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ABSTRACT

MONTE CARLO SIMULATION OF WATER
DIFFUSION THROUGH CARDIAC TISSUE AND

OBSERVATION BY VIRTUAL MRI

Yuhan Jing

Ph.D. in Biomedical engineering

Advisor: Carole Frindel, Isabelle E. Magnin

September 2023

Diffusion magnetic resonance imaging shows great promise as a non-invasive

technique for investigating biological tissues by analyzing the diffusion of wa-

ter molecules. However, accurately assessing the diffusion properties of complex

biological tissue micro-structures using practical MRI acquisitions remains a chal-

lenge. Monte Carlo simulation offers a solution by providing a ground truth and

considering only the diffusion of water molecules within the tissues. Nonetheless,

simulating diffusion presents three critical challenges: 1) generating a realistic

tissue model as input, 2) setting the Monte Carlo simulator with optimal pa-

rameters, and 3) accounting for the impact of MR imaging sequence parameters

on the observed diffusion. In this thesis, we developed various models of car-

diac tissue with different degrees of realism in geometric and physical parameters

and proposed scattering ground truths at optimal scales using Monte Carlo sim-

ulation. We then observed this diffusion using an MRI diffusion sequence with

different parameter sets and quantified the observed diffusion distortion compared

to the ground truths. This study aims to provide guidance for optimizing the ob-

servation parameters in MRI to accurately observe diffusion in cardiac biological

tissues.

Keywords: Monte-Carlo simulation, water diffusion, microstructure, cardiac tis-

sue, diffusion magnetic resonance imaging.
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Résumé

L’imagerie par résonance magnétique de diffusion offre de grandes perspectives

en tant que technique non invasive pour l’étude des tissus biologiques en analysant

la diffusion des molécules d’eau. Cependant, évaluer précisément les propriétés

de diffusion des microstructures complexes des tissus biologiques à partir des

acquisitions d’IRM pratiques reste un défi. La simulation de Monte Carlo offre

une solution en fournissant une référence précise et en ne considérant que la

diffusion des molécules d’eau au sein des tissus. Néanmoins, la simulation de la

diffusion présente trois défis majeurs : 1) générer un modèle de tissu réaliste en

entrée, 2) paramétrer le simulateur de Monte Carlo avec des paramètres optimaux,

et 3) prendre en compte l’impact des paramètres de séquence d’imagerie par

résonance magnétique sur la diffusion observée. Dans cette thèse, nous avons

développé différents modèles de tissu cardiaque avec différents degrés de réalisme

en termes de paramètres géométriques et physiques, et nous avons proposé des

vérités de diffusion dispersées à des échelles optimales en utilisant la simulation de

Monte Carlo. Ensuite, nous avons observé cette diffusion à l’aide d’une séquence

de diffusion par IRM avec différents jeux de paramètres et quantifié la distorsion

de diffusion observée par rapport aux vérités fondamentales. Cette étude vise à

fournir des orientations pour optimiser les paramètres d’observation en IRM afin

d’observer avec précision la diffusion dans les tissus biologiques cardiaques.

ii
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General introduction

MRI is a powerful tool that detects the magnetic properties of hydrogen nu-

clei in water molecules using a strong magnetic field. It works by stimulating

these magnetized nuclei with radiofrequency waves at a specific frequency, which

makes them emit radiofrequency waves of their own. These emitted waves are

then captured by a coil. By analyzing the subtle changes in the magnetic field

and frequencies generated by the magnetic gradient field, MRI encodes spatial

information and generates detailed images.

Diffusion MRI has emerged as a promising method for revealing the micro-

tissue architecture. It monitors the displacements caused by the diffusion of

water molecules at a resolution beyond the capabilities of traditional MRI. The

overall signal observed in diffusion-weighted images at millimeter resolution is a

result of statistically integrating all the distributions of microscopic displacements

of water molecules present in a voxel. The diffusion process in biological tissues

is typically described by the ”apparent diffusion coefficient” (ADC), a statistical

parameter reflecting the interaction between water molecules and tissue restric-

tions. ADC values significantly decrease during the early stages of acute brain

ischemia, while higher ADC values can indicate conditions like edema, tumor

cellularity, cystic astrocytoma, hydrocephalus, acute myocardial infarction, and

hypertrophic cardiomyopathy.

To assess the anisotropy of diffusion in tissues, a tensor model was proposed,

which considers the principal eigenvector of the diffusion tensor as parallel to

the mean orientation of the tissue in the corresponding voxel. This concept has

provided novel 3D information about fiber structures such as white matter tracts

or myocardial fibers that were previously difficult to visualize using other imaging

techniques.

Q-space imaging, which involves acquiring diffusion data for various values

1

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0076/these.pdf 
© [Y. Jing], [2023], INSA Lyon, tous droits réservés



of diffusion gradients, angular directions, and strength, offers a new way to ac-

curately measure the size of cells. The free diffusion coefficient of water in a

free environment at 37°C is approximately 3.0µm2/ms and follows a Gaussian

distribution. In biological tissues, the ”apparent diffusion coefficient” (ADC) is

smaller (2 to 10 times) than that of free water diffusion due to factors such as high

viscosity, macro-molecular crowding, and restriction in the intra-cellular space.

Additionally, the ADC depends on MRI observation parameters such as diffusion

duration, gradient pulse duration, overall diffusion weighting, observed direction,

and voxel size. Understanding the relationship between ADC as observed in MRI

and the microscopic characteristics of biological tissues is the subject of ongoing

research.

Various models have been proposed to handle the non-Gaussian behavior of

water diffusion in biological tissues, including the bi-exponential model, gamma

model, truncated Gaussian model, Karger model, random permeable barrier

model, and parallel series approximation. However, these models have limita-

tions in assessing water diffusion in complex systems. The relative importance of

different factors influencing water diffusion and their effects on MRI signals are

still not fully understood and can sometimes be controversial.

Monte Carlo simulation, which dynamically simulates the movement of parti-

cles in space and time within tissue structures, offers the opportunity to study

various models of interactions between molecules and tissue membranes. Previ-

ous Monte Carlo simulations using biological tissue models have revealed that

physical and structural features such as cell shape, size, arrangement, volume

fraction, membrane permeability, and diffusivity can influence the diffusion prop-

erties and modify the acquired dMRI signals. However, these simulations are

complex and computationally intensive, often requiring simplifications to reduce

the simulation load. Furthermore, choosing appropriate Monte Carlo simulation

parameters is crucial to ensure accuracy, and conditions such as the ”short gra-

dient pulse” and ”long diffusion duration limit” have been proposed to improve

simulation reliability.
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In this study, we propose simplified cardiac tissue models with realistic struc-

tural and physical parameters inspired by histological and physical measurements.

These models are coupled with a multi-scale Monte Carlo water diffusion simu-

lator to create a virtual ground truth, ranging from the cellular scale to the MRI

observation scale. We then observe simulated water diffusion using a virtual MRI

imaging device to study the impact of acquisition parameters on the accuracy of

observed water diffusion characteristics compared to the simulated ground truth.

Chapter 1 provides an overview of the anatomical structure and physical

features of the heart. Chapter 2 explains the principles of diffusion MRI, the

theoretical aspects of dMRI modeling and simulation using Monte Carlo methods,

and the existing state of the art. Chapter 3 describes the construction of four

cardiac tissue models of increasing realism. Chapter 4 details the process of

creating the ground truth by optimizing Monte Carlo simulation parameters and

coupling the cardiac tissue models with Monte Carlo simulation. In Chapter 5,

we analyze the results of different settings of the diffusion MRI sequence and their

impact on the observed water diffusion characteristics compared to the ground

truth. Finally, Chapter 6 presents the general conclusions and future prospects

of the study.
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Part I

Background
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Chapter 1

Structural and physical features

of the cardiac tissue

The heart is one of the most important organs in the body, transporting blood,

nutrients and oxygen to the rest of the body through powerful heart muscle

contractions. Actually, the motion of heart is a highly complex system, with

intrinsic different cell type distributions, complex electro-mechanical properties

and an organized activity sequences. There is a close relationship between the

local three-dimensional arrangement of Myocardial cells (myocytes) and the me-

chanical function [6], electrophysiology[7], and structural remodeling [8] of the

heart. Some studies have also indicated that changes in physical and struc-

tural characteristics of cardiac tissue may be linked to cardiovascular disease

[9, 10, 11, 12, 13, 14, 15, 16]. Heart tissue structure and physical feature research

provides the theoretical basis and data support for the diagnosis and treatment

of cardiovascular disease, which has great scientific significance.

In this chapter, we illustrate the structural and physical features of the heart

tissue and introduce some cardiovascular diseases related to changes in physical

and structural characteristics.
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1.1 Heart structure at macroscopic scale

As we all know, the heart is the size of a fist and is located in the chest cavity.

The base of the heart is the broad upper part of the heart from which the large

blood vessels emerge, and the apex of the heart is the lower part pointing to the

left. In general, as shown in Figure 1.1-a, the heart can be divided into three

main distinct parts according to its physical characteristics and function: the

chambers, the valves and the walls.

The whole heart has four chambers: the right atrium, the right ventricle, the

left atrium and the left ventricle. The right atrium receives the de-oxygenated

blood from the other parts of the body though two major veins and pumps blood

through the tricuspid valve into the right ventricle situated below. The right

ventricle pumps blood to the main pulmonary artery. The pulmonary artery

extends to the lungs, here oxygen-poor blood picks up oxygen and is returned to

the left atrium via the pulmonary veins and the left atrium pumps this oxygen-

rich blood into the left ventricle through the bicuspid valve or mitral valve. The

left ventricle pumps oxygen-rich blood through the aortic valve to be distributed

throughout the entire body via the aorta, including the heart muscle itself through

the coronary arteries. Most researches focus on the left ventricle (LV), whose

wall is thicker and more powerful because of the requirement to pump blood

throughout the body, as opposed to the right side pumping only through the

lungs.

The valves that allow the blood to flow from the atria to the ventricles are

called atrioventricular valves, which keep the blood from returning to the atria.

The atrioventricular valves can be divided into two types: tricuspid valve and

mitral valve. The tricuspid valve is located between the right atrium and the

right ventricle and the function of this valve is to open the right atrium when it is

in systole, thus forcing any additional deoxygenated blood into the ventricle. The

mitral valve is located between the left atrium and the left ventricle, similar to the

tricuspid valve, this valve is forced open during atrial systole to allow oxygenated

blood from the lungs to enter the left ventricle. Two kinds of semilunar valves,
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pulmonary valve and aortic valve, open and close to allow the unidirectional

flow of blood out of the heart, while preventing the blood flowing back into the

ventricles.

Generally, the cardiac wall consists of three tissues layers: epicardium, my-

ocardium and endocardium as shown in Figure 1.1-b. Epicardium describes the

outer layer of heart tissue. The endocardium is the innermost, thin and smooth

layer of epithelial tissue. The myocardium is the basic muscle that makes up the

heart and the cardiac muscle structure consists of basic units of cardiac muscle

cells known as myocytes.

We focus on the structure of the myocardium in this chapter and describe the

physical features of myocytes in detail.

(a) (b)

Figure 1.1: (a) Heart anatomical structure at macroscopic scale. http://www.t

exasheartinstitute.org/hic/anatomy/anatomy2.cfm. (b) Heart wall structure.

http://encyclopedia.lubopitko-bg.com/Structure of the Heart.html.
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1.2 Structure of the cardiac tissue

1.2.1 Cardio-myocyte

Morphometric and tissue engineering studies have shown that the cardiac tissue

was composed of cells (myocytes) embedded in a complex mesh-work named ex-

tracellular matrix [17], as shown in Figure 1.2.

Figure 1.2: Histological cuts of human cardiac tissue (×20) courtesy of TIMC,

CNRS UMR 5525, France. Hematoxylin and Eosin staining. Cut perpendicular

to cells (left) and cut parallel to cells (right).

The cardiac muscle cell or myocyte is the main structural component of the

myocardium, occupying between 50% and 86% (mean 74%) of the ventricular

wall volume under normal circumstances [18]. Cardiomyocytes are branched and

connected end-to-end by the intercalated disk, a plasma membrane sarcolemma

that acts as a boundary between the cardiomyocyte and extracellular matrix.

Cardiomyocytes do not have a regular and consistent shape; they resemble ellip-

soid cylinders [19]. The average width has been reported as 10 to 20 µm and the

average length as 50 to 150 µm (Table 1.1).

The permeability of cardio-myocytes, defined as the exchange rate of water

molecules through the sarcolemma or intercalated disk, is an important biophys-

ical feature that may provide an indicator for cardiac disease diagnosis. The
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permeability of intercalated disks is reported to be 0.0005µm/ms [20]. The mem-

brane permeability of biological tissue is around 0.02µm/ms [21] (cf. Table 1.1).

High viscosity and macro-molecular hindrance explain the reduced diffusivity

of water in the myocyte, which is much lower than the diffusion coefficient of free

water at 37◦ [22, 23, 10, 24, 25]. The diffusivity DICS of water in the intracellular

space (ICS) approximately equals 1µm2/ms [24]. The homogenizing effect of the

collagen fiber in the extracellular space (ECS) is seen as an effective medium with

a specific diffusivity of water DECS close to 2.5µm2/ms [24](see Table 1.1).

For the sake of simplicity, we will call the cardio-myocytes, ”myocytes” in the

rest of the text.

Table 1.1: Structural and physical cardiac tissue features.
Techniques Ref.1 Tissue Cell Cell Cell Cell Permeability Diffusivity

size2 length volume volume3

fraction
w/d/A h VC RICS P D

µm/µm/µm2 µm ×103µm3 % µm/ms µm2/ms
Optical [11] N.H. w: 17.5-18.4 59.9-65.8 14.7-18 - - -

microscopy P.H. w: 21.3-22.4 65.1-71.2 25.8-26.2 - - -
N.R. w: 10-20 50-80 4-26 - - -

[26] N.R. A: 220-283 135 29-38 - - -
P. R. A: 234-283 153-157 36-43 - - -

[27] N.R. w: 12.7 - - 78 - -
P. R. w: 14.1 - - 73 - -

[18] N.H.F. - - 1.1-1.3 50-86 - -
Electron [28] N.R. A: 140-240 100-131 - - - -

micrography [29] N.P. w: 20-35 100-150 - - - -
Confocal [30] N.Rab. w: 32± 10 143± 30 30± 7 - - -

micrography N.F. w: 31± 5 138± 23 31± 9 - - -
N.R. w: 32± 5 142± 15 34± 7 - - -

Video [21] N.P. w: 15/23 120 63.5 - 0.02 -
micrography

MRI [24] N.R. - - - - - DICS = 1
DECS = 2.5

[25] N.R. - - - - - 1.8-2.5
[23] Water - - - - - 3.2

1. Normal Human = N.H.; Normal Human Fetus = N.H.F.; Pathological Human = P.H.; Normal Rat = N.R.;
Normal Pig = N.P.; Normal Rabbit = N. Rab; Normal Ferret = N.F.
2. w: cell width, d: cell diameter, A: cell cross section area.
3. RICS= 100 × number of cells in a voxel × cell volume / voxel volume.

1.2.2 Extra-cellular matrix

The dominant component of the extracellular matrix is collagen fiber. The thick-

ness of the collagen fiber is at the nanoscale, and it is responsible for providing
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structural support by transmitting forces, preventing overstretching and rupture,

preserving the shape and thickness of the myocardium, and providing both active

and passive stability to the myocardium [31].

1.2.3 Laminar structure

The micro-structure of cardiac tissue is highly organized and complex. The my-

ocytes are arranged in aggregates of 3 to 5 myocytes thick in the form of a laminar

micro-structure [1, 32, 33], also called fibers, as shown in Figure 1.3. Adjacent

layers are separated by cleavage planes. These muscle layers run in an approx-

imately radial circumferential direction, especially in the middle wall of the left

ventricle (LV). They are represented as transmural sheets twisted to accommo-

date local muscle fiber orientation. Additionally, there are circumferential and

tangential muscle branches between adjacent layers that play an important role in

the assembly of such a structure [1]. The laminar organization of the ventricular

myocardium permits the rearrangement of muscle fiber bundles when the wall

thickness changes [34]. Cleavage planes in the ventricular wall may also affect

the propagation of cardiac electrical activation [35].

Figure 1.3: Schematic of laminar structure model for cardiac fiber. Image from

LeGrice et al. [1].
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1.2.4 Myocyte transmural orientation change

The myocyte aggregates are coherently aligned with a local average orientation

that changes from the epicardium to the endocardium. Fiber orientation is com-

monly quantified using the helix angle and the transverse angle as shown in Figure

1.4-a. The helix angle is defined as the angle between the fiber long-axis projected

onto a plane parallel to the epicardium (tangent plane) and the radial circumfer-

ential plane, and the transverse angle is defined as the angle between the fiber

long-axis projected onto the radial circumferential plane and the tangent plane.

