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tous droits réservés confidentialité et utilise une descente de gradient adaptative pour améliorer l'utilité du modèle. Ces objectifs de recherche visent collectivement à relever les défis en matière de sécurité et de confidentialité et à faire progresser le domaine de l'apprentissage fédéré.
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Abstract

In today's rapidly evolving digital landscape, machine learning has become an indispensable and transformative force, as substantiated by extensive research studies. Its profound impact spans across diverse industries, offering groundbreaking solutions and innovations that have reshaped the way we interact with technology and make decisions. From recommendation systems enhancing content delivery on platforms to the presence of virtual personal assistants like Siri and Alexa, capable of understanding and responding to natural language commands, the applications of machine learning are both diverse and impactful. In domains like healthcare, it aids in disease diagnosis, while in finance, it fortifies fraud detection and risk assessment. This ubiquity of machine learning signifies not just a technological trend but a fundamental shift in problem-solving and decision-making approaches. However, this surge in data-driven innovation has raised a paramount concern -the protection of individuals' privacy and personal data. The General Data Protection Regulation (GDPR) exemplifies the heightened importance of data privacy in our modern era. As machine learning becomes increasingly intertwined with our daily lives, achieving a delicate balance between technological advancements and safeguarding individual privacy has become imperative. Moreover, addressing these concerns has given rise to the concept of privacy-preserving machine learning, with federated learning emerging as a pivotal technique, redefining collaborative machine learning by enabling multiple parties to build a shared model without sharing their raw data.

Federated Learning holds a lot of promise in the world of Machine Learning, allowing decentralized devices in edge computing systems to work together to train models. But, it's not all smooth sailing; there are some serious security and privacy issues to contend with. This research breaks down into two main parts, each dealing with these challenges in Federated Learning.The first part, which constitutes a critical aspect of our research, focuses on thwarting poisoning attacks. These malicious actions occur when unscrupulous clients attempt to sneak harmful tasks into federated models alongside their primary objectives, potentially compromising the integrity of the entire learning process. In response to this looming threat, we have developed ARMOR, a novel and sophisticated detection system. ARMOR leverages the power of GANs to meticulously scrutinize the data concealed within model updates. The second part of our research delves into safeguarding the privacy of individuals participating in Federated Learning, particularly from membership inference attacks. To address this challenge, we have introduced two mechanisms. The first one, PASTEL works tirelessly to enhance the resilience of Federated Learning systems against membership inference attacks. It achieves this by reducing the internal generalization gap, thereby minimizing the risk associated with data leakage between the information used for training and the data that the model has not seen during its training phase. The second privacy-focused approach, DINAR, is an ingenious solution that adds an extra layer of privacy protection to Federated Learning. DINAR operates by obscuring sensitive data within the model itself, effectively rendering it inaccessible to prying eyes. Furthermore, it employs intelligent gradient descent methods to ensure that the model remains not only privacy-conscious but also highly useful. These research objectives collectively aim to address security and privacy challenges and advance the field of federated learning.

Résumé

Dans le monde numérique en perpétuelle mutation d'aujourd'hui, l'apprentissage automatique est désormais une puissance essentielle et révolutionnaire, comme le démontrent de multiples recherches. Son impact profond s'étend à travers diverses industries, offrant des solutions et des innovations révolutionnaires qui ont remodelé la manière dont nous interagissons avec la technologie et prenons des décisions. Des systèmes de recommandation améliorant la diffusion de contenu sur les plateformes à la présence d'assistants personnels virtuels comme Siri et Alexa, capables de comprendre et de répondre à des commandes en langage naturel, les applications de l'apprentissage automatique sont à la fois diverses et impactantes. Dans des domaines tels que la santé, il contribue au diagnostic des maladies, tandis que dans la finance, il renforce la détection de la fraude et l'évaluation des risques. Cette ubiquité de l'apprentissage automatique signifie non seulement une tendance technologique, mais aussi un changement fondamental dans les approches de résolution de problèmes et de prise de décisions. Cependant, cette vague d'innovation axée sur les données a soulevé une préoccupation primordiale : la protection de la vie privée des individus et de leurs données personnelles. Le Règlement général sur la protection des données (RGPD) illustre l'importance accrue de la protection des données à l'ère moderne. À mesure que l'apprentissage automatique s'intègre de plus en plus dans notre vie quotidienne, trouver un équilibre délicat entre les avancées technologiques et la protection de la vie privée individuelle est devenu impératif. De plus, L'attention portée à ces préoccupations a donné naissance au concept de l'apprentissage automatique préservant la vie privée, avec l'apprentissage fédéré émergeant comme une technique cruciale, redéfinissant l'apprentissage automatique collaboratif en permettant à plusieurs parties de construire un modèle partagé sans partager leurs données brutes.

L'apprentissage fédéré suscite de grandes attentes dans le domaine de l'apprentissage automatique, en permettant à des dispositifs décentralisés au sein de systèmes informatiques périphériques de collaborer pour créer des modèles. Cependant, ce n'est pas toujours simple, car des préoccupations de sécurité et de confidentialité doivent être prises en considération. Cette étude se divise en deux parties principales, chacune se penchant sur ces défis dans le contexte de l'apprentissage fédéré. La première partie se concentre sur la prévention des attaques d'empoisonnement. Ces actes malveillants surviennent lorsque des utilisateurs mal intentionnés tentent d'introduire des tâches nuisibles dans les modèles fédérés en plus de leurs objectifs légitimes, compromettant ainsi potentiellement l'intégrité de l'ensemble du processus d'apprentissage. En réponse à cette menace imminente, nous avons développé ARMOR, un système de détection innovant et sophistiqué. ARMOR tire parti de la puissance des réseaux génératifs antagonistes (GAN) pour scruter minutieusement les données cachées au sein des mises à jour du modèle. La deuxième partie de notre recherche se penche sur la protection de la vie privée des individus participant à l'apprentissage fédéré, en particulier contre les attaques d'inférence d'appartenance. Pour relever ce défi, nous avons introduit deux mécanismes. Le premier, PASTEL, s'efforce de renforcer la résilience des systèmes d'apprentissage fédéré contre les attaques visant à déduire l'appartenance des données. Il y parvient en réduisant l'écart interne de généralisation, minimisant ainsi le risque de divulgation de données entre les informations utilisées pour la formation et celles que le modèle n'a pas vues pendant sa phase d'apprentissage. La deuxième approche axée sur la confidentialité, DINAR, fonctionne en obscurcissant les données des couches sensibles du modèle lui-même, les rendant ainsi inaccessibles. De plus, il utilise des méthodes de descente de gradient pour garantir une précision élevée du modèle. Ces objectifs de recherche visent collectivement à relever les défis en matière de sécurité et de confidentialité et à faire progresser le domaine de l'apprentissage fédéré. 
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Context and Motivation

In today's fast-paced digital landscape, machine learning has emerged as an indispensable and transformative force, as substantiated by numerous research studies. Its profound impact spans across diverse industries, promising groundbreaking solutions and innovations. Machine learning has permeated virtually every facet of our lives, reshaping the way we interact with technology and make decisions. From recommendation systems fine-tuning content delivery on platforms to the presence of virtual personal assistants like Siri and Alexa [START_REF] Palanica | Medication Name Comprehension of Intelligent Virtual Assistants: A Comparison of Amazon Alexa, Google Assistant, and Apple Siri Between 2019 and 2021[END_REF], capable of understanding and responding to natural language commands, the applications of machine learning are as diverse as they are impactful. In the domain of healthcare, machine learning aids in disease diagnosis [START_REF] Abaoud | Advancing Federated Learning Through Novel Mechanism for Privacy Preservation in Healthcare Applications[END_REF], while in finance, it fortifies fraud detection and risk assessment [START_REF] Wang | Approx-SMOTE Federated Learning Credit Card Fraud Detection System[END_REF]. The ubiquity of machine learning is not just a technological trend but a fundamental shift in how we approach problem-solving and decision-making. However, this surge in data-driven innovation has brought forth a paramount concern -the protection of individuals' privacy and personal data. The General Data Protection Regulation (GDPR) symbolizes how crucial data privacy has become in our contemporary world [START_REF] Hanneke | GDPR Privacy Type Clustering: Motivational Factors for Consumer Data Sharing[END_REF]. With the growing integration of machine learning into our everyday experiences, it is now essential to find a careful equilibrium between technological progress and protecting the personal privacy of individuals. Moreover, addressing these concerns has given rise to the concept of privacy-preserving machine learning. This innovative approach ensures that sensitive data remains confidential while still enabling the development of powerful machine learning models [START_REF] Guerra-Manzanares | Privacy-Preserving Machine Learning for Healthcare: Open Challenges and Future Perspectives[END_REF]. Within this context, federated learning emerges as a pivotal technique, redefining the landscape of collaborative machine learning by allowing multiple parties to build a shared model without sharing their raw data [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF].

