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Abstract

Most civil engineering structures are subjected to multi-axial actions, including normal forces and tangential efforts. Even though the effects of shear and torsion have already been implemented in several theories and models of structural analysis, a rational theory is still lacking. In order to make some contributions to this field of research, the present PhD thesis deals with the development of a non-linear finite element model for reinforced concrete members under coupling of multi-axial actions and in particular under torsion.

Using the sectional-fiber approach and the displacement-based formulation, an enhanced multi-fiber 3D beam element is developed for predicting the behavior of reinforced concrete elements subjected to arbitrary loading conditions (shear, bending and/or torsion). The section kinematic is based on the enhancement of Timoshenko's beam kinematic assumptions with introducing of some additional degrees of freedom at each monitoring section in order to take into account the phenomena of warping and eventually, distortion. To do so, a system of fixed points is created and interpolated by Lagrange functions and polynomials. Otherwise, Saint-Venant theory for beam is also considered and used as a reference compared to the enhanced formulation. Focusing on reinforced concrete structures, in the multi-fiber approach, taking into account the contribution of transversal reinforcement is not straightforward. Thus, one of the objectives is to find the simple way to include the transversal reinforcement into the cross-section analysis of the multi-fiber FE model. In the present work, each monitoring cross-section is discretized into regions followed its material response and stress state. In each region, depending on its characteristics, an appropriate constitutive material model is applied and included with an iteration process satisfying internal equilibrium between concrete and transverse reinforcement. For this purpose, the proposed behavior models are based on the Modified of Compression Field Theory and its extension.

The assessment of the proposed FE model is performed with several numerical-analyticalexperimental comparisons. Numerical analysis of concrete and RC members under elastic and inelastic material regimes are carried out for two cases of loading: pure torsion and combined shear-bending-torsion. In order to predict the pure torsional response of concrete and RC members, a constitutive law for concrete in tension is proposed within the framework of the Modified Compression Field Theory in which the material parameters are determined by the calibration process of several experimental tests. Regarding the case of combined actions, the shear-bending-torsion interaction is investigated by comparing with the analytical solutions of skew-bending theory and several experimental tests in literature. Finally, the study is completed with the investigation of the enhanced FE multi-fiber beam model under large displacement conditions, using a corotational framework. Several examples and comparison are performed for the illustration of nonlinear geometric effects to the coupling between the actions due to the torsional effect. Most civil engineering structures are subjected to multi-axial actions, ranging from many kinds of structures (buildings, bridge decks, electric pylon, etc.) to many kinds of construction material (reinforced concrete, steel, wood or hybrid structure). Thus, in order to completely perform the modeling of the structures in real conditions, its model must be able to take into account the multi-axial actions, including normal forces (axial force and bending moments) and the tangential forces (shear forces and torsional moment).

Between these states, axial force and bending moments are widely studied and simulated by an accepted rational theory based on the plane section hypothesis. Nevertheless, even though there are several theories of structural analysis under shear and torsion, a basic rational theory is still lacking. In addition, when determining the completed behaviors of structural element, especially reinforced concrete members, the coupling of actions still remains open to discussion although it has already been taken into account in various models. In particular, for the conception under hazardous conditions (typhoon or seismic risks), in which accurate analyzes at the local and structural scale are indispensable, it is increasingly necessary to develop theoretical and numerical models capable of representing the coupling of all external forces.

In professional structural engineering, finite element modeling is considered suitable for the analysis of all types of structures, from simple to complex, from one to three dimensions. In facts, although all real structures are in three dimension, many of them have one privileged direction over the other two and can be assimilated to 1D components, such as building's beams, columns, bridge decks or frame elements. Indeed, all the mechanical characteristics of cross-section is condensed in the reference axis by imposing specifics static and kinematic hypotheses. Then, this one-dimensional structure, called beam-column or frame type elements, can be modeled and discretized in linear elements throughout a system of monitoring cross-section along the element axis (Figure 1-1). Frame elements can offer an optimal balance between accuracy and computational efficiency, therefore they are the most employed in structural analysis and simulations. In the case of structural elements with small span-to-depth ratio, such as shear wall or plate, two-dimensional or shell finite elements are employed for the modeling. Three-dimensional solid finite element models can provide the best response for the behavior of structures under complex load conditions. However, it requires a very high computational cost and complex material constitutive equations, so it is generally used for the analysis of special detailing problems. Nowadays, the design of structures is required in a safer and more economical way, so it is necessary to accurately simulate the structural performance in the inelastic range until failure. Handling the inelastic material response is therefore evident in the conception phase of conventional constructions. For structures designed against seismic or other extreme load conditions, non linear analysis becomes more evident and indispensable, not only for the material response but also for geometry conditions. Many finite element models and frame element approaches have been proposed to respond to this demand, numerous models between them can well describe the interaction of normal forces under non-linear geometry assumptions, such as fiber or multi-fiber beam elements. However, there are few beam-column models that are capable to account for the effect of shear, in which the stress state is enlarged to two dimensions with the contribution of the shear stress. In addition, the inclusion of torsion needs an extension to three dimensions and an increased complexity with the coupling of internal forces under nonlinear geometry conditions.

Indeed, the numerical modeling of civil engineering constructions under severe and multi-axial coupling conditions is still a challenging problem, especially in the case of plain concrete and reinforced concrete structures due to the complex characteristics of its mechanical behavior. Although in the last thirty years fiber beam elements have been developed and applied successfully in the analysis of reinforced concrete members, the inclusion of shear and torsional effects in this model is not obvious and the effect of normal and shear stresses are usually treated separately. In this PhD thesis, the objective is to develop an enhanced multi-fiber beam finite element model in three dimensions, suitable for the simulation of reinforced concrete structures subjected to monotonic loads under consideration of multi-axial coupling of axial force, shear, bending and torsion. The developed model takes into account the material and geometrical nonlinearities. This PhD thesis is limited to the reinforced concrete members with rectangular cross-section.

However, the element formulation and the constitutive equations is formulated general enough for being applied to any sectional model and any shape of cross-section.

Context and Motivation

Although considered as a major factor in the design code of reinforced concrete structures, torsion did not draw as much attention by design engineers and researches before the 1960.

Prior to this period, knowing that the magnitudes of the stiffness and torsional resistance are in a lower order in comparisons with the one in bending, torsional effects were assumed minor and taken care by a safety factor used in flexural design. This assumption has been responsible for many cases of torsional distress and failure, such as the collapse of Tacoma Narrows Bridge in 1940 due to a torsional vibration mode (Figure 1-2). In reality, torsional effects can play a determining role in the stability of structures, for example the electric pylon, skew bridge, railway curved viaduct or bridge desk under asymmetric loads, etc. (Figure 1-3). In the context of conventional reinforced concrete buildings, torsion can be found widely: beams that support cantilever slabs or balconies, wall foundation beam, beams next to floor opening or spandrel beam. However, it is still usual to neglect the torsion in the simulation of frame elements such as beam and/or column.

Figure 1-3 -Examples of usual structure where torsional effect is important.

In the case of RC buildings using thermal insulation from the inside, a thermal bridge is occurred at the floor-to-wall junction. This thermal bridge disturbs the continuity of the thermal insulation and must be treated by a thermal bridge breaker (Figure 1-4a), in accordance with the Thermal Regulation. In the case of holding the balcony, the floor slab extends through the building envelope, and in order to transfer the weight of the floor to the wall, it is necessary to provide the contribution of a structural element called lintel (Figure 1-4b), usually made of steel because of its lightness. However, the lintel is attached to the thermal bridge breaker, and steel is a low insulating material, its efficiency may be reduced accordingly. So, the lintel is designed as a horizontal beam of reinforced concrete of rectangular cross-section, subjected to a combined of bending, shear and torsion, for which the theoretical and numerical models are few in the literatures. In addition to the problem of coupling of multi-axial efforts and stresses, the inclusion of tangential effects in the modeling of reinforced concrete members is more complex as it requires a special treatment of the warping phenomenon. This phenomenon is described as a peculiar deformation of non circular cross-sections as they warp and come out of their own plan under shear and torsional effect (Figure 12345). This phenomenon is particularly important for torsional resistance because it reduces the sectional rigidity, generates the additional normal stresses which decrease the tangential stresses and so strongly influence the twist deformation.

Figure 1-5 -Saint-Venant's original drawings of torsion bars for elliptical, square and rectangular section [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF].

Beam theory and sectionally-based analysis

In the domain of linear elastic material behavior, the most models are based on the Euler-Bernoulli beam theory in which the plane cross-section is assumed to remain plane and orthogonal to the beam axis under deformation. The shear deformations are neglected, so it can only account for the axial and flexural behavior of the beam. It is well-known that the Euler-Bernoulli beam theory gives reasonable results for slender beams. However, in case of short beams, the shear flexibility needs to be accounted for. The simplest way to include the effect of the transversal shear is to use the Timoshenko beam theory [START_REF] Timoshenko | Theory of Elasticity[END_REF], so called "first order shear beam theory". These two theories and the hypothesis of plane section are considered as the basic theory (or engineering beam theory) for the analysis of linear and nonlinear beam finite elements.

In the domain of nonlinear material behavior, the discrete finite element models give a very good compromise between accuracy and simplicity. In this approach, the structure is modeled as an assembly of interconnected elements and the constitutive nonlinearity is either introduced at the element level or sectional level. The lumped-plasticity models is widely regarded as the most basic type of discrete finite element models, in which the inelastic behavior is concentrated at the ends of elements, and the rest remains elastic. In this end-fixed points, called plastic hinges, the nonlinear responses are given as generalized force-displacements characteristics such as axial force-elongation of moment-rotation relationships, based on the concepts of plasticity theory. The earliest models were introduced by Clough (Figure 1-6a), in which the element consists of two parallel elements, one elastic-perfectly plastic and the other perfectly elastic [START_REF] Clough | Effect of Stiffness Degradation on Earthquake Ductility Requirements[END_REF]; and by Giberson (Figure 1-6b) with a series model consist of a linear elastic element with one equivalent nonlinear rotational spring attached to each end [START_REF] Giberson | The response of nonlinear multi-story structures subjected to earthquake excitation[END_REF].

(a) Parallel model of Clough [START_REF] Clough | Effect of Stiffness Degradation on Earthquake Ductility Requirements[END_REF].

(b) Series model of Giberson [START_REF] Giberson | The response of nonlinear multi-story structures subjected to earthquake excitation[END_REF]. The second and more general approach of discrete finite element models is referred to as the distributed nonlinearity models. In contrast to lumped-plasticity models, the material inelastic behavior can take place at several selected points of the structure, then the element response is obtained by numerical integrations of the monitoring sections located at these selected points (or integration points) along the element. In each monitoring cross-section, the constitutive behavior can be formulated in accordance with plasticity theory for sectional stress and strain resultants, or explicitly derived by a discretization of the cross-section into a systems of integration points, called fibers. Between these two approaches, the second, also known as sectional-fiber model, does not require the definition of nonlinear constitutive relations in terms of cross-section resultants, instead the material behavior laws are defined at the fiber material level, so it leads to a simple way to account for the sectional response. For reinforced concrete members, the sectional fiber model has been widely developed and successfully applied with very high levels of accuracy when describing the coupling between axial force and bending moment in the models of Chan [START_REF] Chan | Nonlinear Geometric, Material and Time-dependent Analysis of Reinforced Concrete Shells with Edge Beams[END_REF], Scordelis [START_REF] Scordelis | Computer models for nonlinear analysis of reinforced and prestressed concrete structures[END_REF] or Taucer, Spacone & Filippou [START_REF] Taucer | A fiber beam-column element for seismic response analysis of reinforced concrete structures[END_REF][START_REF] Spacone | Fiber beam-column model for nonlinear analysis of r/c frames: Part 1. formulation[END_REF]. In these models, the constitutive equations require only one-dimensional material behavior for concrete and steel, thus they are very appropriate in the case where the effect of shear stress is not dominant. The proposed model in this study is constructed based on the development of this type of models, using a two-node finite element beam (Figure 1234567), but taking into account two and three dimensional material behaviors for concrete. Figure 1-7 -Sectional-fiber approach for reinforced concrete member and local element frame coordinate using in this study.

The construction of distributed nonlinearity and sectional fiber models is based on the analysis of sectional response. In principle, two main factors are required in the sectional analysis:

• A suitable sectional kinematics to obtain the stress and strain distributions in the cross-section. In the classical sectional-fiber model, the plane section theory is used to relate the material strains to section deformations. However, as mentioned above, under shear and torsional effects, the warping phenomenon disturbs the validity of plane section assumption. In this study, the kinematic equations are based on Timoshenko beam theory and enhanced by an additional displacement field in order to take into account the warping deformation. This enhanced field is developed not only for warping displacement but also for the distortion of the cross-section's shape.

The details of kinematics equations is expressed in Chapter 3.

• A consistent constitutive model of the materials to establish the stress-strain relationship. Under multi-axial loading, the modeling of the concrete behavior is quite complex, particularly because of the different of stress-strain relationships between compression and tension, which cause an anisotropic behavior under multi-axial stresses. In the last decades, many constitutive models have been proposed for the analysis of concrete structures, such as non linear elasticity, plasticity models, damage mechanics or micro-plane models. Among them, the approach that is particularly suitable for sectional analysis under combined loading is smeared crack approaches, which can handle cracking of concrete as a distributed effect with directionality. A brief review of some smeared crack models will be described in Chapter 2. A consistent constitutive law of concrete will be proposed in Chapter 4 for the case of RC members under pure torsion.

Generally, in finite element analysis of beam-column element, the nodal variables are considered as global degrees of freedoms, from them the mechanical characteristics (displacements, strains, stresses) are derived and interpolated along the axis. Depending on the choice of the primary unknowns (displacement field, force field or both), the formulations of beam-column finite element are usually classified as:

• Displacement-based formulation: the relation between section and element response is based on kinematic equations with the use of appropriate shape functions. In this formulation the element variables are the nodal displacements while the primary unknowns are the element deformations.

• Force-based formulation: the element response are evaluated from the stress field that are interpolated along the element length by imposing the equilibrium with the nodal forces. The primary unknowns in this formulation are the internal element forces.

• Mixed-based formulation: this approach use the force interpolation functions like force-based formulation and a flexibility dependent shape functions for the deformation field of the element.

In this study, the displacement-based formulation was chosen because of its simplicity and the easily in the implementation of enhanced displacement fields. Although force or mixed-based formulation are capable of giving more adequate solutions, the numerical results performed by proposed model using displacement-based in this study is satisfactory and reasonable.

Objectives and Scope

The main objective of this doctoral thesis is to develop an enhanced finite element beam model for the material and geometrical analysis of reinforced concrete members subjected to combined loading: axial force, bending, shear and torsion. The specific objectives are as follows:

• The development of a 3D beam-column element for reinforced concrete members using multi-fiber discretization and sectional analysis approach. In this study the model is developed primarily for rectangular cross-section, but the formulation is expressed generally enough for arbitrary cross-sections.

• The implementation of an enhanced displacement field into kinematic equations in order to include the warping displacement of cross-section under the effect of shear and torsion. Then, numerical analysis is carried out to study the influence of the warping deformation on the stress state.

• The adaptation of the Modified Compression Field Theory (MCFT) to the concrete constitutive law.

• The adaptation of the cross-section discretization into different regions following the stress state (1D, 2D and 3D) in order to take into account the contribution of transversal reinforcements and the concrete confinement. A new parametric formulation for determining the rule of this discretization will be also proposed.

• The implementation and derivation of a general and consistent corotational framework into 3D beam-column formulation in order to take into account the nonlinear geometric condition.

This PhD thesis is organized into seven chapters. The first one is the current introduction chapter. Chapter 2 presents the state of the art including a bibliographical study.

In this chapter a review of nonlinear analysis models for reinforced concrete element are briefly listed and discussed.

Chapter 3 deals with the development of the finite element model for RC members subjected to combined shear-bending-torsion. As mentioned above in Section 1.3, the proposed FE model is based on the fiber-sectional discretization and the displacementbased formulation. The enhancement of the kinematic equations is implemented and expressed in two different approaches: using Saint-Venant warping function and using Lagrange interpolation polynomials. Then the chapter is followed by the derivation of the element response from the variational formulation based on the principal of virtual works, a solution scheme and concludes with the mechanical model for reinforced concrete members that was implemented in this sectional model. In order to take into account the contribution of transversal reinforcement, the cross-section is discretized into different regions following the stress state, based on the idea of Navarro-Gregori [START_REF] Navarro-Gregori | A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[END_REF].

Chapter 4 is dedicated to investigate the behavior of the RC members under pure torsion using the proposed model. Because no specific rules are currently available for the determination of the thickness of the regions in the section discretization, a calibration study is performed for calculating this parameter is developed by the author. This calibration study was then used to propose a consistent behavior law for concrete under torsional effect, knowing that numerical cracking torsional moments are reduced about half of the experimental values when using the original MCFT. In this chapter, the numerical results performed by the proposed model are compared with numerous experimental date, others numerical results and design code prediction.

Chapter 5 deals with the numerical analysis of RC members under in shear-bending and shear-bending-torsion combination using the developed FE model presented in Chapter 3. The predictions of the proposed model are compared against the results of other numerical models and the experimental values. The aim of this model validation is to assess the capability of the proposed nonlinear technique to satisfactorily predict the structural behavior of RC members under combined loading of shear-bending-torsion.

Chapter 6 describes the model formulation under the hypothesis of large displacement conditions. The corotational framework is briefly presented and implemented in the beam element. Then, the interaction between axial and torsion effect at local level is considered and analyzed in the numerical examples.

Finally, the chapter 7 summarizes the study, offers conclusions and recommends some directions for further research study.

Chapter 2

State of the art

General

This chapter deals with a literature review of nonlinear analysis models for RC members subjected to bending, shear and/or torsion. The models can be classified according to their constitutive equations: theory of plasticity, micro-plane model, fracture or damage mechanics, etc.; or following the concept of modeling and discretization. To the best of the author's knowledge, the numerical models treating the behavior of RC members under combined shear-bending-torsion can be classified in three groups as follows:

• Skew-bending theories: an analytical approach in which the basic characteristic is the assumption of a skew failure surface.

• Truss models: derived from the concept of space truss analogy, this type of models can be subdivided into certain subgroups such as strut-and-tie models, equilibrium truss models and compatibility truss models.

• Sectional-fiber models: the most recent approach in which tangential and normal efforts are coupled directly. These models can be subdivided into certain subgroups following their strategy of discretization.

In the following, a brief presentation of each group is done.

Skew-Bending theories

The principal idea of Skew-Bending theories is that a helical crack is generated on three faces of a rectangular RC beam, and the ends of this helical crack are connected by a compression zone near the fourth face. Both longitudinal reinforcement and closed stirrups are intersected in the failure surface and it is often assumed that they will both yield at the failure of the beam.

The first skew-bending theory was proposed by Lessig [START_REF] Lessig | Determination of load-carrying capacity of rectangular reinforced concrete elements subjected to flexure and torsion, study no. 5[END_REF] Collins et al. [23], [START_REF] Collins | Ultimate strength of reinforced concrete beams subjected to combined torsion and bending[END_REF] developed Lessig's theory by combining these three equations into a unique one for each failure mode and obtaining an interaction curve as a result: a torsion-bending interaction curve in Mode 1 and a torsion-shear interaction curve in Mode 2. A third mode failure accompanying by a third interaction curve was also discovered in this theory, in which a compression zone locates near to the bottom face of the beam (Figure 2-2). These three interaction curves formed an interaction surface between bending, shear and torsion (Figure 2-3), that was also modified by an empirical equation for shear failure, which may be considered as the fourth mode of failure. The Collins et al.'s theory served as a basis for the Australian Code (1973) [START_REF]SAA Concrete Structures Code[END_REF]. In this design code, torsional moment is converted into an equivalent bending moment (and/or an equivalent shear force) that could be added to the actual bending moment (and/or flexural shear force) for the design of longitudinal steel according to the conventional flexural mechanics (and/or for the design of web reinforcement according to the conventional code method). Other skew-bending theories were also developed based on the Lessig's theory, such as the theory of Yudin [START_REF] Yudin | Determination of the load-carryig capacity of rectangular reinforced concrete elements subjected to combined torsion and bending[END_REF] or Elfgren et al. [START_REF] Elfgren | Torsion-bending-shear interaction for concrete beams[END_REF]. Yudin's theory introduced two moment equilibrium equations instead of one, as a result it was able to derive two designs equations for the longitudinal and transversal reinforcements. In this theory the crack inclination was assumed constant and equal to 45 ˚. In a more general way, Elfgren et al. assumed a variable angle of crack inclination and it could also be different at the two side faces in Mode 1 and Mode 3 of failure. In this condition, internal vertical force must be balanced to the external shear, thus an additional equilibrium equation was introduced, that gave an explicit bending-shear interaction curve. As a result, this theory created a general and complete interaction surface for bending, shear and torsion (Figure 234). The above skew-bending theories may be related to the kinematic approach in terms of the plastic analysis of structures under uniaxial stress [START_REF] Jirasek | Inelastic Analysis of Structures[END_REF]. This approach seeks for a deformation mechanism that satisfies the geometric boundary conditions. Another approach in the plastic analysis is the static approach that searches for a stress distribution in equilibrium internally and balanced with the external load. The concept of truss models in the following section relates to this static approach.

Analytical formulations for predicting the ultimate torsional and bending strengths of concrete and RC members according to skew-bending theories will be cited and used as a reference compared to the numerical results given by the proposed model in the numerical analysis in Chapter 4 and 5.

Truss models

All models in this section are inspired by the concept of truss model, firstly proposed by

Ritter [START_REF] Ritter | Die Bauweise Hennebique[END_REF] and Mörsch [START_REF] Morsch | Der Eisenbetonbau, seine Anwendung und Theorie. Wayss and Feytag[END_REF] 
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Nosivost armiranobetonskih greda na poprečne sile po kriteriju čvrstoće betonskih tlačnih štapova

Izvorni znanstveni članak U aktualnoj europskoj normi EN 1992-1-1 za dimenzioniranje armiranobetonskih greda na poprečne sile predviđa se uporaba rešetkastog modela sa slobodnim odabirom nagiba betonskih tlačnih ispunskih štapova u širokim granicama, to jest od 21,8° do 45° prema osi grede. Međutim, postoje istraživanja i prijedlozi koji upućuju na oprez kod odabira donje granice nagiba ispunskih tlačnih štapova s obzirom na umanjenje tlačne čvrstoće raspucanog betona u hrptu armiranobetonskih elemenata izloženih poprečnim silama. U radu je dan pregled teorijskih postavki i metoda proračuna armiranobetonskih elemenata na poprečne sile. Provedena je parametarska analiza nosivosti na poprečne sile pri drobljenju tlačnih štapova kao funkcije njihovog nagiba. Pri tom su korištena su tri različita pristupa za ograničenje naprezanja u tlačnim štapovima. Na temelju provedene analize i usporedbe rezultata u radu je dan prijedlog za određivanje nosivosti armiranobetonskih greda na poprečne sile po kriteriju čvrstoće betona ispunskih tlačnih štapova rešetkastog modela.

Ključne riječi: kut nagiba tlačnih štapova; posmik; rešetkasti proračunski model 1 Introduction

Since the early days of reinforced concrete the socalled classical truss analogy developed by Ritter and Mörsch [START_REF] Ritter | Die Bauweise Hennebique[END_REF], Mörsch 1908) [1,2] was proposed for shear design of reinforced concrete members (Fig. 1). The truss analogy is based on a truss model with parallel chords and web members connected by means of pin joints, where the concrete compressive struts are inclined at 45° with respect to the longitudinal axis of the beam while the shear reinforcement represents the tensile web members. According to Zilch and Zehetmaier [2], when the shear reinforcement (stirrups) is placed closely to each other the simple truss becomes a statically indeterminate truss (Fig. 2b). Generally, the truss model may be considered as a statically determinate simple truss composed of resultant forces from parallel tension and compression stress fields with pinned joints (Fig. 2c). In reality, the inclination of concrete struts may vary, but in the initial concept of truss model, it was assumed to be 45˚. This 45˚truss model, also called fixed-angle truss model, was then developed to carry out the modeling of the post-cracking behavior of RC members subjected to pure torsion by Rausch [START_REF] Raush | Design of reinforced concrete in torsion[END_REF]. In this model, after cracking, the whole member is assumed to act like a tube, in other words the solid section becomes a hollow section (Figure 23456). As a consequence, the torsional moment is resisted only by shear stresses which flow around in the wall of the tube, which is called shear flux. This space truss analogy was reinforced when it was noticed in the experimental tests carried by Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF] and Osongo [82] that the post-cracking stiffness of a hollow cross-section (with a reasonable wall thickness) has the same magnitude when comparing to a solid section. 

Strut and tie models

The common aspect of strut and tie models is the way in which the combined effects are taken into account: in this type of model the tangential efforts are usually uncoupled and superimposed into normal efforts. Guedes et al. [START_REF] Guedes | A fibre/timoshenko beam element in castem[END_REF][START_REF] Guedes | A numerical model for shear dominated bridge piers[END_REF] developed a numerical model for RC beams and columns under dominated shear action, in which the model is subdivided into two sub-models: a two-node Timoshenko beam finite element model using sectional-fiber approach to take into account the axial components, while shear efforts are independently considered by a strut and tie model (Figure 2-7a). The direction of principal stresses and strains of concrete is represented by two diagonal concrete struts.

The equilibrium conditions for reinforcement in longitudinal and transversal directions are represented in Figure 2-7b. Concerning the constitutive equations, uncoupled uniaxial behavior laws for concrete and steel are used. For concrete in compression, a parabolic behavior up to the peak stress point deformation followed by a straight line in the softening zone has been introduced, while a bilinear stress-strain law including the tension stiffening effect is adopted for concrete in tension. For steel, a hysteresis model based on the proposal of Menegotto & Pinto [START_REF] Menegotto | Slender rc compressed members in biaxial bending[END_REF] is used. 

Equilibrium truss models

The equilibrium truss models can also be called plasticity truss model because they are all based on the theory of plasticity. This type of models were proposed by Nielsen [START_REF] Nielsen | Om forskydningsarmering i jernbetonjaelker (on shear reinforcement in reinforced concrete beams)[END_REF] and Lampert & Thürlimann [START_REF] Lampert | Ultimate strength and design of reinforced concrete beams in torsion and bending[END_REF] by developing the concept of fixed-angle truss model, in which the fixed inclined angle of 45˚was derived. The new concept was called the variable-angle truss model and was developed for elements subjected to torsion as well as to a combination of torsion and bending, with the application of the theory of plasticity for RC members. Elfgren [START_REF] Elfgren | Reinforced concrete beams loaded in combined torsion, bending and shear : a study of the ultimate load-carrying capacity[END_REF] extended the use of variable-angle truss model to members subjected to bending-shear-torsion, with an assumption that the concrete struts take only compressive stress after cracking. The theory is therefore named the Compressive Stress Field Theory.

In these models, three equilibrium equations in bending and shear were derived for a two dimensional element and can be used to calculate the stresses in the steel bars and in concrete struts at the ultimate load stage (Figure 23456789). The stresses in concrete and steel in these three equations must satisfy the Mohr stress circle, and reinforcement steels are assumed to yield before failure. From these three equations and the yielding condition of reinforcement as well as the equilibrium in beam shear and in torsion, a set of 18 equations were established and formed the basic formulations of equilibrium truss models. The main advantage of equilibrium truss models is that, thanks to its completed set of basic equilibrium equations, it can be easily applied to all types of actions (axial force, bending, shear, torsion). As a result, the Compressive Stress Field Theory serves as a basic for the accurate method in the CEB-FIP Model Code of 1978 [START_REF]CEB-FIP. Model Code for Concrete Structures. CEB-FIP International Recommendations[END_REF], while the shear and torsion provisions of the ACI Code 1995 (ACI 318-95) [1] were based on the equilibrium truss model. However, one important drawback of this type of models is that the loaddeformation relationship of reinforced beam subjected to shear and torsion cannot be derived, because the compatibility equations and constitutive material laws are not used.

Thus, more sophisticated theories that take care of all three principle mechanic equations must be developed.

Compatibility truss models

Instead of using the theory of plasticity and three equilibrium equations, the strain compatibility equations are derived and included in the truss model by Bauman [7], Collins [START_REF] Collins | Torque-twist characteristics of reinforced concrete beams[END_REF] and Mitchell & Collins [START_REF] Mitchell | Diagonal compression field theory -a rational model for structural concrete in pure torsion[END_REF], in order to account for shear and torsional effect. In these models, a linear shear theory for two dimensional elements was developed combining the three principles of equilibrium: equilibrium equations, Mohr's compatibility equations and Hooke's law. The models could be used in the elastic behavior up to service load stage, to describe the element behavior up to ultimate load stage, a nonlinear shear theory is required.

Collins & Mitchell's Compression Field Theory

Collins & Mitchell [START_REF] Collins | Shear and torsion design of prestressed and nonprestressed concrete beam[END_REF] derived a theory predicting the nonlinear shear behavior of RC elements after cracking, called Compression Field Theory. In this theory, a RC element can be separated into a concrete element and a steel grid element (Figure 2-12a). The directions of the longitudinal and transverse steel bars form the (𝑥 -𝑦) global coordinate system, with 𝑥 is the longitudinal direction and 𝑦 the transverse direction. For a concrete membrane subjected to shear, the shear stress can be resolved into a principal tensile stress and a principal compressive stress, following the principal direction of crack (45 ˚in this initial theory) (Figure 2-12b). The principal directions form a (1 -2) local coordinate system of crack direction. In this direction of compression and tension, the stresses and strains affect each other and this interaction causes some significant phenomenons, whose most important is the softened of principal compressive stress due to principal tensile stress. Vecchio & Collins [START_REF] Vecchio | Response of reinforced concrete to in-plane shear and normal stresses[END_REF] then introduced a softening coefficient for the compressive stress-strain curve and discovered that this coefficient was a function of the principal tensile strain, rather than the principal tensile stress. After numerous experimented tests carried out in bi-dimensional RC panels under plane-stress loading [START_REF] Rahal | Combined torsion and bending in reinforced and prestressed concrete beams[END_REF] considering the variation of the longitudinal deformations of the walls. This sectional model is strong in predicting the element response and representing the interaction of combined loading, however it is limited only for rectangular cross-section. [START_REF] Hsu | Softening of concrete in torsional members-theory and tests (part i)[END_REF][START_REF] Pang | Fixed-angle softened-truss model for reinforced concrete[END_REF][START_REF] Hsu | Softened membrane model for reinforced concrete elements in shear[END_REF] Based on the strain compatibility equations of the truss model, Hsu & Mo [START_REF] Hsu | Softening of concrete in torsional members-theory and tests (part i)[END_REF] indicated that in the variable-angle truss model, when using the stress-strain relationship obtained from the concrete compression cylinder test, the predicted torsional strength becomes very underestimated. Thus, they used a softened stress-strain curve to predict the torsional strength and strains throughout loading history. Hsu & Mo called this theory as Rotating-Angle Softened-Truss Model (RA-STM), in which many assumptions are shared with the MCFT, such as the same principal directions of stresses and strains, or the inclusion of a softening factor in compressive concrete after cracking.

(

Models by Hsu

In addition to the above theory, a Fixed-Angle Softened-Truss Model (FA-STM) was developed by Pang & Hsu [START_REF] Pang | Fixed-angle softened-truss model for reinforced concrete[END_REF], in which the concrete struts are assumed to remain parallel to the initial cracks inclination. For this, a third coordinate system (1 ′ -2 ′ ) of the current principal stress directions is defined, rather than the global coordinate system (𝑥 -𝑦)

and the local coordinate system at initial cracks (1 -2) (Figure 2-15). The FA-STM can give a more accurate prediction than RA-STM and is useful when interested in the ultimate shear strength and the behavior before it. However, the descending branch of the load-deformation curves cannot be represented correctly. [START_REF] Hsu | Softened membrane model for reinforced concrete elements in shear[END_REF]. Based on the FA-STM, the SMM is able to satisfactorily predict the entire monotonic response of the load-deformation curves, including both the ascending and the descending branches, as well as the pre-cracking and post-cracking responses. The featured aspect of the SMM is that the Poisson effect is taken into account and is characterized by two ratios called Hsu/Zhu ratio [START_REF] Zhu | Poisson effect in reinforced concrete membrane elements[END_REF]. As a result, the average strains in direction (1 -2) (Figure 2-15) when a panel is subjected to biaxial loading are expressed as:

𝜀 1 = 𝜎 𝑐 1 Ē𝑐 1 -𝜈 12 𝜎 𝑐 2 Ē𝑐 2 = ε1 -𝜈 12 ε2 ; 𝜀 2 = 𝜎 𝑐 2 Ē𝑐 2 -𝜈 21 𝜎 𝑐 1 Ē𝑐 1 = ε2 -𝜈 21 ε1 (2.1)
with 𝜈 12 and 𝜈 21 are the two Hsu/Zhu ratios; Ē𝑐 1 and Ē𝑐 2 are the moduli of concrete in the 1 and 2 direction when a panel is subjected to uniaxial loading; ε1 and ε2 are average strains in the direction 1 and 2 when a panel is subjected to uniaxial loading. The two Hsu/Zhu ratios are formulated based on a series of twelve tests using the Universal Panel Tester (UPT), realized by Hsu and his colleagues at the University of Houston from 1988 to 2009 [START_REF] Hsu | A servo-control system for universal panel tester[END_REF]. The experimental tests obtained from the UPT allows also to establish the material behavior laws for RC members, as proposed by Belarbi & Hsu [START_REF] Belarbi | Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete[END_REF], [START_REF] Belarbi | Constitutive laws of softened concrete in biaxial tension-compression[END_REF] or Pang & Hsu [START_REF] Pang | Behavior of reinforced concrete membrane elements in shear[END_REF]. The softening of concrete in compression is taken into account by a softening coefficient 𝜁 (Figure 2-16a), while the tension stiffening of concrete is also included in the tensile relationship (Figure 2-16b). A Softened Membrane Model for Torsion (SMMT) is then developed from the SMM by Seng & Hsu [START_REF] Jeng | Softened membrane model for torsion in reinforced concrete members[END_REF] in order to account for the torsional response of RC members, which will be more discussed in Section 4.3.

Sectional-Fiber model

Sectional-fiber approach has been used widely by researches over the last thirty year to account for the responses of RC member under combined loading of normal and tangential forces. Many models have been developed and proposed in according to different criterions of classification. In this research work, the following principal strategy has been classified:

• Dual-sectional analysis: a non-local sectional model in which the element is discretized in various member of two section and the shear stress is determined by the finite difference of the normal stress on each side of this dual-section member.

• Longitudinal stiffness method: a local sectional model that satisfies the inter-fiber equilibrium between fiber/layer of element.

• Finite element beam-column formulation: an implementation of longitudinal stiffness method into two-node finite element frame model.

• Enhanced Finite element beam-column formulation: a specific strategy to account for distortion and warping phenomenon using the decomposition of cross-section characteristic into classical field following plane-section hypothesis and enhanced field of warping-distortion.

Constitutive Model

In the literature, many constitutive models have been developed to reproduce the behavior of concrete, following different approaches. Indeed, the mechanical response of concrete materials represents a brittle behavior and is influenced by complex phenomena, one of the most important is the propagation of cracks inside the elements. The adoption of finite element models with embedded (displacement or strains and stresses) discontinuities [START_REF] Belytschko | A finite element with embedded localization zones[END_REF][START_REF] Dvorkin | Finite elements with dispacement interpolated embedded localization lines insensitive to mesh size and distortions[END_REF] based on the fracture mechanics theory [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] is usually considered as one of the most accurate way for describing the evolution of cracking phenomena in concrete. However, this embedded discontinuity models are not suitable for large scale structure analysis. In practice, the following approaches have been widely used to simulate the concrete behavior of many numerical models:

• Smeared-crack approaches: cracking is handled as a distributed effect with directionality, of which the pioneering model is the MCFT.

• Damage mechanics approaches: the effect of damage of materials (initiation and propagation of crack or fracture of concrete) is represented by the state variables (crack density or coefficient of thermal expansion, etc.) and then lead to the constitutive equations. Model of Mazars [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] and Lemaitre [START_REF] Lemaitre | Mechanics of Solids Material[END_REF] are usually considered as the most widely used damage models.

Modified compression field theory

In this theory, the principal idea is to replace the biaxial constitutive law of concrete by a uniaxial constitutive law, in which the stress-strain relationship is formulated in the principal direction of cracking. The primary assumptions of this theory is that crack is considered distributed in the concrete, and principal directions of strains and stresses are coincident. In addition, equilibrium and compatibility equations are evaluated with the average value of the stress and strain in the crack plane and in the concrete between cracks, because of the variation of the local stresses in both concrete and steel. According to Figure 2-17, the compatibility conditions of the MCFT are expressed as: where 𝜀 1 and 𝜀 2 are the strain in principal directions; 𝜀 𝑥 , 𝜀 𝑦 and 𝛾 𝑥𝑦 are the element strain components; 𝜃 is the inclination of crack. The equilibrium conditions of averages stresses in an element are expressed as follows (Figure 2-18): where 𝜎 

𝜀 𝑥 = 𝜀 1 tan 2 𝜃 + 𝜀 2 1 + tan 2 𝜃 ; 𝜀 𝑦 = 𝜀 1 + 𝜀 2 tan 2 𝜃 1 + tan 2 𝜃 𝛾 𝑥𝑦 = 2 (𝜀 𝑥 -𝜀 2 ) tan 𝜃 ; tan 2 𝜃 = 𝜀 𝑥 -𝜀 2 𝜀 𝑦 -𝜀 2 (2.2)
𝜎 𝑥 = 𝜎 1 -𝜏 𝑐𝑥𝑦 cot 𝜃 + 𝜌 𝑥 𝜎 𝑠𝑥 𝜎 𝑦 = 𝜎 1 -𝜏 𝑐𝑥𝑦 tan 𝜃 + 𝜌 𝑦 𝜎 𝑠𝑦 𝜎 2 = 𝜎 1 + 𝜏 𝑥𝑦 (tan 𝜃 + cot 𝜃) (2.3 
𝜎 2 = 𝑓 ′ 𝑐 [︃ 2 (︂ 𝜀 2 𝜀 0 )︂ - (︂ 𝜀 2 𝜀 0 )︂ 2 ]︃ (2.4)
where 𝑓 ′ 𝑐 is the maximum stress resisted by crack concrete in the compression direction; 𝜀 0 is the cylinder strain at peak strength. The softening of concrete is included in the stress-strain relationship by a softening parameter 𝑆𝐹 which depends on the tensile strain:

𝑓 ′ 𝑐 = 𝑓 𝑐 𝑆𝐹 ; 𝑆𝐹 = 0.8 -0.34 𝜀 1 𝜀 0 (2.5)
where 𝑓 𝑐 is the concrete cylinder compressive strength.

For concrete in tension, the behavior is divided into two phase: before and after cracking (Figure 2 -19b). Cracking of concrete appears when the tensile strain 𝜀 1 is higher than the cracking strain 𝜀 𝑐𝑟 . An elastic linear relationship is suggested prior to cracking:

𝜎 1 = 𝐸 𝑐 𝜀 1 ; 0 < 𝜀 1 < 𝜀 𝑐𝑟 𝜀 𝑐𝑟 = 𝑓 𝑐𝑟 𝐸 𝑐 𝑓 𝑐𝑟 = 0.33 √ 𝑓 𝑐 in (MPa) (2.6)
where 𝐸 𝑐 is the concrete modulus of elasticity; 𝑓 𝑐𝑟 is the cracking stress. After cracking, tensile stresses in the uncracked concrete between the cracks continue to stiffen the concrete, thus increase the stiffness of concrete section. This effect leads to a decrease in average tensile stresses after cracking, and is named tension stiffening of concrete. In the original formulation of the MCFT [START_REF] Vecchio | Response of reinforced concrete to in-plane shear and normal stresses[END_REF], based on experimental results from shear tests on 70 mm thick panel elements, the tension relationship of concrete after cracking was proposed as follows:

𝜎 1 = 𝑓 𝑐𝑟 1 + √ 200𝜀 1 (2.7)
An adjustment of this previous expression suggested by Collins & Mitchell [26] based on shear tests conducted on larger panel of 285 mm thick: For reinforcing steel, an uniaxial relationship is considered with a bilinear elastoplastic stress-strain curve (Figure 2-20). In each direction, the steel characteristics must be accompanied with the reinforcement ratio 𝜌 𝑥 or 𝜌 𝑦 . 

𝜎 1 = 𝑓 𝑐𝑟 1 + √ 500𝜀 1 (2.8) c f SF c f softening of ε ε 2 0 < σ 2 0 < concrete 0 0 (a) Compression relationship [110] ε cr cr f 0 ε 1 0 > σ 1 0 > Tension stiffening of concrete (b) Tension relationship
sy f E = σ s ε s ± ε y ± ε s σ s 0 E s s Figure 2-
⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 𝑥 𝜏 𝑥𝑦 𝜏 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ = D ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥 𝛾 𝑥𝑦 𝛾 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ (2.9)
The contribution of concrete and steel are added separately:

D = D 𝑐 + D 𝑠 (2.10)
The concrete stiffness matrix is expressed in terms of the principal directions:

D 𝑐 = T 𝑇 𝑐 D 𝑝𝑟𝑖𝑛 T 𝑐 (2.11)
The stiffness matrix in principal directions D 𝑝𝑟𝑖𝑛 is evaluated in a simple secant-stiffnessbased:

D 𝑝𝑟𝑖𝑛 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐸 𝑐2 0 0 0 𝐸 𝑐1 0 0 0 𝐺 𝑐 ⎤ ⎥ ⎥ ⎥ ⎦ 𝐸 𝑐2 = 𝜎 2 𝜀 2 ; 𝐸 𝑐1 = 𝜎 1 𝜀 1 ; 𝐺 𝑐 = 𝐸 𝑐1 𝐸 𝑐2 𝐸 𝑐1 + 𝐸 𝑐2 (2.12)
T 𝑐 is the transformation matrix composed of the direction cosines, which define the direction of the principal concrete cracking:

T 2𝐷 𝑐 = ⎡ ⎢ ⎢ ⎢ ⎣ cos 2 𝜃 sin 2 𝜃 sin 𝜃 cos 𝜃 sin 2 𝜃 cos 2 𝜃 -sin 𝜃 cos 𝜃 -sin 2𝜃 sin 2𝜃 cos 2𝜃 ⎤ ⎥ ⎥ ⎥ ⎦ (2.13)
For the stiffness matrix of steel, while the longitudinal reinforcement can be taken into account in a straightforward way, it is not the same obvious work for the contribution of transverse reinforcement steel. Indeed, it requires an iteration process to handle the transverse equilibrium between concrete and steel at each material points, which will be expressed clearly in Chapter 3.

2.4.1.1.4 Model of Stevens et al. [START_REF] Stevens | Constitutive model for reinforced concrete finite element analysis[END_REF]: It should be noted that the MCFT can be developed by using different uniaxial strain-stress curve for concrete and steel, such as a Popovics curve [START_REF] Popovics | A numerical approach to the complete stress-strain curve of concrete[END_REF] considering the size-effect phenomenon in the model of Benzt [START_REF] Bentz | Explaining the riddle of tension stiffening models for shear panel experiments[END_REF].

Stevens et al. [START_REF] Stevens | Constitutive model for reinforced concrete finite element analysis[END_REF] extended the MCFT to a new constitutive model that does not require the crack-check with a tangent-based stiffness matrix instead of secant-based. This model adopts the same hypothesis as the MCFT and requires more complex formulations, but the process of numerical convergence is improved consequently. One great advantage of this model is that the formulation can be used for the response of confined, unconfined and/or partially confined concrete, which depends on the determination of a coefficient factor 𝐾. In compression, when 𝜀 > 𝐾𝜀 0 , the stress-strain curve follows the original parabolic relationship of the MCFT in equation (2.4), then the post-peak curve is modified using a cubic equation in function of 𝜀 0 and the ultimate strain 𝜀 𝑐𝑢 (Figure 2 The tensile behavior of concrete is also based on the basic of the MCFT, with a linear elastic behavior until the cracking strength, followed by a descending curve describing the tension stiffening of concrete, which is formulated according to the longitudinal reinforcements disposition (Figure 2-24a). The steel behavior in this model is much more complex in order to avoid the crack-check imposed in the original MCFT, by accounting for the smeared reinforcement of crack concrete. Indeed, the reinforcement between the cracks does not reach its plastic limit since the surrounded concrete has already carried out a part of tensile stresses. The stress-strain curve of steel is therefore a function of concrete tensile strength 𝑓 𝑐𝑟 (Figure 2-24b). The tangent-based material stiffness matrix of concrete in principal directions is expressed as follows:

D 𝑝𝑟𝑖𝑛 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝜎 1 𝜕𝜀 1 𝜕𝜎 1 𝜕𝜀 2 𝜕𝜎 1 𝜕𝛾 12 𝜕𝜎 2 𝜕𝜀 1 𝜕𝜎 2 𝜕𝜀 2 𝜕𝜎 2 𝜕𝛾 12 0 0 𝜎 1 -𝜎 2 2(𝜀 1 -𝜀 2 ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (2.14)

Damage model of Mazars for concrete

One of the first damage models was introduced by Mazars [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF], in which the influence of micro-cracking due to external load is introduced by a single scalar damage variable 𝐷, varying from 0 (undamaged material) to 1 (completely damage material). The expression of this variable is computed as follows:

𝐷 = 𝛼 𝑐 𝐷 𝑐 + 𝛼 𝑡 𝐷 𝑡 (2.15)
where 𝐷 𝑐 and 𝐷 𝑡 are two damage variables independently describing the material degradation under compressive and tensile stresses; 𝛼 𝑐 and 𝛼 𝑡 are two weighting coefficients.

The damage variable then lead to the definition of an effective stiffness matrix C relating the total stress and strain:

𝜎 = C(C 0 , 𝐷)𝜀 (2.16)
where C 0 is the initial elastic stiffness matrix corresponding to undamaged state. Assuming that the strain state of the real damaged material is the same state considered in the constitutive law, the constitutive relation in equation (2.16) becomes:

𝜎 = (1 -𝐷)C𝜀 (2.17)
The evolution of damage variable 𝐷 depends on the mechanical state:

𝐷 𝑐/𝑡 = 1 - 𝜀 0 (1 -𝐴 𝑐/𝑡 ) 𝜀 𝑒𝑞 -𝐴 𝑐/𝑡 exp(-𝐵 𝑐/𝑡 (𝜀 𝑒𝑞 -𝜀 0 )) (2.18)
with 𝜀 𝑒𝑞 is the equivalent strain representing the extension of strains in principal directions;

𝜀 0 is the initial damage threshold; 𝐴 𝑐/𝑡 and 𝐵 𝑐/𝑡 are materials parameters. The details of formulation can be found in [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF], [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete structural elements[END_REF]. This constitutive model is however only suitable for monotonic loading and has been refined after by Mazars [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete structural elements[END_REF] 

𝑌 𝜇 = 𝑟𝑌 𝜇𝑡 + (1 -𝑟)𝑌 𝜇𝑐 (2.19)
where 𝑟 is the tri-axial factor varying from 0 to 1. Then, the damage evolution law can be expressed as follows:

𝐷 = 1 - (1 -𝐴)𝑌 𝜇0 𝑌 𝜇 -𝐴 exp(-𝐵(𝑌 𝜇 -𝑌 𝜇0 )) (2.20)
with 𝑌 𝜇0 is the initial threshold; 𝐴 = 𝑓 (𝑟, 𝐴 𝑐 , 𝐴 𝑡 ) and 𝐵 = 𝑓 (𝑟, 𝐵 𝑐 , 𝐵 𝑡 ) are material parameters.

The uniaxial concrete behavior of Mu model can be found in Figure 2-25 with the following path: loading in tension from 0-A-B, then unloading in tension from B to 0, loading in compression from 0-C-D, then unloading in compression from C to 0, then reloading and re-unloading in tension from 0-E-0 and finally re-loading in compression from 0-F-G. Other damage models can be found in the literature, such as model of Lemaitre [START_REF] Lemaitre | Mechanics of Solids Material[END_REF], La Borderie [START_REF] Borderie | Phms unilatux dans un matau endommageable: modsation et application analyse de structures en bn[END_REF], Faria et al. [START_REF] Faria | Modeling material failure in concrete structures under cyclic actions[END_REF], etc., proposing different definitions of the equivalent strain and the damage evolution laws. 

Dual-section analysis

Vecchio & Collins [START_REF] Vecchio | Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory[END_REF] developed a beam model subjected to axial, bending and shear stresses, in which the entire cross-section is subdivide into a set of horizontal layers of concrete and steel (Figure 2 -26). Each layer is analyzed separately with the corresponding constitutive behavior, based on the MCFT. The model was formulated as a sectional analysis model, however it was not introduced within a finite element formulation. The section kinematics follow Euler-Bernoulli assumption and the shear stresses are given by the dual-section analysis, in which shear stress is equal to the finite difference of the normal stress value on each side of a finite-length layer (Figure 2-27a):

𝜏 𝑥𝑦 (𝑥) = - 1 𝑏(𝑦) ∫︁ 𝑦 -𝑦 𝑏 𝜕𝜎 𝑥 𝜕𝑥 𝑏(𝑦)𝑑𝑦; 𝜕𝜎 𝑥 𝜕𝑥 ≈ 𝜎 𝑥 (𝑥 2 ) -𝜎 𝑥 (𝑥 1 ) 𝑆 (2.21)
where 𝑏 is the section's width, 𝑦 𝑏 is the coordinate of the bottom layer, 𝜎 𝑥 (𝑥 2 ) and 𝜎 𝑥 (𝑥 1 )

are the normal stresses of the layer in the two analyzed sections and 𝑆 is the distance between the sections, which is recommended equal to ℎ/6 with ℎ is the section's height. An iterative procedure is then implemented to determine the shear strain distribution, by comparing the values of shear stress from the dual-section analysis and from the imposition of longitudinal equilibrium. In addition to this analytical solution which requires a considerable computational effort, Vecchio & Collins has also proposed two approximate solutions, one based on the constant shear flow, other based on a parabolic shear strain distribution. These two alternative solutions can give quite close results to those obtained with the iterative scheme, however the shear stresses may be poorly estimated.

This model is considered as a non-local sectional model, because the response of the cross-section depends on the information from outside of the geometric plane. This means that some specific conditions and formulations are required when implementing the proposed model into a frame analysis. For example, in the case of a 2D beam element, at least three integration points are required for flexure and two others for shear (Figure 2-27b). This aspect, along with the iterative procedure based on the summation of the trial-and-error small increments, makes the numerical implementation become complex and expensive. A similar dual-section analysis was also implemented in a beam element developed by Ranzo [START_REF] Ranzo | A Non-linear Coupled Model for the Analysis of Reinforced Concrete Sections under Bending, Shear, Torsion and Axial Forces[END_REF]. 

Longitudinal stiffness method

In the dual-section analysis method, the choice of the finite distance between two sections 𝑆 influences the results of shear stress determination. To overcome this, Bentz [START_REF] Bentz | Sectional Analysis of Reinforced Concrete Members[END_REF] presented a numerical model using the longitudinal stiffness method, in which the stresses and strains at each layer are related by a tangent stiffness matrix. For this, the plane-section Euler-Bernoulli hypothesis is employed to compute the axial strain from the section's elongation 𝜀 0 and curvature 𝜅 𝑦 , whereas the shear strain is defined initially as a function of the mean sectional shear deformation γ: 𝛾 𝑥𝑦 = 𝑓 (𝑦)γ. Thus, the strains vector at any layer can be computed from the vector of section generalized strains containing 𝜀 0 , 𝜅 𝑦 and γ:

⎛ ⎝ 𝜀 𝑥 𝛾 𝑥𝑦 ⎞ ⎠ = ⎡ ⎣ 1 𝑦 0 0 0 𝑓 (𝑦) ⎤ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 0 𝜅 𝑦 γ ⎞ ⎟ ⎟ ⎟ ⎠ 𝜀(𝑥, 𝑦) = B(𝑦)e 𝑠 (𝑥) (2.22)
The constitutive relationship at each layer is computed as the differential increment of stress vector with respect to strain vector as follow:

𝛿 ⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 𝑥 𝜎 𝑦 𝜏 𝑥𝑦 ⎞ ⎟ ⎟ ⎟ ⎠ = 𝜕𝜎 𝜕𝜀 𝛿 ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥 𝜀 𝑦 𝛾 𝑥𝑦 ⎞ ⎟ ⎟ ⎟ ⎠ 𝛿𝜎 = D𝛿𝜀 (2.23)
where D is the layer tangent stiffness matrix. The transverse equilibrium is obtained by imposing independently that 𝜎 𝑦 is null at each layer, this action results in a condensed stiffness matrix at each layer:

𝛿 ⎛ ⎝ 𝜎 𝑥 𝜏 𝑥𝑦 ⎞ ⎠ = D𝛿 ⎛ ⎝ 𝜀 𝑥 𝛾 𝑥𝑦 ⎞ ⎠ (2.24)
Then, using the chain rule and equation (2.22), (2.24), the derivatives of normal and shear stresses with respect to cross-section coordinate 𝑥 can be derived as follows:

𝛿 𝛿𝑥 ⎛ ⎝ 𝜎 𝑥 𝜏 𝑥𝑦 ⎞ ⎠ = DB(𝑦) 𝛿e 𝑠 (𝑥) 𝛿𝑥 (2.25)
Then, the derivatives of the generalized stresses are computed by direct integration over the cross-section:

𝛿 𝛿𝑥 ⎛ ⎜ ⎜ ⎜ ⎝ 𝑁 𝑥 𝑀 𝑦 𝑉 ⎞ ⎟ ⎟ ⎟ ⎠ = ∫︁ ∫︁ 𝐴 ⎡ ⎢ ⎢ ⎢ ⎣ 1 0 𝑦 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎦ 𝛿 𝛿𝑥 ⎛ ⎝ 𝜎 𝑥 𝜏 𝑥𝑦 ⎞ ⎠ 𝛿D 𝑠 𝛿𝑥 = ∫︁ ∫︁ 𝐴 A(𝑦) DB(𝑦) 𝛿e 𝑠 (𝑥) 𝛿𝑥 = K 𝑠 𝛿e 𝑠 (𝑥) 𝛿𝑥 (2.26)
where D 𝑠 is the generalized stresses or sectional forces, K 𝑠 is the sectional stiffness matrix, in which the first row includes the axial contributions, the second row features the bending moment contributions and the third row presents the shear stiffness coefficients.

