Light Field Image Coding Using Dual Discriminator Generative Adversarial Network and VVC Temporal Scalability

Résumé en Francais

Introduction Les applications de vision par ordinateur telles que le refocusing, la segmentation et la classication deviennent l'un des services les plus avancés dans le domaine de traitement d'image. Dans telles applications nécessitent des informations sémantiques riches de la scène. La technologie 3D est largement utilisée dans les domaines du divertissement, de l'imagerie médicale et de l'éducation. Il existe diérentes manières de représenter l'information 3D. L'une des plus répandues consiste à associer à une image classique dite de texture, une image de profondeur de champ. Cette représentation conjointe permet ainsi une bonne reconstruction 3D dès que les deux images sont bien corrélées, et plus particulièrement sur les zones de contours de l'image de profondeur. En comparaison avec des images 2D classiques, la connaissance de la profondeur de champs pour les images 3D apporte donc une information sémantique importante quant à la composition de la scène. En particulier, on utilise un ensemble dense de caméras et de matrices de microlentilles comme la caméra Plénoptique [NLB + 05] (Figure 2), pour avoir la direction de chaque rayon venant de la scène vers le système d'acquisition LF. Ceci peut être extrait et représenté par des coordonnées spatiales et angulaires. Cependant, un tel système d'imagerie présente de nombreux inconvénients, notamment la grande quantité de données produites et la complexité augmente pour la représentation de la scène. Ce qui pose donc de manière urgente la question de leur compression.

Contributions

Dans cette thèse, nous proposons ainsi dans un premier temps un schéma de codage LF basé réseaux de neurones convolutionnels (CNN) qui inclut une optimisation débitdistorsion (RDO) suivi par un post-traitement. Le principe consiste à exploiter la corrélation entre les diérentes vues LF et éviter le codage de toutes les vues. Les vues LF sont donc divisées en 3 ensembles, un premier ensemble qui est codé par un codeur 2D standard, un deuxième ensemble qui est approximé linéairement et un troisième ensemble qui sera synthétisé au niveau du décodeur soit par une approximation linéaire soit par synthèse avec Convolutional Neural Networks (CNN) selon la décision faite par le bloc RDO. Ensuite, nous intégrons le Dual Discriminator Generative Adversarial Nets (D2GAN) avec l'encodeur hiérarchique Versatile Video Coding (VVC). L'idée globale consiste à éviter de coder les vues de niveau hiérarchique supérieur et de les générer avec D2GAN au niveau du décodeur. Enn, nous évaluons les deux schémas proposés subjectivement sur un ensemble d'images LF de plusieurs bases de données diérentes. Les conditions des tests psychovisuels respectent les normes de l'Union Internationale des Télécommunications (ITU). L'élément le plus remarquable est que les méthodes de codage basées sur la synthèse de vues peuvent atteindre des performances de codage élevées et démontrer leur ecacité en fournissant la meilleure qualité visuelle par rapport aux deux autres méthodes.

Ainsi, cette thèse est constituté de cinq chapitres et tente de développer des méthodes pour une compression ecace des images et vidéos basés LF: An d'établir le contexte de cette thèse, le premier chapitre, nous faisons l'état de l'art des caractéristiques de l'image LF et des méthodes de compression existantes dans la littérature. L'image Light Field est une image non conventionnelle, contenant des informations beaucoup plus que l'intensité sur les rayons lumineux qui interagissent avec la scène. L'image LF donne une description très riche d'une scène 3D Permettant d'orir une large bande de fonctionnalités. Notamment, elle permet la synthèse avancée de vues intermédiaires, ainsi que la re-focalisation de l'image après acquisition.

Il existe deux systèmes d'acquisitions d'images LF, le premier type est le système composé de multiples caméras conventionnelles bien alignées avec parallaxe horizontal ou bien avec parallaxe horizontal et vertical. Un tel système est appelé système super multi caméras et le deuxième type est le système LF Plenoptique. L'imagerie Plénoptique est limitée par certaines contraintes: taille très grande de l'image LF (50MB par scène), répétition des motifs, ceci rend le codage des images LF très coûteux en terme de calcul et de temps.

Le deuxième chapitre fournit une compréhension globale sur l'apprentissage en profond, les standards 2D de compression, les diérentes méthodes existantes de codage d'images LF, enn les métriques objectifs de la qualité et l'environnement du test subjectif. Nous nous concentrons sur l'apprentissage en profond qui a transformé la recherche en intelligence articielle surtout pour la vision par ordinateur. puis nous introduisons les normes de codage vidéo High Eciency Video Coding (HEVC) et VVC. Ensuite, nous analysons les diérentes techniques de codage d'images LF existantes. Il existe plusieurs approches qui s'appliquent sur les diverses représentations du champ lumineux (e.g. image brute LF, sub apertures, épipolaire) A titre d'exemples, le codage basé Pseudo-séquence et le codage prédictif. Le troisième chapitre a proposé un nouveau schéma de codage d'image Light Field. Dans ce schéma, on considère l'image LF avec 8*8 vues subapertures. Les vues sont divisées en 3 trois ensembles. Le premier ensemble SE de 9 vues qui sont encodées par Joint Exploration Model (JEM), le deuxième ensemble SR contient les 7 vues adjacentes des vues SE et elles sont approximées linéairement [START_REF] Zhao | Light eld image coding via linear approximation prior[END_REF] et le troisième ensemble SI représente les vues manquantes à synthétiser. Ce nouveau schéma est basé sur CNN [START_REF] Khademi Kalantari | Learningbased view synthesis for light eld cameras[END_REF] et on a apporté trois améliorations diérentes, chacune donne un gain en BD-rate et BD-PSNR par rapport aux autres méthodes de l'état de l'art:

1. Réglage de la qualité de la vue centrale (VC) de l'image LF est codée comme un frame intra. Elle est utilisée par les blocs de l'apprentissage linéaire (LA) et CNN comme référence pour la prédiction de toutes les autres images. Ainsi, la qualité de cette VC est un facteur clé pour la prédiction et la génération d'autres vues.

Pour une VC de haute qualité, on lui attribue un paramètre de quantication Qintra tel que: Qintra= Q + Qoset où Qoset =-4 (xé de manière empirique).

2. Optimisation débit-distorsion Pour reconstruire les vues intermédiaires (SI), nous avons proposé d'eectuer un RDO pour chaque vue intermédiaire, indiquant ainsi quelle méthode entre LA et CNN peut fournir les performances de RD les plus élevées en calculant la fonction de coût J (J = D + λ.R, λ est le multiplicateur de Lagrange).

On a constaté que la valeur λ= 0.1 est optimale et que l'optimisation lagrangienne donne les meilleures performances. On a sélectionné ensuite la meilleure approche en minimisant le coût de RD (J) pour chaque vue intermédiaire.

3. Post-traitement Enn et comme un post-traitement, nous introduisons un processus de correspondance superpixel en pixel pour améliorer encore plus la qualité des vues approximées et synthétisées [START_REF] Dong | Hierarchical superpixel-to-pixel dense matching[END_REF].

Dans le quatrième chapitre, nous faisons une évaluation subjective et objective pour les méthodes de compression de l'état de l'art, sur un ensemble d'images LF de plusieurs bases de données diérentes. A ce titre, nous décrivons en détail les conditions des tests psychovisuels ainsi que les normes de l'Union Internationale des Télécommunications (UIT) qui y sont associées [BT.12b]. Lors du choix des images, nous avons pris en compte les trois facteurs: information spatiale (SI), colorfulness (CF) et le nombre de pixels occultés [P.908, [START_REF] Suesstrunk | Measuring colorfulness in natural images[END_REF][START_REF] Wang | Depth estimation with occlusion modeling using light-eld cameras[END_REF]. Les tests se sont déroulés dans la salle psycho visuelle du laboratoire IETR-Rennes en 2 phases et avec des conditions d'éclairage conformes à la recommandation ITU-R BT.500. 18 observateurs ont fait ce test en utilisant 4 débits pour les pseudo-vidéos avec 9 frames per second (fps). En particulier, sur un seul écran on ache 2 pseudo vidéos (l'original à gauche et la vidéo codée à droite). L'observateur choisit donc un score entre 1 et 5, suivant l'échelle suivante: 1) Très gênante, 2) Gênante, 3) Légèrement gênante, 4) Perceptible mais pas gênante, et 5) Imperceptible. En eet, certaines données peuvent biaiser les résultats. Ainsi, un processus de ltrage a été appliqué sur les données de l'expérience en se basant sur la recommandation ITU-R BT.500. Globalement, les méthodes de codage LF basées sur la synthèse de vues (qui sont basées sur l'apprentissage linéaire ou bien Deep Learning) orent la meilleure qualité visuelle à tous les débits, par exemple, pour la plupart des images LF, leur qualité visuelle fournie à un débit moyen est à peu près identique à celle obtenue par les approches de codage classique 2D à haut débit. Ainsi, les méthodes de codage basées sur la synthèse de vues peuvent atteindre des performances de codage élevées et démontrer leur ecacité en fournissant la meilleure qualité visuelle par rapport aux deux autres méthodes.

Dans le cinquième chapitre, nous utilisons le D2GAN est un type de l'architecture du Generative Adversarial Network (GAN) an d'avoir un seul générateur avec 2 discriminateurs. L'idée est inspirée de [START_REF] Nguyen | Dual discriminator generative adversarial nets[END_REF] qui mentionne qu'une telle architecture donne plus de stabilité au Generative Adversarial Network (GAN) avec de meilleurs résultats.

Dans cette architecture, le générateur se compose de deux réseaux de nuerons le premier pour estimer la disparité (qui est légèrement diérente) et le deuxième pour estimer les couleurs. Le premier discriminateur a toujours le même rôle, c.à.d. donner un score élevée si l'image est réelle. Alors que le deuxième discriminateur donne un score élevé si l'image est générée par le générateur. Il faut noter, que chacun des discriminateurs possède une fonction perte distincte avec une conguration paramétrique distincte. Nous allons appliquer D2GAN sur les vues de références encodées par le standard VVC. Nous proposons une méthode de compression basée sur D2GAN et l'encodeur Versatile Video Coding VVC. il s'agit de l'intégrer avec le schéma hiérarchique de VVC. L'idée globale consiste à éviter de coder les vues du niveau hiérarchique supérieur et les générer avec D2GAN au niveau du décodeur. Une extension pour cette approche est envisageable, et consiste à faire une optimisation pour décider de coder ces vues du niveau supérieur avec VVC ou de les générer par D2GAN, et on aura un schéma VVC hiérarchique avec Rate Distortion Optimization (RDO) et D2GAN.

Introduction

Computer vision applications such as refocusing, segmentation and classication become one of the most advanced services in the eld of image processing. Such applications require rich semantic information from the scene. 3D technology is widely used in the elds of entertainment, education and medical imaging. There are dierent ways to represent 3D information. One of the most common is to associate with a classic 2D image called texture, an image of Depth of Field (DoF). This joint representation thus allows for a good 3D reconstruction as soon as the two images are well correlated, and more particularly for the contour areas of the depth image. In comparison with classic 2D images, knowledge of depth of eld for 3D images provides therefore provides important semantic information about the composition of the scene. Another technology that is gaining more importance is LF technology. The LF image is an unconventional image, containing much more information than the intensity of the light rays that interact with the scene. It gives a very rich description of a 3D scene allowing to oer a wide range of functionalities. For example, it allows the advanced synthesis of intermediate views, as well as the re-focusing of the image after acquisition. Interest in Light Field LF technology continues to grow very strongly, in particular, with the increasing penetration of acquisition and display devices for LF content in the consumer market.

In particular, a dense set of cameras and microlens arrays are used as the Plenoptic (Figure 4), to have the direction of every ray coming from the stage to the LF acquisition system [NLB + 05] . This can be extracted and represented by spatial and angular coordinates. However, such an imaging system has many disadvantages, including the large amount of data produced and the complexity increase for the representation of the scene. This therefore raises the urgent question of their compression. 

Contributions

In this thesis, we rst propose a CNN-based LF coding scheme that includes RDO followed by post-processing. The main concept is to exploit the correlation between the dierent LF views and avoid the coding of all the views. The LF views are thus divided into 3 sets: a rst set which is coded by a standard 2D encoder, a second set which is linearly approximated and a third one set which will be synthesized at the decoder either by linear approximation or by synthesis with CNN according to the decision made by the RDO block. Next, we integrate the D2GAN with the VVC hierarchical encoder. The overall idea is to avoid coding the views of the higher hierarchical level and generate them with D2GAN at the decoder level. Finally, we evaluate the scheme proposed subjectively on a set of LF images of several dierent databases. The conditions of psychovisual tests comply with the standards of the International Telecommunication Union (ITU). The most notable feature is that view-based coding methods can achieve high coding performance and demonstrate their eectiveness by providing the best visual quality over the other two methods.

Outline

This manuscript is organized as follows:

In Chapiter 1, we make a state of the art of the characteristics of the LF image and the existing compression methods in the literature. The LF image is an unconventional image, containing information much more than the intensity on the rays that interact with the scene. The LF image gives a very rich description a 3D scene allowing to oer a wide range of functionalities. In particular, it allows the advanced synthesis of intermediate views, as well as the re-focusing of the image after acquisition. There are two LF image acquisition systems, generating dierent types of LF representations. In this chapter, we describe the whole chain from LF acquisition to LF visualization, along with the dierent functionalities it oers.

In Chapiter 2, we analyze the dierent existing LF image coding techniques that apply to the various representations of the light eld (e.g. LF raw image, sub apertures, epipolar). Several approaches are adopted by the state-of-the-art, such as pseudosequence or predictive coding, while presenting them in details along with their performance.

In Chapiter 3, we explain our proposed new LF image coding scheme. In this scheme, we consider the LF image as 8*8 subapertures views. The views are divided into 3 three sets. A rst set of reference views are encoded with a standard encoding method. Then, the other set of views are either linearly approximated or synthesized using CNN based on a rate distortion optimization. Finally, our proposed method applies a post processing on a block level for further quality enhancement.

In Chapitre 4, we make a subjective and objective assessment for state of the art compression methods, on a set of LF images from several dierent databases. As such, we describe in detail the conditions of psycho-visual tests dened by as well as the ITU standards. For the images choice, we took into account the three factors: spatial information, colorfulness and the number of pixels occluded. 18 observers performed this test. Overall, LF coding methods based on view synthesis (which are based on Linear Approximation (LA) or Deep Learning (DL) oer the best visual quality at all bitrates. For example, for most LF images, their visual quality provided at an average bitrate is about the best as that obtained by conventional 2D high-speed coding approaches.

Chapiter 5 presents another contribution for LF image coding. We use the D2GAN which is a specic type of architecture of the GAN, with a single generator with 2 discriminators. The idea is inspired by [START_REF] Nguyen | Dual discriminator generative adversarial nets[END_REF] where they state that such an architecture gives GAN more stability with better results. In this architecture, the rst discriminator has always the same role, i.e. to give a high score if the image is real, while the second discriminator gives a high score if the image is then generated by the generator. It should be noted that each of the discriminators has a distinct loss function with a distinct parametric congregation. We will apply D2GAN to reference views encoded by the VVC standard. We oer a compression method based on D2GAN and the VVC encoder. It consists of integrating it with the VVC hierarchical scheme. The overall idea is to avoid coding views from the higher hierarchy level and generate them with D2GAN at the decoder level. An extension for this approach is possible, and consists in making an optimization to decide to code these upper level views with VVC or generate them by D2GAN, and we will have a hierarchical VVC scheme with RDO and D2GAN. Introduction Images are invading the world internet trac. In fact, from the very basic Black and White (BW) images to the most recent 3D images, in addition to the need to memorize the moment and relive it is highly increasing. LF proposes a new approach for the acquisition of scenes. The spectral images record the information of the light rays propagating in the scene including their directions and intensity. The amount of information allows to render dierent views with varying DoF and focal planes without the need of re-acquiring the scene. Therefore, LF imaging systems is becoming one of the most popular techniques for Virtual Reality, Augmented Reality (VR/AR), Teleconferencing, and E-learning.

