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Abstract

Software systems now hold a central role in our daily lives, and modern societies have undeniably
become heavily dependent on them. Such software systems collaborate seamlessly with people,
adapting to their various needs to support key societal activities. To accommodate the wide spec-
trum of user demands and adapt to diverse execution environments, modern software-intensive
systems exhibit variability. The research activities presented in this manuscript address large,
variable software systems. I give a partial view of my contributions in this domain, focusing
on their evolution, adaptation, and optimization. In the first part, we deal with changes that
these software systems undergo over time. In the second part, we investigate how to develop
self-adaptation logic for such systems and in the third part, we propose methods to measure and
reduce their energy consumption.

Résumé

Les systèmes logiciels occupent désormais une place centrale dans notre vie quotidienne, et les
sociétés modernes en dépendent incontestablement. Ces systèmes logiciels collaborent de manière
transparente avec les individus, s’adaptant à leurs besoins divers pour soutenir des activités
sociétales essentielles. Afin de répondre au large éventail des demandes des utilisateurs et de
s’adapter à divers environnements d’exécution, les systèmes logiciels intensifs sont devenus de
plus en plus variables. Les activités de recherche présentées dans ce manuscrit traitent de grands
systèmes logiciels variables. Je donne un aperçu partiel de mes contributions dans ce domaine, en
mettant l’accent sur leur évolution, leur adaptation et leur optimisation. Dans la première partie,
nous abordons les changements auxquels ces systèmes logiciels sont soumis au fil du temps. Dans
la deuxième partie, nous examinons comment développer une logique d’auto-adaptation pour de
tels systèmes, et dans la troisième partie, nous proposons des méthodes pour mesurer et réduire
leur consommation d’énergie.
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This document synthesizes the research work I have conducted since my PhD defense in October
2014. After a 3-year postdoc at Politecnico di Milano in Italy, I joined the Spirals research team as
an associate professor in September 2017. Since then, I investigated various research directions
in the area of configurable software systems. This journey, fruit of numerous encounters and
exchanges, was exciting and thrilling but also challenging, having to comprehend the multiple
sides of this great new job while dealing with two house moves and a pandemic – not to mention
the birth of two children.





Chapter 1

Introduction

My research activities cover a variety of topics related to software engineering ranging from
modeling to optimization, yet with software configuration and variability management as the
common, central concerns. More specifically, this manuscript presents the results of the research
work that, together with national and international colleagues and students I have had the chance
to collaborate with, I carried out in the area of configurable software regarding their evolution,
adaptation and optimization. The decision to focus on these topics is a practical consideration; it
fits together, follows on the research work conducted during my PhD and builds the foundations
of my research activity for the near future. This choice is, of course, not intended to reduce
the importance nor the quality of our results in other areas, such as recent work on software
maintenance or knowledge compilation [Abou Khalil 2019, Bourhis 2022, Bourhis 2023].

Configurable Software. Twelve years ago, Marc Andreessen claimed that "software (was)
eating the world1" and indeed, it is now undeniable that software systems play a crucial role
in our lives. Not a day goes by that we do not interact with a software whether watching TV,
driving a car, ordering food, checking our heartbeat on a smartwatch or being woken up by the
alarm on our smartphone. This diversified yet simple and reduced series of usages show how
modern societies now heavily rely on software systems that collaborate together with people and
adapt to their various needs to support key societal activities. To meet various user’s require-
ments and adapt to different execution environments, modern software-intensive systems exhibit
variability. Software variability is the ability to create software variants for different market
segments or contexts of use [Czarnecki 2013]. In other words, modern software-intensive systems
are highly configurable [Jin 2014], as there is no unique way to use them. Software engineers
thus have to develop, test and maintain a significant number of options, or features, that are
then combined together to produce a specific software configuration fitting a specific user need.
Software configuration is a hot topic in research and industry [Siegmund 2020]. The research
community in this field now hosts two dedicated international conferences and several top-tiers
software engineering conferences also include software configuration related topics in their call for
papers. Variability management has become such a crucial concern for developers (e.g., with the
advent of microservices, software is now divided into multiple configurable and inter-dependent
microservices, packaged up into various containers, and hosted in a distributed cloud environ-
ment) that addressing configuration failures is considered as one of the most important research
directions [Sayagh 2020]. The last decade has also seen the growth of large, dynamic self-adaptive
systems such as IoT systems, cloud/edge-based systems or cyber-physical ones. These systems
provide runtime adaptation and reconfiguration capabilities to react to changes in their environ-
ment, usually run continuously, and cannot be shut down for reconfiguration or maintenance
tasks. For instance, cyber-physical systems must frequently reconfigure their software com-
ponents at runtime to take into consideration the addition, removal or update of physical devices.

Software Product Line (SPL) engineering is a commonly adopted approach to deal with soft-
ware variability. SPL engineering promotes the production of similar software variants by com-
posing reusable and inter-dependent features, thus enabling cost and time-to-market reduction.
Features and their dependencies are usually described in a variability model, which defines the
possible variants of a system together with domain-specific constraints and dependencies. The

1PDF version accessible at https://osr.cs.fau.de/wp-content/uploads/2016/08/marc.pdf. Last accessed on
September 2023.

https://osr.cs.fau.de/wp-content/uploads/2016/08/marc.pdf
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variability model encodes the system’s problem space, i.e., stakeholder needs and desired fea-
tures, and is associated with its solution space, i.e., the components realizing the solution archi-
tecture. Mappings between these two spaces then allows to assemble and configure a software
variant based on customers’ requirements [Berg 2005, Seidl 2012]. Dynamic Software Product
Lines (DSPL) provide the conceptual framework for managing the variability in software sys-
tems at runtime [Hallsteinsen 2008, Hinchey 2012]. A DSPL borrows the means to define and
manage variability from conventional software product lines, but additionally supports system
reconfiguration at runtime by enabling activation or deactivation of certain features according
to the changing context. Precisely, unlike traditional SPL engineering where features are bound
together at design time and where multiple variants can coexist, the DSPL engineering process
extends the SPL process by adding post-deployment and reconfiguration activities to manage the
reconfiguration of a single software variant [Capilla 2014].

Challenges. Dealing with software variability is complex. This complexity is due to the poten-
tially large number of features, which can lead to a combinatorial explosion of possible product
configurations, but also to the variability management itself such as its discovery, modeling,
maintenance, testing or validation. In this manuscript, we will focus on three particular concerns
regarding variability management.

⋄ Evolution. DSPL, like any software system, undergoes evolution [Ghezzi 2017]. For ex-
ample, new features may need to be added or existing features may need to be removed.
Managing evolution is particularly difficult in a DSPL context, as changes are made at
runtime, which can easily lead to inconsistencies among running components. Specifi-
cally, it is challenging to maintain the consistency between the problem and the solu-
tion spaces, the variability model and the running system, as well as the runtime adap-
tation mechanisms. Many approaches have been proposed for managing the evolution
of software product lines [Marques 2019], ranging from verification techniques to ensure
consistent evolution, to model-based frameworks dedicated to the evolution of feature-
based variability models [Pleuss 2012]. For example, an interesting research thread pro-
poses evolution templates for co-evolving a variability model and related software arti-
facts [Seidl 2012, Passos 2013, Neves 2015]. Model-checking approaches are used to guar-
antee the consistency of a variability model after evolution [Guo 2012, Quinton 2014]. Fur-
thermore, approaches for comparing the set of possible products before and after the evo-
lution of a product line have been proposed [Thüm 2009, Neves 2011]. These approaches,
however, are limited regarding support for DSPL evolution, as they focus on guaranteeing
the consistency of the evolved DSPL variability model but fail to ensure that the evolution
is consistent with the DSPL actual implementation and adaptation mechanisms.

⋄ Adaptation. To build a self-adaptive system, software engineers have to develop self-
adaptation logic that encodes when and how the system should adapt itself. However,
in doing so, software engineers face the challenge of design time uncertainty [Weyns 2013,
Calinescu 2020]. Among other concerns, developing the adaptation logic requires anticipat-
ing the potential environment states the system may encounter at runtime to define when
the system should adapt itself. Yet, anticipating all potential environment states is in most
cases infeasible due to incomplete information at design time. As an example, consider a
microservice-oriented system which dynamically binds microservices at runtime. What con-
crete microservices will be bound at runtime and thus their quality of service are typically
not known at design time. As a further concern, the precise effect of an adaptation action
may not be known and thus accurately determining how the system should adapt itself is
difficult. For instance, while software engineers may know in principle that activating more
features will have a negative impact on performance, exactly determining the performance
impact is more challenging [Siegmund 2012].
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⋄ Optimization. Dealing with large configuration spaces is challenging, especially when con-
figurations must comply with both functional constraints and non-functional performance
goals. In particular, the large number of configurations makes picking the best configuration
on the first try almost impossible, unless having the proper background knowledge of the
configuration space. Developers usually do not have this background knowledge and only
consider less than 20% of the available configurations [Xu 2015]. Another reason is the use
of the default configuration or a legacy one, e.g., to make sure functional requirements are
met. Running such a configuration does not guarantee running the optimal one; On the con-
trary, it may result in running worst or incorrect configurations [Nair 2020, Pereira 2021].
By measuring the performance of a SPL, one can then reconfigure the system to switch
to a better configuration. But such a measurement is a challenging task due to the large
number of features and products that must be considered. Yet, measuring performance
is crucial, especially regarding energy consumption, as several studies showed that soft-
ware has a significant impact on the energy consumed and consider green software de-
sign as a key development concern to improve the energy efficiency of software systems at
large [Islam 2016, Jagroep 2016, Pereira 2020].

Contributions overview. In the first chapter of this manuscript, we show through concrete
examples how evolution can affect the consistency of a DSPL. We then propose a flexible
approach, based on a reference architecture, to implement evolution support for a DSPL,
together with two implementations of the reference architecture for two different DSPLs in
different domains – one cyber-physical system and one runtime monitoring system, both using
different means for variability management. We perform an evaluation of the feasibility and
performance of our approach by simulating common evolution scenarios for both DSPLs to
demonstrate that both implementations are capable of detecting inconsistencies introduced
in a DSPL at runtime, and we demonstrate the industrial applicability of our approach by
applying it to a real-world automation software system DSPL from the injection molding domain.

In the second chapter, we investigate variability-driven reinforcement learning approaches
to realize self-adaptation in the presence of design time uncertainty. We focus on two problems
related to how adaptation actions are explored: (i) existing solutions randomly explore adapta-
tion actions and thus may exhibit slow learning if there are many possible adaptation actions
to choose from; (ii) existing solutions are unaware of evolution, and thus may explore new
adaptation actions introduced during such evolution rather late. We propose novel exploration
strategies that leverage the variability model to guide exploration in the presence of many
adaptation actions and in the presence of service evolution. Our evaluation indicates an average
speed-up of the learning process in the presence of many adaptation actions, and in the presence
of evolution.

In the third chapter of this manuscript, we study performance variations in configurable sys-
tems. In particular, we investigate the impact of feature interactions on the system performance,
with a specific focus on energy consumption. We propose a method to measure and reduce the
energy consumption of multiple variants at once by sampling and analyzing a minimal set of vari-
ants. This method provides means to estimate the energy consumption of individual features,
to highlight how feature interactions impact the energy consumed by variants and to propose
variants with lower energy consumption. Relying on these findings, we then propose an ap-
proach that, regarding multiple performance objectives, guides the optimization of a software
performances by suggesting a better performing configuration. This optimization is performed
by altering as little as possible the initial configuration, thus preventing from moving away from
initial functional requirements.
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Supervision

Over the last five years, I have been the co-advisor of one successful doctorate, Zeinab Abou
Khalil (defended February 2021) and, after obtaining a dispensation, I also have been the
sole advisor of another successful doctorate, Edouard Guégain (defended September 2023). I
currently co-advise three second-year doctoral students since October 2022: Alexandre Bonvoisin
and Tristan Coignion (co-supervised with Romain Rouvoy) and Maxime Huyghe (co-supervised
with Walter Rudametkin).

Maxime HUYGHE, 2022-2025 (50%, co-advised with Walter Rudametkin)
Automated software testing to improve the privacy of browsers.
Doctoral contract, University of Lille and Région Hauts-de-France.

Tristan COIGNION, 2022-2025 (50%, co-advised with Romain Rouvoy)
New development models for cloud-native deployed microservices.
Financed through the ANR DISTILLER project (Leader: R. Rouvoy).

Alexandre BONVOISIN, 2022-2025 (50%, co-advised with Romain Rouvoy)
Frugal software architectures for deploying cloud-native microservices.
Financed through the ANR DISTILLER project (Leader: R. Rouvoy).

Jérémy DUSART (post-doc), 2021-2022 (50%, co-advised with Pierre Bourhis)
Reasoning on Large-Scale Configuration Spaces.
Financed through the Région Hauts-de-France CPER DATA COMMODE project.

Edouard GUEGAIN, 2020-2023 (100%, sole advisor)
Taming the Complexity of Fog Environments.
Financed through the ANR JCJC KOALA project.

Zeinab ABOU-KHALIL, 2017-2020 (33%, co-advised with Laurence Duchien & Tom Mens,
UMons)
Studying the evolution of the bug handling process in large open source ecosystems.
Defended February 2021. Currently data engineer at Sanofi.

Fundings & research grants

The research work I conducted over the last years has mainly be supported by the following
fundings and research grants :

2022 University of Lille doctoral grant to work on Automated software testing to improve the privacy
of browsers. This grant finances Maxime Huyghe’s doctoral contract, started in October 2022.

2022 ANR PRCE funding. DISTILLER : recommenDer servIce for SusTaInabLe cLoud nativE soft-
waRe) - PI : Romain Rouvoy. This grant finances Alexandre Bonvoisin and Tristan Coignion
doctoral contracts, started in October 2022.

2019 I-Site ULNE joint doctorate grant - Leader. Dependable adaptive software systems for the digital
world, joint supervision with KU Leuven (Belgium). This grant financed Omid Gheibi’s doctoral
contract, started in October 2020.

2019 ANR JCJC funding. KOALA : Knowledge-based fog-scale configurations — Leader. The
project’s main objective is to deliver a series of innovative tools, methods and software to deal
with the complexity of software-intensive systems’ configurations and adaptations. The project
started in August 2020 with the recruitment of Edouard Guégain and ends in December 2023.
Total funding: 183ke.

2019 CPER DATA funding. COMMODE : Knowledge compilation for feature models — Leader.
Research and collaboration contract with the CRIL lab at Lens on the topic of Reasoning on
Large-Scale Configuration Spaces. Jérémy Dusart’s postdoc was funded under this contract. Total
funding: 62ke.
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Over the last year of my PhD, I studied evolution and consistency checking for software
product lines, especially regarding the configuration and deployment of cloud applications. It
was then natural to delve into the future of these applications, investigating how to manage them
once up and running. Relying on dynamic software product line engineering was the logical choice
and, in the rapidly changing landscape of cloud computing, issues related to the evolution of such
DSPLs arose. This chapter elaborates on the research that we conducted to address these issues,
together with colleagues from the Johannes Kepler University of Linz, Austria.

2.1 Background and Motivation

Feature Models and Modeling Spaces. In the remainder of this manuscript, we will mainly
rely on a specific type of variability model to encode variability, namely feature models. A feature
model is a tree of features organized hierarchically that describes the possible and allowed feature
combinations [Metzger 2014]. A feature f can be decomposed into mandatory, optional or alter-
native sub-features. If feature f is activated, its mandatory sub-features have to be activated, its
optional sub-feature may or may not be activated, and at least one of its alternative sub-features
has to be activated. Additional cross-tree constraints express inter-feature dependencies. As
depicted by Fig. 2.1, modeling product line variability concerns the problem space (i.e., features
and capabilities), the solution space (i.e., components of the solution architecture), and the map-
ping space (i.e., links between problem and solution space elements) [Apel 2009]. The problem
space includes domain-specific abstractions describing the requirements on a software system.
The solution space refers to the concrete artifacts of the product line. There is thus a mapping
between both spaces, describing which artifact belongs to which requirement or abstraction, i.e.,
feature.

Open Issues. A DSPL, like any SPL, is a long-term investment that is in use for many years
and needs to be continuously evolved e.g., to meet new requirements or to adopt new tech-
nologies [Botterweck 2014]. There are three evolution scenarios in a DSPL context. First, the
change and the related adaptation are triggered manually, e.g., when updating the code base.
Second, the change can be performed manually, while the adaptation is automated e.g., in a build
automation or DevOps process. Finally, both the change and the adaptation can be triggered
automatically, which is the case for self-adaptive systems where evolving environment implies a
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Figure 2.1: Problem, solution and mapping spaces involved in a DSPL. Adaptation rules drive
the reconfiguration, which activates software artifacts depending on the selected features.

reconfiguration of the system. Evolving a DSPL poses significant challenges as both problem
and solution space must co-evolve with the system they describe to avoid inconsistencies during
runtime adaptation. Most existing work on SPL evolution had focused on the evolution of the
problem space only [Botterweck 2014]. However, evolving a variability model may also affect the
related artifacts (i.e., the solution space) and vice versa. Yet, limited work had been conducted
to support such co-evolution. Furthermore, existing approaches typically only supported one
particular variability management approach and were not flexible enough to allow their use in
different domains and for different types of systems, using diverse implementation techniques. A
variability model-agnostic approach was thus still missing that facilitated the evolution of prob-
lem and solution spaces, together with the runtime adaptation mechanisms, and also checked
the consistency of the resulting products. This chapter presents the framework we elaborated to
address the aforementioned problems.

To illustrate the challenges and issues faced when evolving a DSPL, we introduce a cyber-
physical system (CPS) for home automation as an example of an adaptive system combining
both hardware devices and software systems. The CPS consists of smart devices equipped with
sensors and actuators interconnected through a software system. Sensors are used to retrieve
information from the environment; reconfiguration plans are then carried out through the ac-
tuators. Figure 2.2 depicts an excerpt of the variability model of our CPS, along with related
adaptation rules.

CPS

Sensor Actuator

S_Light A_BlindA_Light

On Off Up Down

if luminosity < 40
then turn light on

if luminosity > 80 
then close blind
...

Figure 2.2: Excerpt of the variability model of a cyber-physical system and its related adaptation
rules.
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In this case, a possible reconfiguration action is to switch on light through the actuator A_Light
whenever the luminosity in a given room, captured by sensor S_Light, is lower than 40 lumens,
or to close the roller blinds of the window, whenever it is higher than 80 lumens. Obviously, a
CPS automatically managing the luminosity, temperature, humidity, and energy consumption of
a home relies on many more adaptation rules for different rooms and devices, and each adaptation
rule is thus related to the variability model describing possible reconfigurations of the CPS.

2.2 Impact of Evolution on a DSPL
This section discusses all the possible changes that can occur in the three modeling spaces of the
DSPL during evolution and their potential effect on the running system. We present examples
of these effects on the runtime adaptations of the CPS DSPL, and then discuss the related
challenges. Although we describe only one change per space in our examples, the changes can
affect the consistency of the overall DSPL. The left-hand side of each sub-figure shows the initial
DSPL, and the right-hand side the one after evolution. Elements depicted with square brackets
are software artifacts from the solution space, e.g., components or services. Throughout our
examples, we assume that an operation, whose signature is given between the square brackets,
is implemented by these software artifacts. Dashed lines with arrows on both sides represent the
mapping between problem and solution spaces. Rectangles in dashed lines highlight the resulting
inconsistencies.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

Color

(a) Adding an element to the problem space.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn()

turnLightOff()

Color

CPS

Sensor

A_Light

Actuator

S_Light

setBlue()

Red Blue

setRed()

On Off

turnLightOn()

turnLightOff()

Color

setBlue()

Red

setRed()

(b) Removing an element from the problem space.
CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn()

turnLightOff()

Soft Full

(c) Updating an element of the problem space.

Figure 2.3: Problem space evolutions.

Problem Space. For instance, in Figure 2.3a the optional feature Color is added to the system
to make the light actuator now configurable by allowing the selection of a light color. This feature
may require specific colored light bulbs. The problem in this case is caused by the missing software
artifact that needs to be mapped to the new feature. In our example, Color must be defined and
included in the adaptation rule, since otherwise the Color feature is empty (has no associated
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operation), i.e., the reconfiguration will have no effect1. The problem occurs immediately if the
feature is mandatory, or when activating an optional feature.

