)] ≤ 0

Therefore, the function f is sub-modular.
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Now that we have proved that our objective function f is monotone and sub-modular,
we can use well known results from sub-modular optimization. In particular, we adopt
the algorithm proposed in [133], which we report in Algorithm 2. The main idea of the
algorithm is that for every potential new user for each SP p, we compare the increase in f
when we add this user to the set of users S. We then add the user which yields the most
increase in f . The algorithm guarantees the following sub-optimality gap (Theorem 1 of
[133]).

Theorem 4.3.0.4. Algorithm 2 outputs S that satisfies f(S) ≥ ( 1
1+2d − ϵ)OPT and has

O( log(Kmax)
ϵ ) computational complexity per element, d being the number of resources, 0 <

ϵ < 1
1+2d , Kmax = max1≤i≤dK

i and OPT the value of f obtained by the optimal solution.

Note that the hyper-parameter ϵ impacts the behavior of the algorithm as well as the
quality of the optimality gap. The smaller is ϵ, the larger is f(S).

4.4 Data-driven Optimization

Recall that problem (4.10) faced by the NO, if the latter does not have any information
about the system parameters, can be cast as a sequential decision making problem under
uncertainty. We formulate the problem as a MDP and use RL for solving it. In this
section, we consider that time is slotted and we index it by k. The NO chooses an action
periodically, at time instants t0, t1 = t0 +∆, . . . , tk, . . .; the action is constant during each
period Tk = [tk, tk+1).

4.4.1 MDP Formulation

Our memory-CPU allocation problem can be formulated as a MDP. The state space S
consists of the resource utilization, i.e.,

S =

θ⃗ = (θCPU
1 , . . . , θCPU

P , θmem
1 , . . . , θmem

P )|
P∑

p=1

θrp ≤ Kr, θrp ∈ Z+, r ∈ R

 (4.23)

The action of the NO is, as in the sub-modular maximization problem (Section 4.3),
the set of users of each SP to accept at the edge at each time slot. We can thus define the
action space as:

A =
{
a(k) = (n

(k)
1 , .., n

(k)
P ) ∈ NP

}
, (4.24)

where n
(k)
p is the value of np defined by (4.4) at time slot k, p = 1, ..., P .

We define the reward as the utility Uk, perceived by a generic user during the period
Tk, defined previously in Section 4.2.4. Hence, we re-write the optimization problem (4.10)
as follows:
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π∗ = argmax
π∈Π

lim
T→∞

1

T

T∑
k=1

E[Uk] (4.25)

where Π is the set of causal allocation policies.

4.4.2 Proposed Solution

We propose to address the above problem with model-free Deep Q Network (DQN). DQN
is an extension of Q-learning that combines deep neural networks with Q-learning to handle
high-dimensional state spaces.1 DQN and Q-learning share a common objective of learning
the optimal action-value function in reinforcement learning. While Q-learning maintains
a tabular representation of Q-values, which becomes infeasible in such huge state space
environment, DQN approximates Q-values using neural networks. This allows DQN to
generalize across similar states, making it suitable for problems with large and continuous
state spaces. Additionally, DQN uses a target network, i.e., a duplicate of the main Q-
network used for estimating the Q-values of actions, to improve sample efficiency and
stabilize training, addressing some of the limitations of Q-learning’s online updates. These
characteristics make DQN applicable to our problem.

Note that DQN makes use of experience replay buffer (as in Section 3.3.3), which stores
past experiences (state, action, reward, next state) and samples from it to train the neural
network that approximates the Q-values.

4.5 Numerical Results

We now evaluate the performance of the streaming, approximate algorithm, i.e., Algo-
rithm 2 and DQN via a numerical model developed in Python and compare it to the
proportional allocation where θrp is proportional to the arrival rate λp of users of each SP
p. We set ϵ = 0.01.

4.5.1 Setting

We focus on an edge node co-located with a central office serving 2 SPs. We set arrival
rates λ1 and λ2 at 20 and 5 users/s, respectively and departure rates µ1 and µ2 at 1 and 10
users/s, respectively. Motivated by Amazon EC2 instances, such as G4dn [34], designed
to support machine learning inference for applications like adding metadata to an image,
object detection, recommendation systems, automated speech recognition, and language
translation, we consider an edge server similar to the G4dn.metal with Kmem = 384 GB

1Note that the size of the state space in Chapter 3 was O((K/∆)P ) and in this chapter the size of the
state space is O(

∏
r∈R Kr×P ).
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Figure 4.2: Performance of the streaming algorithm and DQN w.r.t λ1

of total memory capacity and a 2nd Generation Intel Xeon Scalable CPU: Cascade Lake
P-8259L with total capacity of CPU KCPU = 96 vCPU. Taking in consideration AR
applications similar to Pokemon GO [134], we set memory and CPU requirements for SP
1 and SP 2 at: zmem

1 = 2 GB, zCPU
1 = 1 vCPU, zmem

2 = 0.5 GB and zCPU
2 = 4 vCPU,

respectively.
For training the DQN (Section 4.4.2), we set the number of episodes = 40, one

episode = 1 day and ∆ = 1 hour.

4.5.2 Results

We plot in Figure 4.2a the performance of the streaming algorithm and DQN in terms of
the objective function f , which is the probability for a user to establish a session with the
edge (4.12) and we compare them with the baseline fprop, i.e., the probability of establishing
sessions with the edge obtained when allocating resources to SPs proportionally to their
users arrival rates. The results show that DQN significantly approaches the streaming
algorithm and outperforms the baseline solution for all values of λ1, which means that DQN
managed to find a policy close to the one obtained with the streaming algorithm. Note
that the streaming algorithm is only valid under perfect knowledge of system parameters
are known, which is not true in real world scenarios. DQN as a first step toward a practical
algorithm, as we are using under partial information (users requirements are assumed to
be known and stationary).

In Figure 4.2b, we show the blocking probabilities for each SP when varying λ1, using
the streaming algorithm. The increase in λ1 results in higher blocking probability for SP 1,
which is expected as more users will consume more resources given to SP 1 at the edge and
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less resources are left. Higher λ1 will also affect SP 2 but much less significantly (higher λ1

would result in higher resources allocated to SP 1 and hence less resources left for SP 2).
We plot in Figure 4.3 the learning curve of our proposed DQN-based solution along

with the value of the objective function f obtained by the streaming algorithm. The results
confirm that DQN approaches the streaming algorithm. Observe that DQN converges after
3 days of training. The training process is relatively long, which is expected as the RL agent
learns directly from interactions with the environment. This typically involves trial-and-
error learning, where the agent explores different actions and observes the induced utility.
Exploring the environment can be time-consuming, especially in environments with large
state space. This slow training is not suitable for online resource allocation when directly
dealing with an up and running system. Indeed, in a real system, arrivals are not stationary,
and the rate change in a time-scale of hours. We thus need an algorithm that learns the
dynamics in a matter of minutes (and not days) to cope up with the varying load. In
order to accelerate learning and convergence, one could make use of a model as we did
in Chapter 3 for the cache allocation and as we will show next in Chapter 5 for the case
of multiple resources. We plan to work on accelerating learning also for the case of this
chapter in our future work.

As for resource utilization, the results illustrated in Figure 4.4, using the streaming
algorithm, show that the CPU is totally utilized by the two SPs (Figure 4.4b), while the
memory is not fully exploited (less than 20% as shown in Figure 4.4a). Despite having
more than 80% of memory free, we cannot expect better performance since the blocking
comes always from the CPU, which is the scarcer resource. Even at higher arrival rate, the
streaming algorithm does not allow SP 1 to have more CPU as this resource is almost 80%
used by SP 2. We can explain this by looking at the values of zCPU

1 and zCPU
2 , we can see

that SP 2 is CPU-greedy: users of SP 2 consume 4 times more CPU than users of SP 1.
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Figure 4.4: Resource utilization vs. λ1
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We now investigate the sensitivity of the objective function f with respect to the arrival
rates and CPU requirements.

In Figure4.5a, we plot a heat-map describing the global objective function f , obtained
with streaming algorithm, with respect to the variations of the two arrival rates. Obviously,
the performance of the algorithm under lower arrival rates is better (dark upper region
f ≥ 0.95). But what is more interesting in the figure, is that even for high arrival rates
for SP 2 (λ2 ≥ 35), the algorithm keeps performing well up to λ1 = 20 (horizontal middle
region f ≥ 0.85), no matter the arrival rate λ2 of SP 2. The opposite is not true: for all
values of λ2, even small ones, the performance highly depends on λ1. We can explain this
by the fact that the users of SP 2 consume a lot of CPU (the blocking resource) which
means every new admission of SP 1 user would degrade the performance of the algorithm.

In Figure 4.5b, we plot the heat-map describing the global objective function f obtained
with the streaming algorithm with respect to the CPU requirements. The algorithm main-
tains a satisfying performance (upper left region) up to requirements around 5 vCPU at
most and then the performance rapidly decreases with the higher CPU requirements.

Very similar heat-map plots are obtained using DQN.
We plot in Figure 4.6 the objective functions: fstream.alg., f1 and f2 obtained by the

streaming algorithm, fDQN obtained by the DQN algorithm and fprop. The results show
that DQN approaches the streaming algorithm for all values of zCPU

1 outperforming the
baseline allocation in the majority of the cases. The figure shows that the utility of SP 1
decreases with the increase in zCPU

1 , while the utility of SP 2 remains constant, i.e., does not
depend on zCPU

1 . At high values of zCPU
1 , the performance of SP 1 degrades significantly

with f1 tending to 0. Overall, f becomes equal to f2 using the three appraoches.
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4.6 Conclusion

We tackled in this chapter resource allocation at EC between heterogeneous, MAR-oriented
SPs competing over multiple, limited resources. We modeled the users dynamics and
blocking in terms of an Erlang-type queuing model, we formulated the resource allocation
problem as a sub-modular maximization problem subject to multiple knapsack constraints
and solved it via an approximation algorithm, called streaming algorithm, with provable
optimality gap, when all system parameters are known by the NO. In the case where the NO
does not know information about the system, we formulated the problem as a sequential
decision making problem. We showed that the problem can be cast as a MDP and we used
deep RL, namely DQN, to solve it. Our numerical results quantified the performance of the
streaming algorithm and DQN in terms of the probability that users get served by the edge,
as opposed to being blocked and re-directed towards the cloud which entails larger delay
and hence lesser QoS. We showed the resulting resource partitioning between the SPs. We
showed that DQN outperforms the baseline resource allocation proportional to users arrival
rates and approaches the streaming algorithm. Finally, we included a sensitivity analysis
with respect to arrival rates and individual user requirements of a given resource. Note
that while the training process of DQN is relatively slow in this chapter, we consider it as
a preliminary work, it could be accelerated using a model as in Chapter 3 and Chapter 5.
Another possible approach is to use maximum likelihood estimation to estimate the users
arrival rates λp and service times Tp, for each SP p, and then use the streaming algorithm
to solve the problem.
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Chapter 5

Resource Pricing for Serverless
Edge Computing

5.1 Introduction

Despite its potential, Edge Computing (EC) is rather far from commercial deploy-
ment [135]. Existing edge deployments consist of cloud resources deployed at the periphery
of the core network (not as far as base stations) and are targeted at corporate users, as a
localized version of cloud computing [136]. The slow deployment is due to the lack of a
versatile programming abstraction and due to the lack of an appropriate business model,
including appropriate pricing schemes.

A promising abstraction for edge computing could be serverless computing, which al-
lows the execution of functions, relieving the users from managing compute and memory
resources [137]. Serverless computing has found adoption in Cloud Computing (CC), but
the static pricing models that made it popular would not suit edge deployments for several
reasons. First, compared to CC, where resources are practically unlimited [138], edge nodes
have scarce resources. Hence, some Wireless Devices (WDs) may not get the resources they
request immediately, and they may actually leave the edge service area before they would
get served. Moreover, cloud nodes benefit from statistical multiplexing [139], i.e., requests
coming from broad geographical regions tend to reciprocally compensate fluctuations. This
is not true in EC, hence demand for compute resources is more dynamic.

For these reasons, while practically all the big CC providers offer static, usage-based
pricing, pricing in EC will have to be dynamic, fulfilling two main criteria. First, pricing
should be adaptive, i.e., it should learn how to maximize revenue given information about
the workload and the available resources over time. Adaptation should be fast, at the time
scale of the workload dynamics. Second, pricing should be transparent to users, in the
sense that the costs and charges associated with the service are presented in a clear and
straightforward manner without any hidden fees, ambiguous pricing structures, or complex
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calculations, so that they can incorporate pricing information in the long term decisions
about whether to rely on EC for executing their tasks. Finding a pricing scheme that is
adaptive, transparent and computationally efficient is, however, extremely challenging. In
fact, an adaptive pricing scheme would require a perfect knowledge of the workload and
of the users behaviour (request rates and prices they are willing to pay). Moreover, price
discrimination, where businesses charge different prices to different users based on their
willingness to pay or other factors, could complicate pricing transparency efforts. In most
optimistic scenarios, where these two criteria were satisfied, it would be computationally
heavy as it requires learning all the factors impacting the pricing scheme.

In this chapter, we address this challenge and make the following main contributions:

• We formulate the problem of maximizing the revenue of a serverless edge operator as a
sequential decision making problem under uncertainty. In our formulation, prices are
piecewise constant over time, and enable non-linear costs in the resources requested.

