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Abstract (in French) 
Une des limites des approches couramment utilisées dans l'industrie est que les propriétés 

thermodynamiques et de transport d'un fluide donné sont décrites par des modèles distincts, ce 

qui augmente le nombre d'options et souligne le manque de cohérence de ce type d'approche. 

Cette thèse vise donc à relever ce défi en développant un nouveau type de modèle : une équation 

d'état " moléculaire " capable de fournir simultanément les propriétés thermodynamiques et de 

transport d'un fluide. L'approche proposée sera plus robuste que les approches actuelles car elle 

sera contrainte par un plus grand nombre de propriétés à décrire simultanément, et surtout, elle 

possédera une cohérence interne qui simplifiera son utilisation, car elle ne nécessitera qu'un 

seul jeu de paramètres par espèce (ou pseudo-espèce) impliquée. 

Ainsi, dans une première étape des simulations moléculaires du modèle de chaine de Lennard-

Jones (LJ) à rigidité variable ont été réalisées. Cela a permis d’obtenir les diagrammes 

d’équilibres de phases des corps purs et les courbes d’évolution de la viscosité et des 

coefficients de diffusion en phase liquide de ce modèle moléculaire. Les propriétés 

thermodynamiques (dont l’entropie résiduelle) ont été déduites d’une approche du type Monte 

Carlo. Les propriétés de transport ont été obtenues par des approches du type dynamique 

moléculaire classique. 

Une fois les propriétés thermophysiques du modèle gros grains obtenus, une stratégie originale 

de type top-down basée sur l’approche des états correspondants a été développée afin de définir 

les paramètres moléculaires de composés réels. Les résultats de simulation sur ces modèles gros 

grains définis ont démontré la qualité du choix du champ de force et de ces paramétrisations 

relativement aux modèles existants, en particulier pour prédire les propriétés de transport. Il a 

été notamment montré que le modèle gros-gains ainsi développé permettait de prédire les 

propriétés thermophysiques des fluides de manière plus fidèle que les modèles moléculaires de 

la littérature avec un coût de simulation d’un à deux ordres de grandeur inférieur. 

A partir de l’ensemble des données produites par simulation moléculaire, une équation d’état 

de type SAFT décrivant le comportement d’une chaine de sphères de LJ de rigidité variable a 

été développée pour la première fois dans la littérature. Ceci a été possible par l’utilisation d’une 

SAFT-dimère à laquelle a été intégrée la prise en compte de la rigidité interne au travers de la 

fonction de distribution radiale. Les résultats obtenus ont montré que cette équation d’état était 

capable de reproduire l’ensemble des propriétés thermodynamiques (en particulier équilibre de 

phase) de manière très fidèle avec ce qui avait été obtenu par simulation moléculaire. Cette 

équation d’état, avec la paramétrisation du modèle gros grains réalisée via les résultats de 

simulation moléculaire a ensuite été appliquée à des composés réels (purs). Les résultats sont 

très probants et ont permis de montrer la pertinence de l’approche ainsi que la qualité de 

l’équation d’état développée. 

Dans une dernière étape, toujours en cours, une approche de type « entropy-scaling » a été 

développée. L’idée est d’utiliser l’équation d’état pour prédire la viscosité (et d’autres 

propriétés de transport) à partir de l’entropie résiduelle calculée. Même si le travail n’est pas 
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encore finalisé, l’approche est prometteuse. Cependant il est apparu que l’entropie résiduelle ne 

permettait pas de complétement intégré les effets des degrés de libertés internes sur la viscosité, 

notamment aux fortes densité (comportement super-Arrhenius). 

Mots clefs : Propriétés Thermophysiques, Simulation moléculaire, modèle gros-gains, rgidité 

moléculaire, Etats correspondants, Equations d’état SAFT, Entropy-scaling 

 

Abstract 
One of the limitations of the approaches commonly used in industry is that the thermodynamic 

and transport properties of a given fluid are described by separate models, which increases the 

number of options and highlights the lack of consistency of this type of approach. Therefore, 

this PhD aims to address this challenge by developing a new type of model: a "molecular" 

equation of state capable of simultaneously providing the thermodynamic and transport 

properties of a fluid. This proposed approach will be more robust than current ones because it 

will be constrained by a greater of properties to be described simultaneously, and, above all, 

will possess an internal consistency that will simplify its use, as it will require only one set of 

parameters per species (or pseudo-species) involved. 

In a first step, molecular simulations of the Lennard-Jones (LJ) chain model with variable 

rigidity were carried out. This allowed for the obtaining of phase equilibrium diagrams of pure 

substances and the viscosity and diffusion coefficients in the liquid phase of this molecular 

model. Thermodynamic properties (including residual entropy) were deduced from a Monte 

Carlo approach. Transport properties were obtained by using classical molecular dynamics 

approaches. 

Once the thermophysical properties of the coarse-grained model were obtained, an original top-

down strategy based on the corresponding states approach was developed to define the 

molecular parameters of real compounds. The simulation results on these defined coarse-

grained models demonstrated the quality of the choice of the force field and these 

parameterizations compared to existing models, particularly for predicting transport properties. 

It was particularly shown that the coarse-grained model thus developed made it possible to 

predict the thermophysical properties of fluids more accurately than the molecular models of 

the literature with a simulation cost of one to two orders of magnitude lower.  

From the set of data produced by molecular simulation, an equation of state of the SAFT type 

describing the behavior of a Lennard-Jones chain of variable rigidity was developed for the first 

time in the literature. This was possible through the use of a SAFT dimer to which the internal 

rigidity was integrated through the radial distribution function. The results obtained showed 

that this equation of state was able to reproduce all thermodynamic properties (in particular 

phase equilibrium) very accurately with what had been obtained by molecular simulation. This 

equation of state, with the coarse-grained model parameterization carried out via the results of 

molecular simulation was then applied to real compounds (pure). The results are very promising 
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and have shown the relevance of the approach as well as the quality of the developed equation 

of state.  

In a final step, still ongoing, an "entropy-scaling" approach has been developed. The idea is to 

use the equation of state to predict viscosity (and other transport properties) from the calculated 

residual entropy. Although the work is not yet finalized, the approach is promising. However, 

it appeared that the residual entropy did not allow for completely integrating the effects of 

internal degrees of freedom on viscosity, especially at high densities (super-Arrhenius 

behavior)." 

Keywords: Thermophysical properties, Molecular simulation, Coarse grained models, 

molecular rigidity, Corresponding states, SAFT Equations of state, Entropy-scaling 
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1.1 Global context 

The idea for this PhD project arose from the recognition that in order to optimize an existing 

process or develop a new one, it is necessary to be able to quantify the properties of the fluid 

material present in the system 1, 2. In the applicative context of this project, which deals with 

exploitation, storage and use of fluid resources, energy conversion, material transformation ... 

the targeted properties are those of the fluid phase(s) stored and/or circulating in the considered 

system. As shown in Figure 1.1, the crucial quantities in this perspective are the thermodynamic 

properties (such as phase equilibrium, quantities involved in energy and exergy balances such 

as enthalpy, entropy ...) and transport properties (like viscosity, mass diffusion, thermal 

conductivity ...), whose are collectively known as thermophysical properties. 

Thus, optimizing or developing innovative processes requires, among other things, a thorough 

and reliable description of the properties of the fluids present in the system in question. This 

generally implies the use of macroscopic models that can quickly provide access to these 

physical quantities. However, there are many approaches available, often ad-hoc or correlative, 

that are tailored for specific types of system, properties, precise thermodynamic conditions, etc. 

These approaches have proven effective in the industrial world, but they require an expert user 

(to select from the many options) and may not be easily applied to new situations when 

experimental data (which could validate or adjust the models) are lacking or hard to obtain. 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, one of the limitations of the approaches commonly used in industry is that the 

thermodynamic and transport properties of a given fluid are described by separate models, 

which increases the number of options and highlights the lack of consistency of this type of 

approach. Therefore, this PhD aims to address this challenge by developing a new type of 

model: a "molecular" equation of state capable of simultaneously providing the thermodynamic 

Figure 1.1: Different domains where thermophysical properties are required 
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and transport properties of a fluid. This approach will be more robust than current ones because 

it will be constrained by a greater number of properties to be described simultaneously, and, 

above all, will possess an internal consistency that will simplify its use, as it will require only 

one set of parameters per species (or pseudo-species) involved.  

The model developed within this project will serve as a foundation for the prediction of the 

thermophysical properties of fluids under a wide range of thermodynamic conditions, making 

it applicable to issues related to georesources (such as exploitation, storage...) as well as 

processes (such as energy conversion, product design ...). 

1.2 Motivations 

Accurate estimates of thermophysical properties are crucial for the efficient design and 

optimization of many industrial processes as shown in Figure 1.1. There are several approaches 

that can be used to estimate these properties as shown in Figure 1.2, including experiments, ad-

hoc correlations, machine learning, theories and molecular simulations. The use experiments 

would be the natural choice as they provide the real thermophysical properties. However, 

experiment cannot be conducted indefinitely to cover all thermodynamic states, as they can be 

costly and time-consuming. Moreover, there are many cases where experiments are unfeasible, 

tedious, and unsafe to conduct, such as when dealing with complex mixtures, toxic substances 

or studying systems under extreme pressure and temperature conditions. To optimize the 

number of experiments conducted, and also to use these properties in simulation software, ad-

hoc correlations are often proposed. However, these correlations are typically only valid for 

one specific property of a specific fluid and at a specific range of condition, which is a major 

weakness as their extrapolation beyond the fitting range is then questionable. The same problem 

is also encountered when using a machine learning approach. However, the main limitation of 

this approach is the large amount of data required to build the model, which are often not 

available. When a robust theory is available, a more suitable approach is to fill in the lack of 

experiments data instead of using ad-hoc correlations or machine learning approach. It can also 

provide a fundamental explanation of the behaviour of fluids that are observed with 

experiments. However, in some cases, these explanations must be taken with caution because 

the development of a complex and complete theory is always based on a model which could be 

questionable and is sometimes difficult to interpret. As a result, most theories rely on 

assumptions to facilitate their development and resolution. Therefore, it is important to evaluate 

the extent to which these assumptions are valid to ensure the reliability of the explanations 

provided. It would be very useful to have a tool that allows the validation of theories before 

they are directly applied to real systems.  
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There are many theories that allows an accurate estimation of thermophysical properties, such 

as cubic equations of state (EoS) or SAFT equations of state 3 for thermodynamic properties, 

the Chapman-Enskog theory 4 or the friction theory 5 for viscosity… However, there is currently 

no generic theory that can provide both type of properties (thermodynamic and transport) 

simultaneously. A promising approach in that direction is to use a scaling method to connect 

these two types of properties, such as the density scaling 6, 7 or the entropy scaling 8, 9, 10. The 

combination of a transport property and a thermodynamic property can exhibit a master curve 

that can be easily fitted with a simple correlation. This can be seen as an interesting tool to 

overcome the lack of transport properties data or to allow for a quality check of some data. 

However, the success of such scaling is closely linked to how the available experimental data 

are dispersed in the thermodynamic space. As mentioned previously, there are many cases 

where there is a lack of data, and when available, they are often limited to specific operational 

conditions. Furthermore, this scaling is often always constructed using experimental data from 

different sources, each with their own errors, resulting in a disparate data curve instead of a 

single master curve. A consistency check is then necessary, although sometimes it cannot be 

achieved. Finally, it is worth to underline that, some issues may arise from the equations of state 

used for instance to calculate the entropy for such scaling approaches, as to the best of our 

knowledge, they have never been thoroughly evaluated for their ability to provide correct 

entropy.  

Among the approaches discussed above, molecular simulation is probably the most powerful 

alternative to experiments as it can provide quasi-experimental data on fluid properties. 

Moreover, this numerical approach can be used to obtain thermodynamic, transport interfacial 

and structural properties of fluids, where other approaches fall short. For example, the equations 

of states can only provide data on equilibrium properties. Although molecular simulation will 

never fully replace experiments, there are many situations where it is extremely useful. For 

example, it can reduce the number of experiments needed to deal with extreme thermodynamic 

conditions, complex mixtures and toxic substances. Thus, it can be considered as a 

Figure 1.2: Different approaches to obtain thermophysical properties. 
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complementary tool to experiments. In addition, molecular simulation provides information at 

the molecular level, offering robust interpretations of the complex physical and/or chemical 

phenomena that govern fluid properties at the macroscopic level. In fact, these interpretations 

can also be given by theories when available. However, as mentioned earlier, these theories rely 

on assumptions and approximations, and therefore, the interpretations and theoretical 

predictions obtained should be valid to the same extent that these assumptions and 

approximations are valid. It is then common to rely on the molecular simulations as a tool for 

the validation of some theories in the outset of their development before they are applied to real 

systems. This is for example the case of the Statistical Associating Fluid Theory (SAFT) 

equations of state. 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the many advantages of the molecular simulation approach, there is a significant need 

to improve the computational efficiency when performing atomistic simulations. Simulations 

of systems at the mesoscale level using an atomistic model require the evaluation of billions of 

interactions at each step of the simulation, making the simulations extremely time-consuming. 

Therefore, the widespread use of molecular simulation approach in engineering applications 

require the development of new molecular models that would enable large time and length scale 

simulations. To address this limitation, coarse grained model has merged as a viable alternative 

to atomistic models. In a coarse-grained model, a group of atoms are gathered into a single 

center of force, called a pseudo-atom. This drastically reduces the number of interactions that 

needs to be evaluated at each simulation step, and can lead to computational time reductions up 

to five orders of magnitude 11. However, the loss of the internal degrees of freedom due to the 

up-scaling makes coarse-grained models less capable of providing accurate thermal, structural 

and transport properties. This is not the only reason for their failure. Indeed, most of the coarse-

grained models designed for the prediction of thermophysical properties are parametrized only 

on equilibrium properties such as phase equilibria, enthalpy of vaporization, heat capacity…and 

Figure 1.3: Illustration of the general framework where the 
molecular simulation approach can be used. 
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do not include transport properties or structural properties as target properties to be reproduced 

during the optimization of the potential interaction parameters. This is because they are often 

based on SAFT equations of states, which do not allow for the inclusion of properties other than 

thermodynamic properties. The only exception is that proposed in the SAFT--Mie coarse 

grained model 12, where it is proposed to include structural properties as a target property to 

optimize the stretching and bending molecular internal degrees of freedom. A more accurate 

coarse grained model is that proposed by Hoang et al. 13, which was optimized using extensive 

molecular simulations rather than using a SAFT equation of state. Hoang’s model is a fully 

flexible Mie fluid model known as MCCG (Mie Chain Corase Grained), where the parameters 

of the interaction potential are optimized based on both equilibrium and transport properties by 

introducing a viscosity as a target property for the first time. The model showed excellent 

predictions for both type of properties, however, when dealing with large molecules such as 

normal decane and dodecane, a systematic underestimation of the liquid viscosity at low 

temperature was observed, which was attributed to the fully flexibility nature of the MCCG 

model. 

1.3 Objectives 

Currently, even with its limitation in predicting liquid viscosity, the MCCG model is probably 

among the best performing coarse grained model for thermodynamic and transport properties 

of simple fluids. To improve upon the performance of the MCCG model, a new model that 

integrates some internal degrees of freedom of the molecule needs to be developed. This is the 

main objective of this thesis. A new molecular model with a variable rigidity parameter of the 

bending type will be proposed. This molecular model is based on the Lennard-Jones interaction 

potential, and is referred to as the Semi-Rigid Lennard-Jones Chain Coarse-Grained molecular 

model (SR-LJCCG). It will be demonstrated that this new model is capable of providing 

accurate predictions of thermodynamic properties and transport properties, such as self-

diffusion and viscosity, simultaneously. The limitation of the MCCG model in predicting liquid 

viscosity for large chain molecule will be addressed in this work. Additionally, a new 

parametrization strategy will be proposed, which is based on the corresponding states strategy 

inspired from the works of Mejia et al. 14 and Hoang et al. 13.  

Despite the impressive computational time gains offered by the coarse-grained model over fine-

grained models, it is more suitable for engineering applications to have a mathematical 

formulation of the model that allows for a rapid evaluation of thermophysical properties (within 

seconds!) and can be implemented in process simulators. Unfortunately, all available SAFT 

EoS versions are based on fully flexible molecular models. Therefore, the second objective of 

this thesis is to develop a new SAFT EoS that incorporates a rigidity parameter. The equation 

will be referred to as the SR-SAFTD (where D stands for dimer theory). This is the first time a 

SAFT version that takes into account the internal degrees of freedom of a molecule of the 

bending type will be proposed. This equation of state will first be validated using exact 

molecular simulation data of the fluid model and then applied to real fluids. The parametrization 

of the new SAFT model is based on the same strategy as the SR-LJCCG model. Additionally, 

the same parameters obtained for the SR-LJCCG will be used for the SR-SAFTD equation of 

state, highlighting the coherence and consistency of the proposed approach. 
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Last, to obtain a transport property such as viscosity, instead of relying on extensive molecular 

simulations, a new scaling based on the entropy scaling approach will be proposed as a third 

objective for this thesis. The predictions of the viscosity using the proposed scaling on real 

fluids will be obtained with the same parameters used for the equilibrium properties, without 

any further re-parametrization.  

It is clear from this introduction that the goal of this PhD thesis is to propose a new, coherent, 

and consistent strategy where the same molecular model is used for the prediction of 

equilibrium and transport properties, all within a unified approach. 

 

1.4 Thesis overview 

The work in this thesis presents a coarse-grained molecular model developed for the predictions 

of the thermodynamic and transport properties of fluids. To do so, this work is divided into 

chapters, where in the second chapter, elements on the statistical physics and molecular 

simulations will be given. We first give some notions on the different ensembles used in this 

work, and then presents the techniques used to simulate the ensembles. Thus, both molecular 

dynamics and Monte Carlo simulations are presented, in addition to the different potential 

interactions.  In the third chapter, it will be given insights on the up-scaling approach used in 

molecular modelling, in addition to the different parametrization strategy used in the literature. 

It will be followed by an overview of the different existing force fields, particularly those based 

on united atoms models and coarse grained force fields models, where their predictive 

capability is discussed. The new force field proposed in this work referred to as SR-LJCCG 

will then be presented, in addition to the general methodology and strategy of the 

parametrization used to optimize the SR-LJCCG force field. Results on the fluid model, as well 

as on the real fluid properties covering wide range of thermodynamic conditions, and applied 

over many properties and molecular species will be shown.  

In the fourth chapter, an overview of the Wertheim thermodynamic perturbation theory is 

presented in addition to some SAFT models. Discussion on the strengths and weaknesses of the 

Wertheim theory is highlighted, particularly when the comparison between monomer based 

SAFT and dimer based SAFT is made. Then, the strategy proposed for the development of the 

new SR-SAFTD EoS that integrates a rigidity parameter of the bending type will be presented, 

in addition to the validation of this EoS model on exact molecular simulations of the fluid 

model. After that, will be present the new parameterization strategy used for the SR-SAFTD, 

where for the first time, a transport property (viscosity) is included in the parameter estimation 

of SAFT models. Then the optimised SR-SAFTD EoS is tested against molecular simulations 

and experimental data over a wide thermodynamic conditions, and covering many properties 

and molecular species. We will end-up by highlighting the transferability of the molecular 

parameters developed with the SR-SAFTD within the same family.  

In the fifth chapter, will be discussed the coupling between the SAFT EoSs and molecular 

simulations used in the entropy scaling approach for the prediction of transport properties. First, 

a review is made for the LJC fluids using different scaling approaches given in the literature. It 
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will be shown that, while for the fully flexible LJC fluids a good scaling can be obtained with 

the different approaches, the case of semi-rigid is not trivial. Modified scaling is then presented 

for the generalization of the entropy scaling approach to semi-rigid LJ chains. Even though a 

corresponding state is not yet achieved, to illustrate the final goal of this work, it will be shown 

some applications on the prediction of the liquid viscosity using the SR-SAFTD in the modified 

entropy scaling. Very promising results will be shown, where the same parameters used for the 

prediction of the thermodynamic properties are used in the scaling for the viscosity prediction, 

highlighting the consistence and the coherence of the global methodology or approach proposed 

in this work. 

Last, we finish this work with a general conclusion and some perspectives recommended for 

the future work. 

  



Introduction 
 

9 
 

 

1.5 References 

1. Hendriks, E. et al. Industrial Requirements for Thermodynamics and Transport Properties. 

Ind. Eng. Chem. Res. 49, 11131–11141 (2010). 

2. Kontogeorgis, G. M. et al. Industrial Requirements for Thermodynamic and Transport 

Properties: 2020. Ind. Eng. Chem. Res. 60, 4987–5013 (2021). 

3. Chapman, W. G., Gubbins, K. E., Jackson, G. & Radosz, M. New reference equation of 

state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721 (1990). 

4. Chapman, S. & Cowling, T. G. The Mathematical Theory of Non-uniform Gases: An 

Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. 

(Cambridge University Press, 1990). 

5. Assael, M. J., Goodwin, A. R. H., Vesovic, V. & Wakeham, W. A. Experimental 

Thermodynamics Volume IX: Advances in Transport Properties of Fluids. (Royal Society 

of Chemistry, 2014). 

6. Roland, C. M., Hensel-Bielowka, S., Paluch, M. & Casalini, R. Supercooled dynamics of 

glass-forming liquids and polymers under hydrostatic pressure. Rep. Prog. Phys. 68, 1405 

(2005). 

7. Delage Santacreu, S., Hoang, H., Khennache, S. & Galliero, G. Thermodynamic Scaling 

of the Shear Viscosity of Lennard-Jones Chains of Variable Rigidity. Liquids 1, 96–108 

(2021). 

8. Rosenfeld, Y. Relation between the transport coefficients and the internal entropy of 

simple systems. Phys. Rev. A 15, 2545–2549 (1977). 

9. Galliero, G., Boned, C. & Fernández, J. Scaling of the viscosity of the Lennard-Jones 

chain fluid model, argon, and some normal alkanes. J. Chem. Phys. 134, 064505 (2011). 

10. Dyre, J. C. Perspective: Excess-entropy scaling. J. Chem. Phys. 149, 210901 (2018). 

11. Ingólfsson, H. I. et al. The power of coarse graining in biomolecular simulations. Wiley 

Interdiscip Rev Comput Mol Sci 4, 225–248 (2014). 

12. Rahman, S. et al. SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-

Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular 

Interactions. J. Phys. Chem. B 122, 9161–9177 (2018). 

13. Hoang, H., Delage-Santacreu, S. & Galliero, G. Simultaneous Description of Equilibrium, 

Interfacial, and Transport Properties of Fluids Using a Mie Chain Coarse-Grained Force 

Field. Ind. Eng. Chem. Res. 56, 9213–9226 (2017). 

14. Mejía, A., Herdes, C. & Müller, E. A. Force Fields for Coarse-Grained Molecular 

Simulations from a Corresponding States Correlation. Ind. Eng. Chem. Res. 53, 4131–

4141 (2014). 

 

 

 



10 
 

 Statistical physics and 

molecular simulation 

 

 

Contents 

 
2.1 Ensembles .............................................................................................................................. 11 

2.1.1 Canonical ensemble NVT .............................................................................................. 12 

2.1.2 NpT ensemble ................................................................................................................ 16 

2.1.3 Microcanonical ensemble NVE ..................................................................................... 19 

2.2 Interaction potentials ............................................................................................................. 20 

2.2.1 Intramolecular potentials ............................................................................................... 20 

2.2.2 Intermolecular potentials ............................................................................................... 23 

2.3 Molecular simulations ........................................................................................................... 25 

2.3.1 Molecular dynamics ...................................................................................................... 25 

2.3.2 Monte Carlo ................................................................................................................... 32 

2.3.3 Monte Carlo or Molecular dynamics? ........................................................................... 36 

2.3.4 Optimization of the simulation efficiency ..................................................................... 37 

2.3.5 Transport properties and structural properties calculation ............................................ 40 

2.4 References ............................................................................................................................. 44 

 

 

 

 

 

 



Statistical physics and molecular simulation 
 

11 
 

This chapter, which presents an overview of the theories and numerical methods used in this 

PhD thesis, is mostly inspired by statistical mechanic and molecular simulations textbooks, 

including Allen and Tildesley 1 , Smit and Frenkel 2, Hansen and McDonald 3, Sandler 4, Raabe 
5, Ungerer et al. 6, Leach 7, McQuarrie 8, Rappaport 9 and Vlugt 10. Additional references can 

be found therein.  

2.1 Ensembles 

As it will be described latter on, molecular simulations are a set of a numerical tools that can 

be run in various statistical ensembles. As defined by statistical mechanics, a statistical 

ensemble is a collection of an extremely large number of systems in thermodynamic 

equilibrium, where each system is in a different microstate j characterized by its total energy Hj 

(the Hamiltonian). Each microstate consists of N particles, each described by its position vector 

“r” defined in the 3D spatial coordinates, known as configurational space, and also by its 

momentum vector “p” defined as well in the 3D spatial coordinates. Thus, the system of N 

particles, is defined in a space of 6N dimensions, 𝑟𝑁 and 𝑝𝑁, referred to as “phase space”.  

Such a representation is theoretical construction to depict the time evolution of a real 

macroscopic system. This is because, from a macroscopic point of view, a measure can be 

viewed as the time average of a successive frozen microstate of the molecules in the system. 

Therefore, if X is the macroscopic quantity that is observed, it can be obtained in the 

Boltzmann’s sense by the time average over all the microstates in the phase space as, 

𝑋𝑜𝑏𝑠 =< 𝑋 >𝑡𝑖𝑚𝑒= lim
𝑡→∞

1

𝑡𝑜𝑏𝑠
∫ 𝑋

𝑡𝑜𝑏𝑠

0
(𝑟𝑁(𝑡), 𝑝𝑁(𝑡))𝑑𝑡  (2.1) 

where t is the time and < 𝑋 >𝑡𝑖𝑚𝑒 denotes the time average of X. 

This equation is valid under the assumption that the duration of the experiments is sufficiently 

large to generate an extremely large number of microstates (which is practically always 

verified). 

Similarly, Gibbs provided a definition for the ensemble average, which allows to make a 

connection between the macroscopic properties and the ensemble averages. In this framework, 

the observable X is given by: 

𝑋𝑜𝑏𝑠 =< 𝑋 >𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒= ∫ 𝑋(𝑟𝑁 , 𝑝𝑁)𝑓(𝑟𝑁 , 𝑝𝑁)𝑑𝑟𝑁𝑑𝑝𝑁 (2.2) 

where 𝑓 is the probability density written as: 

𝑓(𝑟𝑁 , 𝑝𝑁) =
𝐸𝑥𝑝(

−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
)

𝑄(𝑟𝑁,𝑝𝑁)
 (2.3) 

where 𝑄(𝑟𝑁 , 𝑝𝑁)  is the sum over all the microstates, called the partition function, which is a 

function of the macroscopic properties that defines the ensemble, and 𝐸𝑥𝑝 (
−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
) is the 

Boltzmann factor expressing the fact that low energy microstates are more favourable than 

higher ones. The Boltzmann factor acts as a weighting function for the occurrence of a certain 

microstate j. 𝑇 is the temperature and 𝑘𝐵 is the Boltzmann constant.  
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From a molecular simulation point of view, an ensemble can be seen as a set of microstates 

which can be thought as different snapshots of a system’s configuration at different time or 

move steps. The properties of the system can be approximated as those of the ensemble if the 

number of configurations generated by the molecular simulation is sufficiently large. In reality, 

this can never be fully achieved as the molecular simulation will preferentially sample only the 

low-energy region of the phase space, and thus, it can only provide an approximation of the 

partition function. Therefore, the properties deduced are only approximate and not the true ones. 

However, if one can consider that the high energy levels contribute very little according to the 

Boltzmann probability, one can adopt the Ergodicity postulate, on which the statistical 

thermodynamics relies on. This postulate stipulates that the ensemble average and time average 

can be considered equivalent. Thus, one can write: 

𝑋𝑜𝑏𝑠 ≈< 𝑋 >𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒≈< 𝑋 >𝑡𝑖𝑚𝑒 (2.4) 

where 𝑋𝑜𝑏𝑠 is the experimental measurement, while < 𝑋 >𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  can be obtained using Monte 

Carlo simulations and < 𝑋 >𝑡𝑖𝑚𝑒  can be obtained using molecular dynamics simulations. The 

two molecular simulations techniques will be detailed in the following. 

Statistical thermodynamics and classical thermodynamics are connected through the bridge 

relation between the thermodynamic potentials of the ensemble (with its minimum defining the 

equilibrium condition) and the partition function of these microstates, which is given by:  

ℾ = −𝑘𝐵𝑇𝑙𝑛(𝑄𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒) (2.5) 

Thus, if the partition function is known, all macroscopic thermodynamic properties can be 

derived.  

 

 

 

 

 

 

 

2.1.1  Canonical ensemble NVT 

In this ensemble, the number of particles, the volume and the temperature of the system are 

hold constant. In other words, it is the density and the temperature of the system which are 

fixed, and thus, the other variables of the system such as the total energy of the system as well 

as the pressure which are allowed to fluctuate.  
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Figure 2.1: Virtual representation of microstates ensemble 
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The probability density of a given microstate j is given by: 

𝜌𝑗
𝑁𝑉𝑇 =

𝐸𝑥𝑝(
−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
)

𝑄𝑁𝑉𝑇
 (2.6) 

where 𝑄𝑁𝑉𝑇 is the partition function in this ensemble given by: 

𝑄𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑄𝑁𝑉𝑇 = ∑ 𝐸𝑥𝑝 (
−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
)𝑛

𝑗=1  (2.7) 

If n, which is the number of microstates, is supposed sufficiently large, but, finite, the 

summation remains finite as well. Thus, the partition function can be written as a continuous 

integral as follow: 

𝑄𝑁𝑉𝑇 =
1

ℎ3𝑁𝑁!
∫

𝑟𝑁∫
𝑝𝑁𝐸𝑥𝑝 (

−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁𝑑𝑝𝑁 (2.8) 

where, 𝑁! denotes the number of indistinguishable microstates, ℎ3𝑁 is the volume of an 

individual quantum microstate in the phase space, and ℎ is the Planck constant. 

𝐻𝑗(𝑟𝑁 , 𝑝𝑁) can be separated as a summation of two contributions, a kinetic part “k” and a 

potential part “U”. Furthermore, if one assumes that the kinetic part is only dependent on 𝑝𝑁, 

and the potential part is only dependent on 𝑟𝑁, thus, the two integrals can be separated as: 

𝑄𝑁𝑉𝑇 =
1

ℎ3𝑁𝑁!
∫

𝑝𝑁𝐸𝑥𝑝 (
−𝑘(𝑝𝑁)

𝑘𝐵𝑇
) 𝑑𝑝𝑁∫

𝑟𝑁𝐸𝑥𝑝 (
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁 (2.9) 

After some calculations, one may show that: 

1

ℎ3𝑁 ∫
𝑝𝑁𝐸𝑥𝑝 (

−𝑘(𝑝𝑁)

𝑘𝐵𝑇
) 𝑑𝑝𝑁 = (

2𝜋𝑚

𝑘𝐵𝑇ℎ2)
3𝑁/2

= ᴧ−3𝑁 (2.10) 

where ᴧ is the de Broglie wavelength: 

ᴧ =
ℎ

√2𝜋𝑚𝑘𝐵𝑇
 (2.11) 

The partition function becomes: 

N, V , T 

ΔE 

Figure 2.2: Schematic representation of the NVT ensemble 
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𝑄𝑁𝑉𝑇 =
ᴧ−3𝑁

𝑁!
∫

𝑟𝑁𝐸𝑥𝑝 (
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁 (2.12) 

The integral in this equation is often referred as the configurational partition function and noted 

by the symbol 𝑍𝑁𝑉𝑇: 

𝑍𝑁𝑉𝑇 = ∫
𝑟𝑁𝐸𝑥𝑝 (

−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁 (2.13) 

For a perfect gas system, 𝑈𝑗( 𝑟𝑁) = 0. Hence, the ideal partition function, which can only be 

approximated by the means of molecular dynamics, is: 

𝑄𝑖𝑑𝑒𝑎𝑙 =
ᴧ−3𝑁

𝑁!
𝑉𝑁

             =
𝑞𝑁

𝑁!
=

𝑞𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
𝑁

𝑁!

 (2.14) 

where 𝑞𝑁 stands for the molecular partition function, and since the molecules are approximated 

as a perfect gas, neither vibrational nor rotational kinetic energies contribute to the total kinetic 

energy. Only translational contribution can be considered. Therefore, it is possible write 𝑞𝑁 =

𝑞𝑡𝑟𝑎𝑛𝑠
𝑁 . 

Thus one can write: 

𝑄𝑁𝑉𝑇 = 𝑄𝑖𝑑𝑒𝑎𝑙𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  (2.15) 

where 𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  can be approximated by both molecular dynamics and Monte Carlo as it involves 

only the knowledge of the position of the atoms and the potential of interaction, given by: 

𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
𝑍𝑁𝑉𝑇

𝑉𝑁  (2.16) 

Various thermodynamics properties can be obtained if the partition function is known. Some of 

them are: 

𝐴 = −𝑘𝐵𝑇𝑙𝑛(𝑄𝑁𝑉𝑇) (2.17) 

𝑈 =
𝑘𝐵𝑇2

𝑄𝑁𝑉𝑇
(

𝜕𝑄𝑁𝑉𝑇

𝜕𝑇
)

𝑉,𝑁
 (2.18) 

𝐻 =
𝑘𝐵𝑇2

𝑄𝑁𝑉𝑇
(

𝜕𝑄𝑁𝑉𝑇

𝜕𝑇
)

𝑉,𝑁
+

𝑘𝐵𝑇𝑉

𝑄𝑁𝑉𝑇
(

𝜕𝑄𝑁𝑉𝑇

𝜕𝑉
)

𝑇,𝑁
 (2.19) 

𝐺 = −𝑘𝐵𝑇𝑙𝑛(𝑄𝑁𝑉𝑇) +
𝑘𝐵𝑇𝑉

𝑄𝑁𝑉𝑇
(

𝜕𝑄𝑁𝑉𝑇

𝜕𝑉
)

𝑇,𝑁
 (2.20) 

It is common to express these quantities as a combination of two parts: the ideal part, which is 

solely due to the kinetic energy of the system, and the residual part, which is due to the 

interaction between the molecules of the system. The total Helmholtz free energy in the NVT 

ensemble can be rewritten as: 

𝐴 = −𝑘𝐵𝑇𝑙𝑛(𝑄𝑖𝑑𝑒𝑎𝑙𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

    = −𝑘𝐵𝑇𝑙𝑛(𝑄𝑖𝑑𝑒𝑎𝑙) −
𝑘𝐵𝑇

𝑉𝑁 ln (𝑍𝑁𝑉𝑇)

     = 𝐴𝑖𝑑𝑒𝑎𝑙 + 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

 (2.21) 

The ideal gas law is then simply obtained by setting 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 0. 
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𝐴𝑖𝑑𝑒𝑎𝑙 = −𝑘𝐵𝑇𝑙𝑛(𝑄𝑖𝑑𝑒𝑎𝑙)

            = −𝑘𝐵𝑇[𝑙𝑛(𝑉𝑁) − 𝑙𝑛(𝑁!) − ln (ᴧ3𝑁)]

            = −𝑘𝐵𝑇[𝑁𝑙𝑛(𝑉) − (𝑁𝑙𝑛(𝑁) − 𝑁) − 𝑁ln (ᴧ3)]

            = −𝑘𝐵𝑇𝑁[𝑙𝑛(𝑉/𝑁) + 1 − ln (ᴧ3)]

            = −𝑘𝐵𝑇𝑁 [𝑙𝑛 (
1

𝜌ᴧ3) + 1]

            = 𝑘𝐵𝑇𝑁[𝑙𝑛(𝜌ᴧ3) − 1]

 (2.22) 

If, furthermore, the molecules are considered as hard spheres (not punctual), the equation of 

state can be obtained as follow: 

𝐴  = 𝑘𝐵𝑇𝑁 [𝑙𝑛 (
𝑁

𝑉−𝑁𝑏
ᴧ3) − 1]

      = 𝑘𝐵𝑇𝑁 [𝑙𝑛 (
𝑁

𝑉−𝑁𝑏
) + ln(ᴧ3) − 1 + 𝑙𝑛 (

𝑉−𝑁𝑏

𝑁
) − 𝑙𝑛 (

𝑉−𝑁𝑏

𝑁
)]

       = 𝑘𝐵𝑇𝑁 [𝑙𝑛 (
𝑁

𝑉
) + ln(ᴧ3) − 1 − 𝑙𝑛 (

𝑉−𝑁𝑏

𝑁
)]

        = 𝐴𝑖𝑑𝑒𝑎𝑙  − 𝑙𝑛(1 − 𝜌𝑏)

  (2.23) 

where −𝑙𝑛(1 − 𝜌𝑏) is the excess free energy due to the consideration of hard sphere. Note that, 

if 𝑏 = 0, one recovers the ideal gas law. 

The pressure can also be deduced from the A quantity as follow: 

 𝑝 = 𝑘𝐵𝑇 (
𝜕ln (𝑄𝑁𝑉𝑇)

𝜕𝑉
)

𝑇,𝑁

     = 𝑘𝐵𝑇 (
𝜕ln (𝑄𝑖𝑑𝑒𝑎𝑙)

𝜕𝑉
)

𝑇,𝑁
+ 𝑘𝐵𝑇 (

𝜕ln (𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

𝜕𝑉
)

𝑇,𝑁

     = 𝑘𝐵𝑇𝑁 + 𝑘𝐵𝑇 (
𝜕ln (𝑄𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

𝜕𝑉
)

𝑇,𝑁

     = 𝑝𝑖𝑑𝑒𝑎𝑙 + 𝑝𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

 (2.24) 

Second-order derivative properties such as the isochoric heat capacity can be deduced as well. 

It is given by: 

𝐶𝑣 =
𝜕𝑈

𝜕𝑇
=

𝜕(
𝑘𝐵𝑇2

𝑄𝑁𝑉𝑇
(

𝜕𝑄𝑁𝑉𝑇
𝜕𝑇

)
𝑉,𝑁

)
𝑁,𝑉

𝜕𝑇
=

                =
𝑘𝐵𝑇2

𝑄𝑁𝑉𝑇
(

𝜕2𝑄𝑁𝑉𝑇
2

𝜕𝑇2 )
𝑉,𝑁

+
2𝑘𝐵𝑇

𝑄𝑁𝑉𝑇
(

𝜕𝑄𝑁𝑉𝑇

𝜕𝑇
)

𝑉,𝑁
−

𝑘𝐵𝑇2

𝑄𝑁𝑉𝑇
2 (

𝜕𝑄𝑁𝑉𝑇

𝜕𝑇
)

𝑉,𝑁

2

.

.

.

                =
1

𝑘𝐵𝑇2
(< 𝑈2 > −< 𝑈 >2)

  (2.25) 

which is evaluated from the fluctuation theory using molecular simulations. For more details 

on how such formula can be derived, please refers to the next section regarding the NpT 

ensemble where many other derivative properties are considered. 

The evaluation of 𝐶𝑣with the use of the fluctuation theory may sometimes be subject to high 

statistical uncertainties. Alternatively, this can be evaluated by performing simulation at 

different isotherms. Applying numerical derivation for the 𝐶𝑣, one obtains: 

𝐶𝑣 =
𝜕𝑈

𝜕𝑇
=

𝑈2−𝑈1

𝑇2−𝑇1
 (2.26) 

The interest of the canonical ensemble lies in its ease of implementation in addition to the fact 

that there are many thermodynamic quantities that are written in terms of density and 
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temperature as variables, i.e. 𝑓(𝑉, 𝑇), such as in the SAFT equations of states, allowing for a 

direct comparison between the simulation and model results. 

2.1.2  NpT ensemble 

Most experiments are typically performed at fixed temperature and pressure rather than fixed 

NVT. Thus, to make a direct comparison to experiments, it is more practical to perform 

molecular simulations at fixed NpT, allowing both volume and energy to fluctuate. 

 

 

 

 

 

 

 

 

 

In this ensemble, the partition function is given by: 

∆𝑁𝑝𝑇=
1

𝑁!
∫

𝑟𝑁∫
𝑝𝑁∫

𝑉
(𝐸𝑥𝑝 (

−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
−

𝑝𝑉

𝑘𝐵𝑇
)) 𝑑𝑟𝑁𝑑𝑝𝑁𝑑𝑉

         =
ᴧ−3𝑁

𝑁!
𝑄𝑁𝑉𝑇∫

𝑉
(−𝑝𝑉)𝑑𝑉

  (2.27) 

Similar to the NVT ensemble, the positions, the momentum and the volume are independent, 

allowing for the integrals to be separated as follows: 

∆𝑁𝑝𝑇=
1

𝑁!
∫

𝑉
𝐸𝑥𝑝 (

−𝑝𝑉

𝑘𝐵𝑇
) 𝑑𝑉∫

𝑝𝑁𝐸𝑥𝑝 (
−𝑘𝑗(𝑝𝑁)

𝑘𝐵𝑇
) 𝑑𝑝𝑁∫

𝑟𝑁𝐸𝑥𝑝 (
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁

         =
ᴧ−3𝑁

𝑁!
∫

𝑉
𝐸𝑥𝑝 (

−𝑝𝑉

𝑘𝐵𝑇
) 𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝 (
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁

         =
ᴧ−3𝑁

𝑁!
𝑍𝑁𝑝𝑇

  (2.28) 

where the 𝑍𝑁𝑝𝑇 is the configurational partition function in the NpT ensemble. Using the bridge 

equation, the Gibbs free energy is given by: 

𝐺 = −𝑘𝐵𝑇ln (∆𝑁𝑝𝑇)  (2.29) 

The variation of the Gibbs free energy is given by the Gibbs-Duhem equation: 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + µ𝑑𝑁  (2.30) 

where 𝑆, 𝑉 and µ are given by: 

Figure 2.3: Schematic representation of the NpT ensemble 

N, p, T 

ΔV               ΔE 
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𝑆 = 𝑘𝐵 ln(∆𝑁𝑝𝑇) +
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑇
)

𝑁,𝑝
 

  (2.31) 

𝑉 = −
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑝
)

𝑁,𝑇
  (2.32) 

µ = −
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑁
)

𝑝,𝑇
  (2.33) 

Using the fluctuation theory, many derivative properties can be deduced from the NpT 

ensemble.  

- Isothermal compressibility 

𝑘𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑁,𝑇
 (2.34) 

First, the average volume 𝑉 is: 

 𝑉 = −
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑝
)

𝑁,𝑇

     = −
𝑘𝐵𝑇

∆𝑁𝑝𝑇

ᴧ−3𝑁

𝑁!
∫

𝑉
(

−𝑉

𝑘𝐵𝑇
) 𝐸𝑥𝑝 (

−𝑝𝑉

𝑘𝐵𝑇
) 𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝 (
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
) 𝑑𝑟𝑁

     =
∫𝑉(𝑉)𝐸𝑥𝑝(

−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

∫𝑉𝐸𝑥𝑝(
−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

     =
∫𝑉(𝑉)𝐸𝑥𝑝(

−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

𝑍𝑁𝑝𝑇

      =< 𝑉 >𝑁𝑝𝑇

  (2.35) 

Thus, the compressibility is given by (using similar results than those obtained for V):  

𝑘𝑇 = −
1

<𝑉>𝑁𝑝𝑇
(

𝜕(−
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑝
)

𝑁,𝑇
)

𝜕𝑝
)

𝑁,𝑇

      =
∫𝑉(

𝑉2

𝑘𝐵𝑇
)𝐸𝑥𝑝(

−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝(
−𝑈𝑗( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

𝑍𝑁𝑝𝑇
+

[∫𝑉(𝑉2)𝐸𝑥𝑝(
−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁]

2

𝑘𝐵𝑇𝑍𝑁𝑝𝑇
2

       =
1

𝑘𝐵𝑇

(<𝑉2>𝑁𝑝𝑇−<𝑉>𝑁𝑝𝑇
2 )

<𝑉>𝑁𝑝𝑇

  (2.36) 

Similar to the isochoric heat capacity, the fluctuations of the volume may be subject to large 

uncertainties. Thus, alternatively, the compressibility can be obtained by numerical derivation 

between of two NpT runs as follow: 

𝑘𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑁,𝑇
=

1

𝜌
(

𝜕𝜌

𝜕𝑝
)

𝑁,𝑇

    = (
𝜕ln (𝜌)

𝜕𝑝
)

𝑁,𝑇

=
ln (𝜌2/𝜌1)

(𝑝2−𝑝1)

  (2.37) 
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a) Thermal expansivity  
 

𝛼𝑃 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑁,𝑝

     =
1

<𝑉>𝑁𝑝𝑇
(

𝜕(−
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑝
)

𝑁,𝑇
)

𝜕𝑇
)

𝑁,𝑝

     =
1

<𝑉>𝑁𝑝𝑇
(

𝜕(−
𝑘𝐵𝑇

∆𝑁𝑝𝑇
(

𝜕∆𝑁𝑝𝑇

𝜕𝑝
)

𝑁,𝑇
)

𝜕𝑇
)

𝑁,𝑝

     =
1

𝑘𝐵𝑇2<𝑉>𝑁𝑝𝑇
(

−∫𝑉𝑉𝐸𝑥𝑝(
−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁(𝑈+𝑝𝑉)𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

𝑍𝑁𝑝𝑇
+

          
∫𝑉𝑉𝐸𝑥𝑝(

−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

𝑍𝑁𝑝𝑇

∫𝑉𝐸𝑥𝑝(
−𝑝𝑉

𝑘𝐵𝑇
)𝑑𝑉∫

𝑟𝑁(𝑈+𝑝𝑉)𝐸𝑥𝑝(
−𝑈( 𝑟𝑁)

𝑘𝐵𝑇
)𝑑𝑟𝑁

𝑍𝑁𝑝𝑇
)

  (2.38) 

The quantity 𝑈 + 𝑝𝑉 is the configurational enthalpy noted �̂�. Thus, the formula becomes: 

𝛼𝑃 =
<𝑉�̂�>𝑁𝑝𝑇−<𝑉>𝑁𝑝𝑇<�̂�>𝑁𝑝𝑇

𝑘𝐵𝑇2<𝑉>𝑁𝑝𝑇
  (2.39) 

The alternative approach can also be applied by performing isobaric simulations, using this 

formula: 

𝛼𝑃 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑁,𝑝

       = −
ln (𝜌2/𝜌1)

𝑇2−𝑇1

 (2.40) 

b) Isobaric heat capacity  

𝑐𝑃 = (
𝜕𝐻

𝜕𝑇
)

𝑁,𝑝
  (2.41) 

As for the isochoric heat capacity, it is common in molecular simulation to separate the kinetic 

from the residual part to express the isobaric heat capacity. In the formula above, H is the total 

enthalpy given by: 

𝐻 = 𝑈𝑖𝑛𝑡𝑒𝑟 + 𝑈𝑖𝑛𝑡𝑟𝑎 + 𝑝𝑉 + 𝑈𝑘𝑖𝑛𝑒𝑡𝑖𝑐  (2.42) 

According to Lagache 11, the total enthalpy can be separated into two parts, the kinetic (ideal) 

and the configurational parts given as follow: 

𝐻𝑟𝑒𝑠 = 𝑈𝑖𝑛𝑡𝑒𝑟 + 𝑝𝑉 − 𝑁𝑘𝐵𝑇  (2.43) 

𝐻𝑖𝑑𝑒𝑎𝑙 = 𝑈𝑖𝑛𝑡𝑟𝑎 + 𝑈𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝑁𝑘𝐵𝑇  (2.44) 

Thus, the residual heat capacity is: 

𝑐𝑃
𝑟𝑒𝑠 = (

𝜕𝐻𝑟𝑒𝑠

𝜕𝑇
)

𝑁,𝑝

         = (
𝜕𝑈𝑖𝑛𝑡𝑒𝑟

𝜕𝑇
)

𝑁,𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑁,𝑝
− 𝑁𝑘𝐵

  (2.45) 
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The fluctuations formulas for the two first terms can be obtained by generalizing the results 

obtained for the thermal expansivity, as it is possible to show that for any quantity X one obtains: 

𝜕<𝑋>𝑁𝑝𝑇

𝜕𝛽
= −(< 𝑋�̂� >𝑁𝑝𝑇−< 𝑋 >𝑁𝑝𝑇< �̂� >𝑁𝑝𝑇)  (2.46) 

Thus, the residual  

𝑐𝑃
𝑟𝑒𝑠 = (

𝜕𝑈𝑖𝑛𝑡𝑒𝑟

𝜕𝑇
)

𝑁,𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑁,𝑝
− 𝑁𝑘𝐵

         =
1

𝑘𝐵𝑇2 (< 𝑈𝑖𝑛𝑡𝑒𝑟�̂� >𝑁𝑝𝑇−< 𝑈𝑖𝑛𝑡𝑒𝑟 >𝑁𝑝𝑇< �̂� >𝑁𝑝𝑇)
𝑁,𝑝

+

             
𝑝

𝑘𝐵𝑇2 (< 𝑉�̂� >𝑁𝑝𝑇−< 𝑉 >𝑁𝑝𝑇< �̂� >𝑁𝑝𝑇) − 𝑁𝑘𝐵

  (2.47) 

Once the density, the isothermal compressibility, the thermal expansion and the isobaric heat 

capacity are deduced from the fluctuation theory, many other second-order derivative properties 

can be assessed through the use of the classical thermodynamics relations. 

c) Isochoric heat capacity 

𝑐𝑉
𝑟𝑒𝑠 = 𝑐𝑃

𝑟𝑒𝑠 +
𝑇𝑘𝑃

2

𝜌𝑘𝑇
 (2.48) 

d) Speed of sounds 

𝑉𝑠 = √
𝑐𝑃

𝑟𝑒𝑠+𝑐𝑃
𝑖𝑑𝑒𝑎𝑙

𝑐𝑉
𝑟𝑒𝑠+𝑐𝑉

𝑖𝑑𝑒𝑎𝑙

1

𝜌𝑘𝑇
  (2.49) 

 

e) Joule-Thomson coefficient 

µ𝐽𝑇 =
𝜌

𝑐𝑃
𝑟𝑒𝑠+𝑐𝑃

𝑖𝑑𝑒𝑎𝑙 (𝑇𝑘𝑃 − 1)  (2.50) 

 

2.1.3  Microcanonical ensemble NVE  

To simulate a system with maximum entropy, i.e. exploring a maximum of microstates, the 

NVE ensemble is the most adapted one, particularly for molecular dynamics. This is because in 

molecular dynamics it is a conservative approach for a system of fixed number of particles and 

volume. Thus, solving the equations of motions will allow the system to evolve in a natural 

way, exploring all the microstates. However, the challenge with this ensemble is that some 

properties are difficult to obtain. Additionally, such ensemble is difficult to realize 

experimentally as energy is always a fluctuating quantity. 

In such ensemble, the partition function is: 

Ω =
1

ℎ3𝑁𝑁!
∫

𝑝𝑁 ∫
𝑁𝑁 𝑑𝑟𝑁𝑑𝑝𝑁 (2.51) 

The bridge equation that relates the entropy to the partition function is given by: 

𝑆 = 𝑘𝐵ln (Ω) (2.52) 

Fundamentally, it is one of the most powerful results in thermodynamics. It states that the more 

accessible microstates an isolated system has, the higher its entropy will be. Thus, the change 

in the entropy is given by: 
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∆𝑆 = 𝑘𝐵ln (Ω2/Ω1)  (2.53) 

 

 

 

 

 

 

 

 

 

 

2.2 Interaction potentials 

From the introduction to statistical ensembles, it is clear that the interaction energy between the 

molecule play an essential role. This is because, it is these interactions that allow molecules to 

explore the available microstates. As mentioned in the previous part, the total potential energy 

is given the Hamiltonian 𝐻, which is a combination of two parts, the kinetic energy and the 

configuration energy. Thus, one may write: 

𝐻 = 𝐾 + 𝑈  (2.54) 

where K is the kinetic energy which only specific to molecular dynamics simulations (and will 

be discussed in the MD part), and U is the configurational energy coming from the way the 

atoms interact between them. For simplification purpose, this latter can also be split into two 

parts, intramolecular potential and intermolecular potentials (more precisely interatomic 

potentials). Thus, 

𝑈 = 𝑈𝑖𝑛𝑡𝑟𝑎 + 𝑈𝑖𝑛𝑡𝑒𝑟   (2.55) 

2.2.1 Intramolecular potentials 

The intramolecular potential is set of contributions due to the molecular internal degrees of 

freedom, such as the part of the potential energy due to the vibration of molecules, which is 

absent for monoatomic molecules. The molecular degrees of freedom are mainly of three types: 

molecular bonding, bending and torsion. The intramolecular potential is then a sum of all these 

contributions and can be expressed as follow: 

𝑈𝑖𝑛𝑡𝑟𝑎 = 𝑈𝐵𝑜𝑛𝑑 + 𝑈𝐵𝑒𝑛𝑑 + 𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛  (2.56) 

Here it is supposed that these interactions do not interfere, otherwise, one should define 

additional cross interactions. 

