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Résumé en Francais

Introduction

Les applications de vision par ordinateur telles que le refocusing, la segmentation et la
classi�cation deviennent l'un des services les plus avancés dans le domaine de traitement
d'image. Dans telles applications nécessitent des informations sémantiques riches de la
scène. La technologie 3D est largement utilisée dans les domaines du divertissement,
de l'imagerie médicale et de l'éducation. Il existe di�érentes manières de représenter
l'information 3D. L'une des plus répandues consiste à associer à une image classique dite
de texture, une image de profondeur de champ. Cette représentation conjointe permet
ainsi une bonne reconstruction 3D dès que les deux images sont bien corrélées, et plus
particulièrement sur les zones de contours de l'image de profondeur. En comparaison
avec des images 2D classiques, la connaissance de la profondeur de champs pour les
images 3D apporte donc une information sémantique importante quant à la composition
de la scène.

Figure 1: La technologie Light Field permet une reproduction de la réalité très �dèle en Réalité
Virtuelle (VR)

Une autre technologie qui prend plus d'importance c'est la technologie LF. L'image
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6 Résumé en Francais

LF est une image non conventionnelle contenant des informations beaucoup plus que
l'intensité sur les rayons lumineux qui interagissent avec la scène. Elle donne une de-
scription très riche d'une scène 3D permettant d'o�rir une large bande de fonctionnalités.
A titre d'exemple, elle permet la synthèse avancée de vues intermédiaires, ainsi que la
re-focalisation de l'image après acquisition.

L'intérêt dans la technologie LF continue à croitre de manière très signi�cative,
notamment avec la pénétration croissante des dispositifs d'acquisition et d'a�chage
pour le contenu LF sur le marché du grand public.

En particulier, on utilise un ensemble dense de caméras et de matrices de micro-
lentilles comme la caméra Plénoptique [NLB+05] (Figure 2), pour avoir la direction de
chaque rayon venant de la scène vers le système d'acquisition LF.

(a) Lytro Illum (b) Raytrix

Figure 2: Exemples de caméras plénoptiques

Ceci peut être extrait et représenté par des coordonnées spatiales et angulaires.
Cependant, un tel système d'imagerie présente de nombreux inconvénients, notamment
la grande quantité de données produites et la complexité augmente pour la représenta-
tion de la scène. Ce qui pose donc de manière urgente la question de leur compression.

Contributions

Dans cette thèse, nous proposons ainsi dans un premier temps un schéma de codage
LF basé réseaux de neurones convolutionnels (CNN) qui inclut une optimisation débit-
distorsion (RDO) suivi par un post-traitement. Le principe consiste à exploiter la
corrélation entre les di�érentes vues LF et éviter le codage de toutes les vues. Les vues
LF sont donc divisées en 3 ensembles, un premier ensemble qui est codé par un codeur
2D standard, un deuxième ensemble qui est approximé linéairement et un troisième
ensemble qui sera synthétisé au niveau du décodeur soit par une approximation linéaire
soit par synthèse avec Convolutional Neural Networks (CNN) selon la décision faite par
le bloc RDO. Ensuite, nous intégrons le Dual Discriminator Generative Adversarial Nets
(D2GAN) avec l'encodeur hiérarchique Versatile Video Coding (VVC). L'idée globale
consiste à éviter de coder les vues de niveau hiérarchique supérieur et de les générer
avec D2GAN au niveau du décodeur. En�n, nous évaluons les deux schémas proposés
subjectivement sur un ensemble d'images LF de plusieurs bases de données di�érentes.
Les conditions des tests psychovisuels respectent les normes de l'Union Internationale
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des Télécommunications (ITU). L'élément le plus remarquable est que les méthodes de
codage basées sur la synthèse de vues peuvent atteindre des performances de codage
élevées et démontrer leur e�cacité en fournissant la meilleure qualité visuelle par rap-
port aux deux autres méthodes.

Ainsi, cette thèse est constituté de cinq chapitres et tente de développer des méth-
odes pour une compression e�cace des images et vidéos basés LF:

A�n d'établir le contexte de cette thèse, le premier chapitre, nous faisons l'état de
l'art des caractéristiques de l'image LF et des méthodes de compression existantes dans
la littérature. L'image Light Field est une image non conventionnelle, contenant des
informations beaucoup plus que l'intensité sur les rayons lumineux qui interagissent
avec la scène. L'image LF donne une description très riche d'une scène 3D Permettant
d'o�rir une large bande de fonctionnalités. Notamment, elle permet la synthèse avancée
de vues intermédiaires, ainsi que la re-focalisation de l'image après acquisition.

Il existe deux systèmes d'acquisitions d'images LF, le premier type est le système
composé de multiples caméras conventionnelles bien alignées avec parallaxe horizontal
ou bien avec parallaxe horizontal et vertical. Un tel système est appelé système super
multi caméras et le deuxième type est le système LF Plenoptique. L'imagerie Plénop-
tique est limitée par certaines contraintes: taille très grande de l'image LF (50MB par
scène), répétition des motifs, ceci rend le codage des images LF très coûteux en terme
de calcul et de temps.

Le deuxième chapitre fournit une compréhension globale sur l'apprentissage en pro-
fond, les standards 2D de compression, les di�érentes méthodes existantes de codage
d'images LF, en�n les métriques objectifs de la qualité et l'environnement du test subjec-
tif. Nous nous concentrons sur l'apprentissage en profond qui a transformé la recherche
en intelligence arti�cielle surtout pour la vision par ordinateur. puis nous introduisons
les normes de codage vidéo High E�ciency Video Coding (HEVC) et VVC. Ensuite,
nous analysons les di�érentes techniques de codage d'images LF existantes. Il existe
plusieurs approches qui s'appliquent sur les diverses représentations du champ lumineux
(e.g. image brute LF, sub apertures, épipolaire) A titre d'exemples, le codage basé
Pseudo-séquence et le codage prédictif. Le troisième chapitre a proposé un nouveau
schéma de codage d'image Light Field. Dans ce schéma, on considère l'image LF avec
8*8 vues subapertures. Les vues sont divisées en 3 trois ensembles. Le premier ensem-
ble SE de 9 vues qui sont encodées par Joint Exploration Model (JEM), le deuxième
ensemble SR contient les 7 vues adjacentes des vues SE et elles sont approximées linéaire-
ment [ZC17] et le troisième ensemble SI représente les vues manquantes à synthétiser.
Ce nouveau schéma est basé sur CNN [KWR16] et on a apporté trois améliorations
di�érentes, chacune donne un gain en BD-rate et BD-PSNR par rapport aux autres
méthodes de l'état de l'art:

1. Réglage de la qualité de la vue centrale (VC) de l'image LF est codée comme un
frame intra. Elle est utilisée par les blocs de l'apprentissage linéaire (LA) et CNN
comme référence pour la prédiction de toutes les autres images. Ainsi, la qualité
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de cette VC est un facteur clé pour la prédiction et la génération d'autres vues.
Pour une VC de haute qualité, on lui attribue un paramètre de quanti�cation
Qintra tel que: Qintra= Q + Qo�set où Qo�set =-4 (�xé de manière empirique).

2. Optimisation débit-distorsion Pour reconstruire les vues intermédiaires (SI), nous
avons proposé d'e�ectuer un RDO pour chaque vue intermédiaire, indiquant ainsi
quelle méthode entre LA et CNN peut fournir les performances de RD les plus
élevées en calculant la fonction de coût J (J = D + λ.R, λ est le multiplicateur
de Lagrange).
On a constaté que la valeur λ= 0.1 est optimale et que l'optimisation lagrangienne
donne les meilleures performances. On a sélectionné ensuite la meilleure approche
en minimisant le coût de RD (J) pour chaque vue intermédiaire.

3. Post-traitement En�n et comme un post-traitement, nous introduisons un proces-
sus de correspondance superpixel en pixel pour améliorer encore plus la qualité
des vues approximées et synthétisées [DSS17].

Dans le quatrième chapitre, nous faisons une évaluation subjective et objective pour
les méthodes de compression de l'état de l'art, sur un ensemble d'images LF de plusieurs
bases de données di�érentes. A ce titre, nous décrivons en détail les conditions des tests
psychovisuels ainsi que les normes de l'Union Internationale des Télécommunications
(UIT) qui y sont associées [BT.12b]. Lors du choix des images, nous avons pris en
compte les trois facteurs: information spatiale (SI), colorfulness (CF) et le nombre de
pixels occultés [P.908, DH03, WER16].
Les tests se sont déroulés dans la salle psycho visuelle du laboratoire IETR-Rennes
en 2 phases et avec des conditions d'éclairage conformes à la recommandation ITU-R
BT.500. 18 observateurs ont fait ce test en utilisant 4 débits pour les pseudo-vidéos avec
9 frames per second (fps). En particulier, sur un seul écran on a�che 2 pseudo vidéos
(l'original à gauche et la vidéo codée à droite). L'observateur choisit donc un score entre
1 et 5, suivant l'échelle suivante: 1) Très gênante, 2) Gênante, 3) Légèrement gênante, 4)
Perceptible mais pas gênante, et 5) Imperceptible. En e�et, certaines données peuvent
biaiser les résultats. Ainsi, un processus de �ltrage a été appliqué sur les données de
l'expérience en se basant sur la recommandation ITU-R BT.500.
Globalement, les méthodes de codage LF basées sur la synthèse de vues (qui sont basées
sur l'apprentissage linéaire ou bien Deep Learning) o�rent la meilleure qualité visuelle à
tous les débits, par exemple, pour la plupart des images LF, leur qualité visuelle fournie
à un débit moyen est à peu près identique à celle obtenue par les approches de codage
classique 2D à haut débit. Ainsi, les méthodes de codage basées sur la synthèse de vues
peuvent atteindre des performances de codage élevées et démontrer leur e�cacité en
fournissant la meilleure qualité visuelle par rapport aux deux autres méthodes.

Dans le cinquième chapitre, nous utilisons le D2GAN est un type de l'architecture
du Generative Adversarial Network (GAN) a�n d'avoir un seul générateur avec 2 dis-
criminateurs. L'idée est inspirée de [NLVP17] qui mentionne qu'une telle architecture
donne plus de stabilité au Generative Adversarial Network (GAN) avec de meilleurs
résultats.
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Dans cette architecture, le générateur se compose de deux réseaux de nuerons le premier
pour estimer la disparité (qui est légèrement di�érente) et le deuxième pour estimer les
couleurs. Le premier discriminateur a toujours le même rôle, c.à.d. donner un score
élevée si l'image est réelle. Alors que le deuxième discriminateur donne un score élevé
si l'image est générée par le générateur.
Il faut noter, que chacun des discriminateurs possède une fonction perte distincte avec
une con�guration paramétrique distincte. Nous allons appliquer D2GAN sur les vues
de références encodées par le standard VVC.
Nous proposons une méthode de compression basée sur D2GAN et l'encodeur Versa-
tile Video Coding VVC. il s'agit de l'intégrer avec le schéma hiérarchique de VVC.
L'idée globale consiste à éviter de coder les vues du niveau hiérarchique supérieur et
les générer avec D2GAN au niveau du décodeur. Une extension pour cette approche
est envisageable, et consiste à faire une optimisation pour décider de coder ces vues du
niveau supérieur avec VVC ou de les générer par D2GAN, et on aura un schéma VVC
hiérarchique avec Rate Distortion Optimization (RDO) et D2GAN.
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Introduction

Computer vision applications such as refocusing, segmentation and classi�cation become
one of the most advanced services in the �eld of image processing. Such applications
require rich semantic information from the scene. 3D technology is widely used in the
�elds of entertainment, education and medical imaging. There are di�erent ways to
represent 3D information. One of the most common is to associate with a classic 2D
image called texture, an image of Depth of Field (DoF). This joint representation thus
allows for a good 3D reconstruction as soon as the two images are well correlated,
and more particularly for the contour areas of the depth image. In comparison with
classic 2D images, knowledge of depth of �eld for 3D images provides therefore provides
important semantic information about the composition of the scene.

Figure 3: The LF technology allows a very faithful reproduction of reality in Virtual Reality (VR)

Another technology that is gaining more importance is LF technology. The LF image
is an unconventional image, containing much more information than the intensity of the
light rays that interact with the scene. It gives a very rich description of a 3D scene
allowing to o�er a wide range of functionalities. For example, it allows the advanced
synthesis of intermediate views, as well as the re-focusing of the image after acquisition.
Interest in Light Field LF technology continues to grow very strongly, in particular,

11



12 Introduction

with the increasing penetration of acquisition and display devices for LF content in the
consumer market.

In particular, a dense set of cameras and microlens arrays are used as the Plenoptic
(Figure 4), to have the direction of every ray coming from the stage to the LF acquisition
system [NLB+05] . This can be extracted and represented by spatial and angular
coordinates. However, such an imaging system has many disadvantages, including the
large amount of data produced and the complexity increase for the representation of
the scene. This therefore raises the urgent question of their compression.

(a) Lytro Illum (b) Raytrix

Figure 4: Samples of Light Field camera.

Contributions

In this thesis, we �rst propose a CNN-based LF coding scheme that includes RDO
followed by post-processing. The main concept is to exploit the correlation between the
di�erent LF views and avoid the coding of all the views. The LF views are thus divided
into 3 sets: a �rst set which is coded by a standard 2D encoder, a second set which is
linearly approximated and a third one set which will be synthesized at the decoder either
by linear approximation or by synthesis with CNN according to the decision made by the
RDO block. Next, we integrate the D2GAN with the VVC hierarchical encoder. The
overall idea is to avoid coding the views of the higher hierarchical level and generate
them with D2GAN at the decoder level. Finally, we evaluate the scheme proposed
subjectively on a set of LF images of several di�erent databases. The conditions of
psychovisual tests comply with the standards of the International Telecommunication
Union (ITU). The most notable feature is that view-based coding methods can achieve
high coding performance and demonstrate their e�ectiveness by providing the best visual
quality over the other two methods.

Outline

This manuscript is organized as follows:

In Chapiter 1, we make a state of the art of the characteristics of the LF image and
the existing compression methods in the literature. The LF image is an unconventional
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image, containing information much more than the intensity on the rays that interact
with the scene. The LF image gives a very rich description a 3D scene allowing to
o�er a wide range of functionalities. In particular, it allows the advanced synthesis of
intermediate views, as well as the re-focusing of the image after acquisition. There are
two LF image acquisition systems, generating di�erent types of LF representations. In
this chapter, we describe the whole chain from LF acquisition to LF visualization, along
with the di�erent functionalities it o�ers.

In Chapiter 2, we analyze the di�erent existing LF image coding techniques that
apply to the various representations of the light �eld (e.g. LF raw image, sub apertures,
epipolar). Several approaches are adopted by the state-of-the-art, such as pseudo-
sequence or predictive coding, while presenting them in details along with their perfor-
mance.

In Chapiter 3, we explain our proposed new LF image coding scheme. In this
scheme, we consider the LF image as 8*8 subapertures views. The views are divided
into 3 three sets. A �rst set of reference views are encoded with a standard encoding
method. Then, the other set of views are either linearly approximated or synthesized
using CNN based on a rate distortion optimization. Finally, our proposed method
applies a post processing on a block level for further quality enhancement.

In Chapitre 4, we make a subjective and objective assessment for state of the art
compression methods, on a set of LF images from several di�erent databases. As such,
we describe in detail the conditions of psycho-visual tests de�ned by as well as the
ITU standards. For the images choice, we took into account the three factors: spatial
information, colorfulness and the number of pixels occluded. 18 observers performed this
test. Overall, LF coding methods based on view synthesis (which are based on Linear
Approximation (LA) or Deep Learning (DL) o�er the best visual quality at all bitrates.
For example, for most LF images, their visual quality provided at an average bitrate is
about the best as that obtained by conventional 2D high-speed coding approaches.

Chapiter 5 presents another contribution for LF image coding. We use the D2GAN
which is a speci�c type of architecture of the GAN, with a single generator with 2
discriminators. The idea is inspired by [NLVP17] where they state that such an archi-
tecture gives GAN more stability with better results.

In this architecture, the �rst discriminator has always the same role, i.e. to give a
high score if the image is real, while the second discriminator gives a high score if the
image is then generated by the generator. It should be noted that each of the discrim-
inators has a distinct loss function with a distinct parametric congregation. We will
apply D2GAN to reference views encoded by the VVC standard. We o�er a compres-
sion method based on D2GAN and the VVC encoder. It consists of integrating it with
the VVC hierarchical scheme. The overall idea is to avoid coding views from the higher
hierarchy level and generate them with D2GAN at the decoder level. An extension
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for this approach is possible, and consists in making an optimization to decide to code
these upper level views with VVC or generate them by D2GAN, and we will have a
hierarchical VVC scheme with RDO and D2GAN.



Chapter 1

Light Field Technology

1.1 Introduction

Images are invading the world internet tra�c. In fact, from the very basic Black and
White (BW) images to the most recent 3D images, in addition to the need to memorize
the moment and relive it is highly increasing. LF proposes a new approach for the
acquisition of scenes. The spectral images record the information of the light rays prop-
agating in the scene including their directions and intensity. The amount of information
allows to render di�erent views with varying DoF and focal planes without the need
of re-acquiring the scene. Therefore, LF imaging systems is becoming one of the most
popular techniques for Virtual Reality, Augmented Reality (VR/AR), Teleconferencing,
and E-learning.

In this chapter, we describe in detail all aspects of LF image processing as shown
in Figure 1.1. In Sections 1.2 and 1.3, we present the LF acquisition and representa-
tion, while in Section 1.4, we brie�y discuss the di�erent LF compression techniques.
Moreover, the LF visualization is explained in Section 1.5. Section 1.6 describes its
important functionalities. As for section 1.7, it presents the di�erent LF display tech-
nologies. Finally, Section 1.8 concludes this chapter.

Figure 1.1: LF imaging processing �ow [PdSL+17]

1.2 LF Acquisition

Unlike conventional image, the Light Field image records both spatial and angular
light radiance in one shot. The acquisition of Light Field image can be obtained by

15
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using a camera array, one mobile hand camera, or a plenoptic camera using arrays
of micro-lenses placed in front of the photosensor, generating LF images with small
baselines [NLB+05]. In general, di�erent acquisition techniques can be used to capture
Light Field images depending on the requirements for baseline (i.e., the physical space
that will be covered by the (U, V ) sampling), and on the image resolution. In the
following subsections, we describe in details the two LF acquisition technologies.

