turbulent energy transfers around the sweeps and ejections resulting from the local acceleration related to these structures.

The research provides new insights into the scalings, correlations, and organisation of the turbulent dissipation and of the scale-by-scale energy cascade in turbulent channel flows.
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Résumé

L'objectif principal de cette recherche doctorale est de s'immerger dans les mécanismes de dissipation d'énergie turbulente et de cascade d'énergie turbulente dans le contexte d'un écoulement en canal pleinement turbulent. Notre but est d'examiner minutieusement ces processus cruciaux, qui régissent la dynamique et les propriétés des écoulements turbulents, sans nous appuyer sur des hypothèses ou des simplifications. Au lieu de cela, nous cherchons à développer un cadre rigoureux qui apporte des informations précieuses sur la nature de la turbulence.

Une hypothèse fondamentale de la théorie de la turbulence est la loi d'échelle de dissipation de Taylor-Kolmogorov, qui est généralement justifiée sur la base de la cascade d'équilibre de Kolmogorov. Dans ce travail, nous examinons les échelles de dissipation de la turbulence dans la direction inhomogène du canal et dans le temps. Les simulations numériques directes (DNS) avec des nombres de Reynolds allant jusqu'à Re τ = 5200 révèlent différentes échelles de ce coefficient de taux de dissipation pour différentes échelles de longueur intégrale. Elles révèlent également une anti-corrélation robuste entre les fluctuations temporelles du coefficient de dissipation de turbulence et les nombres de Reynolds basés sur la longueur de Taylor sur une gamme de distances par rapport au mur dans la région où la production de turbulence en un point et la dissipation de turbulence sont approximativement équilibrées. Cet ensemble de résultats d'échelle est nouveau et suggère des transferts d'énergie turbulente non homogènes et non stationnaires entre les échelles, c'est-à-dire un transfert et une cascade de turbulence interscalaires non équilibrés.

Nous avons donc décidé d'explorer davantage la cascade d'énergie échelle par échelle à travers une analyse en deux points, en utilisant l'équation de Kármán-Howarth- Monin-Hill (KHMH). Notre cadre théorique prédit qu'au sein de la couche intermédiaire, l'équilibre de Kolmogorov est asymptotiquement atteint uniquement autour de la longueur de Taylor, en La recherche apporte de nouvelles perspectives sur les échelles, les corrélations et l'organisation de la dissipation turbulente et de la cascade d'énergie échelle par échelle dans les écoulements de canaux turbulents. vii

Summary

The primary objective of this PhD research is to delve into the mechanisms of turbulent energy dissipation and turbulent energy cascade in the context of a fully developed turbulent channel flow. Our goal is to thoroughly examine these crucial processes, which govern the dynamics and properties of turbulent flows, without relying on assumptions or simplifications. Instead, we aim to develop a rigorous framework that provides valuable insights into the nature of turbulence.

A cornerstone assumption of turbulence theory is Taylor-Kolmogorov's dissipation scaling law, which is typically justified on the basis of Kolmogorov's equilibrium cascade. In this work, we examine the turbulence dissipation scalings in the inhomogeneous direction of the channel and in time. Direct numerical simulations (DNS) with Reynolds numbers up to Re τ = 5200 reveal different scalings of this dissipation rate coefficient for different integral length scales. They also reveal a robust anti-correlation between time fluctuations of the turbulence dissipation coefficient and the Taylor length-based Reynolds numbers over a range of wall distances within the region where one-point turbulence production and turbulence dissipation approximately balance. This set of scaling results is new and suggests non-homogeneous and non-stationary turbulent energy transfers across scales, i.e. non-equilibrium interscale turbulence transfer and cascade.

Therefore, we decided to explore the scale-by-scale energy cascade further through a two-point analysis, utilising the Kármán-Howarth-Monin-Hill equation (KHMH). Our theoretical framework predicts that within the intermediate layer, Kolmogorov equilibrium is asymptotically attained only around the Taylor length, contrasting with the concept of an inertial length that is independent of viscosity. We corroborate our theory's prediction using DNS data for Reynolds numbers up to Re τ = 2000. Moreover, we examine scale-by-scale turbulence production and interscale turbulence energy transfer with respect to alignments/anti-alignments of fluctuating velocities between the two points, straining/compressive relative motions, forward/inverse interscale transfer/cascade, and homogeneous/nonhomogeneous interscale transfer rate contributions. In particular, this part of the study has shown that the scales closest to scale-by-scale equilibrium are scales where aligned fluctuating velocities are stretching with their velocity difference maximally aligned with the two-point separation vector.

Finally, we extend our analysis to particular coherent structures in wall turbulence, specifically examining the interscale energy transfer of sweeps and ejections, which are essential structural elements of wall turbulence. Our findings indicate a prominent inverse energy cascade within these coherent structures, driven by inhomogeneities. Additionally, we visualise the conditional average interscale transfer field surrounding these structures, unveiling a unique organisation of interscale Turbulence remains one of the most challenging and unsolved problems in classical physics due to its complexity and multifaceted behaviour, despite being governed by the deterministic Navier-Stokes equations. Its sensitivity to initial and boundary conditions, renders turbulence a prime example of a chaotic complex system. The understanding of turbulence is crucial in the race to address critical challenges related to transportation, energy, environment, and human health that can benefit society as a whole.

The first exploration of turbulence can be traced back to Leonardo Da Vinci in the 15th century; his artwork of water flowing into a reservoir illustrated for the first time the presence of various scales of motion -a fundamental characteristic of any turbulent flow. However, it was not until three centuries later, when [START_REF] Hagen | Ueber die bewegung des wassers in engen cylindrischen röhren[END_REF] recognized two distinct states of fluid motion: laminar and turbulent. [START_REF] Reynolds | Xxix. an experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF] demonstrated that the transition from laminar to turbulent occured for the same value of the dimensionless number, which is since known as Reynolds number, Re = U δ ν , which represents the ratio between inertial and viscous effects of the flow.

One of the most significant challenges in addressing the problem of turbulence, apart from the sensitivity to initial and boundary conditions, arises from the inherent nonlinearity of the Navier-Stokes equations. The non-linear interactions are responsible for the coexistance of a wide range of scales in space and time. [START_REF] Richardson | Weather prediction by numerical process[END_REF] investigated the complex, multi-scale nature of turbulent flows in his study of homogeneous isotropic turbulence, and this concept was eloquently captured in his renowned poem: "Big whirls have little whirls, which feed on their velocity, And little whirls have lesser whirls, and so on to viscosity." the smallest scales of the flow, and therefore the latter are independent of the largescale flow characteristics and their statistics are solely determined by the energy dissipation rate, ε, and the kinematic viscosity, ν. Dimensional analysis allows for the deduction of the mathematical functions of the characteristic velocity, length and time scales of the smallest eddies (v = (νε) 1/4 , η = (ν 3 /ε) 1/4 and τ = (ν/ε) 1/2 respectively). Kolmogorov's second hypothesis postulates that for high Reynolds number there exists an intermediate range of scales far from the largest scales of the flow and far from the smallest, called the inertial subrange. In this range, the energy cascade is dominated by the inertial forces and the energy transfer is governed solely by the rate of energy dissipation, ε.

In Kolmogorov (1941c), it was effectively demonstrated that his conceptual framework of energy cascade, could be derived from the Navier-Stokes equations using appropriate assumptions. The main assumptions of K41 theory are:

• The flow is statistically stationary (local equilibrium hypothesis), meaning the characteristic timescales of small scales are significantly smaller to the time scales of turbulence evolution.

• The flow is isotropic and homogeneous, implying that the statistical properties are the same in all directions and do not depend on the location within the flow.

Despite the limitations posed by the severe assumptions, Kolmgorov's theory has experienced a widespread success across a wide variety of flow types, Remarkably, its predictions like the -5/3 energy spectrum have been observed in situations where the assumptions might not hold, such as in turbulent boundary layers. In Kolmogorov (1941c), he utilized the equation by De [START_REF] De Kármán | On the statistical theory of isotropic turbulence[END_REF])

∂⟨δu 3 r ⟩ ∂r + 4 r ⟨δu 3 r ⟩ = 6ν ∂ 2 ⟨δu 2 r ⟩ ∂r 2 + 4 r ∂⟨δu 2 r ⟩ ∂r -4ε (1.1)
with δu r (r, t) = u(ξ + ) -u(ξ) -• r r representing the difference between fluctuating velocities at two points ξ + ≡ x + r/2 and ξ -≡ xr/2 along the separation vector r = (r 1 , r 2 , r 3 ). From this equation, Kolmogorov derived his two well-known laws:

⟨δu 2 r ⟩ = C K ε 2/3 r 2/3
(1.2)

⟨δu 3 r ⟩ = - 4 5 εr (1.3)
where C K is a universal constant. The first equation 1.2 is referred to as the 2/3-law (or in Fourier space 5/3 law as shown in [START_REF] Obukhov | On the distribution of energy in the spectrum of turbulent flow[END_REF] and [START_REF] Obukhoff | The microstructure of turbulent flow[END_REF]). The law describes the distribution of energy across scales. The second equation 1.3, is known as the 4/5 law and is associated with the constant transfer of energy from large to small scales, due to the negative sign of the right hand side in equation 1. 3. [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number[END_REF], revisited the K41 theory to address certain limitations and incorporate corrections. The updated theory, often referred to as K62, aimed to account for the intermittency of the dissipation field observed in experimental data. This leads to corrections in the scaling exponents in both the 2/3-law and the 4/5law, that account for the high fluctuations of the dissipation rate, ε, as Reynolds number increases. Monin & Yaglom (1975) reformulated equation 1.1, dropping the assumption of isotropy and allowed for a more general application of the equation in the study of turbulence. The Kármán-Howarth-Monin equation writes as:

1 3 1.2 Beyond K41
∂⟨δu i δu j δu j ⟩ ∂r i
= 2ν ∂ 2 ⟨δu j δu j ⟩ ∂r i ∂r i

-4ε

(1.4)

Although the isotropy assumption is removed, equation 1.4 still has inherent limitations due to the retained assumptions of homogeneity and stationarity. Additionally, the pressure term is neglected, further constraining the applicability of the equation as noted by [START_REF] Lindborg | On kolmogorov's third order structure function law, the local isotropy hypothesis and the pressure-velocity correlation[END_REF]. Numerous attempts have been made to enhance the KHM equation and include additional terms that more accurately reflect the physical phenomena involved (e.g. [START_REF] Hill | Applicability of kolmogorov's and monin's equations of turbulence[END_REF][START_REF] Antonia | Analogy between predictions of kolmogorov and yaglom[END_REF][START_REF] Lindborg | Correction to the four-fifths law due to variations of the dissipation[END_REF][START_REF] Antonia | Streamwise inhomogeneity of decaying grid turbulence[END_REF][START_REF] Danaila | Turbulent energy scale budget equations in a fully developed channel flow[END_REF][START_REF] Danaila | Yaglom-like equation in axisymmetric anisotropic turbulence[END_REF]. Nevertheless, it was not until [START_REF] Hill | Exact second-order structure-function relationships[END_REF] that the exact equations for the scale-by-scale energy budget in phsyical space were derived from Navier-Stokes equation, eliminating any assumptions such as isotropy, homogeneity, and equilibrium. This development is known as the Kármán-Howarth-Monin-Hill (KHMH) equation or the generalised Kolmogorov equation (GKE).

Since the introduction of the KHMH equation, a plethora of studies have utilised it to analyse the energy cascade in complex turbulent flows, offering insight into the scale-by-scale energy transfer through different mechanisms and at different conditions. Specifically, for wall-bounded flows, [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF] first employed the KHMH equation at low Reynolds number to study the interscale transfer, production and dissipation across the turbulent channel flow. [START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF], later, investigated the effect of Reynolds number up to Re τ = 934, revealing a cross-over length scale marking the transition between production dominated and interscale transfer dominated regimes. [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] revealed the existance of a spiral path of the energy flux in the three-dimensional hyper-plane, originating from two energy sources: one in the near wall-region and another in the outer region. The paths diverge either towards the center of the channel or towards the wall, where energy is being dissipated. In [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] a different hyper-plane was studied, involving this time, the wall-normal scales. They showed the presence of an inverse cascade occuring at the attached eddies close to the wall before detaching and following a forward cascade. Finally, [START_REF] Gatti | An efficient numerical method for the generalised Kolmogorov equation[END_REF] tried to characterise the whole four-dimensional space, demonstrating that the wall-normal flux contribution increases with larger streamwise scales.

Additionally, the KHMH equation has also been leveraged to understand different inhomogeneous and anistropic flows, including the near wake behind a square 1 Introduction prism Alves [START_REF] Alves Portela | The turbulence cascade in the near wake of a square prism[END_REF][START_REF] Alves Portela | The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers[END_REF], von Kármán flows [START_REF] Dubrulle | Beyond kolmogorov cascades[END_REF][START_REF] Knutsen | The inter-scale energy budget in a von kármán mixing flow[END_REF], recicrulating flow behind a bump [START_REF] Mollicone | Turbulence dynamics in separated flows: the generalised kolmogorov equation for inhomogeneous anisotropic conditions[END_REF], grid-generated turbulence [START_REF] Gomes-Fernandes | The energy cascade in near-field non-homogeneous non-isotropic turbulence[END_REF] and [START_REF] Valente | The energy cascade in grid-generated nonequilibrium decaying turbulence[END_REF] and the wake behind a cylinder by [START_REF] Thiesset | Scale-byscale energy budgets which account for the coherent motion[END_REF].

Non-equilibrium turbulence

Another significant result of Kolmogorov's 4/5 law, which can be derived using dimensional arguments, is the zeroth law of turbulence:

ε = C ε U 3 L (1.5)
This relationship has also been given by [START_REF] Taylor | Statistical theory of turbulence[END_REF], a few years earlier based on phenomenological considerations. In the context of Kolmogorov's equilibrium cascade, the dimensionless dissipation rate coefficient, C ε , is considered constant for sufficiently large Reynolds numbers. This remarkable result, which implies that the dissipation rate is independent from the molecular viscosity, has served as a cornerstone for turbulence theories and models for many years (see [START_REF] Batchelor | The theory of homogeneous turbulence[END_REF][START_REF] Tennekes | A First Course in Turbulence[END_REF][START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF][START_REF] Frisch | Turbulence: The Legacy of A.N. Kolmogorov[END_REF]. However, in recent years, research on a wide range of flows, including forced and decaying periodic turbulence, wakes, jets, boundary layers among others (see [START_REF] Vassilicos | Dissipation in turbulent flows[END_REF]Goto & Vassilicos, 2016a;[START_REF] Nedić | Dissipation scaling in constant-pressure turbulent boundary layers[END_REF]Obligado & Vassilicos, 2019b;[START_REF] Cafiero | Non-equilibrium turbulence scalings and selfsimilarity in turbulent planar jets[END_REF][START_REF] Chongsiripinyo | Decay of turbulent wakes behind a disk in homogeneous and stratified fluids[END_REF] has revealed that C ε is not constant, as previously assumed. Instead, it exhibits variations in both time and space. In these studies the scaling of the dimensionless dissipation rate coefficient follows the form:

C ε ∼ Re G /Re λ n (1.6)
where Re G is a global Reynolds number, Re λ is the local (in time) Taylor-lengthbased Reynolds number, and n is an exponent that assumes different values depending on the flow condition.

The non-constancy of C ε as described in equation 1.6 holds considerable significance, as it challenges the traditional understanding of the energy cascade and unveils a more intricate mechanism. Specifically, it implies the existence of a nonequilibrium energy cascade, characterised by a significant time lag between the energy introduction at the largest scales and the energy dissipation at the smallest scales [START_REF] Goto | Energy dissipation and flux laws for unsteady turbulence[END_REF], 2016b,c). Notably, this type of cascade has been observed in regions where the -5/3 energy spectrum holds for a wide range of wavenumbers, in accordance with the Kolmogorov theory, contrasting, therefore, the Richardson-Kolmogorov equilibrium cascade that has been built upon equations 1.2 and 1.3.

In chapter 2 of the thesis, the behaviour of the dimensionless dissipation rate coefficient C ε is examined in the context of wall-turbulence. This area of the nonequilibrium energy cascade has seen limited research, apart from the recent works of [START_REF] Nedić | Dissipation scaling in constant-pressure turbulent boundary layers[END_REF] and [START_REF] Obligado | Dissipation scalings in the turbulent boundary layer at moderate Re θ[END_REF], despite the fact that the constancy of 1.4 Wall-turbulence 1 5 C ε has been a key component of turbulence models, wall-functions and LES models that are extensively used for wall-bounded flows.

Wall-turbulence

Wall-bounded flows, a class of fluid flows in which turbulence is restricted by solid boundaries, are prelevant in various sectors, including engineering, transport, energy and healthcare. The behavior of fluid near a solid boundary has a significant impact on the transport of heat, mass, and momentum, which are crucial factors in designing efficient systems and optimizing performance. Some examples of wallbounded flows are the flow over airfoils, flow through pipelines, boundary layers on vehicles, and the flow in channels and ducts, among other applications. By deepening our knowledge of wall-turbulence phenomena, we can contribute to the advancement in energy consumption in transportation and industrial processes, as well as healthcare applications, such as gaining a better understanding of respiratory and cardiovascular systems.

The study of wall-turbulence, however, poses several challenges due to the complex nature of turbulent flows and the intricacies of fluid-solid boundary interactions. Apart from the limitations already discussed in the previous sections, regarding the understanding of turbulence (e.g. multi-scale nature, nonlinearity and sensitivity to boundary/initial conditions), the presence of the wall introduces high levels of inhomogeneity and anistropy. While, the high Reynolds number needed for many practical applications makes it extremely difficult to perform experimental or numerical studies.

Theoretical framework

The theoretical framework for studying wall-turbulence begins with the Navier-Stokes equations, written for an incompressible fluid, where the density ρ remains constant:

∇ • u t = 0 (1.7) ∂u t ∂t + (u t • ∇)u t = - 1 ρ ∇p t + ν∇ 2 u t (1.8)
where u t = (u t , v t , w t ) is the velocity vector, p t is the pressure, and ν is the kinematic viscosity. Reynolds (1895) decomposed the velocity and pressure fields into their mean and fluctuating components as follows:

u t = ⟨u⟩ + u and p t = ⟨p⟩ + p (1.9)
where the angle brackets ⟨•⟩ denote the average operation. Applying the Reynolds decomposition to the Navier-Stokes equation 1.7 and 1.8, the Reynolds Averaged Navier-Stokes (RANS) equation is derived:

∇ • ⟨u t ⟩ = 0 (1.10) ∂⟨u t ⟩ ∂t + (⟨u t ⟩ • ∇) ⟨u t ⟩ = - 1 ρ ∇⟨p t ⟩ + ν∇ 2 ⟨u t ⟩ -∇ • ⟨uu⟩ (1.11)
where the new term appearing in the right hand side of equation 1.11, ∇ • ⟨uu⟩, is called the Reynold stress term and is responsible for the momentum transfer due to turbulent fluctuations. We now consider the case of a turbulent channel flow, with height 2h, length L and span b. Assuming a wide and long channel, L/2h ≫ 1 and b/2h ≫ 1, as well as a fully developed flow where the flow is statistically stationary and homogeneous in the streamwise (x) and spanwise (z) directions, the velocity statistics depend only on the wall-normal direction y. The RANS equation now simplifies to (1.14) where P = ⟨p t ⟩ is the average pressure, and U = ⟨u t ⟩ the mean streamwise velocity.

0 = ν d 2 dy 2 U - d dx P/ρ - d dy ⟨uv⟩ , (1.12) 0 = ∂ ∂y P/ρ - d dy v 2 , (1.13) 0 = - ∂ ∂z P/ρ - d dy ⟨wv⟩ ,
Integrating the y-momentum equation and after some manipulation we can derive an expression for the total tangential stress:

τ = ν dU dy -⟨uv⟩ = u 2 τ (1 -y/h) (1.15)
where u τ = νdU/dy| wall is the friction velocity at the wall. From this, we can define the wall unit δ ν = ν/u τ , which charaterises the distance from the wall where viscosity effects dominate; the region extending from the wall to the point where y + = y/δ ν ≈ 1 is called the viscous layer. Following [START_REF] Millikan | A critical discussion of turbulent flow in channels and circular tubes[END_REF], we will use dimensional arguments and assymptotic analysis to separate the wall-normal variation of the mean velocity into three regions based on the wall-distance. Using the Buckingham π theorem we have that dU/dy = u τ /yF (y/H, y + ).

Inner layer -Prandtl's law of the wall In the viscous layer (y + ≈ 1), where y ≪ h for high Reynolds numbers, it is reasonable to expect that there is no depedence of the mean velocity on h and therefore:

dU dy = u τ y F i (y + ).
(1.16)

Integrating and using appropriate boundary conditions, Prandtl's law of the wall is retrieved : (1.17) where U + = U/u τ . In this region the Reynolds shear stresses are almost zero, as shown experimentally by [START_REF] Reichardt | Complete representation of the turbulent velocity distribution in smooth pipe[END_REF]. 

U + ∼ y + ,
U + -U + c = F o (y/h) (1.18)
known as von Kármán's velocity-defect law.

Overlap layer -log law

At sufficiently large Reynolds numbers (Re τ = h/δ ν → ∞) an overlap region exists in which both the solutions for the inner and outer layers are valid. This region is referred as the intermediate or logarithmic layer, where the following relation holds:

dU dy = u τ y F i (y + ) = u τ y F o (y/H). (1.19)
Consequently it follows that F i (y + ) = F o (y/h) = const. Integrating this expression yields the log-law:

U + = 1 κ ln y + + B, (1.20) valid for δ ν ≪ y ≪ h.
Here, κ = 0.41 (although highly debated for many years) is the von Kármán coefficient and B = 5.1 a universal constant.

Coherent structures

The study of coherent structures in wall-turbulence has been a topic of significant interest in fluid mechanics research for several decades. As nobel laurate physicist Richard Feynman eloquently stated: "The next great era of awakening of human intellect may well produce a method of understanding the qualitative content of equations. Today we cannot. Today we cannot see that the water flow equations contain such things as the barber pole structure of turbulence that one sees between rotating cylinders." By delving deeper into the complex behaviour of fluids, we strive to uncover the qualitative content hidden within the equations.

A rigorous definition of a 'coherent structure' remains elusive. Many consider as 'coherent structure' the structures that exhibit spatial and temporal coherence, and contribute to the transport of momentum and energy. A more constrained approach reflecting the current state of knowledge regarding coherent structures is provided by [START_REF] Jiménez | Coherent structures in wall-bounded turbulence[END_REF]. In his review, he refers to coherent structures as the solutions of the flow field, which 'are intense enough to evolve on their own, relatively independently from other solutions far away'. Futhermore, he outlines several key characteristics that these structures should display, including possesing their own dynamics, being considerably stronger compared to their surroundings and either extracting, dissipating, or retaining energy for extended periods, thereby contributing to the general energy budget of the flow.

The study of coherent structures in wall-turbulence can be traced back to the work of [START_REF] Theodorsen | The structure of turbulence. 50 Jahre Grenzschichtforschung[END_REF], who introduced the concept of a horsehoe vortex as 1 Introduction the key structural element. [START_REF] Davidson | Turbulence: an introduction for scientists and engineers[END_REF] detailed the formation process of hairpin vortices in turbulent flows. These structures comprise a head that forms a 45 • angle with the wall and a pair of counter-rotating vortices, elongated in the streamwise direction. Low-and high-speed streaks are additional examples of prevalent coherent structures, first indentified by [START_REF] Kline | Quasi-coherent structures in the turbulent boundary layer. i-status report on a community-wide summary of the data[END_REF]. The streaks are predominantly observed in the buffer region of the boundary layer, and have typical streamwise length of ∆x + = 1000 and are ∆z + ≈ 20 wide, while their spanwise spacing is around 100ν/u τ [START_REF] Lin | Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. part 1[END_REF]. [START_REF] Robinson | Coherent motions in the turbulent boundary layer[END_REF] noted that the streaks are formed by the quasi-streamwise vortices, before becoming unstable [START_REF] Schoppa | Coherent structure generation in near-wall turbulence[END_REF] and bursting producing intense levels of turbulence in the buffer region. This process leads to the formation of new streamwise vortices, perpetuating the 'self-sustaining' cycle [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF][START_REF] Waleffe | How streamwise rolls and streaks self-sustain in a shear flow[END_REF][START_REF] Jiménez | The autonomous cycle of near-wall turbulence[END_REF]. The dominant energetic motions in the log-layer have been identified by [START_REF] Adrian | Vortex organization in the outer region of the turbulent boundary layer[END_REF] and [START_REF] Kim | Very large-scale motion in the outer layer[END_REF], and are characterised as largescale motions (LSMs) and very large-scale motions (VLSMs). LSM are observed in the long streamwise momentum zones induced by the hairpin vortices and have streamwise lengths of up to 2 ∼ 3δ. VLSMs, which are formed by the alignment of LSMs [START_REF] Kim | Very large-scale motion in the outer layer[END_REF], account for nearly half of the Reynolds stresses and turbulent kinetic energy in the flow [START_REF] Jiménez | The large-scale dynamics of near-wall turbulence[END_REF] and have streamwise lengths up to 10 ∼ 20δ. The work of [START_REF] Marusic | Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues[END_REF] provides a comprehensive review of the characteristics and importance of LSM and VLSM in wall-turbulence. One crucial aspect of these large scale motions is their footprint to the near-wall region, consequently influencing the near-wall cycle of turbulence generation. [START_REF] Wallace | The wall region in turbulent shear flow[END_REF] introduced the concept of quadrant analysis to examine the contribution of tangential Reynolds stress to momentum transfer in wall-bounded turbulent flows. This analysis revealed regions of intense Reynolds stress and classified them into ejections (Q2), which represent the outward motion of fluid away from the wall, and sweeps (Q4), corresponding to the inward motion of fluid towards the wall. [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF][START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF] explanded this analysis in three dimensions by studying the geometrical and dynamical characteristics of ejections and sweeps. Their research showed that ejections, which tend to move away from the wall, start as attached structures before eventually detaching, while sweeps behave oppositely. Detached structures are more common but have smaller sizes than attached structures, while also carrying most of the Reynolds stress (up to 60%). Importantly, though all structures appear to have self-similar aspect-ratios with ∆ x /∆ z = 2 for detached structures and ∆ x /∆ z = 3 for the attached ones, which apear to be more elongated in the streamwise direction. Finally, they visualised the conditional flow fields around pairs of attached structures, uncovering a distinct organisation that consisted of a low-speed streak inside the ejection (due to u 1 < 0) and a high-speed streak inside the sweep (u 2 > 0). In between a roller, consisted of multiple vortices in the actual instanteneous field, supports the formation of the sweep-ejection pair.
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Aims and thesis outline

The thesis is organised around three main chapters, delving into the dynamics of interscale energy transfer and turbulent dissipation in wall turbulence. The primary aims of this research are:

Aim 1: Given that the turbulence cascade, whether of Richardson-Kolmogorov type (i.e., scale-by- Aim 3: Analyse the energy cascade associated with structural components of wallturbulence, such as sweeps and ejections, to gain deeper insights into their role in the overall energy transport processes in wall turbulence.