The helix angle of fiber orientation varies from −90◦ at the epicardial surface, to

0◦ at the middle wall, to 90◦ at the endocardial surface as shown in Figure 1.4-b

[3, 36, 37]. Wang et al. [37] showed that the total helix angle in adults ranged

from 70◦ to 140◦ in different areas of the heart, and the transmural transverse

angle changed only slightly (the total range is 20-40◦ on average). The mean left

ventricular (LV) wall thickness ranged from 3.20− 3.85mm [37]. The helix angle

change rate is based on the ratio between the range of helix angles across the

myocardium and the wall thickness, which is about 20− 40◦/mm [37].

(a) (b)

Figure 1.4: (a)Definition of helix angle α and transverse angle β. Image from

Bernus et al. [2]. (b)Helix angle of Myocardial fiber orientation in the short axis

plane of the left ventricle for normal 2 months human infant hearts from polarized

lighted imaging. Image from Wang et al. [3].
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1.3 Cardiomyopathy

Cardiomyopathy refers to a group of disorders that directly damage the muscle

of the heart walls.

After an acute myocardial infarction (MI), left ventricular (LV) remodeling

is characterized by infarct expansion, hypertrophy of non-infarcted myocardium,

increased collagen deposition in the infarcted and non-infarcted areas, progres-

sive dilatation, geometric changes in chamber shape, and eventual progression to

chronic heart failure [38, 39]. Some studies have shown in rats and a small group

of humans that the key cellular change underlying the hypertrophy is progressive

myocyte lengthening with no change in myocyte cross-sectional area [40]. A nor-

mal left ventricle had an ellipsoidal geometry that alters to a more spherical one

following myocardial infarction [13]. The curvature values for different regions of

the healthy and infarcted myocardium of rats were reported in [41, 42]. Finally,

some works indicated that the change of the collagen (corresponding the change

of diffusivity) in extracellular matrix may be linked to the infarcted tissue [14].

Local analysis of diffusion tensors in cardiac muscle had shown that there

were larger angular deviations in infarcted regions than in healthy tissues and

that these deviations were correlated with the disorder of myocytes [10, 9]. Simi-

larly, the distribution of myocyte diameters was modified in the context of certain

cardiac pathologies such as cell hypertrophy [11, 12]. It was shown that, during

ischemic injury, the sarcolemma was ruptured, and myocyte membrane perme-

ability increased [16]. Several studies have shown that gap junctions reduced in

heart failure and could lead to fatal arrhythmia, leading to a decrease in the

permeability of intercalated disks [33, 15].

In this chapter, we provided an overview of the structure of the heart at the

macroscopic and microscopic levels. We focused more especially on the descrip-

tion of the arrangement patterns of myocytes and their physical characteristics.

It has been demonstrated that most cardiomyopathies affect the structural and

12

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0076/these.pdf 
© [Y. Jing], [2023], INSA Lyon, tous droits réservés



physical characteristics of the cardiac tissue, especially in the left ventricle. There-

fore the study of the structural and physical characteristics of the cardiac tissue

before and after heart disease is of great importance for clinical diagnosis and

treatment. The first understanding of cellular morphometry, including myocyte

width, cut surface area, length, and volume, come from histological measure-

ments of selected tissue regions [11, 10, 27, 18, 28, 29]. However, these techniques

are known to suffer from distortion and misalignment, and while regional struc-

tural information was also extracted [43], they do not allow for three-dimensional

(3D) reconstruction of fiber structures. To cope with these problems, polarized

light imaging (PLI) was proposed to detect 3D fiber orientations of whole fetal

human hearts with high spatial resolution (0.1 mm × 0.1 mm × 0.5 mm) [44].

Furthermore, synchrotron radiation phase-contrast micro-tomography (SR-PCT)

was proposed to extract the local orientation of myocytes in the 3D myocar-

dial laminar structure with a very high spatial resolution (micron level) [37, 44].

Compared to dissection and histological methods, these techniques are more ob-

jective because they do not involve any human operation during the measurement

process. However, these techniques are ex vivo and cannot be used for in vivo

studies of the human heart. More recently, diffusion magnetic resonance imaging

(dMRI) has emerged as a new and promising technique for analyzing the 3D fiber

structure of the heart [45, 46, 9]. While the spatial resolution of MRI scanners is

currently limited, dMRI has the advantage of being able to detect the 3D struc-

ture in the in vivo heart despite the bulk motion during the heart cycle [47, 32].

In the next chapter, we will focus on the dMRI.
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Chapter 2

Diffusion magnetic resonance

imaging

It has been half a century since the invention of magnetic resonance imaging

(MRI) [48]. Magnetic resonance imaging (MRI) is a non-invasive medical imag-

ing technique that allows the interior of the human body to be viewed in detail. Its

physical principle is based on the interaction between magnetic fields and atomic

nuclei, in particular the protons present in body tissue. In the following para-

graphs we will explain very briefly its physical principles, firstly for conventional

MRI and then specifically for diffusion MRI.

2.1 Conventional MRI

2.1.1 Principle

To understand the principles of MRI and their operational mechanisms, it is

necessary to explore three fundamental phenomena: precession, excitation and

relaxation.
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Precession MRI is often used to image the distribution and behavior of wa-

ter molecules in the body, as water is the most abundant chemical substance in

most biological tissues. The protons (hydrogen nuclei 1H) in water molecules

have a relatively high magnetic moment, which makes them particularly suitable

for detection by magnetic resonance techniques. In an MRI experiment, water

protons are placed in a strong magnetic field, denoted as B0, causing all the pro-

tons to align with the field direction and begin precessing in unison, as illustrated

in Figure 2.1-a-b. The frequency of this precession is referred to as the Larmor

frequency [49], which is determined by ω0 = γB0 (γ the gyromagnetic ratio of
1H). In the end we see that the sum of all magnetic fields of each proton, which

is called magnetization M0, pointing in the same direction as the main magnetic

field B0. M0 is related to the proton density which we are interested in, thus

we intend to see what happens with M0 during the MRI experiments. However,

compared with B0, M0 is too small to be detected if they share the same direc-

tion, thus in order to observe the variation of M0, the scientific community came

up with a brilliant idea to separate them with a resonance technique.

Excitation Then, the protons in the sample are excited by applying a radio

frequency (RF) pulse with a frequency equal to the Larmor frequency of 1H. This

excitation provides the protons with enough energy to move away from their

equilibrium position along B0. Typically, the RF pulse is applied at a flip angle

of 90◦, which completely transfers the longitudinal magnetization M0 into the

transverse magnetization M . When the receiver coil is placed in the transverse

plane, the strength of the received signal is proportional to the amount of water in

the imaged region, resulting in a proton density image where regions with higher

water content appear brighter.

Relaxation After the excitation pulse, each proton in the sample precesses

at a slightly different speed due to local magnetic field inhomogeneities and ran-

dom phase variations, which causes signal loss as shown in Figure 2.1-c-d. The

signal oscillates at the Larmor frequency (γB0) and decays exponentially, with

the rate of decay being described by the T2 relaxation time, as shown in Figure

2.2. The faster the signal decays, the shorter the T2 relaxation. This relaxation

time is generally longer in environments where water is less restricted (e.g., lower
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viscosity or fewer macromolecules to interact with). Regions with longer T2 re-

laxation times appear brighter in the resulting image, while regions with shorter

T2 relaxation times appear darker. This property can be used to diagnose cer-

tain diseases; for example, the formation of edema can significantly slow the T2

relaxation [50, 51].

(a) (b)

(c) (d)

Figure 2.1: (a) Spinning protons. (b) Protons precessing around the field direction

when placed in a strong magnetic field. (c) Definition of a proton’s phase θ as the

projection of its precession vector in a transverse plane. (d) Randomized phase

of each proton after excitation.
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Figure 2.2: T2 decay: Normalized MRI signal in the transverse plane S0 that

fluctuates with the precession frequency γB0 and decreases exponentially.

2.1.2 Spatial encoding

Now that we understand how MRI works and how MRI signals are acquired, let’s

delve into the crucial MRI technique called k-space encoding. The MRI signal

measured by the RF receive coils possesses its own amplitude, frequency, and

phase, which are determined by RF excitation and resonance. The amplitude

of the MRI signal is influenced by factors such as proton density, RF pulse fre-

quency and phase, and magnetic field strength. To determine the spatial location

of the MRI signal in three dimensions, a specific gradient pulse is applied, intro-

ducing spatial variation in the magnetic field. This process incorporates slice

selection, phase encoding, and frequency encoding to collectively acquire multi-

planar images in MRI. Figure 2.3 illustrates the spatial variation introduced in

the magnetic field [52, 53].

Slice selection: Slice selection occurs when an RF pulse is activated simul-

taneously with the application of a magnetic gradient field ∆B, allowing the

selection of a specific slice along a perpendicular direction. The slice location can

be adjusted by changing the frequency of the RF pulse. The slice thickness (th)

depends on the frequency bandwidth (∆ω) of the RF pulse and the strength of
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the gradient field Gsl through the slice. It can be expressed as:

th =
∆ω

γGsl

(2.1)

Phase encoding: Prior to the application of the phase encoding gradient, all

spins within the slice have the same frequency and are in phase. However, when

the phase encoding gradient is activated, it alters the magnetic field strength,

resulting in a change in the precessional frequency of spins along the phase gradi-

ent axis. This change in precessional speed leads to a change in the accumulated

phase of the spins’ magnetic moments along their precession path.

The spatial resolution (respe) and field of view (FOVpe) along the phase encod-

ing direction are determined by several factors: the number of phase encoding

steps npe, the change in gradient strength between two steps (∆Gpe), and the

duration of the gradient (δGpe). This can be expressed as:

respe =
FOVpe

npe

=
1

γ∆GpeδGpenpe

(2.2)

Frequency encoding: Similar to phase encoding, the frequency encoding

gradient alters the magnetic field strength, resulting in a difference in preces-

sional frequency among spins. This frequency difference is used to encode spatial

information. The frequency encoding gradient, also known as the readout gradi-

ent, is typically activated during signal reception.

The steepness of the slope of the frequency encoding gradient determines the

size of the field of view in the frequency encoding direction (FOVro) and the

spatial resolution (resro) in this dimension. The relationship can be expressed

as:

resro =
FOVro

nro

=
BW

γGronro

(2.3)

where BW is the bandwidth of the receive digitizer, Gro is the strength of the

frequency encoding gradient, and nro is the number of acquisitions.

Once the MRI signal is encoded, it is organized in a coordinate system called
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k-space. After performing a Fourier transform, the MRI data in k-space is trans-

formed into a position-encoded visual image [54]. Specific MRI pulse sequences

combine RF pulses and encoding gradients in a predetermined order.

2.1.3 MRI Pulse Sequence

MRI pulse sequences allow us to control how the system applies pulses and gra-

dients. The spin echo (SE) sequence is commonly used in MRI experiments due

to its versatility and high-quality imaging. It involves a 90◦ excitation RF pulse

followed by one or more 180◦ rephasing RF pulses to generate a spin echo. Figure

2.3 illustrates the SE sequence.

After the 90◦ excitation pulse, magnetization is flipped into the transverse

plane, but immediately starts to dephase due to T2 relaxation. Some spins slow

down while others speed up. A 180◦ pulse is then applied to flip the spin vectors,

causing the previously slower vectors to effectively precess ahead of the previously

faster ones. After a further time delay (equal to TE/2), a spin echo is formed.

Figure 2.3: Diagram of spin echo (SE) sequence and associated spatial encoding.

Gsl, Gpe, and Gro represent the gradient fields used for slice selection, phase

encoding, and frequency encoding, respectively.
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2.2 Diffusion MRI

Diffusion MRI is distinguished from conventional MRI by its ability to probe the

diffusion of water molecules within biological tissues. Unlike conventional MRI,

which primarily provides information about anatomical structures and tissue con-

trast, diffusion MRI captures the movement of water molecules and provides in-

sights into the microstructural organization of tissues.

2.2.1 History and development

The first restricted diffusion acquisition scheme was proposed by Stejskal and

Tanner in the form of a unipolar pulsed gradient spin echo sequence (PGSE) [4].

In the 1980s, diffusion imaging was introduced by combining diffusion measure-

ment with MRI. This method makes it possible to track the diffusion of water

molecules at the usual spatial resolution of MRI [55, 56]. In the early 1990s, it

was discovered that dMRI more accurately reflected early-onset injury induced

by acute cerebral ischemia than conventional MRI [57]. This technique also has

provided a useful tool to detect acute myocardial infarction [58] and some hyper-

trophic cardiomyopathy [59, 60, 47].

Most clinical dMRI studies are performed at a low b-value with b ≤
1500s/mm2 [61]. In that condition, the decay of the dMRI signal conforms to a

mono-exponential curve and the diffusion process is usually described by an over-

all statistical parameter, the “apparent diffusion coefficient” (ADC) [62]. ADC

was applied to the heart as a marker after acute myocardial infarction [58, 63].

Lower ADC value regions are consistent with the location of the acute myocardial

infarction then ADC increased as a function of time after infarction[58]. Molin

et al demonstrated that ADC was markedly higher in regions of infarct than

in remote regions [64]. A higher ADC could result from hypertrophy, common

in hypertrophic cardiomyopathy, usually associated with an enlarged interstitial

space arising from tissue disorganization or fibrosis [59, 60, 47]. Also in the

1990s, a tensor model (diffusion tensor imaging, DTI) was proposed to assess the
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anisotropy of diffusion with the assumption of the diffusion displacement pro-

file as a Gaussian distribution [65]. It provides new 3D information about fiber

structures, which no other histological or optical imaging techniques were able to

image under in vivo conditions. Then this concept was applied to prevail local

voxel-wise fiber orientation both in healthy hearts [66, 67] and in diseased hearts

such as myocardial infarction [68, 58] or hypertrophy [59]. DTI also facilitates

the entirely 3D fiber tracking on white matter [50, 69, 70] or myocardial fibers

[71, 46, 2]. It was validated with histological data [72, 73, 74]. Cardiac DTI

has provided an important and suitable tool to assess the change of myocardial

microstructure throughout the cardiac cycle [36, 75, 76, 77, 78]. In vivo dMRI of

the heart remains a challenge because of the high cost of acquisition due to the

very large amplitude of cardiac movements compared with the small movements

of water molecules [79]. Heart movements reduce both signal intensity and signal-

to-noise ratio (SNR) [80]. Several acquisition sequences have been proposed to

compensate for this effect, such as the acceleration motion compensation (AMC)

spin echo scheme [81] or the stimulated echo acquisition mode (STEAM) [82, 83].

In addition, DENSE (Displacement Encoding with Stimulated Echo) sequences

[121] and the diaphragmatic navigator that precedes them [84] have also been

developed for recording heart movement.

For high b-values, the dMRI signal can be decomposed in two components (bi-

exponential model), with a fast and a slow diffusion phenomenon; it is suggested

that the slow diffusion originates from the restricted diffusion [85]. Besides, the

Karger model [86, 87, 88] was proposed to take into account the exchange between

two compartments. However, the diffusion of water molecules in biological tissue

is complex, and the two-compartment model is questioned [89]. This is one

limitation of the conventional K-space (i.e Fourier) approach.

To overcome this limitation, q-space imaging [90] has been proposed to directly

reconstruct the probability density function (PDF) of the protons displacements

by acquiring a larger set of diffusion data for different values of the diffusion

gradient in various angular directions and strength. The PDF can then be in-

tegrated radially to yield the orientation distribution function (ODF). Likewise,

the shape of the PDF can be described by parameters such as the probability of
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zero displacements, the full width at half-maximum, and kurtosis [91]. Due to

the cumenbersome nature of acquisition, DSI in the heart is currently limited to

ex vivo samples [71].

2.2.2 Principle

A pair of gradient pulse Gd is set to remark the displacement of water diffusion

during them as shown in Figure 2.4-a, the strength (slope) of the gradient, its

direction, and the time period can be controlled showing the classic pulsed gradi-

ent spin echo (PGSE) sequence with the diffusion duration, ∆, and the diffusion

gradient pulse with the duration δ and strength Gd. The precession speed is

very homogeneous as the strength of the magnetic field is kept as homogeneous

as possible across the magnet within one voxel. This homogeneity can be dis-

turbed linearly by using the first pulsed field gradient. If another gradient pulse

is subsequently applied with the same direction and time period but of opposite

magnitude, such dispersion can be re-phased. However, this refocusing cannot

be perfect because the protons moved between this pair of gradient pulses, which

leads to the signal loss as shown in Figure 2.4-b. Thus, by applying a pair of gra-

dient pulses after the excitation and before the data acquisition, we can sensitize

the image to flow or diffusion of protons.

(a) (b)

Figure 2.4: (a) Classic MRI Pulsed Gradient Spin-Echo (PGSE) sequence [4] with

a diffusion duration ∆, and a diffusion gradient pulse of duration δ and strength

Gd. (b) T2 signal decay S0 vs diffusion weighted signal decay S.
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2.2.3 Diffusion encoding schemes used for the in vivo

heart

The classic spin echo sequence with unipolar gradient pulse has been considered

impractical for cardiac imaging due to its sensitivity to bulk motion. The spin

echo sequence with bipolar gradient pulse, as proposed by [92] and shown in

Figure 2.5, was designed to be insensitive to the first-order motion of the heart.