Research Objectives

Federated Learning represents a promising paradigm in Machine Learning, enabling collaborative model training among decentralized devices in edge computing systems. This approach allows multiple participants, or clients, to train a model collectively without the need to share their individual data directly. Instead, clients share their local model parameters with an FL server, which then combines these updates to create a global model. This global model is subsequently shared back 2 Chapter 1. Introduction with the clients. FL has found successful applications in various domains, including autonomous driving, speech recognition, smartphone word prediction, activity recognition, and financial fraud detection. Nonetheless, despite its merits, Federated Learning exhibits susceptibility to a range of client-side attacks due to its usercentric nature [START_REF] Zhang | A survey on security and privacy threats to federated learning[END_REF].

Our research is divided into two main thrusts, each addressing critical security and privacy challenges in the context of Federated Learning. In this section, we outline our objectives and contributions for both aspects of our research.

Countering Poisoning Attacks for Robust Federated Learning

This segment of our research focuses primarily on data and model poisoning attacks, specifically targeting the resilience of Federated Learning [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF][START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF]. Adversaries aim to introduce a harmful task into the federated model alongside its main task. This insidious task assigns arbitrary labels to input data, often triggered by specific criteria. For instance, an attacker could circumvent a facial recognitionbased authentication system by mislabeling their images to gain unauthorized access. Detecting these poisoning attacks within federated learning proves to be an intricate challenge since participants transmit model updates to the FL server, concealing their raw training data. Consequently, the FL server possesses limited insights into user behavior, impeding the detection of malicious participants. A variety of mechanisms have been proposed in contemporary research to enable the identification of such attacks. While these mechanisms adopt diverse approaches to detection, they all hinge on scrutinizing the geometric characteristics of model updates submitted by participants to the FL server.

In the first part of our thesis, we have demonstrated that attackers can still elude these detection methods by crafting model updates that closely mimic benign participants' updates. Consequently, we introduce ARMOR, a novel GAN-based attack detection system that shifts the focus towards analyzing the information embedded in model updates, rather than merely monitoring their geometric attributes.

We assess the performance of ARMOR using well-established image recognition datasets and deep neural network architectures. Our results reveal that ARMOR outperforms existing state-of-the-art mechanisms in mitigating highly aggressive poisoning attack scenarios, underlining its efficacy as a potent defense against such threats.

Countering Membership Inference Attacks for Privacy-Preserving Federated Learning

Despite the strides made in preserving data privacy through decentralized data handling in Federated Learning (FL), recent research has revealed vulnerabilities, rendering FL systems susceptible to privacy attacks. Specifically, our focus centers on membership inference attacks (MIAs), where a malicious participant seeks to ascertain whether a specific data sample was utilized in the FL model training process.

Summary of Contributions

3

To bolster privacy in FL, several defense mechanisms have been proposed, including techniques based on cryptography, secure multiparty computation (SMC), and differential privacy (DP). DP, which can be implemented either on the client-side (Local Differential Privacy) or server-side (Central Differential Privacy), has been a primary focus. While DP-based methods can mitigate membership inference attacks to some extent, they often come at the cost of reduced model accuracy and increased computational overhead.

In the second part of our research, we introduce two novel approaches. First, we present PASTEL, a privacy-preserving mechanism designed to enhance FL systems' resilience against membership inference attacks. PASTEL employs a novel multi-objective learning function. It simultaneously minimizes model loss, optimizes model accuracy through adaptive gradient descent, and narrows the generalization gap between member and non-member data. Recent studies have indicated that sensitive information can reside in specific layers of neural networks and be inferred from their gradients. Thus, PASTEL's primary aim is to minimize this internal generalization gap during FL model training, effectively safeguarding private information and reducing the success rate of MIAs.

Secondly, we introduce DINAR, a fine-grained privacy-preserving FL method tailored to counter membership inference attacks. DINAR operates at the client-side of FL, safeguarding both the global FL model and individual client models. It identifies the most privacy-sensitive layer in neural networks, inspired by recent research findings. DINAR obfuscates this critical layer in the client model before transmitting updates to the FL server. Consequently, the aggregated model produced by the FL server includes an obfuscated version of this layer. Upon receiving the protected global model from the server, the client restores its local privacy-sensitive layer, integrating it into its version of the global model before utilizing it for predictions. To enhance the model's utility, DINAR employs adaptive gradient descent, dynamically adjusting the learning rate for each dimension during optimization, given the high-dimensional nature of neural network problems.

Summary of Contributions

The contributions of this thesis are three folds : (c1) : ARMOR: A mitigation mechanism against poisoning attacks in federated learning. (c2) : PASTEL: an optimizationdriven approach to mitigate membership inference attacks. (c3) : DINAR: obfuscationbased defense mechanism against membership inference attacks. The following section outlines the various publications, communications, and software prototypes associated with these contributions. 

Publications and Communications

Software Prototypes

The following software prototypes were developed during this thesis:

• ARMOR: A Python library designed to detect poisoning attacks in federated learning through the generation of class representatives using GANs.

https://github.com/robust-fl/armor 

Thesis Roadmap

This thesis is thoughtfully organized into two distinct parts, each addressing critical aspects of federated learning. Part I, titled "Robustness in Federated Learning," begins with Chapter 2, where we delve into the essential background and explore related work in the domain of robust federated learning. This chapter lays the foundation by explaining federated learning concepts and shedding light on the unique challenges it faces. Chapter 3 introduces ARMOR, a pioneering defense mechanism aimed at mitigating poisoning attacks in federated learning, outlining the overarching objectives and core design principles. Chapter 4 provides a deep dive into the empirical side of ARMOR, presenting a comprehensive account of its implementation and rigorous experimental evaluation. We assess ARMOR's effectiveness in 1.4. Thesis Roadmap 5 various scenarios, including its resilience against poisoning attacks and a comparison with other federated learning defense mechanisms.

Part II, titled "Privacy-Preservation in Federated Learning," starts with Chapter 5, offering a comprehensive exploration of privacy threats inherent to federated learning. This chapter not only delineates these threats but also surveys existing privacypreserving mechanisms to provide a broader context. In Chapter 6, titled "DINAR: Fine-Grained Mitigation of Membership Inference Attacks in Federated Learning," we present DINAR, an innovative approach for addressing membership inference attacks. We outline its research objectives and core design principles, discussing how it employs fine-grained mechanisms such as model obfuscation, personalization, and adaptive training to enhance privacy in federated learning. Chapter 8 introduces PASTEL, a novel solution tailored to address the pressing issue of membership inference attacks within the federated learning framework. It elucidates the research objectives, system model, and design principles that underpin PASTEL's approach. Chapter 9 delves into the empirical evaluation of PASTEL, detailing the experimental setup and results that gauge its efficacy in preserving privacy in federated learning.

Finally, in Chapter 10, aptly titled "Conclusion and Perspectives," we bring the thesis to a close by summarizing the key findings and contributions in both robustness and privacy-preservation aspects of federated learning. Furthermore, we offer perspectives on potential future research directions in these domains, providing a comprehensive overview of the entire research journey undertaken in this thesis.

Chapter 2

Background and Related Work on Robust Federated Learning

Background on Federated Learning

Federated Learning (FL) is a novel paradigm in machine learning where instead of centralizing data on a single server, training takes place across a network of decentralized devices or clients. These clients, such as smartphones, edge devices, or IoT devices, collaboratively contribute to the training process while keeping their data locally stored and private. The central idea is to enhance the global model's performance by leveraging the diverse and extensive data available across these devices, without compromising individual user privacy [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF][START_REF] Kallista | Practical Secure Aggregation for Privacy-Preserving Machine Learning[END_REF].

Federated Learning has gained attention due to its ability to address challenges associated with data privacy, network latency, and resource constraints. It is particularly useful in scenarios where data is sensitive, abundant, and distributed, such as healthcare, finance, and IoT applications. By leveraging a diverse range of data sources, federated learning enables the creation of robust and accurate machine learning models while respecting user privacy and data ownership.

In this chapter, we will delve into the realm of robustness in Federated Learning. We will discuss the fundamental concept of FL, its significance in addressing data privacy and decentralized machine learning challenges, and the vulnerabilities it introduces, particularly in the form of poisoning attacks. We will also explore the two main categories of poisoning attacks in FL: untargeted attacks, which aim to disrupt the overall model performance, and targeted attacks, which have specific and often malicious objectives. Furthermore, we will investigate various defense mechanisms and strategies developed to mitigate these poisoning attacks and enhance the security and robustness of FL systems. Finally, we will highlight some open research issues and ongoing efforts to address the evolving threat landscape in FL.

Federated Learning is a decentralized machine learning framework where multiple clients work together to train a common global model with high accuracy, as illustrates in Figure 2.1. This research focuses on training Deep Neural Networks , which serve as the fundamental architecture for various complex tasks. To formalize this, we consider a cross-silo FL setup with K clients, denoted as C = {C 1 , C 2 , . . . , C k }, and each client C k possesses its local training dataset D k . The primary goal of cross-silo FL is to solve an optimization problem to obtain the optimal global parameter W: 

min W F(W, D k ) = min W 1 |D k | ∑ (x i , ȳi )∈D k L(W; (x i , ȳi )) (2.2)
where (x i , ȳi ) is a training sample, x i and ȳi are the corresponding feature vector and the ground-truth label vector, respectively. L(•; •) is a user-specified loss function, such as Mean Squared Error and Cross-entropy.