1.2.1 Camera Array

A camera array consists of many traditional cameras organized in horizontal and verti-
cal alignments at regular baselines to capture the same view from di�erent viewpoints,
as illustrated in Figure 1.2a. In this case, the cameras synchronization, their color
and geometrical calibrations are considered as immense technical challenges. Moreover,
they create large data volume and often high energy consumption. For these reasons,
camera arrays are still quite rare, but there are few notable designs. For example, Stan-
ford Multi-Camera Array [WJV+05] records LF images (see Figure 1.2a) with almost
6000 pixels wide [YLX16], which is too high in comparison with the High De�nition
video cameras that provide a resolution of 1920×1080 pixels. In this case, the (U, V )
sampling depends on the baseline parameters of the camera array grid. The full 4D LF
is formed and new views corresponding to narrower baseline parameters must be fur-
ther synthesized, if needed. An example of such acquisition technology is the Stanford
Multi-Camera Array.

(a) Stanford's multi-camera
array

(b) Distributed Light Field camera

Figure 1.2: Examples of LF camera arrays: (a) Stanford's multi-camera array, in which
conventional cameras are arranged regularly in a linear array with full parallax [RMS16]
and (b) distributed LF camera, 64 cameras with distibuted rendering [YEBM02].

To overcome data bandwidth problems, in 2002, Yang et al. [YEBM02] used 8×8
video cameras in a proper design to capture dynamic Light Field as illustrated in Figure
1.2b, and employed a distributed rendering algorithm.
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Figure 1.3: Timeline of the plenoptic cameras announced recently in the market [TZAG13, RAY]

1.2.2 Plenoptic Camera

For LF image acquisition with narrow base, a single lens stereo camera can be used.
It consists of a hand-held plenoptic camera with added optical elements in front of the
sensor. Alternatively, a plenoptic camera can, in a single photographic plane, record
the Light Field on its imaging plane. The camera largely resembles looks like a regular
digital camera, operating similarly though recording LFs instead of regular photographs.
Figure 1.3 shows the Lytro1 [TZAG13] and the Raytrix2 plenoptic cameras. Currently,
plenoptic cameras are commercially available in the market from two sources: the Lytro
camera based on the "plenoptic 1.0" (recently acquired by Google) targets ordinary
consumers, and the Raytrix- based on the "plenoptic 2.0" -targets industrial applications
as illustrated in Figure 1.4.

The used technique is called integral photography. It is widely used in several
imaging �elds including engineering, optics and the study of animal vision. It consists
of using an array of microlenses inserted in front of the photosensor in a conventional
camera. The size of microlenses is microscopic when compared with that of the main
lenses, and so is the gap between the microlenses and the photosensor. Covering multiple
photosensor pixels, each microlens separates the light rays that hit it into a minute image
on the pixels underneath.

Figure 1.5 shows an over simpli�ed 2D plenoptic camera with 2 microlenses and 3
pixels, where the main lens plane represents the angular plane and the microlens plane
represents the spatial one. Therefore, each pixel in a microlens image corresponds to
the same scene point. Conversely, corresponding pixels between two microlens images
correspond to two di�erent scene points imaged at the same angle.

In this kind of camera, the imaging plane is that of the microlens, which sets the
spatial sampling resolution with its size. In Figure 1.7, a grid of boxes lying over the
ray-space diagram outlines the sampling of the Light Field recorded by the photosensor
pixels. Each of these boxes denotes the cluster of rays contributing to one pixel on the

1http://www.lytro.com/imaging
2https://www.raytrix.de/
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(a) Plenoptic camera 1.0 (b) Plenoptic camera 2.0

Figure 1.4: Plenoptic 1.0 and Plenoptic 2.0 cameras [APKS18] optical design also called unfocused
and focused plenoptic camera [LG09] respectively. The fundamental di�erence in the optical setup
between Plenoptic 2.0 and Plenoptic 1.0 is that in the former, the micro-images are focused on the
scene (through the relay system), while in the latter they are completely defocused relative to the scene.

Table 1.1: A summary of typical Light Field acquisition approaches.

Approach Year Implementation Resolution Capture speed

Yang et al. [YEBM02] 2002 8×8 camera array 320×240×8×8 15-20 fps

Wilburn et al. [WJV+05] 2005 10×10 camera array 640×480×10×10 30 fps

Light Field gantry [Ada02] 2002 Gantry 1300×1030×62×56 5h/slab

Ng et al. [NLB+05]] 2005 Microlens array 292×292×14×14 16 ms

Lytro Illum [TZAG13] 2014 Microlens array 625×434×15×15 3 fps

photosensor. Rays were marked from the borders of each photosensor pixel out into the
world through its parent microlens array and the glass elements of the main lens so as
to measure the sampling grid.

1.3 LF Representation

In general, LF is represented as a vector function that describes the location, the direc-
tion and the intensity of each ray of light within the scene. There are several ways to
represent the scene in LF imaging that we are explained in the following subsections.

1.3.1 Plenoptic Function

The plenoptic function was �rst introduced by Adelson and Bergen [AB91]. It can be
described by a 7 dimensional function as follows:

L(λ, t, x, y, z, θ, φ), (1.1)
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Figure 1.5: The lenslet-based plenoptic camera. Plenoptic camera with 2 microlenses and 3 pixels.
Here the angular plane corresponds to the main lens plane and the spatial plane to the microlens
plane [HSG17].

where (x, y, z) are the spatial coordinates, (θ, φ) are the angular coordinates, λ is the
wavelength and t is the time. The plenoptic function L assigns to every point in free
space and to every direction a corresponding radiance for speci�c wavelength λ and
time as shown in Figure 1.6.

For static scenes, the dimension of this function is reduced to 5 dimensions without
considering time and wavelength [LH96]. Further, assuming that the rays are passing in
un-occluded pixels, one can simplify it as a 4D LF as shown in Figure 1.6 where (u, v)
plane represents the microlens plane and (s, t) represents the spatial one.

1.3.2 The Lumigraph

In this representation, the Light Field signal L(s, t, u, v) describes all light rays passing
through the (s, t) and (u, v) planes called the lumigraph [GGSC96]. The points of
intersection of a ray with two parallel planes completely describes its position and
orientation in the free space. By convention, the (s, t) plane is close to the camera, and
the (u, v) plane is close to the scene. The two-planes parameterization describes rays
in terms of position and direction, and so the terms angular and spatial are sometimes
employed to describe these dimensions. One interpretation is that s and t de�nes the
position of a ray, while u and v de�nes the direction.

1.4 LF Compression

Acquiring LF images creates a vast amount of data: around 150 MB for lenslet im-
ages with 15×15 viewpoints of resolution of 635×434, around 6.8 GB for 15×15 4K
images acquired with a multi-camera array. This large information is the �rst challenge
represented by the large amount of data in addition to increasing the complexity of
representation in the scene and redundancy of information. Therefore, one need to �nd
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(a) (b)

Figure 1.6: (a) Spatial parametrization of 5D-LF representation and (b) 4D-LF repre-
sentation.

e�cient methods to compress the LF images. Di�erent LF compression techniques will
be detailed in the next chapter.

1.5 LF Visualization

Although the function L(s, t, u, v) is a simpli�ed Light Field model, it is still hard
to imagine this 4D representation. Thus, there are several representations of the LF
image including micro-image, sub-aperture and epipolar image as illustrated in Fig-
ures 1.7, 1.8, 1.9 respectively and explained in the following subsections.

1.5.1 Lenslet Images

Photosensor pixels are assigned to each microlens and form a small image. This image
is referred to as the microlens image. In the raw Light Field photograph, there are as
many microlens images as the number of microlenses.

Each microlens image shows the incident light ray that leaves from di�erent positions
and arrives at the photosensor through the microlens array [LZM09]. A certain point
on the (u, v) plane represents the light rays bound of all points on the (s, t) plane (the
collection of light rays from di�erent viewpoints projected onto a certain point, i.e.,
the same point as seen from di�erent viewpoints, see Figure 1.7). The lenslet image
corresponds to a set of micro-images and can be saved as png �le (demosaiced raw
images). The width and height of raw lenslet image captured by the Lytro Illum are
7728 and 5368, respectively.
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(a) (b)

Figure 1.7: (a) Rays captured by the microlens (3,3) and the process passing to the
photosensor and (b) Raw Light Field photograph.

1.5.2 Sub-aperture Image

Sub-aperture images are made by reordering incident rays in the raw Light Field pho-
tograph. Each sub-aperture image is composed of the pixels of same position selected
from each microlens image.

(a) (b)

Figure 1.8: (a) Process of making a sub-aperture image and (b) Sub-aperture images from a plenoptic
camera.

Thus, the 4D LF can be represented as a 2D array of images with a smaller baseline,
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such as the one shown in Figure 1.8 (a). The lenslet image can render in form of multi-
view sub-aperture images by putting together the pixels in the same position within
each micro-image to create a rendered image for a speci�c viewpoint, (see Figure 1.8
(b)).

The extraction process implies that the number of sub-aperture views amounts to the
number of pixels in micro image (see Figure 1.8). Consequently, the e�ective resolution
of a sub-aperture image equals the number of micro lenses in the plenoptic camera.

1.5.3 Epipolar Image

The epipolar plane image (EPI) is obtained by �xing the coordinates in both the spatial
and angular dimension. The large (u, v) slice can be thought of as a conventional image
taken from a camera sitting on the (s, t) plane. Each epipolar image is the 2D slice of
the Light Field where t and v are �xed, and s and u vary. The (s, u) and (t, v) slices
are sometimes referred to as epipolar images (see Figure 1.9).

Figure 1.9: The epipolar plane image

In our contribution, we will adopt the sub-aperture representation.

1.5.4 Public LF Dataset

This section presents important open source Light Field images datasets. The proper-
ties of these datasets are summarized in Table 1.2, including synthetic, real-world and
microscopy LF scenes.
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Table 1.2: Most relevant datasets with corresponding features.

Dataset Year Features Acquisition devices

Stanford LF archive 2008 More than 20 images
Microscope

and Camera Array.

Synthetic LF archive 2013
more than 17 Light Field images, includes
transparencies, occlusions and re�ections.

Camera (Arti�cial LF)

EPFL LF image dataset 2015
More than 118 images with di�erent
categories: urban, landscapes, etc.

Lytro Illum

INRIA LF dataset 2017
More than 46 images, low lighting
conditions, indoor and outdoor.

Lytro Illum

Our LF dataset 2018
More than 30 images, indoor, outdoor

transparencies, occlusions and re�ections.
Lytro Illum

1.6 LF Functionalities

As previously introduced, the �ow of rays captured by Light Field acquisition devices
is in the form of large volumes of data retaining both spatial and angular information
of a scene. Thus, from a single exposure, it enables a variety of post-capture processing
capabilities such as: re-focusing, extended focus, changing the point of view and depth
estimation. In the following, we explain in details some of these advanced functionalities.

Re-focusing: Blurred zones or regions in a 2D image are caused by scattered rays
received by the sensors of a 2D standard camera. One way to get theses regions in
focus is to capture the scene from di�erent perspectives. As a consequence, the angular
information of light rays is acquired. Such a job can be achieved using plenoptic cameras
as mentioned in Section 1.2. Therefore, LF technology allows to generate refocused
image by using multiple techniques such as Fourier transform [NLB+05] and It simply
relies on the LF Toolbox software [Dan14] that is developed by D. Dansereau.It, mainly,
uses function LFFiltShiftSum. This works by shifting all the available sub-aperture
images of each Light Field image to the same depth, and then adding all the sub-
aperture images together to produce a 2D depth plane extracted from the original
Light Field.

Figure 1.10: LF image refocusing: (left) refocused on foreground and (right) refocused on background
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This function uses an input value called slope, which allows controlling the optical
focal plane, and the object that should be focused. The relationship between slope and
depth depends on LF parameterization, but in general a slope of 0 lies near the center of
the captured depth of �eld. When the image is digitally refocused on the background,
images in the foreground may appear ghosted and vice versa (see Figure 1.10). It is
known that the Light Field refocusing operation has denoising properties [DBPW13],
thus refocusing applied on compressed sub-aperture images (SAI) will reduce the dis-
tortion due to compression artefacts.

Changing viewpoint: The huge information in the LF image provides the ability to
see the scene from di�erent viewpoints. LF was constructed from rendered images of a
buddha computer model.

Figure 1.11: Actually seeing two visualizations here, (a) an st-arrays of (u,v) images or (b) uv-arrays
of (s,t) images. First on (a), each image is the angular distribution of rays around a point on the (u,v)
or camera plane. It looks like a perspective view of the scene. On (b), angular distributions around
points on the (s,t) or focal plane. These look re�ectance maps because the object is near the (s,t)
plane [LH96].

We can zoom in and roam around. At each observer viewpoint, the view with
correct perspective and shading is computed by extracting a two-dimensional slice from
the 4D-LF parametrization as shown in Figure 1.11.

1.7 LF Display

As introduced, due to the 4D representation of LF rays, LF technology allows to replicate
real-world scenes with advanced features such as 360 video, refocusing, VR/AR. In this
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context, among the possible display technologies that are currently available for LF
content visualization, one can cite:

� 2D displays: In this case, a single 2D view or more speci�cally a 2D version of the
LF content has to be rendered from the decoded LF content.

� Stereo displays: In this case, a pair of views need to be rendered from the LF
image and delivered to the display. This type of display technology improves the
users' depth perception (with respect to the 2D display) by presenting a di�erent
view to their left and right eyes (typically, by means of a pair of eye-glasses).

� Multiview auto-stereoscopic displays: Multiview autostereoscopic is a glassless
display technology that allows creating a more natural 3D illusion (with respect
to the stereo display) to the end-user. It presents a di�erent perspective as the
user moves horizontally around the display (known as horizontal motion paral-
lax). In this case, multiple views need to be rendered from the LF content and
delivered to the display. Moreover, following the recent developments in sensor
and optical manufacturing, the display technologies are also evolving for providing
a more natural and immersive visualization. Therefore, some prospective display
technologies started to emerge. Among them, it is possible to cite:

� Super-multiview LF displays, as proposed by Hologra�ka [KY18, LPT16] which
uses a very dense number of views to create a replica of the 4D LF.

(a) (b)

Figure 1.12: (a) Interactive mixed reality head-mounted viewer and (b) using a head-
mounted viewer, one can visualize and make design changes in real time.

� Augmented Reality (AR) and VR displays: One of the newest technologies, that
is gaining momentum in the past few years, is the development of commercially
available Light Field Displays. These displays project synthetically rendered light
rays with the necessary depth and colour cues. The radiance image is a pixel
representation of the Light Field, where every pixel represents the position and
orientation of a light ray passing through the display surface [DBPW19]. The light
rays are then angularly distributed by a microlens array that is not a�ected by the
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viewer position. The result is naturally rendered holographic objects right in front
of the viewer. This solves one of mixed reality's greatest technical challenges: En-
abling the virtual holographic objects to appear real from di�erent angels [CC15].
Two main implementations of the new technology are by integrating it in: 1) in-
teractive head-mounted viewers and 2) table top displays.
With head mounted mixed-reality viewers, the built-in Light Field displays send
images with multiple focal points to the retina, mimicking the way of the light
in the real world re�ects o� objects to hit a person's eyes, as illustrated in Fig-
ure 1.12a. Architects and designers, for example, are using such viewers to trans-
form traditional 2D models and sketches into 3D holographic assets visualized
in the real world accurately displayed across all focal distances as shown in Fig-
ure 1.12b.
With table top displays, the synthetic Light Field computed from a 3D model is
projected through an array of microlenses to create a 3D aerial holographic scene
for all viewers, as illustrated in Figure 1.13a.

Car manufacturers are working on integrating LF displays in their upcoming ve-
hicles to create innovative cockpit solutions. The Light Field displays enable
information to be safely presented to the driver in real-time, allowing the driver's
interaction with the vehicle to become more comfortable and intuitive. It also al-
lows passengers in the front and back seats to share the 3D holographic experience
with the driver 1.13b.

(a) (b)

Figure 1.13: (a) Array of microlenses responsible for the angular distribution of light
rays and (b) Light Field displays used to render 3D holographic information for drivers.

Technology �rms such as the Light Field Lab have raised millions of dollars re-
cently in funding to advance the LF display technology and produce large 3D
holographic live scenes for large venues. Viewers can soon enjoy the fully interac-
tive, social experiences with their friends without the need of specialized headsets.
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Figure 1.14: The future of LF displays. Interactive 3D holographic scenes in large venues.

1.8 Conclusion

In this chapter, we have provided an overview of Light Field image de�nition, acquisition
and some of the types of cameras used to capture it. Among them we focused on the
Lytro Illum Camera that enables the acquisition of a baseline LF images. Moreover,
we presented the di�erent ways to represent the Light Field content. We are more
interested in sub-aperture views representation used in our compression LF scheme.
Then, the main features, including refocusing and changing the viewpoint of the scene
were described. Finally, the most important recent techniques for displaying the LF
image were presented. In the next chapter, we will focus on the state-of-the-art LF
image coding solutions.
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Chapter 2

Light Field Image and Video

Coding: a Review of the Literature

2.1 Introduction

In this chapter, some related concepts to the Light Field image are introduced. Then,
multiple approaches that are proposed for Light Field image coding will be analyzed.
Furthermore, this chapter will present the main concepts of machine learning and �nally
will explain the di�erent techniques for Light Field visual quality evaluation detailing
the testing considered environment requirements.

2.2 Related Concepts

This section, will explain some of the de�nitions used in this research, such as the
whole family of norm to measure the vector's magnitude and superpixel segmenta-
tion [ASS+12].

Vector Norm

Firstly, we assume a vector ~v as an ordered tuple of numbers.

~v = (v1, v2, ..., vn), (vi ∈ R, for i = 1, 2, 3, ..., n) (2.1)

L1-norm: the L1-norm [Wei12] (also known as `1-norm, or mean norm) of a vector
~v is denoted ‖~v‖1 and is de�ned as the sum of the absolute values of its components:

‖~v‖1 =

n∑
i=1

|vi| (2.2)

L2-norm: the L2-norm (also known as the `2-norm) of a vector ~v is denoted ‖~v‖2

29
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and is de�ned as the square root of the sum of the squared vector values.