Chapter 2, is an article published in the Journal of Fluid Mechanics, titled " Scalings of turbulence dissipation in space and time for turbulent channel flow" [START_REF] Apostolidis | Scalings of turbulence dissipation in space and time for turbulent channel flow[END_REF]. This study addresses Aim 1 by analysing turbulent dissipation scaling in wall-normal direction and in time for different integral length scales.

Chapter 3, is an article accepted with revisions in the Journal of Fluid Mechanics, titled "Turbulent cascade in fully developed turbulent channel flow". This study addresses Aim 2 by using the Kármán-Howarth-Monin-Hill equation.

Chapter 4, addresses Aim 3 and is a collaborating work together with Prof. Adrián Lozano-Durán, which started during the Lille Turbulence Program (LTP) 2022 and continued at MIT during a 2-month visit funded by College Doctoral Lille Nord de France through PhDs' Mobility Program. In this work, we combine the framework of Chapter 3 together with the identification of coherent structures to study the energy cascade around ejections and sweeps.

Chapter 5 concludes the thesis, summarising the key insights from the previous chapters. Additionally, it briefly discusses potential avenues for further research stemming from the observations presented in this thesis.
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Scalings of turbulence dissipation in space and time for turbulent channel flow

Preface to the chapter

This chapter is an article published in the Journal of Fluid Mechanics, titled " Scalings of turbulence dissipation in space and time for turbulent channel flow" [START_REF] Apostolidis | Scalings of turbulence dissipation in space and time for turbulent channel flow[END_REF].

Abstract

We investigate scalings of turbulence dissipation and turbulence length/time scales in the fully developed turbulent channel flow region of wall distances y where the ratio of turbulence production to turbulence dissipation oscillates close to 1. We first study averages over both time and wall-parallel streamwise (x) spanwise (z) planes at y. Turbulent channel flow data with friction velocity (u τ ) global Reynolds number Re τ ranging from 550 to 5200 suggest that the integral length scales of streamwise fluctuating velocities along the streamwise direction and of wall-normal fluctuating velocities along the transverse direction tend towards scaling with y and that the respective turbulence dissipation coefficients tend towards being constant with increasing Re τ . However, the data for integral lengths of transverse fluctuating velocities in the transverse direction suggest that these lengths obey an asymptotic scaling √ δy (δ being the channel half-width) with increasing Re τ . The corresponding turbulence dissipation's scaling seems to tend towards √ Re τ /Re λ which is reminiscent of the non-equilibrium turbulence dissipation scaling found in boundaryfree turbulent flows, Re λ being a y-local Taylor length-based Reynolds number. The data do not exclude minor corrections from these asymptotic scalings and in fact, suggest finite Reynolds number deviations to them. Secondly, we remove time-averaging and study timefluctuating averages over wall-parallel planes at y. We find that the time-fluctuations of the turbulence dissipation coefficients and the Taylor length-based Reynolds number are very strongly anti-correlated at all wall-distances y considered, reflecting a dominance of turbulent kinetic energy fluctuations at the lower frequencies but a dominance of both turbulent kinetic energy and turbulence dissipation at the higher frequencies. In the case of the turbulence dissipation coefficient corresponding to the integral length of the wall-normal velocity along the transverse direction, it is possible to determine the cross-over frequency f * c between these two behaviours, and we find f * c ∼ u τ /y for Re τ = 950 but f * c ∼ u τ /δ for Re τ = 2000 where there is evidence of Very Large Scale Motions.

Introduction

Modelling turbulence dissipation is fundamental for turbulence modelling. Those turbulence models which aim to predict spatio-temporal variations of turbulent flow fields, such as Large Eddy Simulations, ideally require non-homogeneous and dynamic models of the turbulence dissipation. This makes relations such as

ε = C ε K 3/2 /L (2.1)
very relevant, particularly if such a relation can capture space-and/or timevariations of the turbulence dissipation rate ε and of related quantities such as a turbulent kinetic energy K and an integral length scale L characterising the largest, energy-containing, eddies. According to Kolmogorov's equilibrium cascade for homogeneous turbulence, the dimensionless dissipation rate coefficient C ε is constant at a large enough Reynolds number, i.e. independent of time, space and Reynolds number. Even though this is true in statistically stationary forced homogeneous turbulence after averaging over time, it is not generally true. There are significant variations of C ε both in space and in time in a variety of turbulence flows with close to -5/3 power-law energy spectra, and these variations obey well-defined laws. For example, in three qualitatively different turbulent wake flows generated by pairs of side-by-side square prisms, [START_REF] Chen | A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms[END_REF] showed that the dissipation rate coefficient of the incoherent turbulence varies along the cross-stream direction as √ Re C /Re (Goto & Vassilicos, 2016b), where the turbulence decays in time, but also in turbulent flows where the turbulence decays along as it has two rather than three periodic directions and one wall-normal direction, which is non-homogeneous. One can therefore use DNS of such a flow to study the scalings of turbulence dissipation rate both in time, as already mentioned, but also in a cross-stream direction along which the turbulence is non-homogeneous, namely the turbulent channel flow's wall-normal direction. Are the wall-normal variations of turbulence dissipation rate and of local (in space) Reynolds number somehow related, and does such relation have some commonalities to the way they are related in other non-homogeneous turbulent flows? These are universal questions which can be asked for any turbulent flow as they concern spatio-temporal variations of turbulence dissipation, turbulent kinetic energy and various length scales. These questions are central for future developments of turbulence subgrid modelling approaches, and in this paper, we ask them for turbulent channel flow.

In the following section, we present the DNS data of statistically stationary fully developed turbulent channel flow used in this study. Then, in section 3, we study the cross-stream variations of the time-and wall-parallel plane-average values of C ε and Re λ in the average equilibrium layer where turbulence production rate approximately balances dissipation rate. In section 4, we remove the time-averaging operation and study the time-dynamics of the wall-parallel plane-average values of C ε and Re λ . Finally, we conclude in section 5. Note that the notation used in the remainder of this paper has some subtle differences from the notation used in this introduction, where it has only been possible to include summary descriptive sketches of previous results.

DNS data

Our analysis is comprised of two parts. In the first part, we analyse the mean profiles of various quantities in the wall-normal direction (i.e. functions of wallnormal coordinate y) for a turbulent channel flow. Our primary database is the DNS data of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re τ ≈ 5200[END_REF] for four cases with Re τ = 550, 1000, 2000 and 5200 (Re τ ≡ u τ δ/ν where ν is the kinematic viscosity, δ is the channel half-width, and u τ is the skin friction velocity obtained by averaging over time and over streamwise coordinate x and spanwise coordinate z at the channel's solid wall y = 0). The Navier-Stokes equations have been solved by integrating the evolution equations in terms of the wall-normal vorticity and the Laplacian of the wall-normal velocity for an incompressible fluid. The spatial discretization in the wall parallel directions used the Fourier spectral method, whereas a B-spline collocation method was used in the wall-normal directions. For the time advancement, a third-order Runge-Kutta for the non-linear terms and Crank-Nicolson for the viscous terms were selected. The domain size is L x = 8πδ and L z = 3πδ.

For our second part, we focus on the time dynamics of turbulence again in a channel flow, and therefore we use the DNS data of [START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF] for Re τ = 932 and 2003, where the full velocity field is available with a time resolution of dt + ≈ 8 for Re τ = 932 and total number of time steps N t = 3151 and dt + ≈ 25 for Re τ = 2003 with N t = 462, while the domain size for both simulations is L x = 2πδ and L z = πδ (the superscript + refers to non-dimensionalisation with wall units). The numerical methodology is similar to Lee and Moser, except for the spatial discretization in the wall-normal direction. For Re τ = 932 Chebychev polynomials were used, while for Re τ = 2003 a seven-point compact finite difference scheme. Finally, a third-order semi-implicit Runge-Kutta method with CFL = 0.5 was chosen for time advancement. A detailed comparison of the two datasets can be found in table 2.1, along with the naming convention that will be followed in the next sections.

Name

Re 

Time-average turbulence dissipation scalings

In this section, we analyse the dataset of Lee and Moser. All the quantities have been averaged over the two homogeneous directions, i.e. over the x, z plane, and over time. We, therefore, look at profiles in the wall-normal direction y. [START_REF] Townsend | Equilibrium layers and wall turbulence[END_REF] proposed that, for high Reynolds numbers, there is an inertial layer δ ν ≪ y ≪ δ (δ ν ≡ ν/u τ ) where production rate and dissipation rate (both averaged over the homogeneous plane at a fixed y and over time) are in equilibrium. This idea received support from the asymptotic analysis of [START_REF] Brouwers | Dissipation equals production in the log layer of wall-induced turbulence[END_REF], which, however, started from the assumption that the mean flow profile is logarithmic in that region.

In figure 2.1(a), we plot the ratio between turbulent kinetic energy production rate P ≡ -⟨uv⟩ dU dy (where ⟨uv⟩ is the Reynolds shear stress obtained by averaging over the x, z plane at y at time t and (U, 0, 0) is the mean flow obtained by averaging over that plane and time) and dissipation rate ε (where ε is the turbulence dissipation rate averaged over that same plane and the overline represents an average over time). We observe that this ratio oscillates gently around 1 over an increasing walldistance range with increasing Re τ . Our analysis is focused on the region above the buffer layer, starting from y/δ ν ≡ y + ≈ 60 where P/ε displays a local minimum irrespective of Reynolds number, and ending at the wall-distance y + ≈ 0.5Re τ where the ratio of production over dissipation suddenly drops fast for all Re τ cases. In this region there is also a local maximum of P/ε which appears relevant for the y-range of validity of some of our results in the following sub-sections. This local maximum may either be a finite Reynolds number effect or may indicate that the location of the local maximum of P/ε is a fundamental differentiating factor in the physics of wall-turbulence. Either way it is important to analyse the entire y-region where P/ε oscillates close to 1 and distinguish sub-regions within it. In the following subsection, we examine wall-normal profiles of the Taylor length because of its relation to turbulent kinetic energy and turbulent dissipation rate and because it is the length scale used to define the Taylor length-based Reynolds number. In subsection 3.2, we study wall-normal profiles of integral length scales and in subsection 3.3, we bring our length-scale observations together and look at how dissipation rate coefficients scale with local Taylor length-based Reynolds number along the wall-normal direction and, equivalently, how ratios of integral to Taylor length scales vary with normalised wall normal distance y + (which is also a local Reynolds number).

Taylor length

Figure 2.1(b) shows the Taylor length, defined as λ ≡ 10νK/ε, versus normalised wall-distance y + (K = K(y, t) is the turbulent kinetic energy averaged over the horizontal x, z plane, and K is K averaged over time.). As Re τ grows, λ tends towards λ ∼ √ δ ν y (in dimensionless form, λ + ∼ y + ) from the local minimum until the local maximum of P/ε, while after that local maximum it starts to slightly deviate from this scaling. From the definition of the Taylor length, this corresponds to a scaling ε ∼ Ku τ /y for the turbulence dissipation. Similar results have been obtained by [START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF] who predicted λ ∼ √ δ ν y on the basis of the number density of fluctuating velocity stagnation points, which scales as 1/y + in the region where production approximately equals dissipation. It is worth noting here that the scaling of λ, and subsequently of ε, has far-reaching consequences, even for statistics as basic as the mean velocity profile U (y). In general, we can write

P ε = f (y + , Re τ ) -⟨uv⟩ dU dy = f ε = f 10νK λ 2 .
Using λ ∼ √ δ ν y, following our observation in figure 2.1(b), which suggests it to be increasingly the case as Re τ increases, we obtain:

dU dy ∼ 10f K -⟨uv⟩ u τ y (2.2)
in the very high Re τ limit. Therefore the consequence of λ ∼ √ δ ν y is that the quantity in brackets in equation 2.2 should vary with y + in the same way as the indicator function β(y + ) = y + dU + dy + . In figure 2.1(c), we plot the ratio between -10f K/⟨uv⟩ and the indicator function. The ratio tends to become constant from y + ≈ 60 until the maximum of P/ε with increasing Reynolds number. This offers a different way to examine the extent to which the Taylor length's scaling remains valid but also illustrates its relation to the mean shear scalings.

Another consequence of λ ∼ √ δ ν y is that the eddy turnover time τ ≡ K/ε scales as τ ∼ y/u τ in the inertial layer where production and dissipation are in approximate local equilibrium. It may be puzzling that τ scales with 1/u τ rather than 1/ √ K as this eddy turnover time is often linked to the energy cascade. In section 4, we investigate turbulence dissipation time scales by lifting the time-average operation to study time scales in actual time-fluctuations of quantities involving turbulent kinetic energy and dissipation.

Integral length scales

The integral length scale is the correlation distance of a fluctuating velocity component in a specific direction. It is typically interpreted as the size of the biggest eddies in a turbulent flow. In wall-turbulence, due to the anisotropy imposed by the wall, these length scales have different magnitudes depending on the velocity component and direction of correlation. We calculate the integral length scales from [START_REF] Tennekes | A First Course in Turbulence[END_REF])

E uiui (k j = 0) = 2⟨u 2 i ⟩ π L ui,xj (2.3)
which relates the one-dimensional energy spectra with the integral length scales: i = 1, 2, 3 correspond to the three velocity components (u 1 ≡ u, u 2 ≡ v, u 3 ≡ w) in the streamwise, wall-normal and spanwise directions, respectively, and j = 1, 2, 3 correspond to the three directions (x 1 ≡ x, x 2 ≡ y, x 3 ≡ z) along which correlations are measured. For example, for i = 2 and j = 3 we have L v,z representing the integral length scale of the wall-normal velocity in the spanwise 

L + w,z ∼ Re τ y + ⇒ L w,z ∼ δy i.e. L w,z /δ ∼ y/δ (2.5)
which suggests that L w,z depends on y and δ. The scaling 2.5 is also in agreement with Townsend's phenomenology. In this phenomenology, eddies of size y contribute to v motions, whereas all eddy sizes equal to and larger than y (up to δ) contribute to u and w motions [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF][START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF]. The scaling 2. and Re λ are based on statistics obtained by averaging over both time and x, z planes, and their values vary as we move across the wall-normal direction y, in particular within the average equilibrium layer 60 ≤ y + ≤ Re τ /2, see figure 2.1(d). We observe in figures 2. 3 (a, c), that C v,x ε and C v,z ε tend to a constant independent of Re λ as Re τ increases even though Re λ varies over an increasing range of values across the average equilibrium layer as Re τ grows (figure 2.1(d)). This is different from the cross-stream non-homogeneous behaviour in turbulent wake flows generated by pairs of side-by-side square prisms where [START_REF] Chen | A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms[END_REF] v,z ε this ratio approaches a constant value in the average equilibrium range 60 ≤ y + ≤ Re τ /2 as Re τ increases, suggesting that the large scale loss rate is the same fraction of dissipation rate at all these walldistances. For C w,z ε , however, the situation is radically different. The time-and wall-normal plane-averaged values of C w,z ε and Re λ vary with wall-distance y, but they do so in an opposite way. Whilst Re λ grows with y, C w,z ε decreases with increasing y and this is expressed by an approximate power-law scaling of a form close to λ at the higher wall-distances, see figure 2. 3(e). This departure may be related to VLSMs. It cannot be known with the present data if the exponent 0.35 tends to 0.5 or not with increasing Re τ .

C w,z ε ∼ Re -1 λ . If C w,z ε is independent of viscosity, C w,z ε ∼ Re -1 λ would require C w,z ε ∼ √ Re τ /Re λ ,
In homogeneous turbulence the ratio of integral scale to Taylor length characterises the range of scales where the inertial energy cascade occurs (e.g. see Obligado & Vassilicos, 2019a;Meldi & Vassilicos, 2021a). In a turbulent channel flow the anisotropy imposes different integral length scales in different directions, and even though all ratios L ui,xj /λ can in principle be defined, it is not fully clear how each one of them may relate to a cascade mechanism. Even so, in figures 2. 3(b,d,f ) we plot the wall-normal profiles of L v,x /λ, L v,z /λ and L w,z /λ. From the asymptotic scalings λ ∼ √ δ ν y and L v,x ∼ L v,z ∼ y suggested by our analysis in the previous section, we expect

L v,x /λ ∼ L v,z /λ ∼ y/δ ν (2.6)
in the high Re τ limit. This is indeed consistent with what we observe in figures 2. 3(b, d), in particular for the higher Re τ as the integral length scales and the Taylor length have not reached their asymptotic values for the small and medium Re τ considered here. Note also, that it is harder to compute L v,x accurately at the higher wall-normal locations, perhaps due to the potential emergence of as suggested by equation 2.7. Again, this discrepancy may be attributed to the low Reynolds numbers available here, making it difficult to see the correct asymptotic values of the quantities of interest. Nevertheless, it remains possible to argue that the range of scales contributing to w fluctuations remains approximately constant with increasing distance from the wall in a significant portion of the approximate average equilibrium range of wall distances.

It is worth noting that equation 2.7, which is equivalent to C w,z ε ∼ √ Re τ /Re λ , has significant predictive power. Using the facts that L w,z and λ are, in all generality, functions of y, δ and δ ν , and that we may expect λ to be independent of δ and L w,z to be independent of viscosity in an approximate average equilibrium range, we can write L w,z = √ δyf L (y/δ) and λ = √ δ ν yf λ (y/δ ν ) where f L and f λ are dimensionless functions of dimensionless arguments. From equation 2.7 it then follows that f L (y/δ)/f λ (y/δ ν ) is independent of y which, given that f L is independent of δ ν and f λ is independent of δ, is only possible if both f L and f λ are constants. Hence, λ ∼ √ δ ν y and L w,z ∼ √ δy, which demonstrates the predictive power of equation 2.7. 

Non-equilibrium, time-dependent, dissipation scalings

Motivated by the eddy turnover time τ ≡ K/ϵ which can be expected to scale as τ ∼ y/u τ because of λ ∼ √ δ ν y at high Re τ , and by the fact that this time scale is important for the scalings of the dissipation rate coefficients and the length-scale ratios in the previous subsection, we now study fluctuations in time. We, therefore, lift the time-averaging and study, at various wall-normal locations y, the time fluctuations of plane-averaged quantities, i.e. quantities averaged over the homogeneous directions in space (x, z) but not over time. The purpose of this investigation is to find whether characteristic time scales exist in the time fluctuations themselves.

Time dynamics of dissipation rate coefficient C ε

For the second part of this work, we use the DNS data of [START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF] where full velocity fields have been stored for a large number of time steps, see section 2. For these data, integral length scales L ui,xj are obtained for i = 1, 2, 3 and j = 1, 3 (we do not consider j = 2) by first calculating autocorrelation functions where averages are in x, z planes, and then integrating these autocorrelation functions up to the first zero crossing. These integral length scales are therefore functions of wall-normal distance y and time t, unlike the integral scales L ui,xj obtained from energy spectra in the previous section which are functions of y but not of time t. Fluctuating dissipation coefficients are now defined as

C ui,xj ε ≡ ε/(K 3/2 /L ui,xj )
where ε and K are also functions of y and t and not functions of y only. Note the difference between the fluctuating dissipation coefficients C For all three dissipation coefficients, we observe an apparently quasi-periodic behaviour consisting of turbulence-building periods, where the dissipation coefficient decreases and Re Λ grows, alternating with turbulence-declining periods, where the dissipation coefficient grows and Re Λ decreases. We must emphasize that this behaviour is not transient; indeed, it persists for the entire time duration of our data and it can also be found at all wall-normal locations in the range 60 ≤ y + ≤ 0.5Re τ . This observation is similar to that made by Goto & Vassilicos (2016a), who attributed it to the turbulence cascade and the resulting time lag between the forcing's energy build up and the dissipation's energy decrease in their DNS of periodic turbulence. Here, the role of the forcing is replaced by the mean shear, which creates large scale turbulence therefore increasing Re Λ . The non linear cascade transfers energy towards the small scales, where turbulence activity is increased, thus increasing dissipation. 2 Scalings of turbulence dissipation in space and time for turbulent channel flow These remarks raise the question of which time scale or time scales govern these apparent quasi-periodicities, which we address in sub-section 4.2. We quantify our observations by calculating the two-time correlation coefficients between C ui,xj ε and Re Λ , which are given by
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ρ [C u i ,x j ε ,Re Λ ] (y, ∆t) = ⟨C ui,xj ′ ε (y, t)Re ′ Λ (y, t + ∆t)⟩ t ⟨C ui,xj ′2 ε (y, t)⟩ t ⟨Re ′2 Λ (y, t)⟩ t (2.8)
where

C ui,xj ′ ε ≡ C ui,xj ε -C ui,xj ε and Re ′ Λ ≡ Re Λ -Re Λ are the fluctuating com- ponents of C ui,xj ε
and Re Λ , respectively. Figure 2.5 confirms, for both Reynolds numbers, the anti-correlation at zero time lag

(∆t = 0) between C ui,xj ε and Re Λ for i = 2, j = 1 (C v,x ε ), i = 2, j = 3 (C v,z ε ) and i = j = 3 (C w,z ε ). For C v,z
ε we find a nearly perfect anti-correlation, around -0.9, between the two signals with zero time lag; C w,z ε has slightly smaller but still very strong values of anti-correlation at ∆t = 0, roughly -0.8, which strengthens towards negative values below -0.8 with increasing y + ; finally, C v,x (h)
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1 (h)

ρ [C v,x ε ,Re Λ ] (c, d) ρ [C v,z ε ,Re Λ ] , (e, f ) ρ [C w,z ε ,Re Λ ] , (g, h) ρ [K,ε] .
-1 0 1 ρ [X,Y ] Re τ =950 -1 0 1 ρ [X,Y ] Re τ =2000 1 Figure 2.6: Contours of two-time correlation coefficient of C u i ,x j ε
and Re Λ with K versus wall-distance y + and time-lag ∆t + . Left column correlations for Reτ = 950, right column correlations for (h)

Reτ = 2000. (a, b) ρ [C v,x ε ,K] (c, d) ρ [C v,z ε ,K] , (e, f ) ρ [C w,z ε ,K] , (g, h) ρ [Re Λ ,K] .
-1 0 1 ρ [X,Y ] Re τ =950 -1 0 1 ρ [X,Y ] Re τ =2000 1 Figure 2.7: Contours of two-time correlation coefficient of C u i ,x j ε
with Lu i ,x j and Re Λ with ε versus wall-distance y + and time-lag ∆t + . Left column correlations for Reτ = 950, right column correlations for

Reτ = 2000. (a, b) ρ [C v,x ε ,Lv,x] (c, d) ρ [C v,z ε ,Lv,z ] , (e, f ) ρ [C w,z ε ,Lw,z ] , (g, h) ρ [Re Λ ,ε] .
2.4 Non-equilibrium, time-dependent, dissipation scalings with K and L ui,xj , as well as those of Re Λ with K and ε across the channel and for both Re τ = 950 and Re τ = 2000. We omit for economy of space the correlation between C ui,xj ε and the dissipation rate, because it is nearly zero for all time lags, as is the correlation of Re Λ with ε shown in figures 2.7(g, h) (quite clearly for Re τ = 950 though much less conclusively at small and large wall distances for Re τ = 2000 where statistics can be expected to be less well converged (see N t values in table 2.1) and where a qualitative difference in the flow, such as the gradual appearance of Very Large Scale Motions (VLSMs) may be introducing different dynamics -we discuss VLSMs effects in the following subsection). ,K] at non-zero positive time lags for some wall distances, in a different way for the two different Re τ values, but it is mostly at or near zero time lags that this anti-correlation is strongest. These observations suggest that the time fluctuations of C v,x ε are equally influenced by those of the integral length scale L v,x and by those of the turbulent kinetic energy K, and that both influences are mostly instantaneous.

