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Titre : Innovation, Création de connaissance et réseaux de recherche : le cas des multinationales Chinoises 
 
Mots clés : Innovation technologique, Réseaux d’inventeurs, Brevets, Multinationales Chinoises 
 

Résumé : La thèse étudie la manière dont les entreprises 
multinationales chinoises innovent en acquérant des 
connaissances en dehors de leurs frontières 
géographiques par le biais de centres de recherche et des 
collaborations à travers le monde.  
La thèse est composée de quatre chapitres. Le premier 
présente la construction d’une base de données de 
brevets de 51 groupes multinationaux chinois, leurs 
caractéristiques technologiques, leurs inventeurs en 
Chine et en dehors dans leurs centres de recherche. Ces 
données sont exploitées dans les chapitres 2 et 3.  
Le second chapitre étudie comment les centres de 
recherche à l’étranger innovent en s’intéressant à 
l’intégration des inventeurs dans les réseaux de co-
invention internes à la multinationales et externe par les 
partenariats.  

Le troisième chapitre étudie plus spécifiquement les 
réseaux internes à l’entreprise et explore dans quelle 
mesure des « gatekeepers », autrement dit des 
inventeurs à l’intersection entre les inventeurs de 
l’entreprise et ceux des centres de recherche à 
l’étranger facilitent l’intégration de connaissance 
externes (processus de transfert inverse) permettant à 
la multinationale d’explorer de nouvelles technologies. 
Le dernier chapitre s’appuie sur des données de brevets 
USPTO et étudie dans quelle mesure les 
multinationales chinoises peuvent bénéficier d’une 
implantation dans les aires métropolitaines 
américaines en distinguant le rôle de différents stocks 
de connaissance (aire métropolitaine, les réseaux 
d’inventeurs et l’entreprise) dans la production 
d’innovation. 

 

 

Title: Innovation, Knowledge creation and Research Networks: evidence from Chinese MNEs 

Keywords: Technological innovation, networks of inventors, Patents, Chinese multinational enterprises 

Abstract: The main objective of this research is to 
investigate how multinational enterprises from emerging 
markets (EM MNEs) innovate by sourcing knowledge 
outside their geographical boundaries through research 
units and collaborations all over the world. The 
knowledge-sourcing and diffusion mechanism and their 
specific impact on the innovation outcome are studied 
through the role of overseas inventors and their 
relationships with home company inventors by focusing 
on Chinese MNEs.  
This thesis is composed of four chapters. The first chapter 
describes the construction of a patent database used in 
chapters 2 and 3. The database includes information on 
patents produced by a group of 51 Chinese MNEs, their 
technological characteristics, their inventors within the 
home company, and their foreign research units. 

 The second chapter focuses on the respective 
influence of internal and external embeddedness of 
Chinese MNEs’ inventors on their innovation outcomes. 
The third chapter concentrates on the role of Chinese 
MNEs’ internal networks and specific inventors, namely 
gatekeepers, in the reverse knowledge transfer process 
and knowledge absorption. This chapter explores how 
gatekeepers contribute to new knowledge creation. 
The final chapter uses UPSTO patent data and 
investigates the local environment of Chinese MNEs’ 
overseas inventors and unboxes how knowledge stocks 
at different levels (metropolitan area, network, and 
firm) affect their innovation outcomes. 
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RESUME EN FRANÇAIS 

 

L’objectif principal de cette recherche est d’étudier les mécanismes par lesquels les 

entreprises multinationales des pays émergents innovent en acquérant des connaissances en 

dehors de leurs frontières géographiques par le biais de centres de recherche et des 

collaborations à travers le monde. La thèse étudie les mécanismes d’acquisition et de diffusion 

des connaissances et leur impact sur l’innovation en considérant le rôle des inventeurs de ces 

centres de recherche et leur relation avec les inventeurs de la multinationale dans le pays 

d’origine.  

 

La thèse est composée de quatre chapitres. Le premier présente la construction d’une base 

de données de brevets qui est ensuite exploitée aux chapitres 2 et 3. La base de données porte 

sur les brevets de 51 groupes multinationaux chinois, leurs caractéristiques technologiques, 

leurs inventeurs en Chine et en dehors dans leurs centres de recherche. Le second chapitre 

s’intéresse à l’innovation des inventeurs des centres de recherche hors de la Chine en 

considérant leur intégration dans des réseaux de partenariats externes à l’entreprise et leur 

intégration dans les réseaux internes à l’entreprise. Le troisième chapitre étudie plus 

spécifiquement les réseaux internes à l’entreprise et explore dans quelle mesure des 

gatekeepers, autrement dit des inventeurs à l’intersection entre les inventeurs de l’entreprise 

et ceux des centres de recherche permettent des processus de transfert inverse permettant à 

la multinationale d’explorer de nouvelles technologies. Le dernier chapitre s’appuie sur des 

données de brevets USPTO et étudie dans quelle mesure les multinationales chinoises 

peuvent bénéficier d’une implantation et de l’environnement local dans les villes américaines 

en distinguant le rôle de différents stocks de connaissance (aire métropolitaine, les réseaux 

d’inventeurs et l’entreprise) dans la production d’innovation.  
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Chapitre 1 : Construction d’une base de données de brevets et inventeurs :  

Méthodologie et contenu 

Ce chapitre décrit la construction d’une base de données originale de brevets et d’inventeurs 

de 51 multinationales chinoises. L’objectif principal est de collecter des informations sur les 

centres de recherche d’entreprises chinoises à travers le monde, l’entreprise et leurs relations 

afin d’étudier les mécanismes d’acquisition de connaissance et d’intégration permettant 

l’innovation et les processus de rattrapage. Cette base offre des informations sur les firmes 

multinationales chinoises et leur activité d’innovation. Elle comprend 149 570 brevets de 51 

entreprises entre 2005 et 2020. La construction de la base s’appuie sur les étapes suivantes : 

1. Identification des multinationales chinoises ayant des centres de recherche à l’étranger 

ainsi que leur localisation ; 2. Extraction des brevets de la base Lens ; 3. Traitement de données 

et identification des inventeurs et des brevets associés à ces centres.  

Chapitre 2 : Performance à l’innovation en dehors des frontières : le rôle de l’intégration 

duale  

Les performances à l’innovation des entreprises multinationales de pays émergents sont 

étroitement liées à la performance de leurs inventeurs à l’étranger. Le chapitre explore 

comment ces inventeurs innovent et explorent de nouvelles technologies. L’étude s’appuie 

sur les collaborations entre, d’une part, les inventeurs des centres et les inventeurs de 

l’entreprise dans le pays d’origine et, d’autre part, les réseaux externes à l’entreprise, 

autrement dit, l’intégration interne et externe. Les réseaux de co-invention sont construits 

pour étudier comment ils affectent la productivité et l’exploration des inventeurs à l’étranger. 

Les résultats mettent en évidence les aspects structurels et relationnels des réseaux internes 

à l’entreprise plus que les liens externes qui restent secondaires.  

Chapitre 3 : Le rôle du réseau intragroupe et des « gatekeepers » dans le rattrapage 

technologique 

Le chapitre explore les mécanismes de transfert inverse dans le processus de rattrapage en 

mettant l’accent sur l’innovation de l’entreprise dans le pays d’origine. Il s’agit d’explorer 



 

 

x 

comment l’entreprise s’approprie les connaissances explorer à l’étranger dans les centres de 

recherche. Le chapitre met l’accès sur les mécanismes d’acquisition de connaissance, à savoir 

les relations directes avec des inventeurs à l’étranger par le réseau de co-invention interne et 

s’intéresse aux gatekeepers qui sont des inventeurs qui font le lien entre les deux et 

représentent une capacité d’absorption. L’impact des gatekeepers est étudié à travers leur 

impact sur la nouveauté des brevets. Une estimation fondée sur des variables instrumentales 

permet de réduire l’endogénéité associée aux données de brevets. Les résultats confirment le 

rôle des gatekeepers comme mécanisme d’intégration entre les centres de recherche et 

l’entreprise dans le pays d’origine. Les collaborations directes et la proximité de réseaux sont 

des facteurs déterminants qui facilitent l’absorption de connaissances externes et la création 

de nouvelles technologies.  

Chapitre 4 : A la recherche de la toison d’or : la dynamique de connaissance des inventeurs 

de multinationales chinoises à l’étranger 

Ce dernier chapitre explore les déterminants de la performance des entreprises chinoises à 

l’étranger. A partir de données de l’USPTO, le chapitre étudie l’innovation des inventeurs qui 

brevètent pour des entreprises chinoises aux Etats-Unis.  Il s’agit d’estimer l’impact de trois 

sources d’innovation : l’aire métropolitaine, les réseaux de co-invention et l’entreprise. Il s’agit 

d’examiner comment ces différents stocks de connaissance influencent la productivité des 

inventeurs. Les résultats indiquent que les entreprises multinationales bénéficient des 

réseaux de co-invention et de la proximité géographique aux inventeurs locaux au sein des 

aires métropolitaines. L’estimation exploite de nombreux effets fixes pour corriger 

l’hétérogénéité non observée. Le rôle du stock de connaissance de l’agglomération semble 

moins déterminant.  

  



 1 

GENERAL INTRODUCTION 

Innovation stands as the lifeblood of a company, driving its ability to adapt, evolve, and remain 

competitive in dynamic markets. It can be regarded as a problem-solving process through the 

exploration of knowledge (Choi et al., 2018). The accumulation of knowledge significantly 

boosts companies' ability to create new concepts and apply their knowledge to drive further 

innovations (Cohen & Levinthal, 1990). Despite this, a substantial amount of knowledge 

remains closely tied to local contexts (Asheim, 1999). Seeking knowledge from overseas is a 

widely recognized driver behind the globalization of research and development (Cantwell & 

Mudambi, 2005). Multinational enterprises (MNEs) often acquire foreign knowledge that is 

not readily available in their home country by accessing the local knowledge pool (Kuemmerle, 

1999). Thus, in today's rapidly evolving landscape of innovation and technology, the 

globalization of R&D has emerged as an important trend, which is especially the case for MNEs 

from emerging markets (EM) (Awate et al.,2015). For EM MNEs, acquiring knowledge from 

developed countries serves as a strategic approach to narrow the gap with established 

industrial incumbents (Verbeke, 2009). To achieve this objective, they establish overseas 

research units and position researchers in other countries to act as bridgeheads to source 

knowledge from foreign sources (Wang et al., 2018). 

However, benefiting from external knowledge sourcing for innovation is undeniably 

challenging. First, seeking knowledge in foreign environments offers benefits but also faces 

obstacles, including geographical and cultural distances (Shimizutani & Todo, 2008), alongside 

barriers imposed by domestic incumbents (Cantwell and Mudambi, 2011). Following the 

external acquisition of knowledge, EM MNEs encounter challenges when integrating this 

newly acquired knowledge into their existing knowledge base, a process often observed to be 

difficult (Amighini et al., 2015) due to the lack of knowledge absorptive capacity. Hence, the 

primary aim of this thesis is to explore how EM MNEs acquire knowledge from foreign 

environments, absorb this knowledge, and leverage it to drive innovation. Inventors play a 

central role in this process, sourcing and transferring knowledge through both internal and 

external networks. The overseas inventors of EM MNEs serve as the interfaces between inter- 

and intra-firm networks. However, existing literature often overlooks their role, as most 

analytical models encompass them within the broader structure of internal inventors. In order 
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to enhance the understanding of the knowledge dynamics within EM MNEs, this thesis focuses 

on the overseas inventors of Chinese MNEs. It delves into their interactions with collaborators 

in foreign environments, as well as their engagement with inventors from the home company 

in various innovation activities. 

The thesis is composed of four chapters. The chapters are summarized as follows: 

The first chapter describes the construction of an original database of patents and inventors 

from 51 Chinese MNEs. In pursuit of comprehensively exploring the mechanisms of knowledge 

acquisition and creation within EM MNEs, the existing databases prove inadequate due to 

their lack of information regarding the internal structures of these companies. While 

recognizing the significant role of overseas inventors and their affiliated research units in the 

innovation processes of EM MNEs, the specific nature of their contribution, particularly the 

dynamics of knowledge exchange between these inventors and the internal and external 

partners, remains unclear. Thus, the main objective is to collect detailed information on 

Chinese MNEs’ overseas research units, home company, and their relationships, as well as 

information on their inventors in order to investigate their sourcing and integration 

mechanisms in their innovation and catching-up process. This database offers an overview of 

Chinese MNEs’ overseas inventors’ innovation activities. It comprises 149,570 patent 

applications from 51 Chinese MNEs from 2005 to 2020. The construction of the database is 

carried out through the following steps: 1. Identification of leading Chinese MNEs that have 

established research units in foreign countries and the location of these units. 2. Extraction of 

the patent applications of these MNEs from the Lens database. 3. Data processing and the 

identification of the inventors and the patent applications related to these units. The work in 

this chapter lays a solid foundation for empirical analysis in the second and third chapters. 

 

It is increasingly emphasized that MNEs’ innovation performance in foreign environments is 

tightly related to the performance of inventors in their overseas divisions. The second chapter 

contributes to this discussion by exploring MNEs’ overseas inventors’ innovation and their 

exploration of new technologies. Ever since Granovetter (1985) introduced the concept of 
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“embeddedness” within the context of new economic sociology, this term has found 

widespread application in innovation analysis. Previous examinations at the organizational 

level have concentrated on the internal and external knowledge networks of MNEs, defining 

the involvement of MNE subsidiaries in both spheres as “dual embeddedness” (Figueiredo, 

2011). Some scholars have adopted this conceptual model for analyzing MNEs’ innovation 

(Athreye et al., 2016; Ferraris et al., 2020). However, their continued emphasis remains on the 

organizational level, with a noticeable absence of substantial evidence at the inventor level. 

Thus, this chapter focuses on the collaborations of these inventors within their home 

company and with external partners, namely the dual embeddedness. Co-inventor networks 

are constructed to capture the details of overseas inventors’ innovation activities for empirical 

analysis at the inventor level. Practically, the internal and external embeddedness of inventors 

is categorized into structural and relational aspects following the framework established by 

Zukin and DiMaggio (1990). This categorization aims to provide a more comprehensive 

understanding of knowledge dynamics within both environments. The results highlight the 

importance of intra-firm networks and the complex mixed impact of both internal and 

external embeddedness on overall innovation outcomes and explorative patents. 

 

The third chapter explores the mechanisms of reverse knowledge transfer in EM MNEs’ 

technological catch-up process. EM MNEs acquire knowledge from diverse foreign locations 

and subsequently transfer a significant portion back to their home company, aiming to achieve 

technological catch-up with industrial incumbents (Najafi-Tavani et al., 2015). Focusing on the 

innovation activities of the home company, the aim is to investigate whether and how they 

benefit from the knowledge sourced by their overseas research units. The absorption of 

knowledge also plays a crucial role in producing innovation based on the new knowledge 

sourced externally (Mathews, 2002). In the process of knowledge transmission and 

absorption, emphasis has been placed on the significance of internal networks (Alnuaimi et 

al., 2012) and the specific contributions of individual inventors (Le Gallo and Plunket, 2020). 

Thus, the chapter focuses on specific sourcing and absorption mechanisms, namely direct 

relationships of home company inventors with overseas inventors through intra-firm 
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networks and highlights the role of specific inventors, namely home company gatekeepers, in 

enhancing knowledge absorptive capacity. A detailed analysis of patents from Chinese MNEs’ 

overseas research units, and home companies is used to investigate the impact of gatekeepers 

and intra-firm networks on the novelty of patents. A 2SLS approach is adopted to cope with 

network endogeneity. Findings indicate the role of gatekeepers through their intermediation 

role as knowledge sourcing and integration mechanisms between units and the home 

company. Direct collaborations with units and network proximity emerge as essential 

moderators, facilitating the absorption of diverse external knowledge and the creation of 

novelty. 

 

The fourth chapter “In search of Golden Fleece: The knowledge dynamics of Chinese MNEs’ 

inventors in foreign environment” investigates the local determinants of Chinese MNEs’ 

foreign inventors’ performance. While the analysis in the first chapter delves into the external 

embeddedness of inventors within Chinese MNEs' overseas research units, capturing essential 

features of their knowledge creation mechanism, the focus on external relationships primarily 

centers around collaboration at the company level. However, it is crucial to analyze the origin 

of knowledge among overseas inventors in foreign environments to gain a deeper 

understanding of their external knowledge sourcing mechanisms. Tubiana et al. (2022) offer 

an exemplary multi-level analysis that provides an ideal model for studying the knowledge 

dynamics of individuals. Based on their model, the chapter explores the respective impact of 

three sources of knowledge for innovation: the metropolitan level, the co-inventor level, and 

the firm level, based on USPTO data and focusing on inventors located in the United States 

and patenting for Chinese companies. The aim is thus to examine how knowledge stocks at 

different levels influence inventor productivity. By adding various fixed effects to control for 

unobserved heterogeneity, the chapter uncovers the importance of knowledge in co-inventor 

networks for inventors’ productivity, while the role of metropolitan stock of knowledge is less 

relevant. The results also highlight the positive impact of technological proximity within 

geographically co-located peers in metropolitan areas. 
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Chapter 1:  CHINESE MNES’ DATABASE CONSTRUCTION 

This chapter presents the construction of the database utilized in the two following chapters 

of this thesis to uncover the cross-border knowledge sourcing and internal knowledge 

integration of Chinese MNEs. Patent data are widely used in the innovation literature, mainly 

using large-scale sources such as PatentsView, OECD Patent dataset, or WIPO Patentscope. 

These databases provide rich information on various aspects. However, it is hard to acquire 

precise information on the internal knowledge linkages between inventors from overseas 

MNEs’ research units based on these existing sources. For this reason, I decided to build my 

own patent dataset on the largest Chinese MNEs and their research units around the world to 

analyze these issues.  

The main objective is to collect detailed information on Chinese MNEs’ overseas research units, 

collect their patents and inventors, and further identify their knowledge linkages among these 

units with the home company, on the one hand, and external partners, on the other hand. 

This database also presents an overview of Chinese MNEs’ overseas research units’ innovation 

activities. 

 

1.1 METHODOLOGY FOR THE DATABASE CONSTRUCTION 

The construction of the database is carried out through the following steps: 

1. Identification of leading Chinese MNEs that have established research units in foreign 

countries and their locations. 

2. Extraction of these MNEs’ patent applications. 

3. Data processing and identification of the inventors and the patent applications related to 

these units. 



  

 

 

6 

In the first step, the leading Chinese MNEs with overseas research units are initially identified 

through the 2018 top 500 Chinese enterprises by Fortunechina.com and the 2019 OECD 

scoreboard of the top 2000 global corporate R&D investors1. In the first sample, 264 Chinese 

companies with subsidiaries in foreign countries are selected based on their basic online 

information. An extensive search is employed to gather further information to identify if these 

MNEs have established overseas research units via various sources, including their official 

websites, annual reports, news articles, and investment reports. Related information, 

including these units’ locations, set-up date, and construction method, is also documented at 

this stage. Consequently, the sample has been restricted to 63 MNEs, which have established 

a total number of 173 research units across 27 countries.   

The second step is the extraction of patents associated with these Chinese MNEs. Their patent 

applications, filed at various patent offices, are derived from the Lens database2. The period 

of study is 2000-2020, during which Chinese MNEs experienced a solid global expansion. Data 

have been collected over previous periods to build inventor networks prior to patenting. The 

Lens database is advantageous over alternative databases as it aggregates patent data from 

multiple sources, including data from most main patent offices worldwide. It also allows for 

the searching and extracting of patent applications based on the company level. Thus, it serves 

as an ideal data source for this research. It is common for MNEs to apply for patents of the 

same contents in different offices to protect their intellectual property better. However, in 

empirical analysis, this phenomenon leads to redundant issues. The extracted patent 

applications are consolidated at the family level to avoid redundancy.  

The extracted patent applications are processed in the third step. First, inventor names need 

to be disambiguated. Previous research (Breschi et al., 2014; Yin et al., 2020) yields the 

importance of inventor name empirical research using patent data to increase accuracy. Some 

leading patent databases, especially Patentsview and ICROIS-PASTAT, also provide 

disambiguated inventor names. This thesis’s second and third chapters calculate inventor and 

unit-related variables based on MNE-level networks. Thus, inventor name disambiguation is 

                                                      

1 the JRC/OECD COR&DIP©  database, v.2. 2019 
2 Lens.org 
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also carried at the MNE level. Concretely, the inventor names of each MNE are disambiguated 

with the FuzzyWuzzy string matching package in Python, which uses Levenshtein distance to 

calculate the differences between sequences. Fuzzy matching has been proven to be a reliable 

method of name disambiguation (Tang & Walsh, 2010). Due to the difficulty in disambiguating 

the names of Chinese inventors, the string similarity ratio in disambiguation is set at 95% to 

identify the possible same inventors’ names.  

The geographical information of applicants and inventors is available based on patent 

application numbers extracted in the second step. Patentsview, OECD patent database, and 

Wanfang Patent Database (WFPD) are used to acquire geographical information as location 

data is not included in the dataset download function of Lens data. This information is 

compared with the location of units collected in the sample established during the first step. 

Inventors at locations identical to unit locations or nearby regions are selected. Their patent 

application and affiliation histories are further examined to exclude employees associated 

with collaborating entities. The co-inventor information is also documented in the database. 

The patent applications of inventors distinguished as employees working at overseas research 

units are consolidated at the unit level. Several Chinese MNEs and their overseas research 

units are omitted during this phase due to the following reasons: 1. units established in recent 

years may not have started patenting yet as there is a lag between innovation outcome and 

the patent filing process. In these cases, their innovation activities are not reflected in the 

database. 2. Patents are applied by the headquarters due to the policy of the MNEs; thus, in 

some cases, it is hard to distinguish the inventors of overseas research units. At this stage, a 

number of 100 overseas research units remain in the database.  

The final database comprises 149,570 patent applications from 51 Chinese MNEs from 2005 

to 2020. The database contains the following information: 1. Patent application number, 2. 

Patent application date, 3. Patent priority number and date, 4. Patent Title, 5. Applicants, 6. 

Inventors, 7. IPC3 classifications, 8. The name of MNEs, 9. The research unit. The database is 

stored in Rdata format. 

                                                      

3 IPC – International Patent Classification 
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1.2 DESCRIPTION OF THE DATABASE  

This section presents an overview of the database, including the geographical and industrial 

dispersion of the Chinese MNEs in the sample, the construction method of the units, the 

evolution of patent numbers, and the evolution of inventor numbers. 

1.2.1 The geographical dispersion of the overseas research units and inventors of Chinese 

MNEs  

The 100 overseas research units in the final dataset are distributed across 23 countries in 

various regions of the world as shown in Figure 1.1.  

Figure 1.1 Geographical distribution of Chinese MNEs’ overseas research units 
 

 

The majority of Chinese MNEs tend to select developed countries as their preferred host 

locations for establishing research units (Table 1.1). Notably, North American and European 

countries emerge as the most popular destinations, with 31 units established in the United 

States and 20 units in Germany. Additionally, Japan stands out as an attractive option, hosting 

11 research units due to its advanced technology industry and geographical proximity. 

Overseas research units in developed countries mainly aim at knowledge sourcing. However, 
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in recent years, Chinese MNEs have made significant technological advancements, leading to 

the expansion of their market share in developed countries. Consequently, a few research 

units have been established in developing countries such as India and Brazil. This selection can 

be attributed to the dual purpose of adapting products to local markets and benefiting from 

a local talent pool with relatively lower labor costs. The geographical distribution of units 

present in the database is coherent with Wang et al. (2018)’s description. 

 

Table 1.1 Geographical distribution of research units and Inventors 

Country Unit  Inventors 
Austria 1 371 
Australia 2 81 
Brazil 2 73 
Canada 2 498 
Switzerland 1 554 
Czech 1 768 
Germany 20 3238 
Egypt 1 14 
Finland 1 10 
France 1 917 
United Kingdom 5 1127 
Hungary 1 33 
India 5 501 
Italy 4 563 
Japan 11 3986 
Korea 1 503 
Netherland 2 345 
New Zealand 2 105 
Poland 1 60 
Russia 1 30 
Sweden 1 346 
Singapore 3 156 
United States 31 5790 

 

The distribution of inventors in overseas research units follows a similar pattern to the 

distribution of research units among various countries, with the United States, Japan, and 

Germany hosting the largest numbers of inventors affiliated to Chinese MNEs’ overseas 

research units. Notably, despite Japan having fewer research units than Germany, it hosts a 

higher number of inventors. This discrepancy may stem from various factors, including cultural 

and geographical proximity, as mentioned above. It might also be attributed to the fact that 

Japan is among the initial countries hosting Chinese MNEs' overseas units. Consequently, the 
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cumulative inventor count in Japan might reflect the relatively longer duration over which 

these units have been established. 

 

Table 1.2  Firm level # of Inventors and R&D units across Economic activities (ISIC Rev.4 sections) 
     
Industry Sectors (Aggregated) # units #Inventors # firms 

F Construction 1 23 1 
J Information and communication 13 4494 6 
C Manufacturing 84 15473 42 
B Mining and quarrying 1 63 1 
E Water supply; sewerage, waste management and remediation activities 1 16 1 
     
Industry Sectors # units #Inventors # firms 

F Construction of buildings 1 23 1 
J Computer programming, consultancy and related activities 2 255 2 
J Information and communication 1 63 1 
J Information service activities 1 32 1 
J Telecommunications 8 4064 1 
C Manufacture of chemicals and chemical products 11 1067 8 
C Manufacture of computer, electronic and optical products 10 2412 3 
C Manufacture of electrical equipment 14 2582 6 
C Manufacture of fabricated metal products, except machinery and equipment 2 29 2 
C Manufacture of food products 3 93 2 
C Manufacture of machinery and equipment 12 1053 5 
C Manufacture of motor vehicles, trailers and semi-trailers 19 4943 9 
C Manufacture of other transport equipment 7 2753 2 
C Manufacture of pharmaceuticals, medicinal chemical and botanical products 5 460 4 
C Manufacture of textiles 1 105 1 
C Other manufacturing 1 56 1 
B Extraction of crude petroleum and natural gas 1 63 1 
E Water collection, treatment and supply 1 16 1 

 

1.2.2 The Industrial dispersion of the overseas research units and inventors of Chinese 

MNEs 

Table 1.2 presents the distribution of Chinese MNEs across various industries based on the 

International Standard Industrial Classification sections, as sourced from the CSMAR 

database4. The table shows the number of research units and the number of inventors at the 

firm level. Further subdivisions have been employed to provide more precise information. 

