N
N

N

HAL

open science

Towards new memory paradigms: Integrating

non-volatile main memory and remote direct memory

access in modern systems

Rémi Dulong

» To cite this version:

Rémi Dulong. Towards new memory paradigms: Integrating non-volatile main memory and remote
direct memory access in modern systems. Computer science. Institut Polytechnique de Paris; Univer-

sité de Neuchéatel, 2023. English. NNT': 2023IPPAS027 . tel-04426035

HAL Id: tel-04426035
https://theses.hal.science/tel-04426035
Submitted on 30 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04426035
https://hal.archives-ouvertes.fr

TELECOM

13 unine: I

Ky Université de Neuchatel iggm'
INSTITUT
POLYTECHNIQUE s
DE PARIS ‘Na. |P PARIS

Towards New Memory Paradigms:
Integrating Non-Volatile Main Memory
and Remote Direct Memory Access in

Modern Systems

NNT : 2023IPPAS027

Thése de doctorat de I'Institut Polytechnique de Paris
préparée a Université de Neuchatel (Suisse)

Ecole doctorale n°626 Ecole doctorale de I'Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

These présentée et soutenue a Neuchatel, le 18 Décembre 2023, par

REMI DULONG

Composition du Jury :

Thomas Clausen
Professeur, Ecole Polytechnique, Institut Polytechnique de Paris Président

Anne-Marie Kermarrec
Directrice de recherche, Ecole Polytechnique Fédérale de Lausanne Rapportrice

Noél De Palma
Professeur, Université Grenoble Alpes Rapporteur

Patrick Eugster
Professeur, Universita della Svizzera italiana Examinateur

Pascal Felber
Professeur, Université de Neuchatel Co-directeur de thése

Gaél Thomas
Directeur de recherche, Télécom SudParis, Institut Polytechnique de

. Co-directeur de thése
Paris

fe.
—
S,
O
o
;e
O
g
©
)
O
- -
I—

Abstract

Modern computers are built around two main parts: their Central Processing Unit
(CPU), and their volatile main memory, or Random Access Memory (RAM). The
basis of this architecture takes its roots in the 1970’s first computers. Since, this
principle has been constantly upgraded to provide more functionnality and per-
formance.

In this thesis, we study two memory paradigms that drastically change the way
we can interact with memory in modern systems: non-volatile memory and re-
mote memory access. We implement software tools that leverage them in order
to make them compatible and exploit their performance with concrete applica-
tions. We also analyze the impact of the technologies underlying these new mem-
ory medium, and the perspectives of their evolution in the coming years.

For non-volatile memory, as the main memory performance is key to unlock the
full potential of a CPU, this feature has historically been abandoned on the race for
performance. Even if the first computers were designed with non-volatile forms
of memory, computer architects started to use volatile RAM for its incomparable
performance compared to durable storage, and never questioned this decision for
years. However, in 2019 Intel released a new component called Optane DC Persis-
tent Memory (DCPMM), a device that made possible the use of Non-Volatile Main
Memory (NVMM). That product, by its capabilities, provides a new way of think-
ing about data persistence. Yet, it also challenges the hardware architecture used
in our current machines and the way we program them.

With this new form of memory we implemented NVCACHE, a cache designed for
non-volatile memory that helps boosting the interactions with slower persistent
storage medias, such as Solid State Drive (SSD). We find NVCACHE to be quite per-
formant for workloads that require a high granularity of persistence guarantees,
while being as easy to use as the traditional POSIX interface. Compared to file sys-
tems designed for NVMM, NVCACHE can reach similar or higher throughput when
the non-volatile memory is used. In addition, NVCACHE allows the code to exploit
NVMM performance while not being limited by the amount of NVMM installed in
the machine.

Another major change of in the computer landscape has been the popularity of dis-
tributed systems. As individual machines tend to reach performance limitations,

iii

Abstract

using several machines and sharing workloads became the new way to build power-
ful computers. While this mode of computation allows the software to scale up the
number of CPUs used simultaneously, it requires fast interconnection between the
computing nodes. For that reason, several communication protocols implemented
Remote Direct Memory Access (RDMA), a way to read or write directly into a distant
machine’s memory. RDMA provides low latencies and high throughput, bypassing
many steps of the traditional network stack.

However, RDMA remains limited in its native features. For instance, there is no
advanced multicast equivalent for the most efficient RDMA functions. Thanks to a
programmable switch (the Intel Tofino), we implemented a special mode for RDMA
that allows a client to read or write in multiple servers at the same time, with no
performance penalty. Our system called Byp4ss makes the switch participate in
transfers, duplicating RDMA packets. On top of Byp4ss, we implement a consen-
sus protocol named DiSMU, which shows the typical use of Byp4ss features and
its impact on performance. By design, DISMU is optimal in terms of latency and
throughput, as it can reduce to the minimum the number of packets exchanged
through the network to reach a consensus.

Finally, by using these two technologies, we notice that future generations of hard-
ware may require a new interface for memories of all kinds, in order to ease the
interoperability in systems that tend to get more and more heterogeneous and com-
plex.

Keywords: Non-Volatile Main Memory (NVMM), Remote Direct Memory Access
(RDMA), Memory disaggregation, In-network computing.

iv

Résumé

Les ordinateurs modernes sont construits autour de deux éléments : leur CPU et
leur mémoire principale volatile, ou RAM. Depuis les années 1970, ce principe a
été constamment amélioré pour offrir toujours plus de fonctionnalités et de per-
formances.

Dans cette these, nous étudions deux paradigmes de mémoire qui proposent de
nouvelles fagons d’interagir avec la mémoire dans les systemes modernes : la mé-
moire non-volatile et les acces mémoire distants. Nous mettons en ceuvre des ou-
tils logiciels qui exploitent ces nouvelles approches afin de les rendre compatibles
et d’exploiter leurs performances avec des applications concretes. Nous analysons
également I'impact des technologies utilisées, et les perspectives de leur évolution
dans les années a venir.

Pour la mémoire non-volatile, comme les performances de la mémoire sont essen-
tielles pour atteindre le potentiel d'un CPU, cette fonctionnalité a historiquement
été abandonnée. Méme si les premiers ordinateurs ont été concus avec des formes
de mémoire non volatiles, les architectes informatiques ont commencé a utiliser
la RAM volatile pour ses performances inégalées, et n’ont jamais remis en ques-
tion cette décision pendant des années. Cependant, en 2019, Intel a commercialisé
un nouveau composant appelé Optane DCPMM qui rend possible I'utilisation de
NVMM. Ce produit propose une nouvelle facon de penser la persistance des don-
nées. Mais il remet également en question 'architecture de nos machines et la ma-
niere dont nous les programmons.

Avec cette nouvelle forme de mémoire, nous avons implémenté NVCACHE, un
cache en mémoire non-volatile qui permet d’accélérer les interactions avec des
supports de stockage persistants plus lents, tels que les SSD. Nous montrons que
NVCACHE est particulierement performant pour les taches qui nécessitent une gra-
nularité élevée des garanties de persistance, tout en étant aussi simple a utiliser que
I'interface POSIX traditionnelle. Comparé aux systéemes de fichiers concus pour
NVMM, NVCACHE peut atteindre un débit similaire ou supérieur lorsque la mé-
moire non volatile est utilisée. De plus, NVCACHE permet aux programmes d’ex-
ploiter les performances de NVMM sans étre limité par la quantité de NVMM ins-
tallée sur la machine.

Un autre changement majeur dans le paysage informatique a été la popularité des

Résumé

systémes distribués. Alors que les machines ont individuellement tendance a at-
teindre des limites de performances, I'utilisation de plusieurs machines et le par-
tage des taches sont devenus la nouvelle facon de créer des ordinateurs puissants.
Bien que ce mode de calcul permette d’augmenter le nombre de CPU utilisés si-
multanément, il nécessite une connexion rapide entre les nceuds de calcul. Pour
cette raison, plusieurs protocoles de communication ont implémententé RDMA, un
moyen de lire ou d’écrire directement dans la mémoire d’'un serveur distant. RDMA
offre de faibles latences et un débit élevé, contournant de nombreuses étapes de la
pile réseau.

Cependant, RDMA reste limité dans ses fonctionnalités natives. Par exemple, il
n’existe pas d’équivalent de multicast pour les fonctions RDMA les plus efficaces.
Grace a un switch programmable (le switch Intel Tofino), nous avons implémenté
un mode spécial pour RDMA qui permet de lire ou d’écrire sur plusieurs serveurs
en méme temps, sans pénalité de performances. Notre systéme appelé Byp4ss
fait participer le switch aux transferts, en dupliquant les paquets RDMA. Grace a
Byp4ss, nous avons implémenté un protocole de consensus nommé DISMU. De par
sa conception, DISMU est optimal en termes de latence et de débit, car il peut ré-
duire au minimum le nombre de paquets échangés sur le réseau pour parvenir a
un consensus.

Enfin, en utilisant ces deux technologies, nous remarquons que les futures généra-
tions de matériel pourraient nécessiter une nouvelle interface pour les mémoires
de toutes sortes, afin de faciliter I'interopérabilité dans des systemes qui ont ten-
dance a devenir de plus en plus hétérogenes et complexes.

Mots-clés : Mémoire principale non volatile (NVMM), Acces direct de mémoire dis-
tante (RDMA), Mémoire désagrégée, Réseaux programmables.

vi

Remerciements

Merci aux Prof. Pascal Felber et Prof. Ga€l Thomas, mes deux directeurs de these,
qui m’ont fait découvrir le monde de la recherche, et qui ont choisi de me faire
confiance du début a la fin de ce long parcours. Merci également au FNS (Fonds
National Suisse) pour avoir financé cette thése dans le cadre du projet PersiST (no.
178822). Merci a Valerio, pour son soutien dans tous nos travaux. Merci a Bap-
tiste pour avoir amené un ceil nouveau sur mon travail, ce qui a considérablement
contribué a la seconde partie de cette these. Merci aux membres de mon jury, qui
ont pris de leur précieux temps pour considérer et apprécier mon travail.

