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1.2 Research Problem: How to incorporate cognitive capabilities to fa-

cilitate process analysis tasks? . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 How to make process data accessible to human users in a natural manner? 8
1.2.2 How to make the discovery and accessibility of process mining techniques

intuitive and in a natural manner? . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Thesis principles, objectives and contributions . . . . . . . . . . . . . . 11

1.3.1 Thesis principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Context & Motivation

In the constantly evolving environment of contemporary organizations, Business Process (BP)
serves as the foundational structure for reaching specific targets and objectives. These metic-
ulously organized tasks encompass a variety of assignments, collaborations, and workflows,
which are essential for the seamless operation of various sectors and industries. From tak-
ing care of customer orders to providing services, from initiating product development to
overseeing financial management, these BPs are pivotal to successful operations.

As technology continues to evolve, these business procedures have been transforming into
increasingly data-centric operations. Every assignment and collaboration generate a stream
of data, often referred to as event logs. These logs create a digital record of BP execution,
capturing a variety of details such as the order of activities, timestamps, resources used, and
other relevant data. This data is typically tracked by various information systems, such as
customer relationship management systems, enterprise resource planning software, and other
digital platforms that gather data from numerous process execution touchpoints.

Table 1.1 shows an example of an event log pertaining to a loan application process.
The table enumerates the sequence of activities that unfold during the life cycle of each loan

1



2 Introduction

Application ID Activity Timestamp Resource Offer ID
1 Application Submitted 2023-01-01 09:00:00 WebApp N/A
1 Application Accepted 2023-01-01 11:00:00 Agent A N/A
1 Offer Created 2023-01-01 12:00:00 Agent A O1
1 Offer Created 2023-01-01 12:10:00 Agent A O4
1 Offer Sent 2023-01-01 12:30:00 Agent A O1
1 Offer Sent 2023-01-01 12:40:00 Agent A O4
1 Offer Accepted 2023-01-02 15:00:00 Customer O4
1 Loan Disbursed 2023-01-03 10:00:00 Agent A O4
2 Application Submitted 2023-01-02 08:00:00 Mobile N/A
2 Application Accepted 2023-01-02 10:00:00 Agent B N/A
2 Offer Created 2023-01-02 11:00:00 Agent B O2
2 Offer Sent 2023-01-02 11:30:00 Agent B O2
2 Offer Accepted 2023-01-02 15:00:00 Customer O2
2 Loan Disbursed 2023-01-03 11:00:00 Agent B O2

Table 1.1: Example Event Log Table

application, focusing here on two exemplar cases: Application 1 and Application 2. Each row
in the table represents an event, characterized by several attributes. The ’Application ID’
column uniquely identifies each loan application, aiding in the isolation of the sequence of
activities related to a specific application. The ’Activity’ column specifies the various stages
each loan application goes through, such as submission, application acceptance, offer creation,
and disbursement of the loan. Timestamps are recorded in the ’Timestamp’ column, which
provides temporal information on when each activity was executed. This data is crucial for
understanding the order of activities and for potential time-based analysis such as bottleneck
identification or compliance checking. The ’Resource’ column indicates the entity—be it
an automated system or a human agent—responsible for executing each activity. Lastly,
the ’Offer ID’ column associates specific loan offers with activities where applicable. For
instance, in Application 1, two offers (O1 and O4) were created and sent, but only one (O4)
was accepted and disbursed. In contrast, Application 2 involves just a single offer (O2). It’s
worth noting that this event log could be extended to include additional attributes to enrich
the analysis further. For instance, associated data such as the requested loan amount for each
application, the offered amount, monthly costs associated with each offer, and other financial
or risk metrics could be included.

Process analysis, a discipline aimed at harnessing the potential of these event logs, focuses
on extracting valuable insights [121]. By meticulously studying and decoding process-related
data, this practice offers organizations a comprehensive understanding of their operational
procedures. It also identifies deviations from intended models and suggests areas for improve-
ment. This data-driven approach empowers organizations to make informed decisions and
enhance their operations continually. This analytical process can be approached from either
the instance (looking into instances of process executions) or the process level (examining the
overall process). Each of these operationalizes different analytical techniques, engages with
various data attributes, and generates unique insights that contribute to an organization’s
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- Which applications were approved during a specific
time frame?
- What resources were instrumental in the adjudication
of Application 1?
- How many offers were proffered for Application 1,
and which was ultimately accepted?

SQL
CYPHER
SPARQL
PQL

-What are the overarching pathways within the loan
application process?
 -Where do deviations most commonly arise and what
are their systemic implications?
-What opportunities exist for global improvements and
optimizations?

Access through APIs,
tools,

applications, etc.

Instance level analysis Process level analysis

Access through query
language

Figure 1.1: Example of instance level and process level analysis questions

strategic decision-making framework. Instance-level analysis is fundamentally concerned with
the granular examination of individual events within a process. Such an analysis involves a
meticulous investigation of the characteristics of each event, such as the nature and sequence
of activities, associated timestamps, involved resources, and other related attributes. In con-
trast, process-level analysis provides a broader perspective by employing APIs and methods
on the process data.

Figure. 1.1 illustrates examples of analysis questions tailored to both instance and pro-
cess levels. For instance-level analysis, the storage and representation of process data must
align with specific technology, necessitating queries crafted in a particular query language.
Conversely, process-level analysis requires users to analyze process execution data through
the application of specialized methods, tools, and APIs. Consequently, to analyze processes
effectively, users must either construct corresponding query languages or access the appropri-
ate APIs and methods. Both scenarios demand users to possess a minimum level of technical
expertise presenting a substantial challenge and limitation, hindering users from effectively
analyzing process execution data and reaping the benefits of process-related insights.

Initially, the essence of instance-level process data analysis centers on the task of querying
information from the stored process data. Process querying, a foundational component within
the broader realm of process analysis, provides users with the capability to interactively re-
trieve and manipulate process-related data using a variety of tools and query languages [121].
This field encompasses methods aimed at the automated manipulation of repositories contain-
ing models describing observed or projected processes. A process querying method, within
this context, denotes a systematic technique that, given a repository of processes and a spe-
cific process query, executes the query on the provided repository. This repository, in turn,
comprises an array of models encompassing elements like behavioral models, simulation mod-
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els, correlation models, and even process execution data such as event logs. A process query,
on the other hand, functions as a formal directive to oversee the management of this repos-
itory, often pertaining to Create, Read, Update, and Delete (CRUD) operations. The realm
of existing works within process querying can be classified based on two key dimensions: the
nature of input data, which pertains to the models stored within the process repository, and
the ultimate querying objective, encompassing the specific CRUD operations applied to ma-
nipulate the repository’s contents. For instance, studies such as those conducted in [17, 10]
focus on querying behavioral models to glean insights into structural topology and process
attributes. These studies utilize dedicated querying languages like BP-QL [17] and BPMN-
Q [10] to facilitate the extraction of valuable information from these models.

An important subfield within process querying is querying process execution data. Within
this context, the process repository primarily stores process-related execution data that can be
accessed and manipulated via specialized query languages. Various approaches convert this
process data into specific formats or storage representations, facilitating querying through
languages such as FPSPARQL, SQL, NoSQL, and Cypher, etc. [20, 168, 58]. This enables
users to tailor queries to their specific requirements, thereby extracting pertinent information
for in-depth analysis. For instance, consider a process repository storing event data related
to the patient care process within a hospital. Within this context, a process query could
entail adding a new patient care process to the repository (a Create operation) or identifying
sequences of activities related to the treatment of specific patients (a Read operation).

While the potential benefits of process querying are considerable, it is worth noting that
the complexity of certain query languages like SQL, Cypher, and SPARQL can serve as a
barrier to entry for some stakeholders. Business users or professionals, who may not possess
the technical expertise to navigate these languages, might constrained in their ability to
fully leverage the power of process data. For instance, a hospital administrator, who is
not familiar with FPSPARQL language, might struggle to formulate a query that identifies
potential bottlenecks in patient flow through different hospital departments, thereby missing
opportunities for operational improvement.

Next, when engaging in process-level analysis of process data, the approach entails the
utilization of methods and algorithms that harness process execution data extracted from
information systems. These methodologies, collectively referred to as process mining tech-
niques [156], serve the purpose of revealing, monitoring and improving real-world processes.
With the help of process mining techniques, organizations can glean valuable insights into
process behavior, spot inefficiencies, detect compliance violations, and identify opportunities
for process optimization. The families of process mining techniques include discovery (find-
ing the model of the processes), conformance (comparing the expected process model with
the actual process execution data), enhancement (extending or improving existing process
models), and prediction (forecasting future process behaviors).

Despite the importance of process mining methods, data scientists and process analysts
often encounter significant challenges when attempting to apply these methods in practice:

• Challenge related to the discoverability of process mining methods. One of
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the primary difficulties is related to the discovery and selection of an appropriate method
that can meet their specific needs and requirements. For instance, consider an analyst
who is interested in monitoring and predicting the completion time of processes using
a machine-learning approach. The analyst is confronted with a considerable number
of prediction methods available in the literature, each with unique properties, such
as the type of predictions they make, the employed algorithms, the required inputs
and configuration parameters [47]. As a result, searching for a suitable method, that
satisfies the analyst’s needs, can be time-consuming involving an exhaustive and manual
evaluation of unstructured descriptions.

• Challenge related to the applicability and integration of process mining
methods. The second challenge associated is related to their accessibility and ap-
plicability. Typically, process mining methods are available either as source code or
implemented in separate software tools. In recent years, the field of process mining
has been supported by several open-source projects, including ProM [157], bupaR [72],
PM4Py [27], RapidProM [103], Apromore [90], as well as commercial tools such as
Disco [67], Celonis, and Everflow, etc. These tools offer a wide range of functionalities,
such as log data preprocessing, process discovery, conformance checking, etc. However,
accessing a method through its source code can be daunting for analysts lacking pro-
ficiency in the programming language used for implementation or technical expertise
to understand the method’s technical details. Additionally, certain software tools that
offer process mining methods might be not compatible with other software applications,
severely limiting their applicability across diverse workflows and their integration into
custom applications.

A leading strategy to address the challenges associated with process analysis tasks at the
instance level (i.e. querying process execution data), and at the process level (i.e. the applica-
tion of process mining methods and APIs) is the incorporation of cognitive capabilities [15].
These capabilities leverage various artificial intelligence mechanisms that are designed to
simulate human cognitive faculties. These solutions include but are not limited to natural
language processing (NLP), text analytics, machine learning, large language models (LLMs),
etc. The implementation of such capabilities serves to augment the interface between hu-
man users and computational systems. Incorporating such capabilities into process analysis
has the potential to bridge the gap between business users, data analysts, and process an-
alysts, allowing them to harness the power of process data for decision-making and process
improvement.

The context of this thesis revolves around AI-driven solutions geared towards facilitating
analyzing processes using their execution data and specialized methods and techniques. The
primary objective is to provide solutions that make the analysis tasks more intuitive and
user-friendly enabling users to effortlessly analyze their BPs. This is achieved through the
integration of cognitive capabilities, as illustrated in Figure 1.2.

This, in turn, significantly improves the user experience with process analysis by:
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- Which applications were approved during a specific
time frame?
- What resources were instrumental in the adjudication
of Application 1?
- How many offers were proffered for Application 1,
and which was ultimately accepted?

SQL
CYPHER
SPARQL
PQL

-What are the overarching pathways within the loan
application process?
 -Where do deviations most commonly arise and what
are their systemic implications?
-What opportunities exist for global improvements and
optimizations?

Access through APIs,
tools,

applications, etc.

Instance level analysis Process level analysis

Access through query
language

Figure 1.2: Incorporating AI solutions to facilitate process analysis
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• Enabling universal accessibility: Making process-related data accessible to users
across all levels of expertise. This democratization of data empowers not just data
analysts, but also business users and process analysts to glean insights from the process
data.

• Enhancing analysis simplification: The process of analysis is streamlined through
the integration of Natural Language Interfaces (NLI) and cognitive support. This elim-
inates the necessity for intricate query languages, specialized technical knowledge, or
familiarity with specific tools. As a result, users with diverse technical backgrounds
gain the capability to effectively analyze their processes without hindrance.

• Efficiency and automation: Automation of routine analysis tasks through cognitive
tools reduces manual workload, freeing up experts to focus on strategic initiatives and
value-added activities.

While AI solutions offer a promising avenue for innovation, their integration into process
analytics also presents a set of challenges that form the basis of this thesis. In what follows, we
discuss some of these research problems in Section 1.2. We outline then our thesis objectives,
principles, and contributions in Section 1.3. Finally, we present the structure of the thesis in
Section 1.4.

1.2 Research Problem: How to incorporate cognitive capabil-
ities to facilitate process analysis tasks?

As highlighted in Section 1.1, the realm of process analysis is diverse and can be approached
from either the instance or the process level. However, applying process analysis in practice
demands users to possess a certain level of expertise and technical knowledge. This require-
ment limits the applicability of process analysis and hinders users from fully benefiting from
valuable insights within process data. Hence, there is a pressing need for solutions that en-
hance the accessibility of process analysis for human users by integrating AI techniques and
cognitive capabilities to create cognitive process analysis. In light of this, we have identi-
fied two key research challenges critical to realizing cognitive process analysis. The initial
research challenge revolves around making the querying of process-related data an intuitive
task that caters to users with diverse levels of expertise. This entails using Natural Language
(NL) to eliminate the need for complex query languages or specialized technical knowledge.
Consequently, the first research question is (RQ1) How to make process data accessible
to human users in a natural manner?. The second challenge focuses on simplifying
the accessibility and usability of process mining methods for high-level analysis. This in-
volves making these methods easily discoverable and accessible to analysts, aligning with
their specific needs described in a natural way. Consequently, the second research question is
(RQ2) How to make the discovery and accessibility of process mining techniques
intuitive and in a natural manner?
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Within the scope of RQ1, our research challenge is to infuse cognitive capabilities into the
interaction between users and process data. Our primary focus lies in automatically generat-
ing structured queries from NL, making data querying tasks more intuitive and inclusive for
a wider range of users. Meanwhile, RQ2 directs our efforts towards incorporating cognitive
capabilities to streamline the process of discovering and accessing process mining techniques
specific to user’s needs.

These research questions can be further divided into several sub-questions. Some of them
were previously discussed in related works and others were not previously handled. We sepa-
rate these research sub-questions according to RQ1 (Section 1.2.1) and RQ2 (Section 1.2.2).

1.2.1 How to make process data accessible to human users in a natural
manner?

The core research challenge is to ensure that process execution data is readily accessible and
queryable for all users, removing the need for specialized query languages or technical exper-
tise. Existing process query languages are typically designed for data scientists, presupposing
a certain level of technical familiarity with process schemas, and query languages such as
SQL, Cypher, and SPARQL. However, a significant oversight in current approaches is their
failure to make process data accessible to domain analysts (e.g., those in healthcare or in-
surance). More crucially, a prominent limitation of existing process querying technologies is
their inability to offer natural access to process data for human users. Consequently, the first
challenge revolves around finding solutions that can automatically generate the corresponding
structured query from NL, allowing users to query process data in a way that feels intuitive
and user-friendly.

Additionally, the proposed solution must possess the necessary generality to seamlessly
transition between diverse process domains with minimal manual intervention. Process data,
intricately tied to specific domains, assumes unique characteristics that distinguish one pro-
cess domain from another. For instance, consider the distinct nature of process data in the
healthcare domain, where patient treatments, diagnoses, and medical interventions shape
the events recorded. In contrast, process data in the context of supply chain management
could revolve around order placements, inventory updates, and shipping activities. This do-
main specificity underlines the challenge of devising a querying solution that minimizes the
manual effort required for domain adaptation. A robust querying solution must incorporate
automated mechanisms that infer domain-specific characteristics and adjust query processing
accordingly. This is essential to ensure the applicability of any proposed solution to various
domains.

Moreover, the automated solution must be aligned with a particular storage technique em-
ployed for storing process data and be designed around a specific query language to streamline
the query construction process. This necessitates the careful selection of an efficient storage
technique and an appropriate query language tailored to the task of querying process data.
Process execution data captured by information systems can come in either single or multi-
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dimensional formats. In a single-dimensional context, events are linked with a solitary entity
identifier (case ID), which allows for correlation centered around a specific entity. This facil-
itates the examination of events from a particular vantage point. Conversely, in most cases,
processes exhibit multi-dimensional characteristics. In such scenarios, the conventional con-
cept of a case ID might not be applicable. Instead, data are grouped into objects, and each
event can be tied to one or more of these objects. This setup enables the simultaneous analysis
of events from multiple viewpoints. Moreover, these objects can establish relationships with
each other, opening the door for correlations based on combinations of objects. Therefore,
for effective access and manipulation of process execution data, suitable storage and querying
mechanisms are imperative. The research outlined in [55] offers insights into the concepts and
requirements for modeling and querying multi-dimensional process data. We distilled these
requirements into two principal facets for querying process data:

• Since event data has inherent connections, the storage approach should efficiently model
relationships between (i) events, (ii) events and objects, and (iii) objects as core com-
ponents.

• Querying paths should be straightforward and efficient.

Various strategies have been proposed to facilitate the querying of process data stored in
files (using standardized formats like XES) [124, 168], relational databases [139, 113, 48],
or graphical models [20, 55] (for an overview, refer to [55]). Within this context, the initial
hurdle lies in proposing an effective model for representing and querying process data.

Given the limitations highlighted earlier, we have formulated the following sub-questions
for exploration:

• RQ1-1: How to provide an AI-based solution that automates the process of querying
process data using NL?

• RQ1-2: What design principles can be implemented to create an approach that pos-
sesses sufficient generality, allowing for seamless transitions between diverse process
domains with minimal manual intervention?

• RQ1-3: What storage technique and query language should the automated solution be
designed around to ensure effective and efficient querying?

1.2.2 How to make the discovery and accessibility of process mining tech-
niques intuitive and in a natural manner?

In light of the intricate and varied landscape of process mining methods, challenges arise when
attempting to offer all-encompassing solutions for their discovery and accessibility. With the
proliferation of methods spanning a diverse spectrum, the seamless discovery and access to
the most pertinent techniques tailored to individual needs becomes an intricate task. In



10 Introduction

the following, we delve into the primary limitations associated with developing solutions to
enhance the discovery and accessibility of process mining methods.

The first limitation pertains to the varied ways in which process mining methods are im-
plemented. These methods manifest in various forms, from source code written in different
programming languages to integrated features within specialized process mining tools or as
standalone applications. This diversity in implementation poses several challenges. Firstly,
it can limit the accessibility of these methods based on a user’s expertise with a particular
programming language or tool. Secondly, it can hinder the seamless integration of these meth-
ods into broader software applications, leading to potential compatibility and interoperability
issues. For instance, a method implemented in Python might not easily integrate with a sys-
tem built on Java. This lack of standardization in implementation can stifle innovation and
limit the broader adoption of process mining techniques. To address this, there is a need for
solutions that streamline the integration and accessibility of these methods. Such solutions
should ensure that users can effortlessly access and integrate these methods, irrespective of
the programming language in which they are implemented or other potential barriers.

The second limitation stems from the absence of standardized documentation that pro-
vides a unified description of all methods across the diverse fields of process mining. Given
the expansive array of techniques available in areas such as discovery, conformance check-
ing, prediction, and enhancement, it becomes evident that each field has its unique set of
methods, each characterized by specific properties. For instance, while process discovery
methods might be described based on the algorithm used for model discovery or the notation
employed for modeling the resultant model, prediction methods might be characterized by
the type of prediction, the methodology employed, and the nature of the predictor model.
This lack of a standardized approach to documentation means that knowledge about these
techniques remains fragmented and siloed. While several recent surveys, such as [9], [147],
and [140], have attempted to shed light on specific sub-domains within process mining, they
often focus on niche areas. Even when multiple surveys target the same domain, they might
characterize methods using distinct properties, leading to inconsistencies. This fragmented
landscape underscores the pressing need for a standardized and unified representational model
or description that encompasses all methods across different fields of process mining. Such a
unified approach would provide comprehensive information about the properties and nuances
of these methods, aiding users in understanding and selecting the most appropriate techniques
for their needs.

Furthermore, it is imperative that any proposed solution addresses the aspect of user-
friendliness. This entails ensuring that the solution is designed to be intuitive and straightfor-
ward, accommodating users of all backgrounds in effectively discovering and applying process
mining methods.

In light of these limitations, our second research challenge revolves around creating a
more cohesive and accessible ecosystem where process mining techniques are readily discov-
erable and accessible, irrespective of the underlying technical intricacies or the user’s level of
expertise. We intend to establish a unified modeling and representation framework for the
spectrum of available process mining methods. This framework would encapsulate essential
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method properties, providing users with a comprehensive and standardized view of each tech-
nique’s capabilities and applicability. In addition, we aim to provide users with a user-friendly
solution allowing them to easily discover and access these techniques. To address this research
problem, we need to answer the following questions:

• RQ2-1: How can the accessibility and integration of process mining methods be stream-
lined?

• RQ2-2: Which properties should be used to characterize available methods to facilitate
seamless discovery?

• RQ2-3: How to provide a user-friendly solution that assists users in discovering and
accessing methods that cater to their individual requirements?

1.3 Thesis principles, objectives and contributions

1.3.1 Thesis principles

In this thesis, we consider the following principles:

Principle 1: User-Centric Design: At the heart of our approach lies the end-
user (business process users, analysts, data scientists, etc.). Every solution, tool, or
methodology we develop will prioritize user experience, ensuring that even those without
technical expertise can effortlessly interact with the provided solution;

Principle 2: Automation: The proposed approaches should automate intricate tasks
that users would otherwise need to perform manually;

Principle 3: Adaptability & Generality: Recognizing the dynamic nature of pro-
cess domains, our methodologies will be designed to adapt to diverse domain-specific
characteristics. This ensures that our solutions remain relevant and effective across a
myriad of application scenarios;

It is noteworthy that the proposed work in this thesis needs to be (i) validated through
proof of concepts and (ii) evaluated through different experiments on real datasets such as
real process execution data with user’s collected data and feedback. Therefore, the imple-
mentation, experiments, and case study results with end users should be detailed.

1.3.2 Thesis objectives

The overarching ambition of this thesis is to harness the potential of incorporating AI solu-
tions to facilitate process analysis tasks. Grounded in the challenges and research problems
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delineated in the preceding sections, we consider two main objectives in this thesis. The first
objective revolves around the automated querying of process data from NL. This encompasses
the creation of user-centric interfaces and tools that not only render process data accessible
but also make it intuitive for a wide range of users. The second objective is centered on mak-
ing the process mining methods easily accessible and discoverable. Our aim is to establish
a unified and user-friendly environment where process mining techniques are readily discov-
erable and accessible, irrespective of the technical intricacies involved or the users’ level of
proficiency.

Within the scope of the first objective, we delineate three sub-goals. Firstly, there is a
fundamental need to offer an automated solution that streamlines the querying of process
data through NL. Secondly, we aim to create a solution that exhibits adaptability, smoothly
transitioning between various process domains with minimal manual effort. Lastly, the au-
tomated solution should be constructed in alignment with efficient storage techniques and
query languages.

In pursuit of the second objective, we chart out an additional set of three sub-goals.
Firstly, our focus shifts towards devising solutions that promote the smooth integration and
accessibility of process mining methods. Secondly, we aim to establish a standardized method
description framework that facilitates the discovery of methods based on their characteristics.
Lastly, we endeavor to elevate the user experience by crafting user-friendly interfaces that
enable the effortless discovery and utilization of process mining methods based on natural
requirements. Through these sub-goals, we aspire to advance the accessibility, and usability
of process mining methods for a diverse user.

Our objectives are summarized as follows:

• Objective 1: Facilitate process data querying by automatically constructing struc-
tured queries from NL;

This objective requires the achievement of three sub-objectives:

– Objective 1.1: Put forth an AI-driven solution for automating the construction
of queries over process execution data using NL;

– Objective 1.2: Develop the querying solution adaptable to various domains, re-
ducing the effort needed when transitioning between different process domains;

– Objective 1.3: Choose an efficient storage technique and query language as the
foundation for designing the automated solution;

• Objective 2: Facilitate the discoverability and accessibility of process mining methods
based on the requirements expressed in NL;

This objective requires the achievement of three sub-objectives:

– Objective 2.1: Provide a service-oriented solution that streamlines the integra-
tion of process mining techniques;
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Figure 1.3: Two complementary approaches toward a conversational AI for cognitive process analysis

– Objective 2.2: Establish a standardized description metamodel for process min-
ing methods, including their properties, inputs, and outputs, to enable effortless
discovery;

– Objective 2.3: Enhance the user experience by automating the discovery and
invocation of methods that align with user requirements expressed in NL;

1.3.3 Thesis contributions

To meet the above objectives while handling the described research issues, we introduce
two complementary approaches toward a conversational AI for cognitive process analysis.
These approaches revolve around querying and accessing a knowledge base containing process-
related information, as illustrated in Figure 1.3. The first approach focuses on simplifying
the cognitive querying of process data by automatically generating a database query from
NL queries. This approach is highlighted by the blue pointed area in Figure 1.3 and directly
tackles research problem RQ1 and Objective 1. This approach encompasses three primary
contributions, which are further described below:

• Graph Metamodel for representing process execution data: We propose a graph
metamodel rooted in the principles of Labeled Property Graph (LPG) [7] for the effective
storage of process data (highlighted by the green pointed area in Figure1.3). The choice
of LPG is motivated by its capacity to explicitly represent connections within process
data. This metamodel encompasses various node types, relation types, and properties,
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facilitating the storage of diverse concepts and relations linked to multi-dimensional
process data. Additionally, we employ the Cypher language1 to access and retrieve
data. The Cypher query language’s aptitude for efficiently querying subgraphs and
paths aids in addressing RQ1-3 and aligning with Objective 1.3.

• Natural language interface for querying process data: We introduce a pipeline
based on NLP to guide end users in querying process data. Specifically, we focus on the
read operations to retrieve data and answer process-related questions. The user-facing
interface of this pipeline receives user queries formulated in NL and automatically con-
structs the corresponding Cypher queries for execution over structured process data.
This hybrid pipeline combines the strengths of both machine learning and rule-based
methodologies. The process unfolds in two key stages: First, we employ machine learn-
ing techniques for intent detection and entity extraction, leveraging a model trained on
a collection of NL queries paired with their respective intents and entities. To align with
Principle 3 and Objective 1.2, we propose general patterns for intents and entities,
that are defined based on the LPG meta-model in general and that are instantiated
according to the event property graph model. Subsequently, in the second stage, a rule-
based mechanism generates the Cypher query based on the intent and entities identified
in the previous stage, addressing RQ1-1 and aligning with Objective 1.1.

• Automated generation of NL training data: As previously mentioned, the NLI
compromises a machine learning model that should be trained with a set of NL train-
ing data. However, these NL queries are intricately tied to specific process domains,
necessitating the generation of new training data when transitioning between domains.
To align with Principle 3—minimizing the effort required for multi-domain adapta-
tion—we propose an automated approach leveraging prompt engineering and LLMs for
the generation of NL queries. By harnessing the capabilities of LLM like GPT, we
can automatically produce a diverse range of NL queries without relying on manually
annotated datasets for each domain transition, thus addressing RQ1-2 and Objective
1.2.

The second approach focuses on improving the discovery and accessibility of process min-
ing techniques, effectively addressing RQ2 and aligning with Objective 2. This approach
is highlighted by the yellow pointed area in Figure 1.3. It involves the description of process
mining techniques and introduces a service-oriented solution specifically crafted to invoke
the appropriate API of process mining methods that fulfill the analysts’ requirements. This
approach embraces a service-oriented paradigm, presenting process mining techniques as ser-
vices. It successfully tackles RQ2-1 and aligns with Objective 2.1. Central to this frame-
work is the utilization of Rest APIs for process mining services, a choice that streamlines the
integration process. The architecture comprises three key components.

The first component, "Service Description", utilizes a graph metamodel based on LPG to
describe the available discovery, conformance, and prediction methods (highlighted by the red
pointed area in Figure1.3). This metamodel encompasses essential concepts, such as service

1https://neo4j.com/developer/cypher/
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properties, required inputs and outputs, and submodules or micro-functionalities constituting
the services. This comprehensive representation directly addresses RQ2-2 and aligns with
Objective 2.2.

The second component, "Unified Service-Oriented REST API Design", capitalizes on the
inherently functional nature of process mining methods. It presents users with a cohesive and
comprehensive Rest API design tailored to discovery, conformance, and prediction services.
This design encompasses meticulous considerations, including URL structure, HTTP method
selection, and response code specifications.

The final component, "Services Matching", addresses RQ2-3 and aligns with Objective
2.3 by automating the process of matching users’ requirements with suitable process mining
services. This eliminates the need for time-consuming manual searches in unstructured data.
This component operates through two key phases. It commences by querying the process
mining methods graph to identify methods aligned with the user’s specifications. This is
achieved by automatically crafting Cypher queries based on provided NL queries, a process
enhanced by the capabilities of LLMs like GPT-4. Once suitable methods are identified, users
can make selections from the available options. Upon selection, the second stage generates
corresponding REST API calls utilizing the REST API design outlined in the second compo-
nent. This two-phase mechanism provides a streamlined and user-centric process for accessing
and employing process mining methods (Principle 1).

The two solutions were implemented as standalone applications. The initial solution in-
corporates an NLI that interacts with users to gather NL queries. To validate its effectiveness,
the solution was rigorously evaluated using two publicly available process datasets. Addition-
ally, over 520 NL queries were collected from external users, with the aid of a paraphrasing
tool. Furthermore, we embarked on a proof-of-concept evaluation of our service-oriented ar-
chitecture. We used more than 110 NL queries to evaluate the service matching component.
These NL queries are specifically tailored to descriptions of process mining services. Addi-
tionally, we carried out a use case study with external participants to gauge user experience
in searching and accessing process mining methods and to gather feedback. Our experimen-
tal outcomes have been made publicly accessible, ensuring transparency and reproducibility
within the research domain. This availability encourages further investigation and analysis,
facilitating practical insights for future research endeavors.

1.4 Thesis outline

This thesis is structured as follows. Chapter 2 lays out the background and pertinent works
relevant to our study’s context. We initiate by presenting an overview of works concern-
ing process querying and process data storage, offering insights into the current research
landscape. Subsequently, we delve into studies focused on integrating NLP into database
systems. Additionally, we examine initiatives that harness AI and cognitive capabilities to
simplify intricate analytical tasks. Our exploration extends to scholarly endeavors dedicated
to enhancing the accessibility and discoverability of process mining methodologies. Lastly,
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we provide a comprehensive discussion of research related to the description and alignment
of web services.

Chapters 3, 4, 5 are the core of our thesis which elaborate our main contributions. Chap-
ter 3 presents the graph metamodel we devised for representing multi-dimensional process
data. Chapter 4 showcases our NLI for querying process execution data. This section also
highlights our automated approach for generating NL queries, which supports training the
first component of our interface. Chapter 5 delves into the service-oriented architecture for
discovering and accessing process mining techniques with its three main components: service
description, unified service-oriented Rest API design, and service matching.

Chapter 6 shed light on potential avenues for furthering our research, pinpointing ar-
eas ripe for enhancement and broadening within the scope of our contributions. It offers a
thorough analysis of prospective improvements and augmentations for each facet of our work.

Finally, Chapter 7 concludes this thesis by summarizing the work presented.
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2.1 Introduction

In this chapter, we embark on an in-depth review of relevant literature and studies that
anchor our research thesis. Initially, Section 2.2 delves into research pertaining to process
querying techniques and various methodologies for storing process data which is directly re-
lated to research question RQ1-3. Next, the landscape of NLP as applied in databases and
technical Domains is mapped out in Section 2.3. More specifically, Section 2.3.1 details the
current strides in crafting NLIs tailored for querying database systems. Further advancing
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in this domain, Section 2.3.2 elucidates the methodologies related to tasks of intent detec-
tion and entities extraction—central elements in the realm of conversational agents. In the
next section, we highlight studies closely related to incorporating cognitive capabilities into
process analysis tasks. Within this domain, Section 2.4.1 sketches the current state of pro-
cess analysis concerning unstructured data. This is complemented by Section 2.4.2 which
elucidates the techniques enabling NL queries over process data and their integration with
process mining tools. The potential of leveraging LLMs for intricate process analysis tasks
is showcased in Section 2.4.3. The last two sections transition our focus to research related
to our third contribution, which revolves around a service-oriented architecture designed for
the discovery and access of process mining techniques. In Section 2.5 we offer an overview
of existing research endeavors aimed at enhancing the discoverability (Section 2.5.1) and
accesibility (Section 2.5.2) of process mining techniques. Finally, in Section 2.6 we discuss
existing approaches concerning services description (Section 2.6.1), and approaches related to
automated web service discovery (Section 2.6.2).

2.2 Process Querying and Data Storage

A process querying method is a technique for managing a process repository by applying
CRUD operations [122]. A process repository stores a model that describes a specific process
(e.g. process model, event log). Existing work on process querying can be classified according
to the input data (i.e. model stored in the process repository) and the querying goal (i.e.,
applied CRUD operations). The first category is concerned with querying process models.
These works suggest a query language for retrieving information or updating an existing
process model (e.g. [78, 41, 17]). They also concentrate on efficient querying of process
models (e.g. [120, 76, 11]). The second category addresses the problem of querying execution
traces of business processes at run-time (used for monitoring) or post execution (e.g.[16, 43,
44, 42, 112]). Researches in this category use as input a process model and its event log.
Finally, the last category focuses on querying execution traces of business processes in the
form of event logs only (e.g. [20, 124, 168, 58]). In our work, we focus on the third category
for querying process execution data.

Over the years, various models and storage techniques have been developed to store process
execution data. One of the primary methods is file storage, where process data is sequentially
stored in files. These files can be in diverse formats, including CSV, XES, and OCEL. Specif-
ically, XES [71] and OCEL [61] have emerged as the two primary standards for storing event
logs in the realm of process mining. Process execution data is multi-dimensional and object-
centric in nature [1], this refutes the appropriateness of sequential storage of event data in the
form of XES event logs (e.g. [124, 168]). The XES standard groups events under a single case
notion and it does not allow to modeling multi-dimensional process data, where each event is
related to one or more case notions. On the other hand, OCEL has been introduced as a new
standard to represent this multi-dimensional event data. While OCEL enhances event-object
correlation, querying complex relationships between entities in an OCEL representation can
be challenging. For instance, querying path between related events across multiple objects



2.2. Process Querying and Data Storage 19

may not be straightforward.

Relational data model has been used by the majority of querying techniques to allow the
representation of one-to-many and many-to-many relations between events and cases. For
instance, the research [139] introduces a mining approach that operates directly on relational
event data by querying the log using conventional SQL. By leveraging database performance
technology, the approach allows the detection of specific control-flow constraints. Another
research, [132], showcases a framework that employs SQL queries on relational process data.
This framework addresses multiple declarative process mining scenarios, including process
discovery, conformance checking, and query verification. The paper [48] tackles the intrica-
cies of conducting process mining on extensive datasets. It introduces a specific database
operator that identifies the ’directly follows’ relationship, a core concept in process mining.
Furthermore, the study explores the operator’s equivalence attributes, which are instrumen-
tal in enhancing query efficiency. The work [113] introduces a meta model that seamlessly
integrates both process and data perspectives. The goal is to generate diverse views from
a database in a highly flexible manner. This integration is pivotal for deriving meaningful
insights from process mining endeavors. Although relational data modeling is a prevalent
approach, the absence of explicit storage of relationships between events complicates the
querying of paths. These complications or inefficiencies can adversely impact the overall
querying process.

