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Abstract

With the major progress in Intelligent Transportation Systems (ITS), there has been an exponen-
tial interest in technological advancements of Internet of Vehicles (IoV), attracting the attention
of numerous researchers from academia and industry. IoV technology aims to enhance transport
efficiency, passenger safety, and comfort by exchanging traffic and infotainment information to
connected vehicles. The multitude of network access technologies, the exceptionally high mobility
of connected vehicles and their high density in urban areas, and the predominance of wireless
communications make the IoV ecosystem a complex, vulnerable and heterogeneous network with
very dynamic characteristics, some of which are difficult to predict and subject to scalability and
threats problems. Many entities compose its architecture (connected vehicles, humans, roadside
units (RSUs), ITS). Moreover, it presents different communication types to confirm its connecti-
vity and vulnerability. However, this diversity leads to new security requirements that seem chal-
lenging to consider and enlarge the attack surface of such networks. Therefore, disseminating
malicious messages/entities within the network significantly reduces the network performance
and becomes a threat to passengers and vulnerable pedestrians. Accordingly, security mecha-
nisms should be considered to secure communications in vehicular networks. This thesis aims to
develop novel models to enhance the security aspects of the IoV ecosystem dealing with diverse
attacks, including DDoS attacks, while preserving users’ privacy.

Key words : Internet of Vehicles, Software-defined network, Security attacks detection,
Trust management, Reputation system, Blockchain.



Résumé

Avec les progres réalisés au cours de la derniére décennie dans les Systeémes de Transport
Intelligents (STI), les progres technologiques dans le domaine véhciculaire & connu une évolution
qui a donné naissance au paradigme prometteur de I'Internet des véhicules (IoV), attirant l’atten-
tion de nombreux chercheurs et inudstriels. Il est & noter que I'Internet des véhicules (IoV) vise
a améliorer l'efficacité des transports, la sécurité et le confort des passagers en échangeant des
informations sur la circulation et 'infodivertissement avec des véhicules connectés. La multitude
de technologies d’acces aux réseaux, la mobilité exceptionnellement élevée des véhicules connec-
tés et leur forte densité en zone urbaine, ainsi que la prédominance des communications sans fil
font de ’écosystéme IoV un réseau complexe, vulnérable et hétérogéne aux caractéristiques tres
dynamiques de I'environnement véhiculaire. De nombreuses entités composent son architecture
(véhicules connectés, humains, unités routieres. De plus, les réseaux véhiculaires présentent dif-
férents types de communication pour confirmer sa connectivité et sa continuité. En conséquence,
de nombreux messages critiques pour la sécurité a faible latence sont générés et échangés au sein
du réseau. Cependant, cette diversité conduit a de nouvelles exigences de sécurité qui semblent
difficiles & prendre en compte et a élargir la surface d’attaque de tels réseaux. Par conséquent,
la diffusion de messages/entités malveillants au sein de I'ToV réduit considérablement les per-
formances du réseau et devient une menace pour les passagers et les piétons vulnérables. En
conséquence, des mécanismes de sécurité devraient étre envisagés pour sécuriser les communi-
cations dans I'loV. Cette theése vise a proposer de nouveaux modeles pour améliorer les aspects
de sécurité de ’écosysteme IoV face a diverses attaques, y compris les attaques DDoS, tout en
préservant la confidentialité des utilisateurs.

Mots clés : Internet des véhicules, Software Defined Network, detection des attaques,
gestion de la confiance, systeme de réputation, Blockchain.
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INTRODUCTION

Context

In spite of considerable progress in technology and policy development aimed at improving road safety,
transportation systems worldwide continue to grapple with significant safety and efficiency challenges.
The annual global road traffic fatality toll, as reported by the organization of world’s health (WHO)
[1], is a staggering 1.35 million, translating to nearly 3,700 lives lost daily in accidents encompassing
diverse modes of transport. Road traffic damage is the leading cause of death across all age bunches and
represents the primary cause of mortality for individuals aged 5 to 29 years.

To address these pressing issues, Intelligent Transportation Systems (ITS) propose equipping vehicles
and transport infrastructure with secure, robust, and reliable communication capabilities. The overar-
ching goal of ITS is to provide safer road environments by reducing accidents, optimizing travel times,
minimizing pollution, enhancing passenger comfort through multimedia and infotainment services, and
bolstering security against cyber threats. Combining communication capabilities with sensor-based de-
tection and perception integrated into vehicles enables the development of diverse ITS services and a
multitude of use cases. Notable among these services is Cooperative Collision Avoidance (CCA), which
allows vehicles to exchange critical mobility information to prevent accidents. Another pivotal service
is Cooperative Perception, offering a comprehensive view of the surroundings by aggregating data from
neighboring vehicles, aiding in effective decision-making and trajectory planning. ITS also introduces
Platooning, the cooperative grouping of vehicles to save fuel, enhance safety, and optimize road usage.

Urban areas grapple with traffic-related challenges, and vehicular networks stand as pivotal solutions.
The conjunction of Big Data with cloud and edge computing and the Internet of Things (IoT) is improving
the evolution of these networks [2]. The Internet of Vehicles (IoV) has garnered substantial attention from
both academia and industry, shaping the trajectory of the next generation of vehicles. These vehicles
will inherently possess connectivity, enabling communication with various Intelligent Transport System
components, including other vehicles, pedestrians, and infrastructure elements (such as On-Board Units,
Roadside Units, Base Stations, and the Cloud). The result is a cohesive vehicular network that plays a vital
role in sustaining the IoV ecosystem, aiming to deliver the requisite network connectivity performance.

The IoV can enhance traffic safety and efficiency by the Vehicle to Everything communications. V2X
communication involves a spectrum of interactions wherein connected vehicles utilize wireless commu-
nication to exchange information with other vehicles, the surrounding infrastructure, onboard sensors,
personal devices, and cloud servers. The applications of V2X span safety-critical functionalities, including
congestion management, crash prevention, and collision notifications, as well as non-safety applications
such as navigation, anti-theft measures, and entertainment services. These applications, in conjunction
with vehicle-embedded sensors, bolster traffic management and road safety by disseminating collision war-
nings, emergency brake notifications, hazard alerts, obstacle warnings, and traffic congestion information.
Given the sensitivity of these applications, ensuring the security and reliability of exchanged information
is paramount, as malicious actors can potentially disrupt the communication, leading to accidents and
loss of lives.

Tesla has been notable for its cybersecurity measures, particularly its complex challenge system desi-
gned to thwart conventional methods of attacking remote unlock systems. Nevertheless, a recent discovery
has revealed a sophisticated relay attack, which could enable a physical attacker to unlock and steal a
Tesla Model Y within seconds.
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The expanding prominence of IoV in recent years is further underscored by the rapid proliferation
of wireless devices on roadways. Estimates suggest that by 2025, over 500 million connected vehicles
will be in operation [?]. The sheer scale and dynamism of these networks pose challenges in meeting the
stringent requirements of low latency, high mobility, top-tier security, and massive connectivity, all integral
to the 5G/6G network. The inherently mobile and decentralized architecture of IoV makes it susceptible
to security vulnerabilities, both from insiders and outsiders. To address these challenges, researchers
from academia and industry have proposed security solutions grounded in cryptography. However, these
solutions have primarily demonstrated their efficacy against outsider attacks, leaving insider attacks as a
considerable concern.

In 2017, a group of Chinese security researchers [4] successfully hacked a Tesla Model X, gaining remote
control over the car’s brakes and the ability to open and close doors and trunk while synchronizing the
lights to music from the car’s radio, a display they humorously labeled "the unauthorized Xmas show."
In a more recent development in 2022, a security consultant, Josep Pi Rodriguez, uncovered a complex
relay attack on a Tesla Model Y [5]. This attack required two perpetrators, with one in proximity to
the vehicle and the other close to the car owner, who possessed an NFC keycard or a mobile phone
with a Tesla virtual key. These Near-Field Communication (NFC) keycards are used by Tesla owners
for unlocking their vehicles and starting the engine. However, the car’s manual advises keeping the NFC
keycard as a backup. The attack involved the deployment of malicious software via the car’s web browser
through a series of intricate exploits, resulting in remote control of the vehicle via both Wi-Fi and cellular
connections.

The automotive industry at large has faced similar challenges, with Nissan having to withdraw its
application for the Leaf electric car due to security vulnerabilities. Also, about 1.4 million vehicles were
placed by Fiat Chrysler Automobiles due to hackers’ ability to attain electronic access to the cars and
control brakes and acceleration via a software’s security weakness.

As noted earlier, the IoV is particularly susceptible to attacks due to its high mobility and dynamic
nature. This vulnerability poses a significant risk, potentially allowing for the manipulation of safety-
critical messages and communication delays. These issues could ultimately contribute to road accidents
and, tragically, the loss of human lives. The growing openness and unrestricted access within vehicular
networks heighten their susceptibility to attacks. Hence, the imperative to enhance the security of the
advanced IoV framework, addressing various attack types, whether insider or outsider, active or pas-
sive, becomes paramount. Furthermore, concerns regarding the misuse of private data by network users
necessitate the exploration of innovative security solutions, constituting a significant domain of research.

Motivations

Creating resilient vehicular security models is crucial to prevent the dissemination of tampered safety-
critical messages. Such models can thwart malicious vehicles from broadcasting falsified data by implemen-
ting intelligent security measures rooted in stochastic models and emerging technologies like Blockchain,
Software-Defined Networks (SDN), and the formidable capabilities of Machine Learning (ML). These
models must adapt to the dynamic nature of the Internet of Vehicles (IoV), identifying anomalies, sa-
feguarding privacy, and proactively guarding against a wide spectrum of threats. The primary goal is
to bolster the security and safety of connected vehicles and their occupants. This involves establishing
a reliable system where occupants can confidently trust the identity of the sender and the information
being exchanged. It is imperative to identify and neutralize any malicious vehicles before they can pose a
threat to the network. Imagine the catastrophic consequences if a malicious vehicle were to tamper with
a collision avoidance warning, leading to fatal accidents and loss of human lives.

Traditional security mechanisms often fall short in addressing the unique characteristics of IoV com-
prehensively, especially in specific oV scenarios. While cryptographic schemes are frequently employed
to mitigate adversarial behavior from rogue vehicles, additional measures are necessary to evaluate the
credibility of authenticated vehicles. Traditional security requirements like confidentiality, integrity, au-
thentication, and availability remain critical.

Furthermore, specific actions can be tailored to the requirements of IoV in a given scenario, such as
auditing for information tracking and trustworthiness. Incorporating stochastic models like Markov chains
can capture the dynamic nature of vehicular networks and enable informed decisions based on current
states and transition probabilities. These models can forecast the future security states of connected
vehicles by analyzing past transitions and events, offering proactive security measures.

Integrating Software-Defined Networking (SDN) with vehicular networks unifies their control planes,
allowing IoV to leverage diverse access technologies while managing network resources efficiently. This
flexibility is vital for providing communication services that adhere to security requirements within IoV.
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The concept of trust has gained prominence in addressing insider attacks within vehicular networks.
Trust-based vehicular security models prevent the exchange of malicious messages and facilitate their
revocation. Trust management evaluates data and entities by assigning trust values to ensure road safety.
Blockchain integration in the trust management process establishes a decentralized platform with an
up-to-date trust value ledger accessible to participating nodes. Vehicles and Roadside Units (RSUs) can
request the trust value of any other node.

Developing an Intrusion Detection System (IDS) grounded in Federated Learning and Blockchain
for vehicular networks offers a comprehensive approach to security and privacy. This approach combines
decentralized learning, privacy preservation, tamper-resistant ledger technology, and collaborative defense
mechanisms to create a secure and adaptable IDS system that can effectively safeguard vehicular networks
against a variety of security threats while upholding the privacy of network participants. Such an approach
is paramount for ensuring the safety, security, and trustworthiness of vehicular communication systems.

In light of these considerations, our research endeavors to explore the development of intelligent mo-
dels to secure communications between connected vehicles and address network scalability. Our security
models not only provide conditional privacy for drivers but also enhance the autonomous behavior of
connected vehicles.

Organisation

In this thesis, we delve into the field of the Internet of Vehicles in an effort to fully comprehend the ca-
pability of vehicular networks to tackle the security obstacles presented by traditional connected vehicles.
We introduce an overview of IoV. We talk generally about its network’s components, communications
types, characteristics and domain of applications. We also overview the security and privacy-preserving in
such networks. The, we talk about the importance of integrating the Software-Defined Network paradigm
in IoV. We outline the powers of combining this technology in IoV. We present our proposed hierarchi-
cal SDN-based Vehicular Network architecture (SDVN). We outline the benefits of having hierarchical
architecture.

In this phase of our study, we conduct a comprehensive review of the literature on trust management
within the Internet of Vehicles (IoV) context. We examine applicable schemes and explore existing surveys
on the security of connected vehicles, providing a general overview of trust concepts. Additionally, we
analyze security and trust challenges specific to vehicular networks and classify relevant trust management
approaches based on technology and classical criteria. A qualitative comparison is performed to evaluate
these approaches. Finally, we outline potential future research directions and perspectives in IoV trust
management. This extensive review is the foundation for our subsequent research efforts to enhance
security and trust within the IoV ecosystem.

Our initial contribution involves the implementation of a hierarchical architecture designed to enhance
the security of Software-Defined Vehicular Networks (SDVN). In conjunction with this architecture, we
introduce a secure framework for anticipating and identifying Distributed Denial of Service (DDoS)
attacks. This model utilizes a Markov stochastic chain to analyze the network node’s behavior. Through
comprehensive simulations, we deliver compelling evidence that our model excels in mitigating DDoS
attacks, reaching a significant level of reliability in defending vehicular networks.

Our second major contribution lies in the introduction of a fully decentralized trust management
framework based on Blockchain technology. This innovative framework relies on multiple smart contracts
to establish trust and enhance security within future Software-Defined Vehicular Networks (SDVN). The
framework functions in a completely distributed, transparent, secure, tamper-proof, and trustworthy
manner. We have meticulously implemented, tested, and deployed this system on the Ethereum network.
The experimental results obtained underscore the system’s remarkable attributes, including adaptability,
flexibility, security, efficiency, and cost-effectiveness. Consequently, this framework emerges as a highly
promising solution for the development of novel decentralized trust management systems within the realm
of Intelligent Transportation Systems (ITS).

Our third principal contribution centers on the proposal of VFed-IDS, a decentralized, secure, flexible,
scalable, and robust architecture based on Blockchain and Federated Learning. This innovative architec-
ture is specifically designed to bolster privacy preservation in connected vehicles. VFed-IDS operates
through three primary layers : the central layer, the local layer, and the Blockchain layer. The central
layer features the SDN Controller, responsible for training and aggregating the global model, while the
local layer consists of vehicles training their respective local models using private local datasets. The Blo-
ckchain layer assumes the critical role of managing transaction encryption between the central and local
layers. Moreover, it introduces a smart contract, VFed-SC, tasked with overseeing the list of authenticated
and collaborating vehicles within the Federated Learning (FL) process. This comprehensive architecture
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represents a significant advancement in the realm of privacy protection for connected vehicles, promising
increased security and efficiency within this dynamic environment.
We end this thesis by presenting a conclusion and some perspectives.
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1.1 Introduction

In the contemporary era characterized by rapid developments, Intelligent Transportation Systems
(ITS) have attained unprecedented levels of sophistication. A particularly notable aspect of this progress
is the rise of the Internet of Vehicles (IoV), a domain that has seen significant growth thanks to the rapid
advancements in wireless communication technologies. IoV represents an emerging application of ad-hoc
networks, where interconnected vehicles serve as mobile nodes within a dynamic network. What sets IoV
apart and makes it increasingly popular are its unique characteristics. IoV facilitates real-time communi-
cation between moving vehicles, enabling the exchange of critical information related to traffic conditions,
road status, weather updates, accident reports, and other pertinent data. This communication benefits
not only the vehicles themselves but also their drivers, enhancing the overall driving experience. One of
ToV’s primary objectives is to mitigate the risk of accidents and other disruptions on the road. By sharing
and disseminating essential information, it contributes to safer and more efficient traffic management.
Nevertheless, various aspects of IoV still require extensive research and development. Key areas of focus
include addressing security challenges, preserving user privacy, and establishing standardized protocols
and practices to ensure seamless integration and operation within the IoV ecosystem.

The progression of the Internet of Vehicles (IoV) has instigated extensive research, particularly in the
realm of security. The Internet of Vehicles (IoV) faces a range of security challenges. Security attacks
possess the potential to disrupt communications, jeopardize network integrity, and induce misguided
decisions among connected vehicles. Researchers have categorized these attacks based on parameters
such as the number of attackers and the type of malicious activity. Effectively mitigating these threats
and designing strong security mechanisms are crucial to maintaining the IoV reliability.

1.2 Definition of IoV

IoV serves as the foundational element of the Intelligent Transport System (ITS), representing a
specialized category within the realm of ad hoc networks characterized by their dynamic topology and
sporadic connections, as documented in [6]. The architecture of a connected vehicle comprises three core
elements : the On-Board Unit (OBU), a Road-Side Unit (RSU) or Basic Station (BS), visually depicted
in Figure 1.1, and an Application Unit (AU). IoV accommodates a wide spectrum of applications, encom-
passing both safety-related functionalities such as lane changing assistance and non-safety applications
like infotainment services.

1.2.0.1 Characteristics

While some vehicular services have been successfully deployed in the IoV, the practical implementa-
tion of IoV still needs to improve, particularly in management and deployment. These difficulties arise
due to several intrinsic characteristics of Vehicular Networks, such as limited scalability, relatively low
intelligence, and sometimes inadequate connectivity. One of the critical challenges stems from the high
dynamicity of the network topology within Vehicular Networks. Unlike traditional communication net-
works, Vehicular Networks are characterized by a constantly changing network topology. Vehicles move
rapidly, join and leave the network, and form ad-hoc connections. This dynamicity poses a substantial
challenge for effectively managing the data and control planes. The dynamic nature of Vehicular Net-
works is further exacerbated by the increasing number of mobile nodes, as more vehicles become equipped
with communication capabilities. This exponential growth in the number of mobile nodes, combined with
their mobility, creates a highly dynamic and complex network environment. Consequently, it becomes
increasingly challenging to orchestrate and control the flow of data and management commands within
the network. Additionally, the sheer scale of Vehicular Networks can be overwhelming, especially in den-
sely populated urban areas, such as city centers, highways, and at the entrances to large cities. In these
locations, the network encompasses a large number of vehicles, all of which may seek to access and
share data simultaneously. The management of such a large-scale network requires robust solutions that
can efficiently handle the high demand for resources and information dissemination. Addressing these
challenges is imperative for the successful deployment and sustained performance of services within the
broader framework of the Internet of Vehicles. Research and development efforts are ongoing to devise
intelligent algorithms, dynamic routing protocols, and efficient resource management strategies capable
of adapting to the unique characteristics of Vehicular Networks. These solutions aim to optimize the
network’s performance, enhance scalability, and ensure reliable connectivity, ultimately enabling the IoV
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FIGURE 1.1 — Basic Vehicular Network Architecture.

to fulfill its potential in terms of improved traffic management, road safety, and a range of innovative
applications. Thus, the inherent characteristics of vehicular networks, marked by high network dynamism
and a burgeoning count of mobile nodes, pose significant challenges in terms of network management
and deployment. Addressing these challenges effectively is pivotal to unlocking the full potential of the
Internet of Vehicles (IoV) in enhancing our transportation systems and ensuring the ongoing evolution
of vehicular communication networks.

While some services have already been deployed, IoV grapples with numerous difficulties in manage-
ment and deployment due to factors such as limited scalability, diminished intelligence, and suboptimal
connectivity. The challenges highlighted above are formidable due to connected vehicles’ distinctive fea-
tures, including the topology’s dynamicity and the increasing number of mobile nodes. Furthermore, the
sheer scale of the network, especially in densely populated urban areas like city centers, highways, and
entrances to large cities, exacerbates the intricacies associated with deploying the IoV.

1.2.0.2 Applications

The Internet of Vehicles (IoV) stands as a fundamental and essential element within contemporary
smart city ecosystems. Fueled by a diverse range of applications, IoV significantly elevates the quality of
life, enhances safety, and reinforces overall urban security. Its versatile applications cover a wide array
of domains, playing a crucial role in reshaping our interactions with and navigation through urban
environments.

One of the fundamental pillars of IoV is its role in ensuring urban safety. Safety applications within IoV
are instrumental in averting accidents and reducing the risk to both vehicle occupants and pedestrians.
For instance, blind spot warnings employ advanced sensors and real-time data exchange to provide drivers
with crucial information about vehicles or obstacles in their blind spots, thereby mitigating the potential
for dangerous collisions. Equally vital are IoV applications that detect traffic light violations, ensuring
that drivers adhere to traffic rules and, in turn, curbing reckless driving behaviors. The synergy between
IoV and safety applications is a testament to its invaluable contribution in safeguarding lives on the city’s
bustling streets.

Furthermore, the IoV landscape extends its reach to offer entertainment services that cater to the
preferences and diversions of the modern urban dweller. The ability to stream media seamlessly within
the vehicle, be it music, video content, or other forms of entertainment, adds a new dimension to the
commuting experience. Passengers can access their favorite media, transforming mundane journeys into
engaging and enjoyable experiences. These entertainment applications not only contribute to passengers’
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comfort but also align with the broader goal of enhancing the overall quality of urban life. The conve-
nience factor within IoV is equally compelling. In a world characterized by urban congestion and limited
parking spaces, IoV applications come to the rescue by enabling parking space identification. Advanced
parking management systems, integrated with IoV technology, allow drivers to effortlessly locate available
parking spaces in crowded city centers, reducing the time and stress associated with finding a suitable
parking spot. This, in turn, contributes to a more streamlined and efficient urban transportation system.
Hence, the Internet of Vehicles represents a pivotal element of smart city environments, offering a diverse
range of applications that touch upon safety, entertainment, and convenience. From averting accidents
through blind spot warnings and traffic light violation detection to enhancing the quality of urban life with
in-vehicle entertainment and simplifying parking through space identification, IoV’s multifaceted contri-
butions not only make cities safer but also elevate the overall urban experience. The synergy between
ToV and smart city initiatives continues to redefine our urban landscapes, making them more connected,
secure, and enjoyable.

1.2.1 Architecture’s Components

In this subsection, we illustrate the communication entities and types of IoV.

1.2.1.1 Communication entities

The On Board Unit (OBU) AAn On-Board Unit (OBU) within connected vehicles is a compact
electronic device or module installed in the vehicle. OBUs are responsible for facilitating and supporting
various wireless communication capabilities, processing data, and enabling interactions such as vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud (V2C). These units are essential
components of the Internet of Vehicles (IoV) ecosystem, enabling vehicles to communicate with each other
and network components, ultimately contributing to improved safety, traffic efficiency, and the overall
driver experience.

The Road Side Unit (RSU) The Roadside Units (RSUs) are infrastructure components strategically
placed along roadways. They are critical in enhancing ITS safety, efficiency, and functionality. ), designed
to facilitate communication between vehicles and infrastructure elements, such as RSUs, to improve road
safety traffic management and provide various value-added services to drivers and passengers. These units
have various communication technologies, including wireless transceivers and sensors. It utilizes Dedica-
ted Short-Range Communication (DSRC) based on IEEE 802.11p. It enables them to establish reliable
and low-latency connections with nearby vehicles. RSUs serve as communication hubs that bridge the gap
between vehicles and central traffic management systems, thus creating an interconnected and responsive
network. Hence, RSU is an essential communication hub with wireless transceivers and sensors facilitating
dependable and low-latency connections between vehicles and surrounding infrastructure. They bolster
road safety through real-time applications like collision avoidance, lane change warnings, and emergency
vehicle alerts, providing critical information to avert accidents. RSUs further contribute to efficient traffic
management by delivering real-time data on traffic congestion, accidents, road closures, and signal optimi-
zation, thereby reducing congestion and improving traffic flow. Moreover, RSUs gather invaluable urban
planning data on traffic patterns, vehicle density, and road conditions, supporting informed city planning
and infrastructure development decisions. These units establish connectivity with diverse infrastructure
elements like traffic lights, surveillance cameras, and weather stations, promoting a comprehensive smart
transportation ecosystem. RSUs optimize network resources to efficiently manage data transmission and
network handovers efficiently, ensuring minimal latency and reliable communication. Finally, RSUs are
essential in safeguarding data security and privacy, employing authentication and encryption mechanisms
to prevent malicious attacks.

The Application Unit (AU) The final unit in the system is the Application Unit (AU), serving as
an on-board device within the vehicle. This unit establishes communication with the network through
the On-Board Unit (OBU), utilizing either wired or wireless connections. Its primary function is to offer
internet connectivity to other OBUs in the network.

The Basic Station (BS) The BSs and RSUs are running OpenFlow. They do not only carry voice
calls, but they also exchanged data between the connected vehicles with each others and with the other
components.
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1.2.1.2 Communications types

Enhancing road safety remains a formidable challenge within the domain of Intelligent Transportation
Systems (ITS). In this pursuit, considerable research efforts have been directed towards the improvement
of communication systems in vehicular networks. Reducing accidents continues to be a complex endeavor
for connected vehicles, which play a pivotal role in elevating the driving experience and traffic mana-
gement. Their mission is to establish robust, secure, safe, available, and scalable connections between
vehicles and various communication entities through the vehicle-to-everything (V2X) communication
types as illustrated in Figure 1.2.

Vehicle-to-network
(V2N)

Vehicle-to-infrastructure

(van)

Vehicle-to-grid
(va2g)

Vehicle-to-vehicle

(vav)

Vehicle-to-device

(v2D)

Vehicle-to-pedestrian

(V2P)

FIGURE 1.2 — Vehicle-to-everything (V2X) communications types in IoV.

V2X serves as the foundation for essential services like road safety and collision warnings, as well
as in-vehicle internet connectivity. Consequently, a multitude of services are poised to be delivered by
connected vehicles, ranging from real-time traffic alerts and route planning to cloud-based offerings.

Among the various V2X sub-types, V2V and V2I emerge as particularly influential, profoundly resha-
ping the driving experience. However, the successful implementation of these technologies necessitates a
significant shift in connectivity infrastructure. The seamless provision of broadband is indispensable for
the operation of these advanced mesh networks.

To confront this challenge, various industry groups have directed their efforts towards transitioning
from the older radio technology, based on the 802.11p standard, utilized for V2X communications, to
a cellular standard known as Cellular Vehicle-to-Everything (C-V2X). C-V2X integrates cellular net-
work communication with direct interactions between vehicles, infrastructure, and other road users. It
capitalizes on the extensive coverage provided by established 4G/LTE networks, with future adaptabi-
lity expected for 5G and 6G networks, presenting a more comprehensive set of capabilities compared
to other vehicle connectivity solutions. In contrast to the short-range communications of 802.11p, which
necessitate multiple network hops to gather information about traffic conditions a mile ahead and rely
on numerous vehicles or nodes, C-V2X facilitates real-time, single-step communication. This long-range
communication capability enhances the ability to predict traffic conditions and lays the groundwork for
more precise and effective traffic management.

C-V2X has undergone extensive testing in collaboration with numerous automobile manufacturers,
maturing over the years before gaining definitive validation. Simultaneously, the 5G and 6G networks
have continued their expansion, with the United States set to provide widespread coverage along major
highways by 2025.

While C-V2X is still considered a relatively recent technology, V2X is already contributing to safer
driving. The ensuing sections provide a detailed exploration of each V2X communication type.

Vehicle-to-Infrastructure (V2I) This signifies the interaction between vehicles and other commu-
nication entities (e.g., RSU, BS). In this context, vehicles transmit essential parameters such as their
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position, speed, direction, and more, which are crucial for various applications, including video strea-
ming. The RSUs play a pivotal role in collecting and processing these transmitted parameters, enabling
the provision of necessary services.

Simultaneously, Vehicle-to-Infrastructure (V2I) communication empowers vehicles to establish connec-
tions with stationary infrastructure components, such as traffic lights, which are integrated as nodes within
the mesh network. This interaction brings about significant enhancements in various aspects of traffic
management. It contributes to improved traffic safety through the delivery of warnings for potentially
hazardous situations, facilitates intersection optimization, and ensures the safe operation of rail crossings.
Furthermore, V2I aids in mitigating traffic congestion by providing real-time notifications of traffic jams,
enabling dynamic traffic light control, and offering assistance in finding available parking spaces. Addi-
tionally, V2I contributes to the reduction of emissions and air pollution, aligning with the broader goals
of sustainable and environmentally friendly transportation solutions.

Vehicle-to-Vehicle (V2V) This sub-type of communication, as discussed in prior research [7], in-
troduces novel applications, notably safety and infotainment services [8], which have the potential to
significantly enhance overall safety on the roads. This is particularly crucial given the staggering number
of global fatalities resulting from motor vehicle accidents. Alternatively, when a direct connection is not
available, such as in cases of longer-distance communication, routing protocols are employed, known as
k-hop communication. These routing protocols encompass various strategies, including clustering-based
approaches [9][10], route-discovery methods, or broadcasting protocols [11]. V2V communications are
instrumental in sharing critical data concerning factors like speed, direction, position, and braking status
with neighboring vehicles. In essence, this facilitates the creation of a mesh network among vehicles, with
each vehicle transmitting, receiving, and re-transmitting messages to others within an approximate range
of 300 meters. Additionally, it is important to note the existence of an Intra-Vehicle communication class
within the V2V domain.

Vehicle-to-Pedestrian (V2P) This sub-type symbolizes communications with nearby wheelchairs
and bicycles of person.

Vehicle-to-Grid (V2G) This facet of communication involves the exchange of data with the smart
grid, aimed at achieving more efficient load balancing. It encompasses two distinct sub-categories : com-
municationg of vehicles with building, home, and load.

Vehicle-to-Device (V2D) This category involves the exchange of data between a vehicle and various
electronic devices that can connect to the vehicle via Bluetooth or WiFi-Direct, including systems.

Vehicle-to-Network (V2N) This category represents communication based on Cellular (3GPP) /
802.11p technology. It comprises four distinct sub-categories : Vehicle-to-Cloud (V2C) (e.g., remote vehicle
diagnostics using DoIP) and Vehicle-to-Pedestrian (V2P) (e.g., involving wheelchairs and bicycles). It’s
worth noting that V2I, V2V, and V2P are also considered sub-categories within V2N.

1.3 Software-Defined Networking Based IoV
1.3.1 Software-Defined Networking (SDN)

The core principle of SDN revolves around separating the control and data plane [13]. In this archi-
tecture, the SDN Controller (SDNC) resides in the control plane and monitors, manages, and optimizes
networking resources. Its primary goal is improving network performance, traffic control, and efficient com-
munication. Meanwhile, the data plane encompasses the networking infrastructure, including forwarding
devices and wired/wireless links. SDN introduces the flexibility to design a programmable networking
framework, with OpenFlow (OF) being the most widely used interface. OF facilitates communication
between both planes, bridging the control and data realms. Another component, the application plane,
involves third-party services and applications. Through an application-control interface, the SDN Control-
ler manages the requirements of SDN applications, covering aspects like security, Quality of Service (QoS),
and resource allocation. SDN provides two types of interfaces for this purpose : the Control-Data Plane
Interface, known as the southbound Interface API (e.g., OpenFlow), and the Application-Control Plane
Interface, called the northbound API (e.g., REST API). The primary objectives of SDN include enhancing
network security, simplifying network management, supporting network heterogeneity, and optimizing re-
source utilization through OpenFlow. This entails the SDN Controller communicating with OF-Switches
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to gather essential information. Using various anomaly-detection tools and traffic analyses, OF-Switches
collect the necessary data. The SDNC then analyzes this information, allowing for creating or modifying
network configurations and implementing new policies or rules to address potential security issues. This
proactive approach enables swift control over identified security vulnerabilities.

APPLICATION LAYER [

Business Applications
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SDN
Control ,
Software Network Services
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CONTROL LAYER
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FIGURE 1.3 — SDN architecture.

1.3.2 Software-Defined Vehicular Network (SDVN)

In alignment with the core vision of our work, which revolves around proposing a secure hierarchical
vehicular network architecture aimed at significantly enhancing its security services, we advocate the
adoption of the Software-Defined Networking (SDN) paradigm as the foundational framework for our
architecture as illustrated in Figure 1.4. Beyond the benefits of this hybrid approach, we harness the
inherent advantages of the SDN paradigm to streamline management processes and bolster control.

SDN-based vehicular networks play a pivotal role in advancing 5G technology. These networks facili-
tate diverse services by enabling communication among vehicles and the entities outlined in subsection
1.2.1.1. Intelligent Transportation Systems (ITS) have introduced this emerging technology to provide
drivers with enhanced comfort, safety, and infotainment services while improving traffic efficiency. In
contrast to traditional vehicular networks, which often grapple with managing dynamic and large-scale
networks constrained by fixed policies and complex architectures, SDN introduces a transformative as-
pect. It establishes logical and centralized control across the entire network, making vehicular networks
flexible and programmable, ready to accommodate new services and features.

The centralized controller in the control plane takes charge of orchestrating network functionalities and
packet forwarding through devices in the data plane. This SDN-based approach enhances the efficiency
of the Internet of Vehicles (IoV) and strengthens security measures for connected vehicles. However, it
is crucial to acknowledge that integrating new technologies and architectural components in the network
also introduces new security challenges that require attention and resolution.

