
HAL Id: tel-04426035
https://theses.hal.science/tel-04426035v1

Submitted on 30 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards new memory paradigms : Integrating
non-volatile main memory and remote direct memory

access in modern systems
Rémi Dulong

To cite this version:
Rémi Dulong. Towards new memory paradigms : Integrating non-volatile main memory and remote
direct memory access in modern systems. Computer science. Institut Polytechnique de Paris; Univer-
sité de Neuchâtel, 2023. English. �NNT : 2023IPPAS027�. �tel-04426035�

https://theses.hal.science/tel-04426035v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

P
PA

S
02

7

Towards New Memory Paradigms:
Integrating Non-Volatile Main Memory
and Remote Direct Memory Access in

Modern Systems

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Université de Neuchâtel (Suisse)

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Neuchâtel, le 18 Décembre 2023, par

RÉMI DULONG

Composition du Jury :

Thomas Clausen
Professeur, École Polytechnique, Institut Polytechnique de Paris Président

Anne-Marie Kermarrec
Directrice de recherche, École Polytechnique Fédérale de Lausanne Rapportrice

Noël De Palma
Professeur, Université Grenoble Alpes Rapporteur

Patrick Eugster
Professeur, Università della Svizzera italiana Examinateur

Pascal Felber
Professeur, Université de Neuchâtel Co-directeur de thèse

Gaël Thomas
Directeur de recherche, Télécom SudParis, Institut Polytechnique de
Paris Co-directeur de thèse

Abstract

Modern computers are built around two main parts: their Central Processing Unit
(CPU), and their volatile main memory, or Random Access Memory (RAM). The
basis of this architecture takes its roots in the 1970’s first computers. Since, this
principle has been constantly upgraded to provide more functionnality and per-
formance.

In this thesis, we study two memory paradigms that drastically change the way
we can interact with memory in modern systems: non-volatile memory and re-
mote memory access. We implement software tools that leverage them in order
to make them compatible and exploit their performance with concrete applica-
tions. We also analyze the impact of the technologies underlying these new mem-
ory medium, and the perspectives of their evolution in the coming years.

For non-volatile memory, as the main memory performance is key to unlock the
full potential of a CPU, this feature has historically been abandoned on the race for
performance. Even if the first computers were designed with non-volatile forms
of memory, computer architects started to use volatile RAM for its incomparable
performance compared to durable storage, and never questioned this decision for
years. However, in 2019 Intel released a new component called Optane DC Persis-
tent Memory (DCPMM), a device that made possible the use of Non-Volatile Main
Memory (NVMM). That product, by its capabilities, provides a new way of think-
ing about data persistence. Yet, it also challenges the hardware architecture used
in our current machines and the way we program them.

With this new form of memory we implemented NVCACHE, a cache designed for
non-volatile memory that helps boosting the interactions with slower persistent
storage medias, such as Solid State Drive (SSD). We find NVCACHE to be quite per-
formant for workloads that require a high granularity of persistence guarantees,
while being as easy to use as the traditional POSIX interface. Compared to file sys-
tems designed for NVMM, NVCACHE can reach similar or higher throughput when
the non-volatile memory is used. In addition, NVCACHE allows the code to exploit
NVMM performance while not being limited by the amount of NVMM installed in
the machine.

Anothermajor change of in the computer landscape has been the popularity of dis-
tributed systems. As individual machines tend to reach performance limitations,

iii

Abstract

using severalmachines and sharingworkloads became thenewway to build power-
ful computers. While this mode of computation allows the software to scale up the
number of CPUs used simultaneously, it requires fast interconnection between the
computing nodes. For that reason, several communication protocols implemented
RemoteDirectMemoryAccess (RDMA), away to read orwrite directly into a distant
machine’s memory. RDMA provides low latencies and high throughput, bypassing
many steps of the traditional network stack.

However, RDMA remains limited in its native features. For instance, there is no
advanced multicast equivalent for the most efficient RDMA functions. Thanks to a
programmable switch (the Intel Tofino), we implemented a specialmode for RDMA
that allows a client to read or write in multiple servers at the same time, with no
performance penalty. Our system called Byp4ss makes the switch participate in
transfers, duplicating RDMA packets. On top of Byp4ss, we implement a consen-
sus protocol named DISMU, which shows the typical use of Byp4ss features and
its impact on performance. By design, DISMU is optimal in terms of latency and
throughput, as it can reduce to the minimum the number of packets exchanged
through the network to reach a consensus.

Finally, by using these two technologies, we notice that future generations of hard-
ware may require a new interface for memories of all kinds, in order to ease the
interoperability in systems that tend to getmore andmoreheterogeneous and com-
plex.

Keywords: Non-Volatile Main Memory (NVMM), Remote Direct Memory Access
(RDMA), Memory disaggregation, In-network computing.

iv

Résumé

Les ordinateurs modernes sont construits autour de deux éléments : leur CPU et
leur mémoire principale volatile, ou RAM. Depuis les années 1970, ce principe a
été constamment amélioré pour offrir toujours plus de fonctionnalités et de per-
formances.

Dans cette thèse, nous étudions deux paradigmes de mémoire qui proposent de
nouvelles façons d’interagir avec la mémoire dans les systèmes modernes : la mé-
moire non-volatile et les accès mémoire distants. Nous mettons en œuvre des ou-
tils logiciels qui exploitent ces nouvelles approches afin de les rendre compatibles
et d’exploiter leurs performances avec des applications concrètes. Nous analysons
également l’impact des technologies utilisées, et les perspectives de leur évolution
dans les années à venir.

Pour la mémoire non-volatile, comme les performances de la mémoire sont essen-
tielles pour atteindre le potentiel d’un CPU, cette fonctionnalité a historiquement
été abandonnée. Même si les premiers ordinateurs ont été conçus avec des formes
de mémoire non volatiles, les architectes informatiques ont commencé à utiliser
la RAM volatile pour ses performances inégalées, et n’ont jamais remis en ques-
tion cette décision pendant des années. Cependant, en 2019, Intel a commercialisé
un nouveau composant appelé Optane DCPMM qui rend possible l’utilisation de
NVMM. Ce produit propose une nouvelle façon de penser la persistance des don-
nées. Mais il remet également en question l’architecture de nos machines et la ma-
nière dont nous les programmons.

Avec cette nouvelle forme de mémoire, nous avons implémenté NVCACHE, un
cache en mémoire non-volatile qui permet d’accélérer les interactions avec des
supports de stockage persistants plus lents, tels que les SSD. Nous montrons que
NVCACHE est particulièrement performant pour les tâches qui nécessitent une gra-
nularité élevée des garanties de persistance, tout en étant aussi simple à utiliser que
l’interface POSIX traditionnelle. Comparé aux systèmes de fichiers conçus pour
NVMM, NVCACHE peut atteindre un débit similaire ou supérieur lorsque la mé-
moire non volatile est utilisée. De plus, NVCACHE permet aux programmes d’ex-
ploiter les performances de NVMM sans être limité par la quantité de NVMM ins-
tallée sur la machine.

Un autre changement majeur dans le paysage informatique a été la popularité des

v

Résumé

systèmes distribués. Alors que les machines ont individuellement tendance à at-
teindre des limites de performances, l’utilisation de plusieurs machines et le par-
tage des tâches sont devenus la nouvelle façon de créer des ordinateurs puissants.
Bien que ce mode de calcul permette d’augmenter le nombre de CPU utilisés si-
multanément, il nécessite une connexion rapide entre les nœuds de calcul. Pour
cette raison, plusieurs protocoles de communicationont implémententéRDMA,un
moyen de lire ou d’écrire directement dans lamémoire d’un serveur distant. RDMA
offre de faibles latences et un débit élevé, contournant de nombreuses étapes de la
pile réseau.

Cependant, RDMA reste limité dans ses fonctionnalités natives. Par exemple, il
n’existe pas d’équivalent de multicast pour les fonctions RDMA les plus efficaces.
Grâce à un switch programmable (le switch Intel Tofino), nous avons implémenté
un mode spécial pour RDMA qui permet de lire ou d’écrire sur plusieurs serveurs
en même temps, sans pénalité de performances. Notre système appelé Byp4ss
fait participer le switch aux transferts, en dupliquant les paquets RDMA. Grâce à
Byp4ss, nous avons implémenté un protocole de consensus nomméDISMU. De par
sa conception, DISMU est optimal en termes de latence et de débit, car il peut ré-
duire au minimum le nombre de paquets échangés sur le réseau pour parvenir à
un consensus.

Enfin, en utilisant ces deux technologies, nous remarquons que les futures généra-
tions de matériel pourraient nécessiter une nouvelle interface pour les mémoires
de toutes sortes, afin de faciliter l’interopérabilité dans des systèmes qui ont ten-
dance à devenir de plus en plus hétérogènes et complexes.

Mots-clés :Mémoire principale non volatile (NVMM), Accès direct demémoire dis-
tante (RDMA), Mémoire désagrégée, Réseaux programmables.

vi

Remerciements

Merci aux Prof. Pascal Felber et Prof. Gaël Thomas, mes deux directeurs de thèse,
qui m’ont fait découvrir le monde de la recherche, et qui ont choisi de me faire
confiance du début à la fin de ce long parcours. Merci également au FNS (Fonds
National Suisse) pour avoir financé cette thèse dans le cadre du projet PersiST (no.
178822). Merci à Valerio, pour son soutien dans tous nos travaux. Merci à Bap-
tiste pour avoir amené un œil nouveau sur mon travail, ce qui a considérablement
contribué à la seconde partie de cette thèse. Merci aux membres de mon jury, qui
ont pris de leur précieux temps pour considérer et apprécier mon travail.

Merci à tous mes collègues, qu’ils aient été profs, doctorants ou stagiaires. En par-
ticulier, merci à Sébastien qui m’a fait découvrir le canton de Neuchâtel mais aussi
la Suisse, sa culture, ses traditions, ses particularités linguistiques... Si bien que je
n’en partirai pas tout de suite ! Merci à Jämes d’avoir toujours été un collègue sur
lequel on peut compter, pour les pizze comme pour le travail, et d’avoir assuré qua-
siment seul la gestion de notre cluster pendant la période d’écriture de cette thèse.
Merci à Peterson, l’ingénieur Camerounais dont le pays peut être fier ! Merci à Gal,
pour son soutien et son humour, malgré la tristesse des évènements qui secouent
son pays en ce moment. Merci à Rafael et Dorian, les experts sur lesquels j’ai pu
m’appuyer au début de l’aventure. Merci à Isabelly et Catherine, pour leur sympa-
thie et pour avoir réussi le tour de force de me motiver à améliorer mon anglais !
Merci à Pedro et Andreia, pour m’avoir guidé dans les arcanes de la NVMM. Merci
à Quentin, Gilles et Nathan, pour avoir contribué de manière directe à ces travaux
pendant leurs stages. Merci à Afrim, pour son travail mais surtout pour sa bonne
humeur! Merci à Lorenzo, pour m’avoir fourni le clavier de sa conception qui a
servi à la rédaction de cette thèse (Adm42 pour les curieux). Merci à Pasquale, Vic-
tor, Andreas, Simon, Vladimir, et tous ceux que j’ai pu rencontrer au labo au fil de
ces cinq années.

Merci à tous les professeurs et encadrants que j’ai pu avoir pendant ma scolarité,
et qui ont tous contribué d’une manière ou d’une autre à la personne que je suis
aujourd’hui. Merci à tous les étudiants pour lesquels j’ai eu le plaisir d’enseigner,
ces quelques heures par semaine me manqueront probablement.

Merci à tous les anciens d’INTech, François, Florian, Victor, Lucas, et plus globa-
lement à toute l’équipe du “Manoir”. J’espère que la bande restera encore soudée

vii

Remerciements

pendant de nombreuses années! Merci à Matthieu, Pauline, Romain, et tous mes
amis de longue date que je ne vois pas aussi souvent que je le voudrais.

Merci à mes grands-parents, Marie-France et Bernard, pour les innombrables
heures à refaire le monde sur Skype le Dimanche soir. Merci à mes sœurs, Lucille
et Candice, pour les pauses jeux vidéo et les retrouvailles chaque année à l’été, ou
aux fêtes de fin d’année. Une pensée aussi pour mon grand-père Jean, avec qui j’ai
appris bien plus que ce qu’on trouve dans les livres d’école, et pour mes arrière-
grands-parents Lily et Joseph, chez qui j’avais eu mes premiers ”cours” d’informa-
tique! S’ils avaient vu jusqu’où tout cela m’a mené... Enfin, merci à toute ma fa-
mille, mes parents, mes grands-parents, oncles, tantes, cousines et cousins, pour
leur soutien, et pour avoir toujours créé cette ambiance si particulière qu’il est bon
de retrouver à chaque réunion de famille. En particulier, merci à mes parents Do-
minique et Gilles qui m’ont soutenu et m’ont permis d’être guidé dans ce parcours
scolaire si privilégié.

viii

Contents

Abstract iii

Résumé v

Remerciements vii

List of acronyms xiii

List of figures xv

List of tables xvii

1. Introduction 1

I. Non-Volatile Main Memory (NVMM) 3

2. A New Kind of Memory 5
2.1. Definition and Terminology . 5
2.2. History of Persistent Memories . 5
2.3. Implementations . 7

2.3.1. For embedded systems . 7
2.3.2. For servers . 7

2.4. Integrating Persistent Memory in Modern Systems 10
2.4.1. NVMM as RAM extension 10
2.4.2. NVMM as a disk . 10
2.4.3. NVMM as a DAX areas . 11
2.4.4. Working with CPU caches 12

2.5. ProgrammingWith Persistent Memory 13
2.5.1. Flushing cache lines . 13
2.5.2. Ordering and durability guarantees 15
2.5.3. Persistence model . 15

3. NVCache: A NVMM-based I/O Booster for Legacy Systems 17
3.1. Introduction . 17

3.1.1. NVCACHE in a nutshell . 17

ix

Contents

3.1.2. NVCACHE features . 17
3.1.3. Target applications . 19

3.2. NVCache: Implementation . 20
3.2.1. Overview . 20
3.2.2. NVLog . 20
3.2.3. Cleanup thread . 25
3.2.4. Write-only performance . 28
3.2.5. Ensuring consistency . 28
3.2.6. Control structures . 32

3.3. Evaluation . 35
3.3.1. Experimental setup . 35
3.3.2. Benchmarks . 38
3.3.3. Read-oriented workloads . 38
3.3.4. Write-oriented workloads 39

3.4. Conclusion . 45

4. NVMM Cache Design: Logging vs. Paging 47
4.1. Motivation . 47
4.2. NVMM-based Caching . 48
4.3. Evaluation . 50
4.4. Conclusion . 52

5. Conclusion on Persistent Memory 53
5.1. Lessons Learned . 53

5.1.1. Software integration . 53
5.1.2. Hardware integration . 55

5.2. On the Future of Persistent Memory 56
5.2.1. The rise and fall of Intel Optane 56
5.2.2. Compute Express Link . 57

5.3. Conclusion . 58

II. Remote Direct Memory Access (RDMA) & Programmable Networks 59

6. Introduction to RDMA 61
6.1. RDMA-Capable Protocols . 61

6.1.1. Infiniband . 61
6.1.2. RoCE . 62

x

Contents

6.2. RDMA-Capable Hardware . 63
6.2.1. Switches . 63
6.2.2. Network Interface Cards . 64

6.3. RDMA Concepts . 64
6.3.1. Memory region . 65
6.3.2. Work request . 65
6.3.3. Queue pairs . 65
6.3.4. Completion queue . 66

6.4. RDMAVerbs . 66
6.4.1. Two-sided verbs . 66
6.4.2. One-sided verbs . 67
6.4.3. Special verbs . 67

6.5. Intel Tofino . 67
6.5.1. Presentation . 68
6.5.2. Performance guarantees . 69

7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA 71
7.1. Introduction . 71
7.2. Background . 73

7.2.1. Remote Direct Memory Access 73
7.2.2. Programmable switches . 75

7.3. FromMu to DISMU . 77
7.3.1. The original Mu protocol . 77
7.3.2. DISMU overview . 78
7.3.3. Byp4ss overview . 79

7.4. Implementation . 80
7.4.1. Communication groups and connections 81
7.4.2. Scatter. 83
7.4.3. Gather . 85
7.4.4. Under the hood . 86
7.4.5. DISMU . 88

7.5. Evaluation . 89
7.5.1. Experimental setup . 89
7.5.2. Methodology . 89
7.5.3. Bandwidth and Throughput 89
7.5.4. Latency. 92
7.5.5. Read workloads . 93

7.6. RelatedWork. 95
7.7. Conclusion . 97

xi

Contents

8. Conclusion on RDMA and Programmable Networks 99
8.1. Programmable Networks . 99
8.2. RDMA in the Computing Landscape 100

8.2.1. A complex programming interface 101
8.2.2. A challenge for performance 101
8.2.3. A unique API . 102

8.3. Perspectives . 103
8.3.1. CXL . 103
8.3.2. The end of the computer-centric era 104

9. Conclusion 107

Bibliography 109

xii

List of acronyms

API Application Programming
Interface

ADR Asynchronous DRAM Refresh
ACK Acknowledgment
ASIC Application-Specific

Integrated Circuit
ALU Arithmetic Logic Unit
AI Artificial Intelligence
BIOS Basic Input Output System
BfRt Barefoot runtime
CPU Central Processing Unit
CA Channel Adapter
CD-RW Compact Disk-Rewritable
CXL Compute Express Link
DBMS Database Management

System
DAX Direct Access
DIMM Dual In-line Memory Module
DCPMM DC Persistent Memory
DDR4 Double Data Rate 4
DRAM Dynamic Random-Access

Memory
DMA Direct Memory Access
DPDK Data Plane Development Kit
eADR External Asynchronous

DRAM Refresh
FUSE Filesystem in Userspace
FIO Flexible I/O tester
FPGA Field-Programmable Gate

Array
GRH Global Route Header
GPU Graphics Processing Unit
HDD Hard Disk Drive
HCI Hyper-Converged

Infrastructure
HPC High-Performance

Computing
IP Internet Protocol
I/O Input/Output
IBoE Infiniband over Ethernet
LPC Linux Page Cache
LRU Least Recently Used
LAN Local Area Network
LRH Local Route Header
MTT Memory Translation Table
MMU Memory Management Unit
MTU Maximum Transmission Unit
NVRAM Non-Volatile RAM
NVMM Non-Volatile Main Memory
NVDIMM Non-Volatile Dual In-line

Memory Module (DIMM)
NAK Negative Acknowledgment
NIC Network Interface Card
NUMA Non-UniformMemory Access
NVMe NVM Express, or Non-Volatile

Memory Host Controller
Interface Specification

OS operating system
OSI Open Systems Inteconnection
PMEM Intel Optane Persistent

Memory
POSIX Portable Operating System

Interface
PSA Protocol-independant Switch

Architecture
PSN Packet Sequence Number
PFENCE Persistent Fence
PSYNC Persistent Sync

xiii

List of acronyms

PWB PersistentWrite-Back
PCIe Peripheral Component

Interconnect Express
PMDK Persistent Memory

Development Kit
PCM Phase-Change Memory
QP Queue Pair
RAM Random Access Memory
RDMA Remote Direct Memory

Access
RoCE RDMA over Converged

Ethernet
RTR Ready to Receive
RTS Ready to Send
SSD Solid State Drive
SATA Serial Advance Technology

Attachment
TNA Intel Tofino Native

Architecture
UDP User Datagram Protocol
WPQ Write Pending Queue

xiv

List of figures

2.1. Comparison between the clflush and clwb instructions. 14

3.1. NVLOG entry example . 21
3.2. NVLOG head and tail counters . 22
3.3. State of NVLOG while adding 8200 bytes. 25
3.4. NVCACHE behavior in case of a cache hit. 30
3.5. NVCACHE behavior in case of a cache miss. 30
3.6. NVCACHE behavior in case of a “dirty miss”. 31
3.7. NVCACHE behavior in case of a write. 31
3.8. State machine of pages (dc: dirty counter). 33
3.9. SQLite and RocksDB read workloads 39
3.10. Performance of NVCACHE with random writes 40
3.11. Influence of batching and batch size parameter. 42
3.12. Behavior of NVCACHE compared to other systems (FIO) 43
3.13. Behavior of NVCACHE compared to other systems (SQLite and RocksDB) 44

4.1. Core design of NVPAGES . 48
4.2. Core design of NVCACHE . 49
4.3. FIO benchmarks with 2GiB of NVMM cache 51
4.4. FIO benchmarks with 100GiB of NVMM cache 51

6.1. A RoCE v1 frame . 62
6.2. A RoCE v2 frame . 63

7.1. Protocol-independant Switch Architecture pipeline. 76
7.2. Communication without and with Byp4ss. 78
7.3. Communication pattern used for consensus 79
7.4. Principle of packet duplication with Byp4ss 84
7.5. Write goodput with different item sizes 90
7.6. Write throughput with 64B requests 91
7.7. Evolution of latency with 64B requests vs. per-thread throughput. . . . 93
7.8. Latency with 64B requests, 1 thread 94

xv

List of tables

3.1. Properties of several NVMM systems 19
3.2. Evaluated file systems. 36

7.1. Metadata contained in an RDMA packet. 74
7.2. Multicast metadata. 82
7.3. RDMA Connection structure . 83
7.4. Read throughput with 64B requests 95

xvii

Chapter 1.

Introduction

Modern computers are built around two main components: their Central Process-
ing Unit (CPU), and their main memory, i.e., Random Access Memory (RAM). This
architecture became standard, and most computers around the world are built
within the same pattern. However, we always try to make these machines more
powerful, by increasing their computing capacity in various ways. The history of
computer science, even rather short, is a constant quest for performance inter-
spersed by physical or technical limitations.

There are numbers of ways to increase the computational capacity of a machine.
The first approach is to increase the frequency of its CPU, so that more atomic op-
erations are performed in the same amount of time. This idea is quickly limited, as
the power required by a CPU is proportional to the frequency it is running at [134].
Moreover, increasing the frequency of computation does not make a lot of differ-
ence if the CPU is constantly waiting for data to process. For that reason, a second
approach is to use faster memory. But memory performance has always been a
trade-off with price. From this constraint emerged the concept of memory hierar-
chy. In a nutshell, we used fast volatile memory as main memory in the system,
and we added a small amount of extremely fast memory inside CPUs, as close as
possible to the core, and used it as a cache for all other memory accesses. This
is the highest tier in the memory hierarchy, and also the most expensive. Other
kinds of memory are considerably slower but more affordable, and can be used to
store data on longer term. At this point, there is not much more that can be done
to increase the computational power of a single CPU core, besides adding specific
features for specificworkloads thatwould save someCPU cycles on repetitive tasks.
Yet, this is only the beginning of the performance quest.

A famous “law” of computer science, called Moore’s law in the 1960’s [97], made
a simple observation: the number of transistors on a CPU chip doubles every two
years. By the time it was edicted, Moore’s lawmade a lot of sense, and was actually
a goodprediction for the next decades. Though, it is clear that this law is destined to
dissapear, as CPUmanufacturers are reaching the limits of miniaturization. Nowa-
days, CPU dies are processed with a precision of 3nm, which represents the width

1

Chapter 1. Introduction

of only 27 atoms of silicon. Additionally, building electrical circuitry at such a small
scale even implies to take in considerationquantum tunelling effects. For these rea-
sons, some industrial actors agree on the fact that Moore’s law is already over. In
this context, maintaining the evolution of computers requires other approaches.

A major revolution in modern computer science has been to use several comput-
ing units to exceed the limits of a single CPU core. When several CPU cores are
on the same machine, we talk about parallel programming. This has made indi-
vidual computers more efficient on plenty of workloads, as long as the work can
be splitted into several independant parts. In this case, the main memory of the
machine is shared between CPU cores. A second idea is to use several independant
machines in a network and make them collaborate by splitting the tasks between
them through a network. However, this presupose each machine has its ownmain
memory, and does not share it with the others. A considerable part of the efforts
to make more efficient computers and supercomputers is now aimed at building
better collaboration between machines.

In this context, this thesis presents anduses twonewways of interactingwithmem-
ory. The first one, non-volatile main memory, proposes to introduce a new stage
in the memory hierarchy. By adding an intermediate kind of memory between
the fast volatile main memory and the storage memory, we demonstrate how non-
volatile memory could take an important place in the way we interact with local
memory. The secondone, remotedirectmemory access,makes anattempt to share
main memory between machines. With the help of advanced networking compo-
nents, we propose away to use remotememory and ease the collaboration between
machines within the same cluster.

2

Part I.

Non-Volatile Main Memory (NVMM)

3

Chapter 2.

A New Kind of Memory

In 2015, Intel revealed its 3DXPoint non-volatilememory technologywould be avail-
able on the market in the coming years. This chapter explains why this announce-
ment was a milestone, and how the resulting technology has evolved afterwards.

2.1. Definition and Terminology

Non-Volatile Main Memory (NVMM) is a kind of memory able to retain its con-
tent over power loss. Unlike an Solid State Drive (SSD) which must be accessed
by blocks, NVMM is byte-addressable. It can be accessed using load and store in-
structions with a byte granularity, just as regular Random Access Memory (RAM).
From an architectural point of view, NVMM is located on the RAM bus, generally
combined with regular RAMmodules.

Depending on the context, NVMM can also be referred as Non-Volatile RAM
(NVRAM), or Persistent Memory (PMEM). Non-Volatile Dual In-lineMemoryMod-
ule (DIMM) (NVDIMM) is a more general term, as it can also refer to block-
addressable persistent DIMMmodules.

2.2. History of Persistent Memories

The idea of having a persistent main memory in computers originally comes from
the first computers ever built in the 1950’s. In that time, most computers were built
with magnetic-core memory, also called core memory. Basically, a memory core
stores bits in rings of ferro-magnetic metal. Copper wires were passing through
each ring, so that flowing an electrical current by these wires would change the
magnetic orientation of a targetted ring, making the user able to store one bit per
ring. To read a ring content, one had to apply a current in the opposite direction. If
a resistance wasmeasured, then the ring was storing a 1. Otherwise, it was storing
0. By using this extremely simple and primitive formofmemory, the programmers

5

Chapter 2. A New Kind of Memory

were already using persistent memory. Indeed, no power supply was required to
keep the state of eachmemory cell and thus, the content stored in that kindofmem-
ory. One of the main advantage of such a device is that, in case of a power outage,
an ongoing computation could be resumed in the middle, instead of starting from
the begining again. However, in the 1970’s, that technology was rapidly replaced
by faster and more compact forms of memory, due to the popularization of semi-
conductors. At this time, computer architects chose to give up on the persistence
of their main memory, as volatile forms of memory were considerably faster.

During the following decades, a few kinds of persistentmemories emerged, in par-
ticular in the world of embedded systems. Being exposed to more risks of power
losses, these systemswere a perfect use case for suchmemories, as long as comput-
ing performancewas not themain concern. As the performance and the density of
volatile memories was increasing exponentially, these persistent medias were not
used in the context of high performance computing.

Suddenly, in 2015, Intel announced a partnership with Micron Technologies, aim-
ing to create the new persistent 3DXPoint memory. This new memory cell would
be Phase-Change Memory (PCM), and is based on the use of chalcogenide materi-
als, the same kind of material that was used for the rewritable surface of Compact
Disk-Rewritable (CD-RW). On the paper, 3DXPoint was reaching densities and per-
formances that were unheard of, for a persistent device. Several products featuring
this memory were about to be available in the public market in the coming years.
One of these products is the Intel Optane DC Persistent Memory (DCPMM) mod-
ule, a non-volatile module to install on the RAM bus, and dedicated to servers. In
a device of the size of a RAM module, Intel managed to fit up to 512GB of non-
volatile memory, when Double Data Rate 4 (DDR4) Dynamic Random-Access Mem-
ory (DRAM) modules hardly reached 128GB.

In early 2019, Intel Optane DCPMM modules became available on the public mar-
ket. Theyprovide anunprecedented set of features, in particular it is thefirst device
with such high capacity that allow byte addressability. Generally, higher capac-
ity devices are block devices. They communicate with the rest of the system with
blocks of data, usually 4KiB blocks. But Intel Optane DCPMMuses a finer granular-
ity of access, as each byte can be accessed individually, as if it was regular DRAM.
In terms of performance, Intel also suggested this memory would reach latencies
close toDRAMmodules, whichwas themain breakthrough of their 3DXPointmem-
ory cell.

6

2.3. Implementations

2.3. Implementations

Non-volatile memory is a concept that was implemented in several ways and in
different contexts, from embedded systems to high-end servers. The only com-
mon point between these technologies is the association of persistence and byte
addressability.

2.3.1. For embedded systems

In the world of embedded systems, non-volatile memory is often reffered as
NVRAM. The main use case of NVRAM is to remember parameters set by a user,
even after rebooting the device. For instance, we can find NVRAM chips in some
devices Basic Input Output System (BIOS), in order to keep critical boot settings.
This is the case for most Apple Mac computers [119].

