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Résumé en Français

Préambule

Dans le domaine de la vidéo, le besoin d’évolutions technologiques est une constante
intemporelle. Auparavant, les contenus vidéo étaient principalement diffusés dans les cinémas
ou bien sur les téléviseurs à domicile. De nos jours, les vidéos sont disponibles et visionnées
sur une grande variété d’appareils, via IP ou réseaux mobiles. Selon une étude récente de la
société Cisco [Cis18], les données vidéos occuperont 82% du trafic IP mondial d’ici 2022,
contre 75% en 2017. Dans un précédent rapport [Cis14], l’entreprise américaine prévoyait
une occupation de la vidéo à 79% pour 2018, ce qui montre la fiabilité de ces estimations.
Dans son dernier raport [Eri18], la société Ericsson annonce que la quantitié de contenu
vidéo circulant via les réseaux mobiles devrait augmenter de 35% par an au cours des 6
prochaines années.

Ces chiffres peuvent s’expliquer par une évolution des usages et habitudes utilisateurs.
L’importante consommation de contenu vidéo est stimulée par le développement du modèle
économique TV Everywhere. L’accès au contenu vidéo, via Internet et les applications
mobiles, devient uniquement conditionné par un processus d’authentification et ne dépend
aucunement de l’appareil physique utilisé pour visionner la vidéo. Le concept est adopté
par de célèbres fournisseurs de contenu tels que Netflix, Youtube ou Amazon. La popularité
croissante du sport électronique (e-sport) contribue également à la création massive de
contenus vidéo par le biais de joueurs offrant la possibilité de visionner en live leurs parties.
La plateforme Twitch, qui diffuse principalement des retransmissions en direct de jeux vidéo,
signale qu’en juillet 2018 [Twi], 1 million de téléspectateurs en moyenne étaient connectés
sur leur plateforme en permanence. Les jeunes générations (12-16 ans) sont des fournisseurs
et des consommateurs très actifs de vidéos par le biais de réseaux sociaux comme Facebook,
Twitter, Snapchat et plus récemment TikTok. Cet écosystème très dynamique explique les
changements drastiques dans la façon de consommer les vidéos ainsi que la croissance du
trafic vidéo mondial.



2 Résumé en Français

Parallèlement à l’importante diversité des contenus et au nombre de solutions d’accessibilité,
l’augmentation du volume de données vidéos s’explique aussi par les exigences croissantes
de qualité et d’immersion des utilisateurs. Les écrans sont passés d’une définition standard
(SD: Standard Definition) à une haute définition (HD: High Definition) et une vaste majorité
des téléviseurs actuels supportent une ultra-haute définition (UHD: Ultra-High Definition).
De plus, nous observons un déploiement massif de contenus UHD, notamment via des
fournisseurs de contenu tel que Netflix. Le développement des fabricants de téléviseurs a
également autorisé une plus grande fluidité dans l’affichage des contenus (HFR: High Frame
Rate). D’autres évolutions technologiques telles que la 3D, l’imagerie à haute dynamique
(HDR: High Dynamic Range) et à gamme de couleurs étendues (WCG: Wide Color Gamut)
sont également déployées afin d’améliorer la qualité d’expérience des utilisateurs finaux.
Malgré les avantages évidents de ces progrès techniques, chacun implique une croissance
physique de la quantité de données à afficher, stocker et transporter.

En résumé, les données vidéo sont de plus en plus présentes dans la vie quotidienne des
utilisateurs et la taille numérique de ces données augmente au fil des nouvelles technologies.
La compression vidéo optimale, qui consiste à réduire la quantité de données vidéos en
minimisant l’impact sur la qualité visuelle, est l’objectif principale de cette thèse. Bien que
la capacité des réseaux et des systèmes de stockage soit nettement plus élevée que par le
passé, la conclusion est simple. La compression vidéo n’est pas seulement pertinente : La
compression vidéo est essentielle.

Contexte

La compression vidéo est un sujet soumis à un environnement très dynamique auquel on
peut difficilement se soustraire. Les normes de compression ouvertes imposent certaines
contraintes et touchent un très large nombre d’entreprises, allant des fabricants d’encodeurs
ou décodeurs aux fournisseurs de contenu. En conséquence, il est important de connaitre à
tout moment l’actualité de ce contexte. Dans le reste de ce document, les termes de codage
et de compression sont utilisés comme synonymes.

Norme de Compression Vidéo

Une norme de compression spécifie la syntaxe du flux compressé et le processus de décodage
afin d’obtenir une vidéo à afficher sur un écran. L’encodage consiste a créer un flux binaire
compatible avec une norme et cherche à optimiser l’efficacité de compression. Le processus
de codage/décodage est représenté sur la Fig. 1, précisant le périmètre défini par la norme.



Résumé en Français 3

Fig. 1 Périmètres de la thèse et d’une norme de compression

Actuellement, deux axes de développement pour les futures technologies de compres-
sion vidéo sont en concurrence. Les organismes de normalisation classiques composés de
l’ISO/IEC (International Organization for Standardization/ International Electrotechnical
Commission) et de l’ITU (International Telecommunication Union) élaborent des normes
de codage vidéo depuis plus de trois décennies. Récemment, un consortium d’entreprises
appelé AOM (Alliance for Open Media) s’est révélé être un concurrent à ces organismes.

Organismes de Normalisation

VCEG (Video Coding Experts Group) est un groupe de travail de l’ITU responsable du
développement des normes de codage vidéo H.120, H.261 et H.263+, entre autres. MPEG
(Moving Picture Experts Group) est un autre groupe de travail formé par l’ISO et l’IEC pour
la normalisation du codage et de la transmission audio et vidéo. MPEG est responsable de la
norme MPEG-1 publiée en 1993 et de la norme MPEG-4 publiée en 1998. VCEG et MPEG
ont uni leurs efforts dans le codage vidéo pour la première fois lors du développement de la
norme H.262/MPEG-2 partie 2 en 1996.

Les différents partenariats qui ont suivi entre ces deux groupes ont été présentés sous des
noms de projets tels que JVT (Joint Video Team) pour AVC [ITa, ISOa] (Advanced Video
Coding) en 2003 et JCT-VC (Joint Collaborative Team on Video Coding) pour HEVC [ITb,
ISOb] (High Efficiency Video Coding) en 2013. Alors que AVC est actuellement la norme de
codage vidéo la plus utilisée dans le monde, HEVC permet d’importantes économies de débit
pour une qualité équivalente et suscite un intérêt croissant. JVET (Joint Video Exploration
Team), le nom de l’actuelle collaboration entre VCEG et MPEG, a annoncé en avril 2018 le
développement du future standard VVC (Versatile Video Coding) qui se terminera en 2020.
Les nouvelles solutions de codage étudiées [CAS+17] permettront de dépasser les capacités
d’HEVC.
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Fig. 2 Historique des normes de codage vidéo (Figure modifiée issue de [LTB18])

Alliance for Open Media

AOM est un consortium industriel visant à fournir une alternative libre de droits aux normes de
compression vidéo présentées ci-dessus. Plusieurs codec propriétaires déstinées à s’imposer
sur le marché ont été initiés au cours des années 90 avec des sociétés telles que On2 (codecs
VP3 à VP7) et RealNetworks (codec RealVideo). Une autre revendication à l’initiative
d’AOM est le désir de produire de nouvelles normes plus rapidement et d’accélérer le
processus d’innovation, jugé trop lent concernant les organismes de normalisation.

AOM a annoncé en mars 2018 la sortie d’AV1 version 1 [fOM], un codec vidéo libre de
droits avec des performances de compression vidéo améliorées par rapport à l’état de l’art.
Cette norme émergente a pour ambition de concurrencer la norme HEVC en proposant un
système de compression vidéo efficace, sans aucune limitation quant aux coûts élevés ou
aux conditions complexes d’utilisation légales. Une chronologie résumée des normes de
compression vidéo est proposée dans la Figure 2.

Conception d’un encodeur

Une norme est conçue pour optimiser l’efficacité maximale de compression en mettant à dis-
position un ensemble optimisé d’outils de codage. Cependant, il n’y a aucune garantie qu’un
encodeur exploite correctement ces outils de codage et soit capable de fournir la meilleure
qualité possible. Dans l’industrie, les fournisseurs d’encodeurs sont généralement jugés ou
mis en concurrence sur la base de leur capacité à optimiser ces processus d’encodage grâce à
leurs algorithmes propriétaires, tout en se conformant au même processus de décodage.
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En conséquence, le monde du codage vidéo observe une compétition de standards
mais aussi une compétitions d’algorithmes d’encodage. Ces algorithmes sont soumis à
plusieurs contraintes liées au cas d’application, comme le cas de la diffusion vidéo numérique
qui présente une contrainte de débit maximum fixée pour une diffusion en continu. Les
contraintes en termes de complexité de calcul et de délai sont également des composantes
nécesaires pour la conception d’encodeurs.

Motivations

Deux approches existent afin d’améliorer l’efficacité de compression vidéo, et ne sont
pas mutuellement exclusives. La première consiste à développer des outils de codage
plus efficaces dans le cadre du processus de normalisation pour construire la prochaine
norme vidéo. Les nouveaux outils proposés par JVET pour VVC ambitionnent d’augmenter
l’efficacité du codage de 40% à 50% d’ici 2020 par rapport à HEVC [LTB18]. Cependant,
ce gain s’accompagne d’une augmentation de la complexité, qui est environ de 3 à 4 fois
la complexité d’HEVC côté encodeur et 2 fois côté décodeur [SRS+16, AACP16, LTB18].
Il est important de spécifier que ces chiffres varient régulièrement, puisque l’encodeur de
référence est toujours en phase de développement. Cette approche est une solution à long
terme et on observe généralement une décennie entre l’adoption de deux normes vidéo. De
plus, le coût et le temps nécessaires au déploiement d’une nouvelle norme sont importants
puisqu’il existe de nombreux dispositifs de décodage dans le monde, comparativement aux
dispositifs d’encodage.

La deuxième approche vise à améliorer l’efficacité de codage d’encodeurs existants sans
modifier la syntaxe du décodeur. Malgré la variété de normes de compression disponibles
et leur différence en termes d’efficacité de codage, toutes utilisent le même schéma fonda-
mental. Cette observation conduit à la possibilité pour toute optimisation d’encodeur, se
concentrant sur un outil générique au lieu d’une implémentation spécifique à une norme,
d’être transposable et de bénéficier à toute norme de compression, à quelques ajustements
mineurs près.

Cette thèse se situe dans le cadre de la seconde approche et propose d’améliorer l’efficacité
de compression via la prise en compte de dépendances. Les outils de codage visent à
supprimer la corrélation entre les données, par exemple les images ou les pixels, afin de
supprimer les informations redondantes. Malheureusement, ces outils sont également connus
pour introduire des corrélations entre les décisions de codage de ces mêmes données, comme
expliqué dans les Chapitres 1 et 2. Ces nouvelles corrélations sont des dépendances, et les
prendre efficacement en compte permet d’obtenir un encodage efficace sur l’ensemble du
signal vidéo. Le but de cette thèse est de se concentrer sur les décisions d’encodage, telles
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que décrites dans Fig. 3, et de fournir une meilleure compréhension des dépendances, ainsi
que des algorithmes efficaces d’optimisation globale.

Structure de la thèse

Chapitre 1: Ce chapitre fournit des informations de base et décrit quelques principes de
base du codage de source. Une description de la théorie débit-distorsion, de la quantification
scalaire et du codage prédictif est fournie. Grâce à cette vue d’ensemble, les dépendances des
décisions de codage connexes sont mises en évidence dans le contexte d’un schéma de codage
classique par blocs. Notez que le terme bloc dans ce cas ne fait pas nécessairement référence
aux blocs de pixels dans une image, mais simplement au groupe d’échantillons dans un signal.
L’énoncé de ces dépendances inévitables montre les difficultés de l’optimisation exhaustive et
brute force, ce qui conduit à une hypothèse simplifiée pour une solution d’encodage pratique.

Chapitre 2: Dans ce chapitre, vous trouverez un aperçu de la dernière norme de codage
vidéo HEVC. Son schéma de codage est présenté avec une brève introduction des différents
outils de codage disponibles dans la norme. Toutes les dépendances connexes sont exposées
à la fin de ce chapitre et montrent un besoin critique de prise en compte des dépendances
afin d’atteindre une efficacité de compression globale et optimale. Nous soulignons que ces
dépendances sont liées au codage vidéo hybride puisqu’elles sont, pour la plupart d’entre
elles, observables dans la plupart des normes de codage citées ci-dessus.

Chapitre 3: Le problème de l’optimisation globale en termes de performance débit-
distorsion est d’abord considéré dans le contexte du codage Intra uniquement. La dépendance
la plus couramment considérée est la propagation de distorsion, qui peut être modélisée
ou introduite intuitivement dans le problème d’optimisation débit-distorsion. La plupart
des méthodes de l’état de l’art présentées dans ce chapitre se concentrent sur cette dépen-
dance. Cependant, nous expliquons que les autres dépendances peuvent également avoir une
influence significative sur l’optimisation globale, en particulier dans le cas de débit élevé.
Une étude est proposée pour évaluer l’efficacité de codage maximale, dans le contexte de
l’optimisation conjointe de plusieurs modes de prédiction Intra. Une analyse permettant
d’évaluer les possibilités d’une mise-en-œuvre peu complexe est également fournie.

Chapitre 4: La quantification adaptative optimale est l’un des points clés pour optimiser
l’efficacité de codage des encodeurs vidéo. La compensation de mouvement est responsable
d’un réseau de dépendances reliant tous les blocs d’un ensemble d’images. Dans ce chapitre,
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ce réseau est décrit à l’aide d’un modèle de propagation des distorsions temporelles et d’une
estimation efficace des probabilités des modes Inter et Skip. Des quantificateurs optimaux
sont ensuite obtenus pour chaque bloc afin d’optimiser globalement le signal, en termes
d’efficacité débit-distorsion. L’algorithme proposé surpasse plusieurs méthodes similaires de
l’état de l’art. En plus de la démonstration analytique permettant d’obtenir les quantificateurs
optimaux, nous proposons une analyse approfondie du comportement de l’algorithme.





Introduction

Preamble

Video-related technologies are past, present and undoubtedly future challenges. While a
few decades ago, users mostly watched video contents on home TV or cinema, videos are
now available and consumed from a variety of display devices, using IP or mobile networks.
According to a recent study of the Cisco company in [Cis18], the video traffic over Global IP
will account for 82% of all IP traffic by 2022, up from 75% in 2017. Note that in a previous
report [Cis14], the company anticipated the video to account for 79% total IP traffic in 2018,
which prove the reliability of these estimations. In a recent report [Eri18], Ericsson company
announced a growth of video traffic in mobile networks around 35% annually for next 6
years.

These numbers can be explained by changes in usage and user habits. The growing
consumption of video content is stimulated by the development of the TV Everywhere
business model. The access to video content, using Internet and mobile applications, is
conditioned by an authentication process instead of the use of specific display device such as
the television. The concept is adopted by famous content providers such as Netflix, Youtube
or Amazon. The growing popularity of e-sport also contributes to massively creating game
streams. The Twitch platform, that mainly broadcasts game live streams, reports in [Twi]
that during July 2018 around 1 million viewers at anytime is watching videos on their
platform. Young generations (12-16years) are also active providers and consumers of videos
through social media services as Facebook, Twitter, Snapchat and more recently TikTok.
This dynamic environment is the reason for drastic changes in the way of consuming videos
and the explanation of the growing worldwide video traffic.

In parallel to the tremendous content diversity and large number of solutions for accessi-
bility, the video data volume growth is also explained by increasing end-user demands for
quality and immersion. The resolution increased from Standard Definition (SD) to High
Definition (HD) and we currently observe a growing popularity of Ultra High Definition
(UHD) contents, matching the fact that all current TVs support UHD. The development of
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television and cameras manufacturers industries also allowed more fluidity in the display of
contents. Other technological evolutions such as 3D, High Dynamic Range (HDR) and Wide
Color Gamut (WCG) are also deployed in order to improve the Quality of Experience (QoE).
Despite obvious benefits of these technicals progress, each of them implies a physical growth
in the quantity of data to display.

The video data are more and more present in users everyday life and numerical size of
video data is increasing. Optimal video compression, that consists into reducing the number
of bits while minimizing the negative impact on visual quality, is the principal objective of
this thesis. Even if networks and storage capacities are significantly higher than in the past,
the conclusion is simple. Video compression is not only relevant: Video compression is a
necessity.

Context

Video compression is subject to a very dynamic environment from which it is difficult to
escape. Compression standards impose some constraints and affect a very large number of
companies, from encoder or decoder manufacturers to content providers. Therefore, it is
important to know at all times what is happening inside the video compression community.
Note that code and compress terms are used as synonyms in the remaining of this document.

Video Compression Standard

The goal of a compression standard is to specify the bitstream syntax and the decoding
process that allow to display the video on a device. Encoding consists into creating a
bitstream compatible with a standard and aims to optimize the coding efficiency. The basic
coding and decoding flow is depicted on the Fig. 3, along with the scope of the standard.

Currently, two lines of development for future video compression technology are in
competition. The two standard organizations International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) and the International Telecommuni-
cation Union (ITU), are known to jointly developing video coding standards for over three
decades. Their emerging contender is the industry-driven Alliance for Open Media (AOM).

Standardization Organizations

The Video Coding Experts Group (VCEG) is a working group of the ITU responsible for
the development of H.120, H.261 and H.263+ video coding standards, among others. The
Moving Picture Experts Group (MPEG) is another working group formed by ISO and IEC
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Fig. 3 Scope of the thesis and scope of a compression standard

for the standardization of audio and video coding and transmission. They are responsible for
the MPEG-1 standard released in 1993 and MPEG-4 standard released in 1998. VCEG and
MPEG groups first joint their efforts in video coding with the development of H.262/MPEG-2
part 2 in 1996.

The following partnerships between the two working groups were presented under project
names such as Joint Video Team (JVT) for Advanced Video Coding (AVC) [ITa, ISOa] in
2003 and Joint Collaborative Team on Video Coding (JCT-VC) for High Efficiency Video
Coding (HEVC) [ITb, ISOb] in 2013. While AVC is currently the most used video coding
standard in the world, HEVC allow significant bitrate savings for equivalent quality and
is subject to growing interest. The Joint Video Exploration Team (JVET), latest collabo-
rative group between VCEG and MPEG, has announced in April 2018 the development
of Versatile Video Coding (VVC) that will be finalized in 2020. The new studied coding
solutions [CAS+17] show the evidence of developing a new standard with coding capabilities
beyond HEVC.

Alliance for Open Media

The AOM is an industry consortium aiming to provide royalty-free alternative to the video
compression standards presented above. Several proprietary codecs, aiming to impose
themselves on the market, have been initiated during the 90’s with companies such as On2
(codecs VP3 to VP7) and RealNetworks (codec RealVideo). Another claim of the initiative
is the desire to produce new standards faster and to speed up the innovation, compared to the
standardization organization work speed.

AOM announced in March 2018 the release of AV1 version 1 specification in [fOM],
an open source royalty-free video codec with enhanced video compression performance
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Fig. 4 History of Video Coding Standards (Modified Figure from [LTB18])

against state of the art. This emerging standard ambitions to compete the HEVC standard by
proposing an efficient video compression scheme, without any limitations regarding to high
cost or complex legal usage terms.

A summarized timeline of the video compression standards is proposed in Fig. 4.

Encoder Design

A standard is designed to optimize the maximum coding efficiency by providing an optimized
set of coding tools. However, there are no guarantee that an encoder exploits properly these
coding tools and is able to provide the best quality. In industry, encoder vendors are
specifically judged or competed on their capacity to optimize these encoding processes
thanks to their proprietary algorithms, while they must comply to the same decoding process.

Consequently, the video coding world observes a competition of standards but also a
competition of non-normative encoding algorithms. These algorithms are subject to several
constraints due to the users application, e.g. in the case of Digital Video Broadcasting
(DVB) a maximum bitrate constraint is set for continuous diffusion. Constraints in terms of
computational complexity and delay are also very common for encoder design.

Motivations

There are mainly two approaches to enhance video coding efficiency. The first way consists
in developing more efficient coding tools within the standardization process to build the
next generation video standard. New tools proposed by JVET for VVC aims to increase the
coding efficiency by 40% to 50% compared to HEVC [LTB18]. However, this gain comes
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with a complexity increase of 3 to 4 times the HEVC complexity at encoder side and 2 times
at decoder side [SRS+16, AACP16, LTB18]. We point out that these numbers are often
varying, since the reference model design is still under development phase. This approach is
a long term solution and we usually observe a decade between the adoption of two video
standards. Moreover, the required cost and time to the deployment of a new standard are
important since there are plentiful decoding devices in the world compared to encoding
devices.

The second approach aims to enhance the coding efficiency of existing standard encoders
without changing the syntax of the decoder. Despite the variety of coding standards available
and their difference in terms of compression efficiency, all of them use the same fundamental
coding scheme. Such observation leads to the possibility for any encoder-side optimiza-
tion, focusing on generic coding tool instead of specific standard implementation, to be
transposable and benefits to any compression standard, with only minor adjustments.

This thesis focuses on the second approach and proposes to improve coding efficiency
by considering dependencies. Coding tools often remove the correlation between data, e.g.
frames or pixels, in order to suppress redundant information. Unfortunately, these tools
are also known to introduce correlations between the coding decisions of these exact same
data, as it is explained in Chapter 1 and Chapter 2. These newly introduced correlations are
dependencies, and efficiently taking them into account allow to achieve efficient encoding
over the entire video signal. The aim of this thesis is to focus on the encoding decisions, as
depicted in Fig. 3, and to provide better insights about dependencies, along with efficient
algorithms for global optimization.

Outline

Chapter 1: This chapter provides background information and describes some fundamen-
tals of the source coding. A description of the Rate-Distortion (R-D) theory, the scalar
quantization and the predictive coding is provided. After this overview, related coding
decisions dependencies are highlighted in the context of a classical block-based coding
scheme. Note that the term block in this case does not necessarily refers to pixels blocks in a
picture, but simply to samples group in a signal. Statement of these unavoidable dependen-
cies exhibits the difficulties of exhaustive and brute force optimization, that further leads to
simplified assumption for practical encoding solution.

Chapter 2: In this chapter, the latest released video coding standards is overviewed. The
coding scheme is presented along with brief introduction of the different coding tools
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available in the standard. All related dependencies are exposed in the end of this chapter
and show a critical need for dependencies consideration in order to achieve global coding
efficiency. We point out that these dependencies are related to Hybrid Video Coding since
they are, for most of them, observable in most of the coding standards cited above.

Chapter 3: The problem of global optimization in terms of rate-distortion performance
is first considered in the context of Intra-only coding. The most commonly considered
dependency is the distortion propagation, that can be modeled or intuitively introduced into
the Rate Distortion Optimization (RDO). Most of the state-of-the-art methods presented in
this chapter focus on this dependency. However, we explain in this chapter that leftover
dependencies may also have significant influence on global optimization, especially in the
high-rate case. A study is proposed to evaluate the maximum achievable coding efficiency,
in the context of joint optimization for Intra predictor. Analysis to evaluate the opportunities
of low complexity implementation is also provided.

Chapter 4: Optimal adaptive quantization is one of the key points to optimize coding
efficiency of video encoders. Motion compensation is responsible for a dependency network
connecting all blocks of the same GOP together. In this chapter, this dependency network
is modeled through a temporal distortion propagation model and an efficient use of Inter
and Skip modes probabilities. Optimal quantizers are then designed per block in order
to achieve the global optimization in terms of Rate-Distortion efficiency. The proposed
algorithm outperforms several related methods from state-of-the-art. Moreover, along with
the demonstration of optimal quantizer solution, we propose an in-depth analysis of the
algorithm behavior.



Chapter 1

Source Coding

Video coding belongs to the field of source coding which is part of the information theory. In
the following, we define a source signal as a random process that is a sequence of samples.
When we refer to a signal sample or source sample, it must be treated as a random variable,
continuous or discrete. We point out that samples are usually ordered, either temporally or
spatially in the case of pixels from a video.

An important tool of modern coding systems is the entropy coding. This lossless tool
usually aims to map symbols into a bitstream using a reversible operation. The mapping
usually exploits statistical dependencies in order to reduce the transmission/coding rate.
Among the entropy coding techniques, the two well known are Huffman coding presented by
Huffman in [Huf52] and arithmetic coding presented by Rissanen and Langdon in [RG79].
These two methods significantly enhance the coding efficiency of video codecs. We do not
further describe entropy coding in this text, since it is not the main topic of interest of this
thesis. However, the reader is referred to the work of Sayood in [Say02] for further details.

In this chapter, some source coding fundamentals are reviewed. First, the R-D theory is
addressed in Section 1.1 due to its importance in the encoding optimization process. Lossy
and lossless compression techniques, respectively the quantization and predictive coding, are
also discussed in Section 1.2 and Section 1.3. For further details on source coding, the reader
is referred to the books of Gray [Gra90] and the one of Wiegand and Schwarz [WS11].

1.1 Rate-Distortion Theory

In the following, we consider a source signal X that is an N-dimensional vector we indicate
as X = (X1, ...,Xi, ...,XN), e.g. an image with N pixels. Each ith sample of X , designated by
Xi, is a random variable.



16 Source Coding

In this section, a brief introduction of the R-D theory is given. First, we define the
Distortion and the Rate, in the context of source coding. Second, the R-D function of a
coding system is presented, which gives the best achievable coding efficiency for a given
source. Then, we address the theoretical expression usually considered for the R-D function,
hereafter called the R-D Shannon bound. Finally, the Lagrangian optimization for RDO is
presented, which is usually used in practical video coding systems.

1.1.1 The Distortion

Source coding systems often use lossy coding techniques in order to achieve higher reduction
of the data size with respect to lossless coding. These techniques introduce a measurable
difference between the signal before coding, refereed in this document as the source signal,
and the signal after coding and decoding, named in this document the reconstructed signal.
The measure of this difference is called the Distortion and is noted by D.

The Mean Square Error (MSE) is one of the most used distortion metric in the area of
source coding. Its wide adoption into the coding community is due to the low computational
cost and the ease of use in mathematical problems. For a source signal X and a reconstructed
signal Y both composed of N samples, the MSE is defined by (1.1), with Xi being the ith

sample of the signal X .

MSE(X ,Y ) =
1
N

N

∑
i=1

E
[(

Xi − X̂i
)2
]
, (1.1)

Since the topic of signal distortion is highly related to the use and nature of the signal, we
choose to specify hereafter some images related metric. For representation matter in image
coding, it is often preferred to represent the coding efficiency in terms of quality instead
of distortion. The Peak Signal to Noise Ratio (PSNR) is a Visual Quality Metric (VQM)
straightly computed from the MSE as expressed in (1.2).

PSNR(X ,Y ) = 10 log10

(
MAX2

MSE(X ,Y )

)
(1.2)

In (1.2), MAX is the highest possible value on one sample. In the case of k bits coding
per sample, MAX = 2k −1. Despite the benefits of the PSNR, MSE-based metrics may not
properly evaluate the quality as a human observer would do. In the past decades, perceptual-
oriented VQMs were proposed.
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Wang et al. proposed the Structural Similarity Index (SSIM) metric [WBSS04] that
figures in the most used VQMs and is considered more related to the perceived quality than
the PSNR. The SSIM formula is given in (1.3). It is computed on a windows-basis for two
signals X (source) and Y (reconstructed).

SSIM(X ,Y ) =
(2µX µY + c1)(2σX σY + c2)(2covXY + c3)(
µ2

X +µ2
Y + c1

)(
σ2

X +σ2
Y + c2

)
(σX σY + c3)

(1.3)

µX is the mean value of X , σ2
X is the variance of X and covXY is the covariance of X and

Y . Each value is computed based on a given window. c1, c2 and c3 are model parameters,
which are provided in the related paper of Wang et al. [WBSS04].

The are many other visual metrics more correlated with Human Visual System (HVS).
However, suitable perceptual VQMs is an entire field of research by itself. For in-depth
understanding on perceptual VQMs topic, the reader is referred to the survey conducted by
Lin et al. [LJK11].

1.1.2 The Rate

While viewers are mostly concerned by the observed quality, stream providers also care
about the bitrate, commonly noted R. The rate is often expressed in bits per seconds, i.e. the
amount of transmitted numerical data per second, or bits per samples. The rate of a source
signal X , is defined here as the average rate of all samples, as described in (1.4). In the case
of lossless coding, the minimum achievable rate for a sample Xi, that is a random variable, is
equal to its entropy H(Xi) as defined by Shannon in [Sha48] and given in (1.5).

R(X) =
1
N

N

∑
i=1

R(Xi) (1.4)

H(Xi) =−E [log2P(Xi)] =− ∑
a∈A

P(Xi = a) log2 (P(Xi = a)) (1.5)

A is the dictionary, i.e. the set of possible values of Xi. P(Xi = a) represents the probability
that Xi takes the value a. When observing the entropy formula, we note that:

• In opposition to sharp Probability Density Function (PDF), the flatter the random
variable PDF, the bigger the entropy.

This observation is the basic justification for designing coding techniques that produces
PDF as sharp as possible. Given a source distribution, a sharper PDF than the original may be
obtained by using coarse approximation, e.g. sampling process, or by considering clustering
to gather samples sharing similar properties.
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Fig. 1.1 Operational R-D function and the convex hull of operational R-D points as the
modeled R-D function.

1.1.3 The Rate-Distortion Function

A coding system compliant with a given standard basically converts a source signal into a
bitstream. A standard decoder is able to process the bitstream to produce the reconstructed
signal. While a compression standard sets a maximum achievable coding efficiency for
a given source signal, this optimal limit is rarely achieved in practice because of several
constraints, e.g. the computational complexity and memory usage.

The encoding procedure estimates the optimal set of coding parameters p⃗∗, in terms of
distortion (or rate), while matching constraints such as: latency, computational complexity,
memory consumption, average rate (or distortion), maximum instantly allowed rate (or
distortion). We note p⃗ = (p⃗1, ..., p⃗i, ..., p⃗N), in the case each sample i of the N-dimensional
vector source is coded with the coding parameters p⃗i.

Rate distortion theory aims to find p⃗∗ that minimizes D subject to a rate constraint
R ≤ RT , with RT being the target rate. An alternative approach is to optimize p⃗ in order
to minimize R with a distortion constraint D ≤ DT , with DT being the target distortion (or
quality). Whatever the considered problem, both solutions specify the lower bound of the
so-named R-D function.

Setting p⃗ to a given vector results into a unique encoding and one operational R-D
point, i.e. a couple (D(p⃗),R(p⃗)) estimated after the encoding procedure. On Fig. 1.1, we
plot operational R-D points corresponding to different combinations of p⃗. We can observe
a convex hull, called the R-D function, that is the boundary between realizable and non-
realizable encodings.
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Fig. 1.2 Visual representation of the BD-BR metric to compare two coding systems based on
their respective RQ curves.

It should be noted here that the operational R-D function is a piecewise constant function,
drawn using affine functions. The operational curve may also be drawn using the Manhattan
distance, that results into a staircase appearance. The second is sometimes preferred, because
it is intuitively possible to achieve higher distortion at the same rate or equivalently higher
rate with identical distortion. There is also no guarantee that a trade-off exists between
two R-D points. However, the local tangent of the R-D function is easy to model and to
differentiate, explaining why it remains most often the considered representation in R-D
optimization problems.

