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thank very much Stéphane Nonnenmacher for supporting my thesis work in the framework of
EDMH.
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Préface
Cette thèse consiste en plusieurs articles dans lesquels nous étudions différents aspects du problème
de reconstruction de phase pour la transformation de Fourier classique et pour les problèmes de
diffusion inverse sans phase pour l’équation de Schrödinger et pour l’équation de Helmholtz.

Cette thèse est basée sur six articles qui peuvent être divisés en deux parties selon la méthode
utilisée.

La première partie des articles développe la méthode des diffuseurs de fond dans son application
au problème de reconstruction de phase pour la transformation de Fourier classique et à la diffusion
inverse sans phase :

I. R.G. Novikov, V. N. Sivkin, Phaseless inverse scattering with background information, In-
verse Problems 37.5 (2021): 055011.

II. T. Hohage, R.G. Novikov, V.N. Sivkin, Phase retrieval and phaseless inverse scattering with
background information, hal-03806616 (2022).

III. V.N. Sivkin, Approximate Lipschitz stability for phaseless inverse scattering with back-
ground information, Journal of Inverse and Ill-posed Problems, https://doi.org/10.1515/jiip-2023-
0001 (2023).

La deuxième partie des articles développe l’approche multipoint des problèmes inverses :
IV. R.G. Novikov, V.N. Sivkin, Error estimates for phase recovering from phaseless scattering

data, Eurasian Journal of Mathematical and Computer Applications 8.1 (2020): 44-61.
V. R.G. Novikov, V. N. Sivkin, Fixed-distance multipoint formulas for the scattering amplitude

from phaseless measurements, Inverse Problems 38.2 (2022): 025012.
VI. R.G. Novikov, V.N. Sivkin, G.V. Sabinin, Multipoint formulas in inverse problems and

their numerical implementation, hal-04053473 (2023).

Preface
This thesis consists of several papers in which we study different aspects of phase retrieval problem
for the classical Fourier transform and for phaseless inverse scattering problems for the Schrödinger
equation and for the Helmholtz equation.

This thesis is based on six papers which can be splitted in two parts depending on the method
used.

The first part of articles develops the method of background scatterers in its application to the
problem of phase retrieval for the classical Fourier transform and to phaseless inverse scattering:

I. R.G. Novikov, V. N. Sivkin, Phaseless inverse scattering with background information, In-
verse Problems 37.5 (2021): 055011.

II. T. Hohage, R.G. Novikov, V.N. Sivkin, Phase retrieval and phaseless inverse scattering with
background information, hal-03806616 (2022).

III. V.N. Sivkin, Approximate Lipschitz stability for phaseless inverse scattering with back-
ground information, Journal of Inverse and Ill-posed Problems, https://doi.org/10.1515/jiip-2023-
0001 (2023).

The second part of articles develops the multipoint approach to inverse problems:
IV. R.G. Novikov, V.N. Sivkin, Error estimates for phase recovering from phaseless scattering

data, Eurasian Journal of Mathematical and Computer Applications 8.1 (2020): 44-61.
V. R.G. Novikov, V. N. Sivkin, Fixed-distance multipoint formulas for the scattering amplitude

from phaseless measurements, Inverse Problems 38.2 (2022): 025012.
VI. R.G. Novikov, V.N. Sivkin, G.V. Sabinin, Multipoint formulas in inverse problems and

their numerical implementation, hal-04053473 (2023).
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Chapter 1

Introduction en français

1 Introduction
Les problèmes de diffusion des ondes harmoniques temporelles apparaissent dans de nombreux
domaines tels que la théorie quantique, l’imagerie médicale, la géophysique, les contrôles non
destructifs, les radars. Le problème de diffusion directe consiste à déterminer la solution de
diffusion, compte tenu de l’objet et de son propriété physique, tandis que le problème de diffusion
inverse consiste à déterminer l’objet et/ou son propriété physique à partir des informations de
mesure de la solution de diffusion.

La théorie standard de la diffusion inverse traite principalement du cas phasé (c’est-à-dire le
cas où des mesures de phase sont également disponibles); voir, par exemple, [14], [15], [49].

Cependant, en raison de la règle de Born en mécanique quantique, les valeurs complexes de la
fonction d’onde n’ont pas d’interprétation physique directe, alors que les valeurs absolues au carré
de cette fonction admettent une interprétation probabiliste et peuvent être directement mesurées.

De même, en optique et en imagerie par rayons X, les détecteurs modernes peuvent mesurer
l’intensité des photons (c’est-à-dire des informations sans phase), tandis que les mesures d’informations
de phase sont beaucoup plus difficiles (ou actuellement impossibles) en raison de la longueur
extrêmement courte de l’onde. Voir, par exemple, [11], [19], [23], [50], [61].

Par conséquent, il est particulièrement important d’étudier les problèmes de reconstruction à
partir de données sans phase. Puisqu’il n’y a que «la moitié» des données (c’est-à-dire uniquement
l’amplitude, pas de phase), ces problèmes semblent être beaucoup plus compliqués dans différents
sens. Par exemple, pour de nombreux problèmes inverses sans phase, il n’y a pas de solution
unique même pour le cas linéarisé de l’approximation de Born.

Cette approche remonte, au moins, aux travaux de Perutz sur l’analyse aux rayons X de
l’hémoglobine, honorés par le prix Nobel de chimie ; voir [55].

Notons que dans l’approximation de Born, de nombreux problèmes de diffusion inverse sans
phase se simplifient en le problème de reconstruction de phase consistant à reconstruire le potentiel
à partir de la valeur absolue de sa transformation Fourier. Nos résultats sur le dernier problème
de l’analyse de Fourier sont résumés dans la sous-section 2.1. Puis dans la sous-section 2.2 nous
présentons les résultats généraux récents dans le domaine de l’analyse asymptotique, où certains
de ces résultats ont également été obtenus dans le cadre de cette thèse.

D’autres résultats de thèse utilisent essentiellement les méthodes mathématiques générales
résumées dans les sous-sections 2.1 et 2.2. Ces résultats de thèse incluent de nouveaux algorithmes
sur les problèmes de diffusion inverse sans phase non-linéarisés et sont résumés dans les sections
4, 5.

La présentation complète de nos résultats est donnée dans les articles I-VI.
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Figure 1.1: [61] L’importance de la phase de Fourier. Deux images, un caméraman et Lenna, sont
transformées par Fourier. Après avoir échangé leurs phases, elles sont transformées de Fourier in-
verse. Le résultat démontre clairement l’importance des informations de phase pour la récupération
d’image.

2 Quelques méthodes mathématiques générales

2.1 Problème de reconstruction de phase

Dans cette sous-section, nous discutons du problème de reconstruction de phase pour la trans-
formation de Fourier classique. Ce problème se pose comme une approximation linéaire pour
différents problèmes de diffusion inverse sans phase. Ce problème est également d’un grand intérêt
indépendant dans le cadre de l’analyse de Fourier.

Nous considérons la transformation de Fourier de la fonction à valeurs complexes v :

v̂(p) = Fv(p) = 1

(2π)d

∫
Rd

eipxv(x)dx, p ∈ Rd. (2.1)

Le problème de reconstruction de phase classique est formulé comme suit :

Problem 1. Trouver v à partir de |v̂|2.

Le terme ’problème de reconstruction de phase’ signifie que le problème 1 est équivalent à la
reconstruction de Angle(v̂) à partir de Abs(v̂).

Le problème 1 est mal posé : il n’a pas de solution unique, même aux translations et aux
symétries élémentaires, voir [65] pour les détails. La raison en est le manque d’informations (de
phase). Voir aussi Figure 1.1 pour illustration.

Pour compenser les informations de phase manquantes v̂/|v̂|, on suppose soit des informations
a priori sur v ou des données supplémentaires. De telles inversions de la transformée de Fourier à
partir de données sans phase sont beaucoup plus compliquées que la inversion de la transformation
de Fourier à partir de données phasées. Des exemples d’informations a priori incluent connaissance
(approximative) de supp v, contraintes comme |v| = 1 ou v ≥ 0, et connaissance de v sur une partie
du domaine. Dans cette thèse nous concentrez-vous sur la première et la dernière de ces options.
Nous nous référons aux monographies [25, 8], aux articles de synthèse [20, 29, 34, 49, 61], aux
articles [7], [16], [31] et aux références dedans.

Plus précisément, on considère le problème suivant :

Problem 2. (A) Reconstruire une fonction v à partir de |v̂ + ŵ|2 sur BR pour une fonction
connue w sous l’hypothèse a priori que supp v et suppw sont compacts et suffisamment
séparés.
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(B) Reconstruire v à partir de |v̂|2 et |v̂ + ŵj|2, j = 1, . . . , n, sur BR pour certaines fonctions
connues appropriées w1, ..., wn séparées de v.

Ici

BR = {x ∈ Rd : |x| ≤ R}. (2.2)

De plus, nous supposons que v et différents diffuseurs de fond non nuls w1, ..., wn sont de la
forme

v, wj ∈ L1,loc(Rd), wj ̸≡ 0, supp v ⊆ D, suppwj ⊆ Ωj,

D, Ωj sont des domaines bornés convexes ouverts dans Rd, D ∩ Ωj = ∅.
(2.3)

Le problème 2(B) a été considéré notamment dans [43, 45, 3, 5]. De plus, des considérations
connexes remontent, au moins, à [55]. Le problème 2(A) a été étudié dans [52, 24]. D’autres
recherches liées à ce problème peuvent être trouvées dans [56, 37]. Cette thèse inclut, en particulier,
de nouveaux résultats mathématiques et numériques de [52, 24] sur le problème 2(A) et sur le
problème 2(B) pour n = 1.

Soit

D − Ω = {x− y : x ∈ D, y ∈ Ω}, (2.4)

et χD−Ω(x) une fonction caractéristique (indicatrice) de l’ensemble D − Ω.
Cette thèse inclut notamment le résultat suivant de [52], pour d ≥ 1 :

Theorem 2.1. ([52]) Soit v et w = w1 satisfait (2.3) avec Ω = Ω1, et dist(D,Ω) > diamD. Alors
|v̂ + ŵ|2 et w déterminent uniquement v par les formules

v̂(p) = (Fw(p))−1Fq(p),

q(x) := χD−Ω(x)

(
u(x)− (2π)−d

∫
Ω

w(x+ y)w(y)dy

)
,

u(x) := F−1(|F(v + w)|2)(x).

(2.5)

Si nous n’avons que dist(D,Ω) > 0, alors |v̂|2, |v̂+ ŵ|2, et w déterminent de manière unique v via
la formule (2.5), où u est remplacé par

u(x) := F−1(|F(v + w)|2 − |Fv|2)(x). (2.6)

En fait, le théorème 2.1 dans sa première partie est une formalisation mathématique appropriée
de certaines considérations de [37] lié à la recherche de v et w à partir de |v̂+ ŵ|2, à condition que
supp v et suppw sont suffisamment disjoints, pour d = 2.

On peut voir que le théorème 2.1 résout, en particulier, le problème 1, si supp v ⊆ (D ∪Ω), où
dist(D,Ω) > diamD, et v est a priori connu sur Ω.

De plus, les formules du théorème 2.1 conduisent à des reconstructions à partir de données de
Fourier sans phase avec une efficacité théorique et numérique similaire à la reconstruction à partir
de données de Fourier v̂ avec des informations de phase, voir [52] , [24], [62] et Section 4 pour plus
de détails.

La figure 1.2 illustre notre reconstruction numérique de v à partir de |v̂+ ŵ|2 limité à BR avec
un fond connu w.
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(a) Notre
v + w.

(b) Reconstruction à partir
de données phasées v̂.

(c) Reconstruction à partir de
données sans phase |v̂ + ŵ|2.

Figure 1.2: Comparaison des reconstructions de v à partir d’une transformation de Fourier phasée
et sans phase.
(a) Constante par morceaux suffisamment séparée v et w.
(b) Reconstruction à partir de données phasées v̂ données sur un certain BR.
(c) Reconstruction à partir de données sans phase |v̂ + ŵ|2 données sur le même BR.

2.2 Formules multipoints

De nombreuses fonctions de la théorie du potentiel, de la théorie de la diffusion et d’autres do-
maines admettent des développements asymptotiques de la forme

z(s) = zmain(s) +O(s−N) =
N∑
j=1

aj
sj−1

+O(s−N), lorsque s→ +∞, (2.7)

où s ∈ (σ,+∞), pour certains σ > 0, et aj sont des nombres complexes ; voir, par exemple, [1],
[35], [38], [46], [47], [53], [68]. De plus, dans certains cas, l’information la plus importante est
contenue dans a1 (et/ou certains coefficients principaux suivants), alors que z(s) est mesuré en
plusieurs points s ∈ (σ, +∞).

Pour les fonctions z vérifiant (2.7) le travail [46] considère, en particulier, le problème de
trouver a1 de z(s) donné en n points sj ∈ [r,+∞), j = 1, ..., n de la forme

sj = s+ τj, τ⃗ := (τ1, ..., τn),

0 = τ1 < τ2 < ... < τn sont fixés.
(2.8)

Notez aussi qu’il existe une autre géométrie des points de sj, voir [46].
Supposons que N ≥ 2n− 1. Alors les formules suivantes sont vraies ([46]) :

a1 = a1,n(s, τ⃗) +O(s−n), as s→ +∞,

a1,n(s, τ⃗) =
n∑

j=1

yj(s, τ⃗)z(s+ τj),
(2.9)

où

yj(s, τ⃗) =
(−1)n−j(s+ τj)

n−1

αj(τ⃗)βn,j(τ⃗)
, 1 ≤ j ≤ n, y = (y1, ..., yn), (2.10)

αj(τ⃗) :=

j−1∏
i=1

(τj − τi) for 1 < j ≤ n, α1(τ⃗) = 1,

βn,j(τ⃗) :=
n∏

i=j+1

(τi − τj) for 1 ≤ j < n, βn,n(τ⃗) = 1.

(2.11)
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Les formules multipoints (2.9) convergent rapidement, pour n assez grand, et ont une structure
simple, mais elles sont très instables au bruit pour de grands s. La raison en est que les coefficients
yj(s, τ⃗) dans (2.10) se comportent comme

yj(s, τ⃗) = O(sn−1), lorsque s→ +∞. (2.12)

La figure 1.3 illustre ces effets sur le plus simple z(s) = s/(s + 1). Dans la figure 1.3 nous
présentons ã1,n(s) = a1,n(s−τn, τ⃗). Notez que pour chaque n = 1, 2, 3, ces ã1,n(s) sont reconstruits
à partir de n = 1, 2, 3 points, mais avec le même point maximal s. La figure 1.3(a) montre que
les formules à deux et trois points sont plus précises que la reconstruction à un point. La figure
1.3(b) montre que même pour n = 3, la reconstruction est très instable même pour s moyen.

(a) Données exactes. Pas de régularisation. (b) Données bruyantes. Pas de
régularisation.

Figure 1.3: ([54]) n-point reconstructions ã1,n(s) = a1,n(s− τn, τ⃗) de a1 = 1 pour z(s) = s/(s+ 1)
avec τj = j − 1, j = 1, ..., n.
(a) Le cas des données exactes. Les formules à deux et trois points convergent rapidement vers la
valeur exacte.
(b) Le cas des données bruitées simulées par la formule (2.13). Les formules à deux et trois points
sont instables au bruit.

Compte tenu de l’instabilité susmentionnée, dans [54] nous avons notamment proposé une
méthode de régularisation des formules (2.9) pour le cas des données bruitées. Plus précisément,
nous supposons que le les données z(sj) contiennent le bruit aléatoire de la forme

ζ(s) = znoisy(s) = z(s) + εN(s), (2.13)

où les variables aléatoiresN(s) sont i.i.d. pour différents s, l’espérance mathématique est E(ζ(s)) =
z(s), la dispersion est D(ζ(s)) = ε2.

Afin de rendre applicables les formules multipoints, nous proposons une méthode de régularisation
avec un paramètre r. Dans notre régularisation, nous remplaçons la formule (2.9) par

ãr1,n =
n∑

j=1

yrj (s, τ⃗)z(sj(s)), (2.14)

où yr = (yr1, ..., y
r
n) est construit en [54] et ne dépend que de n et r, et r ∈ [n−1/2, ∥y∥], où y est de

(2.10).
Notons que la reconstruction ãr1,n a les propriétés suivantes :

• pour la fonction sans bruit z, la reconstruction régularisée est aussi exacte que possible ;

9



• la dispersion de reconstruction ar1,n à partir de données bruitées est bornée par

D(ar1,n(s, τ⃗)) ≤ r2ε2 indépendamment de s. (2.15)

Dans notre construction ([54, Section 5]), le paramètre de régularisation r ∈ [ 1√
n
, ∥y∥], pour

y = (y1, ..., yn) de (2.10). Ici r = n−1/2 correspond à la régularisation la plus forte, et r = ∥y∥
correspond à aucune régularisation.

Figures 1.4(a), 1.4(b) dans leur comparaison avec Figures 2.3(a), 1.3(b) illustrent l’efficacité
de notre régularisation (2.14).

(a) Données exactes. Régularisation. (b) Données bruyantes. Régularisation.

Figure 1.4: ([54]) Reconstructions régularisées n-points ãr1,n(s) = ar1,n(s − τn, τ⃗) de a1 = 1 pour
z(s) = s/(s+ 1) avec τj = j − 1, j = 1, ..., n. Paramètre de régularisation r =

√
5.

(a) Le cas des données exactes. Les formules régularisées à deux et trois points convergent vers la
valeur exacte, mais pas aussi rapidement que sur la figure 1.3(a).
(b) Le cas de données bruitées simulées par la formule (2.13). Les formules régularisées à deux et
trois points sont stables au bruit.

Ainsi, dans le cadre de cette thèse, nous avons observé que les formules exactes (2.9) sont très
instables au bruit aléatoire (pour n ≥ 2 et s suffisamment grand) et proposé une régularisation
efficace de ces formules multipoints. Cette thèse inclut également des résultats théoriques et
numériques sur les applications des formules multipoints précitées à la diffusion inverse phasée et
sans phase, voir Section 5.

3 Problèmes de diffusion directe et inverse

3.1 Formulation de problèmes

On considère l’équation de Schrödinger stationnaire

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 2, E > 0, (3.1)

où ∆ est le Laplacien en x, et

v ∈ L∞(Rd), supp v ⊆ U , U ⊂ Rd est ouvert et borné. (3.2)

L’équation de Schrödinger (3.1), sous hypothèses (3.2), apparâıt dans la modélisation de
l’interaction d’une particule de mécanique quantique non relativiste à énergie fixe E avec un objet
macroscopique contenu dans D, où v est le potentiel de cette interaction. Ici, nous supposons que

10



ℏ2/(2m) = 1, où ℏ est la constante de Planck réduite et m est la masse de la particule. Pour plus
de détails sur un tel modèle dans le cadre de la tomographie électronique, voir par exemple [19].

L’équation (3.1) peut également être considérée comme l’équation de Helmholtz harmonique
en temps de l’acoustique et de l’électrodynamique, voir, par exemple, [24], [60] pour plus de détails

Pour l’équation (3.1), sous condition (3.2), on considère les solutions diffusantes ψ+ = ψ+(x, k),
k ∈ Rd, k2 = E, spécifié par la condition de rayonnement de Sommerfeld sur ψ+(x, k)− eikx. Les
fonctions ψ+ ont le développement de type Atkinson (en remontant à [1]) :

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2

(
N∑
j=1

fj(k, |k| x
|x|)

|x|j−1
+O

(
1

|x|N

))
, |x| → +∞, N ∈ N, (3.3)

uniformément dans x/|x|. Ici, le coefficient f1 a une importance physique particulière et est connu
comme l’amplitude de diffusion pour l’équation (3.1). Notez que la fonction f1 = f1(k, l) est
définie sur la variété

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
, (3.4)

où E est l’énergie dans l’équation (3.1). Notez également que dans certaines formules, il est
pratique de présenter f1 comme

f1(k, l) = c(d, |k|)f(k, l), c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2 for
√
−2πi =

√
2πe−iπ/4. (3.5)

Pour plus d’informations sur ψ+ et f , voir, par exemple, [10], [44] et leurs références.
En particulier, σ = |f(k, l)|2 est connue sous le nom de section efficace de diffusion différentielle

pour l’équation (3.1). De manière similaire avec les fonctions d’onde ψ+, les valeurs complexes de
f n’ont pas d’interprétation physique directe, alors que |f |2 admet une interprétation probabiliste
et peut être mesuré expérimentalement ; voir, par exemple, [11], [18]. En particulier, la section
efficace de diffusion différentielle σ = |f(k, l)|2 décrit la densité de probabilité de diffusion d’une
particule d’impulsion initiale k dans la direction l/|l| ≠ k/|k|. De même, dans l’électromagnétisme
de l’optique et des rayons X (modélisé dans le cadre de l’équation harmonique de Helmholtz), seuls
|ψ+|2 et σ = |f |2 peuvent être mesurés directement par des dispositifs techniques modernes.

L’amplitude de diffusion f contient beaucoup d’informations sur le diffuseur v. En particulier,
selon la formule de Born-Faddeev, nous avons ceci :

f(k, l) = v̂(p) +O(E−1/2) lorsque E → +∞, (k, l) ∈ ME, k − l = p; (3.6)

voir, par exemple, [10].
On considère notamment les problèmes suivants :

Problem 3. Trouver ψ+ et f à partir de v.

Problem 4. (A) Trouver v à partir de f. (B) Trouver f à partir de ψ+. (C) Trouver v à partir
de ψ+.

Le problème 3 est le problème de diffusion directe pour l’équation de Schrödinger (3.1). Le
problème 4(A) est le problème classique de diffusion inverse en champ lointain. Les problèmes 3
et 4(A) sont étudiés de manière très détaillée dans la littérature ; voir, par exemple, [10], [18],
[44]. Et de nouveaux résultats importants sur le Problème 4(A) continuent d’apparâıtre ; voir, par
exemple, [47], [49], [54]. Les problèmes 4(B) et 4(C) sont également étudié dans des publications
anciennes et récentes; voir, par exemple, [9], [46], [54] (où [54] est rempli dans le cadre de cette
thèse).

Dans cette thèse, nous nous concentrons sur les analogues sans phase des problèmes 4(A)–(C).
Plus précisément, nous considérons les problèmes 5 et 6 formulés ci-dessous.

Problem 5. (A) Trouvez v à partir de ses données de diffusion sans phase |f [v+w]|2 et de son
fond w.
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(B) Trouver v à partir des données de diffusion sans phase |f [v]|2, |f [v + w1]|2, ... |f [v + wn]|2,
et un fond approprié diffuseurs w1,...,wn.

Dans le cas linéarisé de l’approximation de Born Le problème 5 se réduit à Problème 2.
Le problème 5(A) avec w = 0 est mal posé, de la même manière que le problème 1. Les

problèmes 5(A), (B) peuvent être considérés comme des versions non linéaires des problèmes
2(A), (B). Actuellement, les études mathématiques des Problèmes 5(A), (B) ont commencé assez
récemment dans [45], [3] , [5], [53] pour le problème 5(B), et dans [52], [24] pour le problème 5(A)
(où les travaux [52], [24] sont réalisés dans le cadre de cette thèse).

Problem 6. (A) Trouver f(k, l) à partir de |ψ+(x, k)|2 aux points appropriés x tels que x ∈
Rd \D et x/|x| = l/|l|.

(B) Trouver v à partir de |ψ+|2 correctement donné en dehors de D.

Le problème 6(A) est un problème de récupération de phase, tandis que le problème 6(B) est
la diffusion inverse sans phase problème en champ proche. Ces problèmes sont notamment traités
dans [32, 42, 43, 46, 47, 48, 51, 53, 54] (où des travaux [51, 53, 54] sont réalisés dans le cadre de
cette thèse). L’approche multipoint mentionnée dans la sous-section 2.2 admet des applications
efficaces à ces problèmes.

En plus des problèmes 5 et 6, il existe également d’autres formulations possibles de phase
problèmes de récupération et de diffusion inverse sans phase pour l’équation (3.1) et pour d’autres
équations des propagations d’ondes ; voir [30, 28, 33, 57, 58, 59, 67] et leurs références.

3.2 Préliminaires sur la diffusion directe

Les solutions de diffusion ψ+ satisfaisant (3.1), (3.3) peuvent être trouvées à partir de l’équation
intégrale de Lippmann-Schwinger :

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy, x, k ∈ Rd, k2 = E, (3.7)

où

G+(x, k) = −(2π)−d

∫
Rd

eiξxdξ

ξ2 − x2 − i0
, (3.8)

voir, par exemple, [10], [36]. Notons que

G+(x, k) =
ei|k||x|

2i|k|
pour d = 1; G+(x, k) = − i

4
H1

0 (|x||k|) pour d = 2; (3.9)

G+(x, k) = −e
i|k||x|

4π|x|
pour d = 3;

où H1
0 est la fonction de Hankel du premier type.

En fait, en plus de (3.2), on suppose que, pour E > 0 fixé,

l’équation (3.7) est uniquement résoluble pour ψ+(·, k) ∈ L∞(D). (3.10)

Si v satisfait (3.2) et est réel, alors (3.10) est satisfait automatiquement.
À son tour, l’amplitude de diffusion f peut être trouvée à partir de v et ψ+ via

f(k, l) = (2π)−d

∫
D

e−ilyv(y)ψ+(y, k)dy, (3.11)

où k, l ∈ Rd, k2 = l2 = E > 0; voir, par exemple, [10].
Le problème 3 peut être résolu en utilisant l’équation (3.7) et la formule (3.11). Certaines

des propriétés théoriques importantes de cette solution, y compris (3.6), découlent de l’estimation
d’Agmon sur G+, voir, par exemple [44]. Un algorithme numérique efficace pour résoudre (3.7)
est donné en [64].
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3.3 Préliminaires en diffusion inverse phasée

On rappelle que dans l’approximation de Born pour un petit v, pour d ≥ 2, l’amplitude de diffusion
f sur ME se réduit à la transformation de Fourier v̂ sur la boule B2

√
E via la formule

f(k, l) ≈ v̂(p), (k, l) ∈ ME, p ∈ B2
√
E, p = k − l, (3.12)

qui est semblable à (3.6).
De plus, pour u1E défini par

u1E(x) :=

∫
B2

√
E

e−ipxv̂(p)dp, (3.13)

on a que

∥v − u1E∥L∞(Rd) = O(E−α), lorsque E → +∞, avec α :=
1

2
(m− d), (3.14)

si v ∈ Wm,1(Rd), où Wm,1(Rd) dénote les fonctions m-lisses dans L1(Rd). Pour plus de détails sur
la reconstruction monochromatique linéarisée uE, voir, par exemple, [49].

La première solution générale du problème 4(A), d ≥ 2, sans supposer que v est petit, remonte
à [17] et est basé sur la formule (3.6).

Cependant, la formule (3.12) ne donne aucune méthode pour reconstruire v à partir de f sur
ME avec le erreur inférieure à O(E−1/2) même si v ∈ S(Rd), où S représente la classe Schwartz.
En appliquant la transformation de Fourier inverse F−1 aux deux côtés de (3.12), on peut obtenir
une formule linéaire explicite pour u1 = u1E(x) en termes de f sur ME, où

u1E(x) = v(x) +O(E−α1), E → +∞,

α1 = (m− d)/(2m), si v ∈ Wm,1(Rd).
(3.15)

On peut voir que α1 ≤ 1/2 même si m→ +∞.
Un point important est que cette approximation u1 peut être essentiellement améliorée itérativement

en utilisant le lemme suivant :

Lemma 3.1. ([44]). Soit v, v0 satisfait (3.2), et v = v0 sur Rd \ D, où D est un sous-domaine
de U . Soit vEappr une approximation de v telle que :{

|vEappr(x)− v(x)| = O(E−α), x ∈ D, pour certain α > 0,

vEappr(x) = v0(x), x ∈ Rd \D.
(3.16)

Donc, pour (k, l) ∈ ME,∣∣f [v](k, l)− f [vEappr](k, l) + v̂Eappr(k − l)− v̂(k − l)
∣∣ = O(E−α− 1

2 ). (3.17)

Ici, f [v] et f [vEappr] désignent l’amplitude de diffusion pour v et vEappr (respectivement) ; v̂Eappr
est la transformation de Fourier de vEappr.

Notons que les conditions (3.2) sont plus fortes que les hypothèses utilisées dans [44].
Le fait est que le taux de convergence dans (3.17) est plus élevé que dans (3.16) comme

E → +∞. Cela conduit au schéma suivant de [44] pour les reconstructions itératives ujE de v à
partir de f [v] :

f [v]
(3.6)−−→ u1E

(3.7),(3.11)−−−−−−→ f [u1E]
(3.17)−−−→ û2E := û1E + f [v]− f [û1E]

(3.7),(3.11)−−−−−−→ f [u2E] −→ u3E −→ ... (3.18)

De plus, si

v − v0 ∈ Wm,1(Rd), (3.19)
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donc ([44]):

∥v − ujE∥L∞(D) = O(E−αj) lorsque E → +∞,

α1 :=
m− d

2m
, αj :=

(
1−

(
m− d

m

)j
)
m− d

2d
, j ≥ 1.

(3.20)

De plus, on peut voir que

αj → α∞ :=
m− d

2d
lorsque j → +∞,

αj →
j

2
lorsque m→ +∞,

α∞ → +∞ lorsque m→ +∞.

(3.21)

Donc, la convergence de ujE vers v dans (3.15), (3.20), comme E → +∞, est considérablement
meilleur pour j > 1 que pour j = 1, au moins, pour les gros m et j.

Notons que seul f |ΓE
est utilisé dans les résultats de reconstruction mentionnés ci-dessus. Ici,

ΓE est un sous-ensemble d−dimensionnel approprié de ME, voir [52] pour plus de détails.
La reconstruction monochromatique itérative de [44] est implémentée numériquement dans [6],

[63] pour d = 2 et v0 ≡ 0. Pour d’autres reconstructions de diffusion inverse de phase monochro-
matique pour l’équation (3.1) et l’équation de Helmholtz, voir, par exemple, [4], [12], [22], [49].

Notons que les algorithmes de reconstruction de [52], [24] réalisés dans le cadre des études de
cette thèse sur le Problème 5 peuvent être considérés comme de propres analogues sans phase de
formule (3.6) et l’approche itérative susmentionnée de [44].

4 Diffusion inverse sans phase avec information de fond

4.1 Préliminaires historiques

Le problème 5(B) pour d = 1, n = 1 est considéré dans [2]. Problème 5(B) en dimension d ≥ 2
est considéré dans [3, 5, 43, 45, 52, 24, 62] (où [52, 24, 62] sont remplis dans le cadre de cette
thèse). En particulier, pour le problème 5(B), pour d ≥ 2, n = 2, analogues de formule (3.6) et
mondial connexe les résultats d’unicité sont donnés dans [43, 45]. Résultats de la reconstruction
de [43, 45] sur le problème 5(B), pour d ≥ 2, n = 2, sont fortement développés dans [3, 5]. En
particulier, pour le cas sans phase avec bruit de fond diffuseurs, les résultats de [3] incluent un
analogue de l’algorithme itératif de [44], mentionné dans la sous-section 3.3. Numérique associé
l’implémentation est également donnée dans [3].

En particulier, pour les reconstructions itératives ujE à partir des données sans phase non
surdéterminées du problème 5(B) pour n = 2, d ≥ 2, à E, fixe le travail [3] donne les estimations

∥ujE − v∥L∞(D) = O(E−αj), lorsque E → +∞, (4.1)

où

αj →
j

2
lorsque m→ +∞,

α∞ → +∞ lorsque m→ +∞, où α∞ = lim
j→+∞

αj,
(4.2)

sous l’hypothèse que v, w1, w2 satisfont (2.3), v ∈ Wm,1(Rd), m > d, w1, w2 ∈ C(Rd), et, en
particulier,

|ŵj(p)| ≥ c(1 + |p|)−β, j = 1, 2, β > d. (4.3)
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Nous nous référons au [5, Lemme 1] et à [66] en relation avec des exemples de réels non négatifs
à support compact w satisfaisant (4.3).

Notons que αj dans ces résultats de [3] se comportent de manière similaire à αj dans le résultat
de [44] mentionné dans la sous-section 3.3, bien que αj dans [3] sont plus petits.

Pour les problèmes 5(A) et 5(B), n = 1, pour d ≥ 2, analogues de la formule (3.6) et les résultats
d’unicité globale associés sont donnés dans le travail récent [52]. Ces résultats sont présentés dans
la sous-section 4.2. Résultats de la reconstruction de [52] sur les problèmes 5(A), 5(B), n = 1,
sont fortement développés théoriquement et implémentés numériquement dans les travaux récents
[24]. Ces résultats sont présentés dans la sous-section 4.3. Les estimations de stabilité Lipschitz
approximatives associées sont données dans l’ouvrage récent [62] et sont présentées dans la sous-
section 4.4.

Notons également que les travaux [43, 45] et les travaux ultérieurs précités utilisent essentielle-
ment, notamment, la version sans phase suivante de la formule (3.6):

|f(k, l)|2 = |v̂(p)|2 +O(E−1/2), as E → +∞, (k, l) ∈ ME, k − l = p, (4.4)

qui est utilisé pour v lui-même et pour v remplacé par v + wj.
L’avantage clé des travaux [52], [24] (réalisés dans le cadre de cette thèse) consiste à résoudre

le problème 5(A), où les données sont étonnamment limitées, et pas seulement problème 5(B).

4.2 Diffuseur de fond unique : la première approximation

L’ouvrage [52] traite du cas d’un seul diffuseur de fond, c’est-à-dire avec des problèmes 5(A) et 5
(B), n = 1, for d ≥ 2. L’approche de [52] à ces problèmes de diffusion inverse sans phase est basée
sur la formule (4.4) et les résultats de [52] présentés dans la sous-section 2.1 sur les problèmes de
reconstruction de phase 2(A), (B).

En particulier, dans [52], en dimension d ≥ 2, on montre que |f [v + w]|2 aux hautes énergies
détermine de manière unique v via des formules explicites, où f [v+w] est l’amplitude de diffusion
pour v + w, w est un diffuseur de fond non nul connu a priori, sous la condition que supp v
et suppw soient suffisamment disjoints. Si cette condition est relâché, alors nous donnons des
formules similaires pour trouver v à partir de |f [v]|2 et |f [v + w]|2.

De plus, pour les données de diffusion sans phase susmentionnées données à une énergie fixe
E, dans [52] nous construisons des approximations u1E à v telles que dans l’espace de Fourier

|û1E(p)− v̂(p)| = |ŵ(p)|−1O(E−1/2), lorsque E → +∞, p ∈ B(2−δ)
√
E,

û1E(p) = 0, p ∈ Rd \B(2−δ)
√
E, pour fixe δ ∈ (0, 2).

(4.5)

De plus, dans l’espace de configuration, nous avons que

∥u1E − v∥L∞(D) = O(E− 1
2

m−d
m+β ), as E → +∞, (4.6)

sous les hypothèses supplémentaires que v ∈ Wm,1(Rd), m > d, et w satisfait (4.3) avec beta > d.
Néanmoins, la convergence en (4.5), (4.6) est lente. Il ne dépasse pas O(E−1/2) même pour

v. infiniment lisse À cet égard, les reconstructions approchées u1E de [52] sont considérablement
améliorées itérativement dans [24], voir sous-section 4.3.

4.3 Diffuseur de fond unique : itérations et implémentation numérique

Le travail [24] dans sa partie théorique améliore drastiquement la première approximation u1E
mentionnée dans la sous-section 4.2 via les itérations, d ≥ 2. Ces itérations sont basées sur
l’analogue sans phase suivant du lemme 3.1:
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Lemma 4.1. ([24]) Sous les hypothèses du lemme 3.1, l’estimation suivante est vérifiée :∣∣|f [v](k, l)|2 − |f [vEappr](k, l)|2 + |v̂Eappr(k − l)|2 − |v̂(k − l)|2
∣∣ = O(E−α−1/2), (4.7)

lorsque E → +∞, pour (k, l) ∈ ME.

Pour le problème 5(A), l’étape itérative consiste à construire uj+1
E à l’aide de la formule

|F(uj+1
E + w)(p)|2 = |F(ujE + w)(p)|2 + |f [v + w](k, l)|2 − |f [ujE + w](k, l)|2,

où p ∈ B(2−δ)
√
E, k − l = p, k2 = l2 = E,

(4.8)

et en utilisant les résultats sur la reconstruction de phase mentionnée dans la sous-section 2.1. Les
propriétés théoriques de ces itérés ujE sont formalisées dans le théorème suivant.

Theorem 4.2. ([24]) Soient v, w = w1 vérifiant les hypothèses (2.3), où dist(D,Ω) > diamD,
v ∈ Wm,1(Rd), m > d, w ∈ C(Rd) and w satisfy (4.3). Donc

∥v − ujE∥L∞(D) = O(E−αj) lorsque E → +∞, (4.9)

où

αj =
1

2

m− d

β + d

(
1−

(
m− d

m+ β

)j
)
. (4.10)

Pour αj du théorème 4.2, on a que

αj → α∞ :=
1

2

m− d

β + d
lorsque j → +∞,

αj →
j

2
lorsque m→ +∞,

α∞ → +∞ lorsque m→ +∞.

(4.11)

Des résultats similaires sont valables pour le problème 5(B), n = 1; voir [24].
On peut voir que la convergence en (4.9) est drastiquement meilleure qu’en (4.6), du moins,

pour les gros m et j. De plus, la convergence en (4.9) (avec un seul w1) est encore meilleure qu’en
(4.1) (avec deux diffuseurs de fond w1, w2) . La convergence en (4.9), est similaire à la convergence
un peu plus rapide en (3.20) pour le cas phasé.

Notons que seules les données de diffusion sans phase limitées à ΓE sont utilisées dans les
reconstructions mentionnées ci-dessus. Ici, ΓE est le même sous-ensemble d−dimensionnel de ME

que dans sous-section 3.3.
Figure 1.5 illustre notre reconstruction numérique de v à valeur réelle non lisse pour le problème

4(A), où v, w sont représentés sur figure 1.2(a) ; voir [24, Section 4.3]. Les données de diffusion sans
phase consistent en la seule section efficace de diffusion différentielle |f [v+w]|2. Les figures 1.5(a),
1.5(c) illustrent la première approximation u1E à v comme une fonction à valeurs complexes. Les
figures 1.5(b), 1.5(d) illustrent notre approximation itérative u10E . Notons que la qualité de u10E est
similaire à la solution de récupération de phase montrée dans la figure 1.2(c) et est bien meilleure
que la première approximation u1E.
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(a) Reu1E (b) Reu10E

(c) Imu1E (d) Imu10E

Figure 1.5: ([24]) Reconstructions uJE, de v à valeur réelle non lisse pour problème 5(A); voir
Fig. 1.2. Rangée du haut : pièces réelles. Rangée du bas : parties imaginaires.

Notons que dans les problèmes de diffusion, les données |f [v + w]|2 considérées comme une
approximation de |v̂ + ŵ|2 apparaissent sur une grille très non uniforme. Cela conduit à des
difficultés numériques importantes, notamment dans le cadre du problème 5(A). Cela a nécessité
une régularisation numérique avancée développée dans [24].

Il est remarquable que notre méthode reconstruise approximativement deux fonctions à valeurs
réelles Re v et Imv sur D à partir d’une fonction à valeurs réelles |f [v+w]|2|ΓE

à E fixe pour un
fond connu w, sous l’hypothèse supplémentaire que v et w sont suffisamment séparés. ΓE est le
même sous-ensemble d−dimensionnel de ME que dans la sous-section 3.3.

4.4 Estimations de stabilité

La stabilité est l’un des problèmes les plus importants dans les problèmes inverses. En particulier,
la stabilité signifie que les données proches ne peuvent être produites que par des paramètres
internes proches. Donc, sans de tels résultats on ne peut s’attendre à ce que la reconstruction
reste adéquate pour des données bruitées (ou légèrement perturbées).

Le problème de la stabilité de Lipschitz pour le problème phasé 4(A) a été étudié dans [41],
où l’estimation suivante a été donnée

∥v1 − v2∥L∞(D) ≤ A1E
1
2∥f [v1]− f [v2]∥C(ΓE) + A2E

− 1
2

m−d
d , (4.12)

où E ≥ 1, v1, v2 satisfont (3.2), v1− v2 ∈ Wm,1(Rd), d ≥ 2, et A1, A2 ne dépendent que des bornes
pour les normes de v1, v2. Ici ΓE est le même sous-ensemble d−dimensionnel de ME que dans
sous-sections 3.3, 4.3.

L’estimation (4.12) est une estimation approximative de la stabilité Lipschitz dans la termi-
nologie de [41].

Dans le travail récent [62] (réalisé dans le cadre de cette thèse) nous avons obtenu des estima-
tions similaires pour les problèmes sans phase 5(A), 5(B), n = 1. En particulier, pour le problème
5(A) nous avons prouvé que

∥v1 − v2∥L∞(D) ≤ C1E
1
2
−ε∥|f [v1 + w]|2 − |f [v2 + w]|2∥C(ΓE) + C2E

−( 1
2
−ε)m−d

β+d , (4.13)

17



pour un grand E, où v1, v2, w satisfont les hypothèses (3.2), (4.3), v1 − v2 ∈ Wm,1(Rd), et
dist(D,Ω) > diamD, et ε ∈ (0, 1/2) est fixe, C1, C2 sont similaires à A1, A2.

Des estimations similaires à (4.13) sont également valables pour problem 5(B), n = 1; voir [62].
Des estimations similaires à (4.13) sont également valables pour les problèmes de reconstruction

de phase 2(A), (B); voir [62].
On peut voir que les membres droits de (4.12), (4.13) sont des sommes de deux termes. Le

premier est Lipschitz terme par rapport à la différence de données, et le second est approximatif
mais décroissant pour les hautes énergies. En outre, sa décroissance est très rapide pour les
grands m, c’est-à-dire pour les v1 − v2 lisses. On peut voir qu’à énergie fixe E, le membre de
droite dans les estimations (4.12), (4.13) tendent vers des constantes positives si les différences de
données tendent vers zéro. Cependant, ces constantes devenir très petit pour un grand E. Ceci
est tout à fait suffisant du point de vue de l’analyse numérique : les reconstructions ne sont jamais
absolument précises. Il est donc tout à fait naturel d’étudier les reconstructions (dont la stabilité)
jusqu’à quelques petites constantes (c’est-à-dire des reconstructions approximatives).

L’algorithme de diffusion inverse lié à l’estimation de stabilité (4.12) a été donné dans [44],
implémenté numériquement dans [6], [63], et mentionné dans la sous-section 3.3. À son tour, le
l’algorithme de diffusion inverse lié à l’estimation de stabilité (4.13) a été donné et implémenté
numériquement dans [24].

Notons également que, sous nos hypothèses, Lipschitz et Hölder estimations de stabilité à
énergie fixe E sont impossibles ; voir [38], [26], [27], pour de tels résultats d’instabilité pour plus
ou problèmes inverses non linéaires et linéaires moins similaires.

5 Formules multipoints en théorie de la diffusion
Comme il est déjà mentionné dans la sous-section 2.2, des développements de la forme (2.7)
surviennent, en particulier, pour différentes fonctions de la théorie de la diffusion. Ci-dessous
dans cette section, nous décrivons les applications des formules multipoints mentionnées dans la
sous-section 2.2 à la diffusion directe et inverse pour l’équation (3.1).

5.1 Approche multipoint de la diffusion inverse depuis le champ lointain

L’approche générale la plus simple du problème 4(A) et des problèmes 5(A), (B) consiste en des
formules (3.6), (4.4) pour l’amplitude de diffusion f aux hautes énergies et reconstruction ultérieure
à partir de transformées de Fourier en phase ou sans phase. Pour le cas des transformées de Fourier
sans phase, certains de ces résultats de reconstruction sont obtenus dans le cadre de cette thèse
et sont mentionnés dans la sous-section 2.1.

L’un des principaux inconvénients de cette approche la plus simple des problèmes 4(A), 5(A),
(B) consiste en une lente convergence des formules (3.6), (4.4) lorsque E → +∞. Dans ce respect,
les formules (3.6), (4.4) sont drastiquement améliorées dans [47], [54], au moins, pour v lisse (où
le travail [54] est réalisé dans le cadre de cette thèse). Cette avancée surprenante est basée sur
des développements asymptotiques de la forme (2.7) pour l’amplitude de diffusion f aux hautes
énergies (voir [13], [38], [68]) et la formules multipoints mentionnées dans la sous-section 2.2.

Soit, par exemple, v ∈ C∞
c (Rd), où C∞

c désigne les fonctions infiniment lisses avec support
compact. Alors (voir [54])

f(k(s), l(s)) =
N∑
j=1

aj(p, ω)

sj−1
+O(s−N) lorsque s→ +∞, (5.1)

où

k(p) = p/2 + (E − p2/4)1/2ω, l(p) = −p/2 + (E − p2/4)1/2ω, E = E(s) = s2,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(5.2)
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et

a1(p, ω) = v̂(p), (5.3)

où v̂ est défini par (2.1). Notons que la formule (5.1), pour N = 1, découle de (3.6).
On peut voir que le développement (5.1) est de la forme (2.7). Ainsi, l’approche multipoint

mentionnée dans la sous-section 2.2 conduit notamment au résultat suivant sur le problème 4(A)
(voir [54]):

Theorem 5.1. Soit v ∈ C∞
c (Rd). Donc

v̂(p) = v̂n(p, s, τ⃗) +O(s−n), lorsque s→ +∞,

v̂n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1f(kj(s), lj(s))

αj(τ⃗)βn,j(τ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(5.4)

où

kj(s) = p/2 + (Ej − p2/4)1/2ω, lj(s) = −p/2 + (Ej − p2/4)1/2ω, Ej = E(sj) = s2j ,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(5.5)

et αj, βn,j sont définis dans (2.11).

Le théorème 5.1 est un résultat multi-énergie (polychromatique) sur la diffusion inverse pour
l’équation (3.1). Le fait est que la convergence dans (5.4), pour n > 1, est beaucoup plus rapide
que dans (3.6).

Les résultats de diffusion inverse polychromatique d’un tel type remontent à [47]. Cepen-
dant, les formules du théorème 5.1 sont bien plus pratiques que les formules apparentées de [47],
notamment, pour les implémentations numériques ; voir [54] pour plus de détails.

L’analogue sans phase du théorème 5.1 est le suivant (voir [54]):

Theorem 5.2. Sous les hypothèses du théorème 5.1, on a aussi que

|v̂(p)|2 = |v̂|2,n(p, s, τ⃗) +O(s−n), lorsque s→ +∞,

|v̂|2,n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1|f(kj(s), lj(s))|2

αj(τ⃗)βn,j(τ⃗)
.

(5.6)

Comme il est déjà mentionné ci-dessus, les théorèmes 5.1, 5.2 et la reconstruction résultent des
transformations de Fourier phasées et sans phase donner des méthodes théoriques avancées pour
les problèmes 4(A), 5(A), (B).

Les premières implémentations numériques des formules (5.4), (5.6) sont données dans [54].
Dans le cadre de cette implémentation pour le cas bruité, nous utilisons également les formules
multipoints régularisées mentionnées dans la sous-section 2.2.

La figure 1.6 montre des exemples d’implémentation numérique des formules (5.6) pour le
potentiel lisse v (illustré à la figure 5(a) de [24]), où d = 2. L’image précise de v n’est pas
essentielle pour ces exemples. La figure 1.6(a) est une fonction exacte |v̂|2. Les figures 2.6(b)–(d)
sont différentes reconstructions de |v̂|2 à partir de l’amplitude de diffusion sans phase |f [v]|2 donnée
sur ME pour différentes énergies E en utilisant les formules (5.6) et leurs versions régularisées
(voir sous-section 2.2). Figure 1.6(b) : n = 3, E = 252, 302, 352, et la régularisation est appliquée;
Figure 1.6(c) : n = 1, E = 352, et la régularisation n’est pas nécessaire ; Figure 1.6(d) : n = 3,
E = 252, 302, 352, et la régularisation n’est pas appliquée.
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Figure 1.6: ([54]) Exact |v̂|2 et ses reconstructions polychromatiques sans phase ; voir les sous-
sections 2.2 et 5.1 (et [54] pour plus de détails). (a) Exact |v̂|2.
(b) Reconstruction régularisée en trois points à partir du |f |2 bruitée à E = 252, 302, 352.
Paramètre de régularisation r =

√
10.

(c) Reconstruction en un point à partir de |f |2 à E = 352.
(d) Reconstruction en trois points à partir du |f |2 bruitée à E = 252, 302, 352 sans régularisation.

5.2 Approche multipoint pour la diffusion inverse à partir du champ
proche

Dans cette sous-section, nous présentons les résultats de [54] sur le problème 4(C).
Considérons les solutions de diffusion ψ+ satisfaisant (3.1), (3.2). Pour v ∈ C∞

c (Rd), on a que

ψ+(x, k) = eikx

(
1 +

N−1∑
j=1

bj(x, θ)

sj
+O(s−N)

)
, lorsque s→ +∞,

b1(x, θ) =
1

2i
Dv(x,−θ), Dv(x, θ) :=

∫ +∞

0

v(x+ τθ)dτ,

(5.7)

où x ∈ Rd, s = |k|, θ = k/|k| (x et θ sont fixés); voir [68], [54]. Notons que Dv est connu comme
la transformée de faisceau divergente de v; voir, par exemple, [39].

En utilisant les formules multipoints (2.9) pour la fonction

z(x, k) = 2i|k|(e−ikxψ+(x, k)− 1), (5.8)

Nous obtenons le résultat suivant (voir [54]):
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Theorem 5.3. Soit v ∈ C∞
c (Rd). Donc

Dv(x,−θ) = a1,n(x, θ, s, τ⃗) +O(s−n), lorsque s→ +∞,

a1,n(x, θ, s, τ⃗) :=
n∑

j=1

yj(s, τ⃗)z(x, sj(s)θ),
(5.9)

où sj sont définis par (2.8), yj sont définis par (2.10).

Les formules de reconstruction (5.9), (5.8) sont nouvelles pour n ≥ 2.
Supposons que supp v ⊂ Ω, où Ω est un domaine convexe borné ouvert dans Rd avec une

frontière lisse ∂Ω. Soit

Σ = {(x, θ) : x ∈ ∂Ω, θ ∈ Sd−1, νxθ > 0}, (5.10)

où νx désigne la normale extérieure à ∂Ω au point x. Alors 2ib1(x, θ) = Dv(x,−θ), (x, θ) ∈ Σ,
peut être considérée comme la transformation en rayons X de v.

Les méthodes de reconstruction de v à partir de sa transformée X sont très développées ; voir,
par exemple, [39].

Les formules (5.8),(5.9) et les formules d’inversion pour la transformation des rayons X (voir,
par exemple, [39]) donnent une méthode de diffusion inverse à partir des valeurs limites ψ+(x, sθ),
(x, θ) ∈ Σ à plusieurs grands s (c’est-à-dire à plusieurs grandes énergies).

5.3 Approches de l’application champ proche-lointain

Dans cette sous-section, nous rappelons quelques résultats connus anciens et récents sur le problème
4(B).

La première formule de résoudre du problème 4(B) a été donnée dans le théorème 3.3 de [9]
pour le cas d = 3. Cette formule donne f1(k, l) à k ∈ S2√

E
it terme d’une somme infinie de intégrales

de ψ+(x, k) − eikx, x ∈ ∂D, pour le cas où D = BR pour un certain R > 0, d = 3, où Br est de
(2.2).

Notons que le problème 4(B), pour d ≥ 1, peut aussi être résolu via

f(k, l) = (2π)−d

∫
∂D

(
e−ilx ∂

∂νx
ψ+(x, k)− ψ+(x, k)

∂

∂νx
e−ilx

)
dx, (5.11)

où k, l ∈ Rd, k2 = l2 = E > 0, νx est la normale extérieure à ∂D en x ∈ D; voir [40].
Un inconvénient des formules bien connues susmentionnées pour résoudre le problème 4(B)

pour d > 1 consiste en ce qui suit : pour trouver f1(k, l) à kfixe, l ∈ Sd−1√
E

valeurs de ψ+(x, k) le
long la limite entière ∂D est nécessaire. De plus, la formule de [9] est compliquée, alors que la
formule (5.11) requiert non seulement ψ+ sur ∂D mais aussi sa dérivée normale sur ∂D.

En revanche, l’approche multipoint de [46], donne notamment pour fixe (k, l) ∈ ME,

formules explicites pour trouver f1(k, l) précis à O(s−n), lorsque s→ +∞,

de ψ+(x, k) donné à n points x1(s), ..., xn(s),
(5.12)

où
xj(s) = (s+ τj)l̂, j = 1, ..., n, l̂ = l/|l|,
s > 0, 0 = τ1 < ... < τn.

(5.13)

Cette approche est basée sur le développement asymptotique (3.3) pour ψ+, le fait que la
fonction

z(|x|, k, x/|x|) = |x|(d−1)/2e−i|k||x| (ψ+(x, k)− eikx
)
, (5.14)

pour k fixe, x/|x| est de la forme (2.7), et les formules multipoints présentées dans la sous-section
2.2.

De plus, dans les sous-sections 5.4, (5.5), nous discutons des analogues de formules (5.12) pour
le cas du problème 6(A).
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5.4 Formules à deux points pour l’application sans phase du champ
proche-lointain

Historiquement, l’approche multipoint remonte aux formules à deux points de [42], [43] pour
résoudre le problème 6(A).