In this chapter, we describe in detail all aspects of LF image processing as shown in Figure 1.1. In Sections 1.2 and 1.3, we present the LF acquisition and representation, while in Section 1.4, we briey discuss the dierent LF compression techniques. Moreover, the LF visualization is explained in Section 1.5. Section 1.6 describes its important functionalities. As for section 1.7, it presents the dierent LF display technologies. Finally, Section 1.8 concludes this chapter. In general, dierent acquisition techniques can be used to capture Light Field images depending on the requirements for baseline (i.e., the physical space that will be covered by the (U, V ) sampling), and on the image resolution. In the following subsections, we describe in details the two LF acquisition technologies.

Camera Array

A camera array consists of many traditional cameras organized in horizontal and vertical alignments at regular baselines to capture the same view from dierent viewpoints, as illustrated in Figure 1.2a. In this case, the cameras synchronization, their color and geometrical calibrations are considered as immense technical challenges. Moreover, they create large data volume and often high energy consumption. For these reasons, camera arrays are still quite rare, but there are few notable designs. For example, Stanford Multi-Camera Array [WJV + 05] records LF images (see Figure 1.2a) with almost 6000 pixels wide [START_REF] Yao | Real-time virtual view synthesis using light eld[END_REF], which is too high in comparison with the High Denition video cameras that provide a resolution of 1920×1080 pixels. In this case, the (U, V ) sampling depends on the baseline parameters of the camera array grid. The full 4D LF is formed and new views corresponding to narrower baseline parameters must be further synthesized, if needed. An example of such acquisition technology is the Stanford Multi-Camera Array. 

Plenoptic Camera

For LF image acquisition with narrow base, a single lens stereo camera can be used. It consists of a hand-held plenoptic camera with added optical elements in front of the sensor. Alternatively, a plenoptic camera can, in a single photographic plane, record the Light Field on its imaging plane. The camera largely resembles looks like a regular digital camera, operating similarly though recording LFs instead of regular photographs.

Figure 1.3 shows the Lytro 1 [START_REF] Todor | Lytro camera technology: theory, algorithms, performance analysis[END_REF] and the Raytrix 2 plenoptic cameras. Currently, plenoptic cameras are commercially available in the market from two sources: the Lytro camera based on the "plenoptic 1.0" (recently acquired by Google) targets ordinary consumers, and the Raytrix-based on the "plenoptic 2.0" -targets industrial applications as illustrated in Figure 1.4.

The used technique is called integral photography. It is widely used in several imaging elds including engineering, optics and the study of animal vision. It consists of using an array of microlenses inserted in front of the photosensor in a conventional camera. The size of microlenses is microscopic when compared with that of the main lenses, and so is the gap between the microlenses and the photosensor. Covering multiple photosensor pixels, each microlens separates the light rays that hit it into a minute image on the pixels underneath.

Figure 1.5 shows an over simplied 2D plenoptic camera with 2 microlenses and 3 pixels, where the main lens plane represents the angular plane and the microlens plane represents the spatial one. Therefore, each pixel in a microlens image corresponds to the same scene point. Conversely, corresponding pixels between two microlens images correspond to two dierent scene points imaged at the same angle.

In this kind of camera, the imaging plane is that of the microlens, which sets the spatial sampling resolution with its size. In Figure 1.7, a grid of boxes lying over the ray-space diagram outlines the sampling of the Light Field recorded by the photosensor pixels. Each of these boxes denotes the cluster of rays contributing to one pixel on the photosensor. Rays were marked from the borders of each photosensor pixel out into the world through its parent microlens array and the glass elements of the main lens so as to measure the sampling grid.

LF Representation

In general, LF is represented as a vector function that describes the location, the direction and the intensity of each ray of light within the scene. There are several ways to represent the scene in LF imaging that we are explained in the following subsections.

Plenoptic Function

The plenoptic function was rst introduced by Adelson and Bergen [START_REF] Adelson | The plenoptic function and the elements of early vision[END_REF]. It can be described by a 7 dimensional function as follows:

L(λ, t, x, y, z, θ, φ), (1.1) Here the angular plane corresponds to the main lens plane and the spatial plane to the microlens plane [START_REF] Hog | Superrays for ecient light eld processing[END_REF].

where (x, y, z) are the spatial coordinates, (θ, φ) are the angular coordinates, λ is the wavelength and t is the time. The plenoptic function L assigns to every point in free space and to every direction a corresponding radiance for specic wavelength λ and time as shown in Figure 1.6. For static scenes, the dimension of this function is reduced to 5 dimensions without considering time and wavelength [START_REF] Levoy | Light eld rendering[END_REF]. Further, assuming that the rays are passing in un-occluded pixels, one can simplify it as a 4D LF as shown in Figure 1.6 where (u, v) plane represents the microlens plane and (s, t) represents the spatial one.

The Lumigraph

In this representation, the Light Field signal L(s, t, u, v) describes all light rays passing through the (s, t) and (u, v) planes called the lumigraph [START_REF] Gortler | The lumigraph[END_REF]. The points of intersection of a ray with two parallel planes completely describes its position and orientation in the free space. By convention, the (s, t) plane is close to the camera, and the (u, v) plane is close to the scene. The two-planes parameterization describes rays in terms of position and direction, and so the terms angular and spatial are sometimes employed to describe these dimensions. One interpretation is that s and t denes the position of a ray, while u and v denes the direction.

LF Compression

Acquiring LF images creates a vast amount of data: around 150 MB for lenslet images with 15×15 viewpoints of resolution of 635×434, around 6.8 GB for 15×15 4K images acquired with a multi-camera array. This large information is the rst challenge represented by the large amount of data in addition to increasing the complexity of representation in the scene and redundancy of information. Therefore, one need to nd ecient methods to compress the LF images. Dierent LF compression techniques will be detailed in the next chapter.

LF Visualization

Although the function L(s, t, u, v) is a simplied Light Field model, it is still hard to imagine this 4D representation. Thus, there are several representations of the LF image including micro-image, sub-aperture and epipolar image as illustrated in Figures 1.7, 1.8, 1.9 respectively and explained in the following subsections.

Lenslet Images

Photosensor pixels are assigned to each microlens and form a small image. This image is referred to as the microlens image. In the raw Light Field photograph, there are as many microlens images as the number of microlenses. Each microlens image shows the incident light ray that leaves from dierent positions and arrives at the photosensor through the microlens array [START_REF] Levoy | Recording and controlling the 4d light eld in a microscope using microlens arrays[END_REF]. A certain point on the (u, v) plane represents the light rays bound of all points on the (s, t) plane (the collection of light rays from dierent viewpoints projected onto a certain point, i.e., the same point as seen from dierent viewpoints, see Figure 1.7). The lenslet image corresponds to a set of micro-images and can be saved as png le (demosaiced raw images). The width and height of raw lenslet image captured by the Lytro Illum are 7728 and 5368, respectively. Thus, the 4D LF can be represented as a 2D array of images with a smaller baseline, such as the one shown in Figure 1.8 (a). The lenslet image can render in form of multiview sub-aperture images by putting together the pixels in the same position within each micro-image to create a rendered image for a specic viewpoint, (see Figure 1.8 (b)).

The extraction process implies that the number of sub-aperture views amounts to the number of pixels in micro image (see Figure 1.8). Consequently, the eective resolution of a sub-aperture image equals the number of micro lenses in the plenoptic camera.

Epipolar Image

The epipolar plane image (EPI) is obtained by xing the coordinates in both the spatial and angular dimension. The large (u, v) slice can be thought of as a conventional image taken from a camera sitting on the (s, t) plane. Each epipolar image is the 2D slice of the Light Field where t and v are xed, and s and u vary. The (s, u) and (t, v) slices are sometimes referred to as epipolar images (see Figure 1.9). In our contribution, we will adopt the sub-aperture representation. As previously introduced, the ow of rays captured by Light Field acquisition devices is in the form of large volumes of data retaining both spatial and angular information of a scene. Thus, from a single exposure, it enables a variety of post-capture processing capabilities such as: re-focusing, extended focus, changing the point of view and depth estimation. In the following, we explain in details some of these advanced functionalities.

Public LF Dataset

Re-focusing: Blurred zones or regions in a 2D image are caused by scattered rays received by the sensors of a 2D standard camera. One way to get theses regions in focus is to capture the scene from dierent perspectives. As a consequence, the angular information of light rays is acquired. Such a job can be achieved using plenoptic cameras as mentioned in Section 1. This function uses an input value called slope, which allows controlling the optical focal plane, and the object that should be focused. The relationship between slope and depth depends on LF parameterization, but in general a slope of 0 lies near the center of the captured depth of eld. When the image is digitally refocused on the background, images in the foreground may appear ghosted and vice versa (see Figure 1.10). It is known that the Light Field refocusing operation has denoising properties [START_REF] Dansereau | Light eld image denoising using a linear 4d frequency-hyperfan all-in-focus lter[END_REF], thus refocusing applied on compressed sub-aperture images (SAI) will reduce the distortion due to compression artefacts.

Changing viewpoint: The huge information in the LF image provides the ability to see the scene from dierent viewpoints. LF was constructed from rendered images of a buddha computer model. We can zoom in and roam around. At each observer viewpoint, the view with correct perspective and shading is computed by extracting a two-dimensional slice from the 4D-LF parametrization as shown in Figure 1.11. Stereo displays: In this case, a pair of views need to be rendered from the LF image and delivered to the display. This type of display technology improves the users' depth perception (with respect to the 2D display) by presenting a dierent view to their left and right eyes (typically, by means of a pair of eye-glasses).

Multiview auto-stereoscopic displays: Multiview autostereoscopic is a glassless display technology that allows creating a more natural 3D illusion (with respect to the stereo display) to the end-user. It presents a dierent perspective as the user moves horizontally around the display (known as horizontal motion parallax). In this case, multiple views need to be rendered from the LF content and delivered to the display. Moreover, following the recent developments in sensor and optical manufacturing, the display technologies are also evolving for providing a more natural and immersive visualization. Therefore, some prospective display technologies started to emerge. Among them, it is possible to cite:

Super-multiview LF displays, as proposed by Holograka [KY18, LPT16] which uses a very dense number of views to create a replica of the 4D LF. Car manufacturers are working on integrating LF displays in their upcoming vehicles to create innovative cockpit solutions. The Light Field displays enable information to be safely presented to the driver in real-time, allowing the driver's interaction with the vehicle to become more comfortable and intuitive. It also allows passengers in the front and back seats to share the 3D holographic experience with the driver 1.13b. 

Conclusion

In this chapter, we have provided an overview of Light Field image denition, acquisition and some of the types of cameras used to capture it. Among them we focused on the Lytro Illum Camera that enables the acquisition of a baseline LF images. Moreover, we presented the dierent ways to represent the Light Field content. We are more interested in sub-aperture views representation used in our compression LF scheme.

Then, the main features, including refocusing and changing the viewpoint of the scene were described. Finally, the most important recent techniques for displaying the LF image were presented. In the next chapter, we will focus on the state-of-the-art LF image coding solutions. Introduction

In this chapter, some related concepts to the Light Field image are introduced. Then, multiple approaches that are proposed for Light Field image coding will be analyzed. Furthermore, this chapter will present the main concepts of machine learning and nally will explain the dierent techniques for Light Field visual quality evaluation detailing the testing considered environment requirements.

Related Concepts

This section, will explain some of the denitions used in this research, such as the whole family of norm to measure the vector's magnitude and superpixel segmentation [ASS + 12].

Vector Norm

Firstly, we assume a vector v as an ordered tuple of numbers.

v = (v 1 , v 2 , ..., v n ), (v i ∈ R, f or i = 1, 2, 3, ..., n) (2.1)
L1-norm: the L1-norm [START_REF] Weisstein | L1-norm[END_REF] (also known as 1-norm, or mean norm) of a vector v is denoted v 1 and is dened as the sum of the absolute values of its components:

v 1 = n i=1 |v i | (2.2)
L2-norm: the L2-norm (also known as the 2-norm) of a vector v is denoted v 2

29

Existing LF Image Coding Techniques and is dened as the square root of the sum of the squared vector values. L innity-norm: the innity norm (also known as the L∞-norm, ∞-norm, max norm, or uniform norm) of a vector v is denoted v ∞ and is dened as the maximum of the absolute values of its components:

v 2 = n i=1 v i 2 (2.3)
v ∞ = max{|v i | : f or i = 1, 2, 3, ..., n} (2.4) 

Superpixel Segmentation

The Image segmentation is referred to as one of the most important processes of image processing. Image segmentation is the partition of an image into regions or categories (sets of pixels, also known as super-pixels), which correspond to dierent objects or parts of objects. Every pixel in an image is allocated to one of a number of these segments [START_REF] Pal | A review on image segmentation techniques[END_REF]. A simple technique of segmentation consists of using the gradient. A superpixel can be dened as a group of pixels that share common characteristics (such as pixel intensity). SLIC is a particular type of segmentation, where pixels are grouped into perceptually meaningful atomic regions as shown in the Figure 2.1. It is mainly used to compute image features, and greatly reduces the complexity of subsequent image processing tasks. This research uses the SLIC superpixel algorithm that performs a fast and ecient semantic atomic segmentation [ASS + 12]. SLIC generates superpixel regions by adopting the k-means approach with two important distinctions.

The number of distance calculations in the optimization is dramatically reduced by limiting the search space to a region proportional to the superpixel size. This reduces the complexity to be linear according to the number of pixels N and independent from the number of superpixels k.

A weighted distance measure combines color and spatial proximity while simultaneously providing control over the size and compactness of the superpixels.

Principle of Current Video Compression Standards

Before the introduction specic light led coding schemes, it is necessary to present and analyze the principal of current video coding. This section introduces the main standards for 2D image and video compression. The rst problem is the huge bandwidth needed for transmitting such huge image/video data. To reduce storage requirements and improve transmission bandwidth, redundancies within image and video signals can be exploited to compress the content more eciently. The focus is on the two last generation video coding standards, HEVC and VVC, that are used for this work. These latter integrated a set of new coding tools, extending the existing hybrid coding concept as illustrated in Figure 2.2 based on prediction, residual error transformation and quantization.

Redundancies removal

A video consists of a succession of frames. Each individual frame can be viewed as an individual static image. Therefore, multiple frames may share some common properties or features called redundancies. Dierent types of redundancies can be found in a video. Spatial redundancy: pixels or regions that are duplicated within the same frame.

Statistics redundancy: in order to store the pixels of the image, the coding information (modes, coecients, etc...) are described as a succession of symbols (or set of bits). The distribution of these symbols is not random, then some correlations can be exploited by source coding like arithmetic coding algorithms. Remaining statistical redundancies can be further exploited by using entropy coding such as Context-Adaptive Binary Arithmetic Coding (CABAC).

Temporal redundancy: The exiting correlations within two consecutive frames in the video.

Exploiting spatial, temporal and statistical redundancies is one of the primary techniques in video compression.