In order to compare two coding systems, in the context of encoding algorithm evaluation
for example, it may be intractable generating enough R-D points to estimate the operational
R-D function. Consequently, only a few points are generated for each coding system, and
their respective R-D functions are interpolated from these samples.

For comparison purpose of two coding systems, R-D curves are often replaced by Rate-
Quality (RQ) curves. The approximated RQ functions, in the case of video coding, are
usually compared using the Bjøntegaard-Delta Bit-Rate (BD-BR) measure proposed by
Bjøntegaard [Bjø01b]. This method compares the integral of RQ functions in the common
range of rates, meaning that both functions are compared within an identical interval of
integration. An example of the Bjøntegaard measure between two RQ curves is presented in
Fig. 1.2. Usually, the quality is expressed on a logarithm scale as in the example.
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1.1.4 The Shannon Lower Bound

As shown previously, R-D functions can be obtained after several encodings. However,
efficient encoding optimization often requires to know beforehand the relation between the
rate and the distortion. Consequently, many algorithms of a coding system relies on a R-D
model. The most common R-D model is the Shannon lower bound and is briefly discussed
below. For further details about Shannon R-D function, the reader is referred to the works of
Cover and Thomas [CT06] and Wiegand and Schwarz [WS11].

The mutual information is used to represent the amount of transmitted information, i.e.
the rate. Let the mutual information between the source sample Xi and the reconstructed
sample Yi, written I(Yi;Xi), be defined by (1.6).

I(Yi;Xi) = H(Yi)−H(Yi|Xi) (1.6)

H(Yi) is the entropy defined in (1.5) and H(Yi|Xi) is the conditional entropy. I(Yi;Xi)

measures the entropy reduction of the reconstructed sample when the source sample is
observed. If samples are identical, implying H(Yi|Xi) = 0, it results in a lossless coding
process. As a consequence, the minimum achievable rate is the entropy of the source sample
as shown in (1.7).

I(Yi;Xi) = H(Yi) = H(Xi) (1.7)

It can be demonstrated, as done by Wiegand and Schwarz [WS11], that for independent
and identically distributed (iid) memoryless sources and considering (1.6), the Shannon
lower bound or Shannon R-D function is equal to (1.8).

Ri(Di) =−1
2

log2

(
Di

ci σ2
i

)
(1.8)

With σ2
i being the sample variance and ci a constant depending on the sample distribution.

Here are the possible ci values for various distribution:

• Gaussian: ci = 1

• Laplacian: ci = e/π

• Uniform: ci = 6/(π e)
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Fig. 1.3 Shannon bound for uniform, laplacian and gaussian distributions with σ2
i = 1.

The Shannon R-D functions for the three distributions are depicted in Fig. 1.3 with σ2
i = 1.

In the case of small distortion, or equivalently high rate, the Shannon lower bound (1.8) is
asymptotically equivalent whatever the source distribution. Such models are also tight to the
observed R-D function for high rate as discussed by Linder and Zamir in [LZ94].

In case of Gaussian sources with memory, a more complex formulation of (1.8) is
proposed in (1.9), with ρ being the correlation coefficient between successive samples.
Interested readers may find the complete derivation of this formula given by Wiegand and
Schwarz in [WS11].

Ri(Di) =−1
2

log2

(
Di

(1−ρ2) σ2
i

)
(1.9)

1.1.5 Rate-Distortion Optimization

In the following, we consider the problem of distortion minimization under rate constraint,
named Rate Distortion Optimization (RDO). The constrained problem is expressed in (1.10).

min
p⃗i

{Di(p⃗i)}

s.t. Ri(p⃗i)≤ RT

(1.10)

The decision core of an encoder aims to estimate the coding parameters p⃗i that achieves
RDO for the ith sample. This constrained problem can be modeled thanks to the Lagrangian
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multiplier method as proposed by Everett in [Eve63], with λ being the Lagrangian multiplier.
The resulting unconstrained formulation of (1.10) to minimize is then defined as (1.11).

Di(p⃗i)+λ (Ri(p⃗i)−RT ) (1.11)

Since the target rate RT is a constant, it does not impact the minimization, and the optimal
set of coding parameters p⃗∗i is then obtained through (1.12).

p⃗∗i = argmin
p⃗i

{Ji(p⃗i)}= argmin
p⃗i

{Di(p⃗i)+λRi(p⃗i)} (1.12)

Ji(p⃗i) is the R-D cost function the RDO tries to minimize. It should be noted that p⃗∗i
obtained in (1.12) with the correct λ value is also the optimal solution of (1.10). One
important question is to define the optimal λ value. In the case of video coding, λ has been
experimentally optimized by Wiegand and Girod [WG01] for H.263+ and by Wiegand et
al. [WSJ+03] for AVC.

We note that the λ value considered in (1.12) controls the trade off between Ri and Di,
i.e. optimal λ is dependent of the R-D function. The R-D function is intuitively impacted by
source signal characteristics, such as samples variance or source distribution, as shown in the
Shannon bound expression (1.8). Consequently, the optimal λ value is constant if and only
if the signal is stationary, i.e. source samples characteristics do not vary over time. Source
signals such as audio, image or video are unlikely to be stationary.

Considering that each variation of p⃗i induces a different coding efficiency, an usual
RDO implementation is to exhaustively test all possible values of p⃗i within a restricted set.
Then the optimal coding parameters p⃗∗i that minimize the R-D cost, potentially under some
constraints, are chosen to compute the bitstream. This restricted set of possible encodings
can be narrowed for several reasons:

• If the user or a parallel algorithm set some coding parameters beforehand.

• If parameters are made dependent on others’ values, e.g. coding parameters of other
samples.

In other terms, the search space of such exhaustive procedure is defined by a priori
encoding configuration and encoder algorithms. Intuitively, one understands that larger
search space leads to better coding efficiency, but also increased computational complexity.
This problem is discussed later in Section 1.5.
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For video coding purpose, a comprehensive description of the RDO is given by Sullivan
and Wiegand in [SW98] and an overview of R-D methods is presented by Ortega and
Ramchandran in [OR98]. Two distinct coding procedures, i.e. two decision cores or search
strategies, are numerically compared by estimating their respective coding efficiency with
respect to a quality score. An example of coding efficiencies comparison has been introduced
in Section 1.1.3.

1.1.6 Link with the central limit theorem

The R-D function and related optimization processes focus on an overall evaluation of the
coding system. It means the trade off is made between the total introduced distortion and
the global rate of the signal X , i.e. we optimize X coding by finding p⃗∗. As presented in the
beginning of this section, D and R are expressed as sum of samples distortions and samples
rates. One problem is that previously proposed R-D models applies to a random variable, i.e.
a sample i of the source signal, with a distribution that may be unknown.

According to the central limit theorem, summing a high number of iid random variables
(N →+∞) leads to a random variable that follows a Gaussian distribution. The consequence
is that a vector of samples, that we conveniently name block, can be treated as a random
variable and use R-D models such as (1.8) or (1.9). Because of this convergence into a
simple distribution, efficient coding tools for Gaussian distributions can be very useful and
efficient for coding systems that process vectors of samples instead of processing each sample
independently.

Each sample Xi is a random variable with a distortion Di, a variance σ2
i and a rate Ri

defined by the R-D Shannon bound. Basically, to use this theorem is equivalent to define
a block of N samples, with a rate RB and a distortion DB defined as the functions in (1.4)
and in (1.1), respectively. Then, according to the central limit theorem, the block can be
considered as random variable X that follows the Gaussian distribution with variance σ2

B. We
can write the following statements:

X =
1
N

N

∑
i=1

Xi (1.13)

σ
2
B =

1
N

N

∑
i=1

σ
2
i (1.14)
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The related Shannon bound is then defined in (1.15).

RB =−1
2

log2

(
DB

σ2
B

)
=−1

2
log2

(
∑

N
i=1 Di

∑
N
i=1 σ2

i

)
(1.15)

The central limit theorem was first demonstrated by De Moivre [DM38] for a restricted
case and was later generalized and popularized by Laplace [Lap12].

1.2 Quantization

In the context of signal processing, each sample of the signal takes a value within a dictionary
A. The quantization is the process of mapping input signal samples from the dictionary
A to a smaller dictionary B, i.e. Card(A) > Card(B). The dictionary B results into a
countable and finite set. The obtained signal can further be unmapped from B to A in order
to obtain a reconstructed signal, different from the input signal. The mapping process is an
irreversible approximation that introduces losses in the signal, named the quantization error.
The algorithm or process that applies the quantization on the signal is named the quantizer.

In this section, we focus on the scalar quantization, which is extensively used in image
and video coding. A brief overview of the scalar quantization is first provided, along with
the optimality conditions for a quantizer to minimize the quantization error. The relationship
between the distortion, the rate and the quantizer is analyzed, in order to explain hereafter
the trade-off function of the quantizer in the RDO problem. Finally, the well-known high
rate R-D function is presented, due to its importance in the next sections of this document.

1.2.1 Scalar Quantization Description

In the case of video coding, the scalar quantization is the classical considered method. In
the following, the input signal X is considered as continuous and each sample Xi takes value
from a continuous set. Conclusions of this section hold for a discrete source. In the following
we only focus on the quantization of the random variable Xi. Let us define the following
notations:

• Q is the quantizer. We note Q(x) the quantization of one value x of the input signal, i.e.
Xi = x.

• We note K =Card(B) the number of reconstruction levels, in the dictionary B. We
point out that the quantizer output is necessarily a discrete source.

• tk is named the kth decision threshold or interval boundary with k ∈ {1, ...,K}.
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• Ik = [tk; tk+1[ is the kth interval of quantization.

• We note yk ∈ B the kth reconstruction level associated to Ik, i.e. Q(x) = yk∀x ∈ Ik.

• ∆k = tk+1 − tk is the interval size or the quantization step.

An example of the mapping for the uniform quantization is given in Fig. 1.4 (a). The
uniform quantizer with dead-zone as presented in Fig. 1.4 (b) is also an efficient alternative,
especially if the source signal to compress have a PDF that is symmetric around zero and
reaches its peak value at zero.

(a) (b)

Fig. 1.4 Input and Output of Scalar Quantization for Uniform Quantizer (a) and Uniform
Quantizer with Dead-zone (b)

Due to the quantization, there are losses and the quantization error Di is measurable. The
distortion of a scalar quantizer is defined by (1.16).

Di(Q, fXi) =
K

∑
k=1

∫ tk+1

tk
fXi(x)D(x,Q(x)) dx (1.16)

With fXi(x) being the PDF of Xi. The quantization error metric for one value x is
designated by D(x,Q(x)). In the case of MSE, (1.16) is turned into (1.17).

Di(Q, fXi) =
K

∑
k=1

∫ tk+1

tk
fXi(x) (x−Q(x))2 dx (1.17)

Two conditions are necessary for the design of an optimal quantizer in terms of distortion:
the generalized centroid condition (1.19) and the nearest neighbor condition (1.20).
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In the case of known decision thresholds, the distortion is minimized if the distortion of
each interval Dk(yk) is minimized. It leads to the optimal reconstruction level y∗k in (1.18)
and the optimal for the squared error distortion in (1.19).

y∗k = argmin
yk

{Dk(yk)}= argmin
yk

{∫ tk+1

tk
fXi(x)D(x,yk) dx

}
(1.18)

y∗k =

tk+1∫
tk

x fXi(x)dx

tk+1∫
tk

fXi(x)dx
(1.19)

In the case of known reconstruction levels, decision threshold tk is optimal if the distor-
tions of surrounding intervals are equal. It leads to the optimal decision threshold t∗k in terms
of MSE described in (1.20).

t∗k =
1
2
(yk−1 + yk) (1.20)

Detailed description of optimality conditions is given by Wiegand and Schwarz [WS11]
and by Max [Max60]. We can see in (1.19) and (1.20) that y∗k and t∗k depend on each other.
An iterative solution is given by Llyod [Lyy82] and result in the well-known Llyod-Max
quantizer.

1.2.2 Quantization Control for Rate-Distortion Optimization

Since the quantization is a lossy coding procedure, it may be involved in the RDO process.
In the following, we consider the case of a uniform quantizer for which only the quantization
step ∆ that can be optimized while the reconstruction levels tk are set to the middle of
their respective interval of quantization. As shown in (1.16) for smooth distribution, the
distortion D(∆) increases when ∆ increases. In order to validate the R-D Shannon bound
from Section 1.1.4, we also want to verify the rate behavior with respect to ∆.

We consider the average rate to be well approximated by the entropy of the reconstructed
signal. The rate achieved by the quantizer is consequently defined by (1.21), with P(yk) the
probability of yk defined by (1.22).

Ri(∆) =−
K

∑
k=1

P(yk) log2 (P(yk)) (1.21)

P(yk) =
∫ tk+1

tk
fXi(x)dx (1.22)
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After some developments, the rate Ri(∆) may be decomposed1 into (1.23).

Ri(∆) = H(Xi)− log2 (∆) (1.23)

From (1.23), we can easily deduce that if the quantizer step is high, the rate tends to zero.
On the opposite, if the quantizer step is low (∆ → 0), the rate tends to infinity. However,
this infinite rate value is purely theoretical. For pictures and videos, Xi is a discrete random
variable, hence there is a minimal value ∆min which is equal to the granularity of Xi, i.e. that
does not produce distortion. We define Xi to be discretized in integer values and ∆min = 1.
Consequently, the highest achievable rate Rmax is estimated as the source entropy according
to (1.24).

Rmax(∆) = H(Xi)− log2 (∆min) = H(Xi)− log2 (1)︸ ︷︷ ︸
=0

= H(Xi) (1.24)

The quantization step is proven to control the trade-off between distortion and rate, that is
similar to the λ in the Lagrangian optimization for RDO expressed in (1.12). The quadratic
relation between ∆ and λ has been verified in the context of video coding by Sullivan and
Wiegand [SW98].

1.2.3 High-Rate R-D approximation

The High-Rate R-D function is a well known approximation used in video coding, mostly
because of its mathematical tractability. As expressed in (1.23), in terms of rate-quantization,
high rate is equivalent to ∆→ 0, i.e. Xi is uniformly distributed under each interval. Minimum
and maximum values of Xi are written xmin and xmax, respectively. For an uniform quantizer
with K intervals, the quantization step size ∆ results in (1.25) and yk probability in (1.26).

∆ =
xmax − xmin

K
(1.25)

P(yk) =
1

xmax − xmin
=

1
∆K

(1.26)

The MSE distortion is expressed as:

Di(Q) =
∫ xmax

xmin

fXi(x) (x−Q(x))2 dx. (1.27)

1Detailed computations are provided in Appendix A.1
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Fig. 1.5 High-Rate approximation and Xu et al. [XJGZ07] model of the Distortion-
Quantization relationship, with distortion expressed in MSE, against the maximum achievable
distortion σ2

i .

In the case of uniform distribution within an interval of quantization, the optimal recon-
struction level for the MSE is at the middle of the interval. The distortion is further simplified
into the High-Rate approximation (1.30) with the following steps:

Di(∆) = K ×
∫

∆/2

−∆/2
fXi(x)x2 dx (1.28)

Di(∆) = K ×
∫

∆/2

−∆/2

1
∆K

x2 dx (1.29)

Di(∆) =
∆2

12
(1.30)

For the video coding application case, Xu et al. proposed in [XJGZ07] another model for
Di(∆) that is given in (1.31), with σ2

i being the variance of the input sample.

Di(∆) =
σ2

i ∆2

12σ2
i +∆2 (1.31)

This proposal is tight to (1.30) in the high-rate case, but does not suffer from the same
inaccuracy in the low-rate case, as exposed in Fig. 1.5. Indeed, the distortion is limited by
σ2

i the input variance, but the high-rate approximation suggests to overcome this maximum
at some point.
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More complex models of D(∆) have also been proposed, such as the one suggested by
Ropert and Ropert in [RR13]. The model expressed in (1.32) is based on the Laplacian
distribution of coefficients obtained after Discrete Cosine Transform (DCT) and inequality
constraints approximation introduced in [RR13].

Di(∆) = ∆
2
(

2
a2 +

2
ea−e−a

(
1− 2

a

(
ln
(

1+ ea

2

)
+1
)))

, (1.32)

with

a =

√
2∆

σi
. (1.33)

1.3 Predictive Coding

We stated in Section 1.1 that the entropy of an input signal gives the lower boundary
achievable rate for its transmission in the case of lossless coding. However, this minimal
limit only stands in the case of iid variables. If there are statistical dependencies, the lowest
achievable rate is the conditional entropy, that is lower than the entropy of the input samples.
In Section 1.2, it has been demonstrated that transmission rate may be reduced below entropy
limit using quantization, but at the cost of creating distortion to the reconstructed signal.

In this section we present the predictive coding. The prediction allows to exploit the
source statistical dependencies in order to reduce the achievable rate without introducing
distortion. We first provide the main principle of a predictive encoder. Then the linear
prediction is presented because of its wide use in video coding, including its optimality
conditions and some properties. Finally, the joint use of prediction and quantization is
discussed, along with the optimization based on predictors competition.

1.3.1 Principle of a Predictive Encoder

The basic structure of a prediction is presented in Fig. 1.6. Each sample Xi that belongs to
the input signal X is predicted based on other samples of the signal, stored in an internal
memory. We note p⃗i the predictor parameter, X̂i(p⃗i) the predicted value of Xi. The difference
between source sample and its prediction yields a residue or prediction error εi(p⃗i) expressed
in (1.34). We point out that in the signal processing community, the residue is also called the
innovation, i.e. the unpredictable part of the signal.

εi(p⃗i) = Xi − X̂i(p⃗i) (1.34)
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Fig. 1.6 Basic Encoder structure for predictive coding

Prediction is done using a memory that refers to the previously coded samples of the
input signal. It should be taken into account that depending of the prediction requirements,
such as the minimum number of samples to store in the memory, the implementation of a
predictive coding can suffer from large memory requirements. A classical example is a video
encoder that requires to store several pictures to apply the prediction process. Consequently,
it may imply a large memory usage.

In a simple predictive coding scheme, only the residue is transmitted after the entropy
coding. The decoder further reconstructs the sample by adding the received prediction error
to the predicted value. The decoder scheme is presented in Fig. 1.7. Since the input signal,
such as an image or an audio, is assumed to have high statistical dependencies, the entropy
of the residue is much lower than the entropy of the original source signal.

The minimum achievable rate using a predictive coding system depends on the residue
entropy. Hence, the optimal predictor from the encoder point of view minimizes its residue
entropy. However, as explained by Wiegand and Schwarz in [WS11], the MSE minimization
as proposed in (1.35) is a good criteria for predictor optimality.

p⃗∗i = argmin
p⃗i

ε
2
i (p⃗i) = argmin

p⃗i

(xi − x̂i(p⃗i))
2 (1.35)

Fig. 1.7 Basic Decoder structure for predictive coding
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Fig. 1.8 Closed-loop encoder design for lossy predictive coding

1.3.2 Prediction in the RDO context

In the following we focus on the linear prediction, that consists into estimating discrete
samples of an input signal based on a linear function of previous reconstructed samples.
Linear prediction can be applied to scalars, one sample is predicted at a time, or be applied
to vectors, one group of samples are predicted at a time. Many applications of predictive
coding, such as the video coding standards make use of both prediction and quantization in
order to achieve the RDO. Quantization is applied to residue samples instead of source ones.
The corresponding lossy coding scheme is presented in Fig. 1.8.

One major difference between Fig. 1.6 and Fig. 1.8 is the feedback-loop that includes the
reconstruction of the output samples at the encoder-side in order to fill the memory. In the
case of lossy coding, source and reconstructed signals may be different. It becomes necessary
to include the reconstruction in the encoder and only use reconstructed samples as reference
for prediction. An encoder is often called a codec, portmanteau of coder-decoder, because
of this feedback-loop. When considering dependencies in a coding system, it is important
to notice the causalities such as the one between prediction and previously reconstructed
samples, i.e. the causal relationship between prediction and reference’s distortion.

In the context of predictive coding coupled with quantization, the RDO is the central
problem. In the case of MSE measure, the distortion between N source samples Xi and
reconstructed samples X̃i is equal to the distortion between its residue εi and quantized
residue ε ′i as shown in (1.36). X̂i is the predicted sample of Xi.
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1
N

N

∑
i=1

(
Xi − X̃i

)2
=

1
N

N

∑
i=1

(
εi + X̂i −

(
ε̃i + X̂i

))2
=

1
N

N

∑
i=1

(εi − ε̃i)
2 (1.36)

A necessary and sufficient condition of optimal linear predictor is the orthogonality
principle. It states that the prediction residue is uncorrelated with the observed data, i.e.
reference and prediction error are uncorrelated. This observation is an important start point
for encoding optimization of predictive coding system. It enables a good mathematical
tractability of the relationship between distortions of the current sample and its prediction
reference, as shown in next chapters of this document.

Comprehensive treatments of the orthogonality principle and more generally the estima-
tion theory are given by Kay in [Kay93]. For further reading about the linear prediction, we
also refer the reader to the well-known tutorial provided by Makhoul in [Mak75].

1.3.3 Optimization of Predictive Coding

We previously assumed that the encoder and decoder are based on unique and deterministic
predictor. In order to achieve the RDO, a common utilization of the predictive coding is
to use several predictors and to compare them in terms of R-D efficiency, as proposed in
Section 1.1.3. This solution allows the encoder to be more adaptive and handle efficiently
different source distribution. It also requires multiple prediction to estimate the best predictor,
which may drastically increase the computational complexity of the encoder. In such predictor
competition situation, the decoder must be informed with the chosen predictor. It induces the
transmission of additional data, different from the residue, called side informations.

Predictive coding may be assimilated to parametric coding, widely used in the area of
audio coding. For the reader interest, an overview of parametric coding for audio is provided
by Purnhagen in [Pur99] and an application case for stereo audio is addressed by Breebaart
et al. in [BvdPKS05]. Parametric coding is defined as modeling an input random variable,
written Xi, with a parameters vector p⃗i defined in (1.37).

p⃗i =
{

pi(1), ..., pi( j), ...pi(Nparam)
}

(1.37)

with Nparam being the number of parameters. In the following, we call the parameters
vector as the prediction vector. Each parameter takes value in its own set Pj, i.e. pi( j) ∈ Pj

and increases the total bitrate by Ri(pi( j)). An optimal prediction vector minimizes the
residue energy at the cost of a syntax bitrate defined in (1.38).
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Ri(p⃗i) =
Nparam

∑
j=1

Ri(pi( j)) (1.38)

There are two different solutions to improve such predictive system in terms of residue
energy minimization. The first one consists in increasing the size of prediction vector Nparam

by adding additional parameters in order to better model the input signal in a more complex
form. However, additional coding parameters induce an extra cost, in terms of bitrate,
because of supplementary side informations to transmit to the decoder. Second, increasing
the possible values of a parameter, i.e. to extend the subspace size or granularity of Pj, in
order to enable a more accurate selection of the optimal prediction parameter value.

Both solutions are most likely to provide better prediction and to reduce the entropy of
the residue. However, it implies a rate increase due to the diversity and the increasing entropy
of these side informations. The control of these communicating vessels, illustrated in Fig. 1.9,
between the syntax bitrate and the residue bitrate is one of the key to achieve encoding
optimization in modern codecs. We can see on the graph that the Predictor B, requires more
syntax bitrate than the Predictor A, but estimates more accurately the source signal, resulting
into lower residue energy. However, the comparison of the final R-D functions shows that in
low rates context, the syntax overhead becomes non-negligible and the predictor B results
into worst coding performance than the predictor A.

1.4 Dependencies related to Source Coding

Some fundamentals about source coding coding has been presented in the last subsections.
The coding process can be summarized in the following steps:

1. Input signal is divided into individual samples, or group of samples, defined as blocks.

2. Blocks are then predicted based on available reconstructed samples in memory. The
predicted block is subtracted to the source one, resulting in residue.

3. The residue is processed by quantization and/or lossless coding methods, before
transmission to the decoder.

4. Inverse operations are further applied on the transmitted residue. It allows to reconstruct
an approximate version of the source samples and store them in the internal memory,
at both the encoder-side and decoder-side.
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Fig. 1.9 Illustration of the syntax bitrate and the residue energy relationship

Source coding aims to achieve a global optimization under constraint, i.e. reaches the
highest coding efficiency for the complete source signal while meeting requirements. These
requirements can be the computational complexity, the encoding delay or output signal
characteristics (quality or rate). However, the global optimization is not straightforward for
large size signals. Because of the considerable amount of data, it is intractable to process all
samples at once. This is the first reason for dividing the signal into blocks that are processed
sequentially.

We consider a predictive coding scheme using quantization process such as the one
presented in Fig. 1.8. An important observation must be taken into account: the prediction
step introduces a sample dependency. This dependency is also stated as the distortion
propagation in this document. We consider the sample Xi that is predicted from the previous
reconstructed sample X̃i−1 as shown on (1.39). We point out that Xi may be a scalar or a
vector.

X̂i = X̃i−1

= X̂i−1 + ε̃i−1

= Xi−1 − εi−1 + ε̃i−1

(1.39)
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εi stands for the residue before quantization and ε̃i is the residue after quantization as
defined in Fig. 1.8. We focus on σ2

i that is the variance of prediction error, i.e. the maximum
achievable distortion according to the Shannon bound described in Section 1.1.4. The
variance of prediction error is first introduced as in (1.40).

σ2
i = E

[
ε2

i
]

= E
[(

Xi − X̂i
)2
]

= E
[(

Xi − X̃i−1
)2
]

= E
[
(Xi −Xi−1 +di−1)

2
] (1.40)

di−1 is the distortion introduced on Xi−1 according to (1.36). The variance of prediction
error expressed in (1.40) can be developed in order to obtain (1.41).

σ
2
i = E

[
Xi

2]+E
[
X2

i−1
]
−2E [Xi Xi−1]︸ ︷︷ ︸

=E[(Xi−Xi−1)
2]

+E
[
d2

i−1
]︸ ︷︷ ︸

=Di−1

+2E [Xi di−1]︸ ︷︷ ︸
=0

−2E [Xi−1 di−1]︸ ︷︷ ︸
=Ci−1

(1.41)

Consequently, we see that σ2
i depends on the distortion of its reference. The term

2E [Xi di−1] is supposed to be zero according to the orthogonality principle of optimal linear
predictor, as introduced in Section 1.3.2. We obtain a variance formula as (1.42).

σ
2
i = E

[
(Xi −Xi−1)

2
]
+Di−1 −Ci−1 (1.42)

The term Ci−1 may be perceived as the correlation measure between the reference and
its distortion. As an intuitive explanation, one considers the case of the reference distortion
being a random noise uncorrelated with its source samples. Consequently, Ci−1 tends to
zero and the injected noise may be transmitted to Xi prediction, i.e. Di−1 impacts is not
diminished. Note that in the high-rate case, distortion may be assimilated to random noise.

The formulation in (1.42) shows that two samples of a signal related by a prediction
process should not be optimized independently. Moreover, if several predictions are cascaded
the joint optimization may become intractable, because it would be equivalent to optimize
the whole signal at once. In the next subsection, we estimate the complexity of such a joint
optimization approach.
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1.5 Global Optimization in Source Coding

1.5.1 Joint Optimization versus Independent Optimization

In a predictive coding standard, the RDO technique is applied sequentially to parts of the
signal, named blocks in the following for convenience. A block may be a frame in a video, a
frequency in an audio signal or a group of pixel in a picture. We note Bi the ith coded block,
p⃗i the vector defining the set of coding parameters to estimate for Bi and Ji the local R-D cost
of Bi. For a signal composed of N blocks, the global optimum is obtained by solving (1.43).

min
p⃗1,...,p⃗N

{
N

∑
i=1

Ji (p⃗1, ..., p⃗N)

}
(1.43)

{p⃗1, ..., p⃗N} represent all the set of coding parameters from B1 to BN . Without loss
of generality, (1.43) can be rewritten into (1.44) by using the causality of a block-based
compression scheme.

min
p⃗1,...,p⃗N

{
N

∑
i=1

Ji (p⃗1, ..., p⃗i)

}
(1.44)

Equation (1.44) is usually simplified based on the common assumption of independence
between blocks, assuming that Ji only depends on p⃗i. Under this hypothesis, one defines
the Independent Rate-Distortion Optimization (Independent-RDO) minimization problem
in (1.45).

min
p⃗1,...,p⃗N

{
N

∑
i=1

Ji (p⃗i)

}
=

N

∑
i=1

min
p⃗i

{Ji (p⃗i)} (1.45)

Although the independence assumption significantly simplifies the computational com-
plexity, as further explained in the complexity formalization hereafter, it may significantly
reduce the coding efficiency of the complete signal. Methods that jointly optimize multiple
blocks or p⃗i components are stated Joint Rate-Distortion Optimization (JRDO) methods in
this document.

1.5.2 Complexity formalization

For Bi, the set of parameters p⃗i is the vector of coding decisions. pi( j) is defined in (1.37) as
the value of the jth coding parameter of p⃗i and Nparam is the total number of parameters used
to code a block, i.e. the vector size of p⃗i.
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Examples of coding parameter may be the prediction mode or the quantization pa-
rameter. Each parameter is defined into a different space pi( j) ∈ Pj, ∀i ∈ {1, ...,N} and
∀ j ∈ {1, ...,Nparam}. The coding decision set p⃗i is defined within vector space P defines
in (1.46).

P = P1 ×P2 × ...×PNparam (1.46)

We consider the RDO process as an exhaustive search to optimize Ji (p⃗i). The basic
number of Bi encodings to determine p⃗∗i is then equal to Card(P) defined in (1.47).

Card(P) =
Nparam

∏
j=1

Card(Pj) (1.47)

For a given block, the complexity worst case (exhaustive search) is then equal to Card(P).
In case Nparam is high, the search space described by P is usually not fully analyzed because
of the required computational complexity. In order to limit the complexity of optimizing
one block, each coding parameter can be optimized independently from others. It allows to
reduce the search space and consequently the computational complexity. In such independent
case, (1.47) is turned into (1.48).

Card(P) =
Nparam

∑
j=1

Card(Pj) (1.48)

In the following, the complexity of analyzing Bi is noted Cpx(Bi) = Card(P). By
considering the dependencies between blocks exposed in Section 1.4 and the JRDO equation
written in 1.44, the complexity Cpx(X) of optimizing the whole signal X is equal to (1.49).

Cpx(X) =
N

∏
i=1

Cpx(Bi) =Cpx(Bi)
N (1.49)

Obviously, Cpx(X) may easily become unrealistic. This is one historical reason for
the use of independent assumption between blocks in most encoding systems. According
to (1.45) the complexity of exhaustively optimizing X is defined in (1.50) and ensures more
tractable computational complexity.

Cpx(X) =
N

∑
i=1

Cpx(Bi) = N ×Cpx(Bi) (1.50)

At this point, a quick example is given to illustrates the complexity of joint optimiza-
tion compared to independent optimization. By considering one parameter, i.e. p⃗i is 1-
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dimensional vector, that takes value over 35 possibilities, and the joint optimization of 4
distinct coding blocks. The corresponding ratio of complexity exposed in (1.51) assumes
that joint optimization requires more than 10000 times the computations of the independent
optimization, which may be intractable for real-time application.