For C v,z ε , the strong instantaneous (∆t = 0) anti-correlation ρ [C v,z ε ,K] ≈ -0.8 is clear throughout the channel and is stronger than for all non-zero time lags ∆t (see figures 2.6(c, d)). It is also much stronger, across the channel, than the correlation ρ [C v,z ε ,Lv,z] which is ≈ 0.5 at its highest values which are at ∆t = 0 for Re τ = 950 (see figures 2.6(c, d), 2.7(c, d)). Once again, results may be less converged for Re τ = 2000 in figure 2.7(d) or there may be an effect of VLSMs (see next subsection), and figure 2.7(d) is more complex and less conclusive. These observations suggest that the instantaneous influence of the turbulent kinetic energy is more significant in the evolution of C v,z ε than that of L v,z . We observe similar behaviour for C w,z ε in figures 2.6(e, f ) and 2.7(e, f ).

All in all, the results of figures 2.5, 2.6 and 2.7 suggest that the dominant link between the time dynamics of the dissipation rate coefficients and Re Λ is the turbulent kinetic energy (a large scale quantity) mostly instantaneously (i.e. ∆t = 0) at least for Re τ = 950 if not also Re τ = 2000 to some significant extent. The integral length scales, however, weaken this connection between them. Specifically, the fluctuations of L v,z contribute the least to those of C v,z ε , which, being dominated by K, have a nearly perfect anti-correlation with Re Λ , which is also dominated by K. On the other hand, L v,x makes a significant contribution to the fluctuations of C v,x ε and acts to weaken their correlation with the fluctuations of Re Λ . Having shed some light on the connection between the dissipation coefficients 2 Scalings of turbulence dissipation in space and time for turbulent channel flow 0.00 0.25 0.50 0.75 1.00 and Re Λ , we now look for a simple algebraic relation between them which may capture most of their anti-correlation. Using their definitions and rearranging, we obtain:

C v,x ε (a) Cε ∼ Re -p Λ (b) Cε ∼ Re -p Λ 0.0 0.1 0.2 0.3 0.4 C v,z ε (c) Cε ∼ Re -p Λ (d) Cε ∼ Re
C v,x ε C v,z ε C w,z ε 0 500 1000 y + (h) C v,x ε C v,z ε C w,z ε 200 400 y + Reτ =950 250 500 750 y + Reτ =2000 1 Figure 2.8: C u i ,x j ε (t) against Re Λ (t)
C ui,xj ε (t) ∼ Re -3/2 Λ (t) L ui,xj (t) η(t) .
(2.9)

If the ratio of large-to small-scale turbulent kinetic energies (represented by Re Λ ) fluctuates more widely than the range of large to dissipative scales L ui,xj (t)/η(t), and if the fluctuations of the two ratios representing these two ranges are uncorrelated, then we can expect 

C ui,xj ε (t) ∼ Re -3/2 Λ (t)
(t) ∼ Re -p Λ (t).
The values of the positive exponents p across the channel along with their 95% confidence interval are shown in figures 2.8(g, h). Evidently, p takes values between 1.0 and 1.6 for Re τ = 950 while for Re τ = 2000 the scatter in p values, and also the uncertainty, are bigger due to coarser time resolution and smaller statistical sample. The exponent p that is closest to 1.5 for all wall distances is the one which corresponds to C v,z ε , in particular for Re τ = 950. For the same Re τ = 950, the exponent p which corresponds to C w,z ε appears to increase from slightly above 1 to a little above 1.5 as y + increases in the average equilibrium region 60 ≤ y + ≤ Re τ /2, and C v,x ε appears to meander without clear trend between 1 and 1.5. For Re τ = 2000, the values of p do not show any trend, but they are also mostly between 1.0 and 1.5 across the channel. As explained at the start of this paragraph, equation 2.9 shows that the deviation of p from 3/2 is attributable to the fluctuations of the range of scales L ui,xj /η. These deviations are most significant for C v,x ε and C w,z ε and less for C v,z ε which is the turbulence dissipation coefficient defined in terms of L v,z , the only one of the three integral lengths considered here which is expected to depend mainly, if not mostly, on eddies of size commensurate to the distance to the wall.

Time dynamics of filtered dissipation coefficients

The approximate quasi-periodic behaviours of the fluctuating dissipation coefficients and Re Λ observed in the previous subsection raises the question of whether a prevailing time scale, responsible for the non-equilibrium behaviour between C ui,xj ε and Re Λ , exists. Therefore, the final step of our analysis is to investigate this question. We apply high-and low-pass filters to the time signals of

C v,x ε , C v,z ε , C w,z ε
and Re Λ , separating this way the fast and the slow time scale behaviours. The filtering process is done in the time domain using a least square 5 th -order spline filter, which has been shown by [START_REF] Li | A-priori analysis of LES subgrid scale models applied to wall turbulence with pressure gradients[END_REF] to have excellent filtering properties. The filter width δt is the time interval between two consecutive sampling times where the spline is interpolated, which corresponds to a cutoff frequency given approximately by f c ≈ T /(2δt) where T is the signal's total duration.

In figure 2 with Re Λ , highlighted in the previous section, is clearly present in the low-pass signals. Interestingly though, in figures 2.9(e, f ) we see that the high frequencies of the dissipation and Reynolds number signals are also very well anti-correlated with zero time lag. To make these observations more quantitative, we compute correlation coefficients of the type given in equation 2.8 but for the filtered signals.

We first present representative results for particular cutoff frequencies and then investigate the influence of varying the filter a few paragraphs below.

Using the low-pass filtered C and Re λ as can be seen in figure 2.11, which is similar to figure 2.6 and shows that the slow time scales are dominated by K.

In figure 2.12, correlations are plotted for the high-pass filtered signals, including correlations with the fluctuating turbulence dissipation rate that are no longer negligible. Instead of iso-contours for different wall-normal locations as in previous plots, we select, for clarity, only one location where to show the correlations because the behaviour is very similar across the channel (with only small differences close to the wall which are not part of this study). We observe that the anti-correlations between C ui,xj > ε and Re > Λ has dropped significantly but remain stronger than -0.5 at zero time lag for all three integral length scales. The turbulent kinetic energy remains significant but is not the dominant quantity in the high frequency dynamics of the dissipation rate coefficient and of the local Reynolds number. We now also see significant correlations of C ui,xj > ε with the dissipation rate and also significant correlation (in the opposite sense) of Re > Λ with the dissipation rate (by "opposite sense" we mean that for a given time lag, these two correlations have opposite signs). Such correlations are effectively absent in the full and low-pass filtered signals. Furthermore, the integral length scales dominate in terms of correlations with the dissipation rate coefficients, causing a drop in the levels of correlation between dissipation coefficients and Re > Λ . The influence of the fluctuations of the turbulence dissipation rate, a small scale quantity, to the high frequency dynamics of the turbulence dissipation coefficients and Re Λ might suggest a change of dependence on wall-normal distance compared to the low frequency dynamics where turbulence dissipation fluctuations play no significant role. We test this on power-law scalings of the form C > ε ∼ Re >-p Λ for the high-pass filtered signals. Figure 2.13 shows best-fit positive exponents p across the channel. For Re τ = 950, it is clear that the exponents p oscillate around 1.5 without an obvious trend as y + varies, in contrast to C w,z ϵ in figure 2.8(g), which increases with y + . For Re τ = 2000, the coarser time resolution makes it difficult to distinguish a clear trend, and p oscillates quite violently between about 1 and about 2, around an average value of 1.5. This is not too different from 2.8(h). Perhaps surprisingly, the power-law relations around which the dissipation rates and Re Λ fluctuate, does not appear to be too dissimilar between the full signals and the high- (f ) 
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The maximum absolute correlation values in figures 2.10 and 2.12 occur for zero time-lag. We, therefore, investigate the effects of varying cutoff frequency on the correlations at zero time lag. In figure 2.14 we plot instantaneous correlation coefficients (∆t

+ = 0) of filtered signals of C ui,xj ε
and Re Λ as a functions of cutoff frequency f c . We do this for our two global Reynolds numbers Re τ and various wall distances. In columns one and three of figure 2.14 we plot the zero time-lag correlation coefficient for low-pass filtered signals and observe that the slow time scales have almost perfect anti-correlation for all three integral length scales. As the cutoff frequency increases and faster time scales are included in the time signal, the anti-correlation drops slightly before stabilising at a constant equal to the unfiltered correlation seen in figure 2.5. Similarly, in columns two and four of figure 2.14, we observe that the high absolute value anti-correlations drop very significantly at first as the cutoff frequency of the high-pass filtered is increased and then increases again or stabilises as the cutoff frequency is increased further. This initial drop followed by a regaining of anti-correlation with increasing f c is most clearly apparent for C v,z> We have already shown that the turbulence dissipation plays no role in the anti-2 Scalings of turbulence dissipation in space and time for turbulent channel flow correlation between C v,z ε and Re Λ at frequencies smaller than f * c but that it does play a significant role in their anti-correlation at frequencies larger than f * c . It may be that at frequencies higher than f * c the dissipation dynamics are not particularly dependent on energetic flow structures and that these high frequency dissipation fluctuations therefore create their own direct link between C v,z> ε and Re > Λ ; whereas at frequencies below f * c the energetic flow structures dominate in anti-correlating C v,z ε and Re Λ . The observation that f * c ∼ u τ /y for Re τ = 950 might therefore suggest that these energetic flow structures have a size proportional to y in this case, but that they have a size of the order of δ in the Re τ = 2000 case where our observations are rather in line with f * c ∼ u τ /δ. This can be confirmed by looking at the premultiplied one-dimensional energy spectra of the streamwise velocity fluctuations in the streamwise direction in figures 2.15(c) and (d), where a significant structural difference between the two Reynolds numbers can also be observed. For Re τ = 950 we see a peak which moves progressively from high to low wavenumbers as the wall distance increases, suggesting that the size of the energy-containing fluctuations increases with y, which agrees with the idea that f * c should be inversely proportional to y. For Re τ = 2000, however, this local in y behaviour is eclipsed by a large concentration of energy at the smallest wavenumbers irrespective of wall distance y, which is attributed to the appearance of VLSMs (not evident at Re τ = 950), carrying large amounts of turbulent kinetic energy [START_REF] Marusic | Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues[END_REF]. The presence of such structures is felt throughout the channel, and we expect their time dynamics to be relatively slow; this is consistent with our result in figure 2.15(b), where the frequency where the turbulent kinetic energy stops being the correlating factor is seen to be small and effectively independent of wall distance y. These results paint a picture where the non-equilibrium behaviour between C ui,xj ε and Re Λ is present at all time-scales and irrespective of the structural properties of the flow (whether VLSMs exist or not).
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Conclusions

The DNS data of fully developed turbulent channel flow that we used in this paper support the view that, at high enough Re τ , both L v,x and L v,z tend to scale like y in the range 60 ≤ y + ≤ Re τ /2. This is in agreement with the wall-blocking aspect of Townsend's attached eddy hypothesis, according to which turbulent eddies of size y determine these two integral lenghts Townsend's attached eddy hypothesis also suggests that L w,z is determined by turbulent eddies of size equal to and larger than y but does not provide a way to predict the scalings of L w,z . The DNS data used here suggest that L w,z tends towards a √ δy scaling in the region 60 ≤ y + ≤ Re τ /2 as Re τ increases. The turbulence dissipation coefficient C w,z ε defined in terms of L w,z appears to tend towards C w,z ε ∼ √ Re τ /Re λ in that region for increasing Re τ . This scaling is reminiscent of the non-equilibrium dissipation scaling mentioned in the introduction as Re τ is a global Reynolds number and Re λ is a local in y Taylor length-based Reynolds number. Interestingly, C w,z ε ∼ √ Re τ /Re λ can be shown to imply L w,z ∼ √ δy. This turbulence dissipation scaling is therefore consistent with Taylor's attached eddy hypothesis and even helps to predict the scalings of L w,z with y and δ. Furthermore, C w,z ε ∼ √ Re τ /Re λ can also be shown to imply λ ∼ √ δ ν y, where λ is the Taylor length. This Taylor length formula is in fact the same as the one predicted by [START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF] from their stagnation point arguments. The DNS data used here support this Taylor length scaling at the higher Re τ . The DNS results for C w,z ε , L w,z and λ are therefore consistent but it must also be stressed that the data do not exclude small corrections from these asymptotic scalings and in fact suggest finite Reynolds number deviations. The same is true for L v,z ∼ y and L v,x ∼ y, as well as for C v,z ε and C v,x ε which seem to tend towards a constant independent of y in the region 60 ≤ y + ≤ Re τ /2 as Re τ increases. Constant turbulence dissipation coefficients are reminiscent of equilibrium or balanced non-equilibrium dissipation scalings (Goto & Vassilicos, 2016b).

To delve further into the non-equilibrium turbulence energy and dissipation dynamics hiding behind the average equilibrium region 60 ≤ y + ≤ Re τ /2 where the time-averaged turbulence production and the time-averaged turbulence dissipation more or less balance, we have looked at time-fluctuations of quantities averaged over (x, z) wall planes but not over time. We have found that the time fluctuations of C ui,xj ε (t) (for i = 2 and j = 1, i = 2 and j = 3, and i = j = 3) and Re Λ (t) are strongly anti-correlated at all wall distances considered. In fact, our low-pass and high-pass filtering operations have revealed that this anti-correlation is strong for both the low and the high frequencies but for different reasons. For the low frequencies, the link between the anti-correlated fluctuations is the turbulent kinetic energy, whereas, for the high frequencies, the fluctuations of both K and ε are important. In the case of C w,z ε (t), it has been possible to determine the crossover frequency f * c between these two behaviours and we have found f * c ∼ u τ /y for Re τ = 950 but f * c ∼ u τ /δ for Re τ = 2000. This f * c difference between these two Reynolds numbers appears to reflect the fact that, whereas Very Large Scale Motions (VLSMs) are present in the Re τ = 2000 flow, they do not show similar signs of presence in the Re τ = 950 flow. Irrespectively though, the non-equilibrium dissipation scaling persists in both cases, suggesting that it isn't affected by the structure of the flow but has a general validity which may prove useful in the future for better dynamical models for dissipation.

Introduction

The Kolmogorov theory of equilibrium cascade works best for statistically stationary and homogeneous turbulence where the power input balances the dissipation rate and predicts that the interscale transfer rate balances the turbulence dissipation rate in an inertial range of scales [START_REF] Batchelor | The theory of homogeneous turbulence[END_REF][START_REF] Frisch | Turbulence: The Legacy of A.N. Kolmogorov[END_REF][START_REF] Lesieur | Turbulence in Fluids[END_REF]. In particular, this inertial range equilibrium cascade leads to the well-known turbulence dissipation scaling [START_REF] Batchelor | The theory of homogeneous turbulence[END_REF][START_REF] Sreenivasan | On the scaling of the turbulence energy dissipation rate[END_REF][START_REF] Vassilicos | Dissipation in turbulent flows[END_REF] first introduced by [START_REF] Taylor | Statistical theory of turbulence[END_REF] without justification. In statistically homogeneous but non-stationary, in particular decaying, turbulence, the situation is different. Specifically, there is a non-equilibrium turbulence dissipation scaling initially during decay, [START_REF] Vassilicos | Dissipation in turbulent flows[END_REF]Goto & Vassilicos, 2016c) followed at later times by the classical turbulence dissipation as a result of balanced non-equilibrium (Goto & Vassilicos, 2016c;[START_REF] Steiros | Balanced nonstationary turbulence[END_REF] rather than Kolmogorov equilibrium throughout an inertial range. [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF] applied a matched asymptotic expansion approach to freely decaying homogeneous isotropic turbulence far from initial conditions, which led to the conclusion that the interscale transfer rate has an extremum at a length scale r max that is proportional to the Taylor length λ. Wind tunnel data of nominally freely decaying homogeneous isotropic turbulence (Obligado & Vassilicos, 2019b) confirm r max ≈ 1.5λ and EDQNM simulations of such turbulence (Meldi & Vassilicos, 2021b) confirm r max ≈ 1.12λ for Re λ = 10 2 to 10 6 . Hence, Kolmogorov equilibrium in non-stationary, in fact freely decaying far from initial conditions, statistically homogeneous isotropic turbulence seems to be achieved asymptotically only around λ; and not in an inertial range given that λ depends on viscosity and total turbulent kinetic energy and that there is a systematic departure from equilibrium (most clearly demonstrated in Meldi & Vassilicos (2021b)) when moving away from λ, both towards the integral scale and towards the Kolmogorov length η.

Diverting attention from homogeneous non-stationary turbulence to stationary non-homogeneous turbulence, we ask about the validity of Kolmogorov equilibrium in stationary non-homogeneous conditions and chose to focus in this paper on fully developed turbulent channel flow (FD TCF). This is a statistically stationary non-homogeneous turbulent flow where turbulence production approximately balances turbulence dissipation (similarly to statistically stationary homogeneous turbulence) in some very significant region of space, the intermediate layer where the log-law of the wall has been traditionally claimed. Is there an average equilibrium between interscale turbulence energy transfer rate and turbulence dissipation in the intermediate layer of FD TCF where turbulence production approximately balances turbulence dissipation? If so, in what range of length scales, inertial or not? What processes are involved in the scale-by-scale turbulence energy balance in that range, if there is one, and outside it? What is the role of inhomogeneity, in particular in terms of scale-by-scale turbulence production but also directly on interscale energy transfer? What type of flow motions underpin interscale turbulence energy transfers and scale-by-scale turbulence production (referred to as two-point turbulence production in the remainder of this paper)?

In the following section, we introduce the scale-by-scale turbulence energy balance in its most general form and the spherical average operation, which we use to simplify it for this study. Section 3.3 is a brief description of the FD TCF DNS data we utilize for our post-processing. In section 3.4 we simplify the spherically averaged scale-by-scale turbulence energy balance for the particular case of the intermediate layer of a FD TCF and in section 3.5 we examine the two-point turbulence production term which appears in this balance. Section 3.6 deals with second and third order structure functions and interscale turbulence energy transfer by adapting to FD TCF the matched asymptotic expansion approach of [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF], and then we compare the results to the DNS data in section 3.7. Finally, section 3.8 introduces two decompositions of the interscale turbulence energy transfer rate and attempts to answer the questions of non-homogeneity's role and of what flow motions are responsible for which aspects of interscale turbulence energy transfer. In the paper's last section, we summarise our conclusions.

Scale-by-scale turbulence energy balance

To analyse the turbulent energy cascade in turbulent channel flow, we utilize a Kármán-Howarth-Monin-Hill (KHMH) equation which is a scale-by-scale energy budget equation in its most general form without any assumptions about the flow [START_REF] Hill | Equations relating structure functions of all orders[END_REF][START_REF] Hill | Exact second-order structure-function relationships[END_REF]. The form of KHMH equation that we use is an evolution equation for |δu| 2 , where δu ≡ u(x + r/2, t) -u(xr/2, t) is the difference between fluctuating velocities at two points ξ + ≡ x + r/2 and ξ -≡ xr/2 in the flow where the separation vector r = (r 1 , r 2 , r 3 ) gives some sense of scales. The centroid x = (x 1 , x 2 , x 3 ) is mid-way between these two points.

A Reynolds decomposition U + u is used for the velocity field in this form of the KHMH equation where U = (U 1 , U 2 , U 3 ) is the mean flow. The KHMH equation follows directly from the incompressible Navier-Stokes equations and, with notations

U ± i ≡ U i (x ± r/2), u ± i ≡ u i (x ± r/2) and δp ≡ p(x + r/2, t) -p(x -r/2, t)
where p is the fluctuating pressure field, reads as follows:

∂⟨|δu| 2 ⟩ ∂t At + U + i + U - i 2 ∂⟨|δu| 2 ⟩ ∂x i A + ∂⟨δu i |δu| 2 ⟩ ∂r i Π + ∂δU i ⟨|δu| 2 ⟩ ∂r i Π U = -2⟨δu i δu j ⟩ ∂δU j ∂r i -⟨(u + i + u - i )δu j ⟩ ∂δU j ∂x i P - ∂⟨ u + i +u - i 2 |δu| 2 ⟩ ∂x i Tu -2 ∂⟨δu i δp⟩ ∂x i Tp + ν 1 2 ∂ 2 ⟨|δu| 2 ⟩ ∂x 2 i Dx + 2ν ∂ 2 ⟨|δu| 2 ⟩ ∂r 2 i Dr -2ν⟨ ∂u - j /∂ξ - i 2 ⟩ + 2ν⟨ ∂u + j /∂ξ + i 2 ⟩ ε (3.1)
where the brackets ⟨•⟩ denote the averaging operation on which the Reynolds decomposition is based. The KHMH equation includes the following terms:

• A t = ∂⟨|δu| 2 ⟩ ∂t
is the time derivative term.

• A = U + i +U - i 2 ∂⟨|δu| 2 ⟩ ∂xi
is the mean advection term.

• Π = ∂⟨δui|δu| 2 ⟩ ∂ri is the nonlinear interscale transfer rate of |δu| 2 by turbulent fluctuations in scale space and thus directly linked to the energy cascade.

• Π U = ∂δUi⟨|δu| 2 ⟩ ∂ri is the linear interscale transfer rate of |δu| 2 in scale space by mean velocity differences.

• P = -2⟨δu i δu j ⟩ ∂δUj ∂ri -⟨(u + i + u - i )δu j ⟩ ∂δUj ∂xi
is the two-point production of |δu| 2 by the mean shear.

• T u = ∂⟨ u + i +u - i 2 |δu| 2 ⟩ ∂xi
is the turbulent transport of |δu| 2 in physical space.

• T p = 2 ∂⟨δuiδp⟩ ∂xi is the pressure-velocity term.

•

D x = ν 2 ∂ 2 ⟨|δu| 2 ⟩ ∂x 2 i
is the viscous diffusion in physical space.

• D r = 2ν ∂ 2 ⟨|δu| 2 ⟩ ∂r 2
i is the viscous diffusion in scale space.

• ε = 2ν⟨ ∂u - j /∂ξ - i 2 ⟩ + 2ν⟨ ∂u + j /∂ξ + i 2 ⟩ is the two-point averaged turbulence
pseudo-dissipation rate which is very close to the actual turbulence dissipation rate (e.g. see [START_REF] Pope | Turbulent Flows[END_REF].

At this stage we specialise this equation to FD TCF by chosing the averaging operation ⟨•⟩ to be over the streamwise and spanwise homogeneous directions, i.e. over coordinates x ≡ x 1 (streamwise) and z ≡ x 3 (spanwise), and over time. The wall normal coordinate is y ≡ x 2 . Note that U 2 = U 3 = 0 and that this averaging operation implies A t = 0 = A. In non-homogeneous and non-isotropic turbulent flows (such as FD TCF) energy transfers and exchanges, including the turbulence cascade, are anisotropic. This equation has been studied extensively in FD TCF by [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF]; [START_REF] Cimarelli | Anisotropic dynamics and sub-grid energy transfer in wall-turbulence[END_REF]; [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF][START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF]; [START_REF] Gatti | An efficient numerical method for the generalised Kolmogorov equation[END_REF]. In this paper we concentrate our interest on the directionally-averaged energy transfers by applying to each term of the KHMH equation an additional average over spheres in r-space. We therefore work with

Π v + Π v U = P v + T v u + T v p + D v x + D v r -ε v (3.2)
where (following [START_REF] Zhou | Energy cascade at the turbulent/nonturbulent interface[END_REF] and section 2 of Chen & Vassilicos (2022)) every term is obtained from its analogue in equation 3.1 by the application of the normalised 3D integral 3 4πr 3 S(r) d 3 r, S(r) being the sphere of radius r in r-space; for example

Π v ≡ 3 4πr 3 S(r) Πd 3 r, Π v U ≡ 3 4πr 3 S(r) Π U d 3 r, P v ≡ 3 4πr 3 S(r) Pd 3 r, etc.
This approach averages over and therefore ignores length-scale anisotropies and replaces r by its modulus r = |r| as a single measure of length-scale. However, the fundamental anisotropy responsible for correlations between streamwise and wall-normal directions remains in the turbulence production term. Every term in equation 3.2 is a function of only y (spatial non-homogeneity variable) and r (length-scale variable).

In the following section we describe the data from Direct Numerical Simulations (DNS) of FD TCF that we use in this paper. We describe this DNS data before starting our analysis of equation 3.2 in order to be able to test against this data certain aspects of our analysis as it proceeds. 