1.3.2.1 Hierarchical Control Plan

The decision to implement a hierarchical structure for the control plane is underpinned by the overar-
ching vision of our work, which emphasizes the need for unified control in these networks. At the second
level, the controller is tasked with constructing a comprehensive view of the communication infrastruc-
ture. This view is established by aggregating information provided by each network’s local controller.
The second-level controller defines and disseminates global rules that delineate the overarching behavior
of the entire network. In contrast, the first-level local controllers, which oversee the Basic Stations (BS)
and Road-Side Units (RSU), formulate specific rules for individual network nodes. It’s worth noting that
certain network control decisions can be autonomously made by the local controllers without explicit
directives from the global controller. For instance, decisions pertaining to horizontal handover operations
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(altering the attachment point within the same network, such as switching from one BS to another) can
be locally managed.

Conversely, vertical handover operations, which involve transitioning between different network enti-
ties (e.g., switching from an RSU network to a BS network), may necessitate guidance from the global
controller. In the subsequent sections, we provide examples of network control functions at each level of
control. While local controllers can typically be associated with the entities responsible for each specific
network, the role and responsibilities of the second-level global controller remain a subject of considera-
tion.
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FIGURE 1.4 — Proposed hierarchical SDN-based Vehicular Network (SDVN) architecture.

1.4 Security and privacy for IoV

Before deploying any oV, great attention to security and privacy concerns must be taken into account.
Hence, users’ privacy-preserving and securing the network and transmitted data from entities with mali-
cious intent is still a challenging task in the IoV context, especially with integrating new technologies into
the architecture. Besides taking advantage of integrating new architectural components and paradigms
into the architecture, this exposes new security vulnerabilities to the IoV.

We explain more in details the security concerns in IoV and the privacy-preserving in the two following
subsections.
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1.4.1 Security requirements in IoV

Security in vehicular networks is of paramount importance as it directly impacts safety in potentially
hazardous situations. Ensuring the integrity of critical data is vital, especially when there’s a risk of
malicious alterations. In the realm of the Internet of Vehicles (IoV), the challenge lies in striking a balance
between managing a driver’s responsibilities and safeguarding their security. This task is complex due
to various factors such as network scale, vehicle speeds, geographic coverage, and the dynamic nature
of vehicular associations. In-vehicle systems offer significant computing and power resources, setting
them apart from typical systems. These systems are capable of processing extensive amounts of data,
often involving multiple chips. Malicious actors can be categorized along three dimensions : "inside and
outside the network," "illegitimate and legitimate actors," and "active and passive threats." Message-based
attacks can manifest in various forms, including "misinformation," "location information fraud," "identity
exposure," "denial of service," and "concealment." The collection and sharing of data within vehicular
networks raise concerns about data integrity. For example, a sender might manipulate information to
gain an advantage (e.g., falsely reporting traffic congestion to divert other vehicles onto less crowded
routes). Malicious entities often pose as different vehicles or road infrastructure, creating security risks.
Establishing a trust system and recognizing vulnerabilities from senders can help vehicles mitigate this
risk.

1.4.2 Privacy requirements in IoV

Preserving privacy is a critical concern within the context of vehicular networks. This is primarily
due to the inherent link between a connected vehicle’s identification and location information with a
user’s actual identity and other sensitive data. Malicious actors can exploit this connection to determine
a vehicle’s location using its identification and to track its trajectory over time. To counter this threat,
it’s advisable to replace real identities with pseudonyms, and changing these pseudonyms regularly can
help prevent tracking.

Considering the privacy challenges mentioned earlier, adopting privacy-preserving authentication
schemes becomes crucial in connected vehicles. In this context, conditional privacy-preserving implies
that only the Trusted Authority (TA) can reveal a connected vehicle’s real identity through the messages
it receives.

Key privacy-preserving requirements in vehicular networks include :

— Privacy and anonymity : In the realm of the Internet of Vehicles (IoV), it’s imperative that
vehicular devices do not disclose the personal, confidential, or private data of their users. The
activities of one vehicle should remain concealed from others, and the concept of anonymity might
only be relevant or necessary for specific vehicles within the IoV.

— Message authentication and integrity :Communication through messages in the IoV should
be safeguarded to prevent any unauthorized modifications, and the recipient of a message must
be able to prove the sender’s identity. It is important to note that ensuring message integrity does
not necessarily mean establishing the identity of the data sender.

— Message non-repudiation :Message non-repudiation in vehicular networks is a crucial concept
that ensures a sender cannot deny sending a specific message, and a recipient cannot deny re-
ceiving it. This concept plays a significant role in ensuring trust and accountability within the
Internet of Vehicles (IoV). To achieve message non-repudiation in IoV, various security measures
are employed, including cryptographic techniques, secure timestamps, and message logging. These
measures collectively guarantee that both senders and recipients cannot deny their roles in the
exchange of messages. This is vital for maintaining the reliability and security of vehicular com-
munication systems.

— Entity authentication : Authentication is a pivotal aspect of security, and it has a significant im-
pact on privacy concerns within the context of vehicular networks. Authentication not only ensures
that the sender created a message but also provides evidence of the sender’s identity. This veri-
fication is crucial for confirming the legitimacy of vehicles, infrastructure components, and other
communication nodes, preventing impersonation, and facilitating secure and dependable commu-
nications in Vehicular networks. In some authentication protocols in the Internet of Vehicles (IoV),
mechanisms are implemented that allow entities to prove their authenticity without disclosing their
actual identity. This approach strikes a balance between security and privacy, which is essential in
ToV systems.
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— Access Control : Access control and privacy-preserving mechanisms play a critical role in Vehi-
cular networks by striking a balance between the necessity to communicate information for safety
and traffic management and the imperative to safeguard the privacy of users and their connected
vehicles. These mechanisms ensure that only authorized entities can access specific information
while also preserving the anonymity of all participants, addressing the twin goals of controlled
access and privacy protection in Vehicular networks.

— Message confidentiality :Vehicular networks frequently involve vehicles sharing information re-
garding their location and activities. Message confidentiality pertains to safeguarding the content
of messages shared between connected vehicles and infrastructure, ensuring that they are shielded
from unauthorized access or eavesdropping. By upholding message confidentiality, the privacy of
drivers is preserved, as it ensures that message details, including sensitive location and identity
information, are secure during communication and remain protected from unauthorized or mali-
cious entities.

1.4.3 Balance between Security and Privacy

This subsection addresses the delicate balance between security and privacy, recognizing that striking
the proper equilibrium is paramount. We delve into the balance between privacy and security in vehicular
networks from three perspectives.

Firstly, the implementation of authentication schemes may raise privacy concerns as sensitive location
information is exposed to the Trusted Authority (TA) at a particular time. While such schemes enhance
security, some users might resist the notion of being under the TA’s surveillance, as it appears to infringe
upon their privacy.

Secondly, it is worth noting that augmenting security often comes at the cost of increased privacy
concerns, particularly when privacy protocols are employed.

Thirdly, the Certificate Revocation List (CRL) has traditionally been employed to blacklist malicious
nodes. However, this approach demands significant storage space due to the scale of Vehicular networks. In
response, researchers have proposed alternative revocation mechanisms that utilize storage strategies and
hashing techniques to make neutral services more accessible. Nevertheless, it’s essential to recognize that
checking a certificate’s status in these mechanisms may inadvertently reveal the user’s private information,
a departure from the traditional CRL method.

1.5 Conclusion

The primary goal of IoV research is to improve the driving experience by focusing on safety, secu-
rity, and the conditional protection of drivers’ true identities and private information within vehicular
networks. These networks come with a set of complex challenges, mainly due to their interconnectedness
with other rapidly expanding domains. Security and privacy preservation stand out as the most crucial
concerns, necessitating further research and development efforts to elevate the quality of service and se-
curity within IoV, all while addressing the unique challenges it presents.

In this chapter, we have discussed a general view of IoV by defining its primary pillars : characteris-
tics, applications domains, architecture’s components. We also discussed the importance of integrating
the SDN paradigm in the IoV context. We illustrated the proposed architecture of SDN-based vehicular
network (SDVN). A comprehensive description has been presented to explain our choice to present hie-
rarchically the control plane in the SDVN architecture. Then, we delved into the security and privacy
requirements specific to the IoV.



CHAPITRE 2

VEHICULAR NETWORKS” TRUST MANAGEMENT

Table des matiéres

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Introduction . . . . . . .o 30
2.1.1 Contributions of thiswork . . . . . . . . . .. ... 30
2.1.2  Structure of the chapter . . . . . . . . . ... 30
2.1.3 Research Methodology . . . . . . . . . . ... . 34
Overview of Trust Management Mechanisms . . . . . . . .. .. ... .. .. ... ..., 35
2.2.1  Characteristics . . . . . . . . . 35
2.2.2 Metrics . . . . . e e e e e 36
2.2.3  Computation modules . . . . . . . .. 36
Existing Surveys . . . ... e 37
2.3.1 Contributions of existing surveys . . . . . . . . ... L Lo o 37
2.3.2  Comparison with our work . . . . . . . ... L oL 37
Issues . . . e 38
2.4.1  Security Issues . . . .. oL 38
2.4.2  Trust management Issues . . . . . .. ... .o Lo 38
2.4.3 Security attacks in IoV. . . . . .. oo 39
Classification . . . . . . . . . e 41
2.5.1 Entity-based schemes . . . . . . . . . 41
2.5.2 Hybrid schemes . . . . . . . . . L 43
2.5.3 Technology-based classification . . . . . . . ... .. .. ... ... ... 44
Discussion . . . . . . . L e e 49
2.6.1  Summary . . ... e e e 49
2.6.2 Comparison . . . . . ... e e 49
Future Work . . . . o e 54
2.7.1 Federated Learning-based solutions . . . . . . . . . ... .. ... ... ... 54
2.7.2 Clustering approaches . . . . . . . . . . L 54
2.7.3 Energy consumption . . . . . . . ... oo e e e 54
2.7.4  Emerging technologies . . . . . . . . .. L L o 95
Conclusion . . . . . . L e 55

29



30 Chapitre 2. VEHICULAR NETWORKS’ TRUST MANAGEMENT

2.1 Introduction

The data transmission in the IoV [15], occurs within an open-access environment, and security and
privacy emerge as pivotal concerns associated with Vehicular networks. Consequently, any IoV-based
system should meet the security and privacy prerequisites [22] outlined in Tables 2.1 and 2.2 to ensure
an efficient and dependable system. It is imperative to ensure that the messages being exchanged remain
untampered and free from any unauthorized alterations by potential threats such as insider or outsider
attackers, malicious or rational actors, and local or extended adversaries. The compromise of applications
within the Internet of Vehicles (IoV) can pose significant threats to drivers and passengers. Citing data
from the World Health Organization [23], it is reported that over 1.35 million road users lose their lives
annually in accidents. Consequently, ensuring authentication and trust [24] in extensive data exchange
becomes an indispensable necessity in the realm of IoV. The significance of privacy in connected vehicles
cannot be overstated. Consequently, only Trusted Authorities (TAs) [25] are granted access to sensitive
and private vehicle-related information. This access is essential to safeguard drivers’ privacy from any
third-party intrusion and maintain accountability. Therefore, Trusted Authorities (TAs) play a crucial
role in tracking malicious nodes and revealing their identities when these nodes propagate false informa-
tion regarding vehicle position or traffic conditions within the network. The messages exchanged often
contain personal driver information and must be sent anonymously to ensure communication efficiency.
However, additional measures are essential to guarantee the authenticity of these messages. There are
instances where internal nodes may disseminate false messages across the network, potentially leading to
catastrophic accidents. If Trusted Authorities (TAs) and Roadside Units (RSUs) identify such false mes-
sages, they must uncover and disclose the actual identity of the malicious node responsible for spreading
misinformation.

The primary role of TAs involves registering participant vehicles and RSUs, generating their private
keys, and establishing security parameters [26]. Additionally, TAs assign pseudo-identities to registered
vehicles while retaining their real identities for tracing any malicious activities. RSUs are responsible
for scrutinizing messages from vehicles to thwart deceptive information attacks, requiring the ability
to detect false information reports originating from vehicles. As a result, establishing a Public Key
Infrastructure (PKI) becomes a critical necessity in Vehicular networks. Many security solutions rely on
traditional PKI, which excels at promptly identifying outsider attackers but needs to catch up in detecting
insider attackers already network participants with validated credentials [27]. Consequently, researchers
introduced the concept of trust [28] as a security parameter capable of uncovering insider attackers by
scrutinizing mutual messages.

Furthermore, trust-based approaches are still in the early stages of development to ensure the effec-
tiveness of IoV deployment. Under trust models, nodes assign trust levels to one another during com-
munication within the network. Trust management has garnered significant attention from researchers
[29] due to its potential to disseminate reliable information, eliminate false messages, track self-serving
and malicious nodes, and mitigate their activities. Therefore, implementing trust models in RSUs and
vehicles becomes imperative to gauge received messages’ reliability, accuracy, and authenticity.

2.1.1 Contributions of this work

This chapter offers an extensive examination of trust management within the realm of connected
vehicles. Despite the growing interest from contemporary researchers in the implementation of trust
mechanisms in these networks, there remains a scarcity of comprehensive surveys explicitly focused on this
subject matter. Consequently, in this survey, we undertake a thorough review, analysis, and comparative
evaluation of the various trust management schemes introduced within the past six years, covering the
period from 2017 to 2022, all of which have been developed to address trust management in the IoV.

Furthermore, we categorize these schemes based on their alignment with emerging technologies and
the utilization of Artificial Intelligence tools. The structure and organization of our survey are visually
depicted in Figure 2.1.

2.1.2 Structure of the chapter

In section 2.2 of this chapter, we provide a comprehensive overview of the trust management me-
chanism in connected vehicles. Section 2.3 delves into existing survey papers on this subject. In Section
2.4, we recap the security and trust management challenges, along with the most prevalent attacks in
Vehicular networks. Section 2.5 presents a fresh classification of these approaches based on the techno-
logy employed. Section 2.6 summarizes the surveyed trust management approaches in IoV and provides
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TABLE 2.1 — Security services in IoV.

Service

Description

Availability

Availability is indeed a fundamental aspect
of security. Ensuring the availability of re-
sources, such as network services, is critical
because many attacks aim to disrupt or deny
access to these resources, which can have si-
gnificant consequences. By maintaining high
availability, a network can resist various types
of attacks and continue to provide services to
its users, contributing to a more secure and
reliable environment.

Authentication

Authentication is essential in network secu-
rity to verify the legitimacy of nodes or users
accessing a network. Authentication mecha-
nisms ensure that users or devices are who
they claim to be before granting access to net-
work resources. This helps prevent unautho-
rized access and unauthorized actions within
the network, enhancing security and trust.

Data integrity

Message integrity ensures that data transmit-
ted within a network remains unchanged du-
ring transit and reaches the recipient in the
same state as originally sent by the legiti-
mate user. This protection against unautho-
rized modification or tampering is vital for
maintaining the trustworthiness and reliabi-
lity of the information exchanged in the net-
work. Strong message integrity mechanisms
help prevent attackers from altering data and
ensure the authenticity and accuracy of the
information.

Confidentiality

Message confidentiality is a security service
that focuses on preserving the privacy of
users by encrypting the contents of messages
exchanged between communicating nodes.
It ensures that unauthorized entities can-
not access or understand the information
being transmitted. By encrypting data, the
contents remain confidential, and only autho-
rized recipients with the decryption keys can
access and interpret the data, thus protecting
the user’s privacy.

Non-
repudiation

Message non-repudiation is a security service
designed to ensure that both the sender and
receiver of messages cannot deny having sent
or received specific messages. This service en-
hances accountability and prevents parties
from disavowing their involvement in the ex-
change of messages, thereby fostering trust
and reliability in communications.
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TABLE 2.2 — Privacy requirements in the IoV.

Requirement

Description

Availability

Ensuring the availability of resources is a critical requi-
rement in oV, especially since many attacks target the
availability of these resources. It’s essential to maintain
a reliable and stable network to support the safety and
functionality of vehicular communication systems.

Data Authentica-
tion

Ensuring the integrity and authenticity of exchanged in-
formation between IoV entities is crucial. Verification of
transferred data is instrumental in preventing tampering
and unauthorized access, thereby bolstering the overall se-
curity of vehicular communication systems.

Integrity of data

This requirement is about ensuring that transmitted mes-
sages reach their intended destinations without being in-
tercepted or redirected by unauthorized entities. It helps
maintain the integrity and reliability of communication in
vehicular networks.

Privacy of vehicle

This requirement emphasizes the need to protect users’
personal and confidential data, as well as ensuring the se-
curity of transmitted messages and preventing unauthori-
zed entities from accessing information about the future
activities of network nodes. It emphasizes the significance
of privacy and security within vehicular networks.

Authorization

This requirement ensures that only authorized entities wi-
thin the Internet of Vehicles (IoV) can access and benefit
from the services provided by the network, enhancing se-
curity and control over network resources.

Vehicles ID tra-
cking

This requirement emphasizes the ability of the network to
track and verify the identity of vehicles, which is crucial
for security, accountability, and tracking purposes within
the Internet of Vehicles (IoV).

Scalability

This requirement highlights the scalability of vehicular
networks, allowing for the addition of new nodes without
significantly impacting network performance. It’s essential
for accommodating the dynamic nature of vehicular envi-
ronments where vehicles may join or leave the network
frequently.

Efficiency

This requirement emphasizes the need to improve network
performance by minimizing various factors, including ove-
rhead (unnecessary data or control information), compu-
tational complexity, delays in data transmission, and col-
lisions (interference between data transmissions). These
optimizations contribute to a more efficient and respon-
sive vehicular network.

Freshness

This requirement stresses the importance of regularly ve-
rifying new messages in order to prevent the use of out-
dated or potentially compromised messages. Regular mes-
sage verification helps ensure the integrity and security of
the communication in vehicular networks.
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TABLE 2.3 — Existing surveys on Vehicular networks.

Ref. | Year | Major contributions Topic

[31] 2017 |Summary of Vehicular Network Architecture, Examination of Security | Security
Concerns, Implementation of Protective Measures, and Comparative Eva-
luation.

[32] |2020 |In-depth exploration of diverse attack vectors, suggested remedies, and a | Security
thorough scrutiny and juxtaposition.

[33] |2019 |Survey of Vehicular Network Architecture, Deliberation on Security Threats, | Security
and Examination of Associated Challenges.

[34] 12021 | A comprehensive exploration of vehicular networks, attack models, and an | Security,
analysis of the security and privacy requirements for identity-based security | privacy
and privacy approaches.

[35] 2021 | A survey of vehicular networks, exploration of various attack scenarios, de- | Security,
tailed examination of privacy and authentication schemes, countermeasures | privacy
against attacks, assessment of performance metrics, and consideration of
outstanding challenges.

[36] |2021 |Evaluation of Current Authentication and Privacy Solutions, In-Depth Com- | Privacy
parative Analysis Using Defined Criteria, and Qualitative Assessment in
Contrast to Previously Published Surveys.

[37] |2021 |This survey aims to review, interpret, and juxtapose recently introduced | Trust
trust-building and management schemes, as well as to explore the shortco-
mings of existing research and the prospects of future challenges.

[38] [2019 | Comprehensive Examination of Vehicular Networks, Scrutiny of Authen- | Security,
tication Schemes, In-Depth Review of Location Privacy Safeguarding Ap- | trust and
proaches, Analysis of Trust Management Models, and Exploration of Future | privacy
Research Directions.

[39] |2018 |Identification and Evaluation of Contemporary Challenges in Efficient Rou- | Routing
ting Protocols, and Elaborate Qualitative Comparison.

[40] |2018 |In-depth Exploration and Categorization of Pseudonym Changing Strate- | Privacy
gies, Comparative Analysis Utilizing Pertinent Criteria, Identification of On-
going Challenges, and Consideration of Future Research Directions.

[41] ]2020 | An in-depth analysis of the machine learning-based trust frameworks pre- | Trust
sently employed.

[42] |2018 |Identification of Trust Management Approaches, Thorough Analysis Inclu- | Trust
ding Concepts, Methodology, Algorithms, Quality of Service (QoS) and Per-
formance Characteristics, Qualitative Comparison, and Recognition of Outs-
tanding Research Gaps.

43 is survey focuses on Quality of Service (QoS) in the IoV and provides a| Qo

13] 12018 | Thi f lity of Servi S) in the IoV and id S
quantitative comparison of various routing protocols.

[44] |2019 | Comprehensive Examination of Security Attacks and Safeguarding Mecha- | Security
nisms.

[45] 12019 | Overview of Contemporary Trust Management Solutions in Vehicular Net- | Trust
works.

[46] 2017 | Summary of Security Challenges and Examination of Authentication and | Security,
Trust Models. trust

[47] 2022 | Comprehensive Review : Communication Infrastructure, Applications, Iden- | Security

tifiable Challenges, and Outstanding Concerns.
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a comparative analysis using a predefined set of criteria. Section 2.7 investigates unresolved issues and
potential future directions. Finally, we conclude with some closing remarks in Section 2.8.

V. Classification
V.1, Entity-based schemes | Introduction
V.2.Data-based schemes 11. Contributions of this work
V.3.Hybrid schemes 1.2.Organization of the paper
V4 Technology-used 1.3. Methodology of research
V. Discussion Il Trust Mechanism
V1 Summry Trust Management in Vehicular Ad-hoc Networks ] I Propere
V1.2.Comparison Extensive Survey 11.2. Metrics
113.Modules
VII. Future Works
VIL1.Federated leamning . Existing Surveys
VI1.2.Clustering mechanism 111 Exsiting works
VII.3.Energy consumption 112, Comparison with our survey
VII4. Trust in emerging technologies
IV. Challenges
VIlI. Conclusion IV.1. Security challenges

V.2 Trust management challenges
IV.3.Security attacks in VANETS

FIGURE 2.1 — Our Survey organization.

2.1.3 Research Methodology

This chapter aims to provide an extensive review, classification, comparison, and summary of research
conducted in the domain of trust management within Vehicular Networks from 2017 to 2022. The survey
is based on a selective methodology that primarily considers the year of publication and adopted tools as
the search criteria. The works featured in this chapter are chosen to address specific questions, ensuring
a focused and relevant discussion.

— What fundamental components constitute trust management in the context of connected vehicles ?
— Which standard metrics are commonly employed for evaluating trust within these networks ?

— What classification methods can be applied to categorize recent trust management schemes ?

— What criteria can be employed to encapsulate and summarize these approaches 7

In our search for selected surveys, we employed relevant keywords including "connected vehicles," "IoV,"
"Trust," and the "used tools." This yielded a substantial number of papers related to the topic. While
conducting the search, it became evident that "privacy" and "reputation" are closely associated with the
concept of "Trust." To further narrow down and identify more specific and recent papers, we refined
our keyword criteria by combining "Trust management" and "connected vehicles" with additional terms
such as "Cloud Computing," "SDN," "Edge/Fog Computing," "Blockchain," and "Artificial Intelligence
techniques." This refined approach aimed to enhance the relevance and specificity of our selected surveys.
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2.2 Overview of Trust Management Mechanisms

In general, trust pertains to the relationship between two entities in a network, which we refer to as
trustors and trustees in this chapter. The trustor denotes the entity responsible for evaluating the trustee,
while the trustee signifies the entity under scrutiny by the trustor. To illustrate, when X places trust in
Y, X assumes the role of the trustor, and Y serves as the trustee. In this section, we explain and define
the trust mechanism, which is indispensable for comprehending the surveyed approaches discussed in this
chapter. Establishing secure vehicular network communications mandates the implementation of resilient
and efficient trust management models. The central objective of the trust mechanism is to ascertain
whether information from a sender node should be accepted or rejected by the receiving node, which
can be a vehicle or an RSU, based on a specific degree of confidence denoted as the trust value. The
trust value signifies the likelihood of a particular action being executed by an entity or node within the
network, ranging from 0, indicating complete distrust, to 1, signifying complete trust. An overview of the
fundamental principles of the trust management mechanism is presented in Figure 2.2.

Trust Mechanism

( (& 3. Computation @ 1. Properties )

3.1. Propagation 1.1. Direct

3.2. Agregation

1.2. Indirect

3.3. Update 1.3. Local

3.4. Prediction 1.4. Global

3.5. Evaluation 1.5. Subjective

3.6. Formation 1.6. Objective

Single-trust

1.7. Assymetric

Multi-trust 1.8. History dependent

1.9. Contexte dependent

1.10. Composite

( @ 2. Metrics

1.11. Dynamic
2.1. Reputation-based Y

2.2. Knowledge-based

2.3. Expectation-based

2.4. Node properties-based

2.5. Proximity-based

2.6. Environment-based

FIGURE 2.2 — Trust management main pillars.

2.2.1 Characteristics

The trust mechanism encompasses various properties, which can be defined as follows :

— Direct : Trust value computation relies on the immediate association between the trustor and the
trustee.

— Indirect : Trust value computation depends on the endorsements disseminated by the trustor’s
neighboring entities.

— Local : The trust value is confined to both parties and is not disseminated within the network.
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— Global : Every network entity possesses a distinct and universal trust value that is exchanged with

all other entities in the network.

Subjective : Trust calculation is solely contingent on the judgment formulated by the trustor.
Objective : Trust calculation is contingent on specific attributes or parameters of the trustee node.
Asymmetric : This represents a one-way or unidirectional trust relationship. For instance, if A
trusts B, it does not imply automatic trust from B towards A. Asymmetric trust indicates that
when A trusts B, B does not reciprocate the trust towards A.

History-dependent : Trust calculation relies on the past behaviors and actions of the trustee.
Context-dependent : Trust calculation is contingent on environmental events or specific circum-
stances.

Composite : The trust value is computed by considering various parameters, such as honesty,
security, and more.

Dynamic : The trust value is subject to change over time and can be updated in response to
alterations in the initial parameters.

2.2.2 Metrics

Drawing from the surveyed approaches, this section outlines the various metrics commonly employed

in the measurement and evaluation of trust within Vehicular networks.

— Reputation-based : Nodes determine the trust value by considering recommendations and opinions

provided by neighboring nodes in the network regarding a particular node.

Knowledge-based : The trust calculation of a node relies on its past or direct experiences with a
particular node within the network.

Expectation-based : Trust value is calculated based on the node’s anticipation or forecast of ano-
ther node’s behavior. In this approach, the node will compute trust either based on historical
interactions with another node or predict it when there is no prior communication.

Node properties : Trust calculation involves the key attributes of the node, such as its direction,
speed, velocity, and more.

Proximity-based : The network’s trust calculation formula incorporates proximity-related parame-
ters of the node, including factors like time, distance, location, and more.

Environment-based : Factors such as the network area, density, or topology, including the presence
of essential components like the cluster head within the clustering mechanism, are considered
parameters that can be integrated into the trust formula of the system.

2.2.3 Computation modules

Trust management is a vital component in safeguarding communication within the Internet of Vehicles

(IoV) environment. The principal modules of the trust management mechanism in Vehicular networks
encompass :

— Trust Propagation Module : The trust propagation module employs various approaches, in-

cluding distributed, semi-distributed, and centralized methods. Within the distributed approach,
each individual node takes on the responsibilities of trust management, information collection,
trust calculation, storage, updating, and distribution, all without the need for a central agent.
Conversely, in the centralized approach, a single central entity handles all of these tasks. The
semi-distributed approach, on the other hand, relies on a selected group of entities to manage
trust, using information received from other network entities.

Trust Aggregation Module : This module handles various versions of trust values for a node
propagated through different network paths in the previous phase. The primary models employed
include Machine Learning, Game Theory, Hybrid, Statistical, Probabilistic, and Fuzzy Logic mo-
dels.

Trust Update Module : The Trust Update Module is responsible for real-time adjustments to
node trust values, guided by their ongoing behavior and feedback from other nodes. It leverages
algorithms like Bayesian networks, decision trees, and neural networks for trust value updates.
This module revolves around the management of computed trust scores over time. Essentially,
two primary approaches are utilized for updating trust values : Event-driven and Time-driven. In
the event-driven approach, all actions (e.g., bidding a service or access, delivering a service, etc.)
are treated as events, leading to dynamic trust value updates with the occurrence of each event
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in the system. In contrast, the time-driven approach periodically recharges trust values utilizing
counter-based strategies without waiting for specific events to trigger the updates.

— Trust Prediction Module : This module is dedicated to forecasting trust levels between nodes,
relying on specific metrics. Its core function is to estimate whether a trustor will place trust in a
given node or not.

— Trust Evaluation Module : Typically, the evaluation module draws upon a combination of
factors, including direct or local knowledge, global knowledge elements (involving direct and in-
direct trust), and recommendations obtained by querying the node’s neighbors and updating the
trust table. Consequently, it computes a recommendation, which is then integrated into the global
knowledge. This process contributes to the assessment of an entity’s trustworthiness.

— Trust Formation Module : The Trust Formation Module is primarily concerned with establi-
shing the trust formula and determining how trust values are to be computed. The trust formula
is contingent on selected metrics and attributes, making it adaptable and capable of being either
straightforward or complex. This module classifies trust formulas into two primary categories :
Single-trust and Multi-trust.

— Trust Inference Module : The Trust Inference Module is responsible for deducing the trustwor-
thiness of nodes by considering their trust values along with contextual information. For instance,
when a node with a previously high trust value exhibits suspicious behavior, this module may
respond by reducing its trust value and categorizing it as untrustworthy.

— Trust Revocation Module : The Trust Revocation Module is tasked with withdrawing trust
from nodes that have been identified as untrustworthy or malicious. Upon revocation of a node’s
trust, it is effectively excluded from network participation, and its communication privileges are
terminated.

2.3 Existing Surveys

This section introduces the most recent comprehensive studies focused on trust management within
Internet of Vehicles (IoV) systems. We have condensed the primary discoveries from these research papers
into Table 2.3. It is essential to highlight that a relatively small number of articles have given particular
attention to trust management endeavors in connected vehicles. These surveys, which explore vehicular
networks’ security and privacy dimensions, offer valuable insights for our ongoing research. This is espe-
cially relevant as we are on the verge of conducting an in-depth analysis of connected vehicles’ substantial
security challenges in the subsequent section.

2.3.1 Contributions of existing surveys

Many surveys have been carried out in the domain of Vehicular networks, as outlined in Table 2.3.
The majority of these surveys have explored issues related to security and routing protocols while also
providing a comprehensive architectural overview of the Internet of Vehicles (IoV) [31, 32]. Some of these
surveys have examined potential security challenges extensively and proposed corresponding solutions
[44]. In the authors’ work in [34], a comprehensive survey on Vehicular networks has been presented,
covering various attack models and offering a qualitative analysis of the security and privacy requirements
within identity-based security and privacy schemes. Furthermore, in [36], the authors have provided an
all-encompassing survey of existing authentication and privacy schemes, comparing security and privacy
criteria, computational overhead, and resilience to various attacks. This chapter also contains a qualitative
comparison with previous surveys. Moreover, [40] has delivered comprehensive surveys concentrating on
privacy within IoV-based architectures.

2.3.2 Comparison with our work

Although there is a wealth of publications addressing trust management in connected vehicles, there
needs to be more comprehensive surveys encompassing the diverse facets of trust. In Table 2.4, we
conduct a comparative analysis of our research concerning the previously mentioned schemes that focus
on trust management in connected vehicles. This comparison is grounded in several critical criteria :
trust modules, trust metrics, trust challenges, attacks, open research directions, taxonomy, evaluation
criteria, and simulation tools. This evaluation highlights the substantial emphasis placed in our work on
the identification, review, classification, and comparison of various trust-based schemes, covering a broad
spectrum of trust-related aspects.
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TABLE 2.4 — Comparison of our work with different trust surveys.

Comparison aspects | Ref.[37] Ref.[38] Ref.[41] Ref.[42] Ref.[45] Ref.[46] Our survey
Modules X X
Metrics X X X X X X
Issues X X X
Attacks X X X X
Perspectives X X
Taxonomy X X X X X
Analysis parameter | X X X
Simulation Tool X X X X X

2.4 Issues

In this section, we will identify and analyze significant challenges related to security and trust in the
context of connected vehicles. We will then present a concise overview of prevalent security attacks and
delineate corresponding solutions.

2.4.1 Security Issues

In the IoV environment, data is transmitted through a wireless network, which is susceptible to in-
terception by malicious nodes. Consequently, security concerns represent the most paramount challenges
within Vehicular networks. Any compromised application in this context can pose grave risks to drivers
and passengers. The dynamic and high mobility of vehicles, coupled with a constantly changing network
topology, scalability issues, short-duration communication links, and diverse technologies within the net-
work, all contribute to the complexity of detecting malicious attacks. Therefore, safeguarding the security
of various entities within vehicular networks, including drivers, passengers, vehicles, roadside units, and
traffic management authorities. In the IoV context, exchanged messages must remain unaltered and free
from unauthorized insertion or modification by potential attackers. Impersonation attacks, wherein ma-
licious nodes assume the identity of legitimate entities (e.g., posing as emergency responders), and then
communicate with other nodes to manipulate their behavior, are a significant concern. Security and pri-
vacy in the IoV domain are intricately linked to trust-related issues. Numerous research endeavors have
been undertaken in this domain, exploring privacy preservation methods, cryptography-based approaches,
pseudonym-based techniques, certificate-less authentication, and identity-based signature methods. These
evolving schemes play a pivotal role in ensuring the reliability of connected vehicles, particularly by har-
nessing the power of emerging technologies and incorporating Artificial Intelligence-enabled techniques.