Merci a tous mes collégues, qu’ils aient été profs, doctorants ou stagiaires. En par-
ticulier, merci a Sébastien qui m’a fait découvrir le canton de Neuchatel mais aussi
la Suisse, sa culture, ses traditions, ses particularités linguistiques... Si bien que je
n’en partirai pas tout de suite! Merci a James d’avoir toujours été un collegue sur
lequel on peut compter, pour les pizze comme pour le travail, et d’avoir assuré qua-
siment seul la gestion de notre cluster pendant la période d’écriture de cette these.
Merci a Peterson, I'ingénieur Camerounais dont le pays peut étre fier! Merci a Gal,
pour son soutien et son humour, malgré la tristesse des évenements qui secouent
son pays en ce moment. Merci a Rafael et Dorian, les experts sur lesquels j’ai pu
m’appuyer au début de 'aventure. Merci a Isabelly et Catherine, pour leur sympa-
thie et pour avoir réussi le tour de force de me motiver a améliorer mon anglais!
Merci a Pedro et Andreia, pour m’avoir guidé dans les arcanes de la NVMM. Merci
a Quentin, Gilles et Nathan, pour avoir contribué de maniere directe a ces travaux
pendant leurs stages. Merci a Afrim, pour son travail mais surtout pour sa bonne
humeur! Merci a Lorenzo, pour m’avoir fourni le clavier de sa conception qui a
servi a la rédaction de cette these (Adm42 pour les curieux). Merci a Pasquale, Vic-
tor, Andreas, Simon, Vladimir, et tous ceux que j’ai pu rencontrer au labo au fil de
ces cing années.

Merci a tous les professeurs et encadrants que j’ai pu avoir pendant ma scolarité,
et qui ont tous contribué d'une maniere ou d’'une autre a la personne que je suis
aujourd’hui. Merci a tous les étudiants pour lesquels j’ai eu le plaisir d’enseigner,
ces quelques heures par semaine me manqueront probablement.

Merci a tous les anciens d'INTech, Francois, Florian, Victor, Lucas, et plus globa-
lement a toute 'équipe du “Manoir”. J’espere que la bande restera encore soudée

vii

Remerciements

pendant de nombreuses années! Merci a Matthieu, Pauline, Romain, et tous mes
amis de longue date que je ne vois pas aussi souvent que je le voudrais.

Merci a mes grands-parents, Marie-France et Bernard, pour les innombrables
heures a refaire le monde sur Skype le Dimanche soir. Merci a mes sceurs, Lucille
et Candice, pour les pauses jeux vidéo et les retrouvailles chaque année a I'été, ou
aux fétes de fin d’année. Une pensée aussi pour mon grand-pere Jean, avec qui j'ai
appris bien plus que ce qu’on trouve dans les livres d’école, et pour mes arriere-
grands-parents Lily et Joseph, chez qui j’avais eu mes premiers “cours” d’'informa-
tique! S’ils avaient vu jusqu’'ou tout cela m’a mené... Enfin, merci a toute ma fa-
mille, mes parents, mes grands-parents, oncles, tantes, cousines et cousins, pour
leur soutien, et pour avoir toujours créé cette ambiance si particuliere qu’il est bon
de retrouver a chaque réunion de famille. En particulier, merci a mes parents Do-
minique et Gilles qui m’ont soutenu et m’ont permis d’étre guidé dans ce parcours
scolaire si privilégié.

viii

Contents

Abstract

Résumé

Remerciements

List of acronyms

List of figures

List of tables

1. Introduction

I. Non-Volatile Main Memory (NVMM)

2. A New Kind of Memory

2.1.

2.2.
2.3.

24.

2.5.

Definition and Terminology
History of Persistent Memories
Implementations
2.3.1. Forembeddedsystems
2.3.2. Forservers
Integrating Persistent Memory in Modern Systems
24.1. NVMM asRAMextension
242, NVMMasadisk
243. NVMMasaDAXareas
244. Working with CPUcaches

Programming With Persistent Memory
2.5.1. Flushingcachelines
2.5.2. Ordering and durability guarantees

2.5.3. Persistencemodel

3. NVCache: A NVMM-based 1/0 Booster for Legacy Systems

3.1

Introduction
3.1.1. NVCACHEinanutshell

..........

..........

..........

..........

..........

..........

vii

xiii

XV

Xvii

17
17
17

ix

Contents

3.1.2. NVCACHEfeatures, 17

3.1.3. Targetapplications, 19

3.2. NVCache: Implementation 20
321, OVEIVIEW . . v v v v v v ittt ettt e e 20

3.22. NVLog o o i i i s e e e e e 20

3.23. Cleanupthread 25

3.24. Write-only performance 28

3.2.5. Ensuringconsistency. oo e 28

3.2.6. Controlstructures, 32

33. Evaluation i e e e e e e 35
3.3.1. Experimentalsetup., 35

3.3.22. Benchmarks00, 38

3.3.3. Read-orientedworkloads 38

3.34. Write-orientedworkloads 39

34. Conclusion i e e e e e e e e 45

4. NVMM Cache Design: Logging vs. Paging 47
41. Motivation o . it i e e e e e e e e e e e e 47
42, NVMM-basedCaching 48
43. Evaluation i it e e e e e e e e 50
44, ConclusSiont i i i e e e e e e e e e e e e e e 52

5. Conclusion on Persistent Memory 53
51. LessonsLearned i 53
5.1.1. Softwareintegration 53

5.1.2. Hardwareintegration 55

5.2. Onthe Future of Persistent Memory 56
5.2.1. Therise and fall of IntelOptane 56

5.2.2. Compute ExpressLink 57

5.3. Conclusion it e e e e e e e e e e e 58

Il. Remote Direct Memory Access (RDMA) & Programmable Networks 59
6. Introduction to RDMA 61
6.1. RDMA-Capable Protocols 61
6.1.1. Infiniband o oL 61

6.1.2. RoCE i i e e e e e e e e e e 62

Contents

6.2. RDMA-Capable Hardware 63
6.21. Switches e 63
6.2.2. Network InterfaceCards 64

6.3. RDMAConcepts o i i i it ittt 64
6.31. Memoryregion v v v v v v vttt 65
6.3.2. Workrequest it 65
6.33. QUEUEPAITS . . . v v v v vt ot e e e e e e e e e e e e 65
6.34. Completionqueue 66

64. RDMAVerbs o i e 66
6.4.1. Two-sidedverbs, 66
64.2. One-sidedverbs 67
64.3. Specialverbs o o L oL 67

6.5. IntelTofino 67
6.51. Presentationo 68
6.5.2. Performance guarantees 69

Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA m

71. Introduction i it e e e e e e e e 71

72. Background e 73
7.2.1. Remote Direct Memory Access v v v v v v v et 73
7.2.2. Programmable switches 75

73. FromMutoDISMU. v i v v v 77
7.3.1. Theoriginal Muprotocol 77
7.3.2. DISMUOVEIVIEW v v v v v vt e e e e e e e e e e 78
7.3.3. Byp4SSOVEIVIEW v v v v v v v vt e e 79

74. Implementation i e 80
74.1. Communication groups and connections 81
742, Scatter. e e 83
743. Gather e 85
744. Underthehood 86
74.5. DISMU 0 ittt e e e e e e e e 88

75. Evaluation i e e e e e e 89
75.1. Experimentalsetup. 89
75.2. Methodology oo 89
7.5.3. Bandwidth and Throughput 89
754, Latency.. 92
75.5. Readworkloads. 93

76. RelatedWork. o 95

77. Conclusion oL e e e e e e e e 97

pel

Contents

8. Conclusion on RDMA and Programmable Networks

8.1. Programmable Networks

8.2. RDMA in the Computing Landscape
8.2.1. A complex programming interface
8.2.2. A challenge for performance
823. AuniqueAPI

8.3. Perspectives
831. CXL
8.3.2. The end of the computer-centric era

9. Conclusion

Bibliography

xii

..............

..............

..............

929

99
100
101
101
102
103
103
104

107

109

List of acronyms

API

ADR
ACK
ASIC

ALU

Al
BIOS
BfRt
CPU
CA
CD-RW
CXL
DBMS

DAX
DIMM
DCPMM
DDR4
DRAM

DMA
DPDK
eADR

FUSE
FIO
FPGA

GRH
GPU
HDD
HCI

Application Programming
Interface

Asynchronous DRAM Refresh
Acknowledgment
Application-Specific
Integrated Circuit
Arithmetic Logic Unit
Artificial Intelligence
Basic Input Output System
Barefoot runtime

Central Processing Unit
Channel Adapter

Compact Disk-Rewritable
Compute Express Link
Database Management
System

Direct Access

Dual In-line Memory Module
DC Persistent Memory
Double Data Rate 4
Dynamic Random-Access
Memory

Direct Memory Access
Data Plane Development Kit
External Asynchronous
DRAM Refresh

Filesystem in Userspace
Flexible I/O tester
Field-Programmable Gate
Array

Global Route Header
Graphics Processing Unit
Hard Disk Drive
Hyper-Converged

HPC

IP

1/0
IBoE
LPC
LRU
LAN
LRH
MTT
MMU
MTU
NVRAM
NVMM
NVDIMM

NAK
NIC
NUMA
NVMe

0s
(0]
PMEM

POSIX
PSA
PSN

PFENCE
PSYNC

Infrastructure
High-Performance
Computing

Internet Protocol
Input/Output

Infiniband over Ethernet
Linux Page Cache

Least Recently Used

Local Area Network

Local Route Header

Memory Translation Table
Memory Management Unit
Maximum Transmission Unit
Non-Volatile RAM
Non-Volatile Main Memory
Non-Volatile Dual In-line
Memory Module (DIMM)
Negative Acknowledgment
Network Interface Card
Non-Uniform Memory Access
NVM Express, or Non-Volatile
Memory Host Controller
Interface Specification
operating system

Open Systems Inteconnection
Intel Optane Persistent
Memory

Portable Operating System
Interface
Protocol-independant Switch
Architecture

Packet Sequence Number
Persistent Fence

Persistent Sync

xiii

List of acronyms

PWB
PCle

PMDK
PCM
QP
RAM
RDMA
RoCE
RTR
RTS
SSD
SATA
TNA

UDP
WPQ

Xiv

Persistent Write-Back
Peripheral Component
Interconnect Express
Persistent Memory
Development Kit
Phase-Change Memory
Queue Pair

Random Access Memory
Remote Direct Memory
Access

RDMA over Converged
Ethernet

Ready to Receive
Ready to Send

Solid State Drive

Serial Advance Technology
Attachment

Intel Tofino Native
Architecture

User Datagram Protocol
Write Pending Queue

List of figures

2.1.

3.1
3.2.
3.3.
34.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.

4.1.
4.2,
4.3.
44.

6.1.
6.2.

7.1.
7.2
7.3.
74.
7.5.
7.6.
7.7.
7.8.

