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Index of notations

The next list describes several notations that are being used within the body of
this thesis

Ot Geodesic flow over .¥;

f Fourier transform of the function f
E Expectation

P Probability

\% Variance

R(tS + X, L) Difference between N (tS + X, L) and t¢ c\;f,i)({a)

S(f) Siegel transform of the function f
S Space of unimodular lattices of R?
1 The unique Haar probability measure over R?
Covol(L) Covolume of the lattice L of R?

Diag(aq,- - ,aq) Diagonal matrix that contains on the diagonal, in this order,
aly...,0q

fept Push forward of a measure p by a function f

N(tS + X, L) Cardinal number of the set (tS + X) N L with L being a lattice
and S being a set of R¢



Chapitre 1

Introduction

Dans ce chapitre d’introduction, nous exposons tout d’abord le cadre mathématique
minimal, nécessaire pour comprendre les différents travaux présentés dans ce manuscrit.

Dans la Section 1.1, nous rappelons la définition de réseaux de R? et motivons
leur introduction.

Dans la Section 1.2, nous nous intéressons a l'espace des réseaux dits unimodu-
laires ., et donnons quelques propriétés géométriques, métriques et dynamiques de
celui-ci. Nous parlons aussi du lien entre dynamiques sur ., et approximations dio-
phantiennes.

Dans la Section 1.3, nous énoncons le probleme des points d'un réseau sous une
forme abstraite et générale, expliquons son lien avec différents domaines des mathéma-
tiques et faisons un état de 'art a ce sujet.

Dans la Section 1.4, nous présentons les différents résultats originaux obtenus lors
de la rédaction de cette these. Ces résultats seront encadrés.

In Section 1.5, the non-french speaker will find a brief presentation of the ma-
thematical problems addressed in this dissertation.

Sommaire
1.1 RéseauxdeRY . ........... ... ... 8
1.2  I’espace des réseaux unimodulaires .3 . . ... ... ... 12
(1.3 Le probleme des points d’'unréseaul .. ... ... .. ... 17
(1.3.1  Formulation du probleme| . . . . . . ... ... ... ... .. 17
(L.3.2 Reésultats dans le cas determimistel . . . . . ... ... .. .. 18
[1.3.3  Approche avec de l'aléatoirel. . . . . . . .. ... ... .. 20
(1.4 Nouveaux résultats ... ..... ... ... ..., 23
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[1.4.1 Estimation de 'erreur ‘R lorsque le réseau L est aléatoire et |
| lorsque S est un parallelogramme P . . . . . . . ... .. .. 23

[1.4.2  Estimation de 'erreur ‘R lorsque le réseau L est aléatoire et |
| lorsque S est une ellipse &|. . . . . . ..o oL 25

[1.4.3  Estimation de 'erreur ‘R lorsque le réseau L est aléatoire et |
| lorsque S est un corps strictement convexe analytique| . . . . 28

[1.4.4  Estimation de l'erreur 'R lorsque le réseau L est fixe, lorsque |
| t est aléatoire et lorsque S est un rectangle] . . . . . . . . .. 30

1.5 A brief introduction for non-french speakers| . . . . . . .. 33

1.1 Réseaux de R

Définition d’un réseau de R¢

Commengons par introduire la notion fondamentale au sein de ce manuscrit : celle
des réseaux de R? avec d € N — {0}. Une premi¢re mani¢re de définir un réseau de
R? est de dire que c’est un ensemble de points obtenus en pavant R? & partir d’un
parallélotope dont 'un des sommets est 0.

Une autre maniére de définir un réseau de R? est de dire que c’est un sous-groupe
discret de R? qui engendre, en tant que R-espace vectoriel, R?.

Enfin, une troisiétme maniere équivalente de définir un réseau de R? est de dire
que c’est un sous-groupe discret L de R? tel que R?/L soit compacte.

En fait, tout réseau de R? est de la forme MZ? avec M € GL4(R) et I'espace
des réseaux de R? s’identifie & 1’espace quotient GL4(R)/SLy(Z).

Définition du réseau dual

Avant d’illustrer la notion de réseau R?, nous rappelons qu’a partir d’un réseau L de
réseau RY, un autre réseau, noté habituellement L+, peut étre construit et est appelé
le réseau dual de L. Celui-ci est défini par 1’égalité suivante :

Li:{veRQWZeL, <l,v>eZ}.

Par ailleurs, si la matrice M € GL4(R) représente le réseau L, (M) représente le ré-
seau dual L*. Le réseau dual L est un objet qui intervient de maniére cruciale lorsque
I'on fait de I’analyse harmonique avec des fonctions L-périodiques.
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(0,1 (9
(0,00 (1,0
0 W
(b) Un réseau L
(a) Le réseau Z? différent de 72

FIGURE 1.1 : Deux exemples de réseau de R?

Illustration et définition d’un domaine fondamental

Sur la Figure nous représentons deux réseaux de R? : a gauche le réseau Z2,
a droite un réseau L différent de Z? qui n’est pas & maille carrée. Des vecteurs qui
engendrent le réseau, en tant que groupe additif, ont été dessinés sur chacune des deux
images. Sur la figure de droite on a aussi dessiné les axes de coordonnées.

On voit sur ces deux images qu’il y a une maille (carrée dans le cas de Z?* et,
dans le second cas, c’est un parallélogramme) qui permet de reconstituer le réseau.
Cette observation colle avec la premiere définition de réseau. Une telle maille est ce qui
s’appelle un domaine fondamentale du réseau associé.

Plus formellement, soit L un réseau de R? On dit que D est un domaine fon-
damental mesurable de L si D est mesurable et si on a :

JI+D=R".

leL

Tous les domaines fondamentaux mesurables de L sont de méme mesure de Lebesgue
finie. Cette mesure commune est appelée covolume du réseau L et est notée Covol(L).
Par ailleurs, les réseaux de R? qui sont de covolume 1 sont dits unimodulaires et I’es-
pace des réseaux unimodulaires s’identifie & SL4(R)/SLq(Z). Il sera noté par la suite .7.

Sur la Figure [1.2] on a dessiné un réseau L et colorié en rouge l'aire correspon-
dant a la coaire (on utilise le terme coaire a la place du terme covolume dans le cas de
la dimension 2).

Applications de la théorie des réseaux

Une premiere utilisation des réseaux en mathématiques a été faite en 1801 par Gauss
dans [33] avec I'utilisation du réseau Z[i]. Puis, dans le livre [65] de Minkowski publié
pour la premiere fois en 1896, les réseaux ont été étudiés de maniere systématique. Il y
a énoncé et prouvé son fameux théoreme, dit théoréme du corps convexe de Minkowski :
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FIGURE 1.2 : Un réseau L en dimension 2 et sa coaire

Théoréme ([65]). Soit C C RY une partie mesurable, symétrique et conveze et soit L
un réseau de RY. Supposons que 2% Covol(L) < Vol(C). Alors il existe | € L — {0} tel
que l € C.

La conclusion reste valable si ’on suppose que 2¢Covol(L) < Vol(C) et que le conveze
C' est compact.

Signalons au passage que la seconde partie du théoreme a été généralisée dans ce
qu’on appelle le second théoréme de Minkowski, lui aussi énoncé et prouvé dans [65],
et qu’'une autre généralisation se trouve dans [91].

Le théoreme du corps convexe de Minkowski a eu des applications importantes
en théorie des nombres. Il permet en effet de prouver les deux théorémes suivants :

Théoréme (Fermat-Euler). Soit p un nombre premier. Sip =1 (mod 4) alors il existe
a,b € Z tel que p = a® + b2,

Théoréme (Théoreme des quatre carrés - Lagrange). Tout entier n € N est somme de
quatre carres.

Il faut aussi noter que les réseaux de R? ont de nombreuses applications dans d’autres
domaines. Ils sont par exemple utilisés en cryptographie (voir a ce sujet [17]).

Désignons par [|-|| la norme euclidienne usuelle de R?. Le probléme du plus court vec-
teur, c¢’est-a-dire le fait de trouver de maniere algorithmique, pour un réseau L donné,
un vecteur ! € L non nul qui réalise minjer_goy |||, est un probleme qui se trouve au
coeur de la solution de différents problemes informatiques : calculer des facteurs irré-
ductibles de polynémes (voir & ce sujet [45] et [30]), calculer des polynémes minimaux
de nombres algébriques (voir [45]) etc.

Enfin le probleme de réduction des réseaux, c’est-a-dire le fait, pour un réseau
donné, de trouver une base « sympathique » qui engendre un réseau en tant que groupe
additif, est au cceur de nombreux problémes informatiques (voir & ce sujet la these de
Carine Jaber [44]).
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Généralisations de la notion de réseau de R*

Pour terminer cette section, signalons deux généralisations de la notion de réseau
de R?. La premiére est la notion de cristal topologique (voir a ce sujet [94]). La seconde
est la généralisation suivante qui nous sera utile pour la suite et que l'on tire de [67].
Soit G un groupe de Lie. Soit I' un sous-groupe de G. Appelons i une mesure de Haar
(invariante par multiplication a gauche) du groupe G et rappelons que les mesures de
Haar invariante a gauche sont proportionnelles entre elles. Un domaine fondamental
(au sens métrique) D de T relativement & G est un sous-ensemble mesurable de G tel
que :

e DI'=G
« pour tout v € I' — {e}, ot e est I'élément neutre de G, u(DyND) =0

Signalons au passage que les domaines fondamentaux définis précédemment sont des
domaines fondamentaux au sens métrique.

On dit que I' est un réseau de G si :

e I est discret

« il existe (et donc tous) un domaine fondamental (au sens métrique) I' relativement
a G qui est de mesure p finie

Lorsque I' est un réseau de G, il existe une unique mesure sur G/I" qui soit de proba-
bilité et qui soit G-invariante a gauche et a droite.

Un réseau L de R est aussi un réseau en ce sens. Plus intéressant, Uespace SLg(Z)
est un réseau de SLy(R). Pour la preuve de ce résultat, on pourra consulter [5], [68] ou
encore [13]. La clé pour le prouver, et le résultat est intéressant en soi pour comprendre
ce qu'est .y, est le fait suivant. Soient s,¢ > 0. Appelons :

A= {a = Diag(a1,- - ,aqq) | det(a) =1, Vi, a;; > O},

Qi

Asz{a€A| <s,V1<z’<d},

Ai+1i+1

N = {T € My(R) | T est triangulaire supérieure et les coefficients diagonauz valent 1} et
Ny ={ueN||u;| <t,VI<i<j<d}.

Théoréme. Sis> 2 ett >

- alors G = SO4(R)AsN:SLy(Z).

1
2
Un ensemble de la forme SO4(R)AsN; est appelé un domaine de Siegel.

En conséquence de ce théoreme, SL4(Z) est un réseau de SLg(R) et il existe donc

une unique mesure de probabilité qui soit SL4(R) invariante sur .#; et on la désignera
par la suite par pg.
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FIGURE 1.3 : Illustration de plus court vecteur

1.2 L’espace des réseaux unimodulaires .

Topologie et géométrie a I’infini

Disons tout d’abord quelques mots quant a I'aspect topologique de .#;. Une suite
de réseaux unimodulaires (L, ),en converge, au sens de la topologie quotient, vers un
réseau unimodulaire L si, et seulement si, on peut trouver une suite de d vecteurs

(z§”), o M) nen et d vecteurs (Iy,--- ,1q) tels que pour tout n € N, (l@, -+ 1) soit
une Z-base de L, et tel que (l1,---,l;) soit une Z-base de L et tel que pour tout
i€ {1, - ,d}, (I™) converge vers ;.

A laide de cette remarque, on démontre le critére de compacité, dit de Mahler
(voir a ce sujet [61], [14] et [59]) suivant : pour tout sous-ensemble M de ., M est
relativement compact si, et seulement si, il existe un voisinage U de 0 dans R? tel que

VL e M, LnU = {0}.

Formulé autrement, cela signifie que M est relativement compacte si, et seulement si,
il existe une constante C' > 0 tel que pour L € M, ||[L|| > C ou pour tout réseau
unimodulaire L € .7, ||L|| est définie par

L1 = i, ]

On a ainsi une caractérisation des compacts de .%.

Dans la Figure [L.3] le vecteur e;(L) est un des plus courts vecteurs du réseau
L.

Par ailleurs, il existe une distance d sur SL;(R), qui induit sa topologie naturelle,
qui est invariante a gauche par SO4(R), qui est invariante a droite par SLg(R) et telle
que pour a = (a;;) € A,

d

d(a,e) = (3_(log(ai))*)

=1

N[

(voir Corollaire 1.3 dans [68]).
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(a) Co (b) C3

FIGURE 1.4 : Représentations de C et de C3

Comme d est SLg(R) invariante a droite et que SLg(Z) est discret, on peut munir
4 de la distance quotient, d, qui est définie par : pour tout z, 2’ € SLy(R),
d(xSLy(Z),2'SLy(Z)) =  inf  d(ay,2'y).

vy €SLa(Z)

Cette distance induit la méme topologie sur .%; que la topologie quotient.

Appelons Cy le cone convexe des t = (t1,---,14) de R? tels que Y% ,¢; = 0 et
t; < tiy1 pour tout 1 < ¢ < d. On considere Cy muni de la distance d¢, induite par la
distance usuelle sur R¢.

Alors, on dispose du résultat suivant, qui nous renseigne sur la géométrie a l’in-
fini de .} : il existe une application f de Cy dans .¥; telle qu’il existe A > 1, € > 0 tels
que pour tout x,y € Cy,

1 _
Tleal,y) < d(f(2), f(y) < Mdey(@,y) + e

et il existe ¢ > 0 tel que pour tout 2’ € .7, d(2/, f(Cy)) < c. On dit ainsi que Cy et .7
sont quasi-isométriques (pour en savoir plus sur cette relation, voir [34]). Ce résultat
nous renseigne sur la géométrie « a l'infini » de ..

—€e+

Flot géodésique et théorie ergodique

Sur 'espace des réseaux unimodulaires .3 muni de p4, le flot géodésique préserve
la mesure pg et est définie par :

Le 6L c.%
oflt:(tl,---,td)EHavecH:{(ml,---,xd)ERdHl—l—---—f—td:O}et

6; = Diag(e™,--- ,e').
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Définissons le sous-groupe discret de GL4(R) suivant :
A={6|tez'nH}

et rappelons qu'un sous-groupe G de GL4(R) est dit ergodique sur ., (par rapport a
'action naturelle) si pour tout ensemble A mesurable de ., si A est G-invariant alors,
par rapport a g, A est de mesure pleine ou bien est négligeable.

On dispose alors du théoreme de Moore (voir & ce sujet [66] et [96]) qui énonce
qu'un sous-groupe G de GL4(R) est ergodique sur .#; si, et seulement si, G n’est inclus
dans aucun sous-groupe compact de GLg(R).

En particulier, A est ergodique et le flot (discret) associé 1'est aussi. Définissons,
pour tout r > 0,
A ={6 |te HNZ ||t <7}

et on appelle n, le cardinal de A,.

En utilisant le théoréme 2.8 qui se trouve dans [56], on obtient le théoréme er-
godique individuel :

Théoréme. Soit ¢ une fonction intégrable sur #y relativement a la mesure pg. Alors,
pour presque tout L € %, on dispose de I’égalité suivante :

Ce théoreme s’étend aux sous-groupes discrets de SL4(R) qui sont ergodiques sur

S

On peut montrer que L € .%; — log(||L||) est intégrable sur .#;. En conséquence de
ce résultat et du théoreme précédent, on obtient le résultat de Géométrie des nombres
suivant. Soit g une matrice de SLy4(R) tel que la suite (¢7);ez ne soit pas bornée. Alors,
pour presque tout réseau L € ., on a :

m—1
Tim ([T l9/ZI)™ = exp(Ja)
7=0

ot Jg = [y, log(||LI[)dpua(L).

Ce théoreme peut étre considéré comme un analogue multidimensionnel du théo-
reme de Khintchin concernant la convergence de la moyenne géométrique des quotients
partiels pour presque tout nombre réel z (voir a ce sujet le chapitre 7 de [19]).

Avant de passer a un aspect plus géométrique du flot géodésique (9;)se 7, intéressons-
nous a la nature topologique des orbites O(L) = {0;L | t € H} avec L € .%,. Le critére
de Malher donne que : O(L) est compact si, et seulement si,

inf |5L > 0.
d€eH
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Suivant [82], on peut reformuler ce critéere d'une autre maniére. Appelons, pour tout
L € %, pour tout r > 0 :

v(Lyr) =min{|l L] [ 1= (h, 1) €L et 0 < ||<r}
(on convient que si 'ensemble est vide, son minimum est nul) et

Num(L) = lim v(L,r) =inf{|l; - - ly| | | = (1, -+ , 1) € L —{0}}.

r—00

Alors, dans [85], il a été démontré que :
Num(L) = d~% inf{||sL| | § € A}

et le critere de Mahler dans le cas de O(L) se reformule de la maniere suivante : O(L)
est compacte si, et seulement si, Num(L) > 0. Un tel réseau sera dit admissible. L’en-
semble des réseaux admissibles est pg-négligeable et est dense dans . (voir [82]).

Lorsque L vérifiera que v(L,r) > 0 pour tout r assez grand, on dira que le ré-
seau est faiblement admissible. On notera qu’un réseau faiblement admissible n’est pas
nécessairement admissible, la réciproque étant quant a elle vraie.

L’égalité précédente souligne qu’il y a un lien entre avoir un vecteur « proche » des
axes de coordonnées et avoir un point de I'orbite O(L) qui soit « proche » de l'infini.

Hyperbolicité du flot géodésique

Passons a un aspect plus géométrique du flot géodésique (d;);crr. Celui-ci constitue
sur .%; un flot partiellement hyperbolique au sens suivant. Appelons 7.7, 'espace
tangent de .#;. Alors, on a la décomposition suivante :

TSa=E® )Y, E,©F,

1<g<p<d

ou Ej est tangent a I'orbite de (d;)scp et E;; sont des distributions invariantes de dimen-
sion 1. Les exposants de Lyapunov, pour 1 < ¢ <p < d—1sont £Ay, ou Ay =t, — 1,
et, pour p = d, ce sont £\, ot \, = S t; + ¢,

E;; sont tangent aux feuilletages ij; qui sont des feuilletages d’orbites pour les
groupes hjp ou h;“p(u) est la matrice avec des 1 sur la diagonale, u dans la pieme colonne
de la gieme ligne tandis que h;p(u) est sa transposée. C’est cette propriété essentielle
qui est utilisée dans [28] et qui permet de prouver des théoremes centraux limites dans
le cadre d’approximations diophantiennes. Rappelons que des théoremes limites sont
obtenus dans un cadre plus général, le cadre hyperbolique, dans [25]. La méthode uti-

lisée par Dolgopyat est d’ailleurs proche de celle utilisée par Le Borgne dans [58].

Cette propriété géométrique, cette propriété d’hyperbolicité, se traduit en terme
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de mélange. Appelons H® I'espace de Sobolev d’indice s € N muni de sa norme usuelle
relativement a 'espace .%; muni de py. Posons pour toute fonction A intégrable sur

(L, 1d) -
pa(4) = [ _, Aw)dpg(a)

On appelle A(M-) la fonction qui a x € . — A(Mz) € R.

On a alors, d’apres [55] et d’apres [71], qu’il existe C' > 0, kK > 0, s € N — {0}
tel que pour tout A, B € H® :

1 (AQBE) = pAO)B)] < CIALLBe~ 1.

On dit aussi que le flot géodésique (9;) mélange (a l'ordre 1) & vitesse exponentielle.

Au passage, cela implique (voir [26]) qu’il existe C' > 0 (indépendant de A et
de B) tel que :

1 (A B(hE (1)) = (A UBE)] < CIANL B Jul ™

Ces propriétés de mélange ont été utilisées de maniere clé, par exemple, dans [26]. La
propriété de mélange exponentielle du flot géodésique a aussi été utilisée de maniere clé
dans une partie de nos travaux.

Flot géodésique et approximations diophantiennes

Le flot géodésique (0;)icp est aussi tres utile en théorie des approximations diophan-
tiennes. En effet, soit A € M, ,(R). Soit ¢ : Ry — R,. Supposons 1 décroissante.
Une question centrale en théorie des approximations diophantiennes est la suivante :
existe-t-il une infinité de g € Z™ tel qu’il existe p € Z™ tel que

|Ag + pll < ¥(|lqll") 7

Si la réponse a cette question est positive, on dit que A est y-approximable.

En 1842, Dirichlet dans [23] et [24] prouve, via le principe des tiroirs, que toute
matrice A est Yy-approximable avec 1y = % A partir de 14, on peut demander ce qu’il
en est pour d’autres fonctions v, par exemple celles qui décroissent plus vite que ).
Le théoreme de Khintchine-Groshev donne des éléments de réponse. Il énonce que :

e Si [{79(z)dr converge alors presque aucune (au sens de la mesure de Lebesgue)
matrice A n’est 1-approximable
o Si [{79(z)dx diverge alors presque toute matrice A est i-approximable.

Ce théoreme peut étre redémontrer via, ce qu'on appelle, le principe de Dani. Ce prin-
cipe énonce qu’il y a un lien entre, d’'une part, 'approximation diophantienne dune
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matrice A et, d’autre part, la trajectoire, sous I'action du flot géodésique (0;)icr, du

réseau A 4Z™T" on
I, A
A= ( 0 [n>

avec I, désignant la matrice identité d’ordre m et I,, celle d’ordre n.

Ce principe s’illustre par exemple dans le théoreme suivant. Appelons ¢ 'infini-
mum des d > 0 tel que toute matrice A € M, ,, soit diyy-approximable. Perron en 1921
a démontré dans [70] que ¢ était strictement positif (¢ dépend a priori de m et de n).
En d’autres termes, pour tout m,n > 1, il existe une matrice A € M, ,,, il existe d > 0
tel que A n’est pas dig-approximable. Une telle matrice sera dite mal-approximable.
Le principe de Dani, démontré dans [21], s’illustre ainsi de la maniére suivante : A est
mal-approximable si, et seulement si, la trajectoire du flot géodésique de A4, {0;A 4 en,
est bornée.

A ensuite été montré dans [54] que ce principe pouvait s’appliquer dans un cadre
plus large. Grace a cela on peut, in fine, retrouver le théoreme de Khintchine-Groshev.
Pour plus de détails a ce sujet, on pourra aussi consulter [53].

Signalons au passage que le principe de Dani a été appliquée dans [27] ce qui a
permis d’obtenir de nouveaux résultats en théorie probabiliste des approximations dio-
phantiennes. On le retrouve aussi dans [28], [8] et dans [63]. Dans ce dernier, ce principe
est couplé a I'utilisation du théoréme de Ratner (qui donne une description géométrique
des mesures ergodiques et invariantes sous un flot unipotent, voir a ce sujet [67] ou [72]).

Enfin, notons que Beck dans [3] a aussi donné des résultats de nature probabi-
liste sur les approximations diophantiennes simultanées. Ces derniers peuvent aussi
étre interprétés comme des résultats de distribution de points de réseaux appartenant
a un certain ensemble de réseaux. Ces réseaux qui appartiennent a cet ensemble sont
d’ailleurs du type A 4. Toutefois, 'auteur dans cet article n’a pas eu recours au principe
de Dani.

1.3 Le probléme des points d’un réseau

1.3.1 Formulation du probleme

Le probleme des points d’un réseau se formule de maniere générale de la maniere
suivante. Soit L un réseau de RY. Soit ¢t > 0. Soit X € R?. Soit S un ensemble mesu-
rable de R? de volume finie. Quel est le nombre de points N(tS + X, L) du réseau L
qui appartiennent a ’ensemble S d’abord dilaté de t puis translaté par le vecteur X 7

Lorsque I'ensemble S est suffisamment régulier (voir [9]), on peut montrer que 'on
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F1GURE 1.5 : Illustration du probleme de Gauss avec t = 1,5

— tdm
~ " Covol(L)

Au passage, signalons que ce résultat a été étendu dans un cadre plus général par Go-
rodnik et Nevo dans [35].

NS+ X,L) +o(t%).

Partant de 1a, il est naturel de s’intéresser a l'erreur R(tS + X, L) définie par :

4 Vol(S)

Estimer l'erreur R dans différentes situations permet notamment d’obtenir des infor-
mations sur les fonctions ¢ de Epstein (voir & ce sujet [86], [77]), sur la distribution
des valeurs du laplacien sur les tores R?/L ot L est un réseau (voir a ce sujet [62]) ou

encore sur les approximations diophantiennes en utilisant le réseau A4 (voir a ce sujet
[95]).

En pratique, via une dilatation, on se ramene toujours a 1’étude de l'erreur R
en supposant le réseau L unimodulaire.

1.3.2 Résultats dans le cas déterministe

Gauss, dans [32], est I'un des premiers a s’étre intéressé a ce probléme dans le cas
particulier ot S = ID?, dans le cas oit X = 0 et dans le cas ott L = Z2. Il a montré, par
un argument géométrique simple, que dans ce cas-la, on a ’estimation suivante sur R :

R(tD?, Z%) = O(t)

ou O(t) désigne une quantité qui, lorsqu’elle est divisée par ¢, est bornée quand ¢ — oc.
Dans la Figure 1.5, on a représenté le cas abordé par Gauss avec t = 1,5. On voit dans
ce cas-1a avec la figure que N((1,5)D? Z?) = 9.

Hardy, dans un article publié en 1917, a savoir [36], a fait la conjecture suivante :
pour tout € > 0, )
R(tD? Z*) = O(t=°).
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Divers résultats se sont succédés depuis Gauss pour essayer d’avoir la meilleure estima-
tion possible de R dans ce cas. Citons par exemple 'avancée de Hlawka [41] en 1950, ot
il a obtenu, via de I'analyse de Fourier, le résultat suivant valable en dimension d > 2 :

R(DY, 2% = O(t ).

En dimension 2, 'exposant 2/3 avait déja été obtenu par Van der Corput dans sa these
de 1919 [20].

En 1988, Iwaniec et Mozzochi ont prouvé dans [43] en se basant sur le travail
[12] datant de 1986, qu’on avait I'estimation suivante : pour tout € > 0,

R(tD?, Z%) = O(t11).

(ce qui constitue une estimation meilleure que celle de Hlawka et Van der Corput
puisque 2/3 ~ 0.667 et 7/11 ~ 0.636).

Huxley, dans le prolongement de ce qui a été fait par Iwaniec et Mozzochi, a obtenu en
2003 (voir [42]) la meilleure estimation suivante :

R(D?,72) = O(t% log(t)")

ou K = % et A = %. A notre connaissance, c’est le meilleur résultat connu a ce
jour. Pour un historique un peu plus complet sur cette question, on pourra consulter

I'introduction de I'article [6].

En dimension 3, le meilleur résultat a été obtenu pour 1'heure par Heath-Brown
dans [39], & savoir :
R(tD?, Z%) = O(t15+<)
(la conjecture dans ce cas est que le meilleur exposant possible soit égale a 1 et I'article

de Tsang [90] va dans ce sens). Ce résultat a par ailleurs été étendu en 2009 dans [15]
a une classe de convexe réguliers auquel appartient le disque de dimension 3, D3.

Enfin, pour des dimensions supérieures, on pourra consulter I'article de Chamizo
[16] publié en 1998.

Le probleme des points d’un réseau est étudié avec d’autres types de formes, moins
régulieres. Par exemple, Skriganov a étudié dans divers articles le cas des polytopes
convexes de dimension d. Rappelons qu'un polytope convexe P de dimension d est dé-
fini comme 1’enveloppe convexe d’un nombre fini de points de R?. Par exemple, le carré
ou encore les parallélépipedes rectangles sont des polytopes convexes (de dimensions
respectives 2 et 3). Dans la Figure , on a illustré le probleme des points d'un réseau
dans le cas ou l'ensemble S est pris comme étant égal & un pentagone P (on a juste
dessiné le contour du pentagone pour pouvoir visualiser les points de L qui sont a l'in-
térieur du pentagone).

Dans le cas d’un réseau admissible L € .¥; et d’un hyperparallélépipede P dont
les cOtés sont paralleles aux axes, Skriganov a prouvé a la fin du XXeme siecle, dans
[84] et dans [85] que :

max |[R(tP + X, L)| = O(t*™1).

XeRd
Il a d’ailleurs reprouvé ce résultat via une autre approche, basée sur de la dynamique,
dans [82].
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FIGURE 1.6 : [llustration du probleme des points d’un réseau dans le cas d’un pentagone
P

1.3.3 Approche avec de I’aléatoire
Le résultat de Skriganov

Dans [82] Skriganov a aussi prouvé le résultat suivant, ce qui constitue le résultat
principal de son article : pour presque tout réseau L € .¥; unimodulaire, pour tout
polytope P, pour tout € > 0,

max |[R(tP + X, L)| = O(t*179).
XeRd

Pour montrer ce résultat, Skriganov montre un premier résultat qui permet, grosso modo,
d’estimer maxycga |[R(tP + X, L)| via la somme ergodique :

1
SiLr)= Y Lo
1 2 oD

avec L' € ..

Cette somme ergodique peut ensuite étre estimée via le théoreme ergodique que
'on a rappelé précédemment (toutefois, il faut prendre garde au fait que L — ||dL|[|%
n’est pas intégrable sur 7).

Il faut noter qu’au début du XXeme siecle, le cas de la dimension 2 avait déja
été étudié par Khintchine dans [50] et par Hardy et Littlewood dans [37]. Il avait été
aussi étudié spécifiquement par Skriganov dans [83].

Skriganov dans [82] a donc traité le cas de la pire erreur lorsque ’ensemble considéré
est un polytope convexe de dimension d et lorsque le réseau L € . est tiré de maniere
aléatoire.

Suivant la méme approche que Skriganov, mais de maniere antérieure a celui-ci,
Schmidt a prouvé en 1960 dans [79] que pour tout d > 3, pour tout ensemble mesurable
S de R?, pour tout € > 0, pour presque tout réseau L € .7,

R(tS, L) = O(t2 log(t)"+9).

Il a aussi prouvé que pour d = 2, on avait le résultat suivant : pour tout ensemble
mesurable S de R?, pour tout € > 0, pour presque tout réseau L € .75,

R(tS, L) = O(tlog(t)**°).
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Dans [1, il a été prouvé qu’en se restreignant aux vecteurs premiers (c’est-a-dire les
vecteurs d’un réseau qui ne sont pas des multiples non triviaux d’autres vecteurs du
réseau), il n’était pas nécessaire de rajouter un facteur log(¢) en dimension 2 par rapport
aux dimensions supérieures.

Cette différence de traitement entre la dimension d = 2 et d > 3 tient au fait
que Schmidt pour sa preuve a eu recours a la formule de Rogers d’ordre 2. Or celle-ci
ne s’applique que lorsque d > 3 comme on le rappelle ci-apres.

Formule de Siegel et de Rogers

Soit f une fonction mesurable de R? dans R & support compact. On définit la
transformée de Siegel de f, S(f) de la manieére suivante : pour tout L € .7

SHL) = > fO).

[ premiere L

Alors la formule de Siegel démontré dans [8I] (qui est valable aussi en dimension
d = 2) donne que :

/Lede(ﬁ(L)dud(L) = ((d)! / fl@)dz

r€R4
ot ((d) =Y ,>1 — tandis que la formule de Rogers d’ordre 2 donne que pour d > 3,

[ SOy = @[ sty

zCcRd

+C(d)‘1/ f(l“)Qde‘f‘C(d)_l/ f(—=2)f(z)dz.

z€R4 zcRd

Rogers I'a démontré dans [74] (article qui date de 1955). Siegel correspond, en quelque
sorte, a une formule de Rogers d’ordre 1.

En réalité, en dimension 2, la formule de Rogers est encore valable ... en un certain
sens. On a (voir [46] ou [47]) : il existe une isométrie ¢ : L* (R?) — L*(R?) tel
que pour toute fonction f mesurable a support compact paire

/L%(S(f)(L))wz(L) = ((2)7%( / Flx)de)? +2¢(2) ! / . F@)? 4 f()f) ().

z€eR?2

paire paire

La formule de Rogers d’ordre 2 et la formule de Siegel ont joué un role clé dans notre
travail, ainsi que dans les travaux [52], [51], [80], [78] ou encore dans [64]. Des analogues
de la formule de Siegel peuvent aussi étre trouvés dans d’autres cadres : voir, par
exemple, [31].

Le cas d’un oval régulier avec dilatation aléatoire

Autour de 'année 1992, on s’est aussi intéressé a un autre type de probleme. Que
se passe-t-il, en dimension 2, quand ’ensemble S est choisi, que le réseau L est choisi
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comme étant égal & Z?2, que le parameétre de translation X € R? est fixé mais que le
parametre de dilatation ¢ est pris aléatoire et grand ? Dans [10], Bleher a prouvé le
résultat suivant.

Théoréme. Soit v une courbe de classe C* simple, réguliére, fermée, convexe et de
courbure positive. Appelons ., le domaine délimité par la courbe . Supposons que
(0,0) € Q. Soit a € R2. Soit p une densité de probabilité sur [0,1]. Supposons que t
soit distribuée sur [0,T] selon la mesure de probabilité %p(%)dt.

Alors, sous ces hypothéses, Rty +a,2%) converge en loi quand T — oo. Par ailleurs,
la lot limite ne dépend pas de p, admet un moment d’ordre 2 et est d’espérance nulle.

Ce résultat constitue une généralisation de [38] et de [II]. Dans [38], Heath-
Brown a obtenu ce résultat de convergence en loi dans le cas ot 2, = D? et ot a = 0 (il
a aussi obtenu que le moment d’ordre 9 de la loi limite est finie). Dans [I1], ce résultat
avait été généralisé au cas ou « est quelconque et le comportement de la densité de la loi
limite en l'infini a, par ailleurs, été précisé (les auteurs obtiennent, en particulier, que
la loi limite admet des moments de tous les ordres). La démarche suivie pour obtenir
ces résultats a été précieuse pour nos recherches.

Un autre axe d’approche, empilement de spheéres

Terminons cette sous-section en disant un bref mot sur les résultats obtenus par Kim
dans [51] et dans [52] et par Schmidt dans [78] et dans [80]. Dans ces articles, les auteurs
respectifs s’intéressent au probleme de comptage que 'on a décrit dans cette section
mais suivant un angle différent du notre. La question que ces auteurs se posent est la
suivante : étant donné un ensemble mesurable S de R?, quelle est la probabilité qu’un
réseau L € .7 ait k € N points dans S ? Autrement dit que vaut uq (N(S,L) = k) ? Et
les auteurs s’intéressent a cette question en particulier quand d devient grand.

Kim, dans [51] obtient ainsi le résultat suivant. Soit S un ensemble mesurable de R?
symétrique par rapport a l'origine de volume V. Soit € > 0. Supposons que k € N soit

q_
tel que k < (g)%*e et supposons que V' < @. Appelons F v la fonction de répartition

associée a une loi de Poisson de moyenne % Alors, on a :
dli_)m pa (N(S, L —{0}) < k) — F%(k) =0.

De plus, la vitesse de convergence vers 0 dépend de € mais pas de k. Ce résultat amé-
liore, en un certain sens, un résultat précédent de [73] (k et V' pouvant varier avec d).
Il a ensuite été amélioré pour des ensembles S ouverts dans [52].

Schmidt a, quant a lui, prouvé le résultat suivant. Il existe des constants ¢, C' > 0
telles que pour tout V' < C'd, pour tout d > 13,

pa (N(B(V), L) =1) = e7% +0(e™)
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FIGURE 1.7 : Un empilement périodique de cercles

ou B(V) est la boule ouverte de centre 0 et de volume V. Rappelons par ailleurs que la
probabilité qu’une variable aléatoire suivant une loi de Poisson de parametre % prenne

la valeur 0 est de e~ %. Ce résultat recoupe donc le résultat de Kim dont on a parlé
précédemment.

Ces résultats sont liés au probleme de I’empilement des sphéres. Ce probléeme s’énonce
de la maniere suivante. Existe-t-il un empilement périodique optimal des hyperspheres
dans I'espace euclidien R? ? Si oui, quel est-il ? Optimal doit s’entendre au sens suivant :
un tel empilement sera dit optimal si sa densité, c’est-a-dire si le volume d’une hyper-
sphere divisé par le covolume du réseau sous-jacent, est maximale. Dans la Figure [I.7}
on a illustré, en dimension 2, un empilement d’hyperspheres (dans ce cas, des cercles)
périodique.

La maximisation de la densité d’un empilement périodique d’hyperspheres revient en
fait a maximiser la quantité suivante :

Vol(€)

ot £ est un ellipsoide centré en 0 et tel que £ NZ? = {0}. Ce qui revient, in fine, a
maximiser V' > 0 tel qu'il existe L € . tel que N(B(V), L) = 1. Pour en savoir plus
a ce sujet, on pourra consulter [2], [22], [57], [75], [92], [76] ou encore [18].

1.4 Nouveaux résultats

1.4.1 Estimation de ’erreur R lorsque le réseau L est aléatoire
et lorsque S est un parallélogramme P.

Dans le résultat principal de [82] obtenu par Skriganov, 'accent est mis sur le pire
scénario pour le terme d’erreur lorsque le parametre d’échelle ¢ varie dans R, wvia une
borne supérieure presque stire. De plus, dans ce cas et pour un réseau fixe, le terme
d’erreur va osciller lorsque t va croitre. Une autre approche consiste a étudier le compor-
tement moyen du terme d’erreur lorsqu’il y a une certaine incertitude sur le réseau. En
ajoutant de I'incertitude sur le réseau, et avec la bonne normalisation, on peut espérer se
débarrasser du phénomene oscillatoire et obtenir une convergence en loi lorsque ¢ tend
vers l'infini. Ce type d’approche est inspiré des travaux de Kesten [48, 49] traitant des
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propriétés diophantiennes statistiques des nombres réels : dans ces articles, il a étudié
la distribution des écarts associés a des rotations circulaires dont les deux parametres,
a et x, sont pris aléatoirement sur le cercle. Il a montré qu’apres normalisation par un
facteur logarithmique, la distribution des écarts converge en loi vers une loi de Cauchy.

Dans le Chapitre 2, nous avons étudié le probleme de Skriganov dans le cas ou
la dimension est d = 2 et ou P est un parallélogramme et ou le réseau L est distribué
selon fis, une mesure de probabilité absolument continue par rapport a py et telle que
sa densité est réguliere et bornée sur .. On notera qu’une telle densité peut trés bien
étre centrée dans un petit voisinage autour d’un réseau donné.

Appelons Ay une mesure de probabilité absolument continue par rapport a As,
la mesure de Haar normalisée sur R?/L et la densité de Ay est choisie comme étant
réguliere. Le résultat principal du Chapitre 2 est alors le suivant :

Théoréme 1. Supposons que L soit distribué selon fio et X selon Xs alors, lorsque

o R(EP+X,L . . s
t tend vers l'infini, W converge en lot vers une loit de Cauchy centrée.

Disons quelques mots sur ce résultat. Il dit qu’en moyenne autour d’un réseau L € .%5
et autour d'un vecteur de translation X € R?, lerreur R(tP + X, L) est de la taille de
log(t) lorsque t devient grand.

Pour prouver ce résultat, le fait que la bonne normalisation de l'erreur R était
log(t) a été suggéré par le résultat de Skriganov obtenu dans [82]. De plus, nous avons
suivi une approche similaire & celle suivie dans [26], dans lequel les auteurs étendent les
résultats de Kesten obtenus dans [48], [49] en dimension supérieure. Pourtant, méme si
I’approche est similaire, le contexte était différent et il y a eu de nouveaux ingrédients
a introduire. Donnons maintenant quelques idées clés de la preuve.

La premiere idée est que I'étude de %, lorsque t — oo, se ramene a ’étude,
lorsque T' — o0, de la somme géodésique a poids aléatoires normalisée suivante :

1= 6,(L0)
Sy(L,T) = = 5 &)
AL T) =7 2 5 L

ol (6;)ien est une famille de variables aléatoires réelles symétriques, identiquement dis-
tribuées, a support compact et non nulles. Pour obtenir ce résultat, nous utilisons des
outils de I’analyse harmonique.

Dans un deuxieme temps, en utilisant des outils de probabilité usuels, nous montrons
que nous pouvons supposer que les termes qui interviennent dans S, correspondent aux
temps ¢t tels que ||§;L|| est petit (par rapport a @) et est un minimum local. Ainsi,
de cette sorte, on peut obtenir de I'indépendance quand ¢ — oo.

Troisiemement, en utilisant la théorie ergodique, nous montrons que nous pouvons
supposer les 0; indépendants entre eux et de L.

En partant de la, nous pouvons finalement prouver la convergence en loi vers une
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loi de Cauchy centrée lorsque T — oo. Le fait que le flux géodésique sur .%5 mélange a
une vitesse exponentielle joue un réle clé dans ’application du critere de convergence
vers une loi de Cauchy centrée exposé dans [26].

Appelons
S T Tt ||6t tL||2

ou (0;)en sont des variables aléatoires partant de l'espace probabilisé (€2, P;), réelles,
symétriques, non nulles et a support compact et notons, qu’au passage, on prouve le
résultat suivant :

Théoreme 2. Lorsque L est distribué selon la loi de probabilités fiy et w selon Py,
S(w, L, T)

converge, quand T — oo, vers une lot de Cauchy centrée.

1.4.2 Estimation de ’erreur R lorsque le réseau L est aléatoire
et lorsque S est une ellipse £

Dans le Chapitre 3, toujours en suivant I’approche de Kesten, nous avons étudié le
cas ou la dimension d vaut 2, ou S = £ est une ellipse de centre 0 et ou le réseau L € .%
est aléatoire. Pour énoncer le résultat principal de ce chapitre, posons IT = {(ky, k3) €
Z? | ky Nky =1, ky > 0} ol nous convenons que si k; = 0, k1 A ks = 1 implique que
ko = 1 et rappelons la définition suivante :

Definition 1. Pour tout i € {1,2}, nous appelons
|L||; = min{r > 0 | Bf(0,7) contient i vecteurs de L linéairement indépendants}

ou Bf(0,7) est le disque fermée de centre 0 poour la norme euclidienne usuelle ||| de
rayon r. Ces quantités sont les minima successifs du réseau L.

En réalité, pour po-presque tout réseau L € 7%, ||L|2 > ||L||; et il existe un unique
couple de vecteurs (e1(L),es(L)) tel que (e1(L))r > 0, |lex(L)|| = || L||1, (e2(L))1 > 0 et
le2(L)I] = [ILl2-

Pour un réseau L € 5 typique (au sens de la mesure ps), on appelle Py (L)
lensemble des vecteurs e de L tels que e = kyey(L) + keeo(L) avec (ky, ko) € I1.

Dans la Figure , on a dessiné un réseau L de R? ainsi que le couple associé
(e1(L),e2(L)). Avant de passer a la suite, rappelons le théoréme suivant qui énonce les
relations dites de Mahler en dimension 2 :

Théoreme. Pour tout entier k tels que 1 < k < 2, on a

1< L oo



26 CHAPITRE 1. INTRODUCTION
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FIGURE 1.8 : Un réseau L et le couple correspondant (e; (L), e2(L))

Ce théoreme nous informe donc, en particulier, qu’en dimension d = 2, si un
réseau L admet un court vecteur petit (ou, avec une vision plus topologique, est proche
de l'infini), il en est de méme pour son réseau dual L. Pour en savoir plus a ce sujet,
on consultera [I4] et [59].

Rappelons aussi le fait qu'une variable aléatoire réelle Z est symétrique si Py =P_5
ol, pour toute variable aléatoire X, Px désigne la loi de la variable aléatoire X.

Soit fi; une mesure de probabilité absolument continue par rapport a ps, de densité
o, supposée bornée et réguliere sur .#5, relativement a ps. Il y a deux cas différents qui
sont abordés par le résultat principal du Chapitre 3. Le premier est lorsque jis est a
support compact, id est lorsqu’il existe a > 0 tel que :

pe({L € 7 [ ||L]y < a}) = 0. (1.1)

Le second est lorsque fis n’est pas a support compact et vérifie la condition (plus forte)
suivante : il existe m > 0, tel que pour tout o > 0 tel que pour tout L qui appartient a
I'évenement (||L|; < «),

o(L) = m. (1.2)

Un exemple de telle mesure jis est donnée par la mesure de Haar normalisée 5.

Soit T = (THM et appelons A, la mesure produit de Lebesgue normalisée sur
T°. Soit M l'unique matrice, modulo 'action de SLy(Z), de SLy(R) transformant 1'el-
lipse £ de centre 0 en un disque de centre 0. Dans le Chapitre 3, le résultat principal
qui y est exposé s’énonce ainsi de la maniere suivante :

Théoreme 3. Pour tous nombres réels a < b,

o R(tE, L
lim 7i <LEY2 ] <\/f) c [a,b])

= (Moo X (M7V)ufiz) ((0,L) € T x F | S(6, L") € [a,b])

ou (M~1).fio désigne la mesure poussée en avant a partir de fio par L € S5 —
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M™'L € % et ot pour § = (0.) € T*,

s -2 5 o)

3
T eern llell?

avec
cos(2mrmf, — 2T)

$(0e) = . (1.3)

m>=1 m2

De plus, S(0, L*) (ou, de maniére équivalente, S(0,L)) :

e converge presque partout

e est symétrique et est d’espérance égale a 0

W

e admet un moment d’ordre 1 + k et ce pour tout Kk tel que 0 < Kk <

e admet des moments a tous les ordres p tels que 1 < p < oo quand iy est a
support compact

e n'admet pas de moment d’ordre % quand [iz n’est pas a support compact sous

la condition .

Ce résultat, essentiellement, nous dit qu’en moyenne autour d’un réseau L € .% 'erreur
R(tE, L) est de la taille de v/t lorsque ¢ devient grand. C’est un résultat complémentaire
a celui obtenu dans [10]. On en déduit d’ailleurs le corollaire suivant :

Corollaire 1. Pour pg presque tout réseau L € %, pour toute suite (fia,) de
mesures de probabilités a support compact absolument continues par rapport a s,
de densités réguliéres telle que la suite associé des supports converge vers {L},

I . g , R(tn, D2 L
il existe une sous-suite (ny)ren, il existe des réels t,, — oo tel que (%)
"k

converge en loi vers la loi de la variable aléatoire réelle 6 € (T, A\so) — S(6, L*).

Donnons quelques éléments clés de la preuve du Théoréme [3

Tout d’abord, nous ramenons I’étude au cas ou & = D? et nous utilisons des outils de

I’analyse harmonique afin de ramener I’étude de la convergence en loi de R a I’étude de
la convergence en loi de la somme partielle de la série de Fourier, évaluée en 0, associée
a X — R(tD? + X, L). De plus, nous connaissons une approximation des coefficients
de Fourier de cette fonction (voir [27] ou [10]). Nous pouvons alors nous ramener a étu-
dier la somme partielle de cette série de Fourier approchée. Nous observons que cette
derniére quantité peut étre interprétée comme une transformée de Siegel (qui dépend
ici de ¢, le parametre de dilatation).
A ce stade de la preuve, la quantité que nous devons étudier est du méme type que
celle de [I1]. Pourtant, dans [I1], c’est le parametre ¢ qui est aléatoire ce qui permet
aux auteurs d’utiliser la théorie des fonctions quasi-périodiques. Nous ne pouvons pas
utiliser cette théorie dans notre cas car l'aléatoire porte sur le réseau L, ce qui nécessite
une nouvelle approche.
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24 ((1,0))
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FIGURE 1.9 : Une courbe 7 satisfaisant les hypotheses, ainsi que €2, et z, ((1,0))

L’étude peut finalement étre réduite a ce que nous avons appelé dans le Chapitre 3
une transformée de Siegel modifiée avec des poids aléatoires. Cette réduction constitue
le passage clé de la preuve et nécessite de faire de la dynamique sur . (voir Section 4
du Chapitre 3).