Chinese MNEs that establish overseas research units operate across a broad spectrum of 

industries, with a notable concentration in the information and communication sector. This 

                                                      

4 China Stock Market & Accounting Research Database 
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intensity can be attributed to the knowledge-intensive nature of this industry, prompting 

Chinese MNEs to set up research units in developed countries. This strategy allows them to 

engage in knowledge-sourcing activities, thereby shortening the technical distance between 

themselves and established players in the respective industries. Table 1.7 provides a detailed 

table of each MNE’s industry and patents.   

1.2.3 Characteristics of Chinese MNEs’ overseas research units 

According to Anderson and Sutherland (2015), establishing research units in foreign countries 

can be accomplished through two primary methods: self-built and mergers and acquisitions 

(M&A). In this thesis, collaboration is identified as an additional significant strategy. 

1. Self-built refers to cases when MNEs choose to construct a research unit in foreign 

countries on their own, which is also known as the “Greenfield” model.  

2. Mergers and acquisitions refers to cases when MNEs acquire foreign subsidiaries and 

use them as overseas research units.  

3. Collaborations refers to cases when MNEs collaborate with a local institution to set up 

research units in foreign countries.  

Concerning Chinese MNEs in the database, self-built research units emerge as the most 

popular approach, representing 61% of the samples in the dataset. Furthermore, 29% of the 

MNEs acquire existing companies or divisions as their overseas research units (Figure 1.2.) 

Compared to self-built units, these research units are relatively more independent. Some of 

them even have no co-patenting relationship with other units within the MNEs in China. 

Collaboration is the least preferred method among the Chinese MNEs present in the database. 

This phenomenon can be explained by the greater control that MNEs possess over self-built 

units. At the same time, collaboration faces a higher risk of knowledge leakage and requires 

higher integration costs (Frishammar et al., 2015). 
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Figure 1.2 The percentage of Chinese MNEs’ overseas research units according to construction 

 

 

Table 1.3 gives further information regarding the distribution of research units across 

industries and regions. The self-built solution emerges as the predominant choice across all 

regions. M&A methods appear less adopted in the United States (US) compared to other 

regions. Furthermore, the prevalence of the collaboration method in the US and European 

Union (EU) regions may be attributed to a more comprehensive legal framework related to 

the protection of intellectual property. Table 1.6 in the appendix presents in more detail for 

each MNE, the research units in the database, their characteristics (self-built, M&A or 

Collaboration) as well as their precise location.  

 

Table 1.3 Industrial distribution of Chinese MNEs’ overseas research units 
 US EU Asia Others 

Industries SB MA C SB MA C SB MA C SB MA C 

Construction 0 0 0 0 0 1 0 0 0 0 0 0 
Information and communication 4 0 0 2 0 3 3 1 0 0 0 0 
Manufacturing 16 6 4 20 12 2 10 6 0 4 4 0 
Mining and quarrying 1 0 0 0 0 0 0 0 0 0 0 0 
Water supply; sewerage, waste management and remediation activities 0 0 0 1 0 0 0 0 0 0 0 0 
# of units 21 6 4 23 12 6 13 7 0 4 4 0 
Note: SB : self-built; MA : Merger and Acquisition ; C : collaborations  
% in the table  
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1.3 DESCRIPTIVE STATISTICS AT THE MNE AND RESEARCH UNIT-LEVEL 

Table 1.4 describes observations at the MNE level. Among the 51 Chinese MNEs included in 

the database, which have established overseas research units, patent activity exhibits 

considerable variation. The number of patent applications filed by these MNEs ranges from a 

minimum of 79 applications to a maximum of 47,512 applications, with an average of 2,950.5. 

The dispersion in the data is notable, as evidenced by the standard deviation of 7,092.06. The 

number of inventors associated with these patent applications shows a mean value of 

approximately 2,193.51, with a standard deviation of 4,043.56, indicating significant diversity 

in inventor involvement across the observed MNEs. Respectively, the minimum and maximum 

inventor counts are 86 and 25,368. The number of R&D units spans from a minimum of 1 to a 

maximum of 8, with an average of 1.96 and a standard deviation of 1.63. The variable Inventor 

productivity is calculated as # of patent applications/# of inventors. The average productivity 

is approximately 1.24, with a standard deviation of 0.76 The productivity values range from a 

minimum of 0.32 to a maximum of 3.47, which exhibits a relatively smaller variation compared 

to the variables above.  

Table 1.4 Descriptive statistics of MNE-level data 
 Mean SD Min Max 

# of patent applications 2 950.54 7 092.06 79 47 512 
# of inventors 2 193.51 4 043.56 86 25 368 
# of overseas Research units  1.96 1.63 1 8 
Inventor productivity 1.24 0.76 0.325 3.478 

51 MNEs 

 

Table 1.5 presents descriptive statistics for overseas research units. Among the 100 

observations included in the database, the number of patent applications exhibits a 

considerable variation, ranging from a minimum of 12 applications to a maximum of 3,348, 

with an average of approximately 671. The standard deviation of 794 indicates a wide 

dispersion in the number of patent applications. Similarly, the number of inventors reveals 

notable variation, with the average number of inventors being approximately 200. The 

standard deviation of 239 suggests some diversity in inventor involvement across the 

observed applications, with a range from 9 to 1027 inventors. Additionally, inventor 

productivity displays an average value of approximately 3.51, indicating a relatively higher 
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level of productivity than the overall situation of Chinese MNEs in the database. However, the 

standard deviation of 2.51 highlights considerable variation in unit-level productivity, which 

ranges from a minimum of 1.15 to a maximum of 21.17.  

 

Table 1.5 Descriptive statistics of unit-level data 
 count Mean SD Min Max 

# of patent applications  100 671 794 12  3348  
# of inventors 100 200 239 9  1027  
Inventor productivity 100 3.51 2.51 1.15 21.17 

Observations 100     

 

 Figure 1.3 The evolution of overseas research units’ patent applications number 
 

 

Figure 1.3 presents the evolution of the number of patent applications by Chinese MNEs’ 

overseas research units in the database from 2005 to 2019. The number of patent applications 

started at a relatively modest level in 2005, with 230 applications. It experienced continuous 

growth until 2016, except for a slight decrease in 2014 compared to the previous year. In 2016, 

the number of applications reached a remarkable peak of 10,482. The year 2019 witnessed a 

significant downfall in the number of patent applications due to the trade war. As shown in 

the previous section, over one-third of the overseas research units in the database are located 
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in the US. The innovation activities of these units, especially the ones in the ICT industry, 

experienced difficulties in the political turmoil.  

 

1.4 CONTRIBUTIONS AND LIMITATIONS OF THE DATABASE 

This chapter serves as a comprehensive overview of the database construction methods 

tailored to encapsulate patent data from diverse Chinese MNEs. It also lays the foundation for 

the following chapters by providing a detailed insight into the database's structure. As 

mentioned in the introduction, the thesis aims to delve deeper into the mechanisms of 

knowledge acquisition and creation within EM MNEs. Hence, it is necessary to explore the 

connections between the internal network of these MNEs' inventors and their external 

collaborators. Existing databases have limitations in providing insights into the internal 

configurations of MNEs. Consequently, the initial and pivotal step of this thesis involves the 

creation of a novel database specifically designed to look into these relationships.  

The primary contribution of this database lies in its ability to distinguish inventors operating 

within the overseas research units of Chinese MNEs. As expressed in chapters two and three, 

this differentiation is important in distinguishing the boundaries existing between various 

units within the MNEs. In contrast to prior studies, which mostly focus on distinguishing MNE 

inventors and their external partners, this thesis introduces an approach that categorizes 

inventors into three groups: MNEs’ inventors in the home country, MNEs’ inventors in 

overseas environments, and their external partners. This classification facilitates a more 

comprehensive understanding of the dynamics within Chinese MNEs as it enables further 

empirical analysis not only on these overseas inventors’ own innovation performance but also 

their moderating role in transmitting knowledge back to home company. Meanwhile, it also 

helps to understand how inventors in home companies benefit from external knowledge and 

absorb it for new recombination. 

However, while this database provides valuable insights, it is not without limitations. It faces 

certain shortcomings. First, the capture of external relations is not exhaustive. The 
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identification of external partners relies primarily on co-inventor relations in the Lens 

database. Consequently, informal connections among inventors are somewhat overlooked. 

Second, the depiction of MNEs' internal structure within the home company is obscured. 

Although extensive efforts have been undertaken to differentiate various units of the MNEs 

located in China, the internal boundaries remain somewhat ambiguous. This ambiguity stems 

from the challenging task of distinguishing relations between the headquarters and other 

divisions due to the patent application policies of certain MNEs. 
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1.6 APPENDIX CHAPTER 1 

 

 Table 1.6 Location of overseas R&D Unit 

MNE Name Model Country Region 
Angel ANGEL_A2 Self_built EG Bani sweif 
Angel ANGEL_A1 Self_built RU Lipetsk Oblast 
BGI BGI_A1 Self built US Mount view 
BYD BYD_A1 Self Built US Los angeles 
BYD BYD_A2 Self built NL Rotterdam 
BeiqiFoton BEIQI_A1 Self built DE Sttugart 
BeiqiFoton BEIQI_A2 Self built JP Yokohama 
Bright BRIGHT_A1 M&A NZ  Dunsandel 
CNPC CNPC_A1 Self built US Houston 
CRRC CRRC_A5 Collaboration CH Winterthour 
CRRC CRRC_A4 Collaboration CZ Prague 
CRRC CRRC_A6 Selfbuilt AT Kottingbrunn 
CRRC CRRC_A2 Self built US New Jersey 
CRRC CRRC_A1 Collaboration GB Lincoln 
CRRC CRRC_A3 Self built DE Dresden 
Changan CHANGAN_A5 Self built IT Turin 
Changan CHANGAN_A3 Collaboration JP Yokohama 
Changan CHANGAN_A2 Collaboration US Los anglese 
Changan CHANGAN_A1 Self built US Detroit 
Changan CHANGAN_A4 Collaboration GB Birmingham 
Changjiang CHANGJIANG_A1 Self bilt SG Singapore 
Dunan DUNAN_A1 Selfbuilt US San jose 
GCL GCL_A1 Self built US San fransico 
Genscript GENSCRIPT_A1 Self built US New Jersy 
Goodix GOODIX_A1 Self bilt US St diego 
Greatwall GREATWALL_A1 Self built JP Yokohama 
Haier HAIER_A5 Self built IN Bangalore 
Haier HAIER_A1 Self built DE Nuremberg 
Haier HAIER_A3 M&A JP Osaka 
Haier HAIER_A2 Self built US Indiana 
Haier HAIER_A6 Self built KR Souel 
Haier HAIER_A4 M&A NZ Orkland 
Hikvision HIKVISION_A1 Self built CA Montreal 
Hisense HISENSE_A3 Self built US Atlanta 
Hisense HISENSE_A1 Self built DE Duesseldorf 
Hisense HISENSE_A4 M&A CA Toronto 
Hisense HISENSE_A2 Self built JP Tokyo 
Hongfa HONGFA_A1 self built US El paso 
Huagong HUAGONG_A1 M&A AU  Sunshine West  
Huagong HUAGONG_A2 Self built DE Offenbach 
Huarui HUARUI_A1 M&A DE Dochum 
JAC JAC_A1 Self built JP Yokohama 
JAC JAC_A2 self built IT Turin 
Joyson JOYSON_A2 M&A DE Dresden 
Joyson JOYSON_A3 M&A US Aluburn Hills 
Joyson JOYSON_A1 M&A JP Tokyo 
Kangde KANGDE_A1 Collaboration DE Munich 
Kelun KELUN_A1 Self built US New Jersy 
Kingenta KINGENTA_A1 Self built US Washington 
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Kingfa KINGFA_A3 M&A IN Shinde 
Kingfa KINGFA_A1 Self built DE Wiesbaden 
Kingfa KINGFA_A2 Self built US Canton 
Lenovo LENOVO_A1 M&A JP Kanagawa 
Lenovo LENOVO_A5 Self built US Morrisville 
Lenovo LENOVO_A3 Self built IN Bengaluru 
Lenovo LENOVO_A4 Self built DE Stuttgart 
Lenovo LENOVO_A2 Self built BR Sao Paulo 
Lepu LEPU_A1 Self built NL Heerenveen 
Linglong LINGLONG_A1 Self built US Medina 
Lingyi LINGYI_A1 M&A FI Salo 
Liugong LIUGONG_A4 Selfbuilt IN Indore 
Liugong LIUGONG_A3 Collaboration PL Warsaw 
Liugong LIUGONG_A2 Self built UK Portsmouth 
Liugong LIUGONG_A1 M&A US Huston 
Longsheng LONGSHENG_A1 M&A DE Raunheim 
Luthai LUTHAI_A1 Self bilt IT Milan 
Luxi LUXI_A1 self built DE Frankfurt 
Luxshare LUXSHARE_A1 Self built US San jose 
Luye LUYE_A1 Self built DE Miesbach 
Luye LUYE_A2 Self built US Princeton 
Origin ORIGIN_A1 Selfbuilt AU Nambour 
Sanhua SANHUA_A1 Self built JP  Saitama 
Sanhua SANHUA_A2 M&A DE Neukirch 
Sanhua SANHUA_A3 Self built US San Jose 
Sumec SUMEC_A1 Self buily DE Willich 
Suning SUNING_A1 Self built US San jose 
Tencent TENCENT_A1 Self built US Seattle 
Wanhua WANHUA_A1 Self built US Covent 
Wanhua WANHUA_A2 M&A HU Kazincbarcika 
XCMG XCMG_A2 Self built US Nevada 
XCMG XCMG_A1 M&A DE Duesseldorf 
XCMG XCMG_A3 Self built BR Pouso Alegre 
Yuhong YUHONG_A1 Collabotation US Bethlehem 
ZTE ZTE_A2 Self built JP Tokyo 
ZTE ZTE_6 Self built SE Kista 
ZTE ZTE_A7 Self built DE  Dusseldorf 
ZTE ZTE_A4 Collaboration GB London 
ZTE ZTE_A3 Self built IN Bangalore 
ZTE ZTE_A5 Self built FR Poitier 
ZTE ZTE_A8 Self built US Dallas 
ZTE ZTE_A1 Collaboration IT LAquila 
Zhongding ZHONGDING_A1 M&A US Southfield 
Zhongding ZHONGDING_A4 M&A DE Heilbronn  
Zhongding ZHONGDING_A3 M&A DE Kassel 
Zhongding ZHONGDING_A2 M&A DE Kirchheim 
Zhongwang ZHONGWANG_A1 M&A US Kentucky 
Zotye ZOTYE_A1 Self built JP Yokohama 
Huaxiang HUAXIANG_A1 M&A GB Nottingham 
Keda KEDA_A1 Self bilt SG Singapore 
Zhonghuan ZHONGHUAN_A1 Self bilt SG Singapore 
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Table 1.7 Patenting activity of EM MNEs and industry characteristics  
MNE # patents Industry ISIC Code Industry Division Code 

Angel 249 Manufacturing C Manufacture of food products C10 
BeiqiFoton 7145 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
BGI 1041 Manufacturing C Manufacture of pharmaceuticals, medicinal chemical and botanical products C21 
Bright 911 Manufacturing C Manufacture of food products C10 
BYD 10076 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
Changan 6455 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
Changjiang 1336 Information and communication J Manufacture of electrical equipment C27 
CNPC 2367 Mining and quarrying B Extraction of crude petroleum and natural gas B06 
CRRC 6277 Manufacturing C Manufacture of other transport equipment C30 
Dunan 117 Manufacturing C Manufacture of other transport equipment C30 
GCL 482 Manufacturing C Manufacture of chemicals and chemical products C20 
Genscript 83 Manufacturing C Manufacture of pharmaceuticals, medicinal chemical and botanical products C21 
Goodix 986 Information and communication J Information and communication J63 
Greatwall 7076 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
Haier 7410 Manufacturing C Manufacture of electrical equipment C27 
Hikvision 4715 Manufacturing C Manufacture of computer, electronic and optical products C26 
Hisense 4152 Manufacturing C Manufacture of computer, electronic and optical products C26 
Hongfa 982 Manufacturing C Manufacture of electrical equipment C27 
Huagong 307 Manufacturing C Manufacture of electrical equipment C27 
Huarui 906 Manufacturing C Manufacture of machinery and equipment C28 
Huaxiang 272 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
JAC 770 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
Joyson 623 Manufacturing C Manufacture of electrical equipment C27 
Kangde 951 Construction F Construction of buildings F41 
Keda 556 Information and communication J Information service activities J63 
Kelun 960 Manufacturing C Manufacture of pharmaceuticals, medicinal chemical and botanical products C21 
Kingenta 283 Manufacturing C Manufacture of chemicals and chemical products C20 
Kingfa 1782 Manufacturing C Manufacture of chemicals and chemical products C20 
Lenovo 21353 Manufacturing C Manufacture of computer, electronic and optical products C26 
Lepu 339 Manufacturing C Other manufacturing C32 
Linglong 345 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
Lingyi 79 Manufacturing C Manufacture of fabricated metal products, except machinery and equipment C25 

Liugong 1865 Manufacturing C Manufacture of machinery and equipment C28 
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Longsheng 753 Manufacturing C Manufacture of chemicals and chemical products C20 
Luthai 422 Manufacturing C Manufacture of textiles C13 
Luxi 345 Manufacturing C Manufacture of chemicals and chemical products C20 
Luxshare 404 Manufacturing C Manufacture of electrical equipment C27 
Luye 209 Manufacturing C Manufacture of pharmaceuticals, medicinal chemical and botanical products C21 
Origin 138 Water suppl, sewerage, waste management  E Water collection, treatment and supply E36 
Sanhua 625 Manufacturing C Manufacture of machinery and equipment C28 
Sumec 217 Manufacturing C Manufacture of machinery and equipment C28 
Suning 957 Information and communication J Computer programming, consultancy and related activities J62 
Tencent 2166 Information and communication J Computer programming, consultancy and related activities J62 
Wanhua 875 Manufacturing C Manufacture of chemicals and chemical products C20 
XCMG 3258 Manufacturing C Manufacture of machinery and equipment C28 
Yuhong 625 Manufacturing C Manufacture of chemicals and chemical products C20 
Zhongding 779 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
Zhongwang 134 Manufacturing C Manufacture of fabricated metal products, except machinery and equipment C25 
Zotye 542 Manufacturing C Manufacture of motor vehicles, trailers and semi-trailers C29 
ZTE 47512 Information and communication J Telecommunications J61 
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Chapter 2:  MNES’ OVERSEAS INNOVATION PERFORMANCE: THE ROLE OF DUAL 

EMBEDDEDNESS5 

2.1 INTRODUCTION 

In today's rapidly evolving landscape of innovation and technology, the globalization of R&D 

has emerged as an important trend. MNEs are increasingly expanding their R&D activities 

beyond borders, driven by the compelling need to tap into global knowledge and talent pools. 

R&D globalization enhances their innovation capabilities and ensures their competitive edge 

in a highly dynamic market (Ernst & Kim, 2002). It is particularly noteworthy for MNEs from 

emerging markets. These companies often rely on knowledge acquisition from developed 

nations as a strategic tool for bridging the gap with established industrial incumbents 

(Verbeke, 2009). This knowledge transfer plays a pivotal role in accelerating their 

technological progress and innovation capabilities. Overseas R&D units set up by these MNEs 

serve as bridgeheads in sourcing knowledge from foreign countries (Wang et al., 2018).  

However, knowledge sourcing in foreign environments faces challenges. These difficulties 

include profound cultural differences, which can impede effective communication and 

collaboration, as well as coordination problems among geographically dispersed R&D 

locations (Westney, 2001) and the barriers set up by local incumbents (Cantwell & Mudambi, 

2011). To overcome these complex obstacles and make the most of the newly acquired 

knowledge, MNEs must configure their internal and external networks. Scholars have termed 

this configuration as "dual embeddedness" (Figueiredo, 2011), highlighting the need for MNEs 

to establish connections within their organizations and with external partners to optimize 

their innovation. While the dual embeddedness of MNEs has frequently been explored at the 

company level and mainly based on case studies, there remains a need for further research 

based on large datasets of MNEs and exploiting micro data on individual inventors as they 

                                                      

5 The first draft of this work has been presented at 18th Conference of the International Joseph Schumpeter 
Society, July 8-10, 2021, Rome. 
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serve as the central components of overseas R&D units and function as the fundamental 

entities in R&D activities (Blomkvist et al. ,2014).  

Thus, the aim of this chapter is to better understand the mechanisms behind the innovation 

process of MNEs’ overseas research units through the lens of their inventors by investigating 

1) the respective impact of their embeddedness in external and internal co-inventor networks 

and 2) their interplay on innovation. The innovation performance is assessed in two ways: the 

productivity of inventors and the degree of novelty of the patents they invent, as an indicator 

of exploration of new technologies. Corresponding to these assessments, the analysis is 

carried out at the inventor level. The contribution is theoretical as well as empirical. From a 

theoretical point of view, it applies network theory to the literature on MNEs' R&D 

globalization. Network analysis serves as an appropriate way to capture the detail of overseas 

research units' activities and better understand the interplay between external knowledge 

sourcing and internal embeddedness quantitatively. Embeddedness is assessed through 

structural and relational indicators. Structural factors are measured through degree centrality 

and ego betweenness centrality. They provide a direct view of inventors’ position in the 

external and internal environment, while relational factors measured through tie strength 

describe the role of reciprocal exchanges with partners. 

From an empirical point of view, it exploits an original dataset based on patent data. It enables 

the construction of a detailed network of inventors in overseas research units set up by 

Chinese MNEs worldwide and within their corporations. As most of the existing literature 

focuses on the relation between dual embeddedness and innovation at a company level, this 

chapter contributes to the understanding of the micro-foundations of innovation activity in 

foreign environments. The whole network of these inventors and their collaborators is 

constructed using co-inventor relationships in patent applications to calculate variables 

concerning external and internal embeddedness.  

The findings are twofold. First, the productivity and novelty of technologies produced within 

overseas research units are explained by intra-firm relationships. These results confirm the 

results of previous literature, such as the positive impact of internal relational embeddedness 

on innovation output and the inverted U-shaped relationship between external structural 
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embeddedness and the level of innovation. Second, external partnerships have rather a 

negative impact, except for novelty, where external structural embeddedness as inverted U-

shaped. Third, the reverse effects of dual embeddedness as the interaction of dual 

embeddedness have a competing impact on the exploration of new technology.  

The chapter is organized as follows. The next section presents a review of the literature and 

the hypothesis to be tested. Section 3 describes the data, variables, and empirical 

methodology employed in the empirical analysis. The results are presented in Section 4, and 

the final section concludes and discusses the study's implications and limitations. 

 

2.2 THEORETICAL BACKGROUND AND HYPOTHESES  

2.2.1 R&D globalization  

Innovation can be regarded as a problem-solving process in which solutions to problems are 

discovered through knowledge search (Choi et al., 2018). Accumulation of knowledge 

enhances companies’ ability to develop new ideas and convert their knowledge base into 

further innovations (Cohen & Levinthal, 1990). Nevertheless, a large proportion of knowledge 

is locally embedded (Asheim, 1999). Overseas knowledge-seeking is identified as a general 

motivation for R&D globalization (Kuemmerle, 1997; Cantwell & Mudambi, 2005; Shu & 

Steinwender, 2018). MNEs tend to acquire foreign knowledge that does not exist in their home 

country's knowledge base by tapping into the local knowledge pool (Kuemmerle, 1999). 

Meyer et al. (2009) emphasize that the institutional framework of the host country alters 

MNEs' R&D globalization patterns. Unit size (Kuemmerle, 1998), geographical distance 

(Shimizutani & Todo, 2008; Nepelski & De Prato, 2015), and cultural proximity also serve as 

crucial determinants of R&D globalization (Shimizutani & Todo, 2008). According to Singh 

(2007), MNEs’ knowledge-seeking activities stimulate the productivity growth of home 

countries.  

In recent years, MNEs from emerging markets (EM) such as China, India, Brazil, Russia, and 

Vietnam evolved in the trend of R&D globalization. These new players gradually aroused the 
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interest of researchers. Cross-border knowledge sourcing activities are especially important 

for these MNEs, as knowledge acquired from developed countries helps them to shorten the 

distance from industrial incumbents (Verbeke, 2009). Some determinants of EM MNEs’ R&D 

globalization differ from MNEs of developed countries. For example, cultural proximity and 

geographical distance are not significant determinants for EM MNEs' decisions regarding R&D 

globalization (Wang et al., 2018). 

MNEs set up overseas research units to take advantage of specific knowledge in different 

locations (Meyer et al., 2009). Concerning this knowledge seeking purpose, Kuemmerle (1999) 

suggests that overseas subsidiaries are more likely to be involved in capability-augmenting 

(explorative) R&D activities in host countries with a relatively higher knowledge level. 