Graph-based data models, namely RDF [130] and labeled property graphs [7], have been
proposed to overcome the limitations of relational modeling and querying. The inherent
design of graph data models emphasizes relationships, enabling more intuitive representation
and querying of paths between interconnected events. This design sidesteps the complexities
and overheads tied to executing JOIN operations across multiple SQL tables. The pioneering
graph-based model for event data storage utilized RDF [20, 18, 19], where events are depicted
as nodes, and the relationships between events and entities, as well as inter-entity relations,
are illustrated as edges. Such graphs can be efficiently queried using SPARQL. In the study
[20], the authors put forth an enhanced version of SPARQL tailored for querying event data
housed in RDF graphs. Another research, [18], introduces a specialized model tailored for
encapsulating process knowledge. This model captures process-centric entities, abstractions,
and their interrelations in a graph format. The model is equipped with tools for discovery,
extraction, and analysis of process data, adeptly translating process-focused queries into
graph-centric ones. Additionally, the paper [19] delineates a model for process OLAP (P-
OLAP), spotlighting OLAP-centric concepts within the process landscape, such as process
cubes, dimensions, and cells. This research also unveils a graph processing engine, grounded
in the MapReduce paradigm, optimized for large-scale analytics on process graphs.

LPG serves as another graph-based approach to store event data. Compared to RDFs,
LPGs offer a more compact graph size since they permit the storage of key/value pairs directly
within a node or relationship. In the context of financial auditing, the study [161] represents
behavior across two entity types as a graph, detailing the directly-follows relationship for each
entity or relation. Similarly, the research [24] transforms object-centric logs into two distinct
graphs: one illustrating the correlation between events and entities, and the other showcasing
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Figure 2.1: Graph schema proposed by [55] for storing multi-dimensional process data

the directly-follows relationship between any pair of events per entity.

In this thesis, we propose a graph metamodel based on LPG to store concepts and relations
related to multi-dimensional process data (detailed in Chapter 3). Our metamodel draws
inspiration from the work presented in [55] which proposes a comprehensive data model
tailored for multi-dimensional event data, built upon the principles of LPG. The research
in [55] focuses on creating a general data model designed to systematically store structural
and temporal relations within a single, integrated graph-based data structure. This approach
allows for a more comprehensive representation and querying of event data, especially when
considering the multi-dimensional nature of such data. The model’s design emphasizes the
importance of capturing both the temporal sequence of events and the relationships between
different events and entities in a unified manner. The proposed graph schema proposed in
this paper is illustrated in Figure. 2.1. It comprises four distinct semantic node types: (i)
logs, (ii) events, (iii) entities, and (iv) event classes. It also encompasses three structural
semantic relations that establish connections between events, linking them to (i) one or more
entities, (ii) exactly one log, and (iii) one or more event classes. Additionally, two behavioral
semantic relations describe (i) the "directly-follows" relationship between two events (along
a designated entity) and (ii) its counterpart "directly-follows" relation between event classes.
This graph enables the representation of information at both the instance level and the model
level.

In our research, we place a significant emphasis on the integration of both structural and
behavioral data within a unified metamodel, akin to the approach delineated in [55]. However,
our methodology diverges in two notable ways. First, our focus is solely on instance-level in-
formation, omitting any details related to the model level. Second, our metamodel features a
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unique architectural framework, characterized by its distinctive node and relationship types.
These choices are driven by our overarching objective to construct a highly expressive meta-
model. This metamodel is carefully designed to encompass and explicitly represent every
concept and relationship inherent to multi-dimensional process data, ensuring a comprehen-
sive and insightful representation.

2.3 Natural Language Processing in Databases and Technical
Domains

In this section, we provide an in-depth exploration of the NLP landscape within the domains
of databases and technical fields. Specifically, Section 2.3.1 offers a comprehensive overview
of the developments in constructing NLIs customized for interacting with database systems.
Furthermore, in Section 2.3.2, we delve into the primary approaches related to intent detection
and entity extraction, which constitute the fundamental NLP tasks employed in conversational
systems.

2.3.1 Natural Language Interfaces to Database Systems

Several bodies of research have been proposed to assist users in querying database systems.
These researches aimed to provide user-friendly interfaces for easily access the stored data.
Existing works are classified into two categories: those that propose visual interfaces and those
that propose textual interfaces. First category is related to visual query systems (VQS). These
works propose a visual query language (VQL) [35], which employs a visual representation
to depict the domain of interest. They also provide a visual language for expressing the
query in a visual format. The authors in [101] compare existing VQS based on the visual
representation used to depict the data model and to express the query. The VQLs are also
used for querying different database formats: relational databases (e.g. [22]), object-oriented
databases (e.g. [94]), data stream (e.g. [35]), web data XML (e.g. [36]) or RDF (e.g. [73]) and
also graph databases (e.g. [75, 167]).

Second category is related to NLIs for querying databases (NLIDB) [29, 135, 148, 151,
177, 50] to which our work is closely relevant. NLIDB systems interpret a NL query, then
translate it to a structured query to be executed over the database. Existing approaches
can be categorized into rule-based (e.g. [29, 135, 148, 175]) or machine-learning based ap-
proaches (e.g. [151, 177, 50]). The authors of [3] review most recent rule-based approaches
for constructing structured queries from NL utterances. They also provide a comparison of
the techniques used and the type of questions that can be answered.

These approaches provide a high level of flexibility and adaptability as they are indepen-
dent of any databases. The same set of patterns or rules are applicable to multiple use cases.
The main limitation of rule-based methods is their limited scope since they make several
assumptions about the database schema, the query language, and the NL queries. Indeed,
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rules are insufficient to cover the wide range of NL, severely limiting the approaches’ usability.
Furthermore, all rules are handcrafted by developers, making it impossible to cover all cases.
On the other hand, when the number of rules and their complexity increase, maintaining
them becomes a major issue.

Recently, machine-learning based methods have been proposed [151, 177, 50]. In general,
these approaches employ sequence to sequence models that translate NL queries to SQL
queries [151, 177, 50]. The basic idea is to employ a machine learning model that takes the
NL query as input and attempts to predict the corresponding SQL query. In other words,
translating from NL to SQL can be expressed as a supervised machine learning problem
involving pairs of NL and SQL queries. The main goal is then to predict the output sequence
(i.e. SQL tokens) given an input sequence of tokens (i.e. NL tokens) based on previously
observed patterns.

The main advantage of machine learning-based approaches over traditional NLIs is that
they support linguistic diversity. However, one of the most significant challenges in developing
these methods is the lack of training data [3]. Moreover, these systems act as a black box,
preventing the user from knowing whether failures that may occur are due to linguistic issues
in the query or because the database does not contain the desired result.

In this thesis, we propose a hybrid NLI system that combines rule and machine-learning-
based approaches. First, we provide users with the flexibility to express their queries in NL
(i.e. machine learning for NLP and NLU). Second, our approach does not require a large
training dataset for constructing complex database queries from NL (i.e. rules-based for
query construction).

The majority of current NLI systems are proposed for querying relational databases [29,
23, 135] or RDF graphs [142, 175]. Our work is related to [149] in which an approach is
proposed to construct a structured subgraph from NL. However, this work is limited to the
construction of a subgraph and does not address the problem of converting the subgraph into
a graph query.

2.3.2 Approaches to Intent Detection and Entity Recognition

A variety of machine learning techniques and NLP models have been employed to perform
intent recognition [31] and entity extraction [64]. Traditional approaches relied on rule-based
systems and manually crafted features, often combined with classifiers like Support Vector
Machines or Conditional Random Fields. While these methods offered reasonable results, they
were limited by their reliance on handcrafted features and rules, making them less adaptable to
complex language patterns. With the advent of deep learning, the NLP landscape underwent
a significant transformation [97]. These models can be broadly categorized based on their
approach: independent modeling and joint modeling. Independent modeling approaches treat
intent classification and slot filling as separate tasks. For intent classification, methodologies
range from Convolutional Neural Networks (CNN) [83, 173], to Long Short-Term Memory
(LSTM) networks [127]. Attention mechanisms have also been integrated with CNNs [174]
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and further expanded into hierarchical structures [164]. [99] introduced a novel adversarial
multi-task learning approach for this purpose. On the other hand, slot-filling techniques have
been diversified, with [160] employing CNNs, [165] utilizing deep LSTMs, and more intricate
methods like the encoder-labeler deep LSTM [88].

Joint modeling approaches, as the name suggests, simultaneously address intent classifi-
cation and slot filling. Notable methodologies in this category include the CNN-CRF model
[163], the Recursive Neural Networks [68], and the attention-based BiRNN model [98]. A par-
ticularly innovative model in this category is the slot-gated attention-based model [62], which
leverages intent context for enhanced slot filling. Collectively, these advancements underscore
the rapid evolution and diversification of deep learning techniques in NLU. Furthermore,
transformer-based architectures, like BERT model [45], revolutionized NLP [158]. These pre-
trained language representations, learned from extensive amounts of unlabeled text, allowed
transformers to capture contextual dependencies and achieve state-of-the-art performance in
various NLP tasks, including intent recognition and entity extraction.

In addition to these traditional and deep learning approaches, the NLU family includes
platforms like Wit.ai [56] and Dialogflow [63]. Wit.ai, acquired by Facebook, and Dialogflow
(formerly API.AI), developed by Google, are NLP platforms that offer tools and APIs for
developers to build applications and services with intent recognition and entity extraction
capabilities. These platforms abstract the complexities of NLU, enabling developers to create
language-based applications without building NLU models from scratch. They provide a user-
friendly interface to train custom language understanding models and have been widely used
to develop chatbots, virtual assistants, and other conversational interfaces.

NL interactions in conversations often possess layers of meaning, ambiguity, and intricate
user intentions. In the context of NLP and chatbots, the term "complex intent" refers to a
user’s intention that involves multiple actions, conditions, or levels of comprehension. In con-
trast to simple intents, which have a direct mapping to a single action or response, complex
intents necessitate a deeper understanding of context, multiple procedural steps, or a combi-
nation of simpler intents. Consider the following example: "I would like to schedule a flight to
Paris next Friday, returning on the following Monday, and also secure a hotel reservation near
the Eiffel Tower for those dates." In this scenario, the user’s complex intent involves three
distinct actions: (i) booking a flight to Paris on a specific date, (ii) arranging a return flight
on a different date, and (iii) reserving a hotel near the Eiffel Tower for the trip’s duration.
While each of these actions could be considered a simple intent in isolation, when combined
in a single statement, they form a complex intent.

Several advanced techniques have been proposed to recognize complex intents in NL [126,
57, 30]. The study conducted by [30] is dedicated to enhancing the recognition of complex
intents in human-bot conversations by harnessing context-based knowledge. It posits that
recognizing complex intents can be significantly improved by incorporating composite dialog
patterns alongside fundamental intent characteristics. This research introduces an approach
that combines established NLP and ML techniques for extracting NL features, including basic
intents and dialog acts. In addition, it employs a rule-based approach that leverages these
features, along with contextual knowledge derived from composite dialog patterns and other
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metadata, to formulate rules for recognizing complex intents. This approach places particular
emphasis on capturing complex intents that naturally arise during interactions with services,
notably API methods.

2.3.3 Synthesis & Discussion

Our survey of NLIDB systems highlighted the evolution from rule-based to machine learning-
based approaches. Rule-based methods (e.g. [29, 135, 148, 175]), although providing flexibility,
were limited in scope, assuming certain database schema structures and query languages. Ma-
chine learning-based methods (e.g. [151, 177, 50]), on the other hand, introduced adaptability
to diverse linguistic patterns but faced challenges related to data scarcity and interpretability.
In response to these limitations, our work proposes a hybrid NLI system, integrating rule-
based and machine-learning approaches (detailed in Chapter 4). This hybrid model retains
the flexibility of NL queries while mitigating the need for extensive training data, offering a
promising solution to the existing challenges.

Furthermore, in the realm of NLIs to databases, most existing methods concentrate on
generating SQL or SPARQL queries. In contrast, our research is centered on constructing
Cypher queries tailored for accessing LPGs. Additionally, prevailing approaches often rely
on generalized datasets and benchmarks associated with specific domains. In contrast, our
dataset is process-oriented, inherently distinct in its nature from the data utilized in these
alternative methods.

2.4 Incorporating Cognitive Capabilities into Process Analy-
sis

In this section, we delve into three distinct categories of works closely aligned with our contri-
butions, all geared toward facilitating cognitive process analysis. Section 2.4.1 delves into the
application of process analysis on unstructured data, while Section 2.4.2 elucidates the tech-
niques enabling NL queries over process data and their integration with process mining tools.
Lastly, Section 2.4.3 explores the potential of harnessing Large Language Models (LLMs) for
conducting intricate process analysis tasks.

2.4.1 Process Analysis from Unstructured Data

Several efforts have delved deep into the realm of process analysis, broadening its scope to
encompass not just structured but also unstructured data sources. These endeavors predomi-
nantly target the extraction of process data and knowledge from textual sources. For instance,
the study in [60] introduced a methodology to automatically derive business process models
from textual narratives. Similarly, [59] presented a prototype adept at semi-automatically
detecting process model elements within NL texts, utilizing a plethora of data sources like
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documents and reports. These identified elements subsequently serve as building blocks for
process model generation.

Another area of research has concentrated on the utilization of process mining techniques
with textual data in conjunction with structured event logs. For instance, [131] introduces a
novel approach to analyzing business process execution complexity by combining both textual
data and event logs. For textual data-based complexity, the study employs a set of linguistic
features, adapting them from previous work. Machine learning techniques are then applied
to predict complexity using these features. For log-based complexity, relevant metrics from
the event log are used. The study then performs correlation analyses and identifies signif-
icant differences. Afterward, a correlation analysis of two complexities and an analysis of
the significant differences in correlations are performed. [153] introduces a predictive process
monitoring framework that integrates text mining with sequence classification techniques to
manage both structured and unstructured event payloads.

Certain works have specifically explored the intricate landscape of messaging systems. [53]
offers a comprehensive overview of the contemporary advancements in discerning business
processes and activities from such systems. In this context, several works have been proposed
to analyze business processes from emails. For instance, [52, 54, 91] focused on analyzing
email systems to discover activities, actors and business data. Then, they used the discovered
information to mine processes that are entirely or partially carried out via emails.

Similarly, the work [145] harnesses unstructured data, such as user comments or emails, to
uncover the implicit context of processes. By employing information extraction and text clus-
tering techniques, it provides a nuanced understanding of the process landscape. [21] delves
into the intricacies of process extraction from text, shedding light on the existing limitations
and future challenges. On the other hand, [80] employs an NLI to derive topics and pro-
cess activities from customer service dialogues, representing them in a standardized format.
Lastly, [136] introduces the C4PM method, a unique blend of agile principles, systems think-
ing, and NLP techniques, to analyze behavioral patterns in organizational semi-structured or
unstructured data.

2.4.2 Natural Language Querying

Recently, new research [14, 70, 13] focused on using NL queries to answer process analysis
questions, which are closely related to our work. The authors of [14] proposed a method
for answering NL queries over process mining data. This research presents an innovative
architecture for an NL conversational interface tailored to process mining tasks. This inter-
face seamlessly translates user questions posed in NL into logical queries compatible with
existing process mining tools. It introduces an abstract logical representation for process
mining queries, designed to be both tool-agnostic and easily translatable into API calls for
specific tools. The translation process involves several key steps. Initially, a series of nat-
ural language processing (NLP) techniques, including tokenization, part-of-speech analysis,
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and entity recognition, are applied. These techniques identify general entities (e.g., people,
locations), general entities relevant to process mining (e.g., cases, events, activities), and
domain-specific entities corresponding to specific process domains (e.g., attribute values).
Subsequently, the parsed NL query is mapped to predefined rules, resulting in the generation
of a logical representation based on the identified rule. Finally, the logical representation is
mapped to a real API call compatible with a chosen process mining tool. While this approach
showcases promising capabilities, a notable limitation is the absence of a clear categorization
for supported process mining queries. Additionally, the system relies entirely on a rule-based
approach, which may restrict its applicability to predefined rules and potentially limit flexi-
bility in handling a broader range of user queries.

An extended version of [14] is proposed in [13]. The authors enhance the abstract log-
ical representation for process mining queries, as initially proposed in [14], along with the
corresponding set of semantic rules. This extension enables the handling of queries related
to process behavior and process mining analyses. Additionally, it introduces a taxonomy for
NL questions pertaining to process mining. This taxonomy aids in categorizing process min-
ing queries and provides a framework for structuring the evaluation. The approach supports
handling NL queries such as ’What is the average execution time of the process?’, ’How many
conformance problems have been identified?’, ’What is the most common flow of activities?’,
’What is the average cost of the approval task?’.

Another important work presented in [70]. It focuses on leveraging NL queries for pro-
cess data retrieval. This research extends the capabilities of Athena [135], which relies on
ontology-based NLIs for database querying. The authors present an automated approach for
constructing an ontology from event data, enriching it with domain-specific terminology rel-
evant to the business context. A key innovation lies in their development of a bootstrapping
pipeline, which utilizes the process automation-derived ontology to automatically configure
each component of Athena with domain-specific settings. This innovative approach simplifies
the domain adaptation process and expedites the setup of Athena, making it more accessible
and adaptable to diverse business contexts.

Similarly, [129] centered around the measurement of process performance indicators (PPIs)
by utilizing both textual descriptions and event logs. It takes as input a textual description
of a PPI and produces an output by evaluating this PPI against a provided event log. The
approach unfolds through a sequence of four primary steps. In the initial step, the primary
focus is on extracting pertinent entities from the textual description of the PPI. For this task,
a fine-tuned BERT language model is employed. Moving on to the second step, the extracted
entities are matched against the content of the event log, thereby initiating the establishment
of a measurable PPI definition. In cases where essential information is omitted, the third step
comes into play, employing a variety of heuristics to fill in these gaps and comprehensively
complete the PPI definition. Finally, the fourth step utilizes the finalized definition to compute
the desired PPI.

To the best of our knowledge, our work is the first to propose a hybrid method for querying
event logs stored in graphical representations using NL. Moreover, in our work, we employ an
intent detection step that increases the accuracy of answering NL queries over process data.
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2.4.3 Leveraging Large Language Models for Process Analysis

Large Language Models (LLMs) have reached a remarkable level of proficiency, exemplified by
recent advancements like GPT-4, enabling them to perform a wide range of tasks almost on par
with human capabilities. These models hold significant potential for enhancing the analysis of
business processes, offering the promise of an NL process querying approach, underpinned by
the vast domain knowledge they have absorbed during training. The quality of information
extracted from LLMs, however, hinges on the formulation of well-crafted prompts [87]. To
tackle this challenge, prompt engineering has emerged as a powerful technique [34]. In the
realm of LLMs, prompt engineering revolves around the strategic design and optimization of
prompts, which act as input instructions directing the model’s responses. The effectiveness
of prompt engineering spans various domains, including chemistry assistance [176], human
behavior simulation [77], job classification [38], and more.

Incorporating LLMs into complex tasks such as process analysis and process mining has
spurred several innovative initiatives. A noteworthy case study by [26] explores the practical
utilization of LLMs in process mining. This study introduces a framework that leverages
abstractions, scenarios, and prompt definitions to guide LLMs in the analysis of process data.
The prompts devised in this approach encompass crucial details: (i) a high-level description of
the task, (ii) specifications regarding the desired output format, (iii) the textual source from
which information should be extracted, and (iv) when necessary, a small set of input-output
pairs as illustrative examples. The study effectively demonstrates how, through carefully
tailored prompts and contextual information, an LLM can extract meaningful insights from
event logs, identify process anomalies, and even propose optimization strategies.

Another technical report, [25], proposes the integration of LLMs into the realm of process
mining. This paper offers diverse prompting strategies to mitigate information loss result-
ing from earlier abstractions. By transforming process mining artifacts, like event logs or
PetriNet process models, into textual descriptions, these abstractions are presented to the
LLM alongside the user’s NL query. This approach can yield two distinct types of responses:
direct answers to the initial questions or the formulation of hypotheses that can be validated
through database queries against the original data. Similarly, the work by [74] delves into the
potential of LLMs in enhancing conversational agents within the domain of process mining.
Building on prior studies in NLP tailored for conversational agents, this approach capitalizes
on LLMs to facilitate interactive and insightful conversations in the context of process mining.
Additionally, [65] illustrates the prowess of LLMs in handling text-related BPM tasks. This
study applies a specific LLM to three illustrative tasks: extracting imperative process models
from textual descriptions, extracting declarative process models from textual descriptions,
and evaluating the suitability of process tasks, as described in the text, for robotic process
automation.

In our research, we demonstrate the utilization of LLMs to accomplish two primary objec-
tives. Firstly, we employ them to automatically generate process-oriented NL queries, which
are subsequently used for training an intent detection and entity extraction learning model.
Secondly, we leverage LLMs to automatically construct Cypher queries from NL queries, en-
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abling us to access process mining services. These NL queries are designed to articulate the
user’s needs when searching for specific process mining services. To ensure high-quality re-
sponses, we implement a prompt engineering process that aids in generating prompts that
effectively guide the model toward producing the desired outputs.

2.4.4 Synthesis & Discussion

In the landscape of cognitive process analysis, prior research has made significant strides in
areas such as process analysis from unstructured data, NL querying, and leveraging large lan-
guage models. Efforts in these domains have explored diverse methodologies, from extracting
process insights from unstructured textual data (e.g. [60, 59, 52, 54, 91]), to integrating NL
querying techniques with process mining tools (e.g. [14, 70, 13, 129]), and leveraging the
power of LLMs for nuanced process analysis tasks (e.g. [26, 25, 74, 65]). However, the inno-
vation embedded in this thesis lies in the seamless fusion of these diverse approaches. Unlike
existing methods, our research presents a comprehensive solution that not only interprets
unstructured user queries but also harnesses the intelligence of LLMs to generate NL training
data and to construct precise Cypher queries for process mining services. The novelty of our
approach is amplified by meticulous prompt engineering, ensuring accurate and contextually
relevant interactions. This integration of NL querying techniques with the cognitive capabil-
ities of LLMs represents a paradigm shift, empowering users to navigate the complexities of
process analysis effortlessly.

2.5 Discoverability and Accessibility of Process Mining Tech-
niques

In this section, we provide an overview of previous research efforts dedicated to improving
the discoverability (Section 2.5.1) and accessibility of process mining techniques through the
provision of web services and API solutions (Section 2.5.2).

2.5.1 Discoverability of Process Mining Techniques

Numerous systematic reviews and surveys have been carried out to highlight the progressive
developments in the realm of process mining [137, 134, 154]. These scholarly works offer a
comparative analysis of various techniques from assorted perspectives, providing an overview
of the accomplished work as well as identifying the existing gaps within the field. Additionally,
they present an up-to-date account of how process mining has been applied in specific domains
like healthcare [134], business management [170], etc.

Moreover, several recent surveys have shed light on specific sub-domains within process
mining. For discovery techniques, the work of [9] offers a systematic review and compar-
ative evaluation of automated process discovery methods, underpinned by an open-source
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benchmark. The study by [147] outlines the latest developments in both declarative and
hybrid process discovery techniques. [140] conducts a literature review of process discovery
methodologies that leverage domain knowledge, defining a taxonomy that enables systematic
classification and comparison of existing approaches.

In the realm of conformance-checking techniques, [51] provides a thorough review and
classification of conformance-checking methodologies, comparing them across different dimen-
sions. Turning to prediction techniques, [106] delivers an in-depth analysis and comparison
of existing prediction methodologies, identifying key principles and offering a comprehensive
overview. In addition, [47] presents a systematic review of prediction methodologies, offering
a framework for their analysis, categorization, and comparison.

These studies serve as valuable resources for users and organizations seeking to identify
process mining methods that meet their specific requirements. However, analysts still en-
counter challenges when it comes to accessing and implementing these methods in practice.
Many process mining methods exist as standalone applications or are integrated into process
mining tools like ProM [157], Disco [67], Apromore [90], etc. This can pose a hurdle for
analysts as they may need to acquire specialized knowledge and familiarize themselves with
different tools or applications to utilize the desired methods. Furthermore, certain meth-
ods are implemented within software tools that lack compatibility with other applications,
limiting their adaptability.

2.5.2 Accessibility of Process Mining Techniques

To address accessibility and interoperability issues, the use of APIs and Web services in pro-
cess mining has gained significant attention [92]. For instance, PM4Py [27] and bupaR [72]
have incorporated process mining features such as log preprocessing, performance analysis,
and visualization as libraries that can be integrated with the corresponding Python and R
ecosystems. [92] presents a systematic introduction of Web services in the process mining
field. Several commercial tools (e.g. Celonis1 and Everflow2 ), as well as open-source projects
(e.g. Apromore [90] and PM4Py-WS [28]), provide Web-based interfaces supported by Web
services. Process mining analyses based on Web services enable easy integration with other
software solutions. For instance, the business logic in Apromore is offered to the Web appli-
cation through servlets-based Web services, providing external tools with the capability to
utilize the algorithms integrated in Apromore through querying its Web services. Everflow,
a platform for process mining, allows REST API access to a variety of techniques such as
process discovery and bottleneck analysis. PM4Py-WS has developed Web services that are
built on top of the process mining library PM4Py, which facilitated the integration of process
mining techniques.

Despite the progress made in incorporating APIs and Web services into process mining,
certain limitations persist. One such limitation is the incomplete coverage of process mining

1https://www.celonis.com/
2https://www.everflow.ai/
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aspects in existing service-based solutions, with prediction being a notable gap. Another
major limitation is the lack of thorough documentation that provides users with a clear
understanding of the available services’ properties, necessary inputs, and expected outputs.
In addition, to the best of our knowledge, there is currently no solution available that aids
analysts in finding a specific service and understanding its characteristics.

2.5.3 Synthesis & Discussion

In the realm of process mining research, previous endeavors have predominantly concentrated
on enhancing either the discoverability (e.g. [137, 134, 154, 9, 147, 140, 51, 106, 47]) or
the practical application of process mining techniques (e.g. [90, 28, 92, 72, 27]). Regarding
discoverability, extensive efforts have been invested in conducting systematic reviews and
surveys, illuminating diverse methodologies through comparative analyses. These resources
play a crucial role in providing analysts with an overview of available process mining methods,
aiding them in selecting the most suitable one tailored to their specific needs. Despite these
advancements, analysts often face challenges in accessing and effectively implementing the
identified methods.

On the other hand, approaches have been introduced to tackle the issue of accessibility
and integration of process mining techniques. These approaches include API-based solutions
and web service-based solutions. While these solutions aim to enhance the accessibility and
integration of these methods, existing service-based solutions in the field of process mining
have notable limitations. Particularly, they lack comprehensive coverage, especially in the
realm of predictive analysis. Moreover, a significant drawback lies in the absence of detailed
descriptions for available services, hindering analysts’ ability to easily discern service prop-
erties, required inputs, and expected outputs. Furthermore, there is an absence of solutions
aiding analysts in the automatic discovery and accessibility of process mining-related services.

In response to these challenges, our research introduces a pioneering service-based solution
that overcomes these limitations (detailed in Chapter 5). Our innovative approach not only
facilitates effortless access and integration of process mining methods but also empowers
analysts by enabling the efficient discovery of discovery, conformance, and prediction services,
aligning seamlessly with their requirements through the utilization of NL.

2.6 Web Service Description and Matching Approaches

In this section, our focus centers on the domain of service-oriented research. In Section 2.6.1,
we delve into methods related to service description, while in Section 2.6.2, we explore ap-
proaches associated with the discovery of web services.
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2.6.1 Service Description Approaches

Service description, a cornerstone in the realm of modern computing, serves as an intricate
blueprint for various digital services, meticulously detailing their functionalities, operations,
and access protocols. This comprehensive delineation ensures that both developers and end-
users can effortlessly discover, integrate, and harness these services, eliminating the need to
navigate the complexities of their underlying code. Within this domain, several service types
have emerged, each with distinct features:

• Web services: emerge as pivotal bridges in the digital landscape, facilitating seam-
less communication between diverse software applications across myriad platforms and
frameworks [6]. These services predominantly employ standardized protocols, such as
SOAP [66], REST [162], and XML [115], ensuring smooth interoperability;

• Cloud services: these are services provided on-demand to users over the internet
from the cloud computing provider’s servers [138]. Their modular nature, segmented
into IaaS [104], PaaS [166], and SaaS [155], ensures that businesses and individuals can
tailor their cloud experience, scaling resources as per their evolving needs;

• Semantic web services (SWS): combine the principles of the Semantic Web and
Web Services [110]. They use ontologies to make web services’ functionalities machine-
understandable, enabling automated service discovery, composition, and execution.
Through semantic annotations and frameworks like OWL-S [107] and WSMO [49], SWS
allows for a more efficient and automated interaction between machines on the web, re-
ducing the need for manual intervention in service integration and execution;

• IoT services: refer to the suite of services designed to support and enhance the func-
tionality of the Internet of Things (IoT). In essence, IoT services enable the seamless
integration and management of smart devices, ensuring they work together efficiently
and securely to deliver desired outcomes [169].

Existing methodologies for describing services in the realm of modern computing can
be methodically categorized based on several essential dimensions. One pivotal dimension
revolves around the type of model used in the description process, leading to two primary
categories: syntactic models and semantic models. Syntactic models, as their name suggests,
prioritize the structure and format of service descriptions (e.g. [37, 169]). A prominent
example is the Web Services Description Language (WSDL) [37], which meticulously outlines
the operations, messages, and interaction protocols of web services. In contrast, semantic
models transcend mere syntax, delving deeper to capture the inherent meaning and context of
services (e.g. [5, 102, 89, 171]). This profound understanding enables richer service discovery
and composition. For instance, Web Service Modeling Ontology (WSMO) [81] provides a
conceptual framework and a formal language for semantically describing various aspects of
web services, including their capabilities, interfaces, and the underlying ontologies. By using
WSMO, web services can be described in terms of standardized concepts and relationships,
facilitating a deeper semantic understanding. Similarly, Web Ontology Language (OWL) [109]
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describes service in terms of standardized concepts, properties, and relationships allowing for a
deeper semantic understanding. The second dimension revolves around the intended purpose
of the service description. Some methodologies are primarily designed to discover suitable
services based on specific criteria (e.g. [111, 100, 114, 116, 82]), while others pivot toward
service composition, focusing on the integration of multiple services to manifest particular
functionalities (e.g. [89, 8, 12]). Additionally, certain approaches prioritize interoperability,
ensuring that diverse services can seamlessly coexist and function in harmony, offering a
smooth and unified user experience (e.g. [141, 117]). Lastly, the third dimension concerns the
granularity of service descriptions. Within this dimension, distinctions can be made among
atomic service descriptions, which detail singular, standalone services (e.g. [128]); composite
service descriptions, which encapsulate conglomerates of interlinked services (e.g. [12]); and
microservices descriptions, which spotlight smaller, modular services tailored for specific tasks
(e.g. [144]). Each granularity level provides a unique perspective, catering to various needs
and applications in the expansive domain of service-oriented architecture.

REST web services are inherently lightweight and stateless, and unlike SOAP-based web
services, they don’t have a standardized description language like WSDL. However, given
the rise in the usage and importance of RESTful web services, several approaches have been
proposed for their description, discovery, and composition. Categorizing the approaches for
REST web services description can be done based on various factors. Some languages are
designed specifically for describing the details of web services, typically including endpoints,
methods, request/response formats, and so forth (e.g. [69, 150]). Other approaches aim
to imbue web service descriptions with semantic context or hypermedia-driven details. For
instance [143] provides semantic annotations for RESTful services integrating with SAWSDL.
Similarly, [79] proposes a reference ontology for REST services along with a formal procedure
for converting OpenAPI service descriptions to instances of this ontology.

2.6.2 Web Service Matching Approaches

Web service matching is a pivotal concept in the realm of web services, especially when it
comes to catering to specific user requests. At its core, web service matching refers to the
process of identifying and aligning web services that best fit a user’s requirements or queries.
This process is crucial for ensuring that users are provided with services that are most relevant
to their needs, thereby enhancing the overall user experience. Among the myriad method-
ologies that have been developed to address this challenge, semantic web service matching
has emerged as a particularly promising approach. Unlike traditional methods that rely pri-
marily on textual or structural comparisons, semantic web service matching delves deeper. It
harnesses the power of ontologies, semantic annotations, and comprehensive service descrip-
tions to grasp the inherent meaning and relationships between different services. The primary
objective of this approach is to ensure a more profound, context-aware matching process.

In the intricate domain of semantic web service matching, a myriad of methodologies
have been proposed, each offering unique perspectives and techniques. These methodologies
are categorized along two fundamental axes: the manner in which services are semantically
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represented and the inherent functional behavior they exhibit. From a representational stand-
point, three distinct methodologies have gained prominence. The first is the Ontology-based
Matching approach. These methods leverage domain-specific ontologies to convey semantic
descriptions of both service requests and available services. By grounding these descriptions
in a standardized lexicon of concepts and relationships, this approach provides a profound
semantic context, thereby facilitating the identification of matches predicated on ontological
equivalences or similarities. It effectively aligns the matching process with a rich semantic
landscape, where services are understood in the context of established ontological struc-
tures [107, 81, 4, 84, 93]. For instance, OWL-S [107] a semantic web service ontology that
facilitates service matching and composition. It extends the OWL to describe key aspects of
web services, including their inputs, outputs, preconditions, and effects. By annotating web
services with OWL-S descriptions, developers and systems can discover and compose services
that align with specific user requirements and contextual constraints. Similarly, WSDL-S [4]
is an extension of WSDL that allows the semantic annotation of web services. These seman-
tic annotations can be used for enhanced service matching and discovery. Furthermore, [93]
explores the use of ontologies for personalized RESTful web service discovery.

The second methodology, Graph-based Matching, conceptualizes services and requests as
multifaceted graph structures, such as RDF. The matching process revolves around compar-
ing these graph structures, patterns, or topologies. This approach excels in scenarios where
structural relationships and interconnections among service elements are critical to discerning
meaningful matches. For instance, [5] proposes a model centered on hypermedia, enabling
the generation of a graph that captures state transitions at the activity layer. It also captures
resource, transition, and response semantics at the semantic layer. Using queries to traverse
this graph facilitates discovery and composition. Furthermore, [172] introduces the Weighted
Service Goal Model to enhance RESTful service discovery. By understanding the underlying
goals or functionalities of services, this approach aims to provide a more accurate and mean-
ingful discovery process. The third, Logic-based Matching, ventures into the realm of formal
logic. It employs constructs such as description logic to identify matches through the estab-
lishment of semantic rules or axioms. By employing formal logic, this methodology brings a
layer of deductive reasoning into the matching process, enabling a deeper understanding of
service compatibility that transcends surface-level analysis (e.g. [125, 146]).