Removing a feature can easily impact the consistency of the DSPL. Let us consider a case
where the color of the light could have been red or blue, but the latter cannot be set anymore
after evolution, e.g., because of a hardware problem (Figure 2.3b). If feature Color is involved
in an adaptation rule, e.g., turn on the blue light when it is 07:00 in the morning, then the
reconfiguration would fail whenever this condition is met, even though the related solution space
element is available.

A feature, or any other element of the solution space, e.g., a constraint, can also just be
updated2. For example, one can think of a different way of switching lights on and off. The
variability model is updated when feature On is upgraded, as a dimmer now allows the light
to be turned on completely or partially (Full and Soft modes in Figure 2.3c). Adaptation rules
that involve feature On (Figure 2.2) need to be updated to reflect this change and to avoid an
inconsistency. Updating the rules is done by setting the correct action to perform, e.g., when the
luminosity becomes lower than 40 lumen, turn on the light in soft mode.

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

(a) Adding an element to the mapping space.

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

setSpeed()

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

setSpeed()

(b) Removing an element from the mapping space.
CPS

Sensor

A_Light

Up Down

Actuator

S_Light

moveUp() moveDown()stop()

Stop

CPS

Sensor

A_Light

Up Down

Actuator

S_Light

moveUp() moveDown()stop()

Stop

(c) Updating an element of the mapping space.

Figure 2.4: Mapping space evolutions.

Mapping Space. A new mapping can be added when a feature requires an extension and is
then realized by composing two different software artifacts. For example, Figure 2.4a considers
the case in which the implementation of features Up and Down for blinds requires two software
artifacts after evolution: one for controlling the speed and another one for the direction (we
assume both were handled by the same artifact before). If the mapping is not correctly defined
and does not point to any artifact, the adaptation is partially inconsistent, e.g., one can still

1We consider that a feature is empty when its selection has no effect on the expected adaptation.
2An update is considered as a transaction, that is, a sequence of atomic changes treated as one change (e.g., Add

+ Rem). The DSPL is thus checked only once after the update instead of both after the Add and after the Rem.
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control the direction (up/down) of the blinds but not their speed since the related artifact is not
mapped correctly.

Removing a mapping element can prevent the proper reconfiguration of the running system.
In Figure 2.4b, conversely to the previous scenario, artifacts moveUp() and moveDown() also
control the speed after evolution, so the mapping related to speed is removed. In that case, if the
software artifacts are not properly updated, the element of the solution space that controls the
speed (setSpeed()) becomes a dead asset.

When updating a mapping, the reference to the element needs to be changed either in the
problem space or in the solution space. For example, Figure 2.4c illustrates the case where artifact
Stop(), which was initially bound to feature Stop, is now bound to feature Up: if one pushes button
Up when the blind moves down, it stops, instead of having a dedicated button Stop. Adaptations
related to feature Stop would now fail, as software artifacts are no longer bound to this feature.
For instance, such an adaptation could require that the blind stops when there is too much wind
or rain.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

turnLightSoft()

(a) Adding an element to the solution space.

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

setSpeed()

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

(b) Removing an element from the solution space.
CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightSoft() turnLightOff()

(c) Updating an element of the solution space.

Figure 2.5: Solution space evolutions.

Solution Space. Figure 2.5a considers a new artifact that implements a soft new way of turning
on the light. If this new software artifact should be taken into consideration for the reconfiguration
at runtime, related elements in the mapping as well as in the problem space must also be added.

Removing a software artifact when evolving the solution space can lead to problems when dif-
ferent features share the same artifact. Figure 2.5b illustrates this situation as artifact setSpeed()
is removed. In this scenario, feature Up no longer needs such an artifact (we suppose this is now
implemented by artifacts moveUp() and moveDown()). This can result in a partially inconsistent
adaptation, i.e., the blind can still move down but the speed cannot be controlled, which can be
an issue.
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Finally, Figure 2.5c illustrates an evolution in the solution space, where the implementation
of feature On is changed. After the change, activating this feature turns on the light in soft mode.
Although the resulting reconfiguration turns the light on (in soft mode, but on anyway), this may
not be the expected behavior with respect to the semantics of feature On. The evolved software
artifact could also be an implementation that is completely unrelated to the light system and
turns on the TV, thus leading to another inconsistent adaptation.

Table 2.1 summarizes the different evolution scenarios in the problem and solution spaces
and the mapping between the two, with respect to atomic tasks/changes as discussed above. It
further summarizes the possible effects of each change on the consistency of the CPS DSPL and
the impact on the running configuration.

Change Potential impact on the CPS DSPL

P
ro

bl
em

Sp
ac

e Add feature selection will have no effect : the added Color feature (cf. Fig 2.3a)
is empty1, i.e., not related to any solution space element, and selecting it will
thus have no effect.

Rem artifact cannot be activated anymore : setBlue() (cf. Fig 2.3b) cannot be
activated as it is no longer related to any problem space element.

Upd feature selection will have no effect : Soft and Full (cf. Fig 2.3c) are
empty features, i.e., not related to any solution space element, and selecting
them will thus have no effect.

M
ap

pi
ng

Sp
ac

e Add artifact cannot be activated anymore : the Blind speed cannot be con-
trolled (cf. Fig 2.4a) as the new mapping does not point to a solution space
element.

Rem artifact cannot be activated anymore : setSpeed() (cf. Fig 2.4b) cannot be
activated as after removing the mapping, no feature is related with setSpeed()
anymore.

Upd feature selection will have no effect : feature Stop (cf. Fig 2.4c) is empty,
i.e., not related with any solution space element, and selecting this feature
now will not have any effect anymore.

So
lu

ti
on

Sp
ac

e Add artifact cannot be activated anymore : turnLightSoft() (cf. Fig 2.5a)
cannot be activated, as no feature is related to the new solution space element.

Rem runtime adaptation will partly fail : feature Down (cf. Fig 2.5b) is not
fully implemented, i.e., the speed can no longer be controlled as this solution
space element has been removed.

Upd unexpected runtime behavior : wrong implementation (asset) for feature
On (cf. Fig 2.5c) leads to unexpected behavior.

Table 2.1: Changes in different modeling spaces and examples of their potential effect on the CPS
DSPL. Add stands for addiction, Rem for removal and Upd for update.

Challenges
The discussed cases show that evolution in DSPLs requires the consideration of multiple as-
pects [Quinton 2015]. We see three main challenges:

C1: Supporting evolution independently of the domain, implementation technique, or mod-
eling approach. Existing DSPL evolution approaches focus on a particular variability model-
ing approach, e.g., feature models [Capilla 2014]. In practice, however, different approaches are
used [Czarnecki 2012]. Also, different ways of modeling adaptation rules can be utilized in relation
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to variability models. Furthermore, systems are often implemented using various technologies.
The success of an approach for the evolution of DSPLs in practice thus depends on its flexibility
to support different modeling and implementation techniques. This suggests a generic architec-
ture that guides the implementation of concrete solutions, which use specific variability modeling
approaches and adaptation mechanisms.

C2: Ensuring consistency of models and the running system. The consistency of the DSPL
must be checked whenever at least one of the spaces evolves. Consistency must thus be checked
for each space (intra-space consistency) and across spaces (inter-space consistency). For in-
stance, related elements from different spaces can become inconsistent with the actual software
or hardware and prevent the derivation of products, despite the validity of these products in
the variability model. Although patterns for keeping co-evolving both modeling spaces consis-
tent have been studied [Tartler 2011, Passos 2015], most approaches so far have focused on the
consistency of either the problem space [Thüm 2009, Benavides 2010, Botterweck 2014] or the
solution space [McGregor 2003]. Also, existing work focuses on checking the consistency (of
models) in software product lines without considering dynamic software product lines: while
model consistency is similar in a SPL and a DSPL, consistency checking in a DSPL also needs
to take into account the running system. Thus, it must be ensured that its adaptation rules
are still consistent with the variability model and do not violate any possible reconfiguration.
Detecting such inconsistencies is not straightforward as adaptation rules are typically defined
independently of the variability model using diverse ad-hoc approaches such as event-condition-
action rules [Bencomo 2010, De Lemos 2013, Capilla 2014]. When the model evolves, the rules
should be updated automatically. Also, when evolving rules, the model must potentially also be
updated.

C3: Supporting evolution triggered by the running system or the model. The evolution of a
DSPL can be driven from two different perspectives. First, the different spaces can evolve, e.g.,
a feature might be added to the problem space or a new component might be developed in the
solution space to address new requirements. Whenever one space evolves, the other space must
evolve accordingly. Only then a configuration defined in the problem space can be materialized by
composing elements from the solution space (e.g., Fig. 2.3a–2.3c), and vice versa (e.g., Fig. 2.5a–
2.5c). Updating a running system – to reflect changes made to the modeling spaces also in the
running system – can be challenging depending on the technologies used. Second, the evolution3

of a DSPL can also be driven by the running system: if the system changes both modeling spaces
may need to evolve to reflect these changes. Approaches have been proposed for dealing with the
co-evolution of different modeling spaces [Seidl 2012, Borba 2012], for reflecting system evolution
in the models [Acher 2011, She 2011], or vice versa [Font 2015]. However, they are typically only
capable of dealing with a particular set of changes and cannot handle both evolution between
modeling spaces and evolution driven by changes in the system.

2.3 A Reference Architecture to Support Evolution

To address the aforementioned challenges, we present a reference architecture [Bass 1998] that
supports DSPL evolution.

Reference Architectures A number of approaches exist to inform the development of refer-
ence architectures [Nakagawa 2012, Galster 2011]. Following the types of reference architecture
proposed by Angelov et al. [Angelov 2009] we regard our reference architecture as a Type 5.
Such architectures are designed to facilitate the design of systems that will become needed in the
future. Our reference architecture defines the key components required in a system implement-
ing it, discusses algorithms supporting the operation of the components, and presents protocols
demonstrating the interactions among the components.

3Please note that in our approach, an evolution results in a new version of the DSPL. The previous version of
the variability model is replaced with the evolved one and earlier configurations may no longer be derivable.
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A reference architecture aims at providing guidance (i.e., instructions) on how to actually de-
sign a system [Weinreich 2014]. Our reference architecture (i) is independent of specific domains,
implementation techniques, or modeling approaches for DSPLs (cf. challenge C1); (ii) it focuses
on ensuring the consistency of the running system and of the models representing the DSPL (cf.
challenge C2); and (iii) it supports evolution triggered from different perspectives (cf. challenge
C3).

Figure 2.6: Reference architecture for DSPL evolution.

The reference architecture is divided into four parts, as depicted in Figure 2.6. DSPL
Adaptation comprises the adaptation rules defined to automatically adapt the system at runtime.
Change Detection and Propagation comprises a component that listens to the running system
to detect any (relevant) change made to the system and subsequently propagates this change
to the Model Evolution component. Model Evolution comprises components to evolve the
variability model and/or the adaptation rules based on the changes received from Change
Detection and Propagation, given the specific scenario (see Section 2.2). Model Consistency
uses a consistency checker to ensure that performed evolution operations, especially if based
on human decisions, do not introduce inconsistencies in the DSPL. The parts, each responsible
for a given concern in the DSPL evolution process, and the components they comprise, are
described independently of any concrete (modeling) approach and can be implemented for any
systems. Small squares in the components indicate where such specific implementations are
needed, e.g., to let the Model Updater update the Variability Model for a concrete variability
modeling approach. In Table 2.2, we list generic operations for each component, e.g., to listen
to changes made to the running system and to update the variability models accordingly.
These operations can be implemented when creating a concrete solution for a DSPL. To this
end, we describe two different implementations in Section 2.4.2 . Below, we describe each part
of the reference architecture and the components it comprises, again referring to the CPS example.

DSPL Adaptation is responsible for managing all adaptation rules related to the DSPL.
The specific way adaptation rules are described depends on the domain and the implementation
of the DSPL. For instance, the rules may be encoded using a domain-specific language that
describes event-condition-action rules [Bencomo 2010, De Lemos 2013, Capilla 2014]. When a
change occurs in the running system, the adaptation rules are likely to evolve together with the
rest of the DSPL, e.g., as an adaptation rule may involve a feature that is no longer present in the
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variability model after the change. For example, an adaptation rule defining the color of the light
to be turned on under certain conditions will no longer be valid after the DSPL evolution scenario
described in Figure 2.5b, and thus the rule must be adapted or removed from this component to
properly evolve the DSPL (cf. challenges C1 and C2).

Change Detection and Propagation is responsible for detecting and propagating changes
in the running system. A State Manager monitors the running system and receives notifications
whenever changes occur. This could be achieved either by actively listening to system changes, or
by periodically querying the system and calculating changes with respect to a previously observed
state. When a change is detected by the State Manager, it is passed to the Model Updater, which
determines relevant update actions for the variability model (cf. challenge C3).

In Model Evolution, the variability model defines all possible configurations for the software
managed as DSPL, and thus guides all adaptations, that is, it switches from one configuration
to another given a particular adaptation rule. The variability model can be defined using any
available variability modeling approach [Czarnecki 2012]. Our architecture distinguishes between
two types of changes on the variability model: in case of unambiguous changes – e.g., the CPS
system gets a new feature to turn on a green light – the variability model can be updated
immediately and automatically: a new feature Green, can be added as a child of feature Color (cf.
Table 2.1: PS_Add). In practice, however, multiple stakeholders may maintain a DSPL. This
can lead to ambiguous changes, which cannot be resolved automatically. The DSPL maintainer
needs to be prompted through an interface – the Update Resolution UI – to decide on how to
react and how to update the variability model by selecting among suggested possible actions or
performing a custom one. For instance, the scenario described in Figure 2.3a is not trivial, as
feature Color can be added as a child of feature A_Light or of feature On. An ambiguous change
can also occur when a new component with a different name substitutes a running component,
leading to semantic issues that could only be solved using ontologies to map components together,
e.g., as in [Quinton 2013]. Update Rules help automate model updates (cf. challenge C3). For
instance, an update rule may specify that an optional feature must be added to the variability
model as a child of the root feature if a new optional functionality is available in the system.
Whenever a change is ambiguous, the DSPL maintainer performs a manual evolution using the
Update Resolution UI and can then define a new rule based on the change she has just made.
Once stored with the other rules, the rule can be used to automate future evolution scenarios
to avoid possible ambiguity. Update Rules and Model Updater depend on the used approach for
modeling variability. Our architecture provides generic operations (cf. Table 2.2) that can be
implemented for a specific approach, to specify update operations and update rules, as described
in Section 2.4.2. The list of possible changes in different modeling spaces (cf. Table 2.1) is a
useful basis to develop update rules, i.e., changes in problem, mapping, and solution spaces can
be automated in reaction to the evolution of the DSPL.

Model Consistency is essential when dealing with evolution in a DSPL, especially when
different people are responsible for different parts of the system and or variability models. In our
approach, different possible inconsistencies are defined as Consistency Rules (or constraints) that
can be fed to a dedicated Consistency Checker (cf. challenges C2 and C3). The Consistency Checker
analyzes the running system together with the variability model and the adaptation rules to detect
any inconsistencies. The Consistency Checker thus needs to interface with the variability model but
also requires status updates of the running system. A consistency rule could, for instance, specify
that for each problem space feature there must be at least one solution space asset realizing that
feature, i.e., for each feature at least one component must exist in the system that realizes that
feature. Another rule could define that for each feature selected for the DSPL ( i.e., ‘activated’),
the respective component realizing the feature must be currently running (‘active’) in the system.
The concrete set of consistency rules will depend on the system and on the modeling approach
used, as we will show in our evaluation.

In case of any detected inconsistencies, a Violation Manager prompts the user through a ded-
icated interface. This could involve critical errors that must be fixed (e.g., if the removal of an
element from the variability model breaks an existing adaptation rule), but also minor incon-
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Component/Operation Description

State Manager

detectChange(changeEvent) Monitors the running system and listens to any
changeEvent, e.g., new component deployed to
the running system.

notifyChanges(change[]) Periodically sends the list of change[] to the
Model Updater.

Model Updater

analyzeChanges() Reacts to notifyChanges(change[]) and ana-
lyzes the required changes. Calls update meth-
ods for variability model and/or DSPL adaptation
rules accordingly.

updateVariabilityModel(modelChange) Searches for an update rule matching the required
modelChange, e.g., add feature. If found, it parses
the rule to update the model automatically, e.g.,
by adding a feature. If an automatic update is
not possible, e.g., in case of ambiguous changes,
the operation prompts the user.

readUpdateRule(rule) Parses the related update rule to infer the proper
automated model evolution to be applied.

updateAdaptationRule(rule, ruleChange) Searches for the DSPL adaptation rule to be
evolved and performs the required ruleChange.
E.g., when a feature has been renamed in the
model, the referring adaptation rule needs to be
modified too.

Consistency Checker

parse(model) Loads and reads the variability model.

parse(adaptationRules) Loads and reads the DSPL adaptationRules.

checkConsistency(model) Checks the consistency of the variability model,
i.e., checks for issues in different modeling spaces
and also compares variability model and running
system with each other according to the defined
consistency rules.

checkConsistency(adaptationRules) Checks the consistency of the DSPL
adaptationRules.

checkConsistency(model, adaptationRules) Checks if the variability model is consistent with
the DSPL adaptationRules

Violation Manager

fixInconsistencyInModel(modelChange) Updates the model to fix an inconsistency.
Prompts the user if required.

fixInconsistencyInAdaptationRule(ruleChange) Updates the adaptation rule to fix an inconsis-
tency. Prompts the user if required.

Table 2.2: Generic operations of our DSPL evolution reference architecture.

sistencies needing attention (e.g., if the addition of an asset duplicates an existing one). The
Consistency Checker is thus in charge of detecting structural inconsistencies after they occurred,
while semantic ones (e.g., mapping to the wrong elements) are left to the user. Again, however,
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ontologies could be applied to also cover at least basic semantic inconsistencies. The different
parts of our reference architecture are independent of each other, leaving the concrete implemen-
tation and application scenario to decide the technique or modeling approach to be used.

2.4 Empirical Evaluation

We investigate three research questions regarding the feasibility and applicability of our approach.
Specifically, we assess the general feasibility of our approach by implementing it for two different
DSPLs, and determine for the two concrete implementations of the reference architecture if
inconsistencies arising from different evolution scenarios are correctly managed. We further show
how our reference architecture can be applied to a real-world DSPL in the domain of automation
software for injection molding machines.

The first DSPL is a cyber-physical system providing capabilities for controlling and managing
home automation devices such as sensors and actuators under certain conditions, e.g., turning
off the TV in case no one is watching it [Romero 2015]. To deal with the context-awareness of
the devices in use, e.g., a Belkin WeMo thermostat, adaptation rules are defined and managed
by controllers deployed on set-top boxes. For instance, an adaptation rule for this device is if
someone turns on the thermostat, send an SMS to registered user #1. Such systems are highly
configurable and likely to evolve, as running devices may face failures, or new devices may be
added to an existing system to provide new functionality. More details about the different spaces
of the CPS DSPL are presented in [Romero 2015].

The second DSPL is an event-based runtime monitoring infrastructure Re-
Minds [Vierhauser 2016]. ReMinds has a client-server architecture: systems are instrumented
using probes that send events and data from the systems to the ReMinds server, which
aggregates and distributes these events and data to registered clients. Clients are, for instance,
tools for checking constraints [Vierhauser 2015] on the expected behavior based on the monitored
events or visualization components explaining constraint violations to facilitate diagnosis. In
previous work, we emphasized the need for sophisticated runtime variability management
mechanisms [Rabiser 2015] and support for automated evolution in ReMinds [Quinton 2015],
since a monitoring infrastructure must co-evolve with the underlying system it monitors. In
the context of this chapter, however, we focus on the evolution of the components of ReMinds
itself: the probes, monitored events and data, and constraints being added, modified, or removed
at runtime in the ReMinds monitoring infrastructure.