2.4.2 Trust management Issues

In recent years, growing concerns surrounding vehicle privacy and authentication have given rise to the
pivotal role of trust models in the Internet of Vehicles (IoV) realm. Despite their increasing importance,
these trust models are still in their early developmental stages and encounter several challenges, notably
in addressing the security issues they seek to overcome. As a result, the integrity of user interactions in
Vehicular networks becomes crucial to establish. Trust models play a key role in overseeing and mitiga-
ting the impact of both malicious and selfish nodes, ensuring the dissemination of reliable information
throughout the network. Moreover, these models must exhibit robust resistance against various malicious
attacks, including but not limited to bad-mouthing, on-off attacks, movement tracking, and message snif-
fing. For instance, the on-off attack exemplifies a node-behavior attack wherein the objective is to evade a
negative reputation by alternating between launching malicious services and exhibiting benign behavior.
Similarly, selfish node attacks share the motivation to locate and disrupt communications, resembling
the behavior of greedy nodes that obstruct event logging and impede the monitoring of node actions.
Another noteworthy attack is the bad-mouthing attack, a reputation-based assault aimed at undermi-
ning or diminishing the trust reputation of other nodes within the network by providing unfavorable
recommendations about them. Furthermore, a persistent challenge lies in balancing privacy and trust
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requirements in connected vehicles. This dilemma arises because private and sensitive user information,
such as geographic location and real identity, can potentially be exposed, posing a threat to the trust
relationships and communications between nodes.

2.4.3 Security attacks in IoV.

Security entails the state of being shielded from potential dangers or threats, encompassing safety
measures implemented to ensure protection. In the context of the IoV environment, a complex and
heterogeneous system with various vulnerabilities, multiple types of security threats can manifest. Mo-
reover, the unique characteristics of Vehicular networks, including their dynamic nature, scalability, and
more, amplify the challenges associated with preventing and detecting these security issues. Numerous
researchers have delved into the realm of security attacks in connected vehicles, as documented in the
publication titled "Vehicular Network Attacks.” Their efforts have aimed to categorize these attacks and
propose corresponding solutions. In this subsection, we delineate the security concerns prevalent in Ve-
hicular networks and present a summarized overview of these attacks in Table 5.7.

— Non-repudiation Attack : This attack is geared toward denying either the transmission or
reception of messages by either the sender or receiver. It has adverse effects on the resources of
connected vehicles, particularly by overloading the network bandwidth with multiple retransmis-
sions, leading to delays and performance issues.

— Spamming Attack : The nodes in the network send spam messages with the intention of inflating
the message transfer rate, causing increased latency, higher bandwidth usage, and leading to
multiple collisions within the network.

— DoS Attack : DoS is a prevalent attack in the Internet of Vehicles (IoV) wherein either internal
or external vehicles deliberately disrupt the network’s resources and services, rendering them
inaccessible to network users. This is typically achieved by either saturating the communication
channel or overwhelming network nodes, making them unavailable for legitimate use.

— DDoS Attack : The decentralized and dynamic nature of Vehicular networks presents a significant
challenge in dealing with DDoS attacks [147, ?, ?, ?, ?]. In the Internet of Vehicles (IoV), esta-
blishing direct communication among vehicles or using roadside units results in a self-organizing
and self-configuring network. While fostering flexibility, this inherent design makes Vehicular net-
works susceptible to DDoS attacks. In these attacks, numerous malicious nodes flood the network
with illegitimate traffic, overpowering legitimate communication channels. This renders it highly
challenging, if possible, for vehicles to effectively communicate with each other. DDoS attacks in
the context of IoV can manifest in various forms.

— GPS Spoofing Attack : In connected vehicles, the integrity of GPS signals is crucial for accurate
positioning and location information. The GPS Spoofing attack seeks to undermine the authenticity
of GPS signals by overpowering them and manipulating the location data sent by GPS satellites.
This attack results in the dissemination of false location information to vehicles, compromising
their authentication and potentially leading to misleading navigation and communication within
the network.

— Replay Attack : In a replay attack, a malicious node intercepts and stores a message received
from another node and then repeatedly retransmits the same message. This continuous replaying of
messages can make it challenging to correctly identify vehicles, especially in emergency situations.
This type of attack has the potential to cause serious incidents, such as collisions, due to the
disruption of communication and the misinterpretation of information.

— Masquerading Attack : In a masquerading attack, the attacker assumes the identity of a legiti-
mate node, essentially wearing it as a mask to produce false messages that appear authentic. The
goal of this attack is to create a black hole in the network, where the malicious actor can deceive
other nodes into accepting its deceptive messages as genuine, potentially leading to disruptions
and security breaches within the network.

— Man-in-the-Middle Attack : In a man-in-the-middle attack, the malicious actor positions them-
selves between two nodes engaged in V2V communication, allowing them to intercept, modify, or
closely inspect the messages being exchanged. This gives the attacker the capability to access and
control the entire V2V communication, potentially enabling eavesdropping, data manipulation,
and disruption of the communication between the legitimate nodes.

— Wormbhole Attack : In the context of the Internet of Vehicles (IoV), a wormhole attack is designed
to extend the tunneling of packets between two malicious nodes, allowing an attacker to control
at least two malicious nodes. In this attack, the malicious nodes incorporate themselves as a part
of the reply path, enabling them to manipulate and reroute communication between legitimate
nodes. This type of attack can compromise the integrity and security of Vehicular networks by
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diverting data through unauthorized pathways controlled by the attacker.

Greyhole Attack : The greyhole attack is a type of attack that involves selectively removing data
packets of specific applications, particularly those that are vulnerable to packet loss. Greyhole is
categorized as a variant of the Blackhole attack and specifically targets the availability of network
resources at the network layer. This attack can disrupt the communication and availability of
certain applications or services in the network while allowing other traffic to pass through, making
it a strategic and sophisticated form of network-layer manipulation.

Jellyfish Attack : The Jellyfish attack primarily focuses on disrupting the availability of the
network layer. There are two main types of Jellyfish attacks.

Packet Reordering Attack : In this type, a malicious node intentionally reorders packets before
forwarding them, causing acknowledgments to be received out of sequence. This results in the
need for message retransmissions due to the perceived communication disruptions caused by the
out-of-sequence acknowledgments.

Periodic Dropping Attack : The periodic dropping attack involves the random discarding of
packets during communication processes. Furthermore, it entails the dissemination of inaccurate
route congestion information. The deliberate misinformation prompts the Jellyfish node to decide
on discarding a portion of packets for a brief duration, consequently extending the timeout period
for retransmission. This attack strategy aims to introduce delays and disruptions in communica-
tion, potentially resulting in network congestion and performance degradation.

Black Hole Attack : This attack involves the redirection of network traffic by a malicious node.
In this attack, the malicious node falsely claims to have the shortest path to a destination and
lures data traffic from legitimate users. However, instead of forwarding the data, the malicious
node simply declines to contribute to the network, effectively dropping all received packets. This
malicious behavior can result in significant disruption to the routing table and negatively impact
network availability. The primary target of the black hole attack is the network’s availability, as
it can lead to the loss of data and a breakdown in communication within the network.

Sybil Attack : The Sybil attack is aimed at injecting false or deceptive information into the
network, allowing a malicious node to exert control over the network. This attack directly impacts
the information generated and reported by various nodes within the network. As a result, affected
vehicular nodes may make incorrect decisions that deviate from the actual scenario, ultimately
undermining the efficiency and reliability of the system. The Sybil attack can lead to a distorted
and compromised communication environment within the network.

Message Tampering Attack : The message tampering attack is employed when the commu-
nication route is congested, and the attacker seeks to clear the road. In this attack, a malicious
node modifies or alters a recent message and then sends it to the destination as if it were an au-
thentic message. This attack primarily targets the integrity of messages, causing disruptions in the
network, especially because the altered message may be overheard by others in the vicinity. Mes-
sage tampering can lead to the spread of misleading or harmful information within the network,
potentially causing confusion and chaos.

Tunneling Attack : The tunneling attack is designed to compromise the integrity of the system.
In this attack, the attacker initiates a private communication and establishes a connection between
two segments of the network through an external communication channel referred to as a "tunnel."
As a result, nodes that are physically distant from each other can communicate as if they were
neighboring nodes. This form of attack significantly disrupts the network’s normal operation and
may lead to unauthorized or malicious communication channels being established, compromising
the network’s integrity and security.

Greedy Behavior Attack : In a greedy behavior attack, the attacker exploits the Message
Authentication Code (MAC) protocol to gain an unfair advantage by consuming a significant
portion of available bandwidth and network resources solely for their benefit. The attacker does
this to divert other nodes onto alternate routes, effectively securing a clear communication path
for themselves to the destination. This selfish behavior can lead to traffic overloading, collisions
on the transmission channel, and delays in the legitimate services of registered users, significantly
degrading network performance and fairness.

Illusion Attack : The illusion attack involves receiving legitimate data from antennas and simul-
taneously collecting malicious data from sensors. The attacker then generates false traffic warning
messages by utilizing the existing road infrastructure. These deceptive messages can create an
illusion for the vehicles on the road. Since drivers’ behaviors often depend on the accuracy of the
traffic warning messages they receive, this attack can result in vehicle accidents, traffic congestion,
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and a reduction in the overall system’s performance. The goal of the illusion attack is to disrupt
the normal flow of traffic and compromise the safety and efficiency of the vehicular communication
system.

— Traffic Analysis Attack : In a traffic analysis attack, the attacker actively listens to message
transmissions and analyzes the frequency and patterns of communication to extract maximum
useful information. This type of attack is particularly dangerous as it poses a significant threat to
the confidentiality and privacy of communications within Vehicular networks. By monitoring and
analyzing network traffic, the attacker can gain insights into sensitive information and potentially
compromise the privacy and security of network users.

— Jamming Attack : The jamming attack is designed to disrupt the communication channel in
Vehicular networks by sending a highly powered signal on the same frequency, effectively lowering
the signal-to-noise ratio for the intended receiver. This attack aims to interfere with regular com-
munication by overwhelming the signal with noise. This attack is particularly dangerous because
it does not adhere to the rules of valid safety alerts, making it a severe threat to safety-critical
applications within the Vehicular network. Jamming attacks can have serious consequences for
safety-related communications and applications.

— Impersonation Attack : In an impersonation attack, some vehicles pretend to be emergency
entities or other trusted entities to attract other vehicles into communicating with them and
potentially influence their behavior. This type of attack relies on techniques like Building up a
Secure Connection along with Key Factors (BUCK) Filter. The BUCK Filter detects impersonation
attacks by broadcasting beacons and accurately determining the position of the messaged vehicle.
Once a fraudulent node is detected, it is isolated from the communication environment to prevent
further deceptive behavior and protect the integrity of the network.

— Free Riding Attack : A free riding attack takes place through fraudulent authentication attempts
when connected to cooperative message authentication. In this attack, the malicious entity exploits
the authentication efforts of other legitimate users without making their own contributions. This
type of attack is a significant threat to cooperative message authentication, as it undermines the
fairness and effectiveness of the authentication process and may allow malicious actors to gain
unauthorized access to network resources.

— Replication Attack : In a replication attack, a malicious node’s objective is to introduce ad-
ditional nodes into the network illegitimately. To achieve this, the attacker utilizes the identity
of another node that is already present legally in the network to transmit false messages to the
network. The attacker may use duplicate keys and/or certificates of other legitimate users to create
uncertainty in the system. This not only makes it difficult for traffic authorities to identify the
vehicle but also causes confusion for the Trusted Authority (TA), which is responsible for main-
taining trust and security within the network. Replication attacks can lead to various security and
communication issues within the network.

— Eavesdropping Attack : Eavesdropping is a common and serious attack in Vehicular networks,
primarily targeting confidentiality. The goal of this attack is to intercept and obtain confidential
information from the protected data of vehicles. Non-registered or unauthorized users may exploit
this attack to access sensitive details, such as user identities and data locations. This information
can then be used for tracking vehicles and executing various attacks, posing a significant risk to
the privacy and security of network users. Eavesdropping attacks undermine the confidentiality
and integrity of communications within Vehicular networks.

2.5 Classification

Presently, three primary trust management approaches are in active use : Entity-based schemes,
Data-based schemes, and Hybrid schemes. In this section, we will provide an overview of these categories
and explore a proposed taxonomy that relies on technology utilization, specifically focusing on emerging
technologies and Artificial Intelligence.

2.5.1 Entity-based schemes

Entity-based trust management approaches focus on establishing trust at the level of individual nodes
within a network. In these approaches, each entity or node maintains its trust value, which evolves over
time. Trust levels for these nodes are determined using reputation-based trust metrics, with trust and
reputation often being critical factors in assessing their trustworthiness. This trust calculation relies on
various historical metrics, including the node’s past behavior and activities and the recommendations
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TABLE 2.5 — Threats and attacks regarding security in Vehicular networks.
Layer Attack Attacks on C. service Solution
name
Physical Jamming Sensors input in vehicle Authentication [49]
Impersonation| Infrastructure Authentication [50]
Free riding Infrastructure Authentication [51]
Replication Infrastructure Availability [52]
Eavesdropping| Wireless interface Confidentiality [53]
Man in the Infrastructure Confidentiality [54]
middle
Data Link Traffics ana- Infrastructure Availability [55]
lysis
Nlusion Sensors input in vehicle Confidentiality [56]
Greedy be- Wireless interface, hardware and Authentication [57]
haviour software
Networking | Tunneling Wireless interface Authentication [58]
Sybil Wireless interface Authentication [59]
Message Infrastructure Authentication [60]
Tampering
Black hole Wireless interface, hardware and Availability [61]
software
Jellyfish Infrastructure Availability [62]
Grey hole Wireless interface, hardware and Availability [63]
software
Wormbhole Hardware and software Availability [64]
Transport Masquerading | Infrastructure Confidentiality [65]
Replay Hardware and software Data integrity [66]
GPS Spoo- Sensors input in vehicle Data integrity [67]
fing
DoS Wireless interface Authentication [68]
DDoS Wireless interface Availability [69]
Spamming Wireless interface Availability [70]
Application | Non- Infrastructure Repudiation [71]
repudiation
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exchanged among different entities. For instance, in a cluster of vehicles, a vehicle may trust all other
vehicles within the identical cluster better than those in diverse clusters.

In the work presented in [72], the authors introduce a trust inference scheme designed to withstand
attacks in Vehicular Networks. This approach is based on subjective trust derived from historical inter-
actions and recommendation trust obtained from the opinions of neighboring nodes. Additionally, the
authors propose a trust-aware multicast routing protocol.

In [73], the authors introduce a similarity-based scheme to mitigate the injection of false information
and assess the trustworthiness of safety-event reports in the network. The trust model generates a si-
milarity rating based on periodic beacons containing location and speed information and uses the echo
protocol to validate the reports produced.

In [74], the authors propose a trust model based on a trusted authority node responsible for managing
reputation scores. This authority determines whether a particular participant node is granted access to
the network or revoked. A low reputation score signifies an untrusted node to be excluded, while a high
or acceptable reputation score signifies credibility for network access and communication.

In [75], the authors integrate the concept of highway platooning. Platoon head vehicles are ranked
based on reputation metrics, and the trust model introduces a special server for assessing the trustwor-
thiness of platoon head vehicles. Reputation calculations rely on gathering feedback from vehicle users,
with an iterative filter in place to exclude feedback from malicious nodes. Consequently, a reliable platoon
head vehicle is recommended by the server node.

On the other hand, data-based trust management schemes focus on evaluating the trustworthiness of
the data generated by an entity rather than the entity itself. In these schemes, trust is closely linked to
the content of the messages produced, making data authenticity a critical requirement. Data-based trust
models assess the trustworthiness of data content based on its utility, which is determined by factors
such as time, proximity, the type of event, and the role of the node. Data trust evaluation is particularly
convenient in Vehicular networks, as strong social connections are often lacking among rapidly moving
entities.

In [76], a data-based scheme is presented. This model detects malicious nodes in Vehicular networks
by comparing the similarity of messages. It assesses the similarity between messages received from nearby
vehicles and self-reported messages. Nodes calculate their flow values based on speed and density para-
meters and compare these values with received messages, reporting mismatched messages to the sender.

In [77], the trust model is constructed based on location, proximity, location verification, and time
closeness. Receivers assess their confidence in each reported event by a particular sender, assigning dis-
tinctive trust values to each message related to a reported event. The technique then ranks the calculated
trust weights to make judgments in favor of the respective messages.

Authors in [78] present an intrusion-aware strategy to ensure trust requirements in Vehicular net-
works. The trust assessment relies on the confidence and trust values assigned to each piece of content
about a specific event. Parameters like location proximity, data freshness, location correctness, and time
verification are considered in the trust formula. Based on the sender node number and their confidence
values, the trust value is calculated, and the receiver decides whether to accept or block the message.

In [79], the authors introduce a trust model based on the Tanimoto coefficient, where trust values are
disseminated, built, and used by Roadside Units (RSUs) and vehicles working in cooperation within the
network. These trust values are determined after inspecting reported events and beacons.

2.5.2 Hybrid schemes

These types aim to combine the assessment of trustworthiness at both the entity and data levels.
These schemes seek to provide an efficient method for evaluating trust that takes into account not only
the content of the messages but also the trustworthiness of the entities involved. This is particularly
valuable in networks like Vehicular networks, where data that has been evaluated as trustworthy by
multiple trusted entities is shared as reliable with other network nodes.

In [80], the authors introduce a hybrid scheme with a focus on enhancing trust management efficiency
in Vehicular networks, particularly in the decision-making process. This scheme requires decisions to be
made within specific time slots or when multiple messages exceed predefined thresholds.

In [81], researchers present a scheme that incorporates both the trustworthiness of vehicles and the
trustworthiness of data. This approach involves a behavior assessment process and the calculation of a si-
milarity rating. Trust evaluation is based on data analysis using the Dempster-Shafer Theory (DST). Data
trustworthiness is assessed through the similarity of reported traffic information, while node trustworthi-
ness is expressed using functional trust, indicating the likelihood that a vehicle will exhibit appropriate
behavior. This is determined by assessing observed misbehaviors by neighboring nodes and applying
combined filtering-based recommendation trust. Cosine similarity is a critical factor in evaluating the
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credibility of recommendations, especially in trust rate calculation and trusted neighbor selection. Pre-
dicted trust rate computations are used to define the recommendation trust.

In [82], authors combine behavior and similarity factors to present a robust hybrid trust management
scheme for Vehicular networks. This scheme is designed to detect malicious data injected through Sybil
attacks. Trust values are assigned by verifying the similarity between the expected and actual behavior
of a vehicle, such as the driver’s responses to traffic signals, and the similarity of messages generated by
neighboring vehicles.

In [83], researchers introduce a model that focuses on ensuring location privacy in Vehicular networks.
It calculates entity trust values by assessing and verifying the probability of event and beacon messages.
Trust assessment of the sender’s entity beacon messages is based on the Cosine similarity technique. Trust
calculations take into account position, velocity, drive direction values, and recorded trust information
from neighboring vehicles’ beacons. Data trust is evaluated in two dimensions : direct trust, which is
based on event and beacons directly received, and recommendation trust, which is estimated based on
vehicle recommendations. The Dempster-Shafer Theory (DST) is applied to merge direct and indirect
trust values to obtain the final trust score and initiate the decision phase based on a trust threshold
value.

2.5.3 Technology-based classification

Artificial Intelligence and cutting-edge technologies, including Cloud Computing, SDN, Fog/Edge
Computing, and Blockchain, are recognized as valuable assets for crafting resilient trust frameworks. In
this section, we examine recent methodologies employed in each of these technologies.

2.5.3.1 Cloud-based schemes

In [84], the authors utilize cloud technology to establish a trust framework based on the interconnec-
tions among autonomous, interconnected vehicles. This framework is structured into three key layers :
the cloud layer, the communication layer, and the physical layer. The authors introduce the "fliplt" game
to capture interactions among the services in the cloud layer, with a focus on enhancing security in the
face of potential threats. Within the communication layer, they elucidate the diverse communication
channels between cloud servers and connected vehicles. In this layer, the authors introduce a trust model
that relies on reputation and knowledge, employing a signaling game to evaluate the reliability of cloud
services. The physical layer oversees the performance of the participating devices, including attackers and
defenders in the signaling game. Decision-making primarily hinges on the performance of both the cloud
and physical layers.

In [85], the authors present a trust management approach tailored for Vehicular Networks, with a
specific emphasis on the computation process. This solution encompasses three sequential steps. The initial
phase involves data preprocessing using the Dempster-Shafer Theory (DST). In the subsequent stage, the
authors employ a Fuzzy analyzer to compute trust values for nodes within the network, incorporating both
direct and indirect trust assessments. In the third phase, they implement reward and penalty algorithms
to incentivize honest vehicles while penalizing malicious ones. Notably, this approach allows any vehicle
to request the trust value of a neighboring node through cloud servers.

Another cloud-centric trust management strategy is introduced in [86]. This work is structured around
three layers and two trust managers : a central cloud layer, a roadside cloud layer, a vehicle cloud layer, and
global and domain trust managers. The first layer encompasses the communication history and trust lists
of all vehicles, overseen by the global trust manager. The domain trust manager and the roadside cloud
layer manage various trust value requests, including those related to neighboring, friends, and historical
trust. The roadside cloud layer is responsible for creating vehicular virtual machines. The overall trust
level is determined at the vehicle cloud layer, where a vehicle can solicit the trustworthiness of the message
sender from a vehicular virtual machine. This machine computes trust values for neighboring and friend
nodes and accesses historical trust values from a central server. Subsequently, it furnishes the requester
vehicle with the comprehensive trust value of the requested node, updating it as needed.

In [87], the authors harness cloud technology to introduce an agent-based intelligent approach to trust
management. This approach involves two principal agents : mobile and static agents, which evaluate the
trustworthiness of both the cloud service provider and the user. They rely on direct trust, which is based
on the past account transactions, and indirect trust, calculated by the mobile agent, to determine the
cumulative trust value.
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TABLE 2.6 — Basic trust managements schemes in Vehicular networks.
Ref.| Class Used metrics Tools Simulator E. parameters
[72] Reputation, know- Markov process SUMO, Detection rate
ledge NS-2:
[73] Node proprieties Association rule mining SUMO Success rate
and echo protocol
[74] Reputation Elliptic curve method Not speci- Computation and
fied communication cost
[75] | Entity | Reputation Iterative filtering me- MATLAB QoS  of  vehicles,
thod accuracy level and
resistance to  bad-
mouthing and ballot
stuffing attack
[76] Node proper- Defined formulas and OMNET++,| Average density and
ties, proximity, signature-based SUMO, success rate.
environment-factors. VACaMobi
[77] Proximity Defined formulas and SWAN++ false location detec-
signature-based tion accuracy, false
positive rate
Data
[78] Location Defined formulas Not provi- Time complexity and
ded false node impact on
trust.
[79] Beacon Tanimoto coefficient NS-2, Precision, recall, De-
SUMO tection delay
[80] Reputation, event Decision making process NS-2 Detection  accuracy,
decision delay
[81] Reputation, know- DST-based, osine simila- GloMoSim Precision, recall, com-
ledge, environment rity rule munication overhead
[82] knowledge+node pro- Defined formulas, sto- Automata detection rate,average
prieties chastic cellular Model delay
[83] | Hybrid| Beacon+event+reputation Cosine similarity NS-2 attacks detection rate,

rule,signature-based

misbehaving  vehicle
rate, detection delay
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2.5.3.2 SDN-based schemes

In their study documented in [88], the researchers harnessed the power of SDN (Software-Defined
Networking) technology and employed deep reinforcement learning techniques to develop a holistic so-
lution aimed at addressing trust establishment and path learning in Vehicular networks. Through the
integration of SDN, they successfully separated the data and control planes, providing a more adaptable
and centralized approach to managing network operations. In this configuration, a centralized controller
incorporates a deep reinforcement learning algorithm, enabling all legitimate vehicles in the network to
determine the most trustworthy path for data transfer. This, in turn, enhances the efficiency of data
exchange among the vehicles.

To assess trust values, the authors applied a Q-learning-based convolutional neural network algorithm,
a form of reinforcement learning. These trust values were derived from the ratios of forwarded packets,
aiding in the evaluation of network path reliability and trustworthiness. Essentially, their approach leve-
raged the capabilities of SDN and deep reinforcement learning to optimize trust management and path
selection in Vehicular networks, ultimately contributing to the network’s efficiency and reliability.

In [90], the researchers utilized SDN (Software-Defined Networking) to improve network performance
by incorporating an on-demand distance vector routing method. Their approach encompasses three fun-
damental layers : data, control, and application. The data layer handles data forwarding, the control
layer manages data routing and network topology, and the application layer oversees routing protocol
control. Trust values are computed based on ratios pertaining to both data and control packet forwarding,
enabling the assessment of network path reliability and trustworthiness. This, in turn, enhances network
performance and security.

In their work described in [91], the authors introduced an SDN-based scheme that combines a geogra-
phic routing protocol with SDN capabilities to establish a routing process centered on a trust management
model and encryption functions. Their approach also incorporates a clustering concept, where network
nodes are organized into distinct clusters, each comprising an elected cluster head and cluster nodes.
The cluster head serves as a semi-centralized controller responsible for managing communication and
maintaining an error log of network operations. The selection of the cluster head is determined by a map
factor, which evaluates various factors, including a vehicle’s possession of its public key and the weights
of its neighboring nodes. These weight values are computed based on the load capacity determined by
trust levels and the reception of beacons. Moreover, past interactions recorded in the error log play a
crucial role in evaluating trustworthiness within the network, enhancing the reliability and security of
network operations. This amalgamation of geographic routing, SDN, and trust management augments
the efficiency and trustworthiness of communication within Vehicular networks.

2.5.3.3 Fog/Edge-based schemes

In [92], the researchers made use of Edge/Fog technology to enhance trust management within Vehi-
cular Networks. Their approach centers on executing reputation management through local servers. Edge
servers are organized by trusted local authorities to facilitate the trust establishment process. Each node
uploads segments of its reputation to the nearest local authority, which aggregates, updates, and stores
them in a global reputation dataset concurrently. This allows each vehicle to access the most up-to-date
reputation value of another passing node before engaging in any collaborative activities.

In [93], the authors employed a bidding price-based method to bolster trust in Fog services. This
work integrates the necessity for certificates by vehicles to ensure the registration of legitimate nodes for
conducting Fog services transactions. Once registered with digital currency, accepted vehicles gain the
privilege to engage in activities within the uncovered zone. The utilization of infrastructure-based Fog
node resources is imperative to enhance the utilization of Fog services. Trust calculation in the rural
zone is contingent on metrics such as transaction records, node types, and bidding numbers, alongside
the consideration of global transactions (e.g., infrastructure-based Fog nodes). Any malicious activities
within the network may expose the actors’ bidding, resulting in trust erosion and compensation for the
affected parties.

In [94], the authors harnessed Fog computing technology to manage trust in Vehicular networks. This
system comprises two layers : one encompassing the communication system, which includes a Cloud server
and trusted authorities, and the other formed by vehicles and Edge nodes. Trust values for both the sender
and the message are computed using predefined Fuzzy rules that take into account parameters such as
location verification, vehicle type, and experience. Each registered vehicle is assigned an authentication
level by the Edge nodes, which can be queried by the receiving vehicle to make informed decisions. The
authors incorporated the Cuckoo filter to enhance system performance against the generated data volume
and applied the k-nearest neighbors algorithm to mitigate line-of-sight issues.
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In [95], the authors harnessed the capabilities of Fog Computing and the proximity of edge users to
select the most capable node. This approach reduces the burden on vehicles, such as trust assessment
for the sender and the dissemination of event details. Trust evaluations conducted by local vehicles are
gathered by the fog node, enabling vehicles to carry out specific tasks locally and diminishing the necessity
for frequent communication with the cloud. The trust scheme is anchored in the reputation of vehicles’
performance, utilizing the Task-based Experience Reputation (TER) method. The implementation of
TER in this work reduces message transmission overhead and alleviates the workload on the vehicles.

2.5.3.4 Blockchain-based schemes

The incorporation of Blockchain technology for trust management in Vehicular Networks is captu-
ring the growing interest of researchers. Below, we highlight some noteworthy examples of Blockchain’s
utilization in enhancing trust management within Vehicular Networks :

In [96], the authors harnessed Blockchain technology to boost privacy in Vehicular Networks by es-
tablishing a reputation management system. This system revolves around two primary entities : the
certificate authority, responsible for certificate generation and management, and the law enforcement au-
thority, overseeing vehicle registration and reputation assessment. The law authority maintains a dataset
containing information pertaining to real identities, public keys of registered nodes, certificate issuance
and revocation, as well as message exchanges. A reputation management framework, guided by an anony-
mous authentication algorithm, incentivizes trust-building through reward and punishment mechanisms.

In [97], a regional federated learning approach is employed to bolster security and preserve privacy in
the network. Vehicle training models are distributed across various regions, and their trustworthiness is
upheld through a robust mechanism.

In [98], the authors combined Blockchain and deep learning technologies to fortify trust manage-
ment in Vehicular Networks. Nodes possess the capability to report malicious nodes to the RSU entity
after scrutinizing messages received from nearby vehicles. Blockchain technology is used to verify the
authenticity of these reports, ensuring accurate revocation of malicious nodes within the network by the
RSU.

In [99], a resilient system is introduced with several key steps, including generating and uploading ra-
tings, computing trust value offsets, electing miners, generating new blocks, and implementing a consensus
algorithm. Bayesian inference is employed to gauge the credibility of received messages, assigning speci-
fic ratings to each message before uploading them to the RSU. Trust value offsets are computed using
weighted aggregation and are encapsulated into a single block. The miner election process determines the
node responsible for generating a new offset block, with the RSU typically having a greater stake due to
the consensus mechanism’s consideration of offset absolute values as stakes. This new offset block is then
appended to the trust Blockchain, and the consensus algorithm is applied to enhance resistance against
simultaneous block reception.

These methodologies underscore the growing significance of Blockchain technology in enhancing trust
management within Vehicular Networks, offering solutions that bolster network security, privacy, and
trustworthiness.

2.5.3.5 Artificial Intelligence-based schemes

In the realm of trust management within Vehicular Networks, Al-based methodologies seamlessly
merge various techniques such as clustering and reinforcement learning, fuzzy logic, and game theory to
enhance overall performance.

Clustering and Reinforcement Learning-based schemes In [100], the authors harnessed stability
and clustering algorithms to effectively manage trust in Vehicular Networks, with a specific focus on
metrics related to communication and data trust. Their trust model comprises three essential phases :
neighborhood discovery, cluster head election, and stability maintenance. During the neighborhood dis-
covery phase, the model exclusively considers neighboring vehicles traveling in the same direction. In the
cluster head election phase, a trust score is calculated using a backoff timer, factoring in variables like
reputation, direction similarity, and mobility. To ensure cluster stability, the authors implemented two
key components : a Beta reputation system that oversees cooperative behaviors among vehicles and an
event reputation-based system with severity metrics to assess the reliability of exchanged information.
In a similar clustering-based approach presented in [101], the authors introduced a composite metric
to determine trustworthiness values for individual vehicles and associated resources. In this framework,
neighboring vehicles assign trust scores to each node based on behavior-based metrics, resulting in precise
trust scores for all participating nodes. The approach also considers computational resources, taking into
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account factors like node link capacity and remaining power to predict future resource requirements.
Cluster head election in this method is determined by the composite value, with the node possessing the
highest composite value being designated as the cluster head.

Moving to [102], the authors introduced a collaborative intrusion detection system for Vehicular Net-
works that leverages ensemble learning and shared knowledge techniques. Participating nodes aggregate
rating scores using a voting scheme to create a set of weighted random forest classifiers. Each vehicle trains
its local classifiers and communicates its knowledge as a trust factor, enabling the system to collectively
detect and respond to intrusions.

In [103], a scheme was introduced that integrates crewless aerial vehicles to aid in routing and identi-
fying dishonest vehicles, particularly in scenarios involving road disconnections. This scheme encompasses
two primary routing modes : data routing among vehicles with the assistance of crewless aerial vehicles
to reduce delay and overhead, and data routing among crewless aerial vehicles themselves. The selection
of cluster heads by crewless aerial vehicles is based on speed, position, and trust parameters. The authors
applied the ant colony optimization algorithm to enhance the routing process, and trust scores rely on
knowledge and recommendations, leading to more efficient and reliable communication within Vehicular
Networks.

Fuzzy Logic-based schemes In [104], the authors presented a trust management approach that uti-
lizes fuzzy logic techniques to assess the credibility of exchanged data in Vehicular Networks. In this
method, each node encrypts its transmitted data with a unique identifier, which the receiving node then
verifies. Trust evaluation incorporates various behavioral metrics, including cooperativeness, honesty, and
responsibility. A node with a high trust value is considered an excellent cooperative node. Honesty is gau-
ged by the percentage of transmitted honest packets, and a responsible node is defined as one with a high
percentage of detected event reports. The fuzzy logic process in this solution entails calculating these
metrics and converting them into fuzzy values, which are subsequently used to apply fuzzy rules. The
final trust value is determined after the defuzzification phase.

Another fuzzy logic-based approach was introduced in [105]. In this scheme, the authors model ma-
licious behaviors of nodes using three trust factors represented by fuzzy sets. Trust calculation relies on
a fuzzy-logic algorithm, with particular emphasis on the impact of content modification. The effect of
content modification is quantified by a specific parameter to assess its influence on trust estimation. This
approach demonstrated impressive precision, recall, and accuracy rates in trust management.

In [106], the authors proposed a robust authentication scheme using fuzzy logic to safeguard users
from malicious nodes in Vehicular Networks. They developed a fuzzy-based authentication algorithm
for detecting malicious nodes based on the Mamdani Fuzzy Inference technique. The authors conducted
simulations using MATLAB to validate the effectiveness of this technique. This approach permits only
honest nodes to transmit data and engage with other nodes within the network.

In [107], the authors introduced a trust protocol called Fuzzy Trust Optimized Link State Routing
(FT-OLSR), which extends the OLSR security protocol. In this approach, each node calculates the trust
score of its one-hop neighboring nodes by exchanging control messages using the FT-OLSR routing
protocol. Simulations conducted in NS-2 demonstrated that incorporating fuzzy logic into the OLSR
routing protocol enhanced its performance in trust management and routing within Vehicular Networks.