However, this thesis will not focus on this kind of NVRAM, as it is not meant to be
used for proper computing. These chips are used for their practicality, but their
design is not suited to become the main memory of the entire computer, both in
terms of performance and compacity.

2.3.2. For servers

After decades of computing based on volatile main memory, new NVMM imple-
mentations were released with the hope of covering new use cases for servers.

Simulated persistent memory

As a first step, some simulators for NVMM have been created. Before 2018, with
themotivation of having the actual hardware in a few years, many simulation tools
were developped. Yet, as the details of Intel’s implementation were not public,
some of these tools had to base their approach on assumptions. These simulators
are mostly developped in the architecture community, so they focus on simulating
the hardware behavior of several persistent memory cells [131, 108].

Meanwhile in the systems community, the main concern was to find a way to em-
ulate the behavior of persistent memory. For that purpose, since the version 4.2
of the Linux kernel, a compilation flag has been added to support NVMM. Once
the kernel is compiled properly, a boot option allows to allocate a part of the DRAM
memory andmake it behave as if it was persistentmemory. This trick is onlymeant

7

Chapter 2. A New Kind of Memory

to test the Application Programming Interface (API) provided by the Linux ker-
nel, while starting the development of applicationswithout access to the hardware.
Naturally, using a volatile support for that special memory space does not make it
resilient to crashes. Also, the performance measured is considerably better than
the one of the actual hardware. Nevertheless, this emulated persistent memory is
transparently exposed by the kernel as if it was a module of Intel Optane DCPMM,
which makes it a very useful development tool.

Battery backedmodules

The main issue in order to use persistent memory as main memory, was the sig-
nificant drop of performance of persistent cells (before 3DXPoint). To bypass this
physical limitation, some attempts weremade to build NVMMmodules from other
existing technologies. By merging the volatile DDR4 RAM with non-volatile Flash
memory (found in SSD), some hybrid modules were created. On these modules,
that look like regular RAM modules, one side has DDR4 chips while the other side
has Flash memory. In case of a power loss, the module would use a capacitor to
stay up and copy the content stored in DDR4 in its Flash memory.

This category of persistent memory is called NVDIMM-N. These modules have the
advantage of presenting performances of DDR4 memory while running in normal
conditions. However, their conception limits thememory compacity. For onemod-
ule, the maximum capacity available was 32GB [95].

Intel Optane DCPMM 100 Series

The first generation of Intel Optane DCPMM, released in 2018, is the first broadly
available implementation of the NVDIMM-P category. Optane modules only have
3DXPoint chips, and no battery or capacitor. By design, this newmemory is persis-
tent, so it does not require any special process in case of power loss. These charac-
teristics gave the NVDIMM-P category the reputation of being the “real” persistent
memory.

Additionally, 3DXPoint memory is denser than DDR4; DCPMMmodules were com-
mercialized as either 128, 256 or 512 GB permodule. However, these improvements
come at the cost of a higher latency, as Optane DCPMM was announced with a 10
times higher latency than typical DDR4.

These modules can be set in two modes from one machine’s BIOS:

• The Memory mode

8

2.3. Implementations

• The AppDirect mode

The Memory mode uses the non-volatile memory as an extension of the machine’s
RAM. Thanks to its high compacity, NVMMcan thus beused as a less expensiveway
to reach high amounts of RAM in a single machine. In this mode, the persistent
memory is not exposed in the OS as a special device. It appears exactly as RAM,
with not management of its persistence capability.

The AppDirect mode is the “manual” mode of Optane modules. On a Linux-based
operating system (OS), it allows programmers to access the memory the same way
they would access a disk (i.e through a file located in dev)

There are then submodes that can be set from the OS, among them:

• fsdax mode

• devdax mode

In fsdax mode, the device file of each module appears as devpmemX where X is the
module number. It is designed to be used with a Direct Access (DAX) file system.
One has to format the device in such a file system before using it. Then, files can
be created and used as subdivisions of the NVMMmodule, as if they were DAX files
themselves.

With devdax mode, the device appears as devdaxX.0. This submode requires to
use the entire module as one DAX file. To use a DAX file, one has to memory-map
the file into a program’s virtual address space. The resultingmemory areawill thus
be hosted in the persistent memory module.

Intel Optane DCPMM 200 Series

In 2020, Intel released a new version of the Optane DCPMM modules, called 200
Series. In essence, these new modules contain the same 3DXPoint memory. They
behave the same way from the OS perspective, with some minor improvements in
terms of throughput [7].

Hence, the main difference between the two versions resides in the persistence
guarantees. Intel Optane DCPMM 200 Series can use a mechanism called External
Asynchronous DRAM Refresh (eADR), which is meant to solve the main problem
with persistent memory integration. Indeed, there is a major design flaw that pre-
vents integrating PMEM transparently in our common computer architectures: the
volatility of Central Processing Unit (CPU) caches. eADR is a mechanism designed
to expand the power supply of NVMM and CPU internal caches, with an external

9

Chapter 2. A New Kind of Memory

battery located, for instance, on themotherboard [53]. If compatible CPUswere re-
leased at the same time (Xeon Scalable Platform v3), such motherboard has never
been commercialized. Research papers evaluating the impact of eADR generally
used simulation tools [50].

2.4. Integrating Persistent Memory in Modern Systems

Usual servers architecture can be a barrier in the acceptance of NVMM. This sec-
tion presents the different ways persistent memory has been used since its com-
mercialization, with pros and cons.

2.4.1. NVMM as RAM extension

InMemorymode, NVMMcanbecomeanextensionofRAM inamachine. Thismode
makes sense from a budget point of view, as NVMM is considerably less expensive
per gigabyte than DRAM.

However, as persistent memory is considerably slower than RAM, a cachingmech-
anism is used in order to keep hot memory pages in RAM, while colder pages are
stored in NVMM. This system is imperfect[82], but it allows to run large memory-
bounded applications.

Thus, from a conceptual point of view, using NVMM this way does not provide any-
thing new.

2.4.2. NVMM as a disk

Persistent memory can also be used as a regular SSD. One can setup an NVMM
module in fsdax mode, format in a file system, and use that space to store files. On
some disk-intensive applications, this can lead to a spectacular speedup, as Optane
DCPMM performance is closer to DRAM than SSD.

Software adaptation

Using NVMM with a standard file system is not the usual way to go with persis-
tent memory. Persistent memory is considered being a new tier of memory in the
memory hierarchy, so it does not behave neither as RAM or SSD memories. Its
performance stands in between, and considering PMEM as an SSD with no further

10

2.4. Integrating Persistent Memory in Modern Systems

adaptation usually results in sub-optimal performance. The explaination resides
in software. With time, optimizations have been made to get the full potential of
the regular combo DRAM and SSD. We implemented caching mechanisms, such
as the Linux Page Cache (LPC) in the Linux kernel. In an SSD file system, it is gen-
erally good to have RAM caching, as copying the data to RAM takes a negligible
time compared to the actual copy on SSD (around 1,000 times slower). Also, the
RAM copy of data can be used as an intermediate interface to modify an isolated
byte in a memory mapped file, while the kernel still communicates with the SSD
with blocks. Though, when NVMM is used as a disk, copying to RAM is not negli-
gible anymore, as persistent memory is only around 10 times slower than DRAM.
Moreover, it is not necessary to “hide” a block-granularity communication with the
device, as NVMM can accept direct load and store instructions, with byte gran-
ularity. This is a typical case of software optimization that becomes harmful for
performance when applied to the wrong hardware.

DAX File systems

The solution found touseNVMMefficiently inLinuxwas to add anew feature called
DAX (Direct Access). In short, this feature is an option implemented by a file sys-
tem. When this option is enabled (when the device is mounted), the files located in
this file system are not cached by the LPC, avoiding a costly unnecessary copy in
DRAM.

Some of the most commonly used file systems have DAX capabilities [32], for in-
stance ext2 [33], ext4 [34] and xfs [35]. The DAX option does not change the inner
organization of data inside the file system, as it only requires an additionnal flag
when mounting the device.

In addition, when a file system is mounted with the DAX option, its files inherit the
DAX flag. A file flagged as DAX can be memory mapped directly into a program’s
virtual address space, and accessed with the load and store instructions directly.

2.4.3. NVMM as a DAX areas

Persistent memory being a new tier in the memory hierarchy, it has a unique set
of features that makes it usable neither as a disk nor as volatile RAM. This mode of
utilization requires to interact with the device as a rawmemory space. By setting a
persistentmemorymodule in devdaxmode, it appears to theOS as a rawDAXdevice.

11

Chapter 2. A New Kind of Memory

From a programmer point of view, this DAX device (or DAX file) can be memory
mapped into a program’s virtual address space, providing a large persistent space
to store objects.

For practical reasons, one can also use the fsdax mode, format with a DAX-capable
file system, mount with the DAX option, create an empty file of an arbitrary size,
and use that file as a persistent memory pool. The DAX flag being inherited from
the file system, the file can be memory mapped with direct access enabled.

This is themost interestingmode of persistentmemory, as it gives the programmer
access to all of the features at the same time: persistence and byte addressabil-
ity. With these two capabilities used simultaneously, one can write programs that
store intermediate data in a persistent media, reaching a very high level of crash
tolerance. If the program crashes, important data can be retrieved from persistent
memory, and the program can continue to run with no data loss at all. However,
to use this mode and unlock the full potential of NVMM, existing programs have to
be modified.

2.4.4. Working with CPU caches

One of the main challenge regarding NVMMprogramming is to properly deal with
the CPU caches. As these caches have been designed toworkwith volatilememory,
their behavior does not comply with persistent memory requirements.

First, the volatile nature of intermediate caches breaks the persistence guarantee.
For example: If you write a value into a variable located in NVMM, you would ex-
pect your newvalue to be immediately stored in the persistentmemory. In case of a
crash, you would expect to retrieve that new value after restarting the program. In
reality, to avoid costly accesses to distant DRAM, the CPU cached your change into
its embedded caches. This default behavior is perfectly acceptable with volatile
DRAM, as it makes the system faster, and in case of crash or power loss, all of the
data stored in DRAM and CPU caches would be lost together. With persistentmem-
ory, one could expect that data to be safely saved in the persistent media, while it is
in reality still in the volatile cache. If a crash occured, the volatile caches content
would be lost, and the initial variablewould still appearwith its outdated value after
a restart.

Then, the way CPUs manage their caches and the communication with DRAM is
tainted by this volatility idea. In particular, as CPU caches and DRAM are both
volatile, the CPU is free to re-order exchanges between its caches and distant

12

2.5. Programming With Persistent Memory

DRAM. Thus, any crash can let persistent memory in a partially outdated state,
likely an incoherent one.

2.5. ProgrammingWith Persistent Memory

In order to compensate for this design incompatibility, programmers have to use
specific CPU instructions.

2.5.1. Flushing cache lines

The only way to avoid that CPU volatile caches break the persistence guarantee is
to manually evict modified cache lines. To that purpose, two commands already
existed on Intel x86 instruction set, before the existence of NVMM. These instruc-
tions, clflush [18] (Cache Line Flush) and clflushopt [19] were initially de-
signed to prevent cache pollution. When called, they invalidate the pointed cache
line in every level of cache. If the said cache line is marked as containing modi-
fications, the CPU must propagate these changes to the DRAM module before the
eviction. By using these instructions with NVMM, one can guarantee the data has
indeed been written to the persistent memory.

However, even if these instructions can help with the persistence guarantee, they
can severely decrease performance as they completely evict a potentially useful
cache line from all of the caches. For instance, imagine a loop of three instructions
on the same cache line: store, clflush, load. By evicting the cache line, the
clflush operation ensures the load instruction will result in a cache miss, thus in
a costly interaction with the NVMMmodule.

For that reason, Intel introduced a new instruction dedicated for NVMM: clwb
(Cache LineWrite Back) in their Skylake SP Series CPUs [20]. This instructionwould
make no sensewith DRAM, as it only ensures themodified cache line is propagated
to the underlyingmedia, without eviction of the said cache line. But with NVMM, it
gives a persistence guarantee with no perturbation to the cachemanagement, thus
no performance penalty for the following instructions.

In some special cases, one could also use the ntstore (non-temporal store) instruc-
tion, which is designed towrite directly into aDRAMmodulewithout going through
the caches at all. Its primary use is towrite data that is known to be useless for some
time, andavoidpolluting the cacheswith suchdata. It canalsobeusedwithNVMM,
but its behavior requires some special attentionwhen usingmultithreaded code, as

13

Chapter 2. A New Kind of Memory

CPU
Core

L1 Cache

L2 Cache

L3 Cache Cache line

Cache line

Cache line

NVMM
Persistence guarantees:

Volatile memory

Persistent memory

cl f l ush/ cl f l ushopt

Evi ct i on

Evi ct i on

Evi ct i on

CPU
Core

L1 Cache

L2 Cache

L3 Cache Cache line

Cache line

Cache line

NVMM

cl wb

st or e

Figure 2.1.: Comparison between the clflush and clwb instructions.

14

2.5. Programming With Persistent Memory

the visibility of ntstore among threads must be ensured manually. However, in
the right conditions, it can result in some performance improvements [139].

2.5.2. Ordering and durability guarantees

By design, clwb instructions are not ordered between themselves. To ensure the
CPU does not break the coherence of data in persistent memory, on can use the
sfence operation. After using clwb on some cache lines, using sfence ensures
later calls to clwb will not be applied before the fence.

The safestway tousepersistentmemorywith these operations is to always combine
a call to clwb with a sfence, enforcing the total ordering of all clwb operations.
Yet, if some persistent modifications are known to be of the same importance in
terms of ordering, a pfence can also be issued after all of these modifications are
marked with clwb.

Additionally to sfence, a developer may need a second fence instruction named
pfence. This second fence blocks, and waits for all previous written cache lines to
bepropagated toNVMM.Onamodern Intel CPU,pfence is also implementedwith
a sfence, because these CPUs support Asynchronous DRAM Refresh (ADR) [54].
With ADR, a CPU uses its residual energy to ensure that a cache-line in thememory
controller’s Write Pending Queue (WPQ) will actually be persisted before power
outage [115].

2.5.3. Persistencemodel

In our implementations, we used a set of primitives inherited from the persistence
model used in the Romulus PTM [27]. Basically, the authors used three functions
to generalize the guarantees expected from Intel x86 CPUs. These three functions
are:

• Persistent Write-Back (PWB): Asks to write-back a specific cache line in
NVMM. This is a non-blocking function.

• Persistent Fence (PFENCE): Emits a fence that prevents next PWB calls to be
reordered with previous ones. Still a non-blocking function.

• Persistent Sync (PSYNC): Waits for previous PWB calls to be performed. This
is a blocking function.

15

Chapter 2. A New Kind of Memory

For machines that only support clflush, PWB is set to send a clflush while
PFENCE and PSYNC are nop. Indeed, clflush calls are already blocking func-
tions, ordered between themselves.

Formore recent hardware, calling PWBemits eitherclflushopt orclwb (ifclwb
is available, it is the one to be used). PFENCE and PSYNC are then set to emit a
sfence.

16

Chapter 3.

NVCache: A NVMM-based I/O Booster for
Legacy Systems

3.1. Introduction

Having Intel Optane DCPMM [59] available in the beginning of 2019 was a mile-
stone for persistentmemory researchers. The entire community started to look for
meaningfull approaches to use this technology in a concrete context. In compar-
ison with other advanced hardware innovations, Optane had no groundbreaking
single feature. Yet, by combining those individual features, and in particular byte
addressability with persistence, we obtained a brand new and unique device in the
memory hierarchy. This chapter explains how we used Intel Optane DCPMM to
build a non-volatile cache, named NVCACHE.

3.1.1. NVCACHE in a nutshell

NVCACHE is a memory cache in userspace. It uses NVMM as a write cache able
to receive bursts of data, while the cache content is asynchronously propagated to
the main, slower non-volatile media, i.e., Hard Disk Drive (HDD) or SSD. The key
idea is to exploit the latency of NVMM, which takes way less time than a regular
SSD to acknowledge for the persistence of data. To summarize, NVCACHE does not
need to call fsync on the critical path, as the persistence guarantee can be easily
obtained in userland by the NVMM device.

3.1.2. NVCACHE features

In order to build a functionnal and practical tool, we decided to fix some ground
rules on the final set of features.

First, NVCACHE has to be transparent. Wewant to avoid, asmuch as possible, mod-
ifications in the original source code of the target application. Ideally, we can even

17

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

run compiled programs with NVCACHE without having access to the source code
at all.

Second, NVCACHE must use NVMM as the new device it is, and not as a better SSD
or a slower RAM. Persistent memory brings a new feature set, we have to use it
fully in order to exploit NVMM at its full potential.

Third, NVCACHE must be efficient both on throughput and latency. The quest of
lower latencieswithNVMMshould not be persued on the detriment of the through-
put. In particular, using NVCACHE, applications should reach the throughput they
could get using batched operations on a regular disk.

The goal of NVCACHE is to propose this new unique set of features, that cannot
be achieved with other NVMM solutions. An overview and comparison with other
NVMM software tools is compiled in Table 3.1.

Large storage space

NVCACHE can handle big datasets, as its storage capacity is not limited to the
amount of NVMM available. By using NVMM as a simple cache, the limitation de-
pends on the underlying storagemedia, which can for instance be an SSDor aHDD.
These storage medias are usually considerably cheaper per gigabyte than NVMM.

Syncronous durability

When using NVCACHE, one can expect the maximum persistence guarantee after
each call to the write function. All calls to fsync are unnecessary, and thus redi-
rected to an empty function. The synchronous durability is the defaultmode. Tech-
nically, a more relaxed logic could be implemented, by placing the right memory
fences in the fsync function, but this mode has been considered out of scope for
the initial development of NVCACHE.

Durable linearizability

Crash consistency is themajor feature we expect from the use of NVMM. However,
it requires to addmore complex guaranteemechanisms, so that the program could
crash at any time and not expect any rollback when restarting. In practice, every
write function that returns has to be persisted in NVMM, but every incomplete
operationmust be canceled. Also, there cannot be any reordering among different
store operations, or the consistency of the cache content could be compromised.

18

3.1. Introduction

Table 3.1.: Properties of several NVMM systems, all fully compatible with the
POSIX API.

Ext4-DAX NOVA Strata SplitFS DM-WriteCache NVCACHE
[26, 136] [138] [76] [66] [120]

Offer a large storage space − − + − + +
Efficient for synchronous durability + ++ ++ ++ − +
Durable linearizability [61] + + + + − +
Reuse legacy file systems + (Ext4) − − + (Ext4) + (Any) + (Any)
Stock kernel + − − − + +
Legacy kernel API + + − − + +

That type of guarantee is often reffered as durable linearizability [27, 109].

Software compatibility

We wanted NVCACHE to be as portable and easy to use as possible. As a result,
using NVCACHE does not require deep changes to work on a regular machine. The
cache runs on anymodern stock Linux kernel, and does not require any kernel-side
modification, nor kernel module. Thus, it uses the regular kernel API.

Moreover, the media cached by NVCACHE can be formatted in any file system. We
mostly used the very standard Ext4, but also tested it withmore specific file systems
such as NOVA [138].

3.1.3. Target applications

By design, NVCACHE is efficient on applications that require a high granularity of
persistence guarantees. A software developer has no choice regarding local persis-
tence: to ensure some level of crash resilience, one has to call fsync after each
critical write. With NVCACHE enabled, such an application would not suffer from
a major Input/Output (I/O) bottleneck even with high persistence requirements.

Current applications tend to leverage this problem by batching modifications, and
wait for the batch to be complete before flushing it to disk. That approach dilutes
the frequency of fsync calls. However, it does require to find a trade-off between
performance and persistence granularity. Indeed, increasing the batch size will
tend do increase performance, but it can also result in bigger rollbacks when a
crash occurs. Similarly, reducing the batch size makes the system slower, but re-
duces the likeliness and the importance of potential rollbacks.

19

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Thus, NVCACHE is a perfect fit for applications that are sensitive to the persistence
latency, i.e., the time required to ensure a data has been persisted. For instance, a
DatabaseManagement System (DBMS)with regular updates on amassive database.
In an ideal context, the database would be updated on disk for each write or up-
date request. However, under heavy workloads, the time required to wait for the
disk to acknowledge after each operation would create a severe bottleneck. If the
database fits in Intel Optane DCPMM, one could imagine using this device as the
only storage media. But this solution requires to have a lot of NVMM available,
which is expensive [45] or even impossible over a certain amount. On the other
hand, with NVCACHE we proposes a way to get the latency benefits from NVMM
while not being limited by the amount of persistent memory in the server.

3.2. NVCache: Implementation

3.2.1. Overview

NVCACHE is available either as a library or as amodified libc [36]. The library that
can be included in a target application, providing I/O primitives such as nvopen,
nvwrite, nvread, and nvclose. The libc can be dynamically linked to a com-
piled program. This way, it transparently intercepts calls to basic IO functions, like
open, read, write, and close.

In case of a crash, some data might remain in the non-volatile cache. On reboot,
after loading NVCACHE again, a synchronisation phase starts, setting the disk in a
state that would be considered valid by the application. The program then has to
recover its data from disk and restart exactly as it would on a regular machine.

3.2.2. NVLog

The main idea in NVCACHE is to use the NVMM space as a log of pending opera-
tions. Each log entry represents a write operation that will eventually be applied
on disk.

On startup, a NVMM module in Device DAX is memory mapped, and this virtual
space is casted into a data structured that we called NVLog.

20

3.2. NVCache: Implementation

Index fd off size data written commit
1 5 0 12 'Hello World!' 0 1

Figure 3.1.: NVLOG entry example

Log entry format

In order to delay the actual write operation, the NVLog has to keep the entire set of
metadata provided by the application when the write function was called. A log
entry must contain:

• A file descriptor (fd)

• An offset (off)

• A size (size)

• The data to be written (data)

As log entries are statically allocated to maximize performance, they also come
with a fixed size. When a write operation is shorter than the maximal data size
(i.e., 4 KiB), the size field guarantees the end of the data buffer will be ignored.
When the operation is longer than 4 KiB, it has to be splitted in several parts. For
instance, a 9 KiB write will result in two 4 KiB entries, plus a smaller 1 KiB one.

These four fields already ensure thatwewill be able to execute thewrite operation
later. Though, in order to make NVCACHE crash resilient, we had to add two more
fields:

• A commit boolean (commit)

• An reference index for long writes (waiting)

• An ignore boolean for entries already written to disk (written)

The commit boolean is the last field to modify. If a crash occurs, a non-committed
entry is considered incomplete, and thus will not be synchronized on disk when
the system restarts. The reference index is the index of the first log entry of a long
write. With this field, we know what commit flag to look at when a write is split-
ted in several chunks. Last, the written flag allows to ignore entries that have
already been written to disk, for instance if the file has been closed. As writing to
an outdated file descriptor could cause errors, there is a specific procedure when
the hosted program closes a file. That procedure requires to flag some entries as
written.

21

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Index fd off size data written commit
1 5 0 6 'Hello ' 1 1 ⟵tail

head⟶ 2 5 6 5 'World' 0 1
3 5 11 1 '!' 0 0

Figure 3.2.: NVLOG head and tail counters

NVLOG data structure

On NVCACHE startup, a DAX space (our NVMM) is memory mapped. This space is
then hosting the NVLOG data structure. It stores :

• log entries (the amount is defined at compile time, we call it log_size)

• A head counter

• A correspondence table between file paths and file descriptors

• A exit_status boolean

The log itself is circular: when it reaches the end of the 𝑁 allocated log entries,
it starts back at the first one. The head and tail counters respectively keep in
NVMM the index of the last entry written, and the index of the last entry already
flushed to disk. As head is not mandatory for recovery, this value is kept in volatile
memory. A correspondance table gives a path to eachfile descriptor used in the log,
so that the program can open them again even after a crash. Last, the exit_sta-
tus flag is set to 1when NVCACHE starts, and set to 0 after exiting in a normal way.
This is basically a crash detector for the recovery procedure.

Essentially, this data structure is designed to store the bare minimum required to
recover in case of crash. Every variable that is not absolutely necessary to the re-
covery procedure is stored in regular volatile memory.

Adding a new entry

In order to add a new entry in the non-volatile log, the user program calls regular
libc functions to write into a file, i.e., pwrite or write. Instead of submitting a
write system call immediately to the kernel, the following events are triggered :

• Allocate a new (or recycled) log entry in the log

• Fill the entry content as described previously, except for the commit field

• Emit a PWB per cache line and a PFENCE

22

3.2. NVCache: Implementation

• Set the commit boolean to True

• Emit a PWB on the commit boolean cache line, and a PSYNC

This sequence ensures the commit boolean will never be set to True before the log
entry content is written in the non-volatile log. Without this security, after a crash,
a commit boolean could be set to Truewhile its content was not (or only partially)
written in NVMM. However, as we took this precaution, commit can be used as the
answer of the question: Is this log entry ready to be written on disk?

Log entry allocation

Before storing the content of an entry, NVCACHE has to allocate it. In this context,
the objective is to increase the index stored in the head counter.

In order to anticipate multithreaded workloads, this mechanism is implemented
in a lock-free fashion. In practice, NVCACHE starts by attempting to atomically de-
crease theavailable_entries counter (this counter is kept in volatilememory).
This requires the use of a compare_and_swap atomic function, checking that no
other thread changed the value of available_entries in the meantime.

If this greater than zero, meaning there is space left in our log, the threadmanages
to decrease its value. Otherwise, it spins until the decrement is effective. NVCACHE
then calls fetch_and_add(1) on the head counter, and returns the new value as
the index of the allocated entry.

However, as the fetch_and_add function does not take into account the circu-
larity of our log, the head and tail counters are monotonic. Before using them,
NVCACHE has to apply a modulo by the log_size.

One could argue that having these countersmonotonic can lead to a problemwhen
they reach overflow. Though, head and tail being implemented as 64B variables,
NVCACHEwould have to store 4𝐾𝑖𝐵 ∗264 = 64𝐸𝑖𝐵 to reach this overflow. Thus, we
considered this problem as out of scope for our implementation.

Overlapping entries

As soon as a write request is longer than the maximum size of a log entry payload
(in practice, 4 KiB), NVCACHE has to split it in several log entries. Nonetheless, to
prevent partial writes to pollute the disk, an additionalmechanism is implemented
for overlapping entries.

23

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Algorithm 3.1.: NVCACHE write function.

1 struct nvram { // Non-volatile memory
2 struct { char path[PATH_MAX]; } fds[FD_MAX];
3 struct entry entries[NB_ENTRIES];
4 uint64_t persistent_tail;
5 }* nvram;

7 uint64_t head, volatile_tail; // Volatile memory

9 voidwrite(int fd, const char* buf, size_t n) {
10 struct open_file* o = open_files[fd];
11 struct file* f = o−>file;
12 struct page_desc* p = get(f−>radix, o−>offset);

14 uint64_t index = next_entry();
15 struct entry* e = &nvram−>entries[index % NB_ENTRIES];

17 acquire(&p−>atomic_lock);

19 memcpy(e−>data, buf, n); // Write cache
20 e−>fd = fd;
21 e−>off = o−>off;
22 pwb_range(e, sizeof(*e)); // Send the uncommited entry to NVMM
23 pfence(); // Ensure commit is executed after

25 e−>commit = 1;
26 pwb_range(e, CACHE_LINE_SIZE); // Send the commit to NVMM
27 psync(); // Ensure durable linearizability

29 atomic_fetch_add(&p−>dirty_counter, 1); // Read cache
30 if(p−>content) // Update page if present in the read cache
31 memcpy(p−>content−>data + o−>off% PAGE_SIZE, buf, n);
32 release(&p−>atomic_lock);
33 }

35 int next_entry() {
36 int index = atomic_load(&head);
37 while((index + 1) % NB_ENTRIES == atomic_load(&volatile_tail)) ||
38 !atomic_compare_and_swap(&head, index, index + 1))
39 index = atomic_load(&head);
40 return index; // Commit flag at index is 0 (see cleanup thread)
41 }

24

3.2. NVCache: Implementation

Index fd off size data waiting written commit
𝑛 5 0 4096 First 4096 bytes 𝑛 0 0 ⟵tail

𝑛 + 1 5 4096 4096 Next 4096 bytes 𝑛 0 1
head⟶ 𝑛 + 2 5 8192 8 Last 8 bytes 𝑛 0 1

Figure 3.3.: State of NVLOG while adding 8200 bytes.