2.4.1 Research Questions

RQ 1: Is the reference architecture flexible enough to support different DSPL implementations?
To assess the feasibility of the proposed architecture, we implemented it for the two different

DSPLs described above. For both DSPLs, we implemented the components and operations of our
reference architecture and created variability models, partly based on existing ones [Rabiser 2015].
The two implementations use different technologies and different kinds of variability models, yet
they both comply with the reference architecture. For example, the CPS DSPL uses Eclipse
EMF [Steinberg 2009], Java, and extended feature models [Benavides 2010, Bąk 2011], while
ReMinds uses Eclipse, Java, and DOPLER [Dhungana 2011] decision models.

RQ 2: How well do the two reference architecture implementations perform?
To assess how well the two implementations manage inconsistencies to support DSPL evolu-

tion, we simulated scenarios that are likely to happen in the two applications and evaluated their
impact on the respective DSPL, to find out whether each implemented approach is able to detect
inconsistencies and to react appropriately/fast enough. Table 2.3 provides an overview of our
evaluation setup. We used problem space, mapping space, and solution space operations to cover
a fair range of different possible inconsistencies and picked the following representative scenarios:
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1. Scenario 1 (SC1) – A problem space element is removed to constrain possible reconfigura-
tions of the DSPL. This can result in dead elements (assets) in the solution space that were
related to the removed element of the problem space.

2. Scenario 2 (SC2) – The mapping space is updated after merging two existing assets into a
single one. This can result in a problem space element with no effect (no relation to any
solution space element).

3. Scenario 3 (SC3) – A solution space element is added to evolve the system, i.e., a new
component can now be configured. If not mapped to an existing or new problem space
element, the new solution space element is dead and cannot be activated at runtime.

Table 2.3: Overview of our evaluation setup.

CPS DSPL [Romero 2015] ReMinds DSPL [Vierhauser 2016]

Feature Model Decision Model

2000 features, 200 adaptation rules, 3000
assets

400 decisions, 1000 assets

SC1: A feature is removed from the feature
model

SC1: A decision is removed from the model

SC2: An existing mapping (feature to as-
set) is updated

SC2: An existing mapping (asset to deci-
sion) is updated

SC3: A new asset is added SC3: A new asset is added to the model

Runs per scenario: 10

Total number of changes: 1000

Seeded inconsistencies: 1 random defect introduced in every 100 changes

For each of these three scenarios we perform 100 changes that lead to an automated update
of the respective variability model of the CPS and ReMinds DSPLs. 99 out of 100 changes lead
to correct updates while 1 change (randomly, e.g., the 67th change) leads to an incorrect update
resulting in an inconsistency. For example, an incorrect update operation for scenario SC3 would
add the solution space element without also relating it to any problem space element or other
element. This simulates an error a user might actually make during DSPL evolution. Indeed,
while adding a solution space element can be automated, the mapping of the new solution space
element to an existing or a new problem space element requires user involvement or at least an
update rule as described earlier, and errors can thus easily be introduced.

To evaluate the performance, we measured for the two DSPL implementations the time
required to check the consistency after we seeded one inconsistency. We based our evaluation on
significant variability models, e.g., feature models with 2000 features, considered by Berger et
al. [Berger 2013] as large feature models. Concrete performance measurements, which are specific
for each implementation and were performed on different machines, are discussed in Section 2.4.2.

RQ 3: Industrial applicability: can the reference architecture be used to support a real-world
DSPL implementation?

To assess the applicability of the proposed architecture, we implemented it for a real-world
DSPL, i.e., an automation software system for injection molding machines by an Upper Austrian
company4. More specifically, the MoldingCompany was extending the architecture of its automa-
tion software to allow plugging external devices into machines at runtime. The DSPL approach

4Due to non-disclosure agreements we refer to this company as “MoldingCompany”
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discussed in this chapter was regarded as promising to deal with the identified adaptation and
reconfiguration scenarios and to better support new devices and vendors in the future. The goal
was to shift the process of connecting new unknown peripheral devices to machines from design
time (pre-deployment) to runtime (post-deployment). Depending on the capabilities of the con-
nected devices, features are enabled or disabled. Furthermore, this approach allows to activate
or deactivate features based on results from monitoring an injection molding machine. Specif-
ically, an engineer from MoldingCompany developed capabilities for runtime adaptation of the
automation software including adaptation rules guided by the reference architecture presented
in this chapter. To support the reconfiguration of the system at runtime the engineer developed
a feature model and a component model to represent the system components that can be (de-
)activated or reconfigured at runtime. In Section 2.4.2.3, we present the created architecture
instance, the models, and the DSPL adaptation rules. We further describe how our architecture
supports future evolution scenarios (e.g., adding new devices) in this domain and report initial
feedback from MoldingCompany engineers.

2.4.2 Results

We implemented and customized our reference architecture for the CPS and ReMinds DSPL
to demonstrate that it is sufficiently flexible to support different implementations of the various
components. Both implementations use different technologies and different kinds of variability
models but comply with the architecture. To find out whether our approach is capable of properly
detecting inconsistencies, we performed experiments that reflect the three previously described
evolution scenarios and measured the time5 required to check the consistency of each DSPL for
which we implemented our reference architecture.

2.4.2.1 Reference Architecture Implementation for the CPS DSPL

Implementation (RQ 1) We first implemented the reference architecture for the CPS DSPL,
which relies on feature models to manage runtime variability and adaptation rules as described
below. Implementing and customizing the reference architecture for the CPS DSPL took about
two person-weeks and was done by one developer. He could reuse initial variability models of this
DSPL created in earlier work [Romero 2015] and a consistency checker developed for a different
project [Quinton 2016]. As depicted in Figure 2.7a , each component of the CPS DSPL conforms
to its respective meta-model. It thus provides a flexible means to define DSPLs for different
domains or evolving a given DSPL, by switching model components whenever needed. The CPS
DSPL is thus an instance of the DSPL meta-models, and is managed through Eclipse and EMF.

Adaptation. Adaptation rules are described in the feature model, such as the one shown in
Figure 2.7a. In particular, we rely on extended feature models, i.e., feature models whose addi-
tional information is defined in terms of feature attributes [Benavides 2010, Bąk 2011]. Specifi-
cally, adaptation rules are defined as attribute-based constraints. To distinguish between design-
time model constraints and runtime adaptation rules, we rely on a slight extension of the feature
meta-model proposed in [Quinton 2016]. This extension is twofold and consists of a Boolean
attribute, runtime, added to the meta-classes Constraint and Attribute. The former enables the
definition of runtime constraints, i.e., adaptation rules, while the latter is used to define runtime
attributes, i.e., their value will only be taken into consideration at runtime. In practice, attributes
and constraints flagged with runtime are not used during the initial configuration. They become
active only once the system is up and running. Runtime attribute values remain unset at design
time, and are then updated at runtime relying on an event listener that listens to changes that
occur in the environment of the system.

Change Detection and Propagation. We developed an interface that handles change
detection through a monitoring system implementing the operations proposed in Table 2.2. Once

5Please note that the numbers regarding the average evaluation times for the two approaches cannot be com-
pared with each other since the approaches are implemented using different technologies for constraint solving and
error reporting. However, the numbers provide a hint on the general performance of both approaches.
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(a) Implementation for CPS

(b) Implementation for ReMinds

Figure 2.7: Implementations of our reference architecture for the CPS DSPL and the Re-
Minds DSPL.

a change is detected, it is propagated to State Manager that translates this change into two models,
(i) a model fragment that comprises the model element(s) to be updated and (ii) a change model,
which is an instance of the change meta-model. The change meta-model enables the definition
of all types of changes, i.e., the addition, update or removal of elements in any space. Once
translated, the two models are used by Model Updater to evolve the related models accordingly.

Model Evolution. The Model Updater retrieves the models related to the change, and evolves
the main models by relying on update rules. It parses the change model together with the
adaptation rules, the mapping space model or the feature model depending on the scenario, and
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performs the change. For instance, the change model can describe the removal of an element
in the solution space (cf. Table 2.1: SS_Rem). Whenever the Model Updater retrieves such a
model, it looks for an update rule named removeSSElement in the rules repository. This rule
describes the guidelines of a proper removal, i.e., it removes the solution space element itself and
the related mapping space elements.

When the change model and the update rule make it feasible, the change is performed au-
tomatically, otherwise an output message is displayed within the Eclipse console to involve the
developer. For instance, adding a new option (cf. Table 2.1: PS_Add) for an existing function-
ality can be handled automatically (i.e., an update rule defines that a new variant feature f2 is
added as a direct child feature of the existing one f1: Add f2 childOf f1), while moving features
may not be straightforward (e.g., the user has to define where to insert the moved feature and
move sub-features accordingly). Once the evolution is performed (either manually by the user
– e.g., moving features; or automatically by the framework based on update rules – e.g., new
option), the consistency of the DSPL is checked.

Model Consistency. Once evolved, the feature model is translated into a Constraint Satis-
faction Problem (CSP). We then use the Choco CSP solver [Prud’homme 2014] (but any Java-
based solver would also integrate smoothly, e.g., SAT4J) to check the consistency of the feature
model. The proposed model-based approach helps ensuring the consistency of the overall DSPL
and acts as Violation Manager. First, changes are translated into model fragments that conform to
the related meta-model and are thus consistent with the rest of the model. Second, models di-
rectly refer to other models/model fragments, ensuring all models are consistent with each other.
Indeed, the main issue with most existing feature-based DSPL approaches is that adaptation rules
are defined independently of the feature model. The evolution of a DSPL is thus often error-prone
as for such approaches there is no way to check whether adaptation rules and the feature model
are consistent after evolution. Instead, we define adaptation rules as models and make them refer
to features in the feature model, similar, e.g., to Gamez and Fuentes [Gamez 2011] who define
adaptation rules in a reconfiguration plan and relate it to a feature model.

Performance Evaluation (RQ 2) To assess the performance of our approach we program-
matically generated models larger than the models manually created for the CPS. The generation
process produces (i) random features (2000 features) and adaptation rules (200), (ii) 1-2 assets
per feature (i.e., a total of 3000 assets), and thus (iii) one or two mappings per feature. While
these models are randomly generated, their size and structure can be compared with real feature
models, e.g., from the operating system domain as reported by Berger et al. [Berger 2013]. For
each evolution scenario SC1-SC3, we then performed 99 change operations leading to valid model
updates, and 1 change operation leading to an inconsistency. In addition to checking whether
all inconsistencies were indeed detected we measured the average evaluation time for evaluating
consistency after each change. More precisely, we measured the time required to retrieve the
content of all involved EMF models, and to check whether all references of a given model are
present in other models or not. All experiments were performed on a MacBook Pro with a 2,6
GHz Intel® Core™ i5 processor and 8 GB of DDR3 RAM.

By relying on the model-based approach used in the CPS DSPL, all generated inconsistencies
were detected and their cause was explained. Depending on the scenario, the time required to
check the consistency of the CPS DSPL varies from 0.75ms up to 8.5ms on average (0.75ms
for SC1, 1.3ms for SC2, and 8.5ms for SC3). Details on the evaluation times for the three
scenarios are presented in Figure 2.8 (a–c). We observed that the time required to check the
consistency is negligible and is not a threat to the scalability of the model-based support in the
CPS implementation of our reference architecture. The main advantage of our implementation
is that the Consistency Checker can rely on methods from the EMF API to load and parse the
models. While for SC1 and SC2 only 2 elements of the DSPL are involved (feature model and
adaptation rules for SC1, feature model and mappings for SC2), SC3 requires the feature model,
the mappings, and the assets to be loaded, parsed and checked, which explains the increased time
for checking the consistency for SC3 (Figure 2.8 (c)). Overall, our empirical evaluation indicates
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that our approach is well-suited for dealing with DSPLs with a substantial number of features,
adaptation rules, and assets.
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Figure 2.8: Average consistency constraint evaluation times when detecting seeded inconsisten-
cies (1 out of 100 change operations) for 1000 performed changes for 3 scenarios for the CPS
implementation of our reference architecture.

2.4.2.2 Reference Architecture Implementation for the ReMinds DSPL

Implementation (RQ 1) To support DSPL evolution for ReMinds, which uses decision mod-
els to manage variability, we have implemented our reference architecture as described below (cf.
Figure 2.7b). Implementing and customizing the reference architecture for the ReMinds DSPL
also took about two person-weeks and was done by one of the main developers of ReMinds. He
could reuse initial variability models of ReMinds created in earlier work [Rabiser 2015] and a
consistency checker developed for a different project [Vierhauser 2012].

Adaptation. In our earlier work, we developed an approach for variability management that
provided the starting point for our implementation of the reference architecture to support the
reconfiguration of ReMinds at runtime [Rabiser 2015]. Specifically, we describe the variability of
the key components of ReMinds (probes, event types, constraints) using decision-oriented DO-
PLER variability models [Dhungana 2011]. In DOPLER, decisions define configuration options
(to be set by end users or programmatically via the DOPLER API). The decision type defines
what values can be set on decisions (Boolean, string, number, or enumeration). A decision can
depend on other decisions hierarchically, if it needs to be made before other decisions, or logi-
cally, if the answer affects other decisions. Decisions are related to assets in DOPLER models
(this is the problem to solution space mapping): answering decision questions allows selecting
and (re-)configuring components. Assets in DOPLER models represent the core product line
artifacts (e.g., software components) in the solution space. Assets can depend on each other
functionally (e.g., one asset requires another asset) or structurally (e.g., if an asset is part of a
another asset), i.e., assets can have solution space dependencies. Using DOPLER, users can cre-
ate domain-specific meta-models to define the asset types, attributes, and dependencies for their
domain or system. In the ReMinds case study, for instance, the asset types are probe, event
type, and constraint. They have different attributes and are related to each other, specifically,
probes provide events of different types and constraints check events.

Users or programs can set decision values for decisions defined in the DOPLER variability
model, thereby (de-)activating probes, constraints, and related event types at runtime through
an interface that connects DOPLER and ReMinds. Decisions thus represent the possible adap-
tations that can be made at runtime, i.e., the adaptation rules. If, for instance, a ReMinds
probe is used to instrument an archiving component (persistence management) of a system, the
decision could be called monitoring_archiving, with the question ‘Do you want to monitor the
archiving process?’, and related to the archiving probe represented by an asset in the DOPLER
model with name archiving_probe. More examples can be found in [Rabiser 2015].
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Change Detection and Propagation. The ReMinds framework provides interfaces for
retrieving state information of the elements of the running monitoring infrastructure (i.e., probes,
constraints, event types) to determine whether the elements are active or inactive, and also
for retrieving information on elements being added, removed or modified. We developed the
component State Manager of our reference architecture to implement these interfaces. It keeps
track of the current state of the elements in the running ReMinds infrastructure, periodically
checks which elements have been added, removed or modified, and forwards this information to
component Model Updater.

Model Evolution. We implemented the Model Updater as an Eclipse Plug-in in the DOPLER
variability modeling IDE [Dhungana 2011]. It is triggered by State Manager whenever a change
in ReMinds occurs. Based on Update Rules, Model Updater checks whether update actions can
be performed automatically or user input is required. More specifically, our implementation of
the Model Updater distinguishes unambiguous and ambiguous changes. In case of unambiguous
changes, an update is triggered directly by the Model Updater to automate the changes to the
variability model. For ambiguous changes, user feedback is required. In such cases, the Update UI
(a simple Eclipse Wizard) is triggered, allowing the user to select a particular resolution strategy.
For example, when a probe is removed from ReMinds, an update rule could specify to simply
remove the respective asset from the variability model. However, as the asset might be mapped
to one or more other model elements, e.g., decisions, it will typically make sense to involve the
user via the Update UI and ask her to decide whether to really remove the asset together with all
mappings to it.

Model Consistency. To check model consistency, we rely on an existing Consistency
Checker [Vierhauser 2012] that allows to check the consistency of a decision model and arbitrary
artifacts based on consistency rules (not to be confused with the constraints used by ReMinds
to check system behavior at runtime). For the purpose of the ReMinds case study we extended
this existing Consistency Checker to check the conformance between the DOPLER variability mo-
del and ReMinds. We implemented the consistency rules for ReMinds as an extension of the
existing Consistency Checker in Java. Facades provide access to the DOPLER variability model on
the one hand – to retrieve model elements such as assets and decisions – and to ReMinds on the
other hand - to retrieve registered and running probes and constraints. Internally, the Consistency
Checker employs an incremental approach [Egyed 2006] thus reducing the overhead and providing
instant feedback to users on emerging violations.

The Violation Manager is integrated within the DOPLER IDE and retrieves information on
occurring inconsistencies from the Consistency Checker. It reports details to the user on the violation
of each consistency rule, e.g., the origin within the model and the cause of the violation. In case
of a possible resolution a (semi-)automated fix can be applied to the model. In the mentioned
example of adding a new asset to the variability model due to a new probe added to ReMinds,
the Consistency Checker (i) immediately detects this asset as dead if it has not also been mapped to
a decision as described above, and (ii) informs the user about this inconsistency via the Violation
Manager. Figure 2.9 depicts a screenshot of the DOPLER modeling IDE showing constraint
violations (upper part) and currently active consistency rule (lower part). Different types of
violation are highlighted differently depending on their severity (e.g., Errors vs. Warnings). The
engineer can review each violation and navigate to its origin for an in-depth inspection, e.g., of
the model element not defined properly. Up to this point we have not implemented support for
automatically fixing detected model inconsistencies. This is part of our future work.

Performance Evaluation (RQ 2) For the simulation, we extended the existing DOPLER
variability model [Rabiser 2015] with additional elements through duplication of existing ele-
ments, i.e., we generated additional decisions and assets to produce a model with overall 1000
assets and 400 decisions, which however has the same structure as the manually created orig-
inal model. This by far exceeds the typical size of decision models which can be expected in
a typical industrial scenario [Dhungana 2011]. We assessed whether the inconsistencies where
detected, instrumented the Consistency Checker to measure evaluation times and eventually cal-
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Figure 2.9: DOPLER IDE showing constraint violations (upper part) and currently activated
constraints (lower part).

culated the average evaluation time per scenario. In this case, the evaluation time is the
time required to evaluate a single constraint instance, more precisely, the time the method
evaluate() needs to complete, return ‘consistent’ or ‘inconsistent’, and generate violations which
are then forwarded to the user interface. We performed the evaluation runs using the latest
version of the DOPLER IDE and Eclipse 3.8 on a standard Desktop machine with an Intel®
Core™ i5 CPU @2.60GHz 16GB RAM running Windows 10 64-Bit.

For all three scenarios all seeded inconsistencies were detected. Depending on the type of
check performed, the evaluation times vary between 3ms and 600ms on average (3.0ms for SC-1,
609ms for SC-2, and 6.74ms for SC-3). Details on the evaluation times for the three scenarios are
presented in Figure 2.10 (a–c). For SC-1 and SC-3 the average evaluation times per constraint
instance are below 7ms while for SC-2 the average evaluation time rises above 600ms. This
increased evaluation time is due to the fact that the constraint for this scenario requires evaluating
all mappings between problem and solution space, i.e., all assets linked to decisions. DOPLER
was not optimized for querying such mappings in the first place resulting in the need to iterate
over all assets contained in the variability model to evaluate the constraint. This is the reason for
the higher evaluation time for this constraint. Optimizing the access to decisions and assets in
DOPLER would greatly reduce the resulting evaluation time and could easily resolve this issue.
However, in all the three scenarios, the time needed to report the inconsistency to the user is still
acceptable and allows for (almost) instant feedback.

2.4.2.3 Industrial Applicability

To assess the applicability of our proposed architecture (RQ 3), we instantiated it for a real-
world DSPL, i.e., MoldingCompany’s automation software system for injection molding machines.
Plastic products range from small everyday life-products such as toothbrushes or toys, up to big
products such as water pipes or garbage containers. Injection molding is a manufacturing method
where material (e.g., thermoplastic polymer) is heated until it is molten and injected into a mold
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Figure 2.10: Average consistency constraint evaluation times when detecting seeded inconsisten-
cies (1 out of 100 change operations) for 1000 performed changes for 3 scenarios for the ReMinds
implementation of our reference architecture.

cavity, where the part is cooled and hardened. Injection molding machines are widely used
to produce plastic products for many different markets. Example areas include automotive (car
body, interior, glazing), packaging (containers, buckets, pallets), medical (healthcare, diagnostics)
or teletronics (mobile communication, displays).