N
∏
i=1

Cpx(Bi)

N
∑

i=1
Cpx(Bi)

=
354

35×4
= 10718.75 (1.51)

In the next Chapter, we discuss the hybrid video coding standard HEVC and its related
dependencies for global optimization purpose.



Chapter 2

The hybrid video coding standard:
H.265/HEVC

Introduction

The HEVC standard [ITb, ISOb] was released in 2013 by the JCT-VC established jointly by
the ITU-T VCEG and the ISO MPEG. HEVC enables up to 50% bitrate savings compared to
AVC [ITa, ISOa] for equal perceptual video quality. Le Tanou et al. announce in [LTB18] an
increase in complexity of a factor 4x and 2x for encoding and decoding, respectively. An
overview of HEVC is provided by Sullivan et al. in [SOHW12] and an overview of AVC is
provided Wiegand et al. in [WSBL03]. Ohm et al. proposed in [OSS+12] a comparison of
the coding efficiency for video coding standards.

Like its predecessor, HEVC is a block-based coding standard. The video sequence is
divided into Group of Picturess (GOPs), each GOP being composed of several frames. Each
frame is then divided into blocks of pixels. These blocks are further processed using coding
tools such as the quantization or the prediction, respectively introduced in Section 1.2 and
Section 1.3. MPEG standards are also called hybrid as they combine temporal prediction
between pictures of the video sequence with transform coding techniques applied on the
prediction error.

The architecture of an HEVC video encoder is presented in Fig. 2.1. Frames are first
sequenced, depending of the requested coding scheme that may be decided prior to the
encoding procedure. This stage is called the sequencing and defines some hierarchy between
pictures. Each picture is then split into blocks, using a QuadTree procedure in the case of
HEVC, as described by Kim et al. in [KML+12]. A predicted signal is generated for each
block, using either the Intra-frame prediction or the Inter-frame prediction, named the Motion
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Compensated Prediction (MCP). The residue is obtained by subtracting the prediction block
from the source block and is further transformed and quantized.

Fig. 2.1 Block-based Hybrid Coding Scheme

Finally, quantized transform coefficient levels and side informations are coded using
entropy coding, such as Context-Adaptive Binary Arithmetic Coding (CABAC). Side infor-
mations include the predictor, either Intra or Inter, that we also named the mode. The decoder
is included into a feedback-loop in order to feed an internal memory, named the Decoded
Picture Buffer (DPB), with the reconstructed blocks later used as prediction reference. For
reconstruction, the inverse transform and quantization are processed and depending of the
coding various in-loop filters may be applied. The two in-loop filters in HEVC are the
Deblocking filter used to smooth the distortions at the block boundaries and the Sample
Adaptive Offset (SAO) designed to lessen the ringing artifact. In [NBF+12] Norkin et al.
provide detailed information about the Deblocking filter while Fu et al. detail the SAO filter
in [FAA+12].
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In the next parts of this section, a non-exhaustive list of coding tools used in HEVC are
summarized. Detailed descriptions of HEVC are provided by Sze et al. in [SBS14] and Wien
in [Wie15].

2.1 Frames Sequencing

Coded video streams are divided into GOPs, that are composed of coded frames following a
given sequencing configuration. Frames are partitioned into one or several slices and each
slice can be independently decoded from other slices in the picture. Slices can be among three
major types and the GOP structure defines how frames are arranged in term of referencing
for prediction. In the following of this document, we do not consider slice segmentation of
frames and each one is only composed of one slice. When designing the GOP structure, each
frame is defined by the following parameters:

• Slice type may be either I, P or B.

• Picture Order Count (POC) is the frame number in display order.

• The frame number in coding/decoding order.

• Reference Pictures indicate slices that are used as reference for motion compensation.

• Quantization Parameter (QP) that is dependent of the frames hierarchy.

The different types of slices and the usual GOP structures are defined in the following
sections.

2.1.1 Slices Types

I-slice: Intra coded slice, is coded only using the Intra modes depicted in Section 2.3. An
I-slice only refers to already coded samples in the current slice for prediction and never to
other slices samples. Consequently, it can be coded and decoded independently from other
slices. However, I-slices are usually the less recurrent slice type in a GOP since the bit cost
of Intra modes is usually higher than the bit cost of Inter modes. An I-slice can also be par
of an Instantaneous Decoder Refresh (IDR) frame. IDR frame have same properties than a
frame only composed of I-slices, but additionally carry high level syntax elements set for all
following slices, until the next IDR.
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P-slice: Predictive coded slice, may use Intra or Inter coding modes,. The prediction is
restricted to only refer to one previously coded slice. Usually this slice corresponds to a past
frame, in terms of display order (POC), but the possibility to use slice in future frame is also
allowed. P-slices are more efficient in terms of coding efficiency than I-slices, but require to
decode at least one slice before being coded or decoded.

B-slice: Bi-directional coded slice, may use Intra or Inter coding modes, but suffer less
restriction than P-slices. B-slices may refer to slices in past and/or future frames using
forward or backward motion compensation, respectively. This type of slices can also use
bi-prediction, i.e. consider two reference slices at once. Generalized B-slices, written P/B-
slices, are introduced in AVC in order to allow forward/forward and backward/backward
bi-prediction in addition to the forward/backward original use. B-slices are the most efficient
in terms of coding efficiency, thanks to the numerous coding possibilities, but also the most
computationally complex.

For simplification purpose, we use the terminology I-frame, P-frame and B-frame to
refer to frames composed of an I-slice, P-slice or B-slice, respectively. The notion of GOP
often refers to two different coding structures and there is a common confusion about it. In
the first definition, a GOP refers to a periodic coding structure of successive pictures that
is used to encode the video sequence. The second definition, the GOP term refers to the
coding structure between two successive I-frames. Note that the periodic structure is repeated
an integer number of times between two I-frames. In this thesis, we aim to achieve global
optimality and jointly optimize the larger number of frames. Hence, we choose to use the
GOP term to designate successive pictures between two I-frames.

2.1.2 Common Coding Structures

We present in the following the four most used scenarios and related GOP structures in
current applications of video codings.

• All-Intra (AI) only considers I-frames as depicted in Fig. 2.2. Such scheme is usually
less complex than others by avoiding the Motion Estimation (ME). I-frame also have
the useful property of being editable on a frame-by-frame basis, without extensive
decoding. Due to the almost zero-latency of this configuration, it is often used for
primary contribution television using satellite transmission. Post production is also a
common use case of AI configuration due to its ease of edition.

• Random-Access (RA) is the coding scheme that enables the highest coding efficiency,
usually at the cost of high computational complexity and some delay. RA uses the
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Fig. 2.2 All-Intra Configuration

hierarchical B structure, that is presented by Schwarz et al. in [SMW05] and depicted
in Fig. 2.3. Classical use cases of such scheme are the Internet Protocol Television
(IPTV) and Over-The-Top (OTT) services.

Fig. 2.3 Random Access Configuration

• Low-Delay P (LDP) classically starts with one I-frame followed by a large number
of P-frames. As shown by the coding scheme illustrated in Fig. 2.4, frames are not
reordered and POC and coding order are identical. As long as the encoding frame-rate
matches the display frame-rate, such coding structure does not introduce any additional
delay in the video transmission. The higher coding efficiency compared to the AI
structure and the low latency compared to the RA structure makes it an obvious solution
for the video conferencing use case.

• Low-Delay B (LDB) is almost identical to the LDP, but consider B-frames instead
of P-frames. Thanks to the bi-prediction, highest coding efficiency may be achieved
compared to LDP. No additional delay is introduced, i.e. POC and coding order remain
identical, but the encoding process may be more complex for each frame, due to the
additional coding options.
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Fig. 2.4 Low Delay Configuration

HEVC uses a complex yet efficient referencing system. Sjöberg et al. proposed a detailed
description of the reference picture management in [SCF+12].

2.2 QuadTree Partitioning

In this subsection we present three of the unit types used to partition a frame during an HEVC
encoding: Coding Tree Unit (CTU), Coding Unit (CU) and Prediction Unit (PU). A first
framework using different concepts of units have been proposed by Han et al. in [HMK+10].
One general remark concerning the partitioning is that large partitions work well on smooth
areas, whereas small partitions are useful for highly-textured areas. A complete description
of the HEVC partitioning and the coding efficiency of partition parameters is provided by
Kim et al. in [KML+12].

2.2.1 Coding Tree Units and Coding Units

In HEVC, each frame is uniformly partitioned in CTUs, equivalent to MacroBlocks (MBs) in
AVC. CTUs are sequentially compressed in raster scan order. Then, each CTU can recursively
be further sub-divided in multiple CUs, following a QuadTree structure. Fig. 2.5 (a) shows
an illustration of the partitioning of a CTU in HEVC. CUs within a CTU are coded in a
recursive Z-scan order. The size of a CTU can be square of sizes 64x64, 32x32 or 16x16 and
is set for the entire coding procedure, up to the next IDR picture.

CUs are of size 2N x2N with N ∈ {32,16,8,4}. Video coding community often referred
to the size of a CU as the depth of the QuadTree. The largest CTU size (Ex. 64x64) is
equivalent to the minimum depth 0 and the 8x8 size (smallest) is equivalent to the maximum
CU depth 3.
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Fig. 2.5 Illustration of the recursive QuadTree Partitioning in HEVC

2.2.2 Prediction Units

Each CU at a given depth of the QuadTree can be predicted in one, two or four partitions,
named PUs. The possible partitions for a PU are presented in Fig. 2.6.

The prediction is applied on each PU independently, whatever the number of PUs within
the CU. However, all PUs that belong to the same CU use the same type of prediction (Intra
or Inter). We point out that Intra coding modes only support the squared PUs, hence 2Nx2N
or NxN.

2.3 Intra Coding

Intra prediction consists in sequentially predicting the source signal from neighboring recon-
structed pixels within the same frame, used as reference. Prediction is built by copying or
interpolating reference pixels onto target pixels, according to a rule specified by the predictor.
In the case of Intra coding, reference pixels used to predict the current PU are depicted in
Fig. 2.7.

In HEVC, 35 possible predictors for Intra coding are available and presented in Fig. 2.7.
The DC-mode uses the average value of reference pixels and the Planar-mode is a bilinear
interpolation designed to preserve continuities along block boundaries. The 33 angular modes
represent a direction of projection to the reference pixels. An Intra coded CU of size 2Nx2N
is always composed of one PU of the same size, except for the highest allowed CU depth for
which 4 PUs of size NxN can be used.
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Fig. 2.6 Available Prediction Unit partitions in HEVC

Fig. 2.7 Intra Prediction in HEVC

It must be noted that a second Quadtree, named the residual QuadTree is applied on
each PU. Prediction information is carried at the PU-level. However, in the specific case of
Intra coding, prediction is effectively processed on units defined by this residual QuadTree,
named Transform Units (TUs). This process is highly effective to code gradual lumi-
nance/chrominance variation in a consistent direction.

Reconstructed samples used for prediction are available in the DPB at the decoder side,
that is further added to the residue. However, the decoder also needs to receive the Intra
predictor, in order to process the prediction. Coding the Intra predictor can take advantage
of statistical redundancies with spatially previous coding modes due to the local spatial
correlation. The Intra predictor can be coded in two ways.

The first solution to transmit the coding mode is based on the Most Probable Modes
(MPMs). Using the surrounding PUs coding modes, i.e. left and above PUs modes, a set
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of 3 MPMs is selected. In case the considered Intra predictor matches one of the predictors
included in the MPMs, only the index within this reduced set is transmitted. In the case MPMs
are not used, the second option is to transmit the Intra predictor using a fixed length code of
5 bits.

For a complete explanation on Intra coding in HEVC standard, the reader is referred to
the work of Lainema et al. in [LBH+12].

2.4 Inter Coding

Inter coding is briefly presented by focusing on two important processes: the motion estima-
tion/compensation and the motion vector prediction. Also, a description of special coding
modes Skip and Merge is provided.

2.4.1 Motion Estimation/Compensation

Two solutions exist to deal with the temporal redundancy present in a video signal, the
frame (or block) difference and the Displaced Frame Difference (DFD). In the case of frame
difference, the co-located block in the reference picture is used as a predictor, while DFD
considers a motion compensated block. In natural sequences, motion is present due to moving
objects, shot transitions or camera movements.

The ME consists into estimating, through block matching technique, the apparent motion
of the current block one tries to predict. It aims to find corresponding points between the
current block and the reference frame in order to obtain the optimal predictor, associated
to a Motion Vector (MV). Once the MV is estimated, the reference frame is compensated
in order to be re-aligned with the current frame. Hence, the Inter prediction is also named
the Motion Compensated Prediction (MCP) and is represented in the Fig. 2.8. In HEVC,
the MCP is applied at the PU level. The ME, that is highly computationally complex, must be
applied independently for each PU. That explains why it is often considered as a complexity
bottleneck in an encoder.

2.4.2 Motion Vector Prediction

The MV, similarly to the Intra predictor, is not transmitted to the entropy coder as raw
data. A prediction process named the Advanced Motion Vector Prediction (AMVP) is used
in order to obtain the predicted MV, and the encoder only transmits the Motion Vector
Difference (MVD) that is the prediction error between the actual MV and its corresponding
predicted MV. In HEVC, two candidates are available and the AMVP chooses the predicted
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Fig. 2.8 Motion Compensation Illustration

MV among these candidates. The index of the predicted MV in the list, signaled by a boolean
flag for AMVP, is required for the decoding.

The concept of using the motion prediction is similar to the use of MPMs in Intra coding.
One assumes the motion to be locally homogeneous either spatially or temporally. The case
of consistent motion on the spatial dimension is taken into account by adding motion vectors
from the left and above PUs within the same frame to the candidate list. If there is less than
2 spatial candidates, the MV of the co-located block in the reference frame may be used as a
candidate temporal predictor.

2.4.3 Merge and Skip modes

Two particular coding modes may be identified among Inter coding modes: Merge1 and Skip.
Inter coding consists in motion compensation and AMVP in order to transmit the residual
samples and the motion syntax data to the decoder, including the predicted MV index and
the MVD. However, sometimes the motion may be consistent on a large spatial area, e.g.
during a camera panning. The predicted PU may also be identical to the current one, e.g.
static background scene. Merge and Skip modes have been designed to take advantages of
theses situations.

As for the AMVP, several candidates in a list are considered as potential predicted MV.
The list is derived from spatial and temporal neighboring MVs, but five candidates are
considered compared to the two in AMVP. In the case of Merge mode, each potential
predicted MV is evaluated in order to obtain the best predictor, i.e. the MVD is set to
zero. The high coding efficiency of this mode comes from the possibility to merge large

1The Merge mode was introduced in the HEVC standard and works similarly to the Direct mode introduced
in the AVC standard.
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number of PUs and only define once their motion, since each PU inherits the motion from
neighboring PUs. The design and coding efficiency of the Merge mode are detailed by Helle
et al. in [HOB+12].

The Skip mode, as the Merge mode, does not involve any ME nor include motion data
outside the predicted MV index. The additional feature of the Skip mode is to not transmit
any residue. Consequently, the predicted signal is equivalent to the reconstructed one. Due
to its design, the Skip mode is signaled as a particular Merge mode case. However, the
Skip mode have a particular behavior in terms of R-D and complexity. Its computational
complexity is lower than other modes, its rate is theoretically zero and its resulting distortion
cannot be altered using other parameters such as the quantization step ∆. For these reasons,
it is often referred as one of the three main modes when designing encoding optimization
algorithms: Intra, Inter and Skip.

2.5 Transform and Quantization

Each CU is split into PUs in order to be efficiently predicted, but is also split into TUs
following a second QuadTree named the Residual QuadTree (RQT). A TU is a squared block
of size 4x4, 8x8, 16x16 or 32x32, composed of coefficients resulting from DCT functions
applied on the residue. The DCT-II is presented by Ahmed et al. in [ATR74] and an analysis
of the DCT coefficients in image processing is provided by Lam and Goodman in [LW00].
The Discrete Sine Transform (DST)-VII may also be used in place of the DCT-II for the
particular case of 4x4 Intra prediction.

DCT and DST have convenient properties for the video coding purpose:

• The transformation is orthogonal and reversible, thus the inverse operation may be
implemented at the decoder side with transpose transform. It should be noted that for
standard compliance matters, a fixed point approximation is considered on transforms,
to get a full fixed point reversibility.

• Most often, energy is more compacted in the frequency domain than in the spatial
domain. Spatial information is for the most part included in the low frequencies and
often the highest frequencies do not carry any information. It results into using less
bits to transmit the same information.

• The HVS happens to be more sensitive to low frequencies variations than high fre-
quencies variations. When using the quantization, this property allow to quantize more
aggressively high frequencies than the low ones and thus save rate by introducing
barely noticeable distortion.
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Once the residue is transformed, the obtained transform coefficients are quantized ac-
cording to the QP value. QP is set at the CU level and takes integer value in a set as
QP ∈ {0, ...,51}. Small values result into low distortion, while high values correspond to
high distortion. The QP corresponds to a quantization step-size ∆, the distance between two
reconstructed level, as defined by the function 2.1.

∆
2 = 2

QP−4
3 (2.1)

Finally, quantized transform residues are processed and arranged by an entropy coder
before being transmitted to the decoder. Detailed information about the transform coefficient
coding is provided by Sole et al. in [SJN+12a].

For encoding optimization purpose, some algorithms named Adaptive Quantization
(AQ) methods may be used. The concept is to apply different QP for each CU in order
to better correlate with source distribution or aim for global optimization. In order to
signal the different QPs, a quantization parameter is predicted based on above and left CUs
respective QP, and only the difference with this predicted value is transmitted, named the
delta quantizer.

2.6 Entropy Coding

The different tools available in HEVC and presented above produce a number of parameters,
named Syntax Elements (SEs), that are required for the decoding process. In HEVC the
only entropy coding method considered to process the SEs is named the CABAC, that is
overviewed by Marpe et al. in [MSW10] under the AVC context. Sze and Budagavi present
in [SB12] an improved version of CABAC in the context of HEVC, that aims to overcome
the throughput limitations of CABAC. The design of the CABAC can be decomposed into
three key operations as depicted in Fig. 2.9: Binarization, Context Modeling and Arithmetic
Coding.

Each SE is first binarized into symbols named bins if necessary, using different methods
listed in [SB12] that depends of the SE type. Second, each bin may be context coded or
bypass coded as for non-MPM Intra modes (except the first bin). In the case of context coding,
the bin’s value probability is estimated based on the previously coded bins. In the case of
bypass coding, the probability is supposed to be 0.5. Whatever the probability, arithmetic
coding is used in order to obtain the bitstream. If context coded is used, a feedback-loop
updates the context for next probability estimations.

In previous compression standards, such as AVC, another entropy coding method named
Context-Adaptive Variable-Length Coding (CAVLC) and based on Variable-Length Coding
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(VLC) were also used. However, VLC limits the output code to an integer number of bits
for each symbol. Arithmetic coding theoretically achieves floating number of bits for each
symbol. Consequently, even if the CABAC entropy coder estimates an integer number of bits,
the per-symbol estimation is closer to the actual entropy value, hence more accurate. Thus,
CABAC significantly outperforms CAVLC and is the only considered method in HEVC.

2.7 Common Test Conditions

In order to allow fair comparison between video coding contributions, in the context of
standardization, some Common Test Conditions (CTC) are provided along with each standard.
The CTC are a set of requirements to meet, so that different coding tools can be compared.
CTC are usually based on the common coding structures described in Section 2.1.2. In the
case of algorithms that do not modify a standard, it is also recommended to follow CTC
recommendations for fair comparison. In the context of HEVC, Bossen presents the CTC
in[Bos13] that defines the following rules to follow:

• 24 Sequences spread into 6 classes (A, B, C, D, E and F). Each class represents a
particular resolution (classA-E) or content type (classF is "screen content").

• Resolution, framerate, bitdepth and number of frames to encode are fixed for each
sequence

• The Intra Period, i.e. the frequency of I-frame (Frame only composed of I-Slices) is also
fixed and defined as a function of the framerate. See Table. 2.1 for the corresponding
rules.

• Base QP are set to 22, 27, 32 and 37 for R-D curves achievement. Offsets between
frames are also set based on the coding structure.

Fig. 2.9 Framework of CABAC. ❶: SEs may be binary before CABAC. ❷: SEs are coded in
Bypass mode or Context mode. ❸: Bin’s probability is transfered for arithmetic coding. ❹:
Context is updated for probability estimation.
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Table 2.1 I-Frame period based on Framerate as recommended by the CTC proposed by
Bossen in [Bos13]

Framerate (frame/sec) I-Period (in frames)
20 16
24 24
30 32
50 48
60 64

Experimental results presented in the following of this document follow the general CTC
of HEVC presented above, if not mentioned otherwise.

2.8 Dependencies related to Hybrid Video Coding

In previous sections, we overview some of the coding tools supported by the HEVC standard.
Several of these tools introduce dependencies, i.e. achievable coding efficiency may be de-
pendent of previous coding decisions if not all. Because of complexity constraints, numerous
encoding decisions are optimized locally and independently from each other. However, these
dependencies suggest that global optimization can only be achieved by considering joint
decisions. We depict in the following the various dependencies related to the hybrid video
coding scheme.

2.8.1 Dependency related to samples prediction

Block-based hybrid video coding scheme like HEVC makes use of predictive coding and
quantization, among other tools. Dependencies described in Section 1.4 are thus present
in the context of HEVC and must be taken into account for global optimization purpose.
However, the prediction in HEVC is either spatial (Intra coding) or temporal (Inter coding),
resulting in spatial and temporal distortion propagation, respectively.

In case of Intra coding, the distortion is propagated from right and bottom samples
borders of the reference block. This spatial distortion propagation is often compensated by
trying to reduce the initial distortion made on reference samples. Indeed, the reconstructed
pixels used for reference may be first filtered using a three-tap smoothing filter. However,
filter makes more complex the modeling of the distortion propagation from PU to PU.

In case of Inter coding, the MCP is a copy-paste process with sub-pel accuracy and a
given amount of residue transmitted after quantization. Consequently, an important part of
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the reference samples distortion may be projected on the current PU. Under the assumption
that distortion is uniformly distributed among pixels, the overlapping of MCP over several
reference CU can easily be taken into account. After a frame encoding, the post-processing
Deblocking filter may affect the border samples of each block. Because of it, temporal
distortion propagation can be difficult to model. However, the Deblocking filter influence is
often ignored to simplify the problem.

These two dependencies will be named the spatial distortion propagation and the temporal
distortion propagation in the following chapters.

2.8.2 Dependency related to side informations prediction

As presented in Section 2.3, the Intra predictor may be transmitted using the MPM methods.
MPM is a set of three spatial predictors based on the prediction modes used for PUs on
the left and above of the current one. The signalization of the Intra predictor requires less
bits using MPM than the bypass coding for the non-MPM modes. Consequently, re-using
identical predictors is slightly favored. This is a supplementary dependency inherent to
HEVC since the syntax cost of Intra predictor depends on the previous coding decisions.

A similar observation is made on the coding efficiency for motion information. The MV
resulting from the ME is predicted from spatial or temporal neighboring MVs, in order to
limit the transmitted motion data for MVD. Moreover, Merge and Skip modes efficiency rely
on the motion homogeneity. Whatever the chosen motion vector for a given PU, it influences
the coding efficiency of Inter coding modes for the spatially close PUs.

It must be taken into account that coding an Intra CU within a group of several Inter CUs
breaks the motion homogeneity. Since an Intra PU does not carry any motion information,
the virtual MV considered for predicting other PUs’ MVs is set to zero motion vector. This
broken homogeneity may result into reducing the coding efficiency of several PUs, i.e. the
prediction quality of their MVs. Nevertheless, the predicted MVs competition proposed in
HEVC is supposed to limit cases of inefficient MV prediction.

QP is another syntax element predicted based on the values used on neighboring CUs.
In the context of AQ, only the delta quantizer is transmitted, i.e. the difference between
current QP and a QP that is predicted based on available neighboring ones. It should be
taken into account when designing such method that heterogeneous field of QPs may result
into performance losses, because of the syntax cost overhead. This dependency is named the
quantizer signalization dependency.
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2.8.3 Dependency related to cross-processing

Individual CUs are processed sequentially using several coding tools, e.g. prediction, trans-
formation and quantization. The sequential processing introduces a dependency between the
different coding steps, i.e. the efficiency of one coding step depends on the result from a pre-
viously applied coding decision. An example of this dependency related to cross-processing
and how it may be exploited is given as follow:

• We know transformation better compacts the energy of a signal, here the residue, with
very little high frequencies

• We observe that the optimization of the transform coding obviously depends on the
residue output of the prediction

• Thus, we assume that prediction decision that minimizes the residue variance intrin-
sically leads to minimize high frequencies. Consequently, it leads to highly efficient
transformation

Dependency related to cross-processing increases exponentially the number of parameter
combinations for one coding unit. Thus, the exhaustive joint optimization of coding steps for
a single coding unit is highly complex. Some joint optimization of different coding steps
have been considered by design in HEVC, examples:

• Transformed residue coefficients can be scanned in different order in case of Intra
coding. This scan order is set based on the prediction angular direction and this
simplification is named Mode Dependent Coding Scan (MDCS)

• DST-VII is used to replace DCT-II only if the prediction block of size 4x4 is Intra
coded. This choice is due to the statistical properties of an Intra 4x4 residual block.

• Quantization matrices enabling frequency dependent scaling are allowed in HEVC.
When default matrices are used, they depend on the Intra or Inter decision, the TU size
and the color component

• etc.

All of these a priori constraints made in the standard saves substantial computational
complexity by reducing the total number of considered combinatorics. However, non-
normative constraints may be necessary in order to optimize coding decisions with reasonable
complexity.
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2.8.4 Dependency related to Entropic Coding

The last dependency is considered from a more global point of view. During the entropy
coding procedure, each contextualized bin have a syntax cost that depends on its value
probability. Arithmetic coding tends toward the entropy limit, and the entropy is the lowest
when probability distribution is sharp. Hence, we conclude that the less variations is allowed
in terms of SE values, the lower is the syntax cost. Such constraint limits the encoder
versatility and may degrade residue coding efficiency, hence it should be considered with
caution. Note that different context models can be used for different bins, the selected context
being based on the type of syntax element, neighboring information, etc. Consequently,
current coding parameters may also affect the context modeling of neighboring CUs.

Conclusion

In this Chapter, we described some of coding tools considered in the context of the HEVC
standard. Thanks to this overview, we are able to identify dependencies between coding
decisions, introduced by the standard constraints. Some dependencies are the distortion
propagation over coding units, spatially or temporally, induced by the prediction process. As
it is described in the following chapters, a large number of state of the art methods focused
on these dependencies. Remaining dependencies are related to the cross-processing and the
signalization of coding parameters, that uses prediction, context modeling and arithmetic
coding. In the next chapter, we focus on the HEVC Intra coding and aim to estimate interests,
in terms of coding efficiency, to take into account dependencies for RDO.





Chapter 3

Coding dependencies in Intra coding

As shown in Chapter 2, several dependencies may affect the Intra coding efficiency in the
context of HEVC. These dependencies are identified as the spatial distortion propagation,
the MPM dependency and the entropy coding dependency. The dependency related to the
signalization of the quantizer, i.e. the potential overhead for syntax element coding, exists
only when the AQ is enabled. This latter is discussed in Section 3.4 since no AQ method is
considered otherwise.

In this chapter, we consider the problem of global optimization in terms of rate-distortion
performance taking into account these dependencies. Methods studied or proposed in the
next sections focus on the consideration of the dependencies between coding units subject to
an Intra-only coding scheme. The most common dependency to consider is the distortion
propagation, that can be modeled or intuitively introduced within the RDO process. Most of
state-of-the-art methods belong to this category of dependent optimization.

We first propose an experiment aiming to estimate the upper-bound coding efficiency that
can be obtained when no distortion is made on reference samples used for Intra prediction,
i.e. if there is no spatial distortion propagation. The HEVC encoder is modified in order to
use the source samples for prediction, instead of the reconstructed samples. Obviously, the
produced bitstream cannot be decoded due to the prediction mismatch between encoder and
decoder. However, the distortion and bitrate can still be estimated during the RDO process.
The resulting coding performance, i.e. the R-D couple, is stated as the maximum coding
efficiency (upper-bound), assuming that nullify distortion onto reference is achievable and
free of signalization overhead cost. BD-BR results of this experiment against the classical
encoding in AI configuration are given in Table. 3.1, under the CTC. Five QPs are used to
estimate gains: {22,27,32,37,42}.

It should be noted that the results presented in Table. 3.1 are not decodable. However,
considering the large amount of bitrate savings, i.e. −25.20% in average, we assume that
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Table 3.1 Virtual YUV-BD-BR (PSNR) of using source as prediction reference against
reconstructed in HEVC Test Model (HM)16.12.

Maximum Minimum Average
Class A -30.65% -7.36% -21.65%
Class B -35.68% -16.60% -25.82%
Class C -40.21% -14.47% -27.89%
Class D -29.96% -11.01% -18.90%
Class E -41.49% -14.50% -30.83%

All -41.19% -7.36% -25.20%

significant R-D gains could be achieved by optimizing the distortion made onto samples used
as reference. These results and conclusion were the basic justification for the work described
in this Chapter. Despite the interest of considering spatial distortion propagation, we will
explain later that other existing dependencies may also impact the global optimization, espe-
cially in the high-rate case. Some results of this chapter have been published in [BLTR+17]
and [BLTR+18a].

The remainder of this chapter is organized as follows. Section 3.1 presents the state-of-
the-art methods that consider the spatial distortion propagation during the RDO for achieving
global optimization over the whole picture. Then, a study aiming to evaluate the maximum
achievable coding efficiency, in the context of joint optimization, is presented in Section 3.2.
We focus on jointly optimizing multiple prediction modes, related to different PUs. Sec-
tion 3.3 depicts supplementary experiments and analysis to evaluate the opportunities of low
complexity implementation and the respective impact of each dependency. Finally, the first
method designed for prediction mode optimization in Section 3.2 is extended to the joint
optimization of local quantizers in Section 3.4.

3.1 Previous Methods

In the context of a block-based coding scheme, the DCT coefficients quantization introduces
error that is higher near the block boundaries, as explained by Robertson and Stevenson
in [RS01]. The biased distortion distribution is also a justification for using the deblocking
filter, as stated by List et al. in [LJL+03]. We point out that this statement is not limited to
the Intra prediction and may also apply to the case of motion compensated prediction. Indeed,
the correlation between two pixels is inversely relative to the distance between them. As the
Intra prediction is basically a projection of neighbors pixels of the block, the prediction error
in the current block naturally increases for pixels near the bottom-right corner, because they



3.1 Previous Methods 59

Fig. 3.1 Spatial distribution of the prediction error ε = (x− x̂)2 with x the source sample and
x̂ the predicted sample, using diagonal-left predictor (mode number 18)

are less correlated with reference pixels. An illustration of this prediction error distribution is
given in Fig. 3.1.