Game Theory-based schemes In [108], the authors introduced a theory-based game approach to
enhance communication security in the Internet of Vehicles (IoV), leveraging the hedonic coalition model.
This solution involves forming collaborative coalitions of vehicles by integrating trust among them to
improve trust relationships and encourage participation in coalitions within the system. Trust values are
evaluated using a Bayesian inference filter, considering direct historical interactions. The receiver vehicle
assesses the transmitted message’s content against the real event state and updates the sender vehicle’s
trustworthiness score using the incomplete beta function. The authors also introduced a mechanism for
penalizing newly joining nodes with no historical interactions. Trust score changes are captured, and new
coalitions are formed by periodically executing the coalition algorithm. The final coalition composition
is based on vehicle trustworthiness and their preference relations, with shifting rules enabling vehicles to
switch between coalitions.

In [109], a multi-layered intrusion detection scheme for Vehicular Networks is introduced. Game theory
techniques are applied alongside a distributed Cluster Head (CH) selection algorithm to identify malicious
nodes using a lightweight neural network classifier. The Vickey-Clarke-Groves method is employed to
enhance the performance of vehicle cluster head selection. Reputation values held by Roadside Units
(RSUs) are used to assess the trustworthiness of the CHs.
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In [110], the authors presented a theory-based game scheme for trust management in the IoV system,
utilizing an evolutionary game framework within a reputation-based trust model. This model simulates
the dynamic protection system and provides models for attacking strategies by malicious nodes. It assigns
trust scores to vehicles and traffic-related event messages, and introduces a punitive algorithm for vehicles
sending false reports or deleting sent messages, resulting in decreased trust scores. The scheme takes into
account the deception intensity, representing a vehicle’s capability to deceive other nodes and falsify event
reports. The system evolves to enhance the joining or rejoining process and to eliminate dishonest nodes.

In [111], the authors introduced a trust management scheme to enhance the performance of vehicles
in estimating trust values of other nodes using a reputation-based method and assessing legitimate mes-
sages. Certainty plays a crucial role in trust evaluation, incorporating both direct and indirect reputation
sources. Direct reputation information is derived from direct interactions and stored in historical commu-
nication tables, while indirect reputation is based on neighbor ratings and RSU recommendations. A Fuzzy
C-means clustering technique is used to identify trustworthy reported messages in the indirect-reputation
establishment. Computed scores are combined using uncertain deductive theory. The legitimacy of recei-
ved messages is evaluated using the K-means algorithm, forwarding only those with a reputation level
exceeding a predefined threshold. The authors also introduced an incentive scheme based on evolutionary
game theory, combining nodes clustering, adopted methods, and payoff calculation modules to encourage
nodes’ cooperation.

2.6 Discussion

The comprehensive survey presented earlier underscores the critical role of trust management in
upholding network reliability. Within this survey, we have summarized, compared, and deliberated upon
the various trust management schemes detailed in Table 2.6, Table 2.7, Table 2.8, Table 2.9, and Table
2.10. As the integration of multiple technologies becomes more prevalent within network infrastructure,
it simultaneously introduces novel security and privacy challenges that must be addressed proactively.

2.6.1 Summary

We have compiled a summary of the surveyed schemes, categorizing them based on specific criteria,
which include the approach’s category (basic or emerging/Al-based approach), class of the approach
(entity-based, data-based, or hybrid), the trust metrics utilized, the tools employed, simulator used, and
the evaluation parameters (E. parameters). This comprehensive summary is presented in Table 2.6, Table
2.7, and Table 2.8. The purpose of this summary is to facilitate a qualitative comparison between these
approaches in the subsequent subsection.

2.6.2 Comparison

This subsection is designed to present a qualitative comparison among the summarized approaches,
focusing on key factors such as scalability, dynamicity, privacy, complexity, computation overhead, and
robustness, as outlined in Table 2.9 and Table 2.10. By examining these critical aspects, we aim to provide
insights into how these approaches measure up against one another in terms of their performance and
suitability for various network scenarios.

In this subsection, we will engage in a comprehensive discussion of the surveyed trust management
approaches, using a specific set of criteria for evaluation. These criteria include privacy, scalability, dy-
namicity, complexity, communication overhead, and efficiency. By delving into these factors, we aim to
provide a thorough assessment of each approach’s strengths and weaknesses, helping to guide the unders-
tanding of their suitability for various network scenarios.

Privacy remains a paramount concern in the context of future connected vehicle networks, and as
such, privacy preservation is a critical requirement for trust management schemes. An analysis of the
approaches outlined in Table 2.9 and Table 2.10 reveals that a significant portion (30%) of the surveyed
papers lack robust privacy protection measures. However, certain works, such as those cited in [74, 77,
78,79, 83, 92, 94, 95, 96, 105, 107, 108, 109], exhibit substantial efforts in safeguarding users’ credentials
and privacy.

Dynamicity is another key criterion, and it’s noteworthy that most of the surveyed schemes meet dyna-
micity requirements. These approaches demonstrate flexibility through features like lower infrastructure
support, dynamic trust metrics, and swift trust value updates. Data-based models, in particular, tend
to excel in dynamicity compared to entity-based models, as they require fewer exchanges between nodes
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TABLE 2.7 — Emerging technology-based trust management schemes in Vehicular networks.

Ref.,| Class| Used metrics Tools Simulator E. parameters

[84] Reputation, knowledge Flipit and signaling MATLAB Cloud’s controlling ser-

game vice probability

[85] Reputation,knowledge DST-based and fuzzy Java-based Response  time,trust

= and event rules value change
3
9]

[86] | © Reputation,knowledge Defined formulas Performance | Throughput and res-
Evalua- ponse time
tion,Process
Algebra

[87] Node proprieties DST-based Not avai- Not available
lable

[88] Knowledge and node Q-learning TensorFlow, | Throughput

properties OPNET

[89] Knowledge and node Deep Q-learning and TensorFlow Convergence  perfor-

properties Markov decision process mance and delay
Z
A

[90] | @ Node proprieties Defined formulas OPNET Throughput, total

messages sent

[91] Knowledge Clustering scheme and NS-2.34 Packet delivery ratio

signature based and Ve- and average end to end
hicular delay
Network
MobiSim
¢ ode proprieties ignature-base iddin ot avai- ransactions, attacks
92 Nod ieti Sig based bidding N i T i k
o0 price lable number
=
[93] i Reputation Multi-weighted subjec- Not avai- Average reputation va-
g tive logic lable lue adn Detection rate
3
O
[94] & Knowledge node pro- Fuzzy logic and K- NS-2 Precision Recall ove-
E prieties and event nearest neighbour SUMO rhead
% algorithm MOVE
£

95 ode properties an ask-base xperience - verhead and work-

95 Nod i d Task-based E i NS-2 Overhead d k

reputation Reputation (TER) load of messages.

¢ eputation and know- roof-of-work signature- ot avai- orage and transmis-

96 Reputati d k Proof-of- k signat Not i St dt i

ledge based SHA-256 lable sion overhead

[97] , Reputation Regional FL algorithm Not avai- Model accuracy rate

g= signature-based lable
<
Q
~
[98] g Node proprieties Deep Learning (FeedFor- NS-2, Precision, Recall of
m ward Neural Network SUMO malicious nodes detec-
tion

[99] Node proprieties Proof of Work and Matlab- unfair ratings vs false

Proof of stake,SHA- based reports rates
256,Bayesian inference
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TABLE 2.8 — Al-based trust management schemes in Vehicular networks.

Ref.| Class Used metrics Tools Simulator E. parameters
[100] Reputation, node pro- Defined formulas Omnet++ CH’s election time and
prieties duration, rate of mali-
cious nodes elected as
CH, delivery rate.
[101] Knowledge, node pro- Defined formulas Matlab- Trust metric value
00 prieties based with  dishonest ve-
-§ hicles.
[102] (—? knowledge Learning ensemble SUMO Dishonest nodes de-
tection rate, False
Negatives, False po-
sitives, dishonest
vehicles detection
accuracy.
[103] Reputation,  Know- Optimization colony NS-2, Mo- Communication ove-
ledge biSim rhead, dishonest
nodes detection rate,
hops’ number average,
packet delivery rate,
end to end delay.
[104] Knowledge, Reputa- Defined formulas NS-2, Behaviour of correla-
tion SUMO, tion, detection accu-
MOVE racy with and without
o collusion.
g
[105] 'i Knowledge, node pro- Fuzzy logic-based algo- NS-2, Dishonest nodes de-
S prieties rithm SUMO tection rate, precision,
= Recall, accuracy.
[106] Reputation, node pro- Mamdani Fuzzy Infe- MATLAB Malicious nodes detec-
prieties rence tion rate, accuracy
[107] Reputation Fuzzy logic, FT-OLSR NS-2 Delay, packet delivery
rate
[108] Knowledge Bayesian inference filter Matlab Computation’s time,
compromised deci-
sion’s rate
[109] Reputation Vickrey—Clarke—Groves, NS-3, True positives, true
Neural Network SUMO negatives, false alarm
g rate,malicious nodes’
& detection rate.
=
[110] % Reputation Defined formulas Evolutionary | Overall utility’s
&) game- growth rate, nodes’
theory strategy change.
model
[111] Reputation K-means algorithm, MobiSim, Decision making’s ac-
fuzzy C-means cluste- NS-2 curacy rate, through-
ring, defined factors put, false alarm’s rate,
forwarding rate, pa-
cket delivery delay.
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TABLE 2.9 — Comparison of different surveyed trust management schemes in Vehicular

networks.
Ref. Year Category Privacy Dynamic Scalable Complex Overhead Efficient
[72] | 2019 X X X X
(73] | 2015 X X
Entity-based
[74] | 2019 X X X X X
[75] 2016 X X
[76] | 2014 X X
[77] 2014 X X X X
Data-based
[78] 2012 X X X X X
[79] | 2013 X X X X
[80] | 2014 X X X
[81] 2015 X X X X X
Hybrid
[82] | 2016 X X X
[83] 2013 X X X
[84] | 2019 X
[85] | 2019 X X X X
Cloud
[86] | 2017 X X X
[87] 2017 X
[88] | 2018 X X X
[89] | 2022 X X X X
SDN
[90] 2016 X X
[01] | 2020 X X X X
[02] | 2017 X X X X X
[93] | 2019 X X X X
Fog/Edge
[94] 2020 X X X X X X
[05] | 2021 X X X X X
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TABLE 2.10 — Continued Table.9

Ref. Year Category Privacy | Dynamic | Scalable Complex | Overhead| Efficient
[06] | 2018 | = X X X X
@
[97] 2021 - X X
o
-4
(98] | 2020 © X X X
[99] | 2018 | M@ X X X X X
[100] | 2018 o0 X X X
[101] 2019 = X X X X X
-
[102] | 2020 z X X X
[103] | 2021 © X X X X
[104] | 2017 X X X
2
[os) | 2021 | & X X X X X
>
[106] | 2022 S X X X X X
&
[107] | 2019 X X X X X X
[108] | 2019 X X X X X
>
—
S
[109] | 2018 | £ X X X X
=]
]
[110] | 2019 g X X
O
[111] | 2019 X X X
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to derive global trust. Nevertheless, reputation-based models might face challenges in maintaining trust
assessments for highly mobile nodes, which can result in connection losses.

Scalability, which gauges the network’s ability to accommodate an increasing number of communica-
ting vehicles without disruptions or data transfer issues, is addressed by some of the surveyed papers, as
detailed in Table 2.9 and Table 2.10.

Complexity is a critical aspect, and it’s important to evaluate the time complexity for trust com-
putation and dissemination in Vehicular Networks. Some surveyed approaches introduce delays in the
calculation of direct trust, which can be problematic in the context of the Internet of Vehicles (IoV).
In scenarios with network density and potential attackers, the detection rate of malicious nodes may
decrease due to the network’s high density. This underscores the need for efficient and timely trust value
determination.

Communication overhead, which measures the amount of transmitted data, also plays a crucial role
in the evaluation of these approaches. High communication overhead can lead to inefficient network
performance, increased bandwidth consumption, response time delays, and other issues. While some
schemes achieve a reasonable forwarding rate even with a higher number of malicious nodes, a few
surveyed approaches should pay more attention to managing communication overhead, especially when
integrating multiple technologies.

Efficiency is a paramount criterion when assessing trust management schemes. A highly efficient
system not only ensures network security but also exhibits resilience against a variety of common security
attacks. Within this survey, schemes are considered efficient when they demonstrate resistance to multiple
prevalent security attack types, highlighting their robustness and reliability in the face of potential threats.
This efficiency is crucial for maintaining the integrity and trustworthiness of network systems.

Based on the findings in Table 2.9 and Table 2.10, it’s evident that most of the approaches utilizing
emerging technologies are indeed efficient and capable of withstanding common security attacks.

2.7 Future Work

In this section, we delve into key challenges and potential avenues for future research in the realm
of trust management within Vehicular Networks. Specifically, we highlight the following areas : solutions
based on Federated Learning, the use of Clustering methodologies, the impact of energy consumption,
and the integration of emerging technologies.

2.7.1 Federated Learning-based solutions

The integration of Artificial Intelligence-driven techniques into trust management within Vehicular
Networks significantly enhances network efficiency. One noteworthy example is Federated Learning (FL),
which is a decentralized Machine Learning approach discussed in reference [112]. FL effectively addresses
concerns associated with centralized training by allowing all network participants to contribute to the
development of a global model without the need to directly share their data.

In Vehicular Networks, participant nodes often exhibit distinct roles and characteristics. This unique-
ness makes FL particularly advantageous as it enables the creation of robust trust formulas and models
that leverage distributed intelligent methods, encompassing a wide range of parameters and metrics. This
diversity not only enhances the adaptability but also the overall effectiveness of trust management within
the network.

2.7.2 Clustering approaches

The decentralized nature of trust management underscores the importance of adopting a clustering
paradigm, as elaborated in reference [113]. This approach assumes a crucial role in enhancing the overall
system’s reliability. It becomes especially advantageous when integrating emerging and decentralized
technologies, such as Software-Defined Networking (SDN) or Blockchain. These advanced technologies
make notable contributions to boosting system performance and streamlining the coordination among
various Cluster Heads (CH) within the vehicular network.

2.7.3 Energy consumption

With each introduction of a new mechanism or technology into Vehicular Networks, there is a notable
increase in communication overhead and time complexity. This escalation poses a substantial challenge in
meeting the real-time application requirements of these networks. As a result, it becomes imperative for
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future researchers to prioritize energy efficiency when developing trust management models. To tackle this
challenge effectively, a recommended approach is to focus on implementing lightweight methodologies.
These lightweight approaches have the potential to significantly reduce the energy consumption of the
system. Not only does this optimization enhance system performance, but it also ensures that Vehicular
Networks can readily meet the demands of real-time applications without compromising energy efficiency.
This approach is further elaborated in reference [114].

2.7.4 Emerging technologies

The integration of emerging technologies such as Cloud Computing, Software-Defined Networking
(SDN), Edge/Fog Computing, or Blockchain into trust management within Vehicular Networks holds
the potential to significantly enhance system performance. These technologies offer a reliable, dynamic,
scalable, and secure approach to trust management. For example, Cloud Computing and SDN pave the
way for a scalable, programmable, and flexible system. However, it’s essential to continue researching and
addressing challenges related to system complexity, time constraints, and communication overhead to fully
harness their potential. On the other hand, Fog/Edge Computing provides localized processing capabilities
but introduces potential security and privacy vulnerabilities due to its proximity to user identities and
sensitive information, such as location and identity. Mitigating these issues is of utmost importance
when implementing these technologies. Blockchain technology ensures the secure signing, verification, and
resilient storage of all exchanged data, providing traceability. Nonetheless, trust management schemes
based on Blockchain may face power consumption challenges during the trust establishment process,
mainly due to block and consensus generation delays. These concerns need careful consideration and
management in future research and implementation efforts to leverage the benefits of Blockchain while
optimizing resource usage.

2.8 Conclusion

In this chapter, we have delved into the foundational principles of trust management within Vehicular
Networks. Our study’s objective is to develop an effective approach to trust management that strikes
a harmonious balance between privacy, security, and service quality. Distinguishing our work from pre-
vious surveys in this field, we have explored various categories of trust models specifically tailored for
Vehicular Networks. Our exploration commenced with an in-depth examination of Intelligent Transpor-
tation Systems (ITS) and Vehicular Networks, underscoring the pivotal role of security in this domain.
We emphasized the imperative need for trust models to facilitate secure communication in Vehicular
Networks. Additionally, we addressed the security and trust management challenges that are intrinsic to
these networks, offering insights into security threats and their corresponding solutions. Subsequently, we
conducted a survey of existing trust management schemes, categorizing them as entity-based, data-based,
or hybrid models. Furthermore, we introduced our own taxonomy, which encompasses the integration of
Artificial Intelligence techniques (including Clustering and Reinforcement Learning, Fuzzy Logic, Game
Theory) and emerging technologies (such as Cloud Computing, Software-Defined Networking, Fog/FEdge
Computing, and Blockchain). Following this survey, we provided a summary of the assessed schemes
based on predefined criteria, and subsequently, a qualitative comparison was presented. Our work conclu-
ded with an exploration of four emerging research directions, including Federated Learning-based trust
approaches, clustering methodologies, considerations for energy efficiency, and the influence of deploying
emerging technologies on trust models. In this context, we took into account aspects like scalability,
computational overhead, and time complexity.
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3.1 Introduction

Within the realm of Smart Cities, Vehicular Networks stand as the intersection of Intelligent Trans-
portation Systems (ITS) and wireless communication technologies. These networks fall under the category
of Mobile Ad-Hoc Networks (MANETS), possessing unique characteristics and requirements specific to
vehicular nodes, as elucidated in reference [115].

The dynamism of vehicular networks is exceptional, propelled by the swift movement of network
nodes, namely vehicles, resulting in a perpetually changing network topology. The integration of Software-
Defined Networking (SDN) in Vehicular Networks (SDVN) introduces challenges, notably congestion on
the control-data communication channel and management overhead on the controller. The continuous
evolution of the network topology poses difficulties in maintaining an up-to-date global network view at
the controller. Furthermore, the decentralized nature of Vehicle-to-Infrastructure (V2I) and Vehicle-to-
Vehicle (V2V) communication protocols may not seamlessly align with the SDN global view, necessitating
substantial protocol redesign.

Moreover, the application of security and communication solutions from traditional SDN to SDVN is
intricate due to the differing characteristics of the two. While SDN relies on static switches and routers,
SDVN involves SDN-enabled Base Stations (BSs) and mobile vehicles, as detailed in reference [122].
The control plane elements also vary, with SDN utilizing dedicated server machines as controllers, while
SDVN’s control plane comprises servers, Roadside Units (RSU), and RSU Controllers (RSUC), each
supporting various functionalities. Privacy considerations differ as well, with SDN systems generally
offering higher privacy compared to SDVN, which interacts closely with drivers’ location information and
exhibits high mobility. The data plane in SDVN consists of vehicular devices facilitating multi-hop data
forwarding, posing a challenge for the controller in maintaining an up-to-date global view due to the
mobility of vehicular nodes.

Vehicular networks face susceptibility to various security issues inherent in wireless communication.
Safeguarding these networks is crucial, with Distributed Denial of Service (DDoS) attacks, as discussed in
reference [121], emerging as a rapidly growing concern. A successful DDoS attack in Vehicular networks
can lead to severe consequences, including accidents and loss of life. Cisco predicts a doubling of the total
number of DDoS attacks to 15.4 million by 2023, as mentioned in reference [123].

In SDVN, DDoS attacks aim to flood the bandwidth of the control plane, OpenFlow switches, and
the SDN controller (SDNC). Multiple attackers generate numerous new flows with spoofed IP addresses,
overwhelming the switch’s flow rules and resulting in a flood of packet-in messages sent to the SDNC. This
consumes communication resources in both the control and data planes, affecting bandwidth, memory,
and CPU usage. OpenFlow switches, under such attacks, accumulate received messages before sending
them to the SDNC, leading to increased bandwidth consumption and longer delays in installing new flow
rules.

In response to these challenges and security threats, this chapter proposes an anomaly detection
and classification approach for SDVN. The approach incorporates a predictive, detection, and security
mitigation model to enhance the security and reliability of Vehicular networks. This proactive strategy
aims to address the evolving dynamics and unique vulnerabilities of SDVN, providing a foundation for a
more resilient and secure vehicular communication infrastructure.

3.2 A Robust SDVN Framework for Mitigating DDoS Attacks

In this section, we outline the hierarchical architecture we have proposed for enhancing the security of
SDN-based Vehicular Networks. Subsequently, we introduce the key components of our security model,
which are dedicated to the prediction, detection, and mitigation of Distributed Denial of Service (DDoS)
attacks in SDVN.

3.2.1 Brief Overview

Figure 3.1 provides an overview of our hierarchical Software-Defined Vehicular Network (SDVN)
architecture, which is structured into three key layers : the Data layer, the SDN layer, and the Cloud
layer. The Data layer comprises a diverse array of nodes, both static and dynamic, actively involved
in real-time data collection. The primary purpose of this layer is to transmit collected data to the SDN
layer. These nodes come in various forms, including connected vehicles, Roadside Units (RSUs), and Base
Stations (BSs). It’s worth noting that vehicles operating within the SDVN framework, as described in
reference [130], are equipped with multiple network interfaces. This dual-access capability enables them
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FIGURE 3.1 — Security model for hierarchical SDVN architecture.

to connect to both the RSUs network using Dedicated Short Range Communication (DSRC) and the
cellular network (LTE/5G). The SDN layer is further divided into two control levels :

— Control level 1 comprises local controllers, specifically the Roadside Units Controller (RSUC) and

the Base Stations Controller (BSC).

— Control level 2 is governed by the principal controller of the architecture, the SDN controller

(SDNC).
The SDN layer serves as the central hub for processing and scrutinizing the submitted data, effectively
harnessing Software-Defined Networking (SDN) features to address the multifaceted demands of Vehicular
Networks. These demands encompass challenges related to scalability, latency, network heterogeneity, high
mobility, low communication overhead, and the necessity for high throughput.

The Cloud layer is responsible for managing and efficiently processing substantial volumes of data,
playing a pivotal role in mitigating Distributed Denial of Service (DDoS) attacks within SDVN architec-
tures. To achieve this objective, we introduce three sub-models : the collector model, the prediction and
detection model, and the reaction model, as elucidated in Figure 2. These sub-models collectively bolster
the network’s security and fortify its threat detection capabilities.

3.2.2 Proposed work

In this section, we delve into the specifics of our security model, which is comprised of three distinct
sub-models designed to safeguard the SDVN architecture from Distributed Denial of Service (DDoS)
attacks.

3.2.2.1 Collector model

The Data Layer includes both Base Stations (BSs) and Roadside Units (RSUs), which play a crucial
role in monitoring the vehicles connected to the network. Their responsibilities include collecting all the
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data exchanged with the vehicles, and they utilize Dedicated Short-Range Communications (DSRC) or
5G/LTE communication protocols for this purpose. In our study, we’ve implemented the collector model,
which employs the SFlow protocol to collect all incoming data. This encompasses data from external users
accessing the Software-Defined Networking Controller (SDNC) through the cloud servers, as well as data
transmitted from the vehicles within the Data Layer to the initial control level in the Software-Defined
Networking (SDN) infrastructure.

3.2.2.2 Prediction and Detection model

In this module, we conduct an in-depth analysis and categorization of collected data into five dis-
tinct statuses to gain insights into the nature of each session. These statuses encompass "Authentic"
(Auth) for sessions characterized by minimal activity, 'Lightly Suspicious" (LS) for those exhibiting mo-
derate activity, and "Heavily Suspicious" (HS) for sessions with heightened activity, potentially indicative
of malicious intent. Furthermore, "Lightly Malicious" (LM) and "Heavily Malicious" (HM) statuses are
specifically assigned to sessions demonstrating various degrees of malicious behavior. This classification
framework plays a pivotal role in distinguishing between benign, suspicious, and potentially harmful
activities, thereby bolstering the effectiveness of network security and threat detection measures.

3.2.2.3 Reaction model

In this module, we have implemented a reaction algorithm aimed at mitigating the attacks identified
through the prediction and detection model, taking into account the status of each session. Honest
sessions, corresponding to authentic nodes in the network, are recognized and rewarded with increased
bandwidth allocation as part of our incentive mechanism. On the other hand, dishonest sessions or Heavily
Malicious nodes are promptly blocked to prevent further harm. For sessions categorized as suspicious,
which includes both Lightly and Heavily Suspicious sessions, they are initially treated as potentially
malicious sessions. However, we refrain from immediate action within a specific time slot denoted as
Tgot- Instead, we initiate a deeper investigation and observation period. During this time, a suspicious
node may undergo a change in status, transitioning to either an honest/authentic and allowed node or a
dishonest and blocked node, depending on its behavior and compliance with the reaction algorithm. This
approach allows us to make well-informed decisions regarding the status of suspicious nodes, promoting
an adaptive and dynamic network security response.

Algorithm 1: Reaction algorithm

1 SessionStatus < none;

2 behavior < none;

3 th < t;

4 if LOG.size # thl then

5 L SessionStatus + Auth;

6 if LOG.size > th4 then

7 L SessionStatus < Block;

8 if (LOG.size > thl) (LOG.size < th3) then
9 behavior < malicious;
10 while T'y,; # 0 do
11 observation < observ;
12 if observation = abnormal then
13 behavior <+ malicious;

14 L SessionStatus < Block;
15 if observation = normal then
16 behavior <+ authentic;

17 L SessionStatus <+ Auth;

3.3 Proposed model’s performance

In this section, we introduce our stochastic security model designed for the detection of DDoS attacks
based on device behavior analysis. The model goes a step further by predicting the future state of devices



3.3. Proposed model’s performance 61

using a Markov chain model and a stochastic transition probability matrix. In this study, we employ a
Markov stochastic process to examine the behavior of individual devices. Leveraging log data, we delineate
distinct behavior ranges by applying different thresholds, thereby enabling the characterization of each
device. This categorization helps identify the source of the behavior, whether it originates from external
users or connected vehicles within the Data plane, as illustrated in Figure ?? The primary objective of
this chapter is to mitigate DDoS attacks, which typically involve flooding the system, as discussed in
Section 1 and illustrated in the accompanying figure.

SDNC

'

a

normal user flows

R attacker flows E
[ DDoS attack ]

OpenFlow Switch

\A A

FI1GURE 3.2 — OpenFlow Switch under DDoS attack.

We categorize security attacks into two types : "lightly malicious" and "heavily malicious." Lightly
malicious attacks may occur accidentally due to a mishandling device, whereas heavily malicious attacks
are deliberate actions carried out by malicious devices. Our stochastic model is designed to identify the
device’s state based on the number of recorded activities in the log. To achieve this, we employ a session-
behavior ranges mechanism, as depicted in Figure 3.3 . We classify sessions into five distinct ranges :

thi thz th3 tha
) 1
0 1

F1GURE 3.3 — Behavior ranges thresholds

Authentic, Lightly Suspicious, Heavily Suspicious, Lightly Malicious, and Heavily Malicious, using four
fixed threshold values : thl, th2, th3, and th4. These thresholds enable us to determine the state of each
session. For example, a session initially categorized as Heavily Suspicious at the beginning of a Time
Slot Tgo¢ can transition to the Heavily Malicious state if the number of reported activities exceeds the
threshold th4. In this study, we present seven possible states, as listed below :
— The "Authentic state" (Auth) is defined as the state where the device’s log size is lower than the
threshold thl.
— The "Lightly Suspicious state" (LS) is characterized by the device’s log size falling between the
threshold thl and th2.
— The "Heavily Suspicious state" (HS) occurs when the device’s log size falls between the threshold
th2 and th3.
— The "Lightly Malicious state" (LM) is indicated when the device’s log size falls between the thre-
shold th3 and th4.
— The "Heavily Malicious state" (HM) is identified when the device’s log size exceeds the threshold
th4.
— The "Block state" is activated once an attack has occurred and the session is blocked as a security
measure.
— The "Observation state" (Observ) is characterized by the device’s log size falling between the
threshold th2 and th4. In this state, only nodes classified as authentic will be directly allowed,
while all other nodes will be observed for a specific time slot, as outlined in Algorithm 1.
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Aidi(t) = plvias = i} (3.5)
{Nia,mn (t4+1), Nia, Ly (E+1), Mg, s (1), Mg, £s (E+1), Nia, auen ((+1)} = {Niamar (8), Nia, Ly (8), Mg, s (t),
Nid,5(t); Nid, Autn(t) * My, , }.(3.6)

In this system, each session has the capability to transition from one state to another, which is referred
to as a transition process, as depicted in Figure 3. We define the state space of potential states for each
vehicle, denoted as 'S," where S = Auth, LS, HS, LM, HM, Observ, Block. The network’s evolution is
represented by a semi-Markov process. Therefore, the state of the network is a union of the states of all
vehicles, where viq® represents the state of the vehicle identified by an id at time t, and V; denotes all
the vehicles’ states at time t. This relationship can be expressed using the following equation :

n

Vi=J wd' (3.1)
id=1

Furthermore, it’s important to note that the state of a node is memory-less, signifying that the present,
past, and future states are independent. Therefore, the state of a node at a future time (t+1) is solely
determined by its state at the current time t and is not influenced by its past state at time (t-1). To
depict the evolution of a vehicle’s behavior identified by id over time, we employ a stochastic state
transition matrix. This matrix contains transition probabilities between two states based on behavior

range thresholds as depicted in Figure 4. The equation is as follows :
Pigisj = p(Vidt41 = J|vid=i = 1) = p(vig1 = j|via,0 = 1). (3.2)

Where P; j denotes the transition probability of a vehicle from state i to state j.
The evolution over time of a vehicle identified by an id is represented by a matrix M'p,, shown as follows.

Parv—om  Pawav—ivm  Paav—as Pawowvm—rs PiaayM—Auth
Pgrv—av  Parv—siv  Parv—ons Pairv—rs  Pid, M- Auth
a = | Paagssum  Pabps—ium  Panps—us  Paps—rs  PidHS— Auth
Piarssum  Pars—ivm  Pars—ws  Pidrs—rs  Pid,Ls—Auth

Pig avihsuam  Pid auvth—sim  Pid Aauth—HaS  Pid, Auth—15  Pid, Auth— Auth

It is composed by the probabilities of transition between other states where Piq=Piq; ; and {i,je S}.
In Mp. ., the sum of each row probabilities must be equal to 1. We can present the equation as follows :

> Pigisj=1. (3.3)

j={Auth,LS,HS,LM,HM?}

id?

The transition probability, denoted as a;_,;, is defined as the fraction of the number of transitions of
a node from its current state i to another state j, divided by the expected number of visits to state i,
referred to as B ;.

The calculation of the transition probability is determined by the following equation :

‘ N
Pigisj = p(Via a1 = J| Upey Via = 1) = ——> (3.4)

Biaj

We assess the behavior of each vehicle based on its progression after determining the state in our Markov
chain. Therefore, at time t, the probability of a vehicle identified by an id being in state i, denoted as
Aid,i(t), is determined using the following equation :

Furthermore, we can represent the stochastic vector V() at any given time t using the equation as
follows : Hence,

Via (t + 1) = Vqud(t) * Mpid‘ (3'7)
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Our vehicle behavior Markov chain is defined by its transition matrix Mp,, Therefore, Aid(0) represents the
initial transition probabilities of our Markov chain over n steps. It has at least one stationary probability
distribution, which is determined by the following equation :

lim Ajq(n). (3.8)

The Markov process is a stochastic process that involves a sequence of random states with associated
transition probabilities. In our transition diagram, illustrated in Figure 3, we depict five distinct states
for a single vehicle. For example, there are no transitions from the "Block" state to any other state. This
is referred to as an absorbing or absorbing state, indicating that once a node enters this state, it cannot
change its state. The Markov process is in an alert mode, signifying that an attack is in progress, and
the system must take measures to mitigate the risk and promptly issue an intrusion alert. In contrast, all
the other states within the diagram are considered transitioning states, indicating that nodes can move
between these states as part of the dynamic Markov process.

FIGURE 3.4 — Behavior ranges thresholds

3.4 Evaluation

In this section, we outline the evaluation parameters that illustrate the effectiveness of our approach
in detecting and predicting malicious nodes with the intention of thwarting DDoS attacks, particularly
those aimed at flooding the flow tables of OpenFlow Switches.

We conducted simulations of our solution using MATLAB, considering a range of scenarios as presen-
ted in Table.2. In these simulations, we predicted the behavior of each network node based on a stochastic
Discrete Time Markov Chain process.

To assess the classification performance of our model, we subjected our network to diverse conditions.
Additionally, we varied the network size, encompassing scenarios with 20, 60, 80, and 100 vehicles, while
also adjusting the proportions of lightly malicious (LM) and heavily malicious (HM) nodes. Specifically,
we examined five cases : 5% (3% HM + 2% LM), 10% (6% HM + 4% LM), 15% (9% HM + 6% LM), 20%
(12% HM + 8% LM), and 25% (15% HM + 10% LM), which are detailed in Table.2. In these evaluations,
we maintained fixed threshold values : 0.25 for thl, 0.45 for th2, 0.65 for th3, and 0.75 for th4.

To illustrate our work’s evaluation, we present a specific case involving a network comprising 100
nodes at time t without applying the Markov process, as depicted in Figure.6. In this case, the net-
work configuration consisted of 3% Heavily Malicious nodes, 2% Lightly Malicious nodes, 10% Lightly
Suspicious nodes, 10% Heavily Suspicious nodes, and 75% Authentic nodes.
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FIGURE 3.5 — The distribution of vehicles at time t.

TABLE 3.1 — Repartition of nodes in the network.