Nous prouvons finalement un résultat général de convergence presque siire (et nous en
profitons pour étudier 'existence des moments de la limite).

Il est intéressant de noter, par ailleurs, qu'un certain nombre de problémes de
comptage en moyenne se ramenent a I’étude de transformées de Siegel modifiées avec
des poids aléatoires.

1.4.3 Estimation de I’erreur R lorsque le réseau L est aléatoire
et lorsque S est un corps strictement convexe analytique

Dans le Chapitre 4, on énonce et on prouve deux résultats plus généraux que le
Théoréeme Bl

Plus précisément, supposons que S = €1, ou v est une courbe analytique simple,
fermée et strictement convexe, ou €2, désigne le domaine délimité par v et ot 0 € €2,.

Appelons z.,(§) le point de 7 ou la normale unitaire extérieure a v coincide avec
ﬁ et appelons p, (&) le rayon de courbure de v au point z,(§). Sur la Figure , on a

dessiné une telle courbe v, ainsi que son domaine 2, ainsi que le point x, ((1,0)).

Appelons T2 = (TH" x (T et désignons par Aw 2 la mesure de Lebesgue nor-
malisée sur le produit T°2.
Alors, avec les notations de la sous-section précédente, le premier résultat que I'on
prouve dans le Chapitre 4 est le suivant :

Théoréme 4. [l existe une fonction de répartition D.(z) telle que pour tout réel

z,0na: (R(t\%L) el - oo,z]> =D, (2).

Dans le cas ot S, est symétrique, D (z) est la fonction de répartition de la variable

lim [i
t—o0 ,ug
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aléatoire réelle

S'Y(Q, LJ_) — 2 Z p7(6)¢(06)

Ty
Teeriryy lell?

ot 0 = (0,) € T est tiré selon la loi de probabilité Ao, et L selon fis.

~—

Dans le cas non symétrique, D.(z
aléatoire réelle

est la fonction de répartition de la variable

S’y(@, LJ_) _ Z qb%?(ee?e)

=

3
cerrty  llell?

ot 0 = (01¢,02¢) € T2 est tiré selon la loi de probabilité M o et L selon fiy et ol

)

2mmb e — —€) cos(2mmb,. —
OO ED p~(e) cos(2mmby . — =) +§7( ¢) cos(2mmbs,

m>1 m

(1.4)

De plus, dans les deuz cas, S, admets les mémes propriétés que S(0, L) listées dans
le Théoréme[3l.

En réalité, et c’est le second résultat du Chapitre 4, le Théoreme [4] peut étre généralisé
de la maniere suivante :

Théoréme 5. Pour tout o € R?, il existe une fonction de répartition D., o (z) telle
que pour tout réel z, on a :

lim i
t—o0 MQ

(R(tﬂy\; L) o Z]> — D, (2).

Dans le cas ou ), est symétrique, D, o(2) est la fonction de répartition de la
variable aléatoire réelle

S04y =2y Pl)%allee)

3
Teerty el

ot 0 = (0,) € T est tiré selon A et L selon fiy et od

cos(2rmb, + 2mm < a, e > —37)

¢a((96,6) = Z 3 :

m>=1 m?2

Dans le cas non symétrique, D, o(2) est la fonction de répartition de la variable
aléatoire réelle

SV(G,LJ-):E Z M

3
Teerrinty  llell?
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ot 0 = (01,02,) € T®? est tiré selon Moo et L selon fig et ot

p(e) cos(2mrmb; . + 2mm < o, e > —%”)

9250!,"/72(967 6) - Z 3

m>=1 m2z

cos(2mmbs . — 2rm < a,e > —3T)

1 Z py(—€)

m>=1 m

wlw

De plus, dans les deux cas, S, admets les mémes propriétés que S(0, L) listés dans
le Théoréme Bl

Ainsi, dans ce cadre, méme apres translation par un vecteur o € R?, I'erreur R (pour
S =(1,) en moyenne autour d'un réseau L € . est de l'ordre de Vt. C’est en partant
de la lecture de [26] et de [10] que l'on a prouvé ces deux généralisations du Théoréme [3)

Par ailleurs, pour prouver le Théoréme [ nous suivons la méme approche que
celle suivie pour prouver le Théoréme [3] Le Théoreme [f est, quant a lui, une simple
généralisation du Théoreme

1.4.4 Estimation de ’erreur R lorsque le réseau L est fixé,
lorsque t est aléatoire et lorsque S est un rectangle

Dans le Chapitre 5, nous étudions le cas ou L € % est un réseau fixé et ou le
parametre aléatoire est le parametre de dilatation ¢ qui est tiré selon la loi de probabilité
p(%)7dt ot p est une densité de probabilité sur [0, 1]. On choisit S comme étant égal

Rect(a,b) = {(1,22) € R? | |21] < a, || < b}
ou a,b > 0.

En d’autres termes, on suit ’approche déployée dans [I1] et dans [I0] et on lap-
plique dans le cas des rectangles (centrées en 0).

On pose, pour f une fonction localement intégrable sur R? :

1
Exerz/r(f) = m /XEIRQ/L f(X)dX.

Posons aussi pour tout réseau L € .%5 faiblement admissible :

1
ler,  "1%2
o<ll|I<t

Alors, on prouve dans le Chapitre 5, le résultat suivant :
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Théoréme 6. Soit L un réseau unimodulaire admissible de R?.

Alors, tout d’abord, il existe C' > 0 tel que pour tout t assez grand :

£ lo(t) < V(L.1) < Clog(t)

ce qui sera dénoté par V(L,t) = O(log(t)).

Ensuite, pour S = Rect(a,b),

R(tS + X, L) 1
Exer (( + ) converge en loi et en probabilité vers e
T

lorsque t € [0,T] est tiré selon 7.p(%)dt et lorsque T — co.

Ce théoreme signifie qu’en un certain sens l'erreur R dans ce cas est de l'ordre de

log(t). Nous avons, par ailleurs, dii d’abord moyenner en X car il semblerait que,
méme en laissant X aléatoire et en regardant si on obtient dans ce cas une convergence
en loi, on aurait un phénomeéne d’oscillation qui nous empécherait d’obtenir la conver-
gence désirée.

La preuve de ce théoreme réside sur I'usage d’outils d’analyse harmonique et sur
des estimations de sommes discretes par des intégrales.

A partir de cette approche et dans le méme chapitre on démontre le résultat sui-
vant :

Théoreme 7. Pour tout € > 0, pour us- presque tout L, on a que
V(L,t) = O(log(t)**)

et

De plus, on a aussi que :

R(tP+ X,L
b (B 250

1
) converge en loi et en probabilité vers —
V(L4 ) am

out € [0,T] est tiré selon la loi de probabilité p(%)dt et ot T — occ.

Enfin, dans le cas ott a = b et ot L = Z? (qui n’a pas été abordé dans les cas précédents),
on prouve aussi le résultat suivant dans le Chapitre 5 :

Théoréme 8. Pour tout x € R, lorsque t € [0,T)] est tiré selon la loi de probabilité
R(tRect(a,a)+(z,x),Z2)
t

70(7)dt sur [0,T] alors, lorsque T — oo, converge en lo.
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De plus, la loi limite B a un support compact inclus dans [—4,4] et pour tout
ke N, on a que

/ 2*dp(x) = ay
zeR
ot
A+ DR+ 0=y )
2(k+1)
avec y = |tag — t10| et ot tag est le premier temps t > 0 tel que —t +x € Z et t1
est le premier temps t > 0 tel que t +x € 7Z.

A —

En particulier, on voit que la normalisation est beaucoup plus importante qu’avant et
dans ce cas l'erreur R est de l'ordre de t.

La preuve réside sur des calculs élémentaires et sur 'application du critere des
moments (utilisé pour démontrer la convergence en loi). Dans le Chapitre 6, on géné-
ralise le résultat précédent a toute dimension d > 2.

Plus formellement, soit p une densité de probabilité sur [0, 1] et soient a > 0 et
C(a) 'ensemble défini par

Cla) ={z = (21, ,mq) €ER? |Vi € [1,d], |z;] < a}. (1.5)

Avec ces notations, on prouve les résultats suivants dans le Chapitre 6 :

Théoréme 9. Pour tout x € R, quand t € [0,T] est tiré selon la loi de probabilité
+p(z)dt sur [0,T] alors, quand T — oo, %j}(’zd) ou X = (z, - ,x) converge
en loi. De plus, la loi limite admet comme fonction caractéristique la fonction
suivante
sin(d29 tuy) + sin(d27 u(1 — y))

plu) = d2d-1q
o y = |tag — t1o| avec tao le premier temps t > 0 tel que —t +x € Z et t1p le
premier temps t = 0 tel que t + x € Z. D’ailleurs, on a y = |1 — 2{x}| ou {z}
désigne la partie fractionnaire de x.

Théoreme 10. Pour xzq,--- , x4 des variables aléatoires réelles indépendantes iden-

tiquement distribuées selon la loi uniforme sur [—%, %], quandt € [0,T] est tiré selon
la loi de probabilité %p(f)dt sur [0,T) et quand t et xy,--- , x4 sont indépendants

R(tC(1)+X,Z4 .
entre euz alors, quand T — oo, % avec X = (x1,--- ,xq) converge en loi.

De plus, la loi limite admet comme fonction caractéristique la fonction sui-
vante ( i1 )
1 —cos(27u) 4
ol = (2= )"

On remarque que dans les deux cas abordés, la normalisation de 'erreur R (tC(1)+X, Z<)
est en t%~1. De plus, les deux cas étudiés correspondent & deux cas extrémes : le cas du
Théoréme [9 est un cas o les x; sont liés (en fait, ils sont tous égaux) tandis que le cas
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du Théoreme |10 est un cas ou les x; sont indépendants entre eux.

La preuve de ces deux théoremes repose sur des calculs élémentaires et sur 1'usage
d’outils de probabilités de base.

1.5 A brief introduction for non-french speakers

Lattices of R? We define a lattice of R? as a discrete subgroup of (R? +) that
generates, as a R-vector space, R, For every lattice L of R? there exists F' measurable
such that R? = Ujc F' + 1. Such F is call a fundamental domain of L. Its volume does
not depend on F' and is called the covolume of the lattice L. It is denoted by Covol(L).
We say that a lattice L is unimodular if its covolume is equal to 1. The space of
unimodular lattices .#; can be identified to the homogeneous space SL4(R)/SLy(Z).
Moreover, the existence of the Siegel domains gives us that there exists p4 a probability
measure over ., that is SLg(R) invariant. As a consequence, it defines the notion of a
random unimodular lattice.

The space of unimodular lattices .#; On the space .%;, the geodesic flow is iden-
tified to (8;)er where H = {(x1,--- ,24) € R | 21+ ---+ x4 = 0}. This flow conserves
the Haar measure 14 and the discrete underlying geodesic flow is ergodic. Furthermore,
the geodesic flow on .%; is partially hyperbolic and mixes at exponential speed and its
stable and unstable directions are tangent to orbit foliations given by unipotent groups.
Moreover, there is a link, indicated by the Dani principle (cf [21]), between Diophan-
tine approximation of a matrix A € M,, ,,(R) and the orbit of the unimodular lattice

Ay = <16” ?) Z"™*" under the action of the geodesic flow.

The lattice counting problem The lattice counting problem, which is the main
subject of this dissertation, is the following. Let L be a lattice of R?. Let S be a
measurable set of R? with a finite volume. What is the number of points N (¢S + X, L)
that belong to L and to the set tS 4+ X where ¢t > 0 and X € R? ? In fact, when S is

regular enough, one has N(tS + X, L) = C\g‘;gﬂ)td + o(t?). The next step is to study

the error term R(tS + X, L) = N(tS+ X,L) — 0\5351? %) t?. The historical Gauss circle

problem is a particular case of this problem : it is the case when S = D?, X = 0 and
L = 7Z?. Gauss in [32] proved that, in that case, the error was dominated by ¢. The still
open Hardy’s conjecture (see [36]) says that the error R is dominated by t27¢ for every
€ > 0. There has been several improvements in this direction (see the introduction of
the article [6] for more details).

Instead of considering a pure deterministic problem, we can add some random-
ness. For example, in [I1], they proved that, when ¢ is random and becomes large, for a
fixed @ € R?, when S = (2, is a regular oval such that 0 € Q.,, R(Q, + «, Z?) converges
in distribution. In this dissertation, we study the behavior R when there is also some
randomness.
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Study of R when S = P is a parallelogram and when the lattice L € .%, is
random In Chapter 2, we study the error R when the lattice L is random, when
X € R?/L is random, when S = P is a parallelogram and when ¢ goes to infinity. The
main result is Theorem [l|and it says that, when the error is normalized by log(t), there
is a convergence in distribution towards a Cauchy centred distribution.

Study of R in the case of ellipses and when the lattice L € .%, is random
In Chapter 3, we study the error R when the lattice L is random, when X = 0 and
when S = £ is an ellipse and when t goes to infinity. The main result is Theorem
and it says that, when the error is normalized by /¢, as suggested by [82] and by the
Hardy’s conjecture, there is a convergence in distribution towards an explicit and non
trivial distribution. In Theorem |3| we also study the existence of the moments of the
limit distribution.

Generalisation In Chapter 4, we extend the previous convergence in distribution
result (with Theorem [)) to the case where S = €2, is an oval such that the curve, given
by its boundary, is analytical. We also show that such a result holds even if, instead
of considering the set #(2.,, one considers the set tQ, + a with @ € R? being fixed (see
Theorem . Furthermore, the limit distribution is made explicit.

Study of R when S = Rect is a rectangle, when the lattice L € .%; is random
and when ¢ is random and goes to infinity In Chapter 5, we study several differ-
ent cases. The first one is when S = Rect is a rectangle centred on 0 with edges parallel
to the coordinate axis, when L is an admissible lattice (in the sense of Skriganov, see
[82]) and when ¢ is random and becomes large. In that case, we show that, after having

normalized the error by a quantity estimated by 4/log(¢) and after having averaged on

X € R?/L, R? converges towards a constant (depending on the covolume of L) (see
Theorem @

The second one is when S = Rect is a rectangle centred on 0 with edges parallel to
the coordinate axis and when L is a typical lattice (id est when it is weakly admissible
in the sense of Skriganov). In that case, we show that, after having normalized the
error by a quantity estimated by log(t) and after having averaged on X € R?/L, R?
converges towards a constant (depending on the covolume of L) (see Theorem [7)).

The third one is when S = Sq is a square centred on 0 with edges parallel to
the coordinate axis and when L = Z2. In that case, we show that, with € R, there

R(tSq+(z,x),Z
t

. . . . . . . 2 .
is a non trivial convergence in distribution of the error ) when ¢ is random

and becomes large (see Theorem [§)).

Generalisation In Chapter 6, we generalise the last result in dimension d > 3. We
set S to be an hypercube C centred on 0 with edges parallel to coordinate axis. We
take L = Z¢. We study the case when t is random and becomes large. Then, when
X = (z,---,2) € RY we show that R(tctji,xl’zd) converges in distribution towards a
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non trivial distribution (see Theorem E[) Also, when the X, are random, distributed

according to the uniform distribution on [—%, %], independent between them and from

t, we show that R(tiji_)f’zd) converges in distribution towards a non trivial distribution

(see Theorem [10)).



Chapter 2

The case of boxes

(Résumé en frangais) On étudie 'erreur commise lorsque 1'on estime le nombre de
points d'un réseau unimodulaire qui se trouvent dans un parallélogramme dilaté et
translaté par son aire. A l'aide d’un des travaux de Skriganov, on voit que cette erreur
peut étre vue comme une somme ergodique portant sur le flot géodésique discret sur
I'espace des réseaux unimodulaires. FEn normalisant correctement et en utilisant des
outils d’un travail de Fayad et Dolgopyat, on montre qu'un certain processus converge
en loi vers un processus de Poisson. On en déduit que la somme ergodique converge en
loi vers une loi de Cauchy centrée lorsque le réseau est distribué selon la mesure de Haar
normalisée. Fort de cette expérience, on applique le méme type d’approche, avec plus
de difficultés, pour étudier le comportement asymptotique de ’erreur et on montre que
I'erreur, normalisée par log(t) avec t le parametre de dilatation du parallélogramme,
converge en loi vers une loi de Cauchy centrée quand le parametre de dilatation tend
vers l'infini et lorsque le réseau est distribué selon la mesure de Haar normalisée et
lorsque le vecteur de translation est aléatoire.

(English abstract) We study the error of the number of unimodular lattice points that
fall into a dilated and translated parallelogram. By using an article from Skriganov,
we see that this error can be compared to an ergodic sum that involves the discrete
geodesic flow over the space of unimodular lattices. With the right normalization, we
show, by using tools from a previous work of Fayad and Dolgopyat, that a certain point
process converges in distribution towards a Poisson process and deduce that the ergodic
sum converges towards a Cauchy centred distribution when the unimodular lattice is
distributed according to the normalized Haar measure. Strong from this experience, we
apply the same kind of approach, with more difficulties, to the study of the asymptotic
behaviour of the error and show that this error, normalized by log(¢) with ¢ the factor of
dilatation of the parallelogram, also converges in distribution towards a Cauchy centred
distribution when the dilatation parameter tends to infinity and when the lattice and
the vector of translation are random.
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2.1 Introduction

In this paper, we are going to take interest in a particular case of estimating the
number of points of a lattice that belong to a given set. This type of problem has an
ancient origin insofar as the Gauss circle problem is a problem of this type.

Let us give d € N—{0,1}. Let us give X € R? and L a lattice of R? and P a measurable
set of R? such that its volume is strictly positive and finite. We would like to evaluate
the following cardinal number when ¢ — oo :

NP+ X,L)=|tP+X)NL|
Under a certain assumption of regularity on the set P, it can be shown that :

4 Vol(P)

N(tP+ X,L) =t Covol(D) o(t?).

It is then natural to look at the error defined by :

4 Vol(P)
Covol(L)

R(tP + X,L) = N(tP + X, L)

In the case where P is the unit disk D?, the Hardy’s conjecture made in [36] states that
we should have, for every e > 0,

R(tD? Z%) = O(t7°).

One of the result in this direction was established by Iwaniec and Mozzchi in [43]. They
have shown that for every ¢ > 0,

R(tD?, 7%) = O(t11+).
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In the case where P is a convex polytope and where L € .#; (which is the space of
unimodular lattices of RY, id est the space of lattices that have a covolume equal to 1)
is typical, Skriganov has managed to link R to an ergodic sum which has given him, in
particular, the following estimate :

Theorem ([82]). For almost all L € %y, for all e > 0,

max |R(tP + X, L)| = O(log(t)%~ 1)
XeRd

where %y has the unique Haar probability measure pig.

Note that this theorem does not hold for any lattice L € .%;. It is sufficient to
consider the lattice L = Z% and for P a hypercube centred around 0 whose sides are
parallel to the axes. The maximum error in this case is of order ¢4~
Following Kesten’s approach in [48] and in [49], we are interested in the asymptotic
behaviour of R when L € .% and X € R?/L are random.

More formally, let us give fi5 a probability measure absolutely continuous with respect
to pa, of regular and bounded density on .% and where p5 refers to the normalised Haar
measure on .%. By calling Ay the normalized Lebesgue measure on R?/L, we also give
ourselves A, a probability measure absolutely continuous with respect to A, of regular
density on R?/L.

We will then show the following result assuming that P is a parallelogram :

Theorem 1. When @ € Y is distributed according to the measure iy and X is dis-
tributed according to Ay then we have :

R(tP+ X, L) z
log(t) t—oo  ©

where 5 means that the convergence takes place in distribution and where C. refers to

a centred Cauchy distribution.

Following Skriganov, it seemed to us judicious, in order to study this normalised
error to take interest in the study of the distribution of quantities - and that was
e 0
0 et

_R_
log(t)’
fruitful : (||6;L|~)sefo,r—1) when T' — oo, where 0; = (
lattice L, is defined by :

) and where || L||, for any

IL]l = inf{ i)}l € L = {0}}

where || X || refers to the usual euclidean norm of X € R2.

More precisely, when we start to study the asymptotic convergence of &, we see
that we are reduced to the study of a finite sum on [ € L whose terms are fractions.
Heuristically, moreover, the numerator behaves like a function which oscillates faster
and faster in a segment centred around 0, while the denominator contains a term of the
form Num(l)log(t) = l1lalog(t). The terms will therefore not be negligible only when
Num(l) is small. Now, in this case, Num(l) can be seen as a ||d;L||?.

Thus, a good indicator to know if 1035( py converges in distribution is to know if :

S(w, L, T) = 1 >

T te[0,7—1]

0y (w)
6L ||*
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converges in distribution when 7' — oo (T plays here the role of log(t)) with (w, L) €
Q x . where (€2,P;) is a probability space and the 6, are real random variables with
compact support, symmetrical, identically distributed, independent between them. We
recall that a real random variable X is said to be symmetric if Px = P_x.
We will thus first show the following theorem before showing Theorem [1] :

Theorem 2. When L is distributed according to the probability distribution ps and w
according to Py, S(w, L, T) converges, when T — 0o, to a centred Cauchy distribution.

Plan of the paper. In the following, we will present the proofs of Theorem [1| and
of Theorem [2l To do so, in the next section, we will expose some preliminaries of
probabilities. Then, we will recall some results on the space of lattices. We will then
prove Theorem [2] which is relevant in view of what we have stated previously. It will
give us an idea of the approach we will have to follow to prove Theorem [I] Then we
will treat a simplified case resulting from the study of R (but which will however be
more complicated than the study of S(w, L,T) as we shall see). We will finally finish
the study of R.

2.2 Probability preliminaries

The point process which are Poisson processes will play an essential role in our con-
vergence studies. We will therefore give some basic reminders on this subject. We will
essentially follow the exposition made in [26].

A random variable N has a Poisson distribution with parameter A > 0 if for any integer
k>0 P(N=k) = e*’\%. This distribution will be noted P(\). We then have the
following results :

o If Ny,---, N, are independent random variables which follow Poisson distribu-
tions of respective parameters A; then N = 37" ; N; admits a Poisson distribution
of parameter 377" ; A;.

o Conversely, if we give ourselves N points distributed according to a Poisson dis-
tribution of parameter A\, that we colour each point independently with a colour
j €{1,--- ,m} chosen with a probability p; (and thus 37", p; = 1) and that we
call N; the number of points of colour j obtained then the N; are independent
and follow Poisson distributions of respective parameters \; = p;A.

Let (X, m) be a measured space. We call a Poisson process on this space a point process
on X such that if Xy,---,X,, are disjoint (measurable) sets and if N; is the number
of points which fall in X; then the N; are random variables which admit for respec-
tive distributions P(m(X;)). This definition is consistent thanks to the first previous
stated fact. We will note {z;} ~ P(X, m) to indicate that {z;} is a Poisson process of
parameter (X, m). If X C R? and if m < \; (the Lebesgue measure on R?) then m
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has a density with respect to Ay and this density will be refered to as the intensity of
the Poisson process.

We thus have the following lemma, which will be useful to us later:

Lemma 1. (a) If {0;} ~*B(X,m) and {0} ~ P(X,m’) are independent then
{0,300} ~ P(E, m -+ ).

(b) If {0;} ~B(X,m) and f : X — Q) is a measurable application then

{7(6;)} ~B(Y, fom).

(c) Let X = Y X Z, m = v X \ where X\ is a probability measure over Z. Then
{(0;,T,)} ~PB(X,m) if, and only if, {6;} ~P(Y.,v) and I'; are random variables in-
dependent from {6;} and between them and are all distributed according to .

(d) If in (c) Y = Z =R then 9-: {T';0;} is a Poisson process. If {0;} is of parameter
f(0)do then 0 is of parameter f(0)d0 where

FO) = Bx ([ i)

Another lemma that will be useful is the following :

Lemma 2. If {Z;} follows a Poisson process over RT of constant intensity C > 0 and
if the {I';} are real random wvariables that are independent, between them and with the
=i, tdentically distributed, with probability distributions that are symmetric and with a
compact support then

is distributed according to the standard Cauchy distribution C(0,1) where p = SE(|I|)r.

A variant of this, which will also be useful, is the following :

Lemma 3. If {Z;} follows a Poisson process over R of constant intensity C' > 0 and
if the {I';} are real random variables that are independent, between them and with the
=i, tdentically distributed, with probability distributions that are symmetric and with a
compact support then
1 L
lim — —
e—0 P = )

i<t T

is distributed according to the standard Cauchy distribution C(0,1) where p = CE(|T|).

A proof of these last two lemmas can be found in [29]. We deduce from the definition
of convergence in distribution the following two lemmas :
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Lemma 4. If {E1'} converge,when T — oo, towards a Poisson process over RY of
constant intensity C' > 0 and if the {TT} converge towards real random variables that
are independent between them, identically distributed, of probability distributions that
are symmetric and with a compact support and independent from the limit process of
{=T} then

1

lim lim — Z —
€>0T—o00 p _ 1 =
:.'7T<€

is distributed according to the standard Cauchy distribution C(0,1) where p = SE(|T|)r.

Lemma 5. If {Z''} converge,when T — oo, towards a Poisson process over R of
constant intensity C > 0 and if the {T'l'} converge towards real random variables that
are independent between them, identically distributed, of probability distributions that
are symmetric and with a compact support and independent from the limit process of
{=T} then

lim lim E Z Ei’T

e—0T—o00 p P! T
=1, €

is distributed according to the standard Cauchy distribution C(0,1) where p = CE(|T'|)~.

In order to apply these two lemmas, we will have to prove that, asymptotically,
suitable point process behave like Poisson processes. To do this, a tool that will be
particularly useful to us is Theorem 6.1 proved in [26] which is particularly adapted
when we are dealing with flows that mix sufficiently quickly (exponential speed, for
example). This will be our case, as we will see a little further on. We recall now the
statement of this theorem.

Let (£2,P) be a probability space. We denote by E the expectation relatively to P.
We give us A;(x) = az a non-zero linear form on R.
Let (X, m) be a measurable space. Let Q be a countable collection of finite partitions
of X such that Q converges to the point partition.
For all M, consider a sequence {& }1co,m] of random variables taking positive integer
values and a sequence {v}}icar of random variables of Q valued in X. We can
imagine, for example, that M is a function which indicates if a mixing flow, at time ¢,
enters a ball of radius #M (located at the infinity of the space) and v indicates up to
which point the flow has entered at this time.
For any partition Q = (K1, -+ ,Kp) € Q, we suppose that £M can be written ¢M =
Y1 &M where £ takes values in the natural numbers and on the set {&M = 1}, £
satisfies :

gtj\j; = 1utM €Kp-
Let nM = 1ea—y and 77% = 15%}:@4:1. All the variables depend on M and in the
following we will omit the letter M for simplicity.
In all this part, when we use the notation Y = O(X) it means that |Y| < C|X| where
C depends possibly on Q but not on M, t or on ¢ (introduced a little further on).
We suppose that for all M fixed, a sequence of partitions Fj, t € II of (2,P) is given.
For w € Q, we call F;(w) the element of F; such that w € F;. We call F; the o-algebra
generated by Fj.
We suppose that the following hypotheses are verified : there exists R > 0 (which does
not depend on M) and a measurable set F such that

P(E) = O(M ™)
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and

(h1) For all t € [0, M],

(h2) For all t € [0, M],

(h3) For all t # ¢’ € [0, M],

P& =16 >1)=0(M7?);

(h4) For ¢,¢ € [0, M], with A\;(t) > A\ (') + Rlog(M), for all p € [1, P] and for all
wek:

(hda) E(& |Fi)(w) = %(X) +O(M™?)
(h4b) E(&, |F)(w) = 22E) 4 O(M-2)
(hdc) E(ney |Fo)(w) = 852 4+ O(M~2)

o (hb) For all ¢, € [0, M] with \() > A\ (t) + Rlog(M), for all p € [1, P], for all
we FE,
&p is constant over Fy(w);

o (h6) The algebras {F;} have a filtration-type property in the sense that for ¢, €
[0, M], with A\ () > A\ () + Rlog(M), for all w € F,

F(w) C Fy(w).
Theorem 3 ([20]). When (Ai,{&}, {m}) verify the hypothesis (h1) up to (h6), the

sequence of point process
t
M
{v ’M}QM:I, te[0,M]

converges when M — oo towards a Poisson process of constant intensity ¢ on the space
(X x J,m x Leb).

By adding hypotheses, we can have a stronger conclusion which will be useful to obtain,
among other things, identically distributed real random variables independent between
them, and with respect to an ad hoc Poisson process. This will be useful because of
Lemma [T} Let us specify these hypotheses and the conclusion.

With the notations of the theorem [3| let us suppose that we have A2(¢) an affine form
such that Ao(¢) > A(t) (where A; can now be a non-constant affine form instead of a
linear and non-zero one) on [0, M].

Suppose that for all M we have a sequence of (M with values in (X, ), a probability
space. This space is moreover supposed to have a countable collection of finite parti-
tions of X which converges to the point partition. Suppose finally that for each element
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Q = (Ky,---,Kp) € Q, we have E such that P(E¢) = O(M~') and such that the
following hypotheses are satisfied :

(h7) There exists a sequence vy such that vy — 0 when M — oo and R > 0 such that
for all t,¢" € TI), that satisfy Ap(t) > Ai(t') + Rlog(M) = Ai(t) + 2R1og(M), we have
for all w € E such that §&(w) =1,

P(GM € KplFu)(w) — m(K,)| < var.

(h8) For all ¢,7 € Ty, with A;(F) > Ao(t) + Rlog(M), for all p € [, P], for all w € E
such that &(w) = 1,
1ck, is constant over Fy(w).

We then have the following result, which is stronger than that of Theorem 3] :

Theorem 4 ([26]). When (A1, Ao, {&}, {ve}, {¢:}) verify the hypothesis (h1) up to (h8),
the sequence of point process

t
M M
7 e M}gﬁle, tel

converges when M — oo towards a Poisson process of constant intensity c over the
space
(X x X xJ, mxm x Leb).

Note that in these two theorems, [0, M| can be replaced by [—M,0], it does not
change their validity. We will use this remark in Section 4.

2.3 Preliminaries on the lattice space

In this section we recall some results on the space of unimodular lattices and the
action of the geodesic flow on it. They come essentially from [82] and [26].

We have previously said that the space of unimodular lattices in dimension d is de-
noted by .#;. In other words, we have the equality : .5 = SL4(R)/SL4(Z).

Definition 2. Let L € .%;. We define L+ € ., the dual lattice of L as follows :
L*={leR*|Vke L, <kl>cZ}

where < -,- > denotes the usual scalar product.

This definition comes into play in particular when one starts to manipulate Fourier
series.
We have .7; = SL4(R)/SL4(Z) and so .#; is therefore provided with a Lie group struc-
ture. Yet, for d > 2, this space is not compact. But he still admits a Haar measure that
is also a probability measure and we denote it by pg. As a consequence, this measure
is also unimodular and we can do measured dynamic over this space.
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Definition 3. A subgroup H of SL4(R) is said to be ergodic (for the natural action on
Fa) if any measurable H-invariant set of .-y has measure zero or full measure.

We have then the following theorem (Moore’s theorem) :

Theorem 5. A subgroup H is ergodic if, and only if, H is not included in any compact
subgroup of SLy(R).

In particular, by setting I' = {(t,...,t4) € R* | t; +--- +t; = 0}, we deduce
from this theorem that the subgroup A = {Diag(e’,--- ,e) | (t1, -+ ,tq) € Z¢NT} C
SLq(R) is ergodic. As a consequence, the action of the (discretised) geodesic flow
(0,L) € A x Sy — 0L is ergodic.

Let us set :

A, = {Diag(e™, - e") | (t1,-- ,t4) € Z4NT tel que |(t1, -+, ta)|l <7}

We also call n, = |A,| and we observe that the sequence of sets (A,) is increasing and
converge towards A. From the ergodicity of A, we obtain the following theorem (known
as the individual ergodic theorem) :

Theorem 6. Let o € L' (%, pug). Then, for almost every L € .y (in the sense of the
probabilty measure g), one has that :

lim — Y (3L) /%@D(L)dud(L).

=00 nr SEA,

In [82], the following lemma, which gives examples of integrable functions on %,
and which will be useful to us, is proved :

Lemma 6. For every € > 0, L — || L||=%"¢ is integrable over .%;.

We still need to define some characteristic numbers of a lattice L € ..

Definition 4. Let k € {1,--- ,d}. We set :
|L||x = inf{r > 0 | Bf(0,7) contains a free family of k vectors of L}

where By(0,1) stands for the closed ball of center 0 and with radius r relatively to ||||.
In particular, one has : ||L|; = || L]

Definition 5. A wvector | of a lattice L will be said to be prime if for alll' € L, the
equality | = kl' with k € Z implies that k = +1.

Any vector [ such that [|l|| = ||L||x, for any k € {1,--- ,d}, is a prime vector and for
any 0 € A, if [ is a prime vector then 4/ is also a prime vector (of the lattice 0L).

Let f, fi, fo be piecewise C*-functions with compact support from R? into R. For
all L € ., we set :

= > fWand S(HL) = > fillh)fa(la).

leL li#+leL
| prime l1, l2 prime
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Definition 6. S(f) is called the Siegel transform of f.

We call ¢ the Riemann zeta function.
Then we have the following identities (called Siegel and Rogers identities respectively)

Lemma 7 (voir [64], [93],[47]).
J, SPdua=cay™ [ fir.
ifd> 3,
/ S(f)dpa = ¢(d)2 /R hdAg /R fadAa and we deduce that

Za

[, S =c@™ [ Para+ ¢ [ @) f(—a)de + (@7 [, fdra?

7

If d =2, when f is even, one has that
0) [ S <C [ fPar+ e[| fdny?
g R2 R2

where C > 0.

Rogers’ formula can of course be generalised to any finite product of functions.
Let us suppose for the moment that d = 2. From Rogers’ and Siegel’s formulas, we
deduce the following lemma which is one of the bases of our reflection :

Lemma 8. For every a > 0 large enough,
po({L € AIL| 7 > a}) = Ca™

where we have set C' = %cm = %

To prove this lemma we need two preliminary results.

Lemma 9. Let l1,ls be two vectors of L prime. Suppose that their respective first
coordinates are positive. Suppose that one of them has a norm 2 equal to ||L||. Then,
if they belong to the same straight line passing through 0, they are equal.

Proof. Let us suppose that [; # I, and that, for example, ||l;]| = ||L||. Then, we have
lo = kly with k > 0, k ¢ N because [, is prime. By the way, as ||L|| = ||l1]|, necessarily
k > 1. Let us set v = ly — | k]l;. Then, one has :

[oll < [l

which is absurd. O]

From this proof, we deduce that we do not need to assume d = 2.
This leads to the following lemma :
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Lemma 10. If ||L|| < 1 then there exists only two vectors of L, | and —I, such that
12l = {1=2l = [IL]]-

Proof. Let suppose that there exist [j,lo such that ||l1|| = ||lo]| = ||L||. They are
necessarily prime and even if it means taking their opposites, we can suppose that their
first coordinate is positive or null. The lemma [9] then gives that either l; = Iy, either
(I1,15) is a free family of R?. In this last case one has that || L]l = ||L]];.

Yet, we have : covol(L) = ||L||1||L||2 sin(«) where « is the non-oriented angle between
two vectors h,k of L such that A,k have their first coordinate positive or null and
|\hl| = ||L||y and [|k|| = ||L]]2- Thus, we obtain : covol(L) < 1, which is excluded and
therefore [; = [5. O

Let us now prove the Lemma [§] :

Proof of Lemma[§ Let a > 0 be given. For all z € R?, f(z) = 15, (0,0-1/2)(x). We
call S(f) the Siegel transform associated with f. For any a > 0 large enough, for any
L e.%,S(f) € {0,2}. Indeed, for a > 0 large enough, a2 < 1 and so the Lemma

applies. Thus, we have :

E(S(f _
U (1L € AILI > )
Lemma [7] then gives the desired result. O

Note by the way that the reasoning in the Lemma [10] gives the following lemma, :
Lemma 11. Let L € 4. We suppose that |L||s < 1. Then, two cases arise :
e Fither ||L|| = ||L||2. In this case, |L|| = 1 and L was obtained from Z* with a

rotation. Furthermore, there are exactly four distinct vectors of L such that their
norms is equal to ||L||.

e FEither |L|| < ||L|l2- In this case, there are exactly two distinct vectors of L such
that their norms is equal to || L||.
In greater dimension, that is, for d > 3, the Lemma [8] is generalized as follows :

Lemma 12. .
ud({L € S|ILI7* > a}) =Da™' + 0(—)

¢(d)~1 Vol(By(0,1))
5 .

where one has set D =

The problem, which must be dealt with very often in dimension d > 3, is the
following : even if ||L|| is small, this does not mean that ||L||3 is large, contrary to the
dimension 2. Let us see the proof.
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Proof. We set, like before, for all x € R?, f(x) = 1, 0 _é)(x). We call S(f) the Siegel
+(0,a

transform of f and S(f) the function defined as before.
On the one hand, one has, according to Lemma [7] :

E(S() = ¢ [ fdra 2.1)

From this, we derive, by homogeneity of the volume of a ball :

E(S(f)) = A1)
On the other hand, one has : E(S(f)) = QIP’(S(f() =2)+E(S(f)1sp)=3)-
f)-

Yet, one has also : S(f)1s(p=3 < S(f)lps3 < S
So, one gets that : E(S(f)1s(s)>3) <E =
Thus, one gets that :

E(S(f) = 2P(S(f) = 2) + O( ). (22)

With Equation (2.1) and Equation ([2.2), one obtains that :

) NOl(BO. )L L) (2.3)

2 a a

P(S(f) =2) =

Finally, let us note that
pa({L € Z|||IL|* > a}) =P(F > 0) = P(F = 2) + P(F > 3)
and that 1
P(F > 3) K E(Flps3) = O(?).
So, one has that :
_ 1
na({L € La| [LI7* > a}) =P(S(f) = 2) + O(=).

Hence the desired result according to Equation ([2.3)). O]

Recall that for all k = (ky,--- , kq) such that ky + -+ + kg = 0, we have set in the
introduction &, = Diag(e*,---  ef). Let us now end this subsection with two small
lemmas that will allow us to calculate smaller lattice lengths.

Lemma 13. For all L € %, for all k € T,

e = LI < [|g L]l < el L]). (2.4)
Proof. This is immediate via the definitions of d; and ||-||. O

The Lemma[I3] Le lemme [I3] will be essentially useful to us in dimension 2. We have
the following lemma, in any dimension :



48 CHAPTER 2. THE CASE OF BOXES

Lemma 14. Let L € .. Let us suppose that ||L||2 > ||L||1. Let [ be a vector of L such
that ||l = ||L|| > 0. Then for all k € Z2NT such that ||L||s > e*l=||L||;, one has

19% Ll = [oxl]]-
Proof. Let k,l as in the statement of the lemma. As ||L|s > ||L];, for every h €
L —{l,—1}, h prime, ||h| > ||L||> according to Lemma [9]

Thus, one has :
|6xh]| > e’”k”mHhH > e’”k”mHLHQ,

Yet, by hypothesis, one has

MLy > el |L].

Hence, one gets that :
oxhl| > e[ L]y > [|al]|-

So, one gets the wanted result. m

In dimension 2, we have a variant of this lemma based on the Lemma [13]:

Lemma 15. Let L € .%. Let us suppose that ||L|| < 1. One calls | a vector of L such
that |[l|| = || L||. Then, for every k € Z such that e™||L| < 1,

|6k L = [|0&L]]-

Let us define now a quantity that will appear in our problem.

Definition 7. Let x = (x1,--- ,14) € R, The quantity Num(x) is defined by :

d
Num(z) =[] z:.
i=1

For L € .#,, forr > ||L||, one defines
v(L,7) = inf {Num(l) | 0 < ||| <7}.
One says that a lattice L is weakly admissible if for all v > ||L||, v(L,r) > 0.
We can note by the way that v(L,-) is a decreasing function. In [82] (see Lemma

4.5), the following proposition is proved:

Proposition 1 ([82]). For all 5 > 0, for almost all L € %y, there exists C' > 0 such
that for alll € L — {0},

[ Num(1)] = C|log([JI)['~"".

In particular, almost all lattice L € %, is weakly admissible.
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This proposition means that typically, if a vector [ € L becomes large, it will not be
able to approach the coordinate axes too quickly. Equivalently, it means that typically
the speed of divergence to infinity of (&;L)cr, is not too large. Skriganov proves this
proposition using the Borel-Cantelli lemma.

To finish this section, let us look at the geodesic flow on .#; and at a more "differ-
ential" aspect of it (whereas before we were interested in more "metric" things). The
results that will be stated will be in two dimension and generalize to higher dimension.
Let us first keep in mind that the action of ¢; (for ¢t € R) on % is partially hyperbolic
in the sense that :

T =Ey+ Ef + Ef

where E| is tangent to the orbits of the geodesic flow and Ei are invariant distributions
of dimension 1.

Definition 8. The corresponding Lyapunov exponents are £\ where

A = 2t.

Moreover, Ef are tangent to the foliations Wit for the foliations of orbits of the

groups hi where
1 u
hi = (O 1) and

hi (u) is the transpose of hy (u).

In the following we will denote Ey" by E; and W~ by W; and h{ by h; and the results
stated will still be valid for E;, Wi and hy. Moreover ||| gs will denote the Sobolev
norm of index s.

Definition 9. Let s,r € N. One says that A : % — R belongs to H*" and satisfies
|Al|gsr = K if for all 1 > € > 0, there exist H*-functions A~ < A < AT such that

JA* = A g2y < € et [ A%]

Hs < Ke™.

Definition 10. One says that v is a Wy-curve of length L if there exists y € % such
that

v=A{h(7)y Ir € [0, L]}.

In that case, for a function A : % — R, we are going to use the notation

LA _ 2/; A(hy(s)y)ds.

Definition 11. Let kg > 0.Let [ > 0 and P a partition of .5 into Wi-curves of length
L. Let us call y(x) the element of P that owns x. Given a sequence, finite ou infinite, of
integers (k,) and a function A € H>", one says that P is a ko-representative relatively

to ((kn), A) if for all n,

pa(ee ],

where K4 = ||Alls,+1, Ly, = Le*™) s the length of g"~(x) and pa(A) = [, A(z)dps(z).
The point x such that for all n,

[ A= ()] < KaLyr
ghny(z)

n

A= pp(A)l = KaL,™) < L, (2.5)

ny(z)
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are said to be representative relatively to (P, (ky), A).
Let us notice by the way that P is rko-representative relatively to ((ky), A) and if

Z(Ln)ino Se

n

then the set of representative points is of measure at least 1 — €.

In [26] (see Proposition 7.3), the following proposition is proved :

Proposition 2 ([26]). (a) There exists s,rko,e0 > 0 such that for all 0 < r < s,
0 < e < €y, for every finite family of functions § of H>", for every | > 0, for every
sequence (ky) such that

SO LMy =m0 < ¢,

n

there exists a partition P of % into Wi-curves of length | which is rko-representative
relatively to ((ky), F) and this holds for every F € §.
(b) If L € % is distributed according to a probability measure fi which has a bounded
density relatively to ps then the result (a) is still valid provided that in the definition of
representative partition, Equation is replaced by

pa(re ||,

where C is the upper bound of the density f of fio relatively to us.

A= (A)] > KaL,™) < CL,"™

ny(z

This proposition is based on the fact that the geodesic flow mixes at exponential
speed. Still in [26](see Lemme A.2), one can find the following lemma, which will enable
us to estimate some quantities of the type || A]

HsT.

Lemma 16 ([20]). For every non-negative integer s, for every R > 0, there exists a
constant C(R,s) such that : for f € C*"(R?) with compact support included in the
FEuclidean ball of centre 0 and of radius R then S(f) € H*" and

IS()I

Cs,'r .

Hs:r < C(R’S)Hfl

It should be noted that C*" is defined in a similar way to H*" and that the space C*
is the space of regular functions, with compact support, with norm |[|-||o s (s indicates
the maximum order of derivation taken into account).

2.4 Study of S(w,L,T)

2.4.1 Introduction to the problem

In this section, we will specify the asymptotic behaviour of S(w, L,r). Let (0;)ien
be a sequence of real random variables whose alea w belongs to (£2,P;) a probabilised
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space and such that these real random variables are independent, identically distributed
and symmetrical, i.e. such that Py, = P_,,.

Let us note that the construction of such an object, where 2 = .%5 and with inde-
pendence with respect to L, can be done in the following way: for all ¢ > 1, for all
n > 1, we set 6, = f(6°-) where f is a regular measurable function of .%% with values
in a segment [—a, a] where a > 0 such that ps (f(L) € [0, b]) = o (f(L) € [0, 0]) and
this for all 0 < b < a. The sequence of variables (6;) can be thought as the limit, when
n — 00, of (6;,)i>1 (modulo a shift of index).

However, in general, it is not certain that this limit exists. On the other hand, as
each of these sequences (in n) of random variables is tense, one will be able to find an
extractor ¢ such that (9t7¢(n))teN converges towards a sequence of real random variables
identically distributed (as ps is a Haar measure), symmetrical, with compact support
and independent between them and from L (as the geodesic flow mixes at exponential
speed).

Note that this construction can be generalized to the dimension d > 2.

We are now interested in the behaviour when 7" — oo of S(w, L,T). The main result
that we are going to prove on this subject is Theorem [2 In the following subsections,
we prove this theorem.

2.4.2 Elimination of terms with too large a denominator

Let a > 0. For every € > 0, let us set :

1
Ay(e, T, L) = {i € (0,7 —1] | |6,L|*T < E}‘ (2.6)
Let us set also ()
w
Siw, Le,T)= > (2.7)
te A1 (e, T,L) TH(StLHQ

Proposition 3. For every € > 0 small enough, for every T large enough, one has :

P(IS(w, L, T) = Si(w, L,e,T)| > a) < a.

This proposition basically tells us that terms whose denominator is too large can be
neglected.

Proof. One has, for L € ., for T € N— {0} :

T-1
0; 0, 0,
Z (w) ;- Z (w) - = Z (w) . (2.8)
i=0 T||5ZL|| 0<i<T—1 T||52L|| 0<i<T—1 T||5,L||
T||§:LI*<¢ T|6:L)*>+¢

Now, as the 6; are identically distributed random variables, with expectations equal to
zero and as the L — §; L are identically distributed and as we work on the probability
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product space ) x .%, we have :

Ql(w)
. oz =" (2.9)
Ostgzizf—l T'||6; L]
7)[:t][2> £
and
1 0;(w) 0o (w)
V(= _p Ly folw) o o
T 2, Tarl? =TT g e
7|18 L][2> 1

B e i)

T
M? 1
S E(||L||4 T|L|2> ))

(2.10)

where M = ||6p]|oc = 0
Now Lemma E gives that for all € > 0, for all T" large enough, IE(||LIH4 Tizs1)) ~ €T
Hence the desired result via the Bienaymé-Chebyshev inequality. ’

Proposition (3| thus brings us back to the study of the quantity S;(w, L, T, €) where
€ can be assumed, and will be assumed in the following, to be strictly between 0 and 1.