Soit

a(x, k) = |x|(d−1)/2(|ψ+(k, x)|2 − 1). (5.15)

En particulier, les travaux [42], [43] donnent

formules explicites pour trouver f(k, l) précis à
O (s−σ)

sin(τ(|k| − kl̂))
, lorsque s→ +∞,

de a(x, k) donné à deux points x1(s), x2(s),
(5.16)

où x1(s) = sl̂, x2(s) = (s+ τ)l̂, l̂ = l/|l|, et

σ =

{
1/2, pour d = 2,

1, pour d ≥ 3.
(5.17)

Estimations détaillées du terme d’erreur en (5.16), pour d = 2 et d = 3, sont donnés en [51] réalisé
dans le cadre de cette thèse.

Le principal inconvénient des formules (5.16) est un taux de convergence lent comme s→ +∞.
Cet inconvénient a motivé d’autres études multipoints données dans [46], [48], [53], où [53] est
réalisé dans le cadre de cette thèse.

5.5 Formules multipoints pour l’application sans phase du champ proche-
lointain

Dans cette sous-section nous présentons les résultats des travaux [53] sur problème 6(A).
En particulier, dans ce travail nous donnons, pour fixes (k, l) ∈ ME, l ̸= k, for d ≥ 2,

formules explicites pour trouver f1(k, l) précis à O
(
s−n
)
, lorsque s→ +∞,

de |ψ+(x, k)|2 donné à m points x1(s), ..., xm(s),
(5.18)

où m dépend linéairement de n, et

xj(s) = (s+ τj)l̂, j = 1, ...,m, l̂ = l/|l|,
s > 0, τ1 = 0, τj1 < τj2 , j1 < j2.

(5.19)

On peut voir que dans les formules (5.18) et (5.19) les points de mesure xj = xj(s) sont sur le
rayon commençant à l’origine dans la direction l̂, où s est la distance entre l’origine et l’ensemble
des ces points, et les distances τj+1−τj = |xj+1−xj| est fixé. De plus, la reconstruction les formules
mentionnées dans (5.18) sont asymptotiques, où n peut être considéré comme leur convergence
taux en termes de O(s−n) comme s→ +∞, c’est-à-dire lorsque les points xj = xj(s) se déplacent
vers l’infinité.

L’idée principale est d’appliquer les approches des sous-sections 2.2, 5.4 à la fonction sans
phase a définie par (5.15) en termes de |ψ+|2.

Dans le résultat le plus simple de [53], on suppose que dans les formules (5.18) et (5.19) d = 3,
m = 2n et que

τj =

{
(j − 1)τ, j = 1, ..., n,

σ + (j − 1− n)τ, j = n+ 1, ..., 2n,
(5.20)

τ = τ(k, l) =
2π

κ
, 0 < σ ̸= 0 (mod

π

κ
), κ = |k| − kl̂. (5.21)
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Alors nos formules (5.18) sont spécifiées comme suit :

f1(k, l) =
e−i(s+σ)κa1(s)− e−isκa2(s) +O(s−n)

−2i sin(σκ)
, lorsque s→ +∞,

a1(s) = a1(k, l, s) =
n∑

j=1

(−1)n−j(s+ τj)
n−1

(j − 1)!(n− j)!τn−1
a(xj(s), k),

a2(s) = a2(k, l, s) =
2n∑

j=n+1

(−1)n−j(s+ τj)
n−1

(j − 1− n)!(2n− j)!τn−1
a(xj(s), k),

(5.22)

où (k, l) ∈ ME, l ̸= k, d = 3, a(x, k) est défini par (5.15). De plus, κ ̸= 0, for l ̸= k.
Le fait que les formules (5.22) nécessitent 2n points au lieu de n points dans (5.12) pour une

même précision O(s−n) est lié à l’absence d’information de phase dans les données utilisées dans
(5.22). De plus, les formules (5.22), pour n = 1, se réduisent à des formules à deux points (5.16).

Notons que les formules (5.22) sont complètement explicites ! Un autre avantage de cette
formule est relativement faible (m = 2n) nombre de points de mesure pour chaque (k, l). Un
inconvénient possible de la formule (5.22) est que le pas τ = τ(k, l) est fixé a priori, et dépend de
(k, l). De plus, la formule (5.22) n’est pas valide pour d = 2 (à cause d’asymptotiques différentes
(3.3) pour ψ+).

Les inconvénients susmentionnés de (5.22) ont motivé d’autres résultats dans [53].
Dans ces résultats, on considère |ψ+(x, k)|2 pour k fixe, donné en m points xj de la forme

(5.19), où

τj = (j − 1)τ, τ ̸= 0 (mod
π

κ
). (5.23)

Pour ces points xj on a les résultats suivants :
• pour le cas des petits potentiels (’cas linéaire’), pour d = 2, 3, on a

formules explicites pour trouver f1(k, l) précis à O(s−n), lorsque s→ +∞,

de a(x, k) donné à 2n points x1(s), ..., x2n(s),
(5.24)

• pour les potentiels généraux, d = 3, on a

formules explicites pour trouver f1(k, l) précis à O(s−n), lorsque s→ +∞,

de a(x, k) donné à 3n− 1 points x1(s), ..., x3n−1(s),
(5.25)

• pour les potentiels généraux, d = 2, on a

formules explicites pour trouver f1(k, l) précis à O(s−n), lorsque s→ +∞,

de a(x, k) donné à 3n points x1(s), ..., x3n(s).
(5.26)

Notons que:
• il y a une différence entre d = 2 et d = 3 du fait de l’asymptotique (3.3) de ψ+, le cas d = 2

est plus difficile ;

• pour le cas général, d = 2, 3, les formules (5.25), (5.26) nécessitent plus de points que les
formules (5.22) ou (5.24);

• contrairement à (5.22), formules (5.24), (5.25) et (5.26) ne nécessitent pas de fixer τ a priori
en fonction de (k, l). A cet égard, les formules (5.24), (5.25) et (5.26) sont plus pratiques
pour les applications ;

• apparemment, pour les cas généraux de (5.25), (5.26) il existe des formules qui nécessitent
moins de points de mesure pour une même précision.

Notons que les formules de [42, 43, 48, 53] peuvent également être utilisées pour le problème
6(A), (B) lorsque le coefficient v dans l’équation (3.1) est remplacé, par exemple, par un obstacle
impénétrable (voir, par exemple, [15] pour la définition des obstacles impénétrables).
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6 Conclusion
Cette thèse contribue aux études sur la reconstruction de phase, la diffusion inverse sans phase et
les formules multipoints dans les problèmes inverses, et inclut les résultats suivants :

1 Nous donnons des formules de reconstruction de phase à partir d’une seule transformation
de Fourier sans phase avec des informations de fond appropriées. En partant de ces formules,
nous obtenons différents résultats théoriques et numériques sur le problème de reonstruction
de phase pour la transformation de Fourier classique.

2 Nous proposons un algorithme itératif pour la diffusion inverse à partir d’une seule sec-
tion efficace de diffusion différentielle avec un diffuseur de fond approprié. Cela inclut les
estimations d’erreur, les estimations de stabilité et l’implémentation numérique.

3 Nous donnons la première implémentation numérique de la méthode des formules multipoints
dans les problèmes inverses, incluant une régularisation efficace de ces formules pour le cas
bruité. Par cette méthode, nous obtenons également de nouveaux résultats théoriques sur
les problèmes de diffusion inverse polychromatique (à partir de données de champ lointain,
de données de champ lointain sans phase et de données de champ proche).

Les sujets d’études futures comprennent:

1 Implémentation numérique des algorithmes mentionnés ci-dessus pour les problèmes de re-
construction de phase et de diffusion inverse sans phase pour d = 3.

2 Poursuite de l’implémentation numérique des formules multipoints en diffusion inverse pour
les équations de Schrödinger et Helmholtz.

3 Extensions théoriques et numériques des résultats de la thèse aux cas d’autres équations de
la physique mathématique.

4 Reconstruction à partir de données réelles, par exemple en analyse aux rayons X ou en
tomographie électronique.
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Chapter 2

Introduction in english

1 Introduction
Problems of scattering of time-harmonic waves appear in many areas such as quantum theory,
medical imaging, geophysics, nondestructive testing, radars. The direct scattering problem is to
determine the scattering solution, given the object and its physical property, while the inverse
scattering problem is to determine the object and/or its physical property from the measurement
information of the scattering solution.

The standard inverse scattering theory mostly deals with the phased case (i.e., the case when
phase measurements are also available); see, e.g., [14], [15], [21], [49].

However, due to Born’s rule in quantum mechanics, the complex values of wave function have
no direct physical interpretation, whereas the squared absolute values of this function admit prob-
abilistic interpretation and can be directly measured. Similarly, in optics and in X-ray imaging,
modern detectors can measure the photon intensity (i.e. phaseless information), while the mea-
surements of phase information are much more difficult (or currently impossible) due to extremely
short length of the wave. See, for example, [11], [19], [23], [50], [61].

Therefore, it is especially important to study problems of reconstruction from phaseless data.
Since there is only ’a half’ of data (that is, only amplitude, no phase), these problems appear to
be much more complicated in different senses. For example, for many phaseless inverse problems,
there is no unique solution even for the linearized case of the Born approximation.

This approach goes back, at least to the work of Perutz on X-ray analysis of hemoglobin,
honored by Nobel prize; see [55].

Note that in the Born approximation many phaseless inverse scattering problems simplify to
the phase retrieval problem of reconstructing the potential from the absolute value of its Fourier
transform. Our results on the later problem of Fourier analysis are summarized in Subsection 2.1.
Then in Subsection 2.2 we present recent general results in the domain of asymptotic analysis,
where some of these results were also obtained in the framework of this thesis.

Further thesis results essentially use the general mathematical methods summarized in Subsec-
tions 2.1 and 2.2. These thesis results include new algorithms on non-linearized phaseless inverse
scattering problems and are summarized in Sections 4, 5.

Complete presentation of our results is given in Articles I-VI.

2 Some general mathematical methods

2.1 Phase retrieval problem

In this subsection we discuss the phase retrieval problem for the classical Fourier transform. This
problem arises as a linear approximation for different phaseless inverse scattering problems. This
problem is also of great independent interest in the framework of Fourier analysis.
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Figure 2.1: [61] The importance of Fourier phase. Two images, a cameraman and Lenna, are
Fourier transformed. After swapping their phases, they are inverse Fourier transformed. The
result clearly demonstrates the importance of phase information for image recovery.

We consider the Fourier transform of complex-valued function v :

v̂(p) = Fv(p) = 1

(2π)d

∫
Rd

eipxv(x)dx, p ∈ Rd. (2.1)

The classical phase retrieval problem is formulated as follows:

Problem 1. Find v from |v̂|2.

The term ’phase retrieval problem’ means that Problem 1 is equivalent to the reconstruction
of Angle(v̂) from Abs(v̂).

Problem 1 is ill-posed: it does not have a unique solution, even up to translations and ele-
mentary symmetries, see [65] for details. The reason is the lack of (phase) information. See also
Figure 2.1 for illustration.

To compensate for the missing phase information v̂/|v̂|, one either assumes a-priori information
on v or additional data. Such inversions of the Fourier transform from phaseless data are much
more complicated than the inversion of the Fourier transform from phased data. Examples of
a-priori informations include (approximate) knowledge of supp v, constraints like |v| = 1 or v ≥ 0,
and knowledge of v on part of the domain. In this thesis we focus on the first and the last of these
options. We refer to the monographs [25, 8], the review papers [20, 29, 34, 49, 61], the articles [7],
[16], [31] and references therein.

More precisely, we consider the following problem:

Problem 2. (A) Reconstruct a function v from |v̂+ŵ|2 on BR for some known function w under
the a-priori assumption that supp v and suppw are compact and sufficiently separated.

(B) Reconstruct v from |v̂|2 and |v̂ + ŵj|2, j = 1, . . . , n, on BR for some appropriate known
functions w1, ..., wn separated from v.

Here

BR = {x ∈ Rd : |x| ≤ R}. (2.2)

In addition, we assume that v and different non-zero background scatterers w1, ..., wn are of
the form

v, wj ∈ L1,loc(Rd), wj ̸≡ 0, supp v ⊆ D, suppwj ⊆ Ωj,

D, Ωj are open convex bounded domain in Rd, D ∩ Ωj = ∅.
(2.3)
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Problem 2(B) was considered, in particular, in [43, 45, 3, 5]. In addition, related considerations
go back, at least, to [55]. Problem 2(A) was studied in [52, 24]. Other investigations related to
this problem can be found in [56, 37]. This thesis includes, in particular, new mathematical and
numerical results of [52, 24] on Problem 2(A) and on Problem 2(B) for n = 1.

Let

D − Ω = {x− y : x ∈ D, y ∈ Ω}, (2.4)

and χD−Ω(x) be a characteristic (indicator) function of the set D − Ω.
This thesis includes, in particular, the following result of [52], for d ≥ 1:

Theorem 2.1. ([52]) Let v and w = w1 satisfy (2.3) with Ω = Ω1, and dist(D,Ω) > diamD.
Then |v̂ + ŵ|2 and w uniquely determine v by the formulas

v̂(p) = (Fw(p))−1Fq(p),

q(x) := χD−Ω(x)

(
u(x)− (2π)−d

∫
Ω

w(x+ y)w(y)dy

)
,

u(x) := F−1(|F(v + w)|2)(x).

(2.5)

If we have only that dist(D,Ω) > 0, then |v̂|2, |v̂ + ŵ|2, and w uniquely determine v via formula
(2.5), where u is replaced by

u(x) := F−1(|F(v + w)|2 − |Fv|2)(x). (2.6)

Actually, Theorem 2.1 in its first part is a proper mathematical formalization of some of
considerations of [37] related with finding v and w from |v̂ + ŵ|2, under the condition that supp v
and suppw are sufficiently disjoint, for d = 2.

One can see that Theorem 2.1 solves, in particular, Problem 1, if supp v ⊆ (D ∪ Ω), where
dist(D,Ω) > diamD, and v is a priori known on Ω.

In addition, formulas of Theorem 2.1 lead to reconstructions from phaseless Fourier data with
theoretical and numerical efficiency similar to reconstruction from Fourier data v̂ with phase
information, see [52], [24], [62] and Section 4 for details.

Figure 2.2 illustrates our numerical reconstruction of v from |v̂+ ŵ|2 limited to BR with known
background w.

(a) Our
v + w.

(b) Reconstruction from
phased data v̂.

(c) Reconstruction from
phaseless data |v̂ + ŵ|2.

Figure 2.2: Comparison of reconstructions of v from phased and phaseless Fourier transform.
(a) Piecewise constant sufficiently separated v and w.
(b) Reconstruction from phased data v̂ given on some BR.
(c) Reconstruction from phaseless data |v̂ + ŵ|2 given on the same BR.
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2.2 Multipoint formulas

Many functions of potential theory, scattering theory, and other fields admit asymptotic expansions
of the form

z(s) = zmain(s) +O(s−N) =
N∑
j=1

aj
sj−1

+O(s−N), as s→ +∞, (2.7)

where s ∈ (σ,+∞), for some σ > 0, and aj are complex numbers; see, for example, [1], [35], [38],
[46], [47], [53], [68]. In addition, in some cases, the most important information is contained in a1
(and/or some next leading coefficients), whereas z(s) is measured in several points s ∈ (σ, +∞).

For functions z satisfying (2.7) the work [46] considers, in particular, the problem of finding
a1 from z(s) given at n points sj ∈ [r,+∞), j = 1, ..., n of the form

sj = s+ τj, τ⃗ := (τ1, ..., τn),

0 = τ1 < τ2 < ... < τn are fixed.
(2.8)

Note also that there is another geometry of points of sj, see [46].
Suppose that N ≥ 2n− 1. Then the following formulas hold ([46]):

a1 = a1,n(s, τ⃗) +O(s−n), as s→ +∞,

a1,n(s, τ⃗) =
n∑

j=1

yj(s, τ⃗)z(s+ τj),
(2.9)

where

yj(s, τ⃗) =
(−1)n−j(s+ τj)

n−1

αj(τ⃗)βn,j(τ⃗)
, 1 ≤ j ≤ n, y = (y1, ..., yn), (2.10)

αj(τ⃗) :=

j−1∏
i=1

(τj − τi) for 1 < j ≤ n, α1(τ⃗) = 1,

βn,j(τ⃗) :=
n∏

i=j+1

(τi − τj) for 1 ≤ j < n, βn,n(τ⃗) = 1.

(2.11)

Multipoint formulas (2.9) rapidly converge, for n large enough, and have a simple structure,
but they are very unstable to noise for large s. The reason is that the coefficients yj(s, τ⃗) in (2.10)
behave as

yj(s, τ⃗) = O(sn−1), as s→ +∞. (2.12)

Figure 2.3 illustrates these effects on the simplest z(s) = s/(s + 1). In Figure 2.3 we present
ã1,n(s) = a1,n(s − τn, τ⃗). Note that for every n = 1, 2, 3, these ã1,n(s) are reconstructed from
n = 1, 2, 3 points, but with the same maximal point s. Figure 2.3(a) shows that two- and three-
point formulas are more accurate than one-point reconstruction. Figure 2.3(b) shows that even
for n = 3, the reconstruction is very instable even for medium s.
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(a) Exact data. No regularization. (b) Noisy data. No regularization.

Figure 2.3: ([54]) n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) of a1 = 1 for z(s) = s/(s + 1)
with τj = j − 1, j = 1, ..., n.
(a) The case of exact data. Two- and three-point formulas rapidly converge to exact value.
(b) The case of noisy data simulated using formula (2.13). Two- and three-point formulas are
unstable to noise.

In view of the aforementioned instability, in [54] we proposed, in particular, a regularization
method for formulas (2.9) for the case of noisy data. More precisely, we assume that the data
z(sj) contain the random noise of the form

ζ(s) = znoisy(s) = z(s) + εN(s), (2.13)

where the random variables N(s) are i.i.d. for different s, mathematical expectation is E(ζ(s)) =
z(s), the dispersion is D(ζ(s)) = ε2.

In order to make multipoint formulas applicable, we propose a regularisation method with a
parameter r. In our regularization, we replace formula (2.9) by

ãr1,n =
n∑

j=1

yrj (s, τ⃗)z(sj(s)), (2.14)

where yr = (yr1, ..., y
r
n) is constructed in [54] and depends only on n and r, and r ∈ [n−1/2, ∥y∥],

where y is of (2.10).
Note that, the reconstruction ãr1,n has the following properties:

• for the noiseless function z, the regularized reconstruction is as exact as possible;

• the dispersion of reconstruction ar1,n from noisy data is bounded by

D(ar1,n(s, τ⃗)) ≤ r2ε2 independently of s. (2.15)

In our construction ([54, Section 5]), the regularization parameter r ∈ [ 1√
n
, ∥y∥], for y =

(y1, ..., yn) of (2.10). Here r = n−1/2 corresponds to the strongest regularization, and r = ∥y∥
corresponds to no regularization.

Figures 2.4(a), 2.4(b) in their comparison with Figures 2.3(a), 2.3(b) illustrate efficiency of our
regularization (2.14).
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(a) Exact data. Regularization. (b) Noisy data. Regularization.

Figure 2.4: ([54]) n-point regularized reconstructions ãr1,n(s) = ar1,n(s− τn, τ⃗) of a1 = 1 for z(s) =
s/(s+ 1) with τj = j − 1, j = 1, ..., n. Regularization parameter r =

√
5.

(a) The case of exact data. Two- and three-point regularized formulas converge to exact value,
but not so rapid as in Figure 2.3(a).
(b) The case of noisy data simulated using formula (2.13). Two- and three-point regularized
formulas are stable to noise.

Thus, in the framework of this thesis, we observed that the exact formulas (2.9) are very un-
stable to random noise (for n ≥ 2 and sufficiently large s) and suggested an efficient regularization
of these multipoint formulas. This thesis also includes theoretical and numerical results on appli-
cations of the aforementioned multipoint formulas to phased and phaseless inverse scattering, see
Section 5.

3 Direct and inverse scattering problems

3.1 Formulations of problems

We consider the stationary Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 2, E > 0, (3.1)

where ∆ is the Laplacian in x, and

v ∈ L∞(Rd), supp v ⊆ U , U ⊂ Rd is open and bounded. (3.2)

The Schrödinger equation (3.1), under assumptions (3.2), arises in modelling interaction of a
non-relativistic quantum mechanical particle at fixed energy E with a macroscopic object con-
tained in D, where v is the potential of this interaction. Here, we assume that ℏ2/(2m) = 1, where
ℏ is the reduced Planck’s constant, and m is the mass of the particle. For more details on such a
model in the framework of electron tomography, see, for example, [19].

Equation (3.1) can be also considered as time-harmonic Helmholtz equation of acoustics and
electrodynamics, see, for example, [24], [60] for details.

For equation (3.1), under condition (3.2), we consider the scattering solutions ψ+ = ψ+(x, k),
k ∈ Rd, k2 = E, specified by the Sommerfeld radiation condition on ψ+(x, k) − eikx. Functions
ψ+ have the Atkinson-type expansion (going back to [1]):

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2

(
N∑
j=1

fj(k, |k| x
|x|)

|x|j−1
+O

(
1

|x|N

))
, |x| → +∞, N ∈ N, (3.3)
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uniformly in x/|x|. Here, the coefficient f1 is of special physical importance and is known as the
scattering amplitude for equation (3.1). Note that the function f1 = f1(k, l) is defined on the
manifold

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
, (3.4)

where E is the energy in equation (3.1). Note also that in some formulas it is convenient to present
f1 as

f1(k, l) = c(d, |k|)f(k, l), c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2 for
√
−2πi =

√
2πe−iπ/4. (3.5)

For more information on ψ+ and f , see, for example, [10], [44] and references therein.
In particular, σ = |f(k, l)|2 is known as the differential scattering cross section for equation

(3.1). In a similar way with the wave functions ψ+, the complex values of f have no direct
physical interpretation, whereas |f |2 admits a probabilistic interpretation and can be measured
in experiments; see, for example, [11], [18]. In particular, the differential scattering cross section
σ = |f(k, l)|2 describes the probability density of scattering of a particle with initial impulse k into
direction l/|l| ≠ k/|k|. Similarly, in the electromagnetism of optics and X-rays (modeled in the
framework of the time-harmonic Helmholtz equation) only |ψ+|2 and σ = |f |2 can be measured
directly by modern technical devices.

The scattering amplitude f contains a lot of information about scatterer v. In particular,
according to the Born-Faddeev formula we have that:

f(k, l) = v̂(p) +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p; (3.6)

see, for example, [10].
We consider, in particular, the following problems:

Problem 3. Find ψ+ and f from v.

Problem 4. (A) Find v from f. (B) Find f from ψ+. (C) Find v from ψ+.

Problem 3 is the direct scattering problem for the Schrödinger equation (3.1). Problem 4(A) is
the classical inverse scattering problem from far-field. Problems 3 and 4(A) are studied in many
details in the literature; see, e.g., [10], [18], [44]. And new important results on Problem 4(A)
continue to appear; see, e.g., [47], [49], [54]. Problems 4(B) and 4(C) are also studied in old and
recent publications; see, e.g., [9], [46], [54] (where [54] is fulfilled in the framework of this thesis).

In this thesis we focus on phaseless analogs of Problems 4(A)–(C). More precisely, we consider
Problems 5 and 6 formulated below.

Problem 5. (A) Find v from its phaseless scattering data |f [v + w]|2 and background w.

(B) Find v from the phaseless scattering data |f [v]|2, |f [v + w1]|2, ... |f [v + wn]|2, and some
appropriate background scatterers w1,...,wn.

In the linearized case of the Born approximation Problem 5 reduces to Problem 2.
Problem 5(A) with w = 0 is ill-posed, in a similar way with Problem 1. Problems 5(A), (B)

can be considered as non-linear versions of Problems 2(A), (B). Actually, mathematical studies of
Problems 5(A), (B) are started rather recently in [45], [3], [5], [53] for Problem 5(B), and in [52],
[24] for Problem 5(A) (where works [52], [24] are fulfilled in the framework of this thesis).

Problem 6. (A) Find f(k, l) from |ψ+(x, k)|2 at appropriate points x such that x ∈ Rd \D and
x/|x| = l/|l|.

(B) Find v from |ψ+|2 appropriately given outside of D.
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Problem 6(A) is a phase recovering problem, whereas Problem 6(B) is the phaseless inverse
scattering problem from near-field. These problems are considered, in particular, in [32, 42, 43,
46, 47, 48, 51, 53, 54] (where works [51, 53, 54] are fulfilled in the framework of this thesis). The
multipoint approach mentioned in Subsection 2.2 admits efficient applications to these problems.

In addition to Problems 5 and 6, there are also other possible formulations of phase retrieval
and phaseless inverse scattering problems for equation (3.1) and for other equations of wave
propagations; see [30, 28, 33, 57, 58, 59, 67] and references therein.

3.2 Preliminaries on direct scattering

The scattering solutions ψ+ satisfying (3.1), (3.3) can be found from the Lippmann-Schwinger
integral equation:

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy, x, k ∈ Rd, k2 = E, (3.7)

where

G+(x, k) = −(2π)−d

∫
Rd

eiξxdξ

ξ2 − x2 − i0
, (3.8)

see, e.g., [10], [36]. Note that

G+(x, k) =
ei|k||x|

2i|k|
for d = 1; G+(x, k) = − i

4
H1

0 (|x||k|) for d = 2; (3.9)

G+(x, k) = −e
i|k||x|

4π|x|
for d = 3;

where H1
0 is the Hankel function of the first type.

Actually, in addition to (3.2), we assume that, for fixed E > 0,

equation (3.7) is uniquely solvable for ψ+(·, k) ∈ L∞(D). (3.10)

If v satisfies (3.2) and is real-valued, then (3.10) is fulfilled automatically.
In turn, the scattering amplitude f can be found from v and ψ+ via

f(k, l) = (2π)−d

∫
D

e−ilyv(y)ψ+(y, k)dy, (3.11)

where k, l ∈ Rd, k2 = l2 = E > 0; see, e.g., [10].
Problem 3 can be solved using equation (3.7) and formula (3.11). Some of important theoretical

properties of this solution, including (3.6), follow from the Agmon estimate on G+, see, e.g. [44].
An efficient numerical algorithm for solving (3.7) is given in [64].

3.3 Preliminaries on phased inverse scattering

We recall that in the Born approximation for small v, for d ≥ 2, the scattering amplitude f on
ME reduces to the Fourier transform v̂ on the ball B2

√
E via the formula

f(k, l) ≈ v̂(p), (k, l) ∈ ME, p ∈ B2
√
E, p = k − l, (3.12)

which is similar to (3.6).
Moreover, for u1E defined by

u1E(x) :=

∫
B2

√
E

e−ipxv̂(p)dp, (3.13)
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we have that

∥v − u1E∥L∞(Rd) = O(E−α), as E → +∞, with α :=
1

2
(m− d), (3.14)

if v ∈ Wm,1(Rd), where Wm,1(Rd) denotes m-times smooth functions in L1(Rd). For more details
on the linearised monochromatic reconstruction uE, see, for example, [49].

The first general solution of Problem 4(A), d ≥ 2, without assumption that v is small, goes
back to [17] and is based on formula (3.6).

However, formula (3.12) gives no method to reconstruct v from f on ME with the error
smaller than O(E−1/2) even if v ∈ S(Rd), where S stands for the Schwartz class. Applying the
inverse Fourier transform F−1 to both sides of (3.12), one can obtain an explicit linear formula
for u1 = u1E(x) in terms of f on ME, where

u1E(x) = v(x) +O(E−α1), E → +∞,

α1 = (m− d)/(2m), if v ∈ Wm,1(Rd).
(3.15)

One can see that α1 ≤ 1/2 even if m→ +∞.
An important point is that this approximation u1 can be essentially improved iteratively using

the following lemma:

Lemma 3.1. ([44]). Let v, v0 satisfy (3.2), and v = v0 on Rd \D, where D is a subdomain of U .
Let vEappr be an approximation to v such that:{

|vEappr(x)− v(x)| = O(E−α), x ∈ D, for some α > 0,

vEappr(x) = v0(x), x ∈ Rd \D.
(3.16)

Then, for (k, l) ∈ ME,∣∣f [v](k, l)− f [vEappr](k, l) + v̂Eappr(k − l)− v̂(k − l)
∣∣ = O(E−α− 1

2 ). (3.17)

Here, f [v] and f [vEappr] denote the scattering amplitude for v and vEappr (respectively); v̂Eappr is
the Fourier transform of vEappr.

Note that conditions (3.2) are more strong than the assumptions used in [44].
The point is that the rate of convergence in (3.17) is higher than in (3.16) as E → +∞. This

leads to the following scheme of [44] for iterative reconstructions ujE of v from given f [v] :

f [v]
(3.6)−−→ u1E

(3.7),(3.11)−−−−−−→ f [u1E]
(3.17)−−−→ û2E := û1E + f [v]− f [û1E]

(3.7),(3.11)−−−−−−→ f [u2E] −→ u3E −→ ... (3.18)

In addition, if

v − v0 ∈ Wm,1(Rd), (3.19)

then ([44]):

∥v − ujE∥L∞(D) = O(E−αj) as E → +∞,

α1 :=
m− d

2m
, αj :=

(
1−

(
m− d

m

)j
)
m− d

2d
, j ≥ 1.

(3.20)

In addition, one can see that

αj → α∞ :=
m− d

2d
as j → +∞,

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞.

(3.21)
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Therefore, the convergence of ujE to v in (3.15), (3.20), as E → +∞, is drastically better for j > 1
than for j = 1, at least, for large m and j.

Note that only f |ΓE
is used in the reconstruction results mentioned above. Here ΓE is a proper

d−dimensional subset of ME, see [52] for details.
The iterative monochromatic reconstruction of [44] is implemented numerically in [6], [63] for

d = 2 and v0 ≡ 0. For other monochromatic phased inverse scattering reconstructions for equation
(3.1) and the Helmholtz equation, see, for example, [4], [12], [22], [49].

Note that the reconstruction algorithms of [52], [24] fulfilled in the framework of studies of
this thesis on Problem 5 can be considered as proper phaseless analogs of formula (3.6) and the
aforementioned iterative approach of [44].

4 Phaseless inverse scattering with background
information

4.1 Historical preliminaries

Problem 5(B) for d = 1, n = 1 is considered in [2]. Problem 5(B) in dimension d ≥ 2 is
considered in [3, 5, 43, 45, 52, 24, 62] (where [52, 24, 62] are fulfilled in the framework of this
thesis). In particular, for Problem 5(B), for d ≥ 2, n = 2, analogs of formula (3.6) and related
global uniqueness results are given in [43, 45]. Reconstruction results of [43, 45] on Problem 5(B),
for d ≥ 2, n = 2, are strongly developed in [3, 5]. In particular, for the phaseless case with
background scatterers, results of [3] include an analog of the iterative algorithm of [44], mentioned
in Subsection 3.3. Related numerical implementation is also given in [3].

In particular, for the iterative reconstructions ujE from the non-overdetermined phaseless data
of Problem 5(B) for n = 2, d ≥ 2, at fixed E, the work [3] gives the estimates

∥ujE − v∥L∞(D) = O(E−αj), as E → +∞, (4.1)

where

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞, where α∞ = lim
j→+∞

αj,
(4.2)

under the assumptions that v, w1, w2 satisfy (2.3), v ∈ Wm,1(Rd), m > d, w1, w2 ∈ C(Rd), and,
in particular,

|ŵj(p)| ≥ c(1 + |p|)−β, j = 1, 2, β > d. (4.3)

We refer to [5, Lemma 1] and to [66] in connection with examples of non-negative real compactly
supported w satisfying (4.3).

Note that αj in these results of [3] behave similarly to αj in the result of [44] mentioned in
Subsection 3.3, althought αj in [3] are smaller.

For Problems 5(A) and 5(B), n = 1, for d ≥ 2, analogs of formula (3.6) and related global
uniqueness results are given in the recent work [52]. These results are presented in Subsection 4.2.
Reconstruction results of [52] on Problems 5(A), 5(B), n = 1, are strongly developed theoretically
and implemented numerically in the recent work [24]. These results are presented in Subsection
4.3. Related approximate Lipschitz stability estimates are given in the recent work [62] and are
presented in Subsection 4.4.

Note also that the works [43, 45] and the aforementioned subsequent works essentially use, in
particular, the following phaseless version of formula (3.6):

|f(k, l)|2 = |v̂(p)|2 +O(E−1/2), as E → +∞, (k, l) ∈ ME, k − l = p, (4.4)
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which is used for v itself and for v replaced by v + wj.
The key advantage of works [52], [24] (fulfilled in the framework of this thesis) consists in

solving of Problem 5(A), where the data are surprisingly limited, and not only Problem 5(B).

4.2 Single background scatterer: the first approximation

The work [52] deals with the case of a single background scatterer, that is, with Problems 5(A)
and 5(B), n = 1, for d ≥ 2. The approach of [52] to these phaseless inverse scattering problems is
based on formula (4.4) and the results of [52] presented in Subsection 2.1 on the phase retrieval
Problems 2(A), (B).

In particular, in [52], in dimension d ≥ 2, we show that |f [v + w]|2 at high energies uniquely
determines v via explicit formulas, where f [v + w] is the scattering amplitude for v + w, w is
an a priori known nonzero background scatterer, under the condition that supp v and suppw are
sufficiently disjoint. If this condition is relaxed, then we give similar formulas for finding v from
|f [v]|2 and |f [v + w]|2.

In addition, for the aforementioned phaseless scattering data given at a fixed energy E, in [52]
we construct approximations u1E to v such that in the Fourier space

|û1E(p)− v̂(p)| = |ŵ(p)|−1O(E−1/2), as E → +∞, p ∈ B(2−δ)
√
E,

û1E(p) = 0, p ∈ Rd \B(2−δ)
√
E, for fixed δ ∈ (0, 2).

(4.5)

Besides, in the configuration space, we have that

∥u1E − v∥L∞(D) = O(E− 1
2

m−d
m+β ), as E → +∞, (4.6)

under the additional assumptions that v ∈ Wm,1(Rd), m > d, and w satisfies (4.3) with β > d.
Nevertheless, the convergence in (4.5), (4.6) is slow. It does not exceed O(E−1/2) even for

infinitely smooth v. In this respect, approximate reconstructions u1E of [52] are drastically improved
iteratively in [24], see Subsection 4.3.

4.3 Single background scatterer: iterations and implementation

The work [24] in its theoretical part drastically improves the first approximation u1E mentioned
in Subsection 4.2 via iterations, d ≥ 2. These iterations are based on the following phaseless
analogue of Lemma 3.1:

Lemma 4.1. ([24]) Under the assumptions of Lemma 3.1, the following estimate holds:∣∣|f [v](k, l)|2 − |f [vEappr](k, l)|2 + |v̂Eappr(k − l)|2 − |v̂(k − l)|2
∣∣ = O(E−α−1/2), (4.7)

as E → +∞, for (k, l) ∈ ME.

For Problem 5(A), the iterative step consists in constructing uj+1
E using the formula

|F(uj+1
E + w)(p)|2 = |F(ujE + w)(p)|2 + |f [v + w](k, l)|2 − |f [ujE + w](k, l)|2,

where p ∈ B(2−δ)
√
E, k − l = p, k2 = l2 = E,

(4.8)

and using results on the phase retrieval mentioned in Subsection 2.1. Theoretical properties of
these iterates ujE are formalized in the following theorem.

Theorem 4.2. ([24]) Let v, w = w1 satisfy assumptions (2.3), where dist(D,Ω) > diamD,
v ∈ Wm,1(Rd), m > d, w ∈ C(Rd) and w satisfy (4.3). Then

∥v − ujE∥L∞(D) = O(E−αj) as E → +∞, (4.9)

where

αj =
1

2

m− d

β + d

(
1−

(
m− d

m+ β

)j
)
. (4.10)
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For αj of Theorem 4.2, we have that

αj → α∞ :=
1

2

m− d

β + d
as j → +∞,

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞.

(4.11)

Similar results hold for Problem 5(B), n = 1; see [24].
One can see that convergence in (4.9) is drastically better than in (4.6), at least, for large m

and j. Moreover, the convergence in (4.9) (with single w1) is even better than in (4.1) (with two
background scatterers w1, w2). The convergence in (4.9), is similar to the somewhat more rapid
convergence in (3.20) for the phased case.

Note that only the phaseless scattering data limited to ΓE are used in the reconstructions
mentioned above. Here ΓE is the same d−dimensional subset of ME as in Subsection 3.3.

Figure 2.5 illustrates our numerical reconstruction of non-smooth real-valued v for Problem
4(A), where v, w are shown in Figure 2.2(a); see [24, Section 4.3]. The phaseless scattering data
consist of the single differential scattering cross section |f [v+w]|2. Figures 2.5(a), 2.5(c) illustrate
the first approximation u1E to v as a complex-valued function. Figures 2.5(b), 2.5(d) illustrate our
iterative approximation u10E . Note that the quality of u10E is similar to the phase retrieval solution
shown in Figure 2.2(c) and is much better than the first approximation u1E.

(a) Reu1E (b) Reu10E

(c) Imu1E (d) Imu10E

Figure 2.5: ([24]) Reconstructions uJE, of non-smooth real-valued v for Problem 5(A); see Fig. 2.2.
Top row: Real parts. Bottom row: Imaginary parts.

Note that in scattering problems, the data |f [v+w]|2 considered as an approximation to |v̂+ŵ|2
arise on a very non-uniform grid. This leads to significant numerical difficulties, especially in the
framework of Problem 5(A). This required advanced numerical regularisation developed in [24].

It is remarkable that our method approximately reconstructs two real-valued functions Re v
and Imv on D from one real-valued function |f [v + w]|2|ΓE

at fixed E for known background
w, under the additional assumption that v and w are sufficiently separated. ΓE is the same
d−dimensional subset of ME as in Subsection 3.3.
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4.4 Stability estimates

Stability is one of the most important issues in inverse problems. In particular, stability means that
the close data can be produced only by close inner parameters. Therefore, without such results
one cannot expect that the reconstruction remains adequate for noisy (or slightly perturbed) data.

The problem of Lipschitz stability for the phased Problem 4(A) was studied in [41], where the
following estimate was given

∥v1 − v2∥L∞(D) ≤ A1E
1
2∥f [v1]− f [v2]∥C(ΓE) + A2E

− 1
2

m−d
d , (4.12)

where E ≥ 1, v1, v2 satisfy (3.2), v1 − v2 ∈ Wm,1(Rd), d ≥ 2, and A1, A2 depend only on bounds
for norms of v1, v2. Here ΓE is the same d−dimensional subset of ME as in Subsections 3.3, 4.3.

Estimate (4.12) is an approximate Lipschitz stability estimate in terminology of [41].
In the recent work [62] (fulfilled in the framework of this thesis) we obtained similar estimates

for the phaseless Problems 5(A), 5(B), n = 1. In particular, for Problem 5(A) we proved that

∥v1 − v2∥L∞(D) ≤ C1E
1
2
−ε∥|f [v1 + w]|2 − |f [v2 + w]|2∥C(ΓE) + C2E

−( 1
2
−ε)m−d

β+d , (4.13)

for large E, where v1, v2, w satisfy assumptions (3.2), (4.3), v1−v2 ∈ Wm,1(Rd), and dist(D,Ω) >
diamD, and ε ∈ (0, 1/2) is fixed, C1, C2 are similar to A1, A2.

Estimates similar to (4.13) also hold for Problem 5(B), n = 1; see [62].
Estimates similar to (4.13) also hold for the phase retrieval Problems 2(A), (B); see [62].
One can see that the right hand sides of (4.12), (4.13) are sums of two terms. The first one is

Lipschitz term with respect to data difference, and the second one is approximate but decaying for
high energies. In addition, its decay is very fast for large m, that is for smooth v1−v2. One can see
that, at fixed energy E, the right-hand side in estimates (4.12), (4.13) tend to positive constants
if data differences tend to zero. However, these constants become very small for large E. This is
completely sufficient from the point of view of numerical analysis: numerical reconstructions are
never absolutely precise. Therefore, it is very natural to study reconstructions (including stability)
up to some small constants (that is, approximate reconstructions).

The inverse scattering algorithm related with the stability estimate (4.12) was given in [44],
implemented numerically in [6], [63], and mentioned in Subsection 3.3. In turn, the inverse scat-
tering algorithm related with the stability estimate (4.13) was given and implemented numerically
in [24].

Note also that, under our assumptions, exact Lipschitz and Hölder stability estimates at fixed
energy E are impossible; see [38], [26], [27], for such instability results for more or less similar
non-linear and linear inverse problems.

5 Multipoint formulas in scattering theory
As it is already mentioned in Subsection 2.2, expansions of the form (2.7) arise, in particular,
for different functions of the scattering theory. Below in this section we describe applications
of multipoint formulas mentioned in Subsection 2.2 to direct and inverse scattering for equation
(3.1).

5.1 Multipoint approach to inverse scattering from far-field

The simplest general approach to Problem 4(A) and Problems 5(A), (B) consists in formulas
(3.6), (4.4) for the scattering amplitude f at high energies and subsequent reconstruction from
phased or phaseless Fourier transforms. For the case of phaseless Fourier transforms, some of
these reconstruction results are obtained in the framework of this thesis and are mentioned in
Subsection 2.1.
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One of the main drawbacks of this simplest approach to Problems 4(A), 5(A), (B) consists
in slow convergence in formulas (3.6), (4.4) as E → +∞. In this respect, formulas (3.6), (4.4)
are drastically improved in [47], [54], at least, for smooth v (where work [54] is fulfilled in the
framework of this thesis). This surprising advancement is based on asymptotic expansions of the
form (2.7) for the scattering amplitude f at high energies (see [13], [38], [68]) and the multipoint
formulas mentioned in Subsection 2.2.

Let, for example, v ∈ C∞
c (Rd), where C∞

c denotes compactly supported infinitely smooth
functions. Then (see [54])

f(k(s), l(s)) =
N∑
j=1

aj(p, ω)

sj−1
+O(s−N) as s→ +∞, (5.1)

where

k(p) = p/2 + (E − p2/4)1/2ω, l(p) = −p/2 + (E − p2/4)1/2ω, E = E(s) = s2,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(5.2)

and

a1(p, ω) = v̂(p), (5.3)

where v̂ is defined by (2.1). Note that formula (5.1), for N = 1, follows from (3.6).
One can see that expansion (5.1) is of the form (2.7). Therefore, the multipoint approach

mentioned in Subsection 2.2 leads, in particular, to the following result on Problem 4(A) (see
[54]):

Theorem 5.1. Let v ∈ C∞
c (Rd). Then

v̂(p) = v̂n(p, s, τ⃗) +O(s−n), as s→ +∞,

v̂n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1f(kj(s), lj(s))

αj(τ⃗)βn,j(τ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(5.4)

where

kj(s) = p/2 + (Ej − p2/4)1/2ω, lj(s) = −p/2 + (Ej − p2/4)1/2ω, Ej = E(sj) = s2j ,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(5.5)

and αj, βn,j are defined in (2.11).

Theorem 5.1 is a multi-energy (polychromatic) result on inverse scattering for equation (3.1).
The point is that the convergence in (5.4), for n > 1, is much faster than in (3.6).

Polychromatic inverse scattering results of such a type go back to [47]. However, the formulas of
Theorem 5.1 are much more convenient than the related formulas of [47], especially, for numerical
implementations; see [54] for details.

The phaseless analogue of Theorem 5.1 is as follows (see [54]):

Theorem 5.2. Under the assumptions of Theorem 5.1, we have also that

|v̂(p)|2 = |v̂|2,n(p, s, τ⃗) +O(s−n), as s→ +∞,

|v̂|2,n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1|f(kj(s), lj(s))|2

αj(τ⃗)βn,j(τ⃗)
.

(5.6)
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As it is already mentioned above, Theorems 5.1, 5.2 and reconstruction results from phased
and phaseless Fourier transforms give advanced theoretical methods for Problems 4(A), 5(A), (B).

The first numerical implementations of formulas (5.4), (5.6) is given in [54]. In the framework of
this implementation for the noisy case, we also use the regularised multipoint formulas mentioned
in Subsection 2.2.

Figure 2.6 shows examples of numerical implementation of formulas (5.6) for smooth potential
v (shown in Figure 5(a) of [24]), where d = 2. The precise image of v is not essential for these
examples. Figure 2.6(a) is an exact function |v̂|2. Figures 2.6(b)–(d) are different reconstructions
of |v̂|2 from phaseless scattering amplitude |f [v]|2 given on ME for some different energies E
using formulas (5.6) and their regularized versions (see Subsection 2.2). Figure 2.6(b): n = 3,
E = 252, 302, 352, and regularisation is applied; Figure 2.6(c): n = 1, E = 352, and regularisation
is not required; Figure 2.6(d): n = 3, E = 252, 302, 352, and regularisation is not applied.

Figure 2.6: ([54]) Exact |v̂|2 and its polychromatic phaseless reconstructions; see Subsections 2.2
and 5.1 (and [54] for details). (a) Exact |v̂|2.
(b) Three-point regularized reconstruction from noisy |f |2 at E = 252, 302, 352. Regularization
parameter r =

√
10.

(c) One-point reconstruction from |f |2 at E = 352.
(d) Three-point reconstruction from noisy |f |2 at E = 252, 302, 352 without regularization.

5.2 Multipoint approach for inverse scattering from near-field

In this subsection we present the results of [54] on Problem 4(C).
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Consider the scattering solutions ψ+ satisfying (3.1), (3.2). For v ∈ C∞
c (Rd), we have that

ψ+(x, k) = eikx

(
1 +

N−1∑
j=1

bj(x, θ)

sj
+O(s−N)

)
, as s→ +∞,

b1(x, θ) =
1

2i
Dv(x,−θ), Dv(x, θ) :=

∫ +∞

0

v(x+ τθ)dτ,

(5.7)

where x ∈ Rd, s = |k|, θ = k/|k| (x and θ are fixed); see [68], [54]. Note that Dv is known as the
divergent beam transform of v; see, for example, [39].

Using the multipoint formulas (2.9) for the function

z(x, k) = 2i|k|(e−ikxψ+(x, k)− 1), (5.8)

we obtain the following result (see [54]):

Theorem 5.3. Let v ∈ C∞
c (Rd). Then

Dv(x,−θ) = a1,n(x, θ, s, τ⃗) +O(s−n), as s→ +∞,

a1,n(x, θ, s, τ⃗) :=
n∑

j=1

yj(s, τ⃗)z(x, sj(s)θ),
(5.9)

where sj are defined by (2.8), yj are defined by (2.10).

The reconstruction formulas (5.9), (5.8) are new for n ≥ 2.
Suppose that supp v ⊂ Ω, where Ω is an open bounded convex domain in Rd with smooth

boundary ∂Ω. Let

Σ = {(x, θ) : x ∈ ∂Ω, θ ∈ Sd−1, νxθ > 0}, (5.10)

where νx denotes the outward normal to ∂Ω at point x. Then 2ib1(x, θ) = Dv(x,−θ), (x, θ) ∈ Σ,
can be considered as the X-ray transform of v.

The methods for reconstructing v from its X-ray transform are developed in very details; see,
for example, [39].

Formulas (5.8)-(5.9) and inversion formulas for the X-ray transform (see, e.g., [39]) give a
method for inverse scattering from the boundary values ψ+(x, sθ), (x, θ) ∈ Σ at several large s
(that is, at several large energies).

5.3 Approaches to near-to-far field mapping

In this subsection we recall some old and recent known results on Problem 4(B).
The first formula for solving Problem 4(B) was given in theorem 3.3 of [9] for the case d = 3.

This formula gives f1(k, l) at fixed k ∈ S2√
E

it term of an infinite sum of integrals of ψ+(x, k)−eikx,
x ∈ ∂D, for the case when D = BR for some R > 0, d = 3, where Br is of (2.2).

Note that Problem 4(B), for d ≥ 1, can be also solved via

f(k, l) = (2π)−d

∫
∂D

(
e−ilx ∂

∂νx
ψ+(x, k)− ψ+(x, k)

∂

∂νx
e−ilx

)
dx, (5.11)

where k, l ∈ Rd, k2 = l2 = E > 0, νx is the outward normal to ∂D at x ∈ D; see [40].
A disadvantage of the aforementioned well-known formulas for solving Problem 4(B) for d > 1

consists in the following: for finding f1(k, l) at fixed k, l ∈ Sd−1√
E

values of ψ+(x, k) along the whole
boundary ∂D are necessary. In addition, the formula of [9] is complicated, whereas formula (5.11)
requires not only ψ+ on ∂D but also its normal derivative on ∂D.

40



In contrast, the multipoint approach of [46], gives, in particular, for fixed (k, l) ∈ ME,

explicit formulas for finding f1(k, l) up to O(s−n), as s→ +∞,

from ψ+(x, k) given at n points x1(s), ..., xn(s),
(5.12)

where

xj(s) = (s+ τj)l̂, j = 1, ..., n, l̂ = l/|l|,
s > 0, 0 = τ1 < ... < τn.

(5.13)

This approach is based on asymptotic expansion (3.3) for ψ+, the fact that the function

z(|x|, k, x/|x|) = |x|(d−1)/2e−i|k||x| (ψ+(x, k)− eikx
)
, (5.14)

for fixed k, x/|x| is of the form (2.7), and multipoint formulas presented in the Subsection 2.2.
Further, in Subsections 5.4, (5.5), we discuss analogs of formulas (5.12) for the case of Problem

6(A).

5.4 Two-point formulas for phaseless near-to-far field mapping

Historically, the multipoint approach goes back to two-point formulas of [42], [43] for solving
Problem 6(A).

Let

a(x, k) = |x|(d−1)/2(|ψ+(k, x)|2 − 1). (5.15)

In particular, works [42], [43] give

explicit formulas for finding f(k, l) up to
O (s−σ)

sin(τ(|k| − kl̂))
, as s→ +∞,

from a(x, k) given at two points x1(s), x2(s),
(5.16)

where x1(s) = sl̂, x2(s) = (s+ τ)l̂, l̂ = l/|l|, and

σ =

{
1/2, for d = 2,

1, for d ≥ 3.
(5.17)

Detailed estimates for the error term in (5.16), for d = 2 and d = 3, are given in [51] fulfilled in
the framework of this thesis.

The main drow-back of formulas (5.16) is a slow rate of convergence as s → +∞. This
disadvantage motivated further multipoint studies given in [46], [48], [53], where [53] is fulfilled in
the framework of this thesis.

5.5 Multipoint formulas for phaseless near-to-far field mapping

In this subsection we present results of work [53] on Problem 6(A).
In particular, in this work we give, for fixed (k, l) ∈ ME, l ̸= k, for d ≥ 2,

explicit formulas for finding f1(k, l) up to O
(
s−n
)
, as s→ +∞,

from |ψ+(x, k)|2 given at m points x1(s), ..., xm(s),
(5.18)

where m depends linearly on n, and

xj(s) = (s+ τj)l̂, j = 1, ...,m, l̂ = l/|l|,
s > 0, τ1 = 0, τj1 < τj2 , j1 < j2.

(5.19)
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One can see that in formulas (5.18) and (5.19) the measurement points xj = xj(s) are on the
ray starting at the origin in direction l̂, where s is the distance between the origin and the set of
these points, and the distances τj+1 − τj = |xj+1 − xj| are fixed. In addition, the reconstruction
formulas mentioned in (5.18) are asymptotic, where n can be considered as their convergence rate
in terms of O(s−n) as s→ +∞, that is when the points xj = xj(s) move to infinity.

The main idea is to apply the approaches of Subsections 2.2, 5.4 to the phaseless function a
defined by (5.15) in terms of |ψ+|2.

In the simplest result of [53], we assume that in formulas (5.18) and (5.19) d = 3, m = 2n and
that

τj =

{
(j − 1)τ, j = 1, ..., n,

σ + (j − 1− n)τ, j = n+ 1, ..., 2n,
(5.20)

τ = τ(k, l) =
2π

κ
, 0 < σ ̸= 0 (mod

π

κ
), κ = |k| − kl̂. (5.21)

Then our formulas (5.18) are specified as follows:

f1(k, l) =
e−i(s+σ)κa1(s)− e−isκa2(s) +O(s−n)

−2i sin(σκ)
, as s→ +∞,

a1(s) = a1(k, l, s) =
n∑

j=1

(−1)n−j(s+ τj)
n−1

(j − 1)!(n− j)!τn−1
a(xj(s), k),

a2(s) = a2(k, l, s) =
2n∑

j=n+1

(−1)n−j(s+ τj)
n−1

(j − 1− n)!(2n− j)!τn−1
a(xj(s), k),

(5.22)

where (k, l) ∈ ME, l ̸= k, d = 3, a(x, k) is defined by (5.15). In addition κ ̸= 0, for l ̸= k.
The fact that formulas (5.22) require 2n points in place of n points in (5.12) for the same

precision O(s−n) is related to absence of phase information in data used in (5.22). In addition,
formulas (5.22), for n = 1, reduce to two-point formulas (5.16).

Note that formulas (5.22) are completely explicit! Another advantage of this formula is rela-
tively small (m = 2n) number of measurement points for every (k, l). A possible inconvenience of
formula (5.22) is that the step τ = τ(k, l) is fixed a priori, and depends on (k, l). Besides, formula
(5.22) is not valid for d = 2 (because of different asymptotics (3.3) for ψ+).

