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Abstract

The ability to feel pain is crucial for life, since it serves as an early warning system for
potential harm to the body. The majority of pain evaluations rely on patient reports. Pa-
tients who are unable to express their own pain must instead rely on third-party reports
of their suffering. Due to potential observer bias, pain reports may contain inaccura-
cies. In addition, it would be impossible for people to keep watch around the clock. In
order to better manage pain, especially in noncommunicative patients, automatic pain
detection technologies might be implemented to aid human caregivers and complement
their service. Facial expressions are used by all observer-based pain assessment systems
because they are a reliable indicator of pain and can be interpreted from a distance.

Taking into consideration that pain generally generates spontaneous facial behavior,
these facial expressions could be used to detect the presence of pain. In this thesis, we
analyze facial expressions of pain in order to address pain estimation. First, we present
a thorough analysis of the problem by comparing numerous common CNN (Convo-
lutional Neural Network) architectures, such as MobileNet, GoogleNet, ResNeXt-50,
ResNet18, and DenseNet-161. We employ these networks in two unique modes: stan-
dalone and feature extraction. In standalone mode, models (i.e., networks) are utilized
to directly estimate pain. In feature extractor mode, "values" from the middle layer are
extracted and fed into classifiers like Support Vector Regression (SVR) and Random For-
est Regression (RFR).

CNNs have achieved significant results in image classification and have achieved
great success. The effectiveness of Transformers in computer vision has been demon-
strated through recent studies. Transformer-based architectures were proposed in the
second section of this thesis. Two distinct Transformer-based frameworks were pre-
sented to address two distinct pain issues: pain detection (pain vs no pain) and the
distinction between genuine and posed pain. The innovative architecture for binary
identification of facial pain is based on data-efficient image transformers (Deit). Two
datasets, UNBC-McMaster shoulder pain and BioVid heat pain, were used to fine-tune
and assess the trained model. The suggested architecture is built on Vision Transform-
ers for the detection of genuine and simulated pain from facial expressions (ViT). To
distinguish between Genuine and Posed Pain, the model must pay particular attention
to the subtle changes in facial expressions over time. The employed approach takes into
account the sequential aspect and captures the variations in facial expressions. Experi-
ments on the publicly accessible BioVid Heat Pain Database demonstrate the efficacy of
our strategy.

Keywords: facial expression, pain estimation, CNN (Convolutional Neural Net-
work), transformers, pain detection, Genuine and Posed Pain
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Résumé

La capacité à ressentir la douleur est cruciale pour la vie, car elle sert de système d’alerte
précoce en cas de dommages potentiels pour le corps. La majorité des évaluations de
la douleur reposent sur les rapports des patients. En revanche, les patients incapables
d’exprimer leur douleur doivent plutôt se fier aux rapports de tierces personnes sur leur
souffrance. En raison des biais potentiel de l’observateur, les rapports sur la douleur
peuvent contenir des inexactitudes. En outre, il serait impossible de surveiller les pa-
tients 24 heures sur 24. Afin de mieux gérer la douleur, notamment chez les patients
avec des difficultés de communication, des techniques de détection automatique de la
douleur pourraient être mises en œuvre pour aider les soignants et compléter leur ser-
vice. Les expressions faciales sont utilisées par la plupart des systèmes d’évaluation de
la douleur basés sur l’observation, car elles constituent un indicateur fiable de la douleur
et peuvent être interprétées à distance.

En considérant que la douleur génère généralement un comportement facial spon-
tané, les expressions faciales pourraient être utilisées pour détecter la présence de la
douleur. Dans cette thèse, nous analysons les expressions faciales de la douleur afin
d’aborder l’estimation de la douleur. Tout d’abord, nous présentons une analyse appro-
fondie du problème en comparant de nombreuses architectures CNN (réseau de neu-
rones convolutifs) courantes, telles que MobileNet, GoogleNet, ResNeXt-50, ResNet18
et DenseNet-161. Nous utilisons ces réseaux dans deuxmodes uniques : autonome et ex-
traction de caractéristiques. En mode autonome, les modèles (c’est-à-dire les réseaux)
sont utilisés pour estimer directement la douleur. En mode extracteur de caractéris-
tiques, les "valeurs" de la couche intermédiaire sont extraites et introduites dans des
classificateurs tels que la régression à vecteur de support (SVR) et la régression à forêts
d’arbres décisionnels (RFR).

Les CNN ont obtenu des résultats significatifs dans la classification d’images et ont
connu un grand succès. Plus récemment, l’efficacité des Transformers en vision par or-
dinateur a été démontrée par plusieurs études. Des architectures basées sur les Trans-
formers ont été proposées dans la deuxième section de cette thèse. Ces deux archi-
tectures distinctes ont été présentées pour répondre à deux problèmes distincts liés à
la douleur : la détection de la douleur (douleur vs absence de douleur) et la distinc-
tion entre la douleur authentique et la douleur simulée. L’architecture innovante pour
l’identification binaire de la douleur faciale est basée sur des transformateurs d’images
efficaces en termes de données (Deit). Deux bases de données, UNBC-McMaster shoul-
der pain et BioVid heat pain, ont été utilisées pour affiner et évaluer le modèle formé. La
deuxième architecture proposée, repose sur des transformateurs de vision pour la détec-
tion de douleurs authentiques et simulées à partir des expressions faciales (ViT). Pour
distinguer la douleur authentique de la douleur simulée, le modèle doit accorder une
attention particulière aux changements subtils des expressions faciales dans le temps.
L’approche employée prend en compte l’aspect séquentiel et capture les variations des
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expressions faciales. Les expériences ont été menées sur la base de données BioVid Heat
Pain démontrent l’efficacité de notre stratégie.

Mots clés : expression faciale, estimation de la douleur, CNN réseau de neurones
convolutifs), transformateurs, détection de la douleur, douleur authentique et douleur
posée.
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1.1 Thesis context

Pain is a complex phenomenon that is not yet fully comprehended. Pain is generally
understood to be "an unpleasant sensory and emotional experience associated with ex-
isting or impending tissue damage, or described in terms of such damage" [85]. Nonethe-
less, the definition of pain is the subject of ongoing debate [8] and basic research con-
tinues to expand our understanding of it. As a subjective mental occurrence, pain is
experienced differently by each individual [8]. Each individual learns the meaning of
the term through early childhood experiences involving damage. This type of pain, re-
ferred to as acute pain, serves a protective function by alerting us to potential danger,
allowing us to take preventative measures to limit further tissue damage and thereby
facilitate the healing process [145]. In most cases, the pain will subside once the injury
has healed. Pain that lasts longer than three months is typically classified as chronic or
persistent pain. Pain can also be called nociceptive (caused by chemical or mechanical
stimulation of sensory nerve fibers), neuropathic (caused by pain to the somatosensory
nervous system), and psychogenic (caused, made worse, or lasted longer by mental,
emotional, or behavioral factors).

Due to pain, a large number of individuals and the community as a whole face chal-
lenging obstacles. This is the most frequent reason why people visit the doctor [110].
The majority of patients (52.2%) who visited an emergency room did so due to pain,
while only 34.1% visited for reasons unrelated to pain [29]. According to research con-
ducted in [43], up to 35% of hospitalized patients experience severe pain, and more than
50% experience general discomfort. The incidence of pain was significantly higher than
expected among hospitalized patients (83% [157]).

The introduction of innovative therapies has increased the demand for pain relief:
Even after being cured of once-fatal conditions such as cancer, HIV/AIDS, and cardio-
vascular disease, an increasing number of people continue to experience chronic pain.
A common side effect of surgical procedures, chemotherapy, and radiation therapy is
pain [83]. The economic costs of caring for individuals with chronic pain are substan-
tial [83], and workplace productivity suffers as a result. Chronic pain is more expensive
than cancer, heart disease, and HIV/AIDS combined [83].

Experiencing pain is a complicated, individual, and unique phenomenon. Conse-
quently, manual identification and quantification of pain is labor-intensive and objec-
tively challenging [21]. This circumstance requires automated systems, where strong
and cost-effective technology solutions can enable individualized and patient-centered

2



Introduction

treatment. To allow such an automated method, at least one pain signal, also known
as a modality, must be accessible as an input to the system. People’s reactions to pain
vary [141] since it’s both an uncomfortable sensory and an emotional experience. This
is why several studies have focused on different approaches to automatic pain evalua-
tion. Behavioral (facial expressions, body movements, vocalization) and physiological
(brain activity, cardiovascular activity, skin conductance response) are the key pain sig-
nals [141].

Facial expressions derived from video recordings, often in conjunction with head
movements, have been the primary focus of the majority of the studies so far. Different
physiological signs of pain have attracted attention due to advancements in wearable
devices and electrode technology. In addition, the use of two or more pain indicators
at once, known as a bi- or multimodal approach, is becoming more popular in research
aimed at improving pain assessment performance. Unimodal refers to an evaluation
system that only uses one modality to analyze information, whereas bimodal and mul-
timodal refer to pain evaluation systems that use two, three, or more modalities (three
or more).

1.2 Motivation and objectives

When it comes to objectively measuring pain and gaining insight into patients’ health
and enhancing pain treatment, automatic pain assessment is the best model. The field
of automatic pain assessment is a dynamic area of multidisciplinary study that draws
on insights from medical, psychology, computer science, and engineering. The medical
field might benefit greatly from using this evaluation method. For instance, in a clinical
context, a patient in pain can be assessed by nurses who will check and measure the
severity of the patient’s pain multiple times a day using medical devices. However, this
medical surveillance is limited, since it is impossible to monitor the patients’ pain every
minute or second. Within this context, automatic pain assessment aims to construct a
temporally dynamic, automated pain intensity identification system by using accurate
and authentic pain response patterns that may be recorded.

Automatic pain evaluation consists of pain detection, often known as determining
whether a person is feeling pain, pain intensity estimation, and the recognition of gen-
uine and posed pain. In order to achieve this objective, pain-related information is fre-
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quently gathered through the use of non-invasive sensor technology, which records the
body responses of a person experiencing pain. This can be achieved by employing cam-
eras that catch aspects such as facial expressions, head pose, and posture. Data can also
be collected by using microphones to record audio characteristics. Contact-sensor are
used to collect physiological signals, such as heart rate and blood pressure. This col-
lected data is then used by machine learning algorithms to either detect pain, estimate
pain level or detect posed pain. Figure 1.1 show the several possible data modalities for
pain recognition system.

Figure 1.1: Possible modalities and sensors used to collect data in automatic pain recog-
nition system. Figure adapted from [134]

The Facial Action Coding System is a method for decomposing facial movement into
discrete measures of muscle change known as Action Units, and is used in the area of
pain treatment to quantify experiences of facial discomfort [98]. The PSPI score quan-
tifies pain as a composite of Action Unit intensities and detection scores [132]. Only
specialists who have completed extensive training in the Facial Action Coding System
(FACS) can conduct manual coding of facial expressions.

A human coder examines each frame of the video to detect and quantify Action
Units, along with their associated start and end timestamps. Manually annotating ev-
ery frame, even in a brief video clip, is a time-consuming and costly operation since
videos are typically filmed at 24 to 60 frames per second [132]. To address the limi-
tations of human coding, researchers are developing automatic approaches using ML
techniques for encoding facial action units. Researchers can use OpenFace, a program
that detects and measures action units in real time, to study pain [9].

Thanks to recent breakthroughs in facial expression analysis, researchers are now
able to utilize a vast array of computer vision and machine learning approaches to ob-
tain reliable pain ratings from facial emotions. The early efforts mostly concentrated on
identifying pain based on the emotions on people’s faces. In the figure 1.2, we present
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a general framework for a pain recognition system from facial expressions. The dataset
in this case consists of patients’ facial images. The preprocessing step consists of crop-
ping and alignment of the subject’s face. Then these images are fed into the next block:
feature extraction, which is in charge of detecting and extracting pain-related facial ex-
pression patterns. The extracted features are passed to the post-processing block. Then
the learning module is where the training task is conducted.

Preprocessing Feature Extraction Post-processing Learning Evaluation

Dataset

Figure 1.2: General procedures involved in constructing a facial expression-based auto-
mated pain detection system.

When it comes to building a classifier, it has become much simpler because of de-
velopments in machine learning and, in particular, deep learning. These developments
have led to learning representations of the data, which makes it simpler to get informa-
tion that is both helpful and discriminative. The goal of the combination of numerous
non-linear transformations used in deep learning is to generate representations that are
both more abstract and, eventually, more discriminative. This composition gives rise to
the representations used in deep learning. So, the goal of this thesis is to look into sev-
eral deep learning algorithms to detect pain, machine learning and, in particular, deep
learning.

1.3 Contribution

Through the analysis of facial expressions, our thesis work makes a contribution to the
study of pain, and it also makes a contribution to the area of deep learning through the
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use of novel techniques. More specifically, the contributions of our thesis are:

• Our thesis’s first contribution is a comprehensive analysis of automatic pain in-
tensity assessment from facial expressions using five popular and off-the-shelf
CNN architectures. This work studies the effectiveness of the hidden layers in
these 5 Off-the-Shell CNN architectures for pain estimation by using features
as inputs to two classifiers: SVR (Support Vector Regression) and RFR (Random
Forest Regression). The experiments were conducted on the balanced UNBC-
McMaster Shoulder Pain Expression Archive Database.

• The second contribution introduces a novel Vision Transformer architecture for
the discrimination between Genuine and Posed Pain. In this work, we prove the
efficiency of fine-tuning Vision Transformers using a small database, contrary to
the use of ViT from scratch on the same database. In addition, we prove the im-
portance of sequential order in time for the discrimination between Genuine and
Posed pain.

• The third contribution in this thesis consists of presenting a fine-tuned data-
efficient image transformer (Deit) for pain and no pain detection. In this work, we
highlight the importance of transformers in the image recognition field in gen-
eral and in pain tasks more particularly. Also, prove the efficiency of transformers
compared to Convolutional Neural Networks (CNN) while studying the discrim-
ination of pain from no pain task.

1.4 Thesis outline

This thesis may be divided into two major parts. Each of the five chapters in the first
section provides an overview of the current state of the art in automated pain assess-
ment, as well as a synopsis of the contributions and findings reported in the original
articles. The second part covers the main publications that contributed to the develop-
ment of this thesis.

In the first chapter, which serves as an introduction to the thesis, we discuss the
history of the topic being investigated as well as the motivations for conducting the
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research. In addition, we outline the contributions made by the thesis and provides a
concise summary of the articles. Chapter 2 provides an overview of automatic pain eval-
uation. This section offers an introduction to pain intensity estimating systems, a de-
scription of the publicly accessible pain databases utilized in the experiments performed
for this thesis, and a literature assessment of the current state-of-the-art approaches.

Chapters 3 and 4 present the works presented in the original papers. Chapter 3
provides a Comparative Analysis Using Off-the-Shelf CNN Architectures for pain as-
sessment from facial expressions. This work focuses on the extraction of deep features,
using CNNs, then training SVR (Support Vector Regression) and RFR (Random Forest
Regression) to estimate pain. Chapter 4 introduces Vision Transformers. These trans-
formers were used for two different topics: Detection of Genuine versus Posed Pain and
Detection of Pain.

Chapter 5 is the last part of the thesis. It states our conclusion and gives ideas for
future research on automated pain evaluation.
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2.1 Introduction

This chapter focuses on the use of artificial intelligence (AI) and deep learning in the
assessment of pain. AI has become an increasingly valuable tool for diagnosing and
controlling pain in medical settings as technology has advanced. In this chapter, we
will look into various AI applications in facial images, such as emotion identification
and medical diagnostics. We will also delve into the pain process and the reactions of
patients to it, including biological, physiological, and behavioral reactions.

We will also go through pain datasets, covering the stimulation and labeling meth-
ods, as well as the datasets that are currently available for AI-based pain evaluation.
Furthermore, we will examine the use of AI and deep learning in pain assessment, in-
cluding deep learning techniques, training and classification, and computer vision. Fi-
nally, we will discuss automatic pain assessment approaches, such as automatic pain
recognition and the overall architecture of automatic pain detection systems.

2.2 AI applied facial images

Communication, both verbal and nonverbal, plays a key role in society and is required
for many daily tasks. Facial expressions convey a great deal about a person’s mental and
emotional state, as well as their intentions, and are therefore the most effective form of
nonverbal communication [35]. Without speaking, listeners can send a range of infor-
mation to the speaker through facial expressions and affect the conversation’s direc-
tion. In [22], the authors claim that the information supplied by a person’s face should
be given greater weight in cases where it does not correlate with the other method of
communication, i.e., spoken words.

As technology progresses, so do our computational capabilities. This means that re-
search into automatic facial detection is improving. Expression analysis and automated
recognition have garnered a lot of attention in the field of computer vision research.
Human-computer interaction, entertainment, medical applications (pain detection), so-
cial robots, interactive video, and behavior monitoring are just some of the many do-
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mains thatmight profit from a system that can understand facial emotions. Some further
information on the use of facial images in applications is provided below.

2.2.1 Emotion recognition

The facial expressions of a person reveal a great deal about their mental state and mo-
tivations. A person’s facial expressions and tone of voice can indicate a variety of emo-
tions, including happiness, sadness, and anger. According to a number of studies, only
one-third of human communication consists of words, while the other two-thirds con-
sists of nonverbal cues. The emotional meanings conveyed by facial expressions and
other nonverbal components play an important role in interpersonal communication.
In recent decades, there has been a growing interest in face emotion research due to its
applicability to fields as diverse as perceptual and cognitive sciences, affective comput-
ing, and computer animation [67].

Automatic facial expression recognition (FER) has gained traction alongside the rise
of AI in fields such as human-computer interface (HCI), virtual reality (VR), augmented
reality (AR), advanced driving assistance systems (ADAS), and entertainment. Inputs
for FER can come from a variety of sensors, including an electromyograph (EMG), elec-
trocardiogram (ECG), electroencephalogram (EEG), and camera. However, the camera
is the most promising type of sensor since it does not require wear and gives the most
informative information for FER [67]. Figure 2.1 highlights a classification of Emotion
Recognition Methods According to used sensor [110].

2.2.2 Medical diagnosis

There is a growing interest in the use of computer vision for automatic medical diag-
nosis since it may give objective, non-intrusive data on a patient’s health with no dis-
ruption to the medical process. The face is a window to the body’s internal health, and
its features can reflect the presence or absence of certain disorders. Thus, it is of utmost
relevance in medical diagnostics to detect facial abnormalities or unusual traits. Differ-
ent methods have been explored to evaluate these symptoms and give further support to
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Figure 2.1: classification of Emotion Recognition Methods According to used sen-
sor [110]

the medical community. Despite this, the produced instruments are rarely employed in
clinical practice due to ongoing concerns about their dependability as a result of insuf-
ficient application and a lack of clinical validation of the methodology. However, efforts
are being made to provide robust solutions that are suitable for healthcare settings, in-
cluding addressing issues such as real-time assessment and patient placement.

In order to aid clinicians in their diagnostic work, computer vision was offered as a
method for offering an automated and objective evaluation of facial traits. Face recog-
nition systems have numerous potential applications. Examples include psychiatric di-
agnosis, facial paralysis detection, and automated pain estimation. Doctors and other
medical personnel would do well to inquire about the patient’s level of pain in order to
properly assess the patient’s condition and possibly prescribe painkillers as an initial
treatment. Significant research has been conducted on the topic of automatic pain de-
tection. As a result of these studies, a correlation has been established between facial
expressions and the use of specific muscles across a broad age range. Because they af-
fect the facial nerves, Bell’s palsy [44] and facial paralysis [50] are two disorders that
can cause abnormal facial expressions. Movement impairments, such as altered facial
expressions, may also be a consequence of brain damage caused by conditions such as
stroke [10] and transient ischemic attack. Patients with a variety of mental illnesses,
particularly psychotic disorders in which one’s perception of reality is distorted, may
exhibit peculiar facial expressions.
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2.2.3 Other applications

The application of computer vision systems to the study of facial expressions is not
limited to medical diagnosis or emotion recognition; rather, it offers a vast array of
possible applications. For instance:

• Age estimation :

In the field of face image processing, researchers have devoted close attention to
the information communicated by human faces. Researchers have paid close at-
tention to the huge potential for image-based age and age-group estimations in
fields like age-invariant face recognition and face verification across age, as well
as in commercial and law enforcement settings. There has been a great deal of
research on age estimation with the aim of identifying aging trends and changes
and determining the best way to describe an aging face for accurate age calcula-
tion [3].

Age estimation is the process of automatically assigning an age or age range to
a person’s face. One’s actual, perceived, guessed, or estimated age may be em-
ployed. The genuine age of a person, expressed as a whole number, is the entire
number of years from birth [37]. The estimated age of a subject is determined
by a machine using facial visual data, whereas appearance and perceived age are
dependent on how old a person looks to be. It is commonly acknowledged that a
person’s apparent age correlates to their actual age, despite the stochastic nature
of aging. Visual indicators of appearance age are employed to determine both es-
timated and perceived age. Few studies on estimating ages and age groups have
been published [37]. This may be explained by the fact that guessing an individ-
ual’s age is not a normal categorization task. Age estimate can be approached as
a regression issue, a multi-class classification issue, or a combination of the two,
depending on the nature of the task at hand [3].

• Kinship verification :

In the field of computer vision, kinship verification is a novel challenge that at-
tempts to detect, based on face images, whether two people are related. There are
various applications for kinship verification, including image annotation, child
adoption, social media analysis, etc. But it’s hard to tell who someone is re-
lated to just by looking at their face because age, gender, and genetics can make
a big difference. In the preceding decade, increasingly effective strategies have
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emerged[99].

In the past decade, many algorithms have been developed to address the chal-
lenges of kinship verification. Most recent reviews [99] focus on the small-sample
scenario and only consider four forms of kin relations: father-son, father-daughter,
mother-son, and mother-daughter. Now that the FIW database [101] is available,
it will be interesting to see how well the most advanced kinship verification algo-
rithms work with larger samples that include more types of family ties.