DNS data

For our analysis we utilize the DNS data of [START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF] for FD TCF at Re τ = 932 and 2003, (Re τ ≡ u τ δ/ν where ν is the kinematic viscosity, δ is the channel half-width, and u τ is the skin friction velocity obtained by averaging over time and over streamwise coordinate x and spanwise coordinate z at the channel's solid wall y = 0). The domain size for both simulations is L x = 2πδ in the streamwise and L z = πδ in the spanwise directions. The Navier-Stokes equations have been solved by integrating the evolution equations in terms of the wall-normal vorticity and the Laplacian of the wall-normal velocity for an incompressible fluid. The Fourier spectral method was used for the spatial discretization in the wall parallel directions. For the discretisation in the wall-normal direction, Chebyshev polynomials were used in the Re τ = 932 case whereas a seven-point compact finite difference scheme was used in the Re τ = 2003 case. Finally, a third-order semiimplicit Runge-Kutta method with CFL = 0.5 was chosen for time advancement. A comparison of the two datasets can be found in Table 1 (the superscript + refers to non-dimensionalisation with wall units δ ν ≡ ν/u τ for length and δ ν /u τ for time). We focus our DNS data analysis on the wall-normal locations that correspond to the region where the average production rate of turbulent kinetic energy roughly balances the average turbulence dissipation rate as identified by [START_REF] Apostolidis | Scalings of turbulence dissipation in space and time for turbulent channel flow[END_REF] We now examine equation 3.2 in the region of FD TCF, where the average one-point turbulence production rate is in approximate equilibrium with the average turbulence dissipation rate at a given y. This is a region of distances y from the bottom wall (where y = 0) such that δ ν ≪ y ≪ δ (in the limit Re τ = δ/δ ν ≫ 1) and where, classically, the mean flow velocity U = (U 1 , 0, 0) is expected to be logarithmic (e.g. see [START_REF] Pope | Turbulent Flows[END_REF]. Whilst previous works have suggested some not insignificant deviations from a log dependence on y of U 1 (e.g. see [START_REF] Vassilicos | The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow[END_REF], in this work we assume that the log law accounts for most of U 1 which implies that

Π U = ∂ ∂r1 (δU 1 ⟨|δu| 2 ⟩) is close to 0 in the region δ ν ≪ y ≪ δ if r 2 ≪ 2y because δU 1 = uτ
κ ln 1+r2/y 1-r2/y ≈ 0 (κ is the von Kármán dimensionless coefficient and note that wall blocking implies that r 2 is necessarily smaller or equal to 2y.) The DNS data confirm the prediction that Π v U is close to zero, see figure 3.1(c,d). We also make the assumption that turbulence is well mixed in this region and therefore as-3 Turbulent cascade in fully developed turbulent channel flow 3 49 sume that the physical-space divergence term T v u +T v p is negligible. Whilst the DNS data support this assumption, see figure 3.1(a,b), it must be stressed that pressure plays an important redistributive role and that spatial energy transfer is not fully absent in the intermediate layer (e.g. [START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF][START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF][START_REF] Lee | Spectral analysis of the budget equation in turbulent channel flows at high Re[END_REF].
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We therefore neglect both Π v U and T v u + T v p from equation 3.2 and are left with

Π v ≈ P v + D v x + D v r -ε v (3.3) for r 2 ≪ 2y in the intermediate layer δ ν ≪ y ≪ δ.
By application of the Gauss divergence theorem, the interscale transfer rate takes the form

Π v = 3 4π ⟨ δu • r r |δu| 2 ⟩dΩ r ≡ S 3 (r, y) r (3.4)
where Ω r is the solid angle in r space and r ≡ r/|r|. By distinguising between radial and solid angle integrations in r-space, the viscous diffusion terms become

D v x + D v r = 3ν 8πr 3 r 0 ρ 2 d 2 S 2 dy 2 (ρ, y)dρ + 3ν πr dS 2 dy (r, y) (3.5)
where

S 2 (r, y) ≡ ⟨|δu| 2 ⟩dΩ r . (3.6)
In FD TCF the production term P v is obtained by applying the integral operation

3 4πr 3 S(r) d 3 r on -2⟨δu 2 δu 1 ⟩ ∂δU1 ∂r2 -⟨(u + 2 + u - 1 )δu 1 ⟩ ∂δU1 ∂y .
Targeting again the intermediate region δ ν ≪ y ≪ δ where the log law dU1 dy ≈ uτ κy might be considered to be a good approximation in the limit δ/δ ν ≫ 1 (κ is the von Kármán dimensionless coefficient), the two-point production term becomes

P v ≈ - u 3 τ κy 3 4πr 3 r 0 ρ 2 S 12 (ρ, y) u 2 τ - S 1×2 (ρ, y) u 2 τ dρ (3.7)
in this intermediate region, where

S 12 (r, y) ≡ 2 ⟨δu 2 δu 1 ⟩ 1 - r 2 2y 2 -1 dΩ r (3.8)
and

S 1×2 (r, y) ≡ ⟨(u + 2 + u - 2 )δu 1 ⟩(r 2 /y) 1 - r 2 2y 2 -1 dΩ r . (3.9)
We expect S 1×2 (r, y) to be much smaller in magnitude than S 12 (r, y), in fact even close to vanishing, because of the expected decorrelation between wallnormal velocity fluctuations effectively larger than r (i.e. u + 2 + u - 2 ) and streamwise velocity fluctuations effectively smaller than r (i.e. δu 1 ). This is confirmed by the DNS data in figure 3.2, which also show that S 12 (r, y) is negative for all r ≤ 2y irrespective of y (because of wall blocking, r cannot be larger than 2y, and because of the integrand's singularity in the definitions of S 1×2 (r, y) and S 12 (r, y) we plot them for r ≤ 2y -8δ ν throughout the paper). In the intermediate region where the log law of the wall might be expected to hold we therefore have a positive two-point production term given, to good approximation, by (3.11) In this equation, the first term on the left-hand side is the interscale transfer rate, the second and third terms on the left-hand side are the viscous diffusion terms and the second term on the right-hand side is the two-point turbulence production rate. Before making use of this equation in the section after next, we look closer into the positive sign of the two-point turbulence production.

P v ≈ -
S 3 (r, y) r - 3ν 8πr 3 r 0 ρ 2 d 2 S 2 dy 2 (ρ, y)dρ+ 3ν πr dS 2 dy (r, y) ≈ -ε v - u 3 τ κy 3 4πr 3 r 0 ρ 2 S 12 (ρ, y)dρ.

Two-point turbulence production

P v represents the rate with which turbulent kinetic energy is gained or lost by scales smaller than r if P v is respectively positive or negative. Of course, we may expect energy to be gained in some r directions and lost in some other r directions: P v represents the rate with which the aggregate energy averaged over all directions 3.5 Two-point turbulence production 3 51 is gained or lost at scales smaller than r by the linear effects of mean flow gradients on the turbulence. This is not a non-linear interscale mechanism relating to a turbulence cascade which is, in fact, represented by Π v .

Turbulence production results from the interplay of non-isotropy in the form of non-zero Reynolds shear stresses with the mean flow gradient. In FD TCF the onepoint Reynolds shear stress is ⟨u 1 u 2 ⟩ and it interacts with the mean flow gradient

dU1 dx2 = dU1
dy to give the one-point turbulence production rate -⟨u 1 u 2 ⟩ dU1 dy which is positive (i.e. creation of turbulent kinetic energy) because ⟨u 1 u 2 ⟩ is negative. The negative sign of ⟨u 1 u 2 ⟩ results from the predominance of turbulent transport towards the wall of forward streamwise fluctuating velocities and of turbulent transport away from the wall of backward streamwise fluctuating velocities. These turbulent momentum fluxes are partly caused by sweeps in the case of transport towards the wall and ejections in the case of transport away from the wall [START_REF] Wallace | Quadrant Analysis in Turbulence Research: History and Evolution[END_REF][START_REF] Kline | Quasi-coherent structures in the turbulent boundary layer. i-status report on a community-wide summary of the data[END_REF]) and lead to the well-known increase by turbulence of wall shear stress and skin friction drag.

The two-point Reynolds shear stress ⟨δu 1 δu 2 ⟩ results from anisotropies at scales comparable to r and smaller and relates to the one-point shear stress by

⟨δu 1 δu 2 ⟩ = (⟨u + 1 u + 2 ⟩ -⟨u + 1 u - 2 ⟩) + (⟨u - 1 u - 2 ⟩ -⟨u - 1 u + 2 ⟩).
(3.12)

One can expect the two-point Reynolds shear stress to have the same sign as the onepoint shear stresses at ξ + and ξ -(which are known to be negative in FD TCF) if the magnitudes of the two-point correlations ⟨u + 1 u - 2 ⟩ and ⟨u - 1 u + 2 ⟩ are decreasing functions of distance between ξ + and ξ -. The two-point Reynolds shear stress appears in the two-point turbulence production rate via S 12 (see equation 3.10 and the definition 3.8 of S 12 ) and we therefore define, for initial simplicity of interpretation, a two-point Reynolds shear stress integrated over the solid angle in r-space as follows: S 12 (r, y) ≡ ⟨δu 2 δu 1 ⟩dΩ r . Defining additionally ⟨u 3 53 contribution. Assuming that fluctuating velocities may be approximately aligned within sweep and ejection events, particularly for the smaller values of r, we now use the DNS data to calculate correlations between u 2 and u 1 at two different points ξ + and ξ -conditionally on u + • u -> 0 for aligned pairs of fluctuating velocities and conditionally on u + • u -< 0 for anti-aligned pairs. We compute the resulting solid angle-integrated conditional correlations which we plot in figure 3.3(a,b) normalised by | R 12 (y, r)| and identify them by (⇒) for the aligned and (⇄) for the anti-aligned condition. For both Reynolds numbers and for all wall distances tested, the conditional correlations are increasing functions of r but positive when the condition is anti-alignement and negative when the condition is alignment. Anti-alignment, which is not so expected within sweeps and ejections (but may be linked to sweep-ejection pairs), increases the magnitude of the negative value of S 12 (r, y), particularly at the larger separations r, whereas alignment, presumably more present within sweeps and ejections, actually contributes to reduce the magnitude of the negative value of S 12 (r, y). As a result, the part of -S 12 (r, y) that is conditional on aligned fluctuating velocities is smaller than the part of -S 12 (r, y) which is conditional on anti-aligned fluctuating velocities, particularly at values of r larger than the Taylor length-scale (see figure 3.4). The actual role of the Taylor length appears in the following section.

+ 2 u + 1 ⟩dΩ r = ⟨u - 2 u - 1 ⟩dΩ r ≡ R 12 (y, r) and ⟨u + 2 u - 1 ⟩dΩ r = ⟨u - 2 u + 1 ⟩dΩ r ≡ C 12 (r,
The two-point Reynolds shear stress determines two-point turbulence production via S 12 (r, y) in the intermediate y-region (see equation 3.10). Our results on S 12 (r, y), R 12 (y, r) and C 12 (r, y) and their signs carry over qualitatively to S 12 (r, y),

R 12 ≡ 2 ⟨u + 2 u + 1 ⟩[1 -( r2 2y ) 2 ] -1 dΩ r and C 12 (r, y) ≡ 2 ⟨u + 2 u - 1 ⟩[1 -( r2 2y
) 2 ] -1 dΩ r (with differences only at values of r close to 2y because of the factor [1 -( r2 2y ) 2 ] -1 in the integrands which tends to infinity for r 2 → 2y, see figures 3.3(c,d) and 3.4(c,d) and compare them, respectively, with figures 3.3(a,b) and 3.4(a,b)). The two-point turbulence production is therefore positive for all r ≤ 2y and all y in the intermediate range mainly because one-point turbulence production is positive even though two-point correlations conditioned on aligned fluctuating velocities act to reduce this positivity. Two-point correlations conditioned on anti-aligned fluctuating velocities enhance the positive two-point turbulence production particularly at the larger separations r. 

Interscale transfer rate

Having analysed the production term in the scale-by-scale turbulence energy balance 3.3 we now turn our attention to the interscale transfer rate 3.4 and the viscous diffusion terms 3.5. We adapt to the scale-by-scale turbulence energy balance 3.11 (which we derived from 3.3) the matched asymptotic expansion approach that [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF] used to study freely decaying homogeneous isotropic turbulence, a very different flow from FD TCF.

The starting point is the hypothesis that S 2 , S 3 and S 12 have similarity forms, namely S 2 (r, y) = v 2 (y)s 2 (r/l(y)) (3.14)

S 3 (r, y) = v 3 (y)s 3 (r/l(y)) (3.15) S 12 (r, y) = v 2 (y)s 12 (r/l(y)) (3.16)
in terms of a characteristic velocity v and a characteristic length l both of which depend on wall-normal distance y.

From the one-point balance between average turbulence production -⟨u 1 u 2 ⟩ dU1 dy and average turbulence dissipation in the intermediate range δ ν ≪ y ≪ δ it is classically claimed, by assuming validity of the log law for the mean flow and its consequence on the one-point Reynolds shear stress, that the turbulence dissipation rate equals u 3 τ /(κy) (e.g. see [START_REF] Pope | Turbulent Flows[END_REF]. Even though there are deviations from both the log law and this dissipation scaling (e.g. [START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF]; [START_REF] Vassilicos | The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow[END_REF]), we use here the relation ε v = u 3 τ /(κy) as an acceptable approximation.

With ε v = u 3 τ /(κy) and similarity forms 3.14, 3.15 and 3.16, the balance 3.11 becomes 3.17) where y + ≡ y/δ ν = u τ y/ν is a naturally appearing local Reynolds number.

κ v 3 (y) u 3 τ s 3 (r/l(y)) r/y - 3κy 2 8πr 3 y + r 0 ρ 2 d 2 [ v 2 (y) u 2 τ s 2 (ρ/l(y))] dy 2 dρ - 3κy 2 πry + d dy v 2 (y) u 2 τ s 2 (r/l(y)) ≈ -1 - 3 4πr 3 r 0 ρ 2 v 2 (y) u 2 τ s 12 (ρ/l(y))dρ ( 
In the limit y + ≫ 1 within the intermediate range δ ν ≪ y ≪ δ, which of course also requires the limit Re τ = δ/δ ν ≫ 1, we consider separately outer similarity with outer variables v = v o and l = l o for r ≫ l i and inner similarity with inner variables v = v i and l = l i for r ≪ l o .

Outer similarity

For r large enough, i.e. r ≫ l i (y) (where the inner length-scale l i is to be determined), the most natural choice for outer variables is v = v o = u τ and l = l o = y given that the distance to the wall should somehow determine the size of large eddies and that their characteristic velocity should scale with the skin friction velocity. With these outer variables, equation 3.17 becomes

κ s 3 (r/y) r/y - 3κy 2 8πr 3 y + r 0 ρ 2 d 2 [s 2 (ρ/y)] dy 2 dρ - 3κy 2 πry + d dy [s 2 (r/y)] ≈ -1 - 3 4πr 3 r 0 ρ 2 s 12 (ρ/y)dρ (3.18)
In the limit y + ≫ 1, viscous diffusion (the second and third terms on the left hand side) tends to 0 as 1/y + compared to the other terms. This equation therefore suggests outer asymptotic expansions in integer powers of 1 y + , which means that the outer similarity functions s 2 , s 3 and s 12 may be approximated as The leading order outer scale-by-scale energy balance is therefore a balance between interscale transfer, turbulence dissipation and two-point turbulence production. (Turbulence dissipation appears in this outer balance essentially because the scale-by-scale energy balance that we consider concerns the sphere-averaged second order structure function which is cumulative with increasing r.)

s o 2 (r/y, y + ) = s o,0 2 + 1 y + s o,1 2 + ... ( 3 

Inner similarity

For r small enough, i.e. r ≪ l o = y, we seek inner variables of the form

v i = v o ( 1 y + ) a = u τ ( 1 y + ) a and l i = l o ( 1 y + ) b = y( 1 y + ) b
where the exponents a, b are positive because inner variables should tend to 0 relative to outer ones in the limit where the local Reynolds number y + tends to infinity. With such variables, equation 3.17

3 57 becomes κ 1 y + 3a 2 -b s 3 (r/l i ) r/l i -O 1 y + a+3-2b - 3κ π 1 y + a+1-2b s ′ 2 (r/l i ) r/l i ≈ -1 - 3 4πr 3 r 0 ρ 2 1 y + a s 12 (ρ/l i )dρ
(3.23)

In the limit y + ≫ 1, the two-point turbulence production rate tends to 0 as (1/y + ) a compared to the dissipation rate which is represented in this equation by -1 on the right hand side. At inner scales, the leading order scale-by-scale turbulence energy balance must therefore involve interscale energy transfer and viscous diffusion to balance dissipation, which implies 3a 2b = 0 = a + 1 -2b and therefore a = 1/2 and b = 3/4. In the limit y + → ∞, i.e. y + ≫ 1, this equation therefore suggests inner asymptotic expansions in integer powers of ( 1 y + ) a = ( 1 y + ) 1/2 , which means that the inner similarity functions s 2 , s 3 and s 12 may be approximated as .26) with leading orders obeying

s i 2 (r/l i , y + ) = s i,0 2 + 1 y + 1/2 s i,1 2 + ... (3.24) s i 3 (r/l i , y + ) = s i,0 3 + 1 y + 1/2 s i,1 3 + ... (3.25) s i 12 (r/l i , y + ) = s i,0 12 + 1 y + 1/2 s i,1 12 + ... ( 3 
κ s i,0 3 (r/l i ) r/l i ≈ -1 - 3κ π s i,0 ′ 2 (ρ/l i ) (3.27)
where s i,0 ′ 2 (ρ/l i ) is the derivative of s i,0 2 with respect to ρ/l i . The leading order inner scale-by-scale energy balance is therefore a balance between interscale transfer, turbulence dissipation and viscous diffusion.

The values a = 1/2 and b = 3/4 that we derived imply that the inner variables are in fact Kolmogorov inner variables, i.e. v i = u η ≡ (νε v ) 1/4 and l i = η ≡ (ν 3 /ε v ) 1/4 (using ε v = u 3 τ /(κy)).

Intermediate matching

Starting with the second order structure function S 2 , matching the leading term u 2 τ s o,0 2 (r/y) of its outer expansion for r ≫ η with the leading term u 2 τ ( 1 y + ) 1/2 s i,0 2 (r/η) of its inner expansion for r ≪ y leads to

S 0 2 ∼ (ε v r) 2/3 (3.28)
as overlapping part of the leading order in the intermediate range η ≪ r ≪ y.

Similarly,

S 0 12 ∼ (ε v r) 2/3 (3.29)
is the overlapping part of the leading order in the intermediate range η ≪ r ≪ y for S 12 .

It may be interesting to note, in passing, the difference compared to turbulence non-homogeneities with negligible turbulence production but non-negligible spatial turbulence transport such as in certain turbulent wake regions where [START_REF] Chen | Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence[END_REF] have shown that a second order structure function scales as ∼ K(r/L) 2/3 where K is the one-point kinetic energy, L is an integral length scale, and turbulence dissipation does not scale as K 3/2 /L. Note that the K 3/2 /L scaling is effectively the scaling assumed here for ε v because, in the range δ ν ≪ y ≪ δ considered here, the turbulent kinetic energy scales as u 2 τ plus logarithmic corrections in y (see [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF][START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF] which we neglect, and because there are integral length scales in FD TCF which are proportional to y, see [START_REF] Apostolidis | Scalings of turbulence dissipation in space and time for turbulent channel flow[END_REF]. The types of non-homogeneity considered by [START_REF] Chen | Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence[END_REF] are opposite to the ones considered here where spatial turbulence transport is negligible but turbulence production is not.

To obtain the leading order of S 3 , and therefore of the interscale transfer rate Π v via equation 3.4, we use equations 3.22 and 3.27. From the leading order outer balance 3.22 follows

S o,0 3 ≈ -ε v r(1 -A(r/y) 2/3 ) (3.30)
where A is a dimensionless constant, and from the leading order inner balance 3.27 follows

S i,0 3 ≈ -ε v r(1 -B(r/η) -4/3 ) (3.31)
where B is another dimensionless constant. The composite leading order (see [START_REF] Van Dyke | Perturbation Methods in Fluid Mechanics[END_REF][START_REF] Cole | Perturbation Methods in Applied Mathematics[END_REF][START_REF] Hinch | Perturbation Methods[END_REF] written directly for the interscale transfer Π v = S 3 /r is S o,0 3 /r plus S i,0 3 /r minus their common part -ε v , i.e.

Π v ≈ -ε v (1 -A(r/y) 2/3 -B(r/η) -4/3 ) (3.32)
where we now omit superscripts for ease of notation. This last equation has the following two verifiable implications, both of which are relatively easy to verify with the DNS data at our disposal: firstly it implies that the value of r where Π v /ε v is minimal and closest to the Kolmogorov equilibrium value -1 is

r min ∼ δ ν y ∼ λ (3.33)
based on the definition λ 2 ≡ 10νK/ε (already used by [START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF] in the context of FD TCF), and on K ∼ u 2 τ and ε ∼ u 3 τ /y being good enough approximations in the present context for δ ν ≪ y ≪ δ. Conclusions such as 3.32 and 3.33 have recently been obtained by [START_REF] Zimmerman | Approach to the 4/3 law for turbulent pipe and channel flows examined through a reformulated scale-by-scale energy budget[END_REF] for the centreline of FD TCF and central axis of turbulent pipe flow where turbulence production is effectively absent.

3 59 Secondly, 3.32 also implies that the value

(Π v /ε v ) min of Π v /ε v at r = r min obeys 1 + (Π v /ε v ) min ∼ y + -1/3 ∼ Re -2/3 λ (3.34)
where Re λ = √ Kλ/ν. Consistently with our averages over spheres in r-space, these definitions of λ and Re λ ignore some anisotropies of FD TCF. It is possible to define different Taylor lengths for different directions so as to take explicit account of anisotropies, which is an approach we have taken in another study [START_REF] Yuvaraj | Analysis of energy cascade in wall-bounded turbulent flows[END_REF]. It may be noteworthy that the Corrsin length [START_REF] Sagaut | Homogeneous Turbulence Dynamics[END_REF] does not appear spontaneously from our analysis whereas the Kolmogorov and Taylor lengths do. The reason for this absence of the Corrsin length is that it equals κy at the approximation level of our theory in the intermediate layer δ ν ≪ y ≪ δ and is therefore comparable to the outer bound of the range r ≤ 2y considered here.

In conclusion, the non-homogeneous but statistically stationary case of FD TCF in the intermediate layer δ ν ≪ y ≪ δ is such that Kolmogorov equilibrium is achieved asymptotically around λ and therefore not quite in an inertial range given that λ depends on viscosity and that there is a systematic departure from equilibrium when moving away from λ, both towards L and towards η, see equation 3.32. (Note, however, that the non-zero deviation from Kolmogorov equilibrium as Reynolds number tends to infinity for a fixed small value of r/y or for a fixed large value of r/η (necessarily smaller than λ/η in the limit) is small). This is the same conclusion that the analysis of [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF] reached for freely decaying, i.e. non-stationary, but statistically homogeneous and isotropic turbulence far from initial conditions. Two-point turbulence production (which increases with r as confirmed in the following section) and its variation with wall-normal distance play a similar role in FD TCF as the rate of decay of the second order velocity structure function (which increases with r because unsteadiness increases with r) and its variation with time.

Comparison with DNS data for FD TCF

In this section we compare the theory of the previous sections with the DNS data described in section ??.

In figure 3.5(a,b) we plot the two-point turbulence production rate P v and the interscale transfer rate Π v , both normalised by the turbulence dissipation rate ε v . We plot them versus r/λ because of our prediction that the value of r, where Π v /ε v is minimal scales with λ. The maximum values of r in the plots are bounded by 2y because of wall-blocking. We see that the normalised two-point turbulence production rate P v /ε v increases from close to 0 to a little under 1 as r increases from 0 to 2y. This is evidenced for a wide range of wall-normal distances y and for both Reynolds numbers at our disposal. It makes sense that the two-point turbulence production acts as a generation of turbulent kinetic energy at the larger r scales but decreasingly so at smaller and smaller scales till it vanishes at the very smallest ones.

It is also clear from figure 3.5(a,b) that Π v is negative for all scales and walldistances, indicating a forward, on average, energy cascade for r < 2y. more, Π v /ε v has a minimum at r min close to λ for a wide range of y within δ ν ≪ y ≪ δ and for both Reynolds numbers. This confirms our prediction 3.33 as can be seen in figure 3.6(a) where we plot, in blue, r min /λ versus y + for both Reynolds numbers and find that r min ≈ 1.2λ. One also sees in figure 3.5(a,b) that (Π v /ε v ) min increases in magnitude with increasing y + and with increasing Re τ . This is confirmed in figure 3 The imbalance seen in figure 3.5 between Π v and ε v is clear indication that other processes in the scale-by-scale energy budget are active. The theoretical arguments of subsections 3.6.1 and 3.6.2 concluded that the scale-by-scale balance is approximately Π v -P v ≈ -ε v at the outer scales and Π v -D v r ≈ -ε v at the inner scales. This prediction is made in the limit Re τ = δ/δ ν ≫ 1 and δ ν ≪ y ≪ δ and, as the values of Re λ suggest, the Reynolds numbers in the DNS data we are using may not be high enough. Nevertheless, figure 3.7(a, b) does reveal some tendency for (Π v -P v )/ε v to collapse as a function of r/y and tend towards -1 at the higher values of r/y as y + grows, in particular for the higher of our two Reynolds numbers Re τ . Furthermore, figure 3.7(c, d) reveals some tendency for (Π v -D v r )/ε v to collapse as a function of r/η as y + grows and even to tend towards -1 at the smallest values of r/η.

Finally, we compare the high Reynolds number predictions 3.28, 3.29 and 3.32 with the DNS data. In figure 3.8(a, b) we plot S 2 /u 2 τ (r/y) 2/3 and S 12 /u 2 τ (r/y) 2/3 versus r/y to test outer scalings and in figure 3.8(c, d) we plot the same quantities versus r/η to test inner scalings. Note that we use u 3 τ /y as an estimate of ε v . Our DNS data lend more support to our r 2/3 prediction for S 12 than for S 2 , and a better outer collapse in terms of r/y of S 12 /u 2 τ (r/y) 2/3 than S 2 /u 2 τ (r/y) 2/3 . However the inner collapse in terms of r/η appears better for S 2 /u 2 τ (r/y) 2/3 than S 12 /u 2 τ (r/y) 2/3 . At any rate, the values of Re λ are quite low in the DNS data used here for a conclusive comparison between these data and theoretical predictions made in the double limit Re τ → ∞, y + → ∞ (i.e. Re λ ∼ λ/δ ν ∼ (y + ) 1/2 → ∞) with the constraint y ≪ δ. In fact, even at the very lowest/leading order, our predictions 3.28, 3.29 are incomplete as they should have corrections in terms of powers of r/η and r/y which are beyond the present theory and which surely matter in comparisons with DNS data.