Recent advancements include the acceleration motion compensation (AMC) spin

echo scheme, which addresses signal attenuation caused by second-order motion

[81]. The asymmetric bipolar diffusion encoding sequence using spin echo was

introduced to minimize the effective encoding duration by employing a single

bipolar gradient pulse instead of two single gradient pulses [93]. Another acqui-

sition mode, the stimulated echo acquisition mode (STEAM), was developed to

mitigate the impact of bulk motion on diffusion measurements. Initially proposed

with unipolar diffusion gradients [82], STEAM runs over two cardiac beats, as-

suming that the myocardium returns to the same position at the same encoding

times in consecutive cycles. However, it was found that such diffusion encoding

is influenced by cardiac strain, leading to the suggestion of performing measure-

ments in the ”sweet spots” of the cardiac cycle with minimized strain effects,

typically located in mid-systole and mid-diastole [82]. An alternative stimulated

echo method using bipolar gradients was proposed in [83], which is insensitive

to myocardial strain and bulk motion and allows diffusion encoding at any time

point of the cardiac cycle as if the heart were immobilized during acquisition.

Comparisons between these encoding schemes have shown that STEAM is the

most effective method for avoiding the effects of myocardial strain and bulk mo-

tion [5]. However, it is limited by low scan efficiency as it requires two consecutive

heartbeats to be at identical respiratory levels for successful encoding and decod-

ing, which may not always hold true in patients with variable heart rates [93].
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Figure 2.5: Illustration of different diffusion coding schemes applied in cardiac

dMRI. Image from Mekkaoui et al. [5].

2.2.4 Q-space encoding

Q-space in dMRI is a concept analogous to k-space in conventional MRI and was

introduced in the works of Stejskal and Tanner [4], Cory and Callaghan [94], and

Callaghan [95]. Q-space is defined as a space used to represent the directions and

strengths of diffusion weighting in dMRI. It is characterized by a diffusion wave

vector q⃗ given by the integral of the gradient waveform G⃗d over time:

q⃗ = γ

∫ t

0

G⃗ddt (2.4)
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q⃗ = γG⃗dδ/2π for the rectangular gradient pulse as

Gd(t) =


Gd t1 ≤ t ≤ t1 + δ

−Gd t1 +∆ ≤ t ≤ t1 + δ +∆

0 otherwise

(2.5)

By applying diffusion gradients with varying strengths and directions, dMRI

signal acquisition is performed across q-space. Similar to the Fourier transform

used in conventional MRI, a Fourier relationship exists between the dMRI signal

and the underlying probability density function P̄ (L⃗,∆), as described by Equa-

tion 2.6.

P̄ (⃗̄L,∆) =
1

S0

1

(2π)3

∫
R3

|S∆(q⃗)|e−iq⃗⃗̄Ld3q⃗ (2.6)

where S0 is the signal without diffusion weighting, S(q⃗) is the diffusion-weighted

signal, ⃗̄L the averaged diffusion displacement of molecules in one voxel.

The probability density function can be further integrated radially to obtain

the orientation distribution function (ODF) for a given point on the sphere. ODF

is defined as follows:

ODF (k⃗) =

∫
q⃗⊥k⃗

P (q⃗)dq⃗ (2.7)

2.3 DMRI modeling and simulation

A way to understand the relationships between the physical phenomenon of water

diffusion through a biological tissue and the diffusion-weighted MRI observation

consists in developing adequate models. The mathematical diffusion distribution

model, such as DTI model, is a helpful tool to extract the specific water diffusion

properties through tissue from the diffusion signal under the assumption of the

Gaussian diffusion profile. The phenomenological equations of Bloch-Torrey have

been shown to give an excellent analytical description of magnetization resonance

and diffusion on the basis of the simple restriction shape[96]. However, for the sake
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of realism, the biological tissue turns out to be complex and the water diffusion

through the biological tissue no longer conforms to Gaussian distribution so that

the adequate analytical description and mathematical model do not exist [97]. In

this context, numerical simulation models were developed. Its advantage is the

ability to simulate the movement of molecules dynamically in space and time in

any tissue structure. Here we focus on the Mont-Carlo (MC) methods. Actually,

the Mont-Carlo simulation was validated by the analytical model in the case of

simple shaped restriction [98]; And the virtual signal calculated by Monte Carlo

simulation was always modeled in a statistical way to extract the specific diffusion

property such as the diffusion tensor, mean diffusivity (MD), fraction anisotropy

(FA) and main diffusion direction, which are commonly used in clinical dMRI

analysis. Next we will demonstrate mathematical diffusion distribution models,

Bloch-Torrey analytical models and Monte Carlo simulation models in details.

2.3.1 Mathematical models in dMRI

Apparent diffusion coefficient: Most studies performed with MRI hardware

and limited gradient power (b < 1500s/mm2) report diffusion measurements in

terms of a single, global parameter, the apparent diffusion coefficient (ADC),

whereby the distribution of molecules’ displacements is assumed to the Gaussian

distribution, so the signal loss caused by diffusion in one certain direction can be

calculated according to the Stejskal–Tanner equation [4],

S

S0

= e−bADC , (2.8)

where b is the diffusion weighting factor expressed by

b = γ2

∫ TE

0

∫ t′

0

(Gd(s)ds)
2dt′. (2.9)

When the PGSE sequence is applied, for rectangular pulses,

b = (γδGd)
2(∆− 1

3
δ). (2.10)

The equation indicates that the higher ADC and b-value, the more the signal loss.

The measuring change in the ADC according to the gradient pulse orientation

reflects the diffusion anisotropy and tissue orientation information [99].
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Diffusion tensor model: In presence of diffusion anisotropy, diffusion can

no longer be characterized by a single ADC, but requires other parameters able

to fully describe the molecular diffusion along each spatial direction. Thus the

concept of diffusion tensor ADC was introduced into dMRI [99] and leading to

diffusion tensor imaging (DTI).

ADC =


ADCxx ADCxy ADCxz

ADCyx ADCyy ADCyz

ADCzx ADCzy ADCzz

 (2.11)

where ADC along a specific direction mn, noted ADCmn, when m = n,

ADCxx, ADCyy, ADCzz represent ADC along the x, y and z directions respec-

tively; when m ̸= n, they correspond to the correlation of ADC between pairs of

axes. In order to get ADC, at least six noncoplanar directions measurements are

necessary. The meaning of this diffusion tensor can be more easily understood us-

ing so-called diffusion ellipsoids. The primal, secondary and tertiary eigenvalues

represented by λ1, λ2 and λ3 respectively, calculated from the diffusion tensor are

three axes of a diffusion ellipsoid. This diffusion ellipsoid is spherical (three iden-

tical eigenvalues) when diffusion occurs in an isotropic environment whereas it is

elongated (λ1 is the biggest) in an anisotropic environment. The mean diffusivity

(MD) and fraction anisotropy (FA) are given by

MD = λ1 + λ2 + λ3

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

(2.12)

Physically, MD represents the global diffusivity in a given voxel and FA describes

the voxel-wise anisotropic property of diffusion.

Two-compartments models: High viscosity and restriction effects have

been proposed to explain water diffusion in the intracellular space, while tor-

tuosity effects have been described for water diffusion in the extracellular space.

It is important to evaluate the contributions of the intra- and extracellular com-

partments in order to better understand the overall water diffusion characteristics

of a tissue [85].
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Bi-exponential models have been suggested to describe the diffusion-weighted

MRI (dMRI) signal at high b-values (> 1500s/mm2) as a combination of two

components: rapid diffusion in the extracellular compartment and slow restricted

diffusion in the intracellular compartment [85, 100]:

S

S0

= RICSe
−bADCICS + (1−RICS)e

−bADCECS (2.13)

Here, RICS represents the cellular volume fraction. This model assumes that the

exchange between the two compartments is slow during the diffusion measurement

time tD.

Additionally, the gamma model [101] and the truncated Gaussian model [102]

have been proposed to describe non-Gaussian diffusion when the apparent diffu-

sion coefficient (ADC) is assumed to follow a gamma distribution and a truncated

Gaussian distribution, respectively.

To account for membrane permeability, Karger developed a two-compartment

model with exchange [86]. The Karger model (KM) has been modified to de-

scribe non-Gaussian diffusion by considering the effect of restricted diffusion in

the intracellular space [87, 88], and it has been adapted to incorporate the effect

of different T2 relaxation rates between the compartments [103].

The random permeable barrier model has been proposed, assuming that water

molecules are restricted by randomly placed and oriented membranes. This model

focuses on the disorder-averaged diffusion propagator using a scattering approach

[104, 105]. The input arguments for the model are the radial diffusivity ((λ2 +

λ3)/2) and λ1,∆>100ms. From this model, microstructure information such as the

membrane surface-to-volume ratio S/V and fiber size can be derived [106]. In

this context, S represents each surface facing the diffusing molecules (twice the

surface area of all membranes), and V corresponds to the voxel volume. The

inverse ratio V/S provides an estimate of the distance between restrictions. The

fiber size represents the voxel-wise mean ”cell” size, where a cell in this model

refers to any region bordered by the membranes.

Diffusion spectrum imaging model: Diffusion spectrum imaging (DSI)
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enables the direct reconstruction of the probability density function (PDF) of

protons by acquiring data with varying diffusion gradient strengths and orienta-

tions, as described by Equation 2.6 [90]. The first and second cumulants of the

PDF describe the Gaussian component of the distribution, while the fourth order

describes the kurtosis or sharpening of the PDF. Further fitting of the PDF to var-

ious non-Gaussian models is possible, allowing access to additional parameters.

Microstructural information, such as the size of compartment restrictions, can

be extracted from diffraction patterns that may be apparent in the signal decay

curves plotted against the q-value, as well as from the displacement distribution

profile obtained through the Fourier transform of the signal decay [107].

The extraction of the diffusion principal direction is achieved by discretizing

the q-space and searching for the maxima of the orientation distribution function

(ODF). This step requires significant computational time, and the accuracy of

the measurement depends on the quality of spatial sampling and quantification.

DSI overcomes the limitations of diffusion tensor imaging (DTI) by its ability to

distinguish intra-voxel fiber crossings and fiber kissing, which are crucial steps in

fiber tracking.

2.3.2 Bloch-Torrey analytical model

Bloch-Torrey equation: The macroscopic magnetization vector M⃗(t) =

(Mx(t),My(t),Mz(t)) can be expressed by the Bloch equations [108] as:

dM⃗

dt
= γM⃗ × B⃗ −


Mx/T2

My/T2

Mz −Mz(0)/T1

 (2.14)

where Mz(0) is the thermal equilibrium magnetization under the constant mag-

netic field B0, which is, by convention, along with the z axis, i.e. B⃗ =

(0, 0, B0). The parameters T1 and T2 are the longitudinal and transverse re-

laxation times respectively, and γ is the gyromagnetic ratio of 1H, which equals
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2.68× 108rad/(T · s). Their resolution asMxy(t) = Mxy(0)e
−iγB0te−t/T2

Mz(t) = Mz(0)(1− e−t/T1)
(2.15)

As mentioned before, the transverse magnetization Mxy oscillates at the Larmor

frequency γB0 and decays exponentially with the rate −1/T2 and the longitudinal

magnetization Mz increases exponentially with the rate 1/T1.

When considering the diffusion, the Bloch-Torrey equation is expressed as

[96, 4]

dM⃗

dt
= γM⃗ × B⃗ −


Mx/T2

My/T2

Mz −Mz(0)/T1

−∇ · v⃗M⃗ +∇ · ADC∇ · M⃗ (2.16)

where B⃗ =
∫ TE

0
A⃗(t)A⃗T (t) and A⃗(t) = γ

∫ t′

0
G⃗(t′)dt′. We note that v⃗ is the velocity

of the protons due to the flow of the medium within which they are embedded

and ADC is the diffusion tensor.

The normalized diffusion weighted signal for transverse relaxation process (T2

decay) can be expressed as: [4, 95, 90]:

S = S0

∫
R3

P̄ (L⃗,∆)eiq⃗L⃗d3L⃗ (2.17)

Where the normalized signal without the diffusion weighting S0 = e−i(γB0+1/T2)t,

P̄ (L⃗,∆) is the probability density of protons’ displacements during the diffusion

duration ∆, the diffusion wave vector q⃗ = γG⃗dδ/2π.

An analysis similar to that given earlier reveals that P̄ (L⃗,∆) will satisfy the

equation:
dP̄

dt
= −∇ · v⃗P̄ +∇ · ADC∇ · P̄ (2.18)

The solution of Equation 2.18 may be easier than the direct solution of Equation

2.16. even for the pulsed gradient.

Resolution on impermeable cylinder: The resolution of Equation 2.18

on simple models of water diffusion involving impermeable planes, cylinders and
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spheres have been proposed [95, 109]. In this part, we focus on the impermeable

cylinder model. The signal S/S0 from radial diffusion and axial diffusion (perpen-

dicular and along the cylinder’s axis) within an impermeable cylinder of diameter

d and length h can be modeled by the following analytical equation [110] under

the short gradient pulse (SGP) condition, i.e. δ << 1:

S

S0 radial

= 4(2πqd/2)2×
∞∑
p=1

∞∑
m=0

K0mα
2
pm

[J ′
m(2πqd/2)]

2 × exp[−(αpm/(d/2))
2DICS∆]

[α2
pm − (2πqd/2)2]2(α2

pm −m2)
,

(2.19)

S

S0 axial

=
2[1− cos(2πqh)]

(2πqh)2
+ 2(2πqh)2×

∞∑
n=1

Kn0[1− (−1)ncos(2πqh)]× exp[(−nπ/h)2DICS∆]

[(nπ)2 − (2πqh)2]2
,

(2.20)

where αpm is given by the roots of the Bessel equation J ′
m(α) = 0 (with the

convention that α10 = 0). The constant value of Knm depends on m and n

according to Knm = 0 n = m = 0

Knm = 2 n = 0,m ̸= 0 or m = 0, n ̸= 0
(2.21)

When the long diffusion duration limit is satisfied, i.e. ξ∆ = D∆/(d/2))2 > 1,

Equation 2.19 can be simplified according to:

S

S0 radial

=
[2J1(2πqd/2)]

2

(2πqd/2)2
. (2.22)

Under long diffusion duration limit, S
S0 radial

only depends on the cylinder diame-

ter, d, rather than diffusivity DICS and diffusion duration ∆. As shown in Figure

2.6, we drawn the curves S
S0

when q varies. We can observe that S
S0

decreases

when q increases.
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(a) (b)

Figure 2.6: Analytical model of dMRI signal for a cylinder with diameter d =

20µm according to Equation 2.22. (a) S
S0

vs q. (b) log S
S0

vs q.

The diffusion diffraction minimum pattern of log S
S0

occurs when q = 61mm−1

(Figure 2.6-b). It is noted that qdiff×d is always equal to 1.22 (qdiff = 61mm−1, d =

0.2mm) according to [95, 110], where qdiff holds for q-value when the diffraction

minimum pattern occurs.

2.3.3 Monte Carlo simulations

The pipeline of a Monte Carlo technique used for our purpose can be divided

into 3 steps: (1) build geometrical models of biological tissue based on biolog-

ical features,(2) create a simulator imitating the movement of water molecules

diffusing through these models and (3) observe the simulated displacements of

water molecules with a virtual diffusion-MRI imaging sequence and calculate the

virtual dMRI signal and diffusion tensor. It thus offers the possibility of studying

not only Brownian motion in an arbitrary environment but also all models of in-

teractions between molecules and tissue membranes. Thus, data generated using

a Monte Carlo approach makes it possible to study precise biological properties

such as cell size, volume fraction, diffusivity, and membrane permeability and

provide the ground truth.

The authors simulated diffusion signal distributions for one-dimensional re-

stricted geometries, providing a theoretical basis for later studies [111]. Some
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studies validated some mathematical models [112, 113, 106] and analytical mod-

els [114, 95, 110, 115] with the Monte Carlo simulations, so offering the ground

truth for the study of the diffusion behavior in simple and complex tissues. Some

researchers [116, 117, 3] validated the simulation results with real experiments,

which showed that the MC simulation could be useful for the quantitative vali-

dation of diffusion imaging on clinical MRI devices. Previous works also revealed

that some physical and structural features of tissue models could influence the

diffusion property and consequently modify the dMRI acquired signals, such as

the cell shape [118, 97, 119, 120, 121], cell size [106, 122, 117], membrane per-

meability [123, 113, 118], diffusivity [113, 117] and cellular volume fraction [106].

Besides, the previous works also provided some significant information about the

effect of the diffusion imaging sequence parameters on dMRI signal, including the

diffusion duration [107, 124, 125], the duration of gradient pulse [107, 126, 127],

the strength of gradient pulse [125], the direction of gradient pulse [107] and

b-value [124, 117].

However, these types of simulators are complex systems, which require the ad-

justment of different parameters and are costly in computing time. Thus, there

is a tendency to simplify the geometrical and physical features of the biological

tissue models to decrease the simulation burden [97]. Another source of error

can come from an inappropriate choice of Monte Carlo parameters. There are

attempts at the optimization of the parameters to ensure the accuracy and sta-

bility of Monte Carlo results [97, 98]. Besides, the choice of imaging sequence

parameters is also a problem in order to ensure a valid estimate of structural

information of the observed biological tissue [128, 94, 129].