Case Auth LS HS LM oM

Case I 75% 10% 10% 2% 3%
Case 11 70% 10% 10% 4% 6%
Case II1 65% 10% 10% 6% 9%
Case IV 60% 10% 10% 8% 12%

Case V 55% 10% 10% 10% 15%

We evaluate the performance of our model by calculating the reliability. The equation is mentioned
below :

L Rrp + RrN
Reliability = ———————— 3.9
Y NbeTotal,Vehicle ( )
Unreliability — ~F7 T (3.10)

NbeTotal,Vehicle

Where Rtp,Rrp, RTn, Ren and Nbergtal vehicle are determined as follows :
— Rpp : The True Positive Rate refers to the accurate classification of honest nodes, indicating the
proportion of genuine nodes correctly identified.
— Rpp : The False Positive Rate signifies the misclassification of honest nodes, representing the count
of genuine nodes erroneously identified as something else.
— RN : The True Negative Rate denotes the accurate classification of malicious nodes, representing
the count of harmful nodes correctly identified.
— Rpn @ The False Negative Rate pertains to the misclassification of malicious nodes, indicating the
quantity of harmful nodes erroneously identified as something other than malicious.
— Nberotal, vehicle : The total number of vehicles.
Using MATLAB, we conducted multiple simulations to assess our work’s performance under various
conditions at different time instances, specifically at time t, t+1, t+2, t+3, and t+4, with t representing
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the initial moment within the network. These simulations and their outcomes are depicted in Figures
3.5 to 3.10. For our network, we considered a total of 20 nodes and adopted Case V from Table 2. In
this configuration, 25% of the nodes were designated as malicious, comprising 15% Heavily Malicious
(HM) nodes and 10% Lightly Malicious (LM) nodes, while 10% were Low Security (LS), 10% High
Security (HS), and the remaining 55% were identified as authentic nodes. Utilizing Equation 3.4, we
calculated the transition probabilities (P;q,—;) for each node, specifying the likelihood of a node with
ID "id" transitioning from state "i" to state "j." Our simulations reveal that vehicles initially classified as
Heavily Malicious or Lightly Malicious at time instances t, t+1, t4+2, t+3, and t+4 tend to maintain their
malicious state. On the other hand, Vehicle ID = 1 consistently retains its authentic status, maintaining
its initial state from t to t+4. Consequently, this particular vehicle is deemed typical and should be
rewarded with increased bandwidth allocation. The primary objective of this research is to predict the
future states of network nodes. Calculations based on Equation 3.9 and Equation 3.10 indicate that the
reliability of the system increases to 80%, while the unreliability rate remains at 20%.
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3.5 Discussions

In our quest to detect, predict, and mitigate DDoS attacks in vehicular networks, we put forward
a secure hierarchical Software-Defined Vehicular Network (SDVN) architecture. This architecture em-
powers the design of flexible and programmable networks. Our approach involves the development of a
security model designed to proactively identify and anticipate future attacks. This is achieved through the
utilization of proposed algorithms and a stochastic Markov process. The ultimate goal is to preemptively
identify and block malicious nodes before they can instigate attacks within the system. To accomplish
this, we employ fixed and well-defined threshold values to categorize the network’s nodes into specific



3.6. Conclusion 67

states. Through extensive simulations conducted under various conditions, our model demonstrates a
high reliability rate of 80% and a 20% unreliability rate.

3.6 Conclusion

In this chapter, a secure hierarchical architecture for Software-Defined Vehicular Networks (SDVN)
is introduced with the primary objective of mitigating Distributed Denial of Service (DDoS) attacks,
leveraging a mathematical Markov model. The proposed architecture is structured into three layers :
the Data layer, the SDN layer, and the Cloud layer. The security model is composed of three distinct
sub-models : the Collector model, the Prediction and Detection model, and the Reaction model. This
contribution delves into a detailed exposition of the stochastic Markov model employed for prediction
and detection. An evaluation was conducted using MATLAB to scrutinize the behavior of network nodes,
predicting their future states based on their current conditions.

The outcomes of our evaluation affirm the lightweight nature of our solution, showcasing a commen-
dable detection rate of up to 80%. This efficiency is achieved by leveraging probability and analytical
formulas inherent in the Discrete Time Markov chain model, facilitating swift mitigation. As part of
our future research endeavors, we aim to implement a dynamic method for determining thresholds. Our
strategy for predicting attacks relies on the Markov process, utilizing the current state of the node. This
approach offers a lightweight solution with minimal computational complexity, thus avoiding potential
drawbacks associated with a lower detection rate. The model can be implemented either within the SDN
layer or the data plane layer. In our contribution, we have instantiated it within the SDN layer to identify
attacks originating from external users traversing Cloud servers or from connected nodes via control level
2 entities, as illustrated in Figure 1.3.
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4.1 Introduction

The exponential growth of connected vehicles within modern transportation systems has ushered in
a transformative era of mobility. These interconnected automobiles promise unparalleled convenience, ef-
ficiency, and safety. The exponential growth of connected vehicles in modern transportation systems has
indeed marked a transformative era in mobility. These vehicles, equipped with advanced communication
technologies and data-driven capabilities, are reshaping the way we perceive and experience transporta-
tion. Connected vehicles are indeed a pivotal enabler for Intelligent Transportation Systems and bring
several benefits, such as enhanced safety through real-time communication to avoid accidents, optimized
traffic flow, and reduced congestion. They also offer convenience with features like predictive maintenance,
automated parking, and in-car entertainment systems. Moreover, connected vehicles play a pivotal role
in the development of autonomous driving, promising a future where vehicles can navigate and make
decisions based on a vast network of shared data. However, with these benefits come new challenges that
must be addressed to ensure the continued success of connected vehicles. First and foremost, trust is
a critical concern. As vehicles communicate with each other, infrastructure, and external services, they
rely on data and information exchange. Ensuring the authenticity, reliability, and security of this data
is paramount. Trust in the sources of information, such as other vehicles and infrastructure components,
becomes a central issue in maintaining a safe and efficient connected vehicle ecosystem. According to the
World Health Organization every year, over 1.35 million road users are killed on the roads. Trust mana-
gement system allows vehicles to determine whether the received message is trustworthy or not, and also
equips network operators with the basis of rewards or punishments on specific vehicles. Security is another
pivotal aspect. The interconnected nature of these vehicles makes them susceptible to cyber threats and
malicious attacks. Unauthorized access, data breaches, and the potential for cyber-physical attacks pose
significant risks. Therefore, robust security measures are essential to protect both the vehicles and their
passengers. Data integrity is yet another challenge. connected vehicles generate and rely on vast amounts
of data, from sensor readings to real-time traffic information. Ensuring that this data remains accurate
and untampered with is vital for the proper functioning of various applications, including autonomous
driving and traffic management. In response to the evolving landscape; cited in the introduction; of
connected vehicles and the imperative need for secure ITS, several trust-based mechanisms have been in-
troduced. These mechanisms are meticulously designed to address the multifaceted challenges associated
with the seamless and secure integration of vehicles into an interconnected network. These mechanisms
include (1) Public Key Infrastructure (PKI) : PKI is a widely adopted trust mechanism that employs
asymmetric cryptography. It involves the use of digital certificates to verify the identity of entities within
the vehicular network. Vehicles and infrastructure components possess unique digital certificates, allowing
for secure communication and authentication. PKI is fundamental for establishing trust in the authenti-
city of messages and participants; and (2) Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
Communication Protocols : These mechanisms define the rules and standards for secure communication
between vehicles and infrastructure. Protocols like IEEE 802.11p (Wireless Access in Vehicular Envi-
ronments, WAVE) ensure that messages exchanged are encrypted, signed, and authenticated, preventing
unauthorized access and message tampering.

However, these solutions suffer from several limitations including, a lack of flexibility, transparency, and
efficiency. These limitations extend to various facets, including the lack of (1) flexibility : Existing trust
management systems often struggle to adapt swiftly to the ever-changing dynamics of Vehicular networks.
The fluid nature of ITS necessitates trust mechanisms that can swiftly re-calibrate to accommodate
shifting trust requirements. Rigid systems can lead to security gaps as they may not respond adequately to
emerging threats or changing network conditions ; (2) transparency Gaps : Many of these solutions operate
within a veil of opacity, leaving stakeholders in the dark regarding the decision-making processes that
govern trust. This lack of transparency can undermine confidence among participants, hindering effective
collaboration and impeding the identification of anomalies or vulnerabilities; and (3) Centralization
Perils : Perhaps the most critical drawback lies in the reliance on centralized trust authorities for the
exchange of security certificates and keys. This centralized approach, while convenient, introduces a
perilous single point of failure. In the event of a breach or failure at this central juncture, the entire trust
infrastructure becomes vulnerable, culminating in a cascading failure that can jeopardize the integrity
and security of the entire ITS ecosystem.

4.2 System model

In this section, we describe our proposed system model. It aims to develop a decentralized trust
management system in SDVN with privacy-preserving. We start by introducing the network components.
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Then, we describe our Blockchain-based framework. The network components encompass the Trusted
Authority (TA), Roadside Unit Controller (RSUC), and the ensemble of connected vehicles.

4.2.0.1 Trusted Authority (TA) :

The Trusted Authority (TA) assumes the pivotal role of facilitating the initial registration of vehicles
within the network. Consequently, it leverages a private Blockchain to oversee the transactions associated
with the first authentication. These transactions encapsulate essential vehicle information at the time of
their inaugural network entry. Following this initial registration phase, vehicles cease direct communi-
cation with the TA, effectively diminishing reliance on it. As a consequence, this approach significantly
reduces the dependency on the TA. Notably, within this framework, only Roadside Unit Controllers
(RSUCs) are granted access to this information, thereby enabling them to verify the authenticity of
specific vehicles.

4.2.0.2 Road Side Unit Controller (RSUCQC) :

RSUCs and RSU have potential resources that make them able to perform heavy tasks in the network
such as managing the pseudonyms of vehicles, and collecting ratings and trust values. We describe these
tasks as follows :

— Collecting Pseudonyms : Pseudonyms generated by the vehicles are stored and managed by
the RSUC.

— Collecting Ratings : We assume that only RSUCs are responsible for collecting the ratings
uploaded by the vehicles. The vehicles are equipped with limited OBUs that can not deal with a
large amount of exchanged data locally in the long term. Therefore, the message receivers will only
generate the ratings’ values to evaluate the credibility of the messages and upload them directly
to the relevant RSUC, where they will be collected and stored in the long term. However, they
must be periodically updated by vehicles.

— Managing trust values : Based on the generated ratings’ values, the vehicles’ trust values are
computed depending on the RSUC’s qualifications. The trust value measure is based on the ag-
gregated opinion of a node, which depends on the credibility of its sent messages. The calculated
trust values are stored in the RSUC. Hence, the vehicles will be able to ask for any node’s trust
value.

4.2.0.3 Connected vehicles

In the Internet of Vehicles, the connected vehicles are equipped with onboard units (OBUs) that
assume the responsibility of collecting, processing, and sharing data. This data exchange enables commu-
nication with Roadside Units (RSUs) or facilitates direct communication with other vehicles within the
network. The OBUs are designed to gather a wide array of information, ranging from vehicle telemetry
data like speed, acceleration, and braking patterns to environmental data such as weather conditions
and road surface quality. They process this data in real time, making it available for immediate sharing
with Roadside Units (RSUs) or for direct communication with neighboring vehicles. This robust data-
sharing capability not only facilitates essential safety-related information exchange with RSUs but also
empowers vehicles to engage in cooperative maneuvers, such as adaptive cruise control, lane merging,
and collision avoidance, by communicating directly with nearby vehicles. The OBUs thus play a pivotal
role in enhancing both the safety and efficiency of connected vehicle networks. We describe these tasks
as follows :

— Generating Pseudonyms : The vehicles create Short-Term Certificates considered as new pseu-

donyms and define their lifetime.

— Generating ratings : The vehicles send warning messages about a specific event using V2V [?]
communication (e.g., Dedicated Short Range Communication (DSRC) and cellular network com-
munications). Moreover, each vehicle has a reference set which is composed of neighboring vehicles
traveling in front within a certain distance with elevated relevance to the safety of the target ve-
hicle. This set is responsible for transmitting alert messages about a probable event to conscious
the vehicles. Therefore, the vehicles will not send useless warning messages about an event that
has already passed its location. However, the messages sent by the reference set may not always be
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trustworthy due to malfunctions or misbehaviors. Therefore, the receiver must identify the credible
message after aggregating all sent messages about a specific event. Finally, the receiver vehicle can
generate and upload the rating value depending on its credibility using defined formulas such as
the majority rule.

4.2.1 Proposed Blockchain

Smart contracts are self-contained computer programs executed when predetermined conditions are
met. Our proposed framework utilizes multiple smart contracts to establish trust and ensure security
in future Software-Defined Vehicular networks (SDVN) in a completely distributed, transparent, secure,
tamper-proof, and trustworthy manner.

4.2.1.1 Management Smart Contract (MSC)

The Management Smart Contract (MSC) assumes a critical role in the process of vehicle registration,
serving as the cornerstone for registering vehicles within the network. It functions as the central autho-
rity responsible for overseeing the onboarding procedure of vehicles onto the Intelligent Transportation
System (ITS). This multifaceted responsibility encompasses several key functions : (1) Authenticity Veri-
fication : MSC is tasked with verifying the authenticity of each vehicle’s identity before granting it access
to the network. This verification process ensures that only legitimate and authorized vehicles are per-
mitted to participate in the ITS; (2) Regulatory Compliance : MSC also plays a pivotal role in ensuring
that registered vehicles comply with network regulations and standards. This includes validating that ve-
hicles meet the necessary technical and operational requirements mandated by the network ; (3) Registry
Management : MSC maintains and updates a comprehensive registry of authorized vehicles within the
system. This registry serves as a trusted and up-to-date record of all vehicles allowed to operate within
the network ; (4) Trust Establishment : The accurate and secure management of this registry is essential
for establishing trust among network participants. By maintaining a reliable record of authorized vehicles,
MSC fosters trust and confidence in the system’s integrity.

4.2.1.2 Trust Smart Contract (TSC)

Trust Smart Contract (TSC) : TSC includes (a) a Bayesian Trust Model (see Fig. 1) : TSC continuously
evaluates and calculates trust scores for each vehicle based on historical data, interactions, and behavior. It
takes into account a myriad of factors, including data integrity, message reliability, and past interactions,
to assess the trustworthiness of vehicles dynamically ; and (b) an on-chain Trust Scores : The TSC also
encapsulates on-chain scores of trust for vehicles. These on-chain trust scores, calculated by the Bayesian
model, are recorded on the blockchain for transparency and auditability. This ensures that trust-related
decisions are made based on empirical and verifiable data, bolstering the overall trustworthiness of the
system

4.2.1.3 Smart contract for revoking (RSC)

This smart contract is a critical component of the trust management system, responsible for handling
the revocation of trust for vehicles that have engaged in malicious activities or have become compromised.
It ensures that compromised vehicles are swiftly and effectively isolated from the network, preventing them
from participating in further transactions. This revocation mechanism enhances the overall security and
trustworthiness of the ITS ecosystem. Thus, the vehicles with a trust value lower than a fixed threshold
will be blocked from the network and its pseudo-ID will be added to the banned list. Other vehicles will
not communicate with it. In fact, honest vehicles will communicate only with the vehicles with pseudo-ID
in the authentic list.

4.2.1.4 Smart contract for access control (ACSC)

This smart contract assumes a critical role in overseeing and regulating access control policies within
the vehicular network. Its primary functions involve the definition and enforcement of detailed access
controls, specifying which vehicles or entities possess the authorization to access particular resources
or services. The ACSC plays a pivotal role in maintaining the security and integrity of the Intelligent
Transportation System (ITS) by : (1) Access Policy Definition : The ACSC establishes comprehensive
access control policies that outline who is allowed to access specific resources, databases, or services within
the network. These policies are designed to align with network security requirements; (2) Authorization
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FIGURE 4.1 — Vehicles’ ratings generation based on Bayesian Inference Filter.

Enforcement : It actively enforces these access control policies, ensuring that only authorized vehicles or
entities can request and access the designated resources. Unauthorized access attempts are systematically
prevented ; (3) Security Safeguard : By precisely delineating and enforcing access permissions, the ACSC
acts as a robust security safeguard, protecting critical assets, data, and functions within the ITS from
potential breaches or misuse; and (4) Audit Trail : The ACSC can maintain an audit trail of access
requests and responses, which can be invaluable for monitoring and analysis, as well as for demonstrating
compliance with regulatory requirements.

4.2.2 Network Components

4.3 Adversary model

In this work, we consider that we have two adversary models : the RSUs and the vehicles. These
entities are vulnerable to malicious activities committed by attackers in order to infect the security and
privacy of connected vehicles networks.

4.3.1 Adversary RSU

Roadside Units (RSUs) serve as stationary infrastructure elements positioned along the road network,
and they are known for their substantial computing capabilities. However, it’s important to note that
RSUs, while having strong computational resources, may sometimes lack robust protection measures,
rendering them vulnerable to potential security intrusions. These intrusions could involve unauthorized
access, data manipulation, or data deletion. As a result, researchers often classify RSUs as semi-trusted
entities within connected vehicle networks. Despite this semi-trusted status, RSUs possess certain ad-
vantages over potential malicious nodes in the network. Malicious nodes, even in the case of launching
attacks, often operate with limited resources when compared to the substantial computational capacities
of RSUs. Additionally, network administrators implement security and privacy checks at regular intervals,
which aids in identifying and mitigating potential threats. These periodic security and privacy checks by
network administrators make it challenging for attacks to persistently interfere with all compromised
RSUs over the long term. While individual RSUs may be targeted and temporarily compromised, the
network’s resilience, coupled with the periodic checks, helps in mitigating the impact of large-scale attacks
and aids in the recovery of compromised RSUs, reinforcing the network’s overall security posture.
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4.3.2 Adversary vehicles

Within connected vehicle networks, there exists the possibility of adversary vehicles, which are ve-
hicles within the network that engage in malicious activities with the aim of disrupting the network’s
normal operation. These adversary vehicles may carry out various nefarious actions, including : (1) Data
Interception : Adversary vehicles may attempt to intercept data transmissions within the network, po-
tentially compromising the confidentiality and integrity of the information being exchanged; (2) Data
Manipulation : Compromised vehicles have the capability to alter, add, or delete stored data within the
network, which can lead to erroneous information and potentially hazardous situations; and (3) Deceptive
Communication : Adversary vehicles can send deceptive or bogus messages with the intent to mislead
honest nodes or other vehicles. This deceptive communication can disrupt the coordination and coope-
ration among network participants.

The presence of malicious vehicles within the network poses a significant security challenge, as their
actions can have adverse effects on the overall functionality of the network. Unaffected vehicles, that
are not engaged in malicious activities, may experience disruptions or adverse consequences due to the
actions of these misbehaving vehicles. Therefore, it is crucial for connected vehicle networks to implement
robust security measures to detect and mitigate the impact of adversary vehicles, ensuring the network’s
reliability and integrity.

4.4 Vehicles’ Pseudonyms Management

4.4.1 System initialization (SDNC, RSUC, Vehicles)

In our system, we have three participating entities : the TA, RSUCs and n vehicles, where V; =
{1,2,...n}. We implement a Smart Contract for the pseudonyms’ management called Pseudo-SC. To ini-
tialize the system, the TA defines the primary parameters using the ECC (Elliptic Curve Cryptography)
as below :

— TA generates the ECC E, where E : (y?> = 23 4+ ax + b) mod p where a,b € Zy and (4a® + 27b%)
mod p # 0, using a generator P and cyclic group G of a large prime order p.

— Then, it calculates the public key T}, where Tp, = s X P. Where, s is a random master secret
key (smc) and s € Z;.

— The TA finally selects cryptographic hash functions Hy, Ha, H3 : {0,1}* — Z7 and publishes its
system parameters Hy, Ho, H3,p,q, P,G, E, Tyyp.

4.4.2 Vehicles’ and RSUCs’ registration

The vehicle sends a request to CA, and CA works as a registrar in our work. It gathers all relevant
information about the vehicle and assigns a digital certificate to the vehicle. This certificate consists of a
unique ID of the vehicle (the real identity obtained from the vehicle’s motor manufacturer), the pseudo-
nym ID (Pseudo), the private key, and the public key.

— The registration step starts with the vehicle V; submitting its real identity I D; via a secure channel
to the TA. Then, TA will check if it is authentic.

— TA generates a corresponding Pseudo;, Pseudo; = (Pseudo;1, Pseudo;s) where : Pseudo;; = t;x P
ti € Zy, Li = t; x Tpub @ ID; and Pseudo;z = ID; © Hy(sPseudog, Ty).

— TA computes a hash function h where h = Hy(ID; ® Pseudo; ® s) (after verification of the gene-
ration of pseudo-ID and the real identity ID of the vehicle.)

— TA stores together the hash function h, the pseudo-id (Pseudo;) and the real identity ID; in its
database.

— TA shares a randomly selected integer «y; with the vehicle V; and the RSUC; to calculate the
partial private key ppk; of V;, where v; € Z7.
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FIGURE 4.3 — System’s initialization, vehicle, and RSUC registration, and exchanged messages diagram.

R; = r;.P,uy; = Hi(Pseudo;, R;, Tpu) , ppki = (1 + s.u1;) mod p.
— TA send {Pseudo;, ppk;, R;} to the vehicle V;. Hence, the vehicle V; will saves it to its RSUC;.

— The vehicle V; generates its public key (PK) and private key (SK) by taking a randomly se-
lected secret integer x;, where z; € Z; Then it calculates X; and ug;, where X; = z;.P and
ug; = Ha(X;, Pseudo;). Therefore, the vehicle V; sets its keys (public and private) as below
PK; = (D;, R;) and SK; = (ppk;,x;), where D; = R; + ug; + X;.

— The RSUCs are also registered by the TA. Each RSUC; has a public key PU; and private key
PR;. The TA takes a randomly selected number n;, where n; € Z; and sets it as its private key.
Hence, PR; = n; and computes its public key PU; = N;, where N; = n;.P

4.4.3 Vehicle authentication

In our system, we ensure that only legitimate vehicles can communicate with other entities in the
network. Hence, each participating vehicle must be authenticated first by the TA when it tries to join
the network. The authentication process is described as follows :
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— The vehicle sends to the TA an authentication request containing the values of a timestamp T and
the value of H {H,T;}, where H = h ® H;(Pseudo; ® R;).

— The TA verifies the freshness of the authentication request by checking the timestamp. Then, it
checks if the value of h and Pseudo; are the corresponding credentials of the same vehicle registe-
red in its database by checking the existence of H in the updated Blockchain.

Therefore, the TA verifies if the h @ Hq(Pseudo; ® R; = H) is full-filled.

If the condition holds, the RSUC; takes a challenger which is a randomly selected integer «,
and encrypts it using the public key PK; of the vehicle V; as ENC(«a, PK;). Then, the RSUC;
sends the result value to the vehicle V.

— Once the vehicle V; receives the encrypted value send by the RSUC;, it decrypts it using its own
secret, private key SK; as DEC(a, SK;) to generate another challenger w.

— Then, the vehicle V; will compute the hash value of both challengers o and w as HV = Hi (e ®w).

— Next, the vehicle V; will encrypt a hash value HV using the public key PU; of the RSUC; as
ENC(HV, PU;) and send a message to the RSUC;, where the message contains { ENC(HV, PU;),w}.

— Therefore, the RSUC; will decrypt the recevied message with its private key PR; as DEC(HV, PR;).
— Finally, the RSUC; will verity if Hy (o @ w) = HV holds.

— If the condition holds, then the authentication of the vehicle V; is successful and can communicate
within the range of the RSUC;. Otherwise, V; will be revoked from the network and the TA will
add a revocation tag to the vehicle Pseudo-ID.

— Once the vehicle is authenticated successfully, the TA saves H = h & H;(Pseudo; ® R;) into its
memory pool.

— The saved term will be later mined and added as a new transaction to the Blockchain.

— Each time the vehicle changes its RSUC, it must register to the new RSUC with the same authen-
tication process described in this subsection.

4.4.4 Message authentication

In order to provide integrity to our system, the messages (MSG) exchanged between vehicles and
different nodes (other vehicles or RSUC) must be signed before sending using a private key. The receiver
then will check it depending on the predefined equation. If the equation is held, the message will be
accepted, else it will be rejected. We describe the message’s authentication process as below :

— The vehicle V; takes a randomly selected integer 3, where 3 € Zj to calculate its signature ¢; as
G = (Fi, K3).
F; and K; are defined as below :
F; = B;.P and K; = (B;+us;(ppki+u2;SK;)) mod p, where us; = Hz(Pseudo;, ppk;, MSG;, F;, T;)
and ug; = Ha(X;, Pseudo;).

— The vehicle V; send a message m to a nearby vehicle, where m = {ppk;, Pseudo;, MSG;,¢;, T;}.
— Once the RSUC; receives the message m, it will verify the freshness first of all by checking the recei-
ved timestamp value. If the condition is fulfilled. Then, it computes u1; as u1; = Hq(Pseudo;, R;, Tpup)

and calculates usz; as ug; = Hsz(Pseudo;, ppk;, MSG;, F;, T;).

— Finally, The RSUC; will check the condition K;.P = F;+us;(Pseudo; +u1;.Tpup)- If, the condition
holds, then the verifying entity will accept the received message by the vehicle. Else, the message
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will be dropped.

4.5 Trust Model

In this section, we will detail the trust management process in our architecture. Trust management
system enables vehicles to determine whether the received message is trustworthy. It allows the network
administrators to revoke malicious vehicles.

4.5.1 Trust system’s process

The trust management system within our architecture involves a multifaceted process designed to
establish, monitor, and maintain trust within the connected vehicle network. Here’s an overview of the
key steps in the trust system’s process :

4.5.1.1 Rating generation and uploading

Rating generation refers to the process of evaluating and assigning trust ratings to individual vehicles
or entities within the network. These ratings quantify the level of trust associated with each entity based
on various factors and interactions. The key steps in rating generation include :

crd? =1+ eods (4.1)

where craléC is the message’s credibility in group G}, sent by vehicle i. df is the distance between the location
of the event and the message’s sender. a and | are predefined parameters that contain the change rate
of the message’s credibility and the lower bound, respectively. Based on the Bayesian Inference, the
aggregated credibility of a specific event e can be calculated by the receiver with the following equation :

P(e). TI, P(crdsle)

e|C =
P(e|CRD) P(e). TTiL, P(crdile) + P(e). TIiL, P(crdile)

(4.2)

Where P(crd;|e)= crd; and P(crd;|€)=1 - crd;.
P(e) is the probability of event e.
P(e|CRD) € [0,1].

— If P(e|CRD) reaches a fixed threshold th+, the receiver considers this event as true and provokes
positive ratings (+1) on messages correctly reporting this event.

— If P(e|CRD) reaches a fixed threshold th-, the receiver considers this event as true and provokes
negative ratings (-1) on messages inappropriately reporting this event.

— If P(e|CRD) reaches or is equal to a fixed threshold th0O, the receiver considers this event as a
"draw" and provokes "draw" ratings (0) on messages suspiciously reporting this event. A deeper
observation is required in this case. We allocate a time slot t, if the receiver does not change the
rating value to a positive one, then draw ratings will be considered as negative ratings.

Rating value can be -1 for incredible messages, 0 for suspicious messages, and +1 for credible messages.

4.5.1.2 Trust value offsets calculation

Trust value offsets calculation is a process within a trust management system that involves determining
adjustments or offsets to an entity’s trust value or rating based on specific criteria or events. These offsets
are used to account for changes in trustworthiness or to respond to particular situations. We calculate
the trust value offsets as follows :

(of f1.a) — (of f2b)
a+b

OFF} = (4.3)

where of f; is the trust value offset of vehicle ¢ based on message k and of f; € [-1, 1]. a and b are the
number of positive (+1) and negative (-1) ratings, whose weights are of f1 and of fo, respectively.
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We then calculate of f1 and of fo as bellow :

_ S(a)

of fr = S(@) + 50) (4.4)
_ S0

of f2 = (@) + 50) (4.5)

where S() manipulates the sensitivity to the minority group of ratings.

4.5.1.3 Mining and Consensus step

In our work, there is no central node. Hence, we have a decentralized architecture where no persistent
entity manipulates the Blockchain. However, all the RSU Controllers (RSUCs) periodically elect one and
only RSUC as the miner to manage the generation of new offset blocks. this chapter combines proof of
stake and proof of work algorithms for the consensus mechanism. The stakes are the sum of calculated
offsets in equation (3), and the resolve of the complex mathematical puzzle of the proof of work depends
on these stakes. The nonce can only be found by the RSUC that has more stakes which will be elected
as the miner to publish their blocks rapidly. Our method is calculated as below :

hash(Idrsuc,t, prevHash,nonce) < TH,. (4.6)

Where T H,, is the threshold hash value of RSUC,, The nonce value is periodically changed by the RSUCs
within the network, and the hash values are calculated. The election of the miner depends on the difficulty
of having a nonce value satisfying the condition mentioned in equation (6). We define the current offset
set of RSUC,, as OFFSET,. Therefore, we calculate the sum of absolute values of trust value offsets
using the below equation :

H, = min > |OFFF|, Hpao | - (4.7)
of ff€eOFFSET,

Therefore, the RSUC with a more significant H,, is more conceivable to succeed in the election step and
publish its block. This way, a considerable variation of trust values can be updated in the Blockchain.
Hence, all segments in OF F'SET,, will be cleaned when the elected RSUC finally adds the offset block
to the Blockchain.

4.5.2 Trust Process

In this section, we will provide a detailed description of the trust process within the connected vehicle
network. This subsection focuses on the key components and steps involved in managing trust among
network participants.

4.5.2.1 Trust Request

The primary objective of this research is to enable vehicles within the network to ascertain the trust va-
lues of other vehicles by initiating a trust request directed at nearby Roadside Unit Controllers (RSUCs).
The trust request is a structured communication that includes specific parameters, primarily consisting
of the identity numbers of both the sender and the target vehicles. The trust request serves as a me-
chanism for vehicles to query the trustworthiness of their peers within the network. By providing the
identity numbers of both the sender and the target vehicle, the trust request facilitates the retrieval of
relevant trust values from the RSUCs. This information empowers vehicles to make informed decisions
regarding their interactions and engagements with other network participants, ultimately enhancing the
overall trust and security of the connected vehicle network.

Once the Roadside Unit Controller (RSUC) receives the trust request, it initiates a process to gather
trust-related information concurrently. Here’s how the process unfolds : (1) Request Verification : The
RSUC begins by verifying the identity numbers provided in the trust request to ensure they are valid
and correspond to actual vehicles within the network; (2) Trust Value Retrieval : After verifying the
identities, the RSUC accesses its database to obtain the current trust value of the target vehicle. This
trust value may be based on historical behavior, interactions, and any recent trust offsets; (3) Offset
Collection : Concurrently, the RSUC collects trust value offsets associated with the target vehicle. These
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offsets account for any recent events or trigger conditions that have affected the trustworthiness of the
target vehicle; (4) Offset Aggregation : The RSUC aggregates all collected trust value offsets, combining
them with the current trust value of the target vehicle. This results in an updated trust value that reflects
the current trustworthiness of the target vehicle, factoring in recent events or changes in behavior; (5)
Encryption : The aggregated trust value is then encrypted to ensure the security and privacy of the
trust-related information during transmission ; (6) Transmission as Reply : Finally, the RSUC transmits
the encrypted trust value as a reply to the sender’s trust request. The sender, upon receiving this reply,
can decrypt the information and use it to assess the trustworthiness of the target vehicle.

This process enables vehicles within the network to exchange trust-related information in a secure
and privacy-preserving manner. It empowers network participants to make well-informed decisions based
on the most up-to-date trust values and offsets, contributing to the overall trust and reliability of the
connected vehicle network.

4.5.2.2 Revocation Step

The revocation step is a critical component of a trust management system within a connected vehicle
network. It involves the process of revoking or reducing the trust level of a vehicle or entity that has been
identified as untrustworthy or engaged in malicious activities. Here’s how the revocation step typically
works :

— Detection of Misbehavior : The revocation process begins with the detection of misbehavior, which
can include security breaches, non-compliance with network policies, or any other actions that com-
promise the trustworthiness of a vehicle or entity within the network.

— Identification of Untrustworthy Entity : The network’s monitoring and assessment mechanisms
identify the specific vehicle or entity responsible for the misbehavior. This identification is crucial
for targeted revocation.

— Trust Level Adjustment : The trust management system initiates a trust level adjustment for the
identified untrustworthy entity.

— Notification and Isolation : The affected entity is typically notified of the trust level adjustment
or revocation. In the case of revocation, the entity may be isolated from certain network resources
or interactions to prevent further harm.

— Feedback Mechanism : The trust management system may include a feedback mechanism that
allows the affected entity to dispute the revocation or provide additional context. This feedback
loop can help resolve disputes and refine the revocation process :

* Periodic Reevaluation : Revoked entities are periodically reevaluated to determine if they
have rectified their behavior or addressed the reasons for revocation. Trust may be reinstated ba-
sed on improved behavior and compliance.

* Audit Trail : Detailed records and logs are maintained throughout the revocation process,
providing an audit trail of trust-related actions for accountability and transparency.

The revocation step is a crucial aspect of trust management, as it helps maintain the integrity and security
of the connected vehicle network. It ensures that untrustworthy or malicious entities are appropriately
addressed to protect the trustworthiness of the overall network and the safety of network participants.