We leverage this problem by adding the waiting field in each log entry. On single
entries, this field is set to −1. On multiple entries, it stores the index of the first
one. The first entry of an overlapping entry is the one used as a reference for all of
its followers. The sequence to follow to add an overlapping entry is the following:

• Compute the number of log entries to allocate (𝑘)

• Allocate these 𝑘 entries

• Write the first entry, with a waiting index pointing to itself, and a commit
boolean to False

• Write the 𝑘 − 1 following entries, with a waiting index to the first one, and
commit boolean set to True

• When all entries are written, perform a sfence

• Change the first entry commit flag to True

• Call sfence and clflush

This sequence allows to keep overlappingwrites atomic, as they cannot be partially
propagated to disk.

3.2.3. Cleanup thread

While NVCACHE is writing new entries in the log, a background thread is respon-
sible for flushing these log entries in the actual non volatile storage media.

This thread interacts with three elements of the NVLOG:

• The tail counter, index of the last flushed entry

• The written field of log entries

• The available_entriesmain counter, keeping track of the number of en-
tries that can be allocated.

25

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

As entries are added to the log at the head index, the cleanup thread is responsible
for synchronizing these entries with the disk. It uses the tail index, stored in
volatile memory, to call the standard libc I/O functions, and submit each entry as
a write system call to the backend file system.

Interaction with the LPC

When an entry is processed by the cleanup thread, it is sent to kernel space in order
to be written on the physical disk. Though, for performance reasons, calling the
write system call alone does not give any persistence guarantee. Instead, data
is sent to the volatile LPC, opportunistically waiting for a moment to write in non
volatile storage. From userland, the usual way to make sure every pending write
operation is propagated to disk is to call the sync system call. As this system call
returns, the user is guaranteed that its data has been persisted on disk.

Ideally, data in our cache should never transit back into a volatile storage before
reaching its final persistent storage of destination. However, there are two reasons
why this is not the technical choicemade for NVCACHE. First, there is no way from
user space to write into a device file systemwithout going through the LPC. Except
using a Filesystem in Userspace (FUSE) file system, which is not as efficient be-
cause of multiple context switches for each operation. Second, we can use the LPC
design at our advantage to optimize some of our disk throughput, and in particular
by using a batching strategy.

Batch strategy

Fromuser space, NVCACHE first has to call the sync system call, ensuring a log en-
try has beenwritten to disk. Then, it can free the log entry (by setting the written
flag).

Yet, flushing NVLOG entries one by one requires to call sync for each of them.
While this was the initial implementation of NVCACHE, it suffered from a massive
throughput bottleneck due to the user space constantly waiting for the kernel to
flush pages.

Instead, NVCACHEmakes batches ofwrites andonly sendonesync commandafter
each batch. This strategy considerably increased the throughput, and this can be
explained by several factors.

First, the LPC can opportunistically write to disk when it is not used, which means
it can start writing on diskwhile the batch is still being submitted by the user space.

26

3.2. NVCache: Implementation

In comparison, callingsyncbetween each log entry implies an additionnal context
switch per entry, and adds the latency required to ensure the LPC is synchronized
with the disk on the kernel side before returning.

Second, as the LPC organizes its space in pages, if two modifications of the same
page are in the same batch of entries, they may be applied to the same page in
DRAM. In this case, it may result in only one actual transaction to the disk, opti-
mizing the available throughput.

Flush policy

As described previously, our NVCACHE cleanup thread is responsible for flushing
entries from persistent memory to the disk by batches. Using NVMM as an inter-
mediate between the application and the disk also gives NVCACHE the ability to
limit problems when themachine crashes. In particular, it avoids partial writes on
disk by implementing a redo-log behavior.

While the application is writing data into the NVLOG, this mechanism is imple-
mented using the waiting flag. The cleanup thread has to wait for the first entry
of a long write to be commited, which is only set when all the entries have been
appened to the log.

Once the first write entry is committed, the cleanup thread can embed all of the
entries for the next batch to be flushed. As soon as the kernel guarantees the last
entry of the entirewrite has beenflushed, all of the entries aremarked aswritten.

This strategy ensures that a crash would never result in a partial write on disk.
Technically, a partial write could occur when the cleanup thread is submitting en-
tries to the kernel. However, as they are not marked written before the last one
is, a partial write on disk would inevitably end in a re-submission of all of this write
entries.

Recovery procedure

The particularity of NVCACHE is that it splits the persistence domain in two dif-
ferent storage units. Only the two persistent areas together can ensure a coherent
state.

In case of a crash, the exit_status boolean would stay at 1. If the user restarts
the program and loads NVCACHE, on initialization, NVCACHE would detect a mal-
function happened in the previous run and would ask the user if they want to start

27

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

a recovery. The NVLOG is always either empty or ready to be synchronized with
the underlying disk through the recovery procedure.

As the NVLOG data structure in NVMM contains the tail pointer, the translation
table between file descriptors and their respective paths to each file, and the log en-
tries yet to be flushed, we implemented a recovery procedure that flushes all pend-
ing modifications to the actual disk. This synchronization step is only responsible
for emptying the cache, and goes back to a regular state on disk. One could decide
to restart the applicationwithout NVCACHE after a recovery, and there would be no
difference with a regular restart of the said application on a regular system.

3.2.4. Write-only performance

By combining the previous elements of NVCACHE, we obtain a crash resilient write
cache. For the moment, the cache is only unidirectional, as we can only use it in
the write direction.

3.2.5. Ensuring consistency

In this state, NVCACHE can only handle write operations. If an application tries
to read data, the request would be submitted to the kernel, which would fetch the
content from disk. However, there are twomajor failures that could happen in this
situation. First, if the memory area has been modified and the modification is still
pending in the NVMM log, reading from disk would result in getting outdated data.
Second, as the cleanup thread is constantly writing to the disk, there is a risk the
page to read could be modified simultaneously. As the LPC does not guarantee the
atomicity of I/O operations, reading datawhile the cleanup thread is active remains
a synchronization challenge. For these reasons, there is no easy way to get such an
asymetric cache.

The paging dilemma

As described in Section 3.2.2, the NVLOG in NVMM only keeps track of pending
modifications. These can apply on unaligned offsets inside our files, which means
offsets that are not a multiple of the LPC standard page size (4 KiB). Transforming
NVCACHE in a more read-friendly system could be achieved by keeping full pages
of 4 KiB in the cache, ready to be read as is. As a matter of fact, this is exactly
how the LPC manages files, by splitting them in 4 KiB aligned pages. However,
this choice comes with a some disadvantages. First of all, accepting modifications

28

3.2. NVCache: Implementation

inside pages requires to frequently read inside the disk. Indeed, if the modified
page is not cached yet, it requires to retrieve the content the page from the disk
first. Second, the amount of data to transfer to disk, even for a small modification,
is always a multiple of 4 kB, making the cache less efficient when used for small
write operations.

This comparison between logging and paging in NVMMwill be made in Chapter 4.

Regarding NVCACHE, the decision has beenmade tomaximize thewrite cache per-
formance. That is why we kept a log-based use of the NVMM.

Complementary DRAM cache

The ideal solution to ensure coherence when reading is to add a complementary
page cache in DRAM. By manually keeping up to date pages of data, NVCACHE is
able to answer to read requests, while staying un user space. By design, a cache is
only covering a subset of the real data area. Thus, this additionnal mechanism is
not able to avoid cache misses in all scenarios. However, it is able to probabilisti-
cally reduce the amount of cache misses, and therefore, the time required to read
in NVCACHE.

DRAM cache interaction

This section covers the behaviour of the custom DRAM cache build in NVCACHE.

Read. The integrated DRAM cache is accessed whenever a read request is sent by
the hosted program. If the requested data is already in the cache, it is a cache hit,
and NVCACHE answers directly. But if the said data is not in cache yet, the cache
miss procedure is triggered.

Cache miss. When a page is not found in the cache, the cache miss procedure
reads it from disk. But in the context of NVCACHE, reading from disk is not suf-
ficient to guarantee that the read data is coherent. Here is a very likely scenario
that could lead to incoherence: a page recently modified by a write request has a
modification pending in the NVLOG. That page is not in the DRAM cache. When
the program tries to read that page, it triggers a cachemiss procedure. Given these
circumstances, reading from the disk would fetch data that is now outdated, as the
pendingmodification has not been applied on disk yet. In our implementation, this
precise scenario would call another more complex cache miss procedure, that we
called dirty miss. This very specific procedure will be detailed in section 3.2.6.

29

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Persistence guarantees:

Volatile domain

Non-volatile domain

Pr ogr am

wr i t e()

r ead()

DRAM Cache

4KB Page 4KB Page 4KB Page 4KB Page 4KB Page 4KB Page

NVLog

SSD

Cache hi t

f d of f dat a wr i t t en commi t

5 0 " hel l o wor l d! " 1 1

6 0 " t est r ead, do you copy?" 0 1

Figure 3.4.: NVCACHE behavior in case of a cache hit.

Persistence guarantees:

Volatile domain

Non-volatile domain

Pr ogr am

wr i t e()

r ead()

DRAM Cache

4KB Page 4KB Page 4KB Page 4KB Page 4KB Page 4KB Page

NVLog

SSD

Cache mi ss (2)

f d of f dat a wr i t t en commi t

5 0 " hel l o wor l d! " 1 1

6 0 " t est r ead, do you copy?" 0 1

Cache mi ss (1)

Figure 3.5.: NVCACHE behavior in case of a cache miss.

Independantly of the kind of cache miss triggered, the data page is eventually re-
trieved. In order to make sure this page stays available for potential future read
requests, it is also added to the page cache of NVCACHE.

Write. The key idea of having the DRAM cache is to make sure we can read from it
at any time. As any caching system, the cost of a cache miss is considerably higher
than the cost of a cachehit. This is particularly true forNVCACHE, as it can also trig-
ger an evenmore costlydirty miss. However, by ensuring theDRAMcache stays
up to date, we can avoid many calls to the dirty miss procedure. For that pre-
cise reason, every write submitted to NVCACHE also checks if a page in the DRAM
cache has to be updated. If the page is not already in the cache, this mechanism
is skipped, as there is no reason to believe the program would read the page it just
wrote if the said page has not been read recently. However, if the page is in the

30

3.2. NVCache: Implementation

Persistence guarantees:

Volatile domain

Non-volatile domain

Pr ogr am

wr i t e()

r ead()

DRAM Cache

4KB Page 4KB Page 4KB Page 4KB Page 4KB Page 4KB Page

NVLog

SSD

Di r t y mi ss (3)

f d of f dat a wr i t t en commi t

5 0 " hel l o wor l d! " 1 1

6 0 " t est r ead, do you copy?" 0 1

Di r t y mi ss (1)

Di r t y mi ss (2)

Updat e

Figure 3.6.: NVCACHE behavior in case of a “dirty miss”.

Persistence guarantees:

Volatile domain

Non-volatile domain

Pr ogr am

wr i t e()

r ead()

DRAM Cache

4KB Page 4KB Page 4KB Page 4KB Page 4KB Page 4KB Page

NVLog

SSD

f d of f dat a wr i t t en commi t

5 0 " hel l o wor l d! " 1 1

Add
ent r y

Backgr ound
t hr ead

Updat e

Figure 3.7.: NVCACHE behavior in case of a write.

cache, meaning that it has been read recently, the page is updated and ready to be
read again.

Pagemanagement

In order to keep the most used pages in our DRAM page cache, NVCACHE uses the
Least Recently Used (LRU) eviction policy. The page cache itself is a chained list
of pages that keeps in first position the latest page accessed, while the last one is
always the least recently usedone. Having this organisation allows to easily identify
and recycle the least useful page when the cache is full and we need to insert a
newer page.

31

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Effect of the DRAM cache

The goal of maintaining a complementary page cache in DRAM is to reduce the
probability of complex cachemisses. As NVCACHE keeps pendingmodifications in
its userland non-volatile log, there is a time frame during which the system is not
aware that change will have to be applied. In this scenario, if the program tries to
directly read froma cached file, it would obtain outdated data coming from the disk
or the LPC. That is why we added a custom page cache with NVCACHE, that keeps
its pages updated all the time and thus can answer read requests without compro-
mising data coherence. Nonetheless, there are still some extreme cases where the
up to date page will not be in the DRAM cache anymore, and the modification is
still pending in the non-volatile log. In these cases, NVCACHE has to proceed to
a dirty miss procedure. As this event is quite slow, increasing the size of the
DRAM cache can reduce its probability of happening.

3.2.6. Control structures

Some of NVCACHE components are key data structures that help achieving the
aforementioned features. Such elements deserve a proper description in this sec-
tion.

Radix Tree

Inspiredby theLPC implementation in theLinuxkernel, our page cache is accessed
using a Radix tree. Radix trees are known to be efficent for page management sys-
tems, as they guarantee a small memory footprint while ensuring a low latency of
answer. More specifically, a radix tree has a low latency on cachemisses, as a failed
lookup will return in a time shorter or equal to the time for a valid lookup.

In our implementation, a radix tree is created for each file opened. Then, the key
is the number of the 4 KiB page inside this file, which is the aligned offset divided
by 4 KiB. The key (an offset, 64 bits unsigned integer) is subdivided in 8 bits parts
that represent the granularity of our radix tree stages.

When performing a lookup, the answer can either be a null pointer or a pointer to
a data page.

32

3.2. NVCache: Implementation

Unloaded
clean Loaded

Unloaded
dirty

dc=0

dc>0

write

writeread

read

Cleanup

Dirty miss

Eviction

write
read

Cache miss

Figure 3.8.: State machine of pages (dc: dirty counter).

Page descriptors

Technically, the leaves of our radix tree are not directly data pages, but instead, they
are page descriptors. In a page descriptor, several control fields are defined:

1. A lock

2. A dirty counter

3. A pointer to the actual page

This page descriptor allows to keep track of a page state regarding itsmodifications
pending in the NVLOG. The dirty counter is an integer, and it provides an easy
access to the number of modifications in the log one would have to apply in order
to get this page up to date. When a cache miss occurs, and this counter is not zero,
then a “dirty miss” procedure is triggered.

The lock ensures the synchronization between the interface exposed to the appli-
cation and the background cleanup thread.

Pages statemachine

The behavior of each page can be summarized in a simple state machine.

Synchronization

By design, NVCACHE must contain some internal synchronization mechanisms.
Seen from the application, using NVCACHEAPImust ensure the same level of guar-
antees mentioned by the Portable Operating System Interface (POSIX) standard.

33

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

However, we definitely do not want to ensure more guarantees (except the I/O per-
sistence one). For instance, our interfacemust not provide any supplemental guar-
antee regarding thread safety and data consistency, as such mechanisms would
lower our performance in comparison with a regular system. If we keep the spirit
described by the POSIX standard, these securities are the concern of the program-
mer. Thus, there is no protection regarding writing at the same moment in the
same page, which would undoubtably end with an inconsistent state in memory.

While the user interface remains unchanged, the interaction with the kernel has
to be adapted to the inner functions of NVCACHE. In a regular machine, writing
to the disk requires to call write, and a fsync that guarantees the data is safe in
case of a crash. But with NVCACHE standing in between the program and the ac-
tual disk, the logic is different. First, the write call itself is sufficient to get the
persistence guarantee[62]. Second, the fsync call is ignored, as it is redundant
with the guarantee provided by write. Then, as soon as the program has received
the guarantee, it is NVCACHE responsibility to get the data to the disk safely, while
being crash resilient. In this context, the cleanup thread is responsible for synchro-
nizing the NVLOG of pending write requests and the disk. We did not provide any
additionnal guarantee of thread safety between the program threads, however, we
cannot introduce perturbations to themain threads because of the cleanup thread,
and this problem lead to some more complexity in NVCACHE.

Let us imagine the following scenario: a main thread, from the application, writes
4 KiB of data in a file with NVCACHE’s API. A new log entry is added to the NVLOG.
At the same time, another thread asks to read that precise page.

• Option 1: Cleanmiss. The cleanup thread already applied the log entry to the
disk. Reading will result in a cache miss, and as the dirty counter of that
page is at zero (meaning no log entry has to be applied) the page is read from
disk, added to the LRU cache and returned to the user.

• Option 2: Dirty miss. The cleanup thread is late, and has not applied the log
entry to disk yet. As the dirty counter of that page is at 1, the cache miss
becomes a dirty miss, and the page has to be read from disk and updated
before it is loaded in the LRU cache and returned to the user.

• Option 3: Inconsistency. The cleanup thread is currently writing the page to
disk, but has not finished yet. The main thread tries to read, but the page in
not in the LRU cache, triggering a cache miss. It is read from disk and... We
just read data while it was being modified by the cleanup thread: the result
may be a mix of the old and the new page.

34

3.3. Evaluation

Options 1 and 2 are perfectly acceptable, as they virtually react as we would expect
from a POSIX compliant interface. But option 3 creates a very unpredictible behav-
ior, and breaks the guarantee NVCACHE gave to the program when returning from
the write call.

In order to avoid this tricky scenario, each page is equipped with a lock.

When the cleanup thread is about to apply modification on a batch of pages, it first
tries to lock as many affected pages as possible. If a locked page is found before
the maximum batch size, the thread stops acquiring locks and flushes the batch of
pages already locked. Optimistically, during the time the partial batch is flushed,
the lockedpagewouldbeunlocked and another batch could be started. In themean
time, if the main application thread triggers a cache miss procedure (dirty or not),
the lock has to be taken on the given page before reading from the disk. When
the page is already loaded in the DRAM cache, there is no NVCACHE specific syn-
chronization issue, as this cache behaves the same way as the LPC. The only syn-
chronization conflicts that could happen with the DRAM cache are, as designed in
POSIX, the responsibility of the application programmer.

3.3. Evaluation

We evaluate NVCACHE on two applications. The first one, Flexible I/O tester (FIO),
is a performancemeasurement tool that can evaluate the reachable performanceof
several components of the I/O chain. The second one, RocksDB, is a key-value store
based on Google’s LevelDB and currently used by companies such as Facebook or
LinkedIn.

3.3.1. Experimental setup

Hardware

Our benchmark machine is a Supermicro dual socket server with two NUMA do-
mains. Each socket is equipped with an Intel Xeon Gold 5215 CPU. These CPUs
run 10 physical cores (20 hardware threads) at 2.50 GHz. Each of these CPUs mem-
ory channels are populated with 6×32 GiB of DDR4 DRAM and 4×128 GiB of Optane
NVDIMM v100. Overall, this machine has 40 hardware threads, 384 GiB of DRAM

35

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

Table 3.2.: Evaluated file systems.

Name Write Storage FS Synchronous Durable
cache space durability linearizability

NVCACHE +SSD NVCACHE SSD Ext4 by default by default
DM-WriteCache kernel page cache SSD Ext4 O_DIRECT | O_SYNC no

Ext4-DAX kernel page cache NVMM Ext4 O_DIRECT | O_SYNC no
NOVA1 none NVMM NOVA O_DIRECT | O_SYNC by default
SSD kernel page cache SSD Ext4 O_DIRECT | O_SYNC no
tmpfs kernel page cache DDR4 none no no

NVCACHE +NOVA NVCACHE NVMM NOVA by default by default

and 512 GiB of NVMM. The machine has two Serial Advance Technology Attach-
ment (SATA) Intel SSD DC S4600 of 512 GiB. The main SSD contains the system,
while the second is used for the experiments.

Software

Themachine runsUbuntu 20.04with Linux version 5.1.0 (NOVA[138] repository ver-
sion) and musl[40] v1.1.24, revision 9b2921be. For simplicity, benchmarks are run
inside docker containers, with the Alpine Linux[25] distribution. As this distribu-
tion is designed around the use of the musl libc, all of the packages pre-compiled
in its repositories are natively compatible with our modified musl C library. Both
SSDs are formatted in Ext4.

NVCACHE parameters

Unless stated otherwise, we configure NVCACHE as follow. Each entry in our NVM
log is 4KiB large. The log itself is constituted of 16million entries (around 64GiB).
The RAM cache uses 250 thousand pages of 4KiB each (around 1GiB). The mini-
mum number of entries before attempting to batch data to the disk is 1 thousand.
The maximum number of entries in a batch is 10 thousand. When log entries are
flushed, depending on the configuration, they are either propagated to the test SSD
formatted in Ext4, or to another PMEMmodule formatted with NOVA.

Comparison with other systems

One of the most important obstacle in evaluating NVCACHE performance, is to
make fair comparisons with other systems. We selected 2 configurations with
NVCACHE, and 5 configurations without, as baselines. The purpose of adding a
NVCACHE +NOVA (on PMEM) configuration is to check if NVCACHE performance

36

3.3. Evaluation

is, as expected, limited by the throughput of the underlying device. By comparing
this setup with the regular NVCACHE +Ext4 (on a SSD), we expect to measure better
performances when the log is emptied in a faster device.

SSD (ext4). This configuration is from far the one expected to be the slowest. It
consists in a regular ext4 filesystemon themachine SSD. As it would notmake a fair
comparisonwithout guarantees, the benchmark has to call fsync after everywrite
operation, which is considerably slow. Even if this is not really the expected way to
use such a configuration, this is a good baseline to showwhat havingNVCACHE-tier
guarantees would cost on a regular machine.

Tmpfs. This is the kind of file system used to store temporary files in Unix-like
operating systems. It is stored inDRAM, and thus, does not provide any persistence
guarantee.

Ext4-DAX.Ext4 system is one of themost popular journaling file system formodern
Unix-like operating systems. It is initiallymeant to be used on aHDDor SSD, which
explainswhy is uses the LPC. However, when deployed onNVMM, the LPC tends to
slow down operations instead of making themmore efficient. That is why Ext4 can
be used in DAX mode with NVMM, skipping the useless copy of data in the LPC.

Dm-Writecache. A popular implementation of a write cache in the linux kernel. It
does not cache reads, only writes.

NOVA. This is one of the most popular file systems released for NVMM. It is
DAX-capable by design. In order to get the best performance out of Intel Optane
DCPMM, it has been designed as a log-structured file system[133].

NVCACHE on SSD. In this configuration, NVCACHE is used on a standard SSD, for-
matted in a standard Ext4 file system. Themain advantage is that the storage space
available is not limited by the amount of NVMM available.

NVCACHE on NOVA. This setup is not meant to be used in real conditions, but it is
a good way to evaluate what part of NVCACHE measured performance is a conse-
quence of the underlying device raw performance. It does not offer a large storage
space likeNVCACHEwith an SSD, but shows the theoretical performanceNVCACHE
could reach with a more efficient secondary storage.

All of these systems and their properties are summarized in Table 3.2.

37

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

3.3.2. Benchmarks

NVCACHE performance has been evaluated with several benchmarking tools.

FIO: Flexible I/O tester

FIO[4] is a benchmark application, designed to measure various I/O performance
indicators of bandwidth and latency, while providing an easy interface to generate
many kinds of workloads. We used FIO to simulate I/O intensive workloads with
and without NVCACHE, while changing either the parameters of the workload gen-
erator or the configuration of NVCACHE.

RocksDB benchmark

RocksDB is aDBMSbased onFacebook’s LevelDB.Moreprecisely, it is an embedded
database coded in C++, meaning it has to be integrated into an application to be
used.

Is is used by large scale companies such as Facebook,Yahoo! andLinkedIn[13]. As a
demonstration, the RocksDB source code can be compiled as a benchmarking tool
named db_bench. We evaluated the performance of RocksDB’s db_bench with
the different configurations we wanted to compare NVCACHE with.

SQLite

SQLite [22] is an embedded relational database engine coded in C. It is a very ligh-
weight and yet fully fledged library, used from very popular software (Firefox[98],
Thunderbird[99], etc.[64, 74]) to embedded systems. We evaluated SQLite v3.25,
with a port of the db_bench benchmarking tool[125].

3.3.3. Read-oriented workloads

In all our experiments, read performance on SQLite and RocksDB is roughly equiv-
alent for all systems3.9. This behavior is not surprising, as both DBMS use an inter-
nal DRAM cache. Actually, many DBMS use similar mechanisms to avoid dealing
with the LPC. They use the O_DIRECT flag[91] when they open the database file,
andmanage their own local DRAM cache. However, this behavior is not a problem
for our writing tests, as the cache has to be regularly (or manually) synchronized
with the persistent media.

38

3.3. Evaluation

read
random

readseq
0

2

4

6

La
te
nc

y
[s
]

RocksDB

NVCache + Ext4 DM-Writecache Ext4-DAX Nova
SSD (Ext4) RamFS NVCache+Nova

read
random

readseq

SQLite

Figure 3.9.: Performance of each system under SQLite and RocksDB read intensive
workloads

3.3.4. Write-oriented workloads

Tuning NVCACHE with FIO

In the following experiments, we evaluated the impact of changes in NVCACHE’s
configuration. First, in figure 3.10, we study the parameters related to writing in
the NVLOG. By changing the length of the NVLOG, we expect NVCACHE to reach
higher performance in write bandwidth, as the amount of data that can be cached
to NVMM increases. Increasing the log size delays the moment the NVLOG be-
comes full, and thus, relies on the SSD performance. In this test, FIO is used in
write-only mode.

As expected, when NVCACHE can absorbmore data in its log, it reaches better per-
formance. The twofirst plots of figure 3.10 show thebandwidth and latency reached
by the benchmark over time. The third one is a like a progress bar, showing the ad-
vancement of each benchmark to write the 20 GiB of data. Thanks to these graphs,
we can identify the different phases of the benchmark, depending on the physical
support receiving the data. In particular, the 8 GiB log shows a clear rupture be-
tween the first phase, during which the benchmark can write in the NVMM cache,

39

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

0 10 20 30 40 50 60 70 80 90

200

400

Time [s]

Th
ro
ug

hp
ut

[M
iB
/s
]

Throughput

NVLog size: 100MB 1G 8G 32G

0 10 20 30 40 50 60 70 80 90

20

40

60

Time [s]

La
te
nc

y
[µ
s]

Latency

0 10 20 30 40 50 60 70 80 90
0

10

20

Time [s]

[G
iB
]

Written data

Figure 3.10.: Performance of NVCACHE under random write intensive loads for
20GiB, with variable NVMM log size.

40

3.3. Evaluation

and the second phase, when the cache is full, the disk becoming the performance
bottleneck.

In real conditions, one could use NVCACHE with a smaller log size to preserve the
amount of NVMM used. However, in our case, we focus on analyzing NVCACHE
performance in the caching phase. As soon as the cache is full, the performance
of the cached SSD is to be expected, and cannot be exceeded.

On the same write-only benchmark, we evaluated the effect of our batching mech-
anism. This system is expected to be more efficient when the batch size (the num-
ber of entries written to disk before a call to fsync) increases. Indeed, as we are
submitting write requests to the LPC, asking for guarantees less often reduces the
time spent waiting on the disk to send a confirmation our data has been written.
Moreover, if modifications to apply on the same page are in the batch, they will be
applied in RAM and thusmerged before the final page is sent only once to the disk.

During the first phase (when the log is not full), the batch size has no effect on the
performance. In the second phase, there is a clear improvement of the bandwidth
and latencywhen the batchingmechanism is enabled. However, this improvement
quickly reduces while the size of the batches increases. That experiment explains
why there is no need to select a very high batch size, as in a mixed I/O situation,
the amount of locks to acquire could actually hurt performance if this parameter
is too high. As long as the batch size is big enough, we almost reach the maximum
performance of the SSD.

Comparing NVCACHE with other systems

In these experiments, we compared thebehavior ofNVCACHEagainst other compa-
rable systems offering the same guarantees. NVCACHE is configured with a 32GiB
log in NVMM, so that the 20GiB workload does not saturate the log. Thanks to its
simplicity, NVCACHE reaches good performance while providing a very high level
of persistence guarantees. It provides better latencies than DM-WriteCache, Ext4-
DAX and the Ext4 SSD in all of the tested workloads.

Fig. 3.12 gives a measurement of throughput, latency and written data over time,
while running a random write workload. During this experiment, NVCACHE con-
sistently keeps the lowest latency and the highest throughput. NOVA is the closest,
as it also benefits from a log-based design suited for NVMM devices. Yet, as NOVA
has to issue a system call on eachwrite, NVCACHE ends up slightlymore efficient in
this ideal case. On average, NVCACHE maintains 493MiB/s vs. 403MiB/s for NOVA.
DM-WriteCache also reaches a high throughput, but in an unstable way that makes

41

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

0 10 20 30 40 50 60 70 80 90 100 110 120
0

200

400

600

Time [s]

Th
ro
ug

hp
ut

[M
iB
/s
]

Throughput

Batch size: 1 entry 10 entries 100 entries
500 entries 1000 entries 5000 entries

0 10 20 30 40 50 60 70 80 90 100 110 120

20

40

Time [s]

La
te
nc

y
[µ
s]

Latency

0 10 20 30 40 50 60 70 80 90 100 110 120
0

5

10

15

Time [s]

[G
iB
]

Written data

Figure 3.11.: Influence of batching and batch size parameter.

