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Abstract

Most civil engineering structures are subjected to multi-axial actions, including normal

forces and tangential efforts. Even though the effects of shear and torsion have already

been implemented in several theories and models of structural analysis, a rational theory

is still lacking. In order to make some contributions to this field of research, the present

PhD thesis deals with the development of a non-linear finite element model for reinforced

concrete members under coupling of multi-axial actions and in particular under torsion.

Using the sectional-fiber approach and the displacement-based formulation, an en-

hanced multi-fiber 3D beam element is developed for predicting the behavior of rein-

forced concrete elements subjected to arbitrary loading conditions (shear, bending and/or

torsion). The section kinematic is based on the enhancement of Timoshenko’s beam

kinematic assumptions with introducing of some additional degrees of freedom at each

monitoring section in order to take into account the phenomena of warping and eventu-

ally, distortion. To do so, a system of fixed points is created and interpolated by Lagrange

functions and polynomials. Otherwise, Saint-Venant theory for beam is also considered

and used as a reference compared to the enhanced formulation. Focusing on reinforced

concrete structures, in the multi-fiber approach, taking into account the contribution of

transversal reinforcement is not straightforward. Thus, one of the objectives is to find the

simple way to include the transversal reinforcement into the cross-section analysis of the

multi-fiber FE model. In the present work, each monitoring cross-section is discretized

into regions followed its material response and stress state. In each region, depending

on its characteristics, an appropriate constitutive material model is applied and included

with an iteration process satisfying internal equilibrium between concrete and transverse

reinforcement. For this purpose, the proposed behavior models are based on the Modified

of Compression Field Theory and its extension.

9



The assessment of the proposed FE model is performed with several numerical-analytical-

experimental comparisons. Numerical analysis of concrete and RC members under elastic

and inelastic material regimes are carried out for two cases of loading: pure torsion and

combined shear-bending-torsion. In order to predict the pure torsional response of con-

crete and RC members, a constitutive law for concrete in tension is proposed within the

framework of the Modified Compression Field Theory in which the material parameters

are determined by the calibration process of several experimental tests. Regarding the

case of combined actions, the shear-bending-torsion interaction is investigated by compar-

ing with the analytical solutions of skew-bending theory and several experimental tests

in literature. Finally, the study is completed with the investigation of the enhanced FE

multi-fiber beam model under large displacement conditions, using a corotational frame-

work. Several examples and comparison are performed for the illustration of nonlinear

geometric effects to the coupling between the actions due to the torsional effect.

10
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7-7 Organigramme de la formulation en déplacement pour l’élément fini multi-

fibre selon deux approches enrichies. . . . . . . . . . . . . . . . . . . . . . . 228

7-8 Composition de contrainte pour l’élément BA selon la théorie de MCFT
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Chapter 1

Introduction

1.1 General

Most civil engineering structures are subjected to multi-axial actions, ranging from many

kinds of structures (buildings, bridge decks, electric pylon, etc.) to many kinds of con-

struction material (reinforced concrete, steel, wood or hybrid structure). Thus, in order

to completely perform the modeling of the structures in real conditions, its model must

be able to take into account the multi-axial actions, including normal forces (axial force

and bending moments) and the tangential forces (shear forces and torsional moment).

Between these states, axial force and bending moments are widely studied and simulated

by an accepted rational theory based on the plane section hypothesis. Nevertheless, even

though there are several theories of structural analysis under shear and torsion, a basic

rational theory is still lacking. In addition, when determining the completed behaviors of

structural element, especially reinforced concrete members, the coupling of actions still

remains open to discussion although it has already been taken into account in various

models. In particular, for the conception under hazardous conditions (typhoon or seismic

risks), in which accurate analyzes at the local and structural scale are indispensable, it is

increasingly necessary to develop theoretical and numerical models capable of representing

the coupling of all external forces.

In professional structural engineering, finite element modeling is considered suitable

for the analysis of all types of structures, from simple to complex, from one to three

dimensions. In facts, although all real structures are in three dimension, many of them

have one privileged direction over the other two and can be assimilated to 1D compo-

nents, such as building’s beams, columns, bridge decks or frame elements. Indeed, all
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the mechanical characteristics of cross-section is condensed in the reference axis by im-

posing specifics static and kinematic hypotheses. Then, this one-dimensional structure,

called beam-column or frame type elements, can be modeled and discretized in linear

elements throughout a system of monitoring cross-section along the element axis (Figure

1-1). Frame elements can offer an optimal balance between accuracy and computational

efficiency, therefore they are the most employed in structural analysis and simulations. In

the case of structural elements with small span-to-depth ratio, such as shear wall or plate,

two-dimensional or shell finite elements are employed for the modeling. Three-dimensional

solid finite element models can provide the best response for the behavior of structures

under complex load conditions. However, it requires a very high computational cost and

complex material constitutive equations, so it is generally used for the analysis of special

detailing problems.

Figure 1-1 – Modeling of three-dimensional element as one-dimensional frame element

Nowadays, the design of structures is required in a safer and more economical way, so it

is necessary to accurately simulate the structural performance in the inelastic range until

failure. Handling the inelastic material response is therefore evident in the conception

phase of conventional constructions. For structures designed against seismic or other

extreme load conditions, non linear analysis becomes more evident and indispensable,

not only for the material response but also for geometry conditions. Many finite element

models and frame element approaches have been proposed to respond to this demand,

numerous models between them can well describe the interaction of normal forces under

non-linear geometry assumptions, such as fiber or multi-fiber beam elements. However,

there are few beam-column models that are capable to account for the effect of shear, in

which the stress state is enlarged to two dimensions with the contribution of the shear

stress. In addition, the inclusion of torsion needs an extension to three dimensions and

an increased complexity with the coupling of internal forces under nonlinear geometry

conditions.

Indeed, the numerical modeling of civil engineering constructions under severe and
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multi-axial coupling conditions is still a challenging problem, especially in the case of

plain concrete and reinforced concrete structures due to the complex characteristics of its

mechanical behavior. Although in the last thirty years fiber beam elements have been

developed and applied successfully in the analysis of reinforced concrete members, the

inclusion of shear and torsional effects in this model is not obvious and the effect of

normal and shear stresses are usually treated separately. In this PhD thesis, the objective

is to develop an enhanced multi-fiber beam finite element model in three dimensions,

suitable for the simulation of reinforced concrete structures subjected to monotonic loads

under consideration of multi-axial coupling of axial force, shear, bending and torsion. The

developed model takes into account the material and geometrical nonlinearities. This

PhD thesis is limited to the reinforced concrete members with rectangular cross-section.

However, the element formulation and the constitutive equations is formulated general

enough for being applied to any sectional model and any shape of cross-section.

1.2 Context and Motivation

Although considered as a major factor in the design code of reinforced concrete structures,

torsion did not draw as much attention by design engineers and researches before the 1960.

Prior to this period, knowing that the magnitudes of the stiffness and torsional resistance

are in a lower order in comparisons with the one in bending, torsional effects were assumed

minor and taken care by a safety factor used in flexural design. This assumption has been

responsible for many cases of torsional distress and failure, such as the collapse of Tacoma

Narrows Bridge in 1940 due to a torsional vibration mode (Figure 1-2).

Figure 1-2 – Torsional motion of Tacoma Narrows bridge (screenshots taken from video)

In reality, torsional effects can play a determining role in the stability of structures,

for example the electric pylon, skew bridge, railway curved viaduct or bridge desk under

asymmetric loads, etc. (Figure 1-3). In the context of conventional reinforced concrete

buildings, torsion can be found widely: beams that support cantilever slabs or balconies,
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wall foundation beam, beams next to floor opening or spandrel beam. However, it is still

usual to neglect the torsion in the simulation of frame elements such as beam and/or

column.

Figure 1-3 – Examples of usual structure where torsional effect is important.

In the case of RC buildings using thermal insulation from the inside, a thermal bridge

is occurred at the floor-to-wall junction. This thermal bridge disturbs the continuity of

the thermal insulation and must be treated by a thermal bridge breaker (Figure 1-4a),

in accordance with the Thermal Regulation. In the case of holding the balcony, the floor

slab extends through the building envelope, and in order to transfer the weight of the floor

to the wall, it is necessary to provide the contribution of a structural element called lintel

(Figure 1-4b), usually made of steel because of its lightness. However, the lintel is attached

to the thermal bridge breaker, and steel is a low insulating material, its efficiency may be

reduced accordingly. So, the lintel is designed as a horizontal beam of reinforced concrete

of rectangular cross-section, subjected to a combined of bending, shear and torsion, for

which the theoretical and numerical models are few in the literatures.

(a)

Balcony

Thermal bridge 

breaker

Floor

Wall

Lintel

Interior insulation

panel

(b)

Figure 1-4 – (a) Thermal bridge breaker. (b) Disposition of lintel beam in the case of
holding the balcony for a building of thermal insulation from the inside.

In addition to the problem of coupling of multi-axial efforts and stresses, the inclusion

of tangential effects in the modeling of reinforced concrete members is more complex as it

requires a special treatment of the warping phenomenon. This phenomenon is described

as a peculiar deformation of non circular cross-sections as they warp and come out of their
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own plan under shear and torsional effect (Figure 1-5). This phenomenon is particularly

important for torsional resistance because it reduces the sectional rigidity, generates the

additional normal stresses which decrease the tangential stresses and so strongly influence

the twist deformation.

Figure 1-5 – Saint-Venant’s original drawings of torsion bars for elliptical, square and
rectangular section [97].

1.3 Beam theory and sectionally-based analysis

In the domain of linear elastic material behavior, the most models are based on the Euler-

Bernoulli beam theory in which the plane cross-section is assumed to remain plane and

orthogonal to the beam axis under deformation. The shear deformations are neglected, so

it can only account for the axial and flexural behavior of the beam. It is well-known that

the Euler-Bernoulli beam theory gives reasonable results for slender beams. However, in

case of short beams, the shear flexibility needs to be accounted for. The simplest way to

include the effect of the transversal shear is to use the Timoshenko beam theory [105],

so called ”first order shear beam theory”. These two theories and the hypothesis of plane

section are considered as the basic theory (or engineering beam theory) for the analysis

of linear and nonlinear beam finite elements.

In the domain of nonlinear material behavior, the discrete finite element models give

a very good compromise between accuracy and simplicity. In this approach, the structure

is modeled as an assembly of interconnected elements and the constitutive nonlinearity

is either introduced at the element level or sectional level. The lumped-plasticity models

is widely regarded as the most basic type of discrete finite element models, in which the

inelastic behavior is concentrated at the ends of elements, and the rest remains elastic. In
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this end-fixed points, called plastic hinges, the nonlinear responses are given as general-

ized force-displacements characteristics such as axial force-elongation of moment-rotation

relationships, based on the concepts of plasticity theory. The earliest models were intro-

duced by Clough (Figure 1-6a), in which the element consists of two parallel elements,

one elastic-perfectly plastic and the other perfectly elastic [21]; and by Giberson (Figure

1-6b) with a series model consist of a linear elastic element with one equivalent nonlinear

rotational spring attached to each end [40].

(a) Parallel model of Clough [21].

(b) Series model of Giberson [40].

Figure 1-6 – Lumped-plasticity models.

The second and more general approach of discrete finite element models is referred to as

the distributed nonlinearity models. In contrast to lumped-plasticity models, the material

inelastic behavior can take place at several selected points of the structure, then the

element response is obtained by numerical integrations of the monitoring sections located

at these selected points (or integration points) along the element. In each monitoring

cross-section, the constitutive behavior can be formulated in accordance with plasticity

theory for sectional stress and strain resultants, or explicitly derived by a discretization

of the cross-section into a systems of integration points, called fibers. Between these two

approaches, the second, also known as sectional-fiber model, does not require the definition

of nonlinear constitutive relations in terms of cross-section resultants, instead the material

behavior laws are defined at the fiber material level, so it leads to a simple way to account

for the sectional response. For reinforced concrete members, the sectional fiber model

has been widely developed and successfully applied with very high levels of accuracy

when describing the coupling between axial force and bending moment in the models of

Chan [20], Scordelis [101] or Taucer, Spacone & Filippou [104, 102]. In these models, the
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constitutive equations require only one-dimensional material behavior for concrete and

steel, thus they are very appropriate in the case where the effect of shear stress is not

dominant. The proposed model in this study is constructed based on the development of

this type of models, using a two-node finite element beam (Figure 1-7), but taking into

account two and three dimensional material behaviors for concrete.

z

xnode I node J

longitudinal reinforcement bar

Finite element mesh

z

y

Concrete Fiber

Steel Fiber

(Concrete material law)

(Steel law)

Figure 1-7 – Sectional-fiber approach for reinforced concrete member and local element
frame coordinate using in this study.

The construction of distributed nonlinearity and sectional fiber models is based on the

analysis of sectional response. In principle, two main factors are required in the sectional

analysis:

∙ A suitable sectional kinematics to obtain the stress and strain distributions in the

cross-section. In the classical sectional-fiber model, the plane section theory is used

to relate the material strains to section deformations. However, as mentioned above,

under shear and torsional effects, the warping phenomenon disturbs the validity of

plane section assumption. In this study, the kinematic equations are based on

Timoshenko beam theory and enhanced by an additional displacement field in order

to take into account the warping deformation. This enhanced field is developed not

only for warping displacement but also for the distortion of the cross-section’s shape.

The details of kinematics equations is expressed in Chapter 3.

∙ A consistent constitutive model of the materials to establish the stress-strain rela-

tionship. Under multi-axial loading, the modeling of the concrete behavior is quite

complex, particularly because of the different of stress-strain relationships between

compression and tension, which cause an anisotropic behavior under multi-axial

stresses. In the last decades, many constitutive models have been proposed for

the analysis of concrete structures, such as non linear elasticity, plasticity models,
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damage mechanics or micro-plane models. Among them, the approach that is par-

ticularly suitable for sectional analysis under combined loading is smeared crack

approaches, which can handle cracking of concrete as a distributed effect with direc-

tionality. A brief review of some smeared crack models will be described in Chapter

2. A consistent constitutive law of concrete will be proposed in Chapter 4 for the

case of RC members under pure torsion.

Generally, in finite element analysis of beam-column element, the nodal variables are

considered as global degrees of freedoms, from them the mechanical characteristics (dis-

placements, strains, stresses) are derived and interpolated along the axis. Depending on

the choice of the primary unknowns (displacement field, force field or both), the formula-

tions of beam-column finite element are usually classified as:

∙ Displacement-based formulation: the relation between section and element response

is based on kinematic equations with the use of appropriate shape functions. In this

formulation the element variables are the nodal displacements while the primary

unknowns are the element deformations.

∙ Force-based formulation: the element response are evaluated from the stress field

that are interpolated along the element length by imposing the equilibrium with the

nodal forces. The primary unknowns in this formulation are the internal element

forces.

∙ Mixed-based formulation: this approach use the force interpolation functions like

force-based formulation and a flexibility dependent shape functions for the defor-

mation field of the element.

In this study, the displacement-based formulation was chosen because of its simplicity

and the easily in the implementation of enhanced displacement fields. Although force or

mixed-based formulation are capable of giving more adequate solutions, the numerical re-

sults performed by proposed model using displacement-based in this study is satisfactory

and reasonable.
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1.4 Objectives and Scope

The main objective of this doctoral thesis is to develop an enhanced finite element beam

model for the material and geometrical analysis of reinforced concrete members subjected

to combined loading: axial force, bending, shear and torsion. The specific objectives are

as follows:

∙ The development of a 3D beam-column element for reinforced concrete members

using multi-fiber discretization and sectional analysis approach. In this study the

model is developed primarily for rectangular cross-section, but the formulation is

expressed generally enough for arbitrary cross-sections.

∙ The implementation of an enhanced displacement field into kinematic equations in

order to include the warping displacement of cross-section under the effect of shear

and torsion. Then, numerical analysis is carried out to study the influence of the

warping deformation on the stress state.

∙ The adaptation of the Modified Compression Field Theory (MCFT) to the concrete

constitutive law.

∙ The adaptation of the cross-section discretization into different regions following

the stress state (1D, 2D and 3D) in order to take into account the contribution of

transversal reinforcements and the concrete confinement. A new parametric formu-

lation for determining the rule of this discretization will be also proposed.

∙ The implementation and derivation of a general and consistent corotational frame-

work into 3D beam-column formulation in order to take into account the nonlinear

geometric condition.

This PhD thesis is organized into seven chapters. The first one is the current intro-

duction chapter. Chapter 2 presents the state of the art including a bibliographical study.

In this chapter a review of nonlinear analysis models for reinforced concrete element are

briefly listed and discussed.

Chapter 3 deals with the development of the finite element model for RC members

subjected to combined shear-bending-torsion. As mentioned above in Section 1.3, the

proposed FE model is based on the fiber-sectional discretization and the displacement-

based formulation. The enhancement of the kinematic equations is implemented and
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expressed in two different approaches: using Saint-Venant warping function and using

Lagrange interpolation polynomials. Then the chapter is followed by the derivation of

the element response from the variational formulation based on the principal of virtual

works, a solution scheme and concludes with the mechanical model for reinforced concrete

members that was implemented in this sectional model. In order to take into account the

contribution of transversal reinforcement, the cross-section is discretized into different

regions following the stress state, based on the idea of Navarro-Gregori [76].

Chapter 4 is dedicated to investigate the behavior of the RC members under pure

torsion using the proposed model. Because no specific rules are currently available for the

determination of the thickness of the regions in the section discretization, a calibration

study is performed for calculating this parameter is developed by the author. This calibra-

tion study was then used to propose a consistent behavior law for concrete under torsional

effect, knowing that numerical cracking torsional moments are reduced about half of the

experimental values when using the original MCFT. In this chapter, the numerical results

performed by the proposed model are compared with numerous experimental date, others

numerical results and design code prediction.

Chapter 5 deals with the numerical analysis of RC members under in shear-bending

and shear-bending-torsion combination using the developed FE model presented in Chap-

ter 3. The predictions of the proposed model are compared against the results of other

numerical models and the experimental values. The aim of this model validation is to

assess the capability of the proposed nonlinear technique to satisfactorily predict the

structural behavior of RC members under combined loading of shear-bending-torsion.

Chapter 6 describes the model formulation under the hypothesis of large displacement

conditions. The corotational framework is briefly presented and implemented in the beam

element. Then, the interaction between axial and torsion effect at local level is considered

and analyzed in the numerical examples.

Finally, the chapter 7 summarizes the study, offers conclusions and recommends some

directions for further research study.
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Chapter 2

State of the art

2.1 General

This chapter deals with a literature review of nonlinear analysis models for RC members

subjected to bending, shear and/or torsion. The models can be classified according to

their constitutive equations: theory of plasticity, micro-plane model, fracture or damage

mechanics, etc.; or following the concept of modeling and discretization. To the best of

the author’s knowledge, the numerical models treating the behavior of RC members under

combined shear-bending-torsion can be classified in three groups as follows:

∙ Skew-bending theories: an analytical approach in which the basic characteristic

is the assumption of a skew failure surface.

∙ Truss models: derived from the concept of space truss analogy, this type of models

can be subdivided into certain subgroups such as strut-and-tie models, equilibrium

truss models and compatibility truss models.

∙ Sectional-fiber models: the most recent approach in which tangential and normal

efforts are coupled directly. These models can be subdivided into certain subgroups

following their strategy of discretization.

In the following, a brief presentation of each group is done.

2.2 Skew-Bending theories

The principal idea of Skew-Bending theories is that a helical crack is generated on three

faces of a rectangular RC beam, and the ends of this helical crack are connected by
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a compression zone near the fourth face. Both longitudinal reinforcement and closed

stirrups are intersected in the failure surface and it is often assumed that they will both

yield at the failure of the beam.

The first skew-bending theory was proposed by Lessig [66] in 1959, in which two modes

of failure are introduced, concerning the position of the compression zone: near the top

face of the beam (Mode 1 - Figure 2-1a) or along a side face (Mode 2 - Figure 2-1b). A set

of three basic equations are produced for each mode of failure: one equilibrium of moments

about the neutral axis, one equilibrium of forces along the normal to the compression zone

and a third equation which minimizes the strength of the member. Lessig’s theory was

then simplified and incorporated into the Russian Code in 1962 [81] in order to recognize

the shear failure mode and propose an empirical equation against its occurrence.

Neutral axis Compression Zone

Helical crack

M T MT

(a) Mode 1 - Flexural moment
predominates

Neutral axisCompression Zone

Helical crack

M T MT

(b) Mode 2 - Torsional moment
predominates

Figure 2-1 – Failure modes in Lessig’s theory.

Collins et al. [23], [24] developed Lessig’s theory by combining these three equations

into a unique one for each failure mode and obtaining an interaction curve as a result:

a torsion-bending interaction curve in Mode 1 and a torsion-shear interaction curve in

Mode 2. A third mode failure accompanying by a third interaction curve was also discov-

ered in this theory, in which a compression zone locates near to the bottom face of the

beam (Figure 2-2). These three interaction curves formed an interaction surface between

bending, shear and torsion (Figure 2-3), that was also modified by an empirical equation

for shear failure, which may be considered as the fourth mode of failure. The Collins et

al.’s theory served as a basis for the Australian Code (1973) [80]. In this design code,

torsional moment is converted into an equivalent bending moment (and/or an equivalent

shear force) that could be added to the actual bending moment (and/or flexural shear

force) for the design of longitudinal steel according to the conventional flexural mechanics

(and/or for the design of web reinforcement according to the conventional code method).
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Figure 2-3 – Interaction surface for combined bending, shear and torsion in the theory of
Collins et al. [23].

Other skew-bending theories were also developed based on the Lessig’s theory, such as

the theory of Yudin [116] or Elfgren et al. [35]. Yudin’s theory introduced two moment

equilibrium equations instead of one, as a result it was able to derive two designs equations

for the longitudinal and transversal reinforcements. In this theory the crack inclination

was assumed constant and equal to 45 .̊ In a more general way, Elfgren et al. assumed

a variable angle of crack inclination and it could also be different at the two side faces in

Mode 1 and Mode 3 of failure. In this condition, internal vertical force must be balanced

to the external shear, thus an additional equilibrium equation was introduced, that gave

an explicit bending-shear interaction curve. As a result, this theory created a general and

complete interaction surface for bending, shear and torsion (Figure 2-4).
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failure

Mode 3
failure

Mode 2
failure

Figure 2-4 – Interaction surface in Elfgren et al.’s theory [35].

The above skew-bending theories may be related to the kinematic approach in terms

of the plastic analysis of structures under uniaxial stress [54]. This approach seeks for
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a deformation mechanism that satisfies the geometric boundary conditions. Another ap-

proach in the plastic analysis is the static approach that searches for a stress distribution

in equilibrium internally and balanced with the external load. The concept of truss models

in the following section relates to this static approach.

Analytical formulations for predicting the ultimate torsional and bending strengths of

concrete and RC members according to skew-bending theories will be cited and used as a

reference compared to the numerical results given by the proposed model in the numerical

analysis in Chapter 4 and 5.

2.3 Truss models

All models in this section are inspired by the concept of truss model, firstly proposed by

Ritter [95] and Mörsch [75] in the early of 20th century, whose purpose is to simulate a

RC beam subjected to shear. In general, under shear effect, diagonal cracks occur and

separate the beam into a series of concrete struts. An analogy of truss model was therefore

assumed, where the longitudinal reinforcement steels act like the top and bottom chords of

the truss, while the transversal stirrups and concrete struts hold the role of web members

(Figure 2-5).
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1     Introduction 
 

Since the early days of reinforced concrete the so-
called classical truss analogy developed by Ritter and 
Mörsch (Ritter 1899, Mörsch 1908) [1, 2] was proposed 
for shear design of reinforced concrete members (Fig. 1). 
The truss analogy is based on a truss model with parallel 
chords and web members connected by means of pin 
joints, where the concrete compressive struts are inclined 
at 45° with respect to the longitudinal axis of the beam 
while the shear reinforcement represents the tensile web 
members. 
 

 
Figure 1 Ritter’s and Mörsch’s original truss model 

 
According to Zilch and Zehetmaier [2], when the 

shear reinforcement (stirrups) is placed closely to each 
other the simple truss becomes a statically indeterminate 
truss (Fig. 2b). Generally, the truss model may be 
considered as a statically determinate simple truss 

composed of resultant forces from parallel tension and 
compression stress fields with pinned joints (Fig. 2c). 
 

 
Figure 2 Mörsch’s truss analogy model 

 
However, experimental studies carried out in 

Stuttgart during 1960-s [3] indicated that the stresses in 
shear reinforcement were considerably lower than those 
predicted by the truss analogy model. This is due to the 
contribution of other components to the shear carrying 
mechanism, among which the most significant are: 
contribution of concrete in the compression zone, 
aggregate interlock along inclined cracks and dowel 
action of the longitudinal reinforcement crossing the 

(a) Original concept of Truss model
by Ritter [95] and Mörsch [75]

(b) Truss model of a RC beam with
longitudinal and transversal reinforcements.

Figure 2-5 – Concept of Truss model for bending and shear.

In reality, the inclination of concrete struts may vary, but in the initial concept of

truss model, it was assumed to be 45̊ . This 45̊ truss model, also called fixed-angle truss

model, was then developed to carry out the modeling of the post-cracking behavior of

RC members subjected to pure torsion by Rausch [93]. In this model, after cracking, the
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whole member is assumed to act like a tube, in other words the solid section becomes a

hollow section (Figure 2-6). As a consequence, the torsional moment is resisted only by

shear stresses which flow around in the wall of the tube, which is called shear flux. This

space truss analogy was reinforced when it was noticed in the experimental tests carried

by Hsu [45] and Osongo [82] that the post-cracking stiffness of a hollow cross-section (with

a reasonable wall thickness) has the same magnitude when comparing to a solid section.

Crack

Concrete strut

Transversal reinforcement

Longitudinal reinforcementShear flux

Effective wall
thickness te

Applied 
Torsional
Moment

(a) Three-dimensional view. (b) Longitudinal and cross-sectional
view.

Figure 2-6 – Space truss model for torsion resistance.

2.3.1 Strut and tie models

The common aspect of strut and tie models is the way in which the combined effects

are taken into account: in this type of model the tangential efforts are usually uncoupled

and superimposed into normal efforts. Guedes et al. [42, 43] developed a numerical

model for RC beams and columns under dominated shear action, in which the model

is subdivided into two sub-models: a two-node Timoshenko beam finite element model

using sectional-fiber approach to take into account the axial components, while shear

efforts are independently considered by a strut and tie model (Figure 2-7a). The direction

of principal stresses and strains of concrete is represented by two diagonal concrete struts.

The equilibrium conditions for reinforcement in longitudinal and transversal directions

are represented in Figure 2-7b. Concerning the constitutive equations, uncoupled uniaxial

behavior laws for concrete and steel are used. For concrete in compression, a parabolic

behavior up to the peak stress point deformation followed by a straight line in the softening

zone has been introduced, while a bilinear stress-strain law including the tension stiffening

effect is adopted for concrete in tension. For steel, a hysteresis model based on the proposal

of Menegotto & Pinto [73] is used.
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(a) Principe of truss model
(b) Compatibility of displacements

and Equilibrium of forces

Figure 2-7 – Strut-and-tie Model of Guedes et al. [42, 43]

The idea of independently modeling shear forces using the concept of truss-and-tie

model and then superimposing into axial and flexure efforts without direct coupling is

shared by other models by Martinelli [68], Ranzo & Petrangeli [92] or Marini & Spacone

[67]. In the Martinelli’s model, shear resultant over the cross-section can be derived by

different resisting mechanisms, including truss mechanism, in which a planar structural

assemblage is composed by the transverse reinforcements and the concrete diagonals in

compression and tension (Figure 2-8a). In the model by Ranzo & Petrangeli, the shear

stiffness is derived from a shear-distortion curvature constitutive relationship that is de-

fined by solving a truss mechanism as in Figure 2-8b. The shear curve is obtained by

giving incremental values to the shear stress up to failure, then updating analytically the

distortion curvature and thus leading to the determination of a continuous curve. The

same idea of shear-distortion curve is also implemented in the model of Marini & Spacone

but in a different procedure of obtaining the shear-curvature relationship. As in the model

of Guedes et al., uniaxial constitutive laws for concrete and steel are implemented in all

models above.

(a) Martinelli’s
model [68]. (b) Ranzo & Petrangeli’s model [92]

Figure 2-8 – Truss mechanism and idealization
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2.3.2 Equilibrium truss models

The equilibrium truss models can also be called plasticity truss model because they are

all based on the theory of plasticity. This type of models were proposed by Nielsen [78]

and Lampert & Thürlimann [61] by developing the concept of fixed-angle truss model,

in which the fixed inclined angle of 45̊ was derived. The new concept was called the

variable-angle truss model and was developed for elements subjected to torsion as well as

to a combination of torsion and bending, with the application of the theory of plasticity

for RC members. Elfgren [34] extended the use of variable-angle truss model to members

subjected to bending-shear-torsion, with an assumption that the concrete struts take only

compressive stress after cracking. The theory is therefore named the Compressive Stress

Field Theory.

In these models, three equilibrium equations in bending and shear were derived for a

two dimensional element and can be used to calculate the stresses in the steel bars and in

concrete struts at the ultimate load stage (Figure 2-9). The stresses in concrete and steel

in these three equations must satisfy the Mohr stress circle, and reinforcement steels are

assumed to yield before failure. From these three equations and the yielding condition of

reinforcement as well as the equilibrium in beam shear and in torsion, a set of 18 equations

were established and formed the basic formulations of equilibrium truss models.

(a) in bending. (b) in element shear.

Figure 2-9 – Equilibrium of Truss model.

The interaction relationships of combined actions can be expressed between shear-

bending, torsion-bending, shear-bending-torsion and axial-shear-bending, each relation-

ship corresponds to a specific model. In the shear-bending model, the bending moment

creates a tensile force in the bottom and a compressive force in the top stringer, while

shear forces induce in longitudinal as well as transversal direction and are resisted by con-

crete struts, longitudinal steels and stirrups (Figure 2-10a). The failure may be occurred

by two modes depending on the yielding of bottom or top stringer. In the torsion-bending

model, the action of bending moment is similar to that of the shear-bending model, while
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the torsional moment produces a tensile force in the longitudinal steels and a transverse

force in the stirrups (Figure 2-10b). Two failure modes may be caused in this model,

either by the yielding of the bottom stringer and the stirrups or by the yielding of the top

stringer and the transverse steel.

(a) Equilibrium between shear and bending.

(b) Equilibrium between
torsion and bending.

Figure 2-10 – Equilibrium truss models.

The interaction between shear, bending and torsion are more complex. A box section

model is employed in which the shear flows on the four walls of the box section (Figure

2-11a). The shear flows due to shear and torsion are superimposed (Figure 2-11b), while

the bending moment always induces tensile and compressive forces in bottom and top

stringer. Three failure modes can be recorded in this model, causing by the yielding in

the bottom stringer and in transverse steel, by the yielding in the top stringer and in

transverse steel or by the yielding in both top and bottom longitudinal steel bars and in

transverse steel. The interaction model for the combination of the axial force the shear

force and the bending moment is quiet easily expressed, because the axial force is assumed

to be resisted only by the longitudinal reinforcement bars, so it does not generate a new

internal equilibrium condition of the shear-bending interaction model. It is required only

a simple superposition of axial force on the equilibrium equation of shear and bending in

the top and bottom stringer.

(a) Equilibrium of
forces. (b) Superposition of shear flow due to shear and torsion.

Figure 2-11 – Box section model for interaction of shear-bending-torsion.
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The main advantage of equilibrium truss models is that, thanks to its completed set

of basic equilibrium equations, it can be easily applied to all types of actions (axial force,

bending, shear, torsion). As a result, the Compressive Stress Field Theory serves as a basic

for the accurate method in the CEB-FIP Model Code of 1978 [17], while the shear and

torsion provisions of the ACI Code 1995 (ACI 318-95) [1] were based on the equilibrium

truss model. However, one important drawback of this type of models is that the load-

deformation relationship of reinforced beam subjected to shear and torsion cannot be

derived, because the compatibility equations and constitutive material laws are not used.

Thus, more sophisticated theories that take care of all three principle mechanic equations

must be developed.

2.3.3 Compatibility truss models

Instead of using the theory of plasticity and three equilibrium equations, the strain com-

patibility equations are derived and included in the truss model by Bauman [7], Collins

[22] and Mitchell & Collins [74], in order to account for shear and torsional effect. In these

models, a linear shear theory for two dimensional elements was developed combining the

three principles of equilibrium: equilibrium equations, Mohr’s compatibility equations and

Hooke’s law. The models could be used in the elastic behavior up to service load stage,

to describe the element behavior up to ultimate load stage, a nonlinear shear theory is

required.

2.3.3.1 Collins & Mitchell’s Compression Field Theory

Collins & Mitchell [25] derived a theory predicting the nonlinear shear behavior of RC

elements after cracking, called Compression Field Theory. In this theory, a RC element

can be separated into a concrete element and a steel grid element (Figure 2-12a). The

directions of the longitudinal and transverse steel bars form the (𝑥 − 𝑦) global coordi-

nate system, with 𝑥 is the longitudinal direction and 𝑦 the transverse direction. For a

concrete membrane subjected to shear, the shear stress can be resolved into a principal

tensile stress and a principal compressive stress, following the principal direction of crack

(45 i̊n this initial theory) (Figure 2-12b). The principal directions form a (1 − 2) local

coordinate system of crack direction. In this direction of compression and tension, the

stresses and strains affect each other and this interaction causes some significant phe-

nomenons, whose most important is the softened of principal compressive stress due to
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principal tensile stress. Vecchio & Collins [109] then introduced a softening coefficient

for the compressive stress-strain curve and discovered that this coefficient was a function

of the principal tensile strain, rather than the principal tensile stress. After numerous

experimented tests carried out in bi-dimensional RC panels under plane-stress loading

(the Shell Element Tester) at the University of Toronto, Vecchio & Collins formulated the

Modified Compression Field Theory (MCFT) for RC members subjected to shear force.

Although originally developed for use in truss models, the MCFT is particularly suitable

to the sectional analysis because it can handle cracking as a distributed effect. The theory

has been employed as concrete constitutive model in many finite element sectional models

as shown in the following section.

(a) Supposition of shear effect in RC element. (b) Local and Principal direction of
stress.

Figure 2-12 – Stress condition and crack pattern in RC element.

2.3.3.2 Model by Rahal [88]

The Compression Field Theory was also developed in the variable angle truss model

by Rabbat & Collins [87] that is applied to rectangular sections of prestressed concrete

subjected to combined efforts of bending, torsion and shear. In this model, the behavior

of concrete and steel are regrouped in four corners of the cross-section and connected

through the four concrete walls containing stirrups (Figure 2-13). The normal forces are

resisted by four corners while tangential forces are resisted in four concrete walls.

Figure 2-13 – Cross-section discretization in the model of Rabbat & Collins [87].

This idea of cross-section discretization is then developed by Rahal & Collins [88, 89]

in a 3D model in which the 3D response is idealized into 1D and 2D sub-model (Figure
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2-14). The 1D model captures only the normal stresses due to the axial force, bending

moment as well as the diagonal cracks produced by shear and torsion. The shear stresses

induced by shear force and torsional moment are taken into account by the 2D model,

which consists of four transversely reinforced walls of variable thickness and cracking

inclination. The interaction between normal and tangential forces is obtained by the

equilibrium and compatibility equations at sectional level and at each wall. Over the

section, the equilibrium between shear stresses (in 2D model) and normal stress (in 1D

model) must be satisfied, as well as the compatibility of normal strain in 1D model. In

each wall, an appropriate uniaxial stress-strain relationship for concrete and steel must be

applied for 1D model, while the modified compression field theory (MCFT) is employed

for the 2D model.

Figure 2-14 – Idealization of cross-section in the model of Rahal & Collins [88].

The constitutive equations are based on the MCFT with the kinematic hypothesis of

Euler-Bernoulli and an assumption of perfect bond between the concrete and steel. An

extension of this model is developed by Rahal & Collins [90] considering the variation of

the longitudinal deformations of the walls. This sectional model is strong in predicting

the element response and representing the interaction of combined loading, however it is

limited only for rectangular cross-section.

2.3.3.3 Models by Hsu [52, 84, 50]

Based on the strain compatibility equations of the truss model, Hsu & Mo [52] indicated

that in the variable-angle truss model, when using the stress-strain relationship obtained

from the concrete compression cylinder test, the predicted torsional strength becomes very

underestimated. Thus, they used a softened stress-strain curve to predict the torsional

strength and strains throughout loading history. Hsu & Mo called this theory as Rotating-

Angle Softened-Truss Model (RA-STM), in which many assumptions are shared with the

MCFT, such as the same principal directions of stresses and strains, or the inclusion of a

softening factor in compressive concrete after cracking.
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In addition to the above theory, a Fixed-Angle Softened-Truss Model (FA-STM) was

developed by Pang & Hsu [84], in which the concrete struts are assumed to remain parallel

to the initial cracks inclination. For this, a third coordinate system (1′−2′) of the current

principal stress directions is defined, rather than the global coordinate system (𝑥 − 𝑦)

and the local coordinate system at initial cracks (1 − 2) (Figure 2-15). The FA-STM

can give a more accurate prediction than RA-STM and is useful when interested in the

ultimate shear strength and the behavior before it. However, the descending branch of

the load-deformation curves cannot be represented correctly.

Figure 2-15 – Coordinate systems in the Fixed-Angle Softened-Truss Model.

Recently, Hsu & Zhu developed another model for treating RC membrane elements in

shear called Softened Membrane Model (SMM) [50]. Based on the FA-STM, the SMM is

able to satisfactorily predict the entire monotonic response of the load-deformation curves,

including both the ascending and the descending branches, as well as the pre-cracking and

post-cracking responses. The featured aspect of the SMM is that the Poisson effect is taken

into account and is characterized by two ratios called Hsu/Zhu ratio [117]. As a result,

the average strains in direction (1 − 2) (Figure 2-15) when a panel is subjected to biaxial

loading are expressed as:

𝜀1 =
𝜎𝑐
1

𝐸𝑐
1

− 𝜈12
𝜎𝑐
2

𝐸𝑐
2

= 𝜀1 − 𝜈12𝜀2; 𝜀2 =
𝜎𝑐
2

𝐸𝑐
2

− 𝜈21
𝜎𝑐
1

𝐸𝑐
1

= 𝜀2 − 𝜈21𝜀1 (2.1)

with 𝜈12 and 𝜈21 are the two Hsu/Zhu ratios; 𝐸𝑐
1 and 𝐸𝑐

2 are the moduli of concrete in

the 1 and 2 direction when a panel is subjected to uniaxial loading; 𝜀1 and 𝜀2 are average

strains in the direction 1 and 2 when a panel is subjected to uniaxial loading. The two

Hsu/Zhu ratios are formulated based on a series of twelve tests using the Universal Panel

Tester (UPT), realized by Hsu and his colleagues at the University of Houston from 1988

to 2009 [49]. The experimental tests obtained from the UPT allows also to establish the

material behavior laws for RC members, as proposed by Belarbi & Hsu [8], [9] or Pang &
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Hsu [83]. The softening of concrete in compression is taken into account by a softening

coefficient 𝜁 (Figure 2-16a), while the tension stiffening of concrete is also included in the

tensile relationship (Figure 2-16b).

(a) Compressive curve.

(b) Tensile curve.

Figure 2-16 – Stress-strain curve of concrete obtained from experimental tests using the
UPT [48].

A Softened Membrane Model for Torsion (SMMT) is then developed from the SMM

by Seng & Hsu [53] in order to account for the torsional response of RC members, which

will be more discussed in Section 4.3.

2.4 Sectional-Fiber model

Sectional-fiber approach has been used widely by researches over the last thirty year to

account for the responses of RC member under combined loading of normal and tangential

forces. Many models have been developed and proposed in according to different criterions

of classification. In this research work, the following principal strategy has been classified:

∙ Dual-sectional analysis: a non-local sectional model in which the element is dis-

cretized in various member of two section and the shear stress is determined by the

finite difference of the normal stress on each side of this dual-section member.

∙ Longitudinal stiffness method: a local sectional model that satisfies the inter-fiber

equilibrium between fiber/layer of element.

∙ Finite element beam-column formulation: an implementation of longitudinal stiff-

ness method into two-node finite element frame model.

∙ Enhanced Finite element beam-column formulation: a specific strategy to account

for distortion and warping phenomenon using the decomposition of cross-section

characteristic into classical field following plane-section hypothesis and enhanced

field of warping-distortion.
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2.4.1 Constitutive Model

In the literature, many constitutive models have been developed to reproduce the behavior

of concrete, following different approaches. Indeed, the mechanical response of concrete

materials represents a brittle behavior and is influenced by complex phenomena, one

of the most important is the propagation of cracks inside the elements. The adoption of

finite element models with embedded (displacement or strains and stresses) discontinuities

[10, 33] based on the fracture mechanics theory [44] is usually considered as one of the most

accurate way for describing the evolution of cracking phenomena in concrete. However,

this embedded discontinuity models are not suitable for large scale structure analysis. In

practice, the following approaches have been widely used to simulate the concrete behavior

of many numerical models:

∙ Smeared-crack approaches: cracking is handled as a distributed effect with direc-

tionality, of which the pioneering model is the MCFT.

∙ Damage mechanics approaches: the effect of damage of materials (initiation and

propagation of crack or fracture of concrete) is represented by the state variables

(crack density or coefficient of thermal expansion, etc.) and then lead to the consti-

tutive equations. Model of Mazars [69] and Lemaitre [65] are usually considered as

the most widely used damage models.

2.4.1.1 Modified compression field theory

In this theory, the principal idea is to replace the biaxial constitutive law of concrete by

a uniaxial constitutive law, in which the stress-strain relationship is formulated in the

principal direction of cracking. The primary assumptions of this theory is that crack is

considered distributed in the concrete, and principal directions of strains and stresses are

coincident. In addition, equilibrium and compatibility equations are evaluated with the

average value of the stress and strain in the crack plane and in the concrete between

cracks, because of the variation of the local stresses in both concrete and steel. According

to Figure 2-17, the compatibility conditions of the MCFT are expressed as:

𝜀𝑥 =
𝜀1 tan2 𝜃 + 𝜀2

1 + tan2 𝜃
; 𝜀𝑦 =

𝜀1 + 𝜀2 tan2 𝜃

1 + tan2 𝜃

𝛾𝑥𝑦 =
2 (𝜀𝑥 − 𝜀2)

tan 𝜃
; tan2 𝜃 =

𝜀𝑥 − 𝜀2
𝜀𝑦 − 𝜀2

(2.2)
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(a) Average strains. (b) Mohr’s Circle for average
strains.

Figure 2-17 – Compatibility conditions for cracked RC element.

where 𝜀1 and 𝜀2 are the strain in principal directions; 𝜀𝑥, 𝜀𝑦 and 𝛾𝑥𝑦 are the element

strain components; 𝜃 is the inclination of crack. The equilibrium conditions of averages

stresses in an element are expressed as follows (Figure 2-18):

𝜎𝑥 = 𝜎1 − 𝜏𝑐𝑥𝑦 cot 𝜃 + 𝜌𝑥𝜎𝑠𝑥

𝜎𝑦 = 𝜎1 − 𝜏𝑐𝑥𝑦 tan 𝜃 + 𝜌𝑦𝜎𝑠𝑦

𝜎2 = 𝜎1 + 𝜏𝑥𝑦 (tan 𝜃 + cot 𝜃)

(2.3)
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c2σθ

cxσ
τcxy

sxσ

syσ
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yσ

cyστcxy

Freebody diagram
Average concrete

stresses

Principal stresses
in concrete

Figure 2-18 – Equilibrium conditions for cracked RC element.

where 𝜎1 and 𝜎2 are the stresses in principal directions; 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 are element stress

components; 𝜎𝑠𝑥 and 𝜌𝑥 are stress and ratio of longitudinal reinforcement, respectively;

𝜎𝑠𝑦 and 𝜌𝑦 are stress and ratio of transversal reinforcement, respectively.
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2.4.1.1.1 Constitutive modeling: For concrete in compression, the stress-strain re-

lationship is computed following a parabolic equation (figure 2-19a):

𝜎2 = 𝑓 ′
𝑐

[︃
2

(︂
𝜀2
𝜀0

)︂
−
(︂
𝜀2
𝜀0

)︂2
]︃

(2.4)

where 𝑓 ′
𝑐 is the maximum stress resisted by crack concrete in the compression direction;

𝜀0 is the cylinder strain at peak strength. The softening of concrete is included in the

stress-strain relationship by a softening parameter 𝑆𝐹 which depends on the tensile strain:

𝑓 ′
𝑐 =

𝑓𝑐
𝑆𝐹

; 𝑆𝐹 = 0.8 − 0.34
𝜀1
𝜀0

(2.5)

where 𝑓𝑐 is the concrete cylinder compressive strength.

For concrete in tension, the behavior is divided into two phase: before and after

cracking (Figure 2-19b). Cracking of concrete appears when the tensile strain 𝜀1 is higher

than the cracking strain 𝜀𝑐𝑟. An elastic linear relationship is suggested prior to cracking:

𝜎1 = 𝐸𝑐𝜀1; 0 < 𝜀1 < 𝜀𝑐𝑟

𝜀𝑐𝑟 =
𝑓𝑐𝑟
𝐸𝑐

𝑓𝑐𝑟 = 0.33
√
𝑓𝑐 in (MPa)

(2.6)

where 𝐸𝑐 is the concrete modulus of elasticity; 𝑓𝑐𝑟 is the cracking stress. After cracking,

tensile stresses in the uncracked concrete between the cracks continue to stiffen the con-

crete, thus increase the stiffness of concrete section. This effect leads to a decrease in

average tensile stresses after cracking, and is named tension stiffening of concrete. In the

original formulation of the MCFT [109], based on experimental results from shear tests

on 70 mm thick panel elements, the tension relationship of concrete after cracking was

proposed as follows:

𝜎1 =
𝑓𝑐𝑟

1 +
√

200𝜀1
(2.7)

An adjustment of this previous expression suggested by Collins & Mitchell [26] based on

shear tests conducted on larger panel of 285 mm thick:

𝜎1 =
𝑓𝑐𝑟

1 +
√

500𝜀1
(2.8)
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Figure 2-19 – Concrete constitutive relations in the MCFT.

For reinforcing steel, an uniaxial relationship is considered with a bilinear elasto-

plastic stress-strain curve (Figure 2-20). In each direction, the steel characteristics must

be accompanied with the reinforcement ratio 𝜌𝑥 or 𝜌𝑦.

syf

E

=σs εs

±

εy± εs

σs

0

Es

s

Figure 2-20 – Elasto-plastic model by Vecchio & Collins [110].

2.4.1.1.2 Crack-check: In order to ensure that the average stress can be resisted

locally at a crack, a crack-check must be applied. In reality, applying the MCFT without

including the crack-check can lead to very underestimated results [51]. Bentz [12] gave a

clear example to demonstrate the need for crack-check by considering a concrete prism

with longitudinal reinforcement steels subjected to axial tension (Figure 2-21a). The

free body diagram of a member at crack is shown in Figure 2-21b: the left half drawn

with average stresses (concrete tensile stress 𝑓1 and steel stress 𝑓𝑠𝑥) and the right half

correspond to the local stresses at crack (only steel stress 𝑓𝑠𝑥 at crack). To ensure the

equilibrium of local stresses at a crack, the concrete tensile stress 𝑓𝑐1 must equal to zero.
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(a) Prism in Tension. (b) Free body diagram at a crack.

Figure 2-21 – Example of Bentz [12].

Next, the total stress-strain relationship of average concrete in tension and reinforce-

ment steel are added together over the entire range of strain. Without crack-check, the

total stress-strain relationship is shown in Figure 2-22a, and it is clear that the concrete

tensile stress at crack 𝑓𝑐1 is not equal to zero. Maintaining 𝑓𝑐1 equal to zero, i.e ensuring

that the local stresses at a crack do not exceed the yield stress, is the objective of the

crack-check. The result of crack-check is shown in Figure 2-22b.

(a) Without crack-check. (b) With crack-check.

Figure 2-22 – Total stress of average tensile concrete and steel in the example of Bentz
[12].

2.4.1.1.3 Material stiffness matrix for finite element formulation: In a finite

element formulation, the stresses and strain vector are related by a material stiffness

matrix D: ⎛⎜⎜⎜⎝
𝜎𝑥

𝜏𝑥𝑦

𝜏𝑥𝑧

⎞⎟⎟⎟⎠ = D

⎛⎜⎜⎜⎝
𝜀𝑥

𝛾𝑥𝑦

𝛾𝑥𝑧

⎞⎟⎟⎟⎠ (2.9)

The contribution of concrete and steel are added separately:

D = D𝑐 + D𝑠 (2.10)

The concrete stiffness matrix is expressed in terms of the principal directions:

D𝑐 = T𝑇
𝑐 D𝑝𝑟𝑖𝑛T𝑐 (2.11)
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The stiffness matrix in principal directions D𝑝𝑟𝑖𝑛 is evaluated in a simple secant-stiffness-

based:

D𝑝𝑟𝑖𝑛 =

⎡⎢⎢⎢⎣
𝐸𝑐2 0 0

0 𝐸𝑐1 0

0 0 𝐺𝑐

⎤⎥⎥⎥⎦
𝐸𝑐2 =

𝜎2
𝜀2

; 𝐸𝑐1 =
𝜎1
𝜀1

; 𝐺𝑐 =
𝐸𝑐1𝐸𝑐2

𝐸𝑐1 + 𝐸𝑐2

(2.12)

T𝑐 is the transformation matrix composed of the direction cosines, which define the di-

rection of the principal concrete cracking:

T2𝐷
𝑐 =

⎡⎢⎢⎢⎣
cos2 𝜃 sin2 𝜃 sin 𝜃 cos 𝜃

sin2 𝜃 cos2 𝜃 − sin 𝜃 cos 𝜃

− sin 2𝜃 sin 2𝜃 cos 2𝜃

⎤⎥⎥⎥⎦ (2.13)

For the stiffness matrix of steel, while the longitudinal reinforcement can be taken into

account in a straightforward way, it is not the same obvious work for the contribution

of transverse reinforcement steel. Indeed, it requires an iteration process to handle the

transverse equilibrium between concrete and steel at each material points, which will be

expressed clearly in Chapter 3.

2.4.1.1.4 Model of Stevens et al. [103]: It should be noted that the MCFT can

be developed by using different uniaxial strain-stress curve for concrete and steel, such as

a Popovics curve [85] considering the size-effect phenomenon in the model of Benzt [13].

Stevens et al. [103] extended the MCFT to a new constitutive model that does not require

the crack-check with a tangent-based stiffness matrix instead of secant-based. This model

adopts the same hypothesis as the MCFT and requires more complex formulations, but the

process of numerical convergence is improved consequently. One great advantage of this

model is that the formulation can be used for the response of confined, unconfined and/or

partially confined concrete, which depends on the determination of a coefficient factor

𝐾. In compression, when 𝜀 > 𝐾𝜀0, the stress-strain curve follows the original parabolic

relationship of the MCFT in equation (2.4), then the post-peak curve is modified using a

cubic equation in function of 𝜀0 and the ultimate strain 𝜀𝑐𝑢 (Figure 2-23a). The softening

coefficient 𝑆𝐹 is always calculated as a function of the principal tensile strain with a slight

change in the parabolic transition comparing to the original formulation in equation (2.5)

(Figure 2-23b).
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(a) Proposed stress-strain curve in compression

(b) Calculation of softening
coefficient.

Figure 2-23 – Compression relationship of concrete proposed by Stevens et al. [103]

The tensile behavior of concrete is also based on the basic of the MCFT, with a linear

elastic behavior until the cracking strength, followed by a descending curve describing the

tension stiffening of concrete, which is formulated according to the longitudinal reinforce-

ments disposition (Figure 2-24a). The steel behavior in this model is much more complex

in order to avoid the crack-check imposed in the original MCFT, by accounting for the

smeared reinforcement of crack concrete. Indeed, the reinforcement between the cracks

does not reach its plastic limit since the surrounded concrete has already carried out a

part of tensile stresses. The stress-strain curve of steel is therefore a function of concrete

tensile strength 𝑓𝑐𝑟 (Figure 2-24b).

(a) Tension relationship of concrete. (b) Steel relationship.

Figure 2-24 – Concrete tensile and Steel relationship proposed by Stevens et al. [103].

The tangent-based material stiffness matrix of concrete in principal directions is ex-

pressed as follows:

D𝑝𝑟𝑖𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜎1
𝜕𝜀1

𝜕𝜎1
𝜕𝜀2

𝜕𝜎1
𝜕𝛾12

𝜕𝜎2
𝜕𝜀1

𝜕𝜎2
𝜕𝜀2

𝜕𝜎2
𝜕𝛾12

0 0
𝜎1 − 𝜎2

2(𝜀1 − 𝜀2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.14)
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2.4.1.2 Damage model of Mazars for concrete

One of the first damage models was introduced by Mazars [69], in which the influence of

micro-cracking due to external load is introduced by a single scalar damage variable 𝐷,

varying from 0 (undamaged material) to 1 (completely damage material). The expression

of this variable is computed as follows:

𝐷 = 𝛼𝑐𝐷𝑐 + 𝛼𝑡𝐷𝑡 (2.15)

where 𝐷𝑐 and 𝐷𝑡 are two damage variables independently describing the material degra-

dation under compressive and tensile stresses; 𝛼𝑐 and 𝛼𝑡 are two weighting coefficients.

The damage variable then lead to the definition of an effective stiffness matrix C relating

the total stress and strain:

𝜎 = C(C0, 𝐷)𝜀 (2.16)

where C0 is the initial elastic stiffness matrix corresponding to undamaged state. Assum-

ing that the strain state of the real damaged material is the same state considered in the

constitutive law, the constitutive relation in equation (2.16) becomes:

𝜎 = (1 −𝐷)C𝜀 (2.17)

The evolution of damage variable 𝐷 depends on the mechanical state:

𝐷𝑐/𝑡 = 1 −
𝜀0(1 − 𝐴𝑐/𝑡)

𝜀𝑒𝑞
− 𝐴𝑐/𝑡 exp(−𝐵𝑐/𝑡(𝜀𝑒𝑞 − 𝜀0)) (2.18)

with 𝜀𝑒𝑞 is the equivalent strain representing the extension of strains in principal directions;

𝜀0 is the initial damage threshold; 𝐴𝑐/𝑡 and 𝐵𝑐/𝑡 are materials parameters. The details of

formulation can be found in [69], [71]. This constitutive model is however only suitable for

monotonic loading and has been refined after by Mazars [71] and Mazars et. al [70]. The

latter model is called Mu model, considers two different equivalent strains 𝜀𝑒𝑞,𝑐 (or 𝜀𝜇,𝑐)

and 𝜀𝑒𝑞,𝑡 (𝜀𝜇,𝑐), associating to two thermodynamic variable 𝑌𝜇𝑐 and 𝑌𝜇𝑡. The combination

of these two variables give a single internal variable 𝑌𝜇:

𝑌𝜇 = 𝑟𝑌𝜇𝑡 + (1 − 𝑟)𝑌𝜇𝑐 (2.19)
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where 𝑟 is the tri-axial factor varying from 0 to 1. Then, the damage evolution law can

be expressed as follows:

𝐷 = 1 − (1 − 𝐴)𝑌𝜇0
𝑌𝜇

− 𝐴 exp(−𝐵(𝑌𝜇 − 𝑌𝜇0)) (2.20)

with 𝑌𝜇0 is the initial threshold; 𝐴 = 𝑓(𝑟, 𝐴𝑐, 𝐴𝑡) and 𝐵 = 𝑓(𝑟, 𝐵𝑐, 𝐵𝑡) are material

parameters.

The uniaxial concrete behavior of Mu model can be found in Figure 2-25 with the

following path: loading in tension from 0-A-B, then unloading in tension from B to 0,

loading in compression from 0-C-D, then unloading in compression from C to 0, then re-

loading and re-unloading in tension from 0-E-0 and finally re-loading in compression from

0-F-G. Other damage models can be found in the literature, such as model of Lemaitre

[65], La Borderie [60], Faria et al. [37], etc., proposing different definitions of the equivalent

strain and the damage evolution laws.

Figure 2-25 – Stress/strain relation for concrete in compression and tension.

2.4.2 Dual-section analysis

Vecchio & Collins [111] developed a beam model subjected to axial, bending and shear

stresses, in which the entire cross-section is subdivide into a set of horizontal layers of

concrete and steel (Figure 2-26). Each layer is analyzed separately with the corresponding

constitutive behavior, based on the MCFT. The model was formulated as a sectional

analysis model, however it was not introduced within a finite element formulation. The

section kinematics follow Euler-Bernoulli assumption and the shear stresses are given by
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the dual-section analysis, in which shear stress is equal to the finite difference of the

normal stress value on each side of a finite-length layer (Figure 2-27a):

𝜏𝑥𝑦(𝑥) = − 1

𝑏(𝑦)

∫︁ 𝑦

−𝑦𝑏

𝜕𝜎𝑥
𝜕𝑥

𝑏(𝑦)𝑑𝑦;
𝜕𝜎𝑥
𝜕𝑥

≈ 𝜎𝑥(𝑥2) − 𝜎𝑥(𝑥1)

𝑆
(2.21)

where 𝑏 is the section’s width, 𝑦𝑏 is the coordinate of the bottom layer, 𝜎𝑥(𝑥2) and 𝜎𝑥(𝑥1)

are the normal stresses of the layer in the two analyzed sections and 𝑆 is the distance

between the sections, which is recommended equal to ℎ/6 with ℎ is the section’s height.

Figure 2-26 – Section’s layers in the model of Vecchio & Collins [111].

An iterative procedure is then implemented to determine the shear strain distribution,

by comparing the values of shear stress from the dual-section analysis and from the impo-

sition of longitudinal equilibrium. In addition to this analytical solution which requires a

considerable computational effort, Vecchio & Collins has also proposed two approximate

solutions, one based on the constant shear flow, other based on a parabolic shear strain

distribution. These two alternative solutions can give quite close results to those obtained

with the iterative scheme, however the shear stresses may be poorly estimated.

This model is considered as a non-local sectional model, because the response of the

cross-section depends on the information from outside of the geometric plane. This means

that some specific conditions and formulations are required when implementing the pro-

posed model into a frame analysis. For example, in the case of a 2D beam element, at

least three integration points are required for flexure and two others for shear (Figure

2-27b). This aspect, along with the iterative procedure based on the summation of the

trial-and-error small increments, makes the numerical implementation become complex

and expensive. A similar dual-section analysis was also implemented in a beam element

developed by Ranzo [91].
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(a)
(b)

Figure 2-27 – (a) Dual section analysis scheme. (b) Implementation of dual-section
analysis in a beam element.