High Eciency Video Coding

This section gives a brief overview of the state-of-the-art HEVC/H.265 standard [START_REF] Sidaty | Compression Eciency of the Emerging Video Coding Tools[END_REF][START_REF] Sullivan | Overview of the high eciency video coding (hevc) standard[END_REF]. The HEVC standard, or H.265/Motion Picture Expert Group (MPEG)-H Part 2, is nalized by the Joint Collaborative Team on Video Coding (JCT-VC) in 2013. HEVC was designed to bring a bit-rate reduction of 50% compared to its predecessor, the Advanced Video Coding (AVC)/H.264 codec [START_REF] Wiegand | Overview of the h.264/avc video coding standard[END_REF]. The aim of this section is to explain in details some of these advanced features.

The video sequence is rst organized into multiple Group of Picturess (GOPs) of a xed number of consecutive frames. The GOP structure denes the encoding order of the frames. A classical GOP structure in HEVC is the hierarchical GOP structure, called Random Access (RA) coding conguration. The rst frame in the GOP is encoded independently as an Intra (I)-frame (using only Intra predictions), the last frame as a Predicted (P)-frame (predicted from the rst frame or other past frames from past GOPs as shown in Figure 2.5), the intermediate frames are encoded recursively as Bidirectional (B)-frames.

HEVC processes all type of frames in a block-wise manner. To adapt the encoding to the content, the frames are divided recursively into multiple blocks of pixels. The HEVC standard introduced a quad-tree structure for the block partitioning. Each upper block in the tree structure thus has four block children of the same size. Thus, the HEVC standard denes four dierent types of blocks in the quad-tree structure.

Coding Tree Unit (CTU): is the largest block structure in HEVC. When building the quad-tree, the frame is rst divided into CTUs of xed size of 64x64 pixels for instance.

Coding Unit (CU): the previously obtained CTUs can be divided into 4 CUs. Each CU can also be divided recursively into 4 smaller CUs. Up to three levels of recursion are allowed in the HEVC standard, from 64x64 pixels down to 8x8 pixels. The choice of the prediction mode, intra or inter prediction (explained in the following subsections), is performed at the CU level. CUs within the CTU are processed in a Z-scanning order, or zig-zag order: from the top left CUs to the bottom right ones, going right to left. Prediction Unit (PU): each CU can be divided into multiple PUs. The prediction information, motion vector for inter or mode index for intra, are estimated and stored at the PU level. A CU can contain up to four PUs. Several partitioning schemes are available and dier from the previous quad-tree partitioning. For the intra mode, only squared PUs are available, so an intra CU may only have one or four PUs. For the inter mode, eight congurations are dened as rectangular PUs are allowed: two squared PUs, three vertical rectangular PUs, and three horizontal rectangular PUs, as shown in Figure 2.3.

Transform Unit (TU): each CU is also recursively divided into one or several TU. The transform and quantization steps are performed on the TU level. Each TU can be split into multiple smaller TUs in a quad-tree structure. TU sizes ranges from 32x32 to 4x4, and are also processed in a zigzag order within the CU.

HEVC brings an interesting bitrate reduction mainly due to the prediction and transform of the residual error coding. In the following, the intra and inter prediction are explained.

Intra prediction: the intra prediction mode is designed to exploit the spacial redundancy within the current frame. The intra prediction relies on the neighbouring reconstructed blocks pixels. For instance the I frame is only encoded using the intra prediction mode. Since the intra prediction does not use the temporal redundancy, the I frames have a high coding cost and represent a signicant part of the total bit-rate of an encoded sequence. These reconstructed I frame were previously encoded and decoded, so their pixel values will also be available during the decoding process. As the blocks are processed in a zigzag scan, pixels on top and left of the current block can be used. As multiple block sizes are possible with HEVC, pixels on the bottom left and top right may also be retrieved for prediction in some cases. When processing the rst blocks of the frame, no neighbor is available for the prediction. A padding operation is thus performed beforehand. Several methods, or modes, can be used to predict the current block values from the neighbouring pixels. The HEVC standard denes 35 intra prediction modes: DC, planar and 33 directional modes as illustrated in Figure 2.4.a. The DC prediction is dened as the average of the neighbouring pixels. The planar mode consists in a multi-directional prediction, horizontal and vertical, from the neighbouring pixels. The directional modes are used to predict the current pixel values by extending the neighbouring pixels in a given direction. The index of the mode is chosen and transmitted at the CU level. Along with the quantized residual error between the original block value and the reconstructed predicted value. The neighbouring pixels border used for a directional mode is depicted in Figure 2.4b. The chroma components (Cb and Cr) can only be predicted from ve modes: planar, DC, horizontal, vertical and Direct Mode (DM). Prediction with the Direct Mode is performed by using the same mode selected from the Luma component. This mode relies on the strong correlation between the luma and chroma components [START_REF] Begaint | Towards novel inter-prediction methods for image and video compression[END_REF].

Inter prediction: Aas mentioned before, the inter prediction is designed to leverage the temporal redundancy between consecutive frames. The basic idea is to use previously encoded and decoded frames as references to encode the current frame.

Multiple reference frames can be used to encode the current frame.

A P frame can be coded using intra prediction or inter prediction from past reference frames, while a B frame can be coded using both past and future reference frames, and intra prediction. Compared to the I and P frames, B frames have a signicantly lower bit-rate. To be able to use future frames for prediction the encoding order diers from the temporal order. B predictive frames were introduced in H.264/AVC [START_REF] Wiegand | Overview of the h.264/avc video coding standard[END_REF]. The inter prediction is performed by nding translational motion vectors for each prediction unit. The motion vectors are dened with a quarter pixel accuracy to obtain better prediction. The reference frame index and the motion vector parameters (dx, dy) are encoded in the bitstream. The decoder will, then, be able to perform motion compensation and prediction.

In order to reduce the size required to encode the motion vector parameters, a prediction is also performed. A motion vector prediction is obtained from the previously neighbouring PUs encoded with inter-prediction, or from motion vectors from reference frames. Then, only the dierence (residual) between the predicted motion vector and the estimated one is actually stored in the bit-stream. The HEVC standard denes two variants of inter prediction: "merge" and "skip". For these two modes, only the motion vector prediction is performed, there is no motion compensation step.

Up to ve motion vector candidates are collected from neighbouring PUs, only the index of the selected one is stored in the bit-stream. Compared to the merge mode, the skip mode does not encode the block residual values. The reconstructed block is the same as the predicted one. Both these modes require less side information to transmit to the decoder and are computationally less expensive than classical inter prediction as they do not require the motion estimation. However, they rely on high temporal correlations as they are less accurate that the inter mode.

Transform: HEVC uses the classical DCT-II transform of TU of sizes from 32×32 to 4×4. The DST-VII is also used for specic case of Intra coded blocks of size 4×4.

Entropy coding: quantized residual errors and side information (i.e: frame indices, motion vectors (d x , d y ), inter mode index) are coded using entropy coding. Context adaptive binary arithmetic coding CABAC is used for entropy coding. This is similar to the CABAC scheme in H.264/MPEG-4 AVC, but has undergone several improvements to mend its throughput speed (especially for parallel-processing architectures), its compression performance, and to reduce its context memory requirements [START_REF] Sullivan | Overview of the high eciency video coding (hevc) standard[END_REF]. 

Versatile Video Coding

Based on HEVC, the Joint Video Exploration For intra prediction, VVC with 65 directional modes (with only 33 in HEVC) can have more detailed prediction and more precise prediction as shown in Figure 2.6a.

For Inter prediction, VVC uses advanced motion vector prediction, ane models and sub-block partitioning. Whereas in HEVC only square blocks were predicted, rectangular shapes are also possible in VVC. In addition to the binary block partitionning, VVC introduces the ternary split block partitionning, as shown in the Figure 2.6b. There are now multiple splits which are embedded in a multiple tree structure. Machine learning technology is attracting scientists from every domain. It consists in imitating the human intelligence and in particular their biological neural network, going from a simple network with 2 layers used for classication, to a deep network with multiple layers for image processing [START_REF] Lézoray | Machine learning in image processing[END_REF]. Deep learning belongs to machine learning technology and has the particularity of having computer models, called deep articial neural networks or deep networks. It is composed of several processing layers (generally more than three).

In the latest studies, deep networks showed a great performance in image and video compression [CHB17, LYT + 17, PMG + 17]. Therefore, the next subsections dene the so called Neural Networks and explain the architecture of a Convolutional Neural Network.

Neural Networks

Similar to a biological neural network, a simple Neural Network (NN) is dened by a set of interconnected nodes characterized by weights and biases and a linear activation function, distributed on 2 layers: one Hidden layer and the Output layer, as shown in Figure 2.7.

(z) = sigmoid(w 1 x + b 1 ) (2.5) (y) = sigmoid(w 2 z + b 2 ) (2.6)
where x is the input, z the output of the rst layer and y is the output or predicted value, w 1 , w 2 are weights, b 1 and b 2 are biases, sigmoid is a simple example of an activation function as shown in Figure 2.8. Computing the output y is called feedforward, where initially the weights and biases are set randomly. The goal of training the neural network is to update these parameters in order to obtain an output as close as possible to the real desired output [START_REF] Egmont-Petersen | Image processing with neural networks, a review[END_REF]. This phase is called backpropagation. However, to measure the performance of the NN, one needs a loss function to evaluate how far the predicted output is from the real one. Many loss functions are possible, the easiest and simplest one is the Sum of square errors. Finally, the training of a neural network stops when the error between predicted y and the real output is lower than a certain threshold. After that, the NN is ready for testing with real life data [Pom91, Jia99].

Convolutional Neural Network

For image processing, NN can be used eciently. However, linear functions are replaced with non-linear or convolutional functions.

A simple CNN is a sequence of layers, and every layer of a CNN transforms one volume of activations to another through a dierentiable function. Three main types of layers are used to build CNN architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (Figure 2.9).

The feature map is the output of one lter applied to the previous layer. A given lter is drawn across the entire previous layer, moved one pixel at a time. Each position results in an activation of the neuron and the output is collected in the feature map.

The convolutional layer is the core building block of a CNN. The layer's parameters consist of a set of learnable lters (or kernels), which have a small receptive eld, but extend through the full depth of the input volume. During the forward pass, each lter is convolved across the width and height of the input volume. It computes the dot product between the entries of the lter and the inputs and produces a 2-dimensional activation map of that lter. As a result, the network learns lters that are activated when it detects some specic type of feature at some spatial position in the inputs. Rectied linear units Layer, Relu in neural networks is the max function(x,0) with input x e.g. matrix from a convolved image. ReLU then sets all negative values in the matrix x to zero and all other values are kept constant.

Fully connected layer takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding it) and outputs an N dimensional vector where N is the number of classes that the system has to choose from.

Generative Adversarial Network

Recent researched proves its success in a variety of applications, such super-resolution, image recognition and object detection. Therefore, one can use it to predict images and compare its performance with CNN in the same environment congurations and dataset.

A GAN is an articial intelligence technique for creating perfect imitations of images or other data. A GAN is a recent machine learning technique. It is based on the competition between two networks within a single framework. These two networks are called "generator" and "discriminator". The generator is a type of convolutional neural network whose role is to create new instances of an object. The discriminator, on the other hand, is a "deconvolutional" neural network that determines the authenticity of the object or whether or not it is part of a data set. During the training process, these two entities are in competition and this is what allows them to improve their respective behaviours. This is called retropropagation.

In details, GAN takes an random input and tries to generate a sample of data. In the gure 2.11, we can see that generator G(z) takes a sample input z following a probability distribution p(z). It then generates a data which is fed into a discriminator network D(x). The task of Discriminator Network is to take input either from the real data or from the generator and try to predict whether the input is real or generated. It takes an input x from P data (x) where P data (x) is our real data distribution. D(x) then solves a binary classication problem using sigmoid function giving output in the range 0 to 1. In other words, D and G play the following two-player minimax game with value function V (G, D):

min G max D V (G, D) V (G, D) = E x P data [log D(x)] + E z Pz [1 -log D(G(z))] (2.7)
In our function V (D, G), the rst term is entropy that the data from real distribution (P data (x)) passes through the discriminator . The discriminator tries to maximize this to 1. The second term is entropy that the data from random input (p(z)) passes through the generator, which then generates a fake sample which is then passed through the discriminator to identify the fakeness [START_REF] Goodfellow | Generative adversarial nets[END_REF].

On the other hand, the task of generator is exactly the opposite, i.e. it tries to minimize the function V so that the dierentiation between real and fake data is bare minimum.

2.5

Existing Light Field Image Compression Techniques

Introduction

The Light Field compression can be classied into 2 categories: The lossy and the lossless techniques. Many studies have investigated lossy and lossless compression of LF imaging leveraging both spatial and angular redundancies in the image using dierent types of representations as illustrated in Figure 2.12. This part discusses in details the state-of-the-art of the dierent existing LF image compression techniques. Section 2.5.2 presents the lossless LF image coding. Then, in Section 2.5.3, the second category is presented.

Figure 2.12: Classication of LF image coding techniques.

Lossless Coding Light Field

For scientic and cinema production, high quality images are needed. Lossless LF coding is then required. The fundamental approach for lossless LF coding is to predict the macroblocks and code the residual prediction error. The basic lossless LF coding scheme consists of using the HEVC reference Model (HM) or the AVC model, where LF image is fed as a pseudo video sequence with a spiral order scan [START_REF] Helin | Minimum description length sparse modeling and region merging for lossless plenoptic image compression[END_REF]. In Table 2.1, the reported le sizes are directory sizes containing all necessary les for decoding. Schiopu et al. [START_REF] Schiopu | Macro-pixel prediction based on convolutional neural networks for lossless compression of light eld images[END_REF] propose a macro-pixel prediction method based on CNN. They predict each macro-pixel based on a volume of six macro-pixels generated from its immediate causal neighborhood. Then, the resulting macro-pixel residuals are encoded by the reference CABAC (Context-based, adaptive, lossless image coding). Gabbouj et al. in [START_REF] Schiopu | Lossless compression of subaperture images using context modeling[END_REF] proposed a lossless compression predictive method based on context modeling that exploits the redundancy of sub-aperture views. For each intermediate view a one neighboring reference view is selected and segmented. The residuals errors divided into two sets small and big compared to a threshold, are encoded by entropy coding.

Perra et al. [START_REF] Perra | Lossless plenoptic image compression using adaptive block differential prediction[END_REF] propose a lossless compression scheme based on adaptive prediction. The micro images composing a plenoptic image are processed by an adaptive prediction tool, aiming at reducing data correlation before entropy coding takes place.

Lossy Coding Light Field

While lossless compression rebuilds the exact data, lossy compression removes an unnecessary and undetectable part of the data, which is undetectable. These techniques includes the three following approaches:

Transform coding approaches: [JPFG17, Agg11, DQW04] This approach consists in transforming the LF image from its raw format to another basis which is more suitable for compression. Xiang et al. [START_REF] Jiang | Light eld compression with homography-based low-rank approximation[END_REF] actually aims at reducing the dimension of the captured data via a low rank approximation of views aligned by homographies which are jointly optimized with the low rank model, considering both a single homography per view and per depth plane.

Xu et al. [START_REF] Dong | Data compression of light eld using wavelet packet[END_REF] proposed a wavelet packet-based Light Field compression method. Firstly, the original light images are decomposed into subbands. The latter are divided into two parts: one contains the subbands which have signicant coecients, large rela- The pseudo sequence coding approach: This approach consists rst in rearranging Light Field elements (usually sub-aperture images) in a specic order to produce a pseudo-video sequence [START_REF] Zhao | Light eld image coding with hybrid scan order[END_REF], which is then encoded with a classical 2D hybrid (intra and inter predictions) video encoder [START_REF] Li | Ecient intra prediction scheme for light eld image compression[END_REF]. This approach might, also, employ Multi-View extension of High Eciency Video Coding (MV-HEVC) [START_REF] Ahmad | Interpreting plenoptic images as multi-view sequences for improved compression[END_REF].