Because A 𝑇 ̸ = B, K 𝑠 is asymmetric.

Similar to the model of Vecchio & Collins, the MCFT is also employed for the constitutive model. This model of Bentz is a local sectional model that satisfies the inter-fiber equilibrium, thus it is suitable to be implemented within frame element.

Finite element beam-column model

An efficient modeling strategy for the sectional model of RC members subjected to combined actions is attempt to implement smeared crack approach within a beam element formulation, which usually formulated as a two-node FE beam. In this model, the nodal variables are considered as global degrees of freedoms, from them the mechanical characteristics of cross-section are derived and interpolated along the element axis. As mentioned in Chapter 1, the formulations of beam-column finite element can be classified as stiffnessbased (displacement-based) or flexibility based (force-based or mixed-based) formulation.

Displacement-based formulation

A multifiber Timoshenko beam element was developed by Ceresa et al. [START_REF] Ceresa | A fibre flexureshear model for seismic analysis of rc-framed structures[END_REF], that dedicates to represent the shear responses of RC members under cyclic loading. A bi-axial fiber constitutive model for cracked RC member was implemented, based on the improved MCFT for cyclic loads proposed by Vecchio [START_REF] Vecchio | Towards cyclic load modelling of reinforced concrete[END_REF]. The model is formulated according to displacement-based approach, in which the vector of generalized displacements of crosssection d 𝑠 (𝑥) is related to the nodal displacements vector q 𝐼𝐽 by linear interpolation shape functions (Figure 2-28). The shear locking phenomenon was avoided by adding a bubble function 𝑁 𝑏 to the linear shape functions for the transversal displacement field: where the expression of bubble function is taken as

⎛ ⎜ ⎜ ⎜ ⎝ 𝑢(𝑥) 𝑣(𝑥) 𝜃 𝑧 (𝑥) ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 - 𝑥 𝐿 0 0 𝑥 𝐿 0 0 0 1 - 𝑥 𝐿 𝑁 𝑏 𝐿 0 𝑥 𝐿 -𝑁 𝑏 𝐿 0 0 1 - 𝑥 𝐿 0 0 𝑥 𝐿 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑢 𝐼 𝑣 𝐼 𝜃 𝑧𝐼 𝑢 𝐽 𝑣 𝐽 𝜃 𝑧𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ d 𝑠 (𝑥) = N 𝑠 (𝑥)q 𝐼𝐽 (2.27)
𝑁 𝑏 = 1 2 (1 - 𝑥 𝐿 ) 𝑥 𝐿 according to
Auricchio [START_REF] Auricchio | Nonlinear finite element analysis[END_REF]. The generalized normal and shear strain are derived from the vector of d 𝑠 (𝑥) and then, for each fiber, according to the longitudinal stiffness method of Bentz, an iterative procedure for section state determination considering transverse equilibrium condition is applied to determine the strains and stresses in each fiber. The direct coupling between axial and shear strains (and stresses) at sectional level is established by a static condensation and a condensed material stiffness matrix is obtained as a result.

At structural level, a linearization of the residual functions with respect to the nodal dis-placement gives the element stiffness matrix, in which coupling between flexure and shear is included from the static condensation in the sectional state determination.

Navarro Gregori et al. [START_REF] Navarro-Gregori | A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[END_REF] developed a 3D multifiber finite element displacementbased for RC member subjected to axial load, bending moment, shear and torsion. From the idea of section discretization proposed by Rahal & Collins [START_REF] Rahal | Effect of thickness of concrete cover on shear-torsion interaction -an experimental investigation[END_REF], the cross-section in this model is discretized in three distinct regions following disposition of reinforcement steel: 1D regions composes only longitudinal steel, 2D regions locate in the zone in which the transverse steel crosses in one direction and 3D regions for the rest of cross-section.

In each region, an appropriate constitutive model is defined, based on the MCFT (for 2D regions) and its extension by Vecchio & Selby [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF] for 3D regions. Coupling between combined actions can be considered in the sectional analysis, and the model formulation can be applied for arbitrary cross-section. However warping phenomenon due to shear and torsion is not taken into account in this model.

Kotronis [START_REF] Kotronis | Cisaillement dynamique de murs en bn armods simplifiD et 3D[END_REF][START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF] developed another 3D multifiber finite element for RC members where the transverse shear is taken into account by using Timoshenko's beam theory.

The shear locking phenomenon is avoided by using cubic and quadratic shape functions for the interpolation of transverse and rotational displacements. The constitutive model is based on damage mechanism, in which uniaxial isotropic damage model of La Borderie is used for concrete [START_REF] Borderie | Phms unilatux dans un matau endommageable: modsation et application analyse de structures en bn[END_REF], while a classical plasticity model is adopted for reinforcement steels. Another displacement-model for RC member subjected to shear and torsion was proposed by Mazars et al. [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete structural elements[END_REF], in which the warping kinematic for torsion is investigated initially in elasticity within the linear framework of Saint-Venant theory of torsion [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF]:

𝑢(𝑥, 𝑦, 𝑧) = 𝛼𝜙(𝑦, 𝑧) (2.28) 
where 𝑢(𝑥, 𝑦, 𝑧) is the axial displacement of a fiber, 𝛼 is the twist rate and 𝜙(𝑦, 𝑧) is the warping function of the section. The equilibrium equation for warping function is expressed as:

∆𝜙(𝑦, 𝑧) = 0 (2.29)
The elastic linear warping problem for a section of various materials is solved using a warping-conduction analogy method, in which the warping function of cross-section is equivalent to the temperature function of a plate 𝑇 (𝑦, 𝑧), the shear modulus 𝐺 𝑖 of the elastic material 𝑖 is equivalent to the thermal conductivity 𝜆 𝑖 of the isotropic material 𝑖.

While the equilibrium equation of warping in equation (2.29) correspond to ∆𝑇 (𝑦, 𝑧) = 0, the thermal boundary conditions can be expressed as:

Φ 𝑖 n = ⎡ ⎣ 𝜆 𝑖 𝑧 𝜆 𝑖 𝑦 ⎤ ⎦ ⎛ ⎝ n𝑦 n𝑧 ⎞ ⎠ (2.30)
where Φ 𝑖 = 𝜆 grad(𝑇 (𝑦, 𝑧)) is the thermal density flux; n is the outward unit vector normal to the cross-section contour. Knowing the equilibrium equations and boundary conditions, the thermal conduction problem can be solved using finite element method, and so do the warping function. As a result, the shear strains due to pure torsion are obtained for each fiber: Capdevielle [START_REF] Capdevielle | Introduction du gauchissement dans les ments finis multifibres pour la modsation non linre des structures en bn arm[END_REF][START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF] proposed a different way to include the warping phenomenon of torsion. The static equilibrium of beam element including warping in equation (2.29) can be expressed as follows:

𝜀 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 1 2 𝛼 (︂ 𝜕𝜙 𝜕𝑦 -𝑧 )︂ 1 2 𝛼 (︂ 𝜕𝜙 𝜕𝑧 + 𝑦 )︂ 1 2 𝛼 (︂ 𝜕𝜙 𝜕𝑦 -𝑧 )︂ 0 0 1 2 𝛼 (︂ 𝜕𝜙 𝜕𝑧 + 𝑦 )︂ 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ( 
𝜕 𝜕𝑦 (︂ 𝐺 (︂ 𝜕𝜙 𝜕𝑦 -𝑧 )︂)︂ + 𝜕 𝜕𝑧 (︂ 𝐺 (︂ 𝜕𝜙 𝜕𝑧 + 𝑦 )︂)︂ = 0 (2.32)
Assuming that the lateral surface is free of load, the boundary condition of cross-section is expressed as:

𝐺 (︂ 𝜕𝜙 𝜕𝑦 -𝑧 )︂ n𝑦 + 𝐺 (︂ 𝜕𝜙 𝜕𝑧 + 𝑦 )︂ n𝑧 = 0 (2.33)
From the strong form of the equilibrium equation in equation (2.32), the weak formulation of warping equilibrium can be derived as follows:

-

∫︁ ∫︁ 𝐴 [︂ 𝜕 𝜕𝑦 (︂ 𝐺 𝜕𝜙 𝜕𝑦 )︂ + 𝜕 𝜕𝑧 (︂ 𝐺 𝜕𝜙 𝜕𝑧 )︂]︂ 𝑤𝑑𝑆 = ∫︁ ∫︁ 𝐴 [︂ 𝜕 𝜕𝑦 (-𝐺𝑧) + 𝜕 𝜕𝑧 (-𝐺𝑦) ]︂ 𝑤𝑑𝑆 (2.34)
where 𝑤 is the weighting function. Integrating by part the first part of equation (2.34) and applying the boundary conditions in equation (2.33), the weak form of the cross-section equilibrium is obtained as follows: More recently, Khoder [START_REF] Khoder | Enrichissement des poutres multifibres pour le calcul des contraintes transversales et la prise en compte du confinement dans les sections en bn arm[END_REF] extended Capdevielle's model in order to take into account the lateral confinement of concrete due to stirrups. In her 3D multi-fiber model, the RC cross-section is discretized using three types of fiber: 2D triangular fibers of 6 nodes for concrete; 1D fibers for longitudinal and transversal reinforcements (Figure 2 

∫︁ ∫︁ 𝐴 𝐺 (︂ 𝜕𝜙 𝜕𝑦 𝜕𝑤 𝜕𝑦 + 𝜕𝜙 𝜕𝑧 𝜕𝑤 𝜕𝑧 )︂ = ∫︁ ∫︁ 𝐴 [︂ 𝜕 𝜕𝑦 (-𝐺𝑧) + 𝜕 𝜕𝑧 (𝐺𝑦) ]︂ ( 
⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑁 𝑀 𝑉 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 𝑥 𝐿 -1 𝑥 𝐿 0 𝑥 𝐿 1 𝐿 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑁 𝐽 𝑀 𝐼 𝑀 𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐿(1 - 𝑥 𝐿 ) 0 0 1 2 𝐿 2 [︂ (︁ 𝑥 𝐿 )︁ 2 - 𝑥 𝐿 ]︂ 0 1 2 𝐿 (︁ 1 -2 𝑥 𝐿 )︁ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎝ 𝑝 𝑥 𝑝 𝑦 ⎞ ⎟ ⎠ D 𝑠 (𝑥) = b(𝑥)P 𝐼𝐽 + b 𝑝 (𝑥)p (2.37)
where 𝑥 is the cross-section coordinate, 𝐿 is the element length and p is the element load vector. The sectional stiffness matrix is evaluated numerically using the method of finite differences, in which the 𝑚𝑛 -𝑡ℎ component is determined as:

𝑘 𝑚𝑛 𝑠 = 𝐷 𝑚 𝑠 (𝜀 𝑠 + 𝛿𝜀 𝑛 𝑠 ) -𝐷 𝑛 𝑠 (𝜀 𝑠 ) 𝛿𝜀 𝑛 𝑠 ; 𝛿𝜀 𝑛 𝑠 = sign(∆𝜀 𝑛 𝑠 ) √ 𝜀 𝑡𝑜𝑙 (2.38)
where 𝐷 𝑚 𝑠 is the 𝑚-𝑡ℎ term of the vector D 𝑠 (𝑥), 𝜀 𝑠 is the vector of the section deformation; ∆𝜀 𝑛 𝑠 is the variation of the 𝑛 -𝑡ℎ section deformation with respect to the last converged step of the analysis and 𝜀 𝑡𝑜𝑙 is the numerical tolerance. In this model, the interaction between axial force, bending and shear are taken directly and the constitutive models are based on the MCFT with some slight modifications. However, this approach for constitutive model meets some numerical difficulties when trying to encounter the cyclic load conditions. Another flexibility-based model was developed by Saritas & Filippou [START_REF] Saritas | A beam finite element for shear critical rc beams[END_REF]. In this model the relationship between the nodal forces and sectional forces is the same as in equation (2.37). The sectional state determination follows the longitudinal stiffness method proposed by Benzt [START_REF] Bentz | Sectional Analysis of Reinforced Concrete Members[END_REF] that is already described in Section 2.4.3, using Timoshenko's kinematic hypothesis and a parabolic correction form for the shear strain distribution function of rectangular cross-sections:

𝑓 (𝑦) = 5 4 (︂ 1 - 4𝑦 2 ℎ 2 )︂ (2.39)
where ℎ is the section's height. Static condensation is then performed in order to obtain the sectional stiffness matrix, which is symmetric rather than asymmetric in the model of Bentz, thanks to the correction form in equation 2. [START_REF] Gay | A technical theory of dynamical torsion for beams of any cross-section shapes[END_REF]. In each fiber/layer of the crosssection, a two-dimensional constitutive model based on the MCFT is applied. Based on the formulation of this model, Saritas & Filippou [START_REF] Saritas | A beam finite element for shear critical rc beams[END_REF], [START_REF] Saritas | Analysis of rc walls with a mixed formulation frame finite element[END_REF] then developed other models using damage mechanics for the constitutive model of concrete, in order to consider the cyclic load conditions for reinforced beam and wall element.

In order to account for torsional effect, Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] presented a mixed-formulation of 3D multi-fiber beam that is able to capture the local effects due to constrained warping of the section, so it can represent accurately the torsional response of beam under warping constraints conditions. For this, the additional warping degrees of freedom are introduced through a system of integration points and then interpolated by Lagrange polynomials to ensure equilibrium on the entire element (Figure 2 -33). Assuming that the warping displacement profile over the cross-section 𝜓(𝑦, 𝑧) and the warping displacement distribution over the element length 𝜒(𝑥) are interpolated independently, the material warping displacement in each fiber can be expressed as the product of 𝜓(𝑦, 𝑧) and 𝜒(𝑥):

𝑢 𝑤 (𝑥, 𝑦, 𝑧) = ∑︁ 𝜒 𝑖 (𝑥)(𝜓(𝑦, 𝑧)u 𝑤 𝑖 ) (2.40)
where u 𝑤 𝑖 is the vector of warping variables defined as additional degree of freedoms in the beam model. The material warping displacement in each fiber 𝑢 𝑤 (𝑥, 𝑦, 𝑧) is then superimposed into the axial displacement followings plane-section hypothesis, as suggested in the model of Bairan [4], which will be detailed clearly in section 2.4.5. The element equilibrium in equation 2.37 is extended to account for three-dimensional strain and stress state:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑁 𝑀 𝑧 𝑉 𝑦 𝑀 𝑥 𝑀 𝑦 𝑉 𝑧 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 0 0 0 𝑥 𝐿 -1 𝑥 𝐿 0 0 0 0 - 1 𝐿 - 1 𝐿 0 0 0 0 0 0 1 0 0 0 0 0 0 𝑥 𝐿 -1 𝑥 𝐿 0 0 0 0 1 𝐿 1 𝐿 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑁 𝐽 𝑀 𝑧𝐼 𝑀 𝑧𝐽 𝑀 𝑥𝐽 𝑀 𝑦𝐼 𝑀 𝑦𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ + b 𝑝 (𝑥) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑝 𝑥 𝑝 𝑦 𝑝 𝑧 𝑚 𝑥 𝑚 𝑦 𝑚 𝑧 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (2.41)
In this model, the effects of boundary conditions on the warping distribution under torsion can be represented for arbitrary cross-sections (Figure 2-33b), but the constitutive material model is limited only to steel. The warping profile of the rectangular cross-section of steel beam is shown in Figure 2-34a. 

Enhanced FE Model

Bairan [3] developed a general 3D nonlinear model for the analysis of RC sections under any combination of efforts. This local sectional-fiber model is formulated in a general way for arbitrary cross-section and independently of the beam element formulation.

The featured idea in this model is to reproduce the full 3D state of the cross-section characteristics by superimposing an enhanced distortion-warping displacement field with the classical plane-section displacement field (Figure 2-35a):

u = u 𝑝𝑠 + u 𝑤 (2.42)
The classical displacement field u 𝑝𝑠 is derived from the Euler-Bernoulli hypothesis, while the enhanced field u 𝑤 is constructed as a vector of three components, one for warping and two for the distortion with the cross-section, that must satisfy the condition of orthogonality with respect to the classical displacement field (Figure 2-35b). The same decomposition of displacement field is also applicable to strain and stress fields: Due to the superposition, the equilibrium conditions are obtained at structural level and at sectional level. At structural level, equilibrium among sections of the beam is assured when the equilibrium residual on the plane-section displacement field is set to zero:

𝜀 = 𝜀 𝑝𝑠 + 𝜀 𝑤 𝜎 = 𝜎 𝑝𝑠 + 𝜎 𝑤
𝑅 𝑝𝑠 (𝑥) = 𝛿u 𝑇 𝑠 ∫︁ ∫︁ 𝐴 N 𝑝𝑠𝑇 L 𝑇 𝑥 (𝜎)𝑑𝐴 -𝛿u 𝑇 𝑠 ∫︁ ∫︁ 𝐴 L 𝑦𝑧 (N 𝑝𝑠 ) 𝑇 𝜎𝑑𝐴 = 0 (2.44)
with u 𝑠 is the generalized displacement vector of cross-section; N 𝑝𝑠 is a compatibility matrix related u 𝑝 𝑠 and u 𝑠 ; L 𝑥 and L 𝑦𝑧 are the linear operators containing the derivation following 𝑥 and 𝑦, 𝑧 respectively. At sectional level, the equilibrium among inner fibers is assured when the equilibrium residual on the distortion displacement field is set to zero:

𝑅 𝑤 (𝑥) = ∫︁ ∫︁ 𝐴 𝛿u 𝑤𝑇 L 𝑇 𝑥 (𝜎)𝑑𝐴 - ∫︁ ∫︁ 𝐴 L 𝑦𝑧 (𝛿u 𝑤 ) 𝑇 𝜎𝑑𝐴 = 0 (2.45)
The complete 3D equilibrium of beam is determined by solving the system of equation (2.44) and (2.45). For this, the strategic way is to obtain the 𝜎 𝑤 field as a function of u 𝑝𝑠 at each cross-section and then satisfy equation (2.45) at each integration point of the beam element. As a result, the 3D problem can be solved as the superposition of a 1D beam problem with standard frame elements in equation (2.44) and a 2D sectional model using bi-dimensional element locally at the beam's integration points equation (2.45). The finite elements in the section discretization for a RC beam element are summarized in Figure 2-36, where the concrete is simulated as 2D elements, the transversal reinforcements are reprensented by 1D elements and the longitudinal steels are simulated as point elements.

Figure 2-36 -Library of finite elements in a cross-section of Bairan's model [3].

The vector of distortion displacement field u 𝑤 is obtained from the additional nodal values d 𝑤 of the cross-section. Then, d 𝑤 is related to the vector of generalized strains e 𝑠 by several compatibility and interpolation matrices. Finally, through the virtual work principle, the sectional internal forces and sectional stiffness matrix can be derived in the form of a decomposition of the plane-section field and the distortion field, which includes coupling terms between plane-section and distortion deformations.

The constitutive model is based on a cyclic hypo-elastic model for concrete and an uniaxial elasto-plastic relationship for steel. Inelastic concrete is modeled as an orthotropic material whose behavior is described along the principal directions by an equivalent uni-axial stress-strain relationship. The compression behavior follows a cyclic loading scheme suggested by Vecchio & Selby [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF], whereas in tension, a linear elastic behavior is considered prior to cracking, then after cracking the stress-strain relationship follows a nonlinear softening curve with the damage variables proposed by Cervenka [START_REF] Cervenka | Constitutive model for cracked reinforced concrete[END_REF]. The triaxial characteristics are computed through a three-dimensional failure surface, in which the strains (and related stresses) are decomposed as a contribution of mechanical and non-mechanical part.

Overview and Discussion

Throughout this chapter, a literature review of the modeling strategy for RC members subjected to shear-bending and/or torsion has been carried out. The problematic of the RC members under bending and shear has been investigated and experienced by many researchers. Several numerical models with different degree of complexity have been developed. Among the existing models, the sectional-fiber finite element approach has been widely considered as one of the most adequate solutions, thanks to its excellent balance between accuracy of numerical results, calculation time and ergonomics. However, to the best of the author's knowledge, a rational sectional model accounting for tangential forces is still under study.

The longitudinal stiffness method has shown its advantage by considering the equilibrium as well as compatibility equations at local level, and more important, by giving a material stiffness matrix reflecting the coupling of normal and tangential forces when considering the transverse equilibrium conditions. For these reasons, although originally limited for mono-dimensional shear flow (i.e in-plane bending and shear), in this PhD we decided to apply this approach in the proposed formulation with an extension in bi-dimensional shear flow, thus three-dimensional loading. Considering the choice of finite element formulation, the flexibility-based method has shown its advantages over the stiffness-based method [START_REF] Spacone | Fiber beam-column model for nonlinear analysis of r/c frames: Part 1. formulation[END_REF]: giving the exact solutions by satisfying strict conditions of equilibrium and compatibility; requiring fewer elements for the representation of the non-linear behavior of concrete by using exact force interpolation functions; avoiding the well known shear-locking phenomenon. On the other hand, over the flexibility method, the stiffness-based method accompanying by the displacement-based formulation has also significant advantages. First, once the analytical model has been defined, no further engineering decisions are required in this formulation to carry out the analysis, this method is thus conducive to computer programing [START_REF] Weaver | Matrix Analysis of Framed Structures[END_REF]. In addition, if the unknown quantities in the flexibility method are redundant actions that must be arbitrarily chosen, the unknowns in stiffness method are automatically specified as the nodal displacements of element, the number of unknowns to be determined is therefore the same as the degree of freedom of element. Otherwise, the obtained numerical results are also satisfied. To avoid the shear locking phenomenon, some solutions have been proposed such as a bubble function in the model of Ceresa [START_REF] Ceresa | A fibre flexureshear model for seismic analysis of rc-framed structures[END_REF] or Hermite and Lagrange shape functions for transverse and rotational displacements in the model of Kotronis [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF].

In a 3D beam problem, when accounting for shear and especially torsion effect, it is indispensable to account for the warping phenomenon. For this, the Bairan's strategy [3] of decomposition cross-section characteristics into classical field following plane-section hypothesis and enhanced field of warping-distortion is adopted for the development of our FE model. One believes that this is the most suitable approach to representing the complete deformation state (warping and distortion) of cross-section. While the plane-section field can be represented by classical theory such as Euler-Bernoulli or Timoshenko, for the enhanced warping-distortion field, several solutions have been proposed, such as using warping-thermal analogy [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete structural elements[END_REF], using Saint-Venant theory and 2D finite element method [START_REF] Capdevielle | A multifiber beam model coupling torsional warping and damage for reinforced concrete structures[END_REF] or using Lagrange polynomial and system of interpolation points defined as additional degree of freedoms [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF], [START_REF] Re | 3D beam-column finite elements under tri-axial stress-strain states: nonuniform shear stress distribution and warping[END_REF], etc. To the best of the author's knowledge, although successfully applied in the mixed-based formulation by Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF], Addessi [2] and Di Re [START_REF] Di Re | A mixed 3d corotational beam with cross-section warping for the analysis of damaging structures under large displacements[END_REF], the Lagrange polynomial approach accounting for warping displacement has not yet been implemented in any displacement-based model of RC. In this work, we would like to review and compare the use of Saint-Venant theory with that of Lagrange polynomials in the displacement-based formulation, then recommend the use of each method depending on requirements. These two approaches have been programmed and implemented in the proposed FE model.

Regarding the constitutive models, there are two favorable choices for sectional-fiber model, between smeared-crack approaches and damage mechanics. A constitutive model based on the MCFT [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF] was chosen because of its simplicity and the fact that it can be enhanced by developing suitable uniaxial stress-strain relationship for concrete and steel, depending on the model's requirements. In this work, a parametric tensile relationship for concrete has been proposed by the authors for the responses of RC members subjected to pure torsion. In this formulation, only engineering parameters (e.g. material strengths, reinforcement geometrical ratios) are required as input, thus improving the ability to apply the proposed model to practical simulations. Another important reason for the choice of the MCFT is that it is very suitable for the transverse equilibrium between the fibers, in particularly when taking into account the contribution of transverse reinforcements.

Inspired by the idea of Navarro et al. [START_REF] Navarro-Gregori | A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[END_REF], a specific section discretization following the reinforcement steel's disposition, accompanied by appropriate constitutive models based on the MCFT, was developed and implemented in the proposed model, which will be described in detail in the next Chapter.

Chapter 3

Enhanced multi-fiber 3D beam element for RC members

General

The present Chapter deals with the development of a finite element model for RC members subjected to arbitrary loading (Bending and/or shear and/or torsion). The developed model is able to take into account the material nonlinearity, the warping effect of crosssection, the contribution of transversal reinforcement, and the concrete confinement. As for the geometrical nonlinearity, it is treated separately in Chapter 6 by using the corotational framework. Therefore, this chapter is dedicated for the development of the local beam element. The two-node Timoshenko beam using multifiber discretization approach and displacement-based formulation are adopted. Based on the principle of distributed finite element method, the idea of multi-fiber finite element is to divide the structure into several longitudinal fibers and some control sections situated at the Gauss-Lobatto points along the element. At the intersection of longitudinal fibers and control sections, a system of integration points is obtained (Figure 3-1). Each point, called fiber and considered as a material point, has its own coordinates, surface and an appropriate material law in order to determine the strain and stress from the element's displacements. Therefore, the proposed model is described as a frame element with a set of cross-sections along its longitudinal axis. are taken into account in the sectional analysis, the other shear stress is set to zero.

• 3D-zone: This zone corresponds to the regions of concrete in which transverse steels come across in two directions (the four corners of section) and the regions of concrete in the core of section without any reinforcement. In this zone, at each integration point the stress state contains 3 components: one normal and two transverse stresses.

For the numerical implementation, in 1D-zone, each longitudinal steel bar is considered as point fiber, characterized by the cross-section area 𝐴 𝑠𝑙 of steel bar and its coordinate (𝑦 𝑠𝑙 , 𝑧 𝑠𝑙 ) in the local coordinate of cross-section. In 2D and 3D-zone, the regions are discretized into square fibers of centroid integration point 𝑃 , characterized by the square fiber area 𝐴 𝑓 (numerical integration weight) and the coordinate of integration point 𝑃 (𝑦 𝑓 , 𝑧 𝑓 ).

The contribution of stirrup is taken into account by satisfying the internal equilibrium between concrete and stirrups in 2D-zone, which will be detailed in Section 3.5.2. The following presentation starts with the definition of element and section kinematics as well as the main assumptions of the model. In order to take into account the warpingdistortion phenomenon, two approaches will be introduced and described in this chapter:

1. Using Saint-Venant's warping function: Based on two-node Timoshenko beam with 6 local displacements at each node, making a total of 12 degree of freedoms (DoFs) in each element. The formulation is then enhanced by Saint-Venant warping function when considering the kinematic conditions.

2. Using Lagrange polynomials: Introduction of an enhanced beam with a superposition of several additional warping DoFs into the two-node Timoshenko beam. The interpolation functions for warping/distortion over the cross-section and along the element are also described and implemented into the finite element discretization.

The element formulation is then derived following the principle of virtual work in order to obtain the consistent stiffness matrix and nodal forces vector of the element. Next, the solution schemes for two "warping" approaches are described. Finally, the mechanical model containing appropriate constitutive models for different discretized regions as described above is presented.

Element kinematics

Let's consider a two-node Timoshenko beam represented by a straight axis line delimited by end nodes 𝐼 and 𝐽 and the local frame system of coordinate (𝑥, 𝑦, 𝑧) as shown in Figure 3-3. The displacement field contains three translations 𝑢(𝑥), 𝑣(𝑥), 𝑤(𝑥) and three rotations 𝜃 𝑥 (𝑥), 𝜃 𝑥 (𝑥), 𝜃 𝑥 (𝑥) about axes 𝑥, 𝑦, 𝑧, respectively. These components are collected in a single displacement vector called generalized displacement which depends on the section's position along the element axis: In the displacement-based formulation, the generalized displacement is expressed in function of the principal variables which are the nodal displacements vector q 𝑒 by interpolation shape functions:

d 𝑠 (𝑥) = (︁ 𝑢(𝑥) 𝑣(𝑥) 𝑤(𝑥) 𝜃 𝑥 (𝑥) 𝜃 𝑦 (𝑥) 𝜃 𝑧 (𝑥) )︁ T (3.1) z x node I node J y
d 𝑠 (𝑥) = N 𝑠 (𝑥)q 𝑒 (3.2)
where:

q 𝑒 = (︁ 𝑢 𝐼 𝑣 𝐼 𝑤 𝐼 𝜃 𝐼 𝑥 𝜃 𝐼 𝑦 𝜃 𝐼 𝑧 𝑢 𝐽 𝑣 𝐽 𝑤 𝐽 𝜃 𝐽 𝑥 𝜃 𝐽 𝑦 𝜃 𝐽 𝑧 )︁ T (3.3)
and N 𝑠 (𝑥) is the matrix of shape function defined as [START_REF] Friedman | An improved two-node timoshenko beam finite element[END_REF]:

N 𝑠 (𝑥) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑁 1 0 0 0 0 0 𝑁 2 0 0 0 0 0 0 𝑁 3𝑦 0 0 0 𝑁 4𝑦 0 𝑁 5𝑦 0 0 0 𝑁 6𝑦 0 0 𝑁 3𝑧 0 -𝑁 4𝑧 0 0 0 𝑁 5𝑧 0 -𝑁 6𝑧 0 0 0 0 𝑁 1 0 0 0 0 0 𝑁 2 0 0 0 0 -𝑁 7𝑧 0 𝑁 8𝑧 0 0 0 -𝑁 9𝑧 0 𝑁 10𝑧 0 0 𝑁 7𝑦 0 0 0 𝑁 8𝑦 0 𝑁 9𝑦 0 0 0 𝑁 10𝑦 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.4)
As mentioned in Chapter 2, while the axial displacement and torsional rotation can be interpolated by linear shape function (𝑁 1 and 𝑁 2 ), the transverse and rotational displacements must be interpolated by cubic or quadratic functions. The detailed expressions of these shape functions can be found in the work of Friedman & Kosmatka [START_REF] Friedman | An improved two-node timoshenko beam finite element[END_REF] or in Appendix 7.2.

Section kinematics

At sectional level, in each material points (or fiber) the displacement has 3 components, one axial 𝑈 and two transversal 𝑉 , 𝑊 gathered in a single vector d 𝑓 (𝑥, 𝑦, 𝑧). As mentioned in Chapter 1, the plane-section theory is insufficient to reproduce the complete sectional deformation under shear and torsional effects (Figure 3-4a). According to the proposition of Bairan & Mari [4], the material displacement field is decomposed into two domains:

a classical field describing the rigid body motion, consistent with the plan-section beam theory; and an enhanced field referring to warping-distortion phenomena (Figure 3-4b). Depending on the requirement, the enhanced material displacement vector d 𝑒 𝑓 (𝑥, 𝑦, 𝑧) may have one or three components : if only the warping phenomenon is taken into account, then only the axial displacement 𝑈 𝑒 is considered; otherwise, the two transversal displacements 𝑉 𝑒 and 𝑊 𝑒 in 𝑦 and 𝑧 direction are reserved for the distortion phenomenon. In the following the section kinematics will be described for the classical field, the enhanced field using Saint-Venant theory and the enhanced field using Lagrange polynomials.

d 𝑚 𝑓 (𝑥, 𝑦, 𝑧) = d 𝑝 𝑓 (𝑥, 𝑦, 𝑧)+d 𝑒 𝑓 (𝑥, 𝑦, 𝑧) = ⎛ ⎜ ⎜ ⎜ ⎝ 𝑈 𝑝 (𝑥, 𝑦, 𝑧) 𝑉 𝑝 (𝑥, 𝑦, 𝑧) 𝑊 𝑝 (𝑥, 𝑦, 𝑧) ⎞ ⎟ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎜ ⎝ 𝑈 𝑒 (𝑥, 𝑦, 𝑧) 𝑉 𝑒 (𝑥, 𝑦, 𝑧) 𝑊 𝑒 (𝑥, 𝑦, 𝑧) ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝑈 𝑚 (𝑥, 𝑦, 𝑧) 𝑉 𝑚 (𝑥, 𝑦, 𝑧) 𝑊 𝑚 (𝑥, 𝑦, 𝑧) ⎞ ⎟ ⎟ ⎟ ⎠ (3.5) Axial Bending Shear Torsion N N M M V V T T (a) U m f U e f U p f z x (b)

Classical field

The material displacement of classical field is related to the generalized displacements vector according to the following relation kinematic:

𝑈 𝑝 (𝑥, 𝑦, 𝑧) = 𝑢(𝑥) -𝑦𝜃 𝑧 (𝑥) + 𝑧𝜃 𝑦 (𝑥) 𝑉 𝑝 (𝑥, 𝑦, 𝑧) = 𝑣(𝑥) -𝑧𝜃 𝑥 (𝑥) 𝑊 𝑝 (𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃 𝑥 (𝑥) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ⇒ d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) = a 𝑝 𝑓 (𝑦, 𝑧)d 𝑠 (𝑥) (3.6)
with the expression of the section compatibility matrix:

a 𝑝 𝑓 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 𝑧 -𝑦 0 1 0 -𝑧 0 0 0 0 1 𝑦 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ (3.7)
The strains of any material point of the cross section are then evaluated with only three components considered in the sectional analysis as follows: one normal strain and two transverse strains collected in a single strain vector:

e 𝑝 𝑓 (𝑥, 𝑦, 𝑧) = (︁ 𝜀 𝑝 𝑥𝑥 𝛾 𝑝 𝑥𝑦 𝛾 𝑝 𝑥𝑧 )︁ 𝑇 (3.8)
with the assumption of small displacements, the material strains can be evaluated from first-order material displacement only:

𝜀 𝑝 𝑥𝑥 = 𝜕𝑈 𝑝 𝜕𝑥 = 𝜕𝑢 𝜕𝑥 -𝑦 𝜕𝜃 𝑧 𝜕𝑥 + 𝑧 𝜕𝜃 𝑦 𝜕𝑥 𝛾 𝑝 𝑥𝑦 = 𝜕𝑈 𝑝 𝜕𝑦 + 𝜕𝑉 𝑝 𝜕𝑥 = 𝜕𝑣 𝜕𝑥 -𝜃 𝑧 -𝑧 𝜕𝜃 𝑥 𝜕𝑥 𝛾 𝑝 𝑥𝑧 = 𝜕𝑈 𝑝 𝜕𝑧 + 𝜕𝑊 𝑝 𝜕𝑥 = 𝜕𝑤 𝜕𝑥 + 𝜃 𝑦 + 𝑦 𝜕𝜃 𝑥 𝜕𝑥 (3.9)
It is important to note that without this assumption of small displacements, second and third-order of derivation must be taken into account and the section kinematics become a non-linear geometric problem, which will be investigated in Chapter 6. This chapter deals only with the linear geometric condition with the following definitions of sectional strains according to Timoshenko beam theory: 𝜀 𝑥 (𝑥) = 𝜕𝑢(𝑥) 𝜕𝑥 is the axial strain, with the expression of the compatibility matrix a 𝑝 𝑓 (𝑦, 𝑧) is the same as in Equation (3.7) and the vector e 𝑠 (𝑥, 𝑦, 𝑧) is defined as the generalized strains:

𝛾 𝑦 (𝑥) = 𝜕𝑣(𝑥) 𝜕𝑥 -𝜃 𝑧 (𝑥)
e 𝑠 (𝑥) = (︁ 𝜀 𝑥 (𝑥) 𝛾 𝑦 (𝑥) 𝛾 𝑧 (𝑥) 𝜅 𝑥 (𝑥) 𝜅 𝑦 (𝑥) 𝜅 𝑧 (𝑥) )︁ 𝑇 (3.11)
It is interesting to note that, in the Euler-Bernoulli beam theory, the generalized shear strains are equal to zero because this theory does not take into account the shear effect. In the longitudinal stiffness method proposed by Bentz [12] in Section 2.4.3, the shear strain is defined initially as a function of the mean sectional shear deformation γ: 𝛾 𝑦/𝑧 = 𝑓 (𝑦/𝑧)γ. This proposition leads to a asymmetric sectional stiffness in the sectional state determination. The definition of generalized shear strain in Timoshenko beam theory can solve this problem of asymmetry, however it does not guarantee the longitudinal equilibrium at certain coordinates (𝑦, 𝑧) of the section [START_REF] Saritas | Mixed Formulation Frame Element for Shear Critical Steel and Reinforced Concrete Members[END_REF]. As a consequence, the correction parameters need to be introduced in order to describe the shear strain distribution over the cross-section. So, the expression of compatibility matrix a 𝑝 𝑓 (𝑦, 𝑧) in Equation (3.9) is rewritten as follows:

a 𝑝 𝑓 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 𝑧 -𝑦 0 𝑘 𝑦 𝑐 𝑦 (𝑦, 𝑧) 0 -𝑧 0 0 0 0 𝑘 𝑧 𝑐 𝑧 (𝑦, 𝑧) 𝑦 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ (3.12)
where 𝑘 𝑦 and 𝑘 𝑧 are the shear correction factors; 𝑐 𝑦 (𝑦, 𝑧) and 𝑐 𝑧 (𝑦, 𝑧) are the shear correction functions. In this present work, for rectangular cross-section of width 𝑏 and height ℎ in a linear elastic material, a parabola correction function is proposed (Figure 3-5) and the following correction factors and functions are defined: From this definition of generalized strains and the relation between the generalized displacements and the nodal displacements in Equation (3.2), the generalized strains can be determined from the nodal displacements by another matrix of shape functions:

𝑘 𝑦 = 5 6 ; 𝑐 𝑦 (𝑦, 𝑧) = 3 2𝑏 2 (𝑏 2 -4𝑦 2 ) 𝑘 𝑧 = 5 6 ; 𝑐 𝑧 (𝑦, 𝑧) = 3 2ℎ 2 (ℎ 2 -4𝑧 2 ) (3.13) h 0 γ(z) γ ( 
e 𝑠 (𝑥) = B 𝑠 (𝑥)q 𝑒 (3.14)
with the expression of B 𝑠 (𝑥) :

B 𝑠 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐵 1 0 0 0 0 0 𝐵 2 0 0 0 0 0 0 𝐵 3𝑦 0 0 0 𝐵 4𝑦 0 𝐵 5𝑦 0 0 0 𝐵 6𝑦 0 0 𝐵 3𝑧 0 -𝐵 4𝑧 0 0 0 𝐵 5𝑧 0 -𝐵 6𝑧 0 0 0 0 𝐵 1 0 0 0 0 0 𝐵 2 0 0 0 0 -𝐵 7𝑧 0 𝐵 8𝑧 0 0 0 -𝐵 9𝑧 0 𝐵 10𝑧 0 0 𝐵 7𝑦 0 0 0 𝐵 8𝑦 0 𝐵 9𝑦 0 0 0 𝐵 10𝑦 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.15)
The expression of shape functions 𝐵 𝑖 (𝑥) can be found in Appendix 7.2.

Enhanced field using Saint-Venant theory

In a frame-fiber model, according to the Saint-Venant theory of torsion [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF], the warping phenomenon is represented by a function 𝜓(𝑦, 𝑧) which describes the warping displacement profile over the cross-section and depends on the shape of cross-section [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF]. It is also assumed by Saint-Venant that the warping profile is considered constant along the element, and the normalized warping displacement is proportional to this warping function 𝜓(𝑦, 𝑧). Then, Saint-Venant theory is extended when the distribution of warping over the element length becomes variant and is represented by a parameter 𝛼(𝑥). As a consequence, the warping displacement is expressed proportional to the warping profile (i.e warping function) and the warping distribution:

𝑈 𝑒 (𝑥, 𝑦, 𝑧) = 𝛼(𝑥)𝜓(𝑦, 𝑧) (3.16)
In the case of solid cross-section, where the effect of warping is limited (but cannot be neglected), the warping is free and its distribution can be considered constant over the element length as mentioned in Saint-Venant theory. In this case, the warping distribution equals to the derivative of the twist angle: 𝛼(𝑥) = 𝛼 = 𝜕𝜃 𝑥 /𝜕𝑥 = 𝜅 𝑥 , and 𝜕𝛼/𝜕𝑥 = 0.

In the case of thin-walled cross-section, as the role of warping becomes important, the warping distribution is not constant anymore and depends on the cross-section's position.

Thus, Vlasov [START_REF] Vlasov | Thin Walled Elastic Beams[END_REF] proposed a new theory of torsion for thin-walled cross-sections with 𝛼(𝑥) = 𝜕𝜃 𝑥 /𝜕𝑥 and 𝜕𝛼/𝜕𝑥 ̸ = 0 . Consequently, an additional DoF needs to be added to consider the contribution of the derivative of parameter 𝛼(𝑥). Another torsional theory, proposed by Benscoter [START_REF] Benscoter | Theory of torsion bending for multicell beams[END_REF], defines that the warping distribution 𝛼 is independent of the torsional angle: 𝛼(𝑥) ̸ = 𝜕𝜃 𝑥 /𝜕𝑥. These two theories of torsion for thin-walled crosssections, can be compared as the analogy of two classical bending theory Navier-Bernoulli and Timoshenko. Vlasov's assumption of neglecting the shear warping deformation is compatible with neglecting the shear bending strain in the Navier-Bernoulli's theory, while Benscoter's assumption of incorporating shear warping deformation can be regarded similar to the Timoshenko's assumption of taking into account the shear bending strain.

In this work, as the shape of cross-section is rectangular, Saint-Venant theory can be used for the sake of simplicity, from Equation (3.6) and Equation (3.16), the total displacement field in Equation (3.5) becomes:

𝑈 𝑚 (𝑥, 𝑦, 𝑧) = 𝑢(𝑥) -𝑦𝜃 𝑧 (𝑥) + 𝑧𝜃 𝑦 (𝑥) + 𝜅 𝑥 𝜓(𝑦, 𝑧) 𝑉 𝑚 (𝑥, 𝑦, 𝑧) = 𝑣(𝑥) -𝑧𝜃 𝑥 (𝑥) 𝑊 𝑚 (𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃 𝑥 (𝑥) (3.17)
And the total material strains are expressed by:

𝜀 𝑚 𝑥𝑥 = 𝜕𝑈 𝑚 𝜕𝑥 = 𝜀 𝑥 -𝑦𝜅 𝑧 + 𝑧𝜅 𝑦 𝛾 𝑚 𝑥𝑦 = 𝜕𝑈 𝑚 𝜕𝑦 + 𝜕𝑉 𝑚 𝜕𝑥 = 𝛾 𝑦 -𝑧𝜅 𝑥 + 𝜕𝜓 𝜕𝑦 𝜅 𝑥 𝛾 𝑚 𝑥𝑧 = 𝜕𝑈 𝑚 𝜕𝑧 + 𝜕𝑊 𝑚 𝜕𝑥 = 𝛾 𝑧 + 𝑦𝜅 𝑥 + 𝜕𝜓 𝜕𝑧 𝜅 𝑥 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ⇒ e 𝑚 𝑓 = a 𝑚 𝑓 (𝑦, 𝑧)e 𝑠 (𝑥) (3.18)
with the new compatibility matrix (taking into account the shear correction parameters):

a 𝑚 𝑓 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 𝑧 -𝑦 0 𝑘 𝑦 𝑐 𝑦 (𝑦, 𝑧) 0 -𝑧 + 𝜕𝜓 𝜕𝑦 0 0 0 0 𝑘 𝑧 𝑐 𝑧 (𝑦, 𝑧) 𝑦 + 𝜕𝜓 𝜕𝑧 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.19)
The expression of Saint-Venant warping function and its derivatives for the rectangular cross-section can be found in Section 4.1. It is important to note that in the case of a solid cross-section, this approach using Saint-Venant warping function maintains the element DoFs at 12, but can not take into account the distortion phenomenon.

Enhanced field using Lagrange polynomials

As mentioned above, according to Saint-Venant theory the warping displacement is proportional to two parameters: the warping function 𝜓(𝑦, 𝑧) representing the warping profile over the cross-section and the parameter 𝛼(𝑥) representing the warping distribution along the element axis. In other words, the warping displacement is a multiplication of the warping profile and the warping distribution. In 2012, Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] proposed a new way to interpolate these two parameters, rather than using the Saint-Venant warping function In order to interpolate these enhanced displacement values to the enhanced displacement of any material point, the Lagrange polynomials are defined for the interpolation functions of the warping distribution and the warping profile. The reason for this choice is that the Lagrange polynomials are continuously differentiable, so they respond to the requirement to evaluate the material strain, as shown in Equation (3.18), similar to the Saint-Venant warping function. Moreover, Lagrange polynomials are applicable to any shape of section and any material response, thus they are general enough for further studies to be carried out.

The distribution of warping displacement is defined over a grid of 𝑛 𝑤 points along the element axis and is described with 1D interpolation function 𝐿 𝑖 (𝑥). The degree of interpolation function depends on the number of interpolation points 𝑛 𝑤 : quadratic if 345678). The warping profile is defined by a grid of 𝑠 𝑤 points distributed over the section 𝑖 and is described using the 2D interpolation function 𝑆 𝑗𝑘 (𝑦, 𝑧). This 2D interpolation function can be achieved by simple products of 1D Lagrange polynomials in the two coordinates (Figure 3456789). At section 𝑖, each interpolation point is accompanied by its 2D Lagrange polynomials 𝑆 𝑗𝑘 (𝑦, 𝑧), this results in a total of 𝑠 𝑤 2D polynomials over the cross-section. 