2.4.3 Longitudinal stiffness method

In the dual-section analysis method, the choice of the finite distance between two sections

𝑆 influences the results of shear stress determination. To overcome this, Bentz [12] pre-

sented a numerical model using the longitudinal stiffness method, in which the stresses and

strains at each layer are related by a tangent stiffness matrix. For this, the plane-section

Euler-Bernoulli hypothesis is employed to compute the axial strain from the section’s

elongation 𝜀0 and curvature 𝜅𝑦, whereas the shear strain is defined initially as a function

of the mean sectional shear deformation 𝛾: 𝛾𝑥𝑦 = 𝑓(𝑦)𝛾. Thus, the strains vector at any

layer can be computed from the vector of section generalized strains containing 𝜀0, 𝜅𝑦 and

𝛾: ⎛⎝ 𝜀𝑥

𝛾𝑥𝑦

⎞⎠ =

⎡⎣1 𝑦 0

0 0 𝑓(𝑦)

⎤⎦
⎛⎜⎜⎜⎝
𝜀0

𝜅𝑦

𝛾

⎞⎟⎟⎟⎠
𝜀(𝑥, 𝑦) = B(𝑦)e𝑠(𝑥)

(2.22)

The constitutive relationship at each layer is computed as the differential increment

of stress vector with respect to strain vector as follow:

𝛿

⎛⎜⎜⎜⎝
𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

⎞⎟⎟⎟⎠ =
𝜕𝜎

𝜕𝜀
𝛿

⎛⎜⎜⎜⎝
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

⎞⎟⎟⎟⎠
𝛿𝜎 = D𝛿𝜀

(2.23)

where D is the layer tangent stiffness matrix. The transverse equilibrium is obtained by

imposing independently that 𝜎𝑦 is null at each layer, this action results in a condensed
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stiffness matrix at each layer:

𝛿

⎛⎝𝜎𝑥

𝜏𝑥𝑦

⎞⎠ = D̂𝛿

⎛⎝ 𝜀𝑥

𝛾𝑥𝑦

⎞⎠ (2.24)

Then, using the chain rule and equation (2.22), (2.24), the derivatives of normal and

shear stresses with respect to cross-section coordinate 𝑥 can be derived as follows:

𝛿

𝛿𝑥

⎛⎝𝜎𝑥

𝜏𝑥𝑦

⎞⎠ = D̂B(𝑦)
𝛿e𝑠(𝑥)

𝛿𝑥
(2.25)

Then, the derivatives of the generalized stresses are computed by direct integration over

the cross-section:

𝛿

𝛿𝑥

⎛⎜⎜⎜⎝
𝑁𝑥

𝑀𝑦

𝑉

⎞⎟⎟⎟⎠ =

∫︁∫︁
𝐴

⎡⎢⎢⎢⎣
1 0

𝑦 0

0 1

⎤⎥⎥⎥⎦ 𝛿

𝛿𝑥

⎛⎝𝜎𝑥

𝜏𝑥𝑦

⎞⎠
𝛿D𝑠

𝛿𝑥
=

∫︁∫︁
𝐴

A(𝑦)D̂B(𝑦)
𝛿e𝑠(𝑥)

𝛿𝑥
= K𝑠

𝛿e𝑠(𝑥)

𝛿𝑥

(2.26)

where D𝑠 is the generalized stresses or sectional forces, K𝑠 is the sectional stiffness

matrix, in which the first row includes the axial contributions, the second row features the

bending moment contributions and the third row presents the shear stiffness coefficients.

Because A𝑇 ̸= B, K𝑠 is asymmetric.

Similar to the model of Vecchio & Collins, the MCFT is also employed for the consti-

tutive model. This model of Bentz is a local sectional model that satisfies the inter-fiber

equilibrium, thus it is suitable to be implemented within frame element.

2.4.4 Finite element beam-column model

An efficient modeling strategy for the sectional model of RC members subjected to com-

bined actions is attempt to implement smeared crack approach within a beam element

formulation, which usually formulated as a two-node FE beam. In this model, the nodal

variables are considered as global degrees of freedoms, from them the mechanical charac-

teristics of cross-section are derived and interpolated along the element axis. As mentioned

in Chapter 1, the formulations of beam-column finite element can be classified as stiffness-

based (displacement-based) or flexibility based (force-based or mixed-based) formulation.
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2.4.4.1 Displacement-based formulation

A multifiber Timoshenko beam element was developed by Ceresa et al. [18], that dedicates

to represent the shear responses of RC members under cyclic loading. A bi-axial fiber

constitutive model for cracked RC member was implemented, based on the improved

MCFT for cyclic loads proposed by Vecchio [107]. The model is formulated according to

displacement-based approach, in which the vector of generalized displacements of cross-

section d𝑠(𝑥) is related to the nodal displacements vector q𝐼𝐽 by linear interpolation shape

functions (Figure 2-28). The shear locking phenomenon was avoided by adding a bubble

function 𝑁𝑏 to the linear shape functions for the transversal displacement field:

⎛⎜⎜⎜⎝
𝑢(𝑥)

𝑣(𝑥)

𝜃𝑧(𝑥)

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
1 − 𝑥

𝐿
0 0

𝑥

𝐿
0 0

0 1 − 𝑥

𝐿
𝑁𝑏𝐿 0

𝑥

𝐿
−𝑁𝑏𝐿

0 0 1 − 𝑥

𝐿
0 0

𝑥

𝐿

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝐼

𝑣𝐼

𝜃𝑧𝐼

𝑢𝐽

𝑣𝐽

𝜃𝑧𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d𝑠(𝑥) = N𝑠(𝑥)q𝐼𝐽

(2.27)

Figure 2-28 – Principle of multifiber beam element based on displacement-based
formulation.

where the expression of bubble function is taken as 𝑁𝑏 =
1

2
(1 − 𝑥

𝐿
)
𝑥

𝐿
according to

Auricchio [36]. The generalized normal and shear strain are derived from the vector of

d𝑠(𝑥) and then, for each fiber, according to the longitudinal stiffness method of Bentz,

an iterative procedure for section state determination considering transverse equilibrium

condition is applied to determine the strains and stresses in each fiber. The direct cou-

pling between axial and shear strains (and stresses) at sectional level is established by

a static condensation and a condensed material stiffness matrix is obtained as a result.

At structural level, a linearization of the residual functions with respect to the nodal dis-
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placement gives the element stiffness matrix, in which coupling between flexure and shear

is included from the static condensation in the sectional state determination.

Navarro Gregori et al. [76] developed a 3D multifiber finite element displacement-

based for RC member subjected to axial load, bending moment, shear and torsion. From

the idea of section discretization proposed by Rahal & Collins [88], the cross-section in

this model is discretized in three distinct regions following disposition of reinforcement

steel: 1D regions composes only longitudinal steel, 2D regions locate in the zone in which

the transverse steel crosses in one direction and 3D regions for the rest of cross-section.

In each region, an appropriate constitutive model is defined, based on the MCFT (for 2D

regions) and its extension by Vecchio & Selby [112] for 3D regions. Coupling between

combined actions can be considered in the sectional analysis, and the model formulation

can be applied for arbitrary cross-section. However warping phenomenon due to shear

and torsion is not taken into account in this model.

Kotronis [58, 59] developed another 3D multifiber finite element for RC members

where the transverse shear is taken into account by using Timoshenko’s beam theory.

The shear locking phenomenon is avoided by using cubic and quadratic shape functions

for the interpolation of transverse and rotational displacements. The constitutive model

is based on damage mechanism, in which uniaxial isotropic damage model of La Borderie

is used for concrete [60], while a classical plasticity model is adopted for reinforcement

steels. Another displacement-model for RC member subjected to shear and torsion was

proposed by Mazars et al. [71], in which the warping kinematic for torsion is investigated

initially in elasticity within the linear framework of Saint-Venant theory of torsion [97]:

𝑢(𝑥, 𝑦, 𝑧) = 𝛼𝜙(𝑦, 𝑧) (2.28)

where 𝑢(𝑥, 𝑦, 𝑧) is the axial displacement of a fiber, 𝛼 is the twist rate and 𝜙(𝑦, 𝑧) is

the warping function of the section. The equilibrium equation for warping function is

expressed as:

∆𝜙(𝑦, 𝑧) = 0 (2.29)

The elastic linear warping problem for a section of various materials is solved using a

warping-conduction analogy method, in which the warping function of cross-section is

equivalent to the temperature function of a plate 𝑇 (𝑦, 𝑧), the shear modulus 𝐺𝑖 of the

elastic material 𝑖 is equivalent to the thermal conductivity 𝜆𝑖 of the isotropic material 𝑖.
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While the equilibrium equation of warping in equation (2.29) correspond to ∆𝑇 (𝑦, 𝑧) = 0,

the thermal boundary conditions can be expressed as:

Φ𝑖�̂� =

⎡⎣𝜆𝑖𝑧
𝜆𝑖𝑦

⎤⎦⎛⎝�̂�𝑦

�̂�𝑧

⎞⎠ (2.30)

where Φ𝑖 = 𝜆 grad(𝑇 (𝑦, 𝑧)) is the thermal density flux; �̂� is the outward unit vector

normal to the cross-section contour. Knowing the equilibrium equations and boundary

conditions, the thermal conduction problem can be solved using finite element method,

and so do the warping function. As a result, the shear strains due to pure torsion are

obtained for each fiber:

𝜀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

2
𝛼

(︂
𝜕𝜙

𝜕𝑦
− 𝑧

)︂
1

2
𝛼

(︂
𝜕𝜙

𝜕𝑧
+ 𝑦

)︂
1

2
𝛼

(︂
𝜕𝜙

𝜕𝑦
− 𝑧

)︂
0 0

1

2
𝛼

(︂
𝜕𝜙

𝜕𝑧
+ 𝑦

)︂
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.31)

The calculated warping functions for plain concrete beams of rectangular and T-section

subjected to pure torsion are shown in Figure 2-29.

Figure 2-29 – Warping profile for rectangular and T-section under pure torsion obtained
by Mazars et al. [71].

Capdevielle [15, 16] proposed a different way to include the warping phenomenon of

torsion. The static equilibrium of beam element including warping in equation (2.29) can

be expressed as follows:

𝜕

𝜕𝑦

(︂
𝐺

(︂
𝜕𝜙

𝜕𝑦
− 𝑧

)︂)︂
+

𝜕

𝜕𝑧

(︂
𝐺

(︂
𝜕𝜙

𝜕𝑧
+ 𝑦

)︂)︂
= 0 (2.32)

Assuming that the lateral surface is free of load, the boundary condition of cross-section

is expressed as:

𝐺

(︂
𝜕𝜙

𝜕𝑦
− 𝑧

)︂
�̂�𝑦 +𝐺

(︂
𝜕𝜙

𝜕𝑧
+ 𝑦

)︂
�̂�𝑧 = 0 (2.33)
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From the strong form of the equilibrium equation in equation (2.32), the weak formulation

of warping equilibrium can be derived as follows:

−
∫︁∫︁

𝐴

[︂
𝜕

𝜕𝑦

(︂
𝐺
𝜕𝜙

𝜕𝑦

)︂
+

𝜕

𝜕𝑧

(︂
𝐺
𝜕𝜙

𝜕𝑧

)︂]︂
𝑤𝑑𝑆 =

∫︁∫︁
𝐴

[︂
𝜕

𝜕𝑦
(−𝐺𝑧) +

𝜕

𝜕𝑧
(−𝐺𝑦)

]︂
𝑤𝑑𝑆 (2.34)

where 𝑤 is the weighting function. Integrating by part the first part of equation (2.34) and

applying the boundary conditions in equation (2.33), the weak form of the cross-section

equilibrium is obtained as follows:

∫︁∫︁
𝐴

𝐺

(︂
𝜕𝜙

𝜕𝑦

𝜕𝑤

𝜕𝑦
+
𝜕𝜙

𝜕𝑧

𝜕𝑤

𝜕𝑧

)︂
=

∫︁∫︁
𝐴

[︂
𝜕

𝜕𝑦
(−𝐺𝑧) +

𝜕

𝜕𝑧
(𝐺𝑦)

]︂
(2.35)

A 2D finite element method with spatially discretized cross-section was used to solve

equation 2.35 for the warping function 𝜙. The section mesh discretization and warping

profile obtained by Capdevielle for a concrete cross-section with longitudinal reinforcement

are shown in Figure 2-30.

(a) Cross-section mesh. (b) Warping profile.

Figure 2-30 – Warping obtained by Capdevielle [16].

More recently, Khoder [56] extended Capdevielle’s model in order to take into account

the lateral confinement of concrete due to stirrups. In her 3D multi-fiber model, the RC

cross-section is discretized using three types of fiber: 2D triangular fibers of 6 nodes for

concrete; 1D fibers for longitudinal and transversal reinforcements (Figure 2-31a). Each

transversal steel is divided into several sub-element of composed of 2 nodes 𝑖 and 𝑗 each,

which are interpolated by Lagrange linear polynomials (Figure 2-31b). The distortion

field is therefore interpolated into one integration point 𝑃 between two nodes, then the

63



distortion strain can be derived:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑤𝑦,𝑠𝑡(𝑃 ) = 𝑁1𝑢

𝑤
𝑦,𝑖 +𝑁2𝑢

𝑤
𝑦,𝑗

𝑢𝑤𝑧,𝑠𝑡(𝑃 ) = 𝑁1𝑢
𝑤
𝑧,𝑖 +𝑁2𝑢

𝑤
𝑧,𝑗

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜀𝑤𝑦,𝑠𝑡(𝑃 ) =

𝜕𝑢𝑤𝑦,𝑠𝑡(𝑃 )

𝜕𝑦
= − 1

𝑙𝑠𝑡
𝑢𝑤𝑦,𝑖 +

1

𝑙𝑠𝑡
𝑢𝑤𝑦,𝑗

𝜀𝑤𝑧,𝑠𝑡(𝑃 ) =
𝜕𝑢𝑤𝑧,𝑠𝑡(𝑃 )

𝜕𝑧
= − 1

𝑙𝑠𝑡
𝑢𝑤𝑧,𝑖 +

1

𝑙𝑠𝑡
𝑢𝑤𝑧,𝑗

(2.36)

where 𝑁1 =
1 − 𝜉

2
and 𝑁2 =

1 + 𝜉

2
are the Lagrange linear polynomials; 𝑢𝑤𝑦,𝑖,𝑢

𝑤
𝑧,𝑖, 𝑢

𝑤
𝑦,𝑗

and 𝑢𝑤𝑧,𝑗 are the transversal displacement of the distortion champ at node 𝑖 and 𝑗; 𝑙𝑠𝑡 is

the length of stirrup sub-element. In this model, the concrete confinement is taken into

account by considering different concrete regions where the constitutive relationship is

selected in function of confinement degree.

(a) Discretization of a RC
cross-section into fiber of concrete,
longitudinal and transversal steel.

(b) Discretization of transversal
steel.

Figure 2-31 – Model of Khoder [57].

2.4.4.2 Flexibility-based model

Spacone et al. [102] proposed a multifiber flexibility-based model for RC members sub-

jected to axial force and bending. Then, Remino [94] developed this flexibility-based

model for reinforced members subjected to shear force, using the kinematics of two-node

Timoshenko beam (Figure 2-32). Starting form the nodal forces P𝐼𝐽 , the vector of sec-

tional forces D𝑠(𝑥) is computed as follows:

⎛⎜⎜⎜⎜⎜⎝
𝑁

𝑀

𝑉

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0

0
𝑥

𝐿
− 1

𝑥

𝐿

0
𝑥

𝐿

1

𝐿

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
𝑁𝐽

𝑀𝐼

𝑀𝐽

⎞⎟⎟⎟⎟⎟⎠+

⎡⎢⎢⎢⎢⎢⎣
𝐿(1 − 𝑥

𝐿
) 0

0
1

2
𝐿2

[︂(︁𝑥
𝐿

)︁2
− 𝑥

𝐿

]︂
0

1

2
𝐿
(︁

1 − 2
𝑥

𝐿

)︁

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎝𝑝𝑥
𝑝𝑦

⎞⎟⎠
D𝑠(𝑥) = b(𝑥)P𝐼𝐽 + b𝑝(𝑥)p

(2.37)
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where 𝑥 is the cross-section coordinate, 𝐿 is the element length and p is the element load

vector. The sectional stiffness matrix is evaluated numerically using the method of finite

differences, in which the 𝑚𝑛− 𝑡ℎ component is determined as:

𝑘𝑚𝑛
𝑠 =

𝐷𝑚
𝑠 (𝜀𝑠 + 𝛿𝜀𝑛𝑠 ) −𝐷𝑛

𝑠 (𝜀𝑠)

𝛿𝜀𝑛𝑠
; 𝛿𝜀𝑛𝑠 = sign(∆𝜀𝑛𝑠 )

√
𝜀𝑡𝑜𝑙 (2.38)

where𝐷𝑚
𝑠 is the𝑚−𝑡ℎ term of the vector D𝑠(𝑥), 𝜀𝑠 is the vector of the section deformation;

∆𝜀𝑛𝑠 is the variation of the 𝑛− 𝑡ℎ section deformation with respect to the last converged

step of the analysis and 𝜀𝑡𝑜𝑙 is the numerical tolerance. In this model, the interaction

between axial force, bending and shear are taken directly and the constitutive models

are based on the MCFT with some slight modifications. However, this approach for

constitutive model meets some numerical difficulties when trying to encounter the cyclic

load conditions.

Figure 2-32 – Basic forces, elements and fiber discretization of multifiber beam element
based on flexibility-based formulation.

Another flexibility-based model was developed by Saritas & Filippou [99]. In this

model the relationship between the nodal forces and sectional forces is the same as in equa-

tion (2.37). The sectional state determination follows the longitudinal stiffness method

proposed by Benzt [12] that is already described in Section 2.4.3, using Timoshenko’s

kinematic hypothesis and a parabolic correction form for the shear strain distribution

function of rectangular cross-sections:

𝑓(𝑦) =
5

4

(︂
1 − 4𝑦2

ℎ2

)︂
(2.39)

where ℎ is the section’s height. Static condensation is then performed in order to obtain

the sectional stiffness matrix, which is symmetric rather than asymmetric in the model

of Bentz, thanks to the correction form in equation 2.39. In each fiber/layer of the cross-

section, a two-dimensional constitutive model based on the MCFT is applied. Based on
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the formulation of this model, Saritas & Filippou [99], [100] then developed other models

using damage mechanics for the constitutive model of concrete, in order to consider the

cyclic load conditions for reinforced beam and wall element.

In order to account for torsional effect, Le Corvec [62] presented a mixed-formulation

of 3D multi-fiber beam that is able to capture the local effects due to constrained warping

of the section, so it can represent accurately the torsional response of beam under warping

constraints conditions. For this, the additional warping degrees of freedom are introduced

through a system of integration points and then interpolated by Lagrange polynomials

to ensure equilibrium on the entire element (Figure 2-33). Assuming that the warping

displacement profile over the cross-section 𝜓(𝑦, 𝑧) and the warping displacement distribu-

tion over the element length 𝜒(𝑥) are interpolated independently, the material warping

displacement in each fiber can be expressed as the product of 𝜓(𝑦, 𝑧) and 𝜒(𝑥):

𝑢𝑤(𝑥, 𝑦, 𝑧) =
∑︁

𝜒𝑖(𝑥)(𝜓(𝑦, 𝑧)u𝑤
𝑖 ) (2.40)

where u𝑤
𝑖 is the vector of warping variables defined as additional degree of freedoms

in the beam model. The material warping displacement in each fiber 𝑢𝑤(𝑥, 𝑦, 𝑧) is then

superimposed into the axial displacement followings plane-section hypothesis, as suggested

in the model of Bairan [4], which will be detailed clearly in section 2.4.5. The element

equilibrium in equation 2.37 is extended to account for three-dimensional strain and stress

state:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁

𝑀𝑧

𝑉𝑦

𝑀𝑥

𝑀𝑦

𝑉𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
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0
𝑥

𝐿
− 1

𝑥

𝐿
0 0 0

0 − 1

𝐿
− 1

𝐿
0 0 0

0 0 0 1 0 0

0 0 0 0
𝑥

𝐿
− 1

𝑥

𝐿

0 0 0 0
1

𝐿

1

𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁𝐽

𝑀𝑧𝐼

𝑀𝑧𝐽

𝑀𝑥𝐽

𝑀𝑦𝐼

𝑀𝑦𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ b𝑝(𝑥)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝𝑥

𝑝𝑦

𝑝𝑧

𝑚𝑥

𝑚𝑦

𝑚𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.41)

In this model, the effects of boundary conditions on the warping distribution under torsion

can be represented for arbitrary cross-sections (Figure 2-33b), but the constitutive mate-

rial model is limited only to steel. The warping profile of the rectangular cross-section of

steel beam is shown in Figure 2-34a.
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Figure 2-33 – System of interpolation points to account for warping in the model of Le
Corvec [62].

Based on this idea of warping interpolation using additional degrees of freedom, Ad-

dessi & Di Re [2] extended Le Corvec’s model to plain concrete member under torsion

using an isotropic damage model for brittle-like materials. Then, Di Re [31] used Her-

mite polynomials instead of Lagrange polynomials for the interpolation functions in a

flexibility-based model for RC beam. The warping profile of the rectangular cross-section

of plain concrete beam is shown in Figure 2-34b.

(a) Model of Le Corvec [62]. (b) Model of Di Re [30].

Figure 2-34 – Warping profile of rectangular cross-section under torsion.

2.4.5 Enhanced FE Model

Bairan [3] developed a general 3D nonlinear model for the analysis of RC sections under

any combination of efforts. This local sectional-fiber model is formulated in a general way

for arbitrary cross-section and independently of the beam element formulation.

67



The featured idea in this model is to reproduce the full 3D state of the cross-section

characteristics by superimposing an enhanced distortion-warping displacement field with

the classical plane-section displacement field (Figure 2-35a):

u = u𝑝𝑠 + u𝑤 (2.42)

The classical displacement field u𝑝𝑠 is derived from the Euler-Bernoulli hypothesis, while

the enhanced field u𝑤 is constructed as a vector of three components, one for warping

and two for the distortion with the cross-section, that must satisfy the condition of or-

thogonality with respect to the classical displacement field (Figure 2-35b). The same

decomposition of displacement field is also applicable to strain and stress fields:

𝜀 = 𝜀𝑝𝑠 + 𝜀𝑤

𝜎 = 𝜎𝑝𝑠 + 𝜎𝑤
(2.43)

(a) Decomposition of displacement
field.

(b) Orthogonality condition for the distortion
field.

Figure 2-35 – Model of Bairan [3].

Due to the superposition, the equilibrium conditions are obtained at structural level

and at sectional level. At structural level, equilibrium among sections of the beam is

assured when the equilibrium residual on the plane-section displacement field is set to

zero:

𝑅𝑝𝑠(𝑥) = 𝛿u𝑇
𝑠

∫︁∫︁
𝐴

N𝑝𝑠𝑇L𝑇
𝑥 (𝜎)𝑑𝐴− 𝛿u𝑇

𝑠

∫︁∫︁
𝐴

L𝑦𝑧(N
𝑝𝑠)𝑇𝜎𝑑𝐴 = 0 (2.44)

with u𝑠 is the generalized displacement vector of cross-section; N𝑝𝑠 is a compatibility

matrix related u𝑝𝑠 and u𝑠; L𝑥 and L𝑦𝑧 are the linear operators containing the derivation

following 𝑥 and 𝑦, 𝑧 respectively. At sectional level, the equilibrium among inner fibers is
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assured when the equilibrium residual on the distortion displacement field is set to zero:

𝑅𝑤(𝑥) =

∫︁∫︁
𝐴

𝛿u𝑤𝑇L𝑇
𝑥 (𝜎)𝑑𝐴−

∫︁∫︁
𝐴

L𝑦𝑧(𝛿u
𝑤)𝑇𝜎𝑑𝐴 = 0 (2.45)

The complete 3D equilibrium of beam is determined by solving the system of equation

(2.44) and (2.45). For this, the strategic way is to obtain the 𝜎𝑤 field as a function of u𝑝𝑠

at each cross-section and then satisfy equation (2.45) at each integration point of the beam

element. As a result, the 3D problem can be solved as the superposition of a 1D beam

problem with standard frame elements in equation (2.44) and a 2D sectional model using

bi-dimensional element locally at the beam’s integration points equation (2.45). The finite

elements in the section discretization for a RC beam element are summarized in Figure

2-36, where the concrete is simulated as 2D elements, the transversal reinforcements are

reprensented by 1D elements and the longitudinal steels are simulated as point elements.

Figure 2-36 – Library of finite elements in a cross-section of Bairan’s model [3].

The vector of distortion displacement field u𝑤 is obtained from the additional nodal

values d𝑤 of the cross-section. Then, d𝑤 is related to the vector of generalized strains

e𝑠 by several compatibility and interpolation matrices. Finally, through the virtual work

principle, the sectional internal forces and sectional stiffness matrix can be derived in the

form of a decomposition of the plane-section field and the distortion field, which includes

coupling terms between plane-section and distortion deformations.

The constitutive model is based on a cyclic hypo-elastic model for concrete and an uni-

axial elasto-plastic relationship for steel. Inelastic concrete is modeled as an orthotropic

material whose behavior is described along the principal directions by an equivalent uni-
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axial stress-strain relationship. The compression behavior follows a cyclic loading scheme

suggested by Vecchio & Selby [112], whereas in tension, a linear elastic behavior is consid-

ered prior to cracking, then after cracking the stress-strain relationship follows a nonlinear

softening curve with the damage variables proposed by Cervenka [19]. The triaxial char-

acteristics are computed through a three-dimensional failure surface, in which the strains

(and related stresses) are decomposed as a contribution of mechanical and non-mechanical

part.

2.5 Overview and Discussion

Throughout this chapter, a literature review of the modeling strategy for RC members

subjected to shear-bending and/or torsion has been carried out. The problematic of

the RC members under bending and shear has been investigated and experienced by

many researchers. Several numerical models with different degree of complexity have

been developed. Among the existing models, the sectional-fiber finite element approach

has been widely considered as one of the most adequate solutions, thanks to its excellent

balance between accuracy of numerical results, calculation time and ergonomics. However,

to the best of the author’s knowledge, a rational sectional model accounting for tangential

forces is still under study.

The longitudinal stiffness method has shown its advantage by considering the equi-

librium as well as compatibility equations at local level, and more important, by giving

a material stiffness matrix reflecting the coupling of normal and tangential forces when

considering the transverse equilibrium conditions. For these reasons, although originally

limited for mono-dimensional shear flow (i.e in-plane bending and shear), in this PhD

we decided to apply this approach in the proposed formulation with an extension in

bi-dimensional shear flow, thus three-dimensional loading. Considering the choice of fi-

nite element formulation, the flexibility-based method has shown its advantages over the

stiffness-based method [102]: giving the exact solutions by satisfying strict conditions

of equilibrium and compatibility; requiring fewer elements for the representation of the

non-linear behavior of concrete by using exact force interpolation functions; avoiding the

well known shear-locking phenomenon. On the other hand, over the flexibility method,

the stiffness-based method accompanying by the displacement-based formulation has also

significant advantages. First, once the analytical model has been defined, no further en-

gineering decisions are required in this formulation to carry out the analysis, this method
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is thus conducive to computer programing [114]. In addition, if the unknown quanti-

ties in the flexibility method are redundant actions that must be arbitrarily chosen, the

unknowns in stiffness method are automatically specified as the nodal displacements of

element, the number of unknowns to be determined is therefore the same as the degree of

freedom of element. Otherwise, the obtained numerical results are also satisfied. To avoid

the shear locking phenomenon, some solutions have been proposed such as a bubble func-

tion in the model of Ceresa [18] or Hermite and Lagrange shape functions for transverse

and rotational displacements in the model of Kotronis [59].

In a 3D beam problem, when accounting for shear and especially torsion effect, it is

indispensable to account for the warping phenomenon. For this, the Bairan’s strategy [3]

of decomposition cross-section characteristics into classical field following plane-section

hypothesis and enhanced field of warping-distortion is adopted for the development of our

FE model. One believes that this is the most suitable approach to representing the com-

plete deformation state (warping and distortion) of cross-section. While the plane-section

field can be represented by classical theory such as Euler-Bernoulli or Timoshenko, for

the enhanced warping-distortion field, several solutions have been proposed, such as using

warping-thermal analogy [71], using Saint-Venant theory and 2D finite element method

[16] or using Lagrange polynomial and system of interpolation points defined as additional

degree of freedoms [62], [30], etc. To the best of the author’s knowledge, although suc-

cessfully applied in the mixed-based formulation by Le Corvec [62], Addessi [2] and Di Re

[31], the Lagrange polynomial approach accounting for warping displacement has not yet

been implemented in any displacement-based model of RC. In this work, we would like to

review and compare the use of Saint-Venant theory with that of Lagrange polynomials in

the displacement-based formulation, then recommend the use of each method depending

on requirements. These two approaches have been programmed and implemented in the

proposed FE model.

Regarding the constitutive models, there are two favorable choices for sectional-fiber

model, between smeared-crack approaches and damage mechanics. A constitutive model

based on the MCFT [110] was chosen because of its simplicity and the fact that it can be

enhanced by developing suitable uniaxial stress-strain relationship for concrete and steel,

depending on the model’s requirements. In this work, a parametric tensile relationship for

concrete has been proposed by the authors for the responses of RC members subjected to

pure torsion. In this formulation, only engineering parameters (e.g. material strengths,

reinforcement geometrical ratios) are required as input, thus improving the ability to apply
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the proposed model to practical simulations. Another important reason for the choice of

the MCFT is that it is very suitable for the transverse equilibrium between the fibers,

in particularly when taking into account the contribution of transverse reinforcements.

Inspired by the idea of Navarro et al. [76], a specific section discretization following the

reinforcement steel’s disposition, accompanied by appropriate constitutive models based

on the MCFT, was developed and implemented in the proposed model, which will be

described in detail in the next Chapter.
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Chapter 3

Enhanced multi-fiber 3D beam

element for RC members

3.1 General

The present Chapter deals with the development of a finite element model for RC members

subjected to arbitrary loading (Bending and/or shear and/or torsion). The developed

model is able to take into account the material nonlinearity, the warping effect of cross-

section, the contribution of transversal reinforcement, and the concrete confinement. As

for the geometrical nonlinearity, it is treated separately in Chapter 6 by using the co-

rotational framework. Therefore, this chapter is dedicated for the development of the local

beam element. The two-node Timoshenko beam using multifiber discretization approach

and displacement-based formulation are adopted. Based on the principle of distributed

finite element method, the idea of multi-fiber finite element is to divide the structure into

several longitudinal fibers and some control sections situated at the Gauss-Lobatto points

along the element. At the intersection of longitudinal fibers and control sections, a system

of integration points is obtained (Figure 3-1). Each point, called fiber and considered as

a material point, has its own coordinates, surface and an appropriate material law in

order to determine the strain and stress from the element’s displacements. Therefore,

the proposed model is described as a frame element with a set of cross-sections along its

longitudinal axis.
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Figure 3-1 – Multifiber approach for a RC member and local element frame coordinate

As can be seen in Figure 3-1, while the concrete and the longitudinal rebar are dis-

tributed longitudinally in the element, the distribution of transversal reinforcement steels

is discontinued in this direction by a spacing 𝑠. Taking into account the contribution of

transversal reinforcement in a multi-fiber model is therefore not an obvious work. As men-

tioned in the Chapter 2, it can follow the strategy of using the MCFT and satisfying the

internal equilibrium between concrete and stirrups in the constitutive model as proposed

by Saritas & Filippou [99] or Navarro-Gregori et al. [76]; or considering the transver-

sal steel as bar element and interpolating the distortion displacement by Lagrange linear

polynomials, as suggested by Bairan [3] or Khoder et al. [57]. Between these proposals,

the idea of Navarro Gregori is adopted in our model. The cross-section is discretized

into several separated regions following the direction of transversal reinforcement and the

contribution of stress state to the sectional response (Figure 3-2a). The following zones

are considered:

∙ 1D-Zone: This zone represents the longitudinal reinforcement position. In this

zone only the normal stress in reinforcement steels is taken into account.

∙ 2D-Zone: This zone corresponds to the regions where the transverse steel crosses

in one direction and may also have the contribution of longitudinal steel bars. In

this zone, under shear, bending or torsional effects, the direction of normal stress

in transverse steels coincides to the direction of shear stresses in concrete (𝜏𝑥𝑧 in

the vertical zone or 𝜏𝑥𝑦 in the horizontal zone) (Figure 3-2b). Consequently, only

normal stress (due to concrete) and one shear stress (due to concrete and stirrup)

are taken into account in the sectional analysis, the other shear stress is set to zero.

∙ 3D-zone: This zone corresponds to the regions of concrete in which transverse steels

come across in two directions (the four corners of section) and the regions of concrete

in the core of section without any reinforcement. In this zone, at each integration

point the stress state contains 3 components: one normal and two transverse stresses.
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For the numerical implementation, in 1D-zone, each longitudinal steel bar is considered

as point fiber, characterized by the cross-section area 𝐴𝑠𝑙 of steel bar and its coordinate

(𝑦𝑠𝑙, 𝑧𝑠𝑙) in the local coordinate of cross-section. In 2D and 3D-zone, the regions are dis-

cretized into square fibers of centroid integration point 𝑃 , characterized by the square fiber

area 𝐴𝑓 (numerical integration weight) and the coordinate of integration point 𝑃 (𝑦𝑓 , 𝑧𝑓 ).

The contribution of stirrup is taken into account by satisfying the internal equilibrium

between concrete and stirrups in 2D-zone, which will be detailed in Section 3.5.2.

teer

er
te

σx

σx σx

σx

τxy

τxy

τxz

τxz

1D zone

2D zone

3D zone

(a)

τxz
τxy

Shear-bending Torsion

(b)

Figure 3-2 – (a) Discretization of cross-section following the material stress state in the
model of Navarro-Gregori et al. [76]. (b) Shear stress direction under shear, bending or

torsional effects.

The following presentation starts with the definition of element and section kinematics

as well as the main assumptions of the model. In order to take into account the warping-

distortion phenomenon, two approaches will be introduced and described in this chapter:

1. Using Saint-Venant’s warping function: Based on two-node Timoshenko beam

with 6 local displacements at each node, making a total of 12 degree of freedoms

(DoFs) in each element. The formulation is then enhanced by Saint-Venant warping

function when considering the kinematic conditions.

2. Using Lagrange polynomials: Introduction of an enhanced beam with a superpo-

sition of several additional warping DoFs into the two-node Timoshenko beam. The

interpolation functions for warping/distortion over the cross-section and along the

element are also described and implemented into the finite element discretization.

The element formulation is then derived following the principle of virtual work in order

to obtain the consistent stiffness matrix and nodal forces vector of the element. Next,

the solution schemes for two ”warping” approaches are described. Finally, the mechani-

cal model containing appropriate constitutive models for different discretized regions as

described above is presented.
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3.2 Element kinematics

Let’s consider a two-node Timoshenko beam represented by a straight axis line delim-

ited by end nodes 𝐼 and 𝐽 and the local frame system of coordinate (𝑥, 𝑦, 𝑧) as shown

in Figure 3-3. The displacement field contains three translations 𝑢(𝑥), 𝑣(𝑥), 𝑤(𝑥) and

three rotations 𝜃𝑥(𝑥), 𝜃𝑥(𝑥), 𝜃𝑥(𝑥) about axes 𝑥, 𝑦, 𝑧, respectively. These components are

collected in a single displacement vector called generalized displacement which depends

on the section’s position along the element axis:

d𝑠(𝑥) =
(︁
𝑢(𝑥) 𝑣(𝑥) 𝑤(𝑥) 𝜃𝑥(𝑥) 𝜃𝑦(𝑥) 𝜃𝑧(𝑥)

)︁T
(3.1)

z

xnode I
node J

y

Figure 3-3 – Two-node Timoshenko beam and the local reference system.

In the displacement-based formulation, the generalized displacement is expressed in

function of the principal variables which are the nodal displacements vector q𝑒 by inter-

polation shape functions:

d𝑠(𝑥) = N𝑠(𝑥)q𝑒 (3.2)

where:

q𝑒 =
(︁
𝑢𝐼 𝑣𝐼 𝑤𝐼 𝜃𝐼𝑥 𝜃𝐼𝑦 𝜃𝐼𝑧 𝑢𝐽 𝑣𝐽 𝑤𝐽 𝜃𝐽𝑥 𝜃𝐽𝑦 𝜃𝐽𝑧

)︁T
(3.3)

and N𝑠(𝑥) is the matrix of shape function defined as [38]:

N𝑠(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁1 0 0 0 0 0 𝑁2 0 0 0 0 0

0 𝑁3𝑦 0 0 0 𝑁4𝑦 0 𝑁5𝑦 0 0 0 𝑁6𝑦

0 0 𝑁3𝑧 0 −𝑁4𝑧 0 0 0 𝑁5𝑧 0 −𝑁6𝑧 0

0 0 0 𝑁1 0 0 0 0 0 𝑁2 0 0

0 0 −𝑁7𝑧 0 𝑁8𝑧 0 0 0 −𝑁9𝑧 0 𝑁10𝑧 0

0 𝑁7𝑦 0 0 0 𝑁8𝑦 0 𝑁9𝑦 0 0 0 𝑁10𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)

As mentioned in Chapter 2, while the axial displacement and torsional rotation can be

interpolated by linear shape function (𝑁1 and 𝑁2), the transverse and rotational displace-

ments must be interpolated by cubic or quadratic functions. The detailed expressions

76



of these shape functions can be found in the work of Friedman & Kosmatka [38] or in

Appendix 7.2.

3.3 Section kinematics

At sectional level, in each material points (or fiber) the displacement has 3 components,

one axial 𝑈 and two transversal 𝑉 , 𝑊 gathered in a single vector d𝑓 (𝑥, 𝑦, 𝑧). As mentioned

in Chapter 1, the plane-section theory is insufficient to reproduce the complete sectional

deformation under shear and torsional effects (Figure 3-4a). According to the proposition

of Bairan & Mari [4], the material displacement field is decomposed into two domains:

a classical field describing the rigid body motion, consistent with the plan-section beam

theory; and an enhanced field referring to warping-distortion phenomena (Figure 3-4b).

d𝑚
𝑓 (𝑥, 𝑦, 𝑧) = d𝑝

𝑓 (𝑥, 𝑦, 𝑧)+d𝑒
𝑓 (𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑈𝑝(𝑥, 𝑦, 𝑧)

𝑉 𝑝(𝑥, 𝑦, 𝑧)

𝑊 𝑝(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
𝑈 𝑒(𝑥, 𝑦, 𝑧)

𝑉 𝑒(𝑥, 𝑦, 𝑧)

𝑊 𝑒(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑈𝑚(𝑥, 𝑦, 𝑧)

𝑉 𝑚(𝑥, 𝑦, 𝑧)

𝑊𝑚(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟⎠
(3.5)
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Figure 3-4 – (a) Section deformation under normal efforts (axial, bending) and
tangential efforts (shear, torsion). (b) Decomposition of a material axial displacement.

Depending on the requirement, the enhanced material displacement vector d𝑒
𝑓 (𝑥, 𝑦, 𝑧)

may have one or three components : if only the warping phenomenon is taken into account,

then only the axial displacement 𝑈 𝑒 is considered; otherwise, the two transversal displace-

ments 𝑉 𝑒 and 𝑊 𝑒 in 𝑦 and 𝑧 direction are reserved for the distortion phenomenon. In

the following the section kinematics will be described for the classical field, the enhanced

field using Saint-Venant theory and the enhanced field using Lagrange polynomials.
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3.3.1 Classical field

The material displacement of classical field is related to the generalized displacements

vector according to the following relation kinematic:

𝑈𝑝(𝑥, 𝑦, 𝑧) = 𝑢(𝑥) − 𝑦𝜃𝑧(𝑥) + 𝑧𝜃𝑦(𝑥)

𝑉 𝑝(𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜃𝑥(𝑥)

𝑊 𝑝(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃𝑥(𝑥)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒ d𝑝
𝑓 (𝑥, 𝑦, 𝑧) = a𝑝

𝑓 (𝑦, 𝑧)d𝑠(𝑥) (3.6)

with the expression of the section compatibility matrix:

a𝑝
𝑓 (𝑦, 𝑧) =

⎡⎢⎢⎢⎣
1 0 0 0 𝑧 −𝑦

0 1 0 −𝑧 0 0

0 0 1 𝑦 0 0

⎤⎥⎥⎥⎦ (3.7)

The strains of any material point of the cross section are then evaluated with only three

components considered in the sectional analysis as follows: one normal strain and two

transverse strains collected in a single strain vector:

e𝑝
𝑓
(𝑥, 𝑦, 𝑧) =

(︁
𝜀𝑝𝑥𝑥 𝛾𝑝𝑥𝑦 𝛾𝑝𝑥𝑧

)︁𝑇
(3.8)

with the assumption of small displacements, the material strains can be evaluated from

first-order material displacement only:

𝜀𝑝𝑥𝑥 =
𝜕𝑈𝑝

𝜕𝑥
=
𝜕𝑢

𝜕𝑥
− 𝑦

𝜕𝜃𝑧
𝜕𝑥

+ 𝑧
𝜕𝜃𝑦
𝜕𝑥

𝛾𝑝𝑥𝑦 =
𝜕𝑈𝑝

𝜕𝑦
+
𝜕𝑉 𝑝

𝜕𝑥
=
𝜕𝑣

𝜕𝑥
− 𝜃𝑧 − 𝑧

𝜕𝜃𝑥
𝜕𝑥

𝛾𝑝𝑥𝑧 =
𝜕𝑈𝑝

𝜕𝑧
+
𝜕𝑊 𝑝

𝜕𝑥
=
𝜕𝑤

𝜕𝑥
+ 𝜃𝑦 + 𝑦

𝜕𝜃𝑥
𝜕𝑥

(3.9)

It is important to note that without this assumption of small displacements, second and

third-order of derivation must be taken into account and the section kinematics become

a non-linear geometric problem, which will be investigated in Chapter 6. This chap-

ter deals only with the linear geometric condition with the following definitions of sec-

tional strains according to Timoshenko beam theory: 𝜀𝑥(𝑥) =
𝜕𝑢(𝑥)

𝜕𝑥
is the axial strain,

𝛾𝑦(𝑥) =
𝜕𝑣(𝑥)

𝜕𝑥
− 𝜃𝑧(𝑥) and 𝛾𝑧(𝑥) =

𝜕𝑤(𝑥)

𝜕𝑥
+ 𝜃𝑦(𝑥) are the shear strains in the 𝑦 and 𝑧

direction, respectively; 𝜅𝑥(𝑥) =
𝜕𝜃𝑥(𝑥)

𝜕𝑥
is the torsional curvature and 𝜅𝑦(𝑥) =

𝜕𝜃𝑦(𝑥)

𝜕𝑥
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and 𝜅𝑧(𝑥) =
𝜕𝜃𝑧(𝑥)

𝜕𝑥
are the flexural curvatures about the 𝑦 and 𝑧 axis respectively. From

these definitions, the kinematic relation in Equation (3.9) can be expressed as a relation

between the material strains and sectional strains as follows:

e𝑝𝑓 (𝑥, 𝑦, 𝑧) = a𝑝
𝑓 (𝑦, 𝑧)e𝑠(𝑥) (3.10)

with the expression of the compatibility matrix a𝑝
𝑓 (𝑦, 𝑧) is the same as in Equation (3.7)

and the vector e𝑠(𝑥, 𝑦, 𝑧) is defined as the generalized strains :

e𝑠(𝑥) =
(︁
𝜀𝑥(𝑥) 𝛾𝑦(𝑥) 𝛾𝑧(𝑥) 𝜅𝑥(𝑥) 𝜅𝑦(𝑥) 𝜅𝑧(𝑥)

)︁𝑇
(3.11)

It is interesting to note that, in the Euler-Bernoulli beam theory, the generalized

shear strains are equal to zero because this theory does not take into account the shear

effect. In the longitudinal stiffness method proposed by Bentz [12] in Section 2.4.3, the

shear strain is defined initially as a function of the mean sectional shear deformation

𝛾: 𝛾𝑦/𝑧 = 𝑓(𝑦/𝑧)𝛾. This proposition leads to a asymmetric sectional stiffness in the

sectional state determination. The definition of generalized shear strain in Timoshenko

beam theory can solve this problem of asymmetry, however it does not guarantee the

longitudinal equilibrium at certain coordinates (𝑦, 𝑧) of the section [98]. As a consequence,

the correction parameters need to be introduced in order to describe the shear strain

distribution over the cross-section. So, the expression of compatibility matrix a𝑝
𝑓 (𝑦, 𝑧) in

Equation (3.9) is rewritten as follows:

a𝑝
𝑓 (𝑦, 𝑧) =

⎡⎢⎢⎢⎣
1 0 0 0 𝑧 −𝑦

0 𝑘𝑦𝑐𝑦(𝑦, 𝑧) 0 −𝑧 0 0

0 0 𝑘𝑧𝑐𝑧(𝑦, 𝑧) 𝑦 0 0

⎤⎥⎥⎥⎦ (3.12)

where 𝑘𝑦 and 𝑘𝑧 are the shear correction factors; 𝑐𝑦(𝑦, 𝑧) and 𝑐𝑧(𝑦, 𝑧) are the shear correc-

tion functions. In this present work, for rectangular cross-section of width 𝑏 and height

ℎ in a linear elastic material, a parabola correction function is proposed (Figure 3-5) and

the following correction factors and functions are defined:

𝑘𝑦 =
5

6
; 𝑐𝑦(𝑦, 𝑧) =

3

2𝑏2
(𝑏2 − 4𝑦2)

𝑘𝑧 =
5

6
; 𝑐𝑧(𝑦, 𝑧) =

3

2ℎ2
(ℎ2 − 4𝑧2)

(3.13)
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Parabola shear strains 
distribution

Generalized 
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=>

Figure 3-5 – Transformation of the shear strain distribution to a generalized shear strain
in the case of rectangular cross-section.

From this definition of generalized strains and the relation between the generalized

displacements and the nodal displacements in Equation (3.2), the generalized strains can

be determined from the nodal displacements by another matrix of shape functions:

e𝑠(𝑥) = B𝑠(𝑥)q𝑒 (3.14)

with the expression of B𝑠(𝑥) :

B𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵1 0 0 0 0 0 𝐵2 0 0 0 0 0

0 𝐵3𝑦 0 0 0 𝐵4𝑦 0 𝐵5𝑦 0 0 0 𝐵6𝑦

0 0 𝐵3𝑧 0 −𝐵4𝑧 0 0 0 𝐵5𝑧 0 −𝐵6𝑧 0

0 0 0 𝐵1 0 0 0 0 0 𝐵2 0 0

0 0 −𝐵7𝑧 0 𝐵8𝑧 0 0 0 −𝐵9𝑧 0 𝐵10𝑧 0

0 𝐵7𝑦 0 0 0 𝐵8𝑦 0 𝐵9𝑦 0 0 0 𝐵10𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.15)

The expression of shape functions 𝐵𝑖(𝑥) can be found in Appendix 7.2.

3.3.2 Enhanced field using Saint-Venant theory

In a frame-fiber model, according to the Saint-Venant theory of torsion [97], the warping

phenomenon is represented by a function 𝜓(𝑦, 𝑧) which describes the warping displace-

ment profile over the cross-section and depends on the shape of cross-section [97]. It is

also assumed by Saint-Venant that the warping profile is considered constant along the

element, and the normalized warping displacement is proportional to this warping func-

tion 𝜓(𝑦, 𝑧). Then, Saint-Venant theory is extended when the distribution of warping

over the element length becomes variant and is represented by a parameter 𝛼(𝑥). As a

consequence, the warping displacement is expressed proportional to the warping profile
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(i.e warping function) and the warping distribution:

𝑈 𝑒(𝑥, 𝑦, 𝑧) = 𝛼(𝑥)𝜓(𝑦, 𝑧) (3.16)

In the case of solid cross-section, where the effect of warping is limited (but cannot be

neglected), the warping is free and its distribution can be considered constant over the

element length as mentioned in Saint-Venant theory. In this case, the warping distribution

equals to the derivative of the twist angle: 𝛼(𝑥) = 𝛼 = 𝜕𝜃𝑥/𝜕𝑥 = 𝜅𝑥, and 𝜕𝛼/𝜕𝑥 = 0.

In the case of thin-walled cross-section, as the role of warping becomes important, the

warping distribution is not constant anymore and depends on the cross-section’s position.

Thus, Vlasov [113] proposed a new theory of torsion for thin-walled cross-sections with

𝛼(𝑥) = 𝜕𝜃𝑥/𝜕𝑥 and 𝜕𝛼/𝜕𝑥 ̸= 0 . Consequently, an additional DoF needs to be added to

consider the contribution of the derivative of parameter 𝛼(𝑥). Another torsional theory,

proposed by Benscoter [11], defines that the warping distribution 𝛼 is independent of

the torsional angle: 𝛼(𝑥) ̸= 𝜕𝜃𝑥/𝜕𝑥. These two theories of torsion for thin-walled cross-

sections, can be compared as the analogy of two classical bending theory Navier-Bernoulli

and Timoshenko. Vlasov’s assumption of neglecting the shear warping deformation is

compatible with neglecting the shear bending strain in the Navier-Bernoulli’s theory,

while Benscoter’s assumption of incorporating shear warping deformation can be regarded

similar to the Timoshenko’s assumption of taking into account the shear bending strain.

In this work, as the shape of cross-section is rectangular, Saint-Venant theory can

be used for the sake of simplicity, from Equation (3.6) and Equation (3.16), the total

displacement field in Equation (3.5) becomes:

𝑈𝑚(𝑥, 𝑦, 𝑧) = 𝑢(𝑥) − 𝑦𝜃𝑧(𝑥) + 𝑧𝜃𝑦(𝑥) + 𝜅𝑥𝜓(𝑦, 𝑧)

𝑉 𝑚(𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜃𝑥(𝑥)

𝑊𝑚(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃𝑥(𝑥)

(3.17)

And the total material strains are expressed by:

𝜀𝑚𝑥𝑥 =
𝜕𝑈𝑚

𝜕𝑥
= 𝜀𝑥 − 𝑦𝜅𝑧 + 𝑧𝜅𝑦

𝛾𝑚𝑥𝑦 =
𝜕𝑈𝑚

𝜕𝑦
+
𝜕𝑉 𝑚

𝜕𝑥
= 𝛾𝑦 − 𝑧𝜅𝑥 +

𝜕𝜓

𝜕𝑦
𝜅𝑥

𝛾𝑚𝑥𝑧 =
𝜕𝑈𝑚

𝜕𝑧
+
𝜕𝑊𝑚

𝜕𝑥
= 𝛾𝑧 + 𝑦𝜅𝑥 +

𝜕𝜓

𝜕𝑧
𝜅𝑥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒ e𝑚𝑓 = a𝑚

𝑓 (𝑦, 𝑧)e𝑠(𝑥) (3.18)
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with the new compatibility matrix (taking into account the shear correction parameters):

a𝑚
𝑓 (𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 𝑧 −𝑦

0 𝑘𝑦𝑐𝑦(𝑦, 𝑧) 0 −𝑧 +
𝜕𝜓

𝜕𝑦
0 0

0 0 𝑘𝑧𝑐𝑧(𝑦, 𝑧) 𝑦 +
𝜕𝜓

𝜕𝑧
0 0

⎤⎥⎥⎥⎥⎥⎦ (3.19)

The expression of Saint-Venant warping function and its derivatives for the rectangular

cross-section can be found in Section 4.1. It is important to note that in the case of a solid

cross-section, this approach using Saint-Venant warping function maintains the element

DoFs at 12, but can not take into account the distortion phenomenon.

3.3.3 Enhanced field using Lagrange polynomials

As mentioned above, according to Saint-Venant theory the warping displacement is pro-

portional to two parameters: the warping function 𝜓(𝑦, 𝑧) representing the warping profile

over the cross-section and the parameter 𝛼(𝑥) representing the warping distribution along

the element axis. In other words, the warping displacement is a multiplication of the

warping profile and the warping distribution. In 2012, Le Corvec [62] proposed a new way

to interpolate these two parameters, rather than using the Saint-Venant warping function

and the parameter 𝛼(𝑥): several fixed points are defined in the axis direction 𝑥, with index

𝑖 (Figure 7-5a), and then, in each of cross-section with index 𝑖, a grid of fixed points is

defined in the direction 𝑦, 𝑧 with index 𝑗, 𝑘 respectively (Figure (Figure 7-5b)). It is very

important to remark that the position of longitudinal interpolation points is independent

of the Gauss points along the element axis of the Timoshenko multifiber beam.

z
y

x

section i

5 interpolation
points

4 interpolation
points

(a) Longitudinal interpolation points
along the element axis.

z

y

z

y

section i

(b) Sectional interpolation points over
the rectangular cross-section.

Figure 3-6 – System of fixed interpolation points in the beam element.

Then, at any of these fixed interpolation points, with coordinate (𝑥𝑖, 𝑦𝑗, 𝑧𝑘), the en-
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hanced displacement values
(︀
𝑈 𝑒
𝑖𝑗𝑘, 𝑉

𝑒
𝑖𝑗𝑘,𝑊

𝑒
𝑖𝑗𝑘

)︀
are defined as independent additional DoFs

(Figure 3-7). These enhanced displacement values may have one to three components: 𝑈 𝑒
𝑖𝑗𝑘

in the axial direction representing the warping field and the two 𝑉 𝑒
𝑖𝑗𝑘, 𝑊 𝑒

𝑖𝑗𝑘 in transversal

direction representing the distortion field.

Ueijk

Veijk
We
ijk

Figure 3-7 – Enhanced displacement values defined as independent additional DoFs.

In order to interpolate these enhanced displacement values to the enhanced displace-

ment of any material point, the Lagrange polynomials are defined for the interpolation

functions of the warping distribution and the warping profile. The reason for this choice

is that the Lagrange polynomials are continuously differentiable, so they respond to the

requirement to evaluate the material strain, as shown in Equation (3.18), similar to the

Saint-Venant warping function. Moreover, Lagrange polynomials are applicable to any

shape of section and any material response, thus they are general enough for further

studies to be carried out.

The distribution of warping displacement is defined over a grid of 𝑛𝑤 points along

the element axis and is described with 1D interpolation function 𝐿𝑖(𝑥). The degree of

interpolation function depends on the number of interpolation points 𝑛𝑤: quadratic if

𝑛𝑤 = 3, cubic if 𝑛𝑤 = 4 or even quartic if 𝑛𝑤 = 5 (Figure 3-8).

1

1

1

1

1 2 3 4

N1

N2

N3

N4

1

1

1 2 3

N1

N2

N31

nw=3 (quadratic) nw=4 (cubic)

1

1 2 3 5

N1

N2

N3

N4

nw=5 (quartic)

4

1

1 N5

1

1

Figure 3-8 – Lagrange interpolation polynomials for one dimensional finite elements.
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The warping profile is defined by a grid of 𝑠𝑤 points distributed over the section 𝑖 and

is described using the 2D interpolation function 𝑆𝑗𝑘(𝑦, 𝑧). This 2D interpolation function

can be achieved by simple products of 1D Lagrange polynomials in the two coordinates

(Figure 3-9). At section 𝑖, each interpolation point is accompanied by its 2D Lagrange

polynomials 𝑆𝑗𝑘(𝑦, 𝑧), this results in a total of 𝑠𝑤 2D polynomials over the cross-section.

(j,k)

1

1

1=x

(0,0)

Figure 3-9 – Generation of Lagrange interpolation polynomials for 2D finite elements.

3.3.3.1 Interpolation of enhanced material displacement

Using the system above, at interpolated section 𝑥𝑖, the enhanced material displacement

are defined as follows:

𝑈 𝑒(𝑥𝑖, 𝑦, 𝑧) =
𝑠𝑤∑︁

𝑗𝑘=1

𝑆𝑗𝑘(𝑦, 𝑧)𝑈 𝑒
𝑖𝑗𝑘 = S̄(𝑦, 𝑧)U𝑒

𝑖 (3.20a)

𝑉 𝑒(𝑥𝑖, 𝑦, 𝑧) =
𝑠𝑤∑︁

𝑗𝑘=1

𝑆𝑗𝑘(𝑦, 𝑧)𝑉 𝑒
𝑖𝑗𝑘 = S̄(𝑦, 𝑧)V𝑒

𝑖 (3.20b)

𝑊 𝑒(𝑥𝑖, 𝑦, 𝑧) =
𝑠𝑤∑︁

𝑗𝑘=1

𝑆𝑗𝑘(𝑦, 𝑧)𝑊 𝑒
𝑖𝑗𝑘 = S̄(𝑦, 𝑧)W𝑒

𝑖 (3.20c)

where S̄(𝑦, 𝑧) =
(︁
𝑆1 . . . 𝑆𝑗𝑘 . . . 𝑆𝑠𝑤

)︁
is a row vector of 𝑠𝑤 columns (1×𝑠𝑤) containing

the 2D interpolation functions of each interpolation point; U𝑒
𝑖 =

(︁
𝑈 𝑒
𝑖1 . . . 𝑈 𝑒

𝑖𝑗𝑘 . . . 𝑈 𝑒
𝑖𝑠𝑤

)︁𝑇
is a column vector (𝑠𝑤 × 1) containing the axial enhanced displacement values at section

𝑖; similar definition can be applied for 2 vectors V𝑒
𝑖 and W𝑒

𝑖 . Then, the enhanced material

displacement at any points of element can be expressed as:

𝑈 𝑒(𝑥, 𝑦, 𝑧) =
𝑛𝑤∑︁
𝑖=1

𝐿𝑖(𝑥)𝑈 𝑒(𝑥𝑖, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)U𝑒 (3.21a)

𝑉 𝑒(𝑥, 𝑦, 𝑧) =
𝑛𝑤∑︁
𝑖=1

𝐿𝑖(𝑥)𝑉 𝑒(𝑥𝑖, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)V𝑒 (3.21b)

𝑊 𝑒(𝑥, 𝑦, 𝑧) =
𝑛𝑤∑︁
𝑖=1

𝐿𝑖(𝑥)𝑊 𝑒(𝑥𝑖, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)W𝑒 (3.21c)
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where L̂(𝑥) =
(︁
𝐿1 . . . 𝐿𝑖 . . . 𝐿𝑛𝑤

)︁
is a row vector (1 × 𝑛𝑤) containing the 1D inter-

polation functions of each interpolation point; U𝑒 =
(︁
𝑈 𝑒𝑇
1 . . . 𝑈 𝑒𝑇

𝑖 . . . 𝑈 𝑒𝑇
𝑠𝑤.𝑛𝑤

)︁𝑇
is a

column vector (𝑛𝑤.𝑠𝑤 × 1) containing the axial enhanced displacement values of element;

similar definition can be applied for 2 vectors V𝑒 and W𝑒; Ŝ(𝑦, 𝑧) is a matrix (𝑛𝑤×𝑛𝑤.𝑠𝑤)

containing a number of 𝑛𝑤 vector S̄(𝑦, 𝑧) and several zero row vectors (1 × 𝑠𝑤):

Ŝ(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎣
S̄(𝑦, 𝑧) 0𝑠𝑤 . . . 0𝑠𝑤

0𝑠𝑤 S̄(𝑦, 𝑧) . . . 0𝑠𝑤

...
...