• Face Anti-Spoofing :

Face recognition has developed into an increasingly important security technique
as a result of AI’s extensive application. Face anti-spoofing is an area of great
concern since it protects users from fraud and other sorts of attacks. Face spoof-
ing detection research has been constantly updated and improved since the first
method of manually extracting features based on image texture, human-computer
interaction, life information, image quality, and depth information. Today, deep
learning is used to automatically extract features, along with network updates,
transfer learning, feature integration, and generalization of the domain [153] [88].

2.3 Pain Process and patients’ Reactions

Pain is an interior, private mental feeling that is totally individual. Pain is not just a
sensory phenomenon; it also includes sensory-discriminative, affective-motivating, and
cognitive-evaluative aspects [86]: it varies in intensity, location, duration, and quality;
it is unpleasant and motivates activity for pain relief; and it is influenced by cognitive
factors such as the evaluation of the severity of an injury, distraction, or cultural val-
ues [86] [127]. It may be difficult to distinguish between the pain experience, the pain
cause (such as tissue damage with nociception), the pain response (verbal and non-
verbal displays of pain), and pain assessment (e.g., by a caregiver) [86] [127]. It is possi-
ble to identify the source of pain (as in the case of a fracture) and control it by purposeful
pain stimulation (as in the case of neurological tests), but it is also possible for the rea-
son to be unknown or nonexistent (especially in chronic pain). It is important to note
that elements such as one’s thoughts, memories, and surroundings all contribute to the
patient’s sense of pain.Sometimes, people do not feel pain, which is problematic [150].
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The majority of the time, however, individuals do respond visibly to pain, and these
reactions are influenced by a variety of personal and contextual factors. This section
provides a general review of pain processes and reactions.

2.3.1 Biological Process

The brain and peripheral nervous system both have a role in the perception of pain. In
many instances, the process starts when harmful mechanical, thermal, cold, chemical,
or inflammatory stimuli activate sensory neuronal circuits. These stimuli activate noci-
ceptors, which are primary sensory neurons with specific surface receptors for sensing
nerve impulses. Information concerning a painful event in the periphery may activate
both excitatory and inhibitory interneuronal circuits in the spinal cord, resulting in a
withdrawal reflex. Diverse supraspinal structures are responsible for the processing
of nociceptive input, which eventually results in the perception of pain. As with psy-
chogenic pain, it is conceivable for a person to experience pain without activating the
nociceptive pathway [147] [64] [111].

Figure 2.2 from [114] gives a graphical explanation of the pain mechanism stimu-
lated by an intense heat. The figure shows that the action potentials are delivered to the
spinal cord through afferent axons. IB4-negative unmyelinated nociceptors synapse in
lamina I and outer lamina II, while IB4-positive nociceptors terminate in inner lamina
II. Nociceptors provide chemical signals to spinal neurons, which subsequently stretch
their axons down the spinal cord and along fiber tracts, eventually terminating in the
medulla, the midbrain, and the thalamus, which are responsible for processing the ex-
perience of pain. One of the regions of the brain that receive projections from thalamic
neurons is the somatosensory cortex [114].

2.3.2 Physiological Reactions

Sympathetic stimulation outflow is the consequence of extensive interactions between
the brain regions involved in pain sensation and autonomic regulation [15]. These in-
teractions cause detectable changes in a variety of physiological signals.
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Figure 2.2: Graphical representation of Pain Mechanism circuit by painful stimuli such
as high temperatures.

A change in skin conductance [18], which is an autonomically regulated signal, indi-
cates pain presence. Due to the fact that sympathetic excitatory efferent neurons are the
only kind of neurons that innervate sweat glands, the increased sympathetic outflow as-
sociated with pain causes sweat to be secreted via pores on the skin’s surface [15]. The
generation of sweat affects the electrical properties of the skin (electrodermal activity
(EDA)), resulting in an increase in the skin’s electrical conductance until the sweat is
reabsorbed or dissipated.
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Increased sympathetic activity also results in significant cardiovascular alterations.
It alters heart rate, resulting in tachycardia, as well as heart rate variability [121] [4].
Moreover, power spectrum analysis reveals that pain considerably increases the power
at low frequencies. In addition, pain raises peripheral vascular resistance and the vol-
ume of a stroke. This, in conjunction with the higher heart rate, causes a rise in resting
blood pressure [107]. Furthermore, the pupil diameter is also affected by pain experi-
ence, due to the pupil dilation reflex [23].

Pain affects the electrical and metabolic activity of brain cortical regions, since pain
mechanism includes a complex network of these regions [125]. There are two tech-
niques that show potential for identifying pain response patterns. These techniques are
: Electroencephalography (EEG) to identify changes in electrical activity in the cortex,
and functional magnetic resonance imaging (fMRI) and functional nearinfrared spec-
troscopy (fNIRS) to determine changes in brain hemodynamics in response to increased
metabolic demand [96].

2.3.3 Behavioral Reactions

Behavioral pain includes reactions to protect the body, and pain expression and com-
munication. Facial expressions, body language, and vocalizations are all examples of
behavioral reactions to pain. Furthermore, changes in daily behavior and social inter-
action are a common consequence of living with chronic pain [145].

Certain facial expressions are consistently associated with pain across a broad range
of clinical pain syndromes and experimental pain modalities. As the unpleasant stimu-
lus’s intensity increases, so does the amplitude of the facial emotions it generates. The
Facial Action Coding System (FACS) is often used to the study of facial expressions due
to its capacity to classify facial expressions in terms of elementary Action Units (AUs)
based on facial muscle activity. Other instances of pain behavior include paralinguistic
vocalizations (crying, moaning, groaning, gasping, and sighing) and voice quality traits
(amplitude, timbre, and hesitancy) seen during verbal self-report of pain [30].

Most pain-related activities serve to avoid more injury and alleviate present suffer-
ing. Among them are protective responses, clawing, writhing, and guarding. There is
no uniformity in the exact patterns of physical exercise identified by the medical com-
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munity. A study byWalsh et al [133], observed that body language, such as averting the
head or trunk, caressing a body part, bending the knees, or shrugging the shoulders,
might express pain. Another study in [142] examined three pain datasets and discov-
ered that during pain, people’s heads move differently, at different rates and in different
ranges than when they are not in pain. In addition, they found that comparable patterns
are more prevalent in the setting of acute pain than chronic pain.

2.4 Pain datasets

Representative data are required for creating and demonstrating the utility of a pain
identification system. The following sections discuss the recording and use of data for
pain recognition: first, pain stimulation. Second, data labeling and evaluation. Finally,
Publicly available datasets.

2.4.1 Pain stimulation

Data from people experiencing painmust be collected in order to build and evaluate pain
identification systems. This can be done on patients in clinical settings or on healthy
volunteers, as is usual in fundamental and pharmacological research. Anxiety, infirmity,
distraction, uncertainty, expectations, sadness, and drugs all have an impact on how pa-
tients perceive pain. For experimental design, it is important to use subjects that have
minimal bias and closely resemble the population of interest. This is why some datasets
contain healthy subjects instead of patients. The intensity, the frequency and duration
are controllable in this case.

Pain is a subjective experience that is difficult to measure. Pain can be described
as the unpleasant sensory and emotional experience associated with actual or potential
tissue damage. The most commonmethods of pain stimulation are mechanical, thermal,
electrical and chemical modalities. Concerning mechanical modality, the patient is typ-
ically exposed to a variety of pressures and vibrations in order to assess their sensitivity

18



Overview of automatic pain assessment

thresholds. Thermal modality consists of exposing the person to heat in order to assess
their sensitivity thresholds for different temperatures. The electrical method is a process
where electrodes are placed on the skin and an electric current is sent through them.
Finally, mechanical stimulation is a technique that uses a device that pushes or pulls
on the skin to cause pain. Otherwise, many patients in clinical conditions experience
chronic pain as a result of disease or damage that is not caused by external stimula-
tion. However, external stimuli or several essential procedures and activities typically
intensify pain sensation and reaction. For example, turning, central venous catheter
placement, and wound drain removal are all painful clinical procedures in critical care.

2.4.2 Data labeling

To determine ground truth, the methods could be divided into three categories: self-
report scales, observer evaluation or research design. Concerning self-report scales,
they are considered to be the gold standard to evaluate pain due to the subjective as-
pect of pain experience. Nonetheless, this method still limited when the patient can not
express his feelings. For example, in case of neonates, people with some kind of handi-
caps, or patients in coma. Regarding the second method, which is observer evaluation,
there are various scales adapted to the patients’ medical issue. Most of them focus on
the facial expressions, body movement and voice. However, this method is inadequate
if we consider the fact that not all patients exhibit their feelings, also the expression of
pain is different from one patient to another. The widely used observer scale in pain
detection is the Prkachin and Solomon Pain Intensity (PSPI). It is calculated by com-
bining the intensities of some facial action units (FACS). The action units (AUs) used
to for pain recognition are the following : brow lowerer (AU4), cheek raiser (AU6), lid
tightener (AU7), nose wrinkler (AU9), upper lip raiser (AU10) and eyes closed (AU43).
The Prkachin and Solomon Pain Intensity score expression is given by the equation 2.1.
Figure 2.3 gives a sample from UNBCMcMaster shoulder pain database, with facial AUs
and their intensity levels used to obtain PSPI score, equal to 12 in this case. The third and
last category to determine the ground truth is the study design. It consists on getting
pain scale based on preliminary experimental studies.

Pain = AU4 +max(AU6, AU7) +max(AU9, AU10) + AU43 (2.1)
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AU4 (i=4)

AU43 (i=1)

AU6 (i=3)

AU7 (i=4)

AU9 (i=2)

AU10 (i=3)

AU25 (i=4)

Figure 2.3: Sample from the UNBC-McMaster pain shoulder archive with a PSPI score
= 12. The score is obtained from facial AUs mentioned in the target face.

2.4.3 Available Datasets

Data is used to build machine learning models for automated pain recognition.Bellow,
examples of available datasets. The table2.1 summarizes and gives more of the available
datasets that were used in the literature.

• UNBC-McMaster Shoulder Pain

The lack of representative data is a major impediment to the deployment of a fully
functional automatic facial expression detection system. One solution is to nar-
row the context of the target application so that enough data is available to build
robust models with high performance. One such application is automatic pain de-
tection from a patient’s face. Researchers fromMcMaster University and the Uni-
versity of Northern British Columbia captured video of participants’ faces (with
shoulder pain) while performing a series of active and passive range-of-motion
tests on their affected and unaffected limbs on two separate occasions to facili-
tate this work. The frames in this dataset were coded using AU (Action Unit) by
certified FACS (Facial Action Coding System) coders [81]. The UNBC-McMaster
Shoulder Pain Expression Archive includes: Temporal Spontaneous Expressions:
200 video sequences capturing patients’ spontaneous facial expressions, Manual
FACS codes: 48,398 FACS coded frames, Self-Report and Observer Ratings: as-
sociated pain self-report and observer ratings at the sequence level and Tracked
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Landmarks: 66 point AAM landmarks [81]. Figure 2.4 presents examples of frames
in the UNBC-McMaster Shoulder Pain Expression Archive.

Figure 2.4: Examples of some of the sequences from the UNBC-McMaster pain shoulder
archive [81]

• BioVid Heat Pain

One of the most fundamental jobs in clinics is assessing acute pain. Normally,
doctors rely on the patient’s speech. Which is less trustworthy and valid for men-
tally ill patients. Furthermore, it cannot be used on people that can’t express
their feelings, such as newborns. However, there are various signs that suggest
discomfort. These include facial expressions, psychobiological measures such as
heart rate. Therefore, without patient’s self report, pain can be assessed with the
use of this information.

To enhance pain assessment methods, particularly automated assessment meth-
ods, the BioVid Heat Pain Database studies were experimented on 90 partici-
pants [143]. Those participants were subjects to experimentally induced heat pain
in four intensities. These four intensities ware triggered 20 times in a random or-
der. The highest temperature was sustained for 4 seconds for each simulation.
The time between stimuli was varied between 8 and 12 seconds. The experiment
was repeated twice : first, capturing face expression, second, using EMG sensors
on the face [143].

The dataset is divided into five parts: part A, contains short time videos of pain
stimulation without facial EMG. Part B, consists of sort videos of pain stimulation
with facial EMG. Part C, contains long videos of pain stimulation without facial
EMG. Part D, contains posed pain and other emotions. Finally, part E, consists
of emotion elicitation with video clips. All these parts contain frontal video and
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biomedical signals [143]. Figure 2.5 shows face samples from the BioVid Heat Pain
database, and a pain stimulation using a thermo at right arm.

 

Figure 2.5: Face samples from the BioVid Heat Pain database on the left, and Pain stim-
ulation using a thermo at right arm on the right [143]

• BP4D-Spontaneous

The BP4D-Spontaneous is a 3D video database of spontaneous facial expressions
in a broad sample of young adults between 18 and 29 years old. The FACS (Face
Action Coding System)was used to provide frame level ground truth. To stimulate
the emotions, cold pressor and emotion elicitation were used [154]. The Figure 2.6
gives samples of textured models, shaded models and original 2D videos.

 

Figure 2.6: Samples of textured models, shaded models, original 2D videos [154]

• BP4D+

The BP4D+ is a multimodal dataset. It consists of 140 participants. Data were
collected from a number of facial sensors, including high-resolution 3D dynamic
imagery, high-resolution 2D video, and thermal sensing; as well as touch phys-
iological sensors, which included electrical conductivity of the skin, respiration,
blood pressure and heart rate. [154] Figure 2.7 represents sample data from a par-
ticipant.
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Figure 2.7: Sample data sequences from a participant including original 2D texture (first
row), shaded model (second row), textured model (third row), thermal image (fourth
row), physiology signal(fifth row: respiration rate, blood pressure, EDA, heart rate) and
corresponding action units(last row) [154]

• MIntPAIN Database

The MIntPAIN database was collected by experiencing electrical pain on healthy
adults. The dataset contain 20 subjects with stimulated muscular pain. During
the data collection session, each individual displayed two assessments, each one
with 40 sweeps of pain stimulation. In each sweep, we collected two data points:
one for no pain (Label0) and one for pain (Label1-Label4) [48]. Each assessment
comprises 80 files from 40 sweeps in total. Each of the 80 trial files comprises three
folders containing RGB, Depth, and thermal video frames from a single stimula-
tion. Figure 2.8 presents faces from two subjects for all 5 pain levels for the three
different modalities.
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Figure 2.8: Sample data sequences from two participants. The frames in the first row
represent RGB faces. The second row contains Thermal faces. Finally, the third row
presents Depth faces [48].

2.5 Artificial intelligence and deep learning

In general, artificial intelligence refers to intelligence possessed by amachine as opposed
to a natural biological living form. A computer or a specific software on a machine may
be considered artificially intelligent if it can sense its environment and behave accord-
ingly to achieve a predetermined objective. Machine learning and deep learning are two
popular subfields of artificial intelligence (AI). Both of these subfields execute AI using
their own unique forms of learning algorithms. Artificial intelligence is widely used in
today’s applications, fore instance : object detection in self-driving cars, recommenda-
tion methods employed by YouTube and Netflix.

Machine learning (ML) is a branch of artificial intelligence that use algorithms to
examine data, learn from it, improve, and then make a decision or prediction about new
data. In machine learning, rather than manually generating code with a specific set of
instructions to execute a certain task, the machine is trained using data and algorithms
to perform the task without being instructed how to do so. Contrary to the conventional
method, which consisted of manually developing code with a precise set of instructions
to do the operation. Within the discipline of machine learning, there are several types
of learning algorithms that may be used to any type of data to accomplish any objective.
Examples of typical ML algorithms include: Decision Trees, Support Vector Machines
(SVM), K-Nearest Neighbor.
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Dataset Features Stimuli Subjects Classes

UNBC 2011[81] Facial expression RGB Natural shoulder pain 129 Shoulder pain
patients (63 males, 66 females) 0–16 (PSPI) and 0–10 (VAS)

BioVid 2013[143]
-Video: Facial expression RGB
-Biopotential signals (SCL,

ECG, sEMG, EEG)

Heat pain at right forearm
thermode 90 Healthy 5 (no pain, 4 levels of pain)

BP4D-Spontaneous
Database (BP4D) 2014[154] Facial expression Cold pressor test with left

arm 41 healthy 8 classes of pain

BP4D+ 2016 [154]

Facial expression
-EDA, heart rate,

respiration rate, blood
pressure

Cold pressor test with left
arm 141 healthy 8 classes of pain

SenseEmotion 2016 [130]

-Facial expressions:
-Biosignals
-ECG, EMG

-GSR
-RSP
-Audio

Heat pain 40 heathy 5 (no pain, 4 levels of pain)

EmoPain 2016 [6]
-Audio, Facial expressions

-Body movements
-sEMG

Natural while doing
physical exercises

22 chronic low back
pain

2 for face
6 for body behaviors
combined: binary

MIntPAIN 2018 [48] Facial expression:
RGB, depth, Thermal Electrical pain 20 healthy 5 classes (0–4)

X-ITE pain 2019 [144]

-Audio, Facial expressions
-ECG, SCL, sEMG

(trapezius, corrugator,
zygomaticus)

Heat and electrical 134 healthy adults 3 pain levels

COPE 2005 [131] Facial expression
heel

lancing
for blood collection

26 neonates 5 pain levels

Table 2.1: Summary of Pain available databases.

Deep learning is a subfield of machine learning that deploys artificial neural net-
works (ANNs). These algorithms are inspired by the structure and function of the hu-
man brain to learn from data. The ANNs were first introduced by McCullouch and
Pitts [84]. Below, more details about deep learning.

2.5.1 Deep learning

Deep learning (DL) models, as defined by Goodfellow et al [42], consist of organized lay-
ers that receive input from the previous layer and transmit it to the next one. As cited
before, deep learning uses artificial neural networks. An ANN is a computer system
consisting of a collection of interconnected components known as neurons that are ar-
ranged into what we refer to as layers. These layers are linked to each other by weights.
Figure 2.9 shows a general architecture of an ANN. The first layer in a network is known
as the input layer, the final layer is known as the output layer, and any levels in between
are known as hidden layers. The network is said to be deep if it contains several hidden
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layers. There are different types of layers. For instance, dense layers convolutional lay-
ers, pooling layers, etc. Each link between nodes is assigned a weight. Every weight is
a representation of how strongly two nodes are connected to one another. Given that
each node is related to all the nodes in the layer before, the sum of these weights is
passed then to an activation function. There are several activation functions, each of
which transforms data differently and depending on the contexts. The following are
some of the most well-known ones: ReLu, Sigmoid and Softmax.
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u
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Weight Node

Node

Figure 2.9: An example of an artificial neural network with one hidden layer.

Figure 2.9 presents an example of a convolutional neural network (CNN). The most
important layers of a CNN are the convolutional layers, they are also. These layers’
main role is to detect patterns in images using filters. An image may contain several
patterns. By patterns, we mean edges, shapes, colors, etc. Therefore, one filter is able
to detect one type of patterns. The network gets more complex and sophisticated when
it gets deeper. In further layers, the filters may be able to recognize particular items
like eyes, ears, hair, rather than simple shapes and edges. Convolution involves slid-
ing the filter over the image’s height and width to compute the dot product of each
filter element with the input at each pixel. An illustration of this convolution proce-
dure is shown in Figure 2.10. By convolving the filter with the green component of
the input image, we can determine the first entry of the activation map (highlighted
in Figure 2.10). With this procedure repeated for each pixel in the input picture, the
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activation map is produced. Activation maps are created for each filter in the convolu-
tional layer, and they are stacked along the depth axis to produce the final volume of the
convolutional layer’s output. All the activation map’s nodes might be interpreted as the
neuron’s output. Consequently, each neuron is linked to a tiny local region in the input
picture, and the size of the region corresponds to the size of the filter. In an activation
map, all the neurons share the same settings. Because of the convolutional layer’s local
connection, the network is driven to train filters that have the best response to a local
area of the input. The initial convolutional layers capture the low-level features (e.g.,
lines) of images, while the later layers extract the high-level features (e.g., shapes and
specific objects) [93].

7 2 3 3 8

4 5 3 8 4

3 3 2 8 4

2 8 7 2 7

5 4 4 5 4

1 0 -1

1 0 -1

1 0 -1

6 -9 -8

-3 -2 -3

-3 0 -2

Input image Filter Activation map

Figure 2.10: Example of convolutional process

Convolutional layers’ feature map output is limited by the fact that it retains the
specific input feature locations. In other words, the feature map will change depending
on how the feature is positioned in the input picture. Minor adjustments to the original
image, such as cropping, rotation, and shifting, can generate different feature maps of
the same image. Therefore, the common approach used to avoid this problem is the
use of a pooling layer. So, following the convolutional layer comes a new layer called
the pooling layer. Particularly, after the application of a nonlinearity (e.g. ReLU) to the
feature maps generated by a convolutional layer. Implementing the layers of a convo-
lutional neural network often involves adding a pooling layer after the convolutional
layer, and this process may be repeated several times in a single model. Pooling en-
tails choosing a pooling process, similar to applying a filter on feature maps. The size
of the pooling operation or filter is less than the size of the feature map. The pooling
process typically performs two functions: Average Pooling and Maximum Pooling (or
Max Pooling). The first one consists of calculating the average value of each patch of
the feature map. The second one, calculates the maximum value for each patch of the
feature map [93]. Figure 2.11 shows an example of max-pooling operation.

Concerning the fully connected layer, each neuron is linked to every neuron in the
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Figure 2.11: Example Max-pooling operation

layer underneath it. This layer represents the final, high-level classification rationale. Its
size is proportional to the number of classes, and each neuron represents the likelihood
that the input belongs to that class. This layer examines the preceding layer to identify
which attributes relate most likely to certain classifications.