N, V, E 

Figure 2.4: Schematic representation of the NVE ensemble 
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2.2.1.1 Stretching energy 

This is the energy associated with the stretching of two bounded atoms around an equilibrium 

bond length 𝑙0. A realistic mathematical function to model the stretching potential is provided 

by the Morse model, which takes into account the complete dissociation of the bonded atoms: 

𝑈𝑆𝑡𝑟𝑒𝑡𝑐ℎ = 𝐷𝑒 (1 − 𝑒
−√

𝑘

2𝐷𝑒
(𝑙−𝑙0)2

)

2

 (2.57) 

However, the Morse potential is not computationally efficient and it involves three parameters. 

Furthermore, the deviation far from the equilibrium is rarely the case as the covalent bonds are 

known to be of high energy. Alternatively, a simpler expression can be used to mimic this 

stretching energy covering the region around the equilibrium length. For this the harmonic 

potential type is found to be a good choice given by: 

𝑈𝐵𝑜𝑛𝑑 =
1

2
𝐾𝑆𝑡𝑟𝑒𝑡𝑐ℎ(𝑙 − 𝑙0)2  (2.58) 

where 𝐾𝐵𝑜𝑛𝑑 is the stiffness constant associated to the stretch. 𝑙0 is the equilibrium length that 

minimises the stretching potential.  

 

 

 

 

 

 

 

 

 

2.2.1.2 Bending energy 

This is the energy associated to the vibration around an equilibrium angle involving three 

successive bonded atoms. This energy is not as important as that of the stretching, thus, it is 

easier to bend the molecule rather than to stretch or compress a bond. The bending energy is 

also often modelled by a harmonic type given by: 

𝑈𝐵𝑒𝑛𝑑 =
1

2
𝐾𝐵𝑒𝑛𝑑(𝜃 − 𝜃0)2 (2.59) 

where 𝐾𝐵𝑒𝑛𝑑  is the rigidity constant and 𝜃0 is the equilibrium angle. 

  

𝑙0 

Figure 2.5: Schematic representation of the bond stretch and associated harmonic potential 
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2.2.1.3 Torsion energy 

This is the energy required for the rotation of four successive bonded atoms. Such an energy 

plays an essential role in the structural properties and conformational analysis. The torsion 

energy is often modelled with a cosine series expansion of order L given by: 

𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛 = ∑
1

2
𝑉𝑛(1 + cos (𝑛𝜑 − 𝛿))𝐿

𝑛=0   (2.60) 

where 𝑉𝑛 is the barriers height energy, and 𝜑 is the torsion angle, δ the phase of the torsional 

term. 

 

 

 

 

 

 

 

 

 

 

  

𝜑 

Figure 2.7: Schematic representation of the bond torsion and associated 
polynomial potential 

𝜃0 

Figure 2.6: Schematic representation of the bond bending and associated 
harmonic potential 
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2.2.2  Intermolecular potentials 

Intermolecular interactions are the contribution to the total potential energy due to the 

interaction between atoms of different molecules. They are mainly of two types, the van der 

Waals interaction and the electrostatic interactions with the latter not being considered in this 

work. 

The case of noble gases is probably the best example of van der Waals interactions, as it is well 

known that such molecules do not have any polar interactions, yet they can undergo phase 

transitions. If two molecules are placed sufficiently far apart, their interaction energy is null. 

However, as the distance between them, r, is reduced, the interaction energy becomes negative 

to reach a certain minimum at an equilibrium distance 𝑟𝑒𝑞. This explains the presence of the 

attractive forces (dispersive forces) between the two molecules, responsible for the cohesion of 

the liquids (London’s dispersive forces). If this distance is further reduced, the interaction 

energy increases and become positive, eventually diverging to infinity. This highlights the 

presence of a repulsive interaction that only acts at very short range distances. This is the 

consequence of the repulsive interactions between the two clouds of electron of the two 

molecules, prohibiting the total overlapping of these molecules which is known as the Pauli 

exclusion principle. 

The exact intermolecular potential can be obtained by quantum calculations for small 

molecules, but it remains challenging for large molecules due to computational time and 

assumptions for the calculations. In the case of simple fluids like the noble gases or alkanes, 

the global behaviour of the long range dispersive interactions is seen to vary as 𝑟−6, while that 

of the short range repulsive are seen to vary as 𝑟−𝑛 with 𝑛 ≥ 9, or probably better as an 

exponential decay of the type 𝑒−𝑏𝑟. There are many models that are proposed in the literature 

which are often ad-hoc.  

2.2.2.1 Hard sphere potential 

Although it does not properly account for Van der Waals interactions, the hard sphere potential 

is widely used as a reference model in many theories, including statistical physics, due to its 

simplicity. This is the case in the kinetic theory of gases or the association theory of Wertheim 

and its derived theories like the SAFT type equations of state and integral equations of states as 

well as cubic equations of states. Similarly, many theories on transport properties also rely on 

this model, such as the Enskog-Chapman theory for predicting viscosity. In reality, the closest 

situation to this model is a gas at high temperature where only the interactions between atoms 

can be considered as infinitely elastic bouncing. 

Mathematically, it is expressed as follow: 

𝑈𝐻𝑆(𝑟) = {
∞  ;         |𝑟| < 𝜎 
0  ;           |𝑟| ≥ 𝜎

  (2.61) 

where 𝜎 is the impenetrable hard-sphere diameter. 
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2.2.2.2 Square-well potential 

The previous potential is found to be sufficiently adequate to reproduce the structure of the 

fluids at high density. However, it only exists in a gas phase if not coupled with a perturbative 

approach to take into account the dispersive interaction responsible for the cohesion of liquids. 

The square-well potential is a good model for more realistic representation of the fluids with a 

capability of inducing the gas-liquid transition. The repulsive part is modelled with the HS 

model while the dispersive interactions are modelled with a square well given by this form: 

𝑈𝑆𝑊(𝑟) = { 
 ∞  ;                       |𝑟| < 𝜎 
 −𝜖  ;             𝜆𝜎 > |𝑟| ≥ 𝜎
   0  ;                     |𝑟| ≥ 𝜆𝜎

  (2.62) 

where 𝜖 is the depth of the well and 𝜆 is the range of the attractive interactions that generally 

takes a value of 1.5.  

2.2.2.3 Lennard-Jones potential 

The Lennard-Jones (LJ) potential, which requires only two parameters and exhibits very 

interesting features in terms of speeding out the calculations, is a widely used realistic potential. 

In the LJ potential, both the repulsive and attractive contribution are modelled with an inverse 

power law with respectively 12 and 6 as stiffness exponents. While the exponent of 6 is 

physically justified by the London dispersion forces, the exponent of 12 in the repulsive part is 

purely empirical and is used to speed the calculations by simply the squaring the repulsive part. 

The model is given by:   

𝑈𝐿𝐽 = 4𝜖 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]  (2.63) 

here 𝜖 is the depth of the LJ-potential and 𝜎 is the collisional diameter for which the LJ-potential 

is zero. 

A generalized LJ potential, often named Mie Potential, for any powers decay can be written as: 

𝑈𝑀𝑖𝑒 = (
𝑛

𝑛−𝑚
) (

𝑛

𝑚
)

𝑚/(𝑛−𝑚)

𝜖 [(
𝜎

𝑟
)

𝑛

− (
𝜎

𝑟
)

𝑚

] (2.64) 
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2.3 Molecular simulations 

There are two techniques that are used to perform molecular simulations in different ensembles, 

the Monte Carlo (MC) technique and the molecular dynamics technique (MD). 

2.3.1 Molecular dynamics 

In molecular dynamics simulations, the collection of the microstates is obtained through the 

time evolution of the system of particles. This dynamic evolution corresponds to different 

configurations of the molecules in the system that are generated by integrating the Newton’s 

equations of motions in the phase space (𝑟𝑁(𝑡), 𝑝𝑁(𝑡)). The properties of the material are 

obtained at each time step corresponding to a certain snapshot of the system, and averaged after 

many time steps to obtain a mean value:  

< 𝑋 >𝑡𝑖𝑚𝑒= lim
𝑡→∞

1

𝑡𝑜𝑏𝑠
∫ 𝑋

𝑡𝑜𝑏𝑠

0
(𝑟𝑁(𝑡), 𝑝𝑁(𝑡))𝑑𝑡  (2.65) 

Figure 2.8: Different types of intermolecular potential interactions 
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Of course, the longer the simulation, the better the estimated property. 

The Newton’s equations of motions are naturally conservative (
𝑑𝐻(𝑡)

𝑑𝑡
=

𝑑𝑈𝑘𝑖𝑛(𝑡)

𝑑𝑡
+

𝑑𝑈𝑐𝑜𝑛𝑓(𝑡)

𝑑𝑡
= 0). 

Thus, if one puts a number N of molecules in a certain volume V, and allows the system to 

evolve by solving the equations of motions, this will correspond to the NVE ensemble, with E 

being the total energy of the system. The Newton’s second law is: 

{
     𝐹𝑖(𝑡) = 𝑚𝑖𝑎𝑖(𝑟𝑁(𝑡))

𝐹𝑖(𝑡) = −
𝜕𝑈𝑖(𝑟𝑁(𝑡))

𝜕𝑟𝑁(𝑡)

  (2.66) 

where 𝑚𝑖 and 𝑎𝑖(𝑡)  are respectively the mass and the acceleration of the particle “i”. 𝐹𝑖(𝑡) and 

𝑈𝑖(𝑟𝑁(𝑡)) are respectively the force and the interaction potential acting on particle “i” by the 

remaining particles in the system. The force acting on particle “i” by particle ” j” should be 

reciprocal, which leads to the Newton’s third law: 

𝐹𝑖(𝑡) = −𝐹𝑗(𝑡)  (2.67) 

These equations are solved for all the particles in the system at each time step. Of course, 

solving them analytically is just impossible, thus, numerical methods are required. Many 

algorithms have been proposed to solve the equations of motions, including the Verlet algorithm 
1212, the Leapfrog algorithm 13, the Verlet velocity algorithm 14, the Beeman algorithm 15, 

predictor-corrector 7, Runge-Kutta algorithm... 

The global workflow of the molecular dynamics simulations corresponds to the steps described 

in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10: Workflow of the molecular dynamics simulation 
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To initialize the system, the positions of atoms can be generated in two ways. The first consists 

in placing the atoms inside the box randomly, while the second consists in placing them on a 

lattice. Concerning the initial velocities, they are obtained according to the Maxwell-Boltzmann 

distribution, where, at a given temperature, the velocity of the particles in the system should 

follow this distribution: 

𝑓(𝑣𝑖) = [
𝑚𝑖

2𝜋𝑘𝐵𝑇
]

1/2

𝑒
−

𝑚𝑖𝑣𝑖
2

2𝑘𝐵𝑇 (2.68) 

However, at equilibrium, the centre of mass of the fluid should not move, thus, the velocity 

generated should satisfy the criterion on the total momentum of the system, given by: 

𝑝 = ∑ 𝑚𝑖𝑣𝑖 = 0𝑖  (2.69) 

Once the positions are known, and the force field is chosen, the interaction energy between the 

particles are easily obtained by evaluating this model. In fact, the model here refers to the sum 

of each contribution to the interaction potential, thus, the total energy is: 

𝑈 = 𝑈𝑣𝑑𝑤 + 𝑈𝑠𝑡𝑟𝑒𝑐ℎ + 𝑈𝑏𝑒𝑛𝑑 + 𝑈𝑇𝑜𝑟𝑠𝑖𝑜𝑛 + ⋯  (2.70) 

The forces, and so the accelerations, are then deduced by using the derivative of the potential 

interaction model. Then, updated velocities and positions are deduced from a time integrator.  

2.3.1.1 Time integrator 

As already pointed out, many integrators exist in the literature, but the Verlet velocity algorithm 

is probably the most used one in molecular dynamics simulations. The main advantage of this 

algorithm is that the positions, velocities and accelerations are all known for each step (𝑡 + 𝛿𝑡) 

of the simulation where 𝛿𝑡 is the time step. This algorithm is provided by the following 

equations: 

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡𝑣(𝑡) +
1

2
𝛿𝑡2𝑎(𝑡)             (2.71) 

𝑣 (𝑡 +
𝛿𝑡

2
) = 𝑣(𝑡) +

𝛿𝑡

2
𝑎(𝑡)         (2.72) 

𝑎(𝑡 + 𝛿𝑡) = −
1

𝑚𝑖
𝐹(𝑡 + 𝛿𝑡)         (2.73) 

𝑣(𝑡 + 𝛿𝑡) = 𝑣(𝑡) +
𝛿𝑡

2
[𝑎(𝑡) + 𝑎(𝑡 + 𝛿𝑡)]         (2.74) 

2.3.1.2 Time step 

The choice of the time step is an important question as it depends on several factors. In fact, the 

finer is the time step, the more correct the simulated trajectory and the better the phase space 

covered, but this requires more CPU time to reach a certain run duration.  In the case of chain 

molecules, the time step should be lower than the shortest period of vibration:  

𝛿𝑡 ≪ 2/𝑓𝑚𝑎𝑥          (2.75) 

where 𝑓𝑚𝑎𝑥 is the maximum vibrational frequency. 
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Generally, the highest frequency is that corresponding to stretching. However, in many cases, 

such vibrations have only a minimal effect on the overall behaviour of the system. Thus, in 

many force fields, they are frozen out, enabling to take larger time step. 

In the case of too large time step, this may lead to some instabilities in the dynamics, such as 

when two particles overlap too much, resulting in their ejection from the box at the next time 

step if 𝛿𝑡𝑣(𝑡) >
𝐿𝑏𝑜𝑥

2
.  A good balance is then needed to satisfy all the factors mentioned 

previously. 

2.3.1.3 Constraints for non-spherical molecules  

It is common in molecular dynamic simulations to deal with constrained molecules. There are 

many reasons for this, for example, to avoid the presence of high vibrational frequencies, which 

impose taking very short time step. An additional reason is that it simplifies the development 

of a theory for a particular model. A good example for this is the molecular model we are going 

to study in this work which consists in chains composed of spheres that are tangentially bonded 

with an infinite bonding energy. Thus, the simulation of this model requires the use of time-

independent techniques to constrain these bonds. To do so, the two most popular algorithms are 

the Rattle algorithm 16 and the shake algorithm 17. It is the Rattle method that is used in this 

work, and thus the only one that will be discussed in the following.  

This algorithm consists in correcting the unconstrained dynamics though the coordinates, in a 

first step, and the velocities in a second step. More precisely, the corrected (new) positions are 

given by: 

{
𝑟𝑖

𝑛𝑒𝑤 = 𝑟𝑖
𝑜𝑙𝑑 − 𝛾𝑟𝑖𝑗

𝑜𝑙𝑑

𝑟𝑗
𝑛𝑒𝑤 = 𝑟𝑗

𝑜𝑙𝑑 + 𝛾𝑟𝑖𝑗
𝑜𝑙𝑑   (2.76) 

where i and j denote the two atoms in consideration. 𝑟𝑖𝑗
𝑜𝑙𝑑 is the unconstrained distance between 

the two atoms. 𝛾 is an adjustable parameter which should satisfy: 

  ( 𝑟𝑖𝑗
𝑛𝑒𝑤)

2
= (𝑏𝑖𝑗)

2
  (2.77) 

where 𝑏𝑖𝑗 is the length of the bond considered. From the system of equation and the condition 

above, if the quadratic term (4𝛾2( 𝑟𝑖𝑗
𝑜𝑙𝑑)

2
) is neglected, one obtains: 

  𝛾 =
( 𝑟𝑖𝑗

𝑜𝑙𝑑)
2

−(𝑏𝑖𝑗)
2

4( 𝑟𝑖𝑗
𝑜𝑙𝑑)

2   (2.78) 

The process is repeated iteratively until: 

  |( 𝑟𝑖𝑗
𝑛𝑒𝑤)

2
− (𝑏𝑖𝑗)

2
| < 휀𝑟 (𝑏𝑖𝑗)

2
  (2.79) 

where 휀𝑟 is the specified tolerance. If the mass of the considered atoms are not the same, please 

refer to the general method given in the Rapaport’s book 9. 

Similarly, the velocities are corrected using these equations: 
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 {
𝑣𝑖

𝑛𝑒𝑤 = 𝑣𝑖
𝑜𝑙𝑑 − 𝛾𝑣𝑖𝑗

𝑜𝑙𝑑

𝑣𝑗
𝑛𝑒𝑤 = 𝑣𝑗

𝑜𝑙𝑑 + 𝛾𝑣𝑖𝑗
𝑜𝑙𝑑  (2.80) 

  2𝑣𝑖𝑗
𝑜𝑙𝑑𝑟𝑖𝑗 = 0  (2.81) 

where 𝛾 is given by: 

  𝛾 =
𝑣𝑖𝑗

𝑜𝑙𝑑𝑟𝑖𝑗

2(𝑏𝑖𝑗)
2  (2.82) 

2.3.1.4 Molecular Dynamics in different ensembles 

Normally the NVE ensemble does not require any external intervention as N and V are explicitly 

imposed when defining the system, and the energy is naturally conserved with Newton’s 

equations of motions. However, imposing the energy of the system may imply change in 

temperature (and pressure). The NVT and NpT ensembles, on the other hand, require explicit 

constraints to maintain the imposed temperature (and pressure) in order to ensure the correct 

statistical ensemble and thus, correct properties collected. Therefore, techniques such as 

thermostating and barostating are introduced to control these conditions. However, the 

challenge is to choose a technique that has as little impact as possible on the natural dynamics 

of the molecules in the system while satisfying these external conditions.  

2.3.1.4.1 Thermostats 

Experimentally, a thermostat is achieved by making the system in contact with a bath that 

controls its average temperature. In MD simulations, the temperature is not directly controlled. 

It is inferred through the kinetic energy as they are connected by the equipartition energy 

principle: 

〈𝑈𝑘𝑖𝑛〉 =
𝑁𝑓𝑘𝐵𝑇

2
        (2.83) 

where 𝑁𝑓 = 3𝑁 − 𝑁𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 is the number of degrees of freedom (=3N for monoatomic 

molecules), and the instantaneous kinetic energy is given by: 

𝑈𝑘𝑖𝑛 = ∑
𝑚𝑖𝑣𝑖

2

2

𝑁
𝑖=1       (2.84) 

The instantaneous temperature is then obtained with the following formula: 

𝑇 =
1

𝑁𝑓𝑘𝐵
∑ 𝑚𝑖𝑣𝑖

2𝑁
𝑖=1       (2.85) 

and thus, the average temperature writes: 

〈𝑇〉 = 〈
1

𝑁𝑓𝑘𝐵
∑ 𝑚𝑖𝑣𝑖

2𝑁
𝑖=1 〉      (2.86) 

It is clear from this formula, that it is the velocity over which one intervenes to satisfy the 

temperature. However, the way this velocity is changed is extremely important and this depends 

on the algorithm technique that is used. Among them one can cite, the velocity rescaling 18, the 

Anderson thermostat 19, the Berendsen thermostat 20, the Nosé-Hoover thermostat 21, the 

Langevin thermostat 22… 
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a) velocity rescaling 

The velocities are rescaled every time step to satisfy the instantaneous temperature of the 

system. The temperature change for an unconstrained system corresponds to:  

∆𝑇 =
1

2
 ∑

2

3

𝑁
𝑖=1  

𝑚𝑖(𝜆𝑣𝑖)2

𝑁𝑘𝐵
−

1

2
 ∑

2

3

𝑁
𝑖=1  

𝑚𝑖(𝑣𝑖)2

𝑁𝑘𝐵
     (2.87) 

∆𝑇 = (𝜆2 − 1)𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡)    (2.88) 

𝜆 = √𝑇𝑛𝑒𝑤(𝑡)/𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡)    (2.89) 

where 𝜆 is the rescaling factor so that 𝑣𝑖
𝑛 = 𝜆𝑣𝑖

𝑛−1. This method can be considered as the simplest, 

but is an abrupt way to control the temperature. The dynamics deviate from the correct 

trajectory as it removes the natural temperature fluctuation. Therefore, the time dependent 

properties (transport properties) are affected as the time correlation function is also affected. 

However, this can be used during some steps at the beginning of the simulation to accelerate its 

“equilibration” to a target temperature. 

b) Berendsen 

Instead of an abrupt rescaling which kills all natural temperature fluctuations, the Berendsen 

thermostat proposes a smoother way to do it by rescaling the velocities gradually at each time 

step. In this method, the system is coupled to an external heat bath which acts as a source of 

thermal energy, a closer way to mimic the real experiments. The coupling is given by the 

following equation whose solution is an exponential decay: 

𝑑𝑇(𝑡)

𝑑𝑡
=

1

𝜏𝑇
 (𝑇𝑏𝑎𝑡ℎ(𝑡) − 𝑇(𝑡))   (2.90) 

where 𝜏𝑇 is the coupling parameter or the relaxation time which controls the strength of the 

coupling. It is generally set in the range [500𝛿𝑡 − 1000𝛿𝑡] to avoid a too strong perturbation of 

the dynamics. Note that if 𝜏𝑇 → ∞ no coupling is made, and if 𝜏𝑇 → 𝛿𝑡 it is possible to recover 

the rescaling velocity algorithm. The scaling factor is hence given by: 

𝜆 = √1 +
∆𝑡

𝜏𝑇
 (𝑇𝑏𝑎𝑡ℎ(𝑡)/𝑇(𝑡))     (2.91) 

c) Nosé-Hoover Thermostat 

The concept of thermostating is quite different in this deterministic approach, where the heat 

bath reservoir is considered as a part of the system, and thus, considered as an extra degree of 

freedom noted s. The variable s is the scaling factor of the momentum to adjust the temperature 

of the particles written as: 

𝑣𝑖
𝑛 = 𝑠𝑣𝑖

𝑛−1   (2.92) 

Its potential and kinetic energy are given by: 

 

𝑈𝑠 = (3𝑁 + 1)𝑘𝐵𝑇𝑏𝑎𝑡ℎln (𝑠)   (2.93) 

𝑈𝑘𝑖𝑛,𝑠 = 1/2𝑄𝑠(𝑑𝑠/𝑑𝑡)2    (2.94) 
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where “1” is the additional degree of freedom associated to the reservoir and 𝑄𝑠 is the coupling 

parameter between the reservoir and the real system expressed in [energy/time²]. 

The Hamiltonian of the extended system should read: 

𝐻 = 𝑈  + 𝑈𝑠 +    𝑈𝑘𝑖𝑛 + 𝑈𝑘𝑖𝑛,𝑠     (2.95) 

However, instead of scaling the velocities and the time explicitly, a friction factor is defined as: 

𝜉 = 𝑝𝑠/𝑄𝑠                                 (2.96) 

which can be integrated in the equations of motions as follow: 

𝑚𝑖𝑎(𝑡) = 𝐹𝑖(𝑡) −  𝜉𝑖𝑚𝑖𝑣𝑖                             (2.97) 

where the evolution in time of the friction factor is given by: 

 
𝑑𝜉

𝑑𝑡
= (3𝑁 + 1)𝑘𝐵/𝑄𝑠[𝑇(𝑡) − 𝑇𝑏𝑎𝑡ℎ]                                (2.98) 

2.3.1.4.2 Barostat 

The pressure average is obtained with the following Virial expression: 

𝑃 = 𝜌𝑘𝐵𝑇 +
1

3𝑉
〈∑ �⃗�(𝑟𝑖𝑗)𝑖<𝑗 . 𝑟𝑖𝑗〉                                (2.99) 

There are probably as many methods for regulating temperature as there are for regulating 

pressure. For instance, the instantaneous barostat 23 where the instantaneous volume is scaled 

to match the desired instantaneous pressure similarly to the velocity rescaling thermostat. One 

also may cite the Anderson barostat 19, Berendsen barostat 20, Nosé-Hoover barostat 24, Hoover 

barostat 25, Parrinello-Rahman barostat 26, Langevin barostat 27, Gauss barostat…However, in 

this work only the Berendsen barostat has been used.  

- Berendsen barostat 

In this method, it is the mean volume which is scaled by a correction factor which depends on 

the variation between the current mean pressure and the desired pressure of the external 

reservoir in contact ∆𝑃 = 𝑃(𝑡) − 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑.  The coupling is given by the following equation whose 

solution is an exponential decay: 

𝑑𝑃(𝑡)

𝑑𝑡
=

1

𝜏𝑃
 (𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑡) − 𝑃(𝑡))  (2.100) 

where 𝜏 is the coupling parameter or the relaxation time which controls the strength of the 

coupling. It is generally set in the range [500𝛿𝑡 − 1000𝛿𝑡] to avoid strong perturbation of the 

dynamics. Note that if 𝜏𝑃 → ∞ no coupling is made, and if 𝜏𝑃 → 𝛿𝑡 it is possible to recover an 

instantaneous barostat. 

The volume is scaled with this factor given by: 

𝜆 = 1 − 𝑘𝑇
∆𝑡

𝜏𝑃
 (𝑃(𝑡) − 𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑡))                                   (2.101) 

where 𝑘𝑇 is the isothermal compressibility. 
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Thus, the new volume reads 𝑉𝑛 = 𝜆𝑉𝑛−1 which is also equivalent to scaling the positions with 

𝜆1/3. Hence, the new positions are 𝑟𝑖
𝑛 = 𝜆1/3𝑟𝑖

𝑛−1. 

2.3.2  Monte Carlo 

In MD simulations, new configurations are generated by the forces between particle of the 

system according the Newton’s equations of motion. However, in Monte Carlo simulations, 

these configurations, corresponding the microstates of a certain ensemble, are generated 

randomly. Once these configurations are obtained after 𝑁𝑡𝑟𝑖𝑎𝑙 of iterations, the average 

properties 〈𝑋〉 are obtained in the canonical ensemble as follows: 

〈𝑋〉𝑁𝑉𝑇 = ∑ 𝑋𝑖
𝑁𝑡𝑟𝑖𝑎𝑙
𝑖=1 𝜌𝑖

𝑁𝑉𝑇 (2.102) 

where 𝜌𝑖
𝑁𝑉𝑇 is the probability density, and is given by: 

𝜌𝑖
𝑁𝑉𝑇 =

𝐸𝑥𝑝(
−𝐻(𝑟𝑁,𝑝𝑁)

𝑘𝐵𝑇
)

𝑄𝑁𝑉𝑇
 (2.103) 

Taking the advantage that the partition function can be separated into an ideal contribution 

times the residual contribution due to interactions (cf. introduction to ensembles), the Monte 

Carlo simulation does not deal with kinetic (ideal) part, as this can be obtained analytically, but 

only with the configurational part. Therefore, the probability density corresponds only to the 

configurational one given as: 

𝜌𝑖
𝑁𝑉𝑇 =

𝐸𝑥𝑝(
−𝑈(𝑟𝑁)

𝑘𝐵𝑇
)

𝑄𝑁𝑉𝑇
𝑐𝑜𝑛𝑓  (2.104) 

The main question now is how Monte Carlo samples the phase space? Analytically it is just 

impossible, and numerically using quadrature or the simple Monte Carlo method (not to be 

confused with the Monte Carlo methods used in molecular simulation) is just unfeasible 

because of the extremely large number of iterations needed. In fact, the problem with numerical 

quadrature-like methods is that they assign the same probability for each configuration, even 

though there are an extremely large number of configurations that are unphysical and 

correspond to overlapping particles, which leads to a vanishing Boltzmann factor. However, if 

computational resources were not an issue, there are not limit and the average of the quantity X 

is simply calculated by: 

〈𝑋〉 =
1

𝑁𝑡𝑟𝑖𝑎𝑙
∑ 𝑋𝑖

𝑁𝑡𝑟𝑖𝑎𝑙
𝑖=1  (2.105) 

2.3.2.1 Metropolis algorithm 

Instead of generating configurations randomly with equal probability and then weighting them 

by a Boltzmann factor 𝐸𝑥𝑝 (
−𝑈(𝑟𝑁)

𝑘𝐵𝑇
), alternatively, a clever way it to choose configurations with a 

probability 𝐸𝑥𝑝 (
−𝑈(𝑟𝑁)

𝑘𝐵𝑇
) from the outset and then weight them equally. This is the heart of the N. 

Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller work 28 in 1953, 

often referred to as the Metropolis algorithm. 
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Once the configurations are chosen in the low energy region, the second step consists of 

determining whether these configurations will drive the system to a more stable state or to a 

higher energy state level. In other words, generating the right configurations does not mean that 

they are systematically accepted in order to move the system from the current microstate “1” to 

microstate “2”. Thus, how is this decision made? Such a decision relies on the microscopic 

reversibility condition of the Markov chain, which states that at equilibrium the transition 

between states “1” and “2” occurs at the same rate. Thus if 𝜋1→2 is the transition matrix from 

state “1” to state “2” (𝜋2→1 is the inverse), and 𝜌1 is the probability density at state “1”(𝜌2 for 

state “2”), the condition of microscopic reversibility reads: 

𝜋1→2𝜌1 = 𝜋2→1𝜌2 (2.106) 

where the transition matrix can be separated as follow: 

𝜋1→2 = 𝛼1→2𝑎𝑐𝑐1→2 (2.107) 

where 𝛼1→2 is the probability of proposing the transition 𝜋1→2, and 𝑎𝑐𝑐1→2 is the probability to be 

accepted. Thus, going from one state to another, goes through two steps; first is proposed a 

certain move 𝛼1→2 (elements of the transition matrix), and second, it is decided whether to accept 

or reject it. 

In the work of Metropolis, the probability of choosing to move from state “1” to state “2” is 

set the same as that of moving from “2” to “1”. Thus, the stochastic matrix 𝛼 is said to be 

symmetrical and it is possible to write: 

𝛼1→2 = 𝛼2→1 (2.108) 

Hence, the ratio between these transition matrix elements gives: 

𝜋1→2

𝜋2→1
=

𝑎𝑐𝑐1→2

𝑎𝑐𝑐2→1
=

𝜌2

𝜌1
 (2.109) 

There are choices for 𝑎𝑐𝑐 that obeys this condition, and the one chosen by Metropolis is: 

{
     𝑎𝑐𝑐1→2 = 1  ;                  𝜌2 ≥ 𝜌1 

     𝑎𝑐𝑐1→2 =
𝜌2

𝜌1
 ;                  𝜌2 < 𝜌1

 (2.110) 

which can be summarized as: 

𝛼𝑐𝑐1→2 = 𝑚𝑖𝑛 [1,
𝜌2

𝜌1
]  (2.111) 

Thus, If the energy of state “2” is lower or equal to the energy of state “1”, the system is 

considered at equilibrium or moving towards a more stable equilibrium. Then, the transition is 

accepted. If the energy of state “2” is now higher than energy of state “1”, this move is not 

systematically rejected. However, it can be accepted with a probability given by 
𝜌2

𝜌1
. The decision 

for this case is taken by comparing this ratio to a random number Rand obeying a uniform 

distribution as summarized in Figure 2.11. This leads to two possible situations: 

{
     𝑅𝑎𝑛𝑑 ≤

𝜌2

𝜌1
  →  𝑎𝑐𝑐𝑒𝑝𝑡 

      𝑅𝑎𝑛𝑑 >
𝜌2

𝜌1
  →  𝑟𝑒𝑗𝑒𝑐𝑡 

 (2.112) 
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2.3.2.2 Type of moves 

There are many types of move that can be applied to molecules to allow the transition from one 

microstate to another. These moves ensure that the molecules will explore as much of the phase 

space as possible, thus ensuring that the ergodicity is respected to some extent. 

a) Translational move 

In the translational type of move, the whole molecule is translated to a new position by changing 

its Cartesian coordinates according to the following equations: 

{

      𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝑟𝑚𝑎𝑥  

     𝑦𝑛𝑒𝑤 = 𝑦𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝑟𝑚𝑎𝑥

      𝑧𝑛𝑒𝑤 = 𝑧𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝑟𝑚𝑎𝑥

 (2.113) 

where is 𝜒 a random number, and 𝛿𝑟𝑚𝑎𝑥 is the maximum displacement allowed. 

Once this new configuration is generated, it is subject to the process of decision making 

according to the Metropolis algorithm. If the new configuration has a lower energy than the 

previous one, the translation move is accepted. Otherwise, one should compare a random 

number Rand to the probability ratio of the two states, which can be expressed in terms of the 

Boltzmann factor: 

𝛼1→2 = 𝑚𝑖𝑛 [1, 𝐸𝑥𝑝 (
−(𝑈2(𝑟𝑁)−𝑈1(𝑟𝑁))

𝑘𝐵𝑇
)] (2.114) 

The choice of the maximum displacement is very important as it affects the efficiency of the 

exploration of the phase space. If is this too large, many of the trial move will be rejected due 

to overlapping, and if it is too small, many of the moves will be accepted, but the phase space 

will be poorly explored. In practice, the maximum displacement is often set to change 

automatically in order to ensure that approximately 50% of the trial move are accepted. 

Figure 2.11: Boltzmann analysis of the Metropolis algorithm 
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a) Rotational move 

The rotational moves are achieved in a similar way to the translation. First, a randomly chosen 

molecule is rotated in a random direction by applying a small change to the Euler angles ∅, 𝜃, 𝜓. 

For rigid chains this writes: 

{

   ∅𝑛𝑒𝑤 = ∅𝑜𝑙𝑑 + (2𝜒 − 1)𝛿∅𝑚𝑎𝑥  

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝜃𝑚𝑎𝑥

   𝜓𝑛𝑒𝑤 = 𝜓𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝜓𝑚𝑎𝑥

 (2.115) 

where 𝛿∅𝑚𝑎𝑥 , 𝛿𝜃𝑚𝑎𝑥 , 𝛿𝜓𝑚𝑎𝑥 are the maximum change in the Euler angles. The acceptance or the 

rejection of the rotation move decision is taken upon: 

𝛼1→2 = 𝑚𝑖𝑛 [1,
sin ( 𝜃𝑛𝑒𝑤)

sin ( 𝜃𝑜𝑙𝑑)
𝐸𝑥𝑝 (

−(𝑈2(𝑟𝑁)−𝑈1(𝑟𝑁)+𝑝∆𝑉)

𝑘𝐵𝑇
)] (2.116) 

The sampling in 𝜃 may lead to a problem if  𝜃𝑜𝑙𝑑 is equal zero. Alternatively, the idea is to sample 

using cos (𝜃), thus, leading to: 

  𝑐𝑜𝑠 (𝜃𝑛𝑒𝑤) = cos (𝜃𝑜𝑙𝑑) + (2𝜒 − 1)cos (𝜃)𝑚𝑎𝑥 (2.117) 

b) Volume move 

The volume move is characteristic of the NpT ensemble, where the volume of the system is 

allowed to vary during the simulations. Thus, the simulation box may be expanded or shrunk, 

in one, two or three directions with ΔV 

𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 + ∆𝑉 (2.118) 

The new coordinates of the volume are given : 

{

      𝑉𝑥𝑛𝑒𝑤 = 𝑉𝑥𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝑉𝑚𝑎𝑥  

     𝑉𝑦𝑛𝑒𝑤 = 𝑉𝑦𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝑉𝑚𝑎𝑥

      𝑉𝑧𝑛𝑒𝑤 = 𝑉𝑧𝑜𝑙𝑑 + (2𝜒 − 1)𝛿𝑉𝑚𝑎𝑥

 (2.119) 

𝛿𝑉𝑚𝑎𝑥 is the maximum volume change. 

The decision criterion is given by: 

𝛼1→2 = 𝑚𝑖𝑛 [1, (
𝑉+∆𝑉

𝑉
)

𝑁

 𝐸𝑥𝑝 (
−(𝑈2(𝑟𝑁)−𝑈1(𝑟𝑁)+𝑝∆𝑉)

𝑘𝐵𝑇
)] (2.120) 

Note that, the Cartesian coordinates should also be updated, however, the relative distance 

between the molecules should remain the same. 

Here, have only been discussed some of the main moves. However, there are many other moves 

developed to improve the sampling when considering, for instance, cyclic molecules or long 

flexible chain molecules. Example include the reptation move, flip move, progressive regrowth 

move…  

c) Insertion move 

Some moves are specific to certain ensemble, such as the transfer of molecule from one box to 

another in the Gibbs ensemble, or the deletion move in the Grand Canonical ensemble. The 
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insertion move, on the other hand, can be used in all ensembles to compute the chemical 

potential using the Widom’s insertion method. However, the insertion move is not done in a 

random way, as it is unlikely that a molecule would be inserted in a dense phase randomly due 

to the high probability of overlap. If the molecules are considered as spherical particles, this 

probability (X) is extremely small. However, for chain molecule composed of n spherical 

particles, this probability is even smaller (as it scales with Xn). Consequently, this requires an 

extremely large number of trials in order to succeed with an insertion, limiting the use of the 

original Gibbs ensemble to small molecules. To overcome this limitation, a Configurational 

Bias Monte Carlo (CBMC) 29, 30, 31 technique has been proposed, which takes advantage of the 

flexibility of the molecule. The chain molecule is inserted progressively, atom by atom, until 

the whole chain is inserted. For each atom, k attempts are considered corresponding to many 

possible orientations, each characterized by a certain probability, then one is selected. The 

probability to insert atom ‘i’, where ‘i’ indicates its position in the chain is: 

𝑃(𝑖) =
𝐸𝑥𝑝(

−𝑈(𝑖)

𝑘𝐵𝑇
)

∑ 𝐸𝑥𝑝(
−𝑈(𝑗)

𝑘𝐵𝑇
)𝑘

𝑗=1

 (2.121) 

where 𝑈(𝑗) is the total configurational energy of a jth trial direction. 

However, by doing so, the insertion move is now biased, as the algorithm is designed to sample 

only favourable regions in the phase space (generate configurations that follow the Boltzmann 

distribution). Thus, the probability of proposing the transition 𝛼 involved in the microscopic 

reversibility condition of the Markov chain, is no longer symmetrical, but, depends on its 

configurational energy: 

{
𝛼1→2 = 𝑓(𝑈2

𝑐𝑜𝑛𝑓
)

𝛼2→1 = 𝑓(𝑈1
𝑐𝑜𝑛𝑓

)
 (2.122) 

With this, the acceptance rule is modified, and takes into account the fact that a bias was 

introduced to enhance the acceptance. Thus, to remove this bias, the modified rule reads: 

𝑎𝑐𝑐1→2

𝑎𝑐𝑐2→1
=

𝑓(𝑈2
𝑐𝑜𝑛𝑓

)

𝑓(𝑈1
𝑐𝑜𝑛𝑓

)

𝜌2

𝜌1
 (2.123) 

In the Gibbs ensemble 30, this can be expressed as: 

𝛼1→2 = 𝑚𝑖𝑛 [1,
(𝑁−𝑛1+1)𝑉1

𝑛1(𝑉−𝑉1)

𝜌2

𝜌1
] (2.124) 

where V and N are respectively the total volume and particle of the system. 𝑉1 and 𝑉2 = (𝑉 − 𝑉1) 

are the volumes of two boxes. 𝑛1 and 𝑛2 = (𝑁 − 𝑛1)  are the number of particles in the two boxes. 

Actually, the CBMC method is not only applied to the insertion move, but even for the 

displacement and rotations… 

2.3.3 Monte Carlo or Molecular dynamics? 

Normally, if there is no justification to use Monte Carlo, molecular dynamics is the natural 

choice. In this work, the time dependent properties, i.e. transport properties, were obtained from 

molecular dynamics as this is the only option. However, to study the phase equilibria of not too 
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large molecules, the Monte Carlo Gibbs ensemble 32 was the best choice even though this can 

also be obtained by MD simulations. In fact, the use of MD for phase equilibria where an 

interface is explicitly involved requires very large systems which is computationally not 

efficient. Moreover, the interface represents a high free energy barrier for the transfer of 

molecules from one phase to another, making it difficult to reach thermodynamic equilibrium.  

 

 

 

 

 

 

 

 

 

The monophasic phase equilibrium properties in the NVT or NpT ensembles can be studied 

with both techniques, with preference in this work to MD techniques as the properties can be 

obtained in a very reasonable CPU time. However, when a single chain is considered, the Monte 

Carlo is the preferred choice, as it is well-known that many barriers exist in this case and Monte 

Carlo is able to “jump” them by generating configurations (it may explore the high energy 

regions of the phase space) that MD cannot access. As a final comment, the chemical potential 

and derived properties (entropy, free energy…) always requires exchange (insertion, swapping, 

deletion) of particles, which are not related to real dynamics, thus, Monte Carlo is the preferable 

option for such properties. 

2.3.4 Optimization of the simulation efficiency 

2.3.4.1 Periodic Boundary Conditions PBC 

Periodic boundary conditions are used to overcome the fact that the simulation box size is finite 

due to a finite number of particles simulated. Thus, the molecules close to the boundaries will 

exhibit different behaviour due to the boundary effect or “surface effects” from that of the bulk. 

Consequently, their thermophysical properties will be different from those of the bulk. In fact, 

it is the fraction of the molecules that experience the boundaries which is important. Thus, to 

reduce this, one may tend to increase the size of the system, so that this fraction becomes very 

small and their influence on the total bulk thermophysical properties is negligible. However, 

such a solution is not efficient, as it requires high computational time (𝑡𝑖𝑚𝑒𝐶𝑃𝑈  𝑁2). 

Alternatively, periodic boundary conditions can be applied, where the simulation box is 

replicated in all the space directions. This means that every time a molecule leaves the central 

box, it is immediately replaced by its image which enters from the opposite side with exactly 

Figure 2.12: Schematic representation of the Gibbs ensemble. left: 
Molecular dynamics, right: Monte Carlo 
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the same properties as the one that is replaced. The range of interaction for a certain molecule 

should not exceed the radius of 𝐿/2, to avoid self-interactions, known as the minimum image 

convention (MIC). Doing so, makes all the molecules of the system to always be in an infinite 

bulk. The molecules close to the boundaries now interact with the molecules in the image box.  

 

 

 

 

 

 

 

 

2.3.4.2 Cut-off radius & Long range corrections 

Intermolecular forces calculation is the most demanding operation in terms of CPU time, thus, 

optimizing it turns out necessary. In fact, for the evaluation of the forces, ideally, a molecule 

should explore all the interactions with molecules within the simulation box. However, as 

already mentioned, the computational increases as 𝑁2, whereas, for many intermolecular 

interactions models, the configurational energy due to the long range interactions is mostly 

coming from the immediate surrounding molecules, and only a small contribution comes from 

the molecules beyond a certain threshold radius called the cut-off distance. For instance, if one 

considers the Lennard-Jones potential, the contribution at distance 𝑟 = 2.5𝜎 is only around 

1.63% of its value at 𝑟 = 𝑟𝑚𝑖𝑛 corresponding to the well-depth 𝑈𝐿𝐽(𝑟𝑚𝑖𝑛) = 𝜖. Thus, it is 

reasonable to truncate the interaction at a distance radius around 𝑟𝑐𝑢𝑡𝑜𝑓𝑓 ≈ 2.5𝜎 < 𝐿/2  and 

neglecting the interactions beyond the cut-off radius by setting 𝑈𝐿𝐽(𝑟𝑐𝑢𝑡𝑜𝑓𝑓 < 𝑟) = 0. The part 

of the energy neglected can then be easily obtained analytically using the following long range 

correction (where the fluid is considered isotropic, thus, g(r)1): 

  𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 2𝜋𝜌𝑁 ∫ 𝑔(𝑟)𝑈(𝑟)𝑟2𝑑𝑟
∞

𝑟𝑐𝑢𝑡
= 0 (2.125) 

In the NVT ensemble, this correction is constant and so is calculated only once (at the end of 

the simulation), however, it should be recalculated each time the volume changes in the NpT 

and Gibbs MC ensembles. Similar long range corrections exist for other properties, like 

pressure. 

 

 

 

 

Figure 2.13: Schematic representation of the PBC 
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2.3.4.3 Verlet Neighbor Lists 

Even though the forces with the molecules beyond the cut-off radius are not calculated, the 

computational time is not fully optimized as at each time step or move, a check should be done 

on all molecules to determine whether they are inside or outside the cut-off distance. The Verlet 

list method, proposed by Loup Verlet 33, suggests creating lists of particles close to the one 

being processed by taking advantage of the fact that the molecules remain in the same region 

of space during a few integration steps. The new radius 𝑟𝑣𝑒𝑟𝑙𝑒𝑡 which allows the creation of this 

Verlet list is chosen in such a way that a molecule located outside the sphere described by this 

radius does not have the time, between two updates of the list (usually 10 to 20 steps), to 

penetrate the interaction zone of the studied molecules. 

 

 

 

 

 

 

 

 

 

 

  

𝑟𝑐𝑢𝑡 

𝑟𝑐𝑢𝑡 

𝑟𝑉𝑒𝑟𝑙𝑒𝑡 

Figure 2.14: Schematic representation of the cut-off radius 

Figure 2.15: Schematic representation of the Verlet List and Verlet radius 
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2.3.5 Transport properties and structural properties calculation 

2.3.5.1 Viscosity 

The viscosity can be calculated during equilibrium molecular dynamics (EMD) simulations 

using the Green-Kubo formula or the Einstein formula 34, 35. However, such method is 

computationally demanding, as multiple independent simulations are needed and long 

simulations are recommended. As an alternative, particularly for dense fluids, the Reverse Non-

equilibrium molecular dynamics (R-NEMD) simulations  method proposed by Muller-Plathe 36 

is an interesting option. In this approach, the system is perturbed to be out of equilibrium by 

applying an external force. In this scheme, the cause and effect are reversed: the flux is imposed 

and the induced field is measured. This method takes the advantage over some other NEMD 

methods in cases where the flux is difficult to be defined microscopically or difficult to be 

converged. It is this method which is used in this work for the calculation of the liquid viscosity.  

In terms of simulation details, as shown in Figure 2.16, this R-NEMD method consists in 

dividing the simulation box into 𝑁𝑠 = 24 slabs in the z-direction. The momentum is exchanged 

in the x-direction by exchanging particle velocities, between the first and the 
𝑁𝑠

2
 slab, and 

between the 
𝑁𝑠

2
+ 1 slab and the 𝑁𝑠 slab, every 𝑁𝑠𝑤𝑎𝑝time steps, inducing than a shear stress 

which is calculated using: 

𝐽𝑥𝑧 =
∆𝑝𝑥

2𝐴𝛿𝑡𝐿𝑥𝐿𝑦
 (2.126) 

where, ∆𝑝𝑥 is the total exchanged momentum during the time 𝑡, Lx and Ly are the lengths of 

the simulation box in the x and y directions, respectively. 

At the stationary state, viscosity is calculated using the newton’s law for the viscosity of fluids 

by: 

𝜂 = −
𝐽𝑥𝑧
𝜕𝑣𝑥
𝜕𝑧

 (2.127) 
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where 
∂vx

∂z
 corresponds to the shear rate of the velocity profile in one half box (symmetrical) 

evaluated thanks to the local velocity computed in each slab. It is worthwhile to note that the 

choice of the 𝑁𝑠𝑤𝑎𝑝 is appropriately done depending on temperature, density, the stiffness 

coefficient  and the chain length to avoid any shear thinning that may occur during the 

simulation. The shear thinning check is done by evaluating the first and second normal stresses 

differences: 𝑁1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 and 𝑁2 = 𝜏𝑦𝑦 − 𝜏𝑧𝑧 which should be zero in the case of isotropic 

fluid 37.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.5.2 Self-diffusion coefficient 

The self-diffusion coefficient is obtained from EMD 35 simulations using the Einstein relation 

given by the following formula: 

𝐷 =
1

2𝑑
lim
𝑡→∞

<[𝑥(𝑡0+𝑡)−𝑥(𝑡0)]2>

𝑡
 (2.128) 

Where < [𝑥(𝑡0 + 𝑡) − 𝑥(𝑡0)]2 > is the mean square displacement (msd), 𝑥(𝑡0) is the 

molecular centre of mass at the original position, 𝑥(𝑡0 + 𝑡) is the molecular centre of mass 

position after time 𝑡, 𝑑 is the number of dimensions (here is equal to 3) and 𝐷 is the self-

diffusion coefficient. 

2.3.5.3 Radial distribution function 

This radial distribution function (RDF) represents the probability that a particle has a neighbour 

at a given distance r from its center 3. It indicates how the matter is locally structured and gives 

information on the state of the matter. It is related to the structure factor obtained in scattering 

experiments. It also plays an essential role in many theories, such as the thermodynamic 

Momentum Exchange  

z 

x 

Figure 2.16: Schematic view of the momentum transfer process proposed by Müller-
Plathe. The white arrows indicate the direction of the shear. The red colour indicates the 
hot slabs (& particles) and the blue indicate the cold slabs (& particles). The black arrows 

indicate the direction of the momentum exchange. 
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perturbation theory which is of particular interest in this work. Such quantity is easily deduced 

from molecular simulation technique. It consists in dividing the system spatially into shell 

volumes with increasing the radius r centred on particle “i” and counting the number of 

surrounding particles present in each of the concentric shell volumes. This operation is made 

for each particle in the system and propagated over the N time or move steps. They are then 

binned into a histogram and normalized with respect to the overall density, ρ, of the system and 

the volume of the shell, 4πr2dr, where dr is the thickness of the shells. For a homogeneous fluid, 

the formula is given by: 

𝑔(𝑟) =
2𝑉

𝑁2
〈∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)𝑁

𝑖<𝑗
𝑁
𝑖 〉 =

𝑉

𝑁

〈∆𝑁(𝑟)〉

4𝜋𝑟2∆𝑟
 (2.129) 

where N is the number of particles in the system volume V, is the Dirac distribution and 〈∆𝑁(𝑟)〉 

is the mean number of particles in a shell volume of thickness Δr at distance r. 

This idea is illustrated in Figure 2.17. 

 

 

 

 

 

 

 

 

 

 

2.3.5.4 Statistical uncertainties in molecular simulations 

The properties deduced from molecular simulation technique are all subject to statistical errors. 

To estimate these errors, the block average method 1 is used to avoid estimations based on 

correlated data. The method consists in splitting the total simulation run into Nb blocks 

(minimum of 6 is suggested), then the standard error can be estimated using the following 

formula: 

𝐸𝑟𝑟〈𝑋〉 =
𝑠𝑡𝑑(𝑋)

√𝑁𝑏
 (2.130) 

where  

r 

dr 

Figure 2.17: Left: schematic representation of the spatially divided system into 
shell volumes used for the calculation of the radial distribution function (RDF). 

Right: typical response of the RDF in the liquid phase. 
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𝑠𝑡𝑑(𝑋) is the standard deviation of the blocks given by: 

𝑠𝑡𝑑(𝑋) = √
1

𝑁𝑏
∑ (𝑥𝑖 − 〈𝑋〉)2𝑁𝑏

𝑖=1  (2.131) 

where 𝑥𝑖 are the averages of each block, and 〈𝑋〉 is the mean of all the blocks given by: 

〈𝑋〉 =
1

𝑁𝑏
∑ 𝑥𝑖

𝑁𝑏
𝑖=1  (2.132) 

The standard error is often given in the confidence interval of 95%, and thus, in the limit where 

Nb is enough large, the standard error becomes:  

𝐸𝑟𝑟〈𝑋〉 = 𝑍
𝑠𝑡𝑑(𝑋)

√𝑁𝑏
 (2.133) 

where Z~1.96 following the normal distribution. If Nb is <~200, a Student should be used 

instead to estimate Z. 
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3.1 Molecular models: up-scaling 

Computer simulations can be conducted at different spatiotemporal scales, depending on the 

level of details used to describe the molecular model. At the smallest scale, the molecule is 

described by its electrons and protons, and the properties of the system are obtained by solving 

equations such as the Schrodinger or the Dirac wave functions. This quantum, or ab-initio, level 

of detail allows for the determination of the “exact” properties of the matter at very small time 

and length scales, which is necessary for example necessary to understand many phenomena 

involved in chemical reactions. However, only small systems can be considered, as solving the 

many-body wave functions increases exponentially in terms of computational costs with the 

number of simulated particles. Consequently, accessing larger time and length scales requires 

some simplifications. 