In the injection molding industry, various peripheral devices with different capabilities are
mounted on a single machine to satisfy different requirements. For instance, in the temperature
control process, specific parts of the machine have to be heated to a defined temperature, while
other machine parts have to be cooled down. This can be achieved with peripheral temperature
control devices provided by external manufacturers. For many years, the approach to connect
peripheral devices has been to use a serial interface and a standardized, manufacturer-dependent
protocol. A few years ago, the Euromap council proposed the standardized interface based on the
OPC Unified Architecture (OPC UA) to better cope with this situation. OPC UA is a machine-to-
machine communication protocol for industrial automation developed by the OPC Foundation6.
The standard Euromap 82 and Euromap 82.1 define an OPC UA Information model, e.g., for
temperature control devices and peripheral devices in general. MoldingCompany uses OPC UA
to connect and switch among multiple peripheral devices via an Ethernet connection. This allows
for dynamic variability (i.e., reconfiguration at runtime) and provides the technical foundation for
applying our DSPL architecture in an industrial context. As part of our evaluation, an engineer
of MoldingCompany created a feature model describing the Temperature Control Device (TCD)
capabilities for MoldingCompany’s injection molding machines. According to this model (and its
mapping to OPC UA nodes) we can dynamically identify which OPC UA nodes are available on
a connected device (nodes are defined as mandatory/optional). When specific nodes are present,
features can be enabled. The values of OPC UA nodes are the basis for adaptation rule checks
performed during runtime.

Figure 2.11 depicts our DSPL reference architecture instantiated for the MoldingCompany
case study. The engineer used the same approach as we used for the CPS DSPL described above
in Section 2.4.2.1. We describe the feature model and the adaptation rules the industrial engineer
developed using our reference architecture. We cannot provide details of the component model
and the mapping of features to components due to non-disclosure agreements, but we present
general numbers and specific examples below. The middleware implemented by the engineer
uses the adaptation rules and the component model to perform (re-)configuration of the system
at runtime. The other parts of the reference architecture are the same as for the CPS instance
described above.

6https://opcfoundation.org/

https://opcfoundation.org/
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Figure 2.11: Implementation of our reference architecture for the injection molding automation
system of MoldingCompany.

Figure 2.12: Feature Model for injection molding automation system temperature control devices
DSPL.

Figure 2.12 depicts the feature model for the temperature control device and Figure 2.13
shows two example adaptation rules. The first rule is for the temperature alarm feature. Given
that temperature monitoring is available, it can trigger alarms of different severity (i.e., a positive
integer value greater than zero). The second rule is related to the EcoMode feature, which allows
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Figure 2.13: Two example adaptation rules based on features of the temperature control devices
feature model.

to dynamically determine the best valve position for the water distribution system and the TCD
pump speed set value to ensure optimal power usage. When the EcoMode feature is activated, the
pump speed is determined automatically and the input field on the visualization is deactivated,
indicating that it can currently not be changed manually. The adaptation rule defines that the
connected TCD must be set to Used (activated by the operator) and the OperatingMode must
not be 0 (switched off/ready) or 8 (connection problem/undefined). The ForceManual Boolean,
which would deactivate the automatic calculation if set to true, must be false. Finally, the water
distribution system component must be switched on, which is determined by the Boolean value
bOn. Overall, the engineer created 25 adaptation rules (for 15 features), which are in turn mapped
to 78 solution space components. While we did not use the entire reference architecture in this
example due to the focus on the modeling and adaptation capabilities, we were able to reuse
the consistency checking and model update parts from the CPS example. We received initial
positive feedback, regarding the approach, from MoldingCompany. Specifically, they confirmed
that without the DSPL approach it took developers several days until a prototype was running
for every new device. The DSPL architecture, on the other hand, reduced the time necessary
to implement a similar device of an established product line (e.g., a new TCD of a different
manufacturer) to approximately one working day. Our experience with our industrial partner
thus shows the usefulness and applicability of our approach in a real-world scenario from the
injection molding machines domain, in addition to the two DSPLs previously described.

2.5 Discussion

Our evaluation demonstrates that our reference architecture was a useful basis to implement
support for DSPL evolution in at least two different cases (RQ 1) in two different domains. Both
implementations exhibit significant differences: one uses a model-driven, feature-based approach
(CPS) and the other one a tool-driven, decision-oriented approach (ReMinds). However, both
implementations rely on Eclipse (RCP or EMF) and Java, and different technologies – specifically,
technologies not supporting component-based or object-oriented development – could make the
implementation of our reference architecture significantly more difficult. In the two presented
cases, based on our reference architecture and the proposed generic operations, each implemen-
tation has been done by one person in a rather short time, i.e., around two weeks.
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We also provided initial evidence on the practicality of our reference architecture by imple-
menting a real-world DSPL from the domain of automation software for injection molding ma-
chines, which was not done by the developers of the reference architecture, but by an industrial
engineer. He could reuse several components from the CPS DSPL, which further demonstrates
its feasibility.

Overall, the reference architecture was very useful to guide the implementation of evolution
support for three different DSPLs in different domains. This was only possible because we kept
the description of the reference architecture components, their interactions, and the operations
rather abstract. However, this also has the drawback, that the implementation effort for each
DSPL is significant, even if one can reuse existing models and tools as described above. It would
thus make sense to further automate this process of implementing the reference architecture, e.g.,
by providing several template implementations for different types of variability models. Also, the
actual reference architecture implementation process needs to be better formalized. Even though
the reference architecture components and the generic operations support the implementation,
the concrete activities and their inputs and outputs should be made more explicit.

Internal Validity. Since both approaches build on prior work and tools, we cannot claim
that all parts have been implemented from scratch. However, both the original solutions have
been adapted and extended significantly to fit the needs of the CPS and ReMinds DSPLs. In
both cases, it took less than two weeks to implement the components State Manager and Model
Updater, and the facades to interact with the running systems. We implemented extensions to
our own architecture basing our work on existing tool environments that have been published be-
fore [Quinton 2016, Dhungana 2011] and using the reference architecture to guide our extensions
of these existing environments. While other developers could follow a different implementation
approach, we still think we could sufficiently demonstrate the flexibility and practicality of our
approach. Our reference architecture worked for two quite different modeling approaches. While
we cannot guarantee it would work for any given approach or technology, we believe that following
the architecture can guide developers in creating DSPL evolution support as we could initially
demonstrate with our industrial applicability study.

Considering the evaluation runs, we measured how well our consistency checker implementa-
tions work, which indicates their scalability. However, we randomly generated large variability
models – though based on real, smaller models such as the one described in [Rabiser 2015] –
which might still not correctly reflect how such models would really look like in practice. Also,
we randomly seeded selected inconsistencies in the three evolution scenarios representing one
edit per space. In practice, many more scenarios are possible and might occur in all the three
spaces (even in combination), making the exhaustiveness of the experiments difficult to reach.
We thus cannot claim our approach scales in any possible case, but we can still argue that we
found initial evidence for its scalability and flexibility.

External validity refers to how well data, processes, theories can be applied to other domains
and application scenarios and how generalizable the results and findings are. With the presented
reference architecture we aim to provide a generic architecture that can be applied to different
domains and technologies. Applying our reference architecture to other approaches will require
detailed knowledge about the specific system and the respective variability management approach.
In terms of industrial applications, we are confident that the three instances of the reference
architecture (one of which was a large industrial system) provide evidence that it can be easily
adopted for different types of systems and different types of DSPL, meaning different types of
variability modeling and management approaches. Regarding our evaluation, we have performed
lab experiments for two different implementations of the reference architecture both representing
large-scale systems. While we can not claim full generalizability in terms of performance and
scalability of the approach, we think that this provides a solid basis for the applicability of the
approach. Further work will be needed assessing the applicability and performance characteristics
for different types of systems.
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2.6 Summary
In this chapter, we explained how inconsistencies may arise when dealing with DSPL evolution.
To deal with such inconsistencies, we introduced a flexible approach to support DSPL evolution
based on a reference architecture, that can be implemented to support the evolution of a concrete
(type of) DSPL. The reference architecture describes the capabilities needed for detecting changes
made to running systems, for automating the update of variability models, and for detecting
inconsistencies among all the relevant elements of a DSPL. Specifically, our reference architecture
guides the development of change detection, model update, and consistency checking solutions to
support evolution in a concrete DSPL. We described the implementation of evolution support for
two different DSPL based on the reference architecture and reported on performance experiments
we conducted. We then showed how our proposed reference architecture was implemented for
a real-world automation software system from the injection molding domain by an engineer of
MoldingCompany.
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As seen in the previous chapter, variability undergoes evolution. Consequently, novel ca-
pabilities (e.g., new features or removed constraints) may be offered for a running system to
adapt. Together with colleagues from University of Duisburg-Essen, Germany, we thus con-
ducted research to assess the impact of evolution on runtime adaptation of configurable systems.
In particular, we investigated the integration of reinforcement learning to evaluate such impact.
This chapter covers this work.

3.1 Background and Motivation

Case Study. DSPL are well-suited to manage self-adaptive systems i.e., systems that adapt
to context changes dynamically. As seen in the previous chapter, feature models are the de facto
standard for specifying the variability of a DSPL, and define all permissible reconfigurations (the
self-adaptive system’s adaptation space) enabling the running system to adapt to changes in its
environment. Figure 3.1 shows the feature model of a self-adaptive web service as a running
example.
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Figure 3.1: Feature model and adaptation of example web service
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The DataLogging feature is mandatory, while the ContentDiscovery feature is optional. The
DataLogging feature has three alternative sub-features, i.e., at least one data logging sub-feature
must be active: Min, Medium or Max. The ContentDiscovery feature has two optional sub-features
Search and Recommendation. The cross-tree constraint Recommendation ⇒ Max ∨ Medium specifies
that a sufficient level of data logging is required to collect enough information about the web
service’s users and transactions to make good recommendations. Let us consider that the above
web service should adapt to a changing number of concurrent users to keep its response time
below 500ms. A software engineer may express an adaptation rule for the web service such that
it turns off some of its features in the presence of more users, thereby reducing the resource
needs of the service. The right-hand side of Figure 3.1 shows a concrete example for such an
adaptation. If the service faces an environment state of more than 1,000 concurrent users, the
service self-adapts by deactivating the Search feature.

Reinforcement Learning. Online reinforcement learning is a suitable approach to realize self-
adaptive systems in the presence of design time uncertainty. Online reinforcement learning means
that machine learning is employed at runtime for the system to learn from actual operational data
and thereby leverage information only available at runtime. In general, reinforcement learning
aims to learn suitable actions via an agent interacting with its environment as follows: (i) the
agent receives a reward for executing an action, (ii) this reward expresses how suitable that
action was [Sutton 2018]. The goal of reinforcement learning is to optimize cumulative rewards
i.e., actions should be selected that have shown to be suitable, which is known as exploitation.
However, to discover such actions in the first place, actions that were not selected before should
be selected, which is known as exploration. How exploration happens has an impact on the
performance of the learning process [Bu 2013, Filho 2017, Sutton 2018].

Self-Adaptation Logic 

Realized via Reinforcement Learning

Execute

Policy

(Knowledge)

Monitor

Action 

Selection

(Analyze + Plan)

Policy Update

Self-Adaptation Logic

Analyze

Monitor Execute

Plan

Knowledge

(a)

(b)

(c)

Action a

State s

Reward r

Action 

Selection

Next state s’

Agent

Policy

Policy Update

Environment

Adaptation 

Action 

a

State s

Reward r

Next state s’

Figure 3.2: Integration of reinforcement learning into the MAPE-K reference model: (a) basic
reinforcement learning model, (b) MAPE-K model, (c) integrated model

Figure 3.2(a) illustrates agent’s interactions in a reinforcement learning process. At a given
time step t, the agent selects an action a from its adaptation space to be executed in environ-
ment state s. As a result, the environment transitions to s′ at time step t + 1 and the agent
receives a reward r for executing the action. The reward r together with the information about
the next state s′ are used to update the action selection policy of the agent. The goal of rein-
forcement learning is to optimize cumulative rewards. As explained above, a trade-off between
exploitation (using current knowledge) and exploration (gathering new knowledge) must be made
when selecting an action. A self-adaptive system can conceptually be structured into two main
elements [Kephart 2003, Salehie 2009]: the system logic (aka. the managed element) and the self-
adaptation logic (aka. the autonomic manager). To understand how reinforcement learning can
be leveraged for realizing the self-adaptation logic, we use the well-established MAPE-K refer-
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ence model for self-adaptive systems [De Lemos 2013, Weyns 2021]. As depicted in Figure 3.2(b),
MAPE-K structures the self-adaptation logic into four main conceptual activities that rely on a
common knowledge base [de la Iglesia 2015]. These activities monitor the system and its envi-
ronment, analyze monitored data to determine adaptation needs, plan adaptation actions, and
execute these adaptation actions at runtime. Figure 3.2(c) depicts how the elements of reinforce-
ment learning are integrated into the MAPE-K loop. For a self-adaptive system, “agent” refers to
the self-adaptation logic of the system and “action” refers to an adaptation action [Palm 2020].
In the integrated model, action selection of reinforcement learning takes the place of the analyze
and plan activities of MAPE-K. The learned policy takes the place of the self-adaptive system’s
knowledge base. At runtime, the policy is used by the self-adaptation logic to select an adaptation
action a based on the current state s determined by monitoring. The action selected using the
policy may be either to leave the system in the current state (i.e., no need for adaptation), or a
specific adaptation, which is then executed.

Open Issues. Existing online reinforcement learning solutions for self-adaptive systems propose
randomly selected adaptation actions for exploration. The effectiveness of exploration therefore
directly depends on the size of the adaptation space, because each adaptation action has an
equal chance of being selected. Self-adaptive systems may have large, discrete adaptation spaces.
In the presence of such large, discrete adaptation spaces, random exploration may lead to slow
learning at runtime [Bu 2013, Filho 2017, Sutton 2018]. Some reinforcement learning algorithms
can cope with a large space of actions, but require that the space of actions is continuous in order
to generalize over unseen actions [Nachum 2017]. Existing online reinforcement learning solutions
are also unaware of system evolution [Kinneer 2018]. Yet, due to evolution, the adaptation space
may change, e.g., existing adaptation actions may be removed or new adaptation actions may
be added. Some reinforcement learning algorithms can cope with environments that change over
time (non-stationary environments) [Nachum 2017, Sutton 2018]. However, they cannot cope
with changes of the adaptation space. Existing solutions thus explore new adaptation actions
only with low probability (as all adaptation actions have an equal chance of being selected), and
thus may take quite long until new adaptation actions have been explored.

3.2 Feature-Model-guided Exploration
To address the issues discussed above, we proposed novel exploration strategies for online re-
inforcement learning. Our exploration strategies use feature models to give structure to the
system’s adaptation space and thereby leverage additional information to guide exploration. An
adaptation action is represented by a valid feature combination specifying the target run-time
configuration of the system. Our strategies traverse the system’s feature model to select the
next adaptation action to be explored. In addition, our strategies detect added and removed
adaptation actions by analyzing the differences between the feature models of the system before
and after an evolution step. Adaptation actions removed as a result of evolution are no longer
explored, while added adaptation actions are explored first. We first explain how these FM-
guided exploration strategies can be integrated into existing reinforcement learning algorithms.
Thereby, we also provide a realization of the integrated conceptual model from Section 3.1. We
then introduce the realization of the actual FM-guided exploration strategies.

3.2.1 Integration into Reinforcement Learning

We used two well-known reinforcement learning algorithms for integrating our FM-guided ex-
ploration strategies: Q-Learning and SARSA. We chose Q-Learning as it is the most widely
used algorithm in the literature [Barrett 2013, Moustafa 2014, Caporuscio 2016, Arabnejad 2017,
Wang 2017, Zhao 2017, Moustafa 2018, Wang 2019, Shaw 2022] and SARSA, as it differs from
Q-Learning with respect to how the knowledge is updated during learning. Q-Learning (an off -
policy algorithm) updates the knowledge based on selecting the next action which has the highest



36 Chapter 3. Adaptation

Algorithm 1 Q-Learning with FM-guided Exploration

1: function FMQ-Learning(FeatureModelM; Double α, γ, εd, δd)
2: Initialize Q(s, a) with lowest possible reward ∀s ∈ S (state space), ∀a ∈ A (adaptation

space);
3: Determine current state s; ε← 1; δ ← 1;
4: repeat
5: Set<Feature> a = getNextAction(M, s); // Action Selection
6: Adapt service to configuration a; Observe reward r; Observe new state s′;
7: Q(s, a)← Q(s, a) + α[r + γmaxa′∈AQ(s′, a′)−Q(s, a)]; // Knowledge Update
8: s← s′; ε← ε · εd; δ ← δ · δd;
9: until last time step

10: end function
11:

12: function getNextAction(FeatureModelM, State s)
13: Set<Feature> a← argmaxaQ(s, a); // Exploit existing knowledge
14: InitFMExploration(M, a); // initialize the FM-guided strategies, see Algorithm 3
15: if random() < ε then // Explore new actions
16: if random() < δ then return getRandomConfiguration(M);
17: else return getNextConfiguration(); // see Algorithm 3
18: end if
19: end if
20: return a;
21: end function

expected reward [Sutton 2018]. SARSA (an on-policy algorithm) updates the knowledge based
on selecting the next action by following the already learned action selection policy. As a result,
Q-Learning tends to perform better in the long run, but SARSA is better in avoiding expensive
adaptations. To summarize, if, for a given system, executing “wrong” adaptations is expensive,
then SARSA is more appropriate, otherwise Q-Learning is preferable.

Algorithm 1 shows the extended Q-Learning algorithm. A value function Q(s, a) represents
the learned knowledge, which gives the expected cumulative reward when performing an action
a in a state s [Sutton 2018]. There are two hyper-parameters: the learning rate α, which defines
to what extent newly acquired knowledge overwrites old knowledge, and the discount factor γ,
which defines the relevance of future rewards. After the initialization (lines 2-3), the algorithm
repeatedly selects the next action (line 5), performs the action and observes its results (line
6), and updates its learned knowledge and other variables (lines 7-8). Algorithm 2 shows the
extended SARSA algorithm, which follows a similar logic. However, while Q-Learning updates
the knowledge by selecting the action with the highest Q value (Algorithm 1, line 7), SARSA
selects the action according to the current policy (Algorithm 2, line 8).

Our strategies are integrated into reinforcement learning in the getNextAction function, which
selects the next adaptation action while trading off exploration and exploitation. We use the ε-
greedy strategy as a baseline, as a standard action selection strategy in reinforcement learning,
widely used in the related work. With probability 1 − ε, ε-greedy exploits existing knowledge,
while with probability ε, it selects a random action. In contrast to random exploration, we use
our FM-guided exploration strategies by calling the getNextConfiguration function (Algorithm 1,
line 17). To prevent FM-guided exploration from prematurely converging to a local minimum, we
follow the literature and use a little randomness [Plappert 2018], i.e., perform random exploration
with probability δ · ε (lines 15-16). Here, 0 ≤ δ ≤ 1 is the probability for choosing a random
action, given that we have chosen to perform exploration. To facilitate convergence of the learning
process, we use the ε-decay approach. This is a typical approach in reinforcement learning, which
starts at ε = 1 and decreases it at a predefined rate εd after each time step. We also follow this
decay approach for the FM-guided strategies to incrementally decrease δ with rate δd.
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Algorithm 2 SARSA with FM-guided Exploration

1: function FMSARSA(FeatureModelM; Double α, γ, εd, δd)
2: Initialize Q(s, a) with lowest possible reward ∀s ∈ S (state space), ∀a ∈ A (adaptation

space);
3: Determine current state s; ε← 1; δ ← 1;
4: Set<Feature> a = getNextAction(M, s); // Action Selection
5: repeat
6: Adapt service to configuration a; Observe reward r; Observe new state s′;
7: Set<Feature> a′ = getNextAction(M, s′);
8: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]; // Knowledge Update
9: s← s′; a← a′; ε← ε · εd; δ ← δ · δd;

10: until last time step
11: end function

3.2.2 FM-Structure Exploration for Large Adaptation Spaces

To capture large adaptation spaces, we proposed the FM-structure exploration strategy, which
takes advantage of the semantics typically encoded in the structure of feature models. Non-leaf
features are typically abstract features used to better structure variability [Thüm 2011]. Abstract
features do not directly impact the implementation, but delegate their implementation to their
sub-features. Sub-features thereby offer different implementations of their abstract parent feature.
As such, the sub-features of a common parent feature, i.e., sibling features, can be considered
semantically connected.