In order to find the optimal parameters for Eq. 2.1, the server initializes the global model parameter, and then the server and all clients collaboratively perform the DNN training, which mainly includes three phases: combines them and modifies the current model parameter W for the subsequent iteration. More precisely, using the learning rate η, the new parameter is calculated as follows:

W ← W - η |D| K ∑ k=1 1 |D k | ∇F(W, D k ) (5)
Subsequently, the server shares the updated parameter W with all clients for the next iteration.

Background on Poisoning Attacks in Federated Learning

Many studies have highlighted the inherent vulnerabilities of centralized machine learning systems, showcasing their susceptibility to a range of malicious attacks [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF][START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF]. While Federated Learning represents a promising approach to enhance data privacy in ML, it is not impervious to threats. This is because in FL, not only do individual workers possess access to model parameters, but they can also exert influence over their respective data during the training phase. This thesis delves into a specific facet of these vulnerabilities: FL poisoning attacks. FL poisoning attacks can be broadly categorized into two groups: untargeted attacks [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF][START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF] and targeted attacks [START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF][START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF][START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF][START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF]. The primary objective of untargeted attacks is to undermine the overall performance of the model on its primary task. On the other hand, targeted attacks, also known as backdoor attacks, are geared towards a more specific and sinister purpose -manipulating the model to compromise a particular class or feature within the data.

In the subsequent sections, we will thoroughly explore each type of attack, shedding light on their mechanisms, implications, and potential countermeasures.

Untargeted Poisoning Attacks

In untargeted poisoning attacks in federated learning, the main objective is to compromise the overall performance of the federated learning model in its main task. These updates, while appearing similar to benign updates in terms of statistical measures like mean and variance, possess the capability to evade existing defense mechanisms and disrupt the accuracy of the model. An illustrative example of an untargeted attack is provided in [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF]. where a group of malicious sybil workers collaboratively sends model updates that appear similar to honest updates in terms of statistical measures such as mean and variance. However, these malicious updates are carefully crafted to bypass existing defense mechanisms and ultimately lead to a deviation in the model's accuracy.

The key idea in this work revolves around the creation of malicious local models in each iteration of Federated Learning. These models are designed to induce what the authors refer to as a "directed deviation" of the global model. In simpler terms, this means altering the direction of the global model parameters in a way Chapter 2. Background and Related Work on Robust Federated Learning that is contrary to what would naturally occur without attacks. To achieve this, the attackers generate these malicious model updates by solving mathematical optimization problems. These optimization problems take into account the impact of two state-of-the-art poisoning defense mechanisms: Multi-Krum [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF] and Trimmed Mean [START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF]. These mechanisms are integrated into the attacker's strategy to make their malicious updates more effective and harder to detect.

In summary, untargeted poisoning attacks in Federated Learning aim to subtly manipulate the model's updates to disrupt its overall performance. These attacks use advanced optimization techniques and exploit weaknesses in existing defense mechanisms to achieve their objectives.

Targeted Poisoning Attacks

Targeted poisoning attacks in Federated Learning are sophisticated strategies employed by malicious actors to undermine the security and privacy of the FL process. These attacks are designed with specific, often harmful objectives in mind, and they can be broadly categorized into two primary types: Data Poisoning Attacks and Model Poisoning Attacks. These adversarial tactics aim to compromise the integrity of the FL model or introduce biased behavior for malicious purposes.

Targeted poisoning attacks are especially concerning in FL due to the decentralized nature of the training process. Unlike traditional machine learning approaches where data is centralized, FL operates by training models on distributed devices while keeping data local. This decentralized nature makes FL particularly vulnerable to poisoning attacks as adversaries can exploit the trust placed in participating devices.

Data Poisoning Attacks

Data poisoning attacks in FL involve adversaries tampering with the training data before it is used to construct local model updates that are subsequently sent to the FL server [START_REF] Fung | The Limitations of Federated Learning in Sybil Settings[END_REF][START_REF] Tolpegin | Data Poisoning Attacks Against Federated Learning Systems[END_REF]. The primary goal of these attacks is to introduce misclassifications for specific inputs into a target class. For example, in the context of an image classification task, a malicious user may alter the labels associated with training images before using them to generate local model updates [START_REF] Fung | The Limitations of Federated Learning in Sybil Settings[END_REF].

Data poisoning attackers may choose to manipulate the labels of only a subset of the training data, such as modifying labels for images of small green cars, or they may target an entire class, like the "car" class [START_REF] Fung | The Limitations of Federated Learning in Sybil Settings[END_REF]. Importantly, since the training data resides privately on individual workers' devices, this type of attack is challenging to detect directly by the FL server, as the server cannot inspect the labels of the training data held by the workers.

These types of attacks have been evaluated in various scenarios, including image classification tasks and textual data, demonstrating their potential to disrupt the FL process. Data poisoning attacks can lead to the training of models with biased representations, potentially causing significant harm in applications where fairness and non-discrimination are critical.

Model Poisoning Attacks

In contrast to data poisoning attacks, model poisoning attacks directly manipulate the model updates instead of tampering with the training data [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF][START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF]. In this type of attack, adversaries aim to achieve their malicious objectives by modifying the model updates in a way that brings the global model very close to a predefined poisoned model, denoted as w * .

To conduct model poisoning attacks, attackers typically require knowledge about the number of workers participating in the FL training round and insight into the aggregation algorithm used by the FL server. With this information, attackers can craft model updates strategically to steer the global model towards the poisoned model w * .

These attacks assume that adversaries have access to an already poisoned version of the model. They manipulate the model updates in such a manner that the global model converges towards the poisoned model as closely as possible. Model poisoning attacks can have severe consequences, including the compromise of the FL system's security, privacy breaches, and the introduction of biased models into the federated model aggregation process.

One noteworthy model poisoning attack is proposed in [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF], capable of achieving up to 100% accuracy for the attacker's task. Additionally, a more aggressive attack strategy known as "constrain-and-scale" is introduced, which can evade well-known robust aggregation algorithms like Multi-Krum [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF] and Norm Clipping (NDC) [START_REF] Sun | Can You Really Backdoor Federated Learning?[END_REF]. To further complicate detection, authors in [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF] apply Projected Gradient Descent (PGD) on the attackers' local model updates, ensuring that these updates do not significantly deviate from the global model. This is accomplished by projecting the attackers' models into a small ball centered around the global model from the previous iteration.

Model poisoning attacks pose significant threats to the integrity and security of FL systems, as they can subvert the collaborative learning process and introduce compromised models into the federated model aggregation, potentially causing widespread harm.

Backdoor Attacks

A backdoor in FL manipulates a subset of training data to poison the data and the model, by injecting adversarial triggers such that the FL model trained on the tampered dataset makes an arbitrarily (or a targeted) incorrect prediction on the test set with the same embedded trigger [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF]. For instance, in the case of a malware detection system, an attacker who wants to evade the detection would carefully add a watermark which serves as the attack trigger in a set of malicious applications of his choice, and changes their labels from the malicious applications class to the benign applications class. Edge-case backdoor attacks are particular backdoors where the attacker uses a trigger that is underrepresented, or unlikely to be part of the training set of other workers' data [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF]. Thus, the effect of edge-case backdoors can lead to models mispredicting classification subtasks, especially those that may be underrepresented in the training set. For instance, several recent reports show that neural networks can mispredict inputs of underrepresented minority individuals [START_REF] Hawkins | Tesla didn't fix an Autopilot problem for three years, and now another person is dead[END_REF], or Chapter 2. Background and Related Work on Robust Federated Learning describe edge-case inputs that have been a point of serious concern for the safety of autonomous vehicles [START_REF] Hawkins | Tesla didn't fix an Autopilot problem for three years, and now another person is dead[END_REF].

Figure 2.2 illustrates the case of an attacker that introduces edge-case backdoors into a FL-based decentralized and automatic traffic sign recognition system. Here, the attacker (i.e., a FL client) introduces a visual pattern P * to the top left corner of its set of traffic sign images, in such a way that these images are misclassified and labeled with a wrong target label C target , e.g., a stop sign misclassified as a speed limit sign. Thus, the attacker produces the D attack dataset that is used for local training at the attacker side, to carry model replacement. Such an attack is described here [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF].

Roughly speaking, given the current global FL model collectively produced by a set of workers, the attacker substitutes the new global model with a malicious model w attack * . More precisely, the attacker creates a model that does not look anomalous, and replaces the global model after averaging with the other benign participants' models. To prevent the backdoor from being forgotten, techniques such as slowing down the learning rate during the attacker's training can be used to improve the persistence of the backdoor in the global model. Furthermore, to prevent the malicious model from being easily detected if it significantly diverges, projected gradient descent (PGD) is applied to project the malicious model centered around the last global model [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF].

Related Work on Robust Federated Learning

The decentralized nature of FL introduces vulnerabilities, particularly poisoning attacks, that can undermine the integrity and security of the global model. As such, the development of robust mitigation techniques is imperative to safeguard FL systems from adversarial influences.