Comparison between the c1flush and clwb instructions. 14
NVLoGentryexamplet 21
NVLoG headand tailcounters, 22
State of NVLOG while adding 8200 bytes. 25
NVCACHE behaviorin caseofacachehit. 30
NVCACHE behaviorin caseofacachemiss. 30
NVCACHE behavior in case of a “dirtymiss”. 31
NVCACHE behaviorincaseofawrite. 31
State machine of pages (dc: dirty counter). 33
SQLite and RocksDBread workloads 39
Performance of NVCACHE with random writes 40
Influence of batching and batch size parameter. 42
Behavior of NVCACHE compared to other systems (FIO) 43
Behavior of NVCACHE compared to other systems (SQLite and RocksDB) 44
Coredesign of NVPAGESt vt v v vt v i i e e e e e 48
Coredesign Of NVCACHE v v v v v v v v et et e e e e e e e u 49
FIO benchmarks with 2GiB of NVMMcache 51
FIO benchmarks with 100 GiBof NVMMcache 51
ARoCEviframe i i i ittt 62
AROCEvV2frame @ i i i i i i i i e e e e e e e e e e 63
Protocol-independant Switch Architecture pipeline. 76
Communication without and with Byp4ss. 78
Communication pattern used for consensus 79
Principle of packet duplication with Byp4ss 84
Write goodput with differentitemsizes 90
Write throughput with 64Brequests 91
Evolution of latency with 64 B requests vs. per-thread throughput. . . . 93
Latency with 64 B requests, 1thread 94

XV

List of tables

3.1. Properties of several NVMM ssystems 19
3.2. Evaluatedfilesystems. 36
71. Metadata contained in an RDMA packet. 74
7.2. Multicastmetadata. L Lo oo 82
7.3. RDMA Connection structureo, 83
74. Read throughputwith64Brequests 95

xvii

Chapter1.

Introduction

Modern computers are built around two main components: their Central Process-
ing Unit (CPU), and their main memory, i.e., Random Access Memory (RAM). This
architecture became standard, and most computers around the world are built
within the same pattern. However, we always try to make these machines more
powerful, by increasing their computing capacity in various ways. The history of
computer science, even rather short, is a constant quest for performance inter-
spersed by physical or technical limitations.

There are numbers of ways to increase the computational capacity of a machine.
The first approach is to increase the frequency of its CPU, so that more atomic op-
erations are performed in the same amount of time. This idea is quickly limited, as
the power required by a CPU is proportional to the frequency it is running at [134].
Moreover, increasing the frequency of computation does not make a lot of differ-
ence if the CPU is constantly waiting for data to process. For that reason, a second
approach is to use faster memory. But memory performance has always been a
trade-off with price. From this constraint emerged the concept of memory hierar-
chy. In a nutshell, we used fast volatile memory as main memory in the system,
and we added a small amount of extremely fast memory inside CPUs, as close as
possible to the core, and used it as a cache for all other memory accesses. This
is the highest tier in the memory hierarchy, and also the most expensive. Other
kinds of memory are considerably slower but more affordable, and can be used to
store data on longer term. At this point, there is not much more that can be done
to increase the computational power of a single CPU core, besides adding specific
features for specific workloads that would save some CPU cycles on repetitive tasks.
Yet, this is only the beginning of the performance quest.

A famous “law” of computer science, called Moore’s law in the 1960’s [97], made
a simple observation: the number of transistors on a CPU chip doubles every two
years. By the time it was edicted, Moore’s law made a lot of sense, and was actually
agood prediction for the next decades. Though, itis clear that this law is destined to
dissapear, as CPU manufacturers are reaching the limits of miniaturization. Nowa-
days, CPU dies are processed with a precision of 3nm, which represents the width

Chapter 1. Introduction

of only 27 atoms of silicon. Additionally, building electrical circuitry at such a small
scale even implies to take in consideration quantum tunelling effects. For these rea-
sons, some industrial actors agree on the fact that Moore’s law is already over. In
this context, maintaining the evolution of computers requires other approaches.

A major revolution in modern computer science has been to use several comput-
ing units to exceed the limits of a single CPU core. When several CPU cores are
on the same machine, we talk about parallel programming. This has made indi-
vidual computers more efficient on plenty of workloads, as long as the work can
be splitted into several independant parts. In this case, the main memory of the
machine is shared between CPU cores. A second idea is to use several independant
machines in a network and make them collaborate by splitting the tasks between
them through a network. However, this presupose each machine has its own main
memory, and does not share it with the others. A considerable part of the efforts
to make more efficient computers and supercomputers is now aimed at building
better collaboration between machines.

In this context, this thesis presents and uses two new ways of interacting with mem-
ory. The first one, non-volatile main memory, proposes to introduce a new stage
in the memory hierarchy. By adding an intermediate kind of memory between
the fast volatile main memory and the storage memory, we demonstrate how non-
volatile memory could take an important place in the way we interact with local
memory. The second one, remote direct memory access, makes an attempt to share
main memory between machines. With the help of advanced networking compo-
nents, we propose a way to use remote memory and ease the collaboration between
machines within the same cluster.

Part|l.

Non-Volatile Main Memory (NVMM)

Chapter 2.

A New Kind of Memory

In 2015, Intel revealed its 3DXPoint non-volatile memory technology would be avail-
able on the market in the coming years. This chapter explains why this announce-
ment was a milestone, and how the resulting technology has evolved afterwards.

2.1. Definition and Terminology

Non-Volatile Main Memory (NVMM) is a kind of memory able to retain its con-
tent over power loss. Unlike an Solid State Drive (SSD) which must be accessed
by blocks, NVMM is byte-addressable. It can be accessed using load and store in-
structions with a byte granularity, just as regular Random Access Memory (RAM).
From an architectural point of view, NVMM is located on the RAM bus, generally
combined with regular RAM modules.

Depending on the context, NVMM can also be referred as Non-Volatile RAM
(NVRAM), or Persistent Memory (PMEM). Non-Volatile Dual In-line Memory Mod-
ule (DIMM) (NVDIMM) is a more general term, as it can also refer to block-
addressable persistent DIMM modules.

2.2. History of Persistent Memories

The idea of having a persistent main memory in computers originally comes from
the first computers ever built in the 1950’s. In that time, most computers were built
with magnetic-core memory, also called core memory. Basically, a memory core
stores bits in rings of ferro-magnetic metal. Copper wires were passing through
each ring, so that flowing an electrical current by these wires would change the
magnetic orientation of a targetted ring, making the user able to store one bit per
ring. To read a ring content, one had to apply a current in the opposite direction. If
aresistance was measured, then the ring was storing a 1. Otherwise, it was storing
0. By using this extremely simple and primitive form of memory, the programmers

Chapter 2. A New Kind of Memory

were already using persistent memory. Indeed, no power supply was required to
keep the state of each memory cell and thus, the content stored in that kind of mem-
ory. One of the main advantage of such a device is that, in case of a power outage,
an ongoing computation could be resumed in the middle, instead of starting from
the begining again. However, in the 1970’s, that technology was rapidly replaced
by faster and more compact forms of memory, due to the popularization of semi-
conductors. At this time, computer architects chose to give up on the persistence
of their main memory, as volatile forms of memory were considerably faster.

During the following decades, a few kinds of persistent memories emerged, in par-
ticular in the world of embedded systems. Being exposed to more risks of power
losses, these systems were a perfect use case for such memories, as long as comput-
ing performance was not the main concern. As the performance and the density of
volatile memories was increasing exponentially, these persistent medias were not
used in the context of high performance computing.

Suddenly, in 2015, Intel announced a partnership with Micron Technologies, aim-
ing to create the new persistent 3DXPoint memory. This new memory cell would
be Phase-Change Memory (PCM), and is based on the use of chalcogenide materi-
als, the same kind of material that was used for the rewritable surface of Compact
Disk-Rewritable (CD-RW). On the paper, 3DXPoint was reaching densities and per-
formances that were unheard of, for a persistent device. Several products featuring
this memory were about to be available in the public market in the coming years.
One of these products is the Intel Optane DC Persistent Memory (DCPMM) mod-
ule, a non-volatile module to install on the RAM bus, and dedicated to servers. In
a device of the size of a RAM module, Intel managed to fit up to 512GB of non-
volatile memory, when Double Data Rate 4 (DDR4) Dynamic Random-Access Mem-
ory (DRAM) modules hardly reached 128GB.

In early 2019, Intel Optane DCPMM modules became available on the public mar-
ket. They provide an unprecedented set of features, in particular itis the first device
with such high capacity that allow byte addressability. Generally, higher capac-
ity devices are block devices. They communicate with the rest of the system with
blocks of data, usually 4KiB blocks. But Intel Optane DCPMM uses a finer granular-
ity of access, as each byte can be accessed individually, as if it was regular DRAM.
In terms of performance, Intel also suggested this memory would reach latencies
close to DRAM modules, which was the main breakthrough of their 3DXPoint mem-
ory cell.

2.3. Implementations

2.3. Implementations

Non-volatile memory is a concept that was implemented in several ways and in
different contexts, from embedded systems to high-end servers. The only com-
mon point between these technologies is the association of persistence and byte
addressability.

2.3.1. For embedded systems

In the world of embedded systems, non-volatile memory is often reffered as
NVRAM. The main use case of NVRAM is to remember parameters set by a user,
even after rebooting the device. For instance, we can find NVRAM chips in some
devices Basic Input Output System (BIOS), in order to keep critical boot settings.
This is the case for most Apple Mac computers [119].

However, this thesis will not focus on this kind of NVRAM, as it is not meant to be
used for proper computing. These chips are used for their practicality, but their
design is not suited to become the main memory of the entire computer, both in
terms of performance and compacity.

2.3.2. Forservers

After decades of computing based on volatile main memory, new NVMM imple-
mentations were released with the hope of covering new use cases for servers.

Simulated persistent memory

As a first step, some simulators for NVMM have been created. Before 2018, with
the motivation of having the actual hardware in a few years, many simulation tools
were developped. Yet, as the details of Intel’s implementation were not public,
some of these tools had to base their approach on assumptions. These simulators
are mostly developped in the architecture community, so they focus on simulating
the hardware behavior of several persistent memory cells [131, 108].

Meanwhile in the systems community, the main concern was to find a way to em-
ulate the behavior of persistent memory. For that purpose, since the version 4.2
of the Linux kernel, a compilation flag has been added to support NVMM. Once
the kernel is compiled properly, a boot option allows to allocate a part of the DRAM
memory and make it behave as if it was persistent memory. This trick is only meant

Chapter 2. A New Kind of Memory

to test the Application Programming Interface (API) provided by the Linux ker-
nel, while starting the development of applications without access to the hardware.
Naturally, using a volatile support for that special memory space does not make it
resilient to crashes. Also, the performance measured is considerably better than
the one of the actual hardware. Nevertheless, this emulated persistent memory is
transparently exposed by the kernel as if it was a module of Intel Optane DCPMM,
which makes it a very useful development tool.