‖~v‖2 =
n∑
i=1

√
vi2 (2.3)

Figure 2.1: Images segmented using Simple Linear Iterative Clustering (SLIC) into superpixels of
size 64, 256, and 1.024 pixels (approximately)

L in�nity-norm: the in�nity norm (also known as the L∞-norm, ∞-norm, max
norm, or uniform norm) of a vector ~v is denoted ‖~v‖∞ and is de�ned as the maximum
of the absolute values of its components:

‖~v‖∞ = max{|vi| : for i = 1, 2, 3, ..., n} (2.4)

Superpixel Segmentation

The Image segmentation is referred to as one of the most important processes of image
processing. Image segmentation is the partition of an image into regions or categories
(sets of pixels, also known as super-pixels), which correspond to di�erent objects or
parts of objects. Every pixel in an image is allocated to one of a number of these
segments [PP93]. A simple technique of segmentation consists of using the gradient. A
superpixel can be de�ned as a group of pixels that share common characteristics (such
as pixel intensity).

SLIC is a particular type of segmentation, where pixels are grouped into perceptually
meaningful atomic regions as shown in the Figure 2.1. It is mainly used to compute
image features, and greatly reduces the complexity of subsequent image processing
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Figure 2.2: Illustration of the hybrid video coding scheme

tasks. This research uses the SLIC superpixel algorithm that performs a fast and
e�cient semantic atomic segmentation [ASS+12]. SLIC generates superpixel regions by
adopting the k-means approach with two important distinctions.

� The number of distance calculations in the optimization is dramatically reduced
by limiting the search space to a region proportional to the superpixel size. This
reduces the complexity to be linear according to the number of pixels N and
independent from the number of superpixels k.

� A weighted distance measure combines color and spatial proximity while simulta-
neously providing control over the size and compactness of the superpixels.

2.3 Principle of Current Video Compression Standards

Before the introduction speci�c light �led coding schemes, it is necessary to present and
analyze the principal of current video coding. This section introduces the main stan-
dards for 2D image and video compression. The �rst problem is the huge bandwidth
needed for transmitting such huge image/video data. To reduce storage requirements
and improve transmission bandwidth, redundancies within image and video signals can
be exploited to compress the content more e�ciently. The focus is on the two last
generation video coding standards, HEVC and VVC, that are used for this work. These
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latter integrated a set of new coding tools, extending the existing hybrid coding con-
cept as illustrated in Figure 2.2 based on prediction, residual error transformation and
quantization.

2.3.1 Redundancies removal

A video consists of a succession of frames. Each individual frame can be viewed as an
individual static image. Therefore, multiple frames may share some common properties
or features called redundancies. Di�erent types of redundancies can be found in a video.

Spatial redundancy: pixels or regions that are duplicated within the same frame.
Statistics redundancy: in order to store the pixels of the image, the coding infor-

mation (modes, coe�cients, etc...) are described as a succession of symbols (or set of
bits). The distribution of these symbols is not random, then some correlations can be
exploited by source coding like arithmetic coding algorithms. Remaining statistical re-
dundancies can be further exploited by using entropy coding such as Context-Adaptive
Binary Arithmetic Coding (CABAC).

Temporal redundancy: The exiting correlations within two consecutive frames in
the video.

Exploiting spatial, temporal and statistical redundancies is one of the primary tech-
niques in video compression.

2.3.2 High E�ciency Video Coding

This section gives a brief overview of the state-of-the-art HEVC/H.265 standard [SHDP17,
SOHW12]. The HEVC standard, or H.265/Motion Picture Expert Group (MPEG)-H
Part 2, is �nalized by the Joint Collaborative Team on Video Coding (JCT-VC) in 2013.
HEVC was designed to bring a bit-rate reduction of 50% compared to its predecessor,
the Advanced Video Coding (AVC)/H.264 codec [WSBL03]. The aim of this section is
to explain in details some of these advanced features.

The video sequence is �rst organized into multiple Group of Picturess (GOPs) of
a �xed number of consecutive frames. The GOP structure de�nes the encoding order
of the frames. A classical GOP structure in HEVC is the hierarchical GOP structure,
called Random Access (RA) coding con�guration. The �rst frame in the GOP is encoded
independently as an Intra (I)-frame (using only Intra predictions), the last frame as a
Predicted (P)-frame (predicted from the �rst frame or other past frames from past
GOPs as shown in Figure 2.5), the intermediate frames are encoded recursively as
Bidirectional (B)-frames.

HEVC processes all type of frames in a block-wise manner. To adapt the encoding to
the content, the frames are divided recursively into multiple blocks of pixels. The HEVC
standard introduced a quad-tree structure for the block partitioning. Each upper block
in the tree structure thus has four block children of the same size. Thus, the HEVC
standard de�nes four di�erent types of blocks in the quad-tree structure.

� Coding Tree Unit (CTU): is the largest block structure in HEVC. When building
the quad-tree, the frame is �rst divided into CTUs of �xed size of 64x64 pixels
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for instance.

� Coding Unit (CU): the previously obtained CTUs can be divided into 4 CUs.
Each CU can also be divided recursively into 4 smaller CUs. Up to three levels
of recursion are allowed in the HEVC standard, from 64x64 pixels down to 8x8
pixels. The choice of the prediction mode, intra or inter prediction (explained in
the following subsections), is performed at the CU level. CUs within the CTU are
processed in a Z-scanning order, or zig-zag order: from the top left CUs to the
bottom right ones, going right to left.

Figure 2.3: The eight possible PU partition schemes.

� Prediction Unit (PU): each CU can be divided into multiple PUs. The prediction
information, motion vector for inter or mode index for intra, are estimated and
stored at the PU level. A CU can contain up to four PUs. Several partitioning
schemes are available and di�er from the previous quad-tree partitioning. For the
intra mode, only squared PUs are available, so an intra CU may only have one
or four PUs. For the inter mode, eight con�gurations are de�ned as rectangular
PUs are allowed: two squared PUs, three vertical rectangular PUs, and three
horizontal rectangular PUs, as shown in Figure 2.3.

� Transform Unit (TU): each CU is also recursively divided into one or several TU.
The transform and quantization steps are performed on the TU level. Each TU
can be split into multiple smaller TUs in a quad-tree structure. TU sizes ranges
from 32x32 to 4x4, and are also processed in a zigzag order within the CU.

HEVC brings an interesting bitrate reduction mainly due to the prediction and
transform of the residual error coding. In the following, the intra and inter pre-
diction are explained.

� Intra prediction: the intra prediction mode is designed to exploit the spacial redun-
dancy within the current frame. The intra prediction relies on the neighbouring
reconstructed blocks pixels. For instance the I frame is only encoded using the
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(a) (b)

Figure 2.4: (a) HEVC intra prediction modes and (b) intra prediction pixel samples
available from the neighbouring reconstructed blocks.

intra prediction mode. Since the intra prediction does not use the temporal re-
dundancy, the I frames have a high coding cost and represent a signi�cant part
of the total bit-rate of an encoded sequence. These reconstructed I frame were
previously encoded and decoded, so their pixel values will also be available during
the decoding process. As the blocks are processed in a zigzag scan, pixels on top
and left of the current block can be used. As multiple block sizes are possible
with HEVC, pixels on the bottom left and top right may also be retrieved for pre-
diction in some cases. When processing the �rst blocks of the frame, no neighbor
is available for the prediction. A padding operation is thus performed before-
hand. Several methods, or modes, can be used to predict the current block values
from the neighbouring pixels. The HEVC standard de�nes 35 intra prediction
modes: DC, planar and 33 directional modes as illustrated in Figure 2.4.a. The
DC prediction is de�ned as the average of the neighbouring pixels. The planar
mode consists in a multi-directional prediction, horizontal and vertical, from the
neighbouring pixels. The directional modes are used to predict the current pixel
values by extending the neighbouring pixels in a given direction. The index of
the mode is chosen and transmitted at the CU level. Along with the quantized
residual error between the original block value and the reconstructed predicted
value. The neighbouring pixels border used for a directional mode is depicted in
Figure 2.4b. The chroma components (Cb and Cr) can only be predicted from
�ve modes: planar, DC, horizontal, vertical and Direct Mode (DM). Prediction
with the Direct Mode is performed by using the same mode selected from the
Luma component. This mode relies on the strong correlation between the luma
and chroma components [Beg18].



Principle of Current Video Compression Standards 35

� Inter prediction: Aas mentioned before, the inter prediction is designed to leverage
the temporal redundancy between consecutive frames. The basic idea is to use
previously encoded and decoded frames as references to encode the current frame.
Multiple reference frames can be used to encode the current frame.

A P frame can be coded using intra prediction or inter prediction from past ref-
erence frames, while a B frame can be coded using both past and future reference
frames, and intra prediction. Compared to the I and P frames, B frames have a
signi�cantly lower bit-rate. To be able to use future frames for prediction the en-
coding order di�ers from the temporal order. B predictive frames were introduced
in H.264/AVC [WSBL03]. The inter prediction is performed by �nding transla-
tional motion vectors for each prediction unit. The motion vectors are de�ned
with a quarter pixel accuracy to obtain better prediction. The reference frame
index and the motion vector parameters (dx, dy) are encoded in the bitstream.
The decoder will, then, be able to perform motion compensation and prediction.
In order to reduce the size required to encode the motion vector parameters, a
prediction is also performed. A motion vector prediction is obtained from the pre-
viously neighbouring PUs encoded with inter-prediction, or from motion vectors
from reference frames. Then, only the di�erence (residual) between the predicted
motion vector and the estimated one is actually stored in the bit-stream.

Figure 2.5: A traditional hierarchical GOP structure. P and B frames can be predicted from multiple
reconstructed reference frames.

The HEVC standard de�nes two variants of inter prediction: "merge" and "skip".
For these two modes, only the motion vector prediction is performed, there is no motion
compensation step.

Up to �ve motion vector candidates are collected from neighbouring PUs, only the
index of the selected one is stored in the bit-stream. Compared to the merge mode, the
skip mode does not encode the block residual values. The reconstructed block is the
same as the predicted one. Both these modes require less side information to transmit
to the decoder and are computationally less expensive than classical inter prediction
as they do not require the motion estimation. However, they rely on high temporal
correlations as they are less accurate that the inter mode.
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Transform: HEVC uses the classical DCT-II transform of TU of sizes from 32×32
to 4×4. The DST-VII is also used for speci�c case of Intra coded blocks of size 4×4.

Entropy coding: quantized residual errors and side information (i.e: frame indices,
motion vectors (dx, dy), inter mode index) are coded using entropy coding. Context
adaptive binary arithmetic coding CABAC is used for entropy coding. This is similar
to the CABAC scheme in H.264/MPEG-4 AVC, but has undergone several improve-
ments to mend its throughput speed (especially for parallel-processing architectures), its
compression performance, and to reduce its context memory requirements [SOHW12].

(a) (b)

Figure 2.6: (a) Intra prediction modes in VVC and (b) block partitioning binary split
and ternary split in VVC.

2.3.3 Versatile Video Coding

Based on HEVC, the Joint Video Exploration Team are currently developing a new video
coding standard called Versatile Video Coding VVC [MWS17]. This latter reduces the
bitrate compared to HEVC by almost 40-50% at the same visual quality [SHD+]. VVC
outperforms HEVC by improving the coding tools such Intra/Inter predictions, block
partitioning, transform module and loop �ltering [RHPD19].

For intra prediction, VVC with 65 directional modes (with only 33 in HEVC) can
have more detailed prediction and more precise prediction as shown in Figure 2.6a.

For Inter prediction, VVC uses advanced motion vector prediction, a�ne models and
sub-block partitioning. Whereas in HEVC only square blocks were predicted, rectangu-
lar shapes are also possible in VVC. In addition to the binary block partitionning, VVC
introduces the ternary split block partitionning, as shown in the Figure 2.6b. There are
now multiple splits which are embedded in a multiple tree structure.
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2.4 Machine Learning and Deep Learning

2.4.1 General Introduction

Humans and animals have the lifelong ability to learn, acquire, control and develop
their knowledge and skills. This ability, referred to as lifelong learning, is mediated by
a rich set of neural cognitive mechanisms that together contribute to the development
and allocation of sensory skills, cognition and learning. It ,furthermore, allows living
creatures to identify objects and understand accidents as well as to enhance and restore
memory in the long run.

Figure 2.7: Neural network design.

Machine learning technology is attracting scientists from every domain. It consists
in imitating the human intelligence and in particular their biological neural network,
going from a simple network with 2 layers used for classi�cation, to a deep network
with multiple layers for image processing [LCCL08]. Deep learning belongs to machine
learning technology and has the particularity of having computer models, called deep
arti�cial neural networks or deep networks. It is composed of several processing layers
(generally more than three).

In the latest studies, deep networks showed a great performance in image and video
compression [CHB17, LYT+17, PMG+17]. Therefore, the next subsections de�ne the so
called Neural Networks and explain the architecture of a Convolutional Neural Network.

2.4.2 Neural Networks

Similar to a biological neural network, a simple Neural Network (NN) is de�ned by a
set of interconnected nodes characterized by weights and biases and a linear activation
function, distributed on 2 layers: one Hidden layer and the Output layer, as shown in
Figure 2.7.

(z) = sigmoid(w1x+ b1) (2.5)

(y) = sigmoid(w2z + b2) (2.6)
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where x is the input, z the output of the �rst layer and y is the output or predicted
value, w1, w2 are weights, b1 and b2 are biases, sigmoid is a simple example of an
activation function as shown in Figure 2.8.

Figure 2.8: Sigmoid function.

Computing the output y is called feedforward, where initially the weights and biases
are set randomly. The goal of training the neural network is to update these parameters
in order to obtain an output as close as possible to the real desired output [EPdRH02].
This phase is called backpropagation. However, to measure the performance of the NN,
one needs a loss function to evaluate how far the predicted output is from the real one.
Many loss functions are possible, the easiest and simplest one is the Sum of square
errors. Finally, the training of a neural network stops when the error between predicted
y and the real output is lower than a certain threshold. After that, the NN is ready for
testing with real life data [Pom91, Jia99].

2.4.3 Convolutional Neural Network

For image processing, NN can be used e�ciently. However, linear functions are replaced
with non-linear or convolutional functions.

A simple CNN is a sequence of layers, and every layer of a CNN transforms one
volume of activations to another through a di�erentiable function. Three main types
of layers are used to build CNN architectures: Convolutional Layer, Pooling Layer, and
Fully-Connected Layer (Figure 2.9).

The feature map is the output of one �lter applied to the previous layer. A given
�lter is drawn across the entire previous layer, moved one pixel at a time. Each position
results in an activation of the neuron and the output is collected in the feature map.

The convolutional layer is the core building block of a CNN. The layer's parameters
consist of a set of learnable �lters (or kernels), which have a small receptive �eld, but
extend through the full depth of the input volume. During the forward pass, each �lter
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Figure 2.9: Example of CNN that uses some layers, looks at an image and outputs the correct class
for it.

is convolved across the width and height of the input volume. It computes the dot
product between the entries of the �lter and the inputs and produces a 2-dimensional
activation map of that �lter. As a result, the network learns �lters that are activated
when it detects some speci�c type of feature at some spatial position in the inputs.

(a) (b)

Figure 2.10: (a) Convolutional Neural Layer: a matrix known as a kernel is passed over
the input matrix to create a feature map for the next layer and (b)a CNN arranges its
neurons in three dimensions (width, height, depth), as visualized in one of the layers
and the mouvement of �lter on the input

Pooling layer is common to periodically insert a Pooling layer in-between successive
Convolutional layers in a CNN architecture. Its function is to progressively reduce
the spatial size(down-scale) of the representation in order to reduce the amount of
parameters and computation in the network. Pooling layer operates on each feature
map independently. The most common approach used in pooling is max pooling (by
taking the maximum value from the sub-array from the input array).
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Recti�ed linear units Layer, Relu in neural networks is the max function(x,0) with
input x e.g. matrix from a convolved image. ReLU then sets all negative values in the
matrix x to zero and all other values are kept constant.

Fully connected layer takes an input volume (whatever the output is of the conv
or ReLU or pool layer preceding it) and outputs an N dimensional vector where N is
the number of classes that the system has to choose from.

2.4.4 Generative Adversarial Network

Recent researched proves its success in a variety of applications, such super-resolution,
image recognition and object detection. Therefore, one can use it to predict images
and compare its performance with CNN in the same environment con�gurations and
dataset.

A GAN is an arti�cial intelligence technique for creating perfect imitations of images
or other data. A GAN is a recent machine learning technique. It is based on the
competition between two networks within a single framework.

Figure 2.11: GAN Architecture.

These two networks are called "generator" and "discriminator". The generator is
a type of convolutional neural network whose role is to create new instances of an
object. The discriminator, on the other hand, is a "deconvolutional" neural network
that determines the authenticity of the object or whether or not it is part of a data
set. During the training process, these two entities are in competition and this is what
allows them to improve their respective behaviours. This is called retropropagation.
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In details, GAN takes an random input and tries to generate a sample of data. In the
�gure 2.11, we can see that generator G(z) takes a sample input z following a probability
distribution p(z). It then generates a data which is fed into a discriminator network
D(x). The task of Discriminator Network is to take input either from the real data or
from the generator and try to predict whether the input is real or generated. It takes
an input x from Pdata(x) where Pdata(x) is our real data distribution. D(x) then solves
a binary classi�cation problem using sigmoid function giving output in the range 0 to
1. In other words, D and G play the following two-player minimax game with value
function V (G,D):

min
G

max
D

V (G,D)

V (G,D) = ExvPdata
[logD(x)] + EzvPz [1− logD(G(z))]

(2.7)

In our function V (D,G), the �rst term is entropy that the data from real distribution
(Pdata(x)) passes through the discriminator . The discriminator tries to maximize this to
1. The second term is entropy that the data from random input (p(z)) passes through
the generator, which then generates a fake sample which is then passed through the
discriminator to identify the fakeness [Ga14].

On the other hand, the task of generator is exactly the opposite, i.e. it tries to
minimize the function V so that the di�erentiation between real and fake data is bare
minimum.