4.6 Implementation

The implementation of our proposed framework was carried out using the Truffle framework [159],
a versatile development toolkit for Ethereum-based smart contracts. To create a controlled and secure
environment for development and testing, we employed Ganache [?], a local blockchain simulator that al-
lowed us to iterate quickly and efficiently. During this phase, we meticulously crafted our smart contracts
using Solidity [157], Ethereum’s primary contract programming language, and harnessed Truffle’s suite of
tools for tasks such as compiling, migrating, and extensive testing of our contracts. Rigorous testing and
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debugging were conducted on the local Ganache blockchain to ensure the correct and secure functionality
of our smart contracts.

Upon reaching a satisfactory level of confidence in our contracts’ local operation, we proceeded to
deploy them to the Ethereum testnet [?], a real blockchain environment that mirrors the Ethereum
network’s features. This step marked the transition from development to more advanced testing and
integration, enabling us to validate the contracts’ performance and functionality in a real-world blockchain
setting. Alongside this, we engaged in thorough performance and security audits to identify and rectify
any vulnerabilities or inefficiencies within our smart contracts. In our experiments, we utilized a gas
price of 1Gwei, where 1Gwei = 10%wei = 10~? ether. To provide context for the cost in a more widely
recognized currency, 1 ether was equivalent to 1,629US5D. Table 1 presents a comprehensive analysis of
the cost and security aspects of our smart contract-based framework. Notably, our cost analysis reveals
that all smart contract deployments are characterized by low costs. This cost-effectiveness is a significant
achievement, as it ensures that our framework is economically accessible and sustainable for users and
stakeholders. The low-cost nature of our smart contract deployments reflects our commitment to efficiency
and affordability within the blockchain ecosystem. It signifies that users can engage with our framework
without incurring substantial expenses, enhancing the accessibility and attractiveness of our platform.
This cost-efficient approach aligns with our broader goal of providing a blockchain-based solution that
is not only secure but also practical and economically viable for a wide range of use cases. Users can
leverage the benefits of blockchain technology without being deterred by high deployment costs, making
our framework a compelling choice in the blockchain landscape.

TABLE 4.1 — Cost and Security analysis of our smart contract-based framework

Parameters MSC TSC RSC ACSC
Gas Used 3528732 326822 1372568 876436
Costs (Ether) 0.003528732 0.000326822 0.001372568 0.00087
Costs (USD) 5.6 0.150 2.19 1.39
EVM Code Coverage 87.5 86 72 15.6
Integer Underflow False False False False
Parity Multisig Bug 2 False False False False
Callstack Depth Attack Vulnera- False False False False
bility

Transaction-Ordering Depen- False False False False
dence (TOD)

Timestamp Dependency False False False False
Re-Entrancy Vulnerability False False False False

4.7 Security analysis

The security of our blockchain-based framework was rigorously assessed for vulnerabilities using the
Oyente [155] analyzer. Oyente is a well-known security analysis tool specifically designed for Ethereum
smart contracts, providing comprehensive coverage for potential vulnerabilities and weaknesses within
the code. Through this analysis, we aimed to identify and address any security-related issues that could
pose risks to the integrity and reliability of our smart contracts. By leveraging Oyente, we conducted a
thorough examination of our smart contracts’ codebase, scrutinizing them for common security pitfalls
such as reentrancy vulnerabilities, integer overflow /underflow issues, and unauthorized access concerns
(see Table. 4.1). This includes :

— Integer Underflow : Integer underflow occurs when a variable of a fixed size (e.g., 256 bits in Ethe-

reum) exceeds its maximum value, causing it to wrap around to the minimum value. This can lead
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to unexpected and potentially malicious behavior. Our smart contracts are rigorously designed and
thoroughly tested to prevent integer underflow vulnerabilities. We use safe arithmetic operations
and checks to ensure that all integer values stay within expected bounds, eliminating the risk of
underflow-related issues.

— Parity Multisig Bug : The Parity Multisig Bug refers to a critical vulnerability in the Parity wallet
that allowed an attacker to exploit a flaw in the smart contract code, resulting in the loss of a
significant amount of ether. Our smart contracts are not susceptible to this specific bug because
we have followed best practices in smart contract development, conducted extensive testing, and
learned from past vulnerabilities to ensure the security of our code.

— Transaction-ordering dependence (TOD) : Transaction-ordering dependence, also known as "front-
running," occurs when an attacker observes pending transactions and intentionally reorders them
to their advantage. We have implemented safeguards in our smart contracts to minimize the impact
of TOD. Our contracts are designed to handle transactions securely and consistently, regardless
of the order in which they are processed by the blockchain.

— Timestamp Dependency : Timestamp dependency vulnerabilities arise when smart contracts rely
on the block timestamp to make decisions. Attackers can manipulate timestamps to their ad-
vantage. In our smart contract design, we have minimized timestamp dependency by using block
numbers and other blockchain-related data that are less susceptible to manipulation, ensuring that
our contracts operate securely even in the presence of timestamp-related risks.

— Re-Entrancy Vulnerability : Re-entrancy vulnerabilities occur when a malicious contract can re-
peatedly call back into another contract before the first call completes. This can lead to unexpected
or unauthorized behavior. Our smart contracts are constructed with meticulous care to eliminate
re-entrancy vulnerabilities.

The proposed Blockchain-based trust management framework ensures Authentication, Traceability, Inte-
grity, and Resistance to DDoS attacks through a combination of cryptographic techniques, smart contract
functionalities, and decentralized architecture :

(1) Authentication : The Management Smart Contract (MSC) plays a central role in authenticating
vehicles during the registration process. It verifies the authenticity of vehicle identities and ensures com-
pliance with network regulations. Only legitimate vehicles are registered, preventing unauthorized entities
from participating in the network.

(2) Traceability : The use of blockchain technology ensures that all transactions and trust-related
decisions are recorded as immutable records on the blockchain. This creates a transparent and auditable
trail of actions, enhancing traceability. The Trust Smart Contract (TSC) records trust scores on-chain,
providing a clear history of trustworthiness.

(3) Integrity : Data integrity is maintained through cryptographic techniques, ensuring that data wi-
thin the blockchain remains tamper-proof. Smart contracts and trust scores recorded on the blockchain
are protected from unauthorized modifications. Access Control : The Access Control Smart Contract
(ACSC) enforces granular access controls, preventing unauthorized access attempts. This enhances the
overall integrity of the system by limiting access to authorized entities only ; and (4) Resistance to DDoS
Attacks : The decentralized architecture of the blockchain network enhances resistance to DDoS attacks.
With multiple nodes participating in consensus, it becomes challenging for attackers to overwhelm the
network by flooding it with traffic.

By combining these elements, the proposed framework ensures robust authentication, traceability, data
integrity, and resistance to DDoS attacks, making it a secure and reliable solution for trust management
within Intelligent Transportation Systems (ITS).

4.8 Conclusion

This chapter presents a pioneering framework built upon Blockchain technology, employing multiple
smart contracts to instill trust and guarantee security in prospective Software-Defined Vehicular Net-
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works (SDVN). Our approach is entirely distributed, transparent, secure, tamper-proof, and reliable. The
experimental results underscore the superior performance of our proposed system, particularly in terms of
adaptability, security, efficiency, and cost-effectiveness. These attributes position our solution as a highly
promising candidate for advancing the development of decentralized trust management systems within
the domain of Intelligent Transportation Systems (ITS).
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5.1 Introduction

Recently, cyber-threats have grown because of vulnerabilities in some internet-connected devices, es-
pecially the Connected Vehicles (CV) [163], which frequently make them easy targets. DDoS attacks,
particularly, are highly challenging to detect compared to other attacks because of their capacity to hide
themselves as honest traffic in the network. DDoS attacks are exponentially increasing daily in Connected
Vehicles due to the extensive usage of intelligent wireless interface software [164], such as IoT, V2X, and
5G/6G, used for communication and sensing. This leads to the intensive development of new IDS to
confront cyber risks.

The utilization of ML methods in the field of cyber-security, as discussed in [162], has garnered signifi-
cant interest due to their capacity to enhance decision-making and enable efficient automated operations.
ML techniques have found successful applications across diverse cyber-security domains, such as spam
detection, malware identification, user authentication, software vulnerability detection, and DDoS attack
detection. These methods have shown great promise by delivering high accuracy and recall rates while
keeping false positives at a minimum.

The demand for vehicular networks’s safety and infotainment services (e.g., accident avoidance, driver
assistance, video on demand, and infotainment applications) is increasing. Vehicles nowadays can support
various entertainment and comfort applications, but emerging these services opens up additional chal-
lenges regarding Quality of Service (QoS), privacy, and security. Integrating novel technologies, such as
IoT, Edge Computing, Fog computing, Cloud Computing, and Artificial Intelligence, represents one of the
major research topics in vehicular networks. Researchers are paying significant attention to deploying Al
techniques, such as ML and Deep Learning (DL), in many application domains, not only in robotic, data
analytic, or healthcare domains but also in vehicular networks, to solve the above-mentioned challenging
concerns. Moreover, providing node safety and reducing data latency and accident rate are some of the
most significant goals in vehicular networks.

Since unstable network leads to routing issues, integrating ML techniques (e.g., Support Vector Machine
(SVM), k-nearest neighbors (k-NN), k-mean clustering, Naive Bayes (NB), Conventional Neural Net-
work(CNN), etc..) in vehicular networks with further data analytic will improve its stability in term of
safety (e.g., vehicle safety, collision alert, etc..), traffic management (e.g., traffic scheduling, traffic conges-
tion, traffic monitoring, etc..) and in terms of communication (e.g., link management, data congestion
control, routing and misbehavior detection, etc..).

The key contributions of this chapter can be summarized as follows :

— We propose the VFed-IDS : a decentralized, trustworthy, flexible and scalable IDS for connected

vehicles based on Blockchain and Federated Learning.

— VFed-IDS is composed of three main layer : Central layer, local layer and Blockchain layer. The
central layer for training/aggregating the global models, the local layer for training local models
and the Blockchain is for calculating the hash values of local models and to manage the list of col-
laborating vehicles in the FL process. Hence, this only enable authenticated vehicles to collaborate.

— Our architecture enhances considerably the autonomous behaviour of vehicles in making inde-
pendent decisions about cyber threats.

— We develop our smart contract VFed-SC to manage the list of participating vehicles into the FL
process. The VFed-SC is developed under the Ethereum Blockchain smart contract.

— We tested our proposed work with the well known NSL-KDD dataset.

— We evaluate the VFed-IDS in terms of a set of criteria : Precision, Recall, Accuracy, F-measure
and False Positive Rate.

— Our architecture shows that it enhances the privacy in IoV, provides a high accuracy rate up to
99% and it copes with large scale networks.

5.2 Related Work and Background

In this section, we discuss and analyse some of the critical-related works found in the literature. Firstly,
we introduce the research work on intrusion detection systems in IoV based on Federated Learning and
Blockchain. Then, we summarize these works in table 5.1 based on : integration of Blockchain, integration
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of Smart contract, integration of FL, does the work present an IDS 7, does this work cope with the IoV ?

5.2.1 Blockchain-based IDS

In this subsection, we discuss the Blockchain-based IDS. [168] designed a trustworthy distributed
blockchain-based platform for vehicular systems. In this work, the exchanged messages from nearby
vehicles are validated depending on a Bayesian inference model. Then, the vehicles generate ratings
according to the validation results. In this work, the RSUs estimate the trust value offsets of participating
nodes and store them in blocks. This solution improves its performance in terms of privacy and security
in the network. However, more significant attention to the cost and execution time must be considered.

[169] integrated Blockchain technology in their work to create a trustworthy platform for vehicles
to identify malicious nodes. In this solution, the vehicles participate in making decisions about other
nodes in the network by validating packets only from authenticated nodes. The vehicles in this work also
participate in creating and sharing new blocks in the Blockchain.

Another Blockchain-based work was introduced by [170]. The authors in this work integrated Blo-
ckchain technology to improve the vehicles’ and exchanged data authentication. This work presented a
defensive mechanism to identify malicious vehicles with manipulated data.

[171] integrated Blockchain technology to develop an authentication mechanism. This work aims to
enhance the privacy of the network. Hence, the exchanged messages must be authenticated, too, using
asymmetric keys and the PoW and PBWT algorithms.

5.2.2 Machine and Deep Learning IDS

[172] proposed a robust and low-cost IDS against DDoS attacks in IoT. This solution depends on
the collaborative and distributed training model paradigm. In this solution, the authors positioned the
training model at the edge server to cope with the limited resources of IoT devices.

[173] presented a Fed-TH architecture based on a novel federated deep learning. This work integrates
a container-based edge-computing framework with the FL to establish a robust and reliable intrusion
detection system for cyber threats in industrial information physical systems.

Another FL-based work was introduced by [174]. The authors in this work designed a platform called
FedIoT, which depends on the algorithm FedDetect to identify a more extensive scope of attacks calsses
that may appear on multiple IoT devices in a Raspberry Pi-based environment.

As artificial intelligence technology rapidly advances and intelligent applications gain popularity, the
proliferation of vast amounts of Internet of Things (IoT) data has become commonplace. This surge in
data generation has heightened consumer expectations regarding the protection of their data privacy.
Traditional IoT network security detection methods, heavily reliant on centralized machine learning and
deep learning, need reevaluation to meet the contemporary demands of securing IoT networks. In response
to the evolving requirements of IoT cybersecurity, researchers are exploring innovative approaches that
integrate federated learning and edge computing paradigms.

Several researchers, including Ghimire and Rawat in 2022 and Khan et al. (citation pending), have
proposed novel IoT intrusion detection methods based on collaborative training. In 2019, Nguyen et
al. introduced Doot, a federated learning-based intrusion detection framework designed for identifying
specific device types in home automation settings. Similarly, Mothukuri et al. (2021) proposed a federated
learning-based anomaly detection system to improve the accuracy of identifying and classifying attacks
in ToT networks, employing a combination of Gated Recurrent Units (GRUs) layers and ensembles.

Taking a unique approach, Li et al. (2021b) combined federated learning and edge computing to
establish an efficient and cost-effective defense mechanism against Distributed Denial of Service (DDoS)
attacks in the Industrial Internet of Things (IToT). This strategy mitigates the limitations posed by the
limited resources of IoT devices by shifting model training to edge servers. Meanwhile, Zhang et al. (2022)
introduced a framework for preserving the integrity of IoT devices by detecting cyberattacks.

In a different context, Li et al. (2021a) proposed a federated learning-based intrusion detection ap-
proach for Industrial Cyber-Physical Systems (CPSs). This approach involves collaborative training
among various security agents employing deep learning models, creating an efficient and flexible cy-
ber threat detection system within industrial information and physical systems. While these research
efforts explore the benefits of network security detection methods based on federated learning from va-
rious perspectives, it’s essential to note that they often do not fully address the security issues associated
with intrusion detection methods based on federated learning.
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TABLE 5.1 — Related works.

Paper Blockchain Smart Contract Fed. Learning IDS TIoV
[168] Yes No No No Yes
[169] Yes No No Yes Yes
[170] Yes No No Yes Yes
[171] Yes No No No Yes
[6] Yes No No Yes No
[172] No No Yes Yes No
[173] No No Yes Yes No
[174] No No Yes Yes No
Our work Yes Yes Yes Yes Yes

5.3 System Overview

In this section, we will describe the privacy-preserving process between multiple vehicles, participating
as edge servers, and the SDNCs as the central servers. We represent the proposed architecture in Figure
5.1. Our architecture permits numerous vehicles and SDNCs to participate in the privacy-preserving
operation by combining the potentials of the Blockchain and an advanced Deep Learning technique,
Federated Learning, using a smart contract to manage the process. Our smart contract will first be
created in the Blockchain by the central server SDNC. Then, the participating and honest vehicles
will only be added as collaborating servers. Consequently, our architecture provides the reliability and
integrity of the system due to the integration of the Blockchain. In this system, the privacy-preserving
process starts with initializing a global model and then broadcasting it to the vehicles in the local layer.
Moreover, the collaborating vehicles will train their local models with their private datasets and calculate
their hash values, which stops any entity from rebuilding a collaborator’s private data from its model
updates. Therefore, they will upload their trained models’ updates and try to add the hash values to the
Blockchain. Finally, the SDNC will verify the uploaded models’ updates and aggregate it in the global
model.

5.4 System Model

This section introduces our IDS based on Federated Learning and Blockchain, as illustrated in figure
5.1. This IDS comprises SDNC, the central server, RSUs, the local intrusion detection servers, and multiple
connected vehicles. This work will lead the way for vehicles to participate in the training process of local
models. The list of symbols used to describe our architecture is listed in table 5.2

5.4.1 Network components
5.4.1.1 Central Layer

The central layer is composed by the SDNCs. This layer is responsible of the global model’s initializa-
tion. The SDNC will send the global model to the local layer’s servers (the vehicles). It also aggregates the
uploaded local models trained by the vehicles to participate in assembling the model. Finally, the major
function of this layer is to detect the malicious entities in the network. The new global model aggregated
by the SDNC is set after receiving the local model from each vehicle V; designated as follows :

nbr;
gm' = NB;% Z lm] r+1 (5.1)



5.4. System Model

89

TABLE 5.2 — Used symbols

Symbol

Description

Ojn
nbr;
NBR

VFed - SC

Total number of vehicles

The vehicle j

round r of the FL process

Phase t of round r of the FL process

Local model of vehicle j at round r

Local model of vehicle j at phase t of round r
Global model of vehicle j

Initial Global model

Set of vehicles

Private data set of vehicle j

Learning rate

Size of the data set

The objective function

Input of the objective function

Output of the objective function

The number of trained data sample of DS,
The sum of trained data sample of datasets

Smart Contract based on FL for vehicular networks
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FIGURE 5.1 — Federated Learning and Blockchain based IDS for Connected Vehicles

Where : NBR = Z;vzl nbr; and nbr; represents the number of trained data sample of dataset D.S;.

5.4.1.2 Local Layer

This layer is composed of participating connected vehicles. Each vehicle will utilize its private dataset
to train its local IDS model in this work. All private datasets combine both normal and anomalous traffic.
We assume that we have N vehicles, which signifies N edge nodes in the Edge layer designated by :
V={V,Vs,..Vn}.

Private datasets are represented by :

DS; ={DS:1,DS>,..DSy}.

The FL process is established during multiple iterations, where each vehicle will utilize a stochastic gra-
dient descent (SGD) algorithm to train its private model m; with its local data set D.S; The local training
process is denoted by the following formula :

t

t _ t—1 7,r+1 t—1
Imf oy =1miL - T S VM A, Zn ). (5.2)
I+l nepst

J,r+1

Where :

Im’ .., is the local model of Vj at phase t of round r + 1.

The learning rate here is denoted by (.

DS . is randomly selected from the local dataset DS; of Vj.

S% .11 represents the size.

A, ; and Z, ; represent the input and output vectors of data sample n in DS;.

And V.f() is the local objective function.
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Smart Contract \r
VFed-SC N
request e Vehicles' Registration . .
— e Vehicles' Authentication N -0~ ,'
° Add/Remove Vehicles' from FL Process
‘ response e Hashing local models' updates Blockchain

Vehicle j

FIGURE 5.2 — Our smart contract VFed-SC process.

5.4.1.3 Blockchain Layer

In this work, the Blockchain layer, where we deploy our smart contract, manipulates the collaborative
privacy-preserving learning operation across multiple vehicles. First, the SDNC will create and deploy
the smart contract VFed-SC in Ethereum Blockchain. Then, it will manage the collaborating vehicles
through it. At this step, the SDNC will manage the subscription of the collaborators by permitting or
withdrawing the vehicles to participate in the privacy-preserving learning operation in a decentralized
manner, which improves the flexibility and trustworthiness of the system. The deployed smart contract
will hash the trained local models’ updates before sending them to the SDNC using the SHA-256 hashing
function.

5.4.1.4 Characteristics of Smart Contract VFed-SC

We illustrate the main characteristics of the smart contracts as follows :

Distributed : Every participating node ensures they possess a copy of the smart contract condi-
tions, and it remains impervious to modifications by any single entity. This smart contract is
replicated and distributed across all network entities, encompassing both central and local layers.
Deterministic : The VFed-SC exclusively carries out its designated functions when the stipulated
prerequisites are met. The ultimate impact of the smart contract on the system remains unaltered,
irrespective of the entity executing it.

Autonomous : There are no third parties involved. The smart contract is shared between the
involved parties upon its creation. There are no intermediaries, reducing the potential for coercion
and empowering the parties involved. Additionally, the smart contract is upheld and executed by
all nodes on the network, effectively relinquishing centralized control from any single entity.
Firm :The VFed-SC is immutable in the sense that once it is deployed and activated, it cannot
be altered. However, it can be terminated or removed.

Customizable : Usually, it can be tailored or customized before deployment to fulfill the user’s
specific requirements.

Transparent : The smart contract is consistently stored on a publicly distributed Blockchain,
making its code accessible to everyone, regardless of their participation in the smart contract.
Trustless : There is no need for third parties to demonstrate the integrity of the process or to
verify whether the required conditions are met.

Self-verifying : It is self-verifying due to automated capabilities.

Self-enforcing : The VFed-SC is self-enforcing when the conditions and rules are met at all
stages.

5.4.2 Powers of Smart Contracts

We describe in this subsection the powers of smart contracts as follows :

Accuracy : The accuracy of smart contracts is limited to how precisely a programmer has coded
them for execution.

Automation : Smart contracts can automate tasks and processes that are typically done manually.
Speed : They use software code to automate tasks, reducing the time required for processes that
involve human interaction. Since everything is coded, the time taken to complete tasks with a
smart contract is determined by the execution of the code itself.

Backup : Each node in the blockchain maintains a copy of the shared ledger, offering a robust
backup system.
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— Security : The use of cryptography ensures the security of transactions. Even if someone manages
to crack the encryption, the hacker would need to modify all the blocks that come after the block
that has been tampered with. It’s important to note that this is a difficult and computation-
intensive task, making it practically impossible for a small or medium-sized organization to achieve.

— Manages information : Smart contracts are responsible for managing user agreements and
storing information related to applications, such as domain registration, membership records, and
more.

— Multi-signature accounts : Smart contracts offer support for multi-signature accounts, enabling
the broadcast of transactions to other accounts once all involved parties reach an agreement.

5.4.3 Adversary Model

Researchers face a significant challenge in enhancing the trustworthiness of participants within the
Federated Learning (FL) framework, primarily to meet security requirements.

When training intrusion detection models for connected vehicles using FL, a threat arises from mali-
cious collaborating vehicles situated in the local layer (edge servers) under the control of attackers. These
adversaries may launch DDoS attacks, thereby impacting the availability of the model. The primary goal
of this adversary model is to compromise the cybersecurity of the IoV by manipulating the global model
trained in the FL process. Consequently, malicious traffic data could be misclassified as legitimate. As
a result, the malicious entities behind these attacks may be falsely identified as legitimate nodes and
allowed to participate and collaborate within the FL process.

In the context of these attacks, the adversary entity, denoted as ’z,” has limitations. It can only
manipulate its private local data represented as DS, to create a falsified local training model. However,
it does not possess the capability to manipulate the local models of other entities.

5.5 Proposed VFed-IDS Architecture

The primary objective of our work is to develop an efficient IDS for connected vehicles based on FL
and Blockchain using the VFed-SC smart contract. This latter is installed in the SDNC in the central
layer. Hence, the malicious locally trained models by attacking vehicles will be detected before being
uploaded to the global model.

5.5.1 Classification Step

In the VFed-IDS, participating vehicles employ their private dataset to train their local models in

the local layer after receiving the initial global model from the SDNC. Once these local models are
conducted, the vehicles encrypt them by calculating their hash values, which will be uploaded and added
to the Blockchain and then to the central server, the SDNC, which aggregates them after verification. At
this phase, the SDNC gathers the obtained loss in the local layer, the data from the samples concerned
in the training, and the vehicles’ local models.
The inconsistency between prediction and actual values represents the estimated loss of the training
model. The loss is a non-negative value, which qualifies the robustness of the model. The most robust
models have the smallest loss values. In the case of multi-classification situations, the loss function is
computed with the following equation :

~> " X;.log X; (5.3)
j=0

Where : Xj is the prediction model result, X; is the true label and ¢ denotes the category.

In VFed-IDS, we study a binary classification intrusion detection model, where ¢ can have the value of 0
or 1.

To assess the participating vehicles in our system, we calculate its scoring function value based on its loss
function and its model’s sample size. The scores are calculated depending on the following equation :

SCORE] = (5.4)

NBR HT HT

where : HJ is the loss obtained from training local model j of the vehicle j at round r.
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5.5.2 Malicious vehicles detection

We describe, in this section, the process of detecting malicious vehicles in the network. In our ar-
chitecture, we have distributed data. Hence, the obtained trained local models of participating vehicles
in the local layer have similarities. Malicious vehicles are identified based on their Manhattan similarity
values with other participators, and their score values calculated with equation 4.

The similarities are calculated with the following equation :

N
Sim= Y |Sim; — Sim;| (5.5)
J=1,5i

Algorithm 2: Malicious Vehicle’s Detection Algorithm

Data: Vehicle Vj;, private dataset D.S;, N number of vehicles and their private dataset DS
Result: Malicious Vehicles’ Detection
Initialize the global model gm®;
Distribute the global model gm® to the participating Vehicles;
At the local training, at round r;
for j in N do
Train the local model Imj;,, based on its private dataset DS; and global model gm”;
Calculates the hash value of Im r;
Adds the hash value of Im; , to the Blockchain;
Uploads H; and NBR; to the SDNC ;

At the global training, at round r;

10 for j in N do

11 Calculating SCORE; of Vehicle j according to H(j);
12 Similarity Calculation Sim(j5);

® N o oA W N

©

13 Malicious Vehicle Detection,;

5.6 Simulations

In this section, we detail the experimental setup, description of NSL-KDD dataset and its attacks
types, and evaluation of the robustness of the trust model metrics and then present the experimental
results and analyze them as shown below. In each scenario, we divide the NSL-KDD dataset between the
participating connected vehicles (clients). Hence, each vehicle will have its own private dataset, which
contains a portion of the different cyber threats presented in the main dataset. We run our experiments on
Google Colaboratory [175]. In each scenario, the parameters of the global model are initialized randomly.

5.6.1 Experimental setup

The environment setup and different conducted scenarios are given in Table 5.4.
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TABLE 5.3 — List of Features in NSL-KDD Dataset
No. Feature Description
1 duration Length of time a connection has been active.
2 protocol__type Type of network protocol used for the connection (e.g.,
TCP, UDP, ICMP).
3 service Network service on which the connection was requested
(e.g., http, ftp, smtp).
4 flag Status of the connection (e.g., S0, S1, S2, REJ).
5 src__bytes Number of data bytes sent by the source.
6 dst__bytes Number of data bytes received by the destination.
7 land Indicates whether the connection is from/to the same host
and port.
8 wrong__fragment Number of "wrong" fragments.
9 urgent, Number of urgent packets.
10 hot Number of "hot" indicators.
11 num_ failed_logins Number of failed login attempts.
12 logged__in Indicates whether a user is logged in.
13 num__compromised Number of compromised conditions.
14 root_ shell Indicates whether a root shell is obtained.
15 su_ attempted Indicates whether a "su root" command was attempted.
16 num_ root Number of "root" accesses.
17 num_ file creations Number of file creation operations.
18 num__shells Number of shell prompts.
19 num_ access_files Number of operations on access control files.
20 num_ outbound_ cmds Number of outbound commands in an FTP session.
21 is_ hot_ login Indicates whether the login belongs to the "hot" list.
22 is_ guest_ login Indicates whether the login is a "guest" login.
23 count Number of connections to the same host as the current
connection in the last 2 seconds.
24 srv__count Connections’” number to the same service as the current
connection in the last 2 seconds.
25 serror_rate Percentage of connections that have "SYN" errors.
26 Srv_ serror_rate Percentage of connections that have "SYN" errors to the
same service.
27 rerror_ rate Percentage of connections that have "REJ" errors.
28 Srv_rerror_rate Percentage of connections that have "REJ" errors to the
same service.
29 same_ srv_ rate Percentage of connections to the same service.
30 diff srv_rate Percentage of connections to different services.
31 srv_diff host rate Percentage of connections to different hosts.
32 dst__host__count Number of connections to the same destination host as the
current connection in the last 2 seconds.
33 dst__host_srv_ count Number of connections to the same destination service as
the current connection in the last 2 seconds.
34 dst _host same srv_rate Percentage of connections to the same service on the desti-
nation host.
35 dst_host diff srv_rate Percentage of connections to different services on the des-
tination host.
36 dst__host_same_src_ port_ rate Percentage of connections to the same source port on the
destination host.
37 dst_host srv_diff host rate Percentage of connections to different hosts on the destina-
tion service.
38 dst__host_serror_rate Percentage of connections that have "SYN" errors to the
destination host.
39 dst__host_srv_serror_rate Percentage of connections that have "SYN" errors to the
destination service.
40 dst_host rerror rate Percentage of connections that have "REJ" errors to the
destination host.
41 dst_host srv_rerror rate Percentage of connections that have "REJ" errors to the
destination service.
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TABLE 5.5 — Existing samples in NSL-KDD dataset.

Attack Class Records
Normal 77232
DoS 53387
Probe 14077
R2L 3702
U2R 119

TABLE 5.4 — Scenarios details.

Scenario Clients Rounds Epoch With MLP Executed in With RNN Executed in
Scl 10 5 1 36s 323 ms -

Sc2 10 5 5 57 s 347 ms -

Sc3 10 10 1 1m 26 s 47 ms -

Scd 10 10 5 2m 52 s 381 ms 36min 25s
Sch 10 25/30 5 6m 44s 38ms 47min 58s
Sc6 10 50 5 9m 53s 5ms -

Sc7 25 5 5 4m 13s 184ms -

Sc8 25 10 5 4m 44s 892ms -

Sc9 25 25/30 5 14m 52s 330ms -

Scl0 25 50 5 27m 26s -

Scll 50 25/30 10 37m 24s 378ms -

Scl2 50 50 10 41m 39s 112ms -

Scl3 100 25 10 3h 13m -

Scl4 100 50 11 2h 44m 2s -

In each scenario, we divide the NSL-KDD dataset between the participating connected vehicles
(clients). Hence, each vehicle will have its own private dataset, which contains a portion of the dif-
ferent cyber threats presented in the main dataset. In each scenario, the parameters of the global model

are initialized randomly.

5.6.2 Description of NSL-KDD dataset

The NSL-KDD dataset, short for the "NSL-KDD Intrusion Detection Dataset", is a well-known bench-
mark dataset widely used for evaluating and developing Intrusion Detection Systems (IDS) and network
security solutions [176]. It was created as an improvement over the original KDD Cup 1999 dataset to
address some of its limitations and challenges. The NSL-KDD dataset is specifically designed to support
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TABLE 5.6 — NSL-KDD Train and NSL-KDD Test dataset details.

Class Total Normal DoS Probe R2L U2R
NSL-KDD Train 125973 77232 53387 14077 3702 119
NSL-KDD Test 22544 13823 9555 2520 663 22

TABLE 5.7 — Attack Categories, Sub-Classes, and Descriptions in NSL-KDD Dataset

Category | Sub-Class | Description
DoS Neptune Floods victim with high traffic.
Smurf Spoofs victim’s address in ICMP re-
quests.
Teardrop Sends overlapping fragments.
Pod Floods victim with ICMP or UDP pa-
ckets.
Probe Nmap Scanning tool for network discovery.
Portsweep Scans multiple ports on a host.
Satan Scanning tool for network reconnais-
sance.
MScan Scanner for identifying vulnerabilities.
R2L Guess Password Tries to guess user’s password.
FTP Write Unauthorized write access to FTP ser-
ver.
IMAP Access Unauthorized access to IMAP email
server.
Phf Exploits "Phf" CGI vulnerability.
U2R Buffer Overflow Exploits buffer overflow vulnerabilities.
Loadmodule Loads kernel modules without proper
privileges.
Rootkit Installs a rootkit on the victim system.
Perl Exploits vulnerabilities in Perl scripts.

TABLE 5.8 — Confusion Matrix

Classified as Malicious

Classified as Honest

Classified as Malicious

True Positive (TP)

False Negative (FN)

Classified as Honest

False Positive (FP)

True Negative (TN)
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research in the field of network intrusion detection, making it an essential resource for studying network
security and cyber threats. The primary purpose of the NSL-KDD dataset is to facilitate the develop-
ment and evaluation of intrusion detection techniques. It serves as a valuable resource for researchers,
data scientists, and security professionals who aim to build and test algorithms and models to identify
various types of network intrusions and attacks.

— Dataset Size : The NSL-KDD dataset contains a substantial amount of network traffic data, with
approximately 125,973 instances for training and 22,544 instances for testing. This diverse dataset
allows for robust analysis and modeling.

— Data Variability : The dataset includes various types of benign and malicious network connections.
It covers different attack types and strategies, offering a comprehensive view of potential security
threats.

— Feature Set : NSL-KDD includes a rich set of features that describe network connections and
behaviors, making it suitable for machine learning and data analysis. These features encompass
aspects such as connection duration, protocol type, service, flags, byte counts, and more as shown
in table 5.3 .

— Attack Categories : The dataset is categorized into several attack types, including Denial of Service
(DoS), Probe, User to Root (U2R), and Remote to Local (R2L). This categorization allows for
targeted analysis of specific types of attacks.

— Data Preprocessing : To address some of the issues present in the original KDD Cup 1999 dataset,
the NSL-KDD dataset has undergone preprocessing to eliminate redundancy, correct inaccuracies,
and provide a more realistic representation of network traffic.

— Testing and Evaluation : The dataset is divided into a training set and a testing set, enabling
researchers to train models on one portion and evaluate their performance on another. This setup
allows for fair testing and assessment of IDSs.

5.6.3 Attacks types

We present in this subsection a detailed descriptions to provide insights into the various attack classes
and sub-classes present in the NSL-KDD dataset, highlighting the techniques and goals of different cyber
threats.