. . .
...

0𝑠𝑤 0𝑠𝑤 . . . S̄(𝑦, 𝑧)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.22)

3.3.3.2 Derivation of enhanced material strain

From the definition of enhanced displacements field, a complete strain state of 6 compo-

nents for the enhanced material strains can be established as follows:

𝜀𝑒𝑥𝑥 =
𝜕𝑈 𝑒

𝜕𝑥
=
𝜕L̂(𝑥)

𝜕𝑥
Ŝ(𝑦, 𝑧)U𝑒 (3.23a)

𝜀𝑒𝑦𝑦 =
𝜕𝑉 𝑒

𝜕𝑦
= L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑦
V𝑒 (3.23b)

𝜀𝑒𝑧𝑧 =
𝜕𝑊 𝑒

𝜕𝑧
= L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑧
W𝑒 (3.23c)

𝛾𝑒𝑥𝑦 =
𝜕𝑈 𝑒

𝜕𝑦
+
𝜕𝑉 𝑒

𝜕𝑥
= L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑦
U𝑒 +

𝜕L̂(𝑥)

𝜕𝑥
Ŝ(𝑦, 𝑧)V𝑒 (3.23d)

𝛾𝑒𝑥𝑧 =
𝜕𝑈 𝑒

𝜕𝑧
+
𝜕𝑊 𝑒

𝜕𝑥
= L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑧
U𝑒 +

𝜕L̂(𝑥)

𝜕𝑥
Ŝ(𝑦, 𝑧)W𝑒 (3.23e)

𝛾𝑒𝑦𝑧 =
𝜕𝑉 𝑒

𝜕𝑧
+
𝜕𝑊 𝑒

𝜕𝑦
= L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑧
V𝑒 + L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑦
W𝑒 (3.23f)

Three column vectors U𝑒, V𝑒 and W𝑒 can be grouped in only one column vectors

d𝑒 =
(︁
U𝑒𝑇 V𝑒𝑇 W𝑒𝑇

)︁𝑇
of (3.𝑛𝑤.𝑠𝑤 × 1), which represents the enhanced displacement

values of element. The additional DoFs of the enhanced field is therefore equal to 3.𝑛𝑤.𝑠𝑤.

Equation (3.23) can be re-written as follows:

e𝑒𝑓
*(𝑥, 𝑦, 𝑧) = a𝑒

𝑓
*(𝑥, 𝑦, 𝑧)d𝑒 (3.24)

Where the expression of the enhanced compatibility matrix a𝑒
𝑓
*(𝑥, 𝑦, 𝑧) is quite complex:

a𝑒
𝑓
*(𝑥, 𝑦, 𝑧) =

𝜕L*(𝑥)

𝜕𝑥
S*
𝑥(𝑦, 𝑧) + L*(𝑥)S*

𝑦𝑧(𝑦, 𝑧) (3.25)
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where L*(𝑥) is a longitudinal interpolation matrix of (6 × 6.3.𝑛𝑤), containing the 1D

Lagrange polynomial at section 𝑖:

L*(𝑥) =
[︁
L*

1(𝑥) . . . L*
𝑖 (𝑥) . . .L*

𝑛𝑤(𝑥)
]︁

and

L𝑖(𝑥) =

⎡⎢⎢⎢⎢⎣
𝐿𝑖(𝑥) 0 . . . 0 𝐿𝑖(𝑥) 0 . . . 0 𝐿𝑖(𝑥) 0 . . . 0

0 𝐿𝑖(𝑥) . . . 0 0 𝐿𝑖(𝑥) . . . 0 0 𝐿𝑖(𝑥) . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 . . . 𝐿𝑖(𝑥) 0 0 . . . 𝐿𝑖(𝑥) 0 0 . . . 𝐿𝑖(𝑥)

⎤⎥⎥⎥⎥⎦
(3.26)

The sectional interpolation matrices S*
𝑥(𝑦, 𝑧) has 6.3.𝑛𝑤 rows and 3.𝑠𝑤.𝑛𝑤 columns:

S*
𝑥(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎣
Ŝ*
𝑥(𝑦, 𝑧) 0𝑤 . . . 0𝑤

0𝑤 Ŝ*
𝑥(𝑦, 𝑧) . . . 0𝑤

...
...

. . .
...

0𝑤 0𝑤 . . . Ŝ*
𝑥(𝑦, 𝑧)

⎤⎥⎥⎥⎥⎥⎥⎦ and Ŝ*
𝑥(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
S𝑢
𝑥
*(𝑦, 𝑧) 06𝑠𝑤 06𝑠𝑤

06𝑠𝑤 S𝑣
𝑥
*(𝑦, 𝑧) 06𝑠𝑤

06𝑠𝑤 06𝑠𝑤 S𝑤
𝑥
*(𝑦, 𝑧)

⎤⎥⎥⎥⎦
(3.27)

where 0𝑤 is a zero matrix of (18 × 3.𝑠𝑤); 06𝑠𝑤 is a zero matrix of (6 × 𝑠𝑤); S𝑢
𝑥
*(𝑦, 𝑧),

S𝑣
𝑥
*(𝑦, 𝑧) and S𝑤

𝑥
*(𝑦, 𝑧) are three matrices of (6× 𝑠𝑤) containing the row vector S̄(𝑦, 𝑧) in

Equation (3.20) and the zero row vector of (1 × 𝑠𝑤):

S𝑢
𝑥
*(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄(𝑦, 𝑧)

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; S𝑣

𝑥
*(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

S̄(𝑦, 𝑧)

0𝑠𝑤

0𝑠𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; S𝑤

𝑥
*(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

S̄(𝑦, 𝑧)

0𝑠𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (3.28)

Similar to the sectional interpolation matrices S*
𝑦𝑧(𝑦, 𝑧):

S*
𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎣
Ŝ*
𝑦𝑧(𝑦, 𝑧) 0𝑤 . . . 0𝑤

0𝑤 Ŝ*
𝑦𝑧(𝑦, 𝑧) . . . 0𝑤

...
...

. . .
...

0𝑤 0𝑤 . . . Ŝ*
𝑦𝑧(𝑦, 𝑧)

⎤⎥⎥⎥⎥⎥⎥⎦ ; and Ŝ*
𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
S𝑢*
𝑦𝑧 (𝑦, 𝑧) 06𝑠𝑤 06𝑠𝑤

06𝑠𝑤 S𝑣*
𝑦𝑧(𝑦, 𝑧) 06𝑠𝑤

06𝑠𝑤 06𝑠𝑤 S𝑤*
𝑦𝑧 (𝑦, 𝑧)

⎤⎥⎥⎥⎦
(3.29)

with S𝑢*
𝑦𝑧(𝑦, 𝑧), S𝑣*

𝑦𝑧(𝑦, 𝑧) and S𝑤*
𝑦𝑧 (𝑦, 𝑧) are three matrices of (6×𝑠𝑤) containing the deriva-

tion with respect to 𝑦 and 𝑧 of the row vector S̄(𝑦, 𝑧) in Equation (3.20) and the zero row
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vector of 𝑠𝑤 columns:

S𝑢*
𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

𝜕S̄(𝑦, 𝑧)

𝜕𝑦
𝜕S̄(𝑦, 𝑧)

𝜕𝑧

0𝑠𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; S𝑣*

𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0𝑠𝑤

𝜕S̄(𝑦, 𝑧)

𝜕𝑦

0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

𝜕S̄(𝑦, 𝑧)

𝜕𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; S𝑤*

𝑦𝑧 (𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0𝑠𝑤

0𝑠𝑤

𝜕S̄(𝑦, 𝑧)

𝜕𝑧

0𝑠𝑤

0𝑠𝑤

𝜕S̄(𝑦, 𝑧)

𝜕𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.30)

The superposition of enhanced material strain in Equation (3.23) into classical material

strain gives the following kinematic relation:

e𝑚𝑓
*(𝑥, 𝑦, 𝑧) = a𝑝

𝑓
*(𝑦, 𝑧)e𝑠(𝑥) + a𝑒

𝑓
*(𝑥, 𝑦, 𝑧)d𝑒 (3.31)

where e𝑚𝑓
*(𝑥, 𝑦, 𝑧) is the total material strain of six components, a𝑝

𝑓
*(𝑦, 𝑧) is the classical

compatibility matrix modified from the compatibility matrix in Equation (3.12):

a𝑝
𝑓
*(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 𝑧 −𝑦
0 0 0 0 0 0

0 0 0 0 0 0

0 𝑘𝑦𝑐𝑦(𝑦, 𝑧) 0 −𝑧 0 0

0 0 𝑘𝑧𝑐𝑧(𝑦, 𝑧) 𝑦 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.32)

Equation (3.31) relates the total material strain to the classical generalized strains and

the enhanced displacement values. This kinematic relation is general and can be used to

take into account the distortion and warping phenomenon. However, in this work, only

the warping phenomenon is considered while the distortion is neglected. As a result, the

enhanced displacement values in the transversal directions 𝑉 𝑒
𝑖𝑗𝑘 and 𝑊 𝑒

𝑖𝑗𝑘 become zero,

and the enhanced strain state has only 3 components similar to the classical one. The

kinematic relation in Equation (3.31) can be re-written as follows:

e𝑚𝑓 (𝑥, 𝑦, 𝑧) = a𝑝
𝑓 (𝑦, 𝑧)e𝑠(𝑥) + a𝑒

𝑓 (𝑥, 𝑦, 𝑧)U𝑒 (3.33)

where the classical compatibility matrix a𝑝
𝑓 (𝑦, 𝑧) is the same as in Equation (3.12); the
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total material strain e𝑚𝑓 (𝑥, 𝑦, 𝑧) is reduced from 6 to 3 components:

𝜀𝑚𝑥𝑥 = 𝜀𝑝𝑥𝑥 + 𝜀𝑒𝑥𝑥 = 𝜀𝑥 − 𝑦𝜅𝑧 + 𝑧𝜅𝑦 +
𝜕L̂(𝑥)

𝜕𝑥
Ŝ(𝑦, 𝑧)U𝑒 (3.34a)

𝛾𝑚𝑥𝑦 = 𝛾𝑝𝑥𝑦 + 𝛾𝑒𝑥𝑦 = 𝛾𝑦 − 𝑧𝜅𝑥 + L̂(𝑥)
𝜕Ŝ(𝑦, 𝑧)

𝜕𝑦
U𝑒 (3.34b)

𝛾𝑚𝑥𝑧 = 𝛾𝑝𝑥𝑧 + 𝛾𝑒𝑥𝑧 = 𝛾𝑧 + 𝑦𝜅𝑥 + L̂(𝑥)
𝜕Ŝ(𝑦, 𝑧)

𝜕𝑧
U𝑒 (3.34c)

the enhanced compatibility matrix a𝑒
𝑓 (𝑥, 𝑦, 𝑧) is modified from the matrix a𝑒

𝑓
*(𝑥, 𝑦, 𝑧) in

Equation (3.25):

a𝑒
𝑓 (𝑥, 𝑦, 𝑧) =

𝜕L(𝑥)

𝜕𝑥
S𝑥(𝑦, 𝑧) + L(𝑥)S𝑦𝑧(𝑦, 𝑧) (3.35)

the sub-compatibility matrix L(𝑥), containing 1D polynomials 𝐿𝑖(𝑥), is a longitudinal

interpolation matrix of (3 × 3.3.𝑛𝑤) modified from matrix L*(𝑥) in Equation (3.26); the

sub-compatibility matrix S𝑥(𝑥), containing 2D polynomials 𝑆𝑖(𝑥), is a sectional interpo-

lation matrix of (3.3.𝑛𝑤 × 𝑠𝑤.𝑛𝑤) modified from matrix S*
𝑥(𝑥) in Equation (3.27); and the

sub-compatibility matrix S𝑦𝑧(𝑥), containing the derivations with respect to 𝑦 and 𝑧 of 2D

polynomials 𝑆𝑖(𝑥), is a sectional interpolation matrix of (3.3.𝑛𝑤 × 𝑠𝑤.𝑛𝑤) modified from

matrix S*
𝑦𝑧(𝑥) in Equation (3.29). The detailed expression of theses sub-compatibility

matrix can be found in Appendix 7.2.

It is worth to note that, comparing to the total material strains built up using Saint-

Venant warping function in Section 3.3.2, in this approach the enhanced terms
𝜕𝜓

𝜕𝑦
𝜅𝑥 and

𝜕𝜓

𝜕𝑧
𝜅𝑥 in shear strains are replaced by L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑦
U𝑒 and L̂(𝑥)

𝜕Ŝ(𝑦, 𝑧)

𝜕𝑧
U𝑒, respectively.

Moreover, in the axial strain, an additional enhanced term
𝜕L̂(𝑥)

𝜕𝑥
Ŝ(𝑦, 𝑧)U𝑒 is added,

which allows to calculate and represent the warping displacement profile and the additional

normal stress due to warping in the case of shear effect.

Another important remark is that the number of DoFs in this approach is increased

considerably. While Saint-Venant warping function approach maintains the element DoFs

at 12, this method requires a total number of DoFs equal to 12 + 𝑛𝑤.𝑠𝑤, where 𝑛𝑤.𝑠𝑤 is

the total number of fixed interpolation points. If distortion phenomenon is included, the

number of additional DoFs increases to 3.𝑛𝑤.𝑠𝑤, making a total of 12 + 3.𝑛𝑤.𝑠𝑤 DoFs in

each element. The computational cost is therefore much more expensive.
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3.4 Variational formulation

Once the material strain vector e𝑚𝑓 is obtained at each material point, an appropriate

behavior constitutive model is applied in order to determine the material stresses, which

are collected in a single stress vector s𝑚𝑓 =
(︁
𝜎𝑚
𝑥𝑥 𝜏𝑚𝑥𝑦 𝜏𝑚𝑥𝑧

)︁𝑇
. This constitutive relation is

expressed as follows:

𝛿s𝑚𝑓 = k𝑓𝛿e
𝑚
𝑓 (3.36)

where k𝑓 is the material stiffness matrix, which is determined in Section 3.5.

Next, the element equilibrium is considered between internal and external potential

energy. Let the element be subjected by a virtual displacement 𝛿𝑑, then the principle of

virtual work gives an equation between internal and external energy:

𝛿W𝑖 = 𝛿W𝑒 ⇒
∫︁∫︁∫︁

𝑉

𝛿e𝑚𝑓
𝑇 s𝑚𝑓 𝑑𝑉 = 𝛿q𝑚𝑇

𝑒 Q𝑚
𝑒 +

∫︁
𝐿

𝛿d𝑚
𝑠 P

𝑚
𝑢 𝑑𝑥 (3.37)

where the internal virtual work is represented by the left-hand side, while the external

virtual work is expressed by the right-hand; Q𝑚
𝑒 is the external nodal forces and P𝑚

𝑢 is

the external uniform loading. Depending on the approach of enhanced field, two different

cases are investigated as follows:

3.4.1 Enhanced field using Saint-Venant warping function

The left-hand side of Equation (3.37) represents the equilibrium conditions at sectional

level. Using Equation (3.18), the variation of internal work can be expressed as follows:

𝛿W𝑖 =

∫︁∫︁∫︁
𝑉

𝛿e𝑚𝑓
𝑇 s𝑚𝑓 𝑑𝑉 =

∫︁∫︁∫︁
𝑉

𝛿e𝑇𝑠 (𝑥)a𝑚
𝑓

𝑇 (𝑦, 𝑧)s𝑚𝑓 𝑑𝑉 (3.38)

As the term 𝛿e𝑠(𝑥) is a function of the cross-section coordinate 𝑥 and a𝑚
𝑓 (𝑦, 𝑧)𝑇 s𝑚𝑓 is a

function of the fiber coordinates 𝑦 and 𝑧, the variation of virtual internal work can be

decomposed into an integral over the element length and another over the cross-section

area:

𝛿W𝑖 =

∫︁
𝐿

𝛿e𝑇𝑠 (𝑥)

(︂∫︁∫︁
𝐴

a𝑚
𝑓

𝑇 (𝑦, 𝑧)s𝑚𝑓 𝑑𝐴

)︂
𝑑𝑥 (3.39)
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At sectional level, the generalized stresses (or sectional forces) can be defined as an integral

over the cross-section area of the stress field:

D𝑠(𝑥) =

∫︁∫︁
𝐴

a𝑚
𝑓 (𝑦, 𝑧)𝑇 s𝑚𝑓 𝑑𝐴 (3.40)

By exploiting the expression of a𝑚
𝑓 (𝑦, 𝑧) in Equation (3.19) and s𝑚𝑓 , we obtain, in an

explicit manner, a vector of sectional forces containing 6 components:

D𝑠(𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁𝑥

𝑉𝑦

𝑉𝑧

𝑀𝑥

𝑀𝑦

𝑀𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︁∫︁
𝐴

𝜎𝑥𝑥𝑑𝐴∫︁∫︁
𝐴

𝑘𝑦𝑐𝑦(𝑦, 𝑧)𝜏𝑥𝑦𝑑𝐴∫︁∫︁
𝐴

𝑘𝑧𝑐𝑧(𝑦, 𝑧)𝜏𝑥𝑧𝑑𝐴∫︁∫︁
𝐴

[︂(︂
𝑦 +

𝜕𝜓

𝜕𝑧

)︂
𝜏𝑥𝑧 −

(︂
𝑧 − 𝜕𝜓

𝜕𝑦

)︂
𝜏𝑥𝑦

]︂
𝑑𝐴∫︁∫︁

𝐴

𝑧𝜎𝑥𝑥𝑑𝐴

−
∫︁∫︁

𝐴

𝑦𝜎𝑥𝑥𝑑𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.41)

As we see, all the internal actions can be determined from the stress resultants. We can

observe that the expression of the internal torsional moment 𝑀𝑥 has been enhanced by

the introduction of the warping function 𝜓, which will affect the values of the twist 𝜅𝑥

and the twist angle 𝜃𝑥, consequently. Equation (3.40) can be re-written with the aid of

the constitutive relation in Equation (3.36):

D𝑠(𝑥) =

∫︁∫︁
𝐴

a𝑚
𝑓

𝑇 (𝑦, 𝑧)k𝑓e
𝑚
𝑓 𝑑𝐴 =

(︂∫︁∫︁
𝐴

a𝑚
𝑓

𝑇 (𝑦, 𝑧)k𝑓a
𝑚
𝑓 (𝑦, 𝑧)𝑑𝐴

)︂
e𝑠(𝑥) (3.42)

the sectional stiffness matrix can thus be defined as follows:

K𝑠 =

∫︁∫︁
𝐴

a𝑚
𝑓

𝑇 (𝑦, 𝑧)k𝑓a
𝑚
𝑓 (𝑦, 𝑧)𝑑𝐴 (3.43)

Therefore, the equilibrium at sectional level between the generalized stresses and the

generalized strain can be expressed as follows:

𝛿D𝑠(𝑥) = K𝑠𝛿e𝑠(𝑥) (3.44)
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3.4.1.1 Element state determination

The right-hand side of Equation (3.37) can be exploited with the aid of Equation (3.2) as

follows:

𝛿W𝑒 = 𝛿q𝑇
𝑒 Q𝑒 +

∫︁
𝐿

𝛿d𝑇
𝑠 P𝑢𝑑𝑥 = 𝛿q𝑇

𝑒 Q𝑒 +

∫︁
𝐿

𝛿q𝑇
𝑒 N

𝑇
𝑠 P

𝑑
𝑢𝑥 = 𝛿q𝑇

𝑒

(︂
Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

)︂
(3.45)

Hence, the virtual work equilibrium from Equation (3.37) has now become:

∫︁
𝐿

𝛿e𝑇𝑠 D𝑠𝑑𝑥 = 𝛿q𝑇
𝑒

(︂
Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

)︂
(3.46)

Using the relation from Equation (3.14) and (3.44), we obtain:

𝛿q𝑇
𝑒

(︂∫︁
𝐿

B𝑇
𝑠 K𝑠B𝑠𝑑𝑥

)︂
q𝑒 = 𝛿q𝑇

𝑒

(︂
Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

)︂
⇒
(︂∫︁

𝐿

B𝑇
𝑠 K𝑠B𝑠𝑑𝑥

)︂
q𝑒 = Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

(3.47)

The element stiffness matrix can be defined as:

K𝑒 =

∫︁
𝐿

B𝑇
𝑠 K𝑠B𝑠𝑑𝑥 (3.48)

And the element equilibrium becomes:

K𝑒q𝑒 = Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥 (3.49)

The element stiffness matrix K𝑒 and the nodal forces Q𝑒 are then assembled into the

structure stiffness matrix and nodal forces vector using standard procedures of structural

analysis. All the necessary equations for the element state determination are completed.

3.4.2 Enhanced field using Lagrange polynomials

While the number of DoFs in the latter approach is maintained at 12 for each element, in

this approach, the number of DoFs increases considerably to 𝑛𝑤.𝑠𝑤 (or 3.𝑛𝑤.𝑠𝑤 if distortion

is considered), as mentioned in Section 3.3.3. With the present of additional DoFs, all

the variables are now separated into two sets: the basic set of 12 DoFs and the additional

set of 𝑛𝑤.𝑠𝑤 (or 3.𝑛𝑤.𝑠𝑤) DoFs. It is worth to note that the basic set is also a combined

of classical and enhanced displacement/strain fields.
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3.4.2.1 Sectional state determination

Considering the sectional equilibrium in the left-hand side of Equation (3.37) in the case

that the distortion phenomenon is neglected, the following expression of the variation of

virtual internal work is obtained using Equation (3.34):

𝛿W𝑖 =

∫︁∫︁∫︁
𝑉

𝛿e𝑚𝑓
𝑇 s𝑚𝑓 𝑑𝑉 =

∫︁∫︁∫︁
𝑉

𝛿
(︁
e𝑇𝑠 (𝑥)a𝑝

𝑓
𝑇 (𝑦, 𝑧) + U𝑒𝑇a𝑒

𝑓
𝑇 (𝑥, 𝑦, 𝑧)

)︁
s𝑚𝑓 𝑑𝑉 (3.50)

Using the expression of a𝑒
𝑓 (𝑥, 𝑦, 𝑧) in Equation (3.35), Equation (3.50) becomes:

𝛿W𝑖 =

∫︁
𝐿

𝛿e𝑇𝑠 (𝑥)

(︂∫︁∫︁
𝐴

a𝑝
𝑓
𝑇 (𝑦, 𝑧)s𝑚𝑓 𝑑𝐴

)︂
𝑑𝑥

+ 𝛿U𝑒𝑇

[︂∫︁
𝐿

𝜕L𝑇 (𝑥)

𝜕𝑥

(︂∫︁∫︁
𝐴

S𝑇
𝑥 (𝑦, 𝑧)s𝑚𝑓 𝑑𝐴

)︂
𝑑𝑥+

∫︁
𝐿

L𝑇 (𝑥)

(︂∫︁∫︁
𝐴

S𝑇
𝑦𝑧(𝑦, 𝑧)s

𝑚
𝑓 𝑑𝐴

)︂
𝑑𝑥

]︂
(3.51)

Corresponding to the sectional forces in Equation (3.40), the ”basic” sectional forces in

this approach can be defined as follows:

D𝑏
𝑠(𝑥) =

∫︁∫︁
𝐴

a𝑝
𝑓 (𝑦, 𝑧)𝑇 s𝑚𝑓 𝑑𝐴 (3.52)

This basic sectional forces can be expressed as a combination of the classical field and the

enhanced one with the aid of the constitutive relation in Equation (3.36):

D𝑏
𝑠(𝑥) =

(︂∫︁∫︁
𝐴

a𝑝𝑇
𝑓 (𝑦, 𝑧)k𝑓a

𝑝
𝑓 (𝑦, 𝑧)𝑑𝐴

)︂
e𝑠(𝑥)

+

[︂(︂∫︁∫︁
𝐴

a𝑝
𝑓
𝑇 (𝑦, 𝑧)k𝑓S𝑥(𝑦, 𝑧)𝑑𝐴

)︂
𝜕L(𝑥)

𝜕𝑥
+

(︂∫︁∫︁
𝐴

a𝑝
𝑓
𝑇 (𝑦, 𝑧)k𝑓S𝑦𝑧(𝑦, 𝑧)𝑑𝐴

)︂
L(𝑥)

]︂
U𝑒

(3.53)

Due to the present of additional DoFs, the following additional sectional forces are also

defined:

D𝑎𝑥
𝑠 (𝑥) =

∫︁∫︁
𝐴

S𝑇
𝑥 (𝑦, 𝑧)s𝑚𝑓 𝑑𝐴 (3.54a)

D𝑎𝑦𝑧
𝑠 (𝑥) =

∫︁∫︁
𝐴

S𝑇
𝑦𝑧(𝑦, 𝑧)s

𝑚
𝑓 𝑑𝐴 (3.54b)
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which can also be exploited as follows:

D𝑎𝑥
𝑠 (𝑥) =

(︂∫︁∫︁
𝐴

S𝑇
𝑥 (𝑦, 𝑧)k𝑓a

𝑝
𝑓𝑑𝐴

)︂
e𝑠(𝑥)

+

[︂(︂∫︁∫︁
𝐴

S𝑇
𝑥 (𝑦, 𝑧)k𝑓S𝑥(𝑦, 𝑧)𝑑𝐴

)︂
𝜕L(𝑥)

𝜕𝑥
+

(︂∫︁∫︁
𝐴

S𝑇
𝑥 (𝑦, 𝑧)k𝑓S𝑦𝑧(𝑦, 𝑧)𝑑𝐴

)︂
L(𝑥)

]︂
U𝑒

(3.55a)

D𝑎𝑦𝑧
𝑠 (𝑥) =

(︂∫︁∫︁
𝐴

S𝑇
𝑦𝑧(𝑦, 𝑧)k𝑓a

𝑝
𝑓𝑑𝐴

)︂
e𝑠(𝑥)

+

[︂(︂∫︁∫︁
𝐴

S𝑇
𝑦𝑧(𝑦, 𝑧)k𝑓S𝑥(𝑦, 𝑧)𝑑𝐴

)︂
𝜕L(𝑥)

𝜕𝑥
+

(︂∫︁∫︁
𝐴

S𝑇
𝑦𝑧(𝑦, 𝑧)k𝑓S𝑦𝑧(𝑦, 𝑧)𝑑𝐴

)︂
L(𝑥)

]︂
U𝑒

(3.55b)

From these expressions of sectional forces, a system of 9 sectional stiffness matrices

can be defined as follows:

K𝑏𝑏
𝑠 =

∫︁∫︁
𝐴

a𝑝
𝑓
𝑇k𝑓a

𝑝
𝑓𝑑𝐴 (3.56a)

K𝑏𝑎𝑥
𝑠 =

∫︁∫︁
𝐴

a𝑝
𝑓
𝑇k𝑓S𝑥𝑑𝐴 (3.56b)

K𝑏𝑎𝑦𝑧
𝑠 =

∫︁∫︁
𝐴

a𝑝
𝑓
𝑇k𝑓S𝑦𝑧𝑑𝐴 (3.56c)

K𝑎𝑥𝑏
𝑠 =

∫︁∫︁
𝐴

S𝑇
𝑥k𝑓a

𝑝
𝑓𝑑𝐴 (3.56d)

K𝑎𝑥
𝑠 =

∫︁∫︁
𝐴

S𝑇
𝑥k𝑓S𝑥𝑑𝐴 (3.56e)

K𝑎𝑥𝑦𝑧
𝑠 =

∫︁∫︁
𝐴

S𝑇
𝑥k𝑓S𝑦𝑧𝑑𝐴 (3.56f)

K𝑎𝑦𝑧𝑏
𝑠 =

∫︁∫︁
𝐴

S𝑇
𝑦𝑧k𝑓a

𝑝
𝑓𝑑𝐴 (3.56g)

K𝑎𝑦𝑧𝑥
𝑠 =

∫︁∫︁
𝐴

S𝑇
𝑦𝑧k𝑓S𝑥𝑑𝐴 (3.56h)

K𝑎𝑦𝑧
𝑠 =

∫︁∫︁
𝐴

S𝑇
𝑦𝑧k𝑓S𝑦𝑧𝑑𝐴 (3.56i)

The expression of the variation of internal virtual work in Equation (3.50) can be re-

written as follows:

𝛿W𝑖 =

∫︁
𝐿

𝛿e𝑇𝑠 (𝑥)D𝑏
𝑠(𝑥)𝑑𝑥+

(︂∫︁
𝐿

𝜕L𝑇 (𝑥)

𝜕𝑥
D𝑎𝑥

𝑠 (𝑥)𝑑𝑥+

∫︁
𝐿

L𝑇 (𝑥)D𝑎𝑦𝑧
𝑠 (𝑥)𝑑𝑥

)︂
𝛿d𝑒𝑇 (3.57)
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3.4.2.2 Element state determination

The right-hand side of Equation (3.37) is expressed as:

𝛿W𝑒 = 𝛿q𝑚𝑇
𝑒 Q𝑚

𝑒 +

∫︁
𝐿

𝛿d𝑚
𝑠

𝑇 (𝑥)P𝑚
𝑢 𝑑𝑥 (3.58)

where the nodal displacements q𝑚
𝑒 is expressed as: q𝑚

𝑒 =

⎛⎝q𝑒

U𝑒

⎞⎠, containing the classical

nodal displacements q𝑒 of 12 DoFs and the enhanced displacement values U𝑒 of 𝑛𝑤.𝑠𝑤

DoFs. Similarly, the generalized displacements d𝑚
𝑠 (𝑥), the external nodal forces Q𝑚

𝑒 and

the external uniform loading P𝑚
𝑢 must also be decomposed into two parts: d𝑚

𝑠 (𝑥) =⎛⎝d𝑠(𝑥)

d𝑒
𝑠(𝑥)

⎞⎠, Q𝑚
𝑒 =

⎛⎝Q𝑒

Q𝑒
𝑒

⎞⎠, P𝑚
𝑢 =

⎛⎝P𝑢

P𝑒
𝑢

⎞⎠. Since all the sections are assumed free to warp,

the additional forces (or warping forces in the case that only warping is taken into account)

Q𝑒
𝑒 and P𝑒

𝑢 are zero to ensure the condition of element equilibrium.

Using Equation (3.57) and (3.58), the basic part of the element equilibrium can be

expressed as follows:

∫︁
𝐿

𝛿e𝑇𝑠 (𝑥)D𝑏
𝑠(𝑥)𝑑𝑥 = 𝛿q𝑇

𝑒 Q𝑒 +

∫︁
𝐿

𝛿d𝑇
𝑠 (𝑥)P𝑢𝑑𝑥 (3.59)

from Equation (3.2) and (3.14):

∫︁
𝐿

𝛿q𝑇
𝑒 B

𝑇
𝑠 D

𝑏
𝑠𝑑𝑥 = 𝛿q𝑇

𝑒 Q𝑒 + 𝛿q𝑇
𝑒

∫︁
𝐿

𝛿N𝑇
𝑠 P𝑢

⇒
∫︁
𝐿

B𝑇
𝑠 D

𝑏
𝑠𝑑𝑥 = Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑑𝑥

(3.60)

Similarly for the additional part, from Equation (3.57) and (3.58):

(︂∫︁
𝐿

𝜕L𝑇 (𝑥)

𝜕𝑥
D𝑎𝑥

𝑠 (𝑥)𝑑𝑥+

∫︁
𝐿

L𝑇 (𝑥)D𝑎𝑦𝑧
𝑠 (𝑥)𝑑𝑥

)︂
𝛿U𝑒𝑇 = 0

⇒
∫︁
𝐿

𝜕L(𝑥)

𝜕𝑥
D𝑎𝑥

𝑠 (𝑥)𝑑𝑥+

∫︁
𝐿

L(𝑥)D𝑎𝑦𝑧
𝑠 (𝑥)𝑑𝑥 = 0

(3.61)

Finally, from 2 equations (3.60) and (3.61), the right-hand side of Equation (3.37) can
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be expressed as follows:

⎡⎣K𝑏𝑏
𝑒 K𝑏𝑎

𝑒

K𝑎𝑏
𝑒 K𝑎𝑎

𝑒

⎤⎦⎛⎝q𝑒

U𝑒

⎞⎠ =

⎛⎜⎝Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

0

⎞⎟⎠ (3.62)

where the matrix components are constructed from the interpolation functions and the

sectional stiffness matrix in Equation (3.56):

K𝑏𝑏
𝑒 =

∫︁
𝐿

B𝑇
𝑠 K

𝑏𝑏
𝑠 B𝑠𝑑𝑥

K𝑏𝑎
𝑒 =

∫︁
𝐿

B𝑇
𝑠

(︂
K𝑏𝑎𝑥

𝑠

𝜕L(𝑥)

𝜕𝑥
+ K𝑏𝑎𝑦𝑧

𝑠 L(𝑥)

)︂
𝑑𝑥

K𝑎𝑏
𝑒 =

∫︁
𝐿

(︂
𝜕L(𝑥)𝑇

𝜕𝑥
K𝑏𝑎𝑥

𝑠 + L(𝑥)𝑇K𝑏𝑎𝑦𝑧
𝑠

)︂
B𝑠𝑑𝑥

K𝑎𝑎
𝑒 =

∫︁
𝐿

𝜕L(𝑥)𝑇

𝜕𝑥

(︂
K𝑎𝑥

𝑠

𝜕L(𝑥)

𝜕𝑥
+ K𝑎𝑏𝑦𝑧

𝑠 L(𝑥)

)︂
𝑑𝑥

+

∫︁
𝐿

L(𝑥)𝑇
(︂
K𝑎𝑦𝑧𝑥

𝑠

𝜕L(𝑥)

𝜕𝑥
+ K𝑎𝑦𝑧

𝑠 L(𝑥)

)︂
𝑑𝑥

(3.63)

A static condensation is applied in order to obtain the final expression of equilibrium

conditions at element level, from Equation (3.62) the enhanced displacement values can

be evaluated as follows:

K𝑎𝑏
𝑒 q𝑒 + K𝑎𝑎

𝑒 U𝑒 = 0

⇒ U𝑒 = − (K𝑎𝑎
𝑒 )−1K𝑎𝑏

𝑒 q𝑒

(3.64)

As a result:

K𝑏𝑏
𝑒 q𝑒 + K𝑏𝑎

𝑒 U𝑒 = Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

K𝑏𝑏
𝑒 q𝑒 −K𝑏𝑎

𝑒 (K𝑎𝑎
𝑒 )−1K𝑎𝑏

𝑒 q𝑒 = Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

⇒ K𝑒q𝑒 = Q𝑒 +

∫︁
𝐿

N𝑇
𝑠 P𝑢𝑑𝑥

(3.65)

with the expression of the element stiffness matrix as follows:

K𝑒 = K𝑏𝑏
𝑒 −K𝑏𝑎

𝑒 (K𝑎𝑎
𝑒 )−1K𝑎𝑏

𝑒 (3.66)
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3.4.2.3 Orthogonality condition

The rigid body movements are described by the displacement vector d𝑝
𝑓 (𝑥, 𝑦, 𝑧), con-

sisted to the generalized displacements d𝑠(𝑥). When the displacement field is enhanced

with d𝑒
𝑓 (𝑥, 𝑦, 𝑧), this vector can reproduce a new generalized field that coincides with

the previous one. In other words, the generalized displacements field can be reproduced

by both the classical plane-section field and the enhanced warping-distortion field, and

consequently create a field of redundancy on the total displacement, which does not guar-

antee a unique displacement solution [3]. In order to avoid this possible redundancy, the

enhanced displacement field d𝑒
𝑓 (𝑥, 𝑦, 𝑧) must be free of rigid body mode, or orthogonal to

the classical displacement vector d𝑝
𝑓 (𝑥, 𝑦, 𝑧) in other words (Figure 3-10).

Figure 3-10 – Orthogonality condition of displacement field [3].

Le Corvec [62] used a projection matrix P𝑟 to enforce the orthogonality of the sectional

interpolation functions 𝑆𝑗𝑘(𝑦, 𝑧) to the classical field d𝑝
𝑓 (𝑥, 𝑦, 𝑧). This matrix is constructed

from two other matrices: a matrix R consists of three vectors describing each rigid body

mode of the section plane, and a matrix V which is defined as the product of the classical

displacements d𝑝
𝑓 (𝑥, 𝑦, 𝑧) with the vector of sectional interpolation functions Ŝ(𝑦, 𝑧). The

new expressions have been obtained for Ŝ(𝑦, 𝑧) and the sectional forces in equation 3.54:

S̃(𝑦, 𝑧) = P𝑟Ŝ(𝑦, 𝑧) (3.67a)

D̃𝑎𝑥
𝑠 (𝑥) = P𝑟D

𝑎𝑥
𝑠 (𝑥) (3.67b)

D̃𝑎𝑦𝑧
𝑠 (𝑥) = P𝑟D

𝑎𝑦𝑧
𝑠 (𝑥) (3.67c)

In our model, we use the method proposed by Capdevielle [15] which is based on

the suggestion of Le Corvec, but allows to modify directly the expression of sectional
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interpolation functions 𝑆𝑗𝑘(𝑦, 𝑧) without using the projection matrix P𝑟, thus reduce the

complexity and the calculation cost. This method is originally developed only for the

warping field and then extended to the distortion field by the authors. For the warping,

only the axial component 𝑈 𝑒 of enhanced field is considered. Knowing that the axial

component 𝑈𝑝 of classical field is generated by a basic set (1, 𝑦, 𝑧), the projection of

sectional interpolation functions 𝑆𝑗𝑘(𝑦, 𝑧) on the orthogonal space to 𝑈𝑝 gives the following

new expression of 𝑆𝑗𝑘(𝑦, 𝑧):

𝑆𝑈
𝑗𝑘(𝑦, 𝑧) = 𝑆𝑗𝑘(𝑦, 𝑧) −

∫︁∫︁
𝐴

𝑆𝑗𝑘(𝑦, 𝑧)

(︂
1

𝑎1

𝑦

𝑎2

𝑧

𝑎3

)︂
𝑑𝐴

⎛⎜⎜⎜⎝
1

𝑦

𝑧

⎞⎟⎟⎟⎠ (3.68)

with the following definition of the constants 𝑎𝑖:

𝑎1 =

∫︁∫︁
𝐴

𝑑𝐴; 𝑎2 =

∫︁∫︁
𝐴

𝑦2𝑑𝐴; 𝑎3 =

∫︁∫︁
𝐴

𝑧2𝑑𝐴; (3.69)

The derivations of these new interpolation functions with respect to 𝑦 and 𝑧 are expressed

as follows:
𝜕𝑆𝑈

𝑗𝑘(𝑦, 𝑧)

𝜕𝑦
=
𝜕𝑆𝑗𝑘(𝑦, 𝑧)

𝜕𝑦
−
∫︁∫︁

𝐴

𝑆𝑗𝑘(𝑦, 𝑧)
𝑦

𝑎2
𝑑𝐴;

𝜕𝑆𝑈
𝑗𝑘(𝑦, 𝑧)

𝜕𝑧
=
𝜕𝑆𝑗𝑘(𝑦, 𝑧)

𝜕𝑧
−
∫︁∫︁

𝐴

𝑆𝑗𝑘(𝑦, 𝑧)
𝑧

𝑎3
𝑑𝐴

(3.70)

For the distortion field, knowing that the transversal component 𝑉 𝑝 and 𝑊 𝑝 of classical

field is generated by two basic sets (1, 𝑦) and (1, 𝑧), respectively, the projection of sectional

interpolation functions 𝑆𝑗𝑘(𝑦, 𝑧) on the orthogonal space to 𝑉 𝑝 and 𝑊 𝑝 gives the following

new expression of 𝑆𝑗𝑘(𝑦, 𝑧):

𝑆𝑉
𝑗𝑘(𝑦, 𝑧) = 𝑆𝑗𝑘(𝑦, 𝑧) −

∫︁∫︁
𝐴

𝑆𝑗𝑘(𝑦, 𝑧)

(︂
1

𝑎1

𝑧

𝑎3

)︂
𝑑𝐴

⎛⎝1

𝑧

⎞⎠ (3.71a)

𝑆𝑊
𝑗𝑘 (𝑦, 𝑧) = 𝑆𝑗𝑘(𝑦, 𝑧) −

∫︁∫︁
𝐴

𝑆𝑗𝑘(𝑦, 𝑧)

(︂
1

𝑎1

𝑦

𝑎2

)︂
𝑑𝐴

⎛⎝1

𝑦

⎞⎠ (3.71b)
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and the expression of their derivation with respect to 𝑦 and 𝑧:

𝜕𝑆𝑉
𝑗𝑘(𝑦, 𝑧)

𝜕𝑦
=

𝜕𝑆𝑗𝑘(𝑦, 𝑧)

𝜕𝑦

𝜕𝑆𝑉
𝑗𝑘(𝑦, 𝑧)

𝜕𝑧
=

𝜕𝑆𝑗𝑘(𝑦, 𝑧)

𝜕𝑧
−
∫︁∫︁

𝐴

𝑆𝑗𝑘(𝑦, 𝑧)
𝑧

𝑎3
𝑑𝐴

𝜕𝑆𝑊
𝑗𝑘 (𝑦, 𝑧)

𝜕𝑦
=

𝜕𝑆𝑗𝑘(𝑦, 𝑧)

𝜕𝑦
−
∫︁∫︁

𝐴

𝑆𝑗𝑘(𝑦, 𝑧)
𝑦

𝑎2
𝑑𝐴

𝜕𝑆𝑊
𝑗𝑘 (𝑦, 𝑧)

𝜕𝑧
=

𝜕𝑆𝑗𝑘(𝑦, 𝑧)

𝜕𝑧

(3.72)

It is worth to mention that the sub-index 𝑈 , 𝑉 and 𝑊 in the new expression of

interpolation functions indicate that the corresponding interpolation functions are only

used for the components 𝑈 𝑒, 𝑉 𝑒 and 𝑊 𝑒 respectively.

3.4.3 Solution scheme

The present FE formulation is programmed using Matlab according to the solution schemes

illustrated in Figure 3-11.
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Figure 3-11 – Resume chart for the multi-fiber FE beam in displacement-based
formulation.
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3.5 Regional constitutive model for RC members

In the model formulation described above, the determination of the constitutive relation-

ship between the stress and the strain in Equation (3.36) requires to define an adequate

constitutive equation and material law. The consistent constitutive model must be able

to represent the typical effects of RC members such as the cracking, the stress-stiffening

effect or the compression softening effect due to transverse tensile strains. According

to the section discretization as described in Section 3.1, in this Section the constitutive

equations and the material laws for each discretized region will be described in detail.

The material stiffness matrix as well as the regional stiffness matrix K1𝐷
𝑠 , K2𝐷

𝑠 or K3𝐷
𝑠

are obtained as a result. Then, for the entire section, the sectional stiffness matrix in

equation is obtained by summarizing all these regional stiffness matrices:

K𝑠 = K1𝐷
𝑠 + K2𝐷

𝑠 + K3𝐷
𝑠 (3.73)

The element stiffness matrix in Equation (3.48) can then be determined and assembled

into the structural stiffness matrix.

3.5.1 1D-Zone

This region takes into account only the contribution of the longitudinal reinforcing steel

(rebar), and the only stress accounted for is the axial component 𝜎𝑥𝑥, which can be easily

computed from the axial strain using an uniaxial behavior law of steel. In this work, a

bilinear elasto-plastic steel model is used in both compression and tension (Figure 3-12).

syf

E

pE

=σs εs

±

εy± εs

σs

0

0E

0

0E

Figure 3-12 – Stress-strain relationship for steel.

where

𝜀𝑠: steel’s strain;

99



𝜎𝑠: steel’s stress.

𝑓𝑠𝑦: steel’s yield strength.

𝐸𝑜: elastic modulus of steel.

𝐸𝑝: plastic modulus of steel.

𝜀𝑠𝑦: steel’s strain at yield.

The stress vector can be expressed by:

s1𝐷𝑓 =

⎛⎜⎜⎜⎝
𝜎1𝐷
𝑥𝑥

0

0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝐸𝑠𝜀

𝑚
𝑥𝑥

0

0

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
𝐸𝑠 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀1𝐷𝑥𝑥

𝛾𝑥𝑦

𝛾𝑥𝑧

⎞⎟⎟⎟⎠ = k1𝐷
𝑓 e1𝐷𝑓 (3.74)

Where 𝐸𝑠 is the secant or tangent modulus of steel. From the material stiffness matrix

k1𝐷
𝑓 , the 1D-regional stiffness matrix K1𝐷

𝑠 can then be determined using the kinematic

condition in Equation (3.43).

3.5.2 2D-Zone

This region corresponds to the portion in which the transverse steel crosses in one direction

and may also have the contribution of longitudinal reinforcement bars. In this 2D-zone,

the constitutive behavior of materials is based on the original MCFT [112] as described

in Section 2.4.1.

Corresponding to the sectional analysis of a frame element, in which only warping

phenomenon is taken into account and distortion of cross-section is neglected, the stress

state of this zone has only two non-zero components instead of three: one axial and one

transversal which correspond to the direction of stirrups. This results in a stress vector

s2𝐷𝑓−ℎ =
(︁
𝜎𝑥𝑥 𝜏𝑥𝑦 0

)︁𝑇
(in the zone of stirrups disposed in horizontal direction or horizon-

tal stirrups - called 2D-horizontal zone) or s2𝐷𝑓−𝑣 =
(︁
𝜎𝑥𝑥 0 𝜏𝑥𝑧

)︁𝑇
(in the zone of stirrups

disposed in vertical direction or vertical stirrups - called 2D-vertical zone) (Figure 3-2a).

It’s worth to note that, for a RC element, the contribution of transversal reinforcement

is taken into account by considering a third stress component: 𝜎𝑦𝑦 or 𝜎𝑧𝑧, depending on

the direction of stirrups. This component must be considered firstly, and then will be

imposed to zero in order to satisfy the internal transversal equilibrium of RC members

without distortion. The stress vector to be considered in the element state therefore
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becomes s*2𝐷𝑓−ℎ =
(︁
𝜎𝑥𝑥 𝜏𝑥𝑦 0 𝜎𝑦𝑦 0 0

)︁𝑇
or s*2𝐷𝑓−𝑣 =

(︁
𝜎𝑥𝑥 0 𝜏𝑥𝑧 0 𝜎𝑧𝑧 0

)︁𝑇
. For

the sake of generality, the full stress vector for the following will take the expression of

s*2𝐷𝑓 =
(︁
𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑦𝑧

)︁𝑇
, where some components are zero depending on

the stirrup’s direction. Corresponding to this 2D-general stress state, the 2D-strain vector

must also have 6 components e*2𝐷𝑓 =
(︁
𝜀𝑥𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧 𝜀𝑦𝑦 𝜀𝑧𝑧 𝛾𝑦𝑧

)︁𝑇
, but unlike in the

stress state, 𝜀𝑦𝑦 (2D-horizontal zone) and 𝜀𝑧𝑧 (2D-vertical zone) are not imposed to zero,

and must be determined in the process of satisfying the transversal equilibrium. However,

they will not be taken into account in the sectional analysis thereafter, except for the

distortion phenomenon.

3.5.2.1 In-plane frame system

Knowing that the original MCFT is designed for membrane members, it is practical

to explore the constitutive formulation of this theory in an in-plane frame system of

coordinate axes (𝑙, 𝑡) following the longitudinal and transversal direction (Figure 3-13).

For this, a change of reference is applied to transform the strain vector from the local

frame system (𝑥, 𝑦, 𝑧) to the in-plane system (𝑙, 𝑡):

e*2𝐷𝑖𝑝 = T𝑖𝑝e
*2𝐷
𝑓 (3.75)

where 𝑖𝑝 is the index of parameters expressed in the in-plane system, T𝑖𝑝 is the transfor-

mation matrix:

T𝑖𝑝 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 0 0 cos2 𝛼 sin2 𝛼 sin𝛼 cos𝛼

0 cos𝛼 sin𝛼 0 0 0

0 0 0 sin2 𝛼 cos2 𝛼 − sin𝛼 cos𝛼

0 − sin𝛼 cos𝛼 0 0 0

0 0 0 − sin 2𝛼 sin 2𝛼 cos 2𝛼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.76)

𝛼 is the rotation angle between the two frames whose value is either 0 for the 2D-horizontal

zone or
𝜋

2
for the 2D-vertical one.
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Figure 3-13 – In-plane frame system

As a consequence, the in-plane strain vector becomes:

e*2𝐷𝑖𝑝−ℎ =
(︁
𝜀𝑥𝑥 𝜀𝑦𝑦 𝛾𝑥𝑦 𝜀𝑧𝑧 𝛾𝑥𝑧 𝛾𝑦𝑧

)︁𝑇
2D-horizontal (3.77a)

e*2𝐷𝑖𝑝−𝑣 =
(︁
𝜀𝑥𝑥 𝜀𝑧𝑧 𝛾𝑥𝑧 𝜀𝑦𝑦 −𝛾𝑥𝑦 −𝛾𝑦𝑧

)︁𝑇
2D-vertical (3.77b)

Only the first three components are considered in the in-plane coordinate system, the

others are given a null value, so:

e2𝐷𝑖𝑝 =

⎛⎜⎜⎜⎝
𝜀𝑙

𝜀𝑡

𝛾𝑙𝑡

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

⎞⎟⎟⎟⎠ (2D-horizontal) or

⎛⎜⎜⎜⎝
𝜀𝑥𝑥

𝜀𝑧𝑧

𝛾𝑥𝑧

⎞⎟⎟⎟⎠ (2D-vertical) (3.78)

Among these 3 in-plane strain components, 𝜀𝑙 and 𝛾𝑙𝑡 can be obtained from the kine-

matic condition in Equation (3.18), while 𝜀𝑡 must be handled separately by satisfying

the transversal equilibrium conditions. The determination of 𝜀𝑡 as well as the transversal

equilibrium follow an iterative process and will be described later. Corresponding to this

strain vector, the in-plane stress vector has 3 components: s2𝐷𝑖𝑝 =
(︁
𝜎𝑙 𝜎𝑡 𝜏𝑙𝑡

)︁𝑇
. The

stress and strain vectors are related by an in-plane material stiffness matrix D2𝐷
𝑖𝑝 :

s2𝐷𝑖𝑝 = D2𝐷
𝑖𝑝 e2𝐷𝑖𝑝 (3.79)

The contribution of concrete and reinforcement are added separately to the material

stiffness matrix and the stress vector of the in-plane frame (Figure 3-14):

s2𝐷𝑖𝑝 = s2𝐷𝑖𝑝,𝑐 + s2𝐷𝑖𝑝,𝑠 (3.80a)

D2𝐷
𝑖𝑝 = D2𝐷

𝑖𝑝,𝑐 + D2𝐷
𝑖𝑝,𝑠 (3.80b)

where D2𝐷
𝑖𝑝,𝑐 is the concrete stiffness matrix and D2𝐷

𝑖𝑝,𝑠 is the stiffness matrix of reinforce-
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ment. While D2𝐷
𝑖𝑝,𝑠 can be set up easily in the in-plane system, it’s more convenient to

express the concrete relation in principal directions of crack, as described in the original

MCFT (Figure 3-14).

= +lσ

tσ

Reinforced Concrete Concrete Reinforcement Steel

τlt

τlt

tσc

lσc

τlt

τlt 12

s
tρ σst

s
lρ σslθ

Figure 3-14 – Stress composition for RC members in the MCFT [110].

A change of reference from principal direction to in-plane axes systems is therefore

required as described in Equation (2.11), and Equation (3.80b) becomes:

D2𝐷
𝑖𝑝 = T2𝐷𝑇

𝑐 D2𝐷
𝑝𝑟𝑖𝑛,𝑐T

2𝐷
𝑐 + D2𝐷

𝑖𝑝,𝑠 (3.81)

Where T2𝐷
𝑐 is the transformation matrix described in Equation (2.13). The direction of

principal strains 𝜃 can be determined from the in-plane strain vector using Mohr’s circle:

𝜃 =
1

2
arctan

(︂
𝛾𝑙𝑡

𝜀𝑙 − 𝜀𝑡

)︂
(3.82)

The concrete stiffness matrix in principal direction D2𝐷
𝑝𝑟𝑖𝑛,𝑐 can be evaluated in secant-

stiffness based as described in Equation (2.12), or in tangent-based as described in Equa-

tion (2.14). The expression of D2𝐷
𝑝𝑟𝑖𝑛,𝑐 depends on the stresses and strains of concrete in

principal directions. The concrete strains 𝜀1 and 𝜀2 can be obtained from the in-plane

concrete strain vector e2𝐷𝑖𝑝 and the transformation matrix T2𝐷
𝑐 :

e2𝐷𝑝𝑟𝑖𝑛,𝑐 =
(︁
𝜀1 𝜀2 𝛾12

)︁𝑇
= T2𝐷

𝑐 e2𝐷𝑖𝑝 (3.83)

From theses principal strains, the concrete principal stresses 𝜎1 and 𝜎2 can be deter-

mined from the uniaxial stress-strain relation as described in Section 2.4.1. The principal

stiffness matrix D2𝐷
𝑝𝑟𝑖𝑛,𝑐 in Equation (3.81) and the vector of principal stresses s2𝐷𝑝𝑟𝑖𝑛,𝑐 =(︁

𝜎1 𝜎2 0
)︁𝑇

are all obtained, as well as the concrete constitutive relation in principal

directions as follows:

s2𝐷𝑝𝑟𝑖𝑛,𝑐 = D2𝐷
𝑝𝑟𝑖𝑛,𝑐e

2𝐷
𝑝𝑟𝑖𝑛,𝑐 (3.84)
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The in-plane stress vector of concrete in Equation (3.80a) can be obtained thanks to the

hypothesis of same principal directions between strains and stresses:

s2𝐷𝑖𝑝,𝑐 = T2𝐷𝑇
𝑐 s2𝐷𝑝𝑟𝑖𝑛,𝑐 (3.85)

Considering the reinforcement’s contribution, the steel stiffness matrix is expressed in

the in-plane coordinate system:

D2𝐷
𝑖𝑝,𝑠 =

⎡⎢⎢⎢⎣
𝜌𝑠𝑙𝐸𝑠𝑙 0 0

0 𝜌𝑠𝑡𝐸𝑠𝑡 0

0 0 0

⎤⎥⎥⎥⎦ (3.86)

where the modulus of longitudinal (transversal) reinforcement 𝐸𝑠𝑙 (𝐸𝑠𝑡) can be expressed

in secant or tangent-based, using the in-plane strain components 𝜀𝑙 (𝜀𝑡) in Equation (3.78)

and the steel behavior law in Figure 3-12; 𝜌𝑠𝑙 and 𝜌𝑠𝑡 are the reinforcement ratio in the

in-plane directions 𝑙, 𝑡 respectively, which have been determined as follows:

𝜌𝑠𝑙 =
𝐴𝑠𝑙

𝐴2𝐷
𝑐

(3.87a)

𝜌𝑠𝑡 =
𝐴𝑠𝑡𝑃𝑠𝑡

𝐴2𝐷
𝑐 𝑠

(3.87b)

where 𝐴𝑠𝑙 is the total area of longitudinal reinforcing steel situated in 2D-zone, 𝐴2𝐷
𝑐 is the

area of 2D-zone, 𝐴𝑠𝑡 is the area of one leg of a transverse steel bar, 𝑃𝑠𝑡 is the perimeter of

the stirrup centerline in 2D-zone and 𝑠 denotes the average spacing of stirrups. It should

be noted that the reinforcement percentages are evaluated with respect to the discretized

cross-section area.

3.5.2.2 Transverse equilibrium

All the expression of constitutive equations above can not be determined without the in-

plane transverse strains 𝜀𝑡, which can be calculated by satisfying the condition of trans-

verse equilibrium between concrete and stirrup at each material point. This condition is

expressed by the following relation:

𝜌𝑠𝑡𝜎𝑠𝑡 +
(︀
𝜎1 sin2 𝜃 + 𝜎2 cos2 𝜃

)︀
= 0 (3.88)
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In other words, the transverse stress 𝜎𝑡 of the in-plane stress vector s2𝐷𝑖𝑝 must be zero

(regarding Equation (3.80a) and (3.85)). In order to satisfy this condition from unknown

value of 𝜀𝑡, a numerical iterative process using Newton-Raphson method is carried out

(Figure 3-15). The kinematic conditions in Section 3.2 and 3.3 give the components 𝜀𝑙

and 𝛾𝑙𝑡 of the in-plane strain vector e2𝐷𝑖𝑝 , while an initial value is given to the unknown

transverse strain equal to that of previous iteration: 𝜀𝑡 = 𝜀𝑖−1
𝑡 . Then the constitutive

equations above can be expressed to determine the in-plane stiffness matrix D2𝐷
𝑖𝑝 and

stresses s2𝐷𝑖𝑝 . Equation (3.79) gives:

s2𝐷𝑖𝑝 = D2𝐷
𝑖𝑝 e2𝐷𝑖𝑝 ⇔

⎛⎜⎜⎜⎝
𝜎𝑙

𝜎𝑡

𝜏𝑙𝑡

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,11 𝐷2𝐷
𝑖𝑝,12 𝐷2𝐷

𝑖𝑝,13

𝐷2𝐷
𝑖𝑝,21 𝐷2𝐷

𝑖𝑝,22 𝐷2𝐷
𝑖𝑝,23

𝐷2𝐷
𝑖𝑝,31 𝐷2𝐷

𝑖𝑝,32 𝐷2𝐷
𝑖𝑝,33

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀𝑙

𝜀𝑡

𝛾𝑙𝑡

⎞⎟⎟⎟⎠ (3.89)

By imposing 𝜎𝑡 = 0, one obtains the following expression of 𝜀𝑡:

𝜀𝑡 = −
𝐷2𝐷

𝑖𝑝,21𝜀𝑙 +𝐷2𝐷
𝑖𝑝,23𝛾𝑙𝑡

𝐷2𝐷
𝑖𝑝,22

(3.90)

the difference between the value of 𝜀𝑡 in Equation (3.90) will be compared to the initial

value 𝜀𝑖−1
𝑡 and the convergence is achieved when the control parameter

⃦⃦⃦⃦
𝜀𝑡 − 𝜀𝑖−1

𝑡

𝜀𝑖−1
𝑡

⃦⃦⃦⃦
is

smaller than a specified tolerance.