Battery backed modules

The main issue in order to use persistent memory as main memory, was the sig-
nificant drop of performance of persistent cells (before 3DXPoint). To bypass this
physical limitation, some attempts were made to build NVMM modules from other
existing technologies. By merging the volatile DDR4 RAM with non-volatile Flash
memory (found in SSD), some hybrid modules were created. On these modules,
that look like regular RAM modules, one side has DDR4 chips while the other side
has Flash memory. In case of a power loss, the module would use a capacitor to
stay up and copy the content stored in DDR4 in its Flash memory.

This category of persistent memory is called NVDIMM-N. These modules have the
advantage of presenting performances of DDR4 memory while running in normal
conditions. However, their conception limits the memory compacity. For one mod-
ule, the maximum capacity available was 32GB [95].

Intel Optane DCPMM 100 Series

The first generation of Intel Optane DCPMM, released in 2018, is the first broadly
available implementation of the NVDIMM-P category. Optane modules only have
3DXPoint chips, and no battery or capacitor. By design, this new memory is persis-
tent, so it does not require any special process in case of power loss. These charac-
teristics gave the NVDIMM-P category the reputation of being the “real” persistent
memory.

Additionally, 3DXPoint memory is denser than DDR4; DCPMM modules were com-
mercialized as either 128, 256 or 512 GB per module. However, these improvements
come at the cost of a higher latency, as Optane DCPMM was announced with a 10
times higher latency than typical DDR4.

These modules can be set in two modes from one machine’s BIOS:

« The Memory mode

2.3. Implementations

« The AppDirect mode

The Memory mode uses the non-volatile memory as an extension of the machine’s
RAM. Thanks to its high compacity, NVMM can thus be used as a less expensive way
to reach high amounts of RAM in a single machine. In this mode, the persistent
memory is not exposed in the OS as a special device. It appears exactly as RAM,
with not management of its persistence capability.

The AppDirect mode is the “manual” mode of Optane modules. On a Linux-based
operating system (OS), it allows programmers to access the memory the same way
they would access a disk (i.e through a file located in dev)

There are then submodes that can be set from the OS, among them:
* fsdax mode
* devdax mode

In fsdax mode, the device file of each module appears as devpmemX where X is the
module number. It is designed to be used with a Direct Access (DAX) file system.
One has to format the device in such a file system before using it. Then, files can
be created and used as subdivisions of the NVMM module, as if they were DAX files
themselves.

With devdax mode, the device appears as devdaxX.0. This submode requires to
use the entire module as one DAX file. To use a DAX file, one has to memory-map
the file into a program’s virtual address space. The resulting memory area will thus
be hosted in the persistent memory module.

Intel Optane DCPMM 200 Series

In 2020, Intel released a new version of the Optane DCPMM modules, called 200
Series. In essence, these new modules contain the same 3DXPoint memory. They
behave the same way from the OS perspective, with some minor improvements in
terms of throughput [7].

Hence, the main difference between the two versions resides in the persistence
guarantees. Intel Optane DCPMM 200 Series can use a mechanism called External
Asynchronous DRAM Refresh (eADR), which is meant to solve the main problem
with persistent memory integration. Indeed, there is a major design flaw that pre-
vents integrating PMEM transparently in our common computer architectures: the
volatility of Central Processing Unit (CPU) caches. eADR is a mechanism designed
to expand the power supply of NVMM and CPU internal caches, with an external

Chapter 2. A New Kind of Memory

batterylocated, for instance, on the motherboard [53]. If compatible CPUs were re-
leased at the same time (Xeon Scalable Platform v3), such motherboard has never
been commercialized. Research papers evaluating the impact of eADR generally
used simulation tools [50].

2.4. Integrating Persistent Memory in Modern Systems

Usual servers architecture can be a barrier in the acceptance of NVMM. This sec-
tion presents the different ways persistent memory has been used since its com-
mercialization, with pros and cons.

2.4.1. NVMM as RAM extension

In Memory mode, NVMM can become an extension of RAM in a machine. This mode
makes sense from a budget point of view, as NVMM is considerably less expensive
per gigabyte than DRAM.

However, as persistent memory is considerably slower than RAM, a caching mech-
anism is used in order to keep hot memory pages in RAM, while colder pages are
stored in NVMM. This system is imperfect[82], but it allows to run large memory-
bounded applications.

Thus, from a conceptual point of view, using NVMM this way does not provide any-
thing new.

2.4.2, NVMM as a disk

Persistent memory can also be used as a regular SSD. One can setup an NVMM
module in fsdax mode, format in a file system, and use that space to store files. On
some disk-intensive applications, this can lead to a spectacular speedup, as Optane
DCPMM performance is closer to DRAM than SSD.

Software adaptation

Using NVMM with a standard file system is not the usual way to go with persis-
tent memory. Persistent memory is considered being a new tier of memory in the
memory hierarchy, so it does not behave neither as RAM or SSD memories. Its
performance stands in between, and considering PMEM as an SSD with no further

10

2.4. Integrating Persistent Memory in Modern Systems

adaptation usually results in sub-optimal performance. The explaination resides
in software. With time, optimizations have been made to get the full potential of
the regular combo DRAM and SSD. We implemented caching mechanisms, such
as the Linux Page Cache (LPC) in the Linux kernel. In an SSD file system, it is gen-
erally good to have RAM caching, as copying the data to RAM takes a negligible
time compared to the actual copy on SSD (around 1,000 times slower). Also, the
RAM copy of data can be used as an intermediate interface to modify an isolated
byte in a memory mapped file, while the kernel still communicates with the SSD
with blocks. Though, when NVMM is used as a disk, copying to RAM is not negli-
gible anymore, as persistent memory is only around 10 times slower than DRAM.
Moreover, it is not necessary to “hide” a block-granularity communication with the
device, as NVMM can accept direct Load and store instructions, with byte gran-
ularity. This is a typical case of software optimization that becomes harmful for
performance when applied to the wrong hardware.

DAX File systems

The solution found to use NVMM efficiently in Linux was to add a new feature called
DAX (Direct Access). In short, this feature is an option implemented by a file sys-
tem. When this option is enabled (when the device is mounted), the files located in
this file system are not cached by the LPC, avoiding a costly unnecessary copy in
DRAM.

Some of the most commonly used file systems have DAX capabilities [32], for in-
stance ext2 [33], ext4 [34] and xfs [35]. The DAX option does not change the inner
organization of data inside the file system, as it only requires an additionnal flag
when mounting the device.

In addition, when a file system is mounted with the DAX option, its files inherit the
DAX flag. A file flagged as DAX can be memory mapped directly into a program’s
virtual address space, and accessed with the load and store instructions directly.

2.4.3. NVMM as a DAX areas

Persistent memory being a new tier in the memory hierarchy, it has a unique set
of features that makes it usable neither as a disk nor as volatile RAM. This mode of
utilization requires to interact with the device as a raw memory space. By setting a
persistent memory module in devdax mode, it appears to the OS as a raw DAX device.

11

Chapter 2. A New Kind of Memory

From a programmer point of view, this DAX device (or DAX file) can be memory
mapped into a program’s virtual address space, providing a large persistent space
to store objects.

For practical reasons, one can also use the fsdax mode, format with a DAX-capable
file system, mount with the DAX option, create an empty file of an arbitrary size,
and use that file as a persistent memory pool. The DAX flag being inherited from
the file system, the file can be memory mapped with direct access enabled.

This is the most interesting mode of persistent memory, as it gives the programmer
access to all of the features at the same time: persistence and byte addressabil-
ity. With these two capabilities used simultaneously, one can write programs that
store intermediate data in a persistent media, reaching a very high level of crash
tolerance. If the program crashes, important data can be retrieved from persistent
memory, and the program can continue to run with no data loss at all. However,
to use this mode and unlock the full potential of NVMM, existing programs have to
be modified.

2.4.4. Working with CPU caches

One of the main challenge regarding NVMM programming is to properly deal with
the CPU caches. As these caches have been designed to work with volatile memory,
their behavior does not comply with persistent memory requirements.

First, the volatile nature of intermediate caches breaks the persistence guarantee.
For example: If you write a value into a variable located in NVMM, you would ex-
pect your new value to be immediately stored in the persistent memory. In case of a
crash, you would expect to retrieve that new value after restarting the program. In
reality, to avoid costly accesses to distant DRAM, the CPU cached your change into
its embedded caches. This default behavior is perfectly acceptable with volatile
DRAM, as it makes the system faster, and in case of crash or power loss, all of the
data stored in DRAM and CPU caches would be lost together. With persistent mem-
ory, one could expect that data to be safely saved in the persistent media, while it is
in reality still in the volatile cache. If a crash occured, the volatile caches content
would be lost, and the initial variable would still appear with its outdated value after
arestart.

Then, the way CPUs manage their caches and the communication with DRAM is
tainted by this volatility idea. In particular, as CPU caches and DRAM are both
volatile, the CPU is free to re-order exchanges between its caches and distant

12

2.5. Programming With Persistent Memory

DRAM. Thus, any crash can let persistent memory in a partially outdated state,
likely an incoherent one.

2.5. Programming With Persistent Memory

In order to compensate for this design incompatibility, programmers have to use
specific CPU instructions.

2.5.1. Flushing cache lines

The only way to avoid that CPU volatile caches break the persistence guarantee is
to manually evict modified cache lines. To that purpose, two commands already
existed on Intel x86 instruction set, before the existence of NVMM. These instruc-
tions, clflush [18] (Cache Line Flush) and clflushopt [19] were initially de-
signed to prevent cache pollution. When called, they invalidate the pointed cache
line in every level of cache. If the said cache line is marked as containing modi-
fications, the CPU must propagate these changes to the DRAM module before the
eviction. By using these instructions with NVMM, one can guarantee the data has
indeed been written to the persistent memory.

However, even if these instructions can help with the persistence guarantee, they
can severely decrease performance as they completely evict a potentially useful
cache line from all of the caches. For instance, imagine a loop of three instructions
on the same cache line: store, clflush, load. By evicting the cache line, the
clflush operation ensures the load instruction will result in a cache miss, thus in
a costly interaction with the NVMM module.

For that reason, Intel introduced a new instruction dedicated for NVMM: clwb
(Cache Line Write Back) in their Skylake SP Series CPUs [20]. This instruction would
make no sense with DRAM, as it only ensures the modified cache line is propagated
to the underlying media, without eviction of the said cache line. But with NVMM, it
gives a persistence guarantee with no perturbation to the cache management, thus
no performance penalty for the following instructions.

In some special cases, one could also use the ntstore (non-temporal store) instruc-
tion, which is designed to write directly into a DRAM module without going through
the caches atall. Its primary use is to write data that is known to be useless for some
time, and avoid polluting the caches with such data. It can also be used with NVMM,
but its behavior requires some special attention when using multithreaded code, as

13

Chapter 2. A New Kind of Memory

Persistence guarantees:

NVMM NVMM

Volatile memory

Persistent memory

>”
>”

store
Eviction
L3 Cache | cachedine L3 Cache | Cache line
; T ; 1
L2 Cache L2 Cache
: b : :
L1 Cache Gaehe#ne L1 Cache
ﬁ clflush/clflushopt ﬁ clwb

Figure 2.1.: Comparison between the c1flush and clwb instructions.

