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Abstract

Most civil engineering structures are subjected to multi-axial actions, including normal
forces and tangential efforts. Even though the effects of shear and torsion have already
been implemented in several theories and models of structural analysis, a rational theory
is still lacking. In order to make some contributions to this field of research, the present
PhD thesis deals with the development of a non-linear finite element model for reinforced

concrete members under coupling of multi-axial actions and in particular under torsion.

Using the sectional-fiber approach and the displacement-based formulation, an en-
hanced multi-fiber 3D beam element is developed for predicting the behavior of rein-
forced concrete elements subjected to arbitrary loading conditions (shear, bending and/or
torsion). The section kinematic is based on the enhancement of Timoshenko’s beam
kinematic assumptions with introducing of some additional degrees of freedom at each
monitoring section in order to take into account the phenomena of warping and eventu-
ally, distortion. To do so, a system of fixed points is created and interpolated by Lagrange
functions and polynomials. Otherwise, Saint-Venant theory for beam is also considered
and used as a reference compared to the enhanced formulation. Focusing on reinforced
concrete structures, in the multi-fiber approach, taking into account the contribution of
transversal reinforcement is not straightforward. Thus, one of the objectives is to find the
simple way to include the transversal reinforcement into the cross-section analysis of the
multi-fiber FE model. In the present work, each monitoring cross-section is discretized
into regions followed its material response and stress state. In each region, depending
on its characteristics, an appropriate constitutive material model is applied and included
with an iteration process satisfying internal equilibrium between concrete and transverse
reinforcement. For this purpose, the proposed behavior models are based on the Modified

of Compression Field Theory and its extension.



The assessment of the proposed FE model is performed with several numerical-analytical-
experimental comparisons. Numerical analysis of concrete and RC members under elastic
and inelastic material regimes are carried out for two cases of loading: pure torsion and
combined shear-bending-torsion. In order to predict the pure torsional response of con-
crete and RC members, a constitutive law for concrete in tension is proposed within the
framework of the Modified Compression Field Theory in which the material parameters
are determined by the calibration process of several experimental tests. Regarding the
case of combined actions, the shear-bending-torsion interaction is investigated by compar-
ing with the analytical solutions of skew-bending theory and several experimental tests
in literature. Finally, the study is completed with the investigation of the enhanced FE
multi-fiber beam model under large displacement conditions, using a corotational frame-
work. Several examples and comparison are performed for the illustration of nonlinear

geometric effects to the coupling between the actions due to the torsional effect.
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Chapter 1

Introduction

1.1 General

Most civil engineering structures are subjected to multi-axial actions, ranging from many
kinds of structures (buildings, bridge decks, electric pylon, etc.) to many kinds of con-
struction material (reinforced concrete, steel, wood or hybrid structure). Thus, in order
to completely perform the modeling of the structures in real conditions, its model must
be able to take into account the multi-axial actions, including normal forces (axial force
and bending moments) and the tangential forces (shear forces and torsional moment).
Between these states, axial force and bending moments are widely studied and simulated
by an accepted rational theory based on the plane section hypothesis. Nevertheless, even
though there are several theories of structural analysis under shear and torsion, a basic
rational theory is still lacking. In addition, when determining the completed behaviors of
structural element, especially reinforced concrete members, the coupling of actions still
remains open to discussion although it has already been taken into account in various
models. In particular, for the conception under hazardous conditions (typhoon or seismic
risks), in which accurate analyzes at the local and structural scale are indispensable, it is
increasingly necessary to develop theoretical and numerical models capable of representing
the coupling of all external forces.

In professional structural engineering, finite element modeling is considered suitable
for the analysis of all types of structures, from simple to complex, from one to three
dimensions. In facts, although all real structures are in three dimension, many of them
have one privileged direction over the other two and can be assimilated to 1D compo-

nents, such as building’s beams, columns, bridge decks or frame elements. Indeed, all
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the mechanical characteristics of cross-section is condensed in the reference axis by im-
posing specifics static and kinematic hypotheses. Then, this one-dimensional structure,
called beam-column or frame type elements, can be modeled and discretized in linear
elements throughout a system of monitoring cross-section along the element axis (Figure
1-1)). Frame elements can offer an optimal balance between accuracy and computational
efficiency, therefore they are the most employed in structural analysis and simulations. In
the case of structural elements with small span-to-depth ratio, such as shear wall or plate,
two-dimensional or shell finite elements are employed for the modeling. Three-dimensional
solid finite element models can provide the best response for the behavior of structures
under complex load conditions. However, it requires a very high computational cost and
complex material constitutive equations, so it is generally used for the analysis of special

detailing problems.

y 3D frame

Figure 1-1 — Modeling of three-dimensional element as one-dimensional frame element

Nowadays, the design of structures is required in a safer and more economical way, so it
is necessary to accurately simulate the structural performance in the inelastic range until
failure. Handling the inelastic material response is therefore evident in the conception
phase of conventional constructions. For structures designed against seismic or other
extreme load conditions, non linear analysis becomes more evident and indispensable,
not only for the material response but also for geometry conditions. Many finite element
models and frame element approaches have been proposed to respond to this demand,
numerous models between them can well describe the interaction of normal forces under
non-linear geometry assumptions, such as fiber or multi-fiber beam elements. However,
there are few beam-column models that are capable to account for the effect of shear, in
which the stress state is enlarged to two dimensions with the contribution of the shear
stress. In addition, the inclusion of torsion needs an extension to three dimensions and
an increased complexity with the coupling of internal forces under nonlinear geometry
conditions.

Indeed, the numerical modeling of civil engineering constructions under severe and
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multi-axial coupling conditions is still a challenging problem, especially in the case of
plain concrete and reinforced concrete structures due to the complex characteristics of its
mechanical behavior. Although in the last thirty years fiber beam elements have been
developed and applied successfully in the analysis of reinforced concrete members, the
inclusion of shear and torsional effects in this model is not obvious and the effect of
normal and shear stresses are usually treated separately. In this PhD thesis, the objective
is to develop an enhanced multi-fiber beam finite element model in three dimensions,
suitable for the simulation of reinforced concrete structures subjected to monotonic loads
under consideration of multi-axial coupling of axial force, shear, bending and torsion. The
developed model takes into account the material and geometrical nonlinearities. This
PhD thesis is limited to the reinforced concrete members with rectangular cross-section.
However, the element formulation and the constitutive equations is formulated general

enough for being applied to any sectional model and any shape of cross-section.

1.2 Context and Motivation

Although considered as a major factor in the design code of reinforced concrete structures,
torsion did not draw as much attention by design engineers and researches before the 1960.
Prior to this period, knowing that the magnitudes of the stiffness and torsional resistance
are in a lower order in comparisons with the one in bending, torsional effects were assumed
minor and taken care by a safety factor used in flexural design. This assumption has been
responsible for many cases of torsional distress and failure, such as the collapse of Tacoma

Narrows Bridge in 1940 due to a torsional vibration mode (Figure [1-2)).

!!!,Illmﬂm ‘

Figure 1-2 — Torsional motion of Tacoma Narrows bridge (screenshots taken from video)

In reality, torsional effects can play a determining role in the stability of structures,
for example the electric pylon, skew bridge, railway curved viaduct or bridge desk under
asymmetric loads, etc. (Figure [I-3]). In the context of conventional reinforced concrete

buildings, torsion can be found widely: beams that support cantilever slabs or balconies,
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wall foundation beam, beams next to floor opening or spandrel beam. However, it is still
usual to neglect the torsion in the simulation of frame elements such as beam and/or

column.

Figure 1-3 — Examples of usual structure where torsional effect is important.

In the case of RC buildings using thermal insulation from the inside, a thermal bridge
is occurred at the floor-to-wall junction. This thermal bridge disturbs the continuity of
the thermal insulation and must be treated by a thermal bridge breaker (Figure ,
in accordance with the Thermal Regulation. In the case of holding the balcony, the floor
slab extends through the building envelope, and in order to transfer the weight of the floor
to the wall, it is necessary to provide the contribution of a structural element called lintel
(Figure, usually made of steel because of its lightness. However, the lintel is attached
to the thermal bridge breaker, and steel is a low insulating material, its efficiency may be
reduced accordingly. So, the lintel is designed as a horizontal beam of reinforced concrete
of rectangular cross-section, subjected to a combined of bending, shear and torsion, for

which the theoretical and numerical models are few in the literatures.

Interior insulation
(Wall
/ panel
V™~
Balcony Floor
Lintel Thermal bridge
breaker
b
(a) (b)

Figure 1-4 — (a) Thermal bridge breaker. (b) Disposition of lintel beam in the case of
holding the balcony for a building of thermal insulation from the inside.

In addition to the problem of coupling of multi-axial efforts and stresses, the inclusion
of tangential effects in the modeling of reinforced concrete members is more complex as it
requires a special treatment of the warping phenomenon. This phenomenon is described

as a peculiar deformation of non circular cross-sections as they warp and come out of their
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own plan under shear and torsional effect (Figure [1-5)). This phenomenon is particularly
important for torsional resistance because it reduces the sectional rigidity, generates the
additional normal stresses which decrease the tangential stresses and so strongly influence

the twist deformation.

Figure 1-5 — Saint-Venant’s original drawings of torsion bars for elliptical, square and
rectangular section [97].

1.3 Beam theory and sectionally-based analysis

In the domain of linear elastic material behavior, the most models are based on the Euler-
Bernoulli beam theory in which the plane cross-section is assumed to remain plane and
orthogonal to the beam axis under deformation. The shear deformations are neglected, so
it can only account for the axial and flexural behavior of the beam. It is well-known that
the Euler-Bernoulli beam theory gives reasonable results for slender beams. However, in
case of short beams, the shear flexibility needs to be accounted for. The simplest way to
include the effect of the transversal shear is to use the Timoshenko beam theory [105],
so called "first order shear beam theory”. These two theories and the hypothesis of plane
section are considered as the basic theory (or engineering beam theory) for the analysis
of linear and nonlinear beam finite elements.

In the domain of nonlinear material behavior, the discrete finite element models give
a very good compromise between accuracy and simplicity. In this approach, the structure
is modeled as an assembly of interconnected elements and the constitutive nonlinearity
is either introduced at the element level or sectional level. The lumped-plasticity models
is widely regarded as the most basic type of discrete finite element models, in which the

inelastic behavior is concentrated at the ends of elements, and the rest remains elastic. In
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this end-fixed points, called plastic hinges, the nonlinear responses are given as general-
ized force-displacements characteristics such as axial force-elongation of moment-rotation
relationships, based on the concepts of plasticity theory. The earliest models were intro-
duced by Clough (Figure , in which the element consists of two parallel elements,
one elastic-perfectly plastic and the other perfectly elastic [21]; and by Giberson (Figure
1-6h]) with a series model consist of a linear elastic element with one equivalent nonlinear

rotational spring attached to each end [40).

M
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(b) Series model of Giberson [40)].

elastic component
pk

(a) Parallel model of Clough [21].
Figure 1-6 — Lumped-plasticity models.

The second and more general approach of discrete finite element models is referred to as
the distributed nonlinearity models. In contrast to lumped-plasticity models, the material
inelastic behavior can take place at several selected points of the structure, then the
element response is obtained by numerical integrations of the monitoring sections located
at these selected points (or integration points) along the element. In each monitoring
cross-section, the constitutive behavior can be formulated in accordance with plasticity
theory for sectional stress and strain resultants, or explicitly derived by a discretization
of the cross-section into a systems of integration points, called fibers. Between these two
approaches, the second, also known as sectional-fiber model, does not require the definition
of nonlinear constitutive relations in terms of cross-section resultants, instead the material
behavior laws are defined at the fiber material level, so it leads to a simple way to account
for the sectional response. For reinforced concrete members, the sectional fiber model
has been widely developed and successfully applied with very high levels of accuracy
when describing the coupling between axial force and bending moment in the models of

Chan [20], Scordelis [T01] or Taucer, Spacone & Filippou [104], T02]. In these models, the
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constitutive equations require only one-dimensional material behavior for concrete and
steel, thus they are very appropriate in the case where the effect of shear stress is not
dominant. The proposed model in this study is constructed based on the development of
this type of models, using a two-node finite element beam (Figure , but taking into

account two and three dimensional material behaviors for concrete.

(Steel law)
node [ L= > - TG - - — — — — node J Steel Fiber A

Y«

longitudinal reinforcement bar

Concrete Fiber
(Concrete material law)

Finite element mesh

Figure 1-7 — Sectional-fiber approach for reinforced concrete member and local element
frame coordinate using in this study.

The construction of distributed nonlinearity and sectional fiber models is based on the
analysis of sectional response. In principle, two main factors are required in the sectional

analysis:

e A suitable sectional kinematics to obtain the stress and strain distributions in the
cross-section. In the classical sectional-fiber model, the plane section theory is used
to relate the material strains to section deformations. However, as mentioned above,
under shear and torsional effects, the warping phenomenon disturbs the validity of
plane section assumption. In this study, the kinematic equations are based on
Timoshenko beam theory and enhanced by an additional displacement field in order
to take into account the warping deformation. This enhanced field is developed not
only for warping displacement but also for the distortion of the cross-section’s shape.

The details of kinematics equations is expressed in Chapter

e A consistent constitutive model of the materials to establish the stress-strain rela-
tionship. Under multi-axial loading, the modeling of the concrete behavior is quite
complex, particularly because of the different of stress-strain relationships between
compression and tension, which cause an anisotropic behavior under multi-axial
stresses. In the last decades, many constitutive models have been proposed for

the analysis of concrete structures, such as non linear elasticity, plasticity models,
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damage mechanics or micro-plane models. Among them, the approach that is par-
ticularly suitable for sectional analysis under combined loading is smeared crack
approaches, which can handle cracking of concrete as a distributed effect with direc-
tionality. A brief review of some smeared crack models will be described in Chapter
2l A consistent constitutive law of concrete will be proposed in Chapter [ for the

case of RC members under pure torsion.

Generally, in finite element analysis of beam-column element, the nodal variables are
considered as global degrees of freedoms, from them the mechanical characteristics (dis-
placements, strains, stresses) are derived and interpolated along the axis. Depending on
the choice of the primary unknowns (displacement field, force field or both), the formula-

tions of beam-column finite element are usually classified as:

e Displacement-based formulation: the relation between section and element response
is based on kinematic equations with the use of appropriate shape functions. In this
formulation the element variables are the nodal displacements while the primary

unknowns are the element deformations.

e Force-based formulation: the element response are evaluated from the stress field
that are interpolated along the element length by imposing the equilibrium with the
nodal forces. The primary unknowns in this formulation are the internal element

forces.

e Mixed-based formulation: this approach use the force interpolation functions like
force-based formulation and a flexibility dependent shape functions for the defor-

mation field of the element.

In this study, the displacement-based formulation was chosen because of its simplicity
and the easily in the implementation of enhanced displacement fields. Although force or
mixed-based formulation are capable of giving more adequate solutions, the numerical re-
sults performed by proposed model using displacement-based in this study is satisfactory

and reasonable.
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1.4 Objectives and Scope

The main objective of this doctoral thesis is to develop an enhanced finite element beam
model for the material and geometrical analysis of reinforced concrete members subjected
to combined loading: axial force, bending, shear and torsion. The specific objectives are

as follows:

e The development of a 3D beam-column element for reinforced concrete members
using multi-fiber discretization and sectional analysis approach. In this study the
model is developed primarily for rectangular cross-section, but the formulation is

expressed generally enough for arbitrary cross-sections.

e The implementation of an enhanced displacement field into kinematic equations in
order to include the warping displacement of cross-section under the effect of shear
and torsion. Then, numerical analysis is carried out to study the influence of the

warping deformation on the stress state.

e The adaptation of the Modified Compression Field Theory (MCFT) to the concrete

constitutive law.

e The adaptation of the cross-section discretization into different regions following
the stress state (1D, 2D and 3D) in order to take into account the contribution of
transversal reinforcements and the concrete confinement. A new parametric formu-

lation for determining the rule of this discretization will be also proposed.

e The implementation and derivation of a general and consistent corotational frame-
work into 3D beam-column formulation in order to take into account the nonlinear

geometric condition.

This PhD thesis is organized into seven chapters. The first one is the current intro-
duction chapter. Chapter 2 presents the state of the art including a bibliographical study.
In this chapter a review of nonlinear analysis models for reinforced concrete element are
briefly listed and discussed.

Chapter 3 deals with the development of the finite element model for RC members
subjected to combined shear-bending-torsion. As mentioned above in Section the
proposed FE model is based on the fiber-sectional discretization and the displacement-

based formulation. The enhancement of the kinematic equations is implemented and
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expressed in two different approaches: using Saint-Venant warping function and using
Lagrange interpolation polynomials. Then the chapter is followed by the derivation of
the element response from the variational formulation based on the principal of virtual
works, a solution scheme and concludes with the mechanical model for reinforced concrete
members that was implemented in this sectional model. In order to take into account the
contribution of transversal reinforcement, the cross-section is discretized into different
regions following the stress state, based on the idea of Navarro-Gregori [70].

Chapter 4 is dedicated to investigate the behavior of the RC members under pure
torsion using the proposed model. Because no specific rules are currently available for the
determination of the thickness of the regions in the section discretization, a calibration
study is performed for calculating this parameter is developed by the author. This calibra-
tion study was then used to propose a consistent behavior law for concrete under torsional
effect, knowing that numerical cracking torsional moments are reduced about half of the
experimental values when using the original MCFT. In this chapter, the numerical results
performed by the proposed model are compared with numerous experimental date, others
numerical results and design code prediction.

Chapter 5 deals with the numerical analysis of RC members under in shear-bending
and shear-bending-torsion combination using the developed FE model presented in Chap-
ter 3. The predictions of the proposed model are compared against the results of other
numerical models and the experimental values. The aim of this model validation is to
assess the capability of the proposed nonlinear technique to satisfactorily predict the
structural behavior of RC members under combined loading of shear-bending-torsion.

Chapter 6 describes the model formulation under the hypothesis of large displacement
conditions. The corotational framework is briefly presented and implemented in the beam
element. Then, the interaction between axial and torsion effect at local level is considered
and analyzed in the numerical examples.

Finally, the chapter 7 summarizes the study, offers conclusions and recommends some

directions for further research study.
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Chapter 2

State of the art

2.1 General

This chapter deals with a literature review of nonlinear analysis models for RC members
subjected to bending, shear and/or torsion. The models can be classified according to
their constitutive equations: theory of plasticity, micro-plane model, fracture or damage
mechanics, etc.; or following the concept of modeling and discretization. To the best of
the author’s knowledge, the numerical models treating the behavior of RC members under

combined shear-bending-torsion can be classified in three groups as follows:

e Skew-bending theories: an analytical approach in which the basic characteristic

is the assumption of a skew failure surface.

e Truss models: derived from the concept of space truss analogy, this type of models
can be subdivided into certain subgroups such as strut-and-tie models, equilibrium

truss models and compatibility truss models.

e Sectional-fiber models: the most recent approach in which tangential and normal
efforts are coupled directly. These models can be subdivided into certain subgroups

following their strategy of discretization.

In the following, a brief presentation of each group is done.

2.2 Skew-Bending theories

The principal idea of Skew-Bending theories is that a helical crack is generated on three

faces of a rectangular RC beam, and the ends of this helical crack are connected by
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a compression zone near the fourth face. Both longitudinal reinforcement and closed
stirrups are intersected in the failure surface and it is often assumed that they will both
yield at the failure of the beam.

The first skew-bending theory was proposed by Lessig [66] in 1959, in which two modes
of failure are introduced, concerning the position of the compression zone: near the top
face of the beam (Mode 1 - Figure or along a side face (Mode 2 - Figure. A set
of three basic equations are produced for each mode of failure: one equilibrium of moments
about the neutral axis, one equilibrium of forces along the normal to the compression zone
and a third equation which minimizes the strength of the member. Lessig’s theory was
then simplified and incorporated into the Russian Code in 1962 [81] in order to recognize

the shear failure mode and propose an empirical equation against its occurrence.

Neutral axis Compr\ession Zone Helical crack
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\ I
N Helical crack Compression Zone  Neutral axis
(a) Mode 1 - Flexural moment (b) Mode 2 - Torsional moment
predominates predominates

Figure 2-1 — Failure modes in Lessig’s theory.

Collins et al. [23], [24] developed Lessig’s theory by combining these three equations
into a unique one for each failure mode and obtaining an interaction curve as a result:
a torsion-bending interaction curve in Mode 1 and a torsion-shear interaction curve in
Mode 2. A third mode failure accompanying by a third interaction curve was also discov-
ered in this theory, in which a compression zone locates near to the bottom face of the
beam (Figure[2-2)). These three interaction curves formed an interaction surface between
bending, shear and torsion (Figure , that was also modified by an empirical equation
for shear failure, which may be considered as the fourth mode of failure. The Collins et
al.’s theory served as a basis for the Australian Code (1973) [80]. In this design code,
torsional moment is converted into an equivalent bending moment (and/or an equivalent
shear force) that could be added to the actual bending moment (and/or flexural shear
force) for the design of longitudinal steel according to the conventional flexural mechanics

(and/or for the design of web reinforcement according to the conventional code method).
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Figure 2-3 — Interaction surface for combined bending, shear and torsion in the theory of
Collins et al. [23].

Other skew-bending theories were also developed based on the Lessig’s theory, such as
the theory of Yudin [116] or Elfgren et al. [35]. Yudin’s theory introduced two moment
equilibrium equations instead of one, as a result it was able to derive two designs equations
for the longitudinal and transversal reinforcements. In this theory the crack inclination
was assumed constant and equal to 45 °. In a more general way, Elfgren et al. assumed
a variable angle of crack inclination and it could also be different at the two side faces in
Mode 1 and Mode 3 of failure. In this condition, internal vertical force must be balanced
to the external shear, thus an additional equilibrium equation was introduced, that gave
an explicit bending-shear interaction curve. As a result, this theory created a general and

complete interaction surface for bending, shear and torsion (Figure [2-4)).

T

Mode 1

/ failure

Mode 3
failure

Figure 2-4 — Interaction surface in Elfgren et al.’s theory [35].

The above skew-bending theories may be related to the kinematic approach in terms

of the plastic analysis of structures under uniaxial stress [54]. This approach seeks for
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a deformation mechanism that satisfies the geometric boundary conditions. Another ap-
proach in the plastic analysis is the static approach that searches for a stress distribution
in equilibrium internally and balanced with the external load. The concept of truss models
in the following section relates to this static approach.

Analytical formulations for predicting the ultimate torsional and bending strengths of
concrete and RC members according to skew-bending theories will be cited and used as a
reference compared to the numerical results given by the proposed model in the numerical

analysis in Chapter [4] and [

2.3 Truss models

All models in this section are inspired by the concept of truss model, firstly proposed by
Ritter [95] and Morsch [75] in the early of 20th century, whose purpose is to simulate a
RC beam subjected to shear. In general, under shear effect, diagonal cracks occur and
separate the beam into a series of concrete struts. An analogy of truss model was therefore
assumed, where the longitudinal reinforcement steels act like the top and bottom chords of

the truss, while the transversal stirrups and concrete struts hold the role of web members

(Figure 2-5)).
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Figure 2-5 — Concept of Truss model for bending and shear.

In reality, the inclination of concrete struts may vary, but in the initial concept of
truss model, it was assumed to be 45°. This 45° truss model, also called fized-angle truss
model, was then developed to carry out the modeling of the post-cracking behavior of

RC members subjected to pure torsion by Rausch [93]. In this model, after cracking, the
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whole member is assumed to act like a tube, in other words the solid section becomes a
hollow section (Figure . As a consequence, the torsional moment is resisted only by
shear stresses which flow around in the wall of the tube, which is called shear flux. This
space truss analogy was reinforced when it was noticed in the experimental tests carried
by Hsu [45] and Osongo [82] that the post-cracking stiffness of a hollow cross-section (with

a reasonable wall thickness) has the same magnitude when comparing to a solid section.

Applied
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Moment

Effective wall Concrete strut
thickness te /

(a) LONGITUDINAL VIEW (b) CROSS-SECTIONAL VIEW
====-goNcrete compression struts
——steel tension ties

Shear flux

Longitudinal reinforcement )
(b) Longitudinal and cross-sectional

(a) Three-dimensional view. .
view.

Figure 2-6 — Space truss model for torsion resistance.

2.3.1 Strut and tie models

The common aspect of strut and tie models is the way in which the combined effects
are taken into account: in this type of model the tangential efforts are usually uncoupled
and superimposed into normal efforts. Guedes et al. [42] [43] developed a numerical
model for RC beams and columns under dominated shear action, in which the model
is subdivided into two sub-models: a two-node Timoshenko beam finite element model
using sectional-fiber approach to take into account the axial components, while shear
efforts are independently considered by a strut and tie model (Figure. The direction
of principal stresses and strains of concrete is represented by two diagonal concrete struts.
The equilibrium conditions for reinforcement in longitudinal and transversal directions
are represented in Figure[2-7b] Concerning the constitutive equations, uncoupled uniaxial
behavior laws for concrete and steel are used. For concrete in compression, a parabolic
behavior up to the peak stress point deformation followed by a straight line in the softening
zone has been introduced, while a bilinear stress-strain law including the tension stiffening
effect is adopted for concrete in tension. For steel, a hysteresis model based on the proposal

of Menegotto & Pinto [73] is used.
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Figure 2-7 — Strut-and-tie Model of Guedes et al. [42] [43]

The idea of independently modeling shear forces using the concept of truss-and-tie
model and then superimposing into axial and flexure efforts without direct coupling is
shared by other models by Martinelli [68], Ranzo & Petrangeli [02] or Marini & Spacone
[67]. In the Martinelli’s model, shear resultant over the cross-section can be derived by
different resisting mechanisms, including truss mechanism, in which a planar structural
assemblage is composed by the transverse reinforcements and the concrete diagonals in
compression and tension (Figure . In the model by Ranzo & Petrangeli, the shear
stiffness is derived from a shear-distortion curvature constitutive relationship that is de-
fined by solving a truss mechanism as in Figure [2-8b, The shear curve is obtained by
giving incremental values to the shear stress up to failure, then updating analytically the
distortion curvature and thus leading to the determination of a continuous curve. The
same idea of shear-distortion curve is also implemented in the model of Marini & Spacone
but in a different procedure of obtaining the shear-curvature relationship. As in the model
of Guedes et al., uniaxial constitutive laws for concrete and steel are implemented in all

models above.

concrete in

z tension concrete in

\ compression

transverse
reinforcement

(a) Martinelli’s -—

model [G8]. (b) Ranzo & Petrangeli’s model [92]

Figure 2-8 — Truss mechanism and idealization
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2.3.2 Equilibrium truss models

The equilibrium truss models can also be called plasticity truss model because they are
all based on the theory of plasticity. This type of models were proposed by Nielsen [7§]
and Lampert & Thiirlimann [61] by developing the concept of fized-angle truss model,
in which the fixed inclined angle of 45" was derived. The new concept was called the
variable-angle truss model and was developed for elements subjected to torsion as well as
to a combination of torsion and bending, with the application of the theory of plasticity
for RC members. Elfgren [34] extended the use of variable-angle truss model to members
subjected to bending-shear-torsion, with an assumption that the concrete struts take only
compressive stress after cracking. The theory is therefore named the Compressive Stress
Field Theory.

In these models, three equilibrium equations in bending and shear were derived for a
two dimensional element and can be used to calculate the stresses in the steel bars and in
concrete struts at the ultimate load stage (Figure . The stresses in concrete and steel
in these three equations must satisfy the Mohr stress circle, and reinforcement steels are
assumed to yield before failure. From these three equations and the yielding condition of
reinforcement as well as the equilibrium in beam shear and in torsion, a set of 18 equations

were established and formed the basic formulations of equilibrium truss models.
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Figure 2-9 — Equilibrium of Truss model.

The interaction relationships of combined actions can be expressed between shear-
bending, torsion-bending, shear-bending-torsion and axial-shear-bending, each relation-
ship corresponds to a specific model. In the shear-bending model, the bending moment
creates a tensile force in the bottom and a compressive force in the top stringer, while
shear forces induce in longitudinal as well as transversal direction and are resisted by con-
crete struts, longitudinal steels and stirrups (Figure [2-10a)). The failure may be occurred
by two modes depending on the yielding of bottom or top stringer. In the torsion-bending

model, the action of bending moment is similar to that of the shear-bending model, while
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the torsional moment produces a tensile force in the longitudinal steels and a transverse
force in the stirrups (Figure 2-10b). Two failure modes may be caused in this model,
either by the yielding of the bottom stringer and the stirrups or by the yielding of the top

stringer and the transverse steel.
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Figure 2-10 — Equilibrium truss models.

The interaction between shear, bending and torsion are more complex. A box section
model is employed in which the shear flows on the four walls of the box section (Figure
2-11al). The shear flows due to shear and torsion are superimposed (Figure , while
the bending moment always induces tensile and compressive forces in bottom and top
stringer. Three failure modes can be recorded in this model, causing by the yielding in
the bottom stringer and in transverse steel, by the yielding in the top stringer and in
transverse steel or by the yielding in both top and bottom longitudinal steel bars and in
transverse steel. The interaction model for the combination of the axial force the shear
force and the bending moment is quiet easily expressed, because the axial force is assumed
to be resisted only by the longitudinal reinforcement bars, so it does not generate a new
internal equilibrium condition of the shear-bending interaction model. It is required only
a simple superposition of axial force on the equilibrium equation of shear and bending in

the top and bottom stringer.
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Figure 2-11 — Box section model for interaction of shear-bending-torsion.
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The main advantage of equilibrium truss models is that, thanks to its completed set
of basic equilibrium equations, it can be easily applied to all types of actions (axial force,
bending, shear, torsion). As a result, the Compressive Stress Field Theory serves as a basic
for the accurate method in the CEB-FIP Model Code of 1978 [17], while the shear and
torsion provisions of the ACI Code 1995 (ACI 318-95) [I] were based on the equilibrium
truss model. However, one important drawback of this type of models is that the load-
deformation relationship of reinforced beam subjected to shear and torsion cannot be
derived, because the compatibility equations and constitutive material laws are not used.
Thus, more sophisticated theories that take care of all three principle mechanic equations

must be developed.

2.3.3 Compatibility truss models

Instead of using the theory of plasticity and three equilibrium equations, the strain com-
patibility equations are derived and included in the truss model by Bauman [7], Collins
[22] and Mitchell & Collins [74], in order to account for shear and torsional effect. In these
models, a linear shear theory for two dimensional elements was developed combining the
three principles of equilibrium: equilibrium equations, Mohr’s compatibility equations and
Hooke’s law. The models could be used in the elastic behavior up to service load stage,
to describe the element behavior up to ultimate load stage, a nonlinear shear theory is

required.

2.3.3.1 Collins & Mitchell’s Compression Field Theory

Collins & Mitchell [25] derived a theory predicting the nonlinear shear behavior of RC
elements after cracking, called Compression Field Theory. In this theory, a RC element
can be separated into a concrete element and a steel grid element (Figure [2-12a)). The
directions of the longitudinal and transverse steel bars form the (x — y) global coordi-
nate system, with x is the longitudinal direction and y the transverse direction. For a
concrete membrane subjected to shear, the shear stress can be resolved into a principal
tensile stress and a principal compressive stress, following the principal direction of crack
(45 “in this initial theory) (Figure [2-12b]). The principal directions form a (1 — 2) local
coordinate system of crack direction. In this direction of compression and tension, the
stresses and strains affect each other and this interaction causes some significant phe-

nomenons, whose most important is the softened of principal compressive stress due to
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principal tensile stress. Vecchio & Collins [109] then introduced a softening coefficient
for the compressive stress-strain curve and discovered that this coefficient was a function
of the principal tensile strain, rather than the principal tensile stress. After numerous
experimented tests carried out in bi-dimensional RC panels under plane-stress loading
(the Shell Element Tester) at the University of Toronto, Vecchio & Collins formulated the
Modified Compression Field Theory (MCFT) for RC members subjected to shear force.
Although originally developed for use in truss models, the MCFT is particularly suitable
to the sectional analysis because it can handle cracking as a distributed effect. The theory
has been employed as concrete constitutive model in many finite element sectional models

as shown in the following section.
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(a) Supposition of shear effect in RC element.
stress.

Figure 2-12 — Stress condition and crack pattern in RC element.

2.3.3.2 Model by Rahal [8§]

The Compression Field Theory was also developed in the variable angle truss model
by Rabbat & Collins [87] that is applied to rectangular sections of prestressed concrete
subjected to combined efforts of bending, torsion and shear. In this model, the behavior
of concrete and steel are regrouped in four corners of the cross-section and connected
through the four concrete walls containing stirrups (Figure . The normal forces are

resisted by four corners while tangential forces are resisted in four concrete walls.

Figure 2-13 — Cross-section discretization in the model of Rabbat & Collins [87].

This idea of cross-section discretization is then developed by Rahal & Collins [88] [89]
in a 3D model in which the 3D response is idealized into 1D and 2D sub-model (Figure
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2-14). The 1D model captures only the normal stresses due to the axial force, bending
moment as well as the diagonal cracks produced by shear and torsion. The shear stresses
induced by shear force and torsional moment are taken into account by the 2D model,
which consists of four transversely reinforced walls of variable thickness and cracking
inclination. The interaction between normal and tangential forces is obtained by the
equilibrium and compatibility equations at sectional level and at each wall. Over the
section, the equilibrium between shear stresses (in 2D model) and normal stress (in 1D
model) must be satisfied, as well as the compatibility of normal strain in 1D model. In
each wall, an appropriate uniaxial stress-strain relationship for concrete and steel must be
applied for 1D model, while the modified compression field theory (MCFT) is employed
for the 2D model.

System #1:
Elements Subjected to
1-d Stresses

Bottom wall — 7 (c) System #2:
Elements Subjected to
2-d Stresses

Figure 2-14 — Idealization of cross-section in the model of Rahal & Collins [88].

The constitutive equations are based on the MCFT with the kinematic hypothesis of
Euler-Bernoulli and an assumption of perfect bond between the concrete and steel. An
extension of this model is developed by Rahal & Collins [90] considering the variation of
the longitudinal deformations of the walls. This sectional model is strong in predicting
the element response and representing the interaction of combined loading, however it is

limited only for rectangular cross-section.

2.3.3.3 Models by Hsu [52, 84, [50]

Based on the strain compatibility equations of the truss model, Hsu & Mo [52] indicated
that in the variable-angle truss model, when using the stress-strain relationship obtained
from the concrete compression cylinder test, the predicted torsional strength becomes very
underestimated. Thus, they used a softened stress-strain curve to predict the torsional
strength and strains throughout loading history. Hsu & Mo called this theory as Rotating-
Angle Softened-Truss Model (RA-STM), in which many assumptions are shared with the
MCFT, such as the same principal directions of stresses and strains, or the inclusion of a

softening factor in compressive concrete after cracking.
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In addition to the above theory, a Fized-Angle Softened-Truss Model (FA-STM) was
developed by Pang & Hsu [84], in which the concrete struts are assumed to remain parallel
to the initial cracks inclination. For this, a third coordinate system (1’ —2') of the current
principal stress directions is defined, rather than the global coordinate system (x — y)
and the local coordinate system at initial cracks (1 — 2) (Figure 2-15). The FA-STM
can give a more accurate prediction than RA-STM and is useful when interested in the
ultimate shear strength and the behavior before it. However, the descending branch of

the load-deformation curves cannot be represented correctly.

Figure 2-15 — Coordinate systems in the Fixed-Angle Softened-Truss Model.

Recently, Hsu & Zhu developed another model for treating RC membrane elements in
shear called Softened Membrane Model (SMM) [50]. Based on the FA-STM, the SMM is
able to satisfactorily predict the entire monotonic response of the load-deformation curves,
including both the ascending and the descending branches, as well as the pre-cracking and
post-cracking responses. The featured aspect of the SMM is that the Poisson effect is taken
into account and is characterized by two ratios called Hsu/Zhu ratio [I17]. As a result,
the average strains in direction (1 — 2) (Figure when a panel is subjected to biaxial

loading are expressed as:

C C
01 05
g1 = = —

V12ET§ = €1 — V12€9; €2 = ETg - VzlETf = €3 — 1€ (2.1)
with v15 and s are the two Hsu/Zhu ratios; Ef and E§ are the moduli of concrete in
the 1 and 2 direction when a panel is subjected to uniaxial loading; £; and &, are average
strains in the direction 1 and 2 when a panel is subjected to uniaxial loading. The two
Hsu/Zhu ratios are formulated based on a series of twelve tests using the Universal Panel
Tester (UPT), realized by Hsu and his colleagues at the University of Houston from 1988
to 2009 [49]. The experimental tests obtained from the UPT allows also to establish the

material behavior laws for RC members, as proposed by Belarbi & Hsu [§], [9] or Pang &
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Hsu [83]. The softening of concrete in compression is taken into account by a softening

coefficient ¢ (Figure [2-16a)), while the tension stiffening of concrete is also included in the
tensile relationship (Figure [2-16b]).
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Figure 2-16 — Stress-strain curve of concrete obtained from experimental tests using the

UPT [4§].
A Softened Membrane Model for Torsion (SMMT) is then developed from the SMM
by Seng & Hsu [53] in order to account for the torsional response of RC members, which

will be more discussed in Section [4.3

2.4 Sectional-Fiber model

Sectional-fiber approach has been used widely by researches over the last thirty year to
account for the responses of RC member under combined loading of normal and tangential
forces. Many models have been developed and proposed in according to different criterions

of classification. In this research work, the following principal strategy has been classified:

e Dual-sectional analysis: a non-local sectional model in which the element is dis-
cretized in various member of two section and the shear stress is determined by the

finite difference of the normal stress on each side of this dual-section member.

e Longitudinal stiffness method: a local sectional model that satisfies the inter-fiber

equilibrium between fiber/layer of element.

e Finite element beam-column formulation: an implementation of longitudinal stiff-

ness method into two-node finite element frame model.

e Enhanced Finite element beam-column formulation: a specific strategy to account
for distortion and warping phenomenon using the decomposition of cross-section
characteristic into classical field following plane-section hypothesis and enhanced

field of warping-distortion.
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2.4.1 Constitutive Model

In the literature, many constitutive models have been developed to reproduce the behavior
of concrete, following different approaches. Indeed, the mechanical response of concrete
materials represents a brittle behavior and is influenced by complex phenomena, one
of the most important is the propagation of cracks inside the elements. The adoption of
finite element models with embedded (displacement or strains and stresses) discontinuities
[T0, 33] based on the fracture mechanics theory [44] is usually considered as one of the most
accurate way for describing the evolution of cracking phenomena in concrete. However,
this embedded discontinuity models are not suitable for large scale structure analysis. In
practice, the following approaches have been widely used to simulate the concrete behavior

of many numerical models:

e Smeared-crack approaches: cracking is handled as a distributed effect with direc-

tionality, of which the pioneering model is the MCFT.

e Damage mechanics approaches: the effect of damage of materials (initiation and
propagation of crack or fracture of concrete) is represented by the state variables
(crack density or coefficient of thermal expansion, etc.) and then lead to the consti-
tutive equations. Model of Mazars [69] and Lemaitre [65] are usually considered as

the most widely used damage models.

2.4.1.1 Modified compression field theory

In this theory, the principal idea is to replace the biaxial constitutive law of concrete by
a uniaxial constitutive law, in which the stress-strain relationship is formulated in the
principal direction of cracking. The primary assumptions of this theory is that crack is
considered distributed in the concrete, and principal directions of strains and stresses are
coincident. In addition, equilibrium and compatibility equations are evaluated with the
average value of the stress and strain in the crack plane and in the concrete between
cracks, because of the variation of the local stresses in both concrete and steel. According

to Figure 2-17] the compatibility conditions of the MCFT are expressed as:

. _ertan®f + ey . &1t ey tan®f
1+ tan26 Y"1+ tan?6 (2.2)
2 (e, — €9) €z — €2
Ty — ) tan® § =
Ty tan @ an Ey — €2
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Figure 2-17 — Compatibility conditions for cracked RC element.
where €, and ey are the strain in principal directions; ¢, €, and v,, are the element
strain components; 6 is the inclination of crack. The equilibrium conditions of averages

stresses in an element are expressed as follows (Figure [2-18)):

Oz = 01 — Teay COLO 4 pr05y
(2.3)

Oy = 01 — Teay tan + p, o,

0y = 01 + Ty (tané + cot 6)
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Figure 2-18 — Equilibrium conditions for cracked RC element.

where 01 and o3 are the stresses in principal directions; o,, o, and 7, are element stress

components; s, and p, are stress and ratio of longitudinal reinforcement, respectively;

osy and p, are stress and ratio of transversal reinforcement, respectively.
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2.4.1.1.1 Constitutive modeling: For concrete in compression, the stress-strain re-

lationship is computed following a parabolic equation (figure [2-19al):

2
E9 €9
oo=fl12(=|—-(—= 2.4
2 fc €0 €0 ( )
where f! is the maximum stress resisted by crack concrete in the compression direction;

go is the cylinder strain at peak strength. The softening of concrete is included in the

stress-strain relationship by a softening parameter S F which depends on the tensile strain:

fc €1
= - SF=08—-0.34— 2.5
SF’ o ( )

fe

where f. is the concrete cylinder compressive strength.
For concrete in tension, the behavior is divided into two phase: before and after
cracking (Figure 2-19bf). Cracking of concrete appears when the tensile strain £; is higher

than the cracking strain ... An elastic linear relationship is suggested prior to cracking:

o1 = F.eq; 0<er <éq
Jer
— 2.6
ECT EC ( )

for = 0.33y/f. in (MPa)

where FE,. is the concrete modulus of elasticity; f.,. is the cracking stress. After cracking,
tensile stresses in the uncracked concrete between the cracks continue to stiffen the con-
crete, thus increase the stiffness of concrete section. This effect leads to a decrease in
average tensile stresses after cracking, and is named tension stiffening of concrete. In the
original formulation of the MCFT [109], based on experimental results from shear tests
on 70 mm thick panel elements, the tension relationship of concrete after cracking was
proposed as follows:

S [ (2.7)

1+ 1/200¢;
An adjustment of this previous expression suggested by Collins & Mitchell [26] based on

shear tests conducted on larger panel of 285 mm thick:

Jer
14 /500e;

o1 =
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Figure 2-19 — Concrete constitutive relations in the MCFT.

For reinforcing steel, an uniaxial relationship is considered with a bilinear elasto-
plastic stress-strain curve (Figure [2-20)). In each direction, the steel characteristics must

be accompanied with the reinforcement ratio p, or p,.

O
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Figure 2-20 — Elasto-plastic model by Vecchio & Collins [110].

2.4.1.1.2 Crack-check: In order to ensure that the average stress can be resisted
locally at a crack, a crack-check must be applied. In reality, applying the MCFT without
including the crack-check can lead to very underestimated results [51]. Bentz [12] gave a
clear example to demonstrate the need for crack-check by considering a concrete prism
with longitudinal reinforcement steels subjected to axial tension (Figure 2-21a)). The
free body diagram of a member at crack is shown in Figure 2-21b} the left half drawn
with average stresses (concrete tensile stress f; and steel stress fs,) and the right half
correspond to the local stresses at crack (only steel stress fs, at crack). To ensure the

equilibrium of local stresses at a crack, the concrete tensile stress f.; must equal to zero.
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Figure 2-21 — Example of Bentz [12].

Next, the total stress-strain relationship of average concrete in tension and reinforce-
ment steel are added together over the entire range of strain. Without crack-check, the
total stress-strain relationship is shown in Figure 2-22a] and it is clear that the concrete
tensile stress at crack f.; is not equal to zero. Maintaining f.; equal to zero, i.e ensuring
that the local stresses at a crack do not exceed the yield stress, is the objective of the

crack-check. The result of crack-check is shown in Figure 2-220]
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Figure 2-22 — Total stress of average tensile concrete and steel in the example of Bentz
[12].