Conversely, the diversity among existing semantic web service matching approaches stems
from their varying considerations regarding the aspects of services used for matching. This
divergence extends beyond representation and centers on what services are described and
leveraged in the context of matching. Some methodologies focus on the sequencing of opera-
tions or states exhibited by services. These approaches determine service similarity based on
the likeness of the sequences of actions they undertake. For instance, two services might be
deemed similar if they share a sequence of operations such as "login," "search," and "check-
out." This sequence-centric approach accounts for the procedural nature of services and the
flow of operations they execute, ensuring that matched services align in terms of their action
sequences (e.g. [5]). In contrast, other methodologies prioritize the compatibility of inputs
and outputs [84, 107]. These methods assess a service as a potential match if its output aligns
seamlessly with the input requirements of a user’s request or if its expected input mirrors the
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output of another service within a broader workflow. This approach ensures the smooth inte-
gration of services into larger compositions, where data and information interchange smoothly
between interconnected services. Additionally, a subset of approaches considers the intrinsic
features of services. These features encompass a wide array of attributes, such as performance
metrics, reliability, cost-effectiveness, and more. Such an approach enables users to select
services that align with specific non-functional requirements, thereby enhancing the overall
quality of service compositions and ensuring their adherence to desired criteria beyond mere
functional compatibility.

Recognizing the complexity of service matching, there has been a surge in innovative
approaches that harness the capabilities of NLP to simplify the service matching task. By
integrating NLP, these methodologies aim to bridge the gap between technical terms and
user-friendly language, making the process more intuitive and accessible. For instance, the
approach proposed in [178] leverages the transformation of NL inputs into SPARQL queries,
facilitating seamless interactions with semantic web applications without the need for users to
understand the underlying query language. Similarly, [2] offers a novel method that employs
NLP techniques to automatically match user requests, articulated in everyday language, with
the most fitting semantic web service descriptions. By doing so, it eliminates the need for users
to navigate the often convoluted technical descriptions, making service discovery more user-
centric. Collectively, these approaches underscore the potential of NLP in revolutionizing
the way we approach and understand service matching, making it more inclusive and less
technically demanding.

2.6.3 Synthesis & Discussion

In the expansive field of web services description and web services matching, our research
carves out a unique niche by focusing intently on process mining methods. While many exist-
ing methodologies offer generic solutions, our architecture is meticulously tailored to address
the specific challenges and requirements inherent to the process mining domain. This spe-
cialization ensures a more precise and in-depth representation of services, capturing nuances
that broader techniques might overlook. Moreover, while traditional graph-based matching
techniques are prevalent, our approach innovates by introducing an LPG. This design not
only encapsulates the properties, inputs, outputs, and micro functionalities of services but
also establishes a technology-agnostic foundation, enhancing the flexibility and applicability
of our service discovery process. Furthermore, our services matching component stands out
by its ability to directly interpret user requirements, automating the creation of REST API
calls. This user-centric approach, combined with our domain-specific focus, ensures that our
matching process is both context-aware and tailored to the unique needs of process mining,
setting our work distinctly apart from existing methodologies.
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2.7 Conclusion

In this chapter, we have delved into various existing approaches relevant to the context of our
thesis. Initially, we offered insights into works concerning process querying and process data
storage, shedding light on existing research in the domain. Subsequently, we introduced works
pertaining to the application of NLP in databases and technical domains. Furthermore, we
explored studies that aim to incorporate cognitive capabilities to facilitate process analysis
tasks. Additionally, we discussed research efforts aimed at enhancing the accessibility and
discoverability of process mining techniques. Lastly, we explored existing methodologies for
describing and discovering web services. These overviews served to not only highlight the
existing body of work but also to identify the novel aspects of our thesis in comparison to
previous research. In the forthcoming chapters, we will present our three key contributions.
The next chapter presents our first contribution, which revolves around the introduction of a
graph metamodel designed for the storage of process execution data.
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3.1 Introduction

In this chapter, we present the graph meta-model designed for representing multi-dimensional
process data. This method directly addresses RQ1-3 and is highlighted by the green pointed
area in Figure 1.3. The main prerequisites guiding our meta-model’s development are as
follows:

• Explicit Representation of Process Data: The model should allow for the explicit
representation of process data, treating the connections between data as a fundamental
element. It must encompass all concepts and relationships relevant to multi-dimensional
data.

37
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• Integration of Structural and Behavioral Information: The meta-model should
seamlessly integrate both structural and behavioral data into a unified graph.

• Comprehensive Instance-Level Information: It should comprehensively capture
instance-level process execution details, including executed activities, involved actors,
impacted data and objects, and the interconnections between these entities.

• Compliance with Existing Standards: The meta-model must comply with existing
standards and storage techniques for storing and representing process data, ensuring
that it can encompass all the concepts and relationships found in these conventional
methods. Additionally, it should enable a richer representation of process data to facil-
itate comprehensive analysis and insights.

• Efficient Querying: The query language used to access the data should enable effective
and efficient querying of process data, particularly for querying paths and complex
connections.

To fulfill these requirements, we have proposed a graph meta-model based on Labeled
Property Graphs (LPG) for storing and representing process execution data. LPG was chosen
because it allows for an explicit and expressive representation of data connections. By defining
the key concepts and relationships pertinent to single and multi-dimensional process data,
we establish the minimum information required in the meta-model for expressiveness. We
outline the primary graph elements, including node types, relation types, and properties,
which are used to represent both structural and behavioral information. Additionally, LPG
is queried using the Cypher language, providing a convenient and efficient means of querying
paths within the graph.

We have qualitatively evaluated our approach for compliance with existing standards and
its expressiveness. This evaluation was conducted using two publicly available event datasets.
The first event data is related to the loan application process, and stored in CSV format.
The second event data is related to the order management process, and represented in OCEL
format.

The remainder of this chapter is organized as follows: We introduce the key concepts and
relations related to single and multi-dimensional process data in Section 3.2. We provide
motivation for the need for a graph meta-model for representing process execution data in
Section 3.3. The proposed graph meta-model is detailed in Section 3.4, while the evaluation
is presented in Section 3.5. Finally, Section 3.6 concludes the chapter.

3.2 Single & Multi-dimensional Process data

Information systems play a vital role in creating and modifying structured information records
through transactions or activities during the execution of processes. These updates are cap-
tured as events, representing individual actions within the system. Events contain attributes
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that describe the carried-out activity and the timestamp or other attributes indicating the
order of executed activities. In the following sections, we will elaborate on the concepts and
relationships pertaining to single and multi-dimensional process data.

Single-dimensional process data In a single-dimensional context, events are associated
with a single entity identifier, allowing for correlation based on a specific entity and thus
viewing the events from a particular perspective. In the following, we define the main process
concepts and relations represented in a single dimensional process data:

C1 Event: An event ev represents a specific activity or action that occurs within the
process. It encompasses attributes such as the activity name (ev.activity), timestamp
(ev.timestamp), and other relevant information related to the event execution.

C2 Resource: Resources r refer to the individuals, systems, or entities responsible for
performing the activities within the process. Each resource should be described by an
identifier r.identifier (e.g. name/email) and may have additional attributes such as
the business/organizational role (r.role).

C3 Data: Data represents the information associated with an event ev.data, including
input parameters, output results, or any relevant data values that are manipulated or
generated during the activity execution.

C4 case ID: The case ID c is a unique identifier assigned to each process instance or case.
It helps distinguish and link events belonging to the same process instance, allowing for
the reconstruction and analysis of process traces.

C5 Trace: A trace t represents the sequence of events that occur within a single process
instance. It is identified by the shared case ID and provides a chronological view of the
events associated with that case.

R1 Directly Follow Relation: The directly follow relation describes the relationship
between two consecutive events within a trace. It signifies that the second event imme-
diately follows the first event in the process execution.

Consider an example of a customer support ticket management process. Table 3.1 illus-
trates an event log exemplifying concepts related to single-dimensional process data. Each row
represents an individual event in the customer support ticket management process. In this
process, each customer support interaction is captured as an event, representing individual
actions within the system. For instance, an event (ev) in this context could be "Ticket Cre-
ated," with attributes like the timestamp of when the ticket was submitted (ev.timestamp)
and relevant data including the ticket ID, customer details, and the description of the issue
(ev.data). Resources (r) in this system refer to the support agents responsible for handling
customer inquiries. Each support agent is associated with specific events and is described by
their unique identifier, such as their email or agent ID (r.identifier), along with additional
attributes like their skill level or department. Upon a customer’s submission of a support
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Event ID Event Name
ev

Event Timestamp
ev.timestamp

Event Data
ev.data

Resource
r

Case ID
c

1 Ticket Created 2023-09-12 09:00:00
Ticket ID: 1001,
Customer: Customer X,
Issue: Technical Issue

- Case 1

2 Assigned to Support Agent 2023-09-12 09:05:00 Agent ID: Agent A Agent A Case 1
3 Ticket Resolved 2023-09-12 10:30:00 Resolution: Issue resolved Agent A Case 1

Table 3.1: Example event log showing concepts related to single dimensional event data

ticket, the system assigns a unique case ID (c) to represent that particular ticket throughout
its handling process. For instance, "Case 1" in Table 3.1, unfolds with the "Ticket Created"
event, succeeded by the "Assigned to Support Agent" event, and ultimately concludes with
the "Ticket Resolved" event. To maintain the chronological order of events within each case,
the "Directly follow relation" is used. In the case of "Case 1", the "Ticket Created" event is
immediately followed by the "Assigned to Support Agent" event, thereby signifying the step-
by-step progression of the ticket management process. Thus, the trace t linked with Case 1
is: "Ticket Created" → "Assigned to Support Agent" → "Ticket Resolved."

Multi-dimensional process data In some cases, IS can include multiple distinct and
uniquely identifiable entities. In such scenarios, the traditional notion of a case ID may
not be present. Instead, data are grouped into objects and each event can be associated
with one or more objects, providing the ability to view events from multiple perspectives
simultaneously. Moreover, the objects themselves can have relationships with each other,
allowing for correlations between events based on combinations of objects. In the following, we
define the additional process concepts and relations related to multi-dimensional process
data:

C6 Object: An object o represents a distinct and identifiable element within the system.
It is identified by a type (e.g. application, candidate, offer, etc.) and a set of data
attributes that characterize it.

R2 Event-Object Relation: This relation refers to the association between events and
objects within the data. It represents the relationship that exists between a specific
event and one or more objects to which the event is related or affected.

R3 Objects Relations: Object relations capture the relationships and associations be-
tween different entities within the Information System.

R4 Directly Follow Relation Based on Objects: The directly follow relation, in the
context of multi-dimensional process data, considers the order and sequence of events
based on the objects associated with them. It signifies that the occurrence of one event
directly follows the occurrence of another event based on the objects involved.

Consider an example of a project management process. In this process, the system employs
various objects to capture relevant information. For instance, an object o could be "Project",
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"Task", or "Team". The "Project" object represents the overall project, each identified by
a unique project ID, while the "Task" object signifies individual tasks with unique task IDs.
Additionally, the "Team" object represents the teams responsible for executing the tasks, each
identified by their team names. Events in the system are associated with these objects to
provide a broader perspective. For instance, when a "Task Created" event occurs, it is linked
to both the "Project" and "Task" objects, containing details such as the task ID, description,
and estimated completion time. Similarly, a "Task Assigned" event is associated with both
the "Task" and "Team" objects, indicating which team is responsible for a specific task. These
event-object relations enable comprehensive analysis and allow tracking of project progress
from various angles. Moreover, object relations, such as the correlation between "Project"
and "Task," ensure effective organization of tasks within projects. Finally, to maintain the
chronological order of events related to same objects, the "Directly follow relation based on
objects" is used. For instance, for a particular project "Project 1", the "Task Created" event
is directly followed by the "Task Assigned to Team" event, while for a specific task "Task 1"
the "Task Created" event is directly followed by "Task Started" event.

3.3 Motivation

Effective storage and representation of process execution data are crucial for gaining valu-
able insights and optimizing business processes. Process execution data involves a multitude
of entities and their intricate relationships (see Section 3.2). However, traditional storage
techniques like XES event logs, relational databases, and OCEL face limitations in capturing
the multi-dimensional nature of process data and efficiently querying complex relationships
between entities. In the following, we will use the example of an order management process
that is used to manage and fulfill customer orders. At the heart of this process lies the cus-
tomer, whose needs initiate the entire sequence. Their request materializes in the form of an
order, which can be placed through a myriad of channels, including online platforms, physical
storefronts, or direct interactions with sales representatives. Once registered, the order under-
goes a meticulous verification phase, ensuring both the availability of the requested items and
the validity of the customer’s payment method. Following this, the items are retrieved from
inventory and consolidated into a package, ready for dispatch. The finance department, in
parallel, manages invoicing and oversees the collection of payments, ensuring the transaction’s
fiscal integrity. The culmination of this process is the dispatch of the package, with dedicated
logistics teams ensuring its timely and accurate delivery to the customer. Table 3.2 provides
a sample event log associated with the order management process. This log encompasses
key event attributes, including activity and timestamp, as well as the responsible resource.
Additionally, it records pertinent objects, such as orders, customers, packages, and items.
It’s essential to acknowledge that there exist additional attributes linked to these objects.
However, for simplicity, this example exclusively includes object identifiers, customer names,
and email.

Traditionally, process data has been represented using XES event logs [71], where events
are organized under a common case identifier (e.g., [124, 168]). As illustrated in Figure 3.1,
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Activity Timestamp User OrderID CustomerID CustomerName CustomerEmail PackageID ItemID

Order Placed |2023-09-01 09:00:00 Customer A 1001 CUST001 Customer A customerA@email.com PKG001 ITM101

Order Placed 2023-09-01 09:05:00 Customer A 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Order Verified 2023-09-01 09:20:00 Sales Rep B 1001 CUST001 Customer A customerA@email.com PKG001 ITM101

Order Verified 2023-09-01 09:20:00 Sales Rep B 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Payment Processed 2023-09-01 10:00:00 Finance Clerk C 1001 CUST001 Customer A customerA@email.com PKG001 ITM101

Payment Processed 2023-09-02 12:00:00 Finance Clerk C 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Item Packed 2023-09-02 2:00:00 Warehouse Worker D 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Item Packed 2023-09-02 2:00:00 Warehouse Worker D 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Order Dispatched 2023-09-03 10:00:00 Logistics Team E 1001 CUST001 Customer A customerA@email.com PKG001 ITM101

Order Dispatched 2023-09-03 10:00:00 Logistics Team E 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Order Delivered 2023-09-05 12:00:00 Delivery Person F 1001 CUST001 Customer A customerA@email.com PKG001 ITM101

Order Delivered 2023-09-05 12:00:00 Delivery Person F 1001 CUST001 Customer A customerA@email.com PKG001 ITM102

Table 3.2: Event log for the order management process

this approach provides a representation of the event log from Table 3.2 using XML serializa-
tion. While effective for handling single-dimensional data, XES encounters challenges when it
comes to capturing the intricate interactions among multiple entities within a process. In this
context, events must be grouped under a predefined entity, often the order object as exempli-
fied here, limiting the flexibility to explore the log from alternative perspectives. Moreover,
the traditional XES event log structure lacks the capacity to represent the concept of objects,
resulting in a significant loss of critical relationships among these objects. As a consequence,
several essential components related to multi-dimensional process data, such as the "Object"
representing entities like "Customer," "Order," "Package," and "Item," the "Event-Object Re-
lation," the "Objects Relation," and the "Directly Follow Relation based on Objects," are not
effectively captured within the XES representation.

C1: Event
C2: Resource
C3: Data
C4: case ID
C5: Trace
R1: Directly Follow Relation
C6: Object
R2: Event-Object Relation
R3: Objects Relation
R4: Directly Follow based on Object

<trace>
<string key="concept:name" value="1001"/> <!-- OrderID -->

<event>
<string key="concept:name" value="Order Placed"/>
<date key="time:timestamp" value="2023-09-

01T09:00:00.000+00:00"/>
<string key="lifecycle:transition" value="start"/>
<string key="org:resource" value="Customer A"/>
<string key="order:customerID" value="CUST001"/>
<string key="order:packageID" value="PKG001"/>
<string key="order:itemID" value="ITM101"/>

</event>
<event>

<string key="concept:name" value="Order Placed"/>
<date key="time:timestamp" value="2023-09-

01T09:00:00.000+00:00"/>
<string key="lifecycle:transition" value="start"/>
<string key="org:resource" value="Customer A"/>
<string key="order:customerID" value="CUST001"/>
<string key="order:packageID" value="PKG001"/>
<string key="order:itemID" value="ITM102"/>

</event>
<!-- ... other events for this trace ... -->
</trace>

XML serialization of XES log

Figure 3.1: XES representation of the event log example associated with the order management
process
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On the other hand, the OCEL standard [61] provides improved semantics and event corre-
lation compared to XES. It is a type of event log that organizes data based on distinct objects,
rather than using a case-centric approach. Figure 3.2 provides an OCEL representation of
the event log from Table 3.2 using XML serialization. While OCEL enhances event-object
correlation (i.e. "Event-Object Relation") and offers advantages in handling individual object
interactions (i.e. "Objects Relations"), it may not fully address the complexities of capturing
multi-dimensional process data and querying intricate relationships between entities in some
scenarios. Querying complex relationships between entities in an OCEL representation can be
challenging. As OCEL organizes events around individual objects, tracing and understanding
the paths between related events across multiple objects (i.e. "Directly Follow Relation Based
on Objects") may require additional effort and may not be as straightforward.

<events>
<event>
<string key="activity" value="Order Placed"/>
<date key="timestamp" value="2023-09-01T09:00:00.000+00:00"/>
<string key="org:resource" value="Customer A"/>
<list key="omap">
    <string key="object−id" value="O1001"/>
    <string key="object−id" value="CUST001"/>
    <string key="object−id" value="PKG001"/>
    <string key="object−id" value="ITM101"/>
</list>
</event>
<event>
<string key="activity" value="Order Placed"/>
<date key="timestamp" value="2023-09-01T09:00:00.000+00:00"/>
<string key="org:resource" value="Customer A"/>
<list key="omap">
    <string key="object−id" value="O1001"/>
    <string key="object−id" value="CUST001"/>
    <string key="object−id" value="PKG001"/>
    <string key="object−id" value="ITM102"/>
</list>
</event>
<!-- ... other events... -->
</events>
<objects>
<object>
<string key="id" value="CUST001"/>
<string key="type" value="Customer"/>
<list key="ovmap">
       <string key="name" value="Customer A"/> 
       <!-- ... other customer attributes... -->
</list>
</object>
<!-- ... other objects... -->
</objects>

C1: Event
C2: Resource
C3: Data
C4: case ID
C5: Trace
R1: Directly Follow Relation
C6: Object
R2: Event-Object Relation
R3: Objects Relation
R4: Directly Follow based on Object

XML serialization of OCEL log

Figure 3.2: OCEL representation of the event log example associated with the order management
process

Relational data modeling is a well-established technique employed to depict associations
between events and objects, enabling the representation of both one-to-many and many-
to-many relationships [139, 113], as exemplified in Figure 3.3. Nevertheless, this approach
grapples with preserving the temporal sequence of events based on the involved objects. In
Figure 3.3, while various relationships between events and objects, as well as among the
objects themselves, are depicted, the explicit representation of the chronological order of
executed events concerning specific objects remains absent. This deficiency poses a notable
constraint, particularly when it comes to analyzing the order in which events transpire in
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relation to individual objects. Moreover, the process of querying paths between events or
objects within this framework presents notable challenges. The presence of multiple joins
between tables, which is common in relational data modeling, considerably complicates the
execution of intricate queries that demand the traversal of these relationships. Consequently,
when dealing with complex queries, additional processing steps may become a necessity to
extract the desired insights. This introduces an added layer of complexity to the overall
analysis process.

Customer Table Package Table Item TableOrder Table

C1: Event
C2: Resource
C3: Data
C4: case ID
C5: Trace
R1: Directly Follow Relation
C6: Object
R2: Event-Object Relation
R3: Objects Relation
R4: Directly Follow based on Object

Figure 3.3: Relational data modeling of the event log example associated with the order management
process

Graph-based data models such as RDF [130] and LPG [7] have been proposed as an
alternative to overcome the limitations of relational modeling and querying. Graph data
models are structured around data relationships, making it easier to represent and query
complex relationships of multi-dimensional data. In the next section, we present the proposed
graph metamodel based on LPG to model and query process execution data, inspired by the
work of [55]. The metamodel allows for the modeling of different concepts and relations of
multi-dimensional data defined in Section 3.2. In addition, the Cypher language1 allows for
easy access and query of the stored data.

3.4 Event property graph meta model & Cypher query groups

In this section, we introduce basic concepts related to LPG graphs and Cypher query lan-
guage in Section 3.4.1. Next, we detail the proposed event property graph metamodel for

1https://neo4j.com/developer/cypher/
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representing process execution data in Section 3.4.2. Finally, we present the Cypher query
groups that we define to query different types of information from an LPG in Section 3.4.3.

3.4.1 Labeled Property Graph: LPG & Cypher Query Language

Labeled Property Graph: LPG An LPG is a directed labeled multigraph consisting of
labeled nodes and relations. Nodes represent entities, and relations represent the relationship
between two entities. Each node/relation may have properties that correspond to key-value
pairs of attributes. A formal definition of an LPG is given in Definition 3.1. We assume that
L is a set of labels (for nodes and relationships), P is a set of property names, V is a set of
atomic values. For a set S, we denote by S+ the set of all subsets of S excluding the empty
set.

Definition 3.1 (Labeled Property Graph). A labeled property graph is a tuple G =
(N, R, γ, λ, ρ, σ) where:

- N is a set of nodes;
- R is the set of relations;
- γ : R 7→ N ×N is a total function that associates each relation to a pair of nodes;
- λ : (N ∪R) 7→ L+ is a partial function that associates a node/relation with one or more

labels from L;
- ρ : (N ∪R) 7→ P + is a partial function that associates nodes/relations with properties;
- σ : (N ∪R)×P 7→ V is a partial function that associates for each node/relation property

a value from V .

Figure 3.4 shows an example of an LPG that contains data related to e-commerce. It
consists of nodes labeled with different categories such as ":Product", ":t-shirt", ":shoes",
":Order" and ":Customer", and each node has unique attributes as properties. For instance,
the node in the top left corner represents a t-shirt product that has a brand of "Adidas",
a color of "White", a size of "L", and a price of "$50". On the other hand, the node in
the bottom left corner represents a customer named "Emma" with an address of "123 Main
St.". Moreover, the edges in the LPG represent the connections between the nodes. For
example, the customer "Emma" has placed an order with the number "O_654" that contains
two products.

Cypher query language In an LPG, queries can be performed using a query language
like Cypher2. Cypher is a widely used declarative graph query language. Each Cypher query
is made up of (Clause, Patterns) pairs. A Clause specifies the type of operation to be used.
A Pattern specifies the inputs that must be provided to these clauses. Below, we provide
a comprehensive explanation of the five primary clauses used in a Cypher query: MATCH-
WHERE-WITH-ORDER BY-RETURN.

2https://neo4j.com/developer/cypher/
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Brand: Adidas
Color: white

Size: L
price: 50$

:Product
:t-shirt

Brand: Nike
Color: Black

Size: 40
price: 75$

:Product
:shoes

Number: O_654
Date: 05/05/23

:Order

Placed

Name: Emma
Address: 123

Main St.
Phone: 012684

:Customer

Contains Contains

Figure 3.4: Example of LPG

- MATCH clause: enables the selection of sub-graphs with the same pre-defined pattern
of nodes and relations.

- WHERE clause: restricts the selected sub-graph by adding conditions on nodes/re-
lationship labels and properties.

- WITH clause: allows query parts to be chained together, piping the results from one
to be used as starting points or criteria in the next. It is constructed after the WHERE
clause and used to define new variables inside the query.

- ORDER BY clause: is a sub-clause specifying that the output should be sorted in
either ascending (the default) or descending order. This clause normally follows the
WITH or RETURN clause.

- RETURN clause: is used to define the output of the query which can be any graph
elements (e.g. node/relationships or properties’ values) as well as sub-graphs or any
defined variables inside the query.

The example in Listing 3.1 demonstrates a Cypher query that consists of three clauses:
MATCH, WHERE, and RETURN. The query aims to retrieve all products that a partic-
ular customer, namely Emma, has ordered. To achieve this, the MATCH clause identifies
the path that links a customer to the order that includes the desired products. Then, the
WHERE clause sets the condition for selecting the customer with the name Emma. Finally,
the RETURN clause lists the matched products.

MATCH (c: Customer)-[:Placed]->(o: Order)-[:Contains]->(p:Product)
WHERE c.Name='Emma'
RETURN (p)

Listing 3.1: An example of a cypher query to get the products placed by certain customer
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3.4.2 Event property graph meta model

LPG introduced in Section 3.4.1 enables flexible modeling of various concepts and their rela-
tionships [55]. Additionally, the Cypher query language facilitates easy access and querying
of the stored data. In this section, we present a property graph metamodel that focuses on
process event data modeling. It allows for representing the different concepts and relations
of multi-dimensional process data defined in Section 3.2. Our proposed event property graph
metamodel is presented in Figure 3.5.

-ID 
-Name 

-Timestamp

:Activity

-ID 
-Name

:Actor

-ID 
-Name

:Role

-ID 
-AttributeName:
AttributeValue

:Object 
:{ObjectType} 

HasRole Contribute Affect

{ObjectRelations}FollowedBy

{Object}_FollowedBy 
-ObjectID

Figure 3.5: Event Property Graph Metamodel

The metamodel in Figure 3.5 describes the labels of nodes, the allowed relations, and the
minimal set of properties required to represent event data. Nodes in the graph refer to the
various types of information that can be extracted from event data. The Activity node refers
to an activity instance executed within an event (i.e. concept C1 defined in Section 3.2).
The Object nodes refer to the artifact objects which group data manipulated by activities
(i.e. concept C6 and C3 defined in Section 3.2). These nodes could have an additional label
that represents the corresponding object type. The activity node has the activity instance id,
name, and timestamp as mandatory properties. The Activity node is connected to the Object
node through the relation Affect which indicates that the corresponding object is involved in
the execution of the activity (i.e. relation R2 defined in Section 3.2).

To model the temporal order between activity instances, we distinguish two types of rela-
tions: FollowedBy and {Object}_FollowedBy. The first relation allows to model the temporal
order between all activity instances in the graph (i.e. relation R1 defined in Section 3.2).
The second allows to model the temporal order between activity instances from the perspec-
tive of a specific object (i.e. relation R4 defined in Section 3.2). Object nodes may also be
connected through the relation ObjectRelation which is replaced by the actual relation name
(i.e. relation R3 defined in Section 3.2).

In addition to Activity and Object node types, the Actor and Role nodes can be created in
case information about the resources is available (i.e. concept C2 defined in Section 3.2). The
Actor node is connected to the Activity node through the relation Contribute which indicates
the involvement of a specific actor in the execution of the activity. Similarly, the Role node
indicates specific roles attributed to actors.

An example of an instantiation of our meta-model populated with loan application data is
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illustrated in Figure 3.6. This example depicts seven executed activities, each with a unique
name and execution time. The first three activities were carried out by User_37, while
the last four were carried out by User_1. All activities affect the same Loan application
which has an ID, an amount, a goal, and an application type as attributes. Furthermore,
activities beginning with the letter ’O’ affect the same offer node with the attributes ID,
amount, monthly cost, and a number of terms. Moreover, two relations are added between
the Offer and Application objects. These relations specify that the offer "Offer1" was offered
and canceled in the application "App1".

Because these activities were carried out in the order specified by their timestamps, a
FollowedBy relationship is added between them (arrows with blue color). Additionally, as
they affect also the same application App1, an Application_FollowedBy relation is also added
between them with the objectID attribute set to ’App1’ (arrows with red color). Finally, for
sequential activities affecting the offer Offer1, an Offer_FollowedBy relation with objectID
attribute set to Offer1 is added between them (arrows with green color).

3.4.3 Cypher query groups

Cypher query language, introduced in Section 3.4.1, allows to easily access and query of the
data stored in an LPG. In this section, we present the Cypher query groups that we defined
to query different types of information. These groups will be used in the next chapter. We
distinguish three groups of Cypher queries based on the type of the pattern selected in the
MATCH clause:

• Node matching queries match a pattern with a single node. An example of such
query on the event property graph in Figure 3.6 is MATCH (app:Application) RETURN
app which selects all Application nodes and returns them.

• Relationship matching queries match a pattern that consists of nodes and relation-
ships (i.e. a subgraph). Listing 3.2 shows an example. The query matches all subgraphs
that consist of three node types Actor, Activity and Application connected through the
relations Contribute and Affect.

• Path matching queries: is similar to relationship matching queries except that the
relationships can be of variable length. For instance, the query MATCH (a1: Activity)-
[FollowedBy*]-(a2: Activity) selects all subgraphs that consist of Activity node types
connected to each other through the relation FollowedBy with a variable length (de-
noted with the ‘*’ symbol). Therefore, the query matches all possible subsequences of
activities.

MATCH (application: Application) - [:Affect] -> (activity: Activity),
(activity) <- [:Contribute] - (actor: Actor)

WHERE activity.Name= 'A_Validated'
RETURN (actor),(application)

Listing 3.2: An example of a relation matching query
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Figure 3.6: Event graph model populated with data related to loan application process

3.5 Evaluation & Discussion

This section presents the evaluation conducted to assess the effectiveness of the proposed
metamodel. The main objectives of this evaluation are twofold: first, to evaluate the meta-
model’s compliance with existing standards and storage techniques, specifically by determin-
ing its ability to represent all the concepts and relations present in these traditional tech-
niques. Secondly, we aim to assess the metamodel’s expressiveness, specifically its capacity
to represent additional information that might not be explicitly represented in traditional
techniques. By doing so, we aimed to demonstrate the metamodel’s capacity to provide a
richer representation of process data, enabling more comprehensive analysis and insights.

To achieve these objectives we used real and public process data which are described in
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Dataset Format Event
records

Distinct
activity names

Distinct
object types Object Instances Actors

BPIC’2017 CSV 2105 26 3
Application: 154
Offer: 183
Workflow: 240

69

Order Management log OCEL 22367 11 5

Product: 20
Customer: 17
Item: 8159
Offer: 2000
Package: 1326

-

Table 3.3: Datasets characteristics

Section 3.5.1. The methodology employed for the evaluation is detailed in Section 3.5.2, while
the results are discussed in Section 3.5.3.

3.5.1 Process execution data

We evaluated the effectiveness of our approach using two publicly available event logs, each
represented in a distinct format - CSV and OCEL. These event logs cover different process
domains, providing diverse real-world data for our evaluation. Table 3.3 summarizes the
characteristics of these event logs.

The first event log, BPIC’17 event log [123], captures the loan application process, encom-
passing the entire journey from application submission to the final decision-making (approval
or decline). The log is stored in CSV files, and to streamline the evaluation, we filtered it by
removing infrequent events with a frequency of less than 20%. Consequently, we obtained a
dataset comprising 2105 unique event records, covering 26 different activities involving three
distinct object types: application, offer, and workflow. Within the dataset, there are 577 ob-
ject instances, including 154 applications, 183 offers, and 240 workflows. The process activities
are executed by 69 different actors, and no business roles are included in this context.

The second event log is the order management log3 , which is represented using the OCEL
format [61]. This log focuses on customer order processing, monitoring orders from their
acceptance to the final delivery. It comprises a larger dataset, containing 22367 unique event
records, involving 11 different activities and five diverse object types: product, customer,
item, order, and package. Within the dataset, there are 11522 object instances, including 20
products, 17 customers, 8159 items, 2000 orders, and 1326 packages. There are no actors or
business roles included in this log.

3OCEL Standard: http://ocel-standard.org/
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3.5.2 Methodology

The initial phase of our evaluation involved a thorough examination of the structure of the
two datasets utilized. In this step, we familiarized ourselves with the datasets’ structures,
entities, relationships, and properties. Our aim was to identify the main concepts and relations
explicitly represented in these datasets. To evaluate compliance, we meticulously mapped the
entities, relationships, and properties from the datasets to their corresponding counterparts in
our meta-model. This mapping process allows us to determine how effectively our meta-model
accommodates the essential aspects found in these standard datasets.

Furthermore, to assess the expressiveness of our metamodel, we identified the additional
concepts and relations that were necessary beyond what the existing standards provided. This
supplementary information was explicitly incorporated into our meta-model, enhancing its
capacity to represent complex multi-dimensional process data comprehensively. For instance,
we delved into the specifics of each dataset to identify relationships between objects based
on the underlying logic. In the loan application process, if an activity "O_Canceled" was
related to both an application and an offer object, we added a "canceled" relation between
the respective application and offer objects. Similarly, we derived and explicitly added the
directly follow relations based on objects, harnessing the stored information to construct a
more comprehensive representation. Lastly, we employed a data transformation script to
automate the process of populating the graph in Neo4j. This script efficiently handled the
data files as input and facilitated the seamless creation of the graph representation. The result
of this transformation was the successful storage of the processed data as a graph database
in Neo4j. For the BPIC’17 event logs, this yielded a graph comprising 2157 nodes and 10692
relations, while the order management log produced a graph with 33889 nodes and 750710
relations.

3.5.3 Results

After conducting the evaluation using the two publicly available event logs, we obtained
valuable results that shed light on the effectiveness of our proposed meta-model to represent
multi-dimensional process data.

Regarding the BPIC’17 event log, which captures the loan application process, our meta-
model demonstrated a high level of compliance. Through meticulous analysis, we successfully
identified and mapped the main concepts and relations present in the event log to their corre-
sponding representations in our meta-model. Notably, the event log explicitly contained the
following concepts: Event, Data, and Object, along with the Event-Object Relation. Similarly,
for the order management process stored in the OCEL format, we achieved successful identi-
fication and mapping of the main concepts and relations to our meta-model. This event log
also explicitly included the following concepts: Event, Data, and Object, as well as the Event-
Object Relation. The seamless integration of these entities, relationships, and properties from
the event log into our meta-model showcased its capability to accommodate essential aspects
from existing standards and traditional storage techniques. The mapping process affirmed
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our meta-model’s effectiveness in handling diverse event logs while maintaining compliance
with existing standards.

The evaluation further highlighted the expressiveness of our meta-model. By discern-
ing and representing additional concepts and relations beyond what the standard datasets
offered, we empowered our meta-model to capture intricate relationships between various ob-
ject types and activities. Notably, we explicitly represented additional relations, such as the
relationships between objects and the Directly Follow Relation based on both timestamps and
objects. These enhancements showcased the adaptability and versatility of our meta-model
in representing complex multi-dimensional process data.

Overall, our evaluation results demonstrate the substantial potential of our proposed meta-
model in effectively representing and analyzing multi-dimensional process execution data.
The high compliance with existing standards and the augmented expressiveness in handling
complex relationships validate the utility of our meta-model as a valuable tool for process
data representation and analysis in real-world scenarios.

However, a notable limitation is that for each new dataset, a new script must be imple-
mented to populate the graph meta-model. This is mainly due to the inherent differences in
data representations, particularly when dealing with data stored in CSV files. Additionally,
the identification of additional concepts and relations for each dataset was a manual process,
which hindered the generalization of the data transformation process. For instance, the nam-
ing of object relations needed manual identification based on the specific characteristics of
each process.

3.6 Conclusion

In this chapter, we successfully accomplished Objective 1.3, which involved the selection and
proposal of a suitable storage representation for process data. This choice played a pivotal
role in the well-designed automation of structured query construction within our solution.
This contribution directly addresses the sub-question (RQ1-3: What storage technique and
query language should serve as the foundation for the automated solution to ensure both
effective and efficient querying?) in our pursuit of answering the primary research problem
(RQ1:) for making process data easily accessible for users in a natural manner.