2.4.3 Existence of and centring on local minima

Let us set
As(e, T, L) ={i € [0, T — 1N A(e,T,L) | ||0;-1L|| > ||6:L|| < ||6sx1L||}- (2.11)

The following proposition assures us that we can "centre" the terms of S; on these local
minima;:

Proposition 4. There exists kq(i) < 0 and k(i) = 0 for all i € Ay(e, T, L) such that
for all a > 0, for every e > 0 small enough, for every T large enough, one has :

P<|Sl(w’L7€7T) - S2<WJL7 €7T)| > Oé) S«

where, for every L € % and w € 2,

Sy(w, LeT)= 3 T TﬁgiL)H? (2.12)

1€A2(e,T,L) kg (i) <k<km(

and where the following properties are verified :

10% )_3.

Y

o [ka(D)], [km(D)] =
o all the sets {i + k}kd(i)gkgkm(i) are pairwise disjoint ;

o for every k € [ka(i), kn(@)], 1> 055 L > 5L
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It should be noted that k4(i) and k,,(i) possibly depend on ||§;L|. We will see a
little further on that we can eliminate this possible dependence.
Before continuing, we need two preliminary lemmas.
Let [, 15 be two non zero reals and let | = (I1,l3). For every a > 0, one has :

1
f(h,lz)(a) = al% + alg

Lemma 17. fq, 1,y is strictly decreasing until ag = |%|, where it reaches its minimum,
and then is strictly increasing.

Proof. A study of the variations of f(;, ;,) via a derivative calculation gives the result. [

Lemma 18. Let >0, C' > 0 and L € % such that for every l € L — {0},
| Num(1)| = C|log([[LI)] 7.

Then there exists D > 0 such that for every T large enough, for everyi € [—log(T), T+

log(T)]
T2
MzLH > DT 17 (2.13)

if we assume that |L|| = /€.

The first hypothesis of this lemma is realised after discarding a small number of
lattices, according to Proposition[I] The same is true for the second hypothesis accord-
ing to Lemma [§] We can thus suppose these two hypotheses verified and we will do it
thereafter.

Proof. Let i € [—1log(T),T 4 log(T")]. Let us call I = (l1,ls) € L — {0} a vector such
that ||0;l]| = ||6; L]|-

Furthermore, by assuming that ||L|| > 1, the arithmetic-geometric inequality gives, on
the one hand, that :

§:L|? o
”2” > |lilo| = Clog([lI[)~* 7.

On the other hand, according to Minkowski’s theorem:

. . 4
B+ e = L < -
™

and thus, as i € [—log(T"), T + log(T)],
4(62(T+10g(T)) )

12]1* <

So, there exists C' > 0 (independent from i and L) such that for all T large enough,
log(l)~" = CT~'7
and in particular
16:L*
2
So one gets the wanted result in the case ||L||2 > 1. The other case is straightforward

because one has still in that case that [|l|ls > ||L|| > /€ and we can always take T
larger or D smaller if necessary. O

> |lily| = COT 175, (2.14)
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We can now tackle the proof of Proposition 4, The main idea is that if ¢ is not a
local minimum then we have a direction to follow which will lead us to a local minimum
according to Lemma [I7}

Proof of Proposition[4]. e In this first part of the proof, we explain how, from a term
with a small denominator, we can reduce to a term with a small denominator which is
a local minimum.

We take T" large enough so that log(e) + log(7") — 2 > 0. In particular, one has }T < 1.
By definition, one has Ay(e, T, L) C Ay(e, T, L).
Conversely, let i € Ai(e, T, L). Either one has i € Ay(e, T, L), or one has ||6;_1L| <
16: LI or |6: L]} = [|6:41 L.
Let us place ourselves in the case where we only have |0; 1 L|| < ||0;L]] with T"— 1 >
1> 0.
Let us call k € §;L such that [|6;L] = |k||2. Because of the fact that ||0,L]| < /& < 1,
one has :

|6 L|* = ki + k3 and ||6; -1 L||*> = e 2k} + €%k3.

If you eliminate the non-weakly admissible lattices (see Definition [7)), which constitute
a negligible set for uy, one can suppose that ki, ko # 0. Then one has :

Foor o) (€7%) = 1021 L)1* < foey o) (1) = || 6L

and, in particular f, i) can be used to calculate the shortest vectors around time 7.
According to Lemma [I7], there exists a unique m; € Z such that m; < i and such
that for all m; < k <i—1, ||0:L] < ||[0g+1 L] and ||dp;—1L|| > ||0m, L||. In particular,
m; € A2<€, T, L)

Let us suppose that we now place ourselves in the case where we only have ||§;L|| >
|01 L|| with 0 < ¢ < T — 1. Like before, one obtains a unique m; such that m; € Z,
m; > i and for every k € [i,m; — 1], ||0xL| > ||0xr1 L] et |[0m, L] < [|0m41 L] In
particular, m; € As(e, T, L).

Let us assume now that one has 0 < ¢« < T — 1 and ||0;—1L|| < ||6L] = [[dis1L]-
Lemma [I7] makes it impossible.

So, for every i € A;(e, T, L), one has defined m; € As(e, T, L) that can be interpreted as
"the first local minimum that can be encountered by following the direction indicated"(
in the case i € Ay(e, T, L), we simply set m; = i).

e In a second time, one constructs the k4(i) and the k,,(i) and we show that the
study of S7 can be reduced to the study of S5 thanks to what was done before.

We set, for every i € As(e,T,L) — {T — 1}, k(i) the largest non-negative integer
such that for every k € [0, k(i) — 1], ||0ick L] < [|0izrs1 L] < \/g We define for the
other direction in an analogous manner k(i) for all i € As(e, T, L) —{0}. Let us remark
that kq(i) < 0 and k,,(7) > 0.

Let us set, in the case where 0 € As(e, T, L), kq(0) = — {% + % — 2J. We do the
same thing in the case where T'— 1 € Ay(e, T, L) with k,, (T — 1). We did not put the
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dependence on L, on € or on T of k; and k,, for the sake of simplicity.

The reasoning that allows us to construct m,; gives us in addition that to study the
convergence in distribution of 57 is to study the convergence in distribution of

So(w,L,e,T)= > > Oir(w) (2.15)

i€Az(e,T,L) kq(i)<k<km (i) T[|0sx L2

(S2 may contain terms before 0 and after 7' — 1).
Indeed, Lemma [18] applies here and so gives us that, for all T large enough :

P(|Si(w, L,e,T) = Sa(w, L, e, T)| # 0) < Dlog(T) T |0 | P(T|IL|* < =), (2.16)

a | =

by using Equation ([2.13]), the compacity of the common distribution of the §; and where
D > 0. By choosing # > 0 such that § < 1, we obtain the wanted result thanks to
Lemma [§ So, now, the study is reduced to the study of Ss.

Let i € Ai(e,T,L). We observe that ||6;L]* < - and so, for k € Z such that

k| < % + %, one has ||6; 1 L||* < 1 according to Lemma .

By using Lemma (15[ and Lemma one has that for every i € Ai(e, T, L), the sets

[_Llog;(e) N logQ(T) Llog2(e) N logQ(T) .

-2,

I+ {3
(with 0 <7 < T — 1) are pairwise disjoint.
Even if it means reducing the ky(i) and increasing k,,(i) in order to have kq(i) <
— L% - % —2| and k(i) > L% + % — 2| and this for any i, we can effectively
assume that these two inequalities are satisfied.
Indeed, this amounts to adding instants ¢ € [—21log(T"),T + 2log(T")] in Sy such that
5 1
TlloL” > -

and Equation (2.9) and Equation (2.10) show that this addition is negligible. O

We can now focus our attention on the asymptotic study of 5.

2.4.4 Study of the asymptotic behaviour of 5

Let us set )
Oiyr(w)]]0: L]

Lilw, L, T) = : (2.17)
kd(i)gkzgkm(i) [[0:4L |12
=(L,T) =T)|6;L|? (2.18)
so that one has LT
il\w, L, L,€
Silw, LeT)= >, CS(L,T) (2.19)

i€Ag(e,T,L)
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To apply Lemma [4] and thus obtain Theorem [2] we will now show that, in our case:
{Ti(w, L, €,T)}icas(er,y are asymptotically independent real random variables iden-
tically distributed, symmetrical and whose support is compact and independent of
{Ei(L,T) }icas(er,ry and that {Z;(L,T)}icay(er,n) converges to a Poisson process on
[0, %] of constant intensity independent of €. Let us first focus on the asymptotic be-
haviour of I';.

Asymptotic behaviour of I';

In this subsubsection, we will prove the following proposition which determines the
asymptotic behaviour of I'; :

Proposition 5. {I';(w, L,€,T) }icayer,) are asymptotically independent real random
variables with the same distribution, which is symmetric and has a compact support,
and are independent of {Z;(T, L) }ic ag(e,r,L)-

To prove this proposition, we need some lemmas :

Lemma 19. For every T large enough, for every i € As(e,T,L), for every k €
[ka(?), km(2)], there exists K > 0 such that

oL _ K

< . 2.20
Tore LIPS cosh(2l&] (2:20)

Proof. Let i and k as in the statement of the lemma. By calling h € (;L) — {0} the
vector such that ||§;L|| = ||h|| and such that hy > 0, one has according to Lemma [15]:

6k LIE ~ h3 T e %3 '
By calling (r, o) the polar coordinates of h (and so r > 0 and a € [-7, 7]), one has :
L) _ 1
6ixL||2  cos?(a)ek + sin?(a)e—2k"
However, we have : \\!iﬂTIQ < 1lfor k= —1and k = 1. So, there exists § > x > 0 such

that: § — s > |a| > k. Hence the lemma. O

Let us note by the way that according to the hypotheses made just after Lemma
with g = % and according to the theorem of Minkowski which gives that for any lattice
L' | < %, we have therefore according to Lemma {19/ and Proposition 4| that for any
iy [ka(?)], [km(2)| < log(T') as soon as T is large enough.

Thanks to the previous lemma, we can establish that k4(i) and k,,(i) can be chosen
so that they do not depend on |[6;L| for ¢ € As(e, T, L). This is the purpose of the

following lemma:
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Lemma 20. Let us set :

2
Sy(w, L,e,T) = b 3 O (@)I|0:L]*

ieasiern) =i T) —(8D o)<k D v, 1024 L1

Then, when T — oo, Ss3(w, L,€,T) — Sa(w, L,€,T) converges almost surely towards 0.

Thus it can be considered hereafter that: ky(i) = (log + C.) and k(i) =
10g
L+ C..

Proof. One has :

2K||0olloy 1
|S3(w, L, €, T) — Sa(w, L, e, T)| < > (2.22)
i€Az(e,T,L) (kZIOgQ(T)+CE COSh(2|k|))T||51L”2
because |kq(4)|, [km(7)| > log(T + C. and because Z;(L,T) = T||6; L.
Yet, one has:
T v A
N cosh(2|k|) T
when T — oo and where H, > 0.
Hence, it follows from Equation (2.22) that :
M,
S3(w, L,e,T) — Se(w, L, e, T)| < —_ 2.23
| 3(("}7 ) € ) 2(&], ) 6 )| Z TQH(sZLHQ ( )

iGAQ(E,T,L)

where M, > 0.

Now the quantity on the right-hand side of Inequation ([2.23)) converges almost surely
towards 0 when 7' — oo according to Lemma 3.2 from [82] (which is based on the
individual ergodic theorem). Hence the desired result. ]

Lemma 21. Let us assume that |L|| < 1. Let a(L) the angle between the line generated
by a vector | of L such that ||l|| = || L|| and the abscissa axis. Conditionally to the event
(IIL|| < 1), a(L) is independent from ||L||.

Proof. Let g\agbg and 0 < r; <rqe < 1. Let us set

3
f1() = 1 <la)<rs

and

fo(z) = Locpe)<1la@)efay

where «(z) is the angle between (1,0) and x.
Let us set :

S(f)(L): Z fl(l1>f2(l2>'

l1#=£l2€L
Then Lemma [7] can be applied and it gives us that:

pao((L) € [a, b, || L|| € [ry,ma]) = ;E<S<f))

—2 /R2 fi(z)dz /R2 fo(z)dz



58 CHAPTER 2. THE CASE OF BOXES

Switching to polar coordinates, we have:

/ fi(zx dx—/m<r<r2rdrda—7r( 3 —7r?)

0<al2n

and
b—a

/fg dx—[K <1rdrda—

a<la<b

From which we derive:

pa(a(L) € [a, B, ||Z|| € [ra,va] [ IE] < 1) = pa((L) € [a,0] | L] < 1)pa (| L] € [ra,ma] | L]

O
We can now prove Proposition [5}

Proof of Proposition[5. The sum >,y Wlmkl) converges.

Thus, thanks to Lemma [19] thanks to the fact that |6y~ < co and by using Equation
, we obtain that the T';, fori € A;(T ¢, L), converge towards real random variables
with compact support. These variables are symmetrical because the #; are symmetrical
and independent of each other.

Furthermore, as the 6; are mutually independent real random variables, as ps is SLy(R)-
invariant and as |kq(7)|, |k ()] — oo, it is clear that asymptotically the I'; are identically
distributed.

Let us now see that asymptotically the I'; are independent of the =;.
Let us first look at what happens between T'; and Z;. Recall that =; = T||§;L||* and
that I'; is written :

_ O (w)]|0: L[
[i(w,L,T,e) = Z W;
kg (1) <k<km (i) itk

where k(i) = &7 1 O, and ky(i) = —kn(3).

Equation (2.21)) shows that % does not depend on ||§;L|| but only on «(d;L).
However, «(d;L) is independent from ||0;L||, as us is a Haar measure and according to
Lemma 211

So, asymptotically, T'; is independent from Z; = T'||6;L||>.

Furthermore, let us observe that for i # j € Ay(e, L,T), a gap can be created be-
tween the blocks {i+ k} and {j+ k} of size, Let us say, at least log(log(T)), i.e. instead
of considering kn,(h), we can consider ky,(h) = kp,(h) — % and instead of con-
sidering kq(h), we can consider kg(h) = kq(h) + %, without this making any
significant difference to the asymptotic study of the I';, of the =}, or of Sy (see Equation

(2.22)) and Equation ([2.23))).

Finally, using the exponential mixing speed of the geodesic flow on .% and using the
independence of 0, we obtain that asymptotically :
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1) The I'; are asymptotically independent of each other

2) The I'; are asymptotically independent of {Z;}

Let us now study the asymptotic behaviour of {Z; }ic a,(e,7,1)-

Convergence of {Z;}ic,(1.1) towards a Poisson process on [0, 1] and proof of

Theorem [2

The purpose of this section is to establish the following proposition:

Proposition 6. {Z;(L,T)}icas(er,n) converges towards a Poisson process on [0, %] of

™

constant intensity D = ((2)7" [ 1e2 cos2(0)+e2 sin?(0)<1 Le2 cos2(6) o2 sin2(9)<1 40

This proposal gives us a better idea of the distribution at infinity of the points of the
geodesic trajectory in the space .#5. It is also this kind of thing that we are interested
in [69].

To establish the desired convergence, we will rely on Theorem [3] Here, even if it means
looking at the sum which interests us as going from 0 to 7" (instead of T'— 1), T plays
the role of M.

Moreover, we pose

vo (L) = (Lys_ypyspep<isn) TILP,
v/ (L) = vg (6, L),
& (L) = Lryep,1]
k1 k+11

and the sequence of partitions considered Q is given by (], = 2])pen—{o}, kefop—1]-

Note that we have, for T large enough (depending on € > 0):
1
€1(L) = 3 S()G.L) (2.24)
where F] (L) is the Siegel transform of the function fI defined by :

T _
fo (2) = Ljo_sapzlzi<iarel Lo<raje<t -

Finally, recall that A\; was defined in Definition [§
Now that we have made these choices, we can state the following proposition in two
parts:

Proposition 7. One has:

e {EUL,T) ey, is exactly the same process as {utM}gész te[0,M]

o (M, {&} {w}) satisfy the hypothesis (h1) to (h6) of Theorem[3|
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The first part of the proposition is obvious from the choices made. It remains to
demonstrate the second part of the proposition on which we will concentrate now.
To see that the hypotheses (h1l) up to (h6) are verified, we will follow an analogous
approach to that followed in [26]. Only analogous, because the zones at infinity in .7
which interest us are not the same.
Before showing Proposition [7], we need some preliminary lemmas.

Lemma 22. For everyt #t' € Z, for every b > 0, for every T > 0 large enough (the
size depending only on b), one has :

Dib* Db 1 — e 20t
T2 + T aI‘CCOS(W

P(T6.LI* < b, T||6, L|[* < b) =

where Dy, Dy > 0.

Proof. Let us set, for all x € R, fi(z) = Lisapz<t ot fo(x) = L5 ap<s- Then, by
considering S(f;) and S(fy) by following the approach of Lemma [8) by applying the
formulas of Lemma [7] and by remarking that for all » > 0

1— 672|t7t’|

2
/R2 1Bf(0’7-)(6t')1Bf(077«)(5t/'> = 2T arCCOS(W 5

one gets the wanted result. O]

To prove that (h4) and (h5) are verified, we are going to follow a similar approach
that was followed in [26]. So, let us set K =|0, 1] and K; :]%%, %%] for0<i<p—1
with p > 1 (p is implied in the notations from before). With these notations, one has :
gt = ]-I/tEK and St,i - 11/,56[(1--

Let us also set K = {x €]0, 00| | d(z,0K) < Tflooo} and also K; = {x €)0, 00| | d(z,0K;) <
Tflooo}'

Let us define ét =1, . and also 5;1 =1 We have then the following lemmas :

ek

Lemma 23. One has:
1€ |
For alli € {1,...,p}, one has also :

1€041

pes = O(1). (2.25)

wes = O(1). (2.26)

Proof. Lemma applied to F', gives that Fl € H** and that ||FT| s = O(1).
To show this last point, we proceed by approximating via functions that are piecewisely

affines the indicator function 1 By (0,24) and by regularizing these functions with ap-
' VeT

proximation of the unity.
So one gets the first wanted result according to Equation (2.24). We do the same thing
to get the second result. O

Lemma 24. One has:

1, (£0.4) = O(T ) and (2.27)
O(T~10%) (2.28)

K.y (50)
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Proof. Tt is an application of Lemma [7] ]
Let us prove now Proposition [7]

Proof of Proposition[f]. e Verification of (h1)
Let us recall that for all T large enough (relatively to a quantity dependent on € > 0)

1
€1(1) = 58()(D)
where the function fI is defined by:

T _
ft (x) - 1Héfldth>||6tz||<H616ta:H10<T||5t$||2<1- (2.29)

€

By using Lemma [7], by making a change of variable « = §,2 and by passing into polar
coordinates, one has:

e =21

= 5o (2.30)

where i
_ 2
D = C(2) ! /0 16*2 cos2(0)+e? sin2(c9)<1162 cos2(0)+e—2 sin2(0)<1d9'

Before continuing, let us note that the variations of the function 6 — ;—QCOSQ(G) +
a’®sin?(6), with a > 0, enables us to see that the value of D is in fact :

1
) — arccos( ¢

e2+1 \/62—-1—1>)

(which can be simplified more by using a formula about differences of arccos)

D = ((2) *(arccos(

e Verification of (h2)
(h2) is verified because & € {0,1}.

e Verification of (h3)

If we have t, ¢ € II, different such that &,& = 1 then t,t' € As(e, T, L) and are so
separated of log(7T") 4+ 2C, according to what was seen previously.

By using Lemma one sees that :

1 1 — e—2(1og(T)+QC€)

P(ft 2 175t/ = 1) < O(f arccos(l 4+ e—2(log(T)+QCe)))

(2.31)

\

).

e Verification of (h4a), (h4b) et (h4c)

In our case, let us remark that 1, = & ,. So, it is enough to have (h4a) and (h4b)
verified to get that the three hypothesis are verified.

We fix T > 0. We fix t € II (the exponent T is implied). Let us call II*(¢) the set of
elements t' € [0, 7] such that A;(t') > A;(f) + Rlog(T) where R > 0 will be fixed later
on.

One considers also § = {£o, 01, - ,&0p}- One calls F; the partition into Wi-curves of

and the term in arccos is a O(

Sl=



62 CHAPTER 2. THE CASE OF BOXES

size Ly = (eM®T1000)=1 given by Proposition [2 which is ko-representative relatively to
(IT*(¢),§). It is possible insofar as :

Z (Lte)\l(t’))—mo < TQTIOOO/@OT—RHO — O(T—l()OO) (232)

tell ¢/ eI+ (t)

for R chosen large enough.
In particular, if one calls E; the set of L € .% such that for all ¢t € II, L is a represen-
tative point of (Fy, IT7(t),§), one sees that

pal(B5) = O(T 1)

For L € E\, according to the definition of representative point, according to the calculus
made to get Equation (2.30), according to Lemma 23] one sees that (h4a) and (h4b)
are verified by choosing £ = F; and by taking this partition F;.

e Verification of (h5)

Let us give t € [0,7], t € II"(¢) and ~; € F. Even if it means taking R larger, one can
asssume that the length of §,7;, which is e~ OT—1000cM() " ig smaller than 710",
This being said, if & is null over 7, the result is clearly acquired on ;. Otherwise,
there exists L € 77 and p such that & ,(L) = 1 and so there must exist u € L such that
v € K.

Moreover, let us note that 67z = {h(7)d;L},c.» where .# is a closed interval that owns 0
of length smaller than 7", Then we observe that h(7)d,L admits h(7)5,u as smallest
non-zero vector and

THh(T)(StUH_z = T||5tu||_2 + O(T—109+1).

Even if it means replacing the condition t € As(e, T, L) by

- 1
t e AQ(E,L,T) = {l S [O,T — ]_] N A(E,T, L) | ||(SZ_1L” > ||51L|| + W < ||5Z+1L”};

if ;77 does not intersect (or more exactly its image)
{z €]0,00] | d(z,0K,) < T},

it is completely included in K, and so &, = 1 along this curve.

The measure of the set of L such that §,y; intersects {z €]0,00[ | d(z,0K,) < T~}
is so O(T~190) hecause this set is included in the set of L that "belong' to K, and
which has a measure of O(771°) according to Lemma 24, And when, before, we have
replaced the set, we have a neglected a set and the measure of this set is O(7T~19%),
By taking the complement of the union of all these exceptional events, for ¢t € [0, T],

for £ € II7(¢) (and by considering the intersection with Ej), one obtains a measurable
set Ey such that po(ES) = O(T9%) on which (h5) is valid (as well as (h4)).

e Verification of (h6) .
The size of the F} is L, = (eM®T00) =1 and that of F; is Ly = (eM®T1000)=1 if one
sets

Ey={L € % | F(L) C F(L) pour tout ¢ € [0,T], # € IT*(t)},

one sees that the measure of the complement is O(T %) even if it means taking R
larger. Indeed, at t, ¢ fixed, for every curve of F}, the total length of the sets that do
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not meet the desired condition is at most 2L;.

On the set £ = Ey N Ey N Ej5, one sees that (h4) to (h6) are verified. Furthermore,
po(E°) = O(T1%). More, (h1) to (h3) are verified. Hence the wanted result. O

Proof of Theorem 2. By using Lemma [5] and Proposition [4 Proposition [5] and Propo-
sition [7] which enables us to apply Theorem [3] one gets finally the validity of Theorem
2 O

Note : the result remains valid if we assume L distributed according to ji, because
the geodesic flow mixes at exponential speed.

2.5 Asymptotical study of R

2.5.1 First considerations on the error R

The problem that interests us now is that of convergence in distribution of %%(t))ﬂ)

where X € R%, ¢t > 0, P is a parallelogram of non-empty interior and L € .%. For
simplicity, we can assume, as we are working with L distributed according to ji; and
X according to Ao, that the parallelogram P is a rectangle whose sides are parallel to
the coordinate axes (this can be done by deforming P via the rotation matrices and via

1
the matrices of the form (0 I)) and, even if it means deforming P wia the matrices

A0 N .
of the form 1 |, we can assume that P is, in fact, a square whose sides are parallel

0 1
to the coordinate)\axes and finally, even if means translating P, we can assume that the
centre of P is (0,0). Note that we have used all the degrees of freedom of the problem
that we had a priori.

This simplification made, let us call A; the lower right-hand corner of P of coordinates
(a,—a), Ay the upper right-hand corner of P of coordinates (a,a), Az the upper left
corner of P with coordinates (—a,a) and A, the lower left-hand corner of P of coordi-
nates (—a, —a) with a > 0.

We now need to introduce some notations to recall a result of [82] which is necessary
to establish the desired convergence in distribution. Let us call :

1
o« T — log(t)%

t

e t*¥ =t 4 B7 with 8 € R well-chosen

p > 0 such that 7 = p~¢ where 6 €]0, 1| with € as near as 1 that one wants

e M) = 4

R

« wj is a function of compact support C By(0, i), of class C"*°, non-negative, smaller
than 1 and such that w; =1 over By(0, é), with spherical symmetry
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e wy is the Fourier transform of fw:u (and is therefore a rapidly decreasing function

with spherical symmetry)

With these notations, we can now pose :
1 1 1

] MR )wa (1w —1l 62i7r<l,tip0+X>
log(t> (27TZ>2 lGLJ_Z_{O} (Rll)l(Rll)Q ( 1) 2( ) 1(p )

SE(r,t,P°, Ry, X, L) =

where R; € SO3(R) and where Ry L™ is assumed to be weakly admissible (see Definition
D).
Finally, let us call R = ( 0 1) , I = (1 O) and

-1 0 0 1

~ 4 . ~ ~

SE(rt, X, L) =Y (1) (57 (r,t, Ay, I, X, L) — S§(,t, 4, R, X, L)).
i=1

The two sums S* are in fact two sums over what is called the set of flags of the square
P, which in this particular case is composed of 8 elements (see [82] for more details).
The following result is given by [82]:

Proposition 8. For every a > 0, for every t large enough,

R(tP+ X,L) _ - @>>1_a

G+ > > S~ —
P(a—i—S (1,t, X, L) > g (1) > S (1,t, X, L)

Thus, to show Theorem , it is sufficient to show that S~ and ST have a common
asymptotic distribution which is a centred Cauchy distribution.
Moreover, the study of the asymptotic convergence of S~ can be conducted in the same
way as that of ST and the limit distribution will be independent of the sign +. As a
consequence, we have to and will only deal with S* and, from now on, we rename it S.
All along the proof, it will be pointed out what would have happened if we had dealt
with S~ instead of S—.

2.5.2 Single term study

For pedagogical purposes, we will simplify the situation by dealing with only a single
term of S namely : . )
So(T,t, X, L) = S{(7,t, As, I, X, L). (2.33)

The purpose of this subsection is to show the following result:

Theorem ~7. When L € % is distributed according to iz, when X is distributed ac-
cording to Aoy, Sy converges in distribution towards a Cauchy centred distribution.

One clarification, however: as we have seen in the previous section, we can and will
assume that there is D > 0 such that for all [ € L — {0},

|Lilz| = D] log(|I]]2)| 7' (2.34)
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(with 5 > 0) and that
L] = Ve. (2.35)
Moreover, we will replace L+ by L in the study of S, (which is not a problem because

L — L+ is a regular involution).

Heuristically, the term in the denominator |Num(l)| is in fact related to a certain
|05 L||, while in the numerator we have a term that will behave at infinity as a 6. Since
we have managed to prove Theorem 2, we should succeed in proving this last theorem.

Let us introduce:

5 2 hot
So(mt,e, X, L) = —= > —= (2.36)
(27TZ)2 th_(t) Zht
where
Ent = Num(l(L, h)) log(t) , (2.37)
1
D= > yE cos(2km < I(L,h),t" Ay + X >) and (2.38)
keN—{0}
I_(t) = {h € [~[log(t)],0] | ||6sL||* < 2cosh(1)|Num(e(d,L))| and (2.39)
1
Num(e(6,L))| < ———
Num(e(3) < o)
with e(L) the unique vector of L such that its first coordinate is positive and such that
le(L)|| = |IL|| (e(L) is defined for almost any lattice L), ¢ > 0 and with {(L,h) =
5}:16(5]1[/).

With these notations, we are going to proceed the following way to show Theorem [7]
First, in the second subsection, we are going to show the following proposition which
allows us to move from the asymptotic study of Sy to that of Sy:

Proposition 9. For every a > 0, for every e > 0 small enough, for every t large
enough, 3 .
P(|Sy — So| = a) < a.

This proposal will be the subject of the following subsubsection and is obtained
after a number of successive reductions, which require estimates of integrals, the use of
tools from Fourier analysis and classical analysis, the geometry of lattices and the use
of dynamic tools on the space of lattices with the geodesic flow (the ergodic theorem
for example).

A third subsection will be devoted to the development of a framework to reduce the
asymptotic study of the {Z,,} and of the {I',;} to the verification of hypothesis (h1)
to (h8) of Theorem [4] The following subsection will be dedicated to the verification of
these assumptions which will ensure that the {Z,,;} asymptotically form a Poisson pro-
cess and the {I';;} are asymptotically independent, identically distributed, symmetric,
compactly supported real random variables independent of {=;}. It will enable us,
in fine, via Lemma [ to get the validity of Theorem [7}

In the fifth and final subsection of this section, building on the results of the previous
subsections, we will return to the study of S; and prove Theorem .
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Proof of Proposition [J - "Forgetting" of the function w,

Let us introduce the following quantity:

y 11 1 L
t,X,L)= — )\ [)e2im<LttAz+X>

leJs(L,aut) ll

where

1
Js(L,a,t) = {l € L—{0} | [lI]| < gta}

with 1 < o < § (later, we are going to make it go towards 1).
The purpose of this subsection is then to prove the following proposition:

Proposition 10. |S; — Ss| converges in probability towards 0.

Heuristically, this proposition means that we replace w; by its value in 0, which is
1, and that we cut the terms in [ whose norm is too large, which is what the function
wy does when [ in norm is greater than it%. It is therefore quite natural to prove this.
To prove this proposition, we need the following lemma, stated in dimension d > 2.

Lemma 25. For every e > 0, for all B > 0, for every v > 0,

1
/ leR4 ——dly -+ dlyg = O(log(t)d)-
1<l <etter |-+ Ll
jta-+-1a|> D log (U1} ~4=7

Proof. By continuity and symmetry, this is equivalent to showing that:

1
/ e dly - - dly = Olog(1)?).
1<||lH<t1+€1 ll A ld
ly-+lg=Dlog(||l)t —4=7
0<l1<l2<-<lg

Let us call I this last integral.

The system of inequalities on [ implies that :

foreveryi € {1,--- ,d}, l; <t and [{(t1H9)4=% > Dlog(|li|)!=4# = Clog(tter)l-4-5.
Thus, for any i :

1-d—8
1 3

g s> o)
(e &

As a consequence, for every t large enough, by using Fubini’s theorem, one gets that :

d 1
/ vus —dl;,
titer 2[,20,10€<t) v _ l’L
‘ ’ t(1+51 d—t

I'<
i=1

3

However, for any i, [ 1-as +dl; = O(log(t)). So one gets the wanted result.
pres o e 7
(e T2

T

o~

]

Now let us prove Proposition [10]



2.5. ASYMPTOTICAL STUDY OF R 67

Proof of Proposition[10] Given the properties on w; and the definition of p, we have
(by implying the various variables) :

M 1
log(t) leLz:—{O} |INum(7)|

|5y — 5| < |ws(T1)]. (2.40)

=

=gt

Yet, ws is a rapidly decreasing function and for [ like in the sum, one gets ||7l|| > 7t* >
t*land a —1 > 0.
So, from Equation ([2.40|) one gets that :

M 1

log(t)t17(e=1) ZGLX:_{O} [Num(l)|

1Sy — 5] < (2.41)

S

1
|tz gt

As a consequence, one gets the wanted result thanks to Lemma/[7]and thanks to Equation
(2.34]) which enables us to use Lemma . O

As a result, the study is reduced to the study of Ss .

Proof of Proposition [J - Centring on prime vectors

Let us introduce:

- 2 1

Su(r,t, X, L) = wa(brl)

log(t) (27i) leJy(Lat) hiy keN—{0} k2

cos(2km < [,tT Ay + X >)

\g
|
\g

(2.42)
where

1
Ja(La,t) ={1e L— {0} | | < gl L prime, by > 0}.
The purpose of this subsection is to prove the following proposition:

Proposition 11. S, — S5 converges in probability towards 0.

This proposition tells us, on the one hand, that we can group together all the terms
which are multiples of a prime vector [, and, on the other hand, that we can just consider
the prime vectors [ whose first coordinate is strictly positive (via a parity argument and
even if we have to eliminate a negligible set of lattices).

Proof. First, by using the invariance by the transformation [ — —[ of wy(l), of Num(l)
(in general it depends on the parity of the dimension d) and of A((), it comes that :

) 2 1 1 .
Ss(1,t, X, L) = log(f) (2r1)? —ADwo(Tl) cos(2m < [,tT Ay + X >).  (2.43)

lily

lE[lz
<5t
11>0

'We see in the proof of Proposition that we have upper bounded the modulus of the terms
2 <ULt As+X> by 1 So this proof is also valid by having ¢~ instead of ¢*.
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From Equation (2.42)) and from Equation (2.43)), one gets that :

~ M |lwa (71)]
1S3 — Syl < 7—7= vl
o 2 TNum(l)
ll2]1> gt
11>0
The conclusion is the same as for Proposition [10] O]

The study is so reduced to the study of 54

Proof of Proposition [J - Reduction of the sum to terms [ such that Num(l)
is small

Let € > 0. Let us introduce:

~ 2 1 1 wo(kTl
55(7_7ta €, X, L) - 10g<t) (27_(@)2 Z 7)\(” Z 2<]€2 ) COS(2]{37T < l,t+A2+X >)

(2.44)

where

1, 1
Jo(Loaset) = {t e L={0} | 1]l < gt Uprime, b > 0, [Num(l)] < s}

The purpose of this subsection is then to prove the following proposition:

Proposition 12. For every k > 0, for every ¢ > 0 small enough, for every t large
enough, one has ) 3
P(|S4(T,t,X, L) — Ss(r,t,e, X, L)| > Ii) < K.

This proposition essentially tells us that we can reduce ourselves to the terms [ €
J4(L, o, t) who see their Num being small (which is natural since, as the inverse quantity
is involved in the sum, it corresponds to terms that contribute a lot to the sum).

The proof is based on the following lemma stated in dimension d > 2 :

Lemma 26. There M > 0 such that for all e; > 0,

1

/ mt —sdly - dly < Mlog(t)22e.
1<l <ttter -1

|N“m(l)\>w

Proof. Because of a symmetry argument, we can assume that the [; are strictly positive.
We set ¢ : (I, ,1g) — (l1,l1la,- -+ 13-+ -1g). Then ¢ is a C*°-diffeomorphism from
(R, —{0})¢ on itself and the Jacobian matrix in (1, - - ,l4), denoted by Jac(ly, - ,1q),
satisfies that :

d—1
Jac(ly, -+ 1g) = [] ¢i(la, -+ La). (2.45)
=1

20ne sees that, in the proof of Proposition essentially used a parity argument and upper bounded
the terms | cos(2m < I,tT As + X >)| by 1. This proof is so still valid if one considers ¢~ instead of ¢*.
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Furthermore, as [ belongs to the domain of the integral referred to in Lemma 26 one
sees that for every ¢ € {1,--- ,d — 1}, b; = )d—1t1(1+61)(n7i) < ¢i(1) < t0He)i = py et

Pa(l) > W bd
From Equation ([2.45]), one gets that :

elog(t

L 1
vici<d, >0 3zl dla < [; 1w g —du. (2.46)
/ 1<||ZlH2<t1+€1 l% T l?l - 1<Z<dbd1<’ul);<UZghz ’LL H 1 U;
Num(l))W
The right-hand member can be calculated and we obtain the wanted result. O

Now, let us prove Proposition [12]

Proof of Proposition[12| By calling A the norm 2 squared of the difference between Sy
and S5 relatively to X, the Parseval’s formula gives us that :

M, 1 (wo(kTl))?
A= (0P Y (247)
log(t)? leh(zl;a y  (hl)? keNZ—:{O} k€
[Num(l )‘>elog(t)

where M; > 0.
By using the fact that w, and A are bounded and by integrating relatively to L € .%
and by using Lemma [7] and then Lemma [26] (in the case where d = 2), one gets that

for every t large enough :
E(A) <
log(t)?

where M > 0. So, one gets the wanted resuilt. O

—elog(t)’

As a consequence, the study is reduced to, for € > 0, the study of S5 .

Proof of Proposition [J - Transition to a geodesic sum

The aim of this subsubsection is to pass from a sum on [ € L — {0} to a sum on
op L with h integer. To speak more precisely, let us introduce some notations. For
L € . weakly admissible, let e(L) be the unique vector of L such that e(L); > 0 and
le(L)|| = ||L|lx (e(L) is necessarily prime) and let us give n > a — 1, as close as one
wants of av — 1.

Let us introduce now the set

I(t,n) = {h € [=[(1+n)log(t)], [(1 +n) log(t)]] | |6 LI|* < 2cosh(1)|Num(e(6,L))| and

1
[Num(e(@L)| < - (t)}

3We see that in the proof, if we replace ¢t by ¢~ it still works: the term cos(2km < [,#T Ay + X >)
occurs only at the beginning of the proof and we eliminate it via Parseval’s formula, which still works
by replacing t+ by ¢~
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the vectors L being of the form
I(L,h) =5, 'e(6,L) (2.48)

where h belongs to Z and the sum

- 2 1
Se(rt, e, X, L) = ——= Y ——A((L,h)) (2.49)
(2m1)? heT(m) Shit
L
> W cos(2km < I(L,h),t" Ay + X >))

keN—{0}

Let us recall that = ; was defined by Equation ([2.37)).
The goal of this subsubsection is to prove the following proposition:

Proposition 13. S5 — Sg converges in probability towards 0.

This proposition enables us to return to the study of a geodesic sum, namely Sg.
The important fact is that the points [ of the sum S are in fact of the form I(L, h)
with h € I(t,n) (see Lemma [28 and Lemma and that the terms of S; which are in
addition relatively to the sum S5 are negligible (which is given by Lemma Lemma
and Lemma [30)).

To show this proposition, we first need to go back and clarify the beginning of section
7 of [82].

Let us set P =|0, co[x (R — {0}).

In this section, Skriganov introduces the group action defined by (§,z) € A X P —— dz.
This one admits as fundamental domain:

11

1
FA:{m(6y,6_y)|m>O7y€[— 575[}

1, ..
57 5[ }U{ m(ey7 _e_y) | m > 07 y e [_
Lemma 27. For every x = (x1,%2) € P, the unique h(x) € Z such that dpyx € Fa is
given by :
h(z) = %[log(%)] if ﬂog(%ﬂ is even and otherwise h(x) = %Llog(‘i—j')j.

Moreover, one has: Opgyx = m(e?, sgn(xa)e™) where m = /x| and y = h(x) —
3 log(122]).

Proof. The proof is elementary. O]

We notice that, even if we have to remove from P a countable set of portions of

lines, we can suppose that y €] — %, %[ This symmetrizes the situation and because

of this fact we will consider lattices L. which never touch this set of lines. This set
constitutes a measurable set of full measure.

We then have the following lemma:

Lemma 28. Letl € L as in the area of the sum Ss. Then h(l) € I(t,n).

Proof. Let [ as in the statement of the lemma. Then one has ||6,)!||* = 2 cosh(2y)|l11s]
11

and so, as y €] — 3, 3/,

2|l1l2| < |I5h(l)l||2 < 2COSh(1)|l1l2|. (250)
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Thus, since |l115| is sufficiently small and [ is prime, provided that ¢ is large enough, !
is a shortest vector of the lattice d,;)L according to the reasoning that led to Lemma

and since (dx)l)1 > 0, we have

Furthermore, as for every z, for every k € Z, Num(d,x) = Num(z), one has, according
to Equation ([2.51)) :

1
. .
Num(e(dna)L)) < elog(t)

Finally, one has: h(l) = f% log(%ﬂ ou h(l) = L% log(%)j et l2l — hlbl _ G
Yet, according to Equation (2.34)) :

(2.52)

1
elog(t)

Da™'~log(t)™~% < Dlog(J1ll)™~* < L] <

So, as [|l|| < t%, it comes that for ¢ large enough (the largeness depending on D, «, 3
et €),

—[(1+n)log(t)] < (1) < [(1+n)log(t)]

where n > a—1 and is as close as one wants of a—1. So one gets the wanted result. [

The following lemma provides a form of reciprocal:
Lemma 29. For h € I(t,n),

1
elog(t)

I(L,h) € V(L,t) = {l € L|l; > 0, [ is prime, ||| < Ct'*", Ii|ly] < }

where C' > 0 is a constant.

Proof. One sets | = I(L,h) = 0, 'e(6,L). It is clear that I; > 0 and that [ is prime
according to the definition of e.
Moreover, Minkowski’s theorem gives us that there is C' > 0 such that:

le(0nL)] < C.
So, one gets that there exists C' > 0 such that
IL|l2 < Gt
Finally, one notes that Num(l) = Num(e(d,L)) and so I(L, h) € V(L,1). O

One sees that, with [(L, ), we do not fall exactly in the domain of S5 a priori (but
we do not fall too far from it). But [(L, ) still plays the role of reciprocal of ¢(I) :

Lemma 30. Let k € L prime such that |[Num(k)| <
enough, one has l(L,t(k)) = k.

Tlg(t)‘ Provided that t is large

Conversely, let h € Z such that | Num(e(6pL))| < % and |65 L||* < 2 cosh(1)| Num(e(d,L))|.

elo

If t is large enough, t(I(L,h)) = h.
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Note that this lemma implies that h € I(n,t) are local minima (in the sense defined
in the previous section).

Proof. Let us deal with the first part of the lemma and take ¢ > 2 cosh(1) and k as in
the statement. Then according to Equation (2.50)), e(dyx)L) = dyik. Thus, we have :
I(L,t(k)) = 5&;)6((515(1?)[1) = k.

Let us now deal with the second part of the lemma and take again ¢t > 2 cosh(1) and h
as in the statement. Recall that t({(L, h)) is the unique p € Z such that

S,l(L,h) € Fa.

However, one has (L, h) = 6, 'e(d,L) and so 6,1(L, h) = e(5,L).
One has also :
||0nL||* < 2 cosh(1)|Num(e(6,L))|.

As e(dpL) can be written : e(dpL) = \/\Num(e(dhL))Key,ie_y)\ where y € R, the
previous inequality implies that:

2 cosh(2y) < 2cosh(1).

Soy €] —1,1[ and e(d,L) € Fa. O
We can now prove Proposition [13]

Proof of Proposition[I3] One has, according to Lemma 27, Lemma 28 Lemma [29 and
Lemma [30] for every ¢ large enough:

G—Sl< o X Ol

log(t) l€H(L,o,e,n,t)

kTl
> |w2(k27—)|| cos(2km < [, tT Ay + X >)|

| keN—{0}

where (S5 — Sg) is evaluated at (7,t,¢, X, L) and

T

1 , 1
H(L,a,e,n,t) ={l € L—{0} | éta < 7]l < Ct**, 1 prime, I; > 0, |[Num(l)| < log(l)e
We conclude as we concluded the proof of Proposition [L1]f] O
Proof of Proposition [J - Reduction of the number of terms in the sum
We set 1(t) = I(t,n) N {h € Z | |h| < [log(t)]} and
. 2 1
S7(1,t,e, X, L) = Py —A((L, h)) (2.53)
(2mi)?* | Sy Sne
wo(kTl(L, h
(> WCOS(Q/WT <IU(L,h),tT Ay + X >)).

keN—{0}

4At the end of the proof, the term in |cos| was upper bounded by 1. The proof is therefore still
valid by replacing t*+ by ¢~.
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Proposition 14. P(S; — S5 #0) < M2

This proposition says, grosso modo, that the factor n does not play any role in the
problem we are studying (which is understandable, it is a quantity which is not intrinsic
to the problem) and that we can reduce between what passes between —[log(t)] and

[log(t)].

Proof. We have, for ever h € I(t,n), ||0,L||*> < 2 cosh(1)|Num(e(d,L))| and

1
elog(t)

By using this observation and Lemma [§] one has :

INum(e(d,L))| <

Mmnlog(t)
elog(t)

So, one gets the wanted result. O]

P(S; — Sg # 0) <

As one can take the parameter 7 as small as one wants (by taking « as close of 1 as
one wants), the study is reduced to the study of S;.

Proof of Proposition [9 - Elimination of "close" terms from the y-axis

We introduce I_(t) = I(t) NR_ and the two following quantities :
~ 2

‘ -

58(7_7 t,e€, Xa L) = : Z = (254)
(27i)? hel (1) —Mt
(TR ook < (L), Ay 1 X ).

keN—{0}
The purpose of this subsection is to prove the following proposition

Proposition 15. S; — Sy converges towards 0 in probability.

The purpose of this proposition is to remove the terms h > 0 and to simplify the
term in A. Actually, the terms h in question will become large as t grows and this
will correspond to [ terms such that [1ly will be small and [l will be large (in absolute
value), i.e. "close' to the y-axis and the term in A will therefore be close to 0. As for
the terms corresponding to h < 0, these will become smaller and smaller as ¢ grows
and this will correspond to [ terms such that l;ls will be small and [; will be large (in
absolute value), i.e. "close" to the x-axis and the A term will thus be close to 1.

Proof. Let us give h € I(t) such that h > 0. We omit L and h in I(L,h) for the sake
of simplification, and we pose (L, h) = (l1,l3). Let us assume l; > ls. As h € I(t), one
has

2 cosh(1)

2h12 | —2h)2
l l5 < .
e Tk elog(t)
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So, one gets:
2 cosh(1)e=2"

12
1S T log(t)
and
9 cosh(1)
elog(t) cosh(2h)’

But, according to Equation ([2.35)), I? 4+ I3 > €, which is excluded for ¢ large enough.
Thus, one has I; <ly. As h € I( ) one gets

1
|| € ——=—= and (2.55)

elog(t)

€
b > /5. (2.56)

From the expression of h, from the coordinates of [ given by the lemma we note in
passing that, for ¢ large enough,

h > H log(log(1))

where H is a constant > 0.