2.4.1.1.3 Material stiffness matrix for finite element formulation: In a finite

element formulation, the stresses and strain vector are related by a material stiffness

matrix D:
Oy €y
Toy | — D Vay (2 . 9)
TZZ‘Z 7{172

The contribution of concrete and steel are added separately:
D=D.+ D, (2.10)
The concrete stiffness matrix is expressed in terms of the principal directions:

D.=T!D,.,T. (2.11)
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The stiffness matrix in principal directions D, is evaluated in a simple secant-stiffness-

based:

Es 0 0
Dprin = 0 Ecl 0
(2.12)
0 0 G,
02 o1 EoEe
Ea=2% Ea=2; Go=—2"2
2 €9 ! &1 Ecl + Ec2

T, is the transformation matrix composed of the direction cosines, which define the di-

rection of the principal concrete cracking:

cos?f sin®@  sinfcosh
T2 = | in20  cos2 —sinfcosd (2.13)
—sin26 sin 26 cos 20

For the stiffness matrix of steel, while the longitudinal reinforcement can be taken into
account in a straightforward way, it is not the same obvious work for the contribution
of transverse reinforcement steel. Indeed, it requires an iteration process to handle the
transverse equilibrium between concrete and steel at each material points, which will be

expressed clearly in Chapter [3]

2.4.1.1.4 Model of Stevens et al. [103]: It should be noted that the MCFT can
be developed by using different uniaxial strain-stress curve for concrete and steel, such as
a Popovics curve [85] considering the size-effect phenomenon in the model of Benzt [13].
Stevens et al. [I03] extended the MCFT to a new constitutive model that does not require
the crack-check with a tangent-based stiffness matrix instead of secant-based. This model
adopts the same hypothesis as the MCFT and requires more complex formulations, but the
process of numerical convergence is improved consequently. One great advantage of this
model is that the formulation can be used for the response of confined, unconfined and/or
partially confined concrete, which depends on the determination of a coefficient factor
K. In compression, when € > K¢, the stress-strain curve follows the original parabolic
relationship of the MCFT in equation , then the post-peak curve is modified using a
cubic equation in function of £y and the ultimate strain e, (Figure [2-23a]). The softening
coefficient SF is always calculated as a function of the principal tensile strain with a slight

change in the parabolic transition comparing to the original formulation in equation ([2.5)

(Figure [2-23D)).
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Figure 2-23 — Compression relationship of concrete proposed by Stevens et al. [103]

The tensile behavior of concrete is also based on the basic of the MCFT, with a linear
elastic behavior until the cracking strength, followed by a descending curve describing the
tension stiffening of concrete, which is formulated according to the longitudinal reinforce-
ments disposition (Figure . The steel behavior in this model is much more complex
in order to avoid the crack-check imposed in the original MCF'T, by accounting for the
smeared reinforcement of crack concrete. Indeed, the reinforcement between the cracks
does not reach its plastic limit since the surrounded concrete has already carried out a

part of tensile stresses. The stress-strain curve of steel is therefore a function of concrete

tensile strength f.. (Figure [2-24D)).
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(a) Tension relationship of concrete. (b) Steel relationship.

Figure 2-24 — Concrete tensile and Steel relationship proposed by Stevens et al. [103].

The tangent-based material stiffness matrix of concrete in principal directions is ex-

pressed as follows:
80’ 1 60' 1 80' 1
Oe1 Oey 012

me’n — 80'2 802 60'2 (214)
Oe1 Oey 012
01— 02
0 .
| 2(e1 — €2)
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2.4.1.2 Damage model of Mazars for concrete

One of the first damage models was introduced by Mazars [69], in which the influence of
micro-cracking due to external load is introduced by a single scalar damage variable D,
varying from 0 (undamaged material) to 1 (completely damage material). The expression

of this variable is computed as follows:
D = Oéch + C(tDt (215)

where D, and D, are two damage variables independently describing the material degra-
dation under compressive and tensile stresses; a. and a; are two weighting coefficients.
The damage variable then lead to the definition of an effective stiffness matrix C relating

the total stress and strain:

o = C(Cy, D)e (2.16)

where Cj is the initial elastic stiffness matrix corresponding to undamaged state. Assum-
ing that the strain state of the real damaged material is the same state considered in the

constitutive law, the constitutive relation in equation (2.16)) becomes:
o= (1-D)Ce (2.17)

The evolution of damage variable D depends on the mechanical state:

(1—Ac)

&
Dy =1-= — Ay exp(—Beji(ecq — £0)) (2.18)

Eeq

with 4 is the equivalent strain representing the extension of strains in principal directions;
€o is the initial damage threshold; A,/ and B, are materials parameters. The details of
formulation can be found in [69], [71]. This constitutive model is however only suitable for
monotonic loading and has been refined after by Mazars [71] and Mazars et. al [70]. The
latter model is called Mu model, considers two different equivalent strains e.,. (or €,..)
and €.q; (£4,¢), associating to two thermodynamic variable Y. and Y. The combination

of these two variables give a single internal variable Y),:

Y, =rYu+ ({1 —7)Y,, (2.19)
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where r is the tri-axial factor varying from 0 to 1. Then, the damage evolution law can

be expressed as follows:

(1 - A)Y,

D=1-— O _ Aexp(=B(Y, — Y,0)) (2.20)
17

with Yo is the initial threshold; A = f(r, A., A¢) and B = f(r, B., B;) are material
parameters.

The uniaxial concrete behavior of Mu model can be found in Figure with the
following path: loading in tension from 0-A-B, then unloading in tension from B to 0,
loading in compression from 0-C-D, then unloading in compression from C to 0, then re-
loading and re-unloading in tension from 0-E-0 and finally re-loading in compression from
0-F-G. Other damage models can be found in the literature, such as model of Lemaitre
[65], La Borderie [60], Faria et al. [37], etc., proposing different definitions of the equivalent

strain and the damage evolution laws.

%107

- x10

Figure 2-25 — Stress/strain relation for concrete in compression and tension.

2.4.2 Dual-section analysis

Vecchio & Collins [111] developed a beam model subjected to axial, bending and shear
stresses, in which the entire cross-section is subdivide into a set of horizontal layers of
concrete and steel (Figure. Each layer is analyzed separately with the corresponding
constitutive behavior, based on the MCFT. The model was formulated as a sectional
analysis model, however it was not introduced within a finite element formulation. The

section kinematics follow Euler-Bernoulli assumption and the shear stresses are given by
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the dual-section analysis, in which shear stress is equal to the finite difference of the

normal stress value on each side of a finite-length layer (Figure [2-27al):

_ 1 (Y Do, ‘ 0o, 0x(x9) — 04(21)
Txy(x) - _b<y) o ox b(y>dy7 o g (221)

Q

where b is the section’s width, y, is the coordinate of the bottom layer, o, (z2) and o, (x;)
are the normal stresses of the layer in the two analyzed sections and S is the distance

between the sections, which is recommended equal to h/6 with A is the section’s height.

Member . t L itudinal Shear Flow
Cross-Section Strain Gradient distribution

Figure 2-26 — Section’s layers in the model of Vecchio & Collins [111].

An iterative procedure is then implemented to determine the shear strain distribution,
by comparing the values of shear stress from the dual-section analysis and from the impo-
sition of longitudinal equilibrium. In addition to this analytical solution which requires a
considerable computational effort, Vecchio & Collins has also proposed two approximate
solutions, one based on the constant shear flow, other based on a parabolic shear strain
distribution. These two alternative solutions can give quite close results to those obtained
with the iterative scheme, however the shear stresses may be poorly estimated.

This model is considered as a non-local sectional model, because the response of the
cross-section depends on the information from outside of the geometric plane. This means
that some specific conditions and formulations are required when implementing the pro-
posed model into a frame analysis. For example, in the case of a 2D beam element, at
least three integration points are required for flexure and two others for shear (Figure
2-27bf). This aspect, along with the iterative procedure based on the summation of the
trial-and-error small increments, makes the numerical implementation become complex
and expensive. A similar dual-section analysis was also implemented in a beam element

developed by Ranzo [91].
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Figure 2-27 — (a) Dual section analysis scheme. (b) Implementation of dual-section
analysis in a beam element.

2.4.3 Longitudinal stiffness method

In the dual-section analysis method, the choice of the finite distance between two sections
S influences the results of shear stress determination. To overcome this, Bentz [12] pre-
sented a numerical model using the longitudinal stiffness method, in which the stresses and
strains at each layer are related by a tangent stiffness matrix. For this, the plane-section
Euler-Bernoulli hypothesis is employed to compute the axial strain from the section’s
elongation €y and curvature x,, whereas the shear strain is defined initially as a function
of the mean sectional shear deformation ¥: ~,, = f(y)7. Thus, the strains vector at any

layer can be computed from the vector of section generalized strains containing ¢, x, and

0}

€ 1 y 0

) 00 || (2.22)
Y

e(z,y) = B(y)es(r)

The constitutive relationship at each layer is computed as the differential increment

of stress vector with respect to strain vector as follow:

Oz €
Jdo
5 = =5
v e | (2.23)
Txy ’ny
do = Doe

where D is the layer tangent stiffness matrix. The transverse equilibrium is obtained by

imposing independently that o, is null at each layer, this action results in a condensed
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stiffness matrix at each layer:
b =D/ (2.24)
Ty Vay

Then, using the chain rule and equation ([2.22)), (2.24)), the derivatives of normal and

shear stresses with respect to cross-section coordinate x can be derived as follows:

o [0z

o

deq(x)

=DB(y)—

(2.25)

Ty

Then, the derivatives of the generalized stresses are computed by direct integration over

the cross-section:

N, 10
J M _// 0 0 [ 0
L T (2.26)
1% 0 1
0D, A des(z) .. dey(w)
5 —//AA(y)DB(y) s~ K

where Dy is the generalized stresses or sectional forces, K, is the sectional stiffness
matrix, in which the first row includes the axial contributions, the second row features the
bending moment contributions and the third row presents the shear stiffness coefficients.
Because AT # B, K, is asymmetric.

Similar to the model of Vecchio & Collins, the MCF'T is also employed for the consti-
tutive model. This model of Bentz is a local sectional model that satisfies the inter-fiber

equilibrium, thus it is suitable to be implemented within frame element.

2.4.4 Finite element beam-column model

An efficient modeling strategy for the sectional model of RC members subjected to com-
bined actions is attempt to implement smeared crack approach within a beam element
formulation, which usually formulated as a two-node FE beam. In this model, the nodal
variables are considered as global degrees of freedoms, from them the mechanical charac-
teristics of cross-section are derived and interpolated along the element axis. As mentioned
in Chapter [T} the formulations of beam-column finite element can be classified as stiffness-

based (displacement-based) or flexibility based (force-based or mixed-based) formulation.
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2.4.4.1 Displacement-based formulation

A multifiber Timoshenko beam element was developed by Ceresa et al. [I§], that dedicates
to represent the shear responses of RC members under cyclic loading. A bi-axial fiber
constitutive model for cracked RC member was implemented, based on the improved
MCFT for cyclic loads proposed by Vecchio [107]. The model is formulated according to
displacement-based approach, in which the vector of generalized displacements of cross-
section dg(z) is related to the nodal displacements vector q;; by linear interpolation shape
functions (Figure 2-28)). The shear locking phenomenon was avoided by adding a bubble

function N, to the linear shape functions for the transversal displacement field:

ur
T T ),
o) =1 0 1-2 NL 0 = —NL :
(x) AR -
J
QZJ
d5<l') = Ns(‘r)qIJ

e\
EH:E o : o ]
Eees _

Figure 2-28 — Principle of multifiber beam element based on displacement-based
formulation.
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where the expression of bubble function is taken as IV, = %(1 — %)% according to
Auricchio [36]. The generalized normal and shear strain are derived from the vector of
d,(x) and then, for each fiber, according to the longitudinal stiffness method of Bentz,
an iterative procedure for section state determination considering transverse equilibrium
condition is applied to determine the strains and stresses in each fiber. The direct cou-
pling between axial and shear strains (and stresses) at sectional level is established by

a static condensation and a condensed material stiffness matrix is obtained as a result.

At structural level, a linearization of the residual functions with respect to the nodal dis-
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placement gives the element stiffness matrix, in which coupling between flexure and shear
is included from the static condensation in the sectional state determination.

Navarro Gregori et al. [76] developed a 3D multifiber finite element displacement-
based for RC member subjected to axial load, bending moment, shear and torsion. From
the idea of section discretization proposed by Rahal & Collins [88], the cross-section in
this model is discretized in three distinct regions following disposition of reinforcement
steel: 1D regions composes only longitudinal steel, 2D regions locate in the zone in which
the transverse steel crosses in one direction and 3D regions for the rest of cross-section.
In each region, an appropriate constitutive model is defined, based on the MCF'T (for 2D
regions) and its extension by Vecchio & Selby [112] for 3D regions. Coupling between
combined actions can be considered in the sectional analysis, and the model formulation
can be applied for arbitrary cross-section. However warping phenomenon due to shear
and torsion is not taken into account in this model.

Kotronis [58, (9] developed another 3D multifiber finite element for RC members
where the transverse shear is taken into account by using Timoshenko’s beam theory.
The shear locking phenomenon is avoided by using cubic and quadratic shape functions
for the interpolation of transverse and rotational displacements. The constitutive model
is based on damage mechanism, in which uniaxial isotropic damage model of La Borderie
is used for concrete [60], while a classical plasticity model is adopted for reinforcement
steels. Another displacement-model for RC member subjected to shear and torsion was
proposed by Mazars et al. [71], in which the warping kinematic for torsion is investigated

initially in elasticity within the linear framework of Saint-Venant theory of torsion [97]:

u(z,y, z) = ap(y, 2) (2.28)

where u(z,y, z) is the axial displacement of a fiber, « is the twist rate and ¢(y, z) is
the warping function of the section. The equilibrium equation for warping function is
expressed as:

Ap(y,z) =0 (2.29)

The elastic linear warping problem for a section of various materials is solved using a
warping-conduction analogy method, in which the warping function of cross-section is
equivalent to the temperature function of a plate T'(y, z), the shear modulus G; of the

elastic material ¢ is equivalent to the thermal conductivity A; of the isotropic material 7.
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While the equilibrium equation of warping in equation ([2.29)) correspond to AT (y, z) = 0,
the thermal boundary conditions can be expressed as:
R )\lZ ﬁy
)\’Ly N,
where ®; = X grad(T(y, z)) is the thermal density flux; 7 is the outward unit vector
normal to the cross-section contour. Knowing the equilibrium equations and boundary
conditions, the thermal conduction problem can be solved using finite element method,

and so do the warping function. As a result, the shear strains due to pure torsion are

obtained for each fiber:

[ 1 [0p 1 © ]
o el e) e (E )
_ |1 (Op
e=|Z Zr 2.31
2a(3y z) 0 0 ( )
1 [0p

The calculated warping functions for plain concrete beams of rectangular and T-section

subjected to pure torsion are shown in Figure [2-29]

Figure 2-29 — Warping profile for rectangular and T-section under pure torsion obtained
by Mazars et al. [71].

Capdevielle [15] [16] proposed a different way to include the warping phenomenon of
torsion. The static equilibrium of beam element including warping in equation ([2.29)) can

be expressed as follows:

Sel) Rl e

Assuming that the lateral surface is free of load, the boundary condition of cross-section

is expressed as:
Oy . Oy .
_ e = 2.
G(ay z)ny~|—G(az+y)nz 0 (2.33)
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From the strong form of the equilibrium equation in equation (2.32)), the weak formulation

of warping equilibrium can be derived as follows:

// {81/( ) "o (G )1“}‘15 // {ay (~G2) + ()| wds (234

where w is the weighting function. Integrating by part the first part of equation (2.34]) and
applying the boundary conditions in equation (2.33]), the weak form of the cross-section

equilibrium is obtained as follows:

// (gjgl; ngf) = //A [%(—GZ) + %(Gy) (2.35)

A 2D finite element method with spatially discretized cross-section was used to solve
equation for the warping function . The section mesh discretization and warping
profile obtained by Capdevielle for a concrete cross-section with longitudinal reinforcement

are shown in Figure [2-30

{ VAN /
~0.15 -0.1 -0.05 0 0.05 0.1 0.15
yml

(a) Cross-section mesh.

(b) Warping profile.
Figure 2-30 — Warping obtained by Capdevielle [16].

More recently, Khoder [56] extended Capdevielle’s model in order to take into account
the lateral confinement of concrete due to stirrups. In her 3D multi-fiber model, the RC
cross-section is discretized using three types of fiber: 2D triangular fibers of 6 nodes for
concrete; 1D fibers for longitudinal and transversal reinforcements (Figure . Each
transversal steel is divided into several sub-element of composed of 2 nodes ¢ and j each,
which are interpolated by Lagrange linear polynomials (Figure [2-31b]). The distortion

field is therefore interpolated into one integration point P between two nodes, then the
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distortion strain can be derived:

ou ,(P) 1 1
u(P) = Ny + Nouly | ep(P) = =52 = =g + g
= 5 y(P) st st (2.36)
uy 1 1
uly(P) = Nyut; + Ny eu(P) = —5-— = — ¥ + —ul
' ' ’ ’ 82 lst ’ lst ’
1-¢ 14¢ w
where N; = 5 and Ny = are the Lagrange linear polynomials; w;’;,u?;, uy;
and uy’; are the transversal displacement of the distortion champ at node i and j; [st is

the length of stirrup sub-element. In this model, the concrete confinement is taken into
account by considering different concrete regions where the constitutive relationship is

selected in function of confinement degree.
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(a) Discretization of a RC
cross-section into fiber of concrete, (b) Discretization of transversal

longitudinal and transversal steel. steel.

Figure 2-31 — Model of Khoder [57].

2.4.4.2 Flexibility-based model

Spacone et al. [102] proposed a multifiber flexibility-based model for RC members sub-
jected to axial force and bending. Then, Remino [94] developed this flexibility-based
model for reinforced members subjected to shear force, using the kinematics of two-node
Timoshenko beam (Figure . Starting form the nodal forces Py;, the vector of sec-

tional forces Dg(z) is computed as follows:

N 1 0 ol [ Ny L<1_Z) 0
x €T 1 \2 x Dz
i - [
M 0 7 1 7 M, |+ 0 5 {L L]
.k } D, (2.37)
1%4 0o = Z|{\Mm < _ 9T
o - |\ o L(1 2L) _



where x is the cross-section coordinate, L is the element length and p is the element load
vector. The sectional stiffness matrix is evaluated numerically using the method of finite

differences, in which the mn — th component is determined as:

D7 (g5 + de?) — DI (es)
den

S ; del = sign(Ael)\/Eto (2.38)
where D" is the m—th term of the vector D(z), &5 is the vector of the section deformation;
Ac? is the variation of the n — th section deformation with respect to the last converged
step of the analysis and &4, is the numerical tolerance. In this model, the interaction
between axial force, bending and shear are taken directly and the constitutive models
are based on the MCFT with some slight modifications. However, this approach for
constitutive model meets some numerical difficulties when trying to encounter the cyclic

load conditions.

i-th fibre — =

Figure 2-32 — Basic forces, elements and fiber discretization of multifiber beam element
based on flexibility-based formulation.

Another flexibility-based model was developed by Saritas & Filippou [99]. In this
model the relationship between the nodal forces and sectional forces is the same as in equa-
tion (2.37). The sectional state determination follows the longitudinal stiffness method
proposed by Benzt [12] that is already described in Section , using Timoshenko’s
kinematic hypothesis and a parabolic correction form for the shear strain distribution

function of rectangular cross-sections:

f) =" (1 - %) (2.39)

where h is the section’s height. Static condensation is then performed in order to obtain
the sectional stiffness matrix, which is symmetric rather than asymmetric in the model
of Bentz, thanks to the correction form in equation In each fiber/layer of the cross-

section, a two-dimensional constitutive model based on the MCFT is applied. Based on
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the formulation of this model, Saritas & Filippou [99], [100] then developed other models
using damage mechanics for the constitutive model of concrete, in order to consider the
cyclic load conditions for reinforced beam and wall element.

In order to account for torsional effect, Le Corvec [62] presented a mixed-formulation
of 3D multi-fiber beam that is able to capture the local effects due to constrained warping
of the section, so it can represent accurately the torsional response of beam under warping
constraints conditions. For this, the additional warping degrees of freedom are introduced
through a system of integration points and then interpolated by Lagrange polynomials
to ensure equilibrium on the entire element (Figure . Assuming that the warping
displacement profile over the cross-section 1 (y, z) and the warping displacement distribu-
tion over the element length y(z) are interpolated independently, the material warping

displacement in each fiber can be expressed as the product of ¢ (y, z) and x(x):

uw(:[’y? Z) = ZXZ(‘%)(@D(?J? Z)u;u) (2'40)

where u}’ is the vector of warping variables defined as additional degree of freedoms
in the beam model. The material warping displacement in each fiber u"(z,y, z) is then
superimposed into the axial displacement followings plane-section hypothesis, as suggested
in the model of Bairan [4], which will be detailed clearly in section 2.4.5] The element

equilibrium in equation [2.37]is extended to account for three-dimensional strain and stress

state:
N 10 00 0 o[y, .
Xz X
M. 0 3—11 L 0 0 0|, »,
v 0 —— —= 0 ol |z .
Yl = L L v | P (2.41)
M, 0 0 0 1 0 0f]|M, my
M, 0 0 0 0 %—1 % M, m,
1
V., - —| \M m,
0 0 00 o o]\ My

In this model, the effects of boundary conditions on the warping distribution under torsion
can be represented for arbitrary cross-sections (Figure [2-33b)), but the constitutive mate-
rial model is limited only to steel. The warping profile of the rectangular cross-section of

steel beam is shown in Figure 2-344]
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Figure 2-33 — System of interpolation points to account for warping in the model of Le

Corvec [62].

Based on this idea of warping interpolation using additional degrees of freedom, Ad-
dessi & Di Re [2] extended Le Corvec’s model to plain concrete member under torsion
using an isotropic damage model for brittle-like materials. Then, Di Re [31] used Her-
mite polynomials instead of Lagrange polynomials for the interpolation functions in a

flexibility-based model for RC beam. The warping profile of the rectangular cross-section

of plain concrete beam is shown in Figure 2-34b]
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(a) Model of Le Corvec [62]. (b) Model of Di Re [30].

0

Figure 2-34 — Warping profile of rectangular cross-section under torsion.

2.4.5 Enhanced FE Model

Bairan [3] developed a general 3D nonlinear model for the analysis of RC sections under
any combination of efforts. This local sectional-fiber model is formulated in a general way

for arbitrary cross-section and independently of the beam element formulation.
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The featured idea in this model is to reproduce the full 3D state of the cross-section
characteristics by superimposing an enhanced distortion-warping displacement field with

the classical plane-section displacement field (Figure [2-35al):
u=u”+u" (2.42)

The classical displacement field u?® is derived from the Euler-Bernoulli hypothesis, while
the enhanced field u” is constructed as a vector of three components, one for warping
and two for the distortion with the cross-section, that must satisfy the condition of or-
thogonality with respect to the classical displacement field (Figure [2-35b)). The same
decomposition of displacement field is also applicable to strain and stress fields:

e=¢gePs 4 e¥
(2.43)

o=oP +o%

U A
Complete 3D solution
Solution enhancement considering
w Warping-distortion kinematics
ps W
Ps
u u u U™ ps displacements
Solution obtained with a
i classical beam-theory
ps w
S e e )u]

(a) Decomposition of displacement  (b) Orthogonality condition for the distortion
field. field.

Figure 2-35 — Model of Bairan [3].

Due to the superposition, the equilibrium conditions are obtained at structural level
and at sectional level. At structural level, equilibrium among sections of the beam is
assured when the equilibrium residual on the plane-section displacement field is set to

ZEro:
RP*(z) = duy / / NPTLT (0)dA — suTl / / L,.(N*) adA =0 (2.44)
A A

with u, is the generalized displacement vector of cross-section; NP* is a compatibility
matrix related u”s and u,; L, and L,. are the linear operators containing the derivation

following = and y, z respectively. At sectional level, the equilibrium among inner fibers is
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assured when the equilibrium residual on the distortion displacement field is set to zero:

R"(z) = / /A SuTLT(o)dA — / /A L,.(6u*)'adA =0 (2.45)

The complete 3D equilibrium of beam is determined by solving the system of equation
and . For this, the strategic way is to obtain the o field as a function of u?®
at each cross-section and then satisfy equation at each integration point of the beam
element. As a result, the 3D problem can be solved as the superposition of a 1D beam
problem with standard frame elements in equation and a 2D sectional model using
bi-dimensional element locally at the beam’s integration points equation . The finite
elements in the section discretization for a RC beam element are summarized in Figure
2-30L, where the concrete is simulated as 2D elements, the transversal reinforcements are
reprensented by 1D elements and the longitudinal steels are simulated as point elements.

a Bidimensional elerments
represent solid matrix projection

Linecr elements
represent fransversal reinforcements
projection

Point elements
represent longitudinal reinforcements

Figure 2-36 — Library of finite elements in a cross-section of Bairan’s model [3].

The vector of distortion displacement field u" is obtained from the additional nodal
values d“ of the cross-section. Then, d* is related to the vector of generalized strains
e, by several compatibility and interpolation matrices. Finally, through the virtual work
principle, the sectional internal forces and sectional stiffness matrix can be derived in the
form of a decomposition of the plane-section field and the distortion field, which includes
coupling terms between plane-section and distortion deformations.

The constitutive model is based on a cyclic hypo-elastic model for concrete and an uni-
axial elasto-plastic relationship for steel. Inelastic concrete is modeled as an orthotropic

material whose behavior is described along the principal directions by an equivalent uni-
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axial stress-strain relationship. The compression behavior follows a cyclic loading scheme
suggested by Vecchio & Selby [112], whereas in tension, a linear elastic behavior is consid-
ered prior to cracking, then after cracking the stress-strain relationship follows a nonlinear
softening curve with the damage variables proposed by Cervenka [19]. The triaxial char-
acteristics are computed through a three-dimensional failure surface, in which the strains
(and related stresses) are decomposed as a contribution of mechanical and non-mechanical

part.

2.5 Overview and Discussion

Throughout this chapter, a literature review of the modeling strategy for RC members
subjected to shear-bending and/or torsion has been carried out. The problematic of
the RC members under bending and shear has been investigated and experienced by
many researchers. Several numerical models with different degree of complexity have
been developed. Among the existing models, the sectional-fiber finite element approach
has been widely considered as one of the most adequate solutions, thanks to its excellent
balance between accuracy of numerical results, calculation time and ergonomics. However,
to the best of the author’s knowledge, a rational sectional model accounting for tangential
forces is still under study.

The longitudinal stiffness method has shown its advantage by considering the equi-
librium as well as compatibility equations at local level, and more important, by giving
a material stiffness matrix reflecting the coupling of normal and tangential forces when
considering the transverse equilibrium conditions. For these reasons, although originally
limited for mono-dimensional shear flow (i.e in-plane bending and shear), in this PhD
we decided to apply this approach in the proposed formulation with an extension in
bi-dimensional shear flow, thus three-dimensional loading. Considering the choice of fi-
nite element formulation, the flexibility-based method has shown its advantages over the
stiffness-based method [102]: giving the exact solutions by satisfying strict conditions
of equilibrium and compatibility; requiring fewer elements for the representation of the
non-linear behavior of concrete by using exact force interpolation functions; avoiding the
well known shear-locking phenomenon. On the other hand, over the flexibility method,
the stiffness-based method accompanying by the displacement-based formulation has also
significant advantages. First, once the analytical model has been defined, no further en-

gineering decisions are required in this formulation to carry out the analysis, this method
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is thus conducive to computer programing [114]. In addition, if the unknown quanti-
ties in the flexibility method are redundant actions that must be arbitrarily chosen, the
unknowns in stiffness method are automatically specified as the nodal displacements of
element, the number of unknowns to be determined is therefore the same as the degree of
freedom of element. Otherwise, the obtained numerical results are also satisfied. To avoid
the shear locking phenomenon, some solutions have been proposed such as a bubble func-
tion in the model of Ceresa [I8] or Hermite and Lagrange shape functions for transverse
and rotational displacements in the model of Kotronis [59].

In a 3D beam problem, when accounting for shear and especially torsion effect, it is
indispensable to account for the warping phenomenon. For this, the Bairan’s strategy [3]
of decomposition cross-section characteristics into classical field following plane-section
hypothesis and enhanced field of warping-distortion is adopted for the development of our
FE model. One believes that this is the most suitable approach to representing the com-
plete deformation state (warping and distortion) of cross-section. While the plane-section
field can be represented by classical theory such as Euler-Bernoulli or Timoshenko, for
the enhanced warping-distortion field, several solutions have been proposed, such as using
warping-thermal analogy [71], using Saint-Venant theory and 2D finite element method
[T6] or using Lagrange polynomial and system of interpolation points defined as additional
degree of freedoms [62], [30], etc. To the best of the author’s knowledge, although suc-
cessfully applied in the mixed-based formulation by Le Corvec [62], Addessi [2] and Di Re
[31], the Lagrange polynomial approach accounting for warping displacement has not yet
been implemented in any displacement-based model of RC. In this work, we would like to
review and compare the use of Saint-Venant theory with that of Lagrange polynomials in
the displacement-based formulation, then recommend the use of each method depending
on requirements. These two approaches have been programmed and implemented in the
proposed FE model.

Regarding the constitutive models, there are two favorable choices for sectional-fiber
model, between smeared-crack approaches and damage mechanics. A constitutive model
based on the MCFT [110] was chosen because of its simplicity and the fact that it can be
enhanced by developing suitable uniaxial stress-strain relationship for concrete and steel,
depending on the model’s requirements. In this work, a parametric tensile relationship for
concrete has been proposed by the authors for the responses of RC members subjected to
pure torsion. In this formulation, only engineering parameters (e.g. material strengths,

reinforcement geometrical ratios) are required as input, thus improving the ability to apply
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the proposed model to practical simulations. Another important reason for the choice of
the MCFT is that it is very suitable for the transverse equilibrium between the fibers,
in particularly when taking into account the contribution of transverse reinforcements.
Inspired by the idea of Navarro et al. [76], a specific section discretization following the
reinforcement steel’s disposition, accompanied by appropriate constitutive models based
on the MCFT, was developed and implemented in the proposed model, which will be
described in detail in the next Chapter.
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Chapter 3

Enhanced multi-fiber 3D beam

element for RC members

3.1 General

The present Chapter deals with the development of a finite element model for RC members
subjected to arbitrary loading (Bending and/or shear and/or torsion). The developed
model is able to take into account the material nonlinearity, the warping effect of cross-
section, the contribution of transversal reinforcement, and the concrete confinement. As
for the geometrical nonlinearity, it is treated separately in Chapter [6] by using the co-
rotational framework. Therefore, this chapter is dedicated for the development of the local
beam element. The two-node Timoshenko beam using multifiber discretization approach
and displacement-based formulation are adopted. Based on the principle of distributed
finite element method, the idea of multi-fiber finite element is to divide the structure into
several longitudinal fibers and some control sections situated at the Gauss-Lobatto points
along the element. At the intersection of longitudinal fibers and control sections, a system
of integration points is obtained (Figure [3-1)). Each point, called fiber and considered as
a material point, has its own coordinates, surface and an appropriate material law in
order to determine the strain and stress from the element’s displacements. Therefore,
the proposed model is described as a frame element with a set of cross-sections along its

longitudinal axis.
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. z
Steel Fiber A
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Finite element mesh Concrete Fiber
(Gauss-Lobatto points)

Figure 3-1 — Multifiber approach for a RC member and local element frame coordinate

As can be seen in Figure [3-1, while the concrete and the longitudinal rebar are dis-
tributed longitudinally in the element, the distribution of transversal reinforcement steels
is discontinued in this direction by a spacing s. Taking into account the contribution of
transversal reinforcement in a multi-fiber model is therefore not an obvious work. As men-
tioned in the Chapter [2, it can follow the strategy of using the MCF'T and satisfying the
internal equilibrium between concrete and stirrups in the constitutive model as proposed
by Saritas & Filippou [99] or Navarro-Gregori et al. [70]; or considering the transver-
sal steel as bar element and interpolating the distortion displacement by Lagrange linear
polynomials, as suggested by Bairan [3] or Khoder et al. [57]. Between these proposals,
the idea of Navarro Gregori is adopted in our model. The cross-section is discretized
into several separated regions following the direction of transversal reinforcement and the
contribution of stress state to the sectional response (Figure . The following zones

are considered:

e 1D-Zomne: This zone represents the longitudinal reinforcement position. In this

zone only the normal stress in reinforcement steels is taken into account.

e 2D-Zone: This zone corresponds to the regions where the transverse steel crosses
in one direction and may also have the contribution of longitudinal steel bars. In
this zone, under shear, bending or torsional effects, the direction of normal stress
in transverse steels coincides to the direction of shear stresses in concrete (7., in
the vertical zone or 7, in the horizontal zone) (Figure . Consequently, only
normal stress (due to concrete) and one shear stress (due to concrete and stirrup)

are taken into account in the sectional analysis, the other shear stress is set to zero.

e 3D-zone: This zone corresponds to the regions of concrete in which transverse steels
come across in two directions (the four corners of section) and the regions of concrete
in the core of section without any reinforcement. In this zone, at each integration

point the stress state contains 3 components: one normal and two transverse stresses.
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For the numerical implementation, in 1D-zone, each longitudinal steel bar is considered
as point fiber, characterized by the cross-section area Ay of steel bar and its coordinate
(ysi, zs1) in the local coordinate of cross-section. In 2D and 3D-zone, the regions are dis-
cretized into square fibers of centroid integration point P, characterized by the square fiber
area A; (numerical integration weight) and the coordinate of integration point P (y, z¢).
The contribution of stirrup is taken into account by satisfying the internal equilibrium

between concrete and stirrups in 2D-zone, which will be detailed in Section [3.5.2]

e \5\ —~ I - ,Q\GX 1D zone l Shear-bending Torsﬁn

L N 2D 7 — — -~ &

S =Nk RN B L B

. e

te}:{ i { C @;xy 3D zone [ e u_»»ﬁ

C . x ' > )
(a) (b)

Figure 3-2 — (a) Discretization of cross-section following the material stress state in the
model of Navarro-Gregori et al. [76]. (b) Shear stress direction under shear, bending or
torsional effects.

The following presentation starts with the definition of element and section kinematics
as well as the main assumptions of the model. In order to take into account the warping-

distortion phenomenon, two approaches will be introduced and described in this chapter:

1. Using Saint-Venant’s warping function: Based on two-node Timoshenko beam
with 6 local displacements at each node, making a total of 12 degree of freedoms
(DoFs) in each element. The formulation is then enhanced by Saint-Venant warping

function when considering the kinematic conditions.

2. Using Lagrange polynomials: Introduction of an enhanced beam with a superpo-
sition of several additional warping DoF's into the two-node Timoshenko beam. The
interpolation functions for warping/distortion over the cross-section and along the

element are also described and implemented into the finite element discretization.

The element formulation is then derived following the principle of virtual work in order
to obtain the consistent stiffness matrix and nodal forces vector of the element. Next,
the solution schemes for two "warping” approaches are described. Finally, the mechani-
cal model containing appropriate constitutive models for different discretized regions as

described above is presented.
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3.2 Element kinematics

Let’s consider a two-node Timoshenko beam represented by a straight axis line delim-
ited by end nodes I and J and the local frame system of coordinate (z,y, z) as shown
in Figure The displacement field contains three translations u(z), v(x), w(z) and
three rotations 0,(z), 0,.(z), 0,(z) about axes z,y, z, respectively. These components are
collected in a single displacement vector called generalized displacement which depends

on the section’s position along the element axis:

(3.1)

Figure 3-3 — Two-node Timoshenko beam and the local reference system.

In the displacement-based formulation, the generalized displacement is expressed in
function of the principal variables which are the nodal displacements vector q. by inter-

polation shape functions:

dy(z) = Ny(z)qe (3.2)

where:

T
qe:<uI vl w! of Qé Qi uw v! w’ ewJ (9?;7 9;7> (33)

xT

and N (x) is the matrix of shape function defined as [38]:

NN O 0 0O 0 0 N, O 0 0 0 0
0 Ny, 0 O 0 Ny O Ny 0 0 0 Ng
0 0 Nz 0 —Ng 0 0 Ns. 0 —Ng O
0 0 0 N 0 0 0 0 N, 0 0
0 0 -N.. 0 Ns. O 0 —No. 0 Np. 0

0

Nz, 0 0 0 Ng, Ny, 0 0 0 Nioy
(3.4)

As mentioned in Chapter [2, while the axial displacement and torsional rotation can be
interpolated by linear shape function (N7 and Ns), the transverse and rotational displace-

ments must be interpolated by cubic or quadratic functions. The detailed expressions
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of these shape functions can be found in the work of Friedman & Kosmatka [38] or in

Appendix

3.3 Section kinematics

At sectional level, in each material points (or fiber) the displacement has 3 components,
one axial U and two transversal V', W gathered in a single vector ds(x,y, z). As mentioned
in Chapter [} the plane-section theory is insufficient to reproduce the complete sectional
deformation under shear and torsional effects (Figure . According to the proposition
of Bairan & Mari [4], the material displacement field is decomposed into two domains:
a classical field describing the rigid body motion, consistent with the plan-section beam

theory; and an enhanced field referring to warping-distortion phenomena (Figure [3-4bj).

UP(z,y, z) Ue(z,y,2) Um(x,y, 2)
d’}q’(x,y,z) - d?(x,y,z)—f—d?(x,y, Z) - Vp(SL',y, Z) + Ve(l',y, Z) - Vm(xayaz)
WP (z,y,z) We(z,y, 2) Wm(z,y, z)
3
Axial Bending Z A
M M "
N N (V V} | Uy
| ¢4 - --|Te —> o /l__\ e
\ UPy Ur
Shear ‘ Torsion X;

—

A\ : A\ T ." | T
Iyt C '&;}:C
n ' (b)

Figure 3-4 — (a) Section deformation under normal efforts (axial, bending) and
tangential efforts (shear, torsion). (b) Decomposition of a material axial displacement.

Depending on the requirement, the enhanced material displacement vector djc(x, Y, 2)
may have one or three components : if only the warping phenomenon is taken into account,
then only the axial displacement U* is considered; otherwise, the two transversal displace-
ments V¢ and W€ in y and z direction are reserved for the distortion phenomenon. In
the following the section kinematics will be described for the classical field, the enhanced

field using Saint-Venant theory and the enhanced field using Lagrange polynomials.

77



3.3.1 Classical field

The material displacement of classical field is related to the generalized displacements

vector according to the following relation kinematic:

UP(2,y,2) = u(x) — y0.(2) + 20,(x)
VP, y,2) = v(z) — 20.(7)
We(z,y,2) = w(x) + yba(z)

= di(z,y, 2) = ali(y, 2)d;(z) (3.6)

with the expression of the section compatibility matrix:

100 0 2z —y
al(y,2) =10 1 0 —2 0 0 (3.7)
001 yw 0 O

The strains of any material point of the cross section are then evaluated with only three
components considered in the sectional analysis as follows: one normal strain and two

transverse strains collected in a single strain vector:

T
e(z,y.2) = (er, 2, 2.) (3.8)

with the assumption of small displacements, the material strains can be evaluated from

first-order material displacement only:

oUP  ou  00. 00,

J— - _ _
“oz ox ox Y ox = Ox
our  ovr v 00
p — 2~ _ " _pn _ z (3.9)
Tay y * ox ox b: =2 ox
our  owr  ow a0,
Vo= —F—+ =—+0,+ty

re 0z ox ox Ox

It is important to note that without this assumption of small displacements, second and
third-order of derivation must be taken into account and the section kinematics become
a non-linear geometric problem, which will be investigated in Chapter [f This chap-
ter deals only with the linear geometric condition with the following definitions of sec-

ou(zx) .

is the axial strain,
Ox
,(z) are the shear strains in the y and z
x
_00,(x)

00,(x
is the torsional curvature and k,(z) = @y( )
4y T

tional strains according to Timoshenko beam theory: e,(z) =

(@) = 20D g (2) and 5.(a) = 200

direction, respectively; k()
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00, (x ) .
and K, (x) = (9( ) are the flexural curvatures about the y and z axis respectively. From
x

these definitions, the kinematic relation in Equation (3.9)) can be expressed as a relation

between the material strains and sectional strains as follows:

el(z,y,2) = al(y, z)es(z) (3.10)

with the expression of the compatibility matrix a?(y, z) is the same as in Equation 1}

and the vector eg(x,y, z) is defined as the generalized strains:

o) = (2(0) W(®) 1) ml) o) k(@) (3.11)

It is interesting to note that, in the Fuler-Bernoulli beam theory, the generalized
shear strains are equal to zero because this theory does not take into account the shear
effect. In the longitudinal stiffness method proposed by Bentz [12] in Section the
shear strain is defined initially as a function of the mean sectional shear deformation
¥: Y. = f(y/2)y. This proposition leads to a asymmetric sectional stiffness in the
sectional state determination. The definition of generalized shear strain in Timoshenko
beam theory can solve this problem of asymmetry, however it does not guarantee the
longitudinal equilibrium at certain coordinates (y, z) of the section [98]. As a consequence,
the correction parameters need to be introduced in order to describe the shear strain
distribution over the cross-section. So, the expression of compatibility matrix a’} (y, z) in

Equation (3.9)) is rewritten as follows:

1 0 0 0 z —y
at(y,2) = |0 kyc,(y,2) 0 —2 0 0 (3.12)
0 0 k.c.(y,z) y 0 0

where k, and k, are the shear correction factors; ¢,(y, z) and c,(y, z) are the shear correc-
tion functions. In this present work, for rectangular cross-section of width b and height
h in a linear elastic material, a parabola correction function is proposed (Figure [3-5) and

the following correction factors and functions are defined:

5
ky=2 qly,2) = 55 (0P —497)

6 20? (3.13)
b= g elne) = g (0 427
z_65 Cz?/aZ _2h2 z

79



Iz _____ 1(2) )

Parabola shear strains Generalized
distribution shear strain

Figure 3-5 — Transformation of the shear strain distribution to a generalized shear strain
in the case of rectangular cross-section.

From this definition of generalized strains and the relation between the generalized
displacements and the nodal displacements in Equation (3.2)), the generalized strains can

be determined from the nodal displacements by another matrix of shape functions:

es(z) = Bs(7)qe (3.14)

B o o0 O o 0 B O 0 0 0 0

(3.15)

o O o o o
o
o
&
o
o

o O o O
(@)
o
&
(@n)
o

The expression of shape functions B;(x) can be found in Appendix

3.3.2 Enhanced field using Saint-Venant theory

In a frame-fiber model, according to the Saint-Venant theory of torsion [97], the warping
phenomenon is represented by a function (y, z) which describes the warping displace-
ment profile over the cross-section and depends on the shape of cross-section [97]. It is
also assumed by Saint-Venant that the warping profile is considered constant along the
element, and the normalized warping displacement is proportional to this warping func-
tion ¥(y, z). Then, Saint-Venant theory is extended when the distribution of warping
over the element length becomes variant and is represented by a parameter a(z). As a

consequence, the warping displacement is expressed proportional to the warping profile
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(i.e warping function) and the warping distribution:

Ut(2,y,2) = a(x)i(y, 2) (3.16)

In the case of solid cross-section, where the effect of warping is limited (but cannot be
neglected), the warping is free and its distribution can be considered constant over the
element length as mentioned in Saint-Venant theory. In this case, the warping distribution
equals to the derivative of the twist angle: a(x) = o = 90,/0r = k., and o /0x = 0.
In the case of thin-walled cross-section, as the role of warping becomes important, the
warping distribution is not constant anymore and depends on the cross-section’s position.
Thus, Vlasov [113] proposed a new theory of torsion for thin-walled cross-sections with
a(z) = 00, /0x and da/0x # 0 . Consequently, an additional DoF needs to be added to
consider the contribution of the derivative of parameter a(z). Another torsional theory,
proposed by Benscoter [I1], defines that the warping distribution « is independent of
the torsional angle: «a(x) # 00,/0x. These two theories of torsion for thin-walled cross-
sections, can be compared as the analogy of two classical bending theory Navier-Bernoulli
and Timoshenko. Vlasov’s assumption of neglecting the shear warping deformation is
compatible with neglecting the shear bending strain in the Navier-Bernoulli’s theory,
while Benscoter’s assumption of incorporating shear warping deformation can be regarded
similar to the Timoshenko’s assumption of taking into account the shear bending strain.