Up-scaling leads to an atomistic, i.e. classic, description of the molecule. At this level, electron 

motion is no longer described, but each atom is represented by an effective center of force. This 

model is known as the All Atom model (AA) and will sometimes be referred here as the high 

resolution model. The interactions between the atoms of the system are described by semi-

empirical force fields, which are a set of mathematical equations (pair intermolecular 

interaction potentials and intramolecular interaction potentials, as described in the previous 

chapter) whose forms are generally defined to reproduce the effective potential interactions of 

quantum models. The parameters of the force fields are either obtained using a bottom-up 

approach by fitting these equations to ab-initio calculations, or using a top-down approach by 

fitting macroscopic experimental properties of the matter. At this level, the matter description 

is close to that of real molecules, and the model is then expected to give quasi-experimental 

thermodynamic, transport, interfacial and structural properties of the matter using molecular 

dynamics simulations or Monte Carlo simulations. Examples of models in this category 

includes the COMPASS model 1, the CHARMM model 2, the AMBER model 3, the TraPPE-

EH model 4 and the OPLS-AA model 5. 

The AA model may appear to be the natural choice for accurate predictions of fluid properties 

as it uses a representation very close to that of real molecules. However, it is very demanding 

in CPU time when dealing with long molecules and large systems (such as self-assembly and 

micro-phase separation structures). For example, even a relatively small molecule like normal 

decane contains 32 (22H + 10C) center forces and so would require the evaluation of 1024 

intermolecular distances between tow molecules, not counting those coming from within the 

same molecule. Therefore, considering a large system makes the task very challenging in terms 

of computation time, knowing that the CPU time evolves with the square of the number of force 

centres in the system. Another limitation of the AA model is it parameterization. It requires a 

high number of parameters and requires an exact characterization of the real molecule to be 

modelled, which can be difficult in some cases, such as for asphaltenes. To overcome these 

limitations, further simplifications can be proposed. 

At the next level of the computer simulations scale, instead of using a high resolution definition 

of the molecule, a center force can be represented by chemical groups. This model is known as 

the United Atom model (UA). In this model, hydrogens are not considered explicitly, but are 
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taken into account in the pseudo-atoms such as CH, CH2 and CH3 chemical groups. This 

reduces the number of internal degrees of freedom that define the molecule and, consequently, 

the number of parameters defining the force field are reduced as well, leading to a simpler 

parameterization compared to the AA model. For example, using a UA model, the decane 

molecule is defined by only 10 center forces (2CH3 + 8CH2) and the interactions between two 

molecules would require the evaluation of 100 intermolecular distances instead of 1024 for the 

AA model. As mentioned previously, the CPU time scales roughly with the square of the 

number of center forces in the system. Hence, it is expected to be reduced by 1/10th of that 

required for an AA model. Consequently, UA models are widely used in the literature for many 

applications as they make feasible simulations of large time and length scales. Among the most 

popular UA models, there are the TraPPE-UA 6, the OPLS-UA 7, the NERD 8 and the 

anisotropic ones such as that of Toxvaerd 9 and the AUA 10.  

 

 

 

 

 

 

 

 

 

 

 

Despite the success of the UA model in accurately representing the properties of materials in a 

reasonable amount of computational time, more effort is needed to tackle problems at the 

mesoscale level, such as the study of dynamics of proteins and the behaviour of polymer 

molecules, among others. Even for less complex molecules such as n-alkanes, in terms of 

engineering requirements, it is always desirable to obtain data in a short time with fewer 

computer resources. Thus, in order to access to large time and length scales and to make 

molecular simulations compatible with engineering requirements by speeding up the 

simulations, it is necessary to scale-up the model by relaxing further internal degrees of 

freedom. A coarse grained (CG) model is then an appealing option, where a pseudo atom may 

contain two, three or four CH2 or CH3 groups, leading to a reduction in the dimensionality of 

the system. For example, if a decane molecule is modelled using a coarse grained approach, the 

whole decane molecule could be described by a three center forces model. The total 

intermolecular distance to evaluate for two molecules of decane is then reduced to 9 with the 

Figure 3.1: Schematic representation of the up-scaling approach in molecular 
modelling. From Ab-initio scale to the continuum scale. AA stands for All Atom 

model, UA stands for United Atom model and CG stands for Coarse grained model. 
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coarse grained model! As a consequence, the CPU time is reduced by 1/10th of the amount 

need with a UA model and by 1/100th of the amount required for an AA model. 

Compared to the AA or UA models, the energy landscape of the CG model becomes smoother 

due to the loss of many fluctuations caused by molecular vibrations. This makes it possible to 

perform simulations with a larger time step, thus better sample the phase space. Larger and 

more complex systems 11,12 can then be explored in a much more reasonable computational 

time, while still keeping most of the physics well described. Moreover, the number of 

parameters of the model is much lower than the AA and UA model, making their determination 

much easier. Another interesting feature of some of the CG model lies in their compatibility 

with the Statistical Association Fluid Theory (SAFT), making the transferability of the 

parameters of the force field between the two approaches possible. Additional advantage is that 

the equilibrium properties of the model could be obtained in seconds with the use of SAFT 

equations of state, instead of performing extensive molecular simulations. Such a CG 

representation is also widely used in the literature, particularly with the development of SAFT 

models. One may cite the works of Klein 11, Nielsen 13, Voth 14,  Reith 15, Moore 16, Shell 17, 

Hoang 18, MARTINI 19, and those from SAFT equations of states such as the soft-SAFT 20 and 

SAFT--Mie 21. 

However, because of the lack of many internal degrees of freedom, the structural properties and 

dynamical properties are often only approximately predicted using CG models. This is a 

problem that we aim to address in this work by, first, restoring some internal degrees to the 

molecules and second, by proposing a new robust parametrization strategy for the determination 

of the parameters of the force field. 

3.2 Parametrization strategy: Bottom-up vs Top down 

Two main approaches are available in the literature for determining the parameters of a CG 

model. The first is the bottom-up approach 22, where, a priori, the number of atoms assigned to 

a single bead (sphere, monomer or segment) is determined and the parameters of the CG model 

are determined from the fine grained (FG) model. The second is the top-down approach, which 

is widely used to develop CG SAFT based models. It relies on constraining the parameters of 

the model to reproduce macroscopic properties of fluids that are experimentally measurable.  

3.2.1 Bottom-up approach 

The most widely used approach in a bottom-up approach is probably the iterative Boltzmann 

Inversion Method (BIM). In its original form, the non-bonded parameters of the low resolution 

model are updated until the radial distribution function (RDF) of the low and high resolution 

models, at a specific state point, match 15, 23 according to the following scheme: 

𝑈𝐶𝐺
𝑛+1(𝑟) = 𝑈𝐶𝐺

𝑛 (𝑟) − 𝑘𝐵𝑇𝑙𝑛
𝑔𝐴𝐴(𝑟)

𝑔𝐶𝐺(𝑟)
 

(3.1) 

 

The bonded parameters are determined in a non-iterative way using a direct BIM by inverting 

an analytical distribution function for bonds, angles, dihedrals 24. This allows the model to 
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reproduce short ranged properties, as the local structure of fluids is more sensitive to the 

repulsive part of the potential 25. However, it is less sensitive to the properties affected by long 

range interactions. As a result, the resulting CG model may fail to reproduce properties such as 

pressure or isothermal compressibility 15, 26, which are heavily influenced by the long range 

contributions. To address this issue, an additional post-optimisation process is done by adding 

pressure or Kirkwood-Buff integrals (KBI) as a target in the merit function in addition to the 

RDF 15, 26, 27, 28. Actually, it is the Potential of the Mean Force (PMF) which is updated to meet 

the target function (RDF) and not the pair particles interaction potential. This means that the 

optimised parameters of the mesoscale model are state dependent and should, therefore, not be 

used at another state (weak transferability). To overcome this limitations, using a multistate 

iterative BIM 16 scheme can significantly reduce the dependence of the derived potentials on 

the thermodynamic state used in the optimisation, compared to the original version. 

Moreover, the choice of the mapping scheme is not an easy task 29 as the structural fluid 

properties are highly sensitive to it. The choice of the FG model to fit is also crucial. In other 

words, the quality of the CG developed using this approach is strongly dependent on the quality 

of the high resolution model (such as an AA or UA force field), as some of them may exhibit 

inadequate behaviours at some conditions, such as what was observed for normal dodecane 

(nC12) using a version of the OPLS-UA FF 30, 31. These problems arise due to the parametrisation 

strategy used to fit the intermolecular parameters, where, in the case of the OPLS-UA, they are 

fitted on liquid densities and the heat of vaporisation at atmospheric pressure. 

 

 

 

 

 

 

 

 

 

 

Alternatives to the IBM are available in the literature, such as the Force Matching (FM) method 
32 proposed by Voth and co-workers, or the elegant one based on the relative entropy concept 
33, 34 proposed by Shell and co-workers. The latter method measures the loss of information 

when moving from a high resolution model to a low resolution one. In other words, it measures 

the change in the configuration-space probabilities between the low resolution model and that 

Figure 3.2: Schematic representation of the Bottom-up and Top-down 
parameterization approaches. 
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of the mapped coarse grained model. In the FM method, instead of looking at the structure of 

the fluid as the BIM does, it focuses on the forces and trajectories. The intermolecular 

interactions parameters are then obtained by minimising the difference between the forces 

acting on the coarse grained model and that of the atomistic model (or between the atomistic 

model and that from ab-initio). Unlike the iterative BIM, the FM method is non-iterative and is 

based on a least-square minimisation procedure. 

3.2.2 Top-down approach 

A top-down approach consists of parametrizing the force field by constraining the molecular 

parameters to reproduce experimental target properties. In practice, such an approach is only 

used to obtain the parameters of the intermolecular potentials of fully flexible models. This is 

the case of most models based on the Statistical Association Fluid Theory approach 35 

developed by Chapman and co-workers. Among them, the one may cite the original-SAFT 35, 

the soft-SAFT 36, the SAFT-VR-Mie 37–39 and the PC-SAFT 40. These equations of state 

describe a fluid consisting of freely and tangentially bonded segments interacting through 

different type of intermolecular potentials. Since all common SAFT models rely on the 

Thermodynamic Perturbation Theory (TPT) of Wertheim truncated at the first level 41, 42, they 

do not include any information regarding the intramolecular interactions and structure. This is 

a problem that will be addressed in the next chapter of this thesis. The intermolecular parameters 

can be fitted on liquid density, saturation pressure, heat of vaporization, heat capacity... The 

optimisation is done upon this following objective function: 

𝑚𝑖𝑛 𝐹(𝜃) = ∑
𝑤𝑁𝑝𝑟𝑜𝑝

𝑁𝑋𝑒𝑥𝑝
∑ [

𝑋𝑒𝑥𝑝−𝑋𝑆𝐴𝐹𝑇(𝜃)

𝑋𝑒𝑥𝑝
]

2
𝑁𝑋𝑒𝑥𝑝

𝑛=1
𝑁𝑝𝑟𝑜𝑝

𝑖=1  (3.2) 

Where 𝑁𝑝𝑟𝑜𝑝 is the number of different properties involved in the fit, 𝑁𝑋𝑒𝑥𝑝 is the number of 

experimental data points per property used in the fit, 𝑤𝑁𝑝𝑟𝑜𝑝 is the property associated weight, 

𝑋𝑒𝑥𝑝 is the experimental property to optimise on, 𝑋𝑆𝐴𝐹𝑇(𝜃) is the calculated property from the 

SAFT model, and finally 𝜃 is the set of the intermolecular parameters that defines the 

intermolecular potential used in the SAFT version model. Such models are known to provide 

accurate thermodynamic properties. However, the lack of most internal degrees of freedom of 

the molecule in the model, makes them limited for the prediction of the structural and transport 

properties as it will be shown latter. 

The parametrization of a semi-rigid model is usually done by coupling two approaches, where 

the bottom-up approach serves for the determination of the parameters of the intramolecular 

interaction potentials such as stretching, bending or torsional potentials, and the top-down 

approach for the estimation of the parameters of the intermolecular interaction potentials. This 

approach is widely used to parametrize the united atom or coarse grained force field models, 

such as the TraPPE-UA and the TraPPE-CG developed by Siepmann et al. 6, 43, the AUA 

developed by Ungerer et al. 44, the OPLS-UA and OPLS-AA developed by Jorgensen et al. 5, 7, 

45, that of Nielsen et al. 46, the MARTINI developed by Marrink et al. 19, 47. The non-bonded 

intermolecular parameters are constrained to fit certain macroscopic measurable experimental 

data, while the bonded interaction parameters are usually fitted to ab-initio data.  
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The choice of the properties used to adjust the intermolecular parameters is often dependent on 

the application for which the force field is designed. In the case of LJ-based force fields such 

as the AUA(4) 48 model, it uses vapour pressure, liquid density and heat of vaporization as 

target properties. The TraPPE-UA 6 uses the critical temperature and the saturated liquid density 

and, in a recent version, a saturation pressure was included by Janecek and Paricaud 49. The 

MARTINI force field, which is probably the most widely used one for studying biomolecular 

systems, is fitted to the water-oil partitioning free energy (∆𝐺𝑂𝑖𝑙/𝑤𝑎𝑡𝑒𝑟) for 18 CG selected 

particles 47: 

∆𝐺𝑂𝑖𝑙/𝑤𝑎𝑡𝑒𝑟 ≈ 𝑘𝐵𝑇𝑙𝑛
𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
 (3.3) 

The parameters are estimated in a similar way as for the coarse grained SAFT based models by 

minimising the objective function iteratively. In both approaches, the strategy relies on 

including a large amount of experimental data covering wide range of thermodynamics 

conditions in the objective function. Indeed, the larger the amount of data used, the better the 

transferability of the force field, but this is subject to some limitations, for example:  

- it often involves a large amount of experimental data to cover a wide range of 

thermodynamics states that are not always available; 

- many solutions can exist because of the presence of many local minima, due to the use 

of many data and different types of properties, making the convergence to the global 

minima challenging. The local minima make the parameters estimated physically less 

consistent; 

- the critical points are usually overestimated, leading to poor prediction of supercritical 

properties; 

- the transport properties predicted with this approach are, most of the time, inaccurate.  

Alternatively, another strategy based on the top-down approach, called Corresponding State 

strategy (CS), mainly inspired from Cubic Equations of States (C-EoS) parametrization, is 

available. It was first applied by Mejia et al. 39 to parameterize a coarse grained model based 

on the SAFT--Mie EoS, and later by Hoang et al. 18 to parametrize the Mie chain CG model 

(MCCG) and by Moine et al. to parametrize the I-PC-SAFT EoS. The CS strategy presents 

excellent features, among them, the number of experimental data required is the same as the 

number of the parameters held by the model. This reduces considerably the amount of 

macroscopic experimental data required for the parameters estimation when compared to the 

classical top-down strategy. Moreover, to ensure that the force field parameters are physically 

consistent, each parameter is independently obtained from one specific macroscopic property 

chosen from a dimensional analysis. For instance, the intermolecular energetic interaction 

parameter is constrained by a purely energetic macroscopic property, such as the critical 

temperature. The segment size diameter is constrained by a purely volumetric property, such as 

density. Other properties can also be considered, such as the critical pressure used by Moine et 

al. 50 or a transport property like viscosity considered by Hoang et al.18. The inclusion of this 

latter property in the optimisation showed extremely interesting results. First, if only 

equilibrium properties are used for the parametrization may lead to an indeterminacy in the set 

of parameters that minimises the objective function. The inclusion of a transport property, such 
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as viscosity, ensures the uniqueness and the consistency of the obtained set of parameters 18. 

Second, the prediction of the liquid viscosity is strongly improved compared to force fields 

parametrized only on equilibrium properties, as shown in the works of Messerly et al. 51 and 

Papavasileiou et al. 30. However, a systematic underestimation of the liquid viscosity at low 

temperature is observed when considering large chain molecules, which is attributed to the fully 

flexibility nature of the model. A problem that we are going to address in this work.  

3.3 An overview of the predictive capabilities of some up-scaled force 

fields 

3.3.1 United atoms 

The first modern force field using extensive adjustment of the molecular parameters is the 

OPLS-UA (optimized potentials for liquid simulations) developed by Jorgensen et al. 7, where 

the intermolecular parameters were adjusted to reproduce liquid density and heat of 

vaporization of organic compounds at ambient pressure and temperature. The intramolecular 

parameters were adjusted on quantum mechanical calculations. The model was found relatively 

accurate in reproducing the experimental equilibrium properties of small molecules.  

Few years later, based on the work of Ryckaert and Bellemans 52, who proposed the first version 

of united atom model, Toxvaerd 53 showed that the models based on the UA did not scale very 

well with respect to temperature and density because they did not properly account for the effect 

of hydrogens. He then proposed the first version of the so-called Anisotropic UA model 

(AUA(1)) which can be considered as a more realistic model of n-alkanes. Better agreement 

was obtained for the normal propane, pentane and decane molecules.  

A year later, Padilla and Toxvaerd 9 showed that the model needed to be readjusted to better fit 

the structural and transport properties. They reparametrized the parameters of the torsional 

potential of the AUA(1) to better fit the self-diffusion coefficient. This was probably the first 

time where a transport property was included as a target property in the fitting procedure. 

Moreover, that work highlighted that transport properties are very sensitive to the 

intramolecular conformations. A third generation of the anisotropic was latter proposed by 

Toxvaerd 54 by refining the molecular parameters to high pressure data of pentane and decane 

in the range of [298K-673K]. 

In the meantime, Smit et al. 55, 56 noted that the OPLS-UA model only reproduces  equilibrium 

properties correctly for short molecules. For instance, the critical temperature was found to be 

highly overestimated for molecules with more than 5 carbons for the normal alkanes. The 

authors proposed a new model often referred to as the SKS model (stands for the first letter of 

the authors: Smit, Karborni and Siepmann) addressing the issue of the critical temperature 

observed on the n-alkanes when using the OPLS-UA model. It was later refined and extended 

to branched alkanes by Siepmann et al. 57 and referred to as SMMK. A year later, Martin and 

Siepmann 6 published the final version of the SKS model referred to as ‘transferable potentials 

for phase equilibria’ (TraPPE) force field. The parameters were re-adjusted to yield correct 

critical temperature and coexistence liquid curve densities of ethane and n-octane. It was then 

tested on a series of n-alkanes up to nC48, and the model was found to give better prediction 
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compared to all the previous force fields cited until now. At the same time, Nath et al. 8 proposed 

a slightly modified version of the TraPPE force field denoted as the NERD force field. It was 

fitted to orthobaric densities and second virial coefficient of short and long n-alkanes, and was 

found to yield globally better prediction of the equilibrium properties, particularly, for the 

saturation pressure, but still exceeded experimental measurements.  

In 2000, Dysthe et al. 58 conducted the first extensive study on the predictive capability of the 

force fields cited until now (except for the NERD) regarding transport properties. The study 

showed that none of the force fields were capable of predicting the correct liquid viscosity 

which was underestimated, or the self-diffusion coefficient, which was overestimated, of the n-

alkanes. The study showed that the mean deviations over all states, considering both viscosity 

and self-diffusion for both nC4 and nC10 are: AUA(2) 24%, SKS 26%, AUA(3) 30%, SKS/2 

42%, OPLS 48%, SMMK 54% and SMMK/2 99%. Unsurprisingly, it is the AUA(2) that yields 

the least worst predictions due to the fact that in the Padilla and Toxvaerd work, self-diffusion 

was included in the fit. The SKS/2 and the SMMK/2 are the same as the SKS and SMMK, 

except that their torsional potential (taken from the OPLS-UA) has been dived by factor of two. 

Therefore, the deviations are increased almost by a factor of two also, highlighting the high 

sensitivity of the transport properties on the molecular internal degrees of freedom.  

At the same time, Errington and Panagiotopoulos 59 proposed a UA force field based on the 

Buckingham potential which performs better than the TraPPE or the NERD models regarding 

the equilibrium properties (on which it was fitted), and Ungerer et al. 44 proposed a fourth 

generation of the AUA(4) force field, where the parameters are fitted on saturation pressure, 

liquid density and heat of vaporization of three n-alkanes: ethane, pentane and dodecane. In this 

latter work, an approach based on the gradient method was proposed for the minimization of 

the objective function. The model has been compared to the AUA(3) over many properties and 

molecules as well as for the self-diffusion coefficient and CO2-n-alkanes mixture. It was found 

that in all cases, that the AUA(4) yields better agreement with the experiments. Zhang and Ely 
60 proposed an AUA model based on the Buckingham potential similarly to that of Errington 

and Panagiotopoulos. However, the parametrization was done on the viscosity. The model 

yields very good prediction on the viscosity mixture of alkanes-alcohol, but unfortunately, the 

authors did not report any data on its performance on the equilibrium properties. 

To improve the prediction of the transport properties with the AUA(4), Nieto-Draghi et al. 10 

have proposed to refit the torsional potential to reproduce the liquid viscosity of the n-heptane 

and the internal CH-group vector reorientation dynamics reported by the NMR C13T1 spin 

lattice experiments. The modified model is denoted as AUA(4m) and yield better viscosity and 

self-diffusion properties compared to the previous one.  

Other models based on the AUA representation have been proposed later by Potoff and 

Bernard-Brunel 61 denoted as Potoff force field, and by Hemmen and Gross 62 denoted as 

TAMie force field. The two models are based on the generalized LJ-potential (λ-6), where in 

the case of n-alkanes, λ is fixed to 16 for the Potoff and to 14 for the TAMie. The two models 

have been regressed on the equilibrium properties and saturation pressure of n-alkanes, and 

results have shown that while the Potoff is found better for the coexistence densities, the TAMie 

is found better on the saturation pressure prediction. The united atom TraPPE force field, has 
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recently be reparametrized to improve the vapour pressure prediction. This was done in the 

work of Van Westen et al. 63 who proposed a parametrization based on the PC-SAFT EoS, 

where the fitting has been made on liquid density, saturation pressure and heat of vaporization. 

The same target properties were also considered by Janecek and Paricaud 49 who proposed a re-

parametrization using a strategy of minimization of the objective function based on the gradient 

method proposed by Bourasseau et al. 48. More recently, Shah and Siepmann 64 proposed an 

improved version, called TraPPE-UA2, for the ethane and ethylene. Messerly et al. 51 studied 

the predictive capability on the liquid viscosity of some united atom force fields including the 

TraPPE–UA, the AUA(4m), the Pottof-AUA and the TAMie-AUA. The Pottof and the TAMie 

were found giving better predictions compared to the two LJ based models, indicating the 

superiority of the of Mie-6 potential. The Pottof exhibited some advantages at saturation 

conditions, while the TAMie was found to give a correct trend at high pressure. Globally for 

both models, results were found to degrade for larger molecules at low temperature and at high 

density. 

3.3.2 Coarse grained 

A large number of coarse-grained force fields have been proposed in the literature. Most of 

them rely on iterative molecular simulations for the optimization of the force field. The 

advantage of these force fields is that they are designed to provide some specific properties. 

However, few of them are dedicated to perform well on the thermophysical properties of simple 

fluids, as most of them are designed to study properties of biomolecules (proteins, lipids…). 

Among those which consider thermophysical properties as target properties, one may cite the  

work of Shelley et al. 65. In that work, for the n-alkanes, the direct BIM was used to obtain the 

intramolecular parameters, while the intermolecular parameters interaction of the LJ(9-6) 

potential were obtained by fitting them to reproduce the liquid density and vapour pressure of 

the n-dodecane. Nielsen et al. 46 proposed a new parametrization of the Shelley’s work. While 

the same strategy was used for the intramolecular parameters by fitting them to structural 

properties of a CHARMM all atom force field, the intermolecular interaction potentials were 

adjusted to reproduce bulk density and surface tension of alkanes at 1 bar and T=303K. The 

model provided roughly good structural and surface tension properties at the same temperature 

of fitting. However, the temperature dependence of the density was not accurately captured and 

the self-diffusion coefficient prediction was only qualitative. Later, Shinoda et al.66 proposed a 

multi-properties fitting. The authors considered the bulk density, surface/interfacial tension, 

structural and compressibility of water and free energy. Even though they consider 

thermodynamic properties as target properties, this force field was not widely used for the 

prediction of thermophysical properties of fluids. Thus, its predictive capability on the viscosity 

is unknown, but, one may expect some deviations as the self-diffusion is predicted only 

qualitatively for the n-alkanes 46.  

The MARTINI force field19, 47, which is widely used to study biomolecules such as proteins, 

lipid, amino acids…has been developed using a direct Boltzmann inversion method to 

reproduce the structural properties of an all atom model. The intermolecular parameters of the 

LJ(12-6) potential have been obtained by fitting them to the oil/water partitioning coefficients, 
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the free energy of hydration and the free energy of vaporization. Because no information on the 

vapour phase is included in the parametrization, the model is expected to give poor predictions 

of the vapour density and saturation pressure. Papavasileiou 30 showed that the MARTINI 

overestimates liquid densities, particularly in the case of n-C12.  

An et al. 67 proposed a coarse grained force field for hydrocarbons, where all the parameters 

(inter and intra) were optimized on experimental values of density, enthalpy of vaporization, 

self-diffusion coefficient, and surface tension of normal decane at 300 K and refined to map the 

trajectories of the CHARMM all atom force field. The model showed good transferability when 

tested at other temperatures and gives satisfactory results on all optimized properties, except 

self-diffusion which exhibits noticeable deviations increasing with the carbon number. 

A coarse grained version of the TraPPE force field was developed by Maerzke and Siepmann 
43, named as TraPPE-CG. The model was parametrized using the multistate iterative Boltzmann 

method at three distinct temperatures (300K, 400K and 500K). The model showed very good 

reproduction of the equilibrium and structural properties of the TraPPE-UA which was used as 

the reference high resolution model to fit upon. Knowing the relatively poor prediction of the 

TraPPE-UA for vapour density and saturation pressure, one may expect that the comparison of 

the TraPPE-CG to experiments will exhibit the same weakness. The transport properties 

predictions as well are expected to be relatively poor, even if not evaluated.  

3.3.3 SAFT based Coarse grained 

In the last decade of the 20th century, another type of force fields emerged, of the coarse grained 

type, that relied on the perturbation theory of Wertheim 41, and more precisely, on the SAFT 

type equations of state developed by Chapman 68. These included the SAFT-HS developed by 

Huang and Radosz 69, the LJ-SAFT developed by Johnson et al. 70, the soft-SAFT developed 

by Blas and Vega 71, the SAFT-VR developed by Gil-Villegas et al. 72, the PC-SAFTD 

developed by Gross and Sadowski 40 and the SAFT-VR-Mie developed by Lafitte et al. 37. 

These models became increasingly popular for a variety of applications due to their 

compatibility with molecular simulations, which allows for the transfer of force field 

parameters from the EoS to molecular simulations. Additionally, these models are able to 

produce results in seconds, whereas molecular simulations can require hours or days. However, 

molecular simulations also allow for the computation of other type of properties, such as the 

transport, interfacial and structural properties which not directly accessible form the EoS.  

A good example of the transferability of the force field from EoS to molecular simulations can 

be found in the series of papers of the Jackson, Müller and co-workers using SAFT--Mie group 

contribution EoS. They systematically transferred the parameters and performed molecular 

simulations for a variety of systems. Example of these articles include the work of Avendano 

et al. 73, 74, Lafitte et al. 75, Lobanova et al. 76, 77 and Rahman et al. 21. These works showed that 

the thermodynamic properties predicted by either the equation of state or the molecular 

simulation were in very good agreement with experiments. The work of Rahman et al. is of 

particular interest, as it demonstrates for the first time that SAFT based force field approach are 

subject to a great weakness when considering transport properties. This is because all SAFT 

models are based on the TPT1 of Wertheim which do not take into account the internal degrees 
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of freedom of a molecule, and thus, the SAFT force fields are fully flexible. To alleviate this 

weakness, Rahman et al. 21 proposed adding some internal degrees of freedom (bonding and 

bending potentials) by mapping their force field to that of the TraPPE united atom and then 

obtained the parameters using a multistate direct Boltzmann inversion method. The results show 

very good predictions for viscosity and self-diffusion coefficient. 

3.4 Towards an improved coarse grained model 

The poor prediction of the viscosity with coarse grained models is particularly highlighted in 

the work of Galliéro 78. The author used a fully flexible Lennard-Jones chain coarse grained 

(LJCCG) molecular model, where the molecular parameters were optimized on the liquid 

density and saturation pressure. The results showed that while accurate equilibrium properties 

could be obtained, less accurate surface tension was obtained and very poor prediction were 

observed for the transport properties such as viscosity and thermal conductivity. Galliéro 

pointed out that the lack in the internal degrees of freedom is responsible for the deterioration 

of the transport properties prediction when considering large alkanes. The author performed 

few simulations by adding a bending potential, and showed that it is possible to remedy the 

weakness of the viscosity prediction if an additional fourth parameter, molecular “rigidity”, is 

included to the model while maintaining the same accuracy on equilibrium properties. Later, 

Hoang et al. 18 proposed a Mie chain coarse grained (MCCG) force field, similar to that of Mejia 

et al. 39, but including viscosity as a target property in addition to equilibrium properties, as 

viscosity in dense medium is very sensitive to the repulsive contribution of the interaction 

potential 79. The results obtained by the model named MCCG were excellent for equilibrium 

properties, interfacial and transport properties, probably better than most existing force fields 

including fine grained models 6. However, systematic underestimation of the liquid viscosity at 

low temperature for large alkanes was noted, attributed to the fully flexibility nature of the force 

field. 

This overview showed that there is a lack of force fields that are capable to provide 

simultaneously accurate thermodynamic and transport properties of simple fluids such as 

normal alkanes. Most of the force field are designed to reproduce only equilibrium properties 

or structural properties, and only a few are capable of reproducing accurate transport properties. 

While accurate equilibrium properties are driven by a robust parametrization of the 

intermolecular potential interaction, accurate transport properties also require a robust 

parametrization of the intramolecular potential interactions. Indeed, the work of Nieto-Draghi 
10 for the AUA(4m) and of Galliéro 78 for the LJCCG, highlighted that if these intramolecular 

potential are parametrized on a transport property as well, significant improvement could be 

achieved while keeping the equilibrium properties accurately predicted.  

Thus, the development of a coarse grained force field that is capable of predicting both transport 

and equilibrium properties simultaneously with the same accuracy is still an open issue. If, in 

addition, the force field is also able to predict structural properties and interfacial properties, 

this would be of great interest as well. This is the aim of the proposed option described in this 

chapter. 
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3.4.1 Semi Rigid Lennard Jones Chain Coarse Grained model 

The coarse grained molecular model chosen in this work consists in spherical beads, 

tangentially connected to form chain molecules, which interacts through a Lennard-Jones 12-6 

potential:  

𝑈𝐿𝐽(𝑟𝑖𝑗) = 4휀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (3.4) 

where 휀𝑖𝑗 is the potential well depth, 𝜎𝑖𝑗 is the bead diameter and 𝑟𝑖𝑗 is the atom-atom distance. 

This model is called the Fully-Flexible LJCCG (FF-LJCCG). It involves two molecular 

parameters (휀𝑖𝑗 ; 𝜎𝑖𝑗) and the number of segments (m) forming the chain molecule. This fully-

flexible-LJCCG model has been widely studied in the literature using direct molecular 

simulations 15, 80–83, or through the use of the Statistical Association Fluid Theory (SAFT) 70, 71. 

It showed very good capabilities to describe the equilibrium properties of real fluids and their 

mixtures over a wide range of thermodynamics conditions. However, this simple FF-LJCCG 

has some difficulties in predicting transport properties such as viscosity 78 at low temperature 

and as the chain length becomes longer. This weakness is mostly due to its fully flexible nature 

and so the bad representation of the internal degrees of freedom.  

A question that may be raised is, instead of an additional molecular parameter, what would be 

the predictive capability of this fully-flexible model if a transport property is included as a target 

property to reproduce? To answer this question, there are three distinct options that could be 

evaluated. The first consists in parametrizing the intermolecular parameters on liquid density 

and saturation pressure only, the second option includes saturation liquid viscosity to the 

objective function, and the last option consists of using only saturated liquid viscosity as the 

target property. The results for the n-decane molecule are shown in Figure 3.3. 

The results of the first option is already known from the work of Galliéro 78, but it was added 

for comparison. Results of the second and third options, are more interesting to analyze. In the 

case where parametrization is done upon both type of properties (equilibrium + viscosity), 

results show that a small improvement could be obtained on liquid viscosity. However, strong 

deviations are obtained on saturation pressure and critical temperature. In the third case, where 

the viscosity is set as the only target property, results show that a slight improvement on 

viscosity is obtained compared to the latter case, but, strong deviations are obtained on 

equilibrium densities and saturation pressure. 
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From these results, it is clear that none of the options lead to a good compromise in the 

prediction of the two type of properties, due to the fact that three parameters are not enough to 

give flexibility to the model to represent these fluid properties simultaneously. Moreover, the 

incapability to reproduce the viscosity at low temperature, even in the case where this property 

was set as the only target property, indicates some intrinsic limitations of the chosen CG model.  

Thus, to address the issue raised previously, it is proposed in this work to add an additional 

fourth molecular parameter to the FF-LJCCG related to the molecular internal degrees of 

freedom. More precisely, this additional parameter consists of modulating the molecular 

“stiffness” using a bending potential type: 

𝑈𝑏𝑒𝑛𝑑(𝐾𝜃) =
1

2
𝐾𝜃(𝜃 −  �̅�)2 (3.5) 

Figure 3.3: Test of different objective functions for the parametrization of the fully-
flexible LJCCG force field along the vapour-liquid coexistence line. 
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where 𝐾𝜃 is the stiffness coefficient, �̅� = 𝜋 is the equilibrium angle between three adjacent 

beads. 

Thus, rather than being completely freely jointed, three successive segments of the same 

molecule, are now constrained through a harmonic bending potential around an equilibrium 

angle of 180°. The proposed model is so called Semi-Rigid LJCCG (SR-LJCCG). 

3.4.2 Simulations details 

3.4.2.1 Equilibrium properties calculations 

Extensive Monte Carlo molecular simulations were performed to determine the vapour liquid 

phase equilibria of the of the Semi-Rigid LJCCG in the Gibbs Ensemble (GEMC) 84, 85 using 

MCCCS Towhee software 86. The configurational-bias Monte Carlo method 87, 88 was used to 

improve molecular acceptance moves and transfer between the two boxes when dealing with 

long chains. A minimum of 1000 monomers were taken for the longest chains and a maximum 

of 2000 monomers were taken for the shortest ones. Each simulation was performed in two 

steps, an equilibration step consists in 40 𝑥 106 moves, followed by a production step 

consisting in 100 𝑥 106 moves. The cut-off distance was set equal to 4.2𝜎. 

 

In the following most results are presented in classical LJ dimensionless units, which are given 

as follows: 

𝛿𝑡∗ = 𝑡𝜖1/2𝑀−1/2𝜎−1 (3.6) 

𝜌∗ = 𝜌𝑛𝜎3 (3.7) 

𝑃∗ =
𝑃𝜎3

𝜖
 (3.8) 

𝑇∗ =
𝑘𝐵𝑇

𝜖
 (3.9) 

𝐾∗ =
𝐾𝜃

𝜖
 (3.10) 

𝜂𝑟 = 𝜂
𝜎2𝜌−2/3

𝑀√𝜖𝑘𝐵𝑇
 (3.11) 

where t is the time, ρn =N/V is the number density, N is the total number of spheres in the system 

(i.e., N=mNc, with m is the chain length and Nc is the total number of molecules), V is the 

volume of the simulation box, M is the mass of a sphere, P is the pressure, T is the temperature, 

η is the viscosity and ηr is the reduced viscosity.  

The critical temperature and density were estimated using the following classical scaling laws: 

𝜌𝐿
∗ − 𝜌𝑉

∗ = 𝐴(𝑇𝐶
∗ − 𝑇∗)𝛽  (3.12) 

𝜌𝐿
∗−𝜌𝑉

∗

2
= 𝜌𝐶

∗ + 𝐵(𝑇𝐶
∗ − 𝑇∗)  (3.13) 

The critical pressure is then deduced from a second order Antoine like relation as follow: 

𝐿𝑛(𝑃𝐶
∗) =

𝐴

𝑇𝐶
∗2 +  

𝐵

𝑇𝐶
∗ + 𝐶  (3.14) 
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Where A, B and C are the fitted parameters on the saturation pressure up to 𝑇 𝑇𝐶⁄ ≤ 0.95. 

More precisely, regarding the determination of 𝑇𝐶
∗ and 𝜌𝐶

∗ , the scaling have been fitted 

progressively by increasing the temperature range up to the critical point. Doing so, may 

provide critical properties which are function of the number of data points considered in the 

fitting. After reaching a stabilization, 𝑇𝐶
∗ is taken as the average of the stabilized plateau.  A 

similar strategy has been applied to the calculation of the acentric factor, by including 

progressively low saturation pressures in the fitting. An example is given in Figure 3.4. This 

strategy helps to avoid including data points that may bias the fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The derivative properties were calculated using Monte Carlo simulation in the NPT Ensemble 

by means of an in-house code 89, 90. In all cases, an equilibration step consisting of a 50 𝑥 106 

moves followed by an equilibration step of a 200 𝑥 106 steps were used. The cut-off radius was 

put equal to 5𝜎. These properties were deduced from the fluctuation theory. The reader is 

referred to chapter2 (NpT ensemble section) for the details of the equations. 

Figure 3.4: Evolution of the critical temperature, density and the acentric 
factor with respect to the number of data points included in the fit. 
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3.4.2.2 Transport properties calculations 

The viscosity was calculated using the Reverse Non-Equilibrium Molecular Dynamics 

(RNEMD) 91 simulation in the NVT ensemble by means of the homemade code “Transpore” 

validated elsewhere 18, 81, 92. The system is equilibrated for a minimum of 1.5 𝑥 106 time steps, 

followed by a transient regime of 2 𝑥 106, and then a production step of a minimum 10 𝑥 106 

(for short molecules) to 16 𝑥 106 (for the longest molecules) time steps. The self-diffusion 

coefficient is obtained using MD simulation run in NVT ensemble. The run was separated into 

an equilibration step of a 1.5 𝑥 106 time steps and a production step of 18 𝑥 106 time steps. 

The initial position was updated each 3 𝑥 106 time steps. 

The velocity Verlet algorithm is employed to integrate the equations of motion with time step 

 𝛿𝑡∗ = [0.002 − 0.003]. The bond length between successive beads in the chain molecule was 

maintained fixed by means of the RATTLE method 93. To maintain the temperature, the 

Berendsen thermostat 94, 95 was applied. The classical periodic boundary conditions with Verlet 

neighbor’s lists are applied. The simulation box, containing a minimum of 2000 monomers s is 

required to have sufficient molecules in each slab of the simulation domain, and were set up 

such that 𝐿𝑧 = 2𝐿𝑥 = 2𝐿𝑦.  The cut-off radius of 3𝜎 was employed to compute the LJ  

interactions.  

The use of the RNEMD simulations for viscosity requires a careful choice of the particle 

exchange frequency Fexch (Nswap). This should be updated function of the thermodynamic 

conditions and the length of the chain molecules, to ensure that no shear thinning is occurring 
92, 96, 97 and that the signal to noise ratio is high. Too high values of Fexch will lead to shear 

thinning, and too low values will result in high error bares as can be seen from Figure 3.5. 

Figure 3.5 reveals that the shear thinning effect becomes more pronounced, and occurs at an 

earlier stage, as the rigidity increases. The trends obtained correspond typically to a Carreau 

like model 98 used for viscosity, where the plateau, corresponding to the Newtonian regime, is 

only achieved at very low frequencies for high rigid chains. This shear thinning is due to the 

local reorganization of the fluid, making the system anisotropic. This molecular organization is 

more likely to occur in linear chains. Thus, to limit this effect, we used the same strategy has 

the one already been presented in 92, by comparing the normal components of the stress tensor: 

𝑁𝑥𝑦 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 and 𝑁𝑦𝑧 = 𝜏𝑦𝑦 − 𝜏𝑧𝑧, which should be zero in the case of an isotropic fluid. 

The normal stress has been calculated with the following formula: 

𝜏𝐽𝐽 = −
1

𝑉∗
 (∑ 𝑣𝑖,𝑙

∗ 𝑣𝑖,𝑙
∗ + ∑ ∑ 𝑟𝑖𝑗,𝑙

∗ 𝐹𝑖𝑗,𝑙
∗𝑁𝑇

𝑗>𝑙

𝑁𝑇

𝑖=1

𝑁𝑇

𝑖=1 )  (3.15) 

where 𝑙 = 𝑥, 𝑦 or 𝑧, 𝑣𝑖,𝑙
∗  is the l component of the velocity of particle 𝑖, 𝑟𝑖𝑗,𝑙

∗  is the l component of 

the center-to-center distance between particle 𝑖 and 𝑗 and is the 𝑙 component of the interaction 

forces between particle 𝑖 and 𝑗. 
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An example of the behaviour of the 𝑁𝑥𝑦 and 𝑁𝑦𝑧 with respect to the shear rate is given in  Figure 

3.6. It is clear that the differences of the normal stresses are decreasing with the shear rate, 

consistently with what observed in Figure 3.5. It confirms that the Newtonian plateau regime 

corresponds to the zero values (or almost) of the 𝑁𝑥𝑦 and 𝑁𝑦𝑧, while the sear thinning regime 

corresponds to non-null values of the two components 𝑁𝑥𝑦 and 𝑁𝑦𝑧 . These quantities have then 

been used as quality check parameters to validate the viscosity data produced in this work. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.5: Effect of the shear rate on the viscosity of chain of m=5 at Tr=0.7 and ρ*sat 
corresponding to the different rigidities considered. 

Figure 3.6: Effect of the shear rate on the normalized stress differences Nxy and Nyz 
for m=5 at the same thermodynamic conditions given in Figure 3.5. 
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3.4.3 Rigidity effect on phase equilibria and transport properties of the fluid model: 

The Semi-Rigid LJCCG 

3.4.3.1 Phase equilibria 

Studying the effect of molecular internal degrees of freedom on the phase equilibria of some 

coarse grained model was investigated years ago by several authors, 99, 102, 103, 104, in particular 

for hard sphere chains and Lennard-Jones chains.  

In a fully flexible chain, the bending and torsional potentials are lacking, allowing the molecule 

to explore all possible conformations. Whereas, in a fully rigid chain, these potentials are 

considered and their corresponding stiffness constants are large enough to prevent the molecule 

from exploring conformations other than that close to the equilibrium angles (bending and 

torsion). In the case of a linear rigid model, the conformation corresponds to an angle of 180°. 

This linear fully rigid LJCCG exhibits a wider phase envelope compared to the fully flexible 

LJCCG, a higher critical temperature, but a lower critical density and pressure 99, 103. It is 

expected that molecules consisting of more than six segments will not exhibit stable phase 

diagrams 99, but could exhibit liquid crystalline mesophases (nematic and smectic) at high 

temperature 82 as already been observed for hard sphere chain molecules 104, 105. In the case 

where the equilibrium angle is different from that of a linear model (180°), the behaviour 

exhibited is completely different and is strongly dependent on the equilibrium angle 100, 101. For 

small angles, the phase envelope becomes wider, and when the angle increases, it causes a 

shrinkage of the phase envelope to again becomes wider after certain threshold angle.   

It worth mentioning that in all the studies mentioned above, none of them have investigated the 

effect of a semi-rigid model on the phase equilibria and particularly on transport properties. by 

gradually varying the bending stiffness constant. Hence, in this work, it is proposed to study in 

a first step the effect of the bending stiffness constant on the behaviour of fluid models, and, in 

a second step, the capabilities of such coarse grained model to describe the real fluid properties.  

The effect of gradually varying the stiffness parameter from K*=0, corresponding to the fully 

flexible model, to infinity K*=∞, corresponding to the linear fully rigid model, on the phase 

equilibria is presented in Figure 3.7 for chains consisting of five tangent spherical segments 

(LJC5). For small values of K* (up to around 5), the SR-LJCCG model exhibits a phase 

envelope shifted to the low densities and the critical properties are all lowered as illustrated in 

Figure 3.7 when compared to the fully flexible model. At high values of K*, the vapour side of 

the phase envelope is still shifted to the low densities, whereas, the liquid side is shifted towards 

the high densities. One may imagine that this increase in density could be assigned to the fact 

that the molecules become almost linear making them more favourable for a better arrangement 

while this is less favourable at small K* values. The same non-monotonous behaviour is 

observed on critical temperature Tc
*, while the critical density exhibits a monotonous decrease. 

These non-monotonous behaviours are consistent with what was observed in another work 92 

for the effective repulsive parameter  involved in the thermodynamics scaling approach when 

considering semi-rigid chains molecules. Similar conclusions were obtained when varying the 

equilibrium angle 101 of the fully rigid LJ chains.  
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Regarding the saturation pressure, a monotonous decrease is obtained for all stiffness values as 

shown in the same figure This is consistent with the monotonous decrease behaviour obtained 

for the vapour phase density since both properties are nearly linearly connected (perfect gas 

law). The critical pressure Pc represented by the end points of the saturation pressure curves are 

globally showing a monotonous decrease with the chain stiffness as for critical density.  

 

 

 

 

 

 

 

 

 

 

3.4.3.2 Saturated liquid viscosity:  

It is well known that the effect of the   internal degrees of freedom on the viscosity are not 

negligible 10, 78, 106, 107. Figure 3.8 shows that the liquid saturated viscosity is a lot more sensitive 

to the bending potential strength than what is observed on the equilibrium properties, especially 

at low temperature. For instance, at T* =1.35, the liquid density for K* =20 increases by 0.55% 

compared to the fully flexible case, while the liquid viscosity increases by 141.8%. This 

particular behaviour is particularly interesting and justifies once again our choice for this 

molecular model to overcome the limitation of the low temperature viscosity prediction of real 

fluids when dealing with fully flexible chains 78. 

  

Figure 3.7: Effect of the rigidity on the coexistence densities and saturation pressure of 
chain of m=5. (a) L-V Equilibrium densities, (b) Saturation pressure. 

(a)                                                                              (b) 
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3.4.4 Choice of the parametrization strategy 

We have used the strategy of the corresponding states to parametrize the SR-LJCCG molecular 

model force field 18, 39. The SR-LJCCG model contains four molecular parameters (휀, 𝜎, 𝐾∗, 𝑚) 

which will be determined using a top-down approach based on the CS strategy. With this 

approach the molecular parameters are constrained to reproduce some experimental 

macroscopic properties. Each parameter is optimised on a certain macroscopic property, as 

determined by a dimensional analysis.  

The well depth ɛ, which is the energetic interaction parameter at the molecular scale, is directly 

related to an energetic macroscopic quantity which is the critical temperature. The segment 

collisional diameter σ, which represents the molecular volume at the molecular scale, is directly 

related to a purely volumetric macroscopic property, which is the density at a reduced 

temperature, Tr = T/Tc, equal to 0.7. 

Now, regarding the stiffness parameter and the number of segments (𝐾∗, 𝑚), this couple of 

parameters is optimized on both the acentric factor 𝜔 108 and the liquid saturated viscosity at 

Tr=0.7, as both properties are affected by the two parameters. The acentric factor , which 

mainly quantifies the deviation of the molecular shape from being a sphere, is strongly 

dependent on the number of sphere segments m forming the molecule. The rigidity K has also 

an effect on the shape of the molecule and so on the acentric factor. Regarding the viscosity, it 

is well known that this property is affected by the number of segments 109 because of the 

increase of the strength of the intermolecular interactions involved and also due to the increase 

of the probability of molecular entanglements. The viscosity is also strongly sensitive to the 

molecular stiffness K* parameter, particularly at low temperature as shown in Figure 3.8 .  

The effect of the segment number and the rigidity parameter on the selected properties for the 

optimization are summarized in Figure 3.9. Note that, to reduce the uncertainties on these 

properties, a strategy adopted in this work for the acentric factor and critical temperature were 

discussed in the simulations details section, however, the case of η𝐿𝑖𝑞𝑆𝑎𝑡
𝑟,𝐸𝑥𝑝

 or the 𝜌𝐿𝑖𝑞𝑆𝑎𝑡
𝐸𝑥𝑝

 at 𝑇𝑟 =

Figure 3.8: Effect of the rigidity on the saturated liquid viscosity of chain of m=5  
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0.7, were not. Thus, it is worth to mention that, these properties are not determined by 

performing simulations at exact thermodynamic conditions corresponding to 𝑇𝑟 = 0.7, but, 

instead, they were obtained by fitting the saturation curves for both properties approximately in 

the range 𝑇𝑟 = [0.6~0.85]. 

The proposition of using the η𝐿𝑖𝑞𝑆𝑎𝑡
𝑟,𝐸𝑥𝑝

 or the 𝜌𝐿𝑖𝑞𝑆𝑎𝑡
𝐸𝑥𝑝

 at 𝑇𝑟 = 0.7, instead of using the 

corresponding critical quantities, is, first, to be in line with the acentric factor which is 

calculated at the same reduced temperature, and second, because the critical viscosity does not 

exist (it diverges) and the critical density is one of the most uncertain experimental 

thermodynamic property, as it is an extrapolated one.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The use of the CS offers many advantages. First, it ensures obtaining a unique set of parameters 

avoiding the overfitting problem that may arise when using many experimental data and many 

Figure 3.9: Thermophysical properties  of the semi-rigid LJCCG model used in the 
parametrization of the coarse grained force field proposed. 
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different properties to simultaneously optimise the force field parameters. Second, the estimated 

parameters are physically consistent, since thanks to this strategy, a one to one relationship 

between the molecular scale parameters and their corresponding macroscopic properties is used. 

Third, it requires only four accessible experimental measurements per species. 

3.4.5 Optimization procedure 

Thus, to determine the set of parameters (휀, 𝜎, 𝐾∗, 𝑚) that define the SR-LJCCG parameters of 

a given fluid requires the knowledge of the macroscopic experimental data𝑇𝐶
𝐸𝑥𝑝

,   𝜔𝐸𝑥𝑝, 𝑎𝑛𝑑 

𝜂𝑠𝑎𝑡,𝐿,𝑇𝑟=0.7
𝑟,𝐸𝑥𝑝  and that from the Coarse Grained model 𝑇𝐶

𝐶𝐺(𝐾∗
, 𝑚), 𝜌𝑠𝑎𝑡,𝐿,𝑇𝑟=0.7

𝐶𝐺 (𝐾, 𝑚), 𝜔𝐶𝐺(𝐾∗, 𝑚), 

and 𝜂𝑠𝑎𝑡,𝐿,𝑇𝑟=0.7
𝑟,𝐶𝐺 (𝐾∗

, 𝑚).  

Most of the time, the experimental data are available in the databases such as those of the NIST 
110, DIPPR 111, DDB 112, DECHEMA 113, DETHERM 114, TDE 115, ETB 116, Cheméo 117…or 

from some books like 118, 119. If no experimental data are available for certain property or 

because it could not be measured, a group contribution method or existing correlations provided 

in the literature could be an alternative. For instance, the properties of CO2 at a reduced 

temperature of 0.7 do not exist because the triple point of this molecule is situated above Tr=0.7. 

For this specific case, an extrapolation of the equilibrium density using some scaling 120 give 

reasonable prediction. For the viscosity, the use of the entropy and density scaling is suggested 
121, 122. 

Regarding the coarse grained model properties, extensive molecular dynamics and Monte Carlo 

simulations were performed to obtain these properties. Then, they were correlated as shown in 

Figure 3.9 . The mathematical formulation and the fitting parameters of these correlations are 

given in the appendix 7.A.2. 