14

2.5. Programming With Persistent Memory

the visibility of ntstore among threads must be ensured manually. However, in
the right conditions, it can result in some performance improvements [139].

2.5.2. Ordering and durability guarantees

By design, clwb instructions are not ordered between themselves. To ensure the
CPU does not break the coherence of data in persistent memory, on can use the
sfence operation. After using clwb on some cache lines, using sfence ensures
later calls to clwb will not be applied before the fence.

The safest way to use persistent memory with these operations is to always combine
a call to clwb with a sfence, enforcing the total ordering of all clwb operations.
Yet, if some persistent modifications are known to be of the same importance in
terms of ordering, a pfence can also be issued after all of these modifications are
marked with clwb.

Additionally to sfence, a developer may need a second fence instruction named
pfence. This second fence blocks, and waits for all previous written cache lines to
be propagated to NVMM. On a modern Intel CPU, pfenceis also implemented with
a sfence, because these CPUs support Asynchronous DRAM Refresh (ADR) [54].
With ADR, a CPU uses its residual energy to ensure that a cache-line in the memory
controller’s Write Pending Queue (WPQ) will actually be persisted before power
outage [115].

2.5.3. Persistence model

In our implementations, we used a set of primitives inherited from the persistence
model used in the Romulus PTM [27]. Basically, the authors used three functions
to generalize the guarantees expected from Intel x86 CPUs. These three functions
are:

« Persistent Write-Back (PWB): Asks to write-back a specific cache line in
NVMM. This is a non-blocking function.

« Persistent Fence (PFENCE): Emits a fence that prevents next PWB calls to be
reordered with previous ones. Still a non-blocking function.

« Persistent Sync (PSYNC): Waits for previous PWB calls to be performed. This
is a blocking function.

15

Chapter 2. A New Kind of Memory

For machines that only support clflush, PWB is set to send a clflush while
PFENCE and PSYNC are nop. Indeed, clflush calls are already blocking func-
tions, ordered between themselves.

For more recent hardware, calling PWB emits either c1flushopt or clwb (if clwb
is available, it is the one to be used). PFENCE and PSYNC are then set to emit a
sfence.

16

Chapter 3.

NVCache: A NVMM-based I/O Booster for
Legacy Systems

3.1. Introduction

Having Intel Optane DCPMM [59] available in the beginning of 2019 was a mile-
stone for persistent memory researchers. The entire community started to look for
meaningfull approaches to use this technology in a concrete context. In compar-
ison with other advanced hardware innovations, Optane had no groundbreaking
single feature. Yet, by combining those individual features, and in particular byte
addressability with persistence, we obtained a brand new and unique device in the
memory hierarchy. This chapter explains how we used Intel Optane DCPMM to
build a non-volatile cache, named NVCACHE.

3.1.1. NVCACHE in a nutshell

NVCACHE is a memory cache in userspace. It uses NVMM as a write cache able
to receive bursts of data, while the cache content is asynchronously propagated to
the main, slower non-volatile media, i.e., Hard Disk Drive (HDD) or SSD. The key
idea is to exploit the latency of NVMM, which takes way less time than a regular
SSD to acknowledge for the persistence of data. To summarize, NVCACHE does not
need to call fsync on the critical path, as the persistence guarantee can be easily
obtained in userland by the NVMM device.

3.1.2. NVCACHE features

In order to build a functionnal and practical tool, we decided to fix some ground
rules on the final set of features.

First, NVCACHE has to be transparent. We want to avoid, as much as possible, mod-
ifications in the original source code of the target application. Ideally, we can even

17

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

run compiled programs with NVCACHE without having access to the source code
at all.

Second, NVCACHE must use NVMM as the new device it is, and not as a better SSD
or a slower RAM. Persistent memory brings a new feature set, we have to use it
fully in order to exploit NVMM at its full potential.

Third, NVCACHE must be efficient both on throughput and latency. The quest of
lower latencies with NVMM should not be persued on the detriment of the through-
put. In particular, using NVCACHE, applications should reach the throughput they
could get using batched operations on a regular disk.

The goal of NVCACHE is to propose this new unique set of features, that cannot
be achieved with other NVMM solutions. An overview and comparison with other
NVMM software tools is compiled in Table 3.1.

Large storage space

NVCACHE can handle big datasets, as its storage capacity is not limited to the
amount of NVMM available. By using NVMM as a simple cache, the limitation de-
pends on the underlying storage media, which can for instance be an SSD or a HDD.
These storage medias are usually considerably cheaper per gigabyte than NVMM.

Syncronous durability

When using NVCACHE, one can expect the maximum persistence guarantee after
each call to the write function. All calls to fsync are unnecessary, and thus redi-
rected to an empty function. The synchronous durability is the default mode. Tech-
nically, a more relaxed logic could be implemented, by placing the right memory
fences in the fsync function, but this mode has been considered out of scope for
the initial development of NVCACHE.

Durable linearizability

Crash consistency is the major feature we expect from the use of NVMM. However,
it requires to add more complex guarantee mechanisms, so that the program could
crash at any time and not expect any rollback when restarting. In practice, every
write function that returns has to be persisted in NVMM, but every incomplete
operation must be canceled. Also, there cannot be any reordering among different
store operations, or the consistency of the cache content could be compromised.

18

3.1. Introduction

Table 3.1.: Properties of several NVMM systems, all fully compatible with the

POSIX API.
Ext4-DAX | NOVA | Strata | SplitFS | DM-WriteCache || NVCACHE
[26,136] | [138] | [76] [66] [120]
Offer a large storage space - - + — + +
Efficient for synchronous durability + ++ ++ ++ - +
Durable linearizability [61] + + + + - +
Reuse legacy file systems + (Ext4) - — |+ (Ext4) + (Any) + (Any)
Stock kernel + - - - + +
Legacy kernel API + + - - + +

That type of guarantee is often reffered as durable linearizability [27, 109].

Software compatibility

We wanted NVCACHE to be as portable and easy to use as possible. As a result,
using NVCACHE does not require deep changes to work on a regular machine. The
cache runs on any modern stock Linux kernel, and does not require any kernel-side
modification, nor kernel module. Thus, it uses the regular kernel API.

Moreover, the media cached by NVCACHE can be formatted in any file system. We
mostly used the very standard Ext4, but also tested it with more specific file systems
such as NOVA [138].

3.1.3. Target applications

By design, NVCACHE is efficient on applications that require a high granularity of
persistence guarantees. A software developer has no choice regarding local persis-
tence: to ensure some level of crash resilience, one has to call fsync after each
critical write. With NVCACHE enabled, such an application would not suffer from
a major Input/Output (I/0) bottleneck even with high persistence requirements.

Current applications tend to leverage this problem by batching modifications, and
wait for the batch to be complete before flushing it to disk. That approach dilutes
the frequency of fsync calls. However, it does require to find a trade-off between
performance and persistence granularity. Indeed, increasing the batch size will
tend do increase performance, but it can also result in bigger rollbacks when a
crash occurs. Similarly, reducing the batch size makes the system slower, but re-
duces the likeliness and the importance of potential rollbacks.

19

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Thus, NVCACHE is a perfect fit for applications that are sensitive to the persistence
latency, i.e., the time required to ensure a data has been persisted. For instance, a
Database Management System (DBMS) with regular updates on a massive database.
In an ideal context, the database would be updated on disk for each wr-ite or up-
date request. However, under heavy workloads, the time required to wait for the
disk to acknowledge after each operation would create a severe bottleneck. If the
database fits in Intel Optane DCPMM, one could imagine using this device as the
only storage media. But this solution requires to have a lot of NVMM available,
which is expensive [45] or even impossible over a certain amount. On the other
hand, with NVCACHE we proposes a way to get the latency benefits from NVMM
while not being limited by the amount of persistent memory in the server.

3.2. NVCache: Implementation

3.2.1. Overview

NVCACHE is available either as a library or as a modified 1ibc [36]. The library that
can be included in a target application, providing I/O primitives such as nvopen,
nvwrite, nvread, and nvclose. The libc can be dynamically linked to a com-
piled program. This way, it transparently intercepts calls to basic IO functions, like
open, read, write, and close.

In case of a crash, some data might remain in the non-volatile cache. On reboot,
after loading NVCACHE again, a synchronisation phase starts, setting the disk in a
state that would be considered valid by the application. The program then has to
recover its data from disk and restart exactly as it would on a regular machine.

3.2.2. NVLog

The main idea in NVCACHE is to use the NVMM space as a log of pending opera-
tions. Each log entry represents a write operation that will eventually be applied
on disk.

On startup, a NVMM module in Device DAX is memory mapped, and this virtual
space is casted into a data structured that we called NVLog.

20

3.2. NVCache: Implementation

| Index | fd | off | size | data | written | commit |
[1 [5] 0] 12 | 'Hello World!" o [1]

Figure 3.1.: NVLOG entry example

Log entry format

In order to delay the actual write operation, the NVLog has to keep the entire set of
metadata provided by the application when the write function was called. A log
entry must contain:

« A file descriptor (fd)

+ An offset (off)

+ A size (size)

» The data to be written (data)

As log entries are statically allocated to maximize performance, they also come
with a fixed size. When a write operation is shorter than the maximal data size
(i.e., 4 KiB), the s1ize field guarantees the end of the data buffer will be ignored.
When the operation is longer than 4 KiB, it has to be splitted in several parts. For
instance, a 9 KiB wr i te will result in two 4 KiB entries, plus a smaller 1 KiB one.

These four fields already ensure that we will be able to execute the wr i te operation
later. Though, in order to make NVCACHE crash resilient, we had to add two more
fields:

» A commit boolean (commi t)
+ An reference index for long writes (waiting)
+ An ignore boolean for entries already written to disk (written)

The commi t boolean is the last field to modify. If a crash occurs, a non-committed
entry is considered incomplete, and thus will not be synchronized on disk when
the system restarts. The reference index is the index of the first log entry of a long
write. With this field, we know what commit flag to look at when a write is split-
ted in several chunks. Last, the written flag allows to ignore entries that have
already been written to disk, for instance if the file has been closed. As writing to
an outdated file descriptor could cause errors, there is a specific procedure when
the hosted program closes a file. That procedure requires to flag some entries as
written.