In this chapter, we first presented the basic concepts of the magnetization

process of 1H, including precession, excitation and relaxation. Then we described

the spatial encoding technique and gave the common sequence used in conven-

tional MRI. Next, combining the principles of conventional MRI and the process

of water diffusion, we detailed the diffusion encoding schemes mandatory to ad-

dress the challenge of the heart motion. Finally, we illustrated three regularly used

dMRI modeling and simulation methods, each method having its own merits and

drawbacks. The mathematical models are able to provide versatile parameters
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such as MD, FA, PDF or ODF that help to describe the diffusion properties of the

water molecules moving within biological tissues and to extract the main diffu-

sion directions. These parameters are very useful for inferring the microstructure

of tissues. However, in the absence of ground truth, the microstructure inferred

from this kind of model is difficult to assess. The Bloch-Torrey model simulates

the process of diffusion imaging, including RF pulse excitation, spatial encod-

ing, diffusion weighting, and signal sampling. It is therefore capable of providing

more realistic diffusion images. However, it can only simulate isotropic diffusion

and simple restriction boundary. There is a need for further research to extend

the analysis to complex anisotropic diffusion cases. The last model involving nu-

merical simulation by using the Monte Carlo method has an obvious advantage

in that it provides a perfect ground truth for evaluating the simulation results.

Nevertheless, because numerical simulation often requires a long computing time,

only simulations in simplified structures were validated until now.

It should be noted that the challenge associated with dMRI simulation by

Monte Carlo method is that it requires realistic biological tissue models to mimic

the structural and physical characteristics of the tissue; it also requires sufficient

samples and updates to guarantee the stability and reliability of the simulation

results. The calculation thus becomes more expensive when the virtual tissue

model is more realistic and therefore more complex.
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Part II

Contributions
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Chapter 3

Virtual cardiac tissue models

In this chapter, we present the four cardiac tissue models of increasing realism

that we built. Each cardiac tissue model is divided into two compartments, the

intracellular space (ICS), idealized as a collection of cells represented by finite

or infinite cylinders, and the extracellular space (ECS), simplified as a collection

of interconnected corridors among the cylinders. We consider five physical and

structural characteristics of tissue model that can influence the diffusion property,

such as the cell size, heterogeneous cell arrangement, membrane permeability,

diffusivity and cellular volume fraction.

3.1 State of the art

We provide a summary of the physical and structural parameters used in tissue

models for simulation studies, which are listed in Table 3.1. In most simulations,

myocytes are represented as simplified elongated cylinders. However, some studies

have incorporated more realistic cell shapes based on regional histological sections

[131]. It should be noted that these models are limited by the relatively small size

of the histological sections. Furthermore, certain virtual models have accounted

for heterogeneity in the microstructure, specifically in the diameter of myocytes
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Table 3.1: Virtual tissue model parameters
References Cell Cell Cell Cell Cellular Permeability

shape size length volume fraction
w/d/A h VC RICS P

µm/µm/µm2 µm ×103µm3 % µm/ms
Muscle

[106] hexa. cylinder1 w:28.5-64.5 - - 55-95 0
[122] cylinder d:37±15 3 infinite - 60-70 0-0.05

Heart
[123] hexa. cylinder w: 15× 25 90 33.7 66 0-0.1
[130] cylinder d: 10-50 50-100 3.9-19.6 20 0
[117] cuboid A: 100-300 90-150 9-45 75-90 0
[131] polyhedron A: 14-320 114-126 16.0-40.3 60-84 0
[132] cylinder d: 10-40 infinite - 100 0
[133] cylinder A : 120± 40 4 - - - 0-1
[3] cylinder d: 6− 10± 1 5 40-100 1.1-7.8 45-85 0

Brain
[113] cylinder d:1.25 infinite - 50 0.0016-4
[118] cylinder d:8-10 infinite - 50 0.05-0.1
[97] cylinder d:1.8±0.9 3 infinite - 60 0
[98] cylinder d:3.2±2 3 infinite - 66− 76 0
[119] cylinder d:10 infinite - - 0
[120] un. cylinder2 d:1-5 infinite - - 0
[134] un. cylinder2 d:2±0.4 3 infinite - 20 0

1. Hexagonal cylinder. 2. Undulation cylinder. 3. The cell diameters conform to the gamma distribution,
the value is mean±standard deviation. 4. The cell cross section areas conform to the normal distribution, the
value is mean±standard deviation. 5. The cell diameters conform to the log-normal distribution, the value is
mean±standard deviation.

[130, 3, 131, 133, 135] and their orientation [117, 3, 131, 135], in order to capture

the statistics observed in histological data. The values of cell size, permeability,

and cellular volume fraction have been derived from histological data and physical

measurements, as detailed in Table 1.1. In our simulations, we consider all the

aforementioned structural and physical features, which will be further discussed

and demonstrated in the following sections.

3.2 Implementation

3.2.1 One myocyte model

To represent a unique myocyte in our simulations, we employed a simplified cylin-

drical model, as illustrated in Figure 3.1. This choice of model offers several ad-

vantages, including reduced computational complexity and the ability to control

the size and orientation of the cell. The cylindrical approximation is suitable for
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most regions of the cardiac wall, where the length of a myocyte is approximately

10 times its diameter. To define the three-dimensional orientation of the cell, we

introduced the concepts of elevation angle α and azimuth angle β. These angles

provide a convenient way to describe the orientation of the cylindrical cell within

the tissue model and are depicted in Figure 3.1.

Figure 3.1: Simulated cylindrical cell (myocyte). Definition of elevation angle α

and azimuth angle β.

By using this simplified cylindrical model, we are able to effectively capture a

general approximation of the characteristics of the cells while maintaining com-

putational efficiency.

3.2.2 Multi-cell models

In our study, we developed four models (Models I, II, III, and IV) to simulate

cardiac tissue, each representing different levels of realism. Figure 3.2 illustrates

these models.
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Figure 3.2: Simulated models of cardiac tissues: (a) Model I: periodic arrange-

ment of parallel identical cells. Model II: parallel cells with heterogeneous di-

ameters. Model III: identical cells with heterogeneous orientations. Model IV:

cells with heterogeneous diameters and orientations. The cubic box represents

one layer of cells. (b) Cross-sectional views, showing spatial restrictions: d (green

arrow) in the intracellular space (ICS); al (red arrow) and as (blue arrow) in the

extracellular space (ECS). (c) Distribution of d, al, and as within a voxel of size

V b = 500× 500× 500µm3.

In Model I, we used a periodic arrangement of parallel identical cells, rep-

resented as cylinders. This simplified model allowed us to control the size and

orientation of the cells.

Model II introduced heterogeneity by varying the diameters of the cells. We
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modeled the cell diameter distribution using a gamma distribution with mean

diameter µd and standard deviation σd [97, 98]. Specifically, we simulated two

scenarios with different mean diameters: µd = 20µm and µd = 10µm, both with

a constant ratio σd

µd
= 0.1 based on histological knowledge [11].

Model III aimed to mimic the continuous change in cell orientation observed

in cardiac tissue. We achieved this by gradually varying the elevation angle α of

the cells from one layer to the next, while keeping the azimuth angle β constant.

The rate of change in α depended on the mean cell diameter: 0.5◦ per layer for

µd = 10µm and 1◦ per layer for µd = 20µm.

Finally, Model IV combined the heterogeneity in cell diameters from Model

II with the continuous change in cell orientations from Model III, providing a

more realistic representation of cardiac tissue.

By considering both intracellular and extracellular spaces and incorporating

heterogeneous information from histological data, these four models capture the

statistical variability observed in cardiac tissue structure and provided a compre-

hensive understanding of its complex organization.

3.2.3 Global tissue model

To create the global tissue model, as depicted in Figure 3.3, we simulated the heart

wall from endocardium to epicardium, considering the histologically observed left

ventricular wall thickness. The model encompassed a size of 2500×3500×500µm3.

The change in cell orientation along the y axis followed the histological data, with

a rate of 50◦/mm and a range of −87◦ to 87◦ [97, 98], in agreement with Section

1.2.4.
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Figure 3.3: (a) Global tissue model of size 2500× 3500× 500µm3. (b) Elevation

angle α in Models III and IV: α varies only along the y axis while the azimuth

angle β remains equal to 0.

Algorithm for spatial arrangement

The algorithm used for placing the cylinders in the models proceeded as follows:

1. Firstly, we built a homogeneous model by placing M cells (cylinders) on a

regular 2D grid. The distances al and as represent respectively the widest

and narrowest spatial restriction of ECS. as was calculated as the distance

between the walls of neighboring cells along the line of center locations,

while al was calculated as the distance between the walls of non-neighboring

cylinders along the line of center locations, as shown in Figure 3.2-b. The

values of al and as are determined by the choice of d and RICS.

2. Next, we also choose M cylinders for the heterogeneous model and fixed

their locations on the same 2D grid.

3. The M diameters were drawn from a normal distribution with the desired

µd and σd.

4. We sorted the diameters in descending order starting from the largest diam-

eter and progressively placed all cylinders on the grid as follows: a) Choose

a random position to place a cylinder; b) If the cylinder overlaps with any

other already in place, discard it and return to step (a); c) Place a new

cylinder until the M th cylinders are placed.
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Physical characteristics of the cardiac tissue model

Regarding the physical characteristics of the cardiac tissue model, we con-

sidered diffusivity D, membrane permeability P , cellular volume fraction RICS,

and diffusivity coefficients DICS and DECS for ICS and ECS, respectively. These

parameters were set based on histological data (Table 1.1), with µd = 10µm or

µd = 20µm, RICS = 70%, DICS = 1µm2/ms, DECS = 2.5µm2/ms, and two

situations for permeability: one with impermeable compartments ICS and ECS

separately and another with a permeable environment (P = 0.02µm/ms).

3.3 Conclusion

In this contribution, we set out to create realistic models of cardiac tissue in

order to model its microstructural properties and diffusion characteristics. We

developed four models (models I, II, III and IV) with increasing levels of com-

plexity, taking into account factors such as microstructural characteristics (cell

arrangement, heterogeneity of cell diameters and variation in cell orientations)

and physical characteristics (diffusivity, permeability and cell volume fraction).

These models will be used in the next two chapters to better understand how

diffusion MRI can measure the spatial restrictions and microstructural character-

istics of tissue by simulating the diffusion behaviour of water molecules inside.

The realism of tissue models could be further improved by considering in par-

ticular information provided by high spatial resolution imaging techniques such

as polarized illumination imaging (PLI) [3] or even morphological characteris-

tics extracted from histological images [131, 121]. Local analysis of diffusion

tensors in cardiac muscle has shown that there are larger angular deviations in

infarcted regions than in healthy tissues and that these deviations are correlated

with the disorder of cardiomyocytes [10, 9]. Similarly, the distribution of myocyte

diameters is modified in the context of certain cardiac pathologies such as cell

hypertrophy. [11, 12]. These pathological variations of cardiac cells as well as

their organizations should be taken into account in future MC simulations.
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Chapter 4

Water molecule diffusion

simulation in cardiac tissue

model

In this chapter, we present the application of the Monte Carlo strategy to simulate

water diffusion molecules within a virtual cardiac tissue model. Our objective is to

verify four critical conditions related to the Monte Carlo parameters: the number

of simulated molecules N , the number of simulation steps K, and the voxel size

V of the tissue model. These conditions are essential to ensure the accuracy and

stability of our Monte Carlo simulation.

4.1 State of the art

The simulation of water molecule diffusion using the Monte Carlo method can be

a time-consuming process. However, selecting inappropriate Monte Carlo param-

eters can lead to errors in the simulation results. Several studies have focused on

optimizing these parameters, and Table 4.1 provides an overview of the relevant

Monte Carlo simulation parameters employed in these studies.
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Table 4.1: Virtual water diffusion : Monte Carlo simulation parameters
Ref. Diffusivity Update Update Update Updates Molecules

duration length length ratio number number
DICS/DECS τ l l/d K N

µm2/ms ms µm
Muscle

[106] 1.8/2.2 - - - - 2× 105

[122] 2/2 < 0.002 - < 0.25 105 104

Heart
[123] 1/1 0.17 1 < 0.07 300 1000
[130] 1/1 0.17 1 < 0.10 350 4× 107

[117] 0.5-2.5/0.5-2.5 0.002 < 0.17 < 0.03 (3.5− 20)× 103 (1− 125)× 105

[131] 1-2/2-3 0.1 < 1.4 - 1000 104

[136] 2-3/- 0.1-0.4 < 2.7 < 0.15 1000 106

[133] 0.5/2 0.01-1.5 < 4.3 - - 106

[3] 0.5-3/0.5-3 0.005 0.3 < 0.075 5000 3×104

Brain
[113] 0.5-1/1-2 < 0.001 - < 0.05 - 4× 105

[118] 2/2 0.1 1.1 < 0.14 10-1000 105

[97] 0.6/0.6 0.003-0.009 < 0.18 < 0.1 5000 5× 103

[98] 2/2 0.1 1.1 0.34 1000 105

[119] 2/2 0.01 0.35 0.035 7000 104

[120] 2/2 9× 10−5 0.03 < 0.03 300− 106 (4− 20)× 104

[134] -/2 0.01 0.35 0.17 104 106

For instance, Landmans et al. [118] investigated the displacement distribution

of water molecules for various values of τ and ∆ in the case of free diffusion.

Their results demonstrated that ∆/τ ≥ 10 is required to ensure the accuracy of

the simulation.

Hall et al. [98] proposed a robust Monte Carlo simulator to ensure accurate

simulations within a restricted environment, specifically a brain tissue model.

They analyzed the simulation error of the Monte Carlo-simulated signal while

varying the number of particles N and updates K for a fixed ∆. These sim-

ulations were performed considering an impermeable environment composed of

parallel cylinder-shaped cells. As a reference, they utilized an analytical model

that approximated the tissue as a two-compartment system. Their findings re-

vealed that K ≥ 1000 (corresponding to l/d ≤ 0.34, as listed in Table 4.1)

and N ≥ 105 are necessary for accurate simulations. Rafael-Patino et al. [97]

employed a similar methodology but did not rely on an analytical model for

the extracellular compartment. Instead, they used a high number of particles

and updates as the reference for their Monte Carlo simulations, concluding that

K = 5000 (corresponding to l/d < 0.1) and N ≥ 5× 103 are required.
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Furthermore, Landmans et al. [118] investigated the impact of the duration

τ in the case of a permeable environment by comparing the displacement dis-

tribution of water molecules. Their results indicated that smaller τ values were

necessary for shorter ∆, and l/d ≤ 0.14 was required for brain tissue with low

permeability (P = 0.05 − 0.1µm/ms). Additionally, Fieremans et al. [113] rec-

ommended l/d < 0.05 for brain tissue with high permeability (P = 4µm/ms).

To ensure the stability of the Monte Carlo simulation, Hall et al. [137] studied

the mean cell diameter and mean volume fraction for different simulation scales.

They demonstrated that the variation in these parameters around the mean de-

creases with increasing simulation scale size. For instance, in the case of a brain

tissue model with a mean cell diameter of 0.63 µm and a standard deviation of

0.26 µm, employing 1000 or more cylinders resulted in a consistent mean volume

fraction of around 0.7, and the variation around the mean decreased with an

increasing number of cylinders. Similarly, Rafael-Patino et al. [97] investigated

the radial anisotropy of the diffusion magnetic resonance imaging (dMRI) sig-

nal for different simulation scales. They demonstrated that a sufficiently large

simulation scale, achieved by sampling a significant number of cylinders (e.g.,

10,000 cylinders for a brain tissue model with a mean cell diameter of 1.8 µm

and a standard deviation of 0.9 µm), was necessary for the simulated signal to

converge.

It is worth noting that most studies have optimized the Monte Carlo param-

eters within the brain tissue model. However, our focus will now shift to the

cardiac tissue model, where we will explore the applicability of these parameters.

4.2 Monte Carlo strategy

The Monte Carlo strategy is employed to replicate the Brownian motion of wa-

ter molecules within our simulation. It involves simulating the movement of a

specified number, N , of molecules by performing K updates. This approach effec-

tively emulates the continuous diffusion process of water over a diffusion duration,
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∆. Each individual displacement, or step, taken by a molecule has a duration

τ = ∆/K and is randomly assigned a spatial orientation.

The Monte Carlo strategy for simulating water diffusion involves several key

steps:

1. Generation of a uniform 3D direction of diffusion: In the simulation, each

water molecule is assigned a uniform three-dimensional direction of diffu-

sion, representing its random spatial orientation during displacement.

2. Distribution of the length of each step: The length of each step taken

by a water molecule is determined using a distribution that captures the

statistical characteristics of water diffusion, accommodating variations in

step lengths and reflecting the stochastic nature of molecular motion.

3. Transmission probability: A transmission probability is assigned to each

step of a molecule, assessing its ability to cross the membrane between

tissue compartments, accounting for permeability and impacting diffusion

efficiency.