Waqas et al. [START_REF] Ahmad | Interpreting plenoptic images as multi-view sequences for improved compression[END_REF] proposed a compression scheme based on MV-HEVC. It interprets each row of subaperture views as frames of a multi-view sequence that are compressed by using MV-HEVC. Inevitably, this method invests similarity between the multi-view sequences as well. Liu et al. [LWL + 16] proposed a compression of LF images based on pseudo-sequences of sub-aperture images. Firstly, the lenslet image is converted from YUV420 to RGB444 color space. Then, the lenslet is processed to obtain the multiple views that compose the Light Field data structure. The views are color and gamma corrected to be converted back to YUV420. A subset of them is then rearranged in a specic coding order that accounts for similarities between adjacent views. It is coded using the JEM encoder illustrated in Figure 2.14. Li et al. [START_REF] Li | Ecient intra prediction scheme for light eld image compression[END_REF] incorporated a full inter prediction scheme in HEVC intra prediction mode that explicitly embodied the redundancy in lenslet images. Perra et al. [START_REF] Perra | High eciency coding of light eld images based on tiling and pseudo-temporal data arrangement[END_REF] proposed a method that partitions the raw Light Field into tiles of equal size. Then these tiles are ordered as a pseudo-temporal sequence in order to adapt the data. Later on, they are rearranged in a pseudo sequence video to subsequent HEVC temporal predictive coding. The predictive-coding approach:This approach takes advantage of the intrinsic high redundancy of LF images. In particular, instead of encoding all LF sub-views, only sparsely sampled LF sub-views are encoded and the remaining sub-views are reconstructed from the coded sub-views at the decoder side. This approach gained the attention of a lot of researchers.

In [START_REF] Zhao | Light eld image coding via linear approximation prior[END_REF], Shengyang et al. proposed a powerful LF coding scheme. The distance between adjacent cameras is a constant scalar. Mathematically, the LF image is modelled by a 4D function

L : Ω × Π{=⇒ IR}, ({ρ, ϕ}) = L({ρ, ϕ}), {ρ ∈ Ω} (2.8)
where ρ is a scene point, Ω represents the image plane and ϕ = (u,v) T denotes the oset of one view w.r.t. the center view in lens plane. As shown in Figure 2.15, this scheme consists in coding a sparse set of LF views (S A ) using HEVC and then linearly approximating the other views (S B ) and sending only the approximation coecients to the decoder after quantization and entropy coding. The LA prior of the dropped vectorized view j (V j ) is given as follows:

V j ≈ 1 Σx m M m =j x m V m , 2 ≤ M ≤ N (2.9)
where M is the number of selected reference views and N is the total view number, 1 ≤ m ≤ M and x m are the weight coecients. This coding scheme enables between 37.41% and 45.51% Bjøntegaard Delta Bit Rate (BD-BR) reduction on average compared to the HEVC encoding all sub-aperture views (HM-All) applied on a selected set of LF images from EPFL dataset [START_REF] Rerabek | New light eld image dataset[END_REF]. This gain is achieved when half of views are encoded to be transmitted to the decoder and other half of views are linearly approximated.

In recent years, supervised learning with CNN has witnessed huge adoption in computer vision applications like super resolution. In the predictive coding approach, different LF images are predicted by exploiting the redundancy with neighboring views using a CNN block.

In [START_REF] Khademi Kalantari | Learningbased view synthesis for light eld cameras[END_REF], authors proposed a learning-based approach to synthesize new views from a sparse set of input views. The LF synthesis scheme is composed of disparity and color estimation components (Figure 2.16). Authors use two sequential CNNs to model these two components and train both networks simultaneously by minimizing the error between the synthesized and ground truth images. They used only four corner sub-aperture views from the LF captured by the Lytro Illum camera to synthesize high-quality images that are superior to the state-of-the-art techniques. As shown in Figure 2.16, a set of features (mean and standard deviation) of a sparse set of views are fed to the rst CNN that estimates the disparity at an intermediate view using Equation 2.10.

D q = g d (K), (2.10) 
This equation models how the estimated disparity D q at the novel view at position q is generated from the set of K features including the mean and standard deviation. Finally, the second CNN generates the nal intermediate view using Equation 2.11. 

F q = g c (H), ( 2 
D = f /(1 -tan(α)), (2.12) 
where f and α i are camera focal length and the slope in the Epipolar Plane Image (EPI), respectively. Dib et al. [START_REF] Dib | Super-ray based low rank approximation for light eld compression[END_REF] proposed a compression scheme for Light Field using super-ray based local low rank models. A novel method for disparity estimation and compensation was proposed so that the super-rays are constructed to yield the lowest approximation error for a given rank. This representation is based on two low rank models, one for the central view pixels that are visible in all views and while the other is for occlusions.

Komatsu et al. [START_REF] Komatsu | Scalable light eld coding using weighted binary images[END_REF] proposed a more simple coding scheme. They modeled the LF image as a set of binary images B n (x, y) combined with a set of weights r n (s, t) where the viewpoints, which are arranged in a 2-D grid, are specied as (s, t) and the pixels are indicated as (x, y)-one set of weights for each RGB component-and shown in Figure 2.17. These weights are computed by minimizing the mean square error between the original image and the reconstructed one as shown in equation 2.13 arg min

Bn(x, y),rn(s, t) s, t, x, y |L(x, y, s, t) - a good compression ratio that is comparable with the existing methods. Komatsu extended their proposed method to a scalable scheme where the binary image can have dierent resolutions depending on the degree of granularity as shown in Figure 2.18.

N n=1 B n (x, y) × r n (s, t)| 2 , ( 2 
One should note that in the predictive coding approach of LF image coding, a coding technique depends on the way the images are viewed. For instance, Amirpour et al. [START_REF] Amirpour | High ecient snake order pseudo-sequence based light eld image compression[END_REF] proposed a new scan order which divides sub-aperture images into four regions and encodes them independently. Each quadrant uses the central sub-aperture as rst reference and encodes the non-central sub-aperture images in a snake order.

Pinheiro et al. [APP + 19] used the concept of macro images, where they group immediate neighoring images. Each view image along with its immediate neighboring view images which have higher similarity, are grouped and called a Macro View Image (MVI). Considering 15×15 view images decomposed from a raw lenslet image to result in a division into 25 MVIs, in addition to the dierent colors allocated to each MVI reveal the level of dependency, as shown in Figure 2.19.

The third approach is broadly used in LF image compression as it proves a better performance and it is relatively more promising.

2.6

Light Field Visual Quality Evaluation

In order to compare compression performance of multiple coding techniques, one needs distortion and/or quality metrics.

Categorization of Objective Methods

Objective quality assessment methods, called by abuse of quality metric language, refers to metrics computed by mathematical tools in contrast to subjective evaluation. The 

Objective Distortion Metrics

To evaluate the proposed algorithms in this thesis, four objective assessment tools were used: Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM). These three metrics are briey introduced as follows: Mean squared error MSE is a mean squared dierence between the original image A and distorted image B. The mathematical denition for MSE is:

MSE = 1 M × N M i=1 N j=1 (A ij -B ij ) 2 (2.14)
Where A ij and B ij are the pixel value at position (i, j) in the original image and distorted image respectively. Peak signal to noise ratio PSNR measures the distortion of a retrieved signal compared to its original version [START_REF] Hore | Image quality metrics: Psnr vs. ssim[END_REF]. The PSNR can be used to assess the delity between the original image A and distorted image B. The PSNR is computed pixel-wise:

PSNR = 20 log 10 255 √ M SE (2.15) Figure 2.

20: Three categories of video quality metrics

In particular, the weighted PSNR (WPSNR) is dened as:

P SN R Y U V (k, l) = (6 × P SN R Y (k, l) + P SN R U (k, l) + P SN R V (k, l)) 8 (2.16)
where K, L are the number of sub-aperture images in the whole LF for each line and column respectively and k and l are the indexes of the sub-aperture images. The mean of sub-aperture images P SN R Y U V is subsequentially computed to have an average value for PSNR for Y channel and for YUV

P SN R Y U V = 1 ((K)(L)) K k=1 L l=1 (P SN R Y U V (k, l)) (2.17)
SSIM is a method for measuring the similarity between two images. The SSIM index can be viewed as a quality measure of one of the images being compared, provided the other image is regarded as of perfect quality [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. Bjøntegaard metric: When comparing two codec versions, dierences can be measured on the distortion or bitrate level, either by observing the distortion improvements for a given bitrate, or measuring the bitrate reductions for a xed distortion. Bjøntegaard et al. [START_REF] Bjøntegaard | Calcuation of average psnr dierences between rdcurves[END_REF][START_REF] Bjøntegaard | Improvements of the bd-psnr model[END_REF] introduced a simple framework to simplify the comparison between two prediction methods at multiple bit-rate levels. They proposed two metrics: the Bjøntegaard Delta Bit Rate (BD-BR) and the Bjøntegaard Delta PSNR (BD-PSNR), which respectively describe the average bit-rate or PSNR dierences between two encoding methods. These metrics are computed for four points from a Rate Distortion curve (RD-curve).

SSIM (x, y) = l(x, y)s(x, y)c(x, y), (2.18) l(x,y) = 2µ x µ y + C 1 µ 2 x + µ 2 y + C 1 , (2.19) s(x,y) = σ xy + C 3 σ x × σ y + C 3 , (2.20) c(x,y) = 2σ x σ y + C 2 σ 2 x + σ 2 y + C 2 , ( 2 
The BD-PSNR measures the average PSNR dierence between two RD-curves. The BD-PSNR is calculated using third degree polynomials over logarithmic bit-rates and PSNRs data points in equation. It is expressed in decibel (dB).

BD -P SN R = 1 r H -r L r h r l (D 2 (r) -D 1 (r))dr (2.22)
where the BD-BR is expressed in percentage. As it describes a bitrate dierence, the BD-BR has negative values when there is an improvement, i.e. a bitrate reduction. 

BD -Rate = 1 D H -D L D h D l (r 2 -

Illumination from other sources low

For the laboratory viewing environment, ITU recommends many constraints to ensure the best viewing conditions. Thus, the lighting of the room, the display screen and the viewing distance must be respected.

Furthermore, the laboratory viewing environment is intended to provide critical conditions to check systems. General viewing conditions for subjective assessments in the laboratory environment Table 2.2 lists the general viewing conditions for subjective assessments in the laboratory environment on ITU-R Recommendation BT.500.

Subjective Evaluation Quality Assessment Methods

Although test conditions have a major impact on human judgment, the instructions given to observers also have a major inuence on the production of subjective quality scores. As a result, various methods and protocols have been developed. The main task of a participant is to judge the quality of a degraded version of the video during its presentation. The way this version is presented to observers depends on whether or not the original version is present. Thus, three main families of methods standardized in ITU-R Recommendation ITU-R Rec. BT.500-10 have been proposed:

Comparative methods: Comparative methods Peer Comparison (PC) consist in simultaneously presenting observers with two versions of a video for which they are asked to quantify the existing qualitative relationship between these two versions. Thus, two comparative scales can be used: a discrete scale and a scale by category.

The category rating scale consists of a set of semantically dened indices where the participant must choose a particular category that represents his or her feelings. The discrete scale, on the other hand, oers more choice in scoring for participants in the experience. The subject is asked to compare the quality of the rst video with that of the second within a time interval of less than 10 seconds, to judge which of these two videos is of better quality.

Single stimulus methods: A simple stimulus method, as its name suggests, is to show a video to an observer by asking him to judge its quality, without being accom-panied by the original version. Two measures of this class of methods are generally used: the Single Stimulus Continuous Quality Scale (SSCQS) method and the Absolute Category Rating (ACR) method. In the literature, this last method is sometimes called Single Stimulus Impairment Scale (SSIS).

The main dierence between these two methods is based on the use of the rating scale. For the ACR method, a discrete rating scale, generally 5 points, is used. Quality, in this scale, is often related to the perception of degradation. The SSCQS method uses a continuous scale, from 1 to 100, to guide the observer to the most appropriate score. The video is presented to the observer and then a grey image of less than 10 seconds (usually 5 seconds) is displayed on the screen during which the participant is asked to give it a quality score. Double stimulus methods: This last category of subjective quality assessment methods consists of showing two stimuli to observers before rating their quality. As with single stimulus methods, two double stimulus measures are often used: The Double Stimuli Continuous Quality Scale (DSCQS) and the DCR (Degradation Category Rating) methods. The latter is sometimes called Double Stimulus Impairment Scale (DSIS). In the DSCQS method, a continuous scale is used while the DCR method uses a scale similar to that of the ACR (Absolute Category Rating) method. The dierence between these two methods is not limited to the use of the rating scale but rather to the objective of the method itself. The objective of the DSCQS method is to evaluate a transmission system where the two versions presented to observers correspond to the input and output of this system. Participants do not know which version corresponds to the entry or exit. The DCR method simply measures the discomfort perceived by the observer when viewing the video. The observer is informed that the rst version corresponds to the reference video while the second has the degraded video to which he must assign a quality score. For all the methods described above, ITU recommended that the display time for an image or video should be around 10 seconds. However, this duration is relatively short and does not reect a real situation, particularly for video stimuli. Thus, another double-stimulated method of continuous evaluation was proposed. This is the Simultaneous Double Stimulus for Continuous Evaluation (SDSCE) method where videos are presented side-by-side on the same screen or on two adjacent screens. Participants assign their quality score on a continuous basis. Due to its complexity, this method remains the least used in the literature. For our subjective evaluation, we used the double stimuli method.

International Telecommunications Union Recommendations

Assessing subjective quality involves psycho-visual tests where observers are asked to assess the quality of a video stimulus based on their own subjective judgement. The ITU, which is an international standard organization, has published a set of recommendations for the proper conduct of these subjective tests. The main ITU-T/R recommendations related to the video quality evaluation method such as BT.500 (methodology for the subjective assessment of the quality of television pictures). The main ITU-T/R recommendations on video quality evaluation methods are listed in the Table below 

Conclusion

This chapter briey described the main 2D standard video techniques including HEVC and VVC. It, furthermore, displayed some advanced features such as image segmentation and showed that SLIC technology has the best eciency. This literature review presented, also, the dierent approaches for the existing LF image compression techniques and revealed that the predictive approach is the most ecient one. The following chapter we will detail our proposed technique that is mainly based on linear approximation and deep learning. It will be compared to the state of the art techniques while using the dierent evaluation metrics as provided in this chapter. Introduction

In this chapter, we propose an ecient LF image coding scheme with a rate distortion optimization (RDO) functionality. It is mainly based on a predictive approach using linear approximation and convolutional neural network. As shown in Figure 3.1, the encoder consists of coding a rst sparse set of views with a standard encoder and a second sparse set with a linear approximation. While the last sparse set of views is input to a RDO block, where it will be either linearly approximated or simply dropped.