To this end, we have introduced our graph meta-model designed to accommodate and ex-
plicitly represent every concept and relationship inherent to multi-dimensional process data.
With a keen focus on instance-level details, it comprehensively captures information such as
executed activities, involved actors, impacted data and objects, and the interconnections be-
tween these entities. Notably, we have placed considerable emphasis on the integration of both
structural and behavioral data, unifying them within this metamodel. To ascertain its effec-
tiveness, we have conducted an evaluation that measures the metamodel’s compliance with
existing standards and assesses its expressiveness, particularly its ability to capture additional
information that might be overlooked by traditional techniques. This evaluation employed
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two publicly available process datasets. It is worth noting that we have refrained from per-
forming a comparative evaluation of our LPG model against other storage techniques, as this
aspect has already been comprehensively examined by [55], establishing the effectiveness of
LPG for process data storage. In the next chapter, we introduce our automated solution uti-
lizing NLI, meticulously designed to automate the query process over data represented within
our proposed LPG model.
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4.1 Introduction

Process data querying is a pivotal technique in the realm of process analysis. It enables
analysts to pose granular questions, providing immediate insights into various aspects of
process execution. For instance, questions like "Who validated job application 10?" or "When
is the interview scheduled for Candidate C1?" exemplify the type of inquiries that process data
querying can address. However, existing process query languages and technologies primarily
target data scientists, assuming a certain level of technical expertise in using query languages
like SQL, Cypher, or SPARQL, or dealing with low-level APIs.

This limitation is significant because it excludes domain analysts, including those in fields
like healthcare or insurance, and even end-users, who should have the ability to leverage
process analytics for their tasks within digitally enabled processes. Moreover, a key challenge
with existing process analytics technologies is that they often do not make process data easily
accessible to human users in a natural and user-friendly manner.

To address this limitation, there is a need for a solution that incorporates cognitive ca-
pabilities to facilitate process querying task. By Leveraging AI techniques, such as NLP and
LLMs, process data should be accessible to users with varying levels of expertise. To this
end, we present in this chapter a NL-based pipeline designed to assist end-users in querying
process data. The user-facing interface takes a query formulated in NL and automatically
generates a corresponding structured query to be executed over structured process data, and
returning the response (highlighted by the blue pointed area in Figure1.3). We use the graph
metamodel introduced in Chapter 3 for storing process data, and we aim to answer NL queries
by automatically constructing the corresponding Cypher queries.

We categorize NL queries related to process data into three categories based on state-of-
the-art process querying [121] and process mining [156] techniques: content, behavioral, and
performance queries. This categorization covers a broad spectrum of aspects within process
data, allowing users to explore content, behavior, and performance metrics.

Our proposed pipeline is hybrid combining machine learning and rule-based approaches.
The pipeline comprises two main stages. In the first stage, we employ machine learning
techniques for intent detection and entity extraction, using a model trained on a collection
of NL queries paired with their respective intents and entities. To generalize the solution,
we propose general patterns for intents and entities based on the LPG metamodel, which
are then instantiated according to the event property graph model. In the second stage, a
rule-based approach is employed to construct the corresponding database query based on the
intent and entities identified in the first stage.

Furthermore, to minimize the effort required to adapt the system to multiple domains,
we propose an automated approach that leverages prompt engineering and LLMs for the
generation of NL queries used for training the machine learning model. By harnessing the
capabilities of LLMs like GPT-4, we can automatically generate a diverse range of NL queries,
eliminating the need for manually annotated datasets for each domain transition.
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To evaluate our approach, we conducted experiments using two publicly available process
datasets: one related to a loan application process and the other related to order manage-
ment. We collected over 370 NL queries from external users who were unfamiliar with the
Cypher query language, as well as 150 NL queries generated using a paraphrasing tool. These
queries can serve as benchmarks for future research. Additionally, we conducted a compara-
tive evaluation between the machine learning model and the rule-based approach for intent
detection in NL process data queries.

Our research findings have undergone rigorous peer review and have been accepted for
publication at the ICPM 2021 conference [85]. Furthermore, an extended and more compre-
hensive version has been published in the Information Systems Journal [86].

The remainder of this chapter is organized as follows: Section 4.2 provides definitions of
relevant concepts related to intent recognition and entity extraction techniques. Section 4.3
presents motivation examples and discusses key challenges in automating the construction of
graph queries. Section 4.4 provides an overview of our proposed approach, while Section 4.5
defines the NL query categories for process data. The two main components of the pipeline
are elaborated in Section 4.6 and Section 4.7. Section 4.8 delves into our automated solution
for generating NL training data related to the process domain using prompt engineering and
GPT-4. Section 4.9 presents and discusses experiments and evaluation results. Section 4.10
concludes the chapter.

4.2 Backgrounds

Natural Language Understanding (NLU) is a pivotal domain in both research and practical
applications within the broader field of NLP. Its primary objective is to bridge the gap between
human language and machine comprehension, enabling computers to interpret and understand
human language in a meaningful way. NLU plays a critical role in various applications,
such as virtual assistants, chatbots, sentiment analysis, customer support systems, and more,
where accurate language understanding is paramount to providing relevant and contextually
appropriate responses.

In this section, we will focus on two fundamental tasks in NLU, which we will apply in our
approach: Intent Recognition (presented in Section 4.2.1) and Entity Extraction (presented
in Section 4.2.2).

4.2.1 Intent Recognition

Intent Recognition, also known as Intent Classification or Intent Detection, involves deci-
phering the underlying intention or purpose behind a user’s input. When users interact with
NLU-powered applications, they typically express their queries or requests in NL. The objec-
tive of intent recognition is to understand the user’s intention and map it to a predefined intent
category, representing the specific action or goal the user aims to achieve. For example, given
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the user query, "Book a flight from New York to Los Angeles on Friday", the intent recogni-
tion system would identify the user’s intent as "Book Flight," enabling the NLU application
to proceed with the flight booking process. Accurate intent recognition is crucial for design-
ing efficient conversational systems as it allows for routing user queries to the appropriate
functionality or service, significantly impacting the overall user experience. Misinterpreting
the user’s intent could lead to frustrating interactions and suboptimal responses.

4.2.2 Entity Extraction

Entity Extraction, also known as Named Entity Recognition (NER), involves identifying and
categorizing specific entities or key information from the user’s input. Entities can include
names of people, places, organizations, dates, times, numerical values, and other domain-
specific entities. Continuing with the previous user’s query example "Book a flight from New
York to Los Angeles on Friday", entity extraction would identify entities such as "New York"
(origin), "Los Angeles" (destination), and "Friday" (date). Extracting these entities from the
user query is essential for understanding the context and obtaining relevant information re-
quired to fulfill the user’s request accurately. Entity extraction is particularly valuable when
dealing with unstructured text, such as user-generated content, social media posts, or cus-
tomer support emails. By identifying and categorizing entities, NLU systems can organize and
analyze information more effectively, leading to improved decision-making and streamlined
information retrieval.

4.3 Motivation & Challenges

In this section, we motivate the automation of constructing the Cypher query from NL (Sec-
tion 4.3.1). In addition, we will discuss several challenges that come with such automation
(Section 4.3.2).

4.3.1 Motivation

To construct a Cypher query, the user should be familiar with (i) the Cypher language, and
(ii) the graph structure where the data is stored. First, the user should learn about the
various clauses that comprise a Cypher query (as detailed in section 3.4.1) as well as how to
use these clauses to construct a query.

MATCH (application: Application) - [:Affect] - (activity: Activity),
(activity) - [:Affect] - (offer),
(offer:Offer) - [:Offered] - (application)

WHERE application.Goal= 'Car' AND activity.Name= 'A_Validated' AND
activity.Time>='2021-12-01' AND activity.Time<='2022-03-01'

WITH application, COUNT(offer) as offerCT
WHERE offerCT>=3
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RETURN (application)
ORDER BY application.Amount

Listing 4.1: An example of a cypher query for querying process data

Listing 4.1 shows an example of a Cypher query to answer the following NL query: ’Return
all car loan applications validated within the last three months, and which received 3 offers
minimum, order them by their requested amounts’. In the following, we will refer to this NL
query by (NLQ1). The Cypher query selects all subgraphs in the event property graph in
Figure 3.6 that consist of three node types Application,Offer and Activity. The node types
Application and Offer should be connected through the relation Offered. The node type
Activity is connected to Offer and to Application node types through the relation Affect. The
selected subgraphs are conditioned in the WHERE clause which keeps only the subgraphs
whose node properties satisfy the conditions. Afterwards, the WITH clause takes the selected
subgraphs and counts the number of offers per application (akin to group by clause in SQL).
The second WHERE clause applies a second filter and keeps the subgraphs whose application
node is connected to at least three offers. Finally, the query returns the application nodes
ordered by their requested amount property.

Second, the user should be familiar with the graph structure (i.e. node types and relations
required to construct a valid sub-graph) and the different graph elements (i.e. exact property
names and values to add correct conditions). For instance, the user should be aware that
application validation is referred to by the activity name ’A_Validated’. These requirements,
however, make the querying task inaccessible to business users who may lack such technical
background. Thus, there is a need for an automated solution that keeps users away from
these technical details.

4.3.2 Challenges

In this section, we discuss the main challenges that arise when processing a NL query to
automatically generate the corresponding graph query.

Chal_1: Natural Language Variation. Users may express their intentions in NL
in a variety of ways. For example, to retrieve the number of applications with an amount
greater than 10,000, a user can enter queries such as ["what is the number of applications
with an amount more than 10,000?", "How many applications are there with amount 10,000
at least?", "Count the applications with a minimum amount of 10,000.", etc.]. Furthermore,
each graph element can be expressed in a variety of NL expressions (e.g. actor could be
expressed as person, user, resource, etc.). The same applies for activity names. For instance,
the activity name ‘A_Validated’ is not stated explicitly in (NLQ1), but rather was inferred
from the verb ’validated’ in the question.

Chal_2: Graph Elements Inference. Nodes types or properties names may not be
explicitly mentioned in the text. The system should be able to infer automatically the node
types from the node’s property names or values, as well as property names from property



60 Natural Language Interface for Querying Process Execution Data

values that appear in the NL query. In (NLQ1), for instance, the system should be able to
recognize that the detected entity ’car’ corresponds to a value of the property ’Goal’ of the
node type ’Application’. The same applies for the date values. For instance, the last three
months expression in (NLQ1), refers to a date period value of the property ’Time’ of the
node type ’Activity’.

Chal_3: Numerical Conditions Identification. Numerical values should be as-
signed to their corresponding properties with the appropriate operator. For instance, in the
question ’Which offers have a minimum monthly cost of 200 and an offer amount greater
than 15,000?’, two conditions with numerical values should be correctly applied. The first
condition is that the monthly cost property is >= 200. The second is that the offer amount is
> 15000. Furthermore, the system should recognizes the conditions over the count variables.
For instance, in (NLQ1) the system should recognize the condition that the number of offers
is greater than or equal to three.

Chal_4: Syntactically Correct Sub-graph Construction. The query sub-graph
constructed from the retrieved entities should be syntactically correct. A sub-graph is syntac-
tically correct if it is compatible with the graph model in which the data is stored. However,
in some cases, not all graph elements required to complete the sub-graph are retrieved from
the NL query. For instance, in (NLQ1), only activity, offer and application nodes are de-
tected. These elements, however, are insufficient, and the two relations ’Affect’ and ’Offered’
should be added to complete the sub graph as shown in the MATCH clause of Listing 3.1.

In the following sections, we describe how we overcame these challenges to automatically
construct the Cypher query, without making any assumptions about the NL questions.

4.4 Approach Overview

The pipeline developed in our approach is depicted in Figure 4.1. It takes an NL query
as input, translates it into a Cypher query, and executes it on an event property graph to
obtain the query result, which is then returned to the user. This approach is highlighted
by the blue pointed area in Figure 1.3. We defined three main categories of NL queries
associated with process data queries (presented in Section 4.5). The pipeline comprises two
main components: the NLU component (elaborated in Section 4.6) and the query construction
component (explained in Section 4.7).

NLU component: This component receives the user’s query and performs NLU tasks. It
allows the detection of the user’s intent (i.e. what the user is asking about) and the extraction
of named entities from the query (i.e. terms that correspond to elements in the event property
graph). In this work, we adopt a machine learning-based approach for intent recognition and
entity extraction since it is more robust against variations in NL.

In machine learning, intent recognition and entity extraction can be seen as a classification
task in which a model is trained with a set of queries and their associated intents and entities.
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Figure 4.1: Overview of the proposed approach

Therefore, the main contribution of this component is the identification of the possible intents
and entities that the system should learn to detect. In our work, as we aim to query process
data, intents and entities should pertain to elements in our event property graph. Intents
describe the type of information to be searched for and returned to the user, such as nodes,
relationships, paths, node/relationship properties, or any aggregation applied to numeric
properties. Entities refer to graph elements (e.g., node types, node properties, relation types).
We propose general patterns that are defined based on the LPG meta-model in general and
that are instantiated according to the event property graph model. Once defined, we can
apply state-of-the-art classification techniques for intent recognition and entity extraction.

Query Construction Component: The query construction component takes the de-
tected intent and entities from the NLU component as input and automatically constructs
the corresponding Cypher query. It is a rule-based component consisting of four main steps.
First, the detected intent determines the Cypher query group (node, relationship, or path
matching query) and the minimal elements required in the MATCH clause. It also specifies
the elements of the RETURN clause. Secondly, the detected entities are added either as con-
ditions in the WHERE clause or as elements in the subgraph of the MATCH clause. Entities
corresponding to nodes and relationships are added as subgraph elements, while those cor-
responding to values are added as conditions. Third, the WITH or ORDER BY clauses are
added if there is a need for aggregation or if the user requires the results to be ordered. This
is determined by analyzing the presence of trigger words (e.g., "in each," "for each", etc.) that
indicate the need for aggregation or words (e.g., "ordered", "sorted", etc.) that indicate the
need for ordering the results. The algorithm examines the grammatical relationships, pro-
vided by the dependency parser, between the trigger words and each entity in the NL query
to determine based on which entity the results should be aggregated or ordered. Finally, the
Cypher query is completed to be syntactically correct.
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After constructing the Cypher query, it is executed on the stored graph, and the response
is returned to the user. In the following sections, we detailed the two components in our
pipeline.

4.5 Process Data NL Queries Categories

We divided process data NL queries into three main categories based on state-of-the-art
process querying [121] and process mining [156] techniques: content, behavioral, and perfor-
mance:

• Content queries: Content queries aim to provide answers to questions regarding
events within a process and the associated data. They furnish information about the
specifics of one or multiple events. For instance, content queries can address inquiries
such as:

– Executed activities (e.g. "What activities were carried out last month?");
– Involved actors (e.g. "Who is responsible for submitting loan applications?");
– Data objects (e.g. "Which offers with an amount less than 10,000 were rejected?");

Content queries essentially delve into the tangible aspects of the process by focusing on
events and their attributes.

• Behavioral queries: Behavioral queries are designed to facilitate the exploration of
process execution behavior. They enable users to inquire about various aspects of how
activities are carried out. For instance, behavioral queries can address questions like:

– Temporal execution order (e.g. "Which activity follows the submission of an ap-
plication?", "Give me the sequence of activities that occur after the validation of
App1");

– Process instance traces (e.g. "Provide me with the trace of activities related to the
processing of App1");

Behavioral queries offer insights into the dynamic flow and sequence of activities within
a process, allowing users to understand the order and relations between them.

• Performance queries: Performance queries aim to provide answers to questions
related to the efficiency and timing aspects of a process. They encompass inquiries
about various performance metrics, such as:

– Processing time (e.g. "How long does it take for App1 to be processed?");
– Delay analysis (e.g. "What factors contribute to delays in processing loan applica-

tions?");

Performance queries focus on assessing the effectiveness and efficiency of a process,
allowing users to identify areas for improvement and optimization.
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These three query categories collectively cover a wide range of aspects within process data,
offering users the ability to explore content, behavior, and performance metrics. Each of these
categories requires dedicated intent definition and Cypher query construction mechanisms.

4.6 NLU Component

This component analyzes the user’s NL query by performing two main NLU tasks: intent
detection and entity extraction. It aims to address Chal_1 and Chal_2 challenges described
in Section 4.3.2, by defining the possible intent and entity classes that could be associated
with the NL queries. Figure 4.2 shows a simple example of the detected intent and extracted
entities from a NL query related to the event property graph in Figure 3.6. The system

What    is    the    maximum    requested    amount    for     car   loan           applications    ?
Entity: 

Application.Goal.'car'
Entity: 

Application
Entity: 

Application.Amount

Intent: Max_Application

Figure 4.2: Example of detected intent and extracted entities from an NL query

detects that the question intent is Application_Affect which means that the user is inquiring
about the node Application affected by some activity node. The system also extracts some
entities such as application, validated, and John. This example shows that intent and entities
are clearly domain-specific, limiting the pipeline’s applicability. To address this problem,
we defined general patterns for intent and entities that are easily instantiated according to
the specific data model. Patterns are defined based on the general structure of a labeled
graph (i.e. nodes, relations, properties, and values). Their instantiation depends on the event
graph model in which the process data is stored. In the following, we present the solution
we proposed for defining and instantiating intent (Section 4.6.1) and entity (Section 4.6.2)
patterns.

4.6.1 Intent recognition

To perform a machine learning-based intent detection, the possible intent classes, that the
system learns to detect, should be defined. For each of the NL categories presented in Sec-
tion 4.5, a set of intent classes should be defined. The developed pipeline supports content
and behavioral queries. Performance queries are left for future work. In the following, we
define a set of general intent patterns that are instantiated according to the event property
graph, for content and behavioral queries.

(i) Content Intent patterns
Content intent patterns are associated to content NL queries which allow the user to either
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ask about particular nodes without taking into account any of their relationships, or about
particular nodes that are involved in specific relationships with other nodes. For instance,
in the question ‘Which applications have a requested amount more than 15000’, it searches
for the Application nodes whose amount property is greater than 15000. In the question
‘Which accepted applications have a requested amount more than 15000’, it searches for the
Application nodes connected, through the relation Affect, to the Activity nodes whose name
is A_accepted.

Therefore, we define two classes of content intent patterns: Node patterns and Node_Relation
patterns as shown in Table 4.1 (P1 and P3). Both patterns indicate that the user is seeking
information about the node or its properties (as will be discussed in Section 4.7). Node in-
tent pattern is associated with node matching queries whereas Node_Relation intent pattern
is associated with relationship matching queries (i.e. Cypher query groups defined in Sec-
tion 3.4.3). Given the event property graph in Figure 3.6, these patterns can be instantiated
as shown in the intent instances column of Table 4.1. For example, the intent pattern Node
is instantiated to each node type in the event property graph, e.g. intents Actor, Activity,
Application and Offer. Similarly, the intent Node_Relation is instantiated to every possible
node and relationship type 1, e.g. intents Actor_Contribute, Activity_Affect, etc. It is worth
noting that for Node_Relation pattern instantiation, we add all possible pairs regardless of
the relation direction. For instance, the intents Actor_Contribute and Activity_Contribute are
two possible instantiations. The former is linked to queries about the actors executing a
specific activity while the latter is linked to queries about the activities executed by specific
actor. Examples of questions for each of these pattern instances are illustrated in Table 4.2.

Intent pattern Intent Instances Cypher matching query

P1 Node Actor, Activity, Application, Offer node queries

P2 Agg_Node
Count_Actor, Count_Activity,

Count_Application, Max_Application, etc.
node queries

P3 Node_Relation
Actor_Contribute, Activity_Contribute,

Activity_Affect, Application_Affect, etc.
relationship queries

P4 Agg_Node_Relation
Count_Actor_Contribute, Count_Activity_Contribute,

Max_Offer_Canceled, Avg_Offer_Offered, etc.
relationship queries

Table 4.1: Content intent patterns and their possible instantiations for the event property graph
model in Figure 3.6

Two additional intent patterns, Agg_Node and Agg_Node_Relation (P2 and P4 in Ta-
ble 4.1), are defined on top of the Node and Node_Relation patterns. These two patterns
are similar to the first two patterns, but instead of reflecting the user’s want for information
about a node or its properties, they indicate that the user inquires for the result of one of the
aggregate functions: maximum, minimum, average, count or sum. For instance, the ques-
tion ‘What is the maximum requested amount for car loan applications?’, the user inquires
about the result of the max function applied on the property amount of the Application nodes

1excluding the FollowedBy and {ObjectType}_FollowedBy relations as they have dedicated behavioral intents
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Content Intent instance Example questions

Activity (P1) Which activities were executed today?

Application (P1) Which applications have requested an amount of more than 15000?

Count_Activity (P2) How many activities were executed last month?

Max_Application (P2) What is the maximum requested amount for those applications with loan goal

Home improvement?

Actor_Contribute (P3) Who was involved in processing Application_2110141037?
Who cancelled the applications with loan goal Home improvement?

Application_Affect (P3) Which application with type New credit was incomplete?
Give me the application ID of all canceled application.

Max_Offer_Canceled (P4) What is the highest number of offers canceled in a single application?

Count_Activity_Contribute (P4) What is the total number of UserAG contributions in Application_1765444083?

Actor_HasContributed_count (P4) How many actors were involved in processing Application_2110141037?

Table 4.2: Examples of content questions and their associated intents

whose Goal is equal to ‘car loan’. Its associated intent is Max_Application which is instanti-
ated from the intent pattern Agg_Node. The intent does not specify the property on which
the aggregate function should be applied. This information is inferred by the query construc-
tion component (more details in Section 4.7). On the other hand, the question ‘Give me the
highest number of offers canceled in a single application’ requires computing and returning
the maximal number of Offer nodes connected to each Application node through the relation
Canceled. Its associated intent is Max_Offer_Canceled which is instantiated from the intent
pattern Max_Node_Relation.

(ii) Behavioral Intent Patterns
Behavioral intent patterns are associated to behavioral queries used to query the FollowedBy
and {ObjectType}_FollowedBy relations in the event property graph. These queries provide
answers to questions about the chronological order of the activities that were executed. They
are central to many process analytics in general, and process mining in particular (e.g. all
process discovery techniques require querying the behavioral aspect of processes [9]).

We classified the behavioral intents into two groups: intents under the relationship queries
(P5 and P6) and intents under the path queries (P7, P8, P9 and P10) as shown in Table 4.3.

Node_Relation and Agg_Relation intent patterns indicate that the user is looking
for the directly follow relation between two activities which can be either FollowedBy or
{Object}_FollowedBy. They are instantiated into exactly the following three intent instances:
Activity_FollowedBy, Object_FollowedBy and Count_FollowedBy. These intents belong to
relationship matching queries which consist of selecting pairs of activities connected through
FollowedBy or {Object}_FollowedBy relations. Activity_FollowedBy indicates that the user is
seeking for the activity that directly precedes or follows a specific activity. Object_FollowedBy
indicates that the user is seeking for the objects for which two specific activities follow each
other. Finally, Count_FollowedBy indicates that the user is seeking for the number of times
an activity precedes or follows another activity. Examples of NL queries assigned with these
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Intent pattern Intent Instances Cypher Matching Query

P5 Node_Relation Activity_FollowedBy, Object_FollowedBy relationship queries

P6 Agg_Relation Count_FollowedBy relationship queries

P7 Node_Relation* Activity_FollowedBy*, Object_FollowedBy* path queries

P8 Agg_Relation* Count_FollowedBy* path queries

P9 Path_Relation* Path_FollowedBy* path queries

P10 Length_Relation Length_FollowedBy* path queries

Table 4.3: Behavioral intent patterns and their possible instantiations for the event property graph
in Figure 3.6

Behavioral Intent instance Example questions

Activity_FollowedBy (P5) What activity follows the submission of "App1" ?

Activity_FollowedBy (P5) What activities follow the creation of offers?

Object_FollowedBy (P5) Which applications include A_Cancelled directly followed by A_Submitted ?

Count_FollowedBy (P6) How many times does the O_Cancelled activity directly follow the O_Created ?

Activity_FollowedBy* (P7) What activity eventually follows A_Submitted in case "App1" ?

Object_FollowedBy* (P7) Which offer entities contain an O_Cancelled that eventually follows the O_Created ?

Count_FollowedBy* (P8) How many times does O_Cancelled activity eventually follow the O_Created ?

Path_FollowedBy* (P9) Give me the trace of executed activities in "App1".

Length_FollowedBy* (P10) What is the length of the trace in "App1"?

Length_FollowedBy* (P10) How many activities were executed between O_Created and O_Cancelled in each offer?

Table 4.4: Examples of behavioral queries and their associated intents

intents are shown in Table 4.4 (P5 and P6).

Node_Relation* and Agg_Relation* are similar to the Node_Relation and Agg_Relation
patterns, but instead of looking only at the directly follow relation, they indicate that the
user is looking for the eventually follow relations. They are instantiated similarly to the
first two patterns. These intents belong to path matching queries which consist of selecting
two activities connected to each other through FollowedBy or {Object}_FollowedBy relations
with a variable length (denoted with the ‘*’ symbol). Activity_FollowedBy* indicates that
the user inquires about all activities that were executed eventually before or after a specific
activity. Object_FollowedBy* indicates that the user inquires about the objects for which
two specific activities eventually follow each other. Count_FollowedBy* indicates that the
user inquires about the number of times an activity eventually precedes or follows another
activity. Examples of NL queries assigned with these intents are shown in Table 4.4 (P7 and
P8).

Path_Relation* and Length_Relation* are intents dedicated to querying (sub-)traces
which are fundamental to process mining techniques. A trace is simply the entire path of
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NL query Return all car loan applications validated within the last three months,
and which received 3 offers minimum, order them by their requested amounts.

Intent Application_Affect (P3)

NER

{(applications, (Node, Application)), (offers, (Node, Offer)),
(requested amounts, (Node.property, Application.Amount))
(car, (Node.property.Value, Application.Goal.‘Car’)),
(applications validated, (Node.property.Value, Activity.Name.‘A_validated’)),
(last three months, (date, [2021-12-01, 2022-03-01])), (3, (number,3)}

.

Cypher Query

MATCH (application: Application) - [:Affect] - (activity: Activity),
(activity) - [:Affect] - (offer),
(offer:Offer) - [:Offered] - (application)

WHERE application.Goal= ‘Car’ AND activity.Name= ‘A_Validated’ AND
activity.Time>=‘2021-12-01’ and activity.Time<=‘2022-03-01’

WITH application, COUNT(offer) as offerCT
WHERE offerCT>=3
RETURN (application)
ORDER BY application.Amount

Table 4.5: An example of a question with detected intent and extracted entities, as well as the
corresponding Cypher query.

activities executed for a specific object. For example, in the event property graph in Fig-
ure 3.6, the entire path between A_created and A_cancelled is a trace for the Application
object whose ID is app1. This is because all activities in the path are connected through Ap-
plication_FollowedBy relation having the same value app1 for the relation property ObjectID.
These intents are instantiated into Path_FollowedBy* and Length_FollowedBy*. The former
indicates that the user is asking about the trace or sub-trace between two specific activities,
while the latter indicates that the user is asking about the length or number of activities of a
(sub-)trace. Examples of NL queries assigned with these two intents are shown in Table 4.4
(P9 and P10).

4.6.2 Entities extraction

Similarly to intent recognition, to perform a machine learning-based NER, we need to define
the classes of entities that the NER system should learn to extract.

We define six possible patterns for the entities: Node, Relationship, Node.property,
Node.property.Value, Relationship.property and Relationship.property.Value. We
also add two additional patterns, Date and Number, which are associated to numerical and
date terms that appear in the NL query. These two patterns refer to numerical and date val-
ues of node/relationship properties in the event property graph. They are processed by the
query construction component to determine the property to which they refer.

In the following, we will use the term entity type to refer to an entity pattern and en-
tity values to refer to their instantiations according to the event property graph. Node
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and relationship entity types have the nodes’ and relationships’ labels as entity values, e.g.
Activity, Actor, Application, Contribute, Affect. property entity types have the node/rela-
tionship property name as entity value, e.g. Activity.Name, Application.Amount, Applica-
tion_FollowedBy.ObjectID. Finally, value entity types have the node/relationship property
values as entity values, e.g. Activity.Name.‘A_validated’, Application.Goal.‘Home improve-
ment’, Application_FollowedBy.ObjectID.‘app1’. For instance, in Figure 4.2, the term vali-
dated with entity type Node.property.Value, its entity value indicates that the node is Activity,
the property is Name, and the value is A_validated (written as Activity.Name.‘A_validated’).
The system also detects that ‘applications’ which correspond to the entity type Node, its
corresponding entity value is Application.

The formal definitions of entity type, entity value and entity are given below.

Definition 4.1 (Entity type). An entity type Et can be one of the following: Node, Node.property,
Node.property.Value, Relationship, Relationship.property, Relationship.property.Value, Num-
ber, Date. We denote by Es

t the set of entity types.

Definition 4.2 (Entity value). Let GE = (N, R, γ, λ, ρ, σ) be an event property graph. For
a node or relationship e ∈ N ∪ R, λ(e) is the node or relationship label; atte ∈ ρ(e) is the
property name of the node or relationship, and σ(e, atte) is the property’s value. An entity
value Ev is defined as follows:

• Ev ∈ Rng(λ) if Et ∈ {Node, Relationship}; Rng returns the range of the function;

• Ev ∈ {λ(e).attre | e ∈ N ∪R ∧ attre ∈ ρ(e)} if Et ∈ {Node.property, Rela-
tionship.property};

• Ev ∈ {λ(e).attre.σ(e, attre) | e ∈ N ∪R ∧ attre ∈ ρ(e)} if Et ∈ {Node.property.Value,
Relationship.property.Value};

• Ev ∈ R ∪D if Et ∈ {Number, Date}; where R is the set of real numbers and D is the
set of date values.

We denote by Es
v the set of all possible entity values for GE.

Definition 4.3 (Entity). Let GE = (N, R, γ, λ, ρ, σ). An entity E = (Et, Ev) is a pair
where Et is the entity type as given in Definition 4.1, and Ev is the entity value as given in
Definition 4.2. We denote by Es the set of all possible entities for GE.

Definition 4.4 (NER). Given an NL query QNL and a NER model trained with a set of NL
queries and their associated entities Es. The system output is NER = {(term, E) | term ∈
QNL ∧ E ∈ Es} which corresponds to the set of extracted terms from QNL associated with
their entities.

Table 4.5 shows an example of an NL query, its detected intent, and extracted entities.
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4.7 Query construction component

The purpose of this component is to construct the corresponding Cypher query based on
the detected intent and extracted entities from the NLU component. Algorithm 1 shows
the pseudo-code of the query construction algorithm. It takes as input the NL query QNL,
the detected intent I, and the extracted terms from the NL query associated with their
entities NER (see Definition 4.4). It produces as output the corresponding Cypher query
QC . The algorithm proceeds in four main steps. The first three steps allow to i) generate the
MATCH-RETURN clause, ii) detect and generate the conditions that should be added to the
WHERE clause and/or the WHERE part of the WITH clause and iii) detect whether WITH
and ORDER-BY clauses need to be added and generate them. The resulting query may be
syntactically incorrect. Therefore, the last step verifies and completes the query to generate
a syntactically correct one. These different steps are detailed in the following sections.

Algorithm 1 Query construction pseudo-code
1: Input: QNL, I, NER = {(term, E)}
2: Output: QC

3: QC ← “ ”
4: construct_match_return(I, QC)
5: construct_where(QNL, NER, I, QC)
6: construct_with_orderBy(QNL, NER, QC)
7: verify_complete(QC)

4.7.1 MATCH and RETURN clauses

MATCH-RETURN clauses are generated based solely on the detected intent I. Table 4.6 shows
the templates of the MATCH and RETURN clauses associated with each intent pattern.

MATCH clause: The intent pattern from which I is instantiated allows to determine the
Cypher query group (node, matching or path) (as detailed in Section 4.6.1) and consequently
determine the pattern of the MATCH clause. It consists of either a single node or a sub-graph.
In case I is an instance of the Node or Agg_Node patterns (i.e. node matching queries), the
MATCH is made up of only one node type which is represented by I. For instance, the
intent of the first question in Table 4.2 is Activity. Therefore, MATCH (activity:Activity)
is constructed.

In case I is an instance of the Node_Relation, Agg_Node_Relation or Agg_Relation pat-
terns (i.e. relationship matching queries), the MATCH is made up of two nodes connected
through a relation. For instance, the intent of the question ’who was involved in process App1?’
is Actor_Contribute. Therefore, MATCH (actor:Actor)-[:Contribute]-(activity:Activity)
is constructed, as the Actor node is connected through the Contribute relation to the Activity
node. For the Agg_Relation pattern, the relation type only is represented by I, and the two
nodes connected through this relation are inferred automatically. For instance, the intent of
the question ’How many times does the O_Cancelled activity directly follow the O_Created’



70 Natural Language Interface for Querying Process Execution Data

Cypher matching query Intent pattern MATCH-RETURN clauses templates

Node queries
Node

MATCH (n: Node)

RETURN n or RETURN n.property

Agg_Node
MATCH (n: Node)

RETURN AGG(n) or RETURN AGG(n.property)

Relationship queries
Node_Relation

MATCH (n: Node)-[:Relation]-(m)

RETURN n or RETURN n.property

Agg_Node_Relation
MATCH (n: Node)-[:Relation]-(m)

RETURN AGG(n) or RETURN AGG(n.property)

Agg_Relation
MATCH (n)-[:Relation]-(m)

RETURN COUNT(*)

Path queries

Node_Relation*
MATCH (n: Node)-[:Relation*]-(m)

RETURN n or RETURN n.property

Agg_Relation*
MATCH (n)-[:Relation*]-(m)

RETURN COUNT(*)

Path_Relation*
MATCH p= (n)-[:Relation*]-(m)

RETURN longestPath(p)

Length_Relation*
MATCH p= (n)-[:Relation*]-(m)

RETURN LENGTH(longestPath(p))

Table 4.6: Intent pattern associated with their Cypher matching queries, and the general patterns
of MATCH and RETURN clauses deduced from each intent pattern

is Count_FollowedBy. The intent specifies that the relation type is FollowedBy which con-
nects two Activity nodes. Therefore, MATCH(a1:Activity)-[:FollowedBy]-(a2:Activity)
is constructed.

Finally, in case I is an instance of Node_Relation*, Agg_Relation*, Path_Relation* or
Length_Relation* patterns (i.e., path matching queries), the MATCH is made up of two
nodes connected through variable length relations. This is denoted by the ’*’ symbol for the
relation type. Similarly to the intent patterns of relationships pattern queries, one or both
node types are inferred automatically or represented by I.

RETURN clause: Different types of information could be returned depending on the in-
tent pattern: (i) If I is an instance of the intent patterns Node, Node_Relation or Node_Relation*
the node type with which the intent starts is returned (see example in Table 4.5). In some
cases, when a user inquires about only some properties of a node, the system returns those
properties rather than the entire node. Such a case can be recognized by examining the
property names in ET that do not have any corresponding value in the entity type. (ii) If
I is an instance of the intent patterns Agg_Node, Agg_Node_Relation the result of one of
the aggregation functions performed over the node in the intent or its property is returned.
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(iii) if I is an instance of Agg_Relation or Agg_Relation* the number of all selected paths
is returned. (iv) if I is an instance of Path_Relation* the longest selected path between two
specific nodes is returned. (v) Finally, if I is an instance of Length_Relation* the number of
nodes in the longest selected path is returned.

4.7.2 WHERE clause

The goal of this step is to add the necessary conditions to the Cypher query by including the
WHERE clause. The extracted entities in NER are added either as conditions in the query
or as elements in the sub-graph to be matched. Each entity type in Es that corresponds to
node and relationship is added as sub-graph elements, while those corresponding to values
are added as conditions.