In this work, as the shape of cross-section is rectangular, Saint-Venant theory can
be used for the sake of simplicity, from Equation (3.6) and Equation , the total
displacement field in Equation becomes:

U™(z,y,z) = u(r)—yb,(x
Vi(z,y,z) = v(x)—20,(x
Wm(z,y,z) = w(z)+yba(x)

) + 20, (x) + ka1 (y, 2)
) (3.17)

And the total material strains are expressed by:

en = ou™ =&, — YK, + 2K
TT 83@ - Cx YK Y
oum™  gym b m_ m
m _ —~ =ef =al(y,2)es(r)  (3.18)
/Y:Uy 8y + 8.1: Wy Zl{.r + 8y l{x f f
fyxz - 82 8x =z YRy 82 x )
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with the new compatibility matrix (taking into account the shear correction parameters):

10 0 0z -y
m O
o
0 0 k.c.(y, — 0 0
i c:(y,2) Y+ 5 |

The expression of Saint-Venant warping function and its derivatives for the rectangular
cross-section can be found in Section [4.1] It is important to note that in the case of a solid
cross-section, this approach using Saint-Venant warping function maintains the element

DoF's at 12, but can not take into account the distortion phenomenon.

3.3.3 Enhanced field using Lagrange polynomials

As mentioned above, according to Saint-Venant theory the warping displacement is pro-
portional to two parameters: the warping function v (y, z) representing the warping profile
over the cross-section and the parameter a(z) representing the warping distribution along
the element axis. In other words, the warping displacement is a multiplication of the
warping profile and the warping distribution. In 2012, Le Corvec [62] proposed a new way
to interpolate these two parameters, rather than using the Saint-Venant warping function
and the parameter a(x): several fixed points are defined in the axis direction z, with index
i (Figure , and then, in each of cross-section with index ¢, a grid of fixed points is
defined in the direction y, z with index j, k respectively (Figure (Figure[7-5D)). It is very
important to remark that the position of longitudinal interpolation points is independent

of the Gauss points along the element axis of the Timoshenko multifiber beam.

. .
T/ y section i
- Z §

X4 X
5 interpolation
X

points

y < y
section i X X
4 interpolation
points
(a) Longitudinal interpolation points (b) Sectional interpolation points over
along the element axis. the rectangular cross-section.

Figure 3-6 — System of fixed interpolation points in the beam element.

Then, at any of these fixed interpolation points, with coordinate (x;,y;, 2;), the en-
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hanced displacement values (Ufjk, ks I/V;;k) are defined as independent additional DoF's

(Figure. These enhanced displacement values may have one to three components: U,

in the axial direction representing the warping field and the two V%, W, in transversal

direction representing the distortion field.
Wik Vi

us
lJK

Figure 3-7 — Enhanced displacement values defined as independent additional DoF's.

In order to interpolate these enhanced displacement values to the enhanced displace-
ment of any material point, the Lagrange polynomials are defined for the interpolation
functions of the warping distribution and the warping profile. The reason for this choice
is that the Lagrange polynomials are continuously differentiable, so they respond to the
requirement to evaluate the material strain, as shown in Equation , similar to the
Saint-Venant warping function. Moreover, Lagrange polynomials are applicable to any
shape of section and any material response, thus they are general enough for further
studies to be carried out.

The distribution of warping displacement is defined over a grid of n,, points along
the element axis and is described with 1D interpolation function L;(z). The degree of
interpolation function depends on the number of interpolation points n,: quadratic if

ny, = 3, cubic if n,, = 4 or even quartic if n,, = 5 (Figure .

1‘ N ‘/’T\ N ‘1 No

nw=3 (quadratic) nw=4 (cubic) nw=5 (quartic)

Figure 3-8 — Lagrange interpolation polynomials for one dimensional finite elements.
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The warping profile is defined by a grid of s,, points distributed over the section ¢ and
is described using the 2D interpolation function Sjx(y, z). This 2D interpolation function
can be achieved by simple products of 1D Lagrange polynomials in the two coordinates
(Figure . At section 7, each interpolation point is accompanied by its 2D Lagrange
polynomials S;x(y, z), this results in a total of s,, 2D polynomials over the cross-section.

N

(4:k) —

(0,0) /

Figure 3-9 — Generation of Lagrange interpolation polynomials for 2D finite elements.

3.3.3.1 Interpolation of enhanced material displacement

Using the system above, at interpolated section x;, the enhanced material displacement

are defined as follows:

3327 Y, < Z S]k Yy, < z]k‘ S(y7 z)Uze (320&)
]k 1
“(zi,y, 2 Z Sik(y, 2)Vi5, = S(y, 2) V§ (3.20b)
]k 1
'TZ’ Y,z Z S]k Y,z i(;'k = S<y7 Z)er (320C)
Jjk=1
where S(y, z) = (Sl coe Sip .. st> is a row vector of s,, columns (1xs,,) containing
T
the 2D interpolation functions of each interpolation point; Uf = ( G Ul - Ufsw>

is a column vector (s, X 1) containing the axial enhanced displacement values at section
7; similar definition can be applied for 2 vectors V§ and WY. Then, the enhanced material

displacement at any points of element can be expressed as:

U(z,y,2) = ZLi(az)Ue(xi, y,z) = L(x)S(y, 2)U* (3.21a)
Ve(x,y,z) = Zw Li(x)Ve(x:,y, z) = L(2)S(y, 2)V® (3.21D)
W (e,,2) = 30 LW (21,1,2) = L) (0, )W (3.210)
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where L(z) = (Ll o Lo an> is a row vector (1 x n,,) containing the 1D inter-

T
polation functions of each interpolation point; U¢ = (UleT . UZ.@T . U;f.nw> is a
column vector (n,.s, X 1) containing the axial enhanced displacement values of element;
similar definition can be applied for 2 vectors V¢ and W¢; S(y, 2) is a matrix (r, X ny.sy,)

containing a number of n,, vector S(y, z) and several zero row vectors (1 X s,,):

S(y,2) O O
R 0., S JZ) ... O,
S(y,z) = , (y, ) _ _ (3.22)
(1) 0,0 .. S(y, 2)

3.3.3.2 Derivation of enhanced material strain

From the definition of enhanced displacements field, a complete strain state of 6 compo-

nents for the enhanced material strains can be established as follows:

e aa[f - GE?S(@/, U (3.23a)
e, = ag; : = t(x)%yy’z)ve (3.23b)
e = a;ze _ t(x)%we (3.23¢)
Yoy = 88[5 + aax: = t(a:)as(%’ Dy 82535’3)@(% Ve (3.23d)
= 8@2 i aavze _ t(:c)aég/z’ e+ ag(;)S(y, AW (3.230)
e, = aa‘: + a;ze = t(x)%ve + i(z)%‘?z)we (3.23f)

Three column vectors U¢, V¢ and W¢ can be grouped in only one column vectors

T
de = <U€T ver W€T> of (3.n4.8, x 1), which represents the enhanced displacement
values of element. The additional DoFs of the enhanced field is therefore equal to 3.1,,.5,,.

Equation (3.23]) can be re-written as follows:
e} (r,y,2) = a5 (v, y, 2)d° (3.24)
Where the expression of the enhanced compatibility matrix ajc*(a;, y, z) is quite complex:

ap(e.2) = sy )+ 1080 2) (3.25)
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where L*(z) is a longitudinal interpolation matrix of (6 x 6.3.n,), containing the 1D

Lagrange polynomial at section i:

L*(z) = |Li(z) ... Li(z) ...L:,(2)
and
Li(z) 0 0 Liz) O 0 Li(zx) O 0
Ly(x) = 0 Li(x) 0 0 Lz(x) 0 0 Li(x) 0
0 0 Li(z) 0 0 . Li(x) 0 0 Li(z)

(3.26)

The sectional interpolation matrices S¥(y, z) has 6.3.n,, rows and 3.s,,.n,, columns:

S*(y, 2) (U .. 0,
0 S* (y Z) 0 S:*(?ﬁ Z) 065w 065w
S::(yaz) = . ’ . . . and S;(ywz) = 065w S;*(yaz) 065w
. N . OGsw Oﬁsw S;U*(yv Z)
0, 0, oo Si(y,2)
(3.27)

where 0, is a zero matrix of (18 X 3.8,); Ogsw 18 a zero matrix of (6 X s,,); S**(y, 2),
SU*(y, 2) and S¥*(y, z) are three matrices of (6 x s,,) containing the row vector S(y, z) in

Equation (3.20) and the zero row vector of (1 X s,):

S(y, ) Osu Osu
Osw Osw Osw
wk Osw v Osw w Osw
Sy (y,2) = o SE (Y 2) = | S8y 2) = : (3.28)
Osu S(y,2) 050
Osw Osw S(yv Z)
OS'UJ OS'LU OS'UJ
Similar to the sectional interpolation matrices Sy _(y, 2):
SZZ (y,2) 0, ... 0.
l A Syx O6sw 065w
* 0, 85.(0.2) .. O, .. 2 O i
SZIZ (y’ Z) = : : . : ) and Syz (y7 Z) = Oﬁsw SZ; (y> Z) 06sw
' ' ' - i Oﬁsw 06sw SZ)Z* (yv Z)
0., (U oo Sy.(y,2)
(3.29)

with St (y, 2), 8}:(y, 2) and S (y, 2) are three matrices of (6 x s,,) containing the deriva-

tion with respect to y and z of the row vector S(y, z) in Equation (3.20]) and the zero row
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vector of s, columns:

[0, | 0, | [0, |

0. 08(y z) 0,0

0 9% 95y, 2)

sw Osw o

SU(y,2) = [0S(y,2) | s SUil(y.2) = ;S (y,z) = 03 (3.30)

78y Osw Sw

9S(y, 2) 0. Osu

0% 9S(y, 2) 0S(y, 2)
| Osw L 9, A L Jy

The superposition of enhanced material strain in Equation (3.23)) into classical material

strain gives the following kinematic relation:
el (r,y, 2) = al" (y, z)es(v) + af"(z,y, 2)d° (3.31)

where e’*(,y, 2) is the total material strain of six components, a’}*(y, z) is the classical

compatibility matrix modified from the compatibility matrix in Equation (3.12)):

1 0 0 0 =z —y
0 0 0 0 0 O
()= 0 v 00 (3.32)
0 kycyy, 2) 0 -z 0 0
0 0 k.c,(y,2) y 0 0
00 0 0 0 0]

Equation (3.31]) relates the total material strain to the classical generalized strains and
the enhanced displacement values. This kinematic relation is general and can be used to
take into account the distortion and warping phenomenon. However, in this work, only
the warping phenomenon is considered while the distortion is neglected. As a result, the
enhanced displacement values in the transversal directions V%, and W, become zero,
and the enhanced strain state has only 3 components similar to the classical one. The

kinematic relation in Equation (3.31])) can be re-written as follows:
e (@.1.2) = al(y. 2Jeu(x) + a2,y 2) U° (3.3

where the classical compatibility matrix a‘;’c(y, z) is the same as in Equation (3.12)); the
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total material strain e}'(z,y, z) is reduced from 6 to 3 components:

A~

OL(x)

ggnx = Egm + 8;:5 =&z —YR: + ZRy + a—S(y, Z)Ue (334&)
e
m . .08 Y, 2) .
. 0S(y,
= s = 7 + s+ B e (3.340)

the enhanced compatibility matrix a(z,y,2) is modified from the matrix a$*(z,y,2) in

Equation :
OL(z
ag(e..2) = 20, (4. 2) 4 L(@)8,.(0.2 (3.35)

the sub-compatibility matrix L(x), containing 1D polynomials L;(z), is a longitudinal
interpolation matrix of (3 x 3.3.n,,) modified from matrix L*(z) in Equation (3.26); the
sub-compatibility matrix S,(x), containing 2D polynomials S;(x), is a sectional interpo-
lation matrix of (3.3.ny, X $,.1,) modified from matrix S} (z) in Equation (3.27); and the
sub-compatibility matrix S,.(x), containing the derivations with respect to y and z of 2D
polynomials S;(x), is a sectional interpolation matrix of (3.3.1, X $,.1,,) modified from
matrix S;_(r) in Equation . The detailed expression of theses sub-compatibility
matrix can be found in Appendix

It is worth to note that, comparing to the total material strains built up using Saint-

. . . - 0
Venant warping function in Section [3.3.2} in this approach the enhanced terms —¢nm and

dy
—— kK, in shear strains are replaced by ﬁ(x)MUe and ﬁ(x)MUe, respectively.

0z dy 0z
OL(x) 4

Moreover, in the axial strain, an additional enhanced term ————=S(y, z)U* is added,

ox

which allows to calculate and represent the warping displacement profile and the additional

normal stress due to warping in the case of shear effect.

Another important remark is that the number of DoFs in this approach is increased
considerably. While Saint-Venant warping function approach maintains the element DoFs
at 12, this method requires a total number of DoF's equal to 12 + n,,.s,,, where n,,.s,, is
the total number of fixed interpolation points. If distortion phenomenon is included, the
number of additional DoF's increases to 3.n,.s,,, making a total of 12 4+ 3.n,,.s,, DoFs in

each element. The computational cost is therefore much more expensive.
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3.4 Variational formulation

Once the material strain vector e} is obtained at each material point, an appropriate
behavior constitutive model is applied in order to determine the material stresses, which
T
are collected in a single stress vector s7' = (o’% T Tm> . This constitutive relation is
Y Tz

expressed as follows:

os} = kroel (3.36)

where k; is the material stiffness matrix, which is determined in Section
Next, the element equilibrium is considered between internal and external potential
energy. Let the element be subjected by a virtual displacement dd, then the principle of

virtual work gives an equation between internal and external energy:

SW, = OW, = / / / 5 TSIV = 6" Q + / 5dm P da (3.37)
1% L

where the internal virtual work is represented by the left-hand side, while the external
virtual work is expressed by the right-hand; Q" is the external nodal forces and P} is
the external uniform loading. Depending on the approach of enhanced field, two different

cases are investigated as follows:

3.4.1 Enhanced field using Saint-Venant warping function

The left-hand side of Equation (3.37) represents the equilibrium conditions at sectional
level. Using Equation (3.18]), the variation of internal work can be expressed as follows:

oW, = / / /V sefTsdV = / / /V sel (z)al’ (y, z)sfdV (3.38)

As the term de,(z) is a function of the cross-section coordinate = and aj'(y, z)"s} is a
function of the fiber coordinates y and z, the variation of virtual internal work can be

decomposed into an integral over the element length and another over the cross-section

W, = /L sel(z) ( / /A a}%T(y,z)s?dA> dx (3.39)

area.
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At sectional level, the generalized stresses (or sectional forces) can be defined as an integral

over the cross-section area of the stress field:

D,(z) = / /A af(y,z) sTdA (3.40)

By exploiting the expression of a’f'(y,2) in Equation (3.19) and s}, we obtain, in an

explicit manner, a vector of sectional forces containing 6 components:

. [f ot

v, //A kycy(y, 2)TyydA

b |1 / / Fuca(y, 2)7,dA .

M, Y+ — | T — | 2 — =— | Tuy| dA
0 5) e (= 5) )

M, //A 20 :dA

M, - / /A yosadA

As we see, all the internal actions can be determined from the stress resultants. We can

observe that the expression of the internal torsional moment M, has been enhanced by
the introduction of the warping function 1, which will affect the values of the twist &,
and the twist angle 6,, consequently. Equation can be re-written with the aid of
the constitutive relation in Equation :

D, (z) = / /A a7 (y, 2)kselldA = ( / /A a}”T(y,z)kfa?(y,z)dA) e(x)  (3.42)

the sectional stiffness matrix can thus be defined as follows:

K, = //A a?T(y,z)kfa;”(y,z)dA (3.43)

Therefore, the equilibrium at sectional level between the generalized stresses and the

generalized strain can be expressed as follows:

0D, (z) = Kides(x) (3.44)
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3.4.1.1 Element state determination

The right-hand side of Equation (3.37) can be exploited with the aid of Equation (3.2)) as

follows:

W, =09’ Q. + / §dIP dr = 6q Q. + / Sq'NTPIy = 5qF (Qe + / NSTPudx)
L L L

(3.45)
Hence, the virtual work equilibrium from Equation (3.37) has now become:
/ se’'Dydr = 6q” (Qe + / NT Pudx) (3.46)
L L

Using the relation from Equation (3.14]) and (3.44)), we obtain:

5013 </ BZKsBsdx) ge = 5qu <Qe + / NZPudx)
L L (3.47)

= ( / B! KsBsdx> qe = Q. + / NIP,dzx
L L

The element stiffness matriz can be defined as:
K, = / B'K,B.dz (3.48)
L
And the element equilibrium becomes:

K.q. = Q. + / NP, dx (3.49)
L

The element stiffness matrix K, and the nodal forces Q. are then assembled into the
structure stiffness matrix and nodal forces vector using standard procedures of structural

analysis. All the necessary equations for the element state determination are completed.

3.4.2 Enhanced field using Lagrange polynomials

While the number of DoF's in the latter approach is maintained at 12 for each element, in
this approach, the number of DoF's increases considerably to n,.S, (or 3.1,.5,, if distortion
is considered), as mentioned in Section . With the present of additional DoFs, all
the variables are now separated into two sets: the basic set of 12 DoFs and the additional
set of 1.8y (or 3.my.5,) DoF's. It is worth to note that the basic set is also a combined

of classical and enhanced displacement /strain fields.
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3.4.2.1 Sectional state determination

Considering the sectional equilibrium in the left-hand side of Equation (3.37)) in the case
that the distortion phenomenon is neglected, the following expression of the variation of

virtual internal work is obtained using Equation (3.34]):

W, = / / /V seTspdV = / / /V 5(e§ (z)ah " (y, 2) + UTas" (x,y, z)> sTdV (3.50)

Using the expression of a$(z,y, z) in Equation (3.35]), Equation (3.50) becomes:

W, = /L sel (z) ( / / agiT(y,z)s;“dA) dx
o o[ s ([ s ) o

(3.51)
Corresponding to the sectional forces in Equation ([3.40]), the "basic” sectional forces in

this approach can be defined as follows:

_ / /A a(y, =) sdA (3.52)

This basic sectional forces can be expressed as a combination of the classical field and the

enhanced one with the aid of the constitutive relation in Equation (3.36)):

s(x) = (// al (y, Z)kfa?(y,Z)dA> e,(2)
K// 2 2)ksSaly )dA) (// 2)kSy:(y, 2 )dA) L(x)] U

(3.53)
Due to the present of additional DoF's, the following additional sectional forces are also

defined:

D () / /A ST(y, 2)sdA (3.54a)
DoV () / /A ST (y, 2)sdA (3.54b)
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which can also be exploited as follows:

Do (s (// (v, > kfafdA)es()
K// 5. (v ksSa(y, 2 )dA> e (// S; (4, 2)ksSy: (v, )dA) L(:U)} Ue

(3.552)
Do (1 (// (5.2 kfafdA) e.(z)
K// o hsSely, 2 )dA) o ( / / 2)k;Sy:(y, 2 )dA> L(a;)] U

(3.55b)

From these expressions of sectional forces, a system of 9 sectional stiffness matrices

can be defined as follows:

K = / /A alkaldA (3.56a)
Kb — / / ah'k;S,dA (3.56b)
KbayZ—// al'k;S,.dA (3.56¢)
Kot = / /A Sy kralidA (3.56d)
K* = / /A STk;S,dA (3.56€)
K%V = / /A STk;S,.dA (3.56f)
K% — / /A S,.kraldA (3.56g)
KW= — / /A ST.ksS,dA (3.56h)
K% = / /A S k;S,.dA (3.561)

The expression of the variation of internal virtual work in Equation (3.50) can be re-

written as follows:

SW, — /L 5e? (2)D!(x)dz + ( /L aL;;I>D§x(x)dx+ /L LT(x)D‘jyz(x)dx) 5dT (3.57)
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3.4.2.2 Element state determination

The right-hand side of Equation ([3.37)) is expressed as:

SW, = 0q™' Q™ + / 6d™ ()P dx (3.58)
L
. . Qe .. .
where the nodal displacements qI" is expressed as: q' = , containing the classical
Ue

nodal displacements q. of 12 DoFs and the enhanced displacement values U® of n,,.s,,
DoF's. Similarly, the generalized displacements d?'(z), the external nodal forces Q" and

the external uniform loading P!* must also be decomposed into two parts: dI'(z) =

ds((L’) Qe Pu

Qr = , Pl = . Since all the sections are assumed free to warp,

Y
di(z) Qc P
the additional forces (or warping forces in the case that only warping is taken into account)
Q¢ and P¢ are zero to ensure the condition of element equilibrium.
Using Equation (3.57) and (3.58), the basic part of the element equilibrium can be

expressed as follows:
/ sel (2)D(z)dr = 0’ Q. + / 6d’ (z)Pdx (3.59)
L L
from Equation (3.2)) and (3.14):

[ da'BIDls — dafQ.+oal [ oNTP,
L L

(3.60)
:>/BSTngx = Qe+/N§de
L L
Similarly for the additional part, from Equation (3.57) and (3.58)):
LT
</ 0 a@)ng(x)dx—i-/LT(x)D‘;yz(x)dx> Ut = 0
L9t L (3.61)

8L($) ar ayz _
LWDS (m)dm—l—/LL(x)Ds (x)dx = 0

Finally, from 2 equations (3.60)) and (3.61)), the right-hand side of Equation (3.37]) can

94



be expressed as follows:

bi Kléa Qe QE—F/NZPudw
L

(3.62)
Ko K| \Ue 0

where the matrix components are constructed from the interpolation functions and the

sectional stiffness matrix in Equation (3.56)):

K" = / B'K”B,dx
L

Kga _ /Br_sr (Kzax(?L(x) _i_Kl;ayzL(x)) dr
L

ox
T

Kgb _ /(8L<«T) Kl;ax+L($)TKgayz) Bsd.]? (363)

L Ox

aa 8L((L’)T amaL(x> abyz
Ko = /L e (KS pe + K%L(x) | dz
+ /L(x)T <K§y”aL—<x)+K§yzL(x)> dx
I ox

A static condensation is applied in order to obtain the final expression of equilibrium
conditions at element level, from Equation (3.62)) the enhanced displacement values can

be evaluated as follows:
Kgbqe + KU =0

. (3.64)
= U= — (Ki") Kq.
As a result:
Kb%q, + K*U* = Q.+ / NIP,dx
L
KPq, - K2 (K Ke'a, = Qo+ [ NIPudo (3.65)
L
=K.q. = Q.+ / NIP,dx
L
with the expression of the element stiffness matrix as follows:
K, = K” - K (K@) "' K® (3.66)
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3.4.2.3 Orthogonality condition

The rigid body movements are described by the displacement vector d?(aj,y,z), con-
sisted to the generalized displacements ds(z). When the displacement field is enhanced
with d;(:v,y,z), this vector can reproduce a new generalized field that coincides with
the previous one. In other words, the generalized displacements field can be reproduced
by both the classical plane-section field and the enhanced warping-distortion field, and
consequently create a field of redundancy on the total displacement, which does not guar-
antee a unique displacement solution [3]. In order to avoid this possible redundancy, the
enhanced displacement field djf(x, y, z) must be free of rigid body mode, or orthogonal to
the classical displacement vector d(z,y, 2) in other words (Figure .

U, A

Complete 3D solution

Solution enhancement considering
w Warping-distortion kinematics

ps
U™ ps displacements

Solution obtained with a
classical beam-theory

u,

Figure 3-10 — Orthogonality condition of displacement field [3].

Le Corvec [62] used a projection matrix P,. to enforce the orthogonality of the sectional
interpolation functions Sjx(y, 2) to the classical field d’ (z, y, 2). This matrix is constructed
from two other matrices: a matrix R consists of three vectors describing each rigid body
mode of the section plane, and a matrix V which is defined as the product of the classical
displacements dfe (z,y, z) with the vector of sectional interpolation functions S(y, z). The

new expressions have been obtained for S(y, z) and the sectional forces in equation m

S(y,z) = P,S(y, 2) (3.67a)
D% (z) = P,D%(z) (3.67b)
DW*(z) = P,D%(z) (3.67c)

In our model, we use the method proposed by Capdevielle [I5] which is based on

the suggestion of Le Corvec, but allows to modify directly the expression of sectional
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interpolation functions S (y, z) without using the projection matrix P, thus reduce the
complexity and the calculation cost. This method is originally developed only for the
warping field and then extended to the distortion field by the authors. For the warping,
only the axial component U® of enhanced field is considered. Knowing that the axial
component UP of classical field is generated by a basic set (1,y, z), the projection of
sectional interpolation functions S;x(y, z) on the orthogonal space to UP gives the following

new expression of Sj(y, 2):

1
Yy z
S (y; ) jk‘ y, // Sjk Y,z (al a—2 a—3> dA Yy (368)

z

with the following definition of the constants a;:

a, = // dA:; ay = // y2dA; as = // 22dA; (3.69)
A A A

The derivations of these new interpolation functions with respect to y and z are expressed

055y, 2) 6s]k Y, 2 // .z
7 ) )
Oy (3.70)

054 (y, 2) asjk Y, 2 // Sz
0z TR

For the distortion field, knowing that the transversal component VV? and W? of classical

as follows:

field is generated by two basic sets (1, y) and (1, z), respectively, the projection of sectional
interpolation functions S;i(y, z) on the orthogonal space to V? and WP gives the following

new expression of Sj;(y, 2):

Sie(y,2) = Sjr(y, 2 // (Y, 2 ( a%) dA i (3.71a)
S (W, 2) = Sir(y, 2 // (Y. 2 ( a%)dA ; (3.71b)
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and the expression of their derivation with respect to y and z:

dy dy
aSY (y, )
:2) 08y z) // Sy, 2)—dA
0z 0z A as (3.72)
0S¥ (y, 2) 981y, 2)
jk \I» _ jk\Y, < . ) g
Oy Ay / /A Sy, z)asz
053 (y.2)  9Su(y,2)
0z N 0z

It is worth to mention that the sub-index U, V and W in the new expression of
interpolation functions indicate that the corresponding interpolation functions are only

used for the components U¢, V¢ and W€ respectively.

3.4.3 Solution scheme

The present FE formulation is programmed using Matlab according to the solution schemes

illustrated in Figure [3-11

Saint-Venant Warping function Lagrange polynomials

QD

@- e —@ Element

B,(x) B,(x) B: (%) L) BI(X L(x)
B ------ »D e x P £
7, S S wr Syz(yyz) Ds DSp
a,(y,2) a,(y,2) a’(y,z) a’(y,2) ai (v.2)
K S,(y,2)
(e ——(s1) S,.(y.2)

Figure 3-11 — Resume chart for the multi-fiber FE beam in displacement-based
formulation.
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3.5 Regional constitutive model for RC members

In the model formulation described above, the determination of the constitutive relation-
ship between the stress and the strain in Equation (3.36|) requires to define an adequate
constitutive equation and material law. The consistent constitutive model must be able
to represent the typical effects of RC members such as the cracking, the stress-stiffening
effect or the compression softening effect due to transverse tensile strains. According
to the section discretization as described in Section [3.1, in this Section the constitutive
equations and the material laws for each discretized region will be described in detail.
The material stiffness matrix as well as the regional stiffness matrix K, K?P or K37
are obtained as a result. Then, for the entire section, the sectional stiffness matrix in

equation is obtained by summarizing all these regional stiffness matrices:
K, = KI” + K?P + K3P (3.73)

The element stiffness matrix in Equation ((3.48|) can then be determined and assembled

into the structural stiffness matrix.

3.5.1 1D-Zone

This region takes into account only the contribution of the longitudinal reinforcing steel
(rebar), and the only stress accounted for is the axial component o,,, which can be easily
computed from the axial strain using an uniaxial behavior law of steel. In this work, a
bilinear elasto-plastic steel model is used in both compression and tension (Figure .

O

:I:fsy

Figure 3-12 — Stress-strain relationship for steel.
where
4. steel’s strain;
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0, steel’s stress.

fsy: steel’s yield strength.
E,: elastic modulus of steel.
E,: plastic modulus of steel.
syt steel’s strain at yield.

The stress vector can be expressed by:

olD Bl E, 00 glD
0 0 0 0 0 Vez

Where E; is the secant or tangent modulus of steel. From the material stiffness matrix
k}D , the 1D-regional stiffness matrix KiD can then be determined using the kinematic

condition in Equation (|3.43)).

3.5.2 2D-Zone

This region corresponds to the portion in which the transverse steel crosses in one direction
and may also have the contribution of longitudinal reinforcement bars. In this 2D-zone,
the constitutive behavior of materials is based on the original MCFT [112] as described
in Section 2.4.1]

Corresponding to the sectional analysis of a frame element, in which only warping
phenomenon is taken into account and distortion of cross-section is neglected, the stress
state of this zone has only two non-zero components instead of three: one axial and one
transversal which correspond to the direction of stirrups. This results in a stress vector

T
s?f_?h = (Um Tay ()) (in the zone of stirrups disposed in horizontal direction or horizon-

tal stirrups - called 2D-horizontal zone) or s37, = ( oo 0 T:cz>T (in the zone of stirrups
disposed in vertical direction or vertical stirrups - called 2D-vertical zone) (Figure .
It’s worth to note that, for a RC element, the contribution of transversal reinforcement
is taken into account by considering a third stress component: oy, or .., depending on
the direction of stirrups. This component must be considered firstly, and then will be
imposed to zero in order to satisfy the internal transversal equilibrium of RC members

without distortion. The stress vector to be considered in the element state therefore
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T T
becomes S?_% = (gw Ty 0 0y O 0) or S}Q_’?} = <gm 0 7., 0 0., 0> . For

the sake of generality, the full stress vector for the following will take the expression of
§2D = ( Ow Tay Tox Oyy Os Tyz>T, where some components are zero depending on
the stirrup’s direction. Corresponding to this 2D-general stress state, the 2D-strain vector
must also have 6 components e}*” = (gm Yey Yoz Egy Exz fyyz)T, but unlike in the
stress state, ¢,, (2D-horizontal zone) and ¢,, (2D-vertical zone) are not imposed to zero,
and must be determined in the process of satisfying the transversal equilibrium. However,
they will not be taken into account in the sectional analysis thereafter, except for the

distortion phenomenon.

3.5.2.1 In-plane frame system

Knowing that the original MCFT is designed for membrane members, it is practical
to explore the constitutive formulation of this theory in an in-plane frame system of
coordinate axes (I,t) following the longitudinal and transversal direction (Figure [3-13]).
For this, a change of reference is applied to transform the strain vector from the local
frame system (z,y, z) to the in-plane system (,):

e’ = T;pef” (3.75)
where ;, is the index of parameters expressed in the in-plane system, T, is the transfor-

mation matrix:

1 0 0 0 0 0
0 0 0 cos!a  sina  sinacosa
0 cosa sina 0 0 0
T;, = (3.76)
0 0 0 sina  cos’a —sinacosa
0 —sina cosa 0 0 0
0 0 0 —sin 2« sin 2« Cos 2«

« is the rotation angle between the two frames whose value is either 0 for the 2D-horizontal

T
zone or — for the 2D-vertical one.
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local coordinate system
A Z

in-plane system

l /

X X
=
y a=90° a=0°
2D vertical 2D horizontal
zone zone

Figure 3-13 — In-plane frame system

As a consequence, the in-plane strain vector becomes:

T

e;‘;f)h = <€M €y Yoy Ezz Vaz ”sz) 2D-horizontal (3.77a)
T

€ = (c0r €0 Ve Ewy —ey —e)  2D-vertical (3.77b)

Only the first three components are considered in the in-plane coordinate system, the

others are given a null value, so:

€l Exx Exx
el =g | = g,y | (2D-horizontal) or | ¢ . | (2D-vertical) (3.78)
it Vay Vaz

Among these 3 in-plane strain components, ; and v;; can be obtained from the kine-
matic condition in Equation (3.18)), while &, must be handled separately by satisfying
the transversal equilibrium conditions. The determination of ; as well as the transversal
equilibrium follow an iterative process and will be described later. Corresponding to this
T
strain vector, the in-plane stress vector has 3 components: s?f = <0‘l oy th) . The
stress and strain vectors are related by an in-plane material stiffness matrix Dpr :
2D 2D 2D
sip = Dj, e, (3.79)
The contribution of concrete and reinforcement are added separately to the material

stiffness matrix and the stress vector of the in-plane frame (Figure [3-14)):

s =si0 4870 (3.80a)
D}’ =D}’ + D;”, (3.80b)

where D7 is the concrete stiffness matrix and D77, is the stiffness matrix of reinforce-
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ment. While Df]fs can be set up easily in the in-plane system, it’s more convenient to

express the concrete relation in principal directions of crack, as described in the original

MCFT (Figure [3-14)).

q a RO
T, i 2 T’Qi 1 4
17 '
| g 0 o R
T/t Tlt
g 7 |
Reinforced Concrete Concrete Reinforcement Steel

Figure 3-14 — Stress composition for RC members in the MCFT [110].

A change of reference from principal direction to in-plane axes systems is therefore

required as described in Equation ([2.11]), and Equation (3.80b)) becomes:

D7 = T:PTD2 TP + DY) (3.81)

prin,c ip,s

Where T?? is the transformation matrix described in Equation (2.13)). The direction of

principal strains # can be determined from the in-plane strain vector using Mohr’s circle:

0= %arctan < e ) (3.82)

€l — &t

2D

prin.c Call be evaluated in secant-

The concrete stiffness matrix in principal direction D
stiffness based as described in Equation ([2.12)), or in tangent-based as described in Equa-
tion (2.14)). The expression of D27 . depends on the stresses and strains of concrete in

principal directions. The concrete strains €; and €5 can be obtained from the in-plane

concrete strain vector ej’ and the transformation matrix T27:

T
eﬁ%,ﬁ(& €9 712) :T?Deff (3.83)

From theses principal strains, the concrete principal stresses o; and oy can be deter-

mined from the uniaxial stress-strain relation as described in Section The principal

. . 2D . . . . 2D o
stiffness matrix Dy, . in Equation (3.81) and the vector of principal stresses s, . =

(01 o 0> are all obtained, as well as the concrete constitutive relation in principal
directions as follows:

s2h =D el (3.84)

prin,c prin,c - prin,c
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The in-plane stress vector of concrete in Equation (3.80al) can be obtained thanks to the
hypothesis of same principal directions between strains and stresses:

2D _ m2DT_2D
Sip,c - Tc Sprin,c (385>

Considering the reinforcement’s contribution, the steel stiffness matrix is expressed in

the in-plane coordinate system:

plesl 0 0
D =1 ¢ Ey 0 (3.86)
1p,S PstList :
0 0 0

where the modulus of longitudinal (transversal) reinforcement Ey (Ey) can be expressed
in secant or tangent-based, using the in-plane strain components ¢; (£;) in Equation ({3.78])
and the steel behavior law in Figure ps and pg are the reinforcement ratio in the

in-plane directions [, ¢ respectively, which have been determined as follows:

Asl

Psl = "5p (3.87a)
Ay P,
Pt = s (3.87D)

where A,; is the total area of longitudinal reinforcing steel situated in 2D-zone, A% is the
area of 2D-zone, A, is the area of one leg of a transverse steel bar, P,; is the perimeter of
the stirrup centerline in 2D-zone and s denotes the average spacing of stirrups. It should
be noted that the reinforcement percentages are evaluated with respect to the discretized

cross-section area.

3.5.2.2 Transverse equilibrium

All the expression of constitutive equations above can not be determined without the in-
plane transverse strains ;, which can be calculated by satisfying the condition of trans-
verse equilibrium between concrete and stirrup at each material point. This condition is

expressed by the following relation:

PstOst + (01 sin? @ 4 o4 cos? 9) =0 (3.88)
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2D
ip

(regarding Equation (3.80a)) and (3.85))). In order to satisfy this condition from unknown

In other words, the transverse stress o; of the in-plane stress vector s;” must be zero

value of ;, a numerical iterative process using Newton-Raphson method is carried out

(Figure |3-15). The kinematic conditions in Section and give the components ¢

2D

i » while an initial value is given to the unknown

and 7;; of the in-plane strain vector e

transverse strain equal to that of previous iteration: e, = £/~'. Then the constitutive

equations above can be expressed to determine the in-plane stiffness matrix D?IP and

stresses S?pD . Equation 1' gives:

2D 2D 2D
01 Dip,ll Dip,12 Dip,lS €l
2D 2D 2D _ 2D 2D 2D
Sy =Dipey = o | = Dipor Dipas Diyos €t (3.89)
2D 2D 2D
Tit Dip,?)l Dip,32 Dip,33 it

By imposing o; = 0, one obtains the following expression of &;:

2D 2D
B Dip,2lgl + Dip,zg’Ylt

2D
ip,22

(3.90)

Et =

the difference between the value of ¢; in Equation (3.90) will be compared to the initial
€ — a‘fl
gt

value €/~' and the convergence is achieved when the control parameter is

smaller than a specified tolerance.

3.5.2.3 Transformation to local frame system

After determining the transverse strains and stresses in the in-plane system following the
equations above, another change of reference needs to be applied to transform the stress,

strain vector and the stiffness matrix to the local frame system:

DY 0
D¥ =Tl |7* T, (3.91a)
0; O3
spP = T)si2P (3.91b)
si?” = D3Pe” (3.91c)

Where 03 is a (3 x 3) zero matrix, resulting from the exclusion of unnecessary strain

T
components in Equation (3.77)); sjﬁD = (s?pDT 00 0> is the full in-plane stress vector.
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Local frame Kinematic to be
system condition determined
-
e2flih/v = (gxx }/xy /7/xz g;:/d /g?zld
f
In-plane frame pre'\fi% s
system iteration
' |
@4 Steel behavior Agt = (D?D'i )_1 At
Concrete behavior ~ + l ! i !
2D,i 2D,i
Dip,cI Dip,sI I ‘ -
A I+ — O _ I
| I o, o
" Yip ..
' i=i+l
Transverse equilibrium @
condition
YES
v
2D
€ip :(‘9| & 7|t)

Figure 3-15 — Iteration process satisfying internal equilibrium between concrete and
transverse reinforcement

The 2D material stiffness matrix in Equation (3.91al) can be expressed as follows:

_DZD

ip,11 Dz'zp?IS 0 D?p?lQ 0 0 D?p?ll 0 Di215)13 0 Di2pL,)12 0
D0, D 0 D, 0 0 0 0 0 0 0 0
D D D
D20, 0 0 0 0 0 0 or D — Di2p,31 0 D3p733 0 D§p732 0
=" Ap pooo pEo. oo o 1909 0o 0o 0o 0 o0
ip21 ipas ip.22
0 0 0 0 0 0 Dz'2£21 0 D%f% 0 D?p?m 0
0 0 0 0 0 0 0 0 0 0 0 0
(3.92)
and the full stress vector:
T T
S}Q_lz = <am Toy 0 0y 0 0) = (al e 0 o 0 O>
(3.93)

T
s}‘?_’i—(am 0 7w 0 0. 0) _(Uz 0 7 0 oy 0)

Knowing that o; = 0 to satisfy the internal equilibrium above, the following static con-

densation can be established with the aid of Equation (3.91c), for the 2D-horizontal zone
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first:

2D
Oyy 0 D’?pl?ng-Tl' + Dz‘Qpl,)23%y + Dz‘215)225yy
0 =10]| = 0
0 0 0
I=h op (3.94)
Eyy Dizpl,)Ql D?p%s 0 Exa
1
=10 — 7 0 0 0 "
Dz'2p1?22 7 Y
0 0 0 0 0
f—h
and for the 2D-vertical zone:
2D
0 0 0
Oz = 0 = D?;f)ngmx + Dz2p[,)237wz + D?}?QQgZZ
0 0 0
= 9D (3.95)
0 0 0 0 Era
1
= Ezz = - D?D 0 D?D 0
D?}EQZ p,21 P,23
0 . 0 0 0 Yoz

Then, the stress vector s?cD used in the sectional analysis can now be expressed as follows:

Ozx D??p?ll Dzzpl,)ls 0 €z Dzzp?12 00 Eyy

S?Bh: Tay | — D'szl,)Sl Di2pl,)33 O [ Yaw [ T Dzzpl?32 00 0 (3.962)
0 0 0 0 0 0 0 0 0

2=l o0 |=] 0 0o o ol+lo o o] (3.96b)
Tz _DiQ]??)l 0 Dz'21?33_ Tz _0 D?;E?)Q 0_ 0

From Equation (3.94), (3.95)) and (3.96)), the following material constitutive relation can

be obtained in 2D-zone:

si” = k}e}” (3.97)
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with the expression of the material stiffness matrix:

2D 2D 2D 12D 2D 2D
Dip,ll Dz‘p,13 0 1 Dip,12Dip,21 Dip,lQDip,23 0
2D 2D 2D 2D 12D 2D 2D
kf*h Dip731 Dz‘p,33 0 D.2D22 Dip,QlDip,SQ Dip,23Dip,32 0 (3.98a)
Zp?
0 0 0 0 0 0
2D 2D 2D 12D 2D 2D
Dip,ll 0 Dip,l?) 1 Dip,12Dip721 0 Dip,12Dip,23
2D _
kiZo=| 0 0 0 |7 0 0 0 (3.98b)
ip,22
2D 2D 2D 12D 2D 2D
_Dip,?;l 0 Dip,33_ _Dip,QIDip,32 0 Dip,ZSDip,?)Q_

Using Equation 1) the 2D-regional stiffness matrix KiD can then be determined from
the material stiffness matrix k?cD . An algorithm for determining the material stiffness

matrix of 2D-zone kch is shown in Figure m

Iteration Process

ezo |
f-hiv i
v :
12D H
S TR R | i
A : :
T ' 1

2D 2D ip 2D 2D
e, D | "~ D?*®| — |k
p ip f f
| f I
l In-plane ! |
Frame i !
2D ! i
Sip ' i
v E i
12D :
ST :
‘ !
2D i
Sf—h/Vﬂ. _____________________________

Figure 3-16 — Process determining the material stiffness matrix of 2D-zone

3.5.3 3D-Zone

This zone corresponds to the regions of concrete in which transverse steels come across in
two directions (the four corners of section) and the regions of concrete in the core of section

without any reinforcement (Figure [3-2a)). In this 3D-zone, the constitutive behavior of
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materials is based on the extension of the original MCFT, proposed by Vecchio & Selby
[112], which will be detailed in the following.

Similar to the 2D-zone, in the case where only warping is taken into account and
distortion is neglected, the stress state of this zone has three components: one normal
04 and two transverses 7., and 7, included in a stress vector s?cD = (CTm Tay TM>T.
Same as in the 2D-zone, in the 3D-zone even though only 3 stress components are con-
sidered in the sectional analysis, the full stress vector has a total of 6 components s}?’D =
(gm Tey Tez Oyy Oa Tyz>T. The three components o, 0., and 7,, will then be set
to zero in order to satisfy the internal equilibrium without distortion. The corresponding
strain vector has therefore six components: e} = <gm Yey Yoz Eyy Eaxz fyyz>T. Un-
like the stress vector, three strains €,,, €., and 7,. are not zero, but they are not taken
into account in the sectional analysis, as the distortion phenomenon is not considered in
this work.