Where at the decoder, we use a deep learning approach to synthesize the dropped views, followed with a post-processing pixel-matching-based scheme for a higher reconstruction quality. Section 3.2 and 3.3 details the proposed method. Experimental results are presented in Section 3.4. early approximated [START_REF] Zhao | Light eld image coding via linear approximation prior[END_REF] with the decoded reference views ( ŜR ). For the views of S E , only the coecients of LA are transmitted to the decoder, thus allowing to reduce transmission bandwidth. The LA prior of the view V j is given as follows [ZC17]:

V j ≈ 1 Σx m M m =j x m V m , 2 ≤ M ≤ N (3.1)
where M is the number of selected reference views and N is the total number of views, while x m are the weight coecients of the vector X with 1 ≤ m ≤ M . The video bitstream and the weight coecients (X) are both sent to the decoder. At the decoder side, the reference views are rst decoded ( ŜR ) and then jointly used with the weight coecients ( X) to linearly approximate the ŜE set. The two sets of views ( ŜR and ŜE ) are then fed to the CNN block that synthesizes the remaining views (illustrated with gray color in the Figure 3.2). The CNN block includes two phases: a disparity estimator and color predictor, which are performed by two sequential CNNs [START_REF] Khademi Kalantari | Learningbased view synthesis for light eld cameras[END_REF]. Based on the features extracted from the sparse input views, a four layer CNN estimates the disparity of the dropped views. The second CNN uses all the warped views, derived from the rst CNN, along with a few other features to predict the color and synthesize the dropped views. .

The obtained gain in coding eciency with the H2DC-CNN scheme is about 30% compared to the state-of-the-art solutions [BHD + 18]. However, while this method is very ecient at low bitrate, it is not so ecient for providing a high quality view at high bitrate compared to the pseudo-video sequence coding approach. Moreover, for some video sequences, we have noticed that the views linearly approximated have better quality than when they are synthesized by the CNN block. Therefore, we propose in the next section three main contributions to overcome aforementioned limitations and further increase the quality of the reconstructed views at both low and high bitrates. 

Global Framework

For each GOV, we take the 4 corners as reference in order to synthesize the novels views. In total, the number of references views is 16 for the whole LF image. As rst step, we select a sparse set of sub-aperture views (S R in blue) with specic position that give the best result after testing all possible combinations. Then, we rearrange the nine S R views into a pseudo sequence (spiral order scan) and encode it with a simple JEM encoder with chrominance downscale, e.g yuv 420. In the second step, we estimate the 7 adjacent views set (S E in red) using linear approximation explained in Section 3.2.

For each frame in the dropped views set S E , we linearly approximate the views with the decoded views in S R set. An approximation model is used to optimize the reconstruction of the weight coecients X, by using the Spectral Projected Gradient for L1 (SPGL1) functions. This one generates the coecients for one target view at each time and for each channel color separately (i.e. rgb, 3 channels). As this vector X contains oating point values, we quantize X at 16 bits before encoding it with entropy coding. The JEM bitstream encoding the S R set of views with the quantized and entropy coded linear coecients are sent to the decoder.

In order to achieve bitrate reduction while maintaining high visual quality at dierent ranges of bitrate, we made three dierent improvements. Specically, we introduced a RDO stage to make the right choice (LA vs. CNN) for the dropped intermediate views (S I ). In addition, we propose to eciently tune the quality of the central view, since all the predicted, estimated and synthesized views are based on it. Finally, a post processing step is applied to the approximated and synthesized views to further enhance the visual quality of the decoded LF image. The block diagram of the proposed scheme is illustrated in Figure 3.3 and the newly added blocks are highlighted in green. 

Central View Quality Tuning

The Central View (CV) of the LF image, illustrated in Figure 3.4 at the position (4, 5), is coded as an Intra frame. It is used as a reference for the prediction of every other frames. In addition, it is exploited by the LA and CNN blocks to generate the dropped views. Thus, the quality of this CV is a key factor for the prediction and generation of other views. Therefore, we must be careful in xing the quality of the CV.

A simple and ecient way to provide a CV with a high quality is to assign it a QP value lower than the global one used for the rest of the views: Q intra = Q+Q of f set , where Q intra is the QP of the intra frame, Q refers to the global QP value, while Q of f set is a quantization oset (Q of f set ∈ Z). Therefore, the solution consists in assigning a negative value to the Q of f set . The Q of f set has been empirically xed, all Q of f set values in the range of [-6, 0] have been tested and we found that the value of -4 is the one providing the highest coding performance. The Q of f set applied to the CV oers an enhancement of 0.19 dB in terms of BD-PSNR and -11.7 % in terms of BD-BR compared to the H2DC-CNN coding scheme under test conditions described in Section 3.4.

Proposed Rate Distortion Optimization

As mentioned in Section 3.2, we proposed two ways to reconstruct the intermediate views (S I ), using LA-or CNN-based approaches. After an extensive experimentation, we found that some views are better reconstructed with LA approach rather than CNN, while for other views, the CNN approach gives better results. Figure 3.7 illustrates an example of the PSNR dierence of the views linearly approximated and synthesized by the CNN block, respectivley, against the reference views. To select the right approach (LA vs. CNN), we proposed to perform a RDO for each intermediate view, thus indicating which method between LA and CNN can provide the highest RD performance, we use Algorithm 1. To do this, the encoder computes the Rate Distortion (RD) cost function J given by Equation (5.5) for both the linearly approximated view and the one synthesized by the CNN.

J = D + λ R (3.2)
where λ is the Lagrangian multiplier, D is the distortion and R is the rate in bits per pixel (bpp). To set the Lagrangian multiplier (λ), we empirically determine its value by testing a large set of LF images. We found that the value of 0.1 for λ is optimal and for which the Lagrangian optimization is giving the best performance. We then select the best approach minimizing the RD cost (J) for each intermediate view. Therefore, an additional bit is required per intermediate view to signal which of the two methods has been selected at the encoder side ( 0: LA is selected, 1: CNN is selected ). Obviously, when LA is selected, the linear coecients for the corresponding estimated view (X) need to be transmitted to the decoder, while no additional information is required for the CNN approach. For instance, the quality improvement is noticeable for three LF images, for which the RD optimization function is giving the best RD performance illustrated in Figure 3.6. The inclusion of the RDO improves coding performance on average by 0.3 dB and -16.1% in terms of BD-PSNR and BD-BR, respectively, with respect to the H2DC-CNN coding scheme under test conditions described in Section 3.4.

Post Processing

In order to further enhance the visual quality of the reconstructed views at the decoder side, we proposed to perform a post-processing, thus oering a high visual experience. The post-processing consists in applying the Hierarchical Superpixel-to-Pixel Dense Image Matching (HSP2P) [START_REF] Dong | Hierarchical superpixel-to-pixel dense matching[END_REF] technique on each approximated or synthesized view ( ŜR and ŜI ). The main idea is to automatically establish dense correspondences between two views in a hierarchical superpixel-to-pixel manner. Since we proposed to encode the CV at high quality, consequently, we consider it as the reference view for all the target views, as illustrated in Figure 3.8(a). Then, we partition the target views into superpixels by using SLIC method described in Section 2.2 [ASS + 12], in order to nd the corresponding matching superpixel for each couple of views (i.e., between the reference CV and target views). The concept of the SLIC method is illustrated in Figure 3.8(b). The feature distance is composed from the average of Lab color space and the average of Scale-Invariant Feature Transform (SIFT) feature descriptor [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF]. To combine these two kinds of features, we dene a distance function D for each superpixel pair (i, j) as

D(i, j) = α 1 f i lab -f j lab 2 + α 2 f i sif t -f j sif t 2 (3.3)
where (f i lab , f i sif t ) are the features of superpixel i corresponding to Lab color space and SIFT feature descriptor respectively, 2 is the L2-norm (See Section 2.2), and (α 1 , α 2 ) are two constants set to 1 and 5, respectively [START_REF] Dong | Hierarchical superpixel-to-pixel dense matching[END_REF].

To nd the superpixel in the reference view B for each superpixel in the target view A, a matching function M given by Equation (3.4) is computed.

M (i) = arg min j∈S B D(i, j), i ∈ S A (3.4)
where S A and S B are the superpixel sets of the target view A and the reference view B, respectively. A consistency function used to calculate a coherence error for a group of matches. The domain of function is transformed into vectors TS of a superpixel i ∈ S A and its neighbors set N(i), which is the set of superpixels connected to superpixel i in boundaries. Given a superpixel i and its corresponding matched superpixels M(i), TS(i)

T S(i) = c(M (i)) -c(i), (3.5)
where c is the geometric center of a superpixel (i.e., the average coordinate of pixels in this superpixel). Then, this consistency function can be formulated as equation 3.6 where w i,j = exp(-β f i lab -f j lab 2 ) is a weighting function, which measures the similarity between two feature vectors and β is a constant xed as 0.02 [START_REF] Dong | Hierarchical superpixel-to-pixel dense matching[END_REF].

C(i) = 1 j∈N (i) w i,j j∈N (i) w i,j T S(i) -T S(j) 2 (3.6) (a) (b) (c)
More precisely, the nearest neighbor T (u) of each pixel u in the target superpixel S A is searched in the reference superpixel S B , based on Equation (3.7).

T (u) = arg min

v∈cand i f u lab -f v lab 2 , ∀u ∈ S A i , ∀i ∈ S A (3.7)
where f u lab is the color feature using Lab color space in the updated target image and cand i represents the candidate set of superpixel i.

Such matching allows to improve the visual quality of the LF reconstructed image, as it renes the values of the corresponding matched pixels in the generated views. Figure 3.9 illustrates the visual quality of Bikes LF image (view (2,2)) before and after the superpixel to pixel post-processing. This post-processing enhances the coding performance by 0.17 dB and -14.1% in terms of BD-PSNR and BD-BR, respectively, compared to the H2DC-CNN coding scheme under test conditions described in Section 3.4.

It should be noted that the three previously claimed gains in each subsection are not cumulative and the overall gain of the three improvements together is given in the next section.

3.4

Experimental Results

Experimental Setup

Training Phase: For training the CNN, we run the training of DL that uses the disparity and color estimation components in two sequential CNNs. These CNNs are used to synthesize the novel views for each GOV separately with 7 layers (4 convolutions with kernel size 7 × 7, 5 × 5, 3 × 3, 1 × 1, respectively and 3 ReLUs), angular resolution 4 × 4 and the numerical evaluation and the nal image has index (2,2). We take the 4 corner source views as input as shown in the Figure 3 and 72 from California Lytro LF dataset [START_REF] Khademi Kalantari | Learningbased view synthesis for light eld cameras[END_REF], both captured by Lytro camera. We split each sub-aperture view into patches of size 60×60. This results in more than 100,000 patches which are used to train the CNN block. For more details on the training process, the reader is referred to [BHD + 18].

Testing phase: For the testing, we select 12 LF images from two datasets of LF images captured with a Lytro Illum camera, the EPFL LF and the INRIA dataset [START_REF] Rerabek | New light eld image dataset[END_REF][START_REF] Rizkallah | Graph-based transforms for predictive light eld compression based on super-pixels[END_REF], which are composed of 8×8 sub-aperture views. We use the JEM software as 2D video encoder to encode the set of 9 reference views (S R ) in Random Access (RA) coding conguration at 4 QP values (QP ∈ {22, 27, 32, 37}). We compared the proposed scheme with four state-of-the-art methods: 1) JEM-All that encodes all views with the JEM software in RA coding conguration, 2) H2DC-CNN coding scheme Section 3.2, 3) LA-32 solution [START_REF] Zhao | Light eld image coding via linear approximation prior[END_REF] that encodes half of the views with JEM and linearly approximates the other half, and 4) DL-16 scheme that encodes 16 views with the JEM and synthesizes the rest of views at the decoder.

Results

Objective Evaluation

R-D curves based on WPSNR for four LF images are provided in Figure 3.10. We can notice that the proposed scheme provides for both images the highest PSNR performance at all considered bitrates. The previous conclusion is conrmed by Table 3.1, providing the Bjøntegaard results [hB08] of the four considered solutions, compared to the anchor solution JEM-All for the whole set of LF images. Our proposed method achieved an average BD-BR gain of -50.34% and BD-PSNR of 1.393 dB compared to the JEM-All solution. We can also notice that the proposed solution achieves a gain for all considered LF images including Bee2 for which the BD-BR ranges from loss of Table 3.1: BD-BR and BD-PSNR gains calculated against anchor JEM-All for 12 LF images. 1) Bikes 2) Friends1 3) Friends4 4) Rolex 5) RustyFence 6) Stairs 7) University 8) FountainVincent2 9) YanKriosStanding 10) Bee2 11) Building 12) Cactus.

LA-32 [ZC17]

DL-16 H2DC-CNN [BHD + 18] Proposed scheme Im. BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR 7.76 % for H2DC-CNN coding scheme to a gain of -36.90% for the proposed solution. 3.2 reports the performance in terms of BD-BR based on SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], comparing the proposed scheme with the anchors JEM-All and H2DC-CNN. It is clear that the proposed scheme provides better results than both H2DC-CNN and JEM-ALL, where the gain in terms of BD-BR is about -63.71% and -21.14% compared to JEM-All and H2DC-CNN, respectively.

Time Complexity

Recently, the number of large-scale applications of accounts is constantly increasing, especially with deep machine learning. The number of cores in the Central Processing Unit (CPU) is much lower than the Graphics Processing Unit (GPU). The GPU consists of hundreds of small cores capable of simple calculations. The degree of parallelism and speed of execution are problems of low data volume on the CPU. Then, GPU is t for training the deep learning systems in a long run for very large datasets. The complexity of the proposed scheme is also evaluated and compared to the other methods on both CPU and GPU platforms. The performance has been carried-out on an Intel core i9-7900X CPU running at 3.3GHz PC with 64 GB memory and a TITAN Xp NVDIA GPU. It is important to note that the GPU is only used when the CNN block is involved in the coding scheme. Table 3.3 gives the encoding and decoding run times in seconds. We can notice that the proposed solution achieves the fastest encoding at all QP, and the GPU enables to speedup the encoding part related to the CNN block. However, the decoder of the proposed solution is complex mainly due to the post-processing stage that signicantly increases the decoding complexity. 

Conclusion

In this chapter, we have presented our preposed LF coding scheme, where a set of views are taken as reference, while the other set of views is estimated. In particular, our coding scheme performs ne-tuning of the CV quality, which is used as a reference by the rest of the LF views. We uses local RDO functionality, that allows to choose the best coding way between LA and CNN for each intermediate view. Finally, with the aim to chapitre3 further enhance the quality of the reconstructed LF views, a super-pixel to pixel dense correspondence is carried out as a post-processing. The enhanced proposed scheme increases the coding eciency by 30.06% compared to the state-of-the art solutions, while providing LF images with high visual quality. .

Chapter 4 Subjective Evaluation of Light Field

Image Compression Methods Based on View Synthesis

Introduction

Subjective quality evaluation of images and videos is a very active eld of research. In this chapter, we propose to conduct subjective experiments of LF compression methods based on view synthesis technique. Specically, four compression approaches have been considered in this study, two methods are view synthesis basis, while the remaining are naive LF coding methods. All these methods have been subjectively and objectively evaluated. The dataset, including non-compressed and compressed LF images, along with subjective scores are provided publicly to facilitate future research works, such as developing new reliable objective quality metrics for LF images based view synthesis methods. This chapter is organized as follows. Section 4.2 describes the performed subjective experiment, including the preparation of the test material, environmental setup and the test methodology. Section 4.3 presents the LF coding methods considered in this study. Section 4.4 described the subjective evaluation. Next, the results and analysis of subjective evaluation are provided in Section 4.5. Finally, Section 4.6 concludes the chapter.