𝑛 𝑤 = 3, cubic if 𝑛 𝑤 = 4 or even quartic if 𝑛 𝑤 = 5 (Figure

Interpolation of enhanced material displacement

Using the system above, at interpolated section 𝑥 𝑖 , the enhanced material displacement are defined as follows:

𝑈 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = 𝑠𝑤 ∑︁ 𝑗𝑘=1 𝑆 𝑗𝑘 (𝑦, 𝑧)𝑈 𝑒 𝑖𝑗𝑘 = S(𝑦, 𝑧)U 𝑒 𝑖 (3.20a) 𝑉 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = 𝑠𝑤 ∑︁ 𝑗𝑘=1 𝑆 𝑗𝑘 (𝑦, 𝑧)𝑉 𝑒 𝑖𝑗𝑘 = S(𝑦, 𝑧)V 𝑒 𝑖 (3.20b) 𝑊 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = 𝑠𝑤 ∑︁ 𝑗𝑘=1 𝑆 𝑗𝑘 (𝑦, 𝑧)𝑊 𝑒 𝑖𝑗𝑘 = S(𝑦, 𝑧)W 𝑒 𝑖 (3.20c) where S(𝑦, 𝑧) = (︁ 𝑆 1 . . . 𝑆 𝑗𝑘 . . . 𝑆 𝑠𝑤 )︁ is a row vector of 𝑠 𝑤 columns (1×𝑠 𝑤 ) containing the 2D interpolation functions of each interpolation point; U 𝑒 𝑖 = (︁ 𝑈 𝑒 𝑖1 . . . 𝑈 𝑒 𝑖𝑗𝑘 . . . 𝑈 𝑒 𝑖𝑠𝑤 )︁ 𝑇
is a column vector (𝑠 𝑤 × 1) containing the axial enhanced displacement values at section 𝑖; similar definition can be applied for 2 vectors V 𝑒 𝑖 and W 𝑒 𝑖 . Then, the enhanced material displacement at any points of element can be expressed as: 

𝑈 𝑒 (𝑥, 𝑦, 𝑧) = 𝑛𝑤 ∑︁ 𝑖=1 𝐿 𝑖 (𝑥)𝑈 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)U 𝑒 (3.21a) 𝑉 𝑒 (𝑥, 𝑦, 𝑧) = 𝑛𝑤 ∑︁ 𝑖=1 𝐿 𝑖 (𝑥)𝑉 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)V 𝑒 (3.21b) 𝑊 𝑒 (𝑥, 𝑦, 𝑧) = 𝑛𝑤 ∑︁ 𝑖=1 𝐿 𝑖 (𝑥)𝑊 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)W 𝑒 (3.
Ŝ(𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ S(𝑦, 𝑧) 0 𝑠𝑤 . . . 0 𝑠𝑤 0 𝑠𝑤 S(𝑦, 𝑧) . . . 0 𝑠𝑤 . . . . . . . . . . . . 0 𝑠𝑤 0 𝑠𝑤 . . . S(𝑦, 𝑧) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.22)

Derivation of enhanced material strain

From the definition of enhanced displacements field, a complete strain state of 6 components for the enhanced material strains can be established as follows:

𝜀 𝑒 𝑥𝑥 = 𝜕𝑈 𝑒 𝜕𝑥 = 𝜕 L(𝑥) 𝜕𝑥 Ŝ(𝑦, 𝑧)U 𝑒 (3.23a) 𝜀 𝑒 𝑦𝑦 = 𝜕𝑉 𝑒 𝜕𝑦 = L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑦 V 𝑒 (3.23b) 𝜀 𝑒 𝑧𝑧 = 𝜕𝑊 𝑒 𝜕𝑧 = L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑧 W 𝑒 (3.23c) 𝛾 𝑒 𝑥𝑦 = 𝜕𝑈 𝑒 𝜕𝑦 + 𝜕𝑉 𝑒 𝜕𝑥 = L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑦 U 𝑒 + 𝜕 L(𝑥) 𝜕𝑥 Ŝ(𝑦, 𝑧)V 𝑒 (3.23d) 𝛾 𝑒 𝑥𝑧 = 𝜕𝑈 𝑒 𝜕𝑧 + 𝜕𝑊 𝑒 𝜕𝑥 = L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑧 U 𝑒 + 𝜕 L(𝑥) 𝜕𝑥 Ŝ(𝑦, 𝑧)W 𝑒 (3.23e) 𝛾 𝑒 𝑦𝑧 = 𝜕𝑉 𝑒 𝜕𝑧 + 𝜕𝑊 𝑒 𝜕𝑦 = L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑧 V 𝑒 + L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑦 W 𝑒 (3.23f)
Three column vectors U 𝑒 , V 𝑒 and W 𝑒 can be grouped in only one column vectors Where the expression of the enhanced compatibility matrix a 𝑒 𝑓 * (𝑥, 𝑦, 𝑧) is quite complex:

d 𝑒 = (︁ U 𝑒𝑇 V 𝑒𝑇 W 𝑒𝑇 )︁ 𝑇 of (3.𝑛 𝑤 .𝑠 𝑤 × 1 
a 𝑒 𝑓 * (𝑥, 𝑦, 𝑧) = 𝜕L * (𝑥) 𝜕𝑥 S * 𝑥 (𝑦, 𝑧) + L * (𝑥)S * 𝑦𝑧 (𝑦, 𝑧) (3.25) 
where L * (𝑥) is a longitudinal interpolation matrix of (6 × 6.3.𝑛 𝑤 ), containing the 1D Lagrange polynomial at section 𝑖:

L * (𝑥) = [︁ L * 1 (𝑥) . . . L * 𝑖 (𝑥) . . . L * 𝑛𝑤 (𝑥) ]︁
and 

L 𝑖 (𝑥) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐿 𝑖 (𝑥) 0 . . . 0 𝐿 𝑖 (𝑥) 0 . . . 0 𝐿 𝑖 (𝑥) 0 . . . 0 0 𝐿 𝑖 (𝑥) . . . 0 0 𝐿 𝑖 (𝑥) . . . 0 
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (3.26)
The sectional interpolation matrices S * 𝑥 (𝑦, 𝑧) has 6.3.𝑛 𝑤 rows and 3.𝑠 𝑤 .𝑛 𝑤 columns:

S * 𝑥 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Ŝ* 𝑥 (𝑦, 𝑧) 0 𝑤 . . . 0 𝑤 0 𝑤 Ŝ* 𝑥 (𝑦, 𝑧) . . . 0 𝑤 . . . . . . . . . . . . 0 𝑤 0 𝑤 . . . Ŝ* 𝑥 (𝑦, 𝑧) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and Ŝ* 𝑥 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎣ S 𝑢 𝑥 * (𝑦, 𝑧) 0 6𝑠𝑤 0 6𝑠𝑤 0 6𝑠𝑤 S 𝑣 𝑥 * (𝑦, 𝑧) 0 6𝑠𝑤 0 6𝑠𝑤 0 6𝑠𝑤 S 𝑤 𝑥 * (𝑦, 𝑧) ⎤ ⎥ ⎥ ⎥ ⎦ (3.27)
where 0 𝑤 is a zero matrix of (18 × 3.𝑠 𝑤 ); 0 6𝑠𝑤 is a zero matrix of ( 6 

S 𝑢 𝑥 * (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ S(𝑦, 𝑧) 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; S 𝑣 𝑥 * (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 S(𝑦, 𝑧) 0 𝑠𝑤 0 𝑠𝑤 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; S 𝑤 𝑥 * (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 S(𝑦, 𝑧) 0 𝑠𝑤 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; (3.28)
Similar to the sectional interpolation matrices S * 𝑦𝑧 (𝑦, 𝑧):

S * 𝑦𝑧 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Ŝ* 𝑦𝑧 (𝑦, 𝑧) 0 𝑤 . . . 0 𝑤 0 𝑤 Ŝ* 𝑦𝑧 (𝑦, 𝑧) . . . 0 𝑤 . . . . . . . . . . . . 0 𝑤 0 𝑤 . . . Ŝ* 𝑦𝑧 (𝑦, 𝑧) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; and Ŝ* 𝑦𝑧 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎣ S 𝑢* 𝑦𝑧 (𝑦, 𝑧) 0 6𝑠𝑤 0 6𝑠𝑤 0 6𝑠𝑤 S 𝑣* 𝑦𝑧 (𝑦, 𝑧) 0 6𝑠𝑤 0 6𝑠𝑤 0 6𝑠𝑤 S 𝑤* 𝑦𝑧 (𝑦, 𝑧) ⎤ ⎥ ⎥ ⎥ ⎦ (3.29)
with S 𝑢* 𝑦𝑧 (𝑦, 𝑧), S 𝑣* 𝑦𝑧 (𝑦, 𝑧) and S 𝑤* 𝑦𝑧 (𝑦, 𝑧) are three matrices of (6 × 𝑠 𝑤 ) containing the derivation with respect to 𝑦 and 𝑧 of the row vector S(𝑦, 𝑧) in Equation (3.20) and the zero row vector of 𝑠 𝑤 columns:

S 𝑢* 𝑦𝑧 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 𝜕 S(𝑦, 𝑧) 𝜕𝑦 𝜕 S(𝑦, 𝑧) 𝜕𝑧 0 𝑠𝑤 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; S 𝑣* 𝑦𝑧 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝑠𝑤 𝜕 S(𝑦, 𝑧) 𝜕𝑦 0 𝑠𝑤 0 𝑠𝑤 0 𝑠𝑤 𝜕 S(𝑦, 𝑧) 𝜕𝑧 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; S 𝑤* 𝑦𝑧 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝑠𝑤 0 𝑠𝑤 𝜕 S(𝑦, 𝑧) 𝜕𝑧 0 𝑠𝑤 0 𝑠𝑤 𝜕 S(𝑦, 𝑧) 𝜕𝑦 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.30)
The superposition of enhanced material strain in Equation (3.23) into classical material strain gives the following kinematic relation:

e 𝑚 𝑓 * (𝑥, 𝑦, 𝑧) = a 𝑝 𝑓 * (𝑦, 𝑧)e 𝑠 (𝑥) + a 𝑒 𝑓 * (𝑥, 𝑦, 𝑧)d 𝑒 (3.31)
where e 𝑚 𝑓 * (𝑥, 𝑦, 𝑧) is the total material strain of six components, a 𝑝 𝑓 * (𝑦, 𝑧) is the classical compatibility matrix modified from the compatibility matrix in Equation (3.12):

a 𝑝 𝑓 * (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 𝑧 -𝑦 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑘 𝑦 𝑐 𝑦 (𝑦, 𝑧) 0 -𝑧 0 0 0 0 𝑘 𝑧 𝑐 𝑧 (𝑦, 𝑧) 𝑦 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.32)
Equation (3.31) relates the total material strain to the classical generalized strains and the enhanced displacement values. This kinematic relation is general and can be used to take into account the distortion and warping phenomenon. However, in this work, only the warping phenomenon is considered while the distortion is neglected. As a result, the enhanced displacement values in the transversal directions 𝑉 𝑒 𝑖𝑗𝑘 and 𝑊 𝑒 𝑖𝑗𝑘 become zero, and the enhanced strain state has only 3 components similar to the classical one. The kinematic relation in Equation (3.31) can be re-written as follows:

e 𝑚 𝑓 (𝑥, 𝑦, 𝑧) = a 𝑝 𝑓 (𝑦, 𝑧)e 𝑠 (𝑥) + a 𝑒 𝑓 (𝑥, 𝑦, 𝑧)U 𝑒 (3.33)
where the classical compatibility matrix a 𝑝 𝑓 (𝑦, 𝑧) is the same as in Equation (3.12); the total material strain e 𝑚 𝑓 (𝑥, 𝑦, 𝑧) is reduced from 6 to 3 components: 

𝜀 𝑚 𝑥𝑥 = 𝜀 𝑝 𝑥𝑥 + 𝜀 𝑒 𝑥𝑥 = 𝜀 𝑥 -𝑦𝜅 𝑧 + 𝑧𝜅 𝑦 + 𝜕 L(𝑥) 𝜕𝑥 Ŝ(𝑦, 𝑧)U 𝑒 (3.34a) 𝛾 𝑚 𝑥𝑦 = 𝛾 𝑝 𝑥𝑦 + 𝛾 𝑒 𝑥𝑦 = 𝛾 𝑦 -𝑧𝜅 𝑥 + L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑦 U 𝑒 (3.34b) 𝛾 𝑚 𝑥𝑧 = 𝛾 𝑝 𝑥𝑧 + 𝛾 𝑒 𝑥𝑧 = 𝛾 𝑧 + 𝑦𝜅 𝑥 + L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑧 U 𝑒 (3.

Variational formulation

Once the material strain vector e 𝑚 𝑓 is obtained at each material point, an appropriate behavior constitutive model is applied in order to determine the material stresses, which are collected in a single stress vector s 𝑚 𝑓 =

(︁ 𝜎 𝑚 𝑥𝑥 𝜏 𝑚 𝑥𝑦 𝜏 𝑚 𝑥𝑧 )︁ 𝑇
. This constitutive relation is expressed as follows:

𝛿s 𝑚 𝑓 = k 𝑓 𝛿e 𝑚 𝑓 (3.36)
where k 𝑓 is the material stiffness matrix, which is determined in Section 3.5.

Next, the element equilibrium is considered between internal and external potential energy. Let the element be subjected by a virtual displacement 𝛿𝑑, then the principle of virtual work gives an equation between internal and external energy:

𝛿W 𝑖 = 𝛿W 𝑒 ⇒ ∫︁ ∫︁ ∫︁ 𝑉 𝛿e 𝑚 𝑓 𝑇 s 𝑚 𝑓 𝑑𝑉 = 𝛿q 𝑚𝑇 𝑒 Q 𝑚 𝑒 + ∫︁ 𝐿 𝛿d 𝑚 𝑠 P 𝑚 𝑢 𝑑𝑥 (3.37)
where the internal virtual work is represented by the left-hand side, while the external virtual work is expressed by the right-hand; Q 𝑚 𝑒 is the external nodal forces and P 𝑚 𝑢 is the external uniform loading. Depending on the approach of enhanced field, two different cases are investigated as follows:

Enhanced field using Saint-Venant warping function

The left-hand side of Equation (3.37) represents the equilibrium conditions at sectional level. Using Equation (3.18), the variation of internal work can be expressed as follows:

𝛿W 𝑖 = ∫︁ ∫︁ ∫︁ 𝑉 𝛿e 𝑚 𝑓 𝑇 s 𝑚 𝑓 𝑑𝑉 = ∫︁ ∫︁ ∫︁ 𝑉 𝛿e 𝑇 𝑠 (𝑥)a 𝑚 𝑓 𝑇 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝑉 (3.38)
As the term 𝛿e 𝑠 (𝑥) is a function of the cross-section coordinate 𝑥 and a 𝑚 𝑓 (𝑦, 𝑧) 𝑇 s 𝑚 𝑓 is a function of the fiber coordinates 𝑦 and 𝑧, the variation of virtual internal work can be decomposed into an integral over the element length and another over the cross-section area:

𝛿W 𝑖 = ∫︁ 𝐿 𝛿e 𝑇 𝑠 (𝑥) (︂∫︁ ∫︁ 𝐴 a 𝑚 𝑓 𝑇 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝐴 )︂ 𝑑𝑥 (3.39)
At sectional level, the generalized stresses (or sectional forces) can be defined as an integral over the cross-section area of the stress field:

D 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 a 𝑚 𝑓 (𝑦, 𝑧) 𝑇 s 𝑚 𝑓 𝑑𝐴 (3.40)
By exploiting the expression of a 𝑚 𝑓 (𝑦, 𝑧) in Equation (3.19) and s 𝑚 𝑓 , we obtain, in an explicit manner, a vector of sectional forces containing 6 components:

D 𝑠 (𝑥) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑁 𝑥 𝑉 𝑦 𝑉 𝑧 𝑀 𝑥 𝑀 𝑦 𝑀 𝑧 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫︁ ∫︁ 𝐴 𝜎 𝑥𝑥 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝑘 𝑦 𝑐 𝑦 (𝑦, 𝑧)𝜏 𝑥𝑦 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝑘 𝑧 𝑐 𝑧 (𝑦, 𝑧)𝜏 𝑥𝑧 𝑑𝐴 ∫︁ ∫︁ 𝐴 [︂(︂ 𝑦 + 𝜕𝜓 𝜕𝑧 )︂ 𝜏 𝑥𝑧 - (︂ 𝑧 - 𝜕𝜓 𝜕𝑦 )︂ 𝜏 𝑥𝑦 ]︂ 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝑧𝜎 𝑥𝑥 𝑑𝐴 - ∫︁ ∫︁ 𝐴 𝑦𝜎 𝑥𝑥 𝑑𝐴 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (3.41)
As we see, all the internal actions can be determined from the stress resultants. We can observe that the expression of the internal torsional moment 𝑀 𝑥 has been enhanced by the introduction of the warping function 𝜓, which will affect the values of the twist 𝜅 𝑥 and the twist angle 𝜃 𝑥 , consequently. Equation (3.40) can be re-written with the aid of the constitutive relation in Equation (3.36):

D 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 a 𝑚 𝑓 𝑇 (𝑦, 𝑧)k 𝑓 e 𝑚 𝑓 𝑑𝐴 = (︂∫︁ ∫︁ 𝐴 a 𝑚 𝑓 𝑇 (𝑦, 𝑧)k 𝑓 a 𝑚 𝑓 (𝑦, 𝑧)𝑑𝐴
)︂ e 𝑠 (𝑥) (3.42) the sectional stiffness matrix can thus be defined as follows:

K 𝑠 = ∫︁ ∫︁ 𝐴 a 𝑚 𝑓 𝑇 (𝑦, 𝑧)k 𝑓 a 𝑚 𝑓 (𝑦, 𝑧)𝑑𝐴 (3.43)
Therefore, the equilibrium at sectional level between the generalized stresses and the generalized strain can be expressed as follows:

𝛿D 𝑠 (𝑥) = K 𝑠 𝛿e 𝑠 (𝑥) (3.44)

Element state determination

The right-hand side of Equation (3.37) can be exploited with the aid of Equation (3.2) as follows:

𝛿W 𝑒 = 𝛿q 𝑇 𝑒 Q 𝑒 + ∫︁ 𝐿 𝛿d 𝑇 𝑠 P 𝑢 𝑑𝑥 = 𝛿q 𝑇 𝑒 Q 𝑒 + ∫︁ 𝐿 𝛿q 𝑇 𝑒 N 𝑇 𝑠 P 𝑑 𝑢 𝑥 = 𝛿q 𝑇 𝑒 (︂ Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 )︂ (3.45)
Hence, the virtual work equilibrium from Equation (3.37) has now become:

∫︁ 𝐿 𝛿e 𝑇 𝑠 D 𝑠 𝑑𝑥 = 𝛿q 𝑇 𝑒 (︂ Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 )︂ (3.46)
Using the relation from Equation (3.14) and (3.44), we obtain:

𝛿q 𝑇 𝑒 (︂∫︁ 𝐿 B 𝑇 𝑠 K 𝑠 B 𝑠 𝑑𝑥 )︂ q 𝑒 = 𝛿q 𝑇 𝑒 (︂ Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 )︂ ⇒ (︂∫︁ 𝐿 B 𝑇 𝑠 K 𝑠 B 𝑠 𝑑𝑥 )︂ q 𝑒 = Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 (3.47)
The element stiffness matrix can be defined as:

K 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 K 𝑠 B 𝑠 𝑑𝑥 (3.48)
And the element equilibrium becomes:

K 𝑒 q 𝑒 = Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 (3.49) 
The element stiffness matrix K 𝑒 and the nodal forces Q 𝑒 are then assembled into the structure stiffness matrix and nodal forces vector using standard procedures of structural analysis. All the necessary equations for the element state determination are completed.

Enhanced field using Lagrange polynomials

While the number of DoFs in the latter approach is maintained at 12 for each element, in this approach, the number of DoFs increases considerably to 𝑛 𝑤 .𝑠 𝑤 (or 

𝛿W 𝑖 = ∫︁ 𝐿 𝛿e 𝑇 𝑠 (𝑥) (︂∫︁ ∫︁ 𝐴 a 𝑝 𝑓 𝑇 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝐴 )︂ 𝑑𝑥 + 𝛿U 𝑒𝑇 [︂∫︁ 𝐿 𝜕L 𝑇 (𝑥) 𝜕𝑥 (︂∫︁ ∫︁ 𝐴 S 𝑇 𝑥 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝐴 )︂ 𝑑𝑥 + ∫︁ 𝐿 L 𝑇 (𝑥) (︂∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝐴 )︂ 𝑑𝑥 ]︂ (3.51)
Corresponding to the sectional forces in Equation (3.40), the "basic" sectional forces in this approach can be defined as follows:

D 𝑏 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 a 𝑝 𝑓 (𝑦, 𝑧) 𝑇 s 𝑚 𝑓 𝑑𝐴 (3.52) 
This basic sectional forces can be expressed as a combination of the classical field and the enhanced one with the aid of the constitutive relation in Equation (3.36):

D 𝑏 𝑠 (𝑥) = (︂∫︁ ∫︁ 𝐴 a 𝑝𝑇 𝑓 (𝑦, 𝑧)k 𝑓 a 𝑝 𝑓 (𝑦, 𝑧)𝑑𝐴 )︂ e 𝑠 (𝑥) + [︂(︂∫︁ ∫︁ 𝐴 a 𝑝 𝑓 𝑇 (𝑦, 𝑧)k 𝑓 S 𝑥 (𝑦, 𝑧)𝑑𝐴 )︂ 𝜕L(𝑥) 𝜕𝑥 + (︂∫︁ ∫︁ 𝐴 a 𝑝 𝑓 𝑇 (𝑦, 𝑧)k 𝑓 S 𝑦𝑧 (𝑦, 𝑧)𝑑𝐴 )︂ L(𝑥) ]︂ U 𝑒 (3.53)
Due to the present of additional DoFs, the following additional sectional forces are also defined:

D 𝑎𝑥 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 S 𝑇 𝑥 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝐴 (3.54a) D 𝑎𝑦𝑧 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 (𝑦, 𝑧)s 𝑚 𝑓 𝑑𝐴 (3.54b)
which can also be exploited as follows:

D 𝑎𝑥 𝑠 (𝑥) = (︂∫︁ ∫︁ 𝐴 S 𝑇 𝑥 (𝑦, 𝑧)k 𝑓 a 𝑝 𝑓 𝑑𝐴 )︂ e 𝑠 (𝑥) + [︂(︂∫︁ ∫︁ 𝐴 S 𝑇 𝑥 (𝑦, 𝑧)k 𝑓 S 𝑥 (𝑦, 𝑧)𝑑𝐴 )︂ 𝜕L(𝑥) 𝜕𝑥 + (︂∫︁ ∫︁ 𝐴 S 𝑇 𝑥 (𝑦, 𝑧)k 𝑓 S 𝑦𝑧 (𝑦, 𝑧)𝑑𝐴 )︂ L(𝑥) ]︂ U 𝑒 (3.55a) D 𝑎𝑦𝑧 𝑠 (𝑥) = (︂∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 (𝑦, 𝑧)k 𝑓 a 𝑝 𝑓 𝑑𝐴 )︂ e 𝑠 (𝑥) + [︂(︂∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 (𝑦, 𝑧)k 𝑓 S 𝑥 (𝑦, 𝑧)𝑑𝐴 )︂ 𝜕L(𝑥) 𝜕𝑥 + (︂∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 (𝑦, 𝑧)k 𝑓 S 𝑦𝑧 (𝑦, 𝑧)𝑑𝐴 )︂ L(𝑥) ]︂ U 𝑒 (3.55b)
From these expressions of sectional forces, a system of 9 sectional stiffness matrices can be defined as follows:

K 𝑏𝑏 𝑠 = ∫︁ ∫︁ 𝐴 a 𝑝 𝑓 𝑇 k 𝑓 a 𝑝 𝑓 𝑑𝐴 (3.56a) K 𝑏𝑎𝑥 𝑠 = ∫︁ ∫︁ 𝐴 a 𝑝 𝑓 𝑇 k 𝑓 S 𝑥 𝑑𝐴 (3.56b) K 𝑏𝑎𝑦𝑧 𝑠 = ∫︁ ∫︁ 𝐴 a 𝑝 𝑓 𝑇 k 𝑓 S 𝑦𝑧 𝑑𝐴 (3.56c) K 𝑎𝑥𝑏 𝑠 = ∫︁ ∫︁ 𝐴 S 𝑇 𝑥 k 𝑓 a 𝑝 𝑓 𝑑𝐴 (3.56d) K 𝑎𝑥 𝑠 = ∫︁ ∫︁ 𝐴 S 𝑇 𝑥 k 𝑓 S 𝑥 𝑑𝐴 (3.56e) K 𝑎𝑥𝑦𝑧 𝑠 = ∫︁ ∫︁ 𝐴 S 𝑇 𝑥 k 𝑓 S 𝑦𝑧 𝑑𝐴 (3.56f) K 𝑎𝑦𝑧𝑏 𝑠 = ∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 k 𝑓 a 𝑝 𝑓 𝑑𝐴 (3.56g) K 𝑎𝑦𝑧𝑥 𝑠 = ∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 k 𝑓 S 𝑥 𝑑𝐴 (3.56h) K 𝑎𝑦𝑧 𝑠 = ∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 k 𝑓 S 𝑦𝑧 𝑑𝐴 (3.56i)
The expression of the variation of internal virtual work in Equation (3.50) can be rewritten as follows:

𝛿W 𝑖 = ∫︁ 𝐿 𝛿e 𝑇 𝑠 (𝑥)D 𝑏 𝑠 (𝑥)𝑑𝑥 + (︂∫︁ 𝐿 𝜕L 𝑇 (𝑥) 𝜕𝑥 D 𝑎𝑥 𝑠 (𝑥)𝑑𝑥 + ∫︁ 𝐿 L 𝑇 (𝑥)D 𝑎𝑦𝑧 𝑠 (𝑥)𝑑𝑥 )︂ 𝛿d 𝑒𝑇 (3.57)

Element state determination

The right-hand side of Equation (3.37) is expressed as:

𝛿W 𝑒 = 𝛿q 𝑚𝑇 𝑒 Q 𝑚 𝑒 + ∫︁ 𝐿 𝛿d 𝑚 𝑠 𝑇 (𝑥)P 𝑚 𝑢 𝑑𝑥 (3.58)
where the nodal displacements q 𝑚 𝑒 is expressed as: 

q 𝑚 𝑒 = ⎛ ⎝ q 𝑒 U 𝑒 ⎞ ⎠ ,
d 𝑚 𝑠 (𝑥) = ⎛ ⎝ d 𝑠 (𝑥) d 𝑒 𝑠 (𝑥) ⎞ ⎠ , Q 𝑚 𝑒 = ⎛ ⎝ Q 𝑒 Q 𝑒 𝑒 ⎞ ⎠ , P 𝑚 𝑢 = ⎛ ⎝ P 𝑢 P 𝑒 𝑢 ⎞
⎠ . Since all the sections are assumed free to warp, the additional forces (or warping forces in the case that only warping is taken into account)

Q 𝑒 𝑒 and P 𝑒 𝑢 are zero to ensure the condition of element equilibrium. Using Equation (3.57) and (3.58), the basic part of the element equilibrium can be expressed as follows: 

∫︁ 𝐿 𝛿e 𝑇 𝑠 (𝑥)D 𝑏 𝑠 (𝑥)𝑑𝑥 = 𝛿q 𝑇 𝑒 Q 𝑒 + ∫︁ 𝐿 𝛿d 𝑇 𝑠 (𝑥)P 𝑢 𝑑𝑥 (3.
∫︁ 𝐿 𝛿q 𝑇 𝑒 B 𝑇 𝑠 D 𝑏 𝑠 𝑑𝑥 = 𝛿q 𝑇 𝑒 Q 𝑒 + 𝛿q 𝑇 𝑒 ∫︁ 𝐿 𝛿N 𝑇 𝑠 P 𝑢 ⇒ ∫︁ 𝐿 B 𝑇 𝑠 D 𝑏 𝑠 𝑑𝑥 = Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P𝑑𝑥 (3.60)
Similarly for the additional part, from Equation (3.57) and (3.58):

(︂∫︁ 𝐿 𝜕L 𝑇 (𝑥) 𝜕𝑥 D 𝑎𝑥 𝑠 (𝑥)𝑑𝑥 + ∫︁ 𝐿 L 𝑇 (𝑥)D 𝑎𝑦𝑧 𝑠 (𝑥)𝑑𝑥 )︂ 𝛿U 𝑒𝑇 = 0 ⇒ ∫︁ 𝐿 𝜕L(𝑥) 𝜕𝑥 D 𝑎𝑥 𝑠 (𝑥)𝑑𝑥 + ∫︁ 𝐿 L(𝑥)D 𝑎𝑦𝑧 𝑠 (𝑥)𝑑𝑥 = 0 (3.61)
Finally, from 2 equations (3.60) and (3.61), the right-hand side of Equation (3.37) can 94 be expressed as follows:

⎡ ⎣ K 𝑏𝑏 𝑒 K 𝑏𝑎 𝑒 K 𝑎𝑏 𝑒 K 𝑎𝑎 𝑒 ⎤ ⎦ ⎛ ⎝ q 𝑒 U 𝑒 ⎞ ⎠ = ⎛ ⎜ ⎝ Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 0 ⎞ ⎟ ⎠ (3.62)
where the matrix components are constructed from the interpolation functions and the sectional stiffness matrix in Equation (3.56):

K 𝑏𝑏 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 K 𝑏𝑏 𝑠 B 𝑠 𝑑𝑥 K 𝑏𝑎 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 (︂ K 𝑏𝑎𝑥 𝑠 𝜕L(𝑥) 𝜕𝑥 + K 𝑏𝑎𝑦𝑧 𝑠 L(𝑥) )︂ 𝑑𝑥 K 𝑎𝑏 𝑒 = ∫︁ 𝐿 (︂ 𝜕L(𝑥) 𝑇 𝜕𝑥 K 𝑏𝑎𝑥 𝑠 + L(𝑥) 𝑇 K 𝑏𝑎𝑦𝑧 𝑠 )︂ B 𝑠 𝑑𝑥 K 𝑎𝑎 𝑒 = ∫︁ 𝐿 𝜕L(𝑥) 𝑇 𝜕𝑥 (︂ K 𝑎𝑥 𝑠 𝜕L(𝑥) 𝜕𝑥 + K 𝑎𝑏𝑦𝑧 𝑠 L(𝑥) )︂ 𝑑𝑥 + ∫︁ 𝐿 L(𝑥) 𝑇 (︂ K 𝑎𝑦𝑧𝑥 𝑠 𝜕L(𝑥) 𝜕𝑥 + K 𝑎𝑦𝑧 𝑠 L(𝑥) )︂ 𝑑𝑥 (3.63)
A static condensation is applied in order to obtain the final expression of equilibrium conditions at element level, from Equation (3.62) the enhanced displacement values can be evaluated as follows:

K 𝑎𝑏 𝑒 q 𝑒 + K 𝑎𝑎 𝑒 U 𝑒 = 0 ⇒ U 𝑒 = -(K 𝑎𝑎 𝑒 ) -1 K 𝑎𝑏 𝑒 q 𝑒 (3.64)
As a result:

K 𝑏𝑏 𝑒 q 𝑒 + K 𝑏𝑎 𝑒 U 𝑒 = Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 K 𝑏𝑏 𝑒 q 𝑒 -K 𝑏𝑎 𝑒 (K 𝑎𝑎 𝑒 ) -1 K 𝑎𝑏 𝑒 q 𝑒 = Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 ⇒ K 𝑒 q 𝑒 = Q 𝑒 + ∫︁ 𝐿 N 𝑇 𝑠 P 𝑢 𝑑𝑥 (3.65)
with the expression of the element stiffness matrix as follows:

K 𝑒 = K 𝑏𝑏 𝑒 -K 𝑏𝑎 𝑒 (K 𝑎𝑎 𝑒 ) -1 K 𝑎𝑏 𝑒 (3.66)

Orthogonality condition

The rigid body movements are described by the displacement vector d 𝑝 𝑓 (𝑥, 𝑦, 𝑧), consisted to the generalized displacements d 𝑠 (𝑥). When the displacement field is enhanced with d 𝑒 𝑓 (𝑥, 𝑦, 𝑧), this vector can reproduce a new generalized field that coincides with the previous one. In other words, the generalized displacements field can be reproduced by both the classical plane-section field and the enhanced warping-distortion field, and consequently create a field of redundancy on the total displacement, which does not guarantee a unique displacement solution [3]. In order to avoid this possible redundancy, the enhanced displacement field d 𝑒 𝑓 (𝑥, 𝑦, 𝑧) must be free of rigid body mode, or orthogonal to the classical displacement vector d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) in other words (Figure 3-10).

Figure 3-10 -Orthogonality condition of displacement field [3].

Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] used a projection matrix P 𝑟 to enforce the orthogonality of the sectional interpolation functions 𝑆 𝑗𝑘 (𝑦, 𝑧) to the classical field d 𝑝 𝑓 (𝑥, 𝑦, 𝑧). This matrix is constructed from two other matrices: a matrix R consists of three vectors describing each rigid body mode of the section plane, and a matrix V which is defined as the product of the classical displacements d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) with the vector of sectional interpolation functions Ŝ(𝑦, 𝑧). The new expressions have been obtained for Ŝ(𝑦, 𝑧) and the sectional forces in equation 3.54:

S(𝑦, 𝑧) = P 𝑟 Ŝ(𝑦, 𝑧) (3.67a) D𝑎𝑥 𝑠 (𝑥) = P 𝑟 D 𝑎𝑥 𝑠 (𝑥) (3.67b) D𝑎𝑦𝑧 𝑠 (𝑥) = P 𝑟 D 𝑎𝑦𝑧 𝑠 (𝑥) (3.67c)
In our model, we use the method proposed by Capdevielle [START_REF] Capdevielle | Introduction du gauchissement dans les ments finis multifibres pour la modsation non linre des structures en bn arm[END_REF] which is based on the suggestion of Le Corvec, but allows to modify directly the expression of sectional interpolation functions 𝑆 𝑗𝑘 (𝑦, 𝑧) without using the projection matrix P 𝑟 , thus reduce the complexity and the calculation cost. This method is originally developed only for the warping field and then extended to the distortion field by the authors. For the warping, only the axial component 𝑈 𝑒 of enhanced field is considered. Knowing that the axial component 𝑈 𝑝 of classical field is generated by a basic set (1, 𝑦, 𝑧), the projection of sectional interpolation functions 𝑆 𝑗𝑘 (𝑦, 𝑧) on the orthogonal space to 𝑈 𝑝 gives the following new expression of 𝑆 𝑗𝑘 (𝑦, 𝑧):

S𝑈 𝑗𝑘 (𝑦, 𝑧) = 𝑆 𝑗𝑘 (𝑦, 𝑧) - ∫︁ ∫︁ 𝐴 𝑆 𝑗𝑘 (𝑦, 𝑧) (︂ 1 𝑎 1 𝑦 𝑎 2 𝑧 𝑎 3 )︂ 𝑑𝐴 ⎛ ⎜ ⎜ ⎜ ⎝ 1 𝑦 𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ (3.68)
with the following definition of the constants 𝑎 𝑖 :

𝑎 1 = ∫︁ ∫︁ 𝐴 𝑑𝐴; 𝑎 2 = ∫︁ ∫︁ 𝐴 𝑦 2 𝑑𝐴; 𝑎 3 = ∫︁ ∫︁ 𝐴 𝑧 2 𝑑𝐴; (3.69)
The 

S𝑉 𝑗𝑘 (𝑦, 𝑧) = 𝑆 𝑗𝑘 (𝑦, 𝑧) - ∫︁ ∫︁ 𝐴 𝑆 𝑗𝑘 (𝑦, 𝑧) (︂ 1 𝑎 1 𝑧 𝑎 3 )︂ 𝑑𝐴 ⎛ ⎝ 1 𝑧 ⎞ ⎠ (3.71a) S𝑊 𝑗𝑘 (𝑦, 𝑧) = 𝑆 𝑗𝑘 (𝑦, 𝑧) - ∫︁ ∫︁ 𝐴 𝑆 𝑗𝑘 (𝑦, 𝑧) (︂ 1 𝑎 1 𝑦 𝑎 2 )︂ 𝑑𝐴 ⎛ ⎝ 1 𝑦 ⎞ ⎠ (3.71b)
and the expression of their derivation with respect to 𝑦 and 𝑧: 

Solution scheme

The present FE formulation is programmed using Matlab according to the solution schemes illustrated in Figure 3-11. 

Regional constitutive model for RC members

In the model formulation described above, the determination of the constitutive relationship between the stress and the strain in Equation (3.36) requires to define an adequate constitutive equation and material law. The consistent constitutive model must be able to represent the typical effects of RC members such as the cracking, the stress-stiffening effect or the compression softening effect due to transverse tensile strains. According to the section discretization as described in Section 3.1, in this Section the constitutive equations and the material laws for each discretized region will be described in detail.

The material stiffness matrix as well as the regional stiffness matrix

K 1𝐷 𝑠 , K 2𝐷 𝑠 or K 3𝐷
𝑠 are obtained as a result. Then, for the entire section, the sectional stiffness matrix in equation is obtained by summarizing all these regional stiffness matrices:

K 𝑠 = K 1𝐷 𝑠 + K 2𝐷 𝑠 + K 3𝐷 𝑠 (3.73)
The element stiffness matrix in Equation (3.48) can then be determined and assembled into the structural stiffness matrix.

1D-Zone

This region takes into account only the contribution of the longitudinal reinforcing steel (rebar), and the only stress accounted for is the axial component 𝜎 𝑥𝑥 , which can be easily computed from the axial strain using an uniaxial behavior law of steel. In this work, a bilinear elasto-plastic steel model is used in both compression and tension (Figure 3 -12).

sy f E p E = σ s ε s ± ε y ± ε s σ s 0 0 E 0 0 E Figure 3-12 -Stress-strain relationship for steel.
where 𝜀 𝑠 : steel's strain;

𝜎 𝑠 : steel's stress.

𝑓 𝑠𝑦 : steel's yield strength.

𝐸 𝑜 : elastic modulus of steel.

𝐸 𝑝 : plastic modulus of steel.

𝜀 𝑠𝑦 : steel's strain at yield.

The stress vector can be expressed by:

s 1𝐷 𝑓 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 1𝐷 𝑥𝑥 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝐸 𝑠 𝜀 𝑚 𝑥𝑥 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐸 𝑠 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 1𝐷 𝑥𝑥 𝛾 𝑥𝑦 𝛾 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ = k 1𝐷 𝑓 e 1𝐷 𝑓 (3.74)
Where 𝐸 𝑠 is the secant or tangent modulus of steel. From the material stiffness matrix k 1𝐷 𝑓 , the 1D-regional stiffness matrix K 1𝐷 𝑠 can then be determined using the kinematic condition in Equation (3.43).

2D-Zone

This region corresponds to the portion in which the transverse steel crosses in one direction and may also have the contribution of longitudinal reinforcement bars. In this 2D-zone, the constitutive behavior of materials is based on the original MCFT [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF] as described in Section 2.4.1.

Corresponding to the sectional analysis of a frame element, in which only warping phenomenon is taken into account and distortion of cross-section is neglected, the stress state of this zone has only two non-zero components instead of three: one axial and one transversal which correspond to the direction of stirrups. This results in a stress vector It's worth to note that, for a RC element, the contribution of transversal reinforcement is taken into account by considering a third stress component: 𝜎 𝑦𝑦 or 𝜎 𝑧𝑧 , depending on the direction of stirrups. This component must be considered firstly, and then will be imposed to zero in order to satisfy the internal transversal equilibrium of RC members without distortion. The stress vector to be considered in the element state therefore becomes

s 2𝐷 𝑓 -ℎ = (︁ 𝜎 𝑥𝑥 𝜏 𝑥𝑦 0 )︁ 𝑇 (in
s *2𝐷 𝑓 -ℎ = (︁ 𝜎 𝑥𝑥 𝜏 𝑥𝑦 0 𝜎 𝑦𝑦 0 0 )︁ 𝑇 or s *2𝐷 𝑓 -𝑣 = (︁ 𝜎 𝑥𝑥 0 𝜏 𝑥𝑧 0 𝜎 𝑧𝑧 0 )︁ 𝑇 .
For the sake of generality, the full stress vector for the following will take the expression of and must be determined in the process of satisfying the transversal equilibrium. However, they will not be taken into account in the sectional analysis thereafter, except for the distortion phenomenon.

s *2𝐷 𝑓 = (︁ 𝜎 𝑥𝑥 𝜏 𝑥𝑦 𝜏 𝑥𝑧 𝜎 𝑦𝑦 𝜎 𝑧𝑧 𝜏 𝑦𝑧 )︁ 𝑇 ,

In-plane frame system

Knowing that the original MCFT is designed for membrane members, it is practical to explore the constitutive formulation of this theory in an in-plane frame system of coordinate axes (𝑙, 𝑡) following the longitudinal and transversal direction (Figure 3-13).

For this, a change of reference is applied to transform the strain vector from the local frame system (𝑥, 𝑦, 𝑧) to the in-plane system (𝑙, 𝑡):

e *2𝐷 𝑖𝑝 = T 𝑖𝑝 e *2𝐷 𝑓 (3.75)
where 𝑖𝑝 is the index of parameters expressed in the in-plane system, T 𝑖𝑝 is the transformation matrix:

T 𝑖𝑝 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 0 0 0 0 0 cos 2 𝛼 sin 2 𝛼 sin 𝛼 cos 𝛼 0 cos 𝛼 sin 𝛼 0 0 0 0 0 0 sin 2 𝛼 cos 2 𝛼 -sin 𝛼 cos 𝛼 0 -sin 𝛼 cos 𝛼 0 0 0 0 0 0 -sin 2𝛼 sin 2𝛼 cos 2𝛼 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.76)
𝛼 is the rotation angle between the two frames whose value is either 0 for the 2D-horizontal zone or 𝜋 2 for the 2D-vertical one. As a consequence, the in-plane strain vector becomes:

e *2𝐷 𝑖𝑝-ℎ = (︁ 𝜀 𝑥𝑥 𝜀 𝑦𝑦 𝛾 𝑥𝑦 𝜀 𝑧𝑧 𝛾 𝑥𝑧 𝛾 𝑦𝑧 )︁ 𝑇 2D-horizontal (3.77a) e *2𝐷 𝑖𝑝-𝑣 = (︁ 𝜀 𝑥𝑥 𝜀 𝑧𝑧 𝛾 𝑥𝑧 𝜀 𝑦𝑦 -𝛾 𝑥𝑦 -𝛾 𝑦𝑧 )︁ 𝑇 2D-vertical (3.77b)
Only the first three components are considered in the in-plane coordinate system, the others are given a null value, so:

e 2𝐷 𝑖𝑝 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑙 𝜀 𝑡 𝛾 𝑙𝑡 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥𝑥 𝜀 𝑦𝑦 𝛾 𝑥𝑦 ⎞ ⎟ ⎟ ⎟ ⎠ (2D-horizontal) or ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥𝑥 𝜀 𝑧𝑧 𝛾 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ (2D-vertical) (3.78) 
Among these 3 in-plane strain components, 𝜀 𝑙 and 𝛾 𝑙𝑡 can be obtained from the kinematic condition in Equation (3.18), while 𝜀 𝑡 must be handled separately by satisfying the transversal equilibrium conditions. The determination of 𝜀 𝑡 as well as the transversal equilibrium follow an iterative process and will be described later. Corresponding to this strain vector, the in-plane stress vector has 3 components:

s 2𝐷 𝑖𝑝 = (︁ 𝜎 𝑙 𝜎 𝑡 𝜏 𝑙𝑡 )︁ 𝑇 .
The stress and strain vectors are related by an in-plane material stiffness matrix D 2𝐷 𝑖𝑝 :

s 2𝐷 𝑖𝑝 = D 2𝐷 𝑖𝑝 e 2𝐷 𝑖𝑝 (3.79)
The contribution of concrete and reinforcement are added separately to the material stiffness matrix and the stress vector of the in-plane frame (Figure 3-14):

s 2𝐷 𝑖𝑝 = s 2𝐷 𝑖𝑝,𝑐 + s 2𝐷 𝑖𝑝,𝑠 (3.80a) 
D 2𝐷 𝑖𝑝 = D 2𝐷 𝑖𝑝,𝑐 + D 2𝐷 𝑖𝑝,𝑠 (3.80b) 
where D 2𝐷 𝑖𝑝,𝑐 is the concrete stiffness matrix and D 2𝐷 𝑖𝑝,𝑠 is the stiffness matrix of reinforce-ment. While D 2𝐷 𝑖𝑝,𝑠 can be set up easily in the in-plane system, it's more convenient to express the concrete relation in principal directions of crack, as described in the original MCFT (Figure 3 A change of reference from principal direction to in-plane axes systems is therefore required as described in Equation (2.11), and Equation (3.80b) becomes:

D 2𝐷 𝑖𝑝 = T 2𝐷𝑇 𝑐 D 2𝐷 𝑝𝑟𝑖𝑛,𝑐 T 2𝐷 𝑐 + D 2𝐷 𝑖𝑝,𝑠 (3.81) 
Where T 2𝐷 𝑐 is the transformation matrix described in Equation (2.13). The direction of principal strains 𝜃 can be determined from the in-plane strain vector using Mohr's circle:

𝜃 = 1 2 arctan (︂ 𝛾 𝑙𝑡 𝜀 𝑙 -𝜀 𝑡 )︂ (3.82)
The concrete stiffness matrix in principal direction D 2𝐷 𝑝𝑟𝑖𝑛,𝑐 can be evaluated in secantstiffness based as described in Equation (2.12), or in tangent-based as described in Equation (2.14). The expression of D 2𝐷 𝑝𝑟𝑖𝑛,𝑐 depends on the stresses and strains of concrete in principal directions. The concrete strains 𝜀 1 and 𝜀 2 can be obtained from the in-plane concrete strain vector e 2𝐷 𝑖𝑝 and the transformation matrix T 2𝐷 𝑐 :

e 2𝐷 𝑝𝑟𝑖𝑛,𝑐 = (︁ 𝜀 1 𝜀 2 𝛾 12 )︁ 𝑇 = T 2𝐷 𝑐 e 2𝐷 𝑖𝑝 (3.83)
From theses principal strains, the concrete principal stresses 𝜎 1 and 𝜎 2 can be determined from the uniaxial stress-strain relation as described in Section 2.4. 

s 2𝐷 𝑝𝑟𝑖𝑛,𝑐 = D 2𝐷 𝑝𝑟𝑖𝑛,𝑐 e 2𝐷 𝑝𝑟𝑖𝑛,𝑐 (3.84) 
The in-plane stress vector of concrete in Equation (3.80a) can be obtained thanks to the hypothesis of same principal directions between strains and stresses:

s 2𝐷 𝑖𝑝,𝑐 = T 2𝐷𝑇 𝑐 s 2𝐷 𝑝𝑟𝑖𝑛,𝑐 (3.85) 
Considering the reinforcement's contribution, the steel stiffness matrix is expressed in the in-plane coordinate system:

D 2𝐷 𝑖𝑝,𝑠 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝜌 𝑠𝑙 𝐸 𝑠𝑙 0 0 0 𝜌 𝑠𝑡 𝐸 𝑠𝑡 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ (3.86)
where the modulus of longitudinal (transversal) reinforcement 𝐸 𝑠𝑙 (𝐸 𝑠𝑡 ) can be expressed in secant or tangent-based, using the in-plane strain components 𝜀 𝑙 (𝜀 𝑡 ) in Equation (3.78) and the steel behavior law in Figure 3-12; 𝜌 𝑠𝑙 and 𝜌 𝑠𝑡 are the reinforcement ratio in the in-plane directions 𝑙, 𝑡 respectively, which have been determined as follows:

𝜌 𝑠𝑙 = 𝐴 𝑠𝑙 𝐴 2𝐷 𝑐 (3.87a) 𝜌 𝑠𝑡 = 𝐴 𝑠𝑡 𝑃 𝑠𝑡 𝐴 2𝐷 𝑐 𝑠 (3.87b)
where 𝐴 𝑠𝑙 is the total area of longitudinal reinforcing steel situated in 2D-zone, 𝐴 2𝐷 𝑐 is the area of 2D-zone, 𝐴 𝑠𝑡 is the area of one leg of a transverse steel bar, 𝑃 𝑠𝑡 is the perimeter of the stirrup centerline in 2D-zone and 𝑠 denotes the average spacing of stirrups. It should be noted that the reinforcement percentages are evaluated with respect to the discretized cross-section area.

Transverse equilibrium

All the expression of constitutive equations above can not be determined without the inplane transverse strains 𝜀 𝑡 , which can be calculated by satisfying the condition of transverse equilibrium between concrete and stirrup at each material point. This condition is expressed by the following relation:

𝜌 𝑠𝑡 𝜎 𝑠𝑡 + (︀ 𝜎 1 sin 2 𝜃 + 𝜎 2 cos 2 𝜃 )︀ = 0 (3.88)
In other words, the transverse stress 𝜎 𝑡 of the in-plane stress vector s 2𝐷 𝑖𝑝 must be zero (regarding Equation (3.80a) and (3.85)). In order to satisfy this condition from unknown value of 𝜀 𝑡 , a numerical iterative process using Newton-Raphson method is carried out (Figure 3-15). The kinematic conditions in Section 3.2 and 3.3 give the components 𝜀 𝑙 and 𝛾 𝑙𝑡 of the in-plane strain vector e 2𝐷 𝑖𝑝 , while an initial value is given to the unknown transverse strain equal to that of previous iteration: 𝜀 𝑡 = 𝜀 𝑖-1 𝑡 . Then the constitutive equations above can be expressed to determine the in-plane stiffness matrix D 2𝐷 𝑖𝑝 and stresses s 2𝐷 𝑖𝑝 . Equation (3.79) gives: 

s 2𝐷 𝑖𝑝 = D 2𝐷 𝑖𝑝 e 2𝐷 𝑖𝑝 ⇔ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 𝑙 𝜎 𝑡 𝜏 𝑙𝑡 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,
⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑙 𝜀 𝑡 𝛾 𝑙𝑡 ⎞ ⎟ ⎟ ⎟ ⎠ (3.89)
By imposing 𝜎 𝑡 = 0, one obtains the following expression of 𝜀 𝑡 : (3.90) the difference between the value of 𝜀 𝑡 in Equation (3.90) will be compared to the initial value 𝜀 𝑖-1 𝑡 and the convergence is achieved when the control parameter

𝜀 𝑡 = - 𝐷 2𝐷 𝑖𝑝,21 𝜀 𝑙 + 𝐷 2𝐷 𝑖𝑝,23 𝛾 𝑙𝑡 𝐷 2𝐷 𝑖𝑝,22
⃦ ⃦ ⃦ ⃦ 𝜀 𝑡 -𝜀 𝑖-1 𝑡 𝜀 𝑖-1 𝑡 ⃦ ⃦ ⃦
⃦ is smaller than a specified tolerance.

Transformation to local frame system

After determining the transverse strains and stresses in the in-plane system following the equations above, another change of reference needs to be applied to transform the stress, strain vector and the stiffness matrix to the local frame system:

D 2𝐷 𝑓 = T 𝑇 𝑖𝑝 ⎡ ⎣ D 2𝐷 𝑖𝑝 0 3 0 3 0 3 ⎤ ⎦ T 𝑖𝑝 (3.91a) s *2𝐷 𝑓 = T 𝑇 𝑖𝑝 s *2𝐷 𝑖𝑝 (3.91b) s *2𝐷 𝑓 = D 2𝐷 𝑓 e *2𝐷 𝑓 (3.91c)
Where 0 3 is a (3 × 3) zero matrix, resulting from the exclusion of unnecessary strain components in Equation (3.77);

s *2𝐷 𝑖𝑝 = (︁ s 2𝐷𝑇 𝑖𝑝 0 0 0 )︁ 𝑇 is the full in-plane stress vector. 105 D 2 D f k n Process , l lt   i t  i  2 , , D i ip c D 2 ,
,s The 2D material stiffness matrix in Equation (3.91a) can be expressed as follows:

D i ip D 2 , D i ip D 0 i t   YES NO   2 D ip l t lt     e
0 i i t t         1 1 2 , 1 i D i i t ip t         D
D 2𝐷 𝑓 -ℎ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,11 𝐷 2𝐷 𝑖𝑝,13 0 𝐷 2𝐷 𝑖𝑝,12 0 0 𝐷 2𝐷 𝑖𝑝,31 𝐷 2𝐷 𝑖𝑝,33 0 𝐷 2𝐷 𝑖𝑝,32 0 0 0 0 0 0 0 0 𝐷 2𝐷 𝑖𝑝,21 𝐷 2𝐷 𝑖𝑝,23 0 𝐷 2𝐷 𝑖𝑝,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ or D 2𝐷 𝑓 -𝑣 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,11 0 𝐷 2𝐷 𝑖𝑝,13 0 𝐷 2𝐷 𝑖𝑝,12 0 0 0 0 0 0 0 𝐷 2𝐷 𝑖𝑝,31 0 𝐷 2𝐷 𝑖𝑝,33 0 𝐷 2𝐷 𝑖𝑝,32 0 0 0 0 0 0 0 𝐷 2𝐷 𝑖𝑝,21 0 𝐷 2𝐷 𝑖𝑝,23 0 𝐷 2𝐷 𝑖𝑝,22 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.92)
and the full stress vector:

s *2𝐷 𝑓 -ℎ = (︂ 𝜎 𝑥𝑥 𝜏 𝑥𝑦 0 𝜎 𝑦𝑦 0 0 )︂ 𝑇 = (︂ 𝜎 𝑙 𝜏 𝑙𝑡 0 𝜎 𝑡 0 0 )︂ 𝑇 s *2𝐷 𝑓 -𝑣 = (︂ 𝜎 𝑥𝑥 0 𝜏 𝑥𝑧 0 𝜎 𝑧𝑧 0 )︂ 𝑇 = (︂ 𝜎 𝑙 0 𝜏 𝑙𝑡 0 𝜎 𝑡 0 )︂ 𝑇 (3.93)
Knowing that 𝜎 𝑡 = 0 to satisfy the internal equilibrium above, the following static condensation can be established with the aid of Equation (3.91c), for the 2D-horizontal zone first:

⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 𝑦𝑦 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ 2𝐷 𝑓 -ℎ = ⎛ ⎜ ⎜ ⎜ ⎝ 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝐷 2𝐷 𝑖𝑝,21 𝜀 𝑥𝑥 + 𝐷 2𝐷 𝑖𝑝,23 𝛾 𝑥𝑦 + 𝐷 2𝐷 𝑖𝑝,22 𝜀 𝑦𝑦 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ ⇒ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑦𝑦 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ 2𝐷 𝑓 -ℎ = - 1 𝐷 2𝐷 𝑖𝑝,22 ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,21 𝐷 2𝐷 𝑖𝑝,23 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥𝑥 𝛾 𝑥𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎠ (3.94)
and for the 2D-vertical zone:

⎛ ⎜ ⎜ ⎜ ⎝ 0 𝜎 𝑧𝑧 0 ⎞ ⎟ ⎟ ⎟ ⎠ 2𝐷 𝑓 -𝑣 = ⎛ ⎜ ⎜ ⎜ ⎝ 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 0 𝐷 2𝐷 𝑖𝑝,21 𝜀 𝑥𝑥 + 𝐷 2𝐷 𝑖𝑝,23 𝛾 𝑥𝑧 + 𝐷 2𝐷 𝑖𝑝,22 𝜀 𝑧𝑧 0 ⎞ ⎟ ⎟ ⎟ ⎠ ⇒ ⎛ ⎜ ⎜ ⎜ ⎝ 0 𝜀 𝑧𝑧 0 ⎞ ⎟ ⎟ ⎟ ⎠ 2𝐷 𝑓 -𝑣 = - 1 𝐷 2𝐷 𝑖𝑝,22 ⎡ ⎢ ⎢ ⎢ ⎣ 0 0 0 𝐷 2𝐷 𝑖𝑝,21 0 𝐷 2𝐷 𝑖𝑝,23 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥𝑥 0 𝛾 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ (3.95)
Then, the stress vector s 2𝐷 𝑓 used in the sectional analysis can now be expressed as follows:

s 2𝐷 𝑓 -ℎ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 𝑥𝑥 𝜏 𝑥𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,11 𝐷 2𝐷 𝑖𝑝,13 0 𝐷 2𝐷 𝑖𝑝,31 𝐷 2𝐷 𝑖𝑝,33 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥𝑥 𝛾 𝑥𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎠ + ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,12 0 0 𝐷 2𝐷 𝑖𝑝,32 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑦𝑦 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ (3.96a) s 2𝐷 𝑓 -𝑣 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜎 𝑥𝑥 0 𝜏 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,11 0 𝐷 2𝐷 𝑖𝑝,13 0 0 0 𝐷 2𝐷 𝑖𝑝,31 0 𝐷 2𝐷 𝑖𝑝,33 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥𝑥 0 𝛾 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ + ⎡ ⎢ ⎢ ⎢ ⎣ 0 𝐷 2𝐷 𝑖𝑝,12 0 0 0 0 0 𝐷 2𝐷 𝑖𝑝,32 0 ⎤ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎝ 0 𝜀 𝑧𝑧 0 ⎞ ⎟ ⎟ ⎟ ⎠ (3.96b)
From Equation (3.94), (3.95) and (3.96), the following material constitutive relation can be obtained in 2D-zone:

s 2𝐷 𝑓 = k 2𝐷 𝑓 e 2𝐷 𝑓 (3.97)
with the expression of the material stiffness matrix: 

k 2𝐷 𝑓 -ℎ = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,11 𝐷 2𝐷 𝑖𝑝,13 0 𝐷 2𝐷 𝑖𝑝,31 𝐷 2𝐷 𝑖𝑝,33 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ - 1 𝐷 2𝐷 𝑖𝑝,22 ⎡ ⎢ ⎢ ⎢ ⎣ 𝐷 2𝐷 𝑖𝑝,
⎤ ⎥ ⎥ ⎥ ⎦ (3.98b)
Using Equation (3.43), the 2D-regional stiffness matrix K 2𝐷 𝑠 can then be determined from the material stiffness matrix k 2𝐷

𝑓 . An algorithm for determining the material stiffness matrix of 2D-zone k 2𝐷

𝑓 is shown in Figure 3-16.
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3D-Zone

This zone corresponds to the regions of concrete in which transverse steels come across in two directions (the four corners of section) and the regions of concrete in the core of section without any reinforcement (Figure 3-2a). In this 3D-zone, the constitutive behavior of materials is based on the extension of the original MCFT, proposed by Vecchio & Selby [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF], which will be detailed in the following.