21

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Index | fd | off | size | data written | commit
1 510 6 '"Hello ' 1 1 «—tail
head— 2 5 6 5 "World' 0 1
3 5 11 1 it 0 0

Figure 3.2.: NVLOG head and tail counters

NVLoG data structure

On NVCACHE startup, a DAX space (our NVMM) is memory mapped. This space is
then hosting the NVLOG data structure. It stores :

« log entries (the amount is defined at compile time, we call it Llog_size)

* A head counter

« A correspondence table between file paths and file descriptors

« Aexit_status boolean

The log itself is circular: when it reaches the end of the N allocated log entries,
it starts back at the first one. The head and tail counters respectively keep in
NVMM the index of the last entry written, and the index of the last entry already
flushed to disk. As head is not mandatory for recovery, this value is kept in volatile
memory. A correspondance table gives a path to each file descriptor used in the log,
so that the program can open them again even after a crash. Last, the exit_sta-
tus flag is set to 1 when NVCACHE starts, and set to 0 after exiting in a normal way.
This is basically a crash detector for the recovery procedure.

Essentially, this data structure is designed to store the bare minimum required to
recover in case of crash. Every variable that is not absolutely necessary to the re-
covery procedure is stored in regular volatile memory.

Adding a new entry

In order to add a new entry in the non-volatile log, the user program calls regular
1ibc functions to write into a file, i.e., pwrite or write. Instead of submitting a
write system call immediately to the kernel, the following events are triggered :

+ Allocate a new (or recycled) log entry in the log
« Fill the entry content as described previously, except for the commi t field

« Emit a PWB per cache line and a PFENCE

22

3.2. NVCache: Implementation

 Set the commit boolean to True
« Emit a PWB on the commit boolean cache line, and a PSYNC

This sequence ensures the commit boolean will never be set to True before the log
entry content is written in the non-volatile log. Without this security, after a crash,
a commit boolean could be set to True while its content was not (or only partially)
written in NVMM. However, as we took this precaution, commit can be used as the
answer of the question: Is this log entry ready to be written on disk?

Log entry allocation

Before storing the content of an entry, NVCACHE has to allocate it. In this context,
the objective is to increase the index stored in the head counter.

In order to anticipate multithreaded workloads, this mechanism is implemented
in a lock-free fashion. In practice, NVCACHE starts by attempting to atomically de-
creasethe available_entries counter (this counter is kept in volatile memory).
This requires the use of a compare_and_swap atomic function, checking that no
other thread changed the value of available_entries in the meantime.

If this greater than zero, meaning there is space left in our log, the thread manages
to decrease its value. Otherwise, it spins until the decrement is effective. NVCACHE
then calls fetch_and_add (1) onthe head counter, and returns the new value as
the index of the allocated entry.

However, as the fetch_and_add function does not take into account the circu-
larity of our log, the head and tail counters are monotonic. Before using them,
NVCACHE has to apply a modulo by the log_size.

One could argue that having these counters monotonic can lead to a problem when
they reach overflow. Though, head and tail beingimplemented as 64 B variables,
NVCACHE would have to store 4KiB+2°4 = 64EiB to reach this overflow. Thus, we
considered this problem as out of scope for our implementation.

Overlapping entries

As soon as a write request is longer than the maximum size of a log entry payload
(in practice, 4KiB), NVCACHE has to split it in several log entries. Nonetheless, to
prevent partial writes to pollute the disk, an additional mechanism is implemented
for overlapping entries.

23

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Algorithm 3.1.: NVCACHE wr i te function.

struct nvram { // Non-volatile memory
struct { char path[PATH_MAX]; } fds[FD_MAX];
struct entry entries[NB_ENTRIES];
uint64_t persistent_tail;

}x nvram;

oA W N o

7 uint64_t head, volatile_tail; // Volatile memory

9 void write(int fd, const char* buf, size_t n) {

10 struct open_filex o = open_files[fd];

n struct filex f = o—>file;

12 struct page_descx p = get(f->radix, o—>offset);

14 uint64_t index = next_entry();

15 struct entryx e = &nvram—>entries[index % NB_ENTRIES];

7 acquire(&p->atomic_lock);

19 memcpy(e->data, buf, n); // Write cache
20 e—>fd =fd;

21 e—>off = 0—>off;

2 pwb_range(e, sizeof(*e)); // Send the uncommited entry to NVMM
23 pfence(); // Ensure commit is executed after
25 e—>commit=1;

26 pwb_range(e, CACHE_LINE_SIZE); // Send the commit to NVMM
27 psync(); // Ensure durable linearizability
29 atomic_fetch_add(&p—>dirty_counter, 1); // Read cache
30 if(p—>content) // Update page if present in the read cache
3 memcpy(p—>content—>data + o—>off % PAGE_SIZE, buf, n);

2 release(&p—->atomic_lock);

33 }

35 int next_entry() {

36 intindex = atomic_load(&head);

37 while((index + 1) % NB_ENTRIES == atomic_load(&volatile_tail)) ||

38 latomic_compare_and_swap(&head, index, index + 1))

39 index = atomic_load(&head);

40 return index; // Commit flag at index is 0 (see cleanup thread)
a }

24

3.2. NVCache: Implementation

Index | fd | off | size | data waiting | written | commit
n 5 0 4096 | First 4096 bytes n 0 0 «—tail
n+1 | 5 | 4096 | 4096 | Next 4096 bytes n 0 1
head— | n+2 | 5 | 8192 8 Last 8 bytes n 0 1

Figure 3.3.: State of NVLOG while adding 8200 bytes.

We leverage this problem by adding the waiting field in each log entry. On single
entries, this field is set to —1. On multiple entries, it stores the index of the first
one. The first entry of an overlapping entry is the one used as a reference for all of
its followers. The sequence to follow to add an overlapping entry is the following:

+ Compute the number of log entries to allocate (k)
« Allocate these k entries

« Write the first entry, with a waiting index pointing to itself, and a commit
boolean to False

+ Write the k — 1 following entries, with a waiting index to the first one, and
commit boolean set to True

« When all entries are written, perform a sfence
+ Change the first entry commi t flag to True
+ Call sfence and c1flush

This sequence allows to keep overlapping writes atomic, as they cannot be partially
propagated to disk.

3.2.3. Cleanup thread

While NVCACHE is writing new entries in the log, a background thread is respon-
sible for flushing these log entries in the actual non volatile storage media.

This thread interacts with three elements of the NVLOG:
« The tail counter, index of the last flushed entry
« The written field of log entries

« The available_entries main counter, keeping track of the number of en-
tries that can be allocated.

25

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

As entries are added to the log at the head index, the cleanup thread is responsible
for synchronizing these entries with the disk. It uses the tail index, stored in
volatile memory, to call the standard 11ibc I/O functions, and submit each entry as
a write system call to the backend file system.

Interaction with the LPC

When an entry is processed by the cleanup thread, it is sent to kernel space in order
to be written on the physical disk. Though, for performance reasons, calling the
write system call alone does not give any persistence guarantee. Instead, data
is sent to the volatile LPC, opportunistically waiting for a moment to write in non
volatile storage. From userland, the usual way to make sure every pending write
operation is propagated to disk is to call the sync system call. As this system call
returns, the user is guaranteed that its data has been persisted on disk.

Ideally, data in our cache should never transit back into a volatile storage before
reaching its final persistent storage of destination. However, there are two reasons
why this is not the technical choice made for NVCACHE. First, there is no way from
user space to write into a device file system without going through the LPC. Except
using a Filesystem in Userspace (FUSE) file system, which is not as efficient be-
cause of multiple context switches for each operation. Second, we can use the LPC
design at our advantage to optimize some of our disk throughput, and in particular
by using a batching strategy.

Batch strategy

From user space, NVCACHE first has to call the sync system call, ensuring a log en-
try has been written to disk. Then, it can free the log entry (by setting thewritten
flag).

Yet, flushing NVLOG entries one by one requires to call sync for each of them.
While this was the initial implementation of NVCACHE, it suffered from a massive
throughput bottleneck due to the user space constantly waiting for the kernel to
flush pages.

Instead, NVCACHE makes batches of writes and only send one sync command after
each batch. This strategy considerably increased the throughput, and this can be
explained by several factors.

First, the LPC can opportunistically write to disk when it is not used, which means
it can start writing on disk while the batch is still being submitted by the user space.

26

3.2. NVCache: Implementation

In comparison, calling sync between each log entry implies an additionnal context
switch per entry, and adds the latency required to ensure the LPC is synchronized
with the disk on the kernel side before returning.

Second, as the LPC organizes its space in pages, if two modifications of the same
page are in the same batch of entries, they may be applied to the same page in
DRAM. In this case, it may result in only one actual transaction to the disk, opti-
mizing the available throughput.

Flush policy

As described previously, our NVCACHE cleanup thread is responsible for flushing
entries from persistent memory to the disk by batches. Using NVMM as an inter-
mediate between the application and the disk also gives NVCACHE the ability to
limit problems when the machine crashes. In particular, it avoids partial writes on
disk by implementing a redo-log behavior.

While the application is writing data into the NVLOG, this mechanism is imple-
mented using the waiting flag. The cleanup thread has to wait for the first entry
of a long write to be commited, which is only set when all the entries have been
appened to the log.

Once the first write entry is committed, the cleanup thread can embed all of the
entries for the next batch to be flushed. As soon as the kernel guarantees the last
entry of the entire write has been flushed, all of the entries are marked aswritten.

This strategy ensures that a crash would never result in a partial write on disk.
Technically, a partial write could occur when the cleanup thread is submitting en-
tries to the kernel. However, as they are not marked written before the last one
is, a partial write on disk would inevitably end in a re-submission of all of this write
entries.

Recovery procedure

The particularity of NVCACHE is that it splits the persistence domain in two dif-
ferent storage units. Only the two persistent areas together can ensure a coherent
state.

In case of a crash, the exit_status boolean would stay at 1. If the user restarts
the program and loads NVCACHE, on initialization, NVCACHE would detect a mal-
function happened in the previous run and would ask the user if they want to start

27

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

a recovery. The NVLOG is always either empty or ready to be synchronized with
the underlying disk through the recovery procedure.

As the NVLOG data structure in NVMM contains the tail pointer, the translation
table between file descriptors and their respective paths to each file, and the log en-
tries yet to be flushed, we implemented a recovery procedure that flushes all pend-
ing modifications to the actual disk. This synchronization step is only responsible
for emptying the cache, and goes back to a regular state on disk. One could decide
to restart the application without NVCACHE after a recovery, and there would be no
difference with a regular restart of the said application on a regular system.

3.2.4. Write-only performance

By combining the previous elements of NVCACHE, we obtain a crash resilient write
cache. For the moment, the cache is only unidirectional, as we can only use it in
the write direction.