Thanks to Equation (2.55)) and to Equation ({2.56[), one has also :
_

e2log(t)

In the case where h < 0, one gets that : [; > s,

0< () <

1
o] < ————,
elog(t)

€
ll > \/;)
h < —H log(log(t)) and
1
A = 1] <

= log(t)

In view of the preceding remarks, we see that there exists a constant F' > 0 such that

‘(58 - g7)<7_7t7P07X7 L)| ES (257)

e2log t)2 Z H(ShLH?

and, thanks to Lemma 3.2 of [82], the last quantity, for almost every L € .7, is

O(1 (1) ) (this lemma from [82] is a consequence of Theorem |§| and of Lemma @ So,
ogl(t
one gets the wanted result ]

5We can see that here too the absolute value of cos is upper bounded by 1. This proof is therefore
also valid when we replace ¢t by ¢~.
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Proof of Proposition [J| - Replacement of wy by w(0) and conclusion

As ws is the Fourier transform of ﬁ, wz(0) = 1 and so one has:

- 2 1

So(r,t,6, X, L) = —= > = (2.58)
(2mi)? Sy S
(> w2(20) cos(2km < I(L,h),t" Ay + X >))

keN—{0}

according to Equation ([2.36)).
The purpose of this subsubsection is to prove the following proposition which allows to
replace the wy term by its single value in 0 :

Proposition 16. Ss — Sy converges in probability towards 0.

Proof. Let us note that, for k € N — {0}, for h € I(t) :

2 cosh(1)

kTl(L, h)|| < kre 2§, L|| < kre'os® .
|ETI(L, h)|| < kre W0, L|| < kTe clog(l)

As 7= 60T "one has with [ = [(L, k)

t Y

1 2 cosh(1)

ki) < Kk ;
log(t)1 ¢

So, according to the mean value theorem, and as w is a rapidly decreasing function :

’w(lm'l) cos(2mk < l,;tT Ay + X >) w(0)cos(2mk < 1,74 + X >)’ < min( F F
k? k? SN2

where F' is a constant > 0 which depends on e. With Equation (2.59)), one finds that :
wo(kTl)

> 5 cos(2km <I(L,h),t" Ay + X > — >~ 2(0) cos(2km < I(L,h),tT Ay + X > |
keN—{0} k keN—{0}

(2.60)
where the O depends only on €. So, one finds that:
N . 7 SnL|| ™2
G gy < pEreL 9L 201

log(t)'*+

where F' > 0 is a constant depending on e.

Thanks again to Lemma 3.2 of [82], one finds that this term is O(l (l); ). So, one gets
og(t) 16

the wanted result [ O

6Yet again, we have upper bounded the absolute value of cos by 1. The proof is still valid if we
replace t+ by t~.
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Proof of Proposition[9. It is a consequence of Proposition [I0, Proposition [I1 Proposi-
tion , Proposition , Proposition , Proposition , Proposition [Z| ]

2.5.3 Transfer of the problem to the checking of the hypothesis
of Theorem [

Now, with Sy, we are going to conclude like in the previous section, id est by showing
the following proposition:

Proposition 17. One has:

o 1) {Enitner ) converges towards a Poisson process over [—2,2]—{0} of constant
intensity (mdependent from €).

e 2) The real random variables (U'ni)pe (1 converge asymptotically towards real
random variables that are symmetric, independent, identically distributed, with
compact support and independent from {Zn}per 1)-

Concerning item 2), as t* =t +br, as 7 = log(t) , it is enough to show the result by
replacing t* by ¢ (even if it means adapting the reasonlng leading to Equation (2.61)) [
Moreover, one can replace log(t) by [log(t)].

Let us set some new notations:

M = [log(t)]
vy (L) = (MNum(e(-)) 12 cosh(1) Num(e(:)[>|12) (L)
* I/}Jy(L) =l 3 (0nL),

&' =1me 11 (o

CM(L, X) =< e(6,L), 67 (€M Ay + X) > (mod 1)

If we show the next proposition, the validity of Proposition [L7| will follow :

Proposition 18. One has:

o 1) (VM JeM—1, he[-ar0) converges towards a Poisson process over [—1,1] — {0} of
constant intensity (independent from €).

"Since all the propositions in question are still valid if we replace t* by ¢, the reduction from
tildeSs to tildeSy is still valid with ¢~ instead of ¢T.

8Let us remark that this reasoning makes only intervene |t —t*|. However, [t —tT| = |t —t7|. Asa
consequence, Proposmon u 7| will still be valid if we replace t* by ¢~ and, as a result, S and S5 will
converge towards the same centred Cauchy distribution.
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e 2) (C}i\/‘[)gy:L he[-m,0] converge asymptotically towards random variables which are
valued in R/Z, independent, identically distributed according to the mormalized
Haar measure over R/Z, independent from (V,]l”)&w:l, hel=M,0]-

Proof that it is enough to show Proposition [I8| It is enough to observe that:
e h € [—M,0] signifies exactly that h € I_(t).

« (&")(L) = 1 signifies exactly that [Num(l(L,h))[log(t)]| < I, and, in that case,
(v")(L) = Num(I(L, h)) [log(t)]

o (ML, X)=(<I(L,k),eMA;+ X >)
]

Moreover, the dominating term in < e(d, L), 6;, ' (eM Ay +X) > is < e(6,L), 5, 'eM Ay >.
So, we can assume, and we will do it in the following, that:

V(L) =< e(6,L), 8, e™ Ay > (mod 1)

(in particular, one can forget the dependence on X).
Let us focus now on the proof of Proposition (18|

2.5.4 Verification of hypothesis of Theorem [{

Theorem [4], the remark that follows it and the proposition that follows after enable
us to show Proposition [I8 In order to state this proposition, let us keep in mind the
notations of the previous subsection and let us set :

e M(h) = —2h

X =[-L1- {0}

€’ e

- Q= (QP)PGN—{O} where VP € N — {0}7 Qp = (Xk,P)ke{o,...vp_l} with
for all k € [0; P — 1], Xy p = [- 5L KLl Ll htll)

« X = R/Z and Q= ((X}C’p)ke{o7...,P—l})PEN_{Q} a collection of partitions of inter-
vals of length + with P € N — {0}

e \y(h) = M — h so that we have Ay > Ay sur Int(IIy,)

The proposition that we are going to show is the following:
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Proposition 19. (Ay, Ao, {&}, {we}, {¢:}) satisfy hypothesis from (k1) to (h8) of Thereom
HL.

Proposition as a consequence, is valid.

Proof of the second part of Proposition[19 It is implied by Lemma [T] and Theorem [4]
O

We will now show that (hl) to (h8) are verified here.

Verification of hypothesis (hl) to (h8) and conclusion

The purpose of this section is to verify the following proposition which is the first
part of Proposition [19] :

Proposition 20. (A, Ao, {&}, {ni}, {G}) satisfy (h1) to (h8) of Theorem[4]
We need some preliminary lemmas, the equivalents of which can be found in the

previous section and the proofs are more or less the same (Green-Riemann’s theorem
is useful for the second lemma).

Lemma 31. & p, & belong to H>® and

1€0,P; &0

Hs»s — O(].)

Let us set X = {z €]0, 00 | d(x,dX) < M1} and X; = {z €]0, 00| | d(z, 0X;) <
M0} (the index P being implied).
Let us also define &, = 1, cxet 57;,1- =1, x, (the exponent M being implied). Then
one has:

Lemma 32.
fiz, (E0) = O(T) (2.62)

A~

fiz (&) = O(T1) (2.63)

Before passing to the proof of Proposition , let’s say a few words about it. (hl)
to (h6) are checked in a analogous way to what was done in the previous section. The
same is true for (h8). Only the verification of (h7) stands out and the penultimate
paragraph is dedicated to it.

Proof of Proposition 20 Let us assume that ps = fiz, the general case is treated in an
analogous way and with the help of the results of the simplified case that we are now

treating.
e Verification of (hl)
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By the same reasoning as in the previous section, using the lemmal7], we find, by posing
D = [u20, v>0 Luv<i 1acosh(1)uvs | (w025 that

e 2D
E&) = (2.64)
e Verification of (h2)

Given the definition of &M, it is clear that (h2) is verified.

e Verification of (h3)

We have seen that if we had before a k such that & = 1 then necessarily this k& was a
local minimum of p € Z — ||6,L||* and the k such that zi}! =1 are k such that

2cosh(1)e

5, L% <
18,17 < ==

Thus, by the same reasoning that led to the Inequation (refeq120), we see that (h3) is
verified: the k that fit are sufficiently distant.

e Verification of (h4a), (h4b) et (h4c)

Let p € N — {0}. Here too, we will have 7, = . Therefore, it is only necessary to
check (h4a) and (h4b), (h4c) being then checked automatically.

Following the same reasoning as in the previous section, and using the W, -foliation
(which corresponds to the matrix hy(7) transposed, whereas the W -foliation corre-
sponds to (7)), one can see that there exists By and F, such that for all ¢ € II, such
that (h4) is verified. We have this because of Lemma [31]

e Verification of (hb)

Here again, we follow the same reasoning as in the previous section. Here again, we

must replace the set we are working on, I_(t), by the set I_(t) where :

I(t) = {h € [-[log(t)],0] | [|0nL|* + M 2" < 2cosh(1)|Num(e(d,L))| and

1
N L g - M*QOOl
Num(e(aL)| € 1o )

Doing so costs only a O(M ~10%).

To complete the same reasoning, we must use the equality shown in the previous section,
namely

M|’h(7)5ku||72 = MHékuH*? + O(M”OQH)
(valid as long as the foliation used is sufficiently thin), use the fact that

[Num(e(h(7)dL))| = [Num(e(dxL))[(1 + O(7))

when 7 — 0 and use Lemma [32

e Verification of (h6)

Verification of (h6) is done in a very similar way to what was done in the previous
section.

e Verification of (h7)

We now have a set of E on which from (hl) to (h6) are verified. Let give us k, k" in
[—M, 0] such that A\y(k) > A (F') + Rlog(M) > A\ (k) + 2R1og(M). Let L € E such
that &,(L) = &p(L) = 1 where p € {0,---, P — 1}. One wants to show, in order to
prove (h7), that :

pa(< e(6,L), 6, (eMAy) > (mod 1) € X, p|Fi)(L) = Leb(X); p(1 + o(1)).



80 CHAPTER 2. THE CASE OF BOXES

1 7
(1)

and set 7, = Fjs(L). Then, one has:
Tk = {hzz}ong(eh(k’)MlooO)fl

Let us recall that

where L € .%.
Even if it means increasing R, one can assume that, thanks to (h5), that &, = 1 over
Y, and so, in particular, by setting

e = (e1,e0) = e(6 L),

e satisfies :
2 cosh(1)|Num(e)| > |le||* and M|Num(e)| € X,,.

Yet, one has 6phl = heTAl(mT‘Sk and, even if it means taking R larger, one can assume
that e*®) 7+ < 1 and so one has:

— T €1
e(0hrL) = h s ), € = (Te)\l(k)el I e2> .

So, one gets:
< e(6hI L), 6 eM Ay >=ereFeM(Ay); + esefeM (Ag)y + M Wreiefe (Ay)y(mod 1).

Yet, given the conditions verified by e, one has |e;| > § where f is a positive constant.
Moreover, one has eMekFe?i(*) = ¢*2(*) (see the beginning of the section 5.9) and 7 varies
within an interval of length (e*(**) A11900)=1 S0 as A\y(k) = A\ (k') 4+ Rlog(M), one gets
the wanted result as (As)s # 0.

e Verification of (h8)

One knows that: F3(L) = {hTL}0<T<(€)\1(k ) A11000) - .- According to (h5), the value of & is

1 over Fi(L). The calculation made prev1ously gives that :
e(0,hI L), 6 eM Ay >= ere M (Ay), + egeteM (Ag)y + Tere2(Ay), + (mod 1).

So, if 1, ¢, is not constant over Fr(L), (; is in O(M~'%)-neighborhood of 0X,. If
we set
E ={L € EWVk, k € [-M,0] with A (k) > X2(k) + Rlog(M) one has
Vp € [0, P — 1], 1;,cx, is constant over F5(L)}

then (h8) is verified over E. Finally Lemma [7| enables us to show that py(E — E) =
O(M—9%). O

We can now prove Theorem [7] :

Proof of Theorem[7] Proposition [20] and proposition [I9] give then that Proposition [I§]
is true. Proposition [I7]is so also valid. Hence the wanted result thanks to Lemma [T
Lemma [3] and Proposition [0 O
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2.5.5 Return to S and proof of Theorem

We will now prove Theorem [} Recall that the sum to be studied is as follows:

4
S(r,t, X, L) = (=1)(S(r,t, Ai, I, X, L) — S(7,t, A, R, X, L)) (2.65)

=1

and the various sums relate to terms [ € L and not on terms [ € L.

The way to prove Theorem [1]in that case is the following. For every term in S*, we
reduce the corresponding sum thanks to what was done in the previous section, the
results extending naturally. Then we group these 8 new sums by small calculations.
Finally we conclude by following the same approach as before (application of Theorem
).

More precisely, after some reductions and small calculations, we see that the asymptotic
study of S is reduced to the study of :

2 1
S(t Poe X, L) = —— (266
( ) 72 log(t) he%t’e) Num(I(L, h)) (2.66)
3 sin(2mz(I(L, h))1tta) sin(2mm (I(L, h))otTa) cos(2mn < I(L,h), X >)
meN—{0} m?
where

I(L.t,e) = {h & [~Tlog(t)]. Nog(t)]] | 181 LI1* < 2cosh(1)|Num(e(8,L))

1
and |Num(e(d,L))| < elog(t)}’ (2.67)

Starting from there, a proof of Theorem [I] is the following:

Proof of Theorem [l By following the same method as before, we show that:

o {Num(I(L, h))}pef(rre) converges towards a Poisson process over [—2, 1] of con-

stant intensity, independent from ¢

« The sequence of random variables ((I(L, h))ita)yefr ¢ valued in R/Z converge
towards independent identically distributed random variables independent, whose
common distribution is the normalized Haar measure over R/Z. Furthermore,
they become independent, at infinity, of {Num(I(L, h))}ycrrs.0)-

o The sequence of random variables ((I(L, h))ata),cfr s valued in R/Z converge
towards independent identically distributed random variables independent, whose
common distribution is the normalized Haar measure over R/Z. Furthermore,
they become independent, at infinity, of {Num(I(L, h))}yefrs0)-

One also shows that, modulo 1, the sequence of random variables ((I(L, h))1ta),ezr, 1.0
becomes independent from ((I(L, h))2ta)yef(r, 1) When ¢ — oco.
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Furthermore, all these properties also hold for (< (L, h), X >) modulo 1.
Thanks to that, one obtains that:

(2

meN—{0}

sin(2mm(I(L, h))1t*a) sin(2mm(I(L, h))otTa) cos(2mn < I(L,h), X >))
2 hel(L,t,e)

m

converge to mutually independent non-zero real random variables with a common dis-
tribution that is symmetric and whose support is compact, and that are asymptotically
independent of (Num(l(L, h)))pef(rs- We can then apply Lemma . Since this rea-
soning also works by replacing ¢+ by ¢, we get the desired result.

Hereafter, we first expose the reduction that the previous section allows us to do on
the 8 terms of the sum S and then some small calculations that allow us to reduce the
study to the sum X in the form exposed here []]

Reduction of the 8 terms S, of S

Following what was done throughout the previous section and posing (for A a point
of R? and R, € SOQ(R))

I(Ry,L.t.¢) = {h € [~[log(t)],0] | |6nR: L] < 2 cosh(1)|Num(e(6, R L))|  (2.68)

1
and |Num(e(8,R,L))] < 61Og@)}

cos(2mm < ,tTRiA+ R X >)
m2

G1<7_7taA7R17X7l): Z
meN—-{0}

(2.69)

2 1 1
log(t) (2mi)? 2 Num(l(RiL, h))

hel(Ry,Lt,e)

21<T,t,A,R1,X,L): Gl(T,t,A,Rl,X,l(RlL,h))

(2.70)
4 . ~ ~
S(r,6, X, L) =Y (=1)(Se(r,t, A, I, X, L) — S,(7,t, A;, R, X, L)) (2.71)
i=1
0 1 . o
(where we recall that R = (_1 O>) we get the following proposition:

Proposition 21. For every a > 0, for every ¢ > 0 small enough, for t large enough,
one has
IP’(]SI — 3| < a) <o

The study is reduced to the study of 3 [}

9These two parts work independently of whether we consider ¢* or t~.
19Given what we have noted throughout the passage from Sy to S, this reduction also applies if we
replace t1 by t~.
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A last regrouping of terms

The purpose of this subsection is to see that (7, ¢, X, L) can also be written :

Proposition 22.

-1 1 4 cos(2mm < I(L,h),tTA; + X >)
St Pe, X, L) = —— - (—1) Vs .
272 log(t) hd%;’t’&) Num(l(L, h)) m€§{0} Z:ZI m?
(2.72)

The key to this proposition is that when we have an h that is in I(R, L,t,€), —h
belongs to I(Is, L,t,€) and vice versa. This is just the translation of the fact that if a
vector [ € L is large in norm and "close" to the x-axis, it is "far" from the y-axis and
vice versa [[]

Proof. For t large enough, if one has h such that h € I(Iy, L,t,¢€) then
6(5hL> == 6(R§_hRL) = :I:Re(é_hRL)

and so —h € I(R, L,t,¢) and Num(e(d,L)) = —Num(e(d_,RL)).

Reversing the role of R and I, we have the converse.

By using Equation , Equation ([2.69) and Equation (2.71)) and the previous re-
marks in this proof, the desired result is obtained by grouping the terms corresponding
to the different flags. O

A last rewriting

In order to arrive at the final ¥ formula given at the beginning of this subsection,
we need to perform a final rewriting of the S’T,Q(t, P,e, X, L) terms.
Let us recall that A; is of coordinates (a,—a), Ay is of coordinates (a,a), As is of
coordinates (—a,a) and Ay is of coordinates (—a,—a). An application of the usual
trigonometric formulas then gives :

Proposition 23.

- 2 1
So(t,Poe, X, L) = —— 273
2 ) 72 log(t) hd(ZL,t’E) Num(I(L, h)) (2.73)
sin(2mw(I(L, h))1t*a) sin(2mm(I(L, h))otTa) cos(2mm < I(L,h), X >)

>

2
meN—{0} m

This proposition is still valid if we replace t* by .

' This proposition is independent of the fact that ¢ = t*. It is therefore still valid by replacing ¢~
by tT.



Chapter 3

The case of ovals

(Résumé en frangais) Nous étudions l'erreur du nombre de points de réseaux uni-
modulaires qui tombent dans une ellipse dilatée et centrée autour de 0. Le résultat
principal est que erreur, lorsqu’elle est normalisée par v/t avec t le paramétre de di-
latation et lorsque le réseau est aléatoire, converge en loi vers une loi explicite. Pour
cela, nous utilisons d’abord de I’analyse harmonique pour réduire ’étude de 'erreur
normalisée a 1'étude d'une transformée de Siegel S(f;)(L) qui dépend de ¢. Ensuite,
lorsque t — 0o, nous montrons que S(f;) se comporte en loi comme une transformée
de Siegel modifiée avec des poids aléatoires S(F)(6, L) ou 0 est une suite de variables
aléatoires indépendantes et identiquement distribuées sur le tore. Enfin, nous montrons
que cette derniere quantité converge presque stirement et nous étudions I’existence des
moments de sa loi.

(English abstract) We study the error of the number of unimodular lattice points
that fall into a dilated and centred ellipse around 0. The main result is that the er-
ror, when normalized by v/t with t the parameter of dilatation and when the lattice
is random, converges in distribution towards an explicit distribution. For this, we first
use harmonic analysis to reduce the study of the normalized error to the study of a
Siegel transform S(f;)(L) that depends on t. Then, when ¢ — 0o, we show that S(f;)
behaves in distribution as a modified Siegel transform with random weights S(F)(6, L)
where 6 is a sequence of independent and identically distributed random variables on
the torus. Finally, we show that this last quantity converges almost surely and we study
the existence of the moments of its distribution.
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3.1 Introduction

The lattice point problem is an open problem in the Geometry of Numbers, at
least since Carl Friedrich Gauss took interest in which became the famous Gauss circle
problem. The general problem states as follows.

Let d be an integer greater than 1. We recall the following definition :

Definition 12. A subset L of R is a lattice if it is a subgroup of R% such that L is
discrete and span(L) = R%.

Let P be a measurable subset of R? of non-zero finite Lebesgue measure. We want
to evaluate the following cardinal number when t — oo :

NP+ X,L)=|tP+ X)NL|

where X € RY, L is a lattice of R? and tP + X denotes the set P dilated by a factor ¢
relatively to 0 and then translated by the vector X.
Under mild regularity conditions on the set P, one can show that :

N(tP+X,L) = tdm + o(t%)

where o(f(t)) denotes a quantity such that, when divided by f(t), it goes to 0 when
t — oo and where Covol(L) is defined as :

Definition 13. The covolume of a lattice L of RY, Covol(L), is the Lebesque measure
of a measurable fundamental set of L. Furthermore, a lattice is said to be unimodular
if its covolume is equal to 1.

When d = 2, instead of using the term covolume, we use the term coarea.

We are interested in the error term
4 Vol(P)

P+ X L)=N{tP+X,L) —t'———m—~—.
R(tP + X, L) (P + X, L) tCovol(L)

In the case where d = 2 and where P is the unit disk D? Hardy’s conjecture in [36]
stipulates that we should have for all € > 0,

R(tD?, Z%) = O(t27°)



86 CHAPTER 3. THE CASE OF OVALS

where Y = O(f(t)) is a quantity such that

Y < Clf®)l

with C' > 0
One of the result in this direction has been established by Iwaniec and Mozzochi in [43].
They have proven that for all € > 0,

R(tD?, Z%) = O(tiT ).
This result has been recently improved by Huxley in [42]. Indeed, he has proven that :
R(tD? Z2) = O(tX log(t)*)

where K = 181 and A = 188362207.

This last result is based on estimating what are called exponential sums. In this case,
the error is considered in a deterministic way.

Another approach was followed first by Heath-Brown in [38] and then by Bleher, Cheng,
Dyson and Lebowitz in [I1]. They took interest in the case where the dilatation param-
eter t is random. More precisely, they assumed that ¢t was being distributed according
to the measure p(%)dt (that is absolutely continuous relatively to Lebesgue measure)
and where p is a probability density on [0, 1] and 7" is parameter that goes to infinity.
In that case, Bleher, Cheng, Dyson and Lebowitz showed the following result (which

generalizes the previous result of Heath-Brown) :

Theorem ([11]). Let a € [0,1[%. There exists a probability density p, on R such that
for every piecewise continuous and bounded function g : R — R,

lim T/ R(tD “‘ z ))p(;)dt:/Rg(aE)pa(aE)dw.

T—oo

Furthermore p, can be extended as an analytic function over C and satisfies that for
every € > 0,

palz) = O(e ")

when x € R and when |z| — 0.

In our case, we keep t deterministic as in the original Gauss problem but we let
the lattice L be a random unimodular lattice and we study R. This approach was
first initiated by Kesten in [48] and in [49]. It should be noted that several counting
problems have followed this approach : we can cite, for example, [9], [27], [64], [3], [60]
and [93].

We denote by .% the space of unimodular lattices and it can be seen as the quotient
space SLy(R)/SLy(Z). We denote by o the unique Haar probability measure on it.
Let us set :

= {(ki,ks) €Z* | ky Aky =1, ky > 0} (3.1)

where we agree that if k; = 0, k; A ks = 1 means that ky = 1.
We denote by ||| the usual euclidean norm over R,
We need to define some additional objects.
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Definition 14. For every i € {1,2}, we call
||L||; = min{r > 0 | B¢(0,7) contains i vectors of L lineary independent}

where By(0,7) is the closed centred ball on O for the norm ||| of radius r. These two
quantities are the successive minima of the lattice L.

In fact, for almost all L € #, ||L||2 > |[L[|; and there exists only one couple of vectors
’(|€1’(‘L)762(L)) such that (e1(L))1 > 0, [lex(L)[| = [ILl1, (e2(L))r > 0 and [leo(L)]| =
L 2.

In the rest of the article, for the sake of simplicity, for L a lattice, we will use the

notation ||L|| instead of ||L]||;.

For a lattice L € %5, we also say that a vector of L is prime if it is not a non-trivial
integer multiple of another vector of L.

In fact, for every M € SLy(R), a vector [ € L is prime if, and only if, Ml € ML

is prime and a vector (ki,ks) € Z?* is prime if, and only if, k; A ky = 1. With these

notations, one has that, for a generic lattice L € .%, e € L is prime if, and only if, e

can be written as e = kyey (L) + kaea(L) with ky A ky = 1.

Finally, for a generic lattice L € %, we call Py (L) the set of vectors e of L such that

e = kiey(L) + kaea(L) with (ki ko) € II. All the vectors of Py (L) are prime vectors

according to the previous remark.

We recall also the fact that we say that a real random variable Z is symmetrical if
P, = P_4; where, for every random variable X, Py stands for the distribution of the
random variable X.

Let fio be a probability measure that has a smooth bounded density o with respect
to pe. There are two different cases that are addressed in our main result, which is
Theorem [§] The first one is when fis is compactly supported, id est when there exists
a > 0 such that :

fio({L € # | [|[L]ly < a}) =0. (32)

The second one is when jis is non-compactly supported under the following condition
. there exists m > 0, there exists a > 0 such that for all L that belongs to the event
(L]l < o),

a(L) =m. (3.3)

An example of such a measure fis is given by the normalized Haar measure us.

Let £ be an ellipse centred around 0. Let us call M a matrix that transforms &€ into a
disk and that belongs to SLy(R). M is unique modulo the natural action of SLsy(Z).
Let us set : T = (T')! where T' = R/Z and let us call \,, the normalized Lebesgue
measure product over T,

The main result of this article is the following theorem :

Theorem 8. For every real numbers a < b,

R(t€,L)
Vit

where (M™1),jiz is the push-forward of iy by M~" and where 6 = (6,) € T,

i e (L €7

s -2 5 o)

3
T eern llell

€ [a,b]> = (Moo (M1).fi2) ((0,L) € T x 75 | S(6, L") € [a,b])
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with
cos(2rmb, — 3T)

o(6.) = Y e i (3.4)

m>=1 m?2

Furthermore, S(0, L) (and S(0,L*)) :

e converges almost surely

e is symmetrical and its expectation is equal to 0

e admits a moment of order 1 + Kk for any 0 < k < %

e S(0,L) admits moments of all order 1 < p < oo when fiy is compactly supported

e does not admit a moment of order % when [is 18 non-compactly supported under

the condition .

Basically, what our theorem shows is that Hardy’s conjecture is true on average on
L € . whereas, in [I1], it was shown that Hardy’s conjecture is true on average on t.
Furthermore, as a consequence of Theorem [8] one can see that for almost every L € .7,
when one takes L' € .% distributed according to fis, that are compactly supported
such that the sequence of their supports converge towards {L}, there exists a sequence

t,, — oo such that %f’m converge in distribution towards the distribution of the real

random variable 6 € (T, \) — S(0, L).

Moreover, we notice that, when fiy is non-compactly supported under condition ,
the tail of the distribution is by far larger than the tail of the limit distribution of [I1]
or than the tail of the limit distribution in the compact case. The main reason is that

the magnitude of S(6, L) is of order HLlll = and one has

MMMF>@=§

ol

with C' a positive constant (see Section 5 for more details).

The proof of Theorem [§ can be reduced to the case & = D?. Indeed, since the pa-
rameter of dilatation goes to infinity, we can replace it by ﬁa(g) and so the study
is reduced to the case where £ is of area 1. Furthermore, we note that in that case
there exists M € SLy(R) such that ME = D? and so the study is reduced to the case
where £ = D? by considering that L is distributed according to the probability measure
(M=), fis. As a consequence, for the rest of the article, we are going to suppose

£ =D
The next section is a preliminary dedicated to a summation formula. It will enable us

to give a heuristic explanation of the approach that we will follow. At the end of the
section, we will give the plan of the paper.
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3.2 Heuristic explanation and plan of the proof

We are first going to recall a summation formula (about this subject, see also Section
2 of [I0]). This summation formula is based on the Poisson formula applied to the
indicator function of an appropriate convex set. Yet it is not quite rigorous to use it
because there is a convergence problem due to the lack of regularity of the indicator
function. In fact, it can be used once the problem is regularised with a smooth cutoff
function. We are not going to treat the regularization issue in this section, it is treated
in Section 3. In this section, we will pretend the summation formula is valid as it is,
since it will give a good insight of how the estimation of the limit distribution can be
tackled, and we leave the technical issue of regularization for later.
After having given heuristic explanations about the proof of Theorem [§] we will expose
a detailed plan of the proof.
Let 7 be a simple, smooth, closed, convex and with a positive curvature curve in R? such
that (0, 0) lies inside . For €2, the domain enclosed by vy, we call 1,o the characteristic
function of #€2,.
Then one has that :

N(tQ,,2°) = Y 1o (n
nez?
By the Poisson summation formula (yet, as we said earlier, it is not quite rigorous to
use it because 1o, is not smooth enough and so there is a convergence problem), one
has that :
N(tQ,,Z%) = 3 1,0, (27n)

nez?

with 1/1‘57 the Fourier transform of 1, defined by

Lio, (&) = / e 1y (z)dz.
R2
Note that 1o, (0) = Area(t2,). So we obtain that :

R(1Q,,Z%) = Y 1, (270). (3.5)

nezZ2—{0}

We need some notations before moving forward. For £ E R? — {0}, let us call ,(£) the
point on v where the outer normal to y coincides with gz, EH where ||€|| refers to the usual

euclidean norm of R?. Let us call also p, () the curvature radius of v at z.,(£) and

Y’y(f) =< 5,1’7(5> >

where < -,- > denotes the usual scalar product over R2.
With these notations, the authors in [I0] obtain by giving an asymptotic expression of

ITJQ7 and by using |) ;

R(Q.,,Z%) 1 p(n) cos(2mtY, (n) — 2X) 1
Vi w Bk vog 69

nez?—{0}

Before saying what this summation formula gives in our case we need to recall the
definition of a dual lattice :
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Definition 15. For L € .%, its dual lattice L* is defined in the following way
L' ={zeR*|Vicl, <l,x>cZ}.

Furthermore, if M is a matriz in SLy(R) that represents L then (M~1)T is a matriz
that represents L+ where (M~1)T is the transpose matriz of M 1.

Let L € . and M € SLs(R) being a matrix that represents the lattice L. Then,
one has that :
R(tD? L) = R(tM~'D? Z?).

By using this last fact, by the previously exposed summation formula and after some
calculations (that we will expose later), one gets that :

R(tD* L) 1 3 cos(2mt||l]| — 2)
— =

leLt—{0}

o).

1)z t

N

Let us recall the following definition :

Definition 16. Let f be a function on R2.

Let us define formally :
S(HIL) = > fle).

ecL
e prime

S(f) is called the Siegel transform of f.
If f has a compact support, S(f) is well-defined.

. _8m
Let us set fi(z) = %%13@7{0}(@. As a consequence of the summation
x|l 2

formula, heuristically the asymptotic behaviour of R(@;’L) is the same as the asymptotic

behaviour of the following Siegel transform

Sy =1 %

cos(2mt||l]| — 2)
3 .
T iert—{o} 112

(3.7)

We can, and we will, study it when ¢t — oo by replacing L by L (because L is supposed
to be random).

By the way, here we see that a natural approach would be to replace the randomness
of t by randomness of ||I|| with L random and distributed according to fis. However,
in [I1] and in [10], this randomness on t enables the authors to use results about what
is called almost periodic function (developed in [7] and in [38]). More precisely, the
authors use the following theorem : for every F' : R, — R, if for every € > 0, there
exists a trigonometric polynomial P. such that

lim sup 1 Tmin(l7 |F(t) — P.(t)]) < e
T—oo 1 Jo

then F(t) admits an asymptotic distribution.

Here, in our case, we can not work in this framework (because of the difference of nature

of the randomness). So, we have to take another approach and the approach we are

going to follow is inspired from [27].
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We now give the main steps of the proof of Theorem

First step. By regularizing the problem, we are going to show that the quantity Sa prime(L, ),
for A > 0 a fixed parameter that is taken large enough, when ¢ — o0, is close, in prob-

ability, to R(%j’” where Sy prime(L, t) is defined by :

1 cos(2mtml|l|| — 1)

Sapmdl) == 3 o ¥ S 6
leLt prime ||l||2 meN—{0} mz
o<lifl<A

It is different from the right-hand side of Equation because, first, the sum has been
cut and it has to be cut because of a problem of convergence of the right-hand side of
Equation ; second, we take into account a phenomenon of multiplicity (if [ appears
in the sum, 2/ is also going to appear). In [I1I], and in [26], such a phenomenon was
also taken into account. In both cases and in our case, it is done to get independence
at infinity.
By using a simple parity argument, by using the remark that follows Definition [14] and
by replacing L by L+ (which is done only for a matter of convenience), one has that :

SA,pm’me(LLv t) = g Z (b(tHklel (L> - k2€2(L)§||) (39)

m ki AR =1 [k1er (L) + kaea(L)][2
k10
lk1e1(L)+kaez(L)||I<A

where the function ¢ was defined by the Equation (3.4). We have done that so that from
this stage onwards we consider vectors of P, (L) with an indexation (ki, k2) in the fixed
set IT (that does not depend on L). Moreover, in probability, we can reduce to the case
where [|(k1, kq)|| < A’, with A" > 0 so that we deal with a fixed indexation in (ky, ks).
So, one can think that the dependence on L in the inequality ||k1ei(L) + kaeo(L)]| < A
is secondary. Finally, let us add that this indexation will be very useful for the second
step (for more details, see Section 4).

Second step. We will show that the family of variables (t||kie1(L) + keea(L)||), whose
values are in R/Z, become, when t — 0o, independent from one another and indeed
converge towards independent and identically distributed random variables whose com-
mon distribution is given by the normalized Haar measure on R/Z. The idea here is
basically the same as in [I1] and in [38] where the respective authors used the fact that
the square roots of square free integers are Z-free. In our case, to prove the result, we
will decompose the space of unimodular lattices into small geodesic segments, calculate
the Taylor series of ||kie1(L) + koea(L)|| at order 1 on such a segment and show that
the coefficients of order 1 are Z-free. These coefficients are going to depend on L, they
will not be fixed numbers like in [11] and in [3§].

We will also prove that the variables (t||k1e1(L) + kae2(L)||), modulo 1, become inde-
pendent, when t — oo, from the variable L due to the presence of the factor t.

Third step. Thanks to the first and second step, we will see that the asymptotic distri-

bution of R(%?L) is the distribution of

s@.0) = Y o) (3.10)
k(o) 1E1€1 (L) + Koea(L)||2
kiNAko=1

k120
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under the assumption that the quantity S(6, L) is well-defined and where 6 = () € T*
is distributed according to Ay, L € % is distributed according to jfip. It should be
noted that the (¢(6y)) is a family of independent and identically distributed non-zero
real random variables. Furthermore, all of them are symmetrical and have a compact
support. The third step of the proof will consist in showing the following general result.
Let the Z; be real non-zero independent identically distributed real random variables
from a probability space 2 > w that are symmetrical and have a compact support.
Then we are going to show that

Salw, L) = 3 Zi(w) (3.11)

3
o= (ko k) [kre1(L) + kaea(L)|2
ki1Nko=1

k1>0
lk1e1 (L) +kaea(L)]|<A

converges almost surely when A — oco. S, looks like a Siegel transform, but it is not
so, because of the numerator of the considered terms. We are going to call it a modified
Siegel transform with random weights. An object of this type was already studied in
[27].

As a consequence of this general result of almost sure convergence, S(6, L), as a partic-
ular case, will be well-defined as an almost sure limit.

We will also study the existence of moments of the almost sure limit. In particular,
we are going to see that the optimal x is £ when fiy is not compactly supported under
condition (see statement of Theorem [8). Heuristically, it is because the magnitude
of S is given by the term

Z1g

3

HLH12
with Z; 9 # 0. Thus, if fiy satisfies Condltlon , any of its moment is finite if, and
only 1f the corresponding moment of ||L||~ 3 is ﬁmte The study of the moments of

I|IL||~2 will give us the wanted result.
After doing all of that, we will finally get the validity of Theorem [§]

Plan of the paper. The next section will be dedicated to deal with the first step of
R(tD2,L)
Vit
A is a fixed parameter taken large enough and, then, ¢ goes to infinity (see Proposition

. We have to "cut" the sum because of the problem of convergence of the Fourier
series of X — % which is due to the lack of regularity of the indicator function
1;p2. To do so, we are going to proceed by reqularization which means here that we are
going to smooth the indicator function 1,p2 via a Gaussian kernel.

In Section 4, we tackle the second step of the proof, that is to prove that (t||kiei(L) +
koeo(L)||) become independent when ¢ — oo. We also show that they converge to-
wards random variables that are identically distributed according to the normalized
Haar measure over R/Z and that they become independent, when ¢ — oo, from L and
so that BU22L) has the same distribution as S (0, L) defined in Equation (3.10)).
In Section 5, which is the last section, we are going to tackle the third step of the proof,
namely study the convergence of S4(w, L) when A — oo and the existence of moments
of its limit.

In the rest of the article, all the calculus of expectation E, of variance V and of proba-
bility P will be made according to the measure ji;. Furthermore, the expression typical

the proof, namely it will show that is close in probability to Sa prime(L*, ) when




3.3. REDUCTION TO THE STUDY OF THE SIEGEL TRANSFORM 93

is going to signify fis — almost surely. In fact, we are going to suppose that jio = s in
Section 3 because we prove a result in probability and we have the following inequality

flo < Clg
where C' > 0 because fi; admits a bounded density relatively to ps.

3.3 Reduction to the study of the Siegel transform

The main object of this section is to show the following proposition :

Proposition 24. For every a > 0, for every A > 0 large enough, for every t large
enough, one has that :
]P)(AA,pm’me<L7t) P Oé) <«
where
R(tD?, L)

AA,prime(La t) - ’ \/]_f

- SA,p'rime(L; t)| . (312)

This proposition basically says that we can reduce the asymptotical study of R(L:’L)

to the study of its Fourier transform, taking into account a phenomenon of multiplicity.
In fact, due to the triangle inequality, we only have to prove the following two lemmas

Lemma 33. For every a > 0, for every A > 0 large enough, for everyt large enough,
one has that :
P(A4(L,t) 2 a) < a

where
R(t]D)2, L)

Vit
HA(Lat) = i_ Z

leLt
o<lIl<A

AA(L,t) = | - HA(L,t)| with (313)

cos(2mt||l]| — 2)
3 .
121>

(3.14)

Lemma 34. For every a > 0, for every A > 0 large enough, for every t large enough,
one has that :
P(|Saprime(L,t) — Ha(L,t)| > a) < .

Proof of Proposition[24. One has that :

Apprime(L,t) < Aa(L,t) + [Saprime(L,t) — Ha(L,t)|. (3.15)
Lemma [33] and Lemma [34] imply then the wanted result. O

Let us say a few words about Lemmas [33| and [34] before following with their respec-

tive proofs. Lemma |33| says that the study of % can be reduced to the study of

its Fourier transform. Lemma [34] says that the phenomenon of multiplicity (the fact
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that for a prime vector [, 2[, 3l etc. appear in the sum H4(L,t) when A — o0) is
not so important. We only have to gather all the multiples of a prime vector (which
corresponds to the infinite sum over m, see Equation (3.8])), so that we focus on prime
vectors.

3.3.1 Proof of Lemma

First, we are going to prove Lemma To do so, we are following closely the
approach of [I0], yet with some differences because in our case it is not the radius of
dilatation that is random but the lattice (or, equivalently and in a certain sense, the
oval).

For x € R? and t > 0, let us define

Ast) = L lel?
’ 47
and, for M € SLy(R),
Av(x;t) = AM(Mx; t). (3.16)
We recall that :
/Rz e (2 8)da = 1 (3.17)
and that the Fourier transform of A\y/(-;¢) can be expressed as
— _lar—HTe)?
Av(&t)=e 2. (3.18)

We introduce the following function :

xoar(@it) = (L, i3 0)@) = [ Lo, @Au(e = yiidy (3.19)

(it is a regularization of the function 1:q
Let us also set :

M—1sl )'

Nyeg(tD?* M) = > xs1m(n;t) and (3.20)

nez?
(the index "reg" stands for regularized)

Nyeg(tD? M) — Area(tD?)

F(M,t) = i (3.21)
Let L be a unimodular lattice such that e;(L) and es(L) are well-defined and let
M = [ei(L),eq(L)] if det([e1 (L), ea(L)]) > 0 (3.22)
and
M = [es(L),e1(L)] if det([e2(L),e1(L)]) > 0. (3.23)

Then M is a matrix that represents L.
Now, let us call :

R(tD?, L)

Ay(L,t) = | i

— F(M,1)| and (M) a(L,t) = |F(M,t) — Ho(L,t)|  (3.24)

so one has that :
AA(L,t) < Ay(L,t) + (A2)a(L,1). (3.25)

The proof of Lemma (33| lies on the two following lemmas :
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Lemma 35. A(L,t) converges almost surely to 0 when t — occ.

Lemma 36. For all a > 0, for all A large enough, for all t large enough,
P((Ag)a(L,t) 2 ) < a.

Proof of Lemma [33] 1t is the direct consequence of Equation (3.25) and of Lemmas
and [36 O

Lemma |35| basically tells us that the study of R(L:’L) can be reduced to the study

of one of its tegularized Fourier series, whereas Lemma [36] means that the asymptotical
study of this regularized Fourier series can be brought back to the study of the non-
regularized Fourier series.

The next subsubsection is dedicated to the proof of Lemma [35| and the subsubsection
after it is dedicated to the proof of Lemma [36]

Proof of Lemma 35

The proof of Lemma [35] is based on two sublemmas. The first one is the following :
Sublemma 1. For all z € R?, for allt > 0,

2 .
|XSl,M(I; t) — 1tQM7131 (z)] < e T dist M tST)?

where for all z € R?,
dist(z,1S") = inf |z —y|.

yetst
Proof. One has that :
2 IMey)? ,
IXstar(73t) — Lo, 1 (2)] = |/y§2tm)2 i T dy| if Mz € tD?
and
2 iMooy . 2
xotar(w5t) = Ly, () = | [ e dy) if Mo g D
yetb? 47
because of Equation (3.17)) and by making the change of variable y = Mu.
The proof of Lemma 3.2 from [10] gives the wanted result. O

The second sublemma gives an estimate of dist(Mn,tS'). To state it, we need a
notation. For a vector z of R?, let us set 7 = ||z||. Then, one has that there exists
C > 0 small enough so that for every z € R?,

dist(z, tS") > C|r — ¢|. (3.26)
We deduce the following sublemma :
Sublemma 2. For all L € %, for allt > 0, for all n € Z*, we have that :

dist(Mn, tS') > C|||Mn]| — t|.
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Now we can prove Lemma

Proof of Lemma [35 By using the Equation (3.24)), we have that :

1
A1<L7t> S Z ‘XSl,M(n; t) - 1tQMf1§1 (n)l
\/g nez?
because, also, R(tQs1, L) = R(tQyr-151,Z%). So, Sublemma || and Sublemma [2| imply
that :

1 —C2 || Mn|—

nez?
The essential part of the right-hand side are the terms such that n € Z? verify that

1
(1 Mn]| -t < B (3.27)

Yet the number of n € Z? that belong to such an annulus is of order {7
So, one has finally :

| —

A(L,t) =O(—).

=

t

Proof of Lemma

To prove Lemma [36] we first need to give another expression of F(M,t), obtained
via the Poisson formula. It is the object of the following lemma :

Lemma 37.

1 1 3T, —
F(M,t)== Y —————cos2nt|[(M")n|| — =) Au(2mn;t) + On(t™)
™ pezz—qop |(M~1)Tnl[2 4

where the M in index of Oy indicates that it depends on M (or, equivalently, on the
lattice L).

To prove it, we first need a calculatory sublemma :

Sublemma 3. Let D € SLy(R) and v = DS'. Then one has for every £ € R? — {0} :

DT¢
z,(§) = DW,
5 3
Y,(€) = |ID7¢|

where DT is the transpose of the matriz D.



3.3. REDUCTION TO THE STUDY OF THE SIEGEL TRANSFORM 97

Proof. Let us set y = D™ '2.,(£) € S'. One knows that :
k=y (3.28)

where k is the outer normal to S! at y.
Let us call T’ the unit tangent vector of S* such that (k, T) is an orthonormal and direct
basis of R2. Let us call R the rotation matrix of angle 5 so that

0 1
i= )
Rk="T. (3.29)

By definition of z,(§) and because D is a linear map such that det(D) > 0, one knows

that DT is a tangent vector of 7y at the point z(§) such that ( ﬁ, DT) is an orthogonal

and direct basis of R?. By using (3.29)), we now know that : (£, DRE) is an orthogonal
and direct basis of R2.

By using the fundamental property of the adjoint of an operator, we get that :
(R'D¢, k) is an orthogonal basis of R?. (3.30)

and so one has :

So one gets that : R7'DT¢ = aT where a is a non-zero real.

Finally, we have
DT¢ = —ak (3.31)

because of ((3.29)).
Equation (3.28)) and the fact that k is unitary give us that :

DT¢

IDTE|

Yet, because (£, DRE) is a direct basis of R? we know that :
(¢,£DRD*¢€) is a direct basis.

2,(§) = £D

Yet, one can see that
RDR = —(D™HT

and so one gets that :
(RE,FE) is a direct basis.

So, one gets finally that :

DT¢
As a consequence, we get immediately that :
Y, (&) = [D"¢ll.

Then by using the parametrization ¢t — (cos(t), sin(t)) of the circle and the expression
of a curvature radius when using a parametrization, one gets that at a point X of
v= DS,

p(X) = I(D7H)' DX
So, with Equation , finally one gets that :

e
78 = [prep
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We can now tackle the proof of Lemma [37]

Proof of Lemma [37 According to Equation (3.21)), the Poisson summation formula and
because of the fact that 1,9 _,,(0) = Area(t€2y;-151) one has that :

1 — —
> L, (2rn) Ay (2705 t). (3.33)

F(M.t) = —
( ) \/g neZ?—{0}

Yet, according to Lemma 2.1 from [I0], one has that :

0,10 () = V]2 Z\/QWPM 151 (£8) exp(Ei(tY 151 (£8) — ))+0M(t_5||§|| )
(3.34)
By using Sublemma , we get with Equation ((3.33) :
1 1 T 3m,— 1
F(M,t)== > ﬁcos@mﬁ”( “HTn|| - Z))\M(27m;t) + O (7).
T nezz—qoy [(M~1)Tn][2
(3.35)
O

Using Equation (3.18)), Equation (3.24]), the fact that if M represents a lattice L,
(M~1)T represents the dual lattice L+, and the previous lemma, that is Lemma , one
gets that :

(Ag)a(L,t) < Aoy (L,t) + (Ag2)a(L,t) + (Ags)a(L,t) (3.36)
where
Agq(L,t) = Op(th) (3.37)
37T _(Qﬂ)Qm
(Do)alLt) =1 > T ||3 cos(2mtf|l]| = —=)(1 —e =) (3.38)
o<lﬁlL||<A
3T, _(om2 2
(Aog)a(L,t) =1 > T ||3 cos(2mt[|l]| = —)e” Sl (3.39)
leLt 2
A<l

So, if we prove the following lemmas, we will get Lemma [36] and, in fine, get Lemma

B3 :

Lemma 38. Ay (L,t) converges almost surely to 0 when t — oco.

Let us remark, by the way, that this last lemma is immediate according to Equation
(13.37)).
Lemma 39. For all A > 0, (Ag2)a(L,t) converges to 0 when t — co.