*3D *3D

The full stresses 87" and strains e}*” are related by a material stiffness matrix D?D

in the following constitutive relation:
5’7 = DjPe” (3.99)

Similar to the two dimensional case, in 3D-zone the material stiffness matrix DiiD can be

determined as a superposition of concrete and reinforcement:
3D 3D 3D

The steel stiffness Dz}f; can be set up easily in the local frame system, while the deter-

mination of concrete stiffness matrix D?}IC’ required a change of reference from principal

directions to local axes. Equation (3.100) becomes:

D}’ =T!D}", . T.+ D} (3.101)

prin,c

The concrete stiffness matrix D37 . in the principal direction can be evaluated in a
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secant-based as proposed by Vecchio & Selby [112]:

or in a tangent-based approach:

0

3D
prin,c ~ 0

(901,
861
0oz do,
dey  Oe
30§ 02
3D _ | Og
prin,c 0 0
0 0
0 0

Ey

0
Ey

0 0 0

0 0 0

FEs 0 0

i E
0 —2 0
Ei + B,

0 0o _fefs
Ey + Es

0 0 0

) E2 = @7
€2
0
0
0
01 — 02
2(51 —62)
0
0

0

0
o1 — 03
2(e1 — e3)
0

2(eg —€3) |

o O O O

L, E;
E), + B3

0

0

09 — 03

(3.102)

(3.103)

(3.104)

T. is the transformation matrix composed of the direction cosines which define the direc-

tion of the principal concrete strains:

[ 2 Lima
I3 Lo
12 lsmeoy

20,15

2153

ming
mana

masna

llmg —+ l2m1 ming + Maony

lams + lsm2 maonz + many

2[3[1 l3m1 + l1m3 many + ming

m? n3 nily

m3 ns nals

m3 n3 nsls
2m1m2 2711712 n112 + n2l1
2m2m3 2712713 n2l3 + n3l2
2m3m1 2n3n1 7’L3l1 + n1l3

(3.105)

The concrete strains in principal direction €1, €9, €3 (€1 > €9 > €3) and the direction

cosines are calculated from the eigenvalues and eigenvector of the strain tensor, obtained

110



from the kinematic condition in Equation . The concrete stresses in principal direc-
tions oy, 09, o3 are then deduced from the uniaxial stress-strain relations in Figure [2-19]
According to Vecchio & Selby [112], in direction 3 (the direction of principal compressive
strain), the compressive stress o3 depends on the strain compressive strain €3 and the
tensile strain e1: 03 = f(e3,€1). In direction 1 (the direction of principal tensile strain),
the tensile stress o7 depends only on the tensile strain e1: 07 = f(g1). Finally, in the
intermediate direction 2 (that can be compressive or tensile), the stress oo depends on e
and e1: 09 = f(e9,61).

Then, for the reinforcement’s contribution, the steel stiffness matrix is expressed in

the local coordinate system as:

By 0 0 000
0 pyBu 0 000
pw—| 00 pale 000 (3.106)
0 0 0 000
0 0 0 000
0 0 0 000

Similar to the 2D-zone, the modulus of longitudinal (transversal) reinforcement Eg (Est)

can be expressed in secant or tangent-based, using the strain components e, (7,, and/or

vzz) and the steel behavior law in Section and Figure [3-12} ps,, psy and ps, are
the reinforcement ratio in the directions of x, y and z, respectively, which have been

determined as follows:

Asl

P = b (3.107a)
Ay P!

Psy = A;st’* (3.107b)
Ay Py

— st (3.107¢)

Psy = A3Dg
C

where Ay is the total area of longitudinal reinforcing steel situated in 3D-zone, A3P is the
area of 3D-zone, Ay is the area of one leg of a transverse steel bar, PY is the perimeter
of the stirrup centerline disposed in horizontal direction and P is the perimeter of the
stirrup centerline disposed in vertical direction in 3D-zone; s denotes the average spacing
of stirrups. It should be noted that the reinforcement percentages are evaluated with

respect to the discretized cross-section area.
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As mentioned above, the internal equilibrium is satisfied by imposing the stresses
components o, 0., and 7,. equal to zero. Regrouping these three stresses into one single
vector s} = (gyy 0., Tyz), with the corresponding strain vector 3 = (5yy €.s ”sz)a

the constitutive relation in Equation ([3.99) becomes:

3D 3D 3D 3D
;3D D3D >(<3D PN Sf _ Df 11 Df 12 ef (3 108)
si? Df 21 Df 22 eof
A static condensation is realized to obtain the strain vector eg? :
e?}D
3D _

sif = D, DB, '] =0s=elf = = (D33) " DIl (3.100)

€,r

The non-zero terms e> f in the strain vector e}w , which can not be determined from the

kinematic condition, are calculated from the equation [3.109, The stress vector s3 f used

in the sectional analysis is therefore expressed by:

D D
=D} 1lef + D3} 12€of D3 llef - D%m (D?;,22) ‘D4 21ef

3D 3D 43D (3.110)
with the expression of the material stiffness matrix in 3D-zone:
ki” = DI, - D32, (DD,) ' D5, (3.111)

The process of determining the material stiffness matrix k:}D of 3D-zone is generally
similar to that of 2D-zone in Figure [3-16, except that the transformation to in-plane
frame system is not necessary. The regional stiffness matrix K3 can be calculated from
k3P using Equation (3.43)).

In this mechanical model for RC member, the constitutive model is formulated general
enough for being used for any shape of cross-section and any type of formulation (forces

or mixed based) in further studies.

3.6 Effective wall thickness

An important parameter to consider carefully in this discretization is the width of the 2D-

zone. However it is not validated by a specific rule, but only suggested equal to the double
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of concrete cover over the transverse reinforcement [76]. Taking care of this indication,

during the construction of the model, two remarks have been concluded by the authors:

1. Under shear-bending: the choice of 2D-width does not have much influence on the

numerical results, as observed by the authors during the numerical modelings.

2. Under pure torsion: a lack of definition for the 2D-width can pose some critical
problems to the numerical result, in other words, such a simple formulation (as
suggested by Navarro Gregori) can not represent accurately enough the torsional

respomnse.

These remarks can be explained by the fact that as mentioned above, under torsional
effects, the behavior of RC member after cracking is assumed to be carried out by a tube
of hollow section. That is to say that the behavior of 3D-zone of the concrete in the section
core is set to zero and the sectional behavior depends only on 2D-zone and 3D-zone at the
four corners of section. The width of 2D-zone is defined as the effective wall thickness of
the tube, and determining this parameter becomes an obvious question to investigate the
post-cracking behavior of RC members under torsional effect. In shear-bending, a lack of
definition for the 2D-width can only pose some small problems in the calculation of steel
percentage for each region, but it does not have as much influence to the numerical results
as in the case of torsional effect.

In the literature, several formulations were proposed: Rahal & Collins proposed an
average value of the effective thickness of concrete in resisting the torsional moment which
depends on the section dimensions [88]; the formulation used in the model of Valipour &
Foster is a function of stirrup’s spacing, reinforcement bar disposition and concrete section
dimension [T06]; while Hsu proposed another formulation for design based on the torsional
strength [47]. After consulting the proposed formulations cited above and a formulation
calibrated by Hsu [46], the authors noted that the effective wall thickness should be a
function of the section width and of the reinforcement ratio. A parametric study was

investigated from the 45 specimens below and gave the following formulation:

e For usual repartition of reinforcement bars at corner:

h
te=b (0.0l?)()gmps + 0.1) (3.112)
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e For repartition with additional of reinforcement bars along the perimeter:

h
te=1b <O.00885mp3 + 0.1) (3.113)

where p, is the reinforcement percentage; b, h the section dimension; m is the ratio be-
tween longitudinal and transversal reinforcement and m < 1.5. The details of parametric
study as well as the explication of two proposed formulation following the repartition of

reinforcement bars over the cross-section are described clearly in Section [4.3]

3.7 Conclusions

In this chapter, an enhanced multi-fiber 3D beam element for RC members subjected
to combined loadings has been developed. The proposed model is able to take into ac-
count the material nonlinearity, the warping effect of cross-section, the contribution of
transversal reinforcement, and eventually the concrete confinement.

Between two enhanced approaches, the Saint-Venant warping function’s formulation is
simpler and requires less calculation time. However, the use of the formulation developed
in Section is limited to solid cross-section. For a thin-walled cross-section, additional
DoF's need to be added and as a consequence, change considerably the variational for-
mulation in Section [3.4.1] In the other hand, the development of Lagrange polynomials
approach is quite complex and requires more coding functions as well as calculation time,
however its application is general and can be used to study the distortion phenomenon,
as described in Section The variational formulation developed in Section [3.4.2] is
also general and independent to the type of cross-section.

Regarding the constitutive model, the contribution of transversal reinforcement is
taken into account by the iteration process satisfying internal equilibrium between con-
crete and stirrup, while the static condensation in 2D and 3D zone ensure the coupling
between multi-axial efforts. The concrete behavior is based on the original MCFT [I10],
as described in Section however other suitable uniaxial stress-strain relationships
in compression and tension can also be applied in the constitutive model of the proposed
formulation, such as Stevens et al.’s model [103].

The model formulation was written in Matlab, thanks to its powerful for handling

matrix expressions. The model code can be further translated to more efficient languages

such as FORTRAN, C++ or Python.
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Chapter 4

Numerical analysis of Concrete and

RC members under Pure Torsion

The present chapter is dedicated to the numerical analysis of concrete and RC members
subjected to pure torsion. An enhanced multi-fiber 3D beam model is proposed. This
model takes into account all the aspects of torsional effects, including the warping phe-
nomenon, the behavior before and after cracking as well as the contribution of stirrups. It
is worth to note that this proposed model is the improved version of the multi-fiber frame
model proposed by Navarro Gregori [70], taking advantage of its sectional discretization
which is very suitable for the specific behavior of RC elements under pure torsion. For the
constitutive model of concrete, the MCFT is employed, due to its suitability for multi-fiber
section discretization, as well as its simplicity and its wide use in engineering applications.
A new constitutive model for concrete under torsional effect will be proposed based on
the fact that numerical cracking torsional moments are reduced about half of the exper-
imental values when using the original MCFT as concrete constitutive model [53]. The
numerical examples are then compared to the analytical and experimental results for the
validation of the proposed model.

The Chapter is organized as follow. A brief summary of torsion theory and the expres-
sion of warping function is presented firstly in Section .1} Next, the element formulation
and the proposed constitutive model of concrete, which are specifically developed for RC
members under pure torsion, are respectively described in Section [4.2] and Section [£.3]
The following sections and deal with the numerical examples in elastic and in-
elastic material regime. Finally, Section summarizes the Chapter and offers some

conclusions.
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4.1 Theory of Torsion

The problem of torsion in a straight member was first investigated in 1784 by Coulomb
[277], during his study of the property of electric charges. When carrying out the torsional
oscillation of a weight suspended on a wire, Coulomb found that torsional moment is
proportional to the angle of twist. This discovery was then introduced in a theoretical
equation for torsion by Navier [77] in 1826, in which the proportionality between torque T
and twist angle # is represented by a constant called the torsional rigidity. This constant
is equal to the multiplication of the modulus of rigidity (shear modulus) G and the polar
moment of inertia /,,:

T =G0 (4.1)

However, this theory was limited to members with a circular section: torsional tests made
by Duleau [32] in 1820 noted a 20% difference between the moduli of rigidity for a circular
and a square section. This difference was then explained by a change of sectional rigidity,
caused by a particular phenomenon called warping, meaning that the cross sections, under
torsional effect, are deformed and come out of their original plan. In Figure[4-1] the signal
+ means that the cross-section come out following the positive direction of x axis, while
the signal — indicates that the warping follows the negative direction of x axis. The iso-
curves in solid represent the points having the same warping magnitude in the positive
direction, while the iso-curves in dashed line represent the points having the same warping

magnitude in the negative direction.

Figure 4-1 — Warping for several non circular section [97].

This warping phenomenon was first solved by Saint-Venant in 1855 using mathematical
tools included the Fourier series and the theory of elasticity. For the problem of torsion of
a straight element with an arbitrary cross section, Saint-Venant proposed to substitute the
polar moment [, in Equation by a new constant J called Saint-Venant’s torsional

constant, whose expression is explicit and can be widely found in the literature. The

116



product of the shear modulus G and Saint-Venant torsional constant J is defined as the
torsional rigidity. For a beam of length L, the quotient of the torsional rigidity and the
beam length L is defined as the torsional stiffness.

To represent the warping phenomenon, although the use of torsional constant is explicit
and can be easily formulated, its use is limited to sections of regular shape. Moreover,
since this parameter is computed for the whole section, it is impossible to apply this
constant into a finite element sectional fiber approach. In this case, Saint-Venant also
proposed another approach to represent the warping phenomenon, using a function called
Saint-Venant warping function which depends on the coordinates of material points in
the cross-section. This function is formulated by a semi-inverse method, and is restricted

to linear behavior with two assumptions:

1. Cross-section shape remains unchanged after twisting. In other words the distortion

phenomenon is neglected;

2. Warping of the cross-section is identical throughout the length of the member. This

assumption recalls to the problem of uniform torsion.

According to Saint-Venant, the warping function is described as a solution of the Neumann

problem:
2 2
?97#) + g—qf =0 in Q (Laplace equation) (4.2a)
81/1 o "
8y T Enz = zn, — yn, on J (Neumann boundary conditions) (4.2b)

where (2 represent the domain of cross section and 0f2 its boundary, n, and n, are the
vector normal to the boundary. Exact solution can be expressed for any arbitrary kind of

solid cross-section, for example the rectangular cross-section [39]:

h 2n —1 inh 2n —1
P e I I S o — 1 e U o — 1
=3 Z (2n sin ( n 71'2) —h? sin ( n 7ry>
n:l

—1 on—1 h b on—1 b\ h
COS —_— T = COS —_— =
b 2 h 9

where b is the section width and h is the section height, with b < h. A simplified

(4.3)

exponential expression was proposed by Xu et al. [115]:

b b
Y(y,2) = Apexp [51n <y - 5)] + By, exp [—5271 (y + 5)] - % —yz (4.4)

where h is the section height; a is the shear modulus ratio; A is the gradient factor; and
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Bin, Bon, Cp and &, are defined as follows:

n—1
[ A2 A [ A? A nm 8b (—1) 2
— - 2¢2 _ . - - 2¢2 - - - A S
ﬁln 4h2 +Oé é-n 2h7 62TL 4h2 +Oé £n+ 2h’ én b I Cn 7T2 ’I’L2

with b is the section width and b < h. If the material is isotropic, A = 0, in this case:

[1 —exp (—hfB2)] Cy . _ [1 —exp (=hfin)] Cy

A= Bl —exp[~h (Bin + B2)]} " Bon{exD [ (Bun + Bon)] — 1}

In this exponential expression, the index n is impair (n =1, 3,5, ...).

Instead of warping function ¢ (y, z), Prandtl [86] also introduced a stress function
®(y, z) to represent the warping, with simpler equations for the boundary condition and for
the torsional moment. Otherwise, there are other approaches to interpolate the warping
function to solid or composite cross-section, as described in Chapter[2l Solving the warping
problem is indispensable to figure out the torsional response of a straight element with

an arbitrary cross section in the elastic behavior range.

4.2 Beam FE formulation for Pure Torsion

Under pure torsion, the torsional rotation 6, is the only generalized displacement to
be considered at sectional level, and the vector of nodal displacements reduces from 12
elements to only 2 values of nodal twist angle: q.; = <9£ o7 )T. Here as sequel, the
sub-index ¢ is used to denoted the parameters under pure torsion. Using the kinematic

relation in Equation (3.2)), the twist angle 6, and the twist rate , are then equal to:

B l—z ;, x ; _(l1—-x = Hi -
91,(113') - T gz + Lex - ( I Z) QJ - Ns,t(z)qe,t (453)
_00,(x) 6! B
Re = ax - (-]_ ].) 9] — Bs,tqe,t (45b)

N;+(x) and B, (z) are two interpolation matrices in pure torsion formulation. Hereafter,
the sectional and element state determinations are described following two approaches for
enhanced displacement field: using Saint-Venant warping function and using Lagrange

polynomials.
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4.2.1 Using Saint-Venant warping function

Under the hypothesis of small displacements, from Equation (3.17)) the following kinematic
relation is established for the material displacement field under pure torsion according to

Saint-Venant torsional theory:

Ut(x,y,z) - /{$¢(y72)
Vi(z,y,2) = —z0,(x) (4.6)

Wiz, y,2) = y0.(v)

The material strains, grouped in a single strain vector ey (y, z), are evaluated as follows:

o
Yoyt = (—Z + 8_y) Kg = ey, 2) = ap(y, 2)ky (4.7)

_ oy
szz,t - (y + 82) Ry )

with the definition of the compatibility matrix as follows:

% a¢>T (4.8)

af7t(y,z):<() —Z—i-a—y y+$

Once the strain vector ey, is obtained at each material point, an appropriate material

law is applied to determine the material stresses, which are collected in a single stress
T

vector sy, = (gm Tay sz) . The constitutive relation can be established with the aid

of the material constitutive matrix k; as in Equation (3.36)):
osf = kyoer, (4.9)

Under pure torsion, the mechanical and constitutive model is based on the one described
in Section [3.5] and will be specifically developed for RC members in Chapter [4]

Then, the element equilibrium is imposed by means of the principle of virtual work as

in Equation ((3.37)):
oW, =W, = [[[ sefispudv = sal,Qui+ [ 00,0 Tude (a10)
14 L

By exploiting the left hand of Equation (4.10f), the following expression is obtained for
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the torsional moment:

Mxys(x) = /\A a?’tSﬂtdA = \///; agc_:tkf,taﬁtdA/ix = K&tlfx (411)

with K, defined as sectional stiffness matrix. Then, with the aid of equations (4.5a)) and
(4.5b)), the Saint-Venant warping function approach gives the following expression for the

element equilibrium in Equation (4.10):
Ke,tqe,t = Mm,e + / NZtTudI (412)
L

with M, . the nodal torsional moments and K., ; is defined as the element stiffness matrix:

K., = / B! K, B, dz (4.13)
L

Similar to the proposed formulation for combined loading in Chapter [3| the element state
determination is completed with the calculation of the stiffness matrix K. ; and the nodal
torsional moment M, .. In this approach, the element DoF's is only 2 instead of 12 in the

case of RC members subjected to combined loading.

4.2.2 Using Lagrange polynomials

In this approach, from Equation (3.6)) and (3.21]), we obtain:

Ut<x7y72> = f_;(:C)S(y,Z)Ue
Vi(z,y,2) = —20.(x) (4.14)
Wiz, y,2) = ybu(z)

with L(z) and S(y,z) the interpolation matrices as in Equation (3.21). The material

strains can be evaluated as follows:

OL(x)
st = S(y, z)U*°
Eaxt I (y, 2)
. 9S(y,2) . ., = e ) = a},(y, 2)ks +af,( yU*
Yoyt = —2Ka +L($)a—yU €r\t, Y, 2) = ap, Y, 2)he T A5 (T, Y, 2
r aA(y’Z)
Tzt — T L U*
Vazt = Yz + L(2) pp )

(4.15)
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with the definition of the enhanced compatibility matrices:

= (0 -2 y) 0 anwn= s s LS, @10

where a§ ,(,y, 2) is a matrix of (3 x n,.s,) which has the same expression with the com-
patibility matrix a$(z,y, z) in Equation (3.35). Similar to Section [3.4.2] in this approach
all the variables are separated into the basic and additional set, due to the introduction

of additional DoF's. The following expression is obtained for the torsional moment:

M, s(z) = // a?jgsftdA = // aftkft (aft/fx + (a?t) Ue) dA

= // ftkftaftdA/@x // a?’j;kfyta;tdAUe (4.17)

OL(x - .
= bt Ko + (Klsmtx 82)+K2ty L(z ))U

and the additional sectional forces can be also expressed as follows:
oL
Diite) = [ st o=k, + (k%0 kL) ) U
b 9 x K

L
D) = [[ Shspan=xte s (ke KL ) U

(4.18)

The expressions of the 9 sectional stiffness matrices in Equation (4.17) and (4.18) are
similar to Equation 1 , unless the replacement of the compatibility matrix a?t in the
matrix aiﬁ. Then, the element equilibrium in Equation (4.10]) can be expressed as follows:

T
K K] (a0 (Maos [ NI
L (4.19)
b
Ker Kt \U° 0
with the expression of sub-element stiffness matrix similar to Equation (3.63]), and a static

condensation to determine the values of the enhanced displacements U® and the expression

of the element stiffness matrix:

U = -K%'K%q,,
eiles (4.20)
Ke,t - Kgl,)t - KZatKCeL%TKgZ
And the element equilibrium in Equation (4.10) can be rewritten as follows:
Ke,tqe,t = Qe,t + / NthudI (421)
L
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In this approach, the element DoF's is 2 + s,,.1n,, instead of 12 + n,,.s,,.

4.3 Proposed constitutive model of concrete under

Pure Torsion

4.3.1 RC members under Pure Torsion

The mechanical model for RC members under pure torsion is based on the one proposed
in Chapter |3 using the same section discretization and the regional constitutive model as
described in Section [3.5, with some major modifications.

The first modification comes from the special behavior of RC members under pure
torsion. For a RC members, the torsional response can be divided into 2 different phases:

before and after cracking of concrete.

e Before cracking, the response of the section is considered elastic and the behavior
is very similar to that of a plain concrete member, which can be predicted by the

Saint-Venant torsional theory.

e After cracking, the material is not continuous anymore, the theory of elasticity
becomes useless and a new mechanism is required to interpret the torsional response

in this phase, as described in Chapter [

From the concept of truss model as described in Section and the experimental test
results from Hsu [45] and Onsongo [82], the behavior of RC member after cracking can
be assumed to be carried out by a tube of hollow section. This special behavior leads to
the first modification of the mechanical model for RC members under pure torsion: the
behavior of 3D-zone of the concrete in the section core is set to zero after cracking. The
non-linear torsional response after cracking therefore depends only on the behavior of the
2D-zone and the 3D-zone at the four corners of section, and the width of 2D-zone, called
the effective wall thickness, plays a significant role. The formulation of the effective wall
thickness has already been realized in Section [3.6] while the process of determination will
be described in the following section.

The second modification needs to be carried out concerning the behavior law of con-
crete under pure torsion. In compression, the same relationship as the original MCF'T
(or other formulations) may be retained, however, in tension, the concrete stress-strain

relationship must be reconsidered. This is because, as mentioned above in Chapter [If and
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Section in the original MCFT and/or in the constitutive model for RC members of
Belarbi & Hsu [9], the tensile relationship is based on experimental tests of shear panels
(the Shell Element Tester at the University of Toronto and/or the Universal Panel Tester
at the University of Houston), so not really suitable for the torsional behavior. Indeed,
Jeng & Hsu [53] recorded that the cracking torsional moment, calculated by an analytical
model based on the constitutive model of Belarbi & Hsu, is much smaller than the exper-
imental values. By conducting a systematic parametric study with several experimental

tests, another tensile constitutive law was proposed by Jeng & Hsu (Figure {4-2)):

E.. =5620/f. (f.in MPa) (4.22a)
£ = 0.000116 (4.22h)
fcr = LierEer (422C)

where FE.,. is the proposed elastic modulus; f.. is the tensile concrete cracking strength;

€. 18 the cracking strain. Before cracking, the tensile stress-strain relationship is assumed

elastic linear:

For e; < e : 01 = E.e (4.23)

while after cracking, the tension-stiffening effect is taken into account by:

0.4
For ey > e 1 01 = fo, (&> (4.24)
€1

o =EF £ <¢,

where E_=5620, f!(MPa)
4

£, =0.000116
g Eor “._ ————————
g, :-f;'r(T)D4 - A
& o

c er

Proposed model for torsion

Tensile stress (MPa)
(%]

f.=E¢, =0.652./ f(MPa)
1

0 0.0004 0.0008 0.0012 0.0016 0.002
Tensile strain

Figure 4-2 — Tensile stress-strain relationship of concrete proposed by Jeng & Hsu [53] .

This new tensile relationship is developed from the constitutive laws of softened con-
crete in biaxial tension-compression proposed by Belarbi & Hsu [9], and were then used in

the Softened Membrane Model for Torsion (SMMT) by Jeng & Hsu [53], as described in
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Section 2.3.3] As can be seen in Figure [{-2] the main difference from the original tensile
law of Belarbi & Hsu is a stronger cracking strength of concrete: the pre-cracking stiffness
is 45% higher, the concrete cracking strength f.. is 110% stronger. The cracking strain
£.- comes from observations of tests for concrete members in uniaxial tension, in which

the failure of concrete occur at a strain of approximately 0.0001.

4.3.1.1 Author’s observations

The proposed tensile relationship for concrete is modified with respect to the tensile
relationship used in the proposed constitutive model in Section |3.5 which is based on
the MCF'T as described in Section [2.4.1.1] During the calibration process, the proposed

formulation is expressed based on the following observations:

1. According to the series of torsional tests carried out by Hsu [45], the cracking torque
of a RC beam T, is a mild function of reinforcement steel percentage p, and the
cracking torque of a corresponding plain concrete beam (with the same cross-section

. . PC
dimension) T¢.

2. The cracking torque of a plain concrete beam T can be determined by several
theories in the literatures, such as elastic theory [97], plastic theory [79] or skew-
bending theory [45]. In theses formulations, TX¢ depend on the tensile strength of

concrete f; and the dimension of cross-section.

From these two observations, we can conclude that, similar to the proposition in the
model of Jeng & Hsu, the concrete cracking strength f.. must be increased and this
parameter should be a function of the concrete strength, the reinforcement ratio and
the cross-section dimension. Moreover, from the first observation, it is reasonable to

express f. as a function of the cracking strength of the corresponding plain concrete

PC

., which has already been proposed by Hsu in an

members under pure torsion

empirical equation [45]:

6452
¢ =0.76 (1 + b—2> fY3 (MPa) for b > 100 (mm) (4.25a)
f 1/3
PC—6.13 (3) (MPa) for b< 100 (mm) (4.25b)

where f, is the cylinder compressive strength; h, b are the section height and width.

3. According to experimental tests, the impact of longitudinal reinforcement steel bars
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to torsional strength is small, but can not be neglected [45].

In the proposed model, the longitudinal reinforcement bars only have an impact on
the normal stress state, so do not have any contribution to the torsional response.
Indeed, experimental tests by Hsu [45] show that, for concrete members with lon-
gitudinal steel only, the effect of the longitudinal reinforcements is small, and the
cracking torque is very similar to that of a plain concrete member. This ineffective-
ness can be explained by the location of longitudinal steels bar, which are always

placed at the corners of section beam where the shear stress is zero according to
Saint-Venant’s stress distribution (Figure [4-3al).

However, for RC members with longitudinal steel and stirrups, the cracking torque
might be a function of the total steel percentage (Figure |4-3b)). Hsu also remarked
that a better repartition (or distribution) of longitudinal reinforcement over the
cross-section will increase the cracking torque somewhat: it is the case of beam G6,

G7 and G8 in which the longitudinal bars also located at the center of the section.

e .E g % g 68/
v oo P & g 13 A x
TN Zyo B G.,//
.0 v o R o\
e BARR
S v S
e =) 12 664/ o
g Ter //A .
G Tup °
L A i
0.506 Tmax 0.591 Tmax N “ i .
X 1
0.751 Tmax hb=2 0.819 Tmax N 5 ‘A Eq.(3) ; J
b/l 0.896 Tmax 0.932 Tmax ~ '© " « s ¢
c
0.975 Tmax 0.985 Tmax : :
09 L L 1 | L 1
y [ 2 3 a 5 3
Tmax Tmax
TOTAL REINFORCEMENT RATIO, p, , (PERCENT)
(a)
(b)

Figure 4-3 — (a) Distribution of Saint-Venant stresses along edges, the shear stress at
Toy T 72 0]

each point is calculated by

) Cracking torque as a function of

reinforcement ratio in Hsu tests (1968) [45].

Moreover, during the calibration process, the authors also noted that the contribu-
tion of reinforcement bars to torsional strength comes not only from their percentage,
but also from their repartition over the cross-section. Indeed, an usual repartition of
longitudinal steel at four corners of the section (Figure[4-4a)) can result in a different
cracking torque than a repartition with additional longitudinal steel bars along the
perimeter (Figure . Therefore, the reinforcement percentage p, must become
an indispensable parameter for the formulation of cracking strength f.., and the

latter should be distinguished for different cases of longitudinal steel repartitions.
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(a) Usual repartition of longitudinal (b) Repartition with additional longitudinal
reinforcement at corners. reinforcement along the perimeter.

Figure 4-4 — Two case of distribution of longitudinal reinforcement steel bars.

4.3.1.2 Proposed formulation

From the three observations above, the following formulations are proposed for the con-

crete cracking strength of RC members under pure torsion:

e For an usual repartition of reinforcement bars concentrated at four corners:
PC b
o =Jer™ (0387 ps +1 (4.26)
e For a repartition with additional reinforcement bars along the perimeter:
PC b
for = f 0.22Eps +1.3 (4.27)

The authors decided to keep the same formulation of the elastic modulus of concrete under
torsion: FE. = 5620v/f, (f. in MPa), and the cracking strain is determined in function of
fer and E, as a result: g.. = % Comparing to the original tensile relationship of the
MCEFT in Figure[2-19D] Chapter|62|, the proposed formulation gives a higher cracking strain
and strength, while the expression of the tensile-stiffening phenomenon after cracking has
been changed to the formulation proposed by Jeng in Equation (Figure . It
is worth to note that this proposed constitutive model is the improved version of the
constitutive model proposed by Jeng [53]. A comparison between two versions will be

presented below to validate the pertinence of the new model.

o.>0

Proposed model for torsion

Figure 4-5 — Proposed tensile relation for torsion compared to the tensile relation for
shear model in the original MCFT [110].
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4.3.1.3 Calibration study

Although this new model for torsion has been showed some satisfactory responses in the
simulation compared to experimental tests, the choice of cracking strain is a bit unnatural
to the authors. This is why, the authors decided to proposed another tensile constitutive
law for RC members of rectangular cross-section under pure torsion. The proposed tensile
relationship is formulated using a parametric calibration which was studied by the authors

in 60 specimens of experimental tests, with various concrete strengths, section dimensions

and reinforcement ratios:

o Test by Hsu in 1963 at the Structural Laboratory of the Portland Cement Association
[45]: 40 specimens from 8 beam series: 9 of Series B (B2-B10), 6 of Series C (C1-C6),
8 of Series G (G1-G8), 6 of series M (M1-M6), 6 of Series N (N1-N4, Nla, N2a) 5
of Series I (I12-16). The cross-dimensions and reinforcement distributions are showed
in Figure [I-6] all the specimens have a concrete cover thickness of 20 mm, while the

material properties of concrete and steel can be found in Appendix [7.2]

254 mm For G6-G8 For M6
- only only
e 9 254 For N3, N4
M only
153 mm
& ® 254 mm —
| [[® o g
b g g g
% £ B
o
P R
N e o
Series G Series B, M, I Series C NI, N2

Figure 4-6 — Cross-section dimensions in the test of Hsu. [45].

o Test by Csikos & Hegedus in 1998 at the Technical University of Budapest [29]: 12
specimens from 4 beam series B, C, D and E, each consist of three specimens. All
the beams had the same outer dimensions (h x b x L = 130 x 130 x 2000) (mm),
while the reinforcement ratios varied both in the longitudinal and the transversal
directions. The loads are applied by steel arms which were attached to both ends
of the beam (Figure , while the twist at mid-span section was measured by
the shift of attached arms. The details of material properties and the reinforcement

distributions of each series can be found in Appendix [7.2]

o Test by Lee et al. in 2008 at the Sungkyunkwan University [63]: 8 specimens from 2
beam series: T1-1 to T1-4 and T2-1 to T2-4, with the same outer dimensions (h x
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bx L = 350 x 300 x 3000) (mm) and the concrete cover thickness of 20 mm. Similar
to the test at the Technical University of Budapest, the reinforcement percentage
and disposition varied both in the longitudinal and the transversal directions, whose
details can be found in Appendix The angle of twist is measure by the LVDT
(Linear Variable Differential Transformer) sensor, whose location and the loading
condition of test can be found in Figure [{-7b] During the test, specimens were

loaded monotonically by displacement control method.

Torque arm = 700

A

(a) At the Technical University of Taos a5 | 1500 a5 ans |
Budapest [29].

(b) At the Sungkyunkwan University
63).

Figure 4-7 — Layout of the torsion tests.

The calibration process begins by collecting all the experimental data, including the
beam dimensions, disposition and dimension of reinforcement steel, material properties of
concrete and steel, experimental values of cracking and ultimate torque. Then, according
to the author’s observation above, the following variables have been chosen for the para-
metric formulation of determining the concrete tensile strength under torsion f.. and the

effective wall thickness t.:

PC

e Cracking strength of plain concrete members under torsion f..~.

e Reinforcement percentage (including longitudinal, transversal steels and the total

ratio): psi, pst and ps.

pst

e The ratio between py and pgy: m = —.
pst

e The ratio between section height and width: 7

4.3.1.3.1 Calibration of the concrete tensile strength f. This parameter was
determined in the phase before cracking of concrete, knowing that in this phase the

torsional behavior of RC member is similar to that of a corresponding plain concrete
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member. The cross-section discretization contains therefore only the 3D-zone of concrete
fiber.

In the first time, for each specimen of test, an initial and arbitrary value of f.. (f2.)
is chosen to evaluate the initial numerical value of cracking torque 7., obtained by the
proposed model. Then, considering the experimental values, this initial value f2 is modi-
fied /calibrated in order to obtain the new values of T,.. This step must be performed until
the values of T, are close to the experimental ones, in other word the relative difference

between experimental and numerical values are as small as possible:

Tc'r _ Tezp

eTp
Tcr

R, = 100%

The value of f.. at this moment is called as calibrated value
Next, all the values of f¢ and the variables mentioned above are plotted in a diagram

in order to determine a reasonable relationship between them. The proportion of f¢. and

PO (in Equation [4.25) is put in the vertical axis, while in the horizontal axis, several

h b
possibilities have been tested, such as gps, EpSt or 7

trend fitting for two set of data. For the sake of simplicity, a linear fitting is applied for

mps, etc., in order to select the best

the data set, and the best result has been selected between various possibilities in the

b
horizontal axis (Figure l H and [4-10f). The best result can be found for the set of 7Ps
as in Equation (4 and (| -, and the final expression could be therefore deduced.

25 T T T T T T T 25

N
T

s g5
=, 15 & 15¢
n n
2 2
§ 1 § 1
> >
o
05t 1 o5t
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
X-axis = (b/h), X-axis = (b/h)
(a) Usual repartition of longitudinal (b) Repartition with additional longitudinal
reinforcement at corners. reinforcement along the perimeter.

b
Figure 4-8 — Linear fitting in the calibration process of determining f.., with —p, in the

horizontal axis.
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Figure 4-9 — Linear fitting in the calibration process of determining f,.., with
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Figure 4-10 — Linear fitting in the calibration process of determining f., with 7 Pst in

the horizontal axis.

4.3.1.3.2 Calibration of the effective wall thickness ¢. The determination of

this parameter was carried out in the phase after cracking of concrete, knowing that the

torsional behavior of RC member in this phase depends strongly on this parameter. In

this phase, the discretization of cross-section contains 3 zones as described in Section [3.5]

The same process has been applied to the determination of the effective wall thickness .,

but this time the value of ultimate cracking torque T, is used to evaluate the calibrated

value of t., the relative difference between experimental and numerical values is therefore:
T, — TP

Ry = =y —100%

A linear fitting is also applied for the data set, with the proportion of . and the section

h
width b in the vertical axis and the best fitting set values (—mp; as in Equation (3.112
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and (3.113]) in the horizontal axis (Figure4-11|), and the final expression could be deduced.

0.25

02}
o
=0 015F
LI)
§ 01r
005} 1 oost
0 : : ‘ : ‘ 0 : :
0 2 4 6 8 10 12 0 5 10 15
X-axis= (h/b)mps X-axis= (h/b)mps
(a) Usual repartition of longitudinal (b) Repartition with additional longitudinal
reinforcement at corners. reinforcement along the perimeter.

Figure 4-11 — Linear fitting in the calibration process of determining ¢..

4.3.2 Plain concrete members under Pure Torsion

Not as complex as the behavior of RC members, the torsional behavior of plain concrete
members can be represented by a typical torque-twist curve as shown in Figure at
low torque, the behavior is linear elastic, then becomes curved at high torque until a

brittle failure just after the first crack.

T

T

<2 [ j

Figure 4-12 — Typical torque-twist curve of plain concrete beam [46].

In this case, the torsional rigidity can be related to the stress-strain relation in uniaxial
compression and tension of concrete members (Figure . Generally in the literature,
the compressive stress-strain curve is approximately linear up to about one half of the
ultimate compressive strength, while a tensile stress-strain curve is approximately straight

up to failure at a strain of approximately 0.0001.
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Figure 4-13 — Typical stress-strain curve of concrete in uniaxial compression and tension.

Knowing that the ultimate tensile strength is much smaller than the ultimate com-
pressive strength (about one-tenth to one-seventh), we can notice that under torsional
effect, the compressive stress-strain curve is perfectly elastic linear. In order to obtain
the shape of torque-twist curve in Figure [4-12] some improvements have been made to
the tensile relationship. Indeed, a bi-linear stress-strain curve has been proposed by the
authors (Figure [4-14)), in which the coefficient 0.7 in the tensile strength and 1.5 in the
strain were carefully calibrated according to several experimental tests listed below. The
choice of bi-linear curve and these coefficient allow a simple but effective model to predict

the torsional behavior of a plain concrete member. For rectangular cross-sections, the

cr

Equation (4.22al).

cracking stress f£¢ is calculated from Equation (4.25)), while the first slope is taken from

O-C
PC
fcr """""""" w2 \
/, .
PC / :
0.7 fo [
EL‘
0 & 158, &

Figure 4-14 — Proposed relationship for tension stress-strain curve of plain concrete
members under pure torsion.
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4.4 Numerical examples for Elastic Torsion

In this section, the numerical results obtained by the proposed model in Section [£.2]

will be compared to the theoretical formulations, and other model’s results. The first

example concerns a cantilever beam subjected to pure torsion at the free end under small

displacement hypothesis (Figure [4-15]), which was also simulated by Le Corvec in her

PhD thesis [62]. The FE proposed model are constructed from 4 elements, with 5 Gauss

points in each element and a system of square mesh of 100 x 50 fibers for each section.

The interpolation points system using Lagrange polynomial, marked by the red cross, are

constructed from 5 interpolation points along the element and a grid of 4 x 4 points over

the section. The numerical results for twist angle at the free end of the beam computed

by the model of Le Corvec and the proposed model (in two approaches) are collected in

Table .11

Mx=1000000 Nmm

%

)

|

L=5000 mm
E=1000000 MPa; v=0.3

e

y

X

100 mm

h=

Z
X | X
y
X X

b=50 mm

Figure 4-15 — Cantilever beam subjected to pure torsion at free end and system of

interpolation points .

Table 4.1 — End twist angle for cantilever beam under mid span torque

Proposed Model
Model of
Theory . Saint-Venant Lagrange
Le Corvec | No warping
warping function polynomials
Twist angle (1072 rad) 4.548 4.554 2.496 4.550 4.566
Relative error (%) 0.13 45.11 0.04 0.39
Execution time (second) 9 9 18

The relative errors are calculated with respect to the theoretical value, which can be

obtained from the following expression, according to Saint-Venant’s theory [97]:

—_— MxL-

0z ,
GJ

E

b b

2(1+v)’

1
J ~ bh [— —0.21-

h <1 12hf

3
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where M, is the torsional moment at mid-span; L is the beam length; .J is the torsional
constant as cited in Section and its expression in Eq. is only applied for
rectangular cross-section. From Table we concludes that the numerical results, given
by the proposed model in both enhanced approaches, correlate very well with the one given
by the theoretical formulation. Then, it confirms that neglecting the effect of warping will
strongly influence on the twist angle. Moreover, it is worth to note that the theoretical
formulation in Eq. is only validated for the case of Saint-Venant torsion with free

warping, in the case of torsion with constrained warping, the following expression must

ML M, [EI, [G7 1\

where I,, = ahb® is the warping constant of rectangular cross-section, « is the Saint-

be used:

Venant’s coefficient which depends on the ratio of section width and height. In this
example, Eq. gives a value of 4.542 x 1073 for the end twist angle, that means a
relative difference of 0.13 % with respect to the value given by Eq. . The effect of
constrained warping can be therefore neglected in the case of solid cross-section.

The warping profile of the cross-section is represented in Figure [I-16a] It gives a good
illustration of the phenomenon: under torsional effect, the section warps and comes out
of their own plane. As a consequence, the sectional rigidity is changed and the twist
deformation is strongly influenced. As mentioned in the expression of warping functions,
we do not need an infinite (or great) number of items to obtain a satisfying result: in

Figure 4-16b}, from a number n > 5, the relative difference is less than 0.01%.
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%10 0 40 0 ‘ ‘ ‘ |
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uw (mm) ; .
1 40 2 b (mm) Number of itemsn
(a) Warping of end cross-section (b) Necessary numbers of items in warping
under torsional effect. function

Figure 4-16 — Representation of warping phenomenon by the proposed model.

In order to analyze the section deformation under the effect of warping phenomenon,
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the shear stress profiles at free-end cross section are plotted in Figure In Figure

[4-17a] and [4-17bH, we can see two different distribution of shear stresses:

e Shear stress profile of classical field (no warping): plane distribution of 77, and 72,

over the cross-section, according to plane section beam theory.

e Shear stress profile of enhanced field: the shear distributions are no more plane

and tend to reduce the value of the total shear stresses. Thus, the section rigidity
becomes less and the twist angle increases consequently, as represented in Table [4.1]

The superposition of this two shear stress profiles gives the total shear stress distribution
at free-end section, which are represented in Figure and These total shear

are strongly different from the case of no warping, which follows plane

stress profiles

section theory.
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Figure 4-17 — Shear stress’s profile at free-end cross-section under pure torsional effect.

The execution times, as cited in the Table [4.1], are about 9 seconds using Saint-Venant
warping function approach and 18 seconds using Lagrange polynomials. In a multi-fiber
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model, it is obvious that the more number of fibers, better the results obtained, however
calculation time becomes higher. In a simple elastic model, the difference is not very
important, but in order to apply the model in more complex problems, an adequate size
of fiber needs to be fixed. From Figure a number more than 30 fibers through the

section depth is enough to ensure a good balance between accuracy and calculation time.
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Figure 4-18 — Mesh’s refinement investigation.

It is worth to notice that in this multi-fiber finite element model subjected to pure
torsion, it is impossible to get an exact result compared to the theoretical formulation,

because of two reasons:
1. The warping function is calculated with limited items, instead of infinity.
2. Sectional integration points situate in the center of fiber, not on the border.

Despite this fact, the use of multi-fiber approach is very effective and highly recommended
by the authors, considering its good balance between the result obtained (relative error
less than 0.5%) and the calculation time. From this example, the following statement can

be obtained:

e The numerical results given by the two proposed approaches correlates very well

with the one given by the theoretical formulation.

e Under torsional effect, the twist angle is strongly reduced without taking into ac-

count the warping of cross-section.

e For solid cross-section, free warping can be applied instead of restrained warping,

as mentioned in Section 3.3.2
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4.5 Numerical examples for Inelastic Torsion

4.5.1 Plain concrete members

In this section, the behavior of plain concrete member under pure torsion will be repre-
sented and compared to a series of test carried out by Hsu [45], Csikos & Hegedus [29] and
Lee et al. [63]. The details of beam sections and material properties can be found in Table
M.2] For a plain concrete member, without contribution of reinforcement, it’s obvious that
the whole section is considered as a 3D-zone (Section [3.5.3)), but with a constitutive model

as proposed in Section 4.3.2

Table 4.2 — Details of specimens of tests in pure torsion for plain concrete members.

Test Specimen | Dimension (mm) | h/b ratio | f. (MPa)
A2 381 x 254 1.5 31.2
Hsu [45] A4 254 x 254 1 32.49
A8 280 x 152 1.84 31.2
Csikos & A-1 130 x 130 1 23.7
Hegedus [29) A-2 130 x 130 1 30
Lee et al. [63] TO 350 x 300 1.17 42.6

In the literature, there are three basic methods to determine the cracking load of

rectangular plain concrete members under pure torsion:

e The elastic theory presented by Saint-Venant [97]:

TP = ab?hf, (4.30)

cr.e

where « is the Saint-Venant’s coefficient which depends on the ratio of section width
and height; b is the section width, A is the section height and f; is the tensile strength

of concrete obtained from an uniaxial tension test.

e The plastic theory developed by Nylander [79]:

TPC = a,b?hf; (4.31)

cr,p

where o, = 0.5 — b/6h is the plastic coefficient which is about 50% greater than the
Saint-Venant’s coefficient; b is the section width, A is the section height and f; is

the tensile strength of concrete obtained from an uniaxial tension test.
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e The skew-bending theory based on observations of torsion tests by Hsu [46]:

TPC

cr,sb

0.217(b* 4 6451.6)hy/f. (N.m) (4.32)

where f. is the compressive strength of concrete in MPa.