2.5 Existing Light Field Image Compression Techniques

2.5.1 Introduction

The Light Field compression can be classi�ed into 2 categories: The lossy and the
lossless techniques. Many studies have investigated lossy and lossless compression of LF
imaging leveraging both spatial and angular redundancies in the image using di�erent
types of representations as illustrated in Figure 2.12. This part discusses in details the
state-of-the-art of the di�erent existing LF image compression techniques. Section 2.5.2
presents the lossless LF image coding. Then, in Section 2.5.3, the second category is
presented.

Figure 2.12: Classi�cation of LF image coding techniques.
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2.5.2 Lossless Coding Light Field

For scienti�c and cinema production, high quality images are needed. Lossless LF
coding is then required. The fundamental approach for lossless LF coding is to predict
the macroblocks and code the residual prediction error. The basic lossless LF coding
scheme consists of using the HEVC reference Model (HM) or the AVC model, where LF
image is fed as a pseudo video sequence with a spiral order scan [HART17]. In Table 2.1,
the reported �le sizes are directory sizes containing all necessary �les for decoding.

Schiopu et al. [SM18] propose a macro-pixel prediction method based on CNN.
They predict each macro-pixel based on a volume of six macro-pixels generated from its
immediate causal neighborhood. Then, the resulting macro-pixel residuals are encoded
by the reference CABAC (Context-based, adaptive, lossless image coding).

Table 2.1: Compressed �le sizes in mega bytes [HART17]. The size of the original �le
is 183 MB.

LF Image HEVC AVC HM

Bikes 82.0 80.8 88.32
Danger_de_Mort 87.0 86.5 95.46

Color_Chart_1 83.3 81.9 96.40

ISO_Chart_12 78.3 78.5 84.96

Gabbouj et al. in [SGGH17] proposed a lossless compression predictive method
based on context modeling that exploits the redundancy of sub-aperture views. For
each intermediate view a one neighboring reference view is selected and segmented.
The residuals errors divided into two sets small and big compared to a threshold, are
encoded by entropy coding.

Perra et al. [Per15] propose a lossless compression scheme based on adaptive pre-
diction. The micro images composing a plenoptic image are processed by an adaptive
prediction tool, aiming at reducing data correlation before entropy coding takes place.

2.5.3 Lossy Coding Light Field

While lossless compression rebuilds the exact data, lossy compression removes an un-
necessary and undetectable part of the data, which is undetectable. These techniques
includes the three following approaches:

Transform coding approaches: [JPFG17, Agg11, DQW04] This approach consists in
transforming the LF image from its raw format to another basis which is more suitable
for compression. Xiang et al. [JPFG17] actually aims at reducing the dimension of the
captured data via a low rank approximation of views aligned by homographies which
are jointly optimized with the low rank model, considering both a single homography
per view and per depth plane.

Xu et al. [DQW04] proposed a wavelet packet-based Light Field compression method.
Firstly, the original light images are decomposed into subbands. The latter are divided
into two parts: one contains the subbands which have signi�cant coe�cients, large rela-
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Figure 2.13: Pseudo video sequence of Light Field image with four scan orders.

tive energies and large correlations while the other contains the subbands which mainly
provide isolated information of each image. Each subband is coded independently.
In 2014, the JPEG standardization committee launched a new activity called JPEG
Pleno [jpe18]. It aims to provide a standard framework for e�cient storage and trans-
mission of new imaging modalities (such as point-cloud, holographic and Light Field),
which, when necessary, can also o�er interoperability with existing standards, such as
legacy JPEG and JPEG 2000 formats. Since then, JPEG committee has been actively
pursuing the de�nition of a new standard representation and compression algorithm for
LF images [EFPS16].

The pseudo sequence coding approach: This approach consists �rst in rearrang-
ing Light Field elements (usually sub-aperture images) in a speci�c order to produce
a pseudo-video sequence [ZCYH16], which is then encoded with a classical 2D hybrid
(intra and inter predictions) video encoder [LSOJ14]. This approach might, also, em-
ploy Multi-View extension of High E�ciency Video Coding (MV-HEVC) [AOS17].

Waqas et al. [AOS17] proposed a compression scheme based on MV-HEVC. It in-
terprets each row of subaperture views as frames of a multi-view sequence that are
compressed by using MV-HEVC. Inevitably, this method invests similarity between the
multi-view sequences as well. Liu et al. [LWL+16] proposed a compression of LF im-
ages based on pseudo-sequences of sub-aperture images. Firstly, the lenslet image is
converted from YUV420 to RGB444 color space. Then, the lenslet is processed to ob-
tain the multiple views that compose the Light Field data structure. The views are
color and gamma corrected to be converted back to YUV420. A subset of them is then
rearranged in a speci�c coding order that accounts for similarities between adjacent
views. It is coded using the JEM encoder illustrated in Figure 2.14. Li et al. [LSOJ14]
incorporated a full inter prediction scheme in HEVC intra prediction mode that explic-
itly embodied the redundancy in lenslet images. Perra et al. [PA16] proposed a method
that partitions the raw Light Field into tiles of equal size. Then these tiles are ordered
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as a pseudo-temporal sequence in order to adapt the data. Later on, they are rearranged
in a pseudo sequence video to subsequent HEVC temporal predictive coding.

Figure 2.14: The coding order and prediction structure taking 9×9 views as an example for illus-
tration. Only a portion of views is shown, with color indicating its layer. The arrows show prediction
relations, each from reference to target view [LWL+16].

The predictive-coding approach:This approach takes advantage of the intrinsic high
redundancy of LF images. In particular, instead of encoding all LF sub-views, only
sparsely sampled LF sub-views are encoded and the remaining sub-views are recon-
structed from the coded sub-views at the decoder side. This approach gained the at-
tention of a lot of researchers.

In [ZC17], Shengyang et al. proposed a powerful LF coding scheme. The dis-
tance between adjacent cameras is a constant scalar. Mathematically, the LF image is
modelled by a 4D function

L : Ω×Π{=⇒ IR}, ({ρ, ϕ}) = L({ρ, ϕ}), {ρ ∈ Ω} (2.8)

where ρ is a scene point, Ω represents the image plane and ϕ = (u,v)T denotes the
o�set of one view w.r.t. the center view in lens plane. As shown in Figure 2.15, this
scheme consists in coding a sparse set of LF views (SA) using HEVC and then linearly
approximating the other views (SB) and sending only the approximation coe�cients
to the decoder after quantization and entropy coding. The LA prior of the dropped
vectorized view j (Vj) is given as follows:

Vj ≈
1

Σxm

M∑
m6=j

xmVm, 2 ≤M ≤ N (2.9)

whereM is the number of selected reference views and N is the total view number, 1 ≤
m ≤ M and xm are the weight coe�cients. This coding scheme enables between 37.41%
and 45.51% Bjøntegaard Delta Bit Rate (BD-BR) reduction on average compared to the
HEVC encoding all sub-aperture views (HM-All) applied on a selected set of LF images
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Figure 2.15: Linear approximation coding scheme [SZ17].

from EPFL dataset [RE16]. This gain is achieved when half of views are encoded to be
transmitted to the decoder and other half of views are linearly approximated.

In recent years, supervised learning with CNN has witnessed huge adoption in com-
puter vision applications like super resolution. In the predictive coding approach, dif-
ferent LF images are predicted by exploiting the redundancy with neighboring views
using a CNN block.

In [KWR16], authors proposed a learning-based approach to synthesize new views
from a sparse set of input views. The LF synthesis scheme is composed of disparity
and color estimation components (Figure 2.16). Authors use two sequential CNNs to
model these two components and train both networks simultaneously by minimizing the
error between the synthesized and ground truth images. They used only four corner
sub-aperture views from the LF captured by the Lytro Illum camera to synthesize
high-quality images that are superior to the state-of-the-art techniques. As shown in
Figure 2.16, a set of features (mean and standard deviation) of a sparse set of views
are fed to the �rst CNN that estimates the disparity at an intermediate view using
Equation 2.10.

Dq = gd(K), (2.10)

This equation models how the estimated disparity Dq at the novel view at position q
is generated from the set of K features including the mean and standard deviation.
Finally, the second CNN generates the �nal intermediate view using Equation 2.11.

Fq = gc(H), (2.11)

where Fq represents the image at the intermediate view, H the feature set and gc de�nes
the relationship between these features and the �nal intermediate image.

Likewise, Gupta et al. [GJK+17] combined their results to recover a high resolution
4D LF from a single coded 2D image with two branches network architecture a tradi-
tional autoencoder and 4D convolution layers. Jiang et al. [JLG17] proposed a Light
Field compression scheme using depth image-based rendering approach. A sparse set
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Figure 2.16: Deep learning views synthesis [KWR16].

of views is selected and encoded with the standard HM and transmitted to the decoder
side. The depth image and low rank matrix completion are used in three main blocks
to synthesize the entire LF image from the decoded views. First block to estimated
a warped disparity, then the second to synthesis the warped color image and the last
block to synthesis the �nal color image.

Wu et al. [WZW+17] use the epipolar plane image (EPI) representation of LF to
reconstruct the whole LF image by CNN-based angular detail restoration on EPI. To
avoid the ghosting e�ects caused by the information asymmetry, the spatial low fre-
quency information of the EPI is extracted via EPI blur and used as input to the
network to recover the angular detail. The non-blind deblur operation is used to restore
the spatial detail that suppressed by the EPI blur.

Dib et al. [DPG19] proposed a LF compression scheme based on the Fourier Disparity
Layer representation. The LF is divided into several subsets of views. The �rst subset
is encoded with a standard 2D video encoder HEVC, while the second subset of views
is predicted by the Fourier Disparity Layer view synthesis. For better reconstruction,
the residue data of synthesized uncoded views are compressed and transmitted to the
decoder side.

Due to the non-linearity in LF images caused by the angular displacement, Zhao et
al. [ZWJ+18] applied a non-linear deep-learning-based view synthesis network to boost
the performance of the LF images compression. In particular, they use 2 CNNs. The
�rst CNN with 6 layers is used eventually to synthesize the missing LF sub-views. It
takes as inputs all the accessible decoded sub-views in clockwise order from the current
viewpoint. The second CNN is used to enhance the quality of the reconstructed LF
sub-views. The loss function used to measure the di�erence between the enhanced sub-
views and the dropped viewpoints is `2-norm. The method proposed by Zhao et al.
shows a high e�ciency of their deep learning based scheme.

Jia et al. [JZW+18] proposed a similar LF image compression. The main di�erence is
that they use a GAN (with a generator and discriminator) instead of a single CNN. For
quality re�nement, Jia et al. encoded and transmitted the residual errors of synthesized
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uncoded views.

Figure 2.17: Light Field representation using binary images and weights [KTF18].

Huang et al. [HAS+18] synthesized the missing views using depth-based image ren-
dering technique, where depth maps (D) are generated from the epipolar images using
the equation 2.12

D = f/(1− tan(α)), (2.12)

where f and αi are camera focal length and the slope in the Epipolar Plane Image
(EPI), respectively.

Dib et al. [DLJG19] proposed a compression scheme for Light Field using super-ray
based local low rank models. A novel method for disparity estimation and compensation
was proposed so that the super-rays are constructed to yield the lowest approximation
error for a given rank. This representation is based on two low rank models, one for the
central view pixels that are visible in all views and while the other is for occlusions.

Komatsu et al. [KTF18] proposed a more simple coding scheme. They modeled
the LF image as a set of binary images Bn(x, y) combined with a set of weights rn(s, t)
where the viewpoints, which are arranged in a 2-D grid, are speci�ed as (s, t) and the
pixels are indicated as (x, y)- one set of weights for each RGB component- and shown in
Figure 2.17. These weights are computed by minimizing the mean square error between
the original image and the reconstructed one as shown in equation 2.13

arg min
Bn(x, y),rn(s, t)

∑
s, t, x, y

|L(x, y, s, t)−
N∑
n=1

Bn(x, y)× rn(s, t)|2, (2.13)

where L(s, t, x, y) is the original Light Field image, N represents the number of binary
images and n = 1,...N . Only these information are sent to the decoder, this o�ers
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Figure 2.18: Scalable LF compression by weighted binary images [KTF18].

a good compression ratio that is comparable with the existing methods. Komatsu
extended their proposed method to a scalable scheme where the binary image can have
di�erent resolutions depending on the degree of granularity as shown in Figure 2.18.

One should note that in the predictive coding approach of LF image coding, a
coding technique depends on the way the images are viewed. For instance, Amirpour
et al. [APP18] proposed a new scan order which divides sub-aperture images into four
regions and encodes them independently. Each quadrant uses the central sub-aperture
as �rst reference and encodes the non-central sub-aperture images in a snake order.

Pinheiro et al. [APP+19] used the concept of macro images, where they group im-
mediate neighoring images. Each view image along with its immediate neighboring
view images which have higher similarity, are grouped and called a Macro View Image
(MVI). Considering 15×15 view images decomposed from a raw lenslet image to result
in a division into 25 MVIs, in addition to the di�erent colors allocated to each MVI
reveal the level of dependency, as shown in Figure 2.19.

The third approach is broadly used in LF image compression as it proves a better
performance and it is relatively more promising.

2.6 Light Field Visual Quality Evaluation

In order to compare compression performance of multiple coding techniques, one needs
distortion and/or quality metrics.

2.6.1 Categorization of Objective Methods

Objective quality assessment methods, called by abuse of quality metric language, refers
to metrics computed by mathematical tools in contrast to subjective evaluation. The
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(a) (b)

Figure 2.19: (a) MVI groups of view images. (b) Dependency among centers of MVIs shown as a
tree unit.

objective metrics can be classi�ed into three categories depending on whether or not
the reference video is available, as shown in Figure 2.20. According to ITU Recom-
mendation J.143 [ITU], three video quality metrics have been de�ned: metrics with
full reference (Full Reference, FR), metrics with reduced reference (Reduced Reference,
RR) and metrics without reference (No Reference, NR) where Full-reference (FR) uses
the full bandwidth video input. Reduced-reference (RR) uses lower bandwidth features
extracted from the video input. As for, No-reference (NR), it has no information about
the video input.

2.6.2 Objective Distortion Metrics

To evaluate the proposed algorithms in this thesis, four objective assessment tools were
used: Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM). These three metrics are brie�y introduced as follows:

Mean squared error MSE is a mean squared di�erence between the original image
A and distorted image B. The mathematical de�nition for MSE is:

MSE =
1

M ×N

M∑
i=1

N∑
j=1

(Aij −Bij)2 (2.14)

Where Aij and Bij are the pixel value at position (i, j) in the original image and distorted
image respectively.

Peak signal to noise ratio PSNR measures the distortion of a retrieved signal com-
pared to its original version [HZ10]. The PSNR can be used to assess the �delity between
the original image A and distorted image B. The PSNR is computed pixel-wise:

PSNR = 20 log10
255√
MSE

(2.15)
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Figure 2.20: Three categories of video quality metrics

In particular, the weighted PSNR (WPSNR) is de�ned as:

PSNRY UV (k, l) =
(6× PSNRY (k, l) + PSNRU (k, l) + PSNRV (k, l))

8
(2.16)

where K, L are the number of sub-aperture images in the whole LF for each line and
column respectively and k and l are the indexes of the sub-aperture images.
The mean of sub-aperture images PSNRY UV is subsequentially computed to have an
average value for PSNR for Y channel and for YUV

PSNRY UV =
1

((K)(L))

K∑
k=1

L∑
l=1

(PSNRY UV (k, l)) (2.17)

SSIM is a method for measuring the similarity between two images. The SSIM index
can be viewed as a quality measure of one of the images being compared, provided the
other image is regarded as of perfect quality [ZBSS04].

SSIM(x, y) = l(x, y)s(x, y)c(x, y), (2.18)

l(x,y) =
2µxµy + C1

µ2x + µ2y + C1
, (2.19)

s(x,y) =
σxy + C3

σx × σy + C3
, (2.20)

c(x,y) =
2σxσy + C2

σ2x + σ2y + C2
, (2.21)
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where l, s, c are the luminance, structure and contrast similarity measurement compar-
ison function respectively.

(a) (b) (c)

Figure 2.21: Visual quality of the image Fruit from the INRIA LF dataset [JPF+17],
view (3,3) in the array sub-aperture 8 × 8. From left to right: original view, encoded
respectively with HEVC (bitrate = 0.064 bits per pixel (bpp), PSNR = 31.5 dB, SSIM
= 0.936) and VVC (bitrate = 0.073 bits per pixel (bpp), PSNR = 32.3 dB, SSIM =
0.947).

Bjøntegaard metric: When comparing two codec versions, di�erences can be mea-
sured on the distortion or bitrate level, either by observing the distortion improvements
for a given bitrate, or measuring the bitrate reductions for a �xed distortion. Bjøn-
tegaard et al. [Bjø01, hB08] introduced a simple framework to simplify the compari-
son between two prediction methods at multiple bit-rate levels. They proposed two
metrics: the Bjøntegaard Delta Bit Rate (BD-BR) and the Bjøntegaard Delta PSNR
(BD-PSNR), which respectively describe the average bit-rate or PSNR di�erences be-
tween two encoding methods. These metrics are computed for four points from a Rate
Distortion curve (RD-curve).

The BD-PSNR measures the average PSNR di�erence between two RD-curves.
The BD-PSNR is calculated using third degree polynomials over logarithmic bit-rates
and PSNRs data points in equation. It is expressed in decibel (dB).

BD − PSNR =
1

rH − rL

∫ rh

rl

(D2(r)−D1(r))dr (2.22)

where the BD-BR is expressed in percentage. As it describes a bitrate di�erence,
the BD-BR has negative values when there is an improvement, i.e. a bitrate reduction.

BD −Rate =
1

DH −DL

∫ Dh

Dl

(r2 − r1)dr (2.23)

with rh = log(Rh), rl = log(Rh) being the high and low boundary values of the output
bit-range. Dl and D2 are the two RD-curves considered for comparison. Needless
to mention, that we will be using the BR-rate, Bjøntegaard Delta SSIM (BD-SSIM)
and BD-PSNR to evaluate the quality of the reconstructed images of our method with
some of the state-of-the art techniques based on linear approximation [ZC17], deep
learning [KWR16] and the standard 2D encoder [LLL+17].
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2.7 Subjective Distortion Metrics

Subjective test is the most accurate way to measure the quality of a multimedia stream.
More precisely, subjective evaluation stresses on visual aspects that are not considered
in the objective tests. For instance, distortions on edges are not visually disturbing as
distortions in the homogeneous zones. Such an example leads to a low objective metric,
whether visually or subjectively it must give a high score.