• We provide a novel Hidden Parameter Markov Decision Process (HiP-MDP) for-
mulation of the problem, and use it to propose a learning scheme that uses a dual
Bayesian Neural Network (BNN) approximator for fast and accurate transfer learn-
ing, i.e., transferring knowledge gained through learning on several problem instances
to a new problem instance, without the need to train the algorithm from scratch. The
proposed Hidden Parameter Edge (HiPE) pricing algorithm learns latent variables
that capture the parameters of the dynamics of the problem instance and uses them
to parametrize the BNNs used for training a state-of-the-art RL algorithm.

• We use extensive simulations on synthetic and real traces for evaluating the proposed
scheme and show that it outperforms state-of-the-art solutions by up to 50% in terms
of revenue as well as user received value in using the service. Our pricing scheme
overcomes the three challenges mentioned above. First, it adapts itself to the changes
of environment parameters (we trained on synthetic traces and we tested directly on
real traces). Second, it is transparent, as all the users observe directly the price
and are charged with the same price in a pricing period. Third, our pricing scheme
is 3 times faster (and then more computationally efficient) than existing learning
algorithms.

The rest of this chapter is organized as follows. We describe the system model and
the problem formulation in Section 5.2. In Section 5.3, we provide analytical results under
simplifying assumptions. In Section 5.4 we propose a HiP-MDP formulation of the prob-
lem and a dual BNN approximator based solution for the pricing problem. We provide
numerical results in Section 5.5. We conclude the chapter in Section 5.6.

Recall that the work contained in this chapter results from a collaboration with Prof.
György Dán from KTH, Sweden, and Feridun Tütüncüoglu, PhD student at KTH, that
I carried out during my doctoral mobility in KTH in Spring 2023. The optimal pricing
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Figure 5.1: Example of a serverless edge service with time-dependent arrival rate Λ(t) and
piecewise constant price πk. Three WDs arrive in pricing periods T1 (WD 2 and WD 3)
and T2 (WD 1): WD 3 receives service immediately upon arrival at price π1, while WD 2
decides not to offload at price π1. WD 1 has to wait for receiving service, at price π2.

model contained in Section 5.3 was derived by Feridun Tütüncüoglu and will serve as a
lower bound to the proposed solution based on HiP-MDP.

5.2 System Model

We consider a Multi-access Edge Computing (MEC) system that provides Function as a
Service (FaaS) (also known as serverless) computing [140] to a dynamic population of WDs.
Table 5.1 summarizes the notations used in this chapter.
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Notation Definition

i Index of the user (Section 5.2.1)
αi Tasks generation rate of the user i (Section 5.2.1)
Di Dwell time of the user i (Section 5.2.1)
tai Arrival time of user i from the edge area (Section 5.2.1)
tdi Departure time of user i from the edge area (Section 5.2.1)
F Set of possible CPU frequency allocations (Section 5.2.2)
fv Requested CPU frequency allocation for function v (Section 5.2.1)
mv Requested memory allocation for function v (Section 5.2.1)
τv(fv) Execution time of the function v (Section 5.2.1)
τv Delay bound of the function v (Section 5.2.1)
Vi Set of functions of the user i (Section 5.2.1)
F Total CPU clock frequency capacity (Section 5.2.2)
M Total Versatile memory capacity (Section 5.2.2)
Λ(t) Intensity of users arrival at time t (Section 5.2.1)
Tk Pricing period [tk, tk+1) (Section 5.2.2)
∆ Length of Tk,∀k (Section 5.2.2)

πf
k (f) Price function of CPU frequency f in pricing period Tk (Section 5.2.2)

πm
k (m) Price function of memory m in pricing period Tk (Section 5.2.2)

πr
k Unit price per request in pricing period Tk (Section 5.2.2)

πk Pricing action vector in pricing period Tk (Section 5.2.2)
Cπk
i Expected unit task offloading cost of user i (Section 5.2.2)

Ci Reservation cost of user i (Section 5.2.2)
Cπk
i,Σ Cost of offloading of user i (Section 5.2.2)

oi Offloading decision of user i (Section 5.2.3)
Q Number of servers (Section 5.3.2)

Table 5.1: Frequently used notations in Chapter 5
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5.2.1 User Model

WDs arrive to the system following an inhomogeneous Poisson process with intensity Λ(t)
as shown in Figure 5.1. WD i remains in the service area of the edge service for Di amount
of time, which we refer to as the dwell time of WD i. We assume that Di is a random
variable that follows a certain distribution D.1 We denote by tai and tdi = tai + Di the
arrival and departure times of WD i, respectively. WD i generates requests at rate αi > 0
while it is in the MEC service area. We assume that αi is a random variable following a
certain distribution α. Following the FaaS model, we model the task of user i by a set Vi of
functions that need to be executed to perform the task, and we denote by nv the average
number of invocations of function v ∈ Vi.

User i can request CPU allocation fv and memory allocation mv for function v ∈ Vi,
which determine the processing power (in Hz) and memory capacity (in GB) allocated
for the function, respectively. The expected execution time τv(fv) of function v ∈ Vi is a
convex non-increasing function of the computing power fv allocated to it [141]. This model

generalizes the relation τv(fv) =
E[Lv ]
fv

widely used in edge computing, where E[Lv] is the
expected computational complexity of the function measured in CPU cycles. We include
in τv(fv) the potential impact of storage access latency [142, 143].

Tasks have finite average execution time, i.e., τi(fVi) < ∞, fVi =
∑

v∈Vi
fv, and WD i

has a constraint τv(fv) ≤ τv on the expected execution time of function ∀v ∈ Vi, determined
by the delay bound τ i of its task.

In order to be focused on the pricing of computational resources and not on the wireless
channel, we assume users can send and receive information without paying at each packet
transmission (as in nowadays contracts). We also assume good channel conditions, such
that packet loss is negligible. We focus on computation-intensive scenarios, where the
wireless bandwidth is not the bottleneck (in Section 5.5 the bandwidth consumed is 20
times smaller than the available channel capacity). Observe that in reality what matters
to the user is the total offload delay (transmission + execution). We thus implicitly assume
that delay bound τ i is obtained by subtracting the transmission time from the maximum
tolerable total offload time.

5.2.2 Edge Resources, Pricing and Offloading

We consider that the operator maintains an edge cloud with CPU capacity F and memory
M in the service area [144]. Aligned with common FaaS offerings (e.g AWS Lambda,
Google Cloud Functions), we consider that the operator offers a set F = {f(1), f(2), . . . , f}
of possible amounts of CPU (in Hz) that can be allocated a to function. When requesting
to execute a function v at the edge, the WD chooses one of the values contained in F [145].

1Observe that in practice, a WD could enter the service area, exits and then enters again. For the sake of
simplicity, we will consider this case as there were two different WDs, entering the service area at different
time.
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Similarly, WDs can choose from the setM = {m(1),m(2), . . . ,m} of memory allocations

for each function. Naturally, f ≤ F and m ≤M .
Similar to existing FaaS pricing models, we consider that pricing is based on the exe-

cution time, on the amount of used resources and on the number of function invocations.
The operator sets the prices periodically, at time instants t0, t1 = t0 + ∆, . . .; the price
is constant during pricing period Tk = [tk, tk+1) so as to make the cost of using the edge
service more predictable for the users than under user specific pricing schemes considered
in previous works [146, 147], where users are charged based on different prices in a same
pricing period and prices change for one user from one pricing period to another.

Contrary to existing FaaS pricing models, we consider a general, non-linear pricing
model. The price of compute capacity for CPU allocation f ∈ F in pricing period Tk is
πf
k (f) = fγkπf

k and the price of memory allocation m ∈ M is πm
k (m) = mγkπm, where πf

k

and πm
k are the unit cost of compute power and memory, respectively, and γk ≥ 1 is an

exponent. Observe that for γk = 1 pricing is linear, as in current FaaS offerings. We denote
by πr

k the price paid at each function invocation during pricing period Tk. Such price πr
k

is independent from the nature of functions invoked and the resources they consume. We
use the shorthand notation πk = (γk, π

f
k , π

m
k , πr

k) to denote the pricing discipline that the
operator imposes during time slot k.

If WD i arrives during pricing period Tk then it will be charged based on the price πk

throughout its dwell time Di, should it decide to offload. The expected task unit cost of
WD i that arrives in pricing period k for offloading a task is then

Cπk
i ((fv)v∈Vi , (mv)v∈Vi) =

∑
v∈Vi

nv ·
(
πr
k + τv(fv)(π

f
k (fv) + πm

k (mv))
)

(5.1)

We denote by Ci the reservation cost of WD i, i.e., its valuation for offloading its task.
Ci is unknown to the operator, and we model it as a random variable with distribution C.
WD i decides to offload if the unit cost satisfies

Cπk
i ((fv)v∈Vi , (mv)v∈Vi) ≤ Ci, (5.2)

otherwise the WD executes the computation within the device or discards its tasks. We
denote by oi ∈ {0, 1} the decision of WD i.

Due to edge resource constraints, even if WD i decides to offload, it may not be able
to do so immediately, but it may have to wait in a FIFO queue until resources become
available. A waiting WD does not offload, hence it does not have to pay for offloading
during waiting, and if its dwell time Di expires during the waiting phase, the WD will
leave the system without ever offloading. We denote by toi the time instant when WD
i can start offloading, when enough memory and CPU are available at the edge, hence
tai ≤ toi ≤ tdi if oi = 1, and we define toi = tdi if oi = 0. We use these to define the active
time of WD i during pricing period Tk as:

T a
i,k = min(tdi , tk+1)−max(toi , tk) (5.3)
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and its total active time as:

T a
i = (tdi − toi ) (5.4)

The active time, the task arrival rate and the unit task offloading cost together deter-
mine the expected cost of offloading of WD i:

Cπk
i,Σ((fv)v∈Vi , (mv)v∈Vi) = T a

i αiC
πk
i ((fv)v∈Vi , (mv)v∈Vi) (5.5)

5.2.3 Problem Formulation

We consider that the WDs and the operator are profit maximizing entities. The goal of
WD i is to minimize its cost of offloading subject to the task latency constraint τ i, i.e.,

max
(mv ,fv)v∈Vi

oi(t
a
i )(Ci − Cπk

i ((fv)v∈Vi , (mv)v∈Vi)) (5.6)

s.t oi(t
a
i )τv(fv,mv) ≤ τv,∀v ∈ Vi, (5.7)

i.e., WD i chooses the CPU frequencies (fv)v∈Vi that minimize its cost (5.1), while it
chooses the smallest amount of memory that allows function execution.

In pricing period k the operator collects revenue from the WDs that offload in the
period. Recall that if tai ∈ Tk then WD i is charged based on the price πk upon its arrival.
We can thus express the revenue, in pricing period Tk, as

ρθk =
k∑

k′=0

∑
i∈Nk′

T a
i,kαiC

πk′
i ((fv)v∈Vi , (mv)v∈Vi), (5.8)

where Nk′ = {i|tai ∈ Tk′}, i.e., the set of users arrived in pricing period Tk′ , T a
i,k is the active

time of user i in pricing period Tk (5.3) and θ is the pricing policy until time slot k, i.e.,
θ = {πk′}k′=1,...,k. Observe that ρθk is a random variable, as it depends on the workload.

The operator’s objective is to maximize its expected mean revenue by finding a policy

θ∗ = argmax
θ∈Θ

lim
K→∞

1

K

K∑
k=0

E[ρθk], (5.9)

where Θ is the set of causal pricing policies. Observe that the operator’s problem is a
sequential decision making problem under uncertainty, where the uncertainty is due to the
randomness of the arrivals, departures, reservation costs and resource requirements of the
WDs. In what follows we first provide analytical results under simplifying assumptions
(Section 5.3). We then propose a pricing policy based on a semi-parametric approach as a
solution to the general case (Section 5.4).
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5.3 Analytical Results

To obtain insight into the structure of optimal policies, we start with characterizing the
best response of the users for a given pricing policy, we then turn to the analysis of pricing
policies. The result contained in this section were obtained by Feridun Tütüncüoglu. I
report it here to make the manuscript self-contained. Hence, I will omit the proof.

5.3.1 User Best Response Characterization

Observe that the execution time is independent of the memory allocation, hence WD i
requests the smallest amount of memory m∗

v that allows function execution. Nonetheless,
the dependence of the cost on the amount of memory makes the optimal choice of the CPU
frequency non-trivial.

Lemma 5.3.1.1. Assume a non-linear pricing model where πf
k = fγ

v πf and πm
k = mγ

vπm.
The CPU frequency that minimizes the cost Cπk

i (fv,mv) of WD i for function v ∈ Vi is

f∗
v =

{
argminfv∈{f̃−

v ,f̃+
v }C

πk
i (fv,m

∗
v) if f̃−

v ≥
E[Lv ]
τv

min{ fv ≥ E[Lv ]
τv

, fv ∈ F} otherwise.
(5.10)

where f̃−
v , f̃+

v are the two adjacent values in F , such that

f̃−
v ≤

f̃∗
v =

m∗
v

(
πm

(γ−1)πf

) 1
γ

if γ > 1,

f if γ = 1,

 ≤ f̃+
v (5.11)

5.3.2 Optimal Pricing and Reward in Steady State

We now turn to the analysis of the optimal price, under assumptions that allow analytical
tractability. We will abandon these assumptions in Section 5.4.

Assumption 5.3.2.1. WD arrivals follow a homogeneous Poisson process with intensity
Λ. Dwell times Di are exponentially distributed with the same mean 1/µ.