WHERE clause: is made up of conjunction of triples2 (property, operator, value) where
property and value appear in the extracted entity types. Values can be of textual, numerical,
or date types. Textual values in Es are associated with an entity type Node.property.Value or
Relation.property.Value. From their corresponding entity values, a condition is added by as-
sociating the value to the property using the "=" operator. In our example in Table 4.5, in the
extracted entities (car, (Node.property.Value, Application.Goal.’Car’)): Application.Goal.’Car’
is the extracted entity value where Car is the value of the property Goal of the node type
Application. Therefore, the triple application.Goal = ‘car’ is added.

The same applies to activity name values. Except that in behavioral queries, the se-
lected sub-graph consists of two activity nodes connected through one or more relations (e.g.
MATCH(a1:Activity)-[:FollowedBy]-(a2:Activity)). The user may specify conditions on
the value name of the first selected activity (i.e. a1) or/and on the second selected activity
(i.e. a2). We will use the terms preceding and succeeding activities to refer to the first and last
activities in the select sub-graph, respectively. For instance, in the question ’Which entities
include A_Canceled executed directly after A_Validating? ’, A_Canceled and A_Validating
represent the succeeding and preceding activities respectively.

To overcome this problem, a set of trigger words that indicate the presence of preceding
(e.g., preceded, after) or succeeding (e.g., followed, before) activity is defined. The idea of
trigger words/indicators was inspired by existing work (e.g. [60, 29]). We used online dic-
tionaries to define the potential trigger words. Then we check whether one or more of these
trigger words appear in the NL query. Once the trigger words were identified, we used the
dependency parser in StanfordCoreNLP3 library to determine the grammatical relationships
between the trigger words and the activity names in the question. By inspecting these depen-
dencies, we can determine whether the activity name corresponds to a preceding or succeeding
activity. For instance, question Q5 in Table 4.7 contains a trigger word ’after’. The direct
dependency between this word and A_Validating in the question indicates that A_Validating
activity is a preceding activity. Following that, activity A_Canceled will be considered the

2The current version supports the conjunction of conditions
3https://stanfordnlp.github.io/CoreNLP/
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succeeding activity.

Date values are automatically associated with the timestamp property of an activity node
type. If a single date value is extracted, the "=" operator is used. Otherwise, if a date period
is extracted, two conjunctions of triples are created with “≤" and “≥" operators.

To address the challenge Chal_3 related to the numerical conditions, existing works
in NLI systems make assumptions about the order of appearance of the triple (operator,
property, value) in the NL query [29]. For example, they assume that the numerical value
always comes directly after the operator’s name. We do not impose such constraints on our
work. Instead, we propose to find the valid (property, operator, value) by examining the
grammatical relations between words.

To do so, we define trigger words to extract the operators from the question (e.g. ‘at least’,
and ‘minimal’ in the question above are trigger words for the operator ‘≥’). The system tries
every triple combination of property, operator, and numerical value that is possible. It then
investigates the grammatical relationships between the elements of each triple. The types of
relationships between words that should be considered were discovered empirically.

Table 4.7 shows examples of questions with grammatical dependencies between words, the
possible indicators/ trigger words extracted, and the deduced conditions. The first row of
the table contains the same example question stated above, with two extracted trigger words:
minimum and greater than, which correspond to the ≥ and > operators, respectively. By
examining the relationships between each operator, property, and number, we can conclude
that (≥, monthly cost, 200) and (>, amount, 15000) are two valid triples, which are then
translated into the conditions shown in the table.

4.7.3 WITH and ORDER-BY clauses

WITH clause: is constructed after the WHERE clause if there is a need for aggregation. We
treat the presence of trigger words (e.g. in each, for each, by, etc.) that may indicate the
need for an aggregation. The proposed algorithm examines the grammatical relationships,
provided by the dependency parser, between the trigger word and each entity in the question.
Then aggregates the results based on the entity which have a specific types of relationship
with the trigger word. Question Q3 in Table 4.7 shows an example of an aggregation trigger
word ’each’ that is linked to the application entity. That is, the result should be aggregated
according to the application node.

Furthermore, this clause defines the variable of the count function if there is a condition
on it. For example in the example in Table 4.5, the WITH clause defines offerCT as the count
of offers connected to each application. This variable is used after in the second WHERE
clause to add the condition that it should be greater than 3. It is important to note, that the
system recognizes that a WITH clause is required in this case, followed by a WHERE clause
to add the condition, because the number 3 is associated with the offer entity rather than an
property. That is, the number of offers should be counted (as defined in the WITH clause),
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QuestionID Dependencies
Trigger words/

Indicators
Conditions

Q1
minimum

greater than

monthly cost>=200

amount>15000

Q2 minimum count(Offer)>=3

Q3 each
aggregation by

application

Q4 ordered
Order the result

based on the amount

Q5 after
’A_Validating’

predecessor activity

Table 4.7: Table of example questions with word dependencies, extracted indicators, and conditions
inferred from these dependencies

and then the condition on the count is added (as defined in the second WHERE clause). The
system handles conditions on count variables in the same way that it handles conditions on
property values (e.g. Q2 in Table 4.7).

ORDER BY clause: is added if we detect trigger words indicating that the user requires
the result ordered (e.g., ordered, descending, sorted, etc.). Similarly to the aggregation and
numerical value and activity name conditions, the grammatical dependency with the trigger
word determines the entity that we need to order the result based on it. For example in
Table 4.7 question Q4, the trigger word is ordered and the requested amount is the entity
that we should order the result based on it.

4.7.4 Cypher query verification and completion

The last step aims to address the challenge Chal_4 by verifying and completing the Cypher
query. First, ensure that the Cypher query is syntactically correct. Technically speaking,
each node or relation whose property is conditioned in the WHERE clause or mentioned in
the WITH or ORDER BY clauses should appear in the MATCH clause. Second, ensure that
the sub-graph in the MATCH clause is complete. In other words, each pair of nodes that
appear in the MATCH clause, and that are connected through relation in the event graph
meta-model depicted in Figure. 3.5, should be also connected through the same relation in
the MATCH clause. For instance, for the question ’Who was involved in processing App1?’
the intent is Actor_Contribute. Therefore, as explained before the MATCH clause: MATCH
(actor:Actor)-[:Contribute]-(a:Activity) is constructed. The Application node should
be also added to the MATCH clause, as it appears in the extracted entities (i.e. App1 ). As a
result, the resulting MATCH will be: MATCH (actor:Actor)-[:Contribute]-(a:Activity),
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(app:Application). However, without connecting the Activity to the Application node, the
Cypher query will return the actors who contributed to all activities, without taking the appli-
cation ’App1’ into account. This does not provide an answer to the user’s question. Therefore,
a relation Affect should be added between Activity and Application nodes to connect the sub-
graph. This way, all implicit nodes and relations required to complete the constructed Cypher
query are added.

Objective Definition:
The goal of the interaction

Initial Prompt Creation
brief background

contextual information

Task description

Testing & Prompt Refinement

Enhance prompt using Perfect
Prompt plugin

Incorporate more contextual
information

Add examples
(Few-shot learning)

Final Prompt 
brief background enhanced
by Perfect Prompt

Task description enhanced
by Perfect Prompt

contextual information + examples

Inputs + Outputs examples

Figure 4.3: Prompt Engineering process for optimizing LLM responses
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4.8 Automated generation of NL training data

Intents and entities are clearly domain-specific and instantiated depending on the process
data. Accordingly, the generation of training data is required when switching from one pro-
cess domain to another. This manual effort restricts the pipeline’s applicability to specific
domains. To overcome this limitation, we propose an automated approach to generate NL
queries using prompt engineering and LLMs. Prompt engineering involves crafting carefully
designed instructions or prompts to guide the LLM’s output toward the desired behavior. By
utilizing LLMs like GPT-4, we can leverage its powerful language generation capabilities to
automatically generate a wide range of NL queries without the need for a manually annotated
dataset for each new domain.

Figure 4.3 illustrates the prompt engineering process that we designed to create well-
crafted prompts for enhancing the LLM’s response quality. The process begins with the
"Objective Definition" step, where the specific goal of the interaction with the LLM is de-
termined. This involves precisely specifying the type of responses sought from the model.
After defining the objective, the second step is the "Initial Prompt Creation." In this step, an
initial prompt is crafted based on the defined objective. The prompt should ensure clarity,
specificity, and relevance to guide the model toward generating the desired response. It may
include a brief and general background to provide context, as well as essential contextual
information to help the model understand the topic at hand. Additionally, a task description
is included to guide the model in generating the expected response.

The third step involves an iterative process of "Testing & Prompt Refinement." In this
phase, the initial prompt is put to the test, and its effectiveness in guiding the model’s
response is evaluated. The Perfect Prompt plugin is utilized to optimize the prompt and
improve the quality of GPT-4’s responses. The plugin evaluates the user’s input and, if
needed, rephrases it to make it clearer, more specific, and contextually appropriate. During
the iterative refinement process, relevant contextual information may be incorporated into
the prompt to narrow down the scope of the response and align it better with the user’s
intent. Additionally, providing examples of user inputs and their expected outputs can aid
in fine-tuning the model’s responses and making them more accurate and relevant. Once the
iterative refinement process is completed, a high-quality prompt is obtained, and it is used in
interactions with the LLM.

To achieve automated NL generation, we follow the prompt engineering process described
above. Our goal is to create a set of general NL templates for each intent. These templates
serve as blueprints for generating NL queries and include placeholders that refer to specific
properties, property values, and other domain elements. By populating these placeholders
with actual values from the event property graph of the domain, we can dynamically create
NL queries tailored to various intents.

Once we defined our objective, we proceeded to create the initial prompt. This prompt
includes a comprehensive description of our pipeline, with a particular emphasis on the NLU
component. We highlighted general intent patterns and demonstrated their adaptation to
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specific graph models. In addition, we delve into the task of template generation from intents
and generating NL templates for each intent. The prompt underwent continuous refinement
and testing, evaluating responses obtained from GPT-4. We provided GPT-4 with valuable
information related to each intent, including concise textual descriptions, properties relevant
to the intent, possible property values, and more. Additionally, we supplied GPT-4 with
exemplary templates for various intents, along with examples of NL queries generated from
these templates. Through an iterative process, we achieved a high-quality prompt, utilized
to interact with the LLM and obtain the generated NL queries. An illustrative example of
this prompt is provided in Appendix A.

Figure. 4.4 illustrates the interaction step with the GPT-4 model. In this step, we ask
GPT-4 to generate, for each intent, more than 50 NL queries from its associated templates.
This is achieved by replacing the placeholders with real values and employing paraphrasing
techniques to diversify the generated queries. As a result, we obtain a substantial variation of
NL queries, expressed in different syntax and structures, for each intent. These automatically
generated queries constitute a vast and versatile input training dataset.

Language Model

In our work , we proposed a

pipeline for  constructing..

Generate general templates

and natural language..

For example, ...

Context Description

Task Description

Example of Outputs

Intent descriptionCurrent Inputs

Generated templates and queries

Completion

Prompt

Input

Output

Figure 4.4: Prompt Engineering for NL queries generation

Considering the example of the Application intent instantiated from the graph model
depicted in Figure 3.6. This intent allows users to inquire about applications with specific
conditions. It has the following properties: application ID, requested amount, a loan goal.
The property values for each property are as follows:

• Requested amount: A numerical value.
• Application ID: Has the form Application_number.
• Loan goal: Can have values from the set [’car’, ’home improvement’, ’investigation’].
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Generated Intent Template:

The template for the Application intent consists of various NL query patterns with place-
holders representing specific properties and values. Here are some of the generated intent
templates:

1. “Give me all applications with their {application_properties}.”

2. “Which applications have a {application_property} greater than {specific_value}?”

3. “List all applications with a loan goal of ’{specific_loan_goal}’.”

4. “What are the {property_1} and {property_2} of applications with a {application_property}
less than {specific_value}?”

5. “How many applications are there with a {application_property} greater than {spe-
cific_value} and a loan goal of ’{specific_loan_goal}’?”

6. “Which applications have an application ID starting with ’{specific_prefix}’?”

7. “What is the {property_1} of application ’{specific_application_id}’?”

8. “Which applications have a loan goal not equal to ’{specific_loan_goal}’?”

9. “Give me the {property_1} of applications with a {application_property} less than
{specific_value} and a loan goal of ’{specific_loan_goal}’.”

10. “What are the {property_1} of applications with a {application_property} greater than
{specific_value} and a loan goal of ’car’?”

Generated NL Queries from Template:

Using the above intent templates, GPT-4 generates various NL queries for the Application
intent. Here are some examples:

1. “Give me all applications with their requested amount, application ID, and loan goal.”

2. “Which applications have a requested amount greater than 1000?”

3. “List all applications with a loan goal of ’home improvement’.”

4. “What are the application ID and loan goal of applications with a requested amount
less than 500?”

5. “How many applications are there with a requested amount greater than 2000 and a
loan goal of ’car’?”

6. “Which applications have an application ID starting with ’App_2022’?”

7. “What is the requested amount of application ’Application_12345’?”
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8. “Which applications have a loan goal not equal to ’investigation’?”

9. “Give me the application ID of applications with a requested amount less than 1000
and a loan goal of ’home improvement’.”

10. “What are the requested amount of applications with a requested amount greater than
1500 and a loan goal of ’car’?”

By adopting this automated approach, we not only eliminate the labor-intensive manual
data generation but also enhance the flexibility and adaptability of our pipeline. With the
ability to handle a wide array of user queries across various domains, our NLU-powered
pipeline becomes more robust and capable of delivering accurate and contextually appropriate
responses to users.

4.9 Evaluation & Discussion

The approach has been implemented as a standalone Python application with a conversational
interface. The application is connected to Neo4j which stores the event property graph. We
evaluated our approach using two publicly available event logs that were already used in
Section 3.5. As was previously mentioned the datasets are represented in CSV and OCEL
format, and are related to two different process domains. For each process domain, we
collected NL queries with lexical and syntax variations (Section 4.9.1).

We conducted separate experiments on the two components of the pipeline to evaluate
various aspects in a controlled environment (Section 4.9.2 and Section 4.9.3). In Section 4.9.4,
we discuss the threats to the validity of the performed experiments. The details related
to the source code, data used, and obtained results are available at at https://www-inf.
telecom-sudparis.eu/SIMBAD/tools/ProcessNLI/.

4.9.1 NL queries collection

In this evaluation, we used data from BPIC’17 and order management event logs, which
contain data related to the loan application process and order management process. In order
to collect NL queries related to the loan application process, a workshop was held with two
different groups of Master students. The students were not familiar with the implementation,
and are unaware of the Cypher language or how to access the stored data using graph queries.
First, a brief overview of the loan application process was provided to the students in order for
them to understand the general steps involved (i.e. activities of the loan application process).
Then, various aspects of analysis were explained, with numerous example questions. The
NLI is then provided to the students, who were asked to formulate questions using different
syntaxes and vocabularies to analyze the process execution data.

https://www-inf.telecom-sudparis.eu/SIMBAD/tools/ProcessNLI/
https://www-inf.telecom-sudparis.eu/SIMBAD/tools/ProcessNLI/
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We filtered the NL queries at the end of the workshop to remove the ones that are not
yet supported by our system (i.e. complex queries that require for example sub-queries and
negation, queries related to the performance category, etc.). As a result, we ended up with
more than 300 content queries related to 16 different intents, and more than 70 behavioral
queries related to 8 different intents (details about the NL queries and the intents are available
in the provided link).

In addition, we used a paraphrasing tool4 to collect NL queries about the order manage-
ment process. The paraphrasing task provides syntax and lexicon variations of a NL text
without changing the original meaning. We used the tool to paraphrase a set of manually
generated questions. In the end, 65 content queries related to 9 different intents, and 85
behavioral queries related to 8 different intents were generated (for details see the provided
link).

4.9.2 Experiments on NLU component

We conducted two major experiments on the NLU component to justify the use of ML for
intent detection and entity extraction. The main disadvantage of using machine learning,
as discussed in the related works section, is that it requires a training dataset, which is not
always available. In this experiment, we aim to evaluate the performance of a machine-
learning model for detecting intent and extracting entities using a small training dataset.
Second, we compared the results of the machine learning model for intent detection to those
of a rule-based approach.

4.9.2.1 Experimental setup

We used Wit.ai5, a service, for performing intent detection and entity extraction. For each
process domain, a machine learning model in Wit.ai is trained with typically a small set of
utterances labeled with their corresponding intents and their associated entities as explained
in Section 4.6.1 and 4.6.2. The training utterances were created by hand. For the BPIC’2017
event log, we trained the model with 390 utterances about the loan application process. The
model is then tested with more than 380 NL queries collected from external users. As for the
order management log, we trained the model with 240 utterances about the order management
process, and we test it with 150 NL queries generated using a paraphrasing tool (as detailed
in Section 4.9.1).

In the second experiment, we compared the detected intents using the machine learning
model in Wit.ai to a rule-based approach. The rule-based approach was implemented sepa-
rately and attempts to detect the corresponding intent based solely on the extracted entities
and defined trigger words. The rules were devised with high precision. They cover a wide
range of cases, particularly those deduced from the NL queries used in the machine learning

4Paraphrasing tool: https://quillbot.com/
5https://wit.ai/
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model’s training data. Trigger words are defined and used to determine whether the user
is asking about a specific type of information. For instance, the trigger words [path, trace,
sub-trace, etc.] indicate that the user is asking about a trace. Thus, the detected intent will
be Path_FollowedBy*. In addition, rules are defined to take into account the properties or
elements that appear in the NL queries and use these elements to predict the corresponding
intent. For instance, in the question ’What are the amounts of all applications?’, the extracted
entities amounts and applications are exclusively associated with the Application node, hence
the recognized intent is Application.

As evaluation metrics, we used accuracy for intent detection and precision/ recall/ F-score
for entity extraction. The accuracy is computed as the number of questions with correctly
detected intent divided by the total number of NL queries. For each NL query, the precision/
recall/ F-score of entities extraction is computed. The precision for a given NL query is
calculated by dividing the number of correctly extracted entities by the total number of
entities extracted. The recall is calculated by dividing the number of correctly extracted
entities by the total number of entities expected to be extracted. The metrics are then
averaged over all NL queries.

4.9.2.2 Results

Content queries Behavioral queries Average

BPIC’2017 log Intent acc= 0.731 acc= 0.756 acc= 0.743

Entities
prec= 0.901
rec= 0.908
F-score= 0.902

prec= 0.888
rec= 0.917
F-score= 0.899

prec= 0.894
rec= 0.912
F-scrore= 0.90

Order Management log Intent acc= 0.677 acc= 0.624 acc= 0.65

Entities
prec= 0.952
rec= 0.947
F-score= 0.947

prec= 0.988
rec= 0.955
F-score= 0.967

prec= 0.97
rec= 0.951
F-score= 0.957

Table 4.8: Wit.ai evaluation results for intent recognition and entity extraction in both datasets for
content and behavioral queries

The results of the intent recognition and entity extraction obtained using the machine
learning model in Wit.ai for content and behavioral queries in each dataset are shown in
Table 4.8. The results indicate that the machine learning model produced significant results.

The NL queries related to the BPIC’2017 event log yield, in average, an accuracy of 0.743
for intent detection, while the NL queries related to the order management log yield in average
an accuracy of 0.65. This distinction is due primarily to the type of the NL queries employed
in the evaluation. Indeed, the NL queries related to the BPIC’2017 event log were obtained
from external users, who may have, in some cases, similar ways of asking a question, reducing
NL variations. The NL queries related to the order management log, on the other hand, were
created using a paraphrase tool. The paraphrasing tool has the ability to alter the syntax
and use lexicons that are rarely used by users. For instance, to inquire about the number of
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a given entity, users commonly use terms such as [what is the number, how many, etc.]. The
paraphrasing tool, on the other hand, generates other expressions like how frequently, etc.,
which may confuse the model and subsequently produce incorrect results.

At the level of entity extraction, a high F-score is obtained for both datasets. By closely
inspecting the results, we were able to underline the following observations. First, we analyzed
the low precision values which indicate that some entities were incorrectly tagged. This was
mainly due to that some entities may have common keywords/synonyms. For example, given
the question ’What is the loan goal of application with amount 7500?’, and the extracted term
amount, there are two entities with which amount can be tagged: 1) the property Requested
Amount of the artifact node Application or 2) the property Offered Amount of the artifact
node Offer. Similarly, in the order management dataset, given the question ’What is the most
expensive product?’, the expensive term could refer to: 1) the maximum cost of the artifact
node Product or 2) the maximum price of an Activity node. By looking at the question
context, it becomes trivial to which option the term should be associated with. However, the
machine learning model was unable to consider the NL query context and assign the right
entity name accordingly.

Second, we discovered that the incorrectly extracted activity names are responsible for
more than 50% of the incorrectly extracted entities in the BPIC’2017 dataset. This was
primarily owing to the dataset’s similar activity names. For instance, the verb ’canceled’ could
refer to two different activity names: A_Cancelled and O_Cancelled. Therefore, only using
the verbs is not sufficient to properly extract the activity name. Instead, a set of expressions
should be utilized to train the model to determine the appropriate activity. For instance, the
expressions: canceled application, cancellation of the application, cancel the application, etc.
all refer to the activity name A_Cancelled. As a result, detecting activity names involves
more than just a few synonyms; rather, it involves a large number of expressions that could
refer to the same activity name, making it difficult to train the model with all of them. The
order management log, on the other hand, does not have this difficulty because the activity
names are indistinguishable and each is referenced with a specific verb.

BPIC’2017 log Order Management log
Content queries Behavioral queries Content queries Behavioral queries

Intent detection
with ML model 0.731 0.756 0.677 0.624

Intent detection
with rule-based 0.662 0.589 0.569 0.47

Table 4.9: Accuracy for intent detection using machine learning model in Wit.ai vs rule-based ap-
proach for both datasets

For the second experiment, Table 4.9 shows the results of the intent detection accuracy
using Wit.ai’s machine learning model versus using the rule-based approach. In both datasets,
the machine learning model in Wit.ai clearly outperforms the rule-based approach for detect-
ing intents for content and behavioral queries. This was primarily due to two factors. First,
the dependence of the rule-based approach on the extracted entities. Incorrectly extracted
entities result in incorrectly assigned intents. For example, the rule-based approach detects
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that the question ’What are the amounts offered in App1?’ begins with the term amounts.
However, as previously stated, the term amounts may be associated to two different entities:
Amount property within Offer node, or Amount property within Application node. Once the
entities are incorrectly extracted, the detected intent will be definitively incorrect.

Second, the trigger words used by the rule-based approach could be in some cases per-
plexing. For example, if a user inquires about the maximum of a specific property, the system
employs trigger words such as maximum, maximal, and so on. This is correct if the question
is ’What is the maximal requested amount?’. On the other hand, these same words could
be used to specify other purposes. For instance, in the question ’What are the applications
with a maximum amount of 15000’, the word ’maximum’ refers to the less than operator. It
denotes that the amount property should be less than 15000. Therefore, the system will be
confused, and an incorrect intent will be assigned.

As a result of the above experiments, we made the following conclusions. First, the
machine learning model correctly recognizes process intents and entities without the need for
a large training dataset. Second, developing rules to support NL diversity takes time and
effort. In addition, they are in some cases, unable to produce accurate results due to their
reliance on the extracted entities and human-defined trigger words. Machine learning, on the
other hand, is more robust to NL variation. It outperforms the rule-based approach in two
different process domains, despite the small size of the training data.

4.9.3 Experiment on query construction component

In this experiment, we aim to determine whether the query construction component is able to
construct the right Cypher query from the detected intent and extracted entities. By design,
our constructed queries are syntactically correct (details in Section 4.7.4). Therefore, we
evaluate whether they are semantically correct (i.e. they return the correct result as inquired
by the user). We compare the intent-based approach (i.e. which takes the detected intent
and extracted entities to construct the Cypher query) to a baseline that does not involve
an intent detection step (i.e. it does not take into account the detected intent). It is worth
noting that, to the best of our knowledge, no existing works for automatically constructing a
Cypher query that could be used for a comparative evaluation. That is why, we compared our
intent-based system to a baseline by removing one critical step in the pipeline. The system in
the baseline returns the information in the selected sub-graph that does not have any values.
For instance, for the question ’What applications include O_Created activity directly followed
by O_Canceled?’, the constructed sub-graph includes conditions on the two activity names
and miss conditions on the ObjectID property of the FollowedBy relation. As a result, the
latter will be returned. In case a sub-graph has conditions on all of its elements, the entire
selected sub-graph is returned.
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4.9.3.1 Experimental setup

We selected the NL queries for which the detected intent and the extracted entities of the
NLU component are correct. As a result, we obtained 202 and 82 NL queries related to the
BPIC’2017 and the order management event logs respectively. The NL queries are grouped
into two categories. The first category (i.e. category 1 ) consists of the NL queries that
include the information to be returned in the extracted entities. The second category (i.e.
category 2 ) consists of the NL queries that inquire about a specific type of information that
is not present in the extracted entities. For example, these queries could inquire about an
aggregation function (e.g., count, max, min), a direct relationship between activities, etc.
These types of information are derived from the context of the question and are indicated by
the intent in our intent-based system.

For each NL query, we examined whether the generated Cypher query returned the ex-
pected answer. As an evaluation metric, we computed the accuracy by dividing the number
of semantically correct Cypher queries by the total number of queries.

4.9.3.2 Results

Figure 4.5 shows the accuracy of the query construction component in the intent-based system
versus the baseline using the BPIC’2017 log (Figure 4.5a) and the order management log
(Figure 4.5b). On average, the intent-based system has an accuracy of 0.89 and 0.84 using
BPIC’2017 and order management logs respectively (blue columns in Figure 4.5). These
results show that for two separate datasets, our system was able to generate the expected
Cypher query with high accuracy. However, by analyzing the incorrectly constructed Cypher
queries for the two datasets, we discovered two major reasons. The first is wrongly identifying
and extracting numerical conditions from NL queries. The second is incorrectly assigning
preceding or succeeding activities, particularly for behavioral queries. As stated in Section 4.7,
numerical conditions are built by examining the grammatical relations between the entity,
operator and value. Similarly, preceding and succeeding activities are found using trigger
word definitions and evaluation of the grammatical relations between these trigger words and
the activity names in the NL query. However, due to the wide variety of NL, it was difficult
to cover all possible ways of asking a question, and subsequently, the possible grammatical
relations that exist between these elements.

The query construction component in the intent-based system and the baseline achieve
on average, a similar accuracy in the first category (i.e. Category 1) of NL queries in both
datasets. This is due to the fact that these queries inquire about information included in the
extracted entities. The intent-based system clearly outperforms the baseline in the second
category (i.e. Category 2) of questions with an average accuracy of 0.849 versus 0.015 using
the BPIC’2017 log, and an average accuracy of 0.91 versus 0.08 using the order management
log. In this category, the intent assists the system in determining what information the user
is seeking, and which can be deduced from the question context. Therefore, in some cases,
entities are not enough to express the intention of the users.



84 Natural Language Interface for Querying Process Execution Data

(a) BPIC’2017 log (b) Order management log

Figure 4.5: The accuracy of the query construction in the intent-based system and the baseline

This experiment shows the importance of our system’s intent detection step in determining
the type of information the user is inquiring about from the entire query context. Additionally,
it demonstrates that the defined intent and entity patterns and their instantiations, assist the
system in constructing the right Cypher queries.

4.9.4 Threats to Validity

A potential threat to the validity of our study arises from the absence of a comparative
analysis with existing works. This lack of comparison can be attributed to several factors:

- NLIs for Process Querying: When considering related works in the domain of NLIs for
process querying, we find that the most relevant sources are those presented in [14, 70].
However, these existing approaches do not provide a clear categorization of the types
of questions they support. Furthermore, they do not offer comprehensive results for
each evaluated NL query, which makes it challenging to conduct a fair and meaningful
comparison.

- NLIs to Databases: In the realm of NLIs to databases, other existing approaches focus on
constructing SQL, SPARQL, or Cypher queries. However, these approaches typically
utilize different datasets and benchmarks for their evaluations. Our data is process-
oriented, which inherently differs in nature from the data used in these other techniques.
Consequently, the techniques and evaluation objectives are distinct, making a direct
comparison difficult.

Another threat to validity that could potentially impact the validity of our approach is its
specificity to the proposed NLI and the associated graph metamodel used for storing process
data. It is important to acknowledge that there can be various metamodels based on LPG for
representing process-related information, as the one proposed in [55]. Therefore, it becomes
imperative to generalize our pipeline in such a way that it can construct Cypher queries for
not just one specific metamodel but for a range of LPG metamodels, with minimal manual
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intervention required when transitioning from one metamodel to another. This flexibility and
adaptability in query construction would ensure that our NLI can effectively handle diverse
data representations and metamodels, making it more versatile and accessible to a broader
range of users and scenarios. It would also enhance the scalability and applicability of our
approach as the field evolves and new metamodels emerge.

4.10 Conclusion

In the prior chapter, we delved into the subquestion (RQ1-3) concerning the storage of
process data. Now, in this chapter, we have successfully addressed the primary research
question, (RQ1) for providing an automated solution to query process data using NL. This
was achieved by examining the following supplementary questions:

• RQ1-1: How to provide an AI-based solution that automates the process of querying
process data using NL?

• RQ1-2: What design principles can be implemented to create an approach that pos-
sesses sufficient generality, allowing for seamless transitions between diverse process
domains with minimal manual intervention?

To answer these questions, we introduced an intent-based NLI tailored for querying process
execution data. This interface simplifies the user experience by deciphering a user’s intent
from their NL queries. It then automatically formulates the corresponding Cypher query,
which is executed against the process data stored in a graph database. The result is then
returned to the user. Our innovative system integrates both machine learning and rule-based
methodologies, resulting in a hybrid NLI model. This model comprises two primary compo-
nents. The initial component, grounded in machine learning, NLU, which encompasses intent
recognition and extraction of named entities. Following this, the second component, grounded
in a rule-based approach, leverages the information garnered from the NLU component to
construct the corresponding Cypher query.

Additionally, in order to address (RQ1-2) goal of creating a generalized solution, we
introduced several strategies. Firstly, we outlined general patterns for intents and entities
rooted in the LPG metamodel. These templates are subsequently instantiated in line with
the event property graph model. As a result, the system can effortlessly determine potential
intents and entities associated with NL queries related to each event property graph. Secondly,
considering our machine learning component necessitates training datasets linking NL queries
to specific intents and entities, we unveiled an automated strategy. This leverages prompt
engineering coupled with LLMs to produce NL queries. Utilizing LLMs such as GPT-4, we
can automatically generate a diverse range of NL queries, eliminating the need for manually
annotated datasets for each domain transition.

To validate our proposed system, we applied it to two publicly available event logs from
BPIC’17, as well as an order management log. We sourced NL queries from external users and



86 Natural Language Interface for Querying Process Execution Data

further expanded our testing pool using a paraphrasing tool. Our experiments yielded several
notable findings: (i) the machine learning model is able to recognize intent and extract entities
from typically a small training dataset, (ii) it outperforms the rule-based model for intent
recognition and (iii) the intent increases the accuracy of the query construction component.

However, we acknowledge certain limitations within our approach:

• Evaluation aspect: The lack of a side-by-side comparison with pre-existing methods can
be seen as a drawback. This gap is largely attributed to the disparity in question types,
dataset variations, and evaluation standards across different methodologies.

• Graph model dimension: We concede that our proposed NLI is tailored to our specific
graph metamodel designed for storing process data. However, there’s a plethora of
potential metamodels rooted in LPG that can depict process-related data. Hence, it’s
crucial to restructure our pipeline to ensure it can generate Cypher queries for a multi-
tude of LPG metamodels. Ideally, this would necessitate minimal manual adjustments
when shifting between different metamodels.

In addition, we acknowledge the importance of conducting a comparative evaluation to
assess the performance of the NLU component when trained using automatically generated
NL queries. Thus, we plan to perform a comparative evaluation. We aim to compare the
detected intent and extracted entities obtained when the model is trained with manually
constructed queries to the results achieved when the model is trained using the NL queries
generated automatically.

Transitioning from an individual instance analysis to a more comprehensive process-level
exploration, the subsequent chapter unveils our approach to tackle the research problem
(RQ2). Our objective is to simplify the discoverability and the accessibility of process mining
methods through a service-oriented framework. This framework design endeavors to describe,
design, and match process mining services with user needs expressed in NL.
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5.1 Introduction

Process mining represents a rapidly expanding domain of research situated at the crossroads
of data science and BPM [156]. By employing process mining techniques, organizations can
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gain valuable insights into the behavior of their processes. These insights encompass the
identification of inefficiencies, the detection of compliance breaches, and the pinpointing of
opportunities for process optimization. The various categories of process mining techniques
encompass discovery, conformance, enhancement and prediction. Despite the vital role that
process mining methods play, data scientists and process analysts frequently encounter chal-
lenges when attempting to apply these techniques in practical scenarios. One of the foremost
hurdles is the initial selection of an appropriate method tailored to meet their specific needs
and requirements.

Another challenge is associated with the accessibility and applicability of these techniques.
Typically, process mining methods are available either in the form of source code or as part
of standalone software tools. However, accessing a method through its source code can be
daunting for analysts without expertise in the relevant programming language or technical
acumen to decipher intricate technical details. Additionally, certain methods are embedded
within software tools that lack compatibility with other applications, significantly constraining
their adaptability across diverse workflows and integration into custom applications.

As previously discussed in Chapter 2, prior efforts have aimed to tackle either the first or
the second challenge. On one hand, to address the challenge of discovering process mining
methods, surveys and systematic reviews (e.g., [106, 47, 9, 51]) have been conducted. These
comprehensive studies compile existing methods within each field, analyze them, and provide
comparisons based on identified concepts. These resources assist analysts in gaining a broad
understanding of available methods and selecting the most suitable one for their specific needs.
Nevertheless, even with these efforts, analysts still face difficulties in terms of accessing and
applying the identified methods.

On the other hand, approaches have been proposed to tackle the issue of accessibility
and integration of process mining techniques. These approaches include API-based solutions
(e.g., PM4Py [27]) and web service-based solutions (e.g., PM4Py-WS [28], Everflow1). These
solutions strive to enhance the accessibility and integration of process mining techniques.
However, existing service-based solutions in the field of process mining have limitations, par-
ticularly in the realm of prediction. Another significant drawback is the absence of compre-
hensive descriptions for available services, making it challenging for analysts to easily discern
service properties, required inputs, and expected outputs. Furthermore, to the best of our
knowledge, there is no existing solution that aids analysts in the automatic discovery and
accessibility of process mining-related services.

To address these challenges, this chapter introduces a service-based solution. The primary
objective is to alleviate the difficulties faced by analysts when discovering and accessing
process mining methods, with a primary focus on discovery, conformance, and prediction
methods. The proposed solution harnesses REST APIs to deliver process mining services and
consists of three key components:

• Services Description: This component employs a graph metamodel based on LPG [7]
1https://www.everflow.ai/
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to comprehensively describe available discovery, conformance, and prediction methods.
It encompasses essential concepts for representing services, such as service properties
(e.g., prediction type, methodology, algorithm), as well as input and output require-
ments.

• Unified Service-Oriented REST API Design: Leveraging the inherent service-
oriented nature of process mining methods, this component offers users a cohesive
framework for accessing and utilizing various prediction functionalities, ensuring a uni-
fied experience.