5.6.3.1 Denial of Service (DoS)

Neptune : The Neptune attack is a classic example of a Denial of Service attack. In this attack, the
attacker floods the victim with a high volume of network traffic, typically to overwhelm the victim’s
resources, such as bandwidth or processing power, and make the service unavailable to legitimate users.
Smurf : The Smurf attack involves ICMP (Internet Control Message Protocol) amplification, where the
attacker sends ICMP requests with a spoofed source IP address to a network broadcast address. This
results in multiple hosts responding to the victim, causing network congestion. Teardrop : Teardrop is an
attack that sends intentionally overlapping IP fragments to a target system. When these fragments are
reassembled, it can lead to buffer overflow or crashes in the victim’s operating system. Pod : The Pod
attack is a Denial of Service attack that involves flooding the victim with either ICMP or UDP packets.
It aims to consume the target’s resources and disrupt its normal operation.

5.6.3.2 Probe

Nmap : Nmap is a popular open-source network scanning tool used for network discovery and security
auditing. Attackers often use Nmap to identify open ports, services, and vulnerabilities on a target
network. Portsweep : Portsweep is a scanning attack where the attacker probes multiple ports on a host,
attempting to identify open ports and potential vulnerabilities. It is a common precursor to more specific
attacks. Satan : Satan is another network scanning tool used for network reconnaissance. Attackers utilize
Satan to gather information about a target network, including services, versions, and vulnerabilities.
MScan : MScan is a scanner used to identify vulnerabilities in networked systems. It scans for specific
weaknesses that could be exploited in later attacks.

5.6.3.3 Remote to Local (R2L)

Guess Password : In this attack, the attacker attempts to gain unauthorized access to a system by
guessing or cracking a user’s password. It may involve dictionary attacks or brute force methods. FTP
Write : The FTP Write attack involves unauthorized write access to an FTP (File Transfer Protocol)
server. Attackers use this to upload malicious files or manipulate data on the server. IMAP Access : This
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TABLE 5.9 — Environment setup

Element Description

(O Windows 11

CPU 12th Gen Intel i7-1255U 1.70 GHz

RAM 16G

Language Python and Solidity

Dataset NSL-KDD

IDE Dataspell, Google Colab

Training Models Federated Learning with MLP and RNN.

attack involves unauthorized access to an IMAP (Internet Message Access Protocol) email server. Atta-
ckers may access, read, or modify emails without proper authorization. Phf : The Phf attack exploits the
"Phf" CGI (Common Gateway Interface) vulnerability. It allows attackers to execute arbitrary commands
on a target web server.

5.6.3.4 User to Root (U2R)

Buffer Overflow : The Buffer Overflow attack involves exploiting vulnerabilities in software applica-
tions or operating systems where an attacker can overflow a buffer to execute malicious code or gain
unauthorized access.

Loadmodule : In this attack, an attacker attempts to load kernel modules without proper privileges or
authorization. This could allow them to modify the behavior of the operating system. Rootkit : A Rootkit
is a collection of tools and software that an attacker installs on a victim system to gain unauthorized root-
level access. Rootkits are used to hide the presence of malicious software or provide persistent access.
Perl : Attackers may exploit vulnerabilities in Perl scripts, a widely used scripting language, to gain
unauthorized access or execute malicious code on a target system. These detailed descriptions provide
insights into the various attack classes and sub-classes present in the NSL-KDD dataset, highlighting the
techniques and goals of different cyber threats.

Root-to- User-to-
Local \ / Root

3% 2%

FIGURE 5.3 — NSL-KDD dataset distribution.
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5.7 Results’ Discussion

In this section, we discuss our extensive simulations’ results of the VFed-IDS framework with the NSL-
KDD dataset using both MLP and RNN models. We evaluate the robustness of the VFed-IDS metrics
and then present the experimental results and analyze them in details as shown below.

5.7.1 Impact of rounds number on model’s metrics

The number of rounds affects the accuracy of the IDS model. More rounds typically lead to a more
accurate model since it has more opportunities to learn from diverse data sources. However, there’s a
diminishing return on accuracy, and at a certain point, additional rounds may not significantly improve
detection rates. Choosing the right number of rounds is about achieving a satisfactory level of accuracy
without overburdening the system. Hence, we conduct extensive simulations in order to pick the right
rounds number for each scenario. We illustrate the impact of varying the rounds numbers on the models’
accuracy scores in most of the presented figures in this section.

5.7.1.1 Accuracy

The accuracy score represents the overall correctness of the IDS’s intrusion detection decisions. It is
a typically used metric to assess the system’s performance. Accuracy delivers a comprehensive measure
of the IDS’s performance by considering the correct detections and rejections. However, accuracy might
not be the sole metric to consider, especially in scenarios with imbalanced datasets, where the number
of non-intrusive instances significantly outweighs intrusions. A high accuracy score can be misleading in
such cases, as the IDS might classify everything as non-intrusive. In practice, a balance between accuracy,
precision, and recall is often sought, relying on the specific requirements and priorities of the IoV and
the potential consequences of false alarms or missed intrusions. The choice of evaluation metrics should
be made with a clear understanding of the system’s objectives and the potential impact of its decisions
on network security. The Accuracy score is calculated as follows :

TN+TP

AcCuracy = N TP+ FP 1 FN (5.6)
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((a)) Accuracy rate of 25 vehicles with MLP model. ((b)) Accuracy rate of 25 vehicles with RNN model.

FIGURE 5.8 — Accuracy rate of 25 vehicles.
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FIGURE 5.4 — Accuracy rate evolution of SDNC with MLP model while varying number of vehicles.
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FIGURE 5.9 — Loss rate of 10 vehicles.
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FIGURE 5.10 — Loss rate of 25 vehicles.

5.7.1.3 Precision

The precision represents the proportion of correctly detected intrusions by the IDS out of all the
instances it flagged as intrusions. It measures the accuracy of the IDS in correctly identifying intrusions
while minimizing false positives, which are instances where the IDS incorrectly identifies normal behavior

as an intrusion. The Precision score is calculated as given below :

Precision =

TP
TP+ FP

Where TP is the True Positives and FP is the False Positives.

(5.7)
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FIGURE 5.11 — Precision score evolution of vehicles per rounds with MLP model.
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FIGURE 5.12 — Precision scores of 10 vehicles with MLP and RNN models.
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FIGURE 5.13 — Precision scores of 25 vehicles with MLP and RNN models.

5.7.1.4 Recall

The recall score, also referred to as sensitivity or true positive rate (TPR), signifies the ratio of true
intrusions or attacks correctly identified by the intrusion detection system. It quantifies the system’s
effectiveness in detecting real intrusions out of the total occurrences of intrusions. A high recall score
indicates that the IDS effectively identifies many intrusions, which is vital for security in the IoV because
missing intrusions can lead to severe network security and safety consequences. Therefore, a high recall
score is desirable in an IDS for vehicular networks. Nevertheless, it should be balanced with other metrics
like precision (to minimize false alarms) and F1 score to ensure the overall effectiveness of the IDS. The
Recall score is calculated depending on the following equation :

TP

Recall = m—m

(5.8)

Where : TP is True Positives and FN is the False Negatives.
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FIGURE 5.14 — Recall scores of 10 vehicles with MLP and RNN models.
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FIGURE 5.15 — Recall scores of 25 vehicles with MLP and RNN models.
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FIGURE 5.17 — F1 scores of 10 vehicles.
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FIGURE 5.18 — F1 scores of 25 vehicles.

5.7.1.5 F1l-score

The F1 rate or F1 score, also known as the F-measure, serves as a metric for evaluating the overall
performance of an Intrusion Detection System (IDS), taking into account both precision and recall. The
F1 score is valuable in striking a balance between minimizing false alarms (precision) and ensuring that
actual intrusions are not overlooked (recall). Ranging from 0 to 1, a higher F1 score indicates better
performance. Its maximum value of 1 is achieved when precision and recall are optimized. The F1 score
is significant in scenarios where achieving a balance between precision and recall is essential. For an
IDS in the IoV, this means effectively detecting intrusions while keeping false alarms to a minimum.
Striking this balance is essential to guarantee that security incidents are accurately identified without
causing unnecessary disruptions or wasting resources on false positives. The F1 score is a valuable way
to evaluate and compare IDS performance in such cases. The F1 score is calculated as below :

Precision x Recall
F1-— =2 5.9
seore " Precision + Recall (5.9)




5.7. Results’ Discussion 109

f1_score evolution by rounds fl_score evolution by rounds
0.9 A
0.8 A ).8 1
0.7 -
061 2.6
0.5 A
® vehicle_1 ® vehicle 1
0.4 1 ® vehicle_10 .4 1 ® vehicle_10
@® vehicle 2 . ® vehicle 2
@® vehicle_3 ® vehicle 3
0.3 1 ® vehicle_4 ® vehicle_4
@® vehicle 5 ® vehicle 5
©® vehicle_6 ©® vehicle 6
.2 1 i >
0 ® vehicle_7 ).2 ® vehicle 7
© vehicle_8 © vehicle_8
0.1 ® vehicle 9 ® vehicle 9
10 15 20 25 30 35 40 45 50 2 4 6 8 10
((a)) F1 scores for 10 vehicles, 5 rounds, 5 epoch. ((b)) F1 scores for 10 vehicles, 10 rounds, 5 epoch.
f1_score evolution by rounds f1_score evolution by rounds
= 1.0
0.7
0.8 1
0.6 1
0.6 1
® vehicle_1
0.57 ® vehicle_10
® vehicle 2 0.4 ® vehicle_1
® vehicle 3 ! ® vehicle_10
® vehicle_4 o Ve:?c:e—g
. @® vehicle_:
0.4 1 ® vehicle 5 ® vehicle_4
©® vehicle_6 ® vehicle 5
® vehicle_7 ® vehicle_6
© vehicle_8 021 ® vehicle_7
® vehicle 9 © vehicle_8
034 . . . . : . . . . _ L@ vendes
0 5 10 15 20 25 0 10 20 30 40 50
((c)) F1 scores for 10 vehicles, 25 rounds, 5 epoch. ((d)) F1 scores for 10 vehicles, 50 rounds, 5 epoch.

FIGURE 5.19 — F1 score evolution of vehicles per rounds with MLP model.
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FIGURE 5.20 — SDNC Confusion Matrix evolution with 10 vehicles with MLP model.
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FIGURE 5.21 — SDNC Confusion Matrix evolution with 25 vehicles with MLP model.
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FIGURE 5.22 — SDNC Confusion Matrix evolution with 50 vehicles with MLP model.
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FIGURE 5.23 — SDNC Confusion Matrix evolution with 100 vehicles with MLP model.
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Fi1cURE 5.24 — SDNC Confusion Matrixes’ Evolution with MLP model while varying vehicles’ number.

As shown in the following sub-figures, increasing the number of rounds permits the VFed-IDS to
classify correctly a bigger number of attacks at each scenario.therefore, the number of attacks classified
as DoS correctly increases with 226 after varying the rounds number from 5 to 50. The number of attacks
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classified as Probe correctly increases with 71. Also, the number of attacks classified as R2L correctly
increases with 99. Moreover, the normal traffic classified correctly as normal increases with 211. We can
notice that our framework couldn’t classify any U2R attack correctly with 5 rounds of training. However,
it classified correctly 2 attacks regardless the few number of U2R examples (only 119 records) in the
NSL-KDD dataset.
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F1GURE 5.25 — SDNC Confusion Matrixes’ Evolution with MLP model while varying rounds’ number.

The results of our contribution are called VFed results. The VFed results that were executed on the
whole NSL-KDD dataset are detailed in this section. The levels of accuracy are shown in Figure 5.23.
The RNN model provides the best accuracy for FL with (99%) and (98%) with the MLP model. These
accuracy levels were (78%) and (81%) respectively, with a ML approach. The use of the FL approach is
very beneficial in terms of privacy preservation; however, it can decrease the accuracy level due to FL’s
distrusted behavior. Figure 5.22 outlines the accuracy scores of VFed-IDS compared to other ML/DL
models. The figure shows that our framework provides the highest accuracy rate with preserving the
privacy of users.

5.7.2 ROC Curve

A Receiver Operating Characteristic (ROC) curve is a graphical representation employed to assess the
performance of a binary classification model, such as our Intrusion Detection System (IDS). The ROC
curve visually illustrates the trade-off between the true positive rate (sensitivity) and the false positive
rate (1-specificity) at various threshold values for the classification model. This graphical representation
enables a visual assessment of the IDS’s performance. A curve that approaches the top-left corner of the
plot indicates a more effective system, achieving higher true positive rates while keeping false positive
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FIGURE 5.26 — Loss rate evolution of 10 vehicles varying rounds number with MLP model.
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FIGURE 5.30 — ROC Curve Evolution of SDNC with 10 vehicles in 25 rounds with MLP model.

rates low, as depicted in the following figure.
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F1GURE 5.29 — The ROC Curve concept.

We conducted extensive simulations in this contribution, demonstrating that our proposed VFed-IDS
shows perfect ROC curves in different scenarios, as illustrated in figure 5.25, figure 5.26, figure 5.27,
and figure 5.28. As shown in presented ROC curves, we tested our framework with a large number of
vehicles up to 100. We launched multiple simulations with both MLP and RNN model where we varied
the number of vehicles and fixed other parameters like the rounds numbers, epoch value, batch-size value.
The VFed-IDS makes it a perfect solution to cope with scalability issues in IDS in the IoV. Hence, the
VFed-IDS is a robust and adaptive security solution for detecting cyber threats in the IoV. Achieving
a perfect ROC curve signifies outstanding detection capabilities, where the VFed-IDS simultaneously
provides high sensitivity and specificity. It is highly effective at identifying intrusions while keeping false
alarms to an absolute minimum. This level of accuracy ensures timely responses to security incidents.
The VFed-IDS assures high security by detecting all intrusions without raising any false alarms, which
enhances vehicular network users’ safety since a single missed intrusion or a false alarm can have severe
consequences. The VFed-IDS does not disrupt network operations with false alarms, which reduces the
need for manual intervention to investigate or filter out false positives, saving time and enhancing the
resources’ consumption by not wasting resources on false alarms or redundant alerts. Investigating false
alarms or responding to missed intrusions is significantly reduced by the proposed IDS, which makes a
cost-saving solution regarding incident response and operational overhead.
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FIGURE 5.31 — ROC Curve Evolution of SDNC with 25 vehicles in 25 rounds with MLP model.
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FIGURE 5.32 — ROC Curve Evolution of SDNC with 50 vehicles in 25 rounds with MLP model.
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FIGURE 5.33 — ROC Curve Evolution of SDNC with 100 vehicles in 25 rounds with MLP model.

5.8

Open issue

5.8.1 Federated Learning Clients’ Selection

In IoV, carefully curating FL clients is pivotal in optimizing the collaborative training process among
interconnected vehicles. The FL process entails a collective effort where numerous vehicles, acting as
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clients, jointly train a shared machine-learning model. Crucially, this is achieved while maintaining the
integrity of each vehicle’s decentralized data, thus upholding privacy and security standards. Selecting FL
clients in the context of IoV is a multifaceted undertaking. Factors that necessitate thoughtful conside-
ration encompass the availability of locally relevant data, the computational capabilities inherent to each
vehicle, and their current network connectivity status. Efficient client selection ensures that only those
vehicles possessing pertinent data actively contribute to the model training endeavor. This approach is
instrumental in curtailing superfluous communication overhead and, notably, in conserving the limited
bandwidth resources characteristic of IoV or vehicular networks. Furthermore, these networks’ dynamic
and real-time nature requires a client selection process that adapts to shifting network conditions and
evolving vehicle participation. As a result, this dynamic approach emerges as a critical element, signi-
ficantly augmenting the performance and accuracy of the machine learning models deployed in diverse
vehicular applications, such as intelligent traffic management and the advancement of road safety. In the
broader FL context, integration into the training of a global model through a distributed architecture
maintains data privacy. However, due to the many clients involved, effective selection mechanisms are
necessary. These mechanisms must address the diversity among clients, including variations in system
configurations and available data, which, if not managed appropriately, can lead to inefficiencies in the
training process. Therefore, revising traditional client selection methods is imperative to harness the
potential of FL in such heterogeneous environments effectively [177].

5.8.2 Rounds’ total number of FL process

Intrusion detection systems in the IoV are powered by FL. This collaborative approach safeguards
the privacy of vehicular data while enabling collective model training. The efficiency and effectiveness of
FL in IoV-based IDS are intricately tied to the number of rounds the FL process encompasses. These
rounds signify the iterative stages where FL clients, represented by vehicles, engage in model updates
and aggregations. The total number of rounds in the FL process serves as a critical parameter that
directly impacts the convergence and accuracy of the IDS model. The delicate balance between training
accuracy and the consumption of network and computational resources guides the careful selection of this
parameter. A higher number of rounds typically leads to a more refined model and heightened detection
accuracy, allowing for extensive data exchanges and collaborative learning. However, this comes at the cost
of prolonged communication and computation times, which can strain the resources of connected vehicles
and the IoV network. Conversely, fewer rounds are preferred for expediency and resource conservation,
albeit at the expense of detection precision. Therefore, determining the total number of FL rounds in
ToV-based IDS necessitates meticulously considering the network’s dynamics, computational capacities
of vehicles, and the trade-off between model accuracy and resource consumption. Striking the right
balance in round selection is essential to ensure the IDS system’s overall efficiency, responsiveness, and
ability to promptly and accurately identify and mitigate security threats within the ever-evolving and
interconnected landscape of IoV. Therefore, as part of future research, our focus will be on developing
intelligent algorithms that adaptively adjust the number of rounds in the Federated Learning (FL) process
based on real-time network conditions, vehicular participation, and model convergence. This dynamic
approach aims to enhance the efficiency of Intrusion Detection Systems (IDS) in the context of the
Internet of Vehicles (IoV), ensuring that detection accuracy is maintained and improved. This is crucial
as the number of training rounds directly impacts resource utilization.

5.9 Conclusion

In this chapter, we introduced our architecture VFed-IDS which aims to provide a defensive mecha-
nism against cyber-threats with the privacy-preserving in connected vehicles by applying the Federated
Learning technique with the powerful features of the Blockchain technology. Our work made it possible
for the connected vehicles to participate in building a robust IDS against diverse attacks which leads
the way to have more autonomous and intelligent vehicles. The privacy-preserving process is established
without revealing any private dataset of the participating vehicles. Extensive simulations were carried
out using the NSL-KDD dataset to assess the performance of the proposed VFed-IDS framework. The
outcomes demonstrated that VFed-IDS outperformed other existing models in terms of both effectiveness
and efficiency for the IoV. The framework exhibited a high accuracy rate of 99% in detecting malicious
nodes.
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CHAPITRE 0

CONCLUSION AND PERSPECTIVES

The research work in this thesis concerns the security of IoV. It is about establishing secure, scalable
and trustworthy communications between participating vehicles and infrastructure’s components while
preserving privacy. This thesis is organized into five chapters :

In the first chapter, we overviewed IoV, discussed their characteristics, applications, architecture
components, communications types, the presentation of SDN and its integration in these networks. We
discussed its security and privacy concerns.

In Chapter 2, we elucidated the trust management mechanism within the context of the Internet of Ve-
hicles (IoV). Our presentation encompassed the latest and most sophisticated schemes developed specifi-
cally for IoV. We conducted a thorough examination of existing surveys pertaining to security in vehicular
networks. Additionally, we offered a comprehensive overview of the fundamental pillars of trust, inclu-
ding properties, metrics employed, and modules incorporated in IoV trust management. Subsequently,
we delved into the intricate challenges posed by security and trust in Vehicular networks, presenting a
dual classification based on both fundamental characteristics and the technological underpinnings of the
most relevant trust management approaches for connected vehicles. A qualitative comparison was then
provided, utilizing a set of criteria to assess the effectiveness of these approaches.The chapter concluded
by shedding light on potential open issues and future perspectives in the realm of trust management for
connected vehicles.

In Chapter 3, we introduced a hierarchical architecture designed to enhance the security of software-
defined vehicular networks. Additionally, we proposed a security model for predicting and detecting
Distributed Denial of Service (DDoS) attacks, leveraging behavioral analysis of nodes through a Markov
stochastic process. Our contribution outlined three primary layers : the data layer, Software-Defined
Networking (SDN), and Cloud. We categorized participating vehicles based on a detailed range policy and
identified five distinct states : heavily malicious, lightly malicious, heavily suspicious, lightly suspicious,
and authentic vehicles. The state of a vehicle at time t+1 was contingent upon its state at time t. The
results from conducted simulations demonstrated the proactive and reliable mitigation of DDoS attacks
by our model.

In chapter 4, we introduced a decentralized trust model using the Blockchain technology, smart
contracts to establish a robust trust management system for connected vehicles where we developed
four smart contracts. The first managed the rating values of participating vehicles. The second was res-
ponsible for managing the pseudo-identities of vehicles within the network. The third controlled the access
management of entities in the network. The last smart contract managed the participation of the vehicles
in the network by adding or removing the pseudo-id of vehicles with rating value greater or lower than a
prefixed threshold respectively. Thus, only authenticated and highly trusted vehicles communicated with
other entities of the vehicular architecture.

In chapter 5, we introduced another security and privacy-preserving scheme by combining the Fe-

derated Learning with the power of the Blockchain. In this contribution, we presented a new intrusion
detection system, where the training phase was not only integrated in a central entity but in the connected
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vehicles. The Federated Learning process started by training local models in the authenticated vehicles.
Then, the SDNC managed the aggregated local trained models to pick the best model which was broad-
casted then to all the nodes in the network. Integrating the Blockchain and smart contract provided a
deterministic, secured and updated platform to manage the models by hashing the exchanged models’
updates between the connected vehicles and the SDNC. Our contribution enhanced effectively the au-
tonomous behavior of the connected vehicles and improved the privacy of drivers. Our thesis focuses on
augmenting the security of connected vehicles, specifically by developing models to fortify the communi-
cations between various network components within the Internet of Vehicles (IoV). Despite these efforts,
several unresolved issues warrant further investigation.

In this section, we delve into key challenges and propose potential avenues for future research aimed
at bolstering security and preserving privacy in IoV. We highlight three promising directions : Federa-
ted Learning-based solutions, Clustering approaches, and the integration of emerging technologies, along
with an exploration of auction-based solutions. These avenues represent potential strategies to address
the existing challenges and contribute to the ongoing evolution of secure communication within the IoV
framework.

In this thesis, we introduced a lightweight prediction and detection model for mitigating Distributed
Denial of Service (DDoS) attacks in the context of Internet of Vehicles (IoV) and conducted extensive
simulations to evaluate its performance. However, it is important to note that the model’s effectiveness
diminishes when confronted with the need for scalability. Our primary aim with this contribution is to
develop a model that enhances scalability. Vehicular networks are characterized by their large-scale na-
ture, particularly in densely populated urban areas such as big cities, highways, and downtown locations.
Consequently, a substantial volume of data is generated and processed rapidly by each network node.
Machine Learning emerges as one of the most rapidly evolving technological tools, offering a practical
means to efficiently process this vast amount of data within minimal time. This approach allows the
system to autonomously learn and enhance its security based on past data processing experiences.

Incorporating Artificial Intelligence-powered techniques into trust management within the Internet
of Vehicles (IoV) context enhances network efficiency. Federated Learning, as a decentralized Machine
Learning method, addresses concerns related to centralized training. It allows all network participants
to collaborate in the creation of a global model without the need to share their data. In the IoV set-
ting, participant nodes often assume distinct roles and responsibilities. Consequently, Federated Learning
contributes to the development of resilient trust algorithms and models that leverage a variety of para-
meters and metrics through distributed intelligent approaches.

In the context of the Internet of Vehicles (IoV), the cross-domain protocol plays a crucial role in
authenticating connected vehicles as they move across different domains. This protocol is essential due to
the frequent need for vehicles to travel across various domains. Currently, the Public Key Infrastructure
(PKI) system is commonly employed to address identity authentication and security trust issues faced
by connected vehicles. However, several challenging issues have been identified with the PKI system,
including the overly centralized authority of Certification Authorities (CAs), regular cross-domain access
to certificate interactions, high certificate management costs due to the substantial authentication volume,
complex authentication paths across domains, potential privacy leakage, and network overburdening. As
part of our future work, we aim to develop a Blockchain-based solution to address these challenges. Our
proposed solution involves creating a lightweight PKI identity management system and authentication
architecture using smart contracts. This approach is designed to alleviate the burdens associated with
CAs directly controlling the life cycle of digital certificates, offering a more efficient and secure alternative
for managing identity authentication in the IoV environment.

Our upcoming contributions focus on the integration of the clustering paradigm with decentralized
trust management, aiming to enhance the reliability of systems, particularly in the context of incor-
porating emerging decentralized technologies such as Software-Defined Networking (SDN) or Blockchain
within the Internet of Vehicles (IoV). These technologies are anticipated to enhance both the performance
and coordination among different entities, namely Cluster Heads (CH) and Cluster Members (CM) in
the ToV environment.To achieve this, we plan to incorporate a trust metric into the clustering formation
and the selection of the cluster head. The node with the highest trust value will be elected as the Cluster
Head, adding an additional layer of security and reliability to the clustering process. Furthermore, we are
exploring the development of a Cluster Head backup system to ensure the stability of clusters in the IoV,
mitigating potential disruptions and enhancing the overall robustness of the system.

Vehicular networks, known for their high scalability, face notable challenges in terms of energy effi-
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ciency, particularly given the substantial data exchanged among network components. The deployment of
new mechanisms or technologies in the Internet of Vehicles (IoV) often results in increased communication
overhead and complexity, posing difficulties in meeting real-time application requirements. Recognizing
these challenges, our focus is on achieving a favorable trade-off between the integration of emerging tech-
nologies and energy efficiency. Our approach emphasizes the implementation of lightweight solutions to
reduce overall system energy consumption. By prioritizing efficiency, we aim to strike a balance that
allows for the seamless integration of emerging technologies within vehicular networks while mitigating
the associated challenges related to energy consumption. This pursuit aligns with the goal of optimizing
the performance of IoV systems without compromising on their energy efficiency.

Finally, we are also investigating the distribution of resource mechanisms in the IoV because we have
noticed that the crooked distribution of resources and incentives on IoV has paved an easy route for
attackers to take the repercussions of DDoS attacks to a challenging level. As a future perspective, we
aim to combine the auction concept with the Blockchain in ToV, where we will have a central entity res-
ponsible for providing nodes with the necessary resources after submitting their bid values. The service
provider will allocate the resource to the vehicle with the best bid value each auction round. However,
attacking vehicles will try to falsify the bid values of other vehicles so that they win the auction rounds
each time and take all the resource units selfishly. We aim to develop a robust cyber-threat defensive
framework based on the Bayesian game theory, where the system can predict malicious nodes. We also
aim to develop a reputation system where the vehicles that utilize most of the demanded/claimed units
are considered honest nodes, and their reputation scores will be increased.
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ANNEX : Résumé en Francais

Malgré les avancées technologiques et les initiatives politiques visant a renforcer la sécurité routiere, de
nombreux systemes de transport dans le monde continuent de faire face a des problémes graves en termes
de sécurité et d’efficacité. Selon I’Organisation Mondiale de la Santé (OMS) [1], on enregistre chaque
année 1,35 million de déces liés aux accidents de la route dans le monde. Cela signifie qu’environ 3 700
personnes perdent la vie chaque jour en raison d’accidents impliquant des voitures, des bus, des motos,
des vélos, des camions ou des piétons. Plus de la moitié des victimes sont des piétons, des motocyclistes
ou des cyclistes. Les blessures résultant d’accidents routiers sont estimées comme étant la huitieme cause
de déces dans le monde, toutes tranches d’dge confondues, et la principale cause de déces chez les enfants
et les jeunes 4gés de 5 a 29 ans.

Afin de surmonter ces problémes, les Systémes de Transport Intelligents (STT) sont développés pour
fournir aux véhicules et aux infrastructures de transport des capacités de communication sécurisées,
robustes et fiables. Ces systémes visent & offrir des avantages tels que des routes plus siires (moins d’ac-
cidents), une meilleure efficacité (moins de temps passé sur la route et moins de pollution), un confort
accru pour les passagers (divertissement multimédia, infodivertissement, etc.) et une sécurité élevée (mo-
deles intelligents renforcant la sécurité, réduisant les attaques) en matiére de mobilité. La combinaison
des capacités de communication avec les capacités de détection et de perception fournies par les capteurs
intégrés aux véhicules ouvre la voie au développement de nombreux services dans le domaine des STIL.

Les STT offrent une large gamme de services congus pour atteindre ces objectifs, tels que le service de
Prévention des Collisions Coopératives (CCA), qui permet aux véhicules d’éviter les accidents en échan-
geant des informations de mobilité. Un autre service est la Perception Coopérative (vue d’ensemble), qui
permet a chaque véhicule de créer une vision globale de son environnement en combinant les informations
locales des véhicules voisins pour prendre des décisions efficaces, comme la planification de trajectoires
futures. Un autre service présenté dans les STI est la Conduite en Peloton (Platooning), qui vise a re-
grouper les véhicules en convois de plusieurs véhicules rapprochés pour économiser le carburant, prévenir
les accidents et optimiser 1'utilisation des routes.

Les réseaux véhiculaires jouent un réle crucial dans la résolution des problemes liés a la circulation
dans les zones urbaines. La combinaison du cloud computing, de I'informatique de pointe, du Big Data
et de I'Internet des objets (IoT) a conduit & I’évolution des réseaux de véhicules, donnant naissance au
paradigme de I'Internet des véhicules (IoV) [1]. L’ToV suscite un vif intérét & la fois dans le monde universi-
taire et 'industrie. En conséquence, la prochaine génération de véhicules sera connectée et équipée d’une
ou plusieurs interfaces, permettant la communication avec d’autres éléments du systéme de transport
intelligent, tels que d’autres véhicules connectés, des piétons et des infrastructures telles que les unités
embarquées (OBU), les unités routieres (RSU), les stations de base (BS) et le Cloud. L’ensemble de ces
entités et leurs interactions forment un réseau de communication appelé réseau véhiculaire, un élément
crucial pour le bon fonctionnement de I’loV. L’objectif de ces réseaux est d’assurer la connectivité réseau
nécessaire avec les performances requises par ’écosysteme de I'ToV.

Les véhicules connectés, grace aux communications Vehicle-to-Everything (V2X), contribuent & des

flux de trafic plus sfirs et efficaces, soutenant la mobilité et le transport routier de nouvelle génération. Les
communications V2X englobent une variété de communications dans lesquelles les véhicules connectés
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utilisent des médias sans fil pour échanger des informations avec d’autres véhicules, les infrastructures
environnantes, les capteurs embarqués, les appareils personnels et les serveurs de cloud computing. Les
systemes d’application basés sur le V2X incluent généralement des applications critiques pour la sécurité,
telles que la gestion de la congestion routiere, la prévention des accidents et les notifications de collisions.
Ils incluent également des applications non liées a la sécurité, comme la navigation et le divertissement.
La communication V2X, combinée aux capacités des capteurs intégrés aux véhicules, améliore la gestion
du trafic et la sécurité routiere en diffusant des avertissements de collision, des notifications de freinage
d’urgence, des alertes de danger, des informations sur les obstacles et des notifications d’embouteillages.
En raison de la nature critique de ces applications, il est essentiel que les informations échangées soient
sécurisées et fiables. Cependant, ces messages sont vulnérables aux attaques, ou des véhicules malveillants
peuvent simuler des messages de sécurité et retarder leur transmission, entrainant ainsi de graves acci-
dents et des pertes de vies humaines.

Tesla est réputé pour ses mesures de cybersécurité, en particulier son systeme de défi sophistiqué qui
protege ses voitures contre les méthodes traditionnelles d’attaque a distance. Cependant, récemment, un
chercheur a découvert une attaque sophistiquée utilisant la technique de relais, qui permettrait a une per-
sonne ayant un acces physique a une Tesla Model Y de la déverrouiller et de la voler en quelques secondes.

En raison de leur importance stratégique dans la facilitation des communications au sein de I'Internet
des Véhicules (IoV), les réseaux de véhicules sont devenus trés populaires ces derniéres années. L’aug-
mentation rapide du nombre de véhicules connectés sur les routes a également conduit au développement
de réseaux de véhicules hétérogenes, a grande échelle et tres dynamiques. On estime qu’il y aura plus de
500 millions de voitures connectées sur les routes d’ici 2025. Cependant, ces réseaux rencontrent des défis
pour répondre a des exigences strictes telles que la faible latence, la mobilité élevée, la sécurité optimale et
la connectivité massive du réseau 5G/6G. En conséquence, la nature hautement mobile et décentralisée
de ces réseaux, ainsi que leur infrastructure ouverte, les rendent vulnérables aux attaques internes et
externes. Au fil des décennies, des chercheurs universitaires et de I'industrie ont proposé des solutions de
sécurité basées sur la cryptographie, mais ces approches se sont principalement révélées efficaces contre
les attaques externes, ou les attaquants ne sont pas des nocuds du réseau autorisés.

Tesla, en particulier, est reconnu pour ses mesures de cybersécurité, notamment un systeme de défi
sophistiqué qui proteége ses voitures contre les attaques traditionnelles visant & déverrouiller les véhi-
cules a distance. Cependant, étant donné que les voitures de Tesla sont bien plus technologiques que
celles des autres constructeurs, leur surface d’attaque est plus grande, ce qui crée des opportunités pour
les attaquants de trouver des vulnérabilités. En 2017, un groupe de chercheurs chinois en sécurité a
réussi a pirater une Tesla Model X a deux reprises, effectuant des actions telles que le freinage a dis-
tance, 'ouverture et la fermeture des portes et du coffre, tout en faisant clignoter les lumieres au rythme
de la musique diffusée depuis la radio de la voiture, un effet surnommé "le spectacle de Noél non autorisé".