3.5.2.3 Transformation to local frame system

After determining the transverse strains and stresses in the in-plane system following the

equations above, another change of reference needs to be applied to transform the stress,

strain vector and the stiffness matrix to the local frame system:

D2𝐷
𝑓 = T𝑇

𝑖𝑝

⎡⎣D2𝐷
𝑖𝑝 03

03 03

⎤⎦T𝑖𝑝 (3.91a)

s*2𝐷𝑓 = T𝑇
𝑖𝑝s

*2𝐷
𝑖𝑝 (3.91b)

s*2𝐷𝑓 = D2𝐷
𝑓 e*2𝐷𝑓 (3.91c)

Where 03 is a (3 × 3) zero matrix, resulting from the exclusion of unnecessary strain

components in Equation (3.77); s*2𝐷𝑖𝑝 =
(︁
s2𝐷𝑇
𝑖𝑝 0 0 0

)︁𝑇
is the full in-plane stress vector.
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Figure 3-15 – Iteration process satisfying internal equilibrium between concrete and
transverse reinforcement

The 2D material stiffness matrix in Equation (3.91a) can be expressed as follows:

D2𝐷
𝑓−ℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷2𝐷
𝑖𝑝,11 𝐷2𝐷

𝑖𝑝,13 0 𝐷2𝐷
𝑖𝑝,12 0 0

𝐷2𝐷
𝑖𝑝,31 𝐷2𝐷

𝑖𝑝,33 0 𝐷2𝐷
𝑖𝑝,32 0 0

0 0 0 0 0 0

𝐷2𝐷
𝑖𝑝,21 𝐷2𝐷

𝑖𝑝,23 0 𝐷2𝐷
𝑖𝑝,22 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or D2𝐷

𝑓−𝑣 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷2𝐷
𝑖𝑝,11 0 𝐷2𝐷

𝑖𝑝,13 0 𝐷2𝐷
𝑖𝑝,12 0

0 0 0 0 0 0

𝐷2𝐷
𝑖𝑝,31 0 𝐷2𝐷

𝑖𝑝,33 0 𝐷2𝐷
𝑖𝑝,32 0

0 0 0 0 0 0

𝐷2𝐷
𝑖𝑝,21 0 𝐷2𝐷

𝑖𝑝,23 0 𝐷2𝐷
𝑖𝑝,22 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.92)

and the full stress vector:

s*2𝐷𝑓−ℎ =

(︂
𝜎𝑥𝑥 𝜏𝑥𝑦 0 𝜎𝑦𝑦 0 0

)︂𝑇

=

(︂
𝜎𝑙 𝜏𝑙𝑡 0 𝜎𝑡 0 0

)︂𝑇

s*2𝐷𝑓−𝑣 =

(︂
𝜎𝑥𝑥 0 𝜏𝑥𝑧 0 𝜎𝑧𝑧 0

)︂𝑇

=

(︂
𝜎𝑙 0 𝜏𝑙𝑡 0 𝜎𝑡 0

)︂𝑇 (3.93)

Knowing that 𝜎𝑡 = 0 to satisfy the internal equilibrium above, the following static con-

densation can be established with the aid of Equation (3.91c), for the 2D-horizontal zone
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first: ⎛⎜⎜⎜⎝
𝜎𝑦𝑦

0

0

⎞⎟⎟⎟⎠
2𝐷

𝑓−ℎ

=

⎛⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝐷2𝐷

𝑖𝑝,21𝜀𝑥𝑥 +𝐷2𝐷
𝑖𝑝,23𝛾𝑥𝑦 +𝐷2𝐷

𝑖𝑝,22𝜀𝑦𝑦

0

0

⎞⎟⎟⎟⎠

⇒

⎛⎜⎜⎜⎝
𝜀𝑦𝑦

0

0

⎞⎟⎟⎟⎠
2𝐷

𝑓−ℎ

= − 1

𝐷2𝐷
𝑖𝑝,22

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,21 𝐷2𝐷
𝑖𝑝,23 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀𝑥𝑥

𝛾𝑥𝑦

0

⎞⎟⎟⎟⎠
(3.94)

and for the 2D-vertical zone:⎛⎜⎜⎜⎝
0

𝜎𝑧𝑧

0

⎞⎟⎟⎟⎠
2𝐷

𝑓−𝑣

=

⎛⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

𝐷2𝐷
𝑖𝑝,21𝜀𝑥𝑥 +𝐷2𝐷

𝑖𝑝,23𝛾𝑥𝑧 +𝐷2𝐷
𝑖𝑝,22𝜀𝑧𝑧

0

⎞⎟⎟⎟⎠

⇒

⎛⎜⎜⎜⎝
0

𝜀𝑧𝑧

0

⎞⎟⎟⎟⎠
2𝐷

𝑓−𝑣

= − 1

𝐷2𝐷
𝑖𝑝,22

⎡⎢⎢⎢⎣
0 0 0

𝐷2𝐷
𝑖𝑝,21 0 𝐷2𝐷

𝑖𝑝,23

0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀𝑥𝑥

0

𝛾𝑥𝑧

⎞⎟⎟⎟⎠
(3.95)

Then, the stress vector s2𝐷𝑓 used in the sectional analysis can now be expressed as follows:

s2𝐷𝑓−ℎ =

⎛⎜⎜⎜⎝
𝜎𝑥𝑥

𝜏𝑥𝑦

0

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,11 𝐷2𝐷
𝑖𝑝,13 0

𝐷2𝐷
𝑖𝑝,31 𝐷2𝐷

𝑖𝑝,33 0

0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀𝑥𝑥

𝛾𝑥𝑦

0

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,12 0 0

𝐷2𝐷
𝑖𝑝,32 0 0

0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀𝑦𝑦

0

0

⎞⎟⎟⎟⎠ (3.96a)

s2𝐷𝑓−𝑣 =

⎛⎜⎜⎜⎝
𝜎𝑥𝑥

0

𝜏𝑥𝑧

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,11 0 𝐷2𝐷
𝑖𝑝,13

0 0 0

𝐷2𝐷
𝑖𝑝,31 0 𝐷2𝐷

𝑖𝑝,33

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
𝜀𝑥𝑥

0

𝛾𝑥𝑧

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
0 𝐷2𝐷

𝑖𝑝,12 0

0 0 0

0 𝐷2𝐷
𝑖𝑝,32 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

0

𝜀𝑧𝑧

0

⎞⎟⎟⎟⎠ (3.96b)

From Equation (3.94), (3.95) and (3.96), the following material constitutive relation can

be obtained in 2D-zone:

s2𝐷𝑓 = k2𝐷
𝑓 e2𝐷𝑓 (3.97)
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with the expression of the material stiffness matrix:

k2𝐷
𝑓−ℎ =

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,11 𝐷2𝐷
𝑖𝑝,13 0

𝐷2𝐷
𝑖𝑝,31 𝐷2𝐷

𝑖𝑝,33 0

0 0 0

⎤⎥⎥⎥⎦− 1

𝐷2𝐷
𝑖𝑝,22

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,12𝐷
2𝐷
𝑖𝑝,21 𝐷2𝐷

𝑖𝑝,12𝐷
2𝐷
𝑖𝑝,23 0

𝐷2𝐷
𝑖𝑝,21𝐷

2𝐷
𝑖𝑝,32 𝐷2𝐷

𝑖𝑝,23𝐷
2𝐷
𝑖𝑝,32 0

0 0 0

⎤⎥⎥⎥⎦ (3.98a)

k2𝐷
𝑓−𝑣 =

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,11 0 𝐷2𝐷
𝑖𝑝,13

0 0 0

𝐷2𝐷
𝑖𝑝,31 0 𝐷2𝐷

𝑖𝑝,33

⎤⎥⎥⎥⎦− 1

𝐷2𝐷
𝑖𝑝,22

⎡⎢⎢⎢⎣
𝐷2𝐷

𝑖𝑝,12𝐷
2𝐷
𝑖𝑝,21 0 𝐷2𝐷

𝑖𝑝,12𝐷
2𝐷
𝑖𝑝,23

0 0 0

𝐷2𝐷
𝑖𝑝,21𝐷

2𝐷
𝑖𝑝,32 0 𝐷2𝐷

𝑖𝑝,23𝐷
2𝐷
𝑖𝑝,32

⎤⎥⎥⎥⎦ (3.98b)

Using Equation (3.43), the 2D-regional stiffness matrix K2𝐷
𝑠 can then be determined from

the material stiffness matrix k2𝐷
𝑓 . An algorithm for determining the material stiffness

matrix of 2D-zone k2𝐷
𝑓 is shown in Figure 3-16.

2

/v

D

f he

2

/' D

f h ve

2 2,D D

ip ipe D

2D

ips

2

/' D

f h vs

2

/

D

f h vs

2D

fD
2D

fk
ipT

Iteration Process

,l lt  t



2

,

D

ip cD
2

,s

D

ipD

2D

ipD

0t 

YES

NO

 2D

ip l t lt  e

Transverse equilibrium 
           condition

Concrete behavior

Steel behavior

Kinematic 
 condition

    i=0 
previous 
iteration

i=i+1

In-plane frame 
      system

 2

/ / /
T

D old old

f h v xx xy xz yy zz     e

    to be 
determined

Local frame 
    system

In-plane

Frame

Figure 3-16 – Process determining the material stiffness matrix of 2D-zone

3.5.3 3D-Zone

This zone corresponds to the regions of concrete in which transverse steels come across in

two directions (the four corners of section) and the regions of concrete in the core of section

without any reinforcement (Figure 3-2a). In this 3D-zone, the constitutive behavior of
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materials is based on the extension of the original MCFT, proposed by Vecchio & Selby

[112], which will be detailed in the following.

Similar to the 2D-zone, in the case where only warping is taken into account and

distortion is neglected, the stress state of this zone has three components: one normal

𝜎𝑥𝑥 and two transverses 𝜏𝑥𝑦 and 𝜏𝑥𝑧, included in a stress vector s3𝐷𝑓 =
(︁
𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

)︁𝑇
.

Same as in the 2D-zone, in the 3D-zone even though only 3 stress components are con-

sidered in the sectional analysis, the full stress vector has a total of 6 components s*3𝐷𝑓 =(︁
𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑦𝑧

)︁𝑇
. The three components 𝜎𝑦𝑦, 𝜎𝑧𝑧 and 𝜏𝑦𝑧 will then be set

to zero in order to satisfy the internal equilibrium without distortion. The corresponding

strain vector has therefore six components: e*3𝐷𝑓 =
(︁
𝜀𝑥𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧 𝜀𝑦𝑦 𝜀𝑧𝑧 𝛾𝑦𝑧

)︁𝑇
. Un-

like the stress vector, three strains 𝜀𝑦𝑦, 𝜀𝑧𝑧 and 𝛾𝑦𝑧 are not zero, but they are not taken

into account in the sectional analysis, as the distortion phenomenon is not considered in

this work.

The full stresses s*3𝐷𝑓 and strains e*3𝐷𝑓 are related by a material stiffness matrix D3𝐷
𝑓

in the following constitutive relation:

s*3𝐷𝑓 = D3𝐷
𝑓 e*3𝐷𝑓 (3.99)

Similar to the two dimensional case, in 3D-zone the material stiffness matrix D3𝐷
𝑓 can be

determined as a superposition of concrete and reinforcement:

D3𝐷
𝑓 = D3𝐷

𝑓,𝑐 + D3𝐷
𝑓,𝑠 (3.100)

The steel stiffness D3𝐷
𝑓,𝑠 can be set up easily in the local frame system, while the deter-

mination of concrete stiffness matrix D3𝐷
𝑓,𝑐 required a change of reference from principal

directions to local axes. Equation (3.100) becomes:

D3𝐷
𝑓 = T𝑇

𝑐 D
3𝐷
𝑝𝑟𝑖𝑛,𝑐T𝑐 + D3𝐷

𝑓,𝑠 (3.101)

The concrete stiffness matrix D3𝐷
𝑝𝑟𝑖𝑛,𝑐 in the principal direction can be evaluated in a
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secant-based as proposed by Vecchio & Selby [112]:

D3𝐷
𝑝𝑟𝑖𝑛,𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐸1 0 0 0 0 0

0 𝐸2 0 0 0 0

0 0 𝐸3 0 0 0

0 0 0
𝐸1𝐸2

𝐸1 + 𝐸2

0 0

0 0 0 0
𝐸2𝐸3

𝐸2 + 𝐸3

0

0 0 0 0 0
𝐸1𝐸3

𝐸1 + 𝐸3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.102)

with 𝐸1, 𝐸2 and 𝐸3 are the secant moduli, defined as follows:

𝐸1 =
𝜎1
𝜀1

; 𝐸2 =
𝜎2
𝜀2

; 𝐸3 =
𝜎3
𝜀3

; (3.103)

or in a tangent-based approach:

D3𝐷
𝑝𝑟𝑖𝑛,𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜎1
𝜕𝜀1

0 0 0 0 0

𝜕𝜎2
𝜕𝜀1

𝜕𝜎2
𝜕𝜀2

0 0 0 0

𝜕𝜎3
𝜕𝜀1

0
𝜕𝜎3
𝜕𝜀3

0 0 0

0 0 0
𝜎1 − 𝜎2

2(𝜀1 − 𝜀2)
0 0

0 0 0 0
𝜎1 − 𝜎3

2(𝜀1 − 𝜀3)
0

0 0 0 0 0
𝜎2 − 𝜎3

2(𝜀2 − 𝜀3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.104)

T𝑐 is the transformation matrix composed of the direction cosines which define the direc-

tion of the principal concrete strains:

T𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑙21 𝑙1𝑚1 𝑚1𝑛1 𝑚2
1 𝑛2

1 𝑛1𝑙1

𝑙22 𝑙2𝑚2 𝑚2𝑛2 𝑚2
2 𝑛2

2 𝑛2𝑙2

𝑙23 𝑙3𝑚2 𝑚3𝑛2 𝑚2
3 𝑛2

3 𝑛3𝑙3

2𝑙1𝑙2 𝑙1𝑚2 + 𝑙2𝑚1 𝑚1𝑛2 +𝑚2𝑛1 2𝑚1𝑚2 2𝑛1𝑛2 𝑛1𝑙2 + 𝑛2𝑙1

2𝑙2𝑙3 𝑙2𝑚3 + 𝑙3𝑚2 𝑚2𝑛3 +𝑚3𝑛2 2𝑚2𝑚3 2𝑛2𝑛3 𝑛2𝑙3 + 𝑛3𝑙2

2𝑙3𝑙1 𝑙3𝑚1 + 𝑙1𝑚3 𝑚3𝑛1 +𝑚1𝑛3 2𝑚3𝑚1 2𝑛3𝑛1 𝑛3𝑙1 + 𝑛1𝑙3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.105)

The concrete strains in principal direction 𝜀1, 𝜀2, 𝜀3 (𝜀1 > 𝜀2 > 𝜀3) and the direction

cosines are calculated from the eigenvalues and eigenvector of the strain tensor, obtained
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from the kinematic condition in Equation (3.18). The concrete stresses in principal direc-

tions 𝜎1, 𝜎2, 𝜎3 are then deduced from the uniaxial stress-strain relations in Figure 2-19.

According to Vecchio & Selby [112], in direction 3 (the direction of principal compressive

strain), the compressive stress 𝜎3 depends on the strain compressive strain 𝜀3 and the

tensile strain 𝜀1: 𝜎3 = 𝑓(𝜀3, 𝜀1). In direction 1 (the direction of principal tensile strain),

the tensile stress 𝜎1 depends only on the tensile strain 𝜀1: 𝜎1 = 𝑓(𝜀1). Finally, in the

intermediate direction 2 (that can be compressive or tensile), the stress 𝜎2 depends on 𝜀2

and 𝜀1: 𝜎2 = 𝑓(𝜀2, 𝜀1).

Then, for the reinforcement’s contribution, the steel stiffness matrix is expressed in

the local coordinate system as:

D3𝐷
𝑓,𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌𝑠𝑥𝐸𝑠𝑙 0 0 0 0 0

0 𝜌𝑠𝑦𝐸𝑠𝑡 0 0 0 0

0 0 𝜌𝑠𝑦𝐸𝑠𝑡 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.106)

Similar to the 2D-zone, the modulus of longitudinal (transversal) reinforcement 𝐸𝑠𝑙 (𝐸𝑠𝑡)

can be expressed in secant or tangent-based, using the strain components 𝜀𝑥𝑥 (𝛾𝑥𝑦 and/or

𝛾𝑥𝑧) and the steel behavior law in Section 3.5.1 and Figure 3-12; 𝜌𝑠𝑥, 𝜌𝑠𝑦 and 𝜌𝑠𝑧 are

the reinforcement ratio in the directions of 𝑥, 𝑦 and 𝑧, respectively, which have been

determined as follows:

𝜌𝑠𝑥 =
𝐴𝑠𝑙

𝐴3𝐷
𝑐

(3.107a)

𝜌𝑠𝑦 =
𝐴𝑠𝑡𝑃

𝑦
𝑠𝑡

𝐴3𝐷
𝑐 𝑠

(3.107b)

𝜌𝑠𝑦 =
𝐴𝑠𝑡𝑃

𝑧
𝑠𝑡

𝐴3𝐷
𝑐 𝑠

(3.107c)

where 𝐴𝑠𝑙 is the total area of longitudinal reinforcing steel situated in 3D-zone, 𝐴3𝐷
𝑐 is the

area of 3D-zone, 𝐴𝑠𝑡 is the area of one leg of a transverse steel bar, 𝑃 𝑦
𝑠𝑡 is the perimeter

of the stirrup centerline disposed in horizontal direction and 𝑃 𝑧
𝑠𝑡 is the perimeter of the

stirrup centerline disposed in vertical direction in 3D-zone; 𝑠 denotes the average spacing

of stirrups. It should be noted that the reinforcement percentages are evaluated with

respect to the discretized cross-section area.
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As mentioned above, the internal equilibrium is satisfied by imposing the stresses

components 𝜎𝑦𝑦, 𝜎𝑧𝑧 and 𝜏𝑦𝑧 equal to zero. Regrouping these three stresses into one single

vector s3𝐷𝑜𝑓 =
(︁
𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑦𝑧

)︁
, with the corresponding strain vector e3𝐷𝑜𝑓 =

(︁
𝜀𝑦𝑦 𝜀𝑧𝑧 𝛾𝑦𝑧

)︁
,

the constitutive relation in Equation (3.99) becomes:

s*3𝐷𝑓 = D3𝐷
𝑓 e*3𝐷𝑓 ⇔

⎛⎝s3𝐷𝑓

s3𝐷𝑜𝑓

⎞⎠ =

⎡⎣D3𝐷
𝑓,11 D3𝐷

𝑓,12

D3𝐷
𝑓,21 D3𝐷

𝑓,22

⎤⎦⎛⎝e3𝐷𝑓

e3𝐷𝑜𝑓

⎞⎠ (3.108)

A static condensation is realized to obtain the strain vector e3𝐷𝑜𝑓 :

s3𝐷𝑜𝑓 =
[︁
D3𝐷

𝑓,21 D3𝐷
𝑓,22

]︁⎛⎝e3𝐷𝑓

e3𝐷𝑜𝑓

⎞⎠ = 03 ⇒ e3𝐷𝑜𝑓 = −
(︀
D3𝐷

𝑓,22

)︀−1
D3𝐷

𝑓,21e
3𝐷
𝑓 (3.109)

The non-zero terms e3𝐷𝑜𝑓 in the strain vector e*3𝐷𝑓 , which can not be determined from the

kinematic condition, are calculated from the equation 3.109. The stress vector s3𝐷𝑓 used

in the sectional analysis is therefore expressed by:

s3𝐷𝑓 = D3𝐷
𝑓,11e

3𝐷
𝑓 + D3𝐷

𝑓,12e
3𝐷
𝑜𝑓 = D3𝐷

𝑓,11e
3𝐷
𝑓 −D3𝐷

𝑓,12

(︀
D3𝐷

𝑓,22

)︀−1
D3𝐷

𝑓,21e
3𝐷
𝑓

⇒ s3𝐷𝑓 = k3𝐷
𝑓 e3𝐷𝑓

(3.110)

with the expression of the material stiffness matrix in 3D-zone:

k3𝐷
𝑓 = D3𝐷

𝑓,11 −D3𝐷
𝑓,12

(︀
D3𝐷

𝑓,22

)︀−1
D3𝐷

𝑓,21 (3.111)

The process of determining the material stiffness matrix k3𝐷
𝑓 of 3D-zone is generally

similar to that of 2D-zone in Figure 3-16, except that the transformation to in-plane

frame system is not necessary. The regional stiffness matrix K3𝐷
𝑠 can be calculated from

k3𝐷
𝑓 using Equation (3.43).

In this mechanical model for RC member, the constitutive model is formulated general

enough for being used for any shape of cross-section and any type of formulation (forces

or mixed based) in further studies.

3.6 Effective wall thickness

An important parameter to consider carefully in this discretization is the width of the 2D-

zone. However it is not validated by a specific rule, but only suggested equal to the double
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of concrete cover over the transverse reinforcement [76]. Taking care of this indication,

during the construction of the model, two remarks have been concluded by the authors:

1. Under shear-bending: the choice of 2D-width does not have much influence on the

numerical results, as observed by the authors during the numerical modelings.

2. Under pure torsion: a lack of definition for the 2D-width can pose some critical

problems to the numerical result, in other words, such a simple formulation (as

suggested by Navarro Gregori) can not represent accurately enough the torsional

response.

These remarks can be explained by the fact that as mentioned above, under torsional

effects, the behavior of RC member after cracking is assumed to be carried out by a tube

of hollow section. That is to say that the behavior of 3D-zone of the concrete in the section

core is set to zero and the sectional behavior depends only on 2D-zone and 3D-zone at the

four corners of section. The width of 2D-zone is defined as the effective wall thickness of

the tube, and determining this parameter becomes an obvious question to investigate the

post-cracking behavior of RC members under torsional effect. In shear-bending, a lack of

definition for the 2D-width can only pose some small problems in the calculation of steel

percentage for each region, but it does not have as much influence to the numerical results

as in the case of torsional effect.

In the literature, several formulations were proposed: Rahal & Collins proposed an

average value of the effective thickness of concrete in resisting the torsional moment which

depends on the section dimensions [88]; the formulation used in the model of Valipour &

Foster is a function of stirrup’s spacing, reinforcement bar disposition and concrete section

dimension [106]; while Hsu proposed another formulation for design based on the torsional

strength [47]. After consulting the proposed formulations cited above and a formulation

calibrated by Hsu [46], the authors noted that the effective wall thickness should be a

function of the section width and of the reinforcement ratio. A parametric study was

investigated from the 45 specimens below and gave the following formulation:

∙ For usual repartition of reinforcement bars at corner:

𝑡𝑒 = 𝑏

(︂
0.0130

ℎ

𝑏
𝑚𝜌𝑠 + 0.1

)︂
(3.112)
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∙ For repartition with additional of reinforcement bars along the perimeter:

𝑡𝑒 = 𝑏

(︂
0.0088

ℎ

𝑏
𝑚𝜌𝑠 + 0.1

)︂
(3.113)

where 𝜌𝑠 is the reinforcement percentage; 𝑏, ℎ the section dimension; 𝑚 is the ratio be-

tween longitudinal and transversal reinforcement and 𝑚 ≤ 1.5. The details of parametric

study as well as the explication of two proposed formulation following the repartition of

reinforcement bars over the cross-section are described clearly in Section 4.3.

3.7 Conclusions

In this chapter, an enhanced multi-fiber 3D beam element for RC members subjected

to combined loadings has been developed. The proposed model is able to take into ac-

count the material nonlinearity, the warping effect of cross-section, the contribution of

transversal reinforcement, and eventually the concrete confinement.

Between two enhanced approaches, the Saint-Venant warping function’s formulation is

simpler and requires less calculation time. However, the use of the formulation developed

in Section 3.3.2 is limited to solid cross-section. For a thin-walled cross-section, additional

DoFs need to be added and as a consequence, change considerably the variational for-

mulation in Section 3.4.1. In the other hand, the development of Lagrange polynomials

approach is quite complex and requires more coding functions as well as calculation time,

however its application is general and can be used to study the distortion phenomenon,

as described in Section 3.3.3.2. The variational formulation developed in Section 3.4.2 is

also general and independent to the type of cross-section.

Regarding the constitutive model, the contribution of transversal reinforcement is

taken into account by the iteration process satisfying internal equilibrium between con-

crete and stirrup, while the static condensation in 2D and 3D zone ensure the coupling

between multi-axial efforts. The concrete behavior is based on the original MCFT [110],

as described in Section 2.4.1.1, however other suitable uniaxial stress-strain relationships

in compression and tension can also be applied in the constitutive model of the proposed

formulation, such as Stevens et al.’s model [103].

The model formulation was written in Matlab, thanks to its powerful for handling

matrix expressions. The model code can be further translated to more efficient languages

such as FORTRAN, C++ or Python.
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Chapter 4

Numerical analysis of Concrete and

RC members under Pure Torsion

The present chapter is dedicated to the numerical analysis of concrete and RC members

subjected to pure torsion. An enhanced multi-fiber 3D beam model is proposed. This

model takes into account all the aspects of torsional effects, including the warping phe-

nomenon, the behavior before and after cracking as well as the contribution of stirrups. It

is worth to note that this proposed model is the improved version of the multi-fiber frame

model proposed by Navarro Gregori [76], taking advantage of its sectional discretization

which is very suitable for the specific behavior of RC elements under pure torsion. For the

constitutive model of concrete, the MCFT is employed, due to its suitability for multi-fiber

section discretization, as well as its simplicity and its wide use in engineering applications.

A new constitutive model for concrete under torsional effect will be proposed based on

the fact that numerical cracking torsional moments are reduced about half of the exper-

imental values when using the original MCFT as concrete constitutive model [53]. The

numerical examples are then compared to the analytical and experimental results for the

validation of the proposed model.

The Chapter is organized as follow. A brief summary of torsion theory and the expres-

sion of warping function is presented firstly in Section 4.1. Next, the element formulation

and the proposed constitutive model of concrete, which are specifically developed for RC

members under pure torsion, are respectively described in Section 4.2 and Section 4.3.

The following sections (4.4 and 4.5) deal with the numerical examples in elastic and in-

elastic material regime. Finally, Section 4.6 summarizes the Chapter and offers some

conclusions.
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4.1 Theory of Torsion

The problem of torsion in a straight member was first investigated in 1784 by Coulomb

[27], during his study of the property of electric charges. When carrying out the torsional

oscillation of a weight suspended on a wire, Coulomb found that torsional moment is

proportional to the angle of twist. This discovery was then introduced in a theoretical

equation for torsion by Navier [77] in 1826, in which the proportionality between torque T

and twist angle 𝜃 is represented by a constant called the torsional rigidity. This constant

is equal to the multiplication of the modulus of rigidity (shear modulus) 𝐺 and the polar

moment of inertia 𝐼𝑝:

𝑇 = 𝐺𝐼𝑝𝜃 (4.1)

However, this theory was limited to members with a circular section: torsional tests made

by Duleau [32] in 1820 noted a 20% difference between the moduli of rigidity for a circular

and a square section. This difference was then explained by a change of sectional rigidity,

caused by a particular phenomenon called warping, meaning that the cross sections, under

torsional effect, are deformed and come out of their original plan. In Figure 4-1, the signal

+ means that the cross-section come out following the positive direction of x axis, while

the signal − indicates that the warping follows the negative direction of x axis. The iso-

curves in solid represent the points having the same warping magnitude in the positive

direction, while the iso-curves in dashed line represent the points having the same warping

magnitude in the negative direction.

+

+
+

+
- -
--

+
+

+
+
+-

-
-
-

-

z

y

Figure 4-1 – Warping for several non circular section [97].

This warping phenomenon was first solved by Saint-Venant in 1855 using mathematical

tools included the Fourier series and the theory of elasticity. For the problem of torsion of

a straight element with an arbitrary cross section, Saint-Venant proposed to substitute the

polar moment 𝐼𝑝 in Equation (4.1) by a new constant 𝐽 called Saint-Venant’s torsional

constant, whose expression is explicit and can be widely found in the literature. The
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product of the shear modulus 𝐺 and Saint-Venant torsional constant 𝐽 is defined as the

torsional rigidity. For a beam of length 𝐿, the quotient of the torsional rigidity and the

beam length 𝐿 is defined as the torsional stiffness.

To represent the warping phenomenon, although the use of torsional constant is explicit

and can be easily formulated, its use is limited to sections of regular shape. Moreover,

since this parameter is computed for the whole section, it is impossible to apply this

constant into a finite element sectional fiber approach. In this case, Saint-Venant also

proposed another approach to represent the warping phenomenon, using a function called

Saint-Venant warping function which depends on the coordinates of material points in

the cross-section. This function is formulated by a semi-inverse method, and is restricted

to linear behavior with two assumptions:

1. Cross-section shape remains unchanged after twisting. In other words the distortion

phenomenon is neglected;

2. Warping of the cross-section is identical throughout the length of the member. This

assumption recalls to the problem of uniform torsion.

According to Saint-Venant, the warping function is described as a solution of the Neumann

problem:

𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
= 0 in Ω (Laplace equation) (4.2a)

𝜕𝜓

𝜕𝑦
𝑛𝑦 +

𝜕𝜓

𝜕𝑧
𝑛𝑧 = 𝑧𝑛𝑦 − 𝑦𝑛𝑧 on 𝜕Ω (Neumann boundary conditions) (4.2b)

where Ω represent the domain of cross section and 𝜕Ω its boundary, 𝑛𝑦 and 𝑛𝑧 are the

vector normal to the boundary. Exact solution can be expressed for any arbitrary kind of

solid cross-section, for example the rectangular cross-section [39]:

𝜓(𝑦, 𝑧) =
4

𝜋3

∞∑︁
𝑛=1

(−1)𝑛−1

(2𝑛− 1)3

⎡⎢⎢⎣𝑏2 sinh
(︂
2𝑛− 1

𝑏
𝜋𝑦

)︂
cos

(︂
2𝑛− 1

𝑏
𝜋
ℎ

2

)︂ sin

(︂
2𝑛− 1

𝑏
𝜋𝑧

)︂
− ℎ2

sinh

(︂
2𝑛− 1

ℎ
𝜋𝑧

)︂
cos

(︂
2𝑛− 1

ℎ
𝜋
𝑏

2

)︂ sin

(︂
2𝑛− 1

ℎ
𝜋𝑦

)︂⎤⎥⎥⎦
(4.3)

where 𝑏 is the section width and ℎ is the section height, with 𝑏 ≤ ℎ. A simplified

exponential expression was proposed by Xu et al. [115]:

𝜓(𝑦, 𝑧) = 𝐴𝑛 exp

[︂
𝛽1𝑛

(︂
𝑦 − 𝑏

2

)︂]︂
+𝐵𝑛 exp

[︂
−𝛽2𝑛

(︂
𝑦 +

𝑏

2

)︂]︂
− 𝜆𝐶𝑛

𝑏𝛼2𝜉2𝑛
− 𝑦𝑧 (4.4)

where ℎ is the section height; 𝛼 is the shear modulus ratio; 𝜆 is the gradient factor; and
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𝛽1𝑛, 𝛽2𝑛, 𝐶𝑛 and 𝜉𝑛 are defined as follows:

𝛽1𝑛 =

√︂
𝜆2

4ℎ2
+ 𝛼2𝜉2𝑛 −

𝜆

2ℎ
; 𝛽2𝑛 =

√︂
𝜆2

4ℎ2
+ 𝛼2𝜉2𝑛 +

𝜆

2ℎ
; 𝜉𝑛 =

𝑛𝜋

𝑏
; 𝐶𝑛 =

8𝑏

𝜋2

(−1)
𝑛−1
2

𝑛2

with 𝑏 is the section width and 𝑏 ≤ ℎ. If the material is isotropic, 𝜆 = 0, in this case:

𝐴𝑛 =
[1 − exp (−ℎ𝛽2𝑛)]𝐶𝑛

𝛽1𝑛 {1 − exp [−ℎ (𝛽1𝑛 + 𝛽2𝑛)]}
; 𝐵𝑛 =

[1 − exp (−ℎ𝛽1𝑛)]𝐶𝑛

𝛽2𝑛 {exp [−ℎ (𝛽1𝑛 + 𝛽2𝑛)] − 1}
;

In this exponential expression, the index 𝑛 is impair (𝑛 = 1, 3, 5, ...).

Instead of warping function 𝜓(𝑦, 𝑧), Prandtl [86] also introduced a stress function

Φ(𝑦, 𝑧) to represent the warping, with simpler equations for the boundary condition and for

the torsional moment. Otherwise, there are other approaches to interpolate the warping

function to solid or composite cross-section, as described in Chapter 2. Solving the warping

problem is indispensable to figure out the torsional response of a straight element with

an arbitrary cross section in the elastic behavior range.

4.2 Beam FE formulation for Pure Torsion

Under pure torsion, the torsional rotation 𝜃𝑥 is the only generalized displacement to

be considered at sectional level, and the vector of nodal displacements reduces from 12

elements to only 2 values of nodal twist angle: q𝑒,𝑡 =
(︁
𝜃𝐼𝑥 𝜃𝐽𝑥

)︁𝑇
. Here as sequel, the

sub-index t is used to denoted the parameters under pure torsion. Using the kinematic

relation in Equation (3.2), the twist angle 𝜃𝑥 and the twist rate 𝜅𝑥 are then equal to:

𝜃𝑥(𝑥) =
1 − 𝑥

𝐿
𝜃𝐼𝑥 +

𝑥

𝐿
𝜃𝐽𝑥 =

(︂
1 − 𝑥

𝐿

𝑥

𝐿

)︂⎛⎝𝜃𝐼𝑥
𝜃𝐽𝑥

⎞⎠ = N𝑠,𝑡(𝑥)q𝑒,𝑡 (4.5a)

𝜅𝑥 =
𝜕𝜃𝑥(𝑥)

𝜕𝑥
=
(︁
−1 1

)︁⎛⎝𝜃𝐼𝑥
𝜃𝐽𝑥

⎞⎠ = B𝑠,𝑡q𝑒,𝑡 (4.5b)

N𝑠,𝑡(𝑥) and B𝑠,𝑡(𝑥) are two interpolation matrices in pure torsion formulation. Hereafter,

the sectional and element state determinations are described following two approaches for

enhanced displacement field: using Saint-Venant warping function and using Lagrange

polynomials.
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4.2.1 Using Saint-Venant warping function

Under the hypothesis of small displacements, from Equation (3.17) the following kinematic

relation is established for the material displacement field under pure torsion according to

Saint-Venant torsional theory:

𝑈𝑡(𝑥, 𝑦, 𝑧) = 𝜅𝑥𝜓(𝑦, 𝑧)

𝑉𝑡(𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥(𝑥)

𝑊𝑡(𝑥, 𝑦, 𝑧) = 𝑦𝜃𝑥(𝑥)

(4.6)

The material strains, grouped in a single strain vector e𝑓,𝑡(𝑦, 𝑧), are evaluated as follows:

𝜀𝑥𝑥,𝑡 = 0

𝛾𝑥𝑦,𝑡 =

(︂
−𝑧 +

𝜕𝜓

𝜕𝑦

)︂
𝜅𝑥

𝛾𝑥𝑧,𝑡 =

(︂
𝑦 +

𝜕𝜓

𝜕𝑧

)︂
𝜅𝑥

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
⇒ e𝑓,𝑡(𝑦, 𝑧) = a𝑓,𝑡(𝑦, 𝑧)𝜅𝑥 (4.7)

with the definition of the compatibility matrix as follows:

a𝑓,𝑡(𝑦, 𝑧) =

(︂
0 −𝑧 +

𝜕𝜓

𝜕𝑦
𝑦 +

𝜕𝜓

𝜕𝑧

)︂𝑇

(4.8)

Once the strain vector e𝑓,𝑡 is obtained at each material point, an appropriate material

law is applied to determine the material stresses, which are collected in a single stress

vector s𝑓,𝑡 =
(︁
𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

)︁𝑇
. The constitutive relation can be established with the aid

of the material constitutive matrix k𝑓 as in Equation (3.36):

𝛿s𝑓,𝑡 = k𝑓,𝑡𝛿e𝑓,𝑡 (4.9)

Under pure torsion, the mechanical and constitutive model is based on the one described

in Section 3.5 and will be specifically developed for RC members in Chapter 4.

Then, the element equilibrium is imposed by means of the principle of virtual work as

in Equation (3.37):

𝛿W𝑖 = 𝛿W𝑒 ⇒
∫︁∫︁∫︁

𝑉

𝛿e𝑇𝑓,𝑡s𝑓,𝑡𝑑𝑉 = 𝛿q𝑇
𝑒,𝑡Q𝑒,𝑡 +

∫︁
𝐿

𝛿𝜃𝑥(𝑥)T𝑢𝑑𝑥 (4.10)

By exploiting the left hand of Equation (4.10), the following expression is obtained for
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the torsional moment:

𝑀𝑥,𝑠(𝑥) =

∫︁∫︁
𝐴

a𝑇
𝑓,𝑡s𝑓,𝑡𝑑𝐴 =

∫︁∫︁
𝐴

a𝑇
𝑓,𝑡k𝑓,𝑡a𝑓,𝑡𝑑𝐴𝜅𝑥 = K𝑠,𝑡𝜅𝑥 (4.11)

with K𝑠,𝑡 defined as sectional stiffness matrix. Then, with the aid of equations (4.5a) and

(4.5b), the Saint-Venant warping function approach gives the following expression for the

element equilibrium in Equation (4.10):

K𝑒,𝑡q𝑒,𝑡 = M𝑥,𝑒 +

∫︁
𝐿

N𝑇
𝑠,𝑡T𝑢𝑑𝑥 (4.12)

with M𝑥,𝑒 the nodal torsional moments and K𝑒,𝑡 is defined as the element stiffness matrix:

K𝑒,𝑡 =

∫︁
𝐿

B𝑇
𝑠,𝑡K𝑠,𝑡B𝑠,𝑡𝑑𝑥 (4.13)

Similar to the proposed formulation for combined loading in Chapter 3, the element state

determination is completed with the calculation of the stiffness matrix K𝑒,𝑡 and the nodal

torsional moment M𝑥,𝑒. In this approach, the element DoFs is only 2 instead of 12 in the

case of RC members subjected to combined loading.

4.2.2 Using Lagrange polynomials

In this approach, from Equation (3.6) and (3.21), we obtain:

𝑈𝑡(𝑥, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)U𝑒

𝑉𝑡(𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥(𝑥)

𝑊𝑡(𝑥, 𝑦, 𝑧) = 𝑦𝜃𝑥(𝑥)

(4.14)

with L̂(𝑥) and Ŝ(𝑦, 𝑧) the interpolation matrices as in Equation (3.21). The material

strains can be evaluated as follows:

𝜀𝑥𝑥,𝑡 =
𝜕L̂(𝑥)

𝜕𝑥
Ŝ(𝑦, 𝑧)U𝑒

𝛾𝑥𝑦,𝑡 = −𝑧𝜅𝑥 + L̂(𝑥)
𝜕Ŝ(𝑦, 𝑧)

𝜕𝑦
U𝑒

𝛾𝑥𝑧,𝑡 = 𝑦𝜅𝑥 + L̂(𝑥)
𝜕Ŝ(𝑦, 𝑧)

𝜕𝑧
U𝑒

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒ e𝑓,𝑡(𝑥, 𝑦, 𝑧) = a𝑝

𝑓,𝑡(𝑦, 𝑧)𝜅𝑥 + a𝑒
𝑓,𝑡(𝑥, 𝑦, 𝑧)U𝑒

(4.15)
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with the definition of the enhanced compatibility matrices:

a𝑝
𝑓,𝑡(𝑦, 𝑧) =

(︁
0 −𝑧 𝑦

)︁𝑇
; a𝑒

𝑓,𝑡(𝑥, 𝑦, 𝑧) =
𝜕L(𝑥)

𝜕𝑥
S𝑥(𝑦, 𝑧) + L(𝑥)S𝑦𝑧(𝑦, 𝑧) (4.16)

where a𝑒
𝑓,𝑡(𝑥, 𝑦, 𝑧) is a matrix of (3×𝑛𝑤.𝑠𝑤) which has the same expression with the com-

patibility matrix a𝑒
𝑓 (𝑥, 𝑦, 𝑧) in Equation (3.35). Similar to Section 3.4.2, in this approach

all the variables are separated into the basic and additional set, due to the introduction

of additional DoFs. The following expression is obtained for the torsional moment:

𝑀𝑥,𝑠(𝑥) =

∫︁∫︁
𝐴

a𝑝𝑇
𝑓,𝑡s𝑓,𝑡𝑑𝐴 =

∫︁∫︁
𝐴

a𝑝𝑇
𝑓,𝑡k𝑓,𝑡

(︀
a𝑝
𝑓,𝑡𝜅𝑥 +

(︀
a𝑒
𝑓,𝑡

)︀
U𝑒
)︀
𝑑𝐴

=

∫︁∫︁
𝐴

a𝑝𝑇
𝑓,𝑡k𝑓,𝑡a

𝑝
𝑓,𝑡𝑑𝐴𝜅𝑥 +

∫︁∫︁
𝐴

a𝑝𝑇
𝑓,𝑡k𝑓,𝑡a

𝑒
𝑓,𝑡𝑑𝐴U

𝑒

= K𝑏𝑏
𝑠,𝑡𝜅𝑥 +

(︂
K𝑏𝑎𝑥

𝑠,𝑡

𝜕L(𝑥)

𝜕𝑥
+ K𝑏𝑎𝑦𝑧

𝑠,𝑡 L(𝑥)

)︂
U𝑒

(4.17)

and the additional sectional forces can be also expressed as follows:

D𝑎𝑥
𝑠,𝑡(𝑥) =

∫︁∫︁
𝐴

S𝑇
𝑥 (𝑦, 𝑧)s𝑓,𝑡𝑑𝐴 = K𝑎𝑥𝑏

𝑠,𝑡 𝜅𝑥 +

(︂
K𝑎𝑥

𝑠,𝑡

𝜕L(𝑥)

𝜕𝑥
+ K𝑎𝑥𝑦𝑧

𝑠,𝑡 L(𝑥)

)︂
U𝑒

D𝑎𝑦𝑧
𝑠,𝑡 (𝑥) =

∫︁∫︁
𝐴

S𝑇
𝑦𝑧(𝑦, 𝑧)s𝑓,𝑡𝑑𝐴 = K𝑎𝑦𝑧𝑏

𝑠,𝑡 𝜅𝑥 +

(︂
K𝑎𝑦𝑧𝑥

𝑠,𝑡

𝜕L(𝑥)

𝜕𝑥
+ K𝑎𝑦𝑧

𝑠,𝑡 L(𝑥)

)︂
U𝑒

(4.18)

The expressions of the 9 sectional stiffness matrices in Equation (4.17) and (4.18) are

similar to Equation (3.56), unless the replacement of the compatibility matrix a𝑝
𝑓,𝑡 in the

matrix a𝑝
𝑓 . Then, the element equilibrium in Equation (4.10) can be expressed as follows:

⎡⎣K𝑏𝑏
𝑒,𝑡 K𝑏𝑎

𝑒,𝑡

K𝑎𝑏
𝑒,𝑡 K𝑎𝑎

𝑒,𝑡

⎤⎦⎛⎝q𝑒,𝑡

U𝑒

⎞⎠ =

⎛⎜⎝M𝑥,𝑒 +

∫︁
𝐿

N𝑇
𝑠,𝑡T𝑢𝑑𝑥

0

⎞⎟⎠ (4.19)

with the expression of sub-element stiffness matrix similar to Equation (3.63), and a static

condensation to determine the values of the enhanced displacements U𝑒 and the expression

of the element stiffness matrix:

U𝑒 = −K𝑎𝑎
𝑒,𝑡

𝑇K𝑎𝑏
𝑒,𝑡q𝑒,𝑡

K𝑒,𝑡 = K𝑏𝑏
𝑒,𝑡 −K𝑏𝑎

𝑒,𝑡K
𝑎𝑎𝑇
𝑒,𝑡 K𝑎𝑏

𝑒,𝑡

(4.20)

And the element equilibrium in Equation (4.10) can be rewritten as follows:

K𝑒,𝑡q𝑒,𝑡 = Q𝑒,𝑡 +

∫︁
𝐿

N𝑇
𝑠,𝑡T𝑢𝑑𝑥 (4.21)
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In this approach, the element DoFs is 2 + 𝑠𝑤.𝑛𝑤 instead of 12 + 𝑛𝑤.𝑠𝑤.

4.3 Proposed constitutive model of concrete under

Pure Torsion

4.3.1 RC members under Pure Torsion

The mechanical model for RC members under pure torsion is based on the one proposed

in Chapter 3, using the same section discretization and the regional constitutive model as

described in Section 3.5, with some major modifications.

The first modification comes from the special behavior of RC members under pure

torsion. For a RC members, the torsional response can be divided into 2 different phases:

before and after cracking of concrete.

∙ Before cracking, the response of the section is considered elastic and the behavior

is very similar to that of a plain concrete member, which can be predicted by the

Saint-Venant torsional theory.

∙ After cracking, the material is not continuous anymore, the theory of elasticity

becomes useless and a new mechanism is required to interpret the torsional response

in this phase, as described in Chapter 2.

From the concept of truss model as described in Section 2.3 and the experimental test

results from Hsu [45] and Onsongo [82], the behavior of RC member after cracking can

be assumed to be carried out by a tube of hollow section. This special behavior leads to

the first modification of the mechanical model for RC members under pure torsion: the

behavior of 3D-zone of the concrete in the section core is set to zero after cracking. The

non-linear torsional response after cracking therefore depends only on the behavior of the

2D-zone and the 3D-zone at the four corners of section, and the width of 2D-zone, called

the effective wall thickness, plays a significant role. The formulation of the effective wall

thickness has already been realized in Section 3.6, while the process of determination will

be described in the following section.

The second modification needs to be carried out concerning the behavior law of con-

crete under pure torsion. In compression, the same relationship as the original MCFT

(or other formulations) may be retained, however, in tension, the concrete stress-strain

relationship must be reconsidered. This is because, as mentioned above in Chapter 1 and
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Section 2.3.3, in the original MCFT and/or in the constitutive model for RC members of

Belarbi & Hsu [9], the tensile relationship is based on experimental tests of shear panels

(the Shell Element Tester at the University of Toronto and/or the Universal Panel Tester

at the University of Houston), so not really suitable for the torsional behavior. Indeed,

Jeng & Hsu [53] recorded that the cracking torsional moment, calculated by an analytical

model based on the constitutive model of Belarbi & Hsu, is much smaller than the exper-

imental values. By conducting a systematic parametric study with several experimental

tests, another tensile constitutive law was proposed by Jeng & Hsu (Figure 4-2):

𝐸𝑐𝑟 = 5620
√︀
𝑓𝑐 (𝑓𝑐 in MPa) (4.22a)

𝜀𝑐𝑟 = 0.000116 (4.22b)

𝑓𝑐𝑟 = 𝐸𝑐𝑟𝜀𝑐𝑟 (4.22c)

where 𝐸𝑐𝑟 is the proposed elastic modulus; 𝑓𝑐𝑟 is the tensile concrete cracking strength;

𝜀𝑐𝑟 is the cracking strain. Before cracking, the tensile stress-strain relationship is assumed

elastic linear:

For 𝜀1 ≤ 𝜀𝑐𝑟 : 𝜎1 = 𝐸𝑐𝜀1 (4.23)

while after cracking, the tension-stiffening effect is taken into account by:

For 𝜀1 > 𝜀𝑐𝑟 : 𝜎1 = 𝑓𝑐𝑟

(︂
𝜀𝑐𝑟
𝜀1

)︂0.4

(4.24)

Figure 4-2 – Tensile stress-strain relationship of concrete proposed by Jeng & Hsu [53] .

This new tensile relationship is developed from the constitutive laws of softened con-

crete in biaxial tension-compression proposed by Belarbi & Hsu [9], and were then used in

the Softened Membrane Model for Torsion (SMMT) by Jeng & Hsu [53], as described in
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Section 2.3.3. As can be seen in Figure 4-2, the main difference from the original tensile

law of Belarbi & Hsu is a stronger cracking strength of concrete: the pre-cracking stiffness

is 45% higher, the concrete cracking strength 𝑓𝑐𝑟 is 110% stronger. The cracking strain

𝜀𝑐𝑟 comes from observations of tests for concrete members in uniaxial tension, in which

the failure of concrete occur at a strain of approximately 0.0001.

4.3.1.1 Author’s observations

The proposed tensile relationship for concrete is modified with respect to the tensile

relationship used in the proposed constitutive model in Section 3.5, which is based on

the MCFT as described in Section 2.4.1.1. During the calibration process, the proposed

formulation is expressed based on the following observations:

1. According to the series of torsional tests carried out by Hsu [45], the cracking torque

of a RC beam 𝑇𝑐𝑟 is a mild function of reinforcement steel percentage 𝜌𝑠 and the

cracking torque of a corresponding plain concrete beam (with the same cross-section

dimension) 𝑇 𝑃𝐶
𝑐𝑟 .

2. The cracking torque of a plain concrete beam 𝑇 𝑃𝐶
𝑐𝑟 can be determined by several

theories in the literatures, such as elastic theory [97], plastic theory [79] or skew-

bending theory [45]. In theses formulations, 𝑇 𝑃𝐶
𝑐𝑟 depend on the tensile strength of

concrete 𝑓𝑡 and the dimension of cross-section.

From these two observations, we can conclude that, similar to the proposition in the

model of Jeng & Hsu, the concrete cracking strength 𝑓𝑐𝑟 must be increased and this

parameter should be a function of the concrete strength, the reinforcement ratio and

the cross-section dimension. Moreover, from the first observation, it is reasonable to

express 𝑓𝑐𝑟 as a function of the cracking strength of the corresponding plain concrete

members under pure torsion 𝑓𝑃𝐶
𝑐𝑟 , which has already been proposed by Hsu in an

empirical equation [45]:

𝑓𝑃𝐶
𝑐𝑟 = 0.76

(︂
1 +

6452

𝑏2

)︂
𝑓 1/3
𝑐 (MPa) for 𝑏 > 100 (mm) (4.25a)

𝑓𝑃𝐶
𝑐𝑟 = 6.13

(︂
𝑓𝑐
𝑏

)︂1/3

(MPa) for 𝑏 ≤ 100 (mm) (4.25b)

where 𝑓𝑐 is the cylinder compressive strength; ℎ, 𝑏 are the section height and width.

3. According to experimental tests, the impact of longitudinal reinforcement steel bars
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to torsional strength is small, but can not be neglected [45].

In the proposed model, the longitudinal reinforcement bars only have an impact on

the normal stress state, so do not have any contribution to the torsional response.

Indeed, experimental tests by Hsu [45] show that, for concrete members with lon-

gitudinal steel only, the effect of the longitudinal reinforcements is small, and the

cracking torque is very similar to that of a plain concrete member. This ineffective-

ness can be explained by the location of longitudinal steels bar, which are always

placed at the corners of section beam where the shear stress is zero according to

Saint-Venant’s stress distribution (Figure 4-3a).

However, for RC members with longitudinal steel and stirrups, the cracking torque

might be a function of the total steel percentage (Figure 4-3b). Hsu also remarked

that a better repartition (or distribution) of longitudinal reinforcement over the

cross-section will increase the cracking torque somewhat: it is the case of beam G6,

G7 and G8 in which the longitudinal bars also located at the center of the section.
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Figure 4-3 – (a) Distribution of Saint-Venant stresses along edges, the shear stress at
each point is calculated by

√︀
𝜏 2𝑥𝑦 + 𝜏 2𝑥𝑧 [46]. (b) Cracking torque as a function of

reinforcement ratio in Hsu tests (1968) [45].

Moreover, during the calibration process, the authors also noted that the contribu-

tion of reinforcement bars to torsional strength comes not only from their percentage,

but also from their repartition over the cross-section. Indeed, an usual repartition of

longitudinal steel at four corners of the section (Figure 4-4a) can result in a different

cracking torque than a repartition with additional longitudinal steel bars along the

perimeter (Figure 4-4b). Therefore, the reinforcement percentage 𝜌𝑠 must become

an indispensable parameter for the formulation of cracking strength 𝑓𝑐𝑟, and the

latter should be distinguished for different cases of longitudinal steel repartitions.
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(a) Usual repartition of longitudinal
reinforcement at corners.

(b) Repartition with additional longitudinal
reinforcement along the perimeter.

Figure 4-4 – Two case of distribution of longitudinal reinforcement steel bars.

4.3.1.2 Proposed formulation

From the three observations above, the following formulations are proposed for the con-

crete cracking strength of RC members under pure torsion:

∙ For an usual repartition of reinforcement bars concentrated at four corners:

𝑓𝑐𝑟 = 𝑓𝑃𝐶
𝑐𝑟

(︂
0.38

𝑏

ℎ
𝜌𝑠 + 1

)︂
(4.26)

∙ For a repartition with additional reinforcement bars along the perimeter:

𝑓𝑐𝑟 = 𝑓𝑃𝐶
𝑐𝑟

(︂
0.22

𝑏

ℎ
𝜌𝑠 + 1.3

)︂
(4.27)

The authors decided to keep the same formulation of the elastic modulus of concrete under

torsion: 𝐸𝑐 = 5620
√
𝑓𝑐 (𝑓𝑐 in MPa), and the cracking strain is determined in function of

𝑓𝑐𝑟 and 𝐸𝑐 as a result: 𝜀𝑐𝑟 =
𝑓𝑐𝑟
𝐸𝑐

. Comparing to the original tensile relationship of the

MCFT in Figure 2-19b, Chapter 2, the proposed formulation gives a higher cracking strain

and strength, while the expression of the tensile-stiffening phenomenon after cracking has

been changed to the formulation proposed by Jeng in Equation (4.24) (Figure 4-5). It

is worth to note that this proposed constitutive model is the improved version of the

constitutive model proposed by Jeng [53]. A comparison between two versions will be

presented below to validate the pertinence of the new model.

Vecchio model for shear

σ c

ε cr

crf

crf

0 ε cr ε c 0>

0>

Proposed model for torsion

Figure 4-5 – Proposed tensile relation for torsion compared to the tensile relation for
shear model in the original MCFT [110].

126



4.3.1.3 Calibration study

Although this new model for torsion has been showed some satisfactory responses in the

simulation compared to experimental tests, the choice of cracking strain is a bit unnatural

to the authors. This is why, the authors decided to proposed another tensile constitutive

law for RC members of rectangular cross-section under pure torsion. The proposed tensile

relationship is formulated using a parametric calibration which was studied by the authors

in 60 specimens of experimental tests, with various concrete strengths, section dimensions

and reinforcement ratios:

∙ Test by Hsu in 1963 at the Structural Laboratory of the Portland Cement Association

[45]: 40 specimens from 8 beam series: 9 of Series B (B2-B10), 6 of Series C (C1-C6),

8 of Series G (G1-G8), 6 of series M (M1-M6), 6 of Series N (N1-N4, N1a, N2a) 5

of Series I (I2-I6). The cross-dimensions and reinforcement distributions are showed

in Figure 4-6, all the specimens have a concrete cover thickness of 20 mm, while the

material properties of concrete and steel can be found in Appendix 7.2.

38
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254 mm

50
8 

m
m

254 mm

Series G

25
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254 mm

Series C

30
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m
m

153 mm

N1, N2

For G6-G8
only

For M6
only

For N3, N4
only

Figure 4-6 – Cross-section dimensions in the test of Hsu. [45].

∙ Test by Csikos & Hegedus in 1998 at the Technical University of Budapest [29]: 12

specimens from 4 beam series B, C, D and E, each consist of three specimens. All

the beams had the same outer dimensions (ℎ × 𝑏 × 𝐿 = 130 × 130 × 2000) (mm),

while the reinforcement ratios varied both in the longitudinal and the transversal

directions. The loads are applied by steel arms which were attached to both ends

of the beam (Figure 4-7a), while the twist at mid-span section was measured by

the shift of attached arms. The details of material properties and the reinforcement

distributions of each series can be found in Appendix 7.2.

∙ Test by Lee et al. in 2008 at the Sungkyunkwan University [63]: 8 specimens from 2

beam series: T1-1 to T1-4 and T2-1 to T2-4, with the same outer dimensions (ℎ×
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𝑏×𝐿 = 350×300×3000) (mm) and the concrete cover thickness of 20 mm. Similar

to the test at the Technical University of Budapest, the reinforcement percentage

and disposition varied both in the longitudinal and the transversal directions, whose

details can be found in Appendix 7.2. The angle of twist is measure by the LVDT

(Linear Variable Differential Transformer) sensor, whose location and the loading

condition of test can be found in Figure 4-7b. During the test, specimens were

loaded monotonically by displacement control method.

(a) At the Technical University of
Budapest [29]. (b) At the Sungkyunkwan University

[63].

Figure 4-7 – Layout of the torsion tests.

The calibration process begins by collecting all the experimental data, including the

beam dimensions, disposition and dimension of reinforcement steel, material properties of

concrete and steel, experimental values of cracking and ultimate torque. Then, according

to the author’s observation above, the following variables have been chosen for the para-

metric formulation of determining the concrete tensile strength under torsion 𝑓𝑐𝑟 and the

effective wall thickness 𝑡𝑒:

∙ Cracking strength of plain concrete members under torsion 𝑓𝑃𝐶
𝑐𝑟 .

∙ Reinforcement percentage (including longitudinal, transversal steels and the total

ratio): 𝜌𝑠𝑙, 𝜌𝑠𝑡 and 𝜌𝑠.

∙ The ratio between 𝜌𝑠𝑙 and 𝜌𝑠𝑡: 𝑚 =
𝜌𝑠𝑙
𝜌𝑠𝑡

.

∙ The ratio between section height and width:
ℎ

𝑏
.