Lemma 40. For all a > 0, for all A large enough, for all t large enough,

P((Ag3)a(L,t) > o) < a.



3.3. REDUCTION TO THE STUDY OF THE SIEGEL TRANSFORM 99

Proof of Lemma [36] Let o > 0. Let us take A large enough so that for all ¢ large
enough,
P((Ag3)a(L,t) > a) < .

It is possible according to Lemma [40]
According to Lemma [39] according to Lemma [38 and because the almost-sure conver-
gence imply the convergence in probability, even if it means taking ¢ larger, one can
suppose that :

P((A21)(L,t) > a) < « and

]P)((AQQ)A(L,t) 2 Oé) < Q.
By using Equation |3.36} one gets the wanted result. O]

Before following with the proof of Lemma let us say a few words about Lemma
and Lemma [{0] The first tells us that the non-regularized Fourier series is "close"
enough to the regularized Fourier series whereas the second one tells us that the large
terms of the regularized Fourier series do not matter, in a certain sense, for our study.
It remains only to prove Lemma [39 and Lemma [0 We will do just that in the next
two subsubsections.

Proof of Lemma [39

Proof of Lemma 39 Let | € L. Then one has :

2 2 2
11— o~ (2m2 | < M (3.40)
t2

With this equation and with Equation (3.38]), one gets that :

21 2 1
(Ag2)a(L,t) < Y ( t2) 7|2 (3.41)
L
0<jil<a
It follows that there exists C(L) > 0 such that :
A3

(A22)a(L,t) < C(L)tT' (3.42)
[

Proof of Lemma

To prove Lemma [40] we need to use what are called Siegel and Rogers formulas.
Theses formulas will also be useful later in this paper.
By setting ¢, = ((2)7* for k an integer larger than 1 and where ¢ denotes the ¢ function
of Riemann, one has the following formulas :

Lemma 41 ([64],[93],[47]). For f a piecewise smooth function with compact support on
R2, one has :
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[, S =er [ sax
o When f is even,
(b) /y S(f)2dps < C/Rz P2\ + CQ(/RQ FdN)?

where C > 0.

With this lemma, we are going to prove two lemmas that will enable us to prove
Lemma [40] by using Chebyshev’s inequality : the first one is intended to estimate the
expectation of (Ag3)a(L,t) to see that it goes to 0 when ¢ — oo (uniformly in A), the
second one is intended to estimate its variance to see that it can be as uniformly small
in ¢ as one wants if A is chosen large enough. Until the end of this section, we are going
to suppose A > 1.

Lemma 42. ]
B((A2)a(L,1) = O(5).

Proof. One has :

(Ag3)a(L,t) = Z f() (3.43)
leL* prime
A<l
where ket — %)
1 cos(2kmt||l]| — —(2km)2 12
HUES =Y : B (344)
121]2 keN—{0} k2
Lemma [41] gives us then that :
E((Agg O/ ]-||xH>Ad~T (345)

where C' > 0 because the density of jis is supposed to be bounded.

By passing into polar coordinates, one gets that :

cos(2k7rtr—3—”) e_(zkﬂ)2%§

E((Ass)a(L, 1)) = C / x Ty dr (3.46)

7“2

(the constant C' has changed but it does not matter). Lebesgue’s dominated convergence
theorem gives us that :

E((Ag3)a( =C >

keN—{0} k’Q T2

(2kmt r2
cos(2hmir )e_(zk“)Zﬁdr. (3.47)

Finally, an integration by part gives us that :

2
1 sin(2kmtA — 25)e ~(2km)* e

E((Ag3)al( =C Y (-

keN— {0} kg ijﬂ-tAQ
oo sin(2kmtA — 2)e ~(2kmP iy
/ - dr
4k7r 2
o< gin(2kmtr — ) (27k)? Qr%e_(zkﬁ)diT)
2kt t? ‘

(3.48)



3.3. REDUCTION TO THE STUDY OF THE SIEGEL TRANSFORM 101

By using that r2 < r (because A > 1), one has finally, by estimating the three terms
of the right member :

E((Asa)a(L 1)) = O(3).

Lemma 43. .

V((A2,3)A(L,t)) = O(Z>

where the O can be chosen independent from t.

Proof. By using the same notation as before, by using again Lemma [41] and by using
Lemma 2] one gets that :

V((Aza)a(L,t)) < C /R FA@)Ljsade (3.49)

So, by passing into polar coordinates, one gets that :

© 1 2kmtr — 3T
V((Ao3)a(L,1)) < C2r / (Y cos( i ) m@mzg, (350
r=AT" peN—{0} k2
Because Y72, k% < 00, we get the wanted result. ]

We can now prove Lemma [40]

Proof of Lemma 40 Chebyshev’s inequality gives the wanted result if, first, we choose
A large enough and, second, we choose t large enough so that E((Ag3)a(L,t)) and
V((Ag’g) a(L, t)) are small enough. These choices are possible according to Lemmas
and (43 []

So, now the proof of Lemma is complete and we will conclude this section by
proving Lemma [34] so that the proof of Proposition 24| will be complete.

3.3.2 Proof of Lemma 34

To prove Lemma we are going to take the same kind of approach as before :
estimate the expectation and the variance of the quantity S4 — S prime and get the
result via Chebyshev’s inequality.

We have that :

Ha(L,t) = Saprime(L, 1) = > () (3.51)
leLLprime
where
1 cos(2kmt||l]| — 2F)

f() = —5loqu<a Z (3.52)

122 k> 1+ k2
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With this expression, we see that we are going to have a little problem of integrability
at 0 when using Lemma [41] That’s why, we have to exclude 0 and we will suppose that
L is chosen so that ||L*||; > € where 0 < € < 1. Only a small number of lattices is
excluded according to this lemma that we recall :

Lemma 44. For every 0 < e < 1, one has that

P(|[ L]l <€) = O(e?).

Proof. 1t is a consequence of Lemma [41| by taking

Z 1Bf(0v€)(l)

leL
l prime

where 1,0, (1) is the indicator function of the closed ball for the norm |||| centred on
0 of radius e. 0

Thus, for the chosen lattices, we have :

Ha(Lyt) = Saprime(Lit) = > fD)Ljze = Az eas(L). (3.53)
leLLprime
Lemma 45. 1
E(Asean(L) = Oa().

Proof. By using Lemma [41] one gets that :

A1 cos 2k7rt7’ — o
E(gon(L) — € [ L 5 oo i)

dr. (3.54)

Lebesgue’s dominated convergence theorem gives us that :

A kmtr — m
cos(2hmtr =) ). (3.55)

max(%,e) r2

cos( 2k7rtr—— > 1

r2 k>A k=1
An integration by part as in the proof of Lemma 42| and Equation (3.54)) give us finally

that :
1

E(Asca4(L)) = Ocal5). (3.56)
O]
Lemma 46. There exists K > 0 such that :
log(e log(A
V(A3,E,A,t(L)) < K(— i( ) + g/(1 ))
Proof. Lemma [41] gives us that :
A1 cos(2mwktr — —”
V(A&E’A,t([/)) < 0271'/ ﬁ(z ( PR ))er. (3.57)
€ k}é 2
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Yet one also has that for all z > 0 :

1 D
Y =< — (3.58)
k>x k> zrz
where D > 0.
Thus, Equation (3.57) and Equation ({3.58) imply that :
2nCD (A1
V(Asca4(L)) < 1) A (3.59)
[

We can now give the proof of Lemma [34]

Proof of Lemma 34 First we take 1 > ¢ > 0 small enough so that the measure of the
neglected lattices, id est the lattices such that ||L||; < e, is small enough. It is possible
according to Lemma

Then we take A large enough so that V(A&g Ai(L)) is small enough. It is possible
according to Lemma [46]

Finally, we take ¢ large enough so that E(As . 4+(L)) is small enough, which is possible
according to Lemma and conclude by using Chebyshev’s inequality. [

So, we are now brought back to the study of S4 prime(L,t) when ¢ — oo and the
next section is dedicated to it.
We are going to replace L+ by L (it changes nothing because we are studying the
asymptotic convergence in distribution with L € % distributed according to fis).

3.4 Study of S4,rime(L,t) when t — oo

3.4.1 Reductions for the study of S rime(L,t) and proof of The-
orem [§

Before entering in the main object of this section, we need to do a small rewriting
of SAJJ”'me(L, t)
We recall that a vector | € L is prime if, and only if, Kl € KL is prime where
K € SLy(R). Furthermore, a vector (Iy,ly) € Z? is prime if, and only if, i1 A ly = 1.
By using the symmetry [ — —I, we deduce that S4 prime(L,t) can be rewritten as

follows : (L.1)

2 Z(L,t

S rime L7t = :
A,p ( ) Yk(L)

T jella(L)

(3.60)

where, for k = (ky, ky) € Z2,

Yi(L) = ||krer(L) + kaes(L)| 2, (3.61)
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2mtm||kye (L) + kaeo(L)|| — 21
ZuLt)= Y cos(2mtm||kyes( )3+ 2e2(L)| — )

meN—{0} m?2

, (3.62)

and where
HA(L) = {(kl, kg) S Z2 | kl A kg = 1, ]{71 2 0 ||]€1€1<L) + kQGQ(L)” < A} (363)

(for the definition of e;(L) and es(L) see Definition [14)).

The goal of this section is to prove the following proposition :

Proposition 25. {Z;(L,t)}xenr converge, whent — oo, towards independent identically
distributed real random variables that have a compact support, are symmetrical and are
independent of L.

In the next section we are going to consider the sums of the type

SA(LU L) = Zk(w)
ketta(r) [IF1€1(L) + kaea (L)

where Zj are non-zero real independent identically distributed random variables from
) 5 w that are symmetrical and have a compact support. We will show the following
proposition :

Proposition 26. SA(w,L) converges almost surely when A — oo. Furthermore, the
almost sure limit limy o Sa(w, L) :

s symmetrical and its expectation is equal to 0
e admits moment of order 1 + k for any 0 < kK < %

e does not admit a moment of order % when o(L) = m where m > 0 and where L
belongs to an event of the form (||L|| < o) with a > 0.

e when there exists a > 0 such that fiy ({L e S| |Lh < a}) = 0 then it admits
moments of all order 1 < p < oo.

We are going to see now that it is enough to prove Proposition [25| and Proposition
to establish Theorem [8] with the exception of the exact form of the limit distribution
(vet it is given by Proposition [27).

Proof of Theorem[§ Let ¢ € C°(R). Let € > 0. According to Proposition , we can
take A as large as we want and then ¢ as large as we want so that :

E (o)) B0 L) < ¢ (360

Furthermore, thanks to Proposition one has that :

B (4 (Saprime(L,1))) = E (¥(Sa(w, L)) | < € (3.65)
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where Z,(w) in Sa(w, L) are given by Proposition .
Moreover, Proposition [26] gives us that :

E (¢(5aw, 1)) ~ E (( Jim Sa(w,2))) | < (3.66)

with lima o, Sa (w, L)) that verify all the listed properties.

So, Equation (3.64)), Equation (3.65)) and Equation (3.66]) give the wanted result. [

The main reason why Z; are going to become independent from L is the presence
of the factor ¢.
The main reasons why the rest of Proposition will be true are the presence of
the factor ¢ in Z; and the fact that the coefficients of order 1 of the Taylor series
of (||[kre1(L) + kaea(L)||)kera(z) on a small geodesic segment are Z-free.

In order to prove Proposition [25] it is actually enough to prove the following proposition

Proposition 27. For k = (ky, ko), let
0r(L,t) = t||kie1(L) + kaeo(L)|| mod 1. (3.67)

Then, we have that {0y(L,t)}ren converge, when t — oo, towards random variable
that are independent identically distributed, are distributed according to the Lebesgue
measure X\ over R/Z and are independent from L.

Thanks to this proposition, we now understand why the limit distribution of R(@;L)

is given by S(6, L*).
To prove this last proposition, it is sufficient to prove the following proposition where
e(f) stands for exp(i27f) :

Proposition 28. For everyl € N—{0}, for every ¢ € C°(H), for every (p1,--- ,pi) €
— {0} and for every kj, € I that are all distinct with h € [1,1], one has :

3 (0 o) oo .

Before passing to the proof of Proposition 28] let us give some heuristic about it.
Basically, by working with a foliation of the space .#5 given by small enough geodesic
segments, we are first going to have :

() wmonfon )

because v is almost constant on such a segment.

The right member will go to 0 when ¢ goes to infinity because a Riemann-Lebesgue
lemma will apply because quantities "close" to the variables 6}, are typically Z-free (see
the heuristic explanation of the second step in Section 2).

The rest of this section is now dedicated to the proof of Proposition [28|
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3.4.2 Foliation and local estimates

We recall that a foliation of the space .5 is given by the orbits of the group d where

-3 1)

To prove Proposition 28, we are going to look at what it is happening on a small
"segment" of the form

J(L) = (SOVL | A€ [ 1+ €} (3.69)
1+e€

where L € .%, and € > 0 can be taken as small as possible. More precisely, we are going

to show, when t — oo, the independence of the () and of L over smalls segments of the

form J.(L), as well as the fact that the (6;) are identically distributed and distributed

according to the normalized Haar measure over R/Z.

Let us call s: (z,y) € R? — (z, —y) and let us set, for k = (ky, ky) € II :

< ke (L) + koea(L), s(kier (L) + koea(L)) >'

Wi (L) = [krer (L) + kaea(L)]]

(3.70)

On a segment of the form J.(L), the following lemma basically tells us how we can
estimate the quantities 7, :

Lemma 47. For a typical L € .45, there exists € > 0 small enough such that for every
A€ [1+ 1+ €,

e1(6(AN)L) =d6(N)er(L) and ea(6(AN)L) = 6(N)eg(L).
Furthermore, for such a lattice L, for such \, for k = (ky, k) € 11, we have for h = A\—1,

[kre1(6(A)L) + kaea((6(N)L)|| = ||krei(L) + kaea(L)| (3.71)
+ Wk(L)h + Okl,kQ,L(h2)-

Proof. First let us prove that for a typical L, for ¢ > 0 small enough, for every A €
L+¢€], er(6(N)L) = d(N)er(L) and ea(6(A)L) = 6(N)ea(L).

[1+e

One has that for every k € R?, for every \ € [1+ 1+ €

1kl = *lw )| (3.72)
and

16(AE] > 7||/f|| (3.73)

We also note that for a typical lattice L, we have that

min, ool = e > llea( D). (3.74)

leL—{+e (L), +

So there exists k > 0 such that for every k € L — {ze;(L),0},

&l = llex(L)]| + . (3.75)
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This last equation, Equation and Equation give us that for every k €
L —{+e: (L), 0},
[6O0HI > T llbll > s l6en (D] +

T 14T (1462 ! 1+e
This last equation and the fact that (6(\)ei(L)); > 0 give us that, for a typical lattice
L, for every e small enough, §(A\)ey(L) = e (0(N)L).
Let us prove that, for a typical lattice L, even if it means reducing € > 0, for every
)€ [ 1+, ea6(N)L) = hea(L).
We have the wanted result when the first inequality in Equation is strict (by
reasoning the same way as before).
So let us suppose that this last inequality is an equality. Let us call [ such that {; > 0
and such that ||ea(L)|| = ||Z||. If {4 > 0 it means that the couple (e;(L), ea(L)) is not
well-defined. If [y = 0 then L belongs to a negligible set according to Lemma 4.5 from
the article [82].
Now, let us show that we have Equation (3.71). It is in fact a basic calculation of
Taylor series. Indeed, one has, thanks to the facts that ey (§(\)L) = d(A)ey(L) and

es(S(\)L) = 5(N)es(L) :

(3.76)

[krer(8(A)L) + kzea(5(A) L) (3.77)
= |kre1(L) + kaea(L) + hs(kier (L) + kaea(L)) 4 Ok, gy, (h?)||?
— krer (L) + kaes(D)|? + 2h < krer (L) + kaea(L), s(krer (L) + kaes(L)) > +Op, p, 1.(h).

(3.78)
By applying the square root on Equation (3.77)), one gets the Equation (3.71)). ]

To prove Proposition [28 we see, in light of Lemma [47] that it would be convenient
to prove the following proposition :

Proposition 29. For a typical L € %, for every m € N — {0}, for every family
(p1,-++ s pm) €Z™, for every ky,- -+, ky, € I1 all distinct if

S pWWi(L) =0 (3.79)

then py =--- = p,, = 0.
In other words, for a typical L € 7,

(Wki(L>>i>1

is a Z-free family.

The next subsection is dedicated to prove this proposition.

3.4.3 Proof of Proposition

To prove Proposition |29, we are following closely what was done in the Section 5 of
[27] and we need two preliminary lemmas.
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To state the first one, we call, for every k = (kq, ko) € II,

< k’lX + k?QY,S(k'lX + ]CQY) >

(A= (X..Y]).B = (X,.Y- R? xR?
fk ( ( 1) 1)7 ( 2 2))6 X — ||k1X+k?2Y||

(3.80)

where X = (X, X5) and Y = (v}, Y;) € R%

Lemma 48. For every m € N — {0}, for every family (p1, -+ ,pm) € Z™, for ev-
ery ki, -+, kn € 11 all distinct, one has the following implication : if 37" pifx, is a
polynomial function then all the p; must be equal to 0.

Proof. Let us set :

_ < (1,0),5((1,0) >  1-02
g:0eR—s (o] == (3.81)

Let us suppose that >, p; fx, is a polynomial. Let us give j € [1,m]|. We are going to
show that p; = 0.

Let 3 € R? such that < k;, 3 ># 0. Let « € R? and let X = o and Y = da + 65.
Then, one has :

<k, B>

A B) = k o0+0—"~——
fk’(7) |<’O‘>|g(+|<k,’a>|

).

As Y7 pifr, is a polynomial then >, p;| < ki, > |g(d + 9;’,;5;) is a polynomial

in # whose degree is bounded by a number that does not depend on « (nor in ).
So there exists K > 2 such that the K-th derivative of >, pi| < ki, o > |g(0 + 6 kB>

|<k:i704>|
relatively to 6 is equal to 0. It means that the terms in front of #% is equal to 0. Hence
the following equation :

f:h‘ < ki, B >K
T <kna > [F1

=1

~0 (3.82)

where h; = p;g'%)(6).

Now, since the k; belong to II and are all distinct, it is possible to choose « so that
< kj,a >> 0 is arbitrary small while < k;, & > remain bounded away from zero for
every © # j. Thus, we must have h; = 0. Yet, g is not a polynomial so there exists
§ € R such that ¢%) () # 0 and it gives us that p; = 0. O

Lemma [4§] enables us to prove the following lemma.

Lemma 49. For a typical L € %, for everym € N—{0}, for every family (p1,- -+ ,pm) €
™, for every ky,--- , k,, €Il all distinct if

iPiWki(L) =0 (3.83)

then
> pifi, = 0.
i=1
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Proof. First, we note that, for every k € I, Wi (L) = fe((e1(L))1, (e2(L))1, (e1(L))2, (e2(L))2).

Thanks to this remark, we see that Lemma [49] is a direct consequence of the facts
that .5 is a variety of dimension 3 that can be seen, locally, as an open set of
{M € GLy(R) | det(M) = 1}, that det is a polynomial function whereas >, p; fx,
is a polynomial function only in the trivial case according to Lemma |48] O

We can now give the proof of Proposition [29,

Proof of Proposition 29, It is a direct consequence of Lemma 4§ and Lemma 49 O

3.4.4 Proof of Proposition 2§

Before starting the proof of Proposition [28 we only need a simple lemma :

Lemma 50. For every m € N — {0}, for every family (p1,--- ,pm) € Z™ — {0}, for
every ki,---  k, € 11, all distinct, for every 0 < € < 1, there exists a > 0 and K, a
measurable set of .Sy such that fio(S5 — K.) < € and such that for all L € K,

D piWi (L) = a .
i=1

Proof. 1t is a direct consequence of Proposition |29, O

Now, by using the foliation given by d(\) and previous results, we can now prove
Proposition [28|

Proof of Proposition 28, The proof in all its generality can be made as in the case where
[lo = o because [is admits a bounded and regular density relatively to ps. So, we will
suppose for simplicity that jio = ps.

Let [ > 1. Let ¢ € C>°(#). Let (p1,--+ ,p) € Z' — {0}.

For all € > 0, we call F, the tribe on .% generated by the J.(L). Let 1 > ¢ > €3 > 0.
According to Lemma [47] and Lemma [50] there exists a measurable part K, such that
p2(Ke) > 1—¢,areal M > 0 and a real a > 0, such that

o for every L € K, for every A € [ﬁ, 1+6]:

[Y(6(h)L) —(L)| < M|h| (3.84)
where h =\ — 1
o for every L € K,,, for every A € [;7=, 1 + 1], Equation (3.71) is verified.

14+€1

o for every L € K,

!
> piWi (L) >a . (3.85)
=1
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Furthermore, we are going to suppose, even if it means making e, goes to 0, that for
every L € K,
Jo,(L) C K. (3.86)

Claim. With these notations, we have, for all L € K, that :

]-}2> (L) = O(e) + O(——) + 10(ea). (3.87)

atey a

E (W(é pi

To this end, let us set, for all € > 0,

5(6):1+6—1+6.

Then one has for every L € K., according to Lemma [47] :

B(e(3 pif,) 1 Fo)(L)
=l (we@pjekj)) (3(k)L)dh

(G
Lore itD1(L)h-+itDa(L,h)
}jpj / e 2D dh 1+ Oey)  (3.88)

(5(62) ﬁ_
where z
L) = 3" p Wi (1), (3.9)
h) = ipjﬁkj((S(/\)L) - ipjﬁkj(L) — Dy(L)h such that (3.90)
Dy(L,h) = O(h?) and (3.91)

Dy (L, ) is smooth around 0.
Thus, by integrating by part and by using Equation (3.85]), one gets that for all L € K,

1 / 2 DL h+itDa(L1) g,
d(€2) /i1

1 eitD (L) itDy(Lh) 7 2 1 €2 Do(L. Y (B)eitPr(L)h+itDa(Lh) gp
= . 1 1 (3 2 s
d(ea) [ itD; (L) 1 , _1+ /7_ (Da(L, )" (h)e

1+eo

— o)+ Lo, (3.92)

atey a

Finally, Equation (3.88]) and Equation (3.92)) give the wanted claim.
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Thanks to Equation (3.87), the fact that us(K.) > 1 — ¢ and because of Equation
(3.86)), we have that :

E (%De(z pjakj)) |

=1
I I
<|E <¢e(zpj9k1)1K§1) |+ |E (?ﬂ@(zpjekj)lml) |

J=1 J=1

< [¥lles + () + O(2) + =Ofea). (3.93)

at62

By first choosing €; > 0 small enough (note that a depends on € ), then choosing €5 > 0
and finally choosing ¢ large enough, we obtain the wanted result. O

The study is now reduced to the study of the convergence, when A — oo, of a sum
of the type

- Z
SiwD) = % -
k(s eyetta(ry 1Erer (L) + kaea(L)||2

where Zj are real non-zero independent and identically distributed random variables
from €2 5 w that are symmetrical and have a compact support. In the next section, we
are going to study the sums of this type and prove Proposition [26] which will conclude
the proof of Theorem [§|

3.5 Asymptotic study of S4(w, L)

The goal of this section is to prove Proposition 26, To prove this proposition, we
first need some lemmas.

The following lemma basically gives us that the magnitude of lim 4 ., S a(w, L) is given
by e
L]l

Lemma 51. Let us set, for 0 <e <1< A,

Zk(w)

B w, L, €)= o o Ses 3.94

Zy(w)
By s(w, L,e) = 1 ke . e 3.95
k2 ) oo (D) & BaraL)F I real< (3.95)
SelA Z Hk 1 A L, E) and (396)

kell
= Z Hyo(w, L,€) (3.97)

kell

so that

Sa(w, L) = Seqa(w, L) + Sea(w, L).
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Then there exists (M)sen—{o1}, @ sequence of positive real numbers (that does not de-
pend on A), such that for all s > 2:

E(Y [Hya[*(w, L, A, €)) < M. (3.98)
kell
Furthermore, one has :
~ Z
Sealw, L) = %1||L||1<e (3.99)
ILIIF

when € > 0 is chosen small enough.

To prove this lemma, we need to recall the second theorem of Minkowski.

Theorem 9 ([65]). There ezist K1, Ko > 0 such that for all L € ¥,
Ky > LI > Ko,

We can now prove Lemma [51}

Proof of Lemma[51] The first fact is a direct consequence of Lemma [41] and of the fact
that the Z, are of compact support.

Indeed, first let us say that it is enough to deal with the case fi; = po. With the
notations of Lemma 1] let us set

1
flz) = WlegnxugA (3.100)

and

S(HL)y= > f). (3.101)

| prime €L

From the facts that the X, are independent, identically distributed, symmetrical with
a compact support, one gets that :

E(Z(BM,AV(w, L,e)) = ]E(Zfo)E(F). (3.102)

kell

Lemma [4T] gives then that :

E(Y (Buaa)(w, L,e) = E(Z) [ fla)d. (3.103)
kell
By passing into polar coordinates, one gets finally that :
1 1
E(Y_(Bria)(w, Ly€)) = 27TE(Z12,0)(E - 7) (3.104)

kell

We do the same for the other k > 3.

Concerning the second fact, if there exists (k1, ko) € Il such that ||kie; (L) +koea(L)|| < €
then ||L||; < € and the reverse is also true.

In this case, according to Theorem [J] one has

K
|kre1(L) + kaea(L)|| = ||L]|2 > 72 (3.105)



3.5. ASYMPTOTIC STUDY OF S4(w, L) 113

where (k1, ko) € I — {(1,0)}.
Thus, by choosing € > 0 so that % > €, we get that :

21,0
3
| LI7

Seo(w,L) = (3.106)

when ||L]|; <.
Otherwise, S, 2(w, L) = 0 and

||ZLI|\% 1z),<c = 0. And so the second result is also true. [J
2

The following lemma precise Lemma [44] and it gives us a better understanding of

the distribution of =% . The proof of it is basically the same as the proof of Lemma

L7
44

Lemma 52. When o(L) > m where m > 0 and where L belongs to an event of the
form (||L|| < o) with a > 0, there exists C' > 0 such that

_3 @
P(ILIL 2 > 8) = —

4
3

and this inequality is true for every (8 large enough.
Proof. The proof is a direct application of Lemma 41| ]

We recall a classic tool from probability theory :

Lemma 53. For X a real random variable, one has for every k > 1

E(|IX|*) = /0°° LP(|X| > t)dt.

Thus, by using the fact that Z; o is bounded and is different from 0 and by using
Lemma |52 and Lemma , we get the following fact about the behaviour 24 :

L) 2
Lemma 54. For every 0 < k < %, ZlL(g) admits a moment of order 1 + k.
ILII?
Furthermore, M does not admit a moment of order % when o(L) = m where m > 0

LI
and where L belongs to an event of the form (| L] < «) with oo > 0.

We finally remind the reader of the following obvious lemma :

Lemma 55. If X is a real random wvariable integrable then if it is symmetrical, its
expectation is equal to zero.

We can now prove Proposition [26]
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Proof of Proposition [26]. Because of Lemma , we only need first to prove that S (w, L)
converges almost surely when A — oo and that the limit random variable is symmetri-
cal and admits moment of order 1 + « and that for all 0 < o < % : the fact that the
expectation of the limit is null will be a consequence of Lemma, |[55|

e Let us prove that Su(w, L) converges almost surely when A — oco. It is enough
to prove that it is the case on all the events {||L||1 > €} where ¢ > 0. So, let us give
e > 0.

On such an event, one has :

Sa(w, L) = Seqa(w,L). (3.107)
Yet, one has, because the X} are symmetrical and integrable,
E(Bg,a(w, L,€)) =0. (3.108)

By using Equation (3.98)) (see Lemma and Equation (3.108]) and because the Zj
are independent between them and their expectations are equal to zero, one gets that :

Sea,a(w, L) converges almost surely when A — oo.

Because of Equation (3.107)), one gets that gA(w,L) converges almost surely when
A — oo on all the events {||L||; > €} where € > 0.

e The fact that limg_,o, Sa(w, L) is symmetrical follows directly from the fact that
the Z;, are symmetrical.

e [t only remains to prove that lim S 4(w, L) admits a moment of order 1 + &
and that for all 0 < k < % - that limy_yeo S 4(w, L) does not admit a moment of or-
der % when o(L) > m where m > 0 and where L belongs to an event of the form
(IL]] < «) with @ > 0. ; and that if fiy is such that there exists o« > 0 such that
fis({L € S | ||L|j; < @}) = 0 then the limit limy s S4(w, L) admits moments for all
finite orders 1 < p < oo. These facts are a direct consequence of Lemma [51] of Lemma

(4] and of Fatou’s lemma. O



Chapter 4

The case of analytic and stricly
convex sets

(Résumé en francais)Nous étudions l'erreur du nombre de points d’un réseau uni-
modulaire qui tombent dans un ensemble strictement convexe et analytique possédant
lorigine et qui est dilaté d'un facteur ¢. Le but est de généraliser le résultat de [89).
On montre d’abord que I’étude de lerreur, lorsqu’elle est normalisée par v/¢, lorsque
ce parametre tend vers l'infini et lorsque le réseau considéré est aléatoire, se ramene a
'étude d’une transformée de Siegel S(f;)(L) qui dépend de t. Ensuite, on se raméne a
I’étude du comportement asymptotic d’'une transformée de Siegel avec poids aléatoires,
S(F)(6,L) ou 6 est un second parametre aléatoire. Puis, on montre que cette derniere
quantité converge presque stirement et on étudie 'existence des moments de sa loi.
Enfin, on montre que ce résultat est encore valable si I'on translate, apres dilatation,
'ensemble strictement convexe dun vecteur o € R? fixé.

(English abstract)We study the error of the number of points of a unimodular lat-
tice that fall in a strictly convex and analytic set having the origin and that is dilated
by a factor t. The aim is to generalize the result of [89]. We first show that the study of
the error, when it is normalized by v/¢, when this parameter tends to infinity and when
the considered lattice is random, is reduced to the study of a Siegel transform S(f;)(L)
which depends on t. Then, we come back to the study of the asymptotic behaviour of a
Siegel transform with random weights, S(F')(0, L) where 6 is a second random param-
eter. Then, we show that this last quantity converges almost surely and we study the
existence of moments of its distribution. Finally, we show that this result is still valid
if we translate, after dilation, the strictly convex set of a fixed vector a € R2. study
the existence of the moments of its distribution.
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4.1 Introduction

The lattice point problem is an open problem in the Geometry of Numbers, at
least since Carl Friedrich Gauss took interest in which became the famous Gauss circle
problem. The general problem states as followed.

Let d be an integer greater than 1. We recall the following definition :

Definition 17. A subset L of R? is a lattice if it is a subgroup of R% such that L is
discrete and span(L) = RY.

Let P be a measurable subset of R? of non-zero finite Lebesgue measure. We want
to evaluate the following cardinal number when ¢ — oo :

N(tP+X,L) = |(tP+ X)NL|

where X € RY, L is a lattice of R? and tP + X denotes the set P dilated by a factor ¢
relatively to 0 and then translated by the vector X.
Under mild regularity conditions on the set P, one can show that :

_ td VOI(‘P)

NP+ X, L) Covol(L) + o(t%)

where o( f(t)) denotes a quantity such that, when divided by f(t), it goes to 0 when
t — oo and where Covol(L) is defined in the following definition :

Definition 18. The covolume of a lattice L of R, covol(L), is the Lebesque measure
of a measurable fundamental set of L. Furthermore, a lattice is said to be unimodular
if its covolume is equal to 1.

When d = 2, instead of using the term covolume, we use the term coarea.

We are interested in the error term

Vol(P)

P+X L)=NtP+ X, L) —t— 2
R{tP+X, L) (tP + X, L) tCovol(L)
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In the case where d = 2 and where P is the unit disk D? Hardy’s conjecture in [36]
stipulates that we should have for all € > 0,

R(tD? Z2) = O(t27°).

One of the result in this direction has been established by Iwaniec and Mozzochi in [43].
They have proven that for all € > 0,

R(tD?, Z%) = O(t11+).
This result has been recently improved by Huxley in [42]. Indeed, he has proven that :
R(tD?, Z%) = O(t% log(t)™)

_ 131 _ 18627
where K = 308 and A = 5390

In dimension 3, Heath-Brown has proven in [40] that :
R(tD?, Z3) = O(tis ).

These last two results are all based on estimating what are called exponential sums.
Another approach was followed first by Heath-Brown in [38] and then by Bleher, Cheng,
Dyson and Lebowitz in [I1]. They took interest in the case where the dilatation param-
eter t is random. More precisely, they assumed that ¢ was being distributed according
to the measure p(£)dt (that is absolutely continuous relatively to Lebesgue measure)
and where p is a probability density on [0, 1] and T is parameter that goes to infinity.
In that case, Bleher, Cheng, Dyson and Lebowitz showed the following result (which
generalizes the result of Heath-Brown) :

Theorem ([11]). Let o € [0,1[*>. There exists a probability density p, on R such that
for every piecewise continuous and bounded function g : R — R,

t

Yot = | g@)palx)da.

lim
T—o0

1/T <R(t]D)2+a,Z2
T Jo J Vit

Furthermore p, can be extended as an analytic function over C and satisfies that for
every € > 0,
4—e
Palz) = O(e )

when x € R and when |x| — oo.

In our case, we keep t deterministic as in the original Gauss problem but we let
the lattice L be a random unimodular lattice and we study R. This approach was
first initiated by Kesten in [48] and in [49]. It should be noted that several counting
problems have followed this approach : we can cite, for example, [9], [27], [64], [3], [60]
and [93].

We denote by .#5 the space of unimodular lattices and it can be seen as the quotient
space SLy(R)/SLy(Z). We denote by ps the unique Haar probability measure on it.
Let us set :

= {(k,ky) €Z* | ky Nbky =1, ky > 0} (4.1)
where we agree that if k; =0, ky A ko = 1 means that ky = 1.
We denote by ||| the usual euclidean norm over R?.

We need to define some additional objects.
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Definition 19. For every i € {1,2}, we call
|L||; = min{r > 0 | B¢(0,7) contains i vectors of L lineary independent}

where Bf(0,7) is the closed centred ball on 0 for the norm ||| of radius r. These two
quantities are the successive minima of the lattice L.

In fact, for almost all L € 7, ||L|ls > [|L||; and there exists only one couple of vectors

|(’€1|(|L)762(L)) such that (e1(L))1 > 0, [lex(L)|| = [IL]l1, (e2(L))r > 0 and [leo(L)]| =
L 2.

In the rest of the article, for the sake of simplicity, for L a lattice, we will use the

notation ||L|| instead of ||L|];.

For a lattice L € %, we also say that a vector of L is prime if it is not a non-trivial
integer multiple of another vector of L.

In fact, for every M € SLy(R), a vector | € L is prime if, and only if, Ml € ML

is prime and a vector (ky,ky) € Z?* is prime if, and only if, k; A ko = 1. With these

notations, one has that, for a generic lattice L € .%, e € L is prime if, and only if, e

can be written as e = kyey (L) + koea(L) with ky A ky = 1.

Finally, for a generic lattice L € S, we call Py (L) the set of vectors e of L such that

e = kiey(L) + koea(L) with (kyi, ko) € II. All the vectors of P, (L) are prime vectors

according to the previous remark.

We recall also the fact that we say that a real random variable Z is symmetrical if
P, = P_5; where, for every random variable X, Px stands for the distribution of the
random variable X.

Let fio be a probability measure that has a smooth bounded density o with respect
to ps. There are two different cases that are addressed in our main result, which is
Theorem [I0} The first one is when fi5 is compactly supported, id est when there exists
a > 0 such that :

fin({L € S | L] <a}) =0. (4.2)

The second one is when fis is non-compactly supported under the following condition
. there exists m > 0, there exists a > 0 such that for all L that belongs to the event
(L]l < a),

o(L) = m. (4.3)

An example of such a measure fiy is given by the normalized Haar measure us.

Let € be an ellipse centred around 0. Let us call M a matrix that transforms &£ into a
disk and that belongs to SLy(R). M is unique modulo the natural action of SLy(Z).
Let us set : T = (T')™ where T' = R/Z and let us call \,, the normalized Lebesgue
measure product over T.

The main result of the previous article [89] is the following theorem :

Theorem 10. For every real numbers a < b,

R(tE, L)
Vit

where (M~1Y),fiy is the push-forward of fiy by M~ and where 0 = (0,) € T>,

g e (L €%

o2y o

3
T eeryy llell?

€ la, b]) = (Aoox (M 1).fi2) (0, L) € T x 5 | S(60, L*) € [a, b])
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with ( . 5 )
cos(2mmb, — =F
o(0.) = > 3. (4.4)
m>=1 mz2

Furthermore, S(0, L) (and S(0, L*) :

e converges almost surely

e is symmetrical and its expectation is equal to 0

e admits a moment of order 1 + k for any 0 < Kk < é

e S(0,L) admits moments of all order 1 < p < oo when iy is compactly supported

e does not admit a moment of order % when [is s non-compactly supported under
the condition .

In this article, we want to extend this last result. More precisely, let us suppose that
& = (1, where « is analytic curve that is simple, closed and strictly convex and where
0 € Q,. Let us also call (&) the point on v where the outer normal to vy coincides with

7 and p,(€) the curvature radius of v at @, (£). Let us set finally T>? = (T x (T

and let us call Ay 2 the normalized Lebesgue measure product over T2,
Then, we want to prove the following theorem :

Theorem 11. There exists a distribution function D.(z) such that for every real z we
have :

R, L) -
— i €] — oo,z]) =D, (2).

In the case where S, is symmetric, D,(z) is the distribution function of

t—o0

Son=2 y el

AAZLa L
ecP, (L) ||€||2

with 6 = (0,) € T being distributed according to A, and L being distributed according
to /12.
In the non symmetric case, D.(z) is the distribution function of

5,00 =L 3 $n2lleo)

3
Toeerrry el

where 6 = (01 ¢,02¢) € T? being distributed according to As o and L being distributed

according to fio and with

)

¢’Y»2(0€7€) = Z

m>1 m

(4.5)

py(€) cos(2mmby . — 3T) + p,(—e) cos(2mmba . —
3
2

Furthermore, in both cases, S, admits the same properties of S(6, L) listed in Theorem

1.

In fact, this theorem can be generalized as followed :
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Theorem 12. For every a € R?, there exists a distribution function D, (z) such that
for every real z we have :

lim [1
t—o0 'u2

(72(1597 +a,L)
Vit

In the case where S, is symmetric, D, (z) is the distribution function of

s.0.0)=2 3y P9%lc)

3
T cePL(L) [le]| 2

€] — oo, z]) =D, (2).

with 0 = (0,) € T being distributed according to A, and L being distributed according
to fia and where

cos(2mmb, + 2mm < a, e > —3T)

¢a(9676) = Z 3 1

m>1 m2

In the non symmetric case, D. o(z) is the distribution function of

S0, =L 3y Ganallec)

3
Teerry  llell?

where 0 = (01¢,02.) € T2 being distributed according to Aoo2 and L being distributed
according to jis and with

1
¢a,’y,2(967 6) - Z 3
m>=1 mz2
3T 3T
(pw(e) cos(2mmby . + 2mm < a, e > _Z> + py(—e€) cos(2mmby . — 2mm < a, e > _Z))

Furthermore, in both cases, S., admits the same properties of S(6, L) listed in Theorem

[1al

This last theorem is a generalization of Theorem [10] on two planes. The first one is
the shape of the sets : it treats the more general case of analytic curves, not only the case
of the ellipses centred on 0. The second one is the presence of a translation parameter
a whereas Theorem |10 can be deduced by assuming that o = 0 (no translation of t£).
In the next section, we give a brief heuristic explanation of the approach that we will
follow. It is basically the same as in [89]. At the end of the section, we will give the
plan of the paper.

4.2 Heuristic explanation and plan of the proof

First, let us explain the different steps of the proof of Theorem [II| Theorem
being a simple generalization of Theorem [11]
First step. By regularizing the problem and using the Poisson summation formula, we
are going to show that the quantity Sa prime(L,t), for A > 0 a fixed parameter that is
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taken large enough, when t — oo, is close, in probability, to % where S4 prime(L, )

is defined by :

1 1

SA,prime(La t) - - Z — (46)
& ZEL] ﬁ)m’me HlH 2
o<||T]|<A
3 p (1) cos(2mtmY, (1) — 38) + p, (1) cos(2mtmY, (—1) — 2F)
meN—{0} m?2

where Y, (€), for all £ € R? — {0}, is defined by

Y5(8) =< & 2,(8) >

(it is a positive homogeneous function of order 1).

Let us say a few remarks. First, the vectors | prime considered are such that ||l < A.
We have to limit the norm of the considered vectors because of a convergence problem.
Second, we take into account a phenomenon of multiplicity (if [ appears in the sum, 2/
is also going to appear). In [11] such a phenomenon was also taken into account. This
was done in order to get independence at infinity, as it was also done in [26], and we
do that for the same goal.

By using the remark that is in Definition |19 and by replacing L by L* (which is done
only for a matter of convenience), one has that :

1 1
SA,prime(LLu t) = ; Z (47)

3
k1 Ako=1 |k1e1(L) + koeo(L)]|2
k10
lk1e1 (L) +kzea(L)||<A

Gy 2 ((EY, (kre1 (L) + kaea(L)), 1Y, (—(kier(L) + kaea(L)))), krer(L) + kaea(L))

where the function ¢, » was defined by the Equation . We have done that so from
this stage onwards we consider vectors of P, (L) with a fixed indexation (that does not
depend on L). Furthermore, this indexation will be very useful for the second step (for
more details, see Section 4).

Second step. In the non symmetric case, we will show that the family of variables
(tYW(klel(L) + koea(L)), tY (—(kren (L) + kg@g(L))), whose values are in (R/Z)?, be-
come, when ¢t — o0, independent from one another and indeed converge towards in-
dependent and identically distributed random variables whose common distribution is
given by the normalized Haar measure on (R/Z)%. The idea here is basically the same
as in [II] and in [38] where the respective authors used the fact that the square roots
of square free integers are Z-free. It is a generalization of what was done in [89]. In
our case, to prove the result, we will decompose the space of unimodular lattices into
small geodesic segments, calculate the Taylor series of Y, (kie1(L) + kaeo(L)) and of
Y, (—(kie1(L) + kaea(L))) at order 1 on such a segment and show that the coefficients
of order 1 are Z-free.

We will also prove that these variables become independent, when ¢ — oo, from the
variable L due to the presence of the factor t.

In the symmetric case, instead of considering (tYW(lﬁel(L) + koea(L)), tY(—(kre1 (L) +

k2€2(L>)>7 we consider the family of variables (tYW(lﬁel(L) + kgeg(L))), whose values
are in (R/Z), and show the same results.
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Third step. Thanks to the first and second step, we will see that the asymptotic distri-
bution of % is the distribution of S, (6, L) (see Theorem [11)) under the assumption
that the quantity S(0, L) is well-defined. This last fact will be quasi immediate because
what was done in the last section of [89] can be generalized directly in our case. Fur-

thermore, all the listed properties of S, (6, L) are also going to be obtained immediately.
After doing all of that, we will finally get the validity of Theorem

Plan of the paper. The next section will be dedicated to deal with the first step
of the proof, namely it will show that % is close in probability with Sa prime(L*, 1)
when A is a fixed parameter taken large enough and ¢ goes to infinity (see Proposition
. We have to "cut' the sum because of the problem of convergence of the Fourier
series of X +—— % which is due to the lack of regularity of the indicator function
140.,. To prove this, we are going to proceed by regularization which means here that
we are going to smooth the indicator function 1;o via a Gaussian kernel.

In Section 4, we tackle the second step of the proof, that is the fact, in the non symmetric
case, that the (tY,(kiei(L) + koea(L), tY,(—(kie1(L) + koea(L))) become independent
when ¢ — oco. We also show that they converge towards random variables that are
identically distributed according to the normalized Haar measure over (R/Z)? and that

(tQ,

they become independent, when ¢ — oo, from L and so that %tm has the same

distribution of S, (6, L). We also deal with the symmetric case, which is simpler.

In Section 5 we are going to tackle the third step of the proof, namely study the con-
vergence of Sy (w, L) when A — oo and the existence of moments of its limit.

In Section 6, which is the last section, we give the approach, based on the approach to
prove Theorem [T} to prove Theorem

In the rest of the article, all the calculus of expectation E, of variance V and of proba-
bility P will be made according to the measure ji;. Furthermore, the expression typical
is going to signify fio — almost surely. In fact, like we have said in Section 1, we are
going to suppose that fis = po in Section 3 and in Section 4 because all the results
extend to the general case.

4.3 Reduction to the study of the Siegel transform

The main object of this section is to show the following proposition :

Proposition 30. For every a > 0, for every A > 0 large enough, for every t large
enough, one has that :
]P)<AA,prime(L7 t) 2 Oé) < (07
where
R(t82,, L)

AA,prime(Lat) = ‘ \/%

- SA,pm'me(L7 t)‘ . (48)

This proposition basically says that we can reduce the asymptotical study of R(t84,L)

to the study of its Fourier transform, taking into account a phenomenon of multiplicity.
In fact, due to the triangle inequality, we only have to prove the following two lemmas
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Lemma 56. For every a > 0, for every A > 0 large enough, for every t large enough,
one has that :

P(A4(L,t) > o) < «

where N
t
A4(Lt) = |M — HA(L,t)| with (4.9)
Vi
1 1 3 3
HAL ) = 5= 5 o (D) cos(2mtVy (1) = 55) + py(~) cos(2mt¥ (1) = °1))
27 P 7] 2 4 4
o<|l]|<A
(4.10)
which becomes when ), is symmetric
1 l 2mtY, (1) — 3¢
HA(L,t):* Z p'Y()COS( ™ ;/( ) 4)) (411)
T lert 121
o<|li]<A

Lemma 57. For every a > 0, for every A > 0 large enough, for every t large enough,
one has that :

P(|Saprime(L,t) — Ha(L,t)| = a) < a.

Proof of Proposition[30] One has that :
A g prime(L, 1) < AA(L,t) + |Saprime(L, t) — Ha(L, t)). (4.12)

The Lemma [56{ and the Lemma [57| imply then the wanted result. O

Let us say a few words about Lemmas [56] and [57] before following with their respec-
tive proofs. The Lemma |[56|says that the study of % can be reduced to the study
of its Fourier transform. The Lemma [57|says that the phenomenon of multiplicity (the
fact that for a prime vector [, 2[, 3l etc. appear in the sum H4(L,t) when A — o0) is
not so important. We only have to gather all the multiples of a prime vector (which
corresponds to the infinite sum over m, see equation (4.6))), so that we focus on prime

vectors.

4.3.1 Proof of Lemma

First, we are going to prove the Lemma [56] To do so, we are following closely the
approach of [I0], yet with some differences because in our case it is not the radius of
dilatation that is random but the lattice (or, equivalently and in a certain sense, the
oval).