In addition to the objective metrics, we subjectively evaluated our proposed method.
The environment of the subjective experiment is equipped with recent tools that help
viewers evaluate video and images. This environment was established according to the
approved standard that is recommended in the ITU-R Rec. BT.1788. To be more
speci�c, the quality and strength of lighting inside and paint colors used in addition
to the adoption of the distances to assess the quality of images and videos for all
compression methods.

2.7.1 Organization of Subjective Tests

In a quality subjective experience, organizers must meet a number of criteria in order
to obtain reliable results. Therefore, the environment of the experiment and the test
conditions must be strictly de�ned. Thus, the instructions given to observers, the stimuli
present and the evaluation methodology are elements that can be �xed by the organizers.
However, some factors related to the observers themselves, such as origin, culture or
mood, can in�uence. The latter can be controlled by applying speci�c constraints such
as vision tests and the use of several participants within the same experiment.

The observers: The subjective quality of visual content can vary considerably from
one observer to another. Observers may be expert or non-expert depending on the
objectives of the assessment. To reduce this variation gap, visual stimuli must be
visualized by a set of observers. Recommendation ITU-R BT.500 [BT.12b] stipulates
the use of at least 15 uninitiated or naive individuals to assess the quality of a visual
stimulus. These observers must pass visual tests (Snellen scale) and have the ability
to distinguish colours (Ishihara test, for example). Gender parity and the age of the
participants are also important elements for a "quality" experience. Finally, the question
of remuneration is raised.

The test conditions: Observers who have passed the visual tests are selected and
the test conditions are explained to them : comparison methods, rating scales, etc. It
is also recommended to start the experiment with a series of tests to familiarize users
with the equipment of the experiment and to anchor their judgment.

A test session is typically composed of a set of potentially degraded stimuli (images
or videos). The order of presentation of these stimuli must be random in order to avoid
the observer's deconcentration and weariness. ITU also recommends that the duration
of a test session should not exceed 30 minutes.
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Table 2.2: General viewing conditions for subjective assessments in laboratory envi-
ronment [BT.12b].

Condition Item Values
a Peak luminance on the screen (cd/m2) 150-250

b
Ratio of luminance of inactive screen

to peak luminance
<=0.02

c
Ratio of the luminance of the screen when displaying

only black level in a completely dark room, to
that corresponding to peak white

approximately 0.01

d Maximum observation angle relative to the normal 30◦

e
Ratio of luminance of background behind

picture monitor to peak luminance of picture
approximately 0.15

f Chromaticity of background D65

g Illumination from other sources low

For the laboratory viewing environment, ITU recommends many constraints to en-
sure the best viewing conditions. Thus, the lighting of the room, the display screen and
the viewing distance must be respected.

Furthermore, the laboratory viewing environment is intended to provide critical
conditions to check systems. General viewing conditions for subjective assessments in
the laboratory environment Table 2.2 lists the general viewing conditions for subjective
assessments in the laboratory environment on ITU-R Recommendation BT.500.

2.7.2 Subjective Evaluation Quality Assessment Methods

Although test conditions have a major impact on human judgment, the instructions
given to observers also have a major in�uence on the production of subjective quality
scores. As a result, various methods and protocols have been developed. The main
task of a participant is to judge the quality of a degraded version of the video during
its presentation. The way this version is presented to observers depends on whether or
not the original version is present. Thus, three main families of methods standardized
in ITU-R Recommendation ITU-R Rec. BT.500-10 have been proposed:

Comparative methods: Comparative methods Peer Comparison (PC) consist in
simultaneously presenting observers with two versions of a video for which they are
asked to quantify the existing qualitative relationship between these two versions. Thus,
two comparative scales can be used: a discrete scale and a scale by category.

The category rating scale consists of a set of semantically de�ned indices where the
participant must choose a particular category that represents his or her feelings. The
discrete scale, on the other hand, o�ers more choice in scoring for participants in the
experience. The subject is asked to compare the quality of the �rst video with that of
the second within a time interval of less than 10 seconds, to judge which of these two
videos is of better quality.

Single stimulus methods: A simple stimulus method, as its name suggests, is to
show a video to an observer by asking him to judge its quality, without being accom-
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panied by the original version. Two measures of this class of methods are generally
used: the Single Stimulus Continuous Quality Scale (SSCQS) method and the Absolute
Category Rating (ACR) method. In the literature, this last method is sometimes called
Single Stimulus Impairment Scale (SSIS).

The main di�erence between these two methods is based on the use of the rating
scale. For the ACR method, a discrete rating scale, generally 5 points, is used. Quality,
in this scale, is often related to the perception of degradation. The SSCQS method uses
a continuous scale, from 1 to 100, to guide the observer to the most appropriate score.
The video is presented to the observer and then a grey image of less than 10 seconds
(usually 5 seconds) is displayed on the screen during which the participant is asked to
give it a quality score.

Double stimulus methods: This last category of subjective quality assessment
methods consists of showing two stimuli to observers before rating their quality. As
with single stimulus methods, two double stimulus measures are often used: The Dou-
ble Stimuli Continuous Quality Scale (DSCQS) and the DCR (Degradation Category
Rating) methods. The latter is sometimes called Double Stimulus Impairment Scale
(DSIS). In the DSCQS method, a continuous scale is used while the DCR method uses
a scale similar to that of the ACR (Absolute Category Rating) method. The di�erence
between these two methods is not limited to the use of the rating scale but rather to
the objective of the method itself. The objective of the DSCQS method is to evaluate
a transmission system where the two versions presented to observers correspond to the
input and output of this system. Participants do not know which version corresponds
to the entry or exit. The DCR method simply measures the discomfort perceived by
the observer when viewing the video. The observer is informed that the �rst version
corresponds to the reference video while the second has the degraded video to which he
must assign a quality score.

For all the methods described above, ITU recommended that the display time for
an image or video should be around 10 seconds. However, this duration is relatively
short and does not re�ect a real situation, particularly for video stimuli. Thus, another
double-stimulated method of continuous evaluation was proposed. This is the Simul-
taneous Double Stimulus for Continuous Evaluation (SDSCE) method where videos
are presented side-by-side on the same screen or on two adjacent screens. Participants
assign their quality score on a continuous basis. Due to its complexity, this method
remains the least used in the literature. For our subjective evaluation, we used the
double stimuli method.

2.7.3 International Telecommunications Union Recommendations

Assessing subjective quality involves psycho-visual tests where observers are asked to as-
sess the quality of a video stimulus based on their own subjective judgement. The ITU,
which is an international standard organization, has published a set of recommendations
for the proper conduct of these subjective tests. The main ITU-T/R recommendations
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related to the video quality evaluation method such as BT.500 (methodology for the
subjective assessment of the quality of television pictures). The main ITU-T/R recom-
mendations on video quality evaluation methods are listed in the Table below 2.3.

Table 2.3: The main recommendations of ITU for subjective quality assessment tests.

ITU recommendation Name

BT.500
Recommendation ITU-R BT.500-13 (2012), methodology for
the subjective assessment of the quality of television pictures.

P.910
Recommendation ITU-T P.910 (2008), subjective video quality

assessment methods for multimedia applications.

J.140
Subjective picture quality assessment for digital cable

television systems.

BT.1129 SDTV
Subjective assessment of standard de�nition

digital television.

2.8 Conclusion

This chapter brie�y described the main 2D standard video techniques including HEVC
and VVC. It, furthermore, displayed some advanced features such as image segmenta-
tion and showed that SLIC technology has the best e�ciency. This literature review
presented, also, the di�erent approaches for the existing LF image compression tech-
niques and revealed that the predictive approach is the most e�cient one. The following
chapter we will detail our proposed technique that is mainly based on linear approxi-
mation and deep learning. It will be compared to the state of the art techniques while
using the di�erent evaluation metrics as provided in this chapter.
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Chapter 3

RDO-Based Light Field Image

Coding Using Convolutional Neural

Networks and Linear

Approximation

3.1 Introduction

In this chapter, we propose an e�cient LF image coding scheme with a rate distortion
optimization (RDO) functionality. It is mainly based on a predictive approach using
linear approximation and convolutional neural network. As shown in Figure 3.1, the
encoder consists of coding a �rst sparse set of views with a standard encoder and a
second sparse set with a linear approximation. While the last sparse set of views is
input to a RDO block, where it will be either linearly approximated or simply dropped.
Where at the decoder, we use a deep learning approach to synthesize the dropped views,
followed with a post-processing pixel-matching-based scheme for a higher reconstruction
quality.

Section 3.2 and 3.3 details the proposed method. Experimental results are presented
in Section 3.4.

3.2 Hybrid 2D Video Codec and CNN Coding Scheme

Our basic scheme proposal referred in the following as Hybrid 2D video codec CNN
(H2DC-CNN) coding scheme. The �owchart of the H2DC-CNN coding scheme is shown
in Figure 3.2 and its main blocks are explained in the following. As shown in Figure
3.2, at the encoder side, for a given LF image L constituted by sub-aperture views,
a sparse set of reference views are selected (SR: 8 corner and center views) and re-
arranged in pseudo-video sequence. The latter is then compressed with a 2D video
encoder standard. Next, a second sparse set of views (SE : 7 adjacent views) are lin-

57
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Figure 3.1: Global concept of our proposed scheme.
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Figure 3.2: Block diagram of the proposed H2DC-CNN LF coding scheme.

early approximated [ZC17] with the decoded reference views (ŜR). For the views of
SE , only the coe�cients of LA are transmitted to the decoder, thus allowing to reduce
transmission bandwidth. The LA prior of the view Vj is given as follows [ZC17]:

Vj ≈
1

Σxm

M∑
m 6=j

xmVm, 2 ≤M ≤ N (3.1)

where M is the number of selected reference views and N is the total number of views,
while xm are the weight coe�cients of the vector X with 1 ≤ m ≤ M . The video
bitstream and the weight coe�cients (X) are both sent to the decoder.

At the decoder side, the reference views are �rst decoded (ŜR) and then jointly
used with the weight coe�cients (X̂) to linearly approximate the ŜE set. The two sets
of views (ŜR and ŜE) are then fed to the CNN block that synthesizes the remaining
views (illustrated with gray color in the Figure 3.2). The CNN block includes two
phases: a disparity estimator and color predictor, which are performed by two sequential
CNNs [KWR16]. Based on the features extracted from the sparse input views, a four
layer CNN estimates the disparity of the dropped views. The second CNN uses all the
warped views, derived from the �rst CNN, along with a few other features to predict
the color and synthesize the dropped views.
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Figure 3.3: RDO-based Light Field coding using CNN and LA Scheme. Proposed LF image coding
scheme (the new blocks are highlighted in green)

.

The obtained gain in coding e�ciency with the H2DC-CNN scheme is about 30%
compared to the state-of-the-art solutions [BHD+18]. However, while this method is
very e�cient at low bitrate, it is not so e�cient for providing a high quality view at
high bitrate compared to the pseudo-video sequence coding approach. Moreover, for
some video sequences, we have noticed that the views linearly approximated have better
quality than when they are synthesized by the CNN block. Therefore, we propose in
the next section three main contributions to overcome aforementioned limitations and
further increase the quality of the reconstructed views at both low and high bitrates.

Figure 3.4: Sub-aperture representation of a LF image splitted into 4 groups of views (GOV). Each
group of views takes the 4 corner views as reference, while view I represents the position of the intra
frame.
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3.3 Proposed Method

3.3.1 Con�guration Settings

In the proposed scheme, we consider the sub-aperture based representation of LF image
of 8 × 8 views. It consists in dividing the plenoptic image into four Groups of Views
(GOV) (4 × 4 views each) as illustrated in the Figure 3.4. We can notice that the
performance of the training are more e�cient with a GOVs as shown in the Figure 3.5.

(a) Training 8×8 (b) Training 4×4

Figure 3.5: Quality performance for LF images 8 * 8 views: (a) with 4 views as references
and (b) with four GOV, 16 views as references.

3.3.2 Global Framework

For each GOV, we take the 4 corners as reference in order to synthesize the novels
views. In total, the number of references views is 16 for the whole LF image. As �rst
step, we select a sparse set of sub-aperture views (SR in blue) with speci�c position
that give the best result after testing all possible combinations. Then, we rearrange the
nine SR views into a pseudo sequence (spiral order scan) and encode it with a simple
JEM encoder with chrominance downscale, e.g yuv 420. In the second step, we estimate
the 7 adjacent views set (SE in red) using linear approximation explained in Section 3.2.
For each frame in the dropped views set SE, we linearly approximate the views with the
decoded views in SR set. An approximation model is used to optimize the reconstruction
of the weight coe�cients X, by using the Spectral Projected Gradient for L1 (SPGL1)
functions. This one generates the coe�cients for one target view at each time and for
each channel color separately (i.e. rgb, 3 channels).
As this vectorX contains �oating point values, we quantizeX at 16 bits before encoding
it with entropy coding. The JEM bitstream encoding the SR set of views with the
quantized and entropy coded linear coe�cients are sent to the decoder.
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In order to achieve bitrate reduction while maintaining high visual quality at di�er-
ent ranges of bitrate, we made three di�erent improvements. Speci�cally, we introduced
a RDO stage to make the right choice (LA vs. CNN) for the dropped intermediate views
(SI). In addition, we propose to e�ciently tune the quality of the central view, since
all the predicted, estimated and synthesized views are based on it. Finally, a post pro-
cessing step is applied to the approximated and synthesized views to further enhance
the visual quality of the decoded LF image. The block diagram of the proposed scheme
is illustrated in Figure 3.3 and the newly added blocks are highlighted in green.

(a) (b)

Figure 3.6: MSE per pixel based comparison with and without RDO of Rusty-Fence
and Stairs LF images.

3.3.3 Central View Quality Tuning

The Central View (CV) of the LF image, illustrated in Figure 3.4 at the position (4,
5), is coded as an Intra frame. It is used as a reference for the prediction of every other
frames. In addition, it is exploited by the LA and CNN blocks to generate the dropped
views. Thus, the quality of this CV is a key factor for the prediction and generation of
other views. Therefore, we must be careful in �xing the quality of the CV.

A simple and e�cient way to provide a CV with a high quality is to assign it a QP
value lower than the global one used for the rest of the views: Qintra = Q+Qoffset, where
Qintra is the QP of the intra frame, Q refers to the global QP value, while Qoffset is a
quantization o�set (Qoffset ∈ Z). Therefore, the solution consists in assigning a negative
value to the Qoffset. The Qoffset has been empirically �xed, all Qoffset values in the
range of [−6, 0] have been tested and we found that the value of −4 is the one providing
the highest coding performance. The Qoffset applied to the CV o�ers an enhancement
of 0.19 dB in terms of BD-PSNR and −11.7 % in terms of BD-BR compared to the
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(a)

(b)

Figure 3.7: (a) PSNR di�erence of the LA estimated and CNN synthesized views against the reference
views of the LF images at quantization parameter (QP)=22 (negative value notice that the CNN is
better then LA for this view, positive value notice the LA is better): (a) Stairs and (b) University.

H2DC-CNN coding scheme under test conditions described in Section 3.4.

3.3.4 Proposed Rate Distortion Optimization

As mentioned in Section 3.2, we proposed two ways to reconstruct the intermediate
views (SI), using LA- or CNN-based approaches. After an extensive experimentation,
we found that some views are better reconstructed with LA approach rather than CNN,
while for other views, the CNN approach gives better results. Figure 3.7 illustrates an
example of the PSNR di�erence of the views linearly approximated and synthesized by
the CNN block, respectivley, against the reference views. To select the right approach
(LA vs. CNN), we proposed to perform a RDO for each intermediate view, thus indi-
cating which method between LA and CNN can provide the highest RD performance,
we use Algorithm 1.
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Algorithm 1: Algorithm of the RDO between LA and CNN

1 foreach intermediate view do

2 Compute CostRD (J) per itermediate view for both LA and CNN;
/* Choose the best between LA and CNN for current view */

3 if CostRD(CNN) < CostRD(LA) then

4 �ag = 0;
5 else

6 �ag = 1;
7 X= Linear_Approximation( current_view );
8 Encode X;

To do this, the encoder computes the Rate Distortion (RD) cost function J given
by Equation (5.5) for both the linearly approximated view and the one synthesized by
the CNN.

J = D + λR (3.2)

where λ is the Lagrangian multiplier, D is the distortion and R is the rate in bits per
pixel (bpp). To set the Lagrangian multiplier (λ), we empirically determine its value by
testing a large set of LF images. We found that the value of 0.1 for λ is optimal and for
which the Lagrangian optimization is giving the best performance. We then select the
best approach minimizing the RD cost (J) for each intermediate view. Therefore, an
additional bit is required per intermediate view to signal which of the two methods has
been selected at the encoder side ( 0: LA is selected, 1: CNN is selected ). Obviously,
when LA is selected, the linear coe�cients for the corresponding estimated view (X)
need to be transmitted to the decoder, while no additional information is required for
the CNN approach.

For instance, the quality improvement is noticeable for three LF images, for which
the RD optimization function is giving the best RD performance illustrated in Fig-
ure 3.6. The inclusion of the RDO improves coding performance on average by 0.3
dB and −16.1% in terms of BD-PSNR and BD-BR, respectively, with respect to the
H2DC-CNN coding scheme under test conditions described in Section 3.4.

3.3.5 Post Processing

In order to further enhance the visual quality of the reconstructed views at the decoder
side, we proposed to perform a post-processing, thus o�ering a high visual experience.
The post-processing consists in applying the Hierarchical Superpixel-to-Pixel Dense
Image Matching (HSP2P) [DSS17] technique on each approximated or synthesized view
(ŜR and ŜI). The main idea is to automatically establish dense correspondences between
two views in a hierarchical superpixel-to-pixel manner. Since we proposed to encode
the CV at high quality, consequently, we consider it as the reference view for all the
target views, as illustrated in Figure 3.8(a). Then, we partition the target views into
superpixels by using SLIC method described in Section 2.2 [ASS+12], in order to �nd the
corresponding matching superpixel for each couple of views (i.e., between the reference
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(a) (b)

Figure 3.8: (a) HSP2P correlation between views, (b) Pixel in the target super-pixel SA
i (in gray) is

compared with all pixels in the reference super-pixel SB
j in green and its neighbors in blue.