4.3.1.3.1 Calibration of the concrete tensile strength 𝑓𝑐𝑟 This parameter was

determined in the phase before cracking of concrete, knowing that in this phase the

torsional behavior of RC member is similar to that of a corresponding plain concrete
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member. The cross-section discretization contains therefore only the 3D-zone of concrete

fiber.

In the first time, for each specimen of test, an initial and arbitrary value of 𝑓𝑐𝑟 (𝑓 𝑜
𝑐𝑟)

is chosen to evaluate the initial numerical value of cracking torque 𝑇𝑐𝑟 obtained by the

proposed model. Then, considering the experimental values, this initial value 𝑓 𝑜
𝑐𝑟 is modi-

fied/calibrated in order to obtain the new values of 𝑇𝑐𝑟. This step must be performed until

the values of 𝑇𝑐𝑟 are close to the experimental ones, in other word the relative difference

between experimental and numerical values are as small as possible:

𝑅𝑐𝑟 =
𝑇𝑐𝑟 − 𝑇 𝑒𝑥𝑝

𝑐𝑟

𝑇 𝑒𝑥𝑝
𝑐𝑟

100%

The value of 𝑓𝑐𝑟 at this moment is called as calibrated value 𝑓 𝑐
𝑐𝑟.

Next, all the values of 𝑓 𝑐
𝑐𝑟 and the variables mentioned above are plotted in a diagram

in order to determine a reasonable relationship between them. The proportion of 𝑓 𝑐
𝑐𝑟 and

𝑓𝑃𝐶
𝑐𝑟 (in Equation 4.25) is put in the vertical axis, while in the horizontal axis, several

possibilities have been tested, such as
ℎ

𝑏
𝜌𝑠,

ℎ

𝑏
𝜌𝑠𝑡 or

𝑏

ℎ
𝑚𝜌𝑠, etc., in order to select the best

trend fitting for two set of data. For the sake of simplicity, a linear fitting is applied for

the data set, and the best result has been selected between various possibilities in the

horizontal axis (Figure 4-8, 4-9 and 4-10). The best result can be found for the set of
𝑏

ℎ
𝜌𝑠

as in Equation (4.26) and (4.27), and the final expression could be therefore deduced.
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Figure 4-8 – Linear fitting in the calibration process of determining 𝑓𝑐𝑟, with
𝑏

ℎ
𝜌𝑠 in the

horizontal axis.
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Figure 4-9 – Linear fitting in the calibration process of determining 𝑓𝑐𝑟, with
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Figure 4-10 – Linear fitting in the calibration process of determining 𝑓𝑐𝑟, with
ℎ

𝑏
𝜌𝑠𝑡 in

the horizontal axis.

4.3.1.3.2 Calibration of the effective wall thickness 𝑡𝑒 The determination of

this parameter was carried out in the phase after cracking of concrete, knowing that the

torsional behavior of RC member in this phase depends strongly on this parameter. In

this phase, the discretization of cross-section contains 3 zones as described in Section 3.5.

The same process has been applied to the determination of the effective wall thickness 𝑡𝑒,

but this time the value of ultimate cracking torque 𝑇𝑢 is used to evaluate the calibrated

value of 𝑡𝑒, the relative difference between experimental and numerical values is therefore:

𝑅𝑢 =
𝑇𝑢 − 𝑇 𝑒𝑥𝑝

𝑢

𝑇 𝑒𝑥𝑝
𝑢

100%

A linear fitting is also applied for the data set, with the proportion of 𝑡𝑒 and the section

width 𝑏 in the vertical axis and the best fitting set values (
ℎ

𝑏
𝑚𝜌𝑠 as in Equation (3.112)
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and (3.113) in the horizontal axis (Figure 4-11), and the final expression could be deduced.
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Figure 4-11 – Linear fitting in the calibration process of determining 𝑡𝑒.

4.3.2 Plain concrete members under Pure Torsion

Not as complex as the behavior of RC members, the torsional behavior of plain concrete

members can be represented by a typical torque-twist curve as shown in Figure 4-12: at

low torque, the behavior is linear elastic, then becomes curved at high torque until a

brittle failure just after the first crack.

crT

T

0 θ
n crθ θ

Figure 4-12 – Typical torque-twist curve of plain concrete beam [46].

In this case, the torsional rigidity can be related to the stress-strain relation in uniaxial

compression and tension of concrete members (Figure 4-13). Generally in the literature,

the compressive stress-strain curve is approximately linear up to about one half of the

ultimate compressive strength, while a tensile stress-strain curve is approximately straight

up to failure at a strain of approximately 0.0001.
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Figure 4-13 – Typical stress-strain curve of concrete in uniaxial compression and tension.

Knowing that the ultimate tensile strength is much smaller than the ultimate com-

pressive strength (about one-tenth to one-seventh), we can notice that under torsional

effect, the compressive stress-strain curve is perfectly elastic linear. In order to obtain

the shape of torque-twist curve in Figure 4-12, some improvements have been made to

the tensile relationship. Indeed, a bi-linear stress-strain curve has been proposed by the

authors (Figure 4-14), in which the coefficient 0.7 in the tensile strength and 1.5 in the

strain were carefully calibrated according to several experimental tests listed below. The

choice of bi-linear curve and these coefficient allow a simple but effective model to predict

the torsional behavior of a plain concrete member. For rectangular cross-sections, the

cracking stress 𝑓𝑃𝐶
𝑐𝑟 is calculated from Equation (4.25), while the first slope is taken from

Equation (4.22a).

0.7

cE

εcr εc

σc

0 εcr1.5

crf
PC

crf
PC

Figure 4-14 – Proposed relationship for tension stress-strain curve of plain concrete
members under pure torsion.
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4.4 Numerical examples for Elastic Torsion

In this section, the numerical results obtained by the proposed model in Section 4.2

will be compared to the theoretical formulations, and other model’s results. The first

example concerns a cantilever beam subjected to pure torsion at the free end under small

displacement hypothesis (Figure 4-15), which was also simulated by Le Corvec in her

PhD thesis [62]. The FE proposed model are constructed from 4 elements, with 5 Gauss

points in each element and a system of square mesh of 100 × 50 fibers for each section.

The interpolation points system using Lagrange polynomial, marked by the red cross, are

constructed from 5 interpolation points along the element and a grid of 4 × 4 points over

the section. The numerical results for twist angle at the free end of the beam computed

by the model of Le Corvec and the proposed model (in two approaches) are collected in

Table 4.1.

z

y x

y

z

L=5000 mm

E=1000000 MPa; υ=0.3

b=50 mm

h=
10

0 
m

m
Mx=1000000 Nmm

Figure 4-15 – Cantilever beam subjected to pure torsion at free end and system of
interpolation points .

Table 4.1 – End twist angle for cantilever beam under mid span torque

Theory
Model of

Le Corvec

Proposed Model

No warping
Saint-Venant

warping function

Lagrange

polynomials

Twist angle (10−3 rad) 4.548 4.554 2.496 4.550 4.566

Relative error (%) 0.13 45.11 0.04 0.39

Execution time (second) 9 9 18

The relative errors are calculated with respect to the theoretical value, which can be

obtained from the following expression, according to Saint-Venant’s theory [97]:

𝜃𝑥 =
𝑀𝑥𝐿

𝐺𝐽
; 𝐺 =

𝐸

2(1 + 𝜈)
; 𝐽 ≈ 𝑏3ℎ

[︂
1

3
− 0.21

𝑏

ℎ

(︂
1 − 𝑏4

12ℎ4

)︂]︂
(4.28)

133



where 𝑀𝑥 is the torsional moment at mid-span; 𝐿 is the beam length; 𝐽 is the torsional

constant as cited in Section 4.1 and its expression in Eq. (4.28) is only applied for

rectangular cross-section. From Table 4.1, we concludes that the numerical results, given

by the proposed model in both enhanced approaches, correlate very well with the one given

by the theoretical formulation. Then, it confirms that neglecting the effect of warping will

strongly influence on the twist angle. Moreover, it is worth to note that the theoretical

formulation in Eq. (4.28) is only validated for the case of Saint-Venant torsion with free

warping, in the case of torsion with constrained warping, the following expression must

be used:

𝜃𝑥 =
𝑀𝑥𝐿

𝐺𝐽
− 𝑀𝑥

𝐺𝐽

√︂
𝐸𝐼𝑤
𝐺𝐽

tanh

(︃√︂
𝐺𝐽

𝐸𝐼𝑤
𝐿

)︃
; (4.29)

where 𝐼𝑤 = 𝛼ℎ𝑏3 is the warping constant of rectangular cross-section, 𝛼 is the Saint-

Venant’s coefficient which depends on the ratio of section width and height. In this

example, Eq. (4.29) gives a value of 4.542 × 10−3 for the end twist angle, that means a

relative difference of 0.13 % with respect to the value given by Eq. (4.28). The effect of

constrained warping can be therefore neglected in the case of solid cross-section.

The warping profile of the cross-section is represented in Figure 4-16a. It gives a good

illustration of the phenomenon: under torsional effect, the section warps and comes out

of their own plane. As a consequence, the sectional rigidity is changed and the twist

deformation is strongly influenced. As mentioned in the expression of warping functions,

we do not need an infinite (or great) number of items to obtain a satisfying result: in

Figure 4-16b, from a number 𝑛 ≥ 5, the relative difference is less than 0.01%.
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Figure 4-16 – Representation of warping phenomenon by the proposed model.

In order to analyze the section deformation under the effect of warping phenomenon,
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the shear stress profiles at free-end cross section are plotted in Figure 4-17. In Figure

4-17a and 4-17b, we can see two different distribution of shear stresses:

∙ Shear stress profile of classical field (no warping): plane distribution of 𝜏 𝑝𝑥𝑦 and 𝜏 𝑝𝑥𝑧

over the cross-section, according to plane section beam theory.

∙ Shear stress profile of enhanced field: the shear distributions are no more plane

and tend to reduce the value of the total shear stresses. Thus, the section rigidity

becomes less and the twist angle increases consequently, as represented in Table 4.1.

The superposition of this two shear stress profiles gives the total shear stress distribution

at free-end section, which are represented in Figure 4-17c and 4-17d. These total shear

stress profiles are strongly different from the case of no warping, which follows plane

section theory.
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Figure 4-17 – Shear stress’s profile at free-end cross-section under pure torsional effect.

The execution times, as cited in the Table 4.1, are about 9 seconds using Saint-Venant

warping function approach and 18 seconds using Lagrange polynomials. In a multi-fiber
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model, it is obvious that the more number of fibers, better the results obtained, however

calculation time becomes higher. In a simple elastic model, the difference is not very

important, but in order to apply the model in more complex problems, an adequate size

of fiber needs to be fixed. From Figure 4-18, a number more than 30 fibers through the

section depth is enough to ensure a good balance between accuracy and calculation time.
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Figure 4-18 – Mesh’s refinement investigation.

It is worth to notice that in this multi-fiber finite element model subjected to pure

torsion, it is impossible to get an exact result compared to the theoretical formulation,

because of two reasons:

1. The warping function is calculated with limited items, instead of infinity.

2. Sectional integration points situate in the center of fiber, not on the border.

Despite this fact, the use of multi-fiber approach is very effective and highly recommended

by the authors, considering its good balance between the result obtained (relative error

less than 0.5%) and the calculation time. From this example, the following statement can

be obtained:

∙ The numerical results given by the two proposed approaches correlates very well

with the one given by the theoretical formulation.

∙ Under torsional effect, the twist angle is strongly reduced without taking into ac-

count the warping of cross-section.

∙ For solid cross-section, free warping can be applied instead of restrained warping,

as mentioned in Section 3.3.2.
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4.5 Numerical examples for Inelastic Torsion

4.5.1 Plain concrete members

In this section, the behavior of plain concrete member under pure torsion will be repre-

sented and compared to a series of test carried out by Hsu [45], Csikos & Hegedus [29] and

Lee et al. [63]. The details of beam sections and material properties can be found in Table

4.2. For a plain concrete member, without contribution of reinforcement, it’s obvious that

the whole section is considered as a 3D-zone (Section 3.5.3), but with a constitutive model

as proposed in Section 4.3.2.

Table 4.2 – Details of specimens of tests in pure torsion for plain concrete members.

Test Specimen Dimension (mm) h/b ratio 𝑓 ′𝑐 (MPa)

Hsu [45]

A2 381 × 254 1.5 31.2

A4 254 × 254 1 32.49

A8 280 × 152 1.84 31.2

Csikos &

Hegedus [29]

A-1 130 × 130 1 23.7

A-2 130 × 130 1 30

Lee et al. [63] T0 350 × 300 1.17 42.6

In the literature, there are three basic methods to determine the cracking load of

rectangular plain concrete members under pure torsion:

∙ The elastic theory presented by Saint-Venant [97]:

𝑇 𝑃𝐶
𝑐𝑟,𝑒 = 𝛼𝑏2ℎ𝑓𝑡 (4.30)

where 𝛼 is the Saint-Venant’s coefficient which depends on the ratio of section width

and height; 𝑏 is the section width, ℎ is the section height and 𝑓𝑡 is the tensile strength

of concrete obtained from an uniaxial tension test.

∙ The plastic theory developed by Nylander [79]:

𝑇 𝑃𝐶
𝑐𝑟,𝑝 = 𝛼𝑝𝑏

2ℎ𝑓𝑡 (4.31)

where 𝛼𝑝 = 0.5− 𝑏/6ℎ is the plastic coefficient which is about 50% greater than the

Saint-Venant’s coefficient; 𝑏 is the section width, ℎ is the section height and 𝑓𝑡 is

the tensile strength of concrete obtained from an uniaxial tension test.
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∙ The skew-bending theory based on observations of torsion tests by Hsu [46]:

𝑇 𝑃𝐶
𝑐𝑟,𝑠𝑏 = 0.217(𝑏2 + 6451.6)ℎ 3

√︀
𝑓𝑐 (N.m) (4.32)

where 𝑓𝑐 is the compressive strength of concrete in MPa.

When consulting all the results calculated by these three theoretical formulations and

the numerical results, then comparing to the experimental tests (Table 4.3), we can see

that the cracking strength obtained by the elastic theory is always conservative, the plastic

theory gives unconservative results, while the results given by skew-bending theory are

more reasonable, but generally the proposed numerical model can give the best results:

in most cases the relative difference with respect to experimental test is less than 5%.

Table 4.3 – Cracking torsional model for Plain concrete member: Comparison between
experimental, numerical result and theoretical formulations

Test Beam
Exp

Value

Proposed

Model

Elastic

Theory

Plastic

Theory

Skew-bending

Theory

Hsu [45]

A2 19.1 19.7 / 3.1% 13.8 / -27.8% 23.2 / 22.1% 18.50 / -3.1%

A4 11.3 10.2 / -9.7% 8.62 / -23.7% 13.8 / 22.3% 12.50 / 10.6%

A8 6.38 6.70 / 5.0% 3.82 / -40.1% 6.46 / 1.3% 5.66 / -11.3 %

Csikos &

Hegedus [29]

A-1 1.61 1.60 / -0.6% 1.13 / -29.7 % 1.81 / 12.6 % 1.54 / -17.7 %

A-2 1.69 1.71 / 1.2 % 1.32 / -21.7 % 2.12 / 25.5 % 1.79 / 5.9 %

Lee et al. [63] T0 23.2 22.9 / -1.3% 25.3 / -9.0 % 35.8 /54.2 % 29.4 / 26.6 %

The torque-twist curves obtained by the proposed model shows a good agreement with

the experimental results (Figure 4-19). The slope of at high torque until failure is well

represented with the aid of the proposed constitutive model in Section 4.3.2.
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Figure 4-19 – Torque-twist curve for series A of Hsu’s test.

4.5.2 Reinforced concrete members

In this section, the behavior of RC members under pure torsion will be represented and

compared to the series of test mentioned in the calibration section, which were carried out

by Hsu [45], Csikos & Hegedus [29], Lee et al. [63] and Lee et al. [64]. The specimens can

be divided into two categories, according to its repartition of longitudinal reinforcements

on the cross-section:

1. Usual repartition of reinforcement bars at corner: Series B (B2-B10), Series C (C1-

C6), Series G (G1-G5), Series I (I2-I6), Series M (M1-M5), Series N (N1, N1a, N2,

N2a) of Hsu’s test; Series B (B1-B3), Series C (C1-C3) of Csikos & Hegedus’s test;

Series T (T1-1, T2-1, T2-2) of Lee et al. test.

2. Repartition with additional reinforcement bars along the perimeter: Beam M6, N3,

N4, G6, G7, G8 of Hsu’s test; Series T (T1-2, T1-3, T1-4 ,T2-3, T2-4) of Lee et al.

test; Series D (D1-D3), E (E1-E3) of Csikos & Hegedus’s test.

The cracking and ultimate torsional moment calculated for 61 specimens of tests cited

above are compared to theoretical formulations, numerical results of Jeng’s model and 2

international standards for torsional design of RC members (Eurocode 2 and ACI).
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4.5.2.1 Cracking Torque

As mentioned in Section 4.5.1, there are three analytical methods to calculate the cracking

torque of rectangular plain concrete members 𝑇 𝑃𝐶
𝑐𝑟 : the elastic theory presented by Saint-

Venant [97], the plastic theory developed by Nylander [79] and the skew-bending theory

based on experimental tests by Hsu [45]. For RC members with a rectangular cross-section,

based on 𝑇 𝑃𝐶
𝑐𝑟 , Hsu proposed a new formulation for the cracking load:

𝑇𝑐𝑟 = (1 + 4𝜌𝑠)𝑇
𝑃𝐶
𝑐𝑟 (4.33)

where 𝜌𝑠 is the total percentage of reinforcement with respect to the whole section. The

cracking torque 𝑇𝑐𝑟 calculated by theses three analytical methods are then compared to

the numerical results obtained by the proposed model and Jeng’s model [53].

4.5.2.1.1 Usual repartition of longitudinal reinforcement at four corners In

Table 4.4, for each series of tests, the average relative differences (calculated with respect

to the experimental tests) are indicated, and the smallest average relative error is shown

in bold and highlighted in red.

Table 4.4 – Cracking torsional moment: average relative error with respect to
experimental test calculated.

Test Beams
Proposed

Model

Jeng’s

Model

Elastic

Theory

Plastic

Theory

Skew-bending

Theory

Hsu [45]

Series B 4.4% 7.1% 33.1% 13.2% 8.0%

Series C 5.3% 10.8% 33.9% 5.9% 6.0%

Series G 3.0% 6.2% 38.6% 11.7% 14.3%

Series I 4.5% 4.7% 20.2% 34.9% 12.3%

Series M 4.7% 3.7% 31.5% 15.8% 3.9%

Series N 4.5% 12.3% 46.4% 4.1% 12.7%

Lee et al.

[63]

Series T1 4.5 % - 25.8 % 26.2 % 10.8 %

Series T2 4.9 % - 18.7 % 38.3 % 2.9 %

Csikos &

Hegedus [29]

Series D 0.6% - 26.1 % 18.4 % 12.9 %

Series E 3.8% - 28.5 % 14.6 % 8.6 %

We can see that the proposed modifications are very relevant as the smallest average

relative error can be found in most cases, and in all series the relative error is always

less then 5 %, except in series C (5.3 %). The numerical results given by Jeng’s model
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are also satisfactory, although some large average relative errors (more than 10%) were

found in series C and N of Hsu’s test. When considering the analytical formulations, while

the elastic theory always gives the unsatisfactory results, reasonable cracking loads can

be sometimes obtained by the plastic theory (series C and N of Hsu’s test). The skew-

bending theory shows the best ability of predicting the cracking torsional moment between

the three formulations, but its results are still far from satisfactory when comparing to

the experimental results.

Go further in detail, the numerical results of series B in Hsu’s test can be found in

Table 4.5, with the best numerical cracking torque (compared to experimental values)

always highlighted in red. The proposed model gives the best prediction in 6 specimens,

and 6 of 9 specimens give a relative error less than 5%. Other numerical results and

comparisons for each series of torsional test can be found in Appendix.

Table 4.5 – Cracking torsional moment - Series B of Hsu Test: experimental and
numerical values and relative error with respect to experimental values.

Beams
Exp

values

Proposed

Model

Jeng’s

Model

Elastic

Theory

Plastic

Theory

Skew-bending

Theory

B2 20.00 19.1 / -4.5 % - 13.58 / -32.1 % 22.96 / 14.8 % 18.99 / -5.0 %

B3 20.11 20.0 / -0.6 % 20.61 / 2.5 % 13.69 / -31.9 % 23.15 / 15.1 % 19.37 / -3.7 %

B4 21.92 22.4 / 2.2 % 21.69 / -1.0 % 15.26 / -30.4 % 25.80 / 17.7 % 20.55 / -6.3 %

B5 22.60 23.2 / 2.7 % 21.44 / -5.1 % 15.09 / -33.2 % 25.51 / 12.9 % 20.92 / -7.4 %

B6 24.97 24.2 / -3.1 % 21.62 / -13.4 % 15.52 / -37.8 % 26.25 / 5.1 % 21.61 / -13.4 %

B7 20.22 19.7 / -2.6 % 18.7 / -7.5 % 12.43 / -38.6 % 21.01 / 3.9 % 18.43 / -8.9 %

B8 21.81 25.2 / 15.6 % 20.28 / -7.0 % 13.45 / -38.3 % 22.74 / 4.3 % 19.58 / -10.2

B9 19.66 18.1 / -7.9 % 20.67 / 5.1 % 13.72 / -30.2 % 23.20 / 18.0 % 19.10 / -2.8 %

B10 17.63 18.7 / 6.1 % 20.25 / 14.9 % 13.38 / -24.1 % 22.62 / 28.3 % 19.61 / 11.2 %

4.5.2.1.2 Repartition with additional longitudinal reinforcement along the

perimeter Another strong aspect of the proposed model is the ability of calculating for

the case of additional distribution of longitudinal reinforcement bars along the perimeter.

In Table 4.6, the numerical and analytical cracking torque for this case of reinforcement

distribution are all indicated, with a highlight in bold and red for the model with the

smallest relative difference compared to the experimental result. Unconservative results

can be found in many cases, except the plastic theory, but the best agreements are usu-

ally obtained with the proposed model. Although giving the smallest differences in two

specimens (G8 and N3), the predictions of the plastic theory are too conservative, which
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is not really suitable for the design process. We can also see that, while the model of Jeng

does not consider the impact of reinforcement distribution, the relative errors in this case

of distribution with additional longitudinal reinforcement along the perimeter are higher

than the average ones obtained by this model (Table 4.4).

Table 4.6 – Distribution with additional longitudinal reinforcement bars: Cracking
torsional moment (KNm) and Relative error with respect to experimental test.

Test Beam
EXP

Values

Proposed

Model

Jeng’s

Model

Elastic

Theory

Plastic

Theory

Skew-bending

Theory

Hsu [45]

G6 30.96 33.2 / 7.2% - 18.47 / -40.3% 33.61 / 8.6% 25.27 / -18.4%

G7 33.67 34.2 / 1.6% 31.24 / -7.2% 19.53 / -42.0% 35.53 / 5.5% 26.21 / -22.2%

G8 33.67 32.6 / -3.2% 30.32 / -9.9% 18.53 / -45.0% 33.72 / 0.1% 26.18 / -22.3%

M6 22.71 21.9 / -3.9% 21.81 / -4.0 % 15.83 / -30.3% 26.76 / 17.8% 21.79 / -4.0 %

N3 7.41 6.80 / -8.3% 6.37 / -14.1% 3.80 / -48.7% 6.91 / -6.7% 6.36 / -14.1%

N4 7.60 7.50 / -1.4% 6.45 / -15.1% 3.94 / -48.1% 7.18 / -5.6% 6.61 / -13.1%

Lee et

al. [63]

T1-2 31.4 30.1 / -4.1% - 22.95 / -26.9% 39.03 / 24.3% 27.59 / -12.1%

T1-3 31.8 31.5 / -0.9% - 23.52 / -26.0% 40. 1/ 25.8% 28.28 / -11.1%

T1-4 33.7 34.6 / 2.7% - 24.42 / -27.5% 41.53 / 23.2% 29.35 / -12.9%

T2-3 29.8 29.0 / -2.7% - 23.36 / -21.6% 39.73 / 33.3% 28.08 / -5.8%

T2-4 29.9 29.5 / -1.3% - 23.75 / -20.6% 40.40 / 35.1% 28.55 / -4.5%

Csikos &

Hegedus [29]

D2 1.69 1.70 / 0.6% - 1.49 / -11.6% 2.40/ 41.7% 2.31 / 36.6%

D3 1.69 1.68 / -0.6% - 1.47 / -13.0% 2.36 / 39.4% 2.29 / 35.6%

E1 2.25 2.09 / -7.1% - 1.55 / -30.9% 2.49 / 10.8% 2.35 / 4.2%

E3 2.06 2.05 / -0.5% - 1.52 / -26.1% 2.44 / 18.4% 2.33 / 12.9%

4.5.2.2 Ultimate Torque

In this section, the ultimate torque calculated by the proposed model is compared to the

numerical results of Jeng’s model, the analytical formulations proposed by Rausch, Cowan

and Hsu and two standards for torsional design: Eurocode 2 and ACI.

The first formulation to calculate the ultimate torsional moment was proposed by

Rausch in his space truss theory [93]. The main hypotheses are that both longitudinal

and transversal steels are yielding at the ultimate torque and the inclination of concrete

cracks is fixed at 45̊ . This formulation is an ingenious concept which gives torsional

strength as a function of reinforcements and concrete:

𝑇𝑢𝑅 = min

(︂
2𝐴𝑐𝐴𝑠𝑙𝑓𝑠𝑙𝑦

𝑢
;
2𝐴𝑐𝐴𝑠𝑡𝑓𝑠𝑡𝑦

𝑠

)︂
(4.34)

where 𝐴𝑐 is the area enclosed by the centerline of stirrups; 𝐴𝑠𝑙 and 𝑓𝑠𝑙𝑦 are the total area

and the yield strength of longitudinal bars; 𝐴𝑠𝑡 is the cross-section area of one hoop bar

and 𝑓𝑠𝑙𝑡 are the yield strength of stirrups; 𝑢 is the perimeter of the area bounded by the
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centerline of a completed hoop bar; 𝑠 is the stirrup’s spacing. Several years later, Cowan

modified Rausch’s equation and proposed a new formulation based on Saint-Venant’s

stress and strain distribution for rectangular cross-section [28]:

𝑇𝑢𝐶 = 𝑇𝑒 + 1.6
𝐴𝑐𝐴𝑠𝑡𝑓𝑠𝑡𝑦

𝑠
(4.35)

where 𝑇𝑒 is the torsional cracking strength calculated by the elastic theory (Equation

(4.30)). In this formulation, the torsional failure mode depends on the yielding of stirrups.

Another formulation based on experimental tests’ observations was proposed by Hsu [46]:

𝑇𝑢𝐻 =
𝑏2ℎ

3
2.4
√︀
𝑓 ′
𝑐 +

√
𝑚
𝑓𝑠𝑙𝑦
𝑓𝑠𝑡𝑦

(︂
1 + 0.2

𝑏1
ℎ1

)︂
𝑏1ℎ1𝐴𝑠𝑡𝑓𝑠𝑡𝑦

𝑠
(4.36)

where 𝑓 ′
𝑐 is the compressive strength of concrete; 𝑏1 and ℎ1 is the width and the height

of the area enclosed by the centerline of stirrups; 𝑚 is the ratio between longitudinal and

transversal steel percentage.

In the ACI standard, torsional strength of RC members is calculated as [1]:

𝑇𝑢𝑆 =
2𝐴𝑜𝐴𝑠𝑙𝑓𝑠𝑙𝑦

𝑠
cot 𝜃 (4.37)

where 𝐴𝑜 is the gross area enclosed by the shear flow path, which can be taken equal to

0.85𝐴𝑐, with 𝐴𝑐 the area enclosed by the centerline of stirrups; 𝜃 is the cracks angle which

can be taken as 45̊ for non-prestressed or low-prestressed members. In the European

standard Eurocode 2, three different values are calculated depending on the torsional

failure modes and the minimum one has to be chosen [96]. The first value is related to

the stirrups’ yielding, the second one corresponds to the longitudinal bars capacity and

the third one is related to the torsional capacity of concrete struts:

𝑇𝑢𝐸 = min

(︂
2𝐴𝑘𝐴𝑠𝑙𝑓𝑠𝑙𝑦

𝑠
cot 𝜃;

2𝐴𝑐𝐴𝑠𝑙𝑓𝑠𝑙𝑦
𝑢𝑘

tan 𝜃; 2𝜈𝑓 ′
𝑐𝐴𝑘𝑡𝑒𝑓 sin 𝜃 cos 𝜃

)︂
(4.38)

𝐴𝑘 is the area enclosed by the centre-lines of the effective wall thickness; 𝑡𝑒𝑓 is the effective

wall thickness and can be calculated as 𝐴/𝑢 with 𝐴 the total area and 𝑢 the perimeter of

cross-section. The cracks angle is variable but can be taken as 45̊ .

In Table 4.7, the relative differences (calculated with respect to the experimental

tests) are indicated. In each series of tests, the smallest average relative error is shown

in bold and highlighted in red. Similar to the cracking torque, in most cases the smallest
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average relative error was obtained by the proposed model. The numerical results given

by Jeng’s model are also satisfactory with the best average relative error in series M

and N of Hsu’s test. Although the average level of predictive performance is not better

than Jeng’s model (5.4% in comparison with 5.1%) in the test of Hsu, we can state that

this lower performance of the proposed model is submitted by a big influence from the

series C (12.5%). Without this series C, 5/6 series has a relative error less than 5/6, and

the average value decreases to only 4%. When considering the analytical formulations,

Rausch’s and Cowan’s formulations often give too high average relative error in all cases,

while Hsu’s formulation performs better, with one best result in series C of Hsu’s test.

Finally, the torsional strength given by the design standards are far from satisfactory.

Table 4.7 – Ultimate torsional moment: average relative error calculated with respect to
experimental test values.

Test Beams
Proposed

Model

Jeng’s

Model

Rausch’s

Formulation

Cowan’s

Formulation

Hsu’s

Formulation
Eurocode 2 ACI

Hsu [45]

Series B 4.9% 7.9% 56.0% 54.8% 16.1% 23.2% 41.4%

Series C 12.5% 5.6% 81.3% 69.9% 5.1% 14.4% 52.2%

Series G 3.8% 4.8% 11.1% 21.0% 20.5% 29.5% 10.5%

Series I 2.8% 6.1% 18.0% 29.9% 24.1% 14.8 % 9.6 %

Series M 5.9% 3.2% 22.6% 18.7% 17.1% 20.7% 19.2%

Series N 2.9% 2.5% 12.0% 24.1% 22.1% 22.2% 10.8%

Lee et al.

[63]

Series T1 4.4% - 59.6% 74.4% 9.7% 19.8% 35.8%

Series T2 6.5% - 18.1% 46.1% 0.9% 15.7% 10.6 %

Csikos &

Hegedus [29]

Series B 1.3% - 40.3% 21.7% 31.4% 50.4% 49.2%

Series C 5.3% - 6.7% 44.6% 30.4% 43.1% 12.6%

Series D 7.6% - 39.4% 9.7% 33.6% 56.2% 48.5 %

Series E 5.3% - 26.0% 6.3% 38.0% 59.1% 37.1%

Average 5.4% 5.1% 32.9% 35.9% 19.5% 27.3% 26.6%

A more detailed comparison will be examined for the case of repartition with addi-

tional longitudinal reinforcement bars along the perimeter. Similar to Section 4.5.2.1, in

Table 4.8, the numerical and analytical ultimate torque for this case of reinforcement dis-

tribution are all indicated, with a highlight in bold and red for the cases with the smallest

relative difference compared to the experimental results. In Hsu’s test, the two numerical

models show their advantage by their ability to predict the torsional strength with a very

reasonable error in most cases (except specimen G8), while in the test of Lee et al., Hsu’s

formulation also gives very good results. In the test of Csikos & Hegedus, the proposed

model is still giving the best predictions.
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Table 4.8 – Repartition with additional longitudinal reinforcement bars: Ultimate
torsional moment (KNm) and Relative error with respect to experimental test.

Test Beams EXP
Proposed

Model

Jeng’s

Model

Hsu’s

Formulation
Eurocode 2 ACI

Hsu [45]

G6 39.09 40.30 / 3.1% - 30.52 / -21.9% 27.98 / -28.4% 33.68 / -13.8%

G7 52.65 50.3 / -4.5% 55.87 / 6.1% 41.07 / -22.0% 40.14 / -23.8% 48.32 / -8.2%

G8 73.44 61.4 / -16.4% 70.49 / -4.0% 54.26 / -26.1% 57.02 / -22.4% 68.64 / -6.5%

M6 60.11 60.10 / 0.1% 55.29 / -3.2% 60.85 / 1.2% 64.22 / 6.8% 77.82 / 29.5%

N3 12.20 12.05 / -1.2% 12.49 / 2.4% 9.37 /-23.2% 9.27 / -24.0% 11.14 / -8.7%

N4 15.70 15.75 / 0.3% 15.08 / -4.0% 12.99 / -17.3% 14.76 / -6.0% 17.75 / 13.0%

Lee et

al. [63]

T1-2 42.9 44.5 / 3.7% - 41.86 / -2.4% 47.52 / 10.8% 55.16 / 28.6%

T1-3 54.1 52.5 / -3.0% - 51.84 / -4.2% 62.15 / 14.9% 72.14 / 33.3%

T1-4 62.4 63.4 / 1.6% - 79.51 / 27.42% 92.29 / 47.91% 107.13 / 71.68%

T2-3 50.2 49.4 / -1.6% - 49.95 / -0.5% 45.90 / -8.6% 53.28 / 6.1%

T2-4 56.4 55.2 / -2.1% - 56.75 / 0.6% 53.86 / -4.5% 62.52 / 10.9%

Csikos &

Hegedus

[29]

D2 2.25 2.38 / 6.7% - 1.51 / -33.1% 0.99 / -55.9% 1.02 / -54.8%

D3 2.06 2.20 / 6.8% - 1.50 / -27.3% 0.99 / -51.8% 1.02 / -50.7%

E1 3.38 3.10 / -9.5% - 2.01 / -4.0% 1.32 / -60.9% 2.03 / -39.9%

E3 3.23 3.06 / -5.3% - 2.00 / -38.0% 1.32 / -59.1% 2.03 / -37.1%

4.5.2.3 Torque-twsit curve

The torque-twist curve obtained by the proposed model is compared to the experimental

results of specimen M2 and M3 in the test of Hsu (Figure 4-20), with and without the pro-

posed modification of the tensile behavior. A very good agreement was achieved between

experimental and numerical results: the cracking and the ultimate torsional moment have

the same magnitude, the slopes in the post-cracking phase are identical, and the featured

horizontal plateau manifested by the transition between the two phases before and after

the cracking is well represented. Moreover, we can conclude that without the proposed

modification of tensile behavior, the cracking moment achieved is about half of the one

of the experimental test, and therefore the torque twist curve can not be similar to the

experimental one.
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Figure 4-20 – Torsional moment versus Twist rate diagram for two specimens M2 and
M3 in the torsional test of Hsu [45].

Another comparison of the torque-twist curves was made for series B of Hsu’s test and

series T1, T2 of Lee et al.’s test: once again the proposed model gave a good agreement

with the experimental results (Figure 4-21, 4-22). In the series B of Hsu’s test (Fig-

ure 4-21), the cracking and ultimate torsional moments were strongly a function of the

reinforcement ratio, while the post cracking torsional stiffness were also well represented.
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Figure 4-21 – Torsional moment versus Twist rate diagram for series B of Hsu’s test.
[45]

Concerning the test of Lee et al., in the series T1 (Figure 4-22a), good level of predicting

for the ultimate torsional moment and post cracking stiffness were achieved. For the series

T2 (Figure 4-22b), some slight gaps were noticed in the cracking phase, especially in the

specimens T2-2 in which the horizontal plateau between the two phases before and after

cracking was not recorded by the experimental data. However in general the predicting
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torsional behavior obtained by the proposed model were reasonable and satisfactory.
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Figure 4-22 – Torsional moment versus Twist rate diagram for series T of Lee et al.’s
test. [63]

4.6 Conclusions

A nonlinear multi-fiber finite element model has been developed for concrete and RC

elements under pure torsional effect in this chapter. Through several numerical examples

carefully executed above, the following remarks and conclusions can be draw:

∙ In the elastic material domain, good correlation has been obtained between the

numerical results and the theoretical formulations. The influence of warping is

significant and must be taken into account in order to obtain a correct torsional

response. Besides the Saint-Venant warping function, the use of Lagrange polyno-

mials to represent the warping effect can be also considered with very high level of
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accuracy.

∙ The constitutive model based on the MCFT is suitable to be implemented in the

multi-fiber finite element approach. In which, concerning the compression of con-

crete, the softening of concrete is a fundamental property and must be included in

any loading conditions, so do the simulation of pure torsion, where the softening

coefficient obtained from the shear tests can be applied without any modification.

Therefore, the compressive relationship of concrete can be used from the one pro-

posed on the original MCFT of existing formulations.

∙ However, under pure torsional effect, the tensile relationship proposed for shear

effect is not suitable to predict correctly the torsional behavior of RC beam and a

new relationship is required as a consequence. The modification proposed by the

authors for the tensile behavior of concrete showed a reasonable and correct influence

in predicting the torsional response of RC beam in the inelastic material domain.

∙ The section discretization in different zones following its stress state is very suitable

to carrying the pure torsional effect, the parametric formulation developed by the

authors for the effective wall thickness helps to complete this approach by giving a

definition for the width of 2D-zone.

∙ From the numerical results obtained, the use of the proposed model is highly recom-

mended to predict the cracking torque of RC beam under torsion and also for the

cross-section in which the reinforcement bars are distributed with additional steel

bar along the perimeter. Thanks to the specific constitutive model designed for this

case of steel repartition, the proposed model shows its interest when giving a very

good level of prediction, in comparison to other models and analytical formulations.

∙ The calibration method, presented by the authors to establish the formulation of

the concrete tensile strength 𝑓𝑐𝑟 and the 2D-zone width 𝑡𝑒, allows to obtain a very

good correlation between numerical and experimental results, as well as suggests an

idea to the development of other formulations. However, it is obvious that some

drawbacks of the calibration process should not be ignored, such as the dependency

on the choice of the behavior constitutive law and on the size of experimental data.

As a consequence, this method could become ”sensitive”to any change of input data.
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Chapter 5

Numerical analysis of RC members

under Combined loading

The present chapter deals with the numerical analysis of RC members subjected to com-

bined loadings of shear-bending-torsion. The enhanced multi-fiber 3D beam model for-

mulation developed in Chapter 3 is used. The behavior of RC members considering the

interaction between combined loading effects will be investigated in linear and non-linear

regime of material behaviors. In case of elastic material, existing analytical solutions and

numerical results are used as a reference to validate the model’s ability and analyze the

choice of mesh size. Also, two approaches proposed for the enhanced field of model are

compared and discussed about their the advantage and inconveniences. While in inelas-

tic material domain, the capacity of proposed model in predicting the behavior of RC

members will be investigated by comparing with experimental test results.

According to the combined loading cases between shear, bending and torsion, the

Chapter is organized as follows:

∙ Coupling of shear-bending: in Section 5.1, this typical combination of load cases of

RC members is investigated in linear and non-linear regime of material behaviors.

The numerical results are compared with the analytical solutions, other numerical

models and the experimental values from three series of tests carried out by Bresler

& Scordelis at the University of Berkeley [14].

∙ Coupling of bending-torsion: in Section 5.2, the interaction between bending and

torsion is investigated and the numerical results are compared to the Collins et

al.’s skew-bending theory and the experimental values from two tests carried out by

McMullen & Warwaruk [72] and Onsongo [82].
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∙ Coupling of shear-bending-torsion: in Section 5.3, the experimental test by Mc-

Mullen & Warwaruk [72] is used as references in order to study the coupling of this

completed combined loading cases of RC members.

∙ Finally, Section 5.4 summarizes the Chapter and offers some conclusions.

5.1 Elements subjected to combined shear and bend-

ing action

5.1.1 Elastic material

The numerical results are first validated in the domain of elastic linear material. In this

section, the application of two formulations for the enhanced beam, using Saint-Venant

warping function and Lagrange polynomials, will be investigated, in order to figure out

the suitable approaches for the proposed model subjected to shear-bending action.

∙ Saint-Venant warping function approach: as developed in Section 3.3.2, the en-

hanced field using Saint-Venant warping function does not generate any additional

normal strain (Equation (3.18)), while the axial warping displacement appears only

under torsional effect (Equation (3.17)). Therefore, using this approach under shear-

bending action, the proposed model is considered as a multifiber beam using plane-

section beam theory.

∙ Lagrange polynomials approach: the enhanced field in this approach generates an

additional normal strain (Equation 3.23a), while the axial displacements are also

changed (Equation 3.21) and the cross section cannot maintain its plane shape

under shear-bending action.

Two examples of cantilever beams subjected to vertical force at free-end, which were

considered in the PhD thesis of Capdevielle [15] and Le Corvec [62], will be investigated

hereafter. In both approaches, the numerical results obtained by the proposed models

are compared in one hand with those of Capdevielle [15] and Le Corvec [62] and in other

hand with the theoretical formulations (using plane-section beam theory such as Euler

Bernoulli ou Timoshenko).
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5.1.1.1 Numerical application using Saint-Venant warping function approach

A cantilever beam subjected to vertical force at the free end, which was used in the PhD

thesis of Capdevielle [15], is studied firstly. The details of cross-section dimension, beam

length and material properties are indicated in Figure 5-1. For the numerical modeling,

in order to find the necessary number of elements and fibers, which ensure an adequate

equilibrium between accuracy and calculation cost, different meshes are considered. Re-

garding the element discretization, three cases of meshing are used: 1, 4 and 8 elements.

As for the cross-section, the following discretization is done: 10 × 5, 20 × 10, 40 × 20 and

100 × 50 square fibers.

L=1000 mm

E=30000 MPa; υ=0.2

Fz=1 N

h=
20

0 
m

m
b=100 mm

Figure 5-1 – Geometry and material properties for cantilever beam in the example of
Capdevielle [15].

The values of deflection at free-end were computed and then compared to the theoret-

ical formulation, which can be given by the following expressions according to the beam

theory of Timoshenko (𝑑𝑇 ), under the effect of vertical force 𝐹𝑧 in 𝑧 direction:

𝑑𝑇 = −𝐹𝑧𝐿
3

3𝐸𝐼𝑧
− 𝐹𝑧𝐿

𝐺𝐴𝜅𝑦
= −171.47(𝑚𝑚) (5.1)

with 𝐸 is the Young modulus, 𝐴 the cross-section area, 𝐼𝑧 the moment of inertia about

the z-axis, 𝐿 the beam length and 𝜅𝑦 the shear correction factor in 𝑦 direction. The

numerical result for each case of mesh are presented in Table 5.1, accompanied with the

relative error computed with respect to the theoretical formulation in Equation 5.1.

Table 5.1 – Tip deflection (mm) and corresponding relative different with respect to the
theoretical formulation.

XXXXXXXXXXXXXXX
Beam Mesh

Section Mesh
10× 5 20× 10 40× 20 100× 50

1 -173.15 / 0.98 % -171.88 / 0.24 % -171.57 / 0.06 % -171.48 / 0 %

4 -173.15 / 0.98 % -171.88 / 0.24 % -171.57 / 0.06 % -171.48 / 0 %

8 -173.15 / 0.98 % -171.88 / 0.24 % -171.57 / 0.06 % -171.48 / 0 %
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As can be seen from Table 5.1 , the number of element does not have any influence

on the numerical results of this simple example. This can be explained by the constant

distribution of shear force over element length in this loading configuration. Then, the

more number of fibers, the more the numerical values are exact with respect to analytical

solutions, and even a light system of 10×5 fibers over the cross-section can give satisfactory

results with the relative error less than 1%. The elapsed times depend on the element

number and fiber mesh, for example, 6 times differences can be remarked between the

most-meshed model - 8 elements with 100× 50 fibers in each section - (18 seconds) and a

model of 4 elements with 40 × 20 fibers (less than 3 seconds). Even though, in compare

to many finite element models, the elapsed times are relatively small.

The next parameter to evaluate is the distribution of shear strain over the cross-section,

which are assumed parabolic in the model formulations (Equation (3.12)). Following the

𝑧 direction, a parabolic distribution gives the following analytical solution of shear strain

at a material point of cross-section situated at coordinate 𝑥 of element axis:

𝜀𝑥𝑧(𝑥, 𝑧) =
𝑉𝑧(𝑥)

2𝐺𝐼𝑦

[︃(︂
ℎ

2

)︂2

− 𝑧2

]︃
(5.2)

with 𝑉𝑧(𝑥) is the shear force value in 𝑧 direction at coordinate 𝑥, 𝐺 is the shear modulus,

𝐼𝑦 is the second moment of area with respect to th 𝑦-axis and ℎ is the section height. At

mid-span of the beam, the distribution of shear strain 𝜀𝑥𝑧 over the cross-section are plotted

in Figure 5-2. In this Figure, we can see that the values of shear strain calculated at the

integration points (center of square fiber) are identical on the 𝑦 direction, correspond to

the analytical formulation in Equation (5.2).
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Figure 5-2 – Distribution of shear strain 𝜀𝑥𝑧 over cross-section under shear-bending.

Because the values of shear strain are identical on the 𝑦 direction, at an arbitrary
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𝑦 coordinate, we will compare the values of shear strain 𝜀𝑥𝑧 calculated by analytical

formulation in Equation (5.2) and the ones obtained by the proposed model and the model

of Capdevielle. In this case, the proposed model used a system of 20 × 10 = 200 square

fibers, meaning 200 integration points over the cross-section and 20 fibers of identical 𝑦

coordinate which give 20 different values of 𝜀𝑥𝑧, while the model of Capdevielle, with a

system of 400 triangular mesh (Figure 5-3a), has 400 integration points over the cross-

section and 40 fibers of identical 𝑦 coordinate. However, of these 40 fibers, there are only

20 different values of 𝜀𝑥𝑧, because there are 20 pairs of fibers with different 𝑧 coordinates

but same values of 𝜀𝑥𝑧, due to the triangular mesh discretization. On Figure 5-3b, the

numerical results given by the proposed model correlate perfectly with the analytical

solutions, while there are small gaps between the numerical results of Capdevielle’s model

and the analytical solutions.
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Figure 5-3 – (a) System of FE mesh in the model of Capdevielle [15].; (b) Comparison of
shear strain profile 𝜀𝑥𝑧.

5.1.1.2 Numerical applications using Lagrange polynomials approach

The example of Capdevielle in the previous section is re-used hereafter, the system of

Lagrange interpolation points with 5 points along the element axis and a grid of (4 × 4)

points over the cross-section are indicated in Figure 5-4.
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Figure 5-4 – System of Lagrange interpolation points (red cross sign).
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The deflection at free-end are computed by the same models as in previous chapter.

Because the number of element does not have any influence on the numerical results of

this simple example, in this approach only different cases of fiber mesh are considered in

a model of 8 elements. The numerical results are presented in Table 5.2.

Table 5.2 – Tip deflection, corresponding relative different with respect to the
theoretical formulation and the elapsed times.

PPPPPPPPPApproach

Mesh
10× 5 20× 10 40× 20 100× 50

Saint-Venant

Warping

Function

-173.15 mm -171.88 mm -171.57 mm -171.48 mm

0.98 % 0.24 % 0.06 % 0 %

1 s 1 s 3 s 18 s

Lagrange

polynomial

-176.81 mm -173.43 mm -171.57 mm -171.47 mm

3.11 % 1.14 % 0.06 % 0 %

3 s 14 s 33 s 211 s

As can be seen in Table 5.2, similar to the Saint-Venant warping function approach,

the values of tip deflection obtained using the Lagrange polynomial approach tend to

converge to the analytical solution. Ensuring a very reasonable result with relative error

less than 0.1 % and a small elapsed time, the use of 40 × 20 fibers is recommended for

the numerical modeling in both approach. In the other hands, using Lagrange polynomial

approach, the elapsed times increase clearly, require 33 seconds on a model of 8 elements

and 40×20 fibers (compared to 3 seconds in the Saint-Venant warping function approach),

and up to 211 seconds with a system of 100 × 50 fibers (compared to 18 seconds).

The differences in the numerical results between two approaches in Table 5.1 and 5.2

can be explained by the appearance of the enhanced normal strains, leading to some slight

changes in the element stiffness matrix K𝑒. Using two numerical models constructed from

1 element and 40 × 20 fibers in each cross-section, the Saint-Venant warping function

approach gave the following expression of K𝑒:

K𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6𝑒5 0 0 0 0 0 −6𝑒5 0 0 0 0 0

0 5.82𝑒3 0 0 0 2.91𝑒6 0 −5.82𝑒3 0 0 0 2.91𝑒6

0 0 2.15𝑒4 0 −1.08𝑒7 0 0 0 −2.15𝑒4 0 −1.08𝑒7 0

0 0 0 5.70𝑒8 0 0 0 0 0 −5.70𝑒8 0 0

0 0 −1.08𝑒7 0 7.38𝑒9 0 0 0 1.08𝑒7 0 3.38𝑒9 0

0 2.91𝑒6 0 0 0 1.95𝑒9 0 −2.91𝑒6 0 0 0 9.56𝑒8

−6𝑒5 0 0 0 0 0 6𝑒5 0 0 0 0 0

0 −5818 0 0 0 −2.91𝑒6 0 5818 0 0 0 −2.91𝑒6

0 0 −21509 0 1.08𝑒7 0 0 0 21509 0 1.08𝑒7 0

0 0 0 −5.70𝑒8 0 0 0 0 0 5.70𝑒8 0 0

0 0 −1.08𝑒7 0 3.38𝑒9 0 0 0 1.08𝑒7 0 7.38𝑒9 0

0 2.91𝑒6 0 0 0 9.56𝑒8 0 −2.91𝑒6 0 0 0 1.95𝑒9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3)
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While the expression obtained by Lagrange polynomial approach was:

K𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6𝑒5 0 0 0 0 0 −6𝑒5 0 0 0 0 0

0 5.82𝑒3 0 0 0 2.91𝑒6 0 −5.82𝑒3 0 0 0 2.91𝑒6

0 0 2.15𝑒4 0 −1.08𝑒7 0 0 0 −2.15𝑒4 0 −1.08𝑒7 0

0 5.15𝑒3 −1.77𝑒4 7.14𝑒8 9.24𝑒6 2.74𝑒6 0 −515𝑒3 1.77𝑒4 −7.14𝑒8 8.47𝑒6 2.64𝑒6

0 0 −1.08𝑒7 −9.65𝑒4 7.38𝑒9 −7.93𝑒3 0 0 1.08𝑒7 9.65𝑒4 3.38𝑒9 −8.13𝑒3

0 2.91𝑒6 0 5.68𝑒5 1.94𝑒5 1.95𝑒9 0 −2.91𝑒6 0 −5.68𝑒5 1.93𝑒5 9.56𝑒8

−6𝑒5 0 0 0 0 0 6𝑒5 0 0 0 0 0

0 −5.82𝑒3 0 0 0 −2.91𝑒6 0 5.82𝑒3 0 0 0 −2.91𝑒6

0 0 −2.15𝑒4 0 1.08𝑒7 0 0 0 2.15𝑒4 0 1.08𝑒7 0

0 −5.15𝑒3 1.77𝑒4 −7.14𝑒8 −9.24𝑒6 −2.74𝑒6 0 5.15𝑒3 −1.77𝑒4 7.14𝑒8 −8.47𝑒6 −2.64𝑒6

0 0 −1.08𝑒7 −3.47𝑒5 3.38𝑒9 0 0 0 1.08𝑒7 3.47𝑒5 7.38𝑒9 0

0 2.91𝑒6 0 2.76𝑒5 6.57𝑒4 9.56𝑒9 0 −2.91𝑒6 0 −2.76𝑒5 6.53𝑒5 1.95𝑒8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.4)

In these two stiffness matrix, the terms whose value is zero in Equation (5.3) are marked

in blue, while the stiffness values which are different between two approaches are marked

in red. The appearance of new non-zero terms and the change of existing term (relative

difference up to 25%) cause the differences in the numerical results between two approaches

in Table 5.1 and 5.2. By increasing the mesh system to 100 × 50 fibers, the Saint-Venant

warping function approach gave the following expression of K𝑒:

K𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6𝑒5 0 0 0 0 0 −6𝑒5 0 0 0 0 0

0 5.83𝑒3 0 0 0 2.91𝑒6 0 −5.83𝑒3 0 0 0 2.91𝑒6

0 0 2.15𝑒4 0 −1.08𝑒7 0 0 0 −2.15𝑒4 0 −1.08𝑒7 0

0 0 0 5.71𝑒8 0 0 0 0 0 −5.71𝑒8 0 0

0 0 −1.08𝑒7 0 7.38𝑒9 0 0 0 1.08𝑒7 0 3.38𝑒9 0

0 2.91𝑒6 0 0 0 1.96𝑒9 0 −2.91𝑒6 0 0 0 9.58𝑒8

−6𝑒5 0 0 0 0 0 −6𝑒5 0 0 0 0 0

0 −5.83𝑒3 0 0 0 −2.91𝑒6 0 5.83𝑒3 0 0 0 −2.91𝑒6

0 0 −2.15𝑒4 0 1.08𝑒7 0 0 0 2.15𝑒4 0 1.08𝑒7 0

0 0 0 −5.71𝑒8 0 0 0 0 0 5.71𝑒8 0 0

0 0 −1.08𝑒7 0 3.38𝑒9 0 0 0 1.08𝑒7 0 7.38𝑒9 0

0 2.91𝑒6 0 0 0 9.58𝑒9 0 −2.91𝑒6 0 0 0 1.96𝑒9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.5)

and the Lagrange polynomials approach gave:

K𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6𝑒5 0 0 0 0 0 −6𝑒5 0 0 0 0 0

0 5.83𝑒3 0 0 0 2.91𝑒6 0 −5.83𝑒3 0 0 0 2.91𝑒6

0 0 2.15𝑒4 0 −1.08𝑒7 0 0 0 −2.15𝑒4 0 −1.08𝑒7 0

0 0 1.11𝑒4 5.89𝑒8 −7.82𝑒6 3.05𝑒5 0 0 −1.11𝑒4 −5.89𝑒8 −3.26𝑒6 −1.05𝑒6

0 0 −1.08𝑒7 0 7.38𝑒9 0 0 0 1.08𝑒7 0 3.38𝑒9 0

0 2.91𝑒6 0 0 0 1.96𝑒9 0 −2.91𝑒6 0 0 0 9.58𝑒8

−6𝑒5 0 0 0 0 0 −6𝑒5 0 0 0 0 0

0 −5.83𝑒3 0 0 0 −2.91𝑒6 0 5.83𝑒3 0 0 0 −2.91𝑒6

0 0 −2.15𝑒4 0 1.08𝑒7 0 0 0 2.15𝑒4 0 1.08𝑒7 0

0 0 −1.11𝑒4 −5.89𝑒8 7.82𝑒6 −3.05𝑒5 0 0 1.11𝑒4 5.89𝑒8 3.26𝑒6 1.05𝑒6

0 0 −1.08𝑒7 0 3.38𝑒9 0 0 0 1.08𝑒7 0 7.38𝑒9 0

0 2.91𝑒6 0 0 0 9.58𝑒9 0 −2.91𝑒6 0 0 0 1.96𝑒9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.6)

There are still some difference, however the number of new non-zero term decreases sig-

nificantly, and the relative difference in the change of existing term reduces to only 3%.

The similar numerical results between two approaches when increasing the mesh number

can be therefore explained.
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Another example which was in the PhD thesis of Le Corvec [62] was also investigated

hereafter. The details of cross-section dimension, beam length, material properties and

system of Lagrange interpolation points are indicated in Figure 5-5. Because of the high

ratio between the section height and width, in this example over the cross-section only 4

Lagrange interpolation points were used for the numerical modeling.

Fz=1000000 N
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y
x

y

z

L=5000 mm

b=100 mm

h=
10

00
 m

m

E=1000000 MPa; υ=0.3

Figure 5-5 – Geometry, material properties and system of Lagrange interpolation points
(red cross sign) for cantilever beam.

The values of tip deflection, given by the proposed model in both approaches (with

1 element accompanied by two mesh systems of 100 × 10 and 200 × 20 fibers on each

cross-section), are shown in Table 5.3 and compared to the analytical solutions and the

numerical result of Le Corvec’s model. The result of the proposed model are in very good

agreement with the ones given by the theoretical formulation. We can also remark that

there are almost no gap in the numerical results between two proposed approaches, even

with a light mesh system. This difference to the previous example of Capdevielle may be

explained by the high ratio between the section height and width in this case study.

Table 5.3 – Tip deflection of cantilever beam with rectangular cross-section under
vertical loading - Example of Le Corvec [62].

Timoshenko

Theory

Model of

Le Corvec
Mesh

Proposed Model

Saint-Venant

warping function

Lagrange

polynomials

Tip deflection

(mm)
-5.156 -5.156

10× 1 -5.206 -5.207

50× 5 -5.158 -5.158

100× 10 -5.157 -5.157

200× 20 -5.156 -5.156

As a reminder, under shear-bending action, the enhanced field using Lagrange poly-

nomials generates an additional axial displacement field. As a consequence, the cross-

section is warped and cannot retain its plane shape. This warping displacement under
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shear-bending action can be represented in Figure 5-6a, in which the parabolic shape is

a result of the cubic interpolation polynomials over cross-section. We can also see that,

similar to the profile of shear stress, under vertical shear force in 𝑧 direction, the profile

of warping displacement is constant following the 𝑦 direction. However, the magnitude of

this enhanced field is too small compared to that of the classical field, therefore the total

displacement field is not much influenced and retains its plane shape (Figure 5-6b). The

material strains and stresses are not influenced and as a result, there are no difference on

the values of tip deflection in Table 5.3.
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(a) Warping displacement field.
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(b) Total displacement field.

Figure 5-6 – Distribution of displacement field over the free-end cross-section under
shear-bending.

Along the element axis, this warping effect is not constant and is distributed propor-

tionally according to the normal stress value: minimum at the fixed-end, then increase

and reach the maximum at the free-end section (Figure 5-7).
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(a) Example by Capdevielle.

uw (mm) #10-6
-1.5 -1 -0.5 0 0.5 1 1.5

z 
(m

m
)

-500

-250

0

250

500

At free-end section
Near fixed-end section

(b) Example by Le Corvec.