2.5.2 Training and classification

The training of a neural network is its most crucial step. Before being trained, a CNNhas
no preexisting knowledge or understanding; its weights and filter values are completely
arbitrary. While training, the computer will need to adjust these settings to reduce loss
and improve classification precision. At each iteration, the training algorithm executes
a series of steps. Four steps: Forward Propagation, backward pass, loss function calcu-
lation, and weight value update.

In neural network development, the quality of the training data is critical. There are
three sets of images, the first one is the training set, the second one is the validation set
and the third one is the test set. The first set is utilized to train the model. The model
will be trained repeatedly on the same data from the training set, enabling it to gain
a better knowledge of the data’s features with each epoch. Separate from the training
set, the validation set is a collection of data used to verify our model during training.
Information gleaned from the validation process might be used to change and fine-tune
the hyperparameters we’ve set. Furthermore, a validation set is required to determine
whether our model has been overfit to the training set. After training, the model will
be evaluated using the test set. The test set is distinct from both the training set and the
validation set.
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The neural network receives training data in batches. In this context, "batch size"
refers to the number of images that CNN processes before updating the parameters.
Each epoch represents the time at which all batches have traversed the network suc-
cessfully. Training may go as long as required by modifying the number of epochs (the
number of times training data is employed throughout the training process) or by ap-
plying alternative ending conditions. At the start of each epoch, all training data are
combined and presented to the model in new batches. Each of the training phases will
be described in further detail below.

• Forward Propagation: We feed data into the model while training an artificial
neural network. This data is propagated through the model via forward propa-
gation, where we continually calculate the weighted sum of the preceding layer’s
activation output with the relevant weights and then feed this total to the subse-
quent layer’s activation function.

• Optimization Algorithm: An optimization procedure is used to get the optimal
values for the weights. The selected algorithm is often referred to as an optimizer.
Stochastic gradient descent, or SGD for short, is the most well-known optimizer.
SGD’s objective is to minimize a defined function, often known as a loss function.
Therefore, SGD updates the model’s weights to bring this loss function as close
to its minimum value as possible.

• Loss function: With each iteration, SGD attempts to bring the loss function
down to a minimum by adjusting the network’s weights. Therefore, SGD updates
the model’s weights to bring this loss function as close to its minimum value as
possible. There are several loss functions. For instance, Cross Entropy and Mean
Square Error (MSE). The choice of the loss function depends on the objective of
the model.

• Backpropagation : When the forward propagation reaches the output layer, the
loss function is calculated and the gradient descent then works to minimize this
loss. To achieve this minimization, gradient descent first determines the gradient
of the loss function and then adjusts the network weights to account for it. To
achieve this minimization, gradient descent first determines the gradient of the
loss function and then adjusts the network weights to account for it. Gradient
descent employs backpropagation to do the actual gradient computation.
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2.5.3 Computer vision

Computer vision stands out among the numerous fields where artificial neural networks
have been extensively implemented and proven useful. Computer vision (CV) is con-
cerned with providing computers the ability to analyze and understand visual data such
as videos and images. Simply expressed, this is the method of giving computers vision
skills comparable to human eyes. Much of the analysis and processing of digital visual
data is automated with the help of computer vision. Figure 2.12 presents some computer
vision problems that have benefited greatly from the use of deep learning algorithms.

Image 

Classification
Object 

Detection
Image 

Segmentation

Image 

Generation

Classify images into pre-
defined categories

Identify pre-defined
objects within images

Partition images into
pre-defined segments

Generate images based
on pre-defined categories

Car Bus
Building Car

Figure 2.12: Examples of computer vision tasks

Computer vision consists of three fundamental steps: first, image acquisition. Video,
photographs, or 3D technologies may be used to gather images in real-time, even in
massive quantities, for the purpose of analysis. Second, image processing. Deep learn-
ing models automate a substantial portion of this procedure; yet, the models are often
trained using thousands of tagged or otherwise pre-identified images. Finally, image
understanding. In this concluding interpretive step, an object is either identified or
classified.
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2.6 Overviewof automatic pain assessment approaches

In the first part of this section, we will provide an overall summary of the existing
studies for automated pain identification. Next, we provide an overview of the present
techniques for the analysis of facial expressions in order to estimate pain from the face.

2.6.1 Automatic Pain Recognition

With the increasing need for regular and consistent monitoring of pain in clinical set-
tings and at home, automated analysis of pain is a new topic of artificial intelligence
study. There are a number of newly developed approaches for automating the identi-
fication of pain by analyzing behavioral or physiological pain signals, or both. These
approaches were further divided into the two categories shown in Figure 2.13: single
model techniques and multimodal pain analysis.

Automatic pain recognition

Single model Multi-model

Physiological signal Behavioral signal

Skin conductance 

(SC)

Brain activity

Blood pressure

Heart rate (HR)

Pupil diameter

Facial Expression

Body Movement

Vocalization

Figure 2.13: Diagram of Automatic Pain assessment methods in two blocks

A basic pain-recognition structure depends just on a single parameter to determine
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an individual’s pain degree. Physiological and behavioral signs are taken into account.
Firstly, to assess pain using physiological measurements is to extract pain-related fea-
tures from the physiological responses of patients. Variations in vital signs (such as a
rapid heartbeat) and brain hemodynamic activity are two examples of these physiolog-
ical responses (see Figure 2.13). For instance, Electrocardiogram (ECG), Blood Volume
Pulse (BVP), and Skin Conductance Level (SCL) are some of the physiological indica-
tions that an external electrical input might induce. Based on these various physiologi-
cal signals, Y. Chu et al [28] devised a new approach for identifying the amount of pain.
Their dataset was generated by gathering information from (six-subjects for 7-days).
The training set comprised 75% of the samples, whereas the testing set comprised the
remaining 25%. They utilized a genetic algorithm (GA) to extract features and principal
component analysis (PCA) to minimize the number of extracted features (PCA). They
ultimately opted to use linear discriminant analysis (LDA) as a classifier, and then com-
pared its performance to that of KNN and SVM. In Lopez-M. et al [76] study, a method
for continuously assessing pain intensity with high temporal accuracy based on skin
conductance autonomic data was developed and assessed using the BioVid Heat Pain
Dataset [12]. In order to gather measures that more correctly characterize the activity of
the sympathetic sudomotor nerve, the LSTM-NN approach begins by deconvoluting the
signal into its tonic and phasic components. Then, features extracted from overlapping
windows within the deconvolved data are fed into a regression LSTM recurrent neural
network. Level 4 reflects the pain tolerance threshold in the dataset. They also explored
metrics based on the variability of the heart rate using a point process approach, but
found the skin conductance data to be significantly more accurate.

The second type of pain analysis using single model, is the one based on behav-
ioral measures. Which is the examination of pain based on behavioral indicators such
as facial expression, vocalizations, physical movements, changes in interpersonal inter-
actions, mental state change, and activity patterns. This article discusses the methods
currently available for decoding behavioral data into classification-relevant features. In
this section, we focus on approaches that used vocalizations and bodymovement. Facial
expressions’ based approaches will be detailed in the next section. In the work of Olug-
bade et al [92], they aim to explore if pain levels can be recognized by assessing body
movement quality during two functional physical activities (sit-to-stand and complete
trunk flexion). Using the feature optimization and machine learning methods, it was
possible to automatically identify between those with low level pain, those with high
level pain, and control participants during physical activity. Support Vector Machines
yielded 94% accuracy for complete trunk flexion and 80% accuracy for the sit-to-stand
transition. The most promising results came from feature set optimization methods,
with Support Vector Machines yielding 94% accuracy for complete trunk flexion and
80% accuracy for the sit-to-stand transition. Due to the association between depres-
sion and pain, the authors included depression scores to a standard questionnaire in
order to better differentiate between healthy controls and those with pain when uti-
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lizing Random Forests. In this study, the authors used the EmoPain dataset. In regard
to the employment of vocalizations, this modality was rarely utilized alone. However,
the utilization of vocalizations signals includes newborn cries. Vempada et al [92] pre-
sented a time-domain method for recognizing distress cries. The recommended method
was evaluated using 120 cry corpuses, including 30 from pain, 60 from hunger, and 30
from a wet diaper (30 corpuses). The age of newborns can range from 12 to 40 weeks.
Each corpus was recorded using a Sony digital recorder with a 44.1 kHz sample rate. At
the stage of feature extraction, two features were computed: 1) The average square of
the sample values across a suitable time frame, known as the short-time energy (STE),
and 2) The duration of the sobbing section’s pauses. A portion of these characteristics
were applied in the development of SVM, while the remaining were used to evaluate
its performance. Pain cries were recognized by 83.33%, hunger cries by 27.78%, and wet
diapers by 61.11%. An overall rate of 57.41% was found for recognition.

The second category of automated pain recognition approaches is multi-model tech-
niques (Figure 2.13). Using this strategy for pain detection, scientists attempt to utilize
many physiological and behavioral signs. Combining facial and physiological signals
is a novel multi-model approach to pain identification (ECC and SC) proposed in [78].
In this work, the major purpose is to personalize pain estimation, by categorizing pa-
tients into various profiles instead of considering each individual. Then, the authors
moved to a technique known as multitask NN (MT-NN), which employs a system in
which distinct profiles are connected with distinct activities. Their research utilized the
publicly available BioVid Heat Pain database. Better performance was seen for high
clusters (C = 4), indicating that additional research utilizing a higher number of clus-
ters is required. Kächele et al [60] combined videos of people’s faces with physiolog-
ical indicators such as electromyography, electrocardiography, and skin conductance.
Implementing the concept of employing the system in an adaptable manner to evalu-
ate unidentified individuals based on unlabeled data, their technique entails evaluating
unidentified individuals. Consequently, they relied on the BioVid Heat Pain database
and applied a multi-stage ensemble-based classification algorithm. NNs (Neural Net-
works) were trained with three distinct inputs: the prediction of one-to-one classifiers,
the continuous pain-level estimation of the regressor, and the variance of a bagged en-
semble of random forests. Then, by using a random regressor, we may employ NNs to
calculate sample confidence. After testing numerous input combinations for the NN, the
best correlation coefficient and RMSE values were 0.183 and 0.347, respectively. Individ-
ual variation in response to painful stimuli demonstrated that investigating adaptation
is challenging and requires additional research.

In addition, Thiam et al. [123] used the publicly available BioVid Heat Pain dataset
(Part A) to study many CNN topologies. The signal modalities utilised were electronic
data acquisition (EDA), electrocardiography (ECG), and electromyography (EMG). They
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conducted experiments with both 1D and 2D network input. Multiple designs for deep
fusion were also presented and evaluated. Their respective binary classification results
were 84.57% and 84.40%. However, C. Wang et al. [135] use deep learning to identify
characteristic chronic pain behaviors. Their primary focus is on analyzing the defen-
sive actions taken by LBP sufferers when they carry out five different exercises. They
drew on a preexisting database of sEMG and mobility data (emo-pain data set). Two
different types of recurrent neural networks, stacked LSTM and dual-LSTM, were sug-
gested in this research. They calculated the angles and energies of Mockup data based
on just five activities. Corrected sEMG data was applied to raw data on muscle activity
to eliminate noise and improve readability. The information was divided using a sliding
window. They ran separate tests for each activity to find the optimal window size, and
then analyzed and selected that size based on how well it overlapped with the others
at a set overlapping ratio of 75%. Therefore, they concluded that a window of duration
equal to three seconds is optimal for detecting the vast majority of actions. They also
discovered that the best results may be achieved by combining the two enhancement
strategies. When everything was said and done, their LSTM Networks performed bet-
ter than a regular neural network by a mean F1 score of 0.815. However, there will be
a performance drop as a result of the generalization, and this is an issue that must be
addressed.

2.6.2 General Architecture of Automatic Pain Detection System

In most instances, automatic pain identification systems are multi-step, with pain recog-
nition occurring at each stage (input, processing, and output). These steps are frequently
implemented using machine learning and computer vision techniques. Beginning with
the input step, which describes data collection, Following this, the system entered the
processing phase, where feature selection and extraction were performed feature-by-
feature. In addition to computing the accuracy rate and receiving the final result, the
output stage is responsible for picking the right classifier and obtaining the final result.
In order to give insight on the general architecture of the automated pain identification
system, each of these phases is described in detail below and in Figure 2.14.

The initial phase of the automatic pain identification system focuses on the individ-
ual’s physiological and behavioral responses to pain, which are discussed previously in
2.6.1. Digital cameras, cellphones, andmicrophones collect data on non-physical signals
(such as behavioral patterns) and contact sensors (such as wristbands, caps, spectacles,
t-shirts, and rings). Next, due to the fact that pain information, once acquired, may not
be in a standard format or may be affected by noise, occlusion, and other environmental
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Figure 2.14: General Architecture of Automatic Pain Detection System

factors, preprocessing is an essential step in the automatic pain recognition technique.
Before extracting features from the data, it must be normalized and enhanced.The, the
most significant phase of an automatic pain recognition system is believed to be the
extraction of features. It acts similarly to zooming in on the general feature space, col-
lecting the features that are most closely related, and generating a new space with fewer
dimensions that is entirely distinct from the initial space. At this stage, the approach
utilized to identify pain will determine the effectiveness of the automatic pain detection
system. When the input data is too large to be processed in its entirety, feature selection
is the process of evaluating a subset of the original features. The selected features hold
the essential information from the input data, allowing the ideal goals to be attained
with less training time, less dimensionality, and less overfitting by using only the es-
sential information from the input rather than the complete original data. Finally, upon
completion of the Automatic Pain Recognition System, a classifier is employed to sort
the data. After the pain-relevant elements have been added to the input, it now begins to
determine whether pain is present. Here, any ML approaches, such as K-Nearest Neigh-
bors, Support Vector Machine, Decision Trees, Logistic Regression, and Random Forest,
as well as the most popular classification models, can be utilized (Binary, Multi-class,
Multi-label, and Imbalanced).
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2.6.3 Automatic Pain Recognition from Face

Since facial expressions are such a reliable indicator of pain, all observer-based pain
assessment techniques utilize them. Since the discovery of algorithms for automati-
cally evaluating facial expressions, computer vision researchers have sought to apply
this knowledge to the problem of automatically identifying pain based on facial ex-
pressions. Specifically, this debate focuses on cutting-edge facial expression-based pain
recognition techniques. The process flow for pain identification using facial expressions
is depicted in Figure 2.15. These techniques’ input data could be categorized as frames,
time windows, or entire videos. Also, whether it contains RGB or thermal and depth
images. In manymethods, feature extraction is still an essential step. These features can
be divided into three main categories: geometric, textural, and learned. The learning
methods are the final step in the facial expression-based pain recognition pipeline. We
will list methods in the order in which they were developed.

Data acquisition Preprocessing
Feature

extraction
Feature

Selection
Evaluation

Still image

Time window

Filtering

Normalization

Face 
detection

Geometric

Textural

Hybrid

Generic

Mutual

Adaboost

SVM-SVR

KNN

CNN

RNN

Figure 2.15: Pain recognition from facial expressions general pipeline. It includes exam-
ples of used methods in each step.

2.6.3.a Input Data

So far, the greatmajority of pain identificationmethods have evaluated facial expression-
containing camera photos. As mentioned in Section 2.3, facial expressions play an im-
portant role in transmitting pain to others; thus, the majority of early research on auto-
matic pain identification focused on this modality. The introduction of the first public
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database for pain identification, the UNBC-McMaster database, which contains facial
photos with comprehensive annotation but no othermodalities, strengthened this trend.
The approaches will be divided into two groups depending on the input data type: the
approaches that used frames and studies that used time windows.

Chen et al. [27] used spatial features for pain estimation using frames from the
UNBC-McMaster dataset. In the work of Egede et al. [34], the frames of the same dataset
were used. The same features have been extracted from the UNBC-McMaster dataset
in the works: [77] [102][136]. Works that used the BioVid database for pain estimation
from facial expressions only, we can cite Werner et al [139] that used spatial features to
train a Random Forest model. In another work by Yang et al [151], they employed spatial
features extracted from both UNBC-McMaster and BioVid datsets’ frames. Concerning
approaches that used times windows, we can cite Lo Presti et al [97] that used Han-
kel of Haar & Gabor to extract features from time windows using the UNBC-McMaster
dataset. In the study by Thiam et al [122] several features were extracted from the
video channel and put into a hierarchical fusion architecture in an attempt to increase
the overall efficiency of the system. More approaches are cited in table reefff.

2.6.3.b Feature extraction

Images and sequences of images of the face are used to extract facial features that are
utilized to characterize the facial shape and appearance, or the changes to these charac-
teristics caused by facial emotions. These qualities may be roughly classified as either
spatial or spatio-temporal. The face’s shape and texture are examples of spatial charac-
teristics that may be utilized to characterize an image in a definite way. In a sequence
of frames, facial shape and appearance may be observed to change over time, and these
differences are represented using spatio-temporal properties. As seen above, the spatial
features take data frames as input, while the spatio-temporal features take time win-
dows. These features consist of Geometric and textural features. Below, approaches
categorized into three groups based on features type: Geometric features, Textural fea-
tures and Hybrid features (fusion of both geometric and textural features).

Geometric features characterize the form of the face using point-based shape de-
scription techniques. They specify the locations of points on the head, including the
eyes, eyebrows, cheeks, nose, lips, chin, and/or facial border. Geometric characteristics
might be either the specific positions of these facial feature points or higher-order fea-
tures such as distances and angles between them. Rarely were geometric characteristics
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employed alone. Meng and Bianchi-Berthouze [87], Ghasemi et al. [40], Aung et al. [6],
Liu et al. [73] and Lopez-Martinez et al. [77] used the facial landmark positions. Romea-
Paredes et al. [103] used facial landmark distances. In addition to facial landmark dis-
tances, Niese el al. [91] used also angles. However Zafar and Khan [152] added facial
landmarks positions.

Concerning spatio-temporal features, they describe changes in spatial features over
time. In this case, the geometric features derived from a series of images were summed
up using mathematical and statistical procedures. Lo Presti and La Cascia [74] used
Hankel matrices based on facial landmark positions and distances. Tsai et al. [126] em-
ployed statistical features from sequence of facial landmark distances and quadratic
polynomial coefficients of mouth shape.

Textural features describe the appearance of the face and facial features. Textu-
ral characteristics are creases and folds that occur on or around the facial structure.
Intensity of individual pixels is one example of a texture feature used in the litera-
ture; other examples include manually developed or learned features. Widely used ex-
amples of hand-crafted textural feature descriptors include Gabor filters, Local Binary
Patterns (LBP), and the Histogram of Oriented Gradients (HOG). Brahnam et al. [20],
Gholami et al. [41] used pixel intensities. Littlewort et al. [72] [71], Roy et al. [104],
Sikka et al. [112] used Gabor filters. Brahnam et al. [19] and Aung et al. [6] used the
Discrete Cosine Transform (DCT). The Local Binary Pattern (LBP) features were used
in [90] [25] [106]. Chen et al. [26] used the Histogram of Oriented Gradients (HOG)
around facial landmarks.

Furthermore, three Orthogonal Planes (TOP) were used to extract spatio-temporal
textural characteristics like LBP-TOP andHOG-TOP, with one of the planes covering the
temporal dimension that encompasses an ordered succession of frames throughout time.
In this study, Yang examined the efficacy of several spatio-temporal textural character-
istics, including LBP-TOP, LPQ-TOP, BSIF-TOP, and their combinations. Chen et al. [26]
used theHOG fromThreeOrthogonal Planes (HOG-TOP). Kaltwang et al. [62] employed
the LBP from Three Orthogonal Planes (LBP-TOP). Yang et al. [151] used a combination
of LBP-TOP, LPQ-TOP and BSIF-TOP. Zhou et al. [156], Egede et al. [34] and Tavakolian
and Hadid [119] used deep learned spatio-temporal features.

Hybrid features present the combination of both Geometric and textural features.
The use of multiple features involves the employment of feature fusion. Which is ei-
ther an early or late fusion. For spatial hybrid features, Hammal et al. [47] and Ham-
mal and Kunz [46] used facial landmarks distances, nasal root wrinkles and context
variable. Zhao et al. [155] used facial landmark positions with LBP and Gabor filters.
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These positions were combined with pixel intensities to extract features in the works
of Ashraf et al. [5], Lucey et al. [80] [81] [82]. Egede et al. [34] used the facial land-
mark positions, distances, angles and HOG features. However, Werner et al. [143] [140]
used statistical features from sequence of head pose, facial landmark distances andmean
gradient magnitudes. Kachele et al. [61] used LBP-TOP, statistical features from facial
distances.

Table 2.2 presents a summary of spatial and spatio-temporal features extracted from
facial images for automatic pain detection.

2.6.3.c Recognition models

Deep learning is used directly to evaluate the level of pain based on facial expressions.
In Martinez et al. [77] study, estimating pain using the values reported by individuals
on a visual analog scale (VAS) is one way of reducing these differences. Their train-
ing program consists of two parts. Estimating Prkachin and Solomon pain intensity
(PSPI) from face images is the initial task that is learned using recurrent neural networks
(RNNs). The individual VAS was then calculated based on the output of the concealed
conditional random fields (HCRFs). Compared to methods that weren’t personalized, a
single-sequence test did the best, and its score was the highest of any other method.

Recent research [102] utilized deep learning to extract pain-related information from
facial expressions. The three-step method they employ is as follows: Initially, convolu-
tional neural networks are used to extract features from VGG Faces (CNNs). A LSTM
is then trained using the feature map’s output. A special RNN utilized for pain estima-
tion in binary form (pain, no pain). Their area under the curve (AUC) performance of
93.3%was the greatest of all previous studies that evaluated their methods on the UNBC-
McMaster dataset. In addition to being appropriate to their specific goal, this method
may also be applied to the larger challenge of emotion recognition in faces. When their
model was used with the Cohn Kanade Plus database of facial expressions, it achieved
good results (AUC = 97.2%).