Explorative units take advantage of the resources in host countries (Meyer et al., 2009) to 

augment parent companies' technological competencies (Cantwell & Mudambi, 2005). They 

engage in basic or applied research and obtain knowledge from host countries to enlarge the 

existing knowledge base (Shimizutani & Todo, 2008). They are usually vertically integrated 

with less control from headquarters (Davis et al., 2000). MNEs favor acquisition as a rapid way 

of setting up explorative R&D units (Anderson & Sutherland, 2015). 

Frost (2001) confirms that patterns of R&D globalization are closely related to the age of 

overseas units. Older units are more likely to conduct explorative activities in host countries 

because knowledge exchange between partners largely depends on reciprocal trust, which 

requires time-consuming interactions. Meanwhile, according to Nepelski and DePrato (2015), 

the knowledge level of host countries does not seem to significantly impact MNEs' choice of 

setting up explorative units in the case of China, as Chinese MNEs also emerge in the South-

south technology transfer network.  

Cantwell and Mudambi (2011) reveal that it is difficult for MNEs to build local network 

connections in foreign environments when there exist powerful established domestic 

incumbents, which create a barrier to knowledge sourcing. Thus, it is common for these 

“Latecomers” from emerging markets to use acquisitions as springboards to shorten the 

distance with industry incumbents. The self-built or so-called "Greenfield" model is another 

choice for EM MNEs, not only to acquire foreign strategic assets but also to adapt their specific 
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advantages to local markets (Anderson & Sutherland, 2015). Besides these two entry modes, 

collaboration with local research institutes and companies is also utilized, as shown in the 

description of the database presented in Chapter 1. 

2.2.2 Dual embeddedness of overseas inventors  

The process of recombination, in which firms integrate new knowledge with existing ones in 

original ways, is an important source of innovation (Davis & Eisenhardt, 2011). Adapting this 

concept to the case of MNEs, the outcomes of their innovation activities often depend on the 

integration of novel knowledge sourced in foreign environments outside MNEs as well as the 

utilization of knowledge inside MNEs. The overseas research units and the inventors within 

them are embedded in the organization's internal and external networks for knowledge 

sourcing and integration. Several studies explore both internal and external aspects of MNEs’ 

knowledge sourcing and integration from a social network perspective and describe the 

involvement of MNEs in both two aspects as “dual embeddedness” (Figueiredo, 2011; 

Athreye et al., 2016; Ferraris et al., 2020).  

But as Blomkvist et al. (2014) suggest, the variation of innovation contributions made by 

individual inventors of MNEs’ foreign units remains largely unexplored. Castellani et al. (2022) 

also note the fact that the current understanding of the role of individual-level factors in intra-

firm knowledge transfer and integration is limited. This is the same case for dual 

embeddedness literature. Both internal and external embeddedness at the organizational 

level have been proven to have a profound impact on innovation, respectively. Meanwhile, 

the impact of inventor-level dual embeddedness on their innovation performance has rarely 

aroused the attention of researchers. 

As described in social learning theory, knowledge is largely created through interactions 

between individuals (Noorderhaven & Harzing, 2009). Furthermore, Inkpen and Tsang (2005) 

distinguish several types of internal and external networks, such as intra-corporate networks, 

strategic alliances, trade associations and industrial districts. They emphasize the importance 

of individuals’ roles in the knowledge transfer process through these networks as well as the 

fact that the individual and organizational level factors are intertwined. Thus, it is necessary 
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to explore the micro-foundations of individual-level dual embeddedness and its impact on 

innovation. 

2.2.2.1 The concept of embeddedness  

The term “embeddedness” was first coined by Karl Polanyi to describe the phenomenon that 

economic activities are tightly related to non-economic institutions such as political, cultural, 

and religious institutions (Beckert, 2009). Granovetter (1985) introduces the concept of 

“embeddedness” in a new economic sociology context. According to his definition, 

embeddedness refers to the fact that economic actions and outcomes are affected by actors' 

interpersonal relations and the structure of the network of these relations. He uses 

embeddedness in social networks as an explanation of most market orders and disorders. 

Previous researchers have identified different dimensions of embeddedness: structural, 

relational, cultural, political, and cognitive (Zukin & DiMaggio, 1990).  

Economic and management literature emphasizes the distinction between structural and 

relational embeddedness. The structural dimension of embeddedness is generated by 

complex network structures composed of multiple dyadic or triadic relationships (Uzzi, 1996). 

Nahapiet and Ghoshal (1998) describe structural embeddedness as “the impersonal 

configuration of linkages between people or units” and concerns the social system's 

properties and the whole network of relations. It includes network features such as 

connectivity, centrality, density, and hierarchy (Moran, 2005; Yan et al., 2019). The relational 

dimension of embeddedness denotes relationships people have developed through a history 

of interactions with each other (Nahapiet & Ghoshal, 1998; Kim, 2014). Contrary to the 

structural dimension, relational embeddedness concerns the content and quality of ties or 

what happens within (namely, dyads or dyadic relationships) relationships. Interpersonal trust 

and trustworthiness, overlapping identities, and feelings of closeness are regarded as crucial 

factors of relational embeddedness (Moran, 2005). 

Following a description of the concept of embeddedness and its different dimensions, the 

ensuing discussion will explore the influence of dual embeddedness on innovation activities. 
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2.2.2.2 External embeddedness and knowledge sourcing   

External embeddedness denotes the position of overseas research units and the inventors 

within them in the network of external partners and their relationship with them. Embedded 

in an external local environment enables inventors to have better and more frequent 

interaction with local peers to source the specific knowledge in this environment and gain an 

understanding of the potential usage of the knowledge acquired (Hohberger & Wilden, 2022). 

Previous organizational-level studies confirm the role of structural external embeddedness; 

overseas research units externally embedded in their local network may occupy positions that 

enable them to access external partners’ knowledge base (Figueiredo, 2011) and approach 

local players for critical information to develop a new learning process (Kim, 2014). The central 

position also guarantees tighter linkages with possible consumers who may trigger new 

innovative ideas (Mazzola & Kamuriwo, 2015). Van der Wouden and Rigby (2019) suggest that 

individuals embedded in knowledge-specialized cities with higher inventor density are likely 

to have a higher innovation outcome measured by the number of patents.  

On the other hand, external relationships suppose high resources and coordination costs that 

are even higher when collaborations occur abroad due to distances in language and culture 

(Boschma, 2005). Collaboration may increase the breadth of knowledge sourcing, which 

increases the opportunities for exploration, but as the process of innovation and knowledge 

integration may be longer, it may as well have a negative impact on innovation level and 

exploration, at least in the short run.  

External relational embeddedness helps to reduce partners’ opportunistic behavior and 

lower the risk of knowledge leakages. Ebers and Maurer (2014) mention that relational 

embeddedness related to trust and reciprocity motivates partners to invest their energy and 

efforts in the knowledge exchange process, which facilitates innovation outcomes. In Inkpen 

and Tsang’s (2005) discussion on external networks, individual-level relational trust is 

highlighted as a crucial factor in the process of knowledge exchange. 
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Nevertheless, external over-embeddedness may undermine actors’ efforts in pursuing 

innovation development. When reaching a certain threshold, repetitive interactions with 

partners limit the search scope of external knowledge and decrease the new knowledge a unit 

may acquire (Haans et al., 2016). Furthermore, overwhelmed external knowledge sometimes 

leads to technical isolation (Monteiro et al., 2008), which leads to insufficient exploitation of 

internal resources. These disadvantages eventually diminish the possibility of innovation. As 

mentioned in section 2.1, one of the main purposes of the overseas research units is the 

exploration of new knowledge in foreign countries. It is likely that inventors in these units 

engage in the explorative activities. Thus, besides the overall level of innovation, it is also 

meaningful to test the impact of external embeddedness on the inventors’ exploration of new 

knowledge. Thus, the first hypothesis is as follows: 

H1: External embeddedness has an inverted U-shape impact on MNEs’ overseas inventors’ 

innovation productivity and exploration of new knowledge. 

2.2.2.3  Internal embeddedness and knowledge integration  

Internal embeddedness denotes the overseas research units and inventors’ position inside the 

home company’s own network, relationship with headquarters and other corporate units.  

Ciabuschi et al. (2017) confirm that highly internally embedded research units may occupy 

essential strategic positions in the network and can gain more access to knowledge flows that 

positively affect the innovation outcome. This can be explained by literature evidence 

concerning the structural dimension of embeddedness. Actors with a central position in the 

whole network structure can acquire three essential benefits that positively impact 

innovation: knowledge gathering, knowledge accumulation, and scale (Ahuja, 2000). 

Birkinshaw and Hood (1998) suggest that intra-corporate competition within organizations 

requires subsidiaries to compete for necessary resources for development. Thus, units with 

forth mentioned position are more likely to win out in this sort of intra-MNE competition. 

Paruchuri and Awate (2016) conducts an individual-level empirical study and confirms that 

inventors’ network reach in the internal network increases the depth and reach of local 

knowledge search, which may positively influence the innovation outcome. 
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Inventors can gain access to internal knowledge through their personal ties. The relation 

dimension of embeddedness plays an essential role in this sort of informal knowledge 

exchange. The ties between individuals enhance the knowledge exchange initiated at the 

organizational level (Inkpen and Tsang, 2005). From a relational point of view, high internal 

embeddedness suggests the existence of strong relational ties between the inventors and 

their colleagues inside the MNE. These strong ties facilitate the exchange of high-quality 

information and tacit knowledge (Uzzi, 1996) with internal partners. Relational embeddedness 

inside organizations can also increase knowledge-absorptive ability (Maurer, 2014), which 

facilitates the integration of the new knowledge sourced externally for the creation of 

innovation.  

Consequently, high internal embeddedness is essential for inventors to benefit from 

knowledge flows from various parts of the MNE and absorb them effectively through solid ties 

in the network, leading to better exploration of new knowledge and innovation productivity. 

Thus, the second hypothesis is: 

H2: Internal embeddedness has a positive effect on MNEs’ overseas inventors’ innovation 

productivity and exploration of new knowledge. 

The interplay between the internal and external embeddedness of MNEs in foreign 

environments is still under debate. Internal embeddedness particularly increases the 

absorptive capacity of externally acquired knowledge by enhancing the information exchange 

between various units (Gölgeci et al., 2019). It thus helps moderate the technological isolation 

that may occur in the external knowledge-sourcing process. Ferraris et al.’s (2018) study on 

internal and external embeddedness from a relational aspect also confirms this view. 

However, on the other hand, it is evident that both aspects require high coordination costs; 

thus, as Yamin and Andersson (2011) propose, the internal and external embeddedness 

possibly have a competing effect on their product development activities. The investment in 

one aspect may limit the development in the other. The third hypothesis tests whether the 

interplay of dual embeddedness has a negative effect on individual-level innovation.  
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H3: Interaction between external and internal embeddedness has a negative impact on 

MNEs’ overseas inventors’ innovation productivity and exploration of new knowledge.  

 

2.3 METHOD 

2.3.1 Data 

The innovation process of overseas research units is investigated through the lens of their 

inventors. As the first step of this study, an original dataset of Chinese MNEs' patent 

application information is constructed. After examining the ranking of the 2018 top 500 

Chinese enterprises by Fortunechina.com and the 2019 OECD scoreboard of the top 2000 

global corporate R&D investors6, Chinese MNEs with overseas R&D units are identified via 

various sources (annual reports, news, investment reports, etc.). At this stage, a total of 173 

units set up by 63 enterprises in 27 countries worldwide are recorded. Their patent 

applications at various patent offices are extracted from the Lens database 7. Finally, the 

database comprises 10,564 patent applications from 100 units of 51 MNEs that are 

consolidated at the patent family level to avoid redundant issues. The analysis period is 2010-

2019, during which Chinese MNEs experienced a solid global expansion. Based on patent 

application information, an inventor list is made for each overseas research unit, including 

their patent application details, co-inventor names, and available location information. 

Inventor names are disambiguated and attributed to their proper units8. A more detailed 

description of the database and the process of construction is provided in Chapter 1. 

 

                                                      

6 the JRC/OECD COR&DIP©  database, v.2. 2019 
7 Lens.org 
8 Inventor names are disambiguated with the Fuzzywuzzy string matching package in Python, which uses 
Levenshtein Distance to calculate the differences between sequences. 
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2.3.2 Network construction 

In the database, three groups of inventors are distinguished: 1. Inventors located in Chinese 

MNEs’ overseas research units; 2. Inventors located in Chinese MNEs’ headquarters or 

divisions within China; 3. Inventors from MNEs’ external partners. Making use of this setting, 

the overall network of each MNE is built and two subsamples are extracted. The internal 

network focuses MNE’s inventors whether they are in China or in overseas research units. The 

external network focuses on MNE’s inventors and their external partnerships. Once these 

networks are built, the analysis focuses exclusively on inventors within overseas research units 

and extracts their ego-network to characterize their position and relationships within the MNE 

(internal) and outside the MNE (external). The construction of networks and variables is 

realized using Igraph package in R program. The internal and external networks enable the 

calculation of various network variables, which is mentioned in the following section. 

2.3.3 Variables 

The aim of this chapter is to study the innovation process of MNEs’ overseas research units by 

exploring how their inventors’ source and produce new knowledge through their 

embeddedness in coinventor collaborations within their home companies and with external 

partners.  

2.3.3.1 Dependent variables 

Two dependent variables are considered to characterize innovation performance at the 

inventor level within research units. First, inventor productivity is the yearly number of patent 

applications of an inventor. This variable highlights her innovative activity. Second, inventor 

technological novelty computes for each inventor and year the number of new 4-digit IPC 

classes that are new to the firm technological portfolio. It measures inventors’ exploration of 

new knowledge.  
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2.3.3.2 Independent variables 

The position of inventors within networks is assessed through structural and relational 

embeddedness.  

Structural embeddedness refers to the configuration of linkages between people or units 

(Nahapiet & Ghoshal, 1998) generated by complex network structures (Uzzi, 1996). Here, 

structural embeddedness is proxied by two indicators, namely, standardized ego betweenness 

centrality and degree centrality. Betweenness centrality “calculates how many times an actor 

sits on the geodesic (i.e. the shortest path) linking two other actors together” (Prell, 2012 

P.114). Here, I focus on the ego network betweenness at the inventor level instead of the 

whole company network. Degree centrality is also used as an alternative measure of structural 

embeddedness measured at the inventor level. Degree centrality is simply the number of 

direct co-inventors. Both variables are computed for both internal and external networks. This 

means that I consider the ego subnetwork of the inventor and her relationships with inventors 

outside the unit but within the firm (internal ties) and the ego subnetwork of the inventor and 

its relationship with inventors outside the unit and outside the firm (external ties).  

Relational embeddedness can be regarded as relationships developed through a history of 

interactions with each other (Nahapiet & Ghoshal, 1998) and concerns the content and quality 

of ties (Moran, 2005). Thus, relational embeddedness is measured as RE=∑ δki
n
k=1 𝑛⁄  where 𝑛 

is the number of unique co-inventors of inventor 𝑖 and δki is the total number of patents co-

invented by inventor 𝑘 and 𝑖 during the five prior years before the focal year t. This indicator 

measures the inventors’ propensity to co-invent patents with their co-inventors (Yan et al. 

2019). It is again computed based on the internal network, that is, the relationship of research 

unit inventors and firm inventors, and the external network, that is, the relationship of 

research unit inventors with extra-firm inventors.  

An additional variable Inventor external ties (0/1) is introduced to test the general impact of 

external ties, not considering its characteristics in terms of structural or relational 

embeddedness. It takes value 1 if the inventor has at least one external co-inventor over the 

past five years and zero otherwise.  
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Table 2.1 Description of variables  
Dependent variables  

Inventor productivity (# of patents) 
Number of patents per year and per unit inventor. It is a proxy for inventor 
productivity 

New technologies (4-digit IPC 
codes) 

Number of new technologies introduced in the MNE’s technology patent portfolio by 
the unit inventor  

Variables of interest  

Inventor external ties (0/1) 
Takes value 1 if the unit inventor has external ties, that is, direct collaborations with 
inventors outside the home company during the 5 years before the invention (= 5 
previous years) 

Structural embeddeness   

Internal Degree centrality 
Degree centrality (= number of direct co-inventors) of the unit inventor with 
inventors located in the home company during the 5 previous years 

External Degree centrality 
Degree centrality (= number of direct co-inventors) of the unit inventor with 
inventors located outside the home company during the 5 previous years 

Internal ego betweeness 

Standardized internal ego betweeness during the 5 previous years – it is the ego 
betweenness centrality of the unit inventor with inventors within the home company 
standardized by the number of inventors in his ego network (Everett and Borgatti, 
2005). It is an indicator of inventor centrality as it lies on many geodesics.  
Standardized Betweeness centrality = 2*Betweeness centrality/[(n-1)(n-2)], n is the 
size of the ego-network 

Internal ego betweeness 
Standardized external ego betweeness during the 5 previous years – it is the ego 
betweenness centrality of the unit inventor with inventors outside the home 
company standardized by the number of inventors in his ego network 

Relational embeddedness  

Internal Relational embeddedness 
Internal relational embeddedness is calculated as the total number of patents co-
inventors by inventors I and co-inventor k during the five-previous years and divided 
by the total number of coinventors 𝑅𝐸𝑖 =  ∑ 𝛿𝑖𝑘

𝑛
𝑘=1 𝑛⁄  

External Relational embeddedness External relational embeddedness  
 
Control variables  
Inventor experience The number of patents invented by the inventor during the 5 previous years 
Research unit # of inventors The number of inventors within the unit 
Company # of patents (MNE) The size of the home company patent portfolio 
Company # of inventors (MNE) The number of inventors in the home company 
# of research units (MNE)  The MNE’s number of units all over the world 

 

2.3.3.3 Control variables  

Several control variables are introduced to control for the level and characteristics of the 

inventive activity at the inventor, research unit, and firm level. At the inventor level, the first 

control variable is Inventor experience, which refers to the inventor’s number of past patent 

applications over the five prior years. No external network is also introduced to account for 

the fact that variables characterizing the external network of the inventor take a value 0 when 

the inventor has no external co-inventors. In this case, it takes values 1 and 0 otherwise.  
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At the research unit level, the inventive activity is controlled by Research unit # of inventors, 

which is the number of inventors within the unit in which the inventor is involved. At the MNE 

level, three controls are introduced. Company # of patents refers to the number of patent 

applications of the given MNE for the past five years. Company # of inventors represents the 

number of inventors of the given MNE in the past five years. Company # of units is also 

included to control the MNE’s openness and the geographical dispersion within the firm.  

For regressions, the natural log is used for continuous variables to reduce dispersion except 

betweenness centrality, which is between 0 and 1.  

2.3.4 Model 

The analysis of the relationship between innovation and dual embeddedness uses fixed effects 

to control for unobserved heterogeneity, which may affect the empirical results. I regress 

inventors’ performance on indicators of internal and external embeddedness as well as 

several control variables at the inventor, firm, and research unit levels.  

At the inventor level, the estimated model is: 

lnyitTcF = αlnIEit + βlnEEit + γlnIEit × lnIEit + θControlsitcF + δi + δt + δT +εitTcF 

IE is internal embeddedness; EE is external embeddedness.  

𝑖 is the inventor, 𝑡 stands for year, 𝑇 is the technology, 𝑐 is the research unit and 𝐹 is the firm.  

𝛿𝑖, 𝛿𝑡 , 𝛿𝑇 represent respectively a set of fixed effects at the inventor, year, and technology level. 

Errors are clustered at the inventor and research unit level to control mainly for correlations 

in performance within research units. 

2.3.5 Descriptive statistics 

Table 2.2 details the distribution of inventors, research units, and MNE firms in the final 

sample across industries. This final sample focuses on inventors within research units that 

have at least two patents over the period [t-5;t] in order to be able to build network variables 

over [t-5; t-1] and relate it to their patenting activity in year t. Most MNEs in the sample 
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concentrate on two industries: Manufacturing and information and communication. 

Industries are further broken down into disaggregated sectors. The number of inventors and 

overseas research units from MNEs specializing in the manufacturing of electrical equipment, 

as well as the production of motor vehicles, trailers, and semi-trailers, outpaces that of other 

sectors. Table 2.9 in the appendix describes research units through time. Most MNEs have a 

few units, and the time gives additional information on units, the first year and last year, and 

the number of years for which application data are available.   

As the aim is to study the impact of internal versus external embeddedness, this chapter will 

focus analysis only on manufacturing MNEs that have both internal and external ties 

compared to the other industries in which they are nearly absent.   

 

Table 2.3 provides descriptive statistics for the main variables of interest for internal and 

external embeddedness and the size of the ego network of inventors in overseas research 

units. The table shows a highly skewed distribution for the external ego network size as well 

Table 2.2 Inventors, R&D units and firms across Economic activities (ISIC Rev.4 sections)  
     
Industry Sectors (Agregated) # inventors # units # firms 

F Construction 3 1 1 
J Information and communication 222 12 6 
C Manufacturing 721 69 38 
B Mining and quarrying 4 1 1 
E Water supply; sewerage, waste management and remediation activities 2 1 1 
     
Industry Sectors # inventors # units # firms 

F Construction of buildings 3 1 1 
J Computer programming, consultancy and related activities 18 2 2 
J Information and communication 32 1 1 
J Information service activities 4 1 1 
J Telecommunications 164 7 1 
C  Manufacture of chemicals and chemical products 73 7 6 
C Manufacture of computer, electronic and optical products 111 9 3 
C Manufacture of electrical equipment 300 11 6 
C Manufacture of fabricated metal products, except machinery and equipment 1 1 1 
C Manufacture of food products 8 3 2 
C Manufacture of machinery and equipment 65 12 5 
C Manufacture of motor vehicles, trailers and semi-trailers 214 14 8 
C Manufacture of other transport equipment 96 7 2 
C Manufacture of pharmaceuticals, medicinal chemical and botanical products 57 4 4 
C Manufacture of textiles 5 1 1 
C Other manufacturing 9 1 1 
B  Extraction of crude petroleum and natural gas 4 1 1 
E Water collection, treatment and supply 2 1 1 
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as associated external structural variables. This means that most inventors have no extra-firm 

relationships, and only a small portion, which represents 25% of the observations, have extra-

firm networks and some of them have rather large external ego network sizes. The rest of the 

table shows the same distribution for information and communication as well as 

manufacturing industries. The result highlights that the skewness of external networks is even 

larger for Information and Communication, where very few of the inventors have extra-firm 

ties in contrast with manufacturing, for which the distribution is nevertheless very skewed.  

Table 2.3 Descriptive statistics for the main variable of interest 
Variables Mean P25 Median P75 P95 P99 Min Max 

Whole sample – 6 521 observations 
Internal ego network size 145.52 21.00 66.00 193.00 558.50 966.00 2.00 2253.00 
External ego network size 3.02 0.00 0.00 0.00 13.00 89.00 0.00 158.00 
Internal Degree centrality 19.28 5.00 11.00 24.00 59.00 120.00 1.00 590.00 
External Degree centrality 0.86 0.00 0.00 0.00 6.00 22.00 0.00 72.00 
Internal ego betweenness 0.20 0.00 0.10 0.37 0.67 0.79 0.00 1.00 
External ego betweenness 0.01 0.00 0.00 0.00 0.00 0.38 0.00 0.75 
Internal Relational embeddedness 1.09 0.77 0.99 1.29 1.92 2.51 0.00 3.36 
External Relational embeddedness 0.08 0.00 0.00 0.00 0.69 1.83 0.00 2.53 

 
Information and communication – 1 352 observations 
Internal ego network size 176.66 25.00 109.00 268.00 582.00 677.00 2.00 802.00 
External ego network size 0.06 0.00 0.00 0.00 0.00 0.00 0.00 27.00 
Internal Degree centrality 20.95 6.00 13.00 31.00 62.00 85.00 1.00 96.00 
External Degree centrality 0.04 0.00 0.00 0.00 0.00 0.00 0.00 9.00 
Internal ego betweenness 0.35 0.02 0.37 0.59 0.77 0.83 0.00 1.00 
External ego betweenness 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 
Internal Relational embeddedness 1.03 0.73 0.88 1.10 1.95 2.76 0.69 3.36 
External Relational embeddedness 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.39 

 
Manufacturing – 5 134 observations 
Internal ego network size 138.14 21.00 60.00 165.00 556.00 1005.00 2.00 2253.00 
External ego network size 3.90 0.00 0.00 0.00 23.00 99.00 0.00 158.00 
Internal Degree centrality 18.97 5.00 11.00 22.00 59.00 131.00 1.00 590.00 
External Degree centrality 1.09 0.00 0.00 0.00 8.00 23.00 0.00 72.00 
Internal ego betweenness 0.17 0.00 0.07 0.29 0.60 0.75 0.00 1.00 
External ego betweenness 0.01 0.00 0.00 0.00 0.01 0.41 0.00 0.75 
Internal Relational embeddedness 1.11 0.79 1.03 1.32 1.92 2.46 0.00 2.91 
External Relational embeddedness 0.10 0.00 0.00 0.00 1.01 1.90 0.00 2.53 

 

Table 2.4 presents descriptive statistics for the inventors of the 69 units and 38 firms in the 

manufacturing sector. The final sample includes 4,873 observations. The inventor’s 

productivity stands at 4.54, with a relatively high standard deviation of 7.48, indicating 

considerable variation in patent output across inventors. The introduction of new 

technologies has a mean value of 0.40 and a standard deviation of 0.98, signifying variations 
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in the adoption of new knowledge. When examining the presence of inventor external ties 

(0/1), it is evident that, on average, a relatively low percentage of inventors have external 

collaborations. This variable has a mean of 0.08 and a standard deviation of 0.27. The internal 

and external structural embeddedness of inventors measured by degree centrality has a mean 

of 19.63 and 1.12, with a high variation among inventors. Internal structural embeddedness 

measured by ego betweenness has a mean of 0.17, whereas the external aspect has a much 

lower mean of 0.01. In terms of relational embeddedness, internal relational embeddedness 

has a mean of 1.13, and external relational embeddedness has a lower mean of 0.11, once 

again indicating differences in inventors’ internal and external collaborations. The control 

variables, including inventor experience, unit and company characteristics, and geographic 

presence of units, also exhibit variability across the inventors and MNEs.  