• Services Matching: This component matches user requirements with suitable process
mining services. It takes NL descriptions from users, constructs Cypher queries for
execution over the LPG graph, and generates REST API calls for the selected methods.

The solution’s validity has been established through a proof of concept, and a user experi-
ence evaluation was conducted by involving external users who utilized traditional methods,
such as process mining tools and literature, to search for process mining methods. Further-
more, feedback from users regarding the REST API design was collected and evaluated. This
research endeavor was formally presented in a submission to the IEEE Transactions on Service
Computing. 2

The remainder of this chapter is organized as follows. Section 5.2 introduces key concepts
relevant to this chapter. Section 5.3 offers an overview of the proposed service-oriented
architecture. The three components of the architecture are elaborated upon in Section 5.4,
Section 5.5, and Section 5.6. Section 5.7 presents the proof of concept, while the evaluation
of user experiences and the REST API design is expounded upon in Section 5.8. Finally,
Section 5.9 concludes this chapter.

5.2 Basic concepts

In this section, we lay the foundation by introducing fundamental concepts pertinent to this
chapter. Firstly, we provide an overview of process mining and delve into three primary
categories of process mining techniques, as outlined in Section 5.2.1. Secondly, we offer an
insight into Rest web services, with a specific focus on service-oriented and resource-oriented
design principles, elaborated in Section 5.2.2.

5.2.1 Process mining methods

Process mining is a field that focuses on the extraction of information related to processes
from event logs, thereby transforming them into a structured format [156]. This discipline
bridges the gap between conventional process model analysis, often theoretical and lacking

2https://drive.google.com/file/d/1AzwmHnxtTx4zZbvAZkDA0dM_UClWtWV1/view?usp=drive_link
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real-world data, and data mining, which usually doesn’t focus on processes. By visualizing the
actual execution of a process based on data, businesses can identify bottlenecks, deviations,
and potential for optimization, and hence improve operational efficiency.

Process mining encompasses three major categories of techniques: process discovery, con-
formance checking, and enhancement. Each of these techniques serves a unique purpose and
utilizes different methods and algorithms to carry out their respective tasks. These categories
of techniques are detailed in the following sections.

5.2.1.1 Process Discovery

Process discovery is the first category of techniques within process mining. The principal
objective is to accurately generate a process model from event logs. The process model serves
as a visual and computational representation of the different paths or sequences of activities
a case can undergo from its commencement to its conclusion.

The model derived from process discovery is data-driven, formed based on the activity
sequence in event logs, and therefore does not make any prior assumptions about the process’s
structure. The inputs for process discovery are raw event logs obtained from various systems,
capturing the progression of various process instances. The output, on the other hand, is
a process model that encapsulates the flow of activities, bringing to light aspects such as
sequence, parallelism, choices, and loops within a process.

Discovered process models can be broadly classified into three types: procedural, declar-
ative, and hybrid. The procedural models are often used when the control flow between
activities is relatively structured and deterministic. They graphically portray the flow and
order of activities and often rely on graphical notations such as Petri nets or Business Process
Model and Notation (BPMN). Declarative models are used when the process is flexible and
the order of activities is not strictly predefined. Instead of specifying a clear sequence of
tasks, declarative models focus on the rules and constraints that guide the process. Declar-
ative models can be expressed using languages like Declare. Hybrid models are a blend of
both procedural and declarative models.

Various algorithms have been designed to facilitate process discovery, such as the α algo-
rithm, heuristic mining, and fuzzy mining. Each of these algorithms offers different strengths,
with variations in complexity, interpretability, and ability to handle noise and concurrency in
the event logs. It’s important to select the right algorithm based on the characteristics of the
specific process and event logs.

5.2.1.2 Conformance checking

The second category, conformance checking, involves comparing a given process model against
the real behavior recorded in the event log. This technique checks if reality, as captured in the
log, conforms to the model, and vice versa. It helps in detecting deviations, errors, or non-
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compliance and can be used to understand why these discrepancies exist. For conformance
checking, both an existing process model (which could be derived from process discovery or
predefined) and an event log are required. The event log acts as a record of the ’as-executed’
reality, while the process model represents the ’as-designed’ or ’as-expected’ process flow. The
output of a conformance check is typically a diagnostic report detailing the discrepancies or
deviations between the process model and the event log. This report can highlight:

• Instances where the execution of the process did not adhere to the sequence or flow of
activities outlined by the model.

• Cases where the model permits behavior not seen in the real-world execution of the
process.

• Activities in the model that never occur in the log, or activities present in the log that
the model does not account for.

5.2.1.3 Enhancement and Predictive process monitoring

Finally, the enhancement techniques in process mining aim at improving an existing process
model using information about the actual process recorded in the event log. This can be
done by extending or repairing the process model. Predictive process monitoring, a type of
enhancement technique, focuses on using historical data to make predictions about future
process behavior. The goal is to provide timely insights, enabling proactive and corrective
actions to enhance process efficiency and reduce potential risks. This can include predictions
on the next activities to be performed, remaining completion time, estimated costs, potential
rule violations, and more. Predictive process monitoring typically involves two main stages.

1. Create a predictor model: This step aims to build a predictor model that reflects
the information learned from historical process data. The raw inputs for this model include
historical event logs that record completed instances of the process. These logs contain
rich information about the sequence of activities, resources involved, timestamps, and other
context data for each case. In addition to the event logs, other sources of information might
be included depending on the predictive task at hand. For instance, a process model might
be used to provide structural information about the process, while a labeling function might
be utilized to define the outcome to predict (e.g., whether a case will violate a rule or the
remaining time for case completion). Various machine learning and statistical techniques can
be employed to learn the relationship between process variables and the prediction target
from this input data. These techniques include, but are not limited to, decision tree, random
forests, support vector machines, neural networks, etc. The output of this stage is a predictive
model that has learned to capture the normal behavior of a process and can estimate the
outcome of interest given the current state of a process instance.

2. Making predictions: The second stage involves the application of the predictive
model to ongoing cases to make future predictions. The inputs for this stage are the cur-
rent and incomplete traces of ongoing process instances. Each trace provides a record of the
events that have occurred so far in a case. The predictive model built in the first stage is
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then applied to these traces. Based on the learned relationships from historical data and the
current state of a case, the model generates an estimate of the future process behavior. For
instance, it might predict the next activity in the case, the remaining processing time, the
risk of a rule violation, or any other outcome of interest.

5.2.2 Rest APIs: Service-oriented & Resource-oriented

REST is an architectural style for distributed hypermedia systems, which has become the
standard for designing web services. A RESTful API (Application Programming Interface)
uses HTTP methods to enable communication and data exchange between systems in a state-
less manner, meaning each request from a client to a server must contain all the necessary
information to understand and respond to the request [108]. RESTful APIs are typically
categorized into two main types: Service-Oriented APIs and Resource-Oriented APIs. The
primary difference between these two types lies in the organization of their structure and their
perspective on data.

1. Service-Oriented REST APIs: Service-Oriented APIs are designed around specific
services that deliver operations or functionalities within an application. For example, an API
may include a UserService that handles user-related operations, such as creating, retrieving,
updating, and deleting users. Each service can encapsulate complex business logic and involve
interactions with multiple resources. These APIs typically define endpoints as actions or verbs
that correspond to the operations provided by the service. Service-Oriented APIs can use
HTTP methods; however, they might not fully exploit the semantics of the HTTP protocol.
Often, operations are denoted in the URL itself (e.g., /createUser, /updateUser), and the
POST method is frequently employed to execute these operations. For instance, a service-
oriented API may have the following endpoints:

• ’POST /createUser’
• ’POST /getUser’
• ’POST /updateUser’

The aforementioned endpoints indicate that the requests are directed to services executing
actions, instead of interacting with resources directly.

2. Resource-Oriented REST APIs: Conversely, Resource-Oriented APIs revolve
around resources, where a resource is an entity with a type, associated data, relationships to
other resources, and methods operating on it. Each endpoint in these APIs corresponds to
a distinct type of resource, and the HTTP methods (GET, POST, PUT, DELETE) outline
the operations performed on these resources. Resource-oriented APIs aim to use URLs and
HTTP verbs semantically, providing an intuitive interface for system interaction. An example
of a resource-oriented API structure is:

• ’GET /users’: Retrieve a list of users
• ’GET /users/id’: Retrieve the details of a user
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• ’POST /users’: Create a new user
• ’PUT /users/id’: Update the details of a user
• ’DELETE /users/id’: Delete a user

The endpoints in this structure show direct interaction with resources (in this case, users)
using conventional HTTP methods.

5.3 Overview

Figure. 5.1 shows an overview of the proposed architecture for discovering and accessing pro-
cess mining techniques. This approach is highlighted by the yellow pointed area in Figure 1.3.
The architecture compromises three main components. The first component is services de-
scription, which employs a graph metamodel based on LPG to describe the available discovery,
conformance, and prediction methods (highlighted by the red pointed area in Figure 1.3). It
includes the necessary concepts to represent services, such as the properties of each service,
the required inputs and outputs along the potential submodules or micro functionalities that
compose the service. The second component is a unified service-oriented REST API design.
It leverages the inherent functional nature of process mining methods and provides users with
a comprehensive and cohesive service-oriented Rest API design for discovery, conformance,
and prediction services. This strategy streamlines the automated creation of REST API calls
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for identified instances of these services by seamlessly linking the entities and attributes in
the graph metamodel to their appropriate endpoints and parameters within the REST API
framework. This design encompasses the definition of URL structure, the judicious selection
of HTTP methods, and the meticulous specification of response codes

The final component is services matching, which matches the consumer’s requirements
with suitable process mining service services. It takes the user’s naturally expressed require-
ments as input and furnishes the corresponding REST API call. Instances of user queries
include ’Provide me with available discovery services for generating BPMN model’ or ’Could
you recommend prediction services that are capable of predicting remaining time using ma-
chine learning models?’. This component operates through two primary phases. Initially, it
initiates by querying the process mining methods graph, which hosts information related to
process mining methods, in order to extract all conceivable methods aligning with the user’s
specifications. This is done by automatically constructing the Cypher query to be executed
over the process mining methods graph. To automate this process, we harness the capabilities
of large language models like GPT-4 to automatically generate appropriate Cypher queries
from the provided NL queries. This is achieved through a meticulous prompt engineering pro-
cess. These methods are subsequently presented to the user for selection from the available
options. Upon the user’s selection of an appropriate method, the second stage automatically
generates the corresponding REST API call, utilizing the REST API design outlined in the
second component.

In the following sections, we describe each of these components in detail.

5.4 Services description: Property graph metamodel

To identify discovery, conformance and prediction services, the necessary properties that dis-
tinguish each service as well as the required inputs and outputs should be defined. Therefore,
we introduce an LPG graph metamodel that characterizes information related to discovery,
conformance and prediction methods. It acts as a foundation for discovering services regard-
less of the technology employed. The graph metamodel proposed to store process mining
methods information is depicted in Figure. 5.2. An example of its instantiation is depicted in
Figure. 5.3.

The graph contains six different entity types. Three entity types are used to represent
the three main family techniques of process mining. The Discovery entity refers to a process
discovery method. The Conformance entity refers to a conformance-checking method. The
Prediction entity refers to a prediction method. The inputs and outputs of each method are
represented by Input and Output entities, which are connected to the Discovery, Conformance,
and Prediction entities through the relations hasInput and hasOutput respectively. The Input
entity has the name, type, and format properties. The name property specifies the name of
the input. The type property specifies the type of input. We distinguish two types of inputs:
literal and resource. Literal inputs represent values that are of literal types (e.g. integers,
strings, etc.) and must be provided by the user. Resource inputs are those that must be



5.4. Services description: Property graph metamodel 95

subModule

-name
-task

-predictionType
-awareness

-problemType
-methodology

-algorithm

hasOutput
hasInput

Prediction

-name:
-format:

Output

-name
-type

-format

Input

-subModuleTask

Module

subModule

- name
- modelType

- modelFormalism
- algorithm

- isDomainKnowledge
- applicationDomain

hasOutput
hasInput

Discovery

subModule

- name
- modelingLanguage

- perspective
- algorithmType

- metrics

hasOutput hasInput

Conformance

building-m
odel
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obtained from external sources, such as an event log file, a process model, etc. The format
property specifies the acceptable format of the input, such as XES for event logs, PetriNet
for a process model, integers and strings for literal values, etc. Similarly, the Output entity
has the name and the format properties.

Moreover, since process mining methods can be complex and may comprise multiple func-
tions (micro functionalities), a Module entity is used to represent the functional sub-modules
involved in these methods. For instance, consider the Inductive Miner algorithm for pro-
cess discovery [95], which builds an imperative model typically represented as a Petri Net.
This algorithm operates through three key sub-modules: log splitting based on the detec-
tion of sequential and parallel activities, creation of sub-logs from these splits, and the final
Petri Net model construction from the derived sub-logs. Each of these stages is a functional
sub-component of the Inductive Miner algorithm, hence represented as a Module.

To connect each method entity with the corresponding Module entity, a submodule relation
is used. Additionally, each Module can have its own inputs and outputs. For instance, as
illustrated in Figure. 5.3, the right lower Prediction entity represents a prediction method that
constructs a Stochastic Petri net (SPN) (specified by the algorithm property) to be used as
a predictor model. This method consists of two primary sub-modules: the first one generates
a Petri net model, while the second one enriches the Petri net with additional information to
create the SPN model. It is important to note that the inputs and outputs of these modules
are not included in this example for simplicity.
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Figure 5.3: Example of property graph model for process mining methods
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The Discovery, Conformance, and Prediction entities have properties that characterize
these families of techniques. These properties are systematically identified through compre-
hensive reviews to enable comparison among different techniques within the same family.
We have selected the most general and principal properties to characterize these methods.
The properties characterizing the discovery, conformance, and prediction methods will be
elaborated in the upcoming sections.

5.4.1 Discovery methods properties

The primary properties of process discovery methods are identified through comprehensive
systematic reviews [9, 140, 147]. These reviews enable comparison of various existing methods
from multiple perspectives. Upon review, we identified six principal properties pertaining to
discovery methods. The name property defines the method’s name. The modelType property
signifies the class of the discovered process model, which can be categorized into procedural
(or imperative), declarative, or hybrid models. Procedural models, also known as impera-
tive models, are characterized by strict sequences of activities depicting clearly defined paths
through the process. Conversely, declarative models are founded on the principles of con-
straints and rules, rather than an explicit sequence of tasks, allowing for more flexibility
within the process. Hybrid models combine elements of both procedural and declarative
models, accommodating processes that simultaneously necessitate well-ordered activities and
rule-bound flexibility. The modelFormalism property specifies the specific notation or for-
malism of the discovered process model. Examples of such formalisms include Petri Nets or
Business Process Model and Notation (BPMN) for procedural models, the Declar language
for declarative models, etc. The algorithm property indicates the algorithm used to discover
the model, like the Alpha algorithm or Inductive Miner. The isDomainKnowledge property
shows whether the method requires domain knowledge, meaning if it needs extra information
about the domain, alongside the event log, for the discovery of the process model. Finally,
the applicationDomain property indicates the application domains where the method has
been applied and evaluated. For instance, Figure. 5.3 shows an instance of the Alpha Min-
ner discovery method (i.e. represented by the node with type Discovery). This method is
used to discover a procedural process model (i.e. the modelType property set to Procedural)
represented using the PetriNet notation (i.e. the modelFormalism property set to PetriNet).
Additionally, the method is not domain-specific and has been evaluated in the healthcare
domain.

It is important to note that the aforementioned properties are general and can be asso-
ciated with all discovery methods. However, there are also specific properties that can be
employed to categorize and compare certain types of approaches. For instance, the review
conducted in [9] reveals that procedural discovery methods, which discover procedural models,
can also be compared based on the semantics captured in the model, such as XOR, AND, etc.
Regarding hybrid approaches, those that combine existing declarative and procedural pro-
cess modeling notations, the reviews [147] categorize these methods into three sub-categories:
mixed, hierarchical, and parallel, depending on how the procedural and declarative nota-
tions are combined to model a process. Furthermore, for methods that incorporate domain
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knowledge, the review [140] categorizes these approaches based on the nature of the domain
knowledge, whether it’s explicit or implicit, and also on the level of interaction with the user,
which could range from fully automated to interactive. In the context of this work, we have
opted to refrain from diving into such detailed categorizations. Our objective is to maintain
a broad perspective, keeping the classification as inclusive as possible.

5.4.2 Conformance methods properties

The main properties of conformance-checking methods were identified from an existing liter-
ature review [51] to compare conformance-checking techniques. We identified four different
properties. The name property defines the method’s name. The modelingLanguage prop-
erty denotes the language employed to describe the process behavior, serving as input to the
conformance-checking algorithm. The perspective specifies the minimum information that the
event log file must contain for the conformance method to be executed. For instance, some
conformance-checking methods might only require control-flow information contained in the
event log file. Conversely, other methods might necessitate supplementary data on various
process perspectives, including resources, costs, or duration for a more comprehensive anal-
ysis. The algorithmType property specifies the algorithm employed to compare the process
model to the event log such as log replay and trace alignment. Finally, metrics property out-
lines the set of metrics that are outputted by the method to represent conformance such as
Fitness, Precision, Simplicity, and generalization. For instance, Figure. 5.3 shows an instance
of a conformance-checking method (i.e. represented by the node with type Conformance).
This method takes as input a process modeled in BPMN notation (i.e. the modelingLan-
guage property set to BPMN) and an event log representing the control-flow information (i.e.
the perspective property set to controlFlow). Additionally, it employs the trace alignment
algorithm and evaluates conformance using the Fitness and Precision metrics.

5.4.3 Prediction methods properties

The properties of prediction methods are identified by systematic reviews [106, 47] to compare
different prediction techniques. We identified seven main properties for prediction methods.
The name property defines the method’s name. The task property defines the type of op-
eration that the prediction method performs, which can be either build-model or predict.
Methods that have the build-model task create a predictor model using past event log data,
such as constructing a machine-learning model to forecast future information. On the other
hand, methods that have the predict task return a prediction value for an ongoing process
based on a built predictor model. The predictionType property refers to the aspects of the
business process the method predicts, such as the next activity, remaining time, etc. The
awereness property indicates whether the method is process-aware or not. A method is con-
sidered process aware whether it requires an explicit process model as input to build the
predictor model. The problemType property indicates the type of problem, based on the pre-
dicted value, which could be a classification or regression problem. The methodology property
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indicates the methodology used to build the predictor model, such as machine learning (ML),
annotated transition system (ATS), etc. Finally, the algorithm property indicates the array
of algorithms employed such as decision tree (DT), clustering (CLU), etc.

It is worth noting that, the method for making predictions is normally based on methods
for building the predictor model. To capture this relationship, we include a building-model
relation to the metamodel. For instance, as shown in Figure. 5.3, the left Prediction en-
tity predicts the remaining time by utilizing the predictor model constructed by the right
Prediction entity, which is connected through the building-model relation.

5.5 Unified Rest API design

This section introduces the proposed REST API design specifically tailored for invoking
discovery, conformance, and prediction services. In this approach, we adopt a service-oriented
design to establish a unified interface for invoking these services through a REST API. This
choice was motivated by several key factors. First, process mining methods inherently possess
a functional nature, emphasizing functionality as a core aspect. Thus, by aligning the API
design with the service-oriented paradigm, we provide users with a comprehensive set of
process mining services that cater to their specific needs.

Furthermore, our service-oriented design enables the construction of self-descriptive URLs,
with endpoints structured around services. This facilitates easy comprehension of the purpose
and functionality of the invoked services by examining the URL structure. Consequently,
users experience enhanced discoverability and smoother navigation of available process mining
services. Moreover, the service-oriented design enables seamless integration of new process
mining services and accommodates the evolution of existing ones. This scalability is achieved
without requiring significant modifications to existing resource-oriented endpoints, ensuring
flexibility and future readiness.

The composition of the API request relies on the elements derived from the graph meta-
model presented in Section 5.4 (see Figure. 5.1). This approach facilitates the automatic
generation of REST API calls for identified discovery, conformance and prediction services by
mapping the entities and properties in the graph metamodel to the corresponding endpoints
and parameters of the REST API. The design encompasses the definition of URL structure,
selection of HTTP methods, and specification of response codes. Figure. 5.4 illustrates the
proposed design showcasing the chosen HTTP methods, URL path, and parameters utilized
in the API for the discovery, conformance, and prediction services.

The URL path starts with an endpoint denoting the family of the process mining service-
namely discovery, conformance and prediction. This is followed by the specific method name.
Subsequently, a collection of path parameters is added, that defines the main properties of
the service. These properties are extracted from the Discovery, Conformance, and Prediction
entities in the graph metamodel depicted in Figure. 5.2. In the context of Discovery services,
the URL path embodies the modelType, modelFormalism, and algorithm properties as path
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Prediction node properties Module property Literal Input entity

prediction/method-name/{task}/{predictionType}/{methodology}/{algorithm}/{subModuleTask}?input1=..&input2=POST

Request Body:

Resource inputs identifier (event logs, etc.)

GET prediction/method-name/{task}/{predictionType}/{methodology}/{algorithm}/{subModuleTask}?result-file-id=

Conformance node properties Module property Literal Input entity

conformance/method-name/{modelingLanguage}/{algorithm}/{subModuleTask}?input1=..&input2=POST

Request Body:

Resource inputs identifier (event logs, etc.)

GET conformance/method-name/{modelingLanguage}/{algorithm}/{subModuleTask}?result-file-id=

Discovery node properties Module property Literal Input entity

discovery/method-name/{modelType}/{modelFormalism}/{algorithm}/{subModuleTask}?input1=..&input2=POST

Request Body:

Resource inputs identifier (event logs, etc.)

GET discovery/method-name/{modelType}/{modelFormalism}/{algorithm}/{subModuleTask}?result-file-id=

URL design for
Discovery services

URL design for
Conformance services

URL design for
Prediction services

Figure 5.4: Unified REST API design for discovery, conformance and prediction methods

parameters. For Conformance services, the URL path integrates the modelingLanguage, and
algorithm properties as path parameters. In the case of Prediction services, the URL path
includes the task, predictionType, methodology, and algorithm properties as path parameters.
It is worth noting that while formulating the URL path, we have opted not to include every
property displayed in the graph metamodel to avoid prolixity. Instead, we have selectively
included key properties which contribute towards making the URL more descriptive, thereby
helping users to understand the traits of the service being invoked.

An optional subModuleTask parameter can be included in the path, referring to the sub-
ModuleTask property of the Module entity. It allows users to execute a specific function-
ality of the method by providing the submodule’s name. For instance, the following URL
"prediction/GFP/build-model/next-activity/machine-learning/decision-tree" refers to a pre-
diction service named GFP (i.e. the URL starts with prediction/GFP). The service is respon-
sible for constructing a prediction model (i.e. the task parameter is set to "build-model") that
predicts the next activity (i.e. the prediction type parameter is set to "next-activity"). It also
specifies that the methodology used is machine learning and the algorithm is decision tree. To
invoke a certain functionality of the service, such as log processing, the corresponding module
name is appended to the previous URL. This results in a URL like "prediction/GFP/build-
model/next-activity/machine-learning/decision-tree/log-processing".

Each path within the API supports the POST and GET operations. Figure. 5.5 illus-
trates the standardized structure of both POST and GET requests and their corresponding
responses. The POST operation handles user input and data required for executing the
methods. It generates output result files and stores them on the server. POST request query
parameters include literal input values (i.e. Input entities with the type property set to "lit-
eral") and configuration parameter values required to execute the methods and specified by
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Figure 5.5: General structure of the POST/GET Request and Response
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the users. In addition, the POST payload includes resource input values (i.e. Input entities
with the type property set to "resource") that are sourced from external entities, such as event
log files, process models, etc. These values are identified using specific identifiers, such as
local file paths or URLs. The response body of the POST request includes the identifier of
the generated file, which can be used to retrieve the file. By incorporating this information
within API responses, clients can dynamically perform the GET operation to retrieve and
access the generated file.

The GET method is used to retrieve the created result files. The GET request includes
the file identifier as a query parameter, which is used to locate and retrieve the corresponding
file from the server. The GET response may vary depending on the specific service being
executed and the nature of the returned results. In some cases, the GET response directly
presents the result to the user, enabling immediate access and interaction. Alternatively, the
result file can be downloaded to the user’s device, allowing offline access and further analysis.

5.6 Services matching

This section presents the component responsible for matching user requirements expressed in
NL with available services. The matching process involves two stages, depicted in Fig. 5.1.
First, the system searches for process mining methods that satisfy the user’s requirements
by querying the process mining methods description property graph. Then, it automatically
generates REST API calls for the selected services, simplifying the process for the user. These
stages are described in detail in the following sections.

5.6.1 Stage 1. Method Discovery

This step takes the user’s specified requirements as input in NL, along with the process mining
methods property graph model. This model is an instantiation of the meta-model described
in Section 3.4.2. Then, it identifies the suitable discovery, conformance, or prediction methods
that fulfill the specified requirements. An example of this process is illustrated in Fig. 5.6.
First, the user specifies the requirements she/he needs to search for in the NL query (step 1
in Fig. 5.6). These requirements may vary from general to increasingly specific. For instance,
in the query ’What are the available prediction techniques for the next activity?’, the user
specifies the requirement related to the prediction type of the technique (i.e., predicting the
next activity). Conversely, in the query ’Give me available services to predict the next activity
using decision tree’, the user provides more specific conditions concerning the prediction type
and the algorithm (decision tree) to be employed.

Next, all available methods that satisfy these requirements are searched by querying the
process mining methods property graph using the Cypher query language (step 2 in Fig. 5.6).
To automate this process, we harness the capabilities of LLMs like GPT-4 to automatically
generate appropriate Cypher queries from the provided NL queries. This is achieved through
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a meticulous prompt engineering process, outlined in Figure. 4.3, which effectively guides the
language model to produce the desired output.

Our primary objective is to generate Cypher queries automatically from NL queries. These
Cypher queries will be utilized to identify process mining services that match the requirements
stated in the NL queries. To initiate prompt creation, we provide a concise overview of
our service description component, as well as a detailed description of the proposed LPG
metamodel, designed to store process mining methods’ relevant information. Additionally,
we include a task description that informs GPT-4 about the objective of generating Cypher
queries for querying the graph.

Similar to the process described in Section 4.8, we continually refine the prompt and evalu-
ate GPT-4’s responses. The Perfect Prompt plugin aids in enhancing the provided contextual
information and task description. Furthermore, we incorporate examples of property values
that could be associated with nodes to assist GPT-4 in correctly mapping values extracted
from NL queries to their corresponding graph properties. Additionally, we offer examples of
NL queries along with their corresponding Cypher queries to guide the model in producing
the desired output. Finally, we instruct GPT-4 not to introduce new node labels or attributes
in the generated Cypher queries, restricting the queries to include only information from the
described metamodel. This ensures that the generated queries align with the structure and
properties defined in the Labeled Property Graph, resulting in more accurate and meaningful
query outcomes. Through an iterative approach, we successfully developed a high-quality
prompt, enabling effective interactions with GPT-4 to generate accurate and contextually
relevant Cypher queries. An illustrative example of this prompt is provided in Appendix A.

Upon generation of the Cypher query, it is subsequently executed over the process mining
methods property graph (step 3 in Fig. 5.6). Note that the user can specify conditions for
one or more properties of the methods she/he wants to search for. Therefore, the Cypher
query is designed to search for all methods that meet the specified properties, even if they
have different values for other properties. For instance, if the user is looking for methods
that predict the remaining time, the Cypher query will search for all prediction methods
that predict the remaining time, regardless of their methodologies or algorithms. As a result,
all the identified methods, along with their associated properties, inputs, outputs, and sub-
modules, will be presented to the user (step 4 in Fig. 5.6). The user then selects one or many
of the discovered methods or sub-modules (step 5 in Fig. 5.6).

5.6.2 Stage 2. Rest API call generation

This step involves automatically generating the associated REST API call for each selected
method from the previous step. Before proceeding with the request generation, the user is
prompted to provide the necessary values and specify the identifier of required literal and
resource inputs through the application console.

The process begins by constructing a POST request that includes all the inputs required
to execute the method. Request generation involves constructing the URL path and de-



104 Service-Oriented Architecture for Discovering and Accessing Process Mining Techniques

"What available discovery services to generate BPMN model?"
"Give me prediction service to predict next activity."
"Which conformance techniques are used to evaluate a Petri Net model?"
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Figure 5.6: Example illustrating the process of discovering discovery, conformance, and prediction
methods

termining the possible parameters to be included in both the path and the payload. Al-
gorithm 2 shows the process of POST request generation for each of the selected meth-
ods. Initially, the family of the process mining methods (i.e. discovery, conformance, or
prediction) as well as the method name is added to the URL path (Lines 3-5). Then,
the properties of the selected method, and module if specified, are mapped to the cor-
responding path parameters, as outlined in Section 5.5 (Lines 6-9). Additionally, all the
mandatory literal inputs are included as query parameters, along with the user-provided
values (Line 10). For instance, the following URL "StochasticPrediction/predict/remaining-
time/ATS/SPN?monitoring-iteration=...&unit-time=..." corresponds to the left method en-
tity shown in Fig. 5.3. Next, the locations of resource inputs (e.g. the event log file) are
incorporated into the request body payload (Line 12). Once the POST request is created,
it is transmitted to the user. The user can initiate the API call using specialized tools like
Postman or OpenAI, or directly invoke the REST API through our application. In the latter
case, the method is executed and the resulting file is saved on the server. The user receives
a POST response containing essential information related to the generated result file such
as the file identifier, that can be used to access the generated file. Additionally, the user is
also provided with the REST API URL that employs the GET method for retrieving and re-
turning the results. The URL incorporates the generated file identifier as a query parameter,
allowing easy access to the desired information.

5.7 Proof of concept

This section provides a demonstration of the proposed architecture through a proof of concept
evaluation. The main goals are (i) to evaluate the effectiveness of the service matching
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Algorithm 2 POST REQUEST generation
1: Input: selectedMethod, subModule, literalInputs, resourceInputs
2: Output: POST_REQUEST
3: method_type← get_method_type(selectedMethod)
4: method_name← get_method_name(selectedMethod)
5: URL← ” method_type/method_name/ ”
6: properties← get_method_properties(selectedMethod)
7: URL← add_properties_to_path_parameters(URL, properties)
8: if sub_module is specified then
9: URL← add_subModule_to_path_parameters(URL, subModule)

10: URL← add_literalInputs_to_quqery_parameters(URL, literalInputs)
11: POST_REQUEST ← URL
12: POST_REQUEST ← add_resourceInputs_to_payload(POST_REQUEST, resourceInputs)

Services matching

Service description

generate decision tree predictor model

generate SPN predictor model

predict remaining time using SPN

extracted methodsJAVA

generate decision tree predictor model

generate SPN predictor model

Figure 5.7: Technologies employed in developing the proposed Architecture

component to identify suitable process mining methods based on user queries expressed in
NL, (ii) to evaluate the accuracy of the service matching component in generating REST
API calls and (iii) to demonstrate the practical feasibility of implementing REST APIs for
existing methods within the context of process mining. Figure. 5.7 showcases an overview
of the used technologies for developing and evaluating the proposed architecture. A set
of prediction methods, meticulously chosen from the existing literature, was employed to
populate the property graph dedicated to process mining methods. This data is stored in
Neo4j. The service matching component is developed as an independent Python application.
This application interacts with users by accepting NL requests for process mining service
discovery. It connects to the GPT-4 API using an API key, transmitting a predefined prompt
to guide the model in constructing appropriate Cypher queries and the user’s request. Once
the constructed Cypher query is received, it is then executed over the Neo4j property graph to
retrieve the relevant discovered services. The user is then presented with the list of discovered
services, complete with their corresponding inputs, outputs, and submodules. Upon selecting
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Discovery Conformance Prediction
Queries generated manually 18 8 9
Queries generated using Quillbot 9 5 6
Queries generated by GPT-4 21 20 20
Total number of queries 42 33 35

Table 5.1: Number of NL queries generated manually, using Quillbot tool and GPT-4 related to
discovery, conformance and prediction services

desired services, the application generates the corresponding REST API details, including the
URL, parameters, and HTTP method. In addition, to evaluate the Rest API implementation
and call, three distinct REST APIs were implemented. These APIs were designed to provide
access to three distinct prediction methods, all of which are available within the ProM tool.
The APIs were implemented using the Java programming language.

The execution of the proof of concept entails two primary experiments. The first, detailed
in Section 5.7.1, is dedicated to evaluating the effectiveness of the process mining method
discovery from NL queries. The second experiment detailed in Section 5.7.2, is dedicated to
evaluating the REST API call generation and the feasibility and real-world applicability of
REST API implementation for process mining methods. The complete source code, essential
files, and comprehensive instructions are available at https://github.com/merianakb/SOA.
git.

5.7.1 Methods discovery evaluation

This section presents the experiment performed to evaluate the effectiveness of the service
matching component to identify suitable process mining methods based on user queries ex-
pressed in NL. In other words, it assesses how well the large language model, namely GPT-4,
could create accurate Cypher queries to address NL queries after the prompt definition ex-
plained in Section 5.6.1. To conduct the evaluation, a total of 110 NL requests were generated
to discover services related to processes of discovery, conformance, and prediction. These NL
requests were created using three methods: (i) manual generation, (ii) employing Quillbot, a
paraphrasing tool3, and (iii) leveraging GPT-4 as a language model. The breakdown of NL
queries created through manual methods, Quillbot, and GPT-4, all pertaining to discovery,
conformance, and prediction services, can be found in Table 5.1. A selection of examples
showcasing these NL queries is presented in Table 5.2.

The generated queries were divided into two categories. The first category (G1 ) encom-
passed queries seeking services without any specific conditions on the properties of the service,
or with simple conditions tied to a single property. For instance, examples of G1 category
queries include: ’Which prediction services can anticipate the next activity in an ongoing pro-
cess?’, ’What available discovery services are there?’, ’Can you describe trace alignment-based

3https://quillbot.com/

https://github.com/merianakb/SOA.git
https://github.com/merianakb/SOA.git
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NL queries

Discovery

There are any process discovery techniques that produce BPMN model using the alpha minner algorithm?

Can you list discovery methods that generate declarative models using the Declare formalism?

I’m looking for hybrid models that have been applied in the e-commerce domain. Can you list them?

Are there any discovery methods specialized for the education sector that provide declarative models?

Which discovery services generate models in either BPMN OR PetriNet formalism?

Conformance

Checking

Can you provide accessible conformance techniques between a BPMN model and multi-perspective event log

Are there any methods that use the Declare language and either output Fitness metrics OR generalization metrics?

I’m searching for techniques that either employ PetriNet OR BPMN language for process behavior description. Any suggestions?

Which conformance-checking techniques are designed for a control flow perspective of the event log and provide Simplicity metrics?

Can you recommend conformance-checking methods that focus on the control flow perspective and either employ PetriNet OR

Declare language for process behavior?

Prediction

Provide me with services for remaining time prediction using an annotated transition system or Naive Bayes algorithm

Are there prediction services that focus on outcome forecasting and use the decision tree algorithm?

I’m searching for services that are not process-aware and employ statistical methodologies to predict LTL violations.

Any recommendations?

Which prediction services use either machine learning OR annotated transition systems to forecast the next activity?

Which prediction methods use the decision tree algorithm and are designed to forecast LTL violations?