The aforementioned disadvantages of (5.22) motivated further results in [53].
In these results, we consider |ψ+(x, k)|2 for fixed k, given at m points xj of the form (5.19),

where

τj = (j − 1)τ, τ ̸= 0 (mod
π

κ
). (5.23)

For these points xj we have the following results:

• for the case of small potentials (’linear case’), for d = 2, 3, we have

explicit formulas for finding f1(k, l) up to O(s−n), as s→ +∞,

from a(x, k) given at 2n points x1(s), ..., x2n(s),
(5.24)

• for general potentials, d = 3, we have

explicit formulas for finding f1(k, l) up to O(s−n), as s→ +∞,

from a(x, k) given at 3n− 1 points x1(s), ..., x3n−1(s),
(5.25)

• for general potentials, d = 2, we have

explicit formulas for finding f1(k, l) up to O(s−n), as s→ +∞,

from a(x, k) given at 3n points x1(s), ..., x3n(s).
(5.26)
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Note that:

• there is a difference between d = 2 and d = 3 due to asymptotics (3.3) of ψ+, the case d = 2
is more difficult;

• for the general case, d = 2, 3, formulas (5.25), (5.26) require more points than formulas
(5.22) or (5.24);

• in contrast to (5.22), formulas (5.24), (5.25) and (5.26) do not require to fix τ a priori as a
function of (k, l). In this respect, formulas (5.24), (5.25) and (5.26) are more convenient for
applications;

• apparently, for the general cases of (5.25), (5.26) there are formulas that require less mea-
surement points for the same precision.

Note that formulas of [42, 43, 48, 53] can be also used for Problem 6(A), (B) when coefficient
v in equation (3.1) is replaced, e.g., by an impenetrable obstacle (see, e.g., [15] for definition of
impenetrable obstacles).

6 Conclusions
This thesis contributes to studies on phase retrieval, phaseless inverse scattering, and multipoint
formulas in inverse problems, and includes the following results:

1 We give phase retrieval formulas from a single phaseless Fourier transform with appropriate
background information. Proceeding from these formulas we obtain different theoretical and
numerical results on the phase retrieval problem for the classical Fourier transform.

2 We propose an iterative algorithm for inverse scattering from a single differential scattering
cross section with appropriate background scatterer. This includes error estimates, stability
estimates, and numerical implementation.

3 We give the first numerical implementation of the method of multipoint formulas in inverse
problems, including an efficient regularization of these formulas for the noisy case. By this
method we also obtain new theoretical results on polychromatic inverse scattering problems
(from far-field data, phaseless far-field data, and from near-field data).

Topics of future studies include:

1 Numerical implementation of the aforementioned algorithms for the phase retrieval and
phaseless inverse scattering problems for d = 3.

2 Further numerical implementation of multipoint formulas in inverse scattering for the Schrödinger
and Helmholtz equations.

3 Theoretical and numerical extensions of the thesis results to the cases of other equations of
mathematical physics.

4 Reconstruction from real data, e.g., in X-ray analysis or in electron tomography.
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[6] J. A. Barceló, C. Castro, and J. M. Reyes, Numerical approximation of the potential in the
two-dimesional inverse scattering problem, Inverse Problems, 32(1), 015006 (19pp) (2016)

[7] A. Barnett et al., Geometry of the phase retrieval problem, Inverse Problems 36.9 : 094003
(2020)

[8] A.H. Barnett, Ch.L. Epstein, L.F. Greengard, J.F. Magland, Geometry of the phase retrieval
problem—graveyard of algorithms, Cambridge University Press, Cambridge (2022)

[9] Yu.M. Berezanskii, On the uniqueness theorem in the inverse problem of spectral analysis for
the Schrödinger equation, Tr. Mosk. Mat. Obshch. 7, 3-62 (1958) (in Russian)

[10] F.A. Berezin, M.A. Shubin, The Schrödinger Equation, Mathematics and Its Applications,
Vol. 66, Kluwer Academic, Dordrecht (1991)

[11] M. Born, Quantenmechanik der Stossvorgange, Zeitschrift fur Physik 38 (11-12), 803-827
(1926)

[12] V.A. Burov, N.V. Alekseenko, O.D. Rumyantseva, Multifrequency generalization of the
Novikov algorithm for the two-dimensional inverse scattering problem, Acoust. Phys. 55(6),
843–856 (2009)

[13] V.S. Buslaev, Trace formulas and certain asymptotic estimates of the resolvent kernel for
the Schrödinger operator in three-dimensional space, Topics in Mathematical Physics, Vol. 1,
Plenum Press, Oxford (1967)

[14] K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn.
Springer, Berlin, (1989)

[15] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Applied Math-
ematical Sciences) vol 93 4th edn (Berlin: Springer) (2019)

44



[16] K. Engel, B. Laasch, The modulus of the Fourier transform on a sphere determines 3-
dimensional convex polytopes, J. Inverse Ill-Posed Probl., https://doi.org/10.1515/jiip-2020-
0103

[17] L.D. Faddeev, Uniqueness of the solution of the inverse scattering problem, Vestn. Leningrad
Univ. 7, 126–130 (1956) (in Russian)

[18] L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Multi-particle Systems, Mathe-
matical Physics and Applied Mathematics, 11. Kluwer Academic Publishers Group, Dordrecht,
1993
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Article I

Phaseless inverse scattering with
background information

R.G. Novikov, V.N.Sivkin
We consider phaseless inverse scattering for the multidimensional Schrödinger equation with

unknown potential v using the method of known background scatterers. In particular, in dimension
d ≥ 2, we show that |f1|2 at high energies uniquely determines v via explicit formulas, where f1 is
the scattering amplitude for v +w1, w1 is an a priori known nonzero background scatterer, under
the condition that supp v and suppw1 are sufficiently disjoint. If this condition is relaxed, then
we give similar formulas for finding v from |f |2, |f1|2, where f is the scattering amplitude for v.
In particular, we continue studies of [Novikov, J. Geom. Anal. 26(1), 346–359, 2016], [Leshem et
al, Nature Communications 7(1), 1–6, 2016].

Keywords: Schrödinger equation, Helmholtz equation, phaseless inverse scattering, phase
retrieval problem

1 Introduction
We consider the scattering problem for the stationary Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.1)

where ∆ is the standard Laplacian in x,

v ∈ L∞(Rd), v is complex–valued, supp v ⊂ D,

D is an open bounded domain in Rd.
(1.2)

The Schrödinger equation (1.1), under assumptions (1.2), describes a non-relativistic quantum
mechanical particle at fixed energy E interacting with a macroscopic object contained in D, where
v is the potential of this interaction (and we assume that ℏ2

2m
= 1, where ℏ is the reduced Planck’s

constant, m is the mass of the particle).
Equation (1) at fixed E can be also considered as the Helmholtz equation of electrodynamics

or acoustics at fixed frequency ω. In this context v and E are interpreted as follows:

v(x) = (1− n2(x))E, E =

(
ω

c0

)2

, (1.3)

where n(x) is a scalar index of refraction, n(x) ≡ 1 on Rd \D, c0 is a reference speed of wave
propagation; and in the simplest case n(x) = c0/c(x), where c(x) is a speed of wave propagation.

For equation (1.1) we consider the classical scattering solutions ψ+ = ψ+(x, k), x ∈ Rd, k ∈
Rd, k2 = E, specified by the following asymptotics as |x| → ∞:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
A(k, |k| x

|x|
) +O

(
1

|x|(d+1)/2

)
, (1.4)
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for some a priori unknown A. The function ψ+ = ψ+(x, k) describes scattering of the incident
plane waves described by eikx on the scatterer described by v. The second term on the right–hand
side of (1.4) describes the leading scattered spherical waves. The function A arising with this term
is the scattering amplitude for equation (1.1) for fixed E. This function is defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E

× Sd−1√
E
. (1.5)

It is convenient to present A as follows:

A(k, l) = c(d, |k|)f(k, l), (k, l) ∈ ME, (1.6)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4;

see formulas (1.9), (2.2), (2.5). We also use the terminology "scattering amplitude" for f
arising in (1.4), (1.6).

In order to study ψ+ and f one can use the Lippmann–Schwinger integral equation (2.1) for
ψ+ and the integral formula (2.2) for f ; see Section 2.

We recall that in quantum mechanics the complex (phased) values of the functions ψ+ and
f have no direct physical sense, whereas the phaseless values of |ψ+|2 and |f |2 have probabilistic
interpretation (the Born’s principle) and can be obtained in experiments; see [6], [11]. On the other
hand, in acoustics or electrodynamics the complex values of ψ+ and f can be directly measured,
at least, in principle. However, in many important cases of monochromatic electro–magnetic wave
propagation described using the model (1.1), (1.3) (e.g., X–rays and lasers) the frequency ω is so
great that only phaseless values of |ψ+| and |f | can be measured in practice by modern technical
devices; see, e.g., [13] and references therein.

Let

MΛ = ∪E∈ΛME, where Λ ⊂ R+ = (0,+∞). (1.7)

We consider, in particular, the following inverse scattering problems for equation (1):

Problem 1.1. Reconstruct potential v on Rd from its scattering amplitude f on some appro-
priate M′ ⊆ MR+ .

Problem 1.2. Reconstruct potential v on Rd from its phaseless scattering data |f |2 on some
appropriate M′ ⊆ MR+ .

Let F denote the Fourier transform defined by the formula

ν̂(p) = Fν(p) = (2π)−d

∫
Rd

eipxν(x)dx, p ∈ Rd, (1.8)

where ν is a test function.
In particular, for Problem 1.1, for d ≥ 2, it is well known that the scattering amplitude f at

high energies uniquely determines v via the formula

v̂(p) = f(k, l) +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p ∈ Rd; (1.9)

see, for example, [10], [22]. For many other important results on Problem 1.1, see, for example,
[7], [9], [26] and references therein.

On the other hand, for Problem 1.2 it is well known that the phaseless scattering data |f |2 on
MR+ do not determine v uniquely, in general; see, for example, [23].

In view of the aforementioned nonuniqueness for Problem 1.2 we also consider Problem 1.3
formulated below.

Let f be the initial scattering amplitude for v satisfying (1.2) and fj be the scattering amplitude
for

vj = v + wj, j = 1, . . . , n, (1.10)
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where w1, . . . , wn are additional a priori known background scatterers such that

wj ∈ L∞(Rd), wj ̸= 0 in L∞(Rd), suppwj ⊂ Ωj,

Ωj is an open bounded domain in Rd, Ωj ∩D = ∅,
wj1 ̸= wj2 for j1 ̸= j2 in L∞(Rd),

j, j1, j2 ∈ {1, . . . , n}.

(1.11)

Problem 1.3. Reconstruct potential v on Rd from the phaseless scattering data |f |2,
|f1|2, ..., |fn|2 on some appropriate M′ ⊆ MR+ , for some appropriate background scatterers
w1, . . . , wn.

Problem 1.3 in dimension d = 1 was considered in [1] for n = 1. Problem 1.3 in dimension
d ≥ 2 was considered in [2], [3], [23], [24].

In particular, for Problem 1.3, for d ≥ 2, n = 2, analogs of formula (1.9) and related global
uniqueness results were given in [23], [24]. Reconstruction results of [23], [24] on Problem 1.3,
for d ≥ 2, n = 2, were strongly developed in [2], [3]. In particular, for the phaseless case with
background scatterers, results of [2] include an analog of the algorithm of [22]. Related numerical
implementation is also given in [2].

In the previous works [2], [3], [22], [23], [24] for uniqueness and efficiency of reconstruction
in Problem 1.3, for d ≥ 2, the phaseless scattering data |f |2, |f1|2, |f2|2 at high energies and
background w1, w2 were necessary. In the present work we show that these data can be reduced
considerably. In particular, we show that already |f1|2 at high energies and w1 uniquely determine
v via explicit formulas, under the condition that supp v and suppw1 are sufficiently disjoint ! If the
latter condition is relaxed, we give similar formulas for finding v from |f |2, |f1|2 at high energies
and w1. These formulas and related global uniqueness results are given in detail in Sections 3–6; see
Theorems 4.1, 4.2, Corollaries 4.1, 4.2, Propositions 4.1, 4.2, Theorems 5.1, 5.2 and Theorems 6.1,
6.2. Note that our aforementioned reconstruction formulas include approximate reconstructions
at fixed E and related error estimates; see Sections 4.2, 5, 6.

Remark 1.1. The aforementioned results on Problem 1.3 consisting in finding v from |f1|2
and w1 can be also considered as results on Problem 1.2 with v supported in D ∪ Ω1, where v is
unknown in D and v = w1 in Ω1.

In addition, the present work involves considerations of the following problem of reconstruction
from phaseless Fourier transforms, under assumptions (2), (9)–(11) (with L1 in place of L∞ for
more generality).

Problem 1.4. Reconstruct v from the phaseless Fourier transforms |Fv|2, |Fv1|2, ..., |Fvn|2
and background w1, ..., wn.

Problem 1.4 can be considered as Problem 1.3 in the Born approximation at high energies
or/and for small v, w1, ..., wn; see formulas (2.5), (2.7).

In the literature the problem of finding v from |Fv|2 is known as the phase retrieval problem;
see [20], [4], [8] and references therein. The problem of finding v from |Fv1|2 and w1 was considered,
in particular, in [28], [21]. Problem 1.4 in the framework of solving Problem 1.3 was considered
in [3], [2], [23], [24] and we continue such considerations in the present work.

The results of the present work on Problem 1.4 are given in Section 3 and consist in Theorems
3.1 and 3.2. Actually, Theorem 3.1 is a proper mathematical formalization of some of consid-
erations of [21] related with finding v from |Fv1|2 and w1, under the condition that supp v and
suppw1 are sufficiently disjoint.

In addition to Problems 1.2, 1.3, 1.4, there are also other possible formulations of phaseless
inverse scattering problems for equation (1.1) and for other equations of wave propagation. In
connection with such formulations and related results, see, for example, [12]–[14], [17]–[19], [23],
[25]–[27], [29]–[32] and references therein.

Finally, note that the further structure of the present article is as follows. In Section 2 we
recall some known results on direct scattering for equation (1.1) under assumptions (1.2) (or when
v is replaced by vj of (1.10), (1.11)). The results of the present work on Problem 1.4 are given in
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Section 3. The results of the present work on Problem 1.3 (and on Problem 1.2, see Remark 1.1)
are given in Sections 4, 5, 6. In addition, estimates of Sections 5 and 6 are proved in Sections 7
and 8.

2 Preliminaries on direct scattering for equation (1.1)
For equation (1.1), under assumptions (1.2), we consider the scattering solutions ψ+ specified
by (1.4) and the scattering amplitude f arising in (1.4), (1.6). We recall that ψ+ satisfy the
Lippmann–Schwinger integral equation

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) = −(2π)−d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|, d),
(2.1)

where x, k ∈ Rd, k2 = E, and for f the following formula holds:

f(k, l) = (2π)−d

∫
D

e−ilyv(y)ψ+(y, k)dy, (2.2)

where k, l ∈ Rd, k2 = l2 = E > 0; see, for example, [5], [26] and references therein.
We also recall that for any s > 1/2, the following Agmon estimate holds:

∥ < x >−s G+(k) < x >−s ∥L2(Rd)→L2(Rd) = a0(d, s)|k|−1, |k| ≥ 1, (2.3)

where < x > denotes the multiplication operator by the function (1 + |x|2)1/2, G+(k) denotes the
integral operator such that

G+(k)u(x) =

∫
Rd

G+(x− y, k)u(y)dy, (2.4)

where G+(x, k) is defined in (2.1), u is a test function. See, for example, the proof of (2.3) given
in [9]; following this proof an explicit estimate for a0(d, s) can be given.

Using (2.1), (2.2), (2.3) one can show that, under assumptions (1.2), (1.10), (1.11), formula
(1.9) is valid and the following formulas hold:

|Fvj(p)|2 = |fj(k, l)|2 +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p ∈ Rd, (2.5)

where fj is the scattering amplitude for vj, j = 0, ..., n, and v0 = v, f0 = f, vj = v+wj, j ≥ 1;
see, for example, [22], [24] and references therein.

We recall that formulas (1.9), (2.5) hold for any fixed p ∈ Rd for d ≥ 2.
Suppose that, in addition to (1.2), (1.10), (1.11), we have that

max(∥v∥∞, ∥wj∥∞) ≤ η, (2.6)

where j = 1, ..., n, ∥ · ∥∞ = ∥ · ∥L∞(Rd). Then the following more precise version of (2.5) holds (see
formula (2.15) in [24]):

||Fvj(p)|2 − |fj(k, l)|2| ≤ c(D ∪ Ωj)η
3E−1/2, (k, l) ∈ ME, k − l = p

for E1/2 ≥ ρ(D ∪ Ωj, η),
(2.7)

where j = 0, ..., n, Ω0 = ∅, and c > 0, ρ ≥ 1 are the constants defined by the formulas:

ρ(U , η) = max(2a0(d, σ/2)c2(U , σ)η, 1), (2.8)
c(U) = 6(2π)−2da0(d, σ/2)(c1(d, σ))

4(c2(U , σ))3, (2.9)

c1(d, σ) =

(∫
Rd

dx

(1 + |x|2)σ/2

)1/2

, (2.10)

c2(U , σ) = sup
x∈U

(1 + |x|2)σ/2, (2.11)
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for some fixed σ > d, a0(d, σ) is the constant of (2.3), U is an open bounded domain in Rd.
Remark 2.1. The constants c, ρ have the following monotonicity properties:

c(U1 ∪ U2) ≥ c(U1), (2.12)
ρ(U1 ∪ U2, η) ≥ ρ(U1, η), ρ(U , η2) ≥ ρ(U , η1) for η2 > η1, (2.13)

where U , U1, U2 are bounded domains in Rd, η, η1, η2 > 0.

3 Reconstruction from phaseless Fourier transforms
We consider v and w such that

v, w ∈ L1,loc(Rd), w ̸= 0, d ≥ 1, (3.1)
supp v ⊂ D, suppw ⊂ Ω, (3.2)
D, Ω are open convex and bounded domains in Rd. (3.3)

Let

diam U = sup
x,y ∈U

|x− y|, (3.4)

− U := {−x : x ∈ U}, (3.5)
U1 + U2 := {x+ y : x ∈ U1, y ∈ U2}, (3.6)

where U , U1, U2 are bounded sets in Rd.
Note that

Br1(a1) +Br2(a2) = Br1+r2(a1 + a2), where
Br(a) = {x ∈ Rd : |x− a| < r}, a ∈ Rd, r > 0.

(3.7)

We suppose that the Fourier transformation F is defined by formula (1.8).
In this case F−1 is given by the formula

F−1φ(x) :=

∫
Rd

e−ipxφ(p)dp, (3.8)

where φ is a test function.
Let χD−Ω denote the characteristic function of the set D − Ω.

Theorem 3.1. Let v, w satisfy (3.1)–(3.3), where dist(D, Ω) > diamD. Then |F(v + w)|2 and
w uniquely determine v by the formulas

Fv(p) = (Fw(p))−1Fq(p), p ∈ Rd, (3.9)

q(x) := χD−Ω(x)

(
u(x)− (2π)−d

∫
y∈Ω

w(x+ y)w(y)dy

)
, (3.10)

u(x) := F−1(|F(v + w)|2)(x), x ∈ Rd. (3.11)

As it was already mentioned in Introduction, Theorem 3.1 can be considered as a proper
mathematical formalization of some of considerations of [21] related with finding v from |F(v+w)|2
and w, under the condition that supp v and suppw are sufficiently disjoint.

Theorem 3.2. Let v, w satisfy (3.1)–(3.3), where dist(D, Ω) > 0. Then |F(v)|2, |F(v+w)|2 and
w uniquely determine v by the formulas

Fv(p) = (Fw(p))−1Fq(p), p ∈ Rd, (3.12)

q(x) := χD−Ω(x)

(
u(x)− (2π)−d

∫
y∈Ω

w(x+ y)w(y)dy

)
, (3.13)

u(x) := F−1(|F(v + w)|2)(x)−F−1(|Fv|2)(x), x ∈ Rd. (3.14)
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Under our assumptions on w, we have that

µ ({p ∈ Rd : Fw(p) = 0}) = 0, (3.15)

where µ(A) denotes the d–dimentional Lebesgue measure of a set A. Therefore, formulas (3.9),
(3.12) are correctly defined inspite of the factor (Fw(p))−1.

In order to prove Theorems 3.1 and 3.2 we use, in particular, that

F−1(φ1φ2) = (2π)−d(F−1φ1) ∗ (F−1φ2), (3.16)

(ν1 ∗ ν2)(x) :=
∫
Rd

ν1(x− y)ν2(y)dy, (3.17)

Fν = F ν̃, ν̃(x) = ν(−x), (3.18)
(2π)−dF(ν1 ∗ ν2) = Fν1Fν2, (3.19)

where φ1, φ2, ν, ν1, ν2 are test functions.

Proof of Theorem 3.1. Using formulas (3.16), (3.17), (3.18) for φ1 = F(v + w), φ2 =
F(v + w), ν = ν1 = v + w, ν2 = ṽ + w̃, we obtain that

I = (2π)dF−1(|F(v + w)|2) = (v + w) ∗ (ṽ + w̃) =

=

∫
Rd

(v(x− y) + w(x− y))(v(−y) + w(−y))dy =

=

∫
Rd

v(x− y)v(−y)dy +
∫
Rd

w(x− y)v(−y)dy +
∫
Rd

v(x− y)w(−y)dy+

+

∫
Rd

w(x− y)w(−y)dy =: I1 + I2 + I3 + I4.

(3.20)

Let
Br = {x ∈ Rd : |x| < r}. (3.21)

Note that

I1(x) =

∫
y∈−D

v(x− y)v(−y)dy, (3.22)

supp I1 ⊂ BdiamD, (3.23)

I2(x) =

∫
y∈−D

w(x− y)v(−y)dy, (3.24)

supp I2 ⊂ Ω−D, (3.25)

I3(x) =

∫
−y∈Ω

v(x− y)w(−y)dy, (3.26)

supp I3 ⊂ D − Ω, (3.27)

I4(x) =

∫
−y∈Ω

w(x− y)w(−y)dy, (3.28)

supp I4(x) ⊂ BdiamΩ, (3.29)

where Ω−D, D − Ω, Br are defined according to (3.5), (3.6), (3.21).
Property (3.23) follows from the observation that if y ∈ D, x + y ∈ D, then x ∈ BdiamD;

property (3.25) follows from the observation that if y ∈ D, x + y ∈ Ω, then x ∈ Ω −D; and the
derivation of (3.27), (3.29) is similar.

Using (3.3) and the assumption that dist(D, Ω) > diamD one can see that

dist(D,Ω) > diamD ⇔ ∀x ∈ D, y ∈ Ω : |x− y| > diamD ⇔ BdiamD ∩ (D − Ω) = ∅. (3.30)
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SinceD and Ω are convex, the setsD−Ω and Ω−D are also convex and reciprocally symmetric.
Therefore, if their intersection is nonempty, it contains the point 0. But formula (3.30) implies
that 0 /∈ D − Ω. Thus, we have that

(D − Ω) ∩ (Ω−D) = ∅. (3.31)

From (3.30), (3.31) we conclude that

(D − Ω) ∩ (BdiamD ∪ (Ω−D)) = ∅, (3.32)
(Ω−D) ∩ (BdiamD ∪ (D − Ω)) = ∅. (3.33)

Formulas (3.20), (3.23), (3.25), (3.27), (3.32), (3.33) imply that

I2(x) = χΩ−D(x)(I(x)− I4(x)), (3.34)
I3(x) = χD−Ω(x)(I(x)− I4(x)). (3.35)

Using (3.19), (3.24), (3.26) we have that

(2π)−dFI2 = F ṽFw, (3.36)

(2π)−dFI3 = FvFw̃. (3.37)

The formulas (3.9)–(3.11) follow from (3.18), (3.20), (3.35), (3.37). This completes the proof
of Theorem 3.1.

Proof of Theorem 3.2. Formulas (3.20)–(3.29), (3.36), (3.37) remain valid under the assump-
tions of Theorem 3.2.

The assumption dist(D, Ω) > 0 implies that

0 /∈ D − Ω. (3.38)

Using formula (3.38) and the proof of formula (3.31) we obtain that formula (3.31) also remains
valid under the assumptions of Theorem 3.2.

Formulas (3.20), (3.25), (3.27) and (3.31) imply that

I2(x) = χΩ−D(x)(I(x)− I1(x)− I4(x)), (3.39)
I3(x) = χD−Ω(x)(I(x)− I1(x)− I4(x)). (3.40)

The formulas (3.12)–(3.14) follow from (3.20), (3.37), (3.40). This completes the proof of
Theorem 3.2.

Remark 3.1. Under the assumptions of Theorem 3.1, there exist ε > 0, an open ε–neighbourhood
Nε(D − Ω) of D − Ω, and a function χD−Ω,ε ∈ C∞(Rd), such that

χD−Ω,ε(x) = 1, x ∈ D − Ω, (3.41)
χD−Ω,ε(x) = 0, x ∈ Rd \ Nε(D − Ω), (3.42)
(Ω−D) ∩Nε(D − Ω) = ∅, (3.43)
BdiamD ∩Nε(D − Ω) = ∅. (3.44)

In addition, formulas (3.9)–(3.11) remain valid with χD−Ω replaced by χD−Ω,ε.
Remark 3.2. Under the assumptions of Theorem 3.2, there exist ε > 0, an open ε–neighbourhood

Nε(D − Ω) of D − Ω, and a function χD−Ω,ε ∈ C∞(Rd), such that properties (3.41)–(3.43) are
fulfilled. In addition, formulas (3.12)–(3.14) remain valid with χD−Ω replaced by χD−Ω,ε.

Note that Remarks 3.1 and 3.2 are used in estimates of Sections 5 and 6.
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4 Reconstruction formulas and uniqueness results for Prob-
lem 1.3

In this section we give reconstruction formulas and global uniqueness results for Problem 1.3, for
d ≥ 2, n = 1, and for Problem 1.2, for d ≥ 2 (see Remark 1.1). These reconstruction formulas
and global uniqueness results develop considerably related studies of [23], [24] on Problem 1.3, for
d ≥ 2, n = 2 and n = 1.

4.1 Uniqueness results

Theorem 4.1. Let v, w1 satisfy (1.2), (1.11), where D, Ω = Ω1 satisfy (3.3), dist(D, Ω1) >
diamD, and d ≥ 2. Then |f1|2 and w1 uniquely determine v via formulas (3.9)–(3.11), where
w = w1, and formula (2.5) for j = 1.

Theorem 4.2. Let v, w1 satisfy (1.2), (1.11), where D, Ω = Ω1 satisfy (3.3), dist(D, Ω1) > 0,
and d ≥ 2. Then |f |2, |f1|2 and w1 uniquely determine v via formulas (3.12)–(3.14), where
w = w1, and formula (2.5) for j = 0, 1.

Theorems 4.1 and 4.2 follow directly from formula (2.5) and Theorems 3.1 and 3.2.
In addition to f, f1 on ME, we also consider f |ΓE

, f1|ΓE
, where

ΓE =
{
k = kE(p), l = lE(p) : p ∈ B2

√
E

}
,

kE(p) = p/2 + (E − p2/4)1/2γ(p), lE(p) = −p/2 + (E − p2/4)1/2γ(p),
(4.1)

Br = {p ∈ Rd : |p| < r}, Br = {r ∈ Rd : |p| ≤ r}, r > 0, (4.2)

where γ is a piecewise continuous vector–function on Rd, d ≥ 2, such that

|γ(p)| = 1, γ(p)p = 0, p ∈ Rd. (4.3)

We recall that

ΓE ⊂ ME, dimΓE = d, dimME = 2d− 2, E > 0, d ≥ 2. (4.4)

We also consider
MΛ = ∪E∈ΛME, ΓΛ = ∪E∈ΛΓE, (4.5)

where Λ ⊆ R+ = (0,+∞).
Let, for example, Λ be of the following form

Λ = {Ej ∈ R+ : j ∈ N, Ej → ∞, as j → ∞}. (4.6)

Theorems 4.1 and 4.2, where we use formula (2.5) with k = kEj
(p), l = lEj

(p), imply the
following corollaries:

Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Let Λ be of the form (4.6). Then |f1|2
on ΓΛ and background w1 uniquely determine v in L∞(Rd).

Corollary 4.2. Let the assumptions of Theorem 4.2 hold. Let Λ be of the form (4.6). Then
S = {|f |2, |f1|2} on ΓΛ and background w1 uniquely determine v in L∞(Rd).

We also consider Λ of the form

Λ = {Ej ∈ R+ : j ∈ N, Ej1 ̸= Ej2 for j1 ̸= j2, Ej → E∗, as j → ∞}, E∗ > 0. (4.7)

Proceeding from Theorems 4.1 and 4.2 we obtain the following results:
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Proposition 4.3. Let the assumptions of Theorem 4.1 hold, and v, w1 be real–valued. Let Λ be
of the form (4.7). Then |f1|2 on ΓΛ and background w1 uniquely determine v.

Proposition 4.4. Let the assumptions of Theorem 4.2 hold, and v, w1 be real–valued. Let Λ be
of the form (4.7). Then S = {|f |2, |f1|2} on ΓΛ and background w1 uniquely determine v.

The proof of Propositions 4.1, 4.2 is similar to the proof of Theorem 2.2 of [24].
Remark 4.1 Corollary 4.2 and Proposition 4.2 of the present work develop the result of

Proposition 2.2 of [24], where it was show that:
(A) There are not more than two different complex–valued potentials v satisfying (1.2) with

given S = {|f |2, |f1|2} on ΓΛ and background complex–valued potential w1 satisfying (1.11),
w1 ̸= 0 in L∞(Rd), where Λ is defined as in (4.6);

(B) There are not more than two different real–valued potentials v satisfying (1.2) with given
S = {|f |2, |f1|2} on ΓΛ and background real–valued potential w1 satisfying (1.11), w1 ̸= 0 in
L∞(Rd), where Λ is defined as in (4.7).

In addition, the reconstruction of Corollary 4.2 (based on formulas mentioned in Theorem
4.2) of the present work does not involve an analytic continuation in contrast with item (A) of
Proposition 2.2 of [24].

4.2 Approximate reconstruction formulas

Suppose that the assumptions of Theorem 4.1 are valid. Then, at fixed E, proceeding from
Theorem 4.1 and Remark 3.1 we reconstruct v(x) as vappr(x,E), where

vappr(x,E) := (F−1v̂appr)(x,E), x ∈ D, (4.8)

v̂appr(p, E) :=

{
(Fw1(p))

−1(Fqappr)(p) for p ∈ B(2−δ)
√
E,

0 for p ∈ Rd \B(2−δ)
√
E,

(4.9)

qappr(x,E) := χD−Ω,ε(x)(uappr(x,E)− (2π)−d

∫
y∈Ω

w1(x+ y)w1(y)dy), (4.10)

uappr(x,E) := (F−1h)(x), (4.11)

h(p, E) :=

{
|f1(kE(p), lE(p))|2 for p ∈ B2

√
E,

|Fw1(p, E)|2 for p ∈ Rd \B2
√
E,

(4.12)

where kE(p), lE(p) are defined in (4.1), χD−Ω, ε is the function of Remark 3.1, and δ ∈ (0, 2).
Suppose that the assumptions of Theorem 4.2 are valid. Then, at fixed E, proceeding from

Theorem 4.2 and Remark 3.2 we reconstruct v(x) as vappr(x,E), where vappr(x,E) is given by
formulas (4.8)–(4.11) with

h(p, E) :=

{
|f1(kE(p), lE(p))|2 − |f(kE(p), lE(p))|2 for p ∈ B2

√
E,

|Fw1(p, E)|2 for p ∈ Rd \B2
√
E.

(4.13)

In Sections 5 and 6 we give error estimates for v̂appr and vappr. These error estimates develop
considerably related studies of [23], [24], and [3] on Problem 1.3, for d ≥ 2, n ≥ 2.

5 Error estimates for v̂appr
In this section we estimate |v̂(p)− v̂appr(p, E)| for p ∈ B(2−δ)

√
E, where v̂appr is defined in Subsection

4.2, v̂ = Fv.
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Note that the following estimate holds:

|FχD−Ω,ε(p)| ≤
C1(σ)

(1 + |p|)σ
, p ∈ Rd, σ ≥ 0, (5.1)

where χD−Ω, ε is the function of Remarks 3.1, 3.2, C1(σ) = C1(σ, χD−Ω, ε) is a positive constant.
Let

C2(σ) =

∫
Rd

dp

(1 + |p|)σ
, σ > d. (5.2)

Let µ(U) denote the Lebesgue measure of a bounded domain U ⊂ Rd.

Theorem 5.1. Suppose that the assumptions of Theorem 4.1 are valid, and v, w1 satisfy (2.6).
Let v̂appr be defined via (4.9)–(4.12). Then:

|v̂(p)− v̂appr(p, E)| ≤ |ŵ1(p)|−1

(
C3E

−1/2η3 +
C4η

2

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η),

(5.3)

C3 = c(D ∪ Ω)C1(σ1)C2(σ1), σ1 > d, (5.4)
C4 = (2π)−2d(µ(D)2 + 2µ(D)µ(Ω))C1(σ)C2(d+ α), α > 0, σ − d− α > 0, (5.5)

where c, ρ are the constants of (2.7), C1, C2 are the constants of (5.1), (5.2), δ ∈ (0, 2) is fixed.

Theorem 5.2. Suppose that the assumptions of Theorem 4.2 are valid, and v, w1 satisfy (2.6).
Let v̂appr be defined via (4.9)–(4.11), (4.13). Then:

|v̂(p)− v̂appr(p, E)| ≤ |ŵ1(p)|−1

(
C5E

−1/2η3 +
C6η

2

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η),

(5.6)

C5 = (c(D) + c(D ∪ Ω))C1(σ1)C2(σ1), σ1 > d, (5.7)
C6 = 2(2π)−2dµ(D)µ(Ω)C1(σ)C2(d+ α), α > 0, σ − d− α > 0, (5.8)

where c, ρ are the constants of (2.7), C1, C2 are the constants of (5.1), (5.2), δ ∈ (0, 2) is fixed.

The estimates of Theorems 5.1, 5.2 can be considered as error estimates for v̂appr(p, E) at high
energies E.

Theorems 5.1, 5.2 are proved in Section 7.
In addition, it may be of interest to consider estimates (5.3), (5.6) for small v, w1, that is for

small η. In this case it is convenient to suppose also that

|Fw1(p)| ≥ η|ŵ0(p)|, ∀p ∈ Rd, (5.9)

where ŵ0 is independent of η, and

ŵ0(p) = Fw0(p), (5.10)
w0 ∈ L∞(Rd), suppw0 ⊂ Ω = Ω1, w0 ̸= 0. (5.11)

Then estimate (5.3) takes the form

|v̂(p)− v̂appr(p, E)| ≤ |ŵ0(p)|−1

(
C3E

−1/2η2 +
C4η

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η), α > 0, σ > d+ α,

(5.12)

57



and estimate (5.6) takes the form

|v̂(p)− v̂appr(p, E)| ≤ |ŵ0(p)|−1

(
C5E

−1/2η2 +
C6η

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η), α > 0, σ > d+ α.

(5.13)

One can see that estimates (5.12), (5.13) are very efficient for small η and large E, because in
this case E−1/2η2 and η(1 + δE1/2)−σ+d+α are very small.

Remark 5.1. The background w1 can be chosen as real–valued non–negative continuous
compactly supported function on Rd such that

ŵ1(p) = ŵ1(p) ≥ c3(1 + |p|)−β, p ∈ Rd, (5.14)

for β > d and c3 > 0; see, for example, Lemma 1 in [3]. Property (5.14) can be convenient in the
framework of applications of the error estimates (5.3), (5.6).

Remark 5.2. If ŵ1(p) in (4.9), (5.3), (5.6) has zeros, then the definition of v̂appr(p, E) can be
modified in neighborhoods of these zeros in a similar way with interpolations of Section 4 of [3].

6 Error estimates for vappr
In this section we estimate |v(x)− vappr(x,E)| for x ∈ D, where vappr is defined as in Subsection
4.2 with δ depending on E, and v, w1 satisfy the assumptions of Theorem 5.1 or 5.2. In addition,
for simplicity, we assume that v ∈ Wm,1(Rd), m > d, and w1 satisfies (5.14), where

Wm,1(Rd) = {u : ∂Ju ∈ L1(Rd), |J | ≤ m},
∥u∥m,1 = max

|J |≤m
∥∂Ju∥L1(Rd), m ∈ N ∪ 0.

(6.1)

Next, we assume that

vappr(x,E) =

∫
Br1(E)

e−ixpv̂appr(p, E)dp, x ∈ D,

r1(E) = (2− δ(E))
√
E = 2τEγ, γ =

1

2

1

m+ β
,

(6.2)

where E ≥ ρ2(D ∪Ω, η) ≥ 1 as in Theorems 5.1, 5.2, β is the number of (5.14), τ ∈ (0, 1) is fixed.
One can see that δ(E) ∈ (0, 2) under the assumptions of formula (6.2).

Note that if v ∈ Wm,1(Rd), m ≥ 0, then the following estimate holds:

|v̂(p)| ≤ C7(m)

(1 + |p|)m
, p ∈ Rd, (6.3)

where C7(m) = C7(m, d, ∥v∥m,1) is a positive constant.
Let

γ1 =
1

2

m− d

m+ β
, γ2 =

σ − d− α− 1

2
, (6.4)

where α > 0, σ − d− α > 1, β > d, m > d.
Let |Sd−1| denotes the (d− 1)–dimentional Lebesgue measure of the unit sphere.

Theorem 6.1. Let v, w1 satisfy the assumptions of Theorem 5.1, where α > 0, σ − d − α > 1.
Suppose also that v ∈ Wm,1(Rd), where m > d, and w1 satisfies (5.14), where β > d. Let vappr be
defined by (4.9)–(4.12), (6.2). Then:

|v(x)− vappr(x,E)| ≤ A1E
−γ1 + A2E

−γ2 , x ∈ D, (6.5)

A1 =
|Sd−1|C7(m)

(2τ)m−d(m− d)
+ (1 + 2τ)β(2τ)dc3C3η

3µ(B1), (6.6)

A2 =
(1 + 2τ)β(2τ)d

(2− 2τ)σ−d−α
µ(B1)c3C4η

2, (6.7)
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where γ1, γ2 are given by (6.4), C3, C4, C7 are given by (5.4), (5.5), (6.3), τ is the number of
(6.2).

Theorem 6.2. Let v, w1 satisfy the assumptions of Theorem 5.2, where α > 0, σ − d − α > 1.
Suppose also that v ∈ Wm,1(Rd), where m > d, and w1 satisfies (5.14), where β > d. Let vappr be
defined by (4.9)–(4.11), (4.13), (6.2). Then:

|v(x)− vappr(x,E)| ≤ A3E
−γ1 + A4E

−γ2 , x ∈ D, (6.8)

A3 =
|Sd−1|C7(m)

(2τ)m−d(m− d)
+ (1 + 2τ)β(2τ)dc3C5η

3µ(B1), (6.9)

A4 =
(1 + 2τ)β(2τ)d

(2− 2τ)σ−d−α
µ(B1)c3C6η

2, (6.10)

where γ1, γ2 are given by (6.4), C5, C6, C7 are given by (5.7), (5.8), (6.3), τ is the number of
(6.2).

The proofs of Theorems 6.1, 6.2 are given in Section 8. In these proofs we proceed from
Theorems 5.1, 5.2, formula (6.2) and estimates (5.14), (6.3).

Remark 6.1. If the assumption that v ∈ Wm,1(Rd), m > d, is not fulfilled, then the consid-
erations of the present section can be developed for apodized (smoothed) v in a similar way with
considerations of Section 6.1 of [15] and Theorem 3.2, Remark 3.3 of [16].

7 Proofs of Theorems 5.1 and 5.2
Recall that

F(φ1φ2)(p) = (Fφ1 ∗ Fφ2)(p) =

∫
Rd

Fφ1(p− p′)Fφ2(p
′)dp′, p ∈ Rd, (7.1)

where φ1, φ2 are test functions.

7.1 Proof of Theorem 5.1

We consider

∆h(p, E) = |F(v + w1)(p)|2 − h(p, E), p ∈ Rd, (7.2)
∆u(x,E) = u(x)− uappr(x,E), x ∈ Rd, (7.3)
∆q(x,E) = q(x)− qappr(x,E), x ∈ Rd, (7.4)
∆v̂(p, E) = v̂(p)− v̂appr(p, E), p ∈ B(2−δ)E, (7.5)

where v̂ = Fv, q, u are the functions of (3.9)–(3.11) with χD−Ω, ε in place of χD−Ω, and v̂appr,
qappr, uappr, h are the functions of (4.9)–(4.12). We have that

∆u(·, E) = F−1∆h(·, E), ∆q(·, E) = χD−Ω,ε F−1∆h(·, E), (7.6)

∆v̂(p, E) = (Fw1(p))
−1F∆q(p, E), (7.7)

F∆q(p, E) =

∫
Rd

FχD−Ω, ε(p− p′)∆h(p′, E)dp′, p ∈ B(2−δ)
√
E, (7.8)

where in (7.8) we used (7.1) and (7.6).
First, we estimate ∆h. Definition (7.2) can be rewritten as

∆h(p, E) = |F(v + w1)(p)|2 − |f1(kE(p), lE(p))|2, p ∈ B2
√
E, (7.9)

∆h(p, E) = |F(v + w1)(p)|2 − |Fw1(p)|2, p ∈ Rd \B2
√
E. (7.10)
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Due to (2.7), (7.9), we have that

|∆h(p, E)| ≤ c(D ∪ Ω)η3E−1/2, p ∈ B2
√
E, for E1/2 ≥ ρ(D ∪ Ω, η). (7.11)

In addition, we have that

|∆h(p, E)| ≤ (2π)−2dη2(µ(D)2 + 2µ(D)µ(Ω)), p ∈ Rd \B2
√
E. (7.12)

Estimate (7.12) follows from the following estimates∣∣|F(v + w1)|2 − |Fw1|2
∣∣ ≤ ||F(v + w1)| − |Fw1|| (|F(v + w1)|+ |Fw1|) ≤

≤ |Fv|2 + 2|Fv||Fw1|, (7.13)
|Fv| ≤ (2π)−dηµ(D), |Fw1| ≤ (2π)−dηµ(Ω). (7.14)

In (7.13) we used the inequalities

−|a| ≤ |a+ b| − |b| ≤ |a|, a = Fv, b = Fw1. (7.15)

In view of (7.7), (7.8), estimating ∆v̂ consists of the following. We have that

|F∆q(p, E)| ≤
∫
B2

√
E

|FχD−Ω, ε(p− p′)| |∆h(p′, E)|dp′+

+

∫
Rd\B2

√
E

|FχD−Ω, ε(p− p′)| |∆h(p′, E)|dp′ = I1(p, E) + I2(p, E), (7.16)

where p ∈ B(2−δ)
√
E.

Using (5.1), (7.11) we estimate I1 as follows:

|I1(p, E)| ≤ c(D ∪ Ω)η3E−1/2

∫
B2

√
E

|FχD−Ω, ε(p− p′)|dp′, (7.17)∫
B2

√
E

|FχD−Ω, ε(p− p′)|dp′ ≤
∫
Rd

|FχD−Ω, ε(p
′)|dp′ ≤

≤ C1(σ1)

∫
Rd

dp′

(1 + |p′|)σ1
= C1(σ1)C2(σ1), σ1 > d, (7.18)

where p ∈ B(2−δ)
√
E, C1, C2 are the constants of (5.1), (5.2).

Using (5.1), (7.12) we estimate I2 as follows:

|I2(p, E)| ≤ (2π)−2dη2(µ(D)2 + 2µ(D)µ(Ω))C1(σ)

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)σ
, (7.19)∫

Rd\B2
√
E

dp′

(1 + |p− p′|)σ
=

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)σ−d−α(1 + |p− p′|)d+α
≤

≤ 1

(1 + δE1/2)σ−d−α

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)d+α
≤

≤ 1

(1 + δE1/2)σ−d−α

∫
Rd

dp′

(1 + |p− p′|)d+α
≤ C2(d+ α)

(1 + δE1/2)σ−d−α
, (7.20)

where p ∈ B(2−δ)
√
E, α > 0, σ − d− α > 0, C1, C2 are the constants of (5.1), (5.2).

Formulas (5.3)–(5.5) follow from (7.5), (7.7), (7.16)–(7.20).
Theorem 5.1 is proved.
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7.2 Proof of Theorem 5.2

We consider
∆h(p, E) = |F(v + w1)(p)|2 − |Fv(p)|2 − h(p, E), p ∈ Rd, (7.21)

where h is defined in (4.13). We also consider ∆u, ∆q, ∆v̂ defined as in (7.3)–(7.5), where u, q, v̂ =
Fv are defined by (3.12)–(3.14), uappr, qappr, v̂appr are defined by (4.9)–(4.11), (4.13).

Note that formulas (7.6)–(7.8) remain valid with ∆h given by (7.21).
First, we estimate ∆h. Definition (7.21) can be rewritten as

∆h(p, E) = (|F(v + w1)(p)|2 − |f1(kE(p), lE(p))|2)− (|Fv(p)|2 − |f(kE(p), lE(p))|2),
p ∈ B2

√
E,

(7.22)

∆h(p, E) = |F(v + w1)(p)|2 − |Fv(p)|2 − |Fw1(p)|2, p ∈ Rd \B2
√
E. (7.23)

Due to (2.7), (7.22), we have that

|∆h(p, E)| ≤ (c(D ∪ Ω) + c(D))η3E−1/2, p ∈ B2
√
E,

for E1/2 ≥ ρ(D ∪ Ω, η).
(7.24)

In addition, we have that

|∆h(p, E)| ≤ 2(2π)−2dη2µ(D)µ(Ω), p ∈ Rd \B2
√
E. (7.25)

Estimate (7.25) follows from (7.14) and the following estimate

||F(v + w1)|2 − |Fv|2 − |Fw1|2| ≤ 2|Fv||Fw1|. (7.26)

Estimate (7.16) for F∆q remains valid with ∆h given by (7.21).
In addition: using (7.24) we have that

|I1(p, E)| ≤ (c(D) + c(D ∪ Ω))η3E−1/2

∫
B2

√
E

|FχD−Ω, ε(p− p′)|dp′, p ∈ B(2−δ)
√
E; (7.27)

using (7.25) we have that

|I2(p, E)| ≤ 2(2π)−2dη2µ(D)µ(Ω)C1(σ)

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)σ
, p ∈ B(2−δ)

√
E, σ > d. (7.28)

Formulas (5.6)–(5.8) follow from (7.5), (7.7), (7.16), (7.18), (7.20), (7.27), (7.28).
Theorem 5.2 is proved.

8 Proof of Theorems 6.1 and 6.2
The following formulas hold:

v(x) =

∫
Rd

e−ixpv̂(p)dp, vappr(x,E) =

∫
B(2−δ)

√
E

e−ixpv̂appr(p, E)dp, x ∈ D, (8.1)

|v(x)− vappr(x,E)| ≤
∫
B(2−δ)

√
E

|v̂(p)− v̂appr(p, E)|dp+
∫
Rd\B(2−δ)

√
E

|v̂(p)|dp, (8.2)

where in (8.1) we used the inversion formula for the Fourier transform and the definition of
vappr.

Recall that according to (6.2) we have that

(2− δ(E))
√
E = 2τEγ, γ =

1

2

1

m+ β
. (8.3)
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Using (6.3), (8.3) we have that

I0 :=

∫
Rd\B(2−δ)

√
E

|v̂(p)|dp ≤ C7(m)|Sd−1|
∫ ∞

(2−δ)
√
E

dr

rm−d+1
=

=
C7(m)|Sd−1|

(m− d)((2− δ)
√
E)m−d

=
C7(m)|Sd−1|

(m− d)(2τ)m−d
E−γ(m−d).

(8.4)

From Theorem 5.1 we have that

|v̂(p)− v̂appr(p, E)| ≤ |ŵ1(p)|−1(C3E
−1/2η3 +

C4η
2

(1 + δE1/2)σ−d−α
), p ∈ B(2−δ)

√
E. (8.5)

From (5.14), (8.3) and (8.5) we obtain∫
B(2−δ)

√
E

|v̂(p)− v̂appr(p, E)|dy ≤ c3

∫
B(2−δ)

√
E

(1 + |p|)β
(
C3η

3E−1/2 +
C4η

2

(1 + δE1/2)σ−d−α

)
dp =

= c3(C3η
3I1 + C4η

2I2), (8.6)

I1 := E−1/2

∫
B(2−δ)

√
E

(1 + |p|)βdp ≤ E−1/2(1 + (2− δ)
√
E)βµ(B1)((2− δ)

√
E)d ≤

≤ E−1/2+d/2(2− δ)d(1 + (2− δ)
√
E)βµ(B1) = E−1/2(2τ)dEγd(1 + 2τEγ)βµ(B1),

(8.7)

I2 :=

∫
B(2−δ)

√
E
(1 + |p|)βdp

(1 + δE1/2)σ−d−α
≤ (1 + (2− δ)

√
E)β(2− δ)dEd/2µ(B1)

(1 + δE1/2)σ−d−α
=

=
(1 + 2τEγ)β(2τ)dEγdµ(B1)

(1 + δE1/2)σ−d−α
.

(8.8)

Using (8.3), (8.7), (8.8), for E ≥ 1 as in (6.2), we have that

I1 ≤ (1 + 2τ)βµ(B1)(2τ)
dE−1/2+γd+γβ, (8.9)

I2 ≤
(1 + 2τ)β(2τ)βµ(B1)E

γβ+γd

(δE1/2)σ−d−α
≤ (1 + 2τ)β(2τ)βµ(B1)E

γβ+γd

(2
√
E(1− τEγ−1/2))σ−d−α

≤

≤ (1 + 2τ)β(2τ)βµ(B1)E
γβ+γd

2σ−d−αE(σ−d−α)/2(1− τEγ−1/2)σ−d−α
≤ (1 + 2τ)β(2τ)βµ(B1)E

γβ+γd

2σ−d−αE(σ−d−α)/2(1− τ)σ−d−α
,

(8.10)

where in the last inequality we used that γ < 1/2.
In addition, taking into account the value of γ we have that, for E → +∞ :

I0 = O(E− 1
2

m−d
m+β ) = O(E−γ1), (8.11)

I1 = O(E− 1
2
+ 1

2
d+β
m+β ) = O(E− 1

2
m−d
m+β ) = O(E−γ1), (8.12)

I2 = O(E
1
2

β+d
β+m

−σ−d−α
2 ) = O(E−σ−d−α−1

2 ) = O(E−γ2). (8.13)

Estimate (6.5) follows from formulas (8.2), (8.4), (8.6), (8.9)–(8.13).
Theorem 6.1 is proved.
The proof of Theorem 6.2, proceeding from formula (6.2) and Theorem 5.2, is similar to the

proof of Theorem 6.1, proceeding from formula (6.2) and Theorem 5.1.
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Article II

Phase retrieval and phaseless inverse
scattering with background information

T. Hohage, R.G. Novikov, V.N. Sivkin
We consider the problem of finding a compactly supported potential in the multidimensional

Schrödinger equation from its differential scattering cross section (squared modulus of the scat-
tering amplitude) at fixed energy. In the Born approximation this problem simplifies to the phase
retrieval problem of reconstructing the potential from the absolute value of its Fourier transform
on a ball. To compensate for the missing phase information we use the method of a priori known
background scatterers. In particular, we propose an iterative scheme for finding the potential from
measurements of a single differential scattering cross section corresponding to the sum of the un-
known potential and a known background potential, which is sufficiently disjoint. If this condition
is relaxed, then we give similar results for finding the potential from additional monochromatic
measurements of the differential scattering cross section of the unknown potential without the
background potential. The performance of the proposed algorithms is demonstrated in numerical
examples.

Keywords: Schrödinger equation, Helmholtz equation, monochromatic scattering, phaseless
inverse scattering, phase retrieval problem, numerical reconstructions

1 Introduction
In this work we contribute to the study of phase retrieval problems and phaseless inverse scattering
problems. These problems naturally arise in quantum mechanics, optics, and related areas such
as electron tomography and X-ray imaging; see, for example, [20] and references therein. In
particular, according to Born’s rule in quantum mechanics complex (phased) values of a particle
wave function have no direct physical interpretation, whereas their (phaseless) squared modulus
admits a probabilistic interpretation and can be measured; see [9]. Similarly, in optics modern
technical devices such as CCD cameras measure the intensity, i.e. the squared modulus, but it
is very hard or impossible to measure the phase of time-harmonic electromagnetic waves in the
frequency range of visible light or even X-rays.

In general, phase retrieval problems consist in finding a function v : Rd → C from the magni-
tude |v̂| of its Fourier transform

v̂(p) = Fv(p) = 1

(2π)d

∫
Rd

eip·xv(x) dx, (1.1)

often given only for p in some bounded subset of Rd, e.g., Br := {x ∈ Rd : |x|2 ≤ r}. To
compensate for the missing phase information v̂/|v̂|, one either assumes a-priori information on v
or additional data. Such inversions of the Fourier transform from phaseless data are much more
complicated than the inversion of the Fourier transform from phased data. Examples of a-priori
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informations include (approximate) knowledge of supp v, constraints like |v| = 1 or v ≥ 0, and
knowledge of v on part of the domain. In this paper we will focus on the first and the last of
these options. Such problems arise directly in phaseless linearized inverse scattering problems in
quantum mechanics, optics and related areas such as electron tomography and X-ray imaging.
We refer to the monographs [21, 7], the review papers [32, 39, 47], the article [12], and references
therein.

We now give the precise formulation of the phase retrieval problems studied in this paper:

Problem 7. (A) Reconstruct a function v from |v̂+ŵ|2 on BR for some known function w under
the a-priori assumption that supp v and suppw are compact and sufficiently separated.

(B) Reconstruct v from |v̂|2 and |v̂ + ŵj|2, j = 1, . . . , n, on BR for some appropriate known
functions w1, ..., wn separated from v.