In this section, we delve into the extensive body of research aimed at fortifying Federated Learning against various forms of poisoning attacks. These attacks include backdoor attacks, which manipulate the model's behavior on specific inputs, and inference attacks, which aim to extract sensitive information from the global model. To counter these threats, researchers have devised a multitude of defense mechanisms, each with its own strengths and limitations.

these defense mechanisms can be categorized into three main groups: perturbationbased approaches, aggregation-based approaches, and selection-based approaches. Perturbation-based methods introduce controlled noise into the data contributed by FL participants, effectively diluting the impact of malicious data while preserving genuine contributions. Aggregation-based methods focus on how model updates from participants are combined to form the global model, employing techniques like trimmed mean and norm clipping. Selection-based methods aim to identify and exclude potentially malicious contributions from FL participants, utilizing strategies such as trust scoring and model accuracy monitoring.

Throughout this section, we delve into each category, providing insights into notable defense mechanisms and their effectiveness in mitigating poisoning attacks. Additionally, we discuss open research issues in the field, recognizing that as FL evolves, so too must our defenses against novel and sophisticated adversarial strategies. Finally, we conclude this section with a summary of the state of the art in robust Federated Learning, highlighting the ongoing research efforts to secure FL systems backdoor is unlikely to be part of benign clients' data in an ever-evolving threat landscape. Mitigation techniques of poisoning attacks in FL are summarized in Table 2.1.

Perturbation-Based Mechanisms

Perturbation-based mechanisms represent a category of defense strategies in Federated Learning that aim to enhance robustness against poisoning attacks by introducing controlled noise into the data contributed by each participant [START_REF] Yang | An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning[END_REF]. This noise serves to mitigate the impact of potentially malicious data while still allowing legitimate contributions to be integrated into the global model. One pioneering work in this domain, conducted by the authors of [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF], explored the application of both Local Differential Privacy (LDP) and Central Differential Privacy (CDP) to counteract backdoor and inference attacks within FL systems. Their research revealed the efficacy of perturbation-based methods in reducing the success of these attacks. Here are key findings from their experiments:

Local Differential Privacy (LDP): LDP was shown to be a valuable defense mechanism against both backdoor and inference attacks. When applied with an epsilon value (ϵ) of 3 to an FL setup involving 2,400 participants using the EMNIST dataset, Chapter 2. Background and Related Work on Robust Federated Learning LDP achieved significant mitigation. Backdoor attack accuracy was reduced from 88% to 10%, while utility decreased from 92% to 62%. This demonstrated LDP's ability to substantially hinder the success of attacks while maintaining a reasonable level of utility.

Central Differential Privacy (CDP) CDP emerged as another robust defense mechanism against backdoor attacks. In the same EMNIST scenario with an ϵ value of 3, CDP outperformed LDP in terms of reducing backdoor attack accuracy. It lowered the accuracy from 88% to an even lower 6%, showcasing its effectiveness. Importantly, CDP accomplished this while preserving a higher level of utility compared to LDP. The utility only decreased from 90% to 78%, which was notably higher than the utility reduction observed with LDP (ϵ=3), which stood at 62%.

These results underscore the potential of perturbation-based mechanisms, specifically LDP and CDP, in fortifying FL systems against poisoning attacks. They demonstrate that with careful parameter tuning, it is possible to significantly hinder adversarial attempts while retaining the practical utility of the FL model.

Selection-Based Mechanisms

Selection-based mechanisms focus on identifying and excluding potentially malicious contributions from FL participants. Here are some notable selection-based mechanisms:

Multi-Krum

Krum, introduced by Author et al. [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF], leverages the robustness of the median as a measure of the central tendency of model updates in Federated Learning. The central idea behind Krum is to identify and eliminate potentially malicious or outlying model updates contributed by FL participants, ensuring that only honest updates are used to compute the global model. Here's how Krum works: Multi-Krum thus provides a balance between robustness and convergence speed, making it an effective defense mechanism against various forms of poisoning attacks in FL.

DPLM

DLMP, proposed by Author et al. [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF], assumes that the Federated Learning server possesses advance knowledge of a validation dataset. This dataset is employed to monitor fluctuations in model accuracy during each training round. If a substantial decline in accuracy is observed, the model generated in that round is considered potentially compromised and excluded.

FLTrust

FLTrust, introduced by Author et al. [START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF], is a defense mechanism designed to enhance the security and reliability of Federated Learning systems by incorporating trust-based scoring for participating FL clients. This mechanism assumes that the FL server maintains a root dataset and assigns trust scores to individual clients based on their historical behavior and performance. The key concept behind FLTrust is to attribute trustworthiness to clients and use these trust scores as a factor in aggregating model updates. 

Aggregation-Based Mechanisms

Aggregation-based mechanisms focus on how model updates from FL participants are combined to form the global model. Here are some notable aggregation-based mechanisms:

Trimmed Mean

Trimmed Mean, as introduced by Author et al. [START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF], is an aggregation technique used in Federated Learning to enhance robustness against poisoning attacks. It calculates the aggregated model update while excluding extreme values, thus mitigating the influence of malicious updates.

The Trimmed Mean is calculated as follows:

Trimmed Mean = 1 N -2k N-k ∑ i=k+1 W i (2.3)
where:

-N is the total number of clients participating in the FL round.

k is the trim ratio, representing the percentage of extreme values to be removed from both ends of the sorted list of updates.

-W i represents the model update from client i.

NDC (Norm-based Defense and Clipping)

NDC, or Norm-based Defense and Clipping, is an aggregation algorithm designed to counteract poisoning attacks in Federated Learning, as presented in [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF]. NDC leverages the assumption that attackers often send model updates with larger norms than honest workers, using this property to detect and mitigate adversarial contributions. NDC employs two primary defense mechanisms: norm clipping and Gaussian noise addition. Norm clipping restricts the magnitude of model updates received from FL participants, effectively reducing the influence of malicious workers while preserving honest contributions. The addition of Gaussian noise further obscures adversarial contributions, making it challenging for attackers to manipulate the model effectively. However, it's essential to strike a balance between security and utility, as these defense mechanisms may lead to a degradation in model quality. Practitioners must carefully tune NDC's parameters to maintain a usable global model. NDC represents a valuable tool in the ongoing effort to enhance the security and resilience of Federated Learning systems against evolving adversarial threats.

Open Research Issues

Defending against edge-case backdoors presents a formidable challenge in the context of Federated Learning due to their subtle and highly targeted nature. These attacks are crafted to be inconspicuous, making them particularly insidious. 

LDP [82] ✓ ✓ ✗ ✓ Februus [29] ✓ ✓ ✗ ✓ DP-FedAvg [72] ✓ ✓ ✗ ✓ Perturbation- based methods WDP [98] ✓ ✓ ✗ ✓ Multi-Krum [13] ✓ ✓ ✗ ✓ DPLM [32] ✓ ✓ ✗ ✗ Selection- based methods FLTrust [18] ✓ ✓ ✗ ✗ Trimmed Mean [115] ✓ ✓ ✗ ✓ Aggregation- based methods NDC [98] ✗ ✓ ✗ ✓ Our Method ARMOR ✓ ✗ ✓ ✓
introduce glaring anomalies in the model updates, edge-case backdoors remain hidden amidst the vast and diverse data streams of FL. This stealthiness is exacerbated by attackers' use of advanced techniques like Projected Gradient Descent (PGD), enabling them to create model updates that closely mimic the global FL model while containing subtle, harmful modifications. The inherent challenge lies in the fact that most robust FL aggregators rely on evaluating the geometric distance between clients' model updates. However, this approach proves ineffective against edgecase backdoors, as these attacks leave behind no geometric footprints that stand out amidst the noise of legitimate contributions. Furthermore, the lack of clear anomalies and the need for domain-specific knowledge make detection even more elusive, as these attacks are often designed to blend seamlessly into the data distribution.

Summary

This chapter provides a comprehensive overview of robustness in Federated Learning. We have explored the core concept of FL and its relevance in addressing data privacy and decentralized machine learning challenges. Furthermore, we have delved into the critical topic of poisoning attacks in FL, categorizing them into untargeted and targeted attacks, each with its own distinct objectives and mechanisms. To defend against these attacks, we have discussed a range of defense mechanisms and strategies, including perturbation-based, selection-based, and aggregation-based approaches. Finally, we have acknowledged the existence of open research issues. In the next section, we will present our contribution to enhancing Federated Learning robustness, addressing some of the limitations of existing methods to further fortify FL systems against evolving threats. FL was rapidly adopted in several thriving ubiquitous computing applications such as healthcare [START_REF] Rieke | The future of digital health with federated learning[END_REF], self-driving cars [START_REF] Zhang | End-to-End Federated Learning for Autonomous Driving Vehicles[END_REF], home automation [START_REF] Hwang | Improving response time of home IoT services in federated learning[END_REF], next-word prediction [START_REF] Yang | Applied Federated Learning: Improving Google Keyboard Query Suggestions[END_REF], etc. Although FL has improved the privacy of ML by decentralizing the data and the learning process, a line of recent literature shows that FL systems are vulnerable to poisoning attacks [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF][START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF][START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF][START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF][START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF]. Here, malicious clients introduce backdoor attacks to corrupt the global FL model so that it produces a prediction that is inappropriate for the task at hand, such as misclassifying a no entry traffic sign as a speed limit sign. We specifically put our focus on edge-case backdoor attacks which target input data points, that while generally correctly classified by a FL model, are rare and either underrepresented, or unlikely to be part of the training or test data [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF]. The effect of edge-case backdoors can lead to models mispredicting classification subtasks, especially those that may be underrepresented in the training set. For instance, several recent reports show that neural networks can mispredict inputs of underrepresented minority individuals [START_REF] Hawkins | Tesla didn't fix an Autopilot problem for three years, and now another person is dead[END_REF], or describe edge-case inputs as a serious concern for the safety of autonomous vehicles [START_REF] Hawkins | Tesla didn't fix an Autopilot problem for three years, and now another person is dead[END_REF].