Table 5.2: Example of NL queries used to evaluate the matching services component

conformance testing techniques?’, etc. The second category (G2 ) included queries aimed at
finding services by imposing complex conditions using logical AND/OR combinations of differ-
ent values related to either the same or different properties. Examples of G2 category queries
include: ’Are there any process discovery techniques that utilize the alpha miner algorithm to
produce BPMN models?’, ’Which discovery services generate models in either the BPMN OR
PetriNet formalism?’, ’Which prediction services use either machine learning OR annotated
transition systems to anticipate the next activity?’, ’Could you list prediction methods using
the decision tree algorithm designed for forecasting LTL violations?’, etc.

To assess the constructed Cypher queries, two evaluation metrics were established. The
first metric is the accuracy of correctly constructed Cypher queries from a syntactical per-
spective. It calculated the ratio of accurately constructed syntactically valid Cypher queries
to the total number of requests made. The second metric is the accuracy of semantically
correct Cypher queries. This metric determined the ratio of appropriately formulated Cypher
queries that were semantically correct – that is, queries yielding relevant services aligned with
user needs – to the total number of requests. For checking syntactic correctness, the Neo4j
tool was employed, while the assessment of semantic correctness was conducted manually to
ensure that the queries produced relevant outcomes according to user requirements.

Results & Discussion
The evaluation results of the categorized requests are shown in Table 5.3. The first column
showcases the symbols representing each category, inclusive of the average row. The second
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Accuracy of syntactically correct Cypher queries Accuracy of semantically correct Cypher queries

G1 1 0.94

G2 1 0.98

Average 1 0.96

Table 5.3: Accuracy of syntactically and semantically correct constructed Cypher queries for cate-
gories G1 and G2 with the overall average

column displays the accuracy of correctly constructed Cypher queries from a syntactical per-
spective. The third column displays the accuracy of semantically correct Cypher queries. A
perfect accuracy score of 1 was achieved for syntactically formulated Cypher queries across
both G1 and G2 categories. This outcome underscores GPT-4’s adeptness in generating syn-
tactically accurate Cypher queries. GPT-4 demonstrated its capability to construct Cypher
queries of varying complexity, incorporating different combinations of conditions related to
service properties. Furthermore, when a service property involves an array of values – like the
’algorithm’ property for prediction services or the ’metrics’ property for conformance services
– the constructed Cypher queries efficiently search for the specific value(s) specified by the
user within that array.

In terms of the accuracy of semantically correct Cypher queries, a commendable score of
0.96 was attained. This outcome indicates that the prompt created through the prompt engi-
neering process was of high quality, guiding GPT-4 effectively in generating accurate Cypher
queries. For both simple and complex user queries, GPT-4 was successful in constructing
appropriate Cypher queries that yielded the requested services. On analyzing the incorrectly
formulated queries, a prominent issue emerged. It was observed that certain semantics within
user requests proved challenging for GPT-4 to interpret accurately. For instance, in the user
query ’Please provide me with discovery strategies that do not require user interaction’, GPT-4
struggled to interpret the phrase ’do not require user interaction’ as a property of the dis-
covery service, specifically the ’domain knowledge’ property set to ’No’. Similarly, for user
queries like ’I require LTL violation prediction services that do not require a process model as
input and produce a decision tree as a predictor model’, GPT-4 faced difficulty in mapping the
phrase ’do not require a process model’ to the ’NPA’ value representing the awareness prop-
erty of the prediction service. Furthermore, in the user query ’What services are available to
check the consistency of a process model and an event log?’, GPT-4 interpreted ’consistency’
as a value of the ’metrics’ property for conformance services. These instances of inaccuracy
mainly stemmed from the complexity of certain semantics that posed challenges for GPT-4’s
interpretation.

In conclusion, the evaluation highlighted GPT-4’s consistent proficiency in constructing
both syntactically and semantically accurate Cypher queries. The model demonstrated its
competence in formulating queries with precision across both simple and complex query cate-
gories (G1 and G2 ). However, while achieving success in query accuracy, challenges emerged
in handling nuanced semantics and complex logical conditions. These instances led to occa-
sional inaccuracies in the construction of semantically accurate queries.
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5.7.2 Rest API generation evaluation

This section presents the conducted experiments with the dual purpose of (i) evaluating the
accuracy of the service matching component in generating REST API calls and (ii) demon-
strating the practical feasibility of implementing REST APIs for existing methods within the
context of process mining. To assess the precision of REST API call generation, the imple-
mented Python application designed for method discovery through NL queries (referred to as
the methods discovery step) was utilized. From the available pool of discoverable methods,
along with their associated properties, a specific subset of methods was chosen. The Python
application was then tasked with generating the corresponding REST API calls for these se-
lected methods. This process involved producing the required URL, parameters, and HTTP
method for each method within the chosen subset.

For the evaluation of the feasibility and practicality of implementing REST APIs for
process mining methods, three prediction methods were selected from the existing literature,
specifically from references [40] and [133]. These methods had been incorporated as plugins
within the ProM tool. The first method, described in [40], involved generating decision trees
from event logs to function as prediction models. These decision trees could forecast outcomes,
next activities, or final attribute values. The second and third methods discussed in [133],
centered around constructing Stochastic Petri-nets (SPNs) from event logs and subsequently
utilizing these SPNs to predict the remaining time of an ongoing process. The process of
building the SPN model consisted of two primary steps: creating a Petri-net from the event
log and then enhancing the Petri-net with supplementary data to obtain an SPN. This model
building was viewed as comprising two sub-modules of the overarching building method.

To realize the corresponding REST APIs, the Java source code of the two implemented
packages in Eclipse was accessed. Appropriate modifications and adjustments were made to
the code before implementing the REST APIs using the Java programming language. Con-
sequently, three REST APIs were developed: one for building the decision tree as proposed
in [40], one for constructing the SPN model as described in [133], and a third for querying the
constructed SPN model to retrieve prediction values. These implemented REST APIs were
then invoked from the Python application as part of the experimental assessment.

Results & Discussion
The empirical outcomes of our evaluation reveal that the service matching component exhib-
ited remarkable precision in generating REST API calls for each of the selected methods. This
accuracy extended to both the URL construction and the parameter specification, adhering
to the requirements for each individual process mining method. The ability to generate such
precise API calls suggests a high level of accuracy in our service-matching component, under-
scoring its reliability and effectiveness for practical applications. This result also confirms the
system’s capability to bridge the gap between user-generated NL queries and the technical
specifications needed to invoke process mining methods.

Moreover, the successful implementation of REST APIs for existing process mining meth-
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Evaluation criteria Description

Clarity and Readability The extent to which the REST API is easy to understand so that users can
easily determine the services and resources they are accessing.

Relevance The extent to which the REST API accurately reflects the properties of the
service being used.

Coverage The extent to which the REST API design effectively represents the diverse range
of services and their distinct characteristics.

Table 5.4: Evaluation criteria of the REST API design

ods serves as empirical evidence for the feasibility and applicability of the proposed archi-
tecture. This not only demonstrates the utility of our approach but also sets a precedent
for how extant computational methods in process mining can be made more accessible and
integrable through RESTful services. However, a notable limitation of this approach was the
time-consuming nature of the REST API implementation process. A significant portion of
this time was spent on understanding the original Java source code of the selected methods.
Subsequent to that, additional time was invested in making necessary modifications and in-
voking appropriate functions. Although it was a laborious task, it was observed that many
of the changes needed were common across the three different methods. This observation
suggests that there may be an opportunity to streamline this process through more general-
ized solutions or templates, potentially cutting down on the time and complexity involved in
future implementations.

Given these findings, we strongly encourage developers in the process mining field to
consider providing REST API accessibility for their proposed methods. Doing so would
significantly ease the integration and utilization of these advanced techniques into various
systems and platforms, thereby amplifying their reach and impact.

5.8 Evaluation

This section presents the conducted experiments aimed at evaluating user experiences and
the effectiveness of the proposed REST API design. The qualitative evaluation of the pro-
posed REST API design is based on specific criteria outlined in Table 5.4, including clarity
and readability, relevance, and coverage. These criteria are selected due to their significance
in ensuring the overall quality of the service-oriented API design. In this evaluation, our
primary focus has been on the prediction methods, which are inherently the most complex
techniques. Consequently, we anticipate the same outcomes when applying the evaluation
to both discovery and conformance techniques. In the first experiment, we assess the user
experience in searching for and accessing prediction methods using traditional methods. Ad-
ditionally, we evaluate the clarity and comprehensibility of the proposed REST API design
(Section 5.8.1). In the second experiment, we focus on evaluating the coverage and relevance
of the REST API design (Section 5.8.2). All evaluation results and necessary files are available
at https://github.com/merianakb/SOA.git.

https://github.com/merianakb/SOA.git
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5.8.1 Use case

A use case was conducted with external users, with two main goals. First, the aim was
to assess the user experience when searching for and accessing prediction methods using
conventional methods such as process mining tools or literature searches. This use case
focused on identifying the challenges faced by users while attempting to apply prediction
methods in practice, emphasizing the necessity for an automated solution to discover and
access these methods. Second, the use case sought to evaluate the clarity and readability
of the proposed Rest API. Section 5.8.1.1 outlines the methodology followed in the use case,
including participant selection and different experiments conducted. The findings of the study
are discussed in Section 5.8.1.2.

5.8.1.1 Methodology

The use case involved participants from diverse backgrounds and expertise, including data
scientists, software engineer students, Ph.D. students, and developers. All participants had
a solid understanding of process and data analysis. However, their familiarity with REST
APIs varied, ranging from extensive knowledge to basic understanding. Some participants
had prior experience with process mining tools like ProM, while others were new to such
tools.

An overview of process mining, prediction techniques, and the ProM tool was first pre-
sented to the participants. The study was divided into three parts. The first part aimed
to assess the participants’ experiences with searching for and accessing prediction methods
using the ProM tool. Participants were asked to install the latest version of the ProM Nightly
build4 and were given access to documentation5 of all available packages in ProM. To access
a particular plugin in ProM, users must locate and install the package that contains the plu-
gin in ProM’s package manager. In this use case, participants were asked to find prediction
packages, install them, and launch the required plugins to execute one prediction method. It
should be noted that there were no limitations imposed on the prediction methods that could
be searched for or executed during this initial phase of the study. In the end, we requested
participants to give their feedback6, on the challenges they encountered while searching for
the prediction methods using one of the process mining tools and whether they were able to
obtain the required information about each identified plugin.

The second part aimed to evaluate the user experience of searching for prediction methods
with specific requirements using the literature. To support the search process, participants
were given two tables of existing prediction methods from recent systematic reviews [106,
47]. Eight different use cases for searching a specific prediction method were then presented.
For each use case, participants were asked to search for an existing published article that
had proposed a prediction method that meets the requirements and has been made available.

4https://promtools.org/prom-6-nightly-builds/
5https://svn.win.tue.nl/repos/prom/Packages/
6https://forms.gle/3ruRmnDDYowAmFJe6
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Following their search, the participants were required to complete a Google Form7 containing
the list of articles discovered for the use cases as well as the duration spent on the search.

Finally, the third part aimed to evaluate the participants’ experience of searching for pre-
diction methods that met specific requirements by using REST API. Through this evaluation,
we also aimed to assess the clarity and readability of the proposed URL design. To achieve
this, the participants were provided with 15 different REST APIs for existing prediction tech-
niques, which were formatted according to the design outlined in Section 5.5. Similar to the
second part, they were tasked with searching for the REST API that met the requirements
described in each of the eight use cases. In addition, they were required to submit their
findings via a Google Form8, which included a series of questions about the identified REST
APIs, the time it took to complete the task, their feedback on the REST API design, and
their preference for using REST APIs or a process mining tool.

It is important to highlight that the workshop was conducted in multiple sessions, not all at
once, to accommodate the participants. The workshop took place three times, with one session
held in person at the university and two sessions conducted remotely. The same procedure was
followed in each workshop, covering all three parts of the workshop. Participants were given
the flexibility to choose the order in which they performed the workshop parts based on their
preferences. Additionally, there was no strict time constraint imposed on the participants.
They were free to complete the workshop parts and the corresponding Google Forms at their
own pace, although we requested an approximate completion time for reference purposes. As
a result, 33% of the participants opted to begin with ProM, then proceed to literature search,
and finally utilize the REST APIs. 58% of the participants started with ProM, followed by
using the REST API and then conducting a literature search. Lastly, 9% of the participants
chose to start with the REST API, then perform a literature search, and conclude with the
utilization of the ProM tool.

5.8.1.2 Results & Discussion

The evaluation results collected from the participants regarding their experiences in searching
prediction methods using ProM indicate that all users were able to find at least one prediction
plugin. However, the specificity of each plugin and the properties of the executed methods
were not always clear to the participants. Specifically, 41% of the participants were able to
identify only the type of information the method is able to predict, while 50% of participants
were unable to determine any properties of the found prediction plugins. The lack of the
necessary documentation, and the ambiguity of each plugin’s information, were the main
challenges faced by all of the participants.

Regarding user experience with searching for prediction methods using the literature,
despite providing the participants with comparative tables of all the properties of existing
methods extracted from systematic reviews, only 47% of the responses met the requirements.

7https://forms.gle/jGnd7ZBS2xRA3cem8
8https://forms.gle/vNQn7Td8R7yxhmWz7
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Most of the correct responses were provided by Ph.D. students who were already familiar with
scientific articles. We also observed that data scientists, developers, and engineering students
completed the task in less than 30 minutes, but they did not provide accurate responses. As
a result, the use of literature and published articles for searching prediction methods is a
challenging task, especially for data and process analytics.

Finally, regarding the user experience and feedback on the REST APIs, the results indicate
that the proposed REST API design successfully met the objectives of clarity and readability,
achieving an 89% accuracy in correctly associating the REST API with the corresponding re-
quirements. This design effectively communicates the characteristics of the prediction service,
enabling users to comprehend its specific features better and choose the appropriate REST
API that aligns with their needs. Furthermore, participants provided positive feedback about
the REST API design. They praised its clarity, mentioning that it effectively specified the
type of prediction, problem, algorithm, etc. The design was also appreciated for its simplic-
ity, as participants found it intuitive to understand the desired action, available inputs, and
method just from the URL query.

Interestingly, the order in which participants completed the three parts did not have a
significant impact on the results. Even participants who first engaged with the Rest APIs
before conducting the literature search demonstrated comparable understanding, suggesting
that there was no learning effect in the early phase that influenced the comprehensibility of
the Rest APIs.

Furthermore, the participants provided overwhelmingly positive feedback about the REST
API design when asked for their opinions. For instance, several participants praised the
design’s clarity, with responses such as "the method is made clear by specifying the type of
prediction, type of problem, method, predictor model, and produced model", and "it is more
intuitive to use a formalism with REST APIs. Standardization can attract more audience".
Other participants appreciated the design’s simplicity, with one saying "just from the URL
query, we can understand what we want to do, what inputs we have, and the method to use".

When asked for their preference for using REST APIs or a process mining tool, all par-
ticipants preferred REST APIs. They provided several reasons for this preference, including
the freedom that REST APIs provide to users. One participant explained, "This gives more
freedom to users. They don’t have to install ProM on their machines. Calling an API end-
point is much easier than launching a plugin". Another participant preferred REST APIs
because they offer a guided approach, saying, "The REST approach starts with the results,
and we show the itinerary the user takes. So I think being guided is better than looking for
information from scratch". Participants also appreciated the intuitive logic of REST APIs,
with one stating, "It has an intuitive logic. Just follow the parameters written in the REST ".

The results of our study demonstrated the difficulties that users encounter when searching
for and accessing prediction methods through traditional methods such as using a tool or
searching through literature. Moreover, the participants’ feedback and preferences indicate
that the REST API design was well-received and considered a more user-friendly option than
a process mining tool.
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5.8.2 Evaluation of coverage and relevance of Rest API design

In this section, we present the experimental evaluation conducted to assess the coverage and
relevance of the service-oriented Rest API design. Specifically, Section 5.8.2.1 outlines the
methodology employed in the evaluation while the results are discussed in Section 5.8.2.2.

5.8.2.1 Methodology

The evaluation of the REST API’s relevance and coverage was conducted by the authors
using a set of 12 diverse published articles as a foundation. These articles encompassed a wide
range of prediction methods with distinct properties, including the construction of predictor
models, prediction of specific information, or a combination of both. Through a systematic
analysis, the relevant properties of each method were identified, focusing on the Prediction
entity depicted in Figure. 5.2. The inputs, outputs, and potential sub-modules associated
with each method were extracted based on the descriptions provided in the articles, without
delving into technical details.

Once the pertinent information for each method and sub-module was identified and ex-
tracted, the next step involved defining the corresponding REST API URLs following the
unified design outlined in Section 5.5. The properties of the prediction methods proposed
in each article, such as prediction type, methodology, problem type, and algorithm, are pre-
sented in Table 5.5. The rows in the table represent the properties, while the columns indicate
the article IDs.

5.8.2.2 Results & Discussion

The evaluation results indicate that the proposed REST API design effectively represents
various prediction methods along with their inputs, outputs, and properties. However, a
significant limitation was identified for methods that had multiple values assigned to the
same property. This was particularly observed in the methods proposed in the highlighted
articles in Table 5.5 (i.e. [40, 46, 96, 152, 159]). First, some methods proposed prediction
models that could predict multiple types of information (e.g. the method proposed in [40]).
Nonetheless, the proposed REST API design only accounts for one prediction type in the path.
Consequently, when dealing with methods that have multiple prediction types, the creation
of several REST APIs is necessary, with each API corresponding to a distinct prediction type.
Moreover, some methods may use multiple algorithms (e.g. methods proposed in [46, 96])
or involve both classification and regression problems (e.g. the method proposed in [159]).
However, the proposed REST API design can only include one value for each property. As a
result, one of the values must be chosen to be represented in the REST API, which may not
capture the full range of method properties.

In conclusion, our evaluation demonstrates that the proposed REST API design success-
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Reference Prediction Type Methodology Problem Type Algorithm

[40]
next activity

last value
outcome

ML CLASS DT

[133] time ATS REG SPN

[46] LTL ML CLASS DT
CLU

[119] next activity
time

ML
STAT

CLASS
REG

SVR
NB

[39] risk similarity CLASS RP
[33] next activity STAT CLASS EM

[96] outcome ML CLASS HMM
DT

[118] risk STAT CLASS RP
[32] next activity STAT CLASS EM

[152] next activity
time ANN CLASS

REG LSTM

[105] indicator STAT CLASS evolutional

[159] outcome
time ML CLASS

REG SVM

Table 5.5: Properties of prediction methods proposed in the articles
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fully covered a wide range of prediction methods and their properties, meeting the coverage
criterion. However, in terms of relevance, the design accurately represented the properties of
most methods, with the exception of those that have multiple values for the same property.
In such cases, the design was unable to accommodate all the values, potentially affecting the
relevance of the REST API design for those specific services.

5.9 Conclusion

This chapter introduces an innovative approach to tackle the challenges associated with dis-
covering and accessing process mining methods. This approach is based on a service-oriented
architecture that places a strong emphasis on REST APIs. The proposed architecture con-
sists of three key components: (i) service description component responsible for representing
the properties of discovery, conformance, and prediction services using an LPG; (ii) unified
service-oriented REST API design which establishes a unified design for process mining meth-
ods through REST APIs, making it easier for users to access and utilize these methods; and
(iii) a services matching component responsible for matching user requirements expressed
in NL to services. It leverages the capabilities of the LLM GPT-4 to automatically con-
struct Cypher queries from NL. These queries are executed over the process mining methods
property graph to retrieve the corresponding methods. Subsequently, a REST API call is
generated based on the user’s selected service.

Our evaluation primarily focused on prediction methods, known for their inherent com-
plexity. We anticipate that similar results would be obtained when applying the same evalua-
tion process to both discovery and conformance techniques. The results from our experiments
were highly promising and provided the following insights:

• The proof of concept results confirmed the system’s ability to bridge the gap between
user-generated NL queries and the technical specifications required to invoke process
mining methods;

• GPT-4 consistently demonstrated its proficiency in constructing both syntactically and
semantically accurate Cypher queries. However, handling nuanced semantics and com-
plex logical conditions posed occasional challenges, leading to minor inaccuracies in
query construction;

• The service matching component demonstrated remarkable precision in generating REST
API calls for selected methods, including URL construction and parameter specification,
meeting individual process mining method requirements;

• Users faced difficulties when searching for and accessing process mining methods through
traditional methods or literature. The REST API design was well-received as a more
user-friendly alternative to a dedicated process mining tool;

• The developed REST API design was user-friendly, adhering to clarity, readability,
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and coverage criteria. However, it occasionally struggled with methods having multiple
values for the same property;

In light of these findings, we strongly encourage developers in the process mining field
to consider offering REST API accessibility for their methods. This approach would greatly
simplify the integration and utilization of advanced techniques across various systems and
platforms, expanding their reach and impact.

While our current approach emphasizes a service-oriented REST API design focused on
functional aspects, future work could explore a resource-oriented design paradigm. This al-
ternative approach would restructure the API design to organize resources around the diverse
outputs generated by process mining methods, rather than solely emphasizing functionality.
This restructuring would involve identifying and defining these outputs as distinct resources
and adapting the URL schema accordingly. The choice between service-oriented and resource-
oriented designs should be made after thorough investigations and consultations with users
and organizations. Additionally, there is potential to extend the solution by introducing a
service composition formalism, enabling users to create new services using pre-existing ones.
The next chapter delves beyond the scope of this thesis, proposing extensions and new per-
spectives for each of the contributions presented herein.
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6.1 Introduction

In the dynamic realm of process analysis, continuous evolution and refinement are not just
commendable, but often essential. As this thesis has unveiled three pioneering contributions
toward conversational AI frameworks for cognitive process analysis, it is both prudent and
intriguing to cast an exploratory gaze into the horizon, considering potential avenues for their
extension and refinement. Such explorations can not only amplify the efficacy of the initial
contributions but also pave the way for groundbreaking advances in the future. The primary
aim of this chapter is to shed light on those areas of enhancement and expansion that lie
just beyond the current ambit of our work. These potential pathways, while based on the
bedrock of our initial research, reach out further, striving to encapsulate a broader spectrum
of possibilities and address a wider range of challenges in the realm of process analysis.
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We delve into a thorough examination of each of our contributions, actively seeking op-
portunities for enhancement and expansion:

• Graph Meta-Model for Storing Process Execution Data: Within the complex
web of process execution data, our graph meta-model stands as a meticulous custodian.
Yet, its true potential lies not just in its current form, but in its adaptability. How
might it evolve to more comprehensively encapsulate process intricacies? How might its
boundaries expand to seamlessly integrate both instance and process-level information?

• Natural Language Querying of Process Execution Data: Bridging the chasm
between human linguistic patterns and structured database queries is no small feat.
Yet, the landscape of natural language is vast, and the horizon of our interface can
stretch even further. What other NL queries might it capture? How might it adapt to
interact with a diverse array of meta-models, expanding its repertoire of interpretative
capabilities?

• Service-Oriented Architecture for Process Mining Techniques: Our architec-
tural contribution is robust, but the dynamism of process mining demands a structure
that is both sturdy and flexible. Where can we introduce more layers of granularity?
How can its design be enhanced to better mirror the rapidly shifting terrain of process
mining?

In the rest of this chapter, each section unfolds as a dedicated exploration of one of our
pivotal contributions. Section 6.2 provides an in-depth look into the potential enhancements
of the graph metamodel for storing process execution data. In Section 6.3, we transition
into the vast domain of natural language querying, pondering its broader capabilities and
adaptability. In Section 6.4 we delve into the architectural nuances of our service-oriented
approach, scrutinizing its design elements and proposing visionary refinements. Finally, Sec-
tion 6.5 concludes the chapter.

6.2 Extending the Graph Meta-Model for Storing Process Ex-
ecution Data

In Chapter 3, we introduced a graph metamodel based on LPG to provide a comprehensive
and explicit representation of all aspects inherent to multi-dimensional process data. With
a sharp focus on the details of instances, it effectively captures a wealth of information,
including executed activities, involved actors, impacted data and objects, and the intricate
relationships between these entities. Notably, we underscored the importance of harmonizing
both structural and behavioral data within this metamodel.

Unlike many other database technologies, graph databases offer remarkable flexibility,
allowing for the addition of new elements without undue complexity. This presents an oppor-
tunity to enhance the current metamodel, making it more comprehensive and information-
rich. In the forthcoming sections, we take a step beyond the current metamodel version and
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Figure 6.1: Examples of new nodes and relations incorporated into the graph metamodel for instance-
level enhancement

explore avenues for its extension. We delineate two distinct levels of exploration. The first
pertains to augmenting the graph metamodel with additional instance-level information, as
detailed in Section 6.2.1. The second delves deeper into the expansion of the graph meta-
model, encompassing not only instance-level data but also the representation of process-level
information, which can be instrumental in deriving insights at the process level, as expounded
in Section 6.2.2.

6.2.1 Instance-level extensions

Instance-level enhancements are centered around the goal of fine-tuning the graph meta-model
to encompass a wider array of elements, specifically designed to enrich the information related
to process execution data. The driving force behind these enhancements is to ensure that the
meta-model accurately captures a more nuanced and comprehensive portrayal of individual
process instances. This refinement can take various forms, including the introduction of di-
verse node types, the fine-tuning of relationships between nodes, or the augmentation of node
attributes. Figure 6.1, illustrates potential additions to the graph meta-model, showcasing
new nodes and relationships that could be integrated. These enhancements aim to enrich the
model’s ability to offer deeper insights into the details of process execution data. The follow-
ing elaboration provides a more detailed insight into potential instance-level enhancements
to the meta-model:

1. Inclusion of additional node types: This involves the incorporation of new types of
nodes within the graph meta-model to encapsulate more specific or composite aspects
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of a process. For instance:

• Multi-object Nodes: These nodes symbolize intricate scenarios where multiple ob-
jects partake in a singular activity. For instance, a procurement activity might
involve both a ’purchase order’ object and a ’vendor contract’ object, culminating
in a multi-object node that encapsulates this combined interaction.

• Condition Node: Captures specific conditions or constraints that might affect the
progression of an activity or decision-making points.

• Source Node: Denotes the origin or provenance of data for a particular object or
activity, ensuring rigorous traceability. For example, a ’Source’ node might link
to an ’Object’ node to provide clarity on whether the data was sourced from an
internal system, third-party vendor, or manual input.

2. Inclusion of additional relations: This involves introducing new relational connec-
tions between nodes to better represent interactions or dependencies. Examples of such
relations include:

• Causal Relation: Highlights the cause-and-effect relationships between activities
or objects. For instance, if one activity’s completion invariably triggers another, a
causal relation can illustrate this dependency.

• SupervisedBy Relation: Establishes a hierarchical connection between actors, in-
dicating oversight or management. For instance, an ’Actor’ might be ’supervised
by’ another ’Actor’, denoting responsibility or oversight.

• InteractedWith: A nuanced relation emphasizing the engagement level of an actor
with an object. For instance, if an actor has viewed, modified, or referenced an
object, this relation captures that interaction.

3. Attributes Enrichment: This involves enhancing nodes with additional metadata or
properties to provide deeper insights into the characteristics of each entity. Examples
of properties that could be added to nodes include:

• For the Activity Node: Attributes like ’duration’ can specify the time taken for
completion, while ’cost’ might denote resources or financial expenditure associated
with that activity.

• For the Object Node: Incorporating a ’status’ attribute can provide real-time or
historical insights into the object’s lifecycle or progression.

• For Relations: Enriching relationships with attributes can amplify their informa-
tional depth. For example, The ’FollowingBy’ relation between two activities might
have a ’waiting time’ attribute, showcasing any lag or downtime between the end
of one activity and the start of the next.

Incorporating these instance-level refinements holds the promise of elevating the meta-
model’s capabilities, rendering it a precise tool for navigating the extensive realm of process
execution data. It’s important to note that this exploration is not exhaustive; the landscape
of enhancements is vast, offering numerous avenues for further refinement based on specific
analytical requirements.
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6.2.2 Process-level extensions

Merging instance and process-level insights into one comprehensive graph meta-model pro-
vides a panoramic view of process execution, ensuring no detail is overlooked. By seamlessly
integrating these layers, the enhanced meta-model not only encapsulates the intricate specifics
of individual events but also the broader, aggregated narratives that arise from clustering such
data. For example, while individual nodes may detail specific process events, composite nodes
could aggregate common sequences of activities or prevalent patterns. Similarly, relations can
expand to highlight both individual instance pathways and overarching process trends. This
enriched integration translates to a meta-model adept at offering both granular and macro-
scopic insights, marrying the specificity of individual instances with the overarching narratives
of process-level data.

Incorporating aggregation aspects into the meta-model is a flexible approach, depending
on the specific analytical needs. For instance, consider the graph meta-model introduced
in [55]. In this model, the authors introduce a node type called "Class" with a "type" attribute.
All events sharing the same attribute value are linked to the same "Class" node. Additionally,
the authors propose "directly follow" relations between "Class" nodes to represent aggregated
"directly follows" relations between events. This schema illustrates how aggregation can be
integrated into the meta-model to facilitate different aspects of analysis.

6.3 Enhancements in Natural Language Querying of Process
Execution Data

In our thesis, the second significant contribution pertains to allowing users to query pro-
cess execution data through natural language, subsequently translating their queries into the
Cypher language for our graph meta-model. While the current framework is a robust solution
for this purpose, its potential is far from fully tapped. This section delves deep into the pos-
sible extensions and refinements for our natural language querying mechanism. It presents
some possible perspective to use our work in a more advanced context. We center our focus
on four key perspectives:

• Expanding Query Versatility: To enhance the versatility and user-friendliness of
our system, broadening the spectrum of supported NL queries takes center stage. This
expansion not only amplifies the utility for experienced users but also makes it more ac-
cessible for newcomers. Therefore, in Section 6.3.1, we meticulously examine the range
of supported NL queries and investigate necessary interface adjustments to accommo-
date additional types of queries.

• Adaptability to Multiple Graph Meta-Models: While our current NLI framework
is tailored for our proposed graph meta-model, the dynamic landscape of data necessi-
tates adaptability. The ability to cater to multiple graph meta-models can significantly
enhance the relevance and applicability of our system. Consequently, Section 6.3.2
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delves into potential modifications and adaptations that could seamlessly accommodate
different graph meta-models with minimal adjustments required.

• Leveraging Large Language Models: LLMs with prompt engineering offers an
exciting avenue to further automate and optimize the translation of NL queries to
Cypher. Harnessing the power of LLM can not only streamline the query translation
process but also potentially improve its accuracy. In Section 6.3.3, we explore this
promising approach, discussing its integration, benefits, and potential pitfalls.

• Transitioning to a Conversational Interface: Although our present approach
delves into an NLI where NL queries yield responses, the prospect of incorporating
conversational context, engaging with user dialogue history, and implementing respon-
sive mechanisms is intriguing. Section 6.3.4 delves into the exploration and discussion of
evolving our existing NLI into a conversational interface. This shift aligns with the dy-
namic trends in human-computer interaction, promising more interactive and intuitive
user experiences.

These three perspectives collectively contribute to a deeper understanding of how our
natural language querying system can evolve and adapt to the evolving landscape of data
interaction, making it more versatile, adaptable, and efficient for a wide range of users and
scenarios.

6.3.1 Broadening Supported NL Queries

In our pursuit to develop a comprehensive NLI system, we initially classified NL queries
related to process execution data into three main categories: content, behavioral, and perfor-
mance, as elaborated in Section 4.5. Currently, our NLI system efficiently caters to content
and behavioral queries. Yet, there lies a spectrum of unexplored categories that could emerge
based on specific analysis contexts. For instance, other potential category could be com-
parative queries which are designed to compare different attributes, periods, or instances of
processes (e.g. "How did process X perform in January compared to February?"). To max-
imize the utility and adaptability of our interface, it’s paramount to broaden the spectrum
of supported NL queries. Doing so not only amplifies its immediate applicability but also
positions our interface as a foundational tool for researchers. Scholars can utilize our sys-
tem as a starting point, and expand upon it, potentially paving the way for the support of
intricate and advanced NL queries. In light of this vision, this section outlines a systematic
process that aids users and researchers in enhancing the interface with an extended range of
supported NL queries.

The proposed expansion process is depicted in Figure. 6.2. It consists of four primary
steps:

• Query Categories Definition: Initially, it is crucial to define the new categories of
NL queries that the system should be equipped to handle. These categories would define
the scope and nature of the interactions users will have with the system.
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Figure 6.2: Four-Step Expansion Process for Enhancing Supported NL queries in our NLI

• Meta-model Extension (if required): Depending on the complexity and nature of
the newly introduced NL query categories, there might be a need to extend the graph
meta-model. This augmentation involves integrating additional elements essential for
furnishing accurate and relevant answers to the proposed NL queries.

• Pattern Definition for Intents and Entities: For every identified NL query cat-
egory, it’s imperative to define a general pattern concerning its intent and associated
entities. This approach mirrors our earlier methodology for content and behavioral
queries. By understanding the underlying pattern, the system can more effectively
discern and respond to user queries.

• Cypher Query Construction Enhancement: Once the intents and entities are
demarcated, the subsequent step involves updating the query construction component.
By introducing necessary rules, this component can adeptly construct Cypher query
patterns, drawing from the predefined intents and entities.

By adhering to this structured process, one can seamlessly integrate a plethora of new NL
queries, ensuring that our system remains adaptable, relevant, and at the forefront of NLI
research.

6.3.2 Improving applicability to multiple graph metamodels

In the dynamic landscape of data modeling, users could employ a diverse array of meta-models
based LPG to curate process execution data. These meta-models, while operating under the
foundational principles of LPG, might differ in aspects like node types, relationships, prop-
erties, and other structural nuances. Therefore, it is of paramount importance that our NLI
system retains the flexibility to accommodate these varied meta-models, ensuring broader
relevance and applicability. As previously elaborated in Chapter 4, our NLU component has
been meticulously designed with a degree of generalization. By proposing universally applica-
ble intents and entity patterns that align with the LPG model, this component possesses the
innate capability to seamlessly adapt to new graph meta-models. However, a significant chal-
lenge arises with the query construction component. Governed by a rule-based approach, this
component has an inherent dependency on the meta-model’s specific structure to accurately
craft the corresponding Cypher queries.
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In pursuit of bolstering the system’s adaptability, this section embarks on an exploration
of two potential strategies to modify our NLI, thereby facilitating its integration with an
extensive array of graph meta-models.

• Mapping Layer Approach: The first solution remains largely non-intrusive, pre-
serving the integrity of the existing query construction component. Here, we retain
the proposed NLI in its original form but introduce an intermediary mapping layer as
depicted in Figure. 6.3. This layer serves as a translation mechanism, converting el-
ements from the novel graph meta-model into elements synonymous with our defined
meta-model. This approach is especially viable when direct mapping between the new
and our meta-model does not culminate in any loss of context or information.

• Generalized Query Construction: The alternative proposition seeks a more compre-
hensive revamp, necessitating the formulation of a novel query construction component.
This approach is illustrated in Figure. 6.4. Rooted in universally recognized patterns of
the LPG, this component is designed to be inherently adaptable. Upon the introduction
of a new graph meta-model, an additional instantiation layer is integrated. This layer,
informed by the meta-model’s specific structure, guides the instantiation of the query
construction component, ensuring its alignment with the introduced meta-model.