Assumption 5.3.2.1 enables us to streamline a simple user queue model and achieve a
stationary solution for that queue.

Assumption 5.3.2.2. WD i has a single function, i.e., |Vi| = 1. All WDs request the
same CPU frequency f and memory m.

Assumption 5.3.2.2 assumes a homogeneous resource allocation among arriving users,
which simplifies the queue model in our analysis.

Assumption 5.3.2.3. Let Q = ⌊F/f⌋. Then M ≥ Qm, i.e., the edge system is not
memory constrained.
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Assumption 5.3.2.4. Reservation costs Ci are uniformly distributed on [0, b], b > 0.

Assumption 5.3.2.5. The operator has the complete knowledge of system parameters,
i.e., Λ, 1

µ , f , m and b.

Proposition 5.3.2.6. Assume pricing is linear, i.e., γk = 1, ∀k. Under the above assump-
tions, the optimal price can be written as follows:

πf ∗ = πm∗ = πr∗ = π∗ = b
L0(eχ+1)− 1

Bχ
, (5.12)

where L0(.) is the principal branch of the Lambert function [148], χ = Λ
Qµ

and B =

(
E[L]
f
· (f +m) + 1

)
.

5.4 Data-driven Optimization

Recall that problem (5.9) faced by the operator is a sequential decision making problem
under uncertainty. A straightforward approach would be to formulate the problem as a
MDP and use model-free reinforcement learning (RL) for solving it. This approach may
work for a single edge deployment with a stationary workload, but a new policy would
have to be learned for each edge deployment or for each workload evolution.

5.4.1 Hidden Parameter MDP Formulation

We propose to address this challenge by following a semi-parametric approach, formulating
the operator’s problem as a HiP-MDP. A HiP-MDP is a class of MDPs represented by a
tuple ⟨S,A,W, T,R, γ̃, PW ⟩, where S ⊆ RN , N ∈ N+, A ⊆ RN and γ̃ are the state space,
the action set and the discount factor, respectively, as in a MDP.

The transition function sk+1 ∼ T (sk+1|sk, ak, wg) and the reward function
rk ∼ R(sk, ak, w

r
g) are, however, parametrized by wg and wr

g, respectively, which are
drawn from prior distribution PW and are not observable. g is called environment instance,
it represents one single MDP. Observe that while in previous HiP-MDP formulations, the
reward was given in closed form [149, 150], in our formulation reward is stochastic. A HiP-
MDP defines a class of problems; a particular problem instance (a MDP) is obtained once
the parameters wg and wr

g are drawn. A HiP-MDP is different from a Partially Observable
MDP (POMDP) as the state is observable, but the environment dynamics and reward are
parametrized and the learning agent has to estimate the parameters based on interaction
with the environment, while maximizing its reward.

We argue that this semi-parametric approach is a powerful abstraction for the con-
sidered EC pricing problem. HiP-MDP leverages the intuition that the state transition
and the reward in the underlying queueing system can be approximated by a family of
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functions, parametrized by wg and wr
g. This allows learning a family of policies, which is

valid for a large set of scenarios, each corresponding to an edge deployment and workload
profile. When dealing with a new scenario, HiP-MDP allows to “transfer” the already
learned policies to this new scenario. This is obtained by adapting the policies to the new
scenario by adjusting wg and wr

g.
In fact, the considered problem can be modeled as a HiP-MDP, as we show next.

Proposition 5.4.1.1. Under Assumptions 5.3.2.1, 5.3.2.2 and 5.3.2.3 problem (5.9) is a
HiP-MDP, with:

• queue state (Nk
a +Nk

w) where Nk
a is the number of active users and Nk

w is the number
of waiting users, for each time slot k.

• action ak = (πf
k , π

m
k , πr

k, γk), i.e., pricing decision, for each time slot k.

• reward Rπk
k =

∑
i∈Nk

Cπk
i,Σ((fv)v∈Vi , (mv)v∈Vi), i.e., revenue from WDs accepted dur-

ing pricing period Tk.

• and latent (hidden) parameter vector w = f(D,Λ(t), α, C,Q).

Proof. The system with the considered state representation is Markovian due to Assump-
tions 5.3.2.1, 5.3.2.2 and 5.3.2.3. The transition function depends on the state, the action,
and the system parameters (D,Λ(t), α, C,Q) [151]. Nonetheless, the reward ρθk defined
in (5.8) during pricing period Tk does not only depend on the state and the action, but
also on past actions, and is hence not Markovian. To provide a Markovian formulation, we
have defined the revenue from WDs accepted during pricing period Tk

Rπk
k =

∑
i∈Nk

Cπk
i,Σ((fv)v∈Vi , (mv)v∈Vi). (5.13)

Observe that Rπk
k only depends on the state, the action and the system parameters.

Furthermore, maximizing limK→∞
1
K

∑K
k=1 E[R

πk
k ] is equivalent to solving (5.9). Hence

problem (5.9) is a HiP-MDP.

5.4.2 Dual Bayesian Neural Network (BNN) Approximation

For the above HiP-MDP problem formulation, we propose to use two BNNs as function
approximators,

s′ ∼ T̂ (BNN)(s, a, wg) + ϵt (5.14)

r ∼ R̂(BNN)(s, a, wr
g) + ϵr (5.15)

ϵt, ϵr ∼ N (0, σ2
n). (5.16)

96



where ϵt and ϵr are approximation errors for transition function approximator T̂ (BNN) and
reward function approximator R̂(BNN), respectively. Note that both the approximators
for the transition (5.14) and the reward (5.15) functions are parametrized by environment
instance g. Furthermore, the latent parameters wg and wr

g are used as input to the functions

approximators T̂ (BNN) and R̂(BNN), respectively, and are continuously updated during
training. Importantly, we allow parameters wg and wr

g used for the two approximators to
be different. Indeed, they are low dimensional representations of system latent parameter
vector w = f(D,Λ(t), α, C,Q), which, for a same environment instance g, may be different.

BNNs, are a type of neural network where the weights (parameters) are treated as
random variables with a certain prior distribution PW . The use of probabilistic models,
such as BNNs, can help alleviate the overfitting problem commonly associated with tra-
ditional neural networks when dealing with limited amounts of data [152, 153]. In the
context of accelerating the learning of a good policy with minimal interaction with the real
environment, BNNs are employed. For instance, in [150], a feed-forward BNN is utilized
to model the transition function T (sk+1|sk, ak, wg). However, in contrast to the algorithm
proposed in [150], where the reward is assumed to be known by the operator, an additional
BNN is employed in our scenario to infer the dynamics of the stochastic reward function
R(sk, ak, w

r
g), which is not directly observed by the operator (delayed reward). We set the

weights of the BNNs as random variables with some prior PW and we place independent
Gaussian prior on each weight, i.e., PW (W) =

∏
w∈W N (w;µ, σ).

Algorithm 3 shows the procedure for learning a policy using the proposed approach.
We assume a set Gtra of pre-training problem instances is available. For every prob-
lem instance g, we collect a replay buffer Dg with the observed transitions and rewards
(s, a, s′, r). The global replay buffer is D =

⋃
g∈Gtra

Dg. We also learn a posterior dis-

tribution of the weights Wt and Wr of the BNNs using D (Line 1). In particular, for
any problem instance g, the algorithm first aims at determining the latent embeddings
wg and wr

g, based on observations (s, a, s′, r) ∈ Dg (Lines 6-9). It does so, by minimiz-
ing the α-divergence2 of the observed transitions and rewards and the ones predicted by
T̂ (BNN)(s, a, wg) and R̂(BNN)(s, a, wr

g), respectively [154] (Lines 10-12). The algorithm
then uses functions (5.14)-(5.15) parametrized by wg and wr

g for generating fictional tran-

sitions and rewards, which are collected in replay buffer Df
g . Such fictional transitions

and rewards represent the environment on which the RL agent π̂g is trained (Lines 13-15).
Figure 5.2 is a graphical representation of the workflow of our proposed algorithm.

It is worth emphasizing that Algorithm 3 involves two phases of training to learn the
policy, for any new environment instance g:

2α-divergence is a family of mathematical functions to measure the dissimilarity or divergence between
two probability distributions. It is a generalization of the well-known divergence measure the Kullback-
Leibler divergence (α = 1).
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Algorithm 3: Hidden Parameter Edge (HiPE) pricing algorithm

1 Compute weights of the BNNs Wt,Wr using Gtra;
2 Draw wg, w

r
g ∼ PW for the new environment;

3 Randomly initialize policy π̂g;

4 Initialize model, replay and fictional buffers Dg,Df
g ;

5 for t from 1 to NT // NT is the total number of episodes

6 do
7 while t < tupdate // the algorithm do not reach the time of fictional update yet

8 do

9 for i from 0 to episode length
∆ do

10 Take action a← π̂g(s);
11 Dg ← (s, a, r, s′, wg, w

r
g);

12 end

13 end

14 if T̂
(BNN)
g and R̂

(BNN)
g are inaccurate // α-divergence minimization

15 then
16 TRAIN-BNN (Dg,Wr

g ,Ws
g , wg, w

r
g) // Procedure 4

17 end

18 if t% tupdate == 0 then

19 FICTIONAL-TRAIN (Df
g ,Wr

g ,Ws
g , wg, w

r
g) // Procedure 5

20 end

21 end

Procedure 4: TRAIN-BNN

Data: Dg,Wt
g,Wr

g , wg, w
r
g, Nobs

1 for k from 0 to Nobs // for tuning the BNNs for the new instance g,

Nobs = (tupdate × episode length

∆
)

2 do
3 Update wg using Dg;
4 Update wr

g using Dg;

5 Update Ws
g ,Wr

g using Dg;

6 end
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Procedure 5: FICTIONAL-TRAIN

Data: Df
g ,Wt

g,Wr
g , wg, w

r
g, Nf

1 for t from 0 to Nf episodes do

2 for i from 0 to episode length
∆ do

3 Take action a← π̂g(s);

4 Estimate next state ŝ′ ← T̂ (s, a, wg);

5 Estimate reward r̂ ← R̂(s, a, wr
g);

6 Store Df
g ← (s, a, r̂, ŝ′);

7 if t% tupdate == 0 then

8 Update π̂g using Df
g ;

9 end

10 end

11 end

MF ENV

FI
C

 M
F

Figure 5.2: The workflow of proposed Hidden Parameter Edge (HiPE) pricing algorithm
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1. The first phase of training happens before tupdate episodes with direct interaction
with the real environment. This training is as if we are updating the policy using
state-of-the-art model-free RL.

2. The second phase of training happens after tupdate episodes based on fictional tran-

sitions that are not happening in the real environment, generated by T̂
(BNN)
g and

R̂
(BNN)
g , for Nf episodes.

Note that the two BNNs T̂ (BNN) and R̂(BNN) are pre-trained before this above process.
After tupdate episodes, T̂ (BNN) and R̂(BNN) are tuned based on the real transitions that

happened until the (tupdate)−th episode resulting in T̂
(BNN)
g and R̂

(BNN)
g , the transition

and reward functions approximators corresponding to the new environment instance g.
Observe that simulated environments can generate a vast amount of transitions very fast
and at a lower cost compared to transitions from real-world interactions. This allows the
RL agent to learn more efficiently, especially in our case where we aim to maximize the
NO revenue during real environment transitions. This process allows the RL agent to
experience and learn from a large number of episodes in a shorter amount of time. We will
show in Section 5.5.4 that this accelerated learning is crucial for rapid convergence.

5.5 Numerical Results

We use simulations on synthetic and on measured traces for evaluating the performance of
the proposed dual BNN HiP-MDP (Section 5.4).