Similar to the 2D-zone, in the case where only warping is taken into account and distortion is neglected, the stress state of this zone has three components: one normal 𝜎 𝑥𝑥 and two transverses 𝜏 𝑥𝑦 and 𝜏 𝑥𝑧 , included in a stress vector s 3𝐷 𝑓 =

(︁ 𝜎 𝑥𝑥 𝜏 𝑥𝑦 𝜏 𝑥𝑧 )︁ 𝑇 .
Same as in the 2D-zone, in the 3D-zone even though only 3 stress components are considered in the sectional analysis, the full stress vector has a total of 6 components s 

s *3𝐷 𝑓 = D 3𝐷 𝑓 e *3𝐷 𝑓 (3.99) 
Similar to the two dimensional case, in 3D-zone the material stiffness matrix D 3𝐷 𝑓 can be determined as a superposition of concrete and reinforcement:

D 3𝐷 𝑓 = D 3𝐷 𝑓,𝑐 + D 3𝐷 𝑓,𝑠 (3.100) 
The steel stiffness D 3𝐷 𝑓,𝑠 can be set up easily in the local frame system, while the determination of concrete stiffness matrix D 3𝐷 𝑓,𝑐 required a change of reference from principal directions to local axes. Equation (3.100) becomes:

D 3𝐷 𝑓 = T 𝑇 𝑐 D 3𝐷 𝑝𝑟𝑖𝑛,𝑐 T 𝑐 + D 3𝐷 𝑓,𝑠 (3.101) 
The concrete stiffness matrix D 3𝐷 𝑝𝑟𝑖𝑛,𝑐 in the principal direction can be evaluated in a secant-based as proposed by Vecchio & Selby [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF]:

D 3𝐷 𝑝𝑟𝑖𝑛,𝑐 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐸 1 0 0 0 0 0 0 𝐸 2 0 0 0 0 0 0 𝐸 3 0 0 0 0 0 0 𝐸 1 𝐸 2 𝐸 1 + 𝐸 2 0 0 0 0 0 0 𝐸 2 𝐸 3 𝐸 2 + 𝐸 3 0 0 0 0 0 0 𝐸 1 𝐸 3 𝐸 1 + 𝐸 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.102)
with 𝐸 1 , 𝐸 2 and 𝐸 3 are the secant moduli, defined as follows:

𝐸 1 = 𝜎 1 𝜀 1 ; 𝐸 2 = 𝜎 2 𝜀 2 ; 𝐸 3 = 𝜎 3 𝜀 3 ; (3.103)
or in a tangent-based approach:

D 3𝐷 𝑝𝑟𝑖𝑛,𝑐 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝜎 1 𝜕𝜀 1 0 0 0 0 0 𝜕𝜎 2 𝜕𝜀 1 𝜕𝜎 2 𝜕𝜀 2 0 0 0 0 𝜕𝜎 3 𝜕𝜀 1 0 𝜕𝜎 3 𝜕𝜀 3 0 0 0 0 0 0 𝜎 1 -𝜎 2 2(𝜀 1 -𝜀 2 ) 0 0 0 0 0 0 𝜎 1 -𝜎 3 2(𝜀 1 -𝜀 3 ) 0 0 0 0 0 0 𝜎 2 -𝜎 3 2(𝜀 2 -𝜀 3 ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.104)
T 𝑐 is the transformation matrix composed of the direction cosines which define the direction of the principal concrete strains:

T 𝑐 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑙 2 1 𝑙 1 𝑚 1 𝑚 1 𝑛 1 𝑚 2 1 𝑛 2 1 𝑛 1 𝑙 1 𝑙 2 2 𝑙 2 𝑚 2 𝑚 2 𝑛 2 𝑚 2 2 𝑛 2 2 𝑛 2 𝑙 2 𝑙 2 3 𝑙 3 𝑚 2 𝑚 3 𝑛 2 𝑚 2 3 𝑛 2 3 𝑛 3 𝑙 3 2𝑙 1 𝑙 2 𝑙 1 𝑚 2 + 𝑙 2 𝑚1 𝑚 1 𝑛 2 + 𝑚 2 𝑛 1 2𝑚 1 𝑚 2 2𝑛 1 𝑛 2 𝑛 1 𝑙 2 + 𝑛 2 𝑙 1 2𝑙 2 𝑙 3 𝑙 2 𝑚 3 + 𝑙 3 𝑚2 𝑚 2 𝑛 3 + 𝑚 3 𝑛 2 2𝑚 2 𝑚 3 2𝑛 2 𝑛 3 𝑛 2 𝑙 3 + 𝑛 3 𝑙 2 2𝑙 3 𝑙 1 𝑙 3 𝑚 1 + 𝑙 1 𝑚3 𝑚 3 𝑛 1 + 𝑚 1 𝑛 3 2𝑚 3 𝑚 1 2𝑛 3 𝑛 1 𝑛 3 𝑙 1 + 𝑛 1 𝑙 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.105)
The concrete strains in principal direction 𝜀 1 , 𝜀 2 , 𝜀 3 (𝜀 1 > 𝜀 2 > 𝜀 3 ) and the direction cosines are calculated from the eigenvalues and eigenvector of the strain tensor, obtained from the kinematic condition in Equation (3.18). The concrete stresses in principal directions 𝜎 1 , 𝜎 2 , 𝜎 3 are then deduced from the uniaxial stress-strain relations in Figure 2-19.

According to Vecchio & Selby [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF], in direction 3 (the direction of principal compressive strain), the compressive stress 𝜎 3 depends on the strain compressive strain 𝜀 3 and the tensile strain 𝜀 1 : 𝜎 3 = 𝑓 (𝜀 3 , 𝜀 1 ). In direction 1 (the direction of principal tensile strain), the tensile stress 𝜎 1 depends only on the tensile strain 𝜀 1 : 𝜎 1 = 𝑓 (𝜀 1 ). Finally, in the intermediate direction 2 (that can be compressive or tensile), the stress 𝜎 2 depends on 𝜀 2

and 𝜀 1 :

𝜎 2 = 𝑓 (𝜀 2 , 𝜀 1 ).
Then, for the reinforcement's contribution, the steel stiffness matrix is expressed in the local coordinate system as:

D 3𝐷 𝑓,𝑠 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜌 𝑠𝑥 𝐸 𝑠𝑙 0 0 0 0 0 0 𝜌 𝑠𝑦 𝐸 𝑠𝑡 0 0 0 0 0 0 𝜌 𝑠𝑦 𝐸 𝑠𝑡 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.106)
Similar to the 2D-zone, the modulus of longitudinal (transversal) reinforcement 𝐸 𝑠𝑙 (𝐸 𝑠𝑡 ) can be expressed in secant or tangent-based, using the strain components 𝜀 𝑥𝑥 (𝛾 𝑥𝑦 and/or 𝛾 𝑥𝑧 ) and the steel behavior law in Section 3.5.1 and Figure 3-12; 𝜌 𝑠𝑥 , 𝜌 𝑠𝑦 and 𝜌 𝑠𝑧 are the reinforcement ratio in the directions of 𝑥, 𝑦 and 𝑧, respectively, which have been determined as follows:

𝜌 𝑠𝑥 = 𝐴 𝑠𝑙 𝐴 3𝐷 𝑐 (3.107a) 𝜌 𝑠𝑦 = 𝐴 𝑠𝑡 𝑃 𝑦 𝑠𝑡 𝐴 3𝐷 𝑐 𝑠 (3.107b) 𝜌 𝑠𝑦 = 𝐴 𝑠𝑡 𝑃 𝑧 𝑠𝑡 𝐴 3𝐷 𝑐 𝑠 (3.107c)
where 𝐴 𝑠𝑙 is the total area of longitudinal reinforcing steel situated in 3D-zone, 𝐴 3𝐷 𝑐 is the area of 3D-zone, 𝐴 𝑠𝑡 is the area of one leg of a transverse steel bar, 𝑃 𝑦 𝑠𝑡 is the perimeter of the stirrup centerline disposed in horizontal direction and 𝑃 𝑧 𝑠𝑡 is the perimeter of the stirrup centerline disposed in vertical direction in 3D-zone; 𝑠 denotes the average spacing of stirrups. It should be noted that the reinforcement percentages are evaluated with respect to the discretized cross-section area.

As mentioned above, the internal equilibrium is satisfied by imposing the stresses components 𝜎 𝑦𝑦 , 𝜎 𝑧𝑧 and 𝜏 𝑦𝑧 equal to zero. Regrouping these three stresses into one single

vector s 3𝐷 𝑜𝑓 = (︁ 𝜎 𝑦𝑦 𝜎 𝑧𝑧 𝜏 𝑦𝑧 )︁
, with the corresponding strain vector e 3𝐷 𝑜𝑓 = (︁ 𝜀 𝑦𝑦 𝜀 𝑧𝑧 𝛾 𝑦𝑧 )︁ , the constitutive relation in Equation (3.99) becomes:

s *3𝐷 𝑓 = D 3𝐷 𝑓 e *3𝐷 𝑓 ⇔ ⎛ ⎝ s 3𝐷 𝑓 s 3𝐷 𝑜𝑓 ⎞ ⎠ = ⎡ ⎣ D 3𝐷 𝑓,11 D 3𝐷 𝑓,12 D 3𝐷 𝑓,21 D 3𝐷 𝑓,22 ⎤ ⎦ ⎛ ⎝ e 3𝐷 𝑓 e 3𝐷 𝑜𝑓 ⎞ ⎠ (3.108)
A static condensation is realized to obtain the strain vector e 3𝐷 𝑜𝑓 :

s 3𝐷 𝑜𝑓 = [︁ D 3𝐷 𝑓,21 D 3𝐷 𝑓,22 ]︁ ⎛ ⎝ e 3𝐷 𝑓 e 3𝐷 𝑜𝑓 ⎞ ⎠ = 0 3 ⇒ e 3𝐷 𝑜𝑓 = - (︀ D 3𝐷 𝑓,22 )︀ -1 D 3𝐷 𝑓,21 e 3𝐷 𝑓 (3.109)
The non-zero terms e 3𝐷 𝑜𝑓 in the strain vector e *3𝐷 𝑓 , which can not be determined from the kinematic condition, are calculated from the equation 3.109. The stress vector s 3𝐷 𝑓 used in the sectional analysis is therefore expressed by:

s 3𝐷 𝑓 = D 3𝐷 𝑓,11 e 3𝐷 𝑓 + D 3𝐷 𝑓,12 e 3𝐷 𝑜𝑓 = D 3𝐷 𝑓,11 e 3𝐷 𝑓 -D 3𝐷 𝑓,12 (︀ D 3𝐷 𝑓,22 )︀ -1 D 3𝐷 𝑓,21 e 3𝐷 𝑓 ⇒ s 3𝐷 𝑓 = k 3𝐷 𝑓 e 3𝐷 𝑓 (3.110) 
with the expression of the material stiffness matrix in 3D-zone:

k 3𝐷 𝑓 = D 3𝐷 𝑓,11 -D 3𝐷 𝑓,12 (︀ D 3𝐷 𝑓,22 )︀ -1 D 3𝐷 𝑓,21 (3.111) 
The process of determining the material stiffness matrix k 3𝐷 𝑓 of 3D-zone is generally similar to that of 2D-zone in Figure 3-16, except that the transformation to in-plane frame system is not necessary. The regional stiffness matrix K 3𝐷 𝑠 can be calculated from k 3𝐷 𝑓 using Equation (3.43).

In this mechanical model for RC member, the constitutive model is formulated general enough for being used for any shape of cross-section and any type of formulation (forces or mixed based) in further studies.

Effective wall thickness

An important parameter to consider carefully in this discretization is the width of the 2Dzone. However it is not validated by a specific rule, but only suggested equal to the double of concrete cover over the transverse reinforcement [START_REF] Navarro-Gregori | A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[END_REF]. Taking care of this indication, during the construction of the model, two remarks have been concluded by the authors:

1. Under shear-bending: the choice of 2D-width does not have much influence on the numerical results, as observed by the authors during the numerical modelings.

2. Under pure torsion: a lack of definition for the 2D-width can pose some critical problems to the numerical result, in other words, such a simple formulation (as suggested by Navarro Gregori) can not represent accurately enough the torsional response.

These remarks can be explained by the fact that as mentioned above, under torsional effects, the behavior of RC member after cracking is assumed to be carried out by a tube of hollow section. That is to say that the behavior of 3D-zone of the concrete in the section core is set to zero and the sectional behavior depends only on 2D-zone and 3D-zone at the four corners of section. The width of 2D-zone is defined as the effective wall thickness of the tube, and determining this parameter becomes an obvious question to investigate the post-cracking behavior of RC members under torsional effect. In shear-bending, a lack of definition for the 2D-width can only pose some small problems in the calculation of steel percentage for each region, but it does not have as much influence to the numerical results as in the case of torsional effect.

In the literature, several formulations were proposed: Rahal & Collins proposed an average value of the effective thickness of concrete in resisting the torsional moment which depends on the section dimensions [START_REF] Rahal | Effect of thickness of concrete cover on shear-torsion interaction -an experimental investigation[END_REF]; the formulation used in the model of Valipour & Foster is a function of stirrup's spacing, reinforcement bar disposition and concrete section dimension [START_REF] Valipour | Nonlinear reinforced concrete frame element with torsion[END_REF]; while Hsu proposed another formulation for design based on the torsional strength [START_REF] Hsu | Shear flow zone in torsion of reinforced concrete[END_REF]. After consulting the proposed formulations cited above and a formulation calibrated by Hsu [START_REF] Hsu | Torsion of reinforced concrete[END_REF], the authors noted that the effective wall thickness should be a function of the section width and of the reinforcement ratio. A parametric study was investigated from the 45 specimens below and gave the following formulation:

• For usual repartition of reinforcement bars at corner:

𝑡 𝑒 = 𝑏 (︂ 0.0130 ℎ 𝑏 𝑚𝜌 𝑠 + 0.1 )︂ (3.112)
• For repartition with additional of reinforcement bars along the perimeter:

𝑡 𝑒 = 𝑏 (︂ 0.0088 ℎ 𝑏 𝑚𝜌 𝑠 + 0.1 )︂ (3.113)
where 𝜌 𝑠 is the reinforcement percentage; 𝑏, ℎ the section dimension; 𝑚 is the ratio between longitudinal and transversal reinforcement and 𝑚 ≤ 1.5. The details of parametric study as well as the explication of two proposed formulation following the repartition of reinforcement bars over the cross-section are described clearly in Section 4.3.

Conclusions

In this chapter, an enhanced multi-fiber 3D beam element for RC members subjected to combined loadings has been developed. The proposed model is able to take into account the material nonlinearity, the warping effect of cross-section, the contribution of transversal reinforcement, and eventually the concrete confinement.

Between two enhanced approaches, the Saint-Venant warping function's formulation is simpler and requires less calculation time. However, the use of the formulation developed in Section 3.3.2 is limited to solid cross-section. For a thin-walled cross-section, additional DoFs need to be added and as a consequence, change considerably the variational formulation in Section 3.4.1. In the other hand, the development of Lagrange polynomials approach is quite complex and requires more coding functions as well as calculation time, however its application is general and can be used to study the distortion phenomenon, as described in Section 3.3.3.2. The variational formulation developed in Section 3.4.2 is also general and independent to the type of cross-section.

Regarding the constitutive model, the contribution of transversal reinforcement is taken into account by the iteration process satisfying internal equilibrium between concrete and stirrup, while the static condensation in 2D and 3D zone ensure the coupling between multi-axial efforts. The concrete behavior is based on the original MCFT [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF],

as described in Section 2.4.1.1, however other suitable uniaxial stress-strain relationships in compression and tension can also be applied in the constitutive model of the proposed formulation, such as Stevens et al.'s model [START_REF] Stevens | Constitutive model for reinforced concrete finite element analysis[END_REF].

The model formulation was written in Matlab, thanks to its powerful for handling matrix expressions. The model code can be further translated to more efficient languages such as FORTRAN, C++ or Python.

Chapter 4

Numerical analysis of Concrete and RC members under Pure Torsion

The present chapter is dedicated to the numerical analysis of concrete and RC members subjected to pure torsion. An enhanced multi-fiber 3D beam model is proposed. This model takes into account all the aspects of torsional effects, including the warping phenomenon, the behavior before and after cracking as well as the contribution of stirrups. It is worth to note that this proposed model is the improved version of the multi-fiber frame model proposed by Navarro Gregori [START_REF] Navarro-Gregori | A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[END_REF], taking advantage of its sectional discretization which is very suitable for the specific behavior of RC elements under pure torsion. For the constitutive model of concrete, the MCFT is employed, due to its suitability for multi-fiber section discretization, as well as its simplicity and its wide use in engineering applications.

A new constitutive model for concrete under torsional effect will be proposed based on the fact that numerical cracking torsional moments are reduced about half of the experimental values when using the original MCFT as concrete constitutive model [START_REF] Jeng | Softened membrane model for torsion in reinforced concrete members[END_REF]. 

Theory of Torsion

The problem of torsion in a straight member was first investigated in 1784 by Coulomb [START_REF] Coulomb | Recherches thiques et expmentales sur la force de torsion et sur l'sticite des fils de metal[END_REF], during his study of the property of electric charges. When carrying out the torsional oscillation of a weight suspended on a wire, Coulomb found that torsional moment is proportional to the angle of twist. This discovery was then introduced in a theoretical equation for torsion by Navier [START_REF] Navier | Rms lecons donn le des ponts et chauss sur l'application mnique establissement des constructions et des machines[END_REF] in 1826, in which the proportionality between torque T and twist angle 𝜃 is represented by a constant called the torsional rigidity. This constant is equal to the multiplication of the modulus of rigidity (shear modulus) 𝐺 and the polar moment of inertia 𝐼 𝑝 :

𝑇 = 𝐺𝐼 𝑝 𝜃 (4.1)
However, this theory was limited to members with a circular section: torsional tests made by Duleau [START_REF] Duleau | Essai thique et expmentale sur la rstance du fer forgjournal[END_REF] in 1820 noted a 20% difference between the moduli of rigidity for a circular and a square section. This difference was then explained by a change of sectional rigidity, caused by a particular phenomenon called warping, meaning that the cross sections, under torsional effect, are deformed and come out of their original plan. In Figure 4-1, the signal + means that the cross-section come out following the positive direction of x axis, while the signal -indicates that the warping follows the negative direction of x axis. The isocurves in solid represent the points having the same warping magnitude in the positive direction, while the iso-curves in dashed line represent the points having the same warping magnitude in the negative direction. To represent the warping phenomenon, although the use of torsional constant is explicit and can be easily formulated, its use is limited to sections of regular shape. Moreover, since this parameter is computed for the whole section, it is impossible to apply this constant into a finite element sectional fiber approach. In this case, Saint-Venant also proposed another approach to represent the warping phenomenon, using a function called Saint-Venant warping function which depends on the coordinates of material points in the cross-section. This function is formulated by a semi-inverse method, and is restricted to linear behavior with two assumptions:

1. Cross-section shape remains unchanged after twisting. In other words the distortion phenomenon is neglected;

2. Warping of the cross-section is identical throughout the length of the member. This assumption recalls to the problem of uniform torsion.

According to Saint-Venant, the warping function is described as a solution of the Neumann problem:

𝜕 2 𝜓 𝜕𝑦 2 + 𝜕 2 𝜓 𝜕𝑧 2 = 0 in Ω (Laplace equation) (4.2a) 𝜕𝜓 𝜕𝑦 𝑛 𝑦 + 𝜕𝜓 𝜕𝑧 𝑛 𝑧 = 𝑧𝑛 𝑦 -𝑦𝑛 𝑧 on 𝜕Ω (Neumann boundary conditions) (4.2b)
where Ω represent the domain of cross section and 𝜕Ω its boundary, 𝑛 𝑦 and 𝑛 𝑧 are the vector normal to the boundary. Exact solution can be expressed for any arbitrary kind of solid cross-section, for example the rectangular cross-section [START_REF] Gay | A technical theory of dynamical torsion for beams of any cross-section shapes[END_REF]:

𝜓(𝑦, 𝑧) = 4 𝜋 3 ∞ ∑︁ 𝑛=1 (-1) 𝑛-1 (2𝑛 -1) 3 ⎡ ⎢ ⎢ ⎣ 𝑏 2 sinh (︂ 2𝑛 -1 𝑏 𝜋𝑦 )︂ cos (︂ 2𝑛 -1 𝑏 𝜋 ℎ 2 
)︂ sin

(︂ 2𝑛 -1 𝑏 𝜋𝑧 )︂ -ℎ 2 sinh (︂ 2𝑛 -1 ℎ 𝜋𝑧 )︂ cos (︂ 2𝑛 -1 ℎ 𝜋 𝑏 2 
)︂ sin

(︂ 2𝑛 -1 ℎ 𝜋𝑦 )︂ ⎤ ⎥ ⎥ ⎦ (4.3)
where 𝑏 is the section width and ℎ is the section height, with 𝑏 ≤ ℎ. A simplified exponential expression was proposed by Xu et al. [START_REF] Xu | Saint-venant torsion of orthotropic bars with inhomogeneous rectangular cross section[END_REF]:

𝜓(𝑦, 𝑧) = 𝐴 𝑛 exp [︂ 𝛽 1𝑛 (︂ 𝑦 - 𝑏 2 
)︂]︂ + 𝐵 𝑛 exp [︂ -𝛽 2𝑛 (︂ 𝑦 + 𝑏 2 )︂]︂ - 𝜆𝐶 𝑛 𝑏𝛼 2 𝜉 2 𝑛 -𝑦𝑧 (4.4)
where ℎ is the section height; 𝛼 is the shear modulus ratio; 𝜆 is the gradient factor; and 𝛽 1𝑛 , 𝛽 2𝑛 , 𝐶 𝑛 and 𝜉 𝑛 are defined as follows:

𝛽 1𝑛 = √︂ 𝜆 2 4ℎ 2 + 𝛼 2 𝜉 2 𝑛 - 𝜆 2ℎ ; 𝛽 2𝑛 = √︂ 𝜆 2 4ℎ 2 + 𝛼 2 𝜉 2 𝑛 + 𝜆 2ℎ ; 𝜉 𝑛 = 𝑛𝜋 𝑏 ; 𝐶 𝑛 = 8𝑏 𝜋 2 (-1) 𝑛-1 2 𝑛 2
with 𝑏 is the section width and 𝑏 ≤ ℎ. If the material is isotropic, 𝜆 = 0, in this case:

𝐴 𝑛 = [1 -exp (-ℎ𝛽 2𝑛 )] 𝐶 𝑛 𝛽 1𝑛 {1 -exp [-ℎ (𝛽 1𝑛 + 𝛽 2𝑛 )]} ; 𝐵 𝑛 = [1 -exp (-ℎ𝛽 1𝑛 )] 𝐶 𝑛 𝛽 2𝑛 {exp [-ℎ (𝛽 1𝑛 + 𝛽 2𝑛 )] -1} ;
In this exponential expression, the index 𝑛 is impair (𝑛 = 1, 3, 5, ...).

Instead of warping function 𝜓(𝑦, 𝑧), Prandtl [START_REF] Prandtl | Zur Torsion von prismatischen Stn. Ludwig Prandtl Gesammelte Abhandlungen[END_REF] also introduced a stress function Φ(𝑦, 𝑧) to represent the warping, with simpler equations for the boundary condition and for the torsional moment. Otherwise, there are other approaches to interpolate the warping function to solid or composite cross-section, as described in Chapter 2. Solving the warping problem is indispensable to figure out the torsional response of a straight element with an arbitrary cross section in the elastic behavior range.

Beam FE formulation for Pure Torsion

Under pure torsion, the torsional rotation 𝜃 𝑥 is the only generalized displacement to be considered at sectional level, and the vector of nodal displacements reduces from 12 elements to only 2 values of nodal twist angle: q 𝑒,𝑡 = (︁ 𝜃 𝐼 𝑥 𝜃 𝐽 𝑥 )︁ 𝑇 . Here as sequel, the sub-index t is used to denoted the parameters under pure torsion. Using the kinematic relation in Equation (3.2), the twist angle 𝜃 𝑥 and the twist rate 𝜅 𝑥 are then equal to:

𝜃 𝑥 (𝑥) = 1 -𝑥 𝐿 𝜃 𝐼 𝑥 + 𝑥 𝐿 𝜃 𝐽 𝑥 = (︂ 1 -𝑥 𝐿 𝑥 𝐿 )︂ ⎛ ⎝ 𝜃 𝐼 𝑥 𝜃 𝐽 𝑥 ⎞ ⎠ = N 𝑠,𝑡 (𝑥)q 𝑒,𝑡 (4.5a 
)

𝜅 𝑥 = 𝜕𝜃 𝑥 (𝑥) 𝜕𝑥 = (︁ -1 1 )︁ ⎛ ⎝ 𝜃 𝐼 𝑥 𝜃 𝐽 𝑥 ⎞ ⎠ = B 𝑠,𝑡 q 𝑒,𝑡 (4.5b) 
N 𝑠,𝑡 (𝑥) and B 𝑠,𝑡 (𝑥) are two interpolation matrices in pure torsion formulation. Hereafter, the sectional and element state determinations are described following two approaches for enhanced displacement field: using Saint-Venant warping function and using Lagrange polynomials.

Using Saint-Venant warping function

Under the hypothesis of small displacements, from Equation (3.17 The material strains, grouped in a single strain vector e 𝑓,𝑡 (𝑦, 𝑧), are evaluated as follows:

𝜀 𝑥𝑥,𝑡 = 0 𝛾 𝑥𝑦,𝑡 = (︂ -𝑧 + 𝜕𝜓 𝜕𝑦 )︂ 𝜅 𝑥 𝛾 𝑥𝑧,𝑡 = (︂ 𝑦 + 𝜕𝜓 𝜕𝑧 )︂ 𝜅 𝑥 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ⇒ e 𝑓,𝑡 (𝑦, 𝑧) = a 𝑓,𝑡 (𝑦, 𝑧)𝜅 𝑥 (4.7)
with the definition of the compatibility matrix as follows:

a 𝑓,𝑡 (𝑦, 𝑧) = (︂ 0 -𝑧 + 𝜕𝜓 𝜕𝑦 𝑦 + 𝜕𝜓 𝜕𝑧 )︂ 𝑇 (4.8) 
Once the strain vector e 𝑓,𝑡 is obtained at each material point, an appropriate material law is applied to determine the material stresses, which are collected in a single stress 

Under pure torsion, the mechanical and constitutive model is based on the one described in Section 3.5 and will be specifically developed for RC members in Chapter 4.

Then, the element equilibrium is imposed by means of the principle of virtual work as in Equation (3.37): with K 𝑠,𝑡 defined as sectional stiffness matrix. Then, with the aid of equations (4.5a) and (4.5b), the Saint-Venant warping function approach gives the following expression for the element equilibrium in Equation (4.10):

𝛿W 𝑖 = 𝛿W 𝑒 ⇒ ∫︁ ∫︁
K 𝑒,𝑡 q 𝑒,𝑡 = M 𝑥,𝑒 + ∫︁ 𝐿 N 𝑇 𝑠,𝑡 T 𝑢 𝑑𝑥 (4.12)
with M 𝑥,𝑒 the nodal torsional moments and K 𝑒,𝑡 is defined as the element stiffness matrix:

K 𝑒,𝑡 = ∫︁ 𝐿 B 𝑇 𝑠,𝑡 K 𝑠,𝑡 B 𝑠,𝑡 𝑑𝑥 (4.13)
Similar to the proposed formulation for combined loading in Chapter 3, the element state determination is completed with the calculation of the stiffness matrix K 𝑒,𝑡 and the nodal torsional moment M 𝑥,𝑒 . In this approach, the element DoFs is only 2 instead of 12 in the case of RC members subjected to combined loading.

Using Lagrange polynomials

In this approach, from Equation (3.6) and (3.21), we obtain:

𝑈 𝑡 (𝑥, 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)U 𝑒 𝑉 𝑡 (𝑥, 𝑦, 𝑧) = -𝑧𝜃 𝑥 (𝑥) 𝑊 𝑡 (𝑥, 𝑦, 𝑧) = 𝑦𝜃 𝑥 (𝑥) (4.14)
with L(𝑥) and Ŝ(𝑦, 𝑧) the interpolation matrices as in Equation (3.21). The material strains can be evaluated as follows: where a 𝑒 𝑓,𝑡 (𝑥, 𝑦, 𝑧) is a matrix of (3 × 𝑛 𝑤 .𝑠 𝑤 ) which has the same expression with the compatibility matrix a 𝑒 𝑓 (𝑥, 𝑦, 𝑧) in Equation (3.35). Similar to Section 3.4.2, in this approach all the variables are separated into the basic and additional set, due to the introduction of additional DoFs. The following expression is obtained for the torsional moment:

𝜀 𝑥𝑥,𝑡 = 𝜕 L(𝑥) 𝜕𝑥 Ŝ(𝑦, 𝑧)U 𝑒 𝛾 𝑥𝑦,𝑡 = -𝑧𝜅 𝑥 + L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑦 U 𝑒 𝛾 𝑥𝑧,𝑡 = 𝑦𝜅 𝑥 + L(𝑥) 𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑧 U 𝑒 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ⇒ e 𝑓,
𝑀 𝑥,𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 a 𝑝𝑇 𝑓,𝑡 s 𝑓,𝑡 𝑑𝐴 = ∫︁ ∫︁ 𝐴 a 𝑝𝑇 𝑓,𝑡 k 𝑓,𝑡 (︀ a 𝑝 𝑓,𝑡 𝜅 𝑥 + (︀ a 𝑒 𝑓,𝑡 )︀ U 𝑒 )︀ 𝑑𝐴 = ∫︁ ∫︁ 𝐴 a 𝑝𝑇 𝑓,𝑡 k 𝑓,𝑡 a 𝑝 𝑓,𝑡 𝑑𝐴𝜅 𝑥 + ∫︁ ∫︁ 𝐴 a 𝑝𝑇 𝑓,𝑡 k 𝑓,𝑡 a 𝑒 𝑓,𝑡 𝑑𝐴U 𝑒 = K 𝑏𝑏 𝑠,𝑡 𝜅 𝑥 + (︂ K 𝑏𝑎𝑥 𝑠,𝑡 𝜕L(𝑥) 𝜕𝑥 + K 𝑏𝑎𝑦𝑧 𝑠,𝑡 L(𝑥) )︂ U 𝑒 (4.17)
and the additional sectional forces can be also expressed as follows:

D 𝑎𝑥 𝑠,𝑡 (𝑥) = ∫︁ ∫︁ 𝐴 S 𝑇 𝑥 (𝑦, 𝑧)s 𝑓,𝑡 𝑑𝐴 = K 𝑎𝑥𝑏 𝑠,𝑡 𝜅 𝑥 + (︂ K 𝑎𝑥 𝑠,𝑡 𝜕L(𝑥) 𝜕𝑥 + K 𝑎𝑥𝑦𝑧 𝑠,𝑡 L(𝑥) )︂ U 𝑒 D 𝑎𝑦𝑧 𝑠,𝑡 (𝑥) = ∫︁ ∫︁ 𝐴 S 𝑇 𝑦𝑧 (𝑦, 𝑧)s 𝑓,𝑡 𝑑𝐴 = K 𝑎𝑦𝑧𝑏 𝑠,𝑡 𝜅 𝑥 + (︂ K 𝑎𝑦𝑧𝑥 𝑠,𝑡 𝜕L(𝑥) 𝜕𝑥 + K 𝑎𝑦𝑧 𝑠,𝑡 L(𝑥) )︂ U 𝑒 (4.18) 
The expressions of the 9 sectional stiffness matrices in Equation (4.17) and (4.18) are similar to Equation (3.56), unless the replacement of the compatibility matrix a 𝑝 𝑓,𝑡 in the matrix a 𝑝 𝑓 . Then, the element equilibrium in Equation (4.10) can be expressed as follows:

⎡ ⎣ K 𝑏𝑏 𝑒,𝑡 K 𝑏𝑎 𝑒,𝑡 K 𝑎𝑏 𝑒,𝑡 K 𝑎𝑎 𝑒,𝑡 ⎤ ⎦ ⎛ ⎝ q 𝑒,𝑡 U 𝑒 ⎞ ⎠ = ⎛ ⎜ ⎝ M 𝑥,𝑒 + ∫︁ 𝐿 N 𝑇 𝑠,𝑡 T 𝑢 𝑑𝑥 0 ⎞ ⎟ ⎠ (4.19)
with the expression of sub-element stiffness matrix similar to Equation (3.63), and a static condensation to determine the values of the enhanced displacements U 𝑒 and the expression of the element stiffness matrix:

U 𝑒 = -K 𝑎𝑎 𝑒,𝑡 𝑇 K 𝑎𝑏 𝑒,𝑡 q 𝑒,𝑡 K 𝑒,𝑡 = K 𝑏𝑏 𝑒,𝑡 -K 𝑏𝑎 𝑒,𝑡 K 𝑎𝑎𝑇 𝑒,𝑡 K 𝑎𝑏 𝑒,𝑡 (4.20) 
And the element equilibrium in Equation (4.10) can be rewritten as follows:

K 𝑒,𝑡 q 𝑒,𝑡 = Q 𝑒,𝑡 + ∫︁ 𝐿 N 𝑇 𝑠,𝑡 T 𝑢 𝑑𝑥 (4.21)
In this approach, the element DoFs is 2 + 𝑠 𝑤 .𝑛 𝑤 instead of 12 + 𝑛 𝑤 .𝑠 𝑤 .

Proposed constitutive model of concrete under

Pure Torsion

RC members under Pure Torsion

The mechanical model for RC members under pure torsion is based on the one proposed in Chapter 3, using the same section discretization and the regional constitutive model as described in Section 3.5, with some major modifications.

The first modification comes from the special behavior of RC members under pure torsion. For a RC members, the torsional response can be divided into 2 different phases:

before and after cracking of concrete.

• Before cracking, the response of the section is considered elastic and the behavior is very similar to that of a plain concrete member, which can be predicted by the Saint-Venant torsional theory.

• After cracking, the material is not continuous anymore, the theory of elasticity becomes useless and a new mechanism is required to interpret the torsional response in this phase, as described in Chapter 2.

From the concept of truss model as described in Section 2.3 and the experimental test results from Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF] and Onsongo [82], the behavior of RC member after cracking can be assumed to be carried out by a tube of hollow section. This special behavior leads to the first modification of the mechanical model for RC members under pure torsion: the behavior of 3D-zone of the concrete in the section core is set to zero after cracking. The non-linear torsional response after cracking therefore depends only on the behavior of the 2D-zone and the 3D-zone at the four corners of section, and the width of 2D-zone, called the effective wall thickness, plays a significant role. The formulation of the effective wall thickness has already been realized in Section 3.6, while the process of determination will be described in the following section.

The second modification needs to be carried out concerning the behavior law of concrete under pure torsion. In compression, the same relationship as the original MCFT (or other formulations) may be retained, however, in tension, the concrete stress-strain relationship must be reconsidered. This is because, as mentioned above in Chapter 1 and 

𝐸 𝑐𝑟 = 5620 √︀ 𝑓 𝑐 (𝑓 𝑐 in MPa) (4.22a)
𝜀 𝑐𝑟 = 0.000116 (4.22b)

𝑓 𝑐𝑟 = 𝐸 𝑐𝑟 𝜀 𝑐𝑟 (4.22c)
where 𝐸 𝑐𝑟 is the proposed elastic modulus; 𝑓 𝑐𝑟 is the tensile concrete cracking strength;

𝜀 𝑐𝑟 is the cracking strain. Before cracking, the tensile stress-strain relationship is assumed elastic linear:

For 𝜀 1 ≤ 𝜀 𝑐𝑟 : 𝜎 1 = 𝐸 𝑐 𝜀 1 (4.23)
while after cracking, the tension-stiffening effect is taken into account by:

For 𝜀 1 > 𝜀 𝑐𝑟 : 𝜎 1 = 𝑓 𝑐𝑟 (︂ 𝜀 𝑐𝑟 𝜀 1
)︂ 0.4 (4.24) 1. According to the series of torsional tests carried out by Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF], the cracking torque of a RC beam 𝑇 𝑐𝑟 is a mild function of reinforcement steel percentage 𝜌 𝑠 and the cracking torque of a corresponding plain concrete beam (with the same cross-section dimension) 𝑇 𝑃 𝐶 𝑐𝑟 .

2. The cracking torque of a plain concrete beam 𝑇 𝑃 𝐶 𝑐𝑟 can be determined by several theories in the literatures, such as elastic theory [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF], plastic theory [START_REF] Nylander | Vridning och vridningsinspanning vid betongkonstruktioner (Torsion and torsional restraint by concrete structures)[END_REF] or skewbending theory [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF]. In theses formulations, 𝑇 𝑃 𝐶 𝑐𝑟 depend on the tensile strength of concrete 𝑓 𝑡 and the dimension of cross-section.

From these two observations, we can conclude that, similar to the proposition in the model of Jeng & Hsu, the concrete cracking strength 𝑓 𝑐𝑟 must be increased and this parameter should be a function of the concrete strength, the reinforcement ratio and the cross-section dimension. Moreover, from the first observation, it is reasonable to express 𝑓 𝑐𝑟 as a function of the cracking strength of the corresponding plain concrete members under pure torsion 𝑓 𝑃 𝐶 𝑐𝑟 , which has already been proposed by Hsu in an empirical equation [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF]:

𝑓 𝑃 𝐶 𝑐𝑟 = 0.76 (︂ 1 + 6452 𝑏 2 )︂ 𝑓 1/3 𝑐 (MPa) for 𝑏 > 100 (mm) (4.25a)
𝑓 𝑃 𝐶 𝑐𝑟 = 6.13

(︂ 𝑓 𝑐 𝑏 )︂ 1/3 (MPa) for 𝑏 ≤ 100 (mm) (4.25b)
where 𝑓 𝑐 is the cylinder compressive strength; ℎ, 𝑏 are the section height and width.

3. According to experimental tests, the impact of longitudinal reinforcement steel bars to torsional strength is small, but can not be neglected [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF].

In the proposed model, the longitudinal reinforcement bars only have an impact on the normal stress state, so do not have any contribution to the torsional response.

Indeed, experimental tests by Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF] show that, for concrete members with longitudinal steel only, the effect of the longitudinal reinforcements is small, and the cracking torque is very similar to that of a plain concrete member. This ineffectiveness can be explained by the location of longitudinal steels bar, which are always placed at the corners of section beam where the shear stress is zero according to Saint-Venant's stress distribution (Figure 4-3a).

However, for RC members with longitudinal steel and stirrups, the cracking torque might be a function of the total steel percentage (Figure 4-3b). Hsu also remarked that a better repartition (or distribution) of longitudinal reinforcement over the cross-section will increase the cracking torque somewhat: it is the case of beam G6, G7 and G8 in which the longitudinal bars also located at the center of the section. Moreover, during the calibration process, the authors also noted that the contribution of reinforcement bars to torsional strength comes not only from their percentage, but also from their repartition over the cross-section. Indeed, an usual repartition of longitudinal steel at four corners of the section (Figure 4 

Proposed formulation

From the three observations above, the following formulations are proposed for the concrete cracking strength of RC members under pure torsion:

• For an usual repartition of reinforcement bars concentrated at four corners:

𝑓 𝑐𝑟 = 𝑓 𝑃 𝐶 𝑐𝑟 (︂ 0.38 𝑏 ℎ 𝜌 𝑠 + 1
)︂ (4.26)

• For a repartition with additional reinforcement bars along the perimeter: 

𝑓 𝑐𝑟 = 𝑓 𝑃 𝐶 𝑐𝑟 (︂ 0.22 𝑏 ℎ 𝜌 𝑠 + 1.3 )︂ (4.

Calibration study

Although this new model for torsion has been showed some satisfactory responses in the simulation compared to experimental tests, the choice of cracking strain is a bit unnatural to the authors. This is why, the authors decided to proposed another tensile constitutive law for RC members of rectangular cross-section under pure torsion. The proposed tensile relationship is formulated using a parametric calibration which was studied by the authors in 60 specimens of experimental tests, with various concrete strengths, section dimensions and reinforcement ratios: to the author's observation above, the following variables have been chosen for the parametric formulation of determining the concrete tensile strength under torsion 𝑓 𝑐𝑟 and the effective wall thickness 𝑡 𝑒 :

•
• Cracking strength of plain concrete members under torsion 𝑓 𝑃 𝐶 𝑐𝑟 .

• Reinforcement percentage (including longitudinal, transversal steels and the total ratio): 𝜌 𝑠𝑙 , 𝜌 𝑠𝑡 and 𝜌 𝑠 .

• The ratio between 𝜌 𝑠𝑙 and 𝜌 𝑠𝑡 : 𝑚 = 𝜌 𝑠𝑙 𝜌 𝑠𝑡 .

• The ratio between section height and width: ℎ 𝑏 .

4.3.1.3.1 Calibration of the concrete tensile strength 𝑓 𝑐𝑟 This parameter was determined in the phase before cracking of concrete, knowing that in this phase the torsional behavior of RC member is similar to that of a corresponding plain concrete member. The cross-section discretization contains therefore only the 3D-zone of concrete fiber.

In the first time, for each specimen of test, an initial and arbitrary value of 𝑓 𝑐𝑟 (𝑓 𝑜 𝑐𝑟 ) is chosen to evaluate the initial numerical value of cracking torque 𝑇 𝑐𝑟 obtained by the proposed model. Then, considering the experimental values, this initial value 𝑓 𝑜 𝑐𝑟 is modified/calibrated in order to obtain the new values of 𝑇 𝑐𝑟 . This step must be performed until the values of 𝑇 𝑐𝑟 are close to the experimental ones, in other word the relative difference between experimental and numerical values are as small as possible:

𝑅 𝑐𝑟 = 𝑇 𝑐𝑟 -𝑇 𝑒𝑥𝑝 𝑐𝑟 𝑇 𝑒𝑥𝑝 𝑐𝑟 100%
The this parameter was carried out in the phase after cracking of concrete, knowing that the torsional behavior of RC member in this phase depends strongly on this parameter. In this phase, the discretization of cross-section contains 3 zones as described in Section 3.5.

The same process has been applied to the determination of the effective wall thickness 𝑡 𝑒 , but this time the value of ultimate cracking torque 𝑇 𝑢 is used to evaluate the calibrated value of 𝑡 𝑒 , the relative difference between experimental and numerical values is therefore:

𝑅 𝑢 = 𝑇 𝑢 -𝑇 𝑒𝑥𝑝 𝑢 𝑇 𝑒𝑥𝑝 𝑢 100%
A linear fitting is also applied for the data set, with the proportion of 𝑡 

Plain concrete members under Pure Torsion

Not as complex as the behavior of RC members, the torsional behavior of plain concrete members can be represented by a typical torque-twist curve as shown in Figure 4-12: at low torque, the behavior is linear elastic, then becomes curved at high torque until a brittle failure just after the first crack. In this case, the torsional rigidity can be related to the stress-strain relation in uniaxial compression and tension of concrete members (Figure 4-13). Generally in the literature, the compressive stress-strain curve is approximately linear up to about one half of the ultimate compressive strength, while a tensile stress-strain curve is approximately straight up to failure at a strain of approximately 0.0001. Knowing that the ultimate tensile strength is much smaller than the ultimate com-

pressive strength (about one-tenth to one-seventh), we can notice that under torsional effect, the compressive stress-strain curve is perfectly elastic linear. In order to obtain the shape of torque-twist curve in Figure 4-12, some improvements have been made to the tensile relationship. Indeed, a bi-linear stress-strain curve has been proposed by the authors (Figure 4-14), in which the coefficient 0.7 in the tensile strength and 1.5 in the strain were carefully calibrated according to several experimental tests listed below. The choice of bi-linear curve and these coefficient allow a simple but effective model to predict the torsional behavior of a plain concrete member. For rectangular cross-sections, the cracking stress 𝑓 𝑃 𝐶 𝑐𝑟 is calculated from Equation (4.25), while the first slope is taken from Equation (4.22a). 

Numerical examples for Elastic Torsion

In this section, the numerical results obtained by the proposed model in Section 4.2 will be compared to the theoretical formulations, and other model's results. The first example concerns a cantilever beam subjected to pure torsion at the free end under small displacement hypothesis (Figure 4-15), which was also simulated by Le Corvec in her

PhD thesis [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF]. The FE proposed model are constructed from 4 elements, with 5 Gauss points in each element and a system of square mesh of 100 × 50 fibers for each section.

The interpolation points system using Lagrange polynomial, marked by the red cross, are constructed from 5 interpolation points along the element and a grid of 4 × 4 points over the section. The numerical results for twist angle at the free end of the beam computed by the model of Le Corvec and the proposed model (in two approaches) are collected in The relative errors are calculated with respect to the theoretical value, which can be obtained from the following expression, according to Saint-Venant's theory [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF]:

𝜃 𝑥 = 𝑀 𝑥 𝐿 𝐺𝐽 ; 𝐺 = 𝐸 2(1 + 𝜈) ; 𝐽 ≈ 𝑏 3 ℎ [︂ 1 3 -0.21 𝑏 ℎ (︂ 1 - 𝑏 4 12ℎ 4 )︂]︂ (4.28)
where 𝑀 𝑥 is the torsional moment at mid-span; 𝐿 is the beam length; 𝐽 is the torsional constant as cited in Section 4.1 and its expression in Eq. (4.28) is only applied for rectangular cross-section. From Table 4.1, we concludes that the numerical results, given by the proposed model in both enhanced approaches, correlate very well with the one given by the theoretical formulation. Then, it confirms that neglecting the effect of warping will strongly influence on the twist angle. Moreover, it is worth to note that the theoretical formulation in Eq. (4.28) is only validated for the case of Saint-Venant torsion with free warping, in the case of torsion with constrained warping, the following expression must be used:

𝜃 𝑥 = 𝑀 𝑥 𝐿 𝐺𝐽 - 𝑀 𝑥 𝐺𝐽 √︂ 𝐸𝐼 𝑤 𝐺𝐽 tanh (︃ √︂ 𝐺𝐽 𝐸𝐼 𝑤 𝐿 )︃ ; (4.29)
where 𝐼 𝑤 = 𝛼ℎ𝑏 3 is the warping constant of rectangular cross-section, 𝛼 is the Saint-Venant's coefficient which depends on the ratio of section width and height. In this example, Eq. (4.29) gives a value of 4.542 × 10 -3 for the end twist angle, that means a relative difference of 0.13 % with respect to the value given by Eq. (4.28). The effect of constrained warping can be therefore neglected in the case of solid cross-section.

The warping profile of the cross-section is represented in Figure 4-16a. It gives a good illustration of the phenomenon: under torsional effect, the section warps and comes out of their own plane. As a consequence, the sectional rigidity is changed and the twist deformation is strongly influenced. As mentioned in the expression of warping functions, we do not need an infinite (or great) number of items to obtain a satisfying result: in Figure 4-16b, from a number 𝑛 ≥ 5, the relative difference is less than 0.01%. In order to analyze the section deformation under the effect of warping phenomenon, the shear stress profiles at free-end cross section are plotted in Figure 4-17. In Figure 4-17a and 4-17b, we can see two different distribution of shear stresses:

• Shear stress profile of classical field (no warping): plane distribution of 𝜏 𝑝 𝑥𝑦 and 𝜏 𝑝 𝑥𝑧 over the cross-section, according to plane section beam theory.

• Shear stress profile of enhanced field: the shear distributions are no more plane and tend to reduce the value of the total shear stresses. Thus, the section rigidity becomes less and the twist angle increases consequently, as represented in Table 4.1.

The superposition of this two shear stress profiles gives the total shear stress distribution at free-end section, which are represented in Figure 4-17c and 4-17d. These total shear stress profiles are strongly different from the case of no warping, which follows plane section theory. The execution times, as cited in the Table 4.1, are about 9 seconds using Saint-Venant warping function approach and 18 seconds using Lagrange polynomials. In a multi-fiber model, it is obvious that the more number of fibers, better the results obtained, however calculation time becomes higher. In a simple elastic model, the difference is not very important, but in order to apply the model in more complex problems, an adequate size of fiber needs to be fixed. From Figure 4-18, a number more than 30 fibers through the section depth is enough to ensure a good balance between accuracy and calculation time. It is worth to notice that in this multi-fiber finite element model subjected to pure torsion, it is impossible to get an exact result compared to the theoretical formulation, because of two reasons:

1. The warping function is calculated with limited items, instead of infinity.

2. Sectional integration points situate in the center of fiber, not on the border.

Despite this fact, the use of multi-fiber approach is very effective and highly recommended by the authors, considering its good balance between the result obtained (relative error less than 0.5%) and the calculation time. From this example, the following statement can be obtained:

• The numerical results given by the two proposed approaches correlates very well with the one given by the theoretical formulation.

• Under torsional effect, the twist angle is strongly reduced without taking into account the warping of cross-section.

• For solid cross-section, free warping can be applied instead of restrained warping, as mentioned in Section 3.3.2.

Numerical examples for Inelastic Torsion 4.5.1 Plain concrete members

In this section, the behavior of plain concrete member under pure torsion will be represented and compared to a series of test carried out by Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF], Csikos & Hegedus [START_REF] Csikos | Torsion of reinforced concrete beams[END_REF] and Lee et al. [START_REF] Lee | Torsional strength and failure modes of reinforced concrete beams subjected to pure torsion[END_REF]. The details of beam sections and material properties can be found in Table 4.2. For a plain concrete member, without contribution of reinforcement, it's obvious that the whole section is considered as a 3D-zone (Section 3.5. In the literature, there are three basic methods to determine the cracking load of rectangular plain concrete members under pure torsion:

• The elastic theory presented by Saint-Venant [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF]:

𝑇 𝑃 𝐶 𝑐𝑟,𝑒 = 𝛼𝑏 2 ℎ𝑓 𝑡 (4.30)
where 𝛼 is the Saint-Venant's coefficient which depends on the ratio of section width and height; 𝑏 is the section width, ℎ is the section height and 𝑓 𝑡 is the tensile strength of concrete obtained from an uniaxial tension test.

• The plastic theory developed by Nylander [START_REF] Nylander | Vridning och vridningsinspanning vid betongkonstruktioner (Torsion and torsional restraint by concrete structures)[END_REF]:

𝑇 𝑃 𝐶 𝑐𝑟,𝑝 = 𝛼 𝑝 𝑏 2 ℎ𝑓 𝑡 (4.31)
where 𝛼 𝑝 = 0.5 -𝑏/6ℎ is the plastic coefficient which is about 50% greater than the Saint-Venant's coefficient; 𝑏 is the section width, ℎ is the section height and 𝑓 𝑡 is the tensile strength of concrete obtained from an uniaxial tension test.

• The skew-bending theory based on observations of torsion tests by Hsu [START_REF] Hsu | Torsion of reinforced concrete[END_REF]:

𝑇 𝑃 𝐶 𝑐𝑟,𝑠𝑏 = 0.217(𝑏 2 + 6451.6)ℎ 3 √︀ 𝑓 𝑐 (N.m) (4.32)
where 𝑓 𝑐 is the compressive strength of concrete in MPa.

When consulting all the results calculated by these three theoretical formulations and the numerical results, then comparing to the experimental tests (Table 4.3), we can see that the cracking strength obtained by the elastic theory is always conservative, the plastic theory gives unconservative results, while the results given by skew-bending theory are more reasonable, but generally the proposed numerical model can give the best results:

in most cases the relative difference with respect to experimental test is less than 5%. 

Reinforced concrete members

In this section, the behavior of RC members under pure torsion will be represented and compared to the series of test mentioned in the calibration section, which were carried out by Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF], Csikos & Hegedus [START_REF] Csikos | Torsion of reinforced concrete beams[END_REF], Lee et al. [START_REF] Lee | Torsional strength and failure modes of reinforced concrete beams subjected to pure torsion[END_REF] and Lee et al. [START_REF] Lee | Torsional behavior of reinforced concrete beams predicted by a compatibility-aided truss model[END_REF]. The specimens can be divided into two categories, according to its repartition of longitudinal reinforcements on the cross-section: The cracking and ultimate torsional moment calculated for 61 specimens of tests cited above are compared to theoretical formulations, numerical results of Jeng's model and 2 international standards for torsional design of RC members (Eurocode 2 and ACI).