We close this section with a comparison in figure 3.9 of 3.32 with the DNS data which is clearly better for Re τ = 2003 than Re τ = 932. 

Interscale transfer decompositions

The two main conclusions of the previous sections concern (i) the importance of the Taylor length in defining the scale where the normalised interscale transfer rate Π v /ε v has a minimum and is closest to the equilibrium value Π v /ε v = -1 and (ii) the importance of sweeps and ejections but also of aligned and anti-aligned pairs of fluctuating velocities in determining the sign and magnitude of the two-point turbulence production rate P v . Looking at equation 3.4, we start this section by asking whether aligned and anti-aligned pairs of fluctuating velocities also directly affect the interscale transfer rate Π v .

Aligned/anti-aligned decomposition

Equation 3.4 shows that a scale-space flux and a cascade from large to small or from small to large scales correspond to a negative or positive 3 4π ⟨ r•δu r |δu| 2 ⟩dΩ r and contributes a growth or decrease of TKE at scales r and smaller (see [START_REF] Chen | Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence[END_REF]. Local compression, i.e. δu • r < 0, causes local forward cascade and local stretching, i.e. δu • r > 0, causes local inverse cascade. Our observation that Π v is negative at all scales means that local compressions prevail at all scales, but are they mostly caused by aligned or anti-aligned pairs of fluctuating velocities? This question introduces our first decomposition, namely

Π v = Π v ⇒ + Π v ⇄ = 3 4π ⟨ δu • r r |δu| 2 ⟩ ⇒ dΩ r + 3 4π ⟨ δu • r r |δu| 2 ⟩ ⇄ dΩ r (3.35)
where Π v ⇒ and Π v ⇄ are respectively equal to the first and second terms on the left hand side which are calculated using averages ⟨...⟩ ⇒ conditional on u + • u -> 0 and averages ⟨...⟩ ⇄ conditional on u + • u -< 0.

Compressive and stretching relative motions may not balance in terms of energy transfer, resulting in a non-vanishing Π v , but they do balance in terms of mass In figure 3.10 we plot both terms on the left hand side of this equation as functions of r for various wall distances y. We also plot δu • rdΩ r for comparison and as a check that it is indeed zero in the DNS irrespective of r and y. The first observation is that aligned fluctuation pairs are stretching relative motions on average given the positive sign of ⟨δu • r⟩ ⇒ dΩ r . The joint PDFs of figure 3.11 show that relative motions of aligned fluctuation pairs are stretching as a result of δu having a tendency to be directed in the same direction as the separation vector r for pairs of aligned fluctuating velocities. This tendency weakens with increasing r irrespective of wall distance y and, consistently, ⟨δu • r⟩ ⇒ dΩ r tends to 0 with increasing r.

The second observation in figure 3.10 is that anti-aligned fluctuation pairs are compressing relative motions on average given the negative sign of ⟨δu • r⟩ ⇄ dΩ r . Looking at figure 3.11 it does not seem possible to explain this behaviour purely in terms of velocity directions. However, the joint PDFs of figure 3.12 reveal that the range of values over which δu • r fluctuates around zero is much wider for antialigned than for aligned fluctuations. This effect has to do with the intensity of the fluctuating velocities, not only their relative directions. This very wide fluctuation range is slightly skewed towards negative values of δu • r for pairs of fluctuating velocities which are anti-aligned, thereby accounting for the compressive average behaviour of anti-aligned pairs (u + • u -< 0). This skewness diminishes with increasing r irrespective of wall distance y and, consistently, ⟨δu• r⟩ ⇄ dΩ r tends to 0 with increasing r. Note, finally, that it is far more likely to find aligned (u + •u -> 0) than anti-aligned (u + • u -< 0) pairs as figure 3.11 shows.

The third observation in figure 3.10 is that ⟨δu • r⟩ ⇄ dΩ r has a minimum at r = r m near r min ≈ 1.2λ for all y and that ⟨δu • r⟩ ⇒ dΩ r has a maximum at the same value r = r m for all y. As seen in the previous two sections, r min is the value of r where Π v /ε v has its minimum. In figures 3.10(c, d) we plot the positions r of the maxima and minima in figure 3.10 versus wall distance for both DNS Reynolds numbers at our disposal. It is quite striking that, for all wall distances and both Reynolds numbers tried, ⟨δu • r⟩ ⇄ dΩ r and ⟨δu • r⟩ ⇒ dΩ r peak at r = r m close to the value r = r min where Π v /ε v peaks and is closest to the equilibrium -1 value. Even though r m drifts slightly from r min ≈ 1.2λ at relatively high wall-normal distances, the suggestion is that, in the layer δ ν ≪ y ≪ δ of FD TCF, Kolmogorovlike equilibrium may be achieved at those length scales r where aligned fluctuating velocities are stretching with their difference δu maximally or near-maximally aligned with the separation vector r and where anti-aligned fluctuations are maximally or near-maximally skewed towards large negative values of δu • r. This is a conclusion that is well beyond the reach of the theory in section 6 but which we might not have been able to reach without it. (We refer to Kolmogorov-like rather than Kolmogorov equilibrium because the scale r min is proportional to the Taylor scale and therefore depends on viscosity.)

It is shown in section 5 that anti-aligned fluctuation pairs enhance the positive two-point turbulence production rate in the layer δ ν ≪ y ≪ δ of FD TCF: we have now seen that these anti-aligned fluctuation pairs are on average compressive and figure 3.13 shows that Π v ⇄ is consistently negative, indicating forward cascade. Therefore, anti-aligned fluctuations do not only enhance two-point production rate at all r, they also contribute a forward cascade at all r in the layer δ ν ≪ y ≪ δ of FD TCF. Note, however, that the minimum value of Π v ⇄ is not at r = r min where Π v /ε v has its minimum value and is closest to the equilibrium -1 value. In fact the r-position of the minimum value of Π v ⇄ does not scale with λ. The scaling of r min therefore requires taking into account both aligned and anti-aligned fluctuations.

Aligned fluctuation pairs impose a loss of energy on scales smaller than r by mean flow interaction with turbulence fluctuations and thereby reduce the onepoint effect of sweeps and ejections on the two-point turbulence production rate (see section 3.5). We have now seen that aligned fluctuation pairs are on average stretching, which would suggest the presence of an average inverse cascade element to the interscale transfer rate Π v ⇒ . Figure 3.13 shows that Π v ⇒ is positive (though only slightly so), and an average inverse cascade by aligned fluctuations is indeed present at scales r larger than about 2 to 3 times λ for the Reynolds numbers of the DNS data used here. However, figure 3.13 also shows that Π v ⇒ is negative at smaller scales. Stretching aligned fluctuating motions at scales of the order of the Taylor length and below may dominate over compressive aligned fluctuating motions on average but they do not dominate interscale energy transfer at these scales. There is no contradiction with the positive values of ⟨δu • r⟩ ⇒ dΩ r in figure 3.10. The different signs of this solid angle integral and the solid angle integral in the definition of Π v ⇒ (see equation 3.35) are an effect of small-scale anisotropies which we are averaging over. Future studies of interscale transfers in FD TCFs will need to take these anisotropies into account for a finer description of the physics.

Π v ε v = Π v ⇄ ε v + Π v ⇒ ε v (a)
Finally, comparing the plots of Π v in figure 3.5 with those of Π v ⇒ and Π v ⇄ in figure 3.13 shows that Π v ⇄ dominates over Π v ⇒ at scales of the order of λ and larger and is mostly responsible for the value of Π v . At smaller scales, however, Π v ⇒ becomes equally important and of the same negative sign as Π v ⇄ so that the actual negative value of Π v cannot be accounted for by only one or the other: the interscale turbulence energy transfers of both aligned and anti-aligned fluctuations matter.

Homogeneous/Inhomogeneous energy transfer decomposition

As already mentioned at the start of sub-section 3.8.1, the right hand side where the first term on the right hand side can be rigorously recast into a gradient in centroid x-space leading to

∂ ∂r i δu i |δu| 2 = ∂ ∂r i δu i |u + | 2 + |u -| 2 -2 ∂ ∂r i δu i u -• u + (3.37)
∂ ∂r i δu i |δu| 2 = 1 2 ∂ ∂x i u + i |u + | 2 + u - i |u -| 2 -u - i |u + | 2 -u + i |u -| 2 -2 ∂ ∂r i δu i u -• u + . (3.38) Π I ≡ 1 2 ∂ ∂xi u + i |u + | 2 + u - i |u -| 2 -u - i |u + | 2 -u + i |u -| 2
is interpreted as an inhomogeneity-related interscale turbulent energy transfer rate. In statistically homogeneous turbulence, the average ⟨Π I ⟩ is indeed zero and the interscale turbulent energy transfer rate is only accountable to

Π H ≡ -2 ∂ ∂ri (δu i u -• u + ) on average.
Integrating Π, Π I and Π H over the sphere of radius r in r-space to obtain Π v , Π v I and Π v H respectively and then applying the Gauss divergence theorem we obtain

Π v = Π v I + Π v H = 3 4π ⟨ δu • r r (|u + | 2 + |u -| 2 )⟩dΩ r -2 ⟨ δu • r r (u -• u + )⟩dΩ r . (3.39)
This decomposition is partly related to the one of sub-section 3.8.1 because Π v H is linearly dependent on correlations between δu • r and u -• u + , and the sign of u -• u + indicates whether velocity fluctuation pairs are aligned or anti-aligned which is the basis of decomposition 3.35. Whilst it follows immediately from equation 3.38 that Π v I = 0 if the term inside the x-gradient in that equation is statistically homogeneous, equation 3.39 shows that Π v I = 0 if δu • r and (|u

+ | 2 + |u -| 2 ) are uncorrelated and if (|u + | 2 + |u -| 2
) is statistically homogeneous. Of course this is not the only and necessary way for Π v I to vanish. In particular, there may be cases of non-homogeneity for which Π v I vanishes too, for example cases where Π v I vanishes but Π I does not.

In figure 3.14 we plot the terms Π v I and Π v H in 3.39 normalised by the volume integral of the dissipation. For both Reynolds numbers, we observe that Π v H dominates and describes almost perfectly the full interscale transfer Π v for all scales r ≤ 2y in the intermediate range of the channel (y between multiples of δ ν and about half δ). The average interscale transfer from large to small scales is nearly fully described by the negative value of Π v H and the inhomogeneity-related interscale transfer rate Π v I is close to zero. In a different non-homogenous turbulent flow, the turbulent wake of a square prism, Alves Portela et al. (2020) found a significant contribution of the inhomogeneity-related interscale transfer rate to the total interscale transfer rate. It is therefore not trivial that in FD TCF Π v I is negligible compared to Π v H in spite of the statistical non-homogeneity of the FD TCF. However, this is partly an artifact of the integration over spheres in r-space which we apply to Π I to obtain Π v I . If we lift this integration and use the DNS data to compute Π I (y, r 1 , r 2 , r 3 ) as a function of r 2 /y for various values of wall-normal distance y and various values of r 1 and r 3 , we find (figure 3.15) that Π I (y, r 1 , r 2 , r 3 ) is close to 0 and negligible in most cases except for "attached eddies", i.e. for values of r 2 relatively close to 2y (wall blocking implies r 2 ≤ 2y) where it is positive, thereby reflecting interscale transfer from small to large scales [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF][START_REF] Cho | Scale interactions and spectral energy transfer in turbulent channel flow[END_REF] except for r 2 near-equal to 2y where it is negative. The nonvanishing inhomogeneity-related interscale transfer of "attached eddies" is averaged out when we integrate Π I to obtain Π v I . Returning to Π v H and the fact that it has very similar dependencies on r and y as Π v , we note in particular that Π v H has a minimum at the near same r ≈ r min where Π v has a minimum, and even that the minimum value of Π v H closely obeys the same relation 3.34 that Π v min obeys (see figure 3.16). As seen in section 3.6, the twopoint separation scale r = r min demarcates between smaller values of r where Π v is balanced by dissipation and viscous diffusion and larger values of r where Π v is balanced by dissipation and two-point turbulence production. However, the theory of section 3.6, which is conclusive for Π v , has no say on Π v H and can therefore not explain our observation that Π v H behaves very much like Π v . We therefore adopt a different point of view from the one of section 3.6 and look at PDFs of instantaneous (in time) and local (in (x, z) planes) interscale transfer rates

Π v /ε v , Π v I /ε v , Π v H /ε v (a)
π v ≡ 3 4π δu•r r |δu| 2 dΩ r , π v H ≡ -3 2π δu•r r (u -• u + )dΩ r and π v I ≡ 3 4π δu•r r (|u + | 2 + |u -| 2 )dΩ r . Clearly, Π v = ⟨π v ⟩, Π v H = ⟨π v H ⟩ and Π v I = ⟨π v I ⟩.
In figure 3.17 we plot examples of PDFs of π v , π v H and π v I for a couple of wall distances y within the intermediate range δ ν ≪ y ≪ δ and for different values of separation scale r in order to see how these PDFs evolve with varying r. As pointed out by Alves [START_REF] Alves Portela | The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers[END_REF], at r = 0 we have

Π v = Π v H = Π v I = 0.
As r progressively increases, the PDFs of π v and π v H move to the left towards increasingly negative values as shown in the inserts of plots (a), (b), (e) and (f) in figure 3.17. This overall PDF drift is most pronounced at the smaller values of r and causes Π v and Π v H to progressively decrease below 0 as r increases. However, the skewnesses of the PDFs of π v and of π v H grow from negative values close to -10 at the smallest separations r to values between -1 and even slightly positive as r grows (see plots (a), (b), (e) and (f) in figure 3.18). This evolution of the skewnesses of these two PDFs counteracts their overall drift towards increasingly negative values and acts to bring Π v and Π v H back towards zero as r increases. The minima of Π v and Π v H occur as a result of these two counteracting tendencies, the overall drift dominating at scales r smaller than r min and causing Π v and Π v H to decrease, the decreasingly skewed PDF dominating at scales larger than r min and causing Π v and Π v H to increase. The PDF of the inhomogeneity-related interscale transfer rates π v I is radically different as far as skewness is concerned (see figure 3.18). Whilst the PDFs of both π v and π v H are skewed towards forward cascade events at small r and evolve with increasing r towards not being skewed or even being slightly skewed towards inverse cascade events, the PDF of π v I is highly skewed towards inverse cascade events at small r and evolves very quickly with increasing r towards not being very skewed. It remains only slightly skewed (positively or negatively) for all permissible r larger than about 2λ (the word "permissible" refers to r ≤ 2y). The difference is not only that the PDF of π v I is oppositely skewed to the PDFs of π v and π v H at small r, the equally if not even more important difference is that, as r increases, the skewness of π v I evolves much faster towards small absolute values (which it actually reaches at r ≈ 2λ) than the skewnesses of π v H and π v which evolve much more gradually towards values around and larger than -1.

( Π v ε v ) ( Π v H ε v ) 10 2 Re λ 10 0 1 + (Π (•) /ε) min (b) ( Π v ε v ) ( Π v H ε v ) ∼ Re -2/3 λ 1
On the other hand, the PDF of π v I is similar to the PDFs of π v and π v H in that they all have an overall drift to the left, i.e. towards forward cascading negative values, as the separation scale r increases (see inserts of plots in figure 3.17). In the case of the inhomogeneity-related interscale energy transfer rate, this overall PDF drift towards forward cascade events is counteracted at small separations r by the significant PDF skewness towards inverse cascade events leading to small values of Π v I . As r increases, the drift slows down, and the skewness quickly drops to small absolute values keeping values of Π v I small.

In conclusion, the statistics of the inhomogeneity-related interscale transfer rate π v I are very different from those of π v H and π v . The PDFs of π v I are characterised by a skewness towards inverse cascade events at the small scales in particular, whereas the PDFs of both π v H and π v are characterised by a skewness towards forward cascade events at most scales. These PDFs result in relatively small values of Π v I and in very similar dependencies on separation r of Π v H and Π v . As the separation scale r decreases from large values close to 2y towards the Taylor length λ, the PDFs of both π v H and π v become increasingly skewed towards forward cascading events and the average values Π v H and Π v become increasingly negative. However, as r crosses λ and tends towards even smaller separation lengths below λ, these two PDFs drift towards inverse cascading events in their entirety, thereby bringing the average values of Π v H and Π v back towards zero. These two counteracting effects of drift and skewness remain and are therefore confirmed if we consider only the tails of the PDFs of π v H and π v . In the top row of figure 3.19 (i.e. plots (a, b)), we plot the average values of π v H and π v over the samples of relatively intense values representing only 1% of all samples. The average of π v H over its relatively intense values depends on y and r very much like Π v H but with an order of magnitude higher values (compare with figure 3.14). On the other hand, the average of π v I over these relatively intense values is disproportionally affected by the PDF's positive skewness and is therefore positive or close to zero and higher than Π v I in figure 3.14 as the cancelling effect of the drift is overcome. To concentrate on the drift and minimise the effect of the skewness, in the second row of figure 3.19 (i.e. plots (c, d)) we report average values of π v H , π v I and π v calculated on the basis of only the most probable part of the PDFs representing 20% of all samples. These average values are an order of magnitude smaller than Π v H , Π v I and Π v in figure 3.14. They are close to zero at the smallest separations r and continuously decrease in negative values till they more or less stabilise at large enough r, reflecting the effect of overall drift of the PDFs towards forward interscale transfers and the fact that this drift stabilises at large enough r. Without the skewness effect, which is not as present around the peaks of the PDFs as in their extreme tails, these conditional averages (plots (c, d) of figure 3.19) do not significantly return towards 0 with increasing r and therefore look very different from Π v H , Π v I and Π v in figure 3 Note, finally, that the skewness dominated r-range of the PDFs of π v H and π v coincides with the r-range where Π v is balanced by turbulent dissipation rate and two-point turbulence production. The root cause of this coincidence may be antialigned velocity fluctuation pairs because they enhance two-point turbulence production (section 3.5) while also being the seat of a significant skewness towards compressive, i.e. forward cascading, relative motions (sub-section 3.8.1). The drift of the PDFs of π v H and π v towards inverse cascades is in fact, a recentering of the PDFs so that their peak values move towards zero and is mostly present in the rrange where Π v is balanced by turbulent dissipation rate and viscous diffusion (see section 3.6). At these small scales comparable to λ and below, both aligned and anti-aligned fluctuation pairs contribute significantly to Π v (see end of sub-section (red lines) and Π v,e H (green lines): averages of most intense events accounting for 1% of all events. (c, d) Π v,p (blue lines), Π v,p I (red lines) and Π v,p H (green lines): averages of most probable events accounting for 20% of all events. Left column (a, c) for Reτ = 932, right column (b, d) for Reτ = 2003. Wall-normal distance is increased from light to dark colors. 3.8.1) and this may be related to the recentering of the PDFs around zero interscale transfer rate.

Π v,e /ε v , Π v,e I /ε v , Π v,e H /ε v (a) (b 
Π v,p /ε v , Π v,p I /ε v , Π v,p H /ε v (c)

Conclusions

In this paper, we have considered fully developed turbulent channel flow (FD TCF) and have made theoretical predictions concerning its scale-by-scale energy balance averaged over spheres in r-space in the double limit Re τ → ∞, y + → ∞ (i.e. Re λ ∼ λ/δ ν ∼ (y + ) 1/2 → ∞) with the constraint y ≪ δ. At leading order, both the inner and the outer scale-by-scale energy balances involve interscale turbulence energy transfer and turbulence dissipation, but the inner balance is completed with viscous diffusion, whereas the outer balance is completed with two-point turbulence production.

Previous studies already analysed the Kármán-Howarth-Monin-Hill (KHMH) equation for FD TCF. For example, [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF][START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] examined the energy flux path in reduced spaces r 1 , r 3 and y with r 2 = 0 and r 2 , r 3 and y with r 1 = 0 (or r 1 = Const in the case of [START_REF] Gatti | An efficient numerical method for the generalised Kolmogorov equation[END_REF]). The omission of one scale-space direction prevents this approach from accessing the full interscale transfer picture. Our methodology is different and complementary as it does not omit any scalespace direction but integrates over spheres in full 3D scale space. Whilst we lose the ability to distinguish between directions in scale space, we gain the capability to access decisive information on interscale energy transfer and forward/inverse cascade which occur normal to the sphere's surface in scale space.

The intermediate layer (δ ν ≪ y ≪ δ) of FD TCF is a non-homogeneous but statistically stationary turbulent flow region where interscale turbulence energy transfer has properties similar to interscale turbulence energy transfer in freely decaying (i.e. non-stationary) homogeneous turbulence far from initial conditions. This paper's theory predicts that for any wall-normal distance y in the intermediate layer, Kolmogorov equilibrium is achieved asymptotically only around the Taylor length λ (i.e. for scales which are taken to remain a constant multiple of λ in the asymptotic limit) which is not an inertial length given that it depends on viscosity and turbulent kinetic energy at y. A similar conclusion was reached in previous studies of freely decaying homogeneous turbulence far from initial conditions [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF]Obligado & Vassilicos, 2019b;Meldi & Vassilicos, 2021b) where, as shown here by equation 3.32 for the intermediate layer of FD TCF, there are systematic departures from Kolmogorov equilibrium for scales moving away from λ both towards the large eddy size (here y) and towards the local (here in y) Kolmogorov length η. DNS data for FD TDF confirm these conclusions and also confirm the specific scaling predictions 3.33 and 3.34: namely, the interscale transfer rate has a forward cascade peak at r min ∼ λ where it tends with increasing Reynolds number towards minus turbulence dissipation, i.e. Kolmogorov-type equilibrium, as Re -2/3 λ . Viscous diffusion is negligible on the large r side of this peak whereas turbulence production is negligible on the small r side of the peak. A similar peak (where production's role is played by the time derivative term defined in section 3.2) and similar scalings hold in freely decaying homogeneous isotropic turbulence far from initial conditions [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF]Obligado & Vassilicos, 2019b;Meldi & Vassilicos, 2021b) but for slightly different though related quantities given that, here, all the terms in the scale-by-scale turbulence energy budget are averaged over spheres of radius r in r-space.

The DNS data show that two-point turbulence production is positive for all r ≤ 2y and all y in the intermediate layer, and that it increases with two-point separation distance r and decreases with increasing y. The two-point turbulence production is positive mainly because one-point turbulence production is positive even though two-point correlations conditioned on more or less aligned fluctuating velocities act to reduce this positivity. Interestingly, pairs of aligned fluctuating velocities may be expected mostly within sweeps and ejections, which are regions with a major contribution to the positivity of one-point turbulence production [START_REF] Wallace | Quadrant Analysis in Turbulence Research: History and Evolution[END_REF][START_REF] Kline | Quasi-coherent structures in the turbulent boundary layer. i-status report on a community-wide summary of the data[END_REF][START_REF] Pope | Turbulent Flows[END_REF]. The positivity of two-point turbulence production is in fact enhanced by two-point correlations conditioned on more or less anti-aligned fluctuating velocities, particularly at larger separations r.

The two-point production rate is a functional (see 3.10) of the second order anisotropic structure function S 12 defined by 3.8. This structure function is identically zero in homogeneous isotropic turbulence, but in the intermediate layer of FD TCF the present theory predicts a leading order (ε v r) 2/3 ∼ u 2 τ (r/y) 2/3 behaviour for S 12 in the range η ≪ r ≪ y. The DNS data provide some, though not entirely conclusive, confirmation for this high Reynolds number scaling but the values of Re λ are probably not high enough (between 50 and 120) in the DNS data used here for which Re τ is about 2000 in one case and about 1000 in the other.

The present asymptotically high Reynolds number theory also leads to a leading order scaling for the second order structure function S 2 which is similar to the centreline region of some turbulent wakes in terms of the r 2/3 part of the scaling but different in terms of the prefactor which is not proportional to the 2/3 power of a turbulence dissipation rate in the centreline region of those turbulent wakes (see [START_REF] Chen | Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence[END_REF]. Different types of non-homogeneity may lead to some important differences in second order structure function scalings, an issue which merits future attention. The non-homogeneity in the intermediate layer of FD TCF is characterised by significant two-point turbulence production and negligible two-point turbulent transport and pressure-velocity terms, whereas the non-homogeneity on the centreline of turbulent wakes is inverse, i.e. turbulent production is negligible but turbulent transport and pressure-velocity terms are not. Future attempts at a physically meaningful classification of non-homogeneous turbulent flows may need to start from this paragraph's observations. The opposing roles played by more or less aligned and more or less anti-aligned pairs of fluctuating velocities in shaping two-point turbulence production have motivated the second part of our DNS study concerning their roles in shaping interscale turbulence energy transfer in the intermediate layer of FD TCF. The interscale turbulence energy is determined by stretching relative motions responsible for inverse transfer from small to large scales and by compressing relative motions responsible for forward transfer from large to small scales. It turns out that more or less aligned fluctuation pairs are stretching relative motions on average whereas more or less anti-aligned fluctuation pairs are on average compressive relative motions. The relative motions of more or less aligned fluctuation pairs are stretching on average as a result of δu having a tendency to be directed in the same direction as the separation vector r for pairs of aligned fluctuating velocities, a tendency which weakens with increasing r irrespective of wall distance y. The relative motions of more or less anti-aligned fluctuation pairs are compressive on average because the fluctuations of δu • r are skewed towards negative values for such fluctuation pairs. This skewness diminishes with increasing r irrespective of y. Incidentally, more or less aligned fluctuation pairs are much more likely than more or less anti-aligned fluctuation pairs.