Environment Setup and Test Methodology

A total of 18 naive subjects (10 females and 8 males) took part in the subjective experiments. The age of subjects was ranging from 20 to 58, with an average of 29.4. All subjects were screened for color blindness and visual acuity using Ishihara and Snellen charts, respectively. The subjective evaluations were conducted in a laboratory psychovisual test room, calibrated according to ITU-R BT.500-13 Recommendations [BT.12b], equipped with The subjective experiments have been performed using the recently introduced methodology, named passive test methodology [START_REF] Viola | Comparison and evaluation of light eld image coding approaches[END_REF], without refocusing eect. The methodology is based on DSIS [BT.12b], where both the non-compressed reference and stimulus were displayed in a side-by-side arrangement on the same monitor (described in Section 2.7.2). The non-compressed reference and stimulus were always displayed on the left and right side, respectively, and the subjects were aware of these positions, as shown in Figure 4.1. In addition, the LF contents were presented as a video sequence navigating between the viewpoints. The pseudo-video was created using horizontal scan, starting from the view in the left upper corner down, and proceeding from left to right and right to left in alternate order, which mimics the parallax eect. In [START_REF] Battisti | A study on the impact of visualization techniques on light eld perception[END_REF], it has been noticed that this visualization technique is preferred among six possible dierent visualization strategies, because it reduces the shift among consecutive frames. Moreover, the created videos were displayed with a frame rate of 9 frames per second oering a smooth switching between views.

At the end of the presentation of each pair of videos, a dedicated user interface was displayed on the screen for about ve seconds during which the subject gives its judgment. The participants were asked to rate the level of impairment of the stimulus with respect to the non-compressed reference, using a ve-grade discrete impairment scale (1: very annoying, 2: annoying, 3: slightly annoying, 4: perceptible, but not annoying, 5: imperceptible).

Given the large number of stimuli, a session would exceed 30 minutes, making it hard to show all of them in a single session. Consequently, in order to avoid visual fatigue eects, the subjective experiment was divided into two sessions whose duration does not exceed 20 minutes each. Subjects took a break between each two sessions. Moreover, each test session involved only one subject assessing the stimuli. In order to avoid possible contextual and memory eects, the display order of these stimuli was randomized in a way that the same content was never shown consecutively.

Before the experiment starts, instructions explaining the task were provided to subjects. In addition, training session was held with additional LF contents, allowing the subjects to practice and become familiarized with the test procedure. The quality of these training samples was chosen so that it covers the full rating scale.

Evaluated Light Field Coding Strategies

The LF contents evaluated in the subjective experiments were compressed using four coding strategies. Given that the widely explored coding approach for LF contents is the pseudo-video sequence coding method, we have therefore considered two methods from this category. For both coding methods, all the sub-aperture images are rearranged into a pseudo-sequence using spiral order scan starting from the center view, which is then encoded with a classical video encoder. Two video encoders have been selected for this purpose, the HEVC standard and the JEM that led to the starting point of future video coding standard named VVC. For HEVC, the HM reference software (version 16.9) was used, while for the second method the JEM software (version 7.0) was exploited, both in random access coding conguration. For both methods, all views are encoded and we refer to them as HM-All and JEM-ALL for the rest of this chapter. In addition, in order to avoid the darkness and distorted remote views, only the middle 8 × 8 views were encoded. Furthermore, two Light Field compression methods based on view synthesis have been included in this study. Instead of coding all views, in these approaches, only sparse samples of LF views are encoded and transmitted, while the other views are synthesized at the decoder side. One of the selected methods is described in [START_REF] Zhao | Light eld image coding via linear approximation prior[END_REF], where at the encoder side the views are equally divided into two sets, the selected reference views set and the dropped views set, that is 32 views each. The selected reference views are then rearranged into a pseudo-sequence using horizontal zigzag scan order and compressed with a 2D video encoder standard (JEM in our implementation). The decoded versions of theses latter views are used to linearly approximate the dropped views and only the approximation coecients are transmitted to the decoder. At the decoder side, the selected reference views are decoded and the dropped views are approximated by the weighted sum of the decoded selected views. For the rest of this chapter, we refer to this method as LA-32. Finally, the fourth and last method that we included is the CNN-based view synthesis approach proposed in [START_REF] Huang | Ecient light eld images compression method based on depth estimation and optimization[END_REF]. In this method, the authors proposed a learningbased approach to synthesize new views from a sparse set of input views. The proposed Colorfulness measurement: Colorfulness, referred also as chromaticness, is the attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic.

The denition of colorfulness is very similar to chroma, but chroma is relative perception. Colorfulness usually increases as the luminance is increased, except when the brightness is very high (very colorful outdoor images). Colorfulness of the stimulus is its measure of the intensity of the hue. For measure of colorfulness we should examine the presence of high-saturation colors along various hues [START_REF] Suesstrunk | Measuring colorfulness in natural images[END_REF].

To calculate the colorfulness M, we use the following formula:

M = σ rg 2 + σ yb 2 + 0.3 × µ rg 2 + µ yb 2 (4.2) 
where: σ and µ are the standard deviation and the mean value of the pixel cloud along direction described by subscripts and:

rg = R -G (4.3) yb = 1 2 (R + G) -B (4.4) 
Amount of occluded pixels: One of the most important characteristics of Light Field image is the occlusion exactly with sub-aperture array representation.

Selected dataset: In order to cover a wide range of features, the spatial complexity, color features and the amount of occluded pixels of each LF image have been analyzed using Spatial Information (SI) [P.908], ColorFulness (CF) [START_REF] Suesstrunk | Measuring colorfulness in natural images[END_REF] and occlusion model proposed in [START_REF] Wang | Depth estimation with occlusion modeling using light-eld cameras[END_REF], respectively. Based on these features, a total of ten LF images have been carefully selected for subjective experiments, six from EPFL Light-Field Image Dataset (Bikes, Foun-tain_&_Vincent_2, Friends-1, Overexposed-Sky, Rusty-Fence and University) [START_REF] Rerabek | New light eld image dataset[END_REF], two from INRIA Light-Field Image Dataset (Bee1 and Cactus) [JPF + 17] and two that we acquired by a Lytro Illum camera, namely Flowers and KidsHouse. These LF images represent dierent content, including indoor and outdoor scenes and a wide range of colors, textures and depth properties [PGL + 17]. views [START_REF] Rerabek | New light eld image dataset[END_REF]. As mentioned previously, we only encoded the central 8 × 8 sub-aperture views after being converted to YUV format and downsampled to 4:2:0 with 10-bit depth.

The ten LF images have been encoded using the previously described four compression methods at four compression bitrates, namely R1 = 0.0074 bpp, R2 = 0.0171 bpp, R3 = 0.0384 bpp and R4 = 0.1112 bpp.

Data Processing

First, the subjective scores were screened to detect and exclude possible outliers and we veried the distribution of individual participant scores. Indeed, some data may interfere with the results. Outliers detection was performed as specied in [BT.12b], and no outlier subjects were found in this study. Second, the Mean Opinion Score (MOS) was computed as the mean across scores provided by dierent subjects as follows:

M OS j = 1 N N i=1 s ij (4.5)
where N is the number of subjects and s ij is the score given by subject i for the stimulus j.

In order to evaluate the reliability of the obtained results from statistical point of view, 95% condence intervals (CI), assuming a Student t-distribution of the scores, were computed together with MOS values.

Statistical Analysis

In order to test the existing one for an inuence on the judgment of participants in the quality assessment process, and to verify if this inuence is statistically signicant, we performed an ANOVA analysis of variance. Three parameters were introduced in this experiment: Content, video content (Content of pseudo video), QP and compression method. The degree of inuence of the parameter is based on the value of p. The pvalue is the level of marginal signicance within a statistical hypothesis test representing the probability of the occurrence of a given event. The results in the Table 4.1 showed that the quality level, expressed by this quantication parameter, has a major inuence on the scores obtained (p < 0.0001) while the content has no inuence in this case (with a p = 0.997) One can observe that for all LF images and for all bitrates the LA-32 method provides the best result and outperforms the other compression solutions. The CNN-based view synthesis approach (DL-16) performs well at low and medium bitrates compared to HM-ALL and JEM-ALL methods, whereas it provides low performance for the high bitrates. As expected, JEM-ALL outperforms HM-ALL for all tested LF images and for all bitrates, because it includes dierent improvements compared to HM, thus leading to an improvement of R-D performance. However, these results are reported according to wPSNR objective metric, which is not the best way for assessing the visual quality of LF images. It is easy to see in Figure 4.6 that both methods of view synthesis-based coding (DL-16, LA-32) have a visibly high MOS average compared to JEM-ALL and HM-ALL. In addition, it can also be noted that the behaviour of view synthesis based coding methods is similar. also for the other two methods.

Conclusion

In this chapter, two recent LF compression methods based on view synthesis have been compared subjectively and objectively to two pseudo-video sequence based coding approaches. Experimental results show that the methods based on view synthesis achieve signicant better coding performance without aecting the visual quality. Specically, the subjective quality assessment showed that the view synthesis based methods provide substantial superior visual quality, especially at low and medium bitrates. Finally, subjective evaluation helped us to know that some coding methods visually outperforms other methods, which was not remarkable during the objective evaluation. Introduction A possible extension of our proposed work in chapter 3, is to use a more advanced neural network for a better missing views synthesis. Studies proved that GAN show a great performance in this eld [JZW + 18]. In particular version of the GAN is the D2GAN where a double networks are used to enhance the quality of the synthesized images [START_REF] Nguyen | Dual discriminator generative adversarial nets[END_REF].

In this chapter, we propose an ecient approach to encode the LF images, which consists in encoding a sparse set of views, and estimate the rest of views at the decoder side. In particular, the rst set of selected reference views are coded with the next generation video coding standard called VVC. While the second set of views are either synthesized from the rst decoded set of views using a D2GAN or decoded by a VVC decoder. The D2GAN have been trained with a large set of LF images coded at dierent distortions. The architecture oered by the D2GAN, composed by a generator and two discriminators, enables better training and thus synthesizes views with high visual quality. In addition, to increase the coding eciency, a RDO is adopted to select which views should be encoded and transmitted and which ones should be dropped and synthesized at the decoder side.

The remainder of this chapter is organized as follows. Section 5.2 describes the concepts of D2GAN and VVC. Then, in Section 5.3, we describe the proposed LF image compression solution. Section 5.4 presents and discusses the experimental results. Finally, Section 5.5 concludes this chapter. 81 chapitre5

Background

As mentioned in Section 5.1, the proposed coding approach is based on D2GAN and VVC standard. In this section, we briey introduce these two concepts. 

Dual Discriminator Generative Adversarial Nets

min G max D1,D2  (G, D1, D2) = α E x P data [log D 1 (x)] + E z Pz [-D 1 (G(z))] + E x P data [-D 2 (x)] + β E z Pz [log D 2 (G(z))], (5.1)
where z is a noise vector, E represents expected value, x is the real data, P represents the probability distribution, α and β are two hyper-parameters (0 < α, β ≤ 1) to stabilize the learning of the model and control the eect of KL and reverse KL divergences on the optimization problem [START_REF] Nguyen | Dual discriminator generative adversarial nets[END_REF]. More specically, with a batch of M noise samples z (1) , z (2) , ..., z (M ) given as inputs, the generator generates M articial samples, and this process is dened as G(z (i) ). While, x (1) , x (2) , ..., x (M ) represents a batch of M real data samples.

Three cost functions dened in (5.2), (5.3) and (5.4) are computed to obtain the error that should be transmitted respectively to D 1 , D 2 and G for their backward weights updating, as shown in Figure 5.2 (dash lines).

∇ θ D1 1 M M m=1 [α log D 1 (x (m) ) -D 1 (G(z (m) ))], (5.2) 
∇ θ D2 1 M M m=1 [β log D 2 (G(z (m) )) -D 2 (x (m) )], (5.3) 
∇ θ G 1 M M m=1 [β log D 2 (G(z (m) )) -D 1 (G(z (m) ))]. (5.4) 
In this work, we use D2GAN to synthesize the dropped LF views, where the generator consists of two CNN [START_REF] Khademi Kalantari | Learningbased view synthesis for light eld cameras[END_REF], the rst CNN estimates the disparity and the second one generates the color image.

Versatile Video Coding

Based on HEVC, Joint Video Exploration Team (JVET) is developing a new video coding standard called VVC [START_REF] Segall | Preliminary joint call for evidence on video compression with capability beyond hevc[END_REF]. VVC already enables a bitrate saving of 35% to 40% with respect to HEVC for the same visual quality [SHD + 19]. VVC introduces several new coding tools at dierent levels of the coding chain including frame partitionning, intra/inter predictions, transform, quantization and entropy coding. For more details about the VVC coding tools the reader can refer to [START_REF] Reuze | Dynamic lists for ecient coding of intra prediction modes in the future video coding standard[END_REF]. VVC supports by design the temporal scalability through the RA coding conguration. This latter, illustrated in Figure 5.3, enables dierent temporal layers and each temporal layer uses as reference only frames from lower temporal resolution, i.e., lower layer. Therefore, frames of each temporal layer t i can be removed without impacting the decoding of frames of lower temporal resolution t j with t i > t j .

In the proposed coding approach, we exploit the concept of temporal resolution to drop views at the encoder without impacting the decoding process and thus performing the best rate distortion performance.

Proposed LF Image Compression Method

The idea behind the proposed coding method is, instead of transmitting all the LF views, to drop a sub-set of views at the encoder side and synthesize them at decoder side, thus considerably reducing the required bitrate for LF images. To eciently achieve that, we exploit the temporal scalability of VVC and use the D2GAN model, all in a RDO process.

At the encoder side, rst, LF sub-aperture views are organized into groups of 16 views that form GOPs, as illustrated in Figure 5.3. Next, in each GOP, the images of temporal levels 0, 1 and 2 are encoded using the VVC codec, which constitute the reference views used later in the synthesis process at the decoder side. Then, the images at the remaining levels 3 and 4 are either coded using the VVC codec or dropped. In contrast to x the number of dropped views, in our approach this is done adaptively on the basis of the proposed RDO process described in the Algorithm 2 and explaining in the following.

As illustrated in Figure 5.3, we apply RDO process on the 3 consecutive frames, i.e., frame i at level 4, frame i + 1 at level 3 and frame i + 2 at level 4. It should be noted that if one of the views at temporal level 4 (frame i or i + 2) must be encoded using VVC, then the frame i + 1 at level 3 is also encoded using VVC, because it will be used as a reference for the frames at temporal level 4.

Main reasons behind only considering the 2 upper levels exclusively to the RDO block are, rstly, after an extensive study, we found that these levels occupy together around 28% of the total bitrate. Second, the views at the upper levels are not used as references in the VVC coding scheme.

Thus, we proposed a RDO block deciding which views from the upper level can be encoded using VVC or dropped and synthesized using D2GAN. To reach this goal, the chapitre5 For the training phase of D2GAN, 3 congurations were considered : 1) training with the original views , 2) training with reconstructed views at multiple distortion levels including the original views and 3) training for each one distortion level separately. We compared the three congurations, and the obtained results are given in Table 5.1. Based on these results, the third conguration, i.e., D2GAN reconstructed separately, outperforms the other congurations and hence we used it for the D2GAN training. The training conguration of D2GAN was set as follows: we trained the generator G and two discriminators (D 1 and D 2 ) with the ADAM optimizer [KB14] by setting β 1 = 0.9, β 2 = 0.999, learning rate= 0.0002, batch-size= 10 and kernel size of convolutional layers as depicted in Figure 5.2. The regularization coecients of D 1 and D 2 was set as α = 0.2 and β = 0.2, respectively. For the generator, we used input patch of 60×60, stride= 16, and output patch= 36 × 36 (reduced size is due to the convolutions).