4. Property of simulated diffusion: The Monte Carlo simulation generates

a representation of water diffusion in the virtual tissue model, exhibiting

properties including displacement patterns, spatial distribution, and diffu-

sion rates, allowing for observation, analysis, and insights into the diffusion

behavior within the cardiac tissue model.

Through these steps, the Monte Carlo strategy enables the modeling and anal-

ysis of water diffusion in the virtual cardiac tissue, offering valuable insights into

the complex behavior of diffusion processes.

Generation of a uniform 3D direction of diffusion: In order to create a

uniform 3D direction of diffusion in a unit sphere, Marsaglia et al. [138] devised

a method involving the selection of x1 and x2 from independent uniform distribu-

tions between (−1, 1), while rejecting points where x2
1 + x2

2 ≥ 1. The remaining

points can be transformed into 3D coordinates as follows:
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
x = 2x1

√
1− x2

1 − x2
2

y = 2x2

√
1− x2

1 − x2
2

z = 1− 2(x2
1 + x2

2)

(4.1)

When generating the 3D direction of diffusion by using uniform azimuth and

elevation angles, it results in a concentration of directions along the z-axis, as de-

picted in Figure 4.1-a-b-c. By employing Marsaglia’s method, the distributions

of the x, y, and z-axis projections become uniform, and the corresponding distri-

bution of the calculated elevation angle (α) exhibits fewer concentrations around

±π/2 (z-axis), as illustrated in Figure 4.1-d-e-f.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Generation of 3D direction of diffusion using two methods: Method

1 - (a) Elevation and azimuth angles α and β, (b) Uniformly generated α and

β, (c) Distribution of x, y, and z-axis projections, and (d) Corresponding points

generated on a sphere; Method 2 - (e) Uniformly generated x, y, z-axis projections,

(f) Distribution of α and β, and (g) Corresponding points generated on a sphere.

Distribution of the length of each step: The length l of each step is

determined by the equation:
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l =
√
6Dτp(l) (4.2)

where p(l) follows either a fixed distribution [123, 98] or a Gaussian distribution

[117]. In our implementation, we opted for a fixed-length step, represented by

p(l) ≡ 1 [123, 98], as it is easier to generate and results in improved execution

speed. Furthermore, studies have shown that using a fixed-length step reduces

fluctuations in the mean-squared displacement of molecules over time, leading to

improved convergence in the model [98].

Transmission probability: Molecules within the intracellular space (ICS)

undergo diffusion inside virtual cells using steps of length lICS and diffusing with a

diffusivity of DICS. Conversely, molecules in the extracellular space (ECS) diffuse

outside the virtual cells using steps of length lECS and a diffusivity ofDECS. When

a simulated molecule encounters the virtual cell membrane, it either elastically

reflects or crosses the membrane based on the membrane’s permeability value,

denoted as P . The transmission probabilities across the membrane from ICS to

ECS and from ECS to ICS are given by pICS−ECS and pECS−ICS, respectively,

and can be calculated using the membrane’s permeability value P [118]:


pICS−ECS = P

4τ

lICS

pECS−ICS = P
4τ

lECS

(4.3)

It is important to note that pICS−ECS ̸= pECS−ICS when lICS ̸= lECS, in-

dicating a discrepancy between the diffusivities DICS and DECS as described

by Equation 4.3. As mentioned in Table 1.1, DICS < DECS, resulting in

pICS−ECS > pECS−ICS. This difference ensures that the equilibrium distribu-

tion can be uniform with ∆, meaning the ratio of molecule density between ICS

and ECS can be 1, as depicted in Figure 4.2. Otherwise, without this disparity,

molecules would accumulate in ICS (a region with lower diffusivity) due to longer

mean residence times.
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Figure 4.2: Variation of the molecule density ratio between ICS and ECS with

respect to ∆ during Monte Carlo simulation of water diffusion in a permeable

environment using Model IV with a mean cell diameter of µd = 20µm. The

Monte Carlo parameters employed are N = 105 and τ = 0.01ms.

Property of simulated diffusion: Water diffusion in biological tissues de-

viates from a Gaussian distribution and exhibits slower rates compared to free

diffusion. To address this, the apparent diffusion coefficient (ADC) reflects the

interaction between water molecules and the restrictions imposed by tissue mi-

crostructures, making it highly sensitive to physiological conditions encountered

in tissues.

The apparent time-dependent diffusion coefficient along a specific direction

mn, noted ADCmn from Equation 2.11, is calculated according to:

ADCmn(∆) =
1

2∆
p(Lm(∆))Lm(∆)× p(Ln(∆))Ln(∆), (4.4)

where p(Lm(∆)) is the probability associated with the displacement of

molecules along m direction during diffusion duration ∆, Lm(∆). The prob-

ability p(Lm(∆)) is a Gaussian distribution in the case of free diffusion. The

theoretical value ADCt
mn(∆) can be approximated by N simulated molecules

from Monte-Carlo simulation according to the following expression [112]:

ADCt
mn(∆) =

1

2∆
lim

N→∞

1

N

N∑
i=1

Li,m(∆) lim
N→∞

1

N

N∑
i=1

Li,n(∆), (4.5)
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where Li,m(∆) holds for the displacement of molecule i along m direction

during ∆.

The diffusion tensor computed from Equation 2.11 gives us the theoretical

eigenvalues λt as well as MDt and FAt (cf. from Equation 2.12).

4.2.1 Conditions on the Monte Carlo parameters

To be valid and lead to robust results, Monte Carlo-type methods simulating the

diffusion of water through a cell model and a tissue model (multi-cell model) must

meet three fundamental conditions:

• Condition K. According to Einstein’s theory [139], the duration τ of each

update must be very small compared to the whole diffusion duration ∆ in or-

der to ensure the independence of every update, i.e. the number of updates

K = ∆/τ must be large enough.

• Condition l/s. This condition concerns the ratio between the length of the

path l traveled by a water molecule during an update τ and the spatial restric-

tion s of a compartment in the most restricted diffusion direction, l/s << 1,

where s = d in ICS [114, 113] and s = al in ECS.

• Condition N. This condition concerns the number of molecules N . The

simulation process must consider a large number of water molecules N to

ensure the accuracy and realism of the results in terms of biology [98, 97].

Furthermore, when simulating water molecules diffusing through a tissue

model, an additional condition should be met:

• Condition V. This condition concerns the scale of the MC simulation V .

According to [137], in the case of tissue models with heterogeneous cells

diameters, a too small simulation scale leads to an unstable distribution of
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statistical moments associated with the cell diameter as well as with the

cellular volume fraction and diffusion characteristics. Thus, a sufficiently

large simulation scale associated to a sufficiently large number of cells is

necessary to build a stable diffusion environment.

4.2.2 Specific implementation for tissue model

The practical implementation of the Monte Carlo method is crucial to ensure

the reliability and accuracy of the obtained results. In our case, the simulation

focuses on the diffusion of water molecules within a localized, finite-dimensional

region of interest, represented by a voxel. This approach allows for a detailed

analysis of water diffusion dynamics within the tissue model.

In the context of multi-cell models, an additional condition, known as Condi-

tion V, comes into play. Condition V emphasizes the significance of the simulation

scale in achieving stable diffusion environments, particularly when considering tis-

sue models with heterogeneous cell diameters. Insufficient simulation scale can

lead to unstable distributions of statistical moments associated with cell diameter,

cellular volume fraction, and diffusion characteristics. Consequently, it becomes

crucial to employ a simulation scale that is sufficiently large, coupled with an

ample number of cells, to ensure the stability and reliability of the diffusion en-

vironment within the multi-cell model.

• Voxel sizes: For our study, we used three different voxel sizes: small Vs =

100 × 100 × 100µm3, medium V m = 250 × 250 × 250µm3, and large Vb =

500× 500× 500µm3 respectively (Figure 4.3).

• Extended Voxels: Whatever the size of the voxel, it is necessary to cope

with the edge effects when simulating the diffusion of water molecules. Dif-

ferent approaches have been considered in the literature, as depicted in

Figure 4.4.
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Figure 4.3: Virtual global tissue model with local change of orientation and three

scales (voxel sizes). (a) Global tissue model of size 2500 × 3500 × 500µm3. (b)

Digitized virtual model with 25× 35× 5 voxels of size Vs (c) 10× 14× 2 voxels of

size Vm and (d) 5× 7× 1 voxels of size Vb. (a’-d’) Elevation angle α in Models III

and IV: α varies only along the y axis while the azimuth angle β remains equal

to 0.

In [98] the authors proposed, when a cylinder (a cell) overlaps the edges of

the voxel (Figure 4.4-a), to create a copy of the cell overlapping on the opposite

edge, thus allowing the molecules to diffuse from one edge towards its opposite

edge while keeping the same number of molecules in the voxel. This allows

molecules to diffuse in an environment of similar spatial restriction but requires

a particular arrangement (parallel organization) which cannot allow cells with

various orientations to be considered. In [117] the authors proposed to extend the

edge of the voxel (Figure 4.4-b) to ensure that none of the cells gets truncated and

to distribute the simulated molecules randomly in the extended voxel. This allows

to consider non-parallel geometries while ensuring that the molecules diffuse in a

similar restricted environment.
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(a) (b) (c)

Figure 4.4: 2D section of a voxel and extended voxel containing cells (white disks)

and water molecules (blue dots). (a) Voxel. (b) Extended voxel. The length Lex

corresponds to the maximum length for which the water molecule can diffuse

outside the voxel during ∆. (c) Extended voxel with water molecules limited to

the inner voxel.

In our simulation, we defined an extended voxel with an edge Lex larger than

the edge of the voxel related to the scale of observation (Figure 4.4-c). At the

beginning of the simulation, molecules were placed randomly in the voxel to

ensure that only a very limited number of molecules will escape from the extended

voxel (contrary to Figure 4.4-b). We determined the length of Lex based on water

molecules diffusing in a free environment, with a normal probability distribution

of displacements L in a given direction during t, and a standard deviation of

σ =
√
2Dt. For t = 100ms, over 99.9992% of water molecules remain within

L = 4.5σ (i.e., L = 100µm). Therefore, if Lex = 100µm when t = ∆ = 100ms (as

in our simulations), all water molecules’ movements, whether inside or outside

the voxel, will remain within the extended voxel at this scale.

The size of extended voxels and the related density of water molecules used

are listed in Table 4.2.

Table 4.2: Extended voxels: inner and outer voxels edges when Lex = 100µm
with their corresponding water molecules density ρ At the beginning of simulation
when N = 105.

V s V m V b
Inner voxel 100 µm 250 µm 500 µm

Extended voxel 300 µm 450 µm 700 µm
ρ 0.1 /µm3 6× 10−3/µm3 8× 10−4/µm3
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4.2.3 Evaluation

In this section, we will discuss the evaluation metrics used to optimize MC pa-

rameters for accurate water diffusion simulations in cardiac tissue. By selecting

the appropriate step duration (τ) and number of simulated molecules (N), we

ensure reliable and efficient simulations. Additionally, we will explore the signif-

icance of voxel size in achieving stable diffusion simulations, striking a balance

between computational efficiency and accurate representation of cardiac tissue

microstructure. Lastly, we will examine the critical role of diffusion duration

(∆). Understanding these factors will help us optimize MC parameters, voxel

size, and diffusion duration for improved water diffusion measurements in cardiac

tissue.

Optimization of τ and N : In order to satisfy Condition K, Condition l/s

and Condition N, we optimized the MC water diffusion simulation parameters τ

and N in an extended voxel with big voxel size V b (more stable result according

to the Condition V ) for the four tissue models. We extracted the eigenvalues and

analyzed their behavior when the values of τ and N vary. The simulation error of

eigenvalues [97, 98] was given by the normalized standard deviation defined by:

stdλi
=

√
1

n−1

∑n
j=1(λ

j
i − λref

i )2

λref
i

, (4.6)

for i={1,2,3} corresponding to the three eigenvalues respectively. The averaged

reference λref
i is the average value of 30 repetitions of λi obtained with the finest

parameter values of the range of values tested i.e. τ = 0.001 ms and N=105 in

the whole voxel, N = 7×104 in ICS and N = 3×104 in ECS. We considered sep-

arately the two compartments ICS and ECS contained in the voxel (impermeable

environment with P = 0µm/ms) and calculated the limitation ratio between l

and s respectively in ICS and ECS according to the Condition l/s , which must

be applied for any compartment spatial restriction size and diffusivity.

Optimal voxel size for a stable water diffusion simulation: To satisfy

Condition V, we controlled the stability of eigenvalues across the virtual global
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tissue models, successively for the three voxel sizes V s, V m and V b (see Figure

4.3) by observing the values of eigenvalues through the different voxels constitut-

ing the global virtual tissue and by calculating their average value as well as their

standard deviation. We performed the analysis for both impermeable (separated

ICS and ECS) and permeable environments. The number of voxels contained in

the global tissue models was respectively equal to 5× 35, 5× 14 and 5× 7.

Critical diffusion duration ∆: We optimized the value of ∆ to satisfy

the condition of long diffusion duration: this ensures that micro-structural in-

formation can be detected when a long diffusion duration ∆ is applied where

most molecules can reach the edges of the cell and therefore testify to the spatial

restriction. To do so the following condition must be fulfilled [128, 132]:

ξ∆,ICS = ∆×DICS/(d/2)
2 ≥ 1,

ξ∆,ECS = ∆×DECS/(al/2)
2 ≥ 1.

(4.7)

∆critical is calculated when ξ∆ = 1. The value of ∆critical increases with d and al

and when D decreases. ∆critical
whole =max(∆critical

ICS ,∆critical
ECS ), ∆critical

whole = 100ms for d =

20µm, al = 20µm,DICS = 1µm2/ms and DECS = 2.5µm2/ms; ∆critical
whole = 25ms

for d = 10µm, al = 10µm.

This was also confirmed by following the evolution of the different eigenvalues

as a function of the ∆ value.

4.3 Optimization of MC parameters

The optimization of Monte Carlo parameters can be approached in two steps.

Firstly, water molecules were simulated within a single cell model (infinite cylin-

der) to optimize the values of τ and N , ensuring compliance with the conditions

outlined as Conditions K, l/s, and N . Subsequently, simulations were conducted

within a multi-cell model incorporating the intracellular space (ICS) and extra-

cellular space (ECS). In this step, the optimization of τ and N was carried out
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using an extended voxel with a larger voxel size (Vb = 500 × 500 × 500µm3).

Additionally, voxel size optimization was performed to satisfy Condition V, con-

sidering simulations within the global tissue model with various voxel sizes. It is

important to note that all simulations within the multi-cell model were executed

under equilibrium conditions, ensuring that the density of water molecules (ρ)

remained consistent across ICS and ECS compartments.

4.3.1 Single-cell scale

Figure 4.5 presents the simulation error (stdλt
3
) of λt

3 for different values of τ and

N when ∆ = 100ms (satisfying the condition LDD as described in Section 5.2.3).

When d = 20µm, it can be observed that stdλt
3
decreases in an approximately

linear manner as N increases, particularly when τ ≤ 0.1ms. However, in the case

of d = 10µm, stdλt
3
exhibits a linear decrease only for τ ≤ 0.01ms, whereas for

larger values of τ , the curves tend to rise. Consequently, the boundary condition

of l/d =
√
6Dτ/d ≤ 0.04 can be identified.

Figure 4.5: Single cell model- Optimization of τ and N when ∆ = 100ms for two

cell sizes. Simulation error stdλt
3
wrt N .
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4.3.2 Multi-cell scale

4.3.2.1 Optimization of τ and N

We examined the simulation error of λ3 (stdλ3) for different combinations of τ

and N under a long diffusion duration (∆ = 100ms) condition. The results are

presented in Figure 4.6-a-c-e.
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ICS,DICS = 1, P = 0

(a) (b)

ECS,DECS = 2.5, P = 0

(c) (d)

Whole voxel, DICS = 1, DECS = 2.5, P = 0.2

(e) (f)

Figure 4.6: Model IV - one voxel: Optimization of τ and N within V b for two

cell sizes. stdλ3 wrt N : a) ICS, P = 0; c) ECS, P = 0; e) whole voxel, P = 0.2.

Computation time T wrt N : (b,d,f) for (a,c,e) respectively.

In the case of µd = 20µm in the intracellular space (ICS) (Figure 4.6-a),

stdλ3 exhibited a nearly linear decrease with increasing N when τ ≤ 0.1ms. For

the extracellular space (ECS) (Figure 4.6-c), stdλ3 decreased linearly only when

τ ≤ 0.01ms, while for larger values of τ , the curves increased. The simulation
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results from the whole voxel with a permeability of P = 0.02µm/ms (Figure 4.6-

e) were identical to those from ECS.

For µd = 10µm, τ ≤ 0.01ms was selected for ICS (Figure 4.6-a), and for

µd = 20µm, τ ≤ 0.001ms was chosen for ECS (Figure 4.6-c) and the whole voxel

with P = 0.02µm/ms (Figure 4.6-e). These selected values of τ are summarized

in Table 4.3 and satisfy the Condition l/s. Specifically, for ICS, τ ≤ 0.01ms is

selected for µd = 10µm and τ ≤ 0.1ms for µd = 20µm, ensuring lICS/µd ≤ 0.04

– which is same with the result from one cell model. For ECS, τ ≤ 0.001ms is

chosen for µd = 10µm and τ ≤ 0.01ms for µd = 20µm, ensuring lECS/µas ≤ 0.13.