When consulting all the results calculated by these three theoretical formulations and
the numerical results, then comparing to the experimental tests (Table , we can see
that the cracking strength obtained by the elastic theory is always conservative, the plastic
theory gives unconservative results, while the results given by skew-bending theory are
more reasonable, but generally the proposed numerical model can give the best results:

in most cases the relative difference with respect to experimental test is less than 5%.

Table 4.3 — Cracking torsional model for Plain concrete member: Comparison between
experimental, numerical result and theoretical formulations

Test Beam Exp Proposed Elastic Plastic Skew-bending
Value Model Theory Theory Theory

A2 19.1 19.7 / 31% | 13.8 /-27.8% | 23.2 /22.1% | 18.50 / -3.1%

Hsu [45] A4 | 113 | 102 /-97% | 8.62/-23.7% | 13.8 / 22.3% | 12.50 / 10.6%

A8 6.38 | 6.70 / 5.0% | 3.82 /-40.1% 6.46 / 1.3% | 5.66 /-11.3 %

Csikos & A-1 1.61 | 1.60 /-0.6% | 1.13 /-29.7 % | 1.81 / 12.6 % | 1.54 / -17.7 %

Hegedus [29] A-2 169 | 1.71/12% | 132 /-21.7% | 212 /255 % | 1.79/59%

Lee et al. [63] TO 23.2 | 229/-13% | 253/-9.0% | 35.8 /54.2% | 294/ 26.6 %

The torque-twist curves obtained by the proposed model shows a good agreement with
the experimental results (Figure 4-19)). The slope of at high torque until failure is well
represented with the aid of the proposed constitutive model in Section {£.3.2]
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Figure 4-19 — Torque-twist curve for series A of Hsu’s test.

4.5.2 Reinforced concrete members

In this section, the behavior of RC members under pure torsion will be represented and
compared to the series of test mentioned in the calibration section, which were carried out
by Hsu [45], Csikos & Hegedus [29], Lee et al. [63] and Lee et al. [64]. The specimens can
be divided into two categories, according to its repartition of longitudinal reinforcements

on the cross-section:

1. Usual repartition of reinforcement bars at corner: Series B (B2-B10), Series C (C1-
C6), Series G (G1-Gb), Series I (I12-16), Series M (M1-M5), Series N (N1, Nla, N2,
N2a) of Hsu’s test; Series B (B1-B3), Series C (C1-C3) of Csikos & Hegedus’s test;
Series T (T1-1, T2-1, T2-2) of Lee et al. test.

2. Repartition with additional reinforcement bars along the perimeter: Beam M6, N3,
N4, G6, G7, G8 of Hsu’s test; Series T (T1-2, T1-3, T1-4 ,/T2-3, T2-4) of Lee et al.
test; Series D (D1-D3), E (E1-E3) of Csikos & Hegedus’s test.

The cracking and ultimate torsional moment calculated for 61 specimens of tests cited
above are compared to theoretical formulations, numerical results of Jeng’s model and 2

international standards for torsional design of RC members (Eurocode 2 and ACI).

139



4.5.2.1 Cracking Torque

As mentioned in Section [£.5.1] there are three analytical methods to calculate the cracking
torque of rectangular plain concrete members 75 the elastic theory presented by Saint-
Venant [97], the plastic theory developed by Nylander [79] and the skew-bending theory
based on experimental tests by Hsu [45]. For RC members with a rectangular cross-section,

based on T2¢, Hsu proposed a new formulation for the cracking load:

T.r = (1 +4p)TEC (4.33)

where py is the total percentage of reinforcement with respect to the whole section. The
cracking torque T, calculated by theses three analytical methods are then compared to

the numerical results obtained by the proposed model and Jeng’s model [53].

4.5.2.1.1 Usual repartition of longitudinal reinforcement at four corners In
Table , for each series of tests, the average relative differences (calculated with respect
to the experimental tests) are indicated, and the smallest average relative error is shown

in bold and highlighted in red.

Table 4.4 — Cracking torsional moment: average relative error with respect to
experimental test calculated.

Proposed | Jeng’s | Elastic | Plastic | Skew-bending
Test Beams
Model Model | Theory | Theory Theory
Series B 4.4% 7.1% 33.1% 13.2% 8.0%
Series C 5.3% 10.8% | 33.9% 5.9% 6.0%
Series G 3.0% 6.2% | 38.6% | 11.7% 14.3%
Hsu [45]
Series 1 4.5% 4.7% 20.2% 34.9% 12.3%
Series M 4.7% 3.7% 31.5% 15.8% 3.9%
Series N 4.5% 12.3% | 46.4% 4.1% 12.7%
Lee et al. Series T1 | 4.5 % - 25.8 % | 26.2 % 10.8 %
[63] Series T2 49 % - 187 % | 383 % 29 %
Csikos & Series D 0.6% - 26.1 % | 184 % 12.9 %
Hegedus [29] | Series E 3.8% - 285 % | 14.6 % 8.6 %

We can see that the proposed modifications are very relevant as the smallest average
relative error can be found in most cases, and in all series the relative error is always

less then 5 %, except in series C (5.3 %). The numerical results given by Jeng’s model
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are also satisfactory, although some large average relative errors (more than 10%) were

found in series C and N of Hsu’s test. When considering the analytical formulations, while

the elastic theory always gives the unsatisfactory results, reasonable cracking loads can

be sometimes obtained by the plastic theory (series C and N of Hsu’s test). The skew-

bending theory shows the best ability of predicting the cracking torsional moment between

the three formulations, but its results are still far from satisfactory when comparing to

the experimental results.

Go further in detail, the numerical results of series B in Hsu’s test can be found in

Table with the best numerical cracking torque (compared to experimental values)

always highlighted in red. The proposed model gives the best prediction in 6 specimens,

and 6 of 9 specimens give a relative error less than 5%. Other numerical results and

comparisons for each series of torsional test can be found in Appendix.

Table 4.5 — Cracking torsional moment - Series B of Hsu Test: experimental and
numerical values and relative error with respect to experimental values.

Beans Exp Proposed Jeng’s Elastic Plastic Skew-bending
values Model Model Theory Theory Theory

B2 20.00 | 19.1 /-4.5 % - 13.58 / -32.1 % | 22.96 / 14.8 % | 18.99 / -5.0 %
B3 20.11 | 20.0 /-0.6 % | 2061 /25 % | 13.69/-31.9% | 23.15/15.1 % | 19.37 /-3.7 %
B4 2192 | 224 /22% | 21.69/-1.0% | 15.26 /-30.4 % | 25.80 / 17.7 % | 20.55 / -6.3 %
B5 22.60 | 232 /27% | 2144 /-51% | 15.09 /-33.2 % | 25.51 / 12.9 % | 20.92 / -7.4 %
B6 2497 | 242 /-31% | 21.62 /-134 % | 15.52 / -37.8 % | 26.25 /51 % | 21.61 /-13.4 %
B7 20.22 | 19.7 / -2.6 % 18.7/-75% | 12.43 /-38.6 % | 21.01 /39 % | 1843 /-89 %
B8 21.81 | 25.2 /156 % | 20.28 /-7.0% | 13.45 /-38.3 % | 22.74 / 4.3 % 19.58 / -10.2
B9 19.66 | 181 /-79% | 20.67 /51 % | 13.72 /-30.2 % | 23.20 / 18.0 % | 19.10 / -2.8 %
B10 17.63 | 187 /6.1 % | 2025 /149 % | 13.38 / -24.1 % | 22.62 / 283 % | 19.61 / 11.2 %

4.5.2.1.2 Repartition with additional longitudinal

perimeter

reinforcement along the

Another strong aspect of the proposed model is the ability of calculating for

the case of additional distribution of longitudinal reinforcement bars along the perimeter.

In Table the numerical and analytical cracking torque for this case of reinforcement

distribution are all indicated, with a highlight in bold and red for the model with the

smallest relative difference compared to the experimental result. Unconservative results

can be found in many cases, except the plastic theory, but the best agreements are usu-

ally obtained with the proposed model. Although giving the smallest differences in two

specimens (G8 and N3), the predictions of the plastic theory are too conservative, which
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is not really suitable for the design process. We can also see that, while the model of Jeng
does not consider the impact of reinforcement distribution, the relative errors in this case

of distribution with additional longitudinal reinforcement along the perimeter are higher

than the average ones obtained by this model (Table .

Table 4.6 — Distribution with additional longitudinal reinforcement bars: Cracking
torsional moment (KNm) and Relative error with respect to experimental test.

Test Beam EXP Proposed Jeng’s Elastic Plastic Skew-bending
Values Model Model Theory Theory Theory

G6 30.96 33.2 / 7.2% - 18.47 / -40.3% 33.61 / 8.6% 25.27 / -18.4%

G7 33.67 34.2 / 1.6% 31.24 / -7.2% | 19.53 / -42.0% 35.53 / 5.5% 26.21 / -22.2%

Heu [5] G8 33.67 32.6 / -3.2% 30.32 / -9.9% | 18.53 / -45.0% | 33.72 / 0.1% | 26.18 / -22.3%
M6 22.71 21.9 / -3.9% | 21.81 /-40% | 15.83 / -30.3% | 26.76 / 17.8% 21.79 / -4.0 %

N3 7.41 6.80 / -8.3% 6.37 / -14.1% 3.80 / -48.7% 6.91 / -6.7% 6.36 / -14.1%

N4 7.60 7.50 / -1.4% | 6.45 /-15.1% 3.94 / -48.1% 7.18 / -5.6% 6.61 / -13.1%

T1-2 314 30.1 / -4.1% - 22.95 / -26.9% | 39.03 / 24.3% | 27.59 / -12.1%

Leo ot T1-3 31.8 31.5 / -0.9% - 23.52 / -26.0% 40. 1/ 25.8% 28.28 / -11.1%

oL 3] T1-4 33.7 34.6 / 2.7% - 24.42 / -27.5% | 41.53 / 23.2% | 29.35 / -12.9%
T2-3 29.8 29.0 / -2.7% - 23.36 / -21.6% | 39.73 / 33.3% 28.08 / -5.8%

T2-4 29.9 29.5 / -1.3% - 23.75 / -20.6% | 40.40 / 35.1% 28.55 / -4.5%

D2 1.69 1.70 / 0.6% - 1.49 / -11.6% 2.40/ 41.7% 2.31 / 36.6%

Csikos & D3 1.69 1.68 / -0.6% - 1.47 / -13.0% 2.36 / 39.4% 2.29 / 35.6%
Hegedus [29] El 2.25 2.09 / -7.1% - 1.55 / -30.9% 2.49 / 10.8% 2.35 / 4.2%
E3 2.06 2.05 / -0.5% - 1.52 / -26.1% 2.44 / 18.4% 2.33 / 12.9%

4.5.2.2 Ultimate Torque

In this section, the ultimate torque calculated by the proposed model is compared to the
numerical results of Jeng’s model, the analytical formulations proposed by Rausch, Cowan
and Hsu and two standards for torsional design: Eurocode 2 and ACI.

The first formulation to calculate the ultimate torsional moment was proposed by
Rausch in his space truss theory [93]. The main hypotheses are that both longitudinal
and transversal steels are yielding at the ultimate torque and the inclination of concrete
This formulation is an ingenious concept which gives torsional

cracks is fixed at 45°.

strength as a function of reinforcements and concrete:

(4.34)

2AcAslfsly i 2AcAstfsty )

T,r = min ;
U S

where A, is the area enclosed by the centerline of stirrups; Ay and fg, are the total area
and the yield strength of longitudinal bars; Ay is the cross-section area of one hoop bar

and fg, are the yield strength of stirrups; u is the perimeter of the area bounded by the
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centerline of a completed hoop bar; s is the stirrup’s spacing. Several years later, Cowan
modified Rausch’s equation and proposed a new formulation based on Saint-Venant’s

stress and strain distribution for rectangular cross-section [2§]:

AcAstfsty

S

Twe =T.+ 1.6 (4.35)

where T, is the torsional cracking strength calculated by the elastic theory (Equation

(4.30)). In this formulation, the torsional failure mode depends on the yielding of stirrups.

Another formulation based on experimental tests’ observations was proposed by Hsu [46]:
b

2
Turr = M2.4\/f_é+ L <1 + 0.2—> bihaAst ety (4.36)
3 fsty hy S

where f! is the compressive strength of concrete; by and hy is the width and the height

of the area enclosed by the centerline of stirrups; m is the ratio between longitudinal and
transversal steel percentage.

In the ACI standard, torsional strength of RC members is calculated as [1]:

2A0Aslfsly c

S

Tyus = ot 6 (4.37)

where A, is the gross area enclosed by the shear flow path, which can be taken equal to
0.85A,, with A, the area enclosed by the centerline of stirrups; 6 is the cracks angle which
can be taken as 45° for non-prestressed or low-prestressed members. In the European
standard Eurocode 2, three different values are calculated depending on the torsional
failure modes and the minimum one has to be chosen [96]. The first value is related to
the stirrups’ yielding, the second one corresponds to the longitudinal bars capacity and

the third one is related to the torsional capacity of concrete struts:

2A, A s 2A:Aqfs -
k—l‘fly Cot 97 —lfly tan 97 2VféAkt€f S1n 9 COS 9) (438)

T,r = min
S U

Ay, is the area enclosed by the centre-lines of the effective wall thickness; t. is the effective
wall thickness and can be calculated as A/u with A the total area and u the perimeter of
cross-section. The cracks angle is variable but can be taken as 45°.

In Table the relative differences (calculated with respect to the experimental
tests) are indicated. In each series of tests, the smallest average relative error is shown

in bold and highlighted in red. Similar to the cracking torque, in most cases the smallest
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average relative error was obtained by the proposed model. The numerical results given
by Jeng’s model are also satisfactory with the best average relative error in series M
and N of Hsu’s test. Although the average level of predictive performance is not better
than Jeng’s model (5.4% in comparison with 5.1%) in the test of Hsu, we can state that
this lower performance of the proposed model is submitted by a big influence from the
series C (12.5%). Without this series C, 5/6 series has a relative error less than 5/6, and
the average value decreases to only 4%. When considering the analytical formulations,
Rausch’s and Cowan’s formulations often give too high average relative error in all cases,
while Hsu’s formulation performs better, with one best result in series C of Hsu’s test.

Finally, the torsional strength given by the design standards are far from satisfactory.

Table 4.7 — Ultimate torsional moment: average relative error calculated with respect to
experimental test values.

Test Beams Proposed | Jeng’s Rausch’s Cowan’s Hsu’s Eurocode 2 ACI
Model Model | Formulation | Formulation | Formulation

Series B 4.9% 7.9% 56.0% 54.8% 16.1% 23.2% 41.4%

Series C 12.5% 5.6% 81.3% 69.9% 5.1% 14.4% 52.2%

Heu @3] Series G 3.8% 4.8% 11.1% 21.0% 20.5% 29.5% 10.5%
Series 1 2.8% 6.1% 18.0% 29.9% 24.1% 14.8 % 9.6 %

Series M 5.9% 3.2% 22.6% 18.7% 17.1% 20.7% 19.2%

Series N 2.9% 2.5% 12.0% 24.1% 22.1% 22.2% 10.8%

Lee et al. Series T1 4.4% - 59.6% 74.4% 9.7% 19.8% 35.8%
[63] Series T2 6.5% - 18.1% 46.1% 0.9% 15.7% 10.6 %
Series B 1.3% - 40.3% 21.7% 31.4% 50.4% 49.2%

Csikos & Series C 5.3% - 6.7% 44.6% 30.4% 43.1% 12.6%
Hegedus [29] | Series D 7.6% - 39.4% 9.7% 33.6% 56.2% 48.5 %
Series E 5.3% - 26.0% 6.3% 38.0% 59.1% 37.1%

Average 5.4% 5.1% 32.9% 35.9% 19.5% 27.3% 26.6%

A more detailed comparison will be examined for the case of repartition with addi-
tional longitudinal reinforcement bars along the perimeter. Similar to Section in
Table the numerical and analytical ultimate torque for this case of reinforcement dis-
tribution are all indicated, with a highlight in bold and red for the cases with the smallest
relative difference compared to the experimental results. In Hsu’s test, the two numerical
models show their advantage by their ability to predict the torsional strength with a very
reasonable error in most cases (except specimen G8), while in the test of Lee et al., Hsu’s
formulation also gives very good results. In the test of Csikos & Hegedus, the proposed

model is still giving the best predictions.
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Table 4.8 — Repartition with additional longitudinal reinforcement bars: Ultimate
torsional moment (KNm) and Relative error with respect to experimental test.

Proposed Jeng’s Hsu’s
Test Beams | EXP Eurocode 2 ACI
Model Model Formulation
G6 39.09 40.30 / 3.1% - 30.52 / -21.9% 27.98 / -28.4% 33.68 / -13.8%
G7 52.65 50.3 / -4.5% 55.87 / 6.1% 41.07 / -22.0% 40.14 / -23.8% 48.32 / -8.2%
G8 73.44 61.4 / -16.4% 70.49 / -4.0% 54.26 / -26.1% 57.02 / -22.4% 68.64 / -6.5%
Hsu [45]
M6 60.11 60.10 / 0.1% 55.29 / -3.2% 60.85 / 1.2% 64.22 / 6.8% 77.82 / 29.5%
N3 12.20 | 12.05 / -1.2% 12.49 / 2.4% 9.37 /-23.2% 9.27 / -24.0% 11.14 / -8.7%
N4 15.70 15.75 / 0.3% 15.08 / -4.0% 12.99 / -17.3% 14.76 / -6.0% 17.75 / 13.0%
T1-2 42.9 44.5 / 3.7% - 41.86 / -2.4% 47.52 / 10.8% 55.16 / 28.6%
T1-3 54.1 52.5 / -3.0% - 51.84 / -4.2% 62.15 / 14.9% 72.14 / 33.3%
Lee et
T1-4 62.4 63.4 / 1.6% - 79.51 / 27.42% | 92.29 / 47.91% | 107.13 / 71.68%
al. [63]
T2-3 50.2 49.4 / -1.6% - 49.95 / -0.5% 45.90 / -8.6% 53.28 / 6.1%
T2-4 56.4 55.2 / -2.1% - 56.75 / 0.6% 53.86 / -4.5% 62.52 / 10.9%
D2 2.25 2.38 / 6.7% - 1.51 / -33.1% 0.99 / -55.9% 1.02 / -54.8%
Csikos &
D3 2.06 2.20 / 6.8% - 1.50 / -27.3% 0.99 / -51.8% 1.02 / -50.7%
Hegedus
El 3.38 3.10 / -9.5% - 2.01 / -4.0% 1.32 / -60.9% 2.03 / -39.9%
[29]
E3 3.23 3.06 / -5.3% - 2.00 / -38.0% 1.32 / -59.1% 2.03 / -37.1%

4.5.2.3 Torque-twsit curve

The torque-twist curve obtained by the proposed model is compared to the experimental

results of specimen M2 and M3 in the test of Hsu (Figure [4-20]), with and without the pro-

posed modification of the tensile behavior. A very good agreement was achieved between

experimental and numerical results: the cracking and the ultimate torsional moment have

the same magnitude, the slopes in the post-cracking phase are identical, and the featured

horizontal plateau manifested by the transition between the two phases before and after

the cracking is well represented. Moreover, we can conclude that without the proposed

modification of tensile behavior, the cracking moment achieved is about half of the one

of the experimental test, and therefore the torque twist curve can not be similar to the

experimental one.
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Figure 4-20 — Torsional moment versus Twist rate diagram for two specimens M2 and
M3 in the torsional test of Hsu [45].

Another comparison of the torque-twist curves was made for series B of Hsu’s test and
series T1, T2 of Lee et al.’s test: once again the proposed model gave a good agreement
with the experimental results (Figure [1-22). In the series B of Hsu’s test (Fig-
ure , the cracking and ultimate torsional moments were strongly a function of the

reinforcement ratio, while the post cracking torsional stiffness were also well represented.
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Figure 4-21 — Torsional moment versus Twist rate diagram for series B of Hsu’s test.

[45]

Concerning the test of Lee et al., in the series T1 (Figure[d-22a]), good level of predicting
for the ultimate torsional moment and post cracking stiffness were achieved. For the series
T2 (Figure , some slight gaps were noticed in the cracking phase, especially in the
specimens T2-2 in which the horizontal plateau between the two phases before and after

cracking was not recorded by the experimental data. However in general the predicting
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torsional behavior obtained by the proposed model were reasonable and satisfactory.
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Figure 4-22 — Torsional moment versus Twist rate diagram for series T of Lee et al.’s
test. [63]

4.6 Conclusions

A nonlinear multi-fiber finite element model has been developed for concrete and RC
elements under pure torsional effect in this chapter. Through several numerical examples

carefully executed above, the following remarks and conclusions can be draw:

e In the elastic material domain, good correlation has been obtained between the
numerical results and the theoretical formulations. The influence of warping is
significant and must be taken into account in order to obtain a correct torsional
response. Besides the Saint-Venant warping function, the use of Lagrange polyno-

mials to represent the warping effect can be also considered with very high level of
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accuracy.

The constitutive model based on the MCFT is suitable to be implemented in the
multi-fiber finite element approach. In which, concerning the compression of con-
crete, the softening of concrete is a fundamental property and must be included in
any loading conditions, so do the simulation of pure torsion, where the softening
coefficient obtained from the shear tests can be applied without any modification.
Therefore, the compressive relationship of concrete can be used from the one pro-

posed on the original MCF'T of existing formulations.

However, under pure torsional effect, the tensile relationship proposed for shear
effect is not suitable to predict correctly the torsional behavior of RC beam and a
new relationship is required as a consequence. The modification proposed by the
authors for the tensile behavior of concrete showed a reasonable and correct influence

in predicting the torsional response of RC beam in the inelastic material domain.

The section discretization in different zones following its stress state is very suitable
to carrying the pure torsional effect, the parametric formulation developed by the
authors for the effective wall thickness helps to complete this approach by giving a
definition for the width of 2D-zone.

From the numerical results obtained, the use of the proposed model is highly recom-
mended to predict the cracking torque of RC beam under torsion and also for the
cross-section in which the reinforcement bars are distributed with additional steel
bar along the perimeter. Thanks to the specific constitutive model designed for this
case of steel repartition, the proposed model shows its interest when giving a very

good level of prediction, in comparison to other models and analytical formulations.

The calibration method, presented by the authors to establish the formulation of
the concrete tensile strength f.. and the 2D-zone width t., allows to obtain a very
good correlation between numerical and experimental results, as well as suggests an
idea to the development of other formulations. However, it is obvious that some
drawbacks of the calibration process should not be ignored, such as the dependency
on the choice of the behavior constitutive law and on the size of experimental data.

As a consequence, this method could become "sensitive” to any change of input data.
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Chapter 5

Numerical analysis of RC members

under Combined loading

The present chapter deals with the numerical analysis of RC members subjected to com-
bined loadings of shear-bending-torsion. The enhanced multi-fiber 3D beam model for-
mulation developed in Chapter [3|is used. The behavior of RC members considering the
interaction between combined loading effects will be investigated in linear and non-linear
regime of material behaviors. In case of elastic material, existing analytical solutions and
numerical results are used as a reference to validate the model’s ability and analyze the
choice of mesh size. Also, two approaches proposed for the enhanced field of model are
compared and discussed about their the advantage and inconveniences. While in inelas-
tic material domain, the capacity of proposed model in predicting the behavior of RC
members will be investigated by comparing with experimental test results.

According to the combined loading cases between shear, bending and torsion, the

Chapter is organized as follows:

e Coupling of shear-bending: in Section this typical combination of load cases of
RC members is investigated in linear and non-linear regime of material behaviors.
The numerical results are compared with the analytical solutions, other numerical
models and the experimental values from three series of tests carried out by Bresler

& Scordelis at the University of Berkeley [14].

e Coupling of bending-torsion: in Section [5.2] the interaction between bending and
torsion is investigated and the numerical results are compared to the Collins et
al.’s skew-bending theory and the experimental values from two tests carried out by

McMullen & Warwaruk [72] and Onsongo [82].

149



e Coupling of shear-bending-torsion: in Section 5.3 the experimental test by Mec-
Mullen & Warwaruk [72] is used as references in order to study the coupling of this

completed combined loading cases of RC members.

e Finally, Section [5.4] summarizes the Chapter and offers some conclusions.

5.1 Elements subjected to combined shear and bend-

ing action

5.1.1 Elastic material

The numerical results are first validated in the domain of elastic linear material. In this
section, the application of two formulations for the enhanced beam, using Saint-Venant
warping function and Lagrange polynomials, will be investigated, in order to figure out

the suitable approaches for the proposed model subjected to shear-bending action.

e Saint-Venant warping function approach: as developed in Section [3.3.2 the en-
hanced field using Saint-Venant warping function does not generate any additional
normal strain (Equation ), while the axial warping displacement appears only
under torsional effect (Equation (3.17))). Therefore, using this approach under shear-
bending action, the proposed model is considered as a multifiber beam using plane-

section beam theory.

e Lagrange polynomials approach: the enhanced field in this approach generates an
additional normal strain (Equation [3.23al), while the axial displacements are also
changed (Equation [3.21)) and the cross section cannot maintain its plane shape

under shear-bending action.

Two examples of cantilever beams subjected to vertical force at free-end, which were
considered in the PhD thesis of Capdevielle [I5] and Le Corvec [62], will be investigated
hereafter. In both approaches, the numerical results obtained by the proposed models
are compared in one hand with those of Capdevielle [15] and Le Corvec [62] and in other
hand with the theoretical formulations (using plane-section beam theory such as Euler

Bernoulli ou Timoshenko).
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5.1.1.1 Numerical application using Saint-Venant warping function approach

A cantilever beam subjected to vertical force at the free end, which was used in the PhD
thesis of Capdevielle [15], is studied firstly. The details of cross-section dimension, beam
length and material properties are indicated in Figure 5-1} For the numerical modeling,
in order to find the necessary number of elements and fibers, which ensure an adequate
equilibrium between accuracy and calculation cost, different meshes are considered. Re-
garding the element discretization, three cases of meshing are used: 1, 4 and 8 elements.
As for the cross-section, the following discretization is done: 10 x 5, 20 x 10, 40 x 20 and

100 x 50 square fibers.

F.=1N g
2 l S
Z T
| | =
L=1000 mm
E=30000 MPa; v=0.2 ————
b=100 mm

Figure 5-1 — Geometry and material properties for cantilever beam in the example of
Capdevielle [15].

The values of deflection at free-end were computed and then compared to the theoret-
ical formulation, which can be given by the following expressions according to the beam

theory of Timoshenko (dr), under the effect of vertical force F, in z direction:

F.I? F.L

py — —
"7 3EL.  GAxg,

= —171.47(mm) (5.1)

with F is the Young modulus, A the cross-section area, I, the moment of inertia about
the z-axis, L the beam length and k, the shear correction factor in y direction. The
numerical result for each case of mesh are presented in Table [5.1] accompanied with the

relative error computed with respect to the theoretical formulation in Equation 5.1

Table 5.1 — Tip deflection (mm) and corresponding relative different with respect to the
theoretical formulation.

Section Mesh
10x5 20 x 10 40 x 20 100 x 50
Beam Mesh
1 -173.15 /098 % | -171.88 / 0.24 % | -171.57 / 0.06 % | -171.48 / 0 %
4 -173.15 / 0.98 % | -171.88 / 0.24 % | -171.57 / 0.06 % | -171.48 / 0 %
8 -173.15 /0.98 % | -171.88 / 0.24 % | -171.57 / 0.06 % | -171.48 / 0 %

151



As can be seen from Table , the number of element does not have any influence
on the numerical results of this simple example. This can be explained by the constant
distribution of shear force over element length in this loading configuration. Then, the
more number of fibers, the more the numerical values are exact with respect to analytical
solutions, and even a light system of 10 x5 fibers over the cross-section can give satisfactory
results with the relative error less than 1%. The elapsed times depend on the element
number and fiber mesh, for example, 6 times differences can be remarked between the
most-meshed model - 8 elements with 100 x 50 fibers in each section - (18 seconds) and a
model of 4 elements with 40 x 20 fibers (less than 3 seconds). Even though, in compare
to many finite element models, the elapsed times are relatively small.

The next parameter to evaluate is the distribution of shear strain over the cross-section,
which are assumed parabolic in the model formulations (Equation ) Following the
z direction, a parabolic distribution gives the following analytical solution of shear strain

at a material point of cross-section situated at coordinate x of element axis:

(g>2 — 22] (5.2)

with V,(z) is the shear force value in z direction at coordinate x, G is the shear modulus,

V()

=) =56,
Y

I, is the second moment of area with respect to th y-axis and h is the section height. At
mid-span of the beam, the distribution of shear strain €,, over the cross-section are plotted
in Figure In this Figure, we can see that the values of shear strain calculated at the
integration points (center of square fiber) are identical on the y direction, correspond to

the analytical formulation in Equation ([5.2)).

100

50

z (mm)
o

50

0

€ -50 y (mm)

Figure 5-2 — Distribution of shear strain €., over cross-section under shear-bending.

Because the values of shear strain are identical on the y direction, at an arbitrary
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y coordinate, we will compare the values of shear strain .. calculated by analytical
formulation in Equation and the ones obtained by the proposed model and the model
of Capdevielle. In this case, the proposed model used a system of 20 x 10 = 200 square
fibers, meaning 200 integration points over the cross-section and 20 fibers of identical y
coordinate which give 20 different values of ¢,,, while the model of Capdevielle, with a
system of 400 triangular mesh (Figure , has 400 integration points over the cross-
section and 40 fibers of identical y coordinate. However, of these 40 fibers, there are only
20 different values of .., because there are 20 pairs of fibers with different z coordinates
but same values of ¢,., due to the triangular mesh discretization. On Figure [5-3b] the
numerical results given by the proposed model correlate perfectly with the analytical
solutions, while there are small gaps between the numerical results of Capdevielle’s model

and the analytical solutions.

2 100

= - @ - Analytical solutions
EO0 —<—Numerical solutions (Proposed model)
€ y N + Numerical solutions (Capdevielle's model)
.25 1

(a) (b)

Figure 5-3 — (a) System of FE mesh in the model of Capdevielle [15].; (b) Comparison of
shear strain profile €,,.

5.1.1.2 Numerical applications using Lagrange polynomials approach

The example of Capdevielle in the previous section is re-used hereafter, the system of
Lagrange interpolation points with 5 points along the element axis and a grid of (4 x 4)

points over the cross-section are indicated in Figure [5-4]

FL:1 N

V
%—l ,

g X[ X

L=1000 mm =
Q y
E=30000 MPa; v=0.2 L X X

Z

Pz X
b=100 mm

y

Figure 5-4 — System of Lagrange interpolation points (red cross sign).
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The deflection at free-end are computed by the same models as in previous chapter.
Because the number of element does not have any influence on the numerical results of

this simple example, in this approach only different cases of fiber mesh are considered in

a model of 8 elements. The numerical results are presented in Table [5.2]

Table 5.2 — Tip deflection, corresponding relative different with respect to the
theoretical formulation and the elapsed times.

Mesh
10 x5 20 x 10 40 x 20 100 x 50
Approach
Saint-Venant -173.15 mm | -171.88 mm | -171.57 mm | -171.48 mm
Warping 0.98 % 0.24 % 0.06 % 0%
Function 1ls 1ls 3s 18 s
-176.81 mm | -173.43 mm | -171.57 mm | -171.47 mm
Lagrange
3.11 % 1.14 % 0.06 % 0%
polynomial
3s 14 s 33 s 211 s

As can be seen in Table [5.2] similar to the Saint-Venant warping function approach,
the values of tip deflection obtained using the Lagrange polynomial approach tend to
converge to the analytical solution. Ensuring a very reasonable result with relative error
less than 0.1 % and a small elapsed time, the use of 40 x 20 fibers is recommended for
the numerical modeling in both approach. In the other hands, using Lagrange polynomial
approach, the elapsed times increase clearly, require 33 seconds on a model of 8 elements
and 40 x 20 fibers (compared to 3 seconds in the Saint-Venant warping function approach),
and up to 211 seconds with a system of 100 x 50 fibers (compared to 18 seconds).

The differences in the numerical results between two approaches in Table [5.1] and
can be explained by the appearance of the enhanced normal strains, leading to some slight
changes in the element stiffness matrix K.. Using two numerical models constructed from
1 element and 40 x 20 fibers in each cross-section, the Saint-Venant warping function

approach gave the following expression of K.,:

6e5 0 0 0 0 0 —6eb5 0 0 0 0 0
0 5.82e3 0 0 0 2.91e6 0 —5.82e3 0 0 0 2.91e6

0 0 2.15e4 0 —1.08e7 0 0 0 —2.15e4 0 —1.08e7 0

0 0 0 5.70e8 0 0 0 0 0 —5.70e8 0 0

0 0 —1.08e7 0 7.38e9 0 0 0 1.08e7 0 3.38e9 0
K, — 0 2.91e6 0 0 0 1.95e9 0 —2.91e6 0 0 0 9.56e8

—6e5 0 0 0 0 0 6ed 0 0 0 0 0
0 —5818 0 0 0 —2.91e6 0 5818 0 0 0 —2.91e6

0 0 —21509 0 1.08e7 0 0 0 21509 0 1.08e7 0

0 0 0 —5.70e8 0 0 0 0 0 5.70e8 0 0

0 0 —1.08e7 0 3.38e9 0 0 0 1.08e7 0 7.38e9 0
L O 2.91e6 0 0 0 9.56e8 0 —2.91e6 0 0 0 1.95e9

(5.3)
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While the

6e5 0 0 0 0 0 —6e5 0
0 5.82e3 0 0 0 2.91e6 0 —5.82e3
0 0 2.15e4 0 —1.08e7 0 0 0
0 5.15e3 —1.77e4 7.14e8 9.24€6 2.74e6 0 —515e3
0 0 —1.08e7 —9.65e4 7.38€9 —7.93e3 0 0
K, = 0 2.91e6 0 5.68e5 1.94e5 1.95e9 0 —2.91e6
—6eb 0 0 0 0 0 6eb5 0
0 —5.82e3 0 0 0 —2.91e6 0 5.82e3
0 0 —2.15e4 0 1.08e7 0 0 0
0 —5.15e3 1.77e4 —7.14e8 —9.24€6 —2.74e6 0 5.15e3
0 0 —1.08e7 —3.47e5 3.38e9 0 0 0
L O 2.91e6 0 2.76e5 6.57e4 9.56e9 0 —2.91e6

expression obtained by Lagrange polynomial approach

—2.15e4
1.77e4
1.08e7

2.15e4
—1.77e4
1.08e7

was:

0
0
0
—7.14e8
9.65e4
—5.68e5
0
0
0
7.14e8
3.47e5
—2.76e5

—1.08e7
8.47e6
3.38e9
1.93e5

0
0
1.08e7

—8.47e6
7.38€e9
6.53e5

2.91e6

2.64e6

—8.13e3

9.56e8

—2.91e6

—2.64€e6

1.95e8 |
(5.4)

In these two stiffness matrix, the terms whose value is zero in Equation (5.3)) are marked

in blue, while the stiffness values which are different between two approaches are marked

in red. The appearance of new non-zero terms and the change of existing term (relative

difference up to 25%) cause the differences in the numerical results between two approaches

in Table 5.1 and [5.2] By increasing the mesh system to 100 x 50 fibers, the Saint-Venant

warping function

6eb 0 0 0 0 0 —6e5 0
0 5.83e3 0 0 0 2.91e6 0 —5.83e3
0 0 2.15e4 0 —1.08e7 0 0 0
0 0 0 5.71e8 0 0 0 0
0 0 —1.08e7 0 7.38e9 0 0 0
K, — 0 2.91e6 0 0 0 1.96e9 0 —2.91e6
—6eb 0 0 0 0 0 —6e5 0
0 —5.83e3 0 0 0 —2.91e6 0 5.83e3
0 0 —2.15e4 0 1.08e7 0 0 0
0 0 0 —5.71e8 0 0 0 0
0 0 —1.08e7 0 3.38e9 0 0 0
L O 2.91e6 0 0 0 9.58e9 0 —2.91e6
and the Lagrange polynomials approach gave:
[ 6e5 0 0 0 0 0 —6e5 0
0 5.83e3 0 0 0 2.91e6 0 —5.83e3
0 0 2.15e4 0 —1.08e7 0 0 0
0 0 1.11e4 5.89e8 —7.82e6 3.05e5 0 0
0 0 —1.08e7 0 7.38e9 0 0 0
K, = 0 2.91e6 0 0 0 1.96e9 0 —2.91e6
—6e5 0 0 0 0 0 —6e5 0
0 —5.83e3 0 0 0 —2.91e6 0 5.83e3
0 0 —2.15e4 0 1.08e7 0 0 0
0 0 —1.11e4 —5.89e8 7.82e6 —3.05e5 0 0
0 0 —1.08e7 0 3.38€e9 0 0 0
L O 2.91e6 0 0 0 9.58e9 0 —2.91e6

approach gave the following expression of K.:

—2.15e4

1.08e7

2.15e4

1.08e7

—2.15e4
—1.11e4
1.08e7

2.15e4
1.11e4
1.08e7

-

—5.89¢e8

0
0
0
8
0
0
0
0
0

5.89e8

0
0
—1.08e7
—3.26e6
3.38e9
0
0
0
1.08e7
3.26e6
7.38e9
0

2.91e6

—1.05e6

9.58e8

—2.91e6

1.05e6

1.96e9 |
(5.6)

There are still some difference, however the number of new non-zero term decreases sig-

nificantly, and the relative difference in the change of existing term reduces to only 3%.

The similar numerical results between two approaches when increasing the mesh number

can be therefore explained.
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Another example which was in the PhD thesis of Le Corvec [62] was also investigated
hereafter. The details of cross-section dimension, beam length, material properties and
system of Lagrange interpolation points are indicated in Figure [5>-5| Because of the high
ratio between the section height and width, in this example over the cross-section only 4
Lagrange interpolation points were used for the numerical modeling.

F2=1000000 N

l T %
V,
Z
ﬁ :
| o N
L=5000 mm S >y
E=1000000 MPa; v=0.3 Ll X
Z
1 L be
o —
b=100 mm

Figure 5-5 — Geometry, material properties and system of Lagrange interpolation points
(red cross sign) for cantilever beam.

The values of tip deflection, given by the proposed model in both approaches (with
1 element accompanied by two mesh systems of 100 x 10 and 200 x 20 fibers on each
cross-section), are shown in Table and compared to the analytical solutions and the
numerical result of Le Corvec’s model. The result of the proposed model are in very good
agreement with the ones given by the theoretical formulation. We can also remark that
there are almost no gap in the numerical results between two proposed approaches, even
with a light mesh system. This difference to the previous example of Capdevielle may be

explained by the high ratio between the section height and width in this case study.

Table 5.3 — Tip deflection of cantilever beam with rectangular cross-section under
vertical loading - Example of Le Corvec [62].

Proposed Model

Timoshenko | Model of
Mesh Saint-Venant Lagrange

Theory Le Corvec
warping function polynomials

10 x 1 -5.206 -5.207

Tip deflection 50 x 5 -5.158 -5.158
-5.156 -5.156

(mm) 100 x 10 -5.157 -5.157

200 x 20 -5.156 -5.156

As a reminder, under shear-bending action, the enhanced field using Lagrange poly-
nomials generates an additional axial displacement field. As a consequence, the cross-

section is warped and cannot retain its plane shape. This warping displacement under
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shear-bending action can be represented in Figure [5-6a] in which the parabolic shape is
a result of the cubic interpolation polynomials over cross-section. We can also see that,
similar to the profile of shear stress, under vertical shear force in z direction, the profile
of warping displacement is constant following the y direction. However, the magnitude of
this enhanced field is too small compared to that of the classical field, therefore the total
displacement field is not much influenced and retains its plane shape (Figure [5-6b)). The
material strains and stresses are not influenced and as a result, there are no difference on

the values of tip deflection in Table

0.8

50 0
-0.4
y (mm) 08 uw (mm)

(b) Total displacement field.

(a) Warping displacement field.

Figure 5-6 — Distribution of displacement field over the free-end cross-section under
shear-bending.

Along the element axis, this warping effect is not constant and is distributed propor-
tionally according to the normal stress value: minimum at the fixed-end, then increase

and reach the maximum at the free-end section (Figure [5-7).

100 ‘ ‘ ‘ ‘ — ‘ 500 ‘
50+ / 1 250+ 1
£ 5 €
Eof . E £ of —
N AN N
50 H — At free-end section : 250
i - - - Near fixed-end section P —At ff%md section_
34 - - - Near fixed-end section
-100 I L -7 . . . . -500 T e | | |
- -3 -2 -1 0 1 2 3 -1.5 -1 -0.5 0 0.5 1 15
uw (mm) <10 uw (mm) x10°
(a) Example by Capdevielle. (b) Example by Le Corvec.

Figure 5-7 — Variation of the warping displacement profile along the beam axis.
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5.1.2 Inelastic material

In this section, under shear-bending effect, the numerical model is simulated using the FE
formulation presented in Chapter [3, while the model’s material behavior is based on the
MCFT, originally developed by Vecchio [I10] and described in Section [2.4.1.1]

The RC beam tests conducted by Bresler & Scordelis at the University of Berkeley
[14] is commonly taken as a benchmark reference and have been repeatedly used for the
validation of various analytical and numerical models. For this reason, in this section
the results of these test are used as references in order to investigate the capacity of
the proposed model in predicting the behavior of reinforce concrete under shear-bending.
Three series of test A, B and C are analyzed in this section. The details of beam sections

in each series and the outline of test setup are showed in Figure [5-8|

Testing machine
Plate: 12" x 12" x 1”

Plate: Extensometer TV ]
5" x 127X 1" ]

\

Ané‘,or Spherical l AN Roller 1-3/8"
nuts bearing Dial gage plate

(a) Outline of test setup.

307 mm 305 mm 307 mm
e i

-+

466 mm
466 mm
561 mm

178 mm 178 mm
Ty Ty

No.4 No.4+
No.2 BI No.2 1 B2
£
£
g
Noo<® @ | L No.9<[ |
I sl

178 mm

—
No.4—
No.2 — cl
- @
No. 9 ER
(b) Cross-section details.

Figure 5-8 — Bresler & Scordelis’s shear bending test in 1963 [14].

556 mm
556 mm

464 mm

559 mm
559 mm
554 mm

In each series, the index number 1,2 and 3 correspond to three different types of
specimen, each corresponds to a beam length indicated in Table [5.4a] According to the
test result, the types of beam of intermediate length (A1, A2, B1, B2 and C1, C2) could
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be characterized as shear-flexural behavior, correspond to a shear-compression failure

mode, while the long-span beams of type 3 (A3, B3 and C3) generally exhibited a flexure-

compression failure mode. In Table we can also find the section dimensions and

concrete properties, while the reinforcement details are given in Table

Table 5.4 — Description of the RC beams tested by Bresler & Scordelis [14].

(a) Section details and concrete properties.

5.1.2.1 Numerical analysis of Beam A1l

A detailed case study is analyzed in this

L h b f!
Beam €o
(mm) (mm) (mm) (MPa)
A f f B
Al 3658 561 307 24.1 0.002 Bar
(mm) (MPa) (MPa) (MPa)

A2 4572 5h9 305 24.3  0.002

No. 2 6.4 325 430 189607
A3 6400 561 307 35.1 0.002

No. 4 12.7 345 542 201330
B1 3658 556 231 24.8 0.002 No. 9

O.
B2 4572 561 229 23.2 0.002 28.7 555 958 217880

(types 1,2)

B3 6400 556 229 38.8  0.002 No. 9

0.
C1 3658 559 155 29.6  0.002 28.7 552 933 205470
c (types 3)

2 4572 559 152 23.8  0.002 X .
(b) Reinforcement details.

C3 6400 5h4 155 35.1 0.002

section, the specimen Al is modeled using 4

elements with 5 Gauss-Lobatto points and a system of 25 x 15 meshes over the cross-

section. The interaction between shear and bending is investigated firstly. In order to

point out the shear effect on the bending behavior, the deflections are determined by two

different ways: using a model of combined bending and shear, and using a model in which

shear is ignored.