5.5.1 Evaluation Scenario

Table 5.2 summarizes the parameters used for the evaluation. Observe that in the scenarios
considered, on average ∼350 bits of information would be sent in the air for each function
invocation. Moreover, the maximum number of users active in a cell is 120 across all
considered scenarios. In the worst case in which users offload 4 functions each, each invoked
3 times,3 offloading would occupy a wireless capacity of 500 Kbps, which is well below the
minimum data rate 10 Gbps of 5G [161]. For synthetic traces, we use in our simulations two
dwell time distributions: deterministic and exponential. For measured traces, we choose 3
cells from the Greater Shanghai metropolitan area traces [162, 163, 164] (see Figure 5.3):

• Cell 1 is in the city center with high offered load

• Cell 2 is in a suburban area with medium offered load

• Cell 3 is in a rural area with low offered load

3These are the maximum number of functions and the maximum number of function invocations in all
the scenario.
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Parameter Value Motivation

Capacities
Compute: f = 120 GHz
Memory: m = 300 GB

Cluster of 10 compact
edge servers [155, 156]

CPU allocations
F = {1, 1.3, 1.6, .., 4}
Ghz

Set of possible values
(Section 5.2.2)

Memory required
Uniformly at ran-
dom from M =
{1, 1.2, 1.4, .., 3}GB

See Section 5.2.2

Requested functions
|Vi| generated unif. at
random in {1, 2, 3, 4}

Number of functions re-
quested by user i

Invocations
nv uniformly dis-
tributed in [1, 3]

Average number of
function invocations

Computation complex-
ity

Lv exponentially dis-
tributed with mean 0.01
GCycles

If 2 instr/cycle [157] ⇒
107 instr per function
(as in [158, Figure 4])

Compute density
30 Kcycles/bit ([159,
Table II])

Offloading is vi-
able [160, Figure 4]

Delay bound
τv generated uniformly
at random in [5, 10] ms

Augmented reality ap-
plications [128]

Reservation cost

Ci from a unif. distr.
on [0, 0.001] $ or from a
truncated Gaussian on
[0, 0.001] $

Values typical of Ama-
zon serverless offerings

Table 5.2: Summary of evaluation parameters.
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Figure 5.3: User locations (heatmap) and base station markers visualized on a map of
Shanghai, collected over a 6-month period from June 1, 2017, to December 1, 2017

We consider three variants of the pricing model:

1. Univariate pricing (πf
k = πm

k = πr
k = πk, γk = 1)

2. Multivariate linear pricing (πf
k , π

m
k , πr

k, γk = 1)

3. Non-linear pricing (πf
k , π

m
k , πr

k, γk ≥ 1)

We set the length of the pricing periods to ∆ = 1 hour. For the HiP-MDP, we use
sk = {(ρkCPU, ρ

k
mem, k)} ∈ S ⊆ [0, 1]2×N+ as the state, where ρkCPU and ρkmem are the CPU

and memory utilization at time slot k, respectively, and k is the index of pricing period Tk

in a day. The choice of the state is motivated by that ρkCPU and ρkmem capture the congestion
on computation and memory resources, which in turn determine the reward in a pricing
period Tk. The use of the time index of the period in a day is motivated by the periodicity
of user arrivals observed in real data. We found this to be a concise state representation
that allows fast convergence. We define the action to be ak = {πf

k , π
m
k , πr

k, γk} ∈ A ⊆ R4
+,

and the reward R(sk, ak, w
r
g) as the revenue collected from WDs accepted during pricing

period Tk. In the proposed algorithm we use Soft Actor-Critic (SAC) to learn the policy
(Procedure 5) and we use tupdate = 25 days to tune the BNNs in the unseen environment,
where we assume one episode is 1 day, and apply Nf = 60 episodes of fictional updates.
We use the default hyper-parameters in the stable baselines library [165].

To approximate the transition and reward dynamics for an environment instance
g, we use a 2-layer neural network architecture, where each layer contains 25 neurons
with Gaussian priors on the weights. For pre-training the BNNs, we collect transi-
tion samples from synthetic traces with exponentially distributed dwell times with mean
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{180, 720, 1200, 1800, 2400, 3600, 5400}, uniformly distributed reservation cost, while the
rest of the parameters are as shown in Table 5.2. We use R5 for the latent parameter
space, i.e., wg, w

r
g ∈ R5. Increasing the dimension of the latent variables increases the

computational complexity, whereas choosing low dimensionality results in limited repre-
sentation of the environment instances g, which negatively affects transferability. We learn
the latent parameters wg and wr

g and the network weights by minimizing the α-divergence

using ADAM with α = 1 (we aim to globally fit T̂ (BNN) and R̂(BNN)) [166].
We use four baselines for comparison:

• The first baseline is the pricing scheme for the online Knapsack problem proposed
in [147], which is a user-specific pricing scheme based on the instantaneous system
load. This pricing scheme performs price discrimination since it charges different
prices for the same resources to different users based on their willingness to pay, in
order to maximize the operator profit. Such strategy violates one of our desiderata,
i.e., transparency.

• The second baseline is using Bayesian Optimization (BO) for each time index of a
day, as proposed in [167], where we assign an agent to each time index of a day, and
each agent maximizes the expected revenue using a Gaussian process approximation.

• The third baseline is based on the bound in Proposition 5.3.2.6 where we use (5.12)
as a starting price and implement a gradient ascent algorithm (labeled as Prop-2 in
the figures). Recall that this baseline is an ideal baseline that is valid only under the
idealistic assumptions 5.3.2.1, 5.3.2.2, 5.3.2.3, 5.3.2.4 and 5.3.2.5 hold, which is not
true in real world scenario.

• The fourth baseline is a model-free RL agent using the SAC algorithm [168] with state

sk = {(ρ(k)CPU, ρ
(k)
mem, k)} ∈ S ⊆ [0, 1]2 × N+, action ak = {πf

k , π
m
k , πr

k, γk} ∈ A ⊆ R4
+

and reward Rπk
k defined by (5.13).

5.5.2 Operator Revenue

Figure 5.4a shows the daily average revenue of the edge operator as a function of aver-
age dwell time over a period of 60 and 180 days based on synthetic traces that satisfy
Assumptions 5.3.2.1, 5.3.2.2, and 5.3.2.3 (homogeneous resource allocation): f = 2 GHz,
m = 1 GB and Q = 10. We use the univariate pricing model and uniform reservation
cost distribution to evaluate the accuracy of the analytical approximation (Prop-2). We
observe that over 60 days the analytical approximation has the best revenue and thus it
is an accurate approximation. For 180 days, it performs best for low average dwell times,
when the mixing times (the amount of time it takes for the system to reach a state where it
closely approximates its steady-state behavior) are short and the steady state approxima-
tion is accurate, but its revenue is not far from that of SAC even for long dwell times. The
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(a) Average daily revenue vs. average dwell
time under homogeneous resource allocation.
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(b) Average daily revenue vs. average dwell
time under heterogeneous resource allocation.
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(c) Average daily revenue for two synthetic
dwell time distributions (E[Di] = 1800 Section)
and trace-based distributions, and for two reser-
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Figure 5.4: Average daily revenue for synthetic and real traces with various dwell time
distributions.
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BO scheme, which learns a price for each pricing period, fails to find an effective pricing
policy. We can also observe that the online knapsack algorithm does not work well either;
it consistently offers high prices with increasing system load, resulting in the rejection of
too many WDs (see Section 5.5.5). These results show that pricing based on the steady
state approximation works rather well when the modeling assumptions are satisfied, but
its advantage is mainly due to that it does not have to learn the system parameters. We
now turn to more complex scenarios.

Since BO has to learn a price for each pricing period, involving training an agent for
each pricing period, we omit the comparison with this approach in the following results.

Figure 5.4b shows the daily average revenue of the operator as a function of the average
dwell time for 60 days and 180 days of simulation, for heterogeneous resource allocation.
The figure shows results for multivariate (SAC-3) and non-linear (SAC-4) pricing using
SAC (the numbers denote the dimension of the action of the SAC ), to assess the ad-
vantage of non-linear pricing. The figure shows that the proposed HiPE pricing scheme
outperforms all baselines, with an increasing margin as the average dwell time increases,
providing up to 80% higher revenue than SAC -4. Interestingly, over 60 days even the
analytical approximation outperforms SAC, even though it uses univariate pricing and the
average resource requirement of the WDs, indicating that SAC suffers from slow learning,
which is detrimental to the average revenue, unlike the proposed HiPE pricing algorithm.
Comparing linear (SAC -3) and non-linear (SAC -4) pricing we can observe that non-linear
pricing is most beneficial for moderate average dwell times, and allows up to 40% higher
revenue than linear pricing, as WDs tend to request less resources and resource intensive
functions can be charged more aggressively. We can also observe that the online knapsack
algorithm exhibits consistently low revenue similar to the case of homogeneous resource
allocation.

5.5.3 Sensitivity Analysis

Figure 5.4c shows the daily average revenue for sythetic traces using exponentially and
deterministically distributed dwell times with mean E[Di] = 1800 sec, and for real traces
based on Cells #1, #2 and #3; reservation costs follow uniform and truncated Gaussian
distributions. The figure shows that even though the HiPE algorithm was pre-trained
on synthetic traces with exponentially distributed dwell times and uniformly distributed
reservation costs, and then applied to the real trace environment, the data collected from
the real environment within the initial 25 days of the evaluation is sufficient to fine-tune the
BNNs for this previously unseen environment, and achieves superior performance compared
to all baselines. The figure shows subtle revenue differences among the results obtained
using different dwell time and reservation cost distributions, indicating that the revenue is
predominantly influenced by the average dwell time. Comparing the performance achieved
on the real traces from Cell #1, Cell #2 and Cell #3, we observe that the highest gain is
achieved in Cell #1, which has the highest offered load. This observation emphasises the
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Figure 5.5: Learning curves of SAC and HiPE

difficulty of learning an effective policy using a model-free approach in such scenarios and
highlights the advantages of the proposed HiPE pricing algorithm. Overall, Figure 5.4c
shows the robustness and adaptability of the proposed HiPE algorithm, which makes it
well-suited for real-world environments.

5.5.4 Learning Curves

Figure 5.5a and Figure 5.5b show the daily average revenue achieved using the HiPE
and SAC -4 pricing schemes, for synthetic traces with exponentially and deterministically
distributed dwell times and for real traces, respectively.

The figures show that HiPE learns significantly faster than SAC ; it takes HiPE ap-
proximately 60 days to achieve the average revenue that SAC -4 achieves after 180 days
of learning. The learning curves also confirm that HiPE is most advantageous under high
traffic load (Cell #1), which has the highest potential revenue. The ability of HiPE to learn
fast makes it particularly appealing for real deployments, and emphasises the necessity to
use transfer learning for the purpose of pricing in EC.

5.5.5 Consumer Surplus and Service Probability

Let us define the daily users surplus, which corresponds to the added value of the edge
service as perceived by the WDs (the difference of the reservation cost and the actual cost
of using the edge service) and denote it ϕ+,
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Figure 5.6: Consumer surplus and Ps for two synthetic dwell time distributions (E[Di] =
1800 Section) and trace-based distributions, for uniform reservation cost distribution.

ϕ+ =

K=24∑
k=1

∑
i∈Nk

(
Ci − Cπk

i,Σ

)
,

and the probability Ps of a WD receiving service, i.e., the fraction of served WDs,

Ps =

∑K=24
k=1 |N o

k |∑K=24
k=1 |Nk|

,

where N o
k = {i|toi ∈ Tk}.

Figure 5.6 shows the results obtained for synthetic traces with exponentially and deter-
ministically distributed dwell times with mean E[Di] = 1800 seconds and for real traces.
The figure shows that the HiPE pricing algorithm yields up to 5 times higher consumer
surplus and up to 2 times higher probability of receiving service compared to the baseline,
online knapsack. This shows that the proposed HiPE pricing algorithm is not only supe-
rior in terms of operator revenue but it is also preferable from the perspective of WDs in
terms of the received added value. In technical terms, our proposed approach effectively
addresses admission control through pricing and at the same time offers a favorable edge
service for users, combining adaptivity with transparency. While our proposed HiPE pric-
ing algorithm is better than online Knapsack in terms of service probability, it is still not
optimal since the service probability is always < 50%. This is predictable as our main
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objective was to maximize the NO revenue by providing a transparent and efficient pricing
scheme which results in high resource utilization.

5.6 Conclusion

In this chapter, we considered the problem of pricing in serverless EC under dynamic
workloads. We first formulated the problem of maximizing the revenue of the operator as a
sequential decision making problem under uncertainty. We then showed that the problem
can be cast as a HiP-MDP and proposed a dual BNN approximator as a solution. The
proposed solution is a form of transfer learning; after pre-training on synthetic traces, it
adapts fast to previously unseen workloads. Our results show that the proposed solution
accelerates learning and achieves superior performance, in terms of revenue generation,
compared to the state of the art and to the steady state approximation, but without the
need for prior information about the parameters of the system. Furthermore, our results
show that non-linear pricing models could benefit edge deployments, as they encourage
users to request computational resources sparingly, and thereby effectively increasing the
number of concurrent users that can be served, compared to the state-of-the-art online
Knapsack .
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Chapter 6

General Conclusion

6.1 Summary of our Contribution

Edge Computing (EC) has emerged as a computing paradigm in technological landscape.
Its evolution is driven by the increasing demand for fast processing and minimal latency
in our interconnected world.

This thesis presents a vision for Network Operators (NOs), who are the only owners
of the far edge, to extract value from the implementation EC in a multi-tenant environ-
ment. In such a scenario, the NO extends edge resources to third-party Service Providers
(SPs) while intelligently managing resource allocation among them. The key objectives we
address in this thesis for the NO are optimizing upstream traffic reduction, maximizing
revenue, and enhancing Quality of Service (QoS) as perceived by end users.

We believe that by advocating this EC vision and substantiating it with quantitative
findings and analysis, this thesis offers insights, particularly for NOs, that can influence
and, hopefully, bolster decision-making strategies regarding future EC deployment. This
approach may catalyze the emergence of innovative low-latency and data-intensive appli-
cations, such as high-resolution Augmented Reality (AR), which are currently impractical
in the existing Cloud Computing (CC) paradigm.

Another contribution of this thesis lies in the application of novel methods harness-
ing the potential of data-driven optimization. We adapt state-of-the-art techniques from
Reinforcement Learning (RL) and sequential decision-making to the practical challenge of
resource allocation in EC. By carefully designing estimation models integrated into the
learning process, we succeed in reducing the learning time of the adopted strategies to
scales compatible with the dynamics of EC. Additionally, we establish important analyti-
cal properties of our strategies.