Problem 7(B) was considered, in particular, in [36, 37, 1, 2]. In addition, related considerations
go back, at least, to [43]. Problem 7(A) was studied in [41]. Other investigations related to this
problem can be found in [44, 37]. In the present work we give, in particular, new mathematical
and numerical results on Problem 7(A) and on Problem 7(B) for n = 1.

Inverse scattering problems consist in finding functions describing a scattering object from data
on scattered waves, usually at large distances from the scatterer. These problems are similar in
many respects to reconstructing a function from its Fourier transform and, moreover, are reduced
to such a Fourier inversion by the Born approximation, i.e. linearization around a zero background.
Of course, also in situations where linearizations are not valid, only amplitudes can be measured
for the same reasons as described above. This motivates the study of phaseless inverse scattering
problems.

We consider the stationary Schrödinger equation of quantum mechanics:

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.2)

where
v ∈ L∞(Rd), supp v ⊆ D, D ⊂ Rd is open and bounded. (1.3)

Equation (1.2), under assumptions (1.3), arises in modelling interaction of a non-relativistic
quantum mechanical particle at fixed energy E with a macroscopic object contained in D, where
v is the potential of this interaction. Here, we assume that ℏ2/(2m) = 1, where ℏ is the reduced
Planck’s constant, and m is the mass of the particle. For more details on such a model in the
framework of electron tomography, see, for example, [15].

We also consider the time harmonic Helmholtz equation of electrodynamics and acoustics:

∆ψ + κ2n2(x)ψ = 0, κ = ω/c0, (1.4)

where ω is the frequency, c0 is a reference speed of wave propagation, n(x) is a scalar index of
refraction, n(x) ≡ 1 for x ∈ Rd \ D, and D is as in (1.3). We recall that in the simplest case
n(x) = c0/c(x), where c(x) is a speed of wave propagation. For more details on such a model in
the framework of X-ray imaging, see, for example, [49]. We recall that the Helmholtz equation
(1.4) at fixed ω can be written in the form of the Schrödinger equation (1.2), (1.3), where

v(x) = (1− n2(x))E, E =

(
ω

c0

)2

. (1.5)

For equation (1.2), under condition (1.3), we consider the scattering solutions ψ+ = ψ+(x, k),
k ∈ Rd, k2 = E, specified by the conditions

ψ+(x, k) = eikx + ψsc(x, k); (1.6)

|x|(d−1)/2

(
∂

∂|x|
− i|k|

)
ψsc(x, k) → 0 as |x| → +∞, (1.7)
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uniformly in x/|x|. The Sommerfeld radiation condition (1.7) implies that

ψsc(x, k) =
ei|k||x|

|x|(d−1)/2
A

(
k, |k| x

|x|

)
+O

(
1

|x|(d+1)/2

)
as |x| → +∞, (1.8)

where A = A[v] is the scattering amplitude for equation (1.2). For more information on the
definitions of ψ+ and A, see, for example, [8], [39] and references therein.

In turn, σ[v](k, l) = |A[v](k, l)|2 is known as the differential scattering cross section for equation
(1.2). We will suppress v in σ[v] and A[v] if there is no ambiguity. As for particle wave functions,
A admits no direct physical interpretation whereas |A|2 is the expected value of quantities that can
be measured in experiments; see, for example, [9], [16]. In particular, the differential scattering
cross section σ(k, l) describes the probability density of scattering of a particle with initial impulse
k into direction l/|l| ̸= k/|k|. Similarly, in the electromagnetism of optics and X-rays only |ψ+|2
and σ = |A|2 can be measured directly by modern technical devices.

Note that the aforementioned functions A and σ = |A|2 are defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
. (1.9)

We consider the following monochromatic phaseless inverse scattering problems which reduce
to Problem 7 in the Born approximation:

Problem 8. (A) Reconstruct a compactly supported potential v in (1.2) from the differential
scattering cross section σ[v+w] on some appropriate M′ ⊆ ME for some known compactly
supported background potential w sufficiently separated from v.

(B) Reconstruct v from σ[v] and σ[v + wj], j = 1, . . . , n on some appropriate M′ ⊆ ME (see
(1.9)) for some appropriate known background potentials w1, ..., wn separated from v.

Phaseless inverse scattering problems are much more difficult than usual inverse scattering
problems with phase information, and until recently very little results have been known for such
problems (see, e.g., [1, 11, 39, 41] and references therein). In particular, it is well known that
σ = |A|2 on MR+ =

⋃
E∈R+

ME does not determine v uniquely, in general; see, for example, [39].
In addition to Problem 8 there are also other possible formulations of phaseless inverse scatter-

ing problems for equation (1.2) and for other equations of wave propagation. In connection with
such formulations and related results, see, for example, [5], [11], [17], [20], [22], [23], [27], [29]–[31],
[36], [38]–[40], [42], [45], [46], [52], [53] and references therein.

Following previous works of the authors, our general approach for “solving” Problems 7 and
8 is to provide explicit reconstruction formulas only for the stable part of the solution defined
roughly in terms of the classical diffraction limit. These reconstruction formulas only provide a
smoothed version of the unknown function v. They do not converge to the true solution v as
the noise level tends to zero, but only as the energy (or wave number) tends to infinity. On the
other hand, in contrast to regularization methods, they are Lipschitz stable with respect to data
noise, they do not require a sufficiently good initial guess, and they are cheaper to compute. For
small noise levels, our reconstructions can be improved by using them as initial guess for iterative
regularization methods. Probably, our reconstructions can be also improved using the approach
of [26], but this issue requires additional studies.

Our main results can be summarized as follows:
We propose an iterative reconstruction algorithm for Problem 8(A) in dimension d ≥ 2 under

the condition that supp v and suppw are sufficiently disjoint. If this condition is relaxed, then we
give similar results just for Problem 8(B) with d ≥ 2 and n = 1. This iterative monochromatic
reconstruction is analogous to the algorithm suggested in [35] for inverse scattering problems with
phase information at fixed sufficiently large energy E. This reconstruction is considerably simpler
than the algorithm developed in [1] for Problem 8(B) with d ≥ 2 and n = 2. This reconstruction
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proceeds from results of [41], which provide, in particular, the first approximation. In addition,
for our iterates ujE, j = 1, 2, ..., we have that

∥v − ujE∥L∞ = O(E−αj) as E → +∞, (1.10)

with αj tending to +∞ as j → ∞, for infinitely smooth v. See Section 3.2.
We implement numerically the aforementioned iterative monochromatic reconstruction, at

least, for d = 2; see Sections 4 and 5.
In connection with the aforementioned monochromatic reconstruction vE in the Born approx-

imation our study also includes new results on Problem 7(A) and Problem 7(B) for n = 1. In
particular, in this case proceeding from [41] we show that

∥v − vE∥L∞ = O(E−α) as E → +∞, α =
1

2
(m− d), (1.11)

where v is m-times smooth in L1(Rd); see Section 3.1. Note that estimate (1.11) is an analog for
the phaseless case of estimate (2.16) for the phased case. In addition, in numerical reconstruction
of vE from the data on discrete Ewald grid in B2

√
E, we modified the related conjugate gradient

approach of [1]; see Section 4.3.
The further structure of the present article is as follows. In Section 2 we recall some known

results on direct and inverse scattering for equation (1.2) under assumptions (1.3), including results
on Problems 7 and 8. Our main new theoretical results on Problems 7 and 8 are given in Section
3. Our numerical results on these problems are presented in Sections 4, 5. In conclusion, we
discuss the results of the present work, previous results, and natural further research directions;
see Section 6. Some proofs are also given in Sections 7 and 8 of Appendix.

2 Preliminaries

2.1 Direct scattering

For equation (1.2), under condition (1.3), we consider the scattered field ψ+, its scattering am-
plitude A, and its scattering cross section σ = |A|2 mentioned in the Introduction; see formulas
(1.6), (1.7), and (1.8). For finding these functions from v one can use the Lippmann-Schwinger
integral equation

ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) = −(2π)−d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|, d),
(2.1)

for ψ+ with x, k ∈ Rd, k2 = E and the following formulas for A:

A(k, l) := c(d, |k|)f(k, l), (k, l) ∈ ME,

c(d, |k|) := −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4,

(2.2a)

f(k, l) := (2π)−d

∫
Rd

e−ilyv(y)ψ+(y, k)dy, (2.2b)

We will use the term ‘scattering amplitude’ also for f arising in (2.2).
Note that one can also use equation (2.1) and formula (2.2b) for the case when

v ∈ L∞
s (Rd), for some s > d, (2.3)

where

L∞
s (Rd) = {u ∈ L∞(Rd) : ∥u∥s <∞}, (2.4)

∥u∥s = ess supRd(1 + |x|2)s/2|u(x)|, s ≥ 0; (2.5)
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see, for example, [8], [39] and references therein.
Let

Br = {x ∈ Rd : |x| ≤ r}. (2.6)

In addition to A, σ, and f on ME, we also consider their restrictions to lower-dimensional
subsets ΓE ⊂ ME for which the function

Φ̃ : ΓE → B2
√
E, Φ̃(k, l) := k − l (2.7)

is surjective, where Br is defined by (2.6), d ≥ 2; see [1]. In particular, Φ̃ is bijective if ΓE is
defined as in [35]:

ΓE =
{
k = kE(p), l = lE(p) : p ∈ B2

√
E

}
,

kE(p) = p/2 + (E − p2/4)1/2γ(p), lE(p) = −p/2 + (E − p2/4)1/2γ(p),
(2.8)

where γ is a piecewise continuous vector–function on Rd, d ≥ 2, such that

|γ(p)| = 1, γ(p)p = 0, p ∈ Rd. (2.9)

In general we assume that for each p ∈ B2
√
E the set Φ̃−1(p) is a piecewise smooth manifold of

size |Φ̃−1(p)| and define the averaging operator

(Φf)(p) :=
1

|Φ̃−1(p)|

∫
Φ̃−1(p)

f(k, l)d(k, l), p ∈ B2
√
E. (2.10)

Note that if ΓE is defined by (2.8), then

(Φf)(p) = f(kE(p), lE(p)), p ∈ B2
√
E. (2.11)

To deal with equation (2.1) at large E, it is convenient to use the following Agmon estimate

∥⟨x⟩−sG+
0 (E)⟨x⟩−s∥L2(Rd)→L2(Rd) ≤ a0(d, s)E

−1/2, E ≥ 1, s > 1/2, (2.12)

where ⟨x⟩ denotes the multiplication operator by the function (1+ |x|2)1/2, and G+
0 (E) : L

2(Rd) →
L2(Rd) denotes the integral operator

G+
0 (E)u(x) :=

∫
Rd

G+
0 (|x− y|,

√
E, d)u(y)dy, (2.13)

with kernel G+
0 (|x|,

√
E, d) defined in (2.1); see, for example, [13], [35].

2.2 Some known results on inverse scattering problems with phase in-
formation

We recall that in the Born approximation for small v, for d ≥ 2, the scattering amplitude f on
ΓE (and on ME) reduces to the Fourier transform v̂ on B2

√
E via the formula

f(k, l) ≈ v̂(p), (k, l) ∈ ME, p = k − l, (2.14)

where f is defined by (2.2), v̂ is defined by (1.1).
Moreover, for uE defined by

uE(x) :=

∫
B2

√
E

e−ipxv̂(p)dp, (2.15)

we have that
∥v − uE∥L∞(Rd) = O(E−α) as E → +∞ with α :=

1

2
(m− d), (2.16)
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where v is m-times smooth in L1(Rd). For more details on the linearised monochromatic recon-
struction uE, see, for example, [39].

Besides, in general (i.e., without assumption that v is small), for finding v̂ from f on ΓE at
large E, for d ≥ 2, one can use the following formulas:

v̂(p) = f(k, l) +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p ∈ Rd, (2.17)

|f(k, l)− v̂(k − l)| ≤ (2π)−da0(d, s/2)(c1(d, s)∥v∥s)2E−1/2,

E1/2 ≥ ρ1(d, s, ∥v∥s), (k, l) ∈ ME, s > d.
(2.18)

Here a0(d, s/2) is defined in (2.12) and

c1(d, s) :=

(∫
Rd

dx

(1 + |x|2)s/2

)1/2

, (2.19)

ρ1(d, s,N) := max (2a0(d, s/2)N, 1) . (2.20)

Formula (2.17) goes back to [14] and can be considered as Born approximation for f at higher
energies. In connection with estimate (2.18), see, for example, [35].

In turn, estimate (2.18) can be considered as particular case of the following important lemma.

Lemma 2.1. ([35]). Let v satisfy (2.3), D be bounded domain in Rd, f be the scattering amplitude
for v, and vappr(·, E) be an approximation to v such that:

|vappr(x,E)− v(x)| ≤ bE−α, x ∈ D,
√
E ≥ ρ1(d, s,N), (2.21)

vappr(x,E) = v(x), x ∈ Rd \D, (2.22)

for some α, b > 0, and some N such that

∥v∥s ≤ N, ∥vappr(·, E)∥s ≤ N,
√
E ≥ ρ1(d, s,N). (2.23)

Then the following estimate holds:

|f(k, l)− fappr(k, l) + v̂appr(k − l, E)− v̂(k − l)| ≤ Nb

(2π)d
a0(d,

s
2
)c1(d, s)c2(D, s)E

−α− 1
2 ,

(k, l) ∈ ME, E
1/2 ≥ ρ1(d, s,N),

(2.24)

where fappr is the scattering amplitude for vappr(·, E), v̂ is the Fourier transform of v, v̂appr(·, E)
is the Fourier transform of vappr(·, E),

c2(D, s) = 2∥Λs/2∥L2(D) + 4∥Λ−s/2∥L2(Rd)∥Λs∥L∞(D), (2.25)

Λ = (1 + |x|2)1/2. (2.26)

Suppose that

v − v0 ∈ Wm,1(Rd), supp(v − v0) ⊂ D, v0 satisfies (2.3), (2.27)

with the Sobolev space

Wm,1(Rd) := {u : ∂Ju ∈ L1(Rd), |J | ≤ m},
∥u∥m,1 := max

|J |≤m
∥∂Ju∥L1(Rd), m ∈ N ∪ 0.

(2.28)

Using estimate (2.18) and Lemma 2.1, under conditions (2.27), work [35] constructs the iterates
ujE from f on ΓE such that

∥v − ujE∥L∞(D) = O(E−αj) as E → +∞ with (2.29)

α1 :=
m− d

2m
, αj :=

(
1−

(
m− d

m

)j
)
m− d

2d
, j ≥ 1. (2.30)
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More precisely, this construction of ujE is based on formula (2.18), if j = 1, and uses iteratively
Lemma 2.1, if j > 1. In addition, one can see that

αj → α∞ :=
m− d

2d
as j → +∞,

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞.

(2.31)

Therefore, the convergence in (2.29), as E → +∞, is drastically better for j > 1 than for j = 1,
at least, for large m and j.

The iterative monochromatic reconstruction of [35] is implemented numerically in [6], [48] for
d = 2. For other monochromatic phased inverse scattering reconstructions for equations (1.2) and
(1.4), see, for example, [4], [10], [18], [39].

2.3 Some known results on Problems 7 and 8

In addition to v satisfying (1.3), we consider a priori known background scatterers w1, ..., wn such
that

wj ∈ L∞(Rd), wj ̸= 0 in L∞(Rd), suppwj ⊂ Ωj,

Ωj is an open bounded domain in Rd, Ωj ∩D = ∅,
wj1 ̸= wj2 for j1 ̸= j2 in L∞(Rd),

j, j1, j2 ∈ {1, . . . , n}.

(2.32)

Under assumptions (1.3), (2.32), d ≥ 2, we have that

|v̂j(p)|2 = |fj(k, l)|2 +O(E−1/2) as E → +∞, (k, l) ∈ ME, k − l = p ∈ Rd, j = 0, 1, ..., (2.33)

where v0 = v, vj = v + wj, j ≥ 1, fj is related to Aj according to (2.2a) and is the scattering
amplitude for vj.

In addition, for small v and wj, we have that

|v̂j(p)|2 ≈ |fj(k, l)|2, p = k − l, k − l ∈ ME. (2.34)

Formulas (2.33), (2.34) are phaseless versions of (2.17), (2.14); for phaseless version of (2.18), see,
for example, [37]. These formulas reduce Problems 8 to Problem 7.

For open bounded domains D, Ω1, U ⊂ Rd and ε > 0 we introduce the following notation:

D − Ω1 := {x− y : x ∈ D, y ∈ Ω1}, (2.35a)
dist(D, Ω1) := inf

x∈D, y∈Ω1

|x− y|, diamD := sup
x, y∈D

|x− y|, (2.35b)

χU ,ε ∈ C∞(Rd), 0 ≤ χU ,ε ≤ 1, (2.35c)

χU ,ε(x) :=

{
1, x ∈ U ,
0, dist(x,U) > ε

(2.35d)

The recent work [41] defines an approximate reconstruction vE of the unknown potential v for
Problems 8(A) and 8(B, n = 1) with d ≥ 2, convex D and Ω1, and M′ = ΓE. In case of Problem
8(A) with scattering data σ1 = σ[v + w1] on ΓE, it is assumed that dist(D, Ω1) > diamD,
whereas for Problem 8(B, n = 1) with scattering data {σ, σ1} = {σ[v], σ[v + w1]} on ΓE only
dist(D, Ω1) > 0 is required. The reconstruction vE is defined by Algorithm 1 with ν = 1 in [41]
and QE given by

QE(p) :=
1

|c(d,
√
E)|2 (Φσ1)(p), p ∈ B2

√
E, for Problem 8(A), (2.36a)

QE(p) :=
1

|c(d,
√
E)|2 ((Φσ1)(p)− (Φσ)(p)), p ∈ B2

√
E, for Problem 8(B, n = 1), (2.36b)
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where c(d,
√
E) is given by (2.2a).

Algorithm 1:
function vE = reco(QE, w, E,D, ν, τ)
// basic reconstruction procedure proposed in [41]; see also Alg. 3 for a discrete version
Input:
QE: is computed from data by (2.39) for Problem 7 and by (2.36) for Problem 8
w ∈ L∞(Rd): background potential
E > 0: energy
convex D ⊂ Rd contains supp v for unknown function v
ν, τ ∈ (0, 1]: cut-off parameters

Output:
vE: approximation of unknown function v

1 hE(p) :=

{
QE(p), p ∈ B2ν

√
E

|Fw1(p)|2, p ∈ Rd \B2ν
√
E

2 Set Ω ⊂ Rd as convex hull of suppw
3 W (x) := (2π)−d

∫
Ω
w(x+ y)w(y) dy

4 qE(x) := χD−Ω,ε(x)((F−1hE)(x)−W (x))
// cut-off function χD−Ω,ε defined in (2.35c), Fourier transform F in (1.1)

5 v̂E(p) :=

{
(Fw(p))−1(FqE)(p), p ∈ B2τ

√
E

0, p ∈ Rd \B2τ
√
E

6 vE(x) :=

{
(F−1v̂E)(x), x ∈ D

0, x ∈ Rd \D

Results of [41] include estimates on v̂ − v̂E and v − vE. In particular, suppose also that in
Algorithm 1, where QE is given by (2.36) and ν = 1, the potentials v, w = w1 and the parameter
τ are such that

v ∈ Wm,1(Rd), m > d, (2.37a)
max(∥v∥L∞(D), ∥w1∥L∞(Ω1)) ≤ η, (2.37b)
∥v + w1∥s ≤ N, s > d, (2.37c)
|(Fw1)(p)| ≥ c3(1 + |p|)−β, ∀ p ∈ Rd, β > d, c3 > 0, (2.37d)

τ1 = τ1(E) = τEγ−1/2, 0 < τ < 1, γ =
1

2

1

m+ β
; (2.37e)

see [41] (and also [2] in connection with condition (2.37d)). Then we have that ([41]):

|v(x)− vE(x)| ≤
(
C1(m, d, τ)∥v∥m,1 + C2(β, τ, d,D,Ω1)

η2

c3
+ C3(β, d, τ,D,Ω1, ε)

η3

c3

)
E−α1 ,

x ∈ D,
√
E ≥ ρ1(d, s,N), α1 =

1

2

m− d

m+ β
. (2.38)

Explicit expressions for C1, C2, C3 are given in [41] (with misprint c3 in place of correct c−1
3 ).

For small v and w1, the function vE given by (2.36) and lines 1–6 of Alg. 1 reduces to an
approximate reconstruction for the case of Problems 7(A) and 7(B, n = 1) with d ≥ 2, convex D
and Ω1, B = B2

√
E.

In addition, for Problem 7, we use Algorithm 1, where

QE(p) := |F(v + w1)(p)|2, p ∈ B2
√
E, for Problem 8(A), (2.39a)

QE(p) := |F(v + w1)(p)|2 − |F(v)(p)|2, p ∈ B2
√
E, for Problem 8(B, n = 1), (2.39b)
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dist(D, Ω1) > diamD for the case (A), and dist(D, Ω1) > 0 for the case (B, n = 1).
In addition,

vE → v on D as E → +∞. (2.40)

For example, under the additional assumptions (2.37a), (2.37d), (2.37e), we have that:

∥v − vE∥L∞(D) = O(E−α1) as E → +∞ with α1 :=
1

2

m− d

m+ β
. (2.41)

3 Main new theoretical results

3.1 The case of Problem 7

For Problems 7(A) and 7(B, n = 1) with d ≥ 2, convex D and Ω1, and B = B2
√
E, we consider

the approximate reconstruction vE defined by Algorithm 1 with QE given by (2.39).
We will use that

|FχD−Ω1,ε(p)| ≤
C4(t)

(1 + |p|)t
, p ∈ Rd, t ≥ 0, (3.1)

where χD−Ω1, ε is the function in line 4 of Alg. 1, C4(t) = C4(t, χD−Ω1, ε) is a positive constant.
Let

C5(t) :=

∫
Rd

dp

(1 + |p|)t
, t > d. (3.2)

Let µ(U) denote the Lebesgue measure of a bounded domain U ⊂ Rd.
We give the following new estimate on v̂E = FvE on B2

√
E.

Proposition 3.1. Let v, w1 satisfy (1.3), (2.32), (2.37b), where D, Ω1 are convex, and dist(D, Ω1) >
diamD. Let v̂E be defined via (2.39a)) and lines 1–5 of Alg. 1, where ν = 1. Then:

|v̂(p)− v̂E(p)| ≤
C6η

2

|Fw1(p)|(1 + 2(1− τ)E1/2)t−d−α
, p ∈ B2τ

√
E, E

1/2 ≥ ρ1(d, s, ∥v + w1∥s),

(3.3)
C6 := (2π)−2d(µ(D)2 + 2µ(D)µ(Ω1))C4(t)C5(d+ δ), δ > 0, t− d− δ > 0, (3.4)

where ρ1 is defined by (2.20), C4, C5 are the constants of (3.1), (3.2), τ ∈ (0, 1) is the parameter
in line 5 of Alg. 1 and is fixed.

The proof of Proposition 3.1 repeats the proof of Theorem 5.1 (for Problem 8(A)) in [41]. The
main difference is that now formulas (114), (122) in [41] reduce to

∆h(p, E) = 0 for p ∈ B2
√
E, (3.5)

I1(p, E) = 0. (3.6)

Actually, this completes the proof of Proposition 3.1.
Recall that if v ∈ Wm,1(Rd), m ≥ 0, then the following estimate holds:

|v̂(p)| ≤ C7(m)

(1 + |p|)m
, p ∈ Rd, (3.7)

where C7(m) = C7(m, d, ∥v∥m,1) is positive constant.
Let |Sd−1| denote the (d− 1)–dimensional Lebesgue measure of the unit sphere.
Proposition 3.1 and estimate (3.7) yield the following new estimate on vE on D.
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Theorem 3.2. Let v, w1 satisfy the assumptions of Proposition 3.1, and also satisfy (2.37a) and
(2.37d). Let vE be defined by Algorithm 1 with QE given by (2.39a) and ν = 1. Let δ > 0,
t− β − δ > 2d. Then:

|v(x)− vE(x)| ≤ A1E
−α1 + A2E

−α2 , x ∈ D, (3.8a)

α1 :=
1

2
(m− d), α2 :=

t− β − δ

2
− d, (3.8b)

A1 :=
|Sd−1|C7(m)

(2τ)m−d(m− d)
, (3.8c)

A2 :=
(1 + 2τ)β(2τ)β

(2− 2τ)t−d−δ
µ(B1)c

−1
3 C6(t)η

2, (3.8d)

where C6, C7 are given by (3.4), (3.7), and τ ∈ (0, 1), the parameter in line 5 of Alg. 1 is fixed.

The proof of Theorem 3.2 repeats the proof of Theorem 6.1 (for Problem 8(A)) in [41]. The
main modifications consist in the following:

• In formula (136) of [41]: γ = 1/2, i.e., τ1 = τ is independent of E;

• In formula (139) of [41]: I1 = 0.

Remark 3.3. For Problem 7(B, n = 1), where dist(D,Ω1) > 0, Proposition 3.1 and Theorem 3.2
are valid with QE given by (2.39b) and C6 given by

C6 = 2(2π)−2dµ(D)µ(Ω1)C4(t)C5(d+ δ).

Remark 3.4. Estimate (3.8a) (with t such that α2 = α1) implies estimate (1.11) mentioned in
Introduction. The point is that estimate (1.11) is completely similar to estimate (2.16) for the
phased case and is principally better than estimate (2.41) for the phaseless case. Note that vE in
(2.41) is constructed with different τ than vE in (3.8a), (1.11).

Remark 3.5. If the assumption that v ∈ Wm,1(Rd), m > d, is not fulfilled, then the result of
Theorem 3.1 can be modified for apodized (smoothed) v in a similar way with considerations of
Section 6.1 of [24] and Theorem 3.2, Remark 3.3 of [25].

3.2 The case of Problem 8

For Problems 8(A) and 8(B, n = 1) with d ≥ 2, convex D and Ω1, and M′ = ΓE, the approximate
reconstruction vE given by Algorithm 1 can be essentially improved iteratively, where u1E = vE is
the first approximation.

The iterative step is based on the following lemma.

Lemma 3.6. Under the assumptions of Lemma 2.1, the following estimate holds:∣∣|f(k, l)|2 − |fappr(k, l)|2 + |v̂appr(k − l, E)|2 − |v̂(k − l)|2
∣∣ ≤ C(s,D)

(
N + b

Eα

(
1 + N

E1/2

)) Nb

Eα+1/2
,

(k, l) ∈ ME, E1/2 ≥ ρ1(d, s,N),

(3.9)

for some C = C(s,D) > 0.

The proof of Lemma 3.6 is given in Section 7.
Our iterative reconstruction is summarized in Algorithms 2(A) and 2(B).
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Algorithm 2(A):
function uJE = reco2A(σ1, w, E, {ν1..νJ}, {τ1..τJ}, D)
// iterative reconstruction algorithm for Problem 8(A)
Input:
σ1 ≈ σ[v + w]: measured scattering cross section for v + w on M′

w ∈ L∞(Rd): background potential
E > 0: energy
0 < ν1 ≤ · · · ≤ νJ ≤ 1: cut-off parameters
0 < τ1 ≤ · · · ≤ τJ ≤ 1: cut-off parameters
convex D ⊂ Rd contains supp v

Output:
uJE: approximate reconstruction of v

1 Q1
E(p) :=

1
|c(d,

√
E)|2 (Φσ1)(p), p ∈ B2

√
E

// c(d,
√
E) def. in (2.2a), Fourier transform F in (1.1) and Φ : M′ → B2

√
E in (2.10)

2 u1E := reco(Q1
E, w, E,D, ν1, τ1)

for j = 1..J-1 do
3 Compute scattering amplitude f j

1,E for potential ujE + w

4 Qj+1
E (p) := 1

|c(d,
√
E|2 (Φσ1)(p) + |(F(ujE + w))(p)|2 − (Φ|f j

1,E|2)(p), p ∈ B2
√
E

5 uj+1
E = reco(Qj+1

E , w, E,D, νj+1, τj+1)

end

Algorithm 2(B):
function uJE = reco2B(σ, σ1, w, E, {ν1..νJ}, {τ1..τJ}, D) // iterative reconstruction

algorithm for Problem 8(B) with n = 1
Input:
σ ≈ σ[v]: measured scattering cross section for v on M′

σ1 ≈ σ[v + w]: measured scattering cross section for v + w on M′

w,E, νj, τj, and D as in Algorithm 2(A)
Output:
uJE: approximate reconstruction of v

1 Q1
E(p) :=

1
|c(d,

√
E)|2 ((Φσ1)(p)− (Φσ)(p)), p ∈ B2ν1

√
E

// c(d,
√
E) def. in (2.2a), Fourier transform F in (1.1) and Φ : M′ → B2

√
E in (2.10)

2 u1E := reco(Q1
E, w, E,D, ν1, τ1)

for j = 1..J-1 do
3 Compute scattering amplitudes f j

E and f j
1,E for potentials ujE and ujE + w

4 Σj := 1
|c(d,

√
E|2Φσ + |FujE|2 − Φ|f j

E|2

5 Σj
1 :=

1
|c(d,

√
E|2Φσ1 + |F(ujE + w)|2 − Φ|f j

1,E|2

6 Qj+1
E (p) := Σj

1(p)− Σj(p), p ∈ B2
√
E

7 uj+1
E = reco(Qj+1

E , w, E,D, νj+1, τj+1)

end

In the iterative step in Algorithm 2(A) we use Lemma 3.6 with v + w1 in place of v, and in
Algorithm 2(B) twice with v itself and with v + w1 in place of v.

We set

τj = τEγj−1/2 with (3.10a)

αj :=
1

2

m− d

β + d

(
1−

(
m− d

m+ β

)j
)
, γ1 :=

1

2

1

m+ β
, γj+1 :=

αj + 1/2

m+ β
, (3.10b)

where m, j ∈ N, m > d, β ∈ R, β > d. Here, m and β are the numbers in (2.37a) and (2.37d).
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Theorem 3.7. Let v, w1 satisfy assumptions (1.3), (2.32), (2.37b), where D, Ω1 are convex,
and also satisfy assumptions (2.37a) and (2.37d). Let ujE be defined either by Algorithm 2(A)
with exact data σ1 = σ[v + w1] and dist(Ω1, D) > diam(D) or by Algorithm 2(B) for exact data
σ = σ[v], σ1 = σ[v + w1] and dist(Ω1, D) > 0, where νj ≡ 1 for all j, and τj are as in (3.10a).
Then

∥v − ujE∥L∞(D) = O(E−αj) as E → +∞, (3.11)

where αj are defined in (3.10b), j ∈ N.

Theorem 3.7 is proved in Section 8 of Appendix.
For αj and γj in Theorem 3.7, we have that

αj → α∞ :=
1

2

m− d

β + d
as j → +∞,

αj →
j

2
as m→ +∞,

α∞ → +∞ as m→ +∞,

(3.12)

γj < γj+1, γj → γ∞ :=
1

2

1

β + d
as j → ∞. (3.13)

Therefore, the convergence in (3.11), as E → +∞, is drastically better than in (2.38), at least,
for large m and j. Besides, the convergence in (3.11), as E → +∞, is similar to the somewhat
more rapid convergence in (2.29) for the phased case.

Note that the iterates ujE of Theorem 3.7 are simpler and more rapidly convergent theoretically
than the iterates constructed in [1] for finding v from {σ[v], σ[v +w1], σ[v+w2]} and w1, w2 (i.e.,
for Problem 8(B), d ≥ 2, n = 2). However, the most essential point is that the iterates ujE,
j ≥ 1, of Theorem 3.7 use only the differential scattering cross section σ[v + w1] on ΓE and the
background scatterer w1, when dist(D, Ω1) > diamD.

Remark 3.8. Apparently, it is not difficult to show that iterates ujE in Theorem 3.7 depend in a
Lipschitz way on errors in the phaseless data. Related analysis will be developped elsewhere. This
issue is also related with approximate Lipschitz stability considered in [34] for the phased case.

4 Numerical implementation
In the following we present numerical tests for our new theoretical results presented in Section
3.2 as well as results of [41]. We proceed from the numerical implementation developed in [1] for
the case of Problem 8(B) with d ≥ 2. For simplicity, we carry out these numerical studies for the
two-dimensional case d = 2.

4.1 Discrete grids

We assume that v and w1 are supported in the unit disk B1. Let

ZN :=

{
−N

2
,−N

2
+ 1, ...,

N

2
− 1

}
, N ∈ 2N. (4.1)

We represent v and w1 by v, w1 defined on the space-variable grids

XN := {x =
4

N
(n1, n2) : n1, n2 ∈ ZN}, (4.2)

where N ∈ 2N, N ≥ 2
√
E/π.
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We consider |f(k, l)|2, |f1(k, l)|2 on the grid

ME,M1,M2 := {(k(s), l(s, t)) : s ∈ ZM1 , t ∈ ZM2}, M1, M2 ∈ 2N, (4.3)

where
k(s) :=

√
E
[
cos
(
2π s

M1

)
, sin

(
2π s

M1

)]⊤
,

l(s, t) =
√
E
[
cos
(

2πs
M1

+ 2πt
M2

)
, sin

(
2πs
M1

+ 2πt
M2

)]⊤
.

(4.4)

In view of formulas (2.17), (2.33), (2.34), (3.9) for v̂, ŵ1, this leads to the following grid in
Fourier space:

PE,M1,M2 = {p = k − l : (k, l) ∈ ME,M1,M2}, M1, M2 ∈ 2N. (4.5)

Note that the points of PE,M1,M2 are located on circles (Ewald circles) of raduis
√
E, that intersect

at the origin; see Fig. II.1.
In the Fourier domain we also consider the uniform grid:

PN = {p = π

2
(n1, n2) : n1, n2 ∈ ZN}. (4.6)

In addition to PE,M1,M2 and PN , we also consider

PE,M1,M2,N = PE,M1,M2 ∪ P ext
N , (4.7)

Pext
N = {p ∈ PN : p2 > 4E}. (4.8)

The number N in (4.2) and (4.6)–(4.8) is the same.
In our numerical examples we use PE,M1,M2 , PN for M1 = 32, M2 = 256, N = 572, E = 1002.

For this choice, we have that |PN ∩ B2
√
E| = 50949, |PE,M1,M2| = 8192 (where | · | denotes the

number of elements in a set), i.e. Fourier space in B2
√
E is severely undersampled, in particular

in the neighborhood of the circle with radius
√
E. The resulting numerical problems and their

solution will be discussed in Subsection 4.3.

Figure II.1: The grid PE,M1,M2,N in Fourier space for M1 = 16, M2 = 64, N = 72, and E =
(100/8)2. In our numerical computations we use M1 = 32, M2 = 256, N = 572, E = 1002, i.e. the
same proportions. But for the later numerical parameters we have too many points to visualize.
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4.2 Discrete Fourier transforms

We consider the discrete Fourier transforms F and T :

û = Fu, F = [4(Nπ)−2 exp(ix · p)], x ∈ XN , p ∈ PN , (4.9)
û = Tu, T = [4(Nπ)−2 exp(ix · p)], x ∈ XN , p ∈ PE,M1,M2,N , (4.10)

where u is a test function on XN considered as a vector, and F and T are considered as matrices.
Matrix-vector products with F , its adjoint F ∗ as well as its inverse F−1 = (π

2
)4N2F ∗ can be

computed efficiently by the Fast Fourier Transform (FFT).
Matrix-vector products with T and T ∗ can also be computed efficiently by non-uniform FFT

methods. We use the code NFFT 3 (see [28]) for this purpose. Computations of a left inverse of
T is more difficult. One can use the conjugate gradient method applied to the normal system

T ∗Λ1/2Tu = T ∗Λ1/2û (4.11)

for this purpose, where Λ is a diagonal weight matrix such that ∥Λ1/2u∥22 ≈
∫
|u(p)|2dp; see [3,

§4.1.3].

4.3 Phase retrieval with background information

In this subsection we describe our numerical implementation of Algorithm 1 for finding v from QE

approximately given by formulas (2.39) in terms of phaseless Fourier transforms on B2
√
E, i.e. for

solving Problem 7(A) and Problem 7(B, n = 1). In addition, by line 1 of Alg. 1 we also define hE
which extends QE from B2

√
E to Rd, d = 2. The basic point of our implementation of Algorithm

1 consists in inversion of the discrete Fourier transforms F and T . In addition, inversion of F is
standard, whereas proper inversion of T includes an essential new result. Proper implementation
of (Fw1(p))

−1FqE(p) in line 5 of Algorithm 1 is also essential in view of possible zeros of Fw1(p)
(if Assumption (2.37d) is violated). Note that, for Problem 7(A) and Problem 7(B, n = 1) we use
Algorithm 1 for cut-off parameters ν = τ = 1.

The case of data on PN ∩B2
√
E. If in formulas (2.39) the data QE(p) are given on PN ∩B2

√
E,

then in lines 4, 6 of Algorithm 1 we implement F−1 as F−1 via FFT as mentioned in Subsection
4.2.

The case of data on PE,M1,M2 . This case is especially important for Problem 8. If in formulas
(2.39) the data QE(p) are given on PE,M1,M2 , then line 4 of Alg. 1 we implement a left inverse of
the discrete Fourier transform T using the conjugate gradient method mentioned in Subsection
4.2. However, because of the geometric constraints of our setting, in particular the condition
dist(Ω1, D) > diam(D), the system (4.11) is much more ill-conditioned than in [1] due to the
severe undersampling of Fourier space discussed at the end of Subsection 4.1; see also Fig. II.1.
Therefore, the conjugate gradient method for system (4.11) does not converge properly to an
approximation of F−1hE in line 4 of Alg. 1. To cope with this difficulty, we use a very specific
property of hE described by the formulas

F−1h(x)−W1(x) = 0, x ∈ U c := Rd \ U , (4.12)
h(p) := lim

E→+∞
hE(p), p ∈ Rd, (4.13)

U :=

{
(D − Ω1) ∪ (Ω1 −D) ∪BdiamD, if QE(p) is defined as in (2.39a),
(D − Ω1) ∪ (Ω1 −D), if QE(p) is defined as in (2.39b),

(4.14)

see formulas (47), (49), (51), (53) of [41].
It is convenient to rewrite (4.12) as

F−1h̃(x) = 0, x ∈ U c with (4.15)

h̃(p) := lim
E→+∞

h̃E(p), h̃E(p) := hE(p)− (FW1)(p), p ∈ Rd. (4.16)
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The property (4.12), (4.15) means that F−1h̃ is identically zero on U c, and F−1h̃E is approxi-
mately zero on U c. Moreover, we have that:

F−1h̃E(x) =

∫
|p|≥2

√
E

e−ipx(|ŵ1(p)|2 − |v̂(p) + ŵ1(p)|2)dp, x ∈ U c, (4.17a)

F−1h̃E(x) =

∫
|p|≥2

√
E

e−ipx(|ŵ1(p)|2 + |v̂(p)|2 − |v̂(p) + ŵ1(p)|2)dp, x ∈ U c, (4.17b)

for the cases (A) and (B), respectively. That is, in particular, F−1h̃E on U c depends only on
a higher frequency parts of v and w1. Formulas (4.17) follow from (4.12)–(4.16), and from the
formulas

hE = h− (1− χB2
√
E
)|F(v + w1)|2 + (1− χB2

√
E
)|Fw1|2, (4.18a)

hE = h− (1− χB2
√
E
)(|F(v + w1)|2 −Fv|2) + (1− χB2

√
E
)|Fw1|2, (4.18b)

for the cases (A) and (B), respectively, where χB2
√
E

is the characteristic function of B2
√
E.

Therefore, for finding F−1h̃E arising in (2.39) and line 1 of Alg. 1 in place of system (4.11) we
use the conjugate gradient method for the following system for u on XN ,

ΠT ∗Λ1/2TΠu = ΠT ∗Λ1/2h̃E, (4.19)

where Π is the projector defined by the characteristic function U in (4.14), i.e.

Πu := χU · u. (4.20)

Note that if diamΩ1 ≤ diamD, then suppW1 ⊆ Bdiam D, and, therefore, (4.12), (4.15) also
hold without W1, and for finding F−1hE one can use (4.19) with hE in place of h̃E.

Note also that if in Algorithm 1 the cut-off parameter ν ∈ (0, 1), then hE also depends on ν,
and in formulas (4.17), (4.18) the radius 2

√
E should be replaced by 2ν

√
E. The point is that

such cut-off parameters ν arise in Section 4.4.
The use of initial system (4.11) without a priori information (4.12)–(4.16) results in consider-

able reconstruction errors of vE in Algorithm 1 with QE given by (2.39), see Figs. II.4, II.5.
In the present work, we use 40 conjugate gradient steps for system (4.19). In contrast, even

100 conjugate gradient steps for solving system (4.11) does not lead to a proper result.
Moreover, because of accumulation of such errors, our numerical iterative reconstruction pre-

sented in Sections 3.2, 4.4 does not converge properly.

Finally, in the present work, we implement line 5 of Alg. 1 (i.e. v̂E ≡ (Fw1)
−1FqE) as

a

b
≈ (1 + ε)

ab∗

bb∗ + εmaxp |b|2
with a = FqE(p), b = Fw1(p), (4.21)

where ε is an appropriately small positive number. In our numerical examples we choose ε = 5 ·
10−3. Formula (4.21) is essentially Tikhonov regularization for solving the linear equation b v̂E = a
for v̂E ∈ L2(Br) where ε ·maxp |b|2 is the regularisation parameter. In addition, we included the
factor (1 + ε) in the right-hand side of (4.21) in order to have the identity v̂E,ε(p) = v̂E(p) for
p ∈ argmaxp |b(p)|2.

Note that, for example, |Fw1|2 has many zeros (in violation of assumption 2.37d of our theo-
retical analysis!) if w1 is a multiple of the characteristic function of a box as in Fig. II.2. For such
cases, formulas (4.21) are very essential.

For the phase retrieval problem our numerical realisation of Algorithm 1 is summarized as
Algorithm 3.
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Algorithm 3:
function v = reco_discr(N,M1,M2, Q, w,E, ν, τ,D,Ω)
Input:
N ∈ 2N: The spatial grid XN ⊂ [−2, 2]2 and the Fourier grid PN ⊂ [−πN

4
, πN

4
]2

have size N ×N ; see (4.2), (4.6)
M1,M2 ∈ N: number of incident fields and measurement points.

This defines the Fourier grids PE,M1,M2 , PE,M1,M2,N ; see (4.5), (4.7) and Fig. II.1
Q : PE,M1,M2 → R: phaseless data given by (2.39) or (2.36) for Problems 7 and 8, rsp.
w : XN → C background potential
convex D,Ω ⊂ XN contains support of v and w, rsp.

Output:
v : XN → C approximation of unknown potential such that supp v ⊆ D

1 Compute vector λ : PE,M1,M2,N → R of areas of Voronoi cells of these points and set
Λ := diag(λ) // see, e.g. Fig 2 in [1]

2 χD(x) :=

{
1, x ∈ XN ∩D
0, x ∈ XN \D

and χD−Ω(x) :=

{
1, x ∈ XN ∩ (D − Ω)

0, x ∈ XN \ (D − Ω)

3 χU(x) :=

{
1, x ∈ XN ∩ ((D − Ω) ∪ (Ω−D) ∪Bdiam D)

0, x ∈ XN \ ((D − Ω) ∪ (Ω−D) ∪Bdiam D)

4 χB2τ
√
E
(p) :=

{
1, p ∈ PN ∩B2τ

√
E

0, p ∈ PN \B2τ
√
E

and χB2ν
√
E
(p) :=

{
1, p ∈ PE,M1,M2 ∩B2ν

√
E

0, p ∈ PE,M1,M2 \B2ν
√
E

5 F := [4(Nπ)−2 exp(ix · p)]x,p with x ∈ XN , p ∈ PN

// matrix-vector products with F , F ∗, and F−1 implemented by FFT
6 T := [4(Nπ)−2 exp(ix · p)]x,p with x ∈ XN , p ∈ PE,M1,M2

// matrix-vector products with T and T ∗ implemented by non-uniform FFT
7 ŵ := Fw // defined on PN

8 h = χB2ν
√
E
Q

if (diamΩ < diamD < dist(D,Ω)) then
9 rhs := χU · (T ∗Λ1/2h)

else
10 W := F−1(|ŵ|2)
11 rhs := χU · T ∗Λ1/2(h− TW )

end
12 Solve χU · T ∗Λ1/2T (χU · qin) = rhs for qin : XN → C by CG method
13 q := χD−Ω · (qin + F−1((1− χB2ν

√
E
) · |ŵ|2))

14 v̂ := (1 + ε)χB2τ
√
E

Fq·ŵ
ŵ ·ŵ+εmax |ŵ|2 with ε := 0.005

15 v := χD · F−1(v̂)

4.4 Phaseless inverse scattering with background information

Our numerical reconstructions are based on Algorithms 1, 2(A) and 2(B), more precisely, on
discrete versions of these algorithms. Recall that in the case of Problem 8, Algorithm 1 is used
to provide the first approximation and its iterative improvements in Algorithms 2(A) and 2(B).
A discrete version of Algorithm 1 is given as Algorithm 3. Algorithms 2(A) and 2(B) have
straightforward analogues in the discrete setting, replacing Algorithm 1 by its discrete analog,
Algorithm 3.

In addition, there are the following essential points:

(i) In the numerical implementations of the present work, we fix in advance the total number
J of the iterates ujE, j = 1, ..., J , where J = 1, J = 6, J = 10 in our examples. In addition,
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our choice of the cut-off parameters νj, τj in Algorithms 2(A), 2(B) is as follows:

νj = 0.5 + 0.5
j − 1

J
, τj = 1, j = 1, ..., J. (4.22)

Note that this choice of cut-off parameters ν, τ differs from the choice of these cut-off
parameters in Theorem 3.7. The reason is that the cut-off parameters given by (4.22) yield
better numerical results.

(ii) For normalized measured data σ[v1]
meas(k, l), where k ∈ {k1, ..., kM1}, l ∈ {l1, ..., lM2}, we

use the Poisson noise model in a similar way as in [1]. In this framework the noise level
is characterized by the number Np of measured particles. As mentioned in introduction,
σ[v1](k, l) describes the probability density of scattering of particles with initial impulse k
into direction l/|l| ̸= k/|k|. We assume that for each incident impulse ki the exposure time
t(ki) is chosen such that the same expected number of particles Np/M1 is recorded in the
sum over all lj. Thus, our simulated normalized measured noisy data σ[v1]

meas(k, l) were
generated from exact data σ[v1](k, l) via the formulas

σ[v1]
meas(ki, lj) ∼

1

t(ki)
Pois(t(ki)σ[v1](ki, lj)), t(ki) =

Np

M1σ[v1](ki)
, σ[v1](ki) =

M2∑
j=1

σ[v1](ki, lj),

(4.23)

where i = 1, ...,M1, j = 1, ...,M2.

(iii) The approximation uJE mentioned above does not converge to v at fixed E even when J
increases; see, in particular, Theorem 3.7. Therefore, we improve uJE using the Newton-CG
method (see [19]) in a similar way with [1].
In the present work we use Newton-CG for minimizing the following quadratic approximation
of the negative Poisson log-likelihood (Kullback-Leibler divergence):

∆(σ[v1]
comp, σ[v1]

meas) =
∑

(k,l)∈ME,M1,M2

|σ[v1]comp(k, l)− σ[v1]
meas(k, l)|2

max(ε, σ[v1]meas(k, l))
, (4.24)

ε =
1

1000
max
(k,l)

σ[v1]
meas(k, l),

among all v ∈ H1 supported in D, where σ[v1]meas is our normalized measured monochro-
matic phaseless scattering data defined according to (4.23), σ[v1]comp denotes the monochro-
matic phaseless scattering data (differential scattering cross section) computed for v1 = v+w,
and D is chosen as small as possible using a priori information. As initial approximation for
v, one can use uJE mentioned above.

5 Numerical examples

5.1 Test potentials

Throughout this section we use the values of energy E and discretization parameters M1,M2, and
N given is Subsection 4.1; see also Fig. II.1. The forward problems are solved using a periodized
version of the Lippmann-Schwinger equation (2.1) as proposed in [50]. Noisy Poisson distributed
synthetic data σ[v1]meas on ME,M1,M2 are generated with an expected total number of Np = 3 ·107
counts.

We consider reconstructions of two potentials v shown in Fig. II.2, where v is smooth for case
(a), and v is non-smooth for case (b). For Problem 8(B) with n = 2 or n = 3, similar potentials v
with different scaling were used in [1]. Fig. II.2 shows v1 = v+w on XN ∩ [−1, 1]2, where N = 572.
This w is a multiple of the characteristic function of a square and will be also denoted as wbox.
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We also define

vfiltE = F−1(χB2
√
E
· Fv), (5.1)

where v is our potential v on XN , F is the discrete Fourier transform defined in (4.9), χB2
√
E

is
the characteristic function of B2

√
E. For the potentials v shown in Fig. II.2(a, b) their filtered

versions vfiltE are shown in Fig. II.3(a, b). The point is that in the present work we do not try to
reconstruct v much better than vfiltE proceeding from the scattering data σ[v1]meas at fixed energy
E.

(a) (b)

Figure II.2: Test examples for the unknown potential v and the known background potential w.
(a) Smooth v. (b) Non-smooth v.

(a) (b)

Figure II.3: Filtered versions vfiltE of the test potentials v in Fig. II.2 corresponding to ideal
reconstructions within the classical diffraction limit for the chosen energy E = 100 (see (5.1)). (a)
Smooth v : E(vfiltE , v) = 0.0077. (b) Non-smooth v : E(vfiltE , v) = 0.2808.

To measure the quality of numerical reconstructions, we use the relative error

E(u, u0) =
∥u− u0∥ℓ2(G)

∥u0∥ℓ2(G)

, (5.2)

where u, u0 are functions on some grid G.

5.2 Reconstruction results for Problem 7(A)

As approximate solutions of Problem 7(A) or Problem 8(A), we consider the result vE of Algorithm
1 with input data QE defined by formula (2.39a) or (2.36a), respectively. First, Fig. II.4 (a, b)
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illustrate our reconstructions vE from |F(v+w)|2 given on the uniform grid PN∩B2
√
E as described

in Subsection 4.3. Then, Fig. II.5 (a0, b0) illustrate our reconstructions vE of v from |F(v+w)|2 on
PE,M1,M2 , where we use system (4.11) (with 40 conjugate gradient steps) for inverting the discrete
Fourier transform T. Finally, Fig. II.5 (a, b) illustrate our reconstructions vE of v from |F(v+w)|2
on PE,M1,M2 , where we use modified system (4.19) (with 40 conjugate gradient steps) in place of
(4.11). The point is that system (4.19) leads to much better result. More precisely, these figures
show our reconstructions vE of smooth and non-smooth v shown on Fig. II.2(a, b) from discrete
phaseless Fourier data without Poisson noise.

One can see that reconstructions vE shown at Fig. II.4 and Fig. II.5(a, b) are rather good,
especially for the case of smooth v, when Fv is rather small on R2 \ B2

√
E, and also for the case

of non-smooth v, in comparison with vfiltE .

(a) (b)

Figure II.4: Reconstructions vE from |F(v + w)|2 on PN ∩B2
√
E.

(a) Smooth v : E(vE, v) = 0.005, E(vE, v
filt
E ) = 0.001. (b) Non-smooth v : E(vE, v) = 0.2816,

E(vE, v
filt
E ) = 0.0292.

5.3 Basic reconstruction results for Problem 8(A)

In this subsection we present our reconstructions for Problem 8(A) with the test potentials v and
w described in Subsection 5.1 and shown in Fig. II.2. In particular, Fig. II.6 and Fig. II.7 illustrate
our reconstructions of v from σ[v1]

meas on ME,M1,M2 with known background w. More precisely,
these figures show our reconstructions uJE, u

J+K
E of smooth and non-smooth potentials v shown

on Fig. II.2(a, b). Here, uJE are as described in Section 4.4, and uJ+K
E denotes uJE improved by

K iterations of Newton-CG method. In addition: J = 1 for Fig. II.6 (a, d), Fig. II.7 (a, d), J = 6
for Fig. II.6 (b, e), J = 10 for Fig. II.7 (b, e), J = 6, K = 5 for Fig. II.6 (c, f), J = 10, K = 5
for Fig. II.7 (c, f). In addition, Fig. II.6 and Fig. II.7 also show the relative reconstruction errors
with respect to both v and vfiltE .