In practice, the set of parameters (m, σ, ɛ, 𝐾∗) of a given fluid of interest are optimised as follow. 

The 𝐾∗ and  𝑚  are first obtained by minimising the following objective function:  

𝑚𝑖𝑛𝐹(𝑚, 𝐾∗) = (
𝜔𝐶𝐺(𝑚,𝐾∗)−𝜔𝐸𝑥𝑝

1+𝜔𝐸𝑥𝑝 )
2

+ (
𝜂𝑠𝑎𝑡,𝐿,𝑇𝑟=0.7

𝑟,𝐶𝐺 (𝑚,𝐾∗)−𝜂𝐿𝑖𝑞𝑆𝑎𝑡,   𝑇𝑟=0.7
𝐸𝑥𝑝

𝜂
𝐿𝑖𝑞𝑆𝑎𝑡,   𝑇𝑟=0.7
𝑟,𝐸𝑥𝑝 )

2

   (3.16) 

Then, the 휀 and 𝜎, are directly deduced from the following relations: 

휀 =
𝑘𝐵𝑇𝑐

𝐸𝑥𝑝

𝑇𝑐
𝐶𝐺(𝑚, 𝐾∗)

     (3.17) 

𝜎 = √
𝑀𝜌𝑠𝑎𝑡,𝐿𝑖𝑞,𝑇𝑟=0.7

𝐶𝐺

𝜌
𝑠𝑎𝑡,𝐿𝑖𝑞,𝑇𝑟=0.7
𝐸𝑥𝑝

3

     (3.18) 

The minimization on the acentric factor is carried out on the quantity (1 + Exp) to avoid any 

singularity when Exp is approaching zero for some small molecules. It is also worth to mention 

that, the choice of the Euclidean norm for the minimisation is to force the objective function to 

converge to the global minimum. This can be easily handled for large molecule, but can be 

pronounced for small molecules. In fact, for such molecules, the rigidity has only a very small 

effect on the acentric factor favouring then the appearance of some local minima. It is 

recommended, for such small molecules, to try a set of initial guesses. Another 
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recommendation, regarding the initial guess when dealing with hydrocarbons, is to take an 

initial guess for m from the scheme m→1+[(C-1)/3] 123, 37, where C is the carbon number, and 

a value of K*=5. 

Another important point to consider is that, in the first step of the optimization procedure, the 

F function is minimized to obtain the number of segments forming the molecule. This number 

is, in most cases, a non-integer number and needs to be rounded to its nearest integer value. For 

certain species, this real number is exactly at halfway between two successive integer numbers. 

In this case, the question is: rounding to the closest high integer value or to its closest low 

integer value. In addition, one may then imagine that in this special case, the molecule will be 

less accurately represented, especially when m=2.5, as the molecule could be represented by 

two segments for which rigidity is not defined, or could be represented by three segments for 

which the rigidity is defined. In our experience, we found that, when rounding up, the transport 

properties are better predicted (because of the rigidity parameter). However, less accurate 

thermodynamics properties are obtained, particularly those highly sensitive to the long range 

interactions, such as the saturation pressure and the Cp as well. While when rounding down, it 

is the thermodynamics properties that are well predicted, whereas less accurate transport 

properties are obtained. A good illustration for this is found for the iC4, for which the optimised 

number of segments is m=2.54, as it will be shown in the next section. It is worth to emphasize 

that if a SAFT Eos is used to predict the fluid properties instead of using a molecular simulation 

tool, this problem does not appear as the EoS allows using non integer number of segments. 

For sake of clarity, two flow charts are given in Figure 3.10. The first shows the general 

methodology used for the parametrisation of the proposed force field, and the second shows the 

optimisation procedure followed to obtain the set of parameters of the target fluid.  

 

 

 

 

 

 

 

 

 

 

  

Figure 3.10: (a) flowchart of the general methodology, (b) flowchart of the 
optimization strategy. 

(a)                                                                              (b) 



Development of an LJC coarse grained molecular model 
 

70 
 

3.4.6 Application to pure real fluids  

In this part, the proposed model is applied to several real pure components, specifically the 

alkanes family and other common molecules. Various properties including phase equilibria, 

second order derivative, and transport properties are investigated. Note that, for a better clarity 

of the figures, error bars for the FF-LJCCG model are not shown. They have the same 

magnitude as for the SR-LJCCG model. Error bars for densities and pressures have not been 

included on the figures because they are most of the time smaller than the symbols.   

3.4.6.1 Equilibrium properties  

Extensive Monte Carlo simulations were performed to test the predictive capability of the 

SRLJCCG model on the vapour-liquid equilibrium properties for various polar and non-polar 

species as presented Figure 3.11 to Figure 3.13. As shown in Figure 3.11 excellent predictions 

are obtained for both equilibrium LV densities and saturation pressure for the normal alkanes 

up to the n-hexatriacontane (nC36). Similarly, a good accuracy is also found for the iso-alkanes 

shown in Figure 3.12, except for the saturation pressure (and consequently, the vapour density) 

of iC4, as expected from the discussion in the optimization part (open symbols correspond to a 

representation with two segments, while the full symbols correspond to a representation with 

three segments). Some polar components were also considered, as shown in Figure 3.13, and a 

very good accuracy is obtained for these molecules with the proposed SR-LJCCG, which is 

worth noting, does not include any polar parameters.  
 

 

 

 

 

 

 

 

 

 

 

These results demonstrate the robustness of the proposed molecular model and the importance 

of the parameterization strategy (CS) used to obtain consistent molecular parameters. It is worth 

mentioning that, only a few experimental data points were imposed (represented by a red star 

symbol in all the figures, with all other data points being pure predictions. Another interesting 

feature of this CS strategy is that the obtained interaction parameters can safely be transferred 

Figure 3.11: Equilibrium liquid-vapour saturated densities and saturation pressures of 
n-alkanes vs correlated experimental data from NIST & DIPPR databases. 
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to other states that are away from those at which the model was parametrized. Of course, if one 

is interested in very low temperatures close to the triple point Tt, the deviation will certainly be 

more pronounced. However, overall, the molecular parameters are less state dependent 

compared to what could be obtained using a BIM procedure, and it is assumed that the SR-

LJCCG model will still yield reasonable results at these extreme conditions, as one would 

deduce from the trend of the results obtained. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.13: Equilibrium liquid-vapour saturated densities and saturation pressures 
of some polar components vs correlated experimental data from NIST database. 

Figure 3.12: Equilibrium liquid-vapour saturated densities and saturation pressures of 
iso-alkanes vs correlated experimental data from NIST database. Experimental liquid 

density for iC16 is taken from Klein et al.2020, and Psat from Ambrose et al.1988. 
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3.4.6.2 Second order derivative properties 

Second order derivative properties are known to be one of the most difficult properties to obtain 

with either any equation of state (cubic or SAFT type model) or molecular models, even if 

Accurate predictions for these properties have already been obtained using some SAFT EoS 38, 

124, 125 and some force fields 126 with intermolecular parameters being optimised on equilibrium 

properties. They are then an excellent type of property to test the representability of the 

proposed model and the parametrisation strategy (CS). The low resolution of any coarse grained 

model, makes them unable to accurately predict properties dictated by the molecular internal 

degrees of freedom (ideal part) such as the energetic and entropic second order derivative 

properties. To alleviate this problem, instead of using the incorrect ideal part predicted by the 

model, it is the correct ideal part taken from experimental correlations 118 that will be used in a 

similar way to what is done using cubic or SAFT EoS. The expressions used for the derivative 

properties are given in the chapter 2 (section NpT ensemble). Error bars are given only for the 

properties deduced from the direct Monte Carlo simulations. Thus, they are provided only for 

T, aP and the  CP. The cases of the CV, µJT  and Vs require propagation errors calculations. 

Figure 3.14 to Figure 3.16 show the temperature dependency of many volumetric and energetic 

derivative properties at a pressure of 10MPa for the compounds studied previously. Overall, 

excellent results are obtained for most of the properties investigated in this work, except small 

deviations observed on the CP and the Vs for large molecules. The case of iC4 is an exception, 

similarly to what was observed for the saturation pressure and vapour density. Results show 

excellent agreement with experiments when the molecule is represented with three segments 

(open triangles), while the representation with two segments deviate from the experiments. 

Now, concerning the speed of sound for the largest molecules (n-alkanes and iso-alkanes) at the 

lowest temperature, the deviations probably arise from the use of a semi-empirical LJ(12,6) 

potential. This was already pointed in the literature 125, 37 and a better prediction is obtained if 

this property is included in the fit 37, 38, 124 and when using a generalised LJ potential (Mie 

potential). This was at the heart of the motivation for the development of the SAFT-VR-Mie 

EoS version 37. However, except at low temperature, results of the proposed model show very 

good agreement with experiments.  

Moreover, as shown in Figure 14, the model shows good capabilities on the prediction of these 

derivative properties near the critical region. Indeed, at the critical point, the derivative 

properties exhibit a highly non regular behaviour (singularities), which then can be considered 

as a severe test for all models. The model proposed was then tested on some molecules such as 

the nC4, iC4 or more interestingly CO2 and H2S. Excellent illustration of the predictive 

capability of the proposed model are shown for these molecules near the critical conditions. 

Such an accuracy is the consequence of the robust CS parametrization used in this work. 
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Figure 3.14: Temperature dependence of the predicted second order derivative 
properties of n-alkanes with the SR-LJCCG and FF-LJCCG vs experimental data from 

NIST  at P=10MPa. 
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Figure 3.15: Temperature dependence of the predicted second order derivative 
properties of iso-alkanes with the SR-LJCCG and FF-LJCCG vs experimental data 

from NIST  at P=10MPa. 
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Figure 3.16: Temperature dependence of the predicted second order derivative 

properties of some polar components with the SR-LJCCG and FF-LJCCG vs 
experimental data from NIST  at P=10MPa. 
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Since the density is an output of the NpT simulations conducted to obtain the second order 

derivative properties shown above, we investigated its temperature dependency as illustrated in 

Figure 3.17. Excellent results are obtained for this property in the dense liquid phase, in the 

critical region and in the supercritical conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Last, results obtained with the FF-LJCCG are comparable to those obtained with the SR-LJCCG 

model regarding thermodynamic properties. Thus, the inclusion of the viscosity as a target 

property did not provide any improvement neither deterioration in the prediction of the 

thermodynamic properties investigated in this work compared to the fully flexible model. 

However, when considering transport properties, a noticeable difference appears between the 

two coarse grained models as it will be shown in the in the next point.   

Figure 3.17: Temperature dependence of the single phase density predicted with 
the SR-LJCCG and FF-LJCCG vs experimental data from NIST at P=10MPa. (a) n-

alkanes, (b) iso-alkanes, (c) polar components. 

(a)                                  (b)    

        (c)                         
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3.4.6.3 Viscosity 

While accurate models exist for the viscosity predictions at dilute states 127, this becomes more 

complex where the mean free path becomes smaller than the atomic size (i.e. dense state). Many 

approaches have been proposed in the literature 128, 129, but they are still not fully satisfactory in 

terms of industrial requirements 130. Among the alternatives to estimate shear viscosity, 

molecular dynamics simulation is one interesting option. However, the accuracy of the 

prediction obtained with MD simulations, is closely linked to the robustness of the force field 

used, as demonstrated in several papers for the most common existing force fields 51, 89, 78, 107, 
18, 131, 132. Indeed, a robust and simple (i.e. coarse grained) force field capable of simultaneously 

providing accurate transport and thermodynamic properties, is, to our knowledge, not yet 

available. Most of the coarse grained and united atom existing force fields tend to underestimate 

the viscosity, probably due to due to the over-smoothness in the molecular geometry 133. A way 

to circumvent this, is to use a parametrization that takes into account viscosity as target property 
10 as proposed here. In the following the performance of the SR-LJCCG model is tested on the 

prediction of the liquid viscosity of the compounds studied previously.  

As shown in Figure 3.18, excellent estimates are obtained for the viscosity over the whole panel 

of molecules studied. The model shows an excellent transferability as only the red stars data ( 

𝜂𝐿𝑖𝑞𝑆𝑎𝑡, 𝑇𝑟=0.7
𝐸𝑥𝑝

) are imposed in the parametrization. Indeed, the prediction accuracy remains 

conserved even for molecules with high molecular weight (up to the nC36), contrary to what 

was observed when using a MieCCG model 18, 89, or when using the fully flexible model as 

shown here.  

The case of the iC4 is as expected. Results obtained on the viscosity are excellent with the three 

segments model, while results deteriorate with the model with two segments. This support the 

discussion on this special case, where the optimal number of segments is found halfway 

between successive integer numbers. Results on nC4 converges also to similar conclusion, as 

this molecule is represented by two segments, giving accurate thermodynamics properties, but 

less accurate viscosity.  

To better assess the robustness of the proposed model, simulations have been performed at 

pressure conditions far from those used for the parameterization. To do so, simulations have 

been conducted on n-alkanes from atmospheric pressure (0.1MPa) up to 100MPa (about 1000 

times the saturation pressure conditions). The predictions are shown in Figure 3.18 (d), where 

the model shows very good performance. Still, deviations start to be noticeable for the nC12 

(and certainly for longer molecules than nC12), but they remain reasonable compared to what is 

obtained with the fully flexible model. The deviations in terms of the compressed viscosity and  

density ( at which the viscosity is simulated) are given for the nC12 molecule in Figure 3.19. 

The SR-LJCCG gives mean errors of ~2.31% and ~9.32% respectively for the density and 

viscosity, while this is around ~1.91% and 35.67% for the FF-LJCCG model. The maximum 

deviations are obtained for both models at pressure 100MPa, where the SR-LJCCG is 

underestimating the viscosity by ~12.87%, while it ~46.73% for the FF-LJCCG. Moreover, as 

can be seen from Figure 3.19, the deviations in terms density are well predicted by the FF-

LJCCG, where the model is exhibiting a stabilization of the deviations when the pressure 

increases which is not the case for the SR-LJCCG model. Consequently, in terms of viscosity, 
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the FF-LJCCG model is exhibiting increasing deviations with increasing the pressure, while a 

stabilization is obtained for the SR-LJCCG model. This is because viscosity is highly sensitive 

to small changes in density, thus, only 2% on density may induce a change of 30% in viscosity. 

However, improvements are still needed to achieve high accuracy under extreme conditions, 

for example to meet the needs of the lubricant industry. This may possibly be done by including 

a torsional potential to the model similarly to what was observed in 10.  

 

  

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

As the viscosity is the main target property that we want to improve in our prediction, an 

additional benchmark is conducted for this property. We compare the prediction of the proposed 

SR-LJCCG model to various existing force fields proposed in the literature for two normal 

alkanes, the n-dodecane nC12 and the n-hexadecane nC16. Among these force fields, some are 

(a)                                                                                                                                  (b) 

(c)                                                                                                                      (d) 

Figure 3.18: Saturated and compressed liquid viscosity of normal alkanes, iso-alkanes 
and some polar components. (a, b, c) viscosity of n-alkanes, iso-alkanes and polar 

components at saturation conditions, (d) compressed liquid viscosity of n-alkanes at 
temperature of T=373K 
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based on fully atomistic descriptions of the molecules such as the Lipid14 134, L-OPLS 45 and 

its modified version 31, while others are based on united atom models, such as the TraPPE-ua 6, 

POTOFF 61, TAMIE 62, SKS-AUA 135. In addition, coarse grained models such as the Fully-

Flexible LJCCG and the Mie-CCG 18 model, which were parametrized with the same strategy 

(corresponding states) as for the SR-LJCCG, are also included. In this latter category of CG 

models, the well-known MARTINI force field 19 is also included.  

 

 

 

 

 

 

 

 

 

 

 

The simulation data are taken from 51 for the TraPPE-ua, POTOFF, TAMIE.  Data from 30 are 

used for L-OPLS, Lipid14 and MARTINI force fields. The modified-L-OPLS data are taken 

from 31, and those of SKS from 136. Regarding the coarse grained models FF-LJCCG and 

MieCCG, data were computed in this work, while the experimental data are from NIST database 
110. 

It can be clearly seen from Figure 3.20 that, the Semi-Rigid LJCCG gives among the best 

predictions, overall, where very good agreement with experiments are obtained for both 

molecules at high temperature. The deviations obtained at low temperature remain reasonable, 

and, in relative, they are smaller than the other force fields.  

Another interesting result highlighted by this benchmark is that, the success of the Semi-rigid 

LJCCG is not only due to the inclusion of the additional rigidity parameter, but also to the 

parametrization strategy adopted in this work. In fact, this latter point could be understood by 

benchmarking results of the Fully-Flexible LJCCG and the TraPPE-UA as both are based on 

the LJ intermolecular potential interaction. Comparable results are obtained with both models, 

whereas the TraPPE-UA integrates all the internal degrees of freedom. Thus, it shows that, the 

inclusion of all the internal degrees of freedom of the molecule do not systematically lead to 

improvement of the transport properties if not appropriately parametrized. A possible way to 

extend the TraPPE-UA for the transport properties could be achieved by re-parameterizing the 

torsional and/or the bending potentials to reproduce the viscosity, coupled to the re-

parameterization proposed by Janecek and Paricaud 49 to improve the saturation pressure.  

Figure 3.19: Relative errors for the compressed liquid viscosity and density of n-C12 
at T=373K. Results of viscosity are those presented in previous figure and for 

density are not shown but correspond to those at which the viscosity is simulated. 
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3.4.6.4 Diffusivity 

The diffusivity is another important transport property to test the robustness of the SR-LJCCG 

force field. Only few experimental data are reported in the literature for this property, which 

explain the limited number of compounds evaluated here.  

Results for the self-diffusion coefficient for different n-alkanes at temperatures T=303K, 

T=343K and T=383K and at densities corresponding to a pressure of 0.1MPa are reported in 

Figure 3.21. Good agreement with the experimental data 137 are found for the three temperatures 

studied here and for chain length up to nC28. Slightly better results are obtained with the fully 

flexible LJCCG for low molecular weight species, but this model tends to largely overestimate 

the diffusivity compared to the SR-LJCCG as the molecular weight increases.  

The pressure effect up to 150MPa was also checked for the nC6 and nC8 at a temperature of 

298K, as shown in Figure 3.21 . The predictions are all in fair agreement with the experiments 
138, 139 using both SR-LJCCG and FF-LJCCG models. It is interesting to point out that self-

diffusion overestimation is often attributed to the smoothness in the molecular shape. However, 

results obtained in this work, indicate that the molecular shape is probably not the only 

explanation. 

It is worth to mention that the system size correction for the self-diffusion coefficient proposed 

by Yeh and Hummer 140 has not been considered in this work. Thus, results are expected to vary 

a few (~10%) as shown in the work of Moultos et al. 141. However, overall, the SR-LJCCG 

model yields predictions in the T and P spaces and for various chain lengths, which could be 

considered as very satisfactory for the self-diffusion coefficient, confirming thus the good 

representability of the proposed force field.  

  

Figure 3.20: Benchmark between different force fields proposed in the literature and 
experiments for the saturated liquid viscosity prediction. (a) n-C12, (b) n-C16. 

(a)                                                                                                                                  (b) 
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3.4.6.5 Structural properties 

As a final test, we have made a comparison between the Fully-Flexible and the Semi-Rigid 

LJCCG models regarding their respective predictions of structural properties. The first 

investigated property is the center of mass (COM) intermolecular radial distribution function 

(RDF) of two n-alkane molecules, the n-hexane (nC6) and the n-nonane (nC9). For both 

molecules, the RDF is computed in the liquid phase at reduced temperatures of Tr=0.75 and 

Tr=1.20 and at various densities as indicated in Figure 3.22.  

Other properties related to the molecular conformations, such as the end-to-end distance (REE) 

and gyration radius (RG) are also measured and are reported in Table 3.1 and Table 3.2. The 

tables indicate that for both metrics (REE and RG), the fully flexible model is showing lower 

values compared to the semi-rigid model. This indicates that the rigidity tends to open the 

molecule, as expected. Note the values given in the table are the mean average values, as both 

metrics consist in distributions. 

The increase in the thermal energy of the system lead to a decrease of the RG and REE in the 

case of the semi-rigid model, as more non-linear configuration could be explored because of 

thermal motion. The behaviour is opposite in the case of the fully flexible model, because 

increasing the temperature allows to explore more configurations in which the molecules is les 

condensed (because of intramolecular interactions).  

Regarding the RDF, for both molecules, and either in the subcritical dense liquid or in the 

supercritical fluid, the fully flexible model gives the same response, where it exhibits a single, 

but sharp pic expressing a well-structured fluid. However, in the case of the semi-rigid model, 

different responses are obtained depending on the thermodynamic conditions. In the dense 

liquid, the model exhibits a less structured fluid compared to the fully flexible model, with an 

attenuated first pic. 

Figure 3.21: (a) Temperature and chain length effect for various n-alkanes 
components at P=1atm. (b) Pressure effect for nC6 and nC8 at T=298K. 

(a)                                                                                               (b) 
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In fact, at low temperature, the semi rigid molecules are mostly “open” (rather linear) due to 

rigidity, whereas the fully flexible molecules are coiled up as pointed out previously. It is then 

this rigidity that perturbs the nearest molecules from being too close. The first solvation layer 

is then repelled to larger distances to appear in a small second pic. At high temperature, the 

semi-rigid model, exhibits practically the same response as for the fully flexible model, where 

a single sharper pic is obtained. This indicates that at high temperature, the effect of rigidity is 

reduced by the thermal effect, which is consistent with results obtained for the effect of rigidity 

on the viscosity shown in Figure 3.8. 

At high distances, both models are converging towards a unity, but differently. The difference 

is more pronounced in the dense liquid state, where contrary to the fully flexible model, the 

semi-rigid model is exhibiting oscillations which is a typical response of liquids. Such a 

behaviour may have impact on properties deduced from the radial distribution function, such 

as the Kirkwood Buff Integrals.  

It is interesting to mention that, the conditions at which we conducted the simulations for the 

RDF are exactly the same conditions studied by Rahman et al.21 for the SAFT--Mie model and 

the TraPPE-UA model. The results obtained with the SR-LJCCG model were found very close 

to those of the higher resolution model (the TraPPE-UA) similarly to the SAFT--Mie. This 

indicates that, in addition to the improvements obtained on the transport properties when 

compared to the fully flexible model, the semi-rigid model provides also better performance in 

terms of structural properties predictions. 

 

Radius of 

gyration (RG) 
𝑹𝑮

∗ =
𝑹𝑮

𝝈
 

SemiRigid nC6 

𝑹𝑮
∗ =

𝑹𝑮

𝝈
 

FullyFlex nC6 

𝑹𝑮
∗ =

𝑹𝑮

𝝈
 

SemiRigid nC9 

𝑹𝑮
∗ =

𝑹𝑮

𝝈
 

FullyFlex nC9 

Tr=0.7 1.282 1.191 1.557 1.343 

Tr=1.20 1.265 1.194 1.352 1.525 

Table 3.1: Radius of gyration for the fully flexible and semi-rigid n-hexane and n-nonane 
molecules at Tr=0.7 and Tr=1.20 and densities indicated on figure 3.22. 
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End-End 

distance (REE) 
𝑹𝑬𝑬

∗ =
𝑹𝑬𝑬

𝝈
 

Semi-rigid nC6 

𝑹𝑬𝑬
∗ =

𝑹𝑬𝑬

𝝈
 

Fully-flex nC6 

𝑹𝑬𝑬
∗ =

𝑹𝑬𝑬

𝝈
 

Semi-rigid nC9 

𝑹𝑮
∗ =

𝑹𝑬𝑬

𝝈
 

Fully-flex nC9 

Tr=0.7 1.869 1.483 2.752 1.868 

Tr=1.20 1.799 1.501 2.618 1.909 

Table 3.2: End-to-End distance for the fully flexible and semi-rigid n-hexane and n-nonane 
molecules at Tr=0.7 and Tr=1.20 and densities indicated on figure 3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.22: Center of mass intermolecular radial distribution function of n-hexane and 
n-nonane molecules in the subcritical liquid state (Tr=0.7) and supercritical fluid 

(Tr=1.20). 
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3.5 Summary  

In this part we have proposed a semi-rigid coarse grained molecular referred to as SR-LJCCG 

model. The model contains only four molecular parameters which require, thanks to the 

corresponding strategy adopted in this work, only four macroscopic for their parametrization.  

The model has been tested over many thermodynamic (phase equilibria and second order 

derivative properties), transport (viscosity and self-diffusion coefficient) and structural 

properties (radial distribution function), and found to yield excellent agreement with 

experiments. Moreover, the model has been tested on three different molecular families, 

including molecules with variable polarities which were all found fairly represented by the new 

model without any additional polar contribution. However, the case of strongly associative 

molecules is not considered, such as alcohols and water molecules. This is because the strategy 

we proposed in this work is not fully adequate to deal with such molecules, even though 

qualitative results can be achieved, the physical meaning of the parameter might be 

questionable. Additional efforts are needed as shown and discussed in the appendix 7.B.1 for 

methanol and water molecules. 

The comparison has been systematically made against the reference model, the fully flexible 

model, and results showed that, while in terms of the thermodynamic properties, the models 

were found comparable, noticeable improvements were obtained with the SR-LJCCG model 

when considering transport properties, particularly the viscosity, and the structural properties 

as well. 

As the viscosity was a target property for the development of this molecular model, further 

comparison was made by benchmarking the SR-LJCCG against many other force fields 

proposed in the literature. In this latter, were included high resolution models and united atoms 

models. The benchmark was made on the nC12 and nC16 at saturation conditions, and results 

showed that, only the SR-LJCCG model was among the best to predict correctly the viscosity 

over a wide range of temperature. This success of the SR-LJCCG model over other force fields 

is not only due to the rigidity parameter, but is also due to the robust parametrization strategy 

proposed in this work.  

Elsewhere, to avoid performing extensive molecular simulations, an equation of state for the 

semi-rigid LJCCG model would be of great interest. However, for the time being, a SAFT like 

EoS including an internal rigidity term of the bending type is not yet available. This is the topic 

of the next chapter.  
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4.1 Introduction 

Mimicking the behaviour of simple fluids and polar fluids is still at the heart of the development 

of thermodynamics fluid theories. Simple models proposed at in the 1950s were found to be 

good for modelling the behaviour of simple fluids, such as the use of Hard sphere fluid model 

with some perturbation representing the attractive forces. However, extrapolating this idea to 

model polar fluids 1, 2 by considering higher order terms of the Helmholtz free energy only gave 

satisfactory results for weak polar components such as N2, O2. Systematic deviations with 

increasing polarity were obtained, and a multibody potential was suggested. This is due to the 

fact that the structure of simple fluids is not the same as that of polar fluids which exhibit 

hydrogen bonds. These interactions are very strong, act only at very short distances and are 

highly directional. These limitations of simple spherical and symmetrical interaction potentials 

have prompted researchers to develop new approaches to handle the specific complex 

interactions present in many substances such as water. 

The thermodynamics perturbation theory (TPT) was developed by Wertheim in a series of 

papers 3, 4, 5, 6, 7, 8, and is considered as one of the most powerful existing theory that can model 

simple fluids and fluids with highly directional interactions such as hydrogen bonds. Wertheim 

was inspired by the work of Anderson on dilute gases 9 and dense liquids 10, who initiated the 

theory of association by proposing a molecular model composed of two interaction parts: a 

symmetrical hard sphere reference model, and a directional short ranged interactions modelled 

by a square well potential to mimic the effects of hydrogen bonds. The attractive hydrogen 

bonds were represented by a site at the edge of the hard cores. Anderson’s approach is based 

on the single density graph Mayer’s expansion 11. However, this approach is known to be an 

infinite sum and can produce a catastrophe in some situations due to the large value of the 

Mayer function at low temperature when the ratio of bonding energy over thermal energy is 

highly negative, leading to an infinite Boltzmann factor. Anderson handles the first problem by 

introducing a steric incompatibility in which only one bond per site is permitted, allowing the 

use of the cancellation theorem. The second problem can be handled by working with 

renormalized Mayer function.  

The Anderson approach was the first based on cluster graph expansion that allowed for the 

inclusion of directional interactions in a systematic way. However, the cancellations introduced 

had only a weak effect on the density expansion, and the approach was complicated to apply. 

Chandler and Pratt 12, instead of using density expansion, used the fugacity expansion by 

considering only physical clusters similarly to the Anderson’s steric incompatibility. Based on 

the two previous works, Høye and Olaussen 13 showed that the fugacity expansion is simpler, 

more convenient and converge more rapidly than the density expansion. They also introduced 

the concept of multiple densities instead of singlet density 𝜌. Later, Wertheim, built upon these 

previous works and proposed a rather simple (compared to the previous ones) and convenient 

theory for hard sphere fluids with highly directional attractive interactions, called the 

thermodynamic perturbation theory (TPT). The TPT theory relies on the fugacity expansion 

introduced by Chandler and Pratt and integrates the concept of the two density theory by Høye 

and Olaussen. It considers simultaneously the presence of non-associating monomers 

characterized by a density 𝜌0 and the presence of dimers in the system formed by the bonding 
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of two associated monomers, characterized by a density 𝜌1. Furthermore, the theory builds on 

Anderson’s concept of steric incompatibility and introduces more types of steric 

incompatibility, leading to many graph simplifications and cancellations. 

In his first two papers 3, 4, Wertheim formulated his theory for associating fluids. The fluid 

model consists in hard spheres with a single association site at their edges. When the spheres 

are close to each other and in good orientation, the short ranged interactions are felt by the two 

sites giving them the possibility of being irreversibly dimerized. If this occurs for all the spheres 

in the system, this leads to a system of hard-dumbbells fluid. Between the two limits (only 

spheres or dimers), the system may exist as a mixture of hard spheres with single attractive sites 

and inseparable hard-dumbbells without any attractive interactions. Wertheim then derived an 

equation of state that is capable to model the behaviour of this mixture as well as the two limits 

by introducing a composition parameter. Comparisons against Monte Carlo simulations of the 

equation derived from TPT theory for the case of total system dimerization yielded excellent 

agreement 7. The theory was extended to consider the possibility of multiple sites, where 

formation of chains with a number of spheres greater than two beads (dimers) 5, 6 is possible. 

An initial system consisting of hard spheres with two association sites in each sphere could 

evolve to form a mixture of chains with different chain lengths at equilibrium. Wertheim then 

derived two equations of states, one for the first-order TPT (TPT1) which works perfectly for 

the single site model and one for the second-order TPT (TPT2) to better model systems formed 

with two sites model. 

In his last paper on TPT, Wertheim relaxed the constrain on the angle formed by the vectors 

between the hard core center and the position of the two sites. In fact, in his first work, this 

angle was fixed, corresponding to a formation of rigid chains. In this updated version, the sites 

are no more rigid, and are allowed to freely move on the surface of the hard core, but, in the 

limit where the angle is greater than 
𝜋

3
. Too small angles are not allowed as this is prohibited by 

some steric incompatibilities which will be discussed later. 

Using TPT1, Wertheim compared his equation of state to molecular simulation data on the fully 

flexible hard chains of Dickman and Hall 14. It is worth to mention that Dickman and Hall 

performed simulation with system of chains of identical chain length, and the comparison to 

Wertheim TPT was done after identifying the average chain length of the TPT to the finite fixed 

number of spheres forming the chain in 14. Results for m=4 and m=8 were in very good 

agreement, but deviations were found when increasing the chain length, especially for m=16. 

Deviations were probably due to the fact that the interactions are only defined at the monomers 

level. In other words, the spheres forming the chain are not “aware” of the existence of the next-

nearest sphere (no information between the relative site-site orientation) and so on. This is 

because, at TPT1 level, only pair correlation function is defined, and the introduction of the 

structural information in the theory needs, at least, three body correlation function. Wertheim 

then proposed in the same paper a version of TPT2, which includes the triplet distribution 

function for the three center-to-center distances (rather in terms of the bond angle). Comparison 

to simulation data of the fully flexible chains clearly showed that TPT2 yields better agreement 

compared to TPT1 as the chain length increases. 
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4.2 Wertheim perturbation theory: a global overview 

In the following, a brief overview of the TPT of Wertheim will be provided. The theory is very 

complex, and requires strong knowledge on molecular physics as well as mathematics and 

graph theory as well. The following summary will only give some insights on the theory, 

inspired mostly from the original papers of Wertheim 3, 4, 5, 6, 7, 8, and also from some interesting 

text books 15, 16, 17, and from more recent thesis works of Marshall 18, Febra etal. 19 and that of 

Zimptas et al. 20. 

4.2.1  Pair potential 

The pair potential is defined by: 

∅(12) = ∅𝑅(12) + ∑ ∑ ∅𝐴𝐵(|𝑟2 + 𝑑𝐵(Ω2) − 𝑟1 − 𝑑𝐴𝐵𝐴 (Ω1)|) (4.1) 

where 𝑖 =  1,2 … refers to the position 𝑟𝑖 of the molecular center of mass and Ωi to the molecular 

orientation. 𝑗 =  𝐴, 𝐵 … are the sites on molecules (1), (2) …and dj is the vector from the center 

of mass 𝑖 to the center of site 𝑗. ∅𝐴𝐵 is the short ranged attractive potential between site (A) of 

molecule (1) and site (B) of molecule (2). It is important to note that the interaction between 

the same site types is not allowed, leading to ∅𝐴𝐴 = ∅𝐵𝐵 = 0. ∅𝑅 is the short ranged repulsive 

interaction between hard molecules (1) and (2) … 

The repulsive potential takes the following form: 

∅𝑅(𝑥) = {
∞,       𝑖𝑓 |𝑥| < 𝜎 

0,         𝑖𝑓 |𝑥| ≥ 𝜎
 (4.2) 

where 𝜎 is the collisional hard sphere diameter. 

The attractive potential is given by: 

∅𝐴𝐵(𝑥) = {
< 0,       𝑖𝑓 |𝑥| < 𝑎 

0,         𝑖𝑓 |𝑥| ≥ 𝑎
 (4.3) 

where 𝑎 is the site diameter (= range of interaction)(<< 𝜎), and 𝑥 the site-site distance: 

𝑥 = |𝑟2 + 𝑑(Ω2) − 𝑟1 − 𝑑(Ω1)| (4.4) 

note that 𝑑 must satisfy: 

1

2
(𝜎 − 𝑎) < 𝑑 <

1

2
𝜎 (4.5) 

For any potential, one may define the 𝑒-function and the Mayer 𝑓-function: 
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𝑒(12) = 𝐸𝑥𝑝(−𝛽∅(12)) = 𝐸𝑥𝑝[−𝛽(∅𝑅(12) + ∑ ∑ ∅𝐴𝐵(12))]𝐵𝐴   (4.6) 

𝑓(12) = 𝑒(12) − 1 (4.7) 

where 𝛽 =
1

𝑘𝐵𝑇
  and 𝑘𝐵 is the Boltzmann’s constant and 𝑇 is the temperature in 𝐾. 

Using the product property of the exponential function, the two last equations give respectively 

the two following equations: 

𝑒(12) = 𝑒𝑅(12) ∏ ∏ 𝑒𝐴𝐵(12)𝐵∈ℾ𝐴∈ℾ  (4.8) 

𝑓(12) = 𝑓𝑅(12) + 𝑒𝑅(12)(∏ ∏ [1 + 𝑓𝐴𝐵(12)𝐵∈ℾ𝐴∈ℾ ] − 1) (4.9) 

where  

𝑓𝑅(12) = {
−1,       𝑖𝑓 |𝑥| < 𝜎 

0,         𝑖𝑓 |𝑥| ≥ 𝜎
 (4.10) 

𝑒𝑅(12) = {
0,       𝑖𝑓 |𝑥| < 𝜎 

1,         𝑖𝑓 |𝑥| ≥ 𝜎
 (4.11) 

The 𝑒𝑅(12) function was introduced take into account for steric incompatibilities when the 

rigid cores overlap, and 𝑓𝐴𝐵(12) accounts for the directional short ranged attractions. In the 

graph theory, the 𝑒-bonds will be represented by straight lines and the 𝑓-bonds by zigzag lines. 

The 𝑓𝐴𝐵-bonds connects only two attractive sites, while 𝑓-bonds connects only hard cores. 

For illustration, let’s take the same example as the one given in Wertheim’s third paper 5. 

Assuming the case of the two-site model, with identical particles {1, 2} possessing sites A 

(white) and B (black) each. All possible interactions between the two particles, expressed in 

terms of the Mayer function using the graph theory, are represented by the following graph: 
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The first simplification come from the assumption made in the potential interaction, where all 

interaction between the same type sites vanished as 𝑓𝐴𝐴(12) = 𝑓𝐵𝐵(12) = 0, due to the fact 

that ∅𝐴𝐴 = ∅𝐵𝐵 = 0. Thus, graph reduces to this: 

  

Furthermore, Wertheim assumed that the double bonding is not allowed, as this will result in 

two overlapped cores because of the very short range of the attractive interactions. 

Mathematically, this vanishes due to the irrelevant value of the pre-factor 𝑒𝑅(12). This is one 

of the steric incompatibilities introduced later by Wertheim which will be discussed just after. 

This leads then to the final 𝑓_function: 

𝑓(12) = 𝑓𝑅(12) + 𝑒𝑅(12)𝑓𝐴𝐵(12) +  𝑒𝑅(12)𝑓𝐵𝐴(12) (4.12) 

  

 

This simple example emphasizes the importance of the assumptions introduced by Wertheim 

which lead to many simplifications in the graph theory. In the same spirit of simplifications, as 

already mentioned, Wertheim introduced further approximations such as the single-chain 

approximation and other steric incompatibilities, leading to further simplifications in the graph 

theory. 

4.2.2  Assumptions and Steric Incompatibilities (SI) 

Among the keys to the success of the Wertheim theory, is the introduction of some assumptions 

and steric incompatibilities at an early stage. This allowed him to drastically reduce the number 

of clusters in the z-expansion, making this latter sum convergent. The first assumption is the 

prohibition made on the possible association between the same type sites of different molecules 

(∅𝐴𝐴 = ∅𝐵𝐵 = 0). The second assumption is to account only graphs involving a single chain 

surrounded by a sea of monomers. This last assumption is called the single-chain approximation 

(or the ideal-chain approximation). With this approximation, there is no information on the 

simultaneous presence of at least two chains (dimers, trimers…) in the system. The interactions 

are then only defined at the monomeric level and not at the chain level.  

Apart the fact that the aim is to simplify the theory to be easily applicable, there is no physical 

arguments to justify these assumptions. In reality, attraction may occur between any two distinct 

attractive sites (first assumption). Moreover, associated molecules could exist simultaneously 

in the system (second assumption). However, behind any theory development, there is always 

a trade-off between the degree of complexity and the degree of accuracy. For instance, without 

the single-chain approximation in TPT, a dimer-dimer interaction should be taken into account 

(note that this is the simplest case), which requires a four-body distribution function for which 

little is known. The effect of this approximation will be felt in extreme dilute system, especially 

for large chain molecules. The virial coefficients are then badly approximated, as well as phase 

equilibria, which requires the knowledge of accurate pressure and chemical potential of the 

vapour phase.  
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In addition to the two assumptions discussed above, some sensible approximations were 

introduced by Wertheim, called Steric Incompatibilities (SI). They are of three types, noted 

respectively SI1, SI2 and SI3. Their introduction allows much more simplifications and 

cancellations in the graph theory. Without them, the fugacity expansion used by Wertheim 

would be an infinite summation from a mathematical point of view (infinite possible 

configurations of clusters). Taking into account these SI from the outset is one of the keys to 

the success of the Wertheim TPT theory. Let’s now introduce these three types of steric 

incompatibilities: 

 SI1 

The first steric incompatibility occurs when three molecules, with a single site each, are 

involved, as shown in Figure 4.1. It is taken from the Anderson’s work 9 in which a third site 

{C} of molecule (3) could not be bonded to any of the already bonded sites {A, B} of molecules 

{1, 2}. In fact, this could happen if only site {C} in molecule (3) enters in the range of attraction 

of either site {A} or {B}. However, as the range of the attractions are very short, molecule (3) 

needs then to overlap molecules (1) and/or molecule (2) which is not possible because of the 

strong repulsion force induced by the hard-cores when overlapping, thus resulting in 𝑒𝑅(13) =

𝑒𝑅(23) = 0 and leading to a vanishing graph. 

 

 

 

 

 

 

 

 SI2 

This type of incompatibility occurs in a multiple sites model when only pairs of molecules are 

involved. This type of SI is physically justified by the fact that the angle formed between the 

two sites and the center of mass of the molecule is set to be sufficiently large, i.e. 𝑚𝑖𝑛 >
𝜋

3
, as 

too small angles can be considered as unrealistic. Thus, a bond between two molecules can only 

involve a maximum of one site from each molecules as the third site from either molecule 1 or 

2 is situated at distance far enough from the bonding range. This limits the number of possible 

bonds per site, and is referred to as a weak SI, noted SI2W, as shown in Figure 4.2 (a). 

Together with SI1, this results in SI2S, where S stands for strong, where multiple bonding 

between two molecules are excluded. A double bonding requires a high enough energy to be 

formed as this may happen only if the two cores overlap (SI1) due to the large enough angle 

between their sites and their centers of mass respectively (SI2W), as illustrated in Figure 4.2 

(b). 

Figure 4.1: Wertheim’s SI1, where two bonded hard cores prevent a third hard core 
from association to one of them due to the impossible overlapping between cores. 
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 SI3 

Consider the case of a chain formed by the association of spheres (𝑠 − 𝑚𝑒𝑟𝑠 ≥ 3) in the 

multiple sites model. In the case of rigid linear or almost linear chains 𝑚𝑖𝑛 ≈ 𝜋, it is reasonable 

to consider that two spheres (with one free site each) of the same chain molecule, separated by 

at least one sphere, makes the distance between their relative free attractive sites larger than the 

site’s attractive range, as shown in Figure 4.3. Hence, the association at one site can be 

considered independent of the association of the other sites within the same molecule. Thus, 

the chain self-hindrance occurs as the structure of the molecule is considered rigid. However, 

this can be true only if the range of attraction is very small as Wertheim wrote in the third paper 

“The extent to which it occurs depends critically on the range of the attractive interactions and 

the bond angles. For this reason, it is harder to incorporate in approximation theories than the 

other two types of SI”. 

Hence, the self-association, to permit ring formation, is then discarded with the use of SI3. 

However, in the case of a fully flexible chains (freely rotating), one may imagine that SI3 

becomes less arguable! This is the reason for which Wertheim was somewhat hesitating to 

truncate on this SI3 type (“The problem of systematic exploitation of SI3 is a difficult one” 6), 

and why he limited the application to very small chains. “However, the closest match between 

equilibrium TPT and the ringless DH model is obtained by again excluding physical rings via 

the simple means of dropping ring graphs” after Wertheim in 8. 

It is worthwhile to note that most of the SI that simplifies the development of the Wertheim’s 

TPT theory are a consequence of choosing the hard and spherically symmetrical model as a 

reference term (Wertheim's ingenuity!). Some of the SI would not be fully justified if a soft 

sphere was taken as a reference model, which would have made the development of the theory 

more complex. 

  

Figure 4.2: (a) Wertheim’s SI2W, where a site from one molecule can only 
be bonded to one site from another molecule. (b) Wertheim’s SI2S, where 

double bonding is not allowed as a consequence of SI1 and SI2W. 

𝜃 𝜃 𝜃 

(a)                                                      (b) 
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4.2.3  Multiple density formalism 

As already mentioned, the multiple density formalism is one of the keys of the success of the 

Wertheim. Unlike Anderson’s work, where the overall density was used, Wertheim used 

another approach treating the molecules as different species in the system depending on their 

bonding state. Wertheim showed that, while the correct behaviour of a dimerizing gas in the 

low density limit can trivially be obtained with the two density formalism, it becomes heavy 

with the singlet-density expansion in the Mayer formalism.  

The overall number density of the system is then given as a sum of the number density of the 

bonded and non-bonded molecules. In the two site model, this is given by: 

𝜌(1) = 𝜌0(1) + 𝜌𝐴(1) + 𝜌𝐵(1) + 𝜌𝐴𝐵(1) (4.13) 

where 𝜌0(1) is the free monomer, 𝜌𝐴(1) is the number density of the molecules bonded at site 

(A), 𝜌𝐵(1) is the number density of the molecules bonded at site (B), and 𝜌𝐴𝐵(1) is the number 

density of the molecules bonded at site (A) and (B) simultaneously. In the one site model, this 

reduces to the two densities formalism: 

𝜌(1) = 𝜌0(1) + 𝜌𝐴(1) (4.14) 

In terms of graph theory, an example on the different densities is represented by: 

 

        ρ0(1) 

 

 

        ρA(1) 

 

The white points are the fixed particles, and the grey ones are the system particles interacting 

with the fixed particles. The pre-factor corresponds to a symmetrical number.  

 

 1/2  1/2  … 

 … 

Figure 4.3: Wertheim’s SI3, where, for small molecules, the angle between the two 
site and the center of mass of the molecule is large enough , so that the molecules 
can be considered as rigid and linear (a). (b) Another consequence is that rings are 

not allowed to form for small molecules. 

(a)                                                              (b) 
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4.2.4  Derived Equations 

In this part, the derived equations of state of Wertheim using TPT theory are briefly provided. 

For details on the derivation, the reader is referred to the original articles of the Wertheim, or 

to the excellent works of Zmpitas 20 and Febra 19. The derivation, presented in this work is rather 

heuristic and simple for understanding, mostly inspired from the original articles of Wertheim 
3, 4, 5, 6, 7, 8, Chapman’s and collaborators work 21, 22, 23, 24, 25, Galindo’s work 26, Muller and 

Gubbins review 27, the work of Paricaud 28 and that of Zmpitas 20.  

4.2.4.1  Single site model 

In the single site model, the spheres possess only one attractive site. The interactions in the 

system may result in the formation of dimers at equilibrium. The system consists then in a 

mixture of hard-spheres and inseparable dispheres (hard-dumbbells) at certain composition. 

The number density is given by: 

𝜌 = 𝜌𝑂 +  2𝜌𝑑 (4.15) 

where 𝜌𝑑 is dimers number density, and 𝜌0 is the non-bonded spheres number density. In the 

ideal gas dimerization, the association (excess) Helmholtz free energy of a system is written as: 

𝛽𝐴𝐴𝑠𝑠𝑜 = 𝛽(𝐴 − 𝐴𝑖𝑑𝑒𝑎𝑙) (4.16) 

where 𝐴 = 𝑁𝜇 − 𝑃𝑉 is the total Helmholtz free energy of the system containing monomers and 

dimers, and 𝐴𝑖𝑑𝑒𝑎𝑙 = 𝑁𝜇𝑖𝑑𝑒𝑎𝑙 − 𝑃𝑖𝑑𝑒𝑎𝑙𝑉 is the ideal Helmholtz free energy of the non-

associated system (only monomers). The chemical potential and the pressure for the ideal 

monomeric gas are:  

𝜇𝑖𝑑𝑒𝑎𝑙

𝑘𝐵𝑇
= 𝐿𝑛(𝜌(1)ᴧ3) (4.17) 

𝑃𝑖𝑑𝑒𝑎𝑙

𝑘𝐵𝑇
= ∫ 𝜌(1) 𝑑(1) (4.18) 

The total Helmholtz free energy of the monomers ideal gas is: 

𝐴𝑖𝑑𝑒𝑎𝑙

𝑘𝐵𝑇
= 𝑁

𝜇𝑖𝑑𝑒𝑎𝑙

𝑘𝐵𝑇
−

𝑃𝑖𝑑𝑒𝑎𝑙

𝑘𝐵𝑇
𝑉 = ∫ 𝜌(1) 𝐿𝑛(𝜌(1)ᴧ3)𝑑(1) − ∫ 𝜌(1) 𝑑(1) (4.19) 

Note that ∫ ρ(1) d(1) = 𝑁. 

Now, regarding the ideal gas mixture of monomers and dimers, the pressure is given by the 

Dalton’s law: 

𝑃

𝑘𝐵𝑇
= ∫ 𝜌𝑠𝑝𝑒𝑐𝑖𝑒𝑠(1) 𝑑(1)

       = ∫(𝜌0(1) + 𝜌𝑑(1))𝑑(1)

       = ∫
1

2
(𝜌(1) + 𝜌0(1))𝑑(1)

 (4.20) 

and the chemical potential of the dimers (in equilibrium with the monomers) is thus given by: 

𝜇

𝑘𝐵𝑇
= 𝐿𝑛(𝜌0(1)ᴧ3) (4.21) 
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 𝛽𝐴 = 𝑁
𝜇

𝑘𝐵𝑇
−

𝑃

𝑘𝐵𝑇
𝑉

        = ∫ 𝜌(1) 𝐿𝑛(𝜌0(1)ᴧ3)𝑑(1) − ∫
1

2
(𝜌(1) + 𝜌0(1))𝑑(1)

 (4.22) 

The association Helmholtz free energy due to the dimerization of the homogeneous ideal 

monomeric gas system at equilibrium is: 

𝛽𝐴𝐴𝑠𝑠𝑜 = 𝛽(𝐴 − 𝐴𝑖𝑑𝑒𝑎𝑙)

              = ∫ 𝜌(1) (𝐿𝑛 (
𝜌0(1)

𝜌(1)
) +

1

2
−

1

2
(

𝜌0(1)

𝜌(1)
)) 𝑑(1)

              = 𝑁 (𝐿𝑛(𝑋) +
1

2
−

1

2
𝑋)

 (4.23) 

Finally, the TPT derived equation of state for the single site model at certain temperature 𝑇, 

density 𝜌, is given in terms of the Helmholtz free energy 𝐴 for 𝑁 particles as follows: 

𝛽(𝐴−𝐴𝑖𝑑𝑒𝑎𝑙)

𝑁
= 𝐿𝑛(𝑋) −

1

2
𝑋 +

1

2
 (4.24) 

This equation is the same as that given by Wertheim in Eq(9) of the Wertheim paper 2 4.  

Now, in order to use this equation to calculate any property of the system, one needs to 

determine the parameter 𝑋. This parameter is the fraction of monomers not bonded in the system 

which is a function of global density and non-bonded monomers density. The relation between 

both densities (monomer and dimer) is given by the mass action equation. However, this 

equation involves also the density of the dimers in the system, and thus, the parameter X is 

given by: 

𝑋 = 1 − 2
𝜌𝑑

𝜌
 (4.25) 

To obtain 𝑋, one needs to systematically know 𝜌𝑑, while 𝜌 is, of course, already known. Thanks 

to the statistical mechanics applied to the chemical equilibrium, the density of the dimers 

present in the system under ideal conditions is given by: 

𝜌𝑑(1) =
1

2
𝜌0(1) ∫ 𝜌0(2)𝑒𝑅(12)𝑓(12)𝑑(2) (4.26) 

The equation for X then becomes when replacing ρd in it (for a homogeneous system) after 

rearrangements, as: 

𝑋 =
1

1+𝜌𝑋∆
 (4.27) 

which is a quadratic function that could be solved either analytically or numerically. Here ∆ is 

given by:  

∆= ∫ 𝑒𝑅𝑓(12)𝑑(2) (4.28) 

Remember that until now, this derivation is valid only for a dimerization occurring under ideal 

conditions. However, for an interacting system, Wertheim showed that the correct expression 

for the dimer density becomes 4: 

𝜌𝐷(1) =
1

2
𝜌0(1) ∫ 𝜌0(2)𝑔00(12)𝑓(12)𝑑(2) (4.29) 
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Here 𝑔00(12) is the monomer-monomer pair correlation function given by this expression: 

𝑔00(12) = ∑ 𝑔00
𝑗

(12)∞
𝑗=0  (4.30) 

where j here denotes the number of attractive Mayer function (bonds) involved, 𝑓𝐴𝐴, in a certain 

cluster. Wertheim limited this to the lowest order approximation, where only one bond exist in 

a cluster. In other words, only a dimer surrounded by a sea of monomers is considered. In fact, 

in the one site model, this is not an approximation as the monomer has only one attractive site 

and then could only be bonded to one other monomer. However, if we anticipate the case of 

two sites model, the monomer now could be bonded to two other monomers (j=0 and j=1 are 

non-vanishing graphs if the one site model approximation is not made). With this 

approximation, 𝑔00(12) could then be simply approximated by the pair radial distribution 

function of the reference fluid 𝑔𝑅(12). Furthermore, in the low density limit, one may 

approximate 𝑔𝑅(12) by the Boltzmann factor 𝑒𝑅(12).  