It is important to emphasize that our strategies are purposefully designed to uphold
the confidentiality guarantees essential for SPs to be willing participants in running their
computations at the EC within the multi-tenant framework.
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6.1.1 Cache Allocation for Multi-tenant Edge Computing

We solved in Chapter 3 the problem of cache allocation at the edge among several SPs,
where the aim is not only to minimize the cost, in terms of miss rate, but also to optimize
the way to achieve that, through minimizing perturbations, assuming encrypted, not all
cacheable content: a major challenge of in-network caching. We introduced a model-based
RL algorithm designed for real-time cache allocation at the edge. We started with the es-
tablishment of theoretical foundations, demonstrating the algorithm convergence towards
an absorbing discrete optimal state with a probability of 1 for an infinite horizon. Subse-
quently, we conducted an extensive set of simulations, comparing our dynamic allocation
approach to two static strategies: (i) an optimal allocation, that we computed under the
assumption of complete knowledge of content popularity, and (ii) a proportional allocation
based on the probabilities of content requests from each SP. Additionally, we assessed our
model-based RL algorithm against two dynamic allocation strategies: (iii) a model-free
variant of our own algorithm and (iv) the state-of-the-art SPSA method. Our simulations,
conducted across various scenarios, clearly illustrate that our algorithm consistently con-
verges to a configuration closely aligned with the optimal solution, accomplishing this feat
significantly faster than the compared allocation strategies. This accelerated convergence
not only holds promise for enhancing system performance but also carries the potential to
substantially reduce overall system costs.

6.1.2 Multiple-resource Allocation for Multi-tenant Edge Computing

In Chapter 4, we tackled the resource allocation at EC between heterogeneous, MAR-
oriented SPs competing over multiple, limited resources. We modeled the users dynamics
in terms of an Erlang-type queuing model, we formulated the resource allocation problem
as a sub-modular maximization problem subject to multiple knapsack constraints, under
perfect knowledge of system parameters, and solved it via an approximation algorithm
with provable optimality gap. We then formulated the problem as a sequential decision
making problem, when system parameters are unknown by the NO, and we solved it via
deep RL. Our numerical results quantified the performance of both algorithms in terms
of the probability that users get served by the Edge, as opposed to being blocked and
re-directed towards the Cloud which entails larger delay and hence lesser QoS. We showed
the resulting resource partitioning between the SPs. We showed that deep RL approaches
the approximation algorithm and outperforms a baseline resource allocation, proportional
to users arrival rates, albeit at slow training phase which can be accelerated using a model
as in the other chapters. We eventually performed a sensitivity analysis of the objective
function with respect to arrival rates and users requirements.
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6.1.3 Resource Pricing for Serverless Edge Computing

Chapter 5 considered the problem of pricing in serverless EC under dynamic workloads
of individual users, as opposed to the previous two chapters where the interaction was
between SPs and NO. We first formulated the problem of maximizing the revenue of the
operator as a sequential decision making problem under uncertainty. Second, we showed
that, under Markovian assumptions, a pricing policy can be obtained analytically that
serves as a lower bound for the operator revenue. We then showed that the problem can
be cast as a Hidden Parameter Markov Decision Process (HiP-MDP) and proposed a dual
Bayesian Neural Network (BNN) approximator as a solution. The proposed solution is a
form of transfer learning; after pre-training on synthetic traces, it adapts fast to previously
unseen workloads. Our results show that the proposed solution accelerates learning and
achieves superior performance compared to the state of the art, on par with the steady
state approximation, but without the need for prior information about the parameters of
the system. Furthermore, our results show that non-linear pricing models could benefit
edge deployments, as they encourage users to request computational resources sparingly,
and thereby effectively increasing the number of concurrent users that can be served.

6.2 Discussion and Future Work

The research conducted in this thesis has laid the foundation for addressing critical chal-
lenges in resource allocation within multi-tenant edge computing environments. However,
there are numerous avenues for further investigation and improvement. The following
sections outline potential directions for future research following this thesis:

6.2.1 Cache Allocation in EC

In Chapter 3, we solved the problem of caching at the edge under stationary popularity of
the SPs’ objects. One interesting direction to take is to solve the problem for time-varying
popularity of the content. Indeed, in real world, users preferences and behaviors are not the
same at each period of the day. A strategy recognizing that what is popular at one moment
may not be the same in the next, ensures that the cached content remains relevant to users
over time. Another possible direction is when cache is partitioned across multiple edge
nodes. Caching across multiple edge nodes enhances performance by reducing the load on
primary edge node and increasing the overall availability of cached data. However, it also
introduces more challenges related to cache consistency, load balancing, synchronization,
and cache eviction strategies, which must be carefully managed to ensure the integrity of
the cached data and the performance of the caching system.
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6.2.2 Multiple-resource Allocation in EC

In Chapter 4, we solve the problem of memory-CPU allocation in multi-tenant EC based
on the assumption that we are always in adequate wirless channel conditions. However,
this assumption is too optimistic. It is reasonable to consider integrating wireless chan-
nel modeling into our resource allocation framework. In fact, wireless channel conditions
can significantly impact the performance of edge computing applications. By accounting
for channel characteristics like signal strength, interference, and channel fading, we could
optimize resource allocation decisions for better real-time performance.

6.2.3 Resource Pricing in EC

We could consider resource pricing strategies that take into account the energy efficiency
of edge devices. Optimize pricing not only for performance but also for minimizing energy
consumption, which is critical for resource-constrained edge environments, would make it
more adaptable, efficient, and responsive to the evolving demands of EC environments. An-
other perspective could be investigating user-centric pricing models that take into account
individual user preferences and behavior patterns. Personalized pricing may improve user
satisfaction and resource utilization. On the methodology level, implementing Autoen-
coders, instead of BNNs used in Chapter 5, could be a promising improvement. In fact,
Autoencoders are effective at capturing meaningful features and reducing the dimensional-
ity of input data, which can be beneficial when dealing with high-dimensional state spaces.

6.2.4 Beyond Considered Problems

Stating that this thesis has completely addressed all the outstanding challenges of resource
allocation in EC would be an overstatement. The following challenges, among others, could
be a potential continuation of this thesis.

1. Multi-objective optimization: resource allocation is often a multi-objective problem
with conflicting goals, such as minimizing latency, maximizing resource utilization,
and reducing costs. Future research can explore multi-agent reinforcement learning
techniques to strike a balance between these competing objectives and provide more
holistic resource allocation solutions.

2. Energy efficiency: it is a critical concern in resource allocation, particularly in
resource-constrained edge environments. Future work can delve into optimizing
resource allocation not only for performance but also for energy efficiency. This
could involve the incorporation of power-aware reinforcement learning algorithms
and hardware-level optimizations.

3. Environmental considerations: the fact that EC is “better” than CC from an eco-
logical perspective depends on the specific context and how these technologies are
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implemented. EC has the potential to be more ecologically friendly in scenarios
where reduced data transmission, lower latency, and offline operation are critical.
However, a holistic evaluation should consider the entire lifecycle of edge devices
and their environmental implications, including resource extraction, manufacturing,
energy efficiency, and end-of-life disposal. Additionally, the optimal solution may
involve a combination of both edge and cloud computing, depending on the specific
requirements of the ecological application.

4. Security and privacy considerations: edge environments are inherently distributed
and often involve sensitive data processing. Future research should address security
and privacy concerns associated with resource allocation. This may involve develop-
ing reinforcement learning models that consider security as an additional objective
or exploring encryption and access control mechanisms to protect data at the edge.
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Chapter 7

Appendix

7.1 Proof of the Convergence Theorem 3.4.2.1

In what follows, we aim to prove that if the discount factor γ is sufficiently close to 1, then

lim
k→∞

θ(k) = θ̂
∗
with probability 1.

This means that the system will converge to a discretely optimal state (Section 3.4.2)
and will stay in that state with probability 1 as time goes to infinity.

Definition 7.1.0.1. Given a Q-table Q(θ,a), ∀(θ,a) ∈ S ×Aθ, we say that a sequence of
states and actions is induced by Q, if and only if,

a(k) ∈ argmin
a

Q(θ(k),a),∀k > 0

i.e., if and only if it greedily follows Q.

Definition 7.1.0.2. Given a sequence Q(k) of Q-tables , we say that a sequence of state
and actions is induced by a sequence of Q-tables Q(k), if and only if,

a(k) ∈ argmin
a

Q(k)(θ(k),a),∀k > 0

i.e., if and only if it greedily follows Q(k).

We decompose the proof as follows: In Section 7.1.1 we deeply describe the process of
updating the Q-table Q(k). In Section 7.1.2 we prove that our Q-table Q(k) converges to
the optimal Q-table Q∗ with probability 1. In Section 7.1.3 we prove that the sequence of
actions and states induced by Q∗ has an absorbing state that is the discretely optimal state
θ̂
∗
. In Section 7.1.4 we prove that the sequence of actions and states induced by our Q-

table Q(k) (assuming no more exploration) is also induced by Q∗. In Section 7.1.5 we prove

114



that the sequence of states and actions {θ(k),a(k)}, that we take online, converges with
probability 1 to the sequence induced by our Q-table Q(k) (assuming no more exploration).
Finally, we show that {θ(k),a(k)}, taken online, converges with probability 1 to the sequence
induced by Q∗.

Definition 7.1.0.3. We say that Q(k) converges with probability 1 to Q∗, if and only
if [169]

P( lim
k→∞

|Q(k)(θ,a)−Q∗(θ,a)| < ϵ) = 1,∀ϵ > 0,∀(θ,a)

7.1.1 Consistency Q-table updates

Observe that in Algorithm 1, we update at every time-slot k the Q-table
Nu = 1 + Nmemory + Nmodel times. For simplicity of notation, up to now we have
only referred to Q-table Q(k)(·, ·), but actually the Q-table has changed Nu times in one
single iteration of Algorithm 1. In this proof, we need to distinguish all these different ver-
sions. Let us denote with Q{j}(·, ·) the j-th version of the Q-table. In time-slot k, versions
Q{j}(·, ·), for j = k · Nu, . . . , (k + 1) · Nu − 1 are created. Updates of lines 7, 15 and 28
of Algorithm 1 can be described in a unified way: when computing version Q{j+1}(·, ·), a
state action pair (θ{j},a{j}) is chosen, and we apply an update rule of the following form:

Q{j+1}(θ{j},a{j}) = (1− α{j}) ·Q{j}(θ{j},a{j})

+α{j}(C{j}
nom + Cpert(a

{j}) + γ{j} min
a∈A

θ′{j}
Q{j}(θ′{j},a)) (7.1)

where θ′{j} = θ{j}+a{j} and α{j} = α(k), γ{j} = γ(k), for any j = k ·Nu, . . . , (k+1) ·Nu−1.
As for the value of (θ{j},a{j}, C

{j}
nom), it depends on whether the j-th update is obtained

using an observed sample (Line 7 of Algorithm 1), experience replay (Line 15) or the
model (Line 28):

(θ{j},a{j}, C{j}
nom) =



(θ(k),a(k), Cnom(θ
(k), ω)) if j = k ·Nu

(use observed nominal cost)

(θrd,ard, Crd
nom) ∈M(k) if j = k ·Nu + j′, j′ = 1, . . . , Nmemory

(use nominal cost from memory)

(θrd,ard, Ĉ
(k)
nom(θ

rd)) if j = k ·Nu +Nmemory + j′,

for randomly chosen j′ = 1, . . . , Nmodel

θrd ∈ S,ard ∈ Aθrd (use estimation of nominal cost from the model)

(7.1bis)
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We also define function Ĉ
{j}
nom(·) : S → R as

Ĉ{0}
nom(θ) = 0, ∀θ ∈ S

Ĉ{j}
nom(θ) ≜

{
C

{j}
nom if θ = θ{j}(see (7.1bis))

Ĉ
{j−1}
nom (θ) otherwise

, for j = 1, 2, . . . (7.1tris)

Definition (7.1tris) allows rewriting update (7.1) as follows:

Q{j+1}(θ{j},a{j}) = (1− α{j}) ·Q{j}(θ{j},a{j})

+α{j}(Ĉ{j}
nom + Cpert(a

{j}) + γ{j} min
a∈A

θ′{j}
Q{j}(θ′{j},a)) (7.1quadris)

In practice, we have just replaced C
{j}
nom with Ĉ

{j}
nom. Thanks to this minor change,

we get rid of sequence of numbers {C{j}
nom}j , replacing it with sequence of functions

{θ → Ĉ
{j}
nom(θ)}j , which is important as the proof of Theorem 7.1.2.3 (in particular (7.12))

requires a sequence of functions. We call (7.1quadris) the functional form of the Q-table
update.

Observe that at step j, the Q-table is updated only in correspondence to pairs
(θ{j},a{j}), while it remains unchanged in all other values:

Q{j+1}(θ,a) = Q{j}(θ,a)∀(θ,a) ̸= (θ{j},a{j})

Similarly, by construction of (7.1tris), for any θ ∈ S, the value Ĉ
{j}
nom(θ) only changes

at step j for which θ = θ{j}. In all the other steps, the value is inherited from the previous

steps. The following theorem characterizes function Ĉ
{j}
nom(·) used in the functional form of

the Q-table updates.

Theorem 7.1.1.1. Function Ĉ
{j}
nom(·) converges uniformly in expectation to the nominal

cost, i.e.,

u
lim
j→∞

E
[
Ĉ{j}
nom(·)|F{j}

]
= ECnom(·). (7.2)

where limu has the same meaning as in Theorem 3.3.2.1 and F{j} = {Q{j}, Q{j−1}, ...}
stands for the past at step j.