Relative motions of more or less aligned fluctuation pairs are maximally stretching on average, and relative motions of more or less anti-aligned fluctuation pairs are maximally compressing on average at a separation length r = r m which, for all y, is very close to r min , the separation length where Π v /ε v has its minimum. Combining the first and second parts of the present study, it appears that, in the layer δ ν ≪ y ≪ δ of FD TCF, an approach to Kolmogorov-like equilibrium with increasing local Reynolds number may be achieved at those length scales r where aligned fluctuating velocities are stretching with their difference δu maximally or near-maximally aligned with the separation vector r and where anti-aligned fluctuations are maximally or near-maximally skewed towards large negative values of δu • r.

Even though more or less aligned fluctuation pairs are on average stretching and are more frequent than more or less anti-aligned fluctuation pairs, they do not dominate interscale turbulence energy transfer, which is nevertheless forward on average, i.e. from large to small scales. This is an effect of small-scale anisotropies. At scales of the order of the Taylor length and larger the interscale turbulence energy transfer is, in fact, dominated by more or less anti-aligned fluctuations. However, at scales smaller than the Taylor length, the actual value of the interscale turbulence energy transfer rate results from interscale turbulence energy transfers by both aligned (local inverse cascades) and anti-aligned (local forward cascades) fluctuations, both of which are significant and cannot be ignored.

Finally, correlations between stretching/compression relative motions and alignment/anti-alignment of fluctuation pairs determine the spherically averaged (in r-space) homogeneous part of the interscale turbulence energy transfer rate introduced by Alves Portela et al. (2020). The DNS data of FD TCF used here, show that this homogeneous part accounts almost completely for the total spherically averaged interscale turbulence energy transfer rate in the intermediate layer for all separation scales r ≤ 2y, including the scaling with the Taylor length of the separation r = r min where it peaks and the scaling with Re λ of its peak value, i.e. scalings 3.33 and 3.34. The spherically averaged inhomogeneous part of the interscale turbulence energy transfer is negligible even though the turbulence is significantly non-homogeneous in FD TCF in contrast with the centerline of a turbulent wake which is also non-homogeneous, but differently, and where Alves Portela et al. (2020) found a similarly averaged inhomogeneous interscale turbulence energy transfer to be significant and in fact quite important in the scale-by-scale physics. However, when the spherical average is lifted, the average inhomogeneous interscale transfer rate remains close to zero except for separation components r 2 characterising attached eddies.

By lifting the average over x, z, t, we obtain PDFs of spherically averaged interscale turbulence energy transfer rates and of their homogeneous and inhomogeneous parts. The PDFs of the spherically averaged interscale turbulence energy transfer rates and of their homogeneous part are very similar and vary with r in a very similar way. Their dependence on r is governed by counteracting effects of overall PDF drift towards forward cascade values and of diminishing skewness towards forward cascade events with increasing r. The approach towards Kolmogorov equilibrium occurs at those scales r near the Taylor length where these two counteracting effects balance. The PDFs of spherically averaged inhomogeneous interscale turbulence energy transfer rates are significantly different as they are characterised by a skewness towards inverse rather than forward cascade events at small scales.

4

Energy transfer within sweeps and ejections

Introduction

In Chapter 3 we analysed the Kármán Howarth Monin Hill equation, averaged across the entire channel, and established that both the inhomogeneous energy transfer and the interspace energy transport were almost zero across all scales and wall distances within the intermediate layer. Despite turbulent channel flow being regarded as inhomogeneous, the findings imply that the inhomogeneities within the flow exert minimal influence on the average energy transport. In this chapter, we aim to determine whether the average picture obtained in previous chapters accurately represents the behavior of crucial structural elements in wall turbulence, such as sweeps and ejections. These structures significantly contribute to the channel's turbulent kinetic energy and Reynolds shear stress. Our goal is to investigate whether these structures display unique energy transfer mechanisms through scale and physical space that deviate from the average behavior observed in the overall flow. Although numerous studies have explored the statistics of ejections and sweeps, as discussed in Chapter 1, there appears to be a scarcity of research specifically focusing on energy transfer within these structures, to the best of the author's knowledge. Therefore, the theoretical framework presented in the previous chapter, combined with the identification method for ejections and sweeps, as proposed by [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF], offers a valuable opportunity to gain a deeper understanding of these crucial aspects of wall turbulence.

DNS data

We utilize the DNS data of del Álamo et al. (2006) for turbulent channel flow at Re τ = 932 (Re τ ≡ u τ δ/ν where ν is the kinematic viscosity, δ is the channel halfwidth, and u τ is the skin friction velocity), with domain size L x = 2πδ and L z = πδ in streamwise and spanwise directions respectively. The vorticity/wall-normal velocity formulation of the Navier-Stokes was used as described in [START_REF] Kim | Turbulence statistics in fully developed channel flow at low reynolds number[END_REF] 10 1 10 2 10 3 with the Fourier spectral method for the two wall-parallel directions and Chebyshev polynomials in the wall-normal direction. Finally, the time advancement was done using a third-order semi-implicit Runge-Kutta method.

For our analysis, we employ the structures identified in the aforementioned DNS by [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF], who kindly provided them to us. In their work, intense structures are identified as regions of high Reynolds shear stress, i.e. the connected regions where:

|u(x)v(x)| > Hσ u (y)σ v (y) (4.1) 
Here, u(x)v(x) represents the instantaneous Reynolds shear stress, H is a threshold value obtained through a percolation analysis, and σ u (y) and σ v (y) the r.m.s values of the streamwise and wall-normal velocities, obtained by averaging over time and the x-z plane for every y. Percolation analysis, first introduced by [START_REF] Moisy | Geometry and clustering of intense structures in isotropic turbulence[END_REF], systematicaly partitions the flow into separate intense regions based on a threshold, H. This approach ensures that the flow is segmented in multiple intense objects, which also account for most of the Reynolds shear stress of the channel.

For the DNS data considered here, H ranges from 1 to 3, for further details the reader is referred to [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF], where the geometric and statistical properties of these structures have been analysed extensively for different values of H.

In our study, we use the uppermost threshold value of H = 3, concentrating, thus, on the most intense regions of Reynolds shear stress. Additionaly, we focus solely on the wall-attached objects with y + min ≤ 20 (y min is the minimum wall distance of each object to the closest wall), as these predominantly contribute to the total Reynolds shear stress of the channel, as shown in [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF]. Furthermore, we restrict our analysis to cases where u < 0, v > 0, which indicate ejections, and u > 0, v < 0, which represent sweeps. In the following section, we collectively refer to these events as Q -s. To circumvent grid resolution issues, we exclude the smallest objects with volume smaller than 30 3 wall units. A total of 5 × 10 4 objects are identified, which encompass 1% of the channel volume, while accounting for almost 30% of the total Reynolds stress. Each object is associated with a corresponding bounding box aligned with the Cartesian coordinate system, having streamwise and spanwise dimensions denoted by ∆x and ∆z, respectively and height ∆y = y maxy min , with y max the maximum distance of the object to the wall for which y min is the smallest. Some geometrical attributes of these objects can be shown in figures Our objective is to study the energy cascade of the wall-attached Q -s for which we follow the methodology introduced in the previous chapter. We use the Kármán Howarth Monin Hill equation (KHMH) integrated over spheres; we distinguish, however, the spheres based on their location into two families, 'inside' and 'outside'. The term 'inside' refers to spheres with centers situated within the intense regions of Reynolds stress, and radii no larger than the smallest dimension of their bounding box (blue spheres in figure 4.3). Conversely, 'outside' designates spheres centered outside any object and the volume encompassed by their bounding boxes, with maximum radii that do not intersect any of the objects' bounding boxes (green spheres in figure 4.3). It is important to note that these two families of spheres are not exhaustive. For instance, there are spheres with centres inside the objects but with radii extending beyond the bounding box. Nevertheless, we have selected these two specific families of spheres, to effectively distinguish between scales influenced by the presence of the intense regions of Reynolds stress and those that remain unaffacted. By using the highest threshold value of H = 3, we can confidently assert that high levels of Reynolds stress are present throughout the bounding box of the object. Π v,o H , and Π v,o I ) normalised, also, by the unconditionally averaged dissipation rate (ε v ). The first observation in both cases is that the conditional interscale transfer rate terms are negatives for all scales and wall-normal distances considered here. This indicates that, on average, energy is transfered towards smaller scales. From figure 3.14 we see that the unconditionally averaged interscale transfer rate Π v /ε v reaches a peak value of -0.55 for Re τ = 932. In contrast, as shown in 4.4(a, b), the interscale transfer rate within the bounding boxes of the structures is stronger, approaching the equilibrium value of Π v,i /ε v = -1 for scales around the Taylor microscale. Meanwhile, outside of the boxes, the conditionally averaged interscale transfer rate Π v,o /ε v is weaker, peaking at approximately -0.4.

The primary distinction between the cases, however, lies in the behavior of the homogeneous and inhomogeneous components of the Π v,i/o term. Outside the influence of the structures, the Π v,o I term is nearly zero, while it increases to small negative values as the scale grows, implying minimal average influence of inhomogeneities on the energy cascade. In contrast, a significantly different scenario emerges within the boxes, where strong positive values of Π v,i I /ε v,i indicate an inverse inhomogeneous energy transfer. Equally noteworthy is the behavior of the homogeneous term. When situated outside the boxes, Π v,o H predominantly characterizes the interscale energy transfer, as has also been observed in the previous chapter for the Π v H . However, we see that Π v,i H /ε v,i quadruples in magnitude within the boxes, thereby counteracting the inverse inhomogeneous energy cascade and keeping the total energy transfer, Π v,i/o /ε v , towards the smaller scales. The significant increase in the homogeneous term can be attributed to the enhanced correlations velocities at the two points (see definition of Π v H in equation 3.39). Increased levels of correlation are expected within ejections and sweeps, as their definition as coherent structures implies that all points within them exhibit similar behavior.
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Examing, now, figures 4.4(c, d), it is evident that the conditionally averaged dissipation rate inside the boxes is substantially higher than both the one outside of them and the unconditionally averaged dissipation rate, ε v , suggesting increased levels of dissipation around the attached Q -events. Figure 4.4(e) demonstrates that the conditionally averaged interspace transport T v,i u is no longer zero, in contrast to the unconditionally averaged T v u (see figure 3.1 Chapter 3) and the T v,o u (figure 4.4 (f )). Instead, it shows considerable variation with both r and y. Furthermore, for y + ≤ 221, the interspace term is negative across all scales. Whereas for y + > 221 and scales 1 < r/λ < 3, the interspace becomes positive. We can understand the sign of the interspace transport by relating it to the interpretation of the sign of the interscale tranfer, as discussed in section 3.8.1 (see also [START_REF] Chen | Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence[END_REF]. Positive values for a specific scale indicate an energy loss at that scale, resulting from energy being transferred, not through scales (interscale transfer), but through physical space (interspace transport). Conversely, negative values of T u suggest an energy gain at that scale, achieved through transport in physical space of energy from the surroundings. Therefore, we observe that the scales closest to the wall within the bounding boxes of the sweeps and ejections experience energy gain due to spatial transport from their surroundings, which is partially balanced by the increased levels of dissipation. In contrast, the scales positioned in higher wall normal locations lose energy to their surroundings.

To gain deeper insights into the average behavior, we examine the PDFs of instantaneous (in time) and local in (x, z) planes interscale transfer rates. We follow the naming convention introduced in Chapter 3, where

π v,i/o ≡ 3 4π δu•r r |δu| 2 dΩ r , π v,i/o H ≡ -3 2π δu•r r (u -• u + )dΩ r and π v,i/o I ≡ 3 4π δu•r r (|u + | 2 + |u -| 2 )dΩ r . Clearly, Π v,i/o = ⟨π v,i/o ⟩, Π v,i/o H = ⟨π v,i/o H ⟩ and Π v,i/o I = ⟨π v,i/o I
⟩, with 'i' denoting the spheres located within the bounding boxes of the objects and 'o' outside of them. v,o I . Within the structures, the differentiating factor for π v,i I and the π v,i H is the pronounced drift of the PDFs towards positive and negative values, respectively. This implies that inside the regions of intense Reynolds shear stress, the most probable events involve an inverse inhomogeneous interscale energy transfer coupled with an enhanced forward homogeneous energy transfer, which subsequently result in the average values observed in figure 4.4(a). The skewness factors for both inside and outside interscale transfer terms display remarkable similarities, as illustrated in figure 4.6, thus, indicating similar behaviours of the extreme interscale transfer events inside and outside of the structures' bounding boxes.

Next, we investigate whether the interscale transfer carried by the attached Q - events contributes significantly to the overall energy transfer within the channel. We plot in figure 4.7 the percentages of each of the total interscale transfer rate terms, attributed to Q -s, as a function of scale r for various wall-normal distances. The most substantial contributions are observed for the smallest scales, where nearly 40% of the inhomogeneous interscale transfer stems from these structures. As the scale increases, the contribution drops below 10%, which remains signif- icant considering that they cover less than 1% of the channel's volume. The unconditionally averaged inhomogeneous interscale transfer rate, which was shown to be zero in the previous chapter, is a result of the intense positive values of Π v,i I originating from the intense regions of Reynolds stress around the attached Q -s, which are being balanced by the small negative values in the rest of the flow. For the other two terms, the full interscale transfer rate and its homogeneous part, we observe minimal contributions of approximately 2% and 4% for the smallest scales, which decrease further for larger scales.

In conclusion, this section investigated the conditionally averaged interscale and interspace transfer terms of the KHMH equation, to understand the impact of intense Reynolds stress regions on them. The findings reveal the presence of intense phenomena of interscale energy transfer within the boxes of the structures and around the Taylor microscale, where the inhomogeneities contribute to inverse energy transfer while the correlations within the structures promote forward energy transfer through Π H . The elevated levels of interscale energy transfer, however, are insufficient to support the heightened dissipation occurring within the areas influenced by the Q -s. Consequently, there is spatial energy transport directed towards the Q -s closer to the wall, while energy moves away from them at greater wall distances. The remarkable disparities between the values of Π v I and T v u inside and outside the boxes surrounding the sweeps and ejections, highlight the pronounced inhomogeneous nature of these structures. Finally, we observed that the increased interscale energy transfer within the Q -s is not enough to have significant contribution to the overall average interscale energy transfer in the channel. Nevertheless, this does not imply that we can disregard the interscale and interspace energy transfer occurring within these structures, as they play a crucial role in their development and dynamics. An accurate model should probably account for these severe inhomogeneities present within ejections and sweeps. r/λ The flow is averaged on a rectangular grid of fixed number of points, with size proportional to the height of each structure l yi = ∆y i = y maxiy mini , where the subscript i = 1, . . . , N identifes the particular object and N is the total number of objects. Figure 4.8 presents a schematic depiction (in 2D) of the common grid scaled for two structures with different heights. The coordinate system of the lo- cal grid is centered at each structures' bounding box center in the streamwise and spanwise directions, while in the wall-normal direction y/l yi = 0 denotes the wall and y/l yi = 1 the top of each object. To illustrate the methodology, consider the velocity at the top right corner of each grid, representing a point that is a seven times the height of the structure in the x direction and two times the height of the structure in y direction. By averaging these points across all objcets, we obtain the conditional velocity at point (3.5, 2) in the structure's coordinate system (point chosen arbitrarily for the sake of the example). By doing so, we gain insight into an average velocity field around the intense regions of Reynolds stresses irrespective of structure size, shown to consist of a low spead streak for a Q2 structure and a high speed streak for the Q4 [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF], flanked by two counter-rotating vortices. In the results presented below, we consider the same objects as in the previous section, but we no longer distinguish between spheres that are inside or outside the bounding boxes of the objects. Continuing with the previous example, we place a sphere at the corner (3.5, 2) for each object, we volume integrate the interscale transfer rate terms, and then we average the spheres with the same ratio of radius to distance from the wall (r/y). The resulting conditional fields for the interscale transfer terms are denoted as {Π} Q2 , {Π I } Q2 , and {Π H } Q2 for the ejections and {Π} Q4 , {Π I } Q4 , and {Π H } Q4 for the sweeps (the v superscript, which was used in previous sections to indicate the volume integration, is omitted for the sake of simplicity). We also conducted the same procedure by averaging spheres with the same r/λ or same absolute values of radius r, and the results were qualitatively similar. In this way, for instance, when r/y ≈ 2.0, the conditional field will represent the average interscale transfer around the structures for the attached scales.
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Conditional fields of interscale energy transfer

We start by examing the conditional fields around an ejection (Q2). Figure 4.9(a) depicts the three-dimensional conditional field of the inhomogeneous interscale transfer field ({Π I } Q2 ) for r/y = 1.14, normlised with the conditionally averaged dissipation rate, {ε} Q2 . This figure, along with the ones that follow, displays the conditional fields in the local coordinate system based on the structures' height l y . The anchor points of this grid are the centre of the object located at x/l y = 0, z/l y = 0, y/l y = 0.5 and the top edge of the object corresponding to y/l y = 1. However, using the scaling laws for the dimensions of the objects presented in paragraph two, with ∆x = 2.5l y , and l y = 1.3∆z, we contend that the part of the conditional fields in between -1.25 ≤ x/l y ≤ 1.25, -0.65 ≤ z/l y ≤ 0.65 and 0 ≤ y/l y ≤ 1 corresponds on average to the volume enclosed by the box surrounding the object. Returning to Figure 4.9(a), we observe an inverse inhomogeneous (blue isosurface) cascade occuring on top and behind the low speed streak (seen as the grey transparent isosurface for {u} Q2 = -1.5u τ ) associated with the Q2 object. In contrast, within the low speed streak, there is a region of forward inhomogeneous cascade (red isosurface).

In Figure 4.10, we present the inhomogeneous interscale transfer conditioned on the presence of a sweep (Q4), normalised with {ε} Q4 . {Π I } Q4 exhibits positive values everywhere, signifying an energy transfer towards larger scales. The most intense values are observed in the upper half of the box surrounding the sweep (0.5 < y/l y < 1) and extend beyond the box's boundaries in the wall normal direction. In both the streamwise and spanwise directions, the intense region of forward inhomogeneous energy transfer remains within the average bounding box of the sweep (-0.65 < z/l y < 0.65 and -1.25 < x/l y < 1.25). Figures 4.9 and 4.10 explain the results of the previous section, where we observed that the Π v,i I is positive for all scales and wall distances. Moreover, though, these figures reveal the organisation of this inhomogeneous energy transfer and the differences between the ejections and the sweeps.

We continue by extending this analysis to include the two other interscale transfer terms {Π} Q(•) and {Π H } Q(•) , and investigate the impact of varying scale sizes on these conditional fields, starting with the ones conditioned on ejections (Q2). We plot in figure 4.11 the (x-y) slices at z/l y = 0 (similar to figures 4.9(c)) for seven scales r ranging from r/y = 0.29 to r / y = 1.84 and for all three terms {Π} Q2 (first column), {Π I } Q2 (second column) and {Π H } Q2 (third column). At smaller scales (r/y = 0.29), a weak inverse inhomogeneous energy transfer happens inside the low speed streak, as shown previously. As the scale increases, the intensity of the positive region of {Π I } Q2 grows, reaching a maximum around r/y = 1.14 before decreasing again. The negative region of {Π I } Q2 behind and around the low speed streak becomes prominent at r/y ≈ 0.57, grows until r/y ≈ 0.86, and then decreases in intensity. The homogeneous term is negative everywhere (forward cascade) for all scales; however, we note that its intensity remains relatively stable across scales until r/y ≈ 1.14, after which it starts to decreases. The combined effect on the full interscale transfer rate term is that, for the smallest scale, the field appears unaffected by the structure's presence and is consistently negative, suggesting a forward energy cascade. As the scale starts to increase, though, we see the impact of the inhomogeneous term. Firstly, through the intense region of forward cascade behind and around the low speed streak, which is supported by the uniformly forward cascade of the homogeneous term. And then, for r/y > 0.86 the strong inverse inhomogeneous energy transfer in the core of the structure promotes the positive values of {Π} Q2 .

Focusing on the conditional fields for sweeps (Q4), we notice subtle changes in these fields as the scale increases. The organization appears similar across all scales and terms, with the intensity of {Π I } Q4 and {Π H } Q4 remaining almost constant for scales between r/y = 0.57 and r/y = 1.14. Beyond this range, the interscale transfer rates start to decrease relative to the dissipation rate. The sum of the two terms results in a uniformly distributed weakly negative full interscale 4 95 transfer rate, suggesting that the homogeneous term slightly dominates the inhomogeneous term across all scales and throughout the conditional flow field. The interscale transfer term and its decomposition shows a very distinct organisation when conditioned on the presence of ejections and sweeps. To understand and interpret this, we revisit the definitions of Π v , Π v I and Π v H as first introduced in chapter 3:

{u} Q2 = -1.5uτ -1 0 1 {Π} Q2 /{ε} Q2 -1 0 1 {ΠI } Q2 /{ε} Q2 -1 0 1 {ΠH } Q2 /{ε} Q2 1
Π v = Π v I + Π v H = 3 4π ⟨ δu • r r (|u + | 2 + |u -| 2 )⟩dΩ r -2 ⟨ δu • r r (u -• u + )⟩dΩ r . (4.2)
Here the interscale energy transfer can arise from correlations through the homogeneous term, as well as from inhomogeneities present in the flow, leading to different energy intensities at the two points. It is reasonable to anticipate higher levels of correlation within these structures, in accordance with their inherent characteristics, resulting in the observed increase in {Π H } Q2 and {Π H } Q4 across the majority of the scales considered here. As the scale is increased, though, the correlation between the two points along the surfaces of the spheres lessens, leading to a corresponding decrease of the homogeneous energy transfer.

For the inhomogeneous energy transfer, the connection with an inhomogeneous spatial distribution of the turbulent kinetic energy is not immediately evident. Consequently, we return to equation 3.38 which, after some manipulation, becomes:

Π I = 1 2 ∂ ∂x + i u + i |u + j | 2 + 1 2 ∂ ∂x - i u - i |u - j | 2 Π I 1 -u + j u - i ∂ ∂x + i u + j -u - j u + i ∂ ∂x - i u - j Π I 2 (4.3)
The first two terms can also be written as:

Π I1 = u + • u + • ∇ + u + + u -• u -• ∇ -u - (4.4)
This expression corresponds to the sum of the same one-point quantity at the two points, i.e., the dot product of the velocity vector with the local acceleration vector, and can be interpreted as the local rate of change of the turbulent kinetic energy caused by the work corresponding to the product of the local acceleration and the local velocity. Therefore there is a direct link between the inhomogeneous energy transfer rate and the rate of change of TKE. A positive rate of change at both points leads to an inverse energy transfer, whereas a negative rate of change at both points to a forward transfer. We plot in figure 4.13(a) the isosurfaces of the average conditional field for {u • (u • ∇u)} Q2 conditioned on ejections. With the cross-secions of the same conditional field in figures 4.13(b, c) for x/l y = 0 and z/l y = 0 respectively, we can describe the average rate of change of TKE around ejections. The counter-rotating vortices on either side of the low-speed streak induce a positive rate of change for the biggest part of the structure, seen as red isosurfaces in the three-dimensional plot or the red isocontour in the cross-sections. On the other hand, a negative rate of change appears above the vortices' cores and downstream, due to the strong deceleration (blue isosurfaces and blue isocontours).

In figure 4.14, we present the average conditional field for the dot product of velocity and acceleration {u • (u • ∇u)} Q4 conditioned on a sweep. The velocity field associated with sweeps consits of two counter-rotating (of opposite rotation than the ones next to the ejections) vortices that move high velocity flow from the upper part of the flow towards the wall and a high-speed streak between them (transparent isosurface for {u} Q4 = 1.5u τ in figure 4.13). We note that the two vortices accelerate the flow from outside the sweep's edge (y/l y > 1) until its core y/l y = 0.5 (red isosurface and red isocontours). This acceleration results in a positive rate of change of TKE in this region. However, further down, y/l y < 0.5, a strong deceleration occurs due to the wall's blocking effect and the severe change of direction (blue isosurfaces and blue isocontours), leading to a negative rate of change of the TKE.

The striking similarities between the conditionally averaged inhomogeneous interscale energy transfer fields and the u • (u • ∇u) for both ejections and sweeps suggest that Π I1 might be the dominant term of Π I . This provides us with a simplified approach to understand and interpret the inhomogeneous energy transfer.

The most significant difference between the two fields can be observed for the conditional fields of sweeps, particularly in the region close to the wall where {u • (u • ∇u)} Q4 and {Π I } Q4 exhibit opposite signs. In the following paragraphs, we will attempt to investigate this discrepancy further.