Consequently, the prediction error distribution within a block mixed with the quantization
error property explain why the distortion is higher on the right and bottom boundaries of the
block. Note that for a given quantizer, the distortion is bounded by the quantization error, as
the reconstructed signal is added to the prediction error. Furthermore, because these pixels
are further used as reference for the neighboring blocks prediction, an evident loss in terms of
global optimality is exhibited. The HEVC standard may partially solve this issue by filtering
the reference pixels before prediction in order to avoid generating wrong directional edges or
structures to the predicted block. In next sections, we discuss other methods that have been
proposed to overcome this issue.

In the following, we divide the related methods in two categories. The first one is stated
minimization of reference samples distortion. Methods in this category consists into designing
a solution that aims to compensate dependencies and reduce their impact on global coding
efficiency. Instead of using models and hypotheses, such solutions are usually based on an
exhaustive search of optimality or they modify local decisions in order to minimize distortion
on samples further used as reference for prediction. The second category of methods is stated
distortion propagation modeling and depicts the methods that model the dependencies and
achieve global optimization through analytical solutions. These solutions use hypotheses and
mathematical solving and usually maintain the computational complexity acceptable.

3.1.1 Minimization of reference samples distortion

HEVC standard already implements some filters specifically designed to minimize the impact
of reference samples distortion. As mentioned above, a three-tap smoothing filter may be
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applied to the reference samples before prediction. Note that the larger is the PU size,
the more prediction modes use filtered reference samples. This type of smoothing is used
to prevent the propagation of wrong directional edges. Adapting the filtering selectively
based on the block size and prediction modes reduce contouring artifacts as stated by Wien
in [Wie03]. Another smoothing process is applied on first row and/or column of prediction
samples for DC, horizontal and vertical prediction directions. This solution enables 0.4%
bitrate savings as reported by Lainema et al. in [LBH+12].

Another solution to minimize the distortion on block boundaries, that should highly
improve the global efficiency of the encoding, is to use an adaptive quantization matrix. An
equal expected-value rule is proposed by Sullivan in [Sul05], that aims to adapt the dead-zone
parameter in order to keep the average error unchanged before and after quantization. Sullivan
method enables up to 1dB gain in the Joint Model (AVC Reference Software) (JM) 8.6, that
is the reference model of AVC. Tanizawa and Chujoh demonstrate the benefits of competing
multiple quantization matrices for each MB in [TC06], and present bitrate savings in AVC
up to 6.57%.

In [YHY09], Yu et al. propose to constraint the quantization error to be evenly distributed
among all coefficients, in order to achieve evenly distributed distortion in the pixel domain.
The proposed minimization problem is exposed in (3.1), with Di and σ2

i being the distortion
and variance of the ith coefficient from the 4x4 transformed residual block and DT the target
coefficient distortion.

min
D1,...,D16

∑
i

ln
σ2

i
Di

subject to Di = DT ,

Di < σ
2
i ,

(3.1)

The problem of (3.1) is solved using sequential quadratic programming and integrated
into a two-pass encoding. The first pass is used to determine optimal quantization step sizes
per coefficient, and the second pass actually applies the quantization steps to the coefficients.
Authors exhibit up to 12% bitrate savings in the context of AVC, but modifications of context
modeling in CABAC are mentioned but not described. Such modifications change the
decoding process and do not fall into the scope of this thesis.

Despite the obvious efficiency of these methods, they focus on balancing the distortion
inside a block and minimizing the boundaries distortion, while no observation or hypotheses
is made on how such distortion may propagate to other blocks. These methods assume that
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Fig. 3.2 Illustration of Weighted Cross Prediction

constraining the distortion distribution to be flat within the considered block reduces the
spatial distortion propagation, but there is no guarantee that it is the case.

In the context of AVC, 16x16 Intra blocks may be predicted using the Planar mode,
specifically designed to represent smoothly-varying regions. However, 4x4 blocks do not
have access to such tool in AVC. In order to address the situation of smoothly-varying and
small regions, i.e. 4x4 blocks, Yu et al. propose in [YGCZ08] to replace the DC prediction
mode for such blocks. Their method is named the Distance-based Weighting Prediction
(DWP) and consists in weighting the impact of reference pixels based on the inverse relative
distance with the current pixel they try to predict. X̂i, j is the predicted pixel at position i, j in
the block, with i the line and j the column. Li is the left reference pixel on the ith line and U j

is the upper reference pixel on the jth column. (3.2) describes the proposed new mode of
prediction.

X̂i, j =
(
Li × (i+1)+U j × ( j+1)+2

)
/(i+ j+2) (3.2)

This approach does not consequently improve prediction of pixels lying in the top-left
to bottom right diagonal of the block, but it has significant interest for pixel far from this
diagonal, i.e. spatially closer to one reference block than the other. Average bitrate savings
of 2.2% are enabled and a low-complexity version using integer approximation manages to
enable 1.8% average bitrate savings.

In [WPU+09], Wang et al. design an alternative to the DWP, named the Weighted Cross
Prediction (WCP), by using a more complex linear combination of reference pixels to predict
the current pixel. This model enables 0.6% average bitrate savings at a lowest complexity
than the integer approximation of DWP. WCP is illustrated in Fig. 3.2.
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s

Fig. 3.3 Joint Line and Pixel Prediction: Illustration of the two groups pixels

Zhang et al. acknowledge in [ZMG10] the possible bad performance of line-based
prediction for bottom-right pixels due to the poor correlation between those pixels and
reference pixels. To tackle this issue, they introduce a new Intra prediction mode in AVC
named Joint Line and Pixel Prediction (JLPP). It consists in processing separately the
right and bottom boundary pixels from others. The two groups of pixels are depicted in
Fig. 3.3. When using JLPP, the block composed of interior pixels is predicted, transformed
and quantized in similar way to AVC Intra coding. The remaining pixels are predicted
one by one using surrounding pixels and they are applied spatial quantization only (no
transformation). This additional mode enables 2.55% average bitrate savings but increases
the computational complexity of encoding to 170%. However, authors state that a low
complexity implementation at the encoder-side is possible and would require 60% of the
anchor encoding time.

Methods presented in [YGCZ08, WPU+09, ZMG10], that are described above allow a
better coding efficiency using additional prediction modes. These new tools compensate Intra
prediction drawbacks, i.e. the non-uniform distortion distribution within a block. However,
such method requires to change the decoding process and the standard, that is not the scope
of this thesis.

In [YCJ08], You et al. manage to achieve bitrate reduction without changing the decoding
part of AVC. The proposition focuses on the 4x4 prediction modes and consists in penalizing
more aggressively, into the RDO, the distortion created on the pixels usable for reference.
The classical R-D cost minimized for each 4x4 block is replaced by (3.3), with Dbound being
the distortion on pixels usable as reference for further prediction. This solution is a multi-pass
approach with tested values of α in the set [0,1,2]. Even if the model enables 1.70% average
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bitrate savings without modifying the standard, it implies important complexity increase due
to the multi-passes.

J = D+λ ×R+α ×Dbound (3.3)

3.1.2 Distortion propagation modeling

Motivated by the increasing distortion on block boundaries, that may substantially decrease
the Intra coding efficiency, Pang et al. introduce the Inter-Block Dependency Model (IBDM)
in [PAZ+11] for the purpose of distortion redistribution over coefficients. This model makes
use of the linear relationship between the residue variance in spatial domain and transformed
domain, and also relies on the orthogonality principle presented in Section 1.3.2. The IBDM
is defined in (3.4).

σ
2
C = E

[(
X − X̂

)2
]
·A+Dre f ·A (3.4)

σ2
C is the variance matrix of the coefficient residue in transformed domain, · is matrix

multiplication, X and X̂ are the source signal and its prediction value, respectively. Dre f

is the average distortion made on the reference pixels (up and left) and A is a transform
related matrix. The IBDM is experimentally verified and further estimated off-line as a linear
function of Dre f , expressed in (3.5) with B and σ2

C0 being constant matrices.

σ
2
C = B ·Dre f +σ

2
C0 (3.5)

The minimization problem is finally expressed in (3.6), that is solved using an iterative
approach. D f

i, j is the coefficient distortion in transform domain at position (i, j) for a block of
size NxN. DT is the target distortion, that is in the case of distortion redistribution problem,
the distortion obtained after the first RDO iteration.

min
D f

N
∑

i=1

N
∑
j=1

log
(

σ2
i, j/D f

i, j

)
s.t. 1

N2

N
∑

i=1

N
∑
j=1

D f
i, j ≤ DT

(3.6)

Note that the term to minimize, log
(

σ2
i, j/D f

i, j

)
, estimates the rate and is derived from

the Shannon bound. Based on the reformulated RDO, authors in [PAZ+11] enable gains up
to 2 dB in the reference model of AVC. However, 16x16 and 8x8 Intra coding modes were
disabled and the experiments were only conducted on 4 sequences, which is insufficient to
assess the performance of the method. Pang et al. reuse the IBDM for Rate Control (RC)
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purpose in [PAZ+13b], in the context of Audio-Video coding Standard (AVS). The solution
is still iteratively solved.

Sun et al. in [SAD+12] state that the initial use of the IBDM only aims to redistribute
the distortion within a block to avoid distortion propagation, and does not actually minimize
the boundary distortion. They consequently modify the constraint in (3.6) and rewrite it as
in (3.7).

min
D

N
∑

i=1

N
∑
j=1

log
(

σ2
i, j/Di, j

)
s.t. ω

(
N
∑

i=1
Di,N +

N−1
∑
j=1

DN, j

)
+

N−1
∑

i=1

N−1
∑
j=1

Di, j ≤ DT

(3.7)

ω is a weighting factor used to penalize the distortion injected on the right and bottom
boundaries. (3.7) is solved iteratively with ω being updated at each step according to (3.8).
The iteration stops when ω is higher than a predetermined threshold.

ω =

N
∑

i=1

N
∑
j=1

Di, j

N
∑

i=1
Di,N +

N−1
∑
j=1

DN, j

(3.8)

The index j stops at N −1 in order to avoid adding DN,N twice. Sun et al. implement this
proposal for HEVC in the reference model HM4.0 and it enables significant coding efficiency
improvements. Unfortunately, no information is provided about the required number of
iterations, or the computational complexity overhead.

Qingbo et al. propose in [QXB+14] a solution to address the problem of dependent
optimization in AVC Intra coding. They use accurate lagrangian estimation and multiple
lagrangian competition. Based on the Markov property of quantization errors, discussed
by Arnstein in [Arn75], and the supposed optimality of future decisions, authors reduce the
block distortion as a linear function of its neighbor distortion as expressed in (3.9).

Di+1 = aDi +b (3.9)

a and b are defined as linear functions of the quantization value, that are optimized prior
to the encoding with off-line training. Based on this dependency model, the λ computation
is expressed in (3.10).

λ
∗ =

d[Di+Di+1]
d∆

d[Ri+Ri+1]
d∆

(3.10)
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In order to make the model more robust to image contents variation, a framework named
Multiple Lagrangian Multiplier (MLM) is proposed. The concept is to optimize coding
decision according to each proposed lagrangian value. The resulting R-D costs can further
be compared in order to extract the coding decision that achieves global optimization, in
the limits of the proposed dependency model. The considered lagrangian values correspond
to different (a,b) couples trained to match different source content characteristics. When
considering one lagrangian, the model enables 0.46% average bitrate savings, in the context
of AVC for low-bitrate test case. This result increases to 0.99% and 1.15% using MLM
framework when putting in competition 2 and 4 lagrangian values, respectively.

Addressing the dependency related to Entropic Coding

Most of the studies cited before focus on improving the reconstructed quality of reference
pixels in order to compensate the potential distortion propagation. This popularity is consis-
tent with the obvious dependency inherent to the Intra coding scheme in MPEG standard.
However, some papers also focus on a less obvious dependency related to the CABAC. The
study we present below differs from the previous categories, by the considered dependency,
and is consequently presented apart.

Im et al. modify the rate estimation made by CABAC in [IGL12], in order to take
into account the non-integer bits f that are shared between consecutive groups of bins.
The modified R-D cost is defined in (3.11). Authors also extended this concept to HEVC
in [IGC15]. By avoiding an integer approximation of the rate, such solution enable BD-BR
improvements of −0.82% and −2.75% for Intra coding only of AVC and HEVC, respectively.
Note that in [IGC15] more important gains are enabled for IPPPP and IBBBP GOP structures.

J = D+λ × (R+ f ) (3.11)

This method has the interest of addressing the CABAC dependency and thus optimizing
the coding procedure at the frame-level. It is consequently more efficient that a joint
optimization on an area smaller than a frame. Nevertheless, it cannot address other cited
dependencies, such as the spatial distortion propagation or the MPM dependency.

3.2 Inter-Block Dependencies Consideration for Intra Cod-
ing Optimization

The studies cited in Section 3.1 are JRDO methods that improve the coding efficiency
when compare to Independent-RDO approach. Improvements are achieved by formalizing



66 Coding dependencies in Intra coding

dependencies in theoretical models or exhaustively searching for global optimality, under
constraints. However, such models are often using coarse assumptions resulting in simplified
dependency models. To the best of our knowledge, there is no reference proving the maximum
achievable gain of a coding decision model that considers intrinsic inter-block dependencies.

In this section we aim to make a quantitative evaluation of the benefits of JRDO methods
for Intra coding. Specifically, we focus on considering joint optimization of multiple blocks,
e.g. CUs or PUs. Based on the complexity formalization of exhaustive JRDO methods
exposed in Section 1.5, we limit the search space of the solution to a reasonable use case in
order to estimate the maximum achievable coding efficiency.

We propose to evaluate the maximum achievable gain of exhaustive joint optimization
of multiple CUs applied to intra prediction mode decision. From dependencies identified
in Section 2.8, we address the spatial distortion propagation, the MPM dependency and the
entropy coding dependency. Since the latest MPEG compression standards are based on
similar concepts, and thus similar dependencies, we chose to confirm our approach in both
HEVC and AVC standards. We introduce two JRDO models in Section 3.2.1: Dual-JRDO
and Quad-JRDO. Experimental results and bitrate savings of the proposed JRDO approaches
are presented and discussed in Section 3.2.2 for both AVC and HEVC.

3.2.1 Proposed JRDO models

Once the inter-block dependencies are defined, we consider Ji (p⃗i), the R-D cost of CUi

knowing p⃗i, if no dependencies interfere, either in terms of distortion or CABAC. We define
∆Ji
(

p⃗re f , p⃗i
)

as the intra propagation cost, with p⃗re f representing the coding decisions of
previous CUs that may affect CUi. The generic JRDO equation for CUi R-D cost is then
formalized as (3.12).

Ji
(

p⃗re f , p⃗i
)
= Ji (p⃗i)+∆Ji

(
p⃗re f , p⃗i

)
(3.12)

Studies cited in Section 3.1.2 have tried to model ∆Ji
(

p⃗re f , p⃗i
)

by simply considering
the spatial distortion propagation. In order to simplify implementations and keep the compu-
tational complexity reasonably low for the study, the joint optimization is limited to intra
prediction modes. Hence, we focus on PUs and the vector of coding parameters p⃗i is a 1-D
vector that designates the spatial predictor.

For a PU to encode with a JRDO approach, the difficulty consists in how to consider
neighboring PUs: either in terms of spatial distance, coding order, or both. Fig. 3.4 shows
an example of how the dependency may affect a given PU. If we focus on the dependencies
that may affect the PU7, we see that the prediction may refer to samples within PU1, PU4
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Fig. 3.4 QuadTree possible partitioning and related spatial dependencies illustration

and PU6. Theoretically, some spatial predictors available may refer to samples from PU8,
that is not encoded at the stage of estimating coding decision for PU7. In such case, the
reconstructed pixels from the closest PU (here PU6) are projected to replace the missing
ones. Moreover, the MPM coding solution used in HEVC introduces additional dependencies
with PU1 and PU6 to code the spatial predictor of PU7. Jointly optimizing the considered
PUs should significantly improve the coding efficiency of the spatial area. Nevertheless,
compression is applied sequentially and PU2, PU3 and PU5 have to be compressed first, in
order to have the correct coding context when deciding and coding PU7.

This observation highlights the difficulty of implementing exhaustive JRDO approaches
in intra coding: on the one hand jointly optimizing many PUs is highly complex in terms of
computation resources, and on the other hand ignoring three PUs leads to strong approxima-
tions on coding context. Models proposed in the following avoid these difficulties and apply
an exhaustive joint optimization on the current PU and neighboring PUs taking into account
both spatial and coding order distances.

Dual-JRDO

Z-scan is the coding order used to sequentially encode the four sub-PUs that form the
splitting decision. Based on Z-scan and local dependencies, one predicts that PUi+1 is highly
dependent of PUi if PUi+1 is the spatial right neighbor of PUi.
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(a) Dual-JRDO (b) Quad-JRDO

Fig. 3.5 Example of Dual-JRDO and Quad-JRDO

To confirm this, we experimentally verified that the right neighbor PU is often the most
dependent on the current PU to encode. This experimental verification is described after
the description of the current method. Therefore, we propose the Dual-JRDO model that
jointly optimizes the intra prediction mode of each PU with the prediction mode of its right
neighbor. In order to avoid wrong syntax context states, Dual-JRDO handles two cases:

• If PUi right neighbor is PUi+1, apply the Dual-JRDO.

• Otherwise, Independent-RDO is applied on the current PUi.

With p⃗∗i is the selected predictor to encode PUi and p⃗′i+1 is the estimated optimal coding
mode for PUi+1, Dual-JRDO solution is expressed by (3.13).

{
p⃗∗i , p⃗′i+1

}
= argmin

{ p⃗i,p⃗i+1}
{Ji (p⃗i)+ Ji+1 (p⃗i, p⃗i+1)} (3.13)

In HEVC, the neighboring PUs can be further split, leading to p⃗′i+1 ̸= p⃗∗i+1. To overcome
this problem, one considers that two PUs coming from the same split process have a high
probability to have the same final partition size. Statistically, we can notice that the probability
of this assumption to be true increases as PU size decreases. An example of Dual-JRDO is
shown in Figure 3.5 (a), with dotted lines delimiting the optimization area and dark gray area
refers to block coded independently using Independent-RDO.

In Dual-JRDO, K2 possibilities are explored for half of the PUs and K for the other half,
with K the number of Intra prediction modes equal to 35 in HEVC. Concerning AVC, K = 4
for 16x16 blocks and K = 9 for others. In the case of Independent-RDO, K possibilities
are explored for all PUs. We deduce that in this particular case Dual-JRDO multiplies the
complexity of Independent-RDO by (K +1)/2.
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Fig. 3.6 Proposed coding scheme for optimizing jointly a PU with its right neighbor.

In AVC, block partitioning necessarily splits blocks into partitions of the same size, thus
we have p⃗′i+1 = p⃗∗i+1 leading to complexity reduction. Results of Dual-JRDO for both AVC
and HEVC standards are presented in Section 3.2.2.

Experiments on joint optimization: use the right or the bottom neighbor?

Due to the coding order of CUs and PUs in HEVC, spatially neighboring units may not be
the next to encode. However, these units may have strong dependencies with the current one,
especially in terms of spatial distortion propagation. One assumption made when we design
the Dual-JRDO was that dependency with right neighbor is more important than dependency
with the bottom neighbor. A simplified coding scheme is first proposed in order to estimate
the correctness of such assumption:

• Disable the QuadTree partitioning

• Fix CTU size and constraint the PU to be coded in 2Nx2N mode

• Fix TU size

In this simplified coding scheme, PUs are coded in raster scan order and we propose
the two coding schemes described in Fig. 3.6 and Fig. 3.7. The current PU is optimized
jointly using the Dual-JRDO with either its right neighbor (Fig. 3.6) or its bottom neighbor
(Fig. 3.7). In the case of joint optimization with the bottom neighbor, several PUs are required
to be coded during the exhaustive analysis of Dual-JRDO. In order to avoid optimizing a
large number of PUs jointly, these PUs are considered as bypassed and are coded with
Independent-RDO method. The procedure is summarized as follow:

1. Test the next prediction mode for the current PU

2. Apply Independent-RDO on all bypassed PUs
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3. Apply Independent-RDO on the bottom PU, save the total R-D cost for all analyzed
PUs and go to step 1

Fig. 3.7 Proposed coding scheme for optimizing jointly a PU with its bottom neighbor.

The prediction mode of current PU that leads to the minimal total R-D cost is set and
the next PU is analyzed. The coding efficiency of each method are reported in Table. 3.2
for various size of CU/PU and TU. The first observation is that optimizing jointly the
right neighbor is always more beneficial than the bottom one. The second observation is
that when both neighboring PUs are jointly optimized, the resulting gains are comparable
to the one obtained with only optimizing jointly the current and right PU. However, we
acknowledge that the conclusion may be debatable, since the impact from all bypassed PUs
is not considered.

Similar experiment have been processed in order to choose not applying the Dual-JRDO
when the two neighboring PUs do not follow each other in coding order. The results shows
the coding efficiency improvement to be negligible, when always applying Dual-JRDO,
compared to the proposal.

Table 3.2 Average Y-BD-BR (PSNR) depending of which neighboring PU is jointly optimized
in HM16.12 Dual-JRDO.

CU Size TU Size Right PU Optimized Bottom PU Optimized Both PUs Optimized

16x16
16x16 -0.56% -0.04% -0.56%
8x8 -0.79% -0.01% -0.79%
4x4 -1.84% -0.65% -1.84%

8x8
8x8 -1.80% -0.21% -1.99%
4x4 -2.90% -1.00% -3.23%
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Quad-JRDO

We can see from Figure 2.7 that numerous spatial predictors exploit vertical spatial correla-
tions. By definition, Dual-JRDO does not consider distortion propagated vertically, because
the distortion of PUi bottom samples is not propagated to its right neighbor. Quad-JRDO
proposes to include vertical neighbors of PUi in the joint optimization process.

Quad-JRDO optimizes all sub-PUs coming from the same split operation. At CTU level,
raster scan order imposes to code the whole line of PUs before reaching bottom neighbors of
PUi. This results in unachievable computational complexity or wrong syntax context states,
reason why Quad-JRDO is not applied at CTU nor MB level. The optimization formulation
of Quad-JRDO is given in (3.14).

{p⃗∗k}
i+3
k=i = argmin

{ p⃗k}i+3
k=i

i+3

∑
k=i

{
Jk

(
{p⃗l}k

l=i

)}
(3.14)

Quad-JRDO supposes that all sub-PUs are not further split, which is not matching the
QuadTree structure in HEVC. To overcome this limitation, (3.14) is only applied to the special
case of NxN mode, other cases use the Independent-RDO. An example of Quad-JRDO is
shown in Figure 3.5 (b). The use of Quad-JRDO for NxN analysis multiplies the complexity
of Independent-RDO by K3/4.

In AVC, MBs are always split in sub-partitions of same size, either 8x8 or 4x4 partitions.
In the case of 8x8 partition mode, coding parameters of the four 8x8 blocks are optimized
jointly. In the case of 4x4 partition mode, each 8x8 block jointly optimizes the four 4x4
sub-blocks. Experimental configurations and R-D results for both standards are presented
and discussed in Section 3.2.2.

3.2.2 Experiments

The two methods exposed in Section 3.2.1 have been implemented into HEVC and AVC
reference test models, HM16.6 [MRB+14] and JM19.0 [TLSS09] respectively. The set
of sequences utilized is picked among JCT-VC test set presented by Bossen in [Bos13].
Furthermore, because of the computational complexity of our methods, the encoding is
restricted to the first frame of each sequence, in All-Intra configuration. One remembers
that neither tested nor referenced schemes are restricted, especially in terms of QuadTree
partitioning. Dual-JRDO and Quad-JRDO schemes assumes neighboring PUs to be of same
size than current one for optimization, not constraining their final size.

Tables 3.3 and 3.4 present coding efficiency improvements of Dual-JRDO and Quad-
JRDO against Independent-RDO (Anchors). Results use Bjøntegaard metric [Bjo01a] and
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are expressed in BD-BR, i.e. the percentage of bitrate savings to achieve similar distortion,
measured as frame PSNR. Even if the initial metric is expressed using 4 different QP values,
we use it with 5 QP values (QP ∈ {22,27,32,37,42}) to cover a larger range of bitrates.
Besides, since the proposed solutions are mainly used to optimize luminance (Y) encoding,
we focuses on Y BD-BR, nevertheless, similar gains have been obtained in YUV 4:2:0.

Results on Dual-JRDO

Results of Dual-JRDO are depicted in Table. 3.3. We observe constant gains against
Independent-RDO. Average bitrate savings are of −0.77% and of −0.71% in JM19.0 and
HM16.6, respectively. Dual-JRDO outperforms Independent-RDO up to more than −1.3%
in both reference softwares. However, one observes that the BasketballPass sequence in
JM19.0 is the only one to present negligible losses. Dual-JRDO slightly favors horizontal
predictions. In few cases where vertical prediction is better than horizontal, Dual-JRDO can
slightly penalize coding efficiency.

The results presented in [QXB+14] come from two separate solutions, the first contri-
bution is related to a JRDO approach and the second contribution to a MLM framework.
In their JRDO approach, similar dependencies as Dual-JRDO are considered and gains
announced for video of 1920x1080 resolution are about −0.13%. Our study on identical test
set shows that achievable gains are on average −0.80% for AVC. They estimate the distortion
dependency with an off-line linear distortion propagation model, and analytically deduct the
related optimal λ . Our exhaustive joint prediction optimization demonstrates that there is
room for improvement by modeling dependencies.

Results on Quad-JRDO

In the case of the Quad-JRDO model presented in Section 3.2.1, the optimization is applied
only to 4x4 and 8x8 blocks in JM19.0, and NxN case in HM16.6. The remaining decisions
are based on Independent-RDO. Results for both implementations are presented in Table 3.4.

In [YCJ08], You et al. reports bitrate savings of 1.70% in the JM, that are comparable
with the results of Quad-JRDO. Their optimization proposal is coarser than the proposed
exhaustive search, but indirectly optimize an area of 16 blocks, or PU. We believe that, as
shown by comparing Dual-JRDO and Quad-JRDO performance, larger area of optimization
allow larger gains. But the computational complexity prevent an exhaustive verification of
this statement.

As expected, much higher gains are observed with this second model, which is also much
more complex. In average, bitrate savings over Independent-RDO are −1.78% in JM19.0 and
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Table 3.3 Y BD-Rate of Dual-JRDO in JM19.0 and HM16.6

Test sequences JM19.0 HM16.6
1920x1080 Kimono -1.01% -0.21%

ParkScene -0.68% -0.48%
Cactus -0.80% -0.62%

BQTerrace -0.58% -0.69%
BasketballDrive -0.93% -0.47%

Average -0.80% -0.49%
1280x720 FourPeople -0.77% -0.68%

Johnny -0.94% -0.41%
KristenAndSara -0.96% -0.47%

Average -0.89% -0.52%
832x480 RaceHorses -0.57% -0.50%

BQMall -0.75% -0.89%
PartyScene -0.46% -0.88%

BasketballDrill -1.37% -1.31%
Average -0.89% -0.90%

416x240 RaceHorses -0.67% -0.98%
BQSquare -0.73% -1.10%

BlowingBubbles -0.66% -0.61%
BasketballPass 0.08% -1.02%

Average -0.50% -0.93%
All Average -0.77% -0.71%

Maximum -1.37% -1.31%
Minimum 0.08% -0.21%

−1.47% in HM16.6. BasketballPass sequence, for which negligible losses were observed in
Dual-JRDO, now outperforms Independent-RDO from −1.09% in Quad-JRDO. Besides, we
must note that the Quad JRDO is less efficient than Dual JRDO for some high resolution
sequences such as Kimono and BasketballDrive. One explanation is that some HD sequences
may have more homogeneous areas, where larger partitions are preferred for the prediction;
the joint optimization of NxN (i.e. 4x4) partition mode is then of limited interest for these
particular cases.

The significant coding efficiency improvement between Dual-JRDO and Quad-JRDO
mostly comes from the consideration of vertical predictions and 2-D spatial dependency.
Based on these results, it seems relevant to assume that adding more PUs in the proposed joint
optimization process, would bring much more gain. One could expect to tend toward global-
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Table 3.4 Y BD-Rate of Quad-JRDO in JM19.0 and HM16.6

Test sequences JM19.0 HM16.6 (NxN)
1920x1080 Kimono -2.53% -0.04%

ParkScene -1.60% -1.00%
Cactus -1.91% -1.33%

BQTerrace -1.37% -1.34%
BasketballDrive -1.79% -0.24%

Average -1.84% -0.79%
1280x720 FourPeople -2.04% -1.40%

Johnny -1.86% -1.07%
KristenAndSara -1.76% -1.53%

Average -1.89% -1.33%
832x480 RaceHorses -1.39% -1.38%

BQMall -1.69% -1.95%
PartyScene -1.38% -1.94%

BasketballDrill -3.10% -2.31%
Average -1.89% -1.90%

416x240 RaceHorses -1.67% -2.04%
BQSquare -1.57% -2.19%

BlowingBubbles -1.69% -1.60%
BasketballPass -1.09% -2.08%

Average -1.51% -1,98%
All Average -1.78% -1.47%

Maximum -3.10% -2.31%
Minimum -1.09% -0.04%

RDO efficiency. In practice, the complexity of such process would lead to computationally
intractable simulations.

In the next section, we focus on the Dual-JRDO implementation in the scope of HEVC.
Using the Dual-JRDO presented in Section 3.2.1 as a starting point, we evaluate the opportu-
nities for reducing the Dual-JRDO computational complexity.

3.3 Low Complexity JRDO of Prediction Units Couples
for HEVC Intra Coding

In the previous section, we made explicit the dependencies related to the HEVC Intra
coding and proposed to achieve JRDO on group of 2 PUs (Dual-JRDO) or 4 PUs (Quad-
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Table 3.5 The Dual-JRDO gain against Independent-RDO for each depth

PU size 64x64 32x32 16x16 8x8 4x4 All
Average 0.00% 0.00% -0.06% -0.11% -0.46% -0.63%

Maximum 0.00% -0.08% -0.28% -0.19% -1.02% -1.12%
Minimum 0.00% +0.23% +0.04% +0.05% -0.01% -0.19%

JRDO). Original models bring systematic bitrate savings for similar quality, but suffer from a
significant computational complexity increase. In the following, we focus on the Dual-JRDO
case and propose to optimize it in order to achieve coding gains with a more acceptable
computational complexity. We introduce the three acceleration solutions for Dual-JRDO in
Section 3.3.1. Experimental results of the proposed Fast Dual-JRDO model are presented
and discussed in Section 3.3.2.

3.3.1 Acceleration Methods

In this section, three methods are introduced in order to reduce the computational complexity
Cpx of the Dual-JRDO. Cpx increase is directly related to Nb, the number of analyzed PUs
(of all size) in a frame during RDO. In the case of a single CTU of size 64x64, Nb = 341: 1
PU 64x64, 4 PUs 32x32, 16 PUs 16x16, 64 PUs 8x8 and 256 PUs 4x4. We note that Nb is
composed of 93.84% of PUs with size of 4x4 and 8x8.