 

Table 2.4 Descriptive statistics – Manufacturing industry 

 Mean S.D  Min Max 
Dependent variables  
Inventor productivity (# of patents) 4.54 7.48 1.00 158.00 
New technologies (4-digit IPC codes) 0.40 0.98 0.00 9.00 
 
Variables of interest  
Inventor external ties (0/1) 0.08 0.27 0.00 1.00 
Structural embeddedness      
Internal Degree centrality 19.63 32.39 1.00 590.00 
External Degree centrality 1.12 4.68 0.00 72.00 
Internal ego betweenness 0.17 0.21 0.00 1.00 
Internal ego betweenness 0.01 0.07 0.00 0.75 
Relational embeddedness     
Internal Relational embeddedness 1.13 0.40 0.41 2.91 
External Relational embeddedness 0.11 0.39 0.00 2.53 
 
Control variables  
Inventor experience 1.11 1.09 0.00 5.43 
Unit # of inventors 4.02 1.19 0.69 5.59 
Company # of patents (MNE) 6.77 1.66 0.00 9.37 
Company # of inventors (MNE) 6.77 1.28 1.61 8.61 
# of research units (MNE)  3.91 1.17 1.10 5.58 

Observations 4873    
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2.4 RESULTS 

Table 2.5. provides a regression of internal and external embeddedness on inventor 

productivity measured by the number of patents. Here, the structural aspect of 

embeddedness is measured by the degree centrality. It appears that research units mainly 

benefit from the relationship of their inventors with their home company counterparts. 

Regarding their external ties, the coefficient is negative and highly significant, meaning that 

extra-firm ties reduce inventor productivity.  

Table 2.5 Impact of dual embeddedness on inventor productivity 
 # patents 

 (1) (2) (3) (4) (5) 
Inventor external ties (0/1) -0.222*** -0.199***    
 [0.073] [0.070]    
Internal Degree centrality -0.089 0.309*** 0.308*** 0.318*** 0.306*** 
 [0.126] [0.042] [0.042] [0.043] [0.043] 
Internal Degree centrality square 0.080***     
 [0.024]     
Internal Relational embeddedness 1.222*** 1.175*** 1.243*** 0.908*** 1.242*** 
 [0.204] [0.203] [0.202] [0.065] [0.199] 
Internal Relational embeddedness square -0.121+ -0.107 -0.125+  -0.118+ 
 [0.068] [0.065] [0.066]  [0.065] 
External Degree centrality   0.534 -0.019 -0.140 
   [0.459] [0.097] [0.085] 
External Degree centrality square   -0.116   
   [0.099]   
External Relational embeddedness   -1.619*** -1.551*** -1.512*** 
   [0.473] [0.478] [0.458] 
External Relational embeddedness square   0.470*** 0.436** 0.477** 
   [0.161] [0.166] [0.182] 
Internal Degree centrality # External Degree centrality     0.024 
     [0.026] 
Internal Relational embeddedness # External Relational embeddedness     -0.090 
     [0.104] 
Inventor experience -0.140*** -0.128*** -0.125*** -0.128*** -0.129*** 
 [0.033] [0.033] [0.032] [0.032] [0.033] 
unit # of inventors 0.042 0.022 0.017 0.017 0.022 
 [0.061] [0.062] [0.061] [0.062] [0.061] 
Company # of patents -0.046** -0.032+ -0.025 -0.025 -0.028+ 
 [0.018] [0.017] [0.017] [0.017] [0.017] 
Company # of inventors 0.029 0.029 0.028 0.028 0.028 
 [0.021] [0.020] [0.020] [0.020] [0.020] 
Company # of units 0.070 0.079 0.077 0.077 0.075 
 [0.054] [0.054] [0.053] [0.054] [0.053] 
No external network   -0.406 -0.990*** -1.135*** 
   [0.598] [0.290] [0.291] 
Constant -0.316 -0.769*** -0.424 0.333 0.313 
 [0.274] [0.250] [0.638] [0.397] [0.377] 
Observations 4873 4873 4873 4873 4873 
R-Squared .69 .68 .69 .69 .69 

Structural embeddedness is measured by degree centrality  
711 individual inventors, 69 units and 38 firms 
Inventor, priority year and technology fixed effects – Standard errors are clustered by inventor and unit level. 
+ 0.10 ** 0.05 *** 0.01 
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This may be explained by the fact that collaborations outside the firm imply a lot of 

coordination efforts, and maybe also the collaboration implies high learning efforts that 

reduce the invention at the research unit level. Moreover, if inventors are involved in projects 

with their home company counterparts, they may have more difficulties devoting time and 

effort to external collaborations. The corollary is that external degree centrality is not 

significant. Thus, there is no non-linear impact of structural embeddedness. 

Figure 2.1. illustrates the fact that external ties have a negative impact on patenting. The 

inverted U-shaped hides here the fact that the upward slope only concerns a very marginal 

share of inventors. Within the firm, co-inventor ties explain patenting at the unit level, and 

the fact of having external ties leads to a lower level of patenting.  

 

Figure 2.1. Impact of internal and external embeddedness (Table 2.5.) 

 

  
 
 

Table 2.6 also tests the impact of dual embeddedness on inventor productivity, but this time 

standardized inventor ego network betweenness is used for the measurement of structural 

embeddedness. Results confirm those obtained in Table 2.5. Internal structural 

embeddedness has a positive and highly significant impact on inventor productivity, while 

external structural embeddedness remains non-significant. This is probably due to the same 

reasons explained above. Thus, there is no non-linear impact of external structural 

embeddedness as well. 
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Table 2.6 Impact of dual embeddedness on inventor productivity 

 # patents 

 (1) (2) (3) (4) (5) 
Inventor external ties (0/1) -0.164** -0.163**    
 [0.078] [0.079]    
Internal ego betweenness 0.909*** 0.559*** 0.545*** 0.548*** 0.547*** 
 [0.273] [0.100] [0.100] [0.101] [0.106] 
Internal ego betweenness square -0.570     
 [0.473]     
Internal Relational embeddedness 1.731*** 1.758*** 1.827*** 1.828*** 1.817*** 
 [0.227] [0.227] [0.224] [0.225] [0.226] 
Internal Relational embeddedness square -0.262*** -0.270*** -0.286*** -0.288*** -0.280*** 
 [0.072] [0.073] [0.073] [0.073] [0.074] 
External ego betweenness   1.104 0.154 0.110 
   [1.130] [0.357] [0.562] 
External ego betweenness square   -1.903   
   [2.335]   
External Relational embeddedness   -1.883*** -1.819*** -1.830*** 
   [0.439] [0.465] [0.458] 
External Relational embeddedness square   0.555*** 0.544*** 0.626*** 
   [0.160] [0.164] [0.177] 
Internal ego betweenness # External ego betweenness     0.123 
     [1.481] 
Internal Relational embeddedness # External Relational embeddedness     -0.102 
     [0.122] 
Inventor experience -0.065** -0.062** -0.061** -0.062** -0.062** 
 [0.027] [0.026] [0.026] [0.026] [0.026] 
unit # of inventors -0.024 -0.022 -0.024 -0.024 -0.022 
 [0.052] [0.051] [0.051] [0.051] [0.051] 
Company # of patents -0.024 -0.027 -0.022 -0.021 -0.023 
 [0.017] [0.018] [0.017] [0.017] [0.017] 
Company # of inventors 0.032 0.031 0.030 0.030 0.030 
 [0.020] [0.020] [0.021] [0.021] [0.021] 
Company # of units 0.142*** 0.149*** 0.146*** 0.146*** 0.144*** 
 [0.044] [0.043] [0.042] [0.042] [0.042] 
No external network   -1.130*** -1.101*** -1.143*** 
   [0.297] [0.312] [0.311] 
Constant -0.713*** -0.732*** 0.344 0.310 0.361 
 [0.230] [0.230] [0.352] [0.368] [0.375] 
Observations 4873 4873 4873 4873 4873 
R-Squared .67 .67 .67 .67 .67 

Structural embeddedness is measured by ego betweenness centrality  
711 individual inventors, 69 units and 38 firms 
Inventor, priority year and technology fixed effects – Standard errors are clustered by inventor and unit level. 
+ 0.10 ** 0.05 *** 0.01 

 

Figure 2.2 Impact of internal and external embeddedness (Table 2.6) 
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Figure 2.2 illustrates that it is the co-inventor ties that explain patenting at the inventor level. 

Inventors with a central position measured by ego betweenness centrality are more 

productive. However, as stated before, having external ties reduces inventor productivity. 

Table 2.7 studies the impact of dual embeddedness on the exploration of new knowledge. The 

dependent variable is the number of new technologies, that is, 4-digit IPC codes, introduced 

by research unit inventors in the MNE’s patent portfolio. External ties still have a negative 

impact for the same reasons as those explained previously. That is inventors have a hard time 

relying on their external ties to produced novel technologies.  

This time, internal structural embeddedness measured by degree centrality has a nonlinear 

form, suggesting that only those inventors with many direct co-inventors can produce novel 

technologies. And in a way this result is confirmed in Table 2.8, as inventors with external ego 

network betweenness seem to have an advantage in producing new technologies. The 

interplay between internal structural embeddedness and external collaboration is further 

tested. For inventors with external ties, the internal embeddedness measured by degree 

centrality has an inverted relation with the exploration of new technology, which is illustrated 

in Figure 2.3. Internal relational embeddedness is proven to have an inverted U-shaped 

relation with the exploration of new technology as well.  

It is interesting to notice that among the control variables, the size of the research units and 

MNEs in terms of the number of inventors are positively related to inventors’ exploration of 

new technology, which suggests that inventors are more likely to obtain more internal 

collaborators who are crucial to the exchange of new knowledge within larger R&D units and 

MNEs. However, these factors do not contribute to the inventor’s overall productivity of 

innovation as they are not significant in the regressions. 
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Table 2.7 Impact of dual embeddedness on the number of inventor new technologies 
 # Exploratory 

 (1) (2) (3) (4) (5) 
Inventor external ties (0/1) -0.096+     
 [0.049]     
Internal Degree centrality -0.188*** -0.202*** -0.195*** -0.208*** -0.256*** 
 [0.057] [0.061] [0.058] [0.062] [0.067] 
Internal Degree centrality square 0.045*** 0.048*** 0.047*** 0.049*** 0.057*** 
 [0.011] [0.012] [0.011] [0.012] [0.013] 
Internal Relational embeddedness 0.514*** 0.536*** 0.521*** 0.519*** 0.556*** 
 [0.180] [0.188] [0.179] [0.179] [0.184] 
Internal Relational embeddedness square -0.135** -0.141** -0.135** -0.136** -0.148** 
 [0.063] [0.067] [0.063] [0.063] [0.064] 
External Degree centrality  0.180 -0.012 0.051  
  [0.200] [0.050] [0.067]  
External Degree centrality square  -0.051    
  [0.051]    
External Relational embeddedness  -0.273 -0.065 -0.006  
  [0.334] [0.104] [0.191]  
External Relational embeddedness square  0.070    
  [0.123]    
Internal Degree centrality # External Degree centrality    -0.026  
    [0.019]  
Internal Relational embeddedness # External Relational embeddedness  -0.007  
    [0.076]  
Inventor external ties (0/1)     -1.147*** 
     [0.276] 
Inventor external ties (0/1) # Internal Degree centrality     0.789*** 
     [0.166] 
Inventor external ties (0/1) # Internal Degree centrality square centrality    -0.132*** 
     [0.025] 
Inventor experience -0.052*** -0.052*** -0.052*** -0.050*** -0.048*** 
 [0.015] [0.015] [0.015] [0.015] [0.014] 
unit # of inventors 0.060+ 0.057+ 0.059+ 0.055+ 0.054+ 
 [0.030] [0.031] [0.030] [0.030] [0.031] 
Company # of patents -0.163*** -0.160*** -0.162*** -0.159*** -0.159*** 
 [0.013] [0.013] [0.013] [0.012] [0.011] 
Company # of inventors 0.038*** 0.037*** 0.037*** 0.037*** 0.036*** 
 [0.011] [0.010] [0.010] [0.011] [0.011] 
Company # of units 0.015 0.016 0.015 0.016 0.019 
 [0.026] [0.026] [0.026] [0.026] [0.027] 
Constant 0.589*** 0.581*** 0.589*** 0.589*** 0.633*** 
 [0.136] [0.136] [0.134] [0.134] [0.124] 
Observations 4873 4873 4873 4873 4873 
R-Squared .64 .64 .64 .64 .65 

 

Structural embeddedness is measured by degree centrality  
711 individual inventors, 69 units and 38 firms 
Inventor, priority year and technology fixed effects – Standard errors are clustered by inventor and unit level. 
+ 0.10 ** 0.05 *** 0.01 

 

Figure 2.3 Impact of internal structural embeddedness (Table 2.7) 
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Figure 2.3 illustrates the impact of internal structural embeddedness measured by degree 

centrality on the exploration of new technologies moderated by whether inventors have 

external ties or not. The relationship has a u-shaped for inventors who have no external ties 

but appears to exhibit an inverted U-shape for inventors with external ties. This graph reveals 

the interplay between inventors’ internal and external networks. It confirms the substitution 

effect of internal and external embeddedness on the exploration of new technologies from 

the structural aspect.    

 

In Table 2.8, inventors with external ties are still disadvantaged, however, the variable is only 

moderately significant. Inventors standing in between intra-firm inventors have no benefit in 

producing novel technologies. This is rather surprising. The variable is positive but not 

significant. One possible explanation is that only the most inventive inventors and occupying 

gatekeeping positions can produce novel technologies, as will be seen in the next chapter. In 

contrast, inventors with high external ego network betweenness seem to have an advantage 

in producing new technologies. But this is only the case for a minority of inventors as we know 

that only a small portion of these inventors have extra-firm networks. Thus, it is not the 

number of external co-inventors (degree) that matters but the fact that they occupy some 

specific position in the extra-firm network that are able to gain an advantage and produce 

novel technologies. The result for internal relational embeddedness remains the same as in 

Table 2.7. 

 

Figure 2.4 illustrates the impact of the inventor external structural embeddedness measured 

by standardized ego betweenness centrality on the exploration of new technology. The 

relation exhibits an inverted U-shape, which confirms the fact that though embeddedness in 

the external network positively contributes to the exploration of new technologies, external 

over-embeddedness may lead to technological isolation and hinder the application of new 

technologies. 
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Figure 2.4 Impact of internal and external embeddedness (Table 2.8) 

 
The turning point is 0.26 and concerns the top 1 % of inventors. 

 

Table 2.8 Impact of dual embeddedness on the number of inventor new technologies  
 # Exploratory 

 (1) (2) (3) (4) (5) 
Inventor external ties (0/1) -0.080+ -0.079+    
 [0.047] [0.047]    
Internal ego betweeness 0.111 0.075 0.068 0.068 0.073 
 [0.132] [0.055] [0.054] [0.054] [0.057] 
Internal ego betweeness square -0.059     
 [0.203]     
Internal Relational embeddedness 0.551*** 0.554*** 0.554*** 0.554*** 0.555*** 
 [0.190] [0.190] [0.188] [0.188] [0.190] 
Internal Relational embeddedness square -0.144** -0.145** -0.141** -0.141** -0.142** 
 [0.064] [0.064] [0.064] [0.063] [0.065] 
External ego betweeness   1.544** 1.542** 1.585** 
   [0.721] [0.705] [0.779] 
External ego betweeness square   -2.887** -2.894** -2.744*** 
   [1.115] [1.149] [1.012] 
External Relational embeddedness   -0.131 -0.117*** -0.125 
   [0.134] [0.036] [0.118] 
External Relational embeddedness square    0.008   
   [0.074]   
Internal ego betweeness # External ego betweeness     -0.454 
     [0.915] 
Internal Relational embeddedness # External Relational embeddedness    -0.001 
     [0.072] 
Inventor experience -0.039*** -0.039*** -0.038** -0.037** -0.037** 
 [0.015] [0.015] [0.015] [0.015] [0.015] 
unit # of inventors 0.043 0.043 0.042 0.042 0.041 
 [0.030] [0.030] [0.030] [0.030] [0.029] 
Company # of patents -0.154*** -0.155*** -0.154*** -0.154*** -0.154*** 
 [0.012] [0.012] [0.012] [0.012] [0.012] 
Company # of inventors 0.038*** 0.038*** 0.037*** 0.037*** 0.037*** 
 [0.010] [0.010] [0.010] [0.010] [0.010] 
Company # of units 0.027 0.028 0.027 0.027 0.028 
 [0.026] [0.026] [0.026] [0.026] [0.026] 
Constant 0.341** 0.339** 0.341** 0.340** 0.338** 
 [0.135] [0.134] [0.130] [0.134] [0.135] 
Observations 4873 4873 4873 4873 4873 
R-Squared .64 .64 .64 .64 .64 

Structural embeddedness is measured by ego betweenness centrality  
711 individual inventors, 69 units and 38 firms 
Inventor, priority year and technology fixed effects – Standard errors are clustered by inventor and unit level. 
+ 0.10 ** 0.05 *** 0.01 
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2.5 CONCLUSIONS 

An escalating trend in the globalization of R&D has gained significant attention over recent 

decades. This phenomenon has been particularly observed among MNEs from emerging 

markets, with their substantial involvement in this trajectory since the beginning of the new 

millennium. The establishment of overseas R&D units serves as a pivotal strategic choice to 

fulfill the goals of R&D globalization, especially the sourcing of foreign-specific knowledge. To 

comprehensively evaluate the innovation performance of these MNEs, it is necessary to 

examine the inventor-level factors linked to their innovation processes in foreign contexts. In 

this regard, both internal and external embeddedness emerge as crucial determinants that 

exert profound influences on innovation outcomes. However, the precise mechanisms 

underlying these influences require further exploration. Consequently, this paper breaks 

down the concept of internal and external embeddedness into structural and relational 

aspects and further explores their relative functions in inventor-level innovation. 

The contributions of this chapter can be summarized as follows. Empirically speaking, it 

explores an original database of patent information on inventors from Chinese MNEs' 

overseas R&D units. As presented in Chapter 1, this database draws a broader picture of these 

units' geographical and industrial distribution, providing a better understanding of the 

strategic choice of MNEs when entering foreign host countries. Based on this database, a 

collaboration network is built for these overseas inventors using the co-patenting information. 

This network enables empirical analysis of dual embeddedness and innovation performance. 

From a theoretical perspective, this paper not only confirms several findings in the existing 

literature but also enriches the comprehension of the micro-foundations of the impact of dual 

embeddedness. The empirical findings reveal the multifaceted impact of internal and external 

embeddedness. Specifically, the study demonstrates that internal structural embeddedness is 

positively associated with inventor productivity, whereas internal relational embeddedness 

exhibits an inverted U-shaped relationship. The influence of external structural 

embeddedness on productivity is statistically insignificant, while external relational 
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embeddedness follows a U-shaped pattern. Regarding the exploration of new technologies, it 

is noteworthy that internal structural embeddedness has an adverse effect. Meanwhile, 

internal relational embeddedness maintains its impact. External structural embeddedness 

shows an inverted U-shaped relationship when measured by ego betweenness centrality, 

whereas external relational embeddedness does not yield statistically significant results. 

However, as inventors with external ties remain a minority in the sample, the results related 

to external embeddedness should be interpreted with caution. 

The findings of this study hold several practical implications, shedding light on the dynamics 

and interactions of inventor-level dual embeddedness, which can offer guidance to EM MNEs 

seeking to operate overseas R&D units for innovation activities. The results underscore the 

nuanced roles of dual embeddedness in shaping both inventor innovation productivity and 

the exploration of new technologies, indicating the need for tailored strategies to align with 

the objectives of inventors. When optimizing productivity is the primary goal, inventors should 

strive to maintain a central position within the internal network to maximize their innovative 

output. However, it is advisable to avoid over exchange with specific partners as knowledge 

redundancy may occur. While external knowledge sourcing is generally perceived as a booster 

for innovation, it's crucial to recognize that forging stable collaborations with external 

partners in a foreign environment demands considerable resources and time, which 

potentially hinders productivity. 

Conversely, if the objective is to explore new technologies, the approach diverges. 

Overemphasis on establishing more internal relations may trap the inventor within the 

existing technological trajectory of the firm, hindering the pursuit of novel technologies. 

Instead, it is crucial for inventors to occupy distinctive positions within the internal network. 

It is also the case for external knowledge sourcing. A position with high betweenness centrality 

contributes to acquiring new knowledge, but excessive focus on external networks may result 

in technological isolation, which may harness the adoption of new technologies for 

recombination with existing knowledge. The interaction between internal and external 

embeddedness from a structural aspect also suggests that it should maintain an equilibrium 

between partners from both networks. 
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This chapter has several limitations. The main limitation comes from the fact that most MNEs 

have invested in overseas research units only recently. For this reason, most MNEs have only 

a few units with a limited patenting activity and only over a short period of time. On average, 

research units were created after 2009, and 25 % of units have less than six years of patenting 

data, and 50 % have less than 8 years with lags. With limited observations per research units, 

there is a strong density of ties for inventors in research units and probably insufficient 

variations to be able to capture all subtleties of the relationships studied. Second, this 

limitation in data is ever more accurate when it comes to studying the impact of external 

relationships. The number of units with external ties is rather limited, and it is the same for 

the number of patents. Therefore, results are most of the time not significant, and it is difficult 

to really assess whether it is representative of the real tendency or the outcome of a shortage 

of observations. This is the reason why the final sample focuses on the manufacturing sector. 

Finally, the shortage of observations and variations did not enable to consider whether dual 

embeddedness vary across different types of research units, namely whether units are self-

built, mergers and acquisitions, or collaborations. Nor was it possible to consider whether 

results vary across sectors within manufacturing and across industries.   
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Table 2.9 Appendix 1. Research units years of patenting 
Name Firm First year Last year # of years 
ANGEL_A1 Angel 2011 2020 4 
ANGEL_A2 Angel 2008 2015 2 
BEIQI_A1 BeiqiFoton 2008 2020 13 
BEIQI_A2 BeiqiFoton 2009 2020 12 
BGI_A1 BGI 2013 2018 6 
BGI_B1 BGI 2008 2020 13 
BRIGHT_A1 Bright 2007 2019 10 
BYD_A1 BYD 2012 2019 8 
BYD_A2 BYD 2013 2019 7 
CHANGAN_A1 Changan 2009 2020 8 
CHANGAN_A2 Changan 2012 2019 8 
CHANGAN_A3 Changan 2009 2020 8 
CHANGAN_A4 Changan 2015 2019 4 
CHANGAN_A5 Changan 2013 2019 6 
CHANGJIANG_A1 Changjiang 2009 2020 9 
CNPC_A1 CNPC 2012 2020 9 
CRRC_A1 CRRC 2014 2019 6 
CRRC_A2 CRRC 2014 2020 7 
CRRC_A3 CRRC 2014 2016 3 
CRRC_A4 CRRC 2015 2020 6 
CRRC_A5 CRRC 2014 2019 6 
CRRC_A6 CRRC 2015 2019 5 
DUNAN_A1 Dunan 2008 2014 5 
DUNAN_B1 Dunan 2004 2012 5 
DUNAN_B2 Dunan 2007 2014 7 
GCL_A1 GCL 2015 2017 3 
GENSCRIPT_A1 Genscript 2008 2019 11 
GOODIX_A1 Goodix 2017 2019 3 
GREATWALL_A1 Greatwall 2008 2014 7 
GREATWALL_B1 Greatwall 2007 2020 14 
HAIER_A1 Haier 2007 2019 8 
HAIER_A2 Haier 1997 2020 15 
HAIER_A3 Haier 2010 2016 7 
HAIER_A4 Haier 1999 2018 18 
HAIER_A5 Haier 2008 2019 12 
HAIER_A6 Haier 1997 2019 23 
HIKVISION_A1 Hikvision 2015 2020 6 
HISENSE_A1 Hisense 2013 2020 8 
HISENSE_A2 Hisense 2012 2020 9 
HISENSE_A3 Hisense 2011 2018 8 
HISENSE_A4 Hisense 2013 2018 6 
HONGFA_A1 Hongfa 2002 2020 14 
HUAGONG_A1 Huagong 2017 2020 4 
HUAGONG_A2 Huagong 2017 2020 4 
HUARUI_A1 Huarui 2006 2018 12 
HUAXIANG_A1 huaxiang 2011 2019 6 
JAC_A1 JAC 2016 2017 2 
JAC_A2 JAC 2016 2017 2 
JOYSON_A1 Joyson 2010 2020 11 
JOYSON_A2 Joyson 2008 2020 12 
JOYSON_A3 Joyson 2005 2020 13 
KANGDE_A1 Kangde 2013 2018 4 
KEDA_A1 keda 2007 2019 10 
KINGENTA_A1 Kingenta 2008 2019 11 
KINGFA_A1 Kingfa 2008 2019 8 
KINGFA_A2 Kingfa 2017 2019 3 
KINGFA_A3 Kingfa 2012 2020 9 
LENOVO_A1 Lenovo 2000 2020 21 
LENOVO_A2 Lenovo 2014 2019 5 
LENOVO_A3 Lenovo 2003 2019 11 
LENOVO_A4 Lenovo 2011 2019 9 
LENOVO_A5 Lenovo 2005 2019 15 
LEPU_A1 Lepu 2013 2020 8 
LINGLONG_A1 Linglong 2015 2020 6 
LINGYI_A1 Lingyi 2017 2019 3 
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LIUGONG_A1 Liugong 2014 2018 5 
LIUGONG_A2 Liugong 2015 2018 4 
LIUGONG_A3 Liugong 2014 2020 7 
LIUGONG_A4 Liugong 2013 2019 7 
LONGSHENG_A1 Longsheng 2009 2019 10 
LUTHAI_A1 Luthai 2008 2020 10 
LUXI_A1 Luxi 2011 2020 10 
LUXSHARE_A1 Luxshare 2012 2020 7 
LUYE_A1 Luye 2003 2015 10 
LUYE_A2 Luye 2012 2020 8 
ORIGIN_A1 Origin 2018 2020 3 
SANHUA_A1 Sanhua 2017 2019 3 
SANHUA_A2 Sanhua 2010 2018 8 
SANHUA_A3 Sanhua 2016 2019 4 
SUMEC_A1 Sumec 2016 2020 5 
SUNING_A1 Suning 2014 2020 7 
TENCENT_A1 Tencent 2008 2020 5 
WANHUA_A1 Wanhua 2012 2017 6 
WANHUA_A2 Wanhua 1986 2014 16 
XCMG_A1 XCMG 2012 2019 8 
XCMG_A2 XCMG 2014 2019 6 
XCMG_A3 XCMG 2017 2019 3 
YUHONG_A1 Yuhong 2009 2019 8 
ZHONGDING_A1 Zhongding 2003 2019 10 
ZHONGDING_A2 Zhongding 2015 2019 3 
ZHONGDING_A3 Zhongding 1987 2018 23 
ZHONGDING_A4 Zhongding 1978 2018 36 
ZOTYE_A1 Zotye 2012 2019 6 
ZTE_A1 ZTE 2003 2017 15 
ZTE_A2 ZTE 2005 2017 12 
ZTE_A3 ZTE 2009 2018 9 
ZTE_A4 ZTE 2007 2018 11 
ZTE_A5 ZTE 2005 2017 13 
ZTE_A6 ZTE 2009 2017 7 
ZTE_A7 ZTE 2002 2017 16 
ZTE_A8 ZTE 2004 2016 13 