Proof. We first consider any θ ∈ S and prove pointwise convergence, i.e. that

lim
j→∞

E
[
Ĉ{j}
nom(θ)|F{j}

]
= ECnom(θ) (7.3)

To this aim, exploiting the construction of Ĉ
{j}
nom(·), it suffices to show that

lim
z→∞

E
[
Ĉ{jz}
nom (θ)|F{jz}

]
= ECnom(θ), (7.4)
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where j1, j2, . . . is the subsequence of indices js such that θ{jz} = θ. We denote with
k{j} the timeslot in which version Q{j}(·, ·) of the Q-table is calculated, i.e., k{j} = k for
j = k · Nu, . . . , (k + 1) · Nu − 1. Indices {jz}z∈N can be divided in three subsequences of
indices:

1. Indices {jzw}w∈N such that jzw = k{jzw} ·Nu. In this case, thanks to (7.1bis),

E
[
Ĉ{jzw}
nom (θ)|F{jz}

]
= E

[
Cnom(θ, ω

(k{jzw}))|F{jzw}
]

= ECnom(θ)

2. Indices {jzw}w∈N such that jzw = k{jzw} ·Nu + j′, j′ = 1, . . . , Nmemory. In this case,

thanks to (7.1tris), Ĉ
{jzw}
nom (θ) is a past observation of nominal cost when state θ was

visited. By construction, its expected value is E
[
Ĉ

{jzw}
nom (θ)|F{jz}

]
= ECnom(θ).

3. Indices {jzw}w∈N such that jzw = k{jzw} · Nu + Nmemory + j′, j′ = 1, . . . , Nmodel.

In this case, thanks to (7.1tris), C
{jzw}
nom (θ) is obtained via the model ex-

plained in Section 3.3.2. By exploiting Theorem 3.3.2.1, we have that

limw→∞ E
[
C

{jzw}
nom (θ)

]
= ECnom(θ).

Since sequence E
[
Ĉ

{jz}
nom (θ)|F{jz}

]
is the union of the three subsequences above, each

of which converges to ECnom(θ), we obtain the theorem.
Since pointwise convergence 7.3 holds for all θ ∈ S and S is finite, then [103, Proposi-

tion 1] convergence is also uniform.

7.1.2 Convergence of the Q-table

In this section, we will prove that our Q-table Q(k), updated following (7.1bis), converges
to the optimal Q-table Q∗ with probability 1. As we combine Q-Learning with a model
that approximates the expected nominal cost Eω

[
Cnom(θ, ω)

]
(Section 3.3.2) and with

other enhancements mentioned in Section 3.3.3, we cannot simply rely on the property of
convergence of classical Q-learning (Theorem 2 of [106] or [107]). It is worth noting that
many works claim that model-based RL in all its forms converges [170], however no explicit
proof is provided for the specific form of combining Q-table updates with a model of the
reward (cost in our case).

In what follows, we will prove that the process defined by (7.1bis) converges to the
optimal Q-table Q∗ with probability 1. We start with two general results Lemma 7.1.2.1
and Lemma 7.1.2.2, which we obtain by extending a previously known result.
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Lemma 7.1.2.1. Consider a random iterative process δ{j} : X → Rn defined as

δ{j+1}(x) = (1− α{j}) · δ{j}(x) + α{j} · F {j}(x) (7.5)

where F {j} : X → Rn is a random function, at each step j. Process δ{j} converges with
probability 1 to 0, i.e., P

[
limj→∞ δ{j}(x) = 0

]
= 1,∀x ∈ X , under the following assump-

tions:

1. X is finite

2. 0 ≤ α{j} ≤ 1,
∑

k α
{j} =∞ and

∑
k(α

{j})2 <∞

3. ∃0 < ν < 1 :
∥E[F {j}(x)− η{j}(x)|F{j}]∥∞ ≤ ν∥δ{j}∥∞,

where η{j}(·) is a sequence of functions such that limu
j→∞ η{j}(·) = 0.

4. ∃M > 0, var[F {j}(x)|F{j}] ≤M(1 + ∥δ{j}∥2∞)

Here F{j} = {δ{j}, δ{j−1}, .., F {j−1}, .., α{j−1}, ..} stands for the past at step j.

Proof. The original version of this theorem is [171, Theorem 1]. The only difference is
assumption 3, which in [171] is

∃0 < ν < 1, ∥E[F {j}(x)|F{j}]∥∞ ≤ ν∥δ{j}∥∞.

We need to add the additional term E[η{j}(x)|F{j}] to account for the error of our
model in approximating the expected value of the cost. Let us define another random
process in the following way:

F
{j}
′ (x) = F {j}(x)− η{j}(x)

δ
{j+1}
′ (x) = (1− α{j}) · δ{j}′ (x) + α{j} · F {j}

′ (x) (7.6)

Process δ
{j}
′ (x) respects the assumptions of the original [171, Theorem 1] and thus

lim
j→∞

δ
{j}
′ (x) = 0, ∀x ∈ X , with probability 1. (7.7)

Let us now define an additional random process

δ
{j}
diff(x) = δ

{j}
′ (x)− δ{j}(x) (7.8)

and observe that

δ
{j+1}
diff (x) = δ

{j+1}
′ (x)− δ{j+1}(x)

=
[
(1− α{j}) · δ{j}′ (x) + α{j} · F {j}

′ (x)
]
−
[
(1− α{j}) · δ{j}(x) + α{j} · F {j}(x)

]
= (1− α{j}) · (δ{j}′ (x)− δ{j}(x)) + α{j} · (−η{j}(x))

= (1− α{j}) · δ{j}diff(x) + α{j} · (−η{j}(x))

118



The iterative process above respects the assumptions of [171, Lemma 1], which states
that

lim
j→∞

δ
{j}
diff(x) = 0, ∀x ∈ X , with probability 1. (7.9)

Thanks to (7.7) and (7.8), process δ{j}(x) must converge to 0 with probability 1.

Lemma 7.1.2.2. Consider a random iterative process δ{j} : X → Rn such that, for each
x ∈ X , there is an infinite subsequence of indices Ix = {j1, j2, ..., jz, ...} such that

δ{jz+1}(x) = (1− α{jz}) · δ{jz}(x) + α{jz} · F {jz}(x),∀jz ∈ Ix

and
δ{jz+1}(x) = δ{jz}(x), ∀jz ∈ N \ Ix.1

Assume that the same assumptions of Lemma 7.1.2.1 hold:

1. X is finite

2. 0 ≤ α{j} ≤ 1,
∑

k α
{j} =∞ and

∑
k(α

{j})2 <∞

3. ∃0 < ν < 1 :
∥E[F {j}(x)− η{j}(x)|F{j}]∥∞ ≤ ν∥δ{j}∥∞,

where η{j}(·) is a sequence of functions such that limu
j→∞ η{j}(·) = 0.

4. ∃M > 0, var[F {j}(x)|F{j}] ≤M(1 + ∥δ{j}∥2∞)

Then, process δ{j} converges with probability 1 to 0, i.e.,
P
[
limj→∞ δ{j}(x) = 0

]
= 1,∀ x ∈ X .

Proof. Let us fix any x ∈ X . By applying Lemma 7.1.2.1 on the sequence
δ{j1}(x), δ{j2}(x), ... (which is subsequence of δ{1}(x), δ{2}(x), ...) we obtain that,

lim
z→∞

δ{jz}(x) = 0, ∀x ∈ X , with probability 1.

Observe that by construction, for any z ∈ N,

δ{j}(x) = δ{jz+1}(x), for j = jz + 1, jz + 2, ..., jz+1.

This implies that,

lim
j→∞

δ{j}(x) = 0,∀x ∈ X , with probability 1.

We have thus proved point-wise convergence. Thanks to [103, Proposition 1], since X
is finite, this also implies uniform convergence.

1Observe that the subsequence of indices Ix changes for every considered x.
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Theorem 7.1.2.3. If Q{j} is updated by update (7.1quadris), then Q{j} converges to Q∗

with probability 1.

Proof. We will prove the theorem using Lemma 7.1.2.1. We define X = S ×A and

F {j}(θ,a) = Ĉ{j}
nom(θ) + Cpert(a) + γ{j} min

a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a) (7.10)

Observe that, by fixing the past F{j}, i.e., all the observed rewards, actions, states and
extractions from the memory and from the model, up to before update j, table Q{j} is

univocally determined. The only stochastic term in (7.10) is thus Ĉ
{j}
nom(θ), while all the

others are deterministic. Let us define δ{j}(θ,a) as follows:

δ{j}(θ,a) = Q{j}(θ,a)−Q∗(θ,a), ∀(θ,a) ∈ X (7.11)

If (θ,a) = (θ{j},a{j}), we obtain

δ{j+1}(θ,a) = Q{j+1}(θ,a)−Q∗(θ,a)

(7.1quadris) = (1− α{j}) ·Q{j}(θ,a) + α{j}
(
Ĉ{j}
nom + Cpert(a) + γ{j} min

a′∈Aθ+a

Q{j}(θ + a,a′)

)
−Q∗(θ,a) + α{j}Q∗(θ,a)− α{j}Q∗(θ,a)

= (1− α{j}) ·
(
Q{j}(θ,a)−Q∗(θ,a)

)
+ α{j} ·

(
Ĉ{j}
nom(θ) + Cpert(a)

+ γ{j} min
a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a)

)
= (1− α{j}) · δ{j}(θ,a) + α{j} · F {j}(θ,a) (7.12)

Instead, for (θ,a) ̸= (θ{j},a{j}),

δ{j+1}(θ,a) = Q{j+1}(θ,a)−Q∗(θ,a)

(7.1tris) = Q{j}(θ,a)−Q∗(θ,a)

= δ{j}(θ,a) (7.12bis)

Observe that for given past F{j}, δ{j}(θ,a) is deterministic. Since the exploration
never ends (ϵ is always greater than 0), state-action pair (θ,a) is visited infinitely many
times. Therefore, there is an infinite subsequences of indices for which (7.12) holds instead
of (7.12bis). We are thus in the case of Lemma 7.1.2.2.

The first condition of Lemma 7.1.2.2 holds by definition of the state and action
spaces. Moreover, the learning rate scheduling (Section 3.3.3) obeys the second condi-
tion of Lemma 7.1.2.2. The last condition holds because we define the cost function to be
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bounded.2 This means that we only have to show that the third condition of Lemma 7.1.2.2
holds to prove convergence of Q{j} to Q∗.

The optimal Q-table is a fixed point of a contraction operator H (see Section 1 of [172]),
defined for function m : S ×A → R as:

(Hm)(θ,a) = ECnom(θ) + Cpert(a) + ν · min
a′∈Aθ+a

m(θ + a,a′) (7.13)

This operator is a contraction in the sup-norm (Section 1 of [107]), i.e.,

∥Hm1 −Hm2∥∞ ≤ ν · ∥m1 −m2∥∞ (7.14)

= ν · sup
(θ,a)∈S×A

|m1(θ,a)−m2(θ,a)|

We now prove that the third condition of Lemma 7.1.2.2 holds for our F {j}(θ,a) −
η{j}(θ), where F {j}(., .) is defined as in (7.10) and η{j}(θ) : S → R is defined as η{j}(θ) =

Ĉ
{j}
nom(θ)−ECnom(θ). Theorem 7.1.1.1 shows that limu

j→∞ η{j}(·) = 0. Therefore, via (7.10):

∀θ ∈ S,a ∈ Aθ,

F {j}(θ,a)− η{j}(θ)

= Ĉ{j}
nom(θ) + Cpert(a) + γ{j} · min

a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a)

−
(
Ĉ{j}
nom(θ)− ECnom(θ)

)
= ECnom(θ) + Cpert(a) + γ{j} · min

a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a)

(7.13) = HQ{j}(θ,a)−Q∗(θ,a)

(Since Q∗ = HQ∗) = HQ{j}(θ,a)−HQ∗(θ,a).

In the norm-sup, using (7.14), we obtain:

∥F {j}(·, ·)− η{j}(θ)∥∞ ≤ γ{j}∥Q{j}(·, ·)−Q∗(·, ·)∥∞
= γ{j}∥δ{j}(·, ·)∥∞

Applying expectation given past F{j} (and considering that δ{j}(·, ·) is deterministic,
as we wrote right after (7.12bis)), we obtain

E
[
∥F {j}(·, ·)− η{j}(·)∥∞|F{j}

]
≤ γ{j}∥δ{j}(·, ·)∥∞

which proves that the third condition in Lemma 7.1.2.1 holds. Then, by Lemma 7.1.2.2,
δ{j} converges to 0 with probability 1, which implies, via (7.11), that Q{j} converges to Q∗

with probability 1.
2For instance, one could consider that the cost measured at each time-slot cannot exceed the upstream

link capacity.
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7.1.3 Absorbing state

In this section, we will prove that the sequence of actions and states induced by Q∗ has
an absorbing state that is the discretely optimal state θ̂

∗
. In what follows, we will use the

concept of sequences defined as follows:

Definition 7.1.3.1. A sequence s = {θ(k),a(k)}k is a sequence of states and actions such
that

θ(k+1) = θ(k) + a(k)

Let us denote with Cγ
cum(s) the cumulative discounted reward (3.11) of any sequence s.

Definition 7.1.3.2. Sequence s′ = {θ′(k),a′(k)}k is optimal if, for any other sequence s′′

having the same initial state as s∗, we have Cγ
cum(s′′) ≥ Cγ

cum(s′).

Definition 7.1.3.3. Q-table Q is optimal if, for any initial state, any sequence s′′ induced
by Q, is an optimal sequence.

We will use the notation Q(k) to refer to the Q-table of Algorithm 1. We will refer to
the following sequences:

• s: state and action sequence induced by sequence Q(k) of Q-tables obtained with our
Algorithm 1. We call it “offline sequence”.