For # € R? and t > 0, let us define

2 2
Mait) = eIk’
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and, for M € SLy(R),

Ay (x5 t) = AM(Mx; t). (4.13)
We recall that :
/ Ay (s t)de =1 (4.14)
R2
and that the Fourier transform of \y/(-;¢) can be expressed as
— _larmHTe)?
Gty = = (4.15)
We introduce the following function :
Xoar(258) = (L, o % A (50)) () = /RQ Lio,, ., (¥)Au(z — y;t)dy (4.16)

(it is a regularization of the function 14,

M—ly)'
Let us also set :

Nyeg(t2,, M) = >~ x4 m(n;t) and (4.17)

nez?
(the index "reg" stands for regularized)

Nyeg (182, M) — Area(t€,)

F(M,t) = i (4.18)
Let L be a unimodular lattice such that e;(L) and ey(L) are well-defined and let
M = [e1(L),eq(L)] if det([e1 (L), ea(L)]) > 0 (4.19)
and
M = [es(L),e1(L)] if det([e2(L),e1(L)]) > 0. (4.20)

Then M is a matrix that represents L and one has immediately that :
R(tQ, L) = R(tQy-1,, Z7).

Now, let us call :

R(t82,, L)

Ay(L,t) = | i

— F(M,t)] and (M) 4(L,t) = |[F(M,t) — Ha(L,t)|  (4.21)

so one has that :
Aa(Lt) < A(Lt) + (Ag)a(L,t). (4.22)

The proof of Lemma [56| lies on the two following lemmas :
Lemma 58. The quantity Ai(L,t) converges to 0 when t — co.
Lemma 59. For all o > 0, for all A large enough, for all t large enough,

P((Ag)a(L,t) > ) < .

Proof of Lemma [56] 1t is the direct consequence of Equation (4.22)) and of Lemma
and Lemma O

Lemma [58| basically tells us that the study of R(%.L) can be reduced to the study

of one of its regularized Fourier series, whereas Lemma [59| means that the asymptotical
study of this regularized Fourier series can be brought back to the study of the non-
regularized Fourier series.

The next subsubsection is dedicated to the proof of Lemma [58 and the subsubsection
after it is dedicated to the proof of Lemma [59]
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Proof of Lemma

The proof of Lemma [58| is based on two sublemmas. The first one is the following :
Sublemma 4. For all z € R?, for all t > 0,

2 .
X0 (5 ) — 1’591\4717@)’ < o T dist(M )

where for all z € R?,
dist(z,ty) = inf |z — y|.
yety

Proof. One has that :

2 IMa—y)? ,
Xy (@5 8) = g,y (2)] = | /y e” T dy| if Mz € 19,

¢, AT

and

12 Me—y)? .
r(@it) = Ly (@) = | [ ey i M g 19,
Yy

etq, 4m

because of Equation (4.14)) and by making the change of variable y = Mu.
The proof of Lemma 3.2 from [10] gives the wanted result. O

The second sublemma gives an estimate of dist(Mn, ty). To state it, we need some
notations. Like in [I0], let the curve v be defined in the polar coordinates (r, @) by the
equation

r=T1(p). (4.23)
Let us define : Il
ry(z) = T (o(@)) (4.24)

where ¢(z) is the angular coordinate of x. Then, one has that there exists C' > 0 small
enough so that for every z € R?,

dist(x,ty) > Clry(z) — t|. (4.25)
We deduce the following sublemma :
Sublemma 5. For all L € %, for allt > 0, for all n € Z2, we have that :

dist(Mn, ty) = C|ry(Mn) —t|.
Now we can prove Lemma [58|

Proof of Lemma [58] By using the Equation (4.21)), we have that :

1
Al(L>t> < W Z ‘X'y,M(n;t) - ]—tQMfly(nﬂ

nez?
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because, also, R(t2,, L) = R(tQMfl,y,ZQ). So, Sublemma |4] and Sublemma |5 imply
that :

A Z e—CQt [y (Mn) t|2‘

n€Z2
The essential part of the right-hand side are the terms such that n € Z? verify that

1

Yet the number of n € Z? that belong to such an annulus is of order {7
So, one has finally :

| —

Ai(L,t) = O().

=

t

Proof of Lemma [(9

To prove Lemma , we first need to give another expression of F'(M,t), obtained
via the Poisson formula. It is the object of the following lemma :

Lemma 60.

1 X (275 )
F ) = 5 . 113
0= 0r o 1O
(pv((Ml)Tn) cos(2mtY, (M) n) —

+ Op(t™h)

(4.27)

) (= (M) cos(2mtY, (— (M) = )

which becomes in the symmetric case

1
F(M.t) =~
(L0 =2 2

MW“M‘IW cos(2mtY, (M) — °) + Oy (1)

where the M in index of Oy is to signal that it depends on M (or, equivalently, on the
lattice L).

To prove it, we first need a calculatory sublemma :

Sublemma 6. Let v be a simple, closed, analytic, strictly convex curve such that 0 €
Q.. Let D € SLy(R). Let ¥ = D~v. Then one has for every £ € R* — {0} :

25(€) = D, (D"¢),

el
PO = fiprep”

Y5(€) =Y, (D"¢)

where DT is the transpose of the matriz D.

p-(DT€) and
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Proof. Let us call T the unit tangent vector at z.,(DT¢) such that (D¢, T) is a orthog-
onal and direct basis of R?. Then, DT is a unit tangent vector at Dz, (DT¢).
Let us call k the unit normal exterior vector of 4 at Dz.,(DT¢). Then, one knows
that k is orthogonal to DT and (k, DT') is direct because det(D) = 1. By property
of the adjoint operator, one knows that DTk is orthogonal to T' and thus there exists
a € R— {0} such that

DTk = aD”¢. (4.28)
So, one gets that :

k= ac. (4.29)

Yet, one has also that (k, DT) and (DT¢, T) are direct and orthogonal basis of R?. So,
one must have a > 0 and it gives us the first wanted result.
Now, concerning the third equality, one has that, by definition :

V(€) =< & 75(6) > (4.30)
So, the first equality of Sublemma [0] gives us that :
Y;(€) =< € Da,(DT€) > . (431)

By using the adjoint property, one finds the wanted result :
Y;5(§) =< D'¢, 2,(D") >=Y,(D"¢). (4.32)

So, one gets the third equality.

Concerning the second equality, one knows that ¢ — 7(t) is a parametrization of the
curve v and that t — D~(t) is a parametrization of the curve Dv. So, one can use
these parametrizations to compute p, and ps.

By using the fact that D € SLy(R), one has that :

”D” U0y, e, (4.33)

Let us call ty the instant such that

V(to) = 2, (D"¢)
and so, according to the first result of the Sublemma [6] one has that

DA(ty) = a5(E). (4.34)
Let us set (£) = (2(£), y(t)) and DY) = (61(1), 6 (t)).

Then one has at the instant ¢ = ¢ :

aRD'E = (2'(ty), y'(to)) (4.35)
and
BRE = (¢ (to), P (to)) (4.36)
with a, 4 > 0 and R = <(1) _01> € SOy (R).

By using the fact that DRDT = R, one finds that :
a=p. (4.37)
By using Equation (4.34), Equation (4.35)), Equation (4.36)), Equation (4.37) and by

using Equation (4.33]) at the instant ¢ = t;, one has the third wanted equality. O



128 CHAPTER 4. THE CASE OF ANALYTIC AND STRICLY CONVEX SETS

We can now tackle the proof of Lemma [60]
Proof of Lemma[60] According to the Equation (4.18)), the Poisson summation formula
and because of the fact that 1,o _, (0) = Area(#{2y-1,) one has that :

1 — —
F(M,t)=—= Y Lgq,, (2mn)\y(27n;t). (4.38)
Vi n€z?—{0} !

Yet, according to Lemma 2.1 from [10], one has that :

10,1, (8) = Vg~ QZ\/QWIOM 1 (£€) exp (£i(#Y a1, (£6) - ))+0M(f§\|€|! ?)

(4.39)

By using Sublemma @ with M~! = D, we get with Equation (4.38) and by grouping

the n and —n terms in the Fourier series, we get the wanted result. O]
Let us set 3

v(l,t) = ps (1) cos(2mtY, (1) — Z”). (4.40)

Using the Equation (4.15 - the Equation (4.21} - the fact that if M represents a lattice
L, (M~1)T represents the dual lattice L, and the previous lemma, that is Lemma .
one gets that :

(Do) A(L,t) < Ao (L) + (D) a(L,t) + (Aos)a(L,t) (4.41)
where
Ag1(L,t) = Op(th) (4.42)
Boa(Lt) = 5| & (U L) CTE )
o<lﬁlLH<A

(Do)l | > Hlll V(1) + (1, £))e I | (4.44)

leLt

A<]|Y|

So, if we prove the following lemmas, we will get Lemma |59 and, in fine, get Lemma
00 :

Lemma 61. Ay;(L,t) converges almost surely to 0 when t — oo.

Let us remark, by the way, that this last lemma is immediate according to equation
(4.42).
Lemma 62. For all A > 0, (Ag2)a(L,t) converges to 0 when t — oo.

Lemma 63. For all o > 0, for all A large enough, for all t large enough,

P((A23)a(L,t) > o) < a.
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Proof of Lemma 59 Let o > 0. Let us take A large enough so that for all ¢ large
enough,

P((Ag3)a(L,t) > a) < a.

It is possible according to Lemma [63]
According to Lemma [62] according to Lemma [61] and because the almost-sure conver-
gence imply the convergence in probability, even if it means taking ¢ larger, one can
suppose that :

P((Az1)(L,t) =2 a) <

o and
P((AZQ)A(L,t) = Oé) < a.

By using equation [£.41] one gets the wanted result. O

Before following with the proof of Lemma let us say a few words about Lemma
and Lemma The first tells us that the non-regularized Fourier series is "close'
enough to the regularized Fourier series whereas the second one tells us that the large
terms of the regularized Fourier series do not matter, in a certain sense, for our study.
It remains only to prove Lemma and Lemma [63] Because the density of jis is
bounded, we only need to prove these lemmas for jis = po and we will make this
assumption for the rest of the section. We are now going to prove Lemma and
Lemma, [63]

Proof of Lemma [62]

Proof of Lemma[62 Let | € L. Then one has :

_empl?, _ (2m)? |1
1—e : |<2572 (4.45)
With this equation and with Equation (4.43]), one gets that :
M o1
(Ao2)a(Lt) < 3 Il (4.46)
leL*
o<[ltll<A

with M > 0 because v is a bounded function. It follows that there exists C'(L) > 0
such that : .
A2

(B22)a(Lt) < C(L) 5

(4.47)
O

Proof of Lemma

To prove Lemma we need to use what are called Siegel and Rogers formulas.
Theses formulas will also be useful later in this paper.
By setting ¢, = ((2)7* for k an integer larger than 1 and where ¢ denotes the ¢ function
of Riemann, one has the following formulas :



130 CHAPTER 4. THE CASE OF ANALYTIC AND STRICLY CONVEX SETS

Lemma 64 ([64],[93],]47]). For f a piecewise smooth function with compact support on
R2, one has :

[, sy =er [ far
o When f is even,
) [ SPd<C [ fan+ el [ finy?
where C' > 0.

With this lemma, we are going to prove two lemmas that will enable us to prove
Lemma [63| by using Chebyshev’s inequality : the first one is intended to estimate the
expectation of (Ag3)4a(L,t) to see that it goes to 0 when ¢ — oo (uniformly in A), the
second one is intended to estimate its variance to see that it can be as uniformly small
in ¢t as one wants if A is chosen large enough. Until the end of this section, we are going
to suppose A > 1.

Lemma 65. |
E((Az,s)A(Lat)> = O(;)

Proof. One has :

(A23)a Z f() (4.48)
le
e
where 1 1 1yl
) = —— Wl t) + v(=1,t))e @ (4.49)
2m |1)|3
The Lemma [64] gives us then that :
E(B20)a(L.0)| = C| [ | f(@)1japadal. (4.50)

By passing into polar coordinates (7, 6), one gets that :

(2m)? &

()L 0| =20] [ [ CCTHOZICTTE gy sy

r2
by setting h(f) = Y, ((cos(d), sm(@)) and by using the fact that Y, is positively homo-
geneous. Furthermore, an integration by part gives us that :

3ry _—(2m)2 %
/ cos(2mtrh(6) T %)6 o) dr (4.52)
>A T2
_eni? 3
_ e 7 sin(27tAh(0) — )
2th(0) Az

(27)2r2
1 3mr. e 2
in(2wtrh(6) — — d
i (0) /@A sin(2mtrh(0) = =) — z—dr
2 2

4 3T (2m) 1

Fh(0) /@Asm(Zwtrh(G) 4)6 2 radr.

+
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By using that rz < r (because A > 1) and the fact that h(6) admits a positive lower
bound (because 0 € 2,), by estimating the three terms of the right member, one gets
that :

(2mtrh(0) — 3x)e~ "
[ ot e T E gy < (453
>A rz t
with C' > 0 that does not depend on 6.
By using Equation (4.51)) and Equation (4.53)), one gets that :
1
E((Das)a(L.1)) = O(7).
O
Lemma 66. 1
V((Aaa)alL1)) = O()

where the O can be chosen independent from t.

Proof. By using the same notation as before, by using again the Lemma [64] and by
using the Lemma (65| one gets that :

Var((Ags)a(L, 1) < C /R @)L jsade. (4.54)

So, by passing into polar coordinates and by using the fact that v is bounded, one gets
that :

Var((Aos)a <C / Aﬁdr (4.55)

By integrating, we get the wanted result. O]
We can now prove the Lemma |63]

Proof of Lemma |63 The Chebyshev’s inequality gives the wanted result if, first, we
choose A large enough and, second, we choose t large enough so that E((Aq3)a(L,1))
and Var((As3)a(L,t)) are small enough. These choices are possible according to Lem-
mas [65] and 66l O

So, now the proof of Lemma is complete and we will conclude this section by
proving the Lemma [57| so that the proof of Proposition [30| will be complete.

4.3.2 Proof of Lemma

To prove the Lemma 57} we are going to take the same kind of approach as before
: estimate the expectation and the variance of the quantity Sa — Sa prime and get the
result via the Chebyshev’s inequality.
We have that :
HA(L> t) - SA,prime(L7 t) = Z f(l) (456)

leLL prime
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where

f) = % Lo<ji<a Z (kL T) + ( kL, 1))

4.57
ek (£57)

A
k> LmJ-&-l

with v being defined by Equation 4.40]

With this expression, we see that we are going to have a little problem of integrability
at 0 if we use the Lemma [64, That’s why, we have to exclude 0 and we will suppose
that L is chosen so that ||L*||; > € where 0 < ¢ < 1. Only a small number of lattices
is excluded according to this lemma :

Lemma 67. For every 0 < e < 1, one has that

P(|[L]l <€) = O(e?).

Proof. Tt is a consequence of Lemma [64] by taking

L) =) 15,06

leL
where 15,0, (1) is the indicator function of the closed ball for the norm ||-|| centred on
0 of radius e. N
Thus, for the chosen lattices, we have :
HA<L7 t) - SA,prim6<L7 t) = Z f(l)1||lH>e = AB,G,A,t(L) (458>
leLt prime
(this equation defines Az 4+(L)).
Lemma 68. 1
E(Asear(L)) = Ocal}).
Proof. By using the Lemma [64] one gets that :
1 v(k 0),sin(d)),t
E(As.a,(L) < C / / (kr(cos(6), sin(6)), 1) ;. (4.59)
r=e¢ J6=0 7‘2 A k2

Lebesgue’s dominated convergence theorem gives us that :

/ v(kr(cos(0),sin(0)),t _ Z / v(kr(cos(0),sin(0)),t) dr.
max (% 6)

% k = k>

k>4

Njw

1
r2
(4.60)

An integration by part (on the variable r) as in the proof of Lemma |[65|and the Equation
(4.59) give us finally that :

1

E(Agei(D) = Oca(y) (4.61)

O
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Lemma 69. There exists K > 0 such that :

Var(Ase4,(L)) < K(—loi(e) + bgjflA)).

Proof. Lemma |64] gives us that :

Var(Ag, as(L C/ /0 - T2 kr(cos(i); 8111(9)),25))26”' (462)

k>

Rk

Yet one also has that for all z > 0 :

1 D
> 5 < (4.63)
> k2 T2
where D > 0.
Thus, Equation (4.62), Equation (4.63)) and the fact that v is bounded imply that :
2rC'D (A1
V(Ageai(L) < Zdr. (4.64)
A e T
O]

We can now give the proof of Lemma [57]

Proof of Lemma[57]. First we take 1 > ¢ > 0 small enough so that the measure of the
neglected lattices, id est the lattices such that ||L||; < e, is small enough. It is possible
according to Lemma

Then we take A large enough so that V(Aj. 4.(L)) is small enough. It is possible
according to Lemma

Finally, we take ¢ large enough so that E(As . 4+(L)) is small enough, which is possible
according to Lemma and conclude by using Chebyshev’s inequality. O]

So, we are now brought back to the study of S4 prime(L,t) when ¢ — oo and the
next section is dedicated to it.
We are going to replace L+ by L (it changes nothing because we are studying the
asymptotic convergence in distribution with L € .% distributed according to fis).

4.4 Study of Sy rime(L,t) when t — oo

4.4.1 Reductions for the study of Sy ,yime(L,t) and proof of The-
orem [10)]

Before entering in the main object of this section, we need to do a small rewriting
Of SA,prime(L7 t)
We recall that a vector | € L is prime if, and only if, Kl € KL is prime where
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K € SLy(R). Furthermore, a vector (I1,ly) € Z? is prime if, and only if, [; Al = 1.
By using the symmetry [ —— —I, we deduce that S4 prime(L,t) can be rewritten as

followed : ) Z(L.)
SA, rime(Lat) = Z Zn (465)
g T kella(r) Wi (L)

where, for k = (ky, ko) € Z2,

Wi(L) = |[krer (L) + koea(L)| 2, (4.66)

. (4.67)

ZLt)= Y v(m(kiei(L) + keea(L)), t) + §y(—m(k;lel([/) + koes (L)), t)

meN—{0} m
and where
HA(L) = {(k‘l, k'Q) < Z2 | ]{1 A kg = 1, l{fl 2 0 |“€1€1<L) + erQ(L)H < A} (468)

and here we agree that if (ky,ks) € I14(L) then k; = 0 implies that ks = 1 (for the
definition of e;(L) and ey(L) see Definition [19).

Let us recall that :
H:{Uﬁ,kg) EZZ ‘ kl/\kgzl, kl 20} (469)
Our goal now is to prove the following proposition :

Proposition 31. In the symmetric case, {Zy(L,t)}ren converge, when t — oo, in
distribution towards {p~(kie1(L) + /{gez(L))Zk(w)}keH where Zk(w), with w € Q, are
independent identically distributed real random variables that have a compact support,
are symmetrical and are non-zero.

In the non symmetric case, {Zy(L,t)}ren converge, when t — oo, in distribution
towards {p(kie1(L) + kaea(L)) Zp(w1) + py(—(krer(L) + kaea(L)))Zi(wa) ke where

(w1,ws) € Q x Q, where Zy(w) are independent identically distributed real random
variables that have a compact support, are symmetrical and are non-zero.

In the next section we are going to consider, in the symmetric case, the sums of the
type

Sy(w,L) = p(kre1(L) + k‘geg(L))Z;(w)
( ) kenzA:(L) |k1e1 (L) + koea(L)||2

and the sums of the type, in the non symmetric case,

Sananny = 3 athald)+ ke @) Zw) + p(=(he(l) + kes(D) Zilw)

kella(L) lkrer (L) + kaea(L)]2

where Zj are non-zero real independent identically distributed random variables from
2 5 w that are symmetrical and have a compact support and where (wy,ws) € £ x €.
Proposition [32] tells us that :

Proposition 32. The sums of these types :
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e converge almost surely
o their respective limits are symmetrical and their expectations are equal to 0
e their respective limits admit moment of order 1 4+ k for any 0 < kK < %

e their respective limits do not admit a moment of order % when o(L) > m where
m > 0 and where L belongs to an event of the form (||L|| < «) with o > 0.

e when there exists a > 0 such that fis({L € S | |L|l1 < a}) = 0 then their
respective limits admit moments of all order 1 < p < 0.

We are going to see now that it is enough to prove Proposition |31|and Proposition
to establish Theorem 10} with the exception of the exact form of the limiting distribution
(vet it is given by Proposition [33).

Proof of Theorem[10} Let ¢» € C>°(R). Let € > 0. According to Proposition , we can
take A as large as we want and then ¢ as large as we want so that :

B (o) - Bz ) < (4.70)

Thanks to Proposition |31}, one has also that :
B (¢(Saprime(L; 1)) = E (¥(Salw, L)) | < € (4.71)

where the Zj(w) in S4(w, L) are given by Proposition .
Furthermore, Proposition [32] gives us that :

N

E ($(Salw, L) — E (4(fim Salee,2))) | < e (4.72)

with lim4 o Sa (w, L) that verify all the listed properties.
So, Equation (4.70), Equation (4.71)) and Equation (4.72)) give the wanted result.  [J

The main reason why the 7 are going to be independent from L is the presence of
the factor t.
The main reasons why the rest of Proposition will be true are the presence of
the factor ¢ in Z, and the fact that the coefficients of order 1 of the Taylor series
of (Y(kie1(L) + koea(L)))ker,(ry on a small geodesic segment are Z-free and, in the
non symmetric case, (Y (kiei(L)+ koea(L)), Y (=(kie1(L) + kaea(L))) ke (z) on a small
geodesic segment are Z-free.

In order to prove Proposition 31} it is actually enough to prove the following proposition
by using the definition of v (see Equation (4.40))) :

Proposition 33. For k = (ky, ko), let
Gk(L, t) = tY,Y(klel(L) + kQ@Q(L))) mod 1. (473)

Then, we have that {0y(L,t)}ren converge, when t — oo, towards random wvariable
that are independent identically distributed, are distributed according to the Lebesgue
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measure \ over R/Z and are independent from L.

In the non symmetric case, we have that {0y(L,t)}ren and {0_(L,t)}ren converge,
when t — oo, towards random variable that are independent identically distributed, are
distributed according to the Lebesque measure A over R/Z and are independent from L.

Thanks to this proposition, we now understand why the limit distribution of
2
RUDZL) is given by S(6, L).

Vit
To prove this last proposition, it is sufficient to prove the following proposition where

e(#) stands for exp(i270) :

Proposition 34. For everyl € N—{0}, for every ¢ € C°(%), for every (p1,--- ,pi) €
Z' — {0}, one has :

E <¢(L)e(h§l:1 p;ﬁkh)> =0 (4.74)

where the k;, € 11 are all distinct.
In the non symmetric case, one has that for every l € N —{0}, for every ¢ € C°(S),
fOT every (pflv o, P-1,DP1,0 0 7pl) € ZQl - {0}7 one has :

E <1/1(L)e(hi POy, + hip_hﬁ_kh)> =0 (4.75)

where the k;, € 11 are all distinct.

Before passing to the proof of Proposition [34] let us give some heuristic about it in
the symmetric case, the non symmetric case being similar here.
Basically, by working with a foliation of the space .# given by small enough geodesic
segments, we are first going to have :

£ (wL)e(é o)) ~EW)E ((Z )

due to the presence of the factor ¢ in 6.

The right member will go to 0 when ¢ goes to infinity because a Riemann-Lebesgue
lemma will apply because quantities "close" to the variables 6, are typically Z-free (see
the heuristic explanation of the second step).

The rest of this section is now dedicated to the proof of the Proposition

4.4.2 Foliation and local estimates

We recall that a foliation of the space .5 is given by the orbits of the group d where

o-(1)

To prove Proposition [34] we are going to look at what it is happening on a small
"segment" of the form

JA(L) = {5V | A € [11+6, 144} (4.76)
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where L € .% and € > 0 can be taken as small as possible. More precisely, we are going
to show, when t — oo, the independence of the (y) and of L over smalls segments of the
form J.(L), as well as the fact that the (0) are identically distributed and distributed
according to the normalized Haar measure over R/Z.

Let us call s : (z,y) € R? — (z, —y) and let us set for k = (ki, ko) € [T or k € —1II :

Wi(L) = dY, (krer(L) + kaea(L)) (s(kyey (L) + kaea(L))) (4.77)

where dY,, (kiei(L) + koea(L))(+) stands for the differential of Y, at the point kye; (L) +
kgeg(L).

On a segment of the form J.(L), the following lemma basically tells us how we can
estimate the quantities Y, (kie1(L) + kaea(L)) :

Lemma 70. For a typical L € %, there exists € > 0 small enough such that for every

/\E[%ﬂ,l—f—e],

e1(6(AN)L) = d6(N)er(L) and ea(6(A)L) = 6(N)eg(L).
Furthermore, for such a lattice L, for such X\, for k = (ki,ks) € Il or for k € —I1, we
have for h =X —1,
Yv(k‘lel(é()\)L) + kgeg(é(/\)[/)) = Yv(klel (L) + k?gGQ(L)) (478)
+ hWy(L) + Ok‘l,kg,L(h'2>'

Proof. The first fact was proven in [89] (see Lemma 15).
Let us note that, as v is analytical, Y, is regular. As a consequence, the second fact is
obtained from the first fact of Lemma [70] and by a simple calculus of Taylor series. [

To prove Proposition [34] we see, in light of Lemma [70] that it would be convenient
to prove the following proposition :

Proposition 35. For a typical L € %, for every m € N — {0}, for every family
(p1,--+ ,pm) € Z™, for every ky,- -+ ky, € I1 all distinct if

S pWi(L) =0 (4.79)

then py = -+ = ppy, = 0.
In other words, for a typical L € %,

(Wk(L))keH

is a Z-free family.
In the non symmetric case, for a typical L € S, for every m € N — {0}, for every
family (p_p, -+ p_1,P1,"** ,Dm) € Z*™, for every ki, -+ , k,, € II all distinct if

> Wi (L) + > p-iW_, (L) =0 (4.80)
i=1 i=1
thenp_p, =---=p_1=p1="+++=pm=0.

In other words, in the non symmetric case, for a typical L € .S,

(Wk(L))ke—HuH
is a Z-free family.
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The next subsection is dedicated to prove this proposition.

4.4.3 Proof of Proposition [35

To prove Proposition |35 we are following closely what was done in the Section 5 of
[27] and we need four preliminary lemmas.
To state these lemmas we need to put in place some notations. Let us call

P: X € R* — dY,(X)(s(X)). (4.81)
Let us also set for every k = (kq, ko) € —ITUII,
fr: (A= (X1,Y1),B = (X3,Y3)) € R* x R? — P(k1 X + kpY) (4.82)

where X = (X, X5) and Y = (Y}, Y;) € R%
Let us set for every L € GLs(R),

gr : 0 € R— P(L(1,9)). (4.83)
Let us also set for every L € GLy(R),
gr:0 € R— P(L(—1,-9)). (4.84)

Lemma 71. If v is analytic, we have that for any L € GLs(R), gy, is (real) analytic
and not equal to a polynomial.

Proof. First, let us note that we X € R? — dY,(X)(s(X)) is positively homogeneous
because X —— Y, (X) also is positively homogeneous.
So, one has that for every ¢ € R,

1 J
V1402 V1462
We know that g, is analytic because v is analytic. So, let us suppose that f; is equal to
a polynomial. Let us observe that P(L(ﬁ, \/%)) is bounded so that g; can only

be of degree at most one.
From this fact, one has that, for every A\,6 € R, (P o L)(\,0) can be written as :

(P o L) ()\, 5) = Clo)\ + a15 (486)

gr.(0) = V1+ 2P(L(

)). (4.85)

where ag, a1 € R.
By making the change of variable u = L(\, 0), one gets finally that there exists by, b; € R
such that for all \,0 € R :

P(X,6) = boA + by9. (4.87)

Yet, by using Equation (4.81]), one gets that :
20,Y, — y0,Y, = box + b1y. (4.88)

Yet, Y, is positively homogeneous and so for > 0, one has Y, (z,y) = 2Y,(1, ¥). Using
differentiation, one gets that :

0,Y,(x,y) = 0,Y,(1,%). (4.89)
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Using Equation (4.88]) and Equation (4.89)), by diving by x and making x goes to infinity
one gets that :
0. Y, (z,y) — by (4.90)

when x — oo.
So, one gets that (because Y, is analytic) :

9.Y,(z,y) = K(y) (4.91)

where K(y) is a regular function.
By interchanging the role of z and y, one gets that :

Y, (z,y) = Aozy + Ay (4.92)

where Ag and A; belong to R. Yet by setting z = 1 and y = ¢ and by using Lemma
5.2 from [27], we obtain that it is impossible. O

In the non symmetric case, we will need the following lemma.

Lemma 72. The following alternative holds. Let k > 2, k € 2N. Fither
(i) There ezists L € GLy(R) and 0,0" € R such that

9 (5) , 30 )
(k)

P& 7 ) (4.99)

or
(11) Q. has a center of symmetry.

Proof. Let us suppose that (i) does not hold. Let L = Id. We have that ggk)(-) = c§§’;)(-)
for some constant c. In other words

0 0

a5/ o

Since for x > 0 we have P(x,y) = xP(1, %), it follows that

T

*P(1,6) = c(=<)FP(—1,—6). (4.94)

k _ ok
9,P(z,y) = cO, P(—z,—y). (4.95)
Since 7 is analytic, this equality in fact holds identically. In particular :

a?]jP(—a:, —y) = c@jP(w, Y). (4.96)

As a consequence, and because of Lemma [71], one must have ¢ = +1.
Furthermore, from Equation (4.95)), one has necessarily that :

P(x,y) — cP(—z,—y) =Y a;(z)y. (4.97)

Let us set now H(x,y) =Y, (x,y) — c¢Y,(—x, —y). Equation (4.97) and Equation (4.97))

give us that :

20, H(x,y) — yo,H(z,y) = Y a(w)y'. (4.98)
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Furthermore, one has, by positive homogeneity of H(x,y), that 0, H (x,y) = 0. H(x/y, 1).
Equation (4.98) gives us then that the growth of 9,H (z,y), at x fixed, is of order y¢~'.
As H(z,y) is analytic, we must have :

OyH (z,y) = 3 bi(x)y' (4.99)

and so

k
H(z,y) = bi(z)y (4.100)

where the b;(z) are analytic functions.

Yet, H(z,y) = yH(,1). So, one must have : H(z,y) = bo(x) + bi(z)y. So, we see
that we have reached the same point of the demonstration of Lemma 5.3 of [27]. So,
by reasoning the same way, one gets finally that :

Y, (X) =Y, (—X) =< X,v > (4.101)

with v being a vector of R%. By shifting the origin to g, Y, (X) is replaced by Y, (X )+ <
X, 29 > and Y, (=X) by Y, (—=X)— < X, z¢ >. So, after shifting the origin to 3, we get
Y,(X) =Y,(—X) so that Q, is symmetric. O

Let us assume WLOG that Equation (4.93) holds for L = Id.

Lemma 73. For every m € N — {0}, for every family (p1,--- ,pm) € Z™, for every

ki, ky € 11 all distinct, one has the following implication : if 327" pifr, s a poly-
nomial function then all the p; must be equal to 0.

In the non symmetric case, for everym € N—{0}, for every family (p_m, -+ ,p-1,P1,"** ,Pm) €
Z*™, for every ki, -+, ky, € I all distinct if Y0 pife, + Soieq D—if -k, 8 a polynomial
function then all the p; must be equal to 0.

Proof. Let us suppose that > p; f. is a polynomial. Let us give j € [1,m]. We are
going to show that p; = 0.

Let 3 € R? such that < k;, 3 ># 0. Let « € R? and let X = « and Y = da + 65.
Then, one has :

<k,pg>
A B) = _SmE 7
fi(A, B) \<k704>!91d(5+9|<k’a>|)
if <k,a>>0or
<k,pg>
A B) = k Gra(0 +0——"~""——
fe(A,B) = | <k,a>[gra(0 + |<k,a>|)

if <k,a><0.
As Y7, pifr, is a polynomial then >, p; fr(A, B) is a polynomial in # whose degree
is bounded by a number that does not depend on « (nor in ).

So there exists K > 2 such that the K-th derivative of 1" fi(A, B) relatively to 0 is
equal to 0. It means that the terms in front of 0% is equal to 0. Hence the following
equation :

il B < ki, B >

Z Z‘ < ki, a > ‘Kil

=1

—0 (4.102)
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where h; = piggl{)(é) it < kj,ao>>0and h; = pl-g%()(é) if < k;j,a >< 0. Now, since

the k; belong to II and are all distinct, it is possible to choose « so that < kj,a >> 0
is arbitrary small while < k;,a > remain bounded away from zero for every i # j.

Thus, we must have h; = 0. Yet, g is not a polynomial so there exists 6 € R such that

ggf)(é) # 0 and it gives us that p; = 0. In the non symmetric case, Equation (4.102))

becomes «
ih‘ < ki, >
Z| < ki, a0 > |E-1

i=1

=0. (4.103)

where h; = pig%()(é) +p_z-§§ff)(5) if < kj,a >> 0 and h; = piggf)(é) +p—i9§{i{)(5) if
< k;,a><0.

Let us consider for example the case where the first alternative holds. As before, we
must have pjg%l() (0) + p_jg§§)(5) = h; = 0 for any choice of §. Since we assume that

Equation (4.93), this implies that p; = p_; = 0. O
Lemma [73| enables us to prove the following lemma.

Lemma 74. For a typical L € %, for everym € N—{0}, for every family (p1,- -+ ,pm) €
7™, for every ky,--- ,k, €Il all distinct if

> pilti (1) =0 (4.104)

then .
> pifi; = 0.
i=1

In the non symmetric case, for a typical L € %, for every m € N — {0}, for every
family (p_pm, -+ ,p—1,D1,"** s Pm) € Z*™, for every ky, - - , ky, € I1 all distinct if

ZpiWki(L> + Zp—iw—ki<L) =0 (4.105)
=1 i=1
then i )
Y vifr + Y p-ifr =0,
i=1

i=1
Proof. First, we note that, for every k € —I1 W II,

Wi(L) = fe((er(L)h, (ea(L)), (ea(L))s, (ea(L))z)-

Thanks to this remark, we see that Lemma [74] is a direct consequence of the facts
that .5 = SLy(R)/SLy(Z), that det is a polynomial function whereas >, p; fx, and
Yo Dife, + >ty p—if—k, are polynomial functions, for a typical L, only in the trivial
case according to Lemma [73] O

We can now give the proof of Proposition [35]

Proof of Proposition [35]. It is a direct consequence of Lemma [73] and Lemma [74] O
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4.4.4 Proof of Proposition

As we have at our disposal Proposition [35] the proof of Proposition [34] is the same
as the proof of Proposition 5 in [89]. We are going to present it again for completeness.
Before starting the proof of Proposition [34] we only need a simple lemma :

Lemma 75. For every m € N — {0}, for every family (p1,--+ ,pm) € Z™ — {0}, for
every ki,--- ,k, € I, all distinct, for every 0 < € < 1, there exists a > 0 and K, a
measurable set of %5 such that [io(-Sy — K.) < € and such that for all L € K.,

D_pWi (L) > a.
i=1

In the non symmetric case, for everym € N—{0}, for every family (p_m, -+ ,p-1,P1,"** ,Pm) €
72 —{0}, for every ky,- - , ky, € 11, all distinct, for every 0 < e < 1, there exists a > 0
and K. a measurable set of S5 such that fio(-S2 — K.) < € and such that for all L € K.,

> Wi, (L) + > p-iW_p (L) > a .
=1

i=1
Proof. Tt is a direct consequence of Proposition [35] O

Now, by using the foliation given by 6(A) and previous results, we can now prove
Proposition (34}

Proof of Proposition |34, The proof in all its generality can be made as in the case where
flo = pg. So, we will suppose for simplicity that jio = ps.

We consider the case where (2, is symmetric. The non symmetric case is similar.

Let [ > 1. Let ¢ € C°(#). Let (p1,--- ,p) € Z' — {0}.

For all € > 0, we call F, the tribe on ., generated by the J.(L). Let 1 > ¢; > e > 0.
According to Lemma [70] and Lemma [75] there exists a measurable part K, such that
po(Ke) =1 —€, areal M > 0 and a real a > 0, such that

o for every L € K., for every A € [qu’ 1+ €] :

[Y((h)L) — (L) < M|h| (4.106)
where h =X —1
o for every L € K,,, for every A € [~ 1 + €], Equation (4.78) is verified.

1+e€1”

o forevery L € K,
l
> Wi (L) > a . (4.107)
i=1

Furthermore, we are going to suppose, even if it means making e goes to 0, that for
every L € K,
Jo,(L) C K. (4.108)
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Claim. With these notations, we have, for all L € K, , that :

E (@/J@(Zpﬂkiﬂ}"eQ) (L) = O(ez) + O(i) + iO(eg). (4.109)

atez

To this end, let us set, for all € > 0,

5(6):1+€—1+€.

Then one has for every L € K., according to Lemma [70] :

E(ve(d_ ptw;)|Fe,) (L)

Jj=1

- 5(12) /ej ) (we(Zpﬂkj)) (6(h)L)dh

1+eg -

=il [ . ( (it ) )L)dh +O(e2)
( Z ;01 ) - (12) /;;_1 GHDULAFIDAL) gy 4 O(e,) (4.110)
where
L) = ijlpjwkj(L), (4.111)
h) = zij bk, (6(X ijek Dy (L)h such that (4.112)
Dy(L,h) = O(R?) and (4.113)

Dy(L, ) is smooth around 0.
Thus, by integrating by part and by using Equation (4.107)), one gets that for all L € K,

1 /62 (itD1(L)h+itDa(L,h) g1,
d(€e2) el

itDy(L)h+itDa(L,h) | €2 )
= 1 (le 1(L) 2( )] + 1 / (Dy(L, ")) (h)eitDl(L)h+itD2(L,h)dh)
L1

5(es) TN A Y .
_ 0(@1) + ao<62) (4.114)

Finally, Equation (4.110) and Equation (4.114)) give the wanted claim.

Thanks to Equation (4.109)), the fact that us(K.,) = 1 — €; and because of Equation
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(4.108), we have that :

E (W(ij%)) |
< E (@D@(ij@kj)lKgl) |+ [E (1/)6(21%91@]-)1&1) |

j=1
1
atey

< Y |loc€r + O(€e2) + O( )+ iO(ez). (4.115)

By first choosing €; > 0 small enough (note that a depends on € ), then choosing €; > 0
and finally choosing ¢ large enough, we obtain the wanted result. O]

We are now brought back to the study of the convergence, in the symmetric case,
of the sums of the type

IS w, L) = pv(/ﬁ(ﬂ(L) + k‘geg(L))Z,;(w)
8 ) kGHZA:(L) |k1e1 (L) + koea(L)||2

and of the sums of the type, in the non symmetric case,

Sann )=y, e+ el Zewn) & oy —(hrer(L) + kaes(L) Zule)
e kel (L) |kver (L) + kaea(L)||2

where Zj, are non-zero real independent identically distributed random variables from
) 5 w are symmetrical and have a compact support and where (wy,ws) € Q x Q. In
the next section, we are going to study the sums of this type and prove Proposition |32
which will conclude the proof of Theorem [10]

4.5 Asymptotic study of Sy(w, L) and of S4(w;,ws, L)

The study is in fact essentially done in Section 5 of [89]. We only need to notice the
following fact to apply the same method :

Lemma 76. There exists m, M > 0 such that for every £ € R* — {0},

M = py(§) = m.

Proof. As 7y is strictly convex, from the definition of p,, p, > 0.
Furthermore, for every ¢ € R? — {0},

§
py(€) = Pw(m)-
S1 being compact, we obtain immediately the wanted result. O]

Proof of Proposition[32] We use the same method of the last section of [89] and use
Lemma [76l O



4.6. ELEMENTS OF PROOF OF THEOREM 12 145
4.6 Elements of proof of Theorem 12

To prove Theorem we follow the same approach that was followed to prove
Theorem [L11
Namely, as a first step, we prove the equivalent of Proposition [30] Namely, let us set

R(t) L
AA,PTime(La «, t) = | ( : ra, ) - SAprime(Lv «, t)| (4116)
Vit
with
1 1 1
SA,pm'me(L, a, t) = - Z 3 Z 3 (4117)
leLt prime ”lH 2 meN—{0} ™2
o<lif<A
3T 3
(pq,(l) cos(2mtmY, (1) + 2rm < o, > _Z) + py(=1) cos(2mtmY, (=) — 2rm < a, 1 > _ZD

Then, one can prove, as Proposition [30| was proven :

Proposition 36. For every 5 > 0, for every A > 0 large enough, for every t large
enough, one has that :

]P(AA:prime(La O‘vt) > 6) < ﬁ

Second, as Propositionwas already proven, the limit distribution of S prime(L, @, t)
when ¢t — oo and with o € R? fixed and with L being distributed according to jiy is, in
the symmetric case, is the distribution of the almost-sure limit of

2

e, 1)) By (ks R,
Satp=2 5 ek e, b D)

3
(k1,k2)€ll ||€(]{71, ]{72, L)| 2
lle(k1,k2,L)[|<A

(4.118)

when A — oo and where 6 = (0, k,)) € T™ being distributed according to Ao, and L
being distributed according to fio and where e(ky, ko, L) = kiey (L) + koea(L).

In the non symmetric case, the limit distribution of S prime(L, ., t) when ¢ — oo and
with o € R? fixed and with L being distributed according to iy is the distribution of
the almost-sure limit of

L
S’Y’A<0,L) _ l Z ¢a,’y,2(0(k1,k2)76(k17 k?? )) (4119)

3
(K1,k2)€ll le(ki, ko, L)||2
lle(k,kz2,L)[|<A

when A — oo and where 0 = (O, 1y)) = (01,(k1 k2)» 02,(k1 k) € T°? being distributed
according to A2 and L being distributed according to fis.

Finally, we conclude the proof by proving the equivalent of Proposition [32] To do so,
we follow the exact same approach that was used to prove Proposition [32



Chapter 5

Return to the case of boxes

(Résumé en francais)Nous étudions 'erreur du nombre de points d'un réseau L qui
appartiennent a un rectangle, centré en 0, dont les axes sont paralleles aux axes de
coordonnées, dilaté d'un facteur ¢ puis translaté d’'un vecteur X € R?. Quand nous
considérons le moment d’ordre 2 de I'erreur relativement & X € R?/L, on montre que,
quand t est aléatoire et devient grand et quand 'erreur est normalisée par une quantité
qui se comporte, dans le cas admissible, comme 4/log(t), elle converge en loi vers une
constante positive explicite. Dans le cas d'un réseau L typique, on montre que ce résul-
tat tient toujours mais la normalisation est toutefois plus importante, autour de log(t).
On montre aussi que quand L = Z?2, 'erreur, quand elle est normalisée par ¢, converge
en loi quand t est aléatoire et devient grand et on calcule les moments de la loi limite.

(Engish abstract)We study the error of the number of points of a lattice L that belong
to a rectangle, centred at 0, whose axes are parallel to the coordinate axes, dilated by
a factor t and then translated by a vector X € R?. When we consider the second order
moment of the error relatively to X € R?/L, one shows that, when ¢ is random and
becomes large and when the error is normalized by a quantity which behaves, in the
admissible case, as y/log(t), it converges in distribution to an explicit positive constant.
In the case of a typical lattice L, we show that this result still holds but the normalisa-
tion is more important, around log(t). We also show that when L = Z?, the error, when
normalized by ¢, converges in distribution when ¢ is random and becomes large and we
compute the moments of the limit distribution. study the existence of the moments of
its distribution.
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5.1 Introduction

Let P be a measurable subset of R? of non-zero finite Lebesgue measure. We want
to evaluate the following cardinal number when ¢ — oo :

N(tP+X,L)=|(tP+ X)N L]

where X € RY, L is a lattice of R? and tP + X denotes the set P dilated by a factor ¢
relatively to 0 and then translated by the vector X.
Under mild regularity conditions on the set P, one can show that :

_ Vol(P)
Covol(L)
where o(f(t)) denotes a quantity such that, when divided by f(t), it goes to 0 when

t — oo and where Covol(L) is the volume of a fundamental set of the lattice L.
We are interested in the error term

N(tP+ X, L) + o(t%)

o Vol(P)
Covol(L)

In the case where d = 2 and where P is the unit disk D? Hardy’s conjecture in [30]
stipulates that we should have for all € > 0,

R(tD?, Z%) = O(t27°)

where Y = O(X) means that there exists D > 0 such that |Y| < D|X]|.
One of the result in this direction has been established by Iwaniec and Mozzochi in [43].
They have proven that for all € > 0,

R(tD?, Z%) = O(t11+).

R(tP + X,L) = N(tP + X, L)
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This result has been recently improved by Huxley in [42]. Indeed, he has proven that :
R(tD? Z2) = O(t* log(t)*)

_ 131 _ 18627
where K = 508 and A = 350 -

In dimension 3, Heath-Brown has proven in [40] that :
R(tD?, Z%) = O(tis+).

These last two results are all based on estimating what are called exponential sums.
Furthermore, in both cases, the error is considered in a deterministic way.

Another approach was followed first by Heath-Brown in [38] and then by Bleher, Cheng,
Dyson and Lebowitz in [IT]. They took interest in the case where the dilatation param-
eter t is random. More precisely, they assumed that ¢t was being distributed according
to the measure p(%)dt (that is absolutely continuous relatively to Lebesgue measure)
and where p is a probability density on [0, 1] and 7" is parameter that goes to infinity.
In that case, Bleher, Cheng, Dyson and Lebowitz showed the following result (which
generalizes the result of Heath-Brown) :

Theorem ([11]). Let o € [0,1[*>. There exists a probability density p, on R such that
for every piecewise continuous and bounded function g : R — R,

jim 2 [ o (BN Dyt = [ ot

Furthermore p, can be extended as an analytic function over C and satisfies that for
every € > 0,

palz) = O™

when x € R and when |z| — oo.

We want to follow this approach on another problem. Namely, let us give a > 0 and
b > 0 and let us define Rect(a,b) the rectangle centred around (0,0) whose summits
are (a,b), (—a,b), (—a,—b) and (a, —b).
Let us recall the following definitions :

Definition 20. For a lattice L of RY, its dual lattice L+ is defined by
L*={zeR?|VIieL, <l,x>cZ}
where <, > is the usual euclidean scalar product over RY.

Definition 21. A lattice L of R? is called admissible if there exists C' > 0 such that
foralll=(ly,---,l3) € L —{0},

[Num(1)| > C

where Num(l) =1y - - 14.
During the rest of this article, we are going to use the following notation :

Num(L) = inf{|Num(l)| | | € L —{0}}.

With this notation, saying that L is admissible is equivalent to saying that Num(L) > 0.
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We recall that if L is an admissible lattice, L is also admissible (see, for example,
[85]).
Let us also define the following quantity :

Definition 22. For every lattice L of R?, for everyt > 0, one sets :

1
V(Lt)= > IE]

leL
o<|ltll<t

when for all I € L such that 0 < ||l|| < t, Num(l) # 0 and where ||-|| is the usual
euclidean norm over R2.