Table 4.3: Model IV - one voxel: Condition l/s. White cells satisfy the results of
optimization of τ obtained from the analysis of Figure 4.6

τ lICS lECS µd lICS/µd µas µal lECS/µas lECS/µal
lECS

(µal
+µas )/2

ms µm µm µm µm µm
0.1 0.77 1.22 10 0.08 1.5 10 0.83 0.12 0.21

20 0.04 3 20 0.41 0.06 0.11
0.01 0.24 0.39 10 0.02 1.5 10 0.26 0.04 0.07

20 0.01 3 20 0.13 0.02 0.03
0.001 0.08 0.12 10 0.008 1.5 10 0.08 0.01 0.02

20 0.004 3 20 0.04 0.006 0.01

Furthermore, we evaluated the computation time (T ) for the Monte Carlo

simulations presented in Figure 4.6-a-c-e, as shown in Figure 4.6-b-d-f. The com-

putation time increased linearly with N and decreased τ (K increasing). The sim-

ulation in ECS took longer due to tasks such as checking water molecule collisions

with cell membranes and calculating new positions after reflection. Considering

the simulation speed, we set the threshold of stdλ3 to 0.01, with a consistent den-

sity ρ in all compartments. This corresponds to selecting N = 105 in the whole

voxel, N = 7× 104 in the ICS, and N = 3× 104 in ECS. These threshold-based

values of N are valid for both µd values of cell diameters. The obtained τ values

are applicable to Models I, II, III, and IV, for diffusion durations (∆) ranging

from 10 to 100ms.
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4.3.2.2 Recommended diffusion duration ∆

To validate the critical values of diffusion duration (∆) discussed in Section 4.2.3,

we examined the mean and standard deviation of λ1 and λ3 for Monte Carlo (MC)

simulations of global model IV with heterogeneous cell diameter and orientation

(µd = 20µm). The simulations were conducted using small (V s) and large (V b)

voxel sizes, as depicted in Figure 4.7.

V s

(a) (b)

V b

(c) (d)

Figure 4.7: Model IV - global model: Evolution of the eigenvalues λt from a

transient to a stationary regime according to the diffusion time ∆ in ICS, ECS,

and in the whole voxel, respectively. MC simulations were performed for model

IV and voxels of size V s (first line) and V b (second line) with DICS=1, DECS=

2.5, RICS=70%, τ = 0.01ms, ρ = 0.1/µm3 and ρ = 8× 10−4/µm3 for V s and V b

respectively.

We calculated the mean and standard deviation of λ1 and λ3 for 25 × 35 × 5

and 5×7×1 constituent voxels of the global model, corresponding to V s and V b,
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respectively. We analyzed the intracellular space (ICS) and extracellular space

(ECS) independently (in an impermeable environment) as well as the entire voxel

(with permeability values of P = 0 and 0.02µm/ms).

The eigenvalues in Figure 4.7 provide insights into the nature of the diffusion

phenomenon. λ1 measures the apparent diffusion coefficient (ADC) along the

long axis of the virtual cell and remains similar to the free diffusion coefficient,

regardless of ∆. On the other hand, λ2 and λ3 measure ADC in a circular section

of the cell perpendicular to the long axis and decrease similarly with increasing

∆, indicating restricted diffusion. The eigenvalues decrease until they reach a

stationary point, in accordance with the condition of a long duration of diffusion

mentioned in Section 4.2.3. However, if ∆ is too small compared to the size of the

spatial restriction, the diffusion may still be in a transient regime. For instance,

a ∆ value of 40 ms corresponds to a transient state for d = 20µm, whereas a ∆

value of 100 ms represents a convergent state where the diffusion phenomenon is

stationary.

Under the impermeable environment, the eigenvalues from the entire voxel

closely approximate the volumetric average of the results from ICS and ECS [98].

This relationship can be expressed as:

λwhole,P=0 = λICS ×RICS + λECS × (1−RICS). (4.8)

In ICS and ECS, λ1 equals the free diffusivity, while the values in the entire

voxel vary due to the presence of local restricted intracellular space (RICS) for

P = 0 and P = 0.02. In model IV, RICS has a standard deviation of approx-

imately 2.3% and 0.5% for V s and V b, respectively (as shown in Table 4.4).

Variations in λ3 among voxels are mainly caused by the local differences in d, as

well as the discrepancy in diffusivity between ICS and ECS (DICS and DECS).

This variability is less pronounced in ICS due to the relatively limited variation

in d (µd) among voxels (standard deviation of approximately 0.35µm and 0.07µm

for V s and V b, respectively, as shown in Table 4.4 for model IV). However, it
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becomes more pronounced in ECS, owing to the greater variability in cell arrange-

ment, resulting in locally distinct spatial restriction values. This phenomenon is

observed throughout the entire voxel, regardless of P = 0 or P = 0.02 [112].

4.3.2.3 Optimal voxel size

As depicted in Figure 4.8, the estimated value of λ3 exhibits fluctuations among

different voxels in the various global models under a permeable diffusion environ-

ment with P = 0.02µm/ms and ∆ = 100ms.

Figure 4.8: Models I-IV global models-Spatial representation of estimated values
of λ3 (µm2/ms) with three scales (V s, V m and V b) when ∆ = 100ms displayed
using the colorbar given on the right. Normalized distribution of cell diameters
displayed in one voxel in Models II and IV (the case of heterogeneous cell diam-
eter) with µd = 20.

For models I and III (homogeneous diameters), λ3 remains relatively stable

even at the smallest voxel size (V s) for both cell diameters (d). In contrast, for
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models II and IV (heterogeneous diameters), λ3 becomes highly unstable at the

smallest scale V s, consistent with the findings in Figure 4.7. This phenomenon

can be explained by examining the normalized diameter distribution within a

voxel. The diameter distribution in Figure 4.8 deviates from the ideal distribution

for V s and poorly matches the theoretical distribution described in Section 3.2.2.

However, as the scale increases, the diameter distribution becomes closer to the

theoretical distribution, which helps reduce the spatial variability of λ3. The

variability is lower for µd = 10µm due to the inclusion of more cylinders within

the same voxel.

Table 4.4 provides the number of cells, average cell diameter, local RICS, and

estimated eigenvalues for three voxel sizes across the global tissue models (I, II,

III, and IV). To ensure stability of the local RICS and accurate estimation of

eigenvalues, we impose a limit on the standard deviation of λ1 and λ3, which

must be less than 0.015µm2/ms and 0.012µm2/ms, respectively. This leads to

the conclusion that, for Models II and IV, the largest voxel size V b (500× 500×
500µm3), encompassing over 500 cylinders, is required when µd = 20µm, whereas

the voxel size V m (250 × 250 × 250µm3), also encompassing over 500 cylinders,

suffices for µd = 10µm.
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Table 4.4: Models I-IV - global model: Voxel size optimisation by reporting voxel

size V , mean cell diameter µd, cells number, cellular volume fraction, estimated

λt
1 and λt

3 for two d cases when ∆ = 100ms. White cells correspond to a standard

deviation of λt
3 less than 0.012.

Size µd Cells number RICS(%) λ1(µm
2/ms) λ3(µm

2/ms)

Model I

Vs 20 23 68 1.49±0.011 0.73±0.004

Vm 20 137 70 1.49±0.010 0.73±0.005

Vb 20 537 69 1.49±0.010 0.73±0.004

Vs 10 93 69 1.50±0.009 0.58±0.005

Vm 10 537 69 1.49±0.009 0.58±0.004

Vb 10 2219 70 1.49±0.009 0.58±0.004

Model II

Vs 20± 0.37 23 69±2.7 1.49±0.039 0.71±0.035

Vm 20± 0.14 137 70±1.1 1.48±0.018 0.71±0.015

Vb 20± 0.06 537 70±0.5 1.48±0.013 0.71±0.010

Vs 10± 0.09 93 69±1.4 1.49±0.022 0.54±0.020

Vm 10± 0.03 537 69±0.5 1.49±0.013 0.54±0.010

Vb 10± 0.01 2219 70±0.3 1.49±0.005 0.54±0.004

Model III

Vs 20 28±4 68±0.2 1.50±0.009 0.74±0.005

Vm 20 181±17 70±0.1 1.50±0.008 0.74±0.005

Vb 20 695±57 69±0.02 1.50±0.008 0.74±0.005

Vs 10 123±12 69±0.2 1.50±0.008 0.59±0.005

Vm 10 695±57 69±0.02 1.50±0.008 0.59±0.005

Vb 10 2831±148 70±0.005 1.50±0.008 0.59±0.005

Model IV

Vs 20± 0.35 28±4 69±2.3 1.49±0.037 0.72±0.032

Vm 20± 0.14 181±17 70±1.2 1.48±0.019 0.72±0.016

Vb 20± 0.07 695±57 70±0.5 1.48±0.014 0.72±0.012

Vs 10± 0.09 123±12 69±1.5 1.50±0.024 0.55±0.020

Vm 10± 0.04 695±57 69±0.5 1.48±0.014 0.55±0.012

Vb 10± 0.01 2831±148 70±0.3 1.49±0.007 0.55±0.005
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4.4 Conclusion

In this contribution, our main focus was on analyzing the virtual cardiac tissue

models we developed, incorporating realistic physiological parameters based on

histological data. The goal was to optimize key parameters, namely the duration

of each update (τ) and the number of simulated molecules (N), in order to ensure

accurate and efficient Monte Carlo simulations.

Our simulation results, shown in Figure 4.6, revealed that the same optimal

parameters can be applied to all four cardiac tissue models. In particular, we

found that the choice of τ and the length of the update step (l) in the Monte

Carlo simulation were influenced by the diameter of the cells. To meet the criteria

of condition l/s, an optimal ratio of lICS/µd ≤ 0.04 was identified for impermeable

intracellular space (ICS) (Table 4.3), consistent with previous findings in brain

tissue modeling [113]. Similarly, for impermeable extracellular space (ECS), an

optimal ratio of lECS/((µas + µal)/2) < 0.05 was determined.

The number of cylinders (cells) used in Monte Carlo simulations has been

found to be a crucial factor in other studies. While previous works on white

matter axonal structures suggested using 10,000 cylinders [97, 137], our simu-

lations involved larger cylinders and lower heterogeneity in diameter to mimic

heart tissue. We found that using a voxel size of 500× 500× 500µm3 (containing

500 cylinders) achieved stable simulations for µd = 20µm, while a voxel size of

250× 250× 250µm3 (also containing 500 cylinders) was sufficient for µd = 10µm

(Table 4.2). This aligns with clinical studies indicating that a voxel size of ap-

proximately 1 − 2 mm can effectively capture local geometrical heterogeneity

[121].

The density of water molecules (ρ) used in Monte Carlo simulations is typi-

cally much lower than the observed density in biological tissues. Our simulations

considered a large enough number of water molecules (N) to ensure reasonable

simulation errors and reliable estimation of the diffusion tensor. For example,

we set N = 105 in a voxel size of 500 × 500 × 500µm3, resulting in a density of
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ρ = 8× 10−4 molecules per µm3. However, when using a smaller voxel size (V s),

the density increased to 0.1 per µm3 (Table 4.2).

Analyzing the effect of cell orientation heterogeneity in the virtual tissue mod-

els, we observed that the choice of voxel size had a significant impact. Models I

and III (with homogeneous diameters) showed relatively stable λ3 values even at

the smallest voxel size, while Models II and IV (with heterogeneous diameters)

exhibited high instability at the same scale, consistent with the findings in Fig-

ure 4.8. Analyzing the normalized diameter distribution within a voxel helped

explain these observations (Figure 4.8). As the voxel size increased, the diameter

distribution approached the theoretical distribution, reducing the spatial vari-

ability of λ3. This variability was more pronounced in ECS due to the greater

flexibility in cell arrangement. These findings were consistent across the entire

voxel, regardless of permeability conditions [112].

Additionally, our results highlighted the sensitivity of radial diffusion to cell

diameter in the virtual model, while λt
1 remained stable. λt

3 exhibited a decrease

with decreasing diameter, as shown in Table 4.4, consistent with previous sim-

ulations [3]. This can be attributed to the absolute displacements of simulated

molecules along the most restricted direction (associated with λt
3 and λt

2), which

reach a constant value in ICS once the long diffusion duration condition is met

[132]. This constant value is directly influenced by the size of the spatial restric-

tion, i.e., the cell diameter. On the other hand, λt
3 and λt

2 in ECS reach a constant

value when the Condition LDD is satisfied, determined by RICS, DECS, and the

cell arrangement, rather than the cell diameter [112].
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Chapter 5

dMRI observation of water

diffusion in cardiac tissue

In this chapter, we present the development of a virtual MRI device that mimics

the typical observation parameters of a diffusion MRI sequence known as Pulsed

Gradient Spin-Echo (PGSE). Our aim is to use this virtual MRI device to ob-

serve and analyze the simulated diffusion of water molecules within a cardiac

tissue model. We specifically investigate the influence of key sequence param-

eters, including the diffusion duration (∆) and the gradient pulse duration (δ),

on the estimation of structural characteristics in the observed water diffusion

patterns. By comparing the results obtained from the virtual MRI observations

with the reference data produced by Monte Carlo simulations, we gain insights

into the impact of sequence parameters on the observed water diffusion behavior

within the cardiac tissue model.

5.1 State of the art

As reported in Table 5.1, numerous studies have focused on assessing the estima-

tion of diffusion properties, such as the three eigenvalues of the diffusion tensor,
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mean diffusivity (MD), and fractional anisotropy (FA), using diffusion MRI exper-

iments. These studies have been complemented by virtual observations conducted

using Monte Carlo methods, both in brain tissue [140, 107, 141, 142, 126, 143, 127]

and heart tissue [117, 3]. However, when aiming to detect microstructural infor-

mation in biological tissue, the selection of observation sequence parameters is

constrained by certain conditions.

Table 5.1: Diffusion MRI : Clinical1 vs Virtual MRI
Ref. Echo Diffusion Gradient Gradient q-value b-value Scale

time duration duration strength
TE ∆ δ Gd VV

ms ms ms 10−6T/mm mm−1 s/mm2 µm3

Clinics: Heart
[5] 23 12 9 80 - 340 -
[63] 51 - - 40 - 50-100 26002 × 6000
[144] 38-62 - - - - 15-400 -
[64] 43 30 15/20 - - 200 27002 × 6000
[93] 61 - - 80 - 500 16002 × 2000
[81] 45-115 - - 40 - 50-450 16002 × 10000
[92] 61-65 - 8.3 87 - 340 22002 × 6000

Clinics: Brain
[142] - 40-70 30 9.8-27.6 12-35 250-2000 25003

Simulation: Muscle
[106] - 20-750 2 - - 500 2003

[122] - 40-200 20 10-120 9-120 96-80000 25003

Simulation: Heart
[123] - 50 0.2 2000 17 572 83

[130] - 60 0.2 3000 17 689 20003

[117] - 9-40 2.5-5 150-880 - 400-7500 1003 − 5003

[131] 39/31 20/17 10/4 40/80 - 450 28002 × 8000
[136] - 25-100 0.4-50 - 0-90 - -
[133] - 50-1000 0.01-1.5 - - 1 -
[3] - 26 2 - - 700 13802 × 1400

Simulation: Brain
[113] - 0-15 - - - - 1253

[118] - 1-100 - - - - 103

[97] - 16-45 7-10 131-140 42-56 1930-13190 2303

[98] - 100 5-80 10-100 2-341 - 36.53

[119] - 37.7 31.7 40 54 2600 1503

[120] - 0.03-100 0.2-20 - - 0-1000 1253

[134] - 116 - 0-80 - 200 20003

1. 1.5T/3T MRI scanners.

Most clinical diffusion MRI studies utilize a low b-value (typically below 550

s/mm2) with a relatively short diffusion duration (∆) ranging from 10 to 50 ms,

as shown in Table 5.1. However, these parameters do not fulfill the requirements

of the Long Diffusion Duration (LDD) condition when applied to cardiac tissue.

Additionally, the gradient pulse duration (δ) used in clinical settings is often

several or tens of milliseconds, thereby violating the Short Gradient Pulse (SGP)

condition.
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Moreover, in clinical practice, diffusion MRI tends to average out the diffusion

properties over large observation scales, represented by the voxel size. Conse-

quently, the local distribution of myocyte diameters and variations in the cell

volume fraction remain undetectable. Notably, a study by Hall et al. [145]

demonstrated that the error in diffusion MR signal for two observation scales

followed a line of constant b-value, indicating the existence of an optimal b-value

that is more sensitive to the distribution of cylinder radii within the tissue.

In our work, we thoroughly analyze the impact of the diffusion duration (∆)

and gradient pulse duration (δ) on the estimation of diffusion properties, as well

as the characterization of spatial restriction sizes within the cardiac tissue model.