In the feature model depicted in Figure 3.1, the ContentDiscovery feature has two sub-features
Search and Recommendation offering different concrete ways how a user may discover online content.
The idea behind FM-structure exploration is to exploit the information about these potentially
semantically connected sibling features and explore them first before exploring other features1.
Table 3.1 shows an excerpt of a typical exploration sequence of the FM-structure exploration
strategy with the step-wise exploration of sibling features highlighted in gray. Exploration starts
with a randomly selected leaf feature, here: Recommendation. Then all configurations involving
this leaf feature are explored before moving to its sibling feature, here: Search.

 

 Logging Min Medium Max Content Disc. Search Recommend. 
Start ✓   ✓ ✓  ✓ 

1 ✓  ✓  ✓  ✓ 

2 ✓  ✓  ✓ ✓ ✓ 

3 ✓   ✓ ✓ ✓ ✓ 

4 ✓  ✓  ✓ ✓  

5 ✓ ✓   ✓ ✓  

 ... … … … … ... … 

  

Table 3.1: Example for FM-structure exploration (excerpt)

FM-structure exploration is realized by Algorithm 3, which starts by randomly selecting an
arbitrary leaf feature f among all leaf features that are part of the current configuration (lines 5–
6). Then, the set of configurations Cf containing feature f is computed, while the sibling features
of feature f are gathered into a dedicated siblings set (line 7). While Cf is non-empty, the strategy
explores one randomly selected configuration from Cf and removes the selected configuration from
Cf (lines 11–13). If Cf is empty, then a new set of configurations containing a sibling feature of
f is randomly explored, provided such sibling feature exists (lines 15–17). If no configuration
containing f or a sibling feature of f is found, the strategy moves on to the parent feature of f ,
which is repeated until a configuration is found (line 13) or the root feature is reached (line 22).

1Note that this entails a random selection of the order of sub-features.
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Algorithm 3 FM-Structure Exploration Strategy
1: Set<Feature> leaves, configuration, siblings;
2: Set<Set<Feature>> Cf ; Feature f ;
3:

4: function InitFMExploration(FeatureModelM, Set<Feature> currentConfiguration)
5: leaves ← getLeaves(currentConfiguration);
6: f ← randomSelect(leaves);
7: Cf ← getConfigurationsWithFeature(f); siblings ← siblings(f);
8: end function
9:

10: function getNextConfiguration()
11: if Cf ̸= ∅ then
12: configuration ← randomSelect(Cf ); Cf ← Cf \ {configuration};
13: return configuration;
14: else
15: if siblings ̸= ∅ then
16: f ← randomSelect(siblings);
17: siblings ← siblings \ {f}; Cf ← getConfigurationsWithFeature(f);
18: else
19: if parent(f) ̸= ∅ then
20: f ← parent(f); siblings ← siblings(f);
21: Cf ← getConfigurationsWithFeature(f);
22: else // Root feature reached
23: return ∅;
24: end if
25: end if
26: return getNextConfiguration();
27: end if
28: end function

3.2.3 FM-Difference Exploration Strategy for System Evolution

To capture changes in the system’s adaptation space due to system evolution, we proposed the
FM-difference exploration strategy, which leverages the differences in feature models before (M)
and after (M′) an evolution step. Following the product line literature, we considered two main
types of feature model differences [Thüm 2009]:

Added configurations (feature model generalization). New configurations may be added to the
adaptation space by (i) introducing new features to M′, or (ii) removing or relaxing existing
constraints (e.g., by changing a sub-feature from mandatory to optional, or by removing cross-
tree constraints). In our running example, a new sub-feature Optimized might be added to the
DataLogging feature, providing a more resource efficient logging implementation. Thereby, new
configurations are added to the adaptation space, such as {DataLogging, Optimized, ContentDiscov-
ery, Search}. As another example, the Recommendation implementation may have been improved
and it now can work with the Min logging feature. This removes the cross-tree constraint shown
in Figure 3.1, and adds new configurations such as {DataLogging, Min, ContentDiscovery, Recommen-
dation}.

Removed configurations (feature model specialization). Symmetrical to above, configurations
may be removed from the adaptation space by (i) removing features from M, or (ii) by adding
or tightening constraints in M′.

To determine these changes of feature models, we compute a set-theoretic difference be-
tween valid configurations expressed by feature model M and feature model M′. Detailed
descriptions of feature model differencing as well as efficient tool support can be found
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in [Acher 2012, Bürdek 2016]. The feature model differences provide us with adaptation ac-
tions added to the adaptation space (M′ \M), as well as adaptation actions removed from the
adaptation space (M\M′). Our FM-difference exploration strategies first explore the configu-
rations that were added to the adaptation space, and then explore the remaining configurations
if needed. The rationale is that added configurations might offer new opportunities for finding
suitable adaptation actions and thus should be explored first. Configurations that were removed
are no longer executed and thus the learning knowledge can be pruned accordingly. In the re-
inforcement learning realization (see Section 3.2.1), we remove all tuples (s, a) from Q, where
a represents a removed configuration. FM-difference exploration can be combined with FM-
structure exploration, but also with ε-greedy. In both cases, this means that instead of exploring
the whole new adaptation space, exploration is limited to the set of new configurations.

3.3 Empirical Evaluation

3.3.1 Research Questions

We experimentally assessed our FM-guided exploration strategies and compared them with ε-
greedy as the strategy used in the literature. In particular, we aimed to answer the following
research questions:

RQ 1: How does learning performance and system quality using FM-structure exploration
(from Sect. 3.2.2) compare to using ε-greedy?

RQ 2: How does learning performance and system quality using FM-difference exploration
(from Sect. 3.2.3) compare to evolution-unaware exploration?
Subject Systems. Our experiments build on two real-world systems and datasets. The
CloudRM system is an adaptive cloud resource management service offering 63 features, 344
adaptation actions, and a feature model that is 3 levels deep. The BerkeleyDB-J system is an
open source reconfigurable database written in Java with 26 features, 180 adaptation actions and
5 levels.

CloudRM System. CloudRM [Mann 2016] controls the allocation of computational tasks to
virtual machines (VMs) and the allocation of virtual machines to physical machines in a cloud
data center2. CloudRM can be adapted by reconfiguring it to use different allocation algorithms,
and the algorithms can be adapted by using different sets of parameters. We implemented a
separate adaptation logic for CloudRM by using the extended learning algorithms as introduced
in Section 3.2.1. We defined the reward function as r = −(ρ·e+(1−ρ)·m), with energy consump-
tion e and number of VM manipulations m (i.e., migrations and launches), each normalized to be
within [0, 1]. We used ρ = 0.8, meaning we give priority to reducing energy consumption, while
still maintaining a low number of VM manipulations. Our experiments are based on a real-world
workload trace with 10,000 tasks, in total spanning over a time frame of 29 days [Mann 2018].
The CloudRM algorithms decide on the placement of new tasks whenever they are entered into
the system (as driven by the workload trace). For RQ 2, the same workload was replayed after
each evolution step to ensure consistency among the results. To emulate system evolution, we
used a 3-step evolution scenario. Starting from a system that offers 26 adaptation actions, these
three evolution steps respectively add 30, 72 and 216 adaptation actions.

BerkeleyDB-J. The BerkeleyDB-J dataset was collected by Siegmund et al. [Siegmund 2012]
and was used for experimentation with reconfigurable systems to predict their response times3.
We chose this system because the configurations are expressed as a feature model and the dataset
includes performance measurements for all system configurations, which were measured using
standard benchmarks4. Adaptation actions are the possible runtime reconfigurations of the sys-
tem. We define the reward function as r = −t, with t being the response time normalized to

2https://sourceforge.net/p/vm-alloc/task_vm_pm
3https://www.se.cs.uni-saarland.de/projects/splconqueror/icse2012.php
4Other datasets from [Siegmund 2012] had feature models with only 1 level, had many configurations associated

with the same response time, or did not include performance measurements for all configurations.

https://sourceforge.net/p/vm-alloc/task_vm_pm 
https://www.se.cs.uni-saarland.de/projects/splconqueror/icse2012.php
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Figure 3.3: Learning performance for large adaptation spaces (RQ 1)

be within [0, 1]5. Given the smaller size of BerkeleyDB-J’s adaptation space, we used a 2-step
evolution scenario to emulate system evolution. We first randomly change two of the five op-
tional features into mandatory ones, thereby reducing the size of the adaptation space. We start
from this reduced adaptation space and, randomly change the mandatory features back into op-
tional ones. Starting from a system that offers 39 adaptation actions, these two evolution steps
respectively add 20 and 121 adaptation actions.
Measuring Learning Performance. We characterize the performance of the learning process
by using the following metrics from [Taylor 2009]: Asymptotic performance measures the reward
achieved at the end of the learning process; Time to threshold measures the number of time steps
the learning process takes to reach a predefined reward threshold (in our case 90% of the difference
between maximum and minimum performance); Total performance measures the overall learning
performance by computing the area between the reward curve and the asymptotic reward. Given
the stochastic nature of the learning strategies (both ε-greedy and to a lesser degree our strategies
involve random decisions), we repeated the measurements 500 times and averaged the results.
Prototypical Realization. The learning algorithms, as well as the ε-greedy and FM-based
exploration strategies were implemented in Java. Feature model management and analysis were
performed using the FeatureIDE framework6, which we used to efficiently compute possible fea-
ture combinations from a feature model.
Hyper-parameter Optimization. To determine suitable hyper-parameter values (see Sec-
tion 3.2.1), we performed hyper-parameter tuning via exhaustive grid search for each of the
subject systems and each of the reinforcement learning algorithms. We measured the learning

5For CloudRM, the reward function was the opposite of the weighted sum of the metrics to be minimized,
where the sum of the weights is 1. Regarding BerkeleyDB-J, the same logic is applied, but since there is only one
metric to be minimized, the formula becomes simpler.

6https://featureide.github.io/

https://featureide.github.io/
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Asymptotic Time to Total Effect on

performance Threshold performance Quality

Q-Learning CloudRM Energy VM Manip.

ε-greedy: -0.6851 286 -8.8023 7084 2281

FM-structure: -0.6854 219 -5.4431 7077 2103

Improvement -0.04 % 23.43 % 38.16 % 0.10 % 7.80 %

SARSA

ε-greedy: -0.6885 390 -11.631 10602 3398

FM-structure: -0.6862 200 -4.9673 10578 3087

Improvement 0.33 % 48.72 % 57.29 % 0.23 % 9.15 %

Q-Learning BerkeleyDB-J Avg. Response Time

ε-greedy: -0.1834 383 -31.2457 3606

FM-structure: -0.1847 357 -28.0466 3550

Improvement -0.71 % 6.79 % 10.24 % 1.55 %

SARSA

ε-greedy: -0.1993 592 -46.8978 3824

FM-structure: -0.1958 457 -33.2211 3666

Improvement 1.76 % 22.80 % 29.16 % 4.13 %

Avg. Improv. Q-Learning -0.38 % 15.1 % 24.2 %

Avg. Improv. SARSA 1.05 % 35.8 % 43.2 %

Total Avg. Improvement 0.33 % 25.4 % 33.7 %

Table 3.2: Comparison of exploration strategies for large adaptation spaces (RQ 1)

performance for our baseline ε-greedy strategy for 11,000 combinations of learning rate α, discount
factor γ, and ε-decay rate. For each of the subject systems and reinforcement learning algorithms
we chose the hyper-parameter combination that led to the highest asymptotic performance. We
used these hyper-parameters also for our FM-guided strategies.

3.3.2 Results

Results for RQ 1 (FM-structure exploration). Figure 3.3 visualizes the learning process by
showing how rewards develop over time, while Table 3.2 quantifies the learning performance using
the metrics introduced above. Across the two systems and learning algorithms, FM-structure
exploration performs better than ε-greedy wrt. total performance (33.7% on average) and time
to threshold (25.4%), while performing comparably wrt. asymptotic performance (0.33%). A
higher improvement is visible for CloudRM than for BerkeleyDB-J, which we attribute to the
much larger adaptation space of CloudRM, whereby the effects of systematically exploring the
adaptation space become more pronounced.

For CloudRM, FM-structure exploration consistently leads to less VM manipulations and
lower energy consumption. While savings in energy are rather small (0.1% resp. 0.23%), FM-
structure exploration reduces the number of virtual machine manipulations by 7.8% resp. 9.15%.
This is due to the placement algorithms of CloudRM having a small difference wrt. energy
optimization, but a much larger difference wrt. the number of virtual machine manipulations.
For BerkeleyDB-J, we observe an improvement in response times of 1.55% (resp. 4.13%). This
smaller improvement is consistent with the smaller improvement in learning performance.



42 Chapter 3. Adaptation

Analyzing the improvement of FM-structure exploration for the different learning algorithms,
we observe an improvement of 24.2% (total performance) resp. 15.1% (time to threshold) for
Q-Learning, and a much higher improvement of 43.2% resp. 35.8% for SARSA. Note, however,
that the overall learning performance of SARSA is much lower than that of Q-Learning. SARSA
performs worse wrt. total performance (-23% on average), time to threshold (-27.6% on average),
and asymptotic performance (-3.82% on average). In addition, SARSA requires around 19.4%
more episodes than Q-Learning to reach the same asymptotic performance. The reason is that
SARSA is more conservative during exploration [Sutton 2018]. If there is an adaptation action
that leads to a large negative reward which is close to an adaptation action that leads to the
optimal reward, Q-Learning exhibits the risk of choosing the adaptation action with the large
negative reward. In contrast, SARSA will avoid that adaptation action, but will more slowly
learn the optimal adaptation actions. So, in practice one may choose between Q-Learning and
SARSA depending on how expensive it is to execute “wrong” adaptations.

CloudRM (3 evolution steps)
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Figure 3.4: Learning performance across system evolution (RQ 2)

Results for RQ 2 (FM-difference exploration). We compared FM-difference exploration
combined with ε-greedy and FM-structure exploration with their respective evolution-unaware
counterparts (i.e., the strategies used for RQ 1). It should be noted that even though we provided
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the evolution-unaware strategies with the information about the changed adaptation space (so
they can fully explore it), we have not modified them such as to differentiate between old and
new adaptation actions. Like for RQ 1, Figure 3.4 visualizes the learning process, while Table 3.3
quantifies learning performance. We computed the metrics separately for each of the evolution
steps and report their averages. After each evolution step, learning proceeds for a given number
of time steps, before moving to the next evolution step.

Asymptotic Time to Total Effect on

performance Threshold performance Quality

Q-Learning CloudRM Energy VM Manip.

ε-greedy:

FM-difference -2.0670 571 -39.1095 32393 10074

Evolution-unaware -2.0688 1147 -84.9052 32147 13745

FM-structure:

FM-difference -2.0697 756 -57.5157 32351 11439

Evolution-unaware -2.0699 866 -59.0660 32273 11798

Avg. Improvement 0.05 % 57.7 % 59.9 % -0.50 % 19.8 %

SARSA

ε-greedy:

FM-difference -2.1489 607 -39.3645 32566 10374

Evolution-unaware -2.2530 2018 -117.6577 32618 15756

FM-structure:

FM-difference -2.1723 955 -74.8560 32660 12641

Evolution-unaware -2.1834 723 -86.3582 32695 13911

Avg. Improvement 2.68 % 104.1 % 107.1 % 0.13 % 30.9 %

Q-Learning BerkeleyDB-J Avg. Response Time

ε-greedy:

FM-difference -0.3583 661 -52.7786 3270

Evolution-unaware -0.3582 774 -66.2526 3348

FM-structure:

FM-difference -0.3589 675 -58.2346 3301

Evolution-unaware -0.3588 693 -58.7939 3305

Avg. Improvement -0.02 % 9.88 % 13.2 % 1.24 %

SARSA

ε-greedy:

FM-difference -0.5111 999 -74.5953 3588

Evolution-unaware -0.5465 1195 -101.2446 3741

FM-structure:

FM-difference -0.4685 726 -61.6969 3514

Evolution-unaware -0.4732 818 -66.8781 3544

Avg. Improvement 3.97 % 16.2 % 22.1 % 2.56 %

Avg. Improv. ε-greedy 2.96 % 92.5 % 94.3 %

Avg. Improv. FM-structure 0.38 % 1.4 % 6.85 %

Total Avg. Improvement 1.67 % 47 % 50.6 %

Table 3.3: Comparison of exploration strategies across evolution steps (RQ 2)
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The FM-difference exploration strategies consistently performed better than their evolution-
unaware counterparts wrt. total performance (50.6% on average) and time to threshold (47%),
and perform comparably wrt. asymptotic performance (1.7%). Like for RQ 1, the improvements
are more pronounced for CloudRM, which exhibits a larger action space than BerkeleyDB-J.

For CloudRM, FM-difference exploration reduces the number of virtual machine manipula-
tions by 19.8% resp. 30.9%, while keeping energy consumption around the same as the non-
evolution-aware strategies. For BerkeleyDB-J, FM-difference exploration leads a reduction in
response time by 1.24% resp. 2.56%. Like for RQ 1, this smaller reduction is consistent with the
smaller learning performance.

The improvement of FM-difference exploration is more pronounced for ε-greedy than for
FM-structure exploration; e.g., showing a 94.4% improvement in total performance for ε-greedy
compared with an improvement of only 6.85% for FM-structure exploration. This suggests that,
during evolution, considering the changes of the adaptation space has a much larger effect than
considering the structure of the adaptation space. In addition, we note that due to the way we
emulate evolution in our experiments, the number of adaptations introduced after an evolution
step is much smaller (66 on average) than the size of the whole adaptation space of the subject
systems (262 on average), thus diminishing the effect of FM-structure exploration.

Analyzing the improvement of FM-difference exploration for the different learning algorithms,
we observed the same effect as for RQ 1. While FM-difference exploration shows a much higher
improvement for SARSA, the overall learning performance for SARSA is much lower than for
Q-Learning.

To facilitate reproducibility and replicability, our code, the used data and our experimental
results are available online7.

3.4 Discussion

Validity Risks. We used two realistic subject systems and employed real-world workload traces
and benchmarks to measure learning performance and the impact of the different exploration
strategies on the systems’ quality characteristics. The results indicate that the size of the adap-
tation space may have an impact on how much improvement may be gained from FM-structure
exploration.

We chose ε-greedy as a baseline, because it was the exploration strategy used in existing on-
line reinforcement learning approaches for self-adaptive systems [Barrett 2013, Caporuscio 2016,
Wang 2017, Zhao 2017, Wang 2019]. Alternative exploration strategies were proposed in the
broader field of machine learning. Examples include Boltzmann exploration, where actions with
a higher expected reward (e.g., Q value) have a higher chance of being explored, or UCB action
selection, where actions are favored that have been less frequently explored [Sutton 2018]. A com-
parison among those alternatives is beyond the scope of this article, because a fair comparison
would require the careful variation and analysis of a range of many additional hyper-parameters.
Completeness of Feature Models. We assume that feature models are complete with respect
to the coverage of the adaptation space and that during an evolution step they are always consis-
tent and up to date. A further possible change during service evolution can be the modification
of a feature’s implementation, which is currently not visible in the feature models. Encoding such
kind of modification thus could further improve our FM-guided exploration strategies.
Structure of Feature Models. One aspect that impacts FM-structure exploration is how
the feature model is structured. As an example, if a feature model has only few levels (and
thus little structure), FM-structure exploration behaves similar to random exploration, because
such a “flat” feature model does not provide enough structural information. On the other hand,
providing reinforcement learning with too much structural information might hinder the learning
process. As case in point, we realized during our experiments that the alternative FM-structure

7https://gitlab.com/cquinton/fmlearning

https://gitlab.com/cquinton/fmlearning
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exploration strategy from our earlier work [Metzger 2020] indeed had such negative effect for the
BerkeleyDB-J system. This alternative strategy used the concept of “feature degree”8 to increase
the amount of structural information used during learning.
Types of Features. Our approach currently only supports discrete features in the feature
models, and thus only discrete adaptation actions. Capturing feature cardinalities or allowing
numeric feature values is currently not possible, and thus continuous adaptation actions cannot
be captured.
Adaptation Constraints. When realizing the exploration strategies (both ε-greedy and FM-
guided), we assumed we can always switch from a configuration to any other possible configu-
ration. We were not concerned with the technicalities of how to reconfigure the running system
(which, for example, is addressed in [Chen 2014]). We also did not consider constraints con-
cerning the order of adaptations. In practice, only certain paths may be permissible to reach a
configuration from the current one. To consider such paths, our strategies may be enhanced by
building on work such as [Ramirez 2010].