Additional experiments, illustrated in Table 3.5, assess the BD-BR gain of Dual-JRDO
independently brought by each PU size (or specific depth). Test conditions are the same as
described in Section 3.3.2. These results show that the R-D gains introduced by Dual-JRDO
are mostly brought by coding efficiency improvement of 4x4 and 8x8 PUs. We also point
out that applying Dual-JRDO on these PU sizes carries a large portion of the computational
complexity increase.

In the following, one focuses on accelerating Dual-JRDO applied to 4x4 and 8x8 PUs
because of their high complexity. In practice, 64x64 PU size rarely appear to be optimal,
even in the Independent-RDO case, which explains that no gains are observed here.

Adapting to Spatial Activity

QuadTree is responsible for the large Cpx endured by HEVC [MAH+17]. Since Intra coding
favors large PU size for smooth areas and small PU size for textured areas, many fast
algorithms estimate the spatial activity of the source to adaptively skip RDO for some PUs.
In [TG12], Tian and Goto propose to apply thresholds to down-sampled blocks’ variance in



76 Coding dependencies in Intra coding

order to eliminate large PU sizes for textured content and small PU sizes for homogeneous
content. Shi et al. reuse the same measure in [SAZ+13] in order to estimate with confidence if
the neighboring PUs size are suitable for the current PU. Finally, such local activity-oriented
metric can also feed a more complex learning tool such as Support Vector Machine (SVM),
as proposed by Liu et al. in [LCFC15].

Due to its proven efficiency, we propose to rely on a spatial activity measure similar to
the one defined by Tian et al. in [TG12], for adaptive use of Dual-JRDO. In the case of high
activity, the distortion is likely to be important on block boundaries. The spatial predictors
may also fall into local optimums, leading to an heterogeneous field of Intra prediction
vectors. In such situations, Independent-RDO is supposed to be sub-optimal and thus we
activate Dual-JRDO.

As a good trade-off between metric computational overhead and estimator accuracy, the
spatial activity is computed over 16x16 pixel area. Furthermore, in order to be more robust
to random noise, the computation is done on a 16x16 block down-sampled to 4x4. Note that
sub-blocks (16x8 or 8x4) share the same spatial activity value which is computed from the
corresponding upper 16x16 size bloc, as described below:

1. Down-sample all 16x16 blocks into 4x4 blocks, then compute spatial activity gi as
defined in (3.15)

2. Each PU of 4x4 and 8x8 size is assigned with gi value of the corresponding 16x16 PU
they belong to

3. If gi ≥ T h, PUi is processed with Dual-JRDO

gi =
1

16

3

∑
x=0

3

∑
y=0

min

{
|Ii(x,y)− Ii(x−1,y)|
|Ii(x,y)− Ii(x,y−1)|

(3.15)

Ii(x,y) is the pixel luminance value at relative position (x,y) of down-sampled 16x16
PUi. In order to exclude neighboring PUs energy, we set Ii(−1,y) = Ii(x,−1) = 0.

T h is a predefined threshold computed off-line with a supervised learning using logistic
regression as proposed by le Cessie and van Houwelingen in [lCvH92]. Dual-JRDO estima-
tion encloses Independent-RDO estimation by design, hence we can a posteriori observe if
Dual-JRDO was of interest.

Supervised learning is used to estimate the optimal threshold for five QP values: QP ∈
{22,27,32,37,42}. The relationship between QP and T h is then obtained through logistic
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least square method applied on the previously obtained (QP,T h) couples as expressed
in (3.16).

T h(QP) = α × eβ×QP (3.16)

(α,β ) values are equal to (0.0963,0.107) in our case.

During threshold learning, we observe that the classification is more efficient for high
QP values. One possible explanation is that for low rates, the distortion D tends to be equal
to the prediction error. Consequently, since the spatial activity is a coarse estimation of the
difficulty to predict a couple of PUs, it becomes at low rates a better predictor of the need to
activate Dual-JRDO.

Short Listing on PUi+1

In the HEVC reference Model HM16.12 [MRB+14] used in our experiments, Independent-
RDO for Intra coding is only applied on a shortlist of modes created by Rough Mode Decision
(RMD) algorithm, that is described by Lainema et al. in [LBH+12]. RMD consists in short-
listing prediction modes with the lowest residual Hadamard Transformed Sum of Absolute
Difference (SATD) values plus the approximated predictor syntax cost. Only this short-list is
then estimated through RDO. The minimal number of modes to be considered in RDO is
respectively set to 8 for 4x4 and 8x8 PUs, and 3 for larger PU sizes. If MPMs or some of
them are missing from the short list they are added to it. Hence, the maximum number of
modes estimated through RDO is 11 for small PUs and 6 for large PUs.

The set of coding modes to consider (i.e. the possible values of p⃗i) is denoted Mi. In
Dual-JRDO, Mi+1 set consists of 35 intra prediction modes defined in HEVC. Since p⃗∗i+1

is necessarily subject to the RMD process because of Independent-RDO implementation in
the test model, it is relevant to also construct the Mi+1 list based on the RMD optimization.
Residue, syntax mode cost and MPMs being all dependent of p⃗i, we denote as Mi+1(p⃗i) the
set of modes to be considered for PUi+1 while optimizing PUi. Therefore, (3.13) becomes
(3.17).

p⃗∗i = argmin
p⃗i∈Mi

{
Ji (p⃗i)+ min

p⃗i+1∈Mi+1(p⃗i)
{Ji+1 (p⃗i, p⃗i+1)}

}
(3.17)

Note that RMD is inherited from the RDO implementation in the HM16.12. However,
any conceivable short-listing approach efficient for HEVC Intra coding with the Independent-
RDO model, could also be beneficial for the Dual-JRDO model.
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Prediction Modes Clustering based on Residual Analysis

Several dependencies between PUs have been exhibited in Section 2.8: the spatial distortion
propagation, the MPM dependency and the entropy coding dependency (CABAC). The
CABAC dependency is considered negligible in Dual-JRDO coding scheme since both
PUi and PUi+1 are subject to very similar contexts. It is equivalent to assume that bin
probabilities are unlikely to vary with an important degree between two successive PU
codings. Basically, we assume the most influential dependencies affecting PUi+1 are the
spatial distortion propagation and the MPM dependency from PUi.

Two prediction modes which result into identical residual signal should also result in
identical reconstructed signal. This assertion is true if no divergent process impacts the
coding of residual. It implies identical transformation and quantization steps for HEVC Intra
coding.

MDCS is a technique implemented in HEVC Intra coding and presented by Sole et al.
in [SJN+12b] that does not fulfill the requirement of no mode-dependent process on residuals.
However, we ignore the minor difference of process attributed to MDCS since it has a slight
impact on the proposed solution efficiency.

By considering only distortion dependency and the correlation between prediction residual
and reconstructed data, we suppose that two modes of PUi resulting in the same residual
data share the exact same impact on PUi+1. We define as a cluster a set of prediction modes
which result into identical residual signal. Let p⃗i1 and p⃗i2, two coding parameters of PUi

which result into the same prediction residual. Under the previous statement, equality (3.18)
holds.

min
p⃗i+1

{Ji+1 (p⃗i1, p⃗i+1)}= min
p⃗i+1

{Ji+1 (p⃗i2, p⃗i+1)} (3.18)

From (3.18) we can write (3.19) and (3.20).

p⃗∗i = argmin
p⃗i

{
Ji (p⃗i)+ Ji+1

(
p⃗′i+1

)}
(3.19)

p⃗′i+1 = argmin
p⃗i+1

{Ji+1 (p⃗i, p⃗i+1)} (3.20)

That is correct with all possible p⃗i remaining in the same cluster. p⃗′i+1 is defined as the
optimal PUi+1 coding mode for all p⃗i in the same cluster. p⃗′i+1 estimation becomes similar
to all p⃗i in the same cluster.

This method is summarized in three steps:
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Table 3.6 Configurations

Configurations C0 C1 C2 C3 C4
Spatial Activity Adaptation x x
Short-List Mi+1 x x
Residual Based Clustering x x

1. Construct the different clusters by analyzing mode residuals during the RMD process
applied to PUi

2. If p⃗i is the first of its cluster, optimize p⃗i+1 among all possible modes

3. Otherwise, optimize p⃗i+1 among previous p⃗∗i+1 of the same cluster and new MPMs

Many bits are saved if the optimal mode belongs to MPMs. Consequently, the third
step ensures that MPMs of p⃗i+1 are always tested if they differ from the MPMs previously
considered within the cluster, i.e. if different from p⃗i. This technique is an effective shortcut
as long as the number of final clusters is low, which is often verified for small PU sizes.

3.3.2 Experiments and Results

Acceleration methods presented in Section 3.3.1 have been implemented in HM16.12 with the
Dual-JRDO algorithm. Results are presented with five configurations {Ck}4

k=0 summarized
in Table 3.6. The anchor is HM16.12 with Independent-RDO. Impacts of each solution on
both Cpx and R-D efficiency are individually evaluated. For comparison purpose, we include
results of Dual-JRDO in HM16.12 without acceleration (C0).

Test conditions follow the recommendations of the Joint Collaborative Team on Video
Coding (JCT-VC) [Bos13] in AI configuration. Coding efficiency is measured using Bjønte-
gaard BD-BR [Bjo01a] with PSNR. Since BD-BR is the difference of areas under two R-D
functions, we choose to add a fifth R-D point at QP = 42 in order to cover a larger bitrate
range with the same metric. We use the configuration files provided with HM16.12.

For this experiment, YUV BD-BR results of each configuration against Independent-
RDO are presented in Table 3.7. Cpx savings over initial Dual-JRDO (C0) are presented in
Table 3.8. Cpx savings are estimated according to (3.21), with Timere f and Timecurrent being
the encoding times of HM16.12 with Dual-JRDO without modification and Dual-JRDO with
the proposed optimizations, respectively.

Cpx(%) =
Timecurrent −Timere f

Timere f
∗100 (3.21)
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We observe systematic bitrate savings against Independent-RDO for all considered coding
configurations. However, the more aggressive is the algorithm, in terms of Cpx reduction,
the less efficient Dual-JRDO is.
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Table 3.7 Dual-JRDO coding efficiency over Independent-RDO in HM16.12.

Test sequences C0 C1 C2 C3 C4

Class B Kimono -0.19% -0.21% -0.20% -0.20% -0.20%
ParkScene -0.37% -0.35% -0.28% -0.39% -0.26%

Cactus -0.58% -0.53% -0.45% -0.59% -0.40%
BQTerrace -0.53% -0.52% -0.42% -0.52% -0.39%

BasketballDrive -0.57% -0.49% -0.53% -0.58% -0.48%
Average -0.45% -0.42% -0.38% -0.46% -0.35%

Class C RaceHorses -0.39% -0.35% -0.28% -0.39% -0.25%
BQMall -0.62% -0.56% -0.47% -0.62% -0.41%

PartyScene -0.70% -0.64% -0.50% -0.70% -0.48%
BasketballDrill -1.72% -0.59% -0.63% -0.71% -0.55%

Average -0.61% -0.54% -0.47% -0.61% -0.42%
Class D RaceHorses -0.56% -0.57% -0.37% -0.57% -0.38%

BQSquare -0.82% -0.80% -0.65% -0.83% -0.61%
BlowingBubbles -0.52% -0.48% -0.35% -0.54% -0.36%
BasketballPass -0.62% -0.49% -0.49% -0.62% -0.42%

Average -0.63% -0.59% -0.46% -0.64% -0.44%
Class E FourPeople -0.64% -0.56% -0.46% -0.64% -0.43%

Johnny -0.64% -0.61% -0.60% -0.66% -0.49%
KristenAndSara -0.64% -0.57% -0.51% -0.62% -0.48%

Average -0.64% -0.58% -0.52% -0.64% -0.47%
Class F BasketballDrillText -0.84% -0.69% -0.68% -0.84% -0.59%

chinaspeed -1.12% -1.01% -0.87% -1.11% -0.82%
slideediting -0.96% -0.92% -0.63% -0.94% -0.55%
slideshow -0.55% -0.42% -0.68% -0.61% -0.59%
Average -0.87% -0.76% -0.67% -0.88% -0.60%

All Average -0.63% -0.57% -0.49% -0.63% -0.45%
Maximum -1.12% -1.01% -0.87% -1.11% -0.82%
Minimum -0.19% -0.21% -0.20% -0.20% -0.20%
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Table 3.8 Dual-JRDO complexity increase over Independent-RDO in HM16.12.

Test sequences C0 C1 C2 C3 C4

Class B Kimono 878% 400% 211% 722% 139%
ParkScene 905% 424% 203% 703% 137%

Cactus 796% 442% 203% 729% 144%
BQTerrace 865% 495% 198% 728% 145%

BasketballDrive 869% 281% 198% 670% 102%
Average 863% 408% 202% 711% 133%

Class C RaceHorses 843% 529% 199% 700% 156%
BQMall 808% 508% 196% 700% 150%

PartyScene 833% 645% 196% 733% 178%
BasketballDrill 817% 453% 195% 691% 139%

Average 825% 534% 196% 706% 156%
Class D RaceHorses 693% 615% 200% 719% 176%

BQSquare 697% 619% 197% 683% 168%
BlowingBubbles 731% 644% 197% 741% 176%
BasketballPass 698% 385% 197% 688% 120%

Average 705% 566% 198% 708% 160%
Class E FourPeople 798% 423% 203% 646% 135%

Johnny 780% 280% 202% 565% 102%
KristenAndSara 1009% 316% 200% 589% 110%

Average 863% 340% 202% 600% 116%
Class F BasketballDrillText 960% 444% 197% 695% 140%

chinaspeed 778% 418% 199% 642% 128%
slideediting 795% 570% 191% 638% 152%
slideshow 957% 203% 199% 467% 74%
Average 873% 409% 196% 610% 123%

All Average 826% 455% 199% 672% 138%
Best 693% 203% 185% 467% 74%

Worst 1009% 645% 212% 741% 178%
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Adaptive activation of the model based on spatial activity corresponds to configuration C1.
In average Cpx is reduced from 826% to 455% for 0.06% BD-BR loss. The slight observed
loss for C1 can be explained by the off-line learning to approximate the threshold T h used in
the decision.

The C2 configuration uses RMD during the p⃗′i+1 estimation. It is one of the most
efficient in terms of Cpx reduction. We observe the average Cpx decrease to 199% against
Independent-RDO configuration, at the cost of an average BD-BR increase of 0.12%. The
results of this solution confirm that any short-listing approach efficient into Independent-RDO
can be easily transposed into Dual-JRDO framework.

The C3 configuration uses prediction mode clustering based on residual analysis. BD-BR
gains are better preserved by suppressing redundant coding process without any approxima-
tion. Experimental observations show that cases of identical residual for different predictors
occur rarely in textured content. The computational cost of comparing all residuals is also a
non-negligible overhead. These two facts explain why Cpx does not significantly decrease
(from 826% to 672% in average).

The C4 configuration represents the combination of the three solutions from Section 3.3.1.
For each PU, the algorithm equivalent to C1 decides whether Dual-JRDO is to be used or not.
Next, the algorithm corresponding to the C3 configuration builds the mode clusters based
on the RMD process. Finally, for the first tested mode of each cluster, RMD is enabled
while analyzing PUi+1. For any new mode that belongs to the same cluster, the solution
described in Section 3.3.1 is applied. The final Fast Dual-JRDO combination limits the Cpx
increase to 138% against Independent-RDO, with an average BD-BR gain of −0.45% and
up to −0.82%.

In this Section, we have proposed three acceleration methods to benefit from Inter-
Block dependencies and improve HEVC Intra coding efficiency with limited computational
complexity overhead.

3.4 Dual-JRDO for quantizer parameter estimation

In Section 3.2, we proposed an encoding optimization method that jointly optimize a set
of spatial predictor for global RDO purpose. We have shown that relatively small bitrate
savings are achieved by the method compared to the introduced computational complexity
increase. However, we demonstrated that the spatial distortion propagation dependency shall
be considered for optimizing overall coding efficiency. To better exploit this dependency, we
aim to use the Dual-JRDO framework in order to optimize the QP, considering the distortion
is more correlated to the QP than prediction modes. Note that for optimizing predictor, the
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basic unit to consider in HEVC is the PU while for optimizing quantizer it is the CU. Hence,
in the following we only consider CUs.

QP optimization at CU-level requires the use of AQ method, that affects a QP offset,
positive or negative, for each CU. This strategy introduces an additional dependency that have
been named the quantizer signalization overhead in Section 2.8. Thanks to the design of Dual-
JRDO, other dependencies affecting the optimization process (spatial distortion propagation,
MPM dependency, entropy coding dependency) are indirectly addressed. However, the
quantizer signalization overhead may be specifically addressed if necessary. Other works,
such as the dynamic-programming-based optimization proposed by Ortega and Ramchandran
in [OR95], address the optimization of quantizer signalization.

The HEVC reference model, that is used as reference in our experiments, implements an
independent AQ method. In order to achieve a fair comparison with our proposal, named
Dual-JRDO AQ, we compare the achieved coding efficiency against the performance of
Independent-RDO with or without the initial AQ method of the reference model. Results are
presented in Section 3.4.2.

3.4.1 Reference AQ method

The exhaustive adaptive quantization method implemented in the HM is part of the JCT-VC
proposal of McCan et al. in [MHK+10]. Two parameters are used in order to define the
search space for optimal QP: MaxDeltaQP and MaxCuDQPDepth. The optimal QP offset
is estimated in the range [−MaxDeltaQP;+MaxDeltaQP] for each CU that lies belongs to
a QuadTree depth lower or equal to MaxCuDQPDepth, compared to the CTU level. It is an
exhaustive search so the computational complexity of analyzing a given CU, that satisfies
the depth condition, suffers a factor of 2×MaxDeltaQP+ 1. Each QP offset produces a
different R-D cost and the minimal is taken as the optimal. We keep the same notations as
earlier for RDO and the QP of the ith CU is written p⃗i hereafter. p⃗i is an 1-D vector that
corresponds to an offset added to the frame’s QP and applied to the ith CU. Consequently, p⃗i

is operated as a scalar.

R-D cost computation, using the Lagrangian-based RDO, induces the issue of choosing
the correct λ value as Lagrangian multiplier, as discussed in Section 1.1.5. This issue is
usually solved by considering λ as a function of QP. The λ (QP) function may take several
forms, but is usually a monotonic increasing function. In order to allow fair comparison of
two QP offsets, the implementation of the AQ method in the reference model use the same λ

value for estimating all R-D costs, that is estimated from the frame QP.
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Fig. 3.8 Distortions according to possible reconstruction levels when varying the QP

Hereafter, we discuss the problem of comparing R-D costs with different QP and λ values
that leads to an undesired result. For two offset p1 and p2, with p1 < p2, we can compare the
two R-D cost as in (3.22).

min
p⃗i

{D(p⃗i)+λ (p⃗i)R(p⃗i)} , i ∈ {1,2} (3.22)

We assume such comparison leads to favor the smallest QP, which is not desired. More-
over, the Lagrangian value is intuitively a solution to localize the search space in a given
range of the R-D curve. Modifying the Lagrangian values is equivalent to search for an
optimal operational point in two independent search spaces, that is also not desired.

Basically, the quantization process in HEVC is a rounding of the transformed residual
coefficient, parametrized by the interval between two reconstruction levels. The consideration
of AQ in our case aims to determinate if small variation of the quantization granularity allow
to better represent coefficients, i.e. diminish the distortion for the same bitrate. An illustration
of this case is given in Fig. 3.8.

The quantization step, i.e. the distance between two reconstruction levels, is multiplied
(or divided) by 2 when the quantization is increased (or decreased) by a value of 6. It means
that a QP offset of 6 is equivalent to increase or decrease the number of reconstruction levels,
as shown in Fig. 3.8. Considering the objective is to better match coefficients distribution
without increasing the bitrate, we set MaxDeltaQP = 6. We set MaxCuDQPDepth = 3
in order to apply the AQ method to all CUs, based on a CTU size of 64x64. Results of
this configuration, in YUV BD-BR for the first frame of each sequence, against no-AQ
are presented in the first column (With overhead, i.e. quantizer signalization overhead) of
Table. 3.9.



86 Coding dependencies in Intra coding

Table 3.9 AQ method coding efficiency with or without QP offset overhead over no AQ in
HM16.12.

Test sequences With overhead Without overhead
Class B Kimono 0.61% -1.26%

ParkScene 0.74% -1.61%
Cactus 0.38% -2.55%

BQTerrace -0.04% -2.66%
BasketballDrive 0.73% -2.37%

Average 0.48% -2.09%
Class C RaceHorses 0.29% -2.11%

BQMall 0.33% -2.69%
PartyScene 0.01% -2.44%

BasketballDrill 0.66% -2.46%
Average 0.32% -2.42%

Class D RaceHorses 0.50% -2.58%
BQSquare 0.21% -2.41%

BlowingBubbles 0.61% -2.08%
BasketballPass 0.55% -2.54%

Average 0.47% -2.40%
Class E FourPeople 0.92% -2.75%

Johnny 0.21% -2.95%
KristenAndSara 0.86% -2.62%

Average 0.66% -2.77%
Class F BasketballDrillText 0.34% -2.91%

chinaspeed -2.62% -5.92%
slideediting -2.32% -5.21%
slideshow -4.26% -7.83%
Average -2.22% -5.47%

All Average -0.06% -3.00%
Best -4.26% -7.83%

Worst 0.92% -2.08%
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Results show an average bitrate decrease near zero (−0.06%), because significant coding
gains are achieved on few sequences, while a small bitrate increase is observed on a large
majority of sequences. We made the assumption that the quantization process is improved
in general, but rarely appears to compensate the bitrate increase related to the quantizer
signalization overhead.

In order to estimate this overhead we propose to estimate the bitrate consumed for the
offset signalization during the coding procedure, and subtract it to the total bitrate. The
resulting bitrate is used for the BD-BR computations that is presented in the second column
(Without overhead) Table. 3.9. We observe systematic bitrate savings from −2.08% to
−7.83% with an average value of −3.00%. These results demonstrates that the signalization
of quantization offsets induces significant bitrate increase and should be improved. However,
the AQ method, apart from the signalization overhead, efficiently improves the coding.

3.4.2 Dual-JRDO AQ results

The Dual-JRDO is configured similarly to the reference AQ method. QP offsets belong to
the range [−6;+6] and all CUs from 64x64 to 8x8 are optimized with the Dual-JRDO as
presented in Section 3.2.1. The result of Dual-JRDO AQ is presented in Table. 3.10 against
no AQ method and against the independent AQ approach.

We observe that Dual-JRDO is able to provide some gains compared to no AQ configu-
ration, but several sequences still suffer from R-D losses, which makes it impractical. The
limited improvements of the proposed method are caused by the signalization overhead of QP
offsets. When compared to the independent AQ we show that an average bitrate savings of
−0.64% is achieved, with almost systematic gains. Dual-JRDO exploits correlation between
horizontally neighboring CUs, that may sometime decrease the correlation between vertically
neighboring PUs. In such situations, the global coding efficiency may be negatively affected.

3.5 Conclusion

To conclude, we demonstrated that systematic bitrate savings can be achieved by jointly
optimizing coding parameters over dependent units. By considering the simplified case
of spatial predictor optimization over 2 PUs (Dual-JRDO), average BD-BR gains are of
−0.77% in the AVC reference model and −0.71% in the HEVC reference model. When
the joint optimization is applied on 4 units (Quad-JRDO), these average gains increase to
−1.78% and −1.47%, for AVC and HEVC respectively. However, such a restricted joint
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Table 3.10 Dual-JRDO AQ method coding efficiency in HM16.12.

Test sequences Vs No-AQ Vs Independent-AQ
Class B Kimono 0.37% -0.24%

ParkScene 0.36% -0.38%
Cactus -0.28% -0.64%

BQTerrace -0.66% -0.60%
BasketballDrive 0.16% -0.58%

Average -0.01% -0.49%
Class C RaceHorses -0.12% -0.41%

BQMall 0.03% -0.30%
PartyScene -0.46% -0.47%

BasketballDrill -0.56% -1.20%
Average -0.28% -0.59%

Class D RaceHorses -0.15% -0.63%
BQSquare -0.93% -1.12%

BlowingBubbles -0.20% -0.80%
BasketballPass 0.47% -0.10%

Average -0.20% -0.59%
Class E FourPeople 0.14% -0.77%

Johnny 0.44% 0.21%
KristenAndSara -0.04% -0.87%

Average 0.18% -0.47%
Class F BasketballDrillText -0.80% -1.13%

chinaspeed -3.40% -0.82%
slideediting -3.29% -1.00%
slideshow -5.16% -0.92%
Average 3.16% -0.97%

All Average -0.70% -0.64%
Best -5.16% -1.20%

Worst 0.47% 0.21%
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optimization remains close to the local optimization used in the Independent-RDO and the
computational complexity overhead is already tremendous.

In order to tackle this complexity issue, a low-complexity Dual-JRDO scheme for HEVC
is proposed in Section 3.3. A robust source spatial activity is first used to efficiently activate
or not the Dual-JRDO model for each PU. The RMD short-listing algorithm is successfully
integrated to all possible steps of the process, i.e. local optimizations included within the
joint optimization. Finally, a prediction mode clustering approach is introduced that removes
redundant computations for modes resulting in identical residue. This last acceleration
method is based on the fact that similar residues on a given PU should lead to the same
impact on the optimal coding of PUs that use it as reference for prediction. Using these
different techniques of complexity reduction, the computational overhead can be reduced
from 826% to 134% while ensuring systematic bitrate savings of −0.45% in average.

We also proposed to use the Dual-JRDO framework for jointly optimizing QP offsets in
the context of AQ. AQ is shown to perform very well for Intra coding, in terms of coding
efficiency, but suffers important coding overhead for the signalization of QP offsets.

Computational complexities of proposed JRDO approaches make them unusable for real-
time applications and the relatively small coding efficiency improvement does not justified
such a complexity. However, numerous low-complexity approaches of Intra coding are based
on a supervised learning of parameters that uses the Independent-RDO as the ground truth.
Such off-line learning required the ground truth to be optimal, i.e. it must provide the highest
coding efficiency regardless of related computational complexity. An extensive optimization
process such as the Quad-JRDO method proposed in this Chapter is therefore a preferable
ground truth alternative compared to the Independent-RDO. Consequently, we believe that
JRDO models must at least be considered in learning phases, as long as the complexity
remains acceptable for the model training phase.

The initial motivation for these experiments was to evaluate the highest coding efficiency
achieved by considering dependencies in the RDO process. We saw that an exhaustive
approach rapidly reach its limits due to the exponential increase of computational complexity.
Several ideas of JRDO models remains untested, such as an estimation of the propagated
distortion based on an prediction process that overlaps on future blocks. Considering the
complexity and modest coding efficiency improvements of our proposed solutions, we assume
the JRDO in Intra-only context to be of limited interest. Consequently, despite several ideas
on the topic, we chose to not go any further with potential models in Intra-only coding
scheme. The next chapter focuses on temporal dependencies and applying the JRDO for
Inter coding.





Chapter 4

Coding dependencies in Inter coding

Fewer dependencies may affect the Inter coding efficiency, compared to the Intra coding
case, in the considered video coding scheme. The two dependencies related to Inter coding
are defined as the temporal distortion propagation and the MV prediction-related dependency.
We assume that in usual codecs, larger part of the bitrate is used to transmit transformed
residue compared to the bitrate required for motion information. It is especially correct for
high bitrate, as discussed by Stankowski et al. in [SKG+14]. Consequently, we assume in
this chapter the opportunities in terms of coding efficiency improvement to be significantly
more important by properly handling the temporal distortion propagation than the MV
prediction-related dependency. Consequently, the following of this chapter puts the emphasis
on techniques that consider the temporal distortion propagation for global optimization.

The Intra prediction consists in a spatial projection of pixels, i.e. N pixels are translated
towards N ×N pixels. Hence, it is difficult to linearly model the relationship between distor-
tions of reference and predicted units. The problem is simplified for motion compensation
which is a temporal block to block matching, i.e. all reference pixels are translated in the
same direction. Consequently, the distortion introduced on reference samples will linearly
affect the prediction error. Sub-pel interpolation does not affect this statement. This linear
process may either be modeled in order to achieve global optimization, or addressed through
exhaustive joint optimization such as trellis implementation. After presenting state-of-the-art
methods that cover these two approaches, we develop our dependency model for the tem-
poral distortion propagation solution named Rate Distortion Spatio-Temporal Quantization
(RDSTQ) for efficient adaptive quantization. The proposed technique and related works have
been published in [RLTBB17] and [BLTR+18b].

The remainder of this chapter is organized as follows. Section 4.1 gives an overview
of the context and works which consider the temporal distortion propagation for achieving
global optimization. The temporal distortion propagation model considered in our solution is
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presented in Section 4.2. Section 4.3 investigates the proposed HEVC video optimization
solution exploiting the formalized dependencies through adaptive quantization. Insights on
the proposed solution and implementation details under two HEVC software encoders are
provided in Section 4.4. Section 4.5 gives the experimental results showing the benefits of
the proposed model within the two considered codecs. Finally, Section 4.7 concludes this
Chapter.

4.1 Previous Methods

A large number of methods have been proposed in order to take into account the temporal
distortion propagation in video coding. These methods may be organized into categories
based on the following elements:

• the considered theoretical model, based on assumptions or empirical observations

• the granularity of the dependency (GOP, frame, block, pixel)

• the computational complexity, that is mainly introduced by a pre-analysis or a multi-
pass coding procedure

• the parameter to be optimized, e.g. λ value or quantization parameter

The pre-analysis, generally called look-ahead, consists in a video source analysis without
any encoding decision. The look-ahead provides useful data to the encoder and introduces a
manageable complexity increase. Indeed, it usually runs in parallel with the encode thanks to
an efficient use of multi-threading. Apart from some delay, it lowers significantly the impact
of look-ahead processing with respect to the encoding. Multi-pass consists into multiple
encodings of the video, refining the coding parameters at each pass. It generates a significant
computational complexity. Look-ahead is often assimilate to a 2-pass encoding, but the
difference is that no actual encoding is processed during a look-ahead analysis.

In the following, we develop the usual concept modeling the temporal distortion propaga-
tion. As developed in Section 1.4, the prediction error variance σ2

i may be expressed as a
function of the source difference E

(
Xi −Xre f

)2 and the reference distortion Dre f described
by (4.1).

σ
2
i = E

[(
Xi −Xre f

)2
]
+Dre f (4.1)
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Note that, compared to the function in (1.42), we remove the last term by assuming the
high-rate use case. When introducing this expression into the Shannon R-D function (1.8),
we obtain the development in (4.2).

Di = cσ
2
i 2−2Ri = cE

[(
Xi −Xre f

)2
]

2−2Ri︸ ︷︷ ︸
=di

+cDre f 2−2Ri︸ ︷︷ ︸
=pi Dre f

, (4.2)

where c is the constant modeling source distribution and Ri is the rate allocated to the ith

coding unit. Note that the coding unit is not necessarily an HEVC CU but may be a frame
for example. The distortion is hereafter expressed with the form proposed in (4.3).

Di = di + piDre f , with pi = 2−2Ri (4.3)

The first term of the sum di is only related to the allocated rate and the innovation of
the signal, or unpredictable part, that is independent from the reference samples. We name
this term the intrinsic distortion, or local distortion, i.e. the distortion that is only caused by
local coding parameters. The product pi Dre f refers to the temporal distortion propagation.
pi represents the amount of distortion propagated from the reference to the current unit.