3.2.5. Ensuring consistency

In this state, NVCACHE can only handle write operations. If an application tries
to read data, the request would be submitted to the kernel, which would fetch the
content from disk. However, there are two major failures that could happen in this
situation. First, if the memory area has been modified and the modification is still
pending in the NVMM log, reading from disk would result in getting outdated data.
Second, as the cleanup thread is constantly writing to the disk, there is a risk the
page to read could be modified simultaneously. As the LPC does not guarantee the
atomicity of I/O operations, reading data while the cleanup thread is active remains
a synchronization challenge. For these reasons, there is no easy way to get such an
asymetric cache.

The paging dilemma

As described in Section 3.2.2, the NVLOG in NVMM only keeps track of pending
modifications. These can apply on unaligned offsets inside our files, which means
offsets that are not a multiple of the LPC standard page size (4 KiB). Transforming
NVCACHE in a more read-friendly system could be achieved by keeping full pages
of 4 KiB in the cache, ready to be read as is. As a matter of fact, this is exactly
how the LPC manages files, by splitting them in 4 KiB aligned pages. However,
this choice comes with a some disadvantages. First of all, accepting modifications

28

3.2. NVCache: Implementation

inside pages requires to frequently read inside the disk. Indeed, if the modified
page is not cached yet, it requires to retrieve the content the page from the disk
first. Second, the amount of data to transfer to disk, even for a small modification,
is always a multiple of 4 kB, making the cache less efficient when used for small
write operations.

This comparison between logging and paging in NVMM will be made in Chapter 4.

Regarding NVCACHE, the decision has been made to maximize the write cache per-
formance. That is why we kept a log-based use of the NVMM.

Complementary DRAM cache

The ideal solution to ensure coherence when reading is to add a complementary
page cache in DRAM. By manually keeping up to date pages of data, NVCACHE is
able to answer to read requests, while staying un user space. By design, a cache is
only covering a subset of the real data area. Thus, this additionnal mechanism is
not able to avoid cache misses in all scenarios. However, it is able to probabilisti-
cally reduce the amount of cache misses, and therefore, the time required to read
in NVCACHE.

DRAM cache interaction
This section covers the behaviour of the custom DRAM cache build in NVCACHE.

Read. The integrated DRAM cache is accessed whenever a read request is sent by
the hosted program. If the requested data is already in the cache, it is a cache hit,
and NVCACHE answers directly. But if the said data is not in cache yet, the cache
miss procedure is triggered.

Cache miss. When a page is not found in the cache, the cache miss procedure
reads it from disk. But in the context of NVCACHE, reading from disk is not suf-
ficient to guarantee that the read data is coherent. Here is a very likely scenario
that could lead to incoherence: a page recently modified by a write request has a
modification pending in the NVLOG. That page is not in the DRAM cache. When
the program tries to read that page, it triggers a cache miss procedure. Given these
circumstances, reading from the disk would fetch data that is now outdated, as the
pending modification has not been applied on disk yet. In our implementation, this
precise scenario would call another more complex cache miss procedure, that we
called dirty miss. This very specific procedure will be detailed in section 3.2.6.

29

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Program DRAM Cache

Persistence guarantees:

4KB Page

4KB Page

4KB Page

4KB Page 4KB Page 4KB Page

Volatile domain

write() Non-volatile domain

Cache hit

fd | off data written| commit
read() 5 0 "hello world!" 1 1
6 [¢] "test read, do you copy?" 0 1
SSD
Figure 3.4.: NVCACHE behavior in case of a cache hit.
Program DRAM Cache
Persistence guarantees:
4KB Page 4KB Page 4KB Page 4KB Page 4KB Page 4KB Page
Volatile domain
write() Non-volatile domain
Cache miss (2) Cache miss (1)
NVLog
fd | off data written| commit
read() 5 0 "hello world!" 1 1
6] "test read, do you copy?" 0 1 SSD

Figure 3.5.: NVCACHE behavior in case of a cache miss.

Independantly of the kind of cache miss triggered, the data page is eventually re-
trieved. In order to make sure this page stays available for potential future read
requests, it is also added to the page cache of NVCACHE.

Write. The key idea of having the DRAM cache is to make sure we can read from it
at any time. As any caching system, the cost of a cache miss is considerably higher
than the cost of a cache hit. This is particularly true for NVCACHE, as it can also trig-
ger an even more costlydirty miss. However, by ensuring the DRAM cache stays
up to date, we can avoid many calls to the dirty miss procedure. For that pre-
cise reason, every write submitted to NVCACHE also checks if a page in the DRAM
cache has to be updated. If the page is not already in the cache, this mechanism
is skipped, as there is no reason to believe the program would read the page it just
wrote if the said page has not been read recently. However, if the page is in the

30

3.2. NVCache: Implementation

Program DRAM Cache
Persistence guarantees:
4KB Page | 4KB Page | 4KB Page | 4KB Page | 4KB Page | 4KB Page
Volatile domain
write() Non-volatile domain
Dirty miss (3) Dirty miss (2)
NVLog
fd | off data written| commit
read() 5 0 "hello world!" 1 1
6 0 "test read, do you copy?" 0 1
SSD
Update
Dirty miss (1)
. . . . «1: <y
Figure 3.6.: NVCACHE behavior in case of a “dirty miss”.
Program DRAM Cache
Persistence guarantees:
4KB Page | 4KB Page | 4KB Page | 4KB Page | 4KB Page | 4KB Page
Volatile domain
. Update
write() Non-volatile domain
Add
entry
NVLog
fd | off data written| commit
read() 5 0] "hello world!" 1 1 >
Background
thread
SSD

Figure 3.7.: NVCACHE behavior in case of a write.

cache, meaning that it has been read recently, the page is updated and ready to be

read again.

Page management

In order to keep the most used pages in our DRAM page cache, NVCACHE uses the
Least Recently Used (LRU) eviction policy. The page cache itself is a chained list
of pages that keeps in first position the latest page accessed, while the last one is
always the least recently used one. Having this organisation allows to easily identify
and recycle the least useful page when the cache is full and we need to insert a
newer page.

31

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Effect of the DRAM cache

The goal of maintaining a complementary page cache in DRAM is to reduce the
probability of complex cache misses. As NVCACHE keeps pending modifications in
its userland non-volatile log, there is a time frame during which the system is not
aware that change will have to be applied. In this scenario, if the program tries to
directly read from a cached file, it would obtain outdated data coming from the disk
or the LPC. That is why we added a custom page cache with NVCACHE, that keeps
its pages updated all the time and thus can answer read requests without compro-
mising data coherence. Nonetheless, there are still some extreme cases where the
up to date page will not be in the DRAM cache anymore, and the modification is
still pending in the non-volatile log. In these cases, NVCACHE has to proceed to
adirty miss procedure. As this event is quite slow, increasing the size of the
DRAM cache can reduce its probability of happening.

3.2.6. Control structures

Some of NVCACHE components are key data structures that help achieving the
aforementioned features. Such elements deserve a proper description in this sec-
tion.

Radix Tree

Inspired by the LPC implementation in the Linux kernel, our page cache is accessed
using a Radix tree. Radix trees are known to be efficent for page management sys-
tems, as they guarantee a small memory footprint while ensuring a low latency of
answer. More specifically, a radix tree has alow latency on cache misses, as a failed
lookup will return in a time shorter or equal to the time for a valid lookup.

In our implementation, a radix tree is created for each file opened. Then, the key
is the number of the 4 KiB page inside this file, which is the aligned offset divided
by 4 KiB. The key (an offset, 64 bits unsigned integer) is subdivided in 8 bits parts
that represent the granularity of our radix tree stages.

When performing a lookup, the answer can either be a null pointer or a pointer to
a data page.

32

3.2. NVCache: Implementation

read write

Cache miss

Unloaded >
dc=0 Loaded
clean <

_/ T \S
£ - a
3.| Eviction—pa a
5 s |2

y Y o

Dirty miss
Unloaded
dirty

Cleanup write

Figure 3.8.: State machine of pages (dc: dirty counter).

Page descriptors

Technically, the leaves of our radix tree are not directly data pages, but instead, they
are page descriptors. In a page descriptor, several control fields are defined:

1. Alock
2. Adirty counter

3. A pointer to the actual page

This page descriptor allows to keep track of a page state regarding its modifications
pending in the NVLOG. The dirty counter is an integer, and it provides an easy
access to the number of modifications in the log one would have to apply in order
to get this page up to date. When a cache miss occurs, and this counter is not zero,
then a “dirty miss” procedure is triggered.

The lock ensures the synchronization between the interface exposed to the appli-
cation and the background cleanup thread.

Pages state machine

The behavior of each page can be summarized in a simple state machine.

Synchronization

By design, NVCACHE must contain some internal synchronization mechanisms.
Seen from the application, using NVCACHE API must ensure the same level of guar-
antees mentioned by the Portable Operating System Interface (POSIX) standard.

33

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

However, we definitely do not want to ensure more guarantees (except the I/O per-
sistence one). For instance, our interface must not provide any supplemental guar-
antee regarding thread safety and data consistency, as such mechanisms would
lower our performance in comparison with a regular system. If we keep the spirit
described by the POSIX standard, these securities are the concern of the program-
mer. Thus, there is no protection regarding writing at the same moment in the
same page, which would undoubtably end with an inconsistent state in memory.

While the user interface remains unchanged, the interaction with the kernel has
to be adapted to the inner functions of NVCACHE. In a regular machine, writing
to the disk requires to call write, and a fsync that guarantees the data is safe in
case of a crash. But with NVCACHE standing in between the program and the ac-
tual disk, the logic is different. First, the write call itself is sufficient to get the
persistence guarantee[62]. Second, the fsync call is ignored, as it is redundant
with the guarantee provided by wr1ite. Then, as soon as the program has received
the guarantee, it is NVCACHE responsibility to get the data to the disk safely, while
being crash resilient. In this context, the cleanup thread is responsible for synchro-
nizing the NVLOG of pending wr i te requests and the disk. We did not provide any
additionnal guarantee of thread safety between the program threads, however, we
cannot introduce perturbations to the main threads because of the cleanup thread,
and this problem lead to some more complexity in NVCACHE.

Let us imagine the following scenario: a main thread, from the application, writes
4 KiB of data in a file with NVCACHE’s API. A new log entry is added to the NVLOG.
At the same time, another thread asks to read that precise page.

+ Option 1: Clean miss. The cleanup thread already applied the log entry to the
disk. Reading will result in a cache miss, and as the dirty counter of that
page is at zero (meaning no log entry has to be applied) the page is read from
disk, added to the LRU cache and returned to the user.

+ Option 2: Dirty miss. The cleanup thread is late, and has not applied the log
entry to disk yet. Asthe dirty counter of that page is at 1, the cache miss
becomes a dirty miss, and the page has to be read from disk and updated
before it is loaded in the LRU cache and returned to the user.