42

3.3. Evaluation

0 10 20 30 40 50 60 70 80 90
0

200

400

Time [s]

Th
ro
ug

hp
ut

[M
iB
/s
]

Throughput

NVcache SSD (ODIRECT) EXT4-DAX NOVA dm-writecache

0 10 20 30 40 50 60 70 80 90
0

100

200

Time [s]

La
te
nc

y
[µ
s]

Latency

0 10 20 30 40 50 60 70 80 90

0

10

20

Time [s]

[G
iB
]

Written data

Figure 3.12.: Behavior of NVCACHE compared to other systems during a 20GiB FIO
random write workload. 43

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

fillseq
sync

fillrand
sync

0

20

40

60

80

100

120

140
La

te
nc

y
[µ
s]

SQLite

NVCache+SSD dm-writecache+SSD Ext4-DAX NOVA
SSD tmpfs NVCache+NOVA

fillrandom fillseq overwrite
0

20

40

60

80

100

120

140

La
te
nc

y
[µ
s]

RocksDB

215 199

326 317

295 293 297

Figure 3.13.: Behavior of NVCACHE compared to other systems with SQLite and
RocksDB write intensive workloads.

44

3.4. Conclusion

it oscillate through the benchmark. In comparison, Ext4-DAX does not reach very
high performance measurements, and that is probably the consequence of its in-
ternal design that has not been optimized to very frequently call fsync. Then, the
bare SSDgets the slowest results, being so slow that the experimentwas stoppedbe-
fore reaching the 20GiB transferred. This is expected, as it represents the baseline
of what durable linearizability would imply on a regular system without NVMM.

Fig. 3.13 reports the average latency of several write-based operations in RocksDB
and SQLite. This experiment also presents NVCACHE as reaching higher through-
put and lower latencies than the other systems during its caching phase. First,
the Ext4 SSD setup takes around 300µs per operation. It is by far the slowest
setup tested, as each write results in a slow fsync operation. In this case, DM-
WriteCache is the second slowest configuration, which is different from the previ-
ous experiment. It is the closest comparison point with NVCACHE, as it also uses
NVMM to cache an SSD. However, its performance with SQLite is particularly bad,
being almost twice slower than Ext4-DAX. Then, Ext4-DAX and NOVA results show
how NOVA has been optimized for best latency on NVMM, in comparison with the
DAX-enabled Ext4 journaling file system. There is a clear advantage to use NOVA
for this kind of workload, NOVA being almost two times faster than Ext4-DAX in
every circumstance. To evaluate the impact of the secondary storage device in
NVCACHE, we rin the sameworkload on NVCACHE +SSD. On RocksDB, the effect of
using NVCACHE as an I/O booster on NOVAmakes this configuration almost as fast
as tmpfs, which is a baseline in a RAM file system with no persistence guarantee.
On SQLite, NVCACHE gets the same level of performance on SSD as on NOVA. Yet,
it gives NOVA a boost of performance.

3.4. Conclusion

NVCACHE is a log-based write cache in NVMM that boosts the I/O performance of
a slower secondary storage. By using NVCACHE with an SSD, one can reach per-
formances comparable with NVMM-based file systems, without being limitated by
the available NVMM storage space. Also, NVCACHE has been designed to adapt any
legacy application to get the benefits of persistent memory without modifications
to the original code. One of the main barrier to the adoption of persistent mem-
ory being the impact in terms of code modification, NVCACHE is the kind of tools
that could help legacy applications to get the benefits of this new tier of memory,
without having to perform deep modifications in their code base. It also opens the

45

Chapter 3. NVCache: A NVMM-based I/O Booster for Legacy Systems

door to a new perspective of I/O, where persistence guarantees could be given by
default, as it is not the massive performance penalty it used to be.

46

Chapter 4.

NVMM Cache Design: Logging vs. Paging

4.1. Motivation

Modern NVMM is closing the gap between DRAM and persistent storage, both in
terms of performance and features. Having both byte addressability and persis-
tence on the same device gives NVMM an unprecedented set of features, leading
to the following question: How should we design an NVMM-based caching system
to fully exploit its potential? After implementing NVCACHE, a follow-up question
remained to be answered: Is NVCACHE a strictly better design than themore usual
page-based approach of caches?

To answer this question, we compared two different implementations of NVMM-
based caches, NVPAGES and NVCACHE, with two radically different design ap-
proaches. NVPAGES storesmemory pages in NVMM, similar to the LPC. NVCACHE
uses NVMM to store a log of pending write operations to be submitted to the LPC,
while it ensures reads with a small DRAM cache. Our study shows and quantifies
advantages and flaws for both designs.

The emergence of modern NVMM is a great opportunity to implement known de-
signs and adapt them, or invent new ones. We tried these two approaches with
cachingmechanisms for a file system stored in secondary storage. Indeed, caching
data for slower tier storage devices (SSD or HDD) is a great use case for NVMM. It
provides high persistence guarantees, higher read and write bandwidth and lower
latencies than most persistent block devices [63]. In this study, we target appli-
cations that require a high level of data consistency, which would highly solicit a
regular disk with frequent calls to fsync. For such applications, we propose a per-
sistent cache able to give fast persistence guarantees without having to wait for a
slow secondary storage.

47

Chapter 4. NVMM Cache Design: Logging vs. Paging

NVPages

read()

Evict

Cache miss

Disk
Pages (NVMM)Thread 1

…

write()

Thread 2

Thread n

Commit

Redo logs (NVMM)

Figure 4.1.: Core design of NVPAGES

4.2. NVMM-based Caching

NVPAGES and NVCACHE are POSIX-like IO shared libraries. They provide standard
IO functions, such as open, pread, pwrite, close, etc. When the shared library
is loaded, NVMM is mapped, and data structures are initialized. A flag in NVMM is
set to 1 when the program is loaded, and set to 0 when it is unloaded properly. This
flag allows both caches to start a recovery procedure in case of a previous crash,
flushing to disk everymodification still pending in cache when the crash occurred.
So far, they do not support multiple threads. However, they differ in their core
implementation, depicted in Fig. 4.1 and Fig. 4.2.

NVPAGES. NVPAGES is designed as a regular page cache, with a few adaptations
to make it compliant with NVMM and its persistence guarantees. 4 KiB pages are
stored in NVMM. When a page is accessed, a radix tree in volatile memory looks
for a volatile metadata structure that contains a pointer to the non-volatile page. In
order to ensure consistency after a crash, calls to pwrite first write data in a redo
log stored in persistent memory. Then, the redo log content is flushed to the actual
non-volatile page cache. The page cache eviction is done with a least recently used
(LRU) policy. NVPAGES canbe used inO_DIRECTmode, bypassing the LPC to inter-
act directly with the disk with aligned 4KiB blocks. We do not report performance
with this mode since wemeasured that bypassing the LPC reduces performance in
read. As described in Fig.4.1, NVPAGES is designed to be adapted formultithreaded
workloads.

NVCACHE. For these experiments, NVCACHE is used in a shared library mode, dy-
namically linkedwith our benchmarks. It embeds twomain components: aNVMM
log, and a small DRAM page cache. When the pwrite function is called, data is
written to the NVMM log. A background thread continuously waits for log entries

48

4.2. NVMM-based Caching

NVLog

DRAM

Clean
cache miss

Disk

Dirty
cache miss

Background
threadNVMM

read()

write()
Update

Log

Figure 4.2.: Core design of NVCACHE

and writes them to disk as soon as possible. To ensure consistency in this configu-
ration, every call to pread should get the page from disk and check if patches (log
entries) have to be applied before returning the data. As this would make reads
very slow, NVCACHE keeps a small DRAM page cache (2GiB) with up-to-date data.
It also keeps track of pages that would need to be patched before returning, so it
only searches in the NVMM log when necessary. For reads, NVCACHE uses the LPC
as an extension of NVCACHE’s DRAM cache, fromwhich it can fetch data instead of
waiting for the disk. For writes, NVCACHE submits changes to the LPC in batches,
before calling fsync to ensure the data is persisted on disk. This way, it benefits
from LPC optimizations, such as merging consecutive writes on the same offset
before writing the page on disk. Its design is complex because of the internal syn-
chronization between the application and the background thread. Adapting it for
multithread remains challenging.

Discussion. NVCACHE is designed to absorb bursts of writes in its log, but may not
be suited for mixed or parallel I/Os. It only keeps a small amount of pages updated
in DRAM. Increasing the amount of NVMM in NVCACHE does not change the prob-
ability of cache hit. Instead, NVPAGES is designed to maximize the probability of
cache hit by keeping a lot of memory pages available in NVMM, as almost all of its
allocated NVMM is dedicated to pages. We expected the latter approach to bemore
efficient for mixed IOs, reducing the amount of interactions with the disk.

49

Chapter 4. NVMM Cache Design: Logging vs. Paging

4.3. Evaluation

Our benchmarkmachine is a Supermicromono-socketmachinewith an Intel Xeon
Gold 6326 CPU, 2modules of 128GiB of Intel Optane v200DCPMM [55], and a 512GB
NVMe SSD, running Ubuntu 20.04 LTS.

We evaluated our 2 systems with FIO [4]. These tests are performing 20GiB of ran-
dom accesses through a 20GiB-wide file. In Fig. 4.3 and Fig. 4.4, we submit pure
reads (randr), 50% reads and 50% writes (randrw), 90% reads and 10% writes
(randrw90), and pure writes (randw). Then, to show the efficiency of the caching
policies, we measure the same tests with a Zipfian distribution[135] that ensures
95% of random offsets will be in 5% of the file. Each bar is the average comple-
tion time of 5 runs. For each plot, we compare NVPAGES and NVCACHE with a
given amount of NVMM allocated. Our reference is the regular psync I/O engine
of FIOwhich uses regular POSIX functions, measuring the performance of the LPC
in DRAM.With this baseline, there is no guarantee of persistence, while NVPAGES
and NVCACHE both guarantee persistence as soon as a pwrite call returns. Hav-
ing similar persistence guaranteeswithpsync is possible, by enabling afsync call
after each pwrite. However, completion times were so long that we did not include
them in these plots (more than an hour for 20GiB of pure writes).

We expected NVPAGES to be less efficient in pure write workloads, because the use
of redo logs leads to write every data to NVMM twice. On the other hand, we also
expected it to be more efficient than NVCACHE on mixed I/O workloads, because
it can store much more data in its page cache, increasing the cache hit probability
and reducing interactions with the SSD to the minimum.

However, these results show NVCACHE performs significantly better in almost ev-
ery workload. The pure read performance of NVPAGES reveals a fundamental flaw
that prevents it to perform better with mixed IOs. By design, cache misses have a
cost in NVPAGES, because they imply to copy the missing page to NVMM. But the
main flaw in this design is the bandwidth limitation of current NVMM compared
to DRAM. NVPAGES can take pages from the LPC in DRAM, but will then require
to read in NVMM to retrieve them for reads or writes. On the contrary, NVCACHE
keeps fresh pages in DRAM, which allows us to get the full potential of DRAM read
bandwidth, as we measured in Fig. 4.3 and Fig. 4.4 with randr and randr-zipf
benchmarks.

50

4.3. Evaluation

rand
r-zip

f
rand

r
rand

rw-zi
pf

rand
rw

rand
rw90

-zipf
rand

rw90
rand

w-zip
f

rand
w

0

50

100

Co
m
pl
et
io
n
tim

e
(s
)

NVLog 2GiB NVPages 2GiB psync

Figure 4.3.: FIO benchmarks with 2GiB of NVMM cache

rand
r-zip

f
rand

r
rand

rw-zi
pf

rand
rw

rand
rw90

-zipf
rand

rw90
rand

w-zip
f

rand
w

0

50

100

Co
m
pl
et
io
n
tim

e
(s
)

NVLog 100GiB NVPages 100GiB psync

Figure 4.4.: FIO benchmarks with 100GiB of NVMM cache

51

Chapter 4. NVMM Cache Design: Logging vs. Paging

4.4. Conclusion

By running these experiments, we notice NVCACHE seems to have a clear edge over
NVPAGES. It performed better on all workloads, even on those we could have ex-
pected NVPAGES to be more efficient. From a design point of view, NVPAGES has
several advantages and may outperform NVCACHE on parallel I/O thanks to its in-
dependent redo logs (while NVCACHE must share the same log with all threads).
However, themain bottleneckwe found inNVPAGES relies on the difference of per-
formance between DRAM and NVMM. It would also alter performance in a highly
parallel mixed I/O scenario. This performance limitation is likely going to remain
a problemwith future generations of NVMM, as we could imagine DRAM through-
puts an latencies to increase as well. In conclusion, the current design of NVPAGES
does not seem to be efficient for NVMM caching, while NVCACHE circumvents the
main problem of NVPAGES thanks to its log-based caching mechanism.

52

Chapter 5.

Conclusion on Persistent Memory

Persistent memory has brought a new set a features no piece of hardware had be-
fore. This peculiaritymade it an ideal research topic. However, Intel announced in
2022 that they would not produce NVMM anymore, stopping at the same time the
production and the developpment of all of the 3DXPoint line of products. That the-
sis wasmade during the very short timewhile OptaneNVMMwas commercialized.
As a result, we witnessed the begining and the end of that piece of hardware.

5.1. Lessons Learned

Optane PMEM opened the way for several new applications of main memory.
Among these applications, some fields seem to have particularly used this device
and its capabilities.

• File systems (Ext4 [34], NOVA [138], SplitFS [66])

• Key-value stores (KVell [80], KVell+ [81], Chameleon [142])

• Data structures (BPTree [49], uTree [17])

• Caches (Johnny Cache [82], NVCACHE)

• Persistent Transactional Memory (Romulus [27], OneFile [109], TL4x [3])

• Fault tolerance programming (NVthreads [47], ResPCT [71], J-NVM [78], Plin-
ius [140])

Through all of these examples, some general remarks can be done about the use of
Intel’s implementation of persistent memory.

5.1.1. Software integration

From a software perspective, integrating NVMM is not transparent. When coding
for persistent memory, there are some caveats to keep in mind.

53

Chapter 5. Conclusion on Persistent Memory

Programming with persistence

With great power comes great responsibility. Using PMEM with its persistence
guarantees requires to code with extra care. Even with dedicated libraries such
as Persistent Memory Development Kit (PMDK) [130], originally designed by Intel
to simplify the use of PMEM, the programmermust have a clear idea of the level of
guarantees they want to implement. Each modification in persistent memory can
result in an inconsistent state, if the operations are not perfectly ordered and pro-
tected by the appropriate instructions. Thus, the main purpose of this new device
can already be the source of major disfunctions, that can ruin the quest for crash
consistency.

Fighting against optimizations

Among applications designed for persistent memory, many highlight the need to
disable or avoid some hidden optimizations. This may seem counter-intuitive, but
many low level optimizations are designed with the standardmemory hierarchy in
mind, where persistence is extremely slowwhile volatility is almost instantaneous.

The perfect example is the caching layer of the LPC, that end up reducing the over-
all preformance of PMEM by adding write amplification. The implementation of
DAX in the Linux kernel is the solution found to bypass that precise optimization,
but it is not seamless. Sometimes, those optimizations are so deeply linked to the
core of the program that it may be complicated to disable them completely.

Another example would be the implementation of embedded DRAM caches in
DBMS such as RocksDB or SQLite. These caches are written to avoid the LPC, and
get full control over the cachingmechanisms for the database. Yet, these have been
designed to maximize performance with a slow disk or SSD as only persistent de-
vice. With persistent memory in mind, developers would probably take a different
approach.

Compatibility with legacy software

The only way to use persistent memory transparently, is to give up on part of its
features and use it either as RAM extension or as a regular block storage device. In
order to get the full potential of this new device, using both persistence and byte-
addressability, one inevitably has to modify the software. This change can go from
a few lines to a deep refactor of the program.

54

5.1. Lessons Learned

5.1.2. Hardware integration

If software optimizations can hurt performance when using PMEM, it goes the
same way for hardware optimizations. Though, the hardware is more complicated
or even impossible to bypass.

Architectural limitations

The main problem of PMEM is the interaction with CPU caches. There is almost
no way to bypass this hardware optimization which, once again, was designed for
volatilememory. Technically, the ntstore instruction can bypass all of the caches
when writing to persistent memory. Yet, this is not a recommended solution for
many scenarios as in this case, accessing the written data will result in a slower
cache miss.

Intel had to introduce the clwb instruction to overcome this situation, and allow
the programmers to propagate a cache line to the non-volatile memory without
eviction from the cache. However, that is not a trivial change. Intel even imple-
mented the instruction before implementing its actual behavior, which lead to in-
comprehension from the PMEM developers [70].

Evenwith appropriate instructions, the overall feeling when programming for per-
sistent memory is that it was not meant to exist. Using NVMM requires knowing
the details of the architecture, which is not very developer-friendly.

eADR platforms

An interesting attempt to change the behavior of CPU caches was announced by
Intel with the release of their Optane NVDIMM v200. eADR was supposed to ad-
dress the complexity of NVMM programming by making the entire system more
compliant with the need for persistence. By adding a battery alongside the CPU,
eADR was supposed to give a more transparent persistence guarantee. In case of
a power loss, the CPU caches would be powered long enough to flush every cache
line located in PMEM to the persistent device.

The advantage of such a system would be to simplify programming, as there is no
need to flush cache linesmanually to get the persistence guarantee. However, even
after the release of Intel’s compliant CPUs and Optane NVDIMM v200, no platform
supporting eADR has been commercialized.

55

Chapter 5. Conclusion on Persistent Memory

5.2. On the Future of Persistent Memory

For almost a decade before the commercialization of Intel Optane, researchers
imagined systems that would gratly benefit from persistent memory. Now, only
three years after the commercialization, Intel announced they would not develop
and sell this technology anymore. However, there is some hope that a new genera-
tion of devices could appear in the coming years.

5.2.1. The rise and fall of Intel Optane

In summer 2022, Intel announced the end of the 3DXPoint line of products. There
were some hints of this event when Micron decided to end their partnership with
Intel, the production of 3DXPoint in summer 2021, and selling their factory toTexas
Instruments. Also, the “Silicon crisis” that hit theworld around that timemust have
played a role [96, 132]. Yet, Intel ensured they would continue the production of
3DXPoint in another factory [118]. A year later, Intel officialized the end of invest-
ments in this technology.

There are some reasons that tend to explain why Intel Optane DCPMM were not a
commercial success.

• The computer world is not ready. Using NVMM in current computers is not
trivial, and requires efforts both in terms of architecture and software de-
velopment. Tech companies did not want to invest all of their work force to
change the design of their clusters and softwares. Moreover, persistentmem-
ory suffered from the image of a technology not mature enough to invest in.

• The idea of extending DRAM with cheaper and denser NVMMwas great, but
it is a niche market. It only addresses to people who want to run huge RAM-
consuming software, while not having enough budget to buy a machine or a
cluster with more DRAM. This mode also reduces performance in compari-
son with a DRAM-only setup. It could address to startups or research labora-
tories, but it does not match with the main market of Intel.

• Between the idea of 3DXPoint and its commercialization, NVM Express, or
Non-Volatile Memory Host Controller Interface Specification (NVMe) SSDs
became extremely performant, and almost matched Optane’s performance
on some workloads, while being based on a more mature technology (Flash
memory) and for a cheaper price per gigabyte.

56

5.2. On the Future of Persistent Memory

• Using Optane requires an Intel platform. There is no compatibility with other
CPUs.

• Programming with Optane DCPMM requires an extensive knowledge of the
platform you are coding for, which makes the software development more
complicated, while reducing portability.

If these elements explain the lack of popularity of Intel Optane DCPMM (PMEM
modules), other devices made out of 3DXPoint memory were quite popular, and in
particular the Intel Optane SSD line of products. With quite low latencies for a SSD,
Optane SSDs became popular among developers, video editors, and many other
disk intensive use cases. It was a high-end SSD dedicated to professionals with a
higher budget. Yet, this product disappeared with the other 3DXPoint equipment.

5.2.2. Compute Express Link

Both Micron and Intel agree that the next step for persistent memory will have to
dowith the new Compute Express Link (CXL) standard [21]. CXL is an interconnect
protocol, initially designed to communicate between several CPUs and their pe-
ripherals. But CXL also extends interconnect communications over the Peripheral
Component Interconnect Express (PCIe) bus. It aims tobringnew featuresbetween
extension cards (Graphics Processing Unit (GPU)s, Network Interface Card (NIC)s,
Field-ProgrammableGate Array (FPGA)s, other accelerators...) and themainmem-
ory. In particular, a part of the specification calledCXL.cache is supposed to bring
cache coherence between the different components over the PCIe bus and themain
memory.

At first sight, CXL has nothing to do with NVMM. It is not specifically designed for
persistent memory. However, from the already published specifications, all of the
required concepts for PMEM are supposed to be integrated in future CXL devices.
Thus, future persistent memory devices could probably be CXL extension cards.

There are some advantages for persistent memory extension cards. First, they
would not rely on a single manufacturer. Any manufacturer that want to provide
some kind of persistent memory only has to comply with the CXL specification.
Then, extension cards are compatible with every kind of architecture and manu-
facturer, as long as the CPU is CXL-capable. That would let a lot more choices to
customers regarding the CPU they want to use with their persistent memory, even
in the probable event of x86 architectures being replaces by other ones in the fu-
ture. Last, the extension card format is suited for a niche market. There is already

57

Chapter 5. Conclusion on Persistent Memory

amarket of specific accelerators for very precise workloads. As NVMM is probably
not going to be mainstream in computers anytime soon, keeping the format of an
accelerator dedicated to specific workloads makes a lot of sense.

So far, only a few CXL compliant devices have been commercialized, but tech com-
panies already prepare for that new generation of accelerators. For instance, Sam-
sung already released a DRAM extension card featuring CXL [112].

5.3. Conclusion

The era of Optane DCPMM started in 2019 and ended in 2022. Over these three
years, a lot of researchhasbeendoneabout that device, and it is likely that therewill
be future implementations of such persistent memory devices. Only, the format
we used to have DCPMM is probably going to dissapear, as integrating different
devices over the DRAMbus is quite complicated. The new CXL standard is opening
persistent memory manufacturing to other companies. However, we do not know
yet if another companywill try to create persistentmemory anytime soon, after the
business failure Intel faced, trying to drastically change the way we usememory in
modern systems.

58

Part II.

Remote Direct Memory Access
(RDMA) & Programmable Networks

59

Chapter 6.

Introduction to RDMA

RemoteDirectMemoryAccess (RDMA)defineshowonemachine can submitmem-
ory operations to a distant machine through a RDMA-capable network. This chap-
ter is a summary of the notions of RDMA we had to use for our implementations.
The complete explanation for these features is documented in the Infiniband spec-
ification.

6.1. RDMA-Capable Protocols

Properly speaking, there is no “RDMAprotocol”. There are only protocols that have
an implementation of RDMA operations. The most popular RDMA-capable pro-
tocols are IWarp, Infiniband, and RoCE (Infiniband over Ethernet). However, as
RoCE has a lot of advantages over IWarp [122], we chose to focus on Infiniband and
RoCE.

6.1.1. Infiniband

Originally, the Infiniband protocol was released in the early 2000’s. Its main ob-
jective was to provide higher throughputs and lower latencies than other protocols
such as Ethernet, in particular in the context of local networking among servers of
the same cluster. At this time, it was capable of 10Gbit/s, which gave it a clear advan-
tage over Ethernet. Between 2014 and 2016, amajority of the supercomputers in the
Top500 ranking [124] were using Infiniband [123]. Nowadays, Infiniband hardware
can reach up to 400Gbit/s, while providing latencies around a microsecond.

One of the main reasons pure Infiniband networks are only found in massive clus-
ters and supercomputers is that they require buying all of the network components
specifically for this protocol. In the mean time, while almost matching the max-
imum link capacity of Infiniband hardware, Ethernet became the most popular
amongst user-grade Local Area Network (LAN) equipments. This popularity lead
to the creation of a hybrid protocol, RDMA over Converged Ethernet (RoCE).

61

Chapter 6. Introduction to RDMA

Ethernet
header

Ether-
Type IB GRH IB BTH IB Payload ICRC FCS

Figure 6.1.: A RoCE v1 frame. In red, the embedded Infiniband frame.

6.1.2. RoCE

Also called Infiniband over Ethernet (IBoE), RoCE is an implementation of Infini-
band encapsulated in standard Ethernet frames. It allows using RDMA on more
standard network hardware components than pure-Infiniband ones. For instance,
one could use RDMA between two servers that are equipped with a RoCE-capable
Ethernet Network Interface Card (NIC), while the links and switches between these
two machines are simply standard Ethernet components.

From a software perspective, the RoCE protocol is used transparently as if it was
regular Infiniband. All of the concepts defined in the Infiniband specification [52]
are valid in RoCE, except from a few details in the connection procedure.

The RoCE protocol comes in two different versions.

RoCE v1

RoCE v1 only uses the Ethernet link layer. This is the simplest way to encapsulate
Infiniband frames in an Ethernet one. However, these packets cannot be routed,
which means they are limited to machines in the broadcast group. Thus, this pro-
tocol could not be used through the Internet.

Amongst these fields:

• Ethernet header: Contains source and destination MAC addresses

• EtherType: The last field of the Ethernet Header. In our case, this contains a
special value to signify this is a RoCE frame.

• IB GRH: Infiniband Global Route Header. This is the equivalent of the Ether-
net header for Infiniband frames.

• ICRC: Invariable Cyclic Redundancy Check. In Infiniband, this is the error-
detecting code computed from the Infiniband frame.

• FCS: Frame Check Sequence. In Ethernet, this is the error-detecting mecha-
nism.

62

6.2. RDMA-Capable Hardware

Ethernet
Header

Ether-
Type IP Header UDP Header IB BTH IB Payload ICRC FCS

Figure 6.2.: A RoCE v2 frame. In red, the embedded Infiniband frame.

RoCE v2

RoCE v2 still uses the Ethernet link layer, but it also uses a User Datagram Protocol
(UDP) encapsulation. By adding this new level of encapsulation, RoCE v2 becomes
routable. It can reach other subnetworks or even go through the Internet.

In RoCE v2, the IB GRH field has been replaced by:

• IP Header: This field can either be IPv4 or IPv6 and ensures the routability.

• UDP Header: The UDP field has a fixed destination port (4791) reserved for
RoCE frames.

These two fields ensure regular routers can process and route RoCE packets. Even
if we did not use that routability feature, we chose RoCE v2 as a support for our
implementations.

6.2. RDMA-Capable Hardware

In order touse aRDMA-capableprotocol, onehas tobe equippedwith specifichard-
ware.

6.2.1. Switches

As explained in section 6.1.1, using pure Infiniband requires to buy dedicated net-
work equipment. The central element of any network of this kind would be a
switch. In Infiniband, a switch has to read the Local Route Header (LRH) and
Global Route Header (GRH) fields in order to decide on which port that packet has
to be sent.

However, as mentioned earlier, the RoCE protocol allows to use regular Ethernet
switches. This makes it easier to integrate in larger existing networks that would
not already be Infiniband.

63

Chapter 6. Introduction to RDMA

6.2.2. Network Interface Cards

To use RDMA features, a machine has to be equipped with a network card that pro-
vides two key functionnalities.

First, the network card must be able to access the main memory (Dynamic
Random-Access Memory (DRAM)) of its host machine. In other words, the card
has to use Direct Memory Access (DMA). DMA is a technology that makes a device
able to read or write directly into themainmemory, without the involvement of the
Central Processing Unit (CPU).

Then, the NIC has to know the protocol in use, and act consequently. Either for
Infiniband, RoCE v1 or RoCE v2, the card is responsible for the execution of the
RDMA operations. It has to understand each packet, verify that the protocol is re-
spected, and apply the operation requested. In a way, the RDMA NIC must be able
to work alone and applymodifications in DRAM, while the CPU is doing something
totally unrelated. To exploit Infiniband performances to their potential, Infiniband
and RoCE network cards implement the 4 first Open Systems Inteconnection (OSI)
layers in hardware (physical, link, network, and transport layers).

However, from a programmability point of view, the communication between a
NIC and the CPU can be asynchronously re-established, by using event-driven pro-
gramming. In practice, some RDMA operations can trigger an event to notify the
CPU. For instance, a machine can send some raw data to another one by RDMA,
and ask the receiving network interface to notify the CPU, meaning that data pro-
cessing can start. That implies the network card can rise a hardware interrupt on
the CPU when it is required.

RDMA-specific network interfaces are sometimes refered as Channel Adapter (CA)
in the Infiniband literature.

6.3. RDMA Concepts

By design, RDMAconnections aremade of several specified data structures. Before
a connection is opened, eachmachine has to initialize a certain amount of compo-
nents in order to prepare its network card for future communications through the
network. Moreover, the NIC must be aware of the actions it is allowed to perform
in the host machine memory, which is part of this initialization process. Here are
the main structures required to attempt a RDMA connection.