Similarly, Egede, Valstar, and Martinez [34] developed a pain estimating model that
used both machine-learned and hand-crafted characteristics. Their motivation was the
difficulty of accumulating a large enough data set for pain estimation to utilize deep
learning effectively. So, scientists gave a CNN an image of a face and instructed it to
acquire particular characteristics based on data collected manually. Their appearance,
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geometry, and movement are their features. A linear regression model based on both
sets of data was then used to classify individuals’ pain reports. Their root-mean-square
error (RMSE) and Pearson correlation (CORR) were better than those of cutting-edge
methods.

InWang et al. [136] presented an alternative solution to the problem of deep learning
on restricted data sets. They refined a smaller pain dataset using the WebFace dataset,
which comprises 500,000 photos of human faces. As a further step, they utilized a re-
gression loss that was regularized with the center loss to adapt the scenario as if it were
a regression problem. Instead of evaluating their performance with unbalanced data,
different metrics were offered. Weighted measures (mean absolute error (MAE): 0.389,
mean squared error (MSE): 0.804, and Pearson’s correlation coefficient (PCC): 0.651) and
newly proposed metrics (both 0.804 and 0.651) demonstrate that this technique outper-
formed state-of-the-art methods (weighted MAE 0.991, weighted MSE 1.720).

In contrast to previous methods, the cumulative attribute (CA) methodology was
utilized in [58] as an efficient method for correcting the imbalance of data in datasets
for pain measurement. Two stages of a CNN with cumulative features are utilized in
this study. A trained CNN outputs the cumulative attribute vector in the initial step.
Training the regression model to obtain the actual result is the second part. Their re-
search examined a data set of pain estimations and determined the age. In CA–CNN
trials, their pain estimation findings were more precise than in earlier tests. In addition
to employing a CA layer trained with a log-loss function, it significantly outperforms
a CA layer trained with Euclidean loss. Their solution is advantageous since it lever-
ages the CNN framework without any additional annotations. However, constructing
an annotated dataset for pain evaluation is essential for solving the vast majority of
classification challenges.

In the work proposed by Haque et al. [48] created a new database including RGB,
depth, and thermal (RGBDT) images of the face for detection of pain levels in sequences.
Their technique to elicitation differs from earlier datasets produced by electrically stim-
ulating healthy individuals. Twenty participants participated in the gathering of data to
establish pain recognition based on five degrees of discomfort (0 for no pain and 4 for
severe pain). This approach proposes a model that uses spatio-temporal features and
deep learning. First, they preprocessed the video frames by cutting just the facial area
according to the approach they had previously presented in [14] for RGB photos. Then,
they cropped additional depth and thermal pictures using homography matrix codes.
Following this, they used deep learning based on two distinct methodologies for sep-
arate modalities or their integration. The suggested approach is mostly based on two
phases. First, they used 2D-CNN for extraction of frame information and detection of
pain. LSTM was then utilized to investigate the temporal relationship between frames
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and sequence-level pain recognition.

2.6.4 Conclusion

To summarize, AI and deep learning have the potential to revolutionize pain assessment
in medical settings. AI-based systems can accurately identify and manage pain in pa-
tients by using facial images and other related data. This chapter has looked at various
applications of AI in pain assessment, such as emotion recognition, medical diagnosis,
and automatic pain recognition from the face.

However, more research is required to optimize these systems and ensure their
dependability and accuracy. We can expect to see more innovative and effective ap-
proaches to pain assessment in the future as AI and deep learning continue to advance.
The following chapter delves into deep learning architectures proposed for estimating
pain level from facial expressions.
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Approach
Temporal
information

Features Objective

Geometric Features

Spatial Features

Meng and Bianchi-
Berthouze [87] no

Facial landmark positions

pain no pain

Aung et al. [6] no pain no pain
Liu et al. [73] no continuous pain intensity estimation
Lopez-Martinez et al. [77] yes continuous pain intensity estimation
Ghasemi et al. [40] yes classification of pain intensity
Romea-Paredes et al. [103] no Facial landmark distances continuous pain intensity estimation

Niese el al. [91] no Facial landmark distances
and angles pain and emotions

Zafar and Khan [152] no Facial landmark distances,
angles and positions pain no pain

Staptiotemporal
Features

Lo Presti and La Cascia [74] yes
Hankel matrices based on
facial landmark positions
and distances

pain in sequence

Tsai et al. [126] yes

statistical features from sequence
of facial landmark distances and
quadratic polynomial coefficients
of mouth shape

classification of pain intensity

Textural Features

Spatial Features

Brahnam et al. [20] no pixel intensities pain no pain
Gholami et al. [41] no pain no pain
Littlewort et al. [72] yes

Gabor filters
genuine vs posed pain

Roy et al. [104] no classification of pain intensity
Sikka et al. [112] yes pain is sequence
Brahnam et al. [19] no Discrete Cosine Transform (DCT) pain no pain
Aung et al. [6] no pain no pain
Nanni et al. [90] no

Local Binary Pattern (LBP)
Pain states’ classification

Chen et al. [25] no pain no pain
Rudovic et al. [106] no pain intensity estimation

Chen et al. [26] yes Histogram of Oriented Gradients
(HOG) around facial landmarks pain in sequence

Staptiotemporal
Features

Chen et al. [26] yes HOG from Three Orthogonal
Planes (HOG-TOP) pain in sequence

Kaltwang et al. [62] yes LBP from Three Orthogonal
Planes (LBP-TOP continuous pain intensity estimation

Yang et al. [151] yes combination of LBP-TOP,
LPQ-TOP and BSIF-TOP pain no pain

Zhou et al. [156] yes
deep learned spatio-temporal features

continuous pain intensity estimation
Egede et al. [34] yes continuous pain intensity estimation
Tavakolian and Hadid [119] yes continuous pain intensity estimation

Hybrid Features

Spatial Features

Hammal et al. [47] yes facial landmarks distances, nasal
root wrinkles and context variable

pain and emotions
Hammal and Kunz [46] yes pain and emotions

Zhao et al. [155] yes facial landmark positions with LBP
and Gabor filters continuous pain intensity estimation

Ashraf et al. [5] no facial landmark positions and
pixel intensities pain no pain

Lucey et al. [80] no facial landmark positions, distances,
angles and HOG features

pain no pain
Egede et al. [34] yes continuous pain intensity estimation

Staptiotemporal
Features

Werner et al. [143] no
statistical features from sequence of
head pose, facial landmark distances
and mean gradient magnitudes

continuous pain intensity estimation

Kachele et al. [61] yes LBP-TOP, statistical features from
facial distances continuous pain intensity estimation

Table 2.2: Summary of spatial and spatio-temporal approaches classified according to
features type. The use of temporal information in the input and the objective of each
approach are also highlighted in the table.
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3.1 Introduction

The human face is a rich source for non-verbal information regarding our health [7]. Fa-
cial expression [16] can be considered as a reflective and spontaneous reaction of painful
experiences. Most previous studies on facial expression are based on the Facial Action
Coding System (FACS), which describes expressions by elementary Action Units (AUs)
based on facial muscle activity. More recent works have mostly focused on the recog-
nition of facial expressions linked to pain using either conventional machine learning
(ML) or deep learning (DL) models. The studies showed the potential of conventional
ML and DL models for pain estimation, especially when the models are trained on large
fully annotated datasets, and tested under relatively controlled capturing conditions.
However, the accuracy, robustness, and complexity of these models remain an issue
when applied to real-world pain intensity assessment.

This chapter provides a comprehensive analysis on automatic pain intensity as-
sessment from facial expressions using Off-the-Shell CNN architectures, including Mo-
bileNet, GoogleNet, ResNeXt-50, ResNet18, andDenseNet-161. The choice of these CNN
architectures is motivated by their good performance in different vision tasks, as shown
in the ImageNet Large Scale Visual Recognition Challenge [68]. These architectures
have been trained on more than a million images to classify images into 1000 object
categories. We use these networks in two distinct modes: stand-alone mode or fea-
ture extraction mode. In stand-alone mode, the networks are used for directly assessing
the pain. In feature extraction mode, the features in the middle layers of the networks
are extracted and used as inputs to classifiers, such as SVR (Support Vector Regres-
sion) and RFR (Random Forest Regression). We perform extensive experiments on the
benchmarking and publicly available database called UNBC-McMaster Shoulder Pain
Expression Archive Database [81], containing over 10,783 images. The extensive exper-
iments showed interesting insights into the usefulness of the hidden layers in CNN for
automatic pain estimation from facial expressions.

The main contributions of this chapter include:

• We provide a comprehensive analysis on automatic pain intensity assessment
from facial expressions using 5 popular and Off-the-Shell CNN architectures.

• Wecompare the performance of these different CNNs (includingMobileNet, GoogleNet,
ResNeXt-50, ResNet18, and DenseNet-161).

• We study the effectiveness of the hidden layers in these 5 Off-the-Shell CNN ar-
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chitectures for pain estimation by using features as inputs to two classifiers: SVR
(Support Vector Regression) and RFR (Random Forest Regression).

• Weprovide extensive experiments on a benchmarking and publicly available database
called UNBC-McMaster Shoulder Pain Expression Archive Database [81], con-
taining 10,783 images.

The rest of the chapter is organized as follows. Section 3.3 presents the different
CNN architectures that are considered in this work, as well as our proposed framework.
Section 3.4 describes the conducted experiments and the obtained results. Finally, Sec-
tion 3.5 draws some conclusions and remarks.

3.2 Related Work

Automatic pain recognition from facial expressions has been widely investigated in the
literature. The first task is the detection of the presence of pain (a binary classification).
Some other works are not limited to binary classification, but are mainly focused in as-
sessing the pain level intensity. These works commonly use the Prkachin and Solomon’s
Pain Intensity metric (PSPI) [98]. This can be calculated for each individual video frame,
after coding the intensity of certain action units (AU) according to the Facial Action Cod-
ing System (FACS). Below, we review some existing works.

Several approaches have been proposed for pain recognition as a binary classifica-
tion problem, aiming at discriminating between pain versus no pain expressions. For
instance, Chen et al. [27] proposed a new framework for pain detection in videos. To rec-
ognize facial pain expression, the authors used Histogram of Oriented Gradients (HOG)
as frame level features. Then, they trained a Support Vector Machine (SVM) classifier.
Lucey et al. [81] addressed AUs (Action Units) and pain detection based on SVMs. They
detected the pain either directly using image features or by applying a two-step ap-
proach, where first AUs are detected, and then this output is fused by Logistical Linear
Regression (LLR) in order to detect pain.

Other approaches focused on the estimation of pain level. Many of them are based
on variants of machine learning methods. For instance, Lucey et al. [82] used SVM
to classify three levels of pain intensity. In another study, four pain levels were iden-
tified using SVM classifier to estimate the pain intensity by Hammal and Cohn [45].
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Chen et al. [27] proposed a framework for pain detection in videos, exploring spatial
and dynamic features. These features are then used to train an SVM as a frame-based
pain event detector. Recent work by Tavakolian et al. [120] also used a machine learning
framework, namely a Siamese network. The authors proposed a self-supervised learn-
ing to estimate pain. In this work, the authors introduced a new similarity function
to learn generalized representations using a Siamese network. The learned representa-
tions are fed into a fine-tuned CNN to estimate pain. The evaluation of the proposed
method was done on two datasets (the UNBC-McMaster and the BioVid), showing very
good results.

The recent works have shown considerable interest in automatic pain assessment
from facial patterns using deep learning algorithms. Transfer learning was adopted
by various image classification works. For instance, Bargshady et al. [12] propose to
extract feature using the pre-trained CGG-Face model. Their approach consists of a hy-
brid deep model, including two-stream convolutional neural networks related to long
short-termmemory (CNN-BiLSTM). A pre-trained convolutional neural network (CNN)
(VGG-Face) and long short-term memory (LSTM) algorithm were applied to detect pain
from the face using the MIntPAIN dataset by Haque et al. [48]. In this work, a hy-
brid deep learning approach is employed. Actually, the combination of a CNN and an
RNN allowed the use of spatio-temporal information of the collected data for each of
the modalities (RGB, Depth, and Thermal). In this study, fusion strategies (early and
late) between modalities were employed to investigate both the suitability of individual
modalities and their complementarity.

Another study also extracted facial features using a pre-trainedVGG-Face network [102].
These features are integrated into an LSTM to deploy the temporal relationships be-
tween the video frames. The study of Tavakolian et al. [119] aimed to represent the
facial expressions as a compact binary code for classification of different pain intensity
levels. They divided video sequences into non-overlapping segments with the same
size. After that, they used a Convolutional Neural Network (CNN) to extract features
from each segment. From these features, they extracted low-level and high-level visual
patterns. Finally, the extracted patterns are encoded into a single binary code using a
deep network. In reference [11], the authors used two different Recurrent Neural Net-
works (RNN), which were pre-trained with VGGFace-CNN and then joined together as
a network for pain assessment. Recent work of Huang et al. [57] proposed a hybrid net-
work to estimate pain. In this paper, the authors proposed to extract multidimensional
features from images. They extracted three type of features : spatio-temporal features
using 3D convolutional neural networks (CNN), spatial features using 2D CNN, and
geometric information with 1D CNN. These features are then fused together for regres-
sion. The proposed network was evaluated on the UNBC McMaster Shoulder dataset.
Table 3.1 summarizes thementioned state-of-the-art works, the correspondingmethods,
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Table 3.1: Summary of some previous works on pain estimation.

Approach Method Metrics Database

Rodriguez et al., 2017 [102] Features: VGG-16
Model: LSTM

AUC 93.3%
Accuracy 83.1%
MSE 0.74

UNBC-McMaster
Shoulder Pain

Haque et al., 2018 [48] Features: VGG-face
Model: LSTM / FF, DF Mean frame Accuracy 18.17% MIntPAIN

Tavakolian et al., 2018 [119] Features: CNN
Model: deep binary encoding network

MSE 0.69
PCC 0.81

UNBC-McMaster
Shoulder Pain

Bargshady et al., 2019 [11] Features: VGG-face
Model: RNN

MSE 0.95
Accuracy 75.2%

UNBC-McMaster
Shoulder Pain

Tavakolian et al., 2020 [120] Unsupervised learningModel:
Siamese network

MSE 1.03
PCC 0.74

UNBC-McMaster
Shoulder Pain
andBioVid

Bargshady et al., 2020 [12] Feature: VGG-faceModel:
EJH-CVV-BiLSTM

AUC 88.7%
Accuracy 85%
MSE 20.7
MAE 17.6

UNBC-McMaster
Shoulder Pain
10783 images

Huang et al., 2021 [57]
Features: spatiotemporal, spatial
features andgeometric information
Model: Hybrid network

MAE 0.40
MSE 0.76
PCC 0.82

UNBC-McMaster
Shoulder Pain

Tavakolian et al., 2019 [118] 3D deep architecture SCN
(Spatiotemporal Convolutional Network)

MSE 0.32
PCC 0.92

UNBC-McMaster
Shoulder Pain

Lucey et al., 2011 [81] Features: shape, SAPP, CAPP
Model: SVM AUC 83.9% UNBC-McMaster

Shoulder Pain

Hammal et al., 2012 [45] Features: log-normal filters
Model: SVM

Recall 61%
F1 57%

UNBC-McMaster
Shoulder Pain

Chen et al., 2017 [27] Features: HOG, HOG-TOP
Model: SVM

Accuracy 91.37%
F1 Score 0.542

UNBC-McMaster
Shoulder Pain

Lo Presti et al., 2017 [97] Features: Hankel of Haar and
GaborModel: AdaBoost Accuracy 74.1% UNBC-McMaster

Shoulder Pain

performances, and used databases.

3.3 Proposed Framework for StudyingPainAssessment
Using Deep Features

Automatic pain recognition from facial expressions is a challenging problem that has
attracted a significant attention from the research community. This chapter provides a
comprehensive analysis on the topic by comparing some popular and Off-the-Shell CNN
(Convolutional Neural Network) architectures. We start by showing the importance
of feature extraction. We present then the framework used in this study. Finally, we
present the used CNN architectures.
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3.3.1 Feature extraction

Features represent a piece of relevant information to solve computational tasks con-
cerning a specific application. In computer vision, features represent the region of im-
age with important information. These features might be specific shapes in the image,
like edges, points, blobs or objects. In pain studies, feature extraction is a commonly
used method. Moreover, features can be split into three categories: generic features,
hand-crafted features and learned features. Generic features are based on ideas that
proved success in other domains, and are used for pain tasks. For example, Local Bi-
nary Pattern (LBP)[1] and mel-frequency cepstrum (MFC)[75]. Hand-crafted features
are manually designed features by expert. These extracted features should be robust to
the variances in the objects. Examples are Scale-invariant feature transform (SIFT)[79]
and Histogram of Oriented Gradients (HOG)[138]. Concerning learned features, they
are obtained automatically from a machine learning algorithm. We find most of the
deep learning approaches in this category.

Input image

CNN architecture

SVM
(or RFR)

Figure 3.2: Feature extraction from multiple inner layers of Convolutional Neural Net-
works (CNNs). Then these features are used individually to train separate Support Vec-
tor Machines (SMMs).
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There are different approaches for automatic pain recognition. Each one depends
on special input modality and sensors. Therefore, features depend on approach cat-
egory. First, for camera-based approaches, different features to detect facial pain ex-
pressions are used. Such as, Gabor, Local Binary Pattern (LBP), Histogram of Oriented
Gradients (HOG), Discrete Cosine Transform (DCT), facial distances in 2D and other
deep features. Second, for audio approaches, mostly the Mel Frequency Cepstral Coeffi-
cients (MFCC) are the used features. Other features may include Linear Predictive Cod-
ing (LPC) coefficient and Relative Spectral Perceptual Linear Predictive (RASTA-PLP).
Third, for contact-Sensor approaches that contain for example EDA, ECG or sEMG sig-
nals, there is a variety of Time series Statistics Descriptors (TSD) features.

In the case of our study, we used facial expressions as an input. We extracted deep
features from Convolutional Networks (CNNs). The features are extracted from dif-
ferent layers of a CNN and then individually trained on separate SVMs and RFRs as
shown in figure 3.2. The CNN architectures considered in this work are MobileNet-v2,
GoogleNet, ResNeXt-50, ResNet18, and DenseNet-161. More details about the frame-
work and the used CNN architectures are presented in the sections below.

3.3.2 Framework presentation

Recently, transfer learning is increasingly applied for feature extraction [116], espe-
cially in computer vision [2]. It consists of adopting prior knowledge that has been
previously learned in other tasks. Our studied models are also heavily based on transfer
learning and fine-tuning. Our methodology consists of exploring popular and Off-the-
Shell CNN architectures, including MobileNet, GoogleNet, ResNeXt-50, ResNet18, and
DenseNet-161. We use these networks in two distinct modes: stand-alone mode or fea-
ture extraction mode. In stand-alone mode, the models are fined-tuned and used for
directly estimating the pain. In feature extraction mode, the features from 10 different
layers are extracted and used as inputs to SVR (Support Vector Regression) and RFR
(Random Forest Regression) classifiers. The model automatically extracts the most dis-
criminative facial features from the training data. These features do not necessary have
a clear visual interpretation, but they represent parts of the face that are more important
for pain discrimination.

As mentioned above, the recognition models used in this study are the Support Vec-
tor Regression (SVR) and Random Forest Regression (RFR). These models represent an
essential component in the architecture after the feature extraction. Their role is to map
the features to the latent pain state. We briefly review Support Vector Regression (SVR)
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and Random Forest Regression (RFR) below.

• Support Vector Regression :

Support Vector Regression is a supervised learning algorithm used for regression
problems. It uses the same principles as Support Vector Machine (SVM) with
some modifications. Considering the regression problem that consists of finding
a function that approximates mapping from an input domain to real numbers. The
figure below presents an example of how SVR works. In the figure 3.3, the two
red lines are the decision boundaries and the green one is the hyperplane. The
idea behind SVR is to consider the points that are withing the decision boundary
lines. Therefore, the best fit line is the hyperplane with a maximum number of
points.

Decision
Boundary

Decision
Boundary

Hyperplane

Figure 3.3: Illustrative example of Support Vector Regression (SVR)

Considering the pain intensity estimation during validation is expressed by

y = f(x, θ) (3.1)

where θ is the parameter of f and y is the ground truth value. Moreover, we con-
sider a pair {yi, xi} of ground truth and label used by our SVR to learn. Therefore,
the model learns the parameter θ = {w, b} by solving the following optimization
problem [155].

min(
1

2
) ∥ W 2 ∥ +γ

∑
(η+i + η−i )

s.t.W Tϕ(Xi) + b− yi(≤ ϵ+ η+i )

yi −W Tϕ(Xi)− b(≤ ϵ+ η−i )

η+i , η
−
i ≥ 0,∀i
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where ϕ : X 7→ F is a mapping from inputs to features, ϵ is a constant that stands
for the maximum deviation allowed for a prediction to be considered correct and
γ is a constant balancing between the regularization and regression loss.

• Random Forest Regression :

Random Forest Regression is an approach for supervised learning that belongs to
the family of ensemble learning. The result is the mean of all the separate deci-
sion trees. The technique is based on decision trees, where each internal node
reflects a characteristic of the input data and the leaf node represents the result.
The decision tree is a straightforward yet effective classification and regression
technique.

Random Forest Regression is a mathematical process based on the concept of de-
cision trees. Each decision tree in the forest is trained using a random subset of
both the input data and the features. The objective is to minimize the prediction
variance, which is accomplished by averaging the predictions of all decision trees.
The final forecast is generated by averaging all the different forecasts.

Consider, formally, a dataset having N occurrences and M characteristics. Before
training each decision tree, the Random Forest Regression algorithm randomly
selects n instances (n<N) and m features (m<M) from the dataset. Then, for each
decision tree, it identifies the split point that maximizes variance reduction and
recursively divides the dataset into smaller subsets until a stopping requirement
is met. The ultimate output of the algorithm is the mean of all the individual
forecasts from the decision trees, which is calculated as follows:

ypred =
1

T
×

T∑
i=1

(yi) (3.2)

Where T is the number of decision trees in the forest, yi is the output of the i-th
decision tree, and ypred is the final predicted output.