• sϵ: sequence induced by the online policy: such a sequence follows Q(k) with proba-
bility 1− ϵ and takes a random action with probability ϵ. This is the sequence that
comes out of the actions chosen in lines 3 and 4 of Algorithm 1. We call it “online
sequence”.

• s∗: sequence induced by the optimal Q-table Q∗.

It is worth emphasizing that when applying Algorithm 1, we do not traverse sequence
s, as we do not take actions induced by Q(k). Indeed, we explore from time to time. In
this sense, s is a theoretical sequence, that we use as a reference in our proofs, but that we
never follow in reality. What we really follow is sϵ.

Lemma 7.1.3.4. Any sequence s∗ induced by Q∗ has an absorbing state, i.e.,

∃θabs ∈ S, k′ > 0 : θ(k) = θabs, k ≥ k′

Proof. Suppose by contradiction that s∗ = {θ′(k),a′(k)}k does not have an absorbing state.
If that were the case, we could construct a modified version s′′ of s∗ as follows. We take the
best of the allocations visited, i.e., θbest ∈ argmin∞k=0 ECnom(θ

(k)). Suppose k1 is the first
time-slot in which such allocation is visited. Sequence s′′ = {θ′′(k),a′′(k)}k is as follows:

θ′′(k) =

{
θ′(k) if k ≤ k1

θbest otherwise
a′′(k) =

{
a′(k) if k ≤ k1

0 (null action) otherwise
(7.15)
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The difference of cumulative discounted cost (3.11) induced by the two sequences s∗

and s′′ is

Cγ
cum(s

∗)− Cγ
cum(s

′′)

= lim
T→∞

E
[ T∑
k=k1+1

γ(k)
(
Cnom(θ

′(k), ω) + Cpert(a
′(k))− Cnom(θ

′′(k1), ω)

)]

= lim
T→∞

[ T∑
k=k1+1

γ(k)
(
ECnom(θ

′(k), ω)− ECnom(θbest, ω) + Cpert(a
′(k))

)]
(7.16)

For any k, by construction of θbest, we have

ECnom(θ
′(k), ω)− ECnom(θbest, ω) ≥ 0.

Moreover, at least one action a′(k) is non-null, as we have assumed that s∗ does not
have any absorbing state. Therefore, (7.16) is positive, which is absurd as it violates
Definitions 7.1.3.2 and 7.1.3.3.

Lemma 7.1.3.5. If discount factor γ is sufficiently close to 1, the absorbing state of
sequence s∗ is a discretely optimal allocation (3.20).

Proof. Let us define an undirected graph G = (S,A) where each node θ ∈ S is a state and
each edge a ∈ A is an action. Such an edge connects state θ with state θ + a and has
weight ECnom(θ, ω) + Cpert(a). Let us denote with s(θ,θ′) shortest path on such a graph
between nodes θ and θ′, where the cost of the path is the sum of the cost on the arcs. If

such a path is θ = θ[0] a[0]

−→ θ[1] . . .
a[n−1]

−→ θ[n] = θ′, the discounted cost accumulated over
this path is:

Cγ
cum(s(θ,θ

′)) =
n−1∑
j=0

γj ·
(
ECnom(θ

[j], ω) + Cpert(a
[j])
)

(7.17)

Let us define:

M ≜ max
θ,θ′∈S

Cγ
cum(s(θ,θ

′)) (7.18)

Let us take a discretely optimal state θ̂
∗
. Thanks to Lemma 7.1.3.4, we know that s∗

goes to an absorbing state θabs at a certain timeslot k′ and does change state anymore.
Let us suppose by contradiction that θabs is not discretely optimal and define quantity

δC = EC(θabs, ω)− EC(θ̂
∗
, ω). (7.19)

By construction, δC > 0, otherwise θabs would be the discretely optimal.
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Let us construct another sequence s′′ such that it is the same as s∗ up to time slot
k′. Then, while s∗ stays in θabs, s

′′ takes non-null actions and follows the shortest path
s(θabs, θ̂

∗
) and then it stays in θ̂

∗
and does not change state anymore. Suppose that n is

the length of such a shortest path. Let us compute the difference between the cumulative
discounted cost of s∗ = {θ′(k),a′(k)} and s′′ = {θ′′(k),a′′(k)}:

Cγ
cum(s

′′)− Cγ
cum(s

∗) (7.20)

= E
[ ∞∑
k=0

γ(k) ·
(
Cnom(θ

′′(k), ω) + Cpert(a
′′(k))

)
− γ(k) ·

(
Cnom(θ

′(k), ω) + Cpert(a
′(k))

)]
(7.21)

= E
[ k′+n−1∑

k=0

γ(k) ·
(
Cnom(θ

′′(k), ω) + Cpert(a
′′(k))− Cnom(θ

′(k), ω)− Cpert(a
′(k))

)
(7.22)

+

∞∑
k=k′+n

γ(k) ·
(
Cnom(θ

′′(k), ω) + Cpert(a
′′(k))− Cnom(θ

′(k), ω)− Cpert(a
′(k))

)]

= γ(k
′) · Cγ

cum(s(θabs, θ̂
∗
)) +

∞∑
k=k′+n

γ(k) · ECnom(θ̂
∗
, ω)−

∞∑
k=k′

γ(k) · ECnom(θabs, ω)

(7.23)

= γ(k
′) · Cγ

cum(s(θabs, θ̂
∗
))−

k′+n−1∑
k=k′

γ(k) · ECnom(θabs, ω)

+
∞∑

k=k′+n

γ(k) ·
(
ECnom(θ̂

∗
, ω)− ECnom(θabs, ω)

)
(7.24)

Via (7.19) and elementary calculus (for the summation of truncated geometric series),
we obtain:

∞∑
k=k′+n

γ(k) ·
(
ECnom(θ̂

∗
, ω)− ECnom(θabs, ω)

)
= −δC ·

∞∑
k=k′+n

γ(k)︸ ︷︷ ︸
trunc. geom. series

= −δC · γ
k′+n

1− γ
.

(7.25)

By replacing (7.18) and (7.25) into (7.20), we get:

Cγ
cum(s

′′)− Cγ
cum(s

∗) ≤ γ(k
′) ·M︸ ︷︷ ︸
a

−
k′+n−1∑
k=k′

γ(k) · ECnom(θabs, ω)︸ ︷︷ ︸
b

− δC · γ
k′+n

1− γ︸ ︷︷ ︸
c

(7.26)
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For γ → 1, terms a and b tends to a constant, while term c tends to infinity. Therefore,
limγ→1 (C

γ
cum(s′′)− Cγ

cum(s∗)) = −∞. This means that if γ is sufficiently close to 1, then
Cγ
cum(s′′) < Cγ

cum(s∗), which is absurd as it violates Definitions 7.1.3.2 and 7.1.3.3.

7.1.4 Convergence of the offline sequence

In this section, we will prove that sequence s of actions induced by Q(k) converges to the
sequence of actions induced by Q∗.

Definition 7.1.4.1. Let s1 and s2 be two sequences of actions and states. We denote the
difference of average expected cost induced by sequences s1 and s2 by:

D(s1, s2) ≜ lim
T→∞

1

T
E

[
T∑

k=0

(
C

(k)
1 − C

(k)
2

)]
(7.27)

where C(k) is the instantaneous cost defined by (3.3).

Definition 7.1.4.2. We say that a sequence s1 converges to a sequence s2 if and only if

D(s1, s2) = 0.

Proposition 7.1.4.3. Let Q
(k)
1 and Q

(k)
2 be two sequences of Q-tables such that

argminaQ
(k)
1 (θ,a) = argminaQ

(k)
2 (θ,a),∀k > k′,∀θ ∈ S. Then, if a sequence s1 is in-

duced by Q
(k)
1 , it must be induced by Q

(k)
2 starting from k′.

The following lemma proves that our offline sequence s approaches the optimal sequence
of states and actions.

Lemma 7.1.4.4. If s is a sequence induced by Q-tables Q(k), obtained with our Algo-
rithm 1, then

P
(
∃K > 0, s is induced by Q∗ starting from K

)
= 1

Proof. In Theorem 7.1.2.3, we proved that Q(k) converges with probability 1 to Q∗. Then,
by definition, we have

P
(

lim
k→∞

|Q(k)(θ,a)−Q∗(θ,a)| < e

)
= 1,∀e > 0,∀(θ,a) (7.27bis)

Let us denote by ϵmin the minimum difference between two distinct Q-values of Q∗:

ϵmin = min

|Q∗(θ,a)−Q∗(θ′,a′)|

∣∣∣∣∣∣
θ,θ′ ∈ S,
a ∈ Aθ,a

′ ∈ Aθ′ ,
Q∗(θ,a) ̸= Q∗(θ′,a′)


125



Formula (7.27bis) implies that P
(
limk→∞ |Q(k)(θ,a)−Q∗(θ,a)| < ϵmin

2

)
= 1,∀(θ,a).

This implies that,

P
(
∃Kθ,a > 0,∀k > Kθ,a, |Q(k)(θ,a)−Q∗(θ,a)| < ϵmin

)
= 1, ∀(θ,a) (7.27tris)

Let us call Eθ,a the following event:

∃Kθ,a > 0, ∀k > Kθ,a, |Q(k)(θ,a)−Q∗(θ,a)| < ϵmin

Formula (7.27tris) implies that P(Eθ,a) = 1,∀(θ,a). Hence P(Ēθ,a) = 0, ∀(θ,a). By
taking K = maxθ,aKθ,a (that exists since S and A are finite), we can write:

P
(
∃K > 0, ∀k > K,∀θ ∈ S,a ∈ Aθ

⇒ |Q(k)(θ,a)−Q∗(θ,a)| < ϵmin

)
= 1

and thus

P
(

∃K > 0, ∀k > K,∀θ ∈ S
⇒ argminaQ

(k)(θ,a) = argminaQ
∗(θ,a)

)
= 1

Thanks to Proposition 7.1.4.3, we will have that s is induced by Q∗ starting from K,
hence the result.

Corollary 7.1.4.5. Sequence s converges to sequence s∗.

Proof. Thanks to Lemma 7.1.3.5, we can claim that ∃K∗ > 0, starting from which s∗ has
arrived to a discretely optimal state θ̂

∗
. Lemma 7.1.4.4 allows us to write:

P
(
∃K > 0,∀k > K, s takes actions induced by Q∗

)
= 1

Let Kmax = max(K∗,K) and let E be the following event:

∃K∗
s ≥ Kmax, starting from which s has arrived to θ̂

∗
.

Thanks to Lemma 7.1.3.5 and Lemma 7.1.4.4, we can write:

P(E) = 1

Let us now compute D(s, s∗) by applying the law of total expectations:

D(s, s∗) = lim
T→∞

1

T
E

[
T∑

k=0

(
C(k) − C∗(k)

)]

= lim
T→∞

(
P(E) · 1

T
E

[
T∑

k=0

(
C(k) − C∗(k)

)
|E

]
+

��������������������:0

(1− P(E)) · 1
T
E

[
T∑
k

(
C(k) − C∗(k)

)
|Ē

])

= lim
T→∞

1

T

T∑
k=0

[
E[C(k)|E ]− E[C∗(k)|E ]

]
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After Kc = max(K∗
s ,K

∗) both s and s∗ will be in the same state θ̂
∗
, if event E is

verified. Therefore, E[C(k)|E ] = E[C∗(k)|E ],∀k ≥ Kc and thus

D(s, s∗) = lim
T→∞

1

T

Kc∑
k=0

[
E[C(k)|E ]− E[C∗(k)|E ]

]
= 0

7.1.5 Convergence of the online sequence

In this section, we will prove that the sequence sϵ of states and actions visited by Algo-
rithm 1 online, converges to θ̂

∗
, which represents the main result of our work.

To do so, we need to show that

∃ θ̂
∗
, P
(

lim
k→∞

|| θ(k) − θ̂
∗|| > 0

)
= 0.

We will prove a stronger property:

∃ discretely optimal state θ̂
∗ ∈ S, such that lim

k→∞
P(θ(k) = θ̂

∗
) = 1 (7.28)

Let us denote with B(k, d) the event that from time-slot k− d to k− 1 there have been
no random actions taken. The probability of this event is:

P(B(k, d)) =
k∏

k′=k−d

(1− ϵ(k
′)) (7.29)

where ϵ(k
′) follows (3.19). Since limk→∞ ϵ(k) = 0, then ∀d > 0, limk→∞ P(B(k, d)) = 1. If

B(k, d) is verified, the actions taken by our algorithm are those induced by Q(k′′),∀k′′ =
k − d, .., k. Therefore, Lemma 7.1.4.4 applies and if we take d > K (where K is the one
indicated by Lemma 7.1.4.4), we know that if B(k, d) is verified, then the actions taken
by our algorithm in time-slots k′′ = k − d + K, .., k are those suggested by Q∗. Hence,
Lemma 7.1.3.4 applies and if we take d > K + k′ (where K is the one indicated by
Lemma 7.1.3.4), we know that the state in which our algorithm brings the system in slots
k′′ = k − d+K + k′, .., k, is an absorbing state.

Thanks to Lemma 7.1.3.5, we know that this absorbing state is θ̂
∗
, if γ is sufficiently

large. Therefore, if B(k, d) is verified, then

θ(k′′) = θ̂
∗
,∀k′′ = k − d+K + k′, .., k.