CV and target views). The concept of the SLIC method is illustrated in Figure 3.8(b).
The feature distance is composed from the average of Lab color space and the average
of Scale-Invariant Feature Transform (SIFT) feature descriptor [Low04]. To combine
these two kinds of features, we de�ne a distance function D for each superpixel pair
(i, j) as

D(i, j) = α1‖f ilab − f
j
lab‖2 + α2‖f isift − f

j
sift‖2 (3.3)

where (f ilab, f
i
sift) are the features of superpixel i corresponding to Lab color space and

SIFT feature descriptor respectively, ‖ ‖2 is the L2-norm (See Section 2.2), and (α1,
α2) are two constants set to 1 and 5, respectively [DSS17].

To �nd the superpixel in the reference view B for each superpixel in the target view
A, a matching function M given by Equation (3.4) is computed.

M(i) = arg min
j∈SB

D(i, j), i ∈ SA (3.4)

where SA and SB are the superpixel sets of the target view A and the reference view
B, respectively.

A consistency function used to calculate a coherence error for a group of matches.
The domain of function is transformed into vectors TS of a superpixel i ∈ SA and its
neighbors set N(i), which is the set of superpixels connected to superpixel i in bound-
aries. Given a superpixel i and its corresponding matched superpixels M(i), TS(i)

TS(i) = c(M(i))− c(i), (3.5)

where c is the geometric center of a superpixel (i.e., the average coordinate of pixels
in this superpixel). Then, this consistency function can be formulated as equation 3.6

C(i) =
1∑

j∈N(i)

wi,j

∑
j∈N(i)

wi,j‖TS(i)− TS(j)‖2 (3.6)
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(a) (b) (c)

Figure 3.9: Quality comparison for LF image Bikes (view (2,2)) at QP=28. a) orig-
inal view, b) before post processing (PSNR = 36.22 dB, SSIM = 0.88), c) after post
processing (PSNR = 36.5 dB, SSIM = 0.890).

where wi,j = exp(−β‖f ilab−f
j
lab‖2) is a weighting function, which measures the similarity

between two feature vectors and β is a constant �xed as 0.02 [DSS17].

More precisely, the nearest neighbor T (u) of each pixel u in the target superpixel
SA is searched in the reference superpixel SB, based on Equation (3.7).

T (u) = arg min
v∈candi

‖fulab − fvlab‖2, ∀u ∈ SAi , ∀i ∈ SA (3.7)

where fulab is the color feature using Lab color space in the updated target image and
candi represents the candidate set of superpixel i.

Such matching allows to improve the visual quality of the LF reconstructed image,
as it re�nes the values of the corresponding matched pixels in the generated views.
Figure 3.9 illustrates the visual quality of Bikes LF image (view (2,2)) before and af-
ter the superpixel to pixel post-processing. This post-processing enhances the coding
performance by 0.17 dB and −14.1% in terms of BD-PSNR and BD-BR, respectively,
compared to the H2DC-CNN coding scheme under test conditions described in Sec-
tion 3.4.

It should be noted that the three previously claimed gains in each subsection are
not cumulative and the overall gain of the three improvements together is given in the
next section.

3.4 Experimental Results

3.4.1 Experimental Setup

Training Phase: For training the CNN, we run the training of DL that uses the
disparity and color estimation components in two sequential CNNs. These CNNs are
used to synthesize the novel views for each GOV separately with 7 layers (4 convolutions
with kernel size 7× 7, 5× 5, 3× 3, 1× 1, respectively and 3 ReLUs), angular resolution
4× 4 and the numerical evaluation and the �nal image has index (2,2). We take the 4
corner source views as input as shown in the Figure 3.11. For this training, the CNN
block is trained with 100 LF images, 28 from Stanford Lytro LF dataset [RMS16],
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Figure 3.10: R-D curves based on wPSNR of the four considered solutions for four test LF images:
(a) Building, (b) Friends1, (c) Stairs and (d) University.

and 72 from California Lytro LF dataset [KWR16], both captured by Lytro camera.
We split each sub-aperture view into patches of size 60×60. This results in more than
100,000 patches which are used to train the CNN block. For more details on the training
process, the reader is referred to [BHD+18].

Testing phase: For the testing, we select 12 LF images from two datasets of LF im-
ages captured with a Lytro Illum camera, the EPFL LF and the INRIA dataset [RE16,
RSMG18], which are composed of 8×8 sub-aperture views. We use the JEM software
as 2D video encoder to encode the set of 9 reference views (SR) in Random Access
(RA) coding con�guration at 4 QP values (QP ∈ {22, 27, 32, 37}). We compared the
proposed scheme with four state-of-the-art methods: 1) JEM-All that encodes all views
with the JEM software in RA coding con�guration, 2) H2DC-CNN coding scheme Sec-
tion 3.2, 3) LA-32 solution [ZC17] that encodes half of the views with JEM and linearly
approximates the other half, and 4) DL-16 scheme that encodes 16 views with the JEM
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Figure 3.11: Disparity estimator neural network and color predictor neural network consists of four
convolutional layers with decreasing kernel sizes.

and synthesizes the rest of views at the decoder.

3.4.2 Results

3.4.3 Objective Evaluation

R-D curves based on WPSNR for four LF images are provided in Figure 3.10. We can
notice that the proposed scheme provides for both images the highest PSNR perfor-
mance at all considered bitrates. The previous conclusion is con�rmed by Table 3.1,
providing the Bjøntegaard results [hB08] of the four considered solutions, compared to
the anchor solution JEM-All for the whole set of LF images. Our proposed method
achieved an average BD-BR gain of −50.34% and BD-PSNR of 1.393 dB compared to
the JEM-All solution. We can also notice that the proposed solution achieves a gain
for all considered LF images including Bee2 for which the BD-BR ranges from loss of

Table 3.1: BD-BR and BD-PSNR gains calculated against anchor JEM-All for 12 LF
images. 1) Bikes 2) Friends1 3) Friends4 4) Rolex 5) RustyFence 6) Stairs 7) University
8) FountainVincent2 9) YanKriosStanding 10) Bee2 11) Building 12) Cactus.

LA-32 [ZC17] DL-16 H2DC-CNN [BHD+18] Proposed scheme
Im. BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR
1) -29.17% 0.85 -36.36% 0.93 -37.39% 0.73 -46.15% 1.19

2) -26.31% 0.57 -27.58% 0.50 -36.61% 0.76 -51.84% 1.51

3) -28.65% 0.66 -24.73% 0.42 -34.10% 0.66 -57.83% 1.84

4) -20.77% 0.45 -11.46% -0.10 -11.20% -0.29 -30.29% 0.12
5) -24.71% 0.70 -31.15% 0.61 -37.39% 0.66 -48.39% 1.22

6) -29.50% 0.83 -42.28% 1.12 -44.68% 1.19 -52.42% 1.64

7) -30.57% 0.81 -45.92% 1.13 -46.88% 1.10 -54.73% 1.50

8) -28.07% 0.66 -37.65% 0.73 -37.83% 0.52 -46.81% 0.95

9) -24.26% 0.78 -57.32% 1.94 -62.25% 2.21 -69.63% 2.87

10) -2.81% 0.04 -1.14% -0.27 7.76% -0.54 -36.90% 0.30

11) -22.89% 0.53 -9.41% 0.04 -19.80% 0.20 -38.29% 0.83

12) -15.94% 0.46 -54.07% 1.55 -59.96% 1.83 -70.77% 2.70

Av. -23.63% 0.61 -31.58% 0.71 -35.02% 0.75 -50.34% 1.393
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University

Rusty-Fence

Fountain-Vincent-2

(a) (b) (c) (d) (e)

Figure 3.12: Overall visual comparisons for showing the visual quality of view at position
(3, 2) of the 4 methods: a) original views, cropped decoded views by b) JEM-All, c)
LA-32, d) DL16 and e) our proposed method.

7.76 % for H2DC-CNN coding scheme to a gain of −36.90% for the proposed solution.

Figure 3.12 shown the visual quality of the two LF images with the four consid-
ered solutions. University, b) bitrate= 0.01790 bpp, WPSNR= 32.10 dB, SSIM=
0.788, c) bitrate= 0.01664 bpp, WPSNR= 33.38 dB, SSIM= 0.829, d) bitrate= 0.01610
bpp, WPSNR= 33.42 dB, SSIM= 0.837, e) bitrate= 0.01619 bpp, WPSNR= 33.81 dB,
SSIM= 0.85. Rusty − Fence, b) bitrate= 0.01730 bpp, WPSNR= 31.91 dB, SSIM=
0.866, c) bitrate= 0.01649 bpp, WPSNR= 33.465 dB, SSIM= 0.901, d) bitrate= 0.01577
bpp, WPSNR= 33.41 dB, SSIM= 0.905, e) bitrate= 0.01710 bpp, WPSNR= 34.29
dB, SSIM= 0.935. FountainV incent2, b) bitrate= 0.01670 bpp, WPSNR= 34.97 dB,
SSIM= 0.877, c) bitrate=0.01654 bpp, WPSNR= 36.43 dB, SSIM= 0.901, d)bitrate=
0.01601 bpp, WPSNR= 36.447 dB, SSIM= 0.907, e) bitrate= 0.01597 bpp, WPSNR=
36.68 dB, SSIM= 0.913.

Table 3.2 reports the performance in terms of BD-BR based on SSIM [ZBSS04],
comparing the proposed scheme with the anchors JEM-All and H2DC-CNN. It is clear
that the proposed scheme provides better results than both H2DC-CNN and JEM-ALL,
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Table 3.2: Coding gains of the proposed solution in BD-BR based on SSIM and PSNR.

PSNR-based SSIM-based
BD-BR BD-PSNR BD-BR BD-SSIM

vs JEM-All -50.34% 1.393 -63.71% 0.031
vs H2DC-CNN -30.06% 0.619 -21.14% 0.008

where the gain in terms of BD-BR is about −63.71% and −21.14% compared to JEM-All
and H2DC-CNN, respectively.

3.4.4 Time Complexity

Recently, the number of large-scale applications of accounts is constantly increasing,
especially with deep machine learning. The number of cores in the Central Processing
Unit (CPU) is much lower than the Graphics Processing Unit (GPU). The GPU consists
of hundreds of small cores capable of simple calculations. The degree of parallelism and
speed of execution are problems of low data volume on the CPU. Then, GPU is �t for
training the deep learning systems in a long run for very large datasets.

The complexity of the proposed scheme is also evaluated and compared to the other
methods on both CPU and GPU platforms. The performance has been carried-out on
an Intel core i9-7900X CPU running at 3.3GHz PC with 64 GB memory and a TITAN
Xp NVDIA GPU. It is important to note that the GPU is only used when the CNN
block is involved in the coding scheme. Table 3.3 gives the encoding and decoding
run times in seconds. We can notice that the proposed solution achieves the fastest
encoding at all QP, and the GPU enables to speedup the encoding part related to the
CNN block. However, the decoder of the proposed solution is complex mainly due to
the post-processing stage that signi�cantly increases the decoding complexity.

Table 3.3: Running time in seconds of the encoder and decoder for Bikes image.

Encoder side Decoder side
JEM-All LA-32 [ZC17] Our JEM-All LA-32 DL-16 Our

QP CPU CPU CPU GPU CPU CPU CPU GPU CPU GPU

22 1369 1039 727 650 4 11 114 69 325 279
26 1086 850 669 600 3 10 113 67 325 277
32 778 675 592 521 3 10 113 67 323 276
37 599 572 535 462 3 9 113 65 322 274

3.5 Conclusion

In this chapter, we have presented our preposed LF coding scheme, where a set of views
are taken as reference, while the other set of views is estimated. In particular, our
coding scheme performs �ne-tuning of the CV quality, which is used as a reference by
the rest of the LF views. We uses local RDO functionality, that allows to choose the best
coding way between LA and CNN for each intermediate view. Finally, with the aim to
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further enhance the quality of the reconstructed LF views, a super-pixel to pixel dense
correspondence is carried out as a post-processing. The enhanced proposed scheme
increases the coding e�ciency by 30.06% compared to the state-of-the art solutions,
while providing LF images with high visual quality.

.



Chapter 4

Subjective Evaluation of Light Field

Image Compression Methods Based

on View Synthesis

4.1 Introduction

Subjective quality evaluation of images and videos is a very active �eld of research. In
this chapter, we propose to conduct subjective experiments of LF compression methods
based on view synthesis technique. Speci�cally, four compression approaches have been
considered in this study, two methods are view synthesis basis, while the remaining are
naive LF coding methods. All these methods have been subjectively and objectively
evaluated. The dataset, including non-compressed and compressed LF images, along
with subjective scores are provided publicly to facilitate future research works, such as
developing new reliable objective quality metrics for LF images based view synthesis
methods.

This chapter is organized as follows. Section 4.2 describes the performed subjective
experiment, including the preparation of the test material, environmental setup and
the test methodology. Section 4.3 presents the LF coding methods considered in this
study. Section 4.4 described the subjective evaluation. Next, the results and analysis
of subjective evaluation are provided in Section 4.5. Finally, Section 4.6 concludes the
chapter.

4.2 Environment Setup and Test Methodology

A total of 18 naive subjects (10 females and 8 males) took part in the subjective ex-
periments. The age of subjects was ranging from 20 to 58, with an average of 29.4. All
subjects were screened for color blindness and visual acuity using Ishihara and Snellen
charts, respectively.

The subjective evaluations were conducted in a laboratory psychovisual test room,
calibrated according to ITU-R BT.500-13 Recommendations [BT.12b], equipped with

71
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Figure 4.1: Screenshot from the subjective study interface displaying the video to the
subjects.

a controlled lighting system and the color of all background walls and curtains is mid-
gray. A full HD 27-inch Dell UltraSharp U2717D was used to display the test stimuli.
The distance of the subjects from the monitor was approximately equal to 7 times the
image height, as recommended in [BT.12a].

The subjective experiments have been performed using the recently introduced
methodology, named passive test methodology [VrE17], without refocusing e�ect. The
methodology is based on DSIS [BT.12b], where both the non-compressed reference and
stimulus were displayed in a side-by-side arrangement on the same monitor (described
in Section 2.7.2). The non-compressed reference and stimulus were always displayed on
the left and right side, respectively, and the subjects were aware of these positions, as
shown in Figure 4.1. In addition, the LF contents were presented as a video sequence
navigating between the viewpoints. The pseudo-video was created using horizontal
scan, starting from the view in the left upper corner down, and proceeding from left to
right and right to left in alternate order, which mimics the parallax e�ect. In [BCC18],
it has been noticed that this visualization technique is preferred among six possible
di�erent visualization strategies, because it reduces the shift among consecutive frames.
Moreover, the created videos were displayed with a frame rate of 9 frames per second
o�ering a smooth switching between views.

At the end of the presentation of each pair of videos, a dedicated user interface
was displayed on the screen for about �ve seconds during which the subject gives its
judgment. The participants were asked to rate the level of impairment of the stimulus
with respect to the non-compressed reference, using a �ve-grade discrete impairment
scale (1: very annoying, 2: annoying, 3: slightly annoying, 4: perceptible, but not
annoying, 5: imperceptible).
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Given the large number of stimuli, a session would exceed 30 minutes, making it
hard to show all of them in a single session. Consequently, in order to avoid visual
fatigue e�ects, the subjective experiment was divided into two sessions whose duration
does not exceed 20 minutes each. Subjects took a break between each two sessions.
Moreover, each test session involved only one subject assessing the stimuli. In order
to avoid possible contextual and memory e�ects, the display order of these stimuli was
randomized in a way that the same content was never shown consecutively.

Before the experiment starts, instructions explaining the task were provided to sub-
jects. In addition, training session was held with additional LF contents, allowing the
subjects to practice and become familiarized with the test procedure. The quality of
these training samples was chosen so that it covers the full rating scale.

4.3 Evaluated Light Field Coding Strategies

The LF contents evaluated in the subjective experiments were compressed using four
coding strategies. Given that the widely explored coding approach for LF contents is the
pseudo-video sequence coding method, we have therefore considered two methods from
this category. For both coding methods, all the sub-aperture images are rearranged into
a pseudo-sequence using spiral order scan starting from the center view, which is then
encoded with a classical video encoder. Two video encoders have been selected for this
purpose, the HEVC standard and the JEM that led to the starting point of future video
coding standard named VVC. For HEVC, the HM reference software (version 16.9) was
used, while for the second method the JEM software (version 7.0) was exploited, both
in random access coding con�guration. For both methods, all views are encoded and
we refer to them as HM-All and JEM-ALL for the rest of this chapter. In addition, in
order to avoid the darkness and distorted remote views, only the middle 8 × 8 views
were encoded.

Furthermore, two Light Field compression methods based on view synthesis have
been included in this study. Instead of coding all views, in these approaches, only sparse
samples of LF views are encoded and transmitted, while the other views are synthesized
at the decoder side. One of the selected methods is described in [ZC17], where at the
encoder side the views are equally divided into two sets, the selected reference views set
and the dropped views set, that is 32 views each. The selected reference views are then
rearranged into a pseudo-sequence using horizontal zigzag scan order and compressed
with a 2D video encoder standard (JEM in our implementation). The decoded versions
of theses latter views are used to linearly approximate the dropped views and only the
approximation coe�cients are transmitted to the decoder. At the decoder side, the
selected reference views are decoded and the dropped views are approximated by the
weighted sum of the decoded selected views. For the rest of this chapter, we refer to
this method as LA-32.
Finally, the fourth and last method that we included is the CNN-based view synthesis
approach proposed in [HASM18]. In this method, the authors proposed a learning-
based approach to synthesize new views from a sparse set of input views. The proposed
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(a) (b)

Figure 4.2: Distributions of the three properties of the selected LF contents.

architecture includes two phases: a disparity estimator and color predictor, which are
performed by two sequential CNNs. Based on the features extracted from the sparse
input views (four views at the corners), four layers CNN �rstly estimates the disparity
of the dropped views. The second CNN uses all the warped disparity views, derived
from the �rst CNN, along with few other features to predict the color and synthesize
the dropped views. For training the CNN, we used 100 LF images, 28 from Stanford
Lytro LF dataset [RMS16] and 72 from California Lytro LF dataset [KWR16]. We
split each sub-aperture view into patches of size 60 × 60, which results in more than
100,000 patches exploited for training. For this method, which will be referred to as
DL-16, 16 sparse views are encoded with the JEM, while the remaining dropped views
are synthesized by the trained CNN block at the decoder side.