We used Random Forest Regression technique in our study because it is well-
known for its resistance to overfitting, its high level of accuracy, and its capacity
to manage huge datasets that contain a significant number of characteristics.

The considered 5models were originally trained on the Imagenet dataset, containing
1000 classes [32]. We adapted these models to our task of pain estimation by replacing
the final layer in each network with a fully connected layer with one class instead of
1000 classes. Figure 3.1 illustrates our proposed methodology.
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Input data

Prediction 1 Prediction 2 Prediction n

(….)

(….)

Average all predictions

Random Forest 
Prediction

Figure 3.4: Random Forest Regression structure relying on ensemble learning

3.3.3 Used CNN architectures

As seen above, there are various types of features. Our proposed method relies on Con-
volutional Neural Networks (CNNs). Below, we give a short description of each of the
five CNN architectures that we used in our experiments. Which are : MobileNet_v2,
GoogleNet, ResNeXt-50, ResNet18, and DenseNet-161.

• MobileNet_v2 [109]: MobileNet_v2 is a lightweight CNN architecture that is
designed to run efficiently on mobile devices. It uses depth-wise separable con-
volutions to reduce the computational complexity of the model. The depth-wise
separable convolution consists of two steps: a depth-wise convolution that ap-
plies a single convolution filter to each input channel, and a point-wise convolu-
tion that combines the output of the depth-wise convolution. This architecture
is designed to reduce the number of parameters and the computation required
for each layer, making it suitable for real-time applications with limited compu-
tational resources. The architecture of MobileNet_v2 (Table 3.3)contains a series
of layers that are organized in a linear structure, starting with a series of convo-
lutional layers followed by multiple depth-wise separable convolution layers and
ending with a fully connected layer.
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Input Operator Output
h × w × k 1 × 1 conv2d , ReLU6 h × w × (tk)

h × w × (tk) 3 × 3 dwise s = s, ReLU6 h
s
× w

s
× (tk)

h
s
× w

s
× (tk) linear 1 × 1 conv2d h

s
× w

s
× k′

Table 3.2: Bottleneck residual block transforming from k to k′ channels, with stride s,
and expansion factor t, height h, and width w [109].

Input Operator t Output Channels Repeat Stride
2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1×1 - 1280 1 1
72 × 1280 avgpool 7×7 - - 1 -

1 × 1 × 1280 conv2d 1×1 - k -

Table 3.3: MobileNet_v2 architecture [109].

• GoogleNet [115]: GoogleNet, also known as Inception-v1, is a CNN architecture
that was developed by Google in 2014. It uses a combination of convolutional
and pooling layers, as well as an auxiliary classifier, to improve the performance
of the model. The architecture of GoogleNet is based on the concept of Inception
modules (Figure 3.5), which are a combination of convolutional and pooling layers
that are designed to extract features at different scales. The Inception module is
followed by a series of convolutional layers, and an auxiliary classifier is added to
the architecture to improve the performance. GoogleNet has a larger number of
parameters compared to MobileNet_v2, but still considered a lightweight model.
Figure 3.5a presents the naive version of Inception layer. Szegedy et al. [115]
found that this naive form covers the optimal sparse structure, but it does it very
inefficiently. To overcome this problem, the authors proposed the form shown in
Figure 3.5b. It consists of adding 1×1 convolutions [115].

• ResNeXt-50 [149]: ResNeXt-50 is a CNN architecture that was developed by
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Layer i

1x1 
convolutions

3x3 
convolutions

5x5 
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a) Inception module without the technique of 1x1 convolutional filter for dimensionality reduction

Layer i

1x1 
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1x1 
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3x3 max 
pooling

Filter
concatenation

3x3 
convolutions

5x5 
convolutions

1x1 
convolutions

b) Inception module with the technique of 1x1 convolutional filter for dimensionality reduction

Figure 3.5: Inception module [115].

Facebook in 2016. It uses a new type of building block, called the ResNeXt block,
which improves the performance of the model by increasing the depth and width
of the network. The ResNeXt block is based on the concept of grouped convolu-
tions, where multiple convolutional filters are applied to the input data in parallel,
and the output is concatenated. This architecture is designed to increase the num-
ber of filters applied to the input data, which increases the expressive power of the
model. The ResNeXt block is followed by a series of convolutional layers, and the
architecture ends with a fully connected layer. The architecture of ResNeXt-50
is given in Table 3.4. In our present work, we consider ResNeXt-50 architecture
constructed with a template of cardinality = 32 and bottleneck width = 4d.

• ResNet18 [49]: ResNet18 is a CNN architecture that was developed by Microsoft
in 2016. It uses a new type of building block, called the residual block, which im-
proves the performance of the model by making it easier to optimize. The residual
block is based on the concept of identity shortcuts, where the input data is added
to the output of the convolutional layers. This architecture is designed to increase
the depth of the network while maintaining the performance of the model. The
residual block is followed by a series of convolutional layers, and the architecture
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ends with a fully connected layer. The details of the architecture of ResNet18 are
given in Table 3.4.

Layer Name Output Size Resnet18 ResNeXt-50 (32×4d)
conv1 112 × 112 7 × 7, 64, stride2 7 × 7, 64, stride2

conv2 56 × 56
3 × 3 max pool, stride 2[

3× 3, 64

3× 3, 64

]
× 2

3 × 3 max pool, stride 2 1× 1, 128

3× 3, 128, C = 32

1× 1, 256

× 3

conv3 28 × 28
[
3× 3, 128

3× 3, 128

]
× 2

 1× 1, 256

3× 3, 256, C = 32

1× 1, 512

× 4

conv4 14 × 14
[
3× 3, 256

3× 3, 256

]
× 2

 1× 1, 512

3× 3, 512, C = 32

1× 1, 1024

× 2

conv5 7 × 7
[
3× 3, 512

3× 3, 512

]
× 2

 1× 1, 1024

3× 3, 1024, C = 32

1× 1, 2048

× 3

average pool 1 × 1 7 × 7 average pool global average pool

fully connected 1000 512 × 1000
fully connections

2048 × 1000
fully connections

softmax 1000

Table 3.4: ResNet18 and ResNeXt-50 architectures [49] [149].

• DenseNet-161 [56]: DenseNet-161 is a CNN architecture that was developed by
Gao Huang in 2016 and looks to overcome the problem of CNNs when they go
deeper. This is because the path for information from the input layer until the
output layer (and for the gradient in the opposite direction) becomes too large.It
uses a new type of building block, called the dense block, which improves the
performance of the model by increasing the depth and width of the network. The
dense block is based on the concept of feature reuse, where the output of the pre-
vious layer is concatenated with the input of the next layer. This architecture
is designed to increase the number of filters applied to the input. In our work,
we used the pre-trained architecture of DenseNet-161 on the ImageNet challenge
database [68]. The architecture of DenseNet-161 is illustrated in Table 3.5.

The fiveCNNarchitectures covered in this chapter, MobileNet v2, GoogleNet, ResNeXt-
50, ResNet18, and DenseNet-161, are all well-known options for image classification and
computer vision tasks. MobileNet v2 uses depth-wise separable convolution to reduce
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computational complexity. GoogleNet uses a combination of convolutional and pooling
layers and an auxiliary classifier. ResNeXt-50 uses a new type of building block called
the ResNeXt block. ResNet18 uses a new type of building block called the residual block.
Each design has its own advantages and disadvantages, and in the next chapter we will
conduct experiments to demonstrate which one of them is more suitable for our task.

Layer Name Output Size DenseNet-161
Convolution 112 × 112 7 × 7 × conv, stride2
Pooling 56 × 56 7 × 7 max pool, stride 2

Dense Block 1 56 × 56
[
1× 1conv
3× 3conv

]
× 6

Transition Layer 1 56 × 56
28 × 28

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block 2 28 × 28
[
1× 1conv
3× conv

]
× 12

Transition Layer 2 28 × 28
14 × 14

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block 3 14 × 14
[
1× 1conv
3× 3conv

]
× 36

Transition Layer 3 14 × 14
7 × 7

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block 4 7 × 7
[
1× 1conv
3× 3conv

]
× 24

Classification Layer 1 × 1
7 × 7

7 × 7 global average pool
1000D fully connected, softmax

Table 3.5: DenseNet-161 architecture [56].

3.4 Experimental Analysis

In the experimental analysis section of this article, we present a comprehensive evalu-
ation of various CNN architectures for automatic pain recognition from facial expres-
sions. We compare the performance of popular models such as MobileNet, GoogleNet,
ResNeXt-50, ResNet18, and DenseNet-161 in both stand-alone mode and feature extrac-

57



Chapter 3

tor mode. The experimental data used in this study is taken from the UNBC-McMaster
Shoulder Pain database, and the results and discussion of our findings provide valuable
insights into the usefulness of the hidden CNN layers for automatic pain estimation.
This section is divided into three subsections: experimental data, experimental setup
and results and discussion.

3.4.1 Experimental Data

The problem with unbalanced databases is that they can cause bias in the training and
evaluation of machine learning models, as the model may be more likely to predict the
majority class, even when the input belongs to a minority class, leading to poor perfor-
mance in recognizing theminority class, and a lower overall accuracy of themodel. This
can lead to a situation where the model is not useful in real-world scenarios, where the
minority class is important. Unbalanced datasets can also cause an overfitting problem,
where the model becomes too specialized to the majority class, and fails to generalize
to the minority class. In many real-world applications, it is important to have a balance
in the dataset to ensure that the model can perform well on all classes.

Figure 3.6: Sample images from UNBC McMaster dataset [81].

In our experimental analysis, we considered the benchmark and publicly available
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UNBCMcMaster dataset. The dataset is composed of 200 sequences of 25 subjects, with
a total of 48,398 images. Figure 3.6 shows some images indicated by PSPI. The Prkachin
and Solomon Pain Intensity (PSPI) [98] represents the scale for facial expression, which
is associated to the UNBC McMaster dataset. The problem of unbalanced datasets is
also present in the UNBC McMaster database. As illustrated in Figure 3.7, more than
80% of the database has a PSPI score of zero (meaning “no pain”). To overcome this im-
balanced data problem, we balance the databaset applying under resampling technique
to decrease the no-pain class. The same protocol is used by Bargshady et al. in Ref-
erence [12]. While every sequence starts and ends with a no-pain score, we excluded
those two parts for every sequence. As a result, a total of 10,783 images were obtained
and used in the experiments. Figure 3.7 illustrates the amount of PSPI for each pain
level after data balancing.
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Figure 3.7: Amount of PSPI for each pain level on both balanced and imbalanced UNBC
McMaster dataset.

3.4.2 Experimental setup

For evaluation, we used the Leave-one-subject-out-cross-validation. As the balanced
database has the same number of subjects, we obtain 25 feature vectors for each layer.
We used data augmentation to further increase the size of the dataset. In all the exper-
iments, we used the MSE (Mean Square Error) as the loss function, and Adam as the
optimizer. Moreover, we fixed the number of epochs to 200. This setup was kept similar
for all the models through all experiments. To measure the performance of the models,
we calculate the Mean Square Error metric. Mean Squared Error (MSE) is a commonly
used metric for evaluating the performance of regression models. It is a measure of the
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difference between the predicted value and the true value of a variable, and it is cal-
culated as the average of the squared differences between the predictions and the true
values. In other words, is defined as the sum of squares of prediction errors which is
ground-truth (y) value minus predicted value (y′) and then divided by the number of
data points (N ). The formula of the MSE is defined in Equation (3.3).

MSE =
1

N

N∑
i=1

(yi − y′i)
2. (3.3)

The MSE is always a non-negative value, with zero indicating a perfect match be-
tween the predicted values and the true values. The lower the MSE value, the better the
model’s performance. MSE is a commonly used metric in regression problems because
it is sensitive to outliers, penalizes large errors, and is differentiable, making it suitable
for optimization algorithms. MSE is also a natural choice when the errors are Gaussian;
it can be used with any types of data, and it is easy to interpret since it has the same
units as the response variable.

3.4.3 Results and Discussion

The UNBC-McMaster Shoulder Pain Database was utilized as the dataset for our experi-
ments, as previously discussed. Each of the five CNNmodels, MobileNet v2, GoogleNet,
ResNeXt-50, ResNet18, andDenseNet-161, had the images from the dataset fed into their
feature extraction pipelines. As an evaluation metric, Mean Squared Error (MSE) was
utilized to assess the performance of the models. In two distinct modes, the MSE results
were reported: standalone mode and feature extractor mode.

3.4.3.a Results and Comparisons

In standalone mode, the entire network (i.e., the model) is utilized to directly estimate
the image’s pain level. This mode allows us to evaluate the performance of the model
based on its ability to directly predict pain levels.

In feature extractor mode, features are extracted from 10 different layers of pre-
trained CNN models and used as inputs for Support Vector Regression (SVR) and Ran-
domForest Regression (RFR) classifiers. Thismode permits the evaluation of themodel’s
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performance based on its ability to extract useful features from the images, which can
be fed to other classifiers to predict the pain level. This mode is useful when the objec-
tive is to use pre-trained models as a feature extractor in a larger pipeline, as opposed
to directly making predictions with the model.
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(a) (b)

(c)

(d) (e)

Figure 3.8: MSE (Mean Square Error) of pain estimation of each model ((a) GoogleNet,
(b) MobileNEt, (c) ResNet18, (d) ResNeXt-50, (e) DenseNet-161) and their corresponding
10 layers when used as inputs to SVR and RFR.
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Figure 3.8 shows the MSE obtained for each model evaluated after training and test-
ing on the UNBC-McMaster shoulder database. The figure also shows the MSE of both
SVR and RFR classifier for each of the 10 layers.

The results for Mobilenet_v2 show that the performance of the model when using
feature extraction with the Support Vector Regression (SVR) and Random Forest Re-
gression (RFR) classifiers is not consistently better than the performance of the stand-
alone model. When analyzing the results of the feature extraction, it was noticed that
there were some oscillations in the first layers, with twominimums being reached when
using both SVR and RFR, however, these minimums were not always observed in the
same layers. These minimums were not significantly better than the performance of
the stand-alone model. However, after layer 100, the performance of the model when
using feature extraction with SVR and RFR classifiers becomes smoother and converges
quickly to the minimum on the last layer. This later achieves results that are better than
the stand-alone model for both SVR and RFR. Therefore, when using Mobilenet_v2, the
use of feature extraction ismore relevantwhen using the features of the last layer in con-
junction with SVR or RFR classifiers. This indicates that the last layers of Mobilenet_v2
contain more informative features for the task of pain estimation, and the use of these
features with a different classifier can give better results.

The results for Resnet18 show a smooth behavior, with the performance of themodel
when using feature extraction with Support Vector Regression (SVR) and Random For-
est Regression (RFR) classifiers converging to a minimum value that is reached in the
last layer. When using Random Forest Regression (RFR) classifier, the results of feature
extraction do not provide better results than the stand-alone model. This can be seen by
the fact that the value achieved by the last layer is almost the same as the stand-alone
model. On the other hand, when using Support Vector Regression (SVR) classifier, the
results of feature extraction are better than the stand-alone model, especially after layer
50. This indicates that the later layers of Resnet18 contain more informative features
for the task of pain estimation, and the use of these features with SVR classifier can give
better results than using the stand-alone model. In conclusion, it is interesting to extract
features from layers of Resnet18, especially the last one, and use SVR classifier, rather
than using only the stand-alone model. This suggests that the later layers of Resnet18
contain more informative features that can be used to improve the performance of the
model for the task of pain estimation when using SVR classifier.

The results for Googlenet are more intricate, with different minimums being ob-
served throughout the layers, including the last ones. This indicates that the perfor-
mance of the model when using feature extraction with Support Vector Regression
(SVR) and Random Forest Regression (RFR) classifiers is not consistently better than
the performance of the stand-alone model. When analyzing the results of the feature
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Method MSE
Siamese network [120] 1.03

Joint deep neural network [11] 0.95
HybNet [57] 0.76
LSTM [102] 0.74
CNN [119] 0.69
SCN [118] 0.32

EJH-CVV-BiLSTM * [12] 0.20
ResNet18-SVR * 0.49
ResNeXt-50-SVR * 0.47
MobileNet_v2-SVR * 0.46
GoogleNet-SVR * 0.42

DenseNet-161-SVR * 0.34

Table 3.6: Comparative analysis using state-of-the-art methods on the UNBC-McMaster
database. The indication (star *) precises data balancing is used.

extraction with SVR classifier, it was noticed that the performance of the model be-
comes better than the stand-alone model after layer 160. This suggests that the later
layers of Googlenet contain more informative features that can be used to improve the
performance of the model for the task of pain estimation when using SVR classifier. On
the other hand, when using Random Forest Regression (RFR) classifier, the results of
feature extraction do not provide better results than the stand-alone model, except for
the last layer. Googlenet’s results are complex, with layer-specific performance. After
layer 160, the SVR classifier enhances model performance, but the Random Forest Re-
gression (RFR) classifier only improves the last layer. This shows that the latter layers
of Googlenet contain more useful features that can be utilized to enhance the model’s
pain estimation performance when using SVR classifier and the last layer when using
RFR classifier.

In the last layer for ResNeXt-50, the model’s performance using feature extraction
with Support Vector Regression (SVR) and Random Forest Regression (RFR) classifiers
converges to a minimum value. When assessing the results of feature extraction us-
ing the SVR classifier, it was discovered that, beyond layer 134, the performance of the
model surpasses that of the standalone model. This indicates that the subsequent layers
of ResNeXt-50 have more useful features that may be used to enhance the performance
of the model when estimating pain using the SVR classifier. Similarly, when utilizing
the Random Forest Regression (RFR) classifier, the results of feature extraction are su-
perior to those of the standalone model, particularly beyond layer 144. This suggests
that the latter layers of ResNeXt-50 include more informative features for the task of
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pain assessment, and that the combination of these features with the RFR classifier can
produce better results than the standalone model. In conclusion, the ResNeXt-50 find-
ings demonstrate that the addition of SVR and RFR classifiers improves the results of
the final layer compared to the results of the standalone model. This means that the
later layers of ResNeXt-50 have more useful features that can be used to improve the
model’s performance when estimating pain with SVR and RFR classifiers.

The performance results for DenseNet-161 demonstrate a steady evolution, with the
model’s feature extraction performance converging to a minimum at the final layers.
The model demonstrates a linear behavior beginning at layer 470, with RFR and SVR
obtaining comparable performance. Prior to layer 470, SVR typically outperforms RFR.
In general, starting at layer 400, the feature extraction mode offers better results than
the standalone model. This shows that later layers of DenseNet-161 include more in-
formative characteristics that can be utilized to improve pain estimation performance.
Both RFR and SVR are efficient classifiers in this situation, but SVR tends to produce
somewhat better results than RFR before layer 470.

As shown in Table 3.8, the best performance in terms of Mean Squared Error (MSE)
was achieved by utilizing features from the final layers of the CNN models as inputs to
the Support Vector Regression (SVR) classifier. In addition, when examining the final
layers of each model, the results indicate that SVR outperforms Random Forest Regres-
sion (RFR) classifier. DenseNet-161 was the model with the best performance among
those we employed, and it was also the model with the deepest network. This observa-
tion is interesting, as it suggests that deeper networks may have an advantage in this
task. It is also important to note that the performance of the studied models appears to
increase with the total number of layers, which may indicate the significance of having
a more complex architecture for this task.

For comprehensive analysis, we have also compared the results of ourmodels against
the results of the state of the art on the UNBC-McMaster database. The comparative re-
sults are given in Table 3.6. The results show that best performances are indeed obtained
when extracting features from the last layer of existing pre-trained architectures. The
models using features from the last layers and SVR classifier seem to perform better
than some previous works of Bargshady et al. [11], Rodriguez et al. [102], and Tavako-
lian et al. [120, 119].

Although our obtained results are significantly better than many state-of-the-art
methods, our results are still not optimal. In fact, Tavakolian et al. [118] reported
a very low MSE of 0.32 using a Spatio-temporal Convolutional Network. Moreover,
Bargshady et al. [12] achieved an MSE of 0.20.
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In addition to the Mean Square Error (MSE) metric, we also used the Confidence
Prediction Error (CPE) to evaluate the results of our experiments. CPE is a measure of
the accuracy of a model’s predictions, specifically in the context of regression problems.
It is calculated as the absolute difference between the predicted value and the true value,
expressed as a percentage of the true value. CPE is a useful metric because it allows us
to evaluate the accuracy of a model’s predictions in relation to the true values. A low
CPE value indicates a high degree of accuracy for the model’s predictions, while a high
CPE value indicates a low degree of accuracy. In our experiments, CPE was calculated
for each of the five CNNmodels (MobileNet_v2, GoogleNet, ResNeXt-50, ResNet18, and
DenseNet-161) in both stand-alone mode and feature extractor mode (Figure 3.9). The
results were used to compare the performance of the different models and to determine
which layers of the CNNs were most informative for the task of pain estimation. The
results obtained from CPE helped us to understand the performance of the models and
to identify the best model for the task.
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Figure 3.9: Confidence prediction error (CPE) used to evaluate the performance of the
standalone mode, and feature extraction mode from the last layer using SVR and RFR
for each of the five models.

In the Figure 3.9, the results of the CPE computation for eachmodel are displayed. In
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general, the feature extraction mode combined with SVR or RFR results in a lower CPE
value for all models than the standalone option. This suggests that feature extraction
can increase the predictability of a model.

CPE values for DenseNet-161 are 0.044 for feature extraction and SVR, 0.045 for fea-
ture extraction and RFR, and 0.047 for stand-alone operation. CPE values for GoogleNet
are 0.046 for feature extraction and SVR, 0.047 for feature extraction with RFR, and 0.045
for standalone operation. CPE values for MobileNet v2 are 0.047 for feature extraction
and SVR, 0.046 for feature extraction with RFR, and 0.043 for stand-alone operation. The
CPE values for ResNeXt-50 are 0.047 for feature extraction and SVR, 0.047 for feature
extraction and RFR, and 0.044 for stand-alone operation. The CPE values for ResNet18
are 0.047 for feature extraction and SVR, 0.037 for feature extraction with RFR, and 0.037
for standalone mode.