The change in terms of pressure due to association is given by 𝑃𝐴𝑠𝑠𝑜 = 𝜌2
𝜕

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁

𝜕𝜌
|𝛽 and that, 

in terms of the compressibility factor, is given by 𝑍𝑎𝑠𝑠𝑜 = 𝜌
𝜕𝐴𝑎𝑠𝑠𝑜

𝜕𝜌
|𝛽. Thus, the expression for 

𝑍𝐴𝑠𝑠𝑜 is: 

𝑍𝐴𝑠𝑠𝑜 = 𝜌
𝜕

𝜕𝜌
(𝐿𝑛(𝑋) −

1

2
𝑋 +

1

2
)

           = 𝜌 (
𝜕𝐿𝑛(𝑋)

𝜕𝑋

𝜕𝑋

𝜕𝜌
−

1

2

𝜕𝑋

𝜕𝑋

𝜕𝑋

𝜕𝜌
)

           = 𝜌
𝜕𝑋

𝜕𝜌
(

1

𝑋
−

1

2
)

 (4.31) 

where the term 
𝜕𝑋

𝜕𝜌
 is obtained from the mass action equation and is given by: 

𝜕𝑋

𝜕𝜌
=

−𝑋2(∆+𝜌
𝜕∆

𝜕𝜌
)

2𝜌𝑋∆+1
 (4.32) 

The equation for 𝑍𝐴𝑠𝑠𝑜 becomes then: 

𝑍𝐴𝑠𝑠𝑜 =
−𝜌𝑋2

2
(

𝜕∆

𝜕𝜌
𝜌 + ∆)

=
(𝑋−1)

2
(

𝜕𝐿𝑛(∆)

𝜕𝐿𝑛(𝜌)
+ 1)

 (4.33) 

The pressure due to association is then simply obtained from: 

𝑃𝑎𝑠𝑠𝑜 = 𝜌𝑍𝐴𝑠𝑠𝑜  (4.34) 

The total compressibility factor is: 

𝑍 = 𝑍𝑅 + 𝑍𝐴𝑠𝑠𝑜 (4.35) 

where 𝑍𝑅 is the compressibility factor of the reference term. In the case of hard sphere, its 

expression is given by the Carnahan-Starling equation 29: 

𝑍𝑅 =
(1+𝜂+𝜂2−𝜂3)

(1−𝜂3)
 (4.36) 
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Furthermore, because of the short range of the attractive potential, one may consider that 

dimerization occurs at contact only. Hence, the expression for ∆ could be written as: 

∆= ∫ 𝑔𝑅(12)𝑓(12)𝑑(2)

   = 𝑔𝑅(𝜎, 𝜌)𝐹𝐾
 (4.37) 

where 𝑔𝑅(𝜎) is the radial distribution function of the hard sphere reference at contact, 𝐹 is the 

Mayer function of the attractive site-site interaction, and 𝐾 is the bonding volume. This leads 

to: 

𝑍𝐴𝑠𝑠𝑜 =
(𝑋−1)

2
(

𝐾𝐹𝜌

∆

𝜕(𝑔𝑅)

𝜕(𝜌)
+ 1)

          =
(𝑋−1)

2
(

𝜌

𝑔𝑅

𝜕(𝑔𝑅)

𝜕(𝜌)
+ 1)

 (4.38) 

The expression for 𝑔𝑅 is deduced from the equation of state of Carnahan-Starling 29, and is 

given by: 

𝑔𝑅(𝜎) =
𝑍𝑅−1

4𝜂
 (4.39) 

Therefore, the final TPT equation of state for the hard sphere with association is: 

𝑍 = 𝑍𝑅 + 𝑍𝐴𝑠𝑠𝑜

    =
(1+𝜂+𝜂2−𝜂3)

(1−𝜂3)
−

1

2

(1+𝜂−
1

2
𝜂2)(1−𝑋)

2(1−𝜂)(1−
1

2
𝜂)

 (4.40) 

It is interesting to check the validity of this TPT equation of state when approaching the limits. 

The case where only monomers are present in the system corresponds to 𝑋 = 1, which, as 

expected, give a null association contribution. The second limit is when the whole system is 

dimerized, which corresponds to 𝑋 = 0. In this latter case, the equation of state in terms of 

compressibility factor is given by: 

𝑍𝐷
𝐴𝑠𝑠𝑜 =

−1

2
(

𝜕𝐿𝑛(∆)

𝜕𝐿𝑛(𝜌)
+ 1) (4.41) 

Still, in this limit, it is more common to express the contribution in terms of the residual one: 

𝑍𝐷,𝑟𝑒𝑠
𝐴𝑠𝑠𝑜 = 𝑍𝐷

𝐴𝑠𝑠𝑜 − 𝑍𝐷
𝑖𝑑𝑒𝑎𝑙  (4.42) 

Thus: 

𝑍𝐷,𝑟𝑒𝑠
𝐴𝑠𝑠𝑜 = 𝑍𝐷

𝐴𝑠𝑠𝑜 − 𝑙𝑖𝑚
𝜌→0

(𝑍𝐷
𝐴𝑠𝑠𝑜)

            = 𝑍𝐷
𝐴𝑠𝑠𝑜 +

1

2

            = −
1

2

𝜕𝐿𝑛(∆)

𝜕𝐿𝑛(𝜌)

 (4.43) 

The residual compressibility factor is then obtained by this expression: 

𝑍𝐷,𝑟𝑒𝑠 = 𝑍𝑟𝑒𝑠
𝑅 + 𝑍𝐷,𝑟𝑒𝑠

𝐴𝑠𝑠𝑜  (4.44) 

The residual Helmholtz free energy is obtained by integrating 𝑍𝐷,𝑟𝑒𝑠 over density, and the 

expression is given by: 
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𝛽𝐴𝐷,𝑟𝑒𝑠

𝑁
=

𝛽𝐴𝑟𝑒𝑠
𝑅

𝑁
−

1

2
𝐿𝑛(𝑔𝑅(𝜎)) (4.45) 

where 𝑁 being the number of spheres 𝑁 = 𝑚𝑠𝑁𝑐. 𝑚𝑠 is the number of segments per chain and 

𝑁𝑐is the number of chains in the system (dimers in this case). Thus, for a fully dimerized system, 

where 𝑚𝑠 = 2, is written in terms of Helmholtz free energy as: 

𝛽𝐴𝐷,𝑟𝑒𝑠

𝑁𝑐
= 𝑚𝑠

𝛽𝐴𝐷,𝑟𝑒𝑠

𝑁
= 2

𝛽𝐴𝑟𝑒𝑠
𝑟𝑒𝑓

𝑁
− 𝐿𝑛(𝑔𝑅) (4.46) 

If we anticipate the progression in our review on the perturbation theory, one can note that this 

equation is exactly the same expression as that given by SAFT equation of state for a system of 

dimers. Moreover, if one assumes the additivity of the residual Helmholtz free energy due to 

association and that of the reference term, one obtains the complete scheme of the SAFT EoS. 

For instance, 𝐴𝑇,𝑟𝑒𝑠 of a trimer, will be written as a contribution of three monomers + two 

bonds, … and so on, thus, one may write:  

𝛽𝐴𝐷,𝑟𝑒𝑠

𝑁𝑐
= 2

𝛽𝐴𝑟𝑒𝑠
𝑟𝑒𝑓

𝑁
− 1𝐿𝑛(𝑔𝑅)

𝛽𝐴𝑇,𝑟𝑒𝑠

𝑁𝑐
= 3

𝛽𝐴𝑟𝑒𝑠
𝑟𝑒𝑓

𝑁
− 2𝐿𝑛(𝑔𝑅)

𝛽𝐴𝑄,𝑟𝑒𝑠

𝑁𝑐
= 4

𝛽𝐴𝑟𝑒𝑠
𝑟𝑒𝑓

𝑁
− 3𝐿𝑛(𝑔𝑅)

.

.

.
𝛽𝐴𝑚,𝑟𝑒𝑠

𝑁𝑐
= 𝑚𝑠

𝛽𝐴𝑟𝑒𝑠
𝑟𝑒𝑓

𝑁
− (𝑚𝑠 − 1)𝐿𝑛(𝑔𝑅)

 (4.47) 

This last equation is nothing more than the usual SAFT equation of state. 

4.2.4.2 Two sites model 

In the two sites model, a sphere contains two attractive sites. The sphere may then be bonded 

to one or two other sites of two different molecules. Hence, a polymerization may occur to form 

chains of dimers, trimers, or oligomers, while in the one-site model only dimers could be 

formed. Moreover, in this model, four number densities were defined by Wertheim instead of 

two in the one site model. The densities are as follow: 𝜌0 is the non-bonded monomers, 𝜌𝐴 is 

the density number of molecules bonded only on site 𝐴, 𝜌𝐵 is the number of molecules bonded 

only on site 𝐵 and 𝜌𝐴𝐵 is the number of molecules bonded simultaneously on sites 𝐴 and 𝐵. For 

calculations simplicity, Wertheim proposed to work with the following density parameters 

related to the densities by:  

𝜎0 = 𝜌0,   𝜎𝐴 = 𝜌𝐴 + 𝜌0, 𝜎𝐵 = 𝜌𝐵 + 𝜎0 (4.48) 

𝜎 = 𝜌0 + 𝜌𝐴 + 𝜌𝐵 +  𝜎𝐴𝐵 = 𝜌 (4.49) 

As there is exactly the same number of sites of type 𝐴 and 𝐵, this leads to σA = σB = σG, where 

𝜎G will be used later to simplify the notation as done by Wertheim (note also that 𝜌𝐴 = 𝜌𝐵 =

𝜌𝐺).  
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In the following, the framework proposed for the one site model is used here to derive the 

Helmholtz free energy of the system in the two-sites model case. 

If we assume the mixture as an ideal gas of monomers and dimers, the pressure is: 

𝑃

𝑘𝐵𝑇
= ∫ 𝜌𝑠𝑝𝑒𝑐𝑖𝑒𝑠(1) 𝑑(1) (4.50) 

where the number of species are now multiple, and could be of type 0, 𝐴, 𝐵 or 𝐴𝐵. As sites of 

type 𝐴 and type 𝐵 are identical, one can consider them as the same species, noted 𝐺. Therefore, 

the number of species in the system is the total number of spheres minus those that are bonded 

which could be of type 𝐺 or 𝐴𝐵. The formula is then given by: 

𝜌𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝜌 − 𝜌𝐺 − 𝜌𝐴𝐵

               = 𝜎𝐺
 (4.51) 

The pressure is then: 

𝑃

𝑘𝐵𝑇
= ∫ 𝜌𝑠𝑝𝑒𝑐𝑖𝑒𝑠(1) 𝑑(1)

        = ∫ 𝜎𝐺(1) 𝑑(1)
 (4.52) 

and the chemical potential of the dimers in equilibrium with monomers is thus given by: 

𝜇

𝑘𝐵𝑇
= 𝐿𝑛(𝜌0(1)ᴧ3) (4.53) 

The total Helmholtz free energy is: 

𝛽𝐴 = 𝑁
𝜇

𝑘𝐵𝑇
−

𝑃

𝑘𝐵𝑇
𝑉

            = ∫ 𝜌(1) 𝐿𝑛(𝜌0(1)ᴧ3)𝑑(1) − ∫ 𝜌𝐺(1) 𝑑(1)
 (4.54) 

The residual Helmholtz free energy of the dimerization of the homogeneous gas system at 

equilibrium is: 

𝛽𝐴𝐴𝑠𝑠𝑜 = 𝛽(𝐴 − 𝐴𝑖𝑑𝑒𝑎𝑙)

               = ∫ 𝜎(1) (𝐿𝑛 (
𝜎0(1)

𝜎(1)
) −

𝜎𝐺(1)

𝜎(1)
+ 1) 𝑑(1)

               = 𝑁 (𝐿𝑛 (
𝜎0

𝜎
) −

𝜎𝐺

𝜎
+ 1)

 (4.55) 

Wertheim defined two other parameters that measure the degree of polymerization, given by 

𝜈 =
𝜎

𝜎𝐺
, 𝜏 =

𝜎𝐺

𝜎0
. 

Hence,  

𝛽𝐴𝐴𝑠𝑠𝑜 = 𝛽(𝐴 − 𝐴𝑖𝑑𝑒𝑎𝑙)

               = 𝑁 (−𝐿𝑛(𝜈𝜏) −
1

𝜈
+ 1)

 (4.56) 

and the compressibility factor is: 

𝛽𝑍𝐴𝑠𝑠𝑜 = −𝜌 (
𝜕𝐿𝑛(𝜈𝜏)

𝜕𝜈

𝜕𝜈

𝜕𝜌
+

𝜕𝐿𝑛(𝜈𝜏)

𝜕𝜏

𝜕𝜏

𝜕𝜌
+

𝜕(
1

𝜈
)

𝜕𝜈

𝜕𝜈

𝜕𝜌
)

              = 𝜌 [
1

𝜈

𝜕𝜈

𝜕𝜌
(

1

𝜈
− 1) −

1

𝜏

𝜕𝜏

𝜕𝜌
]

 (4.57) 
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The self-consistent densities are obtained from the minimum principle of the Helmholtz free 

energy at chemical equilibrium. The generalized expression 8 is : 

𝛽(𝐴 − 𝐴𝑅) = ∫ (𝜎(1)𝑙𝑛
𝜎0(1)

𝜎(𝑟)
+ 𝜎(𝑟) − 𝜎𝐴(1) − 𝜎𝐵(1) +

𝜎𝐴(1)𝜎𝐵(1)

𝜎0(1)
) 𝑑(𝑟) −  ∆𝑐(0) (4.58) 

where  

∆𝑐(0) = 𝜎𝐴 𝜎𝐵 ∑ 𝜎0
∞
𝑛=0 𝐼𝑛+1  (4.59) 

where 𝑛 stands for the TPT order. In TPT1, 𝐼1 is given by: 

𝐼1 = ∫ 𝑔𝑅(12)𝑓𝐵𝐴(12)𝑑(2)  (4.60) 

In the first order TPT, the stationary condition on densities gives: 

𝜏 − 1 =
𝜕∆𝑐(0)

𝜕𝜎𝐺(1)
  (4.61) 

𝜏𝜈 − 𝜏𝜏 =
𝜕∆𝑐(0)

𝜕𝜎0(1)
  (4.62) 

The minimum of 
𝜕β(A−AR)

∂σ0(1)
 is obtained when 𝜈 = 𝜏. Therefore,  

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁
= −2𝐿𝑛(𝜈) −

1

𝜈
+ 1 (4.63) 

where 𝜈 is defined as the mean number of beads per chain (or simply the average chain length). 

Now, the idea is to try to generalize this equation for multiple sites model from the two sites 

model. The following fraction: 𝑋𝐴 =
𝜎𝐵

𝜎
=

1

𝜈𝐵
 is the fraction of molecules with sites 𝐴 being free 

and 𝑋𝐵 =
𝜎𝐴

𝜎
=

1

𝜈𝐴
  is the fraction of molecules with sites 𝐵 being free, keeping in mind that the 

fraction of not bonded monomers is given by 𝑋0 =
𝜎0

𝜎
. From the self-consistent density 

equations, one obtains that 𝑋0 = 𝑋𝐴𝑋𝐵 = 𝑋𝐺
2. 

The association Helmholtz free energy can then be rewritten as: 

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁
= 2𝐿𝑛(𝑋𝐴) − 𝑋𝐴 + 1

            = 𝐿𝑛(𝑋𝐴) −
1

2
𝑋𝐴 +

1

2
+ 𝐿𝑛(𝑋𝐵) −

1

2
𝑋𝐵 +

1

2

 (4.64) 

where 𝑋𝐴 and 𝑋B are obtained using the first self-consistent equation: 

 𝑋𝐺 =
1

1+ 𝜌𝑋𝐺∆𝐴𝐵
 (4.65) 

∆𝐴𝐵= ∫ 𝑒𝑅𝑓𝐴𝐵(12)𝑑(2) (4.66) 

This equation for 
𝛽𝐴𝐴𝑠𝑠𝑜

𝑁
 could be seen as the sum of two contributions of a single site model. 

This is due to the fact that in TPT1, the association at one site is independent on the association 

at all other sites.  Hence, one may write the generalized scheme for M sites as follow: 

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁
= ∑ (𝐿𝑛(𝑋𝑖) −

𝑋𝑖

2
) +

𝑀

2

𝑀
𝑖=1  (4.67) 
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The compressibility factor is: 

𝑍𝐴𝑠𝑠𝑜 = 𝜌 ∑ (
1

𝑋𝑖
−

1

2
)𝑀

𝑖=1
𝜕𝑋𝑖

𝜕𝜌
 (4.68) 

and Xi is obtained through: 

𝑋𝑖 =
1

1+ 𝜌 ∑ 𝑋𝐵∆𝐴𝐵𝐵
 (4.69) 

The generalization for a multicomponent mixture where spheres may have different sites 

number writes,  

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁
= ∑ 𝑥𝛼 [∑ (𝐿𝑛(𝑋𝑖

𝛼) −
𝑋𝑖

𝛼

2
) +

𝑀𝛼

2𝑖 ]𝛼  (4.70) 

where xα =
𝑁𝛼

𝑁
 is the mole fraction of molecules α, and 𝑋𝑖

𝛼 is the fraction of molecules α  which 

is not bonded at site 𝑖. The first sum is done over all the components, and the second one is 

done over all the sites of each component. Hence, the compressibility factor is obtained 

similarly to the one site model and is given by: 

𝑍𝐴𝑠𝑠𝑜 = ∑ 𝑥𝛼𝜌 [∑ (
1

𝑋𝑖
𝛼 −

1

2
)

𝜕𝑋𝑖
𝛼

𝜕𝜌𝑖 ]𝛼  (4.71) 

All the equations provided here, and derived from Wertheim TPT theory, have been 

successfully validated on molecular simulations of the fluid model 7, 8, 21, 22 as well as on real 

fluids. In the TPT theory of Wertheim, the system consists of a monodisperse fluid only in the 

case of non-associated spheres fluid or after a complete dimerization of a single site spheres 

fluid. Otherwise, the molecules of the system would be polydisperse due to the stoichiometry 

of the sites, meaning that polymerization would take place resulting in chains with different 

chain lengths. The average chain length is given by 𝜈, and the comparison against molecular 

simulations of monodisperse chain like molecules with length 𝑚 is made upon the condition  

𝜈 = 𝑚. However, it is obvious that such comparison is not fully correct, and thus, it is highly 

suitable to have a theory to describe the properties of a monodisperse associating or not 

associating fluids.  

Chapman and collaborators have derived the expression for the Helmholtz free energy due to 

formation of chains in a mixture 25. Their theory is fully based on the TPT of Wertheim, with 

some additional restrictions on the molecular model interactions. They have considered a 

mixture of spheres (𝑠1, 𝑠2, 𝑠3 … 𝑠𝑁) which will bond to form a mono-disperse chains fluid under 

the following restrictions. The site 𝑎, on sphere 𝑠1, bonds only with site 𝑏 on sphere 𝑠2, site 𝑐 

of sphere 𝑠2 bonds only to site 𝑑 sphere 𝑠3…site 𝑝 of sphere 𝑠𝑚−1 bonds only to site 𝑞 of sphere 

𝑠𝑚. Moreover, they have considered favourable stoichiometry, so that if the fraction of 

monomers is set to zero, this will result in mixture of 𝑟 chains with length 𝑚 (𝑠𝑁 = 𝑟. 𝑚 =

∑ 𝑚𝑗)𝑟
𝑗=1 . The chain is then build-up with two types of spheres, single site ones allowed to bond 

for the end members, and 𝑚 − 2 inner spheres with two sites each allowed to bond. The spheres 

may have other sites, but they are not allowed to interact with those chosen a priori to make 

bonds between them to build-up the chain molecule. This leads to: 

𝑍𝐴𝑠𝑠𝑜 = 𝜌𝑐ℎ𝑎𝑖𝑛2(𝑚 − 1) [
𝜕(𝑋)

𝜕(𝜌)
(

1

𝑋
−

1

2
)] (4.72) 



Integration of a bending potential into SAFT model 
 

109 
 

where 
𝜕(𝑋)

𝜕(𝜌)
 is obtained as previously from the mass action equation: 

𝜕(𝑋)

𝜕(𝜌)
(

1

𝑋
−

1

2
) = −

1

2

𝜌𝑐ℎ𝑎𝑖𝑛

𝜌
𝑋2∆ (1 +

𝜕𝐿𝑛∆

𝜕𝐿𝑛𝜌
) (4.73) 

substitution of 
𝜕(𝑋)

𝜕(𝜌)
 in the expression of 𝑍𝐴𝑠𝑠𝑜, gives (note that 𝑋2∆=

(1−𝑋)

𝜌𝑐ℎ𝑎𝑖𝑛
 and 𝑚 =

𝜌𝑐ℎ𝑎𝑖𝑛

𝜌
) 

𝑍𝐴𝑠𝑠𝑜 = −𝜌𝑐ℎ𝑎𝑖𝑛2(𝑚 − 1) [
1

2

𝜌𝑐ℎ𝑎𝑖𝑛

𝜌
𝑋2∆ (1 +

𝜕𝐿𝑛∆

𝜕𝐿𝑛𝜌
)]

            = −𝜌𝑐ℎ𝑎𝑖𝑛(𝑚 − 1) [
𝜌𝑐ℎ𝑎𝑖𝑛

𝜌

(1−𝑋)

𝜌𝑐ℎ𝑎𝑖𝑛
(1 +

𝜕𝐿𝑛∆

𝜕𝐿𝑛𝜌
)]

            = −
(𝑚−1)

𝑚
(1 − 𝑋) [(1 +

𝜕𝐿𝑛∆

𝜕𝐿𝑛𝜌
)]

 (4.74) 

The complete polymerization is obtained when the fraction of monomers is set to zero, i.e. 𝑋 →

0, so that: 

𝑍𝐶ℎ𝑎𝑖𝑛 = 𝑙𝑖𝑚
𝑋→0

𝑍𝐴𝑠𝑠𝑜

             = −
(𝑚−1)

𝑚
[(1 +

𝜕𝐿𝑛∆

𝜕𝐿𝑛𝜌
)]

 (4.75) 

The ideal chain contribution is obtained when 𝜌 → 0: 

𝑍𝑟𝑒𝑠
𝑐ℎ𝑎𝑖𝑛 = 𝑙𝑖𝑚

𝜌→0
𝑍𝐶ℎ𝑎𝑖𝑛

      = −
(𝑚−1)

𝑚

 (4.76) 

One may then obtain the residual contribution by subtracting this ideal part from the total 

contribution:  

𝑍𝑟𝑒𝑠
𝑐ℎ𝑎𝑖𝑛 = 𝑍𝐶ℎ𝑎𝑖𝑛 − 𝑍𝑖𝑑𝑒𝑎𝑙

𝑐ℎ𝑎𝑖𝑛

             = −
(𝑚−1)

𝑚

𝜕𝐿𝑛∆

𝜕𝐿𝑛𝜌

             = −
(𝑚−1)

𝑚

𝜌

(𝑔𝑅(𝜎)

𝜕((𝑔𝑅(𝜎))

𝜕(𝜌)

 (4.77) 

The residual Helmholtz free energy is obtained by integrating this latter over density 𝜌 and is 

then given by: 

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁
= −

(𝑚−1)

𝑚
𝐿𝑛(𝑔𝑅(𝜎)) (4.78) 

or could also be written as (𝑁 = 𝑚𝑁𝐶ℎ𝑎𝑖𝑛): 

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁𝐶ℎ𝑎𝑖𝑛
= −(𝑚 − 1)𝐿𝑛(𝑔𝑅(𝜎)) (4.79) 

and for a mixture, this becomes: 

𝛽𝐴𝐴𝑠𝑠𝑜

𝑁𝐶ℎ𝑎𝑖𝑛
= − ∑ (𝑚𝑗 − 1)𝑥𝑗𝐿𝑛(𝑔𝑅,𝑗𝑗(𝜎𝑗𝑗))𝑟

𝑗=1  (4.80) 

where the sum is done over the chains of type 𝑗, 𝑚𝑗 is the length of the chains 𝑗, 𝑥𝑗 is the mole 

fraction of molecule 𝑗, 𝜎𝑗𝑗 is the center-to-center distance between two bonded spheres of 

molecule 𝑗. 
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With this expression, Chapman and collaborators gave birth to a new type of equation of state 

named SAFT 25, which stands for the Statistical Association Fluid Theory. In this form, the TPT 

of Wertheim is capable to control the geometry of a molecule, and becomes much more 

convenient to be compared to molecular simulations in a straightforward way for systems 

consisting of a monodisperse fluid. 

Few years later, Y. Zhou and G. Stell 30 showed another alternative to derive the same 

expression given by Chapman using their theory on ionic systems. Their demonstration is based 

on the use of the cavity function, which is related to the change in the free energy of a system 

by this relation: 

𝛽∆𝐴 = −𝐿𝑛(𝑦(𝑟1, 𝑟2, 𝑟3, … 𝑟𝑁𝑅
, 𝑁𝑅 , 𝑁𝐶)) (4.81) 

where, y is the m-body correlation function, 𝑟𝑖 denote the position of the spheres, 𝑁𝑅 is the 

number of spheres in the system and 𝑁𝐶 is the number of chains formed due to bonding between 

the spheres. 

A physical interpretation could be given as follow. In a system, two cavity particles do not 

interact with each other. Therefore, if m particles are present in the system, the dense medium 

will tend to drive them into each other to save space, costing a certain energy to the system. In 

other words, it is the energy required to bring two cavities from infinity to certain distance under 

thermodynamic conditions. In this case, it is interesting to bring them to 𝑟 = 𝜎 at which they 

are allowed to bond to form a dimer. This dimer can then bond to a third cavity…until a chain 

molecule is formed. This change in the free energy due to the formation of a chain in the system 

can be calculated by means of the cavity function. As already mentioned, this cavity function 

is multidimensional, and little is known about it. However, if one restricts only to its lowest 

order; two-body approximation; this becomes more convenient. Furthermore, the use of the 

linear approximation allows one to write: 

𝑦(𝑟1, 𝑟2, 𝑟3, … 𝑟𝑚) = 𝑦(𝑟1, 𝑟2)𝑦(𝑟2, 𝑟3)𝑦(𝑟3, 𝑟4) … 𝑦(𝑟𝑚−1, 𝑟𝑚) (4.82) 

Moreover, if one is interested only on bringing the cavities at a distance 𝜎 of each other, this 

equation becomes: 

𝑦(𝑟1, 𝑟2, 𝑟3, … 𝑟𝑚) = 𝑦(𝜎12)𝑦(𝜎23)𝑦(𝜎34) … 𝑦(𝜎(𝑚−1)𝑚) (4.83) 

Thus, the change in the free energy due to the formation of a chain molecule composed of 𝑚 

cavities is: 

𝛽∆𝐴 = −𝐿𝑛(𝑦(𝜎12)𝑦(𝜎23)𝑦(𝜎34) … 𝑦(𝜎(𝑚−1)𝑚), 𝑁𝑅 − 𝑚, 1) (4.84) 

If all spheres are identical, 𝜎 = 𝜎𝑖𝑗, and the equation becomes: 

𝛽∆𝐴 = −𝐿𝑛(𝑦(𝜎)𝑚−1, 𝑁𝑅 − 𝑚, 1) (4.85) 

This is the energy required to form a chain molecule composed of 𝑚 spheres in a sea of non-

connected spheres. Furthermore, as the approximation that the cavities do not interact between 

each other has been done, the formation of a chain is independent of the formation of another 
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chain (similarly to the single chain approximation in TPT theory). The energy required to bond 

the whole system into 𝑁𝐶 chains is then additive, and is given by: 

𝛽∆𝐴 = −𝑁𝐶𝐿𝑛(𝑦(𝜎)𝑚−1, 0, 𝑁𝐶)

              = 𝑁𝐶(𝑚 − 1)𝐿𝑛(𝑦(𝜎), 0, 𝑁𝐶)

    = 𝑁𝐶(𝑚 − 1)𝐿𝑛(𝑔(𝜎))

 (4.86) 

where 𝑔(𝜎) is the radial distribution function of the reference fluid (hard spheres for example). 

This final expression is exactly the same as that given by Chapman et al. to account for the bond 

formation.  

4.3 SAFT models 

Unlike the equation of state of Wertheim, the SAFT equation of state developed by Chapman 

and co-workers 25 models a fluid consisting of a monodisperse chains with or without 

association. This EoS has a strong physical basis as it relies on the statistical mechanical 

perturbation theory compared to the empirical or semi-empirical ones. Moreover, as it relies on 

a well-defined molecular model, it is possible to compared it directly to molecular simulations 

of the same fluid type. This latter point is extremely advantageous, as the molecular simulation 

tool may provide “exact” properties (to the numerical uncertainties) of the well-defined 

molecular model Thus, the robustness or the deficiency of the SAFT EoS model can be assessed 

on the properties of the model fluid before applying it to real fluids.  

The SAFT EoS is given in terms of the residual Helmholtz free energy in separate contributions: 

𝛽
𝐴𝑟𝑒𝑠

𝑁𝐶
= 𝛽𝑚

𝐴𝑠𝑒𝑔

𝑁𝑠
+  𝛽

𝐴𝑐ℎ𝑎𝑖𝑛

𝑁𝐶
+ 𝛽

𝐴𝑎𝑠𝑠𝑜

𝑁𝐶
 (4.87) 

Where 𝐴𝑟𝑒𝑠 is the total residual Helmholtz free energy, 𝐴𝑠𝑒𝑔 is the contribution due to the 

intermolecular interaction of the reference fluid. 𝐴𝑐ℎ𝑎𝑖𝑛 accounts for the change in the energy 

due to the polymerization of segments, and 𝐴𝑎𝑠𝑠𝑜 is the association term taking into account the 

interactions due to association such as hydrogen bonds. 𝑁𝑠 is the number of segments in the 

system, 𝑁𝐶  is the number of chains composed of 𝑚 segments present in the system, i.e. 𝑚 =
𝑁𝑠

𝑁𝐶
. 

Depending on the intermolecular interaction potential, different SAFT versions were developed 

in the literature. Among them, the one based on the reference hard sphere model developed by 

Champan 25 (SAFT-HS) and modified later by Huang and Radosz 31 (CK-SAFT), the LJ-SAFT 
32 extended to mixtures by Blas and Vega 33 (soft-SAFT), the SAFT-VR 34, 35 developed initially 

by Gil-Villegas for different potential with variable range, and then extended for different 

potential interactions (Square Well, m-n potentials, Yukawa), or the PC-SAFT 36 with a slightly 

different formalism. It is the segment term and the associated radial distribution function that 

makes different SAFT versions, as the form of the chain and the association terms are roughly 

kept unchanged.  

4.3.1  SAFT-HS and CK-SAFT 

The original-SAFT (SAFT-HS) models Lennard-Jones chain fluids, where the reference term 

is composed of two parts, one accounting for the short range interaction using a hard sphere 
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(HS) potential and a perturbation part accounting for the dispersive interactions of the LJ 

potential. The Carnahan and Starling EoS 29 is used for the HS, 

𝐴𝐻𝑆

𝑅𝑇
=

4𝜂−3𝜂2

(1−𝜂)2  (4.88) 

where  𝜂 =
𝜋𝑁𝐴

6
𝜌𝑑3𝑚, and the dispersion term is taken from the Cotterman expression 37. 

𝐴𝐷𝑖𝑠𝑝 =
𝑅

𝑘
(𝑎01

𝐷𝑖𝑠𝑝
+

𝑎02
𝐷𝑖𝑠𝑝

𝑇𝑅
)  (4.89) 

where  

𝑎01
𝐷𝑖𝑠𝑝

= 𝜌𝑅[−8.5959 − 4.5424𝜌𝑅 − 2.1268𝜌𝑅
2 + 10.285𝜌𝑅

3]  (4.90) 

𝑎02
𝐷𝑖𝑠𝑝

= 𝜌𝑅[−1.9075 + 9.9724𝜌𝑅 − 22.216𝜌𝑅
2 + 15.904𝜌𝑅

3]  (4.91) 

𝑇𝑅 =
𝑘𝑇

   is the reduced temperature 

𝜌𝑅 =
6

20.5𝜋
𝜂 is the reduced density 

In the CK-SAFT of Chen and Kreglewski 38 the dispersive term is fitted on molecular 

simulation data (internal energy and PVT data and second virial coefficient) of particles 

interacting through a square-well potential and is given by:  

𝐴𝐷𝑖𝑠𝑝

𝑅𝑇
= ∑ ∑ 𝐷𝑖𝑗[𝛽𝑢]𝑖

𝑗𝑖  [
𝜂

𝜏
]𝑗 (4.92) 

𝐷𝑖𝑗 are universal constants given in the original paper 38. 𝜂 is the segment packing fraction and 

τ is the upper limit set to 𝜋
√2

6
. 𝑢 is the segment-segment well depth temperature-dependent 

interaction parameter given by: 

𝑢 = 𝑢0(1 +
𝑒

𝑘𝐵𝑇
) (4.93) 

where u0 is the well depth temperature-independent energy parameter, and 
𝑒

𝑘𝐵
= 10 for all 

molecules except for few small molecules (it is related to the Pitzer’s acentric factor and to the 

critical temperature). The chain term is computed using the radial distribution function of the 

reference term corresponding to the Carnahan-Starling EoS. 

This equation of sate was widely applied to model thermodynamic and phase equilibrium 

properties of complex pure fluids and their mixtures and can be found in 31, 39, 40, 41, 42, 43. 

4.3.2  LJ-SAFT (soft-SAFT) 

Instead of using a hard sphere fluid to describe the repulsive intermolecular interactions and a 

perturbation term to describe the dispersive interactions, the LJ potential possesses both type of 

interactions and can be used as a segment reference in SAFT EoS. The residual segment 

Helmholtz free  energy of the LJ fluid is given by Johnson 44 using a modified BWD equation 

of state refitted on the internal energy and LVE properties. The expression is given by: 
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𝐴𝑠𝑒𝑔 = ∑
𝑎𝑖𝜌∗𝑖

𝑖

8
𝑖=1 + ∑ 𝑏𝑖𝐺𝑖

6
𝑖=1  (4.94) 

where 𝑎𝑖 and 𝑏𝑖 are temperature dependent parameters and 𝐺𝑖 are density dependent parameters. 

Their expressions and their corresponding constant parameters can be found in 44. This equation 

of state yields very accurate LVE and internal energy properties of the fluid in question, 

including the critical properties which were imposed during the optimization. The regression 

temperature range is 0.7 ≤ 𝑇∗ ≤ 6 and densities up to 𝜌∗ ≤ 1.25. Other equations of state are 

often used in the literature to represent the segment reference term of the LJ-SAFT. Among 

them, there is the one of Kolafa-Nezbeda 45 based on a perturbation virial expansion with 

temperature-dependent hard sphere diameter, or the more recent EoS of Thol et al. 46.  

In its original form, the radial distribution function for the LJ reference fluid needed for the 

chain term is obtained by fitting the following functional form to molecular simulation data 44: 

𝑦𝑅(𝜎) = 𝑔𝐿𝐽(𝑇∗, 𝜌∗, 𝜎)𝑒𝛽∅𝐿𝐽(𝑇∗,𝜌∗,𝜎) (4.95) 

where 

𝑔𝐿𝐽(𝑇∗, 𝜌∗, 𝜎) = 1 + ∑ ∑ 𝑎𝑖𝑗𝜌∗𝑖5
𝑗=1

5
𝑖=1 𝑇∗(1−𝑗) (4.96) 

∅𝐿𝐽(𝑇∗, 𝜌∗, 𝜎) = 0 (4.97) 

The regression parameters 𝑎𝑖𝑗 are given in 32, and covers the same range of temperature and 

density as the reference term of Johnson above. 

The performance of the LJ-SAFT (sometimes named soft-SAFT) on the properties of the fluid 

model and real fluids as well as their mixtures can be found in 32, 47, 48, 49, 33, 50, 51, 52, 53, 54, 55, 56, 
57. 

4.3.3  SAFT-VR 

The SAFT-VR developed by Gil-Villegas is based on the Barker and Henderson perturbation 

theory 58, 59, 60 which originates from the Zwanzig high-temperature expansion perturbation 61. 

The expression for the Helmholtz free energy of the monomer is given by an expansion in the 

inverse of the temperature: 

𝐴𝑠𝑒𝑔 = 𝐴𝐻𝑆 + 𝛽𝐴1 +  𝛽2𝐴2 + ⋯ (4.98) 

where AHS is the Hard sphere reference term, and A1, A2 are the first and second orders 

perturbations contributions. At high temperatures, these high order terms should vanish to 

recover the fluid of hard spheres which is physically consistent (a van der Waals type fluid), 

while at low temperature they are no more negligible introducing the soft attractions. The 

expression of 𝐴1 is: 

𝐴1 = −2𝜋𝜌𝑠𝜖 ∫ 𝑟2∞

𝜎
∅(𝑟)𝑔𝐻𝑆(𝑟)𝑑𝑟 (4.99) 

if 𝑔𝐻𝑆(𝑟) = 1 is taken, i.e. unstructured fluid, one obtains the classical van der Waals mean-

field energy. 
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The second term becomes preponderant as the density increases and accounts for the 

fluctuations of the attractive energy due to the compression of the fluid. This requires the 

knowledge of high order correlation functions. However, this is complicated and thus, an 

approximation based on the Barker and Henderson approach was used instead. These 

fluctuations are correlated to the fluctuations in term of the number of particles inside the 

attractive well potential by means of the Local Compressibility Approximation (LCA). The 

expression for A2 is then written as: 

𝐴2 =
1

2
𝜌𝑠𝜖𝐾𝐻𝑆 𝜕𝐴1

𝜕𝜌𝑠
 (4.100) 

where 𝐾𝐻𝑆 is the hard sphere isothermal compressibility. 

For a fluid interacting with a square-well potential, Gil-Villegas obtained the following 

expressions: 

𝐴1
𝑠𝑤 = −4𝜂𝜖(𝜆3 − 1)𝑔𝐻𝑆(1; 𝜂𝑒𝑓𝑓) (4.101) 

where 1.1 ≤ 𝜆 ≤ 1.8 is the width of the potential. 

𝑔𝐻𝑆(1; 𝜂𝑒𝑓𝑓) =
(1−0.5𝜂𝑒𝑓𝑓)

(1−𝜂𝑒𝑓𝑓)
 (4.102) 

and  

𝜂𝑒𝑓𝑓 = 𝑐1𝜂 +  𝑐2𝜂2 + 𝑐3𝜂3 (4.103) 

the coefficient 𝑐1, 𝑐2, 𝑐3, are given by the following matrix: 

(

𝑐1

𝑐2

𝑐3

) = (
2.25855 −1.50349 0.249434

−0.669270 1.40049 −0.827739
10.1576 −15.0427 5.30827

) (
1
𝜆
𝜆2

) (4.104) 

The second term is then obtained using the first one: 

𝐴2
𝑠𝑤 =

1

2
𝜌𝑠𝜖𝐾𝐻𝑆 𝜕𝐴1

𝑠𝑤

𝜕𝜌𝑠
 (4.105) 

and 𝐾𝐻𝑆 is obtained from the Percus-Yevick expression given by: 

𝐾𝐻𝑆 =
(1−𝜂)4

1+4𝜂+4𝜂2 (4.106) 

Different expressions are obtained for Sutherland fluids, Yukawa fluids and for the Soft 

repulsive fluids  in the original paper of Gil-Villegas 34 

Zhang 62 showed that significant improvement can be achieved for 𝐴2
𝑠𝑤 (particularly for 𝜆 =

1.5) using the Macroscopic Compressibility Approximation (MCA). He showed that at high 

densities, the number of molecules in successive shells are correlated. By assuming that the 

correlation is linear and is proportional to the particle number density and the volumes of the 

shells, he introduced a correction factor to 𝐴2
𝑠𝑤, and thus, the expression becomes: 

𝐴2
𝑠𝑤 =

1

2
𝜌𝑠𝜖𝐾𝐻𝑆(1 + 𝜒)

𝜕𝐴1
𝑠𝑤

𝜕𝜌𝑠
 (4.107) 
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where χ = 8.23η2. If χ = 0 we recover the original expression for 𝐴2
𝑠𝑤. The improvement were 

also due to the introduction of a more accurate isothermal compressibility 𝐾𝐻𝑆 using the 

expression obtained from the Carnahan-Starling equation: 

𝐾𝐻𝑆 =
(1−𝜂)4

1+4𝜂+4𝜂2−4𝜂3+𝜂4 (4.108) 

Paricaud 63 proposed a modification in the pre-factor correction to better predict properties of 

soft potentials where the correction of Zhang fails (it overestimates the saturation pressure and 

underestimates the liquid density).The pre-factor was optimized on the simulated LVE data for 

SW and Buckingham potential fluids, leading to a 𝜒 ∝ 𝜂2 and 𝜂5. The term in 𝜂2 leads to 

decreasing the saturation pressure, while the term in 𝜂5 leads to an increase in the liquid 

densities.  

To account for the chain formation requires the knowledge of the radial distribution function of 

the square well model. This is given by the high-temperature expansion: 

𝑔𝑀𝑜𝑛𝑜 = 𝑔𝐻𝑆 + 𝛽𝜖𝑔1(𝑟) + (𝛽𝜖)2𝑔2(𝑟) + ⋯ (4.109) 

Only 𝑔1(𝑟) can be obtained as 𝑔2(𝑟) requires the knowledge of the third order expansion of the 

free energy. 𝑔1(𝑟) is then obtained using a self-consistent method, where identification is made 

between the compressibility factor obtained from the Clausius virial theorem  Z𝑀𝑜𝑛𝑜 =
𝑃𝑉

𝑁𝑠𝑘𝐵𝑇
 

and that obtained from a density derivative of the Helmholtz free energy Z𝑀𝑜𝑛𝑜 = 𝜂
𝜕𝐴𝑀

𝜕𝜂
.  The 

expression for the square well monomers at contact is then given by: 

𝑔𝑠𝑤 = 𝑔𝐻𝑆 +
1

4
𝛽 [

𝜕𝐴1
𝑠𝑤

𝜕𝜂
−

𝜆

3𝜂

𝜕𝐴1
𝑠𝑤

𝜕𝜆
] (4.110) 

where 

𝑔𝐻𝑆 =
(1−0.5𝜂)

(1−𝜂)3  (4.111) 

The SAFT-VR equation of state has shown successful applications over a wide range of 

industrial systems  to describe their thermodynamic properties 35, 64, 65, 66, 67, 68, 69. 

The Mie version of the SAFT-VR EoS developed by Lafitte 70 was found more accurate in 

describing both equilibrium and derivative properties of the liquid phase such as speed of 

sounds when compared to the SAFT-VR SW, SAFT-VR LJC, PC-SAFT, PR78 and SRK. 

Latter, the SAFT-VR Mie was improved by Lafitte 71 by using a perturbation expansion for the 

Helmholtz free energy of the Mie fluid up to the third order. This led to better agreement when 

compared to the previous version for equilibrium properties of the fluid model and as well as 

for the real fluids in particular close to the critical region.  

4.3.4  PC-SAFT 

Here instead of using hard spherical segment as a reference fluid, it is a hard chain which is 

used, similarly to the perturbed hard sphere chain theory (PHSC) 72 where the theory found its 

foundation. The PC-SAFT models a square-well fluids, and is written as follow: 
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𝛽
𝐴𝑟𝑒𝑠

𝑁𝐶
= 𝛽

𝐴𝐻𝐶

𝑁𝐶
+  𝛽

𝐴𝑃𝐶

𝑁𝐶
+ 𝛽

𝐴𝑎𝑠𝑠𝑜

𝑁𝐶
 (4.112) 

where A𝐻𝐶  is the reference hard sphere chain fluid and A𝑃𝐶  is the perturbed hard chain 

contribution. 

The idea in PC-SAFT is first to consider a formation of chain of hard spheres and then to do 

the perturbation at the chain level instead of at the spherical segment level. Thus, the A𝐻𝐶  is 

obtained similarly to the original-SAFT and is given by : 

𝛽
𝐴𝐻𝐶

𝑁𝐶
= 𝑚𝛽

𝐴𝐻𝑆

𝑁𝑠
+ (1 − 𝑚)𝑙𝑛 (𝑔𝐻𝑆)  (4.113) 

where  𝐴𝐻𝑆and 𝑔𝐻𝑆 are obtained from the generalized Carnahan-Starling equation of state to 

deal with mixtures of hard spheres given by Boublik 73 and Mansoori 74 as follow: 

𝛽
𝐴𝐻𝑆

𝑁𝑠
=

1

𝜉0
[

3𝜉1𝜉2

1−𝜉3
+

𝜉2
3

𝜉3(1−𝜉3)2 + (
𝜉2

3

𝜉3
2 − 𝜉0) 𝑙𝑛 (1 − 𝜉0)] (4.114) 

𝑔𝐻𝑆 =
1

1−𝜉3
+ (

𝜎𝑖𝜎𝑗

𝜎𝑖+𝜎𝑗
)

3𝜉2

(1−𝜉3)2 + (
𝜎𝑖𝜎𝑗

𝜎𝑖+𝜎𝑗
)

2
2𝜉2

2

(1−𝜉3)3 (4.115) 

where  

𝜉𝑛 =
𝜋

6
𝜌 ∑ 𝑥𝑖𝑚𝑖𝜎𝑖

𝑛
𝑖  (4.116) 

Note that for a mixture of hard spheres with the same size diameter 𝜎, the Carnahan-Starling 

equation is recovered. 

To take into account of the softness of the segments, an effective temperature dependent-

diameter suggested by Barker and Henderson theory is used (it is the case as well in SAFT-

VR), and is given by the following form: 

𝜎(𝑇) = ∫ (1 − 𝑒𝑥𝑝 (−
𝜖

𝑘𝐵𝑇
))

𝜎

0
 (4.117) 

where 𝜖 is the potential well depth. 

The effective diameter of the hard sphere d decreases when T increases. This is because 

molecules at high temperature have a higher kinetic energy and tend to enter each other more 

(overlapping). 

The perturbation term is obtained using the Barker-Henderson expansion truncated at the 

second order. This term writes as follow: 

𝛽
𝐴𝑃𝐶

𝑁𝐶
= 𝛽

𝐴1

𝑁𝑐
+ 𝛽

𝐴2

𝑁𝑐
 (4.118) 

where 𝐴1 and 𝐴2 are respectively the first and second order perturbation terms given by: 

𝛽
𝐴1

𝑁𝑐
= −2𝜋𝑚2(

𝜖

𝑘𝐵𝑇
)𝜎3 ∫ 𝑔𝐻𝐶(𝑚; 𝑥, 𝜌)𝑥2𝑑𝑥

𝜆

1
 (4.119) 

𝛽
𝐴2

𝑁𝑐
= −𝜋𝜌𝑚(𝑍𝐻𝐶 + 𝜌

𝜕𝑍𝐻𝐶

𝜕𝜌
)−1𝑚2𝜎3(

𝜖

𝑘𝐵𝑇
)2 𝜕

𝜕𝜌
(𝜌 ∫ 𝑔𝐻𝐶(𝑚; 𝑥, 𝜌)𝑥2𝑑𝑥

𝜆

1
) (4.120) 
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where 𝑔𝐻𝐶(𝑚; 𝑥, 𝜌) is used instead of 𝑔𝐻𝑆(𝑥, 𝜌). For pure chains, the hard chain 

compressibility factor can be obtained from AHSand is given by: 

𝑍𝐻𝐶 + 𝜌
𝜕𝑍𝐻𝐶

𝜕𝜌
= 1 + 𝑚

8𝜂−2𝜂2

(17−𝜂)4 + (1 − 𝑚)
20𝜂−27𝜂2+12𝜂3−2𝜂4

(1−𝜂)(2−𝜂)2  (4.121) 

and 

𝐼1(𝜂, 𝑚) = ∫ 𝑔𝐻𝐶(𝑚; 𝑥, 𝜌)𝑥2𝑑𝑥
𝜆

1
= ∑ 𝑎𝑖(𝑚)𝜂𝑖6

𝑖=0  (4.122) 

𝐼2(𝜂, 𝑚) =
𝜕

𝜕𝜌
(𝜌 ∫ 𝑔𝐻𝐶(𝑚; 𝑥, 𝜌)𝑥2𝑑𝑥

𝜆

1
) =

𝜕(𝜂𝐼1(𝜂,𝑚))

𝜕𝜂
∑ 𝑏𝑖(𝑚)𝜂𝑖6

𝑖=0  (4.123) 

a𝑖(𝑚) and 𝑏𝑖(𝑚) are given by the by Liu and Hu 75 correlation: 

𝑎𝑖(𝑚) = 𝑎0𝑖 +
𝑚−1

𝑚
𝑎1𝑖 +

𝑚−1

𝑚

𝑚−2

2
𝑎2𝑖 (4.124) 

𝑏𝑖(𝑚) = 𝑏0𝑖 +
𝑚−1

𝑚
𝑏1𝑖 +

𝑚−1

𝑚

𝑚−2

2
𝑏2𝑖 (4.125) 

The PC-SAFT EoS is probably the one that has been the most widely used in the academic and 

industrial communities. Many parameters are available in the literature, including those for 

different type of fluids (hydrocarbons, associating fluids, polymers, pharmaceutical…). Some 

of the great success of PC-SAFT are described in 36, 76, 77, 78, 79, 80, 81, 82, 83. 

4.4 Effect of the approximations on the chain bond formation term 

The polymerization process consists in bonding monomers of a system between them to form 

chain molecules. A complete polymerization of system is achieved when all monomers are 

bonded resulting in no non-bonded monomers. This is the fundamental concept on which TPT 

relies on. However, they are some restrictions and approximations made in the development of 

the theory development, such as the single-chain approximation and the neglect of higher orders 

in the correlation function. The SAFT theory which is based on TPT, leads to molecular based 

EoS, allowing the theory to be assessed from molecular simulations before applying it to real 

fluids. This is of course one of the most valuable feature of these types of EoS constructions. 

In TPT, the energy required to form a chain in a sea of monomers is the same as that of forming 

a chain in a mixture of monomers and chains when they are simultaneously present in the 

system. Of course, this is a crude approximation, as the monomers forming the chains already 

present in the system do not behave as free monomers because they are constrained by the 

bonds. Hence, the energy needed to form a second chain should certainly be different to that of 

the first chain since the external forces on the monomers of the second chain should not be the 

same as those acting on the monomers of the first chain and so on. This is the consequence of 

the single chain approximation where all clusters involving chain-chain interactions vanished, 

and thus, the single chain formed should behave as an ideal chain in a monomers system. The 

effect this approximation should be less pronounced when this polymerization process occurs 

at high density, as one can consider that the internal degrees of freedom of a molecule may be 

hidden by the effect of density. However, this is incorrect at low density limit. Hence, the TPT 

of Wertheim should fail in the prediction of the fluid behaviour for systems of chains with 
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internal degrees of freedom (s-mers>2) at the low-density limit, until this approximation is 

relaxed. Marshall et al. 84 went beyond this approximation by considering clusters involving 

dimer-dimer interactions in the graph theory and proposed a dual instead of single-chain 

approximation. Marshall showed that the inclusion of more interactions in the theory has an 

effect in lowering the compressibility factor of hard-sphere chains as well as for LJ-sphere 

chains, leading to better predictions when compared to Monte Carlo simulations, particularly 

at low densities and as the chains become larger. 

The second approximation consists in removing all graphs involving more than two connected 

particles, leading to the first order perturbation theory (TPT1) on which most of the SAFT EoS 

are based. In this case all information beyond those of particle-particle interactions are lacking. 

It is then assumed that the energy required to link two monomers to form a dimer is exactly the 

same as that required to link a monomer to any other monomer belonging to a chain molecule, 

regardless of its position in the molecule. Hence, two main consequences emerge. The first is 

that the energy required to form a chain molecule is assumed to be simply the bonding energy 

of the dimer multiplied by the number of bonds in the molecule. The second is that, TPT1 makes 

no difference whether the molecule is flexible linear, rigid linear or even branched.  