One can see that already reconstruction u1E going back to [41] and illustrated in Fig. II.6 (a,
d) with E(u1E, v) = 0.4112 and in Fig. II.7 (a, d) with E(u1E, v) = 0.5140 is of interest in spite of
considerable errors in real and imaginary parts Reu1E and Imu1E of u1E. These considerable errors
in u1E arise as a consequence of large strength of v, yielding the Born approximation unsatisfactory.
Next, one can see that reconstruction uJE developed in the present work for J > 1 (for the case
beyond the Born approximation) and illustrated in Fig. II.6 (b, e) and in Fig. II.7 (b, e) is
considerably more precise than u1E for reasonably large E and J. Finally, similar to [1], one can
see that uJ+K

E improves uJE, under the condition that uJE is close to v.
The visual quality of our phaseless inverse scattering reconstructions uJE, u

J+K
E shown at

Fig. II.6 and Fig. II.7 (for J > 1) turns out to be more or less comparable with our phase-
less Fourier reconstructions vE shown at Fig. II.5(a, b) and even at Fig. II.4. In addition, the
errors E(vE, v) shown at Fig. II.7, for vE = u10E , u

10+5
E , are also comparable with the error E(vE, v)

shown at Fig. II.5(b). Besides, the errors E(vE, v) shown at Fig. II.6, for vE = u6E, u
6+5
E , reduce

83



(a0) (b0)

(a) (b)

Figure II.5: Reconstructions vE from |F(v + w)|2 on PE,M1,M2 .
(a0, b0): inverting T via (4.11) (old method). (a, b): inverting T using (4.19) (new method).
(a0) Smooth v : E(vE, v) = 0.1417, E(vE, v

filt
E ) = 0.1416. (b0) Non-smooth v : E(vE, v) = 0.4017,

E(vE, v
filt
E ) = 0.3002. (a) Smooth v : E(vE, v) = 0.01434, E(vE, v

filt
E ) = 0.01376. (b) Non-smooth

v : E(vE, v) = 0.3223, E(vE, v
filt
E ) = 0.1632.

considerably for vE = u6+K
E for large K, see Fig. II.8(c). For proper comparisons, recall also that

the phaseless scattering data σ[v1]meas used for the reconstructions of Fig. II.6 and Fig. II.7 are
with Poisson noise, whereas there is no Poisson noise in the phaseless Fourier transforms used for
the reconstructions of Fig. II.4 and II.5. In addition, the reconstructions of Fig. II.4 do not have
non-uniform grid difficulties.
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(a) Reu1E (b) Reu6E (c) Reu6+5
E

(d) Imu1E (e) Imu6E (f) Imu6+5
E

Figure II.6: Reconstructions uJE, u
J+K
E of smooth v (see Fig. II.2) in Problem 8(A). Top row: Real

parts. Bottom row: Imaginary parts. Relative errors on XN ∩D: E(u1E, v) = 0.4096, E(u1E, v
filt
E ) =

0.4096; E(u6E, v) = 0.1722, E(u6E, v
filt
E ) = 0.1722; E(u6+5

E , v) = 0.1257, E(u6+5
E , vfiltE ) = 0.1256.

(a)Reu1E (b) Reu10E (c) Reu10+5
E

(d) Imu1E (e) Imu10E (f) Imu10+5
E

Figure II.7: Reconstructions uJE, u
J+K
E of non-smooth v (see Fig. II.2) in Problem 8(B) with n = 1.

Top row: Real parts. Bottom row: Imaginary parts. Relative errors on XN ∩ D: E(u1E, v) =
0.5140, E(u1E, v

filt
E ) = 0.4466; E(u10E , v) = 0.3396, E(u10E , v

filt
E ) = 0.1873; E(u10+5

E , v) = 0.3196,
E(u10+5

E , vfiltE ) = 0.1486.

Next, for our smooth and non-smooth v, Fig. II.8 shows L2 discrepancies E(j) = E(σ[ujE +
w1]

comp, σ[v1]
meas) Poisson discrepancies ∆(j) = ∆(σ[ujE + w1]

comp, σ[v1]
meas) on ME,M1,M2 , and
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relative errors E(ujE, v) on XN ∩D for the iterates ujE, where

u0E ≡ 0, (5.3a)

ujE, j = 1, ..., J, are defined as described in item (i) of Subsection 4.4, (5.3b)
uJ+k
E denotes uJE improved by k iterations of Newton-CG method. (5.3c)

Note that J > 0 for the plots ’Our + NCG’, and J = 0 for the plots ’NCG method’.
These figures also show L2 discrepancy Enoise and Poisson discrepancy ∆noise defined by

Enoise = E(σ[v1], σ[v1]
meas), (5.4)

∆noise = ∆(σ[v1], σ[v1]
meas), (5.5)

or, in other words, the noise level in σ[v1]
meas in different senses. For the plots ’Our + NCG’,

one can see that E(J) and ∆(J) are much smaller than E(1) and ∆(1), respectively. However,
E(j) and ∆(j) are not monotonically decreasing in j = 1, ..., J. The reason is that the proposed
iterative algorithm does not minimize the aforementioned discrepancies directly; this algorithm
is based on a different principle. In addition, one can see that E(j) and ∆(j) are monotonically
decreasing for j ≥ J. The reason is that the additional Newton-CG method directly minimizes
∆(j).

One can see that:

• E(j) and ∆(j), for large j, are very close to the noise levels Enoise and ∆noise for smooth v;

• E(j) and ∆(j), for large j, are not yet very close to the noise levels Enoise and ∆noise for
non-smooth v.

The reason is that our monochromatic iterative algorithm (including additional NCG itera-
tions) reconstruct v̂(p) for |p| ≤ 2

√
E much better than for |p| ≥ 2

√
E.

For our examples we have that our reconstructions uJE give good results in configuration space
(i.e., on XN ∩ D) much faster than the Newton-CG iterates u0+k

E , which start from the zero ap-
proximation, and even than u1+k

E , which start from our reconstruction in the Born approximation,
i.e., from uJE, J = 1. In particular, in our examples much faster means that our reconstruction uJE,
J = 1, is similar to u0+18

E , in the configuration space for non-smooth v, and uJE, J = 1, is similar
to u0+8

E , in the configuration space for smooth v. For more comparisons, see also Fig. II.8.

Figure II.8: L2 discrepancy E(σ[ujE + w1]
comp, σ[v1]

meas), Poisson discrepancy ∆(σ[ujE +
w1]

comp, σ[v1]
meas) and relative errors E(ujE, v,D) as a function of j, in comparison with Enoise

and ∆noise (horizontal lines). Solid lines indicate our iterations for j = 1, ..., J , dashed line in-
dicate Newton-CG (NCG) iterations. Blue: smooth v. Red: non-smooth v. For the plots ’Our
+ NCG’, the NCG iterations start with j = J + 1 = 7 for smooth v and j = J + 1 = 11 for
non-smooth v. See notations (5.3).
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5.4 Further reconstruction results for Problem 8(A)

Reconstruction examples presented in this subsection are as follows: reconstruction of complex
v; reconstruction with background w satisfying the additional theoretical assumption (2.37d);
reconstruction of real v taking into account a priori knowledge of real-valuedness; examples of v
and w for which our method converges, whereas NCG method diverges. The expected number of
particles Np = 3 · 107 characterizing Poisson noise is as in Subsection 5.3.

Fig. II.9 illustrates our reconstructions uJE, for J = 1, J = 6, and uJ+K
E , for J = 6, K = 5, of

complex-valued potential. Here, Re v is two times smaller than in v in Fig. II.2(a), Im v ≤ 0, and
| Im v| is four times smaller than v in Fig. II.2(b), and background w is the same as in Fig. II.2.

It is remarkable that our method reconstructs two real-valued functions Re v and Im v on XN

from one real-valued function σ[v1]meas on ME,M1,M2 for known background w.

Figure II.9: Reconstructions uJE and uJ+K
E of complex-valued v with smooth Re v and non-smooth

Im v ≤ 0. E(u1E, v,D) = 0.3927, E(u6E, v,D) = 0.2080, E(u6+5
E , v,D) = 0.1911.

Next, we study our numerical reconstructions uJE and uJ+K
E for the case when w satisfies the

additional theoretical assumption (2.37d). We consider w of the form

w = wΦ(x) = λ1Φ1(|x− x0|/λ2), λ1, λ2 > 0, x, x0 ∈ R2, (5.6a)
Φ1(r) = max(1− r, 0)4(4r + 1). (5.6b)

Here, Φ1 is one of Wendland’s radial functions. In particular, wΦ given by (5.6) satisfies (2.37d)
with β = 5, d = 2, and wΦ ∈ C2(Rd), see [1], [51]. We chose λ1, λ2, x0 in a such way that x0 is the
center of wbox, 2λ2 is the length of the side of supp(wbox), and λ1 is such that ∥wΦ∥L2 = ∥wbox∥L2 ,
where wbox is w shown in Fig. II.2.

Our numerical reconstructions with background wΦ were implemented with ε = 0 in (4.21),
taking into account that ŵΦ(p) is not too small on B2

√
E. These reconstructions are more or less

similar in quality to our reconstructions with background wbox presented in Subsection 5.3; see
Table II.1.

Table II.1 shows relative L2 errors E(u, v) and E(u, vfiltE ) on XN∩D for different reconstructions
u for smooth and non-smooth real v shown on Fig. II.2, where w = wbox shown in Fig. II.2, or
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w = wΦ mentioned above, and u = uJE or u = uJ+K
E . In addition, these reconstructions u are

implemented either without or with the a priori assumption that Im v ≡ 0. These reconstructions
u for w = wbox without a priori assumption that Im v ≡ 0 are also shown in Fig. II.6, II.7.

Smooth v wbox wΦ
wbox +
Im v = 0

wΦ +
Im v = 0

J = 1 0.4096 0.3787 0.2165 0.1851
J = 6 0.1722 0.2222 0.0299 0.0284
J = 6, K = 5 0.1257 0.1672 0.0153 0.0159

(a) v shown in Fig. II.2(a).

Non-smooth v wbox wΦ
wbox +

Im v = 0
wΦ +

Im v = 0

J = 1 0.5140 0.4730 0.4249 0.3803
J = 10 0.3396 0.3214 0.3325 0.2849
J = 10, K = 5 0.3196 0.3009 0.3048 0.2788

(b1) v shown in Fig. II.2(b).

Non-smooth v
vs vfiltE

wbox wΦ
wbox +

Im v = 0
wΦ +

Im v = 0

J = 1 0.4466 0.3964 0.3299 0.2667
J = 10 0.1873 0.1643 0.1825 0.0527
J = 10, K = 5 0.1486 0.1196 0.1329 0.0453

(b2) vfiltE shown in Fig. II.3(b).

Table II.1: Relative L2 errors E(u, v) and E(u, vfiltE ) on XN ∩D for different reconstructions u for
smooth and non-smooth real v without and with the a priori assumption that Im v ≡ 0, where
w = wbox or w = wΦ, and u = uJE or u = uJ+K

E . (a) E(u, v); (b1) E(u, v); (b2) E(u, vfiltE ).

One can see that, in our examples, the use of the a priori assumption Im v ≡ 0 strongly reduces
E(u, v) for smooth v and E(u, vfiltE ) for non-smooth v with w = wΦ.

Next, it is important to note that in some cases the reconstruction based completely on the
NCG iterations with the zero initialization does not converges to the correct solution, whereas our
method does. In particular, we obtained such examples as follows:

(a) We take v which is 5 times smaller and w which is 100 times smaller than v, w shown in
Fig. II.2(a);

(b) We take v which is 10 times smaller and w which is 50 times smaller than v, w shown in
Fig. II.2(b).

Fig. II.10 shows the L2 discrepancy E(σ[ujE+w1]
comp, σ[v1]

meas) on ME,M1,M2 and relative error
E(ujE, v) on XN ∩D as functions of j, where ujE are constructed via our method (solid lines) and
NCG method (dash lines). Note that Fig. II.10(a) shows that the L2 discrepancy asymptotically
decreases even for the pure NCG method (i.e., with zero initialization), i.e., the pure NCG method
converges to some local minimum. In contrast, Fig. II.10(b) shows that the pure NCG method
fails to converge to the global minimum, whereas our iterations do converge properly.

Note that in this example the background potential is very small in comparison to unknown
potential. Recall that for zero background Problem 7 does not have unique solution. Therefore,
for relatively small potentials one can expect instability of convergence of iterative NCG method.
In contrast, lines 3–6 of Alg. 3 are exact, and they are more stable for relatively small w.
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Figure II.10: L2 discrepancy E(σ[ujE + w1]
comp, σ[v1]

meas) and relative error E(ujE, v) as functions
of j, in comparison with Enoise in (5.4) (horizontal lines). Solid lines indicate our iterations for
j = 1, ..., J, dashed line indicate Newton-CG iterations. Blue: smooth v. Red: non-smooth v.
For the plots ’Our + NCG’, the NCG iterations start with j = J + 1 = 7 for smooth v and
j = J + 1 = 11 for non-smooth v. See notations (5.3).

6 Conclusions
In the present work we present new results on phaseless monochromatic inverse scattering with
only one known background scatterer.

In comparison with [1], we reduce the required amount of data by a factor three: Theoretically,
[1] deals with Problem 8(B) for d ≥ 2 and n = 2, that is approximately reconstructs v from the
three differential scattering cross sections {σ[v], σ[v + w1], σ[v + w2]} with known background
scatterers w1, w2, developing methods of [2], [35], [37]. In addition, numerically, [1] deals with
Problems 7(B) and 8(B) for d = 2 and n = 2 or n = 3. In turn, the present work deals with
Problems 7(B) and 8(B) for d = 2 and n = 1 or even Problems 7(A) and 8(A) developing
theoretical and numerical methods of [1], [35], [41]. In the latter case only one differential scattering
cross section σ[v + w1] is needed.

In comparison with [41], in particular, we take into account multiple scattering in the frame-
work of monochromatic iterative reconstruction algorithm and develop numerical implementations,
using approaches of [1], [35]. Theoretically, [41] deals only with the reconstructions given by Al-
gorithm 1 with QE given by (2.39) for phaseless Fourier inversion, and by formulas (2.36), (2.10)
for phaseless inverse Born scattering, without numerical implementation yet. The present work
strongly develops these theoretical results already by Theorem 3.2 for phaseless Fourier inver-
sion and mainly by Theorem 3.7 for phaseless inverse non-linearised scattering. In particular, we
establish rapid convergence of approximate monochromatic reconstructions vE and ujE to v, as
E → +∞. Moreover, in the present work we implement numerically theoretical results of [41] and
of our new theoretical results in Theorem 3.2 and Theorem 3.7.

In some respects the properties of the numerical implementations of the present work are
similar to those in [1]: inversion of the discrete non-uniform Fourier transform T mentioned in
Section 4.2 is realised using the conjugate gradient method; iterative reconstructions use the same
solver for direct scattering problems; mathematical justification of these iterations goes back to
[35]; at the end the reconstruction results are improved using the Newton-CG method; the same
Poisson model for noisy data is used.

The main differences are as follows: theoretical reconstruction formulas are essentially differ-
ent already in the Born approximation and then for iterations; required grid sizes are significantly
larger in view of conditions like dist(D,Ω1) > diamD required in [41] and the present work (see
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Section 2.3); the initial CG approach for inversion of T was not working properly for reconstruc-
tions of the present work and we modified it taking into account a priori information given by
theoretical formulas (4.12)–(4.14) recalled in Section 4.3; less measurements and a lower total num-
ber of ’Poisson count’s, and less direct problem solutions are needed by the numerical methods of
the present work.

Natural further research includes study of applicability limits of numerical implementations
with respect to different parameters of the algorithm, extension of the numerical implementations
to the three-dimensional case, and reconstructions from real data. The experimental scheme could
be similar to that in [43].

7 Proof of Lemma 3.6.
To prove Lemma 3.6 we use, in particular, Lemma 2.1 and the following additional lemma.

Lemma 7.1. Under the assumptions of Lemma 2.1, the following estimates hold:

|f(k, l)| ≤ 3

2
(2π)−dNc21(d, s), (7.1)

|f(k, l)− fappr(k, l)| ≤ (2π)−dc4(s,D)bE−α, (7.2)
c4(s,D) =

(
3c21(d, s)c5(D, s) + µ(D)

)
where (k, l) ∈ ME, E

1/2 ≥ ρ1(d, s,N), c1 is given by (2.19), c5(D, s) = maxD(1 + |x|2)s/2.

Proof. We have that

|f(k, l)| ≤ |f(k, l)− v̂(k − l)|+ |v̂(k − l)|. (7.3)

Using (1.1), (2.5), (2.18)–(2.20), (7.3) we obtain that

|f(k, l)| ≤ 2−1(2π)−dc21(d, s)∥v∥s + (2π)−dc21(d, s)∥v∥s =
3

2
(2π)−dc21(d, s)∥v∥s,

(k, l) ∈ ME, E
1/2 ≥ ρ1(d, s,N).

(7.4)

Thus, estimate (7.1) is proved.
Next, we have that

|f(k, l)− fappr(k, l)| ≤ |δf(k, l)− δfappr(k, l)|+ |v̂(k − l)− v̂appr(k − l, E)|, (7.5)

where

f(k, l) = v̂(k − l) + δf(k, l), (7.6)
fappr(k, l) = v̂appr(k − l, E) + δfappr(k, l). (7.7)

Due to formula (4.11) of [35], we have that

|δf(k, l)− δfappr(k, l)| ≤ 6(2π)−da0(d, s/2)c
2
1(d, s)c5(D, s)∥v∥sbE−α−1/2,

(k, l) ∈ ME, E
1/2 ≥ ρ1(d, s,N).

(7.8)

Using (1.1), (2.5), (2.19)–(2.22), (7.5), (7.8), we obtain that

|f(k, l)− fappr(k, l)| ≤ 3(2π)−dc21(d, s)c5(D, s)bE
−α + (2π)−dµ(D)bE−α

= (2π)−d
(
3c21(d, s)c5(D, s) + µ(D)

)
bE−α,

for (k, l) ∈ ME, E1/2 ≥ ρ1(d, s,N).

(7.9)

Thus, estimate (7.2) is proved.
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We set:

∆1 = f − v̂ − fappr + v̂appr, (7.10)
∆2 = f − fappr. (7.11)

We have that:

|v̂|2 = (f − δf)(f − δf) = |f |2 − fδf − fδf + δfδf ; (7.12)

− fδf − fδf + δfδf = −f(fappr − v̂appr +∆1)− f(fappr − v̂appr +∆1)+

+ (fappr − v̂appr +∆1)(fappr − v̂appr +∆1) =

= −(fappr +∆2)(fappr − v̂appr +∆1)− (fappr +∆2)(fappr − v̂appr +∆1)+

+ (fappr − v̂appr +∆1)(fappr − v̂appr +∆1) = −|fappr|2 + |v̂appr|2 +∆3,

(7.13)

where δf is defined by (7.6), and

∆3 := −∆2(fappr − v̂appr +∆1)−∆2(fappr − v̂appr +∆1) + ∆1∆1 − fappr(−v̂appr +∆1)

− fappr(−v̂appr +∆1) + fappr(−v̂appr +∆1) + (−v̂appr +∆1)fappr − v̂appr∆1 −∆1v̂appr =

= −∆2(fappr − v̂appr +∆1)−∆2(fappr − v̂appr +∆1) + ∆1∆1 − v̂appr∆1 −∆1v̂appr.

(7.14)

From (7.14) it follows that:

|∆3| ≤ 2|∆2||fappr − v̂appr|+ 2|∆1||∆2|+ |∆1|2 + 2|v̂appr||∆1|. (7.15)

From (2.24), (7.2), (7.15) it follows that

|∆3| ≤ c6(s,D)
(
N + bE−α +NbE−α−1/2

)
bNE−α−1/2, E1/2 ≥ ρ1(d, s,N). (7.16)

Lemma 3.6 is proved.

8 Proof of Theorem 3.7
Reconstruction in Born approximation. Due to the definition of u1E and estimate (2.38), we
have that

∥v − u1E∥L∞(D) = O(E−α1), as E → +∞, α1 =
1

2

m− d

m+ β
. (8.1)

Induction step. Let

∥v − ujE∥L∞(D) = O(E−αj), as E → +∞, j ∈ N. (8.2)

We consider uj+1
E defined in either Algorithm 2(A) or 2(B) with νj = 1 and τj given by (3.10). To

estimate v−uj+1
E , we use Lemma 3.6 with v+w1, ujE +w1 in place of v, vappr in case of Algorithm

2(A) and also with v itself and with ujE in place of vappr in case of Algorithm 2(B). From this
lemma we obtain that

|v̂(p) + ŵ1(p)|2 = Σj
1(p, E) +O(E−αj−1/2) as E → +∞, p ∈ B2

√
E, (8.3)

|v̂(p)|2 = Σj(p, E) +O(E−αj−1/2) as E → +∞, p ∈ B2
√
E, (8.4)

where Σj
1, Σ

j are defined by formulas 4 and 5 of Algorithm 2(B).
We set:

∆hj+1(p, E) := |v̂(p) + ŵ1(p)|2 − Σj
1(p, E), p ∈ B2

√
E,

for Algorithm 2(A);
(8.5)

∆hj+1(p, E) := |v̂(p) + ŵ1(p)|2 − |v̂(p)|2 − Σj
1(p, E) + Σj(p, E), p ∈ B2

√
E,

for Algorithm 2(B).
(8.6)

In order to estimate v̂ − ûj+1
E we repeat the proofs of Theorems 5.1 and 5.2 of [41] up to the

following detail:
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• We replace formulas (114), (127), (116), (129) for ∆h(p, E) in [41] by formulas (8.5), (8.6),
(8.3), (8.4) of the present work.

We obtain that

|v̂(p)− ûj+1
E (p)| = |(Fw1(p))

−1|O(E−αj−1/2), p ∈ B2τEγj+1 , γj+1 =
αj + 1/2

m+ β
. (8.7)

In order to estimate v − uj+1
E we proceed from (8.7), and repeat the proofs of Theorems 6.1

and 6.2 of [41] up to the following details:

• Formula (136) of [41] should be replaced by

(2− δ(E))
√
E = 2τEγj+1 , γj+1 =

αj + 1/2

m+ β
, (8.8)

• vappr should be replaced by uj+1
E ,

• formula (138) for v̂ − ûj+1
E in [41] should be replaced by (8.7).

This way provides us the following estimates:

|v(x)− uj+1
E (x)| = O(E−γj+1(m−d)) +O(E−αj−1/2+γj+1(d+β)), x ∈ D. (8.9)

In addition, taking into account the value of γj+1 we have that, for E → +∞ :

|v(x)− uj+1
E (x)| = O(E−αj+1), αj+1 =

(
αj +

1

2

)
m− d

m+ β
. (8.10)

Therefore, from the properties of arithmetico-geometric sequence for {αj} we obtain:

αj =
1

2

m− d

β + d

(
1−

(
m− d

m+ β

)j
)
, ∀ j ∈ N. (8.11)

This completes the proof of Theorem 3.7.
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Article III

Approximate Lipschitz stability for
phaseless inverse scattering with
background information

V.N. Sivkin
We prove approximate Lipschitz stability for monochromatic phaseless inverse scattering with

background information in dimension d ≥ 2. Moreover, these stability estimates are given in terms
of non-overdetermined and incomplete data. Related results for reconstruction from phaseless
Fourier transforms are also given. Prototypes of these estimates for the phased case were given in
Novikov (2013 J. Inverse Ill-Posed Problems, 21, 813-823).

Keywords: Schrödinger equation, phaseless inverse scattering, phaseless Fourier transform,
approximate Lipschitz stability, monochromatic and non-overdetermined data.

1 Introduction
In this work we continue studies on phaseless inverse scattering for the stationary Schrödinger
equation:

−∆ψ + V (x)ψ = Eψ, x ∈ Rd, d ≥ 2, E > 0, (1.1)

where
V ∈ L∞(Rd), and is compactly supported. (1.2)

For equation (1.1), under conditions (1.2), we consider the scattering solutions ψ+ = ψ+(x, k),
k ∈ Rd, k2 = E, such that

ψ+(x, k) = eik·x + ψsc(x, k), (1.3)

|x|(d−1)/2

(
∂

∂|x|
− i|k|

)
ψsc(x, k) → 0 as |x| → +∞, (1.4)

uniformly in x/|x|. In particular, we have that

ψsc(x, k) =
ei|k||x|

|x|(d−1)/2
c(d, |k|)f

(
k, |k| x

|x|

)
+O

(
1

|x|(d+1)/2

)
as |x| → +∞, (1.5)

c(d, |k|) := −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4. (1.6)

The coefficient f = f [V ] arising in (1.5) is known as the scattering amplitude for equation (1.1).
In turn, |f |2 is known as the differential scattering cross section for equation (1.1).

Note that f is defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
. (1.7)
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We recall that in quantum mechanics complex values of ψ+ and f have no direct physical sense,
whereas |ψ+|2 and |f |2 admit probabilistic intepritations and can be measured (Born principle
going back to [6]). In particular, |f(k, l)|2 describes the probability density of scattering of the
quantum mechanical particle with initial impulse k into direction l/|l| ≠ k/|k|.

We consider the following monochromatic phaseless inverse scattering problem for equation
(1.1) under assumptions (1.2):

Problem 9. (A) Reconstruct a compactly supported potential v from the differential scattering
cross section |f [v + w]|2 given on some appropriate M′ ⊆ ME for some known compactly
supported background potential w sufficiently separated from v.

(B) Reconstruct a compactly supported potential v from the differential scattering cross sections
|f [v]|2, |f [v + w1]|2, ..., |f [v + wn]|2 given on some appropriate M′ ⊆ ME for some known
compactly supported background potentials w1, ..., wn sufficiently separated from v.

Actually, in Problem 9(A) we consinder the Schrödinger equation (1.1) with V = v+w, while
in Problem 9(B) we consider n + 1 Schrödinger equations (1.1) for V = v + wj, j = 1, ..., n, and
V = v.

Approximate reconstruction for Problem 9(A) in dimension d ≥ 2 was developed in [24], [12].
Approximate reconstruction for Problem 9(B) in dimension d ≥ 2 was developed, in particular,

in [1], [2], [12], [22], [23], [24].
We also consider Problems 9(A), 9(B) in the Born approximation, when the phaseless scattering

data are reduced to the phaseless Fourier transforms. In this respect, we continue, in particular,
studies of [12], [24].

In the present work, we give the first approximate stability results for Problem 9(A) and
Problem 9(B) for n = 1. Related results for reconstruction from phaseless Fourier transforms are
also given. Prototypes of these estimates for the phased case were given in [20].

In addition to Problem 9, there are also other phaseless inverse problems for equation (1.1)
and for related equations; see, for example, [3], [5], [8], [9], [13], [14], [15], [16], [17], [18], [25], [26],
[27], [28], and references therein.

In particular, in connection with phaseless inverse scattering with background information for
equation (1.1) at positive energies E for d = 1, we refer to [3] and references therein.

The main results of the present work are formulated in Section 2; see Theorems 2.1 and 2.2,
Propositions 2.6 and 2.7. Preliminary results required for the proof of these theorems are given
in Section 3. Theorems 2.1 and 2.2 are proved in Section 4. Propositions 2.6 and 2.7 are proved
in Section 5.

2 Main results
We assume that:

v1, v2 ∈ L∞(Rd), d ≥ 2, (2.1a)
supp v1, supp v2 ⊆ D, suppw ⊆ Ω, (2.1b)
D, Ω are open convex bounded domains,D ∩ Ω = ∅. (2.1c)

We also assume that:

v1 − v2 ∈ Wm,1(Rd) for some m > d, (2.2)
∥vj∥∞ ≤ N1, j = 1, 2; ∥v1 − v2∥m,1 ≤ N2, (2.3)

where
Wm,1(Rd) = {u : ∂Ju ∈ L1(Rd), |J | ≤ m},
∥u∥m,1 = max

|J |≤m
∥∂Ju∥L1(Rd),

(2.4)

∥u∥∞ = ∥u∥L∞(Rd). (2.5)
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Finally, we assume that:

∥w∥∞ ≤ N1, |ŵ(p)| ≥ c1(1 + |p|)−β, p ∈ Rd, (2.6)

for some c1 > 0 and β > d. Here ŵ is Fourier transform of w, defined by

û(p) = Fu(p) = 1

(2π)d

∫
Rd

eip·xu(x)dx. (2.7)

For examples of w satisfying (2.6), see [2], [30].
In addition to ME defined by (1.7), we also consider its subsets Γτ

E ⊂ ME, for τ ∈ (0, 1):

Γτ
E =

{
k = kE(p), l = lE(p) : p ∈ B2τ

√
E

}
,

kE(p) = p/2 + (E − p2/4)1/2γ(p), lE(p) = −p/2 + (E − p2/4)1/2γ(p),
(2.8)

where γ is a piecewise continuous vector–function on Rd, d ≥ 2, such that

|γ(p)| = 1, γ(p) · p = 0, p ∈ Rd. (2.9)

Let C(ME) denote continuous functions on ME, and C(Γτ
E) denotes their restrictions on Γτ

E.

Theorem 2.1. Let functions v1, v2 satisfy assumptions (2.1)–(2.6), and dist(D,Ω) > diam D.
Then, for any ε ∈ (0, 1/2),

∥v1 − v2∥L∞(D) ≤ C1E
1
2
−ε∥|f [v1 + w]|2 − |f [v2 + w]|2∥C(Γτ

E) + C2E
−( 1

2
−ε)m−d

β+d , (2.10)

for E ≥ E1 = E1(D,N1,Ω, β, c1, τ, ε), where τ ∈ (0, 1), E1 is defined in (4.29), C1 = 2K2K3,

C2 = 2K1, and constants K1 = K̃1(d,m)N2, K2 = c−1
1 K̃2(d, β, ε), K3 = K3(d, β) are defined in

(4.25), (4.26).

Theorem 2.2. Let functions v1, v2 satisfy assumptions (2.1)–(2.6). Then, for any ε ∈ (0, 1/2),

∥v1 − v2∥L∞(D) ≤ C1E
1
2
−ε∥(|f [v1 + w]|2 − |f [v2 + w]|2)− (|f [v1]|2 − |f [v2]|2)∥C(Γτ

E) + C2E
−( 1

2
−ε)m−d

β+d ,

(2.11)

for E ≥ E2 = E2(D,N1,Ω, β, c1, τ, ε), where τ ∈ (0, 1), E2 is defined in (4.39), C1 = 2K2K3,

C2 = 2K1, and constants K1 = K̃1(d,m)N2, K2 = c−1
1 K̃2(d, β, ε), K3 = (d, β, α) are defined in

(4.25), (4.26).

Theorems 2.1 and 2.2 are proved in Section 4.
One can see that Theorem 2.1 is a stability result to Problem 9(A), while Theorem 2.2 is a

stability result to Problem 9(B) for n = 1.

Remark 2.3. For the phased case, the prototype of (2.10), (2.11) is as follows:

∥v1 − v2∥L∞(D) ≤ A1E
1
2∥f1 − f2∥C(Γτ

E) + A2E
− 1

2
m−d

d , (2.12)

where τ
√
E = τ(E)

√
E = E1/(2d), A1 = A1(N1, D), A2 = A2(N1, N2, D,m), E ≥ 1; see [20].

Following [20], we say that (2.10), (2.11), (2.12) are approximate Lipschitz stability esimates.
One can see that the right hand sides of (2.10), (2.11), (2.12) are sums of two terms. The

first one is Lipschitz term with respect to data difference, and the second one is approximate but
decaying for high energies. In addition, its decay is very fast for large m, that is for smooth v1−v2.
One can see that, at fixed energy E, the right-hand sides in estimates (2.10), (2.11), (2.12) tend
to positive constants if data differences tend to zero. However, these constants become very small
for large E. This is completely sufficient from the point of view of numerical analysis: numerical
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reconstructions are never absolutely precise. Therefore, it is very natural to study reconstructions
(including stability) up to some small constants (that is, approximate reconstructions). In partic-
ular, the inverse scattering algorithm related with the stability estimate (2.12) was given in [21]
and implemented numerically in [4], [29], whereas the inverse scattering algorithm related with
the stability estimates (2.10), (2.11) was given and implemented numerically in [12]. Note also
that, under the assumptions of Theorem 2.1, Theorem 2.2 and Remark 2.3, exact Lipschitz and
Hölder stability estimates at fixed energy E are impossible; see [19], [10], [11], for such instability
results for more or less similar non-linear and linear inverse problems.

Remark 2.4. Estimates (2.10), (2.11), (2.12) also imply Hölder stability estimates for the case
when data are given for arbitrary large energies. For example, if v1, v2, w satisfy the assumptions
of Theorem 2.1, and

∥|f [v1 + w]|2 − |f [v2 + w]|2∥C(Γτ
E(δ)

) ≤ δ,

E = E(δ) = max(E1, δ
−ζ),

ζ =
β + d

(1/2− ε)(m+ β)
,

(2.13)

then the following estimate holds:

∥v1 − v2∥L∞(D) ≤ (C1 + C2)δ
m−d
m+β , (2.14)

where E1, C1, C2, β, ε, m, τ are as in Theorem 2.1. Similar Hölder stability estimates can be
given proceeding from Theorem 2.2 and Remark 2.3.

Remark 2.5. The second (approximate) terms in estimates (2.10), (2.11) are similar to the error
estimates in formula (3.12) in [12] for iterative reconstructions ujE, when j → ∞.

Note that in formulas (2.10), (2.11) the norm of difference is taken on Γτ
E, where τ could be

very small. In fact, τ can even decrease as E → +∞, but not very fast, that is τ(E)E1/2 ≥ Eγ,
for γ =

(
1
2
− ε
)

1
β+d

. Therefore, Theorems 2.1, 2.2 can be considered as stability results for non-
overdetermined and non-complete data.

We recall that, for the case of Born approximation for small V , scattering amplitude reduces
to the Fourier transform:

f [V ](k, l) ≈ V̂ (k − l), (k, l) ∈ ME. (2.15)

Therefore, Fourier analogs of Theorems 2.1, 2.2 can be summarized as the following result:

Proposition 2.6. Let functions v1, v2, w satisfy assumptions (2.1)–(2.6), and dist(D, Ω) >
diam D. Then, for any ε ∈ (0, 1/2),

∥v1 − v2∥L∞(D) ≤ C1E
1
2
−ε∥|F(v1 + w)|2 − |F(v2 + w)|2∥C(B2τ

√
E) + C2E

−( 1
2
−ε)m−d

β+d , (2.16)

for E ≥ E3 = E3(D,N1,Ω, β, c1, τ, ε). In addition, if the condition on supports is relaxed to
dist(D, Ω) > 0, then

∥v1 − v2∥L∞(D) ≤ C1E
1
2
−ε∥(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)∥C(B2τ

√
E) + C2E

−( 1
2
−ε)m−d

β+d

(2.17)

for E ≥ E4 = E4(D,N1,Ω, β, c1, τ, ε). Here C1, C2 are the same as in (2.10), (2.11), and E3, E4

are defined in (5.3).

The estimates (2.16), (2.17) follow from (2.10), (2.11) up to values of E3 and E4.
Note that estimates (2.16), (2.17) have considerable similarity with some of results of [12] and,

in particular, with estimate (1.11). These results of [12] can be specified also as the following
approximate Lipschitz stability estimates:
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Proposition 2.7. Let functions v1, v2, w satisfy assumptions (2.1)–(2.6), and dist(D, Ω) >
diam D. Then

∥v1 − v2∥L∞(D) ≤ C1τ
β+dE

β+d
2 ∥|F(v1 + w)|2 − |F(v2 + w)|2∥C(B2τ

√
E) + C2τ

−(m−d)E−m−d
2 , (2.18)

for E ≥ E5. In addition, if the condition on supports is relaxed to dist(D, Ω) > 0, then

∥v1 − v2∥L∞(D) ≤ C1τ
β+dE

β+d
2 ∥(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)∥C(B2τ

√
E) + C2τ

−(m−d)E−m−d
2 ,

(2.19)

for E ≥ E5, where E5 = E5(τ) is defined in (5.10); C1 = C1(d, β, c1) is defined in (5.8), C2 =
C2(d,m,N1, N2, D,Ω, β, c1) is defined by (5.9) for (2.18), and by (5.11) for (2.19).

Propositions 2.6 and 2.7 are proved in Section 5. These proofs are based on the explicit
reconstruction formulas of [24]. The proof of Proposition 2.6 follows the scheme of proofs of
Theorems 2.1, 2.2. The proof of Proposition 2.7 is more straightforward. This straightforward
scheme can be also used for the case of Proposition 2.6. This approach leads to somewhat different
constants C1, C2, E4, E5 in formulas (2.16), (2.17).

3 Preliminaries

3.1 Direct scattering

Starting from v, in order to find ψ+ and f, one can use, in particular, the Lippmann-Schwinger
integral equation

ψ+(x, k) = eik·x +

∫
Rd

G+(x− y, k)V (y)ψ+(y, k)dy, (3.1)

G+(x, k) = − 1

(2π)d

∫
Rd

eiξ·xdξ

ξ2 − k2 − i0
, (3.2)

and the relation

f [V ](k, l) =
1

(2π)d

∫
Rd

e−il·yV (y)ψ+(y, k)dy, (3.3)

where x, k, l ∈ Rd, k2 = l2 = E; see, for example, [7].
To deal with equation (3.1) and formula (3.3), it is convenient to use the following Agmon

estimate:

∥Λ−sG+(k)Λ−s∥L2(Rd)→L2(Rd) ≤ a0(d, s)|k|−1, |k| → ∞, s > 1/2, (3.4)

where Λ is the multiplication operator by the function (1+|x|2)1/2, G+(k) denotes integral operator
with Schwartz kernel G+(x− y, k).

In particular, it follows from (3.4) that (3.1) is uniquely solvable in L∞(Rd) for fixed k, for
|k| = E1/2 ≥ ρ1(d, s, ∥V ∥∞,s), where

ρ1(d, s,N) = max(2a0(d, s/2)N, 1), (3.5)

and the following estimate holds:

∥Λ−s/2ψ+(x, k)− Λ−s/2eik·x∥L2(Rd) ≤ b1(d, s)∥V ∥∞,s|k|−1, (3.6)

for |k| ≥ ρ1(d, s, ∥V ∥∞,s), k ∈ Rd. Here

∥u∥∞,s = ess sup
x∈Rd

(1 + |x|)s|u(x)|, s > 0. (3.7)
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We also have that

f [V ](k, l) = V̂ (k − l) + δf [V ](k, l),

|δf [V ](k, l)| ≤ b2(d, s)(∥V ∥∞,s)
2E−1/2,

(3.8)

for k, l ∈ Rd, |k| = |l| ≥ ρ1(d, s, ∥V ∥∞,s).
In connection with (3.4), (3.6), (3.8), see [21].

3.2 Estimates for direct scattering

We consider scattering potentials Vj of the form

Vj = vj + w, j = 1, 2, (3.9)

where v1, v2, w satisfy the assumptions of Section 2. Note that the following properties hold:

∥Vj∥∞ = ∥vj + w∥∞ ≤ N1, ∥V2 − V1∥∞ = ∥v2 − v1∥∞,
supp Vj ⊆ (D ∪ Ω), supp(V1 − V2) ⊆ D,

(3.10)

for j = 1, 2; see (2.1)-(2.6). Note also that:

|V2 − V1| = |v2 − v1| are bounded on D,

V2 = V1 = w on Rd \D.
(3.11)

We also consider

fj := f [Vj] = f [vj + w], j = 1, 2. (3.12)

In view of (2.1), (2.3), (2.6), (3.8), (3.9), we have that

fj(k, l) = f [Vj](k, l) = V̂j(k − l) + δfj(k, l),

|δfj| ≤ a1(D ∪ Ω)N2
1E

−1/2, j = 1, 2,
(3.13)

for (k, l) ∈ ME, E ≥ (ρ1(d, s, λs(D ∪ Ω)N1))
2, where ρ1 is defined in (3.5), a1(D ∪ Ω) =

b2(d, s)λ
2
s(D ∪ Ω), s > d, and

λs(U) := (1 + max
x∈U

|x|)s. (3.14)

We also have the following Lemma (see [20]):

Lemma 3.1. Let vj, Vj, and fj = f [Vj], j = 1, 2, be as in (2.1), (3.9), (3.12). Then the following
estimate holds:

f2(k, l)− f1(k, l) = v̂2(k − l)− v̂1(k − l) + ∆(k, l),

|∆(k, l)| ≤ a2(D ∪ Ω)N1∥v2 − v1∥∞E−1/2,
(3.15)

for k, l ∈ Rd,
√
E = |k| = |l| ≥ ρ1(d, s, λs(D ∪ Ω)N1) and some positive a2(D ∪ Ω). Here N1, D,

Ω are as in (3.10), (3.11).

Let µ(U) be Lebesgue measure of a domain U ⊂ Rd.
We also have the following Lemma, which will be used in Section 4.
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Lemma 3.2. Let Vj = vj + w, j = 1, 2, be as in Lemma 3.1. Then∣∣|f [v2 + w](k, l)|2 − |f [v1 + w](k, l)|2 + |(v̂1 + ŵ)(k − l)|2 − |(v̂2 + ŵ)(k − l)|2
∣∣ ≤

≤ 2
(
(2π)−d(a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥v2 − v1∥∞,

(3.16)

(k, l) ∈ ME, E1/2 ≥ ρ1(d, s, λs(D ∪ Ω)N1), (3.17)

and∣∣|v̂2 + ŵ|2 − |v̂1 + ŵ|2
∣∣ (p) ≤ 2(2π)−2dµ(D ∪ Ω)µ(D)N1∥v2 − v1∥∞, ∀p ∈ Rd, (3.18)∣∣|v̂2 + ŵ|2 − |v̂1 + ŵ|2
∣∣ (p) ≤ 2(2π)−dµ(D ∪ Ω)N1|v̂2 − v̂1|(p), ∀p ∈ Rd, (3.19)∣∣|v̂2 + ŵ|2 − |v̂2|2 − |v̂1 + ŵ|2 + |v̂1|2

∣∣ (p) ≤ 2(2π)−2dµ(D)µ(Ω)N1∥v2 − v1∥∞, ∀p ∈ Rd, (3.20)∣∣|v̂2 + ŵ|2 − |v̂2|2 − |v̂1 + ŵ|2 + |v̂1|2
∣∣ (p) ≤ 2(2π)−dµ(Ω)N1|v̂2 − v̂1|(p), ∀p ∈ Rd, (3.21)

where a1, a2 are as in (3.13), (3.15), D, Ω, N1 are as in (3.10), ρ1 is as in (3.5), λs is as in
(3.14), s > d.

This Lemma is a variation of Lemma 3.6 in [12].
Proof of Lemma 3.2. Note that, for z1, z2 ∈ C,

|z2|2 − |z1|2 = z2(z2 − z1) + z1(z2 − z1). (3.22)

Using (3.22) for fj in place of zj, and (3.13), (3.15), we obtain

|f2|2 − |f1|2 = f 2(f2 − f1) + f1(f2 − f1) = (V̂2 + δf2)(V̂2 − V̂1 +∆) + (V̂1 + δf1)(V̂2 − V̂1 +∆) =

= |V̂2|2 − |V̂1|2 + δf1(V̂2 − V̂1) + δf2(V̂2 − V̂1) + δf1∆+ δf2∆+ V̂1∆+ V̂2∆.

(3.23)

From (3.23), using (3.10), (3.13), (3.15), (3.11), we conclude

||f2|2 − |f1|2 − (|V̂2|2 − |V̂1|2)| ≤ 2a1N
2
1E

−1/2|V̂2 − V̂1|+ (|V̂1|+ |V̂2|)a2N1∥V2 − V1∥∞E−1/2+

+ 2a1N
2
1E

−1/2a2N1∥V2 − V2∥∞E−1/2 ≤ 2
(
(2π)−d (a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥V2 − V1∥∞.

(3.24)

Formula (3.16) follows from (3.9), (3.24).
Using (2.1), (2.7), (3.11), (3.22), we obtain∣∣|v̂2 + ŵ|2 − |v̂1 + ŵ|2

∣∣ = ∣∣∣(v̂2 + ŵ)(v̂2 − v̂1) + (v̂1 + ŵ)(v̂2 − v̂1)
∣∣∣ ≤

≤ 2(2π)−dµ(D ∪ Ω)N1|v̂2 − v̂1|(p) ≤ 2(2π)−2dµ(D ∪ Ω)N1µ(D)∥v2 − v1∥∞.
(3.25)

Analogously to (3.25), we obtain∣∣|v̂2 + ŵ|2 − |v̂2|2 − |v̂1 + ŵ|2 + |v̂1|2
∣∣ ≤ ∣∣∣(v̂2 + ŵ)ŵ + v̂2ŵ − (v̂1 + ŵ)ŵ − v̂1ŵ

∣∣∣ ≤
≤
∣∣∣(v̂2 − v̂1)ŵ + (v̂2 − v̂1)ŵ

∣∣∣ ≤ 2(2π)−dµ(Ω)N1|v̂2 − v̂1| ≤ 2(2π)−2dµ(D)µ(Ω)N1∥v2 − v1∥∞.
(3.26)

Thus, (3.18)–(3.21) are also proved.
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3.3 Phase retrieval formulas

In this section we give phase retrieval formulas of [24].
Let v = v1 and w be as in (2.1). Then

v̂(p) = (ŵ(p))−1F
(
χD−Ω ·

(
F−1(|F(v + w)|2 − |F(v)|2)−W

))
, p ∈ Rd, (3.27)

and if dist(D,Ω) > diam D, then

v̂(p) = (ŵ(p))−1F
(
χD−Ω ·

(
F−1(|F(v + w)|2)−W

))
, p ∈ Rd, (3.28)

where

W (x) := (2π)−d

∫
Rd

w(x+ y)w(y)dy. (3.29)

Formulas (3.27), (3.28) were given in Section 3 of [24].
In formulas (3.27), (3.28), D − Ω is defined by

D − Ω = {x− y, x ∈ D, y ∈ Ω} ⊂ Rd, (3.30)

and χD−Ω is a function such that
χD−Ω(x) = 1, x ∈ D − Ω,

χD−Ω(x) = 0, dist(x,D − Ω) > ε,

χD−Ω(x) ∈ [0, 1], 0 < dist(x,D − Ω) < ε,

χD−Ω(x) ∈ C∞(Rd),

(3.31)

for some

ε ∈

{
(0, dist(D − Ω, BdiamD)), for Theorem 2.1,

(0, dist(D − Ω,Ω−D)), for Theorem 2.2.
(3.32)

In particular, we have that

|χ̂D−Ω(p)| ≤
C(σ)

(1 + |p|)σ
, ∀p ∈ Rd, (3.33)

for any σ ≥ 0, and some C(σ) = C(χD−Ω, σ) > 0; see formula (82) of [24].

4 Proof of Theorems 2.1 and 2.2

4.1 Proof of Theorem 2.1

We start with the following inequalities:

|v1 − v2|(x) ≤
∣∣∣∣∫

Rd

e−ip·x(v̂1(p)− v̂2(p))dp

∣∣∣∣ ≤ I1(κ) + I2(κ), (4.1)

I1(κ) :=

∫
|p|≥κ

|v̂1(p)− v̂2(p)|dp, I2(κ) :=
∫
|p|≤κ

|v̂1(p)− v̂2(p)|dp, (4.2)

where x ∈ D, κ ∈ (0, τ
√
E), τ ∈ (0, 1). Here and below τ is the parameter of Theorem 2.1.

Estimating I1 is as in [20]. Due to (2.2), (2.3), we have that

|v̂1(p)− v̂2(p)| ≤ a3(m, d)N2(1 + |p|)−m, (4.3)
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and, therefore,

I1(κ) ≤
c(d)a3(m, d)N2

m− d

1

κm−d
, (4.4)

where c(d) = |Sd|.
Estimating I2 is as follows. Due to (3.28), we have that

|v̂1(p)− v̂2(p)| = |(ŵ(p))−1F
(
χD−Ω(x) · F−1(|F(v1 + w)|2 − |F(v2 + w)|2)

)
| ≤

≤ |(ŵ(p))−1|
(
|FχD−Ω| ∗ ||F(v1 + w)|2 − |F(v2 + w)|2|

)
,

(4.5)

where ∗ denotes the convolution

ν1 ∗ ν2(x) :=
∫
Rd

ν1(x− y)ν2(y)dy, (4.6)

for test-functions ν1, ν2. In (4.5) we also used the following property of the Fourier transform:

F(φ1φ2) = (Fφ1) ∗ (Fφ2), (4.7)

for test-functions φ1, φ2.
Using formulas (2.6), (3.33), (4.5), we obtain that:

I2(κ) ≤
∫
|p|≤κ

c−1
1 (1 + |p|)β

(
|FχD−Ω| ∗ ||F(v1 + w)|2 − |F(v2 + w)|2|

)
dp ≤ c−1

1 C(σ)(I3(κ, δ) + I4(κ, δ));

(4.8)

I3(κ, δ) =

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≤δ

√
E+κ

g(p′)

(1 + |p− p′|)σ
dp′, (4.9)

I4(κ, δ) =

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

g(p′)

(1 + |p− p′|)σ
dp′, (4.10)

where

g(p′) := ||F(v1 + w)(p′)|2 − |F(v2 + w)(p′)|2|, (4.11)

and δ
√
E ∈ (κ, 2τ

√
E − κ).

Applying formula (3.16) for |p′| ≤ Bδ
√
E+κ and formula (3.18) for |p′| ≥ Bδ

√
E+κ, we obtain

that

g(p′) ≤

{
G1, for |p′| ≤ δE1/2 + κ,

G2, for |p′| ≥ δE1/2 + κ,
(4.12)

where

G1 := ∥|f [v1 + w]|2 − |f [v2 + w]|2∥C+
+ 2

(
(2π)−d(a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥v1 − v2∥∞, (4.13)

G2 := 2(2π)−2dµ(D)µ(D ∪ Ω)N1∥v1 − v2∥∞. (4.14)

Here and further ∥ · ∥C denotes the uniform norm for functions on C(Γ(δ+κE−1/2)/2
E ), and ∥ · ∥∞

is defined by (2.5).
Estimating I3 and I4. To estimate I3 defined by (4.9), we use that

I3 ≤ G1(A1 + A2), (4.15)
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where

A1 :=

∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≤κ

dp′

(1 + |p− p′|)σ
, (4.16)

A2 :=

∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≥κ, |p′|≤δE1/2+κ

dp′

(1 + |p− p′|)σ
. (4.17)

Note that in (4.16) the condition |p′| ≤ δE1/2 + κ is fulfilled automatically, due to the choice
of κ and δ.

We have that∫
|p−p′|≤κ

dp′

(1 + |p− p′|)σ
≤
∫
0<r≤∞

c(d)rd−1dr

(1 + r)σ
= c(d)B(d, σ − d), (4.18)

where c(d) = |Sd|, B is the beta-function.
Therefore,

A1 ≤
∫
0<r1≤κ

c(d)rd−1
1 (1 + r1)

βdr1

∫
0<r≤∞

c(d)rd−1dr

(1 + r)σ
≤ c2(d)B(d, σ − d)

β + d
(1 + κ)β+d. (4.19)

In addition, for arbitrary α > 0, such that σ − d− α ≥ 1, we have that,

A2 ≤
∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≥κ

dp′

(1 + |p− p′|)σ
≤

≤
∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≥κ

dp′

(1 + κ)σ−d−α(1 + |p− p′|)d+α
≤

≤ 1

(1 + κ)σ−d−α

∫
|p|≤κ

(1 + |p|)βdp
∫
Rd

dp′

(1 + |p− p′|)d+α
≤

≤ 1

(1 + κ)σ−d−α

∫
|p|≤κ

(1 + |p|)βdp
∫
r∈(0,∞)

c(d)rd−1dr

(1 + r)d+α
≤

≤ 1

(1 + κ)σ−d−α

∫
0<r≤κ

c(d)rd−1(1 + r)βdr c(d)B(d, α) ≤ c2(d)B(d, α)

β + d

(1 + κ)β+d

(1 + κ)σ−d−α
.

(4.20)

Therefore, we estimate A1 + A2 of (4.15) as

A1 + A2 ≤
c2(d)(1 + κ)β+d

β + d

(
B(d, σ − d) +

B(d, α)

(1 + κ)σ−d−α

)
. (4.21)

In order to estimate I4 defined by (4.10), we use (4.14) and obtain

I4 ≤ G2

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δE1/2+κ

dp′

(1 + |p− p′|)σ
≤ G2

∫
|p|≤κ

(1 + |p|)βdp
∫
r∈(0,∞)

c(d)rd−1dr

(1 + r)σ
≤

≤ G2

∫
|p|≤κ

(1 + |p|)βdp c(d)B(d, α)

(1 + δE1/2)σ−d−α
≤ G2

c2(d)B(d, α)

β + d

(1 + κ)β+d

(1 + δE1/2)σ−d−α
.

(4.22)

Final part of the proof. Let

κ = Eγ, γ =

(
1

2
− ε

)
1

β + d
, σ =

(
1

2
− ε

)−1

(β + d)(d+ 1), α = d, s = s(d) = d+ 1/2, δ = τ.

(4.23)

Then, for E ≥ τ−
1

1/2−γ , we have that κ ∈ (0, τ
√
E) and δ

√
E ∈ (κ, 2τ

√
E − κ).
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Using formulas (4.1), (4.4), (4.8)–(4.10), (4.13), (4.14), (4.21), (4.22), and (4.23), we obtain
that

∥v1 − v2∥∞ ≤ K1E
−( 1

2
−ε)m−d

β+d +

+K2

(
K3E

1
2
−ε
(
∥|f [v1 + w]|2 − |f [v2 + w]|2∥C +K4E

−1/2∥v1 − v2∥∞
)
+
K5E

1
2
−ε∥v1 − v2∥∞

(1 + τE1/2)σ−d−α

)
,

(4.24)

K1 := K1(d,m,N2) =
c(d)a3(m, d)N2

m− d
, K2 := K2(w, σ) = c−1

1 C(σ), (4.25)

K3 := K3(d, β) ≤ 2
c2(d)

β + d
(B(d, σ − d) +B(d, d)) , (4.26)

K4 := K4(D,Ω, d,N1) ≤

≤ 2

(
(2π)−d(a1(d,D ∪ Ω)µ(D) + a2(D ∪ Ω)µ(D ∪ Ω)) +

a1(d,D ∪ Ω)a2(D ∪ Ω)

2a0(d, s(d)λs(d)(D ∪ Ω))

)
N2

1 , (4.27)

K5 := K5(D,Ω, N1, d, β) = 2(2π)−2dµ(D)µ(D ∪ Ω)N1
c2(d)B(d, d)

β + d
. (4.28)

Let

E1 = max(Eroot, τ
− 1

1/2−γ , ρ21(d, s, λs(D ∪ Ω)N1)), (4.29)

where Eroot is the maximal root of equation for E

K2K3K4E
−ε +K2K5E

1
2
−ε(1 + τE1/2)−σ+d+α = 1/2, (4.30)

ρ1 is defined in (3.5), λs is defined in (3.14). Note that Eroot exists, since

1

2
− ε− (σ − d− α)/2 < 0. (4.31)

Therefore, for E ≥ E1,

K2K3K4E
−ε +K2K5E

1
2
−ε(1 + τE1/2)−σ+d+α ≤ 1/2. (4.32)

In view of (4.32), the coefficient with ∥v2 − v1∥∞ in the right-hand side of (4.24) is less than 1/2.
Therefore,

∥v2 − v1∥∞ ≤ 2K1E
−( 1

2
−ε)m−d

β+d + 2K2K3E
1
2
−ε∥|f2|2 − |f1|2∥C , (4.33)

for E ≥ E1.