Robust FL has been extensively studied, and several defense mechanisms to counter backdoors have been proposed, based on various techniques such as robust aggregation [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF][START_REF] Venkata | Robust Aggregation for Federated Learning[END_REF], norm clipping [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF], or differential privacy [START_REF] Mcmahan | Learning Differentially Private Recurrent Language Models[END_REF]. However, recent studies demonstrate that edge-case backdoors are hard to detect by such defense mechanisms, and are among the most difficult poisoning attacks to tackle [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF][START_REF] Gu | BadNets: Evaluating Backdooring Attacks on Deep Neural Networks[END_REF]. Indeed, some protection mechanisms assume the existence of a test set to uncover attacks [START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF][START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF]. However, edge-case backdoors rely on out-of-distribution features Chapter 3. ARMOR: Mitigating Poisoning Attacks in Federated Learning available at the attacker side, and which are, by design, unlikely to be part of test set data available on the FL server.

In addition, edge-case backdoors often rely on techniques such as projected gradient descent (PGD) [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF], to project the malicious model updates' vector to the last version of the global model, so that it looks similar to a benign model update. Therefore, these attacks also deceive protection mechanisms which rely on the analysis of the geometric shape of model updates [START_REF] Venkata | Robust Aggregation for Federated Learning[END_REF][START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Sun | Can You Really Backdoor Federated Learning?[END_REF][START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF].

Furthermore, in order to protect against honest-but-curious FL servers, FL protocols usually rely on secure aggregation which is a secure multi-party computation protocol allowing to compute the sum of client model updates while preventing the server from examining individual updates [START_REF] Kallista | Practical Secure Aggregation for Privacy-Preserving Machine Learning[END_REF]. However, many existing FL defense mechanisms require analyzing individual model updates [START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF][START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF][START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF], and are therefore incompatible with secure aggregation, which makes them more vulnerable to privacy leakage [START_REF] Melis | Exploiting Unintended Feature Leakage in Collaborative Learning[END_REF]. In this chapter, we propose ARMOR, a novel FL defense mechanism. As far as we know, ARMOR is the first FL defense that tackles edge-case backdoors and is compatible with secure aggregation, without requiring the knowledge of prior of data. We evaluated several existing FL defenses with edge-case backdoor attacks. The experiments were conducted with the FashionMNIST dataset and a four-layer convolutional neural network, and with an edge-case backdoor occurring at each FL round. The implementation details of the edge-case backdoor attack, and the underlying evaluation environment are described in §9.1. First, 3.1(a) presents the results of two defense mechanisms that assume the existence of a validation dataset, namely DLMP [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF] and FLTrust [START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF]. We observe that none of these mechanisms allows to counter edge-case backdoors, and the backdoor task accuracy reaches 100% after only a few rounds. 3.1(b) presents the behavior of defenses that do not assume prior knowledge of a validation dataset, such as Multi-Krum [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF], Trimmed Mean [START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF], and NDC [START_REF] Sun | Can You Really Backdoor Federated Learning?[END_REF]. These mechanisms are more efficient than DLMP and FLTrust, nevertheless, after some rounds the backdoor task accuracy increases up to 100%.

On the Difficulty of Edge-Case Backdoors in

Defense Mechanisms Incompatible With Secure Aggregation

Are More Vulnerable to Privacy Leakage.

Many state-of-the-art FL defenses are not compatible with secure aggregation, because they need to analyze individual workers' model updates [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Sun | Can You Really Backdoor Federated Learning?[END_REF][START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF][START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF]. This results in privacy issues and information leakage, such as a higher vulnerability to membership inference attacks [START_REF] Nasr | Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning[END_REF]. Membership inference is the ability to determine if a given data record was part of the model's training dataset. This is more problematic in case of FL defense systems that are incompatible with secure aggregation, where membership inference also allows to determine exactly to which worker (i.e., data owner) the data record belongs to. An interesting study evaluated the effectiveness of membership inference in different FL settings, and with several datasets and models [START_REF] Nasr | Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning[END_REF]. In 3.2, we report on the results of two cases, on the one hand, FL with secure aggregation and where membership inference is applied on the global model, and on the other hand, FL without secure aggregation and where membership inference is applied on clients' local model updates. We see that the latter case is more vulnerable to information leakage by up to 16%, in addition to revealing data owner's identity.

System Model

In the following, we describe the underlying threat model and defense model. 

Threat Model Attacker's Objectives

The goal of the malicious worker is to make the global FL model W t misclassify a subset S of particular data samples (x i , y i ) to a target class C target . The data samples S have particular features P * that we refer to as the attack trigger. The FL classification task is defined as follow:

W t (x i ) = C target , ∀x i ∈ S y i , ∀x i / ∈ S (3.1)
The adversarial task is to optimize the attacker model W attack , with a Loss function L attack , so that the samples (x i , y i ) are classified with the new adversarial label

C target if x i ∈ S: min ∑ x i ∈S L attack (W attack (x i ), C target ) + ∑ x i / ∈S L attack (W attack (x i ), y i ) (3.2)
For instance, in the case of a traffic sign recognition system embedded in autonomous vehicles, a malicious participant can cause accidents with serious concern by carefully adding a watermark which serves as the attack trigger P * in a set of images of his choice S, and changes their labels from, for instance, the no entry sign class to the speed limit sign class. Such a backdoor trigger is very effective in changing the classification decision [START_REF] Gu | BadNets: Evaluating Backdooring Attacks on Deep Neural Networks[END_REF]. Moreover, in edge-case backdoors, the attack trigger P * is underrepresented, or unlikely to be present in benign clients' data and, thus, difficult to detect. 3.1 provides a summary of notations used throughout the chapter. 

Attacker's Capabilities

As in many previous works [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF][START_REF] Baruch | A Little Is Enough: Circumventing Defenses For Distributed Learning[END_REF][START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF][START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF][START_REF] He | Byzantine-Robust Learning on Heterogeneous Datasets via Resampling[END_REF][START_REF] Xie | Generalized Byzantinetolerant SGD[END_REF], we assume that the attacker can access the global model that is sent by the FL server in each round, and that it can directly manipulate the training data on the malicious devices by adding the attack trigger P * and carrying a label flipping to the target class C target . It is also able to train an attack model W attack over the dataset D attack . Thus, the attacker can generate a model update that aims to replace the global model with the attacker's model W attack .

Attacker's Knowledge

As any other worker, the attacker has access to previous versions of the FL model. It has also access to its attack training dataset D attack to carry poisoning, and train an attack model w attack .

Defense Model
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Defense Objectives

We aim to design a FL defense mechanism that achieves resilience against malicious FL clients, without sacrificing the global FL model's quality. Specifically, we aim to fulfil the two following properties:

• Resilience. Our defense mechanism should ensure that the global FL model is unlikely to predict the attacker-chosen target labels for the attacker-chosen target samples. Thus, the resilience of the defense mechanism should be as high as possible. Its metric is presented in §9.1.

• Utility. Our defense mechanism should preserve the classification accuracy of the global model in the presence of adversaries performing poisoning attacks.

In particular, the defense mechanism aims to learn a global model under attacks that is as accurate as possible as the global model learnt by the FL system without attacks and no defense mechanism. Its metric is presented in §9.1.

Defender's Capabilities

The defense against FL attacks is performed on the FL server side. It has the capability to compute a poisoning indicator, based on which it decides whether to take into account the new aggregated model update if considered as sane. Otherwise, the FL server reduces its impact through a specific aggregation-based mitigation technique.

Defender's Knowledge

We consider a honest-but-curious server. Our defense mechanism that runs on the server does not have access to the clients' raw training data, and it does not audit the clients' model updates. In contrast to existing FL defense systems [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Yin | Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[END_REF], our defense mechanism does not need to know the number of malicious clients, nor the number of clients involved in a FL round. Furthermore, unlike other existing works [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF][START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF], our defense mechanism does not need a validation dataset to carry attack mitigation. As the FL server, the defense mechanism has access to the global FL model at different rounds, and to the newly aggregated FL model built with clients' model updates.