To better illustrate this second approximation, let’s take two examples. The first consists in the 

formation of a trimer composed of monomers {1, 2, 3} successively bonded as illustrated in 

Figure 4.4. Suppose holding the first monomer fixed, and, that the second monomer can be 

bonded to the first regardless of the direction to form a dimer. Then, the third monomer has less 

accessible bonding volume on monomer (2), as there is an excluded volume due to the presence 

of monomer (1) (volume of monomer (1) + grey zone). Thus, the energy required to bond 

monomers {2,3} is different from that of bonding monomers {1, 2}. Nevertheless, one may 

expect that the bonding energy should converge to a plateau after certain number of bonds, as 

the excluded volume for the nth monomer will roughly be the same as that for the n-1th monomer. 

 

 

 

 

 

 

 

  

Figure 4.4: Polymerization process to form a linear trimer molecule. It highlights the 
excluded volume (Vmolecule (1) + Vgrey zone) for molecule (3). Consequently, the bonding 

energy between {3,2} is much greater that between {1,2}. 
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The second example is that consisting in the formation of branched molecule as illustrated in 

Figure 4.5. Suppose now, we want to bond a fourth monomer (4) to the second monomer (2) 

belonging a trimer. Here, the free volume offered to monomer (4) is less than that offered to 

bond {1,2} or even {2,3} due to the presence of the two monomers {1, 3} simultaneously. 

Consequently, forming a branch should require more energy than that needed to form a linear 

chain. In practice, the signature of these energy barriers in the TPT equation of state are 

expressed through the pair correlation function at contact which should decrease with increasing 

of the excluded volume. 

For sake of clarity, TPT normally integrates the notion of excluded volume when introducing 

steric incompatibilities. However, it is the truncation at TPT1 level which leads somewhat to 

the omission of this excluded volume. Thus, in the spirit of TPT1, the surface of the volume 

offered to monomer (2) to bond on monomer (1), as shown in Figure 4.6 (a), is the same as that 

offered to monomer (3) to bond on monomer (1), as shown in Figure 4.6 (b). The bonded sites 

are fully free to move over the surface of the volume of the two monomers involved 

independently of the existence of other bonded sites in the same chain. Thus, when forming a 

chain, sites may overlap without any energetic penalty! To address this issue, the hole effect 

(excluded volume effect) should be included in TPT through the correlation function of the 

reference fluid, by including information on the next-nearest monomer, next-to-next-nearest 

monomer…so that the overlapping is avoided.  

  

Figure 4.5: This is the continuation of the previous figure, where here it highlights 
that the energy required to form a branch {2,4} is much greater than that needed 
to form a linear 4-mer chain due to the higher excluded volume  for molecule (4). 
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Thus, since TPT1 does not integrate information on the relative interactions between the 

segments of the same chain, a closed molecular model to TPT1 is, at some extent, that consisting 

in rigid chains. In the rigid chain system, intramolecular interactions account for a negligible 

part of the total contribution. This is because, in such molecular model, the information on the 

next-nearest monomer does not play an essential role, as the interactions between the first and 

the third monomer are screened by the second monomer (SI3), particularly for very short ranged 

potentials. To illustrate this, we have performed molecular simulation of a 4-mer LJ chains 

system with variable rigidities of the bending type. Results are shown in Figure 4.7 for the 

internal energy at a supercritical temperature (𝑇∗ = 4), and for the saturation pressure.  

From Figure 4.7 (a), it is clear that for both the internal energy and the saturation pressure, the 

TPT1 model is closer to the chains model with the highest rigidities. Note that the computed 

internal energy considered here is that coming only from intermolecular interactions between 

monomer of different molecules. This to better mimic the TPT1-M model which does not 

account for the intramolecular interactions between monomers of the same chain. However, to 

better illustrate this latter, we have also added to the Figure 4.7 (a) the data of the total internal 

energy of the fully flexible chains. While the approximation of the TPT1 model could be 

considered satisfactory at high densities, as the intra contribution becomes less important due 

to the entanglement between molecules, deviations appear at medium densities and are more 

pronounced at low densities where the intramolecular interactions becomes important. The 

maximum error is expected be at the zero-density limit where the TPT1-M model predicts zero 

internal energy (no intramolecular interaction), which is incorrect. 

  

Figure 4.6: In the logic of TPT1, in (a) if a molecule (1) is hold fixed, the center of mass 
of molecule (2) can freely move over the red circle to bond on molecule (1). In (b), 
molecule (3) can also move over the green circle which is confounded with the red 
circle without any restriction due to the fact that there is no information between 

molecules (1) and (3) as they can overlap. 
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(a)                                                                                (b)  
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One way to address this issue is to go beyond the first level of TPT1 by including graphs 

involving more than two bonded monomers. However, high order levels are more challenging 

to develop theoretically as they require multi-body correlations functions. Therefore, it makes 

sense to limit the orders to the second order leading to TPT2. In TPT2, information on particle-

particle-particle interactions is integrated, and thus, include information on the positions of the 

nearest and next-nearest monomers through their relative angle. The equation of state for the 

compressibility factor using the TPT2 is given by 8: 

𝛽(𝑍 − 𝑍𝑟𝑒𝑓) = (−1 +
1

𝜈
) (

𝜌

∆

𝜕(∆)

𝜕(𝜌)
+ 1) −

𝜈−𝜏

𝜈

𝜌

𝜆

𝜕(𝜆)

𝜕(𝜌)
 (4.126) 

where 
𝜈−𝜏

𝜈

𝜌

𝜆

𝜕(𝜆)

𝜕(𝜌)
 defines the second order term, and the quantity 

𝜈−𝜏

𝜈
 comes from the self-

consistent density relations for the TPT2 8 given by: 

𝜈−𝜏

𝜈
=

1

2
−

(1+4𝜆−4𝜆𝜈−2)
1
2

2(1+4𝜆)
−

2𝜆

(1+4𝜆)𝜈
 (4.127) 

The evaluation of λ is given for the fully flexible chains by: 

𝜆 = ∫ (
𝑔(𝜎,𝜎,2𝜎 𝑠𝑖𝑛(

1

2
𝛼))

𝑔2(𝜎)
− 1)

𝜋

𝛼𝑚𝑖𝑛
𝜉(𝛼)𝑠𝑖𝑛 (𝛼)𝑑𝛼 (4.128) 

The lower limit of α𝑚𝑖𝑛 is set to 
𝜋

3
 due to steric incompatibilities in which the too small angles 

are prohibited. 𝜉 is a distribution of angles between three successive bonded monomers given 

by: 

𝜉(𝛼) = {
0        𝑓𝑜𝑟  0 < 𝛼 < 𝜋/3
2/3  𝑓𝑜𝑟  𝜋/3 < 𝛼 < 𝜋

 (4.129) 

For a fixed rigid bond angle, characterizing a frozen rigid chain molecule, 𝜆 is given by: 

Figure 4.7: Internal energy and saturation pressure of chain of m=4 for variable rigidities 
vs the prediction from TPT1. (a) internal energy at T*=4, (b) saturation pressure 

(a)                                                                                                   (b)  
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𝜆 =
𝑔(𝜎,𝜎,2𝜎 𝑠𝑖𝑛(

1

2
𝛼))

𝑔2(𝜎)
− 1 (4.130) 

By doing so, Wertheim 8 showed that TPT2 yields better predictions than TPT1 for the fully 

flexible chains, especially for large chains. Using TPT2, it is possible to differentiate between 

fully flexible chains and rigid ones by constraining the bond angle between three successive 

bonded monomers 85, or also between linear and branched chains 51. More recently, Zmpitas 

developed a third order approximation TPT theory (TPT3). He found that only a small 

improvement was obtained when compared to TPT2, suggesting that considering higher orders 

beyond TPT2 does not seem efficient as the improvement obtained is negligible compared to 

the required efforts. An interesting comparison to molecular simulations can be found in the 

article of Marshall et al. 84 on the predictions of the compressibility factor between TPT1 and 

TPT2 and their respective versions when considering the dual-chain approximation. 

4.5 A simple alternative to higher orders of the TPTn … 

Since the theory of Wertheim does not impose the geometry of the reference fluid to be 

spherically symmetrical or even the isotropy of the potential interaction, it is possible to use 

any type of reference fluid unless the pair correlation function is known for this fluid. Thus, 

instead of a monomer, a dimer, trimer or any s-mer fluid can be used as a reference fluid. The 

use of this idea was motivated by the results obtained by Honnell and Hall 86 using a Generalized 

Flory Dimer theory (GFD). The authors showed that, the modelling of the thermodynamic 

behaviour of fully flexible chains is largely improved when a dimer reference fluid is used 

instead of a monomer used in the Generalized Flory theory (GF) 87. In the same spirit, an 

alternative to TPT1, based on the monomer reference fluid often referred to as TPT1-M (M for 

Monomer), was developed, based on the dimer reference fluid, referred as TPT1-Dimer (TPT1-

D). This theory was independently developed by both Chang and Sandler 88 and Ghonasgi and 

Chapman 89 in 1994 for hard chains. It was extended few years later by Johnson in 1996 for LJ-

chains 90. 

TPT1-D showed an improvement compared to TPT1-M for the fully flexible hard chains and 

the LJ chains over many properties. For example, the second virial coefficient and the 

compressibility factor of hard chains are better predicted with TPT1-D than with TPT1-M. 

More interestingly, TPT1-D theory provides also predictions that are superior to what could be 

obtained using TPT2-M or the GFD theory. However, despite the good capabilities of TPT1-

D, surprisingly, this theory has not extensively been applied to real fluids whereas TPT1-M has 

been used extensively. 

The secret of the TPT1-D success is that the loss of the structural information in the monomer 

based theory is now better recovered through the dimer theory. While the TPT1-M integrates 

information only on the nearest neighbours along the chain, the TPT1-D integrates information 

on the nearest, the next-nearest and the next-to-next-nearest neighbour along the chain. To 

illustrate the dimer perturbation theory, we follow the scheme proposed by Chang and Sandler 
88. Figure 4.8 shows two ways to transform a system composed of monomers to a system of 

chain molecules composed of 4-mers. The way (1) is the one using TPT1-M where chains are 

formed by assembling monomers one after another to form a chain of 4-mers and the process 
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is repeated until the whole system is polymerized into chains of 4-mers (keeping in mind the 

single chain approximation, which implies that the chains of 4-mers formed do not interact 

between them). With TPT1-D, this polymerization process is split into two steps. First, the 

system is completely dimerized using TPT1-M (remember that TPT1-M is perfectly adapted to 

model dimerization process). Then, the system is polymerized in a second step by assembling 

the dimers to form chains of 4-mers system.  

 

 

 

 

 

 

 

 

 

 

 

It is the second step that makes the whole difference between TPT1-M or TPT2-M and TPT1-

D. In fact, the bonding energy for associating two dimers, is now dependent on the presence of 

the attached monomers in both sides of the dimers, eliminating then all ghost (impossible) 

configurations, corresponding to a complete folding of a molecule. The Helmholtz free energy 

of irreversible association between dimers is given by  

𝐴𝑏𝑜𝑛𝑑
𝐷 = −𝑘𝐵𝑇𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝜎, 𝑇)) (4.131) 

where 𝑔𝑒𝑒
𝐷 (𝜎, T) is the end-end contact distance radial distribution function of two dimers in 

contact. 

In practice, 𝑔𝑒𝑒
𝐷 (𝜎) can be computed using molecular simulation of dimer system. 𝑔𝑒𝑒

𝐷 (𝜎) is an 

averaged quantity over all possible configurations for two dimers at contact and over all 

positions and orientations of the surrounding molecules. During the simulation, the two adjacent 

monomers prevent the surrounding molecules of the system to be close enough to bond (the 

hole effect). As a consequence  𝑔𝑒𝑒
𝐷 (𝜎) < 𝑔𝑒𝑒

𝑀 (𝜎). The best illustration of that, is the low density 

limit where 𝑔𝑒𝑒
𝐷 (𝜎, 𝜌 → 0) < 1 leading to a positive free energy 𝐴𝑏𝑜𝑛𝑑

𝐷 (𝜎, 𝜌 → 0) > 0 while this is 

zero in the case of monomers 𝐴𝑏𝑜𝑛𝑑
𝑀 (𝜎, 𝜌 → 0) = 0. Therefore, an additional energy is required to 

overcome the hole effect.  

Note that TPT1-D should normally be more accurate for systems of chains composed of an 

even number of monomers as the chains are built by assembling couple of dimers. However, 

one may imagine that accurate prediction for those with an odd number 𝑚 could be obtained 

Figure 4.8: Polymerization of monomers to form chains of 4-mer fluid. Path (a) follows the 
TPT1 scheme where the formation of chain depends only on the information included at 
the monomer level, thus, no information is included beyond nearest bond. Path (b and c) 
follows the TPT1-D scheme, where first, the dimer is formed through the TPT1-M. Then, 
the 4-mer chains fluid is formed by associating dimerization of these dimer molecules. 

TPT1-M (a) 

TPT1-M (b) TPT1-D (c) 
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by interpolation between that of 𝑚 − 1 and that of 𝑚 + 1 lengths, as their thermodynamic 

behaviour should lie in-between. 

The generalization into any reference term composed of r-mers is given by: 

𝐴𝑟𝑒𝑠

𝑁𝑐𝑘𝐵𝑇
=

𝑚

𝑟

𝐴𝑟𝑒𝑠
𝑟−𝑚𝑒𝑟

𝑁𝑠𝑘𝐵𝑇
+ (1 −

𝑚

𝑟
) 𝑙𝑛(𝑔𝑒𝑒

𝑟−𝑚𝑒𝑟(𝜎)) (4.132) 

Introducing the reduced units A res
∗,chain =

Ares

𝑁𝑐𝜖
 and A res

∗,r−mer =
Ares

r−mer

Ns𝜖
  allows to rewrite it as: 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 =

𝑚

𝑟
𝐴𝑟−𝑚𝑒𝑟,𝑟𝑒𝑠

∗ + (1 −
𝑚

𝑟
) 𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑟−𝑚𝑒𝑟(𝜎)) (4.133) 

which, if a dimer is taken as a reference term, becomes: 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 =

𝑚

2
𝐴𝐷,𝑟𝑒𝑠

∗ + (1 −
𝑚

2
) 𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝜎)) (4.134) 

Here 𝐴𝐷,𝑟𝑒𝑠
∗  is obtained from TPT1-M and is given by: 

𝐴𝐷,𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 2𝐴𝑀,𝑟𝑒𝑠

∗ − 𝑇∗𝑙𝑛(𝑔𝑒𝑒
𝑀 (𝜎)) (4.135) 

By injecting it into A res
∗,chain it gives: 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 𝑚𝐴𝑀,𝑟𝑒𝑠

∗ −
𝑚

2
𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑀 (𝜎)) + (1 −
𝑚

2
)𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝜎)) (4.136) 

where 𝑔𝑒𝑒
𝐷 (𝜎), in the case of fully flexible LJ chains, is given by Johnson 90. It is given by a 

correlation fitted to the end-end radial distribution function of two dimers in contact obtained 

from molecular simulations (the fitting coefficients are given in the appendix 7.A.2): 

𝑔𝑒𝑒
𝐷 (𝑇∗, 𝜌∗, 𝜎) = 𝑔00

𝐷 (𝑇∗, 𝜎) + ∑ ∑ 𝑐𝑖𝑗𝜌∗𝑖5
𝑗=1

5
𝑖=1 𝑇∗(1−𝑗) (4.137) 

where 𝑔(T∗, σ) is the low density limit given by 

𝑔00
𝐷 (𝜎, 𝑇∗, 𝜌∗ → 0) = ∑ 𝑎𝑗𝑇∗(1−𝑗)7

𝑗=1  (4.138) 

In terms of the residual internal energy, TPT1-D is expressed as follow (with 𝑈 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 =

𝑈𝑟𝑒𝑠

𝑁𝑐𝜖
): 

𝑈 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 𝑚𝑈𝑀,𝑟𝑒𝑠

∗ +
𝑚

2
𝑇∗2𝑙𝑛(𝑔𝑒𝑒

𝑀 (𝜎)) − (1 −
𝑚

2
)𝑇∗2𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝜎)) (4.139) 

where 𝑈𝑀,𝑟𝑒𝑠
∗  is the residual internal energy of the monomer. Note that in the results we will 

show, the residual internal energy is expressed per monomer, so 𝑈∗ = 𝑈𝑟𝑒𝑠
∗ =

𝑈 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛

𝑚
=

𝑈𝑟𝑒𝑠

𝑚𝑁𝑐𝜖
 . 

The residual entropy per monomer is given by: 

𝑆∗ = 𝑆𝑟𝑒𝑠
∗ =

𝑆 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛

𝑚𝑁𝑐𝑘𝐵
=

𝑈𝑟𝑒𝑠
∗ −𝐴𝑟𝑒𝑠

∗

𝑇∗  (4.140) 

The pressure is given by: 

𝑃∗ = 𝑃𝑀
∗ + 𝜌∗ (

1−𝑚

𝑚
) +

𝑇∗𝜌∗

2
((

2−𝑚

𝑚
)

𝜕𝑙𝑛(𝑔𝑒𝑒
𝐷 (𝑇∗,𝜌∗,,𝜎))

𝜕𝑙𝑛(𝜌∗)
−

𝜕𝑙𝑛(𝑔𝑀(𝑇∗,𝜌∗,𝜎))

𝜕𝑙𝑛(𝜌∗)
) (4.141) 

where 𝑃𝑀
∗  is the pressure of the monomer. 
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In the case of LJ based TPT, the performance of TPT1-D has shown very interesting 

improvement compared to TPT1-M in the monophasic phases by Johnson in the original article 
90. Few years later, Blas and Vega extended the comparison to the LVE properties 91 where the 

difference in terms of performance was even more noticeable. This is because the LVE 

properties consists in a severe test for any equation of state, as their prediction accuracy strongly 

depend on how good the model is in both vapour and liquid phases simultaneously. TPT1-D 

was found to describe better the saturated liquid phase, but, the highest improvement was found 

for the vapour phase. This is because of the integration of the intramolecular interactions for 

which the vapour property is highly sensitive to. However, the benchmark between TPT1-M 

and TPT1-D for the predictions of the internal energy as well as of the entropy has never been 

done at equilibrium conditions. Thus, we found interesting to check how good is the TPT1-D 

relatively to TPT1-M. For this, we performed extensive Monte Carlo simulations for chains 

consisting of different lengths including 1-mer, 2-mers, 3-mers, 4-mers, 8-mers and 16-mers. 

Entropy was obtained using Widom insertion method, by performing a test of at least 100 

insertions per cycle. The comparison for the calculation of the LVE has already been done in 
91, and thus, some of the LVE results we provide here are just for making the illustration more 

complete.  

As shown in Figure 4.9 (a and b), for the short to medium chains (4-mers, 8-mers and 16-mers), 

the critical properties are clearly not well predicted using the TPT1-M, while better (even if not 

perfect) estimates are obtained with the TPT1-D. Regarding the liquid phase, the improvement 

is noticeable for the 8 and 16-mer chains. It is interesting to note that the inclusion of the 

structural information in the TPT1-D model leads to a slope derivative of the liquid phase in 

better agreement with the simulations data. Thus, one may expect also better performance on 

the prediction of the isothermal compressibility. Concerning the vapour phase, high 

improvement is obtained with the TPT1-D due to the structural information for which this phase 

is very sensitive. Consequently, as expected, the vapour pressure is better predicted by the 

TPT1-D theory.  

Another interesting benchmark is that shown in Figure 4.9 (c and d), for the internal energy and 

entropy at saturation conditions. The internal energy is explored for chains from the monomer 

to the hexadecamer obtained from the same simulations for the equilibrium properties. The 

comparison on the entropy was limited to small chains up to the 4-mer, because this property 

is very demanding in terms of CPU. These figures show that excellent predictions are obtained 

for the internal energy and the entropy as well with the TPT1-D, with noticeable deviations 

appearing for the longest chains in the vapour phase.  
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The 4-mer chain is very accurately described for both properties, due to the fact that the model 

integrates exact zero-density limit pair correlation function. The TPT1-M is excellent for the 

monomer and the dimer which is not surprising because of the lack of any intramolecular 

interactions for these two molecules. However, deviations are more and more pronounced, 

particularly for the vapour phase, as the chain length increases. This is due to the fact that TPT1-

M erroneously predicts zero internal energy for all chains. The liquid side for these properties 

is not badly predicted by the TPT1-M, due to the fact that the effect of the intramolecular 

interactions is reduced when the density increases. This is the consequence of the entanglement 

between the molecules in the system. Until this stage, we have shown that the TPT1-D provides 

better predictions of some equilibrium properties of the model fluid when compared to TPT1-

M. The derivative properties were not included, but, one may expect also better results, as it 

Figure 4.9: Comparison between the exact molecular simulations of the fully flexible 
chains model (m=1, 2, 3, 4, 8, 16) at saturation conditions vs the predictions of the 
TPT1-M (dotted lines) and the TPT1-D (solid lines) models. (a) LVE, (b) saturation 

pressures, (c) internal energy, (d) entropy. 
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will be shown latter on. Mixtures as well would be interesting to be studied with both TPT1-M 

and TPT1-D. 

Now, one may wonder whether the use of a dimer as a reference term is the best option? In 

other words, does the use of higher reference terms, such as a 3-mer (TPT1-T) or a 4-mer 

(TPT1-Q) would allow the model to yield better prediction than the TPT1-D? It is an interesting 

question, and to the best of our knowledge such high orders TPT1-r-mer versions do not exist 

yet in the literature. To answer this question, we have evaluated the capabilities of TPT1-T and 

TPT1-Q. However, we limited the evaluation to the zero-density limit conditions, as we think 

that this may be enough to draw a global conclusion, as done between TPT1-M and TPT1-D. 

The two models are given respectively using the TPT1-r-mer as follows: 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛,𝑇𝑃𝑇1−𝑇 =

𝑚

3
𝐴𝑇,𝑟𝑒𝑠

∗ + (1 −
𝑚

3
)𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑇 (𝜎)) (4.142) 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛,𝑇𝑃𝑇1−𝑄 =

𝑚

4
𝐴𝑄,𝑟𝑒𝑠

∗ + (1 −
𝑚

4
)𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑄 (𝜎) (4.143) 

The two reference terms are obtained using TPT1-M (one can use TPT1-D as well), which 

gives: 

𝐴𝑇,𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 3𝐴𝑀,𝑟𝑒𝑠

∗ − 2𝑇∗𝑙𝑛(𝑔𝑒𝑒
𝑀 (𝜎)) (4.144) 

𝐴𝑄,𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 4𝐴𝑀,𝑟𝑒𝑠

∗ − 3𝑇∗𝑙𝑛(𝑔𝑒𝑒
𝑀 (𝜎)) (4.145) 

Injecting them into A res
∗,chain,TPT1−T and A res

∗,chain,TPT1−Q respectively, one obtains the following final 

formulas: 

 𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛,𝑇𝑃𝑇1−𝑇 = 𝑚𝐴𝑀,𝑟𝑒𝑠

∗ −
2𝑚

3
𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑀 (𝜎)) + (1 −
𝑚

3
)𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑇 (𝜎)) (4.146) 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛,𝑇𝑃𝑇1−𝑄 = 𝑚𝐴𝑀,𝑟𝑒𝑠

∗ −
𝑚

4
𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑀 (𝜎)) + (1 −
𝑚

4
)𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝑄 (𝜎)) (4.147) 

The zero-density limit for any r-mer is obtained from the averaged Boltzmann factor: 

𝑔𝑒𝑒
𝑟−𝑚𝑒𝑟(𝑇∗, 𝜎) =< 𝑒𝑥𝑝 (−𝛽𝑈12(𝜎)) >𝜃1𝜃2

 (4.148) 

The brackets denote an unweighted average over all orientations keeping the end to end distance 

equal to 𝜎. 𝑈12(𝜎) is the total potential interaction between the sites of the two r-mers in contact. 

This can be evaluated numerically by the use of three dimensional integration as in 90, by the 

use of any spherical mesh gridding method using any technique for generating many regular 

configurations, or by Monte Carlo simulation of a single molecule consisting of two bonded r-

mers. 

In our case we have chosen the latter method to obtain both 𝑔𝑒𝑒
𝑇 (𝜎, 𝑇∗, 𝜌∗ → 0) and 𝑔𝑒𝑒

𝑄 (𝜎, 𝑇∗, 𝜌∗ → 0) 

using the relationship between the mean free energy and the correlation function: 

𝐴𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛(𝑇∗, 𝜌∗ → 0) = −𝑇∗𝑙𝑛 (𝑔𝑒𝑒

𝑟−𝑚𝑒𝑟(𝜎, 𝑇∗)) (4.149) 

To evaluate the performance of the theories, we have performed molecular simulations for 

different LJ-chains at zero-density. A single chain consisting of two r-mers in contact is put in 
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the box and simulated in the NVT ensemble using Monte Carlo technique. 𝐴𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛(𝑇∗, 𝜌∗ → 0)is 

obtained by the Widom particle test insertion method 92,93 given by: 

µ𝑖
∗ = −𝑇∗𝑙𝑛 <

𝑉

(𝑁𝑖+1)𝑖
3 𝑒𝑥𝑝 (−𝛽𝑈𝑡𝑒𝑠𝑡) >𝜃1𝜃2

 (4.150) 

Where F is the partition function of the NVT ensemble, 𝑈𝑡𝑒𝑠𝑡 is the variation of the total 

potential energy by inserting the test particle, 〈 〉 refers to the NVT ensemble average over all 

test insertions and 𝛬 is the De Broglie wavelength already introduced in chapter2. 

In the limit of zero-density, one may write: 

𝐴𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛(𝑇∗, 𝜌∗ → 0) = µ𝑟𝑒𝑠

∗,𝑐ℎ𝑎𝑖𝑛(𝑇∗, 𝜌∗ → 0) (4.151) 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 4.10, while the TPT1-M predicts zero internal energy for all chain lengths, 

the TPT1-D, TPT1-T and TPT1-Q predicts non-zero values for chains lengths superior to 3-

mers and 4-mers respectively. TPT1-D gives exact internal energy for a chain of 4-mers. Similar 

results are obtained for TPT1-T and TPT1-Q for chains of 6-mers and 8-mers respectively. This 

is because the models are forced to reproduce the exact zero-density limit through the use of 

the exact end-end correlation functions of two reference r-mers in contact. Thus, the longest the 

reference term introduced is, the better the prediction for longer chains. However, the deviations 

for chains with length below that of the reference term are very high, due to the use of TPT1-

M which erroneously predicts zero internal energy at zero-density limit whatever the length of 

the chain. The use of a TPT1-D for the determination of the reference terms in TPT1-T and 

TPT1-Q would probably address this issue, but, care should be taken on the way this would be 

done. If not, a systematic shift of the internal energy will appear (towards low energies) due to 

the fact that the 𝑔𝑒𝑒
𝐷 (𝜎, 𝑇∗, 𝜌∗ → 0) involved in TPT1-D does not vanish at 𝜌∗ → 0.  

Figure 4.10: Zero-density limit internal energy of fully flexible chains up to m=50 
at T*=2 obtained from monte carlo simulations vs the predictions using the SAFT-

M, SAFT-D, SAFT-T and SAFT-Q. 
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An interesting point to note is regarding the linearity dependence of the internal energy with 

the inverse chain length 
1

𝑚
 exhibited by all approaches. It is in fact an intrinsic constraint of the 

model in itself, independently of which reference term is used. The expression for the internal 

energy for any r-mer reference term is given by: 

𝑈 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 =

𝑚

𝑟
𝑈𝑟𝑒𝑠

∗𝑟−𝑚𝑒𝑟 + (
𝑚

𝑟
− 1) 𝑇∗2 𝜕𝑙𝑛(𝑔𝑒𝑒

𝑟−𝑚𝑒𝑟(𝜎))

𝜕𝑇∗  (4.152) 

At the zero-density limit, the total Helmholtz free energy per monomer (𝑈 𝑟𝑒𝑠
∗ =

𝑈𝑟𝑒𝑠

𝑚𝑁𝑐𝜖
) gives: 

𝑈 𝑟𝑒𝑠
∗ (𝜎, 𝑇∗, 𝜌∗ → 0) = (

1

𝑟
−

1

𝑚
) 𝑇∗2 𝜕𝑙𝑛(𝑔𝑒𝑒

𝑟−𝑚𝑒𝑟(𝜎,𝑇∗,𝜌∗→0))

𝜕𝑇∗  (4.153) 

from the equation, we can see that the model imposes the linear proportionality: 

𝑈 𝑟𝑒𝑠
∗ ∝ −

1

𝑚
 (4.154) 

4.6 Does Wertheim TPT includes hard intramolecular interactions 

(vibrations)? 

Despite all improvements made by the TPT theory in modelling the behaviour of chains fluids 

by incorporating some structural information through the use of a dimer as a reference term 

(TPT1-D), or by using a second order perturbation theory (TPT2), there are still many open 

issues. One of these is the contribution to the molecular vibrations due to the presence of 

bending or torsional potential types, i.e. when dealing with chains of variable rigidity. Indeed, 

these internal degrees of freedom are known to strongly affect the structure of the fluid, with 

rigid chains exhibiting different behaviours than fully flexible ones.  

The integration of these contributions requires the knowledge of the positions of three 

successive bonded monomers for a bending potential and the positions of four successive 

monomers for a torsional potential. TPT1-M only incorporates information on the position of 

the nearest bonded monomer, discarding any possibilities of defining structural information. 

On the other hand, TPT2 incorporates information on the positions of the nearest and next-

nearest monomers through their relative angle, allowing for the definition of an angle potential. 

However, this corresponds to a certain molecular structure related to an equilibrium angle 𝜃𝑒𝑞 

resulting in an infinite stiffness constant K for a completely rigid chain or a zero stiffness 

constant if this equilibrium angle is relaxed, and replaced by a distribution of angles 𝜃 ≥
𝜋

3
, 

corresponding then to a fully flexible chain. Hence, TPT2 can model only these two limits, a 

completely fully rigid chain or a fully flexible chain. Thus, the TPT2 scheme is not able to 

model semi-rigid chains, where the molecule has the possibility to vibrate around the 

equilibrium angle. Moreover, it is not possible to define a torsional potential as TPT2 does not 

incorporate information on the next-to-next-nearest neighbour monomer (the fourth monomer). 

TPT1-D is an excellent candidate to describe semi-rigid chains as it allows to go beyond some 

of the limitations found with TPT1 and TPT2. In fact, as already explained previously, TPT1-

D consists in assembling dimers instead of monomers, and so, information on the four 

successive bonded sites are known simultaneously, offering then the possibility of integrating 

bending and torsion potentials.  
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Indeed, as shown in the previous chapter, the semi-rigid LJ chain, when adequately 

parametrized, is a very interesting molecular model as it allows to obtain simultaneously 

accurate thermodynamic and transport properties of fluids. Thus, in this part of thesis, the aim 

is to develop an equation of state for the semi-rigid LJ chains based on the TPT1-D (SAFT-D). 

However, to do so, one needs to bring a modification into it, so as to integrate the contributions 

of the vibrational type. Here, only the case with contribution due to the bending potential of the 

harmonic type is dealt with, but, in principle, the approach could be extended to torsional 

contribution.  

To model semi-rigid chains, it is useful to revisit the way SAFT-D incorporates structural 

information. It was previously mentioned that this is introduced through the correlation function 

by considering the excluded volume (hole effect) induced by the presence of existing bonds in 

the chain. Specifically, this hole effect is present in real molecules, but not in the TPT1-M, 

which limits its accuracy to some extent, and is taken into account by eliminating the ghost 

configurations (intramolecular overlaps) through the use of a dimer as a reference term instead 

of a monomer. As a result, the correlation function is lowered. In the same vein, the introduction 

of a bending potential will lead to an increase in ghost configurations. To illustrate this idea, 

consider the case of a fully rigid chain. In this case, the chain molecule needs to overcome an 

infinite energetic barrier to explore configurations other than the equilibrium making it highly 

unlikely for such configurations to occur and therefore should be discarded. The case of a semi-

rigid chain is quite similar, but the barrier can be overcome depending on the stiffness constant 

and the thermal energy of the system. This allows more accessible configurations to occur 

compared to the fully rigid case, but fewer than that of a fully flexible chain, unless the stiffness 

constant is relaxed. In terms of the correlation function, one may then expect that it will decrease 

as the rigidity increases due to the elimination of additional ghost configurations compared to 

the fully flexible chains. 

 

 

 

 

 

 

 

 

 

Consider the case of chains given in Figure 4.11, consisting of the assembly of two dimers to 

form chains of 4-mer. During the simulation, the assembled molecule will sample the whole 

configurational space, where each configuration will occur with a certain probability 

corresponding to the Boltzmann factor. For instance, in the case of fully flexible chains, 

Figure 4.11: Some of the possible configurations that two dimers in 
contact may hold during the path (c). 

(1) 

(2) 

(3) 



Integration of a bending potential into SAFT model 
 

131 
 

configurations {1; 2; 3} will occur due to the possible self-folding of the molecule. However, 

in the case of fully rigid linear chains, it is clear that configuration {3} will have the greatest 

probability while configurations {1; 2} will see their occurring probability reduced to zero due 

to the high energetic barrier of the bending potential. Thus, during the simulation of dimer 

system each time a contact happens can be seen as a contribution to the energy required to form 

a chain molecule at certain temperature, density and configuration. Repeating this process 

during many time steps (or moves) will result in an averaged energy for making a bond at the 

thermodynamic conditions of the system, averaged over all the configurations occurring during 

the simulation. With this in mind, one may imagine that if the chain molecule formed possesses 

an intramolecular energy of the bending (or torsion) type, each configuration should be scaled 

by a probability taking into account this constrain. Note that, in the simulation, a bending or 

torsion cannot be defined for a system of dimers so that the constrain can be included 

intrinsically in the potential interaction. Thus, in order to scale the configurations, the 

Boltzmann factor has been used to weight each configuration so that its contribution to the 

correlation function will take into account a bending potential contribution to the formation of 

chains. This is given by: 

𝐸𝑥𝑝 (−𝛽𝑈12
𝑏𝑒𝑛𝑑(𝜃1, 𝜃2)) (4.155) 

which is the probability that measures the ratio between the molecular bending energy induced 

by two dimers in contact relatively to the system thermal energy. 𝜃1, 𝜃2 are the bending angles 

of the 4-mer chain molecule formed. 

For a fully flexible chain, the correlation function (in our case is the radial distribution function) 

is given by:  

𝑔𝑒𝑒
2−𝑚𝑒𝑟(𝑟 = 𝜎,  𝑇∗, 𝜌∗ ) =

〈𝑛(𝑟=𝜎)〉

𝜌𝑉𝑠ℎ𝑒𝑙𝑙
 (4.156) 

where the brackets indicate an average over the simulation time (or moves) of the total number 

of particles found in the surrounding shell volume of radius 𝑟 = 𝜎. The total number of particles 

is obtained by (using the histogram method): 

𝑛(𝑟) = 𝑛(𝑟) + 1 (4.157) 

where “1” refers to each contact, thus, to each configuration. 

Now, for the semi-rigid chains, each configuration is weighted by the Boltzmann factor, and 

thus, will not contribute by “1”, but instead by:  

𝑛(𝑟) = 𝑛(𝑟) + 1𝐸𝑥𝑝 (−𝛽𝑈12
𝑏𝑒𝑛𝑑(𝜃1, 𝜃2)) (4.158) 

where the fully flexible case is obtained by taking: 

𝑈12
𝑏𝑒𝑛𝑑(𝜃1, 𝜃2) = 0 (4.159) 

i.e. a stiffness constant equal to zero. 

Finally, the zero-density limit is obtained numerically by averaging the Boltzmann factor over 

all possible configurations of two dimers in contact: 
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𝑔00
𝑟−𝑚𝑒𝑟(𝜎,  𝑇∗, 𝐾∗) = 〈𝑒𝑥𝑝 (−𝛽𝑈12

𝑉𝑑𝑤+𝑏𝑒𝑛𝑑(𝜃1, 𝜃2))〉𝜃1𝜃2

                                    =
∫ 𝑒𝑥𝑝(−𝛽𝑈12

𝑉𝑑𝑤+𝑏𝑒𝑛𝑑(𝑟,𝜃1,𝜃2))𝑠𝑖𝑛 (𝜃1)𝑑𝜃1𝑑𝜃2

∫ 𝑠𝑖𝑛 (𝜃1)𝑑𝜃1𝑑𝜃2

 (4.160) 

4.7 The model 

As done for the fully flexible TPT1-D, the radial distribution function has been obtained for 

different rigidities from molecular dynamics simulations of dimers system. The runs were 

performed at various temperatures and densities covering the following thermodynamic range  

0.9 ≤ 𝑇∗ ≤ 10 and 0.1 ≤ 𝜌∗ ≤ 1.0. The simulations were run in the NVT ensemble using the 

Nosé-Hoover thermostat. The simulation is split into two steps, where the system is equilibrated 

for a minimum of 1.5𝑥106 time steps and followed with a production step for a minimum of 

2.0𝑥106 time steps. The transient regime for the RDF is very small (0.1𝑥106) allowing the rdf 

to converge very quickly (less than 0.5𝑥106 steps), and thus, the data obtained exhibited 

extremely small average error. The time step is taken equal to 𝛿𝑡∗ = 2𝑥10−3 for 𝑇∗ < 5, and  

𝛿𝑡∗ = 10−3 for higher temperatures. The data have been fitted to the following correlation: 

𝑔𝑒𝑒
𝐷 (𝑇∗, 𝜌∗, 𝐾∗, 𝜎) = 𝑔00

𝐷 (𝑇∗, 𝐾∗, 𝜎) + ∑ ∑ 𝑐𝑖𝑗(𝐾∗)𝜌∗𝑖5
𝑗=1

5
𝑖=1 𝐿𝑛 (1 + 𝑇∗)(1−𝑗) (4.161) 

where  

𝑐𝑖𝑗(𝐾∗) = ∑ ∑ ∑ 𝛼𝑙𝑗
5𝑖+1
𝑙=5𝑖−4

5
𝑗=1 𝐿𝑛 (1 + 𝐾∗)𝑓(𝑙−5(𝑖−1))5

𝑖=1  (4.162) 

and  

 𝑓(𝑥) =   𝑞1(𝑥 − 1)3 + 𝑞2(𝑥 − 1)2  +  𝑞3(𝑥 − 1) (4.163) 

the coefficients 𝛼𝑙𝑗 as well as the 𝑞i coefficients are given in the appendix 7.A.2 correlate the 

simulation data with an AAD of  0.15% over the temperature and density range 0.9<T*<20, 

0<ρ*<1.2, 0<K*<100. 

The 𝑔00
𝐷 (𝑇∗, 𝐾∗, 𝜎) is the low density limit given by: 

𝑔00
𝐷 (𝑇∗, 𝐾∗, 𝜎) = 𝑔00

𝐷 (𝑇∗, 𝐾∗ → 0, 𝜎)/𝐸𝑥𝑝(∑ ∑ 𝑣𝑖𝑗𝐿𝑛(1 + 𝐾∗)𝑖7
𝑗=1

7
𝑖=1 𝐿𝑛(1 + 𝑇∗)(1−𝑗)) (4.164) 

where 𝑣𝑖𝑗  are given in the appendix 7.A.2 correlate the simulation data with an AAD of  0.098% 

over the temperature and density range 0.9<T*<20, 0<K*<100. 

The function 𝑔00
𝐷 (𝑇∗, 𝐾∗ → 0, 𝜎) is similar to that provided by Johnson 90, but extended to the 

following temperature range [0.9, ∞[ using: 

𝑔𝑒𝑒
𝐷 (𝑇∗, 𝐾∗ → 0, 𝜎) =

𝑎+𝑐𝐿𝑛(𝑇)+𝑒𝐿𝑛(𝑇)2+𝑔𝐿𝑛(𝑇)3

1+𝑏𝐿𝑛(𝑇)+𝑑𝐿𝑛(𝑇)2+𝑓𝐿𝑛(𝑇)3+ℎ𝐿𝑛(𝑇)4 (4.165) 

The coefficients (a,b, c, d, e, f, g, h) are given in the appendix 7.A.2 and correlate the data with 

an AAD of 0.027% over the temperature range 0.9<T*<∞. 

The high number of fitting constants is due to the high non-linearity exhibited by the radial 

distribution function, which of course, is not suitable from the computational aspect. Thus, in 

practice, it is recommended to perform a pre-calculation of the matrix 𝑐𝑖𝑗(𝐾∗) for the desired 

rigidity 𝐾∗ of interest to avoid heavy calculation at each iteration. As a final comment, a hard 
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sphere model would be probably a better choice because the problem will be reduced to only 

two variables instead of three for the Lennard-Jones model.  

To summarize, the SR-SAFTD model is written in terms of the Helmholtz free energy as: 

𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 𝑚𝐴𝑀,𝑟𝑒𝑠

∗ −
𝑚

2
𝑇∗𝑙𝑛(𝑔𝑀(𝑇∗, 𝜌∗, 𝜎)) + (1 −

𝑚

2
)𝑇∗𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝑇∗, 𝜌∗, 𝐾∗, 𝜎)) (4.166) 

where the monomer contribution is obtained from the modified-BWR EoS of Johnson et al. 44 

given by: 

𝐴𝑀,𝑟𝑒𝑠
∗ = ∑

𝑎𝑖𝜌∗𝑖

𝑖

8
𝑖=1 + ∑ 𝑏𝑖𝐺𝑖

6
𝑖=1  (4.167) 

where ai and bi are temperature dependent parameters and Gi are density dependent parameters, 

given in the appendix 7.A.2. 

𝑔𝑒𝑒
𝑀  is the monomer-monomer radial distribution function obtained from the work of Johnson et 

al. 32 and given by: 

𝑔𝑀(𝑇∗, 𝜌∗, 𝜎) = 1 + ∑ ∑ 𝑎𝑖𝑗𝜌∗𝑖5
𝑗=1

5
𝑖=1 𝑇∗(1−𝑗) (4.168) 

The regression parameters 𝑎𝑖𝑗 are given in the appendix 7.A.2. 

The residual internal energy is obtained by: 

𝑈 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = −𝑇∗2 (

𝜕(
𝐴 𝑟𝑒𝑠

∗,𝑐ℎ𝑎𝑖𝑛

𝑇∗⁄ )

𝜕𝑇∗ )

𝜌∗,𝑁𝑐

 (4.169) 

which yields: 

𝑈 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 = 𝑚𝑈𝑀,𝑟𝑒𝑠

∗ +
𝑚

2
𝑇∗2 𝜕𝑙𝑛(𝑔𝑀(𝑇∗,𝜌∗,𝜎))

𝜕𝑇∗ + (
𝑚

2
− 1) 𝑇∗2 𝜕𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝑇∗,𝜌∗,𝐾∗,𝜎))

𝜕𝑇∗  (4.170) 

where UM,res
∗  is the residual internal of the monomer. 

In this work, the results for the residual internal energy will be given per number of monomer, 

thus: 

𝑈 𝑟𝑒𝑠
∗ = 𝑈𝑀,𝑟𝑒𝑠

∗ +
1

2
𝑇∗2 𝜕𝑙𝑛(𝑔𝑀(𝑇∗,𝜌∗,𝜎))

𝜕𝑇∗ + (
1

2
−

1

𝑚
) 𝑇∗2 𝜕𝑙𝑛(𝑔𝑒𝑒

𝐷 (𝑇∗,𝜌∗,𝐾∗,𝜎))

𝜕𝑇∗  (4.171) 

The pressure 𝑃∗, is expressed by: 

𝑃∗ = 𝑃𝑖𝑑𝑒𝑎𝑙
∗ + 𝜌∗ (

𝜕(𝐴 𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛)

𝜕𝜌∗ )
𝑇∗,𝑁𝑐

 (4.172) 

where the full expression is: 

𝑃∗ = 𝑃𝑀
∗ + 𝜌∗ (

1−𝑚

𝑚
) +

𝑇∗𝜌∗

2
((

2−𝑚

𝑚
)

𝜕𝑙𝑛(𝑔𝑒𝑒
𝐷 (𝑇∗,𝜌∗,𝐾∗,𝜎))

𝜕𝑙𝑛(𝜌∗)
−

𝜕𝑙𝑛(𝑔𝑀(𝑇∗,𝜌∗,𝜎))

𝜕𝑙𝑛(𝜌∗)
) (4.173) 

where PM
∗  is the pressure of the monomer.  
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4.8 Model validation 

In the first step of this work, we have validated the developed equation of state on the properties 

of the fully flexible fluid model. The idea is now to extend the validation to the semi-rigid case 

using the full model developed in this work. To do so, extensive Monte Carlo simulations were 

performed to obtain the LVE properties of different chain lengths of LJ chains with variable 

rigidities. Results, shown in Figure 4.12 to Figure 4.17, have also been obtained in single phase 

domains including the dense liquid phase and the supercritical fluid from low density to high 

density. Note that, in what follows, new notation which will be used, where we refer to the 

generalized TPT1-D developed in this work as SR-SAFTD (SR stands for Semi-Rigid), and the 

TPT1-M as soft-SAFT. 

4.8.1  Single phase 

First, the low-density limit internal energy was investigated, as done with the fully flexible 

chains. From Figure 4.12, the results show that SR-SAFTD increasingly predicts the internal 

energy at zero density for different chain lengths with increasing stiffness. This interesting 

result highlights that the shielding effect, in which the interaction between two monomers of 

the same chain separated by at least one monomer, is cancelled by the presence of these 

intermediate monomers. This is all the more correct as the monomers are aligned and thus, as 

the rigidity is increased (SI3). In the case of a fully flexible chains, the SR-SAFTD model 

accounts perfectly for the interactions involving four successive monomers in the same chain, 

reason for which the internal energy for chain of 4-mers are accurately predicted. However, as 

the chain length increases, additional interactions are involved which may become dominant at 

a certain length due to the folding of the molecule on itself. The lack of these additional 

correlations in the SR-SAFTD model explains the deviations obtained in the Figure 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Zero-density limit internal energy at T*=2 predicted by the SR-
SAFTD (solid lines) for variable rigidities (K*=0, 1, 3, 10, 50) and chains up to 

m=50 vs the exact monte carlo simulations (dots). 
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Figure 4.13: Residual internal energy for chains of m=4, 8, 12 at supercritical(T*=4) and 
subcritical(T*=2) conditions for variable rigidities (K*=0, 1, 3, 10) obtained from 

molecular simulations (symbols) and predictions using the SR-SAFTD (solid lines). 
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The results plotted in Figure 4.13 show that the SR-SAFTD gives excellent predictions of the 

internal energy in the subcritical conditions as well as in the supercritical conditions for the 

different chain lengths (m = 4, 8 and 12) investigated in this work. Still, slight deviations can 

be noticed when increasing the rigidity in the subcritical region, but the supercritical region is 

accurately predicted in all cases. The model is tested only at a maximum rigidity corresponding 

to K*=10. However, we expect that the model will still providing reasonable results valid for 

rigidities around K*=20, which is sufficient for the real fluid applications as it will be shown 

later.  

Regarding the pressure, the rigidity has only a small effect as may be seen from the simulation 

data in Figure 4.14. However, the small deviation observed for the chain of 8-mers are correctly 

captured by the SR-SAFTD for both liquid and supercritical phases. The increase of pressure 

with increasing the rigidity seems to be consistent, as this indicates that it requires less energy 

to stack fully flexible chains which do not exhibit any resistance to fold, whereas the rigid 

chains require more energy due the high internal resistance. 

 

 

 

 

 

 

 

 

 

4.8.2  Liquid vapour equilibrium (LVE) 

In terms of liquid vapour equilibrium properties and saturation pressure, results obtained with 

the SR-SAFTD are all consistent with the computer simulations of the LJ chains with different 

lengths and variable rigidities as shown in Figure 4.15. While the predicted vapour phase 

density is always decreasing as the rigidity increases (not close to the critical point), which is 

consistent with the simulation data, the SR-SAFTD describes correctly the non-linear behaviour 

of the saturated liquid density, which tends to be lowered at small rigidities and then increased 

as the rigidity increases. Capturing this non-linearity is a very good indication that our model 

is physically consistent. Regarding the saturation pressure, the SR-SAFTD yields very good 

predictions for all rigidities and chain lengths. The behaviour of the critical point with rigidity 

Figure 4.14: Pressure for chain of m=8 at supercritical(T*=4) and subcritical(T*=2) 
conditions for variable rigidities (K*=0, 1, 3, 10) obtained from molecular 

simulations (symbols) and predictions using the SR-SAFTD (solid lines). 
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seems also very well predicted, as can be seen from the LVE curves. More precisely, the 

equation of state is predicting a lower value of the critical temperature for K*=3 compared to 

the fully flexible chains, and a higher value for K*=10 as found in the simulations.  

 

 

 

 

 

 

 

 

 

 Critical properties 

To better show how correct is the prediction of the critical point location using the SR-SAFTD, 

all critical properties of the 5-mers chain have been plotted in Figure 4.16. The acentric factor 

is shown as well as it is very sensitive to the critical pressure and temperature. As can be seen 

from Figure 4.16, the SR-SAFTD captures qualitatively the behaviour of all critical properties 

and also the acentric factor. However, quantitatively, the critical temperature and the critical 

pressure are both overestimated by the model, while the critical density and the acentric factor 

are underestimated. When applied to real fluids, it is then expected that the SR-SAFTD will fail 

in reproducing accurately these critical properties. However, even if not perfect, these results 

are largely better than those that would be deduced from a soft-SAFT approach as shown in 

Figure 4.16. Furthermore, this is a classical weakness of any mean field model that needs a 

crossover contribution to be fully corrected. 

  

Figure 4.15: Liquid-vapour equilibrium properties and saturation pressures predicted 
by the SR-SAFTD (solid lines) for chains of m=4, 8, 16 vs molecular simulations 

(symbols) for variable rigidities (K*=0, 3, 10). 
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4.8.3  Internal energy & Entropy at saturation 

In addition to the monophasic fluid and the LVE properties, excellent predictions are also 

obtained for the internal energy and the entropy at saturation conditions, as shown in Figure 

4.17. Interestingly, the predictions become closer to the computer simulations results as the 

rigidity increases, consistently with what was observed for the zero-density limit of the internal 

energy. This is particularly obvious for the internal energy of 8-mers chain, due to the shielding 

effect. As already mentioned, the SR-SAFTD should be valid for chain length of any odd 

number, even if build to deal with an even number of mer. This assumption is confirmed by the 

excellent prediction for the entropy obtained for the trimer chain. In addition, the excellent 

entropy prediction with the SR-SAFTD is crucial, especially in our work, because this quantity 

Figure 4.16: Critical properties and acentric factor predicted by the SR-SAFTD (solid 
lines) and soft-SAFT (dashed lines) for chain of m=5 vs molecular simulations 

(symbols) for variable rigidities (K*=0 to 20). 
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will be used to propose an entropy scaling approach to predict viscosity of the semi-rigid chains. 

This approach will be discussed in the next chapter of this thesis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.17: Liquid-vapour internal energy and entropy predicted by the SR-SAFTD 
(solid lines) for chains of m=4, 8 vs molecular simulations (symbols) for variable 

rigidities (K*=0, 3, 5, 10). 
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4.9 Real fluid properties 

After having validated the SR-SAFTD on “exact” properties of the semi-rigid chains obtained 

from computer simulations, this equation of state will be applied to real fluids in this section. 

The application is limited to pure components only and mixtures will be considered in the 

future.  

4.9.1  Optimization of the molecular parameters 

Before showing any results, an important question is about the way the molecular parameters 

appearing in the SR-SAFTD are defined. In this work, relying on the results presented in the 

previous chapter, is proposed a parametrization based on the corresponding states similarly to 

what done for the semi-rigid LJCCG model. The corresponding state strategy has already been 

applied for the SAFT-𝛾-Mie 94, but including a transport property in the parametrization of a 

SAFT models has not yet been tested.  