«+ Option 3: Inconsistency. The cleanup thread is currently writing the page to
disk, but has not finished yet. The main thread tries to read, but the page in
not in the LRU cache, triggering a cache miss. It is read from disk and... We
just read data while it was being modified by the cleanup thread: the result
may be a mix of the old and the new page.

34

3.3. Evaluation

Options 1 and 2 are perfectly acceptable, as they virtually react as we would expect
from a POSIX compliant interface. But option 3 creates a very unpredictible behav-
ior, and breaks the guarantee NVCACHE gave to the program when returning from
the write call.

In order to avoid this tricky scenario, each page is equipped with a lock.

When the cleanup thread is about to apply modification on a batch of pages, it first
tries to lock as many affected pages as possible. If a locked page is found before
the maximum batch size, the thread stops acquiring locks and flushes the batch of
pages already locked. Optimistically, during the time the partial batch is flushed,
the locked page would be unlocked and another batch could be started. In the mean
time, if the main application thread triggers a cache miss procedure (dirty or not),
the lock has to be taken on the given page before reading from the disk. When
the page is already loaded in the DRAM cache, there is no NVCACHE specific syn-
chronization issue, as this cache behaves the same way as the LPC. The only syn-
chronization conflicts that could happen with the DRAM cache are, as designed in
POSIX, the responsibility of the application programmer.

3.3. Evaluation

We evaluate NVCACHE on two applications. The first one, Flexible I/O tester (FIO),
is a performance measurement tool that can evaluate the reachable performance of
several components of the I/O chain. The second one, RocksDB, is a key-value store
based on Google’s LevelDB and currently used by companies such as Facebook or
LinkedIn.

3.3.1. Experimental setup

Hardware

Our benchmark machine is a Supermicro dual socket server with two NUMA do-
mains. Each socket is equipped with an Intel Xeon Gold 5215 CPU. These CPUs
run 10 physical cores (20 hardware threads) at 2.50 GHz. Each of these CPUs mem-
ory channels are populated with 6x32 GiB of DDR4 DRAM and 4x128 GiB of Optane
NVDIMM v100. Overall, this machine has 40 hardware threads, 384 GiB of DRAM

35

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Table 3.2.: Evaluated file systems.

Name Write Storage FS Synchronous Durable
cache space durability linearizability
NVCACHE +SSD NVCACHE SSD Ext4 by default by default
DM-WriteCache | kernel page cache SSD Ext4 | O_DIRECT | O_SYNC no
Ext4-DAX kernel page cache | NVMM | Ext4 | O_DIRECT|O_SYNC no
NOVA! none NVMM | NOVA | O_DIRECT | O_SYNC by default
SSD kernel page cache SSD Ext4 | O_DIRECT | O_SYNC no
tmpfs kernel page cache | DDR4 none no no
NVCACHE +NOVA NVCACHE NVMM | NOVA by default by default

and 512 GiB of NVMM. The machine has two Serial Advance Technology Attach-
ment (SATA) Intel SSD DC S4600 of 512 GiB. The main SSD contains the system,
while the second is used for the experiments.

Software

The machine runs Ubuntu 20.04 with Linux version 5.1.0 (NOVA[138] repository ver-
sion) and musl[40] v1.1.24, revision 9b2921be. For simplicity, benchmarks are run
inside docker containers, with the Alpine Linux[25] distribution. As this distribu-
tion is designed around the use of the musl libc, all of the packages pre-compiled
in its repositories are natively compatible with our modified musl C library. Both
SSDs are formatted in Ext4.

NVCACHE parameters

Unless stated otherwise, we configure NVCACHE as follow. Each entry in our NVM
log is 4 KiB large. The log itself is constituted of 16 million entries (around 64 GiB).
The RAM cache uses 250 thousand pages of 4 KiB each (around 1GiB). The mini-
mum number of entries before attempting to batch data to the disk is 1thousand.
The maximum number of entries in a batch is 10 thousand. When log entries are
flushed, depending on the configuration, they are either propagated to the test SSD
formatted in Ext4, or to another PMEM module formatted with NOVA.

Comparison with other systems

One of the most important obstacle in evaluating NVCACHE performance, is to
make fair comparisons with other systems. We selected 2 configurations with
NVCACHE, and 5 configurations without, as baselines. The purpose of adding a
NVCACHE +NOVA (on PMEM) configuration is to check if NVCACHE performance

36

3.3. Evaluation

is, as expected, limited by the throughput of the underlying device. By comparing
this setup with the regular NVCACHE +Ext4 (on a SSD), we expect to measure better
performances when the log is emptied in a faster device.

SSD (ext4). This configuration is from far the one expected to be the slowest. It
consists in a regular ext4 filesystem on the machine SSD. As it would not make a fair
comparison without guarantees, the benchmark has to call fsync after every write
operation, which is considerably slow. Even if this is not really the expected way to
use such a configuration, this is a good baseline to show what having NVCACHE-tier
guarantees would cost on a regular machine.

Tmpfs. This is the kind of file system used to store temporary files in Unix-like
operating systems. Itis stored in DRAM, and thus, does not provide any persistence
guarantee.

Ext4-DAX. Ext4 system is one of the most popular journaling file system for modern
Unix-like operating systems. It is initially meant to be used on a HDD or SSD, which
explains why is uses the LPC. However, when deployed on NVMM, the LPC tends to
slow down operations instead of making them more efficient. That is why Ext4 can
be used in DAX mode with NVMM, skipping the useless copy of data in the LPC.

Dm-Writecache. A popular implementation of a write cache in the linux kernel. It
does not cache reads, only writes.

NOVA. This is one of the most popular file systems released for NVMM. It is
DAX-capable by design. In order to get the best performance out of Intel Optane
DCPMM, it has been designed as a log-structured file system[133].

NVCACHE on SSD. In this configuration, NVCACHE is used on a standard SSD, for-
matted in a standard Ext4 file system. The main advantage is that the storage space
available is not limited by the amount of NVMM available.

NVCACHE on NOVA. This setup is not meant to be used in real conditions, but it is
a good way to evaluate what part of NVCACHE measured performance is a conse-
quence of the underlying device raw performance. It does not offer a large storage
space like NVCACHE with an SSD, but shows the theoretical performance NVCACHE
could reach with a more efficient secondary storage.

All of these systems and their properties are summarized in Table 3.2.

37

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

3.3.2. Benchmarks

NVCACHE performance has been evaluated with several benchmarking tools.

FIO: Flexible 1/O tester

FIO[4] is a benchmark application, designed to measure various I/O performance
indicators of bandwidth and latency, while providing an easy interface to generate
many kinds of workloads. We used FIO to simulate I/O intensive workloads with
and without NVCACHE, while changing either the parameters of the workload gen-
erator or the configuration of NVCACHE.

RocksDB benchmark

RocksDB is a DBMS based on Facebook’s LevelDB. More precisely, itis an embedded
database coded in C++, meaning it has to be integrated into an application to be
used.

Isisused by large scale companies such as Facebook, Yahoo! and LinkedIn[13]. Asa
demonstration, the RocksDB source code can be compiled as a benchmarking tool
named db_bench. We evaluated the performance of RocksDB’s db_bench with
the different configurations we wanted to compare NVCACHE with.

SQLite

SQLite [22] is an embedded relational database engine coded in C. It is a very ligh-
weight and yet fully fledged library, used from very popular software (Firefox[98],
Thunderbird[99], etc.[64, 74]) to embedded systems. We evaluated SQLite v3.25,
with a port of the db_bench benchmarking tool[125].

3.3.3. Read-oriented workloads

In all our experiments, read performance on SQLite and RocksDB is roughly equiv-
alent for all systems3.9. This behavior is not surprising, as both DBMS use an inter-
nal DRAM cache. Actually, many DBMS use similar mechanisms to avoid dealing
with the LPC. They use the O_DIRECT flag[91] when they open the database file,
and manage their own local DRAM cache. However, this behavior is not a problem
for our writing tests, as the cache has to be regularly (or manually) synchronized
with the persistent media.

38

3.3. Evaluation

NVCache + Ext4 B DM-Writecache | Ext4-DAX H Nova
SSD (Ext4) B RamFS NVCache+Nova
RocksDB SQLite
6
4 I

Latency [s]

read readseq read readseq
random random

Figure 3.9.: Performance of each system under SQLite and RocksDB read intensive
workloads

3.3.4. Write-oriented workloads

Tuning NVCACHE with FIO

In the following experiments, we evaluated the impact of changes in NVCACHE’s
configuration. First, in figure 3.10, we study the parameters related to writing in
the NVLOG. By changing the length of the NVLOG, we expect NVCACHE to reach
higher performance in write bandwidth, as the amount of data that can be cached
to NVMM increases. Increasing the log size delays the moment the NVLOG be-
comes full, and thus, relies on the SSD performance. In this test, FIO is used in
write-only mode.

As expected, when NVCACHE can absorb more data in its log, it reaches better per-
formance. The two first plots of figure 3.10 show the bandwidth and latency reached
by the benchmark over time. The third one is a like a progress bar, showing the ad-
vancement of each benchmark to write the 20 GiB of data. Thanks to these graphs,
we can identify the different phases of the benchmark, depending on the physical
support receiving the data. In particular, the 8 GiB log shows a clear rupture be-
tween the first phase, during which the benchmark can write in the NVMM cache,

39

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

NVLog size: —e— 100MB -m— 1G —— 8G —— 32G

Throughput
)
=
2. 400
5
=
=)
5 200
2
= A B - 1———'——_T
0 10 20 30 40 50 60 70 80 90
Time [s]
Latency
60 |
3
— 40
Q
=
Q
s 20¢
0 10 20 30 40 50 60 70 80 920
Time [s]

Written data

80 90

0 10 20 30 40 50 60 70
Time [s]

Figure 3.10.: Performance of NVCACHE under random write intensive loads for
20 GiB, with variable NVMM log size.

40

3.3. Evaluation

and the second phase, when the cache is full, the disk becoming the performance
bottleneck.

In real conditions, one could use NVCACHE with a smaller log size to preserve the
amount of NVMM used. However, in our case, we focus on analyzing NVCACHE
performance in the caching phase. As soon as the cache is full, the performance
of the cached SSD is to be expected, and cannot be exceeded.

On the same write-only benchmark, we evaluated the effect of our batching mech-
anism. This system is expected to be more efficient when the batch size (the num-
ber of entries written to disk before a call to fsync) increases. Indeed, as we are
submitting write requests to the LPC, asking for guarantees less often reduces the
time spent waiting on the disk to send a confirmation our data has been written.
Moreover, if modifications to apply on the same page are in the batch, they will be
applied in RAM and thus merged before the final page is sent only