We aim to verify the specific conditions that should be satisfied to ensure accurate

diffusion measurements in the context of our study.

5.2 Virtual dMRI device

In the context of MRI, the measurement of water molecule diffusion within bi-

ological tissues is achieved through the utilization of an appropriate imaging

sequence, such as the widely used Pulsed Gradient Spin-Echo (PGSE) sequence.

As described in Chapter 2.2.2, this sequence involves the application of a pair of

gradient pulses positioned between the 90◦ RF pulse and the 180◦ RF pulse. To

illustrate this sequence in relation to Monte Carlo simulations, we have provided

a revised depiction in Figure 5.1-a, where the corresponding update steps in the

Monte Carlo simulation are also illustrated.

The PGSE sequence is composed of two diffusion-sensitizing gradients charac-

terized by their duration (δ), strength (Gd), and direction (G⃗d). These gradients

are employed to encode the diffusion behavior of water molecules during the inter-

val denoted as ∆, commonly referred to as the diffusion duration [4]. This interval

captures the time during which the diffusion of water molecules is probed and

quantified by the MRI sequence.
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5.2.1 Water diffusion displacements during two gradient

pulses

During the δ interval within the PGSE sequence, the movement of water molecules

deviates from their theoretical path, as depicted in Figure 5.1-b.

(a) (b) (c)

Figure 5.1: (a) Classic MRI Pulsed Gradient Spin-Echo (PGSE) sequence with

diffusion duration ∆, pulse duration δ, and gradient strength |G⃗| [4]. (b) Water

molecule moves in a free diffusion environment, L1(δ = 0): displacement from

start to end point; Bold lines: moves during diffusion gradient pulses; x: location

of the centers of mass; L2: displacement between consecutive centers of mass. (c)

Simulated restricted (radial) and free (axial) diffusion MRI signals EG⃗(∆, δ, |G⃗|)
(Eq. 5.2) of N = 105 water molecules diffusing in a cylindrical core of diameter

d = 20µm with D = 1µm2/ms, δ = 5ms, |G⃗| = 80µT/mm.

The displacement of an individual molecule i can be expressed mathematically

as:

Li(∆, δ) =
1

k1

(
k1∑
k=1

ri(k, x, y, z)−
K+k1−1∑
k=K

ri(k, x, y, z)

)
, (5.1)

In Equation 5.1, the term ri(k, x, y, z) represents the three-dimensional loca-

tion (x, y, z) of molecule i at the kth update. Here, k1 represents the number

of updates that occur during the δ interval, while K (as shown in Figure 5.1-a)

represents the starting point of the updates during the ∆ interval.
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5.2.2 Physical versus Virtual observation

In our simulation, we utilize diffusion MRI (dMRI) to measure the diffusion

of the simulated moving water molecules and calculate the virtual MRI signal

EG⃗(∆, δ, G). This allows us to assess the amplitude loss of the MRI signal due to

the displacement of water molecules, which results in a phase shift. The virtual

MRI signal EG⃗(∆, δ, |G⃗|) is given by:

EG⃗(∆, δ, |G⃗|) = lim
N→∞

1

N

N∑
i=1

cos(ϕi,G⃗(∆, δ, |G⃗|)), (5.2)

where ϕi,G⃗(∆, δ, |G⃗|) represents the phase shift of molecule i during the PGSE

sequence. For rectangular diffusion gradient pulses, its expression is:

ϕi,G⃗(∆, δ, |G⃗|) = 2πq × Li,G⃗(∆, δ), (5.3)

where, γ denotes the gyromagnetic ratio of the proton, q = γδ|G⃗|
2π

, and Li,G⃗(∆, δ)

represents the projection of Li(∆, δ) along the direction G⃗ of the gradient. Fig-

ure 5.1-c demonstrates that in a cylindrical core simulation, the axial signal along

the core’s axis decreases faster compared to the radial signal perpendicular to the

axial direction. This is due to slower radial diffusion caused by cellular wall

restrictions.

The apparent diffusion coefficient along G⃗, denoted as ADCG⃗(∆, δ, |G⃗|), is

calculated from the MRI signal attenuation using the Stejskal–Tanner equation,

assuming a Gaussian distribution of molecule displacements [4]:

EG⃗(∆, δ, |G⃗|) = e−bADC
G⃗
(∆,δ,|G⃗|), (5.4)

where b = (γδ|G⃗|)2(∆ − 1
3
δ) for rectangular pulses. This factor reflects the

strength and timing of the gradients and translates into the overall diffusion
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weighting. At least six non-coplanar direction measurements are necessary to

evaluate the voxel-wise diffusion tensor ADC since it is a symmetric matrix

(ADCmn = ADCnm) according to Equation 2.11. In our calculations, we em-

ploy 21 gradient pulse directions G⃗ to compute the observed values as it is widely

used in clinical settings [146]. Furthermore, for a more precise characterization

of water molecule diffusion, the observed eigenvalues λo(∆, δ, |G⃗|) can be inferred

from the diffusion tensor calculated from the signal, as indicated in Equation

2.11.

5.2.3 Conditions on the MR observation parameters

In order to ensure that a diffusion MRI sequence (as shown in Figure 5.1-a) gives

a valid estimate of the structural characteristics of the observed biological tissue,

three basic conditions must be met:

• Condition δ/∆: The gradient pulse duration δ should be significantly

smaller than the diffusion duration ∆. This assumption treats the move-

ments of molecules within two δ intervals as independent processes [139].

• Condition LDD : A long diffusion duration ∆ allows molecules to reach

cell edges and capture microstructural information. In ICS, this condition

results in a stable distribution of simulated molecules’ displacements on

the restricted diffusion plane. ADC in ICS follows an inverse relationship

with ∆, providing valuable insights into microstructure. However, in ECS,

ADC on the restricted diffusion plane no longer decreases with increasing

∆, indicating relatively unrestricted diffusion and minimal impact of tissue

microstructure on observed ADC values [112, 113].

• Condition SGP : The gradient pulse duration δ should be short enough for

molecules to travel shorter distances compared to the spatial dimension of

the compartment. This condition ensures that the diffusion gradient pulse

does not significantly affect the observed diffusion behavior in a cylinder

model with a given diameter and diffusivity in ICS [94, 129, 91, 147].
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5.2.4 Evaluation

Our study began by investigating the impact of diffusion duration (∆) and gra-

dient pulse duration (δ) on specific conditions (Conditions LDD, SGP) using a

single cell model (infinite cylinder). We compared the acquired diffusion MRI

(dMRI) signal with the analytical model discussed in Chapter 2.3.2.

Subsequently, we extended our analysis to a larger voxel size and examined the

conditions (Conditions δ/∆, LDD, SGP). Due to the lack of a reliable analytical

model, we compared the eigenvalues obtained from theoretical results (λt) with

the observed results (λo). We explored a wider range of ∆ and δ values, specifically

ranging from ∆ = 10 to 150 ms and δ = 2 to 50 ms, surpassing the typical values

used in clinical settings (refer to Table 5.1).

Here are the key evaluation metrics for each condition:

• Condition δ/∆: We determined the optimal ratio between δ and ∆ by min-

imizing the bias in the observed value of λo
3 (λ

t
3 − λo

3) with a bias threshold

set at 0.05µm2/ms.

• Condition LDD : Critical values of ∆ were identified where the mean dis-

placement of simulated molecules, |Lλ3|, reached a constant value in the

intracellular space (ICS) while λ3 no longer decreased in the extracellular

space (ECS). We calculated |Lλ3| using |Lλ3| =
√
2∆λ3 (refer to Eq. 4.5).

Additionally, the full width at half maximum of the displacement distribu-

tion (FWHM) and the cell diameter (d) were estimated from |Lλ3 | using
FWHM =

√
8 ln 2|Lλo

3
| and d = 1.22FWHM [107, 91].

• Condition SGP : Critical values of δ were identified by minimizing the nor-

malized bias of the observed value λo
3 compared to the theoretical value

((λt
3−λo

3)/λ
t
3), following the approach used in similar studies [91, 147]. The

threshold for the normalized bias of λ3 was set at 20%. Estimation of the

cell diameter was also performed using |Lλ3| and compared to the actual

value.
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5.3 Optimization of observation parameters

5.3.1 Single-cell scale

We conducted first experiments using a single-cell model to investigate the in-

fluence of diffusion duration (∆) and gradient pulse duration (δ) on the signal

decay of Monte Carlo simulations. The results were compared with the analytical

model, as depicted in Figure 5.2.

(a) (b)

Figure 5.2: Single cell model: (a) Exploring the Conditions LDD : Evolution

of S
S0

along radial direction vs qr for ∆ = 25 − 75ms when δ = 0.4ms. (b)

Exploring the Conditions SGP : Evolution of S
S0

along radial direction vs qr for

δ = 0.4 − 20ms when ∆ = 100ms. Other MC parameters are set according to:

D = 1× 10−3mm2/s, τ = 0.1ms and N = 106.

From a qualitative perspective, we observed that as ∆ increased from 50 ms

to 150 ms, the first diffraction pattern gradually emerged, particularly when

∆ ≥ 100 ms. Notably, at ∆ = 100 ms, the first diffraction pattern appeared at

q = 62.5 mm-1, slightly deviating from the analytical model’s value of q = 61

mm-1. On the other hand, when δ increased from 0.8 ms to 40 ms, the first

diffraction pattern shifted to higher q-values.

From a quantitative perspective, we compared the microstructural information

obtained from the diffusion diffraction pattern. The parameters qdiff and dq were

examined, where qdiff represents the q-value when the first diffraction pattern
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occurs, and dq is the diameter calculated using dq × qdiff = 1.22 [110, 95]. In our

simulations, the diameter of the cylindrical core was 20µm, thus the expected

values for these parameters are known and correspond to dreal = 20µm and qreal =

61 mm-1.

Analyzing the results obtained for varying ∆, as summarized in Table 5.2, we

observed that dq remained relatively stable and aligned well with the expected

value when ∆ ≥ 100 ms and ξ∆ ≥ 1. On the other hand, when examining the

results for varying δ, dq decreased from 20µm to 11.6µm. The bias remained

below 15% for δ ≤ 30 ms and ξδ ≤ 0.3. These findings highlight the impact of ∆

and δ on the diffusion diffraction pattern and the estimation of microstructural

parameters.

Table 5.2: Micro-structural information obtained from MC simulation
Diffusion duration

Param. unit ∆ = 50 ∆ = 100 ∆ = 150 ∆ = 200
qdiff mm−1 - 62.5 61 61
dq µm - 19.6 20 20

|dq − dreal|/dreal - - 0.02 0 0
Gradient pulse duration

Param. unit δ = 0.8 δ = 8 δ = 30 δ = 40 δ = 100
qdiff mm−1 61 63 71 75 105
dq µm 20 19.4 17.6 16.2 11.6

|dq − dreal|/dreal - 0 0.03 0.12 0.19 0.42

5.3.2 Multi-cell scale

In this section, we conducted experiments in the intracellular (ICS) and extra-

cellular (ECS) compartments using two types of models: Model I and Model

IV.

In Model I, the parameters d, al, and as were uniform throughout the tissue.

On the other hand, in the heterogeneous model (Model IV), these parameters

followed a Gaussian distribution, as illustrated in Figure 5.3.
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(a) Model I case 1 (b) Model I case 2 (c) Model I case 3 (d) Model IV

Figure 5.3: (a-c) Cross sections (restricted planes) of three homogeneous models:

(a) Case 1 where d = 14µm, as = 2µm, al = 16µm,RICS = 69%; (b) Case 2 where

d = 20µm, as = 3µm, al = 20µm,RICS = 69%; (c) Case 3 where d = 26µm, as =

4µm, al = 24µm,RICS = 69%. (d) Cross section of the heterogeneous model

where µd = 20µm, µas = 3µm, µal = 20µm,RICS = 69%.

For Model IV, we specifically considered µd = 20µm and σd = 2µm, resulting

in a range of diameters from dmin = 14µm to dmax = 26µm, and a range of

lengths from al,min = 16µm to al,max = 24µm.

Furthermore, we introduced three variations of Model I, where we kept the

same intracellular space ratio (RICS) but modified the values of d and al, as

shown in Figure 5.3.

5.3.2.1 Condition δ/∆

We examined the relationship between the observed results λo
3 and ∆, consid-

ering various values of δ (ranging from 2 to 30 ms) and D (ranging from 1 to

2.5µm2/ms) using the Model IV. The results, presented in Figure 5.4, reveal a

significant deviation between the observed and theoretical values in ICS, partic-

ularly with shorter ∆ and larger D (Figure 5.4-c-d).
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(a) ICS: Dδ
∆ ≤ 0.3, D = 1µm2/ms (b) ICS: Dδ

∆ ≤ 0.3, D = 2.5µm2/ms

(c) ICS: Dδ
∆ ≤ 0.3, D = 1µm2/ms (d) ICS: Dδ

∆ ≤ 0.3, D = 2.5µm2/ms

(e) ECS: δ ≤ ∆, D = 1µm2/ms (f) ECS: δ ≤ ∆, D = 2.5µm2/ms

Figure 5.4: Model IV - one voxel: Exploring δ/∆ condition: Evolution of λt
3 and

λo
3 values wrt ∆ for δ = 2− 30ms. First line: λ3 in ICS, second line: observation

bias (λt
3−λo

3) in ICS, third line: λ3 in ECS. Conditions are not satisfied in hatched

areas (e.g., for δ = 2ms) bounded by critical values ∆critical (vertical lines). Blue

vertical line for δ = 2ms, orange for δ = 10ms, purple for δ = 30ms. Note that

some curves may appear truncated due to the requirement that δ must always be

smaller than ∆. MC parameters: N = 105, τ = 0.001ms. Observation parameter:

b = 500s/mm2.
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The observed values consistently underestimated the theoretical value, and this

bias was more pronounced with larger δ in the intracellular space (ICS). However,

for DICS = 1µm2/ms, as ∆ increased to 6, 30, and 100 ms for δ values of 2, 10,

and 30 ms respectively, the observed values gradually approached the theoretical

value with a bias smaller than 0.05µm2/ms (Figure 5.4-c). Similar trends were

observed for DICS = 2.5µm2/ms with specific ∆ values (Figure 5.4-d). In the

extracellular space (ECS), λo reached a stable state more rapidly and the curves

corresponding to different δ values were nearly identical (Figure 5.4-e-f).

Hence, in ICS, this condition depends on D, whereas in ECS it is independent

of D and only requires compliance with the fact that δ should always be smaller

than ∆. Condition δ
∆

can be summarized as follows:Dδ
∆

≤ 0.3 ICS

δ ≤ ∆ ECS
(5.5)

and when this condition is met, the observed decrease in λ3
o can be assessed to

less than 0.05µm2/ms compared to the theoretical value.

5.3.2.2 Condition LDD

The analysis of the theoretical and observed values of λ3 and |Lλ3| with respect

to ∆ was performed in both Models I and Model IV, as shown in Figure 5.5.

Regarding the theoretical values, in ICS, |Lλt
3
| initially increased and then

stabilized when satisfying Condition LDD (Figure 5.5-c-d), while λt
3 decreased

inversely with ∆ and depended on the size of d (Figure 5.5-a-b). Determining

the optimal ∆ in the Model IV was more complex due to the distribution of d.

However, a range of values for ∆ was identified, highlighting constraints imposed

by the smallest and largest restrictions (Figure 5.5, orange arrow). The behavior

of λ2 was similar to λ3.

Considering the observed results, the satisfaction of Condition LDD was also

based on the theoretical value of ∆critical. However, reaching this value was not
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Condition LDD: ξ∆ = D∆/(s/2)2 ≥ 1

(a) ICS: D = 1µm2/ms, s = d (b) ICS: D = 2.5µm2/ms, s = d

(c) ICS: D = 1µm2/ms, s = d (d) ICS: D = 2.5µm2/ms, s = d

(e) ECS: D = 1µm2/ms, s = al (f) ECS: D = 2.5µm2/ms, s = al

Figure 5.5: Models I and IV one voxel-Exploring LDD condition, ξ∆ =
∆D/(s/2)2 ≥ 1: Evolution of λt

3 and λo
3 values wrt ∆. First line: λ3 in ICS,

second line: corresponding |Lλ3| in ICS, third line: λ3 in ECS. Conditions are
not satisfied hatched areas (e.g., for Model I case 1) bounded by critical values
∆critical (vertical lines) where ξ∆(∆ = ∆critical) = 1. Blue vertical line for Model
I case 1, orange for Model I case 2, purple for Model I case 3. A horizontal
arrow indicates the range of ∆critical for the heterogeneous model. Note that
some curves may appear truncated due to the requirement that δ must always be
smaller than ∆. MC parameters: N = 105, τ = 0.001ms. Observation parame-
ters: δ = 30ms, b = 500s/mm2.
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always possible due to the constraint that ∆ must be greater than δ (values

provided in Table 5.3). Notably, a bias existed between the theoretical and ob-

served values, particularly evident in the curves of |Lλt
3
|. This bias is attributed

to the discrepancy in the estimation of displacement between the theoretical and

observed values (see Figure 5.1-b).