Cracking Torque

As mentioned in Section 4.5.1, there are three analytical methods to calculate the cracking torque of rectangular plain concrete members 𝑇 𝑃 𝐶 𝑐𝑟 : the elastic theory presented by Saint-Venant [START_REF] De Saint-Venant | Mire sur la torsion des prismes[END_REF], the plastic theory developed by Nylander [START_REF] Nylander | Vridning och vridningsinspanning vid betongkonstruktioner (Torsion and torsional restraint by concrete structures)[END_REF] and the skew-bending theory based on experimental tests by Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF]. For RC members with a rectangular cross-section, based on 𝑇 𝑃 𝐶 𝑐𝑟 , Hsu proposed a new formulation for the cracking load:

𝑇 𝑐𝑟 = (1 + 4𝜌 𝑠 )𝑇 𝑃 𝐶 𝑐𝑟 (4.33)
where 𝜌 𝑠 is the total percentage of reinforcement with respect to the whole section. The cracking torque 𝑇 𝑐𝑟 calculated by theses three analytical methods are then compared to the numerical results obtained by the proposed model and Jeng's model [START_REF] Jeng | Softened membrane model for torsion in reinforced concrete members[END_REF]. We can see that the proposed modifications are very relevant as the smallest average relative error can be found in most cases, and in all series the relative error is always less then 5 %, except in series C (5.3 %). The numerical results given by Jeng's model is not really suitable for the design process. We can also see that, while the model of Jeng does not consider the impact of reinforcement distribution, the relative errors in this case of distribution with additional longitudinal reinforcement along the perimeter are higher than the average ones obtained by this model (Table 4.4). The first formulation to calculate the ultimate torsional moment was proposed by Rausch in his space truss theory [START_REF] Raush | Design of reinforced concrete in torsion[END_REF]. The main hypotheses are that both longitudinal and transversal steels are yielding at the ultimate torque and the inclination of concrete cracks is fixed at 45˚. This formulation is an ingenious concept which gives torsional strength as a function of reinforcements and concrete:
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𝑇 𝑢𝑅 = min (︂ 2𝐴 𝑐 𝐴 𝑠𝑙 𝑓 𝑠𝑙𝑦 𝑢 ; 2𝐴 𝑐 𝐴 𝑠𝑡 𝑓 𝑠𝑡𝑦 𝑠 )︂ (4.34)
where 𝐴 𝑐 is the area enclosed by the centerline of stirrups; 𝐴 𝑠𝑙 and 𝑓 𝑠𝑙𝑦 are the total area and the yield strength of longitudinal bars; 𝐴 𝑠𝑡 is the cross-section area of one hoop bar and 𝑓 𝑠𝑙𝑡 are the yield strength of stirrups; 𝑢 is the perimeter of the area bounded by the centerline of a completed hoop bar; 𝑠 is the stirrup's spacing. Several years later, Cowan modified Rausch's equation and proposed a new formulation based on Saint-Venant's stress and strain distribution for rectangular cross-section [START_REF] Cowan | An elastic theory for the torsional strength of rectangular reinforced concrete beams[END_REF]:

𝑇 𝑢𝐶 = 𝑇 𝑒 + 1.6 𝐴 𝑐 𝐴 𝑠𝑡 𝑓 𝑠𝑡𝑦 𝑠 (4.35)
where 𝑇 𝑒 is the torsional cracking strength calculated by the elastic theory (Equation (4.30)). In this formulation, the torsional failure mode depends on the yielding of stirrups.

Another formulation based on experimental tests' observations was proposed by Hsu [START_REF] Hsu | Torsion of reinforced concrete[END_REF]:

𝑇 𝑢𝐻 = 𝑏 2 ℎ 3 2.4 √︀ 𝑓 ′ 𝑐 + √ 𝑚 𝑓 𝑠𝑙𝑦 𝑓 𝑠𝑡𝑦 (︂ 1 + 0.2 𝑏 1 ℎ 1 )︂ 𝑏 1 ℎ 1 𝐴 𝑠𝑡 𝑓 𝑠𝑡𝑦 𝑠 (4.36)
where 𝑓 ′ 𝑐 is the compressive strength of concrete; 𝑏 1 and ℎ 1 is the width and the height of the area enclosed by the centerline of stirrups; 𝑚 is the ratio between longitudinal and transversal steel percentage.

In the ACI standard, torsional strength of RC members is calculated as [1]:

𝑇 𝑢𝑆 = 2𝐴 𝑜 𝐴 𝑠𝑙 𝑓 𝑠𝑙𝑦 𝑠 cot 𝜃 (4.37)
where 𝐴 𝑜 is the gross area enclosed by the shear flow path, which can be taken equal to 0.85𝐴 𝑐 , with 𝐴 𝑐 the area enclosed by the centerline of stirrups; 𝜃 is the cracks angle which can be taken as 45˚for non-prestressed or low-prestressed members. In the European standard Eurocode 2, three different values are calculated depending on the torsional failure modes and the minimum one has to be chosen [START_REF] Roniolo | Reinforced Concrete Design to Eurocode 2[END_REF]. The first value is related to the stirrups' yielding, the second one corresponds to the longitudinal bars capacity and the third one is related to the torsional capacity of concrete struts:

𝑇 𝑢𝐸 = min (︂ 2𝐴 𝑘 𝐴 𝑠𝑙 𝑓 𝑠𝑙𝑦 𝑠 cot 𝜃; 2𝐴 𝑐 𝐴 𝑠𝑙 𝑓 𝑠𝑙𝑦 𝑢 𝑘 tan 𝜃; 2𝜈𝑓 ′ 𝑐 𝐴 𝑘 𝑡 𝑒𝑓 sin 𝜃 cos 𝜃 )︂ (4.38)
𝐴 𝑘 is the area enclosed by the centre-lines of the effective wall thickness; 𝑡 𝑒𝑓 is the effective wall thickness and can be calculated as 𝐴/𝑢 with 𝐴 the total area and 𝑢 the perimeter of cross-section. The cracks angle is variable but can be taken as 45˚.

In Table 4 Finally, the torsional strength given by the design standards are far from satisfactory. A more detailed comparison will be examined for the case of repartition with additional longitudinal reinforcement bars along the perimeter. Similar to Section 4.5.2.1, in 

Conclusions

A nonlinear multi-fiber finite element model has been developed for concrete and RC elements under pure torsional effect in this chapter. Through several numerical examples carefully executed above, the following remarks and conclusions can be draw:

• In the elastic material domain, good correlation has been obtained between the numerical results and the theoretical formulations. The influence of warping is significant and must be taken into account in order to obtain a correct torsional response. Besides the Saint-Venant warping function, the use of Lagrange polynomials to represent the warping effect can be also considered with very high level of Chapter 5

Numerical analysis of RC members under Combined loading

The present chapter deals with the numerical analysis of RC members subjected to combined loadings of shear-bending-torsion. The enhanced multi-fiber 3D beam model formulation developed in Chapter 3 is used. The behavior of RC members considering the interaction between combined loading effects will be investigated in linear and non-linear regime of material behaviors. In case of elastic material, existing analytical solutions and numerical results are used as a reference to validate the model's ability and analyze the choice of mesh size. Also, two approaches proposed for the enhanced field of model are compared and discussed about their the advantage and inconveniences. While in inelastic material domain, the capacity of proposed model in predicting the behavior of RC members will be investigated by comparing with experimental test results.

According to the combined loading cases between shear, bending and torsion, the Chapter is organized as follows:

• Coupling of shear-bending: in Section 5.1, this typical combination of load cases of RC members is investigated in linear and non-linear regime of material behaviors.

The numerical results are compared with the analytical solutions, other numerical models and the experimental values from three series of tests carried out by Bresler & Scordelis at the University of Berkeley [START_REF] Bresler | Shear strength of reinforced concrete beams[END_REF].

• Coupling of bending-torsion: in Section 5.2, the interaction between bending and torsion is investigated and the numerical results are compared to the Collins et

al.'s skew-bending theory and the experimental values from two tests carried out by

McMullen & Warwaruk [72] and Onsongo [82].

• Coupling of shear-bending-torsion: in Section 5.3, the experimental test by Mc-Mullen & Warwaruk [72] is used as references in order to study the coupling of this completed combined loading cases of RC members.

• Finally, Section 5.4 summarizes the Chapter and offers some conclusions.

5.1 Elements subjected to combined shear and bending action

Elastic material

The numerical results are first validated in the domain of elastic linear material. In this section, the application of two formulations for the enhanced beam, using Saint-Venant warping function and Lagrange polynomials, will be investigated, in order to figure out the suitable approaches for the proposed model subjected to shear-bending action.

• Saint-Venant warping function approach: as developed in Section 3.3.2, the enhanced field using Saint-Venant warping function does not generate any additional normal strain (Equation (3.18)), while the axial warping displacement appears only under torsional effect (Equation (3.17)). Therefore, using this approach under shearbending action, the proposed model is considered as a multifiber beam using planesection beam theory.

• Lagrange polynomials approach: the enhanced field in this approach generates an additional normal strain (Equation 3.23a), while the axial displacements are also changed (Equation 3.21) and the cross section cannot maintain its plane shape under shear-bending action.

Two examples of cantilever beams subjected to vertical force at free-end, which were considered in the PhD thesis of Capdevielle [START_REF] Capdevielle | Introduction du gauchissement dans les ments finis multifibres pour la modsation non linre des structures en bn arm[END_REF] and Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF], will be investigated hereafter. In both approaches, the numerical results obtained by the proposed models are compared in one hand with those of Capdevielle [START_REF] Capdevielle | Introduction du gauchissement dans les ments finis multifibres pour la modsation non linre des structures en bn arm[END_REF] and Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] and in other hand with the theoretical formulations (using plane-section beam theory such as Euler Bernoulli ou Timoshenko).

As can be seen from Table 5.1 , the number of element does not have any influence on the numerical results of this simple example. This can be explained by the constant distribution of shear force over element length in this loading configuration. Then, the more number of fibers, the more the numerical values are exact with respect to analytical solutions, and even a light system of 10×5 fibers over the cross-section can give satisfactory results with the relative error less than 1%. The elapsed times depend on the element number and fiber mesh, for example, 6 times differences can be remarked between the most-meshed model -8 elements with 100 × 50 fibers in each section -(18 seconds) and a model of 4 elements with 40 × 20 fibers (less than 3 seconds). Even though, in compare to many finite element models, the elapsed times are relatively small.

The next parameter to evaluate is the distribution of shear strain over the cross-section, which are assumed parabolic in the model formulations (Equation (3.12)). Following the 𝑧 direction, a parabolic distribution gives the following analytical solution of shear strain at a material point of cross-section situated at coordinate 𝑥 of element axis:

𝜀 𝑥𝑧 (𝑥, 𝑧) = 𝑉 𝑧 (𝑥) 2𝐺𝐼 𝑦 [︃ (︂ ℎ 2 )︂ 2 -𝑧 2 ]︃ (5.2)
with 𝑉 𝑧 (𝑥) is the shear force value in 𝑧 direction at coordinate 𝑥, 𝐺 is the shear modulus, 𝐼 𝑦 is the second moment of area with respect to th 𝑦-axis and ℎ is the section height. At mid-span of the beam, the distribution of shear strain 𝜀 𝑥𝑧 over the cross-section are plotted in Figure 5 

Numerical applications using Lagrange polynomials approach

The example of Capdevielle in the previous section is re-used hereafter, the system of Lagrange interpolation points with 5 points along the element axis and a grid of (4 × 4) points over the cross-section are indicated in Figure 5-4. The deflection at free-end are computed by the same models as in previous chapter.

Because the number of element does not have any influence on the numerical results of this simple example, in this approach only different cases of fiber mesh are considered in a model of 8 elements. The numerical results are presented in Table 5.2. As can be seen in Table 5.2, similar to the Saint-Venant warping function approach, the values of tip deflection obtained using the Lagrange polynomial approach tend to converge to the analytical solution. Ensuring a very reasonable result with relative error less than 0.1 % and a small elapsed time, the use of 40 × 20 fibers is recommended for the numerical modeling in both approach. In the other hands, using Lagrange polynomial approach, the elapsed times increase clearly, require 33 seconds on a model of 8 elements and 40×20 fibers (compared to 3 seconds in the Saint-Venant warping function approach), and up to 211 seconds with a system of 100 × 50 fibers (compared to 18 seconds).

The differences in the numerical results between two approaches in Table 5.1 and 5.2 can be explained by the appearance of the enhanced normal strains, leading to some slight changes in the element stiffness matrix K 𝑒 . Using two numerical models constructed from 1 element and 40 × 20 fibers in each cross-section, the Saint-Venant warping function approach gave the following expression of K 𝑒 :

K𝑒 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 6𝑒5 0 0 0 0 0 -6𝑒5 0 0 0 0 0 0 5.82𝑒3 0 0 0 2.91𝑒6 0 -5.82𝑒3 0 0 0 2.91𝑒6 0 0 2.15𝑒4 0 -1.08𝑒7 0 0 0 -2.15𝑒4 0 -1.08𝑒7 0 0 0 0 5.70𝑒8 0 0 0 0 0 -5.70𝑒8 0 0 0 0 -1.08𝑒7 0 7.38𝑒9 0 0 0 1.08𝑒7 0 3.38𝑒9 0 0 2.91𝑒6 0 0 0 1.95𝑒9 0 -2.91𝑒6 0 0 0 9.56𝑒8 -6𝑒5 0 0 0 0 0 6𝑒5 0 0 0 0 0 0 -5818 0 0 0 -2.91𝑒6 0 5818 0 0 0 -2.91𝑒6 0 0 -21509 0 1.08𝑒7 0 0 0 21509 0 1.08𝑒7 0 0 0 0 -5.70𝑒8 0 0 0 0 0 5.70𝑒8 0 0 0 0 -1.08𝑒7 0 3.38𝑒9 0 0 0 1.08𝑒7 0 7.38𝑒9 0 0 2.91𝑒6 0 0 0 9.56𝑒8 0 -2.91𝑒6 0 0 0 1.95𝑒9 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.3)
While the expression obtained by Lagrange polynomial approach was: 

K𝑒 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 6𝑒5 0 0 0 0 0 -6𝑒5 0 0 0 0 0 0 5.82𝑒3 0 0 0 2.91𝑒6 0 -5.82𝑒3 0 0 0 2.91𝑒6 0 0 2.15𝑒4 0 -1.08𝑒7 0 0 0 -2.15𝑒4 0 -1.08𝑒7 0 0 5.15𝑒3 -1.77𝑒4 7 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.4)
In these two stiffness matrix, the terms whose value is zero in Equation ( 5.3) are marked in blue, while the stiffness values which are different between two approaches are marked in red. The appearance of new non-zero terms and the change of existing term (relative difference up to 25%) cause the differences in the numerical results between two approaches in Table 5.1 and 5.2. By increasing the mesh system to 100 × 50 fibers, the Saint-Venant warping function approach gave the following expression of K 𝑒 :

K𝑒 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 6𝑒5 0 0 0 0 0 -6𝑒5 0 0 0 0 0 0 5.83𝑒3 0 0 0 2.91𝑒6 0 -5.83𝑒3 0 0 0 2.91𝑒6 0 0 2.15𝑒4 0 -1.08𝑒7 0 0 0 -2.15𝑒4 0 -1.08𝑒7 0 0 0 0 5.71𝑒8 0 0 0 0 0 -5.71𝑒8 0 0 0 0 -1.08𝑒7 0 7.38𝑒9 0 0 0 1.08𝑒7 0 3.38𝑒9 0 0 2.91𝑒6 0 0 0 1.96𝑒9 0 -2.91𝑒6 0 0 0 9.58𝑒8 -6𝑒5 0 0 0 0 0 -6𝑒5 0 0 0 0 0 0 -5.83𝑒3 0 0 0 -2.91𝑒6 0 5.83𝑒3 0 0 0 -2.91𝑒6 0 0 -2.15𝑒4 0 1.08𝑒7 0 0 0 2.15𝑒4 0 1.08𝑒7 0 0 0 0 -5.71𝑒8 0 0 0 0 0 5.71𝑒8 0 0 0 0 -1.08𝑒7 0 3.38𝑒9 0 0 0 1.08𝑒7 0 7.38𝑒9 0 0 2.91𝑒6 0 0 0 9.58𝑒9 0 -2.91𝑒6 0 0 0 1.96𝑒9 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.5)
and the Lagrange polynomials approach gave:

K𝑒 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 6𝑒5 0 0 0 0 0 -6𝑒5 0 0 0 0 0 0 5.83𝑒3 0 0 0 2.91𝑒6 0 -5.83𝑒3 0 0 0 2.91𝑒6 0 0 2.15𝑒4 0 -1.08𝑒7 0 0 0 -2.15𝑒4 0 -1.08𝑒7 0 0 0 1.11𝑒4 5.89𝑒8 -7.82𝑒6 3.05𝑒5 0 0 -1.11𝑒4 -5.89𝑒8 -3.26𝑒6 -1.05𝑒6 0 0 -1.08𝑒7 0 7.38𝑒9 0 0 0 1.08𝑒7 0 3.38𝑒9 0 0 2.91𝑒6 0 0 0 1.96𝑒9 0 -2.91𝑒6 0 0 0 9.58𝑒8 -6𝑒5 0 0 0 0 0 -6𝑒5 0 0 0 0 0 0 -5.83𝑒3 0 0 0 -2.91𝑒6 0 5.83𝑒3 0 0 0 -2.91𝑒6 0 0 -2.15𝑒4 0 1.08𝑒7 0 0 0 2.15𝑒4 0 1.08𝑒7 0 0 0 -1.11𝑒4 -5.89𝑒8 7.82𝑒6 -3.05𝑒5 0 0 1.11𝑒4 5.89𝑒8 3.26𝑒6 1.05𝑒6 0 0 -1.08𝑒7 0 3.38𝑒9 0 0 0 1.08𝑒7 0 7.38𝑒9 0 0 2.91𝑒6 0 0 0 9.58𝑒9 0 -2.91𝑒6 0 0 0 1.96𝑒9 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (5.6)
There are still some difference, however the number of new non-zero term decreases significantly, and the relative difference in the change of existing term reduces to only 3%.

The similar numerical results between two approaches when increasing the mesh number can be therefore explained.

shear-bending action can be represented in Figure 5-6a, in which the parabolic shape is a result of the cubic interpolation polynomials over cross-section. We can also see that, similar to the profile of shear stress, under vertical shear force in 𝑧 direction, the profile of warping displacement is constant following the 𝑦 direction. However, the magnitude of this enhanced field is too small compared to that of the classical field, therefore the total displacement field is not much influenced and retains its plane shape (Figure 5-6b). The material strains and stresses are not influenced and as a result, there are no difference on the values of tip deflection in Table 5.3. Along the element axis, this warping effect is not constant and is distributed proportionally according to the normal stress value: minimum at the fixed-end, then increase and reach the maximum at the free-end section (Figure 567). 

Inelastic material

In this section, under shear-bending effect, the numerical model is simulated using the FE formulation presented in Chapter 3, while the model's material behavior is based on the MCFT, originally developed by Vecchio [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF] and described in Section 2.4.1.1.

The RC beam tests conducted by Bresler & Scordelis at the University of Berkeley [START_REF] Bresler | Shear strength of reinforced concrete beams[END_REF] is commonly taken as a benchmark reference and have been repeatedly used for the validation of various analytical and numerical models. For this reason, in this section the results of these test are used as references in order to investigate the capacity of the proposed model in predicting the behavior of reinforce concrete under shear-bending.

Three series of test A, B and C are analyzed in this section. The details of beam sections in each series and the outline of test setup are showed in Figure 5678.

(a) Outline of test setup. (b) Cross-section details. In each series, the index number 1,2 and 3 correspond to three different types of specimen, each corresponds to a beam length indicated in Table 5.4a. According to the test result, the types of beam of intermediate length (A1, A2, B1, B2 and C1, C2) could be characterized as shear-flexural behavior, correspond to a shear-compression failure mode, while the long-span beams of type 3 (A3, B3 and C3) generally exhibited a flexurecompression failure mode. In Table 5.4a we can also find the section dimensions and concrete properties, while the reinforcement details are given in Table 5.4b (b) Reinforcement details.

Numerical analysis of Beam A1

A detailed case study is analyzed in this section, the specimen A1 is modeled using 4 elements with 5 Gauss-Lobatto points and a system of 25 × 15 meshes over the crosssection. The interaction between shear and bending is investigated firstly. In order to point out the shear effect on the bending behavior, the deflections are determined by two different ways: using a model of combined bending and shear, and using a model in which shear is ignored. Figure 5-9 presents the mid-span deflection versus applied load curves.

Mid-span deflection (mm) It can be observed that shear effect on the beam deflection is not much pronounced in the elastic region (up to 100 kN). However, coupling between shear and flexural actions seems to give better results in terms of deflection when the beam gets in the nonlinear range. For instant, at the loading of 400 kN, the deflection due to shear is about 11 % of the total displacement. The deflection due to the shear increases with increasing of applied load. This situation can be explained by the appearance of shear crack pattern in the sectional stiffness matrix, which decreases the sectional stiffness and thus increases the For the distribution of shear stresses, similar statement can also be remarked, as a parabolic profile corresponding to elastic regime is found at the left support where the applied load is at low level (Figure 5-12). Then, while shear stresses continue to increase with load level in compression zone, in the tension zone, because of cracks, the increment of shear stresses is considerably less than in the compression zone. From certain level of load, the propagation of flexural cracks forces the shear stresses to zeros, as sketched at the section near the mid-span. It is should be highlighted that the integration of the three curves, which correspond to the results of shear force distributions, are equal. The load versus mid-span displacement curve obtained by the proposed model in compare to the experimental test data are plotted in Figure 5 

Elements subjected to bending-torsion action

In this section, in order to analyze the suitability and accuracy of the developed threedimensional formulation, the numerical results obtained by the proposed model are compared to various series of beam tested in combined bending-torsion carried out by Mc-Mullen & Warwaruk in 1967 [72] and by Onsongo in 1978 [82]. Although some modifications are required for the tensile relationship to correctly predict the torsional behavior of RC beam under pure torsion (as described in Chapter 4), in this section, the tensile relationship proposed for shear effect, originally developed by Vecchio [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF] and described in Section 2.4.1.1, is used for the uniaxial tensile stress-strain behavior of concrete, for the following reasons:

• In the case of combined loading, the cracking of concrete might be due to a bending or torsional effect, knowing that the modified tensile relationship proposed in Chapter 4 has a greater concrete cracking strength than that proposed for shear effect, the use of this tensile law proposed for pure torsion could lead to an overestimation of the predicted values of cracking moment if cracking is due to bending.

• Even if cracking is due to torsion, it should be noted that under pure torsion, after cracking of concrete the sectional behavior is assumed to be carried out as a hollow section; however, in this case of combination loading, under the effect of bending moment, this assumption is no longer supported. In this multi-fiber approach, when the entire cross-section acts to resist torsional effect instead of a hollow cross-section, the proposed tensile relationship for pure torsion could also lead to overestimated predicted values of cracking moment.

Comparison with experimental data 5.2.1.1 McMullen & Warwaruk's beams [72]

McMullen & Warwaruk in 1967 [72] carried out a series of experimental test for rectangular RC members subjected to combined loading. The experimental program was divided into seven groups under bending and torsion (Group 1,2,3 and 4) and under shear, bending and torsion (Group 5,6,7). In this section, only the Group 1 and 2 were investigated in order to analyze the response of unsymmetrically and symmetrically RC members under bending -torsion combination. The outline of test setup and the internal forces diagrams are represented in Figure 5-14a, the cross-section dimensions along with the reinforcement details are shown in Figure 5-14b while the concrete strength and the bending/torsional moments applied are indicated in In Table 5.6, the ultimate bending and torsional moments are also presented as well as the relative difference with respect to the experimental values. It is should to be noted that the loads were applied proportionally and the ratio between torsional and bending moments in each specimen is presented by the ratio R: 𝑅 = Torsional moment Bending moment .

Reasonable results with relative difference less than 10 % can be found in most of the case. The load-deformation responses of specimens in Group 1 and 2 are simulated correctly in Figure 5-15. For the beam 1-2, the torsional moment -twist rate numerical curve gives a very good agreement with the experimental data, even though the cracking and ultimate torsional moment were a bit under-estimated (Figure 5-15a). For beam 2-2, the cracking torsional moment is correctly predicted, while the torsional stiffness after cracking is also well represented (Figure 5-15c). For beam 1-4, before cracking, very good correlation is obtained, while the torsional stiffnesses predicted by the proposed model after cracking are apparently correct with the experimental values (Figure 5-15b). In the case of beam 2-4, excellent behavior before and after cracking is simulated (Figure 5-15d). 

Onsongo's beams [82]

In the test of Onsongo, two series of beam were investigated (Figure 5-17a). The first series named "torsion-bending-overreinforced" (TBO) series in which 5 specimens were over-reinforced designed to fail on concrete compression. In this series, concrete strengths were around 𝑓 𝑐 = 20 MPa, while the difference between each specimens were the ratio R of bending moment and torsional moment applied, which are indicated in Table 5.7. The second series named "torsion-bending-solid" (TBS) included 4 solid beams tested under the same R ratio but had different concrete compressive strengths ranging from 15.5 to 45.8 MPa (Table 5.7). The cross-section dimensions, as well as reinforcement distribution and properties, of these two series are detailed in Figure 5-17b.

(a) Outline of test setup. The transverse strains were also measured in Onsongo's experimental test, using special strain gauge attached to the stirrups. The simulated strains in the stirrups can be therefore compared with the measured values from experimental test data. In Figure 5-20, the diagrams of torsional moments versus transverse strains at mid-depth of beam TBO4 and TB5 are represented with a good agreement between the numerical and experimental values, the slope of the curve and the maximum strain were obtained reasonably. In It is interesting to remark that negative strains with respect to torsional moment are recorded in the experimental observation and by the proposed model when the gauge is placed at the mid-depth of the beam (Figure 5-20a, 5-21a). In fact, examining the case of a cross-section under bending and torsional moments as in Figure 5-22, at early load stage, in each side of cross-section, the combination of shear strains and stresses due to bending and torsional moments might have positive or negative relative values with respect to torsional moment. If the strain gauge is placed in the left side of cross-section, strain values recorded are always positive with respect to torsional moment. On the other hand, if the strain gauge is placed in the right side, strains values recorded might negative with respect to torsional moment at early load stage, when the shear strain due to bending dominates the one due to torsion. 

Bending-Torsion interaction diagram

As mentioned in Chapter 2, Section 2.2, the bending-torsion interaction diagram can be plotted using the skew-bending theories, firstly proposed by Lessig [START_REF] Lessig | Determination of load-carrying capacity of rectangular reinforced concrete elements subjected to flexure and torsion, study no. 5[END_REF] and then developed by Collins et al. [23], [START_REF] Collins | Ultimate strength of reinforced concrete beams subjected to combined torsion and bending[END_REF], Yudin [START_REF] Yudin | Determination of the load-carryig capacity of rectangular reinforced concrete elements subjected to combined torsion and bending[END_REF] and Elfgren et al. [START_REF] Elfgren | Torsion-bending-shear interaction for concrete beams[END_REF]. Among these theories, In the TBO series of Onsongo's test, good correlations were also obtained in the interaction diagrams of this series between numerical and experimental values (Figure 5-26a).

Similar interaction curve than the Collins et al.'s theory in Figure 5-23b, with the appearance of the Mode 3 failure, were reproduced: in the Mode 1, the increase of torsional moment happens simultaneously with the decrease of bending moment (Beam TBO1, TBO2, TBO3); Until a value determined, when the ultimate value of bending moment continue to decrease but the ultimate values of torsional moment are still constant, the Mode 2 failure happens (Beam TBO3, TBO4). Then, when the ultimate value of bending moment becomes too small, the ultimate torsional moment decreases slowly, which corresponds to the failure Mode 3 (Beam TBO4 to TB5). Several numerical results obtained by others were also plotted in these interaction diagram with a good level of prediction obtained in most of specimens: the model of Bairan performed very well in the specimens with small ratio of bending/torsion (TBO1, TBO2, TBO3), the model of Vecchio gave good results in the specimens with big ratio of bending/torsion, while a good balance of accuracy between all 5 specimens can be obtained by the proposed model. In general, the ultimate values of bending and torsional moments are well predicted by the proposed model, especially for the case of higher ratio of torsion/bending. In Figure 5-26b, a new bending-torsion interaction curve was obtained with various values of the torsion/bending ratio R, using a numerical model based on the TBO series with a compressive strength of concrete 𝑓 𝑐 = 20 MPa. From this diagram, the Mode 1 failure can be considered for a value of R from 0 to 0.7 (Beam TBO3), the Mode 2 failure happens in a range of R from 0.7 to 2 and then the Mode 3 for a R larger than 2. 

Stirrup contribution on torsional resistance

This section aims to investigate the influence of the stirrup density on the bending-torsion interaction. To do so, let's consider a RC cantilever beam subjected to bending and torsional moments at the free-end as shown in Figure 5 Figure 5-28 presents the bending-torsion interaction curves for different values of stirrup spacing. As we can see, when the torsion is minor compared to bending, for instant R=0.25, the stirrup density logically has almost no effect. The stirrup effect on the element resistance becomes more significant when the torsion dominates over the bending.

In case of pure torsion, it can be seen that the torsional resistance increases about 34 % with increasing of stirrup density of 8 times. This numerical application highlights that the proposed FE formulation takes into account the transversal reinforcements in the predicting of the torsional resistance of RC members. Figure 5-29 presents the growth percent of the ultimate torsional moment for difference cases of stirrup spacing, with respect to the case with the less amount of stirrup (𝑠 𝑠𝑡 = 400𝑚𝑚). By increasing 2 times the transverse reinforcement amount, the ultimate value of bending moment increase only 10 %, while a 50 % of growth can be obtained by increasing 16 times the stirrup amount. 

Bending moment (kN)

Stress distribution

In this section, the distribution of normal and shear stresses of TBO series in Onsongo's test are studied in both elastic and inelastic material domains. In elastic range, the same outline and cross-section dimensions in Figure 5-17a are conserved, with an elastic modulus of 30 GPa, the Poisson's ratio of 0.2 and the ratio R of bending/torsional moments was 1.5 (beam TBO4). The distribution of stresses over the cross-section at torsional moment of 150 kNm and bending moment of 100 kNm are shown in Figure 5 Coupling between bending and torsional effect could be represented clearly in the inelastic range. For beam TBO4, the stresses distribution are shown in Figure 5-31 at load stage after cracking and close to the ultimate point. For a better illustration and analysis, the stresses distribution will be presented in 2D following four vertical and horizontal cuts at the Left and Right webs and the Top and Bottom flanges of the cross-section, as indicated in Figure 5-31a. In horizontal direction, the shear stress distribution are parabolic symmetrical (similar to that in elastic range) as seen in Figure 5-31c. However, in vertical direction, under bending effect and crack contribution, the increment of shear stresses in the tension zone is considerably less than in the compression zone, 𝜏 𝑥𝑧 distribution becomes unsymmetrical as seen in Figure 5-31d. The distributions of normal stresses are also unsymmetrical in vertical direction as consequence, while remaining constant in horizontal direction (Figure 5-31b). The numerical results achieved in Figure 5-31 are corresponding to the one obtained by Navarro-Gregori's model [START_REF] Navarro-Gregori | A 3d numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[END_REF]. 

Elements subjected to shear-bending-torsion

In this section, the combined loading effect between shear, bending and torsional moments is analyzed by investigating several test series carried out by McMullen & Warwaruk [72]. The outline of test setup is shown in [72] for combined shear-bending-torsion.

Comparison with experimental data

The ultimate shear force, bending and torsional moments of each specimen are presented for each concrete strength in Table 5.8, as well as the relative difference with respect to the experimental values. As can be seen, the proposed model gives the results more or less in good agreement with the experimental data. Indeed, the relative errors are most smaller than 6 %, except for the cases of beams 5-4 and 6-4, when the ratio R between 

Bending-Torsion interaction diagram

The bending-torsion interaction diagrams of Group 5 and Group 6 are plotted in Figure 5-34. The analytical solutions given by the skew-bending theory by Collins et al. [23] are established with an average compressive strength of 41.3 MPa (in Group 5) and 40.0 MPa (in Group 6). Because of the same cross-section details and concrete strengths between two groups, similar results can be found: when the torsion/bending ratio R are bigger than (beams 5-1, 5-2, 6-1, 6-2), the proposed model performs better than the skewbending theory in predicting the ultimate loads; on the other hand, when R=0.5 (beams 5-3 and 6-3), the analytical solutions give better results. In particular, when bending moment becomes dominated torsional moments (R=0.25 for the cases of beams 5-4 and 6-4), the numerical results are very similar to the analytical solutions, but they are all too unconservative compared to the experimental values. In Figure 5-35, the bending-torsion interaction diagram of Group 7 is plotted. As mentioned above, the numerical results are conservative to the experimental ones. For the case of beam 7-1 and 7-4, the same level of accuracy compared to the experimentation is obtained for both proposed model and analytical solutions given by skew-bending theory.

In the same way as the others bending-torsion interaction diagrams of Group 1, 2, 5 and 6, at the vicinity of transition between three failure modes, the skew-bending theory continues to give very conservative results. 

Shear-Torsion interaction diagram

In the same way as the bending-torsion interaction, in the skew-bending theory by Collins et al. [23], the shear-torsion interaction of rectangular RC members can also be illustrated for two cases of symmetrically and unsymmetrically cross-section. For symmetrically rectangular RC members (equal quantity of top and bottom longitudinal reinforcements), only The shear-torsion interaction diagrams of Group 5, 6 and 7 are plotted in Figure 7-15.

In Group 5 and 6, the experimental curve trend are somewhat correspondent to the skewbending theory for unsymmetrically RC members, however, the analytical predictions are too conservative, especially in Group 5. In the other hand, different situation can be remarked for the shear-torsion interaction curve of Group 7 (Figure 5-37c). In this diagram, both the results given by the skew-bending theory and the proposed model are in good agreement with the experimentation. In the same way as the others bendingtorsion and shear-torsion interaction curves have shown in this Chapter, the analytical solutions are quite conservative. This remark corresponds to the observation of Hsu [START_REF] Hsu | Torsion of reinforced concrete[END_REF] that the skew-bending theory overestimates considerably the pure torsional strength of RC members. 

Conclusions

In this section, various numerical simulations have been done in order to assess the capability of the FE model developed in Chapter 3. Through these numerical examples, the following remarks and conclusions can be draw:

• In the elastic material regime, excellent correlations have been obtained between numerical results, theoretical formulations and analytical solutions. The multi-fiber approach has shown its advantage by ensuring an excellent balance between accuracy and calculation cost in this material regime. Deformation, strain and stress distributions can be computed and figured out with very high levels of accuracy by both approaches representing the enhanced displacement field (using Saint-Venant warping function and Lagrange polynomials).

• Between two enhanced approaches, Saint-Venant warping function is simpler and more practice with a lower computational cost, whereas the use of Lagrange polynomials approach is more general and presents a big advantage by obtaining the additional normal stresses and representing the distribution of warping displacement over cross-section under shear bending action, which can not be obtained by plane-section beam theory, as well as the Saint-Venant warping function approach.

• The proposed model is very efficient in simulating the inelastic coupling between shear and bending, in which every aspect of the beam analysis, including the loaddisplacement diagram, the crack propagation as well as the distribution of stresses, etc., could be represented and analyzed. Under shear-bending action, the use of proposed model for the modeling of RC beams is also appropriate by good levels of correlation obtained between numerical and experimental results in computing the ultimate loading and simulating the load-displacement diagrams of three beam series in the classic test of Bresler & Scordelis.

• The bending-torsion interaction diagrams indicates that the proposed model can Geometric nonlinearity and

Corotational formulation

Under extreme loads, structures may achieve large displacement conditions. Consequently, the linear geometric assumption becomes insufficient for the simulation of structural elements. The inclusion of nonlinear geometry effects is necessary in order to complete the competency of this 3D beam model. The present chapter deals with geometrically nonlinear finite element formulation for the analysis of RC members subjected to combined shear-bending-torsion actions. The co-rotational formulation is motivated by the fact that thin structures undergoing finite formulation are characterized by significant rigid body motions. The assumption of small strains but large displacements and rotations is adopted. The basic is an element-independent algorithm, where the rigid body motions (translations and rotations) are separated from the total deformation. In the corotational based, the reference configuration is split into base and corotated. Strains and stresses are measured from corotated to current, while base configuration is maintained as reference to measure rigid body motions. This formulation is recommended to use in case of solid and structural mechanics with arbitrarily large finite motions, but small strains and elastic material behavior. Extendible to nonlinear materials if inelasticity is localized so most of structure stays elastic.

The main advantage of a co-rotational approach is that it leads to an artificial separation of the material and geometric non-linearities when a linear strain definition in the local coordinate system is used: plastic deformations occur in the local coordinate system where geometrical linearity is assumed; geometric non-linearity is only present during the rigid rotation and translation of the undeformed beam. This leads to very simple ex-pressions for the local internal force vector and tangent stiffness matrix. Even when a low-order geometrical non-linearity is included in the strain definition, the expressions for the local internal force vector and tangent stiffness matrix are still very simple. In this research, a Total Lagrangian-Corotational approach is employed for the development of beam and beam-column elements, in which an initial undeformed geometry, translated and rotated as a rigid body, is chosen as the reference configuration in the corotated frame. Moreover, the formulation is based on small deformations within the corotational (natural) frame.

3D rotation parametrization

Before expressing the co-rotational formulation, it is necessary to define the 3D finite rotations of a beam element, which is one of the key issues concerning the nonlinear geometric formulation.

Rotation tensor

Let e = (︁ 𝑒 1 𝑒 2 𝑒 3 )︁ 𝑇 be a vector (or frame) that is rotated into the new position t = (︁ 𝑡 1 𝑡 2 𝑡 3 )︁ 𝑇 (Figure 6-1a), a relation between these two vectors is obtained as follows:

t = Re (6.1)
These rotations are represented by an orthogonal tensor R, which is an 3 × 3 matrix, but involving only three independent parameters, due to its ortho-normality (RR 𝑇 = I). The rotation matrix R can be expressed as:

R = I 3 + sin 𝜃 𝜃 𝑆𝑝(Θ) + 1 -cos 𝜃 𝜃 2 𝑆𝑝(Θ) 2 (6.2)
where I 3 is the 3 × 3 identity matrix; 𝜃 is the magnitude of the so-called rotation vector

Θ = (︁ 𝜃 1 𝜃 2 𝜃 3 )︁ 𝑇
; and 𝑆𝑝(Θ) is the spin of the rotation vector, defined as:

𝑆𝑝(Θ) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 -𝜃 3 𝜃 2 𝜃 3 0 -𝜃 1 -𝜃 2 𝜃 1 0 ⎤ ⎥ ⎥ ⎥ ⎦ (6.3)

Rotation increment

The finite rotation can be expressed with the rotation matrix R and the corresponding rotation vector Θ. Then, the incremental rotation of the moving vector/frame t is considered by generating a small variation 𝛿t from the rotated position t (Figure 6-1b):

𝛿t = 𝛿Rt (6.4)
The variation of the rotation matrix R is derived by defining a new parameter 𝛿Ω as the spatial angular variation representing the infinitesimal rotation that is superimposed on the rotation matrix R:

𝛿R = 𝑆𝑝(𝛿Ω)R (6.5)
In the numerical implementation, the spatial angular variation play a very important role in the incremental analysis for updating the rotation matrix R 𝑖 from 𝑖 state to the rotation matrix R 𝑖+1 of 𝑖 + 1 state:

R 𝑖+1 (Θ 𝑖+1 ) = R(𝛿Ω)R 𝑖 (Θ 𝑖 ) (6.6) 
Knowing that R 𝑖 is a function of Θ 𝑖 and R 𝑖+1 is a function of Θ 𝑖+1 , however the addition of the vector 𝛿Ω to Θ 𝑖 does not give Θ 𝑖+1 : Θ 𝑖+1 ̸ = Θ 𝑖 + 𝛿Ω. This problem of multiplicative update for rotations in the incremental analysis is solved by projecting the spatial angular variation 𝛿Ω onto the parameter space adopted for R and obtaining, as a result, a new parameter called admissible angular variation 𝛿Θ. The conversion between this two parameters, proposed by Battini & Pacoste [6], is represented by a complex relationship:

𝛿Ω = T 𝑠 (Θ)𝛿Θ (6.7)
with

T 𝑠 (Θ) = sin 𝜃 𝜃 I + (︂ 1 - sin 𝜃 𝜃 )︂ nn 𝑇 + 1 2 (︂ sin(𝜃/2) (𝜃/2) )︂ 2 𝑆𝑝(Θ) (6.8)
where n is an unit vector. The inverse relation is also available: In this present work, a beam element is limited by two end nodes 𝐼 and 𝐽. The motion of a beam element is attached to a local reference system and its rigid body motion is considered in a global reference system which is defined by a triad of unit orthogonal

𝛿Θ = T -
vectors E 𝑖 = (︁ 𝐸 1 𝐸 2 𝐸 3 )︁ .
In the initial configuration (undeformed condition), the local reference system is defined by a triad of unit orthogonal vectors e 𝑜 𝑖 =

(︁ 𝑒 𝑜 1 𝑒 𝑜 2 𝑒 𝑜 3 )︁ .
The rigid rotation relative to the global reference of this local frame is defined by a rotation matrix R 𝑜 :

(︁ 𝐸 1 𝐸 2 𝐸 3 )︁ R 𝑜 -→ (︁ 𝑒 𝑜 1 𝑒 𝑜 2 𝑒 𝑜 3 
)︁ (Figure 6-2). The components of R 𝑜 are defined by the position of two beam nodes: 

R 𝑜 = [︁ R 𝑜 1 R 𝑜 2 R 𝑜 3 ]︁ : 𝑅 𝑜 1 = x 𝐽 𝑜 -x 𝐼 𝑜 ‖x 𝐽 𝑜 -x 𝐼 𝑜 ‖ ; 𝑅 𝑜 3 = 𝑅 𝑜 1 × [0, 1, 0] ‖𝑅 𝑜 1 × [0, 1, 0]‖ ; 𝑅 𝑜 2 = 𝑅 𝑜 3 × 𝑅 𝑜 1 ‖𝑅 𝑜 3 × 𝑅 𝑜 1 ‖ (6.
(︁ 𝐸 1 𝐸 2 𝐸 3 )︁ R 𝑟 -→ (︁ 𝑒 1 𝑒 2 𝑒 3 )︁ .
• Local reference system in final configuration (totally deformed): defined by two triads of unit orthogonal vectors at each node: 1. A rotation of the local axes relative to the global frame, defined by the rigid rotation matrix R 𝑟 , followed by a rotation of the node relative to local axes, which is defined by a local rotation matrix R 𝐼𝐽 :

t 𝐼 𝑖 = (︁ 𝑡 𝐼 1 𝑡 𝐼 2 𝑡 𝐼 3 )︁ and t 𝐽 𝑖 = (︁ 𝑡 𝐽 1 𝑡 𝐽 2 𝑡 𝐽
(︁ 𝐸 1 𝐸 2 𝐸 3 )︁ R 𝑟 -→ (︁ 𝑒 1 𝑒 2 𝑒 3 )︁ R 𝐼𝐽 --→ (︁ 𝑡 𝐼𝐽 1 𝑡 𝐼𝐽 2 𝑡 𝐼𝐽 3
)︁ (6.12)

2. A material rotation of the node relative to the global reference, defined by rotation matrices R 𝑔𝐼𝐽 , followed by a global rotation of the local frame at initial configuration (defined by the rotation matrix R 𝑜 ): The following relationship can be formulated between these rotation matrices:

(︁ 𝐸 1 𝐸 2 𝐸 3 )︁ R𝑜 -→ (︁ 𝑒 𝑜 1 𝑒 𝑜 2 𝑒 𝑜 3 )︁ R 𝑔𝐼𝐽 ---→ (︁ 𝑡 𝐼𝐽 1 𝑡 𝐼𝐽 2 𝑡 𝐼𝐽 3 )︁ (6.
R 𝑟 R 𝐼𝐽 = R 𝑔𝐼𝐽 R 𝑜 (6.14)
As mentioned above in Equation (6.1), the expression of the material rotation matrix R 𝑔𝐼𝐽 in the global reference can be expressed as:

R 𝑔𝐼𝐽 = I 3 + sin 𝜃 𝜃 𝑆𝑝(Θ) + 1 -cos 𝜃 𝜃 2 𝑆𝑝(Θ) 2 (6.15)
While the rigid rotation matrix R 𝑟 is defined from the material rotation matrix R 𝑔𝐼𝐽 in Equation (6.15) and the initial rotation matrix R 𝑜 in Equation (6.11): the final beam length; q is an auxiliary vector defined as:

R 𝑟 = [︃ R 𝑟 1 R 𝑟 2 R 𝑟 3 ]︃ R 𝑟 1 = x 𝐽 + d 𝐽 -x 𝐼 -d 𝐼 ‖x 𝐽 + d 𝐽 -x 𝐼 -d 𝐼 ‖ ; R 𝑟 3 = 𝑅 𝑟 1 × q ‖𝑅 𝑜 1 × q‖ ; R 𝑟 2 = 𝑅 𝑟 3 × 𝑅 𝑟 1 ‖𝑅 𝑟 3 × 𝑅 𝑟 1 ‖ ( 
q = q 𝐼 + q 𝐽 2 ; q 𝐼 = R 𝑔𝐼 R 𝑜 [︁ 0 1 0 ]︁ 𝑇 ; q 𝐽 = R 𝑔𝐽 R 𝑜 [︁ 0 1 0 ]︁ 𝑇 (6.17)
And the nodal rotation matrix can be evaluated from Equation (6.14)

R 𝐼𝐽 = R 𝑟𝑇 R 𝑔𝐼𝐽 R 𝑜 (6.18)

Change of variables

In the co-rotational framework, the generalized and nodal displacements of beam element are defined relative to the global reference system, while the existing element kinematics are determined relative to the local frame. Therefore, it is necessary to make a transformation of variables between global and local reference. For the shake of convenience, as in the sequel all the variables relative to the local frame in final configuration will be denoted with a bar. Moreover, as a reminder the incremental rotation of local frame needs a conversion from material angular variation 𝛿Θ to spatial angular variation 𝛿Ω, thus two more changes of variables are required for this angular conversion, one in global and other in local level. In short, in the co-rotational formulation, there is a total of three transformations to be performed: Local variables (with material angular)

-→ Local variables (with spatial angular)

-→ Global variables (with spatial angular)

-→ Global variables (with material angular).

It is important to note that, in this work, due to the particular separation of the local frame above, the local translations at node I will be zero and at node J, the only nonzero translation component is the axial translation along local axis 𝑒 1 (Figure 6-5). As a consequence, at local level the nodal displacements vector contains only 7 components, with 1 translation at node J, 3 rotations at node I and 3 rotations at node J:

q 𝑒 = (︁ 𝑢 Θ 𝐼 Θ 𝐽 )︁ -for material angulars ; or q 𝑠 𝑒 = (︁ 𝑢 Ω 𝐼 Ω 𝐽 )︁
-for spatial angulars. On the other hand, at global level, the nodal displacements vector contains 12 components with 3 translations and 3 rotations at each node: 

q 𝑠 𝑒 = (︁ d 𝐼 Ω 𝐼 d 𝐽 Ω 𝐽 )︁ and q 𝑒 = (︁ d 𝐼 Θ 𝐼 d 𝐽 Θ 𝐽 )︁ .

1st transformation: 𝛿Θ → 𝛿Ω

Using Equation (6.9), we get:

𝛿Θ 𝐼𝐽 = T -1 𝑠 (Θ 𝐼𝐽 )𝛿Ω 𝐼𝐽 (6.19)
Knowing that the translations vector is unchanged in this transformation, we get:

𝛿 ⎛ ⎜ ⎜ ⎜ ⎝ 𝑢 Θ 𝐼 Θ 𝐽 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎣ 1 0 13 0 13 0 31 T -1 𝑠 (Θ 𝐼 ) 0 3 0 31 0 3 T -1 𝑠 (Θ 𝐽 ) ⎤ ⎥ ⎥ ⎥ ⎦ 𝛿 ⎛ ⎜ ⎜ ⎜ ⎝ 𝑢 Ω 𝐼 Ω 𝐽 ⎞ ⎟ ⎟ ⎟ ⎠ ⇒ 𝛿q 𝑒 = B 𝜃 𝛿q 𝑠 𝑒 (6.20)
with 0 13 is a 1 × 3 zero matrix; 0 31 is a 3 × 1 zero matrix and 0 3 is a 3 × 3 zero matrix.

Then, the virtual work equation gives:

Q 𝑠 𝑒 = B 𝑇 𝜃 Q 𝑒 (6.21)
with Q 𝑠 𝑒 and Q 𝑒 are the nodal forces vectors consistent with 𝛿q 𝑠 𝑒 and 𝛿q 𝑒 respectively. The expression of theses local nodal vectors is expressed as:

Q 𝑠 𝑒 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝐹 𝑠 M 𝐼𝑠 M 𝐽𝑠 ⎞ ⎟ ⎟ ⎟ ⎠ ; Q 𝑒 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝐹 M 𝐼 M 𝐽 ⎞ ⎟ ⎟ ⎟ ⎠ (6.22)
with 𝐹 and 𝐹 𝑠 are the axial forces,

M 𝐼𝑠 = (︁ 𝑀 𝐼𝑠 1 𝑀 𝐼𝑠 2 𝑀 𝐼𝑠 3 )︁ 𝑇 , M 𝐽𝑠 = (︁ 𝑀 𝐽𝑠 1 𝑀 𝐽𝑠 2 𝑀 𝐽𝑠 3 )︁ 𝑇 , M 𝐼 = (︁ 𝑀 𝐼 1 𝑀 𝐼 2 𝑀 𝐼 3 )︁ 𝑇 and M 𝐽 = (︁ 𝑀 𝐽 1 𝑀 𝐽 2 𝑀 𝐽 3
)︁ 𝑇 are the moments vectors. In the assumption without any external uniform loading, the transformation for the local tangent stiffness matrices is obtained by taking the variation of the nodal forces:

K 𝑠 𝑒 = 𝛿Q 𝑠 𝑒 𝛿q 𝑠 𝑒 = B 𝑇 𝜃 𝛿Q 𝑒 + 𝛿B 𝑇 𝜃 Q 𝑒 𝛿q 𝑠 𝑒 = B 𝑇 𝜃 K 𝑒 𝛿q 𝑒 + 𝛿B 𝑇 𝜃 Q 𝑒 𝛿q 𝑠 𝑒 = B 𝑇 𝜃 K 𝑒 B 𝜃 + 𝛿B 𝑇 𝜃 Q 𝑒 𝛿q 𝑠 𝑒 (6.23) ⇒ K 𝑠 𝑒 = B 𝑇 𝜃 K 𝑒 B 𝜃 + K ℎ 𝑒 (6.24) 
with:

K ℎ 𝑒 = 𝛿B 𝑇 𝜃 Q 𝑒 𝛿q 𝑠 𝑒 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 13 0 13 0 31 K 𝐼ℎ 𝑒 0 33 0 31 0 33 K 𝐽ℎ 𝑒 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ K 𝐼ℎ 𝑒 = [︂ 𝜂 [︁ Θ 𝐼 M 𝐼𝑇 -2M 𝐼 Θ 𝐼𝑇 + (︁ Θ 𝐼𝑇 × M 𝐼 )︁ I 3 ]︁ + 𝜇𝑆𝑝(Θ) 2 [︁ M 𝐼 Θ 𝐼𝑇 ]︁ - 1 2 𝑆𝑝(M 𝐼 ) ]︂ T -1 𝑠 (Θ 𝐼 ) K 𝐽ℎ 𝑒 = [︂ 𝜂 [︁ Θ 𝐽 M 𝐽𝑇 -2M 𝐽 Θ 𝐽𝑇 + (︁ Θ 𝐽𝑇 × M 𝐽 )︁ I 3 ]︁ + 𝜇𝑆𝑝(Θ) 2 [︁ M 𝐽 Θ 𝐽𝑇 ]︁ - 1 2 𝑆𝑝(M 𝐽 ) ]︂ T -1 𝑠 (Θ 𝐽 ) 𝜂 = 2 sin 𝛼 -𝛼 (1 + cos 𝛼) 2𝛼 2 sin 𝛼 ; 𝜇 = 𝛼 (𝛼 + sin 𝛼) -sin 2 (𝛼/2) 4𝛼 4 sin 2 (𝛼/2) ; 𝛼 = ‖Θ‖

2nd transformation: local → global

In the local reference, the axial translation can be evaluated as:

𝑢 = 𝑙 𝑛 -𝑙 𝑜 (6.25)
with 𝑙 𝑜 and 𝑙 𝑛 are the beam lengths in the initial and final configuration, respectively.