Two categories of dependency model can be distinguished based on (4.3). The first
category simplifies the model by omitting the impact of local coding decisions on the pi

parameter. Here the local coding parameters, written p⃗i in previous chapters, are symbolized
by Ri. This assumption implies pi to be treated as a constant when optimizing p⃗i. Models
falling in this category are named hereafter as Simplified propagation methods and are
depicted in Section 4.1.1.

A second category depicts the solutions that does not use simplification and, basically,
handle the addition of reference distortion at the prediction error level. We name these
solutions as Dependent propagation methods, since a dependency is assumed between
reference distortion impact pi and local coding parameters p⃗i. Some of these methods are
presented in Section 4.1.2. Finally, some solutions that do not model the temporal distortion
propagation but focus on exhaustive joint optimization are presented in Section 4.1.3. Models
based on empirical observations are also included in Section 4.1.3.

4.1.1 Simplified propagation methods

Quantization and λ parameter cascading

In the literature, the temporal distortion propagation has been considered between temporal
layers for optimizing hierarchical coding structures. In the following we focus on the RA
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Fig. 4.1 Illustration of the Quantization Parameter Cascading (QPC) for hierarchical layers.

coding structure, as defined in Section 2.1. In the context of RA coding structure, coding
efficiency is closely related to the Quantization Parameter Cascading (QPC) technique that
sets the QP offset between layers, as illustrated on Fig. 4.1. Several simplified distortion
propagation-based methods take into account the distortion propagated from lower layers
toward the higher layers for optimized QPC. In [GWY+16], Gong et al. have observed that
the distortions of the lowest layer and of any higher layer frame follow the linear relationship
in (4.4).

Dl = al0 D0 +bl0, (4.4)

where Dl is the distortion of any frame that belongs to the lth temporal layer, al0 and bl0

are parameters that model the relationship between the lth layer and the lowest one, i.e. l = 0.
Authors also claim that rates of the lowest temporal layer and of any higher layer frame meet
the power relationship. We do not further discuss it in this Chapter, since the emphasis is put
on the relationship between distortions. Developing these models, an optimization problem
for QPC is proposed and simplified based on following observations:

• Near optimal R-D performance is achieved if the layer QP offset dQPl = 1 for all
layers l > 1. Consequently, only dQP1 matters, that is the first offset.

• The optimal value of dQP1 is unaffected by the GOP size.

Two models are further proposed by Gong et al., a first one setting adaptively dQP1 based
on a pre-encoding step, and a second one that empirically estimates dQP1 = 5 as the optimal
offset. When compared to the usual dQPl = 1, ∀l > 1 in the HM14.0 codec, the first adaptive
method enables −4.87% BD-BR while the second empiric method enables −4.32% BD-BR.
We observe that adaptive QPC is of limited interest compared to the empirical offset, for a
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known and fixed coding structure. Note that coding structures may be adaptive, unevenly
inserting I-frame or dynamically modifying the number of B-frames. When using an adaptive
coding structure, a fixed offset may not be optimal and adaptive QPC is necessary.

Yang et al. improve the previous approach in [YWGF17] by considering temporal and
spatial source complexity models and fitting the optimal dQP1 function through off-line
learning. The temporal complexity model is based on the average inter-frame luminance
difference that includes a low-pass filter in order to ignore the global luminance variations.
The spatial complexity model is based on the pixels variance within pictures. An interesting
observation is the following: if the GOP is temporally complex, dQP1 tends to decrease,
while if the pictures are spatially complex, dQP1 tends to increase. The comparison of this
method with the one presented by Gong et al. in [GWY+16] shows an average improvement
from −5.33% to −5.60% BD-BR, while no pre-encoding step is required.

In [YWGW16], Yang et al. experimentally confirm that varying the QP offset between
the two first layers has no influence on the distortion relationship between frames of higher
temporal layers and their reference frames. This useful observation allows to express the
distortion of the entire GOP as a function of the first layer distortion and the QP offset of
the next layer. However, authors did not provide information on the estimation process to
determine the distortion propagation function between the various layers. When optimizing
the first layer QP offset, authors achieve −3.3% average bitrate savings in the HEVC
reference model compared to the classical offset of 1 on each layer.

In classical RDO the λ parameter, used to compute the R-D cost, is a function of the QP
value, as discussed in Section 1.1.5. When optimizing the QP for different frames or blocks,
papers cited above often considered the λ -QP relationship to remain unchanged, which may
be questionable. In the following, we introduce two techniques taking into account the λ

value for optimizing coding layers in hierarchical coding structures.

Li et al. propose an empirical and off-line based solution in [LXL13] to take into account
the distortion propagation from reference frames. The coding scheme considered is IBBPBBP
in the context of AVS. Assuming the distortion introduced on reference frames, i.e. I-frames
and P-frames, affects the lower temporal layers, i.e. B-frames, the R-D cost minimization of
reference frames is expressed as (4.5) which is equivalent to scale the λ as in (4.6).

min
p⃗

J(p⃗) = min{(1+ω)D(p⃗)+λR(p⃗)} (4.5)

min
p⃗

J(p⃗) = min
{

D(p⃗)+
λ

(1+ω)
R(p⃗)

}
(4.6)
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The value ω represents the portion of distortion that affects B-frames and is learned
through extensive off-line computation. The model is efficient, with an average bitrate
reduction of −3.7%, and does not suffer from significant computational complexity increase.
However, it does not adapt to various coding structures or content characteristics, despite the
large variation of optimal ω value for each sequence in the learning database. An interesting
observation is that optimal ω value tends to increase linearly with the QP value.

Yang et al. also consider the affine distortion propagation function between layers
in [YWG+17]. After some mathematical developments, they end up with the conclusion that
the optimal λ value for each frame is a scaled version of its original QP, as presented in (4.7).
An important observation made by authors is that the optimal scaling factor expression is
related to the layer and the motion characteristics measured at the GOP-level.

λl =

{
λorg (l = 0)
βl ×λorg (l > 0)

(4.7)

λl is the Lagrangian multiplier of the lth temporal layer, λorg the original Lagrangian
multiplier considered and βl the scaling factor. The GOP motion characteristic used to
compute the βl value is an average frame luminance difference between only a few frames of
the entire GOP, which maintains the complexity overhead of the method reasonable. Their
methods enable −4.59% average bitrate savings in the reference model.

We report in Table. 4.1 the results claimed by the authors of the different methods cited
above. Note that results reported for Gong [GWY+16] (Constant) stands for the fixed offset
of 5 between the two first layers as presented in their paper. Results for the two methods
of Gong et al., have been extracted from [YWGF17] in order to have similar test dataset.
Despite the different implementations or considered standards, one observes that all presented
solutions claim similar gains. This means that, the solution of Gong et al. that is based on
a fixed offset whatever the sequence is able to compete with each other solution and does
not require any computational complexity overhead or implementation process. Based on
methods presented hereafter, we will observe that significantly higher coding efficiency can
be achieved if the dependency is considered at the frame-level or block-level.

Adaptive Quantization

As shown by the methods presented above, the QP value is an important parameter when
considering distortion propagation. However, quantization is applied on blocks and thus, the
distortion propagation should be more efficiently modeled when introduced at the block level.
Macroblock-Tree is a well known algorithm proposed by Garett for x264 open-source AVC
encoder in [GG11]. The main interest of this approach is to model the temporal distortion
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Table 4.1 Results of methods considering the Inter-layer frames distortion propagation

QPC optimization
Gong [GWY+16] -5.33%

Gong [GWY+16] (Constant) -4.89%
Yang [YWGF17] -5.60%
Yang [YWGW16] -3.30%

λ optimization
Li [LXL13] -3.70%

Yang [YWG+17] -4.59%

propagation between CUs and adaptively set the optimal QP value for each MB as described
by (4.8).

dQPi = str× log2 (1+ pi) (4.8)

where str is a user parameter with an empirical default value set to 2.0. dQPi is the QP
offset of the ith CU and pi is the proportion of distortion propagated from the reference to the
current unit, defined in (4.9).

pi = γ
prop
i /SAT Dintra

i (4.9)

SAT Dintra
i is an SATD-based estimation of the intra mode complexity. γ

prop
i is the amount

of dependence from the ith CU toward all future ones, i.e. the importance of the CU based
on an estimation on how its own distortion may affect future units. The initial algorithm
for AVC has also been adapted into the CU-tree algorithm for the x265 open-source HEVC
encoder, with an evaluation of its behavior proposed by Grozman in [Gro15]. In [RLTBB17],
we reported an average bitrate savings of −10.1% against no adaptive quantization for the
CU-tree in the x265.

Yin et al. improved the Macroblock-Tree implementation for x264 in [YWXS15], by
focusing on the function in (4.8). They suppose that the optimal mapping from pi to dQPi

should adapt to video sequence characteristics. By using the Competition Decision Algorithm
(CDA) presented in [FN13], authors succeed to outperform the initial algorithm from 0.54
average BD-SSIM improvement to 0.68 average BD-SSIM when compared to no adaptive
quantization. However, we note that no data is provided on the computational overhead, that
should be substantial considering the complexity of the new mapping process. Indeed, this
new mapping includes a competition of various dQPi based on their R-D costs.
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Rate Control

Rate Control (RC) plays an important role in video coding for global RDO. The RC com-
ponent aims to maintain uniform picture quality for the given coding constraints. Usual
constraints are the Constant Bitrate (CBR) and the Variable Bitrate (VBR). CBR consists in
keeping the bitrate constant over time, that is useful when it comes to broadcast television.
VBR dynamically adapts the bitrate over time, in a given range, to adapt to the source
complexity and ensure a better overall R-D performance. Obviously, RC cannot perform
well if it ignores dependencies between coding elements. We present in the following some
techniques that introduced the distortion propagation between frames in order to optimize bit
allocation within a GOP. A comprehensive overview of the RC topic is proposed by Chen
and Ngan in [CN07]. The RC algorithm implemented in the HEVC reference software is
named hereafter the R-λ model and was introduced by Li et al. in [LLLZ14].

Wang et al. observed in [WMW+13] that the distortion of the current frame has an
approximate linear correlation with the distortion of reference samples used for prediction,
as expressed in (4.10).

D(QP0,QP1) = m1 Dre f (QP1)+(m0 −m1) Dre f (QP0) (4.10)

D is the distortion of the current frame to be estimated and Dre f is the distortion of the
reference frame. The reference frame is constrained to be the nearest available reference in
temporal distance. This constraint is supposed relevant, since the nearest reference frame
is often the optimal one, as discussed by Zhao et al. in [ZWC16]. QP0 and QP1 are the
quantization parameters of the reference frame and the current one, respectively. m0 and m1

are model parameters. Based on this dependency model, a frame-level RC is proposed which
overcomes the R-λ model by up to −3.33% BD-BR in the HM8.0.

D(QP0,QP1) =

{
m1 Dre f (QP0)+ r1, i f QP0 ̸= QP1

m0 Dre f (QP0), i f QP0 = QP1
(4.11)

In [LZZR18], Li et al. use similar dependency models that Wang et al. in [WMW+13]
and presented in (4.11). r1 is a model parameter. They also validate the affine relationship
between current and reference distortions through mathematical developments. An average
bitrate savings of −3.41% is shown against the native frame-level RC method implemented
in the HM12.0. An important conclusion that is drawn from these studies is the simplification
of the relationship between current and reference distortions when quantization parameters
are identical.
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Zhou et al. propose in [ZWTZ17] to approximate the motion compensated error MSEi

of the ith CTU by the additive model expressed in (4.12). MSEsrc
i is the source motion

compensated error, Dre f is the quantization error introduced on prediction reference samples
and α is an estimation parameter. After relating the lagrangian multiplier λ to Dre f , using the
high-rate approximation and the usual λ (QP) function, they proposed the linear distortion
model exposed in (4.13) with a, b and c being model parameters. The values MSEi of all
CTUs are averaged for multiple frames within a window in order to estimate a temporal
redundancy ratio. This ratio is further used to adapt the QP offset of each frame. Zhou et
al. enable an average BD-BR of −1.54% in RA configuration within the HEVC reference
model.

MSEi = α
(
MSEsrc

i +Dre f
)

(4.12)

MSEi = aMSEsrc
i +bλ + c (4.13)

4.1.2 Dependent propagation methods

In [PAZD11] and [PAZ+13a], Pang et al. express the variance of prediction error σ2
n as a

weighted sum of the reference frame distortion Dn−1, variance of the prediction error with the
source signal of the reference frame σ̃2

n and the quantization step size ∆n. This relationship
is exposed in (4.14) with α , β and γ the model parameters.

σ
2
n = α Dn−1 +β σ̃2

n + γ ∆n (4.14)

By introducing this formulation into the R-D Shannon bound, authors are able to formu-
late a new constrained minimization problem expressed in (4.15).

min
{Ri}N

i=1

N
∑

i=1
{Di(Ri)}

s.t.
N
∑

i=1
Ri ≤ RT

R1 = G
(

a0
D1+b0

+ c0

)
R j = a1 log

σ2
j

D j
, with j = 2,3, ...N

σ2
j = α D j−1 +β σ̃2

j + γ ∆ j

(4.15)

G is a measure of frame complexity used to set the rate of the first frame and a0, b0, c0

and a1 are model parameters. Using successive convex optimization to solve the proposed bit
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allocation problem, authors are able to achieve −13.29% average bitrate savings compared
to the classical RC method implemented in the AVC reference model.

More complex methods are also considered with a propagation model dependent of
local decisions. Fiengo et al. express distortion as a convex function of all frames bitrate
in [FCCPP17] . Primal-Dual Proximal Algorithm is further used to solve the convex opti-
mization problem and achieve near optimal RC. In [WRSW15], Wiken et al. measure the
dependencies between coefficients levels after DCT/DST, leading to an optimization problem
solved by an iterative approach. However, both solutions are based on multi-pass processing,
which is unusable for real-time applications.

On the contrary to methods presented in Section 4.1.3, exhaustive computations in the
last two methods are used to estimate parameters that describe dependencies relationships.
In Section 4.1.3, the exhaustive computations are used to directly optimize the overall coding
efficiency, without any understanding of the dependencies.

Yang et al. present a Source Distortion Temporal Propagation (SDTP) model in [YZFP12]
that increases the coding efficiency by adaptively scaling the λ value for each CU. In this
model, pi is a function of the CU rate Ri, as defined in (4.3. di is a function of Ri and the
innovation σ2

i of CU i. σ2
i is defined here as the part of the signal which is unpredictable, i.e.

the residue of prediction before quantization.

σ
2
i = E

[(
Xi −Xre f

)2
]
+Dre f (4.16)

Using equation (4.16), discussed in the beginning of this Chapter, authors describe depen-
dencies between CUs and they adaptively scale the λ value used for R-D cost computation.
It leads to substantial coding efficiency improvement, i.e. −14.05% BD-BR in average for
352×288 resolution in the JM15.1 AVC reference software. The more the distortion of a CU
impacts other CUs, the more the λ value decreases.

The model proposed in [YZFP12] has been further extended by Xie et al. in [XSX+15]
to the bit allocation strategy in the context of RC. Specific hierarchical coding schemes have
also been investigated by Gao et al. for Low-Delay (LD) [GZL16] and in a most recent study
for RA [GZLY17] coding configurations. In the specific case of HM and RA configuration,
coding efficiency increases by 2.2% and can be further improved to 5.2% when the method
is coupled with the high-complexity Multi Quantization Parameter (MQP) optimization
proposed by Sullivan and Wiegand [SW98]. The MQP is an exhaustive search of the optimal
delta quantizer within a given range, from -3 to 3 in [GZLY17], which increases the encoding
run-time by nearly a factor of 6.
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4.1.3 Exhaustive joint search methods and empirical models

This category consists in explicitly considering dependencies into the coding optimization,
which results in exponential exhaustiveness and intractable computational complexity for
real-time applications. Exhaustive computations aiming to achieve the best overall R-D
efficiency have been explored for diverse issues in video coding during the last decades. We
also added a few empirical models in the end of this Section.

Ramchandran et al. [ROV94] consider the frame bit allocation in video coding as a trellis
problem solved with the Viterbi algorithm. Each trellis node represents a quantizer choice
for a given frame, with associated frame R-D cost. Each path represents a unique set of
quantization steps. Using a simple coding scheme and pruning rules, they succeed to achieve
significant coding gain. Global optimization can also be opposed to local optimization when
searching for optimal transformed coefficient levels. In [WLV00], Wen et al. use the same
trellis approach to jointly optimize all the transformed coefficient levels after quantization.

If low computational complexity is not a stringent requirement, dependencies may also be
exploited through brute force search without designing any theoretical model. In [IC15], Im
and Chan point out that the usual HEVC relationship between QP and λ , presented in (4.17),
is only statistically correct and that λ shall be adapted to the frame.

λ (QP) = K ×2(QP−12)/3 (4.17)

K is a constant which may be tuned based on picture type. They propose to evaluate
the quality of multiple reference frames, using different values of λ , and only consider the
reference frames with the lowest R-D costs. An illustration of their solution with multiple λ

values and related reference results for the inter mode decision is given in Fig. 4.2. Such a
solution necessarily suffers from complexity increase as admitted by the authors. For the case
depicted in Fig. 4.2, authors announce an encoding runtime to 170% in average compared to
the reference and −4.53% bitrate savings for RA configuration and 176×144 resolution.

Despite the obvious efficiency of exhaustive modeling approaches, i.e. an exhaustive
search cannot possibly be worst than Independent-RDO, the HEVC standard offers a tremen-
dous number of coding parameters value combinations. More generally, coding schemes
tend to become more complex with an increasing number of available prediction reference
samples and a larger number of block-partitioning combinations. Thus, such approaches are
not suited for real-time encoding and are not suitable for proof of concept purpose either.
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Fig. 4.2 An example of 3 reference frames search with 3 different λ values for Inter-coded
frames as presented by Im and Chan in [IC15].

Empirical models

In [XZZ+16], Xu et al. state that numerous coding techniques are developed by taking into
account the dependencies within a GOP, a frame or a CU. They assume that a dependency
also exists between GOPs that is currently not introduced into the coding optimization.
By counting the number of direct and indirect temporal referencing between GOPs, they
proposed an adaptive quantization scheme at GOP-level. They arbitrarily assume that a frame
impact is divided by 2 after each referencing. Proposed offsets enable −0.96% average
bitrate savings on the luminance component and more than −4% on each chrominance
component when compared to the reference HEVC implementation.

Another empirical observation of the Inter-frame dependency, measured by the percentage
of Skip blocks, is given by Li et al. in [LOHK07]. Authors proposed a Laplace distribution
model for the Lagrangian optimal estimation in AVC, that they further improve in [LOHK09].
Authors point out that efficient modeling of the coefficients distribution is not sufficient to
estimate the total rate. Indeed, significant amount of rate is consumed by side informations.
They overcome this issue by defining a mismatch ratio between the estimated rate and the
actual one, and correlating it with the percentage of MB coded in Skip mode. Their solution
allows a gain of up to 1.79dB in PSNR when compared to the initial solution implemented
into the JM. The important conclusion of this study is that the percentage of Skip blocks, or
by extension the probability of Skip, is an informative metric to model the rate.
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4.1.4 State-of-the-art conclusion

Based on all studied methods, some conclusions can be drawn. The number of studies
focusing on temporal dependencies, without modifying the standard, is significantly higher
that for spatial dependencies. Moreover, the claimed results are also much higher in Inter
coding case than Intra coding case. It is coherent with the observation we made in Chapter 3,
that opportunities of improving coding efficiency, by considering only Intra coding-related
dependencies, are limited.

Numerous studies use the model proposed in (4.2). It may be difficult to handle because
of the dependencies highlighted in the formula, i.e. the propagation of reference samples
distortion depends on current coding decisions. Several studies, described in Section 4.1.1,
use simplifications in order to obtain a good mathematical tractability. It allows to par-
tially rely on proven theoretical fundamentals, while often resulting into simple encoder
implementations.

One constraint we chose for designing the proposed model was to be close to real-time
implementation. Moreover, we desired the model to be proved valid and efficient, without
relying exclusively on the coding efficiency results. Thus, we did not consider exhaustive or
empirical approaches. Our study falls into the category discussed in Section 4.1.1.

4.2 Temporal Distortion Propagation Model

In this section we present the proposed model that introduces the temporal distortion prop-
agation at CU level. Propagation is introduced by temporal predictions between frames
within the GOP structure, as proven by the various methods presented in Section 4.1. The
distortion propagation model further enables to build an analytical solution deriving optimal
local quantizers within a GOP at the CU granularity.

The subscript it is used when referring to the CU with spatial index i in the frame with
temporal index t. N denotes the number of CUs in a frame, and T denotes the GOP size. The
video encoding process aims to find the optimal coding parameters p⃗ that minimize the total
distortion DTot under the target rate RTot constraint, as expressed in (4.18).

min p⃗ DTot(p⃗)

s.t. ∑
T
t=1 ∑

N
i=1 Rit (p⃗) = RTot

(4.18)
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Fig. 4.3 Illustration of the surface ratio resulting from the motion compensation.

By definition we have:

DTot(p⃗) =
T

∑
t=1

N

∑
i=1

Dit (p⃗). (4.19)

Video encoders aim to maximize the video quality perceived by the HVS. To consider
the HVS in the distortion model, a spatial psycho-visual weighting factor Ψ is introduced.
This factor is applied on each CU to better reflect the quality perceived by the HVS and
is discussed later in the chapter. The total distortion DTot to be minimized is expressed
by (4.20). In the particular case of Ψit = 1 ,∀it , the minimized distortion is chosen to be the
classical MSE.

DTot(p⃗) =
T

∑
t=1

N

∑
i=1

Ψit Dit (p⃗) (4.20)

The temporal distortion propagation model used hereafter defines the distortion Dit of a
CU it as the weighted sum of its local distortion dit and the distortion D jtre f

propagated from
its reference CU jtre f . The chosen propagation formula is given by (4.21).

Dit (p⃗) = dit (p⃗it )+ pit ∑
jtre f ∈Re f (it)

r jtre f ,it
D jtre f

(p⃗)

︸ ︷︷ ︸
ηit

. (4.21)

Re f (it) is the set of reference CUs used for motion compensation, pit is the probability of
a CU to be Inter coded and r jtre f ,it

the pixel surface ratio involved in the motion compensation
to go from spatial position of jtre f to spatial position of it . An illustration of this ratio is given
in Fig. 4.3.
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dit (p⃗it ) is the local distortion, i.e. the distortion that only depends on p⃗it , the coding
parameters applied to encode the CU it . ηit is the amount of distortion from reference
samples propagated into CU it after motion compensation. For writing simplification,
distortion functions are expressed in the following without parameters, i.e. dit (p⃗it ) = dit ,
unless a particular coding parameter is necessary for understanding.

The main drawback of this model is to only consider Inter/Intra coding, i.e. modes
involving the transmission of a residue, and to ignore the Skip coding mode where no residue
is transmitted. To consider the Skip mode, we introduce cit as the probability of the CU it to
be coded in Inter/Intra mode and (1− cit ) as the probability of the CU to be coded in Skip
mode.

A large residue should lead to a high probability for Intra/Inter mode, while a large
quantization step ∆ should lead to a high probability for Skip mode. Hence, cit is proposed
to be defined as:

cit =
12σ2

srcit

12σ2
srcit

+∆2
it

(4.22)

cit →

 1 if 12σ2
srcit

≫ ∆2
it

12σ2
srcit

∆2
it

if 12σ2
srcit

≪ ∆2
it

(4.23)

where σ2
srcit

is the variance of predicted residue obtained by motion compensation between
source samples, and ∆it is the quantization step used to code the CU it . The behavior analysis
of (4.22) is given in (4.23). If 12 σ2

srcit
≪ ∆2

it , cit tends toward 12σ2
srcit

/∆2
it , which can be

approximated as 0. It is intuitively adequate that a large residue leads to a high probability
for Intra/Inter mode, while a large quantization step leads to a high probability for Skip mode.
The choice of Skip probability model is also a mathematical workaround to draw a more
robust solution, as described in Section 4.4.

In order to include cit in the propagation model in (4.21), we first define DC
it and DS

it in
equation (4.24) as the distortion of a CU it to be coded in Inter/Intra and Skip, respectively.

DC
it = dit + pit ηit , DS

it = σ
2
srcit

+ pit ηit (4.24)

According to (4.24), the propagation model in (4.21) is turned into (4.25).

Dit = cit D
C
it +(1− cit )D

S
it = cit dit +(1− cit )σ

2
srcit

+ pit ηit (4.25)
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By developing the total distortion DTot from (4.20) and using the temporal propagation
defined in (4.25), we can express the total distortion as a weighted sum of local distortions
(4.26). The details of the calculation are explained in Appendix B.1.

DTot =
T

∑
t=1

N

∑
i=1

(
cit dit +(1− cit )σ

2
srcit

)
Uit , (4.26)

where Uit is the accumulation factor defined by

Uit = Ψit +
T

∑
τ=t

∑
iτ

∑
iτ−1∈Re f (iτ )

... ∑
it+1∈Re f (it+2)

(
Ψiτ piτ riτ−1,iτ piτ−1...pit+1rit ,it+1

)
. (4.27)

Uit can be semantically interpreted as the proportion of the local distortion dit that impacts
the total distortion DTot . It also has the property of being recursively computable as shown in
Appendix B.2. Its final expression is

{
UiT = ΨiT

Uit = Ψit +∑it+1 pit+1rit ,it+1Uit+1.
(4.28)

The main interest of the formulation in (4.26) is to isolate local distortions dit that depend
only on local coding parameters p⃗it . Consequently, the problem stated in (4.20) can be solved
by locally setting coding parameters that optimize the overall R-D efficiency of a GOP. The
application case of adaptive local quantization and its related analytical solution are both
described in the next section.

4.3 RDSTQ Algorithm

In the following, we investigate the proposed HEVC video optimization solution aiming to
estimate optimal delta quantizers at CU-level.
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4.3.1 Local Quantization Problem

The coding parameters of interest in this section are the local quantization parameters, noted
qit for CU it . For ease of reading, the set of local quantizers for all CUs in a GOP is noted
{q}, with {q}= {qit}i=1..N,t=1..T . The overall constrained minimization problem is then:

{q∗} = argmin{q}DTot({q})

= argmin{q}∑
T
t=1 ∑

N
i=1 Ψit Dit ({q})

s.t. ∑
T
t=1 ∑

N
i=1 Rit ({q}) = RTot .

(4.29)

A simplification is made for solving the problem and achieve an analytical solution. This
simplification is to consider that the Inter probability pit and the references distortion ηit

that affects it are independent of qit . According to (4.28), Uit is then also independent of qit .
Intuitively, the local quantizer should affect the Inter probability. However, its influence is
negligible in most cases, i.e. Intra (or Inter) cost is much smaller than Inter (or Intra) cost
and pit → 0 (or pit → 1).

The non-Skip probability cit and the local distortion dit both depend on the local quanti-
zation parameter qit . The necessary condition to find the minimum of Dtot is determined by
the condition of all the derivatives equal to zero ∀i ∈ {1, ...,N} ,∀t ∈ {1, ...,T}:

∂DTot

∂∆it
=

(
∂dit
∂∆it

cit +
∂cit
∂∆it

dit −
∂cit
∂∆it

σ
2
srcit

)
Uit (4.30)

(4.30) can be simplified into (4.32) as described below:

∂cit
∂∆it

=
−24σ2

srcit
∆it

144σ4
srcit

+∆4
it +24σ2

srcit
∆2

it

≈ 0 (4.31)

We justify this approximation by observing that whatever the values of σsrcit
and ∆it ,

denominator is always much larger than numerator. This simplification leads to

∂DTot

∂∆it
=

∂dit
∂∆it

citUit (4.32)

4.3.2 Analytical Solution

We depict hereafter the analytical solution which makes use of (4.32) to solve the constrained
problem described in (4.29). The analytical solution results in obtaining optimal delta
quantizers dQP for all CUs, while maintaining the GOP total rate identical to a configuration
without AQ.
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Problem (4.29) is modeled thanks to the Lagrangian multiplier method with λ the
Lagrangian multiplier. The new function to be minimized is the total R-D cost Jtot defined in
(4.33).

JTot = DTot +λ

(
T

∑
t=1

N

∑
i=1

Rit −RTot

)
(4.33)

The necessary condition to find the minimum of Jtot is that all the partial derivatives with
respect to quantization parameters are equal to zero ∀i ∈ {1, ...,N} ,∀t ∈ {1, ...,T}:

∂JTot

∂∆it
=

∂DTot

∂∆it
+λ

∂

∂∆it

T

∑
t=1

N

∑
i=1

Rit = 0 (4.34)

We express the rate Rit of a CU it as a function of RC
it and RS

it as the rates of a CU it to be
coded in Inter/Intra and Skip, respectively. However, the rate of skipped CUs is theoretically
equal to zero. Thus, we have

Rit = cit R
C
it +(1− cit ) RS

it︸︷︷︸
≈0

= cit R
C
it . (4.35)

In order to keep formula easy to read, in the following we simply write cit R
C
it = cit Rit . If

we suppose the independence of rates, which is discussed and validated in Section 4.4, (4.34)
is simplified into (4.36).

∂JTot

∂∆it
=

∂dit
∂∆it

citUit +λ
∂Rit
∂∆it

cit = 0 (4.36)

The R-D Shannon bound is injected into (4.36) to obtain the optimal λ as (4.37). Devel-
opments are detailed in Appendix B.3.

λ = 2 ln(2)Uit Dit (4.37)

To simplify writing, we define λ ′ as

λ
′ =

λ

2 ln(2)
(4.38)

We then have

log2
(
λ
′)= log2 (Uit Dit ) . (4.39)

The RDSTQ aims to keep unchanged the average GOP bitrate RTot . It is achieved if
the total rate obtained through RDSTQ is equal to the total rate obtained with a unique
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quantization step applied to all CUs in the GOP. In next developments from (4.40) to (4.48),
we exhibit the total GOP rate and further apply the rate constraint.

By summing the log values weighted according to non-Skip probability cit on both sides
of (4.39) over all CUs of the GOP, we have

log2
(
λ
′) T

∑
t=1

N

∑
i=1

cit︸ ︷︷ ︸
=NTot

=
T

∑
t=1

N

∑
i=1

cit log2 (Uit Dit ) , (4.40)

log2
(
λ
′)= 1

NTot

T

∑
t=1

N

∑
i=1

cit log2 (Uit Dit ) . (4.41)

We consider a given CU kτ and mix (4.39) with (4.41):

1
NTot

T

∑
t=1

N

∑
i=1

cit log2 (Uit Dit ) = log2 (Ukτ
Dkτ

) (4.42)

In order to remove the cumbersome sum of all local distortion logarithms, we compute
the 2RTot

NTot
using the R-D Shannon bound.

2RTot

NTot
=

2
NTot

T

∑
t=1

N

∑
i=1

cit Rit (4.43)

2RTot

NTot
=

∑
T
t=1 ∑

N
i=1 cit

(
log2

(
σ2

it

)
− log2 (Dit )

)
NTot

. (4.44)

The term depending on all local distortions can be eliminated by using (4.42) and (4.44)
in order to obtain (4.45).