3.5 Summary
In this chapter, we described exploration strategies for online reinforcement learning that use
feature models to give structure to the system’s adaptation space and thereby leverage additional
information to guide exploration. Our strategies traverse the system’s feature model to select
the next adaptation action to be explored and, by leveraging the structure of the feature model,
guide the exploration process. In addition, these strategies detect added and removed adaptation
actions by analyzing the differences between the feature models of the system before and after
an evolution step. Adaptation actions removed as a result of evolution are no longer explored,
while added adaptation actions are explored first. We thus provided a conceptual framework for
integrating reinforcement learning into the MAPE-K reference model of self-adaptive systems. In
particular, we integrated our strategies into both the Q-Learning and SARSA algorithms. We
validated our approach with an adaptive cloud service and a reconfigurable database system, two
systems differing in terms of their adaptation space, the structure of their feature model, and
their quality characteristics (response time instead of energy and virtual machine migrations).

Material related to this chapter

[ Realizing Self-Adaptive Systems via Online Reinforcement Learning and Feature-Model-
guided Exploration. Andreas Metzger, Clément Quinton, Zoltán Mann, Luciano Baresi, Klaus Pohl.
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[ Feature Model-Guided Online Reinforcement Learning for Self-Adaptive Services. Andreas
Metzger, Clément Quinton, Zoltan Adam-Mann, Luciano Baresi, Klaus Pohl. International Conference on
Service Oriented Computing, ICSOC 2020. Core rank: A.
� Best Paper Award.

[ Learning and Evolution in Dynamic Software Product Lines. Amir Molzam Sharifloo, Andreas
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We have conducted research on evolution and adaptation of configurable systems, which en-
compasses changes driven by new capabilities or by changing contexts, respectively. Another
compelling factor motivating change is performance optimization. As the number of features
grows, the number of configurations (i.e., the configuration space) also grows exponentially. Con-
sequently, there is a non-negligible probability that somewhere in this configuration space lies a
better-performing configuration. We thus needed a way to measure configuration performances
– with a specific focus on energy consumption (Section 4.2), in order to then suggest better
configurations to the developer (Section 4.3).

4.1 Background and Motivation
Measuring Energy Consumption of Software. While the energy consumption of hardware
components has been widely studied, software consumption only recently gained interest. By
driving and managing such hardware, software is now considered as a central concern when
aiming at reducing energy consumption [Noureddine 2015]. When dealing with green concerns of
software systems, the impact of such systems is often measured as power or energy consumption.
While power (P ) measures the instantaneous consumption in Watts, energy (E) reports on a
accumulated consumption over a given period in Joules [Pang 2016]. In this chapter, we will
present an approach to estimate and reduce energy consumption of SPL, expressed in Joules.
Thus, all our measurements represent the total energy consumed by products from this SPL,
independently of their execution time, which can vary depending on products.

Energy measurement tools usually estimate the energy consumption of the CPU rather than
the one of a specific software [Noureddine 2013]. Thus, identifying the share of the software
under study among the total energy consumption is not straightforward. To address this issue,
we first sample the CPU consumption for one second before the program starts. We define this
measurement as the idle energy consumption Pidle, which refers to the average power consumption
at rest. The general idea is to measure the energy consumed by the running software, Eraw, and
then substract Eidle = Pidle × Tmeasure from Eraw to get rid of the environment consumption.
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Enet = Eraw − (Pidle × Tmeasure) (4.1)

The resulting energy consumption, Enet, can then be associated to the software under study,
as depicted in Figure 4.1 and presented in Equation (4.1).

Figure 4.1: Raw vs. net energy consumption.

Open issues. Figure 4.2 presents an excerpt of the GPL-FH feature model that serves as
use case throughout Section 4.3. GPL-FH is a testbed, used in particular to evaluate different
implementations and algorithms that can be executed on a graph. The graph under test is
generated at runtime through the TestProg feature. GPL-FH exhibits 156 configurations for 37
features and 14 constraints. These features represent different characteristics of the generated
graph, such as Weighted or Unweighted, and cross-tree constraints define what algorithm can
be run depending on the implementation of the graph, e.g., MSTKruskal can only be run with a
WithEdges implementation.

Figure 4.2: Excerpt of the feature model of GPL-FH-Java.

When running a configuration, questions arise regarding its performance, such as: Are there
better ( e.g., faster or less consuming) configurations? If yes, is there one that is close enough
to the running one so it still complies with the user’s requirements? What would be the gain of
running this configuration? How to make sure changing feature(s) will not result in a worst config-
uration? In particular, those questions are due to the fact that the large number of configurations
makes picking the best configuration on the first try almost impossible, unless having the proper
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background knowledge of the configuration space. Developers usually do not have this background
knowledge and only consider less than 20% of the available configurations [Xu 2015]. Another
reason is the use of the default configuration or a legacy one, e.g., to make sure functional require-
ments are met. Running such a configuration does not guarantee running the optimal one; On
the contrary, it may result in running worst or incorrect configurations [Pereira 2021, Nair 2020].

In both cases, it is necessary to explore the configuration space to seek configurations providing
better performance. Yet, the size of the configuration space increases exponentially with the
number of functionalities, making this exploration impractical manually. There is thus a need for
an approach that optimizes the performance of an existing configuration while minimizing the
impact on functional requirements for such a configuration.

4.2 Reducing the Energy Consumption of a SPL

Unlike measuring the energy consumption of a software, measuring the energy consumption of
a SPL is a non-trivial task, as multiple related software—i.e., the products of the SPL—must
be measured. These products exhibit different properties, including energy consumption, while
sharing several features that perform differently in different contexts. The context of a feature
can either be external to the product containing this feature—i.e., the environment hosting the
product—or internal to the product. That is, a feature can exhibit different performances when
combined with different sets of features. Inferring the energy consumption of a single feature
by measuring it while running in one given product is therefore irrelevant and does not reflect
the energy consumption of that feature in the SPL. On the other hand, measuring the energy
consumption of a feature in each product individually is not feasible as some products may be
complex to measure, while measuring the consumption of each product from a large SPL is
not an option. To tackle these issues, we thus propose two approaches that estimate the energy
consumption of features by measuring products sampled from the configuration space of the SPL,
and then exploiting such sampled measures to reduce the energy consumption of any product from
the SPL.

Both approaches improve energy consumption of products by removing features or substituting
them with other ones. However, some features are included in a product to ensure its validity
with regard to the feature model, e.g., in or and xor relationships. We thus define Ff ⊂ F as the
set of features that are valid substitute features for a given feature f . These substitute features
are either sibling features of f in or and xor relationships, or features involved in or and xor used in
cross-tree constraints. On the other hand, some products may contain features due to functional
constraints (e.g., stakeholder’s requirements). Such features cannot be removed or substituted
and are hereafter referred to as required features. Thus, from the stakeholder standpoint, all
products are functionally equivalent if they contains the features required by this stakeholder.

4.2.1 Feature-wise Energy Analysis

Energy impact of individual features. To estimate the energy consumption of each feature
from the SPL, we first measure the energy consumption of every product from the sample, using
the method presented in Section 4.1. The energy consumption of each product is then reported
in a matrix n×m with n the features and m the products, by copying the energy consumption
of the product in the columns of each included feature. For instance, Matrix (4.2) defines f1
to fn as the available features, p1 to pm the sampled products, and Exy represents the energy
consumption of px if it includes fy, or is left empty otherwise.

By computing the median value of each column of the matrix, the relative energy consumption
Ẽ(f) of the feature f represented by this column can be estimated. The expected behavior
is that extreme energy consumption will cancel out and all features will have similar median
energy consumption. However, if the median consumption of a feature is higher or lower than
the other medians, then the presence of this feature tends to impact the performance of the
products that contain it. Although such a measure does not provide a very accurate reading, it
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can nevertheless be used to compare the energy consumption of different features and perform
preliminary optimizations, e.g., by selecting the less consuming feature among the substitutes of
each feature Ff . In the remainder of the chapter, we will refer to this method as the feature-wise
analysis.

f1 f2 · · · fn

p1

p2
...

pm


E11 E12 . . . E1n

E21 E22 . . . E2n

...
...

. . .
...

Em1 Em2 . . . Emn


Ẽ(f1) Ẽ(f2) · · · Ẽ(fn)

(4.2)

Feature-wise mitigation. Getting the most energy-efficient product including the required
features follows a two-steps process. First, all optional features of the products are removed, thus
only including the required features and the features requiring a substitution. Then, by leveraging
the feature-wise analysis, the energy consumption of the remaining non-required features can be
compared with their respective substitutes, to identify the one with the lowest consumption among
them. Each of the non-required features are replaced by the most energy efficient substitute. This
approach always converges toward an efficient product composed of no optional feature, including
only the features with the lowest energy consumption within each feature substitution set. The
product resulting from this mitigation strategy is the one with the lowest energy consumption
that can be obtained given an initial configuration.

4.2.2 Pairwise Energy Analysis
Energy impact of pairwise interactions. Although measuring the energy consumption of
each feature in isolation gives a general trend, it cannot be used to compute the energy con-
sumption of a combination of features (e.g., as the mean or the median of several individual
consumption) due to the feature interactions phenomenon [Siegmund 2012]. Indeed, numerous
work have shown that features interact with each other, hence impacting performances of prod-
ucts [Apel 2010, Apel 2011, Batory 2011, Siegmund 2012, Apel 2013, Siegmund 2015]. Therefore,
restricting the energy consumption analysis to individual features does not provide a comprehen-
sive landscape of a feature consumption, and additional analysis that consider feature interactions
must be performed to obtain additional details about the energy consumption. By analyzing how
the consumption of a feature evolves when this feature is combined with different features, it
is thus possible to highlight feature interactions leading to positive or negative impact on the
consumption of the product.

c1 c2 · · · cn

p1

p2
...

pm


E11 E12 . . . E1n

E21 E22 . . . E2n

...
...

. . .
...

Em1 Em2 . . . Emn


Ẽ(c1) Ẽ(c2) · · · Ẽ(cn)

(4.3)

A possible means to take pairwise feature interactions into account is by creating a new matrix
with as many columns as there are valid pairs of features in the SPL. The consumption of each
pair of features can be quantified by reporting on the energy consumption of each product in
the columns of the pairs of features that this product contains, as illustrated in Matrix (4.3). c1
to cn are all the valid pairs of features, p1 to pm the sampled products, and Exy is the energy
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consumption of px if it contains cy, or is left empty otherwise. To ensure a proper interaction
coverage—i.e., that all valid pairs of features are measured—the sampling of products must be
performed by an algorithm ensuring such coverage.

Following the same methodology as in the feature-wise analysis, the consumption of pairwise
feature interactions can be inferred by computing the median energy consumption Ẽ(c) of each
pair of features c. In the remainder of the chapter, we will refer to this method as the pairwise
analysis. It is worth noting that this method is not only valid for pairwise interactions, but can
also be used to deal with larger T -wise interactions of features.

Pairwise mitigation. Instead of replacing each feature by the substitute feature with the
lowest energy consumption, this second approach iteratively picks the alternative features whose
interactions with other features of the product results in a more energy-efficient product. At each
iteration, the approach identifies a feature to remove from the product and, if required, replaces
this feature.

To identify the feature f to be removed from a given product P , our approach relies on a
scoring system: the interaction score I. The interaction score of a feature f is computed by
considering all pairs of feature containing f in the product P , and by summing the observed
median energy consumption Ẽ(c) of these pairs, as described in Formula (4.4).1

I(f, P ) =
∑

g∈P | g ̸=f

Ẽ(gf) (4.4)

The iterations of this approach are realized as described by Algorithm 4. This algorithm
iterates over the set of features until no more improvement can be performed. That is, each
iteration removes or changes one feature in the product. At each iteration, the feature with the
highest interaction score in the product must be removed in priority. The algorithm starts by
sorting features by decreasing interaction score (line 9) and considers the first feature of the list
(line 10) as a removal candidate. If this removal feature is a user-required feature and cannot be
removed, it is skipped (line 14). If the removal candidate is not a required feature and must be
replaced (line 18), the replacement feature is identified among all possible substitutes—i.e., Ff—
by computing the interaction score of alternative features with regards to all remaining features
of the product—i.e., all but the removal candidate (lines 19 to 24). The selected replacement
feature is the one with the lowest interaction score among all alternative features. As a result of
the iteration, a new product is created by including the replacement feature (line 27).

However, if the removal candidate has the lowest interaction score, the replacement is dis-
carded and the algorithm skips the feature, which is kept in the product. If a feature is skipped—
i.e., it was either a requirement or already the best option, a new removal candidate is defined
as the next feature in the ordered list (line 35 and 12). Other features of the product will be
changed over the next iterations to accommodate this skipped feature. Once a modification has
been applied, the algorithm proceeds to the next iteration, unless a stop criteria is met: if a same
product appears twice over different iterations, or if all features were tested during an iteration
and no optimization was found (line 37).

Once a stop criteria is met, the energy consumption of the product resulting from each iteration
is measured in order to monitor the energy gain. As the different mutations of the product are
based on empirical data, which may be subject to imprecision and noise, it is possible that a
specific iteration worsens the performance of the product. For this reason, the last step of this
algorithm measures the energy consumption of the products resulting from each iteration. The
product finally returned by this algorithm is the one with the lowest energy consumption, which
may be the initial product in the worst case scenario (lines 22).

1The interaction score can also be used during the configuration process, e.g., to assist the user when selecting
the most energy efficient features when dealing with a partial configuration.
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Algorithm 4 Interaction mitigation
1: Input initialProduct : a product to improve
2: Output bestProduct : the best product from all iterations
3:

4: iterations.addProd(initialProduct)
5: improvable← true
6: while improvable do
7: currentProd← iterations.lastItem()
8: currentProd.removeNonRequiredOptionalFeatures()
9: sortedFeat← sortByInteractionScore(currentProd)

10: remCandIndex← 0
11: noChangeFound← true
12: while (remCandIndex < currentProd.size) ∧ noChangeFound do
13: remCandidate← sortedFeat.get(remCandIndex)
14: if ¬isRequirement(remCandidate) then
15: prodCandidate← copy(currentProd)
16: prodCandidate.remove(remCandidate)
17: subOptions← allFsub(remCandidate)
18: if subOptions then
19: currentBest← remCandidate
20: for subCandidate ∈ subOptions do
21: if I(subCandidate, prodCandidate) < I(currentBest, prodCandidate) then
22: currentBest← subCandidate
23: end if
24: end for
25: if currentBest ̸= remCandidate then
26: prodCandidate.addFeat(currentBest)
27: iterations.addProd(prodCandidate)
28: noChangeFound← false
29: end if
30: else
31: iterations.addProd(prodCandidate)
32: noChangeFound← false
33: end if
34: end if
35: remCandIndex++
36: end while
37: improvable← (remCandIndex < currentProd.size) ∧ allDifferent(iterations)
38: end whilereturn lowestEc(iterations)

4.2.3 Empirical Validation

In the previous section, we introduced two approaches to reduce the energy consumption of a
given product. In this section, we experimentally assess each of these approaches. In particular,
we aim to answer the following research questions:

RQ 1: Do our different analysis detect feature interactions impacting energy consumption?
By applying the two approaches on the same set of products, it should be possible to determine
whether feature interactions have been detected as the two analysis methods should provide
different results.

RQ 2: How effective are our approaches to reduce the energy consumption of a product? The
two proposed approaches rely on different analysis methods to mitigate energy consumption of
products. We propose two experiments to ensure both of them improve the consumption of the
products given a set of required features and evaluate how they differ.
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To assess the effectiveness of our solution when measuring energy consumption of a soft-
ware product line, we performed our experiments on RobocodeSPL, a software product line
designed to yield robots for Robocode [Martinez 2018]. Robocode is an environment in which
community-developed robots fight against each other in battles. A battle is composed of several
rounds, and rounds have a time granularity of turns. During a turn, each robot taking part in
the battle computes its next action and sends it to the Robocode engine which executes them
all and proceeds to the next turn. A round ends when only one robot survives, and the winner
of a match is the robot which caused the most damages to its opponents through the different
rounds.

The RobocodeSPL proposes several implementations for the 5 mandatory features a robot
requires to run properly—i.e., radar, targeting, movement, enemy selection and gun. For instance,
a movement can follow linear or circular patterns, follow the walls, or ram the opponent, among
others. There are also 3 optional features related to resource management (e.g., not spending
more in-game energy than the robots have), for a total of 92 features and 72 leaf features. The
number of valid products is 1.3 × 106. Figure 4.3 depicts an excerpt of the feature model of
RobocodeSPL.

Figure 4.3: Excerpt of the Feature Model of RobocodeSPL.

To evaluate our approach, we launched multiple robot matches and ran our mitigation tech-
niques to minimize the energy consumption of such matches. In particular, we launched matches
opposing a sampled robot and a reference robot, the sample.Wall robot, considered as the
strongest robot provided by Robocode2. As the goal was to minimize the energy consump-
tion, we were not interested in which robot wins or loses the match, but in the overall energy
consumption of such a match. In order to fill the pairwise analysis matrix, the sample must
contain several occurrences of each valid pair of features from the feature model. To ensure
such a coverage, we relied on the T-wise algorithm ICPL [Johansen 2012] with T = 2 to sam-
ple the configuration space of RobocodeSPL. Another sampling technique may provide better
uniform random samples [Kaltenecker 2020, Munoz 2019], but such techniques do not meet our
coverage requirements. This algorithm generated 602 robots, hereafter referred to as the training
sample. For each couple (sampled robot, reference robot), we ran 10 matches to consolidate the
performance data, resulting in a total of 6, 020 matches of 1 round.

We used JJoules,3 a Java tool using the RAPL device of Intel CPU, to measure the energy
consumption of the matches. JJoules is also able to monitor the energy consumption of the
DRAM, while other tools can monitor other components, such as Hard Disk Drives. As Robocode
is mainly CPU-intensive, we decided to focus on the energy consumption of the CPU. The energy
consumption was monitored from the start to the end of each match, thus including the energy
consumed by both robots, but excluding the energy consumption of the startup and shutdown of
Robocode. All measurements were obtained from a machine running the Manjaro Linux distri-
bution with an Intel i5 CPU at 2.9GHz and 8GB of RAM. Results, input data and instructions
to reproduce these experiments are available online.4

2According to the Robocode Wiki: https://robowiki.net/
3https://github.com/powerapi-ng/j-joules
4https://doi.org/10.5281/zenodo.5048316

https://robowiki.net/
https://github.com/powerapi-ng/j-joules
https://doi.org/10.5281/zenodo.5048316
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(a) Energy consumption per targeting feature. (b) Energy consumption per movement feature.

(c) Energy consumption per targeting features when
feature LinearRammingMovement (M7) is selected.

(d) Energy consumption per movement features
when feature NoTargeting (T6) is selected.

Figure 4.4: Energy variations between the movement and targeting features and their potential
interactions.

4.2.4 Results

Detecting interacting features. The pairwise analysis relies on feature interactions to miti-
gate energy consumption of products. The goal of this first experiment is therefore to ensure that
the pairwise analysis is able to detect at least one occurrence of feature interaction. The first
experiment thus compares the energy consumption of the Movement and Targeting features in
different contexts—i.e., in the presence of different sets of other features. Figure 4.4 depicts how
the energy consumption of different features evolves depending on the analysis method.5 Fig-
ures 4.4a and 4.4b report on the energy consumption (measured with the feature-wise analysis)
of the products from our training sample containing respectively each targeting and movement
feature. Among the targeting features, T4, T6 and T17 induce an higher energy consumption
than the others, but most features show similar energy consumption, around 3 Joules. Among
the movement features, M1, M20 and M26 impose the highest energy consumption, around 6
Joules, while M6, M7 and M8 report on the lowest one, slightly above 2 Joules.