Table 5.3: Critical values of ∆ that satisfy the LDD Condition according to
Figure 5.5, depending on the tissue model characteristics (d, µd, al and µal) and
compartments (ICS and ECS).

Theoretical ∆ values
Diffusivity
(µm2/ms) ICS

Homogeneous Hetero.
d = 14µm d = 20µm d = 26µm µd = 20µm

D = 1 49 ms 100 ms 169 ms [49,169] ms
D = 2.5 20 ms 40 ms 68 ms [20,68] ms

Observed ∆ values (δ = 30ms)
D = 1 49 ms 100 ms 169 ms [49,169] ms
D = 2.5 30 ms 40 ms 68 ms [30,68] ms

Theoretical ∆ values
Diffusivity
(µm2/ms) ECS

Homogeneous Hetero.
al = 16µm al = 20µm al = 24µm µal = 20µm

D = 1 64 ms 100 ms 144 ms [64,144] ms
D = 2.5 26 ms 40 ms 58 ms [26,58] ms

Observed ∆ values (δ = 30ms)
D = 1 64 ms 100 ms 144 ms [64,144] ms
D = 2.5 30 ms 40 ms 58 ms [30,58]ms

In ECS, the theoretical values of λt
3 demonstrated a decrease and stabilization

(Figure 5.5-e-f), indicating the fulfillment of Condition LDD. The curves reached

a stable state more rapidly for smaller al and larger D. Interestingly, the curves

from different models converged to the same stable state due to shared RICS, and

higher diffusivity led to higher λt
3. The constant value of ADCradial was solely

determined by RICS and DECS. Similar results were observed between the Model
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IV with µal = 20µm and Model I with al = 20µm. To detect most restrictions

in the Model IV with al,max = 24µm, the longest ∆ (corresponding to the largest

al) should be chosen.

In summary, Condition LDD is expressed by Equation 5.6, where sICS = d

and sECS = al. The critical value ∆critical is calculated when ξ∆ equals 1, with

values provided in Table 5.3. ∆critical increases as D decreases and either d (in

ICS) or al (in ECS) increases.

ξ∆ =
∆×D

(s/2)2
≥ 1. (5.6)

Additionally, we estimated FWHM t and cell diameter dt from Lλt
3
in ICS for

the heterogeneous model, as listed in Table 5.4. When ξ∆ ≥ 1, FWHM t and

dt showed minimal increase with ∆, and there was little difference between the

estimated dt and the real value when ξδ ≥ 0.5 (18.4µm vs 20µm).

Table 5.4: Estimated FWHM t and dt from |Lλt
3
| in ICS for different ∆ (ξ∆) in

the case of heter. model with µd = 20µm and D = 1µm2/ms.
∆ (ms) 20 40 50 100 150

ξ∆ 0.2 0.4 0.5 1 1.5
|Lλt

3
|(µm) 5.0 6.1 6.4 7.0 7.1

FWHM t(µm) 11.8 14.4 15.1 16.4 16.7
dt(µm) 14.4 17.5 18.4 20.0 20.4

5.3.2.3 Condition SGP

Figure 5.6-a-b presents the evolution of λo
3 with varying δ, considering different d

and DICS values, while satisfying the Conditions LDD with ∆ = 170ms.

81

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0076/these.pdf 
© [Y. Jing], [2023], INSA Lyon, tous droits réservés



Condition SGP: ξδ = Dδ/(s/2)2 ≤ 0.3

(a) ICS: DICS = 1µm2/ms, s = d (b) ICS: DICS = 2.5µm2/ms, s = d

(c) ICS: DICS = 1µm2/ms, s = d (d) ICS: DICS = 2.5µm2/ms, s = d

(e) ECS: independence of s (al) and

DECS

(f) ECS: independence of s (al) and

DECS

Figure 5.6: Models I and IV one voxel-Exploring SGP condition, ξδ =

δD/(s/2)2 ≤ 0.3: Evolution of λt
3 and λo

3 values wrt δ for ∆ = 170ms. First

line: λ3 in ICS, second line: corresponding |Lλ3| in ICS, third line: λ3 in ECS.

Conditions are not satisfied in hatched areas (e.g., for Model I case 1) bounded

by critical values δcritical (vertical lines) in ICS where ξδ(δ = δcritical) = 0.3. Blue

vertical line for Model I case 1, orange for Model I case 2, purple for Model

I case 3. A horizontal arrow indicates the range of δcritical for the heteroge-

neous model. MC parameters: N = 105, τ = 0.001ms. Observation parameters:

∆ = 170ms, b = 500s/mm2.
82

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0076/these.pdf 
© [Y. Jing], [2023], INSA Lyon, tous droits réservés



Both the Models I and Model IV were employed to analyze the observed values

of λo
3. As δ increases, the rate of decrease in λo

3 becomes progressively slower,

with a more rapid decrease observed for larger values of DICS and d. Notably,

the Model IV with µd = 20µm closely aligns with the results of the Model I with

d = 20µm. The behavior of |Lλo
3
| corresponds to that of λo

3, as shown in Figure

5.6-c-d, and the bias in the observed values (Lλo
3
) is more pronounced for larger

δ, DICS, and smaller cell diameter, consistent with Figure 5.5-c-d.

When a finite δ is used, the spin is labeled with the position of its center of

mass during the gradient pulse, as illustrated in Figure 5.1-b. Consequently, the

estimated displacement represents the distance between the average positions of

the spin during the gradient pulses. In restricted geometries, the average position

tends to converge towards the centroid of the restricted compartment, leading to

a decrease in the estimated displacement as δ increases [127].

Moving on to Figure 5.6-e-f, the curves of λo
3 are presented for different al

and DECS values in ECS, while satisfying the Conditions LDD with ∆ = 170ms.

Both Models I and Model IV are considered. It is observed that λo
3 remains

relatively stable with respect to δ, indicating that the diffusion process in ECS is

largely independent of al, approximating free diffusion with a certain diffusivity.

Additionally, when the Condition LDD is satisfied, λo
3 remains stable with respect

to ∆, as demonstrated in Figure 5.5-e-f. Furthermore, the heterogeneous case

with µd = 20µm exhibits results that closely resemble those of the homogeneous

case with d = 20µm.

Condition SGP can be expressed as follows:ξδ,ICS = δ ×DICS/(d/2)
2 ≤ 0.3 ICS

δ ≤ ∆ ECS
(5.7)

Under the condition ξδ ≤ 0.3, the normalized bias of λo
3 in ICS can be reduced

to less than 20%, and the corresponding bias for |Lλo
3
| is approximately 12%.

The critical value of δ is provided in Table 5.5, and the results from ICS demon-

strate that δcritical increases with larger values of d and smaller values of DICS.

Furthermore, we estimated FWHM o and the cell diameter do from Lλo
3
in the
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heterogeneous model, and the results are listed in Table 5.6. When ξδ is up to

0.3, FWHM o and do decrease by approximately 12%, from 17.1µm to 15.1µm

and from 20.9µm to 18.4µm, respectively.

Table 5.5: Critical values of δ that satisfy the SGP Condition under LDD Con-
dition, as determined by tissue model characteristics (d, µd, al and µal) in ICS.

Observed δ values
∆ (ms) ICS

Homogeneous Hetero.
DICS = 1µm2/ms

d=14µm d=20µm d=26µm µd = 20µm
∆ = 50 15 ms
∆ = 100 15 ms 30 ms
∆ = 169 15 ms 30 ms 48 ms [15,48] ms

DICS = 2.5µm2/ms
d=14µm d=20µm d=26µm µd = 20µm

∆ = 20 6 ms
∆ = 40 6 ms 12 ms
∆ = 68 6 ms 12 ms 19 ms [6,19] ms

Table 5.6: Estimated FWHM o and do from |Lλo
3
| in ICS for different δ (ξδ) when

Condition LDD is satisfied in the case of heter. model with µd = 20µm.
δ (ms) 0.1 5 10 20 30 50
ξδ 0.001 0.05 0.1 0.2 0.3 0.5

|Lλo
3
|(µm) 7.3 7.1 7.0 6.7 6.4 6.0

FWHM o(µm) 17.1 16.8 16.4 15.7 15.1 14.1
do(µm) 20.9 20.4 20.0 19.2 18.4 17.3

5.4 Conclusion

In this contribution, we investigated three conditions (Conditions δ/∆, LDD,

and SGP) in both the intracellular and extracellular compartments using the four

tissue models proposed in Chapter 3 and the corresponding ground truth built in

Chapter 4.

Previous studies have examined these conditions in single-cell models [128, 136]

and collections of cell models (without studying the extra-cellular space)[129,
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91, 147]. Our findings indicate that in ICS, the conditions for Dδ/∆ ≤ 0.3,

ξ∆ = DICS∆/(d/2)2 ≥ 1, and ξδ = DICSδ/(d/2)
2 ≤ 0.3 need to be satisfied. In

ECS, the condition ξ∆ = DECS∆/(al/2)
2 ≥ 1 is relevant. It was observed that

the effect of δ in ECS was not significant, rendering the Conditions δ/∆ and

SGP inapplicable in this compartment. Our results emphasize the challenge of

parameterizing observations in ICS, where improper parameterization can lead

to a systematic underestimation of diffusion.

The factor ξ∆ effectively describes the impact of restriction on molecule dif-

fusion. When ξ∆ << 1, the molecules experience unrestricted diffusion, and the

dMRI signal primarily depends on the intrinsic diffusion coefficient D. Achieving

small values of ξ∆ in the restricted direction is challenging. Experimental mea-

surements by Seland et al. [24] in rat myocardium tissue showed ξ∆,ICS = 0.035

and ξ∆,ECS = 0.0875 using specific imaging parameters and morphometric data

[11]. Our simulations revealed a rapid decrease in λo
3 in the initial diffusion stages

(see Figure 5.4), particularly in ECS, with estimated errors of approximately 10%

in ICS and 40% in ECS.

In the case of ξ∆ < 1, where some molecules experience restricted diffusion,

λ3 becomes a function of ∆, spatial restriction size (d), and diffusivity according

to the analytical resolution [110, 112]. For ξ∆ ≥ 1, the majority of molecules

experience restriction, and λ3 in ICS becomes solely dependent on the restriction

size, while λ3 in ECS is primarily related to the size of the intracellular space

(RICS) and the extracellular diffusivity (DECS) [110, 112]. These findings are

consistent with the analytical resolution and are supported by our simulation

results. Longer ∆ leads to a greater decrease in λ3 compared to λ1, enhancing

image contrast [125]. However, in practical dMRI acquisitions, longer ∆ can lead

to undesired signal attenuation and increased acquisition time, compromising

image quality [124, 142].

The LDD Condition states that the diffusion duration ∆ should be long enough

to satisfy ξ∆ ≥ 1. Our results further demonstrate that the critical value of ∆ is

sensitive to changes in diameter. For cardiac tissue with a mean myocyte diameter

of 20µm, ∆ ≥ 100ms was required. Moreover, when ξ∆ ≥ 0.5, the estimated cell
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diameter approached the real value, corresponding to ∆ ≥ 50ms. However, many

clinical cardiac diffusion MRI studies utilize shorter ∆ values (e.g., ∆ = 10−50ms

as listed in Table 5.1), which fail to meet the LDD Condition.

The effect of the gradient pulse duration (δ) is limited when the condition

ξδ ≤ 0.3 specified by the SGP Condition is satisfied. In this case, the observed λo
3

decreases by less than 20% when the LDD Condition is fulfilled. Similar trends

are observed for the estimated |Lo|, FWHM o, and do. Our findings are consistent

with previous studies that estimated spatial restriction size and analyzed the bias

of the SGP Condition. For instance, a Monte Carlo simulation with a single 20µm

cylinder reported a decrease in estimated spatial restriction size to 18.2µm when

ξδ = 0.5 [147], which is consistent with our simulation result of 17.3µm. The

choice of ∆ and δ is critical for accurate dMRI estimation. Insufficient diffusion

time or excessively long gradient pulse duration may prevent the fulfillment of

the LDD and SGP conditions, resulting in underestimation of cell diameters.

Conversely, excessively long diffusion time or excessively short gradient pulse

duration may compromise the sensitivity of diffusion measurements to changes in

cell diameters. Our results also demonstrate that the critical value of δ is sensitive

to changes in diameter. In brain tissue, where the size of axons is typically several

micrometers [98, 97], the bias can be substantial.

Hence, the careful selection of ∆ and δ is crucial for accurate dMRI estimation.

Insufficient diffusion time or excessively long gradient pulse duration may result in

the failure to satisfy the LDD and SGP conditions, leading to the underestimation

of cell diameters. Conversely, excessively long diffusion time or excessively short

gradient pulse duration may limit the sensitivity of diffusion measurements to

changes in cell diameters.
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Chapter 6

General conclusion and prospects

6.1 Summary of contributions

In this work, we developed a robust Monte Carlo simulation pipeline to observe

water molecule diffusion in cardiac tissue using dMRI. To do so, we addressed

three main challenges. Firstly, realistic biological tissue models were required

to accurately represent the structural and physical characteristics of the cardiac

tissue. Secondly, the simulation required a sufficient number of simulated water

molecules and simulation updates to ensure accuracy. As the size and complex-

ity of the virtual tissue model increased, the computational cost also increased.

Lastly, the detection of microstructural information in cardiac tissue was limited

by the clinical imaging sequence settings.

To address these challenges, we made several contributions. Firstly, in chap-

ter 3, we constructed a simplified cardiac tissue model that captured the essen-

tial structural and physical characteristics of the heart. We used a simplified cell

model, cylinders, to control the heterogeneous size and orientation of cells. The

model incorporated five key parameters: cell diameter, diffusivity, permeability,

cellular volume fraction, and transmural cell orientation change.
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Furthermore, in chapter 4, we investigated four conditions to optimize the

Monte Carlo simulation parameters. These optimizations were performed on

the cardiac tissue model with a cell diameter of 20µm. We determined that

the simulation updates duration (τ) should be less than or equal to 0.1 ms, the

number of simulated molecules (N) should be greater than or equal to 105, and

the voxel size should be larger than 500× 500× 500µm3 to ensure stability and

reliability of the simulation results. We also found that the ratio between the

length of a simulation step (l) and the size of the confinement (s) should be

limited to l/s < 0.05. The stability of the simulation results depended on the

stable mean value of the cell model diameter (d) and the stable cellular volume

fraction (RICS). These conditions can be applied to Monte Carlo simulations of

other biological tissue models (e.g., brain, muscle, lung) with specific cell sizes

and diffusivity values.

Lastly, in chapter 5, we generated virtual dMRI signals by applying the

Pulsed Gradient Spin-Echo (PGSE) sequence and provided recommendations on

sequence parameters for obtaining diffusion property and microstructural infor-

mation of cardiac tissue. We validated three conditions (Conditions δ/∆, LDD,

and SGP) in both the intracellular and extracellular compartments for both ho-

mogeneous and heterogeneous models. Longer ∆ durations were required to sat-

isfy Condition LDD, although this was limited by clinical settings, particularly

in biological tissues with larger cell sizes. Longer δ durations led to significant

biases in Condition SGP. However, we quantitatively analyzed the bias using the

factor δDICS/(d/2)
2 when Condition LDD was satisfied.

6.2 Discussion and future research

To enhance the realism of tissue models, high spatial resolution imaging tech-

niques such as polarized illumination imaging (PLI) or synchrotron radiation

phase-contrast micro-tomography (SR-PCT) could be incorporated. These tech-

niques provide additional information on the 3D fiber orientation and myocardial
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laminar structure, improving the realism of the whole heart model. Further-

more, Monte Carlo simulations provide a ground truth for understanding the

relationship between structural and physical characteristics and dMRI outputs.

By exploring a wide range of parameter values found in the literature, we can

determine which parameters critically influence the model output.

An extension of our research involves exploring the impact of pathologies on

diffusion MRI measurements in cardiac tissue. Pathological conditions often re-

sult in altered cellular structure, such as changes in cell diameter. By incorpo-

rating different cell diameters into our cardiac tissue model, we can investigate

how these variations affect diffusion properties and microstructural information.

This extension allows us to better understand the relationship between patholog-

ical changes and diffusion MRI observations, providing valuable insights into the

diagnostic potential of dMRI in detecting and characterizing cardiac pathologies.

Furthermore, studying the heart in motion is an essential aspect to consider

in cardiac imaging. The beating motion of the heart introduces additional chal-

lenges for diffusion MRI analysis, as the tissue undergoes dynamic changes during

the cardiac cycle. Incorporating a varying cell height parameter into our model

enables the simulation of the heart’s motion, mimicking the pulsatile nature of

cardiac tissue. This extension allows us to investigate the influence of cardiac

motion on diffusion measurements and evaluate the feasibility of capturing dy-

namic microstructural changes using dMRI. By considering the interplay between

diffusion properties and motion-induced alterations, we can gain a deeper un-

derstanding of the cardiac microstructure and its relationship with functional

dynamics.

These extensions to pathologies and the study of the heart in motion broaden

the applicability of our research, offering insights into the diagnostic potential of

diffusion MRI in pathological conditions and advancing our understanding of the

complex interplay between cardiac microstructure and function.
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