From Equation (6.11) and (6.16), the variation of this axial translation gives:

𝛿𝑢 = 𝛿(𝑙 𝑛 -𝑙 𝑜 ) = [︁ -R 𝑟 1 𝑇 0 13 R 𝑟 1 𝑇 0 13 ]︁ 𝛿 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ d 𝐼 Ω 𝐼 d 𝐽 Ω 𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⇒ 𝛿𝑢 = r𝛿q 𝑠 𝑒 (6.26)
In order to express the variation of the nodal material angular vector Θ 𝐼𝐽 , it is necessary to obtain the variation of nodal rotation matrix R 𝐼𝐽 , from Equation (6.18) we get:

𝛿R 𝐼𝐽 = 𝛿R 𝑟𝑇 R 𝑔𝐼𝐽 R 𝑜 + R 𝑟𝑇 𝛿R 𝑔𝐼𝐽 R 𝑜 (6.27)
From Equation (6.5) the variation of rotation matrices above can be expressed as follows:

𝛿R 𝐼𝐽 = 𝑆𝑝(𝛿Ω 𝐼𝐽 )R 𝐼𝐽 (6.28a)
𝛿R 𝑟 = 𝑆𝑝(𝛿Ω 𝑔𝑟 )R 𝑟 (6.28b)

𝛿R 𝑔𝐼𝐽 = 𝑆𝑝(𝛿Ω 𝑔𝐼𝐽 )R 𝑔𝐼𝐽 (6.28c)
with 𝛿Ω 𝑔𝑟 is defined as the variation of the angular vector attached to the local reference system in semi-final configuration e 𝑖 , relative to the global reference; while 𝛿Ω 𝑔𝐼𝐽 is the variation of the nodal angular vector in final configuration t 𝐼𝐽 𝑖 , relative to the global reference. These two variations can be expressed relatively to the local frame e 𝑖 by the rigid rotation matrix R 𝑟 as follows:

⎧ ⎨ ⎩ Ω 𝑒𝑟 = R 𝑇 𝑟 Ω 𝑔𝑟 Ω 𝑒𝐼𝐽 = R 𝑇 𝑟 Ω 𝑔𝐼𝐽 ⇒ ⎧ ⎨ ⎩ 𝑆𝑝(Ω 𝑒𝑟 ) = R 𝑇 𝑟 𝑆𝑝(Ω 𝑔𝑟 )R 𝑟 𝑆𝑝(Ω 𝑒𝐼𝐽 ) = R 𝑇 𝑟 𝑆𝑝(Ω 𝑔𝐼𝐽 )R 𝑟 (6.29)
It is also important to distinct the difference between 𝛿Ω 𝐼𝐽 and 𝛿Ω 𝑒𝐼𝐽 , these all expressed the nodal angular vector of beam element relatively to the local frame, however 𝛿Ω 𝐼𝐽 is attached to the local frame in final configuration t 𝐼𝐽 𝑖 , while 𝛿Ω 𝑒𝐼𝐽 is attached to the local frame in semi-final configuration e 𝑖 . Another important remark is the orthogonality condition of rigid rotation matrix R 𝑟 gives the following relationship:

𝛿R 𝑟𝑇 = -R 𝑟𝑇 𝑆𝑝(𝛿Ω 𝑔𝑟 ) (6.30)
So, from equations (6.18), (6.29), (6.30), Equation (6.27) can be rewritten as:

𝑆𝑝(𝛿Ω 𝐼𝐽 )R 𝐼𝐽 = -R 𝑟𝑇 𝑆𝑝(𝛿Ω 𝑔𝑟 )R 𝑔𝐼𝐽 R 𝑜 + R 𝑟𝑇 𝑆𝑝(𝛿Ω 𝑔𝐼𝐽 )R 𝑔𝐼𝐽 R 𝑜 = (︀ 𝑆𝑝(𝛿Ω 𝑒𝐼𝐽 ) -𝑆𝑝(𝛿Ω 𝑒𝑟 ) )︀ R 𝐼𝐽 (6.31)
Thus we obtain the following relationship between the angular variations:

𝛿Ω 𝐼𝐽 = 𝛿Ω 𝑒𝐼𝐽 -𝛿Ω 𝑒𝑟 (6.32)
Knowing that two local reference are used in this section, it is necessary to define the nodal displacement vectors in these references:

q 𝑠 𝑒 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝑢 Ω 𝐼 Ω 𝐽 ⎞ ⎟ ⎟ ⎟ ⎠ ; q 𝑒 𝑒 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ d 𝑒𝐼 Ω 𝑒𝐼 d 𝑒𝐽 Ω 𝑒𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ; q 𝑠 𝑒 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ d 𝐼 Ω 𝐼 d 𝐽 Ω 𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (6.33)
with q 𝑠 𝑒 , q 𝑒 𝑒 and q 𝑠 𝑒 are the nodal displacement vector in local frame, in local reference system in semi-configuration and in global reference, respectively. The change of variables between q 𝑒 𝑒 and q 𝑠 𝑒 can be done by the rigid rotation matrix R 𝑟 :

𝛿q 𝑒 𝑒 = B 𝑇 𝑟 𝛿q 𝑠 𝑒 with B 𝑟 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ R 𝑟 0 3 0 3 0 3 0 3 R 𝑟 0 3 0 3 0 3 0 3 R 𝑟 0 3 0 3 0 3 0 3 R 𝑟 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (6.34)
In order to establish a change of variables between q 𝑠 𝑒 and q 𝑠 𝑒 , the spatial angular variation 𝛿Ω 𝐼𝐽 should be expressed with respect to the variation of q 𝑠 𝑒 : and from Equation (6.28b), (6.29):

𝛿Ω

𝑆𝑝(𝛿Ω 𝑒𝑟 ) = R 𝑟𝑇 𝛿R 𝑟 ⇔ 𝛿 ⎡ ⎢ ⎢ ⎢ ⎣ 0 -Ω 𝑒𝑟 3 Ω 𝑒𝑟 2 Ω 𝑒𝑟 3 0 -Ω 𝑒𝑟 1 -Ω 𝑒𝑟 2 Ω 𝑒𝑟 1 0 ⎤ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎣ R 𝑟𝑇 1 R 𝑟𝑇 2 R 𝑟𝑇 3 ⎤ ⎥ ⎥ ⎥ ⎦ 𝛿 [︁ R 𝑟 1 R 𝑟 2 R 𝑟 3 ]︁ ⇒ 𝛿 ⎛ ⎜ ⎜ ⎜ ⎝ Ω 𝑒𝑟 1 Ω 𝑒𝑟 2 Ω 𝑒𝑟 3 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ -R 𝑟𝑇 2 𝛿R 𝑟 3 -R 𝑟𝑇 3 𝛿R 𝑟 1 R 𝑟𝑇 2 𝛿R 𝑟 1 ⎞ ⎟ ⎟ ⎟ ⎠ (6.37)
Therefore, the following relationship can be obtained for the variation of Ω 𝑒𝑟 :

⇒ 𝜕Ω 𝑒𝑟 𝜕q 𝑒 𝑒 = G; (6.38)
with the expression of matrix G:

G = ⎡ ⎢ ⎢ ⎢ ⎣ 0 0 𝜈/𝑙 𝑛 𝜈 𝐼2 /2 -𝜈 𝐼1 /2 0 0 0 -𝜈/𝑙 𝑛 𝜈 𝐽2 /2 -𝜈 𝐽1 /2 0 0 0 1/𝑙 𝑛 0 0 0 0 0 -1/𝑙 𝑛 0 0 0 0 -1/𝑙 𝑛 0 0 0 0 0 1/𝑙 𝑛 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ (6.39) 𝜈 = 𝑞 1 𝑞 2 ; 𝜈 𝐼1 = 𝑞 𝐼1 𝑞 2 ; 𝜈 𝐼2 = 𝑞 𝐼2 𝑞 2 ; 𝜈 𝐽1 = 𝑞 𝐽1 𝑞 2 ; 𝜈 𝐽2 = 𝑞 𝐽2 𝑞 2 ; (𝑞 1 𝑞 2 𝑞 3 ) 𝑇 = R 𝑟𝑇 q
where q is the auxiliary vector in Equation (6.17) and 𝑞 𝐼1 , 𝑞 𝐼2 , 𝑞 𝐽1 , 𝑞 𝐽2 are the component of auxiliary vector q 𝐼 and q 𝐽 . Thus, from Equation (6.36) and (6.38), Equation (6.35) can be rewritten as follows:

𝛿 ⎛ ⎝ Ω 𝐼 Ω 𝐽 ⎞ ⎠ = ⎛ ⎝ ⎡ ⎣ 0 3 I 3 0 3 0 3 0 3 0 3 0 3 I 3 ⎤ ⎦ - ⎡ ⎣ G 𝑇 G 𝑇 ⎤ ⎦ ⎞ ⎠ B 𝑇 𝑟 𝛿q 𝑠 𝑒 = PB 𝑇 𝑟 𝛿q 𝑠 𝑒 (6.40) 
And from Equation (6.26) and (6.40), the transformation between 𝛿q 𝑠 𝑒 and 𝛿q 𝑠 𝑒 can be expressed as:

𝛿q 𝑠 𝑒 = B 𝑠 𝛿q 𝑠 𝑒 with B 𝑠 = ⎡ ⎣ r PB 𝑇 𝑟 ⎤ ⎦ (6.41)
As a consequence, the transformation between nodal forces vectors and the element stiffness matrix can be expressed as follows:

Q 𝑠 𝑒 = B 𝑇 𝑠 Q 𝑠 𝑒 (6.42a) K 𝑠 𝑒 = 𝛿Q 𝑠 𝑒 𝛿q 𝑠 𝑒 = B 𝑇 𝑠 𝛿Q 𝑠 𝑒 + 𝛿r 𝑇 𝐹 𝑠 + 𝛿B 𝑟 P 𝑇 M 𝑠 𝛿q 𝑠 𝑒 (6.42b) with M 𝑠 = (︁ M 𝐼𝑠𝑇 M 𝐽𝑠𝑇 )︁
, after some algebra the expression of K 𝑠 𝑒 becomes:

K 𝑠 𝑒 = B 𝑇 𝑠 K 𝑠 𝑒 B 𝑠 + K 𝑚 (6.43)
with:

K 𝑚 = D𝐹 𝑠 -B 𝑟 QGB 𝑇 𝑟 + B 𝑟 Gar; a = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝜂 (︁ 𝑀 𝐼𝑠 1 + 𝑀 𝐽𝑠 1 )︁ /𝑙 𝑛 - (︁ 𝑀 𝐼𝑠 2 + 𝑀 𝐽𝑠 2 )︁ /𝑙 𝑛 (︁ 𝑀 𝐼𝑠 3 + 𝑀 𝐽𝑠 3 )︁ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ D = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ D 3 D 3 0 3 0 3 0 3 0 3 -D 3 D 3 0 3 0 3 0 3 0 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; D 3 = 1 𝑙 𝑛 (︀ I 3 -R 𝑟 1 R 𝑟𝑇 1 )︀ ; Q = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑆𝑝(Q 1 ) 𝑆𝑝(Q 2 ) 𝑆𝑝(Q 3 ) 𝑆𝑝(Q 4 ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Q 1 Q 2 Q 3 Q 4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = P 𝑇 M 𝑠 6.3.3 3rd transformation: 𝛿Ω → 𝛿Θ
In this last transformation, the conversion between spatial angular and material angular in global reference will be established. Using the relationship in Equation (6.7), we obtain:

𝛿 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ d 𝐼 Ω 𝐼 d 𝐽 Ω 𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ I 3 0 3 0 3 0 3 0 3 T 𝑠 (Θ 𝐼 ) 0 3 0 3 0 3 0 3 I 3 0 3 0 3 0 3 0 3 T 𝑠 (Θ 𝐽 ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 𝛿 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ d 𝐼 Θ 𝐼 d 𝐽 Θ 𝐽 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⇒ 𝛿q 𝑠 𝑒 = B ℎ 𝛿q 𝑒 (6.44) 
The global nodal force vector and the global stiffness matrix consistent with q 𝑒 are given as follows:

Q 𝑒 = B 𝑇 ℎ Q 𝑠 𝑒 (6.45a) K 𝑒 = 𝜕Q 𝑒 𝜕q 𝑒 = B 𝑇 ℎ K 𝑠 𝑒 B ℎ + K ℎ (6.45b)
with:

K ℎ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 3 0 3 0 3 0 3 0 3 K 𝐼 ℎ 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 K 𝐽 ℎ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ K 𝐼 ℎ = - (︃ sin 𝜃 𝐼 𝜃 𝐼 - (︂ sin(𝜃 𝐼 /2) 𝜃 𝐼 /2 )︂ 2 )︃ (︀ e 𝐼 × M 𝐼𝑠 )︀ e 𝐼𝑇 + 1 2 
(︂ sin(𝜃 𝐼 /2) 𝜃 𝐼 /2 )︂ 2 𝑆𝑝(M 𝐼𝑠 ) + (︂ cos 𝜃 𝐼 - sin 𝜃 𝐼 𝜃 𝐼 )︂ 1 𝜃 𝐼 [︀ M 𝐼𝑠𝑇 - (︀ e 𝐼𝑇 M 𝐼𝑠 )︀ e 𝐼 e 𝐼𝑇 ]︀ + (︂ 1 - sin 𝜃 𝐼 𝜃 𝐼 )︂ 1 𝜃 𝐼 [︀ e 𝐼 M 𝐼𝑠𝑇 -2 (︀ e 𝐼𝑇 M 𝐼𝑠 )︀ e 𝐼 e 𝐼𝑇 + (︀ e 𝐼𝑇 M 𝐼𝑠 )︀ I 3 ]︀ K 𝐽 ℎ = - (︃ sin 𝜃 𝐽 𝜃 𝐽 - (︂ sin(𝜃 𝐽 /2) 𝜃 𝐽 /2 )︂ 2 )︃ (︀ e 𝐽 × M 𝐽𝑠 )︀ e 𝐽𝑇 + 1 2 
(︂ sin(𝜃 𝐽 /2) 𝜃 𝐽 /2 )︂ 2 𝑆𝑝(M 𝐽𝑠 ) + (︂ cos 𝜃 𝐽 - sin 𝜃 𝐽 𝜃 𝐽 )︂ 1 𝜃 𝐽 [︀ M 𝐽𝑠𝑇 - (︀ e 𝐽𝑇 M 𝐽𝑠 )︀ e 𝐽 e 𝐽𝑇 ]︀ + (︂ 1 - sin 𝜃 𝐽 𝜃 𝐽 )︂ 1 𝜃 𝐽 [︀ e 𝐽 M 𝐽𝑠𝑇 -2 (︀ e 𝐽𝑇 M 𝐽𝑠 )︀ e 𝐽 e 𝐽𝑇 + (︀ e 𝐽𝑇 M 𝐽𝑠 )︀ I 3 ]︀
𝜔 𝐼/𝐽 = ‖Θ 𝐼/𝐽 ‖; e 𝐼/𝐽 = Θ 𝐼/𝐽 𝜃 𝐼/𝐽

Local beam formulation

According to Battini & Pacoste, most of the co-rotational elements found in the literature are based on local linear strain assumptions, except when the torsional effects are important [6]. In this case, for members under torsional effects the geometrical nonlinearity is generated by a term included in the local strain definition, which is defined by a secondorder approximation of the Green Lagrange strains. A second-order approximation of the displacement field is therefore necessary to obtain the second-order of the strains. In this section, the second-order approximation of Green-Lagrange strains will be constructed at the local level, in order to describe the local kinematic of beam element in a co-rotational framework under combined loadings and pure torsion. For the shake of simplicity, only the approach using Saint-Venant warping function has been developed.

The kinematic model proposed by Gruttmann et al. [START_REF] Gruttmann | Theory and numerics of three-dimensional beams with elastoplastic material behavior[END_REF] is adopted for a general case of classical beam in which the centroid G and the shear center C are not coincident (Figure 6-6). The position of an arbitrary point P is defined by vector x 𝑜 𝑃 (𝑥, 𝑦, 𝑧) in the initial configuration and by vector x 𝑃 (𝑥, 𝑦, 𝑧) in the current configuration:

x 𝑜 𝑃 (𝑥, 𝑦, 𝑧) = x 𝑜 𝐺 (𝑥) + 𝑦e 𝑦 + 𝑧e 𝑧 x 𝑃 (𝑥, 𝑦, 𝑧) = x 𝐺 (𝑥) + 𝑦a 𝑦 + 𝑧a 𝑧 + 𝛼(𝑥) ψ(𝑦, 𝑧)a 𝑥 (6.46) and

R = I 3 + 𝑆𝑝(𝜃) + 1 2 𝑆𝑝(𝜃) 2 ; 𝑆𝑝(𝜃) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 -𝜃 𝑧 𝜃 𝑦 𝜃 𝑧 0 -𝜃 𝑥 -𝜃 𝑦 𝜃 𝑥 0 ⎤ ⎥ ⎥ ⎥ ⎦ (6.49)
where 𝜃 𝑥 , 𝜃 𝑦 and 𝜃 𝑧 are the material rotation of point P. The definition of rotation matrix R will be detailed in Section 6. Unlike the material strains expressed in Equation (3.9), the second order Green-Lagrange strains are derived as follows: In order to distinct the Green-Lagrange strain and the linear strain in Section 3.3, in this section all the nonlinear terms are highlighted in bold. With the assumption that the term 1 2

𝜀 𝐺𝐿 𝑥𝑥 = 𝜕𝑈 𝜕𝑥 + 1 2 (︃ 𝜕𝑈 𝜕𝑥 )︃ 2 + 1 2 (︃ 𝜕𝑉 𝜕𝑥 )︃ 2 + 1 2 (︃ 𝜕𝑊 

(︂ 𝜕𝑈 𝜕𝑥

)︂ 2 in the expression of 𝜀 𝐺𝐿 𝑥𝑥 is neglected and the non-linear strain components generated by the warping function are omitted, the following expressions of Green-Lagrange strains in equation 6.52 can be obtained:

𝜀 𝐺𝐿 𝑥𝑥 = 𝜀 𝑥 -𝑦𝜅 𝑧 + 𝑧𝜅 𝑦 + 1 2 𝑟 2 (︂ 𝜕𝜃 𝑥 𝜕𝑥 )︂ 2 𝛾 𝐺𝐿 𝑥𝑦 = 𝛾 𝑦 -𝑧𝜅 𝑥 + 𝜕𝜓 𝜕𝑦 𝜕𝜃 𝑥 𝜕𝑥 𝛾 𝐺𝐿 𝑥𝑧 = 𝛾 𝑧 + 𝑦𝜅 𝑥 + 𝜕𝜓 𝜕𝑧 𝜕𝜃 𝑥 𝜕𝑥 (6.53)
with the new definition of generalized strains: describes the interaction between axial and torsional strain. Using the same definition of generalized strains as in Equation (3.11), the following kinematic relationship can be 203 obtained between Green-Lagrange strains and the generalized strains vector:

𝑟 2 = 𝑦 2 + 𝑧 2 𝜀 𝐺𝐿 𝑥 = 𝜕𝑢 𝜕𝑥 + 1 2 (︃ (︂ 𝜕𝑣 𝜕𝑥 )︂ 2 + (︂ 𝜕𝑤 𝜕𝑥 )︂ 2 )︃ 𝛾 𝐺𝐿 𝑦 = 𝜕𝑣 𝜕𝑥 -𝜃 𝑧 + 1 
⎛ ⎜ ⎜ ⎜ ⎝ 𝜀 𝐺𝐿 𝑥𝑥 𝛾 𝐺𝐿 𝑥𝑦 𝛾 𝐺𝐿 𝑥𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 1 2 𝑟 2 𝜅 𝑥 𝑧 -𝑦 0 1 0 𝜕𝜓 𝜕𝑦 -𝑧 0 0 0 0 1 𝜕𝜓 𝜕𝑧 + 𝑦 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝜀 𝑥 𝛾 𝑦 𝛾 𝑧 𝜅 𝑥 𝜅 𝑦 𝜅 𝑧 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
⇒ e 𝐺𝐿 𝑓 (𝑥, 𝑦, 𝑧) = a 𝐺𝐿 𝑓 (𝑥, 𝑦, 𝑧)e 𝑠 (𝑥) (6.56) As in the sequel, for the shake of simplicity in establishing the numerical implementation, the above expression (and others) will be decomposed into 2 parts: one represents the linear/ordinary part following the local linear strain assumption e 𝑓 , and another resulting from the second order Green-Lagrange approximation e * 𝑓 : Then, the following constitutive relationship can be established:

e 𝐺𝐿 𝑓 (𝑥, 𝑦, 𝑧) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 𝑧 -𝑦 0 1 0 𝜕𝜓 𝜕𝑦 -𝑧 0 0 0 0 1 𝜕𝜓 𝜕𝑧 + 𝑦 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 1 2 𝑟 2 𝜅 𝑥 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ e 𝑠 (𝑥
s 𝐺𝐿 𝑓 = k 𝑓 e 𝐺𝐿 𝑓 = k 𝑓 (︀ e 𝑓 + e * 𝑓 )︀ = s 𝑓 + s * 𝑓 (6.58)
where k 𝑓 is the material stiffness matrix. In this section, for the shake of simplicity, we consider that k 𝑓 is approximated as a consistent tangent operator as follows:

k 𝑓 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐸 0 0 0 𝐺 𝑦 0 0 0 𝐺 𝑧 ⎤ ⎥ ⎥ ⎥ ⎦ (6.59)
As a consequence, the normal stress becomes the only non-zero component of the non-linear stress vector:

s * 𝑓 = (︂ 1 2 𝐸𝑟 2 𝜅 2 𝑥 0 0 )︂ 𝑇 .
From Equation (3.40) in Section 3.4.1, the sectional forces vector consistent to the Green-Lagrange strains can be expressed as follows:

D 𝐺𝐿 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 a 𝐺𝐿 𝑓 𝑇 s 𝐺𝐿 𝑓 𝑑𝐴 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑁 𝑥 𝑉 𝑦 𝑉 𝑧 𝑀 𝑥 𝑀 𝑦 𝑀 𝑧 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫︁ ∫︁ 𝐴 𝜎 𝐺𝐿 𝑥𝑥 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝜏 𝐺𝐿 𝑥𝑦 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝜏 𝐺𝐿 𝑥𝑧 𝑑𝐴 ∫︁ ∫︁ 𝐴 [︂(︂ 𝑦 + 𝜕𝜓 𝜕𝑧 )︂ 𝜏 𝐺𝐿 𝑥𝑧 - (︂ 𝑧 - 𝜕𝜓 𝜕𝑦 )︂ 𝜏 𝐺𝐿 𝑥𝑦 + 1 2 𝑟 2 𝜅 𝑥 𝜎 𝐺𝐿 𝑥𝑥 ]︂ 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝑧𝜎 𝐺𝐿 𝑥𝑥 𝑑𝐴 - ∫︁ ∫︁ 𝐴 𝑦𝜎 𝐺𝐿 𝑥𝑥 𝑑𝐴 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (6.60)
From Equation (6.58), the decomposition of this sectional forces results as:

D 𝐺𝐿 𝑠 (𝑥) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫︁ ∫︁ 𝐴 𝜎 𝑥𝑥 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝜏 𝑥𝑦 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝜏 𝑥𝑧 𝑑𝐴 ∫︁ ∫︁ 𝐴 [︂(︂ 𝑦 + 𝜕𝜓 𝜕𝑧 )︂ 𝜏 𝑥𝑧 - (︂ 𝑧 - 𝜕𝜓 𝜕𝑦 )︂ 𝜏 𝑥𝑦 ]︂ 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝑧𝜎 𝑥𝑥 𝑑𝐴 - ∫︁ ∫︁ 𝐴 𝑦𝜎 𝑥𝑥 𝑑𝐴 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫︁ ∫︁ 𝐴 𝜎 * 𝑥𝑥 𝑑𝐴 0 0 ∫︁ ∫︁ 𝐴 1 2 𝑟 2 𝜅 𝑥 𝜎 𝐺𝐿 𝑥𝑥 𝑑𝐴 ∫︁ ∫︁ 𝐴 𝑧𝜎 * 𝑥𝑥 𝑑𝐴 - ∫︁ ∫︁ 𝐴 𝑦𝜎 * 𝑥𝑥 𝑑𝐴 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = D 𝑠 (𝑥) + D * 𝑠 (𝑥) (6.61)
As we can see, the nonlinear Wagner term influences not only on the torsional moment but also the axial force and bending moments. However, for the case of a solid symmetric section as considered in this present work, the expression of D * 𝑠 (𝑥) becomes:

D * 𝑠 (𝑥) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫︁ ∫︁ 𝐴 1 2 𝐸𝑟 2 𝑑𝐴 0 0 ∫︁ ∫︁ 𝐴 1 2 𝑟 2 𝜅 𝑥 𝜎 𝐺𝐿 𝑥𝑥 𝑑𝐴 ∫︁ ∫︁ 𝐴 1 2 𝐸𝑧𝑟 2 𝑑𝐴 - ∫︁ ∫︁ 𝐴 1 2 𝐸𝑦𝑟 2 𝑑𝐴 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∫︁ ∫︁ 𝐴 1 2 𝐸𝑟 2 𝑑𝐴 0 0 ∫︁ ∫︁ 𝐴 1 2 𝐸𝑟 2 𝜅 𝑥 (︂ 𝜀 𝑥 + 1 2 𝑟 2 𝜅 2 𝑥 )︂ 𝑑𝐴 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (6.62)
The vector of nodal forces in local coordinates can be given by:

Q 𝐺𝐿 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 D 𝐺𝐿 𝑠 𝑑𝑥 = ∫︁ 𝐿 B 𝑇 𝑠 (D 𝑠 + D * 𝑠 ) 𝑑𝑥 = Q 𝑒 + Q * 𝑒 (6.63)
with B 𝑠 the matrix of shape functions in Equation (3.15). The ordinary part has already been implemented in the existing beam element formulation, while the nonlinear part can 205 be expressed as:

Q * 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 D * 𝑠 𝑑𝑥 = [︁ 𝑁 *𝐼 𝑥 0 0 𝑀 *𝐼 𝑥 0 0 𝑁 *𝐽 𝑥 0 0 𝑀 *𝐽 𝑥 0 0 ]︁ (6.64)
where the expressions of the axial force and the nodal torsional moment are:

𝑁 *𝐽 𝑥 = -𝑁 *𝐽 𝑥 = - ∫︁ 𝐿 1 𝐿 (︂∫︁ ∫︁ 𝐴 1 2 𝐸𝑟 2 𝑑𝐴
)︂ 𝑑𝑥 (6.65a)

𝑀 *𝐽 𝑥 = -𝑀 *𝐽 𝑥 = - ∫︁ 𝐿 1 𝐿 (︂∫︁ ∫︁ 𝐴 1 2 𝐸𝑟 2 𝜅 𝑥 (︂ 𝜀 𝑥 + 1 2 𝑟 2 𝜅 2 𝑥 )︂ 𝑑𝐴 )︂ 𝑑𝑥 (6.65b)
For the sectional stiffness matrix, from Equation (3.43) we get:

K 𝐺𝐿 𝑠 (𝑥) = ∫︁ ∫︁ 𝐴 a 𝐺𝐿 𝑓 𝑇 k 𝑓 a 𝐺𝐿 𝑓 𝑑𝐴 (6.66)
Using the consistent tangent operator for k 𝑓 as in equation 6.59, for a rectangular symmetric section, the following expression of sectional stiffness matrix has been obtained:

K 𝐺𝐿 𝑠 = ∫︁ ∫︁ 𝐴 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐸 0 0 1 2 𝐸𝑟 2 𝜅 𝑥 0 0 0 𝐺 𝑦 0 0 0 0 0 0 𝐺 𝑧 0 0 0 1 2 𝐸𝑟 2 𝜅 𝑥 0 0 𝐺 𝑦 (︂ 𝜕𝜓 𝜕𝑦 -𝑧 )︂ 2 + 𝐺 𝑧 (︂ 𝜕𝜓 𝜕𝑧 + 𝑦 )︂ 2 + 1 4 𝐸𝑟 4 𝜅 2 𝑥 0 0 0 0 0 0 𝐸𝑧 2 0 0 0 0 0 0 𝐸𝑦 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 𝑑𝐴 (6.67)
As mentioned above, the expression of K 𝐺𝐿 𝑠 can be decomposed into the linear/ordinary part K 𝑠 and the nonlinear part K * 𝑠 containing only the bold terms in the expression of K 𝐺𝐿 𝑠 in Equation (6.67). It is worth to note that, for a symmetric section, at local level in the framework of co-rotational formulation, the second order approximation, through the Wagner term, influences strongly on the torsional response and the interaction between axial-torsion. Then, according to Equation (3.48), when considering the element equilibrium, the element stiffness matrix can also be decomposed into the linear and nonlinear part:

K 𝐺𝐿 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 K 𝐺𝐿 𝑠 B 𝑠 𝑑𝑥 = ∫︁ 𝐿 B 𝑇 𝑠 (K 𝑠 + K * 𝑠 ) B 𝑠 𝑑𝑥 = K 𝑒 + K * 𝑒 (6.68)
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Where the nonlinear part can be expressed as:

K * 𝑒 = ∫︁ 𝐿 B 𝑇 𝑠 K * 𝑠 B 𝑠 𝑑𝑥 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 𝐾 * 1 0 0 0 0 0 -𝐾 * 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝐾 * 1 0 0 𝐾 * 2 0 0 -𝐾 * 1 0 0 -𝐾 * 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -𝐾 * 1 0 0 0 0 0 𝐾 * 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -𝐾 * 1 0 0 -𝐾 * 2 0 0 𝐾 * 1 0 0 𝐾 * 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (6.69)
with the following definition of 𝐾 * 1 and 𝐾 * 2 :

𝐾 * 1 = ∫︁ 𝐿 1 𝐿 2 (︂∫︁ ∫︁ 𝐴 1 2 𝐸𝑟 2 𝜅 𝑥 𝑑𝐴 )︂ 𝑑𝑥 (6.70a) 𝐾 * 2 = ∫︁ 𝐿 1 𝐿 2 (︂∫︁ ∫︁ 𝐴 1 4 𝐸𝑟 4 𝜅 2 𝑥 𝑑𝐴
)︂ 𝑑𝑥 (6.70b)

Case of Pure torsion

In the case of pure torsion for a rectangular cross-section, the material displacements in Equation (6.51) becomes:

𝑈 𝑡 (𝑥, 𝑦, 𝑧) = 𝜅 𝑥 (𝑥)𝜓(𝑦, 𝑧) (6.71a)

𝑉 𝑡 (𝑥, 𝑦, 𝑧) = -𝑧𝜃 𝑥 (𝑥) - 1 2 𝑧𝜃 2 𝑥 (𝑥) (6.71b) 𝑊 𝑡 (𝑥, 𝑦, 𝑧) = 𝑦𝜃 𝑥 (𝑥) - 1 2 𝑦𝜃 2 𝑥 (𝑥) (6.71c)
where 𝜅 𝑥 (𝑥) = 𝜕𝜃 𝑥 𝜕𝑥 and the subindex t denoted for the case of pure torsion. Comparing to the expression in Equation (4.6), the appear of second-order terms in the transversal displacements make the non-linearity geometric. The Green-Lagrange strain components are then given by: Unlike the material strain in linear geometry condition in Equation (4.7), the axial strain under large displacements is not zero and is called Wagner term which causes a non linearity in the response in pure torsion. Because of this term, the local strain can not be related to the generalized twist 𝜅 𝑥 in a compact form as in the above section. Instead, the nodal torsional moments and element stiffness matrix in a finite element framework will be derived from the strain energy function.

𝜀 𝐺𝐿 𝑥𝑥,𝑡 = 𝜕𝑈 𝜕𝑥 + 1 2 (︃ (︂ 𝜕𝑈 𝜕𝑥 )︂ 2 + (︂ 𝜕𝑉 𝜕𝑥 )︂ 2 + (︂ 𝜕W 𝜕𝑥 )︂ 2 )︃ ( 
The strain energy is expressed as a function of the local strains:

Φ = ∫︁ 𝐿 0 Φ 𝐴 𝑑𝑥 = ∫︁ 𝐿 0 (︂ 1 2 ∫︁ ∫︁ 𝐴 𝐸𝜀 2 𝑥𝑥 𝑑𝐴 + 1 2 ∫︁ ∫︁ 𝐴 𝐺 (︀ 𝛾 2 𝑥𝑦 + 𝛾 2 𝑥𝑧 )︀ 𝑑𝐴 )︂ 𝑑𝑥 = 1 2 
∫︁ 𝐿 0 (︀ 𝐸𝐼 𝑟𝑟 𝜅 4 𝑥 + 𝐺𝐽𝜅 2 𝑥 )︀ 𝑑𝑥 (6.74) 
With:

𝐸𝐼 𝑟𝑟 = ∫︁ ∫︁ 𝐴 𝐸(𝑦, 𝑧) 1 4 (𝑦 2 + 𝑧 2 )𝑑𝐴 𝐺𝐽 = ∫︁ ∫︁ 𝐴 [︃ 𝐺(𝑦, 𝑧) (︂ 𝜕𝜓 𝜕𝑦 -𝑧 )︂ 2 + (︂ 𝜕𝜓 𝜕𝑧 + 𝑦 )︂ 2 ]︃ 𝑑𝐴
Using Equation (3.14), Equation (6.74) becomes:

Φ = 1 2 ∫︁ 𝐿 0 (︀ 𝐸𝐼 𝑟𝑟 𝜅 4 𝑥 + 𝐺𝐽𝜅 2 𝑥 )︀ 𝑑𝑥 = 1 2 (︂ 𝐸𝐼 𝑟𝑟 ∫︁ 𝐿 0 𝜅 4 𝑥 𝑑𝑥 + 𝐺𝐽 ∫︁ 𝐿 0 𝜅 2 𝑥 𝑑𝑥 )︂ = 1 2 (︃ 𝐸𝐼 𝑟𝑟 ∫︁ 𝐿 0 (︂ - 𝜃 𝐼 𝑥 𝐿 + 𝜃 𝐽 𝑥 𝐿 )︂ 4 𝑑𝑥 + 𝐺𝐽 ∫︁ 𝐿 0 (︂ - 𝜃 𝐼 𝑥 𝐿 + 𝜃 𝐽 𝑥 𝐿 )︂ 2 𝑑𝑥 )︃ = 1 2 (︂ 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 4 + 𝐺𝐽 𝐿 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 2
)︂ (6.75)

The nodal torsional moment in each element is then evaluated by:

M 𝑥,𝑒 = 𝜕Φ 𝜕q 𝑒 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜕Φ 𝜕𝜃 𝐼 𝑥 𝜕Φ 𝜕𝜃 𝐽 𝑥 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ -2 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 3 - 𝐺𝐽 𝐿 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 2 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 3 + 𝐺𝐽 𝐿 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝑀 𝐼 𝑥 𝑀 𝐽 𝑥 ⎞ ⎟ ⎟ ⎟ ⎠ (6.76)
And the element stiffness matrix:

K 𝑒 = 𝜕M 𝑥,𝑒 𝜕q 𝑒 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝜕𝑀 𝐼 𝑥 𝜕𝜃 𝐼 𝑥 𝜕𝑀 𝐼 𝑥 𝜕𝜃 𝐽 𝑥 𝜕𝑀 𝐽 𝑥 𝜕𝜃 𝐼 𝑥 𝜕𝑀 𝐽 𝑥 𝜕𝜃 𝐽 𝑥 ⎤ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎣ 6 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 2 + 𝐺𝐽 𝐿 -6 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 2 - 𝐺𝐽 𝐿 -6 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 2 - 𝐺𝐽 𝐿 6 𝐸𝐼 𝑟𝑟 𝐿 3 (𝜃 𝐽 𝑥 -𝜃 𝐼 𝑥 ) 2 + 𝐺𝐽 𝐿 ⎤ ⎥ ⎥ ⎥ ⎦ (6.77)

Analysis algorithm

In this work, the proposed model developed in Chapter 3 is a two-node displacementbased formulation in which the primary input is the nodal displacements vector q 𝑒 of 12 components. Under linear geometric condition, q 𝑒 can be used directly in the beam formulation, however, under non-linear geometric assumptions using co-rotational framework, q 𝑒 is related to the global reference so it is necessary to transform it into q 𝑒 , which is related to the local reference frame and corresponds to the beam formulation developed in Chapter 3 and Section 6.4. As mentioned above, the local displacements vector q 𝑒 contains 7 components: q 𝑒 = (︁

)︁ 𝑇 , in which:

𝑢 = 𝑙 𝑛 -𝑙 𝑜 ; ⎛ ⎜ ⎜ ⎜ ⎝ 𝜃 𝐼 𝑥 𝜃 𝐼 𝑦 𝜃 𝐼 𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ = log(R 𝐼 ); ⎛ ⎜ ⎜ ⎜ ⎝ 𝜃 𝐽 𝑥 𝜃 𝐽 𝑦 𝜃 𝐽 𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ = log(R 𝐽 )
where the rotation matrices R 𝐼/𝐽 are computed using Equation (6.18). Knowing that q 𝑒 has only 7 components, while the nodal displacements vector using in the local beam formulation in section 6.4 has 12 components, one auxiliary transformation is required:

q 𝑒 = T 𝑇 q 𝑒 (6.78)
where T = T 𝑑 T 𝑟 is a transformation matrix defined as a multiplication of two submatrices of transformation: T 𝑑 is the translated-transformation matrix while T 𝑟 is the rotate-transformation matrix.

T 𝑑 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1/𝑙 𝑛 0 1 0 0 0 1/𝑙 𝑛 0 0 0 0 1/𝑙 𝑛 0 0 0 1 0 -1/𝑙 𝑛 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1/𝑙 𝑛 0 1 0 0 0 1/𝑙 𝑛 0 0 0 0 1/𝑙 𝑛 0 0 0 1 0 -1/𝑙 𝑛 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; T 𝑟 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ C 0 3 0 3 0 3 0 3 C 0 3 0 3 0 3 0 3 C 0 3 0 3 0 3 0 3 C ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (6.79)
the component C of T 𝑟 contains the direction cosines defined as follows: Now the displacements vector q 𝑒 can be implemented in the local beam formulation, and as a result the nodal forces vector Q 𝑒 and the element stiffness matrix K 𝑒 will be obtained. Then, 3 successive transformations described in section 6.3 will be applied in order to transform these variables from the local frame into global reference. The algorithm and implementation of co-rotational formulation in the proposed model is resumed and shown in Figure 67. 

C = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐶 𝑥 𝐶 𝑦 𝐶 𝑧 -(

Numerical examples

In this section, some numerical examples are first simulated using cross-section dimensions and material properties of steel structures in order to validate the implementation of corotational framework in the proposed model formulation. Then other cases studies were investigated for reinforced concrete members. As mentioned in Section 6.4, the linear geometric conditions of the beam formulation in the local reference are ensured by using a big number of finite element and cross-section mesh.

Cases of elastic material

The geometrical non-linearity in the elastic material range is discussed in this section.

Let's consider an elastic cantilever beam as shown in Figure 6-8. Note that this beam was used as reference in Battini's PhD Thesis [5]. The beam model has been simulated using 10 elements with a system of 50 × 5 square mesh, subjected to two loading cases: pure torsion (Figure 6-8a) and combined shear-bending-torsion (Figure 6-8b). In this example, the cross-section profile is a thin-type usually found in steel structure. This numerical example is to study the influence of shear and bending on the torsional behavior of the elastic beam in large rotation. Figure 6-10 presents the torsional moment versus end twist angle curves for four torsion-bending moment ratios: 𝑅 = ∞; 𝑅 = 1; 𝑅 = 1/2 and 𝑅 = 1/5. As can be seen, in elastic material regime, the torsional behavior is not affected by the bending and shear actions when the geometrical nonlinearity is neglected.

However, the numerical results show that the torsional stiffness decreases significantly with increasing of torsion-bending moment ratios when the beam is in geometrical nonlinear regime. Further, experimentation test needs to be conducted to confirm this statement.

Twist angle at free end (rad) Using the same outline of beam as in Figure 6-11, but instead of vertical load, a torsional moment is applied at the free end. Simulation result can be found in Figure 6-13, concerning two numerical models: one with the implementation of the Wagner term in the model formulation (nonlinear geometry model), and another without this nonlinear term (linear geometry model). Similar to the above case subjected to shear-bending effect, the torsional stiffness given by the nonlinear geometry model increases significantly compared to the response of the linear geometry model. The effect of second-order Wagner term continues to give a significant influence on the torsional response of elasto-plastic material beam.

End twist angle (rad) When torsional moment is accompanied by the vertical load, the beam is subjected to combined shear-bending-torsion. Figure 6-14 presents the torsional moment versus end twist angle curve for different torsion-bending moment ratios: 𝑅 = ∞, 𝑅 = 10, 𝑅 = 1, 𝑅 = 1/5 and 𝑅 = 1/20. When torsional moment dominates bending moment (R is bigger than 1), the material yielding is due to torsional effect as in the above case of pure torsion, and no difference is recorded in the plastic material regime. When bending moment becomes bigger and dominated, the yielding point is changed, depending on the value of bending moment, and the torque-twist diagram becomes different as a consequence.

In this example of combined loadings under elasto-plastic material regime, the fact that torsional behavior depends on the yielding point limits the study of coupling actions. One statement can be draw is that there is no significant influence of shear-bending actions to torsional response when torsional moment dominates bending moment. the torsional stiffness stronger in both the elastic and inelastic material regime. However, knowing that concrete is a brittle material and its cracking and failure deformation is small, the RC beams were failure before any significant differences could be remarked.

Indeed, in Table 6.1, minor differences were recorded in all the cases. 

Conclusions

In this Chapter, using the corotational formulation, the nonlinear geometry of the proposed beam model under large displacement conditions has been investigated. Through

several numerical examples carefully executed above, the following remarks and conclusions can be draw:

• By validating with some existing example in the literature under the loading case of shear-bending and pure torsion, the corotational formulation can be considered as successfully implemented in the proposed model formulation.

• When considering the torsional effect, the contribution of the Wagner term is very significant, in both elastic and inelastic material regime, knowing that the torsional rigidity could be considerably increased under the influence of this nonlinear term.

• In the elastic material regime, when the beam is in geometrical non linear conditions, the combination of shear, bending and torsional moments could make some significants impact on the torsional behavior, compared to the case of pure torsion.

This statement is interesting because no difference can be recorded between these two loading cases in elastic material regime under geometrical linear conditions.

• However, in the elasto-plastic material regime, when torsional moment dominates bending moment, no significant influence of shear-bending actions to torsional response could be observed. Otherwise, in practice, the nonlinear geometric effect could be neglected for a simply supported RC beam of ordinary length.

Chapter 7

Conclusions and Perspectives

Summary and Conclusions

The main objective of this PhD thesis was the development of an efficient finite element model for the nonlinear analysis of reinforced concrete members taking into account the coupling effect of multi-stresses resultants under bending, shear and torsional loadings.

Indeed, using a multi-fiber discretization and sectional analysis approach, the developed 3D beam element is capable of describing the sectional responses and representing the non-uniform stress/strain distributions due to warping deformation of the cross-section.

Although developed primarily in this work for rectangular cross-section, the model formulation in Chapter 3 is generally expressed to be applied to any arbitrary cross-section.

According to the prior discussion in the state of the art (Chapter 2), although various researches have successfully applied the Lagrange polynomial approach to the mixed-based formulation in order to take into account the warping displacement, this approach has not Under the assumption of large displacement, the coupling between the actions due to the torsional effect was carefully developed in the local beam formulation and evaluated with the help of some numerical examples.

Perspectives

The proposed model has been developed in a general way in order to open many possibilities to extend the range of applications and studies. Several of additional developments can be suggested and some aspects of the proposed model could be more developed in future researches, such as:

• The model formulation could be extended for the case of high-strength concrete, prestressed concrete, concrete with fibers or self-compacting concrete, etc.

• The model formulation could also be extended to the case of curved and/or tapered beam, in order to investigate the application of model in usual case of shear and torsional effects.

• The material behavior could be more developed by including the confinement effect of concrete and/or stirrups. The cyclic loading behavior of concrete and steel could also be implemented in the constitutive model.

• Regarding the calibration process, more test data can be used and other engineering parameters can be served as input, in order to develop a new, and possibly more exact formulation for the constitutive behavior law and the 2D-zone's width.

• The inclusion of distortion deformation in the model formulation could be represented with the implementation of two enhanced transversal displacements in the enhanced field.

• Concerning the warping and distortion deformations, other kinds of interpolation functions could be explored over the cross-section and along the beam axis, such as Hermite polynomials or Spline functions.

• The inclusion of Wagner term in the local formulation of corotational framework could be expressed in a more consistent and rational way, instead of using an approximate tangent operator as in the proposed model. 

Objectifs

L'objectif principal de cette thèse de doctorat est de développer un modèle enrichi de poutre en éléments finis pour l'analyse non linéaire des éléments en béton armé soumis à des sollicitations combinées: l'effort axial, la flexion, le cisaillement et la torsion. Les objectifs spécifiques sont les suivants:

• Le développement d'un élément de poutre 3D pour les éléments en BA utilisant une approche "multifibres". Dans cette étude, le modèle est développé principalement pour une section droite rectangulaire, mais la formulation est exprimée de manière générale pour tous types de sections droites arbitraires.

• L'implémentation d'un champ de déplacement enrichi dans les équations cinématiques afin d'inclure le déplacement de gauchissement de section droite sous l'effet de cisaillement et de torsion. Ensuite, une analyse numérique est réalisée pour étudier l'influence du gauchissement sur l'état de contrainte.

• L'adaptation de la théorie du champ de compression modifié (Modified Compression Field Theory -MCFT [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF]) à la loi de comportement du béton.

• L'adaptation de la discrétisation de section en différentes régions selon l'état de contrainte (1D, 2D et 3D) afin de prendre en compte l'impact des armatures transversales et du confinement du béton. Une nouvelle formulation paramétrique permettant de déterminer la règle de cette discrétisation est également proposée. 

Cinématique de section

La cinématique de section est basée sur l'enrichissement des hypothèses de cinématique de poutre de Timoshenko. A cause du phénomène de gauchissement, l'hypothèse de section plane devient insuffisante pour représenter la forme de déformation complète de section sous sollicitation composée de cisaillement et de torsion (Figure 7 

𝑈 𝑝 (𝑥, 𝑦, 𝑧) = 𝑢(𝑥) -𝑦𝜃 𝑧 (𝑥) + 𝑧𝜃 𝑦 (𝑥) 𝑉 𝑝 (𝑥, 𝑦, 𝑧) = 𝑣(𝑥) -𝑧𝜃 𝑥 (𝑥) 𝑊 𝑝 (𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃 𝑥 (𝑥) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ⇒ d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) = a 𝑝 𝑓 (𝑦, 𝑧)d 𝑠 (𝑥) (7.2)
Dans le cadre de ces travaux de recherche, deux approaches sont utilisées pour représenter le champ enrichi d 𝑒 𝑓 (𝑥, 𝑦, 𝑧), la première concernant l'application de la théorie de poutre de Saint-Venant, avec la définition de la fonction de gauchissement 𝜓(𝑦, 𝑧) et la distribution de gauchissement 𝛼(𝑥). Dans le cas d'une section solide, 𝛼(𝑥) peut prendre la valeur de la dérivation de l'angle de torsion 𝜅 𝑥 . Par conséquence, le champ de déplacement total 

Organigramme de formulations

La Figure 7-7 résume la formulation en déplacement pour l'élément fini multifibre selon deux approches enrichies dans le cadre de ce recherche. La loi de comportement est celle de la théorie de MCFT [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF].

• Zone 3D: où se trouvent les armatures transversales en deux directions et dans le noyau en béton de la section, cette zone est définie avec un état de contrainte complet : une normale et deux cisaillements, dans chaque fibre. Le modèle de comportement appliqué est une extension de la théorie de MCFT pour l'élément fini 3D [START_REF] Vecchio | Toward compression-field analysis of reinforced concrete solids[END_REF]. Dans cette zone, ainsi que dans la zone 2D, l'équilibre interne et le couplage des efforts sont assurée par des condensations statiques de contrainte dans chaque fibre.

Modélisation numérique des éléments BA soumis à des sollicita-

tions complexes

Un exemple évalué par Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] dans sa thèse est étudié ci-dessous afin de valider le modèle EF développé dans la régime de matériaux élastiques: une poutre cantilever de section mince soumise à l'effort de flexion-cisaillement (Figure 7 Table 7.1 -Déplacement à l'extrémité d'une poutre cantilever de section rectangulaire sous l'effet de flexion-cisaillement -Exemple de Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF]. • Avant fissuration, la réponse de la section est considérée comme élastique et le comportement est très similaire à celui d'un élément en béton pure, ce qui peut être prédit par la théorie de la torsion de Saint-Venant.

• Après fissuration, le matériau n'est plus continu, la théorie de l'élasticité devient inutile et un nouveau mécanisme est nécessaire pour interpréter la réponse en torsion dans cette phase. A partir du concept de treillis [START_REF] Raush | Design of reinforced concrete in torsion[END_REF] et des résultats des tests expérimentaux de Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF] et de Onsongo [82], on peut supposer que le comportement d'éléments BA après fissuration est considéré comme un tube de section creuse.

Ce comportement spécial conduit à la deuxième modification du modèle mécanique pour les éléments BA en torsion pure: le comportement de la zone 3D du béton dans le noyau de section est mis à zéro après la fissuration. La réponse en torsion non linéaire après la fissuration dépend donc uniquement du comportement de la zone 2D et de la zone 3D aux quatre coins de la section, et la largeur de la zone 2D, appelée épaisseur effective, joue un rôle déterminant.

Une troisième remarque aussi importante est l'impact de la distribution des armatures longitudinales dans la section sur la résistance en torsion pure du membre en BA. En effet, d'après l'analyse des tests expérimentaux par Hsu [START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF], pour les éléments en BA, la valeur à la fissuration du moment de torsion est en fonction du pourcentage total des armatures.

De plus, Hsu a remarqué également qu'une meilleure répartition (ou distribution) des armatures longitudinales sur la section augmenterait légèrement le moment de torsion à la fissuration: c'est le cas des poutres G6, G7 et G8 dans lesquelles les barres longitudinales sont également situées au centre de la section (Figure 7-16). Des formulations paramétriques pour déterminer l'épaisseur effective de la zone 2D sont également proposées grâce à la procédure de calibration mentionnée ci-dessus:

• Pour une distribution habituelle: Une poutre cantilever de section solide, qui a été utilisée dans la thèse de Battini [3], est simulée pour étudier le cas de torsion pure en grand déplacement. La Figure 7-22 présente les courbes du moment de torsion en fonction de l'angle de torsion à l'extrémité. Comparés à la solution analytique basée sur la théorie de poutre de Vlasov [START_REF] Vlasov | Thin Walled Elastic Beams[END_REF] et au modèle numérique du modèle de Battini, les résultats obtenus par le modèle proposé, en tenant compte de la contribution du terme de Wagner, montrent une très bonne corrélation.

𝑡 𝑒 = 𝑏 (︂ 0 
On peut constater que, bien que simulé dans le domaine des matériaux élastiques, la relation entre le moment de torsion et l'angle de torsion n'était plus linéaire, en raison de la non-linéarité géométrique provoquée par l'introduction du terme de Wagner. Il est évident que, sans prendre en compte le terme de Wagner, le modèle est considéré comme un modèle de géométrie linéaire qui donne une réponse purement linéaire.
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Conclusions

Dans cette thèse de doctorat, en utilisant une approche multifibre et d'analyse de section, un élément fini 3D est développé pour les éléments en BA soumis à des sollicitations combinées M-N-V-T. Ce modèle est capable de prendre en compte les non linéarités géométriques et matérielles, le phénomène de gauchissement de la section droite, et la contribution des armatures transversales.

De plus, l'approche enrichie de polynôme de Lagrange a été complètement mise en oeuvre dans le modèle proposé utilisant la formulation en déplacement, ainsi qu'une comparaison avec l'approche enrichie de la théorie de Saint-Venant pour la prise en compte de l'effet de torsion. Les exemples numériques ont donné de bons résultats et ont montré des corrélations raisonnables entre les deux approches. Grâce à sa généralité, la mise en oeuvre réussie des polynômes de Lagrange dans le modèle proposé offre également davantage de possibilités pour des recherches plus approfondies sur différentes formes de sections, telles que T ou L.