ARMOR Design Principles

In the following, we first present an overview of the proposed ARMOR defense method, before introducing the Generative Adversarial Networks that underly AR-MOR. We then describe ARMOR's two main components: ARgan and MORpheus.

Overview of ARMOR

We propose ARMOR, a novel FL defense mechanism that counters powerful clientside poisoning attacks such as edge-case backdoor attacks, without breaking secure aggregation guarantees, nor having access to private real data samples to carry ARMOR's defense mechanism does not make any assumptions neither on the proportion of attackers in the system nor on their data distribution. The insight behind ARMOR is as follows. Let B be a backdoor task that aims to misclassify the data samples holding a particular data pattern P * from a source class C source to a target class C target . Let us consider that the the model W t (at round t) is poisoned with such a backdoor B. The poisoned class representatives of C target generated from W t would be misclassified by previous non-poisoned model (e.g., W t-1 ). Here, when auditing a model W t , ARMOR monitors the difference between the loss obtained when feeding class representatives to this model W t and the loss when feeding the representatives to the models of the s previous rounds {W t-1 , ..., W t-s }. If the difference is higher than a given threshold vector, the current model is considered to be corrupted, and ARMOR applies a mitigation technique to reduce the impact of the new model updates.

In order to generate class representatives, ARMOR relies on a set of Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF], that are trained on the FL server side based on the model updates received from the FL workers. GANs are a type of ML networks composed of two neural network models, a Generator (Gen) and a Discriminator (Dis) that contest with each other in a zero-sum game. The generator aims to build Chapter 3. ARMOR: Mitigating Poisoning Attacks in Federated Learning a model that generates fake inputs which are as realistic as possible, while the discriminator attempts to distinguish whether the generated inputs are real or fake. The performance of both Gen and Dis is improved by playing the adversarial game. The discriminator's output is both used to improve the latter, but also backwardpropagated through (Gen) to improve its capability to mimic real data. The competition between the generator and the discriminator ends at Nash equilibrium, when the discriminator is unable to distinguish fake samples from the real ones.

On the other hand, the discriminator has the objective of distinguishing between the fake data of the generative model and the real data.

The steps for training a GAN are as follows: (i) Fake images generation. The Generator is queried to generate a batch of fake images F (t) . (ii) Fake image-based loss computation. The generated fake images F (t) are fed to the discriminator to compute the loss L(p (t) , C f ake ), where p (t) is the prediction output obtained by the discriminator when feeding

F (t) to it, that is p (t) = Dis tk (F (t) )
which is backward-propagated to compute the gradients for fake data ∆W f ake . (iii) Sampling of Real images. A batch of real data R (t) is sampled from the training dataset.

(iv) Real image-based loss computation. R (t) are fed to the discriminator to compute the loss L(p (t) , C real ) which is backward-propagated to compute the gradients for real data ∆W real . (v) Discriminator update. The discriminator is updated with the sum of the two sets of gradients ∆W real + ∆W f ake . (vi) Generator update. The fake data is once again fed to the discriminator to compute the loss L(p (t) , C real ) which this time is backward-propagated through the generator, to improve its capacity to mimic real data based on the discriminator's output. The goal of the Generator is to generate images that look like real ones, so its objective is also to minimize the loss on the real image class of the Discriminator.

Finally, the competition between the generator and the discriminator ends at Nash equilibrium, when the discriminator is unable to distinguish fake samples from the real ones.

Roughly speaking, the goal of a GAN is to predict the features of data samples given a label instead of predicting a label based on input data's features. (The above is true only when the GAN mode collapse) A GAN consists of two models, the first model is called a Generator (Gen), and the second is a Discriminator (Dis). As a consequence, the two models have contradictory objective functions and compete with each other. The model G generates data points that try to bypass the model D while the model D tries to identify when he receives fake data from G.

ARgan: ARMOR 's Generative Adeversarial Networks

The vanilla GAN architecture presented before can not be directly used to uncover potential attacks in Federated Learning, since the FL server does not have access to a real dataset. However, since the FL global model was trained with real data, the intuition behind ARMOR is to replace the discriminator's gradients computed on 

ARgan vs Vanilla GAN

The objective of the first component of ARMOR is to produce a dataset of class representatives that contain the backdoor in order to be used by the second component to detect the attack. Knowing that by definition the images that contain a backdoor are held only by the attacker, the server cannot assume the existence of these images.
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The classical architecture of a vanilla GAN consists in considering real data as input which are used by the discriminator to differentiate real samples from false ones. Although GAN is able to learn the general data distribution and generate diverse images of the dataset, it remains limited to what exists in the training data [START_REF] Bau | Rewriting a Deep Generative Model[END_REF]. Hence the new ARgan architecture that we propose, where instead of real data,ARgan considers the FL model as input, which is trained using data that contain the backdoor, making it possible to generate representative classes that contain the backdoor. Similar to a vanilla GAN, an ARgan consists of a generator and a discriminator. The difference between the structure of these two types of GANs is described in Figure 3.4. In a vanilla GAN (Figure 3.4(b)), the networks are trained based on fake images labeled 0, and real images labeled 1. However, ARMOR does not assume the existence of a dataset of real images. Instead, ARgan relies on the FL model which was trained on real data. The discriminator model is built by considering the global FL model and extending it with an additional output to distinguish real data from fake data. For example, in the case of a classification task with 10 classes, the last layer of the model is a linear layer that contains 10 outputs. Here, the model structure is extended with an additional output, thus, resulting in a model with 11 outputs. Even though the discriminator contains classification outputs, the architecture of ARGAN is not the same as a cGAN's architecture, since each ARGAN is trained to generate representatives of a given class.

Algorithm 1: MORpheus mitigation mechanism

Input: Model at current round W t Output: Models at previous rounds W t-1 . . . W t-s

1 foreach iteration t do 2 D t ← ClassRepresentatives(W t ) 3 Feed the class-representatives to W t , W i-t . . . W t-s 4 y t ← W t (D t ), y t-1 ← W t-1 (D t ) . . . y t-s ← W t-s (D t ) 5 Compute the testing loss for W t , W t-1 . . . W t-s 6 L t ← L(y t , k), L t-1 ← L(y t-1 , k) 7 L t-s ← L(y t-s , k) 8 if Attack_Monitoring(W t , W t-1 . . . W t-s ) then 9

Multiply the local model update by θ

The adversarial training of an ARgan instance is similar to the vanilla GAN, it involves training both the discriminator and the generator model in min-max adversarial training.

The generator is trained the same way as in a Vanilla GAN, i.e. we generate m noise samples z (1) , ..., z (m) , and then we calculate the loss based on the discriminator prediction. The only difference is the initialization of the generator model Gen kt with the generator model of the previous epoch Gen k (t-1) . thus avoiding the collapse mode which occurs when the generator and the discriminator do not have the same level of knowledge, and as the discriminator is initialized with the FL model 

L Gen = 1 m m ∑ i=1 Dis kt (Gen kt (z (i) )) (3.3) 
On the other hand, the training of the discriminator is not exactly the same, their differences are explained in Algorithm 2. Here, the lines in black represent the common code path between the vanilla GAN and an ARgan instance, while the lines in blue are specific to vanilla GAN, and the lines in red are specific to ARgan. Instead of computing updates of the discriminator on real data (lines 6-8), the ARgan instance uses the aggregated model update of the current FL round to update its discriminator(line 9). The FL model was trained using workers' real data that are not accessible to the FL server. This allows incorporating knowledge on workers' training data (that was potentially tampered with by attackers) in the ARgan instance. The discriminator loss function is defined as follow:

L Dis = 1 m m ∑ i=1 L(Dis kt (z (i) ) + Dis kt (Gen kt (z (i) ))) (3.4) 
Figure 3.5 presents an overview of ARgan. At a FL round t, for each class C k an ARgan instance is trained in several (i.e., T) iterations, with its discriminator Dis kt and its generator Gen kt . Therefore, the ARgan's loss function can be defined as,

min G . max D L(D, G) = 1 m m ∑ i=1 log(Dis kt (z (i) ) + Dis kt (Gen kt (z (i) ))) + log(1 -Dis kt (Gen kt (z (i) )))
(3.5) Thus, ARgan instances allow to generate data samples D t that includes benign data samples as well as backdoor samples. 

MORpheus: ARMOR's Backdoor Mitigation Mechanism

The attack mitigation in ARMOR is performed by its MORpheus component, which is described in Figure 3.6, and detailed in Algorithm 9. MORpheus uses the testing set D t produced by ARgan, which consists of class representatives for each class C k . MORpheus feeds this testing set D t to the current model W t , and to the models of the s previous FL rounds {W t-1 , ..., W t-s }.

Then, the testing loss is computed for each one of these model versions. As shown in Eq (3.6), if the loss exceeds a given threshold γ i , the updates are considered to be malicious.