500

o

Experimental values

Shear-bending model | |
= = = Only bending
——Only shear

6 8 10
Mid-span deflection (mm)

12 14

16

Figure 5-9 — Load-displacement diagram of beam Al.
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Figure [5-9| presents the mid-span deflection versus applied load curves.




It can be observed that shear effect on the beam deflection is not much pronounced in
the elastic region (up to 100 kN). However, coupling between shear and flexural actions
seems to give better results in terms of deflection when the beam gets in the nonlinear
range. For instant, at the loading of 400 kN, the deflection due to shear is about 11 %
of the total displacement. The deflection due to the shear increases with increasing of
applied load. This situation can be explained by the appearance of shear crack pattern in
the sectional stiffness matrix, which decreases the sectional stiffness and thus increases the
displacement. Moreover, the numerical results obtained by the proposed model give quite
good agreements with the experimental values in term of element stiffness, load bearing
capacity (460 kN in compare to 468 kN of test value) and the maximum deflection (14.6
mm in compare to 14.2 mm of test value).

At ultimate loading, the crack orientation of concrete were illustrated in Figure [5-10al,
for the left half of the beam. As can be seen, the numerical simulation gives logical results
in terms of crack orientation. Indeed, the crack inclinations become higher towards the
lower face of the beam and close to the mid-span - the point of load applications. This

result is somehow in agreement with the experimental observations in Figure [5-10b|

h/2
T T T T T N =
ol = T T — T
_ _ / - e
- 7 7 17 ! 4 {
% / / | i
_h/2 L L L 1 I
0 L/2

(a) N o] st (b) Experimental observations.
a) Numerical simulation.

Figure 5-10 — Crack distribution at ultimate loading for the left half of Beam Al.

The distributions of normal stress at different cross-sections are plotted in Figure
for the left half of the beam, just before the achievement of ultimate load. At mid
of the left half (or at 1/4 of beam span), higher stress intensities are recorded in the
compression zone because the appearance of crack limits the increase of normal stress
in tension zone. At mid-span cross-section, where the strains are maximum, a higher
ordinate of neutral axis than that at 1/4 span can be found because the cracks in tension
zone become wider. Corresponding to the parabolic shape in the compressive relationship
of the material constitutive model, in the compression zone the normal stresses reach its
compressive strength and start to decrease at the top of the beam. In tension zone, the

tension-stiffening phenomenon can be observed at the bottom of the beam.
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Figure 5-11 — Distribution of normal stress o, at different cross-section.

For the distribution of shear stresses, similar statement can also be remarked, as a
parabolic profile corresponding to elastic regime is found at the left support where the
applied load is at low level (Figure . Then, while shear stresses continue to increase
with load level in compression zone, in the tension zone, because of cracks, the increment
of shear stresses is considerably less than in the compression zone. From certain level of
load, the propagation of flexural cracks forces the shear stresses to zeros, as sketched at
the section near the mid-span. It is should be highlighted that the integration of the three

curves, which correspond to the results of shear force distributions, are equal.
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Figure 5-12 — Distribution of shear stress 7., at different cross-section.
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5.1.2.2 Numerical results of others beams

Other simulation results for all specimens in the test of Bresler & Scordelis are represented
hereafter. In Table 5.5, the ultimated loadings computed by the proposed model are
compared to VecTor2, a finite element program developed at the University of Toronto.
This program incorporate the behavior models and constitutive relations of the disturbed
stress field model (DSFM) [108], a refinement of the MCFT [110]. Relative differences are
computed with respect to the experimental values and the better results are highlighted in
red. It can be seen that reasonable results have been obtained for both numerical models,
but the proposed model generally gives better result of predicting than VecTor2 program,
especially for the beams of series A and B. It is also interesting to note that the ultimate

loading performed by both numerical models are typically under-estimated.

Table 5.5 — Ultimate Loading (in kN) and relative difference to the experimental result -
Comparison between Proposed Model and VecTor2 program

Beam | Experimental Proposed Model  VecTor2 Program
Al 468 461 / -1.5 % 472 / 0.9 %
A2 490 442 / -9.8 % 399 / -18.6 %
A3 468 375 / -19.9 % 366 / -21.8 %
B1 446 441 / -11 % 423 / -5.2 %
B2 400 380 / -5.0 % 327 /-183 %
B3 356 320 / -10.1 % 355 /-0.3 %
C1 312 292 /6.4 % 307 /-1.6 %
C2 324 322 / -0.6 % 258 / 5.5 %
C3 270 251 /-7.0 % 255 / -5.5 %

The load versus mid-span displacement curve obtained by the proposed model in
compare to the experimental test data are plotted in Figure [5-13| For the beams of
intermediate length (type 1 and 2), good agreements were obtained at all stages of loading,
except in the case of beam C1 (Figure, where the numerical and experimental curve
did not correlate very well. For the long-span beam (type 3, although there are some

difference at the early load stage, the beam stiffnesses were well represented, especially in

beam B3 and C3 (Figure [5-13¢| and [5-13h)), while the numerical result for beam A3 was a

bit different to the experimental curve (Figure [5-13b)). In general, very good correlations
were obtained between the numerical result and the experimental values: the model is
capable of well predicting the ultimate loading and maximum deflection (as shown in

Table |5.5)) as well as representing a very reasonable element stiffness in most cases of test.
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5.2 Elements subjected to bending-torsion action

In this section, in order to analyze the suitability and accuracy of the developed three-
dimensional formulation, the numerical results obtained by the proposed model are com-
pared to various series of beam tested in combined bending-torsion carried out by Mec-
Mullen & Warwaruk in 1967 [72] and by Onsongo in 1978 [82]. Although some modifica-
tions are required for the tensile relationship to correctly predict the torsional behavior
of RC beam under pure torsion (as described in Chapter {4, in this section, the tensile
relationship proposed for shear effect, originally developed by Vecchio [110] and described
in Section is used for the uniaxial tensile stress-strain behavior of concrete, for

the following reasons:

e In the case of combined loading, the cracking of concrete might be due to a bending
or torsional effect, knowing that the modified tensile relationship proposed in Chap-
ter 4] has a greater concrete cracking strength than that proposed for shear effect,
the use of this tensile law proposed for pure torsion could lead to an overestimation

of the predicted values of cracking moment if cracking is due to bending.

e Even if cracking is due to torsion, it should be noted that under pure torsion, after
cracking of concrete the sectional behavior is assumed to be carried out as a hollow
section; however, in this case of combination loading, under the effect of bending
moment, this assumption is no longer supported. In this multi-fiber approach, when
the entire cross-section acts to resist torsional effect instead of a hollow cross-section,
the proposed tensile relationship for pure torsion could also lead to overestimated

predicted values of cracking moment.

5.2.1 Comparison with experimental data
5.2.1.1 McMullen & Warwaruk’s beams [72]

McMullen & Warwaruk in 1967 [72] carried out a series of experimental test for rectangular
RC members subjected to combined loading. The experimental program was divided into
seven groups under bending and torsion (Group 1,2,3 and 4) and under shear, bending
and torsion (Group 5,6,7). In this section, only the Group 1 and 2 were investigated in
order to analyze the response of unsymmetrically and symmetrically RC members under
bending - torsion combination. The outline of test setup and the internal forces diagrams

are represented in Figure the cross-section dimensions along with the reinforcement
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details are shown in Figure [5-14b| while the concrete strength and the bending/torsional
moments applied are indicated in Table[5.6] Because of big compressive strength, all the

specimens in Group 2 are considered as design to fail on steel tension.
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Torsional I Bending
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140 mm 1372 mm 1372 mm 140 mm  moment
(a) Outline of test setup.
2x®9.5 2x @19
£ fy =323 MPa £ fy =323 MPa
g Group g Group
) i D9.5 @ 83 mm by ) 9.5 @ 83 mm
& fy =370 MPa w fy =370 MPa
= =
2x @19 2x @19
fy =323 MPa fy =323 MPa
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(b) Cross-section.

Figure 5-14 — McMullen & Warwaruk’s bending and torsion test in 1967 [72].

In Table the ultimate bending and torsional moments are also presented as well
as the relative difference with respect to the experimental values. It is should to be

noted that the loads were applied proportionally and the ratio between torsional and
Torsional moment

bending moments in each specimen is presented by the ratio R: R = - .
Bending moment

Reasonable results with relative difference less than 10 % can be found in most of the

case.

Table 5.6 — Concrete strength, bending/torsional moments ratio and the ultimate
loading values.

Bending moment (kNm) Torsional moment (kNm)

Beams (Nflia) R=T/M Exp  Proposed Relative Exp  Proposed Relative

values Model difference | values Model difference
1-1 35.8 e%) 0 0 0% 13.8 13.6 -1.4 %
1-2 30.6 3.00 5.3 5.0 5.7 % 15.6 14.6 -6.4 %
1-3 34.9 2.00 7.9 7.3 7.6 % 15.8 14.5 -8.2 %
1-4 34.3 1.00 18.0 174 3.3 % 18.0 174 -3.3 %
1-5 40.1 0.50 30.2 30.0 0.7 % 14.8 15.0 1.4 %
1-6 38.2 0.25 40.9 38 11 % 10.2 9.5 -6.9 %
2-1 39.6 00 0 0 0% 20.5 21.8 6.3 %
2-2 34.6 2.00 9.9 10.4 51 % 194 20.8 72 %
2-3 37.9 1.00 18.8 17.6 -6.4 % 18.8 17.6 -6.4 %
2-4 36.0 0.50 30.2 29.2 3.3 % 15.1 14.6 -3.3%
2-5 36.6 0.25 40.9 39.2 4.2 % 10.2 9.8 -39 %
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The load-deformation responses of specimens in Group 1 and 2 are simulated correctly
in Figure p-15, For the beam 1-2, the torsional moment - twist rate numerical curve gives
a very good agreement with the experimental data, even though the cracking and ultimate
torsional moment were a bit under-estimated (Figure . For beam 2-2, the cracking
torsional moment is correctly predicted, while the torsional stiffness after cracking is also
well represented (Figure . For beam 1-4, before cracking, very good correlation is
obtained, while the torsional stiffnesses predicted by the proposed model after cracking
are apparently correct with the experimental values (Figure p-15D]). In the case of beam
2-4, excellent behavior before and after cracking is simulated (Figure .
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Figure 5-15 — Experimental and numerical Torsional moment - Twist rate diagrams for
Group 2 of McMullen & Warwaruk’s test of bending and torsion.

In the bending-displacement diagram in Figure [5-16] good correlations are also ob-
tained at early load stage, in high load stage, the differences become bigger, however in
general the numerical curve correlated well with the experimental values. It is important
to note that in the test data, the displacement values were measured with an uncertainty
0.5 inches incertitude, which could make the experimental bending moment - displacement

curve became less reliable, as observed in Figure [5-16]
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Figure 5-16 — Experimental and numerical Bending moment - mid-span displacement
diagrams for Group 2 of McMullen & Warwaruk’s test of bending and torsion.

5.2.1.2 Omnsongo’s beams [82]

In the test of Onsongo, two series of beam were investigated (Figure . The first
series named “torsion-bending-overreinforced” (TBO) series in which 5 specimens were
over-reinforced designed to fail on concrete compression. In this series, concrete strengths
were around f. = 20 MPa, while the difference between each specimens were the ratio R
of bending moment and torsional moment applied, which are indicated in Table 5.7, The
second series named “torsion-bending-solid” (TBS) included 4 solid beams tested under
the same R ratio but had different concrete compressive strengths ranging from 15.5 to
45.8 MPa (Table[5.7). The cross-section dimensions, as well as reinforcement distribution

and properties, of these two series are detailed in Figure
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Figure 5-17 — Onsongo’s bending and torsion test in 1978 [82].
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The ultimate bending and torsional moments are presented as well as the relative
difference with respect to the experimental values in Table [5.7 Reasonable results with
relative difference less than 10 % can be found in most of the case. It is also interesting
to note that, similar to the numerical results in Section [5.2.1.1} in this test the proposed

model give under-estimated numerical results in most of cases.

Table 5.7 — Concrete strength, bending/torsional moments ratio and the ultimate
loading values.

Bending moment (kNm) Torsional moment (kNm)
Beams (Mf;’a) R=T/M Exp  Proposed Relative Exp  Proposed Relative
values Model difference | values Model difference
TBO1 19.5 0 401 383 -4.5 % 0 0 0%
TBO2 19.7 0.25 334 331 -0.9 % 78 74 5.1 %
TBO3 19.1 0.70 232 238 2.6 % 143 143 0%
TBO4 20.4 1.50 117 113 34 % 149 147 -1.3%
TBO5 20.6 5.00 35 36 2.9 % 143 137 -4.2 %
TBS1 28.0 1.50 164 159 -3.0% 209 205 -1.9 %
TBS2 32.9 1.50 169 163 -3.6 % 216 211 -2.3 %
TBS3 45.8 1.50 186 185 -0.6 % 245 239 24 %
TBS4 15.5 1.50 108 121 12.0 % 125 156 24.8 %

Good agreement can be also found in the torsional moment - twist rate diagram of
series TBO of Onsongo’s test (Figure . In this series, for beam TBOS3, although
there are some difference after cracking, the torsional stiffness predicted by the proposed
model is apparently correct with the experimental values (Figure. For beam TBO4,
very good correlations are obtained at early load stage, in high load stage, the differences
become slightly bigger, however in general the numerical torsional moment - twist rate

curve represent well the torsional behavior in the series.
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Figure 5-18 — Experimental and numerical Torsional moment - Twist rate diagrams for
series TBO in the bending-torsion test of Onsongo.
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In the TBS series, the behavior before cracking are well simulated for beam TBS1
(Figure [5-19a)), while for the beam TBS3, very good correlation were obtained at all
stages of loading (Figure [5-19b)). In general, good correlations with experimental data are

obtained by the proposed model in predicting the load-deformation responses.

250 ; ; ; ; L e ——

E200f e €200 .z

z | z

| e 3

Lo = T 1501

IS g IS

o o

£ B 1S

w 100+ Z w 100

c - c

<} i <}

4 p 4 ,

2 50 1 ° 50 J
----- Experimental Values| i ----- Experimental Values|
—Proposed Model ——Proposed Model

0 L L L L O L L L L L
0 10 20 30 40 50 0 10 20 30 40 50 60
Twist rate (mrad/m) Twist rate (mrad/m)
(a) Beam TBS1 (b) Beam TBS3

Figure 5-19 — Experimental and numerical Torsional moment - Twist rate diagrams for
series TBS in the bending-torsion test of Onsongo.

The transverse strains were also measured in Onsongo’s experimental test, using special
strain gauge attached to the stirrups. The simulated strains in the stirrups can be therefore
compared with the measured values from experimental test data. In Figure the
diagrams of torsional moments versus transverse strains at mid-depth of beam TBO4
and TB5 are represented with a good agreement between the numerical and experimental
values, the slope of the curve and the maximum strain were obtained reasonably. In
Figure [5-21] the torsional moment - transverse strain diagrams for different faces of beam
TBO3 are showed and reasonable agreements were observed at mid-depth (Figure |5-21a))
and at the bottom face of the beam (Figure . In general, the transverse strain in

the stirrups calculated and represented by the proposed model are satisfactory.
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Figure 5-20 — Experimental and numerical diagram of Torsional moment - Transverse
strain at mid-depth of beams in series TBO of Onsongo’s test.
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It is interesting to remark that negative strains with respect to torsional moment are
recorded in the experimental observation and by the proposed model when the gauge is
placed at the mid-depth of the beam (Figure . In fact, examining the case of
a cross-section under bending and torsional moments as in Figure[5-22] at early load stage,
in each side of cross-section, the combination of shear strains and stresses due to bending
and torsional moments might have positive or negative relative values with respect to
torsional moment. If the strain gauge is placed in the left side of cross-section, strain
values recorded are always positive with respect to torsional moment. On the other hand,
if the strain gauge is placed in the right side, strains values recorded might negative with

respect to torsional moment at early load stage, when the shear strain due to bending

dominates the one due to torsion.

Torsion Bending
— < (
C ¢u¢ 222222AN
Left ¢¢ Right
side 2222222 R] side
gauge ¢¢ gauge

Figure 5-22 — Shear stress direction in cross-section under bending-torsion action.

5.2.2 Bending-Torsion interaction diagram

As mentioned in Chapter [2] Section 2.2 the bending-torsion interaction diagram can be
plotted using the skew-bending theories, firstly proposed by Lessig [66] and then devel-
oped by Collins et al. [23], [24], Yudin [116] and Elfgren et al. [35]. Among these theories,
the one proposed by Collins et al. is considered suitable for the analysis of Mc Mullen &
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Wawaruk’s experimental test, because it was developed for two case of symmetrically and
unsymmetrically reinforcements disposition (Figure . In the interaction diagram,
for both cases, the Mode 1 failure corresponds to the domination of bending moment,
with a helical crack in which the failure surface is initiated at the top face of the beam,
according to initial Skew-bending theory by Lessig [66] as indicated in Figure . The
Mode 2 failure produces when torsional moment becomes dominated and the failure sur-
face is initiated by cracks on the side faces of the beam. For symmetrically rectangular
RC members (equal quantity of top and bottom longitudinal reinforcements), only these
two failures mode are recorded (Figure , while in the case of unsymmetrically RC
members (top longitudinal steel is less than the bottom), the Mode 3 failure occurs with

a helical cracks initiated on the top of the beam (Figure [5-23b)).

Torsional moment Torsional moment
A A

Tuk Mode 2 Tu Mode 2

~
~
~
~

Mode 3

Mode 1 Mode 1
e e
5 Bending » Bending
Mu ” moment Mu moment
(a) Symmetrical RC members (b) Unsymmetrical RC members

Figure 5-23 — Collins et al.’s interaction diagram between bending and torsional
moments [23)].

Regarding the numerical results of ultimate loadings, for the case of symmetrically
RC members concerning Group 2 of McMullen & Warwaruk’s test, the bending-torsion
interaction diagrams for this series are shown in Figure along with the experi-
mental values and analytical solutions, which was calculated according to Collins et al.’s
theory using an average concrete compressive strength of 5 specimens in Group 2. Good
correlations between numerical results, experimental values and analytical solutions are
achieved for the cases of beams 2-3, 2-4 and 2-5, when bending moment dominated tor-
sional moment (The ratio R was less than 1). It is also interesting to note that in this
stage, in compare to the experimental values, the numerical model gives conservative re-
sults while the analytical one gives unconservative results. However, when torsion became
dominated (Ratio R became bigger than 1), the numerical and analytical ultimate values
of torsional moment tends to over-estimated the experimental ones. It can be remarked

that, compared to the experimentation, the skew-bending theory overestimates consider-
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ably the pure torsional strength of symmetrically RC members, while the predicted values
obtained by the proposed model are more reasonable with relative differences of about
6-7 % (Table [5.6). The numerical and experimental ultimate values of torsional moment
of beams 2-3, 2-2 and 2-1 change slightly and are nearly constant between beams 2-1 and

2-2, which corresponds to a transition between Mode 1 and 2 in analytical solutions.
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Figure 5-24 — (a) Interaction diagram between bending and torsional moments for the
Group 2 of McMullen & Warwaruk’s test. (b) Symmetrically cross-section of Group 2.

For the case of unsymmetrically RC members concerning Gr. 1 of McMullen & War-
waruk’s test, a similar bending and torsional moments interaction diagrams are shown in
Figure As in the case of symmetrically members, the analytical solutions continue
to give conservative ultimate values, while the numerical model gives better agreements
with experimental values, especially near the vicinity of the transitions between 3 failures

modes.
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In the TBO series of Onsongo’s test, good correlations were also obtained in the inter-
action diagrams of this series between numerical and experimental values (Figure .
Similar interaction curve than the Collins et al.’s theory in Figure [5-23b with the ap-
pearance of the Mode 3 failure, were reproduced: in the Mode 1, the increase of torsional
moment happens simultaneously with the decrease of bending moment (Beam TBOI,
TBO2, TBO3); Until a value determined, when the ultimate value of bending moment
continue to decrease but the ultimate values of torsional moment are still constant, the
Mode 2 failure happens (Beam TBO3, TBO4). Then, when the ultimate value of bending
moment becomes too small, the ultimate torsional moment decreases slowly, which corre-
sponds to the failure Mode 3 (Beam TBO4 to TB5). Several numerical results obtained
by others were also plotted in these interaction diagram with a good level of prediction
obtained in most of specimens: the model of Bairan performed very well in the specimens
with small ratio of bending/torsion (TBO1, TBO2, TBO3), the model of Vecchio gave
good results in the specimens with big ratio of bending/torsion, while a good balance of
accuracy between all 5 specimens can be obtained by the proposed model. In general,
the ultimate values of bending and torsional moments are well predicted by the proposed
model, especially for the case of higher ratio of torsion/bending. In Figure a new
bending-torsion interaction curve was obtained with various values of the torsion/bending
ratio R, using a numerical model based on the TBO series with a compressive strength
of concrete f, =20 MPa. From this diagram, the Mode 1 failure can be considered for a
value of R from 0 to 0.7 (Beam TBO3), the Mode 2 failure happens in a range of R from
0.7 to 2 and then the Mode 3 for a R larger than 2.
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Figure 5-26 — Interaction diagram between bending and torsional moments for the TBO
series TBO of Onsongo’s test.

173



5.2.3 Stirrup contribution on torsional resistance

This section aims to investigate the influence of the stirrup density on the bending-torsion
interaction. To do so, let’s consider a RC cantilever beam subjected to bending and tor-
sional moments at the free-end as shown in Figure[5-27, The stirrup density is changed by

varying the spacing of stirrups s along the beam length. During the simulation, bending
Torsional moment

and torsional moments are imposed simultaneously using a ratio R = - .
Bending moment

4 2x D16
~Applied fy = 323 MPa
Torsional moment E
E ©9.5@
V . . sst mm
% Applied g fy =370 MPa
2 Bending moment I
| { 2x 016
L=3000 mm fy =323 MPa

T
b=250 mm

Figure 5-27 — Example of RC cantilever beam subjected to bending-torsion.

Figure [5-28| presents the bending-torsion interaction curves for different values of stir-
rup spacing. As we can see, when the torsion is minor compared to bending, for instant
R=0.25, the stirrup density logically has almost no effect. The stirrup effect on the ele-
ment resistance becomes more significant when the torsion dominates over the bending.
In case of pure torsion, it can be seen that the torsional resistance increases about 34
% with increasing of stirrup density of 8 times. This numerical application highlights
that the proposed FE formulation takes into account the transversal reinforcements in

the predicting of the torsional resistance of RC members.
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Figure 5-28 — Bending-Torsion diagrams in function of stirrup spacing.

Figure [5-29| presents the growth percent of the ultimate torsional moment for difference
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cases of stirrup spacing, with respect to the case with the less amount of stirrup (sg =
400mm). By increasing 2 times the transverse reinforcement amount, the ultimate value

of bending moment increase only 10 %, while a 50 % of growth can be obtained by

increasing 16 times the stirrup amount.
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Figure 5-29 — Growth percent of the ultimate torsional moment when increasing the
stirrup density.

5.2.4 Stress distribution

In this section, the distribution of normal and shear stresses of TBO series in Onsongo’s
test are studied in both elastic and inelastic material domains. In elastic range, the same
outline and cross-section dimensions in Figure are conserved, with an elastic modu-
lus of 30 GPa, the Poisson’s ratio of 0.2 and the ratio R of bending/torsional moments was
1.5 (beam TBO4). The distribution of stresses over the cross-section at torsional moment
of 150 kNm and bending moment of 100 kNm are shown in Figure [5>-30, The bending
effect can be represented clearly by a constant distribution of normal stress in horizontal
direction (Figure [5-30a). Because the cross-section is almost symmetric and crack is not
considered in elastic range, o, distributions are also symmetrical. On the others hand,

due to torsional effect, the shear stress flow creates opposite orientations of shear stresses

in both vertical and horizontal directions (Figure [5-30b| and [5-30c]).
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Figure 5-30 — Stress distribution over cross-section of beam TBO4 in elastic range.

Coupling between bending and torsional effect could be represented clearly in the in-
elastic range. For beam TBO4, the stresses distribution are shown in Figure [5-31] at load
stage after cracking and close to the ultimate point. For a better illustration and analysis,
the stresses distribution will be presented in 2D following four vertical and horizontal
cuts at the Left and Right webs and the Top and Bottom flanges of the cross-section,
as indicated in Figure [5-3Tal In horizontal direction, the shear stress distribution are
parabolic symmetrical (similar to that in elastic range) as seen in Figure However,
in vertical direction, under bending effect and crack contribution, the increment of shear
stresses in the tension zone is considerably less than in the compression zone, 7., distribu-
tion becomes unsymmetrical as seen in Figure The distributions of normal stresses
are also unsymmetrical in vertical direction as consequence, while remaining constant in
horizontal direction (Figure [5-31b)). The numerical results achieved in Figure are

corresponding to the one obtained by Navarro-Gregori’s model [76].

176



hi2 hi2 0
Left web vertical cut Right web vertical cut
- ~ | Top flange N

horizontal cut -5

o o b2 0 bi2

Top flange
0 0
. TBO series o 10
S e N
o o 5
Ul e e o - Bottom flange

S /| horizontal cut ., 2 0

i : -5 0 5 10 -5 0 5 10 -b2 0 b/2

' ' Left web Right web Bottom flange

(a) Section cut position. (b) Normal stress o, distribution.

h/2 T h/2 T 4
0 I
-b/2 0 b/2
ol 0 Top flange
0
-h/2 - -h/2 - -
2 0 5 -2 0 5 -b2 0 b/2
Left web Right web Bottom flange

(c) Shear stress 7, distribution.

h/2 T h/2 T 5 \\
Or \\‘
-5 .
-b/2 0 br2
Topfl
ol 0 op flange
3
0,\ \
-h/2 - -h/2 - -3
0 2 4 0 2 4  -b/2 0 b/2
Left web Right web Bottom flange

(d) Shear stress 7., distribution.

Figure 5-31 — Stress distribution over cross-section of beam TBO4 in inelastic range.
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5.3 Elements subjected to shear-bending-torsion

In this section, the combined loading effect between shear, bending and torsional moments
is analyzed by investigating several test series carried out by McMullen & Warwaruk
[72]. The outline of test setup is shown in Figure [-32a} a simple supported RC beam
subjected to vertical force near to the mid-span, while torsional action is created by two
steel arm at two beam’s ends. Three groups of beams with 4 specimens in each were
investigated: Group 5,6 with the same concrete properties and reinforcement distribution
(Figure , while the beams in Group 7 were provided with larger bottom longitudinal
reinforcement steel bars and a large spacing of the stirrups in order to obtain a stronger
strength in flexure but weaker in transverse shear. In this test setup, the distance A of
study region, B between study region and the applied force, and C from vertical force to
the right beam’s support are different for various specimens and are indicated in Figure

[B-32al

B=178 mm for Beam 5-1 Applied force
B= 152 mm for others C=864 mm in Gr. 5

|
N
|

Torsional moment
Shear force :l:

Study regian

Applied A=660 mm B | C=1718mminGr.6,7  Bending moment —
|
T
|
|

|

Tz — 7377
140 rrTlm 2744 mm 140 mm Torsional moment &
(a) Outline of test setup and diagrams of internal efforts.
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(b) Cross-section details of Group 5, 6 and 7.
Figure 5-32 — McMullen & Warwaruk’s test [72] for combined shear-bending-torsion.

5.3.1 Comparison with experimental data

The ultimate shear force, bending and torsional moments of each specimen are presented
for each concrete strength in Table [5.8] as well as the relative difference with respect to
the experimental values. As can be seen, the proposed model gives the results more or
less in good agreement with the experimental data. Indeed, the relative errors are most

smaller than 6 %, except for the cases of beams 5-4 and 6-4, when the ratio R between
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torsional and bending moments is small (R=0.25), and for the case of beam 7-2.

Table 5.8 — McMullen & Warwaruk’s test [72] on shear-bending-torsion combining -
Material properties and Ultimate loading.

Bending moment (kNm) Torsional moment (kNm) Shear force (kN)

Beams e R =T/M Exp Prop. Rel. Exp Prop. Rel. Exp Prop. Rel.

(MP2) values  Model diff. values  Model diff. values  Model diff.

5-1 39.4 1.97 7.3 7.1 27 % 14.5 14.0 -34 % 3.4 3.7 8.8 %
5-2 43.9 0.99 16.2 16.7 31 % 15.9 16.5 38 % 8.4 8.7 3.6 %
5-3 41.8 0.47 31.4 33.2 5.7 % 14.7 15.6 6.1 % 17.2 17.3 0.6 %
5-4 40.0 0.25 44.0 40.3 -84 % 11.2 10.1 9.8 % 24.5 21.0 -14.3 %
6-1 40.4 1.98 7.3 7.2 -14 % 14.6 14.2 2.7 % 8.1 8.2 1.2 %
6-2 40.9 0.97 16.8 17.3 3.0 % 16.4 16.7 1.8 % 19.0 19.7 3.7 %
6-3 39.3 0.50 29.8 31.2 4.7 % 14.9 15.6 4.7 % 34.1 35.6 4.4 %
6-4 39.4 0.25 48.3 41.3 -14.9 % 12.1 10.3 -149 % 55.4 46.9 -15.3 %
7-1 41.9 2.00 6.3 6.6 4.8 % 12.7 13.1 3.5 % 6.9 7.5 8.1 %
7-2 35.9 1.00 13.0 15.0 154 % 13.0 15.0 154 % 14.8 17.1 15.8 %
7-3 39.3 0.48 31.1 32.5 4.6 % 14.9 15.6 4.6 % 36.1 37.1 2.8 %
7-4 36.8 0.25 57.1 57.1 0% 14.1 14.3 1.2 % 66.6 65.1 -22 %

The torsional moment - twist rate diagram of some specimens in these three groups

are simulated correctly, as shown in Figure 5-15

The torsional stiffnesses predicted by

the proposed model after cracking are in good agreement with the experimental values,

especially for the cases of beam 5-4, 6-3 and 7-4 (Figure[5-33b] [5-33d| and [5-33f). For beam

7-1, before cracking, very good correlation is obtained, while the torsional stiffnesses pre-

dicted by the proposed model after cracking are apparently correct with the experimental

values (Figure [p-33€)). For beam 5-2 and 6-2, there is a gap between numerical and exper-

imental values in the inelastic regime, however the torsional stiffnesses are similar, while

the cracking torsional moments are also well predicted (Figure [5-33al and [5-33¢]).

179




18 12
g E P
g < 8
5 5 7
£ o 1S
S - S =
€ e £
B 7 ®
5 5
2} 6r . @ 4+
[} M S
~ 2 [
----- Experimental values J ----- Experimental values|
—— Numerical results ——Numerical results
0 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30
Twist rate (mrad/m) Twist rate (mrad/m)
(a) Beam 5-2 (b) Beam 5-4
20 20
g S > I © ’é‘ 15F
A N et z -0
< 0 o s -
T
R ’ 210/
o gl ® 2
5§ | & 5
4 7 14
}9 5F ,P' |2 5+
--6-- Experimental values --6-- Experimental values
Numerical results Numerical results
0 | | I 0 | | I
0 20 40 60 80 0 20 40 60 80
Twist rate (mrad/m) Twist rate (mrad/m)
(c) Beam 6-2 (d) Beam 6-3
14 15
] e I N B
L = =
10+ . e
g = S0
5s _— 5
£ 8 e IS
e | - g 2
= 6 /7 =
s | f 5 5
2 )i S 5r
5 4r [S]
= =
24 e Experimenta values|| (=== Experimental values|
——Numerical results ——Numerical results
0 | | | | N N 0 | | | N I
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60
Twist rate (mrad/m) Twist rate (mrad/m)
(e) Beam 7-1 (f) Beam 7-4

Figure 5-33 — Torque-twist diagrams

The bending-torsion interaction diagrams of

in McMullen & Warwaruk’s test [72].

5.3.2 Bending-Torsion interaction diagram

Group 5 and Group 6 are plotted in Figure
5-34] The analytical solutions given by the skew-bending theory by Collins et al. [23] are
established with an average compressive strength of 41.3 MPa (in Group 5) and 40.0 MPa
(in Group 6). Because of the same cross-section details and concrete strengths between
two groups, similar results can be found: when the torsion/bending ratio R are bigger
than 1 (beams 5-1, 5-2, 6-1, 6-2), the proposed model performs better than the skew-
bending theory in predicting the ultimate loads; on the other hand, when R=0.5 (beams
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5-3 and 6-3), the analytical solutions give better results. In particular, when bending
moment becomes dominated torsional moments (R=0.25 for the cases of beams 5-4 and

6-4), the numerical results are very similar to the analytical solutions, but they are all too

unconservative compared to the experimental values.
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Figure 5-34 — Bending-Torsion diagrams of Gr. 5, 6 in McMullen & Warwaruk’s test [72].

In Figure the bending-torsion interaction diagram of Group 7 is plotted. As
mentioned above, the numerical results are conservative to the experimental ones. For the
case of beam 7-1 and 7-4, the same level of accuracy compared to the experimentation is
obtained for both proposed model and analytical solutions given by skew-bending theory.
In the same way as the others bending-torsion interaction diagrams of Group 1, 2, 5
and 6, at the vicinity of transition between three failure modes, the skew-bending theory
continues to give very conservative results.
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Figure 5-35 — Bending-Torsion diagram of Gr. 7 in McMullen & Warwaruk’s test [72].
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5.3.3 Shear-Torsion interaction diagram

In the same way as the bending-torsion interaction, in the skew-bending theory by Collins
et al. [23], the shear-torsion interaction of rectangular RC members can also be illustrated
for two cases of symmetrically and unsymmetrically cross-section. For symmetrically rect-
angular RC members (equal quantity of top and bottom longitudinal reinforcements), only
the Mode 2 failure (corresponding to the predomination of torsional moment) is recorded
(Figure , while in the case of unsymmetrically RC members (top longitudinal steel
is less than the bottom), the Mode 3 failure occurs while the torsional moment prepon-
derant with respect to the shear force and bending moment (Figure . Otherwise,
in the Collins et al.’s interaction curve for torsion and shear, a shear failure mode can be

included for member which fail in shear.

Torsional moment Torsional moment
A A
To2 s Mode 2 N Mode 2
~ T02
Shear failure Shear failure

o Shear > Shear

Vo " force Vo force
(a) Symmetrically RC members (b) Unsymmetrically RC members

Figure 5-36 — Collins et al.’s interaction diagram between shear force and torsional
moment.

The shear-torsion interaction diagrams of Group 5, 6 and 7 are plotted in Figure [7-15]
In Group 5 and 6, the experimental curve trend are somewhat correspondent to the skew-
bending theory for unsymmetrically RC members, however, the analytical predictions
are too conservative, especially in Group 5. In the other hand, different situation can
be remarked for the shear-torsion interaction curve of Group 7 (Figure 5-37d). In this
diagram, both the results given by the skew-bending theory and the proposed model are
in good agreement with the experimentation. In the same way as the others bending-
torsion and shear-torsion interaction curves have shown in this Chapter, the analytical
solutions are quite conservative. This remark corresponds to the observation of Hsu [40]
that the skew-bending theory overestimates considerably the pure torsional strength of

RC members.
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5.4 Conclusions

In this section, various numerical simulations have been done in order to assess the capa-
bility of the FE model developed in Chapter [3] Through these numerical examples, the

following remarks and conclusions can be draw:

e In the elastic material regime, excellent correlations have been obtained between
numerical results, theoretical formulations and analytical solutions. The multi-fiber
approach has shown its advantage by ensuring an excellent balance between accu-
racy and calculation cost in this material regime. Deformation, strain and stress
distributions can be computed and figured out with very high levels of accuracy by
both approaches representing the enhanced displacement field (using Saint-Venant

warping function and Lagrange polynomials).

e Between two enhanced approaches, Saint-Venant warping function is simpler and
more practice with a lower computational cost, whereas the use of Lagrange poly-
nomials approach is more general and presents a big advantage by obtaining the
additional normal stresses and representing the distribution of warping displace-
ment over cross-section under shear bending action, which can not be obtained by

plane-section beam theory, as well as the Saint-Venant warping function approach.

e The proposed model is very efficient in simulating the inelastic coupling between
shear and bending, in which every aspect of the beam analysis, including the load-
displacement diagram, the crack propagation as well as the distribution of stresses,
etc., could be represented and analyzed. Under shear-bending action, the use of
proposed model for the modeling of RC beams is also appropriate by good levels
of correlation obtained between numerical and experimental results in computing
the ultimate loading and simulating the load-displacement diagrams of three beam

series in the classic test of Bresler & Scordelis.

e The bending-torsion interaction diagrams indicates that the proposed model can
provide reasonable coupling behavior of rectangular RC beams subjected to com-
bined loading of bending and torsional moments. Indeed, the numerical results
correlated well with the experimental tests of McMullen & Warwaruk and Onsongo,
as well as with the analytical solutions of skew-bending theory proposed by Collins et
al. Comparing to other numerical results, the proposed model gave a good balance

of accuracy in predicting the ultimate values of bending and torsional moments. Not
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only the load-displacement diagrams, but also the load-transverse strain diagram or
the distribution of stresses over the cross-section can be correctly illustrated by the

proposed model.

Let recall that in Chapter ] some modifications are required for the tensile rela-
tionship to predict correctly the torsional behavior of RC beams under pure torsion.
However, in this Chapter, through the numerical results obtained by the proposed
model, as well as by others, the tensile relationship proposed for shear effect (in
Section could be used efficiently to predict the coupling behavior including
torsion. From these simulation results obtained, the use of the constitutive model
based on the MCFT to representing the coupling between shear-bending-torsion is

very appropriate.

Finally, from the satisfactory results in Chapter [ to this Chapter, the combination
of MCFT based-constitutive model with the section discretization in different zones
following its stress state is once again very suitable for the sectional approach model.
The implementation of enhanced displacement field using Lagrange polynomials (or
similar interpolation functions) in a displacement-based multi-fiber finite element

approach can also be validated and applied in further studies.
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Chapter 6

Geometric nonlinearity and

Corotational formulation

Under extreme loads, structures may achieve large displacement conditions. Consequently,
the linear geometric assumption becomes insufficient for the simulation of structural ele-
ments. The inclusion of nonlinear geometry effects is necessary in order to complete the
competency of this 3D beam model. The present chapter deals with geometrically non-
linear finite element formulation for the analysis of RC members subjected to combined
shear-bending-torsion actions. The co-rotational formulation is motivated by the fact
that thin structures undergoing finite formulation are characterized by significant rigid
body motions. The assumption of small strains but large displacements and rotations is
adopted. The basic is an element-independent algorithm, where the rigid body motions
(translations and rotations) are separated from the total deformation. In the corotational
based, the reference configuration is split into base and corotated. Strains and stresses are
measured from corotated to current, while base configuration is maintained as reference to
measure rigid body motions. This formulation is recommended to use in case of solid and
structural mechanics with arbitrarily large finite motions, but small strains and elastic
material behavior. Extendible to nonlinear materials if inelasticity is localized so most of
structure stays elastic.

The main advantage of a co-rotational approach is that it leads to an artificial sepa-
ration of the material and geometric non-linearities when a linear strain definition in the
local coordinate system is used: plastic deformations occur in the local coordinate system
where geometrical linearity is assumed; geometric non-linearity is only present during the

rigid rotation and translation of the undeformed beam. This leads to very simple ex-
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pressions for the local internal force vector and tangent stiffness matrix. Even when a
low-order geometrical non-linearity is included in the strain definition, the expressions for
the local internal force vector and tangent stiffness matrix are still very simple. In this
research, a Total Lagrangian-Corotational approach is employed for the development of
beam and beam-column elements, in which an initial undeformed geometry, translated
and rotated as a rigid body, is chosen as the reference configuration in the corotated
frame. Moreover, the formulation is based on small deformations within the corotational

(natural) frame.

6.1 3D rotation parametrization

Before expressing the co-rotational formulation, it is necessary to define the 3D finite
rotations of a beam element, which is one of the key issues concerning the nonlinear

geometric formulation.

6.1.1 Rotation tensor

T
Let e = <61 ey e3> be a vector (or frame) that is rotated into the new position t =

T
(t1 ts t3) (Figure [6-1a), a relation between these two vectors is obtained as follows:

t = Re (6.1)

These rotations are represented by an orthogonal tensor R, which is an 3 x 3 matrix, but
involving only three independent parameters, due to its ortho-normality (RR” = I). The

rotation matrix R can be expressed as:

} 1_
sm@sp(@) . 0(;059

R=1I;+ Sp(©)? (6.2)

where I3 is the 3 x 3 identity matrix; 0 is the magnitude of the so-called rotation vector

T
e = (01 0 03> ; and Sp(®) is the spin of the rotation vector, defined as:

0 —0; 6
Sp@) =16 0 -6 (6.3)
—0, 6 0
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6.1.2 Rotation increment

The finite rotation can be expressed with the rotation matrix R and the correspond-
ing rotation vector ®. Then, the incremental rotation of the moving vector/frame t is

considered by generating a small variation dt from the rotated position t (Figure |6-1Db)):
5t = SRt (6.4)

The variation of the rotation matrix R is derived by defining a new parameter 6€2 as the
spatial angular variation representing the infinitesimal rotation that is superimposed on

the rotation matrix R:

SR = Sp(6Q)R (6.5)

In the numerical implementation, the spatial angular variation play a very important role
in the incremental analysis for updating the rotation matrix R’ from 4 state to the rotation

matrix R of i + 1 state:
R (©) = R(6Q)RY(O") (6.6)

Knowing that R is a function of ®" and R is a function of ®*!, however the addition
of the vector 6€2 to @' does not give @F1: @ £ @' + §Q. This problem of multiplica-
tive update for rotations in the incremental analysis is solved by projecting the spatial
angular variation €2 onto the parameter space adopted for R and obtaining, as a result, a
new parameter called admissible angular variation 0®. The conversion between this two

parameters, proposed by Battini & Pacoste [0], is represented by a complex relationship:
0N =T,(O)/O (6.7)

with

T,(0) = 31291 + (1 - #) nn” +% (%)2 Sp(©) (6.8)

where n is an unit vector. The inverse relation is also available:

60 = T,;1(©)iN (6.9)
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with

o)~ % gy (1 - %) nn? — - 5p(©) (6.10)

~ tan(0/2)

(a) Rotation of a
vector/frame. (b) Incremental rotation vector.

Figure 6-1

6.2 Coordinate systems and local reference frame def-
initions

As a reminder, in the context of co-rotational framework, the large displacement kine-
matics of 3D beam elements must be decomposed into a local rigid reference frame that
follows the element deformations and the rigid body motion of this local frame. Knowing
that in this local reference, the linear geometric assumption is still valid and the existing
enhanced model formulations can be used accordingly, the key issue of the co-rotational
formulation is to define the local reference frame and its nonlinear rigid body motion.
Then, not only the proposed model in this work, but also different local formulations can
be applied and compared in this co-rotational framework.

In this present work, a beam element is limited by two end nodes I and .JJ. The motion
of a beam element is attached to a local reference system and its rigid body motion is
considered in a global reference system which is defined by a triad of unit orthogonal
vectors E; = <E1 FE, E3>. In the initial configuration (undeformed condition), the
local reference system is defined by a triad of unit orthogonal vectors ef = <e§ 9 eg).
The rigid rotation relative to the global reference of this local frame is defined by a
rotation matrix R,: ( E, E, E3) i (6‘1’ 9 eg) (Figure . The components of

R? are defined by the position of two beam nodes:

X jo — XJo RS x [0,1,0] R x RS
R":[RO R? RO}: Rl=—"——; RI= ;7 Ry = ———«
L Y lxge = x|l T IRE x [0, 1,0]]7 7 ||R§(x R‘f)H

6.11

with x7. and xj. are the nodal coordinates of nodes I, .J at initial configuration. The

term ||xjo — Xjo|| = [, defines the initial beam length.
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E»>

Figure 6-2 — Transition between global and local reference system at initial undeformed
configuration.