Interscale energy transfer of conditional velocity field

So far, we have attempted to explain both the rate of change of TKE and the inhomogeneous terms using the conditional velocity field around ejections and sweeps comprised of two counter-rotating vortices and a low-/high-speed streak respectively. However, as emphasized by [START_REF] Jiménez | Coherent structures in wall-bounded turbulence[END_REF], the sweeps and ejections in reality never exhibit such smooth instantaneous velocity fields. A natural question arises: how does the interscale transfer rate of the conditionally averaged velocity field behave? What similarities and differences can be identified, and what insights can we glean from these comparisons? To address these questions, we compute the interscale transfer rate terms of the conditionally averaged velocity field, which differs from the previously shown conditional interscale transfer. In the former case, we first obtain the average velocity field conditioned on the presence of an ejection or sweep and then compute the interscale transfer rate terms. Conversely, in the latter case, we calculate the instantaneous interscale transfer rate terms (from the fluctuating velocities) at every time step and spatial location before performing the conditional averaging as described at the beginning of this section. We will denote the interscale transfer rate terms of the conditional velocity fields, {u} Q2 and {u} Q4 , with Π {u} Q2 , and Π {u} Q4 respectively, to distinguish them from the conditional interscale transfer rate terms. In figure 4.15, we observe that the interscale transfer of the conditional velocity field (Π {u} Q2 ), around ejections, is strikingly similar to the conditional interscale transfer rate ({Π} Q2 ), especially for the inhomogeneous term. The strong acceleration caused by the two vortices results in an inverse inhomogeneous interscale energy transfer at the core of the ejections. As we approach the structures' outer edge, deceleration causes the energy to transfer to smaller scales. The dependence on scale can now also be elucidated. The smaller the scale, the stronger the acceleration required to create a significant difference in turbulence intensity across that scale. However, as the scale increases, it becomes more susceptible to differences in velocity intensities caused by acceleration or deceleration and the corresponding change of rate of the turbulent kinetic energy. The most significant difference between the conditional interscale transfer and the interscale transfer of the conditionally averaged velocity can be observed in the homogeneous interscale transfer rate term. In the former case, the term is negative everywhere, while in the latter case, a positive homogeneous interscale transfer towards smaller scales is present for x/l y < 0.

Finally, in figure 4.16 we compute the interscale transfer terms of the conditionally averaged velocity field around sweeps. The inhomogeneous and homogeneous terms (Π

{u} Q4 I , Π {u} Q4 H
), behave similarly to the conditionally averaged interscale transfer terms ({Π I } Q4 , {Π H } Q4 ) (see figures 4.10 and 4.12). Some subtle differences exist between the two cases, such as the opposite sign of Π {u} Q4 between the conditional velocity field and the {Π} Q4 of the instantaneous fluctuating velocity 
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x/l y (f ) field. These discrepancies can be attributed to the difficulty of achieving convergence in the latter case compared to the former.

We now revisit the issue of opposite signs between {Π I } Q4 and {u • (u • ∇u)} Q4 (as shown in figures 4.14 and 4.10 or 4.16) near the wall, conditioned on sweeps. To explain this, we refer back to equation 4.3 and highlight that the inhomogeneous term is not solely determined by the rate of change of TKE at the two points, but term Π I2 can also play a significant role. In figure 4.17, we plot the three terms Π along a line in the wall-normal direction for x/l y = 0 and z/l y = 0, and observe that closer to the wall, it is Π I2 which determines the sign of the inhomogeneous term and not the rate of change of TKE. Interpreting Π {u} Q4 I2 is somewhat more challenging, as it consists of the tensor products u + i u - j and u - i u + j , which capture how changes in one velocity component at a point influence another velocity component at another point. The negative sign suggests that the energy transfer is in the opposite direction of the gradients at the two points. The increased dependence on Π {u} Q4 I2

for distances closer to the wall might result from the rapid deceleration and change of direction near the wall, leading to an increase in the cross-correlation between different velocity components at the two points, but also from the high levels of velocity gradients near the wall. This phenomenon highlights the complex interplay between the spatial gradients and the interactions of the velocity components, especially in the near wall region.

The findings of this section provide compelling evidence that the conditionally averaged velocity field effectively represents the interscale energy transfer processes taking place around sweeps and ejections in turbulent flows. As a result, we can leverage this simplified representation to not only characterise but also elucidate, for the first time, the underlying mechanisms governing energy transfer in the context of these turbulent structures. 4 Energy transfer within sweeps and ejections

Conclusions

In this chapter, we have examined the turbulent energy transport of the most intense regions of Reynolds shear stress, ejections (Q2 where u < 0 and v > 0) and sweeps (Q4 where u > 0 and v < 0) in physical and scale space using the Kármán Howarth Monin Hill equation (KHMH) for in a fully developed channel flow. The scales located within the bounding boxes of these structures exhibit distinct energy transfer characteristics compared to the overall flow. Specifically, within these structures, there is a heightened interscale energy transfer towards smaller scales. By decomposing the interscale transfer into homogeneous and inhomogeneous terms, we are able to examine the factors contributing to this increased Π v,i . It was discovered that despite the presence of intense inhomogeneous interscale energy transfer towards larger scales, the magnitude of the homogeneous term becomes dominant, overpowering the full interscale transfer and directing it towards smaller scales. This significant increase in Π v,i H can be attributed to the strong correlations between the two-point velocities found within sweeps and ejections. Additionaly, it was shown that the intense regions of Reynolds stress are accompanied by increased levels of interspace turbulent transport, which was found to be zero on average outside of the Q -s. Notably, close to the wall for y + ≤ 221 all scales gain significant amounts of energy from their surroundings. This increase in turbulent energy is balanced by the elevated levels of turbulence dissipation also found within the structures. The significant differences observed in the values of Π v I and T v u inside and outside the bounding boxes enclosing sweeps and ejections underscore the marked inhomogeneous characteristics exhibited by these structures. These disparities further emphasize the complexity and spatial variability inherent in the energy transfer processes within such turbulent flow features, suggesting the actual dynamics involved are far more intricate than what the average picture portrays. In light of this, we also analysed probability density functions (p.d.f.s) of the instantaneous interscale transfer rate terms. We noticed that the key difference between the energy transfer processes inside and outside these structures lies in the overall drift towards more frequent and intense fluctuations occuring wihthin the attached Q -s, resulting in inverse energy transfer for π v,i I and forward for π v,i H . In the second part of this study, we analyse the intescale energy transfer fields surrounding ejections and sweeps. It has been demonstrated that the conditionally averaged velocity fields around these structures can be utilised to interpret the interscale transfer, especially the inhomogeneous component. For ejections, {Π I } Q2 is predominantly positive throughout the core of the structure. This can be attributed to the local acceleration leading to a positive rate of change in turbulent kinetic energy (TKE), which is driven by the two counter-rotating vortices situated on the flanks of the low-speed streak. At higher wall-normal locations and upstream the structure's center, deceleration and the corresponding negative rate of change of TKE leads to forward inhomogeneous energy transfer. For the smallest scales, the total interscale trasfer rate is negative, towards smaller scales, primarily due to the homogeneous term. However, as we approach the attached scales with r/y ≈ 2, the positive region of {Π I } Q2 begins to dominate the {Π} Q2 due to the decreased intensity of the homogeneous interscale transfer term.

In the case of sweeps, the local acceleration caused by the counter-rotating vortices that transport fluid from the top side of the structure towards the wall results in an inverse inhomogeneous energy transfer, through the positive rate of change of TKE. The deceleration resulting from the wall-blocking effect causes a negative rate of change in the turbulent kinetic energy. One might expect this to lead to negative values of {Π I } Q4 via the {Π I1 } Q4 term. However, this is not the case, as the sudden change of direction amplifies the cross-correlation between the various components of the velocity at the two points. Consequently, the {Π I2 } Q4 term becomes the dominant component of the inhomogeneous energy transfer term leading to positive values of {Π I } Q4 . The homogeneous term exhibits a similar organisation as the inhomogeneous term, albeit with an opposite sign. This leads to a relatively uniform distribution of the total interscale transfer rate term around the sweep, with minimal variations in intensity or organisation as the scale increases.

5

Conclusion and Perspectives

The well-established Richardson-Kolmogorov energy cascade serves as the primary mechanism that explains the transfer of energy from larger to smaller scales in turbulent flows, ultimately leading to dissipation at the smallest scales due to viscosity. The consequences of this equilibrium cascade have been observed in various types of flows, even in regions where the underlying assumptions might not be directly applicable. The primary objective of this thesis is to investigate the intricacies of the interscale energy transfer and the dissipation in wall-bounded turbulent flows. In this concluding chapter, we will systematically address each specific aim outlined in the thesis introduction, thoroughly examining the contributions made to our understanding of turbulence dynamics in the context of wall-bounded flows.

Aim 1

The analysis of Direct Numerical Simulation data of fully developed turbulent channel flow support the view that, for sufficiently high Reynolds numbers, the integral length scales of the wall-normal velocity in both streamwise and spanwise directions scale with the wall-distance y, consistent with Townsend's attached eddy hypothesis. Their corresponding dissipation rate coefficients C v,x ε and C v,z ε tend towards a constant within the equilibrium layer 60 ≤ y + ≤ Re τ /2 independent of Re λ as Re τ increases, in accordance with the results predicted by Kolmogorov's equilibrium cascade for homogeneous turbulence. The C w,z ε , however, defined from the integral length scale of the spanwise velocity in the spanwise direction (L w,z ), does not remain constant, but it scales as C w,z ε ∼ √ Re τ /Re λ in the same region, reminiscent of the non-equilibrium dissipation scaling observed in various other types of flow. From this scaling, we can deduce that L w,z ∼ √ δy and that λ ∼ √ δ ν y, both supported by our DNS data. We also examined the time-fluctuating averages over wall-parallel planes, uncovering a strong anti-correlation between the fluctuations of turbulence dissipation and the local Taylor length-based Reynolds number at all wall-distances considered. For low frequencies, the connection between these two variables is primarily due to turbulent kinetic energy, while both K and ε play a significant role in the evolution of time dynamics at higher frequencies. This relationship has also been identified in homogeneous/periodic turbulence, where it was associated with the presence of a non-equilibrium cascade characterized by a time lag between turbulent kinetic energy (at large scales) and the turbulence dissipation rate (at small scales). However, in wall turbulence, various large scales coexist simultaneously with different cascade times, complicating the identification of a well-defined time lag between K and ε. These results reveal the reach dynamics of turbulence dissipation in space and time for an inhomogeneous flow, allowing us to derive essential scaling laws that have significant implications for advancing turbulence models. Up to now, these models have been primarily based on the assumption that C ε remains constant, an assumption which proves to be inadequate even for relatively simple cases such as turbulent channel flows.

Aims 2

To delve deeper into the energy cascade in wall turbulence, we employ the Kármán-Howarth-Monin-Hill equation (KHMH), a two-point equation which permits the study of turbulent energy transfer in scale and physical space in all directions. By integrating the terms of this equation over spheres in the three-dimensional scale-space, we can unambiguously differentiate between the forward and inverse cascades that occur normal to the sphere's surface. The theoretical framework proposed on this study, is focused in the intermediate layer (δ ν ≪ y ≪ δ) of fully developed turbulent channel flow. The developed theory suggests that Kolmogorov equilibrium is asymptotically achieved only around the Taylor length λ. It is important to note that λ is not an inertial length since it depends on viscosity and turbulent kinetic energy at the specific distance from the wall. DNS data at Re τ = 932 and Re τ = 2003 confirm the theory's predictions, demonstrating that the Kolmogorov equilibrium, where interscale transfer rate balances the energy dissipation rate, is reached as Re -2/3 λ at r min ≈ λ. The data also highlight that two-point viscous diffusion has a significant role at scales closest to the Kolmogorov microscale, whereas two-point production becomes dominant at scales comparable to the wall distance. Two point turbulence production is enhanced by two-point correlations of anti-aligned fluctuating velocity pairs, whereas align velocity pairs tend to reduce it. The distinction between aligned and anti-aligned velocity pairs provides a general framework for characterising turbulent motions associated with specific scales, potentially arising from different flow structures such as vortices, sweeps, ejections, etc. In addition to their impact on turbulence production, it has been shown that relatively aligned fluctuation pairs result in stretching motions on average, while relatively anti-aligned fluctuation pairs lead to compressive motions on average. Crucially, the maximum compression and stretching is achieved for the scales where Π v /ε v has its minimum, suggesting that these motions play an important role in achieving Kolmogorov equilibrium.

The decomposition into inhomogeneous and homogeneous interscale energy (2020), was used to study the influence of inhomogeneities on the energy cascade process. The DNS data indicate that the total spherically averaged interscale transfer rate can be described solely by its homogeneous part, since the average Π v I ≈ 0 for all scales and wall distances considered, even though turbulence in a channel flow is significantly nonhomogeneous in the wall-normal direction.

The probability density functions of the spherically averaged interscale turbulence energy transfer rate reveal that the approach towards Kolmogorov equilibrium occurs due to the overall dirft of the PDF towards forward cascade as scale is increased, coupled with the reduction of extreme forward energy transfer events with increasing scale. For the inhomogeneous term, the PDFs exhibit positive skewness towards inverse interscale transfer events; however, the aforementioned drift towards forward energy transfer counterbalances these events, maintaining the average Π v I very close to zero.

Aim 3

In the final chapter, we harnessed the potential of the KHMH equation to investigate the energy transport mechanisms around and within two of the most crucial structures in wall turbulence: ejections and sweeps. Our analysis revealed that these structures possess pronounced inhomogeneous characteristics of energy transfer both in physical and in scale space, which set them apart from the overall flow. The increased levels of energy dissipation inside these structures, particularly closer to the wall is balanced by the spatial energy transport from their surroundings. Meanwhile, the elevated velocity correlations within these structures lead to a forward homogeneous interscale energy transfer. Furthermore, we present convincing evidence that the conditionally averaged velocity field accurately reflects the interscale energy transfer processes occurring around sweeps and ejections. Consequently, we can leverage this simplified representation to describe the fundamental mechanisms governing energy transfer within these structures. Specifically, the conditional field around an ejection comprises a low-speed streak and two counter-rotating vortices that transport slower velocities from the wall towards the bulk of the flow. At the height of the vortices' cores, there is a local acceleration, in the wall-normal direction, which leads to positive rate of changes of the turbulent kinetic energy (TKE). Therefore, the inhomogeneous interscale transfer term is also positive at same locations and transfers energy towards larger scales. Above and upstream of the structures' centers, the local deceleration results in a forward inhomogeneous energy transfer. The homogeneous interscale transfer, arising from the correlated nature of these structures, directs energy towards smaller scales. For small scales, this effect overcomes the inverse inhomogeneous energy transfer. However, as the scale increases and we approach the attached scales, it is the inhomogeneous energy transfer that dominates.

Lastly, for the conditional field around sweeps, the situation is reversed, with the two counter-rotating vortices transporting high-speed fluid from higher wallnormal locations toward the wall. This leads to an inverse inhomogeneous energy transfer in regions where there is positive rate of change of the TKE due to local acceleration. However, even though a negative rate of change of TKE is observed closer to the wall due to the blocking effect of the wall, this does not result in a corresponding forward energy transfer as in the case of ejections. This discrepancy can be attributed to the strong ninety-degree rotation of the fluid, which induces cross-correlations between different components of the velocity and maintains the inhomogeneous energy transfer directed towards larger scales. For sweeps, the homogeneous interscale transfer rate, again attributed to the correlations within sweeps, directs energy towards smaller scales. In contrast with ejections, it exhibits smaller variations with increasing scale and consistently overcomes the inhomogeneous interscale transfer for almost all scales considered.

Future Work

In conclusion, this Ph.D. thesis has shed light on the intricate dynamics of turbulence dissipation and energy transfer in wall turbulence, raising several intriguing questions and paving the way for future research. Possible avenues for future exploration include:

• Incorporating the newly discovered scaling laws for turbulence dissipation into the development and enhancement of turbulence models.

• Examining the validity of the dissipation scaling laws by conducting similar analysis on data obtained from higher Reynolds number either through experiments or numerical simulations, in order to evaluate their robustness.

• Enhancing the theoretical framework presented in Chapter 3 by including different shapes instead of spheres, i.e. scales elongated in the streamwise direction, enabling a more explicit consideration of anisotropy within the model.

• Studying the behaviour of all terms in the Kármán-Howarth-Monin-Hill equation (KHMH) when conditioned on the presence of ejections or sweeps, to obtain a comprehesive understanding of the different mechanisms of energy tranposrt, production, diffustion and dissipation within these structures.

• Combining the KHMH equation with various structural models of wall turbulence, including attached eddies, vorticity structures, and uniform momentum zones, to enhance the understanding of their interrelationships.

Dynamique du transfert d'énergie inter-échelle et de la dissipation turbulente dans la turbulence de paroi Cette étude vise à explorer la dynamique de la dissipation et du transfert d'énergie dans la turbulence de paroi, mettant en évidence trois résultats majeurs. Tout d'abord, la mise à l'échelle de la dissipation ne suit pas la cascade classique de Kolmogorov-Richardson mais elle favorise au contraire une cascade d'énergie en déséquilibre à la fois dans le temps et en l'espace. Deuxièmement, l'équilibre de Kolmogorov, dans lequel le transfert inter-échelle équilibre la dissipation, ne peut être atteint qu'asymptotiquement autour de l'échelle de Taylor, une longueur non inertielle dépendant de la viscosité et de la distance à la paroi. Enfin, nous mettons en évidence l'organisation du transfert d'énergie autour des structures cohérentes, révélant le caractère inhomogène de ce transfert et l'expliquant à travers un champ de vitesse local simplifié. Ces résultats permettent de faire progresser notre compréhension de la turbulence de paroi et améliorer les hypothèses de modélisation utilisées dans les simulations de cas plus réalistes.

Mots clés: Turbulence, écoulement en canal, transfert d'énergie échelle par échelle, structures cohérentes

Dynamics of interscale energy transfer and turbulent dissipation in wall turbulence

This study aims to explore the dynamics of turbulence dissipation and energy transfer in wall turbulence, highlighting three key results. First, the dissipation scaling does not adhere to the classical Kolmogorov-Richardson equilibrium cascade; instead, it supports a non-equilibrium energy cascade in both time and space. Second, Kolmogorov equilibrium, in which the interscale transfer balances dissipation, can only be asymptotically achieved around the Taylor length, a non-inertial length that depends on viscosity and wall distance. Lastly, we illuminate the organisation of energy transfer around coherent structures, revealing their markedly inhomogeneous nature and explaining it through a simplified local velocity field. These insights offer valuable contributions to advancing our understanding of wall turbulence and enhancing the modelling assumptions employed in practical simulations.

Keywords: Turbulence, Channel Flow, Scale-by-Scale energy transfer, coherent structures

  contraste avec le concept d'une longueur d'inertie indépendante de la viscosité. Nous corroborons la prédiction de notre théorie en utilisant des données DNS pour des nombres de Reynolds allant jusqu'à Re τ = 2000. De plus, nous examinons la production de turbulence échelle par échelle et le transfert d'énergie turbulente interscalaire par rapport aux alignements/anti-alignements des vitesses fluctuantes entre les deux points, aux mouvements relatifs de compression/étirement, au transfert/cascade interscalaire direct/inverse, et aux contributions au taux de transfert interscalaire homogène/non homogène. En particulier, cette partie de l'étude a montré que les échelles les plus proches de l'équilibre échelle par échelle sont des échelles où les vitesses fluctuantes alignées sont étirées avec leur différence maximale alignée avec le vecteur de séparation à deux points. Enfin, nous étendons notre analyse sur des structures cohérentes particulières dans la turbulence de paroi, en examinant spécifiquement le transfert d'énergie interscalaire des balayages et éjections, qui sont des éléments structuraux essentiels de la turbulence de paroi. Nos résultats indiquent une cascade d'énergie inverse prédominante au sein de ces structures cohérentes, entraînée par des inhomogénéités. De plus, nous visualisons le champ moyen conditionnel de transfert interscalaire entourant ces structures, dévoilant une organisation unique des transferts d'énergie turbulente interscalaires autour des balayages et éjections résultant de l'accélération locale liée à ces structures.
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 21 Figure 2.1: Mean profiles of (a) production rate over dissipation rate of turbulent kinetic energy P/ε, (b) Taylor length λ normalised with δν , (c) ratio between -f K/⟨uv⟩ where f (y + , Reτ ) = P/ε and the indicator function β(y + ) = y + dU + dy + , (d) Taylor length-based Reynolds number, Re λ ≡ Kλ/ν for Reτ = 544 (black lines), Reτ = 1000 (blue lines), Reτ = 1994 (green lines), and Reτ = 5186 (orange lines). Thick part of the lines corresponds to the region 60 ≤ y + ≤ 0.5Reτ , while the dots represent the local maximum of P/ε.

∼

  which is reminiscent of the non-equilibrium dissipation scaling mentioned in the Introduction, Re τ being a global Reynolds number and Re λ being a local-in-y Reynolds number. However, our data support a different, though close, relation: C w,z ε Re 0.35 τ /Re λ with a departure from Re -1
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 23 Figure 2.3: Left column: Dissipation rate coefficients C u i ,x j ε computed with different integral length scales versus Re λ . Right column: Wall-normal profiles of ratios Lu i ,x j /λ. (a) C v,x ε as a function of

  y and t) and the non-fluctuating dissipation coefficients C ui,xj ε (functions of y but not of t). Similarly, we define a fluctuating Taylor length Λ ≡ 10νK/ε and a fluctuating Taylor length-based Reynolds number Re Λ ≡ √ KΛ/ν which, unlike λ ≡ 10νK/ε and Re λ ≡ √ Kλ/ν, are also functions of both y and t. We plot in figure 2.4 the three fluctuating dissipation coefficients C v,x ε , C v,z ε and C w,z ε normalised by their standard deviation against the fluctuating local Reynolds number, Re Λ , also normalised by its standard deviation, for Re τ = 950 at y + = 193 and for Re τ = 2000 at y + = 325.
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 24 Figure 2.4: Fluctuations in time of turbulence dissipation rate coefficients C u i ,x j ε and Re Λ with left column corresponding to Reτ = 950 and y + = 193 and right column to Reτ = 2000 and y + = 325. Grey lines in all figures show the time signal of Re Λ , black lines in (a, b) show the time signal of C v,x ε , blue lines in (c, d) show the time signal of C v,z ε , and green lines in (e, f ) show the time signal of C w,z ε .
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 25 Figure 2.5: Contours of two-time correlation coefficient ρ [X,Y ] versus wall-distance y + and time-lag ∆t + . Left column correlations for Reτ = 950, right column correlations for Reτ = 2000. (a, b) ρ [Cv,x 

  function of those of K, ε and L ui,xj , while those of Re Λ are a function of the time fluctuations of K and ε only. In figures 2.6 and 2.7 we plot the correlation coefficients of C ui,xj ε

  Figures 2.6(g, h) show a perfect instantaneous (i.e. ∆t = 0) correlation between Re Λ and K at both global Reynolds numbers Re τ , with lower correlations for nonzero time lags ∆t, indicating that the local Reynolds number's time dynamics are mainly dictated instantaneously by those of the turbulent kinetic energy. In figures 2.6(a, b) and 2.7(a, b) we see the same levels of anti-correlation ρ [C v,x ε ,K] ≈ -0.6 and correlation ρ [C v,x ε ,Lv,x] ≈ 0.6, with lower levels of the latter for ∆t ̸ = 0 (though again, the Re τ = 2000 data are less conclusive on this point). Figures 2.6(a, b) may suggest a stronger anti-correlation ρ [C v,x ε

  in time for different wall-normal locations shown here as different colours. For a single y + , and therefore for a single colour, each circle represents a different time instant. Left column: Reτ = 950. Right column: Reτ = 2000. The dashed lines indicate the best power-law fit Cε(t) ∼ Re -p Λ (t) for a single y. (a, b) C v,x ε (t) as a function of Re Λ (t), (c, d) C v,z ε (t) as a function of Re Λ (t), (e, f ) C w,z ε (t) as a function of Re Λ (t), (g, h) evolution of the positive exponent p across the channel along with the 95% confidence interval for each C u i ,x j ε . Blue lines for C v,x ε , orange lines for C v,z ε , and green lines for C w,z ε .
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 2 Figure 2.9: (a, b) Time evolution of C v,z ε and Re Λ for Reτ = 950 at y + = 193 and Reτ = 2000 at y + = 325. (c, d) Low pass filtered signals at same wall distance with cutoff frequency fc ≈ 10δ/Uc for Reτ = 950 and fc ≈ 21δ/Uc for Reτ = 2000, (e, f ) high pass filtered signals at same wall distance with cutoff frequency fc ≈ 151δ/Uc for Reτ = 950 and fc ≈ 81δ/Uc for Reτ = 2000.

  ui,xj < ε and Re < Λ , with a cutoff frequency of f c = 10δ/U c for Re τ = 950 and f c = 21δ/U c for Re τ = 2000 (U c being the mean centerline velocity), we see in figure 2.10 that their correlations are similar to those of the non-filtered respective dissipation coefficients and Reynolds numbers in figure 2.5, but with higher levels of anti-correlation values. These anti-correlations are also accountable to the turbulent kinetic energy in the time signals of C ui,xj ε
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 2 Figure 2.10: Contours of two-time correlation coefficient for low-passed filtered signals of C u i ,x j < ε and Re < Λ versus wall-distance y + and time-lag ∆t + . Left column correlations for Reτ = 950 with fc = 10δ/Uc, right column correlations for Reτ = 2000 with fc = 21δ/Uc. (a, b) ρ [C v,x<
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 2 Figure 2.11: Contours of two-time correlation coefficient of C u i ,x j < ε and Re < Λ with K < versus walldistance y + and time-lag ∆t + . Left column correlations for Reτ = 950 with fc = 10δ/Uc, right column correlations for Reτ = 2000 fc = 21δ/Uc. (a, b) ρ [C v,x<
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 2 Figure 2.12: (a, b, c, d, e, f ) Two-time correlation coefficients of high-passed filtered signals of C u i ,x j > ε

  lines), (g, h) Two-time correlation coefficients of high-passed filtered signals of Re > Λ with K > (blue lines) and with ε > (orange lines). Left column: Reτ = 950 with y + = 193 and fc = 151δ/Uc. Right column: Reτ = 2000 with y + = 325 and fc = 81δ/Uc.
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 2 Figure 2.13: Best-fit positive exponent p versus normalised wall-normal distance y + for C > ε (t) ∼ Re >-p Λ (t). (a) Reτ = 950 and fc ≈ 151δ/Uc, (b) Reτ = 2000 and fc ≈ 81δ/Uc. Blue lines for C v,x ε , orange lines for C v,z ε , and green lines for C w,z ε .