Summary statistics  
 Mean SD Min Max 
First year 2009 6.5 1978 2018 
Last year 2018 1.65 2012 2020 
# of years 8.63 5.15 2 36 

Distribution of the number of units and the number of years for which apply for patents 
# of year 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 21 23 36 
# of research units 3 9 8 6 13 9 14 6 7 5 5 4 1 3 2 1 1 2 1 
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Table 2.10 Appendix 2. Correlation table  
Inventor productivity 1.00                    
Inventor new technologies 0.36* 1.00                   
Internal Degree centrality 0.55* 0.22* 1.00                  
Internal ego betweenness 0.17* -0.05* 0.28* 1.00                 
Internal Relational embeddedness 0.54* 0.14* 0.37* -0.13* 1.00                
External Degree centrality 0.06* 0.05* 0.18* -0.02 0.13* 1.00               
External ego betweenness 0.04* 0.04* 0.12* 0.04* 0.05* 0.66* 1.00              
External Relational embeddedness 0.11* 0.09* 0.19* -0.06* 0.21* 0.93* 0.56* 1.00             
Inventor external ties (0/1) 0.04* 0.05* 0.14* -0.03* 0.12* 0.96* 0.61* 0.92* 1.00            
Inventor experience 0.37* -0.06* 0.57* 0.29* 0.40* 0.12* 0.06* 0.13* 0.08* 1.00           
# of inventors in research units 0.10* -0.12* 0.05* 0.15* -0.09* -0.07* -0.03* -0.06* -0.10* 0.19* 1.00          
Company # of patents -0.00 -0.48* -0.02 0.23* -0.02 -0.09* -0.07* -0.11* -0.13* 0.31* 0.61* 1.00         
Company # of inventors 0.12* -0.11* 0.18* 0.15* 0.01 -0.10* -0.05* -0.12* -0.14* 0.24* 0.47* 0.51* 1.00        
# of research units (MNE) 0.19* 0.03 0.17* 0.08* -0.03* -0.04* -0.01 -0.02 -0.07* 0.12* 0.85* 0.39* 0.44* 1.00       
* p < 0.05 
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Chapter 3:  THE ROLE OF INTRA-FIRM NETWORKS AND GATEKEEPERS FOR 

TECHNOLOGICAL CATH-UP9 

3.1 INTRODUCTION  

The ability of emerging markets multinational corporations (EM MNE) to leverage reverse 

knowledge across dispersed foreign subsidiaries has become essential for achieving 

knowledge absorption and technological catch-up. Knowledge absorption and integration 

from geographically dispersed subsidiaries remain a challenge (Hennart, 2012; Alnuaimi et al., 

2012; Chen et al., 2019). Different from the traditional phenomenon of knowledge flowing 

from the parent company to foreign subsidiaries (Meyer et al., 2008), overseas research units 

of EM MNEs usually transfer knowledge from host countries back home (Wang et al., 2018). 

Knowledge acquired from developed countries is crucial to the challenge of catching-up for 

EM MNEs and helps to shorten the distance between EM MNEs and incumbents (Verbeke, 

2009). However, knowledge sourcing per se does not guarantee success in innovation 

outcomes, EM MNEs must combine external knowledge with their own knowledge base to 

produce recombinant creations (Anand et al., 2021). Difficulties are often observed in this 

integration process (Amighini et al., 2015) due to the lack of knowledge absorptive capacity. 

High transaction cost caused by geographical distance and cultural differences in various 

foreign sites remains an obstacle to EM MNEs’ knowledge integration (Alnuaimi et al., 2012).  

Singh（2008）underlines the fact that dispersion of R&D activities may even have a negative 

effect on the value of innovations if a company does not have enough ability to integrate cross-

regional knowledge, namely absorptive capacity. Cohen and Levinthal (1990) define 

absorptive capacity as “a company’s ability to recognize the value of new external knowledge, 

assimilate it, and apply it to commercial ends” (p.128). Various studies have confirmed the 

positive relationship between knowledge absorptive capacity and innovation outcome 

(Binder, 2020).  

                                                      

9  This work has been co-authored with Anne Plunket and a first draft has been presented at the 6th 
Geography of Innovation Conference, Milan 4-6 July 2022 
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In the specific case of EM MNEs, Mathews（2002; 2006）proposes a “Linkage-Leverage-

Learning” framework, which provides an ideal company-level theoretical background to 

analyze the mechanism of knowledge absorptive capacity. Linkages refer to connections with 

incumbent knowledge owners in foreign countries and correspond to the strategy of external 

knowledge sourcing. Leverage refers to EM MNEs’ capacity to secure resources from external 

linkages (Chen et al., 2019), including transferring knowledge from overseas research units 

back to their home companies. The final learning stage describes applications of knowledge in 

the company’s own innovation outcomes.  

Among the learning and absorption mechanisms, increasing attention has been devoted to 

cross-country collaborations and intra-firm networks and the interactions between inventors 

as integration mechanisms (Singh, 2008; Ebers and Maurer, 2014; Giuliani et al., 2016; 

Alnuaimi et al., 2012). Though previous researchers have shed light on EM MNEs’ knowledge 

absorptive capacity at the company level, only a few (Alnuaimi et al., 2012) break down into 

inventor level to explore the role of key individual players in the mechanism. Especially the 

role of these individuals in the process of reverse transfer of knowledge between overseas 

research units and home companies requires further exploration. Thus, in this chapter, we 

investigate the structure of intra-firm networks and the role of specific inventors, namely 

gatekeepers, as knowledge integration mechanisms in EM MNEs’ knowledge integration 

process, to fill this gap. Adapting its original definition (Giuliani and Bell, 2005; Grigoriou and 

Rothaermel, 2013; Le Gallo and Plunket, 2020) to the case of EM MNEs, gatekeepers are 

interfaces between intra- and extra-unit knowledge sources that serve as global pipelines of 

knowledge transfer and combine external search (linkage stage) with assimilation efforts 

(leverage stage).  

The chapter is organized as follows. The next section discusses the theoretical backgrounds 

related to the hypotheses. Section 3 describes the data, variables, and the empirical 

methodology employed in the analysis. The results are presented in Section 4, and the final 

section concludes. 
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3.2 THEORETICAL BACKGROUND AND HYPOTHESES 

3.2.1 Knowledge sourcing and foreign research units 

Innovation has long been regarded as a process of recombination, in which firms integrate 

new knowledge with existing ones in original ways (Davis & Eisenhardt, 2011). The novelty of 

innovation is tightly related to external knowledge sourcing, which enlarges the breadth of a 

firm’s knowledge base that can serve as input for recombination (Dahlander et al., 2016).  

3.2.1.1 Technological catch-up and EM MNEs 

As Awate et al. (2015) state, the catch-up strategy is the main motivation for EM MNEs’ R&D 

internationalization. It exists in both mature traditional industries and emerging knowledge-

intensive industries. Knowledge acquired from developed countries is crucial to the challenge 

of catch-up for EM MNEs and helps to shorten the distance between EM MNEs and industrial 

incumbents (Verbeke, 2009). Previous researchers (Awate et al., 2015; Zhang & Zhou, 2016) 

demonstrate how various EM MNEs import foreign advanced technologies, adapt them to 

local market conditions, and gradually enter overseas markets to compete with industrial 

leaders. Giuliani et al. (2015) provide empirical evidence which confirms that EM MNEs benefit 

from cross-border co-inventions with developed countries. These collaborations lead to 

higher innovation quality and quantity and contribute to the catch-up strategy. Meanwhile, 

Zhao et al. (2021) provide an overview of R&D internationalization in various developing Asian 

countries. Their study shows that knowledge transfer between these countries is also growing. 

Based on cases of Chinese MNEs, Ebersberger and Mengis (2021) demonstrate a two-phase 

catch-up scenario: lower level of learning (e.g. cross-border ownership of advanced 

knowledge) help more in innovation during the early phase, while higher levels of learning 

(e.g. co-invention) is preferred in the later phase. The speed of technological catch-up is 

negatively related to geographic distance, which means it is harder for firms far away from 

industrial leaders to shorten the technological gap (Griffith et al., 2009).  

To fulfill the goal of technological catch-up, various MNEs from emerging markets chose to set 

up overseas research units, both through the self-built model and acquisitions, to source 
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knowledge from foreign environments (Wang et al., 2018). These units enable both lower and 

higher levels of learning. Different from the traditional phenomenon of knowledge flowing 

from the parent company to foreign subsidiaries (Yang et al., 2008), overseas research units 

of EM MNEs usually transfer knowledge from host countries back home (Wang et al., 2018). 

The reverse knowledge transfer is closely related to the innovativeness of MNEs’ subsidiaries, 

but this relation is not always positive. The effect of subsidiary innovativeness on reverse 

knowledge transfers has been proved to be an inverted U-shape (Mudambi et al., 2014). 

Najafi-Tavani et al.’s (2015) survey-based study reveals that the autonomy of subsidiaries 

engaging in reverse knowledge transfer increases within MNEs, especially when they have a 

high internal embeddedness. Nair et al. (2018) point out the fact that EM MNEs are more likely 

to engage with reverse knowledge transfer when dealing with tacit knowledge which 

facilitates their catch-up strategy. Compared to organizational-level studies on reverse 

knowledge transfer, relatively fewer researchers focus on the function of individuals in this 

process. Liu and Meyer (2020) highlight the importance of personal ability and team 

collaboration in the reverse knowledge transfer process, especially the role of the specific 

boundary spanners. Our study deepens the understanding of individual-level activities in 

reverse knowledge transfer. 

3.2.1.2 Potential gains from geographically distant sources and related difficulties 

Accumulation of knowledge enhances companies’ abilities to develop new ideas and convert 

this knowledge base into further innovations (Cohen and Levinthal, 1990), which is crucial for 

EM MNEs during their technological catch-up. However, a large proportion of knowledge is 

locally embedded (Asheim, 1999). As mentioned above, EM MNEs set up overseas research 

units. One of the main functions of these units is to take advantage of specific knowledge and 

enjoy knowledge spillovers in different locations (Meyer et al., 2009). Although Shaver and 

Flyer (2000) indicate that collocation with other firms may cause knowledge outflow, this 

disadvantage is mainly the concern of local leading firms, while EM MNEs tend to benefit more 

than lose from proximate competitors.  

As knowledge sourcing per se does not guarantee success in innovation outcomes, EM MNEs 

must combine knowledge sourced externally with their own knowledge base to produce 
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recombinant creations (Anand et al., 2021). Difficulties are often observed in this integration 

process (Amighini et al., 2015) due to the lack of absorptive capacity. The probability of 

recombination might be limited when firms are not familiar with distant knowledge and 

increase difficulties in internalizing and leveraging it, thus reducing the value of innovations 

(Capaldo et al., 2017). Singh (2008) underlines the fact that dispersion of R&D activities may 

even have a negative effect on the value of innovations if a company does not have enough 

ability to integrate cross-regional knowledge. High transaction cost remains an obstacle to EM 

MNEs’ knowledge integration. The transaction cost is caused by geographical distance and 

cultural differences in various foreign sites (Alnuaimi et al., 2012). At the unit level, there also 

exists a sort of indirect cost, which includes the loss of opportunities to develop units’ own 

learning capabilities (Andersson et al., 2015). Thus, well-fabricated knowledge absorption 

mechanisms become essential to cope with these difficulties. 

3.2.2 Knowledge absorption mechanisms  

Cohen and Levinthal (1990) defined absorptive capacity as a company’s ability to “recognize 

the value of new external knowledge, assimilate it and apply it to commercial ends”. High 

absorptive capacity is identified as an essential element while maintaining wide access to 

external knowledge (Giuliani and Bell, 2005), which plays an essential role in the knowledge 

integration mechanism. Various literatures have confirmed the positive relationship between 

knowledge absorptive capacity and innovation outcome (Binder, 2020). 

In the context of EM MNEs, Mathews (2002; 2006) advanced the “Linkage-Leverage-Learning” 

framework, offering a comprehensive firm-level theoretical perspective for examining the 

dynamics of knowledge absorptive capacity. Within this framework, “Linkages” denote 

associations with established knowledge holders abroad, aligning with the strategy of external 

knowledge acquisition. “Leverage” signifies the ability of EM MNEs to harness resources from 

these external associations, encompassing the transfer of knowledge from international 

research facilities to their respective parent entities. Lastly, “Learning” pertains to the 

utilization of this knowledge in the pursuit of the firm’s own innovative endeavors.  
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Among the learning and absorption mechanisms, increasing attention has been devoted to 

cross-country collaborations and intra-firm networks and the interactions between inventors 

as integration mechanisms (Singh, 2008; Ebers and Maurer, 2014; Giuliani et al., 2015; 

Alnuaimi et al., 2012). This issue is discussed in the next subsection.  

3.2.2.1 Internal network  

As stated above, knowledge sourcing in a foreign environment does not guarantee success in 

innovation outcomes. MNEs encounter various obstacles in integrating this knowledge into 

their knowledge base, such as geographical distance and cultural differences in various foreign 

sites (Alnuaimi et al., 2012). Singh et al. (2010) denote the fact that less connected members 

in the internal network have difficulties in accessing new information, and their efficiency will 

be diminished. Internal linkages among inventors and different units have long been identified 

as an important factor that affects the absorption of new knowledge. Frost and Zhou (2005) 

especially point out that internal linkages help to transfer locally sourced knowledge back to 

the parent company. Internal linkages also have a significant positive influence on firms’ ability 

to organize innovation activities between locations with increased geographic distance (Lahiri, 

2010). 

As Frost and Zhou (2005) point out, internal linkages in the networks largely facilitate the 

reverse transfer of local knowledge back to the parent firm. Besides their positive role in 

knowledge internalization, Alcácer and Zhao (2012) also notice the function of internal ties in 

preventing knowledge expropriation by nearby competitors. Singh (2008) emphasizes the role 

of internal inventors with cross-regional linkages. Castellani and Scalera’s (2022) recent study 

reconfirms Singh’s (2008) finding that the mobility of inventors between locations within 

MNEs’ internal networks is positively related to the cross-border knowledge integration 

process. As for the effects of internal network structure, Moreira and Laursen (2018) find 

empirical evidence that supports the fact that internal network diversity and density enhance 

firms’ absorptive capacity of external knowledge, especially those distant from their existing 

knowledge base.  However, the role of the internal network is not always positive.  
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Besides the positive impacts mentioned above, Grigoriou and Rothaermel (2017) observe that 

when a company possesses an internal network with high knowledge recombination ability, 

external knowledge sourcing is likely to be less effective. This phenomenon can be explained 

by the fact that internal and external knowledge-sourcing processing is substituted as external 

knowledge-sourcing efforts increase the burden of coordination costs. It should be noted that 

their findings are based on data from technological incumbents. Thus, the situation for EM 

MNEs seeking catch-up may differ.  

We want first to identify if new knowledge sourced abroad by inventors in EM MNEs’ overseas 

research units is successfully transmitted back to home companies through intra-firm 

networks with connected inventors and facilitates the further development of patents with 

new combinations. Hereby, we give out the first hypothesis: 

Hypothesis 1: Home companies with more direct connections with overseas research units 

are more likely to increase patent novelty. 

3.2.2.2 Gatekeepers and technological proximity 

Firms occupying brokerage positions have higher possibilities to develop new combinations 

(Burt 1992). By bridging a structural hole between two disconnected actors, brokers may gain 

opportunities, including timely information, access to resources, and establish new, non-

redundant ties (Burt 1992). Balachandran and Hernandez (2018) further distinguish three 

types of triads while studying brokerage and innovation. They suggest domestic, foreign, and 

mixed triads all enhance innovation performances: domestic ones mainly improve innovation 

volumes, and foreign ones improve innovation radicalness, while mixed triads are less efficient 

compared to the other two types. This also reflects the difficulty of knowledge recombination 

between actors facing geographical and technological distances. Lee (2010) points out that 

actors with high performance are more likely to seize brokerage opportunities.  Adapting its 

original definition (Giuliani and Bell, 2005; Grigoriou and Rothaermel, 2013; Le Gallo and 

Plunket, 2020) to the case of EM MNEs, gatekeepers are defined in this chapter as interfaces 

between intra- and extra-unit knowledge sources that serve as global pipelines of knowledge 

transfer. The inventors help to source external knowledge and enhance the inventive 
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performance of teams (Le Gallo and Plunket, 2020). According to Ter wal et al. (2017), 

gatekeepers combine external search (linkage stage) with assimilation efforts (leverage stage).  

In detail, the positive functions of gatekeepers come in two folds. First, by being located in 

overseas target regions, they benefit from geographic and social proximities with local firms 

to source new external knowledge (Broekel & Mueller, 2018). Second, they help to overcome 

the technological distance between overseas units and the home company. As Cassi and 

Plunket (2014) indicate, knowledge sharing is easier among actors with similar knowledge 

bases. On the contrary, a large technological distance is proved to be a barrier in the 

knowledge absorption process and thus diminishes the innovation performance (Gilsing et al., 

2008). Gatekeepers can reduce such technological distance (Giuliani, 2011) by bridging various 

teams. Though previous researchers have shed light on EM MNEs’ knowledge absorptive 

capacity at the company level, only a few (Alnuaimi et al., 2012) break down into inventor 

level to explore the role of key individual players in the mechanism. The role of gatekeepers 

in the reverse transfer of knowledge between overseas research units and home companies 

requires further exploration. 

Cohen and Levinthal (1990) highlight combining knowledge as a central issue of innovation. In 

the case of EM MNEs, when new knowledge is transmitted back to home companies, it will 

not flow through the organization and generate new innovations automatically. Instead, it 

needs to be further combined with the knowledge that already exists in the organization to 

promote the innovation capacity of the whole company (Awate et al., 2015). Burt (2015) 

confirms that those who connect across structural holes are more likely to make use of 

segregated knowledge dispersed in different divisions of the organizations for new 

combinations. Grigoriou and Rothaermel (2013) also discuss the positive role of relational 

stars in the innovation process. According to Balachandran and Hernandez’s (2018) research, 

foreign triads that span the boundary of a company correspond to the enhancement of 

innovation’s radicalness, while domestic ones increase the volume of innovation. This implies 

that internal inventors with brokerage positions in the knowledge integration mechanism 

facilitate the combination of newly sourced external knowledge with existing ones. Eisenman 

and  Paruchuri (2019) focus on knowledge integration after the merger of two firms and 
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confirm that inventors with high levels of brokerage are more likely to produce more 

knowledge recombination utilizing the new knowledge acquired. 

Lissoni (2010) also builds on the work by Gould and Fernandez (1989) to distinguish different 

types of academic inventors with brokerage positions: coordinators are regarded as the ones 

with brokerage position between two other inventors from the same group; brokers are 

defined as the ones with brokerage position between two other inventors from another 

group; while gatekeepers are the ones who make use of the brokerage position to transfer 

knowledge from inventors outside his group to inventors within his group. So, gatekeepers act 

as a specific type of inventor with brokerage position and serves as an interface between 

different groups. They facilitate knowledge diffusion through their connections and offer 

greater potential for novel combinations and breakthrough inventions (Le Gallo & Plunket, 

2020). Morrison (2008) also points out their function of interpreting external knowledge, 

which can transcode complex knowledge for diffusion with internal members. According to 

Allen’s (1977) descriptions, gatekeepers have a central position in a network and are exposed 

to external information. To be more precise, in this paper, we define a gatekeeper as a broker 

who is highly embedded in the home company and related to overseas research unit’s 

inventors. We assume that they are key actors in the EM MNEs’ cross-border knowledge 

integration process with the ability of knowledge mediation and enhancing the capacity of 

knowledge transfer. Thus, the second hypothesis concerns the role of gatekeepers in EM 

MNEs’ knowledge integration mechanism: 

Hypothesis 2: Gatekeepers within home companies are more likely to increase patent 

novelty. 

3.3 DATA AND VARIABLES 

3.3.1 Data and network construction 

This research is based on an original self-built dataset which includes patent applications of 

Chinese MNEs with overseas research units in different countries. As described in Chapter 1, 

the list of Chinese MNEs is extracted from the top 500 Chinese enterprises 2018 by 
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Fortunechina.com and the 2019 OECD scoreboard of the top 2000 global corporate R&D 

investor10. An extensive search has enabled us to identify their overseas research units. Then, 

the patent applications from various patent offices (USPTO, EPO, CNIPA, etc.) has been 

extracted using the LENS database. Patent data have been further consolidated at the family 

level and inventor names have been disambiguated. Inventors have been attributed to the 

overseas R&D units on the one hand and to the home company on the other hand based on 

their location information. The final dataset contains 154,098 patent applications from 51 

Chinese MNEs. 

Based on these data, we investigate the mechanisms through which MNEs benefit from their 

relationships with their research units abroad to produce new knowledge. As knowledge is 

difficult to move across countries and continents, we investigate specific mechanisms that 

facilitate knowledge integration from the home company in China. More precisely, we 

investigate whether inventors from the home company having gatekeeping positions between 

abroad subsidiaries and their home company affect the degree of novelty of patents they 

contribute to inventions. To estimate the impact of the inventor position on patent novelty, 

we first construct the intra-firm co-inventor network. We define inventors as nodes in the 

intra-firm network (Paruchuri and Awate, 2017) and consider that there are ties between 

inventors if they appear on the same patent document. The intra-firm network is built for each 

year t, based on co-invention ties formed during the five previous years and excluding older 

ties (Breschi and Lissoni, 2009). The final data are restricted to inventors with at least one prior 

patent and who have at least two patents assigned to the same firm. This network is used to 

determine the extent of intra-firm network reach and gatekeeping positions. Network analysis 

is built using the Igraph R Package11 (Csardi & Nepusz, 2006). Because of these restrictions of 

the initial sample, the final dataset includes 85 239 patents over the period applied by 51 

firms.  

                                                      

10 the JRC/OECD COR&DIP©  database, v.2. 2019 
11  Csardi, G., & Nepusz, T. (2006). The Igraph software package for complex network research. 
In InterJournal: Vol. Complex Systems (p. 1695). https://igraph.org 
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3.3.2 Variables 

3.3.2.1 Dependent variable 

The aim of this chapter is to study whether EM MNEs benefit from their units abroad to renew 

their knowledge base and produce novelty. Said differently, do inventors become more 

creative when they are in a relationship with inventors located abroad? 

Figure 3.1 Example of the patent document12 
 

 
 

 

If exposed to knowledge coming from abroad, they may increase the novelty of their inventive 

output. Following previous literature, we built our analysis on the concept of recombinant 

search and measure novelty as a new combination of technological components (Fleming et 

al., 2007; Arts and Fleming, 2018). But unlike previous studies, we restrict the analysis to 

combinations that are new to the firm. Patent novelty is computed as the number of new 

combinations, that is, the number of pairwise subclass (4-digit IPC) combinations of a patent 

that appear for the first time in the company’s patent portfolio. Figure 3.1. give an example of 

a USPTO patent document applied by Lenovo. The IPC code is highlighted by the red square. 

                                                      

12 https://www.lens.org/lens/patent/059-910-884-915-701/frontpage?l=en 
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The 4-digit IPC codes in the example are H04N and G06K. If they are combined for the first 

time in a patent within the company, it is considered as a new combination. 

3.3.2.2 Independent variables  

All independent variables are calculated at the patent level. The main variables of interest rely 

on the position of inventors within MNEs and their relationship with unit inventors. The idea 

is to test various variables that consider the inventor’s position within the home company and 

with unit inventors. Three sets of variables are distinguished.  

First, we compute the number of gatekeepers within patent teams. An inventor with a 

gatekeeping position captures the fact that highly central inventors within the home company 

(excluding unit inventors) who are also directly connected to unit inventors are more likely to 

source knowledge from foreign subsidiaries and produce novel technologies. Gatekeepers are 

computed in two ways following the literature:  

1. an inventor is a gatekeeper (internal distance) if she has a direct link to an inventor in 

a unit and has a distance-weighted reachability over the average within the home company. 