Figure 5-7 – Variation of the warping displacement profile along the beam axis.
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5.1.2 Inelastic material

In this section, under shear-bending effect, the numerical model is simulated using the FE

formulation presented in Chapter 3, while the model’s material behavior is based on the

MCFT, originally developed by Vecchio [110] and described in Section 2.4.1.1.

The RC beam tests conducted by Bresler & Scordelis at the University of Berkeley

[14] is commonly taken as a benchmark reference and have been repeatedly used for the

validation of various analytical and numerical models. For this reason, in this section

the results of these test are used as references in order to investigate the capacity of

the proposed model in predicting the behavior of reinforce concrete under shear-bending.

Three series of test A, B and C are analyzed in this section. The details of beam sections

in each series and the outline of test setup are showed in Figure 5-8.

(a) Outline of test setup.
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(b) Cross-section details.

Figure 5-8 – Bresler & Scordelis’s shear bending test in 1963 [14].

In each series, the index number 1,2 and 3 correspond to three different types of

specimen, each corresponds to a beam length indicated in Table 5.4a. According to the

test result, the types of beam of intermediate length (A1, A2, B1, B2 and C1, C2) could
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be characterized as shear-flexural behavior, correspond to a shear-compression failure

mode, while the long-span beams of type 3 (A3, B3 and C3) generally exhibited a flexure-

compression failure mode. In Table 5.4a we can also find the section dimensions and

concrete properties, while the reinforcement details are given in Table 5.4b

Table 5.4 – Description of the RC beams tested by Bresler & Scordelis [14].

Beam
L

(mm)

h

(mm)

b

(mm)

𝑓 ′𝑐

(MPa)
𝜀𝑜

A1 3658 561 307 24.1 0.002

A2 4572 559 305 24.3 0.002

A3 6400 561 307 35.1 0.002

B1 3658 556 231 24.8 0.002

B2 4572 561 229 23.2 0.002

B3 6400 556 229 38.8 0.002

C1 3658 559 155 29.6 0.002

C2 4572 559 152 23.8 0.002

C3 6400 554 155 35.1 0.002

(a) Section details and concrete properties.

Bar
d

(mm)

𝑓𝑦

(MPa)

𝑓𝑢

(MPa)

𝐸𝑠

(MPa)

No. 2 6.4 325 430 189607

No. 4 12.7 345 542 201330

No. 9

(types 1,2)
28.7 555 958 217880

No. 9

(types 3)
28.7 552 933 205470

(b) Reinforcement details.

5.1.2.1 Numerical analysis of Beam A1

A detailed case study is analyzed in this section, the specimen A1 is modeled using 4

elements with 5 Gauss-Lobatto points and a system of 25 × 15 meshes over the cross-

section. The interaction between shear and bending is investigated firstly. In order to

point out the shear effect on the bending behavior, the deflections are determined by two

different ways: using a model of combined bending and shear, and using a model in which

shear is ignored. Figure 5-9 presents the mid-span deflection versus applied load curves.

Mid-span deflection (mm)
0 2 4 6 8 10 12 14 16

L
oa

d 
(k

N
)

0

100

200

300

400

500

Experimental values
Shear-bending model
Only bending
Only shear

Figure 5-9 – Load-displacement diagram of beam A1.
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It can be observed that shear effect on the beam deflection is not much pronounced in

the elastic region (up to 100 kN). However, coupling between shear and flexural actions

seems to give better results in terms of deflection when the beam gets in the nonlinear

range. For instant, at the loading of 400 kN, the deflection due to shear is about 11 %

of the total displacement. The deflection due to the shear increases with increasing of

applied load. This situation can be explained by the appearance of shear crack pattern in

the sectional stiffness matrix, which decreases the sectional stiffness and thus increases the

displacement. Moreover, the numerical results obtained by the proposed model give quite

good agreements with the experimental values in term of element stiffness, load bearing

capacity (460 kN in compare to 468 kN of test value) and the maximum deflection (14.6

mm in compare to 14.2 mm of test value).

At ultimate loading, the crack orientation of concrete were illustrated in Figure 5-10a,

for the left half of the beam. As can be seen, the numerical simulation gives logical results

in terms of crack orientation. Indeed, the crack inclinations become higher towards the

lower face of the beam and close to the mid-span - the point of load applications. This

result is somehow in agreement with the experimental observations in Figure 5-10b.

0 L/2
-h/2

0

h/2

(a) Numerical simulation.
(b) Experimental observations.

Figure 5-10 – Crack distribution at ultimate loading for the left half of Beam A1.

The distributions of normal stress at different cross-sections are plotted in Figure 5-

11 for the left half of the beam, just before the achievement of ultimate load. At mid

of the left half (or at 1/4 of beam span), higher stress intensities are recorded in the

compression zone because the appearance of crack limits the increase of normal stress

in tension zone. At mid-span cross-section, where the strains are maximum, a higher

ordinate of neutral axis than that at 1/4 span can be found because the cracks in tension

zone become wider. Corresponding to the parabolic shape in the compressive relationship

of the material constitutive model, in the compression zone the normal stresses reach its

compressive strength and start to decrease at the top of the beam. In tension zone, the

tension-stiffening phenomenon can be observed at the bottom of the beam.
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Figure 5-11 – Distribution of normal stress 𝜎𝑥 at different cross-section.

For the distribution of shear stresses, similar statement can also be remarked, as a

parabolic profile corresponding to elastic regime is found at the left support where the

applied load is at low level (Figure 5-12). Then, while shear stresses continue to increase

with load level in compression zone, in the tension zone, because of cracks, the increment

of shear stresses is considerably less than in the compression zone. From certain level of

load, the propagation of flexural cracks forces the shear stresses to zeros, as sketched at

the section near the mid-span. It is should be highlighted that the integration of the three

curves, which correspond to the results of shear force distributions, are equal.

Shear stress =
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Figure 5-12 – Distribution of shear stress 𝜏𝑥𝑧 at different cross-section.
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5.1.2.2 Numerical results of others beams

Other simulation results for all specimens in the test of Bresler & Scordelis are represented

hereafter. In Table 5.5, the ultimated loadings computed by the proposed model are

compared to VecTor2, a finite element program developed at the University of Toronto.

This program incorporate the behavior models and constitutive relations of the disturbed

stress field model (DSFM) [108], a refinement of the MCFT [110]. Relative differences are

computed with respect to the experimental values and the better results are highlighted in

red. It can be seen that reasonable results have been obtained for both numerical models,

but the proposed model generally gives better result of predicting than VecTor2 program,

especially for the beams of series A and B. It is also interesting to note that the ultimate

loading performed by both numerical models are typically under-estimated.

Table 5.5 – Ultimate Loading (in kN) and relative difference to the experimental result -
Comparison between Proposed Model and VecTor2 program

Beam Experimental Proposed Model VecTor2 Program

A1 468 461 / -1.5 % 472 / 0.9 %

A2 490 442 / -9.8 % 399 / -18.6 %

A3 468 375 / -19.9 % 366 / -21.8 %

B1 446 441 / -1.1 % 423 / -5.2 %

B2 400 380 / -5.0 % 327 / -18.3 %

B3 356 320 / -10.1 % 355 / -0.3 %

C1 312 292 / -6.4 % 307 / -1.6 %

C2 324 322 / -0.6 % 258 / 5.5 %

C3 270 251 / -7.0 % 255 / -5.5 %

The load versus mid-span displacement curve obtained by the proposed model in

compare to the experimental test data are plotted in Figure 5-13. For the beams of

intermediate length (type 1 and 2), good agreements were obtained at all stages of loading,

except in the case of beam C1 (Figure 5-13f), where the numerical and experimental curve

did not correlate very well. For the long-span beam (type 3, although there are some

difference at the early load stage, the beam stiffnesses were well represented, especially in

beam B3 and C3 (Figure 5-13e and 5-13h), while the numerical result for beam A3 was a

bit different to the experimental curve (Figure 5-13b). In general, very good correlations

were obtained between the numerical result and the experimental values: the model is

capable of well predicting the ultimate loading and maximum deflection (as shown in

Table 5.5) as well as representing a very reasonable element stiffness in most cases of test.
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(c) Beam B1.

Mid-span Deflection (mm)
0 5 10 15 20 25

L
oa

d 
(k

N
)

0

50

100

150

200

250

300

350

400

Experimental Values
Numerical Result

(d) Beam B2.
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(e) Beam B3.
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(f) Beam C1.
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(g) Beam C2.
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(h) Beam C3.

Figure 5-13 – Load versus mid-span displacement curve for series A,B and C.
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5.2 Elements subjected to bending-torsion action

In this section, in order to analyze the suitability and accuracy of the developed three-

dimensional formulation, the numerical results obtained by the proposed model are com-

pared to various series of beam tested in combined bending-torsion carried out by Mc-

Mullen & Warwaruk in 1967 [72] and by Onsongo in 1978 [82]. Although some modifica-

tions are required for the tensile relationship to correctly predict the torsional behavior

of RC beam under pure torsion (as described in Chapter 4), in this section, the tensile

relationship proposed for shear effect, originally developed by Vecchio [110] and described

in Section 2.4.1.1, is used for the uniaxial tensile stress-strain behavior of concrete, for

the following reasons:

∙ In the case of combined loading, the cracking of concrete might be due to a bending

or torsional effect, knowing that the modified tensile relationship proposed in Chap-

ter 4 has a greater concrete cracking strength than that proposed for shear effect,

the use of this tensile law proposed for pure torsion could lead to an overestimation

of the predicted values of cracking moment if cracking is due to bending.

∙ Even if cracking is due to torsion, it should be noted that under pure torsion, after

cracking of concrete the sectional behavior is assumed to be carried out as a hollow

section; however, in this case of combination loading, under the effect of bending

moment, this assumption is no longer supported. In this multi-fiber approach, when

the entire cross-section acts to resist torsional effect instead of a hollow cross-section,

the proposed tensile relationship for pure torsion could also lead to overestimated

predicted values of cracking moment.

5.2.1 Comparison with experimental data

5.2.1.1 McMullen & Warwaruk’s beams [72]

McMullen & Warwaruk in 1967 [72] carried out a series of experimental test for rectangular

RC members subjected to combined loading. The experimental program was divided into

seven groups under bending and torsion (Group 1,2,3 and 4) and under shear, bending

and torsion (Group 5,6,7). In this section, only the Group 1 and 2 were investigated in

order to analyze the response of unsymmetrically and symmetrically RC members under

bending - torsion combination. The outline of test setup and the internal forces diagrams

are represented in Figure 5-14a, the cross-section dimensions along with the reinforcement
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details are shown in Figure 5-14b while the concrete strength and the bending/torsional

moments applied are indicated in Table 5.6. Because of big compressive strength, all the

specimens in Group 2 are considered as design to fail on steel tension.
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Shear force

Torsional
1372 mm140 mm 140 mm
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(b) Cross-section.

Figure 5-14 – McMullen & Warwaruk’s bending and torsion test in 1967 [72].

In Table 5.6, the ultimate bending and torsional moments are also presented as well

as the relative difference with respect to the experimental values. It is should to be

noted that the loads were applied proportionally and the ratio between torsional and

bending moments in each specimen is presented by the ratio R: 𝑅 =
Torsional moment

Bending moment
.

Reasonable results with relative difference less than 10 % can be found in most of the

case.

Table 5.6 – Concrete strength, bending/torsional moments ratio and the ultimate
loading values.

Beams
𝑓𝑐

(MPa)
R = T/M

Bending moment (kNm) Torsional moment (kNm)

Exp

values

Proposed

Model

Relative

difference

Exp

values

Proposed

Model

Relative

difference

1-1 35.8 ∞ 0 0 0 % 13.8 13.6 -1.4 %

1-2 30.6 3.00 5.3 5.0 -5.7 % 15.6 14.6 -6.4 %

1-3 34.9 2.00 7.9 7.3 -7.6 % 15.8 14.5 -8.2 %

1-4 34.3 1.00 18.0 17.4 -3.3 % 18.0 17.4 -3.3 %

1-5 40.1 0.50 30.2 30.0 -0.7 % 14.8 15.0 1.4 %

1-6 38.2 0.25 40.9 38 -7.1 % 10.2 9.5 -6.9 %

2-1 39.6 ∞ 0 0 0 % 20.5 21.8 6.3 %

2-2 34.6 2.00 9.9 10.4 5.1 % 19.4 20.8 7.2 %

2-3 37.9 1.00 18.8 17.6 -6.4 % 18.8 17.6 -6.4 %

2-4 36.0 0.50 30.2 29.2 -3.3 % 15.1 14.6 -3.3 %

2-5 36.6 0.25 40.9 39.2 -4.2 % 10.2 9.8 -3.9 %
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The load-deformation responses of specimens in Group 1 and 2 are simulated correctly

in Figure 5-15. For the beam 1-2, the torsional moment - twist rate numerical curve gives

a very good agreement with the experimental data, even though the cracking and ultimate

torsional moment were a bit under-estimated (Figure 5-15a). For beam 2-2, the cracking

torsional moment is correctly predicted, while the torsional stiffness after cracking is also

well represented (Figure 5-15c). For beam 1-4, before cracking, very good correlation is

obtained, while the torsional stiffnesses predicted by the proposed model after cracking

are apparently correct with the experimental values (Figure 5-15b). In the case of beam

2-4, excellent behavior before and after cracking is simulated (Figure 5-15d).
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(a) Beam 1-2
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(b) Beam 1-4
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(c) Beam 2-2
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(d) Beam 2-4

Figure 5-15 – Experimental and numerical Torsional moment - Twist rate diagrams for
Group 2 of McMullen & Warwaruk’s test of bending and torsion.

In the bending-displacement diagram in Figure 5-16, good correlations are also ob-

tained at early load stage, in high load stage, the differences become bigger, however in

general the numerical curve correlated well with the experimental values. It is important

to note that in the test data, the displacement values were measured with an uncertainty

0.5 inches incertitude, which could make the experimental bending moment - displacement

curve became less reliable, as observed in Figure 5-16.
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(b) Beam 2-4

Figure 5-16 – Experimental and numerical Bending moment - mid-span displacement
diagrams for Group 2 of McMullen & Warwaruk’s test of bending and torsion.

5.2.1.2 Onsongo’s beams [82]

In the test of Onsongo, two series of beam were investigated (Figure 5-17a). The first

series named ”torsion-bending-overreinforced” (TBO) series in which 5 specimens were

over-reinforced designed to fail on concrete compression. In this series, concrete strengths

were around 𝑓𝑐 = 20 MPa, while the difference between each specimens were the ratio R

of bending moment and torsional moment applied, which are indicated in Table 5.7. The

second series named ”torsion-bending-solid” (TBS) included 4 solid beams tested under

the same R ratio but had different concrete compressive strengths ranging from 15.5 to

45.8 MPa (Table 5.7). The cross-section dimensions, as well as reinforcement distribution

and properties, of these two series are detailed in Figure 5-17b.

(a) Outline of test setup.
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(b) Cross-section details.

Figure 5-17 – Onsongo’s bending and torsion test in 1978 [82].
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The ultimate bending and torsional moments are presented as well as the relative

difference with respect to the experimental values in Table 5.7. Reasonable results with

relative difference less than 10 % can be found in most of the case. It is also interesting

to note that, similar to the numerical results in Section 5.2.1.1, in this test the proposed

model give under-estimated numerical results in most of cases.

Table 5.7 – Concrete strength, bending/torsional moments ratio and the ultimate
loading values.

Beams
𝑓𝑐

(MPa)
R = T/M

Bending moment (kNm) Torsional moment (kNm)

Exp

values

Proposed

Model

Relative

difference

Exp

values

Proposed

Model

Relative

difference

TBO1 19.5 0 401 383 -4.5 % 0 0 0 %

TBO2 19.7 0.25 334 331 -0.9 % 78 74 -5.1 %

TBO3 19.1 0.70 232 238 2.6 % 143 143 0 %

TBO4 20.4 1.50 117 113 -3.4 % 149 147 -1.3 %

TBO5 20.6 5.00 35 36 2.9 % 143 137 -4.2 %

TBS1 28.0 1.50 164 159 -3.0 % 209 205 -1.9 %

TBS2 32.9 1.50 169 163 -3.6 % 216 211 -2.3 %

TBS3 45.8 1.50 186 185 -0.6 % 245 239 -2.4 %

TBS4 15.5 1.50 108 121 12.0 % 125 156 24.8 %

Good agreement can be also found in the torsional moment - twist rate diagram of

series TBO of Onsongo’s test (Figure 5-18). In this series, for beam TBO3, although

there are some difference after cracking, the torsional stiffness predicted by the proposed

model is apparently correct with the experimental values (Figure 5-18a). For beam TBO4,

very good correlations are obtained at early load stage, in high load stage, the differences

become slightly bigger, however in general the numerical torsional moment - twist rate

curve represent well the torsional behavior in the series.
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(a) Beam TBO3
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(b) Beam TBO4

Figure 5-18 – Experimental and numerical Torsional moment - Twist rate diagrams for
series TBO in the bending-torsion test of Onsongo.
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In the TBS series, the behavior before cracking are well simulated for beam TBS1

(Figure 5-19a), while for the beam TBS3, very good correlation were obtained at all

stages of loading (Figure 5-19b). In general, good correlations with experimental data are

obtained by the proposed model in predicting the load-deformation responses.
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(a) Beam TBS1
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(b) Beam TBS3

Figure 5-19 – Experimental and numerical Torsional moment - Twist rate diagrams for
series TBS in the bending-torsion test of Onsongo.

The transverse strains were also measured in Onsongo’s experimental test, using special

strain gauge attached to the stirrups. The simulated strains in the stirrups can be therefore

compared with the measured values from experimental test data. In Figure 5-20, the

diagrams of torsional moments versus transverse strains at mid-depth of beam TBO4

and TB5 are represented with a good agreement between the numerical and experimental

values, the slope of the curve and the maximum strain were obtained reasonably. In

Figure 5-21, the torsional moment - transverse strain diagrams for different faces of beam

TBO3 are showed and reasonable agreements were observed at mid-depth (Figure 5-21a)

and at the bottom face of the beam (Figure 5-21b). In general, the transverse strain in

the stirrups calculated and represented by the proposed model are satisfactory.
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(a) Beam TBO4.
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Figure 5-20 – Experimental and numerical diagram of Torsional moment - Transverse
strain at mid-depth of beams in series TBO of Onsongo’s test.
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(a) At mid-depth of the beam.
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(b) Bottom face of the beam.

Figure 5-21 – Experimental and numerical diagram of Torsional moment - Transverse
strain for different faces of beam TBO3.

It is interesting to remark that negative strains with respect to torsional moment are

recorded in the experimental observation and by the proposed model when the gauge is

placed at the mid-depth of the beam (Figure 5-20a, 5-21a). In fact, examining the case of

a cross-section under bending and torsional moments as in Figure 5-22, at early load stage,

in each side of cross-section, the combination of shear strains and stresses due to bending

and torsional moments might have positive or negative relative values with respect to

torsional moment. If the strain gauge is placed in the left side of cross-section, strain

values recorded are always positive with respect to torsional moment. On the other hand,

if the strain gauge is placed in the right side, strains values recorded might negative with

respect to torsional moment at early load stage, when the shear strain due to bending

dominates the one due to torsion.

Torsion Bending

Left

side

gauge

Right

side

gauge

Figure 5-22 – Shear stress direction in cross-section under bending-torsion action.

5.2.2 Bending-Torsion interaction diagram

As mentioned in Chapter 2, Section 2.2, the bending-torsion interaction diagram can be

plotted using the skew-bending theories, firstly proposed by Lessig [66] and then devel-

oped by Collins et al. [23], [24], Yudin [116] and Elfgren et al. [35]. Among these theories,

the one proposed by Collins et al. is considered suitable for the analysis of Mc Mullen &
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Wawaruk’s experimental test, because it was developed for two case of symmetrically and

unsymmetrically reinforcements disposition (Figure 5-23). In the interaction diagram,

for both cases, the Mode 1 failure corresponds to the domination of bending moment,

with a helical crack in which the failure surface is initiated at the top face of the beam,

according to initial Skew-bending theory by Lessig [66] as indicated in Figure 2-1a. The

Mode 2 failure produces when torsional moment becomes dominated and the failure sur-

face is initiated by cracks on the side faces of the beam. For symmetrically rectangular

RC members (equal quantity of top and bottom longitudinal reinforcements), only these

two failures mode are recorded (Figure 5-23a), while in the case of unsymmetrically RC

members (top longitudinal steel is less than the bottom), the Mode 3 failure occurs with

a helical cracks initiated on the top of the beam (Figure 5-23b).
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Torsional moment

Bending

Tu

Mu moment

(a) Symmetrical RC members

Mode 1

Mode 2

Mode 3

Torsional moment

Bending

Tu

Mu moment

(b) Unsymmetrical RC members

Figure 5-23 – Collins et al.’s interaction diagram between bending and torsional
moments [23].

Regarding the numerical results of ultimate loadings, for the case of symmetrically

RC members concerning Group 2 of McMullen & Warwaruk’s test, the bending-torsion

interaction diagrams for this series are shown in Figure 5-24a, along with the experi-

mental values and analytical solutions, which was calculated according to Collins et al.’s

theory using an average concrete compressive strength of 5 specimens in Group 2. Good

correlations between numerical results, experimental values and analytical solutions are

achieved for the cases of beams 2-3, 2-4 and 2-5, when bending moment dominated tor-

sional moment (The ratio R was less than 1). It is also interesting to note that in this

stage, in compare to the experimental values, the numerical model gives conservative re-

sults while the analytical one gives unconservative results. However, when torsion became

dominated (Ratio R became bigger than 1), the numerical and analytical ultimate values

of torsional moment tends to over-estimated the experimental ones. It can be remarked

that, compared to the experimentation, the skew-bending theory overestimates consider-
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ably the pure torsional strength of symmetrically RC members, while the predicted values

obtained by the proposed model are more reasonable with relative differences of about

6-7 % (Table 5.6). The numerical and experimental ultimate values of torsional moment

of beams 2-3, 2-2 and 2-1 change slightly and are nearly constant between beams 2-1 and

2-2, which corresponds to a transition between Mode 1 and 2 in analytical solutions.

Bending moment (kNm)
0 10 20 30 40 50

T
or

si
on

al
 m

om
en

t (
kN

m
)

0

5

10

15

20

25

30

35

Mode 1

Mode 2

Mode 3

2-1
2-2

2-3

2-4

2-5

Experimental Values
Proposed Model

(a)
h=

30
5 

m
m

b=152 mm

Φ9.5 @ 83 mm

2 x Φ19

2 x Φ19

fy = 323 MPa

fy = 370 MPa

fy = 323 MPa

Group

2

(b)

Figure 5-24 – (a) Interaction diagram between bending and torsional moments for the
Group 2 of McMullen & Warwaruk’s test. (b) Symmetrically cross-section of Group 2.

For the case of unsymmetrically RC members concerning Gr. 1 of McMullen & War-

waruk’s test, a similar bending and torsional moments interaction diagrams are shown in

Figure 5-25a. As in the case of symmetrically members, the analytical solutions continue

to give conservative ultimate values, while the numerical model gives better agreements

with experimental values, especially near the vicinity of the transitions between 3 failures

modes.
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Figure 5-25 – (a) Interaction diagram between bending and torsional moments for the
Group 1 of McMullen & Warwaruk’s test. (b) Unsymmetrically cross-section of Group 1.
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In the TBO series of Onsongo’s test, good correlations were also obtained in the inter-

action diagrams of this series between numerical and experimental values (Figure 5-26a).

Similar interaction curve than the Collins et al.’s theory in Figure 5-23b, with the ap-

pearance of the Mode 3 failure, were reproduced: in the Mode 1, the increase of torsional

moment happens simultaneously with the decrease of bending moment (Beam TBO1,

TBO2, TBO3); Until a value determined, when the ultimate value of bending moment

continue to decrease but the ultimate values of torsional moment are still constant, the

Mode 2 failure happens (Beam TBO3, TBO4). Then, when the ultimate value of bending

moment becomes too small, the ultimate torsional moment decreases slowly, which corre-

sponds to the failure Mode 3 (Beam TBO4 to TB5). Several numerical results obtained

by others were also plotted in these interaction diagram with a good level of prediction

obtained in most of specimens: the model of Bairan performed very well in the specimens

with small ratio of bending/torsion (TBO1, TBO2, TBO3), the model of Vecchio gave

good results in the specimens with big ratio of bending/torsion, while a good balance of

accuracy between all 5 specimens can be obtained by the proposed model. In general,

the ultimate values of bending and torsional moments are well predicted by the proposed

model, especially for the case of higher ratio of torsion/bending. In Figure 5-26b, a new

bending-torsion interaction curve was obtained with various values of the torsion/bending

ratio R, using a numerical model based on the TBO series with a compressive strength

of concrete 𝑓𝑐 = 20 MPa. From this diagram, the Mode 1 failure can be considered for a

value of R from 0 to 0.7 (Beam TBO3), the Mode 2 failure happens in a range of R from

0.7 to 2 and then the Mode 3 for a R larger than 2.
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Figure 5-26 – Interaction diagram between bending and torsional moments for the TBO
series TBO of Onsongo’s test.

173



5.2.3 Stirrup contribution on torsional resistance

This section aims to investigate the influence of the stirrup density on the bending-torsion

interaction. To do so, let’s consider a RC cantilever beam subjected to bending and tor-

sional moments at the free-end as shown in Figure 5-27. The stirrup density is changed by

varying the spacing of stirrups 𝑠𝑠𝑡 along the beam length. During the simulation, bending

and torsional moments are imposed simultaneously using a ratio 𝑅 =
Torsional moment

Bending moment
.

L=3000 mm

h=
40

0 
m

m

b=250 mm

Φ9.5 @ sst mm

2 x Φ16

2 x Φ16

fy = 323 MPa

fy = 370 MPa

fy = 323 MPa

Applied 
Torsional moment

Applied 
Bending moment

Figure 5-27 – Example of RC cantilever beam subjected to bending-torsion.

Figure 5-28 presents the bending-torsion interaction curves for different values of stir-

rup spacing. As we can see, when the torsion is minor compared to bending, for instant

R=0.25, the stirrup density logically has almost no effect. The stirrup effect on the ele-

ment resistance becomes more significant when the torsion dominates over the bending.

In case of pure torsion, it can be seen that the torsional resistance increases about 34

% with increasing of stirrup density of 8 times. This numerical application highlights

that the proposed FE formulation takes into account the transversal reinforcements in

the predicting of the torsional resistance of RC members.
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Figure 5-28 – Bending-Torsion diagrams in function of stirrup spacing.

Figure 5-29 presents the growth percent of the ultimate torsional moment for difference
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cases of stirrup spacing, with respect to the case with the less amount of stirrup (𝑠𝑠𝑡 =

400𝑚𝑚). By increasing 2 times the transverse reinforcement amount, the ultimate value

of bending moment increase only 10 %, while a 50 % of growth can be obtained by

increasing 16 times the stirrup amount.
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Figure 5-29 – Growth percent of the ultimate torsional moment when increasing the
stirrup density.

5.2.4 Stress distribution

In this section, the distribution of normal and shear stresses of TBO series in Onsongo’s

test are studied in both elastic and inelastic material domains. In elastic range, the same

outline and cross-section dimensions in Figure 5-17a are conserved, with an elastic modu-

lus of 30 GPa, the Poisson’s ratio of 0.2 and the ratio R of bending/torsional moments was

1.5 (beam TBO4). The distribution of stresses over the cross-section at torsional moment

of 150 kNm and bending moment of 100 kNm are shown in Figure 5-30. The bending

effect can be represented clearly by a constant distribution of normal stress in horizontal

direction (Figure 5-30a). Because the cross-section is almost symmetric and crack is not

considered in elastic range, 𝜎𝑥 distributions are also symmetrical. On the others hand,

due to torsional effect, the shear stress flow creates opposite orientations of shear stresses

in both vertical and horizontal directions (Figure 5-30b and 5-30c).
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Figure 5-30 – Stress distribution over cross-section of beam TBO4 in elastic range.

Coupling between bending and torsional effect could be represented clearly in the in-

elastic range. For beam TBO4, the stresses distribution are shown in Figure 5-31 at load

stage after cracking and close to the ultimate point. For a better illustration and analysis,

the stresses distribution will be presented in 2D following four vertical and horizontal

cuts at the Left and Right webs and the Top and Bottom flanges of the cross-section,

as indicated in Figure 5-31a. In horizontal direction, the shear stress distribution are

parabolic symmetrical (similar to that in elastic range) as seen in Figure 5-31c. However,

in vertical direction, under bending effect and crack contribution, the increment of shear

stresses in the tension zone is considerably less than in the compression zone, 𝜏𝑥𝑧 distribu-

tion becomes unsymmetrical as seen in Figure 5-31d. The distributions of normal stresses

are also unsymmetrical in vertical direction as consequence, while remaining constant in

horizontal direction (Figure 5-31b). The numerical results achieved in Figure 5-31 are

corresponding to the one obtained by Navarro-Gregori’s model [76].
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Figure 5-31 – Stress distribution over cross-section of beam TBO4 in inelastic range.
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5.3 Elements subjected to shear-bending-torsion

In this section, the combined loading effect between shear, bending and torsional moments

is analyzed by investigating several test series carried out by McMullen & Warwaruk

[72]. The outline of test setup is shown in Figure 5-32a: a simple supported RC beam

subjected to vertical force near to the mid-span, while torsional action is created by two

steel arm at two beam’s ends. Three groups of beams with 4 specimens in each were

investigated: Group 5,6 with the same concrete properties and reinforcement distribution

(Figure 5-32b), while the beams in Group 7 were provided with larger bottom longitudinal

reinforcement steel bars and a large spacing of the stirrups in order to obtain a stronger

strength in flexure but weaker in transverse shear. In this test setup, the distance A of

study region, B between study region and the applied force, and C from vertical force to

the right beam’s support are different for various specimens and are indicated in Figure

5-32a.
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Figure 5-32 – McMullen & Warwaruk’s test [72] for combined shear-bending-torsion.

5.3.1 Comparison with experimental data

The ultimate shear force, bending and torsional moments of each specimen are presented

for each concrete strength in Table 5.8, as well as the relative difference with respect to

the experimental values. As can be seen, the proposed model gives the results more or

less in good agreement with the experimental data. Indeed, the relative errors are most

smaller than 6 %, except for the cases of beams 5-4 and 6-4, when the ratio R between
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torsional and bending moments is small (R=0.25), and for the case of beam 7-2.

Table 5.8 – McMullen & Warwaruk’s test [72] on shear-bending-torsion combining -
Material properties and Ultimate loading.

Beams
𝑓𝑐

(MPa)
R = T/M

Bending moment (kNm) Torsional moment (kNm) Shear force (kN)

Exp

values

Prop.

Model

Rel.

diff.

Exp

values

Prop.

Model

Rel.

diff.

Exp

values

Prop.

Model

Rel.

diff.

5-1 39.4 1.97 7.3 7.1 -2.7 % 14.5 14.0 -3.4 % 3.4 3.7 8.8 %

5-2 43.9 0.99 16.2 16.7 3.1 % 15.9 16.5 3.8 % 8.4 8.7 3.6 %

5-3 41.8 0.47 31.4 33.2 5.7 % 14.7 15.6 6.1 % 17.2 17.3 0.6 %

5-4 40.0 0.25 44.0 40.3 -8.4 % 11.2 10.1 -9.8 % 24.5 21.0 -14.3 %

6-1 40.4 1.98 7.3 7.2 -1.4 % 14.6 14.2 -2.7 % 8.1 8.2 1.2 %

6-2 40.9 0.97 16.8 17.3 3.0 % 16.4 16.7 1.8 % 19.0 19.7 3.7 %

6-3 39.3 0.50 29.8 31.2 4.7 % 14.9 15.6 4.7 % 34.1 35.6 4.4 %

6-4 39.4 0.25 48.3 41.3 -14.9 % 12.1 10.3 -14.9 % 55.4 46.9 -15.3 %

7-1 41.9 2.00 6.3 6.6 4.8 % 12.7 13.1 3.5 % 6.9 7.5 8.1 %

7-2 35.9 1.00 13.0 15.0 15.4 % 13.0 15.0 15.4 % 14.8 17.1 15.8 %

7-3 39.3 0.48 31.1 32.5 4.6 % 14.9 15.6 4.6 % 36.1 37.1 2.8 %

7-4 36.8 0.25 57.1 57.1 0 % 14.1 14.3 1.2 % 66.6 65.1 -2.2 %

The torsional moment - twist rate diagram of some specimens in these three groups

are simulated correctly, as shown in Figure 5-15. The torsional stiffnesses predicted by

the proposed model after cracking are in good agreement with the experimental values,

especially for the cases of beam 5-4, 6-3 and 7-4 (Figure 5-33b, 5-33d and 5-33f). For beam

7-1, before cracking, very good correlation is obtained, while the torsional stiffnesses pre-

dicted by the proposed model after cracking are apparently correct with the experimental

values (Figure 5-33e). For beam 5-2 and 6-2, there is a gap between numerical and exper-

imental values in the inelastic regime, however the torsional stiffnesses are similar, while

the cracking torsional moments are also well predicted (Figure 5-33a and 5-33c).
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(b) Beam 5-4
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(c) Beam 6-2
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(d) Beam 6-3
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(e) Beam 7-1
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(f) Beam 7-4

Figure 5-33 – Torque-twist diagrams in McMullen & Warwaruk’s test [72].

5.3.2 Bending-Torsion interaction diagram

The bending-torsion interaction diagrams of Group 5 and Group 6 are plotted in Figure

5-34. The analytical solutions given by the skew-bending theory by Collins et al. [23] are

established with an average compressive strength of 41.3 MPa (in Group 5) and 40.0 MPa

(in Group 6). Because of the same cross-section details and concrete strengths between

two groups, similar results can be found: when the torsion/bending ratio R are bigger

than 1 (beams 5-1, 5-2, 6-1, 6-2), the proposed model performs better than the skew-

bending theory in predicting the ultimate loads; on the other hand, when R=0.5 (beams
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5-3 and 6-3), the analytical solutions give better results. In particular, when bending

moment becomes dominated torsional moments (R=0.25 for the cases of beams 5-4 and

6-4), the numerical results are very similar to the analytical solutions, but they are all too

unconservative compared to the experimental values.
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(a) Group 5.
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Figure 5-34 – Bending-Torsion diagrams of Gr. 5, 6 in McMullen & Warwaruk’s test [72].

In Figure 5-35, the bending-torsion interaction diagram of Group 7 is plotted. As

mentioned above, the numerical results are conservative to the experimental ones. For the

case of beam 7-1 and 7-4, the same level of accuracy compared to the experimentation is

obtained for both proposed model and analytical solutions given by skew-bending theory.

In the same way as the others bending-torsion interaction diagrams of Group 1, 2, 5

and 6, at the vicinity of transition between three failure modes, the skew-bending theory

continues to give very conservative results.
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Figure 5-35 – Bending-Torsion diagram of Gr. 7 in McMullen & Warwaruk’s test [72].
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5.3.3 Shear-Torsion interaction diagram

In the same way as the bending-torsion interaction, in the skew-bending theory by Collins

et al. [23], the shear-torsion interaction of rectangular RC members can also be illustrated

for two cases of symmetrically and unsymmetrically cross-section. For symmetrically rect-

angular RC members (equal quantity of top and bottom longitudinal reinforcements), only

the Mode 2 failure (corresponding to the predomination of torsional moment) is recorded

(Figure 5-23a), while in the case of unsymmetrically RC members (top longitudinal steel

is less than the bottom), the Mode 3 failure occurs while the torsional moment prepon-

derant with respect to the shear force and bending moment (Figure 5-23b). Otherwise,

in the Collins et al.’s interaction curve for torsion and shear, a shear failure mode can be

included for member which fail in shear.

Torsional moment

Shear

To2

Vo force

Mode 2

Shear failure

(a) Symmetrically RC members

Mode 2

Mode 3

Torsional moment

Shear

To2

Vo force

Shear failure

(b) Unsymmetrically RC members

Figure 5-36 – Collins et al.’s interaction diagram between shear force and torsional
moment.

The shear-torsion interaction diagrams of Group 5, 6 and 7 are plotted in Figure 7-15.

In Group 5 and 6, the experimental curve trend are somewhat correspondent to the skew-

bending theory for unsymmetrically RC members, however, the analytical predictions

are too conservative, especially in Group 5. In the other hand, different situation can

be remarked for the shear-torsion interaction curve of Group 7 (Figure 5-37c). In this

diagram, both the results given by the skew-bending theory and the proposed model are

in good agreement with the experimentation. In the same way as the others bending-

torsion and shear-torsion interaction curves have shown in this Chapter, the analytical

solutions are quite conservative. This remark corresponds to the observation of Hsu [46]

that the skew-bending theory overestimates considerably the pure torsional strength of

RC members.
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(a) Group 5
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(b) Group 6
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Figure 5-37 – Shear-Torsion diagrams of Group 5, 6 and 7 in McMullen & Warwaruk’s
test [72].
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5.4 Conclusions

In this section, various numerical simulations have been done in order to assess the capa-

bility of the FE model developed in Chapter 3. Through these numerical examples, the

following remarks and conclusions can be draw:

∙ In the elastic material regime, excellent correlations have been obtained between

numerical results, theoretical formulations and analytical solutions. The multi-fiber

approach has shown its advantage by ensuring an excellent balance between accu-

racy and calculation cost in this material regime. Deformation, strain and stress

distributions can be computed and figured out with very high levels of accuracy by

both approaches representing the enhanced displacement field (using Saint-Venant

warping function and Lagrange polynomials).

∙ Between two enhanced approaches, Saint-Venant warping function is simpler and

more practice with a lower computational cost, whereas the use of Lagrange poly-

nomials approach is more general and presents a big advantage by obtaining the

additional normal stresses and representing the distribution of warping displace-

ment over cross-section under shear bending action, which can not be obtained by

plane-section beam theory, as well as the Saint-Venant warping function approach.

∙ The proposed model is very efficient in simulating the inelastic coupling between

shear and bending, in which every aspect of the beam analysis, including the load-

displacement diagram, the crack propagation as well as the distribution of stresses,

etc., could be represented and analyzed. Under shear-bending action, the use of

proposed model for the modeling of RC beams is also appropriate by good levels

of correlation obtained between numerical and experimental results in computing

the ultimate loading and simulating the load-displacement diagrams of three beam

series in the classic test of Bresler & Scordelis.

∙ The bending-torsion interaction diagrams indicates that the proposed model can

provide reasonable coupling behavior of rectangular RC beams subjected to com-

bined loading of bending and torsional moments. Indeed, the numerical results

correlated well with the experimental tests of McMullen & Warwaruk and Onsongo,

as well as with the analytical solutions of skew-bending theory proposed by Collins et

al. Comparing to other numerical results, the proposed model gave a good balance

of accuracy in predicting the ultimate values of bending and torsional moments. Not
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only the load-displacement diagrams, but also the load-transverse strain diagram or

the distribution of stresses over the cross-section can be correctly illustrated by the

proposed model.

∙ Let recall that in Chapter 4, some modifications are required for the tensile rela-

tionship to predict correctly the torsional behavior of RC beams under pure torsion.

However, in this Chapter, through the numerical results obtained by the proposed

model, as well as by others, the tensile relationship proposed for shear effect (in

Section 2.4.1.1) could be used efficiently to predict the coupling behavior including

torsion. From these simulation results obtained, the use of the constitutive model

based on the MCFT to representing the coupling between shear-bending-torsion is

very appropriate.

∙ Finally, from the satisfactory results in Chapter 4 to this Chapter, the combination

of MCFT based-constitutive model with the section discretization in different zones

following its stress state is once again very suitable for the sectional approach model.

The implementation of enhanced displacement field using Lagrange polynomials (or

similar interpolation functions) in a displacement-based multi-fiber finite element

approach can also be validated and applied in further studies.
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Chapter 6

Geometric nonlinearity and

Corotational formulation

Under extreme loads, structures may achieve large displacement conditions. Consequently,

the linear geometric assumption becomes insufficient for the simulation of structural ele-

ments. The inclusion of nonlinear geometry effects is necessary in order to complete the

competency of this 3D beam model. The present chapter deals with geometrically non-

linear finite element formulation for the analysis of RC members subjected to combined

shear-bending-torsion actions. The co-rotational formulation is motivated by the fact

that thin structures undergoing finite formulation are characterized by significant rigid

body motions. The assumption of small strains but large displacements and rotations is

adopted. The basic is an element-independent algorithm, where the rigid body motions

(translations and rotations) are separated from the total deformation. In the corotational

based, the reference configuration is split into base and corotated. Strains and stresses are

measured from corotated to current, while base configuration is maintained as reference to

measure rigid body motions. This formulation is recommended to use in case of solid and

structural mechanics with arbitrarily large finite motions, but small strains and elastic

material behavior. Extendible to nonlinear materials if inelasticity is localized so most of

structure stays elastic.

The main advantage of a co-rotational approach is that it leads to an artificial sepa-

ration of the material and geometric non-linearities when a linear strain definition in the

local coordinate system is used: plastic deformations occur in the local coordinate system

where geometrical linearity is assumed; geometric non-linearity is only present during the

rigid rotation and translation of the undeformed beam. This leads to very simple ex-
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pressions for the local internal force vector and tangent stiffness matrix. Even when a

low-order geometrical non-linearity is included in the strain definition, the expressions for

the local internal force vector and tangent stiffness matrix are still very simple. In this

research, a Total Lagrangian-Corotational approach is employed for the development of

beam and beam-column elements, in which an initial undeformed geometry, translated

and rotated as a rigid body, is chosen as the reference configuration in the corotated

frame. Moreover, the formulation is based on small deformations within the corotational

(natural) frame.

6.1 3D rotation parametrization

Before expressing the co-rotational formulation, it is necessary to define the 3D finite

rotations of a beam element, which is one of the key issues concerning the nonlinear

geometric formulation.

6.1.1 Rotation tensor

Let e =
(︁
𝑒1 𝑒2 𝑒3

)︁𝑇
be a vector (or frame) that is rotated into the new position t =(︁

𝑡1 𝑡2 𝑡3

)︁𝑇
(Figure 6-1a), a relation between these two vectors is obtained as follows:

t = Re (6.1)

These rotations are represented by an orthogonal tensor R, which is an 3× 3 matrix, but

involving only three independent parameters, due to its ortho-normality (RR𝑇 = I). The

rotation matrix R can be expressed as:

R = I3 +
sin 𝜃

𝜃
𝑆𝑝(Θ) +

1 − cos 𝜃

𝜃2
𝑆𝑝(Θ)2 (6.2)

where I3 is the 3 × 3 identity matrix; 𝜃 is the magnitude of the so-called rotation vector

Θ =
(︁
𝜃1 𝜃2 𝜃3

)︁𝑇
; and 𝑆𝑝(Θ) is the spin of the rotation vector, defined as:

𝑆𝑝(Θ) =

⎡⎢⎢⎢⎣
0 −𝜃3 𝜃2

𝜃3 0 −𝜃1
−𝜃2 𝜃1 0

⎤⎥⎥⎥⎦ (6.3)
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6.1.2 Rotation increment

The finite rotation can be expressed with the rotation matrix R and the correspond-

ing rotation vector Θ. Then, the incremental rotation of the moving vector/frame t is

considered by generating a small variation 𝛿t from the rotated position t (Figure 6-1b):

𝛿t = 𝛿Rt (6.4)

The variation of the rotation matrix R is derived by defining a new parameter 𝛿Ω as the

spatial angular variation representing the infinitesimal rotation that is superimposed on

the rotation matrix R:

𝛿R = 𝑆𝑝(𝛿Ω)R (6.5)

In the numerical implementation, the spatial angular variation play a very important role

in the incremental analysis for updating the rotation matrix R𝑖 from 𝑖 state to the rotation

matrix R𝑖+1 of 𝑖+ 1 state:

R𝑖+1(Θ𝑖+1) = R(𝛿Ω)R𝑖(Θ𝑖) (6.6)

Knowing that R𝑖 is a function of Θ𝑖 and R𝑖+1 is a function of Θ𝑖+1, however the addition

of the vector 𝛿Ω to Θ𝑖 does not give Θ𝑖+1: Θ𝑖+1 ̸= Θ𝑖 + 𝛿Ω. This problem of multiplica-

tive update for rotations in the incremental analysis is solved by projecting the spatial

angular variation 𝛿Ω onto the parameter space adopted for R and obtaining, as a result, a

new parameter called admissible angular variation 𝛿Θ. The conversion between this two

parameters, proposed by Battini & Pacoste [6], is represented by a complex relationship:

𝛿Ω = T𝑠(Θ)𝛿Θ (6.7)

with

T𝑠(Θ) =
sin 𝜃

𝜃
I +

(︂
1 − sin 𝜃

𝜃

)︂
nn𝑇 +

1

2

(︂
sin(𝜃/2)

(𝜃/2)

)︂2

𝑆𝑝(Θ) (6.8)

where n is an unit vector. The inverse relation is also available:

𝛿Θ = T−1
𝑠 (Θ)𝛿Ω (6.9)
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with

T−1
𝑠 (Θ) =

𝜃/2

tan(𝜃/2)
I +

(︂
1 − 𝜃/2

tan(𝜃/2)

)︂
nn𝑇 − 1

2
𝑆𝑝(Θ) (6.10)

e2

e3 e1

t2

t3

t1R

Θ

(a) Rotation of a
vector/frame.

e2

e3 e1

t2

t3

t1
Θ

t'2
t'3

t'1δΩ

Θ+δΘ

(b) Incremental rotation vector.

Figure 6-1

6.2 Coordinate systems and local reference frame def-

initions

As a reminder, in the context of co-rotational framework, the large displacement kine-

matics of 3D beam elements must be decomposed into a local rigid reference frame that

follows the element deformations and the rigid body motion of this local frame. Knowing

that in this local reference, the linear geometric assumption is still valid and the existing

enhanced model formulations can be used accordingly, the key issue of the co-rotational

formulation is to define the local reference frame and its nonlinear rigid body motion.

Then, not only the proposed model in this work, but also different local formulations can

be applied and compared in this co-rotational framework.

In this present work, a beam element is limited by two end nodes 𝐼 and 𝐽 . The motion

of a beam element is attached to a local reference system and its rigid body motion is

considered in a global reference system which is defined by a triad of unit orthogonal

vectors E𝑖 =
(︁
𝐸1 𝐸2 𝐸3

)︁
. In the initial configuration (undeformed condition), the

local reference system is defined by a triad of unit orthogonal vectors e𝑜𝑖 =
(︁
𝑒𝑜1 𝑒𝑜2 𝑒𝑜3

)︁
.

The rigid rotation relative to the global reference of this local frame is defined by a

rotation matrix R𝑜:
(︁
𝐸1 𝐸2 𝐸3

)︁
R𝑜

−→
(︁
𝑒𝑜1 𝑒𝑜2 𝑒𝑜3

)︁
(Figure 6-2). The components of

R𝑜 are defined by the position of two beam nodes:

R𝑜 =
[︁
R𝑜

1 R𝑜
2 R𝑜

3

]︁
: 𝑅𝑜

1 =
x𝐽𝑜 − x𝐼𝑜

‖x𝐽𝑜 − x𝐼𝑜‖
; 𝑅𝑜

3 =
𝑅𝑜

1 × [0, 1, 0]

‖𝑅𝑜
1 × [0, 1, 0]‖

; 𝑅𝑜
2 =

𝑅𝑜
3 ×𝑅𝑜

1

‖𝑅𝑜
3 ×𝑅𝑜

1‖
(6.11)

with x𝐼𝑜 and x𝐽𝑜 are the nodal coordinates of nodes 𝐼, 𝐽 at initial configuration. The

term ‖x𝐽𝑜 − x𝐼𝑜‖ = 𝑙𝑜 defines the initial beam length.
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Figure 6-2 – Transition between global and local reference system at initial undeformed
configuration.

Then, the beam is deformed and its rigid body motion is represented by the centroid

displacement of a cross-section. This generalized displacement consists of two components:

a vector of translations d relative to the global reference and a rotations vector Ω about

the axes of global triad. At local level, the translations vector is denoted by d while the

rotations vector about the local triad becomes Ω. In the final configuration of the beam,

it is recommended to define two local reference systems:

∙ Local reference system in semi-final configuration (translated but not rotated): de-

fined by a triad of unit orthogonal vectors: e𝑖 =
(︁
𝑒1 𝑒2 𝑒3

)︁
(Figure 6-3a). The

rigid rotation relative to the global reference of this frame is defined by a rotation

matrix R𝑟:
(︁
𝐸1 𝐸2 𝐸3

)︁
R𝑟

−→
(︁
𝑒1 𝑒2 𝑒3

)︁
.

∙ Local reference system in final configuration (totally deformed): defined by two tri-

ads of unit orthogonal vectors at each node: t𝐼𝑖 =
(︁
𝑡𝐼1 𝑡𝐼2 𝑡𝐼3

)︁
and t𝐽𝑖 =

(︁
𝑡𝐽1 𝑡𝐽2 𝑡𝐽3

)︁
;

or t𝐼𝐽𝑖 =
(︁
𝑡𝐼𝐽1 𝑡𝐼𝐽2 𝑡𝐼𝐽3

)︁
for the sake of generality (Figure 6-3b). As in the sequel,

without any particular mention, the term local frame or local reference system is

always considered to the local frame in final configuration t𝐼𝐽𝑖 .

e2

e3 e1e1
o

e2
o

e3
o I

J

oI

oJ

d  = x  - xI I Io

d  = x  - xJ J Jo

(a) Initial and semi-final configuration in local
reference.

e2

e3 e1
I

J

t1I

t3
I

t2
I

t3J
t2J t1J

(b) Final configuration of
beam element.

Figure 6-3

From these definitions of global and local coordinate systems, there are two ways to

express the global rotation at end nodes of the beam element (Figure 6-4):

1. A rotation of the local axes relative to the global frame, defined by the rigid rotation

matrix R𝑟, followed by a rotation of the node relative to local axes, which is defined
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by a local rotation matrix R
𝐼𝐽

:

(︁
𝐸1 𝐸2 𝐸3

)︁
R𝑟

−→
(︁
𝑒1 𝑒2 𝑒3

)︁
R

𝐼𝐽

−−→
(︁
𝑡𝐼𝐽1 𝑡𝐼𝐽2 𝑡𝐼𝐽3

)︁
(6.12)

2. A material rotation of the node relative to the global reference, defined by rotation

matrices R𝑔𝐼𝐽 , followed by a global rotation of the local frame at initial configuration

(defined by the rotation matrix R𝑜):

(︁
𝐸1 𝐸2 𝐸3

)︁
R𝑜−→
(︁
𝑒𝑜1 𝑒𝑜2 𝑒𝑜3

)︁
R𝑔𝐼𝐽

−−−→
(︁
𝑡𝐼𝐽1 𝑡𝐼𝐽2 𝑡𝐼𝐽3

)︁
(6.13)
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e3 e1

t1
I

t3
I

t2
I

t3J
t2J t1J
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o
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o

e3
o

0

Ro

Rr

RgI

RgJ

RI

RJ

global reference initial undeformed configuration final deformed configuration 
system & local frame

E2

E3

E1

Figure 6-4 – Coordinate systems and beam kinematics.

The following relationship can be formulated between these rotation matrices:

R𝑟R
𝐼𝐽

= R𝑔𝐼𝐽R𝑜 (6.14)

As mentioned above in Equation (6.1), the expression of the material rotation matrix

R𝑔𝐼𝐽 in the global reference can be expressed as:

R𝑔𝐼𝐽 = I3 +
sin 𝜃

𝜃
𝑆𝑝(Θ) +

1 − cos 𝜃

𝜃2
𝑆𝑝(Θ)2 (6.15)

While the rigid rotation matrix R𝑟 is defined from the material rotation matrix R𝑔𝐼𝐽 in

Equation (6.15) and the initial rotation matrix R𝑜 in Equation (6.11):

R𝑟 =

[︃
R𝑟

1 R𝑟
2 R𝑟

3

]︃

R𝑟
1 =

x𝐽 + d𝐽 − x𝐼 − d𝐼

‖x𝐽 + d𝐽 − x𝐼 − d𝐼‖
; R𝑟

3 =
𝑅𝑟

1 × q

‖𝑅𝑜
1 × q‖

; R𝑟
2 =

𝑅𝑟
3 ×𝑅𝑟

1

‖𝑅𝑟
3 ×𝑅𝑟

1‖

(6.16)

with x𝐼 and x𝐽 are the nodal coordinates of nodes 𝐼, 𝐽 at final configuration; d𝐼 and d𝐽

192



denote the translation vectors of nodes 𝐼, 𝐽 ; the term ‖x𝐽 + d𝐽 − x𝐼 − d𝐼‖ = 𝑙𝑛 defines

the final beam length; q is an auxiliary vector defined as:

q =
q𝐼 + q𝐽

2
; q𝐼 = R𝑔𝐼R𝑜

[︁
0 1 0

]︁𝑇
; q𝐽 = R𝑔𝐽R𝑜

[︁
0 1 0

]︁𝑇
(6.17)

And the nodal rotation matrix can be evaluated from Equation (6.14)

R
𝐼𝐽

= R𝑟𝑇R𝑔𝐼𝐽R𝑜 (6.18)

6.3 Change of variables

In the co-rotational framework, the generalized and nodal displacements of beam element

are defined relative to the global reference system, while the existing element kinematics

are determined relative to the local frame. Therefore, it is necessary to make a trans-

formation of variables between global and local reference. For the shake of convenience,

as in the sequel all the variables relative to the local frame in final configuration will

be denoted with a bar. Moreover, as a reminder the incremental rotation of local frame

needs a conversion from material angular variation 𝛿Θ to spatial angular variation 𝛿Ω,

thus two more changes of variables are required for this angular conversion, one in global

and other in local level. In short, in the co-rotational formulation, there is a total of

three transformations to be performed: Local variables (with material angular)
(1)−→ Local

variables (with spatial angular)
(2)−→ Global variables (with spatial angular)

(3)−→ Global

variables (with material angular).

It is important to note that, in this work, due to the particular separation of the local

frame above, the local translations at node I will be zero and at node J, the only non-

zero translation component is the axial translation along local axis 𝑒1 (Figure 6-5). As

a consequence, at local level the nodal displacements vector contains only 7 components,

with 1 translation at node J, 3 rotations at node I and 3 rotations at node J: q𝑒 =(︁
𝑢 Θ

𝐼
Θ

𝐽
)︁

- for material angulars ; or q𝑠
𝑒 =

(︁
𝑢 Ω

𝐼
Ω

𝐽
)︁

- for spatial angulars. On

the other hand, at global level, the nodal displacements vector contains 12 components

with 3 translations and 3 rotations at each node: q𝑠
𝑒 =

(︁
d𝐼 Ω𝐼 d𝐽 Ω𝐽

)︁
and q𝑒 =(︁

d𝐼 Θ𝐼 d𝐽 Θ𝐽

)︁
.
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Figure 6-5 – Beam kinematics in local frame.

6.3.1 1st transformation: 𝛿Θ → 𝛿Ω

Using Equation (6.9), we get:

𝛿Θ
𝐼𝐽

= T−1
𝑠 (Θ

𝐼𝐽
)𝛿Ω

𝐼𝐽
(6.19)

Knowing that the translations vector is unchanged in this transformation, we get:

𝛿

⎛⎜⎜⎜⎝
𝑢

Θ
𝐼

Θ
𝐽

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
1 013 013

031 T−1
𝑠 (Θ

𝐼
) 03

031 03 T−1
𝑠 (Θ

𝐽
)

⎤⎥⎥⎥⎦ 𝛿
⎛⎜⎜⎜⎝
𝑢

Ω
𝐼

Ω
𝐽

⎞⎟⎟⎟⎠⇒ 𝛿q𝑒 = B𝜃𝛿q
𝑠
𝑒 (6.20)

with 013 is a 1 × 3 zero matrix; 031 is a 3 × 1 zero matrix and 03 is a 3 × 3 zero matrix.

Then, the virtual work equation gives:

Q
𝑠

𝑒 = B𝑇
𝜃 Q𝑒 (6.21)

with Q
𝑠

𝑒 and Q𝑒 are the nodal forces vectors consistent with 𝛿q𝑠
𝑒 and 𝛿q𝑒 respectively. The

expression of theses local nodal vectors is expressed as:

Q
𝑠

𝑒 =

⎛⎜⎜⎜⎝
𝐹

𝑠

M
𝐼𝑠

M
𝐽𝑠

⎞⎟⎟⎟⎠ ; Q𝑒 =

⎛⎜⎜⎜⎝
𝐹

M
𝐼

M
𝐽

⎞⎟⎟⎟⎠ (6.22)

with 𝐹 and 𝐹
𝑠

are the axial forces, M
𝐼𝑠

=
(︁
𝑀

𝐼𝑠

1 𝑀
𝐼𝑠

2 𝑀
𝐼𝑠

3

)︁𝑇
, M

𝐽𝑠
=
(︁
𝑀

𝐽𝑠

1 𝑀
𝐽𝑠

2 𝑀
𝐽𝑠

3

)︁𝑇
,

M
𝐼

=
(︁
𝑀

𝐼

1 𝑀
𝐼

2 𝑀
𝐼

3

)︁𝑇
and M

𝐽
=
(︁
𝑀

𝐽

1 𝑀
𝐽

2 𝑀
𝐽

3

)︁𝑇
are the moments vectors. In the

assumption without any external uniform loading, the transformation for the local tangent
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stiffness matrices is obtained by taking the variation of the nodal forces:

K
𝑠

𝑒 =
𝛿Q

𝑠

𝑒

𝛿q𝑠
𝑒

=
B𝑇

𝜃 𝛿Q𝑒 + 𝛿B𝑇
𝜃 Q𝑒

𝛿q𝑠
𝑒

=
B𝑇

𝜃 K𝑒𝛿q𝑒 + 𝛿B𝑇
𝜃 Q𝑒

𝛿q𝑠
𝑒

= B𝑇
𝜃 K𝑒B𝜃 +

𝛿B𝑇
𝜃 Q𝑒

𝛿q𝑠
𝑒

(6.23)

⇒ K
𝑠

𝑒 = B𝑇
𝜃 K𝑒B𝜃 + K

ℎ

𝑒 (6.24)

with:

K
ℎ

𝑒 =
𝛿B𝑇

𝜃 Q𝑒

𝛿q𝑠
𝑒

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 013 013

031 K
𝐼ℎ

𝑒 033

031 033 K
𝐽ℎ

𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎦
K

𝐼ℎ

𝑒 =

[︂
𝜂
[︁
Θ

𝐼
M

𝐼𝑇 − 2M
𝐼
Θ

𝐼𝑇
+
(︁
Θ

𝐼𝑇 ×M
𝐼
)︁
I3

]︁
+ 𝜇𝑆𝑝(Θ)

2
[︁
M

𝐼
Θ

𝐼𝑇
]︁
− 1

2
𝑆𝑝(M

𝐼
)

]︂
T−1

𝑠 (Θ
𝐼
)

K
𝐽ℎ

𝑒 =

[︂
𝜂
[︁
Θ

𝐽
M

𝐽𝑇 − 2M
𝐽
Θ

𝐽𝑇
+
(︁
Θ

𝐽𝑇 ×M
𝐽
)︁
I3

]︁
+ 𝜇𝑆𝑝(Θ)

2
[︁
M

𝐽
Θ

𝐽𝑇
]︁
− 1

2
𝑆𝑝(M

𝐽
)

]︂
T−1

𝑠 (Θ
𝐽
)

𝜂 =
2 sin𝛼− 𝛼 (1 + cos𝛼)

2𝛼2 sin𝛼
; 𝜇 =

𝛼 (𝛼+ sin𝛼)− sin2 (𝛼/2)

4𝛼4 sin2 (𝛼/2)
;𝛼 = ‖Θ‖

6.3.2 2nd transformation: local → global

In the local reference, the axial translation can be evaluated as:

𝑢 = 𝑙𝑛 − 𝑙𝑜 (6.25)

with 𝑙𝑜 and 𝑙𝑛 are the beam lengths in the initial and final configuration, respectively.