4.4 Subjective Evaluation

4.4.1 Dataset Preparation

Scene characteristics: The selection of test scenes is an important issue. In par-
ticular, the spatial and color features and the amount of occluded pixels of the scenes
are critical parameters. The dataset must contain images with various charactersitics
as possible.

Spatial perceptual information measurement: The spatial perceptual informa-
tion (SI) is based on the Sobel �lter. Each video frame (luminance component) at time
n (Fn) is �rst �ltered with the Sobel �lter [Sobel(Fn)]. The standard deviation over
the pixels (stdspace) in each Sobel-�ltered frame is then computed. This operation is
repeated for each frame in the video sequence and results in a time series of spatial
information of the scene [P.908]. The maximum value in the time series (maxtime ) is
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chosen to represent the spatial information content of the scene. This process can be
represented in equation form as:

SI = maxtime{stdspace[Sobel(Fn)]} (4.1)

Colorfulness measurement: Colorfulness, referred also as chromaticness, is the at-
tribute of a visual sensation according to which the perceived color of an area appears
to be more or less chromatic.

The de�nition of colorfulness is very similar to chroma, but chroma is relative per-
ception. Colorfulness usually increases as the luminance is increased, except when the
brightness is very high (very colorful outdoor images). Colorfulness of the stimulus is
its measure of the intensity of the hue. For measure of colorfulness we should examine
the presence of high-saturation colors along various hues [DH03].

To calculate the colorfulness M, we use the following formula:

M =
√
σrg2 + σyb2 + 0.3×

√
µrg2 + µyb2 (4.2)

where: σ and µ are the standard deviation and the mean value of the pixel cloud
along direction described by subscripts and:

rg = R−G (4.3)

yb =
1

2
(R+G)−B (4.4)

Amount of occluded pixels: One of the most important characteristics of Light
Field image is the occlusion exactly with sub-aperture array representation.

Selected dataset: In order to cover a wide range of features, the spatial complexity,
color features and the amount of occluded pixels of each LF image have been analyzed
using Spatial Information (SI) [P.908], ColorFulness (CF) [DH03] and occlusion model
proposed in [WER16], respectively.

Based on these features, a total of ten LF images have been carefully selected
for subjective experiments, six from EPFL Light-Field Image Dataset (Bikes, Foun-
tain_&_Vincent_2, Friends-1, Overexposed-Sky, Rusty-Fence and University) [RE16],
two from INRIA Light-Field Image Dataset (Bee1 and Cactus) [JPF+17] and two that
we acquired by a Lytro Illum camera, namely Flowers and KidsHouse. These LF images
represent di�erent content, including indoor and outdoor scenes and a wide range of
colors, textures and depth properties [PGL+17]. Figure 4.2 shows the values of SI, CF
and occlusions for all the selected images.

Each image was extracted from LF raw �le format using Light Field Matlab Toolbox
v0.4 [DPW13], thus providing a 4D LF of dimensions 15 × 15 × 434 × 625 × 4, where
434 × 625 represents the resolution of each view, 4 corresponds to the RGB channels
including additional weighting image component, while 15×15 represents the number of
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(a) Bikes (b) FountainVincent2

(c) Friends1 (d) OverexposedSky

(e) RustyFence (f) University

(g) Bee1 (h) Cactus

(i) Flower (j) KidsHouse

Figure 4.3: The thumbnails of every LF images used for the subjective test.
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views [RE16]. As mentioned previously, we only encoded the central 8× 8 sub-aperture
views after being converted to YUV format and downsampled to 4:2:0 with 10-bit depth.
The ten LF images have been encoded using the previously described four compression
methods at four compression bitrates, namely R1 = 0.0074 bpp, R2 = 0.0171 bpp, R3
= 0.0384 bpp and R4 = 0.1112 bpp.

4.4.2 Data Processing

First, the subjective scores were screened to detect and exclude possible outliers and
we veri�ed the distribution of individual participant scores. Indeed, some data may
interfere with the results. Outliers detection was performed as speci�ed in [BT.12b],
and no outlier subjects were found in this study.

Second, the Mean Opinion Score (MOS) was computed as the mean across scores
provided by di�erent subjects as follows:

MOSj =
1

N

N∑
i=1

sij (4.5)

where N is the number of subjects and sij is the score given by subject i for the stimulus
j.

In order to evaluate the reliability of the obtained results from statistical point of
view, 95% con�dence intervals (CI), assuming a Student t-distribution of the scores,
were computed together with MOS values.

4.4.3 Statistical Analysis

In order to test the existing one for an in�uence on the judgment of participants in the
quality assessment process, and to verify if this in�uence is statistically signi�cant, we
performed an ANOVA analysis of variance. Three parameters were introduced in this
experiment: Content, video content (Content of pseudo video), QP and compression
method. The degree of in�uence of the parameter is based on the value of p. The p-
value is the level of marginal signi�cance within a statistical hypothesis test representing
the probability of the occurrence of a given event.

Table 4.1: Analysis of variance, one factor for all con�gurations.

Factor p-Value Impact

quantization parameter <0.0001 ***
Compression method 0.002 **

Content of pseudo video 0.997084

The results in the Table 4.1 showed that the quality level, expressed by this quan-
ti�cation parameter, has a major in�uence on the scores obtained (p < 0.0001) while
the content has no in�uence in this case (with a p = 0.997)
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4.5 Results and Discussion

R-D curves based on weighted PSNR (wPSNR) of the four evaluated methods are
provided in Figure 4.4. In these plots, the horizontal axis reports the bitrate required
to encode the LF image and the vertical axis represents the average wPSNR across all
sub-aperture images calculated for YUV channels, where the factor 6 is assigned to the
luminance channel and the factor 1 for each chrominance channel [OSS+12].

Figure 4.4: R-D curves based on wPSNR of the four considered solutions for six di�erent
LF images.

One can observe that for all LF images and for all bitrates the LA-32 method pro-
vides the best result and outperforms the other compression solutions. The CNN-based
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view synthesis approach (DL-16) performs well at low and medium bitrates compared
to HM-ALL and JEM-ALL methods, whereas it provides low performance for the high
bitrates. As expected, JEM-ALL outperforms HM-ALL for all tested LF images and for
all bitrates, because it includes di�erent improvements compared to HM, thus leading
to an improvement of R-D performance. However, these results are reported according
to wPSNR objective metric, which is not the best way for assessing the visual quality
of LF images.

Figure 4.5: MOS vs bitrate with associated con�dence intervals for six di�erent LF
images.

Thus, in Figure 4.5, the �tted R-D curves based on the MOS are illustrated. The
same conclusion may be drawn from this Figure regarding the LA-32 method. However,
for DL-16 method, the results are quite di�erent from objective evaluation, since this
method achieves clearly better visual quality than HM-ALL and JEM-ALL methods,
especially at low and medium bitrates. Globally, the LF coding methods based on view
synthesis (LA-32 and DL-16) provide the highest visual quality at all bitrates. For
instance, for most LF images their visual quality provided at medium bitrate is roughly
the same as the one achieved by the naive coding approaches (HM-ALL and JEM-ALL)
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at high bitrate. Thus, the coding methods based on view synthesis can achieve high
coding performance and demonstrate their e�ectiveness by providing the best visual
quality compared to the two other methods.

(a) (b)

Figure 4.6: Comparison of average MOS scores for each of the methods (HM-All, JEM-All, LA-32,
DL-16,) at 4 di�erent �ow rates (R1, R2, R3, R4): (a) represent the average MOS over the 10 images
(Testing Set). (b) box plot showing the distribution of the MOS scores. Median in the box represented
by the red line. Whiskers denote most extreme points, not considering outliers.

It is easy to see in Figure 4.6 that both methods of view synthesis-based coding (DL-
16, LA-32) have a visibly high MOS average compared to JEM-ALL and HM-ALL. In
addition, it can also be noted that the behaviour of view synthesis based coding methods
is similar. also for the other two methods.

4.6 Conclusion

In this chapter, two recent LF compression methods based on view synthesis have been
compared subjectively and objectively to two pseudo-video sequence based coding ap-
proaches. Experimental results show that the methods based on view synthesis achieve
signi�cant better coding performance without a�ecting the visual quality. Speci�cally,
the subjective quality assessment showed that the view synthesis based methods pro-
vide substantial superior visual quality, especially at low and medium bitrates. Finally,
subjective evaluation helped us to know that some coding methods visually outperforms
other methods, which was not remarkable during the objective evaluation.



Chapter 5

Light Field Image Coding Using

Dual Discriminator Generative

Adversarial Network and VVC

Temporal Scalability

5.1 Introduction

A possible extension of our proposed work in chapter 3, is to use a more advanced
neural network for a better missing views synthesis. Studies proved that GAN show
a great performance in this �eld [JZW+18]. In particular version of the GAN is the
D2GAN where a double networks are used to enhance the quality of the synthesized
images [NLVP17].

In this chapter, we propose an e�cient approach to encode the LF images, which
consists in encoding a sparse set of views, and estimate the rest of views at the decoder
side. In particular, the �rst set of selected reference views are coded with the next
generation video coding standard called VVC. While the second set of views are either
synthesized from the �rst decoded set of views using a D2GAN or decoded by a VVC
decoder. The D2GAN have been trained with a large set of LF images coded at di�erent
distortions. The architecture o�ered by the D2GAN, composed by a generator and
two discriminators, enables better training and thus synthesizes views with high visual
quality. In addition, to increase the coding e�ciency, a RDO is adopted to select
which views should be encoded and transmitted and which ones should be dropped and
synthesized at the decoder side.

The remainder of this chapter is organized as follows. Section 5.2 describes the
concepts of D2GAN and VVC. Then, in Section 5.3, we describe the proposed LF
image compression solution. Section 5.4 presents and discusses the experimental results.
Finally, Section 5.5 concludes this chapter.
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5.2 Background

As mentioned in Section 5.1, the proposed coding approach is based on D2GAN and
VVC standard. In this section, we brie�y introduce these two concepts.

5.2.1 Dual Discriminator Generative Adversarial Nets

GANs are deep neural net architectures composed of two consecutive neural network
models, namely generator G and discriminator D. GAN enables to simultaneously
train the two models: the generative model G that captures the data distribution,
and the discriminative model D that estimates the probability that a sample came
from the training data rather than from G [Ga14]. GAN has recently achieved great
successes in various �elds, especially in fake video generation, super-resolution and
objects detection [LTH+17, BZDG18].

Figure 5.1: Dual discriminator generative adversarial networks architecture.

D2GAN, is a novel framework based on GAN, which uses two discriminators D1 and
D2, where D1 tries to assign high scores for real data, and D2 tries to assign high scores
for the fake data, as shown in Figure 5.2. This technique uses the two discriminators to
minimize the Kullback-Leibler (KL) divergence and reverse KL between the generated
image and the target image [NLVP17]. Formally, D1, D2 and G now play the following
three player minimax optimization game:

min
G

max
D1,D2

 (G,D1, D2) = αExvPdata
[logD1(x)]

+ EzvPz [−D1(G(z))] + ExvPdata
[−D2(x)]

+ β EzvPz [logD2(G(z))],

(5.1)

where z is a noise vector, E represents expected value, x is the real data, P represents the
probability distribution, α and β are two hyper-parameters (0 < α, β ≤ 1) to stabilize
the learning of the model and control the e�ect of KL and reverse KL divergences on
the optimization problem [NLVP17].



Background 83

Convolution Layer ReLU Batch Normalization + ReLUFully Connected

X Real

1
x
1
 C

o
n

v
, 
5
0

R
e
L

U

3
x
3
 C

o
n

v
, 
1
0
0

R
e
L

U

5
x
5
 C

o
n

v
, 
1
0
0

R
e
L

U

7
x
7
 C

o
n

v
, 
2
0
0

1
x
1
 C

o
n

v,
 5

0
 x

 3

R
e
L

U

3
x
3
 C

o
n

v
, 
1
0
0

R
e
L

U

5
x
5
 C

o
n

v
, 
1
0
0

R
e
L

U

7
x
7
 C

o
n

v
, 
5
1

16 V
iew

s

Color CNN

Disparity CNN

Generator

Q
P

O
ri

g
in

a
l

R
e
c
o

n
s
tr

u
c
te

d

R
e
L

U

3
x
3
 C

o
n

v
, 
6
4

B
N

 6
4
 +

 R
e
L

U

3
x
3
 C

o
n

v
, 
1
2
8

3
x
3
 C

o
n

v
, 
1
2
8

3
x
3

C
o

n
v
,
2
5
6

3
x
3
 C

o
n

v
,
2
5
6

3
x
3
 C

o
n

v
, 
5
1
2

3
x
3
 C

o
n

v
, 
5
1
2

1
x
1
 C

o
n

v
, 
1
0
2
4

B
N

 1
2
8
 +

 R
e
L

U

B
N

 1
2
8
 +

 R
e
L

U

B
N

 2
5
6
 +

 R
e
L

U

B
N

 2
5
6
 +

 R
e
L

U

B
N

 5
1
2
 +

 R
e
L

U

B
N

 5
1
2
 +

 R
e
L

U

3
x
3
 C

o
n

v
, 
6
4

D 1

R
e
L

U

3
x
3
 C

o
n

v
, 
6
4

B
N

 6
4
 +

 R
e
L

U

3
x
3
 C

o
n

v
, 
1
2
8

3
x
3
 C

o
n

v
, 
1
2
8

3
x
3

C
o

n
v
,
2
5
6

3
x
3
 C

o
n

v
, 
2
5
6

3
x
3
 C

o
n

v
, 
5
1
2

3
x
3
 C

o
n

v
, 
5
1
2

1
x
1
 C

o
n

v
, 
1
0
2
4

1
0
2
4
, 
F

C

B
N

 1
2
8
 +

 R
e
L

U

B
N

 1
2
8
 +

 R
e
L

U

B
N

 2
5
6
+

 R
e
L

U

B
N

 2
5
6
 +

 R
e
L

U

B
N

 5
1
2
 +

 R
e
L

U

B
N

 5
1
2
 +

 R
e
L

U

3
x
3
 C

o
n

v
, 
6
4

D 2

1
0
2
4
, 
F

C

Discriminators

Figure 5.2: Detailed D2GAN architecture.

More speci�cally, with a batch ofM noise samples z(1), z(2), ..., z(M) given as inputs,
the generator generates M arti�cial samples, and this process is de�ned as G(z(i)).
While, x(1), x(2), ..., x(M) represents a batch of M real data samples.

Three cost functions de�ned in (5.2), (5.3) and (5.4) are computed to obtain the error
that should be transmitted respectively to D1, D2 and G for their backward weights
updating, as shown in Figure 5.2 (dash lines).

∇θD1

1

M

M∑
m=1

[α logD1(x
(m))−D1(G(z(m)))], (5.2)

∇θD2

1

M

M∑
m=1

[β logD2(G(z(m)))−D2(x
(m))], (5.3)

∇θG
1

M

M∑
m=1

[β logD2(G(z(m)))−D1(G(z(m)))]. (5.4)

In this work, we use D2GAN to synthesize the dropped LF views, where the gen-
erator consists of two CNN [KWR16], the �rst CNN estimates the disparity and the
second one generates the color image.

5.2.2 Versatile Video Coding

Based on HEVC, Joint Video Exploration Team (JVET) is developing a new video
coding standard called VVC [MWS17]. VVC already enables a bitrate saving of 35%
to 40% with respect to HEVC for the same visual quality [SHD+19]. VVC introduces
several new coding tools at di�erent levels of the coding chain including frame parti-
tionning, intra/inter predictions, transform, quantization and entropy coding. For more
details about the VVC coding tools the reader can refer to [RHPD19]. VVC supports
by design the temporal scalability through the RA coding con�guration. This latter,
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Figure 5.3: Hierarchical prediction structure in VVC. One GOP is shown.

illustrated in Figure 5.3, enables di�erent temporal layers and each temporal layer uses
as reference only frames from lower temporal resolution, i.e., lower layer. Therefore,
frames of each temporal layer ti can be removed without impacting the decoding of
frames of lower temporal resolution tj with ti > tj .

In the proposed coding approach, we exploit the concept of temporal resolution to
drop views at the encoder without impacting the decoding process and thus performing
the best rate distortion performance.

5.3 Proposed LF Image Compression Method

The idea behind the proposed coding method is, instead of transmitting all the LF views,
to drop a sub-set of views at the encoder side and synthesize them at decoder side, thus
considerably reducing the required bitrate for LF images. To e�ciently achieve that,
we exploit the temporal scalability of VVC and use the D2GAN model, all in a RDO
process.

At the encoder side, �rst, LF sub-aperture views are organized into groups of 16
views that form GOPs, as illustrated in Figure 5.3. Next, in each GOP, the images
of temporal levels 0, 1 and 2 are encoded using the VVC codec, which constitute the
reference views used later in the synthesis process at the decoder side. Then, the images
at the remaining levels 3 and 4 are either coded using the VVC codec or dropped. In
contrast to �x the number of dropped views, in our approach this is done adaptively on
the basis of the proposed RDO process described in the Algorithm 2 and explaining in
the following.

As illustrated in Figure 5.3, we apply RDO process on the 3 consecutive frames, i.e.,
frame i at level 4, frame i+ 1 at level 3 and frame i+ 2 at level 4. It should be noted
that if one of the views at temporal level 4 (frame i or i + 2) must be encoded using
VVC, then the frame i+ 1 at level 3 is also encoded using VVC, because it will be used
as a reference for the frames at temporal level 4.

Main reasons behind only considering the 2 upper levels exclusively to the RDO
block are, �rstly, after an extensive study, we found that these levels occupy together
around 28% of the total bitrate. Second, the views at the upper levels are not used as
references in the VVC coding scheme.