The distance-weighted reachability is computed as the sum of the inverse geodesic distance 

𝑑𝑖𝑗  between the given inventor i and all the other inventors j within the home company 

divided by the number of inventors reached. It captures the number of inventors that can be 

reached by a given individual as well as the path length needed to reach them (Borgatti, 2006; 

Le Gallo and Plunket, 2020). 

2. an inventor is a gatekeeper (betweenness centrality) if the inventor has a direct link 

to an inventor in a unit and a betweenness centrality over the average within the home 

company, excluding unit inventors.  

In the regression, we consider the number of gatekeepers as well as the dummy variable, 

taking value 1 if there is at least one gatekeeper in the team.  

Second, we compute the network proximity to the units, which is the sum of team inventors’ 

inverse geodesic distance from home company to unit inventors.  
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Third, we compute the number of direct collaborations with units, that is, the number of unit 

inventors to which the team has a direct tie.  

3.3.2.3 Control variables 

For each patent, we compute several control variables characterizing the inventor team’s 

inventive capacity.  

Technological diversity captures the fact that greater diversity in the inventor team’s 

knowledge base provides more opportunities to combine new technologies and produce 

novelty. It is as the Blau index of subclasses in the inventors’ technological portfolio, averaged 

over the patent team (Cerere & Ozman, 2014). Technological distance is the technological 

distance between the home company inventor and inventors within units. This value is 

averaged over the team of inventors. It is computed as Jaffe’s index (Jaffe, 1989), which is a 

proximity measure ranging between 0 and 1, depending on the degree of overlap between 

the inventors’ prior patent IPC codes. The variables is calculated as: 

(𝑃𝑖, 𝑃𝑗) =
∑ 𝑝𝑖𝑘𝑝𝑗𝑘

√(∑ 𝑝𝑖𝑘
2

𝑘 )(∑ 𝑝𝑗𝑘
2

𝑘
)

 

The patent portfolio vector P specifies for each inventor the share of his patents in every one 

of n relevant patent subclasses, while 𝑝𝑖𝑘 represent the share inventor i has in class k (Jaffe, 

1989). 

Inventor experience is the average number of prior patents for all inventors in the patent 

team. The number of patents for each inventor is computed over the past five years. The team 

size is the number of inventors involved in the team that produced the patent. The number of 

patent subclasses is the number of IPC subclasses characterizing the patent. It controls the 

fact that more complex patents within more subclasses have a higher probability of producing 

new combinations. It also enables the control of patents with only one subclass for which it is 

difficult to decide the character of novelty. Prior knowledge helps inventors better interpret 

information and guide creative search, but it may also constrain search (Arts and Fleming, 

2018). The number of new subclasses controls for the fact that the introduction of a new 
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subclass (see previous chapter) within the portfolio creates, by definition, a new combination 

when it is combined with any other subclass. The firm stock is controlled through the number 

of patents assigned to the firm over the prior five years.  

All continuous variables are introduced in logs within regression.  

Table 3.1 Description of variables  
Dependent variables  

Patent novelty  
The number of new combinations, that is, the number of pairwise subclass combinations of 
a patent that appear for the first time in the company’s patent portfolio (in logs) 

 
Variables of interest  
Gatekeeper variables  

Number of Gatekeepers (inventor 
distance) 

The number of inventors with a gatekeeper position within the team in logs. A gatekeeper is 
a home company inventor that has a direct link to inventors within units and over the average 
reachability within the home company.  

Number of gatekeepers (betweenness 
centrality) 

The number of inventors with a gatekeeper position within the team in logs. A gatekeeper is 
a home company inventor that has a direct link to inventors within units and over the average 
betweenness centrality within the home company. 

Gatekeepers (internal distance) 
Takes value 1 if there is at least one inventor with a gatekeeper position within the team 
(based on internal distance)  

Gatekeepers (betweenness centrality) 
Takes value 1 if there is at least one inventor with a gatekeeper position within the team 
(based on betweenness centrality) 

Network variables  

Network proximity to the units 
the sum of team inventors’ inverse geodesic distance from home company to unit inventors 
(in logs) 

Number of direct collaborations with 
units the number of unit inventors to which the team has a direct tie (in logs) 
 
Control variables  

Technological diversity 
The Blau index of subclasses in the inventors’ technological portfolio, averaged over the 
patent team (in logs) 

Technological distance 
Technological distance between the home company inventor and inventors within units. 
This value is averaged over the team base on the Jaffe index.   

Inventor experience the average number of prior patents over all inventors in the patent team (in logs) 
Number of patent subclasses The number of subclasses in the patent (in logs) 

Number of new subclasses 
The number of new subclasses at the firm level appearing for the first time in this patent (in 
logs) 

Firm patent stock The number of patents assigned to the firm over the prior five years (in logs) 
Team size The number of inventors involved in the team that produced the patent (in logs) 

 

 

3.3.3 Descriptive statistics  

The final sample is composed of 85,239 observations  for 51 MNEs among which three firms 

have no linkages with their units. Table 3.2. provides descriptive statistics for the variables 

used in the regressions. Notably, the mean patent novelty equals 0.10 with a standard 

deviation of 0.54. The mean value is rather low and illustrates the fact that only 7% of patents 

introduce novel combinations. Regarding gatekeepers, two definitions are adopted. 25% of 
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patents include gatekeepers (defined in terms of internal distance) and 19% for gatekeepers 

measured by betweenness centrality. The number of gatekeepers in the inventor teams 

demonstrates a relatively large variation. Inventor technological diversity exhibits an average 

of 0.53 with a moderate standard deviation, ranging from 0 to 1. Meanwhile, the average size 

of the inventor team is 2.55 with a standard deviation of 1.72, spanning from 1 to 9. Inventor 

experience shows an average of 15.12 in terms of past patenting activity, which also varies 

largely depending on different individuals. Firm stock shows an average of 6884.69, with a 

wide standard deviation of 7842.19, indicating the huge difference between the knowledge 

stock of MNEs in the samples. The number of IPC subclasses has an average of 1.27, with some 

variability and a standard deviation of 0.63. Number of new IPC subclasses exhibits a mean of 

0.04, with a standard deviation of 0.24, which also suggests that most patents do not include 

external new knowledge. 

Table 3.2 Descriptive statistics  

 Mean SD Min Max 

Patent novelty 0.10 0.54 0 18 
Number of Gatekeeper (internal distance) 0.36 0.72 0 8 
Gatekeepers (internal distance)  0.25 0.43 0 1 
Number of Gatekeepers (betweenness centrality)  0.23 0.53 0 5 
Gatekeeper (betweenness centrality) 0.19 0.39 0 1 
Inventor technological diversity 0.53 0.28 0 0.99 
Team size 2.55 1.72 1 9 
Inventor experience 15.12 21.47 1 168 
Firm patent stock 6884.69 7842.19 6 24725 
Number of IPC subclasses 1.27 0.63 0 8 
Number of new IPC subclasses 0.04 0.24 0 5 
Number of direct collaborations with the unit 1.49 3.87 0 71 
Number of units 3.44 2.42 0 7 
Brokerage 1.6 0.24 0.87 2 
Network Proximity to the unit 1.90 1.95 0 16.16 
Technological distance 0.56 0.32 0 1 

Observations 85239  

 

The number of direct collaborations with the units has an average of 1.491, but a substantial 

standard deviation of 3.873. The number of units shows an average of 3.445, with a moderate 

standard deviation of 2.423, revealing the geographical dispersion of the MNEs in the sample. 

Brokerage has an average of 1.69 and low variability with a standard deviation of 0.247. 

Finally, Network Proximity to the unit" has an average of 1.901, with a moderate standard 
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deviation of 1.959, indicating the difference of social distance between various inventors in 

home companies and overseas units. 

 

Table 3.3. provides a distribution of the number of patents and the number of MNE firms in 

the sample and across industries. Firms are concentrated within Manufacturing and 

Information and communication, which is coherent with the description in the first chapter. 

Otherwise, the number of firms is rather dispersed across manufacturing with a concentration 

of patents Telecommunications, Computer electronic and optical products, and Motor 

vehicles trailers and semi-trailers. 

Table 3.4 presents the results of a T-test on the equality of means comparing between patents 

with gatekeepers in the inventor team and patents without gatekeepers. The upper part 

shows the T-test for gatekeepers in terms of internal distance. The analysis reveals several 

statistically significant differences that shed light on the characteristics and behaviors of these 

Table 3.3 Patents and firms across Economic activities (ISIC Rev.4 sections) 

    
Industry Sectors (Agregated) # Patents # firms 

F Construction 686 1 
J Information and communication 21002 6 
C Manufacturing 61893 41 
B Mining and quarrying 1619 1 
E Water supply; sewerage, waste management and remediation activities 39 1 
    
Industry Sectors (Disagregated) # Patents # firms 

F Construction of buildings 686 1 
J Computer programming, consultancy and related activities 1034 2 
J Information and communication 403 1 
J Information service activities 323 1 
J Manufacture of electrical equipment 300 6 
J Telecommunications 18555 1 
C Manufacture of chemicals and chemical products 4004 8 
C Manufacture of computer, electronic and optical products 16944 3 
C Manufacture of electrical equipment 5904 6 
C Manufacture of fabricated metal products, except machinery and equipment 81 2 
C Manufacture of food products 971 2 
C Manufacture of machinery and equipment 4201 5 
C Manufacture of motor vehicles, trailers and semi-trailers 24209 8 
C Manufacture of other transport equipment 4033 2 
C Manufacture of pharmaceuticals, medicinal chemical and botanical products 1440 4 
C Manufacture of textiles 350 1 
C Other manufacturing 443 1 
B Extraction of crude petroleum and natural gas 1619 1 
E Water collection, treatment and supply 39 1 
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two groups. Teams with gatekeepers are found to have significantly lower technological 

distance, indicating higher technological proximity to unit inventors. They also exhibit greater 

inventor technological diversity, suggesting a broader range of knowledge breath within their 

teams. Additionally, teams with gatekeepers have a larger size and boast substantially more 

inventor experience, emphasizing their potential for creating new recombination. Teams with 

gatekeepers also engage in significantly more direct collaborations with the units and are 

more closely related to the units, as indicated by the network proximity. Furthermore, teams 

with gatekeepers have a significantly higher degree of brokerage in the network, underlining 

their pivotal position in bridging different actors in the network. 

 

Table 3.4 T-test of gatekeepers  
 

T-test for Gatekeepers (internal distance) 

 Gatekeeper Other Difference  
 mean mean Mean S.E 

Technological distance 0.524 0.584 0.059*** 0.003 
Inventor technological diversity 0.584 0.524 -0.060*** 0.002 
Team size 3.385 2.269 -1.116*** 0.013 
Inventor experience 20.314 13.326 -6.987*** 0.167 
Number of direct collaborations with the unit 3.244 0.885 -2.359*** 0.029 
Brokerage 1.779 1.659 -0.120*** 0.002 
Network Proximity to the unit 3.741 1.265 -2.475*** 0.013 

Observations 21,892 63,347 85,239  

 
T-test of gatekeeper (betweenness centrality) 

 Gatekeeper Other Difference   
 mean mean Mean SE 

Technological distance 0.526 0.579 0.053*** 0.003 
Inventor technological diversity 0.604 0.524 -0.080*** 0.002 
Team size 3.429 2.349 -1.080*** 0.015 
Inventor experience 21.981 13.505 -8.476*** 0.185 
Number of direct collaborations with the unit 2.783 1.186 -1.597*** 0.033 
Brokerage 1.802 1.664 -0.138*** 0.002 
Network Proximity to the unit 3.68 1.482 -2.198*** 0.015 

Observations 16,251 68,988 85,239  

  

The lower part of the table shows the results of the T-test when gatekeepers are measured by 

betweenness centrality. The number of patents with this type of gatekeeper in the teams is 

lower than the number of patents with the previous category of gatekeeper. But the overall 

characteristics are similar to those in the upper part of the table. 
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3.4 ESTIMATION STRATEGY AND RESULTS 

3.4.1 Estimation strategy 

The empirical analysis aims at understanding how home company inventors’ position within 

the home company and towards research unit inventors facilitates knowledge integration and 

the production of patent novelty, measured by, the number of new combinations controlling 

for the inventor-team and invention characteristics.  

The first strategy is to test a linear model using OLS estimations with firm (i) and year (t) fixed 

effects to control for invariant company-specific factors that may affect the empirical results.  

Novelty𝑖𝑡 = 𝛼Inventor network position𝑖𝑡 + βControls𝑖𝑡 + 𝛿𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 

Inventor network position may here be the number of gatekeepers within the team, the 

proximity, or the number of direct ties to unit inventors.  Results are reported in table 3.7.  

Because our data only record the patenting activity of inventor teams after collaboration, we 

cannot determine whether collaborations were formed to exploit an opportunity already 

identified or whether the gatekeeping and intermediation roles caused an increase in novelty 

as hypothesized. Said differently, there may be endogeneity between network structure and 

performance. The ideal situation would be to have a measure that enables to control for the 

intent to use the co-inventor network to produce new technological combinations. As this is 

not possible and to estimate the impact of external knowledge sourcing on the home 

companies’ patent novelty, we use a two-stage least square model (2SLS) with a robust 

variance estimator to control for the effects of correlation between errors due to endogeneity 

between the network position of inventors and their innovative performance of their 

inventions. To remove endogeneity, we instrument the network variables (# of gatekeepers, 

proximity to the unit and # of direct ties) to remove endogeneity and omitted variable bias.  

An effective instrumental variable needs to correlate with cohesion but not with the outcome 

measure to remove any variation that is correlated with an omitted variable. The 
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instrumentation strategy follows Zaheer and Soda (2009) and uses past network positions as 

instruments. As we used many instrumental variables, we also checked for the presence of 

over-identification of our model with a Sargan test, which provides a measure of instrument 

relevance. The inability to reject the null hypothesis indicates that the model is not over-

identified and is accepted for the two-stage procedure. Instrumental variables used in the first 

stage are inventor brokerage, betweenness centrality, and degree. Each of these variables is 

the mean value for each inventor within the team. Following Lee (2010), the brokerage is 

computed as 2 – network constraint (𝐶𝑖 ) so that higher values indicate higher constraints 

(Burst, 1992; Lee, 2010) 𝐶𝑖 = ∑ (𝑃𝑖𝑗 + ∑ 𝑃𝑖𝑞𝑃𝑞𝑗𝑞≠𝑖≠𝑗 )
2

𝑗 . 𝐶𝑖  is the network constraint of 

inventor 𝑖 and 𝑃𝑖𝑗 is the proportion of direct connections between two inventors 𝑖 and 𝑗 and 

∑ 𝑃𝑖𝑞𝑃𝑞𝑗𝑞≠𝑖≠𝑗  is the sum of indirect connections between inventors 𝑖  and 𝑗  that are both 

connected to inventor 𝑞. Lower values on this measure imply that the inventors occupy less 

constrained positions and consequently higher brokerage positions.  

3.4.2 OLS estimation results  

Table 3.5 reports estimates testing the impact of home company inventors’ position within 

the home company and towards unit inventors on patent novelty using OLS estimations with 

firm and time-fixed effects.  

Models 1 and 2 test the impact of having gatekeepers within the team upon the novelty of 

patents. The results, concerning both types of gatekeepers, are significant and exhibit a 

slightly positive correlation. Models 3 and 4 test the impact of the number of gatekeepers and 

enable to test a nonlinear specification by introducing their quadratic form. The outcomes 

obtained are significant and indicate an inverted U-shaped relationship between the number 

of gatekeepers and the novelty of patents. This phenomenon can be explained by the fact that 

though increasing gatekeepers can introduce new technology into the companies’ knowledge 

base at the beginning stage of the knowledge integration process, when the knowledge 

breadth increases to a certain extent, the benefit will eventually diminish. Model 5 tests the 

impact of the number of direct collaborations with the units on the innovativeness of patents. 

And surprisingly, this result does not yield any significant outcomes unlike Network proximity 
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to the unit which has a positive and significant impact. This result could suggest that it is not 

the fact of having direct ties with inventors within units that matters but rather the position 

of inventors that are connected to them.  

Table 3.5 Estimation results – OLS estimation with fixed effects  
Dependent variable: Patent novelty (log of number of new combinations) 

 (1) (2) (3) (4) (5) (6) 
       
Gatekeepers (internal distance) 0.006***      
 [0.002]      
Gatekeepers (betweenness centrality)  0.005***     
  [0.002]     
# of Gatekeepers (internal distance)   0.019***    
   [0.005]    
# of Gatekeepers (internal distance) square   -0.014***    
   [0.004]    
# of Gatekeeper (betweenness centrality)    0.029***   
    [0.007]   
# of Gatekeeper (betweenness centrality) square    -0.027***   
    [0.007]   
# of direct collaborations with the unit     0.003  
     [0.002]  
# of direct collaborations with the unit square   -0.001  
     [0.001]  
Network Proximity to the unit      0.010*** 
      [0.004] 
       
Technological distance 0.021*** 0.020*** 0.020*** 0.020*** 0.020*** 0.022+ 
 [0.003] [0.003] [0.003] [0.003] [0.003] [0.012] 
Technological diversity -0.057*** -0.057*** -0.058*** -0.058*** -0.058*** -0.059** 
 [0.012] [0.012] [0.012] [0.012] [0.012] [0.023] 
Technological diversity square  0.083*** 0.083*** 0.085*** 0.085*** 0.085*** 0.086** 
 [0.019] [0.019] [0.019] [0.019] [0.019] [0.036] 
Team size -0.020*** -0.020*** -0.019*** -0.019*** -0.019*** -0.028*** 
 [0.002] [0.002] [0.002] [0.002] [0.002] [0.010] 
Inventor experience 0.003*** 0.003*** 0.003*** 0.003*** 0.004*** 0.002 
 [0.001] [0.001] [0.001] [0.001] [0.001] [0.002] 
Firm patent stock -0.007*** -0.007*** -0.007*** -0.007*** -0.007*** -0.008** 
 [0.002] [0.002] [0.002] [0.002] [0.002] [0.003] 
Number of IPC subclasses 0.428*** 0.428*** 0.428*** 0.428*** 0.428*** 0.428*** 
 [0.006] [0.006] [0.006] [0.006] [0.006] [0.067] 
Number of New IPC subclasses 0.547*** 0.548*** 0.548*** 0.548*** 0.547*** 0.547*** 
 [0.011] [0.011] [0.011] [0.011] [0.011] [0.052] 
Constant -0.228*** -0.228*** -0.229*** -0.228*** -0.228*** -0.222*** 
 [0.014] [0.014] [0.014] [0.014] [0.014] [0.057] 

Observations 85239 85239 85239 85239 85239 85239 
R-Squared .39 .39 .39 .39 .39 .39 

Patent level analysis - Year and firm fixed effects + 0.10 ** 0.05 *** 0.01 

 

The control variables are also very interesting to consider. Technological distance to unit 

inventors has a positive impact meaning that home company inventors benefit from a 

knowledge base that does not overlap with their own. Technological diversity within team 
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members affects the degree of novelty. The quadratic form indicates that novelty benefits 

from a certain diversity. Team size has a negative impact, whereas inventor experience favors 

the number of novel combinations.  

 

Table 3.5 Estimation results – OLS estimation with fixed effects (Continue) 
 
   
 (7) (8) 
   

Network Proximity to the unit 0.005 -0.000 
 [0.007] [0.007] 
Technological distance x Network Proximity to the unit 0.010  
 [0.010]  
# of unit locations  -0.022*** 
  [0.007] 
Network Proximity to the unit x # of unit locations  0.007+ 
  [0.004] 
Technological distance 0.014  
 [0.009]  
Technological diversity -0.061** -0.067*** 
 [0.023] [0.023] 
Technological diversity square  0.086** 0.101*** 
 [0.036] [0.037] 
Team size -0.028*** -0.026*** 
 [0.010] [0.009] 
Inventor experience 0.003 -0.000 
 [0.002] [0.002] 
Firm patent stock -0.008** -0.008** 
 [0.003] [0.003] 
Number of IPC subclasses 0.428*** 0.429*** 
 [0.067] [0.067] 
Number of New IPC subclasses 0.547*** 0.548*** 
 [0.052] [0.051] 
Constant -0.216*** -0.173*** 
 [0.056] [0.049] 

Observations 85239 85239 
R-Squared .39 .39 

Patent level analysis - Year and firm fixed effects + 0.10 ** 0.05 *** 0.01 

 

The second part of the table 3.5. shows models 7 and 8, which test two interactions to verify 

the moderating effect of technological distance. In Model 8, the interaction between the 

number of unit locations and network proximity is examined. It is found to be significant and 

positively correlated with the novelty of the patents. This finding suggests that home 

companies’ proximity to units enhances their absorptive capacities, enabling better 

absorption of external knowledge sourced from diverse locales. 
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3.4.1 Instrumental variable estimations 

These estimations use the two-step GMM approach with robust standard errors using the 

ivreghdfe routine (Correia, 2017) in Stata based on Baum et al. (2003) ivreg2 routine. Table 

3.7 reports all the estimates of the GMM estimation, showing for each regression the second 

stage, which is the estimation of patent novelty and the first stage, which is the estimation of 

the instrumental variable(s). Year and fixed effects are also introduced in the regressions. Our 

instruments Brokerage, Betweenness and Degree centrality are significant across all the first-

stage regressions. The end of the table gives a summary of tests on instruments as well as 

identification. These consist of the Hansen J test on the validity of instruments, and the test 

of underidentification based on the Kleiberger and Paap rk statistic. The Hansen J does not 

enable to reject the null hypothesis, which indicates that our instruments can be considered 

as appropriate.  

The first stage regressions indicate that technological distance, firm patent stock, and the 

number of IPC subclasses have a negative impact. Interestingly, technological diversity has a 

U-shape relation with the presence of gatekeepers. The positive coefficient of unit locations 

suggests that gatekeepers are more likely to appear in teams with collaborations from various 

locations. Inventor experience has different impacts considering the measurement of 

gatekeepers. For gatekeepers, in terms of internal distance, it has a negative impact.  
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Table 3.6 Estimation results – 2-Step GMM estimation - Dependent variable : Patent novelty (log of number of new combinations) 
 (1) 1st stage (2) 1st stage (3) 1st stage (4) (1st stage 

 Novelty 
Gatekeepers  
(int dist) 

Novelty 
Gatekeepers  
(betw) 

Novelty 
# of Gatekeeper  
(int dist) 

Novelty 
# of Gatekeeper  
(betw) 

Gatekeepers (int dist) 0.11***        
 [0.01]        
Gatekeepers (betw)   0.10***      
   [0.01]      
# of Gatekeeper (int dist)     0.26***    
     [0.05]    
# of Gatekeeper (int dist) # # of Gatekeeper (int dist)     -0.14**    
     [0.06]    
# of Gatekeeper (betw)       0.91***  
       [0.11]  

# of Gatekeeper (betw) # # of Gatekeeper (betw)       -0.93***  
       [0.13]  

Brokerage  0.28***  0.19***  0.29***  -3.98*** 
  [0.01]  [0.01]  [0.01]  [0.10] 
Betweenness  0.01***  0.02***  0.00***   
  [0.00]  [0.00]  [0.00]   
Inventor collaborations (degree)  0.06***    0.06***  0.07*** 
  [0.00]    [0.00]  [0.00] 
Brokerage # Brokerage        2.34*** 
        [0.06] 

Technological distance 0.04*** -0.13*** 0.03*** -0.06*** 0.04*** -0.12*** 0.03*** -0.04*** 
 [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Technological diversity -0.05*** -0.13*** -0.05*** -0.26*** -0.05*** -0.17*** -0.10*** -0.03** 
 [0.01] [0.02] [0.01] [0.02] [0.01] [0.02] [0.02] [0.02] 

Technological diversity square  0.06*** 0.24*** 0.06*** 0.44*** 0.07*** 0.31*** 0.14*** 0.15*** 
 [0.02] [0.04] [0.02] [0.03] [0.02] [0.03] [0.02] [0.03] 

Team size -0.05*** 0.21*** -0.04*** 0.16*** -0.05*** 0.25*** -0.01*** 0.17*** 
 [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] 

Inventor experience -0.00*** -0.02*** -0.00*** 0.02*** -0.00*** -0.02*** -0.01*** -0.01*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Firm patent stock -0.01*** -0.01*** -0.01*** -0.02*** -0.01*** -0.01*** -0.01*** -0.01*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Number of IPC subclasses 0.43*** -0.02*** 0.43*** -0.01** 0.43*** -0.02*** 0.43*** -0.01** 
 [0.01] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.00] 

Number of New IPC subclasses 0.55*** -0.01 0.55*** -0.01+ 0.55*** -0.00 0.55*** -0.01 
 [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] 
# of center locations -0.03*** 0.18*** -0.02*** 0.12*** -0.03*** 0.17*** -0.02*** 0.10*** 
 [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] 

Observations 85239 85239 85239 85239 85239 85239 85239 85239 
R-Squared .33  .35  .33  .23  

Underidentification Kleibergen-Paap 2470  3428  1117  846  

P value (df) 0 (3)  0 (2)  0 (2)  0 (2)  

Overidentification Hansen J 0.60  0.62  0.45  1.4  

P value df) 0.74 (2)  0.43 (1)  0.5 (1)  0.24 (1)  
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Table 3.6 (Continue)  
 