From Equation (6.11) and (6.16), the variation of this axial translation gives:

𝛿𝑢 = 𝛿(𝑙𝑛 − 𝑙𝑜) =
[︁
−R𝑟

1
𝑇 013 R𝑟

1
𝑇 013

]︁
𝛿

⎛⎜⎜⎜⎜⎜⎜⎝
d𝐼

Ω𝐼

d𝐽

Ω𝐽

⎞⎟⎟⎟⎟⎟⎟⎠⇒ 𝛿𝑢 = r𝛿q𝑠
𝑒 (6.26)

In order to express the variation of the nodal material angular vector Θ
𝐼𝐽

, it is neces-

sary to obtain the variation of nodal rotation matrix R
𝐼𝐽

, from Equation (6.18) we get:

𝛿R
𝐼𝐽

= 𝛿R𝑟𝑇R𝑔𝐼𝐽R𝑜 + R𝑟𝑇 𝛿R𝑔𝐼𝐽R𝑜 (6.27)

From Equation (6.5) the variation of rotation matrices above can be expressed as follows:
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𝛿R
𝐼𝐽

= 𝑆𝑝(𝛿Ω
𝐼𝐽

)R
𝐼𝐽

(6.28a)

𝛿R𝑟 = 𝑆𝑝(𝛿Ω𝑔𝑟)R𝑟 (6.28b)

𝛿R𝑔𝐼𝐽 = 𝑆𝑝(𝛿Ω𝑔𝐼𝐽)R𝑔𝐼𝐽 (6.28c)

with 𝛿Ω𝑔𝑟 is defined as the variation of the angular vector attached to the local reference

system in semi-final configuration e𝑖, relative to the global reference; while 𝛿Ω𝑔𝐼𝐽 is the

variation of the nodal angular vector in final configuration t𝐼𝐽𝑖 , relative to the global

reference. These two variations can be expressed relatively to the local frame e𝑖 by the

rigid rotation matrix R𝑟 as follows:⎧⎨⎩ Ω𝑒𝑟 = R𝑇
𝑟 Ω

𝑔𝑟

Ω𝑒𝐼𝐽 = R𝑇
𝑟 Ω

𝑔𝐼𝐽
⇒

⎧⎨⎩ 𝑆𝑝(Ω𝑒𝑟) = R𝑇
𝑟 𝑆𝑝(Ω

𝑔𝑟)R𝑟

𝑆𝑝(Ω𝑒𝐼𝐽) = R𝑇
𝑟 𝑆𝑝(Ω

𝑔𝐼𝐽)R𝑟

(6.29)

It is also important to distinct the difference between 𝛿Ω
𝐼𝐽

and 𝛿Ω𝑒𝐼𝐽 , these all expressed

the nodal angular vector of beam element relatively to the local frame, however 𝛿Ω
𝐼𝐽

is attached to the local frame in final configuration t𝐼𝐽𝑖 , while 𝛿Ω𝑒𝐼𝐽 is attached to the

local frame in semi-final configuration e𝑖. Another important remark is the orthogonality

condition of rigid rotation matrix R𝑟 gives the following relationship:

𝛿R𝑟𝑇 = −R𝑟𝑇𝑆𝑝(𝛿Ω𝑔𝑟) (6.30)

So, from equations (6.18), (6.29), (6.30), Equation (6.27) can be rewritten as:

𝑆𝑝(𝛿Ω
𝐼𝐽

)R
𝐼𝐽

= −R𝑟𝑇𝑆𝑝(𝛿Ω𝑔𝑟)R𝑔𝐼𝐽R𝑜 + R𝑟𝑇𝑆𝑝(𝛿Ω𝑔𝐼𝐽)R𝑔𝐼𝐽R𝑜

=
(︀
𝑆𝑝(𝛿Ω𝑒𝐼𝐽) − 𝑆𝑝(𝛿Ω𝑒𝑟)

)︀
R

𝐼𝐽
(6.31)

Thus we obtain the following relationship between the angular variations:

𝛿Ω
𝐼𝐽

= 𝛿Ω𝑒𝐼𝐽 − 𝛿Ω𝑒𝑟 (6.32)

Knowing that two local reference are used in this section, it is necessary to define the
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nodal displacement vectors in these references:

q𝑠
𝑒 =

⎛⎜⎜⎜⎝
𝑢

Ω
𝐼

Ω
𝐽

⎞⎟⎟⎟⎠ ; q𝑒
𝑒 =

⎛⎜⎜⎜⎜⎜⎜⎝
d𝑒𝐼

Ω𝑒𝐼

d𝑒𝐽

Ω𝑒𝐽

⎞⎟⎟⎟⎟⎟⎟⎠ ; q𝑠
𝑒 =

⎛⎜⎜⎜⎜⎜⎜⎝
d𝐼

Ω𝐼

d𝐽

Ω𝐽

⎞⎟⎟⎟⎟⎟⎟⎠ (6.33)

with q𝑠
𝑒, q𝑒

𝑒 and q𝑠
𝑒 are the nodal displacement vector in local frame, in local reference

system in semi-configuration and in global reference, respectively. The change of variables

between q𝑒
𝑒 and q𝑠

𝑒 can be done by the rigid rotation matrix R𝑟:

𝛿q𝑒
𝑒 = B𝑇

𝑟 𝛿q
𝑠
𝑒 with B𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎣
R𝑟 03 03 03

03 R𝑟 03 03

03 03 R𝑟 03

03 03 03 R𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ (6.34)

In order to establish a change of variables between q𝑠
𝑒 and q𝑠

𝑒, the spatial angular variation

𝛿Ω
𝐼𝐽

should be expressed with respect to the variation of q𝑠
𝑒:

𝛿Ω
𝐼𝐽

𝛿q𝑠
𝑒

=
𝜕Ω

𝐼𝐽

𝜕q𝑒
𝑒

𝜕q𝑒
𝑒

𝜕q𝑠
𝑒

=
𝜕Ω𝑒𝐼𝐽 − 𝜕Ω𝑒𝑟

𝜕q𝑒
𝑒

B𝑇
𝑟 (6.35)

with:

𝜕Ω𝑒𝐼𝐽

𝜕q𝑒
𝑒

=

⎡⎢⎢⎣
𝜕Ω𝑒𝐼

𝜕q𝑒
𝑒

𝜕Ω𝑒𝐽

𝜕q𝑒
𝑒

⎤⎥⎥⎦ =

⎡⎣03 I3 03 03

03 03 03 I3

⎤⎦ (6.36)

and from Equation (6.28b), (6.29):

𝑆𝑝(𝛿Ω𝑒𝑟) = R𝑟𝑇 𝛿R𝑟 ⇔ 𝛿

⎡⎢⎢⎢⎣
0 −Ω𝑒𝑟

3 Ω𝑒𝑟
2

Ω𝑒𝑟
3 0 −Ω𝑒𝑟

1

−Ω𝑒𝑟
2 Ω𝑒𝑟

1 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
R𝑟𝑇

1

R𝑟𝑇
2

R𝑟𝑇
3

⎤⎥⎥⎥⎦ 𝛿 [︁R𝑟
1 R𝑟

2 R𝑟
3

]︁

⇒ 𝛿

⎛⎜⎜⎜⎝
Ω𝑒𝑟

1

Ω𝑒𝑟
2

Ω𝑒𝑟
3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−R𝑟𝑇

2 𝛿R𝑟
3

−R𝑟𝑇
3 𝛿R𝑟

1

R𝑟𝑇
2 𝛿R𝑟

1

⎞⎟⎟⎟⎠
(6.37)
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Therefore, the following relationship can be obtained for the variation of Ω𝑒𝑟:

⇒ 𝜕Ω𝑒𝑟

𝜕q𝑒
𝑒

= G; (6.38)

with the expression of matrix G:

G =

⎡⎢⎢⎢⎣
0 0 𝜈/𝑙𝑛 𝜈𝐼2/2 −𝜈𝐼1/2 0 0 0 −𝜈/𝑙𝑛 𝜈𝐽2/2 −𝜈𝐽1/2 0

0 0 1/𝑙𝑛 0 0 0 0 0 −1/𝑙𝑛 0 0 0

0 −1/𝑙𝑛 0 0 0 0 0 1/𝑙𝑛 0 0 0 0

⎤⎥⎥⎥⎦ (6.39)

𝜈 =
𝑞1
𝑞2

; 𝜈𝐼1 =
𝑞𝐼1
𝑞2

; 𝜈𝐼2 =
𝑞𝐼2
𝑞2

; 𝜈𝐽1 =
𝑞𝐽1
𝑞2

; 𝜈𝐽2 =
𝑞𝐽2
𝑞2

;

(𝑞1 𝑞2 𝑞3)
𝑇 = R𝑟𝑇q

where q is the auxiliary vector in Equation (6.17) and 𝑞𝐼1, 𝑞𝐼2, 𝑞𝐽1, 𝑞𝐽2 are the component

of auxiliary vector q𝐼 and q𝐽 .

Thus, from Equation (6.36) and (6.38), Equation (6.35) can be rewritten as follows:

𝛿

⎛⎝Ω
𝐼

Ω
𝐽

⎞⎠ =

⎛⎝⎡⎣03 I3 03 03

03 03 03 I3

⎤⎦−

⎡⎣G𝑇

G𝑇

⎤⎦⎞⎠B𝑇
𝑟 𝛿q

𝑠
𝑒 = PB𝑇

𝑟 𝛿q
𝑠
𝑒 (6.40)

And from Equation (6.26) and (6.40), the transformation between 𝛿q𝑠
𝑒 and 𝛿q𝑠

𝑒 can be

expressed as:

𝛿q𝑠
𝑒 = B𝑠𝛿q

𝑠
𝑒 with B𝑠 =

⎡⎣ r

PB𝑇
𝑟

⎤⎦ (6.41)

As a consequence, the transformation between nodal forces vectors and the element

stiffness matrix can be expressed as follows:

Q𝑠
𝑒 = B𝑇

𝑠 Q
𝑠

𝑒 (6.42a)

K𝑠
𝑒 =

𝛿Q𝑠
𝑒

𝛿q𝑠
𝑒

=
B𝑇

𝑠 𝛿Q
𝑠

𝑒 + 𝛿r𝑇𝐹
𝑠

+ 𝛿B𝑟P
𝑇M

𝑠

𝛿q𝑠
𝑒

(6.42b)

with M
𝑠

=
(︁
M

𝐼𝑠𝑇
M

𝐽𝑠𝑇
)︁

, after some algebra the expression of K𝑠
𝑒 becomes:

K𝑠
𝑒 = B𝑇

𝑠 K
𝑠

𝑒B𝑠 + K𝑚 (6.43)

198



with:

K𝑚 = D𝐹
𝑠 −B𝑟QGB𝑇

𝑟 +B𝑟Gar; a =

⎡⎢⎢⎢⎢⎣
0

𝜂
(︁
𝑀

𝐼𝑠

1 +𝑀
𝐽𝑠

1

)︁
/𝑙𝑛 −

(︁
𝑀

𝐼𝑠

2 +𝑀
𝐽𝑠

2

)︁
/𝑙𝑛(︁

𝑀
𝐼𝑠

3 +𝑀
𝐽𝑠

3

)︁
⎤⎥⎥⎥⎥⎦

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D3 03 D3 03

03 03 03 03

−D3 03 D3 03

03 03 03 03

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; D3 =

1

𝑙𝑛

(︀
I3 −R𝑟

1R
𝑟𝑇
1

)︀
; Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆𝑝(Q1)

𝑆𝑝(Q2)

𝑆𝑝(Q3)

𝑆𝑝(Q4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

Q3

Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= P𝑇M

𝑠

6.3.3 3rd transformation: 𝛿Ω → 𝛿Θ

In this last transformation, the conversion between spatial angular and material angular

in global reference will be established. Using the relationship in Equation (6.7), we obtain:

𝛿

⎛⎜⎜⎜⎜⎜⎜⎝
d𝐼

Ω𝐼

d𝐽

Ω𝐽

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
I3 03 03 03

03 T𝑠(Θ
𝐼) 03 03

03 03 I3 03

03 03 03 T𝑠(Θ
𝐽)

⎤⎥⎥⎥⎥⎥⎥⎦ 𝛿
⎛⎜⎜⎜⎜⎜⎜⎝

d𝐼

Θ𝐼

d𝐽

Θ𝐽

⎞⎟⎟⎟⎟⎟⎟⎠⇒ 𝛿q𝑠
𝑒 = Bℎ𝛿q𝑒 (6.44)

The global nodal force vector and the global stiffness matrix consistent with q𝑒 are given

as follows:

Q𝑒 = B𝑇
ℎQ

𝑠
𝑒 (6.45a)

K𝑒 =
𝜕Q𝑒

𝜕q𝑒

= B𝑇
ℎK

𝑠
𝑒Bℎ + Kℎ (6.45b)
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with:

Kℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 03 03 03

03 K𝐼
ℎ 03 03

03 03 03 03

03 03 03 K𝐽
ℎ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
K𝐼

ℎ = −

(︃
sin 𝜃𝐼

𝜃𝐼
−
(︂

sin(𝜃𝐼/2)

𝜃𝐼/2

)︂2
)︃(︀

e𝐼 ×M𝐼𝑠
)︀
e𝐼𝑇 +

1

2

(︂
sin(𝜃𝐼/2)

𝜃𝐼/2

)︂2

𝑆𝑝(M𝐼𝑠)

+

(︂
cos 𝜃𝐼 − sin 𝜃𝐼

𝜃𝐼

)︂
1

𝜃𝐼
[︀
M𝐼𝑠𝑇 −

(︀
e𝐼𝑇M𝐼𝑠

)︀
e𝐼e𝐼𝑇

]︀
+

(︂
1 − sin 𝜃𝐼

𝜃𝐼

)︂
1

𝜃𝐼
[︀
e𝐼M𝐼𝑠𝑇 − 2

(︀
e𝐼𝑇M𝐼𝑠

)︀
e𝐼e𝐼𝑇 +

(︀
e𝐼𝑇M𝐼𝑠

)︀
I3
]︀

K𝐽
ℎ = −

(︃
sin 𝜃𝐽

𝜃𝐽
−
(︂

sin(𝜃𝐽/2)

𝜃𝐽/2

)︂2
)︃(︀

e𝐽 ×M𝐽𝑠
)︀
e𝐽𝑇 +

1

2

(︂
sin(𝜃𝐽/2)

𝜃𝐽/2

)︂2

𝑆𝑝(M𝐽𝑠)

+

(︂
cos 𝜃𝐽 − sin 𝜃𝐽

𝜃𝐽

)︂
1

𝜃𝐽
[︀
M𝐽𝑠𝑇 −

(︀
e𝐽𝑇M𝐽𝑠

)︀
e𝐽e𝐽𝑇

]︀
+

(︂
1 − sin 𝜃𝐽

𝜃𝐽

)︂
1

𝜃𝐽
[︀
e𝐽M𝐽𝑠𝑇 − 2

(︀
e𝐽𝑇M𝐽𝑠

)︀
e𝐽e𝐽𝑇 +

(︀
e𝐽𝑇M𝐽𝑠

)︀
I3
]︀

𝜔𝐼/𝐽 = ‖Θ𝐼/𝐽‖; e𝐼/𝐽 =
Θ𝐼/𝐽

𝜃𝐼/𝐽

6.4 Local beam formulation

According to Battini & Pacoste, most of the co-rotational elements found in the literature

are based on local linear strain assumptions, except when the torsional effects are impor-

tant [6]. In this case, for members under torsional effects the geometrical nonlinearity is

generated by a term included in the local strain definition, which is defined by a second-

order approximation of the Green Lagrange strains. A second-order approximation of the

displacement field is therefore necessary to obtain the second-order of the strains. In this

section, the second-order approximation of Green-Lagrange strains will be constructed at

the local level, in order to describe the local kinematic of beam element in a co-rotational

framework under combined loadings and pure torsion. For the shake of simplicity, only

the approach using Saint-Venant warping function has been developed.

The kinematic model proposed by Gruttmann et al. [41] is adopted for a general case

of classical beam in which the centroid G and the shear center C are not coincident (Figure

6-6). The position of an arbitrary point P is defined by vector x𝑜
𝑃 (𝑥, 𝑦, 𝑧) in the initial
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configuration and by vector x𝑃 (𝑥, 𝑦, 𝑧) in the current configuration:

x𝑜
𝑃 (𝑥, 𝑦, 𝑧) = x𝑜

𝐺(𝑥) + 𝑦e𝑦 + 𝑧e𝑧

x𝑃 (𝑥, 𝑦, 𝑧) = x𝐺(𝑥) + 𝑦a𝑦 + 𝑧a𝑧 + 𝛼(𝑥)𝜓(𝑦, 𝑧)a𝑥

(6.46)

Figure 6-6 – Kinematic model proposed by Gruttmann et al. [41].

with x𝑜
𝐺(𝑥) and x𝐺(𝑥) denote the position vectors of the centroid G in the initial and

current configuration, respectively; 𝛼(𝑥) is the parameters representing the distribution

of warping as defined in Section 3.3.2; 𝜓(𝑦, 𝑧) is the Saint-Venant warping function refers

to the centroid G:

𝜓(𝑦, 𝑧) = 𝜓(𝑦, 𝑧) − 𝑐𝑦𝑧 + 𝑐𝑧𝑦 (6.47)

where 𝜓(𝑦, 𝑧) is the Saint-Venant warping function refers to the shear center C. e =(︁
e𝑥 e𝑦 e𝑧

)︁
is the triad of three unit vector of local reference, while a =

(︁
a𝑥 a𝑦 a𝑧

)︁
is an orthonormal triad which specifies the orientation of the current cross-section. These

two triads are related by an orthogonal matrix R̄ defining the finite 3D rotation of beam

element under non-linear geometric conditions:

a = R̄e (6.48)

and

R̄ = I3 + 𝑆𝑝(𝜃) +
1

2
𝑆𝑝(𝜃)2; 𝑆𝑝(𝜃) =

⎡⎢⎢⎢⎣
0 −𝜃𝑧 𝜃𝑦

𝜃𝑧 0 −𝜃𝑥
−𝜃𝑦 𝜃𝑥 0

⎤⎥⎥⎥⎦ (6.49)

where 𝜃𝑥, 𝜃𝑦 and 𝜃𝑧 are the material rotation of point P. The definition of rotation matrix

R̄ will be detailed in Section 6.1.1. With the aid from Equation (6.49), the second-order
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approximation of the displacement field can be expressed as follows:

d𝑠(𝑥, 𝑦, 𝑧) = x𝑃 − x𝑜
𝑃 (6.50)

so we obtain the following components of d𝑠(𝑥, 𝑦, 𝑧), for the case of solid cross-section in

which the centroid G and the shear center C are coincident:

𝑈(𝑥, 𝑦, 𝑧) = 𝑢− 𝑦𝜃𝑧 + 𝑧𝜃𝑦 + 𝜓
𝜕𝜃𝑥
𝜕𝑥

+
1

2
𝑦𝜃𝑥𝜃𝑦 +

1

2
𝑧𝜃𝑥𝜃𝑧

𝑉 (𝑥, 𝑦, 𝑧) = 𝑣 − 𝑧𝜃𝑥 −
1

2
𝑦 (𝜃𝑥𝑥 + 𝜃2𝑧) +

1

2
𝑧 (𝜃𝑦𝜃𝑧) + 𝜓

𝜕𝜃𝑥
𝜕𝑥

𝜃𝑧

𝑊 (𝑥, 𝑦, 𝑧) = 𝑤 + 𝑦𝜃𝑥 −
1

2
𝑧
(︀
𝜃𝑥𝑥 + 𝜃2𝑦

)︀
+

1

2
𝑦 (𝜃𝑦𝜃𝑧) − 𝜓

𝜕𝜃𝑥
𝜕𝑥

𝜃𝑦

(6.51)

Unlike the material strains expressed in Equation (3.9), the second order Green-

Lagrange strains are derived as follows:

𝜀𝐺𝐿
𝑥𝑥 =

𝜕𝑈

𝜕𝑥
+

1

2

(︃
𝜕𝑈

𝜕𝑥

)︃2

+
1

2

(︃
𝜕𝑉

𝜕𝑥

)︃2

+
1

2

(︃
𝜕𝑊

𝜕𝑥

)︃2

𝛾𝐺𝐿
𝑥𝑦 =

𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
+

𝜕𝑈

𝜕𝑥

𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦
+

𝜕𝑊

𝜕𝑥

𝜕𝑊

𝜕𝑦

𝛾𝐺𝐿
𝑥𝑧 =

𝜕𝑈

𝜕𝑧
+
𝜕𝑊

𝜕𝑥
+

𝜕𝑈

𝜕𝑥

𝜕𝑈

𝜕𝑧
+

𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑧
+

𝜕𝑊

𝜕𝑥

𝜕𝑊

𝜕𝑧

(6.52)

In order to distinct the Green-Lagrange strain and the linear strain in Section 3.3, in this

section all the nonlinear terms are highlighted in bold. With the assumption that the term

1

2

(︂
𝜕𝑈

𝜕𝑥

)︂2

in the expression of 𝜀𝐺𝐿
𝑥𝑥 is neglected and the non-linear strain components gen-

erated by the warping function are omitted, the following expressions of Green-Lagrange

strains in equation 6.52 can be obtained:

𝜀𝐺𝐿
𝑥𝑥 = 𝜀𝑥 − 𝑦𝜅𝑧 + 𝑧𝜅𝑦 +

1

2
𝑟2

(︂
𝜕𝜃𝑥

𝜕𝑥

)︂2

𝛾𝐺𝐿
𝑥𝑦 = 𝛾𝑦 − 𝑧𝜅𝑥 +

𝜕𝜓

𝜕𝑦

𝜕𝜃𝑥
𝜕𝑥

𝛾𝐺𝐿
𝑥𝑧 = 𝛾𝑧 + 𝑦𝜅𝑥 +

𝜕𝜓

𝜕𝑧

𝜕𝜃𝑥
𝜕𝑥

(6.53)
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with the new definition of generalized strains:

𝑟2 = 𝑦2 + 𝑧2

𝜀𝐺𝐿
𝑥 =

𝜕𝑢

𝜕𝑥
+

1

2

(︃(︂
𝜕𝑣

𝜕𝑥

)︂2

+

(︂
𝜕𝑤

𝜕𝑥

)︂2
)︃

𝛾𝐺𝐿
𝑦 =

𝜕𝑣

𝜕𝑥
− 𝜃𝑧 +

1

2
𝜃𝑥𝜃𝑦 +

𝜕𝑤

𝜕𝑥
𝜃𝑥 −

𝜕𝑥

𝜕𝑥
𝜃𝑧

𝛾𝐺𝐿
𝑧 =

𝜕𝑤

𝜕𝑥
+ 𝜃𝑦 +

1

2
𝜃𝑥𝜃𝑧 −

𝜕𝑣

𝜕𝑥
𝜃𝑥 −

𝜕𝑥

𝜕𝑥
𝜃𝑦

𝜅𝐺𝐿
𝑥 =

𝜕𝜃𝑥
𝜕𝑥

+
1

2

(︂
𝜕𝜃𝑦

𝜕𝑥
𝜃𝑧 −

𝜕𝜃𝑧

𝜕𝑥
𝜃𝑦

)︂
𝜅𝐺𝐿
𝑦 =

𝜕𝜃𝑧
𝜕𝑥

−
1

2

(︂
𝜕𝜃𝑥

𝜕𝑥
𝜃𝑦 + 𝜃𝑥

𝜕𝜃𝑦

𝜕𝑥

)︂
−

𝜕𝑤

𝜕𝑥

𝜕𝜃𝑥

𝜕𝑥

𝜅𝐺𝐿
𝑧 =

𝜕𝜃𝑦
𝜕𝑥

+
1

2

(︂
𝜕𝜃𝑥

𝜕𝑥
𝜃𝑧 + 𝜃𝑥

𝜕𝜃𝑧

𝜕𝑥

)︂
−

𝜕𝑣

𝜕𝑥

𝜕𝜃𝑥

𝜕𝑥

(6.54)

However, the numerical tests show that the expressions in Equation (6.53) can be

simplified by neglecting the non-linear terms in the expressions of generalized strains in

Equation (6.54), without affecting the results [5]. Hence, the strains in Equation (6.54)

can be rewritten as:

𝜀𝐺𝐿
𝑥𝑥 =

𝜕𝑢

𝜕𝑥
− 𝑦

𝜕𝜃𝑦
𝜕𝑥

+ 𝑧
𝜕𝜃𝑧
𝜕𝑥

+
1

2
𝑟2

(︂
𝜕𝜃𝑥

𝜕𝑥

)︂2

𝛾𝐺𝐿
𝑥𝑦 =

𝜕𝑣

𝜕𝑥
− 𝜃𝑧 +

𝜕𝜓

𝜕𝑦

𝜕𝜃𝑥
𝜕𝑥

− 𝑧
𝜕𝜃𝑥
𝜕𝑥

𝛾𝐺𝐿
𝑥𝑧 =

𝜕𝑤

𝜕𝑥
+ 𝜃𝑦 +

𝜕𝜓

𝜕𝑧

𝜕𝜃𝑥
𝜕𝑥

+ 𝑦
𝜕𝜃𝑥
𝜕𝑥

(6.55)

Comparing to the linear material strain in Equation (3.18), the only nonlinear term of the

Green-Lagrange strain approximation is
1

2
𝑟2
(︂
𝜕𝜃𝑥
𝜕𝑥

)︂2

. This term, called Wagner term,

describes the interaction between axial and torsional strain. Using the same definition

of generalized strains as in Equation (3.11), the following kinematic relationship can be
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obtained between Green-Lagrange strains and the generalized strains vector:

⎛⎜⎜⎜⎝
𝜀𝐺𝐿
𝑥𝑥

𝛾𝐺𝐿
𝑥𝑦

𝛾𝐺𝐿
𝑥𝑧

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0

1

2
𝑟2𝜅𝑥 𝑧 −𝑦

0 1 0
𝜕𝜓

𝜕𝑦
− 𝑧 0 0

0 0 1
𝜕𝜓

𝜕𝑧
+ 𝑦 0 0

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀𝑥

𝛾𝑦

𝛾𝑧

𝜅𝑥

𝜅𝑦

𝜅𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇒ e𝐺𝐿

𝑓 (𝑥, 𝑦, 𝑧) = a𝐺𝐿
𝑓 (𝑥, 𝑦, 𝑧)e𝑠(𝑥) (6.56)

As in the sequel, for the shake of simplicity in establishing the numerical implementation,

the above expression (and others) will be decomposed into 2 parts: one represents the

linear/ordinary part following the local linear strain assumption e𝑓 , and another resulting

from the second order Green-Lagrange approximation e*𝑓 :

e𝐺𝐿
𝑓 (𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 𝑧 −𝑦

0 1 0
𝜕𝜓

𝜕𝑦
− 𝑧 0 0

0 0 1
𝜕𝜓

𝜕𝑧
+ 𝑦 0 0

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0 0 0

1

2
𝑟2𝜅𝑥 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ e𝑠(𝑥)

=
(︀
a𝑓 (𝑦, 𝑧) + a*

𝑓 (𝑥, 𝑦, 𝑧)
)︀
e𝑠(𝑥) = e𝑓 (𝑥, 𝑦, 𝑧) + e*𝑓 (𝑥, 𝑦, 𝑧)

(6.57)

The expression of e𝑓 (𝑥, 𝑦, 𝑧) is similar to the existing one in Section 3.3, while for e*𝑓

the only non zero components is the axial strain: e*𝑓 =

(︂
1

2
𝑟2𝜅2𝑥 0 0

)︂𝑇

; a𝑓 (𝑥, 𝑦, 𝑧) and

a*
𝑓 (𝑥, 𝑦, 𝑧) are respectively the linear/ordinary and the second order compatibility matrix.

Then, the following constitutive relationship can be established:

s𝐺𝐿
𝑓 = k𝑓e

𝐺𝐿
𝑓 = k𝑓

(︀
e𝑓 + e*𝑓

)︀
= s𝑓 + s*𝑓 (6.58)

where k𝑓 is the material stiffness matrix. In this section, for the shake of simplicity, we

consider that k𝑓 is approximated as a consistent tangent operator as follows:

k𝑓 =

⎡⎢⎢⎢⎣
𝐸 0 0

0 𝐺𝑦 0

0 0 𝐺𝑧

⎤⎥⎥⎥⎦ (6.59)

As a consequence, the normal stress becomes the only non-zero component of the non-

204



linear stress vector: s*𝑓 =

(︂
1

2
𝐸𝑟2𝜅2𝑥 0 0

)︂𝑇

. From Equation (3.40) in Section 3.4.1,

the sectional forces vector consistent to the Green-Lagrange strains can be expressed as

follows:

D𝐺𝐿
𝑠 (𝑥) =

∫︁∫︁
𝐴

a𝐺𝐿
𝑓

𝑇
s𝐺𝐿
𝑓 𝑑𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁𝑥

𝑉𝑦

𝑉𝑧

𝑀𝑥

𝑀𝑦

𝑀𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︁∫︁
𝐴

𝜎𝐺𝐿
𝑥𝑥 𝑑𝐴∫︁∫︁

𝐴

𝜏𝐺𝐿
𝑥𝑦 𝑑𝐴∫︁∫︁

𝐴

𝜏𝐺𝐿
𝑥𝑧 𝑑𝐴∫︁∫︁

𝐴

[︂(︂
𝑦 +

𝜕𝜓

𝜕𝑧

)︂
𝜏𝐺𝐿
𝑥𝑧 −

(︂
𝑧 − 𝜕𝜓

𝜕𝑦

)︂
𝜏𝐺𝐿
𝑥𝑦 +

1

2
𝑟2𝜅𝑥𝜎

𝐺𝐿
𝑥𝑥

]︂
𝑑𝐴∫︁∫︁

𝐴

𝑧𝜎𝐺𝐿
𝑥𝑥 𝑑𝐴

−
∫︁∫︁

𝐴

𝑦𝜎𝐺𝐿
𝑥𝑥 𝑑𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.60)

From Equation (6.58), the decomposition of this sectional forces results as:

D𝐺𝐿
𝑠 (𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︁∫︁
𝐴

𝜎𝑥𝑥𝑑𝐴∫︁∫︁
𝐴

𝜏𝑥𝑦𝑑𝐴∫︁∫︁
𝐴

𝜏𝑥𝑧𝑑𝐴∫︁∫︁
𝐴

[︂(︂
𝑦 +

𝜕𝜓

𝜕𝑧

)︂
𝜏𝑥𝑧 −

(︂
𝑧 − 𝜕𝜓

𝜕𝑦

)︂
𝜏𝑥𝑦

]︂
𝑑𝐴∫︁∫︁

𝐴

𝑧𝜎𝑥𝑥𝑑𝐴

−
∫︁∫︁

𝐴

𝑦𝜎𝑥𝑥𝑑𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︁∫︁
𝐴

𝜎*
𝑥𝑥𝑑𝐴

0

0∫︁∫︁
𝐴

1

2
𝑟2𝜅𝑥𝜎

𝐺𝐿
𝑥𝑥 𝑑𝐴∫︁∫︁

𝐴

𝑧𝜎*
𝑥𝑥𝑑𝐴

−
∫︁∫︁

𝐴

𝑦𝜎*
𝑥𝑥𝑑𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= D𝑠(𝑥) +D*

𝑠(𝑥)

(6.61)

As we can see, the nonlinear Wagner term influences not only on the torsional moment

but also the axial force and bending moments. However, for the case of a solid symmetric

section as considered in this present work, the expression of D*
𝑠(𝑥) becomes:

D*
𝑠(𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︁∫︁
𝐴

1

2
𝐸𝑟2𝑑𝐴

0

0∫︁∫︁
𝐴

1

2
𝑟2𝜅𝑥𝜎

𝐺𝐿
𝑥𝑥 𝑑𝐴∫︁∫︁

𝐴

1

2
𝐸𝑧𝑟2𝑑𝐴

−
∫︁∫︁

𝐴

1

2
𝐸𝑦𝑟2𝑑𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︁∫︁
𝐴

1

2
𝐸𝑟2𝑑𝐴

0

0∫︁∫︁
𝐴

1

2
𝐸𝑟2𝜅𝑥

(︂
𝜀𝑥 +

1

2
𝑟2𝜅2𝑥

)︂
𝑑𝐴

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.62)

The vector of nodal forces in local coordinates can be given by:

Q𝐺𝐿
𝑒 =

∫︁
𝐿

B𝑇
𝑠 D

𝐺𝐿
𝑠 𝑑𝑥 =

∫︁
𝐿

B𝑇
𝑠 (D𝑠 + D*

𝑠) 𝑑𝑥 = Q𝑒 + Q*
𝑒 (6.63)

with B𝑠 the matrix of shape functions in Equation (3.15). The ordinary part has already

been implemented in the existing beam element formulation, while the nonlinear part can
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be expressed as:

Q*
𝑒 =

∫︁
𝐿

B𝑇
𝑠 D

*
𝑠𝑑𝑥 =

[︁
𝑁*𝐼

𝑥 0 0 𝑀*𝐼
𝑥 0 0 𝑁*𝐽

𝑥 0 0 𝑀*𝐽
𝑥 0 0

]︁
(6.64)

where the expressions of the axial force and the nodal torsional moment are:

𝑁*𝐽
𝑥 = −𝑁*𝐽

𝑥 = −
∫︁
𝐿

1

𝐿

(︂∫︁∫︁
𝐴

1

2
𝐸𝑟2𝑑𝐴

)︂
𝑑𝑥 (6.65a)

𝑀*𝐽
𝑥 = −𝑀*𝐽

𝑥 = −
∫︁
𝐿

1

𝐿

(︂∫︁∫︁
𝐴

1

2
𝐸𝑟2𝜅𝑥

(︂
𝜀𝑥 +

1

2
𝑟2𝜅2𝑥

)︂
𝑑𝐴

)︂
𝑑𝑥 (6.65b)

For the sectional stiffness matrix, from Equation (3.43) we get:

K𝐺𝐿
𝑠 (𝑥) =

∫︁∫︁
𝐴

a𝐺𝐿
𝑓

𝑇
k𝑓a

𝐺𝐿
𝑓 𝑑𝐴 (6.66)

Using the consistent tangent operator for k𝑓 as in equation 6.59, for a rectangular

symmetric section, the following expression of sectional stiffness matrix has been obtained:

K𝐺𝐿
𝑠 =

∫︁∫︁
𝐴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐸 0 0
1

2
𝐸𝑟2𝜅𝑥 0 0

0 𝐺𝑦 0 0 0 0

0 0 𝐺𝑧 0 0 0

1

2
𝐸𝑟2𝜅𝑥 0 0 𝐺𝑦

(︂
𝜕𝜓

𝜕𝑦
− 𝑧

)︂2

+𝐺𝑧

(︂
𝜕𝜓

𝜕𝑧
+ 𝑦

)︂2

+
1

4
𝐸𝑟4𝜅2

𝑥 0 0

0 0 0 0 𝐸𝑧2 0

0 0 0 0 0 𝐸𝑦2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑑𝐴

(6.67)

As mentioned above, the expression of K𝐺𝐿
𝑠 can be decomposed into the linear/ordinary

part K𝑠 and the nonlinear part K*
𝑠 containing only the bold terms in the expression of

K𝐺𝐿
𝑠 in Equation (6.67). It is worth to note that, for a symmetric section, at local level in

the framework of co-rotational formulation, the second order approximation, through the

Wagner term, influences strongly on the torsional response and the interaction between

axial-torsion. Then, according to Equation (3.48), when considering the element equilib-

rium, the element stiffness matrix can also be decomposed into the linear and nonlinear

part:

K𝐺𝐿
𝑒 =

∫︁
𝐿

B𝑇
𝑠 K

𝐺𝐿
𝑠 B𝑠𝑑𝑥 =

∫︁
𝐿

B𝑇
𝑠 (K𝑠 + K*

𝑠)B𝑠𝑑𝑥 = K𝑒 + K*
𝑒 (6.68)
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Where the nonlinear part can be expressed as:

K*
𝑒 =

∫︁
𝐿

B𝑇
𝑠 K

*
𝑠B𝑠𝑑𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 𝐾*
1 0 0 0 0 0 −𝐾*

1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

𝐾*
1 0 0 𝐾*

2 0 0 −𝐾*
1 0 0 −𝐾*

2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −𝐾*
1 0 0 0 0 0 𝐾*

1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−𝐾*
1 0 0 −𝐾*

2 0 0 𝐾*
1 0 0 𝐾*

2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.69)

with the following definition of 𝐾*
1 and 𝐾*

2 :

𝐾*
1 =

∫︁
𝐿

1

𝐿2

(︂∫︁∫︁
𝐴

1

2
𝐸𝑟2𝜅𝑥𝑑𝐴

)︂
𝑑𝑥 (6.70a)

𝐾*
2 =

∫︁
𝐿

1

𝐿2

(︂∫︁∫︁
𝐴

1

4
𝐸𝑟4𝜅2𝑥𝑑𝐴

)︂
𝑑𝑥 (6.70b)

6.4.1 Case of Pure torsion

In the case of pure torsion for a rectangular cross-section, the material displacements in

Equation (6.51) becomes:

𝑈 𝑡(𝑥, 𝑦, 𝑧) = 𝜅𝑥(𝑥)𝜓(𝑦, 𝑧) (6.71a)

𝑉 𝑡(𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥(𝑥) − 1

2
𝑧𝜃2𝑥(𝑥) (6.71b)

𝑊 𝑡(𝑥, 𝑦, 𝑧) = 𝑦𝜃𝑥(𝑥) − 1

2
𝑦𝜃2𝑥(𝑥) (6.71c)

where 𝜅𝑥(𝑥) =
𝜕𝜃𝑥
𝜕𝑥

and the subindex t denoted for the case of pure torsion. Comparing

to the expression in Equation (4.6), the appear of second-order terms in the transversal

displacements make the non-linearity geometric. The Green-Lagrange strain components

207



are then given by:

𝜀𝐺𝐿
𝑥𝑥,𝑡 =

𝜕𝑈

𝜕𝑥
+

1

2

(︃(︂
𝜕𝑈

𝜕𝑥

)︂2

+

(︂
𝜕𝑉

𝜕𝑥

)︂2

+

(︂
𝜕W

𝜕𝑥

)︂2
)︃

(6.72a)

𝛾𝐺𝐿
𝑥𝑦,𝑡 =

𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
+
𝜕𝑈

𝜕𝑥

𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦
+
𝜕𝑊

𝜕𝑥

𝜕𝑊

𝜕𝑦
(6.72b)

𝛾𝐺𝐿
𝑥𝑧,𝑡 =

𝜕𝑈

𝜕𝑧
+
𝜕𝑉

𝜕𝑥
+
𝜕𝑈

𝜕𝑥

𝜕𝑈

𝜕𝑧
+
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑧
+
𝜕𝑊

𝜕𝑥

𝜕𝑊

𝜕𝑧
(6.72c)

Using Equation (6.71), Equation (6.72) becomes:

𝜀𝐺𝐿
𝑥𝑥,𝑡 =

1

2
(𝑦2 + 𝑧2)𝜅2𝑥 (6.73a)

𝛾𝐺𝐿
𝑥𝑦,𝑡 =

(︂
−𝑧 +

𝜓(𝑦, 𝑧)

𝑦

)︂
𝜅𝑥 (6.73b)

𝛾𝐺𝐿
𝑥𝑧,𝑡 =

(︂
𝑦 +

𝜓(𝑦, 𝑧)

𝑧

)︂
𝜅𝑥 (6.73c)

Unlike the material strain in linear geometry condition in Equation (4.7), the axial strain

under large displacements is not zero and is called Wagner term which causes a non

linearity in the response in pure torsion. Because of this term, the local strain can not be

related to the generalized twist 𝜅𝑥 in a compact form as in the above section. Instead,

the nodal torsional moments and element stiffness matrix in a finite element framework

will be derived from the strain energy function.

The strain energy is expressed as a function of the local strains:

Φ =

∫︁ 𝐿

0

Φ𝐴𝑑𝑥 =

∫︁ 𝐿

0

(︂
1

2

∫︁∫︁
𝐴

𝐸𝜀2𝑥𝑥𝑑𝐴+
1

2

∫︁∫︁
𝐴

𝐺
(︀
𝛾2𝑥𝑦 + 𝛾2𝑥𝑧

)︀
𝑑𝐴

)︂
𝑑𝑥

=
1

2

∫︁ 𝐿

0

(︀
𝐸𝐼𝑟𝑟𝜅

4
𝑥 +𝐺𝐽𝜅2𝑥

)︀
𝑑𝑥

(6.74)

With:

𝐸𝐼𝑟𝑟 =

∫︁∫︁
𝐴

𝐸(𝑦, 𝑧)
1

4
(𝑦2 + 𝑧2)𝑑𝐴

𝐺𝐽 =

∫︁∫︁
𝐴

[︃
𝐺(𝑦, 𝑧)

(︂
𝜕𝜓

𝜕𝑦
− 𝑧

)︂2

+

(︂
𝜕𝜓

𝜕𝑧
+ 𝑦

)︂2
]︃
𝑑𝐴
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Using Equation (3.14), Equation (6.74) becomes:

Φ =
1

2

∫︁ 𝐿

0

(︀
𝐸𝐼𝑟𝑟𝜅

4
𝑥 +𝐺𝐽𝜅2𝑥

)︀
𝑑𝑥

=
1

2

(︂
𝐸𝐼𝑟𝑟

∫︁ 𝐿

0

𝜅4𝑥𝑑𝑥+𝐺𝐽

∫︁ 𝐿

0

𝜅2𝑥𝑑𝑥

)︂
=

1

2

(︃
𝐸𝐼𝑟𝑟

∫︁ 𝐿

0

(︂
−𝜃

𝐼
𝑥

𝐿
+
𝜃𝐽𝑥
𝐿

)︂4

𝑑𝑥+𝐺𝐽

∫︁ 𝐿

0

(︂
−𝜃

𝐼
𝑥

𝐿
+
𝜃𝐽𝑥
𝐿

)︂2

𝑑𝑥

)︃

=
1

2

(︂
𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)4 +
𝐺𝐽

𝐿
(𝜃𝐽𝑥 − 𝜃𝐼𝑥)2

)︂
(6.75)

The nodal torsional moment in each element is then evaluated by:

M𝑥,𝑒 =
𝜕Φ

𝜕q𝑒

=

⎛⎜⎜⎜⎝
𝜕Φ

𝜕𝜃𝐼𝑥
𝜕Φ

𝜕𝜃𝐽𝑥

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝−2
𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)3 − 𝐺𝐽

𝐿
(𝜃𝐽𝑥 − 𝜃𝐼𝑥)

2
𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)3 +
𝐺𝐽

𝐿
(𝜃𝐽𝑥 − 𝜃𝐼𝑥)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝𝑀
𝐼
𝑥

𝑀𝐽
𝑥

⎞⎟⎟⎟⎠ (6.76)

And the element stiffness matrix:

K𝑒 =
𝜕M𝑥,𝑒

𝜕q𝑒

=

⎡⎢⎢⎢⎣
𝜕𝑀 𝐼

𝑥

𝜕𝜃𝐼𝑥

𝜕𝑀 𝐼
𝑥

𝜕𝜃𝐽𝑥
𝜕𝑀𝐽

𝑥

𝜕𝜃𝐼𝑥

𝜕𝑀𝐽
𝑥

𝜕𝜃𝐽𝑥

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ 6
𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)2 +
𝐺𝐽

𝐿
−6

𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)2 − 𝐺𝐽

𝐿

−6
𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)2 − 𝐺𝐽

𝐿
6
𝐸𝐼𝑟𝑟
𝐿3

(𝜃𝐽𝑥 − 𝜃𝐼𝑥)2 +
𝐺𝐽

𝐿

⎤⎥⎥⎥⎦
(6.77)

6.5 Analysis algorithm

In this work, the proposed model developed in Chapter 3 is a two-node displacement-

based formulation in which the primary input is the nodal displacements vector q𝑒 of

12 components. Under linear geometric condition, q𝑒 can be used directly in the beam

formulation, however, under non-linear geometric assumptions using co-rotational frame-

work, q𝑒 is related to the global reference so it is necessary to transform it into q𝑒, which

is related to the local reference frame and corresponds to the beam formulation developed

in Chapter 3 and Section 6.4. As mentioned above, the local displacements vector q𝑒
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contains 7 components: q𝑒 =
(︁
𝑢 𝜃

𝐼

𝑥 𝜃
𝐼

𝑦 𝜃
𝐼

𝑧 𝜃
𝐽

𝑥 𝜃
𝐽

𝑦 𝜃
𝐽

𝑧

)︁𝑇
, in which:

𝑢 = 𝑙𝑛 − 𝑙𝑜;

⎛⎜⎜⎜⎝
𝜃
𝐼

𝑥

𝜃
𝐼

𝑦

𝜃
𝐼

𝑧

⎞⎟⎟⎟⎠ = log(R
𝐼
);

⎛⎜⎜⎜⎝
𝜃
𝐽

𝑥

𝜃
𝐽

𝑦

𝜃
𝐽

𝑧

⎞⎟⎟⎟⎠ = log(R
𝐽
)

where the rotation matrices R
𝐼/𝐽

are computed using Equation (6.18). Knowing that

q𝑒 has only 7 components, while the nodal displacements vector using in the local beam

formulation in section 6.4 has 12 components, one auxiliary transformation is required:

q𝑒 = T𝑇q𝑒 (6.78)

where T = T𝑑T𝑟 is a transformation matrix defined as a multiplication of two sub-

matrices of transformation: T𝑑 is the translated-transformation matrix while T𝑟 is the

rotate-transformation matrix.

T𝑑 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 −1/𝑙𝑛 0 1 0 0 0 1/𝑙𝑛 0 0 0

0 1/𝑙𝑛 0 0 0 1 0 −1/𝑙𝑛 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 −1/𝑙𝑛 0 1 0 0 0 1/𝑙𝑛 0 0 0

0 1/𝑙𝑛 0 0 0 1 0 −1/𝑙𝑛 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; T𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 03 03 03

03 C 03 03

03 03 C 03

03 03 03 C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.79)

the component C of T𝑟 contains the direction cosines defined as follows:

C =

⎡⎢⎢⎢⎢⎢⎣
𝐶𝑥 𝐶𝑦 𝐶𝑧

−(𝐶𝑥𝐶𝑦 cos𝛼 + 𝐶𝑧 sin𝛼)/𝐶𝑥𝑧 𝐶𝑥𝑧 cos𝛼 −(𝐶𝑦𝐶𝑧 cos𝛼 + 𝐶𝑥 sin𝛼)/𝐶𝑥𝑧

(𝐶𝑥𝐶𝑦 sin𝛼− 𝐶𝑧 cos𝛼) −𝐶𝑥𝑧 sin𝛼 (𝐶𝑦𝐶𝑧 sin𝛼 + 𝐶𝑥 cos𝛼)/𝐶𝑥𝑧

⎤⎥⎥⎥⎥⎥⎦
𝐶𝑥 = (𝑥𝐽 − 𝑥𝐼)/𝑙; 𝐶𝑦 = (𝑦𝐽 − 𝑦𝐼)/𝑙; 𝐶𝑥 = (𝑧𝐽 − 𝑧𝐼)/𝑙; 𝐶𝑥𝑧 =

√︀
𝐶2

𝑥 + 𝐶2
𝑧 ;

𝑙 =
√︀

(𝑥𝐽 − 𝑥𝐼)2 + (𝑦𝐽 − 𝑦𝐼)2 + (𝑧𝐽 − 𝑧𝐼)2

(6.80)

and x𝐼𝐽 =
(︁
𝑥𝐼𝐽 𝑦𝐼𝐽 𝑧𝐼𝐽

)︁𝑇
are the nodal coordinates of nodes I,J in global reference.
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Now the displacements vector q𝑒 can be implemented in the local beam formulation,

and as a result the nodal forces vector Q𝑒 and the element stiffness matrix K𝑒 will be

obtained. Then, 3 successive transformations described in section 6.3 will be applied in

order to transform these variables from the local frame into global reference. The algo-

rithm and implementation of co-rotational formulation in the proposed model is resumed

and shown in Figure 6-7.

eq

;e eK Q

;e eK Q

eq

1i 

Local beam 

formulation

3 successive 

transformations

conv?

Pre-

transformation

NO

YES

1i i 

Figure 6-7 – Implementation of co-rotational formulation into the proposed model. The
dashed line represents the algorithm in linear geometric conditions.

6.6 Numerical examples

In this section, some numerical examples are first simulated using cross-section dimensions

and material properties of steel structures in order to validate the implementation of co-

rotational framework in the proposed model formulation. Then other cases studies were

investigated for reinforced concrete members. As mentioned in Section 6.4, the linear

geometric conditions of the beam formulation in the local reference are ensured by using

a big number of finite element and cross-section mesh.

6.6.1 Cases of elastic material

The geometrical non-linearity in the elastic material range is discussed in this section.

Let’s consider an elastic cantilever beam as shown in Figure 6-8. Note that this beam was
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used as reference in Battini’s PhD Thesis [5]. The beam model has been simulated using

10 elements with a system of 50 × 5 square mesh, subjected to two loading cases: pure

torsion (Figure 6-8a) and combined shear-bending-torsion (Figure 6-8b). In this example,

the cross-section profile is a thin-type usually found in steel structure.

Mx

L=100 mm

E=2100000 MPa

G=787500 MPa

h=
10

 m
m

b=0.5 mm

(a) Exam. 1: Pure torsion.

Mx

L=100 mm

E=2100000 MPa

G=787500 MPa

h=
10

 m
m

b=0.5 mm

Fz

(b) Exam. 2: Shear-bending-torsion.

Figure 6-8 – Example 1 & 2: Cantilever beam under nonlinear geometrical conditions,
subjected to different loading cases.

6.6.1.1 Example 1: Cantilever elastic beam under pure torsion

In this first example, the case of pure torsion is investigated. The formulation proposed in

Section 6.4.1 is validated by the results against the ones obtained by analytical model and

other numerical model. Figure 6-9 presents the torsional moment versus end twist angle

curves. Compared to the analytical solution based on Vlasov’s beam theory [113] and

the numerical one of Battini’s model, the results obtained by the proposed model, taking

into account the contribution of the Wagner term in the model formulation, show a very

good correlation. It can be seen that, although simulated in the elastic material range,

the relationship between torsional moment and twist angle was no longer linear, due to

the geometrical non-linearity caused by the introduction of Wagner term, as explained in

Section 6.4.1. It is evident that without taking into account the Wagner term, the model

is considered as a linear geometry model which gave a purely linear response.
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Figure 6-9 – Example 1: Elastic torsional response under nonlinear geometric conditions.
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6.6.1.2 Example 2: Cantilever elastic beam subjected to shear-bending-torsion

This numerical example is to study the influence of shear and bending on the torsional

behavior of the elastic beam in large rotation. Figure 6-10 presents the torsional moment

versus end twist angle curves for four torsion-bending moment ratios: 𝑅 = ∞; 𝑅 = 1; 𝑅 =

1/2 and 𝑅 = 1/5. As can be seen, in elastic material regime, the torsional behavior is not

affected by the bending and shear actions when the geometrical nonlinearity is neglected.

However, the numerical results show that the torsional stiffness decreases significantly with

increasing of torsion-bending moment ratios when the beam is in geometrical nonlinear

regime. Further, experimentation test needs to be conducted to confirm this statement.
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Figure 6-10 – Example 2: Torsional moment versus twist angle diagrams of elastic
material beam subjected to shear-bending-torsion effect under nonlinear geometric

conditions, with different ratio of torsional versus bending moment.

6.6.2 Cases of inelastic material

This section deals with several numerical examples of beam under inelastic material

regime: an elasto-plastic cantilever beam subjected to shear-bending and torsion, and

a simply supported RC beam subjected to pure torsion. Through these examples, the

implementation of the corotational framework in the proposed model formulation as de-

scribed in previous sections can be validated in inelastic material regime.

6.6.2.1 Example 3: Cantilever inelastic beam subjected to shear-bending and

torsion

The third example concerns an elasto-plastic thin-walled cross-section cantilever beam,

subjected to vertical load at the free-end, which was also investigated by Kondoh & Atluri
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[55], using a numerical model based on Euler-Benoulli assumption. The beam dimensions,

material properties and the elasto-plastic material behavior are shown in Figure 6-11.
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Figure 6-11 – Example 3: Cantilever beam in the example of Kondoh & Atluri [55].

Using 10 beam elements with a mesh of 50×10 square fibers, the simulation results ob-

tained by the proposed model are shown in Figure 6-12. The effect of nonlinear geometric

assumptions, bring up by corotational framework, can be easily noticed, as the element

stiffness increases significantly in the plastic material range. Compared to the Kondoh &

Atlure’s model, a good correlation is achieved. Regarding the high ratio between beam

length and height, although the two numerical models use different kinematic conditions

in its beam formulation (Euler-Bernoulli in Kondoh & Atlure’s model and Timoshenko

in the proposed model), the shear effect can be generally neglected, except a slight gap

observed at high load stage.
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Figure 6-12 – Example 3: Load-displacement diagrams of elasto-plastic beam subjected
to shear-bending under nonlinear geometrical conditions.

Using the same outline of beam as in Figure 6-11, but instead of vertical load, a

torsional moment is applied at the free end. Simulation result can be found in Figure

6-13, concerning two numerical models: one with the implementation of the Wagner term
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in the model formulation (nonlinear geometry model), and another without this nonlinear

term (linear geometry model). Similar to the above case subjected to shear-bending

effect, the torsional stiffness given by the nonlinear geometry model increases significantly

compared to the response of the linear geometry model. The effect of second-order Wagner

term continues to give a significant influence on the torsional response of elasto-plastic

material beam.

End twist angle (rad)
0 5 10 15 20 25

T
or

si
on

al
 m

om
en

t (
kN

m
)

#105

0

2

4

6

8

10

12

14
Proposed Model - Linear geometry condition
Proposed Model - Nonlinear geometry condition

Figure 6-13 – Example 3: Torsional moment - twist angle diagrams of elasto-plastic
beam subjected to pure torsion effect under linear and nonlinear geometric conditions.

When torsional moment is accompanied by the vertical load, the beam is subjected to

combined shear-bending-torsion. Figure 6-14 presents the torsional moment versus end

twist angle curve for different torsion-bending moment ratios: 𝑅 = ∞, 𝑅 = 10, 𝑅 = 1,

𝑅 = 1/5 and 𝑅 = 1/20. When torsional moment dominates bending moment (R is bigger

than 1), the material yielding is due to torsional effect as in the above case of pure torsion,

and no difference is recorded in the plastic material regime. When bending moment

becomes bigger and dominated, the yielding point is changed, depending on the value

of bending moment, and the torque-twist diagram becomes different as a consequence.

In this example of combined loadings under elasto-plastic material regime, the fact that

torsional behavior depends on the yielding point limits the study of coupling actions. One

statement can be draw is that there is no significant influence of shear-bending actions to

torsional response when torsional moment dominates bending moment.
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Figure 6-14 – Example 3: Torsional moment versus twist angle diagrams of elasto-plastic
material beam subjected to shear-bending-torsion effect under nonlinear geometric

conditions, with different ratio of torsional versus bending moment.

6.6.2.2 Example 4: simply-supported RC beam subjected to pure torsion

Although making a great influence in the torque-twist diagram of beam under torsion, in

practice, the necessary of including this nonlinear geometric effect due to Wagner term

in an ordinary RC beam might be under question. In this section, another example is

carried out in the field of inelastic material, in order to clarify the statement of negligence

of nonlinear geometric conditions for concrete and/or RC beams. Specimen G5, a simply

supported beam in the torsion test of Hsu [45], is simulated in two cases of two different

local formulations: linear geometric model (LGM - without Wagner term) and nonlinear

geometric model (NLGM - Wagner term included). Section details and material properties

of specimen G5 are cited in Figure 6-15.

50
8 

m
m
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Beam G5

fc=26.89 MPa Φ12.7 @ 86 mm, fy = 328 MPa

2 x Φ25.4, fy = 331 MPa

2 x Φ25.4, fy = 331 MPa

Figure 6-15 – Example 4: Details of Beam G5 .

No significant difference between the linear and nonlinear geometric model could be ob-

served in the torque-twist diagram in Figure 6-16. Using a displacement imposed approach
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during the simulation, the cracking torque was reached at 2.5 mrad/m, corresponding to

the same value of 29.26 kN in both models, no difference was therefore remarked between

two models in the phase before cracking of concrete. In the phase after cracking, the ul-

timate torsional moment was achieved at 55 mm for both two models and gave a value of

73.51 kN for the LGM and 73.55 kN for the NLGM. Only a very minor relative difference

of 0.05 % was recorded.
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Figure 6-16 – Example 7: Torsional moment versus twist angle diagrams of beam G5
subjected to pure torsion under linear and nonlinear geometric conditions.