Thus, we proposed a RDO block deciding which views from the upper level can be
encoded using VVC or dropped and synthesized using D2GAN. To reach this goal, the
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Algorithm 2: Algorithm of the RDO between VVC and D2GAN

Require: J ← { ∀ m, ∀ v ∈ TL#[3 or 4], J = D + λR}
m: metod {VVC, D2GAN}
for all v ∈ TL#4 do

if J (V V C) < J (D2GAN) then
Encode v by VVC
�ag(v) ← false

else

generate v by D2GAN
�ag(v) ← true

end if

end for

for all v ∈ TL#3 do

if J (V V C) < J (D2GAN) then
Encode v by VVC
�ag(v) ← false

else {�ag(previous(v)) and �ag(next(v))}
generate v by D2GAN
�ag(v) ← true

end if

end for

encoder computes the rate distortion (RD) cost function J given by (5.5) for both the
VVC decoded view and the one synthesized by the D2GAN.

J = D + λR (5.5)

where λ is the Lagrangian multiplier, D is the distortion and R is the rate in bpp. To
set the Lagrangian multiplier (λ), we empirically determine its value by testing a large
set of LF images. We found that the value of 0.1 for λ is optimal and for which the
Lagrangian optimization is giving the best performance.

At the decoder side, the dropped views are synthesized using D2GAN block. As a
reminder, the D2GAN is composed of a generator G and two discriminators D1 and D2.
G consists of two CNNs [KWR16], the �rst CNN estimates the disparity and the second
one generates the color image. A set of features (mean and standard deviation) of a
sparse set of views (16 views) are fed to the disparity CNN that estimates the disparity
at an intermediate view, and then used it to warp (backward) all the input views to the
intermediate view. The second color CNN uses all the warped images, derived from the
�rst CNN, to predict the color and synthesizes the dropped views.

Given that the generator G and discriminators (D1 and D2) are CNN-based blocks,
a training phase is required to �x respectively their parameters θG, θD1 and θD2. Unlike
GAN, in D2GAN, the scores returned by G are values in R+ rather than probabilities
in [0, 1]. The discriminators and generator are alternatively updated using stochastic
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Table 5.1: The average coding gains in terms of BD-BR of D2GAN, trained with re-
constructed views, in comparison with the anchor D2GAN training with original views.

wPSNR-based SSIM-based
BD-BR BD-PSNR BD-BR BD-SSIM

vs. D2GAN
Reconstructed

-11.0% 0.25 -20.3% 0.013

vs. D2GAN
Recons. separately

-16.6% 0.39 -25.5% 0.022

Table 5.2: BD-BR and BD-PSNR gains calculated against anchor method described
in [LWL+16]. 1) Bikes 2) DangerDeMort 3) Flowers 4) Ankylosaurus_Diplodocus 1 5)
Aloe 6) Stone_pillars_outside 7) Bedroom 8) Desktop 9) Herbs.

VVC-All Jia et al. [JZW+18] Hou et al. [HCC19] Proposed
Im. BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR

1) �11.7% 0.72 �6.3% 0.48 �6.9% 0.49 �22.4% 0.96

2) �7.8% 0.22 �10.8% 0.28 �8.7% 0.26 �16.5% 0.40

3) �12.3% 0.56 �11.9% 0.54 �16.2% 0.72 �16.6% 0.74

4) �13.2% 0.44 �14.9% �0.72 �12.3% 0.39 �18.0% 0.57

5) �26.4% 0.85 �9.1% 0.31 �2.46% �0.12 �42.3% 1.23

6) �18.3% 0.61 �15.1% 0.52 �11.9% 0.28 �35.6% 0.98

7) �5.3% 0.46 �4.0% 0.32 �2.3% 0.18 �9.5% 0.85

8) �19.6% 0.32 �7.5% 0.11 44.1% �0.61 �26.3% 0.45

9) �26.0% 1.14 �4.4% �0.11 6.9% �0.20 �29.8% 1.32

Av. �15.6% 0.59 �8.3% 0.35 �0.54% 0.15 �24.1% 0.83

gradient ascent and descent, respectively. The backward propagation of errors (i.e., cost
functions) is applied to update the discriminators and generator with mini-batch size
equal to M , as shown in Figure 5.2.

For the training phase of D2GAN, 3 con�gurations were considered : 1) training with
the original views , 2) training with reconstructed views at multiple distortion levels
including the original views and 3) training for each one distortion level separately.
We compared the three con�gurations, and the obtained results are given in Table 5.1.
Based on these results, the third con�guration, i.e., D2GAN reconstructed separately,
outperforms the other con�gurations and hence we used it for the D2GAN training.

5.4 Results and Discussions

5.4.1 Experimental Setup

The proposed deep learning-based architecture described in the previous section was
trained with 140 LF images, where 70 LF images are from EPFL dataset [RE16], 50
LF images are from Stanford Lytro LF image dataset [RMS16] and 20 LF images are
from HCI dataset [HJKG16]. Each sub-aperture view was splitted into patches of size
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60×60, thus resulting in more than 150,000 patches that were used in the training
phase. For the testing phase, 9 LF images are selected, 6 LF images are from EPFL
dataset [RE16], 1 LF image from Stanford Lytro LF dataset [RMS16] and 2 LF images
from HCI dataset [HJKG16], as shown in Figure 5.4. Each of these LF images is
composed of 8×8 sub-aperture views. These views are rearranged in a pseudo sequence
using spiral order scan and coded using VVC in RA coding con�guration at 4 QP values
of 18, 24, 28 and 32.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: Thumbnails of the considered nine LF images: a) Bikes b) DangerDeMort c) Flowers d)
Ankylosaurus_Diplodocus 1 e) Aloe f) Stone_pillars_outside g) Bedroom h) Desktop i) Herbs.

The training con�guration of D2GAN was set as follows: we trained the generator G
and two discriminators (D1 and D2) with the ADAM optimizer [KB14] by setting β1 =
0.9, β2 = 0.999, learning rate= 0.0002, batch-size= 10 and kernel size of convolutional
layers as depicted in Figure 5.2. The regularization coe�cients of D1 and D2 was set
as α = 0.2 and β = 0.2, respectively. For the generator, we used input patch of 60×60,
stride= 16, and output patch= 36× 36 (reduced size is due to the convolutions).
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5.4.2 Evaluations

We compared the proposed scheme with four state-of-the-art methods: 1) VVC-All
that encodes all views with the VVC in RA coding con�guration, 2) LF-GAN method
proposed in [JZW+18], where a sub-set of views are coded with HEVC, while the re-
maining views are generated by GAN and the residual error of views are transmitted
to the decoder, 3) the method proposed in [LWL+16] encoding the views as a pseudo-
video sequence using speci�c order scan, 4) the method of Hou el al. [HCC19] that
exploits the inter- and intra-views correlation to encode the views using HEVC. The
latter method is considered as the anchor method.

5.4.3 Results

The BD-BR [Bjø01, hB08] is a PSNR based metric. It is used in this chapter to assess
the gain of the proposed approach compared to the anchor solution. A negative BD-BR
value refers to a bitrate reduction compared to the anchor method, while a positive
value expresses a bitrate overhead.
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Figure 5.5: RD curves of the �ve considered solutions for the 9 LF images using four
QP values.

R-D curves based on PSNR for the 9 LF images are provided in Figure 5.5. We
can notice that for all considered images, the proposed coding method provides the
highest performance for all bitrates. The previous conclusion is con�rmed by Table 5.2,
providing the Bjøntegaard results of the four coding solutions compared to the anchor
one [LWL+16]. The proposed method achieved an average BD-BR gain of -24.1% and
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Table 5.3: Running time in seconds of the four LF image coding methods.

Encoder
QP VVC-All Jia et al. [JZW+18] Hou et al. [HCC19] Our

CPU GPU CPU CPU GPU

18 259 450 6028 559 449
22 152 350 6028 452 342
28 101 220 6028 401 291
34 66 142 6028 366 256

Average 66 291 6028 445 335

Decoder

Average 4 53 583 124 94

BD-PSNR of 0.83 dB compared to the anchor method [LWL+16].
The complexity of the proposed coding approach is also evaluated and compared

to the other methods on both CPU and GPU platforms. The performance has been
carried-out on an Intel core i9-7900X CPU running at 3.3GHz PC with 64 GB memory
and a TITAN Xp NVDIA GPU. It is important to note that the GPU is only used when
the D2GAN block is involved in the coding scheme.

Table 5.3 gives the encoding and decoding run times in seconds. We can notice
that the proposed solution requires almost the same complexity in the encoding for
all QP compared to [JZW+18] and [HCC19] methods. The GPU enables to speedup
the encoding part related to the D2GAN block. However, the decoder of the proposed
solution is more complex than the other solutions due the D2GAN block.

5.5 Conclusion

In this chapter, we have proposed a view synthesis based LF image compression ap-
proach. In the proposed coding scheme, a set of views are encoded using VVC, while
the remaining views are dropped. The dropped views are synthesized using enhanced
GAN-based approach known as D2GAN. The transmitted and dropped views are se-
lected using RDO process. In addition, in order to avoid impacting the decoder with
the dropped views, the latter are determined according to the temporal scalability of
VVC. All these features allow reducing bitrate required by LF image, while providing
views with high visual quality.

The experiments results show the e�ciency of our scheme, which achieved bitrate
reduction of −24.1% in terms of BD-BR and increased the visual quality by 0.83 dB in
BD-PSNR.
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Chapter 6

Conclusion and Perspectives

General Conclusion

In this thesis, several contributions have been proposed. The conducted works have
been done with the aim to develop methods for e�cient LF image coding based on
standard 2D encoders and Deep Learning techniques while providing optimal quality of
experience.
Below, we summarize the contributions of the thesis, and then propose some directions
for future research.

Firstly, we introduced a LF coding solution based on the linear approximation and
CNN, where only a small set of views in a LF image is coded. The dropped views
are either linearly approximated or generated by the trained CNN based on a RDO
scheme. The training of CNN is applied by providing a sequence of random mini-
batches of LF images uniformly selected from the entire training LF dataset. The value
of the Lagrangian multiplier in the RDO scheme was empirically set after an exhaustive
testing over a large set of LF images.

As a second contribution, we conducted a subjective test for visual quality assess-
ment of LF contents, using a framework recording user interaction and analyzing how
Quality of Experience (QoE) is a�ected by compression distortions. Two recent LF
compression methods based on view synthesis have been compared subjectively and
objectively to two pseudo-video sequences based coding approaches. Experimental re-
sults show that the method based on view synthesis achieves signi�cant better coding
performance without a�ecting the visual quality. Speci�cally, the subjective quality
assessment showed that the view synthesis based method provides substantial superior
visual quality, especially at low and medium bitrates.

Finally, the last contribution following the same way as the �rst one contribution,
consisting of encoding a sparse set of views, and estimating the rest of views at the
decoder side. In particular, the �rst set of selected reference views are coded with the
next generation video coding standard called VVC, while the second set of views are
either synthesized from the �rst decoded set of views using a D2GAN or decoded by a
VVC decoder. The D2GAN has been trained with a large set of LF images coded at
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di�erent distortions. The architecture o�ered by the D2GAN, composed by a generator
and two discriminators, enables better training and thus synthesizes views with highly
visual quality. In addition, to increase the coding e�ciency, a RDO is adopted to select
which views should be encoded and transmitted and which ones should be dropped and
synthesized at the decoder side.

Future Work and Perspectives

As future work, we can propose a method to determine the optimal value for higher
e�ciency of the RDO scheme. Moreover, we can perform the coding step by using
Densely Connected Convolutional Networks (DenseNet) [HLvdMW17]. The DenseNet
connects each layer to every other layer in a feed-forward fashion, whereas traditional
convolutional networks with L layers have L connections - one between each layer and
its subsequent layer. For each layer, the feature-maps of all preceding layers are used
as inputs, and its own feature-maps are used as inputs into all subsequent layers.

In addition, it could be interesting to measure whether another factor as refocusing
views has any impact on observer's voting. Future works can include more LF com-
pression methods based on view synthesis, as well as other more recent compression
methods for LF images.

Finally, using Curriculum Learning (CL) in the training phase can improve the
performance of LF compression methods based on view synthesis. The idea of human
CL attempts to impose a structure on the training group [BLCW09]. Such a structure is
essentially based on a notion of "easy" and "di�cult" examples and uses this distinction
in order to teach the learner to generalize easier examples before more di�cult examples.
Thus, we can classify the LF images used during the training stage according to their
complexity in relation to their contents. For instance, images with lot of details, i.e.,
highly textured, could be considered as di�cult images and vice versa.
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AI : All Intra
AVC : Advanced Video Coding
BD-BR : Bjøntegaard Delta Bit Rate
BD-PS : Bjøntegaard Delta PSNR
BDR : Bjøntegaard Delta Bit Rate
bpp : bits per pixel
CABAC : Context-Adaptive Binary Arithmetic Coding
CALIC : Context-based Adaptive lossless Image Codec
CL : Curriculum Learning
CNN : Convolutional Neural Networks
CTU : Coding Tree Unit
CU : Coding Unit
CV : Central View
D2GAN : Dual Discriminator Generative Adversarial Nets
DenseNet : Densely Connected Convolutional Networks
DCT : Discrete Cosine Transform
DL : Deep Learning
DoF : Depth of Field
DSIS : Double Stimulus Impairment Scale
DSCQS : Double Stimuli Continuous Quality Scale
DWT : Discrete Wavelet Transform
EPI : Epipolar Plane Image
fps : frames per second
GAN : Generative Adversarial Network
GOP : Group of Pictures
GOV : Groups of Views
H2DC-CNN : Hybrid 2D video codec CNN
HEVC : High E�ciency Video Coding
HLRA : Homography Low Rank Approximation
HM HEVC : Reference Model
HMD : Head Mounted Displays
HSP2P : Hierarchical Superpixel-to-Pixel Dense Image Matching
ITU : International Telecommunication Union
JCT-VC : Joint Collaborative Team on Video Coding
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JEM : Joint Exploration Model
JVET : Joint Video Exploration Team
LA : Linear Approximation
LDP : Low Delay P
LF : Light Field
MOS : Mean Opinion Score
MPEG : Motion Picture Expert Group
MSE : Mean Squared Error
MV : Motion Vector
MV-HEVC : Multi-View extension of High E�ciency Video Coding
NN : Neural Network
POC : Picture Order Count
PSNR : Peak Signal to Noise Ratio
QoE : Quality of Experience
QP : Quantization Parameter
RA : Random Access
RD : Rate Distortion
RDO : Rate Distortion Optimization
PU : Prediction Unit
SIFT : Scale-Invariant Feature Transform
simulcast : Simultaneous Broadcast
SL : Single Layer
SLIC : Simple Linear Iterative Clustering
SPGL1 : Spectral Projected Gradient for L1
SSCQS : Single Stimulus Continuous Quality Scale
SSIM : Structural Similarity
TU : Transform Unit
VR/AR : Virtual Reality, Augmented Reality
VVC : Versatile Video Coding
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Résumé : Les applications de vision par ordinateur telles 
que le refocusing, la segmentation et la classification 
deviennent l'un des services les plus avancés dans le 
domaine de traitement d'image mais de telles applications 
nécessitent des informations sémantiques riches de la 
scène. La technologie 3D est largement utilisée dans les 
domaines de divertissement, d'imagerie médicale et de 
l'éducation. Il existe différentes manières de représenter 
l'information 3D. Une technologie récente dont l’importance 
est grandissante est proposée par les images Light Field 
(LF). L'image LF est une image non conventionnelle 
contenant des informations denses telles que l'intensité des 
rayons lumineux qui interagissent avec la scène. 
Cependant, un tel système d'imagerie présente de 
nombreux inconvénients, notamment une grande quantité 
de données produites. Des techniques de compression 
adaptées sont ainsi nécessaires. L’objectif de cette thèse 
est donc de développer des méthodes efficaces pour la 
compression d’images et de vidéos Light Field. 

Le succès récent de l'apprentissage profond dans divers 
domaines notamment dans les domaines du traitement 
des images et du son, a été établi comme un facteur clé 
dans nos travaux de recherches. La première partie de 
cette thèse propose un schéma de codage du champ 
lumineux basé sur CNN qui inclut RDO suivi d'un post-
traitement. Le concept principal est d'exploiter la 
corrélation entre les différentes vues LF et d'éviter le 
codage de toutes les vues.  Ainsi, un ensemble de vues 
LF est codé par un codeur 2D standard, puis les autres 
sont soit estimées par une approximation linéaire soit 
générées par CNN. Dans un second temps, une 
comparaison subjective entre les solutions de codage 
proposées et les standards ont montré des gains très 
significatifs. Enfin, la dernière partie de cette thèse a 
consisté à intégrer un Dual Discriminative Generative 
Adverserial Network (D2GAN) dans l'encodeur standard 
hiérarchique Versatile Video Coding (VVC). L'idée globale 
est de coder les vues du niveau hiérarchique supérieur et 
les générer avec D2GAN au niveau du décodeur. 
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Abstract: Computer vision applications such as refocu-
sing, segmentation and classification are becoming one of 
the most advanced services in the field of image 
processing, but such applications require rich semantic 
information of the scene. 3D technology is widely used in 
the fields of entertainment, medical imaging and education. 
There are different ways of representing 3D information. A 
recent technology of growing importance is Light Field (LF) 
images. The LF image is an unconventional image 
containing dense information such as the intensity of the 
light rays interacting with the scene. However, such an 
imaging system has many drawbacks, including the large 
amount of data produced. This requires appropriate 
compression techniques. The goal of this thesis is to 
develop new methods for efficient LF image and video 
compression. The recent success in deep learning in 
various fields, particularly in the areas of image and spee- 

ch processing. Thus, the overall  established as a key 
factor in this research work. The first part of this thesis 
proposes a CNN-based light field coding scheme that 
includes RDO followed by post-processing. The main 
concept is to exploit the correlation between the different 
LF views and avoid coding of all views.  So, one set of LF 
views is coded by a standard 2D encoder while others are 
estimated by linear approximation or generated by CNN. 
The second part shows very significant gains while 
drawing a subjective comparison between the proposed 
coding solutions and the standards. Finally,  the last part 
of this thesis consists in integrating a Dual Discriminative 
Generative Adverserial Network (D2GAN) into the 
standard hierarchical Versatile Video Coding (VVC) 
encoder. The overall idea is to encode the views of the 
upper hierarchical level and generate them with D2GAN at 
the decoder side. 

 