Les résultats satisfaisants obtenus dans le domaine des matériaux non linéaire ont permis l'adaptation de la théorie de MCFT au modèle de comportement du béton dans la formulation proposée. Dans cette thèse de doctorat, basée sur la MCFT, un modèle constitutif cohérent, adapté à une utilisation dans la formulation de poutre multifibres 2D, a été développé pour l'élément BA en cas de torsion pure. La discrétisation de la Shape functions for strain vector: where 0 𝑤 is a zero matrix of (9 × 3.𝑠 𝑤 ) columns; 0 3𝑠𝑤 is a zero matrix of (3 × 𝑠 𝑤 ); S 𝑢 𝑥 (𝑦, 𝑧), S 𝑣 𝑥 (𝑦, 𝑧) and S 𝑤 𝑥 (𝑦, 𝑧) are three matrices of (3 × 𝑠 𝑤 ) containing the row vector S(𝑦, 𝑧) in equation (3.20) 

𝐵 1 = 𝜕𝑁 1 𝜕𝑥 = - 1 

-Cross section details and materials properties of experimental torsion tests

In Hsu test, the concrete cover thickness is 19 mm for all specimens, while the materials properties and reinforcement's dimensions are varied and cited as follows (Table 7.3): 
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In the test of Lee et al. [START_REF] Lee | Torsional strength and failure modes of reinforced concrete beams subjected to pure torsion[END_REF], the concrete cover thickness is 20 mm for all specimens, while the compressive strength of concrete 𝑓 𝑐 = 42.6 (MPa), the material properties and steel's dimension are cited as in Table 7.4). In the test of Csikos & Hegedus [START_REF] Csikos | Torsion of reinforced concrete beams[END_REF], the concrete cover thickness is 15 mm for all specimens, while the concrete used was C20 and the yielding strength of steel is 240 MPa in all cases (Table 7.5). Keywords : reinforced concrete, finite element analysis, multi-fiber, warping, torsion, combined loading, large displacement Abstract : This PhD thesis deals with the development of a non-linear finite element (FE) model for reinforced concrete (RC) members under coupling of multi-axial actions and in particular under torsion. Using the sectional-fiber approach and the displacement-based formulation, an enhanced multi-fiber 3D beam element is developed for predicting the behavior of RC elements subjected to arbitrary loading conditions (shear, bending and/or torsion). The first part concerns the FE formulation based on the enhancement of Timoshenko's beam kinematic assumptions with introducing of some additional degrees of freedom at each monitoring section, in order to take into account the phenomena of warping and eventually, distortion. Focusing on RC structures, one of the objectives is to find the simple way to include the transversal reinforcement into the cross-section analysis of the multi-fiber FE model, using behavior models based on the Modified of Compression Field Theory (MCFT) and its extension. The second part deals with the numerical analysis of concrete and RC members subjected to pure torsion. A constitutive law for concrete in tension is proposed within the framework of the MCFT in which the material parameters are determined by the calibration process of several experimental tests. In the third part, the interactions between shear, bending and torsion are investigated by comparing with the analytical solutions of skewbending theory and several experimental tests in literature. Finally, the last part is dedicated to the investigation of the enhanced FE multi-fiber beam model under large displacement conditions, using a corotational framework.

  to my beloved Parents to my darling Wife to my lovely Kiwi to my home country Vietnam 5

3- 4 4 - 9 212 6- 9 7 - 3 7 - 5 7 - 6 7 - 7 7 - 9

 44921297375767779 (a) Section deformation under normal efforts (axial, bending) and tangential efforts (shear, torsion). (b) Decomposition of a material axial displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Transformation of the shear strain distribution to a generalized shear strain in the case of rectangular cross-section. . . . . . . . . . . . . . . . . . . . . 3-6 System of fixed interpolation points in the beam element. . . . . . . . . . . 3-7 Enhanced displacement values defined as independent additional DoFs. . . 3-8 Lagrange interpolation polynomials for one dimensional finite elements. . . 3-9 Generation of Lagrange interpolation polynomials for 2D finite elements. . 3-10 Orthogonality condition of displacement field [3]. . . . . . . . . . . . . . . 3-11 Resume chart for the multi-fiber FE beam in displacement-based formulation. 3-12 Stress-strain relationship for steel. . . . . . . . . . . . . . . . . . . . . . . . 3-13 In-plane frame system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 Stress composition for RC members in the MCFT [110]. . . . . . . . . . . . 3-15 Iteration process satisfying internal equilibrium between concrete and transverse reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 Process determining the material stiffness matrix of 2D-zone . . . . . . . . 4-1 Warping for several non circular section [97]. . . . . . . . . . . . . . . . . . 4-2 Tensile stress-strain relationship of concrete proposed by Jeng & Hsu [53] . 4-3 (a) Distribution of Saint-Venant stresses along edges, the shear stress at each point is calculated by √︀ 𝜏 2 𝑥𝑦 + 𝜏 2 𝑥𝑧 [46]. (b) Cracking torque as a function of reinforcement ratio in Hsu tests (1968) [45]. . . . . . . . . . . . . . 4-4 Two case of distribution of longitudinal reinforcement steel bars. . . . . . . 4-5 Proposed tensile relation for torsion compared to the tensile relation for shear model in the original MCFT [110]. . . . . . . . . . . . . . . . . . . . 4-6 Cross-section dimensions in the test of Hsu. [45]. . . . . . . . . . . . . . . . 4-7 Layout of the torsion tests. . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8 Linear fitting in the calibration process of determining 𝑓 𝑐𝑟 , with 𝑏 ℎ 𝜌 𝑠 in the horizontal axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear fitting in the calibration process of determining 𝑓 𝑐𝑟 , with ℎ 𝑏 𝑚𝜌 𝑠 in the horizontal axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 Linear fitting in the calibration process of determining 𝑓 𝑐𝑟 , with ℎ 𝑏 𝜌 𝑠𝑡 in the horizontal axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35 Bending-Torsion diagram of Gr. 7 in McMullen & Warwaruk's test [72]. . . 181 5-36 Collins et al.'s interaction diagram between shear force and torsional moment.182 5-37 Shear-Torsion diagrams of Group 5, 6 and 7 in McMullen & Warwaruk's test [72]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 6-2 Transition between global and local reference system at initial undeformed configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6-4 Coordinate systems and beam kinematics. . . . . . . . . . . . . . . . . . . 192 6-5 Beam kinematics in local frame. . . . . . . . . . . . . . . . . . . . . . . . . 194 6-6 Kinematic model proposed by Gruttmann et al. [41]. . . . . . . . . . . . . 201 6-7 Implementation of co-rotational formulation into the proposed model. The dashed line represents the algorithm in linear geometric conditions. . . . . 211 6-8 Example 1 & 2: Cantilever beam under nonlinear geometrical conditions, subjected to different loading cases. . . . . . . . . . . . . . . . . . . . . . . Example 1: Elastic torsional response under nonlinear geometric conditions.212 6-10 Example 2: Torsional moment versus twist angle diagrams of elastic material beam subjected to shear-bending-torsion effect under nonlinear geometric conditions, with different ratio of torsional versus bending moment. 213 6-11 Example 3: Cantilever beam in the example of Kondoh & Atluri [55]. . . . 214 6-12 Example 3: Load-displacement diagrams of elasto-plastic beam subjected to shear-bending under nonlinear geometrical conditions. . . . . . . . . . . 214 6-13 Example 3: Torsional moment -twist angle diagrams of elasto-plastic beam subjected to pure torsion effect under linear and nonlinear geometric conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6-14 Example 3: Torsional moment versus twist angle diagrams of elasto-plastic material beam subjected to shear-bending-torsion effect under nonlinear geometric conditions, with different ratio of torsional versus bending moment.216 6-15 Example 4: Details of Beam G5 . . . . . . . . . . . . . . . . . . . . . . . . 216 6-16 Example 7: Torsional moment versus twist angle diagrams of beam G5 subjected to pure torsion under linear and nonlinear geometric conditions. 217 7-1 (a) Rupteur du pont thermique. (b) Disposition du linteau dans le cadre de la tenue des balcons pour des bâtiments isolés par l'intérieure. . . . . . 224 7-2 Dessin originaux de Saint-Venant pour les poutres soumises à torsion de section elliptique, carrée et rectangulaire [97]. . . . . . . . . . . . . . . . . Approache de multifibre pour les éléments en BA et des coordonées d'élément locals dans cette recherche. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 (a) Déformation de section transversale sous efforts normaux (axiale force, flexion) et tangentiels (cisaillement, torsion). (b) Décomposition du déplacement axial d'un point matériel. . . . . . . . . . . . . . . . . . . . . . . System de point d'interpolation de l'élément. . . . . . . . . . . . . . . . . . Les déplacements enrichis définis comme les dégrées de liberté supplémentaires indépendantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Organigramme de la formulation en déplacement pour l'élément fini multifibre selon deux approches enrichies. . . . . . . . . . . . . . . . . . . . . . . 7-8 Composition de contrainte pour l'élément BA selon la théorie de MCFT [110]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comportement uniaxial du béton dans la direction principale. . . . . . . . 7-10 (a) Discrétisation de la section selon l'état de contrainte dans le modèle de Navarro-Gregori et al. [76]. (b) Directions de contrainte de cisaillement sous les effets de flexion-cisaillement et de torsion. . . . . . . . . . . . . . . 7-11 Système des points d'interpolation dans l'exemple de Le Corvec [62]. . . . . 7-12 Distribution du champ de déplacement sur la section droite à l'extrémité de poutre sous l'effet de flexion-cisaillement. . . . . . . . . . . . . . . . . . 7-13 Diagramme d'intéraction entre flexion-torsion dans le test de McMullen & Warwaruk's [72]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14 Diagramme d'intéraction de flexion-torsion en fonction d'espacement des étriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 Diagramme d'intéraction du Groupe 7 dans le test de McMullen & Warwaruk [72]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 Moment de torsion à la fissuration en fonction des pourcentages totals des armatures dans le test de Hsu (1963) [45]. . . . . . . . . . . . . . . . . . . 7-17 Deux cas de distribution des armatures longitudinales. . . . . . . . . . . . 7-18 La relation en traction proposée pour la torsion en comparée à celle dans la théorie de MCFT par Vecchio [110]. . . . . . . . . . . . . . . . . . . . . 7-19 (a) Poutre cantilever soumise à la torsion pure et système de points d'interpolation.; (b) Gauchissement de la section droite soumise à la torsion. . . . . . . . . .7-20 Courbe moment de torsion -angle de torsion linéaire pour deux spécimens M2 et M3 dans le test de Hsu [45]. . . . . . . . . . . . . . . . . . . . . . . 7-21 Courbe moment de torsion -angle de torsion linéaire pour la série T dans le test de Lee et al.'s. [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 La réponse de torsion dans la condition géométrique non linéaire. . . . . . 7-23 Courbe de moment de torsion -angle de torsion linéaire du spécimen G5 sous l'effet de torsion simulée par le modèle de conditions géométriques linéaire et non linéaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Tables 4.1 End twist angle for cantilever beam under mid span torque . . . . . . . . . 4.2 Details of specimens of tests in pure torsion for plain concrete members. . . 4.3 Cracking torsional model for Plain concrete member: Comparison between experimental, numerical result and theoretical formulations . . . . . . . . . 4.4 Cracking torsional moment: average relative error with respect to experimental test calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Cracking torsional moment -Series B of Hsu Test: experimental and numerical values and relative error with respect to experimental values. . . . 4.6 Distribution with additional longitudinal reinforcement bars: Cracking torsional moment (KNm) and Relative error with respect to experimental test. 4.7 Ultimate torsional moment: average relative error calculated with respect to experimental test values. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Repartition with additional longitudinal reinforcement bars: Ultimate torsional moment (KNm) and Relative error with respect to experimental test.5.1 Tip deflection (mm) and corresponding relative different with respect to the theoretical formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Tip deflection, corresponding relative different with respect to the theoretical formulation and the elapsed times. . . . . . . . . . . . . . . . . . . . . 5.3 Tip deflection of cantilever beam with rectangular cross-section under vertical loading -Example of Le Corvec [62]. . . . . . . . . . . . . . . . . . . . 5.4 Description of the RC beams tested by Bresler & Scordelis [14]. . . . . . . 5.5 Ultimate Loading (in kN) and relative difference to the experimental result -Comparison between Proposed Model and VecTor2 program . . . . . . . 5.6 Concrete strength, bending/torsional moments ratio and the ultimate loading values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 - 1 -

 11 Figure 1-1 -Modeling of three-dimensional element as one-dimensional frame element

Figure 1 - 2 -

 12 Figure 1-2 -Torsional motion of Tacoma Narrows bridge (screenshots taken from video)
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 14 Figure 1-4 -(a) Thermal bridge breaker. (b) Disposition of lintel beam in the case of holding the balcony for a building of thermal insulation from the inside.
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 16 Figure 1-6 -Lumped-plasticity models.
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 21 Figure 2-1 -Failure modes in Lessig's theory.
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 22 Figure 2-2 -Mode 3 failure in the theory of Collins et al. [23].
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 23 Figure 2-3 -Interaction surface for combined bending, shear and torsion in the theory of Collins et al. [23].
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 24 Figure 2-4 -Interaction surface in Elfgren et al.'s theory [35].

  in the early of 20th century, whose purpose is to simulate a RC beam subjected to shear. In general, under shear effect, diagonal cracks occur and separate the beam into a series of concrete struts. An analogy of truss model was therefore assumed, where the longitudinal reinforcement steels act like the top and bottom chords of the truss, while the transversal stirrups and concrete struts hold the role of web members (Figure 2-5).Tehnički vjesnik 22, 4(2015), 925-934 925 ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) DOI: 10.17559/TV-20140708125658

Figure 1

 1 Figure 1 Ritter's and Mörsch's original truss model

Figure 2

 2 Figure 2 Mörsch's truss analogy model However, experimental studies carried out in Stuttgart during 1960-s [3] indicated that the stresses in shear reinforcement were considerably lower than those predicted by the truss analogy model. This is due to the contribution of other components to the shear carrying mechanism, among which the most significant are: contribution of concrete in the compression zone, aggregate interlock along inclined cracks and dowel action of the longitudinal reinforcement crossing the (a) Original concept of Truss model by Ritter [95] and Mörsch [75] (b) Truss model of a RC beam with longitudinal and transversal reinforcements.
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 25 Figure 2-5 -Concept of Truss model for bending and shear.

  Three-dimensional view. (b) Longitudinal and cross-sectional view.
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 26 Figure 2-6 -Space truss model for torsion resistance.

( a )

 a Principe of truss model (b) Compatibility of displacements and Equilibrium of forces
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 27 Figure 2-7 -Strut-and-tie Model of Guedes et al.[START_REF] Guedes | A fibre/timoshenko beam element in castem[END_REF][START_REF] Guedes | A numerical model for shear dominated bridge piers[END_REF] The idea of independently modeling shear forces using the concept of truss-and-tie model and then superimposing into axial and flexure efforts without direct coupling is shared by other models by Martinelli[START_REF] Martinelli | Modellazione di Pile di Ponti in C. A. a Travata Soggetti ad Eccitazione Sismica[END_REF], Ranzo & Petrangeli[START_REF] Ranzo | A fibre finite beam element with section shear modelling for seismic analysis of rc structures[END_REF] or Marini & Spacone[START_REF] Marini | Analysis of reinforced concrete elements including shear effects[END_REF]. In the Martinelli's model, shear resultant over the cross-section can be derived by different resisting mechanisms, including truss mechanism, in which a planar structural assemblage is composed by the transverse reinforcements and the concrete diagonals in compression and tension (Figure2-8a). In the model by Ranzo & Petrangeli, the shear stiffness is derived from a shear-distortion curvature constitutive relationship that is defined by solving a truss mechanism as in Figure2-8b. The shear curve is obtained by giving incremental values to the shear stress up to failure, then updating analytically the distortion curvature and thus leading to the determination of a continuous curve. The same idea of shear-distortion curve is also implemented in the model of Marini & Spacone but in a different procedure of obtaining the shear-curvature relationship. As in the model of Guedes et al., uniaxial constitutive laws for concrete and steel are implemented in all models above.

Figure 2 - 8 -

 28 Figure 2-8 -Truss mechanism and idealization

  (a) in bending. (b) in element shear.
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 29 Figure 2-9 -Equilibrium of Truss model.The interaction relationships of combined actions can be expressed between shearbending, torsion-bending, shear-bending-torsion and axial-shear-bending, each relationship corresponds to a specific model. In the shear-bending model, the bending moment creates a tensile force in the bottom and a compressive force in the top stringer, while shear forces induce in longitudinal as well as transversal direction and are resisted by concrete struts, longitudinal steels and stirrups (Figure2-10a). The failure may be occurred by two modes depending on the yielding of bottom or top stringer. In the torsion-bending model, the action of bending moment is similar to that of the shear-bending model, while

  (a) Equilibrium between shear and bending. (b) Equilibrium between torsion and bending.
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 210 Figure 2-10 -Equilibrium truss models. The interaction between shear, bending and torsion are more complex. A box section model is employed in which the shear flows on the four walls of the box section (Figure 2-11a). The shear flows due to shear and torsion are superimposed (Figure 2-11b), while the bending moment always induces tensile and compressive forces in bottom and top stringer. Three failure modes can be recorded in this model, causing by the yielding in the bottom stringer and in transverse steel, by the yielding in the top stringer and in transverse steel or by the yielding in both top and bottom longitudinal steel bars and in transverse steel. The interaction model for the combination of the axial force the shear force and the bending moment is quiet easily expressed, because the axial force is assumed to be resisted only by the longitudinal reinforcement bars, so it does not generate a new internal equilibrium condition of the shear-bending interaction model. It is required only a simple superposition of axial force on the equilibrium equation of shear and bending in the top and bottom stringer.

  (a) Equilibrium of forces. (b) Superposition of shear flow due to shear and torsion.
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 211 Figure 2-11 -Box section model for interaction of shear-bending-torsion.

  the Shell Element Tester) at the University of Toronto, Vecchio & Collins formulated the Modified Compression Field Theory (MCFT) for RC members subjected to shear force.Although originally developed for use in truss models, the MCFT is particularly suitable to the sectional analysis because it can handle cracking as a distributed effect. The theory has been employed as concrete constitutive model in many finite element sectional models as shown in the following section.

( a )

 a Supposition of shear effect in RC element. (b) Local and Principal direction of stress.

Figure 2 - 12 -

 212 Figure 2-12 -Stress condition and crack pattern in RC element.

Figure 2 -

 2 Figure 2-13 -Cross-section discretization in the model of Rabbat & Collins [87].

Figure 2 - 14 -

 214 Figure 2-14 -Idealization of cross-section in the model of Rahal & Collins [88].
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 215 Figure 2-15 -Coordinate systems in the Fixed-Angle Softened-Truss Model.

  (a) Compressive curve. (b) Tensile curve.

Figure 2 -

 2 Figure 2-16 -Stress-strain curve of concrete obtained from experimental tests using the UPT [48].

  Mohr's Circle for average strains.
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 217 Figure 2-17 -Compatibility conditions for cracked RC element.
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 218 Figure 2-18 -Equilibrium conditions for cracked RC element.
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 219 Figure 2-19 -Concrete constitutive relations in the MCFT.

( a )

 a Prism in Tension. (b) Free body diagram at a crack.

Figure 2 - 21 -

 221 Figure 2-21 -Example of Bentz [12].

( a )

 a Without crack-check. (b) With crack-check.

Figure 2 - 22 -

 222 Figure 2-22 -Total stress of average tensile concrete and steel in the example of Bentz [12].

  -23a). The softening coefficient 𝑆𝐹 is always calculated as a function of the principal tensile strain with a slight change in the parabolic transition comparing to the original formulation in equation (2.5) (Figure 2-23b).

( a )

 a Proposed stress-strain curve in compression (b) Calculation of softening coefficient.
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 223 Figure 2-23 -Compression relationship of concrete proposed by Stevens et al. [103]

( a )

 a Tension relationship of concrete. (b) Steel relationship.
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 224 Figure 2-24 -Concrete tensile and Steel relationship proposed by Stevens et al. [103].

Figure 2 -

 2 Figure 2-25 -Stress/strain relation for concrete in compression and tension.
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 2 Figure 2-26 -Section's layers in the model of Vecchio & Collins [111].

Figure 2 -

 2 Figure 2-27 -(a) Dual section analysis scheme. (b) Implementation of dual-section analysis in a beam element.
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 228 Figure 2-28 -Principle of multifiber beam element based on displacement-based formulation.

2 . 31 )

 231 The calculated warping functions for plain concrete beams of rectangular and T-section subjected to pure torsion are shown in Figure2-29.

Figure 2 - 29 -

 229 Figure 2-29 -Warping profile for rectangular and T-section under pure torsion obtained by Mazars et al. [71].

  2.35)A 2D finite element method with spatially discretized cross-section was used to solve equation 2.35 for the warping function 𝜙. The section mesh discretization and warping profile obtained by Capdevielle for a concrete cross-section with longitudinal reinforcement are shown in Figure 2-30.

  (a) Cross-section mesh.(b) Warping profile.

Figure 2 - 30 -

 230 Figure 2-30 -Warping obtained by Capdevielle [16].

  and 𝑢 𝑤 𝑧,𝑗 are the transversal displacement of the distortion champ at node 𝑖 and 𝑗; 𝑙 𝑠 𝑡 is the length of stirrup sub-element. In this model, the concrete confinement is taken into account by considering different concrete regions where the constitutive relationship is selected in function of confinement degree.

  (a) Discretization of a RC cross-section into fiber of concrete, longitudinal and transversal steel. (b) Discretization of transversal steel.
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 231 Figure 2-31 -Model of Khoder [57].
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 232 Figure 2-32 -Basic forces, elements and fiber discretization of multifiber beam element based on flexibility-based formulation.

  Distribution of interpolation points over the cross-section.

Figure 2 - 33 -

 233 Figure 2-33 -System of interpolation points to account for warping in the model of Le Corvec [62].

( a )

 a Model of Le Corvec[START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF]. (b) Model of Di Re[START_REF] Re | 3D beam-column finite elements under tri-axial stress-strain states: nonuniform shear stress distribution and warping[END_REF].
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 234 Figure 2-34 -Warping profile of rectangular cross-section under torsion.

  Orthogonality condition for the distortion field.

Figure 2 - 35 -

 235 Figure 2-35 -Model of Bairan [3].
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 31 Figure 3-1 -Multifiber approach for a RC member and local element frame coordinate

Figure 3 - 2 -

 32 Figure 3-2 -(a) Discretization of cross-section following the material stress state in the model of Navarro-Gregori et al. [76]. (b) Shear stress direction under shear, bending or torsional effects.
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 33 Figure 3-3 -Two-node Timoshenko beam and the local reference system.

Figure 3 - 4 -

 34 Figure 3-4 -(a) Section deformation under normal efforts (axial, bending) and tangential efforts (shear, torsion). (b) Decomposition of a material axial displacement.

  and 𝛾 𝑧 (𝑥) = 𝜕𝑤(𝑥) 𝜕𝑥 + 𝜃 𝑦 (𝑥) are the shear strains in the 𝑦 and 𝑧 direction, respectively; 𝜅 𝑥 (𝑥) = 𝜕𝜃 𝑥 (𝑥) 𝜕𝑥 is the torsional curvature and 𝜅 𝑦 (𝑥) = 𝜕𝜃 𝑦 (𝑥) 𝜕𝑥 and 𝜅 𝑧 (𝑥) = 𝜕𝜃 𝑧 (𝑥) 𝜕𝑥 are the flexural curvatures about the 𝑦 and 𝑧 axis respectively. From these definitions, the kinematic relation in Equation (3.9) can be expressed as a relation between the material strains and sectional strains as follows: e 𝑝 𝑓 (𝑥, 𝑦, 𝑧) = a 𝑝 𝑓 (𝑦, 𝑧)e 𝑠 (𝑥) (3.10)

Figure 3 - 5 -

 35 Figure 3-5 -Transformation of the shear strain distribution to a generalized shear strain in the case of rectangular cross-section.

  and the parameter 𝛼(𝑥): several fixed points are defined in the axis direction 𝑥, with index 𝑖 (Figure7-5a), and then, in each of cross-section with index 𝑖, a grid of fixed points is defined in the direction 𝑦, 𝑧 with index 𝑗, 𝑘 respectively (Figure (Figure7-5b)). It is very important to remark that the position of longitudinal interpolation points is independent of the Gauss points along the element axis of the Timoshenko multifiber beam.(a) Longitudinal interpolation points along the element axis.

  Sectional interpolation points over the rectangular cross-section.

Figure 3 - 6 - 3 - 7 )

 3637 Figure 3-6 -System of fixed interpolation points in the beam element.Then, at any of these fixed interpolation points, with coordinate (𝑥 𝑖 , 𝑦 𝑗 , 𝑧 𝑘 ), the en-

Figure 3 - 7 -

 37 Figure 3-7 -Enhanced displacement values defined as independent additional DoFs.

Figure 3 - 8 -

 38 Figure 3-8 -Lagrange interpolation polynomials for one dimensional finite elements.

Figure 3 - 9 -

 39 Figure 3-9 -Generation of Lagrange interpolation polynomials for 2D finite elements.

  ), which represents the enhanced displacement values of element. The additional DoFs of the enhanced field is therefore equal to 3.𝑛 𝑤 .𝑠 𝑤 . Equation (3.23) can be re-written as follows: e 𝑒 𝑓 * (𝑥, 𝑦, 𝑧) = a 𝑒 𝑓 * (𝑥, 𝑦, 𝑧)d 𝑒 (3.24)

  × 𝑠 𝑤 ); S 𝑢 𝑥 * (𝑦, 𝑧), S 𝑣 𝑥 * (𝑦, 𝑧) and S 𝑤 𝑥 * (𝑦, 𝑧) are three matrices of (6 × 𝑠 𝑤 ) containing the row vector S(𝑦, 𝑧) in Equation (3.20) and the zero row vector of (1 × 𝑠 𝑤 ):

  [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF] from Equation (3.2) and (3.14):

Figure 3 - 11 -

 311 Figure 3-11 -Resume chart for the multi-fiber FE beam in displacement-based formulation.

  the zone of stirrups disposed in horizontal direction or horizontal stirrups -called 2D-horizontal zone) or s 2𝐷 𝑓 -𝑣 = (︁ 𝜎 𝑥𝑥 0 𝜏 𝑥𝑧 )︁ 𝑇 (in the zone of stirrups disposed in vertical direction or vertical stirrups -called 2D-vertical zone) (Figure 3-2a).

Figure 3 -

 3 Figure 3-13 -In-plane frame system

Figure 3 - 14 -

 314 Figure 3-14 -Stress composition for RC members in the MCFT [110].

Figure 3 - 15 -

 315 Figure 3-15 -Iteration process satisfying internal equilibrium between concrete and transverse reinforcement

Figure 3 - 16 -

 316 Figure 3-16 -Process determining the material stiffness matrix of 2D-zone

  The numerical examples are then compared to the analytical and experimental results for the validation of the proposed model. The Chapter is organized as follow. A brief summary of torsion theory and the expression of warping function is presented firstly in Section 4.1. Next, the element formulation and the proposed constitutive model of concrete, which are specifically developed for RC members under pure torsion, are respectively described in Section 4.2 and Section 4.3. The following sections (4.4 and 4.5) deal with the numerical examples in elastic and inelastic material regime. Finally, Section 4.6 summarizes the Chapter and offers some conclusions.

Figure 4 - 1 -

 41 Figure 4-1 -Warping for several non circular section [97].

  ) the following kinematic relation is established for the material displacement field under pure torsion according to Saint-Venant torsional theory: 𝑈 𝑡 (𝑥, 𝑦, 𝑧) = 𝜅 𝑥 𝜓(𝑦, 𝑧) 𝑉 𝑡 (𝑥, 𝑦, 𝑧) = -𝑧𝜃 𝑥 (𝑥) 𝑊 𝑡 (𝑥, 𝑦, 𝑧) = 𝑦𝜃 𝑥 (𝑥) (4.6)

Section 2 . 3 . 3 ,

 233 in the original MCFT and/or in the constitutive model for RC members of Belarbi & Hsu [9], the tensile relationship is based on experimental tests of shear panels (the Shell Element Tester at the University of Toronto and/or the Universal Panel Tester at the University of Houston), so not really suitable for the torsional behavior. Indeed, Jeng & Hsu [53] recorded that the cracking torsional moment, calculated by an analytical model based on the constitutive model of Belarbi & Hsu, is much smaller than the experimental values. By conducting a systematic parametric study with several experimental tests, another tensile constitutive law was proposed by Jeng & Hsu (Figure 4-2):

Figure 4 - 2 -Section 2 . 3 . 3 .

 42233 Figure 4-2 -Tensile stress-strain relationship of concrete proposed by Jeng & Hsu [53] .

Figure 4 - 3 -

 43 Figure 4-3 -(a) Distribution of Saint-Venant stresses along edges, the shear stress at each point is calculated by √︀ 𝜏 2 𝑥𝑦 + 𝜏 2 𝑥𝑧 [46]. (b) Cracking torque as a function of reinforcement ratio in Hsu tests (1968) [45].

  -4a) can result in a different cracking torque than a repartition with additional longitudinal steel bars along the perimeter (Figure 4-4b). Therefore, the reinforcement percentage 𝜌 𝑠 must become an indispensable parameter for the formulation of cracking strength 𝑓 𝑐𝑟 , and the latter should be distinguished for different cases of longitudinal steel repartitions.

  (a) Usual repartition of longitudinal reinforcement at corners. (b) Repartition with additional longitudinal reinforcement along the perimeter.

Figure 4 - 4 -

 44 Figure 4-4 -Two case of distribution of longitudinal reinforcement steel bars.

27 )Figure 4 - 5 -

 2745 Figure 4-5 -Proposed tensile relation for torsion compared to the tensile relation for shear model in the original MCFT [110].

Figure 4 - 6 -•

 46 Figure 4-6 -Cross-section dimensions in the test of Hsu. [45].
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 47 Figure 4-7 -Layout of the torsion tests.

  Repartition with additional longitudinal reinforcement along the perimeter.

Figure 4 - 8 -

 48 Figure 4-8 -Linear fitting in the calibration process of determining 𝑓 𝑐𝑟 , with 𝑏 ℎ 𝜌 𝑠 in the horizontal axis.

  Repartition with additional longitudinal reinforcement along the perimeter.

Figure 4 - 9 -

 49 Figure 4-9 -Linear fitting in the calibration process of determining 𝑓 𝑐𝑟 , with ℎ 𝑏 𝑚𝜌 𝑠 in the horizontal axis.

Figure 4 - 10 -

 410 Figure 4-10 -Linear fitting in the calibration process of determining 𝑓 𝑐𝑟 , with ℎ 𝑏 𝜌 𝑠𝑡 in the horizontal axis.

  𝑒 and the section width 𝑏 in the vertical axis and the best fitting set values ( ℎ 𝑏 𝑚𝜌 𝑠 as in Equation (3.112) and (3.113) in the horizontal axis (Figure 4-11), and the final expression could be deduced. Repartition with additional longitudinal reinforcement along the perimeter.
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 411 Figure 4-11 -Linear fitting in the calibration process of determining 𝑡 𝑒 .
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 412 Figure 4-12 -Typical torque-twist curve of plain concrete beam [46].

Figure 4 - 13 -

 413 Figure 4-13 -Typical stress-strain curve of concrete in uniaxial compression and tension.

Figure 4 - 14 -

 414 Figure 4-14 -Proposed relationship for tension stress-strain curve of plain concrete members under pure torsion.

Figure 4 - 15 -

 415 Figure 4-15 -Cantilever beam subjected to pure torsion at free end and system of interpolation points .

5 (

 5 Warping of end cross-section under torsional effect. b) Necessary numbers of items in warping function

Figure 4 - 16 -

 416 Figure 4-16 -Representation of warping phenomenon by the proposed model.

  Distribution of 𝜏 𝑝 𝑥𝑦 in classical and enhanced field.

  Distribution of 𝜏 𝑝 𝑥𝑧 in classical and enhanced field.

  Distribution of 𝜏 𝑝 𝑥𝑧 in final field.

Figure 4 - 17 -

 417 Figure 4-17 -Shear stress's profile at free-end cross-section under pure torsional effect.

Figure 4 -

 4 Figure 4-18 -Mesh's refinement investigation.

1 . 2 .

 12 Usual repartition of reinforcement bars at corner: Series B (B2-B10), Series C (C1-C6), Series G (G1-G5), Series I (I2-I6), Series M (M1-M5), Series N (N1, N1a, N2, N2a) of Hsu's test; Series B (B1-B3), Series C (C1-C3) of Csikos & Hegedus's test; Series T (T1-1, T2-1, T2-2) of Lee et al. test. Repartition with additional reinforcement bars along the perimeter: Beam M6, N3, N4, G6, G7, G8 of Hsu's test; Series T (T1-2, T1-3, T1-4 ,T2-3, T2-4) of Lee et al. test; Series D (D1-D3), E (E1-E3) of Csikos & Hegedus's test.

4. 5 . 2 . 3 Figure 4 - 20 -Figure 4 - 21 -Figure 4 - 22 -

 523420421422 Figure 4-20 -Torsional moment versus Twist rate diagram for two specimens M2 and M3 in the torsional test of Hsu [45]. Another comparison of the torque-twist curves was made for series B of Hsu's test and series T1, T2 of Lee et al.'s test: once again the proposed model gave a good agreement with the experimental results (Figure 4-21, 4-22). In the series B of Hsu's test (Figure 4-21), the cracking and ultimate torsional moments were strongly a function of the reinforcement ratio, while the post cracking torsional stiffness were also well represented.

- 2 .

 2 In this Figure, we can see that the values of shear strain calculated at the integration points (center of square fiber) are identical on the 𝑦 direction, correspond to the analytical formulation in Equation (5.2).
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 52 Figure 5-2 -Distribution of shear strain 𝜀 𝑥𝑧 over cross-section under shear-bending.

Figure 5 - 3 -

 53 Figure 5-3 -(a) System of FE mesh in the model of Capdevielle [15].; (b) Comparison of shear strain profile 𝜀 𝑥𝑧 .

Figure 5 - 4 -

 54 Figure 5-4 -System of Lagrange interpolation points (red cross sign).

Figure 5 - 6 -

 56 Figure 5-6 -Distribution of displacement field over the free-end cross-section under shear-bending.

  end section Near fixed-end section (a) Example by Capdevielle.

  end section Near fixed-end section (b) Example by Le Corvec.
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 57 Figure 5-7 -Variation of the warping displacement profile along the beam axis.

Figure 5 - 8 -

 58 Figure 5-8 -Bresler & Scordelis's shear bending test in 1963 [14].

Figure 5 - 9 -

 59 Figure 5-9 -Load-displacement diagram of beam A1.

  displacement. Moreover, the numerical results obtained by the proposed model give quite good agreements with the experimental values in term of element stiffness, load bearing capacity (460 kN in compare to 468 kN of test value) and the maximum deflection(14.6 mm in compare to 14.2 mm of test value).At ultimate loading, the crack orientation of concrete were illustrated in Figure5-10a, for the left half of the beam. As can be seen, the numerical simulation gives logical results in terms of crack orientation. Indeed, the crack inclinations become higher towards the lower face of the beam and close to the mid-span -the point of load applications. This result is somehow in agreement with the experimental observations in Figure5-10b.

Figure 5 - 10 -

 510 Figure 5-10 -Crack distribution at ultimate loading for the left half of Beam A1.

Figure 5 - 11 -

 511 Figure 5-11 -Distribution of normal stress 𝜎 𝑥 at different cross-section.

Figure 5 - 12 -

 512 Figure 5-12 -Distribution of shear stress 𝜏 𝑥𝑧 at different cross-section.

- 13 .

 13 For the beams of intermediate length (type 1 and 2), good agreements were obtained at all stages of loading, except in the case of beam C1 (Figure5-13f), where the numerical and experimental curve did not correlate very well. For the long-span beam (type 3, although there are some difference at the early load stage, the beam stiffnesses were well represented, especially in beam B3 and C3 (Figure5-13e and 5-13h), while the numerical result for beam A3 was a bit different to the experimental curve (Figure5-13b). In general, very good correlations were obtained between the numerical result and the experimental values: the model is capable of well predicting the ultimate loading and maximum deflection (as shown in

Figure 5 - 13 -

 513 Figure 5-13 -Load versus mid-span displacement curve for series A,B and C.
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 514 Figure 5-14 -McMullen & Warwaruk's bending and torsion test in 1967 [72].

4 Figure 5 - 15 - 4 Figure 5 - 16 -

 45154516 Figure 5-15 -Experimental and numerical Torsional moment -Twist rate diagrams for Group 2 of McMullen & Warwaruk's test of bending and torsion.

3 x

 3 Φ12.7 mm, fy = 393 MPa 6 x Φ9.5 mm, fy = 401 MPa 7 x Φ25.4 mm, fy = 436 MPa Φ9.5 mm @70 mm, fy = Φ12.7 mm, fy = 393 MPa 6 x Φ9.5 mm, fy = 401 MPa 7 x Φ25.4 mm, fy = 436 MPa Φ9.5 mm @70 mm, fy = Cross-section details.

Figure 5 -Figure 5 - 19 -

 5519 Figure5-17 -Onsongo's bending and torsion test in 1978[82].

Figure 5 -

 5 Figure 5-21, the torsional moment -transverse strain diagrams for different faces of beam TBO3 are showed and reasonable agreements were observed at mid-depth (Figure 5-21a) and at the bottom face of the beam (Figure 5-21b). In general, the transverse strain in the stirrups calculated and represented by the proposed model are satisfactory.
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 520 Figure 5-20 -Experimental and numerical diagram of Torsional moment -Transverse strain at mid-depth of beams in series TBO of Onsongo's test.

Figure 5 - 21 -

 521 Figure 5-21 -Experimental and numerical diagram of Torsional moment -Transverse strain for different faces of beam TBO3.
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 522 Figure 5-22 -Shear stress direction in cross-section under bending-torsion action.

Figure 5 - 23 -Figure 5 -Figure 5 -Figure 5 -

 523555 Figure 5-23 -Collins et al.'s interaction diagram between bending and torsional moments [23].

  For different values of R.
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 526 Figure 5-26 -Interaction diagram between bending and torsional moments for the TBO series TBO of Onsongo's test.

- 27 .Figure 5 - 27 -

 27527 Figure 5-27 -Example of RC cantilever beam subjected to bending-torsion.

Figure 5 -

 5 Figure 5-28 -Bending-Torsion diagrams in function of stirrup spacing.

Figure 5 - 29 -

 529 Figure 5-29 -Growth percent of the ultimate torsional moment when increasing the stirrup density.

  -30. The bending effect can be represented clearly by a constant distribution of normal stress in horizontal direction (Figure5-30a). Because the cross-section is almost symmetric and crack is not considered in elastic range, 𝜎 𝑥 distributions are also symmetrical. On the others hand, due to torsional effect, the shear stress flow creates opposite orientations of shear stresses in both vertical and horizontal directions (Figure5-30b and 5-30c). Normal stress 𝜎 𝑥 distribution. Shear stress 𝜏 𝑥𝑦 distribution. Shear stress 𝜏 𝑥𝑧 distribution.
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 530 Figure 5-30 -Stress distribution over cross-section of beam TBO4 in elastic range.

  Shear stress 𝜏 𝑥𝑧 distribution.
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 531 Figure 5-31 -Stress distribution over cross-section of beam TBO4 in inelastic range.

Figure 5 - 5

 55 32a: a simple supported RC beam subjected to vertical force near to the mid-span, while torsional action is created by two steel arm at two beam's ends. Three groups of beams with 4 specimens in each were investigated: Group 5,6 with the same concrete properties and reinforcement distribution (Figure 5-32b), while the beams in Group 7 were provided with larger bottom longitudinal reinforcement steel bars and a large spacing of the stirrups in order to obtain a stronger strength in flexure but weaker in transverse shear. In this test setup, the distance A of study region, B between study region and the applied force, and C from vertical force to the right beam's support are different for various specimens and are indicated in Figure for others (a) Outline of test setup and diagrams of internal efforts. Cross-section details of Group 5, 6 and 7.
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 532 Figure 5-32 -McMullen & Warwaruk's test[72] for combined shear-bending-torsion.

4 Figure 5 - 33 -

 4533 Figure 5-33 -Torque-twist diagrams in McMullen & Warwaruk's test [72].

Figure 5 -

 5 Figure 5-34 -Bending-Torsion diagrams of Gr. 5, 6 in McMullen & Warwaruk's test [72].

Figure 5 -

 5 Figure 5-35 -Bending-Torsion diagram of Gr. 7 in McMullen & Warwaruk's test [72].

the Mode 2 Figure 5 - 36 -

 2536 Figure 5-36 -Collins et al.'s interaction diagram between shear force and torsional moment.

7 Figure 5 - 37 -

 7537 Figure 5-37 -Shear-Torsion diagrams of Group 5, 6 and 7 in McMullen & Warwaruk's test [72].

  provide reasonable coupling behavior of rectangular RC beams subjected to combined loading of bending and torsional moments. Indeed, the numerical results correlated well with the experimental tests of McMullen & Warwaruk and Onsongo, as well as with the analytical solutions of skew-bending theory proposed by Collins et al. Comparing to other numerical results, the proposed model gave a good balance of accuracy in predicting the ultimate values of bending and torsional moments. Not Chapter 6
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 612 Figure 6-1

  [START_REF] Benscoter | Theory of torsion bending for multicell beams[END_REF] with x 𝐼 𝑜 and x 𝐽 𝑜 are the nodal coordinates of nodes 𝐼, 𝐽 at initial configuration. The term ‖x 𝐽 𝑜 -x 𝐼 𝑜 ‖ = 𝑙 𝑜 defines the initial beam length.

Figure 6 - 2 -

 62 Figure 6-2 -Transition between global and local reference system at initial undeformed configuration.

  the sake of generality (Figure6-3b). As in the sequel, without any particular mention, the term local frame or local reference system is always considered to the local frame in final configuration t 𝐼𝐽 𝑖 . Initial and semi-final configuration in local reference.
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 63 Figure 6-3 From these definitions of global and local coordinate systems, there are two ways to express the global rotation at end nodes of the beam element (Figure 6-4):
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 64 Figure 6-4 -Coordinate systems and beam kinematics.
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 65 Figure 6-5 -Beam kinematics in local frame.
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 66 Figure 6-6 -Kinematic model proposed by Gruttmann et al. [41].

𝜕𝑥

  

Figure 6 - 7 -

 67 Figure 6-7 -Implementation of co-rotational formulation into the proposed model. The dashed line represents the algorithm in linear geometric conditions.

  Exam. 2: Shear-bending-torsion.
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 68 Figure 6-8 -Example 1 & 2: Cantilever beam under nonlinear geometrical conditions, subjected to different loading cases.

5 Figure 6 - 10 -Figure 6 - 11 -

 5610611 Figure 6-10 -Example 2: Torsional moment versus twist angle diagrams of elastic material beam subjected to shear-bending-torsion effect under nonlinear geometric conditions, with different ratio of torsional versus bending moment.
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 612 Figure 6-12 -Example 3: Load-displacement diagrams of elasto-plastic beam subjected to shear-bending under nonlinear geometrical conditions.
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 613 Figure 6-13 -Example 3: Torsional moment -twist angle diagrams of elasto-plastic beam subjected to pure torsion effect under linear and nonlinear geometric conditions.
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 614615616 Figure 6-14 -Example 3: Torsional moment versus twist angle diagrams of elasto-plastic material beam subjected to shear-bending-torsion effect under nonlinear geometric conditions, with different ratio of torsional versus bending moment.

  yet been implemented in any displacement-based model of reinforced concrete. In present work, the Lagrange polynomial approach has been completely implemented in the proposed displacement-based model, as well as a comparison with the use of Saint-Venant warping function when accounting for torsional effect. The numerical examples in Chapter 5 gave good results and showed reasonable correlations between the two approaches.Thanks to its generality, the successful implementation of Lagrange polynomials in the proposed model also offers more possibilities for further research on different cross-section shapes, such as T or L.The satisfactory results obtained in the inelastic material domain ensured the adaptation of the Modified Compression Field Theory (MCFT) to the constitutive material model for concrete. In this PhD thesis, based on MCFT, a consistent constitutive model, suitable for the use in the 2D multi-fiber beam formulation, has been developed for reinforced concrete in case of pure torsion. The discretization of the cross-section into different regions following the stress state (i.e. 1D-zone, 2D-zone and 3D-zone) which was proposed by others researchers in literature, has been used and improved in this work. A new formulation to determinate the width of the 2D-zone has been proposed. The calibration process carried out by the author in this work, which used the engineering parameters in order to increase the ability to apply the proposed model in practical simulations, can also offer some ideas and recommendations to other researchers in similar studies.The case of RC members subjected to combined shear-bending-torsion actions under non-linear geometric conditions has also been treated in the present work. A Total Lagrangian-Corotational approach has been employed for the development of beam and beam-column elements, in which an initial undeformed geometry, translated and rotated as a rigid body, was chosen as the reference configuration in the corotated frame. The formulation is based on small deformations within the corotational (natural) frame. The satisfactory results obtained through several examples from the literature showed that the corotational framework had been successfully implemented in the proposed model.
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 71 Figure 7-1 -(a) Rupteur du pont thermique. (b) Disposition du linteau dans le cadre de la tenue des balcons pour des bâtiments isolés par l'intérieure.A cause des différences entre les déformations extensionnelles des fibres longitudinales dans l'élément, sous l'effet de torsion la section transversale est gauchie et sort de leur plan initial. Cette action s'appelle le gauchissement et se produit pour tout type de section transversale, excepte celui circulaire, sous chargement de torsion (Figure7-2).Ce phénomène de gauchissement fait nier l'hypothèse de section plane en considération l'équilibre cinématique de section, de plus influence fortement sur le calcul de l'angle de torsion et des contraintes normales sous sollicitations de torsion. L'étude de ce phénomène fait donc une partie importante dans ce travail de recherches.
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 72 Figure 7-2 -Dessin originaux de Saint-Venant pour les poutres soumises à torsion de section elliptique, carrée et rectangulaire [97].
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 73 Figure 7-3 -Approache de multifibre pour les éléments en BA et des coordonées d'élément locals dans cette recherche.
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 74 Figure 7-4 -(a) Déformation de section transversale sous efforts normaux (axiale force, flexion) et tangentiels (cisaillement, torsion). (b) Décomposition du déplacement axial d'un point matériel.
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 73 d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) dans l'Equation (7.1) devient: 𝑈 𝑚 (𝑥, 𝑦, 𝑧) = 𝑢(𝑥) -𝑦𝜃 𝑧 (𝑥) + 𝑧𝜃 𝑦 (𝑥) + 𝜅 𝑥 𝜓(𝑦, 𝑧) 𝑉 𝑚 (𝑥, 𝑦, 𝑧) = 𝑣(𝑥) -𝑧𝜃 𝑥 (𝑥) 𝑊 𝑚 (𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃 𝑥 (𝑥) La deuxième approche enrichie concerne l'utilisation des fonctions d'interpolation comme Lagrange pour représenter le champ enrichi. Il s'agit d'un système de points fixes créés et interpolés par des fonctions et des polynômes de Lagrange (Figure 7-5), qui conduisent à l'introduction de degrés de liberté supplémentaires à chaque section transversale (Figure 7-6). Le champ de déplacement enrichi est établi à l'aide des matrices de polynômes de Lagrange: 𝑈 𝑒 (𝑥, 𝑦, 𝑧) = 𝑛𝑤 ∑︁ 𝑖=1 𝐿 𝑖 (𝑥)𝑈 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)U 𝑒 (7.4a) 𝑉 𝑒 (𝑥, 𝑦, 𝑧) = 𝑛𝑤 ∑︁ 𝑖=1 𝐿 𝑖 (𝑥)𝑉 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)V 𝑒 (7.4b) 𝑊 𝑒 (𝑥, 𝑦, 𝑧) = 𝑛𝑤 ∑︁ 𝑖=1 𝐿 𝑖 (𝑥)𝑊 𝑒 (𝑥 𝑖 , 𝑦, 𝑧) = L(𝑥) Ŝ(𝑦, 𝑧)W 𝑒 (7.4c) où L(𝑥) est une vecteur contenant des polynômes d'interpolation 1D; Ŝ(𝑦, 𝑧) est une matrice contenant des polynômes d'interpolation 2D; U 𝑒 , V 𝑒 et W 𝑒 sont des vecteur contenant les déplacements nodaux enrichis définis comme les dégrées de liberté supplé-
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 7576 Figure 7-5 -System de point d'interpolation de l'élément.
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 7778 Figure 7-7 -Organigramme de la formulation en déplacement pour l'élément fini multifibre selon deux approches enrichies.

Figure 7 - 9 -Figure 7 -

 797 Figure 7-9 -Comportement uniaxial du béton dans la direction principale.

  -11). Les valeurs des déplacements à l'extrémité de la poutre, obtenue par les deux approaches enrichies, sont montrées dans le Tableau 7.1 et comparées aux solutions analytiques et aux résultats numériques de Le Corvec. Les résultats numériques donnés par le modèle proposé sont satisfaisant, et les différences entre deux approches enrichies ne sont pas importantes.
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 711 Figure 7-11 -Système des points d'interpolation dans l'exemple de Le Corvec [62].

  Pour rappel, sous l'effet de flexion-cisaillement, l'approche enrichie des polynômes de Lagrange génère un champ de déplacement axial supplémentaire. Par conséquence, la section droite se gauchit et ne peut pas conserver sa forme plane. Ce déplacement de gauchissement sous l'effet de flexion-cisaillement est présenté à la Figure7-12a. On peut observer que la forme parabolique est le résultat des polynômes d'interpolation cubique sur la section droite. Cependant, la magnitude de ce champ enrichi est très faible en comparant à celle du champ classique. Cela dit que le champ de déplacement total est donc peu influencé et conserve sa forme plane (Figure 7-12b). Les impacts sur les déformations et les contraintes sont donc limités et par conséquent, il n'y a pas de différence entre les valeurs de déplacement à l'extrémité dans le Tableau 7.1. Champ de déplacement total.

Figure 7 - 12 -

 712 Figure 7-12 -Distribution du champ de déplacement sur la section droite à l'extrémité de poutre sous l'effet de flexion-cisaillement.
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 713714715 Figure 7-13 -Diagramme d'intéraction entre flexion-torsion dans le test de McMullen & Warwaruk's [72].
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 7166 Figure 7-16 -Moment de torsion à la fissuration en fonction des pourcentages totals des armatures dans le test de Hsu (1963) [45].

  (a) Distribution habituelle. (b) Distribution avec des barres additionnelles sur le long du périmètre.
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 717 Figure 7-17 -Deux cas de distribution des armatures longitudinales.
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 718 Figure 7-18 -La relation en traction proposée pour la torsion en comparée à celle dans la théorie de MCFT par Vecchio [110].

Figure 7 -

 7 Figure 7-19 -(a) Poutre cantilever soumise à la torsion pure et système de points d'interpolation.; (b) Gauchissement de la section droite soumise à la torsion.
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 720 Figure 7-20 -Courbe moment de torsion -angle de torsion linéaire pour deux spécimens M2 et M3 dans le test de Hsu [45]. Un bon niveau de prédiction du moment de torsion ultime et de la rigidité postfissuration est aussi atteints dans la simulation numérique du test de Lee et al. [63] (Figure 7-21).
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 721 Figure 7-21 -Courbe moment de torsion -angle de torsion linéaire pour la série T dans le test de Lee et al.'s. [63]

Figure 7 - 22 -

 722 Figure 7-22 -La réponse de torsion dans la condition géométrique non linéaire.

Figure 7 - 23 -

 723 Figure 7-23 -Courbe de moment de torsion -angle de torsion linéaire du spécimen G5 sous l'effet de torsion simulée par le modèle de conditions géométriques linéaire et non linéaire.

14 )

 14 Longitudinal interpolation matrix L(𝑥) of (3 × 3.3.𝑛 𝑤 ):L(𝑥) = [︁ L 1 (𝑥) . . . L 𝑖 (𝑥) . . . L 𝑛𝑤 (𝑥) ]︁(7.13)L 𝑖 (𝑥) is a matrix of 3 × 3.3, containing the 1D Lagrange polynomial at section 𝑖:Sectional interpolation matrices S 𝑥 (𝑦, 𝑧) of (3.3.𝑛 𝑤 × 3.𝑠 𝑤 .𝑛 𝑤 ):S 𝑥 (𝑦, 𝑧) = ⎡ ⎢ ⎢ ⎢ ⎣ Ŝ𝑥 (𝑦, 𝑧) 0 𝑤 0 𝑤 0 𝑤 Ŝ𝑥 (𝑦, 𝑧) 0 𝑤 0 𝑤 0 𝑤 Ŝ𝑥 (𝑦, 𝑧)

16 )

 16 and the zero row vector of 𝑠 𝑤 columns: Sectional interpolation matrices S 𝑦𝑧 (𝑦, 𝑧): S 𝑦𝑧 (𝑦, 𝑧) (𝑦, 𝑧), S 𝑣 𝑦𝑧 (𝑦, 𝑧) and S 𝑤 𝑦𝑧 (𝑦, 𝑧) are three matrices of (3 × 𝑠 𝑤 ) containing the derivation with respect to 𝑦 and 𝑧 of the row vector S(𝑦, 𝑧) in equation (3.20) and the zero row vector of 𝑠 𝑤 columns:

257Titre:

  Développement d'un modèle d'élément fini 3D pour des poutres en béton arme soumis à des sollicitations complexes M-N-V-T. Mots clés : béton armé, élément fini, multifibre, gauchissement, torsion, sollicitation complexe, grand déplacement Résumé : Le travail présenté dans ce mémoire porte sur le développement d'un modèle EF non linéaire pour des poutres BA soumis à des sollicitations combinées M-N-V-T. Afin de prendre en compte du couplage entre la torsion et la flexion, un élément poutre multifibre 3D enrichi est développé en utilisant l'approche de la plasticité distribuée et la formulation en déplacement. La première partie concerne le développement modèle EF qui se base sur l'enrichissement des hypothèses cinématique de poutre de Timoshenko, avec l'introduction des dégrée de liberté supplémentaires, afin de prendre en compte l'effet de gauchissement et de distorsion. L'un des objectifs de cette thèse est de proposer une méthode simple pour inclure la contribution des armatures transversales sur la raideur et la résistance de la section droite. Pour cela, une procédure itérative basée sur l'équilibre des contraintes entre les armatures et le béton est proposée. Le comportement 2D du béton armé est modélisé à l'aide de la théorie de Modified of Compression Field Theory (MCFT). La deuxième partie est consacrée à l'analyse numérique des éléments en béton et en BA soumis à torsion pure. Une nouvelle relation contraintedéformation du béton fissuré est proposée dans le cadre de la MCFT en calibrant avec des résultats expérimentaux. La troisième partie est dédiée à l'analyse numérique des poutres BA soumis à des sollicitations combinées. Le modèle EF développé est validé par plusieurs numériqueanalytique-expérimentale comparaisons. L'interaction entre le cisaillement, la flexion et la torsion est étudiée. Enfin, la dernière partie est dédiée à l'étude du comportement des éléments BA en grand déplacement. Title : Development of an enhanced finite element model for reinforced concrete members subjected to combined shear-bending-torsion actions.