64

6.3. RDMA Concepts

6.3.1. Memory region

Thememory region (mr) is themost central element to configure on eachmachine.
Basically, it points to amemory space thatmust have been “registered” beforehand.
Registering amemory areameanswe are asking the NIC to prepare everything that
will be required later to access andmodify that spacewithout anyCPU intervention.

When a program registers a buffer of memory, it submits a contiguous space of
virtual memory. However, when the NIC receives a write request for that space,
it cannot ask the CPU Memory Management Unit (MMU) to translate virtual ad-
dresses to physical ones. That is why the network card itself has to keep a part
of the translation table for the given memory region. Once a memory region has
been registered, its physical addresses are stored in the NIC Memory Translation
Table (MTT).

Several memory regions can be used simultaneously, even if they are not contigu-
ous. Each one also has access rights, given by the developer when the region is
registered. For instance, a memory region can accept distant writes, but refuse
distant reads and local writes.

6.3.2. Work request

A work request is a structure that contains all of the required information to pro-
ceed with one RDMA operation. Amongst other fields, it contains the opcode (a
number that represents the type of operation) and a pointer to the area where this
operation must be executed.

6.3.3. Queue pairs

For each connection, a send queue and a receive queue must be initialized. These
structures are responsible for storing work requests, either incoming (in the receive
queue) or outgoing (in the send queue).

Each queue pair status follows a state machine, and each state can allow transmis-
sions or not. For instance, the receiving queue must be in Ready to Receive (RTR)
mode, while the sending queue must be in the Ready to Send (RTS) mode so that
the work requests can actually be processed by the sending side.

65

Chapter 6. Introduction to RDMA

6.3.4. Completion queue

The completion queue associated with a connection contains completion events
that are generated when some work requests have been processed. For instance,
on the receiver side, if a RECV request has been consumed, itmeans a SEND request
has been received and processed. In this case, a completion event is generated, so
that the server can know some data has been transferred.

However, when using the one-sided RDMA operations (READ and WRITE) the re-
ceiver does not have any notification. Some hybrid work requests can have the
effect of one-sided operations but still raise a completion event, for example the
WRITE_WITH_IMM operation.

6.4. RDMA Verbs

RDMA operations are accessible through an Application Programming Interface
(API) called Verbs. The Verbs library contains low-level functions to set up RDMA
connections, as well as all of the RDMA operations.

6.4.1. Two-sided verbs

Two-sided verbs require a particular setup on both ends. We call the two operations
SEND and RECEIVE.

First, one side has to issue a RECEIVE work request, which contains among other
fields, the address where the received data has to bewritten.. This request is stored
in the receive queue.

Then, the other side has to post a SEND work request, which contains the actual
data, but no location information. When this request reaches the destination, the
SEND request is processed and the RECEIVE request provides the missing meta-
data. With all this information, the receiving networ card is able to execute the
DMA operation in Random Access Memory (RAM). Then, a completion event is
added to the completion queue, so that the program that issue the RECEIVE work
request is notified its request has been fulfilled.

This mode of communication is very versatile, and can be used for many applica-
tions when the machine issuing the RDMA requests is not aware of how the other
machine manages its RAM space.

66

6.5. Intel Tofino

6.4.2. One-sided verbs

One-sided verbs only require the intervention of one machine to access another
machine’s RAM. One machine can provide all of the information required to issue
a DMA call to another machine’s network card.

For instance, if a machine wants to write some data in another one, it can post a
WRITE request that contains both the data and the remote pointer where this data
must be written in the target’s RAM. The network card will receive the work re-
quest, checkwhether the security concerns are fulfilled, i.e., the address is in a reg-
isteredmemory region, the remote key is correct... and execute the corresponding
DMA operation. It alsomanages by itself the sending of an Acknowledgment (ACK)
when it was asked by the emitter, but the receiver is never notified an operation has
been executed on its side.

However, in order to be allowed to write into another machine, one must know
the remote key (or R_key) of the destination memory region. Exchanging this key
must be done by an other way, either a SEND/RECEIVE operation or through a
totally different network protocol.

From a performance point of view, one-sided operations aremore efficient, as they
do not require any CPU wake up on the receiving side. It is often considered good
practice in RDMA to use one-sided operations as much as possible.

6.4.3. Special verbs

Some verbs can have intermediate behaviors, such as WRITE_WITH_IMMEDIATE.
This verb almost behaves as a regular one-sidedWRITE request, but offers to embed
a small field (4 Bytes) to give the receiver an additionnal information.

6.5. Intel Tofino

The Intel Tofino platform is a programmable switch able to manage high-
bandwidth traffic (up to 6.5Tbit/s in total) while applyingmodifications on network
packets on the This switch architecture has been released in two different versions.
Weused thefirst generationof theproduct for our implementations,which features
up to 65 Ethernet ports at 100Gbit/s.

67

Chapter 6. Introduction to RDMA

6.5.1. Presentation

A programmable switch is a device supposed to be used for switching-like pur-
poses, but can also be modified in order to create in-network features. By chang-
ing the behavior of a switch, one can offload some tasks in the network, by making
some transformations on the network packets while they are being exchanged be-
tween machines.

With an Intel Tofino platform, the switch is built in two parts: the control plane and
the data plane.

Data plane

The data plane is the core of programmable network devices. For the Intel Tofino,
it is a pipeline made of successive stages that each have their own role. By going
through this pipeline, packets can receivemodifications between themoment they
enter the switch and the moment they exit it to their destination.

The data plane is programmed using a dedicated language called P416. It describes
the different actions to apply to a packet thanks tomatch-action tables. Some stages
can also be set up for more advance features such as replicating packets, or calcu-
lating hashes. But programming a Tofino remains very challenging, as not a lot of
information can be retrieved from the data plane for debugging purposes. Some-
times, the most efficient way to debug the data plane is to run the P416 code in a
simulator and observe the state of each register while packets are flowing through
the switch. Otherwise, an analysis of packet captures (PCAP format [46]) withWire-
shark [137] is often a good way to find unexpected behaviors and deduce the origin
of these bugs inside the P416 code.

Control plane

The control plane is responsible for higher level tasks, and in particular, it can set
up the data plane. In practice, the control plane is a Linux machine embedded in
the switch. It has a connection bus to communicate with the data plane, either
for submitting a new P416 program or to modify some parameters of that program
while it is running.

The control plane is reserved for slow interactions. In order to benefit from the
switch performance, one has to avoid too many interactions between the control
plane and the data plane.

68

6.5. Intel Tofino

6.5.2. Performance guarantees

As the Tofino works by pipeline, the same path has to be taken by each packet.
Consequently, as long as packets are not going through the pipeline multiple times
(one of the many features of the Tofino), they all spend the same amount of time to
pass the switch. This time depends on the program that has been submitted to the
data plane.

69

Chapter 7.

Byp4ss: Latency- and Throughput-Optimal
Consensus Over RDMA

7.1. Introduction

Consensus is at the basis of any crash-tolerant distributed system. Ideally, reaching
consensus should imposeminimal overhead, but all existing protocolsmake trade-
offs between minimizing latency and maximizing network capacity usage.

Modern consensus protocols have shown the importance of using RDMA to min-
imize latency [2, 127, 44, 67]. For instance, in Mu [2], a leader replicates data by
doing a single RDMA write to the log of each replica. The network cards of the
replicas acknowledge the writes, and once enough acknowledgements have been
received, consensus is reached. Key to the low latency ofMu is the use of the RDMA
write operation that allows the leader’s data to bewritten and acknowledgedwith-
out involving the replica’s CPU, drastically reducing the latency of acknowledge-
ments. While close to optimal in terms of latency, these RDMA-based protocols
only use a fraction of the replicas’ available bandwidth because the leader divides
its own network bandwidth by the number of replicas. Some protocols have also
been designed to maximize network capacity usage [43, 14], for instance by having
replicas forward messages to each other in a ring. Such protocols are suboptimal
in terms of latency because a message has to be forwarded multiple times in order
to be accepted by a majority.

The trade-offs presented above arise because, in order to minimize latency, the
coordination between replicas has to beminimized, whichmeans that a singlema-
chine decideswhichvalues to replicate. Thismachine thenhas to communicate these
values to the other replicas and becomes a bottleneck.

In order to bothminimize latency andmaximize throughput, we propose to decou-
ple decision and communication. We accomplish this by handling the RDMA com-
munication part of the consensus entirely in a data plane-programmable switch.

71

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

Having the communication handled by the switch is advantageous because it can
broadcast and aggregate packets to/from all replicas at link speed.

Starting offon this idea, we implementByp4ss, a sharedmemory interface exposed
through an RDMA protocol. With Byp4ss, instead of individually accessing the
memory of each replica, the leader accesses the sharedmemory interface exposed
by the switch, which transparently broadcasts and aggregates RDMA commands to
the replicas. To write in a system that tolerates 𝑓 failures, Byp4ss broadcasts the
request to all the replicas and waits for 𝑓 + 1 acknowledgments before sending an
acknowledgment to the leader. To read from the same system, Byp4ss first broad-
casts the request to the replicas, and then only forwards the answer to the leader if
the first 𝑓 + 1 answers are identical. In the presence of a discrepancy, an error is
returned instead.

BasedonByp4ss,wedesigna leader-based consensusprotocol namedDISMU (“Dis-
aggregatedMu”). In short, DISMU implements the decision process of theMu proto-
col. UnlikeMu, DISMUonly sends a singlemessage to Byp4ss instead of𝑛messages
to 𝑛 replicas. As a result, DISMU is the first RDMA consensus protocol able to reach
consensus in a single round-trip (minimal latency) while optimally using the net-
work links of both the leader and the replicas (maximal throughput by having a
single request/response per network link and per consensus).

Despite an apparent simplicity in its principle, implementing Byp4ss yields some
intricate issues because the RDMA protocol only supports point-to-point read and
write operations. A switch can easily multicast a carbon-copy of a packet but, to
support RDMA, the various copies of the packet have to bemodified tomaintain the
illusion that each server is talking to a single other server. To that end, Byp4ss keeps
track of various stateful metadata, such as the authentication keys that authorize a
particular server to read or write a particular region of memory of another server
(these keys are randomly generated and different on each server).

The complexity of transparently replicating RDMA connection is further exacer-
bated by the fact that each RDMA requests is acknowledged. So, after multicasting
a request, Byp4ss needs to compare and aggregate the acknowledgements from the
replicas before forwarding a single acknowledgement to the leader. The acknowl-
edgements are used by the RDMA network cards to inform each others of their
relative congestion status. Byp4ss also aggregates congestion information to avoid
a replica from becoming overloaded with pending RDMA requests.

We have implemented Byp4ss on a commercially-available Intel Tofino switch, and

72

7.2. Background

DISMU, which relies on Byp4ss to decouple decision and communication. We com-
pare DISMU against Mu. DISMU outperformsMu by up to 10× in terms of through-
put (on 4 replicas) while exhibiting 2.7× lower latency.

To summarize, we make the following contributions in this chapter:

• We propose to decouple decision and communications, and have the RDMA
communications done entirely in the network to attain both optimal latency
and throughput.

• We introduce the Byp4ss library, which exposes an RDMA shared memory
interface through a programmable switch, which transparently forwards the
operations to the replicas.

• We implement the DISMU consensus protocol, which relies on Byp4ss to
achieve both optimal latency and throughput.

• Finally, we evaluate DISMU and Byp4ss by comparing DISMU with Mu.

The rest of the chapter is organized as follows. We first introduce background in-
formation on the protocols and programmable switches in Section 7.2. We then
present the design of Byp4ss in Section 7.3 anddescribe its implementation in depth
in Section 7.4. Evaluation results are shown and analyzed in Section 7.5. We finally
discuss related work in Section 7.6 before concluding in Section 7.7.

7.2. Background

In this section, we briefly introduce the underlying technologies upon which
Byp4ss builds, i.e., RDMA and programmable switches.

7.2.1. Remote Direct Memory Access

RDMA reduces networking overheads by allowing a client to read to andwrite from
a remote server without involving any other component than the network card on
the remote side. In particular, the InfiniBand [52] networkprotocol provides a com-
prehensive implementation of RDMA, which is supported by network cards from
several vendors [11, 56, 106]. Unless explicitly stated, mentions of RDMA refer to
the InfiniBand implementation of RDMA. In this section, we explain the terminol-
ogy relevant to our work, i.e., the main metadata that Byp4ss modifies in order to
replicate and aggregate RDMA packets. Table 7.1 summarizes these terms.

73

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

Table 7.1.: Metadata contained in an RDMA packet.

RDMA field Usage

Operation code (OpCode) Type of the packet: ConnectRequest, ConnectRe-
ply, RDMA read request, RDMA write request,
RDMA read reply, etc.

Queue pair identifier Which queue pair the packet is destined
for (conceptually similar to TCP destination
ports)

R_key Randomly-generated shared key between the
client and server, which authorizes a particu-
lar client to performRDMAoperations against
a server’s memory region

Packet sequence number (PSN) Identifies the position of a packet within a se-
quence of packets

Credit count Howmany requests the client may send to the
server at this time

Queue pair. RDMA operations are transmitted using a point-to-point communi-
cation channel between a client and a server. Internally, the client and the server
create a queue pair, a structure located in the RDMA card, that contains a send and
a receive queue. The receiving end of the queue pair is uniquely identified by a
number: the queue pair identifier. This identifier disambiguates which connection
a packet is meant for.

Connection handshake. An RDMA server waits for incoming connections. A
client establishes a connection by sending a ConnectRequest message to the
server.Themessage contains several fields disclosing information about the client,
one of which is the identifier of its queue pair. This identifier will be used by the
server when replying to the client, for instance to acknowledge its requests. Once
the server receives the ConnectRequest, it creates the other half of the queue
pair, and sends a ConnectReplymessage to the client. The ConnectReply con-
tains the identifier of the server’s queue pair (i.e., used by the client to send re-
quests to the server). The connection becomes ready for RDMA transfer after a
final ReadyToUsemessage gets transmitted from the client to the server.

74

7.2. Background

Permissions. To ensure that RDMA operations against a server can only be per-
formed by authorized clients, a shared authentication key (the R_key) is associ-
ated to everymemory region exposed via RDMA.RDMAread orwrite commands
need to include the right R_key for them to succeed.

Read/write requests. RDMA requests start with the client posting a read or
write request in its send queue. It contains the authentication R_key of themem-
ory region the request targets, aswell as the virtual addresswhere to read to orwrite
from. In the case of a write request, the data to write is attached to the request.

The request is asynchronously dequeued by the network card of the client, which
forges a corresponding read or write request network packet. The packet is ad-
dressed to the server, and more specifically to the right queue pair by including the
queue pair identifier that was negotiated during the initial connection handshake.
On the receiving side, the network card of the server checks the authenticity of the
R_key, executes the given operation (provided the key is correct), and finally sends
a response to the client all on its own, without ever involving the CPU.

Each RDMA packet contains a field called the packet sequence number (PSN) that
uniquely identifies that packet within the sequence of packets that are communi-
cated on a queue pair. Each new request increments the PSN. An important aspect
of PSNs is that the reply associated to a request with PSN𝑋will have the same PSN
𝑋.

Congestion. The credit count is a counter,maintained inhardwarebyeveryRDMA-
capable network card, that is used as an estimate of how many extra requests can
be buffered by the card. The idea is that most server-to-client RDMA responses an-
nounce the server’s current credit count back to the client. Those packets can be
standalone ACK packets, but RDMA read response packets for instance also con-
tain the value. When a network card receives the credit count of another card, it
uses that information to throttle its connections if need be, so that the other card
does not get overloaded with queries.

7.2.2. Programmable switches

Programmable switches allow fine-grain control on packet flows, as well as exe-
cuting custom operations on those packets, effectively leading to in-network pro-
cessing. Conceptually, switches are split on two layers: the control plane above and
the data plane below. The data plane consists of a specialized Application-Specific

75

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

Integrated Circuit (ASIC) which can process packets at line-rate across all ports of
the switch. The control plane, on the other hand, executes on a standard proces-
sor and can be programmed using any programming language. Both layers can be
programmed arbitrarily. We can summarize the relationship between those two
layers by saying that the control plane controls how the data plane processes data.
Nonetheless, as the control plane executes on a traditional processor, it is possible
to use it for packet processing, with a lower barrier-of-entry in terms of develop-
ment complexity, but with much lower performance than the data plane.

The predominant language used to program the data plane of a switch is P4 [10].
Protocol-independant Switch Architecture (PSA)—the P416 architecture that the In-
tel Tofino programmable switch ASIC is loosely based on—defines a pipelined ar-
chitecture composed of an ingress and an egress (Figure 7.1). Both gresses are com-
posed of three parts: (i) a programmable parser that extracts and organizes data
from packet headers; (ii) a series of stages that can modify the packets and decide
where to forward them, and (iii) a deparser that rearranges internal metadata to
a stream of bytes. The stages are a composition of “match-action” steps: if (part
of) the header of a packet matches a set of criteria, then an action is performed,
such as choosing the next step of the processing, modifying the packet, deciding
where to forward the packet, etc. These “match-actions” are stored in tables (the
equivalent of a C switch/case, but implemented at the hardware level).

Server 2

Server n

…

Server 1

Server 2

Server n

…

Server 1Ingress
parser

Ingress
parser

Ingress
parser

Egress
parser

Egress
parser

Egress
parser

Packet
buffer &

replication

Buffer
queuing

Buffer
queuing

Buffer
queuing

Ingress Ingress
deparser

Egress
deparserEgress

Figure 7.1.: Protocol-independant Switch Architecture pipeline. Blocks with a light
background (black font) are fully-programmable whereas those with
a dark background (white font) are configurable. Each server link
has its own ingress and egress parser, while the gresses themselves
have enough capacity to process simultaneous line-rate traffic across
all links.

In between the ingress and egress sits a buffer and the replication engine. The
latter enables flexible duplication of packets across multiple physical output ports.
This design forces routing and replication decisions to be taken in the ingress. Con-
versely, operating on packet replicas must be done in the egress.

Intel Tofino is a fully-programmable P4 switch ASIC [58]. Tofino switches extend

76

7.3. From Mu to DISMU

the P4 programming language with stateful operations. In the ingress and egress
pipelines, it is possible to store a value in a register when a packet matches a set
of conditions, and read back the value when a later packet matches another set of
conditions. Registers are very flexible as they embed a Arithmetic Logic Unit (ALU)
that can perform computations when storing and when reading back its elements.

Computations in the data plane of a Tofino can be done at link speed (100Gbit/s
per link, or 6.5 Tbit/s in total, for the first version of the switch, and 400Gbit/s, or
12.8 Tbit/s in total, for the second version). These numbers highlight that a pro-
grammable switch can process data at a much higher rate than a normal server
machine.

7.3. FromMu to DISMU

InMu [2], consensus is done in twophases. First, a leader decides the values to agree
on, and then it communicates these values to the replicas. The key idea behind our
work is to decouple decision and communication, and to optimize the communica-
tion using in-network processing. This section details the Mu protocol, shows how
we adapted it to use Byp4ss, and gives an overview of Byp4ss.

7.3.1. The original Mu protocol

In Mu, each replica has a log, and a leader appends data to these logs. The replicas
then consume the content of their logs asynchronously.

The constraint that ensures that logs stay consistent is that, at any given time, a
single leader is allowed to write to the logs. Replicas rely on RDMA permissions to
control which machines are allowed to write to their log.

More precisely, every machine participating in the protocol is given an ID. The
leader is always the live machine with the lowest ID. To prove its liveness, each
machine maintains a heartbeat value that it periodically increases. Machines fre-
quently read each others’ heartbeats, and the liveness of othermachines is assessed
by checking if their heartbeats increase over time.

Once a replica has chosen another server as a leader, it reconfigures its RDMA per-
missions to allow the leader to write to its log. A replica that elects itself as a leader
waits until it gets the permission towrite to amajority of the othermachines before

77

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

writing any message. This ensures that the actions of a leader can always be seen
by a majority of the participating machines.

The leader is responsible for sending the data to the replicas. It does so usingRDMA
write commands to append data to the replicas’ logs. A data item is considered
replicated once the network cards of 𝑓 + 1 replicas have acknowledged the write.

7.3.2. DISMU overview

In the originalMuprotocol, the leader sends the data individually to all the replicas.
As a consequence, its network represents a bottleneck that impairs scalability. The
key idea behind Byp4ss is to push the communication logic in the switch. DISMU
uses thus the same leader-based decision process as Mu, but DISMU uses Byp4ss to
write in the logs of the replicas.

Figure 7.2 presents the dataflow without Byp4ss and with Byp4ss decoupling. The
communication pattern is illustrated in Figure 7.3. With DISMU, when the leader
writes in the log of the replicas, instead of individually sending a write request to
each replicas, the leader sends a single write request to Byp4ss. Byp4ss then repli-
cates the request to the replicas on behalf of the leader, waits for 𝑓 + 1 acknowl-
edgments as for Mu, and sends a single acknowledgment to the leader.

As a result, whileMudivides the bandwidth of the leader by the number of replicas,
this is not the case with Byp4ss. With Byp4ss, the available bandwidth of the leader
is not impacted by the number of replicas.

Bottleneck
write

ack
Switch!Client Leader Replica 2

Replica n

…

Replica 1

write

ack
Client Leader Replica 2

Replica n

…

Replica 1

!P4 "
ByP4ss

Figure 7.2.: Communication without and with Byp4ss.

78

7.3. From Mu to DISMU

Client

Leader

Replica 2

Replica 1

Replica n

RDMA
write

Permission check

…

Permission check

Switch (P4)

RDMA
ack

RDMA
write

RDMA
ack

!

!

!

!

!

!

Client

Leader

Replica 2

Replica 1

Replica n

…

Figure 7.3.: Communication pattern used for consensus: without the pro-
grammable switch (left), messages are sent and response are processed
by the leader, which represents a bottleneck; with Byp4ss, these tasks
are preformed directly within the switch.

7.3.3. Byp4ss overview

In order to implement the communication logic of DISMU in a switch, we designed
Byp4ss. Byp4ss is a general-purpose library that a consensus protocol canuse to de-
couple decision and communication. It implements RDMA group communication,
and handle both RDMA read and write requests.

In order to handle a request, Byp4ss ensures two key features: broadcast and
gather.

Broadcast. When Byp4ss receives a request, it broadcasts the request to a set of
replicas. For that, Byp4ss rewrites the request for each replica. At a high level, it
rewrites the destination queue pair, the authentication key, the virtual address of
the buffer accessed by the request, the packet sequence number and the IP address
of the destination.

Gather. WithRDMA, replicas have to answer to a leader, with an acknowledgment
for a write request, and with the read data for a read request.

After sending awrite request, in Byp4ss the switchwaits for𝑓+1 acknowledgments
before transmitting an acknowledgment to the leader. As for a broadcast, Byp4ss
has to rewrite several fields of the message: the destination queue pair, the packet

79

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

sequence number and the IP address of the destination. It also has to compute the
fields related to congestion control. If one of the server sends a negative acknowl-
edgment (NAK), the switch forwards it immediately to the leader. This allows the
leader to become aware that one of the replicas is misbehaving and to handle the
error – either by excluding the replica from future broadcasts, or by doing more in
depth diagnosis.

Additionally, Byp4ss can also aggregate the answers of read requests. Since replicas
may send different values, Byp4ss is also responsible for checking discrepancies
in the data received from the replicas. In order to detect discrepancies, Byp4ss
compares the hashes of the read data items. Based on the hash code, Byp4ss can
identify if all the responses to a read request are identical.

The behavior of Byp4ss to handle read requests is not classical. Byp4ss compares
the hash of the responses to the hash of the first packet it received. If the hashes
of the first 𝑓 + 1 answers are identical, the (𝑓 + 1)𝑡ℎ answer is forwarded to the
leader. If one of the responses does not match the hash code received in the first
answer, Byp4ss sends an errormessage and the leader has to solve discrepancies by
querying servers individually instead of relying on Byp4ss. Generally, in a consen-
sus protocol, the leaderwaits for 𝑓+1 identical responses among the𝑛 replicas and
then fixes possible discrepancies when they arise. We made the choice of sending
an error message to make the decision part of the protocol aware of discrepancies
between replicas—otherwise the replica would have no way of knowing that some
of its replicas have a different state from the majority because the aggregation is
done in-network.

7.4. Implementation

Byp4ss implements group communication for RDMA. Since RDMA, as specified by
the InfiniBand protocol, only supports point-to-point read and write commands,
Byp4ss acts as amiddleman that transparentlymulticasts and gathers RDMApack-
ets between a source and multiple destinations. Byp4ss thus needs to duplicate,
redirect, and transform individual packets so that every participant in the network
has the illusion of communicating with a single machine.

Internally, Byp4ss maintains a set of communication groups. A group is composed
of a single source server and a set of destination servers. When Byp4ss receives a
request from the source, it broadcasts the request to all the destinations, aggregates

80

7.4. Implementation

their response, and forward a single response to the source. In DISMU, the leader
is the source, and the replicas are the destinations (see §7.3).

We implemented Byp4ss in P416 on an Intel Tofino-based programmable
switch [58]. The section presents the main data structures used by Byp4ss, how
a machine creates a communication group and how Byp4ss implements multicas-
ting.

7.4.1. Communication groups and connections

Without in-network replication, the leader initiates the consensus protocol by es-
tablishing an individual RDMAconnectionwith each replica. This operation is now
handled by Byp4ss. With Byp4ss, the leader establishes a single RDMA connection
to the switch and the switch broadcasts the connection request to the replicas.

Capturing incoming connections. Byp4ss configures the data plane of the switch
to have all ConnectRequests intended for the switch, i.e., that contain its IP ad-
dress as destination, to be redirected to the control plane (see §7.2.1, a Connec-
tRequest is the first message of the handshake necessary to establish a RDMA
connection). New connections are not a frequent operation, so handling them in
the control plane simplifies the development effort and has no overhead in prac-
tice.

Broadcasting connections. The RDMA protocol allows ConnectRequests to be
piggybacked with custom data. In Byp4ss we use the custom data to store the IPs of
the replicas participating in the communication group. Byp4ss establishes a con-
nection with all the destination IPs. Each replica receives a ConnectRequest,
seemingly coming from the leader. If the replica agrees that the source IP of the
ConnectRequest is the leader, then it replies with a ConnectReply as it would
while communicating directly with the leader. Byp4ss aggregates the answers and
sends a single ConnectReply to the leader.

In case of an error (e.g., if a replica thinks that the source IP is not the new leader),
the replica refuses to establish the connection and sends an error in the form of
a ConnectReject packet. In that case, we follow the logic of the original Mu [2]
protocol. If a connection has been successfully established with more than 𝑓 + 1
replicas, then the leader receives a successful ConnectReply answer. Otherwise,
the leader receives an error and knows that less than a majority of servers believe
it is the leader.

81

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

Table 7.2.: Multicast metadata.

Name Meaning

BCastQP Virtual queue pair identifier for the source; all packets re-
ceived on this QP will be broadcasted

MulticastGroup Unique identifier used by the replication engine to know the
destination ports of a multicast command

AggrQP Virtual queue pair identifier for the replicas; all packets re-
ceived on this QP will be aggregated and sent to the source

NumRecv[PSN] An array used to store the number of replies for a given PSN
Hash[PSN] The hash of the first reply for a given PSN
MinCredit Minimum credit of the replicas of the communication group

The ConnectReply sent by the servers can also be piggybackedwith custom data.
We use the custom data to send the virtual address of the log of each replica, and
the authentication key used to check read/write permissions (the R_key described
in Table 7.1).

Getting ready for future RDMA commands. After establishing connections, all re-
quests are handled by the data plane to guarantee that further processing is done
at line speed. To allow the data plane to broadcast the packets to the right set of
replicas, Byp4ss creates a multicast group in the replication engine of the switch.
Themulticast grouphas a unique identifier thatwill be used by the data planewhen
scattering packets.

Note that, on top of handling future RDMA commands for the established connec-
tions, the control plane still listens for new ConnectRequest packets to create
new parallel connections, as Byp4ss supports multiple connections in parallel.

Metadata per group. For each communication group (Table 7.2), Byp4ss stores a
BCast queue pair. The BCast QP is the queue pair identifier sent to the leader in
theConnectReply. Allmessages received on thatQP are broadcast to the replicas.
The replicas use the Aggr queue pair to send their replies (all replicas use the same
QP number).

RDMA packets are uniquely identified by a packet sequence number (PSN) (as de-
scribed in Table 7.1). For each answer received in the Aggr queue pair, the switch
counts howmany answers with the same PSN it has received. The (𝑓 + 1)th answer

82

7.4. Implementation

Table 7.3.: Connection structure. Byp4ss keeps one connection structure for each
connection it made or received from a server (leader or replica). The
connection structures can be found using an endpoint identifier.