ε.

  It suggests the existence of a cross-over cutoff frequency f * c where the anti-correlation is at a minimum. In figures 2.15(a) and (b) we plot f * c versus y/δ for the anti-correlation between C v,z> ε and Re > Λ . Two distinct behaviours can be seen in 2.15 (a) and (b) for the two Reynolds numbers. For Re τ = 950, f * c is inversely proportional to the distance y from the wall, whereas for Re τ = 2000, f * c appears to be essentially independent of y at a value similar to f * c at y/δ ≈ 0.5 for Re τ = 950. To make these observations dimensionally correct, we write f * c ∼ u τ /y for Re τ = 950 and f * c ∼ u τ /δ for Re τ = 2000. For Re τ = 950, f * c scales as the local (in y) inverse eddy turnover time τ defined at the end of subsection 3.1. For Re τ = 2000, f * c scales as τ -1 at the upper end of the range 60 ≤ y + ≤ Re τ /2, i.e. at y ≈ δ/2.

Figure 2

 2 Figure 2.14: Correlation coefficient (∆t + = 0) for filtered low-and high-pass filtered signals of C u i ,x j ε and Re Λ as a function of the cutoff frequency fc premultiplied with δ/Uc. The first two columns correspond to results for Reτ = 950, while columns three and four for Reτ = 2000. The first row is for C v,x ε , the second row is for C v,z ε , and the third row is for C w,z ε . Finally, columns one and three are correlations of the low-pass filtered signals, while columns two and four are correlations of the high-pass ones. Different colours represent different wall-normal distances.
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 2 Figure 2.15: Wall-normal evolution (y/δ) of the cross-over cutoff frequency f * c (premultiplied with δ/Uc) where ρ [C v,z> ε ,Re > Λ ] ∆t + =0 has a global minimum in terms of anti-correlation. (a) For Reτ = 950, (b) for Reτ = 2000. (c, d) Premultiplied one-dimensional streamwise energy spectra as functions of the normalised streamwise wavenumber kxδ for different wall-normal distances. (c) Reτ = 950, (d) Reτ = 2000.

Figure 3

 3 Figure 3.1: (a) Turbulent transport Tu plus pressure-velocity term Tp, integrated over the volume of sphere with radius r, normalised by the volume integral of the two point dissipation rate ε as a function of r/λ for Reτ = 932, (b) T v u /ε v for Reτ = 2003 (Tp is unavailable from the recorded DNS data at Reτ = 2003), (c) volume integral of linear interscale transfer term divided with ε v Π v U /ε v for Reτ = 932, (d) for Reτ = 2003. Wall-normal distance is increased from light to dark colors (y + = 59 to 377 for Reτ = 932, y + = 82 to 665 for Reτ = 2003). The normalisation by the Taylor length λ (defined in subsection 3.6.3) is arbitrary in these plots.
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 332 Figure 3.2: Ratios of S 1×2 in orange colors and S 2 in marine colors over S 12 for different normalised scales r/y. Wall-normal distance is increased from light to dark colors as in figure 3.1. (a) Reτ = 932, (b) Reτ = 2003.

  3.10 into equation 3.3 we obtain the following twopoint energy balance valid for r 2 ≪ 2y and δ/δ ν ≫ 1 in the intermediate region δ ν ≪ y ≪ δ of FD TCF:
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 33 Figure 3.3: (a, b) C 12 /| R 12 | integrated over the whole sphere in black lines, conditionally integrated over anti-aligned pairs in blue lines, and conditionally integrated over aligned pairs in red lines. (a) Reτ = 932, (b) Reτ = 2003. (c, d) Similarly for C 12 /|R 12 |. Wall-normal distance is increased from light to dark colors as in figure 3.1.

3 55

 3 

Further- 3 Figure 3 . 5 :

 335 Figure 3.5: Interscale transfer rate Π (blue lines) and production rate P (red lines), integrated over the volume of sphere with radius r, normalised by the volume integral of the two point dissipation rate ε as a function of r/λ. Wall-normal distance is increased from light to dark colors. (a) for Reτ = 932 and (b) for Reτ = 2003.
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 3338 Figure 3.6: (a) Values of r/λ where minima of Π v /ε v are observed as function of wall distance y + . (b) Values of 1 + (Π v /ε v ) min in blue, as a function of Re λ . Dashed line shows a scaling of Re -2/3 λ . Circle markers for Reτ = 932, Square markers for Reτ = 2003.

Figure 3 . 9 :

 39 Figure 3.9: Rearrangement of equation 3.32 versus r/y. (a) for Reτ = 932, (b) for Reτ = 2003. Wallnormal distance is increased from light to dark colors.

3 Figure 3 .

 33 Figure 3.10: ⟨δu • r⟩dΩr integrated over the whole sphere in black lines, conditionally integrated over anti-aligned pairs in marine colors, and conditionally integrated over aligned pairs in orange colors. Wall-normal distance is increased from light to dark colors. (a) Reτ = 932, (b) Reτ = 2003. (c) r/λ positions of the minima/maxima observed in (a) as a function of wall-distance y + for Reτ = 932, similarly in (d) for Reτ = 2003.

Figure 3 .

 3 Figure 3.12: Joint probability distribution functions (JPDFs) of δu • r and u -u + . (a) For Reτ = 932 and wall-distance y + = 257, four different JPDFs with increasing scale r/λ = 0.38, 0.57, 1.05 and 2.91. (b) Similarly for Reτ = 2003 and wall-distance y + = 456, the JPDFs correspond to scales r/λ = 0.35, 0.56, 1.10 and 3.43. The joint PDFs are normalised with their maximum value, while the values of x and y axis are normalised with their own standard deviations.
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 3 Turbulent cascade in fully developed turbulent channel flow

Figure 3 .

 3 Figure 3.13: Decomposition of the interscale transfer term Π v (black lines) into Π v ⇄ (blue lines) and Π v ⇒ (red lines). (a) Reτ = 932, (b) Reτ = 2003. Wall-normal distance is increased from light to dark colors.
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 3 ⟨ r•δu r |δu| 2 ⟩dΩ r of equation 3.4 shows that local compression, i.e. δu • r < 0, causes local forward cascade whereas local stretching, i.e. δu • r > 0, causes local inverse cascade (see also section 2 of[START_REF] Chen | Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence[END_REF]). These compressions and stretches may be caused either by turbulence inhomogeneities or by correlated "eddy" motions. In an attempt to formalise this distinction, Alves[START_REF] Alves Portela | The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers[END_REF] decomposed the interscale energy transfer rate Π = ∂ ∂ri δu i |δu| 2 as follows:
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 3 Turbulent cascade in fully developed turbulent channel flow
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 3 Figure 3.14: Interscale transfer rate (blue lines), inhomogeneous part Π v I (red lines), and homogeneous part Π v H (green lines), all integrated over the volume of sphere and normalised by the dissipation rate integrated over the volume of the sphere as a function of r/λ. Wall-normal distance is increased from light to dark colors. (a) for Reτ = 932 and (b) for Reτ = 2003.
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 3 Figure 3.15: Π (blue markers), Π I (red lines) and Π H (green lines) normalised with the two point dissipation rate ε versus the wall-normal scale r 2 divided with y. (a) Reτ = 932, from left to right we increase the streamwise scale r 1 and from top to bottom the spanwise scale r 3 . (b) Similarly for Reτ = 2003. Wall-normal distance is increased from light to dark colors.
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 33 Figure 3.16: (a) Values of r/λ where minima of Π v /ε v and minima of Π v H /ε v are observed as functions of wall distance y + . (b) Values of 1+(Π v /ε v ) min (in blue) and of 1+(Π v H /ε v ) min (in green), as functions of Re λ . Dashed line shows a scaling of Re -2/3 λ . Circle markers for Reτ = 932, square markers for Reτ = 2003.
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 3 Figure 3.18: Skewness factor of π v in blue colors, π I v in red colors and of π v H in green colors as a function of r/λ, for different wall-normal locations. From light to dark colors the wall-distance y is increased. (a) for Reτ = 932 and (b) for Reτ = 2003.

  .14. The averages Π v H , Π v I and Π v in this latter figure emerge as a weighted sum of the conditional averages in plots (a, b) with those in plots (c, d) of figure 3.19.
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 3 Figure 3.19: (a, b) Π v,e (blue lines), Π v,e I
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 41 Figure 4.1: Probability density functions (p.d.f.s) of the sizes of the boxes circumscribing attached Q -s. (a) p(∆x + ), (b) p(∆y + ), (c) p(∆z + ). (d) p(V + Q -) p.d.f. of the volume of the boxes. All lengths are normalised with the wall-unit, δν . Dashed lines show the location of the maximum of each p.d.f.
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 42 Figure 4.2: Joint p.d.f.s. of the sizes of the the boxes circumscribing attached Q -s. (a) p(∆x + , ∆y + ), (b) p(∆z + , ∆y + ). All lengths are normalised with the wall-unit, δν . Dashed lines are ∆x = 2.5∆y in (a) and ∆y = 1.3∆z in (b).

Figure 4 . 3 :

 43 Figure 4.3: Schematic depection of the two families of spheres used for conditioning the terms of the Kármán Howarth Monin Hill equation. Pink objects are examples of instantaneous intense Reynolds stress structures, the wireframe is the corresponding bounding box for each structure. Blue spheres have their centers located inside the pink objects while they don't cross the bounding box of the object (denoted as 'inside' or 'i'). Green spheres are located outside any object and the volume encompassed by their bounding boxes (denoted as 'outside' or 'o').

Figure 4 .

 4 Figure4.4(a) presents the average values of the interscale transfer term and its decomposition into homogeneous and inhomogeneous components, conditioned on being 'inside' the objects' bounding box as described in the last paragraph of the previous section, hereafter denoted as Π v,i , Π v,i H , and Π v,i I . These values are normalised by the unconditionally averaged turbulent energy dissipation rate at a given y distance from the wall (ε v ). Conversely,Figure 4.4(b) displays the interscale energy transfer rate and its decomposition conditioned on being 'outside,' (Π v,o , Π v,o H , and Π v,o I ) normalised, also, by the unconditionally averaged dissipation rate (ε v ). The first observation in both cases is that the conditional interscale transfer rate terms are negatives for all scales and wall-normal distances considered here. This indicates that, on average, energy is transfered towards smaller scales. From figure3.14 we see that the unconditionally averaged interscale transfer rate Π v /ε v reaches a peak value of -0.55 for Re τ = 932. In contrast, as shown in4.4(a, b), the interscale transfer rate within the bounding boxes of the structures is stronger, approaching the equilibrium value of Π v,i /ε v = -1 for scales around the Taylor microscale. Meanwhile, outside of the boxes, the conditionally averaged interscale transfer rate Π v,o /ε v is weaker, peaking at approximately -0.4.
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 44 Figure 4.4: (a) Interscale transfer rate terms conditioned on scales within the bounding box, Π v,i (blue lines), Π v,i I (red lines), Π v,i H (green lines) normalised with the unconditionally dissipation rate as a function of scale r/λ. (b) Interscale transfer rate terms conditioned on scales outside the bounding box, Π v,o (blue lines), Π v,o I (red lines), Π v,o H (green lines) normalised with the unconditionally dissipation rate. (c, d) Conditionally averaged dissipation rate within (c) and outside (d) the bounding boxes, normalised with the unconditionally dissipation rate. (e, f ) Conditionally averaged turbulent transport within (e) and outside (f ) the bounding boxes, normalised with the unconditionally dissipation rate. Wall-normal distance is increased from light to dark colors.
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 4 [START_REF]Conclusion and Perspectives References[END_REF] shows examples of PDFs for a given wall-distance y + = 257 and various scales r, representative for the wall-normal distances considered in this study. For the interscale transfer terms outside the bounding boxes of the structures the observations are consistent with those reported in the previous chapter for the unconditional PDFs. As r increases, all three PDFs exhibit a general drift towards negative values. Additionally, the skewness for π v,o and π v,o H begins negatively and approaches zero, while the skewness of π v,o I starts positively and similarly tends towards zero. These two effects contribute to the peak of the average Π v,o and Π v,o H seen in figure4.4 in addition to the almost zero average value of Π
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 45 Figure 4.5: Probability density functions (PDFs) of (a, b): π v,i and π v,o (c, d): π v,i I and π v,o I , (e, f ): π v,i H and π v,o H normalised with their respective maximum probability for y + = 257. The values of the terms are normalised with their own standard deviation. From light to dark colors the scale r is increased.Inset is a zoom of the area close to the maximum probability in lin-lin axes.
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 46 Figure 4.6: Skewness factor of (a) π v,i in blue colors, π v,i I in red colors and of π v,i H in green colors as a function of r/λ, for different wall-normal locations. (b) Skewness factors of π v,o in blue colors, π v,o I in red colors and of π v,o H in green colors. From light to dark colors the wall-distance y is increased.
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 47 Figure 4.7: Percentages of the total interscale transfer rate (blue lines), the total inhomogeneous interscale transfer (red lines) and the total homogeneous interscale transfer (green lines) coming from attached Q -s as a function of scale r/λ. From light to dark colors the wall-distance y is increased.
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 4 Figure 4.8: Schematic of the common grid around each individual structure (pink objects), scaled with with the corresponding height of the object.
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 44 Figure 4.9: Inhomogeneous interscale energy transfer rate conditioned on the presence of an ejection Q2 for r/y = 1.14, normalised with the turbulence dissipation rate conditioned on ejections. (a) Isosurfaces for {Π I } Q2 /{ε} Q2 = -0.25 in blue, and for {Π I } Q2 /{ε} Q2 = 0.25 in red. Grey transparent isosurface depicts the low-speed streak ({u} Q2 = -1.5uτ ) associated with the ejection. (b) Cross-section of the conditional field {Π I } Q2 /{ε} Q2 in the z-y plane for x/ly = 0. (c) Cross-section of same field in the x-y plane for z/ly = 0. Vectors show the corresponding conditional velocity field {u} Q2 . Black dashed lines are the contours for {u} Q2 = -1.5uτ .
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 4 Figure 4.10: Inhomogeneous interscale energy transfer rate conditioned on the presence of a sweep Q4 for r/y = 1.14, normalised with the turbulence dissipation rate conditioned on ejections. (a) Isosurfaces for {Π I } Q4 /{ε} Q4 = 0.4 in red. Grey transparent isosurface depicts the high-speed streak ({u} Q4 = 1.5uτ ) associated with the sweep. (b) Cross-section of the conditional field {Π I } Q4 /{ε} Q4 in the z-y plane for x/ly = 0. (c) Cross-section of same field in the x-y plane for z/ly = 0. Vectors show the corresponding conditional velocity field {u} Q4 . Black dashed lines are the contours for {u} Q4 = 1.5uτ .
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 4 /y = 0.29 r/y = 0.57 r/y = 0.71 r/y = 0.86 r/y = 1.14 r/y = 1
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 44 Figure 4.11: Cross-sections of {Π} Q2 /{ε} Q2 first column, {Π I } Q2 /{ε} Q2 second column and {Π H } Q2 /{ε} Q2 third column, conditioned on the presence of an ejection Q2 in the x-y plane for z/ly = 0. Scale is increased from top to bottom, ranging from r/y = 0.29 to r/y = 1.86. Black dashed lines are the contours for {u} Q2 = -1.5uτ (low-speed streak).
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 4 Figure 4.13: u • (u • ∇u) conditioned on the presence of an ejection Q2. (a) Isosurfaces for {u • (u • ∇u)} Q2 = -0.01 in blue, and for {u•(u•∇u)} Q2 = 0.01 in red. Grey transparent isosurface depicts the low-speed streak ({u} Q2 = -1.5uτ ) associated with the ejection. (b) Cross-section of the conditional field of rate of change of TKE in the z-y plane for x/ly = 0. (c) Cross-section of same field in the x-y plane for z/ly = 0. Vectors show the corresponding conditional velocity field. Black dashed lines are the contours for {u} Q2 = -1.5uτ (low-speed streak).
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 44 Figure 4.14: u•(u•∇u) conditioned on the presence of a sweep Q4. (a) Isosurfaces for {u•(u•∇u)} Q4 = -0.01 in blue, and for {u • (u • ∇u)} Q4 = 0.01 in red. Grey transparent isosurface depicts the highspeed streak ({u} Q4 = 1.5uτ ) associated with the sweep. (b) Cross-section of the conditional field of rate of change of TKE in the z-y plane for x/ly = 0. (c) Cross-section of same field in the x-y plane for z/ly = 0. Vectors show the corresponding conditional velocity field. Black dashed lines are the contours for {u} Q4 = 1.5uτ .
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 4 Figure 4.15: Interscale energy transfer rate Π {u} Q2 in first column, Π {u} Q2 I in second column, and
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 4 Figure 4.16: Interscale energy transfer rate Π {u} Q4 in first column, Π {u} Q4 I in second column, and

Figure 4 .

 4 Figure 4.17: Decomposition of the inhomogeneous interscale transfer rate term Π {u} Q4 I (red lines) into
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  Π v , as first introduced by Alves Portela et al.
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  Outer layer -von Kármán's velocity-defect law At wall-normal locations close to the center of the channel, y/h ≈ 1, the mean flow is independent of viscosity and therefore the function F (y/h, y + ) now becomes F

	1.5 Coherent structures	7
		1

o (y/h). Integrating the relation dU + d(y/h) = 1 y/h F o (y/h), it follows that

  scale equilibrium between interscale turbulence transfer rate and turbulence dissipation rate over a wide inertial range of scales going all the way up to the integral scale) or other type, has implications on the turbulence dissipation scalings; investigate the applicability of the Taylor-Kolmogorov dissipation scaling law and/or the non-equilibrium turbulence dissipation scaling law to the intermediate layer of fully developed turbulent channel flow in the inhomogeneous spatial direction and in time, and investigate whether scalings of a different type might apply.

Aim 2: Examine the turbulence energy cascade in the intermediate layer of fully developed turbulent channel flow by (i) formulating a theoretical framework for the asymptotic study of interscale turbulent energy transfers and (ii) examining the fundamental mechanisms influencing turbulent energy production and interscale turbulent energy transfer.

of Re τ , resulting into

  direction, computed from the one dimensional energy spectrum E vv (k z ). To invoke equation 2.3 the energy spectra must be well converged and present a plateau at the lowest wavenumbers. The one-dimensional energy spectra from the Lee and Moser dataset have such a plateau for E vv (k z ) and E ww (k z ) for all four Reynolds numbers and across the channel as shown in figures 2.2(d, f ). , L v,z and L w,z , treating carefully, however, the results for L v,x above the y + limits just mentioned. Figures2.2(a, c, e) show these integral length profiles in the wall-normal direction from y + ≈ 60 up to y + = 0.5Re τ . L v,x tends towards a linear scaling with distance from the wall as Re τ increases, especially for locations closer to the wall, where the spectra are constant at the lower wavenumbers. L v,z shows very close to linear scaling with y, the exponent 0.9 indicating perhaps that it has not yet reached its asymptotic value, which may require higher Re τ . Approximately, however, the present data provide some support for scalings of the type

	The E vv (k x ) one-dimensional energy spectra in figure 2.2(b), associated with
	the streamwise structures, present a low-wavenumber plateau at all y + only for
	the lowest Reynolds number (Re τ = 550). For Re τ ≥ 1000 the energy spectra
	remain constant at the lowest wavenumbers only up to a certain height above
	the wall, specifically up to y + ≈ 200, 300 and 500 for Re τ = 1000, 2000 and 5200,
	respectively. This behaviour may be associated with the progressive appearance
	of very large scale motions (VLSMs) (Kim & Adrian, 1999; Smits et al., 2011) as
	Reynolds number increases. Therefore, our analysis is focused on the three
	integral length scales L v,x L v,x ∼ L v,z ∼ y	(2.4)
	at high enough Re τ . These scalings are consistent with Townsend's (1976) attached
	eddy hypothesis where wall-normal fluctuations are dominated by eddy sizes com-
	parable to the distance y to the wall because of impermeability. The two integral
	length scales L v,x and L v,z seem to follow this scaling and therefore may serve as
	characteristic dimensions of wall-attached eddies. Looking at figure 2.2(e), L w,z
	seems to scale with the square root of the distance from the wall, and the different
	Reynolds number curves show some tendency to collapse if we divide L + w,z with
	the square root	

  Re τ limit. Unlike L v,x /λ and L v,z /λ which are proportional to the square root of the local Reynolds number y + , L w,z /λ is proportional to the square root of the global Reynolds number Re τ = δ + . Looking at figure 2.3(f ), we do indeed see approximate independence of y and an increase of this constant with increasing Re τ . However, the different Re τ curves collapse if we premultiply them with Re-0.35 

large scale motions as Re τ increases. equation 2.6 suggests that the range of eddy sizes where an inertial energy cascade affecting the wall-normal turbulence fluctuations is a priori conceivable, and increases with local Reynolds number y + . By doing the same analysis for L w,z /λ, i.e. from the asymptotic scalings λ ∼ √ δ ν y and L w,z ∼ √ δy, we obtain L w,z /λ ∼ Re τ (2.7) in the high τ (inset of figure 2.3(f )) rather than Re -0.5 τ

  to be a good algebraic approximation of the closely anti-correlated fluctuations of C (t) and Re Λ (t) for different distances from the wall and for our two global Reynolds numbers Re τ . The dashed lines correspond to best powerlaw fits of the form C ε

	scatter plots of C	ui,xj ε	ui,xj ε	and Re Λ . Figure 2.8 shows

  , i.e. 60 ≤ y + ≤ Re τ /2.

	Name	Re τ	L x /δ	L z /δ	∆x +	∆z +	N y	dt +	N t
	LJ950	932	2π	π	11.5	5.7	385	8	3151
	LJ2000 2003	2π	π	12.3	6.2	633	25	462

Table 3 .
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1: DNS Databases 3.4 Scale-by-scale turbulent energy balance in the onepoint average equilibrium range of FD TCF

  4.1 and 4.2. A significant portion of these objects exhibit a streamwise length of approximately ∆x + ≈ 170, spanwise length ∆z + ≈ 50 and wall-normal length of ∆y + ≈ 45, indicated with vertical dash lines in figures 4.1(a, b, c).Figure 4.2 illustrates that the joint probability density functions (j.p.d.f.s) of the sizes of the boxes enclosing the structures adhere to a linear laws similar to what reported in Lozano-Durán et al. (2012), with ∆x ≈ 2.5∆y and ∆y ≈ 1.3∆z.

	4.3 Conditionally averaged, in space and time, energy
	transfer inside and outside of Q -s

Scalings of turbulence dissipation in space and time for turbulent channel flow

ε produces the weakest anti-correlation with Re λ , but it remains significant at -0.5 and even lower negative values. As the time lag ∆t moves away from 0 the anti-correlation decreases sharply.Such strong anti-correlation between the fluctuating dissipation coefficient and the fluctuating Taylor length-based Reynolds number has already been observed in homogeneous/periodic turbulence(Goto & Vassilicos (2016a)) where it was linked with the existence of a non-equilibrium cascade characterised by a time lag between the turbulent kinetic energy (dominated by the largest scales) and the turbulence dissipation rate (mainly occurring at the smallest scales). In figure 2.5(g) we observe a slight correlation between the turbulent kinetic energy and the dissipation rate in the Re τ = 950 case, but without time lag. The situation is less clear and less conclusive for Re τ = 2000 (figure2.5(h)) where statistics are undoubtedly less well converged (see numbers of time steps N t in table 2.1. There is a critical difference between turbulent channel flows and the homogeneous/periodic turbulence ofGoto & Vassilicos (2016a): their homogeneous turbulence is forced at a specific large scale and there is a well-defined unique cascade time for energy to cascade down to the smallest scales where it can be dissipated. In turbulent channel flow, however, the wall and the mean flow impose multiple and different coherent structures with different sizes that depend on the distance from the wall, hence different cascade times. The dissipation rate at a given distance from the wall results from the cascade break-down of all turbulent eddies larger than this distance, each with different underlying time lags to reach dissipative scales. Hence, a clear well-defined time-lag between turbulent kinetic energy and dissipation rate cannot be observed (at least in the absence of VLSMs when our argument makes sense) even though there clearly is a strong anti-correlation between fluctuating dissipation coefficients and Re Λ . We now investigate the origin of this anti-correlation in turbulent channel flow.By definition, C ui,xj ε is a ratio of turbulence dissipation rate to a characteristic rate of large eddy energy loss and Re Λ = K/ √ νε is the ratio of the total turbulent kinetic energy, K, to a characteristic energy of the dissipative scales, √ νε.

As a final comment, one area that may reveal more information on energy transfer in wall-turbulence should be the application of the present paper's framework to individual structural elements of the flow such as intense Reynolds shear stress structures[START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF]), vortex clusters (del Álamo et al., 2006) and uniform mementum zones and vortical fissures[START_REF] Bautista | A uniform momentum zone-vortical fissure model of the turbulent boundary layer[END_REF].

Conclusion and Perspectives
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