With a CPE value of 0.037, it is obvious that the feature extraction mode in combina-
tion with RFR provides the best results for ResNet18. This shows that the combination
of feature extraction and RFR can improve the accuracy and confidence of predictions
for this particular model. In contrast, the CPE values for the other models are compara-
ble when the feature extraction mode is paired with either SVR or RFR; consequently,
the choice between the two approaches would depend on other considerations, such as
computing cost and implementation complexity.

In conclusion, the CPE calculation findings indicate that the feature extraction mode
can increase confidence in the model’s predictions. The combination of feature extrac-
tion and RFR appears to provide the highest performance for ResNet18, although the
selection between SVR and RFR would depend on other factors.

3.4.3.b Computational Analysis

When contrasting the efficiency of various models, it is essential to take into account
the amount of computation that is required by each model. ResNet18 has the most pa-
rameters out of all the models, as can be seen in Table 3.7; however, it also has the
shortest training time. This makes it the most desirable model. This is probably due to
the fact that its architecture is not as complicated as the architecture of the other mod-
els. DenseNet-161 on the other hand, which achieved the best results, had the highest
number of parameters (30 million) and required more than 6 days for training. This
demonstrates how deep learning models have a trade-off between accuracy and the
amount of computation they require. Both MobileNet v2 and GoogleNet have a suitable
amount of time for training and a reasonable number of parameters, making them ap-
propriate for use in applications that have restricted access to computational resources.
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The results were calculated based on a total of 100 images taken from the UNBC-
McMaster Shoulder dataset. The average test time was determined using these results.
According to the findings, each of the models was able to calculate an estimate of the
level of pain in a relatively short period of time, with the average time taking anywhere
from a few milliseconds to a few seconds for each image. These findings illustrate the
potential of these deep learning models for estimating pain intensity in clinical appli-
cations in real time.

It is important to note that the results were obtained using an NVIDIA Quadro RTX
5000 GPU, and that the training and testing were carried out using Leave-one-subject-
out cross-validation on the balanced UNBC-McMaster Shoulder dataset. Additionally,
it is important to note that the results were obtained using the Leave-one-subject-out
cross-validation method. The Adam optimizer was used throughout the training pro-
cess, which lasted for a total of 200 iterations. When comparing the computational
costs of various models, it is essential to take into consideration the mentioned factors
because the results may be impacted by them.

Model Total Parameters
(Million)

Required Time for
Train (Hours)

Average Time for
Test (Second)

MobileNet_v2 3.4 43.33 0.59
GoogleNet 7 44.16 0.68
ResNet18 11 40.83 0.35
ResNeXt-50 25 90.55 0.83
DenseNet-161 30 157.22 2.84

Table 3.7: Comparative analysis regarding the computation costs (number of parame-
ters, training time, and average test time) of different models.

3.4.3.c Case Study

The performance of the five models in feature extraction and SVR mode is shown in
Figure 3.10 at the frame level for a single video. The figure displays the ground truth of
the frames of the video and the predicted pain values for each model. From the figure,
we can observe that all the models follow the shape of the ground truth, but the curve of
DenseNet-161 is the closest to the ground truth among the models. On the other hand,
ResNet18 has the farthest curve from the ground truth, indicating that its performance
is not as good as the other models.
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An interesting observation from the figure is that when the pain level is equal to
zero, the curves of all the models overlap, suggesting that the models have a similar
performance when there is no pain. However, when the pain level is at its maximum,
the curves are not overlapping, indicating that the models have different behaviors in
this case.

The results from this use case are consistent with the previous findings that showed
DenseNet-161 as the best model in terms of performance. This highlights the impor-
tance of considering the models’ behavior at different levels of pain intensity, as they
may perform differently.

In conclusion, the figure provides useful insights into the performance of the models
in feature extraction and SVR mode and confirms the previous finding that DenseNet-
161 is the best model among the considered models.

Figure 3.10: An example of continuous pain intensity estimation using all the considered
CNN architectures on a sample video from the UNBC-McMaster database.
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3.5 Conclusion

In this work, we conducted a comprehensive analysis on pain estimation by comparing
some popular andOff-the-Shell CNN architectures, includingMobileNet [109], GoogleNet [115],
ResNeXt-50 [149], ResNet18 [49], and DenseNet-161 [56]. We used these networks in
two distinct modes: stand-alone mode or feature extractor mode. Features were ex-
tracted from 10 different layers. Predictions were done with SVR (Support Vector Re-
gression) and RFR (Random Forest Regression) classifiers. The results are given in terms
of Mean Square Error. We conducted an evaluation with balanced data from UNBC-
McMaster Shoulder Pain Database [81]. The database contains 10783 images and con-
sists of 4 pain levels (no pain, weak pain, mid-pain, and strong pain). The obtained
results indicated the importance of feature extraction from the last layers of pre-trained
architectures to estimate pain. Most of the used architectures achieved significantly
better results compared to many state-of-the-art methods.
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4.1 Introduction

Pain has many different expressions, depending on the individual. Moreover, it is diffi-
cult to estimate pain from facial expressions, as there are many factors that can affect an
individual’s ability to express pain. Being able to easily detect painwould be a great asset
for doctors and other medical professionals. However, in this chapter, we first propose
a Transformers-based architecture that demonstrated the ability to detect genuine and
posed pain from facial expressions; second, we propose another Transformers-based
method to deal with the pain and no pain issue. We demonstrated the effectiveness of
transformers in two areas: the classification of pain and no pain, and the differentiation
of genuine and posed pain from facial expressions. Transformers have an advantage
over other architectures because they can learn global dependencies. This is important
for tasks like pain classification, where the global context is important to understanding
whether someone is in pain or not. The transformer can learn this sort of global context
and make better predictions as a result.

4.2 Related work

4.2.1 Genuine versus Posed Pain

Facial expressions have a considerable impact on human social interactions. In recent
research, facial expressions have been used to understand social interactions [59]. How-
ever, since facial expressions are a mirror of emotions [143], they might not reflect
our true feelings. Therefore, distinguishing genuine from posed emotions is a relevant
study. In the case of our research, we are aiming to detect genuine pain from a posed
one. Moreover, this presents an important task in some medical and criminal applica-
tions [17].

In the early study of Hill et al. [53], the authors highlighted the difference in facial
actions in terms of frequency, type, and intensity between genuine and posed expres-
sions. In fact, posed pain expressions showed different temporal patterns than real pain
expressions. The authors of this study worked on a dataset that contains 40 low back
patients’ facial expressions. These patients were videotaped raising their legs in order
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to capture real pain and then pretending to be hurt in order to capture fake pain. Later
work by Bartlett et al. [13] used features of 20 Action Units (AU) to train a non-linear
SVM for the classification of spontaneous and posed pain. The method was evaluated
on a self-collected database.

Another study by Littlewort et al. [71] distinguished between posed and genuine
pain using Support Vector Machines (SVM). The SVM was trained on a database com-
posed of 26 adults videotaped under three experimental conditions: baseline, genuine
pain, and posed pain. Genuine pain conditions consist of cold pressure pain. The find-
ings of this study were compared to naive human discrimination of genuine from posed
questions. The obtained results of the method outperform those of humans. Tavako-
lian et al. [117], published the most recent work on the task of distinguishing genuine
from posed pain. In this paper, the authors propose a Residual Generative Adversarial
Network (R-GAN) method to distinguish real from fake pain expressions by magni-
fying the subtle changes in faces. This method captures and encodes the appearance
and dynamics of a specific video into an image map, using Weighted Spatio-temporal
Pooling (WSP). To evaluate their approach, the authors used three databases. First, the
UNBC-MCMaster [81] contains videos of genuine pain. Second, the BioVid Heat Pain
Database [143] contains videos of both genuine and posed pain. Finally, the STOIC
database [105] which contains only posed pain expressions.

4.2.2 Pain recognition

There is a considerable amount of literature on automatic pain recognition from facial
expressions. First, studies that focus on the detection of the presence of pain (pain or
no pain). Other approaches work on the estimation of pain level. These studies propose
handcrafted methods, machine learning, or deep learning architectures. Chen et al. [27]
proposed a novel architecture for detecting and locating joint pain event in video. The
authors extracted features by applying a histogram of oriented gradients (HOG) and us-
ing them as an input to a support vectormachine (SVM). They used the UNBCMcMaster
Shoulder Pain [81] dataset.

In their work, Laduona Dai et al [31] suggested a technique for pain identification
using facial expressions. The process entails extracting action units (AUs) using Open-
Face 2.0 software. These AUs are used to represent facial expressions that indicate pain,
such as wrinkles or elevated eyebrows. The authors then train a support vector machine
(SVM) model using the intensity values of the collected AUs. The purpose of the model
is to make a prediction of a binary output based on the AUs. Five-fold cross-validation
was used to assess the model’s performance during training and testing on data from
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the UNBC-McMaster Shoulder Pain Expression Archive. The findings indicated that
the model’s accuracy was 85%. However, the study also revealed a shortcoming of the
method, since all facially-moving data were identified as pain movements. This limita-
tion is mostly attributable to the fact that all no-pain samples show motionless, neutral
faces, making it more difficult to distinguish between pain and no-pain samples.

Bargshady et al [11] proposed a hybrid method by joining a Convolutional Neural
Network (CNN) and a Recurrent Neural Network (RNN). They first used VGGFace to
extract deep features from images of the UNBCMcMaster Shoulder Pain [81] dataset. In
this paper, the authors aim to classify pain into four categories: no pain, weak pain, mild
pain; and strong pain. One of the state-of-the-art approaches that uses deep learning
with deep features is the work of Haque et al [48]. The authors used CNN to extract deep
features, which they then fed into a long short-termmemory network [55] (LSTM). They
evaluated early and late fusion strategies for the recognition of pain levels. This study
was trained using theMultimodal Intensity Pain [55] (MIntPAIN). This database consists
of 20 adults with stimulated electrical pain. In a recent work by Karamitsos et al [63],
the authors proposed a novel Convolutional Neural Network (CNN) for automatic pain
detection from facial expressions. The proposed CNN consists of a modified version of
VGG16 [113] model. They conducted experiments using the UNBC McMaster Shoulder
Pain dataset [81].

4.2.3 Transformer models

Transformers are a type of machine learning model designed for processing sequences.
They were mentioned for the first time in the paper [129]. Based on self-attentionmech-
anisms, transformers have gained fairly widespread use. The original paper focused on
natural language processing [129]. This is where transformers have been most com-
monly used. But they can be applied to other types of data as well, such as images.
Moreover, transformers in computer vision have proved promising results in different
fields, for instance, image recognition, object detection, and segmentation [65]. Some
of these transformers achieve and outperform state-of-the-art results by relying only
on self-attention and without the use of convolutional neural networks (CNNs). In fact,
Transformer allows parallelization for sequential data, contrary to CNNs.

Several authors have attempted to use Transformer architectures for vision tasks.
Some methods used transfer learning from the vision transformer model (ViT) [33] for
zero-shot anti-spoofing issues [39]. In this work, the authors applied fine-tuning of
a pre-trained vision transformer and achieved state-of-the-art performance. Another
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work studied the classification of Covid-19 from chest images based on vision trans-
former models [38]. In this work, the ViT model [33] was used and compared to CNN
models. It has been shown with evaluation results that ViT performs better than CNNs.
An additional method using Transformer models for deepfake detection [51]. In this
study, the authors provided a vision Transformer model with distillation methodol-
ogy [124]. The use of Transformer models gave a robust model for deepfake detection
that outperformed state-of-the-art results.

4.3 Detection of Genuine versus Posed Pain from Fa-
cial Expressions using Vision Transformers

An important issue in computer vision and facial expression understanding, is the ability
to distinguish spontaneous expressions from fake ones. The high resemblance between
the two states (Genuine and Posed expressions) makes this issue a challenging yet cru-
cial field of research [94]. As we can see in the late work presented in the paper [69].
Posed facial expressions are distinguished by their intensity, duration, and configura-
tion [59]. Therefore, the existing work on differentiating genuine facial expressions
from posed ones can be classified into four categories. First, consider muscle movement
(Action Units (AU)). For instance, a recent work [100] used the AlexNet model on 12
AUs intensities to obtain the features. Second, spatial patterns are based, as in the work
of Van Der Geld et al. [128] for smile expression, and they analyze tooth display, posi-
tion, and smile width from a dental perspective. Third, texture-feature-based methods.
Here, we can cite the study of Tavakolian et al. [117] and Littlewort et al. [71] on pain
expression. Finally, hybrid methods that combine different classes of features [108] [70].

In this study, we propose a Vision Transformer model to capture the subtle changes
in facial expressions. We use the fine-tuning of the pre-trained Vision Transformer
model [33]. Since the ViT determines the relationship between patches, we propose
that those patches be represented by the frames captured from a single video of the
database. In this case, ViT will compute the relationship among the frames of a video.
Therefore, the represented changes in facial movements will be detected. Fig. 4.2 il-
lustrates the proposed architecture. We start by taking as input an image that consists
of concatenated frames. This input image is split into non overlapping patches (in our
case, each patch is a frame from the video). The patches are then flattened into a vector
form and fed to the ViT as a sequence.
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To the best of our knowledge, this is the first study to use Vision Transformer (ViT)
to differentiate between genuine and posed pain. The main contributions of this study
are the following:

• Present a Vision-based Transformer architecture for detection of Genuine versus
Posed pain.

• Prove the efficiency of fine-tuning Vision Transformers using a small database,
contrary to the use of ViT from scratch on the same database.

• Prove the importance of sequential order in time for the discrimination between
Genuine and Posed pain.

4.3.1 Proposed Vision Transformer for genuine and posed pain
differentiation

In this work, in order to detect genuine and posed pain from facial expressions, we
propose transfer learning from a pre-trained Vision Transformer. Our study provides a
framework based on the architecture of the Vision Transformer (ViT) [33].

At first, Transformers were proposed for the Natural Language Processing (NLP)
task by Vaswani et al.[129]. These models broke multiple NLP records and pushed the
state of the art. These models are attention-based encoder-decoder types. However,
CNNs [36] have been incredibly successful and have achieved important results in im-
age classification. In the paper by Dosovitskiy et al. [33], they proved that the reliance
on CNNs is not necessary anymore, and that the use of a pure Transformer can perform
very well, and even outperform CNNs results. A Vision Transformer requires parti-
tioning an input image into patches of the same shape. These patches might overlap or
not, depending on the user’s subject. Therefore, every patch is a small color image with
RGB (Red, Green, and Blue) channels. Thus, a patch is an order of three tensors. The
next step is to vectorize the patches. Which means reshaping these tensors into vectors.
After that, a dense layer is applied to those vectors, and then the positional encoding
vector is added. Then those vectors are fed to the Transformer layers [33]. After this
latter, a Multi-Layered Perceptron MLP was added for classification, and it consists of a
fully connected layer.

The Vision Transformer models are trained on large datasets, and this helped boost
the performance of ViT so that it outperformed the state-of-the-art CNNs models. In-
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deed, training a ViT from scratch is very computational and needs a large dataset.
Nonetheless, fine-tuning the ViT does not require expensive computational resources
and also takes advantage of the powerful ViT since it has been trained on large datasets.
In this paper, we use a pre-trained ViT which we adapt to our use case, to study the
transferability of the ViT for Genuine versus posed pain issues.

4.3.1.a The concept of attention

The concept of attention in artificial neural networks refers to the ability of a model to
selectively focus on certain parts of the input data while processing it. Attentionmecha-
nisms allow models to weigh and combine different parts of the input data dynamically,
based on their relevance or importance to the task at hand.

There are several different types of attention mechanisms that have been developed
for use in neural networks. One of themostwell-known is the self-attentionmechanism,
which operates by projecting the input data into a higher-dimensional space, where the
data points are represented as vectors. The model then calculates the pairwise dot-
products between these vectors, which represent the similarity between each pair of
data points. These dot-products can be calculated using the following equation:

dot− product = xT
i xj (4.1)

Where xi and xj are the vectors representing the i-th and j-th data points, respec-
tively.

These dot-products are then normalized using a softmax function, which converts
them into a set of weights that represent the importance of each data point with respect
to the others. The softmax function is defined as follows:

softmax(xi) =
exp(xi)

sum(exp(xj)
(4.2)

Where xi is the i-th dot-product and xj is the j − th dot-product.

These weights are then used to linearly combine the input data points, producing a
weighted sum that is used as the output of the self-attention layer. The weighted sum
can be calculated using the following equation:

output = sum(wi × xi) (4.3)
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Where wi is the weight for the i-th data point and xi is the i-th data point.

Attention mechanisms have been shown to be effective at capturing long-range de-
pendencies and relationships in data, and are an important component of many modern
neural network architectures. They have been widely used in natural language process-
ing tasks and are also beginning to be applied to computer vision tasks as well.

In the field of computer vision, attention mechanisms have been used to allow mod-
els to focus on certain parts of the input data (e.g., images) that are relevant or important
for the task at hand. This can be particularly useful for tasks that involve input data with
complex structures or long-range dependencies, such as object detection or image seg-
mentation.
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Figure 4.1: Multi-Head self Attention and self attention head.

4.3.1.b The transformer attention mechanism

There are several different types of self-attention mechanisms that have been used in
transformers and other neural network architectures.

One type of self-attention is called dot-product attention, which operates by calcu-
lating the dot-products between the input data points, as described above. This type of
attention is relatively simple to implement, but can be limited in its ability to capture
more complex relationships in the data.
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Another type of self-attention is called multi-head attention. It involves dividing the
input data into multiple "heads" and performing self-attention independently on each
head. The self-attention mechanism calculates the dot-products between the input data
points, normalizes them using the softmax function, and produces a weighted sum of
the input data points as described in the previous messages.

To perform multi-head attention, the input data is first divided into H heads, where
H is the number of heads. The self-attention mechanism is then applied independently
to each head, producing H weighted sums of the input data points. These H weighted
sums are then concatenated and transformed using a linear layer, producing a single
combined output. The combined output of the multi-head attention can be calculated
using the following equation:

output = linear_transform(concat(head1, head2, ..., headH)) (4.4)

Where head_i is the weighted sum for the i-th head and linear_transform is a linear
transformation (e.g., a fully-connected layer) that transforms the concatenated heads
into the final output.

Multi-head attention has several advantages over single-head attention. First, it al-
lows the model to attend to multiple parts of the input data at the same time, which
can be useful for tasks that require a global understanding of the input data. Second,
it allows the model to learn multiple different attention patterns, which can be useful
for tasks with complex relationships in the input data. Finally, multi-head attention can
improve the expressiveness of the model, as it allows the model to learn more complex
combinations of the input data.

Multi-head attention is a key component of the transformer architecture, which has
been highly successful in natural language processing tasks. It has also been applied to
computer vision tasks, where it is used in the vision transformer architecture.

4.3.1.c Proposed model

In this work, we proposed an architecture based on the ViT model. The new architec-
ture for the differentiation between Genuine and Posed Pain is called LinViT. The first
step in this method is the input image pre-processing stage, as can be seen in Fig 4.2.
The process is called image to patches. Since a Transformer can only process a sequence
of tensors given an image, we split it into patches (in Fig 4.2 we use nine patches to give
an example). After the input image has been converted to patches, those patches are
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Linear Projection of Flattened Patches
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Figure 4.2: The architecture of Vision Transformer ViT for the detection of Genuine
versus Posed Pain.

converted to vectors using a linear projection process. It happens at the input stage of
the transformer. All patches are arranged in sequence from top left to bottom right. All
patches go through a linear layer to produce vectors. The next step is adding position
embedding. The vision transformer introduces a learnable class embedding or token(*).
This token is also assigned by a position embedding(0).

One of the main components of the architecture is the Transformer Encoder. The
first step of this encoder is the Normalization layer (Norm). It is used to normalize the
output of the previous layers, which helps to stabilize the training process and improve
the overall performance of themodel. Then, there is theMulti-Head Self-Attention. This
element allows the model to attend to different parts of the input image, which helps it
to better understand the overall structure of the image. The Multi-Head Self-Attention
used in our method is shown in Fig 4.3. In this figure, we see a traditional self-attention
mechanism with the addition of Projection blocs. The main of these projections is to
have a lower dimension, so the inner products will not be expensive. This linear atten-
tion reduces the complexity fromO(n2) toO(n) [137]. The resultant linear transformer
matches the performance of conventional Transformer models while consuming signif-
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icantly less memory and time. This linearity is adapted from the Linformer paper [137].

The skip connections are used in the Encoder. This element helps to make the model
more robust to changes in the input image, by allowing the output of the layer to be
added to the input of the same layer. This allows the model to learn the residual changes
between the input and the output. In addition to the components mentioned earlier, the
encoder in our architecture also includes a Multi-Layer Perceptron (MLP). The MLP is
a type of neural network that consists of multiple fully connected layers. The role of
the MLP is to learn a non-linear function that maps the output of the multi-head self-
attention layer to a new representation that is more suitable for the task at hand. In
other words, the MLP component is responsible for learning more complex interactions
and representations from the self-attention layer. The outputs of the MLP component
are then passed to the feed-forward network for further processing.

In this work, we train the proposed model LinViT using binary cross-entropy loss
BCE (4.5). Where N is the number of images being predicted, pi is the probability that
the model will predict Genuine Pain. Concerning 1− pi, it represents the probability of
class 0, if the model predicts Posed Pain. The ground truth is represented by yi. It’s 1
if the image presents Genuine Pain and 0 for Posed Pain. Finally, the model is trained
with 10×10 patches to match our input images, which will be detailed in the following
section.