 (5) 1st stage (6) 1st stage 

 Novelty 
# of direct collaborations  
with the unit 

Novelty 
# of direct collaborations 
 with the unit 

     
# of direct collaborations with the unit 0.12***  -0.04***  
 [0.01]  [0.01]  
# of direct collaborations with the unit square -0.04***    
 [0.00]    
Tech. distance x # of direct collaborations with the unit   0.19***  
   [0.02]  
Brokerage  0.40***  0.40*** 
  [0.02]  [0.02] 
Betweenness  -0.03***  -0.03*** 
  [0.00]  [0.00] 
Degree  0.23***  0.23*** 
  [0.00]  [0.00] 
Technological distance 0.03*** -0.41*** -0.03*** -0.41*** 
 [0.00] [0.01] [0.01] [0.01] 
Technological diversity -0.07*** -0.46*** -0.04*** -0.46*** 
 [0.01] [0.03] [0.01] [0.03] 
Technological diversity square  0.09*** 0.55*** 0.02 0.55*** 
 [0.02] [0.05] [0.02] [0.05] 
Team size -0.03*** 0.49*** -0.05*** 0.49*** 
 [0.00] [0.01] [0.00] [0.01] 
Inventor experience -0.01*** 0.18*** -0.00 0.18*** 
 [0.00] [0.00] [0.00] [0.00] 
Firm patent stock -0.00** -0.07*** -0.01*** -0.07*** 
 [0.00] [0.00] [0.00] [0.00] 
Number of IPC subclasses 0.43*** 0.04*** 0.43*** 0.04*** 
 [0.01] [0.01] [0.01] [0.01] 
Number of New IPC subclasses 0.55*** 0.04*** 0.55*** 0.04*** 
 [0.01] [0.01] [0.01] [0.01] 
# of unit locations -0.03*** 0.19*** -0.02*** 0.19*** 
 [0.00] [0.01] [0.00] [0.01] 

Observations 85239 85239 85239 85239 
R-Squared .35  .33  
Underidentification Kleibergen-Paap 3295  1973  
P value (df) 0 (2)  0 (2)  
Overidentification Hansen J 1.9   .001  
P value (df) .17 (1)  .97 (1)  
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Table 3.6 (Continue)  
 (7) 1st stage 1st stage (8) 1st stage 1st stage 
 New combinations Network Proximity to the unit # of unit locations New combinations Network Proximity to the unit Tech. distance 

       
Network Proximity to the unit 0.19***   -0.01   
 [0.04]   [0.02]   
Network Proximity to the unit # # of unit locations -0.08***      
 [0.02]      
Network Proximity to the unit # Tech. distance    0.08***   
    [0.03]   
Brokerage  3.03*** 1.03***  2.28*** 1.87*** 
  [0.18] [0.10]  [0.18] [0.13] 
Betweenness  0.02*** 0.00***  0.02*** -0.00*** 
  [0.00] [0.00]  [0.00] [0.00] 
Degree  0.17*** -0.01***  0.18*** -0.04*** 
  [0.00] [0.00]  [0.00] [0.00] 
Brokerage square  -1.70*** -0.58***  -1.28*** -1.07*** 
  [0.10] [0.06]  [0.10] [0.07] 
Technological distance 0.05*** -0.18*** -0.07*** -0.18***   
 [0.01] [0.00] [0.00] [0.06]   
Technological diversity -0.04*** -0.10*** -0.04*** -0.11*** -0.04+ -0.27*** 
 [0.02] [0.02] [0.01] [0.02] [0.02] [0.02] 
Technological diversity square  0.04+ 0.13*** 0.04+ 0.18*** 0.21*** 0.41*** 
 [0.02] [0.03] [0.02] [0.03] [0.03] [0.02] 
Team size -0.09*** 0.75*** -0.01*** -0.06*** 0.74*** 0.04*** 
 [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] 
Inventor experience 0.00 -0.01*** -0.01*** -0.01*** 0.03*** -0.09*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
Firm patent stock -0.01 0.05*** -0.04*** -0.03*** 0.06*** -0.01*** 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
Number of IPC subclasses 0.43*** -0.01** 0.00 0.49*** -0.00 -0.01** 
 [0.01] [0.00] [0.00] [0.01] [0.00] [0.00] 
Number of New IPC subclasses 0.53*** 0.04*** 0.06***  -0.09*** 0.09*** 
 [0.01] [0.01] [0.01]  [0.00] [0.00] 
# of unit locations 0.27**   -0.02*** 0.31*** -0.08*** 
 [0.13]   [0.00] [0.01] [0.00] 

Observations 85239 85239 85239 85239 85239 85239 
R-Squared .31   .23   

Underidentification Kleibergen-Paap 66   187   
P value (df) 0 (2)   0 (3)   
Overidentification Hansen J 1.6   .96   
P value  .21 (1)   .62 (2)   
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Compared to the OLS regressions, results are confirmed regarding the impact of gatekeepers 

on patent novelty, as shown in Models 1 to 4, however, it should be noticed the outcomes of 

other models are different, which confirms the existence of an endogeneity issue in the 

previous fixed effect models. Having gatekeepers in the team has a positive effect on the 

number of new combinations introduced (models 1 and 2), and the number of gatekeepers 

has an inverted U-shape, that is, when the number of gatekeepers increases, the new 

combinations increases up to a point, and then it decreases, presumably attributable to 

escalating coordination costs, as manifested in Models 2 and 3. The results validate the 

hypothesis related to gatekeepers.  

Model 5 suggests a comparable inverted U-shaped relation between the number of direct 

links and the novelty of patents, a relation that was insignificant in preceding fixed-effect 

regression models. The influence of this variable is comparatively weaker than that of the 

gatekeepers. Model 6 unveils the beneficial role of more direct collaborations with units in 

moderating the obstacles encountered during the knowledge absorption process caused by 

technological distance. Thus, the network-level hypothesis is also validated. 

An interesting issue is whether network proximity between the units and the home company 

facilitates the integration of distant knowledge, that is, knowledge that differs from the home 

company. Model 6 and 8 indicates that this is the case, as the interaction between 

technological distance and the number of direct ties on the one hand (Model 7), and network 

proximity on the other hand have a positive impact (Model 8). In contrast, the interaction 

between network proximity and the number of units has a positive impact, which leads to the 

conclusion that coordination costs between geographically dispersed units are high and are 

not compensated by network proximity.  

 

3.5 CONCLUSIONS  

This chapter intends to uncover the mechanism of the reverse knowledge process behind EM 

MNEs’ technological catch-up efforts. In detail, we explore the function of intra-firm networks 

and gatekeepers in this process, especially their impact on the companies’ knowledge 
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absorptive capacity, which is one of the most important components of the reverse knowledge 

process. 

Making use of a database of Chinese MNEs’ patents from various overseas research units and 

the home company as well, we can construct the intra-firm network based on co-inventor 

relationships. Then, various network variables and the features of gatekeepers are calculated. 

On the other hand, the novelty of patents from home companies is calculated as the 

dependent variable to represent the outcome of reverse knowledge transfer and technology 

outcome. We further make regressions to uncover the impact of intra-firm networks and 

gatekeepers on the novelty of patents produced by home companies.  

The results of regressions provide notable insights into the role of gatekeepers and the intra-

firm network. The inclusion of gatekeepers in the team of home companies substantially 

augments new combinations, though this relationship manifests an inverted U-shape. This 

suggests that while gatekeepers initially enhance innovation, an increase in their number 

eventually leads to a decline, which can be explained by elevated coordination costs. 

From the aspect of the whole intra-firm network, we find that the number of inventors with 

direct links and the novelty of patents exhibits another inverted U-shaped relation, but with a 

lesser impact compared to that of the gatekeepers. Direct collaborations with units have been 

identified as a moderator assisting in easing the difficulties encountered during the knowledge 

absorption process due to technological distance. 

Furthermore, the results illuminate the significant role of network proximity in facilitating the 

absorption of diverse, externally sourced knowledge, especially those far from the existing 

knowledge base of the home company. Our results also highlight another advantage provided 

by network proximity, which is the enhancement of the absorptive capacity of knowledge 

sourced by geographically diverse units. 
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Table 3.7 Correlation table 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

Patent novelty 1.00                
Number of Gatekeeper (internal distance) 0.00 1.00               
Gatekeepers (internal distance) 0.00 0.94* 1.00              
Gatekeepers (betweenness centrality) 0.00 0.82* 0.78* 1.00             
Number of Gatekeeper (betweenness centrality) 0.00 0.79* 0.81* 0.96* 1.00            
Inventor technological diversity 0.06* 0.11* 0.11* 0.12* 0.12* 1.00           
Team size 0.04* 0.34* 0.29* 0.28* 0.26* 0.12* 1.00          
Inventor experience -0.04* 0.21* 0.23* 0.25* 0.26* 0.33* 0.27* 1.00         
Firm stock -0.13* -0.03* -0.01* -0.03* -0.02* -0.04* -0.24* 0.05* 1.00        
Number of IPC subclasses 0.50* 0.02* 0.01* 0.00 0.00 0.12* 0.11* 0.00 -0.03* 1.00       
Number of new IPC subclasses 0.43* -0.02* -0.02* -0.01* -0.02* 0.03* 0.01* -0.04* -0.20* 0.17* 1.00      
Number of direct collaborations with the unit -0.01* 0.56* 0.54* 0.41* 0.40* 0.13* 0.42* 0.45* 0.04* 0.03* -0.02* 1.00     
Number of units -0.10* -0.06* -0.04* -0.07* -0.05* -0.08* -0.26* 0.03* 0.70* -0.04* -0.12* 0.04* 1.00    
Brokerage -0.01* 0.21* 0.21* 0.22* 0.22* 0.24* 0.22* 0.49* 0.04* -0.01* -0.03* 0.31* -0.01* 1.00   
Network Proximity to the unit -0.02* 0.59* 0.57* 0.47* 0.47* 0.18* 0.63* 0.44* 0.16* 0.05* -0.06* 0.73* 0.14* 0.32* 1.00  
Technological distance 0.12* -0.07* -0.08* -0.06* -0.06* 0.02* 0.05* -0.36* -0.23* 0.04* 0.09* -0.22* -0.26* -0.19* -0.19* 1.00 

*p<0.05                 
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Chapter 4:  IN SEARCH OF GOLDEN FLEECE: THE KNOWLEDGE DYNAMICS OF 

CHINESE MNES’ INVENTORS IN FOREIGN ENVIRONMENTS 

4.1 INTRODUCTION 

MNEs are progressively accessing various locations across the globe to acquire specialized 

knowledge. Knowledge obtained from specific foreign countries is integrated with the existing 

knowledge base of the MNE to create new innovations (Marino et al., 2020). As highlighted in 

preceding chapters, EM MNEs exhibit a particular need for specialized foreign knowledge. This 

necessity arises from the aim to bridge the technological gap with established incumbents in 

developed countries (Verbeke, 2009). Despite numerous studies dedicated to exploring the 

knowledge sourcing mechanisms of MNEs in foreign environments, the dynamics of 

knowledge among overseas inventors working for these firms remain unclear. Thus, the 

objective of this chapter is to contribute to the existing literature by examining the knowledge 

dynamics of Chinese MNEs’ overseas inventors in their mechanisms of interacting with 

knowledge in foreign environments.  

This chapter builds on previous literature, such as Tubiana et al. (2022), who study how 

inventor productivity is affected by knowledge sourcing at multiple levels through their 

interactions within co-inventor networks, their location in metropolitan areas, and at the firm 

level. This study adopts their methodology and includes two crucial indicators, namely 

knowledge proximity and knowledge diversity in the inventors' local co-invention network, to 

better comprehend the knowledge dynamics of these inventors within the local environment. 

This chapter explores US patent data from the USPTO Patentsview.org database to empirically 

investigate Chinese MNEs’ overseas inventors’ inventive productivity over the period 2000 – 

2022.    

The findings indicate that the knowledge stocks at the firm and inventor network levels 

positively influence the innovation performance of Chinese MNEs’ overseas inventors in 

foreign environments. However, the impact of metropolitan-level knowledge stock appears 

to be insignificant. When exploring the knowledge characteristics within the inventors' local 
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collaboration networks, it becomes evident that both knowledge proximity and diversity 

significantly contribute to their innovation performance. 

The chapter follows this structure: The next section reviews the theoretical underpinnings 

pertinent to formulating the hypotheses. Section 3 presents the data, variables, and empirical 

methodology used for analysis. The findings are exhibited in Section 4, while the last section 

concludes, highlighting this study's implications and limitations. 

 

4.2 THEORETICAL BACKGROUND AND HYPOTHESIS 

4.2.1 Knowledge sourcing at the metropolitan level 

Metropolitan areas have long been regarded as an important source of innovation. Tracing 

back to Jacob (1969)’s work, cities are places for vigorous knowledge recombination, which 

she qualified as “adding new work to old work” (p.50). On the one hand, the concentration of 

innovation in cities can be explained by the fact that transaction costs associated with 

technology transfers are lower when they are located within the same urban areas (Cappellin, 

1988). On the other hand, this can also be explained by the fact that inventors tend to benefit 

from knowledge spillovers, which facilitate the exchange of ideas that is crucial for innovation 

(Carlino, 2001). Knowledge spillovers have been studied by Audretsch and Feldman (1996), 

who have emphasized the role of geographical concentration as a key factor.   

A large local knowledge stock favors regional innovation as it provides the increased 

absorptive capacity of external knowledge (Miguelez & Moreno, 2015). Boschma et al. (2015) 

suggest that the entry of a new technology largely depends on it is relatedness with the local 

knowledge base. Quatraro (2008) affirms the favorable influence of regional knowledge stock 

on productivity and underscores the significance of the characteristics of the knowledge base, 

noting that knowledge homogeneity demonstrates a positive impact, whereas diversity yields 

a contrasting effect. 
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The interaction with a regional knowledge base holds significant importance for firm 

performance, particularly in cases where their knowledge portfolios are coherent (Tsvetkova 

et al., 2020). Ott and Rondé (2019) decompose the role of regional knowledge base within 

innovation ecosystems, revealing that local firms derive benefits from the local stock of 

knowledge, thereby enhancing their innovation capacity. Simultaneously, these firms also 

contribute to bolstering the overall innovation potential of the region. Singh's (2008) analysis 

of a firm's cross-regional knowledge integration highlights that the local knowledge stock in 

which they are located enhances the value of their innovation output. 

Several researchers have directed their attention toward exploring the connection between 

regional knowledge bases and individual innovation performance. Tubiana et al. (2022) 

confirm the importance of regional-level knowledge stock on inventor-level innovation 

productivity, which surpasses the impact of firm-level and inventor network-level knowledge 

stocks. Van der Wouden and Rigby (2019)’s study demonstrates how regional-level knowledge 

stocks affect the pattern of local inventors’ knowledge production. They find that 

metropolitan areas with a more specialized knowledge base are more likely to provide a 

denser inventor network and thus positively affect inventors’ patent productivity. As a 

consequence, the first hypothesis is as follows: 

Hypothesis 1. The metropolitan areas’ knowledge stocks have a positive impact on the 

inventive productivity of overseas Chinese MNEs’ inventors.  

4.2.2 The role of the firm’s knowledge stock 

The Knowledge-Based View (KBV) has emerged as a pivotal theory for examining a firm's long-

term competitive edge and overall performance (Eisenhardt & Santos, 2000). According to 

Grant (1996), knowledge is identified as the most strategically significant resource for a firm's 

development. This perspective denotes that a firm's ability to manage, access, and leverage 

knowledge effectively is crucial for maintaining a competitive edge in a dynamic innovation 

landscape.  
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The firm’s knowledge stock plays a central role in this setting, as discussed by Antonelli and 

Colombelli (2015). They provide empirical evidence suggesting that a firm's internal 

knowledge base contributes to its capacity for generating new technology and decreasing the 

expenses associated with knowledge production. Criscuolo et al. (2010) further confirm that 

MNEs tend to have a better innovation performance due to their globalized knowledge stock. 

Buckley et al. (2014) suggest that the impact of knowledge sourcing from various external 

locations on innovation performance is anticipated to be more significant for MNEs with a 

limited internal knowledge stock compared to those with a more extensive one. In addition, 

Rupietta and Backes-Gellner (2019) investigate manufacturing operations in highly dynamic 

environments and show that the effect of knowledge stock on innovation performance is 

enhanced by the flow of knowledge among inventors.  

Nevertheless, the impact of firm-level knowledge stocks on innovation output remains 

controversial, mainly regarding its effect on the absorptive capacity of external knowledge. 

Xie et al. (2011) argue that the network structure and knowledge stock of a firm positively 

impact absorptive capacity, which, in turn, influences innovation performance. In Tallman et 

al. (2004)’s conceptual model, though firm-specific knowledge stock contributes to the 

establishment of competitive advantage, it can also become an obstacle when absorbing 

external knowledge. Roper and Hewitt-Dundas (2015)’s research  also suggests that the 

existing knowledge base may hinder new innovation output because path dependencies can 

have a negative impact.  

Though in Tubiana et al. (2022)’s multi-level analysis, the knowledge stock of firms positively 

enhances the innovation productivity of their inventors, given the contradictory findings in 

prior literature concerning the influence of firm-level knowledge stock on innovation 

performance, the second hypothesis is divided into two aspects: 

Hypothesis 2a: The firm-level knowledge stock has a positive impact on the inventive 

productivity of overseas Chinese MNEs’ inventors.  

Hypothesis 2b: The firm-level knowledge stock has a negative impact on the inventive 

productivity of overseas Chinese MNEs’ inventors.  
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4.2.3 Co-inventors’ network-level knowledge stock 

Inventors engage in a dynamic process of knowledge sourcing by interacting and collaborating 

within their knowledge network of collaborators. This interactive engagement involves 

sharing, exchanging, and developing ideas, insights, and expertise, fostering a collective 

environment for knowledge creation and innovation (Uzzi & Spiro, 2005). According to 

Wuchty et al. (2007), contemporary knowledge production and innovation increasingly stem 

from collaborative teamwork. This implies the significance of a collective knowledge base 

within co-inventor networks.  

Hereby, in this study the knowledge stock of the inventor network is also considered as an 

important factor in the knowledge dynamics. Thus, the following hypothesis is: 

Hypothesis 3: The co-inventor network-level knowledge stock has a positive impact on the 

inventive productivity of overseas Chinese MNEs’ inventors.  

While emphasizing the role of local innovation environments for Chinese MNEs’ overseas 

inventors, the specific issue of its underlying knowledge dynamic should be investigated. The 

characteristics of their local collaborations in terms of knowledge proximity and knowledge 

diversities may further explain how inventors source knowledge through their network 

relationships. A number of authors have shown that technological proximity significantly 

contributes to the establishment of collaborations (Boschma, 2005; Cassi and Plunket, 2014). 

This holds particular importance for overseas inventors within Chinese MNEs, given the 

inherent challenges these firms face when trying to establish connections within local 

knowledge networks, largely due to barriers imposed by local incumbents (Cantwell & 

Mudambi, 2011). Additionally, technological proximity aids in the entry of MNEs’ inventors, 

especially considering the aforementioned prevalence of regional knowledge homogeneity.  

Cantner et al. (2010) confirm that the homogeneity of the regional knowledge pool serves as 

a booster of knowledge flows as it provides incentives for interaction between inventors. 

These collaborations facilitate the knowledge exchange between MNE inventors and local 

actors, which enables the former to tap into the local knowledge base and achieve higher 

innovation performance. 
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Knowledge diversity has been regarded as another important source of innovation as it 

expands the potential number and variety of knowledge combinations (Phelps, 2010). This 

positive effect is also confirmed by Jansen et al. (2006), which is especially the case for 

generating explorative innovation. Wen et al. (2021) concentrate on diversity within a firm's 

internal network, differentiating knowledge diversity into related and unrelated categories. 

Their findings suggest that diversity in related knowledge is advantageous for exploitative 

innovation, whereas diversity in unrelated knowledge is beneficial for explorative innovation. 

Gkypali et al. (2017) examine the influence of knowledge diversity on firm innovation, noting 

that the positive effects of knowledge diversity occur only upon the situation when outcomes 

outweigh the various costs associated with external knowledge sourcing and internal 

absorption of such knowledge.  

Presented below are the following hypotheses concerning the knowledge proximity and 

diversity in Chinese MNEs’ oversea inventors’ local co-invention network: 

Hypothesis 4a: Knowledge diversity within the local co-inventors’ network has a positive 

impact on the inventive productivity of overseas Chinese MNEs’ inventors.  

Hypothesis 4b: Knowledge proximity within the local co-inventors’ network has a positive 

impact on the inventive productivity of overseas Chinese MNEs’ inventors.  

 

4.3 METHODS 

4.3.1 Database construction 

As this chapter focuses on exploring the external knowledge sourcing of diverse overseas 

inventors affiliated with Chinese MNEs, the original database used for Chapter 2 and 3, which 

is constructed on the basis of MNEs, lacks sufficient regional-level knowledge information. To 

ensure a more comprehensive understanding of the external knowledge environment of these 

inventors, a broader database is preferred to gather additional insights. As highlighted in 

Chapter 1, the United States stands as the primary host country for Chinese MNEs’ overseas 
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researchers. Consequently, the scope of this chapter is specifically directed toward Chinese 

MNEs’ overseas inventors operating in the United States. To facilitate this analysis, USPTO 

patent application data sourced from the PatentsView database13 has been employed. The 

PatentsView provides disambiguated data at both the inventor and assignee levels, thereby 

facilitating the analysis of relationships between inventors. 

The database has been built following a number of steps: 

1. the patentsView has been searched for all Chinese assignees and their inventors 

located in the United States.  

2. the database has been limited to the 198 largest metropolitan areas in which inventors 

working for Chinese firms are located. More precisely data have been collected at the 

Core Based Statistical Area (CBSA) level which refers to both metropolitan statistical 

areas and micropolitan areas.  

a. All the patents of these CBSA areas have been extracted with their inventors 

and assignees in order to compute CBSA-level stocks and all firms’ (CBSA) local 

knowledge stock.  

b. The whole patentsview database has been checked to extract all the patents 

and all the co-inventors of the inventors working in the above-mentioned CBSA 

to be able to build their co-inventor networks and past patenting.  

3. The final sample used for regressions focuses on all inventors in the 198 CBSA areas 

and having at least two patents in order to compute their previous co-inventor 

network.  

4. The Chinese firms have been checked manually to ensure that they are indeed Chinese 

firms and not multinational companies with subsidiaries with a location in China. The 

final sample includes 573 firms in 124 locations on which the regressions will focus.  

The final sample used for regressions includes 124 CBSA areas, 14 199 firms, 42 173 inventors, 

and 573 Chinese assignees with 1 912 inventors over the years 2000-2022. Table 4.6 in the 

                                                      

13 https://patentsview.org/ 
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Appendix provides a detailled description of the number of firms, MNEs and their inventors 

across the 124 Metropolitan areas (CBSA).  

4.3.2 Variables 

4.3.2.1 Dependent variable 

The objective of this chapter is to investigate the influence of external knowledge dynamics of 

different levels on the innovation performance of Chinese MNEs’ overseas inventors. The 

innovation performance is assessed through inventors’ productivity measured by the annual 

count of their patents. 

4.3.2.2 Variables of interest 

Three variables are computed to explore the impact of external knowledge sourcing dynamics. 

The metropolitan area knowledge stock is computed following the permanent inventory 

method. It is the yearly accumulation of patents discounted at the traditional 15% 

depreciation rate (Hall et al. 2010). The firm knowledge stock is computed as the yearly 

accumulation of patents for each assignee and metropolitan area level and discounted at 15% 

following the permanent inventory method. The co-inventor network is simply the number of 

direct co-inventors over the five years prior to patenting.  

Chinese firm takes value 1 if the inventor patents for a Chinese MNE and 0 otherwise. 

Technological proximity is computed as the Jaffe index (Jaffe, 1989), that is, the uncentered 

correlation between two vectors representing the focal inventor’s technological portfolio and 

its co-inventors’ technological portfolio. The index ranges from zero to one, depending on the 

degree of technological overlap between the inventor and its co-inventors prior patent IPC 

codes. It measures whether inventors co-invent with inventors that work in similar 

technologies. Technological proximity with local co-inventors is the same index but 

computed only between the focal inventor and its co-inventors within the metropolitan area. 

Local technological diversity (HH) is the technological diversity of co-inventors within the 

metropolitan area. It is computed as the inverse of the Herfindhal-Hirschman index based on 

all metropolitan co-inventors’ patents and their 4-digit IPC codes. It measures whether co-
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inventors within the metropolitan area have diversified knowledge bases, which increases the 

sources of knowledge variety. 

Table 4.1 Description of variables  

Dependent variable  

Inventor productivity (# of patents) 
Number of patents per year per inventor. It is a proxy for inventor 
productivity 

  

Variables of interest  

Network stock The number of direct co-inventors over the five years prior to patenting 

Firm stock 
Yearly accumulation of patents for each assignee and metropolitan area level 
and discounted at 15% following the permanent inventory method 

Metropolitan area stock 
Yearly accumulation of patents discounted at 15% depreciation rate 
following the permanent inventory method 

Chinese Firm Takes value 1 if the inventor patents for a Chinese MNEs and 0 otherwise 

Technological proximity 
Uncentered correlation between the technologies (4-digit IPC codes) of the 
inventor and its co-inventors  

Technological proximity with local co-inv 
Uncentered correlation between the technologies (4-digit IPC codes) of the 
inventor and its co-inventors of the same metropolitan area  

Local Technology diversity Dispersion of IPC codes of co-inventors of the same metropolitan area 

  

Control variables  

Inventor technology diversity Dispersion of IPC codes within the inventor prior patents  

# of assignees co-patenting 
The average number of assignees appearing on the patent applications of the 
focal inventor 

 

4.3.2.1 Control variables 

Inventor technological diversity measures if the inventors’ patents over the past five years 

are distributed over a large variety of 4-digit IPC codes. It measures the variety of his 

technological knowledge base. The # of assignees co-patenting is the average number of 

assignees appearing on the patent applications of the focal inventor.  