Name Meaning

Remote IP IP address of the remote server
Remote QP Queue pair identifier of the remote server
Remote Port Port of the remote server
VA Virtual address of the remote buffer
Size Size of the remote buffer
R_key Remote authentication key

is forwarded to the leader. In order to ensure that all replicas agree on the answer,
Byp4ss also stores the hash of the first received answer for a given PSN. If subse-
quent answers have the same hash, the answer is forwarded. Otherwise, an error
is returned.

Byp4ss also maintains congestion control-related metadata in order to avoid pack-
ets beingdropped. TheMinCredit represents thenumberof packets that themost
saturated RDMA card of the group can handle.

Metadata per connection. For each established connection, Byp4ss stores meta-
data in the tables of the data plane of the switch. This metadata will be used to
transparently forward future read and write requests. Table 7.3 presents the per-
connection metadata.

For each connection to a server (leader and replicas), Byp4ss maintains a structure
named the connection structure (Table 7.3). The structure fully identifies a connec-
tion: it contains the IP address of the server, its queue pair identifier and its port.
When the server is a replica, the structure additionally contains the virtual address
of the buffer, the size of the buffer and the authentication key. Byp4ss internally
identifies a connection with an 8-bit integer that we refer to as endpoint identifier.

7.4.2. Scatter.

Multicasting read and write operations is critical for performance. Byp4ss imple-
ments them in the data plane.

83

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

IP scr dst
UDP portsrc portdst
Infiniband PSN QP
…

IP scr dst
UDP portsrc portdst
Infiniband PSN QP
…

IP scr dst
UDP portsrc portdst
Infiniband PSN QP
…

Client
Replica 1

!P4 "
ByP4ss

IP/port
PSN
QP

IP/port
PSN
QP
IP/port
PSN
QP

…

…

Replica n

…

Figure 7.4.: Principle of packet duplication: Byp4ss transforms the different proto-
col addresses and identifiers in the headers to provide the illusion that
the replicas receive the requests directly from the leader.

High-level implementation. Figure 7.4 presents the high level principle of packet
duplication. The data planemainly adapts the IP, UDP and RDMA connection fields
to maintain the illusion that replicas are receiving packets as if they were coming
directly from the leader.

Most importantly, after duplicating a packet, Byp4ss changes the PSN and queue
pair identifier to match those expected by the replica. Byp4ss also changes the vir-
tual address to/fromwhich data is read andwritten. Indeed, when communicating
directly with replicas, the leader reads and writes at the virtual address of their
logs. With Byp4ss, the leader sends a single write request to the BCast queue pair
of Byp4ss that is then replicated. Because the replicas may store their log at differ-
ent virtual addresses, the leader just sends an offset to the BCast queue pair, and
Byp4ss adds this offset to the virtual address location of each replica’s log.

In theswitch. Specifically, whenareadorwrite request enters the switch ingress
pipeline, Byp4ss starts by matching the destination IP to check if the packet is ad-
dressed to the switch. If not, it means that the packet is notmeant to be duplicated,
and it is transmitted directly to its destination. Otherwise, Byp4ssmatches the des-
tinationQueue Pair (QP) number contained in the packet against the ones thatwere
stored in a P4 table during the initialization phase. Matching against the contents
of the P4 table returns a MulticastGroup.

The data plane uses the MulticastGroup as the key to instruct the hardwaremul-
ticasting engine of theprogrammable switch to duplicate thepacket (automatically,

84

7.4. Implementation

according to the configurationmade by the control plane when setting up the com-
munication group). To ensure that the future answers to the request are properly
aggregated, the dataplane also resets the NumRecv and Hash corresponding to the
PSN of the packet it is multicasting (see Table 7.2 for the definition of NumRecv and
Hash).

After the multicast engine, 𝑛 packets are generated, one per egress pipeline of the
replica they are destined to. At that stage, the 𝑛 packets are carbon copies of the
original packet. The only way to differentiate them is using an identifier that the
multicast engine sets in the metadata associated with each packet. To speed up
computations, we configured the multicast engine so that the identifier consists in
the endpoint identifier of the destination replica.

We match the endpoint identifier against a P4 table, which gives us the connec-
tion structure of the replica (see Table 7.3). Updating addresses, ports and simi-
lar identifiers in Ethernet, Internet Protocol (IP), UDP and InfiniBand headers of
the packet requires replacing the original values with the values saved in the con-
nection structure during the initialization phase. Updating RDMA-related fields
requires to compute their value. For instance, if the leader writes at offset 𝑜 of the
log of its replica, the data plane updates 𝑜 to write at VA + o, VA being the virtual
address of the replica’s log.

Note that RDMA commands may spawnmultiple packets when the amount of data
to transfer exceeds theMaximumTransmission Unit (MTU), i.e., when the payload
cannot fit in oneEthernet packet. For instance, whenwriting a large amount of data
on a connection configured with the Ethernet-standard MTU of 1500B, a write
request may get split into multiple packets, each with a payload of 1 KiB. In that
case, Byp4ss multicasts each individual packet to all replicas.

7.4.3. Gather

At a high-level, Byp4ss waits for 𝑓 + 1 answers from the replicas before sending an
answer to the leader. However, aggregating the answers is not trivial because the
switch needs to compare the answers, which makes the operation stateful.

In the switch. Byp4ss aggregates answers using the NumRecv and Hash registers
(see Table 7.2). In our current implementation, we can aggregate 256 different PSNs
per connection at a given time, which means that Byp4ss can handle up to 256 un-
acknowledged packets on the fly per connection—as a comparison, a given RDMA
connection can only have up to 16 pendingwrite requests and, while the number of

85

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

read requests is theoretically unbounded, we never observed more than 10 on-the
fly in our network. Our current sizing thus works on current networks and is likely
to remain viable on future faster networks.

Upon receiving the first response from one of the replicas, Byp4ss updates its regis-
ters accordingly: (i) it sets NumRecv[packet.PSN], the number of received replies,
to 1; (ii) it stores the hash that the replica computed of the packet inHash[PSN], and
(iii) it tells the deparser of the ingress to drop the packet.

When receiving later packets, Byp4ss: (i) increments the number of replies, and
(ii) compares the hash of the packet to the previously stored hash. In case of a hash
value discrepancy, the packet is transformed to aNegative Acknowledgment (NAK).
If less than 𝑓 + 1 answers have been received, the packet is dropped. When 𝑓 + 1
replies with the same hash have been received, the packet is finally forwarded to
the leader.

Additionally, acknowledgmentmessages (which can be standalone or piggybacked
on some types of packets, notably read response packets) contain important in-
formation about current InfiniBand-related resource usage; most importantly, the
“credit count” needs to be correctly sent back to the leader to prevent overloading.
As replicas may handle query at a different speed, Byp4ss takes the worst case into
account. Byp4ss stores the most recent credit count announced by each replica in
registers, and sends the minimum count across replicas to the leader (more details
on howwe achieve this can be found in section 7.4.4). The credit counts are stored at
the communication group level, and not per PSN, to be able to send the latest credit
count received per replica—otherwise, because the (𝑓 + 1)𝑡ℎ ACK is forwarded, the
credit count of the slowest replicas would always be ignored.

7.4.4. Under the hood

We now present some more intricate details about how Byp4ss works at a finer
granularity. The data plane code of Byp4ss consists of 949 lines of P416 for TofinoNa-
tive Architecture (TNA) [57], while its control plane amounts to 1237 lines of Python.
In the control plane, we use Scapy [9] as a framework to decode and craft RoCE ini-
tializationpackets. The control planeusesBarefoot runtime (BfRt) APIs to interface
with the data plane.

Performance concerns. A crucial aspect of our in-network processing is to be able
to process packets at link speed. With our P4 code running, each ingress and each

86

7.4. Implementation

egress parser can process 121 million packets per second. While large, this num-
ber actually becomes a bottleneck if a single parser ends up parsing queries com-
ing from multiple replicas. For instance, in our first implementation, all the ACKs
coming from the replicas were first processed in the replicas ingresses and then
sent to the leader’s egress where they were dropped. As a consequence, the leader’s
egress parser was a bottleneck and Byp4ss could only aggregate a total number of 121
millions packets per second. Changing the processing of ACKs to drop the packet
directly in the ingress of the replicas, before they reach the egress of the leader, al-
lows us to handle 121 million answers per second and per replica (so a total of 726
millions ACKs per second with 6 replicas for instance).

Doing in-network computations. Doing in-network computations is harder than
one may think at first glance. As an example, we explain how we compute the
minimum credit count of the replicas. We use a register per replica that stores the
last credit count seen from that replica. On a standard ARM/x86 CPU, it would be
easy to compute theminimumof these values, but doing the computation on a pro-
grammable switch is tricky.

For instance, on a Tofino switch, it is not possible to write the following code:

if(a < b) min = a else min = b

…because it is not possible, in hardware, to compare two variables (the ASIC can
only compare a variable with a constant). Such limitations force us towork ourway
around the limitations of the ASIC using indirect ways to perform computations. In
that case, the computation of the minimum ends up being:

if(identity_hash((a - b) underflows?))

min = a else min = b

Checking if a subtraction underflows is a standard way of emulating comparisons,
but the result of the underflow cannot be used in a conditional clause (because not
cabling exists between the underflow information of the ALU and any condition-
ally programmable hardware). We thus forward the underflow information to an
identity_hash (a module that simply returns the input value), which can finally
be used in a conditional clause.

87

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

While this example may seem a bit trivial, one of the major source of complexity
when performing in-network computing stems from the stringent hardware con-
strains of the Tofino ASIC. Every computation that a developer wants to program in
P4 could be implemented in dozens of possible ways, but most of them cannot be
deployed on actual hardware.

7.4.5. DISMU

DISMU uses the same decision process as Mu [2], and so has the same safety guar-
antees. Adapting the communication part of Mu to use Byp4ss is straightforward.
Instead of sending 𝑛 queries to the replicas and receiving for 𝑛 acknowledgments,
DISMU sends a single query and receives a single acknowledgment.

Faulty replica. When receiving an error or a NAK, DISMU switches back to the
standard communication mechanism of Mu, dialoguing with individual replicas.
If a replica is diagnosed as failed, DISMU reconfigures the communication group
of Byp4ss by first disconnecting from the switch and then re-establishing a connec-
tion, excluding the faulty replica from the communication group.

Faulty leader. In case of a viewchange, one of the replica becomes thenew leader,
and initiates a newmulticast groupwith a different list of participants. It is possible
that, for a while, Byp4ss maintains the communication group of the old leader and
of the new leader. However, any attempt to broadcast using the communication
group of the old leader will result in an error because the replicas have revoked the
authentication key of the old leader.

Faulty switch. Similarly to previous work, we assume that switches either work
correctly or crash (we do not handle Byzantine behavior). If a single link of the
switch fails, the replica attached to that link is considered faulty by the other repli-
cas. In case of a more global switch failure, the leader will fail to connect to the
switch and will try to talk directly to the replicas. Provided that the replicas can be
reached via another network route, the leader will be able to connect to a major-
ity of replicas and will run the protocol using manual replication. In that case, the
leader periodically tries to re-establish a connection with the switch to go back to
in-network replication.

88

7.5. Evaluation

7.5. Evaluation

In this section, we present our detailed evaluation of the latency and throughput of
Byp4ss, comparing it against Mu.

7.5.1. Experimental setup

We tested Byp4ss and DISMU on 6 servers Supermicro SYS-520P-WTR, each with an
Intel Xeon Gold 6326 CPU (16 cores). Four of these machines have 64GiB of DDR4
RAM, and two have 128GiB. Our client consist of a Dell PowerEdge R7515 machine
with an AMDEPYC 7302P CPU and 32GiB of RAM. These are all connected through
an Edgecore Wedge 100BF-32X programmable switch that contains a 2-pipe first
generation Intel Tofino ASIC. All machines are equipped with NVIDIA ConnectX-5
network cards interfaced through PCI Express 3.0 x16 links. Each card is directly
connected to the programmable switch using 100Gbit/s Ethernet.

7.5.2. Methodology

Each point of measure is an average value of 1 million operations. We noticed very
small variations (less than 1%). We compare DISMU with our implementation of
Mu on various setups, and in particular varying the number of replicas.

7.5.3. Bandwidth and Throughput

Maximum bandwidth. We first evaluate the maximum goodput achievable by
DISMU, varying the size of the values sent by the leader (Figure 7.5). The goodput is
the number of useful bytes sent per second, which excludes protocol overhead bits
and retransmitted data packets. With 2 or 4 replicas, DISMU is as fast as Mu with a
single replica. In details, DISMU is 2× faster thanMuwhen the consensus involves
2 replicas, and 4× faster when the consensus involves 4 replicas. DISMU is able
to achieve consensus at link speed with value sizes above 500B (11GB/s of good-
put shown in the figure, 12.5GB/s total bandwidth). These results are expected: in
DISMU the leader sends a single message to the switch and so can use its link at
maximum capacity, while in Mu the leader shares its bandwidth between replicas.

89

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

Item size (B)

W
ri
te

BW
(G

iB
/s
)

(a) Mu 1 replica Mu 2 replicas DISMU 2 replicas

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

Item size (B)

W
ri
te

BW
(G

iB
/s
)

(b) Mu 1 replica Mu 4 replicas DISMU 4 replicas

Figure 7.5.: Write goodput with different item sizes. DISMU maximizes the avail-
able bandwidth while Mu is limited by the leader’s ability to duplicate
packets. (a) With 2 replicas; (b) with 4 replicas.

Maximumnumberof consensusper second. Sending a singlemessage is obviously
advantageous in terms of network bandwidth, but it is also advantageous in terms
of CPU usage. Figure 7.6 presents the throughput we measured doing consensus
on small values (64 B), and varying the number of threads. In that configuration,
the network is not a bottleneck; the consensus is limited by the speed at which the
leader can generate RDMA packets and the bottleneck is the CPU of the leader.

With a low number of threads, DISMU exhibits a twofold speed increase over Mu
with 2 replicas. The difference raises to up to 6× with 16 threads. With 4 replicas,
the improvement goes from around 4× to over 10×. Running 16 threads, DISMU
can achieve up to 52 million consensus per second.

90

7.5. Evaluation

When using a low number of threads, DISMU achieves higher throughput because
it generates fewer packets (half with 2 replicas, quarter with 4 replicas, etc.) and
because it does not need to aggregate the ACKs of the replicas. When using more
than 12 threads, even though each thread has its own connection to the replicas
and only accesses per-thread data structures, Mu suffers from contention issues.
Profiling shows that the contention comes from the large number of atomic oper-
ations issued within the RDMA network card driver, which end up saturating the
CPU.

0 2 4 6 8 10 12 14 16
0

20

40

60

1.97×1.87×
1.95×

1.99×
2.01×

3.29×
1.99×

3.49×
6.12×

Number of threads

M
ill
io
n
co

ns
en

su
s/
s

(a) Mu 1 replica Mu 2 replicas DISMU 2 replicas

0 2 4 6 8 10 12 14 16
0

20

40

60

3.88×3.74×
3.88×

4.6×
4.9×

5.93×
3.94×

10.46×
10.22×

Number of threads

M
ill
io
n
co

ns
en

su
s/
s

(b) Mu 1 replica Mu 4 replicas DISMU 4 replicas

Figure 7.6.: Write throughput with 64B requests, varying the number of threads,
with 2 or 4 replicas. DISMU is up to 10× faster thanMu. Labels indicate
the performance improvement of DISMU over Mu. (a) With 2 replicas;
(b) with 4 replicas.

91

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

Summary. When doing consensus on large item sizes, DISMU outperforms Mu
because the leader does not have to share its bandwidth between replicas. When
doing consensus on small itemsizes, DISMUoutperformsMubecause it has a lower
CPU overhead. Decoupling the decision and the communication is thus beneficial
regardless of the size of the values to be replicated.

7.5.4. Latency.

In this section, we evaluate the impact of DISMU on latency. Figure 7.7 presents the
relationship between the per-thread throughput and latency, for DISMU and Mu.
Below 700 k consensus per second with 2 replicas and 400 k consensus per second
with 4 replicas, DISMU’s latency is 10% lower than that of Mu. The small difference
is due to DISMU doing a bit less work on the critical path of queries (fewer RDMA
requests, and no aggregation of ACKs), but neither DISMU nor Mu are CPU bound.

However, above 700 k consensus per second (400 k with 4 replicas), Mu becomes
CPU-bound and its latency starts to grow. Mu cannot handle more than 1.2 million
consensus per second per thread (600 k with 4 replicas) and queries start accumu-
lating when generated at a higher rate. Thanks to its lower overhead, DISMU can
handle up to 2.3 million consensus per second, regardless of the number of repli-
cas.

The sustained throughput of both DISMU andMumay seem high, but a similar ob-
servation can bemade on the latency of short bursts of consensus operations. Both
Mu and DISMU handle multiple consensus queries concurrently: when the leader
receives a burst of queries, it sends a burst of RDMA write requests to the repli-
cas’ logs instead of sending one request and waiting for its ACK before sending the
next one. As a consequence, Mu and DISMU can have multiple consensus “on the
fly”. We measure the latency of bursts of requests, varying the size of the burst.
Results are shown in Figure 7.8. The latency difference between DISMU andMu in-
creases with the number of consensus on the fly. Mu starts to become CPU-limited
when handling more than 10 queries simultaneously. DISMU’s latency is half that
of Muwhen handling bursts of 100 requests. So doing less work on the critical path
of queries also improves the performance of short bursty workloads, regardless of
the total throughput.

Summary. Surprisingly, decoupling decision and communication is also benefi-
cial in terms of latency because it reduces the amount of work to be done in the
critical path of the leader.

92

7.5. Evaluation

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

20

40

60

Throughput (Million consensus/s)

La
te
nc

y
(µ
s)

(a)
Mu 1 replica Mu 2 replicas DISMU 2 replicas

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

Throughput (Million consensus/s)

La
te
nc

y
(µ
s)

(b)
Mu 1 replica Mu 4 replicas DISMU 4 replicas

Figure 7.7.: Evolution of latency with 64B requests vs. per-thread throughput. (a)
With 2 replicas; (b) with 4 replicas.

7.5.5. Read workloads

Traditionally, consensus was performed in the same way when sending values to
the replicas (e.g., doing a PUT query in a key-value store) and when reading data
from the replicas (e.g., doing a GET query in a key-value store): in both cases the
replicaswould agree on a query to be executed. This approachmade sense because
the data stored in the replicas was not directly accessible by the leader. Recent

93

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

100 101 102
0

20

40

60

Number of consensus on the fly (log. scale)

La
te
nc

y
(µ
s)

Mu 1 replica Mu 2 replicas DISMU 2 replicas

Figure 7.8.: Latency with 64B requests, 1 thread

advances in key-value stores accessible over RDMAallow remote servers to directly
read the stored values using RDMA read requests [12]. So, for completeness, we
also test the performance of agreement on reads. In that experiment, the leader
sends a read request to the replicas and considers the value valid if the same value
is read from all replicas.

In DISMU, the leader sends a single RDMA read request to Byp4ss, which aggre-
gates the answers. In Mu, the leader sends individual requests to all replicas and
compares their answers. Table 7.4 presents the throughput of DISMU andMu, read-
ing 64B values, varying the number of threads. Unsurprisingly, our observations
match that of the traditional consensus: DISMU is at least 2× faster than Mu with
2 replicas and 4× faster than Mu with 4 replicas. Profiling shows that the perfor-
mance difference is mainly explained by two factors: (i) DISMU crafts fewer RDMA
requests, and (ii) DISMU does not have to compare the content of the packets to
verify that the same data has been read from the replicas (this operation is done in
the switch). So DISMU is less limited by the CPU than Mu.

94

7.6. Related Work.

Table 7.4.: Read throughputwith 64B requests, varying the number of threads, with
2 or 4 replicas. DISMU is up to 9× faster than Mu.

Mu DISMU

threads 1 replica 2 replicas 4 replicas 1, 2 or 4 replicas

1 2.3M reads/s 1.1 M reads/s 0.59M reads/s 2.3M reads/s
16 52.1 M reads/s 12.5M reads/s 5.7 M reads/s 52.2M reads/s

Summary. Decoupling decision and communication is also beneficial when read-
ing data from the replicas.

7.6. RelatedWork.

The availability of programmable switches on the market and their increasing
availability continues to attract the attention of academia and industry, opening
the pathway to novel and more efficient network protocol designs [113].

Accelerating via programmable switches. Network hardware acceleration has
been used to accelerate Paxos, and other consensus protocols [60]. NetPaxos [30]
motivated the use of switches to accelerate the roles of the original Paxos protocol.
P4xos [28] (and its ancestor [29]) implemented these ideas, using multiple Tofino
switches, each playing a specific role (one switch is a proposer, another the accep-
tor, etc.). P4xos implements the decision of these roles inside the switch, and pack-
ets are forwarded between switches as they would be forwarded between standard
servers playing the Paxos roles. P4xos requires a specific network topology with
multiple programmable switches, which makes it hard to deploy outside specially-
designed clusters. The large amount of messages exchanged between switches
(and actual servers sitting behind the switches) means that P4xos neither mini-
mizes latency, nor maximizes bandwidth usage. For instance, the latency of P4xos
exceeds 100 µs at 100 k consensus/s (compared to 33 µs when executing 2 million
consensus/s with a single thread in DISMU).

FastCast [8] proposes to use a switch to perform efficient multicast of IPv4 mes-
sages. NOPaxos [84] simulated the use of programmable switches to further tag
the multicasted messages with a sequence number, in order to replace consensus
with network ordering. HovercRaft [75] uses programmable switches to speed up

95

Chapter 7. Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA

the multicasting of R2P2 messages. Byp4ss builds on these ideas and, crucially,
enhances the multicasting with the in-network aggregation of acknowledgments
to allow the transparent replication of RDMA connections. Allowing the transpar-
ent replication of RDMA connections is needed to have the whole communication
part of the consensus run in the network, and key to the high throughput and low
latency of DISMU.

Belocchi et al. [6] have proposed to use SmartNICs to accelerate Paxos. Hyper-
loop [72] use SmartNICs to offload the handling persisting transactions onmultiple
replicas to the network card. These approaches are useful to reduce CPUoverheads
on the leader, but do not eliminate the bandwidth bottleneck. Harmonia [143] took
a different take on in-network processing and uses programmable switches to de-
tect conflict read-write conflicts between leader(s) and replica(s). The goal is to
ensure that a leader always reads values from an up-to-date replica. The approach
used by Harmonia [143] is complementary to that of Byp4ss and could be used to
speed up read-intensive workloads.

Programmable switches have also been used to accelerate variousworkloads: from
machine learning [41, 114, 88, 65, 89], map reduce tasks [15], distributed data-
stores [73], software-defined network functions [141], future Internet architecture
(SCION [31]), etc. P4SC [16] is a framework to implement service function chains into
P4-enabled devices and execute common network functions (i.e., NAT, firewalling,
L2/L3 forwarding, load-balancing) at line speed in the data plane. Wang et al. [129]
propose an IoT framework to aggregate small network packets into large ones and
to disaggregate them later. Rather than such routing-level services, Byp4ss is opti-
mized to support efficient replication protocols.

Reducing bandwidth requirements of the leader. Multiple protocols have been
proposed to reduce the bandwidth requirement of leaders. Most of these papers
rely on replicas forwarding packets between each other, usually following a ring
topology [43, 14]. These protocols offer suboptimal latency, and an active replica-
tion action fromeach replica (which addsCPUoverhead on the replicas, or requires
the use of SmartNICs).

Accelerating workloads using RDMA. Using RDMA is key to the low latency and
high throughput of DISMU. DISMU follows the logic of Mu [2], which uses RDMA
permissions to ensure that, at a given time, a single leader canwrite to the replica’s
logs. Other RDMA-accelerated consensus protocols have been proposed. Sim-
ilarly to Mu, APUS [127] pushes messages in replicas’ logs using RDMA write
commands. Replicas acknowledge having received the messages by sending other

96

7.7. Conclusion

RDMA write commands. Velos [44] leverages RDMA compare-and-swap opera-
tions to allow consensus to be achieved even when multiple competing leaders try
to write to the logs of the replicas. Sift [67] separates replicas in CPU nodes that
store non-persistent state and storage nodes, modified using RDMA. In this work,
we focused on improving Mu [2] because it outperforms the other protocols, but
Byp4ss can be used to improve the performance of all these protocols by trans-
parently multicasting and aggregating RDMA operations and their results in the
network.

Changing and extending RDMA. RDMA multicast has been implemented in soft-
ware libraries [5, 77]. These libraries extend the standardRDMA libraries tomake it
possible to send data tomultiple replicas. In RDMC [5],multicasting is done inmul-
tiple hops and using multiple point-to-point requests: the leader manually repli-
cates data on a set of replicas that then re-send the data to other replicas, allowing
dissemination over a large group of replicas. In RamCast [77], the leader coordi-
nates replicas to give the illusion of an atomic broadcast. None of these software
implementation offers latency-optimal or throughput-optimal replication because
they are limited by the bandwidth and CPU of the servers doingmanual replication
of the data.

Researchers also explored the possibility of adding support for multicast directly
in RDMA, most notably by allowing replicas to accept and process the exact same
RDMA packet [79], which would allow a passive optical cross-connect fabric to do
the duplication of packets. Such extensions would simplify the design of the scat-
tering performed by Byp4ss, but not of the aggregation of ACKs.

7.7. Conclusion

We have proposed the first RDMA-based consensus protocol able to achieve con-
sensus in a single round trip at link speed. We have shown that decoupling deci-
sion and communication brings significant throughput increase, while reducing
the latency of reaching a consensus.

The idea of Byp4ss is deceptively simple, but yields important performance gains
in practice. Our results demonstrate that Byp4ss allows consensus to scale across
multiple replicas, regardless of the size of the exchanged values. We demonstrate
2 − 10× better throughput and up to 2.7× better latency than the state-of-the-art
consensus protocols.

97

Chapter 8.

Conclusion on RDMA and Programmable
Networks

Developping Byp4ss was an opportunity to experience both programmable net-
works andRDMAprogramming, going deep into the specification of the Infiniband
protocol. If these two topicsmay seemunrelated outside of the Byp4ss project, they
are in reality quite intricated, as they could become a more common combination
in the future.

8.1. Programmable Networks

Programmable networks have become a very wide topic in recent years. By de-
sign, they are an ideal platform for research, both for networking and indirectly
related research topics. Similar to PersistentMemory (PMEM), the first implemen-
tations of ideas using programmable networking devices were using simulation or
virtualization. As a result, a community of developers started to form around the
Data Plane Development Kit (DPDK) project [83] and P414 [23], a language designed
to control packet forwarding planes. A few years later, P416 [24] was released with
major changes in its design, and some hardware supporting P416 were commer-
cialized. Among them, some smart-NICs and the Barefoot Tofino programmable
switch [58]. Since, a lot of research papers have been using P4 programmable de-
vices to offload some tasks to the network [126, 110, 68, 69].

In 2019, Intel bought the startup that designed the Tofino switch, Barefoot Net-
works. In 2022 a Tofino 2 version was commercialized. It is basically an upgrade
of all of the capabilities of the first Tofino switch, with increased throughput and
more programmable stages. At this time, a Tofino 3 was announced, but this plat-
form will likely never be commercialized. Indeed, in January 2023, Intel decided
to halt the development and production of its networking chips.

Other platforms still continue to develop to provide programmability to the net-
work. In particular, NVidia is becoming amajor actor of the field, since they bought

99

Chapter 8. Conclusion on RDMA and Programmable Networks

the networking company Mellanox in 2020. They mostly provide programmable
NICs, the Bluefield line of products [102, 94]. Also, Broadcom’s Tomahawk switches
are a direct concurrent of Intel’s Tofino, except they come with less flexibility in
their programming. They also use a language called NPL [100].

The field does not seem to face amajor issue with the end of the Intel Tofino line of
products. More programmable devices are likely to be commercialized in the com-
ing years, but the trend does not seem to be the quest of ideal programmability.
The high level of programmability of the Tofino is, like persistent memory, a very
interesting research platform. It is ideal to evaluate the impact of logic changes in
a network, and does make some complex protocols implementable. However, this
level or programmability (being able tomodify the data plane on the fly) is probably
a niche, and might not be the main concern of industrial customers. In compari-
son, reaching higher throughputs and lower latencies, while offloading some repet-
itive tasks to the network, are probably decisive in the choice of a programmable
network solution.

Programmable switches are probably not going to be the only programmable com-
ponents in future networks, as they would likely be used alongside smart-NICs.
Given the current communication of companies like NVidia, the current vision of
in-network computation is very application-specific. For instance, some products
provide some acceleration for Artificial Intelligence (AI) training [103, 101, 104]. In
this case, the networkmay be performing some of the computation, but there is no
particular user programmability. Yet, for research and development purposes, the
Intel Tofino platform is an ideal component, as it allows to manipulate the lowest
stages of the OSI model.