Logloss = − 1

N

∑
(yi × log(pi) + (1− yi)× log(1− pi)) (4.5)

4.3.2 Experiments

Throughout this section, we detail the used database, also we will highlight the param-
eter setting and configuration needed for training, then we will present the baseline
methods.
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Figure 4.3: The addition of the Projection blocks that allow the reduction of Keys and
Queries dimension[137].

4.3.2.a Database and pre-processing

The aim of our study is to differentiate between genuine and posed pain. To the best of
our knowledge, the only database that contains both states (genuine and posed pain) is
the publicly available BioVid Heat Pain Database [143]. Therefore, to evaluate the per-
formance of our architecture, the experiments are executed on this database. Moreover,
the BioVid Heat Pain Database [143] database was collected to help advance works on
pain assessment. It concerns 90 participants that were subject to 4 intensities of induced
heat pain. The database consists of four parts. In our study, we will be using the two
parts: A with genuine pain and D with posed pain. Concerning part A, the useful infor-
mation in our case is the frontal video. It contains 87 subjects, 5 classes (no pain and the
four intensities of pain), and each subject has 20 samples per class, which makes it 8,700
samples. Every sample lasts 5.5 seconds. Concerning part D, the information we’ll be
interested in is also the frontal videos of the subjects. It contains 1 minute posed pain
videos of 90 subjects.

As seen before, the BioVid Heat Pain Database [143] contains frontal videos. Since
we will be using ViT, we convert the videos to frames. To focus on the face changes, and
avoid any disturbance from the background, we used the Multitask Cascaded Convo-
lutional Networks [148] (MTCNN) as a face detector. Then, we align the detected face
and crop it to a resolution of 100 × 100. For part A of the database that contains 5.5
seconds videos, we capture the frames of each video and get rid of the first and last 8
frames because it doesn’t contain expression of pain. Therefore, for each video, we get
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a total of 100 frames. Concerning part D with posed pain, we do the same thing and
capture frames from each video and get rid of the first and last frames, to get in the end
a total of 1500 frames per video.

Pre-processing:

In the context of using the LinViT architecture for image processing, the sequence
aspect of the architecture is leveraged by concatenating multiple frames of a video to-
gether into one big image. This allows the model to detect the temporal relationship
between the frames, as the frames are processed together in a sequential order.

For example, in the described implementation of Part A, the frames are captured at
a resolution of 100 × 100 pixels each. These frames are then concatenated together to
create one big image of size 1000× 1000 pixels. This image contains all the frames of a
single video in a sequential order.

In Part D, each video is represented by 15 images containing captured frames. This
means that the video is divided into 15 different segments, and each of these segments
is represented by an image of captured frames in the sequential order. These big images
have the same resolution as before:1000 × 1000 pixels, and of course, it contains 100
frames of 100× 100 pixels each.

This approach of concatenating the frames of a video together allows the LinViT to
better understand the temporal relationship between the frames and make more accu-
rate predictions. It also allows the model to learn temporal patterns in the video that
could be missed if the frames were processed independently. In Fig. 4.4, we illustrate
the different steps before the used preprocessing.

4.3.2.b Implementation details

To train the LinViT, a specific image size and patch size were used. The image size is
1000 × 1000 pixels and the patch size is 100 × 100 pixels. As mentioned earlier, each
patch corresponds to a single frame of a video, allowing the model to learn the temporal
relationship between frames. The training and testing processes were conducted on an
NVIDIA Quadro RTX 5000 GPUmachine with 32GB of memory. The LinViT model was
designed to classify two classes, so it has two output neurons.
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Figure 4.4: Prepossessing of the BioVid Heat Pain Database.

The batch size used during the training process is 64, meaning that the model is up-
datedwith 64 samples at a time. The optimizer used is the standard AdamOptimizer [66]
with an initial learning rate of 0.01. The learning rate is then reduced over time using
a step-based method. The training process was done for 30 epochs, which means that
the model was trained on the same dataset for 30 times. After the training process, the
best model is selected based on the minimum loss during the validation phase.

For classification, we used the binary cross-entropy loss BCE to supervise ourmodel.
The LinViT architecture was implemented in the Pytorch library [95]. We tested on the
public available BioVid Heat Pain Database [143] and the accuracy of the LinViT model
was measured and compared with state-of-the-art methods. This comparison was done
to evaluate the performance of the LinViT model against existing methods in the field
and to see if it can achieve similar or better results.

4.3.2.c Baseline methods

To compare our method with state-of-the-art methods, we implemented two baseline
methods : Recurrent neural network (RNN) and Long short-term memory [55] (LSTM).
Since our method deals with sequential data, we have chosen two methods that include
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time in the aspect too.

RNN to detect Genuine versus Posed Pain (RNN-GPP): On account of the fact that
temporal dynamic behavior is necessary in our study, RNNs are a potential choice for
this task. RNNs are a class of neural networks that allow previous outputs to be used as
inputs while having hidden states. In other words, the computation takes into account
historical information. RNNs are an architecture that captures relationships between
the inputs within several time steps by learning to conserve relevant information.

h ht-1 ht ht+1

O

X Xt-1 Xt Xt+1

Ot-1 Ot Ot+1

V V V V
……V

UnfoldW W W W

U U U U

Figure 4.5: General Recurrent Neural Networks architecture.

RNNs are presented as a class of neural networks that operate well with sequential
data. In actuality, this kind of network analyzes the input sequence one element at a
time and keeps track of a hidden state vector that acts as a repository for previous data.
Recurrent neural networks acquire theability to carefully preserve pertinent data in or-
der to detect dependencies over a range of time steps.

The key components associated with recurrent neural networks include memory, a
non-linear activation function, and a non-linear transfer function. The memory stores
the hidden state of the network, and the hidden state is modified by applying the non-
linear transfer function. Hidden states are modified sequentially by applying an ac-
tivation function to the hidden state at each time period to form a new hidden state.
In addition, weights associated with synaptic connections are adjusted according to a
learning rule. Therefore, recurrent neural networks are able to learn to process sequen-
tial data that is dependent on the current and past states.
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Figure 4.5 outputs the fully recurrent neural networks (FRNN) architecture that con-
nects all neurons’ outputs and inputs. This is the most general neural network topology,
since all other topologies may be replicated by setting some connection weights to zero
to imitate the lack of connections between particular neurons. As can be seen in the
Figure 4.5, the hidden neurons i the RNN are linked over time by a feedback connec-
tion. The element of the current sequence, xt, and the hidden state, ht−1, which was
recovered from the previous time step, are given to it as inputs at time t. The output
of the network, Ot, is then computed after updating the hidden state to ht. U is the
weight matrix that, like in a traditional neural network, connects the input and the hid-
den layers. V presents the weight matrix for the recurrent transition, which connects
one hidden state to the following. W displays the weight matrix for the transition from
hidden to output.

LSTM to detect Genuine versus Posed Pain (LSTM-GPP): The LSTM [55] models
are a variant architecture of RNNs. They were designed to mitigate the vanishing and
exploding gradient problem. Thus, they can learn short and long term dependencies.
LSTM networks have an internal mechanism called gates that can regulate the flow of
information. These gates can learn which data in a sequence is relevant, then decide to
keep it or to throw it away. Following this mechanism, the LSTM network learns to use
important information to make predictions.

The LSTM architecture is divided into three parts: forget gate, the second part is
known as the input gate and the last one is the output gate. As shown in the Figure 4.6,
an LSTM has a hidden state, just like a straightforward RNN, with ht−1 standing for the
hidden state of the prior timestamp and ht for the hidden state of the present timestamp.
Additionally, LSTMs have a cell state that is denoted by the timestamps Ct−1 and Ct,
which stand for the prior and current timestamps, respectively. Below, more details
about the three gates in LSTMs’ architecture.

• Forget Gate: The initial step in an LSTM network cell is to choose whether to
keep or discard the data from the preceding timestamp. The Forget gate equation
is given below by the equation 4.6.

ft = σ(Xt × Uf + ht−1 ×Wf ) (4.6)

Where:

Xt: the timestamp’s current input.
ht−1: the previous timestamp’s hidden state.
Uf : weight associated with the input.
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Wf : the hidden state-related weight matrix.

A sigmoid function is then applied to it. This will result in ft being a number
between 0 and 1. This ft is then multiplied by the previous timestamp’s cell state,
as shown in Figure 4.6, in the Forget gate. The network will forget everything if
ft is equal to 0, but nothing if ft is set to 1.

• Input Gate: The value of the new information carried by the input is measured
by the input gate. The input gate’s equation is shown below.

it = σ(Xt × Ui + ht−1 ×Wi) (4.7)

Where:

Xt: the timestamp’s current input.
ht−1: the previous timestamp’s hidden state.
Ui: input weight matrix.
Wi: Weight matrix of the input associated with the hidden state.

The new information can be expressed as follows :

Nt = tanh (Xt × Uc +Ht−1 ×Wc) (4.8)

The new information required to be passed to the cell state is now a function of
a hidden state at timestamp t-1 and input x at timestamp t. Tanh is the activation
function in this case. The tanh function causes the value of new information to
range between -1 and 1. If Nt is negative, information is subtracted from the
cell state; if Nt is positive, information is added to the cell state at the current
timestamp. However, the Nt will not be directly added to the cell state. Here is
the updated equation.

Ct = ft × Ct− 1 + it ×Nt (4.9)

Ct− 1 represents the cell state at the current timestamp, while the other variables
are previously determined values.

• Output Gate: depending on what is needed, it can allow the cell to forget or
remember its former condition. Here is the equation of the Output gate below,
which is similar to the previous two gates.

ot = σ(Xt × Uo + ht−1 ×Wo) (4.10)
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Because of the sigmoid function, its value will also be between 0 and 1. We will
now use ot and tanh of the updated cell state to determine the current hidden
state. As illustrated below.

Ht = ot × tanh (Ct) (4.11)
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Figure 4.6: Long Short Term Memory architecture.

For both RNN and LSTM for Genuine versus Posed Pain methods, we indeed applied
the pre-processing detailed in the second paragraph of the subsection 4.4.1. Therefore,
the captured frames from the BioVid Heat Pain Database [143], are fed to the model
respecting the sequential order in the video. Also, the input size is 100 × 100, and the
last layer is adapted for the classification of two classes.

4.3.3 Performance analysis

In this section, we will analyze the performance of the LinViT model. We will start
by comparing the results of the LinViT model with the results of the baseline methods.
This comparison will provide an understanding of how well the LinViT model performs
compared to the existingmethods in the field. Next, we will study the impact of using an
unordered database on the performance of the LinViT model. This analysis will provide
an understanding of how the order of the frames in the video affects the performance of
the model.Finally, we will conduct a computational analysis to evaluate the efficiency
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and scalability of the LinViT model. This analysis will provide an understanding of the
computational resources required to train and run the model and how it can be opti-
mized for real-world applications.

Overall, the objective of this section is to evaluate the performance of the LinViT
model in terms of accuracy, robustness, and computational efficiency. This will provide
a comprehensive understanding of the capabilities and limitations of the LinViT model,
and help to identify areas for improvement.

4.3.3.a Comparison with baseline methods

The experiments for evaluating the performance of the proposed LinViT method were
conducted on the BioVid Heat Pain Database [143]. This database contains videos of
individuals experiencing both genuine and posed pain, making it an ideal dataset for
evaluating the ability of the LinViT model to distinguish between the two types of pain.
The performance of the LinViT model was evaluated using accuracy as the primary
metric and compared to the results of several baseline methods. These baseline meth-
ods were selected to represent the current state-of-the-art in the field of pain detection
and provide a benchmark for the LinViT model.

In order to ensure a fair comparison, we carefully justified the choice of pre-processing
method applied to the database. This pre-processing step is important to ensure that the
database is prepared in a way that is suitable for the LinViT model and that the results
are comparable to the baseline methods.

To evaluate the impact of the temporal relationship on the Vision Transformer’s
performance and its ability to discriminate between Genuine and Posed pain, we per-
formed experiments using disordered sequences. In these experiments, the order of the
frames in the video was randomly shuffled to disrupt the temporal relationship between
the frames. This allows us to understand how the temporal relationship between the
frames affects the performance of the LinViT model and the discrimination of the two
pain types.

In this work, we propose a novel approach for representing videos of the BioVid
Heat Pain Database [143] by means of an image. This image is composed of the con-
catenation of captured frames from the video, arranged in the same order as the original
video. This approach enables the detection of temporal relationships between frames,
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Table 4.1: Comparison of the performance of our proposed model for the differentiation
between Genuine and Posed Pain while varying the size of the input image.

Pre-processing detail Frame size Input size Accuracy (%)
One video is captured into three
big images and each image is
a concatenation of 36 frames

100× 100 600× 600 81.07

One video in captured into one
big image and each image is
a concatenation of 81 frames

80× 80 720× 720 84.78

One video in captured into one
big image and each image is
a concatenation of 100 frames

100× 100 1000× 1000 85.13

which is crucial for the task of distinguishing between genuine and posed pain.

We conducted a series of experiments to evaluate the performance of our proposed
LinViT model on this task. Three different configurations of the LinViT model were
tested, each with a different number and size of frames concatenated into the input im-
age.

The first experiment involved capturing 36 frames from each video and concatenat-
ing them together to form three images per video. These images were then preprocessed
using the MTCNN [148] to detect faces, resulting in frames of 100 × 100 pixels. The
final images were of size 600 × 600 pixels, and the predicted value for each video was
obtained by averaging the three outputs from the model. This configuration resulted in
an accuracy of 81.07

The second experiment involved capturing fewer frames, specifically 81 frames, and
reducing their size to 80× 80 pixels. These frames were concatenated together to form
a single image of size 720×720 pixels. This configuration achieved an accuracy of 84.78

Finally, the third experiment involved capturing the maximum number of frames
possible, 100 frames, and using a frame size of 100 × 100 pixels. The resulting image
was of size 1000× 1000 pixels. This configuration achieved an accuracy of 85.13

It is worth noting that the size of the input image, and the number and size of the
frames concatenated, can affect the performance of the model, and therefore it is im-
portant to adapt the proposed model to the size of the input image. Furthermore, the
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model architecture was adapted to the size of the input image, by using a 6× 6, 9× 9,
and 10× 10 patches for the first, second and third experiment respectively.

Table 4.2: Results of the baseline methods, ViT from scratch and the proposed model
on discrimination of Genuine from Posed Pain. The performance is evaluated on the
BioVid Heat Pain Database [143] by measuring the accuracy.

Method Accuracy (%) Duration of training
RNN-GPP 71.96 30 Hours
LSTM-GPP 75.22 40 Hours
ViT-GPP 85.63 14 Hours
LinViT (proposed method) 85.71 5 Hours

As previously mentioned, our experiments indicate that representing a video by a
single image, rather than multiple images, results in better performance for the LinViT
model. This can be attributed to the preservation of the temporal relationship between
frames when the video is not divided. When the video is divided, the sequence of frames
is interrupted, resulting in the loss of some information that is crucial for the task of
pain detection. The slight difference in accuracy between the experiments using 81 and
100 frames suggests that the majority of relevant information in the video is concen-
trated in the middle of the video. Therefore, in light of these findings, we have chosen
to conduct further experiments using a 100 × 100 model with an input image size of
1000× 1000. This allows us to capture the maximum number of frames while preserv-
ing the temporal relationship between frames, thus providing the best performance for
our model.

In this study, we have compared the performance of the proposed LinViT model
with two baseline methods, RNN-GPP and LSTM-GPP, for the task of discriminating
between Genuine and Posed Pain. These methods were evaluated on the publicly avail-
able BioVid Heat Pain Database [143]. The results, as shown in Table 4.2, indicate that
the proposed LinViT model outperforms the two baseline methods. The accuracy of
the LinViT model reaches 85.71%, which is significantly better than the results obtained
by RNN-GPP and LSTM-GPP, which are 71.96% and 75.22% respectively. These results
suggest that RNNs, although taking the sequential aspect into consideration, may not
be able to access information from a long time ago. On the other hand, the LSTM-GPP
method showed an improvement in accuracy, which confirms the ability of LSTM to
retain memory for longer sequences.

We have also trained the ViT for our classification. The ViT architecturewas adapted
to our case and been trained on the same dataset as the other model. The ViT for Gen-
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uine versus Posed Pain (ViT-GPP) has achieved 85.63% which is near to the accuracy
of our proposed model. This result emphasis the fact that the linearity used in our
transformer doesn’t impact performance. The superiority of LinViT over the two base-
line methods highlights the validity of our proposed architecture for the differentiation
between Genuine and Posed Pain. The LinViT architecture allows the model to learn
temporal patterns in the video and make more accurate predictions. Furthermore, the
ability to work on the entire video at once, and not just a sequence of frames.

Based on the information presented in Table 4.2, it appears that the LinViT model
has the least amount of training time at 5 hours, while the LSTM-GPP model has the
longest training time at 40 hours. The RNN-GPP model has a training time of 30 hours,
and the ViT model has a training time of 14 hours. It is worth noting that the use
of linear attention in the LinViT model affects the time consumption during training,
which may account for its relatively short training time compared to the other models.
It is worth noting that the training time and accuracy of a model are not always directly
proportional, and other factors such as the complexity of the model and the availability
of computational resources can also affect the training time. However, the LinViTmodel
stands out for its balance between accuracy and time consumption, it reaches a high
accuracy level while consuming less time than the other models.

4.3.3.b Impact of unordered database

In order to further understand the influence of the temporal relationship on Vision
Transformers, and to demonstrate the ability of these models to capture long-range
dependencies, we conducted experiments using disordered frames. Specifically, we con-
figured a function that concatenated frames in a random order and trained the LinViT
model on this dataset. The results showed that themodel achieved an accuracy of 59.14%
when using disordered frames. This finding highlights the importance of the temporal
relationship for LinViT, as it demonstrates that the model is heavily dependent on the
order of the frames in the video. As seen in Fig. 4.7, the difference in accuracy between
the disordered and ordered datasets is considerable, emphasizing the importance of the
temporal relationship in the LinViT model.

In contrast, when the RNN-GPP and LSTM-GPP models were trained using random
images, the difference in performance between the ordered and disordered datasets was
relatively small. This can be explained by the fact that RNNs and LSTMs also take into
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account the spatial aspect of images and extract information from them. These results
indicate that RNNs and LSTMs are less affected by the temporal relationship between
frames than Vision Transformers, but also that Vision Transformers are particularly
suited for sequential data.
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Figure 4.7: Comparison between performances of the proposed method LinViT while
concatenating ordered images and random ones. The same comparison is also done for
the state-of-the-art methods. The models take as input images in their sequential order
and then randomly.

4.4 Pain Detection From Facial Expressions Based on
Transformers and Distillation

Facial expressions are important in social interactions. They express spontaneously the
emotions of certain people. Facial expressions, therefore, provide information that can
be analyzed nowadays not only by humans but also by machines. We can highlight
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the importance of introducing machines to emotion detection by the fact that, in some
cases, humans are incapable of analyzing facial expressions (for instance, if a person
is paralyzed or in the case of infants). One of the important applications of computer
vision using facial expressions is pain assessment.

Pain presents a complex phenomenon that is not completely understood, starting
with its definition as an unpleasant feeling that may be a consequence of numerous
causes (for instance, medical causes, emotional or psychological ones[146]). Pain ac-
tually generates spontaneous facial expressions. Therefore, in most of the research in
pain recognition, the researchers use images of facial expressions [141]. In addition,
most of the publicly available databases of pain contain facial images of videos of pa-
tients [81] [143] [6].

Regarding the importance of automatic detection of pain from facial expressions,
many researchers focus their studies on the detection of pain or no pain task. Others
limited their research to the estimation of pain level or chronic versus non-chronic pain.
Different methodologies have been used. Beginning with handcrafted methods and pro-
gressing through machine learning methods to deep learning approaches [141]. In our
paper, we introduce a novel method for the automatic detection of pain. We propose a
transfer learning method for pain detection from facial expressions that makes use of
pre-trained data-efficient image transformers [124] (Deit). This method is based on the
transformers [129] that were designed first for Natural Language Processing (NLP). The
pioneering work in [33] demonstrated the effectiveness of these transformers for image
recognition. We have chosen the Deit [124], as it incorporates distillation that exploits
CNNs. To train our proposed architecture, we considered two databases, namely the
UNBC McMaster Shoulder Pain [81] and the BioVid Heat Pain [143].

The contribution of this research is to provide an effective pain assessment method
based on facial expressions. This report outlines the following contributions:

• Present a fine-tuned data-efficient image transformers (Deit) for pain and no pain
detection.

• Highlight the importance of transformers in the image’s recognition field in gen-
eral, and in pain tasks more particularly.

• Prove the efficiency of transformers comparing to Convolutional Neural Net-
works (CNN) while studying the discrimination of pain from no pain task.
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4.4.1 Databases and Proposed Method

In this section, we present the two databases used in our experiments. The first database
is UNBC McMaster Shoulder Pain and the second is BioVid Heat Pain. Both databases
have been widely used in previous research and have been proven to be challenging for
the pain detection task. In order to prepare the databases for training, pre-processing
steps were applied and are detailed below. Our proposed architecture is trained end-
to-end, allowing the model to learn both from the rich feature representations of the
ResNet50 encoder and the high efficiency of the transformer encoder. This architecture
is elaborated in the second part of this section.

4.4.1.a Databases and Pre-Processing

The experiments of this study are done on the two Databases: UNBC McMaster Shoul-
der Pain Database [81] and BioVid Heat Pain Database [143]. Those two Databases are
publicly available. In Fig. 4.8, we present some sequence examples from both databases.

UNBC McMaster Shoulder Pain Database: It consists of 25 adults with shoulder
pain. This database includes four parts: first 200 video sequences containing spon-
taneous facial expressions; Second 48, 398 Facial Action Coding System (FACS) coded
frames; Third, associated pain frame-by-frame scores and sequence-level self-report and
observer measures; and finally 66-point Active Appearance Model(AAM) landmarks. In
our study, we are interested in part two that consists of 48, 398 images. These images are
capturing facial expressions, while pain intensity changes. In our case, we are working
on a binary representation of pain. Therefore, our database is divided into two classes:
pain and no pain.