Attack_Monitoring (W t , {W t-1 , .., W t-s }) =                  true, if ( L(D t ,W t )-L(D t ,W t-1 ) max(L(D t ,W t ),L(D t ,W t-1 ) > γ 1 and L(D t ,W t )-L(D t ,W t-2 ) max(L(D t ,W t ),L(D t ,W t-2 ) > γ 2 ... and L(D t ,W t )-L(D t ,W t-s ) max(L(D t ,W t ),L(D t ,W t-s ) > γ s ) f alse, otherwise (3.6) 
Adaptive Attack Mitigation. In a pessimistic policy, attack mitigation can simply ignore the malicious updates, with a factor θ = 0 that negates the effect of these updates on the global model. Another option is to consider that θ is inversely proportional to the loss, i.e., the higher the loss is, the lower the scaling factor is and, thus, the lower the impact on the global model is. More precisely, θ is defined in Eq (3.7) as an exponential function, that is inversely proportional to the loss L t , c being positive real value. We chose to rely on an exponential function instead of a linear function Generate a random noise vector X (t) ← Random()

3
Gen kt ← Gen kt-1

4
Get fake data F (t) ← Gen kt (X (t) )

5

Feed F (t) to the discriminator p (t)

f ake ← Dis kt (F (t) ) 6 
Compute gradients ∇W f ake based on L Gen (p because the former penalizes more large losses, and there can be small variations in the loss even in attack-free scenarios.

(t) f ake , C f ake ) 7 Feed real data R (t) : p (t) real ← Dis kt (R (t) )
θ = exp(-c * L t ) (3.7)
Furthermore, MORpheus' sliding window size s depends on the attack aggressiveness. For instance, mitigating single-shot attacks requires a sliding window size of 2 since these attacks take effect immediately. In contrast, attacks that are slowly incorporated within the model through multiple rounds require a larger sliding window size for model inspection.

Summary

In this section, we introduced ARMOR, a novel method for countering poisoning attacks. Unlike existing approaches, ARMOR does not rely on analyzing the geometric characteristics of model updates to detect poisoning. Instead, it focuses on the informational content of these updates. The basic idea behind ARMOR is to employ a group of generative-adversarial networks to create synthetic test data. This synthetic data is then used to track changes in model loss, which helps identify instances of poisoning. In the following chapter, we will present the practical assessment of ARMOR and compare its performance to existing methods in the field.

Chapter 4 Experimental Evaluation of ARMOR

In this section, we present the empirical evaluation of ARMOR. We assess the effectiveness of the proposed FL defense mechanism to counter edge-case backdoor attacks, and compare it to various existing FL defense mechanisms, applied to widely used datasets and models. More precsiely, we aim to answer the following questions, by comparing ARMOR to various existing FL defense mechanisms:

1. How resilient to edge-case backdoors is ARMOR?

2.
What is the impact of ARMOR's adaptive mitigation approach on resilience to edge-case backdoors? In the following, we first present ARMOR implementation details, and our experimental environment. Then, we present extensive evaluation results to precisely answer these questions.

Implementation and Experimental Setup

We implemented the proposed ARMOR FL defense mechanism using the PyTorch framework [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF]. The software prototype of ARMOR consists of 2.5 KLOC, and is publicly available at1 : https://github.com/robust-fl/armor

We compare ARMOR against five state-of-the-art defense mechanisms by using publicly available software prototypes of Multi-Krum [START_REF] Rouault | AggregaThor[END_REF], NDC [START_REF] Wang | OOD Federated Learning[END_REF], Trimmed Mean [START_REF] Fu | Attack-Resistant Federated Learning with Residual-Based Reweighting[END_REF],

Chapter 4. Experimental Evaluation of ARMOR FLTrsut [START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF], and DLMP [START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF]. We use the implementation of the edge-case backdoor attack from [START_REF] Wang | Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[END_REF], as described in §2.2.2.

Our experiments are conducted using widely used datasets for image classification tasks, such as MNIST [START_REF] Lecun | MNIST handwritten digit database[END_REF], FashionMNIST [START_REF] Xiao | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF], and Cifar-10 [START_REF] Krizhevsky | Canadian Institute for Advanced Research[END_REF]. Each dataset contains 50,000 training images and 10,000 test images. For MNIST dataset, we use a five-layer neural network with three convolution layers and two fully connected layers. For FashionMNIST, we trained a four-layer convolutional neural network with two convolution layers, a fully connected layer and a maxpooling layer. Finally, for Cifar-10 dataset, we implement the Resnet-18 model [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. The non-IID data distribution used in our experiments is generated using the Dirichlet distribution [START_REF] Hsu | Measuring the Effects of Non-identical Data Distribution for Federated Visual Classification[END_REF]. Furthermore, we conducted experiments with all considered state-of-theart defense mechanisms on the three datasets. However, due to space limitation, we present in the following results of all or some of these datasets. All our experiments are executed on a server with 2 Intel Xeon Gold 6126 processors, with 12 cores each, 1 Nvidia Tesla P100-PCIE-16GB GPU, with 192 GiB memory, and deployed in Ubuntu 18.04 operating system.

Evaluation Metrics

In our experiments, we consider the following evaluation metrics:

Backdoor task accuracy. This metric is a means to quantify the resilience of a FL system to backdoors. Given the testing set of the attacker(s) that consists of data samples with backdoors, the backdoor task accuracy is the ratio between the number of data samples of the attacker's testing set that fall into the target class C target divided by the total number of samples of this testing set. Thus, the lower is the backdoor task accuracy, the higher is the FL system resilience.

Main task accuracy. Given a backdoor-free testing set, the FL global model is tested to measure the correctness of its predictions. We refer to the accuracy of these predictions as the main task accuracy. This metric is a means to quantify the utility of the FL model.

Runtime cost. In order to quantify the computational cost of a FL defense mechanism, we measure the server-side cost as the average execution time of a FL round when using a given defense mechanism.

Federated Learning System Settings

In the following, we consider a FL system with 10 workers, among which there is one attacker (unless otherwise specified). For simplicity, all workers are selected at each round. The training batch size is set to 64, and the workers' learning rate to train their local models are respectively set to 0.01 for MNIST and FashionMNIST, and to 0.001 for Cifar-10. The default FL server uses the FedAvg model aggregation method [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF].

The different FL defense mechanisms were configured as follows (unless stated otherwise). We empirically found these configurations in such a way that they provided the best behavior for each defense mechanism. Multi-Krum's f parameter is set by default to 1, that is one attacker out of a total of 10 workers, and it is increased in experiments involving more than one attacker. Trimmed Mean' β parameter is set to 20%, and NDC's norm bound parameter M is set to 5. ARMOR's sliding window size s is set to 2, mitigation parameter θ is set to exp(-5 * L t ), and threshold γ i is set to 0.12 for MNIST and FashionMNIST, and 0.38 for Cifar-10.

Experimental Results

Resilience of ARMOR to Edge-Case Backdoors

4.1 evaluates the effectiveness of our proposal, in terms of main task accuracy and backdoor task accuracy, comparing the case where there is no defense with the case where ARMOR defense is used. Here, an edge-case backdoor occurs at every round, starting from round 50. We see that the proposed FL defense is highly resilient to edge-case backdoors with a good model accuracy, regardless of the dataset, i.e., MNIST, FashionMNIST and Cifar-10.

ARMOR's Adaptive Attack Mitigation

In the following, we evaluate ARMOR's adaptive attack mitigation, i.e., the ability of ARMOR to dynamically adapt the configuration of its θ mitigation parameter in order to improve the FL system resilience. θ mitigation parameter is a multiplicative factor used by ARMOR to attenuate a potential attack in model updates (c.f., §3.4.3). We present the results of experiments conducted with ARMOR and FashionMNIST dataset, where one attacker injects a backdoor at every FL round starting from round 30, as illustrated in 4.2. We compare ARMOR's ability to be resilient to edge-case backdoors when θ mitigation parameter is set statically vs. when it is set adaptively. In the latter case, ARMOR applies a loss-based heuristic introduced in §3.4.3, and we observe that this adaptive approach allows, indeed, much better resilience to edge-case backdoors than a static approach. Here, an attack occurs every FL round, starting from round 50. In the following, we compare the resilience of different FL defense mechanisms.

How Does

Mechanisms with Prior Knowledge of a Validation Set

Both FLTrust and DLMP assume the existence of a validation set, in order to evaluate fluctuations in the accuracy of the model. They assume that if the model is poisoned, the classification on the validation dataset is likely inaccurate. But since the edgecase backdoor is based on data points that are unlikely to be part of the honest workers' data and the poisoned model behaves correctly on non-poisoned data as mentioned in Eq ( 3.1), there is no impact on the accuracy of the main task. Thus, FLTrust and DLMP are unable to counteract them.

Mechanisms without Prior Knowledge

We also present the results of existing FL defense mechanisms that do not assume the existence of a validation set, as Multi-Krum, NDC and Trimmed Mean. Multikrum provides good attack mitigation, although, not persistent over time. Indeed, when the first attacks occur, the attacker's model update slightly diverges from the other clients' updates, thus, allowing Multi-Krum to mitigate the backdoor. However, with the following attacks and their application of PGD, the attacker's update converges closer to other clients' updates and, thus, the backdoor is not eliminated by Multi-Krum. In contrast, ARMOR is able to counter 95% of edge-case backdoors. This is mainly due to the quality of the synthetic validation dataset generated by ARgan because unlike the validation dataset used in FLTrust and DLMP [START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF][START_REF] Fang | Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[END_REF] , the dataset generated with ARgan includes edge-case data and therefore non-poisoned models have poor accuracy over it and this allows to monitor variations in the loss to mitigate backdoors. Indeed, ARgan uses as input the FL application model, which has been trained with edge case backdoor samples as well as benign samples.