Note that τ
√
E ≥ κ, for E ≥ E1, see (4.23), (4.29). Therefore, Γ

(τ+κE−1/2)/2
E ⊆ Γτ

E, and
∥ · ∥C = ∥ · ∥

C(Γ
(τ+κE−1/2)/2
E ))

≤ ∥ · ∥C(Γτ
E). This completes the proof.

4.2 Proof of Theorem 2.2

Proof of Theorem 2.2 is similar to the Proof of Theorem 2.1 up to the following changes:

• For estimate of I2 we use formula (3.27) in place of (3.28).

• Formulas (4.5) and (4.11) are replaced by

|v̂1(p)− v̂2(p)| ≤
≤ |(ŵ(p))−1|

(
|FχD−Ω| ∗

(
|(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)|

))
,

(4.34)

g(p′) := |(|F(v1 + w)(p′)|2 − |F(v2 + w)(p′)|2)− (|Fv1(p′)|2 − |Fv2(p′)|2)|. (4.35)
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• Taking into account (3.20), formulas (4.13), (4.14) are replaced by

G1 := ∥(|f [v1 + w]|2 − |f [v2 + w]|2)− (|f [v1]|2 − |f [v2]|2)∥C+
+ 4

(
(2π)−d(a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥v1 − v2∥∞,

(4.36)

G2 := 2(2π)−2dµ(D)µ(Ω)N1∥v1 − v2∥∞. (4.37)

• In formula (4.24), the term ∥|f [v1 + w]|2 − |f [v2 + w]|2∥C should be replaced by ∥(|f [v1 +
w]|2 − |f [v2 + w]|2)− (|f [v1]|2 − |f [v2]|2)∥C .

• In formula (4.27) constant K4 should be replaced by 2K4.

• Due to (4.37), in formula (4.28) constant K5 should be replaced by

K5 = 2(2π)−2dµ(D)µ(Ω)N1
c2(d)B(d, d)

β + d
. (4.38)

• We define

E2 := max(Eroot, τ
− 1

1/2−γ , ρ21(d, s, λs(D ∪ Ω)N1)), (4.39)

where Eroot is the maximal root of equation for E

2K2K3K4E
−ε +K2K5E

1
2
−ε(1 + δE1/2)−σ+d+α = 1/2, (4.40)

for K2, K3, K4 defined by (4.25)-(4.27), and K5 defined by (4.38).

• For E ≥ E2 we have the following formula in place of (4.32)

2K2K3K4E
−ε +K2K5E

1
2
−ε(1 + τE1/2)−σ+d+α ≤ 1/2, (4.41)

for K2, K3, K4 defined by (4.25)-(4.27), and K5 defined by (4.38).

5 Proof of Propositions 2.6 and 2.7

5.1 Proof of Proposition 2.6

We repeat the proofs of Theorems 2.1, 2.2 up to the following changes:

• In formulas (4.13), (4.36), G1 should be replaced by

G1 := ∥|F(v1 + w)|2 − |F(v2 + w)|2∥C(Bτ
√

E+Eγ ), (5.1)

G1 := ∥(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)∥C(Bτ
√
E+Eγ ), (5.2)

respectively.

• Consequently, formula (4.27) should be replaced by K4 = 0.

• We define E3, E4 as

E3 = max(Eroot, 3, τ
− 1

1/2−γ , 1),

E4 = max(Eroot, 4, τ
− 1

1/2−γ , 1),
(5.3)

where Eroot, 3, Eroot, 4, are the maximal roots of the equations for E :

K2K6E
1
2
−ε(1 + τE1/2)−σ+d+α = 1/2,

K2K7E
1
2
−ε(1 + τE1/2)−σ+d+α = 1/2,

(5.4)

respectively; if there are no roots, we take Eroot,j = 0, for j = 3 or 4. Here, K2 is as in (4.25),
K6 = K5 defined in (4.28), and K7 = K5 defined in (4.38).
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5.2 Proof of Proposition 2.7

We repeat the proof of Section 4.1, till to formula (4.21), where we use change (5.1). We estimate
I4 of (4.10) via formula (3.19) and formula (4.3) as follows:

I4(κ, δ) ≤
∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

2(2π)−dµ(D ∪ Ω)N1|v̂2(p)− v̂1(p)|
(1 + |p− p′|)σ

dp′ ≤

≤ 2(2π)−dµ(D ∪ Ω)N1

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

a3(m, d)N2

(1 + |p− p′|)σ(1 + |p′|)m
dp′ ≤

≤ 2(2π)−dµ(D ∪ Ω)N1

(1 + τ
√
E)σ

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

a3(m, d)N2

(1 + |p′|)m
dp′ ≤

≤ 2(2π)−dµ(D ∪ Ω)a3(m, d)N1N2c
2(d)

(1 + τ
√
E)σ−β−d(β + d)

1

(1 + 3
2
τ
√
E)m−d(m− d)

.

(5.5)

We fix our parameters as follows:

κ = (τ/2)E1/2, σ = β + d+ 1, α = d, δ = τ. (5.6)

Using formulas (4.1), (4.4), (4.8)–(4.10), (4.21), (5.1), (5.5) and (5.6), we obtain that

∥v1 − v2∥∞ ≤ C1τ
β+dE

β+d
2 ∥|F(v1 + w)|2 −F(v2 + w)|2∥C(B2τ

√
E) + C2τ

−(m−d)E−m−d
2 , (5.7)

C1 := C1(d, β, c1) ≤ c−1
1 C(β + d+ 1)

c2(d)

β + d

(
B(d, β + 1) +

B(d, d)

2β−d+1

)
, (5.8)

C2 := C2(d,m,N1, N2, D,Ω, β, c1) ≤
2m−dc(d)a3(m, d)N2

m− d

(
1 +

2(2π)−dc−1
1 c(d)C(β + d+ 1)µ(D ∪ Ω)N1

3m−d+1(β + d)

)
,

(5.9)

for

E ≥ E5 := E5(τ) = 4/τ 2. (5.10)

Formula (2.18) is proved.
Note that, increasing E5, we can down constant C2.
In order to prove formula (2.19), it is sufficient to replace (3.19) by (3.21) in (5.5), and (5.1)

by (5.2) in (5.7). In this case C2 should be defined as

C2 := C2(d,m,N1, N2,Ω, β, c1) ≤
2m−dc(d)a3(m, d)N2

m− d

(
1 +

2(2π)−dc−1
1 c(d)C(β + d+ 1)µ(Ω)N1

3m−d+1(β + d)

)
.

(5.11)
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Article IV

Error estimates for phase recovering from
phaseless scattering data

R.G. Novikov, V.N. Sivkin
We study the simplest explicit formulas for approximate finding the complex scattering ampli-

tude from modulus of the scattering wave function. We obtain detailed error estimates for these
formulas in dimensions d = 3 and d = 2.

Keywords: Schrödinger equation, monochromatic scattering data, phase recovering, phaseless
inverse scattering.

1 Introduction
We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.1)

v ∈ L∞(Rd), supp v ⊂ D, (1.2)
D is an open bounded domain in Rd.

Here ∆ is the standart Laplacian in x, v is a scalar potential.
For equation (1.1) we consider the classical scattering solutions ψ+ specified by the following

asymptotics as |x| → ∞:

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f(k, |k| x

|x|
) +O

(
1

|x|(d+1)/2

)
, (1.3)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4, x, k ∈ Rd, k2 = E,

where a priori unknown function f = f(k, l), k, l ∈ Rd, k2 = l2 = E, arising in (1.3) is the
classical scattering amplitude for (1.1).

In order to study ψ+ and f one can use the Lippmann-Schwinger integral equation (1.4) and
formula (1.6):

ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)v(y)ψ+(y, k)dy, (1.4)

G+(x, k) := − 1

(2π)d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|), (1.5)
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f(k, l) =
1

(2π)d

∫
Rd

e−ilxv(x)ψ+(x, k)dx, (1.6)

where x, k, l ∈ Rd, k2 = l2 = E, and G+
0 also depends on d. Note that:

G+(x, k) = − i

4
H1

0 (|x||k|) for d = 2, G+(x, k) = −e
i|k||x|

4π|x|
for d = 3, (1.7)

where H1
0 is the Hankel function of the first type.

In the present work we also assume that

equation (1.4) is uniquely solvable for ψ+(·, k) ∈ L∞(Rd) for fixed E > 0, (1.8)

where k ∈ Rd, k2 = E. For example, for real-valued v satisfying (1.2) it holds true.
We recall that ψ+ describes scattering of the incident plane waves described by eikx on the

scatterer described by v. In addition, the second term on the right-hand side of (1.3) describes
the leading scattered spherical waves.

We also recall that in quantum mechanics the values of scatttering functions ψ+(x, k) and
f(k, l) have no direct physical sense, whereas the phaseless values |ψ+(x, k)|2 and |f |2 have prob-
abilistic interpretation (the Born’s principle) and can be obtained in experiments; see [3], [6].

We consider the following problems:
Problem 1. Find v on Rd from f = f(k, l) given for appropriate pairs (k, l).
Problem 2. Find f(k, l) from |ψ+(x, k)|2 at appropriate points x such that x ∈ Rd \D and

x/|x| = l/|l|.
Problem 3. Find v on Rd from |ψ+|2 appropriately given outside of D.
Problem 1 is the classical inverse scattering problem. This problem was studied in many works;

see, for example, [4], [5], [13], [14] and references therein.
Problem 2 is a problem of phase recovering. Note that finding f considered in this problem and

formula (1.3) also yield approximate finding ψ+ for large |x|. In connection with known results
on Problem 2, see [15]-[18].

Problem 3 is a problem of inverse scattering without phase information. In connection with
known results on this problem, see [8], [15]-[18], [11].

Actually, in the present work we continue studies on Problem 2 in dimentions d = 3 and d = 2.
Problem 2 for d = 1 was solved in [16]. In addition, results on Problem 1 and Problem 2 admit
direct applications to Problem 3.

Note that Problem 2 is one of possible problems of phase recovering and Problem 3 is one
of possible problems of inverse scattering without phase information. In connection with results
given on other inverse wave propagation problems without phase information, see [4], [7], [10],
[15], [17], [12], [21], [2], [1], [9], [19] and references therein.

We recall that Problem 2 can be solved approximately by the following explicit formulas of
[15], [17]:

(
Re c(d, |k|)f(k, l)
Im c(d, |k|)f(k, l)

)
=M

((
a(x1, k)
a(x2, k)

)
−
(
δa(x1, k)
δa(x2, k)

))
, (1.9)

where

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), (1.10)
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M =
1

2 sin(φ2 − φ1)

(
sin(φ2) − sin(φ1)

− cos(φ1) cos(φ2)

)
, (1.11)

x1 = sl̂, x2 = (s+ τ)l̂, l̂ = l/|l|, (1.12)
φj = |k||xj| − kxj, j = 1, 2, (1.13)

φ2 − φ1 = τ(|k| − kl̂), (1.14)
δa(x1, k) = O(s−σ), δa(x2, k) = O(s−σ) as s→ +∞, (1.15)

uniformly in k̂ = k/|k|, l̂ = l/|l| and τ at fixed E > 0,

σ = 1/2 for d = 2, σ = 1 for d ≥ 3, (1.16)

where k, l ∈ Rd, k2 = l2 = E, s > 0, τ > 0, sin(φ1 − φ2) ̸= 0, c(d, |k|) is the constant of (1.3) .
In order to control error in finding f(k, l) from |ψ+(x, k)|2 at x = x1, x2 via formulas (1.9)-

(1.15) it is necessary to estimate δa(x, k) = O(s−σ) in detail. However, detailed estimates for
δa(x, k) were not yet given in the literature. For the first time such estimates are given in the
present work, see Theorem 2.1 and Lemmas 2.1 and 2.2 of Section 2. These estimates are proved
in Sections 3-5.

Finally, we recall that 2n-point version of formulas (1.9)-(1.16) with error term estimated as
O(s−n), s → +∞, is given in [18]. Detailed estimates of this O(s−n) generalizing the estimates
(2.2)-(2.5) (see Section 2) of the present work will be given elsewhere.

2 Main results
Let

D ⊂ Br = {x ∈ Rd : |x| ≤ r} (2.1)

for some fixed r > 0.

Theorem 2.1. (A) Under assumptions (1.2),(1.8),(2.1) for d = 3, the following estimate holds,
for |x| ≥ 3r:

|δa(x, k)| ≤ ρ3
∥ψ+∥∞∥v∥L1

2π|x|
+

(
1 +

2ρ3
|x|

+
ρ23
|x|2

) ∥ψ+∥2∞∥v∥2L1

16π2|x|
, (2.2)

ρ3 := r(4.5 + 7.65|k|r + 3.91|k|2r2), (2.3)

where k, x ∈ R3, k2 = E > 0.
(B) Under assumptions (1.2),(1.8),(2.1) for d = 2, the following estimate holds:

|δa(x, k)| ≤

(
1 +

ρ2
√
2

|x|
+

ρ22
2|x|2

)
∥ψ+∥2∞∥v∥2L1

8π|x|1/2|k|
+ ρ2

∥ψ+∥∞∥v∥L1

2
√
π|k|1/2|x|

, (2.4)

ρ2 := r

(
0.33

|k|r
+ 2.51 + 5.36|k|r + 2.14|k|2r2

)
, (2.5)

where k, x ∈ R2, k2 = E > 0.

In Theorem 2.1 we use the notation ∥ψ+∥∞ := ∥ψ+(·, k)∥L∞(D).
Theorem 2.1 is proved in Sections 3, 4.
In addition, ∥ψ+∥∞ is estimated in Lemmas 2.2 and 2.3 given below.
Let

Q = C0(d, s) sup
x∈D

|(1 + |x|2)sv(x)||k|−1, (2.6)

where C0 is the constant of the Agmon estimate (5.3) (see Section 5).
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Lemma 2.2. (A) Under assumptions (1.2), (2.1), for Q < 1 and d = 3, the following estimate
holds:

∥ψ+(·, k)∥L∞(R3) ≤ 1 +

√
5

6

∥v∥L∞(D)(1 + r2)s/2r1/2

(1−Q)
, (2.7)

where s = (d+ ε)/2, ε > 0, |k| ≥ 1.
(B) Under assumptions (1.2), (2.1), for Q < 1 and d = 2, the following estimate holds:

∥ψ+(·, k)∥L∞(R2) ≤ 1 +

√
π∥v∥L∞(D)(1 + r2)s/2r1/2√

2ε|k|(1−Q)
, (2.8)

where s = (d+ ε)/2, ε > 0, |k| ≥ 1.

Lemma 2.3. (A) Under assumptions (1.2), (2.1), for ∥v∥L∞(D)r
2 ≤ 2, d = 3, the following

estimate holds:

∥ψ+∥L∞(R3) ≤
1

1− ∥v∥L∞(D)r2/2
. (2.9)

(B)Under assumptions (1.2), (2.1), for
√

2π
|k|

∥v∥L∞ (D)r5/2

5
< 1, d = 2, the following estimate

holds:

∥ψ+∥L∞(R2) ≤
1

1−
√

2π
|k|

∥v∥L∞(D)r
3/2

3

. (2.10)

Lemmas 2.2 and 2.3 are proved in Section 5.

3 Proof of Theorem 2.1(A)
We have that (see [15]):

|δa(x, k)| = |x|−
d−1
2 |c|2|f |2 + 2|x|

d−1
2 Re(δψ+(x, k)ψ+

1 (x, k)) + |x|
d−1
2 |δψ+(x, k)|2, (3.1)

where f = f(k, |k|x|x| ),

ψ+
1 (x, k) := eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f(k, |k| x

|x|
), (3.2)

δψ+(x, k) := ψ+(x, k)− ψ+
1 (x, k). (3.3)

Note that

|f | = 1

(2π)d
|
∫
Rd

e−ilxv(x)ψ+(x, k)dx| ≤ 1

(2π)d
∥ψ+∥∞∥v∥L1 . (3.4)

Further in this section we always assume that d = 3.
The following estimate holds:

|δa(x, k)| ≤ |x|−1(2π2)2|f |2 + 2|x||δψ+(x, k)||1 + 2π2|f |
|x|

|+ |x||δψ+(x, k)|2. (3.5)

In addition, |δψ+(x, k)| is estimated in the following lemma:
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Lemma 3.1. Under the assumptions of Theorem 2.1(A), the following estimate holds, for |x| ≥
3r :

|δψ+(x, k)| ≤ ∥ψ+∥∞∥v∥L1

4π|x|2
ρ3(r, k). (3.6)

Using estimates (3.1), (3.4), (3.6) we have that:

|δa(x, k)| ≤ |x|−1(2π2)2
1

((2π)3)2
∥ψ+∥2∞∥v∥2L1

+

+2|x| 1
4π

∥ψ+∥∞∥v∥L1

ρ3
|x|2

(1 +
2π2 1

(2π)3
∥ψ+∥∞∥v∥L1

|x|
) + |x|( 1

4π
∥ψ+∥∞∥v∥L1

ρ3
|x|2

)2 ≤

≤
∥ψ+∥2∞∥v∥2L1

16π2|x|
+ ∥ψ+∥∞∥v∥L1

ρ3
2π|x|

(1 +
∥ψ+∥∞∥v∥L1

4π|x|
)+

+∥ψ+∥2∞∥v∥2L1

ρ23
16π2|x|3

, |x| ≥ 3r. (3.7)

Estimate (2.2) of Theorem 2.1(A) follows from (3.7). Therefore, in order to prove Theorem
2.1(A) it remains to prove Lemma 3.1.

Proof of Lemma 3.1. Using the Lippmann-Schwinger integral equation (1.4) and formulas
(1.6), (3.3) we obtain

δψ+(x, k) = −
∫
R3

ei|k||x−y|

4π|x− y|
v(y)ψ+(y, k)dy+

+2π2 e
i|k||x|

|x|
1

(2π)3

∫
R3

e−i|k| xy|x|v(y)ψ+(y, k)dy =

=
1

4π

∫
R3

(
ei|k||x|−i|k| xy|x|

|x|
− ei|k||x−y|

|x− y|

)
v(y)ψ+(y, k)dy. (3.8)

From (3.8) we obtain :

|δψ+(x, k)| ≤ 1

4π
∥ψ+(·, k)∥∞

∫
R3

∣∣∣∣∣ei|k||x|−i|k| xy|x|

|x|
− ei|k||x−y|

|x− y|

∣∣∣∣∣ |v(y)|dy. (3.9)

Lemma 3.2. Let x, y ∈ R3, |y| ≤ r, |x| ≥ 3r. Then:∣∣∣∣∣ei|k||x|−i|k| xy|x|

|x|
− ei|k||x−y|

|x− y|

∣∣∣∣∣ ≤ r

|x|2
(4.5 + 7.65|k|r + 3.91|k|2r2). (3.10)

Estimate (3.6) of Lemma 3.1 follows from estimates (3.9), (3.10). Thus, in order to prove
Lemma 3.1, it remains to prove Lemma 3.2.

Proof of Lemma 3.2. To prove Lemma 3.2 we use in particular Lemma 3.3.

Lemma 3.3. Let x, y ∈ R3, |y| ≤ r, |x| ≥ 3r. Then the following estimates hold:

|x− y| = |x|
(
1− xy

|x|2
+

|y|2

2|x|2
− (xy)2

2|x|4
+ L3(x, y)

)
, |L3(x, y)| ≤

4.13r3

|x|3
; (3.11)

|x− y| = |x|
(
1− xy

|x|2
+ L2(x, y)

)
, |L2(x, y)| ≤

2.38r2

|x|2
. (3.12)
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Proof of Lemma 3.3. Recall that

(1 + ε)1/2 =
∞∑
n=0

(−1)n(2n)!

(1− 2n)n!24n
εn =

∞∑
n=0

anε
n,∀|ε| < 1. (3.13)

Note that

kn+1 :=
an+1

an
=

(−1)(2n+ 1)(2n+ 2)(1− 2n)

(n+ 1)(n+ 1)4(1− 2n− 2)
= −2(2n+ 1)(2n− 1)

4(2n+ 1)(n+ 1)
= −

(
1− 3

2n+ 2

)
,

(3.14)

|kn+1| < 1, for n ∈ N ∪ {0}.
Therefore,

|
∞∑
n=3

anε
n| ≤ |a3|

∞∑
n=3

|εn| ≤ |a3|
|ε|3

1− |ε|
, |ε| < 1, (3.15)

|a3| =
6!

5 ∗ 3!3!43
=

6 ∗ 5 ∗ 4 ∗ 6
5 ∗ 6 ∗ 6 ∗ 43

=
1

16
.

In the present work we use formulas (3.13), (3.15) for

ε = −2xy

|x|2
+

|y|2

|x|2
, x, y ∈ Rd, |y| ≤ r, |x| ≥ 3r. (3.16)

From (3.16) it follows that:

|ε| ≤ 7

9
, |ε| ≤ 7

3

r

|x|
. (3.17)

Using (3.13),(3.16) we have that

|x− y| = |x|
∣∣∣∣ x|x| − y

|x|

∣∣∣∣ = |x|
(
1− 2xy

|x|2
+

|y|2

|x|2

) 1
2

= (3.18)

= |x|

(
1− xy

|x|2
+

|y|2

2|x|2
− 1

8

(
|y|2

|x|2
− 2xy

|x|2

)2

+R3(x, y)

)
,

where

|R3(x, y)| = |
∞∑
n=3

anε
n| ≤ |a3|

|ε|3

1− |ε|
≤ 1

16

73r3

33|x|3
1

2/9
≤ 3.58

r3

|x|3
. (3.19)

Using (3.18), (3.19) and gathering the terms with equal degrees in |x|, we obtain:

|x− y| = |x|
(
1− xy

|x|2
+

|y|2

2|x|2
− (xy)2

2|x|4
+ L3(x, y)

)
, (3.20)

|L3(x, y)| ≤
1

8

|y|4

|x|4
+

1

2

xy|y|2

|x|4
+R3(x, y) ≤

r3

24|x|3
+

r3

2|x|3
+ 3.58

r3

|x|3
≤ 4.13r3

|x|3
. (3.21)

Thus, estimate (3.11) is proved.
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In addition to (3.18), (3.19), we also need the following formulas:

|x− y| = |x|
(
1− xy

|x|2
+

|y|2

2|x|2
+R2(x, y)

)
, (3.22)

|R2(x, y)| = |
∞∑
n=2

anε
n| ≤ |a2ε2|+R3(x, y) ≤

72/32

8

r2

|x|2
+ 3.58

r3

|x|3
≤ 1.88

r2

|x|2
. (3.23)

In a similar way with (3.20), (3.21) we have

|x− y| = |x|
(
1− xy

|x|2
+ L2(x, y)

)
, (3.24)

|L2(x, y)| ≤
r2

2|x|2
+ 1.88

r2

|x|2
≤ 2.38r2

|x|2
. (3.25)

Thus, estimate (3.12) is proved. This completes the prove of Lemma 3.3. □
Now we are ready to prove estimate (3.10). We have

∣∣∣∣∣ei|k||x|−i|k| xy|x|

|x|
− ei|k||x−y|

|x− y|

∣∣∣∣∣ =
=

∣∣∣∣∣∣∣
ei|k||x|−i|k| xy|x|

|x|
− e

i|k||x|
(
1− xy

|x|2
+

|y|2

2|x|2
− (xy)2

2|x|4
+L3(x,y)

)

|x|
(
1− xy

|x|2 + L2(x, y)
)

∣∣∣∣∣∣∣ =
=

1

|x|

∣∣∣∣∣∣∣1−
e
i|k||x|

(
|y|2

2|x|2
− (xy)2

2|x|4
+L3(x,y)

)
1− xy

|x|2 + L2(x, y)

∣∣∣∣∣∣∣ =:
1

|x|

∣∣∣∣1− eiL

1− t

∣∣∣∣ . (3.26)

Note that

|eiL − 1− iL| ≤ L2

2
, for L ∈ R, and | 1

1− t
− 1− t| ≤ t2

1

1− |t|
, |t| < 1, (3.27)

and further

|1− eiL

1− t
| ≤ |1− (1 + L+ L2/2)(1 + t+ t2/(1− |t|))| ≤

≤ L+ L2/2 + t+
t2

1− |t|
+ (L+ L2/2)(t+ t2/(1− |t|)). (3.28)

In our case:

|L| = |k||x|
∣∣∣∣ |y|22|x|2

− (xy)2

2|x|4
+ L3(x, y)

∣∣∣∣ ≤ |k|
|x|

(
r2

2
+
r2

2
+

4.13r3

|x|

)
≤ 2.38|k|r2

|x|
; (3.29)

L2/2 ≤ 2.382|k|2r4

2|x|2
;
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|t| = | xy
|x|2

− L2(x, y)| ≤
r

|x|
+

2.38r2

|x|2
≤ r

|x|
+

0.8r

|x|
≤ 1.8r

|x|
;

t2

1− t
≤

1.82r2

|x|2

1− 1.8/3
=

1.82r2

|x|2
1

0.4
= 8.1

r2

|x|2
.

Finally,

|1− eiL

1− t
| ≤ 2.38|k|r2

|x|
+

2.382|k|2r4

2|x|2
+

1.8r

|x|
+

8.1r2

|x|2
+

+(
2.38|k|r2

|x|
+

2.382|k|2r4

2|x|2
)(
1.8r

|x|
+

8.1r2

|x|2
) ≤

≤ 3.06|k|r2

|x|
+

3.062|k|2r4

2|x|2
+

1.8r

|x|
+

8.1r2

|x|2
+ 1.5(

3.06|k|r2

|x|
+

3.062|k|2r4

2|x|2
) ≤

≤ r

|x|
(4.5 + 7.65|k|r + 3.91|k|2r2). (3.30)

Estimate (3.10) follows from (3.26), (3.30), that proves Lemma 3.2. □.
This also completes the proof of Theorem 2.1(A). □.

4 Proof of Theorem 2.1(B)
Proceeding from (3.1)-(3.3), for d = 2, we have:

|δa(x, k)| ≤ |x|−1/2|c|2|f |2 + 2|x|1/2|δψ+(x, k)|
(
1 +

|c||f |
|x|1/2

)
+ |x|1/2|δψ+(x, k)|2, (4.1)

where

c = c(2, |k|) = −πi(−2πi)
2−1
2 |k|

2−3
2 = −(1 + i)π3/2|k|−1/2. (4.2)

Now |f | is estimated in (3.4) for d = 2 and |δψ+(x, k)| is estimated in the following lemma:

Lemma 4.1. Under the assumptions of Theorem 2.1(B), the following estimate holds for |x| ≥ 3r:

|δψ+(x, k)| ≤ ∥v∥L1∥ψ+∥∞ρ2(|k|, r)
4(π|k|)1/2|x|3/2

. (4.3)

Using estimates (4.1), (3.4), (4.3) we have that

|δa(x, k)| ≤ |x|−1/2|k|−1∥ψ
+∥2∞∥v∥2L1

8π
+ (4.4)

+ |x|1/2 ∥v∥L1∥ψ+∥∞ρ2
2
√
π|k|1/2|x|3/2

(
1 +

∥ψ+∥∞∥v∥L1

2|x|1/2(2π)1/2|k|1/2

)
+ |x|1/2

∥v∥2L1
∥ψ+∥2∞ρ22

16π|k||x|3
(4.5)

Estimate (2.4) of Theorem 2.1(B) follows from (4.4). Therefore, in order to prove Theorem
2.1(B) it remains to prove Lemma 4.1.

Proof of Lemma 4.1. Using the Lippmann-Schwinger integral equation (1.4) and formulas
(1.6), (3.3), (1.7) we obtain

118



δψ+(x, k) =

∫
R2

−iH
(1)
0 (|k||x− y|)

4
v(y)ψ+(y, k)dy+

+(1 + i)
π3/2

|k|1/2
ei|k||x|

|x|1/2
1

(2π)2

∫
R2

e−i|k| xy|x|v(y)ψ+(y, k)dy =

=

∫
R2

(
−iH

(1)
0 (|k||x− y|)

4
+

(1 + i)ei|k||x|−i|k| xy|x|

4(π|k||x|)1/2

)
v(y)ψ+(y, k)dy. (4.6)

From (4.6) we obtain:

|δψ+(x, k)| ≤ ∥ψ+(·, k)∥∞
∫
R2

∣∣∣∣∣−iH(1)
0 (|k||x− y|)

4
+

(1 + i)ei|k||x|−i|k| xy|x|

4(π|k||x|)1/2

∣∣∣∣∣ |v(y)|dy. (4.7)

Lemma 4.2. Let x, y ∈ R2, |y| ≤ r, |x| ≥ 3r. Then∣∣∣∣∣−iH(1)
0 (|k||x− y|)

4
+

(1 + i)ei|k||x|−i|k| xy|x|

4(π|k||x|)1/2

∣∣∣∣∣ =M1 +M2, where (4.8)

M1 ≤
√
2

4(πk)1/2|x|3/2
(
1.77 + 3.79|k|r + 1.51|k|2r2

)
; (4.9)

M2 ≤
3
√
3

64(π|k||x|)1/2|k||x|
. (4.10)

Note that

M1 +M2 ≤
√
2r

4(π|k|)1/2|x|3/2

(
3
√
3

16
√
2|k|r

+ 1.77 + 3.79|k|r + 1.51|k|2r2
)
. (4.11)

Estimate (4.3) of Lemma 4.1 follows from (4.7)-(4.11). Thus, in order to prove Lemma 4.1 it
remains to prove Lemma 4.2.

Proof of Lemma 4.2. To prove Lemma 4.2 we use, in particular, estimate (3.11) of Lemma 3.3,
which remains the same for d = 2. Besides, we use, in particular, Lemma 4.3.

Lemma 4.3. For Hankel funtion the following representation holds:

H
(1)
0 (|k||x|) =

(
2

π|k||x|

)1/2

ei|k||x|−iπ/4(1 + h(|k||x|)), |h(|k||x|)| ≤ 1

8|k||x|
. (4.12)

Lemma 4.3 is proved at the end of this Section.
Using formula (4.12) we have∣∣∣∣∣−iH(1)

0 (|k||x− y|)
4

+
(1 + i)ei|k||x|−i|k| xy|x|

4(π|k||x|)1/2

∣∣∣∣∣ ≤∣∣∣∣∣− i

4

(
2

π|k||x− y|

)1/2

ei|k||x−y|−iπ/4(1 + h(|k|(x− y))) +
(1 + i)ei|k||x|−i|k| xy|x|

4(π|k||x|)1/2

∣∣∣∣∣ ≤
≤ 1

4(π|k|)1/2

∣∣∣∣∣−i√2(

√
2

2
− i

√
2

2
)
ei|k||x−y|

|x− y|1/2
+ (1 + i)

ei|k||x|−i|k| xy|x|

|x|1/2

∣∣∣∣∣+
+

1

4

(
2

π|k||x− y|

)1/2
1

8|k||x− y|
=:M1 +M2. (4.13)
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The term M2 can be estimated easily:

M2 ≤
3
√
3

64(π|k||x|)1/2|k||x|
, |y| ≤ r, |x| ≥ 3r. (4.14)

Lemma 4.4. The term M1 can be estimated as follows:

M1 ≤
√
2

4(π|k|)1/2|x|3/2
(
1.77 + 3.79|k|r + 1.51|k|2r2

)
, |y| ≤ r, |x| ≥ 3r. (4.15)

Proof of Lemma 4.4. One can see that

M1 =

√
2

4(π|k|)1/2

∣∣∣∣∣ei|k||x|−i|k| xy|x|

|x|1/2
− ei|k||x−y|

|x− y|1/2

∣∣∣∣∣ . (4.16)

Further, we obtain

M1 ≤
√
2

4(π|k|)1/2

∣∣∣∣∣∣e
i|k||x|−i|k| xy|x|

|x|1/2
− e

i|k||x|(1− xy

|x|2
+

|y|2

2|x|2
− (xy)2

2|x|4
+L3(x,y))

|x|1/2(1− xy
2|x|2 + L̃2(x, y))

∣∣∣∣∣∣ =
=

√
2

4(π|k||x|)1/2

∣∣∣∣∣∣1− e
i|k||x|( |y|2

2|x|2
− (xy)2

2|x|4
+L3(x,y))

(1− xy
2|x|2 + L̃2(x, y))

∣∣∣∣∣∣ . (4.17)

Here we use the same expantion as in (3.11) and the following additional expantion:

|x− y|1/2 = |x|1/2
(
1− 2xy

|x|2
+

|y|2

|x|2

)1/4

= |x|1/2
(
1− xy

2|x|2
+ L̃2(x, y)

)
. (4.18)

To complete the proof of Lemma 4.4 we use, in particular, the estimate for L3 in (3.11) and
the estimate for L̃2 given in the following Lemma.

Lemma 4.5. Let x, y ∈ R2, |y| ≤ r, |x| ≥ 3r. Then:

|L̃2(x, y)| ≤ 1.81
r2

|x|2
. (4.19)

Proof of Lemma 4.5. Recall that

(1 + ε)1/4 =
∞∑
n=0

bnε
n, |ε| < 1, where bn =

n∏
k=1

1/4− k + 1

k
. (4.20)

Note that

ln+1 :=
bn+1

bn
=

1/4− n− 1 + 1

n+ 1
= (−1)(1− 5

4(n+ 1)
),

|ln+1| < 1, for n ∈ N ∪ {0}.
Therefore,

|
∞∑
n=2

bnε
n| ≤ |b2|ε2 + |b3|

|ε|3

1− |ε|
, (4.21)
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|b2| = 3/32, |b3| = 7/128.

In the present work we use formulas (4.20), (4.21) for

ε = −2xy

|x|2
+

|y|2

|x|2
, x, y ∈ R2, |y| ≤ r, |x| ≥ 3r, (4.22)

|ε| ≤ 7

9
, |ε| ≤ 7

3

r

|x|
. (4.23)

Using (4.20), (4.22) we have that

|x− y|1/2 = |x|1/2
(
1− 2xy

|x|2
+

|y|2

|x|2

)1/4

= |x|1/2(1− xy

2|x|2
+

|y|2

4|x|2
+ R̃2(x, y)), (4.24)

where

|R̃2(x, y)| = |
∞∑
n=2

bnε
n| ≤ |b2|ε2 + |b3|

ε3

1− |ε|
≤ 3

32

72

32
r2

|x|2
+

7

128

73

33
r3

|x|3
9

2
≤

≤
(

72

32 ∗ 3
+

7 ∗ 73 ∗ 9
128 ∗ 33 ∗ 3 ∗ 2

)
r2

|x|2
≤ 1.56

r2

|x|2
(4.25)

Using (4.24), (4.25) and gathering the terms with equal degrees in |x|, we obtain:

|L̃2(x, y)| =
∣∣∣∣ |y|24|x|2

+ R̃2(x, y)

∣∣∣∣ ≤ r2

4|x|2
+ 1.56

r2

|x|2
≤ 1.81

r2

|x|2
. (4.26)

Lemma 4.5 is proved.
Returning to the proof of Lemma 4.4, we rewrite (4.17) as:

M1 ≤
√
2

4(π|k|x)1/2
|1− eiL

1− t
|. (4.27)

We have

|1− eiL

1− t
| ≤ |1− (1 + L+ L2/2)(1 + t+ t2/(1− t))| ≤

≤ L+ L2/2 + t+
t2

1− t
+ (L+ L2/2)(t+ t2/(1− t)). (4.28)

In addition:

L ≤ |k||x|( r2

2|x|2
+

r2

2|x|2
+

4.13r3

|x|3
) ≤ |k|r2

|x|
(1 +

4.13

3
) ≤ 2.38|k|r2

|x|
; (4.29)

L2/2 ≤ 2.84
|k|2r4

|x|2
; (4.30)

t ≤ r

2|x|
+ 1.81

r2

|x|2
≤ 1.11

r

|x|
; (4.31)

t2

1− t
≤

(1.11 r
|x|)

2

1− 1.11/3
≤ 1.9558

r2

|x|2
; (4.32)
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(L+ L2/2)(t+ t2/(1− t)) ≤ (
2.38|k|r2

|x|
+

2.84|k|2r4

|x|2
)(1.11

r

|x|
+ 1.9558

r2

|x|2
) ≤

≤ 0.59(
2.38|k|r2

|x|
+

2.84|k|2r4

|x|2
). (4.33)

Using (4.28)-(4.33), we obtain:∣∣∣∣1− eiL

1− t

∣∣∣∣ ≤ 2.38 ∗ 1.59|k|r2

|x|
+

2.84 ∗ 1.59|k|2r4

|x|2
+ 1.77

r

|x|
≤

≤ r

|x|
(
1.77 + 3.79|k|r + 1.51|k|2r2

)
. (4.34)

The estimate (4.15) follows from (4.27) and (4.34). This completes the proof of Lemma 4.4. □

Proof of Lemma 4.3. For H1
0 the following equality holds, for s > 0, see in [20] formula (43)

for ν = 0, β = 0:

H
(1)
0 (s) =

(
2

πs

)1/2
eis−iπ/4

Γ(1/2)

∫ +∞

0

e−uu−1/2

(
1 +

iu

2s

)−1/2

du. (4.35)

Then we apply the Teylor’s expantion with one term and the integral reminder to the function
g(t) = (1 + iut

2s
)1/2, t ∈ [0, 1], u, s ∈ R+. We obtain:

g(1) =

(
1 +

iu

2s

)−1/2

= g(0) +
1/2

0!

u

2is

∫ 1

0

(
1− ut

2is

)−3/2

dt. (4.36)

So, ∣∣∣∣∣
(
1 +

iu

2s

)−1/2
∣∣∣∣∣ ≤ 1 +

u

4s

∫ 1

0

∣∣∣∣1− ut

2is

∣∣∣∣−3/2

dt ≤ 1 +
u

4s
. (4.37)

Using (4.35), (4.37), we obtain:

∣∣∣∣∣H
(1)
0 (s)−

(
2
πs

)1/2
eis−iπ/4(

2
πs

)1/2
eis−iπ/4

∣∣∣∣∣ ≤ 1

4sΓ(1/2)

∫ ∞

0

e−uu−1/2udu ≤ Γ(3/2)

4sΓ(1/2)
=

1

8s
. (4.38)

Estimate (4.38) implies (4.12). □

5 Estimates for ∥ψ+∥∞
The Lippmann-Schwinger integral equation (1.4) can also be rewritten as:

(I − A+(|k|))φ+(·, k) = φ+
0 (·, k), (5.1)

where

φ+(x, k) = Λ−sψ+(x, k), φ+
0 (x, k) = Λ−seikx, (5.2)

A+(|k|) = Λ−sG+(|k|)Λ−s(Λ2sv),
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where I is the identity operator, Λ denotes the multiplication operator by the functions (1 +
|x|2)1/2, G+(|k|) denotes the integral operator with the Schwartz kernel G+(x−y, k) of (1.4), (1.5),
v is the multiplication operator by the function v(x), s = (d+ ε)/2, ε > 0, k ∈ Rd \ {0}, x ∈ Rd.

We recall that the following Agmon estimate holds:

∥Λ−sG+(|k|)Λ−s∥L2(Rd)→L2(Rd) ≤ C0(d, s)|k|−1, s > 1/2, |k| ≥ 1, (5.3)

see, for example, [5], [14] and references therein.
Using (5.3) one can see that

∥A+(|k|)∥L2(Rd)→L2(Rd) ≤ Q, s > 1/2, |k| ≥ 1, (5.4)

Q := C0(d, s)∥Λ2sv∥∞|k|−1. (5.5)

As a corollary of (5.1), (5.2), (5.4), we have that if Q < 1, s > d/2, |k| ≥ 1, then:

∥φ+∥L2(Rd) ≤
∥φ+

0 ∥L2(Rd)

1−Q
, (5.6)

where

∥φ+
0 ∥L2(Rd) =

(∫
Rd

dx

(1 + |x|2)s

)1/2

=: Id(s). (5.7)

Proof of Lemma 2.2. Using (5.1), (5.2), (5.6) we obtain that

|ψ+(x, k)− eikx| ≤
∣∣∣∣∫

Br

G+(x− y, k)v(y) < y >s φ+(y, k))dy

∣∣∣∣ ≤ (5.8)

≤ ∥φ+(·, k)∥L2(Rd)J(x) ≤
∥φ+

0 (·, k)∥L2

1−Q
J(x), x ∈ Rd,

J(x) =

(∫
Br

|G+(x− y, k)v(y) < y >s |2dy
)1/2

. (5.9)

For d = 3 we have:

∥φ+
0 ∥2L2(R3) ≤

∫
R3

dy

(1 + |y|2)s
≤ 4π

∫ ∞

0

r2dr

(1 + r2)s
≤

≤ 4π

(∫ 1

0

r2dr

(1 + r2)s
+

∫ ∞

1

r2dr

(1 + r2)s

)
≤

≤ 4π

(
1

3
+

∫ ∞

1

r2dr

(r2)s

)
= 4π

(
1

3
+

1

(2s− 1)

)
≤ 10

3
π; (5.10)

J(x) =

(∫
Br

v2(y)(1 + y2)s

16π2|x− y|2
dy

)1/2

≤
∥v∥L∞(D)(1 + r2)s/2

4π

(∫
Br

1

|y|2
dy

)1/2

≤ 1

4π
∥v∥L∞(D)(1 + r2)s/2∥(4π

∫ r

0

dρ)1/2∥ =
∥v∥L∞(D)(1 + r2)s/2r1/2

2
√
π

, x ∈ R3. (5.11)
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For d = 2 we have:

∥φ+
0 ∥2L2

=

∫
Rd

|φ+
0 (y, k)|2dy =

∫
R2

dy

(1 + |y|2)s
=

= π

∫ ∞

0

dr2

(1 + r2)s
≤ π

∫ ∞

0

dz

(1 + z)s
=

2π

ε
; (5.12)

J(x) =

(∫
Br

|H(1)
0 (|k||x− y|)|2

16
|v(y)|2(1 + |y|2)sdy

)1/2

≤

≤ ∥v∥L∞(D)(1 + r2)s/2
1

4
(

∫
Br

|H(1)
0 (|k||x− y|)|2dy)1/2. (5.13)

From (4.35) we obtain:

|H(1)
0 (s)| ≤

(
2

πs

)1/2
1

Γ(1/2)

∫ ∞

0

e−uu−1/2

∣∣∣∣1 + iu

2s

∣∣∣∣−1/2

du ≤
(

2

πs

)1/2

. (5.14)

Hence, we have:(∫
Br

|H(1)
0 (|k||x− y|)|2dy

)1/2

≤
(∫

Br

2

π|k||x− y|
dy

)1/2

≤

≤
(∫ r

0

2πr
2

π|k|r
dr

)1/2

= 2

√
r

|k|
. (5.15)

Estimate (2.7) follows from (5.8), (5.10), (5.11).
Estimate (2.8) follows from (5.8), (5.12), (5.13), (5.15).
Lemma 2.2 is proved.
Proof of Lemma 2.3 (A). Using the Lippmann-Schwinger equation (1.4) for d = 3, we obtain

that

∥ψ+∥∞ ≤ 1 + ∥ψ+∥∞∥v∥∞
∫
Br

dx

4π|x|
≤ 1 + ∥ψ+∥∞∥v∥∞

∫ r

0

r2

r
dr ≤

≤ 1 + ∥ψ+∥∞∥v∥∞
r2

2
dr. (5.16)

Estimates (2.9) follows from (5.16).
(B). Using the Lippmann-Schwinger equation (1.4) for d = 2, we obtain that

∥ψ+∥∞ ≤ 1 + ∥ψ+∥∞∥v∥∞
∫
Br

|H1
0 (|x||k|)|dx

4
≤ 1 +

∥ψ+∥∞∥v∥∞
4

∫ r

0

(
2

π|k|r

)1/2

2πrdr ≤

≤ 1 + ∥ψ+∥∞∥v∥∞
√

π

2|k|

∫ r

0

r1/2dr ≤ 1 +

√
2π

|k|
∥ψ+∥∞∥v∥∞r3/2

3
. (5.17)

Estimates (2.10) follows from (5.17).
Lemma 2.3 is proved.□
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Article V

Fixed-distance multipoint formulas for the
scattering amplitude from phaseless
measurements

R.G. Novikov, V.N. Sivkin
Abstract. We give new formulas for finding the complex (phased) scattering amplitude at

fixed frequency and angles from absolute values of the scattering wave function at several points
x1, ..., xm. In dimension d ≥ 2, for m > 2, we significantly improve previous results in the
following two respects. First, geometrical constraints on the points needed in previous results are
significantly simplified. Essentially, the measurement points xj are assumed to be on a ray from
the origin with fixed distance τ = |xj+1 − xj|, and high order convergence (linearly related to m)
is achieved as the points move to infinity with fixed τ . Second, our new asymptotic reconstruction
formulas are significantly simpler than previous ones. In particular, we continue studies going
back to [Novikov, Bull. Sci. Math. 139(8), 923-936, 2015].

Keywords: Schrödinger equation, Helmholtz equation, monochromatic scattering data, phase
retrieval, phaseless inverse scattering

1 Introduction
We consider monochromatic scattering modelled using the equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.1)

where
v ∈ L∞(D), v ≡ 0 on Rd \D,
D is an open bounded domain in Rd.

(1.2)

We assume that v is complex-valued. The regularity assumption that v ∈ L∞(D) is just for
simplicity and can be relaxed; see Remark 2.1. The main point is that for equation (1.1), under
such an assumption, we can consider the scattering solutions ψ+ specified via Sommerfeld type
radiation condition like (1.3).

Equation (1.1) arises in quantum mechanics as the Schrödinger equation at fixed energy and
in acoustics and electrodynamics as the Helmholtz equation at fixed frequency. Under assumption
(1.2), the coefficient v describes a scatterer contained in D. The number E is related to the time-
harmonic frequency and corresponds to the energy in the framework of the Schrödinger equation.
In addition, v may depend on E, at least, in acoustics and electrodynamics. See, for example, [5],
[7], [9], [13].
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For equation (1.1) we consider the solutions ψ+(x, k), k ∈ Rd, k2 = E, specified by the follow-
ing asymptotic as |x| → ∞ :

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
f1(k, |k|

x

|x|
) +O

(
1

|x|(d+1)/2

)
, (1.3)

for some a priori unknown f1. The solutions ψ+ = ψ+(x, k) are the scattering solutions, or
scattering wave functions, for equation (1.1). These solutions describe scattering of the incident
plan waves described by eikx on the scatterer described by v. In particular, the second term on the
right-hand side of (1.3) describes the leading scattered spherical waves. The coefficient f1 arising
in (1.3) is a function defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
, (1.4)

where l = |k| x
|x| , Sd−1

r is the sphere of radius r centered at the origin in Rd.
The function f1 is the scattering amplitude, or far field pattern, for equation (1.1).
In order to study ψ+ and f1 one can use, in particular, the Lippmann–Schwinger integral

equation (2.1) for ψ+ and formulas (2.5)–(2.7) for f1; see Subsection 2.1.
We recall that in quantum mechanics the complex values of the functions ψ+ and f1 have no

direct physical sense, whereas the phaseless values of |ψ+|2 and |f1|2 have probabilistic interpre-
tation (according to the Born’s rule) and can be directly measured. See [6] and, for example,
[12], for details. In turn, in acoustics or electrodynamics the complex values of ψ+ and f1 can
be directly measured, at least, in principle. However, in electro–magnetic wave propagation at
very high frequencies (as for X–rays and lasers) only phaseless values of |ψ+|2 and |f1|2 can be
measured in practice by modern technical devices; see, e.g., [17] and references therein.

For equation (1.1) under assumptions (1.2), we consider, in particular, the following problems:
Problem 1.1. Reconstruct potential v from its scattering amplitude f1.
Problem 1.2. Reconstruct potential v from its phaseless scattering data |ψ+|2 appropriately

given outside of D.
Problem 1.3. Find f1 from |ψ+|2 appropriately given outside of D.
A recent survey on these problems is given in [30]. Actually, in the present work we continue

studies of [11], [26]–[31], [33] on Problem 1.3. These studies on Problem 1.3 and results on Problem
1.1 admit straightforward applications to Problem 1.2. For other possible approaches to Problem
1.2, see, for example, [40], [41], [22], [10], [16], [23], [24], [19], [35].

In particular, in the present work we give, for fixed (k, l) ∈ ME, l ̸= k, for d ≥ 2,

formulas for finding f1(k, l) up to O(s−n) as s→ +∞,

from |ψ+(x, k)|2 given at m points x = x1(s), ..., xm(s),
(1.5)

where m depends linearly on n,

xj(s) = (s+ τj)l̂, j = 1, ...,m, l̂ = l/|l|,
s > 0, τ1 = 0, τj1 < τj2 , j1 < j2.

(1.6)

These formulas are explicit and are presented in detail below in Introduction and in Section 3,
where our precise assumptions on m = m(n) and on τ1, ..., τm are specified.
One can see that in formulas (1.5), (1.6) the measurement points xj = xj(s) are on the ray

starting at the origin in direction l̂, where s is the distance between the origin and the set of these
points, and the distances τj+1−τj = |xj+1−xj| are fixed. In addition, the reconstruction formulas
mentioned in (1.5) are asymptotic, where n can be considered as their convergence rate in terms
of O(s−n) as s→ +∞, that is when the points xj = xj(s) move to infinity.

Note that, to our knowledge, for the first time formulas (1.5), (1.6) were realized in [26], [28]
for n = 1, m = 2, d ≥ 3 and for n = 1/2, m = 2, d = 2, and in [29] for n = 1, m = 2, d = 2.
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In addition, for m = 3, d = 1, an exact (not asymptotic !) analog of formulas (5), (6) was given
in [27]. In the present work, for the first time we realize formulas (5), (6) for n > 1, d ≥ 2. In
this respect we proceed from studies recently developed in [29] and [31]; more comments are given
below in Introduction and in Section 2.

Let

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), (1.7)

where x, k ∈ Rd \ {0}.
Assume in (1.5), (1.6) that d = 3, m = 2n, n ∈ N = {1, 2, 3, ...}, and that

τj =

{
(j − 1)τ, j = 1, ..., n,

σ + (j − 1− n)τ, j = n+ 1, ..., 2n,
(1.8)

τ = τ(k, l) =
2π

κ
, 0 < σ ̸= 0 (mod

π

κ
), κ = κ(k, l) = |k| − kl̂. (1.9)

Then our formulas (1.5), (1.6) are as follows:

f1(k, l) =
e−i(s+σ)κa1(s)− e−isκa2(s) +O(s−n)

−2i sin (σκ)
, s→ +∞, (1.10)

a1(s) = a1(k, l, s) =
n∑

j=1

(−1)n−j(s+ τj)
n−1a(xj(s), k)

(j − 1)!(n− j)!τn−1
, (1.11)

a2(s) = a2(k, l, s) =
2n∑

j=n+1

(−1)j(s+ τj)
n−1a(xj(s), k)

(j − 1− n)!(2n− j)!τn−1
, (1.12)

where (k, l) ∈ ME, l ̸= k, d = 3, a(x, k) is defined by (1.7), xj(s) are defined in (1.6), (1.8),
(1.9), τ, τj, σ, κ are the numbers of (1.8), (1.9).

Formulas (1.10)–(1.12) are new for n ≥ 2; for n = 1 these formulas were given in [26], [28].
Somewhat more general version of formulas (1.10)–(1.12) is given as Theorem 3.1; see Subsec-

tion 3.1.
One can see that formulas (1.10)–(1.12) and formulas of Theorem 3.1 are completely explicit !

However, a possible practical inconvenience of these formulas is that the differences between the
measurement points xj(s), j = 1, ..., n, or xj(s), j = n + 1, ..., 2n, in (1.10)–(1.12) (and between
the related points in Theorem 3.1) are multiple to τ = τ(k, l) = 2π/κ, where κ = κ(k, l) is
defined in (1.9). The inconvenience is that this τ depend on k, l. Besides, these formulas are valid
for d = 3 but are not valid for d = 2 (because of slightly different structure of the asymptotic
expansions (3), (19) for ψ+ for d = 3 and for d = 2). Therefore, in the present work we also give
the following further results without the aforementioned multiplicity condition for the differences
between xj(s), for d ≥ 2.

We give an explicit version of formulas (1.5), (1.6) for the case of the linearised Problem 1.3
(near v = 0) for d ≥ 2, m = 2n, n ∈ N, where

τj = (j − 1)τ, j = 1, ..., 2n, τ > 0, τ ̸= 0 (mod
π

κ
), (1.13)

κ = κ(k, l) in defined in (1.9); see Theorem 3.2 of Subsection 3.2.
We give explicit versions of formulas (1.5), (1.6) for the general non–linearised case for d =

3, m = 3n− 1, and for d = 2, m = 3n, where

τj = (j − 1)τ, j = 1, ...,m, τ > 0, τ ̸= 0 (mod
π

κ
), (1.14)

κ = κ(k, l) in defined in (1.9); see Proposition 3.1 of Subsection 3.3 and Proposition 3.2 of
Subsection 3.4. For the general non-linearized case, finding such formulas for m = 2n is an open
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question for n > 1, for d = 3 or d = 2, under assumption (1.14). We recall that for n = 1, d = 3,
this question was solved in [26], [28]; whereas for n = 1, d = 2, this question was solved in Section
9 of [29].