In other words, if B(k, d) is verified for a sufficiently large γ, then

∃ discretely optimal state θ̂
∗
such that θ(k) = θ̂

∗
. Therefore, P(θ(k) = θ̂

∗
) ≥ P(B(k, d)).

Since the second term tends to 1 when k →∞ (7.29), then (7.28) is verified.
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7.2 Proof of the Corollary 3.4.2.2

Proof. We have seen that our allocations have an absorbing state θ̂
∗
that is discretely

optimal, i.e., there exists k′ > 0 such that θ(k) = θ̂
∗
for k ≥ k′ with probability 1. We can

compute

lim
Z→∞

1

Z
E [Ccum(Z)− C∗

cum(Z)]

= lim
Z→∞

1

Z
E
[
Ccum(k

′)− C∗
cum(k

′)
]
+ lim

Z→∞

1

Z
E
[
Ccum(Z)− Ccum(k

′)− (C∗
cum(Z)− C∗

cum(k
′))
]

= lim
Z→∞

1

Z

Z∑
k=k′+1

(
E
[
(Cnom(θ

(k), ω) + Cpert(a
(k))− Cnom(θ

∗, ω)
])

= lim
Z→∞

Z − (k′ + 1)

Z
·
(
Eω

[
Cnom(θ̂

∗
, ω)
]
− Eω

[
Cnom(θ

∗, ω)
])

= Eω

[
Cnom(θ̂

∗
, ω)
]
− Eω

[
Cnom(θ

∗, ω)
]
= G∆

7.3 Proof of Proposition 3.4.2.3

Suppose an oracle that knows exactly (i) the probability fp that a request is for SP p, (ii)
the cacheability ζp and (iii) the popularity of each object (c, p) within the catalog of each
SP. Such an oracle can compute the rate of requests λc,p = λ · fp · ζp · ρc,p for each object.
The expected value of the nominal cost when the set of cached objects is K is

ECnom(K) = λ−
∑

(c,p)∈K

λc,p

The following property will be useful later.

Lemma 7.3.0.1. The set function K → ECnom(K) is monotonically increasing, i.e., if
K ⊆ K′, then ECnom(K) ≤ ECnom(K′).

To minimize the nominal cost, we resort to a greedy algorithm for the Simple Allocation
Problem [173]: the oracle puts into the cache the objects with the highest λc,p, up to filling
all K cache-slots. Let us denote with K∗ the set of cached objects in this way. The optimal
allocation θ∗ can be obtained by simply counting the number of objects of each SP p that
we find in K∗. In particular, θ∗p is equal to the number of objects of SP p present in K∗.

With no loss of generality, suppose that within the catalog of each SP p the objects
are indexed as c = 1, 2, . . . , Np and sorted from the most popular to the least, so that
λc,p ≥ λc+1,p. If the discretization step is ∆, objects cannot be selected one by one, but

128



they can only be cached in batches of ∆ elements. We thus divide the catalog of each SP
in batches of ∆ objects. For instance, batch Bi,p is

Bi,p = {object(c, p)|c = (i− 1) ·∆+ 1, . . . , i ·∆}, i = 1, 2, ..

The rate of such a batch is defined as the traffic we can omit downloading from a distant
location if we store this batch into the cache, i.e.:

λ(Bi,p) ≜
∑

(c,p)∈Bi,p

λc,p.

In order to minimize the nominal cost with the discretized model, the oracle can add
to the cache the batches with the highest rate, up to filling the K cache-slots. We denote
by K̂∗ the set of cached objects obtained in this way. The discretely optimal allocation
θ̂
∗
= (θ̂∗1, . . . , θ̂

∗
P ) can be obtained by simple counting: θ̂∗p is equal to the number of objects

of p that are present in K̂∗.
The construction of K̂∗ and θ̂

∗
is summarized in Algorithm 6, which extends the greedy

algorithm. Note that to construct K∗ and θ∗ one can use the same algorithm, setting ∆ = 1.

Algorithm 6: Compute θ̂
∗

Data: ∆, λc,p∀(c, p).
Result: K̂∗, θ̂

∗

1 K̂∗ ← ∅;
2 θ̂

∗ ← 0 = (0, . . . , 0);
3 ip = 1 for p = 1, . . . , P ; // We use this pointer to save the last added batch of each

SP

4 while |K̂∗|+∆ < K; // We can still add a batch of ∆ objects in the cache

5 do
6 pbest ∈ argmaxPp=1 λ(Bip,p) ; // Select the SP with the largest batch rate

7 K̂∗ ← K̂∗ ∪ Bi
pbest

,pbest ; // Add batch of SP pbest in the cache

8 θ̂∗
pbest
← θ̂∗

pbest
+∆ ; // Give it the corresponding cache-slots

9 end

The optimality gap can be expressed in terms of the sets K∗ and K̂∗:

G∆ = ECnom(K̂∗)− ECnom(K∗) (7.30)

In order to bound the previous quantity, we construct two sets K− and K+ around K∗

and K̂∗.
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Lemma 7.3.0.2. There exists two sets K− and K+ such that

K− ⊆ K∗ ⊆ K+ (7.31)

K− ⊆ K̂∗ ⊆ K+ (7.32)

and

ECnom(K−)− ECnom(K+) ≤
P∑

p=1

∆∑
c=1

λc,p

Proof. We know that the θ∗p most popular objects of SP p are stored in K∗. These include

the
⌊
θ∗p
∆

⌋
batches of SP p with the highest rate. Let us construct a set composed of these

batches:

K− =
P⋃

p=1


⌊

θ∗p
∆

⌋
⋃
i=1

Bi,p

 (7.33)

By construction, K− ⊆ K∗. By construction of K̂∗, the aforementioned batches are also
contained into K̂∗. Therefore, K− ⊆ K̂∗.

We now construct set K+ adding to K− one additional batch per each SP:

K+ =

P⋃
p=1


⌈

θ∗p
∆

⌉
⋃
i=1

Bi,p


By construction K+ ⊇ K∗ and K+ ⊇ K̂∗. Summarizing what we have obtained so far:

K− ⊆ K∗ ⊆ K+

K− ⊆ K̂∗ ⊆ K+

By construction, we have

ECnom(K+)− ECnom(K−) =
P∑

p=1


⌈

θ∗p
∆

⌉
∑

i=

⌊
θ∗p
∆

⌋λ(Bi,p)
 ≤

P∑
p=1

λ(Bi′,p)

where i′ =
⌊
θ∗p
∆

⌋
. Since objects are sorted, within each SP p, from the highest to the lowest

rate, the batches have decreasing rate, and thus λ(Bi′,p) ≤ λ(B1,p) =
∑∆

c=1 λc,p.
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Thanks to Lemma 7.3.0.1, equations (7.31)-(7.32) imply that

ECnom(K−) ≤ ECnom(K∗) ≤ ECnom(K+)

ECnom(K−) ≤ ECnom(K̂∗) ≤ ECnom(K+)

which, in turn, imply that ECnom(K̂∗) − ECnom(K∗) ≤ ECnom(K−) − ECnom(K+). Us-
ing (7.30) and (7.33), we obtain the proposition.
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Résumé : Dans cette thèse, nous considérons
le Edge Computing (EC) comme un environne-
ment multi-tenant où les Opérateurs Réseau (NOs)
possèdent des ressources en périphérie déployées
dans les stations de base, les bureaux centraux et/ou
les boı̂tiers intelligents, les virtualisent, et permettent
aux Fournisseurs de Services tiers (SPs) - ou te-
nants - de distribuer une partie de leurs applica-
tions en périphérie afin de répondre aux demandes
des utilisateurs. Les SPs aux besoins hétérogènes
coexistent en périphérie, allant des Communications
Ultra-Fiables à Latence Ultra-Basse (URLLC) pour le
contrôle des véhicules ou des robots, à la Commu-
nication de Type Machine Massive (mMTC) pour l’In-
ternet des Objets (IoT) nécessitant un grand nombre
de dispositifs connectés, en passant par les ser-
vices multimédias tels que la diffusion vidéo et la
Réalité Augmentée/Virtuelle (AR/VR), dont la qualité
d’expérience dépend fortement des ressources dispo-
nibles. Les SPs orchestrent indépendamment leur en-
semble de microservices, exécutés dans des conte-
neurs, qui peuvent être facilement répliqués, migrés
ou arrêtés. Chaque SP peut s’adapter aux ressources
allouées par le NO, en décidant s’il doit exécuter
des microservices sur les appareils, les nœuds en
périphérie ou dans le cloud. L’objectif de cette thèse
est de promouvoir l’émergence de déploiements réels
du “véritable” EC dans de vrais réseaux, en mon-
trant l’utilité que les NOs peuvent tirer de l’EC. Nous
croyons que cela peut contribuer à encourager l’en-
gagement concret et les investissements des NOs
dans l’EC. À cette fin, nous proposons de conce-
voir de nouvelles stratégies basées sur les données
qui allouent efficacement les ressources entre les
SPs hétérogènes, en périphérie, appartenant au NO,
afin d’optimiser ses objectifs pertinents, tels que la

réduction des coûts, la maximisation des revenus et
l’amélioration de la Qualité de Service (QoS) perçue
par les utilisateurs finaux, en termes de latence, de
fiabilité et de débit, tout en répondant aux exigences
des SPs. Cette thèse présente une perspective sur
la manière dont les NOs, les seuls propriétaires de
ressources en périphérie, peuvent extraire de la va-
leur grâce à la mise en œuvre de l’EC dans un envi-
ronnement multi-tenant. En promouvant cette vision
de l’EC et en la soutenant par des résultats quan-
titatifs et une analyse approfondie, cette thèse four-
nit principalement aux NOs des conclusions suscep-
tibles d’influencer les stratégies de décision concer-
nant le déploiement futur de l’EC. Cela pourrait favo-
riser l’émergence de nouvelles applications à faible
latence et à forte intensité de données, telles que
la réalité augmentée haute résolution, qui ne sont
pas envisageables dans le cadre actuel du Cloud
Computing (CC). Une autre contribution de la thèse
est qu’elle propose des solutions basées sur des
méthodes novatrices exploitant la puissance de l’opti-
misation basée sur les données. En effet, nous adap-
tons des techniques de pointe issues de l’Appren-
tissage par Renforcement (RL) et de la prise de
décision séquentielle au problème pratique de l’al-
location des ressources en EC. Ce faisant, nous
parvenons à réduire le temps d’apprentissage des
stratégies adoptées à des échelles compatibles avec
la dynamique de l’EC, grâce à la conception soignée
de modèles d’estimation intégrés au processus d’ap-
prentissage. Nos stratégies sont conçues de manière
à ne pas violer les garanties de confidentialité essen-
tielles pour que les SPs acceptent d’exécuter leurs
calculs en périphérie, grâce à l’environnement multi-
tenant.
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We consider in this thesis Edge Computing (EC) as
a multi-tenant environment where Network Operators
(NOs) own edge resources deployed in base stations,
central offices and/or smart boxes, virtualize them and
let third party Service Providers (SPs) - or tenants
- distribute part of their applications in the edge in
order to serve the requests sent by the users. SPs
with heterogeneous requirements coexist in the edge,
ranging from Ultra-Reliable Low Latency Communica-
tions (URLLC) for controlling cars or robots, to mas-
sive Machine Type Communication (mMTC) for Inter-
net of Things (IoT) requiring a massive number of
connected devices, to media services, such as video
streaming and Augmented/Virtual Reality (AR/VR),
whose quality of experience is strongly dependant on
the available resources. SPs independently orches-
trate their set of microservices, running on containers,
which can be easily replicated, migrated or stopped.
Each SP can adapt to the resources allocated by the
NO, deciding whether to run microservices in the de-
vices, in the edge nodes or in the cloud. We aim in
this thesis to advance the emergence of real deploy-
ments of the “true” EC in real networks, by showing
the utility that NOs can collect thanks to EC. We be-
lieve that this can contribute to encourage concrete
engagement and investments engagement of NOs in
EC. For this, we point to design novel data-driven stra-
tegies that efficiently allocate resources between he-
terogeneous SPs, at the edge owned by the NO, in
order to optimize its relevant objectives, e.g., cost re-

duction, revenue maximization and better Quality of
Service (QoS) perceived by end users, in terms of la-
tency, reliability and throughput, while satisfying the
SPs requirements. This thesis presents a perspec-
tive on how NOs, the sole owners of resources at
the far edge (e.g., at base stations), can extract va-
lue through the implementation of EC within a multi-
tenant environment. By promoting this vision of EC
and by supporting it via quantitative results and ana-
lysis, this thesis provides, mainly to NOs, findings
that can influence decision strategies about the fu-
ture deployment of EC. This might foster the emer-
gence of novel low-latency and data-intensive appli-
cations, such as high resolution augmented reality,
which are not feasible in the current Cloud Compu-
ting (CC) setting. Another contribution of the thesis it
that it provides solutions based on novel methods that
harness the power of data-driven optimization.We in-
deed adapt cutting-edge techniques from Reinforce-
ment Learning (RL) and sequential decision making
to the practical problem of resource allocation in EC.
In doing so, we succeed in reducing the learning time
of the adopted strategies up to scales that are com-
patible with the EC dynamics, via careful design of
estimation models embedded in the learning process.
Our strategies are conceived in order not to violate the
confidentiality guarantees that are essential for SPs to
accept running their computation at the EC, thanks to
the multi-tenant setting.
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