These differences in energy consumption can partially be explained by the functional behavior
of these features. For instance, T6 (NoTargeting) performs no particular operation and always
makes the robot shoot forward—i.e., in the direction it is aiming at. This is not a smart behavior
and the energy consumed by matches involving this feature depends on how fast the opponent

5Mapping to real feature names available in the open data
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is able to destroy this robot. By contrast, T13 (TargetAdvancingVelocitySegmentation) tries to
anticipate the position of the opponent based on its speed and direction to ensure that the bullet
and the opponent collide. Thus, a robot configured with T13 is able to win quickly, reducing the
energy consumption despite the additional computations required to anticipate the position of
the opponent.

Figure 4.4c presents the energy consumption of each targeting feature when the feature Linear-
RammingMovement is selected—i.e., M7, the most energy efficient movement feature. This figure
is obtained by selecting all measurements of M7 in Figure 4.4b, and breaking them down per
targeting feature. M7 being the best movement feature, the consumption of products containing
each targeting feature is either improved or unchanged when M7 is selected. However, when tar-
geting features are sorted by median energy consumption, their rank change depending on the
context. For instance, T21 is ranked 3rd by the feature-wise analysis, but becomes 16th when
M7 is selected. T13 is ranked 19th out of 23 by the feature-wise analysis, but 1st in the pairwise
analysis when M7 is selected. Furthermore, the median energy consumption of the couple of M7
and T13 is 1.8J, which is lower than the medians of both of these features alone, respectively 2.2
Joules and 3.6 Joules. Therefore, despite M7 being the best movement feature, its performance
can still be improved by selecting a relevant targeting feature.

As shown by the feature-wise analysis in Figure 4.4b, products including M9 and M12 have
similar median energy consumption—i.e., respectively 3.9 Joules and 3.7 Joules. However, when
paired with NoTargeting (T6), one of the worst targeting features, their consumption evolve differ-
ently, as depicted in Figure 4.4d. The energy consumption of products including M9 is reduced
from 3.9 Joules to 3.3 Joules, while the one for products including M12 dramatically increases
from 3.7 Joules to 10.6 Joules. Thus, despite being considered a sub-optimal choice by the feature-
wise analysis, T6 becomes an efficient choice when paired with M9. The pair composed of T6 and
M8 is another occurrence of pairwise interaction outperforming both of its members (2 Joules
instead of 4.5 Joules and 2.2 Joules, respectively). This result can be explained by the behavior
of the features: M8 is a ramming movement feature, meaning that it is always moving toward the
opponent. In this context, the behavior of NoTargeting—i.e., always shooting forward—is very
efficient, as it always hits the opponent.

Such changes in the resulting energy consumption with couple of features outperforming both
of their members alone show that the energy consumption of targeting and movement features
changes depending on how they are paired. Therefore, it highlights feature interactions between
the targeting and movement features in RobocodeSPL. This experiment thus unveiled occur-
rences of feature interactions allowing us to answer RQ 1 positively: the pairwise analysis is
able to detect interactions significantly impacting the energy consumption of products, and such
interactions were not detected by the feature-wise analysis.

Behavior without required feature. The purpose of the second experiment is (i) to ensure
the two mitigation approaches lead to a product different from the initial one, and (ii) to evaluate
the energy consumption improvement resulting from these approaches. The first experiment
showed that the feature-wise and pairwise analysis provide different results, due to their different
granularity levels. It is yet to determine if the products resulting from their respective mitigation
exhibit different energy consumption.

As explained in Section 4.2.2, the feature-wise analysis converges toward a specific product
composed of no optional feature, and the features with the lowest energy consumption in each
substitution set. In RobocodeSPL, considering our optimization goal, i.e., reducing the energy
consumption against sample.Wall, and without any required feature, this product is composed
of the features TurnMultiplierLock, DistanceSegmentation, LinearRammingMovement, StrongestSe-
lectEnemy, and NoFireGun. Whatever the initial product considered for improvement, the feature-
wise analysis will always return this product, hereafter referred to as the Best Theoretic product,
BT0.

By applying the pairwise analysis on this product, we can determine how the pairwise analysis
compares to the feature-wise analysis in the absence of required features. The result of this
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Figure 4.5: Improving the product resulting from the feature-wise analysis with the pairwise one.

experiment is depicted in Figure 4.5, where BT0 consumes 2.8 Joules. The pairwise analysis
performed three iterations before reaching a stop criteria and returning the best product of the
different iterations (BT2), whose energy consumption is 1.9 Joules, i.e., 29% lower than BT0.

This experiment provides a partial answer to our second research question RQ 2: the pairwise
analysis outperforms the best product of the feature-wise analysis by 30%, when there is no
required feature.

Behavior with required features. To complete this partial answer, the third experiment
is a variant of the previous experiment that takes required features into account. The purpose
of this experiment is (i) to ensure the changes our approaches perform on a product containing
required features effectively reduce the energy consumption of such a product, and (ii) to evaluate
these reductions. The products resulting from both approaches depend on the initial product,
and on which features are required in this product. Therefore, by contrast to the previous
experiment, it is not possible to assess our approaches with only one initial product. Thus, we
used the FeatureIDE Product Generator to produce a sample of 520 random products—i.e., 1
product tested for 2, 500 products of the SPL—hereafter referred to as the validation sample. To
mimic a real use case, we defined a random feature (based on the java.util.Random class) as a
requirement in each of these products.

Relying on the consumption data measured on the training sample presented in Section 4.2.3,
we applied our two energy mitigation approaches on each product from the validation sample. We
evaluated how the products resulting from both approaches perform compared to their respective
initial product. The feature-wise analysis generated 520 products, and the pairwise analysis
generated 2,687 products—i.e., a mean of 5 iterations per initial product. By design, the result
of the first iteration of the pairwise analysis is the initial product, thus all initial products are
included in these 3,207 products. We computed the performance of a product as its median
energy consumption over 10 matches, for a total of 32,070 matches. Figure 4.6 presents the
energy consumption of the products resulting from each analysis (on the vertical axis) depending
on the energy consumption of the initial product (on the horizontal axis). Products that are on
the improvement threshold line (x = y, identity line) performed the same as the initial product,
meaning that the corresponding approach failed to reduce its consumption and returned the initial
product. Products that are strictly below the improvement threshold line performed better than
their respective initial products.
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Figure 4.6: Energy consumption of the products resulting from both analysis.

The feature-wise analysis improved the performance of 375 products from the validation sam-
ple (72%), while the pairwise analysis improved the performance of 501 products (96%). For 127
products (24%), the pairwise analysis found improvement when the feature-wise analysis failed.
For 1 product (0.2%), the feature-wise analysis found improvement while the pairwise did not.
Additional analysis on this specific product tend to exclude noise or measurement error as a cause
for this exception.

Figure 4.7: Relative gains of the pairwise and feature-wise analysis.

To get a better view on the efficiency differences between the two approaches, Figure 4.7
depicts their respective relative gains—i.e., by how much they reduced the energy consumption
of the initial products. In the feature-wise analysis, the end of the first quartile is still at 0%, as
it improved 72% of the products, whereas with the pairwise analysis the end of the first quartile
is already near a 24% gain. The median gain of the feature-wise analysis is 20%. Regarding
the pairwise analysis, such a gain is reached before the second quartile. Therefore, only half of
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the products resulting from the feature-wise analysis obtained gains higher than 20%, while the
pairwise analysis improved more than three quarters of products by such a gain. Similarly, half of
products improved by the pairwise analysis were improved by 40% or more, while the feature-wise
analysis had such a gain for only a quarter of products. The maximum gain is similar for both
approaches: 82% and 86%, respectively.

(a) Worst initial product. (b) Best initial product.

Figure 4.8: Focus on the best and worst initial products from the validation sample.

Figure 4.8 presents how both approaches performed on two products: those with the worst and
best initial energy consumption in the validation sample. The initial product is designated with
the subscript 0 (e.g., WP0 in Figure 4.8a). The different iterations of the pairwise analysis on the
two products are designated with their respective index (WP1 to WP4 and BP1 to BP3), while
the result of the feature-wise analysis used as comparison is designated with the subscript FW
(WPFW and BPFW , respectively). Figure 4.8a depicts the product WP0 with the worst initial
energy consumption, 12 Joules. The pairwise analysis performed 4 iterations before meeting a stop
criteria. Most of the gains are obtained after the first iteration, with WP1 reducing the energy
consumption by 78%. WP2 and WP3 brought additional gains of 32% and 3% on their preceding
iteration, respectively. However, WP4 increased the energy consumption by 8%, resulting in WP3

being returned by the pairwise analysis, with an energy consumption 86% lower than WP0. The
feature-wise analysis returned a product WPFW with an energy consumption 82% lower than for
WP0. The energy consumption of the product WP3 resulting from the pairwise analysis is 21%
lower than the product WPFW resulting from the feature-wise analysis. Figure 4.8b depicts
the product BP0 with the best initial energy consumption, 1.6 Joules. This product is more
challenging for both of our approaches, as none of them found any optimization. The pairwise
analysis performed 3 iterations with energy consumption 14%, 2% and 18% higher than BP0,
respectively. The energy consumption of the product BPFW resulting from the feature-wise
analysis is 83% higher than BP0. As both approach fail to find optimization, they return the
initial product BP0.

These results complete the partial answer to our second research question RQ 2: Both ap-
proaches are able to improve products, with and without required features, and the pairwise
analysis outperforms the features-wise approach. Overall, both of our approaches succeed in
improving products from RobocodeSPL, with or without constraints. The feature-wise and
pairwise analysis thus provided useful input data about energy consumption of features and cou-
ple of features, that could then be used to improve products through the feature-wise and pairwise
mitigation processes. The pairwise analysis improved more products than the feature-wise anal-
ysis, and led to higher gains. However, although less efficient than the pairwise analysis, the
feature-wise analysis is more straightforward to setup, and can be used as a first intent to reduce
energy consumption. It is especially relevant in the absence of feature interactions, or in systems
where pairs of features are too numerous to be exhaustively measured.
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4.2.5 Discussion
Validity Threats. To assess our approach, we ran our experiments on a specific SPL
(RobocodeSPL) to measure and reduce the energy consumption of real-world products de-
rived from this SPL. Results, such as the success rate or the relative gains, are thus only related
to this single system, and cannot be generalized. Nonetheless, our contribution can be easily
applied to any SPL. The improvements resulting from applying our approaches to other SPL
will depend on the initial energy consumption of products and the impact of feature interactions
on these products. A second threat to validity lies in the training sample considered. To avoid
measuring all products of the SPL, we sampled the configuration space and measured 602 prod-
ucts, which is only 0.05% of all valid products. Such a small sample may prevent the detection
of some feature interactions and therefore, energy optimization hotspots. Still, it is worth noting
that despite the low number of analyzed products, significant gains were obtained on the vast
majority of products using our approaches.

Limitations. During the pairwise mitigation process, products are changed over several itera-
tions. However, it might be possible that the optimal change in a given iteration prevents further
improvements in the next iterations, e.g., a sub-optimal change in that iteration might lead to
further and greater improvements in the long term. Furthermore, this algorithm removes all non-
required optional features, without taking into account their hypothetical positive interactions in
the product. It does not either consider the possibility to add an optional feature to improve the
energy consumption of the product.

Extensions to feature models have been developed to convey information about features, e.g.,
attributes. Extended feature models could thus be used to assign consumption data on features,
in order to automatically apply optimizations. However, the adoption of such extensions may
raise some challenges when dealing with consumption metrics associated to pairs of features.

In the green computing domain, a commonly-used means to reduce energy consumption of
software is by refactoring inefficient code—i.e., making it more efficient without changing its func-
tional behavior. Although our analysis methods highlight features or pairs of features with high
energy consumption, they do not provide fine grained feedback nor means to identify what causes
such non energy-inefficient products at low-level, e.g., inefficient code or unexpected behavior.

The energy consumed to obtain the measurements for our experiments (i.e., the training
sample of 602 products) amounts to 24, 328 Joules. In comparison, the highest energy saving
among the 520 products of the validation sample is 10 Joules per match. Hence, we can consider
that our approach is profitable after 2, 433 matches in the best case scenario where energy savings
are high. This might seem a significant number at first, but this result must be considered keeping
in mind the 1.3×106 products of the SPL that can benefit from these measurements. In addition,
it cannot be generalized to others SPL since this profitability threshold tightly depends on the
number of features and products of the analyzed SPL.

Finally, the pairwise analysis method relies on a sample of products containing all pairs of
features. As the number of features in the SPL grows, the number of pairs had a quadratic
growth. For larger feature models, the use of heuristics to identify interactions between pairs of
feature may proves necessary.
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4.3 Configuration Optimization with Limited Functional
Impact

Through the research presented in the previous section, we have established the groundwork for
measuring performance related to (pair of) features. Subsequently, we explored ways to leverage
these measurements to suggest better-performing configurations. The Iterative Configuration
Optimization (ICO) approach discussed in this section thus builds upon the energy consumption
reduction method presented in the previous section. In particular, ICO addresses its limitations,
discussed above. We thus extended the method explained in Section 4.2 with a support for multi-
objective optimization while handling cross-tree constraints in its optimization process. The
core idea is as follows: From an initial configuration, ICO explores the remaining configuration
space in search of configurations that (i) are neighbors of the initial configuration, (ii) comply
with the user’s functional requirements (i.e., features that have to be selected or excluded) and
(iii) optimize given performance indicators. It then provides optimization suggestions to the
developer.

4.3.1 Optimizing Configurations
To perform the optimization process, ICO relies on the performance of each feature regarding all
the considered metrics. That is, as shown by Equation 4.5, the overall performance P of a feature
f with respect to n metrics is the sum, for each metric, of pif the normalized performance of the
feature regarding this metric, multiplied by wi the weight associated to this metric and by di the
objective optimization for this metric, i.e., 1 or −1, respectively to maximize or minimize.

Pf =

n∑
i=1

diwipif (4.5)

As interactions between features impact performance [Siegmund 2012], ICO is able to opti-
mize configurations w.r.t tuples of features of any size, in which case f defines a tuple of features
instead of a single one. The performance of a configuration is then computed as the average
performance of features - or tuples of features in interaction-wise optimization - contained in this
configuration.

The ICO approach is realized by Algorithm 5, which takes the set of features, the list of
constraints and the initial configuration as input to compute a set of improvement suggestions.
The algorithm starts by creating a set of candidate configurations for the configuration to optimize
(lines 7– 15). Candidate configurations are the set of configurations that are one change away from
the initial configuration, i.e., neighbor configurations, since they differ by the selection/deselection
of one feature. For instance, a GPL-FH configuration for a Weighted graph is a neighbor of
the same configuration where Unweighted graph is selected since both features are mutually
exclusive. In a general way, each unselected feature leads to a candidate configuration where this
feature is selected (lines 7– 9), each selected feature leads to a candidate configuration where
this feature is unselected (lines 10– 12), and each exclusive relationship of both a selected and
unselected features leads to a candidate configuration where the selected feature is deselected
and the unselected one is selected (lines 13– 15). Candidate configurations are then ordered by
performance gain (line 16), and finally filtered regarding their validity and performance (line 18),
to ensure that the returned suggestions (i) cannot turn a valid configuration into an invalid one
and (ii) can only improve the performance of the configuration, according to the performance
model6.

For each candidate configuration, the algorithm then computes the difference between this
candidate configuration and the initial one (line 19). This difference takes the form of a feature
to add or a feature to remove – or both, and its estimated performance gain. As a result, the
algorithm provides a set of improvement suggestions, ordered by potential performance gains.

6The computation of the performance model is out of the scope of this chapter. Yet, we discuss this particular
point in Section 4.3.4.
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Algorithm 5 ICO optimization algorithm
1: Input: features, constraints, conf init;
2: Output: suggestions
3: candidates← ∅
4: suggestions← ∅
5: addable← (features\conf init)\constraintsexclude
6: removable← conf init\constraintsinclude
7: for rem ∈ removable do
8: candidates← candidates ∪ newConfig(conf init\rem)
9: end for

10: for add ∈ addable do
11: candidates← candidates ∪ newConfig(add ∪ conf init)
12: end for
13: for add ∈ addable, rem ∈ removable do
14: candidates← candidates ∪ newConfig(addable ∪ conf init\removable)
15: end for
16: candidates← sortByPerfGain(candidates)
17: for c ∈ candidates do
18: if isValid(c, constraints) ∧ perf(c) > perf(conf init) then
19: suggestions← suggestions ∪ diff(c, conf init)
20: end if
21: end for
22: return suggestions

For instance, a possible suggestion for a GPL-FH configuration is to replace the Undirected
feature by the Directed feature which offers better performances, while other features remain
unchanged. The approach can thus be entirely automated by applying, while new suggestions are
provided, the one providing the highest performance gain. ICO also offers an interactive mode,
where developers select the suggestion to apply according to their functional requirements and
domain knowledge.

4.3.2 Empirical Validation

The ICO approach has been implemented in the ICO tool suite. This tool suite has been built
with the objectives of (i) providing developers with feedback about the performances of a given
configuration and (ii) providing suggestions to optimize its performance by adding or removing a
feature. ICO is composed of three software components: (1) ICOlib, a Java implementation of
the proposed approach; (2) ICOcli, a command-line interface; and (3) ICOplugin, an Eclipse
plugin. The ICO tool suite takes as input a configuration, a feature model and performance files,
and then returns optimized configurations based on the suggestions provided by Algorithm 5. Fig-

Configuration, Feature model, Performances

ICOpluginICOcli

ICOlib

FeatureIDE

Optimized configuration

Figure 4.9: The architecture of the ICO tool suite.
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ure 4.9 provides an overview of the architecture of ICO: through either ICOcli or ICOplugin,
user instructions are sent to ICOlib which then performs various operations.

The tool suite is centered on ICOlib, a Java library that exposes the API managing all
operations that can be performed with ICO: loading a project, displaying current performances,
managing constraints (i.e., the lists of features required or excluded by the developer), listing
or applying improvement suggestions and saving the new configurations. In particular, ICOlib
delegates to the FeatureIDE [Thüm 2014] library the responsibility to load, update, validate and
save the configurations. Taken as a standalone component, ICOlib can be integrated as a Java
dependency into any tool requiring an implementation of Algorithm 5. ICOplugin is an Eclipse
Plugin developed to interact with ICOlib and implemented as an Eclipse view. It thus provides
a GUI that assists developers when seeking optimized configurations, in particular by proposing
visual feedback on suggested optimizations. ICOcli is a command-line interface to interact with
ICOlib, enabling an in-depth exploration of the variability of the software and its performances.
It can be used directly by the developer or integrated into automated processes such as CI/CD.
The source code of ICO is publicly available7, and [Guégain 2023] covers the specifics of its
implementation.

Our goal is to assess the validity and effectiveness of our approach. In particular, we aim to
answer the following research questions:

RQ 1: Can any configuration be optimized? Considering a configuration space, we investigate
whether or not any configuration from that space can be optimized using our approach.

RQ 2: How effective is the ICO optimization approach? When the ICO approach provides
a better configuration, we measure the performance discrepancy between that configuration and
the initial one.

RQ 3: How many iterations does it take to optimize a configuration? We evaluate the
number of iterations of ICO required to converge from an initial configuration to its respective
optimal one.

We evaluated our approach on the real-world configurable system GPL-FH presented in
Section 4.1. This system was selected for several reasons. First, both its source code and feature
model are publicly available, and they seamlessly integrate as GPL-FH can be run from the
command line. Second, its feature model (presented in Figure 4.2) exhibits 156 configurations,
thus providing a large-enough configuration space for the optimization process to be significant.