En 2022, Josep Pi Rodriguez, chercheur et consultant principal en sécurité pour IOActive, a découvert
une attaque sophistiquée utilisant la technique de relais. Cette attaque permettait a toute personne
ayant un acces physique a une Tesla Model Y de la déverrouiller et de la voler en quelques secondes.
La vulnérabilité découverte implique une attaque par relais NFC qui nécessite la collaboration de deux
voleurs. Un voleur doit se trouver a proximité de la voiture, tandis que 'autre doit étre a proximité
du propriétaire de la voiture, qui possede soit une carte-clé NFC, soit une clé virtuelle Tesla sur son
téléphone portable dans sa poche ou son sac a main. Les cartes-clés NFC permettent aux propriétaires
de Tesla de déverrouiller leur véhicule et de démarrer le moteur en placant la carte contre un lecteur
NFC intégré dans la carrosserie du coté conducteur de la voiture. Les propriétaires peuvent également
utiliser un porte-clés ou une clé virtuelle sur leur téléphone portable pour déverrouiller leur voiture, mais
le manuel de la voiture recommande toujours d’avoir sur soi la carte-clé NFC comme sauvegarde au cas
ou ils perdraient le porte-clés ou le téléphone, ou si la batterie de leur téléphone venait a s’épuiser. Le
piratage complexe impliquait ’envoi de logiciels malveillants via le navigateur Web de la voiture dans le
cadre d’une série d’exploits informatiques détournés. Cela permettait aux pirates de controler la voiture
a distance via Wi-Fi et une connexion cellulaire.

Par exemple, Nissan a di retirer son application pour la voiture électrique Leaf apres qu’elle se soit
révélée vulnérable au piratage. De méme, Fiat Chrysler Automobiles a rappelé environ 1,4 million de
véhicules en raison de la capacité des pirates informatiques a accéder électroniquement aux voitures et a
gérer les fonctions de freinage et d’accélération grace a une faille de sécurité dans le logiciel.
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Comme indiqué précédemment, les réseaux de véhicules sont trés vulnérables aux attaques en raison
de leur grande mobilité et de leur dynamisme, ou les nceuds malveillants peuvent modifier les messages
critiques pour la sécurité et introduire des retards extrémes dans la communication. Cela peut provoquer
des accidents de la route et entrainer la perte de vies humaines précieuses. Les réseaux de véhicules
sont de plus en plus ouverts, et leur acces illimité les rend plus exposés aux attaques. Il est essentiel
de prouver et d’améliorer la sécurité des services du framework IoV avancé. Ces attaques peuvent étre
classées comme internes, externes, actives ou passives. De plus, ’anxiété concernant I'utilisation abusive de
données privées est également ressentie par les utilisateurs du réseau. Par conséquent, plusieurs nouveaux
systemes de sécurité ont été proposés pour détecter et contrer ces attaques, ce qui constitue un domaine
de recherche majeur.

Le développement de modeles de sécurité robustes pour les véhicules permet d’éviter 1’échange de
messages modifiés et critiques pour la sécurité. Ces modeles permettent de révoquer les véhicules mal-
veillants qui diffusent de telles informations falsifiées en intégrant des modeles de sécurité intelligents
basés sur des approches telles que les modeles stochastiques, les technologies émergentes telles que la
Blockchain, les réseaux définis par logiciel (SDN), ainsi que des techniques puissantes de machine lear-
ning (ML) auxquelles ils peuvent s’adapter. Ces modeles doivent étre capables de comprendre la nature
dynamique des réseaux de véhicules, de détecter les anomalies, de protéger la vie privée des utilisateurs,
et de se défendre de maniére proactive contre un large éventail de menaces. Tout ceci garantit la sécurité
des véhicules connectés, de leurs occupants, et la confiance dans la nature des expéditeurs ainsi que des
informations échangées.

Il est impératif qu'un véhicule malveillant soit identifié et éliminé avant qu’il n’ait la moindre opportu-
nité de causer des dommages au réseau. Par exemple, imaginez a quel point il serait dommageable quun
véhicule malveillant modifie un message d’avertissement d’évitement de collision, mettant en garde un
autre véhicule d’'un accident imminent sur son itinéraire, ce qui pourrait entrainer des accidents mortels
et la perte de vies humaines.

Les mécanismes de sécurité traditionnels ne sont pas toujours adaptés pour faire face aux caractéris-
tiques uniques des réseaux de véhicules dans leur ensemble, afin de fournir une défense significative dans
des scénarios spécifiques & I'Internet des véhicules (IoV). Les systémes cryptographiques ont été large-
ment déployés pour atténuer les comportements malveillants des véhicules adverses. Cependant, d’autres
solutions centralisées sont nécessaires pour évaluer la crédibilité des véhicules authentifiés, et les solutions
existantes sont principalement congues pour traiter les attaquants extérieurs, ne suffisant pas lorsque le
véhicule malveillant est un membre honnéte du réseau. Les exigences de sécurité traditionnelles, telles
que la confidentialité, 'intégrité, 'authentification et la disponibilité, doivent toujours étre satisfaites.

De plus, des étapes supplémentaires peuvent étre nécessaires en fonction des besoins spécifiques de
I'IoV dans un scénario donné, comme 'audit du suivi et de la fiabilité des informations. L’intégration de
modeles stochastiques, tels que les chaines de Markov, peut permettre de capturer la nature dynamique
des réseaux de véhicules et d’aider & prendre des décisions en se basant sur I’état actuel et les probabilités
de transition. Ces modeles peuvent prédire les futurs états de sécurité des véhicules connectés en se basant
sur des données historiques. En analysant les transitions et les événements passés, ils peuvent fournir des
informations sur les vulnérabilités ou les menaces potentielles qui pourraient survenir dans un avenir
proche, permettant ainsi de prendre des mesures de sécurité proactives.

Dans cette optique, la combinaison de la technologie SDN avec les réseaux de véhicules pour unifier
leurs plans de contréle permet aux réseaux de véhicules d’utiliser plusieurs technologies d’acces. Cela leur
permet de tirer parti des capacités des différents réseaux d’acces et d’offrir une flexibilité dans leur controle
et leur gestion. Cette flexibilité est nécessaire pour gérer efficacement les ressources réseau disponibles et
fournir des services de communication adaptés aux exigences de sécurité des réseaux de véhicules.

La notion de confiance a récemment été introduite pour faire face aux attaques internes au sein des
réseaux automobiles. Par conséquent, le développement de modeles de sécurité des véhicules basés sur
la confiance vise a prévenir I’échange de messages malveillants provenant de véhicules attaquants, et
contribue également a révoquer leur acces. La gestion de la confiance vise a évaluer les données et les
entités échangées en attribuant des valeurs de confiance pour garantir la sécurité routiere. L’intégration
de la Blockchain dans le processus de gestion de la confiance fournit une plate-forme décentralisée avec
un registre mis a jour des valeurs de confiance disponibles et accessibles pour les nceuds participants.
Ainsi, les véhicules et les unités routiéres (RSU) peuvent demander la valeur de confiance de n’importe
quel autre noeud.

Le développement d’un systéme de détection d’intrusion basé sur 'apprentissage fédéré et la blockchain
dans les réseaux de véhicules offre une approche puissante et globale de la sécurité et de la confidentialité.
Il combine 'apprentissage décentralisé, la préservation de la confidentialité, la technologie du registre
inviolable et les mécanismes de défense collaboratifs pour créer un systeme IDS sécurisé et adaptable
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capable de protéger efficacement les réseaux de véhicules contre diverses menaces de sécurité tout en
préservant la confidentialité des participants au réseau. Cette approche est cruciale pour garantir la
stireté, la sécurité et la fiabilité des systémes de communication des véhicules.

N

A la lumiére de ce qui précede, la recherche vise & explorer la possibilité de concevoir des modéles
intelligents pour sécuriser les communications entre les véhicules connectés et s’adapter a 1’évolutivité du
réseau. Nos modeles de sécurité assurent la confidentialité conditionnelle des conducteurs et améliorent le
comportement autonome des véhicules connectés. Dans le contexte de I'Internet des véhicules (IoV), les
informations transmises sont distribuées dans un environnement d’acceés ouvert, ce qui rend la sécurité
et la confidentialité parmi les problemes les plus critiques liés aux réseaux de véhicules. Par conséquent,
tout systeme basé sur I’IoV doit répondre aux exigences de services de sécurité et de confidentialité pour
assurer 'efficacité et la fiabilité du systeme. Il est essentiel de garantir que les messages échangés ne soient
ni insérés ni modifiés par des attaquants, qu’ils soient internes ou externes, malveillants ou rationnels,
locaux ou étendus, actifs ou passifs. Toute application impliquée peut représenter une menace sérieuse
pour la sécurité des conducteurs et des passagers. Selon I’Organisation mondiale de la santé, chaque année,
plus de 1,35 million de personnes trouvent la mort sur les routes. Par conséquent, ’authentification et la
confiance dans 1’échange étendu de données sont des exigences cruciales dans le domaine de I'loV.

La confidentialité et la sécurité des informations échangées dans les réseaux de véhicules sont des
préoccupations majeures. Les autorités de confiance (TA) jouent un réle crucial dans la gestion de 'acces
aux informations sensibles et privées sur les véhicules. Leur mission principale est de préserver la vie
privée des conducteurs en empéchant 1’acces non autorisé a ces données. Cela signifie que seules les TA
ont la capacité d’accéder a ces informations sensibles.

Les TA sont chargées de plusieurs taches essentielles, notamment : Générer et gérer les clés privées
et les parameétres de sécurité pour les véhicules et les unités routieres (RSU) participants. Fournir des
pseudo-identités pour les véhicules immatriculés, préservant ainsi la vie privée des utilisateurs tout en
permettant de retracer les activités malveillantes. Surveiller le réseau pour détecter les faux messages
diffusés par des nceuds malveillants. L’utilisation de pseudo-identités est un mécanisme important pour
préserver la confidentialité tout en permettant la détection des activités malveillantes. Les RSU jouent
également un role dans ’analyse des messages regus pour prévenir les attaques de fausses informations.
En résumé, la combinaison de TA, de pseudo-identités et de surveillance du réseau contribue & préserver
la confidentialité des données tout en garantissant l'authenticité et la sécurité des messages échangés
dans les réseaux de véhicules. La sécurité des réseaux de véhicules est un défi crucial, et I'infrastructure
a clé publique (PKI) joue un role essentiel pour garantir authenticité et la sécurité des communications.
Cependant, les PKI traditionnelles ont des limites, notamment dans la détection des attaquants internes,
car ces attaquants ont généralement des informations d’identification vérifiées.

Les approches basées sur la confiance émergent comme une solution prometteuse pour renforcer la
sécurité dans les réseaux de véhicules. Ces approches permettent & chaque noeud de noter la confiance
qu’il accorde a d’autres nceuds avec lesquels il communique. La gestion de la confiance est cruciale
pour diffuser des informations fiables, prévenir les faux messages, détecter les comportements égoistes
et malveillants, et atténuer leurs activités nuisibles. Les modeles de confiance peuvent étre implémentés
dans les unités routiéres (RSU) et les véhicules pour évaluer la fiabilité, exactitude et lauthenticité
des messages échangés.Cela montre que les chercheurs s’efforcent de mettre au point des mécanismes de
sécurité plus avancés pour les réseaux de véhicules, notamment en s’appuyant sur des concepts tels que
la confiance pour renforcer la sécurité et la fiabilité des communications.

Dans notre troisiéme contribution, nous présentons une architecture SDVN hiérarchique qui comprend
trois couches distinctes : la Couche Données, la Couche SDN et la Couche Cloud.

La Couche Données comprend des nceuds statiques et dynamiques responsables de la collecte en temps
réel de données, qui sont ensuite transmises a la Couche SDN. Ces nceuds peuvent étre des véhicules
connectés, des unités routiéres (RSU) ou des stations de base (BS). Les véhicules dans le SDVN sont
dotés de deux interfaces réseau ou plus. Une interface leur permet d’accéder au réseau RSU via la
communication dédiée & courte portée (DSRC), tandis qu’une autre leur permet d’accéder au réseau
cellulaire (LTE/5G).

La Couche SDN est subdivisée en deux niveaux de controle : le niveau de contrdle 1 comprend les
contrdleurs locaux, & savoir le contrdleur d’unités routieres (RSUC) et le controleur de stations de base
(BSC). Le niveau de contrdle 2 est composé du contrdleur principal de Iarchitecture, le contrdleur SDN
(SDNC). La Couche SDN traite les données soumises et les analyse. Elle répond aux besoins avancés des
réseaux de véhicules tels que I’évolutivité, la latence, I'hétérogénéité, la mobilité élevée, la faible latence
de communication et le débit élevé grace a la mise en ceuvre des fonctionnalités SDN.

La couche Cloud est chargée de gérer de vastes quantités de données pour atténuer les attaques DDoS
dans les architectures SDVN. Nous proposons trois sous-modeles pour cela, a savoir le modele collecteur,
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le modele de prédiction et de détection, ainsi que le modele de réaction.

Notre modele de sécurité est constitué de trois sous-modeles visant & sécuriser ’architecture SDVN
contre les attaques DDoS :

Modele collecteur : Les stations de base (BS) et les unités routiéres (RSU) de la couche de données
assurent la surveillance des véhicules connectés. Ils collectent toutes les données échangées avec les véhi-
cules dans le réseau, que ce soit par le biais des communications DSRC ou 5G/LTE. Dans notre travail, le
modele collecteur utilise le protocole SFlow pour rassembler toutes les données des utilisateurs externes
vers le SDNC, en passant par les serveurs cloud, ainsi que les données des véhicules de la couche de
données jusqu’au premier niveau de controle du SDN.

Modele de prédiction et de détection : Dans ce module, nous analysons et classons les données col-
lectées des deux sens, attribuant un statut & chaque session. Nous définissons cing statuts : Authentique
(Auth), Légerement suspect (LS), Fortement suspect (HS), Légérement malveillant (LM) et Fortement
malveillant (HM). L’authenticité d’une session est déterminée en fonction du nombre de journaux en-
registrés (LOG:.size), qui doit étre inférieur & 25% de la taille de la mémoire de la table de flux du
commutateur, d’ou la fixation de thl a 0,25. Le statut LS est attribué lorsque LOG.size est supérieur a
thl mais inférieur & 45% de la taille de la mémoire de la table de flux de commutation, et th2 est donc fixé
a 0,45. Enfin, le statut HS est déterminé en cas de comportement malveillant, lorsque LOG.size dépasse
th2, ce qui indique une possible attaque.

Modele de réaction : Dans ce module, nous avons mis en place un algorithme de réaction pour contrer
les attaques détectées par le modele de prédiction et de détection en fonction de ’état de chaque ses-
sion. Les sessions honnétes, qui sont des noeuds authentiques du réseau, se voient attribuer davantage
de bande passante, ce qui implique ’application d’un mécanisme de récompense. En revanche, les ses-
sions malhonnétes, c’est-a-dire les noeuds fortement malveillants, sont directement bloquées. En ce qui
concerne les sessions suspectes, a la fois 1égerement et fortement suspectes, elles sont considérées comme
des sessions malveillantes, mais aucune action immédiate n’est entreprise pendant un créneau horaire
spécifique (Tgot). Cependant, une enquéte ou une observation plus approfondie est nécessaire. Un nceud
suspect peut changer son statut pour devenir honnéte et autorisé, ou malhonnéte et bloqué, en fonction
de son comportement, tel que déterminé par I’algorithme de réaction.

Notre modele de sécurité stochastique a pour objectif de détecter les attaques DDoS en se basant sur
le comportement des appareils, puis de prédire leur état futur a ’aide d’un modele de chaine de Markov
et d’une matrice de probabilité de transition stochastique. Dans ce travail, nous utilisons un processus
stochastique de Markov pour analyser le comportement de chaque appareil. En fonction du journal des
événements, nous définissons différentes plages de comportement en utilisant divers seuils pour identifier
le comportement de chaque appareil, qu’il s’agisse d’utilisateurs externes ou de véhicules connectés du
plan de données.

Le but de cette contribution est de réduire les attaques DDoS qui surviennent lorsque le systéme
est submergé. Il existe deux types d’attaques de sécurité : celles qui sont 1égeérement malveillantes et
celles qui sont fortement malveillantes. Les attaques légérement malveillantes peuvent se produire par
accident en raison de mauvaises manipulations de I'appareil, mais de nombreuses attaques sont le fait
d’appareils malveillants. Notre modele stochastique vise a identifier I’état de 'appareil en se basant sur
le nombre d’activités de lecture dans le journal. Nous utilisons un mécanisme de plages de comportement
de session. Nous classifions ces sessions en cing catégories : Authentique, Légérement Suspect, Fortement
Suspect, Légerement Malicieux et Fortement Malicieux, en utilisant quatre seuils de valeurs fixes : thl,
th2, th3 et th4. Nous pouvons ensuite identifier ’état de chaque session. Par exemple, une session avec
I’état Fortement Suspect au début d’'un Time Slot Tyt peut passer a I’état Fortement Malicieux si le
nombre d’activités signalées dépasse le seuil th4. Dans ce chapitre, nous présentons sept états comme
suit : - Etat authentique (Auth) : la taille du journal de Iappareil est inférieure & thl. - Etat légérement
suspect (LS) : la taille du journal de appareil est comprise entre thl et th2. - Etat fortement suspect
(HS) : la taille du journal de I'appareil est entre th2 et th3. - Etat légérement malveillant (LM) : la
taille du journal de I'appareil est comprise entre th3 et th4. - Etat fortement malveillant (HM) : la taille
du journal de l'appareil est supérieure a th4. - Etat de blocage : une fois 'attaque survenue. - Etat
d’observation (Observ) : la taille du journal de I'appareil est comprise entre th2 et th4. Cela signifie que
seuls les nceuds classifiés comme authentiques seront directement autorisés, tandis que tous les autres
noeuds seront observés pendant un créneau horaire. Cette contribution a présenté une architecture SDVN
hiérarchique congue pour étre sécurisée contre les attaques DDoS, en utilisant un modeéle mathématique
de Markov. Notre architecture comprend trois couches : la couche Data, la couche SDN et la couche
Cloud. Le modele de sécurité se compose de trois sous-modeles : le modele collecteur, le modele de
prédiction et de détection, et le modele de réaction. Dans ce travail, nous avons approfondi le modele
de Markov stochastique de prédiction et de détection. Nous 'avons évalué a 'aide de MATLAB pour
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analyser le comportement des noeuds dans le réseau et prédire leurs états futurs en fonction de leurs
états actuels. Enfin, nous avons procédé a I’évaluation de notre solution, démontrant qu’elle constitue
une solution légere avec un taux de détection élevé et une atténuation plus rapide grace a la probabilité
et aux formules analytiques du modele de chaine de Markov a temps discret.

Avec 'avenement des véhicules connectés, I'industrie automobile est confrontée a un besoin essentiel
de systémes de gestion de confiance robustes. La croissance de la connectivité et de 'automatisation des
véhicules modernes les expose a diverses menaces de sécurité, ce qui nécessite des solutions innovantes
pour garantir la sécurité, la confidentialité et la fiabilité. Dans ce contexte, divers mécanismes basés sur
la confiance ont été introduits pour sécuriser les véhicules connectés et favoriser les systemes de transport
intelligents (STI) sécurisés. Cependant, ces solutions présentent des limites, notamment un manque de
flexibilité, de transparence et d’efficacité. De plus, elles reposent souvent sur des entités de confiance
centralisées pour I’échange de certificats et de clés de sécurité, introduisant ainsi un risque de point de
défaillance unique et de fragilité du systeme.

Afin de relever ces défis, nous présentons un cadre de gestion de la confiance entiérement décentralisé
basé sur la technologie de la blockchain. Ce cadre utilise plusieurs contrats intelligents pour établir la
confiance et garantir la sécurité au sein des futurs réseaux de véhicules définis par logiciel (SDVN) de
maniere distribuée, transparente, sécurisée, inviolable et fiable. Notre systéme a été implémenté, testé et
déployé sur le réseau Ethereum. Les résultats expérimentaux confirment que notre solution offre adap-
tabilité, sécurité, efficacité et rentabilité, ce qui en fait une avancée prometteuse pour le développement
de nouveaux systémes de gestion de la confiance décentralisée dans le domaine des STI. Les principales
contributions du quatriéme chapitre sont les suivantes : Nous avons congu un nouveau cadre basé sur la
blockchain, utilisant plusieurs contrats intelligents pour établir la confiance et garantir la sécurité au sein
des futurs réseaux de véhicules définis par logiciel (SDVN). Ce cadre fonctionne de maniére entiérement
distribuée, transparente, sécurisée, inviolable et fiable. Nous avons proposé un modéle de gestion des pseu-
donymes basé sur la blockchain pour sécuriser les communications entre les véhicules, les unités de bord
de route (RSU) et les unités de controle de route (RSUC). L’objectif de ce modeéle est de préserver I’ano-
nymat et la vie privée, tout en répondant aux exigences de sécurité des réseaux de véhicules connectés.
Nous avons présenté un Trust Smart Contract (TSC) pour établir et gérer la confiance au sein du réseau
de véhicules, améliorant ainsi la sécurité, la transparence et la fiabilité. Nous avons également proposé
un Revoke Smart Contract (RSC) chargé de gérer la révocation de la confiance des véhicules engagés
dans des activités malveillantes ou compromis. Le RSC bannit officiellement les véhicules malveillants
du réseau en révoquant leurs certificats, garantissant ainsi que seuls les rapports d’événements légitimes
sont diffusés sur le réseau. Enfin, nous avons introduit un contrat intelligent de controle d’acces (ACSC)
pour réguler les politiques de contrdle d’acces au sein du réseau automobile.

Les réseaux de véhicules sont confrontés & des défis majeurs pour répondre & leurs exigences en ma-
tiere de faible latence, mobilité élevée, connectivité massive (6G) et sécurité maximale. Pour déployer
un systéme de détection d’intrusion robuste dans I'Internet des Véhicules (IoV), des progres significatifs
sont nécessaires. Le cinquiéme chapitre de cette theése présente VFed-IDS, une architecture décentralisée,
sécurisée, flexible, évolutive et robuste basée sur la blockchain et ’apprentissage fédéré. Cette architecture
se compose de trois couches principales : la couche centrale, la couche locale et la couche Blockchain.
La couche centrale comprend le controleur SDN qui entraine et agrege le modeéle global, tandis que la
couche locale comprend les véhicules qui entrainent des modeles locaux en utilisant leurs données locales
privées. La couche Blockchain gere le cryptage des transactions entre les couches centrale et locale, et
integre notre Smart Contract VFed-SC, qui gere la liste des véhicules authentifiés et collaborateurs dans
le processus d’apprentissage fédéré. Les résultats de simulation démontrent que VFed-IDS offre un taux
de précision élevé et améliore le comportement autonome des véhicules connectés face aux cybermenaces.

Les travaux de recherche de cette theése se concentrent sur la sécurité des réseaux véhiculaires, avec
pour objectif d’établir des communications sécurisées, évolutives et fiables entre les véhicules participants
et les composants de l'infrastructure, tout en préservant la confidentialité. Cette these est organisée en
cinq chapitres, chacun explorant divers aspects de la sécurité des réseaux véhiculaires et proposant des
solutions innovantes pour répondre a ces défis.

Dans le premier chapitre, nous avons introduit les réseaux de véhicules en explorant leurs caracté-
ristiques, applications, composants d’architecture, types de communication, ainsi que l'introduction du
Software-Defined Networking (SDN) et de son intégration dans ces réseaux. Nous avons également abordé
les enjeux de sécurité et de confidentialité associés a ces réseaux.
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Dans le chapitre 2, nous avons exploré le mécanisme de gestion de la confiance au sein des réseaux
de véhicules. Nous avons présenté les derniers schémas élaborés dans le contexte de I'Internet des Vé-
hicules (IoV) et examiné les enquétes existantes en matiere de sécurité dans les réseaux de véhicules.
Nous avons également proposé un résumé global des principaux éléments constitutifs de la confiance, y
compris leurs propriétés, les métriques utilisées, et les modules associés. En outre, nous avons abordé
les défis complexes relatifs a la sécurité et a la confiance dans les réseaux de véhicules. Nous avons pro-
posé une classification, non seulement de base, mais également basée sur les technologies utilisées, des
approches les plus pertinentes pour la gestion de la confiance des véhicules connectés. Nous avons en-
suite effectué une comparaison qualitative en nous basant sur divers criteres. Le chapitre s’est conclu en
mettant en lumiere certaines questions en suspens et des perspectives ouvertes pour de futures recherches.

Dans le chapitre 3, nous avons présenté une architecture hiérarchique pour la sécurisation des réseaux
de véhicules définis par logiciel (SDVN) et un modele de sécurité visant & prédire et détecter les attaques
DDoS. Notre approche repose sur ’analyse comportementale des nceuds, réalisée au moyen d’un processus
stochastique de Markov. Au sein de cette contribution, nous avons introduit trois couches principales :
la couche de données, le SDN et le Cloud. Les véhicules participants ont été classés en fonction d’une
politique de gamme détaillée, distinguant cing états différents : fortement malveillants, 1égerement mal-
veillants, fortement suspects, légérement suspects et authentiques. L’état d’un véhicule & un instant t+1
dépendait de son état a un instant t. Les résultats de nos simulations ont démontré que notre modele
permettait d’atténuer de manieére proactive les attaques DDoS avec un taux de fiabilité élevé.

Dans le chapitre 4, nous avons présenté notre modele de confiance décentralisé, utilisant la technologie
Blockchain et des contrats intelligents pour établir un systeme de gestion de confiance robuste pour les
véhicules connectés. Nous avons développé quatre contrats intelligents & cet effet. Le premier contrat
gérait les valeurs de notation des véhicules participants, tandis que le deuxiéme était chargé de gérer les
pseudo-identités des véhicules au sein du réseau. Le troisiéme contrat contrdlait la gestion des acces des
entités du réseau. Enfin, le dernier contrat intelligent gérait la participation des véhicules au réseau en
ajoutant ou supprimant le pseudo-identifiant des véhicules dont la valeur de notation était respectivement
supérieure ou inférieure & un seuil prédéfini. Ainsi, seuls les véhicules authentifiés et hautement fiables
étaient autorisés a communiquer avec d’autres entités au sein de notre architecture automobile.

Dans le chapitre 5, nous avons introduit un systeme de sécurité et de préservation de la confidentialité
novateur en combinant 'apprentissage fédéré avec la puissance de la Blockchain. Dans cette contribu-
tion, nous présentons un nouveau systéme de détection d’intrusion ou la phase de formation ne repose
pas uniquement sur une entité centrale, mais s’effectue au sein des véhicules connectés. Le processus
d’apprentissage fédéré commence par la formation de modeles locaux dans les véhicules authentifiés. En-
suite, le SDNC (Software-Defined Network Controller) gere I’agrégation des modeles locaux formés pour
sélectionner le meilleur modele, qui est ensuite diffusé a tous les nceuds du réseau. L’intégration de la
Blockchain et des contrats intelligents fournit une plateforme déterministe, sécurisée et mise a jour pour
gérer les modeles en sécurisant les mises a jour des modeles échangées entre les véhicules connectés et
le SDNC. Notre contribution améliore de maniére significative le comportement autonome des véhicules
connectés tout en renforcant la confidentialité des conducteurs.

Notre theése a pour objectif d’améliorer la sécurité des véhicules connectés en développant des modeles
visant a sécuriser les communications entre les composants réseau des réseaux de véhicules. Cependant,
il reste encore des défis a relever. Cette section aborde certains défis majeurs et évoque des orientations
de recherche futures pour renforcer la sécurité et la préservation de la confidentialité au sein des réseaux
de véhicules. Nous discutons des solutions basées sur ’apprentissage fédéré, des approches de clustering,
de la gestion de la consommation d’énergie, ainsi que de l'intégration des technologies émergentes et des
solutions basées sur les encheres.

Dans le cadre de cette these, nous avons introduit un modele léger de prédiction et de détection des at-
taques DDoS dans les réseaux véhiculaires et avons mené des simulations. Cependant, nous avons constaté
que ses performances se réduisent lorsqu’il s’agit de garantir une évolutivité efficace. Notre perspective
pour cette contribution consiste a développer un modeéle qui améliore cette évolutivité. Les réseaux de
véhicules sont des réseaux a grande échelle, souvent présents dans des zones urbaines denses, telles que
les grandes villes, les autoroutes, les centres-villes, etc. En conséquence, une quantité considérable de
données est traitée rapidement par chaque noeud. Le Machine Learning est I'un des outils techniques
en croissance la plus rapide, ce qui le rend particulierement adapté pour gérer ces énormes volumes de
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données en un temps minimum. Ce paradigme permettra au systéme d’apprendre et d’améliorer auto-
matiquement sa sécurité en se basant sur les données traitées précédemment. L’intégration du potentiel
des techniques basées sur 'intelligence artificielle dans la gestion de la confiance des réseaux de véhicules
améliore considérablement 'efficacité du réseau. Le Federated Learning (FL) représente une approche
d’apprentissage automatique décentralisée qui résout les problemes de formation centralisée des modéles.
Dans ce cadre, tous les participants du réseau peuvent contribuer au développement du modele global
sans avoir & partager leurs données. Au sein des réseaux de véhicules, les noeuds participants peuvent
occuper des roles différents. Par conséquent, le FL conduit a des formulations et des modeles de confiance
robustes qui dépendent de méthodes intelligentes distribuées, utilisant divers parametres et métriques.

Dans le contexte de I'Internet des Véhicules (IoV), il est fréquent que les véhicules connectés authen-
tifiés dans un domaine aient besoin d’étre réauthentifiés dans un autre. Ce processus est défini comme le
protocole inter-domaines, et il revét une grande importance dans I’'ToV, ot les véhicules doivent souvent
traverser différents domaines. Traditionnellement, le systéme d’infrastructure & clé publique (PKI) est
couramment utilisé pour résoudre les problemes liés a I’authentification de l’identité et a la confiance
en matiere de sécurité des véhicules connectés. Cependant, le systeme PKI présente des défis notables,
notamment une autorité de certification (CA) excessivement centralisée, des interactions fréquentes entre
domaines pour la gestion des certificats, des coiits de gestion élevés en raison du volume important
d’authentifications, des chemins d’authentification complexes entre domaines, des risques de fuite de
confidentialité, et une surcharge des réseaux. Dans le cadre de nos futurs travaux, nous nous efforcons de
développer une solution basée sur la technologie blockchain pour résoudre ces problemes. Notre approche
inclut la création d’un systeme de gestion des identités PKI léger et une architecture d’authentification
reposant sur des contrats intelligents. Cette solution vise a réduire la charge lourde imposée par les au-
torités de certification qui contrdlent directement le cycle de vie des certificats numériques.

Les réseaux de véhicules sont connus pour leur grande extensibilité. Cependant, une perspective géné-

rale sur le long terme est d’assurer Uefficacité énergétique de ces systemes constitue un défi, en particulier
en raison du volume considérable de données échangées entre les composants du réseau. Chaque nouveau
mécanisme ou déploiement technologique dans les réseaux de véhicules semble entrainer une augmentation
directe de la surcharge de communication et de la complexité temporelle, ce qui rend particulierement
difficile la satisfaction des exigences des applications en temps réel. Notre objectif est de trouver un équi-
libre optimal entre 'intégration de technologies émergentes et l'efficacité énergétique. Nous préconisons
des approches légeres pour réduire la consommation énergétique du systeme.
Notre premier objectif & court terme est de fusionner le paradigme du clustering avec la gestion dé-
centralisée de la confiance, ce qui contribuera a améliorer la fiabilité du systéme, en particulier lors de
I'intégration de technologies émergentes et décentralisées telles que le SDN ou la Blockchain. Ces techno-
logies sont susceptibles d’améliorer les performances et la coordination entre les différents Cluster Heads
(CH) et Cluster Members (CM) au sein des réseaux de véhicules. Dans cette perspective, nous cherchons
a intégrer la métrique de confiance dans le processus de formation de clusters et la sélection des chefs
de cluster. Ainsi, le noeud affichant la valeur de confiance la plus élevée sera élu chef de cluster. De plus,
nous nous intéressons au développement d’un mécanisme de sauvegarde pour les Cluster Heads, afin de
maintenir la stabilité des clusters au sein de 1'loV.

Enfin, nous examinons la répartition des mécanismes de ressources dans 'ToV (Internet des Véhicules)
car nous avons remarqué que la distribution déséquilibrée des ressources et des incitations dans les
réseaux de véhicules ouvre la voie a des attaques DDoS de grande ampleur. Dans une deuxiéme future
perspective a court terme de ce travail, nous envisageons de fusionner le concept d’enchéres avec la
technologie blockchain dans les réseaux de véhicules. Dans ce scénario, une entité centrale serait chargée
de fournir des ressources aux noceuds participants en fonction de leurs offres. Le fournisseur de services
attribuerait les ressources au véhicule offrant la meilleure enchére a chaque tour d’encheres. Cependant,
les véhicules malveillants chercheraient a falsifier les encheres des autres véhicules pour gagner a chaque
fois, s’accaparant égoistement toutes les unités de ressources. Notre objectif est de mettre en place un
solide systéme de défense contre les cybermenaces, basé sur la théorie des jeux bayésienne, qui permet
au systeme de détecter les nceuds malveillants. De plus, nous cherchons a développer un systeme de
réputation, ou les véhicules qui utilisent la majorité des unités demandées ou allouées seront considérés
comme des noeuds honnétes, et leur score de réputation sera augmenté.
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