Evaluations

We compared the proposed scheme with four state-of-the-art methods: 1) VVC-All that encodes all views with the VVC in RA coding conguration, 2) LF-GAN method proposed in [JZW + 18], where a sub-set of views are coded with HEVC, while the remaining views are generated by GAN and the residual error of views are transmitted to the decoder, 3) the method proposed in [LWL + 16] encoding the views as a pseudovideo sequence using specic order scan, 4) the method of Hou el al. [START_REF] Hou | Light eld image compression based on bilevel view compensation with rate-distortion optimization[END_REF] that exploits the inter-and intra-views correlation to encode the views using HEVC. The latter method is considered as the anchor method.

Results

The BD-BR [START_REF] Bjøntegaard | Calcuation of average psnr dierences between rdcurves[END_REF][START_REF] Bjøntegaard | Improvements of the bd-psnr model[END_REF] is a PSNR based metric. It is used in this chapter to assess the gain of the proposed approach compared to the anchor solution. A negative BD-BR value refers to a bitrate reduction compared to the anchor method, while a positive value expresses a bitrate overhead. R-D curves based on PSNR for the 9 LF images are provided in Figure 5.5. We can notice that for all considered images, the proposed coding method provides the highest performance for all bitrates. The previous conclusion is conrmed by Table 5.2, providing the Bjøntegaard results of the four coding solutions compared to the anchor one [LWL + 16]. The proposed method achieved an average BD-BR gain of -24.1% and The complexity of the proposed coding approach is also evaluated and compared to the other methods on both CPU and GPU platforms. The performance has been carried-out on an Intel core i9-7900X CPU running at 3.3GHz PC with 64 GB memory and a TITAN Xp NVDIA GPU. It is important to note that the GPU is only used when the D2GAN block is involved in the coding scheme.

Table 5.3 gives the encoding and decoding run times in seconds. We can notice that the proposed solution requires almost the same complexity in the encoding for all QP compared to [JZW + 18] and [START_REF] Hou | Light eld image compression based on bilevel view compensation with rate-distortion optimization[END_REF] methods. The GPU enables to speedup the encoding part related to the D2GAN block. However, the decoder of the proposed solution is more complex than the other solutions due the D2GAN block.

Conclusion

In this chapter, we have proposed a view synthesis based LF image compression approach. In the proposed coding scheme, a set of views are encoded using VVC, while the remaining views are dropped. The dropped views are synthesized using enhanced GAN-based approach known as D2GAN. The transmitted and dropped views are selected using RDO process. In addition, in order to avoid impacting the decoder with the dropped views, the latter are determined according to the temporal scalability of VVC. All these features allow reducing bitrate required by LF image, while providing views with high visual quality.

The experiments results show the eciency of our scheme, which achieved bitrate reduction of -24.1% in terms of BD-BR and increased the visual quality by 0.83 dB in BD-PSNR.

Chapter 6 Conclusion and Perspectives General Conclusion

In this thesis, several contributions have been proposed. The conducted works have been done with the aim to develop methods for ecient LF image coding based on standard 2D encoders and Deep Learning techniques while providing optimal quality of experience. Below, we summarize the contributions of the thesis, and then propose some directions for future research.

Firstly, we introduced a LF coding solution based on the linear approximation and CNN, where only a small set of views in a LF image is coded. The dropped views are either linearly approximated or generated by the trained CNN based on a RDO scheme. The training of CNN is applied by providing a sequence of random minibatches of LF images uniformly selected from the entire training LF dataset. The value of the Lagrangian multiplier in the RDO scheme was empirically set after an exhaustive testing over a large set of LF images.

As a second contribution, we conducted a subjective test for visual quality assessment of LF contents, using a framework recording user interaction and analyzing how Quality of Experience (QoE) is aected by compression distortions. Two recent LF compression methods based on view synthesis have been compared subjectively and objectively to two pseudo-video sequences based coding approaches. Experimental results show that the method based on view synthesis achieves signicant better coding performance without aecting the visual quality. Specically, the subjective quality assessment showed that the view synthesis based method provides substantial superior visual quality, especially at low and medium bitrates.

Finally, the last contribution following the same way as the rst one contribution, consisting of encoding a sparse set of views, and estimating the rest of views at the decoder side. In particular, the rst set of selected reference views are coded with the next generation video coding standard called VVC, while the second set of views are either synthesized from the rst decoded set of views using a D2GAN or decoded by a VVC decoder. The D2GAN has been trained with a large set of LF images coded at dierent distortions. The architecture oered by the D2GAN, composed by a generator and two discriminators, enables better training and thus synthesizes views with highly visual quality. In addition, to increase the coding eciency, a RDO is adopted to select which views should be encoded and transmitted and which ones should be dropped and synthesized at the decoder side.

Future Work and Perspectives

As future work, we can propose a method to determine the optimal value for higher eciency of the RDO scheme. Moreover, we can perform the coding step by using Densely Connected Convolutional Networks (DenseNet) [START_REF] Huang | Densely connected convolutional networks[END_REF]. The DenseNet connects each layer to every other layer in a feed-forward fashion, whereas traditional convolutional networks with L layers have L connections -one between each layer and its subsequent layer. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers.

In addition, it could be interesting to measure whether another factor as refocusing views has any impact on observer's voting. Future works can include more LF compression methods based on view synthesis, as well as other more recent compression methods for LF images.

Finally, using Curriculum Learning (CL) in the training phase can improve the performance of LF compression methods based on view synthesis. The idea of human CL attempts to impose a structure on the training group [START_REF] Bengio | Curriculum learning[END_REF]. Such a structure is essentially based on a notion of "easy" and "dicult" examples and uses this distinction in order to teach the learner to generalize easier examples before more dicult examples. Thus, we can classify the LF images used during the training stage according to their complexity in relation to their contents. For instance, images with lot of details, i.e., highly textured, could be considered as dicult images and vice versa. Abstract: Computer vision applications such as refocusing, segmentation and classification are becoming one of the most advanced services in the field of image processing, but such applications require rich semantic information of the scene. 3D technology is widely used in the fields of entertainment, medical imaging and education. There are different ways of representing 3D information. A recent technology of growing importance is Light Field (LF) images. The LF image is an unconventional image containing dense information such as the intensity of the light rays interacting with the scene. However, such an imaging system has many drawbacks, including the large amount of data produced. This requires appropriate compression techniques. The goal of this thesis is to develop new methods for efficient LF image and video compression. The recent success in deep learning in various fields, particularly in the areas of image and spee-ch processing. Thus, the overall established as a key factor in this research work. The first part of this thesis proposes a CNN-based light field coding scheme that includes RDO followed by post-processing. The main concept is to exploit the correlation between the different LF views and avoid coding of all views. So, one set of LF views is coded by a standard 2D encoder while others are estimated by linear approximation or generated by CNN. The second part shows very significant gains while drawing a subjective comparison between the proposed coding solutions and the standards. Finally, the last part of this thesis consists in integrating a Dual Discriminative Generative Adverserial Network (D2GAN) into the standard hierarchical Versatile Video Coding (VVC) encoder. The overall idea is to encode the views of the upper hierarchical level and generate them with D2GAN at the decoder side.

List of Figures

Figure 1 :

 1 Figure 1: La technologie Light Field permet une reproduction de la réalité très dèle en Réalité Virtuelle (VR)

Figure 2 :

 2 Figure 2: Exemples de caméras plénoptiques

Figure 3 :

 3 Figure 3: The LF technology allows a very faithful reproduction of reality in Virtual Reality (VR)

Figure 4 :

 4 Figure 4: Samples of Light Field camera.

Figure 1 . 1 :

 11 Figure 1.1: LF imaging processing ow [PdSL + 17]

Figure 1 . 2 :

 12 Figure 1.2: Examples of LF camera arrays: (a) Stanford's multi-camera array, in which conventional cameras are arranged regularly in a linear array with full parallax [RMS16] and (b) distributed LF camera, 64 cameras with distibuted rendering [YEBM02].

Figure 1 . 3 :

 13 Figure 1.3: Timeline of the plenoptic cameras announced recently in the market [TZAG13, RAY]

Figure 1 . 4 :

 14 Figure 1.4: Plenoptic 1.0 and Plenoptic 2.0 cameras [APKS18] optical design also called unfocused and focused plenoptic camera[START_REF] Lumsdaine | The focused plenoptic camera[END_REF] respectively. The fundamental dierence in the optical setup between Plenoptic 2.0 and Plenoptic 1.0 is that in the former, the micro-images are focused on the scene (through the relay system), while in the latter they are completely defocused relative to the scene.

Figure 1 . 5 :

 15 Figure 1.5: The lenslet-based plenoptic camera. Plenoptic camera with 2 microlenses and 3 pixels.

Figure 1

 1 Figure 1.6: (a) Spatial parametrization of 5D-LF representation and (b) 4D-LF representation.

Figure 1

 1 Figure 1.7: (a) Rays captured by the microlens (3,3) and the process passing to the photosensor and (b) Raw Light Field photograph.

Figure 1

 1 Figure 1.8: (a) Process of making a sub-aperture image and (b) Sub-aperture images from a plenoptic camera.

Figure 1 . 9 :

 19 Figure 1.9: The epipolar plane image

  2. Therefore, LF technology allows to generate refocused image by using multiple techniques such as Fourier transform [NLB + 05] and It simply relies on the LF Toolbox software [Dan14] that is developed by D. Dansereau.It, mainly, uses function LFFiltShiftSum. This works by shifting all the available sub-aperture images of each Light Field image to the same depth, and then adding all the subaperture images together to produce a 2D depth plane extracted from the original Light Field.

Figure 1 .

 1 Figure 1.10: LF image refocusing: (left) refocused on foreground and (right) refocused on background

Figure 1 .

 1 Figure 1.11: Actually seeing two visualizations here, (a) an st-arrays of (u,v ) images or (b) uv-arrays of (s,t) images. First on (a), each image is the angular distribution of rays around a point on the (u,v ) or camera plane. It looks like a perspective view of the scene. On (b), angular distributions around points on the (s,t) or focal plane. These look reectance maps because the object is near the (s,t) plane [LH96].

Figure 1 .

 1 Figure 1.12: (a) Interactive mixed reality head-mounted viewer and (b) using a headmounted viewer, one can visualize and make design changes in real time.

Figure 1 .

 1 Figure 1.13: (a) Array of microlenses responsible for the angular distribution of light rays and (b) Light Field displays used to render 3D holographic information for drivers.

Figure 1 .

 1 Figure 1.14: The future of LF displays. Interactive 3D holographic scenes in large venues.

Figure 2 . 1 :

 21 Figure 2.1: Images segmented using Simple Linear Iterative Clustering (SLIC) into superpixels of size 64, 256, and 1.024 pixels (approximately)

Figure 2 . 2 :

 22 Figure 2.2: Illustration of the hybrid video coding scheme

Figure 2 . 3 :

 23 Figure 2.3: The eight possible PU partition schemes.

Figure 2 . 4 :

 24 Figure 2.4: (a) HEVC intra prediction modes and (b) intra prediction pixel samples available from the neighbouring reconstructed blocks.

Figure 2 . 5 :

 25 Figure 2.5: A traditional hierarchical GOP structure. P and B frames can be predicted from multiple reconstructed reference frames.

Figure 2

 2 Figure 2.6: (a) Intra prediction modes in VVC and (b) block partitioning binary split and ternary split in VVC.

2 . 4

 24 Machine Learning and Deep Learning2.4.1 General IntroductionHumans and animals have the lifelong ability to learn, acquire, control and develop their knowledge and skills. This ability, referred to as lifelong learning, is mediated by a rich set of neural cognitive mechanisms that together contribute to the development and allocation of sensory skills, cognition and learning. It ,furthermore, allows living creatures to identify objects and understand accidents as well as to enhance and restore memory in the long run.

Figure 2 .

 2 Figure 2.7: Neural network design.

Figure 2 .

 2 Figure 2.8: Sigmoid function.

Figure 2 .

 2 Figure 2.9: Example of CNN that uses some layers, looks at an image and outputs the correct class for it.

Figure 2 .

 2 Figure 2.10: (a) Convolutional Neural Layer: a matrix known as a kernel is passed over the input matrix to create a feature map for the next layer and (b)a CNN arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers and the mouvement of lter on the input

Figure 2 .

 2 Figure 2.11: GAN Architecture.

Figure 2 .

 2 Figure 2.13: Pseudo video sequence of Light Field image with four scan orders.

Figure 2 .

 2 Figure 2.14: The coding order and prediction structure taking 9×9 views as an example for illustration. Only a portion of views is shown, with color indicating its layer. The arrows show prediction relations, each from reference to target view [LWL + 16].

Figure 2 .

 2 Figure 2.15: Linear approximation coding scheme [SZ17].

Figure 2 .

 2 Figure 2.16: Deep learning views synthesis [KWR16].

Figure 2 . 17 :

 217 Figure 2.17: Light Field representation using binary images and weights [KTF18].

  .13) where L(s, t, x, y) is the original Light Field image, N represents the number of binary images and n = 1,...N . Only these information are sent to the decoder, this oers

Figure 2 . 18 :

 218 Figure 2.18: Scalable LF compression by weighted binary images [KTF18].

Figure 2 .

 2 Figure 2.19: (a) MVI groups of view images. (b) Dependency among centers of MVIs shown as a tree unit.

Figure 2 .

 2 Figure 2.21: Visual quality of the image Fruit from the INRIA LF dataset [JPF + 17], view (3,3) in the array sub-aperture 8 × 8. From left to right: original view, encoded respectively with HEVC (bitrate = 0.064 bits per pixel (bpp), PSNR = 31.5 dB, SSIM = 0.936) and VVC (bitrate = 0.073 bits per pixel (bpp), PSNR = 32.3 dB, SSIM = 0.947).

3 . 2 Figure 3 . 1 :Figure 3 . 2 :

 323132 Figure 3.1: Global concept of our proposed scheme.

Figure 3 . 3 :

 33 Figure 3.3: RDO-based Light Field coding using CNN and LA Scheme. Proposed LF image coding scheme (the new blocks are highlighted in green)

Figure 3 . 4 :

 34 Figure 3.4: Sub-aperture representation of a LF image splitted into 4 groups of views (GOV). Each group of views takes the 4 corner views as reference, while view I represents the position of the intra frame.

Figure 3 . 5 :

 35 Figure 3.5: Quality performance for LF images 8 * 8 views: (a) with 4 views as references and (b) with four GOV, 16 views as references.

Figure 3

 3 Figure 3.6: MSE per pixel based comparison with and without RDO of Rusty-Fence and Stairs LF images.

Figure 3

 3 Figure 3.7: (a) PSNR dierence of the LA estimated and CNN synthesized views against the reference views of the LF images at quantization parameter (QP)=22 (negative value notice that the CNN is better then LA for this view, positive value notice the LA is better): (a) Stairs and (b) University.

Algorithm 1 : 3 if

 13 Algorithm of the RDO between LA and CNN 1 foreach intermediate view do 2 Compute Cost RD (J) per itermediate view for both LA and CNN; /* Choose the best between LA and CNN for current view */ Cost RD (CNN) < Cost RD (LA)

Figure 3

 3 Figure 3.8: (a) HSP2P correlation between views, (b) Pixel in the target super-pixel S A i (in gray) is compared with all pixels in the reference super-pixel S B j in green and its neighbors in blue.

Figure 3 .

 3 Figure 3.9: Quality comparison for LF image Bikes (view (2,2)) at QP=28. a) original view, b) before post processing (PSNR = 36.22 dB, SSIM = 0.88), c) after post processing (PSNR = 36.5 dB, SSIM = 0.890).