Note that τ in (1.13), (1.14) is fixed and independent of k, l (except the property that τ ̸=
0 (modπ/κ)) in contrast with τ in (1.9).

The results of the present work are obtained proceeding from methods developed in [26], [29],
[31]. In particular, for fixed (k, l) ∈ ME, l ̸= k, for d = 3 or d = 2, the work [29] gives a version
of formulas (1.5), where

xj(s) = rj(s)l̂, j = 1, ..., 2n, l̂ = l/|l|,
r2i−1(s) = λis, r2i(s) = λis+ τ, i = 1, ..., n,

λ1 = 1, λi1 < λi2 for i1 < i2, τ > 0.

(1.15)

Formulas (5), (15) realized in [29] are recurrent in n. For n = 1, d = 3, these formulas were
given in [26].

Advantages of formulas (1.5), (1.6) (realized in the present work) in comparison with formulas
(5), (15) (realized in [29]) can be summarized as follows:

(a) The geometry of xj(s) in (1.5), (1.6) is essentially simpler in the sense that the distances
between all these points are fixed and are independent of s→ +∞.

(b) Formulas (1.5), (1.6) (realized as formulas (1.10)–(1.12), (3.9)–(3.11), (3.20)–(3.22), (3.28)–
(3.31), (3.39)–(3.41)) are drastically more explicit for large n.

Note that the results of the present work essentially use the technique of the recent work [31],
where [31] gives explicit asymptotic multipoint formulas for finding f from ψ+.

Note also that explicit estimates on the reminder O(s−n) in our formulas (1.5), (1.6) can be
given proceeding from methods developed in [31], [33].

Numerical aspects of formulas of [26], [28], [29], [33] and of the present article with their
applications to Problem 1.2 will be addressed in further works.

In addition to Problem 1.3 and Problem 1.2, there are also other possible formulations of phase
retrieval and phaseless inverse scattering problems for equation (1.1) and for other equations
of wave propagations. In connection with such other formulations and related results, see, for
example, [8], [13], [15], [17], [18], [20], [28], [30], [34], [36], [37], [38], [42] and references therein.
Note that formulas of [26], [28], [29] and the present work can be also used for Problems 1.3 and
1.2 when coefficient v in equation (1.1) is replaced, e.g., by an impenetrable obstacle (see, e.g., [9]
for definition of impenetrable obstacles).

The further structure of the present article is as follows. In Section 2 we recall, in particular,
some results on direct scattering for equation (1.1) under assumptions (1.2) and some formulas of
[29] and [31]. The results of the present work on Problem 1.2, consisting in realizations of formulas
(1.5), (1.6), are given in Section 3. These results are proved in Sections 4, 5, and 6. In Section 7,
for completeness of presentation, we give a sketch of proof of formulas (2.8)–(2.10) for the higher
scattering amplitudes fj, j ≥ 2.

2 Preliminaries

2.1 Asymptotics of the scattering solutions

We recall that the scattering solutions ψ+ satisfy the following Lippmann-Schwinger integral
equation:

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) := −(2π)−d

∫
Rd

eiξxdξ

ξ2 − k2 − i · 0
= G+

0 (|x|, |k|),
(2.1)
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where x, k ∈ Rd, k2 = E; see, for example, [5], [9], [30].
Note also that

G+(x, k) =
ei|k||x|

2i|k|
, d = 1,

G+(x, k) = − i

4
H1

0 (|x||k|), d = 2, G+(x, k) = −e
i|k||x|

4π|x|
, d = 3,

(2.2)

where H1
0 is the Hankel function of the first type.

Actually, in the present work, in addition to (1.2), we assume that, for fixed E > 0,

equation (2.1) is uniquely solvable for ψ+(·, k) ∈ L∞(D). (2.3)

In addition, if v satisfies (1.2) and is real-valued, then (2.3) is fulfilled automatically.
Remark 2.1. The regularity assumption that v ∈ L∞(D) can be essentially relaxed in (2)

(although this assumption is used often in the literature). In the results of Section 3 on Problem
1.3 in place of (2), (18), it is sufficient to assume that v supported in D is such that:

equation (1) for fixed E > 0 has an unique solution ψ+(·, k) specified via Sommerfeld type
radiation condition like (3) for each k ∈ Rd, k2 = E, in Subsections 3.1, 3.3, 3.4;

and in addition ψ+(x, k)− eikx is small on ∂D if v is small, where ∂D is regular, in Subsection
3.2.

Proceeding, for example, from (2.1) one can show that the scattering solutions ψ+ have the
following Atkinson-type expansion:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2

(
N∑
j=1

fj(k, |k| x
|x|)

|x|j−1
+O

(
1

|x|N

))
, |x| → +∞, N ∈ N, (2.4)

where the coefficients fj arising in (2.4) are functions defined on ME; see [3], [39], [25], [29],
[31].

Formula (2.4) for N = 1 reduces to (1.3). We say that the functions fj for j ≥ 2 are the higher
scattering amplitudes for equation (1.1).

It is well-known that

f1(k, l) = c(d, |k|)f(k, l), (2.5)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4, (2.6)

f(k, l) = (2π)−d

∫
D

e−ilyv(y)ψ+(y, k)dy, (2.7)

where (k, l) ∈ ME; see, for example, [30].
It is also well-known that fj ≡ 0 for j ≥ 2, d = 1, under assumptions (1.2), (2.3).
Besides, in the present work we also use the following formulas, for d ≥ 2:

fj(k, l) = (2π)−dc(d, |k|)
∫
D

φj(y, l)v(y)ψ
+(y, k)dy, j ≥ 1, (2.8)

φ1(y, l) = e−ily, (2.9)

φj(y, l) =
(d− 3/4− d2/4 + (j − 1)(j − 2))φj−1(y, l) + ∆Sφj−1(y, l)

2i|l|(j − 1)
, j ≥ 2, (2.10)

where ∆S is the Beltrami-Laplace operator on the unit sphere Sd−1, acting with respect to
l̂ = l/|l|. Formulas (23)-(24) follow from (20)-(22) and the following Barrar-Kay-Wilcox type
recursion formulas:

fj(y, l) =
(d− 3/4− d2/4 + (j − 1)(j − 2))fj−1(y, l) + ∆Sfj−1(y, l)

2i|l|(j − 1)
, j ≥ 2, (2.11)

see [39] in connection with (2.11) for d = 3.
For completeness of the presentation, a sketch of proof of formulas (2.8)–(2.10), for j ≥ 2, is

given in Section 7. Note that the precise form of the recurrent relations (2.10) is not essential for
the main results of the present work.
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2.2 Asymptotic formulas for a(x, k)

Consider the function a = a(x, k) defined by (1.7). Let κ = κ(k, |k| x
|x|) be defined as in (1.9). Let

fj = fj(k, |k|
x

|x|
), (2.12)

where fj are the functions arising in (2.4), j ∈ N, x, k ∈ Rd \ {0}. Then a(x, k) can be presented
as follows (see [29] for d = 3 or d = 2):

a(x, k) = aN(x, k) + δNa(x, k), (2.13)
aN(x, k) = a1N(x, k) + a2N(x, k), (2.14)

a1N(x, k) =
N∑
j=1

ei|x|κfj
|x|j−1

+
N∑
j=1

e−i|x|κf j

|x|j−1
, (2.15)

a2N =

N−[(d−1)/2]∑
j=1

hj
|x|j−1+(d−1)/2

, hj =

j∑
α=1

fαf j−α+1, (2.16)

δNa(x, k) = O(|x|−N), as |x| → +∞, (2.17)

where x ∈ Rd \ {0}, k ∈ Rd, k2 = E > 0, d ≥ 2, [·] stands for the integer part.
Note that formulas (1.7), (2.4) imply formulas (2.13)–(2.17) as follows:

a(x, k) = a1N(x, k) +O(|x|−N) +
1

|x|(d−1)/2

(
N∑

j1=1

fj1
|x|j1−1

+O(|x|−N)

)(
N∑

j2=1

f j2

|x|j2−1
+O(|x|−N)

)
=

= a1N(x, k) +O(|x|−N) +
1

|x|(d−1)/2

(
N∑

j1,j2=1

fj1f j2

|x|j1−1|x|j2−1
+O(|x|−N)

)
j=j1+j2−1

=

= a1N(x, k) +O(|x|−N) +
1

|x|(d−1)/2

(
N∑
j=1

j∑
j1=1

fj1f j−j1+1

|x|j−1
+O(|x|−N)

)
=

= a1N(x, k) +

N−[(d−1)/2]∑
j=1

hj
|x|j−1+(d−1)/2

+O(|x|−N), (2.18)

where we used the change of variables (j1, j2) → (j1, j), j = j1 + j2 − 1.
Consider also the case of the Born approximation for small potentials. Suppose that potential

v is small, for example, in the sense of the norm ∥ · ∥L∞(D), for fixed D. Then in formulas (2.13)–
(2.17) the quadratic term a2N is negligible in comparison with the linear term a1N . Such a situation
arises in many applications (see, for example, [6], [13], [16], [23], [24], [40], [41]). Thus, in the
Born approximation for small potentials formula (2.14) reduces to the formula

aN(x, k) ≈ a1N(x, k). (2.19)

The aforementioned smallness assumption on v can be specified as

∥v∥L∞(D) = O(ε), where ε→ 0. (2.20)

Then using (2.1), (2.5)–(2.10), (2.20) one can show that

∥fj∥C(ME) = O(ε), for each j ∈ N. (2.21)

In turn, formulas (2.14), (2.16) imply that

aN(x, k)− a1N(x, k) = |x|−(d−1)/2O(ε2), (2.22)

where N ∈ N.
Formula (2.22) specifies (2.19) under assumption (2.20).
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2.3 Some results of [31]

We recall that the work [31] gives, in particular, explicit asymptotic multipoint formulas for finding
f1 from ψ+ for d ≥ 2. This work proceeds from formula (2.4) and considers, in particular, the
functions z = z(s), s ∈ [r,+∞), r > 0, of the form

z(s) =
N∑
j=1

fj
sj−1

+O(s−N), as s→ +∞, (2.23)

where fj, j = 1, ..., n, are the complex numbers.
Functions of the form (2.23) arise in the second term on the right-hand side of (2.4), where

s = |x|. Functions of the form (2.23) also arise in the framework of direct and inverse scattering
at high energies for equation (1.1) with smooth v; see [25] and [32].

For functions z satisfying (2.23) the work [31] considers, in particular, the problem of finding
f1 from z(s) given at n points sj ∈ [r, +∞), j = 1, ..., n, of the form

sj = sj(s) = s+ τj, j = 1, ..., n,

s > r, τ1 = 0, τj+1 > τj, j = 1, ..., n− 1,

τ⃗ = (τ1, ..., τn).

(2.24)

Suppose that N ≥ 2n− 1. Then the following formulas of [31] hold:

f1 =
n∑

j=1

yj(s, τ⃗)z(s+ τj) +O(s−n), as s→ +∞, (2.25)

where yj(s, τ⃗) are defined by

n∑
j=1

yj(s, τ⃗)

(s+ τj)i−1
=

{
1, for i = 1,

0, for i = 2, ..., n;
(2.26)

in addition:

yj(s, τ⃗) =
(−1)n−j(s+ τj)

n−1

αj(τ⃗)βn,j(τ⃗)
, 1 ≤ j ≤ n, (2.27)

αj(τ⃗) = Πj−1
k=1(τj − τk), βn,j(τ⃗) = Πn

k=j+1(τk − τj), (2.28)
n∑

j=1

yj(s, τ⃗)

(s+ τj)i−1
= O(s−n) as s→ +∞, for n < i < 2n. (2.29)

3 Main results

3.1 Formulas for finding f1 from a at 2n points for d = 3

For d = 3, the function a(x, k) of formulas (1.7), (2.13)–(2.17) at fixed k and x̂ = x/|x| can be
written as

a(s) = a(s, x̂, k) := a(sx̂, k), (3.1)

a(s) =
N∑
j=1

eisκfj + e−isκf j + hj

sj−1
+O(s−N), s→ +∞, h1 = 0, (3.2)

hj =

j−1∑
k=1

fkf j−k, j = 1, ..., N, (3.3)
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where s = |x|, κ = |k| − kx̂, and κ > 0 if x̂ = x/|x| ≠ k̂ = k/|k|.
Proceeding from this motivation we consider arbitrary functions a = a(s), s ∈ [r,+∞), r > 0,

such that formula (3.2) holds for some fixed κ > 0 and some complex numbers fj, j = 1, ..., N,
and hj, j = 2, ..., N.

We consider 2n points s1,j, s2,j ∈ [r,+∞), j = 1, ..., n, of the form

s1,j = s1,j(s) = s+ τ1,j, j = 1, ..., n, (3.4)
s2,j = s2,j(s) = s+ σ + τ2,j, j = 1, ..., n, (3.5)

τ1,j = ν1,jτ, j = 1, ..., n, τ =
2π

κ
, 0 = ν1,1 < ν1,2 < ... < ν1,n, {ν1,j} ∈ N, (3.6)

τ2,j = ν2,jτ, j = 1, ..., n, τ =
2π

κ
, 0 = ν2,1 < ν2,2 < ... < ν2,n, {ν2,j} ∈ N, (3.7)

s > r, σ > 0, σ ̸= 0 (mod
π

κ
). (3.8)

Theorem 3.1. Let a = a(s) satisfy (3.2) for some N ≥ 2n − 1, n ∈ N. Then a(s) at 2n points
s1,j, s2,j of (3.4)–(3.8) approximately determines f1 as follows:

f1 =
e−i(s+σ)κa1(s)− e−isκa2(s) +O(s−n)

−2i sin (σκ)
, s→ +∞, (3.9)

a1(s) :=
n∑

j=1

(−1)n−j(s1,j(s))
n−1a(s1,j(s))

τn−1Πj−1
k=1(ν1,j − ν1,k)Πn

k=j+1(ν1,k − ν1,j)
, (3.10)

a2(s) :=
n∑

j=1

(−1)n−j(s2,j(s))
n−1a(s2,j(s))

τn−1Πj−1
k=1(ν2,j − ν2,k)Πn

k=j+1(ν2,k − ν2,j)
. (3.11)

Remark 3.1. Suppose that ν1,j = ν2,j = j − 1, j = 1, ..., n. Then formulas (3.10), (3.11)
reduce to the formulas

a1(s) =
n∑

j=1

(−1)n−j(s1,j(s))
n−1a(s1,j(s))

(j − 1)!(n− j)!τn−1
, (3.12)

a2(s) =
n∑

j=1

(−1)n−j(s2,j(s))
n−1a(s2,j(s))

(j − 1)!(n− j)!τn−1
. (3.13)

Theorem 3.1 is proved in Section 4.
Formulas (3.9)–(3.13) of Theorem 3.1 and Remark 3.1 are completely explicit ! But a possible

inconvenience of these formulas is that the differences between the points s1,j, j = 1, ..., n, or
s2,j, j = 1, ..., n, are multiple to 2π/κ. Below in Subsections 3.2, 3.3, we give approaches for
relaxing this multiplicity condition.

Formulas (1.7), (3.1), (3.4)–(3.13) realize (1.5), (1.6) for d = 3. In addition, due to formulas
(1.7), (2.18), function a(s) defined in (3.1) satisfies (3.2) for any odd d ≥ 3 for some hj, where
h1 = h2 = ... = h(d−1)/2 = 0 (and further hj are given by analogs of (2.18) for odd d > 3).
Therefore, formulas (3.4)–(3.13) remain valid for any odd d ≥ 3; in fact, these formulas follow just
from (3.2).

3.2 Formulas for finding f1 from a at 2n points for small potentials

In the Born approximation for small potentials v formula (2.14) reduces to formula (2.19).
In these framework, the function a(x, k) of (2.13)–(2.17) at fixed k and x̂ = x/|x|, for d ≥ 2,

can be written as
a(x, k) ≈ a(s), (3.14)
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where

a(s) =
N∑
j=1

eisκfj + e−isκf j

sj−1
+O(s−N), s→ +∞, (3.15)

where s = |x|, κ = |k| − kx̂, and κ > 0 if x̂ = x/|x| ̸= k̂ = k/|k|. Formulas (3.14), (3.15) follow
from (2.13), (2.15), (2.17), (2.19).

Proceeding from this motivation, we consider arbitrary functions a = a(s), s ∈ [r,+∞), r > 0,
such that formula (3.15) holds for some fixed κ > 0 and some complex numbers fj, j = 1, ..., N.

We consider 2n points sj ∈ [r,+∞), j = 1, ..., 2n, of the form

sj = sj(s) = s+ τj, j = 1, ..., 2n, (3.16)
τj = (j − 1)τ, j = 1, ..., 2n, (3.17)

s > r, τ > 0, τ ̸= 0 (mod
π

κ
). (3.18)

Let Σn,τ be the operator acting on functions u on [r,+∞) and defined by the formula

Σn,τu(s) =
n∑

j=1

(−1)n−j(sj(s))
n−1u(sj(s))

(j − 1)!(n− j)!τn−1
, s ∈ [r,+∞), (3.19)

where sj are defined according to (3.16)–(3.18), j = 1, ..., n.

Theorem 3.2. Let a = a(s) satisfy (3.15) for some N ≥ 2n − 1, n ∈ N. Let Σn,τ be defined by
(3.19). Then a(s) at 2n points sj of (3.16)–(3.18) approximately determines f1 as follows:

f1 = C(κ, τ, n)(τn−1(e−2iτκa2(s)− a2(s+ τ)) +O(s−n)), s→ +∞, (3.20)

a2(s) := Σn,τa1(s), a1(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa)(s), (3.21)

C(κ, τ, n) :=
(n− 1)!

(e2iτκ − 1)n−1(e−2iτκ − 1)
. (3.22)

Remark 3.2. For Σn,τ defined by (3.19) and 2n points sj of (3.16)–(3.18), we have that

Σn,τ (w2Σn,τ (w1u))(s) =

=
∑

1≤j1, j2≤n

(−1)j1+j2(sj1(s))
n−1(sj1+j2−1(s))

n−1w2(sj1(s))w1(sj1+j2−1(s))

(j1 − 1)!(n− j1)!(j2 − 1)!(n− j2)!τ 2n−2
u(sj1+j2−1(s)), (3.23)

where w1, w2 are fixed functions on [r,+∞), and u is a test function on [r,+∞). In addition,

sj1+j2−1(s+ τ) = sj1+j2(s), 1 ≤ j1, j2 ≤ n. (3.24)

Formulas (3.23), (3.24) explain that formula (3.20) involves a(s) exactly in 2n points sj of
(3.16)–(3.18), j = 1, ..., 2n. Actually, formula (3.23) explains that computing a2(s) via (3.21)
requires a(s) in 2n − 1 points sj of (3.16)–(3.18), j = 1, ..., 2n − 1; formulas (3.24), (3.23),
(3.20) explain that computing a2(s+ τ) requires a(s) in shifted 2n− 1 points sj of (3.16)–(3.18),
j = 2, ..., 2n.

Theorem 3.2 is proved in Section 5.
Note that formulas (3.20)–(3.22) for finding f1 from a(s) coincide with formulas (3.9)–(3.11)

for the case when N = n = 1, σ = τ .
Note also that Theorem 3.2 is used in the proofs of Propositions 3.1 and 3.2; see Subsections

3.3, 3.4 and Section 6.
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3.3 Formulas for finding f1 from a at 3n− 1 points for d = 3

In this Subsection we give formulas for finding f1 up to O(s−n), as s → +∞, from a(sj(s)), j =
1, ..., 3n− 1, where a(s) is defined by (3.1), sj = sj(s) are the points of (3.25)–(3.27). We use that
a(s) satisfies (3.2). In constrast to Theorem 3.1, we do not assume that differences between some
of these points are multiple to π/κ. In addition, in constrast to Theorem 3.2, we do not assume
that a is reduced to the linearised a of the form (3.15). On the other hand, the disadvantage of
approximate finding f1 mentioned above, is that this finding uses a at 3n− 1 points, in contrast
to 2n points of Theorems 3.1 and 3.2.

We consider 3n− 1 points sj ∈ [r,+∞), j = 1, ..., 3n− 1, of the form

sj = sj(s) = s+ τj, j = 1, ..., 3n− 1, (3.25)
τj = (j − 1)τ, j = 1, ..., 3n− 1, (3.26)

s > r, τ > 0, τ ̸= 0 (mod
π

κ
). (3.27)

Proposition 3.3. Let a = a(s) satisfy (3.2) for some N ≥ 2n− 1, n ∈ N. Let Σn,τ be defined by
(3.19). Then a(s) at 3n− 1 points sj of (3.25)–(3.27) approximately determines f1 as follows:

f1 = C1(κ, τ, n)(τ
n−1(e−2iτκa2(s)− a2(s+ τ)) +O(s−n)), s→ +∞, (3.28)

a2(s) := Σn,τa1(s), a1(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa0)(s), (3.29)

a0(s) :=
1

sn−1
Σn,τa(s), (3.30)

C1(κ, τ, n) =
(n− 1)!τn−1

(eiτκ − 1)n−1
C(κ, τ, n), (3.31)

where C(κ, τ, n) is given by (3.22).

Remark 3.3. For Σn,τ defined by (3.19) and 3n− 1 points sj of (3.25)–(3.27), we have that

Σn,τ (w3Σn,τ (w2Σn,τw1u))(s) =

=
∑

1≤j1, j2, j3≤n

(−1)n+j1+j2+j3(sj1(s))
n−1(sj1+j2−1(s))

n−1(sj1+j2+j3−2(s))
n−1

(j1 − 1)!(n− j1)!(j2 − 1)!(n− j2)!(j3 − 1)!(n− j3)!τ 3n−3
×

w3(sj1(s))w2(sj1+j2−1(s))w1(sj1+j2+j3−2(s))u(sj1+j2+j3−2(s)), (3.32)

where w1, w2, w3 are fixed functions on [r,+∞), and u is a test function on [r,+∞). In addition,

sj1+j2+j3−2(s+ τ) = sj1+j2+j3−1(s), 1 ≤ j1, j2, j3 ≤ n. (3.33)

Formulas (3.32), (3.33) explain that formula (3.28) involves a(s) exactly in 3n−1 points sj of
(3.25)–(3.27), j = 1, ..., 3n−1. Actually, formulas (3.29), (3.30) and (3.32) explain that computing
a2(s) via (3.29), (3.30) involves a(s) in 3n−2 points sj of (3.25)–(3.27), j = 1, ..., 3n−2; formulas
(3.32), (3.33) explain that computing a2(s+ τ) via formulas (3.29), (3.30) requires a(s) in shifted
3n− 2 points sj of (3.25)–(3.27), j = 2, ..., 3n− 1.

Proposition 3.1 is proved in Section 6.
Note that formulas (3.1), (3.25)–(3.31) for finding f1 from a remain valid for any odd d ≥ 3,

in a similar way with formulas (3.1), (3.4)–(3.13).
Note also that formulas (3.28)–(3.31) for finding f1 from a(s) coincide with formulas (3.9)–

(3.11) and with formulas (3.20)–(3.22) for the case when N = n = 1, σ = τ . For this case these
formulas were given in [26], [28].
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3.4 Formulas for finding f1 from a at 3n points for d = 2

For d = 2, the function a(x, k) of formulas (1.7), (2.13)–(2.17) at fixed k and x̂ = x/|x| can be
written as a(s) defined according to (3.1), where

a(s) =
N∑
j=1

eisκfj + e−isκf j

sj−1
+

N∑
j=1

hj
sj−1/2

+O
(

1

sN

)
, s→ +∞, (3.34)

hj =

j∑
k=1

fkf j−k+1, j = 1, ..., N, (3.35)

where s = |x|, κ = |k| − kx̂, and κ > 0 if x̂ = x/|x| ≠ k̂ = k/|k|.
Proceeding from this motivation, we consider arbitrary functions a = a(s), s ∈ [r,+∞), r > 0,

such that formula (3.34) holds for some fixed κ > 0 and some complex numbers fj, j = 1, ..., N,
and hj, j = 1, ..., N.

In this Subsection we give formulas for finding f1 up to O(s−n), as s→ +∞, from a(sj(s)), j =
1, ..., 3n, where a(s) is of the form (3.34), sj = sj(s) are the points of (3.36)–(3.38). In constrast
to Theorem 3.2, we do not assume that a is reduced to the linearised a of the form (3.15). On the
other hand, the disadvantage of approximate finding f1 mentioned above, is that this finding uses
a at 3n points, in contrast to 2n points of Theorem 3.2.

We consider 3n points sj ∈ [r,+∞), j = 1, ..., 3n of the form

sj(s) = s+ τj, j = 1, ..., 3n, (3.36)
τj = (j − 1)τ, j = 1, ..., 3n, (3.37)

s ≥ r > 0, τ > 0, τ ̸= 0 (mod
π

κ
). (3.38)

Proposition 3.4. Let a(s) satisfy (3.34) for some N ≥ 2n + 1, n ∈ N. Let Σn,τ be defined by
(3.19). Then a(s) at 3n points sj of (3.36)–(3.38) approximately determines f1 as follows:

f1 = C2(κ, τ, n)(τ
n−1(e−2iτκa3(s)− a3(s+ τ)) +O(s−n)), s→ +∞, (3.39)

a3(s) := Σn,τa2(s), a2(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa1)(s), a1(s) =
1

sn−1/2
Σn+1,τa0(s), a0(s) = a(s)/

√
s,

(3.40)

C2(κ, τ, n) =
n!(n− 1)!τn

(eiτκ − 1)n(e2iτκ − 1)n−1(e−2iτκ − 1)
. (3.41)

Remark 3.4. For Σn,τ defined by (3.19) and 3n points sj of (3.36)–(3.38), we have that

Σn,τ (w3Σn,τ (w2Σn+1,τw1u))(s) =

=
∑

1≤j1, j2≤n

∑
1≤j3≤n+1

(−1)n+j1+j2+j3(sj1(s))
n−1(sj1+j2−1(s))

n−1(sj1+j2+j3−2(s))
n−1

(j1 − 1)!(n− j1)!(j2 − 1)!(n− j2)!(j3 − 1)!(n− j3)!τ 3n−3
×

× w3(sj1(s))w2(sj1+j2−1(s))w1(sj1+j2+j3−2(s))u(sj1+j2+j3−2(s)), (3.42)

where w1, w2, w3 are fixed functions on [r,+∞), and u is a test function on [r,+∞). In addition,

sj1+j2+j3−2(s+ τ) = sj1+j2+j3−1(s), 1 ≤ j1, j2, j3 ≤ n. (3.43)

Formulas (3.42), (3.43) explain that formulas (3.39) involves a(s) exactly in 3n points sj of (3.36)–
(3.38), j = 1, ..., 3n. Actually, formulas (3.42) and (3.40) explain that computing a2(s) via (3.40)
involves a(s) in 3n − 1 points sj of (3.36)–(3.38), j = 1, ..., 3n − 1; formulas (3.42), (3.43)
explain that computing a2(s + τ) via formulas (3.40) involves a(s) in 3n − 1 shifted points sj of
(3.36)–(3.38), j = 2, ..., 3n.

Proposition 3.2 is proved in Section 6.
Note that formulas (3.1), (3.36)–(3.41) for finding f1 from a remain valid for any even d ≥ 2,

in a similar way with formulas (3.1), (3.4)–(3.13), (3.25)–(3.31) for odd d ≥ 3.
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4 Proof of Theorem 3.1
Let

τ⃗1 = (τ1,1, ..., τ1,n), τ⃗2 = (τ2,1, ..., τ2,n). (4.1)

Let yj(s, τ⃗1), yj(s, τ⃗2), j = 1, ..., n, be defined according to (2.26), (2.27). We have that

a1(s) =
n∑

j=1

yj(s, τ⃗1)a(s1,j(s)), a2(s) =
n∑

j=1

yj(s, τ⃗2)a(s2,j(s)). (4.2)

Note that
eis1,j(s)κ = eisκeiν1,jτκ = eisκ, j = 1, ..., n,

eis2,j(s)κ = ei(s+σ)κeiν2,jτκ = ei(s+σ)κ, j = 1, ..., n.
(4.3)

Using formulas (2.26)–(2.29), (3.2), (4.2), (4.3) and the assumption that N ≥ 2n−1, we obtain
that:

a1(s) =
n∑

j=1

yj(s, τ⃗1)

(
N∑

m=1

eis1,j(s)κfm + e−is1,j(s)κfm + hm
(s+ τ1,j)m−1

+O(s−N)

)
=

=
N∑

m=1

(eisκfm + e−isκfm + hm)
n∑

j=1

yj(s, τ⃗1)

(s+ τ1,j)m−1
+O(s−n) =

= eisκf1 + e−isκf 1 +O(s−n), as s→ +∞;

(4.4)

a2(s) =
n∑

j=1

yj(s, τ⃗2)

(
N∑

m=1

eis2,j(s)κfm + e−is2,j(s)κfm + hm
(s+ σ + τ2,j)m−1

+O(s−N)

)
=

=
N∑

m=1

(ei(s+σ)κfm + e−i(s+σ)κfm + hm)
n∑

j=1

yj(s, τ⃗2)

(s+ σ + τ2,j)m−1
+O(s−n) =

= ei(s+σ)κf1 + e−i(s+σ)κf 1 +O(s−n), as s→ +∞.

(4.5)

We consider formulas (4.4), (4.5) as a linear system for approximate finding f1, f 1 from
a1(s), a2(s), where s is sufficiently large.

If σ > 0, σ ̸= 0 (mod π/κ), then from (4.4), (4.5) we obtain that(
f1
f 1

)
=

1

e−iσκ − eiσκ

(
e−i(s+σ)κ −e−isκ

−ei(s+σ)κ eisκ

)(
a1(s)+ O(s−n)
a2(s)+ O(s−n)

)
. (4.6)

Formula (3.9) follows from (4.6).
Theorem 3.1 is proved.

5 Proof of Theorem 3.2
Lemma 5.1. Let Σn,τ be defined via (3.19). Let

u(s) =
N∑
j=1

eisκfj
sj−1

, s ∈ [r,+∞), (5.1)
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for some fixed κ ∈ R and some complex numbers fj, j = 1, ..., N, where N ≥ 2n− 1. Then:

Σn,τu(s) = sn−1

2n−1∑
m=1

eisκfm,κ

sm−1
+O(s−n), s ∈ [r,+∞), (5.2)

fm,κ = fm,κ,n,τ (f1, ...., fm) =
m∑

j2=1

fj2C
m−j2
n−j2

τn−1

n∑
j1=1

(−1)n−j1τm−j2
j1

eiτj1κ

(j1 − 1)!(n− j1)!
, ∀m = 1, ..., 2n− 1, (5.3)

where Cα
β denote the binomial coefficients,

f1,κ =
(eiτκ − 1)n−1

(n− 1)!τn−1
f1, (5.4)

fn,κ =
(eiτκ − 1)n−1

(n− 1)!τn−1
fn if f1 = ... = fn−1 = 0. (5.5)

Proof of Lemma 5.1. Using (3.19), (5.1), we obtain that

Σn,τu(s) =
n∑

j1=1

N∑
j2=1

(−1)n−j1(s+ τj1)
n−1

(j1 − 1)!(n− j1)!τn−1

ei(s+τj1 )κfj2
(s+ τj1)

j2−1
=

=
eisκ

τn−1

N∑
j2=1

fj2

n∑
j1=1

(−1)n−j1(s+ τj1)
n−j2eiτj1κ

(j1 − 1)!(n− j1)!
, s ∈ [r,+∞). (5.6)

(5.7)

Note that

(s+ τj1)
n−j2 =

n−j2∑
j3=0

Cj3
n−j2

sn−j2−j3τ j3j1 =

2n−j2−1∑
j3=0

Cj3
n−j2

τ j3j1 s
n−j2−j3 , n− j2 ≥ 0, (5.8)

(s+ τj1)
n−j2 =

1

sj2−n

∞∑
j3=0

Cj3
n−j2

τ j3j1 s
−j3 =

2n−j2−1∑
j3=0

Cj3
n−j2

τ j3j1 s
n−j2−j3 +O(s−n), n− j2 < 0, (5.9)

where Cα
β are the binomial coefficients; we used in (5.8) that Cα

β = 0, for α > β, if β ∈ N.
Using (5.6), (5.8), (5.9) we obtain that

Σn,τu(s)

sn−1
=

eisκ

τn−1

N∑
j2=1

fj2

n∑
j1=1

(−1)n−j1
∑2n−j2−1

j3=0 (Cj3
n−j2

τ j3j1 /s
j2+j3−1)eiτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1) =

=
eisκ

τn−1

2n−1∑
j2=1

fj2

n∑
j1=1

(−1)n−j1
∑2n−j2−1

j3=0 (Cj3
n−j2

τ j3j1 /s
j2+j3−1)eiτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1) =

=
eisκ

τn−1

2n−2∑
j3=0

2n−j3−1∑
j2=1

fj2C
j3
n−j2

sj2+j3−1

n∑
j1=1

(−1)n−j1τ j3j1 e
iτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1)

m=j2+j3
=

=
2n−1∑
m=1

eisκ

sm−1

m∑
j2=1

fj2C
m−j2
n−j2

τn−1

n∑
j1=1

(−1)n−j1τm−j2
j1

eiτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1) =

2n−1∑
m=1

eisκfm,κ

sm−1
+O(s−2n+1),

(5.10)

where

fm,κ =
m∑

j2=1

fj2C
m−j2
n−j2

τn−1

n∑
j1=1

(−1)n−j1τm−j2
j1

eiτj1κ

(j1 − 1)!(n− j1)!
, (5.11)

f1, κ =
f1C

0
n−1

τn−1

n∑
j=1

(−1)n−jeiτ(j−1)κ

(j − 1)!(n− j)!
=

(eiτκ − 1)n−1

(n− 1)!τn−1
f1. (5.12)
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Note that in (5.10) we used the change of variables (j1, j2, j3) → (j1, j2,m), m = j2 + j3.
Formulas (5.2), (5.4) follows from (5.10), (5.11), (5.12).
In addition, if f1 = ... = fn−1 = 0, then

fn, κ = fn
C0

0

τn−1

n∑
j=1

(−1)n−jei(j−1)τκ

(j − 1)!(n− j)!
=

(eiτκ − 1)n−1

(n− 1)!τn−1
fn. (5.13)

Lemma 5.1 is proved.
The rest of the proof of Theorem 3.2 is as follows. Due to (3.15), we have that

eisκa(s) = u(s) + z(s),

u(s) =
N∑
j=1

e2isκfj
sj−1

, z(s) =
N∑
j=1

f j

sj−1
+O(s−N), as s→ +∞.

(5.14)

Due to formulas (2.25), (2.27), (2.29), (3.19), and the formula for z in (5.14), we have that

Σn,τz(s) = f 1 +O(s−n), as s→ +∞. (5.15)

Due to Lemma 5.1 (with 2κ in place of κ) and the formula for u in (5.14), we have that

Σn,τu(s) = sn−1

2n−1∑
m=1

e2isκfm,2κ

sm−1
+O(s−n), where

f1,2κ =
(e2iτκ − 1)n−1

(n− 1)!τn−1
f1.

(5.16)

Due to (5.14), (5.15), (5.16), we have that

Σn,τ (e
isκa)(s) = sn−1

2n−1∑
m=1

e2isκfm,2κ

sm−1
+O(s−n) + f 1 +O(s−n), as s→ +∞. (5.17)

The definition of a1 in (3.21) and formula (5.17) imply that

a1(s) = u1(s) + z1(s), where

u1(s) =
e−2isκf 1

sn−1
, z1(s) =

2n−1∑
m=1

fm,2κ

sm−1
+O(s−2n+1), as s→ +∞.

(5.18)

Due to formulas (2.25), (2.27), (2.29), (3.19), and the formula for z1 in (5.18), we have that

Σn,τz1(s) = f1,2κ +O(s−n), as s→ +∞. (5.19)

Besides, the following formula holds,

Σn,τu1(s) = e−2isκf 1,−2κ, f 1,−2κ =
(e−2iτκ − 1)n−1

(n− 1)!τn−1
f 1. (5.20)

Formula (5.20) follows from formulas (5.2), (5.3), (5.5) of Lemma 5.1, with (−2κ) in place of κ,
fn = f 1, where f 1 is the number in definition of u1 in (5.18).

The definition of a2 in (3.21) and formulas (5.16), (5.18)–(5.20) imply that

a2(s) = f1,2κ + e−2isκf 1,−2κ +O(s−n) =

=
(e2iτκ − 1)n−1f1 + e−2isκ(e−2iτκ − 1)n−1f 1

(n− 1)!τn−1
+O(s−n), s→ +∞. (5.21)
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From (5.21) we obtain that

(e2iτκ − 1)n−1f1 + e−2isκ(e−2iτκ − 1)n−1f 1 = (n− 1)!τn−1a2(s) +O(s−n), s→ +∞, (5.22)

(e2iτκ − 1)n−1f1 + e−2i(s+τ)κ(e−2iτκ − 1)n−1f 1 = (n− 1)!τn−1a2(s+ τ) +O(s−n), s→ +∞.

We consider formulas (5.22) as a linear system for approximate finding f1, f 1 from
(n− 1)!τn−1a2(s), (n− 1)!τn−1a2(s+ τ), where s is sufficiently large. From this system, for τ > 0,
τ ̸= 0 (modπ/κ), we obtain that(
f1
f 1

)
=

1

(e2iτκ − 1)n−1(e−2iτκ − 1)n−1e−2isκ(e−2iτκ − 1)
×(

e−2i(s+τ)κ(e−2iτκ − 1)n−1 −e−2isκ(e−2iτκ − 1)n−1

−(e2iτκ − 1)n−1 (e2iτκ − 1)n−1

)(
(n− 1)!τn−1a2(s) +O(s−n)

(n− 1)!τn−1a2(s+ τ) +O(s−n)

)
, s→ +∞.

(5.23)

Formula (5.23) implies that

f1 =
(n− 1)!τn−1(e−2iτκa2(s)− a2(s+ τ)) +O(s−n)

(e2iτκ − 1)n−1(e−2iτκ − 1)
, s→ +∞. (5.24)

This completes the proof of Theorem 3.2.

6 Proofs of Propositions 3.1 and 3.2
Proof of Proposition 3.1. The following formula holds:

Σn,τa(s) = sn−1

n∑
m=1

eisκfm,κ + e−isκfm,−κ

sm−1
+O(s−n), s→ +∞, (6.1)

where fm,κ and fm,−κ are defined according to (5.3) in terms of f1, ..., fm and f 1, ..., fm, respec-
tively. In particular, according to (5.4), we have that

f1,κ =
(eiτκ − 1)n−1

(n− 1)!τn−1
f1, f 1,−κ =

(e−iτκ − 1)n−1

(n− 1)!τn−1
f 1. (6.2)

Formula (6.1) follows from formula (3.2), Lemma 5.1 and formulas (2.25), (2.27), (2.29), (3.19).
Formula (3.28), where a2 is defined by (3.29), (3.30), follows from formulas (6.1), (6.2), and

Theorem 3.2.
Proposition 3.1 is proved.

Proof of Proposition 3.2. Assume that

nτ/s < 1, where s ≥ r > 0. (6.3)

From the definition of a0 in (3.40) and formula (3.34) we have that

a0(s) =
N∑
j=1

eisκfj
sj−1/2

+
N∑
j=1

e−isκf j

sj−1/2
+

(
N∑
j=2

hj−1

sj−1
+O

(
1

sN

))
=: a0,1(s) + a0,2(s) + a0,3(s). (6.4)

Using that N ≥ 2n+ 1 and formulas (2.23), (2.25) with n+ 1 in place of n, we obtain that

Σn+1,τa0,3(s) = O(s−(n+1)), s→ +∞. (6.5)
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We also have that

Σn+1,τa0,1(s) =
n+1∑
j=1

(−1)n+1−j(s+ τj)
n
∑N

k=1 e
i(s+τj)κfk/(s+ τj)

k−1/2

(j − 1)!(n+ 1− j)!τn
=

= eisκ
n+1∑
j=1

N∑
k=1

(−1)n+1−j(s+ τj)
n−k+1/2ei(j−1)τκfk

(j − 1)!(n+ 1− j)!τn
. (6.6)

Note that

(s+ τj)
n−k+1/2

sn−1/2
=

(1 + τj/s)
n−k+1/2

sk−1
, (6.7)

(1 + τj/s)
n−k+1/2 =

2n∑
l=0

C l
n−k+1/2

(τj
s

)l
+O(s−2n−1), s→ +∞, (6.8)

where in (6.8) we used assumption (6.3) and that τj = (j − 1)τ, j = 1, ..., n + 1. Using that
N ≥ 2n+ 1 and formulas (6.6), (6.7), (6.8), we obtain that

Σn+1,τa0,1(s)/s
n−1/2 = eisκ

n+1∑
j=1

N∑
k=1

(−1)n+1−j(1 + (j − 1)τ/s)n−k+1/2ei(j−1)τκfk
(j − 1)!(n+ 1− j)!τnsk−1

=

=
eisκ

τn

n+1∑
j=1

N∑
k=1

 2n∑
l=0

(−1)n+1−jC l
n−k+1/2

(
(j−1)τ

s

)l
ei(j−1)τκfk

(j − 1)!(n+ 1− j)!sk−1
+O(s−2n−1)

 =

=
eisκ

τn

n∑
j=0

2n+1∑
k=1

2n∑
l=0

(−1)n−jC l
n−k+1/2 (jτ)

l eijτκfk

j!(n− j)!sk−1+l
+O(s−2n−1)

l=m−k
=

=
eisκ

τn

2n+1∑
m=1

m∑
k=1

n∑
j=0

(−1)n−jCm−k
n−k+1/2(jτ)

m−keijτκ

j!(n− j)!sm−1
fk +O(s−2n−1) =

=
1

τn

2n+1∑
m=1

eisκ

sm−1

m∑
k=1

fkC
m−k
n−k+1/2

n∑
j=0

(−1)n−j(jτ)m−keijτκ

j!(n− j)!
+O(s−2n−1) =

=
2n+1∑
m=1

eisκfm,κ

sm−1
+O(s−2n−1), s→ +∞,

(6.9)

where

fm,κ =
1

τn

m∑
k=1

fkC
m−k
n−k+1/2

n∑
j=0

(−1)n−j(jτ)m−keijτκ

j!(n− j)!
, m = 1, ..., 2n+ 1, (6.10)

f1,κ =
f1
τn

n∑
j=0

(−1)n−jeijτκ

j!(n− j)!
=

(eiτκ − 1)n

τnn!
f1, where

(eiτκ − 1)n

τnn!
̸= 0. (6.11)

Note that in (6.9) we used the change of variables (j, k, l) → (j, k,m), l = m− k.
In (6.11) we have that eiτκ ̸= 1 due to (3.38). In a similar way with (6.9) we also have that

Σn+1,τa0,2(s)/s
n−1/2 =

2n+1∑
m=1

e−isκfm,κ

sm−1
+O(s−2n−1), s→ +∞. (6.12)
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From formulas (6.5), (6.9), (6.12) we obtain that

a1(s) :=
Σn+1,τa0(s)

sn−1/2
=

2n+1∑
j=1

eisκfj,κ + e−isκfj,κ
sj−1

+O(s−2n−1) +O(s−2n−1/2) =

=
2n+1∑
j=1

eisκfj,κ + e−isκfj,κ
sj−1

+O(s−2n−1/2) =
2n−1∑
j=1

eisκfj,κ + e−isκfj,κ
sj−1

+O(s−2n+1), s→ +∞.

(6.13)

From (6.13) one can see that the function a1(s) satisfies the assumptions of Theorem 3.2 for
N = 2n−1. Therefore, applying Theorem 3.2 to the function a1(s) we reconstruct f1,κ via formulas

f1,κ = C(κ, τ, n)(τn−1(e−2iτκa3(s)− a3(s+ τ)) +O(s−n)), s→ +∞, (6.14)

a3(s) := Σn,τa2(s), a2(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa1)(s), (6.15)

C(κ, τ, n) :=
(n− 1)!

(e2iτκ − 1)n−1(e−2iτκ − 1)
. (6.16)

In addition, formula (6.11) implies that

f1 =
n!τnf1,κ

(eiτκ − 1)n
. (6.17)

Formulas (3.39), (3.40), (3.41) follow from formulas (6.14)–(6.17) and the definitions of a1(s), a0(s).
This completes the proof of Proposition 3.2.

7 Sketch of proof of formulas (2.8)–(2.10)
We will use that

G+(x− y, k) = G+
n (x− y, k) + ρn(y, x, |k|),

G+
n (x− y, k) =

ei|k||x|

|x|(d−1)/2

(
n∑

j=1

gj(y, x̂, |k|)
|x|j−1

)
,

g1(y, x̂, |k|) = e−i|k|yx̂, ρn(y, x, |k|) :=
ei|k||x|

|x|(d−1)/2
εn(y, x, |k|),

εn(y, x, |k|) = O
(

1

|x|n

)
, |x| → +∞, uniformly in y ∈ D,

(7.1)

where G+ is defined in (2.1), x̂ = x/|x|. The Lippman-Schwinger integral equation (2.1) and
formula (7.1) imply formulas (2.4), (2.8), (2.9), where

(2π)−dc(d, |k|)φj(y, l) = gj(y, l̂, |k|), l̂ = l/|l|. (7.2)

The recurrent relations (2.10) can be proved using also that:

(∆x + k2)G+(x− y, k) = 0, for x ∈ Rd \D, y ∈ D; (7.3)

∆x =
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
∆S, (7.4)

where r = |x|, ∆S is the Beltrami–Laplace operator with respect to x̂ ∈ Sd−1, x̂ = x/|x|;

∆xρn(y, x, |k|) = O
(

1

|x|n+(d−1)/2

)
, |x| → +∞. (7.5)
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We prove below the recurrent relations (2.10) proceeding from (7.1)–(7.5). Our approach
consists in expanding equation (7.3) in |x|−j, as |x| → +∞.

Note that

∂

∂r

ei|k|r

r
d−1
2

+j
=
ei|k|r

r
d−1
2

(
i|k|
rj

+
(−d−1

2
− j)

rj+1

)
, (7.6)

∂

r∂r

ei|k|r

r
d−1
2

+j−1
=
ei|k|r

r
d−1
2

(
i|k|
rj

+
(−d−1

2
− j + 1)

rj+1

)
, (7.7)

1

r2
∆SG

+(x− y, k) =
ei|k|r

r(d−1)/2

(
n∑

j=1

∆Sgj(y, x̂, |k|)
rj+1

)
+O

(
1

rn+(d+3)/2

)
, r → +∞. (7.8)

Using (7.1), (7.7) we obtain that

∂G+
n (x− y, k)

r∂r
=

n∑
j=1

gj(y, x̂, |k|)
∂

r∂r

ei|k|r

r
d−1
2

+j−1
=

=
ei|k|r

r(d−1)/2

n∑
j=1

(
i|k|gj(y, x̂, |k|)

rj
+ (−d− 1

2
− j + 1)

gj(y, x̂, |k|)
rj+1

)
=

=
ei|k|r

r(d−1)/2

(
n+1∑
j=2

i|k|gj−1(y, x̂, |k|)
rj−1

+
n+2∑
j=3

(−d− 1

2
− j + 3)

gj−2(y, x̂, |k|)
rj−1

)
=

=
ei|k|r

r(d−1)/2
(
i|k|g1(y, x̂, |k|)

r
+

n+1∑
j=3

i|k|gj−1(y, x̂, |k|) + (−d−1
2

− j + 3)gj−2(y, x̂, |k|)
rj−1

+

+ (−d− 1

2
− n+ 1)

gn(y, x̂, |k|)
rn+1

) =
ei|k|r

r(d−1)/2

n∑
j=2

θj,d
rj−1

, (7.9)

θj,d =


i|k|gj−1(y, x̂, |k|), j = 2,

i|k|gj−1(y, x̂, |k|) + (−d−1
2

− j + 3)gj−2(y, x̂, |k|), j = 3, ..., n+ 1,

(−d−1
2

− j + 3)gj−2(y, x̂, |k|), j = n+ 2.

(7.10)

Using (7.7) and the result of the second equality in (7.9) we obtain that:

∂2G+
n (x− y, k)

∂r2
=

∂

∂r

(
ei|k|r

r(d−1)/2

(
n∑

j=1

i|k|gj(y, x̂, |k|)
rj−1

+
n+1∑
j=2

(−d− 1

2
− j + 2)

gj−1(y, x̂, |k|)
rj−1

))
=

=
n∑

j=1

i|k|gj(y, x̂, |k|)
∂

∂r

ei|k|r

r
d−1
2

+j−1
+

n+1∑
j=2

(−d− 1

2
− j + 2)gj−1(y, x̂, |k|)

∂

∂r

ei|k|r

r
d−1
2

+j−1
=

=
n∑

j=1

i|k|gj(y, x̂, |k|)
(
i|k|ei|k|r

r
d−1
2

+j−1
+ (−d− 1

2
− j + 1)

ei|k|r

r
d−1
2

+j

)
+

+
n+1∑
j=2

(−d− 1

2
− j + 2)gj−1(y, x̂, |k|)

(
i|k|ei|k|r

r
d−1
2

+j−1
+ (−d− 1

2
− j + 1)

ei|k|r

r
d−1
2

+j

)
=
ei|k|r

r
d−1
2

n∑
j=1

ωj,d

rj−1
,

(7.11)

ωj,d =


−|k|2gj(y, x̂, |k|), j = 1,

−|k|2gj(y, x̂, |k|) + i|k|(−d− 2j + 5)gj−1(y, x̂, |k|), j = 2,

−|k|2gj(y, x̂, |k|) + i|k|(−d− 2j + 5)gj−1(y, x̂, |k|)+
+(−d−1

2
− j + 3)(−d−1

2
− j + 2)gj−2(y, x̂, |k|), j = 3, ..., n.

(7.12)
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From (7.1), (7.3)–(7.5), (7.8), (7.9), (7.11) we have that

(d− 1)
ei|k|r

r
d−1
2

n∑
j=1

θj,d
rj−1

+
ei|k|r

r(d−1)/2

n∑
j=2

ωj,d

rj−1
+

ei|k|r

r(d−1)/2

n+2∑
j=3

∆Sgj−2

rj−1
=

= −k2 ei|k|r

r(d−1)/2

n∑
j=1

gj
rj−1

+O
(

|k|2

rn+(d−1)/2

)
, r → +∞, (7.13)

where θj,d, ωj,d, gj do not depend on r. Since n is arbitrary, we obtain, from (7.13), for j ≥ 3,
that

(d− 1)θj,d + ωj,d +∆Sgj−2 = −k2gj. (7.14)

Using definitions (7.10) for θj,d, (7.12) for ωj,d and equation (7.14) we obtain, for j ≥ 2,

gj(y, x̂, |k|) =
1

2i|k|(j − 1)

((
4d− 3− d2

4
+ (j − 1)(j − 2)

)
gj−1(y, x̂, |k|) + ∆Sgj−1(y, x̂, |k|)

)
.

(7.15)

Formulas (2.10) follow from (7.2), (7.15).
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Article VI

Multipoint formulas in inverse problems
and their numerical implementation

R.G. Novikov, V.N. Sivkin, G.V. Sabinin
We present the first numerical study of multipoint formulas for finding leading coefficients in

asymptotic expansions arising in potential and scattering theories. In particular, we implement
different formulas for finding the Fourier transform of potential from the scattering amplitude
at several high energies. We show that the aforementioned approach can be used for essential
numerical improvements of classical results including the slowly convergent Born-Faddeev formula
for inverse scattering at high energies. The approach of multipoint formulas can be also used for
recovering the X-ray transform of potential from boundary values of the scattering wave functions
at several high energies. Determination of total charge (electric or gravitational) from several
exterior measurements is also considered. In addition, we show that the aforementioned multipoint
formulas admit an efficient regularization for the case of random noise. In particular, we proceed
from theoretical works [Novikov, 2020, 2021].

Keywords: inverse scattering, charge recovery, multipoint formulas, numerical implementa-
tion

1 Introduction
Many functions of potential theory, scattering theory, and other fields admit asymptotic expansions
of the form

z(s) =
N∑
j=1

aj
sj−1

+O(s−N), as s→ +∞, (1.1)

where s ∈ (σ,+∞), for some σ > 0, and aj are complex numbers; see, for example, [1], [21],
[22], [27], [28], [32], [41], [42]. In addition, in some cases, the most important information is
contained in a1 (and/or some next leading coefficients), whereas z(s) is measured in several points
s ∈ (σ, +∞). In the present work we continue studies of [27], [28] on finding a1 from z(s), given
at several sufficiently large s, with applications to inverse scattering at high energies. We also
consider determination of total charge (electrical or gravitational) from measurements at several
remote points. For other applications of such studies to phased and phaseless inverse scattering,
see [27], [32].

One of the most essential results of the present work consists in an efficient regularization of
the formulas of [27] for finding a1 from z at several points in the presence of random noise; see
Sections 2, 5, 6, 7. This regularization opens perspectives for practical applications where data
are always noisy.

In particular, we consider the stationary Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, E > 0, (1.2)
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where
v is compactly supported and sufficiently regular on Rd. (1.3)

For equation (1.2), we consider the scattering solutions ψ+ = ψ+(x, k), k ∈ Rd, k2 = E,
specified by

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
f1

(
k, |k| x

|x|

)
+O

(
1

|x|(d+1)/2

)
as |x| → +∞, (1.4)

uniformly on x/|x|. The coefficient f1 arising in (1.4) is the scattering amplitude for equation
(1.2). The function f1 at a fixed energy E is defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
. (1.5)

For more information on direct scattering for equation (1.2), see, for example, [5].
We consider, in particular, polychromatic inverse scattering at high energies for equation (1.2),

formulated as follows:

Problem 10. Find v (or some information about v) from f1 at several sufficiently large energies
E.