Table 6.1 indicates the values of cracking and ultimate torsional moment in each

specimen of series G in Hsu’s test, obtained by the LGM and the NLGM. At the same

twist rate value, the cracking and ultimate torsional moments obtained by the LGM were

always smaller (or similar) than those of the NLGM. This observation corresponds to the

result obtained in Section 6.6.1.1 and 6.6.2.1, in which the nonlinear geometric effect makes

the torsional stiffness stronger in both the elastic and inelastic material regime. However,

knowing that concrete is a brittle material and its cracking and failure deformation is

small, the RC beams were failure before any significant differences could be remarked.

Indeed, in Table 6.1, minor differences were recorded in all the cases.
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Table 6.1 – Series G of Hsu’s torsion test: Cracking and ultimate torsional model
obtained by the LGM and NLGM.

Beams
𝑇𝑐𝑟 (kN) 𝑇𝑢 (kN)

LGM NLGM Difference LGM NLGM Difference

G2 29.40 29.44 0.14 % 37.75 37.76 0.03 %

G3 26.72 26.72 0 % 49.60 49.62 0.04 %

G4 27.94 27.94 0 % 65.72 65.74 0.02 %

G5 29.26 29.26 0 % 73.51 73.55 0.05 %

G6 29.79 29.84 0.17 % 40.46 40.49 0.07 %

G7 32.13 32.13 0 % 53.79 53.80 0.02 %

G8 32.77 32.78 0.03 % 72.12 72.14 0.03 %

6.7 Conclusions

In this Chapter, using the corotational formulation, the nonlinear geometry of the pro-

posed beam model under large displacement conditions has been investigated. Through

several numerical examples carefully executed above, the following remarks and conclu-

sions can be draw:

∙ By validating with some existing example in the literature under the loading case

of shear-bending and pure torsion, the corotational formulation can be considered

as successfully implemented in the proposed model formulation.

∙ When considering the torsional effect, the contribution of the Wagner term is very

significant, in both elastic and inelastic material regime, knowing that the torsional

rigidity could be considerably increased under the influence of this nonlinear term.

∙ In the elastic material regime, when the beam is in geometrical non linear condi-

tions, the combination of shear, bending and torsional moments could make some

significants impact on the torsional behavior, compared to the case of pure torsion.

This statement is interesting because no difference can be recorded between these

two loading cases in elastic material regime under geometrical linear conditions.

∙ However, in the elasto-plastic material regime, when torsional moment dominates

bending moment, no significant influence of shear-bending actions to torsional re-

sponse could be observed. Otherwise, in practice, the nonlinear geometric effect

could be neglected for a simply supported RC beam of ordinary length.
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Chapter 7

Conclusions and Perspectives

7.1 Summary and Conclusions

The main objective of this PhD thesis was the development of an efficient finite element

model for the nonlinear analysis of reinforced concrete members taking into account the

coupling effect of multi-stresses resultants under bending, shear and torsional loadings.

Indeed, using a multi-fiber discretization and sectional analysis approach, the developed

3D beam element is capable of describing the sectional responses and representing the

non-uniform stress/strain distributions due to warping deformation of the cross-section.

Although developed primarily in this work for rectangular cross-section, the model for-

mulation in Chapter 3 is generally expressed to be applied to any arbitrary cross-section.

According to the prior discussion in the state of the art (Chapter 2), although various

researches have successfully applied the Lagrange polynomial approach to the mixed-based

formulation in order to take into account the warping displacement, this approach has not

yet been implemented in any displacement-based model of reinforced concrete. In present

work, the Lagrange polynomial approach has been completely implemented in the pro-

posed displacement-based model, as well as a comparison with the use of Saint-Venant

warping function when accounting for torsional effect. The numerical examples in Chap-

ter 5 gave good results and showed reasonable correlations between the two approaches.

Thanks to its generality, the successful implementation of Lagrange polynomials in the

proposed model also offers more possibilities for further research on different cross-section

shapes, such as T or L.
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The satisfactory results obtained in the inelastic material domain ensured the adap-

tation of the Modified Compression Field Theory (MCFT) to the constitutive material

model for concrete. In this PhD thesis, based on MCFT, a consistent constitutive model,

suitable for the use in the 2D multi-fiber beam formulation, has been developed for rein-

forced concrete in case of pure torsion. The discretization of the cross-section into different

regions following the stress state (i.e. 1D-zone, 2D-zone and 3D-zone) which was proposed

by others researchers in literature, has been used and improved in this work. A new for-

mulation to determinate the width of the 2D-zone has been proposed. The calibration

process carried out by the author in this work, which used the engineering parameters

in order to increase the ability to apply the proposed model in practical simulations, can

also offer some ideas and recommendations to other researchers in similar studies.

The case of RC members subjected to combined shear-bending-torsion actions un-

der non-linear geometric conditions has also been treated in the present work. A Total

Lagrangian-Corotational approach has been employed for the development of beam and

beam-column elements, in which an initial undeformed geometry, translated and rotated

as a rigid body, was chosen as the reference configuration in the corotated frame. The

formulation is based on small deformations within the corotational (natural) frame. The

satisfactory results obtained through several examples from the literature showed that

the corotational framework had been successfully implemented in the proposed model.

Under the assumption of large displacement, the coupling between the actions due to the

torsional effect was carefully developed in the local beam formulation and evaluated with

the help of some numerical examples.

7.2 Perspectives

The proposed model has been developed in a general way in order to open many possibil-

ities to extend the range of applications and studies. Several of additional developments

can be suggested and some aspects of the proposed model could be more developed in

future researches, such as:

∙ The model formulation could be extended for the case of high-strength concrete,

prestressed concrete, concrete with fibers or self-compacting concrete, etc.

∙ The model formulation could also be extended to the case of curved and/or tapered
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beam, in order to investigate the application of model in usual case of shear and

torsional effects.

∙ The material behavior could be more developed by including the confinement effect

of concrete and/or stirrups. The cyclic loading behavior of concrete and steel could

also be implemented in the constitutive model.

∙ Regarding the calibration process, more test data can be used and other engineering

parameters can be served as input, in order to develop a new, and possibly more

exact formulation for the constitutive behavior law and the 2D-zone’s width.

∙ The inclusion of distortion deformation in the model formulation could be repre-

sented with the implementation of two enhanced transversal displacements in the

enhanced field.

∙ Concerning the warping and distortion deformations, other kinds of interpolation

functions could be explored over the cross-section and along the beam axis, such as

Hermite polynomials or Spline functions.

∙ The inclusion of Wagner term in the local formulation of corotational framework

could be expressed in a more consistent and rational way, instead of using an ap-

proximate tangent operator as in the proposed model.
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Résumé étendu en français

Problématique

La plupart des ouvrages de génie civil est soumise à des actions multiaxiales, incluant

des efforts normaux et des efforts tangentiels. Même si les effets du cisaillement et de la

torsion ont déjà été mis en œuvre dans plusieurs théories et modèles d’analyse structurelle,

il manque toujours une théorie scientifique rationnelle. Afin de contribuer à ce domaine

de recherche, ce travail de recherche porte sur le développement d’un modèle d’éléments

finis non linéaire pour les éléments en béton armé soumis à des sollicitations complexes et

en particulier la torsion.

Parmi les principales sollicitations, l’effort axial et le moment de flexion sont large-

ment étudiés et modélisés par plusieurs modèles théoriques et numériques. Les théories

d’analyse des structures sous sollicitations de cisaillement et de torsion sont également

développées par plusieurs chercheurs par contre, il n’y a pas beaucoup de modèle qui con-

sidère la combinaison de toutes les types de sollicitation (traction-compression; flexion;

cisaillement; et torsion). De plus, étant l’un des principales sollicitations soumises aux

structures en génie civil, la torsion est souvent négligée devant les autres dans le contexte

des structures en béton armé courantes. Cependant, dans certains cas particuliers, par ex-

emple le cas dans le cadre de la tenue des balcons dans les bâtiments isolés par l’intérieur,

la torsion peut jouer un rôle déterminant dans la stabilité des structures.

En effet, les règlementations thermiques en vigueur imposent de traiter le pont ther-

mique qui se crée au niveau du plancher. Ce pont thermique perturbe la continuité de

l’isolation thermique et doit être traité par un disjoncteur de pont thermique (Figure 7-

1a). Dans le cadre de la tenue du balcon, la transmission du poids de plancher aux murs

fait appel à la contribution du linteau, qui est préférablement fabriqué en acier grâce à sa

légèreté afin de minimiser les éléments structuraux (Figure 7-1b). Cependant, en sachant

que le rupteur du pont thermique est attaché au linteau, son efficacité peut être réduite si
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le dernier est fabriqué en acier. C’est la raison pour laquelle, le linteau est conçu comme

une poutre en béton armé de section rectangulaire, qui est dans un état combiné de flex-

ion, de cisaillement et de torsion, pour laquelle les modèles théoriques et numériques sont

peu nombreux dans la littérature.

(a)

Balcony

Thermal bridge 

breaker

Floor

Wall

Lintel

Interior insulation

panel

(b)

Figure 7-1 – (a) Rupteur du pont thermique. (b) Disposition du linteau dans le cadre de
la tenue des balcons pour des bâtiments isolés par l’intérieure.

A cause des différences entre les déformations extensionnelles des fibres longitudinales

dans l’élément, sous l’effet de torsion la section transversale est gauchie et sort de leur

plan initial. Cette action s’appelle le gauchissement et se produit pour tout type de

section transversale, excepte celui circulaire, sous chargement de torsion (Figure 7-2).

Ce phénomène de gauchissement fait nier l’hypothèse de section plane en considération

l’équilibre cinématique de section, de plus influence fortement sur le calcul de l’angle de

torsion et des contraintes normales sous sollicitations de torsion. L’étude de ce phénomène

fait donc une partie importante dans ce travail de recherches.

Figure 7-2 – Dessin originaux de Saint-Venant pour les poutres soumises à torsion de
section elliptique, carrée et rectangulaire [97].

Objectifs

L’objectif principal de cette thèse de doctorat est de développer un modèle enrichi de

poutre en éléments finis pour l’analyse non linéaire des éléments en béton armé soumis
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à des sollicitations combinées: l’effort axial, la flexion, le cisaillement et la torsion. Les

objectifs spécifiques sont les suivants:

∙ Le développement d’un élément de poutre 3D pour les éléments en BA utilisant une

approche ”multifibres”. Dans cette étude, le modèle est développé principalement

pour une section droite rectangulaire, mais la formulation est exprimée de manière

générale pour tous types de sections droites arbitraires.

∙ L’implémentation d’un champ de déplacement enrichi dans les équations cinéma-

tiques afin d’inclure le déplacement de gauchissement de section droite sous l’effet

de cisaillement et de torsion. Ensuite, une analyse numérique est réalisée pour

étudier l’influence du gauchissement sur l’état de contrainte.

∙ L’adaptation de la théorie du champ de compression modifié (Modified Compression

Field Theory – MCFT [110]) à la loi de comportement du béton.

∙ L’adaptation de la discrétisation de section en différentes régions selon l’état de con-

trainte (1D, 2D et 3D) afin de prendre en compte l’impact des armatures transver-

sales et du confinement du béton. Une nouvelle formulation paramétrique permet-

tant de déterminer la règle de cette discrétisation est également proposée.

∙ La mise en œuvre et la dérivation d’un concept général et cohérant de co-rotationnel

dans la formulation 3D de poutre afin de prendre en compte la condition géométrique

non linéaire.

Développement du modèle numérique pour les élé-

ments BA

Introduction de l’élément multifibre

En utilisant l’approche transversale de section et la formulation en déplacement, un élé-

ment 3D multifibre enrichi est développé pour déterminer le comportement des mem-

branes en BA soumis à des chargements arbitraires (cisaillement, flexion et / ou torsion).

Basée sur le principe de la modélisation en éléments finis discret, l’approche de multifi-

bres représente un équilibre parfait entre la précision des résultats, la rapidité du calcul

et l’ergonomie. Il s’agit d’un système de points d’intégrations (appellé fibre) est obtenu à

l’intersection des fibres longitudinales et des sections transversales sur le long d’élément
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(Figure 7-3). A chaque fibre, les déformations et déplacements sont liés aux déplacements

nodaux (définis comme dégrée de liberté d’un élément) par des équilibres cinématiques.

Pour chaque fibre, une loi de comportement approprié est affectée afin de déterminer les

contraintes à partir des déformations qui sont obtenues par la cinématique de section. En-

suite, à l’aide du Principe du Travail Virtuel et les fonctions de forme, les efforts nodaux et

les matrices de rigidité au niveau d’élément sont déterminés par des calculs d’intégrations

numériques.

z

xnode I node J

longitudinal reinforcement bar

Finite element mesh

z

y

Concrete Fiber

Steel Fiber

(Concrete material law)

(Steel law)

Figure 7-3 – Approache de multifibre pour les éléments en BA et des coordonées
d’élément locals dans cette recherche.

Cinématique de section

La cinématique de section est basée sur l’enrichissement des hypothèses de cinématique de

poutre de Timoshenko. A cause du phénomène de gauchissement, l’hypothèse de section

plane devient insuffisante pour représenter la forme de déformation complète de section

sous sollicitation composée de cisaillement et de torsion (Figure 7-4a). C’est la raison

pour laquelle, en considérant l’équilibre cinématique d’un point matériel de la section,

le champ cinématique d’un corps rigide doit être enrichi par un champ de déplacement

supplémentaire (Figure 7-4b):

Axial Bending

Shear Torsion
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(b)

Figure 7-4 – (a) Déformation de section transversale sous efforts normaux (axiale force,
flexion) et tangentiels (cisaillement, torsion). (b) Décomposition du déplacement axial

d’un point matériel.
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d𝑚
𝑓 (𝑥, 𝑦, 𝑧) = d𝑝

𝑓 (𝑥, 𝑦, 𝑧) + d𝑒
𝑓 (𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑈𝑝(𝑥, 𝑦, 𝑧)

𝑉 𝑝(𝑥, 𝑦, 𝑧)

𝑊 𝑝(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
𝑈𝑒(𝑥, 𝑦, 𝑧)

𝑉 𝑒(𝑥, 𝑦, 𝑧)

𝑊 𝑒(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑈𝑚(𝑥, 𝑦, 𝑧)

𝑉 𝑚(𝑥, 𝑦, 𝑧)

𝑊𝑚(𝑥, 𝑦, 𝑧)

⎞⎟⎟⎟⎠ (7.1)

Le champ classique d𝑝
𝑓 (𝑥, 𝑦, 𝑧) porté sous l’hypothèse de section plane dans la théorie

de poutre de Timoshenko, dont la relation cinématique suivante est établie entre d𝑝
𝑓 (𝑥, 𝑦, 𝑧)

et le vecteur de déplacements généralisés d𝑠(𝑥):

𝑈𝑝(𝑥, 𝑦, 𝑧) = 𝑢(𝑥) − 𝑦𝜃𝑧(𝑥) + 𝑧𝜃𝑦(𝑥)

𝑉 𝑝(𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜃𝑥(𝑥)

𝑊 𝑝(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃𝑥(𝑥)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒ d𝑝
𝑓 (𝑥, 𝑦, 𝑧) = a𝑝

𝑓 (𝑦, 𝑧)d𝑠(𝑥) (7.2)

Dans le cadre de ces travaux de recherche, deux approaches sont utilisées pour représen-

ter le champ enrichi d𝑒
𝑓 (𝑥, 𝑦, 𝑧), la première concernant l’application de la théorie de poutre

de Saint-Venant, avec la définition de la fonction de gauchissement 𝜓(𝑦, 𝑧) et la distribu-

tion de gauchissement 𝛼(𝑥). Dans le cas d’une section solide, 𝛼(𝑥) peut prendre la valeur

de la dérivation de l’angle de torsion 𝜅𝑥. Par conséquence, le champ de déplacement total

d𝑝
𝑓 (𝑥, 𝑦, 𝑧) dans l’Equation (7.1) devient:

𝑈𝑚(𝑥, 𝑦, 𝑧) = 𝑢(𝑥) − 𝑦𝜃𝑧(𝑥) + 𝑧𝜃𝑦(𝑥) + 𝜅𝑥𝜓(𝑦, 𝑧)

𝑉 𝑚(𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜃𝑥(𝑥)

𝑊𝑚(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜃𝑥(𝑥)

(7.3)

La deuxième approche enrichie concerne l’utilisation des fonctions d’interpolation

comme Lagrange pour représenter le champ enrichi. Il s’agit d’un système de points

fixes créés et interpolés par des fonctions et des polynômes de Lagrange (Figure 7-5), qui

conduisent à l’introduction de degrés de liberté supplémentaires à chaque section transver-

sale (Figure 7-6). Le champ de déplacement enrichi est établi à l’aide des matrices de

polynômes de Lagrange:

𝑈 𝑒(𝑥, 𝑦, 𝑧) =
𝑛𝑤∑︁
𝑖=1

𝐿𝑖(𝑥)𝑈 𝑒(𝑥𝑖, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)U𝑒 (7.4a)

𝑉 𝑒(𝑥, 𝑦, 𝑧) =
𝑛𝑤∑︁
𝑖=1

𝐿𝑖(𝑥)𝑉 𝑒(𝑥𝑖, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)V𝑒 (7.4b)

𝑊 𝑒(𝑥, 𝑦, 𝑧) =
𝑛𝑤∑︁
𝑖=1

𝐿𝑖(𝑥)𝑊 𝑒(𝑥𝑖, 𝑦, 𝑧) = L̂(𝑥)Ŝ(𝑦, 𝑧)W𝑒 (7.4c)
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où L̂(𝑥) est une vecteur contenant des polynômes d’interpolation 1D; Ŝ(𝑦, 𝑧) est une

matrice contenant des polynômes d’interpolation 2D; U𝑒, V𝑒 et W𝑒 sont des vecteur

contenant les déplacements nodaux enrichis définis comme les dégrées de liberté supplé-

mentaires (Figure 7-6).
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Figure 7-5 – System de point d’interpolation de l’élément.
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Figure 7-6 – Les déplacements enrichis définis comme les dégrées de liberté
supplémentaires indépendantes.

Organigramme de formulations

La Figure 7-7 résume la formulation en déplacement pour l’élément fini multifibre selon

deux approches enrichies dans le cadre de ce recherche.
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Figure 7-7 – Organigramme de la formulation en déplacement pour l’élément fini
multifibre selon deux approches enrichies.
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Les efforts généralisés de section D𝑠 ou D𝑝
𝑠, D

𝑒
𝑠 sont calculés par l’intégration numérique

sur la section, tandis que les efforts nodaux d’élément Q𝑒 ou Q𝑝
𝑒, Q

𝑒
𝑒 sont déterminés selon

la méthode de quadrature de Gauss-Lobatto. La formulation du modèle est programmée

en Matlab grâce à son compétence en manipulant des matrices.

Modèle pour le comportement de l’élément en béton armé

Dans la formulation en déplacement de l’élément fini multifibre, le calcul à l’échelle

fibre (ou point d’intégration) concernant la relation constitutive entre les contraintes-

déformations demande une équation constitutive adéquat et une loi de comportement ap-

propriée. Dans cette thèse, le modèle développé doit être capable de représenter les effets

typiques du membrane en BA, comme la fissuration, l’effet de raidissement de contraintes

(stress-stiffening effect) ou l’effet adoucissant de compression (compression softening ef-

fect). C’est la raison pour laquelle, le modèle proposé est basé sur la théorie modifiée du

champ de compression by Vecchio [110] (Modified Compression Field Theory - MCFT).

Dans cette théorie, l’idée principale est de remplacer la loi de comportement biaxiale

du béton par une loi de comportement uniaxiale, dans laquelle la relation contrainte-

déformation est formulée dans la direction principale de fissure du béton. L’hypothèse

principale est la coincidence des directions principales des contraintes et des déforma-

tions. Les équation d’équilibre et de compatibilité sont évaluées par la valeur moyenne de

contrainte et de déformation dans le plan de fissures, tandis que la contribution du béton

et de l’acier peut être ajoutée séparément dans l’expression de contrainte totale et dans

la matrice de rigidité (Figure 7-8).

= +lσ

tσ

Reinforced Concrete Concrete Reinforcement Steel

τlt

τlt

tσc

lσc

τlt

τlt 12

s
tρ σst

s
lρ σslθ

Figure 7-8 – Composition de contrainte pour l’élément BA selon la théorie de MCFT
[110].

Dans le cadre de ce travail de recherche, le comportement uniaxial du béton selon la

direction principale est celui proposé dans la théorie originale de Vecchio [110] (Figure

7-9). Cependant, d’autres relations peuvent être empruntées pour exploiter la recherche.
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Figure 7-9 – Comportement uniaxial du béton dans la direction principale.

Dans l’approche multifibre pour des éléments en béton armé, la prise en compte de

la contribution des armatures transversales dans la résistance et la rigidité est loin d’être

simple. Comme montré sur la figure 7-3, alors que le béton et l’armature longitudinale

sont répartis longitudinalement dans l’élément, la distribution des armatures transversalles

est interrompue dans cette direction par un espacement 𝑠. Pour cela, basé sur l’idée de

Navarro-Gregori [76], la section transversale est discrétisée en plusieurs régions selon son

comportement matériel et de son état de contrainte (Figure 7-10a):
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τxy

τxz

τxz
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(a)

τxz
τxy
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Figure 7-10 – (a) Discrétisation de la section selon l’état de contrainte dans le modèle de
Navarro-Gregori et al. [76]. (b) Directions de contrainte de cisaillement sous les effets de

flexion-cisaillement et de torsion.

∙ Zone 1D: cette zone ne contient que les armatures longitudinales, où l’on fait

l’hypothèse que la contrainte normale dans la direction des armatures est la seul

contrainte à tenir en compte. La loi de comportement appliqué dans cette zone est

celle de l’acier.

∙ Zone 2D: cette zone est définie par la région où se trouve les armatures transversales

dans une seule direction et le béton l’entouré. Dans cette zone, sous les effets de

cisaillement, de flexion ou de torsion, la direction de contrainte normale dans les

étriers cöıncide à celle dans le béton (𝜏𝑥𝑧 dans la zone verticale ou 𝜏𝑥𝑦 dans la zone

horizontale) (Figure 7-10b). Par conséquent, à chaque fibre, on ne considère que
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l’état des contraintes planes avec deux composants: une normale et une transver-

sale. La prise en compte des effets des armatures transversales est réalisée par un

processus d’itération satisfaisant l’équilibre interne entre le béton et les armatures

transversales. La loi de comportement est celle de la théorie de MCFT [110].

∙ Zone 3D: où se trouvent les armatures transversales en deux directions et dans le

noyau en béton de la section, cette zone est définie avec un état de contrainte complet

: une normale et deux cisaillements, dans chaque fibre. Le modèle de comportement

appliqué est une extension de la théorie de MCFT pour l’élément fini 3D [112]. Dans

cette zone, ainsi que dans la zone 2D, l’équilibre interne et le couplage des efforts

sont assurée par des condensations statiques de contrainte dans chaque fibre.

Modélisation numérique des éléments BA soumis à des sollicita-

tions complexes

Un exemple évalué par Le Corvec [62] dans sa thèse est étudié ci-dessous afin de valider

le modèle EF développé dans la régime de matériaux élastiques: une poutre cantilever

de section mince soumise à l’effort de flexion-cisaillement (Figure 7-11). Les valeurs des

déplacements à l’extrémité de la poutre, obtenue par les deux approaches enrichies, sont

montrées dans le Tableau 7.1 et comparées aux solutions analytiques et aux résultats

numériques de Le Corvec. Les résultats numériques donnés par le modèle proposé sont

satisfaisant, et les différences entre deux approches enrichies ne sont pas importantes.
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Figure 7-11 – Système des points d’interpolation dans l’exemple de Le Corvec [62].
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Table 7.1 – Déplacement à l’extrémité d’une poutre cantilever de section rectangulaire
sous l’effet de flexion-cisaillement - Exemple de Le Corvec [62].

Théorie de

Timoshenko

Modèle de

Le Corvec
Maillage

Modèle Proposé

Théorie de

Saint-Venant

Polynôme de

Lagrange

Déplacement à

l’extrémité (mm)
-5.156 -5.156

10× 1 -5.206 -5.207

50× 5 -5.158 -5.158

100× 10 -5.157 -5.157

200× 20 -5.156 -5.156

Pour rappel, sous l’effet de flexion-cisaillement, l’approche enrichie des polynômes de

Lagrange génère un champ de déplacement axial supplémentaire. Par conséquence, la

section droite se gauchit et ne peut pas conserver sa forme plane. Ce déplacement de

gauchissement sous l’effet de flexion-cisaillement est présenté à la Figure 7-12a. On peut

observer que la forme parabolique est le résultat des polynômes d’interpolation cubique

sur la section droite. Cependant, la magnitude de ce champ enrichi est très faible en

comparant à celle du champ classique. Cela dit que le champ de déplacement total est donc

peu influencé et conserve sa forme plane (Figure 7-12b). Les impacts sur les déformations

et les contraintes sont donc limités et par conséquent, il n’y a pas de différence entre les

valeurs de déplacement à l’extrémité dans le Tableau 7.1.
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Figure 7-12 – Distribution du champ de déplacement sur la section droite à l’extrémité
de poutre sous l’effet de flexion-cisaillement.

L’intéraction des efforts flexion-torsion est évaluée en étudiant la simulation numérique

quelques spécimens dans le test expérimental de McMullen & Warwaruk [72]. Les dia-

grammes d’intéraction de flexion-torsion concernant les résultats numériques des valuers

ultimes de moment fléchissant et de moment de torsion sont montrés sur la Figure 7-13 et

comparés aux solutions analytiques obtenue par la théorie de Skew-bending proposée par
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Collins et al. [23, 24]. D’après cette théorie, pour une poutre en BA de section symétrique,

il existe 2 modes de rupture: rupture par flexion, rupture par torsion. Dans le cas de sec-

tion asymétrique, il existe une 3ème mode accompagné par des initiations de fissures sur la

surface haut de poutre. On peut observer à la Figure 7-13 concernant les résultats de deux

groupes de section asymétrique et symétrique, en comparant aux résulats expérimentaux,

les solutions analytiques sont toujours conservatives tandis que les résultats numériques

donnés par le modèle proposé sont au meilleurs corrélations, notamment au voisinage des

transitions entre 3 modes de défaillance.
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(a) Groupe 1: section droite asymétrique.
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Figure 7-13 – Diagramme d’intéraction entre flexion-torsion dans le test de McMullen &
Warwaruk’s [72].

En effectuant une simulation numérique pour une poutre cantilever en BA soumise

à combinaison de flexion-torsion à l’extrémité, l’impact des armatures transversales sur

la résistance en flexion-torsion est étudié et représenté sur la Figure 7-14. Sur cette fig-

ure, différents diagrammes d’intéraction sont établis pour différents valuers d’espacements

d’étries. Comme on peut le constater, lorsque la torsion est faible par rapport à la flexion,

par exemple R = 0,25, la densité de l’étrier n’a logiquement presque aucun effet. L’effet de

l’étrier sur la résistance des éléments devient plus important lorsque la torsion domine la

flexion. En cas de torsion pure, on peut constater que la résistance à la torsion augmente

d’environ 34 % avec une augmentation de 8 fois de la densité de l’étrier. Cette application

numérique met en évidence le fait que la formulation EF proposée prend en compte les

armatures transversales dans la prédiction de la résistance à la torsion des éléments BA.
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Figure 7-14 – Diagramme d’intéraction de flexion-torsion en fonction d’espacement des
étriers.

L’intéraction entre flexion-cisaillement-torsion est aussi étudiée dans la simulation

numérique concernant le test expérimental des poutres en BA soumise aux effets de flexion-

cisaillement-torsion de McMullen & Warwaruk [72]. Pour le Groupe 7, le diagramme

d’intéraction de flexion-torsion est présenté à la Figure 7-15a avec un bon niveau de cor-

rélation entre les résultats numériques et ceux expérimentaux. Concernant le diagramme

d’intéraction de cisaillement-torsion (Figure 7-15b), les résultats donnés par la théorie de

Skew-bending et par le modèle proposé sont en bon accord avec l’expérimentation. De la

même manière que les autres courbes d’interaction flexion-torsion et cisaillement-torsion

présentées ci-dessus, les solutions analytiques sont plutôt conservatrices. Cette remarque

correspond à l’observation de Hsu [46] selon laquelle la théorie de skez-bending surestime

considérablement la résistance à la torsion pure des membres BA.
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Figure 7-15 – Diagramme d’intéraction du Groupe 7 dans le test de McMullen &
Warwaruk [72].
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Les éléments BA soumis à la torsion pure

Modèle constitutif proposé pour le béton

Sous l’effet de torsion pure, en utilisant la théorie de MCFT comme le modèle constitutif

du béton, la valeur numériques du moment de torsion à la fissuration est réduite environ

la moitié des valeurs expérimentales. Cela est expliqué par le fait que dans la théorie de

MCFT, la relation en traction est basée sur des tests expérimentaux de panneaux soumis

à l’effet de cisaillement, donc pas vraiment adapté au comportement en torsion. Une

modification du comportement en traction est donc nécessaire.

De plus, une deuxième remarque pour le modèle constitutif du béton à torsion pure

est à retirer en regardant sur le comportement du membrane BA soumis à torsion pure,

qui est divisé en 2 phases différentes:

∙ Avant fissuration, la réponse de la section est considérée comme élastique et le

comportement est très similaire à celui d’un élément en béton pure, ce qui peut être

prédit par la théorie de la torsion de Saint-Venant.

∙ Après fissuration, le matériau n’est plus continu, la théorie de l’élasticité devient inu-

tile et un nouveau mécanisme est nécessaire pour interpréter la réponse en torsion

dans cette phase. A partir du concept de treillis [93] et des résultats des tests ex-

périmentaux de Hsu [45] et de Onsongo [82], on peut supposer que le comportement

d’éléments BA après fissuration est considéré comme un tube de section creuse.

Ce comportement spécial conduit à la deuxième modification du modèle mécanique pour

les éléments BA en torsion pure: le comportement de la zone 3D du béton dans le noyau

de section est mis à zéro après la fissuration. La réponse en torsion non linéaire après la

fissuration dépend donc uniquement du comportement de la zone 2D et de la zone 3D aux

quatre coins de la section, et la largeur de la zone 2D, appelée épaisseur effective, joue un

rôle déterminant.

Une troisième remarque aussi importante est l’impact de la distribution des armatures

longitudinales dans la section sur la résistance en torsion pure du membre en BA. En effet,

d’après l’analyse des tests expérimentaux par Hsu [45], pour les éléments en BA, la valeur

à la fissuration du moment de torsion est en fonction du pourcentage total des armatures.

De plus, Hsu a remarqué également qu’une meilleure répartition (ou distribution) des

armatures longitudinales sur la section augmenterait légèrement le moment de torsion à
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la fissuration: c’est le cas des poutres G6, G7 et G8 dans lesquelles les barres longitudinales

sont également situées au centre de la section (Figure 7-16).

Figure 7-16 – Moment de torsion à la fissuration en fonction des pourcentages totals des
armatures dans le test de Hsu (1963) [45].

A partir de ces trois remarques ci-dessus, en faisant une étude paramétrique et une

calibration sur plusieurs tests expérimentaux en torsion (par Hsu [45], par Csikos & Hege-

dus [29] et par Lee et al. [63]), basée sur l’idée de Jeng & Hsu [53], une nouvelle loi de

comportement en traction est proposée (Figure 7-18):

∙ Pour le module élastique:

𝐸𝑐𝑟 = 5620
√︀
𝑓𝑐 (𝑓𝑐 in MPa) (7.5)

dont 𝑓𝑐 est la résistance en compression du béton, 5620 est un coefficient calibré par

Jeng & Hsu [53].

∙ Pour la résistance en traction à la fissuration du béton, il existe deux formulation

correspondant à deux cas différents de distribution des armatures longitudinales

dans la section:

Pour une distribution habituelle (Figure 7-17a)

𝑓𝑐𝑟 = 𝑓𝑃𝐶
𝑐𝑟

(︂
0.38

𝑏

ℎ
𝜌𝑠 + 1

)︂
(7.6)

Pour une distribution avec des barres additionnelles sur le long du périmètre

(Figure 7-17b):

𝑓𝑐𝑟 = 𝑓𝑃𝐶
𝑐𝑟

(︂
0.22

𝑏

ℎ
𝜌𝑠 + 1.3

)︂
(7.7)
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où 𝑓𝑃𝐶
𝑐𝑟 est la résistance en traction à la fissuration d’un member en béton pure, 𝑏

est la largeur et ℎ la hauteur de la section, 𝜌𝑠 est le pourcentage total des armatures.

(a) Distribution habituelle.
(b) Distribution avec des barres additionnelles

sur le long du périmètre.

Figure 7-17 – Deux cas de distribution des armatures longitudinales.

∙ Pour la déformation à la fissuration:

𝜀𝑐𝑟 =
𝑓𝑐𝑟
𝐸𝑐𝑟

(7.8)

Vecchio model for shear

σ c

ε cr

crf

crf

0 ε cr ε c 0>

0>

Proposed model for torsion

Figure 7-18 – La relation en traction proposée pour la torsion en comparée à celle dans
la théorie de MCFT par Vecchio [110].

Des formulations paramétriques pour déterminer l’épaisseur effective de la zone 2D

sont également proposées grâce à la procédure de calibration mentionnée ci-dessus:

∙ Pour une distribution habituelle:

𝑡𝑒 = 𝑏

(︂
0.0130

ℎ

𝑏
𝑚𝜌𝑠 + 0.1

)︂
(7.9)

∙ Pour une distribution avec des barres additionnelles sur le long du périmètre:

𝑡𝑒 = 𝑏

(︂
0.0088

ℎ

𝑏
𝑚𝜌𝑠 + 0.1

)︂
(7.10)

𝑏 est la largeur et ℎ la hauteur de la section; 𝑚 est le ratio entre le pourcentage des

armatures longitudinales et transversales; 𝜌𝑠 est le pourcentage total des armatures.
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Résultats numériques

Dans le régime de matériaux élastique, les résultats numériques obtenus par le modèle

proposé sont comparés aux formulations théoriques et aux résultats d’autres modèles. Une

poutre cantilever soumise à une torsion pure à l’extrémité, qui a également été simulée

par Le Corvec dans sa thèse de doctorat [62], est étudiée (Figure 7-19a). Les résultats

numériques pour l’angle de torsion à l’extrémité de la poutre calculés par le modèle de Le

Corvec et le modèle proposé (selon deux approches enrichies) sont donnés dans le Tableau

7.2. Bonnes corrélations sont obtenues et de plus, cela confirme que le fait de négliger

l’effet du gauchissement peut provoquer une forte influence sur la valeur de l’angle de

torsion. Le profil de gauchissement de la section est représenté dans la Figure 7-19b.

Cela donne une bonne illustration du phénomène: sous l’effet de torsion, les sections se

gauchissent et sortent de leur propre plan. En conséquence, la rigidité de la section est

modifiée et la déformation en torsion est fortement influencée.
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Figure 7-19 – (a) Poutre cantilever soumise à la torsion pure et système de points
d’interpolation.; (b) Gauchissement de la section droite soumise à la torsion.

Table 7.2 – End twist angle for cantilever beam under mid span torque

Théorie
Modèle de

Le Corvec

Modèle Proposé

Sans

gauchissement

Théorie de

Saint-Venant

Polynôme de

Lagrange

Angle de torsion (10−3 rad) 4.548 4.554 2.496 4.550 4.566

Erreur relative (%) 0.13 45.11 0.04 0.39

Temps de calcul (seconde) 9 9 18

La courbe moment de torsion - angle de torsion linéaire obtenue par le modèle pro-

posé est comparée aux résultats expérimentaux des spécimens M2 et M3 dans le test
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de Hsu (Figure 7-20), avec et sans les modifications proposées pour le comportement en

traction du béton. Un très bon accord a été obtenu entre les résultats expérimentaux et

numériques: le moment de torsion ultime et à la fissuration ont des mêmes amplitudes,

les pentes aux phases post-fissuration sont quasiment identiques et le plateau horizontal

caractéristique manifestant par la transition entre les deux phases avant et après la fis-

suration est bien représenté. De plus, nous pouvons constater que, sans la modification

proposée du comportement en traction, le moment de torsion à fissuration est environ la

moitié de celui du test expérimental et, par conséquent, la courbe moment de torsion -

angle de torsion linéaire ne peut pas être similaire à celle expérimentale.
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Figure 7-20 – Courbe moment de torsion - angle de torsion linéaire pour deux spécimens
M2 et M3 dans le test de Hsu [45].

Un bon niveau de prédiction du moment de torsion ultime et de la rigidité post-

fissuration est aussi atteints dans la simulation numérique du test de Lee et al. [63]

(Figure 7-21).
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Figure 7-21 – Courbe moment de torsion - angle de torsion linéaire pour la série T dans
le test de Lee et al.’s. [63]
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Développemnt de formulation proposée dans les con-

ditions géométriques non linéaire

Le cas d’éléments BA soumis à des actions combinées cisaillement-flexion-torsion dans des

conditions géométriques non linéaires a également été traité dans ce travail de recherche.

Une approche totale Lagrangienne-Corotationnelle a été utilisée pour développer des élé-

ments de poutre, dans laquelle une géométrie initiale non déformée, translation et tournée

en tant que corps rigide, a été choisie comme la configuration de référence dans le concept

de co-rotationnelle. La formulation est basée sur de petites déformations dans le con-

cept de co-rotationnelle (ou de naturel). Au niveau local, sous l’effet de torsion, un term

non-linéaire, appelé terme de Wagner, génère la non linéarité et doit être pris en compte.

Des couplages entre des efforts de flexion-cisallement-torsion sont aussi à considérer et

développer dans le formulation locale.

Une poutre cantilever de section solide, qui a été utilisée dans la thèse de Battini [3], est

simulée pour étudier le cas de torsion pure en grand déplacement. La Figure 7-22 présente

les courbes du moment de torsion en fonction de l’angle de torsion à l’extrémité. Comparés

à la solution analytique basée sur la théorie de poutre de Vlasov [113] et au modèle

numérique du modèle de Battini, les résultats obtenus par le modèle proposé, en tenant

compte de la contribution du terme de Wagner, montrent une très bonne corrélation.

On peut constater que, bien que simulé dans le domaine des matériaux élastiques, la

relation entre le moment de torsion et l’angle de torsion n’était plus linéaire, en raison

de la non-linéarité géométrique provoquée par l’introduction du terme de Wagner. Il est

évident que, sans prendre en compte le terme de Wagner, le modèle est considéré comme

un modèle de géométrie linéaire qui donne une réponse purement linéaire.
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Figure 7-22 – La réponse de torsion dans la condition géométrique non linéaire.

Dans le cas d’une poutre d’appui simple en BA, le spécimen G5 est simulé avec la

nouvelle formulation en grand déplacement. Aucune différence significative entre le modèle

géométrique linéaire et non linéaire n’a pu être observée dans le diagramme de moment

de torsion - angle de torsion linéaire sur la Figure 7-23. En utilisant une approche de

simulation par déplacement imposé, le moment de torsion à la fissuration est atteint à 2,5

mrad/m, ce qui correspond à la même valeur de 29,26 kN dans les deux modèles. Aucune

différence n’a donc été constatée entre les deux modèles dans la phase précédant de la

fissuration du béton. Dans la phase après la fissuration, le moment de torsion ultime a été

atteint à 55 mm pour les deux modèles et a donné une valeur de 73,51 kN pour le modèle

linéaire et de 73,55 kN pour le modèle non linéaire. Seulement une différence relative très

mineure de 0,05 % a été enregistrée.
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Figure 7-23 – Courbe de moment de torsion - angle de torsion linéaire du spécimen G5
sous l’effet de torsion simulée par le modèle de conditions géométriques linéaire et non

linéaire.

Conclusions

Dans cette thèse de doctorat, en utilisant une approche multifibre et d’analyse de sec-

tion, un élément fini 3D est développé pour les éléments en BA soumis à des sollicita-

tions combinées M-N-V-T. Ce modèle est capable de prendre en compte les non linéarités

géométriques et matérielles, le phénomène de gauchissement de la section droite, et la

contribution des armatures transversales.

De plus, l’approche enrichie de polynôme de Lagrange a été complètement mise en

œuvre dans le modèle proposé utilisant la formulation en déplacement, ainsi qu’une com-

paraison avec l’approche enrichie de la théorie de Saint-Venant pour la prise en compte de

l’effet de torsion. Les exemples numériques ont donné de bons résultats et ont montré des

corrélations raisonnables entre les deux approches. Grâce à sa généralité, la mise en œuvre

réussie des polynômes de Lagrange dans le modèle proposé offre également davantage de

possibilités pour des recherches plus approfondies sur différentes formes de sections, telles

que T ou L.

Les résultats satisfaisants obtenus dans le domaine des matériaux non linéaire ont

permis l’adaptation de la théorie de MCFT au modèle de comportement du béton dans

la formulation proposée. Dans cette thèse de doctorat, basée sur la MCFT, un modèle

constitutif cohérent, adapté à une utilisation dans la formulation de poutre multifibres

2D, a été développé pour l’élément BA en cas de torsion pure. La discrétisation de la
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section droite en différentes régions selon l’état de contrainte (c’est-à-dire zone 1D, zone

2D et zone 3D), proposée par d’autres chercheurs, a été utilisée et améliorée dans ce

travail. Une nouvelle formulation permettant de déterminer l’épaisseur effective de la

zone 2D a été également proposée. Le processus de calibration effectué par l’auteur dans

ce travail, qui utilisait les paramètres d’ingénierie pour augmenter la capacité à appliquer

le modèle proposé dans des simulations pratiques, peut également offrir des idées et des

recommandations à d’autres chercheurs dans des études similaires.

Le cas d’éléments BA soumis à des sollicitations combinées cisaillement-flexion-torsion

dans des conditions géométriques non linéaires a également été traité dans le présent

travail. Une approche co-rotationel a été utilisée pour développer des éléments de poutre.

Les résultats satisfaisants obtenus à travers plusieurs exemples dans la littérature ont

montré que le concept de co-rotationel avait été mis en œuvre avec succès dans le modèle

proposé.
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Appendix

7.1 - Shape functions in two-node Timoshenko beam

element

Shape functions for displacement vector:
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4 + 𝜑𝑦/𝑧

)︀ 𝑥
𝐿

+ 1 + 𝜑𝑦/𝑧

]︂
𝑁9𝑦/𝑧 = − 6(︀

1 + 𝜑𝑦/𝑧

)︀
𝐿

[︂(︁𝑥
𝐿

)︁2
− 𝑥

𝐿

]︂
𝑁10𝑦/𝑧 =

1

1 + 𝜑𝑦/𝑧

[︂
3
(︁𝑥
𝐿

)︁2
−
(︀
2 − 𝜑𝑦/𝑧

)︀ 𝑥
𝐿

]︂

with 𝜑𝑦/𝑧 le ratio de rigidity between bending and shear with respect to 𝑦 and 𝑧 axis,

respectively.

𝜑𝑦 =
12

𝐿2

∫︁
𝑆

𝐸𝑦2𝑑𝐴

𝜅𝑦

∫︁
𝑆

𝐺𝑑𝑆

; 𝜑𝑧 =
12

𝐿2

∫︁
𝑆

𝐸𝑧2𝑑𝐴

𝜅𝑧

∫︁
𝑆

𝐺𝑑𝑆

𝜅𝑦 and 𝜅𝑧 the shear correction factor in 𝑦 and 𝑧 direction, respectively.
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Shape functions for strain vector:

𝐵1 =
𝜕𝑁1

𝜕𝑥
= − 1

𝐿
; 𝐵2 =

𝜕𝑁2

𝜕𝑥
=

1

𝐿

𝐵3𝑦/𝑧 =
𝜕𝑁3𝑦/𝑧

𝜕𝑥
−𝑁7𝑦/𝑧 = −

𝜑𝑦/𝑧

𝐿
(︀
1 + 𝜑𝑦/𝑧

)︀
𝐵4𝑦/𝑧 =

𝜕𝑁4𝑦/𝑧

𝜕𝑥
−𝑁8𝑦/𝑧 = −

𝜑𝑦/𝑧

2
(︀
1 + 𝜑𝑦/𝑧

)︀
𝐵5𝑦/𝑧 =

𝜕𝑁5𝑦/𝑧

𝜕𝑥
−𝑁9𝑦/𝑧 =

𝜑𝑦/𝑧

𝐿
(︀
1 + 𝜑𝑦/𝑧

)︀
𝐵6𝑦/𝑧 =

𝜕𝑁6𝑦/𝑧

𝜕𝑥
−𝑁10𝑦/𝑧 = −

𝜑𝑦/𝑧

2
(︀
1 + 𝜑𝑦/𝑧

)︀
𝐵7𝑦/𝑧 = −

𝜕𝑁7𝑦/𝑧

𝜕𝑥
= − 6

𝐿
(︀
1 + 𝜑𝑦/𝑧

)︀ (︂2𝑥

𝐿2
− 1

𝐿

)︂
𝐵8𝑦/𝑧 = −

𝜕𝑁8𝑦/𝑧

𝜕𝑥
=

1(︀
1 + 𝜑𝑦/𝑧

)︀ (︂6𝑥

𝐿2
−

4 + 𝜑𝑦/𝑧

𝐿

)︂
𝐵9𝑦/𝑧 = −

𝜕𝑁9𝑦/𝑧

𝜕𝑥
= − 6

𝐿
(︀
1 + 𝜑𝑦/𝑧

)︀ (︂2𝑥

𝐿2
− 1

𝐿

)︂
𝐵10𝑦/𝑧 = −

𝜕𝑁10𝑦/𝑧

𝜕𝑥
=

1(︀
1 + 𝜑𝑦/𝑧

)︀ (︂6𝑥

𝐿2
−

2 − 𝜑𝑦/𝑧

𝐿

)︂

7.2 - Lagrange Interpolation polynomial and Enhanced

Compatibility matrix

Longitudinal interpolation matrix L(𝑥) of (3 × 3.3.𝑛𝑤):

L(𝑥) =
[︁
L1(𝑥) . . . L𝑖(𝑥) . . .L𝑛𝑤(𝑥)

]︁
(7.13)

L𝑖(𝑥) is a matrix of 3 × 3.3, containing the 1D Lagrange polynomial at section 𝑖:

L𝑖(𝑥) =

⎡⎢⎢⎢⎣
𝐿𝑖(𝑥) 0 0 𝐿𝑖(𝑥) 0 0 𝐿𝑖(𝑥) 0 0

0 𝐿𝑖(𝑥) 0 0 𝐿𝑖(𝑥) 0 0 𝐿𝑖(𝑥) 0

0 0 𝐿𝑖(𝑥) 0 0 𝐿𝑖(𝑥) 0 0 𝐿𝑖(𝑥)

⎤⎥⎥⎥⎦ (7.14)

Sectional interpolation matrices S𝑥(𝑦, 𝑧) of (3.3.𝑛𝑤 × 3.𝑠𝑤.𝑛𝑤):

S𝑥(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
Ŝ𝑥(𝑦, 𝑧) 0𝑤 0𝑤

0𝑤 Ŝ𝑥(𝑦, 𝑧) 0𝑤

0𝑤 0𝑤 Ŝ𝑥(𝑦, 𝑧)

⎤⎥⎥⎥⎦ ; Ŝ𝑥(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
S𝑢
𝑥(𝑦, 𝑧) 03𝑠𝑤 03𝑠𝑤

03𝑠𝑤 S𝑣
𝑥(𝑦, 𝑧) 03𝑠𝑤

03𝑠𝑤 03𝑠𝑤 S𝑤
𝑥 (𝑦, 𝑧)

⎤⎥⎥⎥⎦
(7.15)
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where 0𝑤 is a zero matrix of (9×3.𝑠𝑤) columns; 03𝑠𝑤 is a zero matrix of (3×𝑠𝑤); S𝑢
𝑥(𝑦, 𝑧),

S𝑣
𝑥(𝑦, 𝑧) and S𝑤

𝑥 (𝑦, 𝑧) are three matrices of (3 × 𝑠𝑤) containing the row vector S̄(𝑦, 𝑧) in

equation (3.20) and the zero row vector of 𝑠𝑤 columns:

S𝑢
𝑥(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
S̄(𝑦, 𝑧)

0𝑠𝑤

0𝑠𝑤

⎤⎥⎥⎥⎦ ; S𝑣
𝑥(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
0𝑠𝑤

S̄(𝑦, 𝑧)

0𝑠𝑤

⎤⎥⎥⎥⎦ ; S𝑤
𝑥 (𝑦, 𝑧) =

⎡⎢⎢⎢⎣
0𝑠𝑤

0𝑠𝑤

S̄(𝑦, 𝑧)

⎤⎥⎥⎥⎦ ; (7.16)

Sectional interpolation matrices S𝑦𝑧(𝑦, 𝑧):

S𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
Ŝ𝑦𝑧(𝑦, 𝑧) 0𝑤 0𝑤

0𝑤 Ŝ𝑦𝑧(𝑦, 𝑧) 0𝑤

0𝑤 0𝑤 Ŝ𝑦𝑧(𝑦, 𝑧)

⎤⎥⎥⎥⎦ ; Ŝ𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
S𝑢
𝑦𝑧(𝑦, 𝑧) 03𝑠𝑤 03𝑠𝑤

03𝑠𝑤 S𝑣
𝑦𝑧(𝑦, 𝑧) 03𝑠𝑤

03𝑠𝑤 03𝑠𝑤 S𝑤
𝑦𝑧(𝑦, 𝑧)

⎤⎥⎥⎥⎦
(7.17)

S𝑢
𝑦𝑧(𝑦, 𝑧), S

𝑣
𝑦𝑧(𝑦, 𝑧) and S𝑤

𝑦𝑧(𝑦, 𝑧) are three matrices of (3 × 𝑠𝑤) containing the derivation

with respect to 𝑦 and 𝑧 of the row vector S̄(𝑦, 𝑧) in equation (3.20) and the zero row

vector of 𝑠𝑤 columns:

S𝑢
𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎢⎣
0𝑠𝑤

𝜕S̄(𝑦, 𝑧)

𝜕𝑦
𝜕S̄(𝑦, 𝑧)

𝜕𝑧

⎤⎥⎥⎥⎥⎦ ; S𝑣
𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

⎤⎥⎥⎥⎦ ; S𝑤
𝑦𝑧(𝑦, 𝑧) =

⎡⎢⎢⎢⎣
0𝑠𝑤

0𝑠𝑤

0𝑠𝑤

⎤⎥⎥⎥⎦ (7.18)

7.3 - Cross section details and materials properties of

experimental torsion tests

In Hsu test, the concrete cover thickness is 19 mm for all specimens, while the materials

properties and reinforcement’s dimensions are varied and cited as follows (Table 7.3):
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Table 7.3 – Details of specimen of torsion tests carried by Hsu [45].

Beam 𝑓𝑐 (MPa)
Longitudinal

rebar (mm)
𝑓𝑠𝑙 (MPa)

Stirrup

(mm) and (mm)
𝑓𝑠𝑡 (MPa)

B1 27.58 12.7 314 9.5 at 152 341

B2 28.61 15.9 316 12.7 at 181 320

B3 28.06 19.1 328 12.7 at 127 320

B4 30.54 22.2 320 12.7 at 92 323

B5 29.03 25.4 332 12.7 at 70 321

B6 28.82 28.7 332 12.7 at 57 323

B7 25.99 12.7 320 12.7 at 127 319

B8 26.75 12.7 322 12.7 at 57 320

B9 28.82 19.1 319 9.5 at 152 343

B10 26.48 28.7 3334 9.5 at 152 342

C1 26.34 9.5 341 9.5 at 216 341

C2 26.54 12.7 334 9.5 at 117 345

C3 26.89 15.9 331 12.7 at 140 330

C4 26.48 19 336 12.7 at 98 328

C5 27.23 22.2 328 12.7 at 73 329

C6 27.58 25.4 316 12.7 at 54 328

G1 26.34 9.5 341 9.5 at 216 341

G2 26.54 12.7 334 9.5 at 117 345

G3 26.89 15.9 331 12.7 at 140 330

G4 26.48 19 336 12.7 at 98 328

G5 27.23 22.2 328 12.7 at 73 329

G6 27.58 25.4 316 12.7 at 54 328

G7 27.23 22.2 328 12.7 at 73 329

G8 27.58 25.4 316 12.7 at 54 328

N1 26.34 9.5 341 9.5 at 216 341

N1a 26.54 12.7 334 9.5 at 117 345

N2 26.89 15.9 331 12.7 at 140 330

N2a 26.48 19 336 12.7 at 98 328

N3 27.23 22.2 328 12.7 at 73 329

N4 27.58 25.4 316 12.7 at 54 328

M1 26.34 9.5 341 9.5 at 216 341

M2 26.54 12.7 334 9.5 at 117 345

M3 26.89 15.9 331 12.7 at 140 330

M4 26.48 19 336 12.7 at 98 328

M5 27.23 22.2 328 12.7 at 73 329

M6 27.58 25.4 316 12.7 at 54 328

I1 26.34 9.5 341 9.5 at 216 341

I2 26.54 12.7 334 9.5 at 117 345

I3 26.89 15.9 331 12.7 at 140 330

I4 26.48 19 336 12.7 at 98 328

I5 27.23 22.2 328 12.7 at 73 329

I6 27.58 25.4 316 12.7 at 54 328

J1 26.34 9.5 341 9.5 at 216 341

J2 26.54 12.7 334 9.5 at 117 345

J3 26.89 15.9 331 12.7 at 140 330

J4 26.48 19 336 12.7 at 98 328
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In the test of Lee et al. [63], the concrete cover thickness is 20 mm for all specimens,

while the compressive strength of concrete 𝑓𝑐 = 42.6 (MPa), the material properties and

steel’s dimension are cited as in Table 7.4).

Table 7.4 – Details of specimen of torsion tests carried by Lee et al. [63].

Beam
Longitudinal

rebar (mm)
𝑓𝑠𝑙 (MPa)

Stirrup

(mm) and (mm)
𝑓𝑠𝑡 (MPa)

T1-1 4× 12.7 410 9.5 at 130 370

T1-2 6× 12.7 410 9.5 at 85 370

T1-3 8× 12.7 410 9.5 at 65 370

T1-4 6× 15.9 510 12.7 at 75 355

T2-1 4× 12.7 410 9.5 at 225 370

T2-2 4× 15.9 510 9.5 at 130 370

T2-3 6× 15.9 510 9.5 at 88 370

T2-4
2× 12.7

4× 19
512.4 9.5 at 75 370

In the test of Csikos & Hegedus [29], the concrete cover thickness is 15 mm for all

specimens, while the concrete used was C20 and the yielding strength of steel is 240 MPa

in all cases (Table 7.5).

Table 7.5 – Details of specimen of torsion tests carried by Csikos & Hegedus. [29].

Series
Longitudinal

rebar (mm)

Stirrup

(mm) and (mm)

B 4× 6 6 at 130

C 4× 6 6 at 65

D 8× 6 6 at 130

E 8× 6 6 at 65
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Titre : Développement d’un modèle d’élément fini 3D pour des poutres en béton arme soumis à des 
sollicitations complexes M-N-V-T. 
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grand déplacement  

Résumé :  Le travail présenté dans ce mémoire 
porte sur le développement d’un modèle EF non 
linéaire pour des poutres BA soumis à des 
sollicitations combinées M-N-V-T.  Afin de prendre 
en compte du couplage entre la torsion et la 
flexion, un élément poutre multifibre 3D enrichi est 
développé en utilisant l’approche de la plasticité 
distribuée et la formulation en déplacement. La 
première partie concerne le développement 
modèle EF qui se base sur l’enrichissement des 
hypothèses cinématique de poutre de 
Timoshenko, avec l’introduction des dégrée de 
liberté supplémentaires, afin de prendre en compte 
l’effet de gauchissement et de distorsion. L’un des 
objectifs de cette thèse est de proposer une 
méthode simple pour inclure la contribution des 
armatures transversales sur la raideur et la 
résistance de la section droite. Pour cela, une 
procédure itérative basée sur l’équilibre des  

contraintes entre les armatures et le béton est 
proposée. Le comportement 2D du béton armé 
est modélisé à l’aide de la théorie de Modified of 
Compression Field Theory (MCFT). La deuxième 
partie est consacrée à l’analyse numérique des 
éléments en béton et en BA soumis à torsion 
pure. Une nouvelle relation contrainte-
déformation du béton fissuré est proposée dans 
le cadre de la MCFT en calibrant avec des 
résultats expérimentaux. La troisième partie est 
dédiée à l’analyse numérique des poutres BA 
soumis à des sollicitations combinées. Le modèle 
EF développé est validé par plusieurs numérique-
analytique-expérimentale comparaisons. 
L’interaction entre le cisaillement, la flexion et la 
torsion est étudiée. Enfin, la dernière partie est 
dédiée à l’étude du comportement des éléments 
BA en grand déplacement. 

 

Title : Development of an enhanced finite element model for reinforced concrete members 

subjected to combined shear-bending-torsion actions. 

Keywords : reinforced concrete, finite element analysis, multi-fiber, warping, torsion, combined 
loading, large displacement  

Abstract : This PhD thesis deals with the 
development of a non-linear finite element (FE) 
model for reinforced concrete (RC) members 
under coupling of multi-axial actions and in 
particular under torsion. Using the sectional-fiber 
approach and the displacement-based formulation, 
an enhanced multi-fiber 3D beam element is 
developed for predicting the behavior of RC 
elements subjected to arbitrary loading conditions 
(shear, bending and/or torsion). The first part 
concerns the FE formulation based on the 
enhancement of Timoshenko's beam kinematic 
assumptions with introducing of some additional 
degrees of freedom at each monitoring section, in 
order to take into account the phenomena of 
warping and eventually, distortion. Focusing on 
RC structures, one of the objectives is to find the 
simple way to include the transversal 

reinforcement into the cross-section analysis of 
the multi-fiber FE model, using behavior models 
based on the Modified of Compression Field 
Theory (MCFT) and its extension.  The second 
part deals with the numerical analysis of concrete 
and RC members subjected to pure torsion. A 
constitutive law for concrete in tension is 
proposed within the framework of the MCFT in 
which the material parameters are determined by 
the calibration process of several experimental 
tests. In the third part, the interactions between 
shear, bending and torsion are investigated by 
comparing with the analytical solutions of skew-
bending theory and several experimental tests in 
literature. Finally, the last part is dedicated to the 
investigation of the enhanced FE multi-fiber beam 
model under large displacement conditions, using 
a corotational framework. 
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