4.3.2.2 Estimated model 

A regression with fixed effects (FE) is used for the estimation.  

ln𝑦𝑖𝑡 = β1lnMS𝑖𝑡 + β2lnFS𝑖𝑡 + β3lnNS𝑖𝑡 + β4lnNP𝑖𝑡 + β5lnND𝑖𝑡 + 𝜃Controls𝑖𝑡 + 𝛿𝑖 + 𝛿𝑡

+ 𝛿𝑟+𝛿𝑇 + 𝛿𝑟𝑇 + 𝛿𝑡𝑇 + 𝜀𝑖,𝑡,𝑟,𝑇 
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The inventor innovation performance measured by productivity (y) is regressed on the 

metropolitan area knowledge stock (MS), firm-level knowledge stock (FS), and co-inventor 

network (NS), Knowledge proximity in local co-inventor network (NP), Knowledge diversity in 

local co-inventor network (ND) and the control variables. Multiple fixed effects are 

implemented to control for heterogeneity issues, as i stands for inventor, t stand for time, r 

stands for metropolitan area and T stands for technology. Interactions between fixed effects 

are also considered, as 𝛿𝑟𝑇  controls for variation of technology through time and 𝛿𝑡𝑇 

represents the metropolitan-specific knowledge effect.  

4.3.2.3 Descriptive statistics 

Table 4.2 shows the descriptive statistics for the whole sample. For the dependent variable, 

Inventor Productivity, measured by the number of patents, has an average of 4.38 and displays 

considerable variability with a standard deviation of 9.57 and a broad range from 1 to 1071 

patents. It suggests large variation in the productivity of inventors in the sample. Metropolitan 

area stock shows a significant mean of 49309.59, alongside a large standard deviation, 

indicating substantial dispersion in knowledge stock across areas. Firm Stock and Network 

Knowledge Stock also present notable variations with respective means of 548.86 and 11.45. 

The knowledge proximity of the local co-inventor group has a mean value of 0.82, while the 

variation is relatively lower. The observations for this dataset is a total of 284,942. 

 

Table 4.2 Descriptive statistics - Whole Sample 
 Mean S.D Min Max 

Inventor productivity (# of patents) 4.38 9.57 1.00 1071.00 
Inventor technology diversity 4.99 3.95 1.00 60.59 
Network stock 11.45 18.89 0.00 814.00 
Firm stock 548.86 1341.81 1.14 10512.06 
Metropolitan area stock 49309.59 40861.39 10.50 143540.20 
# of assignees co-patenting 1.12 0.38 1.00 10.00 
Chinese Firm 0.01 0.12 0.00 1.00 
Technological proximity 0.82 0.33 0.00 1.00 
Technological proximity with local co-inv 0.79 0.33 0.00 1.00 
Local Technology diversity  17.07 21.35 0.00 200.37 

Observations 284942    
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Table 4.3 Descriptive statistics – Chinese MNEs  
 Mean S.D Min Max 

Inventor productivity (# of patents) 7.89 17.18 1.00 331.00 
Inventor technology diversity 5.26 4.64 1.00 50.51 
Network stock 22.06 40.04 0.00 761.00 
Firm stock 52.16 94.95 1.60 852.50 
Metropolitan area stock 57471.98 45870.93 33.92 143540.20 
# of assignees co-patenting 1.33 0.57 1.00 6.00 
Chinese Firm 1.00 0.00 1.00 1.00 
Technological proximity 0.89 0.27 0.00 1.00 
Technological proximity with local co-inv 0.85 0.27 0.00 1.00 
Local Technology diversity (HH) 23.58 28.18 0.00 186.35 

Observations 4204    
 
 

Table 4.4 T-test of Chinese MNEs versus Other firms 
 
 Chinese Other Difference  

 Mean Mean Coefficient SD 

Number of patents 7.894 4.326 -3.568*** 0.148 
Inventor technology diversity 5.263 4.989 -0.274*** 0.061 
Network stock 22.055 11.293 -10.762*** 0.293 
Firm stock 52.159 556.297 504.138*** 20.828 
Metropolitan area stock 57471.978 49187.360 -8284.618*** 634.717 
# of assignees co-patenting 1.326 1.115 -0.211*** 0.006 
Chinese Firm 1.000 0.000 -1.000 0.000 
Technological proximity 0.888 0.822 -0.066*** 0.005 
Technological proximity with local co-inv 0.854 0.793 -0.061*** 0.005 
Local Technology diversity (HH) 23.584 16.969 -6.615*** 0.332 

Observations 4204 280738 284942  

 

Table 4.3 presents descriptive statistics focusing specifically on the subset of Chinese MNEs’ 

overseas inventors located in the US. These inventors are more productive than the overall 

mean, and they are located in larger metropolitan areas than the average inventor. They also 

work for companies that co-patent more than the average inventor. They are embedded in 

local networks for which inventors have more diversified knowledge bases.  

These differences are confirmed by Table 4.4, which provides T-tests between inventors 

working for Chinese multinationals and those working for non-Chinese firms. The comparison 

highlights several distinctions. Notably, the productivity of overseas inventors affiliated with 

Chinese MNEs appears to be higher than that of other inventors of the whole sample. This 

suggests that these overseas inventors, working for Chinese MNEs, are more productive in 

innovation activities compared to others. Moreover, these overseas inventors have more co-

inventors than their peers and work in more inventive metropolitan areas. However, at firm-

level, the knowledge stock of Chinese MNEs seems to be smaller than that of other firms. The 
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knowledge proximity with the local co-invention network of these overseas inventors is 

slightly higher, while the knowledge is more diverse in their local collaboration network, and 

the patents, they filed tend to have more assignees.  

Table 4.7 provides details on the distribution of the number of yearly observations per 

inventors working for Chinese MNEs, and Table 4.8 gives the correlation table.  

 

4.4 ESTIMATION RESULTS 

Table 4.5 presents the results of the regressions that investigate the correlation between the 

knowledge dynamics at the metropolitan, firm, and inventor-network levels and the 

innovation performance of Chinese MNEs’ overseas inventors. In a general context, as 

reflected by Model (1), the knowledge stock at all three levels significantly and positively 

influences the innovation performance of inventors located in the United States. In Model (2), 

the inclusion of the binary variable Chinese firm, representing inventors working for Chinese 

MNEs, reveals that inventors employed by these specific MNEs exhibit higher productivity 

levels compared to other inventors located in the US and working for other firms. 

However, when the analysis specifically focuses on inventors working for Chinese MNEs in 

Model (3), the knowledge stock at the firm and inventor network levels continues to display a 

positive impact on innovation performance, but surprisingly, the metropolitan level no longer 

appears to have a statistically significant impact. This suggests that while inventors manage to 

benefit from the metropolitan area’s innovative activity, those working for Chinese firms have 

a harder time benefiting from this environment. This result may reflect the difficulties for 

these firms to tap into local knowledge reservoirs and benefit from knowledge spillovers 

either because they have only been located there recently or for cultural reasons. 
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Table 4.5 Multi-level knowledge stocks impact on inventor productivity 
 (1) (2) (3) (4) (5) (6) 
Network stock 0.095*** 0.094*** 0.094*** 0.106*** 0.106*** 0.105*** 
 [0.007] [0.007] [0.006] [0.008] [0.008] [0.008] 
Firm stock 0.018*** 0.019*** 0.019*** 0.019*** 0.019*** 0.019*** 
 [0.004] [0.004] [0.004] [0.004] [0.004] [0.004] 
Metropolitan area stock 0.175*** 0.172*** 0.172*** 0.172*** 0.172*** 0.171*** 
 [0.049] [0.049] [0.049] [0.049] [0.049] [0.050] 
Chinese Firm  0.195*** -0.196+ 0.106*** 0.102*** 0.077*** 
  [0.024] [0.113] [0.035] [0.038] [0.027] 
Chinese Firm x Network stock   0.057***    
   [0.017]    
Chinese Firm x Firm stock   0.097***    
   [0.023]    
Chinese Firm x Metropolitan area stock   -0.005    
   [0.014]    
Technological proximity    -0.052***  -0.057*** 
    [0.009]  [0.009] 
Chinese Firm x Technological proximity    0.097***   
    [0.026]   
Technological proximity with local co-inv     -0.052***  
     [0.008]  
Chinese Firm x Technological proximity with local co-inv    0.106***  
     [0.029]  
Local Technology diversity (HH)      0.003** 
      [0.002] 
Chinese Firm x Local Technology diversity (HH)      0.044*** 
      [0.009] 
Inventor technology diversity 0.054*** 0.055*** 0.054*** 0.055*** 0.054*** 0.054*** 
 [0.009] [0.009] [0.009] [0.009] [0.009] [0.009] 
# of assignees co-patenting 0.638*** 0.629*** 0.631*** 0.628*** 0.628*** 0.628*** 
 [0.017] [0.015] [0.015] [0.015] [0.015] [0.015] 
Constant -1.253** -1.231** -1.223** -1.213** -1.213** -1.199** 
 [0.498] [0.498] [0.495] [0.498] [0.498] [0.499] 
Observations 284942 284942 284942 284942 284942 284942 

Fixed effects  

Inventor Yes Yes Yes Yes Yes Yes 
Region stock Yes Yes Yes Yes Yes Yes 
Year Yes Yes Yes Yes Yes Yes 
Technology Yes Yes Yes Yes Yes Yes 
Year x Technology Yes Yes Yes Yes Yes Yes 
Region x Technology Yes Yes Yes Yes Yes Yes 

Standard errors are clustered by region and firm level. 
+ 0.10 ** 0.05 *** 0.01 

 

In Models (4) to (6), the analysis further explores the influence of knowledge characteristics 

within inventors’ collaboration networks. Model (4) particularly examines the inventors' 

technological proximity with their co-inventors disregarding their location. Chinese firms seem 

to benefit from technological proximity while other inventors have lower productivity when 

they work with inventors having similar knowledge bases. This suggests that Chinese firms 

through their inventors, try to increase their degree of specialization by collaborating with 
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inventors who have similar competences. An additional issue is whether it matters that these 

co-inventors are located within the metropolitan area. Models (5) and (6) explore, respectively, 

the impact of technological proximity and technological diversity of co-inventors located 

within the same metropolitan area. Results show that inventors working for Chinese firms 

benefit from both types of networks. That is, they benefit from their local network 

technological proximity and from the fact that these inventors have a certain technological 

diversity within similar domains.  

In sum, their innovation performance seems more reliant on engagement with a local 

knowledge network possessing specific characteristics. As Chinese MNEs aim to access 

localized advanced knowledge for technological catch-up with developed country 

incumbents, the importance of knowledge proximity with local collaborators becomes 

apparent. This significance could be attributed to the likelihood that inventors with a coherent 

technological background are more inclined to exchange knowledge with local inventors, 

potentially contributing to their innovation performance. For other inventors not working for 

Chinese firms, given that many of these firms are local, there exists a probability that they are 

already well-acquainted with the local knowledge context. Therefore, knowledge proximity 

might limit the scope of their research. In this context, the diversity of knowledge among co-

inventors assumes greater significance. The positive impact of knowledge diversity within the 

co-inventor network on overseas Chinese inventors situated in the US underscores the 

significance of a varied source of knowledge. While technological proximity holds importance, 

a diverse range of knowledge sources appears to offer considerable benefits in enhancing the 

innovation performance of these inventors. 

 

4.5 CONCLUSIONS 

This chapter is dedicated to unraveling the mechanisms of how knowledge dynamics at 

different levels, particularly within local settings, contribute to the innovation performances 

of MNEs’ overseas inventors. Taking inspiration from Tubiana et al.'s (2022) research, this 

chapter employs an approach focusing on three levels: metropolitan, firm, and inventor 
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networks. Using USPTO patent data, the study primarily focuses on Chinese MNEs’ overseas 

inventors located in the United States. The descriptive statistics of these two groups provide 

a general scenario of knowledge exchange between the two countries. 

The findings contribute to the existing literature by shedding light on the intricate 

relationships between knowledge dynamics at various levels and the innovation performance 

of Chinese MNEs' overseas inventors. For these inventors, while knowledge stock at the firm 

and inventor-network levels positively impacts innovation performance, the significance of 

metropolitan-level knowledge stock diminishes, implying obstacles in accessing and benefiting 

from local knowledge reservoirs. The analysis further digs into the knowledge characteristics 

within inventors’ local collaboration networks. The positive impact of technological proximity 

and knowledge diversity is confirmed. These findings suggest that the access to a location with 

an extensive knowledge base itself is insufficient for the specific group of inventors affiliated 

with Chinese MNEs. Facing the barriers set up by existing powerful established domestic 

incumbents (Cantwell & Mudambi, 2011) together with the difficulties caused by geographical 

and cultural distances, knowledge proximity serves as an important factor for these inventors’ 

knowledge searching endeavor, which eventually enhances their innovation performance.  

The empirical findings offer practical insights for EM MNEs seeking to catch-up through their 

overseas inventors. The mere selection of a metropolitan area abundant in knowledge does 

not ensure the innovation performance. The alignment of inventors with similar knowledge 

backgrounds becomes crucial for optimal knowledge assimilation and application. 

Additionally, the reservoir of knowledge within MNEs and inventor networks is essential as 

well. They serve as moderators in absorbing external knowledge acquired from diverse 

environments, enabling its transformation into innovation. 

This study has a number of limitations. First, the sample is only centered in the United States. 

It would have been interesting to add European countries as a benchmark. Second, the size of 

the sample of Chinese firms and inventors is rather small, respectively, Third, it would have 

been interesting to add inventors working from other emerging market such as India. It would 

have been interesting to consider whether inventors coming from other countries rely on the 

same knowledge dynamics. The sample of inventors would have been larger enabling to 
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explore other issues and in particular the type of collaborations between MNEs and other 

organizations, that is local firms, universities, or start-ups. Fourth, the sample of Chinese firms 

and moreover inventors remains small and the number of yearly observations are also small 

(see Table 4.7). This bears a number of constraints on the regressions that limit variations 

through time and the possibility to further explore the knowledge dynamic.  Finally, the 

limitation lies in the incomplete resolution of endogeneity issues, despite the inclusion of 

various fixed effects in the regression analysis.  
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4.7 CHAPTER 4 APPENDIX 

 

 Table 4.6 Metropolitan area # of firms, Chinese MNEs, # inventors and # Inventors working for MNEs 
 

cbsacode Metropolitan statistical areas  # inventors 
# inventors CN 

MNEs 
# firms 

# of CN  
MNEs 

10420 Akron, OH 637 14 161 4 
10580 Albany-Schenectady-Troy, NY 6033 4 485 4 
10740 Albuquerque, NM 437 2 105 2 
10900 Allentown-Bethlehem-Easton, PA-NJ 1126 6 264 6 
11180 Ames, IA 169 1 54 1 
11460 Ann Arbor, MI 2160 12 353 8 
12060 Atlanta-Sandy Springs-Roswell, GA 2700 11 583 9 
12260 Augusta-Richmond County, GA-SC 46 1 18 1 
12420 Austin-Round Rock, TX 4250 15 544 10 
12580 Baltimore-Columbia-Towson, MD 1158 1 333 1 
12780 Bartlesville, OK 297 3 17 1 
13020 Bay City, MI 37 1 12 1 
13180 Beaver Dam, WI 5 1 2 1 
13460 Bend-Redmond, OR 25 1 18 1 
13820 Birmingham-Hoover, AL 184 1 60 1 
14010 Bloomington, IL 61 1 24 1 
14020 Bloomington, IN 218 2 47 2 
14260 Boise City, ID 1663 3 64 2 
14460 Boston-Cambridge-Newton, MA-NH 18261 49 2851 34 
14500 Boulder, CO 1462 3 277 2 
14860 Bridgeport-Stamford-Norwalk, CT 1619 3 270 3 
15380 Buffalo-Cheektowaga-Niagara Falls, NY 546 3 98 4 
15500 Burlington, NC 28 1 14 1 
15540 Burlington-South Burlington, VT 934 1 87 2 
15940 Canton-Massillon, OH 122 2 35 2 
16580 Champaign-Urbana, IL 497 2 119 2 
16740 Charlotte-Concord-Gastonia, NC-SC 522 8 180 6 
16980 Chicago-Naperville-Elgin, IL-IN-WI 7534 60 1060 27 
17060 Chillicothe, OH 8 1 4 1 
17140 Cincinnati, OH-KY-IN 1641 5 218 4 
17200 Claremont-Lebanon, NH-VT 185 1 78 1 
17460 Cleveland-Elyria, OH 1157 12 315 4 
17780 College Station-Bryan, TX 216 2 76 1 
18140 Columbus, OH 1001 9 221 7 
18180 Concord, NH 64 2 33 2 
18700 Corvallis, OR 433 1 45 3 
19100 Dallas-Fort Worth-Arlington, TX 4296 67 696 14 
19380 Dayton, OH 296 8 84 4 
19500 Decatur, IL 16 1 6 1 
19660 Deltona-Daytona Beach-Ormond Beach, FL 32 1 20 1 
19740 Denver-Aurora-Lakewood, CO 1199 13 302 8 
19780 Des Moines-West Des Moines, IA 798 3 62 2 
19820 Detroit-Warren-Dearborn, MI 6261 34 444 15 
20500 Durham-Chapel Hill, NC 1749 31 389 14 
23060 Fort Wayne, IN 63 1 31 2 
23540 Gainesville, FL 555 4 115 3 
24340 Grand Rapids-Wyoming, MI 149 2 47 1 
24660 Greensboro-High Point, NC 186 3 65 4 
24860 Greenville-Anderson-Mauldin, SC 535 4 90 3 
25540 Hartford-West Hartford-East Hartford, CT 1271 3 260 4 
26420 Houston-The Woodlands-Sugar Land, TX 6255 73 812 19 
26900 Indianapolis-Carmel-Anderson, IN 1741 28 307 7 
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27060 Ithaca, NY 423 6 92 5 
27740 Johnson City, TN 133 1 17 1 
28020 Kalamazoo-Portage, MI 133 1 49 1 
28140 Kansas City, MO-KS 221 3 96 2 
28500 Kerrville, TX 2 1 1 1 
28740 Kingston, NY 118 1 33 1 
28940 Knoxville, TN 402 1 86 1 
29460 Lakeland-Winter Haven, FL 58 1 28 1 
29540 Lancaster, PA 323 2 63 2 
29820 Las Vegas-Henderson-Paradise, NV 272 3 101 3 
30140 Lebanon, PA 60 1 18 1 
30460 Lexington-Fayette, KY 269 5 137 3 
31080 Los Angeles-Long Beach-Anaheim, CA 11022 104 2031 63 
31140 Louisville/Jefferson County, KY-IN 234 5 82 3 
31180 Lubbock, TX 52 1 14 1 
31540 Madison, WI 1011 2 219 3 
31700 Manchester-Nashua, NH 348 2 133 2 
31820 Manitowoc, WI 28 1 8 1 
32740 Meadville, PA 12 1 6 3 
32900 Merced, CA 61 1 45 1 
33100 Miami-Fort Lauderdale-West Palm Beach, FL 824 1 274 1 
33220 Midland, MI 800 2 72 1 
33340 Milwaukee-Waukesha-West Allis, WI 932 2 175 2 
33460 Minneapolis-St. Paul-Bloomington, MN-WI 8349 11 619 8 
34820 Myrtle Beach-Conway-North Myrtle Beach, SC-NC 17 1 9 1 
34980 Nashville-Davidson--Murfreesboro--Franklin, TN 288 1 104 1 
35300 New Haven-Milford, CT 1637 4 313 4 
35620 New York-Newark-Jersey City, NY-NJ-PA 25291 185 2604 88 
35660 Niles-Benton Harbor, MI 84 1 5 1 
35980 Norwich-New London, CT 448 1 74 1 
36100 Ocala, FL 10 1 5 1 
36260 Ogden-Clearfield, UT 222 1 60 2 
36740 Orlando-Kissimmee-Sanford, FL 407 4 129 1 
37100 Oxnard-Thousand Oaks-Ventura, CA 1570 16 228 9 
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 8302 23 1315 19 
38060 Phoenix-Mesa-Scottsdale, AZ 2950 10 496 10 
38300 Pittsburgh, PA 2217 5 402 5 
38340 Pittsfield, MA 35 1 17 1 
38900 Portland-Vancouver-Hillsboro, OR-WA 4065 26 414 10 
38940 Port St. Lucie, FL 13 2 7 1 
39300 Providence-Warwick, RI-MA 601 3 211 2 
39580 Raleigh, NC 2990 53 512 11 
39740 Reading, PA 204 4 43 3 
39900 Reno, NV 438 2 61 3 
40140 Riverside-San Bernardino-Ontario, CA 900 6 332 5 
40340 Rochester, MN 438 1 41 1 
40380 Rochester, NY 2009 5 226 5 
40860 Rutland, VT 59 1 31 1 
40900 Sacramento--Roseville--Arden-Arcade, CA 1119 9 274 7 
41180 St. Louis, MO-IL 2009 12 323 10 
41620 Salt Lake City, UT 704 1 218 1 
41700 San Antonio-New Braunfels, TX 260 2 85 3 
41740 San Diego-Carlsbad, CA 17382 125 2104 56 
41860 San Francisco-Oakland-Hayward, CA 29761 216 4352 94 
41940 San Jose-Sunnyvale-Santa Clara, CA 44969 493 4488 122 
42100 Santa Cruz-Watsonville, CA 632 3 181 3 
42200 Santa Maria-Santa Barbara, CA 765 1 199 1 
42220 Santa Rosa, CA 397 3 130 3 
42540 Scranton--Wilkes-Barre--Hazleton, PA 15 1 12 1 
42660 Seattle-Tacoma-Bellevue, WA 12895 73 988 26 
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43320 Show Low, AZ 2 1 2 1 
44300 State College, PA 401 2 107 2 
44700 Stockton-Lodi, CA 181 3 71 3 
45300 Tampa-St. Petersburg-Clearwater, FL 394 3 149 3 
45780 Toledo, OH 141 2 30 2 
45940 Trenton, NJ 2328 16 457 15 
46060 Tucson, AZ 716 14 144 5 
46520 Urban Honolulu, HI 79 1 32 1 
47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 3932 36 1053 28 
48580 Whitewater-Elkhorn, WI 13 1 7 1 
49180 Winston-Salem, NC 183 1 54 1 
49340 Worcester, MA-CT 1544 7 403 6 

 

 
Table 4.7 Distribution of inventors working for CN MNEs 

# of years per inventor # of inventors % 

   
2 246 12.87 
3 219 11.45 
4 185 9.68 
5 170 8.89 
6 129 6.75 
7 123 6.43 
8 133 6.96 
9 112 5.86 
10 81 4.24 
11 87 4.55 
12 68 3.56 
13 55 2.88 
14 73 3.82 
15 60 3.14 
16 39 2.04 
17 44 2.30 
18 30 1.57 
19 18 0.94 
20 20 1.05 
21 17 0.89 
22 2 0.10 
23 1 0.05 

The table shows the number of observations for each inventor working for CN MNEs and 
used for the regressions 

   

 

 

 



 118 

 

 

Table 4.8 Correlation table 
Number of patents 1.00          
Technology diversity (HH) 0.18* 1.00         
Network stock 0.32* 0.28* 1.00        
Firm stock 0.14* -0.02* 0.20* 1.00       
Metropolitan area stock 0.04* 0.02* 0.14* 0.18* 1.00      
# of assignees co-patenting 0.15* 0.15* 0.13* -0.12* -0.01* 1.00     
Chinese Firm 0.05* 0.00* 0.07* -0.07* 0.02* 0.07* 1.00    
Technological proximity 0.11* 0.09* 0.62* 0.15* 0.09* 0.04* 0.02* 1.00   
Technological proximity with local co-inv 0.09* 0.05* 0.60* 0.15* 0.08* 0.03* 0.02* 0.99* 1.00  
Local Technology diversity (HH) 0.21* 0.33* 0.60* 0.27* 0.18* 0.06* 0.03* 0.65* 0.62* 1.00 
* p < 0.05           
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CONCLUDING REMARKS 

This thesis delves into the knowledge dynamics of Emerging Market Multinational Enterprises 

(EM MNEs) by examining the cases of inventors affiliated to Chinese MNEs.  It explores how 

EM MNEs utilize inventor networks to source knowledge from foreign environments, absorb 

this knowledge, and eventually leverage it to drive new innovations. The four chapters of this 

thesis offer insights into several specific aspects related to the main subject, including the 

embeddedness of these overseas inventors in internal and external networks, the significance 

of home company gatekeepers in reverse knowledge transfer, and an exploration into the 

knowledge sources of these inventors operating overseas. The study narrows its scope to 

concentrate on inventor-level activities based on patent data. This approach complements the 

existing body of company-level studies on the innovation processes of EM MNEs by providing 

micro-foundation evidence.  

The practical implications derived from the results can also serve as references for managers 

of EM MNEs and policymakers. For EM MNEs managers, the findings of this thesis serve as a 

valuable resource for decision-making regarding the deployment and operation of inventors 

and research units in foreign environments. From the perspective of policy makers in EM 

countries, the results affirm the advantages of conducting overseas R&D for fostering 

innovation and aids in strategic decisions on allocating incentives to encourage MNEs in 

pursuing knowledge acquisition abroad. 

The scope of future research presents multiple avenues to expand upon the findings within 

this thesis. While this study mainly focuses on the contributions of overseas inventors to 

Chinese MNEs, enriching the sample with inventors from other EM countries would 

significantly diversify and enhance its breadth.  An exploration into the distinctions among 

various groups of external collaborators, including universities, research institutions, suppliers, 

and other entities, also appears as a promising direction for future study. Moreover, an area 

worth exploring involves investigating other pipelines of external knowledge for EM MNEs. 

Beyond the knowledge derived from overseas units and inventors, it is plausible that the home 

company also establishes direct connections with foreign inventors. Therefore, an interesting 
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direction for further study would involve comparing the efficacy of knowledge acquisition 

through various pipelines. 