BioVid Heat Pain Database: It is a multimodal database. It contains frontal videos,
biomedical signals: Galvanic Skin Response (GSR), Electrocardiography (ECG), and Elec-
tromyography (EMG) at trapezius muscle. Pain in this database was stimulated by in-
duced heat pain in four intensities. For each intensity, 20 experiments are done. In our
research, we will be interested in frontal videos. In addition, this database is divided
into four parts. We will be using part A during our experiments. This part contains 87
subjects with 5 classes (no pain and 4 pain intensities). We convert videos to frames.
Thus, this database presents a total of 797343 images.

In order to focus on facial expressions, it is in our interest to crop the face of the
subjects. First, we use the Multitask Cascaded Convolutional Networks [148] (MTCNN)
as a face detector. Second, once the face is detected, we align it. Finally, we crop it to
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Figure 4.8: Examples of some sequences from the UNBC-McMaster shoulder pain [81]
and from the BioVid Heat Pain Database [143] databases. These sequences show the
difference of facial expressions for patients having pain and no pain.

Classes UNBC McMaster Shoulder Pain Database BioVid Heat Pain Database
Train Validation Test Train Validation Test

Pain 5 574 1 393 1 402 311 040 77 760 168 480

No Pain 22 344 5 585 12 100 134 688 33 672 71 703

Total 27 918 6 978 13 502 445 728 111 432 240 183

Table 4.3: Amount of images in the used Databases : UNBC McMaster Shoulder Pain
Database [81] and BioVid Heat Pain Database [143]. The amount of images for each
class for train validation and test.

an image of size 256 × 256. We divide each database into two classes : one for images
that represent no pain, and the other one gathers all pain intensities to constitute one
class for pain. Table 4.3 gives more details about the amount of images in every class
and every database.

The UNBC McMaster shoulder pain and BioVid heat pain datasets are unbalanced
(Table 4.3). This means that there is a disproportionate number of observations in one
class compared to the other. This can be a problem when training our model, as it can
lead to bias towards the class with more observations. To overcome this problem, we
balanced the databases using data augmentation. Data augmentation is a technique
that involves creating new, synthetic observations from the existing ones. This can be
done by applying various transformations, such as rotation, scaling, and flipping, to the
images in the dataset. By doing this, we were able to create additional observations for
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the class with fewer observations, which helped to balance the dataset.

4.4.1.b Proposed Method

In our approach, we propose a novel framework based on the transformer. This latter
has been introduced in the paper [129]. The transformers are deep learning networks
that were conceived first for the Natural Language Processing (NLP) tasks. It represents
a sequence-to-sequence architecture. Moreover, the transformers are based on a self-
attention mechanism which has the ability to learn the relationship between sequences’
components. Self-attention is one of the key ideas of the novelty presented by trans-
formers, in addition to the pre-training on large datasets. Therefore, self-attention is
a mechanism that estimates the relevance of an item over another[24]. The attention
mechanism can be defined by the equation 4.5.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4.12)

Let’s consider an image feature maps X, where X ∈ Rn×d. Q is the matrix of the
query (vector of one word in NLP tasks and patch in image recognition), K represents
the keys (vector of all patches or words in a sequence). V is a vector of values, contain-
ing also all the patches or words of a sequence. Therefore, attention mechanisms did
bring novelty and efficiency in networks for computer vision in general, and for image
recognition in particular. In our case, our proposed architecture is based on a trans-
former that uses distillation knowledge from a Convolutional Neural Network (CNN)
as a teacher in addition to attention mechanism. (More details about Transformers are
mentioned in Section 4.3.1)

In this work, we propose a novel approach for pain recognition using transfer learn-
ing with the Data-efficient image transformer (DeiT) model. The DeiT model was in-
troduced in [124] as an efficient method for training transformers for image recognition
tasks using mid-size databases. The DeiT model achieved promising results by only us-
ing the ImageNet dataset [32] for training. TheDeiT architecture is based on the concept
of distillation [54], which is the process of transferring knowledge from one network
to another. In the original DeiT paper, the authors used a pre-trained CNN on the Im-
ageNet dataset as the teacher model and a modified version of the Vision Transformer
(ViT) as the student model. The output of the CNN is passed as input to the transformer,
which is used to extract useful representations from the input images, thus improving
the efficiency of the transformer.
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The DeiT architecture is composed of several layers of self-attention and Feed For-
ward Network (FFN), which are used to extract useful representations from the input
images. The model also includes a distillation token, a class token, and patch tokens.
The distillation token ensures that the student learns from the teacher through atten-
tion, the class token goes through all blocks for the original classification done by the
transformer and the patch tokens are obtained from the input image. We will use a
technique called hard distillation (as in the original model), where the temperature is
set to one, which means that the label of the teacher model is taken as the true label.
This distillation loss is then summed up with a cross-entropy loss of the transformer.
This hard distillation method, along with the DeiT architecture’s efficient use of patch
tokens and class tokens, helps the model to accurately classify pain and no pain in im-
ages.

In our proposed method, we use the DeiT model as the base architecture and fine-
tune it using the UNBC-McShoulder and BioVid databases for the task of pain recogni-
tion. The DeiT model, as previously discussed, is an efficient transformer-based archi-
tecture for image recognition tasks. By fine-tuning the DeiT model on these databases,
we aim to have the model learn to differentiate between images depicting pain and no
pain. As mentioned above, the main idea behind distillation is to train the student model
to mimic the output of the teacher model on a given input. This can be achieved by min-
imizing the difference between the output of the student model and the output of the
teacher model, using a distillation loss function. In our case, the teacher we will be us-
ing is ResNet50 which is pre-trained on the ImageNet dataset.

The distillation process in our study starts by training the teacher network (ResNet50)
on the database, and the output of the fully connected layer (FC) is taken as the teacher
output. Next, the student network, transformer-based model is trained on the same
dataset and the output of the last layer of the transformer is taken as the student out-
put. Then we calculate the distillation loss (the cross-entropy in our purpose), which is
defined as the difference between the output of the student and the teacher networks
(equation 4.13). The student network is trained by minimizing the distillation loss with
respect to the student’s parameters.

L = −(
1

N
)×

∑
(yi × log(si) + (1− yi)× log(1− si)) (4.13)

where L is the loss, yi is the teacher output, si is the student output, and N is the
number of instances in the dataset.

In summary, our proposed method for pain recognition combines the efficiency of
the DeiT model with the guidance of the ResNet50 [49] model, which leads to a more
robust and accurate model. The fine-tuning process, combined with the use of the
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ResNet50 [49] as a teacher, allows the model to learn to differentiate between pain and
no pain images.
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Linear Projection of Flattened Patches
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In order to compare state-of-the-art methods with our proposed model, we imple-
mented various models such as GoogleNet [115], DenseNet-161 [56] and LSTM [55] for
the detection of pain. To do that, we used the pre-trained version of GoogleNet on Im-
ageNet, and adapted the last layer for two classification classes. GoogleNet is a model
that gives interesting results while using it in pain detection and estimation [36]. Also,
it is a model that does not take huge computational resources. Therefore, the fine-tuned
GoogleNet will be trained on UNBC-McMaster shoulder pain [81] and the BioVid Heat
Pain [143] datasets.

Similarly, DenseNet-161, which is a deep and dense convolutional neural network
and LSTM, a Recurrent neural network, were trained on the same datasets. TheDenseNet-
161 model is known for its ability to handle large datasets, and LSTM model is known
for its ability to handle sequential data, which makes them suitable for our task.

4.4.2 Experimental results

In this section, we present the experimental results of our proposed method for pain
recognition. The section is divided into two main subsections: the first subsection,
training details, provides information about the experimental setup. The second sub-
section, performance analysis, presents the results of our experimental evaluation. We
will also compare our proposed method with other state-of-the-art methods and discuss
the results in detail.

4.4.2.a Training details

As seen in the subsection 4.4.1, after the detection, alignment, and cropping of the im-
ages, we resize them to 256 × 256. We augment our training data using various data
augmentation techniques such as random horizontal flipping, random rotation, and ran-
dom cropping, to increase the diversity of our data. During the training, we fixed the
patch size to 32 which is the size of the image used to extract the features. In addition,
the learning rate is set to 0.00001 which is a small value that allows the model to con-
verge gradually while avoiding overfitting. The model is trained for 30 epochs with a
batch size of 64. To optimize the model during training we used the standard Adam
Optimizer [66] which is a widely used optimizer for deep learning.

For classification, we select the best parameters using back-propagation with the
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binary cross-entropy (BCE) loss. The experiments were done on a machine with two
NVIDIA Quadro RTX 5000 GPUs and 32GB of memory. The training parameters were
used to train both DeiT [124] and Resnet50 [49] separately on the two datasets: UNBC-
McMaster shoulder pain [81] and the BioVid Heat Pain [143]. We also ran multiple
experiments with different parameters such as patch size, batch size, and learning rate
to make sure that the final parameters we used for the model were the optimal for the
task of pain recognition.

4.4.2.b Performance analysis

We conducted experiments on both UNBC-McMaster shoulder pain [81] and the BioVid
Heat Pain [143] datasets. To evaluate the proposed fine-tuned Deit model for the recog-
nition of pain, we used the accuracy as a metric. First, we train the proposed method
separately on the two datasets. As shown in Table 4.4, we obtained an accuracy of
84.15% while the Deit-PNP is trained on the UNBC-McMaster shoulder pain [81]. Sur-
prisingly, the accuracy achieved when we used the BioVid Heat Pain [65] dataset is
72.11%. Although the BioVid Heat Pain [143] dataset contains more data, the UNBC-
McMaster shoulder pain [81] achieved better results.

We also trained three state-of-the-art models: GoogleNet, DenseNet-161 and LSTM.
GoogleNet achieved an accuracy of 80.01%when trained on the UNBC-McMaster shoul-
der pain dataset, and 65.75% when trained on the BioVid Heat Pain dataset. DenseNet-
161 achieved an accuracy of 79.6% on UNBC McMaster dataset, and 65.46% on BioVid
dataset. LSTM achieved an accuracy of 80.4% on UNBC McMaster dataset and 71.09%
on BioVid dataset. We can notice that the performance of these models decreases when
using the BioVid dataset. Overall, the results of these experiments demonstrate the
potential of the proposed fine-tuned DeiT model for the recognition of pain in facial ex-
pressions. The proposed method achieved better results than the state-of-the-art mod-
els, which confirms the importance of using transformers in this task.

In comparison to the results obtained in the state of the art, the proposed fine-tuned
DeiT model shows competitive performance. For example, on the BioVid Heat Pain
dataset, the proposed method achieved an accuracy of 79.11%, which is higher than
the 72.4% accuracy achieved by Werner et al [139]. Similarly, on the UNBC-McMaster
shoulder pain dataset, the proposed method achieved an accuracy of 84.15%, which is
higher than the 75.2% accuracy achieved by Bargshady et al [11] and the 73.04% accuracy
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achieved by Yang et al [151]. Additionally, it is worth noting that on the BioVid dataset,
the method proposed by Yang et al [151] achieved 60.23% accuracy. This is lower than
the accuracy obtained by the proposed method.

However, it should be noted that some state-of-the-art methods such as the method
proposed by Karamitsos et al [63] achieved higher accuracy than the proposed method,
with 92.5% on the UNBC-McMaster dataset. It is also worth mentioning that the method
proposed by Laduona Dai et al [31] achieved 85% accuracy on the UNBC-McMaster
dataset using a different approach, the Action Units based method. It is important to
note that we have not used the Leave One Subject Out Cross Validation (LOOSCV) since
we have big datasets and the training takes long time to be done. This cross-validation
method is commonly used in the literature in order to evaluate the performance of a
model while taking into account the inter-subject variability.

In conclusion, the proposed fine-tuned DeiT model has demonstrated promising re-
sults in the detection of pain from facial expressions. The model achieved competitive
performance compared to the state-of-the-art methods, with similar or better results on
the UNBC-McMaster shoulder pain and BioVid Heat Pain datasets. This is an impor-
tant step in the use of transformers for pain detection, as it is one of the first studies to
explore this approach. However, it is important to note that this is an emerging field of
research, and there is still much to be done in order to improve the performance of the
model. Future work could include the use of other transformer architectures, as well as
the exploration of other datasets to further evaluate the generalization and robustness
of the proposed method. Overall, the proposed method has the potential to be a useful
tool in the detection of pain from facial expressions, but further research is needed to
fully realize this potential.

It is worthwhile noting that the two databases are not balanced. The first one:
UNBC-McMaster shoulder pain [81], the amount of images belonging to no pain class is
much bigger that the one belonging to pain class. This can be noticed in Table 4.3. Con-
cerning the second database: BioVid Heat Pain [143] is also unbalanced. Contrary to the
first one, this database contains images of pain more than the ones with no pain. The
fact that the databases are not balanced is a potential cause of the difference obtained
in accuracy. Despite this problem, we can still state that our proposed architecture of
a fine-tuned Deit for pain recognition exceeds the state-of-the-art methods in terms of
accuracy.
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Table 4.4: Results of the different experiments of the proposed method to detect pain
from no pain, compared to the state-of-the-art models. The experiments are done using
the publicly available datasets: UNBC-McMaster shoulder pain [81] and the BioVid Heat
Pain [143]. We note the proposed architecture Deit-PNP to design the fine-tuned Deit
for detection of Pain from No Pain. The same for the models LSTM, DenseNet-161 and
GoogleNet.

Method
Accuracy %

UNBC McMaster Shoulder
Pain dataset

BioVid Heat Pain
Database

Werner et al [139] - 72.4
Laduona Dai et al [31] 85 -
Bargshady et al [11] 75.2 -
Karamitsos et al [63] 92.5 -
Yang et al [151] 73.04 60.23
GoogleNet-PNP 80.01 65.75
DenseNet-161-PNP 79.6 65.46
LSTM-PNP 80.4 71.09
Deit-PNP
(Proposed methos) 84.15 79.11
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4.5 Conclusion

In this chapter, we have proved the efficiency of Transformers in two topics : classifi-
cation of Pain and No Pain, and discrimination between Genuine and Posed Pain from
facial expressions. This chapter was divided into two parts, each one details one topic.
In the first part, presented a novel architecture for the binary recognition of pain from
facial expressions. This architecture is based on the data-efficient image transform-
ers [124] (Deit). We used fine-tuning of the pre-trained Deit model on the ImageNet [32]
dataset. The Deit model achieved interesting results compared to the state of the art.
We trained the proposed method using UNBC-McMaster shoulder pain [81] and BioVid
Heat Pain [143] datasets. Moreover, to compare our proposed architecture with the state
of the art, we implemented a pre-trained model to discriminate pain from no pain facial
expressions. We chose the GoogleNet [115] model. At the end of the experiments, our
proposed method showed promising results compared to the state-of-the-art method.

The Second part concerns the differentiation between Genuine and Posed Pain from
facial expressions. We used a fine-tuning of a pre-trained Vision Transformer model.
Our architecturewas evaluated using the publicly available BioVidHeat PainDatabase [143],
and achieved promising results. In fact, our proposed method outperforms the state-of-
the-art methods. This study proved the importance of the sequential aspect to detect
Genuine from Posed Pain. We also demonstrate the fact that Vision Transformers re-
quire large databases to give better results. Therefore, Vision Transformers are a promis-
ing method to adopt in studies of pain in general.

These works are the first step towards future investigations of other image recogni-
tion Transformers. Considering that Transformers are capable of capturing long-range
dependencies, and CNNs have the ability to detect important static information in an
image, our further studies will focus on the combination of Transformers with CNNs,
in order to improve our results.
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5.1 Conclusions and contributions

This thesis provided an overview of automated pain evaluation utilizing facial expres-
sions and presented a thorough examination of automatic pain intensity assessment.
Then, utilizing transformers, we introduce our novel method for detecting genuine ver-
sus posed pain. This chapter summarizes the findings and contributions of our proposed
approaches. In addition, we explore obstacles to automatic pain evaluation and provide
challenges for future research.

A reliable and objective assessment of pain is necessary for differential diagnosis,
choosing the proper therapy, monitoring progress, and evaluating whether it is neces-
sary to continue or modify a treatment. In addition to causing suffering and diminish-
ing quality of life, uncontrolled pain impairs the neurological system, endocrine sys-
tem, and immunological system [89]. Consequently, pain evaluation and treatment are
crucial not only for providing relief but also for preventing both immediate and long-
term effects that are detrimental to the individual’s overall health [89]. Inappropriate
pain management may result in chronic pain syndrome, which is often accompanied
by reduced mobility, weakened immunity, lower concentration, anorexia, and trouble
sleeping. Inappropriate treatment may also result in extra complications and worries
for patients.

In spite of advances in knowledge and technology, the management of pain in many
cases is still inadequate [83]. Although this is a prevalent issue, patients whose com-
munication skills are restricted, who are unable to describe their level of pain or whose
reports have a poor level of authenticity, are the ones who are most adversely impacted
by it. These vulnerable groups include newborns, toddlers, and children, as well as peo-
ple with cognitive impairments (like severe dementia), intellectual disabilities, people
who are very sick or unconscious, and people with terminal illnesses [52].

In the past decade, automated pain identification has progressed from an idea to a
topic of intense research. Automatic pain identification systems based on pain behaviors
(such as facial expressions, vocalizations, and physical movements) and physiological
reactions are a supplement to the standard evaluation methods that are currently em-
ployed to improve pain management. These tools allow continuous monitoring of pain,
as opposed to standard evaluation methods. This could lead to better clinical outcomes,
like making it easier for people who can’t get help on their own to take part in early
intervention. Moreover, automated systems are more objective than human observers,
whose assessments may be influenced by subjective factors such as the observer’s emo-
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tional connection to the patient or the patient’s physical attractiveness [141].

This thesis presents our works to in the context of the pain assessment from facial
expressions. These works aim to improve the automatic pain recognition research. In
this thesis, we have focus on the facial expressions of pain.

Firstly, we present the background of the topic and our motivations for conducting
the study. In addition, the contributions of the thesis are outlined, and the papers are
briefly summarized.

The third chapter compares some popular and off-the-shelf CNN (Convolutional
Neural Network) architectures for automatic pain recognition from facial expressions,
including MobileNet, GoogleNet, ResNeXt-50, ResNet18, and DenseNet-161. We use
these networks in two distinct modes: stand-alone mode or feature extractor mode. In
stand-alone mode, the models (i.e., the networks) are used for directly estimating the
pain. In feature extractor mode, the "values" of the middle layers are extracted and used
as inputs to classifiers, such as SVR (Support Vector Regression) and RFR (Random For-
est Regression). We performed extensive experiments on the benchmark and publicly
available database called UNBC-McMaster Shoulder Pain.

The succeeding chapter consists of two Transformers-based methodologies used to
address two issues: pain detection and the distinction between genuine and posed pain.
Considering that pain typically induces spontaneous facial expressions, these facial ex-
pressions could be utilized to detect the existence of pain. In this section, we suggest the
fine-tuning of data-efficient image transformers and distillation (Deit) for facial expres-
sion pain detection. The suggested architecture’s effectiveness is assessed using two
publicly available databases, UNBC McMaster Shoulder Pain and BioVid Heat Pain.

Concerning the use of facial expressions to distinguish between Genuine and Posed
Pain, we describe a novel method based on Vision Transformer (ViT). To differentiate
between Genuine and Posed Pain, the model must instead focus on the subtle changes in
facial expressions that occur over time. The employed method takes the sequential as-
pect into account and detects the variations in facial expressions. Experiments utilizing
the publicly accessible BioVid Heat Pain Database indicate the efficacy of our technique.
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5.2 Perspectives

This inquiry has a long way to go, and several issues need to be resolved. Despite
the progress made as a consequence of our contributions, there are still a number of
challenges to overcome in order to develop effective and applicable facial expression
analysis approaches for inferring pain. If automated pain evaluation is ever to be used,
these concerns must be studied in greater depth. We suggest a new set of problems for
using computer vision and machine learning to automate pain assessment. We discuss
below challenges and promising directions, and our ongoing research.

• Genuine versus Posed Pain

Our contribution to Genuine versus Posed Pain underlined the importance of Vi-
sion Transformers to detect the subtle changes in people’s faces to discriminate
between the two classes. Despite the importance of the temporal aspect in the
treatment of pain, the spatial information are still of a high interest in automatic
pain assessment. For this reason, we are currently investigating the use of both
Vision Transformers and CNNs to detect Genuine versus Posed pain.

• Data gathering

The availability of data, which might be difficult to gather, is a significant obsta-
cle for the progression of pain identification. Sharing datasets is thus necessary
to enhance the pace of advancement. An ideal dataset would be multimodal, have
annotations of high quality, cover not just pain but also other important states
to evaluate specificity and thereby reduce the number of false alarms, and be re-
leased with rigorous assessment criteria to increase the comparability of findings.
It is necessary to have shared datasets of clinical pain in order to validate recog-
nition algorithms in real use cases, such as with patients who are going through
post-operative stages or who have dementia.

The findings of future research should be validated on several datasets to demon-
strate consistent performance over a broad variety of data and to evaluate how
well a system generalizes to diverse contexts, medical populations, pain types, etc.
Also, ready-to-use recognition systems need to be tested in independent clinical
trials before they can be shown to have any therapeutic value.

• Origin of pain
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Anobserverwill have a very difficult time comprehending the nature of the painful
experience if they do not engage in dialogue with the person who is experiencing
it. If the training data for the computational models were expanded to incorporate
more information regarding the cause of the patient’s suffering, then it is possible
that it would be feasible to identify the source of a patient’s pain based on the fa-
cial expressions that the patient is displaying. The most significant obstacle that
stands in the way of achieving this objective is the lack of a system that is able to
establish connections between particular facial expressions, the duration of such
expressions, and the response of the subject to the source of the pain. Having a
dataset with many different types of pain causes is another problem to overcome.
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