  

  1 and 𝜎 2 are the stresses in principal directions; 𝜎 𝑥 , 𝜎 𝑦 and 𝜏 𝑥𝑦 are element stress components; 𝜎 𝑠𝑥 and 𝜌 𝑥 are stress and ratio of longitudinal reinforcement, respectively;

𝜎 𝑠𝑦 and 𝜌 𝑦 are stress and ratio of transversal reinforcement, respectively. 2.4.1.1.1 Constitutive modeling: For concrete in compression, the stress-strain relationship is computed following a parabolic equation (figure 2-19a):

  𝑓 1 and steel stress 𝑓 𝑠𝑥 ) and the right half correspond to the local stresses at crack (only steel stress 𝑓 𝑠𝑥 at crack). To ensure the equilibrium of local stresses at a crack, the concrete tensile stress 𝑓 𝑐1 must equal to zero.

	20 -Elasto-plastic model by Vecchio & Collins [110].
	2.4.1.1.2 Crack-check: In order to ensure that the average stress can be resisted
	locally at a crack, a crack-check must be applied. In reality, applying the MCFT without
	including the crack-check can lead to very underestimated results [51]. Bentz [12] gave a
	clear example to demonstrate the need for crack-check by considering a concrete prism
	with longitudinal reinforcement steels subjected to axial tension (Figure 2-21a). The
	free body diagram of a member at crack is shown in Figure 2-21b: the left half drawn
	with average stresses (concrete tensile stress

  and Mazars et. al[START_REF] Mazars | A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings[END_REF]. The latter model is called Mu model, considers two different equivalent strains 𝜀 𝑒𝑞,𝑐 (or 𝜀 𝜇,𝑐 ) and 𝜀 𝑒𝑞,𝑡 (𝜀 𝜇,𝑐 ), associating to two thermodynamic variable 𝑌 𝜇𝑐 and 𝑌 𝜇𝑡 . The combination of these two variables give a single internal variable 𝑌 𝜇 :

  𝑛 𝑤 .𝑠 𝑤 × 1) containing the axial enhanced displacement values of element; similar definition can be applied for 2 vectors V 𝑒 and W 𝑒 ; Ŝ(𝑦, 𝑧) is a matrix (𝑛 𝑤 ×𝑛 𝑤 .𝑠 𝑤 ) containing a number of 𝑛 𝑤 vector S(𝑦, 𝑧) and several zero row vectors (1 × 𝑠 𝑤 ):

	(︁	𝑈 𝑒𝑇 1	. . . 𝑈 𝑒𝑇 𝑖	. . . 𝑈 𝑒𝑇 𝑠𝑤.𝑛𝑤	)︁ 𝑇	is a
	column vector (					

21c) where L(𝑥) = (︁ 𝐿 1 . . . 𝐿 𝑖 . . . 𝐿 𝑛𝑤 )︁ is a row vector (1 × 𝑛 𝑤 ) containing the 1D interpolation functions of each interpolation point; U 𝑒 =

  𝑦𝑧 (𝑥), containing the derivations with respect to 𝑦 and 𝑧 of 2D polynomials 𝑆 𝑖 (𝑥), is a sectional interpolation matrix of (3.3.𝑛 𝑤 × 𝑠 𝑤 .𝑛 𝑤 ) modified from matrix S * 𝑦𝑧 (𝑥) in Equation(3.29). The detailed expression of theses sub-compatibility matrix can be found in Appendix 7.2.Another important remark is that the number of DoFs in this approach is increased considerably. While Saint-Venant warping function approach maintains the element DoFs at 12, this method requires a total number of DoFs equal to 12 + 𝑛 𝑤 .𝑠 𝑤 , where 𝑛 𝑤 .𝑠 𝑤 is the total number of fixed interpolation points. If distortion phenomenon is included, the number of additional DoFs increases to 3.𝑛 𝑤 .𝑠 𝑤 , making a total of 12 + 3.𝑛 𝑤 .𝑠

	Equation (3.25):				
		a 𝑒 𝑓 (𝑥, 𝑦, 𝑧) = S It is worth to note that, comparing to the total material strains built up using Saint-𝜕L(𝑥) 𝜕𝑥
	Venant warping function in Section 3.3.2, in this approach the enhanced terms	𝜕𝜓 𝜕𝑦	𝜅 𝑥 and
	𝜕𝜓 𝜕𝑧	𝜅 𝑥 in shear strains are replaced by L(𝑥)	𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑦	U 𝑒 and L(𝑥)	𝜕 Ŝ(𝑦, 𝑧) 𝜕𝑧	U 𝑒 , respectively.

34c) the enhanced compatibility matrix a 𝑒 𝑓 (𝑥, 𝑦, 𝑧) is modified from the matrix a 𝑒 𝑓 * (𝑥, 𝑦, 𝑧) in 𝑥 (𝑦, 𝑧) + L(𝑥)S 𝑦𝑧 (𝑦, 𝑧) (3.35) the sub-compatibility matrix L(𝑥), containing 1D polynomials 𝐿 𝑖 (𝑥), is a longitudinal interpolation matrix of (3 × 3.3.𝑛 𝑤 ) modified from matrix L * (𝑥) in Equation (3.26); the sub-compatibility matrix S 𝑥 (𝑥), containing 2D polynomials 𝑆 𝑖 (𝑥), is a sectional interpolation matrix of (3.3.𝑛 𝑤 × 𝑠 𝑤 .𝑛 𝑤 ) modified from matrix S * 𝑥 (𝑥) in Equation (3.27); and the sub-compatibility matrix S Moreover, in the axial strain, an additional enhanced term 𝜕 L(𝑥) 𝜕𝑥 Ŝ(𝑦, 𝑧)U 𝑒 is added, which allows to calculate and represent the warping displacement profile and the additional normal stress due to warping in the case of shear effect. 𝑤 DoFs in each element. The computational cost is therefore much more expensive.

  Considering the sectional equilibrium in the left-hand side of Equation(3.37) in the case that the distortion phenomenon is neglected, the following expression of the variation of virtual internal work is obtained using Equation (3.34):

	𝛿W 𝑖 =	∫︁ ∫︁ ∫︁	𝛿e 𝑚 𝑓	𝑇 s 𝑚 𝑓 𝑑𝑉 =	∫︁ ∫︁ ∫︁	𝛿	(︁	e 𝑇 𝑠 (𝑥)a 𝑝 𝑓	𝑇 (𝑦, 𝑧) + U 𝑒𝑇 a 𝑒 𝑓	𝑇 (𝑥, 𝑦, 𝑧)	)︁	s 𝑚 𝑓 𝑑𝑉	(3.50)
		𝑉			𝑉								
	Using the expression of a 𝑒 𝑓 (𝑥, 𝑦, 𝑧) in Equation (3.35), Equation (3.50) becomes:	

3.𝑛 𝑤 .𝑠 𝑤 if distortion is considered), as mentioned in Section 3.3.3. With the present of additional DoFs, all the variables are now separated into two sets: the basic set of 12 DoFs and the additional set of 𝑛 𝑤 .𝑠 𝑤 (or 3.𝑛 𝑤 .𝑠 𝑤 ) DoFs. It is worth to note that the basic set is also a combined of classical and enhanced displacement/strain fields. 3.4.2.1 Sectional state determination

  containing the classical nodal displacements q 𝑒 of 12 DoFs and the enhanced displacement values U 𝑒 of 𝑛 𝑤 .𝑠 𝑤 DoFs. Similarly, the generalized displacements d 𝑚 𝑠 (𝑥), the external nodal forces Q 𝑚 𝑒 and the external uniform loading P 𝑚 𝑢 must also be decomposed into two parts:

  It is worth to mention that the sub-index 𝑈 , 𝑉 and 𝑊 in the new expression of interpolation functions indicate that the corresponding interpolation functions are only used for the components 𝑈 𝑒 , 𝑉 𝑒 and 𝑊 𝑒 respectively.

	𝜕 S𝑉 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑦	=	𝜕𝑆 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑦							
	𝜕 S𝑉 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑧 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑦 𝜕 S𝑊	= =	𝜕𝑆 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑧 𝜕𝑆 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑦	--	∫︁ ∫︁ ∫︁ ∫︁	𝐴 𝐴	𝑆 𝑗𝑘 (𝑦, 𝑧) 𝑆 𝑗𝑘 (𝑦, 𝑧)	𝑧 𝑎 3 𝑦 𝑎 2	𝑑𝐴 𝑑𝐴	(3.72)
	𝜕 S𝑊 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑧	=	𝜕𝑆 𝑗𝑘 (𝑦, 𝑧) 𝜕𝑧							

  where some components are zero depending on the stirrup's direction. Corresponding to this 2D-general stress state, the 2D-strain vector 𝜀 𝑥𝑥 𝛾 𝑥𝑦 𝛾 𝑥𝑧 𝜀 𝑦𝑦 𝜀 𝑧𝑧 𝛾 𝑦𝑧 )︁ 𝑇 , but unlike in the stress state, 𝜀 𝑦𝑦 (2D-horizontal zone) and 𝜀 𝑧𝑧 (2D-vertical zone) are not imposed to zero,

	must also have 6 components e *2𝐷 𝑓	=	(︁

  𝜎 𝑥𝑥 𝜏 𝑥𝑦 𝜏 𝑥𝑧 𝜎 𝑦𝑦 𝜎 𝑧𝑧 𝜏 𝑦𝑧 )︁ 𝑇 . The three components 𝜎 𝑦𝑦 , 𝜎 𝑧𝑧 and 𝜏 𝑦𝑧 will then be set to zero in order to satisfy the internal equilibrium without distortion. The corresponding strain vector has therefore six components: e *3𝐷 𝜀 𝑥𝑥 𝛾 𝑥𝑦 𝛾 𝑥𝑧 𝜀 𝑦𝑦 𝜀 𝑧𝑧 𝛾 𝑦𝑧 )︁ 𝑇 . Unlike the stress vector, three strains 𝜀 𝑦𝑦 , 𝜀 𝑧𝑧 and 𝛾 𝑦𝑧 are not zero, but they are not taken into account in the sectional analysis, as the distortion phenomenon is not considered in

				*3𝐷 𝑓	=
	(︁		
		𝑓	=	(︁
	this work.		
	The full stresses s *3𝐷 𝑓	and strains e *3𝐷	

𝑓

are related by a material stiffness matrix D 3𝐷 𝑓 in the following constitutive relation:

  𝑇 𝑓,𝑡 k 𝑓,𝑡 a 𝑓,𝑡 𝑑𝐴𝜅 𝑥 = K 𝑠,𝑡 𝜅 𝑥 (4.11)

	𝑀 𝑥,𝑠 (𝑥) =	∫︁ ∫︁	𝑓,𝑡 s 𝑓,𝑡 𝑑𝐴 = a 𝑇	∫︁ ∫︁
		𝐴		

∫︁ 𝑉 𝛿e 𝑇 𝑓,𝑡 s 𝑓,𝑡 𝑑𝑉 = 𝛿q 𝑇 𝑒,𝑡 Q 𝑒,𝑡 + ∫︁ 𝐿 𝛿𝜃 𝑥 (𝑥)T 𝑢 𝑑𝑥 (4.10) By exploiting the left hand of Equation (4.10), the following expression is obtained for the torsional moment: 𝐴 a

  𝑡 (𝑥, 𝑦, 𝑧) = a 𝑝 𝑓,𝑡 (𝑦, 𝑧)𝜅 𝑥 + a 𝑒 𝑓,𝑡 (𝑥, 𝑦, 𝑧)U 𝑒

	with the definition of the enhanced compatibility matrices:	
	a 𝑝 𝑓,𝑡 (𝑦, 𝑧) =	(︁	0 -𝑧 𝑦	)︁ 𝑇	;	a 𝑒 𝑓,𝑡 (𝑥, 𝑦, 𝑧) =	𝜕L(𝑥) 𝜕𝑥	S 𝑥 (𝑦, 𝑧) + L(𝑥)S 𝑦𝑧 (𝑦, 𝑧)	(4.16)
								(4.15)

  value of 𝑓 𝑐𝑟 at this moment is called as calibrated value 𝑓 𝑐 𝑐𝑟 . Next, all the values of 𝑓 𝑐 𝑐𝑟 and the variables mentioned above are plotted in a diagram in order to determine a reasonable relationship between them. The proportion of 𝑓 𝑐

								𝑐𝑟 and
	𝑓 𝑃 𝐶 𝑐𝑟	(in Equation 4.25) is put in the vertical axis, while in the horizontal axis, several
	possibilities have been tested, such as	ℎ 𝑏	𝜌 𝑠 ,	ℎ 𝑏	𝜌 𝑠𝑡 or	𝑏 ℎ	𝑚𝜌

𝑠 , etc., in order to select the best trend fitting for two set of data. For the sake of simplicity, a linear fitting is applied for the data set, and the best result has been selected between various possibilities in the horizontal axis (Figure

4

-8, 4-9 and 4-10). The best result can be found for the set of 𝑏 ℎ 𝜌 𝑠 as in Equation (4.26) and (4.27), and the final expression could be therefore deduced.

Table 4 .

 4 1. 

		Mx=1000000 Nmm	
			z
		L=5000 mm E=1000000 MPa; υ=0.3	h=100 mm	y
	z		
	y	x	b=50 mm
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 4 1 -End twist angle for cantilever beam under mid span torque

					Proposed Model	
			Model of			
		Theory	Le Corvec	No warping	Saint-Venant	Lagrange
					warping function	polynomials
	Twist angle (10 -3 rad)	4.548	4.554	2.496	4.550	4.566
	Relative error (%)		0.13	45.11	0.04	0.39
	Execution time (second)			9	9	18

Table 4 .

 4 2 -Details of specimens of tests in pure torsion for plain concrete members.

	3), but with a constitutive model

Table 4 .

 4 3 -Cracking torsional model for Plain concrete member: Comparison between experimental, numerical result and theoretical formulations

	Test	Beam	Exp	Proposed	Elastic	Plastic	Skew-bending
			Value	Model	Theory	Theory	Theory
		A2	19.1	19.7 / 3.1%	13.8 / -27.8%	23.2 / 22.1%	18.50 / -3.1%
	Hsu [45]	A4	11.3	10.2 / -9.7% 8.62 / -23.7%	13.8 / 22.3% 12.50 / 10.6%
		A8	6.38	6.70 / 5.0%	3.82 / -40.1%	6.46 / 1.3%	5.66 / -11.3 %
	Csikos &	A-1	1.61	1.60 / -0.6% 1.13 / -29.7 % 1.81 / 12.6 % 1.54 / -17.7 %
	Hegedus [29]	A-2	1.69	1.71 / 1.2 % 1.32 / -21.7 % 2.12 / 25.5 %	1.79 / 5.9 %
	Lee et al. [63]	T0	23.2	22.9 / -1.3% 25.3 / -9.0 %	35.8 /54.2 %	29.4 / 26.6 %

The torque-twist curves obtained by the proposed model shows a good agreement with the experimental results (Figure

4

-19). The slope of at high torque until failure is well represented with the aid of the proposed constitutive model in Section 4.3.2.

Figure 4-19 -Torque-twist curve for series A of Hsu's test.

Table 4 .

 4 6 -Distribution with additional longitudinal reinforcement bars: Cracking torsional moment (KNm) and Relative error with respect to experimental test.

	Test	Beam	EXP	Proposed	Jeng's	Elastic	Plastic	Skew-bending
			Values	Model	Model	Theory	Theory	Theory
		G6	30.96	33.2 / 7.2%	-	18.47 / -40.3%	33.61 / 8.6%	25.27 / -18.4%
		G7	33.67	34.2 / 1.6%	31.24 / -7.2%	19.53 / -42.0%	35.53 / 5.5%	26.21 / -22.2%
		G8	33.67	32.6 / -3.2%	30.32 / -9.9%	18.53 / -45.0%	33.72 / 0.1%	26.18 / -22.3%
	Hsu [45]							
		M6	22.71	21.9 / -3.9%	21.81 / -4.0 %	15.83 / -30.3%	26.76 / 17.8%	21.79 / -4.0 %
		N3	7.41	6.80 / -8.3%	6.37 / -14.1%	3.80 / -48.7%	6.91 / -6.7%	6.36 / -14.1%
		N4	7.60	7.50 / -1.4%	6.45 / -15.1%	3.94 / -48.1%	7.18 / -5.6%	6.61 / -13.1%
		T1-2	31.4	30.1 / -4.1%	-	22.95 / -26.9%	39.03 / 24.3%	27.59 / -12.1%
		T1-3	31.8	31.5 / -0.9%	-	23.52 / -26.0%	40. 1/ 25.8%	28.28 / -11.1%
	Lee et							
		T1-4	33.7	34.6 / 2.7%	-	24.42 / -27.5%	41.53 / 23.2%	29.35 / -12.9%
	al. [63]							
		T2-3	29.8	29.0 / -2.7%	-	23.36 / -21.6%	39.73 / 33.3%	28.08 / -5.8%
		T2-4	29.9	29.5 / -1.3%	-	23.75 / -20.6%	40.40 / 35.1%	28.55 / -4.5%
		D2	1.69	1.70 / 0.6%	-	1.49 / -11.6%	2.40/ 41.7%	2.31 / 36.6%
	Csikos &	D3	1.69	1.68 / -0.6%	-	1.47 / -13.0%	2.36 / 39.4%	2.29 / 35.6%
	Hegedus [29]	E1	2.25	2.09 / -7.1%	-	1.55 / -30.9%	2.49 / 10.8%	2.35 / 4.2%
		E3	2.06	2.05 / -0.5%	-	1.52 / -26.1%	2.44 / 18.4%	2.33 / 12.9%
	4.5.2.2 Ultimate Torque				

In this section, the ultimate torque calculated by the proposed model is compared to the numerical results of Jeng's model, the analytical formulations proposed by Rausch, Cowan and Hsu and two standards for torsional design: Eurocode 2 and ACI.

  was obtained by the proposed model. The numerical results given by Jeng's model are also satisfactory with the best average relative error in series M and N of Hsu's test. Although the average level of predictive performance is not better than Jeng's model (5.4% in comparison with 5.1%) in the test of Hsu, we can state that

	this lower performance of the proposed model is submitted by a big influence from the
	series C (12.5%). Without this series C, 5/6 series has a relative error less than 5/6, and
	the average value decreases to only 4%. When considering the analytical formulations,
	Rausch's and Cowan's formulations often give too high average relative error in all cases,
	while Hsu's formulation performs better, with one best result in series C of Hsu's test.

.7, the relative differences (calculated with respect to the experimental tests) are indicated. In each series of tests, the smallest average relative error is shown in bold and highlighted in red. Similar to the cracking torque, in most cases the smallest average relative error

Table 4 .

 4 7 -Ultimate torsional moment: average relative error calculated with respect to experimental test values.

	Test	Beams	Proposed	Jeng's	Rausch's	Cowan's	Hsu's	Eurocode 2	ACI
			Model	Model	Formulation	Formulation	Formulation		
		Series B	4.9%	7.9%	56.0%	54.8%	16.1%	23.2%	41.4%
		Series C	12.5%	5.6%	81.3%	69.9%	5.1%	14.4%	52.2%
		Series G	3.8%	4.8%	11.1%	21.0%	20.5%	29.5%	10.5%
	Hsu [45]								
		Series I	2.8%	6.1%	18.0%	29.9%	24.1%	14.8 %	9.6 %
		Series M	5.9%	3.2%	22.6%	18.7%	17.1%	20.7%	19.2%
		Series N	2.9%	2.5%	12.0%	24.1%	22.1%	22.2%	10.8%
	Lee et al.	Series T1	4.4%	-	59.6%	74.4%	9.7%	19.8%	35.8%
	[63]	Series T2	6.5%	-	18.1%	46.1%	0.9%	15.7%	10.6 %
		Series B	1.3%	-	40.3%	21.7%	31.4%	50.4%	49.2%
	Csikos &	Series C	5.3%	-	6.7%	44.6%	30.4%	43.1%	12.6%
	Hegedus [29]	Series D	7.6%	-	39.4%	9.7%	33.6%	56.2%	48.5 %
		Series E	5.3%	-	26.0%	6.3%	38.0%	59.1%	37.1%
	Average	5.4%	5.1%	32.9%	35.9%	19.5%	27.3%	26.6%

Table 4 .

 4 8, the numerical and analytical ultimate torque for this case of reinforcement distribution are all indicated, with a highlight in bold and red for the cases with the smallest relative difference compared to the experimental results. In Hsu's test, the two numerical models show their advantage by their ability to predict the torsional strength with a very

reasonable error in most cases (except specimen G8), while in the test of Lee et al., Hsu's formulation also gives very good results. In the test of Csikos & Hegedus, the proposed model is still giving the best predictions.

Table 4 .

 4 8 -Repartition with additional longitudinal reinforcement bars: Ultimate torsional moment (KNm) and Relative error with respect to experimental test.

				Proposed	Jeng's	Hsu's	
	Test	Beams	EXP				Eurocode 2	ACI
				Model	Model	Formulation	
		G6	39.09	40.30 / 3.1%	-	30.52 / -21.9%	27.98 / -28.4%	33.68 / -13.8%
		G7	52.65	50.3 / -4.5%	55.87 / 6.1%	41.07 / -22.0%	40.14 / -23.8%	48.32 / -8.2%
		G8	73.44	61.4 / -16.4%	70.49 / -4.0%	54.26 / -26.1%	57.02 / -22.4%	68.64 / -6.5%
	Hsu [45]						
		M6	60.11	60.10 / 0.1%	55.29 / -3.2%	60.85 / 1.2%	64.22 / 6.8%	77.82 / 29.5%
		N3	12.20	12.05 / -1.2%	12.49 / 2.4%	9.37 /-23.2%	9.27 / -24.0%	11.14 / -8.7%
		N4	15.70	15.75 / 0.3%	15.08 / -4.0%	12.99 / -17.3%	14.76 / -6.0%	17.75 / 13.0%
		T1-2	42.9	44.5 / 3.7%	-	41.86 / -2.4%	47.52 / 10.8%	55.16 / 28.6%
		T1-3	54.1	52.5 / -3.0%	-	51.84 / -4.2%	62.15 / 14.9%	72.14 / 33.3%
	Lee et						
		T1-4	62.4	63.4 / 1.6%	-	79.51 / 27.42%	92.29 / 47.91%	107.13 / 71.68%
	al. [63]						
		T2-3	50.2	49.4 / -1.6%	-	49.95 / -0.5%	45.90 / -8.6%	53.28 / 6.1%
		T2-4	56.4	55.2 / -2.1%	-	56.75 / 0.6%	53.86 / -4.5%	62.52 / 10.9%
		D2	2.25	2.38 / 6.7%	-	1.51 / -33.1%	0.99 / -55.9%	1.02 / -54.8%
	Csikos &						
		D3	2.06	2.20 / 6.8%	-	1.50 / -27.3%	0.99 / -51.8%	1.02 / -50.7%
	Hegedus						
		E1	3.38	3.10 / -9.5%	-	2.01 / -4.0%	1.32 / -60.9%	2.03 / -39.9%
	[29]						
		E3	3.23	3.06 / -5.3%	-	2.00 / -38.0%	1.32 / -59.1%	2.03 / -37.1%

Table 5 .

 5 2 -Tip deflection, corresponding relative different with respect to the theoretical formulation and the elapsed times.

	P Approach P P P P P Mesh P P P	10 × 5	20 × 10	40 × 20	100 × 50
	Saint-Venant	-173.15 mm	-171.88 mm	-171.57 mm	-171.48 mm
	Warping	0.98 %	0.24 %	0.06 %	0 %
	Function	1 s	1 s	3 s	18 s
		-176.81 mm	-173.43 mm	-171.57 mm	-171.47 mm
	Lagrange				
		3.11 %	1.14 %	0.06 %	0 %
	polynomial				
		3 s	14 s	33 s	211 s

Table 5 .

 5 4 -Description of the RC beams tested by Bresler & Scordelis[START_REF] Bresler | Shear strength of reinforced concrete beams[END_REF].

	Beam	L	h	b	𝑓 ′ 𝑐	𝜀 𝑜					
		(mm)	(mm)	(mm)	(MPa)						
	A1	3658	561	307	24.1	0.002	Bar	d	𝑓 𝑦	𝑓 𝑢	𝐸 𝑠
								(mm)	(MPa)	(MPa)	(MPa)
	A2	4572	559	305	24.3	0.002					
	A3	6400	561	307	35.1	0.002	No. 2	6.4	325	430	
							No. 4	12.7	345	542	
	B1	3658	556	231	24.8	0.002					
	B2	4572	561	229	23.2	0.002	No. 9	28.7	555	958	
							(types 1,2)				
	B3	6400	556	229	38.8	0.002					
	C1	3658	559	155	29.6	0.002	(types 3) No. 9	28.7	552	933	
	C2	4572	559	152	23.8	0.002					
	C3	6400	554	155	35.1	0.002					
	(a) Section details and concrete properties.					

Table 5 .

 5 5.1.2.2 Numerical results of others beamsOther simulation results for all specimens in the test of Bresler & Scordelis are represented hereafter. In Table5.5, the ultimated loadings computed by the proposed model are compared to VecTor2, a finite element program developed at the University of Toronto. This program incorporate the behavior models and constitutive relations of the disturbed stress field model (DSFM)[START_REF] Vecchio | Disturbed stress field model for reinforced concrete: Formulation[END_REF], a refinement of the MCFT[START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF]. Relative differences are computed with respect to the experimental values and the better results are highlighted in red. It can be seen that reasonable results have been obtained for both numerical models, but the proposed model generally gives better result of predicting than VecTor2 program, especially for the beams of series A and B. It is also interesting to note that the ultimate loading performed by both numerical models are typically under-estimated. 5 -Ultimate Loading (in kN) and relative difference to the experimental result -Comparison between Proposed Model and VecTor2 program

	Beam Experimental Proposed Model VecTor2 Program
	A1	468	461 / -1.5 %	472 / 0.9 %
	A2	490	442 / -9.8 %	399 / -18.6 %
	A3	468	375 / -19.9 %	366 / -21.8 %
	B1	446	441 / -1.1 %	423 / -5.2 %
	B2	400	380 / -5.0 %	327 / -18.3 %
	B3	356	320 / -10.1 %	355 / -0.3 %
	C1	312	292 / -6.4 %	307 / -1.6 %
	C2	324	322 / -0.6 %	258 / 5.5 %
	C3	270	251 / -7.0 %	255 / -5.5 %

Table 5 .

 5 
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5) 

as well as representing a very reasonable element stiffness in most cases of test.

Table 5

 5 .6. Because of big compressive strength, all the specimens in Group 2 are considered as design to fail on steel tension.

		Applied force	Applied force		
	Applied Torsional moment	686 mm 508 mm 508 mm 686 mm		Bending moment
		Study region			Shear force
	140 mm	1372 mm	1372 mm	140 mm	Torsional moment
		(a) Outline of test setup.	

Table 5 .

 5 6 -Concrete strength, bending/torsional moments ratio and the ultimate loading values.

	Beams	𝑓 𝑐 (MPa)	R = T/M	Bending moment (kNm) Exp Proposed Relative values Model difference	Torsional moment (kNm) Exp Proposed Relative values Model difference
	1-1	35.8	∞	0	0	0 %	13.8	13.6	-1.4 %
	1-2	30.6	3.00	5.3	5.0	-5.7 %	15.6	14.6	-6.4 %
	1-3	34.9	2.00	7.9	7.3	-7.6 %	15.8	14.5	-8.2 %
	1-4	34.3	1.00	18.0	17.4	-3.3 %	18.0	17.4	-3.3 %
	1-5	40.1	0.50	30.2	30.0	-0.7 %	14.8	15.0	1.4 %
	1-6	38.2	0.25	40.9	38	-7.1 %	10.2	9.5	-6.9 %
	2-1	39.6	∞	0	0	0 %	20.5	21.8	6.3 %
	2-2	34.6	2.00	9.9	10.4	5.1 %	19.4	20.8	7.2 %
	2-3	37.9	1.00	18.8	17.6	-6.4 %	18.8	17.6	-6.4 %
	2-4	36.0	0.50	30.2	29.2	-3.3 %	15.1	14.6	-3.3 %
	2-5	36.6	0.25	40.9	39.2	-4.2 %	10.2	9.8	-3.9 %

  6.16) with x 𝐼 and x 𝐽 are the nodal coordinates of nodes 𝐼, 𝐽 at final configuration; d 𝐼 and d 𝐽 denote the translation vectors of nodes 𝐼, 𝐽; the term ‖x 𝐽 + d 𝐽 -x 𝐼 -d 𝐼 ‖ = 𝑙 𝑛 defines

  1.1. With the aid from Equation (6.49), the second-order approximation of the displacement field can be expressed as follows:d 𝑠 (𝑥, 𝑦, 𝑧) = x 𝑃 -x 𝑜 𝑃 (6.50)so we obtain the following components of d 𝑠 (𝑥, 𝑦, 𝑧), for the case of solid cross-section in which the centroid G and the shear center C are coincident: 𝑈 (𝑥, 𝑦, 𝑧) = 𝑢 -𝑦𝜃 𝑧 + 𝑧𝜃 𝑦 + 𝜓 𝜕𝜃

							𝑥 𝜕𝑥	+		1 2	𝑦𝜃 𝑥 𝜃 𝑦 +	1 2	𝑧𝜃 𝑥 𝜃 𝑧
	𝑉 (𝑥, 𝑦, 𝑧) = 𝑣 -𝑧𝜃 𝑥 -	1 2	𝑦 (𝜃 𝑥 𝑥 + 𝜃 2 𝑧 ) +	1 2	𝑧 (𝜃 𝑦 𝜃 𝑧 ) + 𝜓	𝜕𝜃 𝑥 𝜕𝑥	𝜃 𝑧	(6.51)
	𝑊 (𝑥, 𝑦, 𝑧) = 𝑤 + 𝑦𝜃 𝑥 -	1 2	𝑧	(︀	𝜃 𝑥 𝑥 + 𝜃 2 𝑦	)︀	+	1 2	𝑦 (𝜃 𝑦 𝜃 𝑧 ) -𝜓	𝜕𝜃 𝑥 𝜕𝑥	𝜃 𝑦

  𝑦, 𝑧) are respectively the linear/ordinary and the second order compatibility matrix.

							)
	=	(︀ a 𝑓 (𝑦, 𝑧) + a * 𝑓 (𝑥, 𝑦, 𝑧) )︀	e 𝑠 (𝑥) = e 𝑓 (𝑥, 𝑦, 𝑧) + e * 𝑓 (𝑥, 𝑦, 𝑧)
							(6.57)
	The expression of e 𝑓 (𝑥, 𝑦, 𝑧) is similar to the existing one in Section 3.3, while for e * 𝑓
	the only non zero components is the axial strain: e * 𝑓 =	(︂	1 2	𝑟 2 𝜅 2 𝑥 0 0	)︂ 𝑇	; a 𝑓 (𝑥, 𝑦, 𝑧) and
	a * 𝑓 (𝑥,					

  𝐶 𝑥 𝐶 𝑦 cos 𝛼 + 𝐶 𝑧 sin 𝛼)/𝐶 𝑥𝑧 𝐶 𝑥𝑧 cos 𝛼 -(𝐶 𝑦 𝐶 𝑧 cos 𝛼 + 𝐶 𝑥 sin 𝛼)/𝐶 𝑥𝑧 (𝐶 𝑥 𝐶 𝑦 sin 𝛼 -𝐶 𝑧 cos 𝛼) -𝐶 𝑥 𝑧 sin 𝛼 (𝐶 𝑦 𝐶 𝑧 sin 𝛼 + 𝐶 𝑥 cos 𝛼)/𝐶 𝑥𝑧

	⎤
	⎥ ⎥ ⎥ ⎥ ⎥
	⎦
	𝐶

𝑥 = (𝑥 𝐽 -𝑥 𝐼 )/𝑙; 𝐶 𝑦 = (𝑦 𝐽 -𝑦 𝐼 )/𝑙; 𝐶 𝑥 = (𝑧 𝐽 -𝑧 𝐼 )/𝑙; 𝐶 𝑥𝑧 = √︀ 𝐶 2 𝑥 + 𝐶 2 𝑧 ; 𝑙 = √︀ (𝑥 𝐽 -𝑥 𝐼 ) 2 + (𝑦 𝐽 -𝑦 𝐼 ) 2 + (𝑧 𝐽 -𝑧 𝐼 ) 2 (6.80) and x 𝐼𝐽 = (︁ 𝑥 𝐼𝐽 𝑦 𝐼𝐽 𝑧 𝐼𝐽 )︁ 𝑇 are the nodal coordinates of nodes I,J in global reference.

Table 6 .

 6 1 indicates the values of cracking and ultimate torsional moment in each specimen of series G in Hsu's test, obtained by the LGM and the NLGM. At the same twist rate value, the cracking and ultimate torsional moments obtained by the LGM were always smaller (or similar) than those of the NLGM. This observation corresponds to the result obtained in Section 6.6.1.1 and 6.6.2.1, in which the nonlinear geometric effect makes

Table 6 .

 6 1 -Series G of Hsu's torsion test: Cracking and ultimate torsional model obtained by the LGM and NLGM.

	Beams		𝑇 𝑐𝑟 (kN)			𝑇 𝑢 (kN)	
		LGM NLGM Difference LGM NLGM Difference
	G2	29.40	29.44	0.14 %	37.75	37.76	0.03 %
	G3	26.72	26.72	0 %	49.60	49.62	0.04 %
	G4	27.94	27.94	0 %	65.72	65.74	0.02 %
	G5	29.26	29.26	0 %	73.51	73.55	0.05 %
	G6	29.79	29.84	0.17 %	40.46	40.49	0.07 %
	G7	32.13	32.13	0 %	53.79	53.80	0.02 %
	G8	32.77	32.78	0.03 %	72.12	72.14	0.03 %

  . A chaque fibre, les déformations et déplacements sont liés aux déplacements nodaux (définis comme dégrée de liberté d'un élément) par des équilibres cinématiques.Pour chaque fibre, une loi de comportement approprié est affectée afin de déterminer les contraintes à partir des déformations qui sont obtenues par la cinématique de section. Ensuite, à l'aide du Principe du Travail Virtuel et les fonctions de forme, les efforts nodaux et

	les matrices de rigidité au niveau d'élément sont déterminés par des calculs d'intégrations
	numériques.				
	z				
	node I	x	node J	Steel Fiber (Steel law)	z
	longitudinal reinforcement bar			y
				Concrete Fiber
				(Concrete material law)
	Finite element mesh			
	• La mise en oeuvre et la dérivation d'un concept général et cohérant de co-rotationnel
	dans la formulation 3D de poutre afin de prendre en compte la condition géométrique
	non linéaire.				
	Développement du modèle numérique pour les élé-
	ments BA				
	Introduction de l'élément multifibre	
	En utilisant l'approche transversale de section et la formulation en déplacement, un élé-
	ment 3D multifibre enrichi est développé pour déterminer le comportement des mem-
	branes en BA soumis à des chargements arbitraires (cisaillement, flexion et / ou torsion).

Basée sur le principe de la modélisation en éléments finis discret, l'approche de multifibres représente un équilibre parfait entre la précision des résultats, la rapidité du calcul et l'ergonomie. Il s'agit d'un système de points d'intégrations (appellé fibre) est obtenu à l'intersection des fibres longitudinales et des sections transversales sur le long d'élément (

  Le champ classique d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) porté sous l'hypothèse de section plane dans la théorie de poutre de Timoshenko, dont la relation cinématique suivante est établie entre d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) et le vecteur de déplacements généralisés d 𝑠 (𝑥):

		⎛	𝑈 𝑝 (𝑥, 𝑦, 𝑧)	⎞		⎛	𝑈 𝑒 (𝑥, 𝑦, 𝑧)	⎞		⎛	𝑈 𝑚 (𝑥, 𝑦, 𝑧)	⎞	
	d 𝑚 𝑓 (𝑥, 𝑦, 𝑧) = d 𝑝 𝑓 (𝑥, 𝑦, 𝑧) + d 𝑒 𝑓 (𝑥, 𝑦, 𝑧) =	⎜ ⎜ ⎜	𝑉 𝑝 (𝑥, 𝑦, 𝑧)	⎟ ⎟ ⎟	+	⎜ ⎜ ⎜	𝑉 𝑒 (𝑥, 𝑦, 𝑧)	⎟ ⎟ ⎟	=	⎜ ⎜ ⎜	𝑉 𝑚 (𝑥, 𝑦, 𝑧)	⎟ ⎟ ⎟	(7.1)
		⎝ 𝑊 𝑝 (𝑥, 𝑦, 𝑧)	⎠		⎝	𝑊 𝑒 (𝑥, 𝑦, 𝑧)	⎠		⎝ 𝑊 𝑚 (𝑥, 𝑦, 𝑧)	⎠	

  Dans le régime de matériaux élastique, les résultats numériques obtenus par le modèle proposé sont comparés aux formulations théoriques et aux résultats d'autres modèles. Une poutre cantilever soumise à une torsion pure à l'extrémité, qui a également été simulée par Le Corvec dans sa thèse de doctorat[START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF], est étudiée (Figure7-19a). Les résultats numériques pour l'angle de torsion à l'extrémité de la poutre calculés par le modèle de Le Corvec et le modèle proposé (selon deux approches enrichies) sont donnés dans le Tableau 7.2. Bonnes corrélations sont obtenues et de plus, cela confirme que le fait de négliger l'effet du gauchissement peut provoquer une forte influence sur la valeur de l'angle de torsion. Le profil de gauchissement de la section est représenté dans la Figure7-19b.Cela donne une bonne illustration du phénomène: sous l'effet de torsion, les sections se gauchissent et sortent de leur propre plan. En conséquence, la rigidité de la section est modifiée et la déformation en torsion est fortement influencée.

	Résultats numériques					
			.0130	ℎ 𝑏	)︂ 𝑚𝜌 𝑠 + 0.1	(7.9)
	• Pour une distribution avec des barres additionnelles sur le long du périmètre:
	𝑡 𝑒 = 𝑏	(︂	0.0088	ℎ 𝑏	)︂ 𝑚𝜌 𝑠 + 0.1	(7.10)

𝑏 est la largeur et ℎ la hauteur de la section; 𝑚 est le ratio entre le pourcentage des armatures longitudinales et transversales; 𝜌 𝑠 est le pourcentage total des armatures.

Table 7 .

 7 2 -End twist angle for cantilever beam under mid span torque La courbe moment de torsion -angle de torsion linéaire obtenue par le modèle proposé est comparée aux résultats expérimentaux des spécimens M2 et M3 dans le test 238 de Hsu (Figure 7-20), avec et sans les modifications proposées pour le comportement en traction du béton. Un très bon accord a été obtenu entre les résultats expérimentaux et numériques: le moment de torsion ultime et à la fissuration ont des mêmes amplitudes, les pentes aux phases post-fissuration sont quasiment identiques et le plateau horizontal caractéristique manifestant par la transition entre les deux phases avant et après la fissuration est bien représenté. De plus, nous pouvons constater que, sans la modification proposée du comportement en traction, le moment de torsion à fissuration est environ la moitié de celui du test expérimental et, par conséquent, la courbe moment de torsionangle de torsion linéaire ne peut pas être similaire à celle expérimentale.

					Modèle Proposé	
			Modèle de			
		Théorie		Sans	Théorie de	Polynôme de
			Le Corvec			
				gauchissement	Saint-Venant	Lagrange
	Angle de torsion (10 -3 rad)	4.548	4.554	2.496	4.550	4.566
	Erreur relative (%)		0.13	45.11	0.04	0.39
	Temps de calcul (seconde)			9	9	18

Table 7 .

 7 3 -Details of specimen of torsion tests carried by Hsu[START_REF] Hsu | Torsion of structural concrete-plain cocnrete rectangular sections[END_REF].

	Beam 𝑓𝑐 (MPa)	Longitudinal rebar (mm)	𝑓 𝑠𝑙 (MPa)	(mm) and (mm) Stirrup	𝑓𝑠𝑡 (MPa)
	B1	27.58	12.7	314	9.5 at 152
	B2	28.61	15.9	316	12.7 at 181
	B3	28.06	19.1	328	12.7 at 127
	B4	30.54	22.2	320	12.7 at 92
	B5	29.03	25.4	332	12.7 at 70
	B6	28.82	28.7	332	12.7 at 57
	B7	25.99	12.7	320	12.7 at 127
	B8	26.75	12.7	322	12.7 at 57
	B9	28.82	19.1	319	9.5 at 152
	B10	26.48	28.7	3334	9.5 at 152
	C1	26.34	9.5	341	9.5 at 216
	C2	26.54	12.7	334	9.5 at 117
	C3	26.89	15.9	331	12.7 at 140
	C4	26.48	19	336	12.7 at 98
	C5	27.23	22.2	328	12.7 at 73
	C6	27.58	25.4	316	12.7 at 54
	G1	26.34	9.5	341	9.5 at 216
	G2	26.54	12.7	334	9.5 at 117
	G3	26.89	15.9	331	12.7 at 140
	G4	26.48	19	336	12.7 at 98
	G5	27.23	22.2	328	12.7 at 73
	G6	27.58	25.4	316	12.7 at 54
	G7	27.23	22.2	328	12.7 at 73
	G8	27.58	25.4	316	12.7 at 54
	N1	26.34	9.5	341	9.5 at 216
	N1a	26.54	12.7	334	9.5 at 117
	N2	26.89	15.9	331	12.7 at 140
	N2a	26.48	19	336	12.7 at 98
	N3	27.23	22.2	328	12.7 at 73
	N4	27.58	25.4	316	12.7 at 54
	M1	26.34	9.5	341	9.5 at 216
	M2	26.54	12.7	334	9.5 at 117
	M3	26.89	15.9	331	12.7 at 140
	M4	26.48	19	336	12.7 at 98
	M5	27.23	22.2	328	12.7 at 73
	M6	27.58	25.4	316	12.7 at 54
	I1	26.34	9.5	341	9.5 at 216
	I2	26.54	12.7	334	9.5 at 117
	I3	26.89	15.9	331	12.7 at 140
	I4	26.48	19	336	12.7 at 98
	I5	27.23	22.2	328	12.7 at 73
	I6	27.58	25.4	316	12.7 at 54
	J1	26.34	9.5	341	9.5 at 216
	J2	26.54	12.7	334	9.5 at 117
	J3	26.89	15.9	331	12.7 at 140
	J4	26.48	19	336	12.7 at 98

Table 7 .

 7 4 -Details of specimen of torsion tests carried by Lee et al.[START_REF] Lee | Torsional strength and failure modes of reinforced concrete beams subjected to pure torsion[END_REF].

	Beam	Longitudinal	𝑓 𝑠𝑙 (MPa)	Stirrup	𝑓 𝑠𝑡 (MPa)
		rebar (mm)		(mm) and (mm)	
	T1-1	4 × 12.7	410	9.5 at 130	370
	T1-2	6 × 12.7	410	9.5 at 85	370
	T1-3	8 × 12.7	410	9.5 at 65	370
	T1-4	6 × 15.9	510	12.7 at 75	355
	T2-1	4 × 12.7	410	9.5 at 225	370
	T2-2	4 × 15.9	510	9.5 at 130	370
	T2-3	6 × 15.9	510	9.5 at 88	370
	T2-4	2 × 12.7	512.4	9.5 at 75	370
		4 × 19			

Table 7 .

 7 5 -Details of specimen of torsion tests carried by Csikos & Hegedus. [29].

	Series	Longitudinal	Stirrup
		rebar (mm)	(mm) and (mm)
	B	4 × 6	6 at 130
	C	4 × 6	6 at 65
	D	8 × 6	6 at 130
	E	8 × 6	6 at 65

des efforts normaux et des efforts tangentiels. Même si les effets du cisaillement et de la torsion ont déjà été mis en oeuvre dans plusieurs théories et modèles d'analyse structurelle, il manque toujours une théorie scientifique rationnelle. Afin de contribuer à ce domaine de recherche, ce travail de recherche porte sur le développement d'un modèle d'éléments finis non linéaire pour les éléments en béton armé soumis à des sollicitations complexes et en particulier la torsion. Parmi les principales sollicitations, l'effort axial et le moment de flexion sont largement étudiés et modélisés par plusieurs modèles théoriques et numériques. Les théories d'analyse des structures sous sollicitations de cisaillement et de torsion sont également développées par plusieurs chercheurs par contre, il n'y a pas beaucoup de modèle qui considère la combinaison de toutes les types de sollicitation (traction-compression; flexion; cisaillement; et torsion). De plus, étant l'un des principales sollicitations soumises aux structures en génie civil, la torsion est souvent négligée devant les autres dans le contexte des structures en béton armé courantes. Cependant, dans certains cas particuliers, par exemple le cas dans le cadre de la tenue des balcons dans les bâtiments isolés par l'intérieur, la torsion peut jouer un rôle déterminant dans la stabilité des structures.En effet, les règlementations thermiques en vigueur imposent de traiter le pont thermique qui se crée au niveau du plancher. Ce pont thermique perturbe la continuité de l'isolation thermique et doit être traité par un disjoncteur de pont thermique (Figure7-1a). Dans le cadre de la tenue du balcon, la transmission du poids de plancher aux murs fait appel à la contribution du linteau, qui est préférablement fabriqué en acier grâce à sa légèreté afin de minimiser les éléments structuraux (Figure7-1b). Cependant, en sachant que le rupteur du pont thermique est attaché au linteau, son efficacité peut être réduite si

are also satisfactory, although some large average relative errors (more than 10%) were found in series C and N of Hsu's test. When considering the analytical formulations, while the elastic theory always gives the unsatisfactory results, reasonable cracking loads can be sometimes obtained by the plastic theory (series C and N of Hsu's test). The skewbending theory shows the best ability of predicting the cracking torsional moment between the three formulations, but its results are still far from satisfactory when comparing to the experimental results.

Go further in detail, the numerical results of series B in Hsu's test can be found in Table 4.5, with the best numerical cracking torque (compared to experimental values) always highlighted in red. The proposed model gives the best prediction in 6 specimens, and 6 of 9 specimens give a relative error less than 5%. Other numerical results and comparisons for each series of torsional test can be found in Appendix. In Table 4.6, the numerical and analytical cracking torque for this case of reinforcement distribution are all indicated, with a highlight in bold and red for the model with the smallest relative difference compared to the experimental result. Unconservative results can be found in many cases, except the plastic theory, but the best agreements are usually obtained with the proposed model. Although giving the smallest differences in two specimens (G8 and N3), the predictions of the plastic theory are too conservative, which accuracy.

• The constitutive model based on the MCFT is suitable to be implemented in the multi-fiber finite element approach. In which, concerning the compression of concrete, the softening of concrete is a fundamental property and must be included in any loading conditions, so do the simulation of pure torsion, where the softening coefficient obtained from the shear tests can be applied without any modification.

Therefore, the compressive relationship of concrete can be used from the one proposed on the original MCFT of existing formulations.

• However, under pure torsional effect, the tensile relationship proposed for shear effect is not suitable to predict correctly the torsional behavior of RC beam and a new relationship is required as a consequence. The modification proposed by the authors for the tensile behavior of concrete showed a reasonable and correct influence in predicting the torsional response of RC beam in the inelastic material domain.

• The section discretization in different zones following its stress state is very suitable to carrying the pure torsional effect, the parametric formulation developed by the authors for the effective wall thickness helps to complete this approach by giving a definition for the width of 2D-zone.

• From the numerical results obtained, the use of the proposed model is highly recommended to predict the cracking torque of RC beam under torsion and also for the cross-section in which the reinforcement bars are distributed with additional steel bar along the perimeter. Thanks to the specific constitutive model designed for this case of steel repartition, the proposed model shows its interest when giving a very good level of prediction, in comparison to other models and analytical formulations.

• The calibration method, presented by the authors to establish the formulation of the concrete tensile strength 𝑓 𝑐𝑟 and the 2D-zone width 𝑡 𝑒 , allows to obtain a very good correlation between numerical and experimental results, as well as suggests an idea to the development of other formulations. However, it is obvious that some drawbacks of the calibration process should not be ignored, such as the dependency on the choice of the behavior constitutive law and on the size of experimental data.

As a consequence, this method could become "sensitive" to any change of input data.

Numerical application using Saint-Venant warping function approach

A cantilever beam subjected to vertical force at the free end, which was used in the PhD thesis of Capdevielle [START_REF] Capdevielle | Introduction du gauchissement dans les ments finis multifibres pour la modsation non linre des structures en bn arm[END_REF], is studied firstly. The details of cross-section dimension, beam length and material properties are indicated in Figure 5-1. For the numerical modeling, in order to find the necessary number of elements and fibers, which ensure an adequate equilibrium between accuracy and calculation cost, different meshes are considered. Regarding the element discretization, three cases of meshing are used: 1, 4 and 8 elements.

As for the cross-section, the following discretization is done: 10 × 5, 20 × 10, 40 × 20 and 100 × 50 square fibers.

Fz=1 N h=200 mm b=100 mm

Figure 5-1 -Geometry and material properties for cantilever beam in the example of Capdevielle [START_REF] Capdevielle | Introduction du gauchissement dans les ments finis multifibres pour la modsation non linre des structures en bn arm[END_REF].

The values of deflection at free-end were computed and then compared to the theoretical formulation, which can be given by the following expressions according to the beam theory of Timoshenko (𝑑 𝑇 ), under the effect of vertical force 𝐹 𝑧 in 𝑧 direction:

with 𝐸 is the Young modulus, 𝐴 the cross-section area, 𝐼 𝑧 the moment of inertia about the z-axis, 𝐿 the beam length and 𝜅 𝑦 the shear correction factor in 𝑦 direction. The numerical result for each case of mesh are presented in Table 5.1, accompanied with the relative error computed with respect to the theoretical formulation in Equation 5.1.

Table 5.1 -Tip deflection (mm) and corresponding relative different with respect to the theoretical formulation. Another example which was in the PhD thesis of Le Corvec [START_REF] Corvec | Nonlinear 3d frame element with multi-axial coupling under consideration of local effects[END_REF] was also investigated hereafter. The details of cross-section dimension, beam length, material properties and system of Lagrange interpolation points are indicated in Figure 5-5. Because of the high ratio between the section height and width, in this example over the cross-section only 4

Lagrange interpolation points were used for the numerical modeling. agreement with the ones given by the theoretical formulation. We can also remark that there are almost no gap in the numerical results between two proposed approaches, even with a light mesh system. This difference to the previous example of Capdevielle may be explained by the high ratio between the section height and width in this case study. As a reminder, under shear-bending action, the enhanced field using Lagrange polynomials generates an additional axial displacement field. As a consequence, the crosssection is warped and cannot retain its plane shape. This warping displacement under

The ultimate bending and torsional moments are presented as well as the relative difference with respect to the experimental values in Table 5 torsional and bending moments is small (R=0.25), and for the case of beam 7-2. The torsional moment -twist rate diagram of some specimens in these three groups are simulated correctly, as shown in Figure 5 only the load-displacement diagrams, but also the load-transverse strain diagram or the distribution of stresses over the cross-section can be correctly illustrated by the proposed model.

• Let recall that in Chapter 4, some modifications are required for the tensile relationship to predict correctly the torsional behavior of RC beams under pure torsion.

However, in this Chapter, through the numerical results obtained by the proposed model, as well as by others, the tensile relationship proposed for shear effect (in Section 2.4.1.1) could be used efficiently to predict the coupling behavior including torsion. From these simulation results obtained, the use of the constitutive model based on the MCFT to representing the coupling between shear-bending-torsion is very appropriate.

• Finally, from the satisfactory results in Chapter 4 to this Chapter, the combination of MCFT based-constitutive model with the section discretization in different zones following its stress state is once again very suitable for the sectional approach model.

The implementation of enhanced displacement field using Lagrange polynomials (or similar interpolation functions) in a displacement-based multi-fiber finite element approach can also be validated and applied in further studies.