Thus, the parameterization strategy of the SR-SAFTD is similar to that for the LJCCG force 

field. However, instead of using an optimization based on the equation of state itself, and thus, 

using the theoretical prediction of the critical temperature, liquid density and acentric factor 

given by the SR-SAFTD EoS, it is the exact properties of the semi-rigid LJCCG model (the 

correlations for the 𝑇𝑐, 𝜌𝑇𝑟07 and 𝑤, given in the appendix 7.A.2) that will be used. A priori, one 

may expect that a parametrization based on the corresponding state strategy will not give 

accurate predictions because of the wrong scaling exponent involved in the universal scaling 

laws when the thermodynamic properties are asymptotically approaching the critical point. This 

is a classical problem for any equation of state as it does not take into account the energy 

contribution due the density and composition fluctuations appearing in the vicinity of the 

critical point.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Prediction of the phase equilibria properties of pure n-octane using a 
corresponding state strategy (CS). 
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In order to illustrate the weakness of an optimization using a corresponding state based on the 

properties of the EoS, we took the case of the n-octane molecule using the SR-SAFTD and the 

soft-SAFT. In a first step, we did not consider the rigidity parameter for the SR-SAFTD, thus, 

the two EoS models are parametrized with exactly the same strategy. The number of segments 

is obtained via the acentric factor and the interaction and the diameter parameters are obtained 

from the critical temperature and saturated liquid density at Tr=0.7, similarly to what was done 

in chapter 3 for the SR-LJCCG model. 

Results in Figure 4.18 show that neither the SR-SAFTD (with K*=0) neither the soft-SAFT are 

able to provide simultaneously accurate coexistence densities and saturation pressure 

properties. However, because the SR-SAFTD performs better relatively to the soft-SAFT in the 

critical region, slightly better results are obtained with SR-SAFTD close to the critical point 

and for the liquid density. Quite similar strategy was applied on the soft-SAFT by Pàmies and 

Vega. 95 who tested the corresponding state strategy using only the critical properties similarly 

to what is done for the cubic EoS. Their results showed it is not possible to obtain accurate 

prediction of both LVE properties and saturation pressure. More recently, to overcome this 

limitation, Moine et al. 96 showed that a fourth molecular parameter is required. The authors 

proposed to use a volume translation correction parametrized on the saturated liquid density at 

Tr=0.8, and obtained very good results with the I-PC-SAFT. Another alternative consists in 

using the cross over treatment of the EoS to yield better scaling of the critical region such as its 

application on the soft-SAFT  97, 53, 98, SAFT-VR 99 or the PC-SAFT 100. However, this latter 

option is somewhat complicated as it requires the rescaling of all the variables and additional 

parameters are required. 

Since the SR-SAFTD contains four molecular parameters, one may then wonder whether the 

additional rigidity parameter can be used to remedy this issue instead of using the volume 

translation. In the Figure 4.18, we tested at which extent this rigidity parameter may play a role 

in improving the predictions. Two values of rigidity (K*=1 and K*=5) have been tested, and 

results showed that, only small improvement are obtained in the T-P space, but, in the detriment 

of a slightly deterioration of the liquid density close to the critical region. The phase diagram 

seems just to be slightly shifted to the low densities. In short, the rigidity parameter, does not 

give enough flexibility to the model in terms of equilibrium properties. Moreover, even if this 

strategy based on the CS using the EoS worked, the obtained parameters would not ensure 

obtaining accurate viscosity, and additional re-adjustment would certainly be needed. Finally, 

the set of parameters obtained would be largely different from those obtained for the SR-LJCCG 

model presented in chapter 3. 

In the SR-SAFTD validation step, it was shown that this EoS gives accurate predictions of the 

set of properties tested when compared to the computer simulations of the fluid model. 

Therefore, if the parameters used for semi-rigid LJCCG model are injected into the SR-SAFTD 

EoS this should lead to very reasonable results on real fluids similarly to what we obtained in 

chapter 3, except very close to the critical point where the EoS would be not accurate.  

As it will be confirmed in the following section, the parameters obtained for the coarse-grained 

force field model can be used for the SR-SAFTD model. However, when using the SR-SAFTD, 

there is no need to constrain the number of segments forming the chain to be an integer number, 
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as required when performing molecular simulations. This is because a SAFT model allows 

modelling fluids with a non-integer (even if sometimes their meaning can be questionable) 

contrary to molecular simulations. More in details, during the optimization procedure of the 

coarse grained model in the previous chapter, the parameters were obtained in two steps, where 

in the second step, the number of segments was forced to be an integer number. The 

optimization using a SAFT model does not require this second step, and it is the optimal 

parameters minimizing the F-function to the global minimum that will be used. The 

parameterization process is shown in Figure 4.19 (b). The global procedure for the optimization 

is similar to that of the coarse grained model as shown in Figure 4.19 (a), but the main difference 

appears in the last step to predict the real fluids properties. Instead of using molecular 

simulations, the thermodynamic properties will be predicted by the SR-SAFTD, and the 

viscosity will be predicted thanks to the entropy scaling approach as it will be discussed in the 

following chapter.  

 

 

 

 

 

 

 

 

 

It is worthwhile to mention it again, the optimization routine may be slightly dependent on the 

initial guess due to the presence of some local minima, but, can easily be overcome (see 

recommendation in the previous chapter) to converge to the global minima. This problem was 

mainly noted for short molecules with acentric factor around that of 𝑚~3. This is due to the 

non-linearity of the acentric factor with rigidity which is not compensated by the effect of the 

viscosity. In fact, the viscosity does not show any non-linearity with the rigidity and so tends 

to smooth the objective function when its contribution is found to be the dominating one, which 

is mainly the case for 𝑚 > 3. The issue of the presence of multiple minima is a common problem 

for any equation of state when the parametrization is based on simultaneous optimization of a 

set of parameters using the classical fit over the saturation curves, or when derivative properties 

are included in the fit as target properties. Thus, in such strategies, high caution is required for 

the user to avoid obtaining unphysical parameters, particularly when four parameters equations 

of states are used 101, 102. The SR-SAFTD possesses also four molecular parameters, but is not 

Figure 4.19: (a) flowchart of the general methodology using the SR-SAFTD, (b) 
flowchart of the optimisation strategy using SR-SAFTD. 

 

(a)                                                                              (b) 
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subject to this problem because of the corresponding states framework which allows to 

decouple the fitting of the parameters. Indeed, only two parameters are fitted simultaneously 

(m and K*) to only two experimental data and the two other ones (ɛ, σ) are simply deduced 

from the corresponding state relations. 

  



Integration of a bending potential into SAFT model 
 

144 
 

4.9.2  Results and discussions 

4.9.2.1 LVE and saturation pressure 

The results obtained in the previous chapter using the optimized coarse grained force field by 

performing direct molecular simulations are reproduced in this part and compared to the 

prediction using the SR-SAFTD model. The predictions with the two approaches are then 

compared to the experimental measurements, and all results for LVE and saturation pressure 

are presented in Figure 4.20 for normal alkanes, iso-alkanes and some polar components.  

The comparison between the simulations data and the SR-SAFTD predictions are in excellent 

agreement for the two properties and for all the species, except very close to the critical point 

which is not surprising, as already mentioned. The imposed saturated liquid density at Tr=0.7 

is also accurately reproduced and the parameters used show very good transferability to other 

states not included in the fitting. Another interesting point to emphasize is the good prediction 

of the properties of the polar components without any use of polar or association terms. Indeed, 

it is very common in the SAFT community to add these contributions as soon as the molecules 

exhibits a dipole or a quadrupole moment, leading to more complexity in terms of parameters 

estimation. Here we show that this is perhaps not justified in some cases. Similar conclusion 

has been drawn in the recent study conducted by Ramirez-Vélez et al. 103 showing that there is 

no clear correlation between the association strength and the accuracy of the EoS. Thus, many 

polar molecules could probably be correctly modelled without any polar or association 

parameters using the corresponding state strategy proposed in this work. With this in mind, it 

is recommended that, for any compounds, one should first check whether the species could be 

modelled with SR-SAFTD before adding association or polar terms.  

There is nevertheless exception for two cases, where the proposed strategy should fail. The first 

is that when it comes to mixtures, such contributions are most of the time asymmetric between 

the species. Thus, this requires additional fitting parameter to capture well the cross-

interactions. The second is the situation corresponding to strongly associating molecules, such 

as alcohols and water. In fact, these molecules are characterized by a small molecular weight 

with high acentric factor and viscosity as well. Thus, applying this strategy for such molecules 

leads to a high number of segments which cannot be consistent (unphysical situation). For 

example, when trying to model methanol, the proposed approach gives a segment number 

around m=4.3, while it molecular weight is not far from that of ethane which is modelled by 

m=1.73. An illustration and a discussion of this particular case is given in the appendix 7.B.1. 

As already pointed out and shown in Figure 4.20, the case of the critical properties are not 

accurately predicted for all molecules, particularly for large molecules. In the case of n- alkanes 

for example, the deviations noted are reasonable for the critical temperature (around 3%) and 

for the critical densities (around 7%) and seems to be relatively stable with increasing the chain 

length. However, the critical pressures are highly overestimated and are observed to increase 

with increasing the length of the chain (around 68% for the nC36!) as shown in Figure 4.21. 

Note that, even though these deviations are high, we expect that they would be lower than what 

would be obtained with the soft-SAFT, as emphasized by the results shown in Figure 4.16 
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Figure 4.20 : Liquid-vapour saturated densities and saturation pressures predicted 
with the SR-SAFTD and the SR-LJCCG vs the correlated experimental data from NIST 

database. (a,b) n-alkanes, (c,d) iso-alkanes, (e,f) polar compounds. 

(a)                                                                                                                                           (b) 

(e)                                                                                                       (f) 

(c)                                                                                                                                      (d) 
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A comparison between the classical parametrization strategy based on the fitting of the 

saturated liquid density and the saturation pressure and that using a corresponding state strategy 

proposed in this work is shown in Figure 4.22. Two models are used for the classical fit strategy, 

the fully flexible SAFTD with  the parameters obtained from the work of Zhang 104, and the 

fully flexible soft-SAFT with the parameter obtained from the work of Pàmies 52. Two 

compounds are studied, the normal hexane and the normal dodecane. 

 

 

 

 

 

 

 

 

 

The fully flexible SAFTD and the SR-SAFTD exhibit practically the same accuracy for both 

LVE properties and saturation pressure, with a small advantage for the SAFTD at low 

temperatures (Tr<0.6) on the liquid side of the LVE, and a small advantage for the SR-SAFTD 

Figure 4.21: Relative deviations of the critical properties  predicted 
with SR-SAFTD vs the carbon number of series of n-alkanes. 

Figure 4.22: Liquid-vapour saturated densities and saturation pressures predicted with 
the SR-SAFTD, the fully flexible SAFTD and the soft-SAFT  vs the correlated 

experimental data from NIST database of n-C6 and n-C12. 
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when approaching the critical point. The soft-SAFT leads to greater deviations compared to the 

two previous cases for the LVE (on both sides: liquid and vapour) and the saturation pressure 

as well, with maximum deviations noted at the critical point. These results highlight that the 

use of a SAFTD improves considerably the predictions of the real fluids properties when 

compared to the soft-SAFT, which is not surprising if one refers to the improvement obtained 

on the model fluid.  

All these results confirm once again the robustness of the corresponding state strategy as it is 

applied in this work. It provides predictions with the same accuracy as models (soft-SAFT and 

SAFTD) fitted only on equilibrium properties (which requires many data) and over large range 

of temperatures. Furthermore, the SR-SAFTD is expected to provide prediction of the viscosity 

with a similar accuracy as for the equilibrium properties when the optimized parameters are 

transferred to molecular simulations of the LJCCG model or when the entropy scaling approach 

is used, whereas those of soft-SAFT or SAFTD will largely fail to do so whatever the approach 

used. 

4.9.2.2 Enthalpy at saturation 

To obtain good prediction on the thermal properties of fluids, the enthalpy or its derivative 

properties are often included in the parameters estimation for the development of force fields 

such as the OPLS-UA 105 and the AUA(4) 106 and in the parametrization of equations of states 
70, 71, 107, 108. Such property is extremely important in many applications, and thus, it is important 

that the model is able to provide good predictions on it. Moreover, as in our case the enthalpy 

is not included in the optimization as a target property, this is a good test for the representability 

of the parameters obtained. 

As shown in Figure 4.23, results obtained for this property are fully consistent with the 

experimental data for all studied fluids. The exception is at the critical point where the SR-

SAFTD loses accuracy, similar to what was observed for the equilibrium properties. However, 

the overall fair behaviour obtained with the SR-SAFTD shows that it has a solid physical basis 

to capture not only the phase equilibria but also some thermal properties.  
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4.9.2.3 Second-order derivative properties 

The good prediction of the first-order derivative properties does not always ensure a good 

prediction of the second-order derivatives properties as these latter are extremely sensitive to 

any variation in the former. In particular, these second-order derivative properties exhibit many 

anomalous behaviours particularly at the critical point, but, also relatively far from that peculiar 

point. This makes their prediction very challenging for any equation of state. Many efforts have 

been devoted to improve the prediction capability of many SAFT models (Soft-SAFT, SAFT-

VR-Mie, PC-SAFT) 70, 71, 107, 108 on these properties. To do so, these properties were set as 

target properties in the objective function, with sometimes taking a weighting coefficient 

different from unity. However, the inclusion of derivative properties in the objective function 

for non-associating molecules was found to have only a marginal impact 107, while the 

Figure 4.23: Liquid-vapour enthalpy predicted with the SR-SAFTD vs the correlated 
experimental data from NIST. (a) n-alkanes, (b) iso-alkanes, (c) polar components. 

(a)                                                                                              (b) 

(c)                                                                                                                                          



Integration of a bending potential into SAFT model 
 

149 
 

transferability of the parameter to other molecules leads to some complexities 101. De Villiers 
109 studied the predictive capability of the original-SAFT, PC-SAFT and CPA on the derivative 

properties without including them in the fitting of the parameters. It was concluded that these 

EoS are not capable to predict simultaneously accurate first-order properties and second-order 

ones, but advantages were found in many cases for the PC-SAFT. When tested in the near 

critical region, all these EoS fail to give even correct trend for the constant volume heat capacity 

(Cv), while it was shown that a correct behaviour could be obtained with the crossover treatment 

of the soft-SAFT 53. Thus, as a strong test, the SR-SAFTD developed in this work has been 

assessed on its predictive capability on the derivative properties which were not included in the 

fit. 

Results are shown in Figure 4.24 to Figure 4.26 for three families of molecules. The SR-SAFTD 

shows excellent prediction when compared to direct molecular simulations which is due to the 

consistent parametrization between the two approaches (the coarse grained force field and the 

SR-SAFTD). The comparison against experimental data is made over an extremely large range 

of temperatures at pressure corresponding to 100 bars. Many properties were assessed, 

including the isobaric heat capacity, the isochoric heat capacity, the thermal expansivity, the 

speed of sounds and the Joule-Thomson coefficient. As can be seen from these figures, the SR-

SAFTD is showing excellent agreement with experimental data for all properties studied and 

for all the molecules considered in this work. The speed of sounds for example, which is known 

to be extremely challenging for many equations of states 109, is fairly well predicted by the SR-

SAFTD. Still, small deviations are observed at low temperature when the chain length increases 

for the normal alkanes and for the iso-octane as well.   

The SR-SAFTD is also capable to reproduce quantitatively the non-linearity exhibited by the 

derivatives properties for thermodynamic conditions not far from the critical point. This is a 

signature of the strong physical basis of the SR-SAFTD and confirms that the use of the LJ 

potential to account for the intermolecular interactions is a robust choice. Interestingly, carbon 

dioxide (CO2) and hydrogen sulphide (H2S) are tested under conditions extremely close to their 

critical points, which is a severe test for any equation of state. The results obtained with SR-

SAFTD are in perfect agreement with the experimental data, reproducing all singularities of the 

derivative properties, except for small deviations observed for the isochoric heat capacity (Cv). 

The excellent trends predicted for the isochoric heat capacity confirms the overall superiority 

of the LJ-based SAFT, and thus the SR-SAFTD, when compared to some SAFT variants (CK-

SAFT, PC-SAFT, CPA) as shown in 109. To enhance quantitatively the prediction of the Cv  

would probably require further treatment by adding a kernel term that acts in favour of this 

property 110. 
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Figure 4.24: Temperature dependence of the second order derivative properties of the 
n-alkanes components predicted with the SR-LJCCG and SR-SAFTD vs the correlated 

experimental data from NIST database at P=10MPa. 
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Figure 4.25: Temperature dependence of the second order derivative properties of 
the iso-alkanes components predicted with the SR-LJCCG and SR-SAFTD vs the 

correlated experimental data from NIST database at P=10MPa. 
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  Figure 4.26: Temperature dependence of the second order derivative properties of the 
polar components predicted with the SR-LJCCG and SR-SAFTD vs the correlated 

experimental data from NIST database at P=10MPa. 
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4.9.2.4 Signe phase enthalpy 

For the same conditions for which the second-order derivative properties were studied, the 

prediction for the single phase enthalpy was investigated. As shown in Figure 4.27, excellent 

predictions are obtained for the enthalpy which is consistent with the accurate isobaric heat 

capacity obtained. In most cases the experimental data and the predictions from the SR-SAFTD 

are not distinguishable.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.9.2.5 Single phase density 

As for the enthalpy, the single phase density behaviour at the same thermodynamic conditions 

has also been investigated. The predictions obtained with the SR-SAFTD are shown in Figure 

4.28, and are in excellent agreement with those of the semi-rigid coarse grained model. When 

Figure 4.27: Temperature dependence of the single phase enthalpy predicted with 
the SR-SAFTD vs the correlated experimental data from NIST database at 

P=10MPa.. (a) n-alkanes, (b) iso-alkanes, (c) polar components. 

 

(a)                                                                                                                                         (b) 

(c)                                                                                                                                          
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compared to experimental data, the SR-SAFTD gives also very good predictions for all 

molecules. A slight overestimation is observed at low temperatures as the chain length increases 

for the iso and normal alkanes similarly to what was observed for the equilibrium properties, 

while a slight underestimation is obtained at high temperatures. The density behaviour close to 

the critical point for the H2S and the CO2 molecules is perfectly reproduced.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From all these results, one may underline the robustness of the strategy of the parametrization 

as it allows obtaining consistent molecular parameters that can safely be transferred over a wide 

range of thermodynamic conditions. Moreover, the good results on the derivative properties 

and the enthalpy, which were not included in the fit, highlights the robustness and the 

representability of the obtained parameters.  

Figure 4.28: Temperature dependence of the single phase density predicted with 
the SR-SAFTD vs the correlated experimental data from NIST database at 

P=10MPa.. (a) n-alkanes, (b) iso-alkanes, (c) polar components. 

 

(a)                                                                   (b) 

(c)                                                                                                                                          
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4.9.3  Consistency check and transferability of the parameters  

A major advantage of a SAFT equation of state resides in its solid physical basis. However, this 

latter can easily be lost if care has not been taken when coming to the parameter estimation due 

to the multiple possible set of parameters that may give the same predictions. Even though this 

risk becomes very low within the SR-SAFT framework due to the simplicity of the CS 

parametrization strategy, the user should always find a way to confirm the consistency of the 

estimated parameters. For instance, normal alkanes, or iso-alkanes, are modelled as a 

homonuclear chains, and thus, it is expected that the parameter within the same family should 

behave in a regular way as it is always the same functional group which is added to grow the 

chain. Such a consistency check has already been shown in the work of Pàmies 52 for the soft-

SAFT and Lafitte 70 for the SAFT-VR-Mie first version, where the intermolecular interaction 

parameters and the number of segments forming the chain follow regular trends when plotted 

versus the molecular weight. Indeed, the parameters estimated from the SR-SAFTD in this work 

also follow the same trends as shown in Figure 4.29 

More precisely, the energetic well-depth parameter increases rapidly for the small n-alkanes 

and then converges to a certain asymptotic limit, which is physically consistent, as the 

additional nth functional group would not perturb the mean energy of the molecule which should 

remain finite for the polyethylene. The same reasoning also applies to the collisional diameter 

of the LJ potential which reflects the volume of the molecules. However, the number of 

segments is linear with molecular weight which an indication of the progressive addition of 

CH2 functional groups. 

In Figure 4.29, comparison is made against the parameters of the soft-SAFT taken from the 

work of Pàmies 52 and also against the fully flexible SAFTD of Johnson with the parameters 

taken from the work of Zhang 104. While the results for the segments are practically superposed 

for the three LJ SAFT versions, the size and the energetic parameters shows small differences. 

Of course, such deviations reflect the differences in the optimization strategy used for the 

parameters estimation. The SR-SAFTD exhibits slightly lower 𝜎  and 𝜖 compared to the other 

versions, but the deviations for 𝜎 are more pronounced. Consequently, the SR-SAFTD models 

a less cohesive fluid but a denser one. As can be seen in Figure 4.22, the SR-SAFTD shows 

lower critical temperature of the n-hexane and the n-dodecane but slightly higher saturated 

liquid density at low temperatures. In other words, this deviation observed in sigma, reflects 

somewhat its slight dependence in temperature which is a common correction in the SAFT 

variants based on the hard sphere reference fluid to take into account the softness of the fluid 

model. 

The rigidity parameter is specific to the SR-SAFT and it is thus this parameter that distinguishes 

this EoS from the other variants of SAFT. This behaviour of K* exhibits a kind of hyperbolic 

decrease when plotted versus the molecular weight as shown inFigure 4.29 (d). For small 

molecules, the rigidity exhibits high values, which is consistent with the up-scaling approach 

on which the coarse grained model is based on. A monomer, which can represent a group of 

atoms in a real molecule is considered as a rigid unit. Two connected monomers are also 

considered as a fully rigid unit in the coarse graining approach. However, beyond two 
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monomers, the notion of molecular bending makes sense and so can be defined, which is the 

case of the n-butane. For the longest molecules, the rigidity is exhibiting a decreasing 

behaviour. This is also consistent as a polymer can locally have a certain stiffness (named Kuhn 

segment). However, globally this stiffness is reduced allowing the polymer to bend.   

It is clear that for the case of C6 and C7, the optimized rigidity parameters seem to deviate from 

the regular decay behaviour exhibited by the other molecules of the family. It has already been 

shown that the viscosity is highly sensitive to the rigidity parameter, and thus, such deviations 

are nothing more than the signature of the deviation observed in the experimental data of the 

reduced saturated viscosity at Tr=0.7 for these two molecules when compared to their 

homologous series of alkanes as shown in Figure 4.30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.29: Optimized molecular parameters of the SR-SAFTD EOS for the series 
of n-alkanes Vs That of the fully flexible SAFTD and the fully flexible soft-SAFT.  

(a) σ Vs Mw. (b) ɛ Vs Mw. (c) m Vs Mw. (d) K/ɛ Vs Mw. 

(a)                                                                                (b) 

(c)                                                                                     (d)                                                                                                   
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Now, regarding the transferability of the parameters to other molecules for which the 

experimental data needed for the optimization are not available, a classical way to obtain them 

is by exploiting their linear behaviour when plotted in terms of the molecular energy and 

volume instead of the atomic ones for the same family of molecules.  The best example is that 

widely shared by most SAFT developers for n-alkanes molecules as shown by Blas 50 and 

Pàmies  52 for the soft-SAFT, McCabe 67 for the SAFT-VR, Tihic 111 for the PC-SAFT and 

Lafitte 70 for the first version of the SAFT-VR-Mie. Interestingly, the same behaviour is also 

found for the n-alkanes with the SR-SAFTD as shown in Figure 4.31. 

Note that the case of methane is not included in the fit to not bias the fit as its parameter slightly 

deviate from the global trend. Regarding the rigidity, the n-hexane and n-heptane have been 

excluded from the fit due to their high deviation from the trend (as explained above). Thus, the 

fitting will provide higher value of stiffness constant for these two compounds. It is expected 

that this will only influence noticeably the viscosity at low temperatures for these two 

molecules. 

The same work has been done for the iso-alkanes to obtain transferable parameters as shown in 

Figure 4.32. Similar to the case of the n-alkanes, deviations from the global trend for the 

stiffness constant is also observed for the iso-butane and iso-pentane and have then been 

excluded from the fit.  

For the n-alkanes (for iso-alkanes see appendix 7.A.2), the correlations are given as follow: 

𝑚 =  𝑎𝑚𝑀𝑤  +  𝑏𝑚 (4.174) 

𝑚 𝜎3[𝑛𝑚3]  =  𝑎𝜎𝑀𝑤   +  𝑏𝜎  (4.175) 

𝑚 𝜖
𝑘𝐵

⁄ [𝐾]  =  𝑎𝜖𝑀𝑤   +  𝑏𝜖 (4.176) 

 𝐾 𝜖⁄  =  
𝑎𝐾

1+𝑏𝐾𝐸𝑥𝑝(𝑐𝐾𝑀𝑤 )
  𝑓𝑜𝑟 𝑀𝑤 > 𝑀𝑤𝑖−𝐶3 (4.177) 

Figure 4.30: Reduced experimental viscosity of n-alkanes taken 
from NIST database Vs Mw 
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where Mw is the molecular weight of the n-alkane expressed in [
kg

mol
]. The fitting constants are: 

𝑵𝒐𝒓𝒎𝒂𝒍 𝒂𝒍𝒌𝒂𝒏𝒆𝒔 𝐚𝒊 𝐛𝒊 𝐜𝒊 
𝐦 23.9475 0.9659 − 

𝐦 𝛔𝟑 1.6949 0.02363 − 
𝐦 𝛜

𝐤𝐁
⁄  63.6103 0.7254 − 

𝐊
𝛜⁄  3.4062 −1.7449 −11.9864 

Table 4.1: Constants of the transferable parameters correlations for the n-alkanes 

  

Figure 4.31: Transferable parameters of the SR-SAFTD EOS for the series of n-alkanes, 
correlated up to n-C22. (a) m Vs Mw. (b) mσ3 Vs Mw. (c) mɛ Vs Mw. (d) K/ɛ Vs Mw. 

(a)                                                                                (b) 

(c)                                                                                    (d)                                                                                                   
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In order to check the validity of the correlations to predict properties of fluids not included in 

the fit, we have extrapolated them to obtain parameters of the normal-hexatriacontane (nC36). 

Comparison is made between the exact parameters optimized on this molecule and those 

obtained from the correlations. In addition, we included data from molecular simulations and 

the predictions from the soft-SAFT with parameters obtained from similar correlations given 

by Pàmies and Vega 52. Results are shown in Figure 4.34 for the LVE properties and saturation 

pressure. There are only small deviations on the saturation pressure at low temperature and a 

slight overestimation of the critical temperature compared to the predictions with the optimal 

parameters. The correlations can then be considered when experimental data needed for the 

optimization are not available. Higher deviations are obtained with the soft-SAFT, due probably 

to the fact that the fitting correlations for this EoS consider only small n-alkanes in the fit. 

Figure 4.32: Transferable parameters of the SR-SAFTD EoS for the series of iso-alkanes, 
correlated up to i-C16. (a) m Vs Mw. (b) mσ3 Vs Mw. (c) mɛ Vs Mw. (d) K/ɛ Vs Mw. 

(c)                                                                                                                                   (d)                                                                                                   

(a)                                                                                                                                  (b) 
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A second check is made upon the high-density linear polyethylene molecule constituted with 

900 carbon atoms (molecular weight of 12602 g/mol). The molecule is modelled with around 

303 segments for the SR-SAFTD and around 322 segments with the soft-SAFT. The 

experimental data are taken from the work of Rahman et al. 112 as well as the data for the SAFT-

-Mie EoS which models the polyethylene with 300 segments. Figure 4.34 shows results for the 

three EoS models against experiments. The predictions of the SR-SAFTD and SAFT--Mie are 

very close each other with slightly better prediction with this latter EoS at high pressures. 

However, both models overestimate the density for all the pressures. The soft-SAFT yields 

excellent predictions of the density compared to the two other EoSs. However, the slope (dρ/dT) 

seems to be better predicted by the SR-SAFTD and the SAFT--Mie. The average deviations 

for the SR-SAFTD are of ~2.6%, ~3.8% and ~4.7% respectively from the lowest pressure to 

the highest pressure. The deviations for the SAFT--Mie are ~2.35%, ~3.22, ~3.7% 

respectively. The soft-SAFT which yields the best predictions, thus, with much smaller 

deviations ~-0.62%, ~0.66%, ~1.49% respectively. Overall, all the EoSs tested here showed 

very reasonable results when extrapolated at the extreme limit. 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.33: Prediction of the thermodynamic properties of nC36 using the SR-SAFTD and 
soft-SAFT with parameters obtained from the extrapolated correlations. (a) LVE, (b) Psat 

(a)                                                                            (b) 
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4.10 Summary 

Because of the interesting performance exhibited by the SR-LJCCG model presented in chapter 

3, a SAFT equation of state providing the properties of this coarse grained molecular model 

would be of great interest to avoid performing extensive molecular simulations. However, 

before this work, such an EoS was not yet available. Thus, the goal of this part of the thesis was 

to develop a SAFT EoS for this fluid model. 

In this chapter, we first provided an overview of the thermodynamic perturbation (TPT) theory 

of Wertheim, including the equations derived. Some of the strengths and weaknesses of the 

theory were discussed along this chapter, with a focus on the effect of the truncation at the first 

level. We found that TPT1-M yielded significant deviations when compared to molecular 

simulations, but TPT1-D performed much better due to the inclusion of structural information. 

Moreover, we determined that TPT1-D offers the ability to incorporate a bending or torsional 

potentials. Therefore, in a second step, a modification in the TPT1-D theory was proposed to 

include a bending potential. More precisely, thanks to molecular simulations, we proposed a 

scheme to calculate the radial distribution function that accounts for internal degrees of 

freedom, such as the bending potential. This new RDF in TPT1-D results in a more generalized 

TPT1-D referred to as SR-SAFTD (SR stands for Semi-Rigid) equation of state. This strategy 

proposed for the incorporation of the bending potential may be extended to other potentials 

related to the internal degrees of freedom. Moreover, this strategy is not specific to LJ-based 

EoS, but, can be transposed to other forms of intermolecular potentials, thus, used with any 

SAFT type model.  

Figure 4.34: Liquid density of polyethylene at various pressures predicted using 
SR- SAFTD and soft-SAFT with parameters obtained from the extrapolation of 

the correlations. The prediction with SAFT--Mie is also included taken from 
Rahman et al.2018 . The experimental (dots) data are also obtained from the 

same paper (see therein for therein exact origin). 
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In the third step, the SR-SAFTD model developed has been validated on molecular simulations. 

Many properties were considered for the validation, such as the phase equilibria, the internal 

energy and the entropy over a large thermodynamic conditions. We showed that in all cases the 

model gives accurate predictions except very close to the critical conditions. 

In the fourth step, the new equation of state was applied on real fluids with molecular parameters 

estimated using the corresponding state strategy developed for the coarse grained molecular 

model. This strategy was a novel aspect of this work, as it is based on the properties of the fluid 

model evaluated by molecular simulations, and it is for the first time that a transport property 

has been incorporated in the parametrization of a SAFT model. The SR-SAFTD has been tested 

on three different chemical families, including n-alkanes, iso-alkanes and some polar 

components. It was evaluated over a wide of thermodynamic conditions (saturation conditions, 

dense liquid and supercritical conditions) and on various properties such as phase equilibria, 

enthalpy and many derivatives properties. In all cases, the SR-SAFT was found to accurately 

reproduce the data of the SR-LJCCG model and also accurately predict experiments. 

Furthermore, we demonstrated that the parameters used in the SR-SAFTD are transferable 

within the same molecular family. 

In addition to the success of the SR-SAFTD in predicting the thermodynamic properties of real 

fluids, it will be shown in the following chapter that this EoS stands out among others due to 

its ability in being used for predicting transport properties, specifically viscosity, when used in 

the entropy scaling approach. 
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In the previous chapter, we developed the SR-SAFTD equation of state which integrates a 

rigidity parameter of the bending type. This EoS accurately reproduced the thermodynamic 

properties of the SR-LJCCG model developed in chapter 3, making it a reliable alternative to 

extensive molecular simulations. In this chapter, to avoid performing these simulations to obtain 

transport properties, an entropy scaling approach will be developed for for the semi-rigid fluid 

model using the new SR-SAFTD EoS. Goel et al. 1 and later by Galliéro 2 previously applied 

this approach succefully to LJC fluids. However, to the best of our knowledge, it has never been 

applied to molecular models with internal rigidity even if of potential interest 3. The 

combination of the SR-SAFTD equation of state with an entropy-based scaling approach should 

lead to good viscosity prediction provided that a simple entropy scaling would work as for the 

fully flexible chains. More important, and this is one of the originalities of this work, using this 

entropy-based approach would allow the SR-SAFTD to be capable to simultaneously allows 

the prediction of thermodynamic and transport properties in a single framework.   

5.1 Overview of the evolution and application of the entropy scaling 

approach 

The entropy scaling approach was originally proposed by Rosenfeld 4 in 1977. This approach 

postulates that, there is a universal scaling between the entropy and transport properties such as 

viscosity. More specifically, it is the reduced transport property which is related to the residual 

(sometimes called “excess”) entropy, given in the case of viscosity by this relation: 

𝜂𝑟 =
𝜂∗

𝜂𝑟𝑒𝑓
= 𝑓(𝑆𝑟𝑒𝑠

∗ )  (5.1) 

where η∗ is the viscosity in the reduced units, Sres
∗  is the residual entropy in reduced units, 𝜂𝑟𝑒𝑓 

is the reference viscosity obtained thanks to a dimensional analysis, and is given by: 

𝜂𝑟𝑒𝑓 = 𝜌∗2/3(𝑀𝑘𝐵𝑇∗)1 2⁄   (5.2) 

where ρ∗ is the number density, 𝑀 is the molecular mass and 𝑘𝐵 is the Boltzmann constant. 

Rosenfeld showed that the entropy scaling relation can be expressed by the following equation: 

𝜂𝑟 = 𝑎𝐸𝑥𝑝(−𝑏𝑆𝑟𝑒𝑠
∗ )  (5.3) 

where a = 0.2 and b = 0.8 are the fitting constants he deduced from simulations on a Lennard-

Jones fluid. 

Such a relation is valid for simple fluids in the dense states only. This is because at extremely 

low density, the scaling diverges due to the fact that, while the numerator tends to a certain 

finite non-null value provided by the kinetic theory of gases, the denominator tends to zero. In 

1999, Rosenfeld 5 noted that, for different inverse power law model interaction, the reduced 

transport properties scale with the residual entropy at power -2/3. The relation for the dilute 

systems obeys then the following in the case of viscosity: 

𝜂𝑟 = 𝑆𝑟𝑒𝑠
∗ −2/3

  (5.4) 



Entropy scaling based SR-SAFTD for transport properties 
 

171 
 

Because of this divergence in the scaling proposed by Rosenfeld, several other authors have 

proposed alternative approaches. One approach is that proposed by Novak 6, who suggested to 

use the low density limit obtained from Chapman-Enskog theory to reduce viscosity instead of 

using macroscopic properties. This method, known as “microscopic reduction” uses molecular 

parameters to eliminate the diverging behaviour, extending then the approach to low density 

limit. The dimensionless viscosity writes then: 

𝜂𝑟 =
𝜂∗

𝜂𝐶𝐸
  (5.5) 

where 𝜂𝐶𝐸  is the Chapman-Enskog zero density limit viscosity given by: 

𝜂𝐶𝐸 =
5

16𝛺(2,2)(𝜎2)
√𝑀

𝑘𝐵𝑇∗

𝜋
  (5.6) 

where Ω(2,2) is the collisional integral that can be obtained by the correlation of Neufeld et al. 
7, and M is the molecular mass. 

 

Another scaling was proposed by Galliéro et al. 2, which relies on the residual viscosity instead 

of the total reduced viscosity used in the Rosenfeld approach. The scaling is written as: 

𝜂𝑟𝑒𝑠
𝑟 =

𝜂∗−𝜂0
∗

𝜂𝑟𝑒𝑓
= 𝑓(𝑆𝑟𝑒𝑠

∗ )  (5.7) 

where 𝜂0
∗  is the zero density limit of the viscosity. The approach of Galliéro did not fully solve 

the incorrect scaling issue of the low density-limit, but, it extends the linear regime observed 

for the dense medium in the semi-log scale to lower residual entropies. 

A third option is that proposed by Bell et al. 8–10 who used both the modifications proposed by 

Rosenfeld for the low density limit and that of Galliéro by using a residual viscosity instead of 

total viscosity.  

𝜂𝑟𝑒𝑠
𝑟 =

𝜂∗−𝜂0
∗

𝜂𝑟𝑒𝑓
𝑆𝑟𝑒𝑠

2/3
= 𝑓(𝑆𝑟𝑒𝑠

∗ )  (5.8) 

The Bell’s approach was found to yield better scaling at low density limit compared to that of 

Galliéro, but, with data more dispersed than with the approach of Novak. In the high density 

regime, both Galliéro’s and Bell’s approaches perform better than the Novak approach as shown 

in our previous study 11 for the monomer. 

The last approach, is that proposed by Dehlouz et al. 12, where they proposed to use a reduced 

residual entropy (with respect to the critical entropy “SC
∗ ”) combined with the logarithm of the 

same quantity to alleviate the incorrect scaling at the low density limit. The expression is given 

by the following relation: 

𝜂𝑟 =
𝜂∗

𝜂𝑟𝑒𝑓
= 𝑓 (

𝑆𝑟𝑒𝑠
∗

𝑆𝐶
∗ + 𝑙𝑛 (

𝑆𝑟𝑒𝑠
∗

𝑆𝐶
∗ ))  (5.9) 
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While the first term is preponderant in liquids, the second term in logarithm is dominant in 

gases. This approach allows obtaining a better scaling (less dispersed data) and covers the whole 

space of thermodynamic conditions. 

During the last five years, the entropy scaling framework has been successfully applied to real 

pure fluids as well as their mixtures, including alkanes, iso-alkanes, refrigerants, alcohols, 

amines, esters, ethers as shown, among others, by the works of Lötgering-Lin et al. 13, that of 

Bell et al. 9, 10, 14 and the recent work of Dehlouz et al. 12 

5.2 Towards a corresponding state entropy scaling for the LJC fluid model 

As pointed out previously, the main challenge is to find the best variables that induces the best 

scaling between viscosity and entropy. The chosen variables should imply as low as possible 

scattered data, extend the linear regime to cover a broad range of thermodynamic conditions in 

particular by eliminating the incorrect scaling at low densities and some complex behaviour at 

very high densities (that will be shown latter).  

As a first step, it is interesting to test the existing approaches discussed previously on the LJ 

chains model, using MD data for the viscosities and the SR-SAFTD EoS for the residual 

entropies. Note, that the dilute/zero-density viscosity has been obtained from MD simulations 

and not from the Chapman-Enskog theory. The case of fully flexible LJ chains has been already 

treated by Goel et al. 1 using the original approach of Rosenfeld, and later by Galliéro et al. 2 

using the Galliéro’s approach. The case of the Novak, Bell and Dehlouz approaches have not 

yet been tested, thus, it has been decided to benchmark all of them together in this work. The 

results are reported in Figure 5.1 for the four different approaches. Note that, the values for the 

entropy are given per molecule/unit noted as S*,chain. In the case of the Dehlouz approach, the 

abscissa consists in a ratio of two entropy quantities, thus, both molecule or atomic units are 

equivalent, so for simplicity of the notation we used are that of the atomic unit (S* instead of 

S*,chain).  

The approach of Galliéro show very good scaling over the whole thermodynamic conditions, 

but its incorrect scaling at low densities makes it uses difficult for the prediction of the viscosity 

of gases. On the contrary, the approach of Novak shows excellent scaling at low densities, but 

shows scattered data at intermediate densities which is more pronounced for small molecules. 

The approach of Dehlouz is exhibiting a peculiar behaviour. While at high and low densities, 

all curves tend to be superposed, except for the dimer, at the intermediate densities they are all 

separated. However, when the curves are analysed separately, globally a good scaling is 

observed. The approach of Bell is found to be the best to deal with the fully flexible LJ chains, 

showing good trends over the whole thermodynamic space. 

In a second step, it is interesting to test how these approaches could be applied to the case of 

the semi-rigid LJ chains model. Two distinct values of rigidities are considered, K*=5 and 

K*=10, in addition to the fully flexible case. The results obtained in Figure 5.2 show that none 

of the approaches is fully adequate for the semi-rigid chains. However, more in details, it 

appears that the approaches of Galliéro, Novak and Bell show that, the semi-rigid chains are 

exhibiting similar trends than for the fully flexible case, and are found close each other 
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particularly in the high density region. Still, when approaching the intermediate and low density 

regions, the data are very scattered. In the case of the Dehlouz approach, in addition to the fact 

that the data are very scattered similarly to the previous approaches, the behaviour exhibited for 

the semi-rigid chains is found completely different from that of the fully flexible chains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these results, it appears that there is a need to develop a new scaling to deal with the 

additional rigidity parameter and that the residual entropy is not sufficient enough to capture 

the influence of the rigidity on the viscosity. Since the data are found mostly scattered in the 

diluted systems, this likely come from the choice of the quantity put on the abscissa. This is 

because, regarding ordinate, both total and residual viscosities used in the different approaches 

led to similar results. However, in the case of the abscissa, all the approaches used the total 

residual (or configurational) entropy. This latter is the total entropy of the system from which 

is subtracted out the ideal gas entropy contribution. 

Figure 5.1: Test of different scaling approaches on the fully flexible LJC fluid model.  
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Thus, the residual entropy, as defined previously, still contains contributions from 

intramolecular interactions, such as LJ interactions between segments of the same molecule and 

interaction due to the bending potential. Hence, instead of using the correct residual entropy, 

we used so far only the part of the entropy contribution due to intermolecular interactions. By 

making the assumption that the intramolecular contribution is density-independent, it is 

possible within the SR-SAFTD scheme to calculate such contribution using this relation: 

𝑆𝑖𝑛𝑡𝑟𝑎
∗ = 𝑆∗(𝑇∗, 𝜌∗ = 0, 𝐾∗, 𝑚) =

𝑈∗(𝑇∗,𝜌∗=0,𝐾∗,𝑚)−𝐴∗(𝑇∗,𝜌∗=0,𝐾∗,𝑚)

𝑇∗
  (5.10)  

and the residual intermolecular entropy contribution is then obtained from the following: 

𝑆𝑖𝑛𝑡𝑒𝑟
∗ = 𝑆𝑟𝑒𝑠

∗ − 𝑆𝑖𝑛𝑡𝑟𝑎
∗   (5.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.2: Test of the different approaches on the Semi-Rigid LJC fluid model.  
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Note that, in what follows, 𝑆𝑖𝑛𝑡𝑟𝑎
∗   will be referred to as 𝑆0

∗,𝑐ℎ𝑎𝑖𝑛
 as in the figures. Replacing the 

residual entropy by this quantity “𝑆𝑖𝑛𝑡𝑒𝑟
∗ ” in the four scaling approaches considered in this work 

gives the results shown in Figure 5.3. Very interesting improvement are obtained compared to 

the previous case for the semi-rigid chains. The approaches of Galliéro and Bell, exhibit similar 

trends, where for the same chain length, the curves for all the rigidities are almost stacked on 

one curve, showing a corresponding state like behaviour. However, when the rigidity increases, 

particularly in the case of K*=10, the curves are smoothly separated from each other in the 

Arrhenius region (at the intermediate densities where the curves exhibit a linear dependence 

between the ordinate and the abscissa in a semi-log scale), and more pronounced at very high 

densities leading to a super-Arrhenius (the dependence is larger than exponential) like 

behaviour, especially in the case of the Galliéro’s approach. The notion of Arrhenius and super-

Arrhenius regimes were introduced by Bell 9 and has no direct relationship with the 

conventional definition of the Arrhenius law for viscosity 15, 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3: Testing the different scaling approaches using the new variable 
suggested in this work for the abscissa. 
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Interestingly, in the case of the fully flexible chains, this super-Arrhenius regime is observed 

only at very high density and as the chain length increases. In the case of the semi-rigid chains, 

this super-Arrhenius regime is found to be more pronounced and to appear earlier in terms of 

density and chain length. This departure of the curves of the semi-rigid chains from the fully 

flexible chains is interesting to analyse from the approach of Galliéro, since the trends exhibited 

by the most rigid chains in the high-density region tends to varies in the same way than what is 

observed in the very low density region. According to Bell et al. 17, the change from the 

Arrhenius to the super-Arrhenius regime in the dense states is occurring at half the distance 

between the entropy at the critical and triple points. Such an observation was only done for 

simple molecules, and results obtained in this work highlight that this observation should 

probably be not extrapolated to more complex molecules. This is because, even though not 

quantified, the change in regimes seems to evolve rapidly for the same chain length with a small 

increase of the rigidity. 

The reason of the divergence in the dilute case has already been discussed and can be qualified 

as a “numerical divergence” (due to the density in the denominator). However, the divergence 

observed at high densities is “physical”. In fact, as already pointed out by Galindo et al. 18, rigid 

chains exhibit a particular behaviour where the distance between the triple point and the critical 

point is observed to decrease drastically with increasing the rigidity of the molecule. An effect 

which is more pronounced when the chain length increases. It is, in fact, the triple point 

temperature which increases dramatically with the rigidity contrary to the critical point which 

is only very slightly affected. Moreover, in this work of Galindo et al. 18, it was shown that the 

increase in the triple point temperature affects also the liquid-solid transition location, which is 

observed to be shifted to the liquid side even until destabilization of the liquid-vapour phase 

diagram at high rigidities for chains of more than six segments. Thus, from the results of 

Galindo et al. one would expect that it is because of the displacement of the liquid-solid 

transition region with increasing the rigidity that there is this dramatic increase in the viscosity 

for the same temperature and density compared to the fully flexible case. Thus, the rate at which 

the viscosity increases is more important than that of the exponential of the residual entropy. 

However, these results, based on the entropy deduced from the SR-SAFTD EoS, will have to 

be confirmed by comparing them to those obtained using thermodynamic integration for the 

entropy. Checking the performance of the SR-SAFTD in capturing this transition effect with 

the rigidity would also be interesting, since the soft-SAFT tested in the work of Galindo et al. 

was found to be unable to capture all changes in the behaviour of the fluid observed from the 

molecular simulations.  

Similar conclusion can be drawn from the approach of Novak, but, regarding the approach of 

Dehlouz, an interesting improvement is obtained. The modification brought by this approach, 

induced an interesting behaviour for all curves. The scaling showed less scattered data 

compared to all other approaches, particularly in the super-Arrhenius regime where the other 

approaches leads to less regular trends when increasing the rigidity. The transition from the 

Arrhenius regime to the super-Arrhenius regime is also well highlighted by this approach, 

where a clear distinction between the two regimes is observed. Indeed, it seems possible to 

identify the location of the transition which would correspond to the intersection of the two 

slopes fitted on each regime. In order to bring more light on this point, we have considered the 
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case of the LJ chains constituted of three tangentially bonded segments. We have considered 

variable rigidities from the fully flexible case K*=0 to the case of K*=50. Results are shown in 

Figure 5.4 (a) where have been plotted different entropy scaling for seven distinct rigidities. 

The transition is then deduced from the intersection of the slopes as shown for the case of 

K*=50. Doing so for all cases, we have obtained the abscissa intersection named “Xtransition”. 

Values of this Xtransition with respect to the rigidity are reported in Figure 5.4 (b). The data are 

showing a clear trend, where there is a rapid variation of Xtransition for small rigidities reaching 

a plateau at high rigidities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another interesting feature exhibited by this approach is that the transition from the gas region 

to the liquid region is also well highlighted as shown in Figure 5.5. Using the tangent method 

proposed, it is possible to determine the abscissa corresponding to this transition. However, 

contrary to the previous case considered, here the transition is more pronounced for the weakly 

rigid chains compared to the highly rigid chains. The case of highly rigid chains could probably 

be obtained by extrapolating the model fitted on the values obtained at low rigidities.  

There remains an interesting point to discuss. The chains with the same rigidities are almost 

parallel to each other, which would be extremely useful for the development of a corresponding 

state like scaling. One could then rescale the ordinates by their respective segments number. 

Moreover, as for the Dehlouz approach, it has been decided to rescale the abscissa of the other 

approaches by the value of the entropy at the critical point. Doing so, as shown in Figure 5.6, 

leads to many interesting conclusions.  

The new scaling proposed using the Novak approach leads to scattered data, and thus, the 

scaling is unusable. Another point is that, in the case of the Dehlouz approach, improvement is 

Figure 5.4: Arrhenius and super-Arrhenius transition analysis using the modified Dehlouz 
approach. (a) Entropy scaling for LJC3 at variable rigidities (the dashed lines represent 

the transition limits), (b) represents the evolution of the transition abscissa with respect 
to the rigidity. 

   (a)                   (b) 
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remarkable compared to the previous case. Here, curves are clearly separated into a set of curves 

having the same rigidity similarly to what was obtained previously with the three other 

approaches. Regarding the approaches of Galliéro and Bell, the separation between curves with 

respect to the rigidities is still valid with the new variables introduced. Still, the same problem 

regarding the departure of the curves for the semi-rigid chains is observed in the Arrhenius 

regime and particularly in the super-Arrhenius regime. Further improvement is needed if one 

would obtain a corresponding state over each rigidity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Contrary to the semi-rigid chains, in the case of the fully flexible chains the curves are 

exhibiting an extremely interesting behaviour shared by the approaches of Galliéro, Dehlouz 

and Bell. The introduction of the new variables leads to a master curve, except for the monomer. 

The separation of the monomer from the rest of the chains can be attributed to the lack of 

internal degrees of freedom. In fact, while the monomer, is characterized by only translational 

degrees of freedom, the other molecules includes in addition other internal degrees of freedom 

such as those related to the rotation of the molecule and that associated to the bonding. Thus, 

the scaling for the fully flexible chains, could probably be expressed as a contribution of two 

parts, a translational contribution given by the monomer, and a residual contribution due to the 

additional internal degrees of freedom, such as:  

χ𝑡𝑜𝑡𝑎𝑙 =
𝜂𝑟𝑒𝑠

𝑟𝑒𝑑

𝑚
= (𝑚 − 1)χ𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑐ℎ𝑎𝑖𝑛𝑠 + 𝑚χ𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑚𝑜𝑛𝑜𝑚𝑒𝑟   (5.12) 

 

 

 

 

Figure 5.5: Entropy scaling of fully flexible LJC3 showing the possibility of deducing the 
gas-liquid transition similarly to the transition Arrhenius-Super-Arrhenius. 
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To better illustrate this particular case, and to emphasize the needs of having an equation of 

state capable of estimating accurately residual entropy, results for the fully flexible chains are 

plotted alone in Figure 5.7 for the approaches of Galliéro and Dehlouz,. In addition, we have 

tested whether it is possible to obtain the same result using the soft-SAFT EoS. This latter case 

is shown in Figure 5.8 for the two approaches of Galliéro and Dehlouz.  

 

 

 

Figure 5.6: Testing different new approaches by dividing the viscosity in the ordinate by 
the segment number of the chains and using of the reduced quantity in the abscissa for 

the Galliéro, Novak and Bell approaches 
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Results show clearly that no corresponding state is obtained when using a soft-SAFT EoS. Note 

that, in the case of the soft-SAFT, the intramolecular contribution is not taken into account in 

the model, and thus, the intramolecular entropy contribution is Sintra
∗,chain = 0. This result 

highlights again the benefit of having a consistent equation of state. This weakness is not 

specific to the soft-SAFT, but, is present for all SAFT models based on a monomer 

representation (Original-SAFT, CK-SAFT, SAFT-VR, PC-SAFT, SAFT-VR-Mie…). 

 

 

 

 

 

 

 

 

 

 

 

 

While a corresponding state can be obtained for simple flexible LJC molecules, it is expected 

that the case of the semi-rigid chains could also be obtained with additional efforts.  

Figure 5.7:Corresponding state entropy scaling approach for the fully flexible LJ chains. 

Figure 5.8: Performance of the soft-SAFT EoS in predicting a corresponding state 
entropy scaling for the fully flexible LJC fluid model. 
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5.3 Application of the entropy scaling for the real fluids 

We have not yet developed a generic approach treating both fully flexible and semi-rigid chains 

across the entire thermodynamic space. However, to illustrate the goal of this work, we have 

developed an entropy scaling for the fully flexible and semi-rigid chains in the liquid phase. 