2RTot

NTot
=− log2 (Ukτ

)− log2 (Dkτ
)+

∑
T
t=1 ∑

N
i=1 cit log2

(
σ2

it Uit
)

NTot
(4.45)

This result is necessary for applying the rate constraint. The high bitrate approximation
(4.46) is injected into (4.45) in order to bring up the quantization parameter QPkτ

as follows:

Dkτ
=

∆2
kτ

12
=

2
QPkτ

−4
3

12
(4.46)

log2 (Dkτ
) =

QPkτ
−4

3
− log2 (12) (4.47)
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2RTot

NTot
=−

(
QPkτ

−4
3

− log2 (12)
)
− log2 (Ukτ

)+
∑

T
t=1 ∑

N
i=1 cit log2

(
σ2

it Uit
)

NTot
(4.48)

To estimate delta quantizers, we consider the case of a GOP encoded with a unique
quantization parameter, named QP, and develop another expression of 2RTot

NTot
as follows:

2RTot

NTot
=

2
NTot

T

∑
t=1

N

∑
i=1

cit Rit (4.49)

2RTot

NTot
=

−1
NTot

T

∑
t=1

N

∑
i=1

cit
(
log2 (Dit )− log2

(
σ

2
it

))
(4.50)

We inject (4.47) and simplify QPkτ
= QP,∀k,τ to obtain

2RTot

NTot
=

4−QP
3

+ log2 (12)+
∑

T
t=1 ∑

N
i=1 cit log2

(
σ2

it

)
NTot

(4.51)

Since the AQ is designed to be neutral with regards to the average GOP rate, and assuming
residue variances are kept unchanged, we can mix (4.48) and (4.51) to exhibit the optimal
delta quantizer dQPkτ

= (QPkτ
−QP) of the CU kτ .

dQPkτ
=−str

(
log2 (Ukτ

)− 1
NTot

T

∑
t=1

N

∑
i=1

cit log2 (Uit )

)
(4.52)

We note that str is called the strength. Its theoretical optimal value is str = 3, coming
from the relationship between QPkτ

and ∆kτ
. Increasing or decreasing this value may stretch

the quantizers dynamic range and thus modify the R-D efficiency and the Target Bitrate
Deviation (TBD). Setting the strength to a large value may drastically increase the TBD and
we observed empirically that setting str = 2 for all experiments is a good trade-off between
R-D gains and TBD.

The RDSTQ algorithm is based on the temporal propagation model presented in Sec-
tion 4.2. In considering such a model into the local quantization problem presented in (4.29),
we are able to efficiently improve the overall R-D coding efficiency. Thanks to the analytical
solution, optimal delta quantizers are easily estimated based on a look-ahead process and do
not require extensive multi-pass analysis. Moreover, as shown in the next section, the range
of delta quantizers is bounded and controllable.
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4.4 Hypotheses Validation

This section aims to provide justification and validation for some of the simplifications or
assumptions made in the previous section. It is divided into five subsections. First, the
independence of rates hypothesis considered during the analytical solution development is
validated through experiments. Second, the estimation of inter probability is discussed with
the support of ground truth data extracted from off-line encodings. Third, the Skip mode
probability is discussed. Then, the look-ahead which provides necessary input parameters for
the RDSTQ to compute delta quantizer is discussed, with details of its implementations into
x265 and HM. Most notably, we demonstrate that the range of delta quantizers is bounded
and can be controlled beforehand.

Proof of independence of rates

We give in this section some insights for the independence of rates assumption, along with
experimental validation. From 4.2, we can write 4.53.

Di = cE
[(

Xi −Xre f
)2
]

2−2Ri︸ ︷︷ ︸
=di

+cDre f 2−2Ri

= di +
cE
[
(Xi−Xre f )

2
]

2−2Ri

E
[
(Xi−Xre f )

2
] Dre f

= di +
di

E
[
(Xi−Xre f )

2
]Dre f

(4.53)

If we assume no dependencies in intra coding, i.e. Di = di, and that the probability of a
CU to be coded in Inter is equal to pi, the distortion can be expressed as

Di = di

1+
pi

E
[(

Xi −Xre f
)2
]Dre f

 . (4.54)

According to the Shannon R-D function, the rate Ri of the CU i is expressed as in (4.55).

Ri =−1
2

log2

(
Di

σ2
i

)
(4.55)
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We consider equations (4.1) and (4.54) to express the rate Ri as (4.56).

Ri =−1
2 log2


di

1+
piDre f

E
[
(Xi−Xre f )

2
]


E
[
(Xi−Xre f )

2
]
+piDre f


=−1

2 log2


di

E
[
(Xi−Xre f )

2
](E[(Xi−Xre f )

2
]
+piDre f

)
E
[
(Xi−Xre f )

2
]
+piDre f


=−1

2 log2

(
di

E
[
(Xi−Xre f )

2
]
)

(4.56)

Consequently, since di and E
[(

Xi −Xre f
)2
]

does not depend on Dre f , we can assume the
rate Ri is independent from Dre f .

An experiment was conducted in order to evaluate the correctness of independence of
rates assumption. To do so, R-D curves of non-Intra frames in a GOP are generated with
a fixed QP configuration while different QP offsets are set on the Intra frame, in the set
[0;−4;−8;−12;−16]. The Reference R-D curve corresponds to the 0 offset case. The
experiment was conducted into HM encoder with Intra coding disabled in non-Intra frames.
The objective of this experiment is to confirm that increasing quality on Intra frame shifts the
R-D curves of depending frames toward less distortion without rate deviation.

Fig. 4.4 shows experimental results for Kimono (a) and Cactus (b) video sequences in RA
configuration with hierarchical 3-B. These curves show that R-D points are aligned along the
rate axis whatever the QP offset on the Intra frames. Consequently, temporal dependency
between CUs only impacts distortions and not rates. This validates the independence of rates
assumption applied in Section 4.3.2.

Inter Probability Estimation

In this section, we present the considered Inter probability estimators. The Inter probability
have been introduced in Section 4.2 in order to model the distortion according to temporal
dependency. ω Intra

it > 0 and ω Inter
it > 0 are defined as the SATD prediction costs of Intra and

Inter modes, respectively. The SATD costs are estimated in the look-ahead analysis. The
probability of the Inter prediction mode is defined as a function of the ratio rit =ω Intra

it /ω Inter
it .

The Inter probability estimator used in previous sections is given by

pit = 1−min(1;
1
rit
). (4.57)
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(a)

(b)

Fig. 4.4 R-D curves of non-Intra frames according to Intra QP offsets with (a) Kimono and
(b) Cactus sequences
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Fig. 4.5 Inter Probability pit according to cost ratio rit estimated by (4.57) for the Initial
function and (4.59) for the proposed function.

This formula implies that if SATD costs are equivalent, i.e. rit = 1, Inter probability
should be null and there is no propagation, i.e. pit = 0. However, close Intra/Inter prediction
costs should intuitively lead to equiprobable Intra and Inter modes. Moreover, neither
theoretical nor experimental proof of the correctness of (4.57) has been given. We propose
hereafter to improve the Inter probability estimation.

Based on statistical inference, the Inter probability p is estimated, from an off-line RDO
analysis, as the Likelihood function defined in (4.58).

p = L(r|mode) ∝ P(mode = Inter|r) (4.58)

Fig. 4.5 compares both functions pit (4.57) and p. rit is the prior information known
beforehand while the event for a CU it to be Inter coded is the evidence. We observe in
Fig. 4.5 that (4.57) is quite far from the ground truth. Consequently, another function defined
by (4.59) is proposed, which is a sigmoid distribution fitting the ground truth curve.

pit =
1

1+aexp−brit
(4.59)

The (4.59) function is plotted on Fig. 4.5. Data shown on the Fig.are extracted from
the first GOPs of each sequence that belongs to classD. The performance of this function is
discussed in Section 4.5. a and b are model parameters estimated from our experiments to
a = 0.5651 and b = 3.6064.

Skip probability justification

In order to achieve an analytical solution, the high-rate assumption is used to estimate the
quantizer from the distortion model. Despite its mathematical tractability, such assumption
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is debatable and does not stand for low bitrates. In order to be more robust to different use
cases, we consider the distortion formula of Xu et al. proposed in [XJGZ07]. This formula
has been discussed in Section 1.2.3 and is written in (4.60).

Dit =
σ2

it ∆
2
it

12σ2
it +∆2

it

(4.60)

This model makes it difficult to extract the delta quantizer based on the distortion.
However, (4.60) is strictly equal to the formula in (4.61).

Dit =
∆2

it
12

×
12σ2

it

12σ2
it +∆2

it︸ ︷︷ ︸
cit

(4.61)

We observe that the chosen non-Skip probability cit scales the distortion, using the
high-rate assumption, into the desired distortion. Finally, using developments described
in (4.30), (4.31) and (4.32) allow to keep the analytical solution simple while using a more
robust distortion model.

Look-Ahead Design

In this section we give more insights about the look-ahead implementation in x265 and the
look-ahead we developed in HM.

The analytical solution explained above provides the optimal set of local quantizers to the
encoder from an R-D standpoint. However, several input parameters, depending on source
characteristics, are required prior to compute these quantizers. Look-ahead is a common
sub-process designed to estimate such parameters, based on a pre-analysis which mimics the
encoder behavior. Due to algorithm requirements, a look-ahead was used in both x265 and
HM implementations.

The x265 encoder already encloses an efficient look-ahead. Videos are first down-sampled
in order to divide the height and width of original pictures by 2. Low-resolution frames
are partitioned into 8x8 blocks and each block is analyzed in Intra and Inter modes. Intra
and Inter modes are compared based on SATD costs. For both Intra mode and Inter motion
estimation, fast analysis is used and based on dichotomous approaches.

In the HM encoder, no look-ahead is currently available. Taking advantage of available
tools in the HM, we successfully emulated a look-ahead to extract the necessary information.
Our look-ahead is configured as follow:

• No QuadTree: only 16x16 CUs are used
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• All modes are analyzed in SATD and use source signal for reference prediction

• No bitstream is actually written since no reconstructed data are required

• All necessary values are stored in a look-ahead file

The HM look-ahead is finally achieved by parsing this look-ahead file. We assume the
proposed look-ahead in HM is more accurate, in terms of correlation with the actual encoder
decisions, compared to the x265 one. This assumption comes from the x265 look-ahead
working on down-sampled source pictures. Consequently, better R-D efficiency is observed
for the HM, as shown in Section 4.5. The computational overhead of this pre-analysis is
around 30% of the HM encoding complexity. This complexity increase is usually very
manageable for real industrial implementations, first thanks to the efficient use of multi-
threading, and second by leveraging on look-ahead information to speed up the main encoding
decisions.

Quantizer dynamic range

In this section, the dynamic range of delta quantizers is analyzed. We prove that the dynamic
range of delta quantizers obtained through the model are bounded. The output dynamic range
of the delta quantizers is predictable before the encoding process. This property helps to
prevent from any conformance issue or boundary defect.

Let assume a sequence is temporally stable, i.e. probability of Inter mode is equal for all
CUs with identical spatial positions in different frames. We have seen in Section 4.2 that{

U jT = Ψ jT

U jt−1 = ∑it pit r jt−1,itUit +Ψ jt−1.
(4.62)

For the sake of simplicity, let Ψit = 1∀i, t. If we assume all Inter mode probabilities in
the same spatial area to be equal to p, i.e. within the temporally stable part of a picture, then
we obtain

Uit =
T

∑
k=t

pT−k. (4.63)

Under the assumption that pit = p, ∀i, t, Uit is a geometrical series. Knowing that
p ∈ [0...1], we finally obtain

Umax = lim
(t,T )→(0,∞)

Uit =
1

1− p
. (4.64)
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Table 4.2 Theoretical number of frames required for U convergence based on p values and
related Umax

p value Nconv Umax
0.1 3 1.11
0.2 4 1.25
0.3 5 1.43
0.4 8 1.67
0.5 9 2.00
0.6 13 2.50
0.7 17 3.33
0.8 31 5.00
0.9 73 10.0
1.0 NaN T

Fig. 4.6 U value evolution within a GOP of 32 frames for different values of p, with
Ψit = 1∀i, t.

This equation suggests that, by design, Uit converges toward a maximum value Umax, that
depends on source characteristics, under the assumption that T is large enough. We also
notice that the lower the value of p, the faster the Uit convergence. We report in Table 4.2,
for a given value of p, the maximum achievable weight Umax reached once the number of
frames in the GOP equals or exceed Nconv. The convergence is assumed with a two decimal
places precision.

We can see the consequence of such convergence on Figure 4.6. If one increases T value,
as long as the sequence is temporally stable, reference frames ultimately have an equal level
of importance within the GOP. We note that such convergence is most likely to occur for
small p value, i.e. sequences difficult to predict temporally.
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In the special case of p = 1, the Umax value only depends on the GOP length: Umax = T .
Once Umax is estimated, the dynamic range of delta quantizer rngdQP is given by

rngdQP =−str (log2 (Umax)) (4.65)

with str being the strength mentioned in Section 4.3.2. Based on this formula, one may
choose to control the dynamic of the delta quantizers by directly modifying the strength
value. In our experiments str = 2.

4.5 Performance Evaluation

This section aims to validate the coding efficiency of the proposed solution, assess the TBD
reduction and confirm the expected behavior of the model. First, the proposed probability
described in Section 4.4, and the Skip probability model are evaluated. Second, the rate
distribution between frames of the GOP is observed. Third, the positive impact of Ψ function
on overspent rate situation is confirmed. Finally, the method is compared to state-of-the-art
methods, thanks to the proposed HM implementation.

The x265 software HEVC encoder [x26] is used in the experiments. The HM en-
coder [MRB+14] is also used to confirm results in a different encoder. The CTC defined by
the JCT-VC [Bos13] have been followed. The videos are encoded in RA coding configura-
tion, with hierarchical 3-B, for five QP values ∈ {22,27,32,37,42}. The QP value of 42 was
added to highlight the Skip mode influence since it is statistically more used at low bitrate.

When no psycho-visual function is considered, i.e. Ψit = 1,∀i, t, the model is simply
called Rate Distortion Temporal Quantization (RDTQ), since spatial criteria is ignored,
and we focus on the BD-BR computed using the PSNR metric. Otherwise, the model is
called RDSTQ and we focus on the BD-BR computed using the SSIM metric, that is better
correlated with HVS perception of quality. In the case of RDSTQ we set Ψit = 1/σ2

it , with σ2
it

being the local variance of source luminance pixels of the block it . Yeo et al. [YTT13a] proved
that weighting a MSE distortion by the inverse of local pixel block variance specifically
optimizes the SSIM metric, which explains our choice of Ψ function.

Coding Efficiency

Coding performance is measured using the BD-BR metric [Bjo01a]. A negative BD-BR value
reflects the percentage of bitrate savings achieved at equivalent YUV distortion, between the
anchor and the proposed solution. The BD-BR results and the corresponding target bitrate
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Table 4.3 Coding efficiency over no local quantization in HM for RDTQ.
B

D
-B

R
PS

N
R

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -10.35% -10.16% -14.15% -14.02%

Class B -7.55% -7.57% -12.02% -12.97%
Class C -15.24% -15.25% -19.01% -19.20%
Class D -13.95% -13.48% -16.52% -16.08%
Class E -14.08% -13.30% -22.67% -21.03%
Average -12.08% -11.83% -16.58% -16.51%

Best -21.04% -21.51% -26.57% -26.68%
Worst -3.36% -7.65% -7.59% -7.86%

B
D

-B
R

SS
IM

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -13.63% -12.98% -24.18% -22.94%

Class B -7.30% -7.33% -18.36% -19.57%
Class C -18.43% -18.43% -27.84% -28.11%
Class D -19.62% -18.82% -28.02% -27.05%
Class E -8.92% -8.09% -21.39% -19.95%
Average -13.48% -13.10% -23.76% -23.57%

Best -25.92% -25.93% -36.88% -36.20%
Worst -1.48% -2.16% -12.48% -16.33%

T
B

D

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) 20.32% 5.86% 43.82% 12.40%

Class B 22.12% 12.92% 64.98% 31.98%
Class C 16.69% 5.36% 41.46% 12.93%
Class D 23.53% 7.65% 50.56% 15.09%
Class E 44.65% 23.84% 113.77% 42.87%
Average 24.78% 11.10% 62.33% 23.63%

deviations, TBD, averaged on the considered QP values are presented in Table. 4.3 and
Table. 4.4 for HM and in Table. 4.5 and Table. 4.6 for x265.

The anchors are respectively the x265 and HM encoders without AQ algorithm. The two
Inter probability models, defined in (4.57) and (4.59) are compared and respectively named
Initial probability and Proposed probability.

From Table. 4.3 and Table. 4.4, we can observe higher bitrate savings for the Proposed
probability (4.59) over the Initial probability (4.57), whether the Skip mode consideration
is enabled or not. The Proposed probability (4.59) saves in average −4.5% PSNR-based
BD-BR compared to the Initial probability with RDTQ and −8.61% SSIM-based BD-BR
compared to the Initial probability with RDSTQ. When Skip is considered, performance
suffer from an average bitrate increase between 0.07% and 0.25% for RDTQ and between
0.54% and 0.63% for RDSTQ.
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Table 4.4 Coding efficiency over no local quantization in HM for RDSTQ.
B

D
-B

R
PS

N
R

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -11.47% -11.38% -13.72% -13.56%

Class B -9.03% -8.81% -11.50% -11.61%
Class C -15.54% -15.44% -18.48% -18.46%
Class D -14.17% -13.97% -15.79% -15.64%
Class E -16.82% -16.52% -22.03% -20.82%
Average -13.19% -13.00% -16.01% -15.78%

Best -22.58% -22.52% -26.41% -26.41%
Worst -5.29% -5.40% -6.64% -6.42%

B
D

-B
R

SS
IM

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -19.26% -18.76% -28.02% -26.45%

Class B -13.42% -13.26% -22.30% -23.24%
Class C -21.97% -21.62% -30.37% -30.26%
Class D -23.65% -22.67% -30.93% -29.28%
Class E -14.28% -13.37% -23.78% -21.81%
Average -18.38% -17.84% -26.89% -26.26%

Best -30.38% -29.89% -40.90% -39.65%
Worst -10.71% -9.61% -18.65% -17.77%

T
B

D

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) 10.28% 4.39% 32.65% 9.57%

Class B 9.89% 5.38% 49.57% 19.43%
Class C 9.52% 3.39% 33.93% 8.26%
Class D 18.96% 4.09% 46.51% 7.28%
Class E 13.11% 4.10% 75.56% 16.54%
Average 12.40% 4.33% 47.87% 12.67%

The TBD shows 2 to 4 times higher deviation when using the Proposed probability com-
pared to Initial probability. Indeed, the Proposed probability induces larger propagation and
consequently smaller delta quantizers, i.e. more rates, on reference frames. The consideration
of Skip probability efficiently reduces the TBD, and then the Proposed probability provides
similar TBD as the Initial probability while maintaining BD-BR gains. Finally, the average
TBD for RDTQ and RDSTQ is in average equal to 23.63% and 12.67%, respectively.

Observations from the x265 experiments depicted in Table. 4.5 and Table. 4.6 tend toward
similar conclusions. The average bitrate savings for RDTQ and RDSTQ are respectively
−1.43% PSNR-based BD-BR and −3.46% SSIM-based BD-BR. The TBD is however
reduced compared to the Initial probability without Skip consideration. The TBD is reduced
from 37.37% to 17.43% with RDTQ and from 15.16% to 10.77% with RDSTQ.

As desired, the Proposed probability improves the coding efficiency while the Skip mode
consideration efficiently reduces the TBD. We demonstrate in these experiments that the
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Table 4.5 Coding efficiency over no local quantization in x265 for RDTQ.
B

D
-B

R
PS

N
R

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -7.96% -7.90% -10.13% -9.92%

Class B -6.90% -6.93% -7.36% -8.48%
Class C -13.97% -13.69% -15.08% -15.12%
Class D -11.42% -10.91% -12.24% -11.77%
Class E -11.63% -10.89% -15.96% -14.28%
Average -10.38% -10.08% -11.90% -11.81%

Best -19.00% -19.01% -22.38% -22.08%
Worst +0.24% -1.59% +1.48% -3.23%

B
D

-B
R

SS
IM

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -12.13% -11.55% -20.74% -19.48%

Class B -8.00% -8.01% -14.08% -15.51%
Class C -18.33% -18.04% -24.49% -24.60%
Class D -16.97% -15.91% -24.22% -22.54%
Class E -6.15% -4.71% -15.96% -13.99%
Average -12.44% -11.84% -19.70% -19.28%

Best -24.39% -24.22% -32.28% -31.42%
Worst +3.23% +0.85% -2.08% -9.33%

T
B

D

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) 28.04% 7.16% 50.96% 11.75%

Class B 37.17% 10.63% 80.63% 22.19%
Class C 23.30% 4.72% 47.71% 8.08%
Class D 31.09% 5.32% 60.65% 9.82%
Class E 71.03% 25.82% 138.29% 35.90%
Average 37.37% 10.28% 75.19% 17.43%

model stands whatever the codec implementation or with and without considering the Ψ

scaling factor.

Local Rate Distribution

In this section, we discuss the distribution of rates for several frames, typically a whole GOP,
when some of the models presented above are enabled. The sequence RaceHorses with
resolution of 832x480 is used for experiments in this section.

As expected, we observe in Fig. 4.7 (a) that the RDTQ model allocates more rate on the
reference frames and lower temporal layer, while it decreases the rate allocated to frames in
the highest temporal layers. The Proposed probability, propagating more weight on reference
frames, tends to stretch even more the bitrate distribution across temporal layers.
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(a)

(b)

Fig. 4.7 Rate distribution of first GOP frames with sequence RaceHorses at QP = 32 for
(a) RDTQ with Initial Probability and RDTQ with Proposed Probability; for (b) Proposed
Probability with and without Skip consideration.
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Table 4.6 Coding efficiency over no local quantization in x265 for RDSTQ.
B

D
-B

R
PS

N
R

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -5.72% -5.46% -4.42% -4.39%

Class B -5.76% -6.06% -3.52% -5.37%
Class C -12.02% -11.65% -11.61% -11.55%
Class D -9.46% -9.02% -8.20% -7.94%
Class E -12.05% -11.13% -12.20% -10.59%
Average -9.02% -8.74% -7.90% -8.08%

Best -18.34% -18.08% -19.16% -18.72%
Worst -0.35% -0.62% +1.80% +1.39%

B
D

-B
R

SS
IM

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) -20.00% -19.34% -25.55% -23.87%

Class B -16.79% -16.38% -20.43% -20.96%
Class C -24.12% -23.27% -28.71% -27.88%
Class D -25.49% -23.82% -30.39% -27.57%
Class E -12.94% -11.58% -19.20% -16.43%
Average -20.07% -19.09% -24.85% -23.53%

Best -30.87% -30.11% -39.01% -36.60%
Worst -10.58% -8.62% -14.18% -12.11%

T
B

D

Probability Model Initial Initial + skip Proposed Proposed + skip
Class A (8bits) 12.41% 5.13% 33.09% 7.55%

Class B 14.90% 8.13% 53.24% 14.89%
Class C 10.37% 8.87% 34.20% 10.89%
Class D 21.85% 8.57% 51.47% 9.12%
Class E 14.89% 5.51% 69.26% 8.09%
Average 15.16% 7.62% 49.05% 10.77%

When considering the Skip probability, rates are equally decreased for each type of frame
as observed in Fig. 4.7 (b), but it does not alter the delta rates between frames. This behavior
is expected since taking into account the Skip mode consideration aims to limit the overspent
rate on the entire GOP.

Ψ function and QP spatial distribution

In this section, more insights are given about the impact of the Ψ function on QPs spatial
distribution. We observe the distribution of quantizers over an entire frame when the Ψ

function is enabled. As earlier introduced, the psycho-visual factor chosen here is based on
local spatial pixel variance, and is dedicated to optimize the SSIM score. It has the property
to consider spatial masking effect, i.e. the fact that human eyes are less sensible to distortion
made on high textured area (high local variance) than on area of low spatial complexity (low
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local variance). Spatial masking significantly impacts compression artifact perception, as
further analyzed by Rimac-Drlje et al. in [RDaM09].

The distribution of quantizers with and without psycho-visual function is shown on
Fig. 4.8 for the frame 128 of BQTerrace sequence, with a target QP = 22. The darker blocks
have the lowest quantizer (high rate) and the brighter ones have the highest quantizer (low
rate). We point out that for this particular sequence encoded at QP = 22, almost no block is
coded in Skip mode. Hence, we keep apart the influence of the Skip estimation model in this
analysis.

We observe on Fig. 4.8 (a) that if no psycho-visual function is considered, the terrace
is affected with high quality while the water and the roof are quantized more aggressively.
The Inter probability is based on the relative difference between Intra mode and Inter mode
estimated complexities. The more the estimated Intra complexity is relatively high compared
to the Inter one, the more importance is put on reference frames. Given that, BQTerrace is
highly uniform in terms of temporal complexity but not in terms of spatial complexity, it
explains why more quality is affected to the most spatially complex areas, such as the terrace
in this case.

However, the more textured is a block, the less small amounts of distortion are visible
by the human eye. When the psycho-visual function is enabled (Fig. 4.8 (b)), we observe a
better balanced distribution of the quantizers over the frame. Less rate is overspent on the
terrace, while the water is subject to a quality improvement, in compliance with the spatial
masking effect.

In our experiments we focus on the spatial masking effects based on the local pixel
variance, that correlates well the SSIM quality metric. However, we point out that RDSTQ
may be used to optimize any other perceptual criterion based on the selection of a Ψ factor
that scales well the MSE to this criteria. For the interested readers, Winkler [Win05] provides
a good overview of possible vision model and perceptual metrics to consider.

Comparison to state of the art

This section compares our method with some state of the art solutions. To be fair with other
methods found in the literature, the coding scheme was changed for the 7-B hierarchical and
QP values ∈ {22,27,32,37}. Other coding parameters remain the same and the reference is
the HM encoder without AQ algorithm.

Three methods were chosen for comparison. The first one is proposed by Gao et al.
in [GZLY17] and designed for optimizing the PSNR. Two other methods designed for
optimizing the SSIM are proposed by Yeo et al. in [YTT13b] and Xiang et al. in [XJY+17].
We refer to these methods with their reference numbers in the following table. The proposed
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(a) (b)

(c)

Fig. 4.8 QP distribution over the frame 128 of BQTerrace sequence (a) without psycho-visual
function and (b) with psycho-visual enabled. (c) The source frame
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solution denoted as Ours in results is the RDSTQ improved by the Proposed Inter and Skip
probabilities. Simulation results are presented in Table. 4.7 for the HM encoder.

Table 4.7 Coding efficiency over no local quantization in HM.

Classes
BD-BR PSNR BD-BR SSIM

[GZLY17] Ours [YTT13b] [XJY+17] Ours
Class A -4.25% -12.53% -5.78% -5.42% -27.98%
Class B -4.10% -9.35% -4.18% -3.12% -20.82%
Class C -5.60% -17.56% -3.90% -5.13% -29.78%
Class D -4.10% -15.82% -4.47% -4.53% -30.86%
Class E -8.40% -25.09% -2.86% -0.25% -27.37%
Average -5.18% -15.59% -4.14% -3.69% -26.93%

It can be seen that our proposed solution substantially outperforms the SDTP optimized
for RA coding configuration by −11.51% in terms of PSNR BD-BR in average. The main
reason is the simplified estimation of the dependencies made in [GZLY17] that extrapolates
the dependency network instead of building it through a look-ahead as proposed. Conse-
quently, Gao et al. solution saves some computational complexity by avoiding the use of a
look-ahead but greatly limits the efficiency of the encoding optimization.

In terms of SSIM, the proposed solution outperforms the two methods by more than
−22% in average. However, an important drawback is that both methods consider rate
constraints on a frame basis and not a GOP basis, which forbids any bit transfer between
frames. These AQ methods are consequently more constrained that our proposal, even
if Xiang et al. [XJY+17] implicitly try to consider the temporal dependencies through
Inter mode SATD estimation. The large difference in coding efficiency confirms that GOP
optimization is much more efficient than frame optimization. Moreover, we point out that
even if GOP optimization requires a more complex look-ahead than frame optimization, such
implementation are very acceptable in industrial applications.

Encoding Complexity

We provide a rough comparisons of HM encoding runtime of RDSTQ with Proposed Inter
probability and Skip probability for sequences in classes C, D and E in Table. 4.8. Different
sequences are tested with QP ∈ {22,27,32,37,42}. We observe that encoding runtime is
higher from 53.28% in average. This increase mostly comes from the look-ahead and is
more noticeable for low bitrate. We point out that the look-ahead complexity comes from
the data writing in a separated file, further read by the HM for RDSTQ. Thus, an embedded
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look-ahead would not be as complex as the one we proposed. Moreover, in a multi-threaded
implementation, such overhead would be neglected.

Table 4.8 Comparison of encoding runtime (in seconds) with no-AQ and RDSTQ in HM.

Sequences
No-AQ RDSTQ Runtime

Encoding Encoding Lookahead relative offset

RaceHorses_480

8092.67 7857.36 2081.604 22.81%
6830.27 6546.99 2081.604 26.33%
5846.35 5593.69 2081.604 31.28%
5135.56 4849.16 2081.604 34.96%
4498.13 4163.41 2081.604 38.84%

BasketballDrill

9725.36 9055.82 3839.134 32.59%
8431.55 7784.01 3839.134 37.85%
7418.90 6856.51 3839.134 44.17%
6635.51 6085.56 3839.134 49.57%
5973.31 5407.38 3839.134 54.80%

BlowingBubbles

2298.63 2079.30 1200.608 42.69%
1837.58 1681.99 1200.608 56.87%
1530.68 1403.72 1200.608 70.14%
1313.54 1206.92 1200.608 83.29%
1152.55 1071.54 1200.608 97.14%

BasketballPass

2456.23 2334.28 1396.372 51.89%
2164.93 2048.26 1396.372 59.11%
1918.05 1795.33 1396.372 66.40%
1699.37 1577.95 1396.372 75.03%
1510.91 1377.15 1396.372 83.57%

KristenAndSara

15247.84 14950.88 7617.788 48.01%
13175.36 12584.20 7617.788 53.33%
12380.74 11437.62 7617.788 53.91%
11934.06 11155.10 7617.788 57.31%
11605.41 10978.87 7617.788 60.24%

Average - - - 53.28%

4.6 QuadTree Consideration for RDSTQ

We have proposed in this Chapter an efficient AQ method, named RDSTQ, that achieves
global RDO over an entire GOP by taking into account the distortion propagation between
frames. This method relies on accurate estimations of the Inter and Skip prediction modes
probabilities and an analytical solution is driven from the proposed propagation model. A
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potential limitation of the method comes from assuming an uniform partitioning within
look-ahead process, i.e. a priori information on the sequence extracted based on an uniform
picture partitioning. HEVC enables non-uniform adaptive partitioning using a QuadTree that
is totally ignored in the model. In this Section, we discuss theoretical thoughts on how the
QuadTree may be considered in the scope of the RDSTQ.