While these solutions offer promising avenues, it’s crucial to acknowledge that they repre-
sent the initial foray into an expansive domain. Alongside the opportunities they present, they
also introduce a new set of challenges that need to be addressed. Future research endeavors
should delve deeper, rigorously evaluating, comparing, and refining these propositions. Such
investigative pursuits not only validate our solutions but also provide a foundational bedrock
for subsequent research, inspiring and guiding scholars as they navigate this intricate realm
of adaptability in graph meta-models and grapple with the emergent challenges.

6.3.3 Leveraging LLM with prompt engineering for constructing Cypher
queries

Recent strides in the field of LLMs have opened up new horizons for re-envisioning our pro-
posed solution. The sheer power and versatility of LLMs, combined with nuanced prompt
engineering, offer a compelling alternative to traditional query construction methodologies.
Such promising approaches hark back to previous chapters where we explored the potency of
LLMs for the automated generation NL queries (Section 4.8), and Cypher queries tailored to
process mining services (Section 5.6). By judiciously crafting high-quality prompts, we aim
to lean on LLMs for the automatic conversion of NL inquiries into Cypher queries. The vision
here is straightforward: pose a question in natural language to the LLM, let it construct the
appropriate Cypher query, execute said query on the graph, and relay the result.

While the potential benefits of such an approach are confusing, they do not come without
their fair share of challenges:
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• Domain-Specific Variability: Process data, by its very nature, is entrenched in the
specifics of its domain. Processes and their associated data can vary wildly from one
context to another. Consequently, a one-size-fits-all approach is untenable. LLMs need
tailored guidance—via the graph meta-model—to churn out the right Cypher query. In
essence, a unique prompt might be necessary for each distinct process domain to ensure
the LLM constructs an appropriate query.

• Contextual Considerations: Beyond domain-specific quirks, there is also the over-
arching matter of context. NL queries are often laden with nuances, and deciphering
these nuances accurately is pivotal. For instance, assigning the right value to the correct
property is not just about understanding the language, it is about grasping the context.
An LLM would need to be equipped with an ample contextual background to discern
and allocate the right values to their corresponding properties.

In conclusion, leveraging LLMs with prompt engineering to construct Cypher queries offers
a compelling research avenue, it is by no means a panacea. It comes bundled with challenges
that warrant thorough scrutiny, investigation, and refinement. Addressing these challenges
is imperative to unlock the true potential of this approach and to ensure its feasibility and
accuracy in real-world applications. Looking forward, one potential perspective lies in the
exploration of customized LLMs tailored specifically to our approach. While existing works
primarily focus on utilizing pre-existing LLMs with prompt engineering for designated tasks,
the emergence of future LLM generations customized for specific applications raises intriguing
possibilities. The development of such specialized LLMs could revolutionize the landscape,
offering tailored solutions to our specific context and potentially overcoming some of the
challenges associated with the current approach.

6.3.4 Transitioning to a Conversational Interface

In our current work, we acknowledge that the focus is on exploring an NLI, wherein a user
provides an NL query and receives a response. Looking ahead, our future vision extends
beyond this singular interaction model. We aspire to evolve our existing approach into a
conversational interface, where the system not only responds to individual queries but also
contextualizes these interactions within a broader conversation. This evolution entails con-
sidering the conversational history and implementing mechanisms to retain memory across
interactions. By incorporating this conversational aspect, our system can engage in more
dynamic, continuous, and meaningful dialogues with users, enhancing the user experience
and expanding the capabilities of NL querying in the realm of process execution data. This
shift toward a conversational interface aligns with the evolving trends in human-computer
interaction, promising a more intuitive, interactive, and personalized user experience.

In envisioning this conversational evolution, we recognize that transitioning to such a
sophisticated solution requires dedicated research and innovation in the fields of chatbots
and conversational interfaces. Researchers and developers must explore advanced techniques
in machine learning, dialogue modeling, and context-aware computing to create a seamless
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and intuitive conversational experience. By investing in these specialized areas, we can pave
the way for a transformative shift in how users interact with systems, ensuring that our
conversational interface not only understands individual queries but also comprehends the
nuances of continuous conversations, making the interaction more natural, engaging, and
effective.

6.4 Advancements in Service-Oriented Architecture for Pro-
cess Mining Techniques

In chapter 5 we introduced the architecture dedicated to the discovery and access of process
mining techniques. Recognizing its criticality, our research has sought not just to design this
architecture, but to also ensure it remains resilient, flexible, and adaptable to changes. Such
forward-thinking design approaches are pivotal, as they can accommodate the dynamic nature
of the process mining domain. This section delves into potential extensions and refinements
that can be made to our proposed service-oriented architecture for process mining techniques.
The goal is to elucidate the areas where the architecture can be enhanced for greater appli-
cability and robustness. We divide this discussion into three primary subsections, addressing
the service description, the REST API design, and the possibility of a transition to a more
resource-oriented design.

6.4.1 Service description level enhancements

The vitality of any service-oriented architecture lies in its heart—the service description.
It covers the range and depth of services offered. Ensuring that this central component
remains comprehensive and continually relevant is paramount. One way to ensure this is
by fostering an environment of constant introspection and adaptability. With the evolving
nature of process mining, there is an ever-present need to reevaluate and expand our service
description to capture the nuances of the domain.

In light of the aforementioned, there are two primary avenues for extension:

• Process Mining Methods Extension: The present graph metamodel efficiently
represents discovery, conformance, and prediction methods. However, to maintain a
holistic and up-to-date representation, one must consider expanding this scope. For
instance, an additional type that can be integrated is the "process enhancement" method.
To realize this, we can: (i) dive deep into established surveys in the field, gleaning
insights that help in extracting properties unique to this domain; (ii) define a new node
type within our process mining method property graph to encapsulate the distinctive
characteristics of the method.

• Properties Extension: The existing metamodel incorporates general properties that
are universally applicable across all methods. However, this universal approach, while
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encompassing, may sometimes overlook the intricate details specific to sub-categories
within each method. The idea here is to delve deeper, creating layers of categorizations
and associating them with distinct properties. For illustration, consider the "discovery"
methods. These can be further bifurcated into:

– Domain Knowledge-based Discovery: Methods falling under this are driven by
domain-specific knowledge. They can be further characterized based on:

∗ Nature of Domain Knowledge: Is it explicit, where rules and conventions are
overtly stated, or is it implicit, relying on more subtle cues and insights?

∗ User Interaction Level: Does it necessitate constant user input, or does it
function with minimal user intervention?

– Non-Domain Knowledge-based Discovery: Methods here operate without heavy
reliance on domain knowledge, offering a different approach and set of character-
istics.

Such detailed categorizations and properties pave the way for a nuanced, multi-dimensional
representation, fostering a deeper understanding and facilitating a more pinpointed ser-
vice matching.

Based on the evolving needs of analysis and the dynamic nature of the process mining do-
main, it’s evident that the existing process mining method property graph can be enriched.
By integrating additional methods, diving deeper into categorizations, and emphasizing dis-
tinctive properties, we can significantly elevate the information representation, making the
architecture more robust and adaptable.

6.4.2 Transitioning to resource-oriented REST API design

The world of REST API design offers multiple paradigms, each with its unique advantages
and implications. Our present methodology, rooted in the service-oriented REST API de-
sign, predominantly underscores the functional aspects. This has offered clear interfaces that
map directly to distinct functionalities, making them actionable and easily understandable.
However, as with any technological domain, evolution is inevitable, and there is potential to
explore alternatives that could bring forth additional benefits.

The resource-oriented design paradigm emerges as a promising alternative, shifting the
focus from functional capabilities to the management of resources. In the context of process
mining, these resources can encompass a wide range of outputs generated by various process
mining methods. This approach often aligns more naturally with how users perceive and
interact with data, resulting in a more intuitive API design. Additionally, it brings scalability
benefits, enabling the seamless addition, modification, or removal of resources without causing
ripple effects across the system, thereby preserving flexibility and scalability. Furthermore,
standardizing operations around common HTTP methods such as GET, POST, PUT, and
DELETE, it simplifies the consumption of the API.
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Transitioning from our existing service-oriented design to a resource-oriented one involves
several key steps:

• Resource Identification: The first step involves identifying all possible resources. In
our context, these would be the diverse outputs generated by process mining methods.

• Define Resource Relationships: Understand how different resources relate to one
another. This might involve defining hierarchies or mapping out associations.

• URL Schema Redefinition: Once resources are identified, URLs should be struc-
tured to reflect these resources rather than functions or services.

• Update CRUD Operations: Shift the focus from custom methods to more stan-
dardized CRUD (Create, Read, Update, Delete) operations, aligning with the typical
HTTP methods.

• Documentation & Training:Revise API documentation to align with the resource-
oriented structure and offer training or guidance to users and developers.

Transitioning from service-oriented to resource-oriented design is not merely a technical
endeavor but also a conceptual one, fraught with ambiguities and challenges. Central to
these challenges is the very definition of a ’resource’. What constitutes a resource can be seen
differently based on the use case, organizational goals, or even user perspectives. The choice
between service-oriented and resource-oriented designs is not merely technical; it’s strategic.
Decisions made in haste, without comprehensive consultations with users, developers, and
organizational stakeholders, could lead to designs that, while technically sound, may not
align with the actual needs and workflows of the users.

6.5 Conclusion

This chapter provides a meticulous examination of potential refinements and extensions to the
core contributions of our thesis. The graph metamodel, currently serving as a dynamic frame-
work for process data, is recognized not just for its present capabilities but more importantly
for its potential adaptability. By envisioning broader integrations, the chapter advocates for
the model’s growth to incorporate more detailed process information. In parallel, the scope
of our NLI system is assessed, emphasizing the importance of diversifying its range and en-
hancing its compatibility, especially through the potential integration of advanced tools like
LLMs. Furthermore, the service-oriented architecture’s potential enhancements are discussed,
concentrating on its need for greater flexibility and suggesting a transition towards a more
resource-oriented design approach. In essence, while the thesis offers a robust foundation,
this chapter paints a future picture, where each component is further refined, expanded, and
adapted to meet the ever-evolving demands of process analysis.





Chapter 7

Conclusion

In the ever-evolving landscape of organizational operations, business processes stand as the
backbone, orchestrating a myriad of activities aimed at achieving organizational goals. These
processes, spanning across various sectors, generate a treasure trove of data, encapsulated in
event logs. Such data, rich in detail and scope, offers a unique window into the intricacies
of business operations. Recognizing the goldmine of insights embedded within these logs,
organizations have turned to process analysis. This discipline, rooted in data-driven decision-
making, empowers organizations to refine their operations, identify inefficiencies, and foster
a culture of continuous improvement.

Central to the realm of process analysis is the concept of process querying. This tech-
nique allows for the interactive retrieval and manipulation of process-related data. With the
ability to delve into repositories filled with diverse process models, process querying offers
a robust mechanism for managing and analyzing process data. However, the true power of
process querying is realized when applied to process execution data, stored and represented
using specialized techniques. However, the intricacies of query languages often act as barri-
ers, especially for business professionals lacking technical expertise. The challenge extends
beyond just understanding these languages; it also encompasses the selection of appropriate
storage mechanisms for efficient querying. Process mining, another cornerstone of process
analysis, offers a systematic approach to dissecting event logs to uncover real-world process
behaviors. By leveraging algorithms and methods, organizations can unearth insights, detect
inefficiencies, and identify areas of non-compliance. However, the practical application of
process mining is not without its challenges. From selecting the right methods to ensuring
compatibility with existing software tools, analysts often find themselves navigating a maze
of complexities.

Incorporating cognitive capabilities into process analysis marks a significant stride toward
making advanced analytical techniques more accessible and user-friendly. This thesis pivots
towards AI-driven solutions, specifically a conversational AI framework for cognitive process
analysis. By bridging the gap between complex analytical techniques and user accessibility,
our research paves the way for a more intuitive, efficient, and effective process analysis land-
scape. The primary goal is to empower organizations with intuitive and user-friendly tools,
allowing them to effortlessly scrutinize their business processes and extract valuable insights
from process data. Our work revolves around two primary objectives aimed at facilitating
cognitive process analysis for users:
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• Simplifying access to stored process data: The first objective revolves around the
simplification of accessing and querying process data. This encompasses the creation of
user-centric interfaces and tools that not only render process data accessible but also
make it intuitive for a wide range of users. This is achieved by providing an interface to
automatically construct database queries from NL queries to access the process data.

• Simplifying access process mining methods: The second objective is centered
on the facilitation of searching and applying process mining methods. Our aim is to
establish a unified and user-friendly environment where process mining techniques are
readily discoverable and accessible, irrespective of the technical intricacies involved or
the users’ level of proficiency.

Within the scope of the first objective, we have made two significant contributions:

• Graph Metamodel for Effective Data Storage: Our first contribution involves the
proposal of a graph metamodel based on LPG to represent process data comprehen-
sively. This metamodel incorporates various node types, relation types, and properties,
facilitating the storage of diverse concepts and relationships related to multi-dimensional
process data.

• NL-Based Querying Pipeline: To make process data naturally accessible to all
users, we introduce a natural language-based pipeline that assists end users in querying
process data stored according to our LPG model. This pipeline takes a user query,
formulated in natural language, and automatically constructs a corresponding Cypher
query for execution over structured process data. It then returns the response. This
pipeline is a hybrid approach that combines machine learning and rule-based methods,
incorporating two main stages: intent detection and entity extraction through machine
learning in the first stage and a rule-based approach to generate the corresponding
database query in the second stage. Furthermore, to ensure adaptability across various
process domains with minimal user intervention, we proposed first general patterns for
intents and entities, that are defined based on the labeled property graph meta-model in
general and that are instantiated according to the event property graph model. Second,
we proposed an automated approach to generate NL queries to train the NLU compo-
nent. We leverage GPT-4’s powerful language generation capabilities to automatically
generate a wide range of NL queries without the need for a manually annotated dataset
for each new domain.

For the second objective, we proposed a service-based solution to tackle the challenges
faced by analysts when discovering and accessing process mining methods. The proposed
solution leverages REST APIs to provide process mining services and is made up of three main
components. The first component is services description, which employs a graph metamodel
based on LPG to describe the available process mining methods. It includes the necessary
concepts to represent services, such as the properties of each service, along with the required
inputs and outputs. The second component is a unified service-oriented REST API design. It
leverages the inherent service-oriented nature of process mining methods and provides users
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with a comprehensive and cohesive framework to access and utilize various functionalities. The
final component is services matching, which matches the consumer’s requirements expressed
in NL with suitable process mining services.

For a comprehensive validation of the graph metamodel, we utilized two distinct datasets
that are publicly accessible and stored in both CSV and OCEL formats. The same datasets
were instrumental in assessing the efficacy of our NL querying pipeline. In this endeavor, we
collected over 370 NL queries from users and, with the aid of paraphrasing tools, produced
an additional 150 NL queries. Furthermore, we embarked on a proof-of-concept evaluation of
our service-oriented architecture. We used more than 110 NL queries to evaluate the service
matching component. These NL queries are specifically tailored to descriptions of process
mining services. Additionally, we carried out a use case study with external participants
to gauge user experience in searching and accessing process mining methods and to gather
feedback.

The design principles we presented in the introduction (Section 1.3.1) have been respected:

• User-Centric Design (Principle 1): Our approach has been meticulously crafted with
the end-user in mind. We have proposed solutions that make process analysis tasks
accessible to all users with diverse levels of expertise. First, we proposed the natural
language-based querying pipeline to make process data naturally accessible to users
without the need for complex technical knowledge. Second, we proposed a service-
oriented architecture that enhances the ease of discovering and accessing process mining
services, allowing users to make requests using natural language.

• Automation (Principle 2): Automation stands at the core of our contributions. The
natural language-based querying pipeline automates the translation of user queries into
structured database queries, eliminating the need for manual translation. Further-
more, we integrated an automated solution for generating NL training data used in
this pipeline. Additionally, our service-based solution for process mining, automates
the discovery and access to various process mining methods, ensuring swift and efficient
operations.

• Adaptability & Generality (Principle 3): Our solutions are designed to be both adapt-
able and general. The graph metamodel based on LPG is versatile, accommodating
diverse concepts and relationships related to multi-dimensional process data. The nat-
ural language-based querying pipeline, with its general patterns for intents and entities,
can be instantiated across various process domains, ensuring broad applicability. Our
service-based solution, with its versatile service description component and unified API
design, is poised to adapt to evolving user needs and the ever-growing landscape of
process mining methods.

Last but not least, the solutions presented in this thesis are not just static or rigid con-
structs; they are inherently extensible. This extensibility ensures that as the landscape of
the process analysis domain evolves, the solutions can evolve with it. Their flexibility ensures
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that they can be molded or adjusted to cater to a range of different scenarios or requirements
without a complete overhaul. Furthermore, adaptability is a key feature of our solutions. As
new techniques emerge, or as the demands of users change, the solutions can be modified
to incorporate these new elements. For instance, the graph metamodel designed for storing
process data can be enhanced with complementary process-centric details, with the aim of
enhancing its comprehensiveness and broadening its scope of analytical aspects. Similarly,
the service description component holds potential for expansion, allowing for the integration
of an increased array of process mining techniques and attributes. By designing solutions
that can adapt and grow, we ensure longevity and continued relevance. This adaptability not
only ensures the utility of the solutions in the present but also secures their applicability in
the future, making them invaluable assets in the dynamic world of process mining.
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Prompt Engineering

A.1 Prompt for automated generation of NL queries

In our work we developed a pipeline that takes a natural language user query as input,
translates it into a Cypher query, and executes it on an event property graph to obtain the
query result, which is then returned to the user. The pipeline comprises two main components:
the NLU component and the query construction component.

NLU component: This component receives the user’s query and performs Natural Lan-
guage Understanding (NLU) tasks. It allows to detect the user’s intent (i.e. what the user
is asking about) and to extract named entities from the query (i.e. terms that correspond
to elements in the event property graph). In this work, we adopt a machine learning-based
approach for intent recognition and entity extraction since it is more robust against variations
in natural language.

In machine learning, intent recognition and entity extraction can be seen as a classifi-
cation task in which a model is trained with a set of queries and their associated intents
and entities. Therefore, the main contribution of this component is the identification of the
possible intents and entities that the system should learn to detect. In our work, as we aim
to query process data, intents and entities should pertain to elements in our event property
graph. Intents describe the type of information to be searched for and returned to the user,
such as nodes, relationships, paths, node/relationship attributes, or any aggregation applied
to numeric attributes. Entities refer to graph elements (e.g., node types, node attributes,
relation types).

We propose general patterns that are defined based on the labeled property graph meta-
model in general and that are instantiated according to the event property graph model.
Once defined, we can apply state of the art classification techniques for intent recognition
and entity extraction. However, one main challenge of this work is the generation of training
data that trained the machine learning model with natural language queries associated with
their intents and entities.

Now I will explain to you the general intent pattern and they are instantiated to each
domain. To identify intent classes, we divide process data NL queries into three main cat-
egories based on state-of-the-art process querying and process mining techniques: content,
behavioral, and performance. Each of these categories requires dedicated intent definition
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and Cypher query construction mechanisms. The developed pipeline supports content and
behavioral queries. Content NL queries allow the user to either ask about particular nodes
without taking into account any of their relationships, or about particular nodes that are
involved in specific relationships with other nodes. For instance, in the question [Which ap-
plications have a requested amount more than 15000], it searches for the [Application] nodes
whose amount attribute is greater than 15000. In the question [Which accepted applications
have a requested amount more than 15000], it searches for the [Application] nodes connected,
through the relation [Affect], to the [Activity] nodes whose name is [A_accepted]. There-
fore, we define two classes of content intent patterns: [Node] patterns and [Node_Relation]
patterns. Both patterns indicate that the user is seeking information about the node or its
attributes. Given the proposed event property graph, these patterns can be instantiated
according to each graph model. For example, the intent pattern [Node] is instantiated to
each node type in the event property graph, e.g. intents [Actor], [Activity], [Application]
and [Offer]. Similarly, the intent [Node_Relation] is instantiated to every possible node and
relationship type e.g. intents [Actor_Contribute], [Activity_Affect], etc. It is worth noting
that for [Node_Relation] pattern instantiation, we add all possible pairs regardless of the
relation direction. For instance, the intents [Actor_Contribute] and [Activity_Contribute]
are two possible instantiations. The former is linked to queries about the actors executing a
specific activity while the latter is linked to queries about the activities executed by specific
actor.

Two additional intent patterns, [Agg_Node] and [Agg_Node_Relation], are defined on
top of the [Node] and [Node_Relation] patterns. These two patterns are similar to the
first two patterns, but instead of reflecting the user’s want for information about a node
or its properties, they indicate that the user inquires for the result of one of the aggregate
functions: [maximum, minimum, average, count or sum]. For instance, the question [What
is the maximum requested amount for car loan applications?], the user inquires about the
result of the [max] function applied on the attribute [amount] of the [Application] nodes
whose [Goal] is equal to [‘car loan’]. Its associated intent is [Max_Application] which is
instantiated from the intent pattern [Agg_Node]. Now as I previousely stated the main
challenge is the generation of natural language for training data. Thus one possible solution
is to define general templates for each general intent pattern (i.e. node, node_relation,
agg_node, agg_node_relation) and then instantiate these template by replacing placeholder
with specific values, and at the end to agent the training data we used language models or
paraphrasing tool. For, example considering the intent pattern : node, one template that
we could defined for this pattern: Give me all [specific_intent] with [attribute_1]. I will
give you a set of intent each with description and related attribute you are asked to generate
generale templates for each intent and then from these templates gerenate more than 50
natural language queries.

Here is the first intent:
intent="application:" description: the user ask about application with specific condition
application_attribute: requested amount, application ID, loan goal
application_attribute_values: requested amount: numerical value, application ID: has the
form Application_number, loan goal :[car, home improvement, investigation].
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A.2 Prompt for matching services

Our research work proposes a component called service description" that utilizes a labeled
property graph to describe process mining services, specifically discovery, conformance, and
prediction. The goal is to query this model to find services that align with user needs. In
order to identify these services, we need to define the distinguishing properties, inputs, and
outputs for each type of service. To accomplish this, we introduce an LPG graph metamodel
that characterizes information related to discovery, conformance, and prediction methods.
This metamodel serves as a foundation for discovering services regardless of the technology
used. The graph consists of six different entity types. Three of these entity types represent
the three main techniques of process mining: Discovery, Conformance, and Prediction.

1. The Discovery entity represents a process discovery method and has the following
properties:

• Name
• modelType: signifies the class of the discovered process model (could have the values:

procedural, declarative, or hybrid)
• modelFormalism: specifies the specific notation or formalism of the discovered process

model (could have values such as PetriNet, BPMN, declare, etc.)
• algorithm: indicates the algorithm used to discover the model (could have values such

as alpha miner, inductive miner, etc.)
• isDomainKnowledge: shows whether the method requires domain knowledge, meaning

if it needs extra information about the domain, alongside the event log, for the discovery
of the process model (could have the values: yes or no)

• applicationDomain: indicates the array of application domains where the method has
been applied and evaluated (could have values such as health care, business manage-
ment, loan application, etc.)

2. The Conformance entity represents a conformance-checking method and has the fol-
lowing properties:

• Name
• modelingLanguage denotes the language employed to describe the process behavior,

serving as input to the conformance-checking algorithm (could have values such as:
PetriNet, BPMN, declare, etc.)

• perspective: specifies the minimum information that the event log file must contain
for the conformance method to be executed (could have values such as: control flow,
multi-perspective, etc.)

• algorithmType: specifies the algorithm employed to compare the process model to the
event log (could have values such as: trace alignment, log replay, etc.)

• metrics: outlines the array of metrics that are outputted by the method to represent
conformance (could have an array of values from Fitness, Precision, Simplicity, Gener-
ality)
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3. The Prediction entity represents a prediction method and has the following properties:

• Name
• Task: defines the type of operation that the prediction method performs (could have

the following values: build-model or predict)
• predictionType: refers to the aspects of the business process the method predicts (could

have the following values: next activity, outcome, LTL, remaining time)
• awareness: indicates whether the method is process-aware or not (could have the fol-

lowing values: PA which refers to process-aware or NPA which refers to non-process
aware)

• problemType (could have the following values: classification or regression)
• methodology: indicates the methodology used to build the predictor model (could

have values such as: machine learning, annotated transition system (ATS), statistical
(STAT), etc.)

• algorithm: indicates the array of algorithms employed (could have an array of values
such as decision tree, clustering support vector machine, etc.)

4. The inputs and outputs of each method are represented by Input and Output enti-
ties, connected to the Discovery, Conformance, and Prediction entities through the relations
hasInput and hasOutput, respectively. The Input entity has the properties:

• Name: specifies the name of the input (such as event log, unit time, configurable pa-
rameters, etc.)

• Type: specifies the type of input (could have the values: literal or resource)

5. Similarly, the Output entity has the name and format properties.

6. Additionally, since process mining methods can be complex and consist of multiple
functions, a Module entity is used to represent the functional sub-modules involved in these
methods. Each method entity is connected to the corresponding Module entity through a
submodule relation. Each Module can also have its own inputs and outputs. It is important
to note that the method for making predictions is typically based on methods for building
the predictor model. To capture this relationship, we include a building-model relation in the
metamodel.

The objective of this task is to find suitable services that meet the requirements of users by
searching through stored services using the Cypher Language. We will receive user requests
in natural language and convert them into Cypher queries. These queries should retrieve the
services, along with their associated inputs, outputs, and submodules. The query should also
optionally match the modules related to the services as well as their associated inputs and
outputs and return them. For instance, if a user asks for discovery methods that generate a
Petri Net model, the corresponding Cypher query should resemble a specific MATCH state-
ment as follows:
MATCH (discovery: Discovery modelingFormalism: ’PetriNet’)-[:hasInput]-(input:Input),
(discovery)-[:hasOutput]-(output:Output)
OPTIONAL MATCH (discovery)-[:subModule]-(module:Module)
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OPTIONAL MATCH (output1:Output)-[:hasOutput]-(module)-[:hasInput]-(input1:Input)
RETURN DISTINCT (discovery),(input),(output),(module),(input1),(output1).

Similarly, if a user requests prediction services related to remaining time using machine
learning, another MATCH statement should be created:
MATCH (prediction: Prediction predictionType: "remaining time", methodology: "machine
learning")-[:hasInput]-(input:Input), (prediction)-[:hasOutput]-(output:Output)
OPTIONAL MATCH (prediction)-[:subModule]-(module:Module)
OPTIONAL MATCH (output1:Output)-[:hasOutput]-(module)-[:hasInput]-(input1:Input)
RETURN DISTINCT (prediction),(input),(output),(module),(input1),(output1).

Even when users inquire about results, we must identify the services that produce those
results and generate a Cypher query for them. The generated Cypher queries should be
syntactically correct and search in addition to the services, their input, output, submodules
and submodules inputs and outputs. We will provide a set of user requests, and for each
request, you should generate the corresponding Cypher query. Please note that if a property
contains an array of values, you should look for a specific value(s) within that array. While
constructing these queries, please refrain from introducing new node labels or attributes.
Know for each user request that we provide generate the corresponding Cypher query without
explanation.
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List of Publications

• Journal articles

1. Meriana Kobeissi, Nour Assy, Walid Gaaloul, Bruno Defude, Boualem Benatalla,
Bassem Haidar. “Natural language querying of process execution data”. In: Infor-
mation Systems 116 (2023), p. 102227 (cit. on p. 53).

• Conference articles

1. Meriana Kobeissi, Nour Assy, Walid Gaaloul, Bruno Defude, Bassem Haidar. “An
intent-based natural language interface for querying process execution data”. In:
2021 3rd International Conference on Process Mining (ICPM). IEEE. 2021, pp.
152–159 (cit. on p. 53).

2. Ali Nour Eldin, Nour Assy, Meriana Kobeissi, Jonathan Baudot, Walid Gaaloul:
Enabling Multi-process Discovery on Graph Databases. CoopIS 2022: 112-130
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Proof of Concepts

1. "Natural language querying of process execution data", at https://www-inf.telecom-
sudparis.eu/SIMBAD/tools/ProcessNLI/

2. "Service-oriented architecture for discovering and accessing process mining techniques",
an initial version of this architecture focusing on prediction techniques at
https://github.com/merianakb/SOA.git

3. Implemented Rest APIs for three prediction methods available in ProM at
https://anonymous.4open.science/r/Web-Service-Oriented-Architecture-for-Discovering-
and-Accessing-Predictive-Methods–2D54/README.md
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Titre: Un cadre d’IA conversationnelle pour l’analyse cognitive des processus

Mots clés: Analyse de Processus, Interrogation de Données de Processus, Exploration de Processus,
Services Cognitifs, Architecture Orientée Services

Résumé: Les processus métier constituent les piliers fondamen-
taux des organisations, englobant toute une gamme d’activités struc-
turées visant à atteindre des objectifs organisationnels distincts. Ces
processus, caractérisés par une multitude de tâches, d’interactions
et de flux de travail, offrent une méthodologie structurée pour su-
perviser les opérations cruciales dans divers secteurs. Une décou-
verte essentielle pour les organisations a été la reconnaissance de la
valeur profonde inhérente aux données produites pendant ces proces-
sus. L’analyse des processus, une discipline spécialisée, explore ces
journaux de données, facilitant une compréhension plus profonde et
l’amélioration des BP. Cette analyse peut être catégorisée en deux
perspectives : le niveau d’instance, qui se concentre sur les exécutions
individuelles de processus, et le niveau de processus, qui examine le
processus global. Cependant, l’application de l’analyse des proces-
sus pose des défis aux utilisateurs, impliquant la nécessité d’accéder
aux données, de naviguer dans les API de bas niveau et d’utiliser
des méthodes dépendantes d’outils. L’application dans le monde
réel rencontre souvent des complexités et des obstacles centrés sur
l’utilisateur. Plus précisément, l’analyse de niveau d’instance exige
des utilisateurs qu’ils accèdent aux données d’exécution de processus
stockées, une tâche qui peut être complexe pour les professionnels de
l’entreprise en raison de l’exigence de maîtriser des langages de re-
quête complexes tels que SQL et CYPHER. En revanche, l’analyse de
niveau de processus des données de processus implique l’utilisation
de méthodes et d’algorithmes qui exploitent les données d’exécution
de processus extraites des systèmes d’information. Ces méthodolo-
gies sont regroupées sous le terme de techniques d’exploration de
processus. L’application de l’exploration de processus confronte
les analystes à la tâche complexe de sélection de méthodes, qui
consiste à trier des descriptions de méthodes non structurées. De
plus, l’application des méthodes d’exploration de processus dépend
d’outils spécifiques et nécessite un certain niveau d’expertise tech-
nique.

Pour relever ces défis, cette thèse présente des solutions basées sur
l’IA, mettant l’accent sur l’intégration de capacités cognitives dans
l’analyse des processus pour faciliter les tâches d’analyse tant au
niveau de l’instance qu’au niveau du processus pour tous les util-
isateurs. Les objectifs principaux sont doubles : premièrement,
améliorer l’accessibilité des données d’exécution de processus en
créant une interface capable de construire automatiquement la re-
quête de base correspondante à partir du langage naturel. Ceci
est complété par la proposition d’une technique de stockage adap-
tée et d’un langage de requête autour desquels l’interface doit être
conçue. À cet égard, nous introduisons un méta-modèle graphique
basé sur le graphe de propriétés étiquetées (LPG) pour le stock-
age efficace des données. Deuxièmement, pour rationaliser la dé-
couverte et l’accessibilité des techniques d’exploration de processus,
nous présentons une architecture orientée services. Cette architec-
ture comprend trois composants principaux : un méta-modèle LPG
détaillant les méthodes d’exploration de processus, une conception
orientée services REST adaptée à ces méthodes, et un composant
habile à mettre en correspondance les besoins des utilisateurs ex-
primés en langage naturel avec les services appropriés.
Pour valider notre méta-modèle graphique, nous avons utilisé deux
ensembles de données de processus accessibles au public disponibles
à la fois au format CSV et OCEL. Ces ensembles de données ont été
essentiels pour évaluer les performances de notre pipeline de requêtes
en langage naturel. Nous avons recueilli des requêtes en langage
naturel auprès d’utilisateurs externes et en avons généré d’autres
à l’aide d’outils de paraphrase. Notre cadre orienté services a été
évalué à l’aide de requêtes en langage naturel spécialement conçues
pour les descriptions de services d’exploration de processus. De plus,
nous avons mené une étude de cas avec des participants externes pour
évaluer l’expérience utilisateur et recueillir des commentaires. Nous
fournissons publiquement les résultats de l’évaluation pour garantir
la reproductibilité dans le domaine étudié.



Title: A Conversational AI framework for cognitive process analysis

Keywords: Process Analysis, Process Data Querying, Process Mining, Cognitive Services, Service-Oriented
Architecture

Abstract: Business processes (BP) are the foundational pillars
of organizations, encapsulating a range of structured activities aimed
at fulfilling distinct organizational objectives. These processes, char-
acterized by a plethora of tasks, interactions, and workflows, offer
a structured methodology for overseeing crucial operations across
diverse sectors. A pivotal insight for organizations has been the
discernment of the profound value inherent in the data produced
during these processes. Process analysis, a specialized discipline,
ventures into these data logs, facilitating a deeper comprehension
and enhancement of BPs. This analysis can be categorized into two
perspectives: instance-level, which focuses on individual process ex-
ecutions, and process-level, which examines the overarching process.
However, applying process analysis in practice poses challenges for
users, involving the need to access data, navigate low-level APIs,
and employ tool-dependent methods. Real-world application often
encounters complexities and user-centric obstacles.
Specifically, instance-level analysis demands users to access stored
process execution data, a task that can be intricate for business pro-
fessionals due to the requirement of mastering complex query lan-
guages like SQL and CYPHER. Conversely, process-level analysis of
process data involves the utilization of methods and algorithms that
harness process execution data extracted from information systems.
These methodologies collectively fall under the umbrella of process
mining techniques. The application of process mining confronts an-
alysts with the intricate task of method selection, which involves
sifting through unstructured method descriptions. Additionally, the
application of process mining methods depends on specific tools and
necessitates a certain level of technical expertise.

To address these challenges, this thesis introduces AI-driven solu-
tions, with a focus on integrating cognitive capabilities into process
analysis to facilitate analysis tasks at both the instance level and
the process level for all users. The primary objectives are twofold:
Firstly, to enhance the accessibility of process execution data by
creating an interface capable of automatically constructing the cor-
responding database query from natural language. This is comple-
mented by proposing a suitable storage technique and query lan-
guage that the interface should be designed around. In this regard,
we introduce a graph metamodel based on Labeled Property Graph
(LPG) for efficient data storage. Secondly, to streamline the dis-
covery and accessibility of process mining techniques, we present a
service-oriented architecture. This architecture comprises three core
components: an LPG meta-model detailing process mining meth-
ods, a service-oriented REST API design tailored for these methods,
and a component adept at matching user requirements expressed in
natural language with appropriate services.
For the validation of our graph metamodel, we utilized two pub-
licly accessible process datasets available in both CSV and OCEL
formats. These datasets were instrumental in evaluating the perfor-
mance of our NL querying pipeline. We gathered NL queries from
external users and produced additional ones through paraphrasing
tools. Our service-oriented framework underwent an assessment us-
ing NL queries specifically designed for process mining service de-
scriptions. Additionally, we carried out a use case study with exter-
nal participants to evaluate user experience and to gather feedback.
We publically provide the evaluation results to ensure reproducibil-
ity in the studied area.
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