Let

v̂(p) = Fv(p) = (2π)−d

∫
Rd

eipxv(x)dx, p ∈ Rd. (1.6)

For some formulas, it is convenient to write f1 as

f1(k, l) = c(d, |k|)f(k, l),
c(d, |k|) := −πi(−2πi)(d−1)/2|k|(d−3)/2, for

√
−2πi =

√
2πe−iπ/4.

(1.7)

In particular, we have that

f(k, l) = v̂(p) +O(E−1/2), p = k − l, (k, l) ∈ ME, E → +∞. (1.8)

Formula (1.8) goes back to [4], [9] and is known as the Born-Faddeev formula at high energies;
see also, for example, [26]. This formula gives the simplest method for inverse scattering at high
energies for d ≥ 2. In addition, formula (1.8) admits much more detailed versions, at least, for
smooth v.

Let, for example, v ∈ C∞
c (Rd), where C∞

c denotes compactly supported infinitely smooth
functions. Then (see Proposition 3.4 of [22]):

f(k(s), l(s)) =
N∑
j=1

aj(p, ω)

sj−1
+O(s−N) as s→ +∞, (1.9)

where

k(s) = p+ (E − p2)1/2ω, l(s) = E1/2ω, E = E(s) = s2,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(1.10)

and

a1(p, ω) = v̂(p), (1.11)

where v̂ is defined by (1.6). One can see that expansion (1.9) is of the form (1.1), and the most
important information (in the framework of inverse scattering) is contained in a1.
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In particular, due to (1.9), (1.11), we have that

v̂(p) = f(k(s), l(s)) +O(s−1), as s→ +∞. (1.12)

Formula (1.12) is a variation of formula (1.8). In a similar way with (1.8), formulas (1.12),
(1.10) give a method for inverse scattering at high energies for d ≥ 2 (for d = 1 these formulas
can be used only for p = 0).

In inverse scattering, the main disadvantage of Born-Faddeev formulas like (1.8), (1.12) consists
in their slow convergence for large energies. This convergence corresponds to O(s−1) in (1.12). In
this connection, recently, the article [28] suggested

formulas for finding v̂(p) up to O(s−n) as s→ +∞
from f(k, l) given at n points (k, l) = (k1(s), l1(s)), ..., (kn(s), ln(s)),

(1.13)

where, for example,

kj(s) = k(sj) = k(s+ τj), lj(s) = l(sj) = l(s+ τj),

s > 0, 0 = τ1 < τ2 < ... < τn,
(1.14)

where (k(s), l(s)) are defined as in (1.10) and (1.12). Formulas (1.13) are recalled in details in
Subsection 3.1.

The results of the present work include the first numerical implementation of the multipoint
formulas of [27], [28] for finding a1 in (1.1) from z(s) given at several points s, with applications
to inverse scattering at high energies via formulas (1.13). The results of the present work also
include extension of formulas (1.13) to phaseless inverse scattering at high energies.

The results of the present work also include a variation of formulas (1.9)–(1.11) which is
considerably more convenient for applications to inverse scattering at high energies. And we
implement these more convenient formulas on inverse scattering numerically. See Subsections 4.1
and 7.2.

Note that the asymptotic of the scattering functions ψ+ at high energies also reduces to an
asymptotic of the form (1.1). In the present work we also explain in which way the multipoint
approach can be applied to recovering the X-ray transform of the potential v from boundary values
ψ+ at several high energies. See Subsection 4.2.

For other important results given in the literature on inverse scattering problems, see, for
example, [2], [6], [8], [10], [11], [12], [13], [16], [19], [20], [28], [30], [31], [34], [35], [36], [37], [38],
[39] and references therein. In particular, we expect that the multipoint approach can be also
applied to inverse scattering for the Newton equation; see [18], [25] for known results on this
inverse scattering. We also expect that the multipoint approach can be applied to finding the
Fourier transform of potential from the Faddeev scattering data h in complex domain at a fixed
energy with applications to inverse boundary value problems; see [13], [24].

Natural directions for further research also include possible generalizations of asymptotics like
(1.9), (4.1) for potentials v with discontinuities. Our preliminary numerical tests of reconstruction
formulas of Subsection 4.1 and Section 5 give encouraging results in this connection.

We also consider an electrical or gravitational field with potential

U(x) =

∫
D

ρ(x′)dx′

|x− x′|
, x ∈ R3, (1.15)

where D is a bounded domain in R3. It is well-known that sU(sθ) admits multipole expansion of
the form (1.1) with

a1 =

∫
D

ρ(x)dx; (1.16)

see, for example, [21].
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We consider, in particular, the question of finding a1 from measurements of sU(sθ) at several
sufficiently large s. This question is of independent interest, but we consider this issue also for
numerical testing multipoint formulas of [27] with their regularizations developed in the present
work. In these numerical tests we assume for simplicity that

ρ(x) =
J∑

j=1

qjδ(x− xj), qj ∈ R, xj ∈ D. (1.17)

The further structure of the present article is as follows. In Section 2 we recall the formulas of
[27] for finding a1 in (1.1) from z at several points, and describe related numerical algorithms. In
Section 3 we recall the multipoint formulas of [28] for inverse scattering at several high energies,
and give analogs of these formulas for phaseless inverse scattering. In Section 4 we give further
theoretical results on inverse scattering at several high energies. This includes new formulas for
the reconstruction from the scattering amplitude and from boundary values of the wave functions.
In Section 5, for data with random noise, we give an efficient regularization of multipoint formulas
recalled in Section 2, and describe related numerical algorithm. In Section 6 we present numerical
tests of the aforementioned multipoint formulas for the case of finding a1 in (1.16)–(1.17) from
z(s) = sU(sθ) given at several points s. In Section 7 we present numerical tests of the aforemen-
tioned multipoint formulas in their application to inverse scattering at several high energies. Some
conclusions are summarized in Section 8.

Numerical simulations of the present work were fulfilled using Matlab.

2 Reconstruction of the leading coefficient in z-expansion
In this section we recall multipoint formulas of [27] for finding a1 in (1.1) from z given at several
sufficiently large s; see formulas (2.4)–(2.7). In addition, we also describe algorithms for their
numerical implementation; see Algorithms 4 and 5.

Let z = z(s) be an abstract function of the form (1.1). We consider points sj ∈ (r,+∞) such
that

sj = s+ τj, j = 1, ..., n,

0 = τ1 < τ2 < ... < τn are fixed,
τ⃗ := (τ1, ..., τn), 2n+ 1 < N,

(2.1)

or

sj = sλj, j = 1, ..., n,

1 = λ1 < λ2 < ... < λn are fixed,

λ⃗ := (λ1, ..., λn), n = N.

(2.2)

Let

αj(ξ⃗) :=

j−1∏
i=1

(ξj − ξi) for 1 < j ≤ n, α1(ξ⃗) = 1,

βn,j(ξ⃗) :=
n∏

i=j+1

(ξi − ξj) for 1 ≤ j < n, βn,n(ξ⃗) = 1,

(2.3)

where ξ⃗ = (ξ1, . . . , ξn).
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Then the following formulas for finding a1 from z(s) at the points sj hold (see [27]):

a1 = a1,n(s, τ⃗) +O(s−n), as s→ +∞, (2.4)

a1,n(s, τ⃗) =
n∑

j=1

yj(s, τ⃗)z(s+ τj),

yj(s, τ⃗) =
(−1)n−j(s+ τj)

n−1

αj(τ⃗)βn,j(τ⃗)
, 1 ≤ j ≤ n,

(2.5)

where sj are defined by (2.1);

a1 = a1,n(s, λ⃗) +O(s−n), as s→ +∞, (2.6)

a1,n(s, λ⃗) =
n∑

j=1

yj(s, λ⃗)z(λjs),

yj(s, λ⃗) =
(−1)n−jλn−1

j

αj(λ⃗)βn,j(λ⃗)
, 1 ≤ j ≤ n,

(2.7)

where sj are defined by (2.2).
Algorithm 4:

function a1 = z_reco(s, n, τ, z)
// reconstruction procedure proposed in [27]
Input:
s: minimal point
n: number of points
τ : vector of point steps (τ1, ..., τn)
z: function of the form (1.1) defined in points {s+ τ1, ..., s+ τn}

Output:
a1: approximation of the first term of function z

1 a1 := 0
for j = 1..n do

2 c = (−1)n−j/(alpha(j, τ)× beta(n, j, τ))
// alpha, beta are defined in (2.3)

3 a1 = a1 + c× z(j)× (s+ τ(j))n−1

end

Algorithm 5:
function a1 = z_reco_multi(s, n, λ, z)
// reconstruction procedure proposed in [27]
Input:
s: minimal point
n: number of points
λ : vector of point factors (λ1, ..., λn)
z: function of the form (1.1) defined in points {sλ1, ..., sλn}

Output:
a1: approximation of the first term of function z

1 a1 := 0
for j = 1..n do

2 c = (−1)n−j/(alpha(j, λ)× beta(n, j, λ))
// alpha, beta are defined in (2.3)

3 a1 = a1 + c× z(j)× λn−1
j

end
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In connection with formulas (2.5), (2.7), note that if ξj+1 − ξj = δ, j = 1, ..., n− 1, then

αj(ξ⃗)βn,j(ξ⃗) = δn−1(j − 1)!(n− j)!, j = 1, ..., n. (2.8)

Numerical examples of implementation of formula (2.4) are given in Section 6.

Remark 2.1. For fixed s, we have that

a1,n(s, τ⃗) = a1,n(s, λ⃗), if τj = (λj − 1)s, j = 1, ..., n. (2.9)

We recall also that:
y = (y1, ..., yn) in (2.5) arises as the solution of the system

(γi, y) =
n∑

j=1

yj
(s+ τj)i−1

=

{
1 for i = 1,

0 for 1 < i ≤ n;
(2.10)

y = (y1, ..., yn) in (2.7) arises as the solution of the system

(γi, y) =
n∑

j=1

yj
(λjs)i−1

=

{
1 for i = 1,

0 for 1 < i ≤ n.
(2.11)

Here, (γi, y) are the scalar products of y with vectors {γi}ni=1.

3 Application to inverse scattering at high energies
In this section we recall the result of [28] consisting in application of asymptotic formulas (1.9)-
(1.11) and multipoint formulas (2.4)–(2.7) to finding the Fourier transform v̂ from the scattering
amplitude f at several sufficiently large energies; see Subsection 3.1. In addition, we also extend
this result to finding |v̂|2 from the differential scattering cross section |f |2 at several sufficiently
large energies; see Subsection 3.2.

3.1 Reconstruction of the Fourier transform in z-expansion

In this section we present formulas reconstruction of the Fourier transform in expansion (1.9)-
(1.11)

Applying the abstract formulas (2.4), (2.6) to the scattering expansion (1.9)-(1.11), we have
(see [28]):

v̂(p) = v̂n(p, s, τ⃗) +O(s−n), as s→ +∞,

v̂n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1f(kj(s), lj(s))

αj(τ⃗)βn,j(τ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(3.1)

and

v̂(p) = v̂n(p, s, λ⃗) +O(s−n) as s→ +∞,

v̂n(p, s, λ⃗) =
n∑

j=1

(−1)n−jλn−1
j f(kj(s), lj(s))

αj(λ⃗)βn,j(λ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (λjs)
2, s > 0,

λ⃗ = (λ1, . . . , λn), λ1 = 1, λj1 < λj2 for j1 < j2,

(3.2)
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where

kj(s) = p+ (Ej(s)− p2)1/2ω, lj(s) = (Ej(s))
1/2ω, (3.3)

p ∈ Rd, p · ω = 0, ω ∈ Sd−1 (and ω, p are fixed), and αj(τ⃗), βn,j(τ⃗) are defined in (2.3).
For n = 1, formulas (3.1), (3.2) reduce to (1.12). In formulas (1.12), (3.1)–(3.3) we have that

kj(s)− lj(s) ̸= p, if p ̸= 0,

kj(s)− lj(s) = p+
(
(Ej(s)− p2)1/2 − E

1/2
j (s)

)
ω,

kj(s)− lj(s) = p− p2

2
√
Ej(s)

ω +O(s−2), as s→ +∞.

(3.4)

The property that k − l = p is an advantage of the Born-Faddeev formulas (1.8) with respect to
(1.12), (3.1), (3.2).

The Born-Faddeev formula (1.8) for fixed E = s2 is considered for |p| ≤ 2s. Formula (1.12)
for fixed s =

√
E is considered for |p| ≤ s. For arbitrary n, formulas (3.1), (3.2) for fixed s =

√
E

are also considered for |p| ≤ s. A larger domain for p is an advantage of (1.8) in comparison with
(1.12) and (3.1), (3.2) for fixed s > 0.

However, a rapid convergence described by O(s−n), is the principle advantage of (3.1), (3.2),
for n ≥ 2, in comparison with (1.8), when s→ +∞.

A version of formulas (3.1), (3.2) without the aforementioned disadvantage is given in Subsec-
tion 4.1.

3.2 Applications to phaseless inverse scattering

Formulas (3.1), (3.2) also have their phaseless analogs. The results can be summarized as follows:

Theorem 3.1. Let v ∈ C∞
c (Rd). Then

|v̂(p)|2 = |v̂|2,n(p, s, τ⃗) +O(s−n), as s→ +∞,

|v̂|2,n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1|f(kj(s), lj(s))|2

αj(τ⃗)βn,j(τ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(3.5)

and

|v̂(p)|2,n = |v̂|2,n(p, s, λ⃗) +O(s−n) as s→ +∞,

|v̂|2,n(p, s, λ⃗) =
n∑

j=1

(−1)n−jλn−1
j |f(kj(s), lj(s))|2

αj(λ⃗)βn,j(λ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (λjs)
2, s > 0,

λ⃗ = (λ1, . . . , λn), λ1 = 1, λj1 < λj2 for j1 < j2,

(3.6)

where kj(s), lj(s) are defined by (3.3), and p ∈ Rd, p · ω = 0, ω ∈ Sd−1 (and ω, p are fixed),
and αj(τ⃗), βn,j(τ⃗) are defined in (2.3).

Proof. Using (1.9) we obtain that

|f(k(s), l(s))|2 = f(k(s), l(s))f(k(s), l(s)) =

(
N∑
j=1

aj(p, ω)

sj−1
+O(s−N)

)(
N∑
j=1

aj(p, ω)

sj−1
+O(s−N)

)
=

=
N∑
j=1

bj(p, ω)

sj−1
+O(s−N), as s→ +∞,

(3.7)
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where

b1(p, ω) = |a1(p, ω)|2, (3.8)

and

bj(p, ω) =

j∑
k=1

ak(p, ω)aj−k+1(p, ω). (3.9)

Formulas (3.5), (3.6) follow from (3.7) and (2.4)–(2.7).

4 Further theoretical results on inverse scattering at high
energies

The results of this section include a variation of formulas (3.1), (3.2), (3.5), (3.6) which is con-
siderably more convenient for numerical applications to inverse scattering at high energies. The
results of this section also include formulas for inverse scattering from boundary values of the
scattering wave functions ψ+ at several large energies.

4.1 Further formulas for inverse scattering from the scattering ampli-
tude f

Note that formulas (1.12), (3.1), (3.2), (3.5), (3.6) are not very convenient for numerical inverse
scattering. The reason is that the parametrisation of k and l given by (1.10) is not very convenient.
This point was already explained at the end of Subsection 3.1. However, for v ∈ C∞

c (Rd), the
following formula also holds:

f(k(s), l(s)) =
N∑
j=1

aj(p, ω)

sj−1
+O(s−N) as s→ +∞, (4.1)

where

k(s) = p/2 + (E − p2/4)1/2ω, l(s) = −p/2 + (E − p2/4)1/2ω, E = E(s) = s2,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(4.2)

and

a1(p, ω) = v̂(p), (4.3)

where v̂ is defined by (1.6). In particular, due to (4.1)-(4.3), we have that

v̂(p) = f(k(s), l(s)) +O(s−1), as s→ +∞, (4.4)

which follows also from (1.8).
Formulas (4.1)-(4.4) (as well as formulas (1.9)-(1.12)) follow from formula (1.5) and Propo-

sitions 2.4, 2.7 of [42] (see also, [15], [7] and other references in [42]). Note that aj in (4.1) are
different from aj in (1.9) (in general).

In contrast with formulas (1.9)-(1.12), formulas (4.1)-(4.4) for fixed s =
√
E, d ≥ 2, are

considered for |p| ≤ 2
√
E in place of |p| ≤

√
E, and k(s)− l(s) = p in (4.2). This is the advantage

of formulas (4.1)-(4.4) in comparison with (1.9)-(1.12).
As a corollary of formulas (2.4)–(2.7) and formulas (4.1)–(4.3), we obtain the following result.
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Theorem 4.1. Let v ∈ C∞
c (Rd). Then formulas (3.1), (3.2), (3.5), (3.6) are valid, where

kj(s) = p/2 + (Ej − p2/4)1/2ω, lj(s) = −p/2 + (Ej − p2/4)1/2ω, Ej = E(sj) = s2j ,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(4.5)

in place of (3.3).

The formulas of Theorem 4.1 (as well as formulas (3.1), (3.2), (3.5), (3.6)) and inversion for-
mulas for the Fourier transform give a method for inverse scattering from the scattering amplitude
f at several large energies.

In particular, in connection with reconstruction from the Fourier transform on a ball, see [17]
and references therein.

4.2 Multipoint formulas for inverse scattering from boundary values of
ψ+

Consider the scattering solutions ψ+ satisfying (1.2), (1.3). For v ∈ C∞
c (Rd), we have that

ψ+(x, k) = eikx

(
1 +

N−1∑
j=1

bj(x, θ)

sj
+O(s−N)

)
, as s→ +∞, (4.6)

b1(x, θ) =
1

2i
Dv(x,−θ), Dv(x, θ) :=

∫ +∞

0

v(x+ τθ)dτ, (4.7)

where x ∈ Rd, s = |k|, θ = k/|k| (x and θ are fixed). Formulas (4.6), (4.7) are well-known; see
[42] and references therein. Note that Dv is known as the divergent beam transform of v; see, for
example, [23].

Suppose that supp v ⊂ Ω, where Ω is an open bounded convex domain in Rd with smooth
boundary ∂Ω. Let

Σ = {(x, θ) : x ∈ ∂Ω, θ ∈ Sd−1, νxθ > 0}, (4.8)

where νx denotes the outward normal to ∂Ω at point x. Then 2ib1(x, θ) = Dv(x,−θ), (x, θ) ∈ Σ,
can be considered as the X-ray transform of v.

The methods for reconstructing v from its X-ray transform are developed in very details; see,
for example, [23].

As a corollary of formulas (2.4)–(2.7) and (4.6), (4.7), we obtain the following result.

Theorem 4.2. Let v ∈ C∞
c (Rd). Let

z(x, k) = 2i|k|(e−ikxψ+(x, k)− 1). (4.9)

Then

Dv(x,−θ) = a1,n(x, θ, s, τ⃗) +O(s−n), as s→ +∞, (4.10)

a1,n(x, θ, s, τ⃗) =
n∑

j=1

yj(s, τ⃗)z(x, sj(s)θ), (4.11)

where sj are defined by (2.1), yj are defined by (2.5);

Dv(x,−θ) = a1,n(x, θ, s, λ⃗) +O(s−n), as s→ +∞, (4.12)

a1,n(x, θ, s, λ⃗) =
n∑

j=1

yj(s, λ⃗)z(x, sj(s)θ), (4.13)

where sj are defined by (2.2), yj are defined by (2.7).

Formulas (4.9)-(4.13) are new for n ≥ 2.
Formulas (4.9)-(4.13) and inversion formulas for the X-ray transform (see, e.g., [23]) give a

method for inverse scattering from the boundary values ψ+(x, sθ), (x, θ) ∈ Σ at several large s
(that is, at several large energies).
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5 Regularisation of multipoint formulas for the noisy case
Note that formulas (2.4), (2.5) and related formulas of Sections 3 and 4 are unstable with respect
to random noise in z, in f and |f |2, and in ψ+, if n ≥ 2 and s increases; see Sections 6 and
7. Formulas (2.6), (2.7) are considerably more stable in this respect. The reasons are that the
coefficients yj(s, τ⃗) behave as

yj(s, τ⃗) = O(sn−1), s→ +∞, (5.1)

in formulas (2.5), and as

yj(s, λ⃗) = O(1), s→ +∞, (5.2)

in formulas (2.7). Therefore, the approximation a1,n in formulas (2.4) lose stability for large n,
and also lose stability, when τj+1 − τj are small.

Suppose, for example, that the data z are given as ζ = znoisy:

ζ(s) = znoisy(s) = z(s) + εN(s), N(s) ∼ N (0, 1), (5.3)

where the random variables N(s) are independent for different s, and N (0, 1) is the normal
distribution.

Below we suggest an efficient regularisation of formulas (2.4), (2.5) and also (2.6), (2.7) for
the noisy case, including the model given by (5.3). In this connection, in place of a1,n and yj we
consider their regularised versions ar1,n and yrj , where

ar1,n =
n∑

j=1

yrj ζ(sj), (5.4)

where sj = sj(s) is defined by (2.1) for the case of formulas (2.4), (2.5), and sj = sj(s) is defined
by (2.2) for the case of formulas (2.6), (2.7). Note that if ε = 0 in (5.3), then ar1,n reduces to
regularized reconstruction from noiseless data. Our construction of yr is as follows.

Let πk denote the orthogonal projection of Rn on the span(γ1, ..., γk), where γj are the vectors
arising in (2.10) or in (2.11), and k = 1, ..., n.

Lemma 5.1. Let y solve (2.10) or (2.11). Then:

(γi, πky) =

{
1 for i = 1,

0 for 1 < i ≤ k;
(5.5)

π1y =
γ1
n
, πny = y, (5.6)

1√
n
= ∥π1y∥ ≤ ∥π2y∥ ≤ ... ≤ ∥πny∥ = ∥y∥. (5.7)

Proof of Lemma 5.1. Let y⊥k := y − πky. From the definition of πk, we have that (y⊥k , γj) = 0,
for j = 1, ..., k. Therefore, from formulas (2.10) or (2.11) we have that

(γi, πky) = (γi, y − y⊥k ) = (γi, y)− (γi, y
⊥
k ) = δ1i , (5.8)

where δji is the Kronecker delta. Thus, (5.5) is proved.
Next, using the definition of π1, formula (5.5) for k = 1, and the fact that γ1 = (1, 1, ..., 1), we

have that π1y = γ1/n.
In addition, πn is an identity operator, since γ1, ..., γn are linearly independent in Rn. Thus,

(5.6) is proved.
Formula (5.7) follows from (5.6) and the definition of πk.
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Lemma 5.1 is proved. □

We consider a regularisation parameter r ∈ [n−1/2,+∞), where r = +∞ corresponds to no
regularization, and r = n−1/2 corresponds to the strongest regularisation. Let

Sn−1
r := {x ∈ Rn : ∥x∥ = r}. (5.9)

Let L denote the broken line defined by

L := ∪n−1
k=1 [πky, πk+1y], (5.10)

where y solves (2.10) or (2.11).
Our regularised yr = (yr1, ..., y

r
n) mentioned in (5.4) is defined by

yr :=

{
y, if |y| ≤ r,

L ∩ Sn−1
r , if |y| > r,

(5.11)

where y solves (2.10) or (2.11). This definition takes into account formula (5.7).
Computation of yr is described in Algorithm 6 for the case of y solving (2.10). The case of y

solving (2.11) is similar.

Proposition 5.2. Suppose that assumptions (5.3), (5.4), (5.11) are fulfilled. Let

m = m(y, r) = max{k : ∥πky∥ ≤ r}. (5.12)

Then:

D(ar1,n) ≤ r2ε2, (5.13)

Ear1,n = a1 +
n∑

j=1

yrjzm(sj), (5.14)

where

zm(s) = z(s)−
m∑
k=1

ak
sk−1

. (5.15)

Due to formula (5.13), using parameter r, we control the dispersion D(ar1,n). The point is that
without regularization (i.e., for r = +∞) the dispersion D(a1,n(s)) rapidly increases when n ≥ 2
and s increases for the case (2.5), (2.10).

In addition, for the case (2.7), (2.11), the number m = m(y, r) in (5.12) is independent of s.
Therefore, for this case, the error

E(ar1,n)− a1 = O(s−m), s→ +∞, (5.16)

where m may be considerably greater than 1 for large n and not too small r.
In turn, for the case (2.5), (2.10), a proper theoretical analysis of advantages of E(ar1,n) in

comparison with E(ar1,1) is more complicated and will be given elsewhere. However, we clearly see
these advantages in our numerical examples.

Proof of Proposition 5.2. Using (5.3), (5.4), (5.11), we obtain that

D(ar1,n) = D

(
n∑

j=1

yrj ζ(sj(s))

)
=

(
n∑

j=1

(yrj )
2

)
ε2 ≤ r2ε2. (5.17)
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From (5.3), (5.4), (5.5), (5.15) we have

Ear1,n = E
n∑

j=1

yrj ζ(sj(s)) =
n∑

j=1

yrjz(sj(s)) =
n∑

j=1

yrj

(
m∑
k=1

ak

sk−1
j

+ zm(sj)

)
=

=
m∑
k=1

ak

n∑
j=1

yrj

sk−1
j

+
n∑

j=1

yrjzm(sj) =
n∑

k=1

ak(γj, y
r) +

n∑
j=1

yrjzm(sj) = a1 +
n∑

j=1

yrjzm(sj).

(5.18)

Proposition 5.2 is proved. □

The approach based on formulas (5.4), (5.11), (5.13), (5.14) for regularising formulas (2.4)-(2.7)
can be also used for the case when

ζ(s) = znoise(s) = z(s) + ξ(s),

Eξ = 0, and ξ(s) are independent for different s.
(5.19)

In this connection, the simplest possibility consists in replacing the dispersion ε2 in (5.13) by

D = max
j=1...n

(Dξ(sj)). (5.20)
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Algorithm 6:
function a1 = z_reco_stable(s, n, τ, z, r)
// regularized reconstruction Algorithm proposed in Section 5.
Input:
s > 0: minimal point
n: number of points
τ = (τ1, ..., τn) : vector of point steps, s.t. 0 = τ1 < ... < τn
z: function of the form (1.1) given in points {s+ τ1, ..., s+ τn}
r ≥ n−1/2: regularization parameter

Output:
ar1,n: stable approximation of the first term of function z

1 ar1,n = 0

// Compute initial vector y⃗ defined in (2.5)
for j = 1..n do

2 y(j) = (−1)n−j/(alpha(j, τ)× beta(n, j, τ))
// alpha, beta are defined in (2.3)

3 y(j) = y(j)× (s+ τ(j))n−1

end
// Define vectors gamma{j} arising in Lemma 5.1
for j = 1..n do

for k = 1..n do
4 gamma{j}(k) = 1/(s+ τ(k))j−1

end
end
// Compute Gram matrix for vectors gamma{j}.
for j = 1..n do

for k = 1..n do
5 G(j, k) = dot(gamma{j}, gamma{k})

// dot(·, ·) is scalar product of vectors
end

end
// Find scalar products of y and space vectors gamma{k}
for k = 1..n do

6 Ay(k) = dot(y, gamma{k})
end
// Find orthogonal projections P{k} of vector y⃗ to subspaces

< gamma{1}, .., gamma{k} >
for k = 1..n do

// Solve system of linear equations with matrix G(1:k, 1:k) and right-hand side
Ay(1:k)

7 Projection = Solve(G(1:k, 1:k), Ay(1:k))
// G(1:k, 1:k) is k-submatrix of Gram matrix, Ay(1:k) is k-subvector of vector Ay

8 P{k} =
∑

j=1..k Projection(j) · gamma{j}
end

9 Find k, s.t. |P{k}| ≤ r < |P{k + 1}|.
10 Find t ∈ [0, 1), s.t. |P{k}(1− t) + P{k + 1}t| = r.
11 ar1,n = dot(P{k}(1− t) + P{k + 1}t, z)
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6 Numerical examples of total charge recovering
We consider

z(s) = s
J∑

j=1

qj
|sθ − xj|

, a1 =
J∑

j=1

qj, θ ∈ S2, xj ∈ R3. (6.1)

Such functions z are of the form (1.1). In addition, z in (6.1) can be written as z(s) = sU(sθ),
where U is defined by (1.15), (1.17).

For such functions z we consider the n-point reconstructions a1,n of a1 defined by (2.5). We
also consider the regularized reconstructions ar1,n defined using formulas (5.4), (5.11). In addition,
we model the noisy date using (5.3) and some other special cases of (5.19).

Note that in order to compare n-point reconstructions a1,n properly for different n, we compare
ã1,n(s) = a1,n(s− τn, τ⃗). The reason is that ã1,n(s) are constructed from {z(s− τn), ..., z(s− τ1)}
with the same maximal point s − τ1 = s for different n. Similarly, for the regularized case, we
compare ãr1,n(s) = ar1,n(s− τn, τ⃗) for different n.

Note also that numerical examples given below in Subsections 6.1 and 6.2 can be also consid-
ered as preliminary tests of n-points reconstructions a1,n and ar1,n before much more complicated
numerical problem studied in Section 7.

6.1 Simplest test

Let

z(s) =
s

s+ 1
, s > 0. (6.2)

Then a1 = 1 in expansion (1.1).
Note that z(s) in (6.2) arise as z(s) in (6.1), where J = 1, q1 = 1, x1 = (−1, 0, 0), θ = (1, 0, 0).

Fig. VI.1(a) shows the n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) from noiseless data
{z(s − τn), ..., z(s − τ1)}, where z is defined by (6.2), n = 1, 2, 3, and τj = (j − 1). Fig. VI.1(b)
shows related reconstructions ã1,n(s) from noisy data {ζ(s− τn), ..., ζ(s− τ1)}, where n = 1, 2, 3,
and

ζ(s) := z(s) + 0.01 ·N(s), where N(s) ∼ N (0, 1) are i.i.d. for different s. (6.3)

Fig. VI.1(a) confirms that the precision of n-point reconstructions ã1,n from the exact data
increases when n increases; see Section 2 for related theoretical results. Fig. VI.1(b) confirms that
the reconstructions ã1,n(s) from noisy data become very unstable when n ≥ 2, and s increases;
see Section 5 for related theoretical discussion.

Fig. VI.2(a) shows the regularized n-point reconstructions ãr1,n(s) = ar1,n(s − τn, τ⃗) from
noiseless data {z(s − τn), ..., z(s − τ1)}, where z is defined by (6.2), n = 1, 2, 3, and τj =
(j − 1). Fig. VI.2(b) shows the related regularized n-point reconstructions ãr1,n(s) from noisy
data {ζ(s − τn), ..., ζ(s − τ1)}, where ζ(s) is defined by formula (6.3). These regularized recon-
structions are defined using formulas (5.4), (5.11), with r =

√
5.

Fig. VI.1(a) and Fig. VI.2(a) show that ãr1,n(s) converges more slowly to a1, than ã1,n(s),
for n = 2, 3. However, the principle advantage of ãr1,n(s) in comparison with ã1,n(s) consists in
much stronger stability with respect to noise; see Fig. VI.1(b) and Fig. VI.2(b). Note that the
relationship between stability and precision of ãr1,n(s) depends on r.

Note that the reconstructions ã1,n and ãr1,n shown in Fig. VI.1(a) and Fig. VI.2(a) are the
mathematical expectations of the reconstructions from noisy data shown in Fig. VI.1(b) and Fig.
VI.2(b), respectively.
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(a) Exact data. No regularization. (b) Noisy data. No regularization.

Figure VI.1: n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) of a1 = 1 for the case of z defined
by (6.2) with τj = j − 1, j = 1, ..., n.
(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.3).

(a) Exact data. Regularization. (b) Noisy data. Regularization.

Figure VI.2: n-point regularized reconstructions ãr1,n(s) = ar1,n(s− τn, τ⃗) of a1 = 1 for the case of
z defined by (6.2) with τj = j − 1, j = 1, ..., n. Regularization parameter r =

√
5.

(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.3).

6.2 Two point charge

Let z be of form (6.1), where

J = 2, θ = (1, 0, 0),

q1 = −1, x1 = (0.3669, 0.2505,−0.0518),

q2 = 2, x2 = (0.1067, 0.2002,−0.2665).

(6.4)

Then the total charge a1 = 1 in expansion (1.1). This configuration can be considered as ’a dipole’
with non-zero total charge.

Fig. VI.3(a) shows the n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) from noiseless data
{z(s − τn), ..., z(s − τ1)}, where z is defined by (6.1), (6.4), n = 1, 2, 3, and τj = (j − 1). Fig.
VI.3(b) shows related reconstructions ã1,n(s) from noisy data {ζ(s − τn), ..., ζ(s − τ1)}, where
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n = 1, 2, 3, and

ζ(s) := z(s) + 0.01s ·N(s), where N(s) ∼ N (0, 1) are i.i.d. for different s. (6.5)

Note that the noise model (6.5) is slightly different from the noise model (6.3), but is also a
partucaler case of (5.19).

Fig. VI.3(a) confirms that the precision of n-point reconstructions ã1,n from the exact data
increases when n increases (analogously to Fig. VI.1(a)). Fig. VI.3(b) confirms that the re-
constructions ã1,n(s) from noisy data become very unstable when n ≥ 2 and s increases; this
instability is even stronger than for Fig. VI.1(b) because of different noise model.

Fig. VI.4(a) shows the regularized n-point reconstructions ãr1,n(s) = ar1,n(s − τn, τ⃗) from
noiseless data {z(s − τn), ..., z(s − τ1)}, where z is defined by (6.1), (6.4), n = 1, 2, 3, and
τj = (j − 1). Fig. VI.4(b) shows the related regularized n-point reconstructions ãr1,n(s) from
noisy data {ζ(s − τn), ..., ζ(s − τ1)}, where ζ(s) is defined by formula (6.5). These regularized
reconstructions are defined using formulas (5.4), (5.11), with r =

√
2.

Fig. VI.3(a) and Fig. VI.4(a) show that ãr1,n(s) converges more slowly to a1, than ã1,n(s), for
n = 2, 3 (analogously to Fig. VI.1(a) and Fig. VI.2(a)). However, the principle advantage of
ãr1,n(s) in comparison with ã1,n(s) consists in much stronger stability with respect to noise; see
Fig. VI.3(b) and Fig. VI.4(b). This point is similar to the case of Fig. VI.1(b) and Fig. VI.2(b).

Note that the reconstructions ã1,n and ãr1,n shown in Fig. VI.3(a) and Fig. VI.4(a) are the
mathematical expectations of the reconstructions from noisy data shown in Fig. VI.3(b) and Fig.
VI.4(b), respectively.

(a) Exact data. No regularization. (b) Noisy data. No regularization.

Figure VI.3: n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) of a1 = 1 for the case of z defined
by (6.1), (6.4) with τj = j − 1, j = 1, ..., n.
(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.5).
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(a) Exact data. Regularization. (b) Noisy data. Regularization.

Figure VI.4: n-point regularized reconstructions ãr1,n(s) = ar1,n(s− τn, τ⃗) of a1 = 1 for the case of
z defined by (6.1), (6.4) with τj = j − 1, j = 1, ..., n. Regularization parameter r =

√
2.

(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.5).

7 Numerical examples for inverse scattering
In this section we implement numerically formulas (1.13) and their phaseless analogues presented
in Introduction, in Section 3, and with regularization of Section 5. More precisely, we illustrate
numerically the n-point approximate reconstructions v̂n and |v̂|2,n defined in (3.1) and (3.5) and
we illustrate numerically their regularized versions defined according to formulas (5.4), (5.11) and
(5.19). We also present similar numerical results proceeding from Theorem 4.1.

In Subsection 7.1 we present some numerical preliminaries on direct scattering. In Subsection
7.2 we give numerical examples on finding the phased and phaseless Fourier transforms v̂ and |v̂|2
from the phased and phaseless scattering amplitudes f and |f |2 via the aforementioned v̂n and
|v̂|2,n. In particular, we show that this inverse scattering works better numerically when proceeding
from its theoretical version given in Subsection 4.1.

7.1 Finding the scattering amplitude f

Given potential v, for finding the scattering amplitude f = f(k, l) defined in (1.4), (1.10), we use
the same codes as in [3, 24]. This numerical approach goes back to [40]. As in [3, 24], we consider
the same Poisson noise model for |f |2, and, for simplicity, we consider the case d = 2.

As in [3, 24], we represent v by v defined on the space-variable grid

XN := {x =
4

N
(n1, n2) : n1, n2 ∈ ZN}, (7.1)

where

ZN :=

{
−N

2
,−N

2
+ 1, ...,

N

2
− 1

}
, N ∈ 2N. (7.2)

It is also assumed that N ≥ 2
√
E/π, where E is the energy in (1.2).

The main difference with [3, 24] consists in somewhat different choice of (k, l), at least, in
connection with formulas (1.13), where we choose (k, l) following formula (1.10) with fixed p and
ω. For the version of formulas (1.13) given in Subsection 4.1, the aforementioned difference in
choice of (k, l) is considerably smaller. In any case, for simplicity, in the present work we deal
with

P int
N = {p = π

2
(n1, n2), p

2 < E : n1, n2 ∈ ZN}. (7.3)

163



For p ∈ P int
N , we deal with (k, l) defined by (1.10) or (4.2), where ω = (−p2, p1)/|p|, for p ̸= 0, and

ω = (−1, 0), for p = 0. The implementation of this choice of (k, l) is described in Algorithm 7.
Our numerical implementation of v̂n(p, s, τ⃗) in formulas (3.1) and in their version given in

Subsection 4.1 is based on Algorithms 4 and 6 in Sections 2 and 5. In this implementation,
p ∈ P int

N . Our studies include comparisons of v̂(p) and v̂n(p, s, τ⃗).
In particular, we show that v̂n, for n = 2 and n = 3, (for the case of formulas (3.1) with exact

data without regularization) improves the well-known approximation v̂1, when s is not too large,
τj+1 − τj are not too small, and p is not too far from zero.

Our studies also include similar numerical implementations of |v̂|2,n(p, s, τ) via formulas (3.5).
We also show that formulas (3.1), (3.5) in their version given in Subsection 4.1 lead to better

numerical results.
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Algorithm 7:
function [k_directions, l_directions] = directions(s,N, type)
// the choice of proper incident and scattered directions for formula (1.10) or (4.2)
Input:
s: current energy level E = s2

N : number in P int
N

type : type of the grid:
type ==Melrose corresponds to formula (1.10), type == Faddeev corresponds to

formula (4.2)
Output:
[k_directions, l_directions]: set of pairs of directions (k, l)/s

// list of x coordinates
1 p1 = (π ∗N/2) ∗ ((0 : 1 : N − 1)/N − 0.5)

// list of y coordinates
2 p2 = (π ∗N/2) ∗ ((0 : 1 : N − 1)/N − 0.5)

// define the grid of nodes with all possible coordinates
3 [P1, P2] =Meshgrid(p1, p2)

// find small nodes indeces
4 nodes_index = find_index(P 2

1 + P 2
2 < (s/2)2)

// int_nodes corresponds to P int
N of (7.3) and p of (1.10) or (4.2)

5 int_nodes = [P1(nodes_index), P2(nodes_index)]
// list int_nodes_ort of vectors which are orthogonal to int_nodes;
// int_nodes_ort corresponds to ω of (1.10) or (4.2)
for k=1:length(nodes_index) do

if P1(nodes_index(k))2 + P2(nodes_index(k))2 = 0 then
int_nodes_ort(k) = [−1, 0]

else
6 int_nodes_ort(k) = [−P2(nodes_index(k)), P1(nodes_index(k))]/

(P1(nodes_index(k))2 + P2(nodes_index(k))2)1/2
end

end
// construction of k_directions and l_directions starting from int_nodes and

int_nodes_ort
if type == Melrose then

7 k_directions = (int_nodes+ (s2 − int_nodes(1, :)2 − int_nodes(2, :
)2)(1/2) ∗ int_nodes_ort)/s

8 l_directions = int_nodes_ort
else

9 k_directions = (int_nodes/2 + (s2 − int_nodes(1, :)2/4− int_nodes(2, :
)2/4)(1/2) ∗ int_nodes_ort)/s

10 l_directions = (−int_nodes/2 + (s2 − int_nodes(1, :)2/4− int_nodes(2, :
)2/4)(1/2) ∗ int_nodes_ort)/s

end

7.2 Numerical examples

We test the n-point reconstructions v̂n and |v̂|2,n defined in (3.1), (3.5) and their version of Sub-
section 4.1 for smooth potential v = cv0, where v0 is the potential shown in Figure 3(a) of [3];
and c = 20.05/6. The potential v is also shown in Figure 5(a) of [33]. In addition, Figure VI.5(a)
below shows |v̂|2, where v̂ is defined by (1.6).

For testing v̂n and |v̂|2,n defined in (3.1), (3.5) and their version of Subsection 4.1, we consider
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Figure VI.5: Exact |v̂|2 and examples of its phaseless inverse scattering reconstructions; see Sub-
section 3.2, Section 5 and Subsection 7.1. (a) Exact |v̂|2.
(b) Regularized reconstruction |v̂|2,3,rnoisy from noisy |f |2 at E = 252, 302, 352. Regularization param-
eter r =

√
10.

(c) Reconstruction |v̂|2,1 from |f |2 at E = 352.
(d) Reconstruction |v̂|2,3noisy from noisy |f |2 at E = 252, 302, 352 without regularization.

n = 1, 2, 3, E1 = 252, E2 = 302, E3 = 352, and N = 572, where N is the grid parameter mentioned
in Subsection 7.1. In particular, we have that τj+1 − τj = 5, for n = 2, 3.

In a similar way with Section 6, we compare v̂n(p, s, τ⃗) and |v̂(p, s, τ⃗)|2,n with different s for
different n, and with the same maximal energy (E = 352) involved into reconstructions.

In addition, we consider P int
N defined by (7.3), where E = E1, N ≥ 2

√
E3/π.

To measure the quality of numerical reconstructions v̂n and |v̂|2,n, we use the relative error

E(u, u0, G) =
∥u− u0∥ℓ2(G)

∥u0∥ℓ2(G)

, (7.4)

where u, u0 are functions on some grid G ⊆ P int
N . In particular, we consider G = Psmall

N , where

Psmall
N = {p = π

2
(n1, n2), p

2 < E/4 : n1, n2 ∈ ZN}. (7.5)

The consideration of the relative error E on G which is smaller than P int
N is motivated by the

fact that we cannot expect good quality of the reconstructions v̂n, |v̂|2,n in (3.1), (3.5) near the
boundary of P int

N in view of formulas (3.4) for |p| ≈
√
E/2. In contrast, the approach of Subsection

4.1 overcomes this difficulty.
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Our examples include multipoint reconstructions of |v̂|2 from |f |2 corrupted by Poisson noise.
In these examples we used Np = 107 Poisson particles per energy level.

Figure VI.5 shows exact |v̂|2 and some of its multipoint reconstructions on P int
N defined by

(7.3) for E = 252. These reconstructions are based on formulas (3.1) and their regularized version
suggested in Section 5.

As mentioned above, Figure VI.5(a) shows exact |v̂|2.
Figure VI.5(b) shows the regularized three-point reconstruction |v̂(p, s, τ⃗)|2,n,rnoisy, n = 3, s = 25,

from noisy |f |2 at E = 255, E = 305, E = 355, with regularization parameter r =
√
10.

Figure VI.5(c) shows the standard one-point reconstruction |v̂|2,1(p, s, τ⃗) for s = 35, from
noiseless |f |2 at E = 352.

Figure VI.5(d) shows three-point reconstruction |v̂(p, s, τ⃗)|2,nnoisy, n = 3, s = 25, from noisy |f |2
at E = 255, E = 305, E = 355 without regularization.

In particular, Figure VI.5 shows that the regularized three-point reconstruction |v̂|2,3,rnoisy even
from noisy data is better than the standard one-point reconstruction |v̂|2,1 from exact data with
the same maximal energy. Besides, Figure VI.5 shows that the three-point reconstruction |v̂|2,3,rnoisy

from noisy data without regularization does not work.
Note that |y|2 ≈ 2000 in formula (2.5), n = 3, s = 25, used for reconstructions of Figures

VI.5(d). Roughly speaking, this increases the initial dispersion in noisy values of |f |2 in 2000
times. This leads to very bad reconstruction shown in Figure VI.5(d). In contrast, |yr|2 = 10,
which is much smaller than 2000, and leads to proper result shown in Figure VI.5(b).

In addition to Figure VI.5, we describe and compare our multipoint reconstructions in Tables
VI.1, VI.2, VI.3, VI.4. The reconstructions considered in Tables VI.1 and VI.2 proceed from
formulas (3.1), (3.5) and involve an input data grid based on (1.10). The reconstructions considered
in Tables VI.3 and VI.4 proceed from formulas (3.1), (3.5) in their version of Subsection 5 and
involve an input data grid based on (4.2).

j 1 2 3
E(v̂j, v̂) 0.3444 0.1570 0.0822

E(|v̂j|2, |v̂|2) 0.3244 0.1979 0.0524

Table VI.1: Relative L2 errors E(v̂j, v̂) and E(|v̂j|2, |v̂|2) on Psmall
N for different reconstructions v̂j

of v̂, where data grid parameters (k, l) are defined using (1.10).

j 1 2 3
E(|v̂|2,j, |v̂|2) 0.3244 0.1691 0.0921
E(|v̂|2,jnoisy, |v̂|2) 0.3226 0.2590 0.6219
E(|v̂|2,j,rnoisy, |v̂|2) 0.3226 0.2468 0.1953

Table VI.2: Relative L2 errors E(|v̂|2,j, |v̂|2) on Psmall
N for different non-regularized reconstructions

|v̂|2,j of |v̂|2 from exact phaseless data, noisy phaseless data, and regularized reconstructions from
noisy phaseless data. Data grid parameters (k, l) are defined using (1.10). Regularization param-
eter r =

√
10.

j 1 2 3
E(v̂j, v̂) 0.2607 0.0840 0.0316

E(|v̂j|2, |v̂|2) 0.2908 0.1396 0.0242

Table VI.3: Relative L2 errors E(v̂j, v̂) and E(|v̂j|2, |v̂|2) on Psmall
N for different reconstructions v̂j

of v̂, where data grid parameters (k, l) are defined using (4.2). This table is a version of Table
VI.1, corresponding to Subsection 4.1.
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j 1 2 3
E(|v̂|2,j, |v̂|2) 0.2908 0.1269 0.0475
E(|v̂|2,jnoisy, |v̂|2) 0.2895 0.1736 0.6552
E(|v̂|2,j,rnoisy, |v̂|2) 0.2895 0.2186 0.1536

Table VI.4: Relative L2 errors E(|v̂|2,j, |v̂|2) on Psmall
N for different non-regularized reconstructions

|v̂|2,j of |v̂|2 from exact phaseless data, noisy phaseless data, and regularized reconstructions from
noisy phaseless data. Data grid parameters (k, l) are defined using (4.2). Regularization parameter
r =

√
10. This table is a version of Table VI.2, corresponding to Subsection 4.1.

As well as Figure VI.5, Tables VI.1, VI.2, VI.3, VI.4 show that our multipoint reconstructions of
v̂ or |v̂|2 are much better than the classical one-point reconstructions, under the condition that the
multipoint reconstructions are properly regularized for the noisy case. These tables also show that
formulas (3.1), (3.5) in their version of Subsection 4.1 lead to considerably better reconstructions
than the initial formulas (3.1), (3.5).

Note that the reconstructions |v̂|2,3,rnoisy, |v̂|2,1, |v̂|
2,3
noisy mentioned in Table VI.2 are shown in

Figure VI.5(b), (c), (d). Note also that the three-point reconstructions |v̂3|2, |v̂|2,3 from noiseless
data mentioned in Tables VI.1–VI.4 look similar to exact |v̂|2 shown in Figure VI.5(a). For more
figures in connection with reconstructions considered in Tables VI.1–VI.4, see [33].

8 Conclusion
Many functions arising in direct and inverse problems admit the asymptotic expansion of the form
(1.1). In many cases, the most important information is contained in the leading coefficient a1,
which can be approximately reconstructed from z at a sufficiently large point s using the standard
one-point formula

a1 = z(s) +O(s−1), as s→ +∞. (8.1)

In this work we continued studies on reconstruction of the leading coefficient a1 in expansion
(1.1) from measurements of z at several sufficiently large points s (multipoint reconstruction
approach). In particular, we presented the first numerical implementation of the recent theoretical
formulas of [27] on this reconstruction. Our results include an efficient regularization of these
multipoint formulas for the case of random noise.

We tested our general studies for the case of total electrical charge recovering from measure-
ments at several remote points and for the case of inverse scattering at several high energies. In
the second case, we proceed from the theoretical work [28]. We demonstrated that our numerical
implementation of the aforementioned multipoint formulas essentially improves the reconstruction
based on formula (8.1). We also improved and developed considerably theoretical formulas of [28]
on inverse scattering at several large energies; see Section 4.

Important advantages of the aforementioned multipoint approach consist in explicit recon-
struction formulas, easy and fast numerical implementation, considerable increasing in precision
in comparison with (8.1) already for the two-point case, small or moderate number of measure-
ments required for reconstruction.

In our opinion, the results of the present work open perspectives of numerical applications
of the aforementioned multipoint studies to different inverse and direct problems. These issues
include, in particular, further studies on:

(i) phased or phaseless inverse scattering at several high energies,
including the case of potentials v with discontinuities mentioned in Introduction;

(ii) determination of total electrical or gravitational charge from several exterior measurements;
(iii) reconstuction of far-field (scattering amplitude) from several near-field measurements;
(iv) reconstruction of phaseless far-field (scattering amplitude) from several phaseless near-field

measurements;
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In this respect, issues (i) and (ii) are already discussed in this work, whereas theoretical
formulas for issues (iii) and (iv) are given in [27] and [32].
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Titre : Problèmes de diffusion inverse sans information de phase

Mots clés : l’équation de Schrödinger, transformation de Fourier, diffusion inverse sans information de phase,
diffuseurs de fond, formules multipoints, implémentations numériques

Résumé : Cette thèse est consacrée à différentes ap-
proches pour des problèmes de diffusion inverse sans
information de phase. Nos études sont motivées par
des problèmes de tomographies qui utilisent des par-
ticules élémentaires (par exemple, des électrons, des
rayons X) comme outil de sondage. Dans ces tomo-
graphies, seules les valeurs absolues des données de
diffusion sont mesurables.
Dans le cadre de la mécanique quantique, cette limi-
tation est liée au principe de Born selon lequel les va-
leurs complexes de la fonction d’onde n’ont pas d’in-
terprétation physique directe, alors que ses valeurs
absolues carrées admettent une interprétation proba-
biliste et peuvent être directement mesurées. Dans le
cadre de l’optique (y compris la diffusion des rayons
X), cette limitation est liée aux très hautes fréquences
d’onde, qui ne permettent pas de mesurer directe-
ment la phase d’onde par les dispositifs techniques
modernes.
Nous contribuons à la diffusion inverse sans phase en
développant la méthode des diffuseurs de fond et la
méthode multipoint.

La méthode des diffuseurs de fond utilise la diffu-
sion en présence d’objets connus a priori. Par nos
résultats, à cet égard, nous contribuons également au
problème de récupération de phase pour la transfor-
mation de Fourier classique.
La méthode multipoint consiste à trouver des termes
dominants importants (non accessibles pour les me-
sures directes) dans le développement asymptotique
d’une fonction à partir de plusieurs valeurs de cette
fonction (accessibles pour les mesures directes).
Pour les deux méthodes, nous donnons, en parti-
culier, de nouvelles formules explicites pour divers
problèmes de diffusion inverse sans (ou avec) in-
formation de phase. De plus, nous implémentons
numériquement plusiers de nos résultats théoriques.
Dans ces implémentations nous utilisons, en parti-
culier, des techniques de régularisation anciennes et
nouvelles.
Nos algorithmes peuvent être appliqués, par exemple,
à l’imagerie par rayons X et à la tomographie
électronique.

Title : Inverse scattering problems without phase information

Keywords : Schrödinger equation, Fourier transform, phaseless inverse scattering, background scatterers,
multipoint formulas, numerical implementations

Abstract : This thesis is devoted to different ap-
proaches to phaseless inverse scattering problems.
Our studies are motivated by problems of tomogra-
phies which use elementary particles (for example,
electrons, X-ray photons) as probing tool. In these
tomographies only the absolute values of scattering
data are measurable.
In the framework of quantum mechanics, this limita-
tion is related to the Born principle that complex va-
lues of the wave function don’t have direct physical
interpretation, whereas its absolute values squared
admit probabilistic interpretation and can be directly
measured. In the framework of optics (including X-
ray scattering) this limitation is related to very high
wave frequencies, which don’t allow to measure wave
phase directly by modern technical devices.
We contribute to phaseless inverse scattering by de-
veloping the method of background scatterers and the

multipoint method.
The method of background scatterers uses scattering
in presence of a priori known objects. By our results,
in this connection, we also contribute to the phase re-
trieval problem for the classical Fourier transform.
The multipoint method consists in finding important
leading terms (not accessible for direct measure-
ments) in asymptotic expansion of a function from se-
veral values of this function (accessible for direct mea-
surements).
For both methods, we give, in particular, new expli-
cit formulas for various phaseless and phased inverse
scattering problems. In addition, we implement nume-
rically many of our theoretical results. In these imple-
mentations we use, in particular, old and new regula-
risation technics.
Our algorithms can be applied, for example, to X-ray
imaging and to electron tomography.
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