We first introduce the occurrence probability of a CU, that is the probability of a CU to
be coded at a given CU depth. The introduction of occurrence probability allows to consider
a non-uniform partitioning in the AQ method. Then we discuss the adaptation of the back
propagation strategy of RDSTQ to compute the accumulation factor Uit of each possible CU
(of variable size) at the it index. Finally, we provide a comparative analysis of this model
with regards to the previously introduced RDSTQ in order to highlight its interest.

4.6.1 Probability of occurrence for non-uniform partitioning

Hereafter, we discuss how we define the probability of occurrence sit ,d for a given CU it
at depth d in the context of QuadTree partitioning. Considering samples belonging to the
smallest CU size, i.e. samples at the highest QuadTree depth in a CTU, the occurrence
probability of one CU at depth d is defined as the probability that the considered samples are
coded with a CU of depth d. We note Xit the samples that belongs to CU it and P(Xit ∈ d)
the probability that these samples, or pixels, are coded in a CU of depth d. Thus, we define:

sit ,d = P(Xit ∈ d) (4.66)

The partitioning depends on successive split decisions. Thus, sit ,d can be expressed
as (4.67), with P(Xit ,d,d +1) being the probability to split the CU at the designated depth d
into four CUs of depth d +1.

sit ,d = (1−P(Xit ,d,d +1))×
d−1

∏
depth=0

P(Xit ,depth,depth+1) (4.67)

In order to illustrate the occurrence probability, we choose to index the different CUs of
a CTU using a Z-scan, as presented on Fig. 4.9. The index 1 refers to the 64x64 CU, the
indexes 2,3,4,5 to the four 32x32 CUs, etc. The example is only given for one CTU. The

maximum number of CUs within a CTU is equal to
dMax
∑

d=0
4d , with dMax being the maximum

depth. dMax = 3 is the maximum authorized by the HEVC standard, that results into 85 CUs
associated to one CTU. We note N′ the number of possible CUs in a frame. As an example
N′ = 85×NCTUs if dMax = 3 and the frame width and height are divisible by the CTU size.

Based on the Fig. 4.9, we propose an illustration of the concept of (4.67) in Fig. 4.10.
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Fig. 4.9 Illustration of the chosen spatial CU indexing for the first CTU of a frame.
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Fig. 4.10 Example of occurrence probability

We name CUit a CU of index i in the frame t at the highest depth dMax. The main interest
of the proposed model is that, summing all occurrence probabilities of CUs that may contain
CUit equals to 1. The fact stated above is described by (4.68), with sit ,d being previously
defined.

dMax

∑
d=0

sit ,d = 1 (4.68)

This property is necessary in the case of RDSTQ. As presented in Section 4.2, the back
propagation strategy used in the method consists into estimating an importance factor for
each CU. However, due to the motion compensation design, this factor may overlap on
several blocks. Consequently, the property defined above ensures that the importance factor
can be divided into all potential overlapped CUs, according to their occurrence probability.

In the following, we do not specify the depth of a CU in notations in order to keep
mathematical formulations easy to read. Consequently, all possible CUs of a frame t are
noted with the index it and their respective probability of occurrence sit , since it necessarily
refers to a unique depth. N′ represents the total number of possible CUs in the frame and
i ∈ {1, ...,N′}.
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4.6.2 Temporal distortion propagation model with non-uniform parti-
tioning

According to the introduction of occurrence probability, the temporal distortion propagation
model (4.69) is turned into (4.70).

Dit = cit dit +(1− cit )σ
2
srcit

+ pit ∑
jtre f ∈Re f (it)

r jtre f ,it
D jtre f

(4.69)

Dit = cit dit +(1− cit )σ
2
srcit

+ pit ∑
jtre f ∈Re f (it)

s jtre f
r jtre f ,it

D jtre f
(4.70)

We point out that the spatial index i corresponds to the index of one possible CU.
Consequently, the scanning order corresponds to the Z-scan by depth and the total number of
considered CUs in a frame is equal to N′ as discussed before. The following notations are
kept unchanged based on the initial proposed method:

• Dit : the distortion of the CU it , i.e. the one observed between reconstructed and source
samples.

• dit : the local distortion of the CU it that is only related to quantization error introduced
on the CU it .

• cit : the coded probability of the CU it , the opposite of Skip mode probability.

• pit : the probability of a CU to use temporal prediction.

• D jtre f
: the propagated distortion from a reference CU jtre f to the current CU it .

r jtre f ,it
is slightly adapted compared to the initial method. r jtre f ,it

is the surface ratio of
CU it that overlaps CU jtre f . However, in the context of non-uniform partitioning, these two
CUs can be of different sizes. In such case, we need to scale the ratio depending on the CU
sizes difference. Based on the QuadTree partitioning, the overlapping surface ratio is adapted
as in (4.71), with depth(it) function returning the depth of the CU it .

r jtre f ,it
= r jtre f ,it

∗4depth jtre f −depth(it) (4.71)

The reason for this scaling is that rates and distortions are averaged per sample/pixel. If a
CU of index it is fully overlapping a larger reference CU jtre f , we must take into account that
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the reference distortion D jtre f
is partially propagated to the distortion Dit . The expression of

the total GOP distortion DTot is expressed in (4.72).

DTot =
T

∑
t=1

N′

∑
i=1

s′it
(

cit dit +(1− cit )σ
2
srcit

)
Uit , (4.72)

s′it represents the occurrence probability multiplied by a second scaling factor. Indeed,
distortions and rates expressed in the RDSTQ model are averaged per sample, i.e. per pixel.
Consequently, summing average distortions from blocks of different sizes requires some
scaling. Thus sit is turned into s′it according to (4.73), with depthMax the maximum CU depth
and depthit the depth of the CU of index it .

s′it = sit ×4depthMax−depthit (4.73)

The accumulation factor Uit from (4.28), in that context, is redefined in (4.74).{
UiT = ΨiT

Uit = Ψit +∑it+1 sit+1 pit+1rit ,it+1Uit+1

(4.74)

For simplification matters, we assume sit to be independent of ∆it . The DTot derivative
according to ∆it the quantization step of the CU it is written in (4.75).

∂DTot

∂∆it
=

∂dit
∂∆it

s′it citUit (4.75)

Ultimately, we anticipate the optimal quantizer of a CU kτ to be obtained with the
formula (4.76). Developments to obtain (4.76) are provided in Appendix C.

dQPkτ
=−str

log2 (Ukτ
)−

T
∑

t=1

N′

∑
i=1

s′it cit log2 (Uit )

T
∑

t=1

N′

∑
i=1

s′it cit

 (4.76)

4.6.3 Comparative analysis with initial model

The initial RDSTQ model suffers from some limitations due to the theoretical assumptions
used to obtain the analytical solution. Even if an uniform partitioning is assumed during
the look-ahead, the encoding procedure uses the QuadTree partitioning. In the following,
we focus on a 2Nx2N CU indexed it at a depth d, and the four corresponding NxN CUs
indexed by {it ,x}4

x=1 at a depth d +1. We then compare two cases: considering uniform or
non-uniform partitioning in the look-ahead.
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Considering uniform partitioning:

In the initial model, CUs with larger size than the CU size considered for the quantizers
estimation, i.e. 16x16 in the look-ahead, were applied the average delta quantizers of their
related sub-CUs. We define the constant offset CteQP from the rate constraint as (4.77).

CteQP =

T
∑

t=1

N′

∑
i=1

cit log2 (Uit )

T
∑

t=1

N′

∑
i=1

cit

(4.77)

In the initial solution we had:{
U jT = Ψ jT

U jt−1 = ∑it pit r jt−1,itUit +Ψ jt−1.
(4.78)

dQPit = 1
4

4
∑

x=1
dQPit ,x

=−str 1
4

4
∑

x=1
(log2 (Uit ,x)−CteQP)

= str
(

CteQP − 1
4

4
∑

x=1
log2 (Uit ,x)

)
= str

(
CteQP − log2

(
4
∏

x=1
U

1
4

it ,x

))
(4.79)

Considering non-uniform partitioning:

In the proposed consideration of QuadTree, optimal quantizer are obtained by (4.76), that is
a direct mapping from the accumulation factor U and a constant term coming from the total
rate constraint. Consequently, dQPit depends on the accumulation factor Uit , and the four
delta quantizers of the sub-CUs depends on {Uit ,x}

4
x=1.

The accumulation factor is recursively computed, and depends on the look-ahead motion
estimation and the psycho-visual factor. Moreover, we show that the accumulation factor
estimated for a given CU does not depend on its occurrence probability. Consequently, if
we ignore the psycho-visual factor, i.e. in the context of RDTQ, we can state the equality
in (4.80).

Uit =
1
4

4

∑
x=1

Uit ,x (4.80)

This equality supposes that the accumulation factor of a 2Nx2N CU is equal to the
average of accumulation factors for its corresponding NxN CUs. It is intuitively correct since
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the two parts of the equality refer to the same spatial surface. Consequently, the optimal
quantizer estimation can be written as (4.81).

dQPit = str

(
Cte′QP − log2

(
1
4

4

∑
x=1

Uit ,x

))
(4.81)

We point out that Cte′QP is slightly different from CteQP and is defined as (4.82). However,
it remains a constant offset that is added to all quantizers.

CteQP =

T
∑

t=1

N′

∑
i=1

s′it cit log2 (Uit )

T
∑

t=1

N′

∑
i=1

s′it cit

(4.82)

If we compare (4.79) and (4.81), we observe a mismatch between using the geometrical
mean or the arithmetic mean of the sub-CUs accumulation factor when estimating a larger
CU delta quantizer. The QuadTree consideration, as proposed in this Section, should resolve
this issue by computing the correct accumulation factor for each CU, whatever its size/depth.
We point out that, based on an uniform partitioning look-ahead, it is pointless to only replace
the geometrical mean of accumulation factor by the arithmetic mean. The reason is that the
term CteQP resulting from the total rate constraint, is dependent of the occurrence probability
as shown by (4.82).

At the time of this thesis writing, the QuadTree consideration in the RDSTQ framework is
only based on theoretical thoughts. Further developments and experimentations are required
in order to confirm the relevance and validity of this model.

4.7 Conclusion

In this Chapter, we demonstrate the benefits of considering temporal distortion propaga-
tion for adaptive quantization. We provide a new spatio-temporal algorithm to compute
local quantizers, based on a theoretical framework able to describe the temporal distortion
propagation from an R-D standpoint. In particular, we model the temporal distortion propa-
gation making possible the (temporal) retro accumulations of any (spatial) psycho-visually
weighted distortion onto reference images. Using the R(D) Shannon bound, its high bitrate
approximation, and a Lagrange optimization, analytical solution is obtained and thoroughly
demonstrated for delta quantizers. We also show through extensive experimentations the
benefits of considering both Skip probability and accurate Inter probability estimators for AQ.
It provides substantial bitrate savings whatever the HEVC codec implementations. Consider-



4.7 Conclusion 135

ing the RDTQ, i.e Ψit = 1∀i, t, we report average BD-BR gains of −11.81% and −16.51%
PSNR-based in the x265 and the HM encoders, respectively. We obtain these gains against
no-AQ method and gains are systematic, i.e. all sequence codings are improved.

Thanks to the convenient consideration of a psycho-visual factor, the RDSTQ also allows
to optimize more perceptually-oriented quality metrics, such as the SSIM. When using a
psycho-visual factor based on the local pixel variance, that estimates the spatial masking,
average BD-BR gains based on SSIM are then of −23.53% and −26.26% for the x265
and the HM, respectively. Careful comparison against state-of-the-art similar approaches is
also reported. RDSTQ model outperforms previous techniques with −10.41% PSNR-based
and −22.79% SSIM-based average bitrate savings, when reference is without AQ. The
main conclusion coming out from these experiments is the higher efficiency of the GOP
optimization compared to the frame optimization; GOP optimization being closer to the
global optimization bound.

We point-out that most AQ methods, including ours, introduces a TBD when locally
adapting the quantizers, compared to no AQ reference. We prove that the Skip probability
consideration helps to reduce the average TBD of the RDSTQ with Initial probability from
12.4% to 4.33% in the HM and from 15.16% to 7.62% in x265. Finally, we demonstrate that
computed delta quantizers based on the proposed model are bounded. Their output dynamic
range is controllable, preventing from any worst case scenario.

However, the proposed method has some limitations: the model is simplified by assuming
all blocks to be of the same size, notably during the look-ahead analysis. In HEVC, the
QuadTree partitioning is known to be a key tool in terms of coding efficiency. We proposed
in Section 4.6 an approach for considering the QuadTree partitioning in the temporal dis-
tortion propagation model. Thanks to the definition of an occurrence probabilities, some
developments allow us to anticipate a simple optimal quantizer estimation model. This last
proposal is based on unverified assumptions and requires accurate split decision probabilities.
However, we believe that predicting the QuadTree based on non-uniform partitioning into the
look-ahead should improve the model coding efficiency. The distortion propagation model
should be more accurate and the quantizer computation would result in substantial coding
gains. Consequently, future work will address this topic by validating the proposed model.





Conclusion

In this thesis, we overview the dependencies related to an hybrid video coding scheme and
investigate the solutions to consider them into the global RDO problem. After introducing
some fundamentals about source coding in Chapter 1, we highlight in Section 1.4 that any
source coding system including predictive coding and quantization is subject to coding
decision dependencies.

Moreover, we prove in Section 1.5 that considering dependencies through exhaustive
search of optimal decisions becomes rapidly intractable, in terms of computational complexity.
The brief description of the HEVC standard that is proposed in Chapter 2 ends up with
identification of multiple coding dependencies related to the coding scheme and listed
hereafter:

• The distortion made on a coding unit may be propagated to other units because of the
prediction mechanisms. Global distortion minimization must take it into account.

• Side informations are coded using differential/predictive coding and arithmetic coding
that depends on other side informations values. Hence, regularizing side informations
occurrence reduces the overall side information cost.

• Some coding processes are applied sequentially, such as the quantization after the
transform. Joint optimization of the processes should lead to better performance.

After identifying the different dependencies related to the HEVC coding scheme, or more
generally any modern hybrid video coding scheme, we focused our studies on solutions to
improve the global R-D efficiency of an encoder within the scope of a standard.

In Chapter 3, an overview of the methods dealing with dependencies in Intra coding is
proposed. These methods focus on the distortion that is spatially propagated from one block
to another. One category of methods address the source problem, i.e. try to minimize the
distortion on the block boundaries through normative or non-normative solutions. Other
methods rather try to model the dependencies based on observations or mathematically in
order to efficiently modify the RDO. However, none of these methods considers all Intra
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coding-related dependencies at once, nor is able to provide a boundary of the maximum
achievable coding efficiency. In response to this, the framework we proposed in Section 3.2
aims to

• Estimate the impact of dependencies through exhaustive minimization of a joint cost,
i.e. minimizing the total cost of multiple coding units that are assumed dependent on
each other.

• Evaluate the upper-bound of the rate-quality curve and the potential interest of devel-
oping JRDO models for the Intra-only coding context.

We start by formalizing the dependencies between PUs that are processed sequentially
and have strong spatial dependencies. An exhaustive search for the joint minimum R-D
cost is then processed in order to optimize group of spatial predictors of 2 or 4 PUs. The
opportunities for reducing the computational complexity of the method are also studied in
order to propose a more acceptable complexity with systematic coding gains. Finally, the
exhaustive joint optimization is used for estimating QP offsets in an AQ co ntext. The overall
conclusion of this chapter is that joint optimization should be extended to a large number of
coding decisions, instead of 2 or 4 as proposed, in order to achieve significant improvements.
However, the complexity limits the possibility of an exhaustive verification of this statement.
We also notice that adaptive quantization is an efficient tool to optimize video coding, but the
bitrate overhead of the method in Intra coding annihilate its gains.

In Chapter 4 we focus on the dependencies consideration in the context of Inter coding.
We assume the opportunities for encoding optimization to be more interesting than the one
observed in the Intra coding case. Due to the extensive use of motion compensation, a
dependency network connecting all blocks of the same GOP can be observed. The solution
proposed in this Chapter models this dependency network through a temporal distortion
propagation model and an efficient use of Inter and Skip modes probabilities. Optimal
quantizers are then designed per coding unit in order to achieve the global optimization
in terms of Rate-Distortion efficiency. By implementing the algorithm into the HEVC
reference Model (HM), we prove it outperforms several related methods from state-of-the-art.
Moreover, along with the demonstration of optimal quantizer solution, we propose an in-
depth analysis of the algorithm behavior. This analysis includes, among others, the relative
distribution of rates between frames and the output quantizers range control. Finally, we
proposed in Section 4.6 an approach to improve the model by considering non-uniform
partitioning.

To conclude this thesis, all proposed solutions focused on different dependencies affecting
the encoding optimization in hybrid video coding scheme. Using non-normative solution, i.e.
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compliant with a given standard, we successfully improve the overall coding efficiency of an
encoder. In Chapter 3, we first estimate the opportunities in Intra-only coding for improving
the optimization of coding parameters through joint exhaustive optimization. In Chapter 4,
we use a simplified model of temporal distortion propagation. This model further allow to
solve adaptive quantization optimization problem, from a global RDO standpoint.

Perspectives

In the Chapter 3, we aimed to estimate an upper bound of the achievable coding efficiency
when considering the dependencies. We reported coding improvements using exhaustive
methods to jointly optimize different parameters (spatial predictor, quantization parameter) on
multiple coding units (2 or 4), but the computational complexity was an intractable limitation.
However, several state-of-the-art methods described in Section 3.1 present significant gains.
We consequently believe, that an efficient modeling of the spatial distortion propagation
should bring higher gains than the one we reported. For example, the RDSTQ model
proposed in Chapter 4 should be efficient in the Intra-only case, as long as we are able to
model the distortion propagation at pixel level. However, the desired upper bound does not
seem estimable.

The RDSTQ model that is extensively described in Chapter 4 is proven to be highly
efficient compared to state-of-the-art methods. However, some weaknesses should be taken
into account:

• Necessary mathematical simplifications are made by ignoring the influence of quantizer
on Inter probability and partially ignore it on the Skip probability, i.e. the derivative is
assumed to be zero.

• The lookahead and related retro-propagation in the RDSTQ only consider a uniform
partitioning of 16x16 blocks. However, HEVC allow a non-uniform partitioning using
a QuadTree.

Ignoring the effect of quantizer on the estimated probabilities allows a simple analytical
solution. Without simplifications, the consequence would be that local quantizers impacts
the retro-propagation itself, resulting in a chicken and egg dilemma. However, it could
improve the overall coding efficiency. As for the non-uniform partitioning, we believe it
should also improve the coding efficiency. The QuadTree consideration have been explored
in Section 4.6, but is not fully implemented nor validated at the moment.

Other dependencies have been identified but not necessarily treated during this thesis. An
example would be the dependency related to motion vectors signalization. As discussed in



140 Conclusion

Section 2.8, heterogeneous motion vector fields would results into a larger signalization cost.
Consequently, we believe that properly regularizing the motion vector field should improve
the coding efficiency.
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Appendix A

Derivation of the Rate-Quantization
function

A.1 Derivation of (1.23)

We start from the differential entropy H(Xi) of the random variable Xi is equal to (1.23).

H(Xi) =−
∫

fXi(x) log2 ( fXi(x))dx (A.1)

The quantization process divides the probability density function into intervals ∆i =

[xi;xi+1]. The quantization is considered scalar uniform and all intervals length are equals to
∆ = xi+1 − xi. (A.1) can thus be turned into (A.2).

H(Xi) =−∑
i

∫
∆i

fXi(x) log2 ( fXi(x))dx (A.2)

By assuming the distribution to be uniform in the range [xi;xi+1], e.g. if ∆ tends to be
small, we can express the distribution integral as a discrete variable pi defined in (A.3).

pi =
∫

∆i

fXi(x)dx (A.3)

For fXi(x) stable enough, it can be approximated as fXi(x) =
pi
∆
, ∀x, that further leads

into (A.4).

∑
i

pi = ∑
i

∫
∆i

fXi(x)dx =
∫

fXi(x)dx = 1 (A.4)
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Then, the rate can be expressed as a function of the entropy and ∆ as proven by the
following developments:

H(Xi) =−∑
i

∫
∆i

fXi(x) log2 ( fXi(x))dx (A.5)

H(Xi) =−∑
i

∫
∆i

pi

∆
log2

( pi

∆

)
dx (A.6)

H(Xi) =−∑
i

pi

∆
log2

( pi

∆

)∫
∆i

dx︸ ︷︷ ︸
=∆

(A.7)

H(Xi) =−∑
i

pi log2

( pi

∆

)
(A.8)

H(Xi) =−∑
i

pi log2 (pi)+∑
i

pi log2 (∆) (A.9)

H(Xi) =−∑
i

pi log2 (pi)︸ ︷︷ ︸
=H(Q)

+ log2 (∆)∑
i

pi︸︷︷︸
=1

(A.10)

We consider the average rate R(∆) to be well approximated by the entropy of the recon-
structed signal H(Q). Consequently the rate is obtained in (A.11).

R(∆)≈ H(Xi)− log2 (∆) (A.11)



Appendix B

RDSTQ equations

B.1 Computing DTot

Notation are simplified by defining d
′
it = cit dit +(1− cit )σ2

srcit
. We start from the distortion

defines with the temporal distortion propagation model as below,

Dit = d
′
it + pit ∑

jtre f ∈Re f (it)
r jtre f ,it

D jtre f
. (B.1)

We refine the overlapping ratio r jtre f ,it
as follow:

r jtre f ,it
=

{
0 if jtre f /∈ Re f (it)
r_j_t_ref,i_t if jtre f ∈ Re f (it)

(B.2)

To avoid dealing with the image number, and without losing in generality, the adopted
notation will simply be:

Dit = d
′
it + pit ∑

jt−1

r jt−1,it D jt−1 (B.3)

Then we can write the following:

Di1 = d
′
i1 (B.4)

Di2 = d
′
i2 + pi2 ∑

i1

ri1,i2Di1 (B.5)

Di2 = d
′
i2 + pi2 ∑

i1

ri1,i2d
′
i1 (B.6)
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Di3 = d
′
i3 + pi3 ∑

i2

ri2,i3Di2 (B.7)

Di3 = d
′
i3 + pi3 ∑

i2

ri2,i3

(
d
′
i2 + pi2 ∑

i1

ri1,i2d
′
i1

)
(B.8)

The distortion on the CU iτ−1 with τ > 1 is expressed as

Diτ−1 = piτ−1 ∑
iτ−2

riτ−2,iτ−1

(
piτ−2 ∑

iτ−3

riτ−3,iτ−2

(
...pi2 ∑

i1

ri1,i2d
′
i1 + d

′
i2

)
+ ...

)
+ d

′
iτ−2

+ d
′
iτ−1

,

(B.9)

and the total distortion DTot is expressed as:

DTot =
T

∑
t=1

N

∑
i=1

d
′
it Ψit

=
T

∑
t=1

(
N

∑
i=1

Ψit

(
pit ∑

it−1

rit−1,it

(
pit−1 ∑

it−2

rit−2,it−1

(
...pi2 ∑

i1

ri1,i2d
′
i1 + d

′
i2

)
+ ...

)
+ d

′
it−1

+ d
′
it

))
(B.10)

DTot can be written as a linear combination of Uit and d
′
it , then

DTot =
T

∑
t=1

N

∑
i=1

d
′
itUit . (B.11)

After calculation and rearranging we obtain:

(B.12)
Unτ

=
∂DTot

∂dnτ

′

=

[
Ψnτ

+
T

∑
t=τ+1

(
∑
it

∑
it−1

... ∑
iτ+1

Ψit pit rit−1,it Ψit−1 pit−1rit−2,it−1 ...piτ+1rnτ ,iτ+1

)]

B.2 Accumulation factor in recursive form

Let have {
U jT = Ψ jT

U jt−1 = ∑it pit r jt−1,itUit +Ψ jt−1.
(B.13)
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We can confirm the recursive form as follow

U jT−1 = ∑
iT

piT r jT−1,iT ΨiT +Ψ jT−1 (B.14)

(B.15)U jT−2 = ∑
iT−1

∑
iT

piT−1r jT−2,iT−1 piT r jT−1,iT ΨiT + ∑
iT−1

piT−1r jT−2,iT−1ΨiT−1 + Ψ jT−2

(B.16)
U j1 = Ψ j1 +

T

∑
τ=1

∑
iτ

∑
iτ−1

...

...∑
i1

piτ riτ−1,iτ piτ−1riτ−2,iτ−1...pi1r j1,i2Ψiτ

B.3 Computing the Lagrangian
∂JTot

∂Qit
=

∂dit
∂Qit

citUit +λ
∂Rit
∂Qit

cit = 0 (B.17)

The minimization of JTot is independent of cit which is removed from equations. Then to
isolate the λ we derivate JTot by Rit results in

∂JTot

∂Rit
=

∂dit
∂Qit

∂Qit
∂Rit

Uit +λ (B.18)

∂JTot

∂Rit
= 0 ⇔ λ =− ∂dit

∂Qit

∂Qit
∂Rit

Uit (B.19)

λ =−Uit

∂dit
∂Qit
∂Rit
∂Qit

=−Uit
∂dit
∂Rit

=−Uit
∂Dit
∂Rit

(B.20)

By using the R-D Shannon bound Rit =−1
2 log2

(
Dit

α σ2
it

)
, we obtain

∂Rit
∂Dit

=
1

2.ln(2).Dit
. (B.21)

Finally, the optimal λ is defined by

λ = 2.ln(2).Uit .Dit . (B.22)





Appendix C

QuadTree consideration in RDSTQ

C.1 Derivation of optimal quantizer considering QuadTree
partitioning

Hereafter, we verify that the λ value used for total R-D cost Jtot minimization is independent
of the probability of existence and scale factor. We start from the total R-D cost partial
derivative according to quantization step ∆it to be equal to zero as:

∂JTot

∂∆it
=

∂DTot

∂∆it
+λ

∂

∂∆it

T

∑
t=1

N

∑
i=1

Rit = 0 (C.1)

We express the rate Rit of a CU it depends of the probability of existence of the CU. Since
Rit is an average rate per samples, it also requires to be scaled, as explained for the distortion
Section 4.6.2. Thus, by s′it s a function of RC

it and RS
it as the rates of a CU it to be coded in

Inter/Intra and Skip, respectively. Thus, Jtot derivative is turned into (C.2).

∂JTot

∂∆it
=

∂dit
∂∆it

s′it citUit +λ
∂Rit
∂∆it

s′it cit = 0 (C.2)

Developments to obtain the optimal λ value are the same than in Appendix B.3 and
injecting the R-D Shannon bound we obtain the same result:

λ = 2 ln(2)Uit Dit (C.3)

The following equations are very similar to the initial RDSTQ analytical solution.

log2
(
λ
′)= log2 (Uit Dit ) . (C.4)
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We exhibit the total rate in order to introduce the rate constraint, i.e. the average GOP
bitrate RTot is desired to remain identical. By summing the log values weighted by the cit

and s′it on both sides of (4.39) over all CUs of the GOP, we have

log2
(
λ
′) T

∑
t=1

N

∑
i=1

s′it cit︸ ︷︷ ︸
=NTot

=
T

∑
t=1

N

∑
i=1

s′it cit log2 (Uit Dit ) , (C.5)

log2
(
λ
′)= 1

NTot

T

∑
t=1

N

∑
i=1

s′it cit log2 (Uit Dit ) . (C.6)

We observe that s′it takes the same place in developments than cit . Indeed the probability
of a CU to not be coded in Skip mode have the same use that the CU probability to occur.
We can then anticipate the final equation of optimal quantizer as:

dQPkτ
=−str

(
log2 (Ukτ

)− 1
NTot

T

∑
t=1

N

∑
i=1

s′it cit log2 (Uit )

)
(C.7)
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Titre : Considération des dépendances pour l’optimisation débit-distorsion globale : application à 
HEVC  

Mots clés : Compression Vidéo, Dépendances de codage, Optimisation débit-distorsion globale, 
HEVC 

Résumé : La compression vidéo est critique 
pour le déploiement de nouvelles technologies 
vidéo, telles que l'ultra haute définition (UHD) ou 
le débit d'images élevé (HFR). De nouvelles 
normes sont périodiquement conçues afin de 
répondre au besoin d'une meilleure efficacité de 
codage vidéo. Une nouvelle norme introduit 
généralement de nouveaux outils de 
compression qui permettent d’accroitre les 
capacités de la norme précédente. Cependant, 
une norme spécifie uniquement le processus de 
décodage. Pour s’assurer une compression 
optimale, il est nécessaire d’optimiser l’utilisation 
de ces outils et donc de l’encodage. Alors que 
de nombreux encodeurs sont basés sur 
l'optimisation indépendante des paramètres de 
codage, ce qui conduit à une succession 
d’optimums locaux, cette thèse adresse 
l'optimisation jointe de ces paramètres afin 
d’atteindre une efficacité globale. 

Tout d'abord, nous fournissons une description 
exhaustive des dépendances qui lient les 
paramètres de codage au sein de la dernière 
norme de compression vidéo publiée: HEVC. 
Ensuite, nous estimons les possibilités, en 
termes d'efficacité de codage, d'optimiser  
plusieurs paramètres de codage  jointement  et 
exhaustivement, dans le cas de codage Intra-
image. Enfin, nous proposons de modéliser la 
propagation de la distorsion temporelle entre 
blocs de pixels, introduite par la prédiction 
temporelle. A partir d’un modèle mathématique 
simplifié, nous pouvons obtenir une solution 
analytique qui définit le quantificateur optimal 
pour chaque bloc de pixels. Les quantificateurs 
optimaux permettent d'atteindre une efficacité 
de codage élevée, pour une séquence de 
plusieurs images, du point de vue de 
l'optimisation  débit-distorsion. 

 

Title:  Dependencies consideration for global rate-distortion optimization: application to HEVC  

Keywords: Video Compression, Coding Dependencies, Global Rate-Distortion Optimization, HEVC 

Abstract: Video compression remains one of 
the key challenges for the deployment of new 
video technologies, such as Ultra High Definition 
(UHD) or High Frame Rate (HFR). 
Requirements for better coding efficiency are 
periodically answered by the release of new 
standards, introducing additional coding tools 
with coding capabilities beyond previous 
standards. However, encoding optimization is 
necessary for guaranteeing that an encoder can 
provide the best efficiency in the scope of a 
standard. Many encoders are based on 
independent optimization of coding parameters, 
which leads to successive local optima. In this 
thesis, the emphasis is put on parameters joint 
optimization to achieve global optimum. 

First, we provide an exhaustive description of 
coding parameters dependencies related to the 
latest released video coding standard, HEVC. 
Then, we try to estimate the opportunities, in 
terms of coding efficiency, to exhaustively and 
jointly optimize multiple coding parameters, in 
the use case of Intra-picture coding. Finally, we 
propose to model the temporal distortion 
propagation between blocks of pixels, 
introduced by the Inter-frame prediction. Based 
on a simplified mathematical model, we can 
draw an analytical solution that sets the optimal 
quantizer for each block of pixels. Optimal 
quantizers allow achieving high coding 
efficiency, in a sequence of frames, from a 
rate-distortion optimization standpoint. 
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