8.2. RDMA in the Computing Landscape

RDMA has already been in the computing field for two decades. Its main imple-
mentations, RoCE v2 and iWarp, have gained popularity since they do not require
too specific equipments anymore. Using RDMA has never been more accessible
and easy to deploy. Yet, it is used only in very specific softwares, and mostly High-
Performance Computing (HPC) applications. A few reasons come to mind to ex-
plain why the high performance of these protocols is not a sufficient reason for a
wider adoption.

100

8.2. RDMA in the Computing Landscape

8.2.1. A complex programming interface

As described in chapter 6, the programming interface to use RDMA, Verbs [105], is
quite complex. Setting upabasicRDMAconnection andperforming aRDMA“hello
world” can already require hundreds of lines of code [38]. It necessitates to initiate
several data structures and submit them to the network card, following a relatively
strict order [39]. Indeed, some values depend on previous answers from the net-
work card, such as the initial Packet Sequence Number (PSN) when the queue pair
is created.

Froma developer point of view, debugging RDMAcode can also be quite painful. In
case of a problem, RDMANetwork cards are only able to raise events with an error
code, which can give hints on the origin, but rarely more. High network speed can
also prevent from good debugging. Indeed, error events can sometimes be raised
only after several thousands of packets are exchanged, making network captures
very hard to analyse. Similarly, even simple debugging operations can become an
obstacle when the network can exchange more than 10GiB of data per second. For
instance, capturing network exchanges at this throughput cannot be done easily.
First, because RDMA operations are by design done in hardware by the network
card. In order to capture packets, one has to use a dedicated tool, provided byMel-
lanox as a docker container [93]. Second, because the capture itself starts to miss
packets above a certain throughput, probably to avoid congestion if the capturing
machine tends to slow down the transfer. A network capture with missing packets
is less likely to help at finding an unexpected behavior.

However, while being complex and hard to master, the Verbs API is probably the
reason why RDMA transfers can be so efficient. In regular computer architectures,
writing directly inside DRAM from a distantmachine in a zero-copy fashion cannot
come for free, it requires to adapt the software with the actual hardware require-
ments to achieve such peculiar memory transfers. The Verbs API is complex, but
that complexity comes from the need to circumvent several software (i.e., the ker-
nel) or even hardware (i.e., the MMU) limitations.

8.2.2. A challenge for performance

RDMA networking shines when using one-sided operations. That being said, it is
not trivial to adapt a software behavior to these one-sided operations, in particular
on the receiving side. A server receiving RDMA one-sided operations is not even
notified when such operation has been performed in its memory region.

101

Chapter 8. Conclusion on RDMA and Programmable Networks

Generally, integrating RDMA in an application requires to use both one-sided and
two-sided operations, playing with the notifications of the latter to notify the re-
ceiver side when it requires an action.

Another downside of one-sided operations is themanagement ofmemorypointers.
In this scenario, the sender has to know the exact location of a data structure to
be able to make zero-copy in-place transfers. That adds a heavy constraint on the
development style choosen for the application.

In practice, applications that are not explicitely designed for RDMA compliance
are not going to fully benefit from the performance boost. Since the availability
of RDMA, many research papers showed the potential of this technology when it
is applied to concrete applications [144, 90, 51, 121, 48]. However, these generally
require quite deepmodifications in the source code, and tweaks that can deserve a
dedicated research paper.

8.2.3. A unique API

There is no transparent way to use RDMA in a program. The behavior of the proto-
col does not easily adapt to themore traditional interfaces used to programnetwork
exchanges. For instance, the Portable Operating System Interface (POSIX) socket
API [86] has been designed in away that cannot easily be reproducedwithin RDMA.
One reason is that the RDMA programming interface is essentially asynchronous,
while POSIX sockets are by default synchronous. Realistically, that obstacle could
be circumvented, but deeper details of the RDMA API could not. First, in order to
use RDMA in a one-sided zero-copy fashion, one needs to register the memory ar-
eas used as source (on the sender side) and destination (on the receiver side). Mem-
ory areas that have not been registered are not accessible by the network card, as
it cannot ask the CPU MMU to translate the virtual address asked into a physical
one. Then, interacting with another machine’s memory requires to know the right
virtual addresses inside that other machine, either for reading or writing data. In
practice, buffer addresses are exchanged when the connection is established, via
another communication protocol. Last but not least, using the one-sided program-
ming model efficiently can impact a lot on the inner logic of a program. In par-
ticular, the receiver side behavior may cause problems, as for most applications,
a notification triggers an action. Working without that trigger is often impossible,
thus programmers must use RDMA operations that embed a notification request.
In this case, the receiver can be woken up by an event pushed by the network card
into the event queue.

102

8.3. Perspectives

The closest implementation of a POSIX-like API is the rsocket library [87]. While
being easier to use, the limited features of this approach and the constraints to use
it highlight how complicated adapting RDMA to another programming model can
be. With a more conventional and portable programming model, it seems likely
that RDMA could be used in more diverse applications. Instead, RDMA remains
mostly used in some storage or HPC applications that, in all likelihood, influenced
its API design.

8.3. Perspectives

While RoCE-capable networks gained some popularity in datacenters, only a sub-
set of applications currently make use the remote memory access feature. Yet, ef-
ficient access to memory through the network and memory disaggregation are a
necessary building block in the context of Hyper-Converged Infrastructure (HCI).
This statement opens a debate on the future ofmemory disaggregation, and in par-
ticular in the role of RDMA in this future new memory paradigm.

8.3.1. CXL

In summer 2022, the Compute Express Link (CXL) consortium published their ver-
sion 3.0 of the CXL specification, in which they describe howmemory could be ac-
cessed remotely with CXL. Even if CXL 3.0 is currently only available on paper (no
compatible hardware exists yet), it is a promising contender to become a popular
memory disaggregation support, for several reasons. First, because CXL is an open
industry standard, backed by an impressive list of industrial actors. In the adoption
of a new standard interface, a high number of companies actually interested in its
standardization is a good sign. Second, it is designed to reach low latencies even
for remote memory extensions (around 600ns), making it a new intermediate be-
tween accesses to local memory and RDMA. Some early work on CXL compared
it with RDMA accesses and reached significant improvements[42] on the latency.
Third, even if it can support RAM extension cards, CXL is alsomeant to be compat-
ible with a large range of extension devices, frommemory-equipped accelerators,
i.e., Graphics Processing Unit (GPU)s or Field-Programmable Gate Array (FPGA)s,
to persistent memory. And last but not least, CXL makes all of these memories ac-
cessible with the standard load/store interface, while giving guarantees on the
cache coherence of the overall system.

103

Chapter 8. Conclusion on RDMA and Programmable Networks

However, CXL also comes with some limitations that makes it unlikely to strictly
replace RDMA. A first barrier for wide scale adoption, is the need of fully compati-
ble hardware. Inside onemachine, even if CXL devices simply plug on a Peripheral
Component Interconnect Express (PCIe) port, usingCXL requires tohave a compat-
ible CPU, extension module, and motherboard. In order to use the rack-scalability
feature, each machine will likely require a specific CXL port, and the rack would
contain a dedicated CXL switch. Apart from the physical limitations, CXL being
based on the PCIe bus, it is not designed for long distance communications and
will likely be limited to the rack scale. To break this limitations, some projects use
another transportation protocol to embed CXL packets [128]. Inevitably, this so-
lution would increase the latencies of pure CXL transactions. Yet, it could allow
to extend CXL and make it a real competitor for RDMA replacement. Nonetheless,
while local CXL calls are expected to take around 200 to 400ns, RDMA requests gen-
erally take 2 to 4µs [92]. Thus, there is a high chance CXL and RDMA will coexist,
as each of them represent a distinct layer in the memory hierarchy.

8.3.2. The end of the computer-centric era

Among the different technologies that are trendy enough to be considered as a
probable perspective, there is a common point. They all take the direction of
complete hardware disaggregation. RDMA, CXL, In-network computing, pro-
grammable networks, In-memory computing... all of these popular research topics
are backed by major industrial actors. Each of them questions the idea of mono-
lithic machines, in a context where scaling is the main challenge. Moreover, they
all question the central role of the CPU and its main memory.

It is probable that in the coming years, full hardware disaggregation becomes stan-
dard for clusters and data centers. If so, cloud providers could have a rack of CPUs,
a rack of mainmemory, a rack of storage, andmaybe a rack of more exotic compo-
nents such as GPUs, Non-Volatile Main Memory (NVMM)[111]... But the main bar-
rier remains themainmemory disaggregation [1], as it is a very sensitive parameter
of the entire system’s latency. In order to keep acceptable performances, the inter-
connect between all of these components has to reach extremely low latencies and
very high throughput. Even if RDMA is impressive by its ability to reach lower la-
tencies through a network, it still requires at least around one order of magnitude
more than a typical local DRAM access. In comparison, CXL can reach latencies
similar to a Non-Uniform Memory Access (NUMA) memory access, which is still
slower but definitely closer than RDMA.

104

8.3. Perspectives

On the software side, some projects already address the problems a fully disag-
gregated architecture would cause [116, 37, 117]. In practice, such an architecture
would already be a particularly good match for distributed, serverless and virtu-
alization systems [85, 107] as it allows using any part of the computer as an on-
demand resource.

105

Chapter 9.

Conclusion

Memory is a central element in modern computers, and there have been recent
innovations that demonstrate the potential of exploring new memory paradigms.
In this thesis, we experimented with two emerging memory-related technologies,
NVMM and RDMA. Even if these two approaches seem at first, completely unre-
lated, they are in fact part of the same story. Since the core architecture of our
computers has become standard, memory has always been designed only to assist
a CPU in its computation. This strategymade sense for a long time, but the current
needs for computing may question this choice, as memory could become a more
versatile device.

Nonetheless, exploring these new ideas is a complex journey. Indeed, challenging
the hegemonic way we use memory in all of our systems may not always be a suc-
cessful adventure. As illustrated by the rise and fall of Intel’s NVMM technology,
Intel Optane, altering our interpretation of memory can look like a dead end, even
to a giant industrial actor. Developing such deep changes in the core of our com-
puter architecture requires a global acceptation and integration. In order to con-
vince industrial actors worldwide, the technological change must be a significant
breakthrough, but this is not a sufficient condition. It must also be an innovation
safe to invest in, and this is probably where Intel Optane did not convince.

However, some changes are to be expected in the upcoming years, and this is due
to the diversification of workloads. With the rise of AI training, streaming services,
and various kinds of cloud computing, the ways we build and use our computers
has never been so varied. Thus, some of these workloads are particularly suited
with specialized hardware, such as GPUs, FPGAs, or even ASICs. In the same way,
some workloads are likely to perform better with different kinds of memory in the
future.

Building scalable platforms with dedicated hardware is another challenge we are
about to face. The dynamics of research and industry on this topic clearly tend to-
wards a complete disaggregation of computers as we know them. By increasing the

107

Chapter 9. Conclusion

modularity of our systems, we may create machines able to maintain high perfor-
mance while being able to dynamically scale depending on the computing needs.
But this project also requires the industry to take some form of risk, by being early
adopters of new technologies.

When searching about these topics, a particular technology seems to stand out:
CXL. At this point, CXLmay become the next long-term standard for all of our com-
puter components, or it may disappear in a few years. However, there are some
hints that CXL should become popular. First, it is backed by a consortium of in-
dustrial actors, in which we find manufacturers but also future potential adopters
of the compatible devices. Also, the standard is created to ease compatibility be-
tween various devices, and will not be the closed system of a single manufacturer.
Finally, the first CXL 1.0 devices have already been commercialized. Even if they
do not have the most interesting features CXL 2.0 and 3.0 standards are supposed
to provide, the production has started, and it is likely we will hear about CXL a lot
in the coming years.

108

Bibliography

[1] Marcos K. Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil Yelam
and Gerd Zellweger. 2023. Memory disaggregation: why now and what are the chal-
lenges. ACM SIGOPS Oper. Syst. Rev., 57, 1, 38–46.

[2] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,
Athanasios Xygkis and Igor Zablotchi. 2020. Microsecond consensus for microsec-
ond applications. In OSDI. USENIX Association, 599–616.

[3] Gal Assa, Andreia Correia, Pedro Ramalhete, Valerio Schiavoni and Pascal Felber.
2023. Tl4x: buffered durable transactions on disk as fast as in memory. In PPoPP.
ACM, 245–259.

[4] Jens Axboe. [n. d.] Fio-flexible I/O tester synthetic benchmark. https://github.com/a
xboe/fio. Accessed: 2020-05-25. ().

[5] Jonathan Behrens, Sagar Jha, Ken Birman and Edward Tremel. 2018. RDMC: A reli-
able RDMAmulticast for large objects. In DSN. IEEE Computer Society, 71–82.

[6] Giacomo Belocchi, Valeria Cardellini, Aniello Cammarano and Giuseppe Bianchi.
2020. Paxos in the NIC: hardware acceleration of distributed consensus protocols.
In DRCN. IEEE, 1–6.

[7] Lawrence Benson, Leon Papke and Tilmann Rabl. 2022. Perma-bench: benchmark-
ing persistent memory access. Proc. VLDB Endow., 15, 11, 2463–2476.

[8] Gautier Berthou and Vivien Quéma. 2013. Fastcast: a throughput-and latency-
efficient total order broadcast protocol. In Middleware 2013: ACM/IFIP/USENIX 14th
International Middleware Conference, Beijing, China, December 9-13, 2013, Proceedings
14. Springer, 1–20.

[9] Philippe Biondi et al. 2023. Scapy. Packet crafting for Python2 and Python3. https:
//scapy.net/.

[10] Pat Bosshart, DanDaly, Glen Gibb,Martin Izzard, NickMcKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese and David Walker.
2014. P4: programming protocol-independent packet processors. Comput. Commun.
Rev., 44, 3, 87–95.

[11] Broadcom Inc. 2022. RDMA over Converged Ethernet feature in Ethernet NIC con-
trollers. Retrieved 5 Sept. 2022 from https://techdocs.broadcom.com/us/en/storage-
and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/1-0/introduction/featur
es_27/rdma-over-converged-ethernet--roce.html.

[12] Matthew Burke, Sowmya Dharanipragada, Shannon Joyner, Adriana Szekeres, Ja-
cob Nelson, Irene Zhang and Dan R. K. Ports. 2021. PRISM: rethinking the RDMA
interface for distributed systems. In SOSP. ACM, 228–242.

109

https://github.com/axboe/fio
https://github.com/axboe/fio
https://scapy.net/
https://scapy.net/
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/1-0/introduction/features_27/rdma-over-converged-ethernet--roce.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/1-0/introduction/features_27/rdma-over-converged-ethernet--roce.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/1-0/introduction/features_27/rdma-over-converged-ethernet--roce.html

Bibliography

[13] Zhichao Cao, Siying Dong, Sagar Vemuri and David H.C. Du. 2020. Characterizing,
Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies (FAST 20). USENIX Association,
Santa Clara, CA, (Feb. 2020), 209–223. ISBN: 978-1-939133-12-0. https://www.usenix.or
g/conference/fast20/presentation/cao-zhichao.

[14] Aleksey Charapko, Ailidani Ailijiang and Murat Demirbas. 2021. PigPaxos: Devour-
ing the communication bottlenecks in distributed consensus. In Proceedings of the
2021 International Conference on Management of Data, 235–247.

[15] Ge Chen, Gaoxiong Zeng and Li Chen. 2021. P4COM: in-network computation with
programmable switches. CoRR, abs/2107.13694. https : / / arxiv . org /abs /2107 . 13694
arXiv: 2107.13694.

[16] Xiang Chen, Dong Zhang, XiaojunWang, Kai Zhu and Haifeng Zhou. 2019. P4SC: to-
wards high-performance service function chain implementation on the p4-capable
device. In IM. IFIP, 1–9.

[17] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang and Jiwu Shu. 2020. Utree: a
persistent b+-tree with low tail latency. Proceedings of the VLDB Endowment, 13, 12,
2634–2648.

[18] Felix Cloutier. 2023. Online x86 assembly reference: clflush operation. Retrieved
25 Nov. 2023 from https://www.felixcloutier.com/x86/clflush.

[19] Felix Cloutier. 2023. Online x86 assembly reference: clflushopt operation. Retrieved
25 Nov. 2023 from https://www.felixcloutier.com/x86/clflushopt.

[20] Felix Cloutier. 2023. Online x86 assembly reference: clwb operation. Retrieved
25 Nov. 2023 from https://www.felixcloutier.com/x86/clwb.

[21] CXL Consortium. 2023. Cxl consortiummain page. Retrieved 25 Nov. 2023 from htt
ps://www.computeexpresslink.org/.

[22] SQLite Consortium. 2023. SQLite. Retrieved 25 Nov. 2023 from.
[23] The P4 Language Consortium. 2018. The p4 14 language specification. Retrieved

10 Nov. 2023 from https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf.
[24] The P4 Language Consortium. 2023. The p4 16 language specification. Retrieved

10 Nov. 2023 from https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.pdf.
[25] Natanael Copa et al. 2023. Alpine Linux. Retrieved 25 Nov. 2023 from https://alpinel

inux.org/.
[26] Jonathan Corbet. 2014. Supporting filesystems in persistent memory. Linux Weekly

News.
[27] Andreia Correia, Pascal Felber and Pedro Ramalhete. 2018. Romulus: Efficient Algo-

rithms for Persistent Transactional Memory. In Proceedings of the 30th on Symposium
on Parallelism in Algorithms and Architectures (SPAA ’18). Association for Computing
Machinery, Vienna, Austria, 271–282. ISBN: 9781450357999. DOI: 10.1145/3210377.32
10392.

110

https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://arxiv.org/abs/2107.13694
https://arxiv.org/abs/2107.13694
https://www.felixcloutier.com/x86/clflush
https://www.felixcloutier.com/x86/clflushopt
https://www.felixcloutier.com/x86/clwb
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.pdf
https://alpinelinux.org/
https://alpinelinux.org/
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3210377.3210392

Bibliography

[28] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman, Hakim
Weatherspoon,MarcoCanini, FernandoPedone andRobert Soulé. 2020. P4xos: con-
sensus as a network service. IEEE/ACM Trans. Netw., 28, 4, 1726–1738.

[29] Huynh Tu Dang, Marco Canini, Fernando Pedone and Robert Soulé. 2016. Paxos
made switch-y. Comput. Commun. Rev., 46, 2, 18–24.

[30] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone and Robert
Soulé. 2015. Netpaxos: consensus at network speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, 1–7.

[31] Joeri de Ruiter and Caspar Schutijser. 2021. Next-generation internet at terabit
speed: SCION in P4. In CoNEXT. ACM, 119–125.

[32] Linux Documentation. 2023. Linux kernel documentation of the dax feature. Re-
trieved 25 Nov. 2023 from https://www.kernel.org/doc/html/latest/filesystems/dax.ht
ml.

[33] Linux Documentation. 2023. Linux kernel documentation of the ext2 file system.
Retrieved 25 Nov. 2023 from https://www.kernel.org/doc/html/latest/filesystems/ext2
.html.

[34] Linux Documentation. 2023. Linux kernel documentation of the ext4 file system.
Retrieved 25 Nov. 2023 from https://www.kernel.org/doc/html/v4.19/filesystems/ext4
/ext4.html.

[35] Linux Documentation. 2023. Linux kernel documentation of the xfs file system. Re-
trieved 25 Nov. 2023 from https://docs.kernel.org/admin-guide/xfs.html.

[36] Rémi Dulong. 2023. Github repository of nvcache. Retrieved 25 Nov. 2023 from http
s://github.com/Xarboule/nvcache.

[37] Brice Ekane, Alain Tchana, Daniel Hagimont, Boris Teabe and Noel De Palma. 2023.
Networking in next generation disaggregated datacenters. Concurr. Comput. Pract.
Exp., 35, 21.

[38] [n. d.] Example of a simple hello world code with rdma. Retrieved 10 Nov. 2023 from
https://github.com/Arlu/RDMA-Hello-World/tree/36a00ffa8a8ba0f9debaee7810972ba53
6072fbf.

[39] [n. d.] Exchange identifier information to establish connection and change the
queue pair state. Retrieved 10 Nov. 2023 from https:// insujang.github. io/2020-02-
09/introduction-to-programming-infiniband/#5-exchange-identifier-information-to-est
ablish-connection-and-6-change-the-queue-pair-state.

[40] Rich Felker et al. 2023. Musl libc. Retrieved 25 Nov. 2023 from https://musl.libc.org/.
[41] Aoxiang Feng, Dezun Dong, Fei Lei, Junchao Ma, Enda Yu and Ruiqi Wang. 2023.

In-network aggregation for data center networks: A survey. Comput. Commun., 198,
63–76.

111

https://www.kernel.org/doc/html/latest/filesystems/dax.html
https://www.kernel.org/doc/html/latest/filesystems/dax.html
https://www.kernel.org/doc/html/latest/filesystems/ext2.html
https://www.kernel.org/doc/html/latest/filesystems/ext2.html
https://www.kernel.org/doc/html/v4.19/filesystems/ext4/ext4.html
https://www.kernel.org/doc/html/v4.19/filesystems/ext4/ext4.html
https://docs.kernel.org/admin-guide/xfs.html
https://github.com/Xarboule/nvcache
https://github.com/Xarboule/nvcache
https://github.com/Arlu/RDMA-Hello-World/tree/36a00ffa8a8ba0f9debaee7810972ba536072fbf
https://github.com/Arlu/RDMA-Hello-World/tree/36a00ffa8a8ba0f9debaee7810972ba536072fbf
https://insujang.github.io/2020-02-09/introduction-to-programming-infiniband/#5-exchange-identifier-information-to-establish-connection-and-6-change-the-queue-pair-state
https://insujang.github.io/2020-02-09/introduction-to-programming-infiniband/#5-exchange-identifier-information-to-establish-connection-and-6-change-the-queue-pair-state
https://insujang.github.io/2020-02-09/introduction-to-programming-infiniband/#5-exchange-identifier-information-to-establish-connection-and-6-change-the-queue-pair-state
https://musl.libc.org/

Bibliography

[42] Donghyun Gouk, Sangwon Lee, Miryeong Kwon and Myoungsoo Jung. 2022. Direct
access, high-performance memory disaggregation with directcxl. In USENIX An-
nual Technical Conference. USENIX Association, 287–294.

[43] Rachid Guerraoui, Ron R. Levy, Bastian Pochon and Vivien Quéma. 2010. Through-
put optimal total order broadcast for cluster environments. ACM Trans. Comput.
Syst., 28, 2, 5:1–5:32. DOI: 10.1145/1813654.1813656.

[44] Rachid Guerraoui, Antoine Murat and Athanasios Xygkis. 2021. Velos: one-sided
paxos for RDMA applications. CoRR, abs/2106.08676. https://arxiv .org/abs/2106.0
8676 arXiv: 2106.08676.

[45] Paul Alcorn (Tom’s Hardware). 2019. Intel optane dimm pricing: $695 for 128gb,
$2595 for 256gb, $7816 for 512gb. Retrieved 25 Nov. 2023 from https://www.tomsh
ardware.com/news/intel-optane-dimm-pricing-performance,39007.html.

[46] Guy Harris and Michael Richardson. 2022. PCAP Capture File Format. Internet-
Draft draft-ietf-opsawg-pcap-01.Work in Progress. Internet EngineeringTask Force,
(29 July 2022). https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/01/.

[47] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton and Patrick
Eugster. 2017. Nvthreads: practical persistence for multi-threaded applications. In
EuroSys. ACM, 468–482.

[48] Bobo Huang, Li Jin, Zhihui Lu, Ming Yan, Jie Wu, Patrick C. K. Hung and
Qifeng Tang. 2019. Rdma-driven mongodb: an approach of RDMA enhanced nosql
paradigm for large-scale data processing. Inf. Sci., 502, 376–393.

[49] ChenchenHuang,HuiqiHu andAoying Zhou. 2021. Bptree: an optimized indexwith
batch persistence on optane DC PM. In DASFAA (3) (Lecture Notes in Computer
Science). Vol. 12683. Springer, 478–486.

[50] Jianming Huang and Yu Hua. 2023. From ideal to practice: data encryption in eadr-
based secure non-volatile memory systems. CoRR, abs/2307.02050.

[51] Wei Huang, Qi Gao, Jiuxing Liu andDhabaleswar K. Panda. 2007. High performance
virtual machine migration with RDMA over modern interconnects. In CLUSTER.
IEEE Computer Society, 11–20.

[52] InfiniBand Trade Association. 2020. InfiniBand Architecture Specification. Volume 1.
Version 1.4. (7 Apr. 2020).

[53] Intel. 2023. Eadr technology presentation. Retrieved 25 Nov. 2023 from https://www
.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-f
or-persistent-memory-applications.html.

[54] Intel. 2023. Eadr, new opportunities for persistent memory applications. Retrieved
25 Nov. 2023 from https://www.intel.cn/content/www/cn/zh/developer/articles/techni
cal/eadr-new-opportunities-for-persistent-memory-applications.html.

[55] 2023. Intel 3D XPoint™ Technology. https://www.intel.fr/content/www/fr/fr/products
/details/memory-storage/optane-dc-persistent-memory.html. (2023).

112

https://doi.org/10.1145/1813654.1813656
https://arxiv.org/abs/2106.08676
https://arxiv.org/abs/2106.08676
https://arxiv.org/abs/2106.08676
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/01/
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.fr/content/www/fr/fr/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.fr/content/www/fr/fr/products/details/memory-storage/optane-dc-persistent-memory.html

Bibliography

[56] Intel Corporation. 2021.Which Intel Ethernet network adapters support iWARP and
RoCE v2? Retrieved 5 Sept. 2022 from https://www.intel.com/content/www/us/en/su
pport/articles/000031905/ethernet-products/700-series-controllers-up-to-40gbe.html.

[57] [SW] Intel Corporation, Open Tofino 2023. URL: https://github.com/barefootnetwor
ks/open-tofinoRetrieved 1 Sept. 2022 from.

[58] Intel Corporation. [n. d.] Intel Tofino intelligent fabric processors. Retrieved 1 Nov.
2023 from https://www.intel.fr/content/www/fr/fr/products/details/network-io/intellig
ent-fabric-processors.html.

[59] 2020. Intel® Optane™ DC Persistent Memory. https://intel.ly/2WFisT8. (2020).
[60] Zsolt István, David Sidler, Gustavo Alonso and Marko Vukolic. 2016. Consensus in a

box: inexpensive coordination in hardware. InNSDI. USENIX Association, 425–438.
[61] Joseph Izraelevitz,TerenceKelly andAasheeshKolli. 2016. Failure-atomicpersistent

memory updates via justdo logging. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’16). Association forComputingMachinery,Atlanta,Georgia,USA, 427–442.
ISBN: 9781450340915. DOI: 10.1145/2872362.2872410.

[62] Joseph Izraelevitz, HammurabiMendes andMichael L Scott. 2016. Linearizability of
persistentmemory objects under a full-system-crash failuremodel. In International
Symposium on Distributed Computing. Springer, 313–327.

[63] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir Saman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao and Steven Swanson. 2019. Basic performance measurements of the intel op-
tane DC persistent memory module. CoRR, abs/1903.05714.

[64] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son and Youjip Won. 2013.
I/o stack optimization for smartphones. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference (USENIX ATC’13). USENIX Association, San Jose, CA,
309–320.

[65] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, ZhengWu and
Mengxian Chi. 2018. Improving the performance of distributed tensorflow with
RDMA. Int. J. Parallel Program., 46, 4, 674–685.

[66] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli
and Vijay Chidambaram. 2019. SplitFS: reducing software overhead in file sys-
tems for persistent memory. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (SOSP ’19). ACM, Huntsville, Ontario, Canada, 494–508. ISBN:
9781450368735. DOI: 10.1145/3341301.3359631.

[67] Mikhail Kazhamiaka, Babar Naveed Memon, Chathura Kankanamge, Siddhartha
Sahu, Sajjad Rizvi, Bernard Wong and Khuzaima Daudjee. 2019. Sift: resource-
efficient consensus with RDMA. In CoNEXT. ACM, 260–271.

[68] Elie F. Kfoury, Jorge Crichigno and Elias Bou-Harb. 2020. Offloadingmedia traffic to
programmable data plane switches. In ICC. IEEE, 1–7.

113

https://www.intel.com/content/www/us/en/support/articles/000031905/ethernet-products/700-series-controllers-up-to-40gbe.html
https://www.intel.com/content/www/us/en/support/articles/000031905/ethernet-products/700-series-controllers-up-to-40gbe.html
https://github.com/barefootnetworks/open-tofino
https://github.com/barefootnetworks/open-tofino
https://www.intel.fr/content/www/fr/fr/products/details/network-io/intelligent-fabric-processors.html
https://www.intel.fr/content/www/fr/fr/products/details/network-io/intelligent-fabric-processors.html
https://intel.ly/2WFisT8
https://doi.org/10.1145/2872362.2872410
https://doi.org/10.1145/3341301.3359631

Bibliography

[69] Elie F. Kfoury, Jorge Crichigno andElias Bou-Harb. 2021. An exhaustive survey on P4
programmable data plane switches: taxonomy, applications, challenges, and future
trends. IEEE Access, 9, 87094–87155.