Please note that the correlation is not valid outside the fitting range. 

We have chosen the classical approach of Galliéro for which the Arrhenius regime is simple to 

fit with an exponential function. However, the approach is modified by introducing a new 

variable on the abscissa (𝑆𝑟𝑒𝑠
∗,𝑐ℎ𝑎𝑖𝑛 − 𝑆𝑖𝑛𝑡𝑟𝑎

∗,𝑐ℎ𝑎𝑖𝑛
). In order to be applied to real fluids, a correlation 

for the zero-density viscosity is required. The case of the fully flexible chains has already been 

published by Galliéro et al. 19, and revisited by Delage-Santacreu et al. 20 later providing a more 

accurate correlations. In the latter work, a correlation for the fully rigid chains is also provided. 

However, a correlation for the case of chains with variable rigidities is not yet available. Thus, 

we have developed a correlation to treat this case by generalizing the correlation of Delage-

Santacreu et al. For this, the translational viscosity for semi-rigid chains of lengths m=1 to 8, 

have been obtained from molecular dynamic simulations at a density of ρ*=0.1 and 

temperatures T*=2.5 to 6. The new correlation writes: 

{

𝜂0,𝐿𝐽𝐶
∗ =

𝜂0,𝐿𝐽𝐶2
∗

(
𝑚

2
)

𝛼(𝐾∗)                                  𝑚 ≥ 2

𝜂0,𝐿𝐽𝐶
∗ = (−

1

3
𝜂0

∗ +
4

3
)                         𝑚 ≤ 2

  (5.13) 

where 𝜂0,𝐿𝐽𝐶2
∗  is the kinetic viscosity of the dimer, 𝜂0

∗  is the kinetic viscosity of the monomer  

and 𝛼 is a fitting parameter which is function of the rigidity given by: 

𝛼(𝐾∗) =
𝑎𝑏+𝑐𝐾∗𝑑

𝑏+𝐾∗𝑑   (5.14) 

a, b, c and d are fitting parameters given in Table 5.1. 

a b c d 

0.5691 7.9860 0.8467 0.8196 

Table 5.1: Parameters of the α(K*) function 

The dimer zero-density viscosity is given by: 

𝜂0,𝐿𝐽𝐶2
∗ =

2

3
𝜂0

∗ =
5

24𝛺(2,2)
√

𝑇∗

𝜋
 (5.15) 

where 𝜂0
∗  is the monomer zero-density viscosity.  

The fitted parameter 𝛼(𝐾) is given in Figure 5.9 (b), and the prediction of the viscosity at the 

zero-density limit and at T*=4 for the semi-rigid chains are plotted in Figure 5.1 (a). Since, the 

SR-SAFTD allows using non-integer segment number, the case where this number is between 

m=1 and m=2 is obtained by a simple linear interpolation. 
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Regarding the correlation developed for the entropy scaling, it is given by the following 

expression: 

𝜂𝐿𝐽𝐶
∗ (m, 𝐾∗) = 𝐴0𝐸𝑥𝑝(𝐵0(𝑆𝑟𝑒𝑠 − 𝑆0))𝐹 + 𝐴1𝐸𝑥𝑝(𝐵1(𝑆𝑟𝑒𝑠 − 𝑆0))(1 − 𝐹) (5.16) 

where F is a switching function dependent of 𝐾∗, given by: 

𝐹(𝐾∗) = 2/(1 + 𝐸𝑥𝑝(10𝐾∗))  (5.17) 

and 𝐴0, 𝐵0, 𝐴1, 𝐵1 are function of m and K*, given by the following equations: 

𝐴0(m) = 𝑐0𝑚𝑐1  (5.18) 

𝐵0(m) = 𝑑0𝑚𝑑1  (5.19) 

𝐴1(m, 𝐾∗) = 𝑒0(𝐾)𝑚𝑒1(𝐾∗)  (5.20) 

𝐵1(m, 𝐾∗) = 𝑓0(𝐾)𝑚𝑓1(𝐾∗)  (5.21) 

where  

𝑒0(𝐾∗) = 𝑔0/(1 + 𝑔1𝐸𝑥𝑝(−𝑔2𝐾∗)   (5.22) 

𝑒1(𝐾∗) = 1/(ℎ0 + ℎ1𝐾∗ + ℎ2𝐾∗2)   (5.23) 

𝑓0(𝐾∗) = 𝑙0/(1 + 𝑙1𝐸𝑥𝑝(−𝑙2𝐾∗)   (5.24) 

𝑓1(𝐾∗) = 𝑛0(𝐾∗ − 𝑛1)𝑛2    (5.25) 

 

  

Figure 5.9: (a) prediction of the viscosity of the semi-rigid LJC at zero-density limit and 
T*=4, (b) The fitting parameter Alpha function of rigidity. 

   (a)                   (b) 
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𝒄𝟎 𝒄𝟏 𝒈𝟎 𝒈𝟏 𝒈𝟐 

0.1242 0.6639 0.1249 -0.04269 0.2476 

𝒅𝟎 𝒅𝟏 𝒉𝟎 𝒉𝟏 𝒉𝟐 

-0.9899 -0.7616 1.7107 -0.01337 0.0005423 

  𝒍𝟎 𝒍𝟏 𝒍𝟐 

  -0.8072 -0.2784 0.1774 

  𝒏𝟎 𝒏𝟏 𝒏𝟐 

  -1.2507 -3.7941 -0.3029 

Table 5.2: Numerical fitting parameters used in the correlation for the entropy scaling. 

We reiterate it again, this correlation is valid in the Arrhenius regime only, where the reduced 

residual viscosity scale linearly with the exponential of the residual entropy for which we have 

subtracted out the intramolecular entropy contribution.  

We have considered chains from the monomer to the hexamer, and rigidities from K*=0 to 

K*=20. Results for this correlation are given in Figure 5.10 for two cases K*=0 and K*=5, in 

which this latter case was not included in the fit. Clearly, better predictions are obtained for the 

fully flexible chains, for which the range of validity of the correlation is extended compared to 

the semi-rigid chains. This is due to the fact that the super-Arrhenius regime is only slightly 

noticeable for the fully flexible chains, while it is more pronounced for the semi-rigid chains, 

limiting then the range of applicability of the correlation.  The gas region is also not captured 

by the correlation as the scaling is incorrect at low densities.  

  

 

 

 

 

 

 

 

 

 

 

 

The entropy scaling correlation developed with the SR-SAFTD EoS has finally been tested on 

real fluids as shown in Figure 5.11. In this figure we have considered some n-alkanes from the 

methane to the n-octane. A systematic comparison between the fully flexible model and the 

semi-rigid model is made for all the molecules with segment number m>2 and for both 

approaches, entropy scaling and direct molecular simulations.  

Figure 5.10: Test of the correlation (solide lines) for the entropy scaling against the data 
used in the fitting (symbols). (a) fully flexible chains K=0, (b) semi-rigid chains K=5. 

   (a)                   (b) 
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Results obtained with the entropy scaling for the viscosity are in agreement with those of 

molecular simulations for the same molecular fluid. This highlights the power of the entropy 

scaling approach, as it provides data with the same accuracy as those obtained from molecular 

simulations, but in only few seconds while molecular simulations may take hours or days.  

The comparison between the results obtained with the scaling and the experiments highlights 

that the integration of the rigidity parameter in the SR-SAFT model is crucial to obtain accurate 

viscosity prediction. Very noticeable improvements are obtained with the semi-rigid model 

compared to the fully flexible model. However, small deviations are noticed for the semi-rigid 

model at low temperatures, which is probably due to the imprecision of the correlation, as at 

those conditions the density is high and may corresponds to the super-Arrhenius regime. It is 

worthwhile to mention that, the same parameters used for the prediction of the thermodynamic 

properties are used in the entropy scaling for the viscosity prediction. This also highlights that 

the SR-SAFTD developed in this work is able to provide simultaneously accurate 

thermodynamic and transport properties. 

Although the work is not yet finalized, the preliminary results showed that the approach is very 

promising. In future works, we will try to extend this correlation to large chain lengths and to 

consider a larger ranger of thermodynamic conditions. Regarding this last point, it appeared 

that the residual entropy did not allow for completely integrating the effects of internal degrees 

of freedom on viscosity, especially at high densities (super-Arrhenius behaviour), when using 

the available entropy scaling approaches. However, results obtained with some modifications 

Figure 5.11: Saturated viscosity prediction of some n-alkanes with different 
approaches, direct molecular simulations and entropy scaling using the SR-SAFTD. 

The FF-SAFTD is the SR-SAFTD with K*=0. Comparison is made between the two 
approaches and to the correlated experimental data taken from the NIST database. 
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brought in this work on these approaches, especially on that of Dehlouz, showed that a 

corresponding state entropy scaling could probably be obtained for the semi-rigid chains, 

similarly to what was obtained for the fully flexible chains, by considering further 

modifications. 

5.4 Summary 

In this chapter, we have revisited the entropy scaling approaches proposed in the literature. We 

first made a benchmark between all the approaches for the fully flexible fluid model. We tested 

the approaches on the semi-rigid fluid model, and results showed that none of the approaches 

were presenting a good scaling, indicating that the residual entropy is not sufficient to capture 

the influence of the rigidity of the viscosity. A modification of the variable in the abscissa was 

then proposed, by subtracting out the intramolecular entropy that contributes to the total residual 

entropy. Doing so, results showed that a better scaling can be achieved, extending then the 

entropy scaling approach to deal with semi-rigid chains. With this new variable, we showed 

that, except for the Dehlouz approach, the semi rigid chains and the fully flexible chains curves 

are superposed over a large range of thermodynamic conditions for the same chain length. 

However, in the super-Arrhenius regime, the curves are separated, and tends towards high 

viscosities as the rigidity increases. 

We also showed that, even though the approach of Dehlouz could not be exploited directly, 

information on the transitions between the different regimes can be obtained. Such information 

may be of great usefulness for the construction of a corresponding state entropy scaling for the 

semi rigid chains. We showed that such a scaling could be written in terms of the internal 

degrees of freedom. In other words, this indicates that the entropy scaling is very sensitive to 

the internal degrees of freedom of the molecule, highlighting then the complexity exhibited by 

the semi-rigid chains. 

 Last, even though the full scaling was not yet obtained, in order to provide some insights on 

the goal of the approach developed in this work, we proposed an entropy scaling for the semi-

rigid fluid model limited to the liquid (Arrhenius like) region. When applied in the fitting range, 

we showed that, this entropy scaling based on the SR-SAFTD is very promising as it was 

capable to yield accurately the liquid viscosity of some n-alkanes up to n-octane. It is 

worthwhile to underline that, the same molecular parameters used for the prediction of the 

thermodynamic properties are used for the prediction in the entropy scaling approach to predict 

the viscosity. It highlights the coherence of the approach proposed in this work. 
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6.1 Conclusion 

The objective of this work was to present a new coarse grained molecular model capable to 

simultaneously predict accurate equilibrium and transport properties. The objective was also 

to develop a consistent and coherent global approach that links molecular simulation and 

equation of state, specifically for new coarse grained molecular model.  

In the third chapter, we developed a new force field referred to as the Semi-Rigid Lennard-

Jones Chains Coarse Grained (SR-LJCCG) molecular model, which is simply based on a 

Lennard Jones chain including a rigidity parameter of the bending type. This force field was 

parametrized using a top-down approach, utilizing a corresponding state strategy, which 

incorporates viscosity as a target property to constrain the molecular parameters (segment 

number and stiffness constant of the bending potential). This method only requires four 

accessible macroscopic properties and is easy to use. The optimization of the force field 

typically converges to the global minimum. This strategy presents many advantages compared 

to the classical top-down approach where many experimental data are needed, in addition to the 

difficulty to converge to the global minimum leading to sometimes inconsistent parameters. 

The SR-LCCG molecular model was tested against experimental data over a wide range of 

thermodynamic conditions and chemical families. Many properties have been considered 

including those used in the fit such as viscosity and phase equilibria, but, also, other properties 

not included in the optimization such as derivative properties and self-diffusion coefficient. The 

model was found to provide excellent predictions. It was also compared to the fully-flexible 

LJCCG model, with the SR-LJCCG showing comparable results on thermodynamic properties 

and improved results on the liquid viscosity and the structural properties. The SR-LJCCG was 

also benchmarked against other force fields proposed in the literature, including high resolution 

models (L-OPLS-AA) and united atoms (TraPPE-UA force field), and found to provide the best 

prediction on nC12 and nC16 viscosities at saturation conditions.  

To avoid the need for extensive molecular simulations, the idea was then to develop an equation 

of state for the semi-rigid LJCCG model. However, for the time being, a SAFT like EoS 

including an internal rigidity term of the bending type is not available. Thus, in the fourth 

chapter, we first revisited the thermodynamic perturbation theory and pointing out some 

strengths and weaknesses of the theory. We deeply discussed some approximations made in the 

theory and illustrating how these approximations made in the outset of the theory affect the 

predictions using the SAFT models. We found that the TPT1-Dimer was one of the available 

SAFT EoS that gives the closest predictions to the exact molecular simulations data of the fluid 

model. In addition, we determined that TPT1-D offers the ability to incorporate a bending or 

torsional potentials. Therefore, in a second step, a modification in the TPT1-D theory was 

proposed to include a bending potential. More precisely, thanks to molecular simulations, we 

proposed a scheme to calculate the radial distribution function that accounts for internal degrees 

of freedom, such as the bending potential. This new RDF in TPT1-D results in a more 

generalized TPT1-D referred to as SR-SAFTD equation of state. The SR-SAFTD has then been 

in a first step validated on molecular simulations. We showed that accurate predictions of the 

molecular simulations data were obtained over a wide range of thermodynamic conditions for 

all the properties considered and for chain lengths up to the 16-mer chain. 
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The new equation of state was then applied to real fluids. To do so, the molecular parameters 

optimized for SR-LJCCG force field were directly used, reinforcing the coherence between the 

two approaches. It is worth mentioning that, such a strategy was a novel aspect of this work, as 

it is based on the properties of the model fluid evaluated by molecular simulations, and it is for 

the first time that a transport property is incorporated in the parametrization of a SAFT model. 

The SR-SAFTD has then been tested on n-alkanes, iso-alkanes and some polar components 

over a wide range of thermodynamic conditions (saturation conditions, dense liquid and 

supercritical conditions). We considered various properties such as phase equilibria, enthalpy, 

single phase density and many derivatives properties. In all cases, the SR-SAFTD was found to 

accurately reproduce the data of the SR-LJCCG model and was also in very good agreement 

with experimental data. Furthermore, we demonstrated that the parameters used in the SR-

SAFTD are transferable within the same molecular family. 

The success of the SR-SAFTD model allows now to avoid performing extensive molecular 

simulations of the SR-LJCCG force field model to obtain thermodynamic properties of real 

fluids. However, the case of transport properties still requires performing molecular simulations 

as the such properties are not accessible via an equation of state. Thus, it was proposed in the 

fifth chapter to extend the predictive capability of the SR-SAFTD model to deal with transport 

properties thanks to the entropy scaling approach. In the first part of this chapter, we revisited 

some scaling approaches proposed in the literature and found that none of them was capable to 

yield a good scaling between the viscosity and the entropy of the semi-rigid chains. We found 

that, the semi-rigid model exhibit more complex behaviour, where the super-Arrhenius regime 

is strongly pronounced as the rigidity increases. In the case of the fully-flexible LJC fluid 

model, we proposed a robust corresponding state entropy scaling taking into account the 

internal degrees of freedom. Such a scaling is a demonstration of the strong sensitivity of the 

entropy scaling approach to the internal degrees of freedom of the molecule, highlighting then 

the complexity exhibited by the semi-rigid chains. Extending this corresponding state to the 

semi-rigid chains was not achieved in this work and would require more efforts.  

 Last, even though the full scaling was not yet obtained, in order to provide some insights on 

the goal of the approach developed in this work, we proposed an entropy scaling for the semi-

rigid fluid model limited to the liquid (Arrhenius like) region. When applied in the fitting range, 

we showed that, this entropy scaling based on the SR-SAFTD is very promising as it was 

capable to yield accurately the liquid viscosity of some n-alkanes up to n-octane. Furthermore, 

and this is one of the most interesting features highlighted in this work, the same molecular 

parameters used for the prediction of the thermodynamic properties, were used in the entropy 

scaling without any additional re-parameterization, to predict the viscosity. This is highlighting 

once again the consistence and the coherence of the global approach proposed in this work.  
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6.2 Perspectives 

Finally, this work sheds light on some perspectives which are provided below: 

 It is important to mention that that the proposed coarse grained model will likely not perform 

well for strongly associating molecules such as water or alcohols. This is due to the fact that 

these molecules present highly directional hydrogen bond interactions. An example for water 

and methanol molecules are illustrated in the appendix 7.B.1. Such a limitation could 

probably be overcome by including association sites in the model, similar to what has been 

proposed in the SAFT EoS approach. Another option would be to include surface tension in 

the parameterization, as this property is, first, very sensitive to hydrogen bonds effect, and 

second, is compatible with the CS strategy proposed in this work, as shown in 1.  

 The surface tension is one of the most important property that would be interesting to be 

evaluated with the SR-LJCCG model to confirm the representability of the molecular 

parameters. Further simulations are then needed for this property, however, a quick check 

can be made using the corresponding state for the surface tension developed by Galliéro 2. 

Such a test is reported in the appendix 7.B.1 for some n-alkanes and polar components, and 

results showed very promising predictions can be achieved with the proposed force field.  

 The application of the SR-LJCCG force field and the SR-SAFTD have not been extended to 

mixtures. Thus, it would be interesting to perform calculations with both approaches on 

mixtures to completely validate their capabilities. It is interesting to note that the use of a 

stiffness as a fourth parameter does not impose any additional combining rules when dealing 

with mixtures or systems involving different force fields. However, in this latter case, one 

should keep in mind that additional re-parametrization would be needed if this force field is 

combined with polarizable force fields. 

 At very low temperature or at high pressures, the SR-LJCCG force field losses some of its 

performance (but, in relative, as it is still being better than many other force fields) when 

considering high molecular weights compounds. We expect that, such a weakness is related 

to the lack of other internal degrees of freedom of the molecule in the model, such as the 

torsional angle potential. Additional tests by considering a variable rigidity of the torsional 

potential would then be quite interesting to check how this could improve the predictions. In 

this regard, we expect that, similarly to what was done for the AUA(4m) 3, a re-

parameterization of the torsional and/or the bending potentials of the TraPEE-UA force field 

to reproduce the viscosity, coupled to the re-parameterization proposed by Janecek and 

Paricaud 4 to improve the saturation pressure, could address its issue on transport properties.  

 The strategy of the parametrization together with the pseudoization technique (coarse 

graining) can be combined to study complex mixtures such as petroleum fluids, where the 

petroleum fractions can be approximated by a pseudo-species. The CS strategy of the 

parametrization is flexible enough to use other properties than those used in this work. This 

is because in some cases, for instance petroleum fractions, the accessible thermophysical 

properties measured may be different from those used in this work (Tc, , µ, ). 
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  The main limitation of the proposed SR-SAFTD resides in the computational aspect when 

compared to other SAFT EoS. This is due to the large number of parameters used to fit the 

radial distribution function. Such a number of parameters is justified but the high non-

linearity exhibited by the RDF when varying the rigidity parameter. This non-linearity is a 

consequence of the non-regular evolution with rigidity of the properties of the semi-rigid 

LJCCG fluid, such as what was observed on the critical properties and the saturated liquid 

density. However, when compared to molecular simulations the computational aspect is 

totally negligible and, by taking into account our recommendation in pre-calculating the 

matrix of the parameters before the main calculations allows to further reduce the 

computational time to be compatible with engineering requirements in a simulation software. 

A way to handle this issue would probably to limiting the range of rigidity, or to split this 

range. This last recommendation is because we found that the coefficients 𝐶𝑖𝑗 were 

monotonously decreasing in the rigidity range [0~5] and then a monotonous increase from 

[5 – ∞[. An illustration of the behaviour of these coefficients with rigidity is given in the 

appendix 7.A.2. 

 An additional step towards the computational efficiency of the proposed SR-SAFTD, would 

consist in using an equation of state for the dimer reference fluid instead of using the TPT1-

M of Johnson et al.5. In fact, the use of this latter requires 32 parameters for the monomer 

terms (modified-BWR EoS) and 25 other parameters for the gM(T*, *, σ). Thus, for 

example, using an EoS of a Modified-BWR fitted on dimer properties, may avoid the need 

of gM. Moreover, it is expected that a global improvement could also be achieved, 

particularly in the critical region. This is because the TPT1-M strongly overestimates the 

critical temperature, and thus, when used in TPT1-D, it has a high impact on the 

determination of the critical temperature.  

 In its current version, the SR-SAFTD EoS does not ensure that it is free from some of the 

pitfalls observed in many other SAFT models due to their polynomial functions. Only a 

rigorous check following the recommendation analysis for the SAFT EoS of Polishuk et al. 
6 may confirm it. 

  As shown in the last chapter of this thesis, the SR-SAFTD coupled with the entropy scaling 

approach showed that very promising results could be achieved with this approach. 

However, some difficulties have been encountered in developing the scaling to cover a large 

thermodynamic conditions. In this regard, a new and simple scaling is needed to write a 

correlation which is function of the number of segments and the rigidity parameters. As done 

for the fully flexible model, the dimensionality of the problem may be reduced to only one 

parameter i.e. m, if a similar corresponding state entropy scaling approach could be 

developed. 

 As soon as this entropy scaling for the semi-rigid chains will be obtained, it will be 

interesting to applied it also on mixtures. In our previous work of Quoc Viet et al. 7, we 

investigated the mass effect on viscosity of mixtures in the entropy scaling framework with 

application to Lennard-Jones mixtures. The study revealed that the choice of the mixing rule 

for the mass may have high impact. The case of LJ chains is not yet considered, thus, it will 

be interesting to extend such work with the SR-LJCCG model. 

https://www.researchgate.net/scientific-contributions/Thieu-Quang-Quoc-Viet-2175618106
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 There exist other approaches that might be used with the proposed model to predict transport 

properties. Among them, the thermodynamic scaling or sometimes referred to as density 

scaling. In our recent work 8, we showed that real fluids viscosity, such as n-alkanes, are 

exhibiting similar behaviour as the semi-rigid LJCCG model. Such an approach is then very 

promising. However, similarly to the entropy scaling, a limitation for the time being to build 

such an approach is related to the high non-linearity exhibited by the effective repulsive 

stiffness parameters with the rigidity and chain length.  

 Despite the success of the proposed strategy for the parametrization of the SR-SAFTD, two 

other schemes based on the CS strategy would be interesting to investigate. The first, consists 

in a specific parametrization on the critical properties using the SR-SAFTD model, similarly 

to the work of Pàmies and Vega 9 using the soft-SAFT, where the idea is to develop a scaling 

parameters specially dedicated for the prediction of these properties. The idea is motivated 

by the fact that, some differences are observed between the soft-SAFTD and the SR-SAFTD, 

which then would lead to different predictions. Moreover, a theoretical model to predict such 

properties would be very suitable, as they are difficult to be measured experimentally, 

particularly for large chain molecules. such properties are used as input parameters in many 

models such as in cubic EoS to build the PVT tables that model petroleum fractions. A 

second strategy would be, instead of using the current strategy proposed, where the rigidity 

parameter K* is constrained by the viscosity η, to use the ratio between the critical 

temperature Tc and that of the triple point Tt. This is also motivated by the fact that, it was 

already demonstrated from the work of Galindo et al. 10 that the rigidity largely affects the 

triple point location. The ratio Tc/Tt is so probably a good metric to determine K*. Doing so, 

may lead to a simpler strategy in terms of experimental data to use, as large experimental 

database for the Tt is available for many fluids and also many correlations to estimate the Tt 

are proposed, compared to the viscosity.  In addition, a probably better transferability may 

be achieved at very low temperatures. However, only a real test may confirm or infirm our 

expectations, particularly whether the viscosity will still be well represented, reason for 

which we recommend this test. 

 Last, this strategy proposed in this work for the incorporation of the bending potential may 

be extended to other potentials related to the internal degrees of freedom, such as torsional 

potential. Moreover, this strategy is not specific to LJ-based EoS, but, can be transposed to 

other forms of intermolecular potentials, thus, used with any SAFT type model.  
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7.A.1 Experimental data used for the parameterization. 

7.A.1.1 Experimental data used in the optimization of the parameters of the FF-LJCCG, 

SR-LJCCG and SR-SAFTD models. 

a.  Normal alkanes 

Molecule Tc [K] liq, sat Tr=0.7 w red Source 

n-C36 891 614.049 1.288 6.447 DIPPR 

n-C30 855.1 618.447 1.127 5.819 DIPPR 

n-C24 809.3 620.445 0.943 4.991 DIPPR 

n-C16 722 625.060 0.708 3.931 DIPPR 

n-C12 658.1 619.770 0.574 3.378 NIST 

n-C10 617.7 617.350 0.488 3.164 NIST 

n-C8 569.32 612.450 0.395 2.868 NIST 

n-C6 507.82 599.250 0.299 2.541 NIST 

n-C4 425.13 573.480 0.201 2.438 NIST 

C2 305.32 505.250 0.100 2.080 NIST 

C1 190.56 388.380 0.011 1.823 NIST 

Table 7.1: Experimental data of the normal alkanes used for the optimization of the FF-
LJCCG, SR-LJCCG and SR-SAFTD models. 

b.  Iso-alkanes 

Molecule Tc [K] liq, sat Tr=0.7 w red Source 

i-C4 407.81 566.17 0.184 2.729 NIST 

i-C5 460.35 589.6 0.227 2.594 NIST 

i-C6 497.7 599.95 0.280 2.624 NIST 

i-C8 544 615.13 0.303 3.117 NIST 

i-C16 693 650.203 0.548 4.412 NIST 

Table 7.2: Experimental data of the iso- alkanes used for the optimization of the FF-LJCCG, 
SR-LJCCG and SR-SAFTD models. 

c.  Some polar components 

Molecule Tc [K] liq, sat Tr=0.7 w red Source 

CO2 304.13 1186.18 0.224 2.832 NIST 

Toluene 591.75 746.86 0.266 2.367 NIST 

H2S 373.1 858.25 0.1005 1.979 NIST 

RE245cb2 406.81 1305.6 0.354 3.384 NIST 

R1336mzz(Z) 444.5 1330.2 0.386 3.179 NIST 

Table 7.3: Experimental data of the some polar components  used for the optimization of the 
FF-LJCCG, SR-LJCCG and SR-SAFTD models. 
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d.  Associative molecules 

Molecule Tc [K] liq, sat Tr=0.7 w red Source 

Methanol 512.6 726.62 0.5625 2.7829664 NIST 

Water 647.1 887.19 0.3443 1.14873826 NIST 

Table 7.4: Experimental data of methanol and water molecules  used for the optimization of 
the FF-LJCCG, SR-LJCCG and SR-SAFTD models. 

7.A.2 Fitting parameters: fitting constants and optimized molecular 

parameters 

7.A.2.1 Correlations used in the parametrization of the SR-LJCCG and the SR-SAFTD 

models. 

a. Acentric factor 

𝑎𝑤 = 𝑎𝑤1𝐴𝑠𝑖𝑛ℎ((𝑎𝑤2  +  𝐾)(𝐾2 + 𝑎𝑤3)) 

𝑏𝑤 = (𝑏𝑤1 + 𝐴𝑏𝑠(𝑏𝑤2 + 𝑏𝑤3𝐴𝑏𝑠(𝑏𝑤4 + 𝐾)))
𝑏𝑤5

− (𝑏𝑤6 + 𝑏𝑤7𝐾) 

𝑐𝑤 = 𝑐𝑤1 + 𝑐𝑤2𝐴𝑠𝑖𝑛ℎ (𝑐𝑤3 + 𝐴𝑏𝑠(𝑐𝑤4(𝑐𝑤5 + 𝐾))) 

𝑤(𝑚, 𝐾) = (0.1803𝑚 −  0.214)𝑓1  + (𝑎𝑤  +  𝑏𝑤𝐿𝑛(𝑚) + 𝑐𝑤(𝐿𝑛(𝑚))
2

) 𝑓2 

𝑓1 = 1/ (1 +  𝐸𝑥𝑝(5(𝑚 − 2))) 

𝑓2 = 1/ (1 +  𝐸𝑥𝑝(−5(𝑚 − 2))) 

𝒂𝒘𝒊 𝒃𝒘𝒊 𝒄𝒘𝒊 
0.01051 0.09735 0.16734 

-1.65794 -0.60567 0.01948 

-2.70019 0.56255 -3.38914 

 -0.41008 -1.75709 

 -0.06502 -0.43947 

 0.96498  
 -0.00017  

Table 7.5: Fitting parameters of the acentric factor. 

b.  Critical temperature 

𝑎𝑇𝑐 = 𝑎𝑡𝑎𝑛(𝑎𝑏𝑠(𝑎𝑇𝑐1 + 𝐾) + 𝑎𝑇𝑐2)/(𝑎𝑇𝑐3 + 𝑎𝑇𝑐4𝐾) 

𝑏𝑇𝑐 = 𝑏𝑇𝑐1/(𝑏𝑇𝑐2𝐾 + 𝑏𝑇𝑐3 + 𝑏𝑇𝑐4 ∗ 𝑎𝑏𝑠(𝐾 + 𝑏𝑇𝑐5)) + 𝑏𝑇𝑐6 

𝑇𝐶(𝑚, 𝐾) =
1

𝑎𝑇𝑐 (
1

𝑚0.5 +
1

2𝑚) + 𝑏𝑇𝑐
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𝒂𝑻𝒄𝒊 𝒃𝑻𝒄𝒊 
-2.75057 0.02474 
13.61730 0.01125 
4.15653 1.13867 
-0.00018 0.09957 

 -2.95074 
 0.20299 

Table 7.6: Fitting parameters for the critical temperature. 
c.  Saturated liquid density 

𝑎𝜌 = 𝑎𝜌1 + 𝑎𝜌2𝑐𝑜𝑠(𝑎𝜌3 − 𝐾0.5) + 𝑎𝜌4 (𝐾 + 𝑡𝑎𝑛 (𝐾(𝑎𝜌5𝐾 + 𝑎𝜌6))) 

𝑏𝜌 = 𝑏𝜌1𝐶𝑜𝑠 ((𝑏𝜌2 (𝑏𝜌3 + 𝐾 + 𝑒𝑟𝑓(𝐾)))
0.5

) (𝑏𝜌4 + 𝐾) + 𝑏𝜌5 

𝜌𝑇𝑟=0.7
𝐿𝑖𝑞,𝑆𝑎𝑡(𝑚, 𝐾) = (−0.0156𝑚 + 0.7681)𝑓1  + (𝑎𝜌  + 𝑚𝑏𝜌)𝑓2 

𝒂𝝆𝒊 𝒃𝝆𝒊 
-0.22344 0.00020 

-0.00413 1.04394 

-0.20208 0.12155 

-0.00010 18.98966 

-0.99859 -0.05724 

-0.99859  

-995.00260  

Table 7.7: Fitting parameters of the saturated liquid density at Tr=0.7. 

 

d.  Saturated liquid viscosity 

𝑎µ = 𝑎µ1𝑡𝑎𝑛ℎ (𝑎µ2 (𝑎µ3 + (𝑎µ4𝑐𝑜𝑠((𝑎µ5(𝑎µ6 + 𝐾))0.5) + 𝐾)) 𝑒𝑟𝑓(𝑎µ7𝑠𝑖𝑛ℎ(𝐾))) 

𝑏µ = 𝐾(𝑏µ1  + 𝑏µ2𝐾𝑏µ3)
(−1/𝑏µ3)

 

𝑐µ = 𝑐µ1
𝑎𝑡𝑎𝑛((𝐶µ2+𝐾)𝐶µ3𝐾)

 

𝜂𝑇𝑟=0.7
𝐿𝑖𝑞,𝑆𝑎𝑡

= (0.20346523𝑚 + 1.71486499)(𝑎µ𝑚2 + 𝑏µ𝑚 + 𝑐µ) 

                   + 50(1 − 𝑒𝑥𝑝(−10𝐾))/ (1 +  𝑒𝑥𝑝(10(𝑚 − 1))) 

𝒂µ𝒊 𝒃µ𝒊 𝒄µ𝒊 
0.03332 55677.12767 0.81887 

0.03014 660.77650 5.38634 

1.74329 2.88551 0.02548 

1.26883   

0.40713   
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1.26883   

0.40713   

0.11966   

Table 7.8: Fitting parameters of the saturated liquid viscosity at Tr=0.7. 
7.A.2.2 Optimized parameters for the SR-LJCCG model. 

a.  Normal alkanes 

Molecule m K* sigma (Ang) eps (J/mol) 
n-C36 12 3.339 4.182 2538.061 

n-C30 10 3.923 4.188 2522.341 

n-C24 8 4.621 4.213 2503.175 

n-C16 6 4.752 4.076 2396.719 

n-C12 5 4.243 3.971 2295.615 

n-C10 4 9.542 4.054 2284.894 

n-C8 4 3.072 3.782 2126.740 

n-C6 3 5.323 3.845 2070.560 

n-C4 3 0.428 3.423 1734.347 

C2 2 0.000 3.310 1441.630 

C1 1 0.000 3.725 1212.071 

Table 7.9: Optimized molecular parameters of the SR-LJCCG model for the n-alkanes. 
b.  Iso-alkanes 

Molecule m K* sigma (Ang) eps (J/mol) 
i-C4 3 17.020 3.434 1651.188 

i-C5 3 10.238 3.641 1868.895 

i-C6 3 11.351 3.841 2019.301 

i-C8 3 137.494 4.213 2198.669 

i-C16 5 17.878 4.295 2385.961 

Table 7.10: Optimized molecular parameters of the SR-LJCCG model for the iso-alkanes. 
c.  Some polar components 

Molecule m K* sigma (Ang) eps (J/mol) 
CO2 3 22.553 2.451 1230.047 

Toluene 3 0.725 3.655 2414.729 

H2S 2 0.000 2.896 1761.620 

RE245cb2 4 15.053 3.214 1499.589 

R1336mzz(Z) 4 10.174 3.291 1643.354 

Table 7.11: Optimized molecular parameters of the SR-LJCCG model for some polar 
components. 
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d.  Associative molecules 

Molecule m K* sigma (Ang) eps (J/mol) 
Methanol 4 1.487 2.339 1909.772 

Water 4 0 1.808 2406.339 

Table 7.12: Optimized molecular parameters of the SR-LJCCG model for methanol and water 
molecules 

7.A.2.3 Optimized parameters for the FF-LJCCG model. 

a. Normal alkanes 

Molecule m K* sigma (Ang) eps (J/mol) 
n-C36 16 0.000 3.788 2388.384 

n-C30 13 0.000 3.831 2381.400 

n-C24 10 0.000 3.904 2377.067 

n-C16 7 0.000 3.868 2301.980 

n-C12 6 0.000 3.728 2182.513 

n-C10 5 0.000 3.752 2151.909 

n-C8 4 0.000 3.786 2117.102 

n-C6 3 0.000 3.847 2070.925 

n-C4 2 0.000 3.957 2007.283 

C2 2 0.000 3.310 1441.630 

C1 1 0.000 3.725 1212.071 

Table 7.13: Optimized molecular parameters of the FF-LJCCG model for the n-alkanes. 
b.  Iso-alkanes 

Molecule m K* sigma (Ang) eps (J/mol) 
i-C4 2 0.000 3.974 1925.505 

I-C5 3 0.000 3.646 1877.339 

i-C6 3 0.000 3.846 2029.655 

i-C8 3 0.000 4.189 2218.469 

i-C16 5 0.000 4.305 2414.235 

Table 7.14: Optimized molecular parameters of the FF-LJCCG model for the iso-alkanes. 
c.  Some polar components 

Molecule m K* sigma (Ang) eps (J/mol) 
CO2 3 0.000 2.449 1240.263 

Toluene 3 0.000 3.656 2413.197 

H2S 2 0.000 2.896 1761.620 

RE245cb2 4 0.000 3.222 1512.784 

R1336mzz(Z) 4 0.000 3.298 1652.940 

Table 7.15: Optimized molecular parameters of the FF-LJCCG model for some polar 
components. 

  



Appendix A 
 

201 
 

7.A.2.4 Optimized parameters for the SR-SAFTD model. 

a.  Normal alkanes 

Molecule m K* sigma (Ang) eps (J/mol) 
n-C36 11.911 3.393 4.193 2541.181 

n-C30 9.906 4.018 4.206 2526.562 

n-C24 8.023 4.579 4.209 2501.813 

n-C22 8.478 3.522 4.016 2426.378 

n-C16 5.978 4.828 4.084 2398.619 

n-C12 4.940 4.512 3.989 2303.928 

n-C10 4.322 5.630 3.945 2242.610 

n-C8 3.679 6.112 3.895 2169.760 

n-C6 3.020 4.876 3.836 2067.267 

n-C4 2.389 26.110 3.715 1866.222 

C2 1.725 0.000 3.490 1528.445 

C1 1.246 0.000 3.455 1095.604 

Table 7.16: Optimized molecular parameters of the SR-SAFTD model for the n-alkanes. 
b.  Iso-alkanes 

Molecule m K* sigma (Ang) eps (J/mol) 
i-C4 2.540 71.514 3.625 1748.929 

i-C5 2.586 28.451 3.847 1962.073 

i-C6 2.943 13.078 3.868 2031.162 

i-C8 3.113 41.115 4.144 2169.076 

i-C16 4.800 21.298 4.360 2411.532 

Table 7.17: Optimized molecular parameters of the SR-SAFTD model for the iso-alkanes. 
c.  Some polar components 

Molecule m K* sigma (Ang) eps (J/mol) 
CO2 2.678 73.056 2.530 1279.106 

Toluene 3.095 0.250 3.615 2388.609 

H2S 1.611 0.000 3.123 1920.826 

RE245cb2 3.463 33.832 3.399 1564.935 

R1336mzz(Z) 3.671 16.018 3.395 1683.107 

Table 7.18: Optimized molecular parameters of the SR-SAFTD model for some polar 
components. 

d.  Associative molecules 

Molecule m K* sigma (Ang) eps (J/mol) 
Methanol 4.233 1.446 2.292 1877.561 

Water 3.530 0 1.890 2501.780 

Table 7.19: Optimized molecular parameters of the SR-SAFTD model for methanol and water 
molecules. 
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7.A.2.5 SR-SAFTD fitting parameters. 

a.  αlj coefficients used to calculate the cij matrix 

l\j 1 2 3 4 5 

1 -0.58801849 8.93225587 -17.16107315 5.85525327 3.92782695 

2 -13.07890819 86.88731712 -191.89846330 170.97117100 -53.03154320 

3 13.13557664 -78.49722038 139.50630931 -80.20303501 6.53526447 

4 -5.30880509 28.25448854 -35.64721975 -2.94402296 15.36598713 

5 0.20240413 -0.63937475 -1.21763487 4.46776181 -2.79327811 

      

6 3.83081242 -19.56823476 31.53240140 0.10112261 -23.38485467 

7 26.25619506 -203.29310385 502.68793284 -499.87664352 175.24988251 

8 -9.84340292 72.35946434 -100.01669572 -19.23219732 56.01554169 

9 -1.98340524 19.15499324 -110.55802870 204.00883254 -110.52363414 

10 0.75278287 -6.36676352 22.10984463 -31.25184826 14.78055871 

      

11 -8.44207147 38.57642265 -47.21206915 -9.87321449 42.47727198 

12 -19.84615242 218.57447611 -645.38526640 727.98241848 -283.22968406 

13 -7.94179017 -8.96344182 18.81635182 70.61732051 -72.26774120 

14 12.80696068 -70.61683404 220.10564487 -323.85740492 162.21157956 

15 -1.50293395 10.85744733 -34.33469904 46.72424890 -21.87343485 

16      

17 6.66655719 -30.87648765 34.94070012 12.56943771 -33.80971330 

18 12.17366812 -160.02203581 507.88956689 -603.90498357 244.63374560 

19 -0.00636818 60.88054434 -174.94081197 142.57387203 -27.20198564 

20 -3.61536062 7.17952195 -43.82553103 107.49179493 -68.69754904 

21 0.42363454 -3.23850142 13.71387165 -22.48104121 11.76624811 

      

22 -1.80814917 8.35180122 -9.14437080 -5.20177168 10.12049684 

23 -6.00350224 63.00131114 -187.70183897 218.16308591 -87.35589323 

24 6.42453547 -59.42692330 148.77476268 -141.16616465 44.38336952 

25 -3.09447947 24.70227845 -49.66922886 31.65327665 -2.77356734 

26 0.22968144 -1.33183265 1.28203944 1.27542451 -1.54156070 

Table 7.20: αlj coefficients used to calculate the cij matrix. 

q1 q2 q3 

-0.63089354 2.25607667 -0.22702254 

Table 7.21: qi coefficients used to calculate the cij matrix. 

b.  𝜈lj coefficients used in the gee(T*, ρ*→0, K*, σ). 

i\j 1 2 3 4 5 

1 -0.63089354 2.25607667 -0.22702254 -1.30073433 1.38530097 

2 1.35107203 -4.02973091 -1.08379600 11.35304245 -8.77586355 

3 -0.39774620 -3.52590997 21.75755370 -33.20343099 18.94425929 

4 -0.31369245 4.64059564 -15.88218095 20.15666803 -10.63865063 

5 0.11944725 -1.20595685 3.58032678 -4.25208977 2.17288077 

6 -0.01032958 0.09193378 -0.25615124 0.29431764 -0.14785685 

Table 7.22: vlj coefficients used in the gee(T*, ρ*→0, K*, σ).. 
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c.  Coefficients used in g00 (T*, ρ*→0, K*→0, σ). 

a 1.47734517 

b 2.08369891 

c 1.39653716 

d 1.21571582 

e 0.43088421 

f 0.07453163 

g 0.13440669 

h 0.00095443 

Table 7.23: Coefficients used in g00 (T*, ρ*→0, K*→0, σ). 

d. Illustration of the quality of the fit of gee(T*, ρ*, K*, σ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 7.1: (a) Temperature dependence of the zero-density limit g00 (T*, ρ*→0, K*, σ) 
at various rigidities. (b) density dependence of the term in gee (T*=4, ρ*, K*, σ) 

substracted out g00 (T*, ρ*→0, K*, σ) expressed by the matrix Cij; (c)Extended g00 (T*, ρ*→0, 
K*→0, σ) to infinite T*. 

(a)                                                                                                                   (b) 

(c)                                                                                                
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e. Illustration of the evolution of the parameters Cij(K*). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 7.2: Rigidity dependency of the matrix Cij(K*) coefficient used to calculate gee 
(T*, ρ*, K*, σ) 



Appendix A 
 

205 
 

7.A.2.6 Fitting parameters of the original Johnson parameters for the SAFTD (TPT1-D) 
1 and SAFTM (TPT1-M) 2 models. 

a. Cij coefficients used in gee(T*, ρ*, σ) (Eq(4.137)) 

i\j 1 2 3 4 5 

1 1.92261089 -18.3410702 73.108684 -137.940285 100.181165 

2 -15.3921034 202.930258 -875.941677 1580.79021 -1056.37502 

3 45.4344615 -574.833828 2474.62424 -4449.62984 2920.48646 

4 -49.920765 636.914217 -2710.64383 4849.76263 -3155.28520 

5 18.7183896 -243.507214 1034.88816 -1844.93845 1194.01241 

Table 7.24: cij coefficients used in the gee (T*, ρ*,  σ)  given by Johnson(1996). 
b. αi coefficients used in g00 (T*, ρ*→0, σ) (Eq(4.138)) 

a1 0.642180417 

a2 -0.069376926 

a3 2.21199344 

a4 -4.2425198 

a5 5.65047326 

a6 -3.75078373 

a7 1.0398651 

Table 7.25: : Coefficients used in the gee (T*, ρ*→0,  σ)   given by Johnson(1996). 

c. αij coefficients used in gLJ(T*, ρ*, σ) (Eq(4.96) & Eq(4.168)) 

i\j 1 2 3 4 5 

1 0.493043466 2.152834989 -15.955682 24.03599967 -8.643795851 

2 -0.470319831 1.147164749 37.889828 -84.66712149 39.64391411 

3 5.032548624 -25.91539923 -18.862251 107.6370738 -66.60264974 

4 -7.363315043 51.55356534 -40.519369 -38.79669265 44.6051392 

5 2.90436073 -24.47881287 31.5001868 -5.336892037 -9.518344018 

Table 7.26 cij coefficients used in the gM (T*, ρ*,  σ) given by Johnson et al.(1994). 

 

7.A.2.7 Helmholtz free energy of the monomer segment. 

The residual segment Helmholtz free  energy of the LJ fluid is given by Johnson 3 using a 

modified BWD equation of state refitted on the internal energy and LVE properties. The 

expression is given by: 

𝐴𝑠𝑒𝑔 = ∑
𝑎𝑖𝜌∗𝑖

𝑖

8
𝑖=1 + ∑ 𝑏𝑖𝐺𝑖

6
𝑖=1   

where 𝑎𝑖 and 𝑏𝑖 are temperature dependent parameters and 𝐺𝑖 are density dependent parameters. 

This equation is used also in the for the segment monomer term given in SAFTM (TPT1-M) 2 

(Eq(4.94), SAFTD (TPT1-D) 2 (Eq(4.136)) and in SR-SAFTD (generalized TPT1-D) of this 

work (Eq(4.167)). Their expressions and their corresponding constant parameters are:  
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where the x[i] coefficients are given by the following table: 

  

Figure 7.3: Temperature dependent parameter ai and bi given in Aseg. 

Figure 7.4: Density dependent parameters of Gi coefficients given in Aseg. 
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i x[i] 

1 0.86230851 

2 2.976218765822090 

3 -8.402230115796030 

4 0.105413662920355 

5 -0.856458382817459 

6 1.582759470107600 

7 0.763942194830545 

8 1.753173414312040 

9 2798.291772190370000 

10 -0.048394220260858 

11 0.996326519772193 

12 -36.980002912724900 

13 20.840122994346400 

14 83.054021247172800 

15 -957.479971520306000 

16 -147.774622923499000 

17 63.986078524715000 

18 16.039936732948300 

19 68.059166158643700 

20 -2791.293578795940000 

21 -6.245128304568450 

22 -8116.836104958410000 

23 14.887355595612200 

24 -10593.467546550800000 

25 -113.160763280282000 

26 -8867.771540418820000 

27 -39.869828444505400 

28 -4689.270299917260000 

29 259.353527743871000 

30 -2694.523589434900000 

31 -721.848763155021000 

32 172.18020638632600 

Table 7.27: x[i] coefficients given in Aseg 

 

7.A.2.8 Transferable parameters used for the prediction of the properties of the iso-

alkanes obtained from the SR-SAFTD. 

For the iso-alkanes, the correlations are given by: 

𝑚 =  𝑎𝑚𝑀𝑤  +  𝑏𝑚  

𝑚 𝜎3[𝑛𝑚3]  =  𝑎𝜎𝑀𝑤   +  𝑏𝜎   

𝑚 𝜖
𝑘𝐵

⁄ [𝐾]  =  𝑎𝜖𝑀𝑤   +  𝑏𝜖  

 𝐾 𝜖⁄  =  𝑎𝐾  𝑀𝑤
𝑐𝐾    
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where Mw is the molecular weight of the iso-alkane expressed in [
kg

mol
], and the fitting constants 

are: 

𝑰𝒔𝒐 𝒂𝒍𝒌𝒂𝒏𝒆𝒔 𝐚𝒊 𝐛𝒊 
𝒎 13.6705119366 1.6731353775 

𝒎 𝝈𝟑 1.6356766033 0.0293422020 
𝒎𝝐

𝒌𝑩
⁄  41.8127799636 2.1052935109 

𝑲
𝝐⁄  5.7628226402 −0.8908529915 

Table 7.28: Constants of the transferable correlations of the iso-alkanes. 
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7.B.1 Surface tension and associative molecules 

7.B.1.1 Surface tension prediction. 

In this subsection, the SR-LJCCG force field is evaluated on its capability to predict surface 

tension. Such property is known to be very challenging to be computed via direct molecular 

simulation tool due to some problems raised by the use of an appropriate 𝑟𝑐𝑢𝑡 , the system 

size, low temperature …4, 5. Thus, it is proposed here to use the correlation (and not 

simulations, reason for which results are shown in the appendix) based on the corresponding 

states approach for the surface tension given in 4, 6, 7 for fluids interacting through Mie or 

LJ potentials. The correlation relies on extensive molecular simulations run with 𝑟𝑐𝑢𝑡 =

10𝜎 and has been largely validated.  

As shown in Figure 7.5 (a), very good agreement with the experimental data are found for 

the n-alkanes studied in with the SR-LJCCG model. The FF-LJCCG model tends to 

overestimates the surface tension at low temperature compared to the semi-rigid model, 

while both models predict accurately the high temperature region up to the critical point. 

Such an improvement close to the critical region is explained by the use of the CS strategy 

where the critical temperature is imposed, contrary to what could be obtained by using the 

classical fit over saturation pressure and liquid density 8 which exhibits systematic 

overestimation of the critical temperature, reflected then on the surface tension. Concerning 

polar components, good agreement is also obtained between the SR-LJCCG and the 

experimental data as shown in Figure 7.5 (b).  

All these results on the surface tension confirm again the good representability of the 

proposed force field parameters, since no data on surface tension were included in the 

optimisation. Finally, even though results obtained using a correlation are very interesting, 

a direct simulation of this property would be required to confirm these results. 
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7.B.1.2 Associative molecules 

As pointed it out in the discussions in chapters 3 and 4, the model and the strategy of the 

parameterization proposed in this work are not fully adequate for strongly associating 

molecules. This is illustrated in Figure 7.6 for methanol and water molecules. In fact, it appears 

that qualitative results could be obtained, depending on the property of interest. For example, 

the LVE properties are roughly captured by the model for the two studied molecules. Of course, 

the maximum in liquid density of water could not be reproduced by any non-associating model, 

unless in the case of our model temperature dependent parameters are chosen, similarly to what 

is done with the SAFT--Mie force field for water 9. The saturation pressure for both molecules 

are only qualitatively reproduced, which probably can be improved if a saturation pressure is 

imposed instead of the acentric factor. Regarding the viscosity, while quite good predictions 

are obtained for methanol, the model fails completely in the case of water.  

 

 

  

Figure 7.5: Predicted surface tension of normal alkanes and polar components using 
correlation from Galliéro (2010). (a) normal alkanes. (b) Polar components. 

(a)                                                                                                                                                  (b) 
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More precisely, the viscosity of water is not included in the fitting parameters due to the non-

convergence of the F function (Min(W+η)), because, while the acentric factor of water is high, 

its viscosity is very low at Tr=0.7. If we refer to an equivalent of water for a normal alkane in 

terms of acentric factor, water and n-heptane have quite similar acentric factor, however, the 

viscosity of water at Tr =0.7 is two times lower. 

Even though qualitative results could be obtained for some associating molecules, another 

question that may be raised is about the physical interpretation of the molecular optimized 

parameters. More precisely, these molecules exhibit high acentric factor due to their polarity 

while their molecular weight is not high when compared to their equivalent for normal alkanes 

molecules having the same acentric factor. Thus, applying the parametrization strategy 

proposed in this work for such molecules, would lead to high segment number “m” which may 

be interpreted as corresponding to large molecule, while it is not. This is a limitation of the 

Figure 7.6: Test of the model and parameterization strategy on methanol and water 
molecules. 
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proposed strategy which relies on the assumptions that the acentric factor is purely an indication 

on how the molecular shape deviates from the sphere. This is relatively valid only for non-polar 

molecules as the shape of the molecule is roughly the only contribution to the acentric factor, 

whereas the polarity contributes strongly to the acentric factor, as the saturation pressure is 

strongly affected. 

Last, it is worthwhile to underline that, beyond the parametrization strategy, the interaction 

potential used in this work is spherical and symmetrical, while such molecules are known to 

exhibit highly directional potential interactions. Thus, the modelling of these molecules without 

introducing the hydrogen sites explicitly, can only be considered as a crude approximation.    
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