The experiments consist in optimizing all 156 configurations regarding a pair of performance
indicators, namely the execution time (time) and the number of lines of code (LoC). This exhaus-
tive optimization highlights how the approach navigates through the configuration space. To not
interfere with the time measurements, the logging functionality that comes as a default option
of the GPL-FH system was disabled, as it might misrepresent the actual execution time. The
GPL-FH default number of vertices was changed from 10 to 3500 to yield a larger graph and
be able to properly measure the time, thus getting meaningful readings. The building time of
the graph itself is excluded from the time measurement, since constant across configurations. In
order to consolidate the measure of the time of each configuration, the experiment was repeated
20 times. Beyond that point, the average execution time converges.

The performance of each feature w.r.t LoC and time is computed according to the method
proposed in Section 4.1, i.e., the performance of a feature w.r.t a metric is the average performance
in this metric of configurations containing this feature. The global performance of each feature
(i.e., the performance taking all metrics into consideration) is then calculated using Formula 4.5.
Both metrics were given the same weight, while the optimization goal was set to a minimization
of both performance indicators. The optimization algorithm has then been applied on each of
the 156 configurations of GPL-FH: for each initial configuration, it seeks for a better neighbor
configuration that minimizes LoC and time. All measurements were performed on a machine with
an Intel Core i5 CPU at 2.9GHz and 8GB of RAM.

7https://gitlab.inria.fr/ico

https://gitlab.inria.fr/ico
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4.3.3 Results

The configuration space of GPL-FH has been exhaustively measured, providing insight into the
performance of each of the 156 configurations w.r.t LoC and time. Figure 4.10 presents such
performances. The best and worst time are respectively 0.09 and 23.4 seconds, while LoC ranges
from 282 to 632. The optimization of a configuration should thus provide higher variations in
time than in LoC, as the ratio between the worst and best readings for time (260) is orders of
magnitude higher than the one for LoC (2.2).

Investigating RQ1: Can any configuration be optimized? Applying the best suggestion
(if any) provided by Algorithm 5 to a given configuration results in either one of the following
situations: (S1) the configuration improved regarding both performance indicators; (S2) the
configuration improved regarding one performance indicator and worsened regarding the other;
(S3) the configuration did not improve nor worsen, i.e., ICO returned no suggestion; (S4) the
configuration worsened on both indicators8.
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Figure 4.10: Performance of each GPL-FH configuration w.r.t LoC and time (lower left corner
is better).

Table 4.1 summarizes the performance gains resulting from applying Algorithm 5 on the
GPL-FH configuration space regarding the four situations discussed above. Out of the 156
configurations, 138 were modified while 18 remained unchanged. Among the 138 modified config-
urations, 110 were improved regarding both performance indicators, and 16 regarding only one.

8Due to inaccuracies in the performance model. See Section 4.3.4 for further analysis.

Performance change Configurations Removed LoC Saved Time (s)

w.r.t indicators (Situation) Count % worst med. best worst med. best

Optimized - both indicators (S1) 110 70 5 69 129 ∼0 0,78 20,21

Optimized - one indicator (S2) 16 10 5 5 76 -1,35 -0,01 ∼0

Unchanged (S3) 18 12 - - - - - -

Worsened - both indicators (S4) 12 8 -69 -31 -31 -0,99 -0,74 -0,15

Table 4.1: The effect of ICO on the GPL-FH configuration space.
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As a matter of fact, all these 16 single-indicator optimizations relate to an improvement of LoC at
the expense of time. The remaining 12 configurations worsened on both performance indicators.

RQ 1: These results show the efficiency of ICO: only 8% of the configuration space could
not be improved by our approach. 12% remained unchanged as there was no way to further
optimize them, and 80% were successfully optimized.

Investigating RQ2: How effective is the ICO optimization approach? Figure 4.11
shows the performance gains when running ICO on the GPL-FH configuration space. As antici-
pated above, variations in time were more significant than the Loc-related ones, i.e., ranging from
+96,6% to -133,6% regarding time and from +26,5% to -17,7% regarding Loc. The 12 configu-
rations discussed in Table 4.1 worsen both performance indicators (situation S4) thus represent
a negative gain and as depicted below the horizontal axis and the left side of the vertical axis.
The figure highlights that the performance loss on such features is very limited when compared
to the performance gains in other situations.
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Figure 4.11: Performance gains for each GPL-FH configuration w.r.t LoC and time (top right
corner is better).

RQ 2: ICO provides efficient optimizations, especially for poorly performing configurations,
but can sometimes worsen configurations’ performance. Nevertheless, although worsened,
these configurations remain in the top-tier performance ranking.

Investigating RQ3: How many iterations does it take to optimize a configuration?
Since an initial configuration cannot be turned into an invalid one by Algorithm 5 (see line 18),
running the algorithm on each configuration of the configuration space thus results in a set
of optimized configurations which are a subset of the initial configurations. These optimized
configurations cannot be further optimized, as they have no neighbor configuration with better
performances. Based on this inclusion, it is then possible to build a directed graph representing
all successive iterations of the algorithm.

Figure 4.12 depicts such a graph for the GPL-FH case study, where each node represents
a configuration. For the sake of readability, nodes are placed on a relative logarithmic scale
representing their related configuration’s time and LoC, respectively on the vertical axis and
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Figure 4.12: ICO transition graph between configurations of GPL-FH. Configurations on a
relative logarithmic scale for readability, time on the vertical axis, LoC on the horizontal axis,
lower left is better.

on the horizontal axis. Each edge represents the application of the first suggestion returned
by Algorithm 5: the initial configuration is the source node for that edge, while the optimized
configuration resulting from applying this first suggestion is the target node. Thus, an edge
represents the removal of a feature, the addition of a feature, or the substitution of a feature by
another one. This graph is composed of 18 disconnected sub-graphs. Each sub-graph converges
towards one of the 18 configurations that could not be optimized and remained unchanged (see
Table 4.1, situation S3). These 18 configurations are thus local optima, and one of them is the
global optimum.

Table 4.2 shows the number of iterations of Algorithm 5 required by all configurations to
converge towards their related optimized configuration. As explained before, 18 configurations
remain unchanged and therefore do not need any iteration of the ICO algorithm to reach their
convergence point. Regarding the 138 other configurations, a single iteration drives 61 of them
(44.2%) toward their convergence point. That is, after one iteration, 79 configurations (more
than half the configuration space) have already converged. After a second iteration, 81% of
configurations have reached their convergence point. Up to five iterations are required to optimize
the whole set of configurations, but the last two iterations only apply to 3.8% of the configurations.
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Nb Iterations 0 1 2 3 4 5

Nb Configurations 18 61 48 22 6 1

Nb Configurations, cumulative 18 79 127 149 155 156

% remaining configurations 11.5 44.2 62.3 75.8 85.7 100

% total configurations 11.5 39.1 30.7 14.1 3.8 0.6

% total configurations, cumulative 11.5 51 81 95 99 100

Table 4.2: Applying ICO on the GPL-FH configuration space.

RQ 3: The number of iterations required by ICO to optimize a configuration is very lim-
ited, as (i) half of configurations are optimized after a single iteration and (ii) the number of
configurations yet to be optimized decreases dramatically after each iteration. In this exper-
iment, only 1 configuration required the maximum number of five iterations to be optimized.

4.3.4 Discussion
Performance Model. To perform its optimization process, ICO relies on a performance
model. This model provides an estimated performance for each feature, measured based on
the method proposed in Section 4.2. As the performance model is estimated, it may contain
measurement inaccuracies which in turn may impact the efficiency of the approach. For instance,
we observed that, while optimizing GPL-FH, the performance of twelve configurations worsened
after an iteration. When analyzing the initial and “optimized” configurations, we found out that
the twelve performance regressions were caused by the addition of either the feature Number or
Cycle. Both of these features happen to be present in all the configurations from C1, the cluster
of best-performing configurations. However, such good performances are actually not related
to Number or Cycle alone, but to the presence of other features in combination. The perfor-
mance model seems thus biased toward Number and Cycle, which causes inaccuracies during the
execution of ICO.

Validity Threats. To assess our approach, we ran our experiments on a specific configurable
system (GPL-FH) and optimized it based on specific metrics, i.e., minimizing the execution time
and the number of lines of code of configurations from this system. Results such as the perfor-
mance gains or the number of iterations are thus only related to this single system, and cannot
be generalized. Nonetheless, our contribution can be easily applied to any configurable system as
long as a feature model is provided. The optimization gains resulting from applying our approach
to other configurable systems will depend on the initial performance of each configuration for such
systems.

We ran the ICO optimization algorithm on the whole configuration space of GPL-FH. While
relying on an exhaustive performance model was convenient, we acknowledge that this may not
be practical for any case study, in particular regarding performance models of software systems
exhibiting larger configuration spaces. Yet, it is still possible to use our approach by sampling
or predicting performance models for such larger spaces, using approaches such as [Nair 2020,
Guégain 2021, Acher 2022].
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4.4 Summary
In this chapter, we first proposed a method to measure and reduce the energy consumption of
multiple products at once by sampling and analyzing a minimal set of products. In particu-
lar, our method distinguishes two approaches: one that considers the energy consumption of
individual features and one that takes pairs of features into account. The latter takes feature
interactions into consideration when measuring the energy consumed by a product to highlight
pairs of features that may cooperate or obstruct each other at a behavioral level, while altering
the energy spent to complete a task. This approach also suggests candidate features whose in-
teraction with user-required features exhibits lower energy footprint than the one produced by
the initial interaction. Based on this method, we then proposed an approach that optimizes a
configuration regarding multiple performance objectives. Contrarily to prior work that samples
or predicts performance models seeking for the best configuration of the whole configuration
space [Švogor 2019, Nair 2020, Kaltenecker 2020], our approach optimizes existing configurations
by maximizing performance gains while minimizing changes to such configurations. The objective
is to provide the developer with the best-performing configuration by altering as little as possible
the initial one, in order to remain as close as possible to the developer’s functional requirements.

Material related to this chapter

[ [TODO: JSS]. Edouard Guégain, Alexandre Bonvoisin, Clément Quinton. Submitted to Journal of
Systems and Software on October 2023.

[ ICO : A Platform for Optimizing Highly Configurable Systems. Edouard Guégain, Amir Taherko-
rdi, Clément Quinton. International Workshop on Automated and verifiable Software sYstem Development,
ASYDE 2023.

[ Configuration Optimization with Limited Functional Impact. Édouard Guégain, Amir Taherkordi,
Clément Quinton. International Conference on Advanced Information Systems Engineering, CAiSE 2023.
Core rank: A.

[ On Reducing the Energy Consumption of Software Product Lines. Édouard Guégain, Clément
Quinton, Romain Rouvoy. International Conference on Systems and Software Product Line Conference,
SPLC 2021.

õ On Reducing the Energy Consumption of Software Product Lines. Reusable artifacts, datasets
and experimental results available at https://zenodo.org/record/5048316.

� The ICO Tool Suite. Source code available at https://gitlab.inria.fr/ico.

https://zenodo.org/record/5048316
https://gitlab.inria.fr/ico




Chapter 5

Conclusion & Perspectives

Contributions

My research revolves around software variability. In this manuscript, I presented the research I
conducted in this domain and the related contributions. Said contributions were grouped into
three chapters.

In Chapter 2, we present tangible examples illustrating the impact of evolution on the
stability of a DSPL. Subsequently, we introduce a flexible approach that leverages a reference
architecture to incorporate evolution support into a DSPL. We provide two distinct implemen-
tations of this reference architecture, each catering to a different DSPL in separate domains.
One implementation targets a cyber-physical system, while the other addresses a runtime
monitoring system. These implementations utilize diverse means for managing variability. To
assess the feasibility and performance of our approach, we conduct a comprehensive evaluation
by simulating typical evolution scenarios for both DSPLs. The results demonstrate that both
implementations effectively identify inconsistencies introduced in a DSPL during runtime.
Moreover, we successfully apply our approach to a real-world automation software system DSPL
in the injection molding domain, thus highlighting its industrial applicability.

Moving on to Chapter 3, our research delves into the realm of variability-driven reinforce-
ment learning methodologies for achieving self-adaptation in presence of design time uncertainty.
We specifically tackle two issues concerning the exploration of adaptation actions in existing
solutions. Firstly, these solutions tend to explore adaptation actions randomly, resulting in
slow learning when numerous possible actions are available. Secondly, they lack awareness
of evolution, leading to delayed exploration of newly introduced adaptation actions during
evolution. To address these challenges, we propose innovative exploration strategies that employ
feature models. These strategies leverage the semantics of the feature model to effectively guide
exploration through the configuration space. Through our evaluation, we demonstrate that
our proposed strategies accelerate the learning process when confronted with a multitude of
adaptation actions and in the context of service evolution.

Finally, Chapter 4 investigates performance variations within configurable systems. Specif-
ically, our investigation centers on the influence of feature interactions on system performance,
with a specific emphasis on energy consumption. We introduce a method designed to measure
and mitigate the energy consumption of multiple variants at once, achieved through the sampling
and analysis of a minimal set of these variants. This approach enables the estimation of indi-
vidual feature energy consumption, shows the impact of feature interactions on variant energy
consumption, and suggests variants with reduced energy usage. Building upon these insights, we
propose an approach that guides the optimization of software performance across multiple ob-
jectives. This optimization strategy aims to recommend better performing configurations while
minimizing alterations to the initial configuration, thereby ensuring alignment with the initial
functional requirements.
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Perspectives

In this section, I quickly describe some of the perspectives to the work I presented in this
manuscript. These perspectives build on much of the work we’ve done on variability optimization,
and especially center on sustainable software development and evolution. I have already begun
looking towards green software product lines and the configuration of sustainable cloud-native
stacks in an attempt to better understand the role played by software variability to reduce energy
consumption of software. As of more recently, I have also begun to take an interest in the growing
field of large language models (LLM) for software engineering, to investigate how such models
can be leveraged and combined with variability management to better optimize software.

On the Impact of Cloud Services. Cloud computing, by facilitating resource sharing in large
data centers, has enabled the optimization of energy consumption. However, it does not prevent
the proliferation of data centers, posing the long-term risk of increased energy consumption and
carbon footprint. We address this observation from two perspectives.

• Cloud-native Software. Most efforts to improve energy efficiency of cloud computing have fo-
cused on hardware and infrastructure. This includes works on dynamic server consolidation,
hardware design with better power/performance trade-offs, and energy-aware scheduling al-
gorithms, among others. Through the ANR Distiller project, we are currently investigating
the design of microservices deployed in layered software stacks on top of cloud infrastruc-
tures to minimize resource waste and maximize efficiency. While existing approaches focus
on reducing the energy consumption of programming languages and libraries, there is still a
lack of knowledge on the energy consumed by each layer of the stack. As part of Alexandre
Bonvoisin thesis, we started focusing on the energy consumption of the data access layer,
in particular by studying the performances of different Object Relational Mapping (ORM)
libraries. Our current study shows significant differences between various ORM provider
configurations, impacting the energy consumption of the entire stack. Through several em-
pirical studies, we aim at exploring other layers of the stack (e.g., HTTP layer and REST
API) to provide developers with a recommender system which will guide them to apply
energy-efficient architectural patterns systematically for their microservices to be deployed
in the cloud.

• Computing with Boundaries. Together with a geophysicist from IRIS Instrument, France,
we recently started working on the materiality of our digital practices. Yes, our digital prac-
tices are deeply material. The worldwide rising demand for computing services indeed led
to a proliferation of digital devices. However, this demand for digital devices also entails a
significant dependence on the mineral resources required to manufacture them as hardware
components found in a wide range of devices, such as workstations, tablets, smartphones,
PCs, laptops, and even supercomputers, are made from critical minerals. Typically, a
smartphone requires 75 natural minerals, involving elements covering almost two-thirds of
the periodic table [Emsbo 2021, Pathak 2022]. In light of these considerations, we need
dedicated tools and methods to properly assess the mineral impact of digital devices.
While Life Cycle Assessment (LCA) are dedicated tools to “study of the environmental
impacts’ contribution of a product or service across its entire life cycle”1, we observe that
thorough analyses are still publicly scarce and that the resulting data quality greatly varies.
When openly available, their scope and system boundaries are not always explicitly stated,
and the uncertainty of the results is almost never quantified. We aim at exploring what
metrics and indicators could be used to capture the assessment of mineral impacts, and how
to share these metrics among several domains to understand and collectively act upon them.

1ISO 14040

https://www.iso.org/standard/37456.html
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Leveraging Large Language Models. We also want to explore emerging models of devel-
opment assistance, such as the so-called no-code, low-code approaches, or even code assistants.
These models, precisely Large Language Models (LLM), have recently increased in popularity, es-
pecially with the advent of ChatGPT. They provide support for accelerating initial development
phases, and can be used to improve code reliability.

• LLM Performances. However, LLM are not specifically designed with sustainability in
mind and the environmental footprint of the generated code is still to be studied. As a
first step towards this research goal, we started looking as part of Tristan Coignion thesis
at the performance of the code generated by such LLM. In particular, we investigated
temperature variations in LLM. The temperature of an LLM determines how creative the
model is and can affect the correctness of the code it generates. We thus explored how
changing the temperature of a LLM may also impact the performance of the generated
code, and showed that higher temperatures lead to an increased likelihood of generating
inefficient and slow code. As future work, we also plan to investigate the energy impact of
the generated code or the one of the coding assistants themselves. That is, measuring the
energy consumption of the code generated by the LLM, especially through the comparison
of multiple generations (which produce different generated code). Also, we would like to
evaluate the energy consumption of the LLM itself when used as a coding assistant, in
particular to assess whether it is worth relying on such an assistant regarding the energy
consumed by the generated code.

• LLM for Variability. The generative nature of LLM makes them good candidates to produce
various software variants. Several research topics are thus of interest in the field of LLM
for configurable systems. LLM can thus be used to synthesize software variations based
on requirements provided as prompts or high-level feature descriptions. When designing
a recommender system, LLM can leverage such requirements to suggest influential and
interpretable configuration options, helping developers make well-informed configuration
decisions. Similarly, LLM can be leveraged to build predictive models that estimate software
performance based on various configuration settings. These models will provide insights into
the complex relationships between configurations and system performance. Finally, we will
investigate the use of LLM for automatic feature identification and modeling within software
systems. We aim to develop techniques that can identify and represent configurable units
(features) effectively. All of these research directions need further inquiries to propose valid
approaches, as variations in prompts or temperature may introduce significant variability-
related issues and lead to incorrect generations.

Automated Browser Testing. Browsers are some of the most complex software ever built.
There are layers and layers of abstractions, optimizations and features that have taken thousands
of man years to build. Browsers and their features are rapidly developed with little interest or
caution to privacy issues, opening the door to fingerprinting (i.e., browser’s configuration recog-
nition) and other side-channel attacks. They are thus highly-configurable software and their
different configurations can introduce many issues. Furthermore, browsers are extensible through
extensions, and extensions can also introduce privacy bugs of their own that make users identifi-
able. However, despite the importance of privacy and the risks that your browser’s configuration
may be used to identify you, almost all of the privacy improvements have relied on purely manual
efforts. Building on the Am I Unique project2 and as part of Maxime Huyghe thesis, we would
like to address this issues by providing an extensible and automated browser testing platform.
We thus aim at proposing a platform that automatically explores browser configurations, exe-
cutes browsers and generates browser fingerprints that are analyzed to find privacy issues and
the components at fault, at development-time.

2The Am I Unique project https://amiunique.org

https://amiunique.org
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Variability Modeling and Knowledge Compilation. This line of work continues the re-
search conducted within the CPER Data Commode project and revolves around two research
directions. The first one is sampling large configuration spaces. When the configuration space of
a software becomes very large (and it can quickly reach millions of configurations), it becomes im-
possible to exhaustively verify and test all configurations. Therefore, sampling is necessary, and to
ensure that it is representative of the entire configuration space, it is desirable for it to be as ran-
dom and uniform as possible. Existing approaches propose random solutions that tend towards
optimal uniformity but cannot guarantee it. In contrast, we would like to propose a technique for
random uniform sampling where uniformity is guaranteed by constructing the representation of
the configuration space (in this case, a d-DNNF). The second research direction is about ordering
configurations regarding a certain objective function. While existing approaches only allows for
randomly enumerating the configuration space (also known as the all-SAT problem), we aim at
providing a method for ranked enumeration of the configuration space. Configurations would
thus be ranked according to an objective function, e.g., ranking the three less energy consuming
configurations.
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