[70] Ana Khorguani. 2023. Intel’s clwb invalidating cache lines. Retrieved 25 Nov. 2023
from https://stackoverflow.com/questions/60266778/intels-clwb-instruction-invalidati
ng-cache-lines.

[71] Ana Khorguani, Thomas Ropars and Noel De Palma. 2022. Respct: fast checkpoint-
ing in non-volatile memory for multi-threaded applications. In EuroSys. ACM, 525–
540.

[72] Daehyeok Kim, Amir Saman Memaripour, Anirudh Badam, Yibo Zhu, Hongqiang
Harry Liu, Jitu Padhye, ShacharRaindel, Steven Swanson,Vyas Sekar and Srinivasan
Seshan. 2018. Hyperloop: group-based nic-offloading to accelerate replicated trans-
actions in multi-tenant storage systems. In SIGCOMM. ACM, 297–312.

[73] Gyuyeong Kim and Wonjun Lee. 2022. In-network leaderless replication for dis-
tributed data stores. Proc. VLDB Endow., 15, 7, 1337–1349.

[74] Hyojun Kim, Nitin Agrawal and Cristian Ungureanu. 2012. Revisiting storage for
smartphones. ACM Transactions on Storage (TOS), 8, 4, 1–25.

[75] Marios Kogias and Edouard Bugnion. 2020. Hovercraft: achieving scalability and
fault-tolerance for microsecond-scale datacenter services. In EuroSys. ACM, 25:1–
25:17.

[76] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel and
Thomas Anderson. 2017. Strata: A CrossMedia File System. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, Shanghai, China, 460–
477. ISBN: 9781450350853. DOI: 10.1145/3132747.3132770.

[77] Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo R. Coelho and Fernando Pedone.
2021. Ramcast: rdma-based atomic multicast. In Middleware. ACM, 172–184.

[78] Anatole Lefort, Yohan Pipereau, Kwabena Amponsem, Pierre Sutra and Gaël
Thomas. 2021. J-NVM: off-heap persistent objects in java. In SOSP. ACM, 408–423.

[79] Kin-Wai Leong, Zhilong Li and Yunqu Leon Liu. 2019. Reliable multicast using re-
mote direct memory access (RDMA) over a passive optical cross-connect fabric en-
hanced with wavelength division multiplexing (WDM). APSIPA Transactions on Sig-
nal and Information Processing, 8, e25.

[80] Baptiste Lepers, Oana Balmau, Karan Gupta andWilly Zwaenepoel. 2019. Kvell: the
design and implementation of a fast persistent key-value store. In SOSP. ACM, 447–
461.

[81] Baptiste Lepers, Oana Balmau, Karan Gupta and Willy Zwaenepoel. 2020. Kvell+:
snapshot isolation without snapshots. In OSDI. USENIX Association, 425–441.

[82] Baptiste Lepers andWilly Zwaenepoel. 2023. Johnny cache: the end of DRAM cache
conflicts (in tiered main memory systems). In OSDI. USENIX Association, 519–534.

114

https://stackoverflow.com/questions/60266778/intels-clwb-instruction-invalidating-cache-lines
https://stackoverflow.com/questions/60266778/intels-clwb-instruction-invalidating-cache-lines
https://doi.org/10.1145/3132747.3132770

Bibliography

[83] LF Projects, LLC. 2022. Data plane development kit. Retrieved 31 Aug. 2022 from
https://www.dpdk.org/.

[84] JialinLi, EllisMichael,NaveenKr Sharma,Adriana Szekeres andDanRKPorts. 2016.
Just say no to paxos overhead: replacing consensus with network ordering. InOSDI,
467–483.

[85] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen and Jiajie Sheng. 2023. ROLEX: A
scalable rdma-oriented learned key-value store for disaggregatedmemory systems.
In FAST. USENIX Association, 99–114.

[86] [n. d.] Linux manual page of the posix socket api. Retrieved 10 Nov. 2023 from https
://www.man7.org/linux/man-pages/man2/socket.2.html.

[87] [n. d.] Linux manual page of the rsocket api. Retrieved 10 Nov. 2023 from https://lin
ux.die.net/man/7/rsocket.

[88] Shuo Liu, Qiaoling Wang, Junyi Zhang, Qinliang Lin, Yao Liu, Meng Xu, Ray C. C.
Cheung and Jianfei He. 2020. Netreduce: rdma-compatible in-network reduction for
distributed DNN training acceleration. CoRR, abs/2009.09736. https://arxiv.org/abs/2
009.09736 arXiv: 2009.09736.

[89] Shuo Liu, QiaolingWang, Junyi Zhang,WenfeiWu, Qinliang Lin, Yao Liu, Meng Xu,
Marco Canini, Ray CC Cheung and Jianfei He. 2023. In-network aggregation with
transport transparency for distributed training. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, 376–391.

[90] Xiaoyi Lu, Md. Wasi-ur-Rahman, Nusrat S. Islam, Dipti Shankar and Dhabaleswar
K. Panda. 2014. Accelerating spark with RDMA for big data processing: early expe-
riences. In Hot Interconnects. IEEE Computer Society, 9–16.

[91] Linux manual. 2023. Linux manual page of the open system call. Retrieved 25 Nov.
2023 from https://www.man7.org/linux/man-pages/man2/open.2.html.

[92] Hasan AlMaruf andMosharaf Chowdhury. 2023. Memory disaggregation: advances
and open challenges. ACM SIGOPS Oper. Syst. Rev., 57, 1, 29–37.

[93] Mellanox. [n. d.] Tcpdump rdma docker container. Retrieved 10 Nov. 2023 from htt
ps://hub.docker.com/r/mellanox/tcpdump-rdma/.

[94] Benjamin Michalowicz, Kaushik Kandadi Suresh, Hari Subramoni, Dhabaleswar
K. D. K. Panda and StephenW. Poole. 2023. Battle of the bluefields: an in-depth com-
parison of the bluefield-2 and bluefield-3 smartnics. In HOTI. IEEE, 41–48.

[95] Inc Micron Technology. 2023. Ddr4 sdram nvrdimm data-sheet. Retrieved 25 Nov.
2023 from https://www.micron.com/-/media/client/global/documents/products/data-
sheet/modules/nvdimm/ddr4/asf18c2gx72pf1z_rv.pdf.

115

https://www.dpdk.org/
https://www.man7.org/linux/man-pages/man2/socket.2.html
https://www.man7.org/linux/man-pages/man2/socket.2.html
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://arxiv.org/abs/2009.09736
https://arxiv.org/abs/2009.09736
https://arxiv.org/abs/2009.09736
https://www.man7.org/linux/man-pages/man2/open.2.html
https://hub.docker.com/r/mellanox/tcpdump-rdma/
https://hub.docker.com/r/mellanox/tcpdump-rdma/
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/nvdimm/ddr4/asf18c2gx72pf1z_rv.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/nvdimm/ddr4/asf18c2gx72pf1z_rv.pdf

Bibliography

[96] Global Disruption of Semiconductor Supply Chains During COVID-19: An Evaluation of
Leading Causal Factors, vol.Volume 2:Manufacturing Processes;Manufacturing Sys-
tems of International Manufacturing Science and Engineering Conference, (June 2022),
V002T06A011. eprint: https : / /asmedigitalcollection.asme.org/MSEC/proceedings-p
df/MSEC2022/85819/V002T06A011/6922569/v002t06a011-msec2022-85306.pdf. DOI:
10.1115/MSEC2022-85306.

[97] Gordon E. Moore. 1965. Moore’s law. Retrieved 25 Nov. 2023 from http://large.stanfo
rd.edu/courses/2012/ph250/kumar1/docs/Gordon_Moore_1965_Article.pdf.

[98] Mozilla. 2023. Firefox browser. Retrieved 25 Nov. 2023 from https://www.mozilla.org
/en-US/firefox/new/.

[99] Mozilla. 2023. Thunderbird email client. Retrieved 25 Nov. 2023 from https://www.t
hunderbird.net/en-US/.

[100] 2023. Npl: open, high-level language for developing feature-rich solutions for pro-
grammable networking platforms. Retrieved 10 Nov. 2023 from https://nplang.org.

[101] NVIDIA. 2023. In-network computing and next generation hdr 200g infiniband. Re-
trieved 10 Nov. 2023 from https://network.nvidia.com/pdf/whitepapers/WP_In-Networ
k_Computing_Next_Generation_HDR_200G_IB.pdf.

[102] NVIDIA. 2023. Nvidia bluefield networking platform. Retrieved 10 Nov. 2023 from
https://www.nvidia.com/en-us/networking/products/data-processing-unit/.

[103] NVIDIA. 2023. Nvidia gpudirect over rdma. Retrieved 10 Nov. 2023 from https://net
work.nvidia.com/products/GPUDirect-RDMA/.

[104] NVIDIA. 2023. Nvidia sharp. Retrieved 10 Nov. 2023 from https://docs.nvidia.com/ne
tworking/display/sharpv300.

[105] NVIDIA. [n. d.] Programming examples using ibv verbs. Retrieved 10Nov. 2023 from
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/programmin
g+examples+using+ibv+verbs.

[106] NVIDIA Corporation. 2022. ConnectX SmartNICs. Retrieved 5 Sept. 2022 from https
://www.nvidia.com/en-us/networking/ethernet-adapters/.

[107] Adarsh Patil, Vijay Nagarajan, Nikos Nikoleris and Nicolai Oswald. 2023. Āpta: fault-
tolerant object-granular CXL disaggregated memory for accelerating faas. In DSN.
IEEE, 201–215.

[108] MatthewPoremba, Tao Zhang andYuanXie. 2015. Nvmain 2.0: a user-friendlymem-
ory simulator to model (non-)volatile memory systems. IEEE Computer Architecture
Letters, 14, 2, 140–143. DOI: 10.1109/LCA.2015.2402435.

[109] P. Ramalhete, A. Correia, P. Felber and N. Cohen. 2019. OneFile: AWait-Free Persis-
tent Transactional Memory. In 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). (June 2019), 151–163. DOI: 10.1109/DSN.2
019.00028.

116

https://asmedigitalcollection.asme.org/MSEC/proceedings-pdf/MSEC2022/85819/V002T06A011/6922569/v002t06a011-msec2022-85306.pdf
https://asmedigitalcollection.asme.org/MSEC/proceedings-pdf/MSEC2022/85819/V002T06A011/6922569/v002t06a011-msec2022-85306.pdf
https://doi.org/10.1115/MSEC2022-85306
http://large.stanford.edu/courses/2012/ph250/kumar1/docs/Gordon_Moore_1965_Article.pdf
http://large.stanford.edu/courses/2012/ph250/kumar1/docs/Gordon_Moore_1965_Article.pdf
https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/
https://www.thunderbird.net/en-US/
https://www.thunderbird.net/en-US/
https://nplang.org
https://network.nvidia.com/pdf/whitepapers/WP_In-Network_Computing_Next_Generation_HDR_200G_IB.pdf
https://network.nvidia.com/pdf/whitepapers/WP_In-Network_Computing_Next_Generation_HDR_200G_IB.pdf
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://network.nvidia.com/products/GPUDirect-RDMA/
https://network.nvidia.com/products/GPUDirect-RDMA/
https://docs.nvidia.com/networking/display/sharpv300
https://docs.nvidia.com/networking/display/sharpv300
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/programming+examples+using+ibv+verbs
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/programming+examples+using+ibv+verbs
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://doi.org/10.1109/LCA.2015.2402435
https://doi.org/10.1109/DSN.2019.00028
https://doi.org/10.1109/DSN.2019.00028

Bibliography

[110] Carmine Rizzi, Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley and Thomas H.
Clausen. 2021. Charon: load-aware load-balancing in P4. In CNSM. IEEE, 91–97.

[111] Chaoyi Ruan, Yingqiang Zhang, Chao Bi, Xiaosong Ma, Hao Chen, Feifei Li, Xinjun
Yang, Cheng Li, Ashraf Aboulnaga and Yinlong Xu. 2023. Persistent memory disag-
gregation for cloud-native relational databases. In ASPLOS (3). ACM, 498–512.

[112] Samsung. 2023. Samsung unveils industry first memory module incorporating new
cxl interconnect standard. Retrieved 25 Nov. 2023 from https://news.samsung.com
/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interco
nnect-standard.

[113] Amedeo Sapio, IbrahimAbdelaziz, Abdulla Aldilaijan,Marco Canini and Panos Kal-
nis. 2017. In-network computation is a dumb idea whose time has come. InHotNets.
ACM, 150–156.

[114] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon
Kim, Arvind Krishnamurthy, MasoudMoshref, Dan R. K. Ports and Peter Richtárik.
2021. Scaling distributed machine learning with in-network aggregation. In NSDI.
USENIX Association, 785–808.

[115] Steve Scargall. 2020. Programming Persistent Memory, A Comprehensive Guide for De-
velopers. Open access (November 2023): https://link.springer.com/content/pdf/10.100
7/978-1-4842-4932-1.pdf. Springer Nature.

[116] Yizhou Shan, Yutong Huang, Yilun Chen and Yiying Zhang. 2018. Legoos: A dissem-
inated, distributed OS for hardware resource disaggregation. In OSDI. USENIX As-
sociation, 69–87.

[117] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su, Jiazhen Gu, Hao Feng, Yangfan
ZhouandMichael R. Lyu. 2023.Ditto: an elastic and adaptivememory-disaggregated
caching system. In SOSP. ACM, 675–691.

[118] Carol Sliwa. 2023. Intel breaks silence on effects ofmicron’s 3d-xpoint exit. Accessed
on November, 2023. (2023). Retrieved 25 Nov. 2023 from https://www.techtarget.com
/searchstorage/news/252499716/Intel-breaks-silence-on-effects-of-Microns-3D-XPoint-
exit.

[119] SS64.com. 2023. Osx nvram command line documentation. Retrieved 25 Nov. 2023
from https://ss64.com/osx/nvram.html.

[120] Rajesh Tadakamadla, Mikulas Patocka, Toshi Kani and Scott J. Norton. 2019. Accel-
erating Database Workloads with DM-WriteCache and Persistent Memory. In Pro-
ceedings of the 2019 ACM/SPEC International Conference on Performance Engineering
(ICPE ’19). Association for Computing Machinery, Mumbai, India, 255–263. ISBN:
9781450362399. DOI: 10.1145/3297663.3309669.

[121] Wenhui Tang, Yutong Lu, Nong Xiao, Fang Liu and Zhiguang Chen. 2017. Acceler-
ating redis with RDMA over infiniband. In DMBD (Lecture Notes in Computer Sci-
ence). Vol. 10387. Springer, 472–483.

117

https://news.samsung.com/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard
https://link.springer.com/content/pdf/10.1007/978-1-4842-4932-1.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4842-4932-1.pdf
https://www.techtarget.com/searchstorage/news/252499716/Intel-breaks-silence-on-effects-of-Microns-3D-XPoint-exit
https://www.techtarget.com/searchstorage/news/252499716/Intel-breaks-silence-on-effects-of-Microns-3D-XPoint-exit
https://www.techtarget.com/searchstorage/news/252499716/Intel-breaks-silence-on-effects-of-Microns-3D-XPoint-exit
https://ss64.com/osx/nvram.html
https://doi.org/10.1145/3297663.3309669

Bibliography

[122] Mellanox Technologies. [n. d.] Roce vs. iwarp competitive analysis. Accessed on
November, 2023. (). https://network.nvidia.com/related-docs/whitepapers/WP_Ro
CE_vs_iWARP.pdf.

[123] [n. d.] Top500 highlights of june 2016. Accessed on November, 2023. (). https://www
.top500.org/lists/top500/2016/06/highlights/.

[124] [n. d.] Top500 ranking of the most powerful supercomputers. Accessed on Novem-
ber, 2023. (). https://www.top500.org/.

[125] ukontainer. 2023. Sqlite3 dbbench benchmark port. Retrieved 25 Nov. 2023 from ht
tps://github.com/ukontainer/sqlite-bench.

[126] Sébastien Vaucher, Niloofar Yazdani, Pascal Felber, Daniel E. Lucani and Valerio
Schiavoni. 2020. Zipline: in-network compression at line speed. In CoNEXT. ACM,
399–405.

[127] ChengWang, Jianyu Jiang, Xusheng Chen, NingYi andHeming Cui. 2017. APUS: fast
and scalable paxos on RDMA. In SoCC. ACM, 94–107.

[128] Chenjiu Wang, Ke He, Ruiqi Fan, Xiaonan Wang, Wei Wang and Qinfen Hao. 2023.
CXL over ethernet: A novel fpga-based memory disaggregation design in data cen-
ters. In FCCM. IEEE, 75–82.

[129] Shie-Yuan Wang, Chia-Ming Wu, Yi-Bing Lin and Ching-Chun Huang. 2019. High-
speed data-plane packet aggregation and disaggregation by P4 switches. J. Netw.
Comput. Appl., 142, 98–110.

[130] WilliamWang and StephanDiestelhorst. 2018. Quantify the performance overheads
of PMDK. In MEMSYS. ACM, 50–52.

[131] ZixuanWang, Xiao Liu, JianYang,TheodoreMichailidis, Steven Swanson and Jishen
Zhao. 2020. Characterizing andmodelingnon-volatilememory systems. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 496–508.
DOI: 10.1109/MICRO50266.2020.00049.

[132] Wikipedia. 2023. Global chip shortage. (2023). Retrieved 25 Nov. 2023 from https://e
n.wikipedia.org/wiki/2020%E2%80%932023_global_chip_shortage.

[133] Wikipedia. 2023. Log-structured file system. Retrieved 25 Nov. 2023 from https://en
.wikipedia.org/wiki/Log-structured_file_system.

[134] Wikipedia. 2023. Processor power dissipation (wikipedia). Retrieved 25 Nov. 2023
from https://en.wikipedia.org/wiki/Processor_power_dissipation.

[135] Wikipedia. 2023. Zipfian law. Retrieved 25 Nov. 2023 from https://en.wikipedia.org/w
iki/Zipf%5C%27s%5C_law.

[136] MatthewWilcox. 2014. Add support for NV-DIMMs to ext4. https:// lwn.net/ Articles
/613384.

[137] [n. d.] Wireshark project home page. Accessed on November, 2023. (). https://www
.wireshark.org/.

118

https://network.nvidia.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
https://www.top500.org/lists/top500/2016/06/highlights/
https://www.top500.org/lists/top500/2016/06/highlights/
https://www.top500.org/
https://github.com/ukontainer/sqlite-bench
https://github.com/ukontainer/sqlite-bench
https://doi.org/10.1109/MICRO50266.2020.00049
https://en.wikipedia.org/wiki/2020%E2%80%932023_global_chip_shortage
https://en.wikipedia.org/wiki/2020%E2%80%932023_global_chip_shortage
https://en.wikipedia.org/wiki/Log-structured_file_system
https://en.wikipedia.org/wiki/Log-structured_file_system
https://en.wikipedia.org/wiki/Processor_power_dissipation
https://en.wikipedia.org/wiki/Zipf%5C%27s%5C_law
https://en.wikipedia.org/wiki/Zipf%5C%27s%5C_law
https://lwn.net/Articles/613384
https://lwn.net/Articles/613384
https://www.wireshark.org/
https://www.wireshark.org/

Bibliography

[138] Jian Xu and Steven Swanson. 2016. NOVA: A Log-Structured File System for Hybrid
Volatile/Non-Volatile Main Memories. In Proceedings of the 14th Usenix Conference on
File and Storage Technologies (FAST’16). USENIX Association, Santa Clara, CA, 323–
338. ISBN: 9781931971287.

[139] JianYang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz and Steven Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory. In
FAST. USENIX Association, 169–182.

[140] Peterson Yuhala, Pascal Felber, Valerio Schiavoni and Alain Tchana. 2021. Plinius:
secure and persistent machine learning model training. In DSN. IEEE, 52–62.

[141] Kaiyuan Zhang, Danyang Zhuo and Arvind Krishnamurthy. 2020. Gallium: Auto-
mated Software Middlebox Offloading to Programmable Switches. In SIGCOMM.
ACM, 283–295.

[142] Wenhui Zhang, Xingsheng Zhao, Song Jiang and Hong Jiang. 2021. Chameleondb: a
key-value store for optane persistent memory. In EuroSys. ACM, 194–209.

[143] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica and Xin
Jin. 2019. Harmonia: near-linear scalability for replicated storage with in-network
conflict detection. Proc. VLDB Endow., 13, 3, 376–389.

[144] Tobias Ziegler, Carsten Binnig and Viktor Leis. 2022. Scalestore: A fast and cost-
efficient storage engine using dram, nvme, andRDMA. In SIGMODConference. ACM,
685–699.

119

Titre : Vers de nouveaux paradigmes mémoire: Intégration de mémoire principale non-volatile et d’accès direct
de mémoire distante dans les systèmes modernes

Mots clés : Mémoire principale non-volatile, Accès direct de mémoire distante, Mémoire désagrégée

Résumé : Les ordinateurs modernes sont construits
autour de deux éléments : leur CPU et leur mémoire
principale volatile, ou RAM. Depuis les années 1970,
ce principe a été constamment amélioré pour offrir
toujours plus de fonctionnalités et de performances.
Dans cette thèse, nous étudions deux paradigmes de
mémoire qui proposent de nouvelles façons d’inter-
agir avec la mémoire dans les systèmes modernes
: la mémoire non-volatile et les accès mémoire dis-
tants. Nous mettons en œuvre des outils logiciels
qui exploitent ces nouvelles approches afin de les
rendre compatibles et d’exploiter leurs performances
avec des applications concrètes. Nous analysons
également l’impact des technologies utilisées, et les
perspectives de leur évolution dans les années à ve-
nir.
En 2019, Intel a commercialisé un nouveau compo-
sant appelé Optane DCPMM qui rend possible l’uti-
lisation de NVMM. Ce produit propose une nouvelle

façon de penser la persistance des données. Mais
il remet également en question l’architecture de nos
machines et la manière dont nous les programmons.
Alors que les machines ont individuellement tendance
à atteindre des limites de performances, l’utilisation
de plusieurs machines et le partage des tâches sont
devenus la nouvelle façon de créer des ordinateurs
puissants. Pour cette raison, plusieurs protocoles de
communication ont implémententé RDMA, un moyen
de lire ou d’écrire directement dans la mémoire d’un
serveur distant. RDMA offre de faibles latences et un
débit élevé, contournant de nombreuses étapes de la
pile réseau.
En utilisant ces deux technologies, nous remarquons
que les futures générations de matériel pourraient
nécessiter une nouvelle interface pour les mémoires
de toutes sortes, afin de faciliter l’interopérabilité dans
des systèmes qui ont tendance à devenir de plus en
plus hétérogènes et complexes.

Title : Towards new memory paradigms: Integrating Non-Volatile Main Memory and Remote Direct Memory
Access in modern systems

Keywords : Non-volatile main memory, Remote direct memory access, Memory disaggregation

Abstract : Modern computers are built around two
main parts: their CPU, and their volatile main memory,
or RAM. The basis of this architecture takes its roots
in the 1970’s first computers. Since, this principle has
been constantly upgraded to provide more function-
nality and performance.
In this thesis, we study two memory paradigms that
drastically change the way we can interact with me-
mory in modern systems: non-volatile memory and
remote memory access. We implement software tools
that leverage them in order to make them compatible
and exploit their performance with concrete applica-
tions. We also analyze the impact of the technologies
underlying these new memory medium, and the pers-
pectives of their evolution in the coming years.
In 2019, Intel released a new component called Op-
tane DCPMM, a device that made possible the use

of NVMM. That product, by its capabilities, provides
a new way of thinking about data persistence. Yet, it
also challenges the hardware architecture used in our
current machines and the way we program them.
As individual machines tend to reach performance li-
mitations, using several machines and sharing work-
loads became the new way to build powerful compu-
ters. For that reason, several communication proto-
cols implemented RDMA, a way to read or write di-
rectly into a distant machine’s memory. RDMA pro-
vides low latencies and high throughput, bypassing
many steps of the traditional network stack.
By using these two technologies, we notice that future
generations of hardware may require a new interface
for memories of all kinds, in order to ease the inter-
operability in systems that tend to get more and more
heterogeneous and complex.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Abstract
	Résumé
	Remerciements
	List of acronyms
	List of figures
	List of tables
	Introduction
	Non-Volatile Main Memory (NVMM)
	A New Kind of Memory
	Definition and Terminology
	History of Persistent Memories
	Implementations
	For embedded systems
	For servers
	Simulated persistent memory
	Battery backed modules
	Intel Optane DCPMM 100 Series
	Intel Optane DCPMM 200 Series

	Integrating Persistent Memory in Modern Systems
	NVMM as RAM extension
	NVMM as a disk
	Software adaptation
	DAX File systems

	NVMM as a DAX areas
	Working with CPU caches

	Programming With Persistent Memory
	Flushing cache lines
	Ordering and durability guarantees
	Persistence model

	NVCache: A NVMM-based I/O Booster for Legacy Systems
	Introduction
	NVCache in a nutshell
	NVCache features
	Large storage space
	Syncronous durability
	Durable linearizability
	Software compatibility

	Target applications

	NVCache: Implementation
	Overview
	NVLog
	Log entry format
	NVLog data structure
	Adding a new entry
	Log entry allocation
	Overlapping entries

	Cleanup thread
	Interaction with the LPC
	Batch strategy
	Flush policy
	Recovery procedure

	Write-only performance
	Ensuring consistency
	The paging dilemma
	Complementary DRAM cache
	DRAM cache interaction
	Page management
	Effect of the DRAM cache

	Control structures
	Radix Tree
	Page descriptors
	Pages state machine
	Synchronization

	Evaluation
	Experimental setup
	Hardware
	Software
	NVCache parameters
	Comparison with other systems

	Benchmarks
	FIO: Flexible I/O tester
	RocksDB benchmark
	SQLite

	Read-oriented workloads
	Write-oriented workloads
	Tuning NVCache with FIO
	Comparing NVCache with other systems

	Conclusion

	NVMM Cache Design: Logging vs. Paging
	Motivation
	NVMM-based Caching
	Evaluation
	Conclusion

	Conclusion on Persistent Memory
	Lessons Learned
	Software integration
	Programming with persistence
	Fighting against optimizations
	Compatibility with legacy software

	Hardware integration
	Architectural limitations
	eADR platforms

	On the Future of Persistent Memory
	The rise and fall of Intel Optane
	Compute Express Link

	Conclusion

	Remote Direct Memory Access (RDMA) & Programmable Networks
	Introduction to RDMA
	RDMA-Capable Protocols
	Infiniband
	RoCE
	RoCE v1
	RoCE v2

	RDMA-Capable Hardware
	Switches
	Network Interface Cards

	RDMA Concepts
	Memory region
	Work request
	Queue pairs
	Completion queue

	RDMA Verbs
	Two-sided verbs
	One-sided verbs
	Special verbs

	Intel Tofino
	Presentation
	Data plane
	Control plane

	Performance guarantees

	Byp4ss: Latency- and Throughput-Optimal Consensus Over RDMA
	Introduction
	Background
	Remote Direct Memory Access
	Queue pair.
	Connection handshake.
	Permissions.
	Read/write requests.
	Congestion.

	Programmable switches

	From Mu to DisMu
	The original Mu protocol
	DisMu overview
	ByP4ss overview
	Broadcast.
	Gather.

	Implementation
	Communication groups and connections
	Capturing incoming connections.
	Broadcasting connections.
	Getting ready for future RDMA commands.
	Metadata per group.
	Metadata per connection.

	Scatter.
	High-level implementation.
	In the switch.

	Gather
	In the switch.

	Under the hood
	Performance concerns.
	Doing in-network computations.

	DisMu
	Faulty replica.
	Faulty leader.
	Faulty switch.

	Evaluation
	Experimental setup
	Methodology
	Bandwidth and Throughput
	Maximum bandwidth.
	Maximum number of consensus per second.
	Summary.

	Latency.
	Summary.

	Read workloads
	Summary.

	Related Work.
	Accelerating via programmable switches.
	Reducing bandwidth requirements of the leader.
	Accelerating workloads using RDMA.
	Changing and extending RDMA.

	Conclusion

	Conclusion on RDMA and Programmable Networks
	Programmable Networks
	RDMA in the Computing Landscape
	A complex programming interface
	A challenge for performance
	A unique API

	Perspectives
	CXL
	The end of the computer-centric era

	Conclusion
	Bibliography