Then, the beam is deformed and its rigid body motion is represented by the centroid
displacement of a cross-section. This generalized displacement consists of two components:
a vector of translations d relative to the global reference and a rotations vector €2 about
the axes of global triad. At local level, the translations vector is denoted by d while the

rotations vector about the local triad becomes Q. In the final configuration of the beam,

it is recommended to define two local reference systems:

e Local reference system in semi-final configuration (translated but not rotated): de-

fined by a triad of unit orthogonal vectors: e; = (61 ey e3> (Figure [6-3a). The

rigid rotation relative to the global reference of this frame is defined by a rotation

matrix R": (El E, E3>£>(61 €2 63)'

e Local reference system in final configuration (totally deformed): defined by two tri-

ads of unit orthogonal vectors at each node: t! = (t{ t tL)and t! = (t{ t] t] >;

or t/ = <t{J th ¢l ) for the sake of generality (Figure |6-3b)). As in the sequel,

without any particular mention, the term local frame or local reference system is

always considered to the local frame in final configuration t/”.

S
[0/ d; = Xx; - Xp I

& C; el‘s

~ -
J 55‘_.‘]

d; = x; - Xp

(a) Initial and semi-final configuration in local
reference.

(b) Final configuration of
beam element.

Figure 6-3
From these definitions of global and local coordinate systems, there are two ways to

express the global rotation at end nodes of the beam element (Figure :

1. A rotation of the local axes relative to the global frame, defined by the rigid rotation

matrix R", followed by a rotation of the node relative to local axes, which is defined

191



by a local rotation matrix R

T

R EIJ
(B0 B )™ (o0 e2es) o (19 07 43Y) (6.12)

2. A material rotation of the node relative to the global reference, defined by rotation
matrices R9!”, followed by a global rotation of the local frame at initial configuration

(defined by the rotation matrix R°):

R, RgIJ
(E1 E, Eg) — (eg e eg) — (t{J th’ th) (6.13)
RI'
E2
R
[O
0 Ei \
Ez\_/ROV Je
global reference initial undeformed configuration final deformed configuration
system & local frame

Figure 6-4 — Coordinate systems and beam kinematics.

The following relationship can be formulated between these rotation matrices:
rpld IJpo
R'R =R'R (6.14)

As mentioned above in Equation (6.1)), the expression of the material rotation matrix

R9!7 in the global reference can be expressed as:

sin 6 1 —cost
7 Sp(@)JrT

R =13 + Sp(©)? (6.15)

While the rigid rotation matrix R" is defined from the material rotation matrix R/’ in

Equation (6.15]) and the initial rotation matrix R° in Equation (6.11)):

R = [Ra" R; Rgl
(6.16)

d;—x;—d RY R} x R}

Rp= LM Ry = U Ry
[xs+dy —x; — df| RS x ql| RS < Ry

with x; and x; are the nodal coordinates of nodes I, J at final configuration; d; and d;
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denote the translation vectors of nodes I, J; the term ||x; + d; — x; — d;|| = [,, defines
the final beam length; q is an auxiliary vector defined as:

+ ’ !
q= : . 4 = RYR [o 1 0} ,  a;=RYR’ [0 1 0] (6.17)

And the nodal rotation matrix can be evaluated from Equation (6.14])

R =RTR/R® (6.18)

6.3 Change of variables

In the co-rotational framework, the generalized and nodal displacements of beam element
are defined relative to the global reference system, while the existing element kinematics
are determined relative to the local frame. Therefore, it is necessary to make a trans-
formation of variables between global and local reference. For the shake of convenience,
as in the sequel all the variables relative to the local frame in final configuration will
be denoted with a bar. Moreover, as a reminder the incremental rotation of local frame
needs a conversion from material angular variation d© to spatial angular variation 692,
thus two more changes of variables are required for this angular conversion, one in global
and other in local level. In short, in the co-rotational formulation, there is a total of
three transformations to be performed: Local variables (with material angular) W, Tocal
variables (with spatial angular) ), Global variables (with spatial angular) ) Global
variables (with material angular).

It is important to note that, in this work, due to the particular separation of the local
frame above, the local translations at node I will be zero and at node J, the only non-
zero translation component is the axial translation along local axis e; (Figure . As
a consequence, at local level the nodal displacements vector contains only 7 components,
with 1 translation at node J, 3 rotations at node I and 3 rotations at node J: q, =
(ﬂ @I @J> - for material angulars ; or q = (a (o8 ﬁ‘]> - for spatial angulars. On
the other hand, at global level, the nodal displacements vector contains 12 components

with 3 translations and 3 rotations at each node: q = (df Qf 4/ QJ> and q. =
(a0 @ a’ o).
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In

Figure 6-5 — Beam kinematics in local frame.

6.3.1 1st transformation: §© — 6
Using Equation , we get:

1J 1J\ ~I1J

O =T,1(© )i (6.19)
Knowing that the translations vector is unchanged in this transformation, we get:
u 1 013 013 u
5@ | =0y T:'@) 0, |0]|Q|=dd =Bea (6.20)

@J 03, 05 T_l(@J) ﬁJ

with 03 is a 1 X 3 zero matrix; 03; is a 3 X 1 zero matrix and 03 is a 3 X 3 zero matrix.

Then, the virtual work equation gives:
Q. =B;Q. (6.21)

with QZ and Q, are the nodal forces vectors consistent with dq° and dq, respectively. The

expression of theses local nodal vectors is expressed as:

=t}

F F
Q=|M"|; Q=M (6.22)
MJS MJ

- =X Nals —Is ——=Is —sT_S —s—s—sT
with F' and F aretheaxialforces,MI :<Mi Mé Mé) ,MJ =<Mf MQJ M;) ;

— _ 7 1 T — —7 —7 —nN7T
MI:(Mi Mé Mé) and MJ:(M‘IJ Mg M3J> are the moments vectors. In the

assumption without any external uniform loading, the transformation for the local tangent
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stiffness matrices is obtained by taking the variation of the nodal forces:

0B; Q.

—s 0Q. BIsQ.+BIQ. BIK.iq, +0BIQ —
K _ (_Qe _ Dy Qe‘f_' o Qe _ Do qe_—i- 0 Qe = B/K.By+ —2£>¢ (6.23)
e s s s 0 s
(Sqe (Sqe 5(16 6qe
=K =B!K.B, +K' (6.24)
with:
0 013 053
—n 0BI'Q, _
Ke = 5%12 = 031 Kih 033
031 033 th

K" = [n [@IMIT —ome’ + (@” x MI) 13} + uSp(©)° [M’@”} ~ 55p(M )} T-1(@)
_ S I T —. P 1
K" = [n [@"M’T —om’e’" + (@JT x M’) 13} + uSp(©)? [MJ@"T] - 2Sp(M])] T !
2sina — a (1 4+ cos ) o (a + sina) —sin? (a/2) —
_ a = o= @]
2a2sin 4o sin® (a/2)

6.3.2 2nd transformation: local — global

In the local reference, the axial translation can be evaluated as:

(6.25)

u=1,—1,

with [, and [, are the beam lengths in the initial and final configuration, respectively.

From Equation (6.11]) and (6.16]), the variation of this axial translation gives:

5 = 81, — 1,) = [_RgT Oy RIT 040 = 67 =10 (6.26)

L : —IJ ., .
In order to express the variation of the nodal material angular vector ® ~ | it is neces-
6.18]) we get:

) . . . =1 .
sary to obtain the variation of nodal rotation matrix R ~, from Equation

5E1J _ 5RTTRgIJR0 + RTT(X)'RHIJRO (627)

From Equation ([6.5]) the variation of rotation matrices above can be expressed as follows:
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SR = sp(e’ R (6.28a)
SR = Sp(6Q")R" (6.28b)
SR = Sp(6Q9! YR (6.28¢)

with 029" is defined as the variation of the angular vector attached to the local reference

system in semi-final configuration e;, relative to the global reference; while Q97 is the

1J

variation of the nodal angular vector in final configuration t;”,

relative to the global
reference. These two variations can be expressed relatively to the local frame e; by the

rigid rotation matrix R" as follows:

@ =RIQr [ Sp(@) = RISp@MR,

(6.29)
QeIJ — RZQQIJ Sp(QeIJ) — R;:FSp(QgIJ)RT

It is also important to distinct the difference between 57 and 6Qel7 , these all expressed
the nodal angular vector of beam element relatively to the local frame, however 5"
is attached to the local frame in final configuration t!/, while 6Q¢/7 is attached to the

local frame in semi-final configuration e;. Another important remark is the orthogonality

condition of rigid rotation matrix R" gives the following relationship:

SR™ = R Sp(6927") (6.30)

So, from equations (6.18)), (6.29), (6.30), Equation (6.27)) can be rewritten as:

Spe R = —R'TSp(6Q)RIVRC + R’ Sp(699T ) RIVR? o
= (Sp(6Qel) — Sp(sQer)) R ’
Thus we obtain the following relationship between the angular variations:
0Q" = sqel’ — s (6.32)

Knowing that two local reference are used in this section, it is necessary to define the
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nodal displacement vectors in these references:

de[ dI
u
. _ . Qe[ . QI
qe - Q 7 qe = 7 qe = (633)
deJ dJ
—J
Q
Qe] QJ

with @, q¢ and q; are the nodal displacement vector in local frame, in local reference
system in semi-configuration and in global reference, respectively. The change of variables

between ¢ and g’ can be done by the rigid rotation matrix R":

R 0; 0; O

0, R" 0; 0
5q¢ = BY6q® with B, = | o (6.34)
0, 0; R 0

0; 0; 0; R’

In order to establish a change of variables between q? and qZ, the spatial angular variation

50" should be expressed with respect to the variation of q’:

5§IJ B 6ﬁIJ aqz B aQeIJ _aQeTBT (6 35)
oqr  dq¢ gz Oqg ’ ‘
with:
89@[
ol e 0 Is 03 O
- _ 38851 _ 3 13 Us Us (6.36)
Qe 03 03 03 13
dqg
and from Equation (6.28b)), (6.29):
0 -QF QF Ri”
Sp(0Q2) =RMIR" & 6| QF 0 —Q|=|Ry 5[R’1“ R Rg]
_Qer Qer 0 RrT
LR ° (6.37)
Q5" —R:yTOR;
= 0| Qs | = | —R;I6R]
Qg RLTORS
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Therefore, the following relationship can be obtained for the variation of €2°":

8967‘
S " G; (6.38)

with the expression of matrix G:

0 0 l//ln 1/12/2 —1/11/2 0 0 0 —V/ln VJ2/2 —VJ1/2 0

G=|0 0 1/ln 0 0 0 0 0 —1/ln 0 0 0 (6.39)
0 —1/ln 0 0 0 0 0 1/ln 0 0 0 0
q1 qr qre 4 qj2
vV=— Vi = —; Vrg = —; Vji=—3 Vjg = —3
q2 q2 q2 q2 q2

(1 ¢ @) =RTq

where q is the auxiliary vector in Equation (6.17) and q;1, qr2, g1, qs2 are the component

of auxiliary vector q; and q.

Thus, from Equation (6.36]) and (6.38)), Equation (6.35) can be rewritten as follows:

Q' 0; I; 03 O GT

5| _, | = — Bloq: = PBloq? (6.40)
Q 03 03 03 13 GT

And from Equation (6.26)) and (6.40), the transformation between dq’ and dq’ can be

expressed as:

r
5@ =B,5q’  with B, = (6.41)
PB’

As a consequence, the transformation between nodal forces vectors and the element

stiffness matrix can be expressed as follows:

Q: =B!Q, (6.42a)
s TSN TT5 SV
KZ:5Q62B55Q6+51~ F’ +0B,P™ (6.42D)
e oqs

with M = (MIST M‘]ST>, after some algebra the expression of K? becomes:

K: = B'K B, + K,, (6.43)
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with:
0
K.~ DF -~ BQGE! 4 BGare  a— |, (314 317 f, - (1L T12°)

(1)

D; 03 D3 03 Sp(Qq) Q:

05 05 03 O Sp(Q Q .

p=| 7 UL D=L (-RRYY): Q= @)) | =P™
-D3 03 D3 03 " Sp(Q3) Q3
03 03 03 O3 _SP(Q4)_ Qq

6.3.3 3rd transformation: /2 — /®

In this last transformation, the conversion between spatial angular and material angular

in global reference will be established. Using the relationship in Equation , we obtain:

d! I; 03 03 03 d!
QI 03 TS(@I) 03 03 @]
o = o = 0q: = Byiq. (6.44)
dJ 03 03 13 03 dJ
Q’ 0; 05 0; T,07)| \e’

The global nodal force vector and the global stiffness matrix consistent with q. are given

as follows:

Q. =B/ Q; (6.45a)
K, = 882“’ = B/K:B, + K, (6.45b)
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with:

K, —

0; 0; 05 K

K = (Smgl _ (8o 91/2)) ) (e x M's) e!T +% (M)Qsp(mfs)

o1 01/2 01/2
sin 91 1
o1

[ IMIST ( ITMIS) I IT (eITMIs) 13]

<
- (5 (S s (S22 s

+ cos Ol —
sin 9 1

[MIST ( ITMIS) I IT]

1 -

+

n (COSQJ sin 6 ) 1 [MJST ( JTMJS) J JT]
97 07
4 <1 Sln9J> 1 [ IMIST _ 2( JTMJS) JeIT 4 ( JTI\/IJS)I]
@I/J
e e/’ o1/7

6.4 Local beam formulation

According to Battini & Pacoste, most of the co-rotational elements found in the literature
are based on local linear strain assumptions, except when the torsional effects are impor-
tant [6]. In this case, for members under torsional effects the geometrical nonlinearity is
generated by a term included in the local strain definition, which is defined by a second-
order approximation of the Green Lagrange strains. A second-order approximation of the
displacement field is therefore necessary to obtain the second-order of the strains. In this
section, the second-order approximation of Green-Lagrange strains will be constructed at
the local level, in order to describe the local kinematic of beam element in a co-rotational
framework under combined loadings and pure torsion. For the shake of simplicity, only
the approach using Saint-Venant warping function has been developed.

The kinematic model proposed by Gruttmann et al. [41] is adopted for a general case
of classical beam in which the centroid G and the shear center C are not coincident (Figure

. The position of an arbitrary point P is defined by vector x%(z,y, z) in the initial
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configuration and by vector xp(z,y, z) in the current configuration:

x%5(x,y,2) = xH(x)+ ye, + ze,
P(2,y,2) &(x) + ye, (6.46)

xp(r,y,2) = xa(x)+ya, + za, + a(z)P(y, 2)a,

Figure 6-6 — Kinematic model proposed by Gruttmann et al. [41].

with x2(z) and xg(x) denote the position vectors of the centroid G in the initial and
current configuration, respectively; a(x) is the parameters representing the distribution
of warping as defined in Section ; ¥(y, 2) is the Saint-Venant warping function refers
to the centroid G:

1[1(:% Z) = w(yv Z) — CGyz +cy (647)

where 9(y, z) is the Saint-Venant warping function refers to the shear center C. e =
(ew e, ez> is the triad of three unit vector of local reference, while a = (ax a, az>
is an orthonormal triad which specifies the orientation of the current cross-section. These
two triads are related by an orthogonal matrix R defining the finite 3D rotation of beam

element under non-linear geometric conditions:

a=Re (6.48)
and
0 -6, 0,
_ 1
R=1I;+ Sp(9) + §Sp(6’)2; Sp@)=16, 0 -0, (6.49)
9, 6, 0

where 0, 0, and 0, are the material rotation of point P. The definition of rotation matrix

R will be detailed in Section With the aid from Equation (6.49)), the second-order
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approximation of the displacement field can be expressed as follows:

ds(x,y,2) =xp — Xp (6.50)

so we obtain the following components of ds(z,y, 2), for the case of solid cross-section in

which the centroid G and the shear center C are coincident:

— 00, 1 1

U(@,y,2) =t = Y= + 20, + P> + Sy0u0, + 5200,

% - Lo+ 02) + L 00y (6.51)
V(z,y,2) =v— 20, — 5Y (02 +67) + 5% (0,0.) + pe 0,

— 1 1 80,

Or
Unlike the material strains expressed in Equation (3.9, the second order Green-

Lagrange strains are derived as follows:

PR CANR Y AN Y LAY
O 9x 0 2\ Oz 2\ Ox 2\ Ox

Gl oU o0V d8UdU oVaoVv oW ow (6.52)
Jdy Or Oz Oy ox Oy Ox Oy
an @ N oW N U aU N aVv Vv N OW W
Yoz T, T o Ox Oz oxr Oz Ox Oz

In order to distinct the Green-Lagrange strain and the linear strain in Section [3.3] in this

section all the nonlinear terms are highlighted in bold. With the assumption that the term

— 2

1 /oU\ . . : . .

3 <@—) in the expression of €L is neglected and the non-linear strain components gen-
x

erated by the warping function are omitted, the following expressions of Green-Lagrange

strains in equation [6.52| can be obtained:

1 ,/06,\?
8§fzax—y/<az+2/<;y+§r2( )

Ox
oY 00 (
oL _ . _ 9 90, 6.53)
rny Yy 2Ry + @y 8.ZU
o 96
GL __ - T
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with the new definition of generalized strains:

r? = y? 4+ 22

() 58—‘"))

ov ox
%?L - 8$ — 0.+ 0 9 + —0, — aez
ow 3 ox
GL _ 0, 0 0. — —0,— —80 (6.54)
= oz Tty oz oz Y
00 80 00
GL _ x Y 0 _ Z 0
Fa oz 3 ( ox ox y)
00 o0 o0 ow 00
oL — 2= ——0, + 0,—2 ) — -
"y Jor 2 ( oz Y + ox ) Ox Oz
KGL:% 1(%9 +0 %)_@89"”
? Oz ox “ ox Ox Ox

However, the numerical tests show that the expressions in Equation (6.53) can be
simplified by neglecting the non-linear terms in the expressions of generalized strains in
Equation (6.54]), without affecting the results [5]. Hence, the strains in Equation (6.54)

can be rewritten as:

o _Ou_ 00, 00 1, (86, 2
= = 5z Yo or 2 ox
L _ 9V _ .
Ty = By b=+ oy 6x T T or
ow oY 00, 00
GL _ 7™ x
T = e T 5 0 T o

Comparing to the linear material strain in Equation (3.18)), the only nonlinear term of the
00,

ox

describes the interaction between axial and torsional strain. Using the same definition

Green-Lagrange strain approximation is 57“2 ( ) . This term, called Wagner term,

of generalized strains as in Equation (3.11]), the following kinematic relationship can be
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obtained between Green-Lagrange strains and the generalized strains vector:

Ex
_ 1 i
-GL 100 grzf-cx z -y Ty
KéEl =101 0 8_15 20 ol | = ef"(z,y,2) = a¥"(z,y, 2)es(x) (6.56)
~GL o i
- 001 5-+y 0 0ff,
L z i Y
Rz

As in the sequel, for the shake of simplicity in establishing the numerical implementation,
the above expression (and others) will be decomposed into 2 parts: one represents the
linear/ordinary part following the local linear strain assumption ey, and another resulting

from the second order Green-Lagrange approximation ej:

] o ) _
1 00 0 z —y 000 =%k, 0 O
O 2
e (z,y,2) =110 1 0 5020 0l+looo0 0 0o fel)
y
0
001 8—¢+y0 0 000 O 00
L z _ L _

= (af(y, 2) + aj(z,y, 2)) es(x) = es(z,y,2) + €}(z,y, 2)
(6.57)

The expression of es(z,y,2) is similar to the existing one in Section , while for e}

the only non zero components is the axial strain: e} = (57'2/%3: 0 O) ;ag(x,y, z) and
aj‘c(x, y, z) are respectively the linear/ordinary and the second order compatibility matrix.

Then, the following constitutive relationship can be established:
S?L = kfe?L =k (e;+ej) =s;+s} (6.58)

where k; is the material stiffness matrix. In this section, for the shake of simplicity, we

consider that ky is approximated as a consistent tangent operator as follows:

E 0
k=10 G,
0

0
0 (6.59)
0 G

z

As a consequence, the normal stress becomes the only non-zero component of the non-
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U

T
linear stress vector: s} = (%Er%i 0 0) . From Equation (3.40) in Section |3.4.1

the sectional forces vector consistent to the Green-Lagrange strains can be expressed as

follows:
// oCldA
N, 7
TglLdA
Vy A
. v / ToFdA
DY () // aft sflda=| 7 | = A
B 9\ ar O\ a1 GL
A M, //A [(y—l—az> T =2 g, ) T +51“2Km0m dA
M, // 208LdA
M,
- /yaszdA
A

(6.60)
From Equation ([6.58)), the decomposition of this sectional forces results as:

[ ([ oran
A
/ B TrydA 0

TerdA 0

S TS s VR

/ zoy,dA

/
///Z ] s

As we can see, the nonlinear Wagner term influences not only on the torsional moment

(6.61)

but also the axial force and bending moments. However, for the case of a solid symmetric

section as considered in this present work, the expression of D¥(z) becomes:

1, 1

0 0

0
Di(z) = L, GL = (6.62)

// 37 K20y dA // %ETQI% (695 i ;7‘2115) dA
1 9 A

]/ iEzr dA 0
—/7 1EyrQ(llA 0

42

The vector of nodal forces in local coordinates can be given by:

Q7 = [ BIDS s = [ BI(D,+ D)) dr = Q.+ Q; (6.63)
L L

with B, the matrix of shape functions in Equation (3.15)). The ordinary part has already

been implemented in the existing beam element formulation, while the nonlinear part can
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be expressed as:
Q; = / B!Didx = [N;f 00 MY 00 NS00 M OO (6.64)
L

where the expressions of the axial force and the nodal torsional moment are:

1 1

NY = N = - /L 7 ( / /A 5Er%lA) dx (6.65a)
1 1 1

MY =M = — /L I <//A §E7”2/ix (636 + 57’2%3;) dA) dx (6.65b)

For the sectional stiffness matrix, from Equation (3.43)) we get:

KO (x / / gLt ksaf"dA (6.66)

Using the consistent tangent operator for k; as in equation [6.59] for a rectangular

symmetric section, the following expression of sectional stiffness matrix has been obtained:

Ez? 0
0 Ey?

ke~ |f o0 G , N
) A %Erzfem 0 0 Gy (M_Z> +G. (&/J+y> +1ET4”2 0 0

0

0

" (6.67)
As mentioned above, the expression of K¢* can be decomposed into the linear/ordinary
part K, and the nonlinear part K} containing only the bold terms in the expression of
K%L in Equation . It is worth to note that, for a symmetric section, at local level in
the framework of co-rotational formulation, the second order approximation, through the
Wagner term, influences strongly on the torsional response and the interaction between
axial-torsion. Then, according to Equation , when considering the element equilib-
rium, the element stiffness matrix can also be decomposed into the linear and nonlinear
part:

KoL — / BTKCIB,dz — / BI (K, +K!)B,dz = K, + K’ (6.68)
L L
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Where the nonlinear part can be expressed as:

0 00 K@ 00 0 00 —Kf 00

O 00 0 00 O 0O O 00O

0O 00 0 00 O 0O O 00O

Kf 00 K; 00 —-K; 00 —K; 00

0O 00 0O 00 O 0O O 00O

K;:/BZK;Bdez 0O 00 0O 00 O 0O O 00O (6.69)

L 0 00 —-K; 00 0 00 Kf 00
0O 00 0 00 O 0O O 00O

0O 00 0O 00 O 0O O 00O

Ky 00 —K; 00 Kf 00 Ki 00

0O 00 0 00 O 0O O 00

0 00 0 00 0 00 0 00

with the following definition of K7 and K3:

1 1
K= [ = —Er?k,dA .
! /LL2 (//A2 r°Ked )dx (6.70a)
1 1
Ky= | = ~Er'k2dA :
5 /LL2 <//A4 rkid )dx (6.70b)

6.4.1 Case of Pure torsion

In the case of pure torsion for a rectangular cross-section, the material displacements in

Equation (6.51]) becomes:
Ut(w7ya Z) = l{x(x)qu)(ya Z) (671&)
Vi, y, 2) = —20u(x) %zeg(x) (6.71D)
— 1
00,

where k. (z) = and the subindex ¢ denoted for the case of pure torsion. Comparing

ox

to the expression in Equation , the appear of second-order terms in the transversal

displacements make the non-linearity geometric. The Green-Lagrange strain components
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are then given by:

ou 1 ({/0U\* [ov\? [oW\?
GL __ - R -
o, OU 9V 9UdU dVavV oW oW

_ .72
Yout= 5y ox Ty Tz oy T 0z Oy o

o, OU 9V 9UAU oVIV oW oW

Vet =9, T or T 9x 02 9z 0z | 0z 02 (6.72¢)

Using Equation (6.71)), Equation (6.72) becomes:

Eont = %(y +2 ) (6.73a)
Vogt = < oY > Ka (6.73b)
Veog = < w(z )> Ka (6.73¢)

Unlike the material strain in linear geometry condition in Equation , the axial strain
under large displacements is not zero and is called Wagner term which causes a non
linearity in the response in pure torsion. Because of this term, the local strain can not be
related to the generalized twist k, in a compact form as in the above section. Instead,
the nodal torsional moments and element stiffness matrix in a finite element framework
will be derived from the strain energy function.

The strain energy is expressed as a function of the local strains:

L L 1 1
cp:/ @Ada::/ —//EefmdAJr—//G(”yg +72.) dA ) dx
0 0 2 A 2 A Y

1 b
=3 / (Bl ky + GJKZ) dx
0

(6.74)

With:

El,., = // (y, 2z y+z)dA
e ool )

dA
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Using Equation (3.14)), Equation (|6.74)) becomes:

1 L
<1>——/ (ElLyky + GJkL) dx

1 L
=3 (EIW 4dx + GJ/ midx)
0
1 L oL 0! AN (675)
= - | EI _Z= dr ey T2 ) g
5 +L) —i—GJ/U(L—i—L)a:
1/ FEI GJ
S 7”7” b HJ 9] 2
5 (e o+ Sz -oiy)
The nodal torsional moment in each element is then evaluated by:
0P El GJ
_2_7’7’(8J _ 0[)3 _ —(«9‘] _ 8]) MI
() I T T x T T
M, = gq — | %% | = L L - (6.76)
e 0 EL, GJ
rr _ 0[ 3 —-Y QJ _ 9[ MJ
And the element stiffness matrix:
oML oM! El GJ El GJ
T T T nJ I T nJ 1\2
K — aMr,e . 80{6 aexj . 6 L3 (95’7 o 9$)2 T —6 13 (9511 - e:v) - T
© Oac lam? om!| | EI GJ EI GJ
z Y _ ™pd _ pIN2 _ T TT(QJ_QI2 _ 7
(6.77)

6.5 Analysis algorithm

In this work, the proposed model developed in Chapter [3] is a two-node displacement-
based formulation in which the primary input is the nodal displacements vector q. of
12 components. Under linear geometric condition, q. can be used directly in the beam
formulation, however, under non-linear geometric assumptions using co-rotational frame-
work, q. is related to the global reference so it is necessary to transform it into q,, which
is related to the local reference frame and corresponds to the beam formulation developed

in Chapter [3| and Section As mentioned above, the local displacements vector q,

209



contains 7 components: q, = (

= =1 I —=J —=J
T Y z T Y

N :
Qz) , in which:

g, 7,
— = i —J 7/
u=1l,—ly 0,| = log(R); 0, | = log(R")
9, 7.
where the rotation matrices R’ are computed using Equation (|6.18). Knowing that

q, has only 7 components, while the nodal displacements vector using in the local beam

formulation in section has 12 components, one auxiliary transformation is required:
q. = T7q, (6.78)

where T = T,T, is a transformation matrix defined as a multiplication of two sub-

matrices of transformation: T, is the translated-transformation matrix while T, is the

rotate-transformation matrix.

-1 0 0 0001 O 0 000
0o 0 0 1000 0 0 000 - -
C 0; 05 Oy

o 0 -1/l, 0100 0 1/l, 0 0 0
0; C 05 0

Ta=|0 1/, 0 0 0 -1/, 0 00 0|; Tr=

0; 05 C 05

0o 0 0 0000 O 0 100
0; 03 03 C
o 0 -1/l, 0100 0 1/l, 0 0 0 - -

0 1/, 0 0010 =1/, 0 00 0
(6.79)

the component C of T, contains the direction cosines defined as follows:

C, Cy C,
C= —(CyCycosa+ Cysina)/Cy,  Cprcosa —(CyCrcosa+ Cysina)/Cy,
(CxCysina — C, cos ) —Cyzsina  (CyC.sina+ Cycosa)/Cy

Co= (! —al)/l;  Cy= (" —y")/L;

l:\/(ZEJ—ZEI)2+(y‘]—y[>2+(2‘]—21)2

Cp = (27 = 2N)/1;

Cor = T CF

(6.80)

T
and x!/ = (;I;I Iyl G ) are the nodal coordinates of nodes I,J in global reference.
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Now the displacements vector q, can be implemented in the local beam formulation,
and as a result the nodal forces vector Q, and the element stiffness matrix K, will be
obtained. Then, 3 successive transformations described in section [6.3] will be applied in
order to transform these variables from the local frame into global reference. The algo-

rithm and implementation of co-rotational formulation in the proposed model is resumed

and shown in Figure [6-7]

Local beam
formulation

Ke ’ Qe
3 successive ]
transformations |
,/
,/

Ke;Qe‘

i=i+1
NO @

Figure 6-7 — Implementation of co-rotational formulation into the proposed model. The
dashed line represents the algorithm in linear geometric conditions.

6.6 Numerical examples

In this section, some numerical examples are first simulated using cross-section dimensions
and material properties of steel structures in order to validate the implementation of co-
rotational framework in the proposed model formulation. Then other cases studies were
investigated for reinforced concrete members. As mentioned in Section [6.4] the linear
geometric conditions of the beam formulation in the local reference are ensured by using

a big number of finite element and cross-section mesh.

6.6.1 Cases of elastic material

The geometrical non-linearity in the elastic material range is discussed in this section.

Let’s consider an elastic cantilever beam as shown in Figure[6-8 Note that this beam was
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used as reference in Battini’s PhD Thesis [5]. The beam model has been simulated using
10 elements with a system of 50 x 5 square mesh, subjected to two loading cases: pure
torsion (Figure [6-8a)) and combined shear-bending-torsion (Figure[6-8b). In this example,

the cross-section profile is a thin-type usually found in steel structure.

E=2100000 MPa E=2100000 MPa F
- Mx g - AR
% G=787500 MPa O g % G=787500 MPa g
7 I 7 I
& g2
1 | H 1 | H
I L=100 mm I b=0.5 mm | L=100 mm ‘ b=0.5 mm
(a) Exam. 1: Pure torsion. (b) Exam. 2: Shear-bending-torsion.

Figure 6-8 — Example 1 & 2: Cantilever beam under nonlinear geometrical conditions,
subjected to different loading cases.

6.6.1.1 Example 1: Cantilever elastic beam under pure torsion

In this first example, the case of pure torsion is investigated. The formulation proposed in
Section [6.4.1]is validated by the results against the ones obtained by analytical model and
other numerical model. Figure presents the torsional moment versus end twist angle
curves. Compared to the analytical solution based on Vlasov’s beam theory [113] and
the numerical one of Battini’s model, the results obtained by the proposed model, taking
into account the contribution of the Wagner term in the model formulation, show a very
good correlation. It can be seen that, although simulated in the elastic material range,
the relationship between torsional moment and twist angle was no longer linear, due to
the geometrical non-linearity caused by the introduction of Wagner term, as explained in
Section It is evident that without taking into account the Wagner term, the model

is considered as a linear geometry model which gave a purely linear response.

9000 T T T T
X Vlasov's Analytical solution
8000 F| == Battini's numerical model -
Proposed model - nonlinear geometry
— — — Proposed model - linear geometry
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éSOOO* //’ ///’ i
S 7 e
= -
= 4000 - A i
c e
ke A -
53000* 5 e 4
~ ) =

2000 - - *

1000 - :

0 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

Twist angle at free end (rad)

Figure 6-9 — Example 1: Elastic torsional response under nonlinear geometric conditions.
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6.6.1.2 Example 2: Cantilever elastic beam subjected to shear-bending-torsion

This numerical example is to study the influence of shear and bending on the torsional
behavior of the elastic beam in large rotation. Figure [6-10] presents the torsional moment
versus end twist angle curves for four torsion-bending moment ratios: R =o00; R=1; R =
1/2 and R = 1/5. As can be seen, in elastic material regime, the torsional behavior is not
affected by the bending and shear actions when the geometrical nonlinearity is neglected.
However, the numerical results show that the torsional stiffness decreases significantly with
increasing of torsion-bending moment ratios when the beam is in geometrical nonlinear

regime. Further, experimentation test needs to be conducted to confirm this statement.
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Figure 6-10 — Example 2: Torsional moment versus twist angle diagrams of elastic
material beam subjected to shear-bending-torsion effect under nonlinear geometric
conditions, with different ratio of torsional versus bending moment.

6.6.2 Cases of inelastic material

This section deals with several numerical examples of beam under inelastic material
regime: an elasto-plastic cantilever beam subjected to shear-bending and torsion, and
a simply supported RC beam subjected to pure torsion. Through these examples, the
implementation of the corotational framework in the proposed model formulation as de-

scribed in previous sections can be validated in inelastic material regime.
6.6.2.1 Example 3: Cantilever inelastic beam subjected to shear-bending and
torsion

The third example concerns an elasto-plastic thin-walled cross-section cantilever beam,

subjected to vertical load at the free-end, which was also investigated by Kondoh & Atluri
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[55], using a numerical model based on Euler-Benoulli assumption. The beam dimensions,

material properties and the elasto-plastic material behavior are shown in Figure [6-11

Fz E VA
4 J’ S y
2 T
: ! =
L=5000 mm
; 4 i
E=3.10" Mpa; Eh=E/30; fy=3.10 MPa b=100 mm

Figure 6-11 — Example 3: Cantilever beam in the example of Kondoh & Atluri [55].

Using 10 beam elements with a mesh of 50 x 10 square fibers, the simulation results ob-
tained by the proposed model are shown in Figure The effect of nonlinear geometric
assumptions, bring up by corotational framework, can be easily noticed, as the element
stiffness increases significantly in the plastic material range. Compared to the Kondoh &
Atlure’s model, a good correlation is achieved. Regarding the high ratio between beam
length and height, although the two numerical models use different kinematic conditions
in its beam formulation (Euler-Bernoulli in Kondoh & Atlure’s model and Timoshenko
in the proposed model), the shear effect can be generally neglected, except a slight gap

observed at high load stage.

1400 T T T T T T T T T

© Kondoh and Atluri's solution o
— Proposed model - Nonlinear geometry conditions
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Figure 6-12 — Example 3: Load-displacement diagrams of elasto-plastic beam subjected
to shear-bending under nonlinear geometrical conditions.

Using the same outline of beam as in Figure [6-11, but instead of vertical load, a
torsional moment is applied at the free end. Simulation result can be found in Figure

[6-13] concerning two numerical models: one with the implementation of the Wagner term
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in the model formulation (nonlinear geometry model), and another without this nonlinear
term (linear geometry model). Similar to the above case subjected to shear-bending
effect, the torsional stiffness given by the nonlinear geometry model increases significantly
compared to the response of the linear geometry model. The effect of second-order Wagner
term continues to give a significant influence on the torsional response of elasto-plastic

material beam.
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14210 x x x x
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Figure 6-13 — Example 3: Torsional moment - twist angle diagrams of elasto-plastic
beam subjected to pure torsion effect under linear and nonlinear geometric conditions.

When torsional moment is accompanied by the vertical load, the beam is subjected to
combined shear-bending-torsion. Figure [6-14] presents the torsional moment versus end
twist angle curve for different torsion-bending moment ratios: R = oo, R = 10, R = 1,
R =1/5and R = 1/20. When torsional moment dominates bending moment (R is bigger
than 1), the material yielding is due to torsional effect as in the above case of pure torsion,
and no difference is recorded in the plastic material regime. When bending moment
becomes bigger and dominated, the yielding point is changed, depending on the value
of bending moment, and the torque-twist diagram becomes different as a consequence.
In this example of combined loadings under elasto-plastic material regime, the fact that
torsional behavior depends on the yielding point limits the study of coupling actions. One
statement can be draw is that there is no significant influence of shear-bending actions to

torsional response when torsional moment dominates bending moment.
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Figure 6-14 — Example 3: Torsional moment versus twist angle diagrams of elasto-plastic
material beam subjected to shear-bending-torsion effect under nonlinear geometric
conditions, with different ratio of torsional versus bending moment.

6.6.2.2 Example 4: simply-supported RC beam subjected to pure torsion

Although making a great influence in the torque-twist diagram of beam under torsion, in
practice, the necessary of including this nonlinear geometric effect due to Wagner term
in an ordinary RC beam might be under question. In this section, another example is
carried out in the field of inelastic material, in order to clarify the statement of negligence
of nonlinear geometric conditions for concrete and/or RC beams. Specimen G5, a simply
supported beam in the torsion test of Hsu [45], is simulated in two cases of two different
local formulations: linear geometric model (LGM - without Wagner term) and nonlinear
geometric model (NLGM - Wagner term included). Section details and material properties

of specimen G5 are cited in Figure [6-15|

254 mm

[ @ — 2 x 0254, fy =331 MPa

Beam G5

fc=26.89 MPa H— ®12.7 @ 86 mm, fy = 328 MPa

508 mm

e &1 2x 0254, fy =331 MPa

Figure 6-15 — Example 4: Details of Beam G5 .

No significant difference between the linear and nonlinear geometric model could be ob-

served in the torque-twist diagram in Figure[6-16] Using a displacement imposed approach
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during the simulation, the cracking torque was reached at 2.5 mrad/m, corresponding to
the same value of 29.26 kN in both models, no difference was therefore remarked between
two models in the phase before cracking of concrete. In the phase after cracking, the ul-
timate torsional moment was achieved at 55 mm for both two models and gave a value of
73.51 kN for the LGM and 73.55 kN for the NLGM. Only a very minor relative difference
of 0.05 % was recorded.
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0 10 20 30 40 50 60 70 80 90
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Figure 6-16 — Example 7: Torsional moment versus twist angle diagrams of beam G5
subjected to pure torsion under linear and nonlinear geometric conditions.

Table [6.1] indicates the values of cracking and ultimate torsional moment in each
specimen of series G in Hsu’s test, obtained by the LGM and the NLGM. At the same
twist rate value, the cracking and ultimate torsional moments obtained by the LGM were

always smaller (or similar) than those of the NLGM. This observation corresponds to the

result obtained in Section|6.6.1.1/and[6.6.2.1] in which the nonlinear geometric effect makes

the torsional stiffness stronger in both the elastic and inelastic material regime. However,
knowing that concrete is a brittle material and its cracking and failure deformation is
small, the RC beams were failure before any significant differences could be remarked.

Indeed, in Table minor differences were recorded in all the cases.
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Table 6.1 — Series G of Hsu’s torsion test: Cracking and ultimate torsional model
obtained by the LGM and NLGM.

Ty (kN) T, (kN)
LGM | NLGM | Difference | LGM | NLGM | Difference

Beams

G2 29.40 | 29.44 0.14 % 37.75 | 37.76 0.03 %

G3 26.72 | 26.72 0% 49.60 | 49.62 0.04 %
G4 27.94 | 27.94 0% 65.72 | 65.74 0.02 %
G5 29.26 | 29.26 0 % 73.51 | 73.55 0.05 %
G6 29.79 | 29.84 0.17 % 40.46 | 40.49 0.07 %
G7 32.13 | 32.13 0% 53.79 | 53.80 0.02 %

G8 32.77 | 32.78 0.03 % 72.12 | 72.14 0.03 %

6.7 Conclusions

In this Chapter, using the corotational formulation, the nonlinear geometry of the pro-
posed beam model under large displacement conditions has been investigated. Through
several numerical examples carefully executed above, the following remarks and conclu-

sions can be draw:

e By validating with some existing example in the literature under the loading case
of shear-bending and pure torsion, the corotational formulation can be considered

as successfully implemented in the proposed model formulation.

e When considering the torsional effect, the contribution of the Wagner term is very
significant, in both elastic and inelastic material regime, knowing that the torsional

rigidity could be considerably increased under the influence of this nonlinear term.

e In the elastic material regime, when the beam is in geometrical non linear condi-
tions, the combination of shear, bending and torsional moments could make some
significants impact on the torsional behavior, compared to the case of pure torsion.
This statement is interesting because no difference can be recorded between these

two loading cases in elastic material regime under geometrical linear conditions.

e However, in the elasto-plastic material regime, when torsional moment dominates
bending moment, no significant influence of shear-bending actions to torsional re-
sponse could be observed. Otherwise, in practice, the nonlinear geometric effect

could be neglected for a simply supported RC beam of ordinary length.
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Chapter 7

Conclusions and Perspectives

7.1 Summary and Conclusions

The main objective of this PhD thesis was the development of an efficient finite element
model for the nonlinear analysis of reinforced concrete members taking into account the
coupling effect of multi-stresses resultants under bending, shear and torsional loadings.
Indeed, using a multi-fiber discretization and sectional analysis approach, the developed
3D beam element is capable of describing the sectional responses and representing the
non-uniform stress/strain distributions due to warping deformation of the cross-section.
Although developed primarily in this work for rectangular cross-section, the model for-

mulation in Chapter [3is generally expressed to be applied to any arbitrary cross-section.

According to the prior discussion in the state of the art (Chapter [2)), although various
researches have successfully applied the Lagrange polynomial approach to the mixed-based
formulation in order to take into account the warping displacement, this approach has not
yet been implemented in any displacement-based model of reinforced concrete. In present
work, the Lagrange polynomial approach has been completely implemented in the pro-
posed displacement-based model, as well as a comparison with the use of Saint-Venant
warping function when accounting for torsional effect. The numerical examples in Chap-
ter [ gave good results and showed reasonable correlations between the two approaches.
Thanks to its generality, the successful implementation of Lagrange polynomials in the
proposed model also offers more possibilities for further research on different cross-section

shapes, such as T or L.
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The satisfactory results obtained in the inelastic material domain ensured the adap-
tation of the Modified Compression Field Theory (MCEFT) to the constitutive material
model for concrete. In this PhD thesis, based on MCF'T, a consistent constitutive model,
suitable for the use in the 2D multi-fiber beam formulation, has been developed for rein-
forced concrete in case of pure torsion. The discretization of the cross-section into different
regions following the stress state (i.e. 1D-zone, 2D-zone and 3D-zone) which was proposed
by others researchers in literature, has been used and improved in this work. A new for-
mulation to determinate the width of the 2D-zone has been proposed. The calibration
process carried out by the author in this work, which used the engineering parameters
in order to increase the ability to apply the proposed model in practical simulations, can

also offer some ideas and recommendations to other researchers in similar studies.

The case of RC members subjected to combined shear-bending-torsion actions un-
der non-linear geometric conditions has also been treated in the present work. A Total
Lagrangian-Corotational approach has been employed for the development of beam and
beam-column elements, in which an initial undeformed geometry, translated and rotated
as a rigid body, was chosen as the reference configuration in the corotated frame. The
formulation is based on small deformations within the corotational (natural) frame. The
satisfactory results obtained through several examples from the literature showed that
the corotational framework had been successfully implemented in the proposed model.
Under the assumption of large displacement, the coupling between the actions due to the
torsional effect was carefully developed in the local beam formulation and evaluated with

the help of some numerical examples.

7.2 Perspectives

The proposed model has been developed in a general way in order to open many possibil-
ities to extend the range of applications and studies. Several of additional developments
can be suggested and some aspects of the proposed model could be more developed in

future researches, such as:

e The model formulation could be extended for the case of high-strength concrete,

prestressed concrete, concrete with fibers or self-compacting concrete, etc.

e The model formulation could also be extended to the case of curved and/or tapered
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beam, in order to investigate the application of model in usual case of shear and

torsional effects.

The material behavior could be more developed by including the confinement effect
of concrete and/or stirrups. The cyclic loading behavior of concrete and steel could

also be implemented in the constitutive model.

Regarding the calibration process, more test data can be used and other engineering
parameters can be served as input, in order to develop a new, and possibly more

exact formulation for the constitutive behavior law and the 2D-zone’s width.

The inclusion of distortion deformation in the model formulation could be repre-
sented with the implementation of two enhanced transversal displacements in the

enhanced field.

Concerning the warping and distortion deformations, other kinds of interpolation
functions could be explored over the cross-section and along the beam axis, such as

Hermite polynomials or Spline functions.