Figure 3 .

 3 Figure 3.10: R-D curves based on wPSNR of the four considered solutions for four test LF images: (a) Building, (b) Friends1, (c) Stairs and (d) University.

Figure 3 .

 3 Figure 3.11: Disparity estimator neural network and color predictor neural network consists of four convolutional layers with decreasing kernel sizes.

Figure 3 . 12 :

 312 Figure 3.12: Overall visual comparisons for showing the visual quality of view at position (3, 2) of the 4 methods: a) original views, cropped decoded views by b) JEM-All, c) LA-32, d) DL16 and e) our proposed method.

Figure 3 .

 3 Figure 3.12 shown the visual quality of the two LF images with the four considered solutions. U niversity, b) bitrate= 0.01790 bpp, WPSNR= 32.10 dB, SSIM= 0.788, c) bitrate= 0.01664 bpp, WPSNR= 33.38 dB, SSIM= 0.829, d) bitrate= 0.01610 bpp, WPSNR= 33.42 dB, SSIM= 0.837, e) bitrate= 0.01619 bpp, WPSNR= 33.81 dB, SSIM= 0.85. Rusty -F ence, b) bitrate= 0.01730 bpp, WPSNR= 31.91 dB, SSIM= 0.866, c) bitrate= 0.01649 bpp, WPSNR= 33.465 dB, SSIM= 0.901, d) bitrate= 0.01577 bpp, WPSNR= 33.41 dB, SSIM= 0.905, e) bitrate= 0.01710 bpp, WPSNR= 34.29 dB, SSIM= 0.935. F ountain V incent 2 , b) bitrate= 0.01670 bpp, WPSNR= 34.97 dB, SSIM= 0.877, c) bitrate=0.01654 bpp, WPSNR= 36.43 dB, SSIM= 0.901, d)bitrate= 0.01601 bpp, WPSNR= 36.447 dB, SSIM= 0.907, e) bitrate= 0.01597 bpp, WPSNR= 36.68 dB, SSIM= 0.913. Table3.2 reports the performance in terms of BD-BR based on SSIM[START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], comparing the proposed scheme with the anchors JEM-All and H2DC-CNN. It is clear that the proposed scheme provides better results than both H2DC-CNN and JEM-ALL,

  chapitre4

Figure 4 . 1 :

 41 Figure 4.1: Screenshot from the subjective study interface displaying the video to the subjects.

Figure 4 . 2 :

 42 Figure 4.2: Distributions of the three properties of the selected LF contents.
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  curves based on weighted PSNR (wPSNR) of the four evaluated methods are provided in Figure4.4. In these plots, the horizontal axis reports the bitrate required to encode the LF image and the vertical axis represents the average wPSNR across all sub-aperture images calculated for YUV channels, where the factor 6 is assigned to the luminance channel and the factor 1 for each chrominance channel [OSS+ 12].
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  GANs are deep neural net architectures composed of two consecutive neural network models, namely generator G and discriminator D. GAN enables to simultaneously train the two models: the generative model G that captures the data distribution, and the discriminative model D that estimates the probability that a sample came from the training data rather than from G [Ga14]. GAN has recently achieved great successes in various elds, especially in fake video generation, super-resolution and objects detection [LTH + 17, BZDG18].
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 51 Figure 5.1: Dual discriminator generative adversarial networks architecture. D2GAN, is a novel framework based on GAN, which uses two discriminators D 1 and D 2 , where D 1 tries to assign high scores for real data, and D 2 tries to assign high scores for the fake data, as shown in Figure 5.2. This technique uses the two discriminators to minimize the Kullback-Leibler (KL) divergence and reverse KL between the generated image and the target image [NLVP17]. Formally, D 1 , D 2 and G now play the following three player minimax optimization game:
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 52 Figure 5.2: Detailed D2GAN architecture.
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 53 Figure 5.3: Hierarchical prediction structure in VVC. One GOP is shown.
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 4154 Figure 5.4: Thumbnails of the considered nine LF images: a) Bikes b) DangerDeMort c) Flowers d) Ankylosaurus_Diplodocus 1 e) Aloe f) Stone_pillars_outside g) Bedroom h) Desktop i) Herbs.
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 55 Figure 5.5: RD curves of the ve considered solutions for the 9 LF images using four QP values.
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 1 

	Approach	Year	Implementation	Resolution	Capture speed
	Yang et al. [YEBM02]	2002	8×8 camera array	320×240×8×8	15-20 fps
	Wilburn et al. [WJV + 05]	2005 10×10 camera array	640×480×10×10	30 fps
	Light Field gantry [Ada02] 2002	Gantry	1300×1030×62×56	5h/slab
	Ng et al. [NLB + 05]]	2005	Microlens array	292×292×14×14	16 ms
	Lytro Illum [TZAG13]	2014	Microlens array	625×434×15×15	3 fps

1: A summary of typical Light Field acquisition approaches.

Table 1 .

 1 This section presents important open source Light Field images datasets. The properties of these datasets are summarized in Table1.2, including synthetic, real-world and microscopy LF scenes. 2: Most relevant datasets with corresponding features.

		Dataset	Year	Features	Acquisition devices
		Stanford LF archive	2008	More than 20 images	Microscope and Camera Array.
	Synthetic LF archive	2013	more than 17 Light Field images, includes transparencies, occlusions and reections.	Camera (Articial LF)
	EPFL LF image dataset 2015	More than 118 images with dierent categories: urban, landscapes, etc.	Lytro Illum
		INRIA LF dataset	2017	More than 46 images, low lighting conditions, indoor and outdoor.	Lytro Illum
		Our LF dataset	2018	More than 30 images, indoor, outdoor transparencies, occlusions and reections.	Lytro Illum
	1.6	LF Functionalities

Table 2 .

 2 1: Compressed le sizes in mega bytes[START_REF] Helin | Minimum description length sparse modeling and region merging for lossless plenoptic image compression[END_REF]. The size of the original le is 183 MB.

	LF Image	HEVC AVC	HM
	Bikes	82.0	80.8 88.32
	Danger_de_Mort	87.0	86.5 95.46
	Color_Chart_1	83.3	81.9 96.40
	ISO_Chart_12	78.3	78.5 84.96

Table 2 .

 2 2.3. 3: The main recommendations of ITU for subjective quality assessment tests.

	ITU recommendation	Name
	BT.500	Recommendation ITU-R BT.500-13 (2012), methodology for the subjective assessment of the quality of television pictures.
	P.910	Recommendation ITU-T P.910 (2008), subjective video quality assessment methods for multimedia applications.
	J.140	Subjective picture quality assessment for digital cable television systems.
	BT.1129 SDTV	Subjective assessment of standard denition digital television.

Table 3 .

 3 2: Coding gains of the proposed solution in BD-BR based on SSIM and PSNR.

		PSNR-based	SSIM-based
		BD-BR BD-PSNR BD-BR BD-SSIM
	vs JEM-All	-50.34%	1.393	-63.71%	0.031
	vs H2DC-CNN -30.06%	0.619	-21.14%	0.008

Table 3 .

 3 3: Running time in seconds of the encoder and decoder for Bikes image.

			Encoder side					Decoder side		
		JEM-All LA-32 [ZC17]	Our	JEM-All LA-32	DL-16	Our	
	QP	CPU	CPU	CPU	GPU	CPU	CPU	CPU GPU CPU GPU
	22	1369	1039	727	650	4	11	114	69	325	279
	26	1086	850	669	600	3	10	113	67	325	277
	32	778	675	592	521	3	10	113	67	323	276
	37	599	572	535	462	3	9	113	65	322	274

Table 4 .

 4 1: Analysis of variance, one factor for all congurations.

	Factor	p-Value	Impact
	quantization parameter	<0.0001	***
	Compression method	0.002	**
	Content of pseudo video 0.997084	

Convolution Layer ReLU Batch Normalization + ReLU Fully Connected X Real 1x1 Conv, 50 ReLU 3x3 Conv, 100 ReLU 5x5 Conv, 100 ReLU 7x7 Conv, 200 1x1 Conv, 50 x 3 ReLU 3x3 Conv, 100 ReLU 5x5 Conv, 100 ReLU 7x7 Conv, 51 1 6 V ie w s Color CNN Disparity CNN Generator QP Original Reconstructed ReLU 3x3 Conv, 64 BN 64 + ReLU 3x3 Conv, 128 3x3 Conv, 128 3x3 Conv, 256 3x3 Conv, 256 3x3 Conv, 512 3x3 Conv, 512 1x1 Conv, 1024 BN 128 + ReLU BN 128 + ReLU BN 256 + ReLU BN 256 + ReLU BN 512 + ReLU BN 512 + ReLU 3x3 Conv, 64 D 1 ReLU 3x3 Conv, 64 BN 64 + ReLU 3x3 Conv, 128 3x3 Conv, 128 3x3 Conv, 256 3x3 Conv, 256 3x3 Conv, 512 3x3 Conv, 512 1x1 Conv, 1024 1024, FC BN 128 + ReLU BN 128 + ReLU BN 256+ ReLU BN 256 + ReLU BN 512 + ReLU BN 512 + ReLU 3x3 Conv, 64

  

Table 5 .

 5 1: The average coding gains in terms of BD-BR of D2GAN, trained with reconstructed views, in comparison with the anchor D2GAN training with original views.

					wPSNR-based	SSIM-based	
					BD-BR BD-PSNR BD-BR BD-SSIM	
			vs. D2GAN Reconstructed	-11.0%	0.25	-20.3%	0.013	
			vs. D2GAN Recons. separately	-16.6%	0.39	-25.5%	0.022	
	Table 5.2: BD-BR and BD-PSNR gains calculated against anchor method described
	in [LWL + 16]. 1) Bikes 2) DangerDeMort 3) Flowers 4) Ankylosaurus_Diplodocus 1 5)
	Aloe 6) Stone_pillars_outside 7) Bedroom 8) Desktop 9) Herbs.	
		VVC-All	Jia et al. [JZW + 18]	Hou et al. [HCC19]	Proposed
	Im. BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR
	1)	11.7%	0.72	6.3%	0.48	6.9%	0.49	22.4%	0.96
	2)	7.8%	0.22	10.8%	0.28	8.7%	0.26	16.5%	0.40
	3)	12.3%	0.56	11.9%	0.54	16.2%	0.72	16.6%	0.74
	4)	13.2%	0.44	14.9%	0.72	12.3%	0.39	18.0%	0.57
	5)	26.4%	0.85	9.1%	0.31	2.46%	0.12	42.3%	1.23
	6)	18.3%	0.61	15.1%	0.52	11.9%	0.28	35.6%	0.98
	7)	5.3%	0.46	4.0%	0.32	2.3%	0.18	9.5%	0.85
	8)	19.6%	0.32	7.5%	0.11	44.1%	0.61	26.3%	0.45
	9)	26.0%	1.14	4.4%	0.11	6.9%	0.20	29.8%	1.32
	Av. 15.6%	0.59	8.3%	0.35	0.54%	0.15	24.1%	0.83
	gradient ascent and descent, respectively. The backward propagation of errors (i.e., cost
	functions) is applied to update the discriminators and generator with mini-batch size
	equal to M , as shown in Figure 5.2.				

Table 5 .

 5 3: Running time in seconds of the four LF image coding methods.

	Encoder

BD-PSNR of 0.83 dB compared to the anchor method [LWL + 16].

http://www.lytro.com/imaging

https://www.raytrix.de/

Thus, in Figure4.5, the tted R-D curves based on the MOS are illustrated. The same conclusion may be drawn from this Figure regarding the LA-32 method. However, for DL-16 method, the results are quite dierent from objective evaluation, since this method achieves clearly better visual quality than HM-ALL and JEM-ALL methods, especially at low and medium bitrates. Globally, the LF coding methods based on view synthesis (LA-32 and DL-16) provide the highest visual quality at all bitrates. For instance, for most LF images their visual quality provided at medium bitrate is roughly the same as the one achieved by the naive coding approaches (HM-ALL and JEM-ALL)

Remerciements

Existing LF Image Coding Techniques

Subjective Distortion Metrics

Subjective test is the most accurate way to measure the quality of a multimedia stream. More precisely, subjective evaluation stresses on visual aspects that are not considered in the objective tests. For instance, distortions on edges are not visually disturbing as distortions in the homogeneous zones. Such an example leads to a low objective metric, whether visually or subjectively it must give a high score.

In addition to the objective metrics, we subjectively evaluated our proposed method. The environment of the subjective experiment is equipped with recent tools that help viewers evaluate video and images. This environment was established according to the approved standard that is recommended in the ITU-R Rec. BT.1788. To be more specic, the quality and strength of lighting inside and paint colors used in addition to the adoption of the distances to assess the quality of images and videos for all compression methods.

Organization of Subjective Tests

In a quality subjective experience, organizers must meet a number of criteria in order to obtain reliable results. Therefore, the environment of the experiment and the test conditions must be strictly dened. Thus, the instructions given to observers, the stimuli present and the evaluation methodology are elements that can be xed by the organizers. However, some factors related to the observers themselves, such as origin, culture or mood, can inuence. The latter can be controlled by applying specic constraints such as vision tests and the use of several participants within the same experiment.

The observers: The subjective quality of visual content can vary considerably from one observer to another. Observers may be expert or non-expert depending on the objectives of the assessment. To reduce this variation gap, visual stimuli must be visualized by a set of observers. Recommendation ITU-R BT.500 [BT.12b] stipulates the use of at least 15 uninitiated or naive individuals to assess the quality of a visual stimulus. These observers must pass visual tests (Snellen scale) and have the ability to distinguish colours (Ishihara test, for example). Gender parity and the age of the participants are also important elements for a "quality" experience. Finally, the question of remuneration is raised.

The test conditions: Observers who have passed the visual tests are selected and the test conditions are explained to them : comparison methods, rating scales, etc. It is also recommended to start the experiment with a series of tests to familiarize users with the equipment of the experiment and to anchor their judgment.

A test session is typically composed of a set of potentially degraded stimuli (images or videos). The order of presentation of these stimuli must be random in order to avoid the observer's deconcentration and weariness. ITU also recommends that the duration of a test session should not exceed 30 minutes. Require:

end if end for encoder computes the rate distortion (RD) cost function J given by (5.5) for both the VVC decoded view and the one synthesized by the D2GAN.

where λ is the Lagrangian multiplier, D is the distortion and R is the rate in bpp. To set the Lagrangian multiplier (λ), we empirically determine its value by testing a large set of LF images. We found that the value of 0.1 for λ is optimal and for which the Lagrangian optimization is giving the best performance. At the decoder side, the dropped views are synthesized using D2GAN block. As a reminder, the D2GAN is composed of a generator G and two discriminators D 1 and D 2 . G consists of two CNNs [START_REF] Khademi Kalantari | Learningbased view synthesis for light eld cameras[END_REF], the rst CNN estimates the disparity and the second one generates the color image. A set of features (mean and standard deviation) of a sparse set of views (16 views) are fed to the disparity CNN that estimates the disparity at an intermediate view, and then used it to warp (backward) all the input views to the intermediate view. The second color CNN uses all the warped images, derived from the rst CNN, to predict the color and synthesizes the dropped views.

Given that the generator G and discriminators (D1 and D2) are CNN-based blocks, a training phase is required to x respectively their parameters θ G , θ D1 and θ D2 . Unlike GAN, in D2GAN, the scores returned by G are values in R + rather than probabilities in [0, 1]. The discriminators and generator are alternatively updated using stochastic Author's publications