We are going to use the following notation : for f(¢, X) a function of RT x R? such
that f(¢,-) is L-periodic,

1
— t, X)dX.
covol(L) /XGR2/L J(t:X)

Let us give a probability density p over [0, 1].
One of the goal of this article is to prove the following theorem :

EXeR?/L(f)(t) =

Theorem 13. Let L be an admissible lattice of R?.
Then, first, there exists C' > 0 such that for all t large enough :

£ los(t) < V(1) < Clos(t)

and we are going to write it V(L,t) = O(log(t)).
Second, if P = Rect(a,b),

1

R(tP + X, L)
A7t Covol(L)?

IE:'X R2/L (
= ( V(L 0)

)2) converges in distribution and in probability towards

when t € [0,T] is distributed according to +p(%)dt and when T — co.

Theorem [13]| can be interpreted as followed : after averaging on X, when t is large
and random, the error committed by making the approximation

Area(Rect(a, b))
N(tReCt((l, b) + X7 Fa,oﬂ) t COV01<F0470‘,)

is of order y/log(t). This normalization is in fact suggested by [8§].

This theorem is also in fact suggested by Theorem (14| that we will prove (see the next
section for some heuristic explanations). We are going to state it.

Let us designate the space of unimodular lattices of R? by the notation .#}.

We are calling A, the following set :

A, = {Diag(e, - ,e') | (t;, - tq) €Z t1 + -+ tg=0 and ||(ts, - ,ta)|| <7}

We have that A, C % and |A,| = n,r* ! + o(r?"!) when r — oo.
We also call

A = {Diag(e™, - ,e') | (ty,--- ,ty) € Z*and t, +--- + 1y = 0} and (5.1)
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for every lattice L of R%, we call

L] = min{|[l]] | I € L — {0}}.
With these notations, the Theorem [14] states as the following :

Theorem 14. Let L € .%; be an admissible lattice. Let us give (Os)sen a sequence
of independent identically distributed real random wvariables that are symmetrical and
admit moment of order 3 and whose alea w belongs to a probability space €.

Let us set :

~ 1
V(L,r)= _—
(L) = 2 [y
and 9( )
S(L,w,r A
(Low,r) = 2 g

dEA,

Then one has : )
V(L,r) =06(r"™)

and StEr) converges in distribution towards the standard normal distribution when
A/ V(L,r)

r — 00.

Theorem [14] says that for an admissible lattice S (L,w,r), normalized by a quantity
d—1 e o
of order r 2z | converges, in distribution, towards a normal centred distribution. When
L is typical, this must not be true : the regularization must be stronger because the
orbit 0L goes repeatedly into the cusp of the space .7, id est the zone where ||JL]| is
small.
In the typical case (typical in the sense of the unique Haar probability measure p4 over

“4), we are going to prove the following result:
Theorem 15. For every € > 0, for a typical L € %, one has that
V(L,r) = O(r?d-2*¢) (5.2)

and

(5.3)

rd—1  rooo

In the case where d = 2, one has also that for every e > 0, for L a typical lattice, one
has that
V(L,t) = O(log(t)**)

and

V(L,t)
00
10g(t)2 t—00
Furthermore, in this case, if P = Rect(a,b),

R(tP+ X, L)
V(LL 1)

1

)2) converges in distribution and in probability towards m

Exer/r ((

when t € [0,T] is distributed according to +p(%)dt and when T — oco.

1
T
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In particular, in the typical case, the convergence in distribution and in probability
of Theorem |13|still holds. Yet, the normalization is larger in this case : "around" log(t)
whereas before it was in y/log(t).

Finally, we are also going to tackle another extreme case : the case where L = Z2.
Z? is a unimodular lattice such that there exists [ € L — {0} such that Num(l) = 0
(for example (1,0)). Typically, for L € ./;, Num(L) is null but there does not exists a
non-zero | € L such that Num(l) = 0.

In that case, with p being a probability density over [0, 1], we are going to prove the
following theorem :

Theorem 16. For all x € R, when t € [0,T) is distributed according to the probability

measure 7p(%)dt on [0,T] then, when T — oo, R(tRECt(“’?”L(x’m)’Z?) converges in distri-
bution. Furthermore the limit distribution 3 has a compact support included in [—4,4]
and for every k € N, one has that

[t

A0+ (DM + -yt

2(k +1)
with y = [tag —t10| where tag is the first t > 0 such that —t+x € Z and ty is the first
t >0 such thatt +x € Z.

where

ap =

In particular, we see that the normalization in this case is much more important
than before and that the error R(tRect(a, a) + (z, ), Z?*) in this case is of order .
In the next section, we are going to give some heuristic ideas about all these results
and then give the plan of the rest of the paper.

5.2 Calculation of a Fourier transform, heuristic and
plan of the rest of the paper

To give some heuristic explanations, we will apply the Poisson formula which states
that for a smooth and compact supported function f : R?> — R and for L a lattice of
R2, one has that for every X € R?

Y+ X) =

el Covol

Z f —217r<l X> (54)
eL+

where the Fourier transform f is defined by : for every & € R2

f© = [ J@em<t=dr. (5.5)
T€R2
In our case, we are interested into the following quantity :

NP+ X,L) = Z Lipix (1) (5.6)

leL
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where 14p, x is the indicator function of the set tP + X with P = Rect(a,b).

Yet, the function 1;p x is not smooth enough. But the Poisson formula gives us a good
idea of the phenomena that are at play and that is because the Poisson formula applies
after having realized a smoothing of the studied problem (see Section 4). So, we are
going to calculate the Fourier transform of 1,p, x in the next subsection. Then we will
give the heuristic and announce the plan of the rest of the paper.

5.2.1 Calculation of the Fourier transform of 1,p, x

The main object of this subsection is to prove the following proposition :
Proposition 37. For P = Rect(a,b), for | € R?, fort >0, one has :

— 1 sin(27tlia) sin(27tlsb
]—tP—i—X(l) _ ( 1 ) ( 2 )

€2i7r<l,X>

2 I I

sin(0) __ 1.

where we convey that == =

Proof. Let | € R? and t > 0. By making the change of variable x = ty + X, one has
that :
]-t/P-i—\X(l) _ 62i7r<l,X>t2/ €2i7rt<l,y>dy' (57)
yeP
Yet, we recall that P = Rect(a,b) and so one has :

/ Jimt<ly> _ sin(2ntla) sin(27rtlgb)‘ (5.8)
yeP wtl 7ty

So, with Equation (5.7) and Equation (5.8), one gets that :

— e2im<b.X> gin(2ntlia) sin(2mtlyb)
1tP+X (l) - .

(5.9)

7T2 ll lQ

]

Now, we are going to give some heuristic explanations about the main results of this
paper and the plan of the rest of the paper.

5.2.2 Elements of heuristic and plan of the rest of the paper

Heuristically, the Poisson formula (see Equation ({5.4))) gives us that :

1 Z 1 sin(27tlya) sin(27tlad) o0 x-
_ e ’

N(@tP+X,L) =) Lipix(l) = Covol(L)

2
leL T l I

leLt
(5.10)
with P = Rect(a, b).
Yet, and this link was used a lot in [88], in the typical case, the smallest |l1l5| can be
t
seen as a || (% egt L||. This link can also be seen in the following proposition (that

will be useful for us later) :
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Proposition 38 ([82]).
Num(L) = d~2 inf{||6L||* | § € A}

where A was defined by Equation |5.1].

So it suggests that the term ““(22”1“) 5‘“(2””2”) e?m<LX> can be as seen as ﬁgé“ﬁl, and
so there exists a link between Theorem [13] and Theorem [14l
Yet, to prove Theorem [13] from Theorem [14] there are two difficulties. The first one

is that Theorem [13| and Theorem are about admissible unimodular lattices, which

t
form a negligible set with respect to uy and the relation about |l;l5| and || (eo e(_)t> L

is not certain in this case.

The second one is the fact that the sin(27tlia) and sin(27tlsa) do not behave like
independent random variable when 7" — oo and with ¢ being distributed according to
the probability measure 7p(%)dt. Sure we can, like we have done in [88] and in [89],
reduce the study to the [ € Ll that are prime, which is a notion defined by:

Definition 23. For a lattice L, we say that a vector of L is prime if it not a non-trivial
integer multiple of another vector of L.

Yet, even in that case, it is not true that the sin(2xtl;a) and the sin(27tlyb) behave
asymptotically like independent random variables.
Indeed, let o # o' be real irrational numbers with bounded partial quotients in their
continued fractions and let us define :

Loo = {(n+ma,n+ma') | n,m e Z?}. (5.11)

Then, we know from [85] that T4 is admissible in the sense of Definition 20} So, it is
also the case of

FL

aa o

1
{(n +ma,n+md) | n,m € Z*}. (5.12)
-«

Then, if we consider, for k > 2

1

v (k) = o a(k: + (k+ Do,k + (k+1)d'), (5.13)
v(k) = a/l_a(k+1+ (k4 2)a b+ 1+ (k +2)a), (5.14)
v (k) = a,l_a(k+2+ (k+3)a k + 2+ (k+3)a), (5.15)

we have that : vi(k), v2(k) and v3(k) are prime vectors of I'y , and
—v1(k) + 2uy(k) = v3(k) (5.16)
which prevents from getting the wanting asymptotic independence.

That is why, to get rid of this problem, we consider Excg2/r, ((m)Q) instead of
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R(tPHXL)

considerin
& \ V(L+t)

By doing so, the Parseval formula gives us that, if we want to prove Theorem [I3]
heuristically we have to study the convergence in distribution of

G(L*,t) 2 > (sin(2mktly) sin(2mktly))?
_ (5.17)
V(LE, ) ~ miCovol(L)2V (LL, 1) ZEJQ%:LJ) (11z2 kz::l o
where
Jo(L*Tt)={le LT |0 < ||l <t,!Iprime and [; > 0} (5.18)

and where t € [0, T] is being distributed according to the probability measure =p(7)dt
and where T — oco. We have implicitly used Equation (5.10)) and centred the sum of
the right-hand side on the prime vectors whose norm are smaller than ¢. We have to
cut the sum because of a problem of convergence.

The final ideas that we use to prove Theorem [13] are, first, the idea to use the well-
known formula sin?(-) = 1%5(2) Then there are two dlfferent types of quantities that
must be dealt with.

The first one is of the type :

1 1
VLD 2 73

leL+—{0}
lll<t

(5.19)

and we show quickly that such a quantity converges almost surely when T — oo.

The other type of quantities have a term of the form cos(t¢f(l)) or a product of two
cos(tf(l)) (with f being a function of [) in the numerator of the terms. In that case,
we show that the moment of order 2 of the quantities of this type converge to 0 when
T — oo.

We use the moment of order 2 because it is quite convenient since we are dealing with
numerators that have a term of the form cos(¢f(l)). Yet, this last part is a calculatory
one. Furthermore, we have to underline the fact that these calculations still work for
the typical L considered in Theorem [15] not only for admissible lattice L. They are,
in that sense, intrinsic. The estimate of V' (L,t) contained in Theorem |13|is basically
derived from the estimate of the integral

1
.
/Aéellﬂfét (lLla)?
[Num(l)|>C

where A > 0, C' > 0 and t — oo. It concludes the heuristic explanations that we
wanted to give about Theorem [13]

The proof of Theorem is quicker and it is basically an application of the central
limit theorem with error term (see Theorem [L7).

We already have said a few words about the last part of Theorem [I5] We will now give
some explanations about the estimates V and V presented in this theorem.

The estimates of V are applications of the ergodic theorem whereas the estimates of V
is deduced from an upper estimate of

/ e P z? —dlydls

A<t
[Num(2)|>C|log([l2])| ~*~*
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where C' > 0, A > 0 and a > 0 with t — oo and from results of [87] and of [82] (see
Theorem .

Finally, concerning the Theorem [16], the appropriate normalization of the error term
R is t because, to within a multiplicative factor, it is the perimeter of tRect(a,a) + X.
Indeed, in this case, we can easily compute R. The wanted convergence of Theorem
is then deduced from it and from the application of the method of moments.

Plan of the paper. In Section 3, we prove Theorem

In Section 4, we prove Theorem The first subsection is dedicated to obtain the
upper and lower estimate on V(L,t) in the case where L is admissible.

Let us set :

sin(27ktly) sin(27tly) cos(2mk < 1, X >)

3 :

S(L,X,t) =

2 1
72 covol(L) Il l
where we recall that Jo(Lt,¢) ={l € L+ | 0 < ||l]| <t, ! prime and [; > 0}.

The second subsection is dedicated to show that we can reduce the study of the con-

vergence in distribution of Excpe/y, ((%)ﬁ to the study of the convergence in

o S(LX.t) ?
distribution of Excgr2/r, ( N

and when T — oo (see Proposition [40]). The third subsection is dedicated to show that

) when t is being distributed according to +p(%)dt

2
Exere/r (5% ) (see Proposition converges in distribution when ¢ is being dis-

tributed according to 7 p( )dt and when T'— oo. The fourth subsection concludes the
proof of Theorem [I3]

In Section 5, we give the proof of Theorem [I5] The first subsection is dedicated to the
estimates of V(L,r). The second subsection is dedicated to the estimates of V/(L, ).
The third subsection concludes the proof of Theorem [I5] using, in particular, the third
subsection of Section 4.

In Section 6, we give the proof of Theorem [16] In the first subsection, we give a simple
expression of R(tReCt(l’lt)J“(z’x)’ZZ) (and before we see that the a, in the statement of The-
orem [16] can be chosen equal to 1). In the second subsection, we can reduce the study
of the convergence in distribution of R(tReCt(l’?“m’x)’Zz), when T — oo, to a simpler
quantity. In the third subsection, we are going to apply the method of moments to
get the convergence of this simpler quantity. In the fourth subsection, we conclude the
proof of Theorem [16]

5.3 Proof of Theorem 14

To prove Theorem [I4] we need to recall two important theorems. The first one is
the central limit theorem with error term (see for example [4]) :

Theorem 17. Let (Z;)1<i<n be a sequence of real random variables independent such
that for all 1 <i < n, E(Z;) =0 and Z; admits a moment of order 3. Let us call :

T = iE(|Zi|3) and V = zn:IE(Zf).

=1
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Then for every real \, one has
P Zi 1 00,2 40T

P SN - —— [ e Tdu < —
PER 2N ) ¢ T <

The second one is a theorem due to Minkowski :
Theorem 18. There exists K > 0 such that for all L € 7,
|L]| < K.

We can now prove Theorem [14]

Proof of Theorem[14]. Let L be an admissible lattice. So, according to Proposition
and Equation [5.1] there exists C' > 0 such that for every § € A, one has

|I0L|| > C. (5.20)
Theorem [18] gives us that :
0L < K. (5.21)
Because of Equation ((5.20) and Equation (5.21]), one has
A K2 < V(L 1) < |A]C72. (5.22)
Yet, the cardinal number of A, satisfies that
1A =n,r o0, (rTh), (5.23)
So we get the first wanted result.
According to Theorem [I8| one has :
S(L 1o w2 40T
pOEDT) 5 gy - L [T e au) < ) (5.24)
V(L) Var J AGE
where p
Vi) = 3 E((=rm)’) (5.25)
sen, 0L
and 0
Ti(r) = > B(lr—ml®). (5.26)
sen, 0L
Yet, one has :
Vi(r) = 0@ (5.27)
and
Ti(r) = 0" (5.28)

because the 65 are independent, symmetrical, identically distributed and their common
distribution admit a moment of order 3 and because of Equation ([5.20)) and of Equation
(5.21)).
Thus, one gets that :
pAEEn) Sy C L S g — o). (5.20)
V(L,7) Var r's

From this last Equation and by making r — 0o, one gets the wanted result. O
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5.4 Proof of Theorem 13

5.4.1 Estimates of V(L,t) when L is admissible

In this subsection, we are going to prove the following proposition, which is the first
assertion of Theorem [I3]

Proposition 39. Let L be an admissible lattice of R?. One has that there exists C > 0
(big enough) such that for all t large enough :

élog(t) <V(L,1) < Clog(t).

The main idea is that V(L,t) can be compared to
| e Lyl
aslii<e+s 1313
Num(1)|>C

when L is admissible and when C'; A and B are positive constants that are well-chosen.
And this last integral behaves like log(t) to within one multiplicative constant.
This last fact is the object of the following lemma. In this lemma, we use the notation

to express the facts that, for ¢ large enough, ¢g(¢) # 0 and that —> 1 when t — oo.

Lemma 77. For all C > 0, for all A > 0, for all t large enough, one has :

8log(t)
——=dlydl o ————.
[ s, mgtete e =
| Num(l)|=C
Proof. Let us set :
J(t) = / o dlydly (5.30)
adii<e 1713
|Num(1)|>C

and let us remark by the way that it is enough to prove the result for A large enough.
By passing into polar coordinates (r, ) and by using the symmetries, one has :

4
) =8 / cret ———drde. 5.31
(1)4<<9<<72re 7“3 sin(26)? " (5:31)
sin(20) —g

By making the changes of variable 8/ = 20 and, then, u = tan(¢’), one gets from
Equation (5.31)) and by taking A large enough :

1 r? 2C
—(—1+2O 1—(—

A<r<t 13

J(t) = 16 )2)dr. (5.32)

r2
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From Equation (5.32]) and because of the fact that T%(—H—% 1—(%)?) = 35+0(%)
(when r — o0), we finally get that :

T(t) ~tme glog(t). (5.33)

So we get the wanted result. m
We can now prove Proposition [39:

Proof of Proposition[39. First, as L is admissible, there exists C' > 0 such that for all
l e L —{0},
|lils] = C.

So, according to Definition [22] and by integration by parts, there exists A > 0, B > 0
and D > 0 such that :

1 1 11

) diydl, < V(L,t) < D min(—, dlydls. 534

b A<‘l‘l€”ﬁ§+B g (£:%) A<|lUl<t+B (02 (l1lz)2) o (5.34)
INum(l)|>C

Lemma [77] gives us in particular that :

1
/ ewe —pdlydly = O(log(t)). (5.35)
A<|lj<t+B U153
[Num(l)|>C
and
/ in( g gl = O(los(0) + 5 [ dlydl (5.36)
min(— = 0(lo — . .
A<||l||<t+B C?’ (lyly)? B & C? ﬁéﬂ'ﬁig B
Yet, one has that :
acipj<es s dhdle = ©(log(t)). (5.37)
[Num(l)|<C
Equation ((5.34)), Equation ([5.35)), Equation (5.36)) and Equation (5.37)) give us then the
wanted result. ]

Remark. We think that in dimension d > 3, we must have that for all C' > 0, for all
A > 0, one has :

1
/ jept ———sdly -+ dly = Olog(t)). (5.38)
ALYt ll T ld
[Num(l)|>C

In fact, the upper part of Equation ([5.38) can be proven like that :

Proof. By symmetry, we are brought back to the case where [; > 0 for all .
We set

¢:(l17"' 7ld)'_>(l1alll27”' all"'ld)'
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Then ¢ is a C°-diffeomorphism from (R — {0})¢ to itself and the jacobian matrix
evaluated on (l1,--- ,l;), denoted by Jac(ly,- - ,l4), satisfies that :

Jac ll, s Hgbz ll,"' ,ld). (539)

Furthermore, because [ belongs to the domain of the integral, we see that for all ¢ €

{1, ,d—1},

b = Ct(l-i-i)(d—i) <ill) <0 = by and
da(l) = C = by
Hence, from , we get that :
ﬁmigd, 1;>0 %dll cedly < o L ———du. (5.40)
A<l 17+ 15 VISISA-L bisuishi g W21
Num(l)>C
The right hand side can be easily calculated and gives the wanted result. O

To prove the lower part of the Equation ([5.38)), we think that one way is to use
hyperspherical coordinates.

We are now going to tackle the proof of the second part of Theorem It should
be noted that, by density, it is enough to treat the case where the support of p is
included in [a, 1] with 0 < a < 1.

5.4.2 Smoothing and reduction to the study of a Fourier series

In this subsection, we are going to prove the following proposition :

Proposition 40. Let L be an admissible lattice of R2.
Then, for all T large enough, we have that :

2 1
R(tD* + X,L) S(L ,X,t))z) L

Bxeryz (( V(LL1) V(L0

where the convergence towards 0 is uniform in oT <t < T when T — oo, where

S(LX.1) = — 2 1 & sin(2nktly) sin(2mktls) cos(2mk <1, X >)
w2 covol(L) leha(bt) hiy (= k2
(5.41)
and where
Jo(L,t)y={le L|0<|l| <t, 1 prime and l; > 0}. (5.42)

Propositionbasically tells us that the asymptotical study of Excpe /1, ((W)Q) ,

when T — oo, can be reduced to the study of Excprz/r (S(L;(j;ttT))) (it is in fact
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stronger). It is suggested by the Poisson formula. Yet, we can not use it directly to
prove this fact because the indicator function 1;p, x, with

P = Rect(a,b)

is not regular enough.
So, the first thing we are going to do to prove Proposition 40| is to smooth the studied

problem. It is the object of the next subsubsection. The study of RUPEXL) g going

VVI(L+)
to be reduced to the study of two Fourier series. Then, we will do some calculations

to simplify this study and finally the study of RUPIXD) g going to be reduced to the
v V(L+t)

S(Lt,X,t)

Study Of m

Reduction to the study of two Fourier series

This subsubsection is dedicated to the smoothing of the problem. We are going to
do it like in [82].
Let us give a C'*°-function, of compact support included in Bf(0, 1), such that

/R? w(z)dr =1,

w(z) > 0 and such that w is spherically symmetric (so will be its Fourier transform).
Let us recall the following definition :

Definition 24. Let O C R? be a connect compact set of R? with a frontier that is
reqularly piecewise. Let 1 > 7 > 0. A couple of compact region (O, 07) is called a
T-co-approzimation if O7 C O C OF and if the points at the frontiers 00 are at least
distant from 7 of the frontier 00O.

For example, we can think that O = P and, in that case, a 7-co-approximation is
given by (1 + 87)P, with § > 0 well-chosen.
Let us define :

1
covol (L) 2

leL+—{0}

RE(0, X) = Loz (Da(rl)e* <!>, (5.43)

For O = tP = tRect(a,b), there exists 3 > 0 (independent from t) such that OF =
(t + B7)P is a T-co-approximation.

Let us take :

_ log(t)”
ot

T =17(t) (5.44)

where % >y > 0.
The main object of this subsubsection is to prove the following proposition :

Proposition 41. For this choice of T and of T-co-approzimation (t £ 57)P, there exists
B > 0 (independent from X) such that for all T large enough

N
N

— +
RALX) g Ty < R(EP+X,L) _ R (tP.X)

V(L-, 1) V(LYY V(Li,t)JrBlog(T)v_'
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R(tP+X,L)

\ V(LEt)

Basically, it says that one can brought back the study of to the study of

s RE(EPX) . . . R(tP+X,L)
the two quantities T which represent the smoothed Fourier series of Wk

To prove this proposition, the following lemma is going to be useful :
Lemma 78. Let us take 0 < 7 < 1. Then, one has :

Area(O;) — Area(O)
covol (L)

Area(OF) — Area(O)

R0, X)+ covol (L)

<SR(O+X,L) < R0, X)+

Proof. Let us set w,(z) = 77 %w(7'2) for all z € R?. Then, one has :

@7 (§) = &(7¢) (5.45)
for all £ € R2.

Let us consider the following convolution products :
hE(x) = (w; * 1oz)(z) = /R? wr (T —y) 1o (y)dy. (5.46)

The functions h* are C™ over R? and have a compact support.
By using Definition 24] one has, for all z € R? :

h™(z) < lo(z) < h'(2). (5.47)

By replacing x € R? by | — x with [ € L and by summing over | € L, one gets with

Equation :
> h(l-X)<NO+X,L) <> (- X). (5.48)

leL leL

By using the Poisson formula and the fact that Fourier transform a convolution product
into an usual product, one gets the wanted result thanks to Equation ([5.45)). [

We can now tackle the proof of Proposition [41] :

Proof of Proposition A1} According to Lemma [78] one has that, for every ¢ > 0 and X,

o (1P, X ) el = A1) ZAxealll) pip x 1) < vt (e, ) Al AP) = Area(tP)

covol (L) covol (L)
(5.49)
Yet, one has the two following equations :
Area((t — BT)P) — Area(tP) = Area(P)(—287t + 5*77) (5.50)
and
Area((t + B7)P) — Area(tP) = Area(P) (287t + 3*12). (5.51)

Yet here 7 = M and so one gets that for every T large enough, for every T' > t > oT,

+2571t + %12

R | < Mlog(T)""2 (5.52)



162 CHAPTER 5. RETURN TO THE CASE OF BOXES

where M > 0. To obtain this last equation we have used the fact that /V(L+,t) =

©(y/log(t)) that is given by proposition
By using Equation [5.49, Equation [5.50] quatlon I]and Equation [5.52] one gets the
wanted result. O

RE(EPX)

The study is now reduced to the study, when T" — o0, of the two quantities T

In the next section, we are going to reduce the study of % to the study of the
. . S(LE XtT) . RS (tP,X)
Fourier series VLD and the results are also going to hold for WGk

" (tPX)

Simplification of the Fourier series
V(L+,t)

The main object of this subsubsection is to prove the following proposition :

Proposition 42. Let us suppose that L is admissible. Then, one has, for all v > 0,

RHEtP,X)—S(L*+t, X
EXGRZ/LQ (P, X) — S( >)2>%0

V(t, Lt‘)

where T = % and where the convergence towards 0 is uniform in t such that oT' <
t <T and when T — oo.

To do this, we will need several intermediate lemmas. We will use tools from Fourier
Analysis, integration calculus and Geometry of numbers.
In the rest of this section, we are going to suppose that L is admissible.
Under this hypothesis, the dual lattice of L is also going to be admissible.

Reduction of R to a finite sum. Let us introduce the following sum :

Sy (L1, X) = 1 5 Q(7l) sin(2ml 1) sin(2mlat+)e2m<b-X> (5.53)
m2covol(L) Z- lils
o<l <t

where tT = t + 7. Then the main object of this paragraph is to prove the following
lemma :

Lemma 79. Then, one has for all T large enough,
IRF(tP, X) — Si(L*t, X)
Vi(t, L)

| | = Ogtog(T)b).

where the O is uniform in X € R? and in t when oT <t < T.

Recall that « is a fixed parameter such that 0 < v < %
To prove this lemma, we are going to need a lemma that gives an upper estimate of
certain integrals :
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Lemma 80. Let us set for N > 2 and for C > 0,

Dy ={z = (x1,25) € R" — {0} | ||lz|| = N, |Num(z)| > C}. (5.54)

Then one has, for all g : Rt — R measurable, there exists M > 0 such that for every
N large enough,

/ g(ll=ll) , M/ 10g dr.
z€Dy,c |$1$2|
Proof. Let us call :
J(N,C) :/ UCL D (5.55)
z€Dy.c |T1Ta|

By passing in polar coordinates, we get that for every N large enough :

J(N,C)gKl/ 9(”(/&5 b (5.56)

r=N T rcsin(2%) SIH(G)

where K; > 0.
Yet one calculates that:

3 1+,/1—25)2
(/a;csin(zg) sircli(ee)) B ;log (( . 45 = ) (5:57)
With the Inequation (5.56)), we get that :
J(N,C) < K, />N g(?")lrog(r)dr (5.58)
where K5 > 0 and so we get the wanted result. O]

We can now prove Lemma [79] :

Proof of Lemma[79 L is supposed to be admissible and so L+ must also be admissible.
So there exists C' > 0 such that for all x € L+ — {0},

|[Num(z)| > C. (5.59)

Furthermore, w is supposed to be regular and of compact support. In consequence, @
belongs to the Schwartz space and so for all A > 2, there exists M > 0 such that for

all z € R? :
M
o(7)] € 7
1+ ||zl

Proposition [37| and the fact that OF = (¢t + 87)P with P = Rect(a, b) give us that :

(5.60)

1
[l | (1 + 72 4)

|%j(tP7X) - S1<LL7t7X)‘ < G Z

leLt
el >t

(5.61)
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where K; > 0. We have also used implicitly Equation ([5.43)).
Yet, one has also :

1 1 1
<k dovdes + [ e mrde
% LI+ T ( ren,c Tonaal 1+ ol et G el

(5.62)
where Ky > 0.
Lemma [80] and a quick calculation give us then that for all 7" large enough (we have to
keep in mind that o7 <t < T) :

! © dog(r) oo 1
AT </ 1+ A" T e r2<1+w>A>d> 563

leL+
llefj<t

where K5 > 0.
However, one has also that :

/00 log(r) dr < Ky log(t)
r=t (1 + (71)4) TALA
where K; > 0 (and depends on A).

Yet one has that : 7 = M with % >y > 0.

By using Equation , Equation (5.63) and Equation and by using the fact
that V(Lt,t) = ©(log(t)), one gets that :

IRF(tP, X) — Sy(L*, ¢, X)) log(t)2 1
V(t, L' s f (log(t)A7 10g(t)> (5.65)

(5.64)

where K5 > 0 and depends on A.
Then, we can take A large enough so one has that :

log(t)2 < K

< 5.66
log(1)"7 = Tog(#) (500
with Kg > 0.
By using Equation (5.65) and Equation ([5.66)), one has that :
TP, X) — Si(L*tt, X K
|%T< I ) Sl( e )’ g 7 (567)
Vi(t, L) \/1og(T')

with K7 > 0 and for 7" large enough. Thus the wanted result. O

We are now brought back to the study of S;(L+, ¢, X) and now we are going, mainly,
to "center" it on the prime vectors of L.

Centring of S;(L*,t, X) over prime vectors. Before stating the main lemma of
this paragraph, let us make a small remark. Because L is admissible and because @
is spherically symmetric, by parity, one has that :

2 3 O(7l) sin(27lyt™) sin(27wlat™) cos(2m < 1, X >)
72 covol(L) lily

leJi(LL¢t)

Si(L*t, X) =

(5.68)
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where
L) ={le Lt o<l <tandl >0} (5.69)
Let us define : 5 70Xt
So(L X)) = ————— UX, 1) (5.70)
72 covol(L) leoTi ) lils

where
O(kTl) sin(2k7lit™) sin(2kwiatt) cos(2km < 1, X >)

Zi(X,t) = f: . (5.71)

and we recall that
Jo(Lt)y={le L+ |0 < ||| <t,!prime and I; > 0}.
Then the main statement of this subsection is the following lemma :
Lemma 81. For every T' large enough, one has :
| |So(Lt t, X) — Sy (L4, t, X)|

) | = O(log(T)"+)

and the O is uniform in X € R? and in t such that oT <t < T.

It basically says that the essential information of S} is contained in its prime terms.

Proof. One has :
(7]
|1l

|SQ(LLat7X) - Sl(LlataX” < Kl Z

leL+
|12

(5.72)

where K; > 0.
So, we can apply the same argument as before in the proof of Lemma [79 and one gets
that :

| |SQ<LJ_7 ta X) - Sl(LJ_> tv X)|

oz | = O(log(T)""2). (5.73)

]

So, the study of S7, when T" — o0, is now reduced to the study of Sy, when T" — oc.
In the next paragraph, we are going to simplify the sum Ss.

Replacing © by 1 in S;. Let us define :

2 Z(X,t
Ss(L X)) = ———— 10500 (5.74)
72 covol(L) TN lily
where
Z(X.t) = i sin(2kmlyt™) sin(2kmlat™) cos(2km < 1, X >) (5.75)

2
k=1 k

(we have replaced @ by its value at 0, which is 1 because [g>w = 1).
The main statement of this subsection is the following lemma :
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Lemma 82. Let us set :

)2dXo(X). (5.76)

1 B 1
A(Ll,t) :/ |SQ(L >t’X) 83([/ ,t,X)|
XeR2/Lt V(LL,t)

Then A(L*,t) goes to 0 uniformly in t that are such that oT <t < T with T — oo.

Proof. The Parseval formula applies here and gives us that :

K o(tl) — 1
AL < —2 % o) =1y (5.77)
log(?) leJy(L* t) hlz
where K; > 0 and we have used the fact that V(L*,t) = O(log(t)).
Let us take 7 such that v < 4 < % and let us set t; = —L—

log(t)7 *
Then, with this notation, one has, thanks to Equation (5.77)) :
A(L* 1) < Ko (A1 + Ay) (5.78)

where Ky > 0,

1 7||]|
A —
" log(1) leJl(LL,tl)( Il

)? and (5.79)

1 1
Ap=—— 3 PR (5.80)
)

log(t) 1€y (LY ) —J1 (Lt

Then Lemma ﬁ, the fact 7 = w and the definition of ¢; give us that for T large
enough (and for ¢ such that o7 <t < T) :

Al < Kg lOg(t)Q(’y_i/) (581)
with K5 > 0 and
K. t 1 1
I / dr =0 ). (5.82)
log(t) Jtlogt)— log(t)

with K, > 0.
So, one gets finally that, when T — oo,

Ay — 0 and Ay — 0

uniformly in ¢ for o7 <t < T.

So, now, we are brought back to the study of S3 when T — oc.
In the next paragraph, we are going to simply S3 and its study will be reduced to the
study of S when 7" — co as wanted.
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Replacing t* by ¢ and proof of proposition . We recall that we have defined
S by the Equation ([5.41)). The main object of this paragraph is to prove the following
lemma :

Lemma 83. Let us call (here) A the following quantity :

R JAGRQ/LAS‘”’(H’X) SUELE O gs,x). (589)

V(L*,t)

Then A(L*,t) goes to 0 uniformly in t that are such that oT <t < T with T — co.

Mainly, this lemma says that we can replace t* in the two sin terms by ¢. It is
reasonable insofar as ¢ is very close to t.

Proof. Let us set :

2 Wi(X,t
Sy(L*t, X) = - > WX, t) (5.84)
72 covol(L) ATAN lily

where
2kmlyt) sin(2knlat™) cos(2km < I, X >)

k?

WA(X. 1) :’isin(

. (5.85)

Then the triangle inequality gives us that :

A <A +/A, (5.86)

where Sy(L*,t, X) — Sy(LE, ¢, X
Ay = 1S(L7, 8 X) = SuE7 6 X)]va 5 o x (5.87)
XeR2/L+ V(LL,t)
and Sy(Lt ¢, X) — S(LY ¢, X
7t7 - 7t7 3
A2:/ (15 ) — 5 W23, (x). (5.88)
XeR?/L+ V(LJ_’ t)

Let us take 7 such that v <7 < % and let us set t; = @.

The Parseval formula and the mean value theorem apply here and give us that :

A < Ko(Ag+Ayo) (5.89)
where Ky > 0,
1 711l \o
Ay = , (5.90)
10g<t> le (DL t1) l1l2
1 1
Ay = > — (5.91)
log(t) 1€ (L) —J1 (L t1) 113
and
AQ g KZ(Al,l -+ ALZ)' (592)

We have used the fact that V(L*,) = ©(log(t)).
Then Equation (5.81)), Equation (5.82)), Equation (5.86)), Equation (5.92)) and Equation

(5.89) give that A goes uniformly to 0 in ¢ for ¢ such that oT <t < T O
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We can now prove Proposition (2]

Proof of proposition A2l Proposition [42] is a direct consequence of the lemmas [79] [81]
and n

Case of t~ and proof of Proposition

By following exactly the same approach that has been used to prove proposition [42]
we prove the following proposition :

Proposition 43. Let us suppose that L is admissible. Then, one has, for all v > 0,

K, ((m;@P,X) - S<Lat,x>|)g) o
V(t, LY)

where T = M and where the convergence towards 0 is uniform in t such that oT <
t <T and when T — oo.

We are now capable to prove Proposition [4( :

Proof of Proposition[40]. It is a direct consequence of Proposition [1], Proposition
and Proposition 43| and of the triangle inequality. O

So, finally, it is enough to study the behaviour, when 7" — oo, of S. It is the object
of the next subsection.

5.4.3 Asymptotic behaviour of S

According to the proof of proposition , by replacing L+ by L (if one is admis-
sible, the other also is and conversely), to show the second assertion of Theorem ,

one only needs to prove that E; . (%)2 converges in distribution and in prob-
ability towards W Furthermore, this limit constant will be the same for

S(L,Xt) S(L,Xt)\2
B <( Vs ) and B (( Vi) )
With the Parseval formula, we see that we only need to prove the following proposition

Proposition 44.

2
74 Covol(L+)?

(sin(27ktly) sin(27wktly))?

(”222 L4

G(L,t) =
leJa(

normalized by V (L,t) converges in distribution and in probability towards m.

The rest of this subsection is dedicated to prove this last proposition.
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A small remark and approach

By using the fact that one has for every x € R,

sin(z)? = 1 — cos(2x) 7
2
one gets that :
G(L,t) = G1(L,t) — Go(L,t) — G5(L,t) + G4(L, 1) (5.93)
where
Gi(Lt) = 5o > oyl (5.9
27T4COV01<LJ‘) 1€ J2(Lt) (lll2> k=1 ]{]47 .
1 1 & cos(4drktly)
L,t)= :
GQ( ) t) 27T4COVOI(LJ‘) lejz: (lllg) 2:: k4 ’ (5 95)
1 e 47Tktl2)
Lt d :
Ga(lt) = 5 i Covol L) 2oy 52 ; o (5.96)
B 1 cos(4mktl )Cos(47rk:tlg)
G4(L,t) - 27T4COV01(LJ‘) le; (l lz 2 Z k’ (597)

To get the validity of Proposition 44 we only need to show the three following propo-
sitions :

Proposition 45.

V(L,0) 47t Covol(L1)?
when t — 00.

Ga(L,t)

Proposition 46. J775 and G3(L t)

V(L t)
0 when t is distributed accordmg to the probability measure Tp( )dt and when T — oo.

converge in distribution and in probability towards

G4 Lt)
V(t,T)

distributed according to the probability measure fp( )dt and when T — oc.

Proposition 47. converge in distribution and in probability towards 0 when t is

Proposition is just a use of different definitions whereas Proposition and
Proposition [A7] work because, basically, there are, relatively to Gy, additional oscillatory
terms that make the normalized sum go to 0.

Now we are going to prove in this order these three propositions.

Proof of Proposition

The proof of this proposition is straightforward :
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Proof of Proposition 45 One has :

1
Gi(L,t) =
(L) 274 Covol(L+)? IGJQZ (i 12 (Ily)? Z it
where
Jo(L,t) ={le L |0<|l|| <t,!prime and l; > 0}

and ]

leL 172

o<||l||<t

By making ¢ goes forward infinity, one gets the wanted result. O]

Next, we are going to prove Proposition [46]

Proof of Proposition

Before giving the proof of Proposition we need several lemmas.
Let us introduce :

1
2m4Covol(L+)?

cos( 47rktl1)

Go(L,t,T) =

>

leJa(L,T) (lll2

and
1

214Covol (L+)?

~ (4
(L 4.T) = oS Wktlz)

(”222

The first lemma basically says that we can study fo((LL’tt)T and ! (LLtt)T) instead of study-

GQ(Lt G3 L t) .
V(L,t) V(L t) *

leJo(L,T)

and

ing, respectively,

Lemma 84. One has, when T — oo,

Go(L,t,T)  Go(L,t)
E(' VLo V(LD ')“’

and

G3(L,t,T)  Gs(L,t

E ’ 3( ) Uy ) _ 3( ) ) | -0
V(L,t) V(L)

(Note that the expectation are calculated relatively to t with t being distributed according

to the probability measure 7 p(%)dt).

Proof. We are only going to prove the first fact because the proof is going to be sym-
metrical in (I1,15).
One has that :

Go(L,t,T) Ga(L,t) D s
V(L,t)  V(L,t) V(L) ) (z112 2::

1€J5(L,T)—Jo(Lt)

Ccos 47rktl1)

(5.98)
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where D is a positive constant.
By integrating and because ¢ belongs to [T, T], one gets that :

Go(L,t,T)  Go(L,t) D | =1
E (’ V(L,t) a V(L,t) ‘) < 1og(T)IE (zer( > 5 kZ::lkA> (5.99)

L,T)—Ja(L,t) (lll2

where D is a positive constant, possibly different from the previous one. We have also
used Proposition [39]
Yet, one has that (see Lemma :

>

leJa(L,T)—Ja2(L,t) (l1l2

o 1 T

So, with Equation (5.99)), one has that :

(SR -G b

Yet, a quick calculation gives us that :
T
E(log(?)) =0(1) (5.102)

when T — oo.

So, thanks to Equation (5.101)) and thanks to Equation ([5.102)), one gets the first wanted
result. O]

The second lemma is an estimating one.

Lemma 85. For every A > 0, for every C' > 0, one has :

/IA@KT lgpdlldzg O(T) and

1>0, 12>0
l1l3>C

/A<||l,,<T msdl \dls = O(T).

11>0, I2>0
1115>C

Remark. Thanks to this lemma, we can show very quickly that the expectation of

G%/( (LLtt)T) Gf/(LLtt)T tends to 0 when 7" — oo.

and of

Proof. By symmetry, one has :

/Ag,”,‘g l3l2d11d12 /Agnlug l2[3dz \dl (5.103)
11>0, 12>0 11>0, I2>0
l112>C 111:>C

So, we only have to prove the first equality of lemma [85]
By passing into polar coordinates (r,6), one has that :

1 1

—_dlydl / S — o ) 5.104

/zfi')'flfgo Bttt e %‘iei% 4 cos3(0) sin?(6) " ( )
lile>C sin(20)2i—g
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We see that, when t — oo, there are a priori two essential parts of this last integral :
the first one is when 7 is large and 6 is closed to 3 arcsm(Qc) ; the second is when r is
large and 6 is closed to T — 1 arcsin(25).

By using the facts that when 0 — 0, sin(f) ~ 6 and when 0 — 7, cos(f) ~ 5 — 0 and
by calculating, one gets that the first essential part, let us call it A;(7), is estimated
as followed

A(T) = O(1) (5.105)

whereas the second essential part, let us call it As(7T), is estimated as followed
Ay(T) = O(T). (5.106)

By using Equation ([5.104)), one gets that :

1
/Agul”g gl = O(T). (5.107)
11>0, 12>0
lhls>C
0

We can now tackle the proof of Proposition [46|

Proof of Proposition[46]. The proof will be symmetrical relatively to the transformation
l1 < ls. So, we only need to give the proof of the result that concerns Go(L, 15).~
According to Lemma and Markov’s inequality, we only need to see that Gf/((LL’;)T)
converges in distribution and in probability towards 0.

To obtain the fact that Z2&60) () in probability, we are going to show that its second

V(L)
moment goes to 0.

One has, according to the definition of GQ(L b )T) that :
Go(L,t,T) 1 1 1 cos(4mktly) cos(4mk'tl))
E((————)°) < DE
(( V(L,t) ) ) V(L,t)? ll’er: (l115)2 (1515)? Mz,;l k4 k'
(5.108)
where D > 0.

By integrating, by using a usual trigonometric formula and by using Proposition |39
one gets that :

Go(L,t,T)
-~ < ) .
E(( VL) ) < O(AN(T) + Ax(T)) (5.109)
where
1 1 1 1 1
AT) = max 7
0= TP WBP =, G ™ a7 T TP TR + )
(5.110)
and

max : .
s T (RE)E 2, (o) ™ g (T2 Tog (T, — 7]
(5.111)
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To get the wanted result, it is enough to show that A;(7) and Ay(T") tend to 0 when
T — oo. Furthermore, we are only going to show that Ay(T') tend to 0 when T" — oo,
the proof for A;(T") being symmetrical.

Let us remark that one has :

Ay(T) < A (T) + Ago(T) (5.112)
where
1 1 1 1 1
Ao (T) = max ,
wl)= O GLEEEE 2= (o eg(T toatmyeTTRL — W)
min(k,k’)>[log(T)]
(5.113)
and
1 1 1 1 1
A2’2(T> = — max( s )
s o (B R 2 (o) ™ g (T2 fog (TR, — ]
(5.114)
From Lemma [77| and by using a usual equivalent, one gets that :

when 7" — oco. As a consequence, we only need to look at the behaviour Ay o(T).
There are two types of terms in Ay o(7') : those such that kl; is close to k'l}, for example
at a distance less than & and the others.

In the first case, it forms a sum that is estimated by

D 1 1
— — Ll
log(T )2/ W00 e

D<||U]|<T log(T)

with D > 0 and this last quantity goes to zero according to Lemma (we have first
integrated over l, and then used the fact kl; is close to k'l}).

So, finally, we only need to show that the following quantity goes to 0 when T goes to
infinity :

1 1 1 1 1

T) = . 11
)= 2 T @ ey eg(r ogrerh, — w10
f
Yet, one has that :
J(T) < J(T) + Jo(T) (5.117)
where
1 1 1 1 1
T) = 11
D= 2 e Gy G gy ogryeri, — ) 18)
|kl — k1| >1
and
1 1 1 1 1
T) = . 11
R (T AR T - (5:119)

log(7T)2 log(T)?T|kly — k'l

[log(T)]>k,k'>1
12|kl -k} |> 1
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Yet, according to Lemma [77] one has that :

J1(T) < K

< WO(log(T)z) (5.120)

and so Ji(T) — 0 when 7" — oo.
Furthermore, with P being a constant that can be chosen as large as one wants, one
has, for T" large :

K 1
wm< K
2(T) T'log(T)? Ja a1 1yepom(r) (I1l2l515)? 1y — l’

dlydl,dlydly + o(1)  (5.121)

Dom(T) = {(l1, 12,1}, 15) € R* | Tlog(T) > I, > P,
Tlog(T) =2 Iy = P — 1, Tlog(T) = Iy, 15 > 0,

1
120> 4+ 5 and i, Ll > C)

and o(1) is a quantity that goes to 0 when 7" — oo.
By integrating in [y and in 5, one gets from Equation (5.121)) that :

D 1
T) < 7/ 0 dldl} 122
) Fiogtey sy, g e G122

U+1zh >l +T

By using the fact that 0 < l1(l11—l’1) < l’l(lll—l’l) and by integrating on [, one gets with

Equation (5.122)) that :

K log(T)

Jo(T) < / dl, = 0
2(T) Tlog(T)? Jrsi=p-1 (I})? (

So, we have finally that Jo(7T) — 0, when T — oo, and so does J(T), As2(T) and

Ay (T).

By exchanging [; and ls, we obtain the fact that A;(7") — 0 when 7" — oo.

Finally, with Equation (5.109)), one gets the wanted result. O

Wg(ﬂ) +0(1). (5.123)

Proof of Proposition [7]

To prove Proposition 7], we are going to follow the same approach as was used just
before.
Before entering into the proof of Proposition A7, we need the following preparatory
lemma. Let us introduce :

~ 1 >, cos(4mktly) cos(47rk:tl2)
Gy(L,t,T) = 5.124
(Lt T) 2 Covol(L1)? | 57 o ( 12 Z:: it (5.124)
Then we have the following lemma that in particular says that %*(%;g) G;*/((L t;[ tends,

in probability, towards 0.
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Lemma 86. One has, when T — oo,

Gu(L,t,T)  Gu(L,t)
E(' VL) V(LD ')%0'

Proof. We use the same estimates as in the proof of Lemma [84] ]
We can now tackle the proof of Proposition [47]

Proof of Proposition A7 According to Lemma [86 and the Markov’s inequality, we only

need to prove that é;‘/((LL’?)T) tends in probability towards 0.