The inclusion of Wagner term in the local formulation of corotational framework
could be expressed in a more consistent and rational way, instead of using an ap-

proximate tangent operator as in the proposed model.
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Résumé étendu en francais

Problématique

La plupart des ouvrages de génie civil est soumise a des actions multiaxiales, incluant
des efforts normaux et des efforts tangentiels. Méme si les effets du cisaillement et de la
torsion ont déja été mis en ceuvre dans plusieurs théories et modeles d’analyse structurelle,
il manque toujours une théorie scientifique rationnelle. Afin de contribuer a ce domaine
de recherche, ce travail de recherche porte sur le développement d’un modele d’éléments
finis non linéaire pour les éléments en béton armé soumis a des sollicitations complexes et
en particulier la torsion.

Parmi les principales sollicitations, l'effort axial et le moment de flexion sont large-
ment étudiés et modélisés par plusieurs modeles théoriques et numériques. Les théories
d’analyse des structures sous sollicitations de cisaillement et de torsion sont également
développées par plusieurs chercheurs par contre, il n’y a pas beaucoup de modele qui con-
sidere la combinaison de toutes les types de sollicitation (traction-compression; flexion;
cisaillement; et torsion). De plus, étant I'un des principales sollicitations soumises aux
structures en génie civil, la torsion est souvent négligée devant les autres dans le contexte
des structures en béton armé courantes. Cependant, dans certains cas particuliers, par ex-
emple le cas dans le cadre de la tenue des balcons dans les batiments isolés par 'intérieur,
la torsion peut jouer un role déterminant dans la stabilité des structures.

En effet, les reglementations thermiques en vigueur imposent de traiter le pont ther-
mique qui se crée au niveau du plancher. Ce pont thermique perturbe la continuité de
l'isolation thermique et doit étre traité par un disjoncteur de pont thermique (Figure
. Dans le cadre de la tenue du balcon, la transmission du poids de plancher aux murs
fait appel a la contribution du linteau, qui est préférablement fabriqué en acier grace a sa
légereté afin de minimiser les éléments structuraux (Figure . Cependant, en sachant

que le rupteur du pont thermique est attaché au linteau, son efficacité peut étre réduite si
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le dernier est fabriqué en acier. C’est la raison pour laquelle, le linteau est con¢u comme
une poutre en béton armé de section rectangulaire, qui est dans un état combiné de flex-
ion, de cisaillement et de torsion, pour laquelle les modeles théoriques et numériques sont

peu nombreux dans la littérature.

Interior insulation
Wall
pd panel
Balcony Floor
Lintel Thermal bridge
breaker
b
(a) (b)

Figure 7-1 — (a) Rupteur du pont thermique. (b) Disposition du linteau dans le cadre de
la tenue des balcons pour des batiments isolés par l'intérieure.

A cause des différences entre les déformations extensionnelles des fibres longitudinales
dans I’élément, sous l'effet de torsion la section transversale est gauchie et sort de leur
plan initial. Cette action s’appelle le gauchissement et se produit pour tout type de
section transversale, excepte celui circulaire, sous chargement de torsion (Figure .
Ce phénomene de gauchissement fait nier ’hypothese de section plane en considération
I’équilibre cinématique de section, de plus influence fortement sur le calcul de I'angle de
torsion et des contraintes normales sous sollicitations de torsion. L’étude de ce phénomene

fait donc une partie importante dans ce travail de recherches.

Figure 7-2 — Dessin originaux de Saint-Venant pour les poutres soumises a torsion de
section elliptique, carrée et rectangulaire [97].

Objectifs

L’objectif principal de cette these de doctorat est de développer un modele enrichi de

poutre en éléments finis pour 'analyse non linéaire des éléments en béton armé soumis
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a des sollicitations combinées: 'effort axial, la flexion, le cisaillement et la torsion. Les

objectifs spécifiques sont les suivants:

e Le développement d’un élément de poutre 3D pour les éléments en BA utilisant une
approche "multifibres”. Dans cette étude, le modele est développé principalement
pour une section droite rectangulaire, mais la formulation est exprimée de maniere

générale pour tous types de sections droites arbitraires.

e L’implémentation d’'un champ de déplacement enrichi dans les équations cinéma-
tiques afin d’inclure le déplacement de gauchissement de section droite sous l'effet
de cisaillement et de torsion. Ensuite, une analyse numérique est réalisée pour

étudier I'influence du gauchissement sur I’état de contrainte.

e L’adaptation de la théorie du champ de compression modifié (Modified Compression

Field Theory — MCFT [110]) a la loi de comportement du béton.

e [’adaptation de la discrétisation de section en différentes régions selon I’état de con-
trainte (1D, 2D et 3D) afin de prendre en compte I'impact des armatures transver-
sales et du confinement du béton. Une nouvelle formulation paramétrique permet-

tant de déterminer la regle de cette discrétisation est également proposée.

e La mise en ceuvre et la dérivation d’un concept général et cohérant de co-rotationnel
dans la formulation 3D de poutre afin de prendre en compte la condition géométrique

non linéaire.

Développement du modele numérique pour les élé-

ments BA

Introduction de I’élément multifibre

En utilisant I’approche transversale de section et la formulation en déplacement, un élé-
ment 3D multifibre enrichi est développé pour déterminer le comportement des mem-
branes en BA soumis a des chargements arbitraires (cisaillement, flexion et / ou torsion).
Basée sur le principe de la modélisation en éléments finis discret, I’approche de multifi-
bres représente un équilibre parfait entre la précision des résultats, la rapidité du calcul
et I'ergonomie. 11 s’agit d’un systeme de points d’intégrations (appellé fibre) est obtenu a

I'intersection des fibres longitudinales et des sections transversales sur le long d’élément
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(Figure . A chaque fibre, les déformations et déplacements sont liés aux déplacements
nodaux (définis comme dégrée de liberté d’'un élément) par des équilibres cinématiques.
Pour chaque fibre, une loi de comportement approprié est affectée afin de déterminer les
contraintes a partir des déformations qui sont obtenues par la cinématique de section. En-
suite, a I’aide du Principe du Travail Virtuel et les fonctions de forme, les efforts nodaux et
les matrices de rigidité au niveau d’élément sont déterminés par des calculs d’intégrations

numeériques.

(Steel law)
node [ £ - — S~ - - - - - = node J Steel Fiber

longitudinal reinforcement bar

| o |

Concrete Fiber
(Concrete material law)

Finite element mesh

Figure 7-3 — Approache de multifibre pour les éléments en BA et des coordonées
d’élément locals dans cette recherche.

Cinématique de section

La cinématique de section est basée sur I’enrichissement des hypotheses de cinématique de
poutre de Timoshenko. A cause du phénomeéne de gauchissement, I’hypothese de section
plane devient insuffisante pour représenter la forme de déformation complete de section
sous sollicitation composée de cisaillement et de torsion (Figure [T-4a)). C’est la raison
pour laquelle, en considérant 1’équilibre cinématique d’un point matériel de la section,

le champ cinématique d’un corps rigide doit étre enrichi par un champ de déplacement

supplémentaire (Figure [7-4b|):

Axial Bending
M M ZA
N N m
| - --|te —> o/l __L-® i.
U4 Ur
Shear Torsion X
\Y% \ T \i ] T -
(a) (b)

Figure 7-4 — (a) Déformation de section transversale sous efforts normaux (axiale force,
flexion) et tangentiels (cisaillement, torsion). (b) Décomposition du déplacement axial
d’un point matériel.
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Up(x7y7 Z) Ue(':l:’y7 Z) Um(x7 y’ Z)

d7'(z,y,2) = dj(2,y,2) + df(x,y,2) = | VP(2,y,2) | + | V(x,9,2) | = | V™(2,9,2) (7.1)
WP(z,y,z) We(z,y,z) W (z,y, z)

Le champ classique d?(az, y, z) porté sous 'hypothese de section plane dans la théorie

de poutre de Timoshenko, dont la relation cinématique suivante est établie entre d’}(m, Y, 2)

et le vecteur de déplacements généralisés dg(x):

UP(x,y,2) = u(x) — y0.(x) + 20,(x)
VP(x,y, 2) = v(x) — 20.(x)
Wr(z,y,2) = w(z) + yba(z)

= di(z,y, 2) = ali(y, 2)d(z) (7.2)

Dans le cadre de ces travaux de recherche, deux approaches sont utilisées pour représen-
ter le champ enrichi d$(x, y, 2), la premiére concernant 'application de la théorie de poutre
de Saint-Venant, avec la définition de la fonction de gauchissement v (y, z) et la distribu-
tion de gauchissement a(x). Dans le cas d'une section solide, a(x) peut prendre la valeur
de la dérivation de ’angle de torsion x,. Par conséquence, le champ de déplacement total

d?(@y,z) dans I'Equation 1) devient:

Un(e,y.2) = u(e) - y0a(x) + 20, (2) + K0y, 2)
V(ay.z) = <>—ze () (7.3)
Wo(e,y,2) = w(z)+yb,(x)

La deuxieme approche enrichie concerne l'utilisation des fonctions d’interpolation
comme Lagrange pour représenter le champ enrichi. Il s’agit d'un systeme de points
fixes créés et interpolés par des fonctions et des polynomes de Lagrange (Figure , qui
conduisent a I'introduction de degrés de liberté supplémentaires a chaque section transver-
sale (Figure . Le champ de déplacement enrichi est établi a 'aide des matrices de

polynomes de Lagrange:

Us(z,y,2) = Z Li(z)U%(z;,y, 2) = L(x)S(y, 2)U° (7.4a)
Ve(x,y,z) = Z Li(z)Ve(xi,y, z) = L(2)S(y, 2)V® (7.4b)
We(x,y,2) = ij Li(z)We(2,y, 2) = L(z)S(y, 2) W¢ (7.4¢)
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ol f:(a:) est une vecteur contenant des polynomes d’interpolation 1D; S(y, z) est une
matrice contenant des polynomes d’interpolation 2D; U° V¢ et W€ sont des vecteur

contenant les déplacements nodaux enrichis définis comme les dégrées de liberté supplé-

mentaires (Figure [7-6)).

z T/ y section i

X+ X
5 interpolation ><

points

y y
section i X X X
4 inlcrr.)olalion
points
(a) Systeme de point (b) Systeme de point
d’interpolation longitudinal d’interpolation sur la
sur I'axe d’élément. section transversale.

Figure 7-5 — System de point d’interpolation de 1’élément.

Wi e

ijk Vijk
e

Tk

Figure 7-6 — Les déplacements enrichis définis comme les dégrées de liberté
supplémentaires indépendantes.

Organigramme de formulations

La Figure [7-7] résume la formulation en déplacement pour 1'élément fini multifibre selon

deux approches enrichies dans le cadre de ce recherche.

Saint-Venant Warping function Lagrange polynomials

@_ _Ke —»@ Element qg qz ep @

B,(x) B, (x) BY(X) Loy BIOO L(x)

e - _S_ ] N X ) p e
s DS Section es Syz(y, ) Ds DS

a;(y,2) ag(y.2) af(y,z)

K
@—f.@ Fiber

Figure 7-7 — Organigramme de la formulation en déplacement pour ’élément fini
multifibre selon deux approches enrichies.
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Les efforts généralisés de section D, ou D?, D¢ sont calculés par I'intégration numérique
sur la section, tandis que les efforts nodaux d’élément Q. ou Q?, Q¢ sont déterminés selon
la méthode de quadrature de Gauss-Lobatto. La formulation du modele est programmée

en Matlab grace a son compétence en manipulant des matrices.

Modele pour le comportement de I’élément en béton armé

Dans la formulation en déplacement de 1’élément fini multifibre, le calcul a 1’échelle
fibre (ou point d’intégration) concernant la relation constitutive entre les contraintes-
déformations demande une équation constitutive adéquat et une loi de comportement ap-
propriée. Dans cette these, le modele développé doit étre capable de représenter les effets
typiques du membrane en BA, comme la fissuration, I'effet de raidissement de contraintes
(stress-stiffening effect) ou l'effet adoucissant de compression (compression softening ef-
fect). C’est la raison pour laquelle, le modele proposé est basé sur la théorie modifiée du
champ de compression by Vecchio [110] (Modified Compression Field Theory - MCFT).
Dans cette théorie, I'idée principale est de remplacer la loi de comportement biaxiale
du béton par une loi de comportement uniaxiale, dans laquelle la relation contrainte-
déformation est formulée dans la direction principale de fissure du béton. L’hypothese
principale est la coincidence des directions principales des contraintes et des déforma-
tions. Les équation d’équilibre et de compatibilité sont évaluées par la valeur moyenne de
contrainte et de déformation dans le plan de fissures, tandis que la contribution du béton
et de l'acier peut étre ajoutée séparément dans I'expression de contrainte totale et dans

la matrice de rigidité (Figure [7-8)).

g of 2.5
e 41[ 2 Tli 1 % st
A .0
% R N7 P I N
yav ’ U N
- —>
Reinforced Concrete Concrete Reinforcement Steel

Figure 7-8 — Composition de contrainte pour 1’élément BA selon la théorie de MCFT
[110].

Dans le cadre de ce travail de recherche, le comportement uniaxial du béton selon la
direction principale est celui proposé dans la théorie originale de Vecchio [110] (Figure

7-9). Cependant, d’autres relations peuvent étre empruntées pour exploiter la recherche.
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Figure 7-9 — Comportement uniaxial du béton dans la direction principale.

Dans I'approche multifibre pour des éléments en béton armé, la prise en compte de
la contribution des armatures transversales dans la résistance et la rigidité est loin d’étre
simple. Comme montré sur la figure alors que le béton et I'armature longitudinale
sont répartis longitudinalement dans I’élément, la distribution des armatures transversalles
est interrompue dans cette direction par un espacement s. Pour cela, basé sur 'idée de
Navarro-Gregori [76], la section transversale est discrétisée en plusieurs régions selon son

comportement matériel et de son état de contrainte (Figure [7-10al):

Shear-bending Torsion
i \i\ -~ I »Q\\cx 1D zone

l D
g (0] 2]
e ead B
t{efITrL %%; _____ N @E;ty 3D zone ¢ ¢ ¢ s > u__: _:j T
(a) ()

Figure 7-10 — (a) Discrétisation de la section selon ’état de contrainte dans le modele de
Navarro-Gregori et al. [76]. (b) Directions de contrainte de cisaillement sous les effets de
flexion-cisaillement et de torsion.

e Zone 1D: cette zone ne contient que les armatures longitudinales, ou l'on fait
I’hypothese que la contrainte normale dans la direction des armatures est la seul
contrainte a tenir en compte. La loi de comportement appliqué dans cette zone est

celle de Dacier.

e Zone 2D: cette zone est définie par la région ou se trouve les armatures transversales
dans une seule direction et le béton l'entouré. Dans cette zone, sous les effets de
cisaillement, de flexion ou de torsion, la direction de contrainte normale dans les
étriers coincide a celle dans le béton (7., dans la zone verticale ou 7,, dans la zone

horizontale) (Figure [7-10b)). Par conséquent, & chaque fibre, on ne considére que
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I’état des contraintes planes avec deux composants: une normale et une transver-

sale. La prise en compte des effets des armatures transversales est réalisée par un
e s e s : ,

processus d’itération satisfaisant 1’équilibre interne entre le béton et les armatures

transversales. La loi de comportement est celle de la théorie de MCFT [110)].

e Zone 3D: ou se trouvent les armatures transversales en deux directions et dans le
noyau en béton de la section, cette zone est définie avec un état de contrainte complet
: une normale et deux cisaillements, dans chaque fibre. Le modele de comportement
appliqué est une extension de la théorie de MCFT pour I’élément fini 3D [I12]. Dans
cette zone, ainsi que dans la zone 2D, I'équilibre interne et le couplage des efforts

sont assurée par des condensations statiques de contrainte dans chaque fibre.

Modélisation numérique des éléments BA soumis a des sollicita-

tions complexes

Un exemple évalué par Le Corvec [62] dans sa these est étudié ci-dessous afin de valider
le modele EF développé dans la régime de matériaux élastiques: une poutre cantilever
de section mince soumise & Ueffort de flexion-cisaillement (Figure [7-11). Les valeurs des
déplacements a I'extrémité de la poutre, obtenue par les deux approaches enrichies, sont
montrées dans le Tableau [7.1] et comparées aux solutions analytiques et aux résultats
numériques de Le Corvec. Les résultats numériques donnés par le modele proposé sont
satisfaisant, et les différences entre deux approches enrichies ne sont pas importantes.

F2=1000000 N

Q

1000 mm

L=5000 mm
E=1000000 MPa; v=0.3

h

z

M}( —
y b=100 mm

Figure 7-11 — Systeme des points d’interpolation dans ’exemple de Le Corvec [62].
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Table 7.1 — Déplacement a l'extrémité d'une poutre cantilever de section rectangulaire
sous l'effet de flexion-cisaillement - Exemple de Le Corvec [62].

Modele Proposé
Théorie de Modele de
Maillage Théorie de Polynome de
Timoshenko | Le Corvec
Saint-Venant Lagrange
10x1 -5.206 -5.207
Déplacement a 50 x 5 -5.158 -5.158
-5.156 -5.156
Pextrémité (mm) 100 x 10 -5.157 -5.157
200 x 20 -5.156 -5.156

Pour rappel, sous 'effet de flexion-cisaillement, I’approche enrichie des polynomes de
Lagrange génere un champ de déplacement axial supplémentaire. Par conséquence, la
section droite se gauchit et ne peut pas conserver sa forme plane. Ce déplacement de
gauchissement sous 'effet de flexion-cisaillement est présenté a la Figure [-12al On peut
observer que la forme parabolique est le résultat des polynomes d’interpolation cubique
sur la section droite. Cependant, la magnitude de ce champ enrichi est tres faible en
comparant a celle du champ classique. Cela dit que le champ de déplacement total est donc
peu influencé et conserve sa forme plane (Figure . Les impacts sur les déformations
et les contraintes sont donc limités et par conséquent, il n’y a pas de différence entre les

valeurs de déplacement a 'extrémité dans le Tableau
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_ 250
é 0 =
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-250 N
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0

-50 -0.4 uw (mm)
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(a) Champ de déplacement de 08

gauchissement. (b) Champ de déplacement total.

Figure 7-12 — Distribution du champ de déplacement sur la section droite a 'extrémité
de poutre sous l'effet de flexion-cisaillement.

L’intéraction des efforts flexion-torsion est évaluée en étudiant la simulation numérique
quelques spécimens dans le test expérimental de McMullen & Warwaruk [72]. Les dia-
grammes d’intéraction de flexion-torsion concernant les résultats numériques des valuers
ultimes de moment fléchissant et de moment de torsion sont montrés sur la Figure [7-13] et

comparés aux solutions analytiques obtenue par la théorie de Skew-bending proposée par
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Collins et al. [23,24]. D’apres cette théorie, pour une poutre en BA de section symétrique,
il existe 2 modes de rupture: rupture par flexion, rupture par torsion. Dans le cas de sec-
tion asymétrique, il existe une 3eme mode accompagné par des initiations de fissures sur la
surface haut de poutre. On peut observer a la Figure concernant les résultats de deux
groupes de section asymétrique et symétrique, en comparant aux résulats expérimentaux,
les solutions analytiques sont toujours conservatives tandis que les résultats numériques
donnés par le modele proposé sont au meilleurs corrélations, notamment au voisinage des
transitions entre 3 modes de défaillance.
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(a) Groupe 1: section droite asymétrique. (b) Groupe 2: section droite symétrique.

Figure 7-13 — Diagramme d’intéraction entre flexion-torsion dans le test de McMullen &
Warwaruk’s [72].

En effectuant une simulation numérique pour une poutre cantilever en BA soumise
a combinaison de flexion-torsion a l'extrémité, I'impact des armatures transversales sur
la résistance en flexion-torsion est étudié et représenté sur la Figure Sur cette fig-
ure, différents diagrammes d’intéraction sont établis pour différents valuers d’espacements
d’étries. Comme on peut le constater, lorsque la torsion est faible par rapport a la flexion,
par exemple R = 0,25, la densité de I’étrier n’a logiquement presque aucun effet. L’effet de
I’étrier sur la résistance des éléments devient plus important lorsque la torsion domine la
flexion. En cas de torsion pure, on peut constater que la résistance a la torsion augmente
d’environ 34 % avec une augmentation de 8 fois de la densité de I’étrier. Cette application
numérique met en évidence le fait que la formulation EF proposée prend en compte les

armatures transversales dans la prédiction de la résistance a la torsion des éléments BA.
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Figure 7-14 — Diagramme d’intéraction de flexion-torsion en fonction d’espacement des

étriers.

L’intéraction entre flexion-cisaillement-torsion est aussi étudiée dans la simulation
numérique concernant le test expérimental des poutres en BA soumise aux effets de flexion-
cisaillement-torsion de McMullen & Warwaruk [72]. Pour le Groupe 7, le diagramme
d’intéraction de flexion-torsion est présenté a la Figure avec un bon niveau de cor-
rélation entre les résultats numériques et ceux expérimentaux. Concernant le diagramme
d’intéraction de cisaillement-torsion (Figure , les résultats donnés par la théorie de
Skew-bending et par le modele proposé sont en bon accord avec I'expérimentation. De la
méme maniere que les autres courbes d’interaction flexion-torsion et cisaillement-torsion
présentées ci-dessus, les solutions analytiques sont plutot conservatrices. Cette remarque

correspond a I'observation de Hsu [46] selon laquelle la théorie de skez-bending surestime

considérablement la résistance a la torsion pure des membres BA.
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Figure 7-15 — Diagramme d’intéraction du Groupe 7 dans le test de McMullen &
Warwaruk [72].
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Les éléments BA soumis a la torsion pure

Modele constitutif proposé pour le béton

Sous l'effet de torsion pure, en utilisant la théorie de MCF'T comme le modele constitutif
du béton, la valeur numériques du moment de torsion a la fissuration est réduite environ
la moitié des valeurs expérimentales. Cela est expliqué par le fait que dans la théorie de
MCEFT, la relation en traction est basée sur des tests expérimentaux de panneaux soumis
a l'effet de cisaillement, donc pas vraiment adapté au comportement en torsion. Une
modification du comportement en traction est donc nécessaire.

De plus, une deuxieme remarque pour le modele constitutif du béton a torsion pure
est a retirer en regardant sur le comportement du membrane BA soumis a torsion pure,

qui est divisé en 2 phases différentes:

e Avant fissuration, la réponse de la section est considérée comme élastique et le
comportement est tres similaire a celui d’un élément en béton pure, ce qui peut étre

prédit par la théorie de la torsion de Saint-Venant.

e Apres fissuration, le matériau n’est plus continu, la théorie de 1’élasticité devient inu-
tile et un nouveau mécanisme est nécessaire pour interpréter la réponse en torsion
dans cette phase. A partir du concept de treillis [93] et des résultats des tests ex-
périmentaux de Hsu [45] et de Onsongo [82], on peut supposer que le comportement

d’éléments BA apres fissuration est considéré comme un tube de section creuse.

Ce comportement spécial conduit a la deuxieme modification du modele mécanique pour
les éléments BA en torsion pure: le comportement de la zone 3D du béton dans le noyau
de section est mis a zéro apres la fissuration. La réponse en torsion non linéaire apres la
fissuration dépend donc uniquement du comportement de la zone 2D et de la zone 3D aux
quatre coins de la section, et la largeur de la zone 2D, appelée épaisseur effective, joue un
role déterminant.

Une troisieme remarque aussi importante est I'impact de la distribution des armatures
longitudinales dans la section sur la résistance en torsion pure du membre en BA. En effet,
d’apres I'analyse des tests expérimentaux par Hsu [45)], pour les éléments en BA, la valeur
a la fissuration du moment de torsion est en fonction du pourcentage total des armatures.
De plus, Hsu a remarqué également qu’une meilleure répartition (ou distribution) des

armatures longitudinales sur la section augmenterait légerement le moment de torsion a
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la fissuration: c’est le cas des poutres G6, G7 et G8 dans lesquelles les barres longitudinales

sont également situées au centre de la section (Figure [7-16]).
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Figure 7-16 — Moment de torsion a la fissuration en fonction des pourcentages totals des
armatures dans le test de Hsu (1963) [45].

A partir de ces trois remarques ci-dessus, en faisant une étude paramétrique et une
calibration sur plusieurs tests expérimentaux en torsion (par Hsu [45], par Csikos & Hege-
dus [29] et par Lee et al. [63]), basée sur I'idée de Jeng & Hsu [53], une nouvelle loi de
comportement en traction est proposée (Figure :

e Pour le module élastique:
E. =5620+/f. (f.in MPa) (7.5)

dont f. est la résistance en compression du béton, 5620 est un coefficient calibré par

Jeng & Hsu [53].

e Pour la résistance en traction a la fissuration du béton, il existe deux formulation
correspondant a deux cas différents de distribution des armatures longitudinales

dans la section:

Pour une distribution habituelle (Figure [7-17al)
PC b
for = for (0.38Ep5 + 1> (7.6)

Pour une distribution avec des barres additionnelles sur le long du périmetre
(Figure [7-17b)):
b
for = fP€ (0.225/)5 + 1.3) (7.7)
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pPC

.~ est la résistance en traction a la fissuration d'un member en béton pure, b

ou

est la largeur et h la hauteur de la section, ps est le pourcentage total des armatures.

(b) Distribution avec des barres additionnelles

(a) Distribution habituelle. s
sur le long du périmetre.

Figure 7-17 — Deux cas de distribution des armatures longitudinales.

e Pour la déformation a la fissuration:

Eer = (78)

cr

&

Proposed model for torsion

Figure 7-18 — La relation en traction proposée pour la torsion en comparée a celle dans
la théorie de MCFT par Vecchio [110].

Des formulations paramétriques pour déterminer 1’épaisseur effective de la zone 2D

sont également proposées grace a la procédure de calibration mentionnée ci-dessus:

e Pour une distribution habituelle:

h
te="> <O.01305mps + 0.1) (7.9)

e Pour une distribution avec des barres additionnelles sur le long du périmetre:

h
te=b (O.0088Emps + o.1> (7.10)

b est la largeur et A la hauteur de la section; m est le ratio entre le pourcentage des

armatures longitudinales et transversales; p, est le pourcentage total des armatures.
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Résultats numériques

Dans le régime de matériaux élastique, les résultats numériques obtenus par le modele
proposé sont comparés aux formulations théoriques et aux résultats d’autres modeles. Une
poutre cantilever soumise a une torsion pure a 'extrémité, qui a également été simulée
par Le Corvec dans sa these de doctorat [62], est étudiée (Figure [7-19a). Les résultats
numériques pour l'angle de torsion a I'extrémité de la poutre calculés par le modele de Le
Corvec et le modele proposé (selon deux approches enrichies) sont donnés dans le Tableau
7.2l Bonnes corrélations sont obtenues et de plus, cela confirme que le fait de négliger
Ieffet du gauchissement peut provoquer une forte influence sur la valeur de I'angle de
torsion. Le profil de gauchissement de la section est représenté dans la Figure [7-19b]
Cela donne une bonne illustration du phénomene: sous 'effet de torsion, les sections se
gauchissent et sortent de leur propre plan. En conséquence, la rigidité de la section est

modifiée et la déformation en torsion est fortement influencée.
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Figure 7-19 — (a) Poutre cantilever soumise a la torsion pure et systeme de points

d’interpolation.; (b) Gauchissement de la section droite soumise & la torsion.

Table 7.2 — End twist angle for cantilever beam under mid span torque

Modele Proposé
Modele de
Théorie Sans Théorie de  Polynome de
Le Corvec
gauchissement  Saint-Venant Lagrange
Angle de torsion (1073 rad) 4.548 4.554 2.496 4.550 4.566
Erreur relative (%) 0.13 45.11 0.04 0.39
Temps de calcul (seconde) 9 9 18

La courbe moment de torsion - angle de torsion linéaire obtenue par le modele pro-

posé est comparée aux résultats expérimentaux des spécimens M2 et M3 dans le test
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de Hsu (Figure , avec et sans les modifications proposées pour le comportement en
traction du béton. Un tres bon accord a été obtenu entre les résultats expérimentaux et
numériques: le moment de torsion ultime et a la fissuration ont des mémes amplitudes,
les pentes aux phases post-fissuration sont quasiment identiques et le plateau horizontal
caractéristique manifestant par la transition entre les deux phases avant et apres la fis-
suration est bien représenté. De plus, nous pouvons constater que, sans la modification
proposée du comportement en traction, le moment de torsion a fissuration est environ la
moitié de celui du test expérimental et, par conséquent, la courbe moment de torsion -

angle de torsion linéaire ne peut pas étre similaire a celle expérimentale.
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Figure 7-20 — Courbe moment de torsion - angle de torsion linéaire pour deux spécimens
M2 et M3 dans le test de Hsu [45].

Un bon niveau de prédiction du moment de torsion ultime et de la rigidité post-

[63]

fissuration est aussi atteints dans la simulation numérique du test de Lee et al.

(Figure [7-21]).
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Figure 7-21 — Courbe moment de torsion - angle de torsion linéaire pour la série T dans
le test de Lee et al.’s. [63]
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Développemnt de formulation proposée dans les con-
ditions géométriques non linéaire

Le cas d’éléments BA soumis a des actions combinées cisaillement-flexion-torsion dans des
conditions géométriques non linéaires a également été traité dans ce travail de recherche.
Une approche totale Lagrangienne-Corotationnelle a été utilisée pour développer des élé-
ments de poutre, dans laquelle une géométrie initiale non déformée, translation et tournée
en tant que corps rigide, a été choisie comme la configuration de référence dans le concept
de co-rotationnelle. La formulation est basée sur de petites déformations dans le con-
cept de co-rotationnelle (ou de naturel). Au niveau local, sous l'effet de torsion, un term
non-linéaire, appelé terme de Wagner, génere la non linéarité et doit étre pris en compte.
Des couplages entre des efforts de flexion-cisallement-torsion sont aussi a considérer et
développer dans le formulation locale.

Une poutre cantilever de section solide, qui a été utilisée dans la these de Battini [3], est
simulée pour étudier le cas de torsion pure en grand déplacement. La Figure [7-22] présente
les courbes du moment de torsion en fonction de ’angle de torsion a I'extrémité. Comparés
a la solution analytique basée sur la théorie de poutre de Vlasov [113] et au modele
numérique du modele de Battini, les résultats obtenus par le modele proposé, en tenant
compte de la contribution du terme de Wagner, montrent une tres bonne corrélation.
On peut constater que, bien que simulé dans le domaine des matériaux élastiques, la
relation entre le moment de torsion et l'angle de torsion n’était plus linéaire, en raison
de la non-linéarité géométrique provoquée par l'introduction du terme de Wagner. Il est
évident que, sans prendre en compte le terme de Wagner, le modele est considéré comme

un modele de géométrie linéaire qui donne une réponse purement linéaire.
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Figure 7-22 — La réponse de torsion dans la condition géométrique non linéaire.

Dans le cas d'une poutre d’appui simple en BA, le spécimen G5 est simulé avec la
nouvelle formulation en grand déplacement. Aucune différence significative entre le modele
géométrique linéaire et non linéaire n’a pu étre observée dans le diagramme de moment
de torsion - angle de torsion linéaire sur la Figure En utilisant une approche de
simulation par déplacement imposé, le moment de torsion a la fissuration est atteint a 2,5
mrad/m, ce qui correspond a la méme valeur de 29,26 kN dans les deux modeles. Aucune
différence n’a donc été constatée entre les deux modeles dans la phase précédant de la
fissuration du béton. Dans la phase apres la fissuration, le moment de torsion ultime a été
atteint a 55 mm pour les deux modeles et a donné une valeur de 73,51 kN pour le modele
linéaire et de 73,55 kN pour le modele non linéaire. Seulement une différence relative tres

mineure de 0,05 % a été enregistrée.
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linéaire.

Conclusions

Dans cette these de doctorat, en utilisant une approche multifibre et d’analyse de sec-
tion, un élément fini 3D est développé pour les éléments en BA soumis a des sollicita-
tions combinées M-N-V-T. Ce modele est capable de prendre en compte les non linéarités
géométriques et matérielles, le phénomene de gauchissement de la section droite, et la
contribution des armatures transversales.

De plus, 'approche enrichie de polynome de Lagrange a été completement mise en
ceuvre dans le modele proposé utilisant la formulation en déplacement, ainsi qu’une com-
paraison avec ’approche enrichie de la théorie de Saint-Venant pour la prise en compte de
I'effet de torsion. Les exemples numériques ont donné de bons résultats et ont montré des
corrélations raisonnables entre les deux approches. Grace a sa généralité, la mise en ceuvre
réussie des polynomes de Lagrange dans le modele proposé offre également davantage de
possibilités pour des recherches plus approfondies sur différentes formes de sections, telles
que T ou L.

Les résultats satisfaisants obtenus dans le domaine des matériaux non linéaire ont
permis l'adaptation de la théorie de MCFT au modele de comportement du béton dans
la formulation proposée. Dans cette these de doctorat, basée sur la MCF'T, un modele
constitutif cohérent, adapté a une utilisation dans la formulation de poutre multifibres

2D, a été développé pour I'élément BA en cas de torsion pure. La discrétisation de la
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section droite en différentes régions selon I’état de contrainte (c’est-a-dire zone 1D, zone
2D et zone 3D), proposée par d’autres chercheurs, a été utilisée et améliorée dans ce
travail. Une nouvelle formulation permettant de déterminer 1’épaisseur effective de la
zone 2D a été également proposée. Le processus de calibration effectué par 'auteur dans
ce travail, qui utilisait les parametres d’ingénierie pour augmenter la capacité a appliquer
le modele proposé dans des simulations pratiques, peut également offrir des idées et des
recommandations a d’autres chercheurs dans des études similaires.

Le cas d’éléments BA soumis a des sollicitations combinées cisaillement-flexion-torsion
dans des conditions géométriques non linéaires a également été traité dans le présent
travail. Une approche co-rotationel a été utilisée pour développer des éléments de poutre.
Les résultats satisfaisants obtenus a travers plusieurs exemples dans la littérature ont
montré que le concept de co-rotationel avait été mis en ceuvre avec succes dans le modele

proposeé.
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Appendix

7.1 - Shape functions in two-node Timoshenko beam

element

Shape functions for displacement vector:

10y/z —

T\ 2 T
o () -

with ¢,/. le ratio de rigidity between bending and shear with respect to y and z axis,

2 2
_12/3EydA. 12/SEsz
20 P

L/fy/(;ds LHZ/GdS
S S

ky and K, the shear correction factor in y and z direction, respectively.

respectively.

Dy -
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Shape functions for strain vector:

ON; 1 ONs 1
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7.2 - Lagrange Interpolation polynomial and Enhanced
Compatibility matrix

Longitudinal interpolation matrix L(z) of (3 x 3.3.n,):

L(z) = |Li(z) ... Li(z) ...Ly(2) (7.13)

Sm(ya Z) Ow Ow Sz (yv Z) 038’11} Ost
Sz (y7 Z) = Ou; S:c (yv Z) Ow ; S$<y7 ’Z) = 03sw Sg (y7 Z) Ost
Ow Ow S:L" (Z/, Z) O3sw O3sw Slxu(ya Z)
(7.15)
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where 0,, is a zero matrix of (9 x 3.s,,) columns; 03, is a zero matrix of (3 X s,,); S¥(y, 2),
S?(y, z) and S¥(y, z) are three matrices of (3 x s,,) containing the row vector S(y, z) in

equation (3.20)) and the zero row vector of s,, columns:

S(y, 2) 0400 0.,
Sp(y,2) = | 04 |5 Su(y,2)=|S(y,2)|; Si(y,2)=1| 04 |; (7.16)
Osu (% S(y, 2)

Syz (ya Z) Ow Ow SZZ (?/7 Z) 03sw Ost

S?JZ (y7 Z) = Ow Syz (y, Z) Ow 7 SyZ(y7 Z) - 03311) Szz(ya Z) 035w
0w Ow Syz (y7 Z) 03sw O3sw Sz;z (y; Z)

(7.17)

Sy.(y,2), S;.(y,2) and S} (y, z) are three matrices of (3 x s,,) containing the derivation

with respect to y and z of the row vector S(y,2) in equation (3.20)) and the zero row

vector of s, columns:

OS(ZW ) Ouo Osu
u Y,z v w
Sp(:2) = | 7, |7 Si2) = 0|3 Sp(y,2) = |04 (7.18)
08(y.2) Ouu 0.0
0z

7.3 - Cross section details and materials properties of
experimental torsion tests

In Hsu test, the concrete cover thickness is 19 mm for all specimens, while the materials

properties and reinforcement’s dimensions are varied and cited as follows (Table :
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Table 7.3 — Details of specimen of torsion tests carried by Hsu [45].

Beam  f. (MPa) Longitudinal fu1 (MPa) Stirrup fut (MPa)
rebar (mm) (mm) and (mm)
B1 27.58 12.7 314 9.5 at 152 341
B2 28.61 15.9 316 12.7 at 181 320
B3 28.06 19.1 328 12.7 at 127 320
B4 30.54 22.2 320 12.7 at 92 323
B5 29.03 25.4 332 12.7 at 70 321
B6 28.82 28.7 332 12.7 at 57 323
B7 25.99 12.7 320 12.7 at 127 319
B8 26.75 12.7 322 12.7 at 57 320
B9 28.82 19.1 319 9.5 at 152 343
B10 26.48 28.7 3334 9.5 at 152 342
C1 26.34 9.5 341 9.5 at 216 341
C2 26.54 12.7 334 9.5 at 117 345
C3 26.89 15.9 331 12.7 at 140 330
C4 26.48 19 336 12.7 at 98 328
C5 27.23 22.2 328 12.7 at 73 329
C6 27.58 25.4 316 12.7 at 54 328
G1 26.34 9.5 341 9.5 at 216 341
G2 26.54 12.7 334 9.5 at 117 345
G3 26.89 15.9 331 12.7 at 140 330
G4 26.48 19 336 12.7 at 98 328
G5 27.23 22.2 328 12.7 at 73 329
G6 27.58 25.4 316 12.7 at 54 328
G7 27.23 22.2 328 12.7 at 73 329
G8 27.58 25.4 316 12.7 at 54 328
N1 26.34 9.5 341 9.5 at 216 341
Nla 26.54 12.7 334 9.5 at 117 345
N2 26.89 15.9 331 12.7 at 140 330
N2a 26.48 19 336 12.7 at 98 328
N3 27.23 22.2 328 12.7 at 73 329
N4 27.58 25.4 316 12.7 at 54 328
M1 26.34 9.5 341 9.5 at 216 341
M2 26.54 12.7 334 9.5 at 117 345
M3 26.89 15.9 331 12.7 at 140 330
M4 26.48 19 336 12.7 at 98 328
M5 27.23 22.2 328 12.7 at 73 329
M6 27.58 25.4 316 12.7 at 54 328
I1 26.34 9.5 341 9.5 at 216 341
12 26.54 12.7 334 9.5 at 117 345
13 26.89 15.9 331 12.7 at 140 330
14 26.48 19 336 12.7 at 98 328
15 27.23 22.2 328 12.7 at 73 329
16 27.58 25.4 316 12.7 at 54 328
J1 26.34 9.5 341 9.5 at 216 341
J2 26.54 12.7 334 9.5 at 117 345
J3 26.89 15.9 331 12.7 at 140 330
J4 26.48 19 336 12.7 at 98 328
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In the test of Lee et al. [63], the concrete cover thickness is 20 mm for all specimens,
while the compressive strength of concrete f. = 42.6 (MPa), the material properties and

steel’s dimension are cited as in Table |7.4]).

Table 7.4 — Details of specimen of torsion tests carried by Lee et al. [63].

Longitudinal Stirrup
Beam fsi (MPa) fst (MPa)
rebar (mm) (mm) and (mm)
T1-1 4x12.7 410 9.5 at 130 370
T1-2 6 x 12.7 410 9.5 at 85 370
T1-3 8 x 12.7 410 9.5 at 65 370
T1-4 6 x 15.9 510 12.7 at 75 355
T2-1 4x12.7 410 9.5 at 225 370
T2-2 4x15.9 510 9.5 at 130 370
T2-3 6 x 15.9 510 9.5 at 88 370
2 x 12.7
T2-4 512.4 9.5 at 75 370
4x19

In the test of Csikos & Hegedus [29], the concrete cover thickness is 15 mm for all
specimens, while the concrete used was C20 and the yielding strength of steel is 240 MPa
in all cases (Table [7.5]).

Table 7.5 — Details of specimen of torsion tests carried by Csikos & Hegedus. [29].

. Longitudinal Stirrup
Series
rebar (mm) (mm) and (mm)
B 4%x6 6 at 130
C 4x6 6 at 65
D 8% 6 6 at 130
E 8% 6 6 at 65
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Développement d’'un modéle d’élément fini 3D pour des poutres en béton arme soumis a des

sollicitations complexes M-N-V-T.

Mots clés : béton armé, élément fini, multifibre, gauchissement, torsion, sollicitation complexe,

grand déplacement

Résumé : Le travail présenté dans ce mémoire
porte sur le développement d’'un modele EF non
linéaire pour des poutres BA soumis a des
sollicitations combinées M-N-V-T. Afin de prendre
en compte du couplage entre la torsion et la
flexion, un élément poutre multifibre 3D enrichi est
développé en utilisant I'approche de la plasticité
distribuée et la formulation en déplacement. La
premiére partie concerne le développement
modele EF qui se base sur I'enrichissement des
hypotheses  cinématique de  poutre de
Timoshenko, avec lintroduction des dégrée de
liberté supplémentaires, afin de prendre en compte
I'effet de gauchissement et de distorsion. L’'un des
objectifs de cette thése est de proposer une
méthode simple pour inclure la contribution des
armatures transversales sur la raideur et la
résistance de la section droite. Pour cela, une
procédure itérative basée sur I'équilibre des

contraintes entre les armatures et le béton est
proposée. Le comportement 2D du béton armé
est modélisé a I'aide de la théorie de Modified of
Compression Field Theory (MCFT). La deuxieme
partie est consacrée a I'analyse numérique des
éléments en béton et en BA soumis a torsion
pure. Une nouvelle relation contrainte-
déformation du béton fissuré est proposée dans
le cadre de la MCFT en calibrant avec des
résultats expérimentaux. La troisieme partie est
dédiée a l'analyse numérique des poutres BA
soumis a des sollicitations combinées. Le modele
EF développé est validé par plusieurs numérique-
analytigue-expérimentale comparaisons.
L’interaction entre le cisaillement, la flexion et la
torsion est étudiée. Enfin, la derniere partie est
dédiée a I'étude du comportement des éléments
BA en grand déplacement.

Development of an enhanced finite element model for reinforced concrete members
subjected to combined shear-bending-torsion actions.

Keywords : reinforced concrete, finite element analysis, multi-fiber, warping, torsion, combined

loading, large displacement

Abstract This PhD thesis deals with the
development of a non-linear finite element (FE)
model for reinforced concrete (RC) members
under coupling of multi-axial actions and in
particular under torsion. Using the sectional-fiber
approach and the displacement-based formulation,
an enhanced multi-fiber 3D beam element is
developed for predicting the behavior of RC
elements subjected to arbitrary loading conditions
(shear, bending and/or torsion). The first part
concerns the FE formulation based on the
enhancement of Timoshenko's beam kinematic
assumptions with introducing of some additional
degrees of freedom at each monitoring section, in
order to take into account the phenomena of
warping and eventually, distortion. Focusing on
RC structures, one of the objectives is to find the
simple way to include the transversal

reinforcement into the cross-section analysis of
the multi-fiber FE model, using behavior models
based on the Modified of Compression Field
Theory (MCFT) and its extension. The second
part deals with the numerical analysis of concrete
and RC members subjected to pure torsion. A
constitutive law for concrete in tension is
proposed within the framework of the MCFT in
which the material parameters are determined by
the calibration process of several experimental
tests. In the third part, the interactions between
shear, bending and torsion are investigated by
comparing with the analytical solutions of skew-
bending theory and several experimental tests in
literature. Finally, the last part is dedicated to the
investigation of the enhanced FE multi-fiber beam
model under large displacement conditions, using
a corotational framework.
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