To do so, by using a usual trigonometric formula, we have that :

Gu(L,t,T)
—— =D L,t,T L,t,T 12
with D > 0 and where
1 1 & cos(drmkt(ly — 1))
Uy(L,t,T) = Z (5.126)
V(L 1) 1€J2(L,T) (hl2)? k=1 Kt
and
1 >, cos( 47r/<:t l1 + 12))
Us(L,t,T) = 3 23 (5.127)
V(L,1) ZGJQ(L,T) lll? k=1
Ga(Lt,T)

So, to prove that VD tends to 0 in probability, we only need to show that the
moments of order 2 of Uy (L, t,T") and Uy(L,t,T) tend to 0 in probability. We are going
to prove this fact for U;(L,t,T) and the proof will be valid by symmetry for U, and we
will so get the wanted result.

We have that :

E(U\(L,t, T} ) <D Y <log1 h(kl,kl’)Jrh(kl,—kl’))

(Lisly1y)? 121'z' 5 2 k:k’

LI'eJ2(L,T) k, k’>1 (T)* T'log(T)?
(5.128)
where D > 0 is a constant and
h(i, 1) = ! (5.129)
i — 1o — (L = 15| ’
We are going to show that :
20T = Y T L RKLED) N (5 130)
o L€ Ja(L,T) (l l2l/ l5)? k/>1 kk” log(T)2’ T'log(T)? '

when 7" — oo. Furthermore, the proof will still be valid if we exchange I’ and —I’. So
we will get the wanted result due to Equation (5.128)).
One has that :

Z(L,T)=A1(L,T)+ Ay(L,T) (5.131)
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where
1 1 1 h(kl, El")
A(L.T) = . — i ’ 5.132
(L, T) = “,GJZ (1ol lh)? k%; (kky <log(T)2’T10g(T)2> 0152
k or I;:’>/log(T)
and

MNLT) = Y e Y 1min< ! ,h(kl’kl/)>.

e VIASE ) (kE")* log(T)?" T'log(T)?
k and k'<log(T)
(5.133)
Yet, according to Lemma [77] one has that :
D
AL, T / = dlydl 1 0 5.134
T S fogry Saguer i o) (5-134)
where D > 0 is a constant.
So, we only need to prove that Ay(L,T) — 0 when T — 0.
Yet, one has also :
AQ(L, T) = Agyl(L, T) + AQQ(L, T) (5135)
where
1 1 h(kl,kl")
Ao (L,T) = —_— ; d 5.136
2L, T) = ”,EJZ (Llalil)? k%; (k')A Tlog(T)? " (5.136)
k and k' <log(T)
h(kl kl')<1
1 1 h(klEl)
Aoo(L,T) = —_— d . (5.137)
! l’er:L ,T) (hlshlp)? k,kz/;1 (kk')* T'log(T)?
k and k'<log(T)
h(ki,kl')>1
Yet, there exists A > 0 such that :
Aor(L,T) < 18 / LY L (5.138)
21 Tlog(T)? \ Jag||<T10g(T) 1313 '

when T — oo and where K is a positive constant. The right-hand side converges
towards 0 because of Lemma [T7]

Because of Equation , it only remains to prove that Ay (L, T) converges towards
0 when T" — oo.

Yet, one has that :

K

Ao oL, T / nertogery (L U)dldl 5.139

22(L,T) < Toa(T2 A<\‘\lll||12\\|l|£|l<l/7|’i§ (1) ( )
‘ll —lo— (l l/)‘<1

l 1 2
where K > 0 and f(I,l') = (m) :
172
Because of Equation (5.139) and for symmetry reasons, it is enough to show that the
following quantity converges towards 0 when 7" — oo :

1
J(T / L U)dldl 5.140
(T) = log(T)? Juwyerr Uc ( )
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where

](T) = {(lal,) S R4 | llal2al/17l/2 >0 )
l1>lg,l/1>l/2, 1>ll—l2—(l/1—l/2)>0,
AN < Tlog(T) and 1yl 1515 > C}. (5.141)

Let us call I;(T) the set of all (1,1") that belong to I(T") and that verify I; — Iy < 2. Let
us call also I(T) = I(T) — I,(T).

Let us note that if (,1') € I(T) then I — 1, < 2.

So, one has :

1
J(T :7/ LYl — 0 5.142
i) log(7")? (l,l’)e[l(T)f( ) T—00 ( )

because [ ner, ¢y [, ')dldl" is bounded (I and I" are close to the axis y = ).
Let us set :

Jo(T) = log(lT)2 /(l ey T (5.143)
so that
J(T) = Jy(T) + Jo(T). (5.144)

As a consequence from Equation ([5.142), it is enough to prove that Jy(7") — 0 when
T — oo in order to prove that Ayo(L,T') converges towards 0 when 7" — oo.
It is easy to see that an a priori important part of the integral [, e, () f(I,1')dldl" is
the [ and I’ such that [; and [} are large, for example larger than log(log(T")), and Iy and
l5 are small, for example smaller than m. The rest of the integral, when divided
by log(T)?, goes to 0 when T' — oco.
But we have also that 1 > Iy — Iy — (I} —15) > 0 because (I,I') € I(T"). So, it implies in
particular that, for 7" large enough,
3 1
Hence, by integrating first in /o and in 5 and by using the fact that the lattice is
admissible, we have that J5(T") is estimated as followed :
K, 1 ,
Jo(T) < Tog (T2 /T1og(T)>zl,z’1>10g(1og(T)) mdlldh +o(1) (5.145)

3 / 1
5>l1—l1>—§

where K is a positive constant (that depends on C').
From Equation (5.145)), by integrating, first, in /1, second, in [}, one gets that :

K,
BT) S g (D)

+ or(1) (5.146)

where K5 > 0, which concludes the proof.

5.4.4 Conclusion

We can now give the full proof of Theorem [13]
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Proof of Theorem[I3] Proposition [39 gives us the first part of Theorem [I3] The second
part of Theorem [13|is the consequence of Proposition |40| and of Proposition (with
L being replaced by L+ ; the validity of this last Proposition is a consequence of

Proposition , Proposition [46{ and Proposition .

]

5.5 Proof of Theorem 15

The goal of this section is to establish Theorem [I5} It is a natural extension of
Theorem [13| and of a part of We see that, in that case, the normalization is larger

than before : at least log(t) whereas the normalization before was in 4/log(t).

To show this last theorem, we are going to proceed in three times : first, we will show
that the lower and upper estimates about V(L, ) hold, second we will show that the
lower and upper estimates about V(L,7) hold and third we will conclude the proof of
Theorem [15 by using the third subsection of Section 4.

5.5.1 Estimation of V(L,r) in the typical case

The goal of this subsection is to show the following proposition :

Proposition 48. For every e > 0, for a typical L € %4, one has that
V(L,7) = O(r?%) (5.147)
and

V(L, r)

rd—1  rooco

(5.148)

The proof of this proposition relies heavily on [82] and we need to recall a funda-
mental theorem.

Definition 25. A subgroup G C SL4(R) is called ergodic on the homogeneous space
Fa if for every G-invariant measurable subset A C %y, nq(A) =0 or pg(A) = 1 where
g 1S the unique Haar and probability measure over .#.

The Moore’s ergodic theorem gives us in fact that G is ergodic if, and only if, G is
not contained in any compact subgroup of SL4(R). As a consequence, A is ergodic and
thus we have the following fundamental theorem

Theorem 19. Let v a function integrable over (%y, q). Then, for almost all L € %,
(in the sense of the measure 14), one has that

lim, 37 3 (6L = [ e(L)dpa(L).

r—00 ‘Ar’ sen, 2
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We can now give the proof of Proposition [48|

Proposition 48], First, one has that :

2
< . 5.149
(m ||5L||d) (5:149)

Yet, Lemma 3.2 from [82] gives us that for every € > 0, for a typical L € .7,

(Z H(SLHd) = O(r®=17e), (5.150)

0EA

So, Equation ([5.149)) and Equation (5.150)) give us the wanted first result of Proposition
48
Second, one has that :

V(r,L)

prd—1 Z rd— 16;2 ”(SLHd

(5.151)

where K7 > 0. We have obtained this last equation by using the concavity of the square
root and because the cardinal number of A, is of order 7%~! (see Equation )
Let then m > 1.

One has that :

1
1 5 T e 5 e () 122

0EA, SEA,

1

Yet, L — min (m, ) is integrable over .#;. So, one has for a typical L € .% :

1Ll
> rmn( ! ) — K/ min(m, —-— )du (5.153)
2 d ~
Td ' sen, OL|[t) e ||LHd

where K5 > 0 does not depend on m.

By using Equation (5.151)), Equation (5.152)) and Equation (5.153)), one gets that for

every m > 1, for a typical L € ., :

o V(L)
lim inf o ) min(m |L||d)dud (5.154)

where K > 0 and m > 0.
By making m — oo, by using Fatou’s lemma and by using the fact that

/ 1
o T =

one gets the wanted result. O
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5.5.2 Result about V(L,t) in the typical case

The goal of this subsection is to prove the following proposition :
Proposition 49. For every € > 0, for L a typical lattice, one has that
V(L,t) = O(log(t)**)

and
V(L 1)
— OQ.
10g(t)2 t—00

In fact, the most important part of V(L,t) are the terms [?[3 that are the smallest
possible. So, we need to know more about how small can be |l1l3|. In fact, we have the
following result :

Theorem 20 ([87], [82]). For a typical L € %, there ezists a sequence (I,)nen such
that
Ll =00 and log(L I (sl = 0.

Furthermore, for all a > 0, for a typical L € %, there exists C' > 0 such that for all
l e L—{0},
[Lla] = Clog (1[I~

As a consequence of Theorem 20| we see that, to establish Proposition the
following lemma will be convenient :

Lemma 87. For all C > 0, for all A > 0, for all « > 0, one has that :

1
R apdiidls = O(log(t)**).
A<]|t<t 12
| Num(1)|>C| log([l1]})| 1~

The proof of this lemma is basically the same as the proof of Lemma [77]

Proof. First, let us say that it is enough to prove the result for A fixed and large enough.

Then, let us set :
1
J(t) = / e —dlydly. (5.155)
A<t l13
[Num()[=C|log(|lZ[[)] =+~

By passing into polar coordinates (r,6) and by using the symmetries, one has :

1 4
J(t) =8 / I e L (5.156)

By making the changes of variable 8/ = 20 and, then, u = tan(#'), one gets from
Equation (5.31) and by taking A large enough :

B 1 r? log(r)tte 2C )
J(t) =16 (—1+ \/1 — (W) )dr. (5.157)

A<r<titer 13 2C r)itay?
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From Equation (5.157)), for all A large enough, one has that :

J(t) = O(log(t)***) (5.158)

when t — co. So we get the wanted result. O

We can now prove Proposition (49,

Proof of Proposition 49, Let e > 0. For a typical L € .%, there exists C' > 0 such that
for all [ € L — {0}

[Lila] = Cllog(J[2]))] (5.159)

and there exists a sequence (I,,),en € LY such that

1] = oo and (5.160)
log([|1n ]I (In)1 (In)2] | =2 0. (5.161)

So, first, one has that there exist A, D > 0 such that :

|
V(L,t) < D / e —dlydly = O(log(t)**) (5.162)
AL|l]I<t [l
[Num() >C log ()|~

according to the definition of V' (L,t) and because of Equation ((5.159)).
So, because of Lemma [87], one gets that :

V(L,t) = O(log(t)**). (5.163)

Furthermore, a consequence of Equation (5.160) and of Equation (5.161f) is the fact
that :

lim inf V(L Y) (5.164)
t—oo  log(t)?
also due to the definition of V(L,1). O

We can now conclude the proof of Theorem [I5]

5.5.3 Conclusion

Proof of Theorem[15 The first assertion of Theorem [I5is proven by Proposition [48]
The second assertion of Theorem [I5]is proven by Proposition [49}

The third part of Theorem [I5] that concerns the convergence in distribution, is shown
as the second part of Theorem (13| (see 4.2 and 4.3). O
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5.6 Proof of Theorem 16

In this section, we are going to show Theorem [16] Let 2 € R and a > 0.

Instead of considering ¢, we can consider g So, we can suppose, and we are go-

ing to make this assumption in the rest of this section, that a = 1 in the study of
R(tRect(a,a)+(x,x),Z?)
¢

tRect(1,1)+(z,x),Z2)
7 .

Now we are going to give a simple expression of Ll

(tRect(1,1)+(z,x),Z?)
t

5.6.1 An expression of R

The main object of this subsection is to prove the following proposition :
Proposition 50. We have for every x € R?, for every t > 0, that

R(tRect(1,1) + (z,x),Z*) (|t +=x] —[-t+x]+1)*— 4t2'

= 5.165
: (5.165)
The proof is quite straightforward.
Proof. Let x € R2. Let t > 0.
One has that :
N(tRect(1,1) + (v, 7),Z*) = > 1
(n1,n2)€Z2
—tt+rx<ni<t+x
—t+ax<na<t+z
=([t+z] - [-t+2]+1)% (5.166)
Furthermore, one has that :
Area(tRect(1,1)) = 4¢>. (5.167)

So, Equation (5.166]) and Equation (5.167) and the definition of R(tRect(1,1)+(z, z), Z?)
give us Equation ([5.165)). n
With Equation ((5.165)), one has that :

R(tRect(1,1) + (z,z), Z*)
t

_ (Ltﬂd_(_HMH_%)(LH:UJ — (—t;aﬂ +1+2t)‘

(5.168)
R(Rect(L)+(2,2),2%) ol ¢ dise

Thanks to this last remark, the asymptotical study of
tributed on [0, T] according to the probability measure 7p(%)dt is going to be reduced
to the study of a simpler quantity. It is the object of the next subsection.
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5.6.2 Reduction of the study of R(tReCt(l’?Hm’x)’W)

The main object of this subsection is to prove the following proposition :

Proposition 51. For every g € C.(R),

[ o (REAADEEDED) gy ot 0 (516)
where A(t,x) is defined by
Alt,z) =4[t +z] — [—t+z] +1—2t). (5.170)

The proof is quite straightforward and lie on the definitions of |-] and of [-].

Proof. For every t > 0, for every =z € R,
t+r—1<|t+z]<t+z (5.171)

and
—t+r < [—t+z] <—t+az+1 (5.172)

From Equation (5.171)) and Equation (5.172)), one gets that :

4t —1 _ (t+x] —[—-t+z] +1+2t) o 4t +1

t t <— (5.173)
So, from this last equation, one has that, when t — oo,
([t +=] - (—t;r el +1i+2t) (5.174)
So, one has that :
R{tRect(L, 1) + (@, 2).Z%) _ x4y 50 (5.175)

t

when ¢ — oo because (|t + x| — [t + x| + 1 — 2t) is bounded.
Now, the end of this proof is quite straightforward. Indeed, one has, for every 0 < k < %

K

~ g (ML) ol < 2glle [ o0)dt

T
| t=0

+/;|g <R(tRect(1,1i—|— (z,7),7Z ))

(0 <R(tRect(1, 1) + (z, ), ZZ)>

t

— g (A2 | o) (5176)

and, because g € C.(R), it is a uniformly continuous function and one has, from Equa-

tion (|5.176), that

T
limsup [ |g
T—oo JKT

<R(tRect(1, 1i+ (x,a:),Z2)> — g (A(t, 7)) |;p(;)dt =0  (5.177)
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because, also, of Equation ((5.175)).
So, Equation (5.176) and Equation (}5.177)) give us that for every 0 < x < % :

T (R(tRect(l, 1i + (z,2), Z2)>

lim sup | (g

T—o00 t=0

~g (At 2)) ()] < gl [ ol

(5.178)
By making « go to 0, one gets the wanted result. O]

Proposition 51| enables us to reduce the asymptotic study of R(tReCt(l’?“%z)’Zz) to

the asymptotic study of A(¢,z). In the next subsection, we are going to show that
A(t,x) converges in distribution and exhibit the limit distribution and its moments.

5.6.3 Convergence in distribution of A(¢, z)

The goal of this subsection is to prove the following proposition :

Proposition 52. For all x € R, when t € [0,T] is distributed according to the prob-
ability density +p(T-) on [0,T] then, when T — oo, A(t,x) converges in distribution.
Furthermore, the limit distribution B has a compact support included in [—2,4] and for
every k € N, one has that
k
d -
| atds@)

AL+ (=DM + (1 -y

2(k + )
with y = |ta0 —t1,0| where tog is the firstt > 0 such that —t+x € Z and ty is the first
t > 0 such thatt+ x € Z.

where

ap =

We are going to show this proposition in three times. The first time, and the next
subsubsection is dedicated to it, consists in calculating the limit, when T — oo, of
all entire moments of A(t,z) when p = 1j;. The second time consists in showing
that these limits define a unique probability distribution over R. The last subsection is
dedicated to the conclusion of the proof. So, basically, we are going to use the method
of moments to show Proposition

Calculation of limits of moments of A(t, x)

Before stating the main proposition of this section, we need to make some observa-
tions and put in place some notations.
Let us call ¢ < --- < t1; the different times ¢ € [0,T] such that t + x € Z.
In the same way, let us call to9 < --- < g the different times ¢ € [0,7] such that
—t+x e Z.
Let us observe that for every i € {0,---,l — 1}, t1,41 — t1; = 1 and that for every
jE {0, 7h—1}, tQ’jJ’_l —t27j =1.
As a consequence, one has necessarily that to0 € [t10,t11] or t19 € [t20,t21] and h =1
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orh=0l—1lorh=1[0+1.
Let us set :
y = |ti0 — tapl- (5.179)

Then, the main proposition of this section is the following proposition :

Proposition 53. For every k € N, when p = 1jg4), one has that :

lim (E((A(t,2))")) = a (5.180)

T—o0

where
A+ =DM+ 0 -y
2(k+1) ’

(5.181)

ap =

The proof consists basically in cutting the interval [0, 7] into subintervals where all
the quantities that intervene in the calculus can be expressed simply.

Proof. Let k > 0 and let us suppose that p = 1o 1.
By symmetry, we can, and we will, also suppose that ta € [t10,t1.1].
One has that :
—4 < At,zr) <4 (5.182)

forallt € R and z € R.
Consequently, we can suppose that

E(AG)) = X [ At [

0 7/t toq

1
Alt, x)kfdt (5.183)

even if it means neglecting the rest of the integral that is calculated on a union of two
intervals of respective lengths at most 2 and so the corresponding term, because of
Equation , isa O(%).

Let i € {0,--- ,h —1}.

Then one has :

taq & 1 toq k k 1

t1,i t1,i

according to the Equation ([5.170)).
So, one gets that :

t2 1 4
/ YA ) dt = y)F+1) (5.185)

t1,i T 2T(l€ + ]_
because for all 7 S {0, cee ,h - 1}, Yy = t2’0 - tl,O = tQ’i — tl,i-
So, one gets that :

2,4 1 Ak

At oW odt — — = k(] 1 (—1)F) N

/t 27 2Tk +1)7 (1+(=1)%) (5.186)
In a similar way, one gets that :

t1,i41 1 4k
/t2,i (t7 $) Tdt QT(k- + 1>( y) ( + ( ) ) (5 87)
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because 1 — Yy = tl,i—l—l — tg}l'.
So, with Equation ([5.183)), Equation ((5.186)) and Equation (5.187)), one gets that :
h— k

4

[y

E(At,2)") =Y @+ (1 — )1+ (=1D)F). 5.188
(802 = X gy 0 + (=)0 + (1)) (5189)
By using the fact that limp_. % = 1, one gets from Equation |) that :
4%, 4+
E((AL 2)F) = — =0 (kL (] — V) (14 (— 1)k AP () Y (1 (—1
(A0 = grirpy @+ 00 ) 2 g W) ) D
(5.189)
[

In the next subsubsection, we are going to see that there exists a unique probability
distribution over R such that the entire moments are given by the ay.

Existence and unicity of the distribution whose moments are given by the
ay

The main object of this subsubsection is to prove the following proposition :

Proposition 54. There exists a unique probability distribution B over R such that for
all k € N,

/ *dB(z) = ay.
z€R

To prove this proposition, we need to recall the following theorem.

Theorem 21. Let (ax)ren be a sequence of real numbers such that the power series
> k>0 %zk has a positive radius of convergence. Then, there exists at most one proba-
bility measure 5 over R such that for all k € N,

ap = / 2*dj(x).
zeR
We can now prove the proposition

Proof of Proposition[54, One has :

Ak41
|
R 50 (5.190)
T k—00

according to Equation ([5.181]).
So, the ratio test gives us that > ;- %Zk has a radius of convergence that is infinite.
As a consequence, Theorem applies here and gives us that there is at most one
probability measure 5 over R whose entire moments are given by the (a)gen-
Furthermore,

—4 < At,z) <4
for all t > 0 and for all z € R.
So, we have that for every € R, (Pa(.4))i=0 is tight.
As a consequence, Prokhorov’s theorem gives us the existence of the probability measure
[ whose entire moments are given by the (a)ken. O
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Conclusion of the proof of Proposition

To conclude the proof of Proposition |52, we need to recall one theorem and to prove
one lemma.

Theorem 22. Let X be a real random variable characterized by its entire moments and
(Xn)nen be a sequence of real random variables such that for all k € N,

E(XF — B(XY).

n—o0

Then the sequence (X,,) converges in distribution towards X .

The following lemma is in fact taken from [I0] (but it was not formulated as it,
see proof of theorem 4.3). We are going to give the proof of this lemma here for
completeness.

Lemma 88. Let F' be a real measurable function from R .
Assume that there exists a probability measure u over R such that for every g € Cy(R),

1T
Jim o [t = [ g(e)n(a).
Then, for every probability density p over [0,1], for every g € Cy(R), one has

1 T

Jim o [ o @)p(p)dt = [ gla)dun(a). (5.191)

Proof. Assume first that p is a step-wise function consisting of a finite number of steps.

By linearity of the Equation (5.191)), it is enough, in this case, to prove ((5.191]) for the
function .

p(2) = 1y (2)

where 0 < a < b < 1, id est a one-step function.
Let g € Cy(R).
Because of the assumption of Lemma [88] one has :

O e GO
(o [ R @) o [ g(F ()

0ot —a [ gtadn(a) = [ g(o)dute)

-
T—oo b— q
(5.192)

So we have Equation in this case.

The general case follows now by using the fact that for every probability density p over
[0, 1], for every € > 0, there exists p,, a step-wise function consisting of a finite number
of steps, such that

[ o)~ pele)lde < e
z€[0,1]
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We can now prove Proposition (2]

Proof of Proposition |52 Thanks to Lemma [88, we only need to prove Proposition
in the case where p = 1y 1.

Furthermore, Proposition |53} Proposition |54{and Theorem 22| gives us that that A(-, z)
converges in distribution when 7" — oo and the moments of the limit distribution is
given by the ay.

Finally, we recall that —4 < A(t,z) < 4 for all ¢ > 0, for all z € R and so  has its
support compact and included in [—4, 4]. ]

5.6.4 Conclusion
We can now prove Theorem [16]

Proof of Theorem [16. Thanks to Lemma [88] we only need to prove Theorem [I6in the
case where p = 19y and a = 1.

Proposition [51| gives us that, if A(+,x) converges in distribution, then it is also the case
of R(tReCt(l’?J“(m’x)’ZQ) and the limit distribution is the same.

Finally, Proposition [52| gives the wanted result. [




Chapter 6

The particular case of 7% and boxes

(Résumé francais)Nous étudions l'erreur du nombre de points du réseau Z? qui
tombent dans un hypercube centré autour de 0 dilaté et translaté et dont les axes sont
paralleles aux axes de coordonnées. Nous montrons que si ¢, le facteur de dilatation,
est distribué selon la mesure de probabilité %p(%)dt avec p une densité de probabilité
sur [0, 1], l'erreur, normalisée par t4~1, converge en loi lorsque T' — oo dans le cas ol
la translation est de la forme X = (x,--- ,z) et dans le cas ou les coordonnées de X
sont indépendantes entre elles, indépendantes de ¢ et distribuées selon la loi uniforme

sur [—%, %] Dans les deux cas, on calcule par ailleurs la fonction caractéristique de la
loi limite.

(English abstract)We study the error of the number of points of the lattice Z¢ that fall
into a dilated and translated hypercube centred around 0 and whose axis are parallel
to the axis of coordinates. We show that if ¢, the factor of dilatation, is distributed
according to the probability measure %p(%)dt with p being a probability density over
0,1] the error, when normalized by 471, converges in distribution when 7" — oo in

the case where the translation is of the form X = (z,---,x) and in the case where the
coordinates of X are independent between them, independent from ¢ and distributed
according to the uniform distribution over [—%, %] In both cases, we compute the char-

acteristic function of the limit distribution. study the existence of the moments of its
distribution.
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[6.4.2  Computation of characteristic function|. . . . . . . . ... .. 196
6.43 Conclusionl . . . . .. .. ... 197
6.5 Proofof Theorem 24 . ..................... 198
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6.1 Introduction

Let P be a measurable subset of R? of non-zero finite Lebesgue measure. We want
to evaluate the following cardinal number when ¢ — oo :

NP+ X,L)=|(tP+ X)NL|

where X € RY, L is a lattice of R? and tP + X denotes the set P dilated by a factor ¢
relatively to 0 and then translated by the vector X.
Under mild regularity conditions on the set P, one can show that :

_ Vol(P).

NP+ X,L) Covol(L)

+ o(t%)

where o(f(t)) denotes a quantity such that, when divided by f(¢), it goes to 0 when
t — oo and where Covol(L) is the volume of a fundamental set of the lattice L.

We are interested in the error term

i Vol(P)

In the case where d = 2 and where P is the unit disk D? Hardy’s conjecture in [36]
stipulates that we should have for all € > 0,

R(tD?, Z?) = O(t27°)

where Y = O(X) means that there exists D > 0 such that |Y| < D|X]|.
One of the result in this direction has been established by Iwaniec and Mozzochi in [43].
They have proven that for all € > 0,

R(tD?, Z%) = O(ti1+).
This result has been recently improved by Huxley in [42]. Indeed, he has proven that :
R(tD?, Z%) = O(t* log(t)™)

_ 131 _ 18627
where K = 508 and A = 390

In dimension 3, Heath-Brown has proven in [40] that :

R(tD?, Z%) = O(tis ).
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These last two results are all based on estimating what are called exponential sums.
Furthermore, they only tackle "deterministic" cases.

Another result about this problem has been established by Bleher, Cheng, Dyson and
Lebowitz in [II]. Let p be a probability density on [0,1]. They took interest in what
is happening when the factor of dilatation ¢ is distributed according to the probability
measure 7.p(%)dt and when T — co. Their result states as following :

Theorem ([11]). There exists a probability density p on R such that for every piecewise
continuous and bounded function g : R — R,

jim [ (B2 Z2))P(;)dt ~ [ @@z,

T—)ooT

Furthermore p can be extended as an analytic function over C and satisfies that for
every € > 0,

plx) = O(e™"™)

when x € R and when |z| — co.

We want to follow this approach on another problem. Namely, let us give a > 0 and
let us define the following set

Cla) ={z = (21, ,24) € R |Vi € [1,d], |z;| < a}. (6.1)

In that case, with p being a probability density over [0, 1], we want to study the possible
convergence in distribution of the quantity %jx’zd. We already proved such a result
when the dimension d was equal to 2. Here, we are going to prove the two following

theorems (that constitute a generalization of the previous result) :

Theorem 23. Let x be a real number. When t € [0,T] is distributed according to
the probability density +p(%) on [0,T] then, when T — oo, M converges in
distribution with X = (x,--- ,x). Furthermore, the limit distribution has the following

characteristic function
sin(d2¢ 1uy) + sin(d2¢ tu(1 — y))
d24-1y,

with y = [tag — 10| where tag is the firstt > 0 such that —t+x € Z and ty is the first
t >0 such that t +x € Z. In fact, y = |1 — 2{x}| where {x} is the fractional part of x.

p(u) =

Remark. Instead of considering C(1) we can consider C(a) with a > 0: the result
will still hold.
Remark. Theorem [23| can be extended to the general case where X is any vector of R?.
It is just that the case X = (z,---,z) is more presentable and contains the idea of
the proof in the general case. For more information, see the remark that follows the
conclusion of the proof of Proposition [58|

Theorem 24. Let us assume that xq,--- , x4 are independent random wvariables dis-
tributed according to the uniform distribution over [—%, %] Let us assume also that

t € [0,T] is distributed according to the probability density +p(=) on [0,T). Let us
suppose that t and x1,--- ,x4 are independent betweem them then, when T — oo,
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d . . . .
W converges in distribution where X = (z1,--+ ,2q).

Furthermore, the limit distribution has the following characteristic function :

o) = (2 g

Remark. Theorem [24] can be extended to other types of distributions. For example,
in the case where the x; are distributed according to a Poisson distribution, the conver-
gence in distribution still holds and the characteristic function of the limit distribution

is :
sin(u)

plu) = ( ).

Also, if the z; are distributed according to a uniform distribution over [—1,1], the
convergence in distribution still holds and the characteristic function of the limit dis-
tribution is the same as in Theorem [24, By changing the distributions of the z;, one
only changes the result of Proposition [60| and the rest of the proof of Theorem [24] still
holds.

We see that the normalization in the two cases addressed by these two theorems of
the error R is of order t?~!. Furthermore, the two cases studied here are two extreme
cases : the case of Theorem [23]is a case where all the z; are linked (in fact, they are
all equal) whereas the case of Theorem [24]is a case where all the x; are independent
between them.

Before beginning, let us observe that it is enough to prove Theorem [23] and Theorem
in the case where p = 1p ) (see, for example, the proof of Theorem 4.2 in [10]).
So, in the rest of the article, we are going to suppose that p= 1.

In the next section we are going to give a bit of heuristic about Theorem [23]and Theorem
24

u

6.2 A bit of heuristic and plan of the paper

First, let us say that the normalization of R(+C(1) + X, Z) by t¢~! is quite natu-
ral. Indeed, to within a multiplicative factor, it corresponds to the surface measure of
a(tC(1) + X).

This normalization appears when looking at the following expression of R(tC(1)+ X, Z4)

R(C() + X, 2% S 20 ([t +a] — [—t+ 2] +1 =20 [T ([t + 2] — [t 42,7 +
td—1 o td—1

with X = (21, ,24) (see Proposition [56] and Equation [6.7)).

Plan of the paper. After having proved this expression of R(tC(1) + X, Z%), we show

in section 3 that the study of %:X’Zd) can be reduced to the study of a simpler

quantity which is A(t, X') (see Proposition |55| for the definition of A(t, X)).

Then, in section 4, we give the proof of Theorem [23]. In fact, the case of Theorem [23] cor-
responds to a case where the expression A(¢, X) (and the expression of R(tC(1)+X, Z))
is simpler. This simple expression is used to compute the characteristic function of
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A(t,X) (see Proposition p8). We conclude by using Levy’s continuity theorem (see

Theorem .

In section 5, we also compute the characteristic function of A(t, X) in the case of The-
orem [24 (see Proposition . In fact, the key of Theorem [24]is the independence of the
variables t, x1, - - - , x4 which enables us to make this computation. Other computations,
with other distributions for the variables x1,- - - , x4, but always with the independence
theorem, could be made. We, again, conclude by using Levy’s continuity theorem.

The next section is dedicated to reduce R(tC(1)+ X, Z?) when we study its asymptotical
behaviour.

6.3 Simplification of the study of R(tc(;l)jX’Zd)

The main object of this section is to prove the following proposition :
Proposition 55. One has that :

R(tC(1) + X, Z4)

pr —A(t, X) T 0 (6.2)
where A(t, X) is defined by
d
AX) =2 ([t +a) — [—t+z] +1-21) (6.3)
i=1

with X = (x1,-+- ,14) and the convergence in Equation (6.2)) is uniform in X € RY.

It is a proposition that enables to do some reduction about the asymptotical study

of %j}{’zd). The main idea is that, in this case, everything can be computed quite

easily, it is only a matter of definitions.

6.3.1 An expression of R(tC(1) + X, Z?)

The main object of this subsection is to prove the following proposition :

Proposition 56. We have for every X € R?, for every t > 0, that
d
R(tC(1) + X, Z%) = It +z) - [—t+z]+1) - (2t)? (6.4)

=1

where X = (z1,-++ ,xq).

The proof is quite straightforward.
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Proof. Let X = (zy1,--+ ,74) € R% Let t > 0.
One has that :

N(tC(1) + X, 2% = > 1

(ny, ng)ez?
Vie[l,d], —t+z;<n;<t+z;

= H |t + ;] — [—t+ x| +1). (6.5)
i=1
according to Equation (6.1)).
Furthermore, one has that :
Vol(tC(1) + X) = (2t)* (6.6)
So, Equation (6.5) and Equation and the definition of R(tC(1) + X, Z%) give us
Equation (/6.4)). ]

With Equation (6.4), one has that :

REAC() + X, 74 XL 20 ([t + ] = [—t+ 2] +1 =2 [If_ ([t + 2] = [t + 2] +
$d—1 o td—1

(6.7)
Thanks to this last remark, the asymptotical Study of % with ¢ distributed
on [0,7] according to the probability measure F.p(%)dt is going to be reduced to the
study of a simpler quantity. It is the object of the next subsection.

6.3.2 Reduction of the study of W

The main object of this subsection is to prove Proposition [55. The proof is quite
straightforward and lie on the definitions of |-| and of [-] and on Proposition [56]

Proof of Proposition |55]. For every t > 0, for every = € R,

t+r—1<[t+z|<t+z (6.8)
and
—t+zr< [~t+z] < —-t+x+1. (6.9)
From Equation and Equation , one gets that :
A-1<(t+a]—[-t+2]+1)<2t+1 (6.10)
So, from this last equation and from Equation , one has that, when ¢ — oo,
d—1
|R(tC(1t)d:|—1 X,z% A(t, X)| < ;Qiltdl—i _ OQ) (6.11)
So, one gets the wanted result. O

Thanks to Proposition |55, we see that the asymptotical study of tdiﬁxz) can be

reduced to the study of A(t, X ). We are going to use this fact in the next two sections.
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6.4 Proof of Theorem 23

The main object of this section is to prove Theorem We are going to use the
reduction that was mentioned before (see Proposition [55]). In the case of Theorem
the expression of A(¢, X) is simple and the proof of Theorem is only a matter of
computation of a characteristic function.

6.4.1 Reduction of the study of w

The main object of this subsection is to prove the following proposition :

Proposition 57. For every x € R, for every g € C.(R),

/tTO ? <R(tC(1t)djr1 X,Z )) —g(A(t, X)) );dt =0 (6.12)

where X = (z,--+ ,x) and where A(t, X) was defined in Proposition [55]

It should be noted in this case that
A, X)=d2 (|t + x| — [t + 2] +1—2t). (6.13)

The proof of Proposition [57]is quite straightforward and based on Proposition [55|

Proof. One has for every 0 < K < % :

[ o (RECERED) g (a0 e < 2l [
T d
# o (PO a0 e (6.14)

and, because g € C.(R), it is a uniformly continuous function and so one has, because

of Proposition [55] that

T R(tC(1) + X, z4 1
imsup [ g (FUCDFXZDN 0 onw x)) a0 (6.15)
T—00 kT td_l T
So, Equation (|6.14) and Equation 1} give us that for every 0 < xk < % :
, T R(tC(1) + X, Z% 1 K
timsup| [ (g (FUEDERED) g (a x0) Lt < 2lgl [“ar. (610
T—00 t= t T 0
By making « go to 0, one gets the wanted result. O]

In the next subsection, we are going to compute the characteristic function of A(t, X)
to within a multiplicative factor.
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6.4.2 Computation of characteristic function

Before stating the main proposition of this section, we need to make some observa-
tions and put in place some notations.
Let us call t1 g < --- < t;; the different times ¢ € [0,7] such that t + x € Z.
In the same way, let us call tog < --- < g the different times ¢ € [0,7] such that
—t+x € Z.
Let us observe that for every i € {0,---,l — 1}, t1,41 — t1; = 1 and that for every
jE {O, ,h—l}, t27j+1 —tgd‘ =1.
As a consequence, one has necessarily that to0 € [t10,t11] or t10 € [t20,t21] and h =1
orh=Il—1lorh=10+1.
Let us set :

Yy = |t1’0 - t270| (617)

and

Alt,z) = ([t+z] = [-t+z]+1—2t). (6.18)
By the way, let us remark that for all x € R :

y=1-2{x}] (6.19)

where {z} stands for the fractional part of the real .
Then, with these notations, one has that :

Proposition 58. For every x € R, one has that the characteristic function PA() of
A(t, x), with t being distributed according to %l[ng]dt satisfies that for every u € R,

h

(1) = L (sin(uy) 4 sin(u(1 ~))) + O(7)

where the O is uniform in x € R.
As a consequence, when T — oo, for every u € R, one has that :

sin(uy) + sin(u(1 — y))

PA(z) (u)

The proof consists basically in cutting the interval [0, 7] into subintervals where all
the quantities that intervene in the computation can be expressed simply.

Proof. By symmetry, we can, and we will, suppose that to € [t10,%11]. Let u € R.
One has then that :

iuA(t,z) S iuA(t,x) 1 fit1 iuA(t,z) 1 1
E(e v)zzl_e vfm+A_ R0 i+ O()  (6.20)

where the O corresponds to the rest of the integral that is calculated on a union of two
intervals of respective lengths at most 2.

Let i € {0,--- ,h — 1}.

Then one has :

tai . 1 2R 1
wA(t,x) / tu(ty i +t2,;—2t)
e dt = e —dt 6.21
ll,i 1 tly’i i ( )
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according to the Equation (6.18)).

So, one gets that :
toi . o« i
/2’ ezuA(t,m)ldt _ Sln(uy) (622)
t1,i

T ul

where one conveys that S”E)(O) = 1 and one has this last equation because for all j €

{0, e ,h — 1}, Yy = tQ’O — tl,O = tQ’j — tl,j-
In a similar way, one gets that :

p = J (6.23)

/tl’H—l eiuA(t,z)ld SIH(U(]_ — y))
to; T uT

because 1 —y =ty ;41 — t2,.

So, with Equation (6.20]), Equation (6.22]) and Equation (6.23]), one gets that :

(e = 3o ) S =) oLy - P (inuy) +sin(u(1 - ) +O(1)

= ul ul’ T ul’
(6.24)
By using the fact that limp_, % =1, one gets from equation 1) that :
T—o00 u

Remark. If one wanted to address the general case of X being any vector of R?, one
would only need to adapt, in fact, Proposition [58. The basic idea, in the general case,
is the same : the intervals [0,7] must be partition in small intervals where we know
how to calculate all the quantities [—t+ ;]| and [t+x;]|. To do so, we have to consider
the instants between 0 and 7" when —t + x; is an integer and the instants between 0
and 7" when ? +x; is an integer and consider the order between these instants. The rest
follows by calculations. m

6.4.3 Conclusion

To conclude the proof of Theorem 24 we need to recall the Lévy’s continuity theo-
rem.

Theorem 25. Let us give us (X,)n>1 a sequence of real random variables and let us
call (¢n)n>1 the associated sequence of their characteristic functions.

Let us suppose that the sequence (pn)n>1 converges point wisely to some function ¢.
Then, it is equivalent to say that there exists X a real random variable such that (X,,)
converges in distribution towards X and to say that the function ¢ is continuous at the
point t = 0.

Furthermore, if the last condition is realized, ¢ is the characteristic function of such a

X.
We can now conclude the proof of Theorem [24]

Proof of Theorem [24] Because of Proposition [57], it is enough to study the asymptotic
convergence in distribution, when 7" — oo, of the quantity A(¢, X) with X = (z,--- ,x)
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and ¢ being distributed according to the density = 17(t)dt.
The fact that

At X)=d2" ([t +z] — [t + 2] +1—2t) (6.26)

and Proposition and Theorem give us that A(¢, X) converges in distribution,
when T" — oo, and the characteristic function of the limit distribution is given by

_sin(d29 tuy) + sin(d27u(1 — y))

olu) = o (6.27
with y = 1 — 2{z} according to Equation (6.19). O

6.5 Proof of Theorem 24

The main object of this section is to prove Theorem 24 We are going to use the
reduction that was mentioned before (see Proposition . In the case of Theorem ,
the proof is only a matter of computation of the characteristic function of A(t, X) and
here it can be easily dealt with thanks to the independence between the x; and thanks
to the independence between the x; and t.

6.5.1 Reduction of the study of w

The main object of this subsection is the following proposition :
Proposition 59. One has that :

R(tC(1) + X, Z%)

P
= ~ALX) 5 0 (6.28)
when T — oo and when t is distributed according to =17 (t)dt and X = (z1,--- , zq)
is distributed according to U([—3, %])®d. Tﬂ signifies that the convergence occurs in
— 00
probability.
Proof. 1t is a direct consequence of Proposition [55] O]

Because of the independence of the z; between them and with ¢, it is convenient for
us to calculate the characteristic function of A(t,z1), ¢ Altar) (because also the x; are
identically distributed). It is the object of the next subsection.

6.5.2 Computation of the characteristic function ¢ Altan)

The main object of this subsection is to prove the following proposition :
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Proposition 60. For x a real random variable distributed according to the probability
measure 1[_%’%](x)dx and being independent from t, with t being distributed according to

the probability measure +1j.1)(t)dt, one has that the characteristic function of A(t, z),
PAgr) Satisfies that
h 1 — cos(u) 1
SOA(t,m)(U) = 2T72 + O<T) (6.29)

u

1—cos(u)

As a consequence, one has that ¢z, (u) = 25
’ —00

The proof is basically a computation that uses Proposition [5§| :

Proof. According to Proposition and because x and t are independent from one
another, one has that

a0 (0) = B (L sinult = 262} +sintu(1 = 1= 24} +O(1)) (630

because of Equation (6.19) and the O is uniform in x (h can be, and is, chosen so that
it does not depend on z).
Two quick computations give us that :

1—
E (sin(ull — 2{z}])) = L= (6.31)
u
and .
E (sin(u(1 — |1 — 2{}]))) = L= (6.32)
u
So, with these last two equations and Equation ([6.30]), one has that :
h 1 — cos(u) 1
A (W) = 2T7u2 + O(f)' (6.33)
By using the fact that % — 1 when T" — o0, one gets finally that
1 — cos(u)
P () o 2T (6.34)
O]

6.5.3 Conclusion
We have now all the necessary tools to prove Theorem [24]

Proof of Theorem [24] Proposition [59] gives us that it is enough to prove A(t, X') con-
verges in distribution, when 7" — co. So, we are going to calculate the characteristic
function of A(t, X).

One has, because t and the x; are independent random variables :

d
Pax)(u) = H @A(t,azi)(Qd_lu) (6.35)
=1
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and because A(t, X) = 2015 A(t, z;).

Furthermore, the xz; are 1dentlcally distributed according to the probability measure
1[_%7%1. So Proposition 60| and Equation (6.35]) give us that :

4 h1—cos(2¢ ) 1
Pax)( 1:[ T @ T O(7)- (6.36)
So, by making 7" goes to oo, one has that :
1 — cos(2¢ 1)
Pa(®) = (2 (20132 ). (6.37)

Theorem [25| gives us then the wanted result. O
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Dans le chapitre 3, lorsque I'on prend pour S une ellipse E centrée en 0 et lorsque I'on prend L unimodulaire et aléatoire,
on montre que R(tE,L)/sqrt(t) converge en loi, quand t tend vers l'infini, vers une loi non triviale que I'on explicite et dont
on étudie la finitude des moments.

Dans le chapitre 4, on généralise le résultat précédent en prenant cette fois pour S un corps strictement convexe
analytique C et en considérant, non plus t C, mais t C + X avec X un vecteur de R"{2} fixé.

Dans les chapitres précédents, on a suivi une approche qui s'inspire de celle de Kesten en prenant L aléatoire. Dans les
deux derniers chapitres, on prend t aléatoire et c'est une approche qui s'inspire de celle de Bleher.

Plus précisément, dans le chapitre 5, on prend pour S un rectangle P de centre 0 dont les c6tés sont paralléles aux axes
de coordonnées. Puis on montre que, aprés moyennisation en X de I'erreur R(tP+X,L) au carré, correctement normalisée,
que celle-ci converge en loi lorsque t est aléatoire et devient grand dans différents cas : lorsque le réseau L est
admissible au sens de Skriganov ou typique. D'ailleurs, dans le cas typique, la normalisation, proche, d'une certaine
maniére, de log(t), est plus forte que dans le cas admissible, ce qui est attendu.

Enfin, dans le chapitre 6, on généralise un résultat qui avait aussi été obtenu dans le chapitre 5. Plus exactement, on
montre que lorsque I'on prend un hypercube C de centre 0 dont les cotés sont paralléles aux axes de coordonnées et de
longueur 2, R(t C + X, ZMd})/t"{d-1} converge en loi vers une loi non triviale lorsque t est aléatoire et devient grand dans
deux cas : lorsque X, vecteur de R™Nd}, s'écrit X=(x,\cdots,x) et lorsque X s'écrit X=(x_{1},..., x_{d}) avec x_{1},...,x_{d}
étant indépendants entre eux et de t et étant distribuées selon une loi uniforme sur [-1/2, 1/2].
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Titre de la thése - anglais

Convergence in distribution of the error term in the lattice point problem

Résumé - anglais

In this thesis, we are interested in the following general problem. Let L be a unimodular lattice of R*d}. Let S be a
measurable set of finite volume. What is the number N(S,L) of points that belong to both L and S? When S is sufficiently
regular, it can be shown that this number N(S,L) is approximated by vol(S) to within an error R(S,L). The aim of this thesis
is to get a better idea of the behaviour of the error R(S,L) in different situations.

After introducing the problem in Chapter 1, in Chapter 2 we show that when we take for S a parallelogram P and when
we take L unimodular and random, as well as X a vector of R*{2} random, we show that R(t P +X,L)/log(t) converges in
distribution, when t tends to infinity, to a centered Cauchy distribution.

In Chapter 3, when we take for S an ellipse E centred in 0 and when we take L unimodular and random, we show that
R(tE,L)/sqrt(t) converges in distribution, when t tends to infinity, to a non-trivial distribution which we explicit and we study
the finiteness of the moments of this last distribution.

In Chapter 4, we generalize the previous result by taking this time for S a strictly convex analytic body C and by
considering, not t C, butt C + X with X a fixed vector of R*{2}.

In the previous chapters, we followed an approach inspired by that of Kesten by taking L random. In the last two
chapters, we take t random and it is an approach inspired by Bleher's.

More precisely, in chapter 5, we take for S a rectangle P of centre O whose sides are parallel to the coordinate axes.
Then we show that, after averaging in X the error R(tP+X,L) squared, correctly normalised, that it converges in
distribution towards a positive constant when t is random and becomes large in different cases: when the lattice L is
admissible in the sense of Skriganov or typical. Moreover, in the typical case, the normalisation, close in some way to
log(t), is stronger than in the admissible case, which is expected.

Finally, in Chapter 6, we generalise a result that was also obtained in Chapter 5. More precisely, we show that when we
take a hypercube C of centre 0 whose sides are parallel to the coordinate axes and of length 2, R(t C + X, ZMd})/t"{d-1}
converges to a non-trivial distribution when t is random and becomes large in two different cases: when X, a vector of
RMd}, is written as X=(x,\cdots,x) and when X is written as X=(x_{1},. ..., x_{d}) with x_{1},...,x_{d} being independent of
each other and of t and being distributed according to a uniform distribution on [-1/2, 1/2].
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