Resilience With Different Underlying Datasets

We see that the edge-case backdoor attack is more or less quickly effective, depending on the actual complexity of the underlying dataset and model. For instance, in case of Cifar-10 dataset and its complex model, it takes longer for the attack to succeed, compared to the other datasets. Nevertheless, ARMOR remains highly resilient. 

Resilience to Attacks vs. Model Utility

The resilience of a FL system to backdoors may come at the expense of a lower utility, i.e., a lower model quality. In 4.4, we present the trade-off between utility (i.e., the model's main task accuracy) and resilience to edge-case backdoor attacks. We evaluate the FL systems with an attack occurring every round on MNIST, Fash-ionMNIST and Cifar-10 datasets. DLMP and FLTrust, which fall into the category of FL defense mechanisms that assume the existence of a validation set, have a main task accuracy which is close to the one of the FL baseline system where no defense mechanism is used. Indeed, such systems do not modify the aggregation applied by the FL server and, thus, provide a good model utility compared to the baseline. However, these defense mechanisms are not resilient to edge-case backdoors. In contrast, defense mechanisms that are based on specific aggregation approaches, such as Multi-Krum, Trimmed Mean and NDC, induce a much higher difference in model utility compared to the FL baseline system, ranging from 7.1% to +2.8%. Indeed, aggregation-based approaches such as NDC, Multi-Krum and Trimmed Mean, may impact model accuracy, although they do not sufficiently mitigate attacks.

In comparison, with ARMOR the backdoor task accuracy does not exceed 5% without hurting the main task accuracy, thus, providing the best trade-off between resilience and utility. 

Impact of Number of Malicious Clients on Federated Learning Defense

In 4.5, we evaluate the impact of the number of malicious clients on the FL defense, comparing ARMOR to state-of-the-art mechanisms. Here, we show the results of experiments conducted with FashionMNIST dataset, and where there are between 2, 5 or 6 attackers out of the 10 workers, each attacker injecting one backdoor at every FL round, starting from round 30. We see that for DLMP, FLTrust, Multi-Krum2 , Trimmed Mean and NDC and , the more there are attackers, the faster is the backdoor attack success.

Regarding the methods that are based on a validation dataset, the attack is not detected as long as the edge case backdoors are not included in the validation dataset. moreover, when the number of attackers increases, the attack converges more efficiently, because the aggregation with honest clients is less successful in attenuating the effectiveness of the attack.

In contrast, ARMOR is much more resilient, with a backdoor task accuracy that slightly increases with the number of attackers. 

Impact of Attack Frequency on Federated Learning Defense

Here, we aim to answer the following question: How much is ARMOR resilient under different attack frequencies? In 4.6, we present evaluation results of different FL defense mechanisms, for FashionMNIST and one attacker injecting an edge-case backdoor starting from FL round 30, either at every round, or every 5 rounds for a less aggressive scenario. We observe that, even in an optimistic case with a lower attack frequency, after a dozen of rounds, the backdoor is introduced. When the attack occurs with a low frequency, the incorporation of the backdoor into the model requires a lot of time, since the aggregation with honest client models reduces its effectiveness. However, the state-of-the-art methods are not effective against it. Only ARMOR is able to protect the FL system against the backdoor attack over time.

Attacks Occurring in Early Rounds

We now analyze the effectiveness of ARMOR in a setting where the model is not yet converged, and where attacks start occurring at early rounds. We consider three settings, one where attacks start at the third round, one where attacks start at the 

Resilience to Different Types of Attacks

In the following, we consider the resilience of robust FL systems to different types of poisoning attacks. In case of data poisoning attacks, adversaries tamper with the training data before it is used to build local model updates that are sent to the FL server [START_REF] Fung | The Limitations of Federated Learning in Sybil Settings[END_REF][START_REF] Tolpegin | Data Poisoning Attacks Against Federated Learning Systems[END_REF]. Their objective is to misclassify specific inputs into a target class.

The attacker can alter the label of only a sub-class (e.g., small green cars) of the training data [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF], or an entire class (e.g., the "car" class) [START_REF] Fung | The Limitations of Federated Learning in Sybil Settings[END_REF]. and are harder to detect, for instance, the attacker's update models are closer to the update models of other users since the PGD is used, by projecting attackers' models on a small ball, centered around the global model of the previous iteration. Unlike the model updates in data poisoning attacks which can be very distinct from other models.

Cost of Robust Federated Learning

We measured the execution times of one FL round at the server side, with each studied defense mechanism, and report them in Table 4.1. We observe that the FL server of DLMP, FLTrust, Multi-Krum and NDC induce a computational cost between 7 ms and 11 ms, whereas in Trimmed Mean this cost is a lower (3 ms) since its underlying calculations are much simpler compared to other defense mechanisms. In contrast, ARMOR's FL server computational cost for an ARgan instance is 3 orders of magnitude higher than other FL defense mechanisms. This is due to the underlying cost of GANs in ARgan. This cost can be further reduced using extensive parallel GPU computations, since ARgan instances are independent from each other, so they can be trained in parallel on multiple GPUs. Moreover, recent works aim to improve the convergence speed of GANs [START_REF] Zhong | Improving the Speed and Quality of GAN by Adversarial Training[END_REF], which could greatly help reducing ARgan cost. The FL server cost should be put in perspective when considering the overall cost of updating the global FL model, which implies local model training. The latter part usually takes minutes to hours, depending on the underlying FL system and workloads. 

Evaluation of Privacy Risks of Synthetic Data

Despite the appeal of GANs to generate synthetic data, recent works show that GANs memorize information that can be used to infer data about the original dataset. citeDBLP:journals/popets/HayesMDC19 explores membership inference attacks against GANs, where white-box attacks and black-box attacks are tested against GANs. Since ARgan ARMOR's component is a variant of GAN, we evaluate in the following the effectiveness of membership inference attacks against ARgan vs. against vanilla GAN. 4.9 presents the success rate of such membership inference attacks, and shows that these attacks are much more effective against vanilla GAN (27.3%) than against ARgan (16.7%). This is due to the fact that vanilla GAN is trained with real input data, whereas ARgan takes as an input the model, that is an abstraction of the data, thus, reducing privacy leakage risks.

Summary

ARMOR can be applied to a wide range of learning tasks in FL. This includes, for instance, binary classification tasks such as diagnosing if a patient has a particular disease or not [28], or detecting if an email is a spam [START_REF] Kumar | Predictive Analytics for Spam Email Classification Using Machine Learning techniques[END_REF]. -More generally, AR-MOR can be used with multi-class classification tasks involving tens or hundreds of classes, which covers applications ranging from agriculture [START_REF] Chaudhary | A Hybrid Ensemble for Classification in Multiclass Datasets: An Application to Oilseed Disease Dataset[END_REF], to medicine [START_REF] Bai | Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis[END_REF], or chemistry [START_REF] Lloyd | Learning Vector Quantization for Multiclass Classification: Application to Characterization of Plastics[END_REF]. However, ARMOR is not practical in the case of more complex classifiers with a large number of classes, such as natural language processing applications and text classification involving hundreds of thousands or millions of classes. Indeed, ARMOR's FL server induces a computational cost that is mainly due to the training costs of the GANs in ARgan. We tried to minimize this cost by replacing ARgan with a conditional GAN (cGAN) [START_REF] Mirza | Conditional Generative Adversarial Nets[END_REF], that introduces an additional parameter representing the class for which data samples should be generated. As a result, cGANs allow to train a single instance of ARgan instead of training an instance per class. However, the empirical results show that cGANs do not allow to capture backdoors in the model because cGANs suffer from critical drawbacks such as lack of diversity in the generated outputs [START_REF] Ramasinghe | Rethinking conditional GAN training: An approach using geometrically structured latent manifolds[END_REF][START_REF] Arvanitidis | Latent Space Oddity: on the Curvature of Deep Generative Models[END_REF]. Thus, many possibilities are hampered, including clustering in the latent space, better interpretability, improved interpolations, or output manipulation.

However, even if cGANs are not practical for our goal, the training cost of ARgan can be further reduced using extensive parallel GPU computations. Indeed, ARgan instances are independent from each other, so they can be trained in parallel on 4.3. Summary 47 multiple GPUs. Moreover, recent works aim at improving the convergence speed of GANs [START_REF] Zhong | Improving the Speed and Quality of GAN by Adversarial Training[END_REF], which could greatly help reducing ARgan cost. That being said, the FL server cost should be put in perspective when considering the overall cost of updating the global model, which implies local model training at the client side. The latter part usually takes minutes to hours, depending on the underlying cross-silo or cross-device FL systems and workloads.

Part II

Privacy-Preservation in Federated Learning

Chapter 5

Background on Privacy Threats and Privacy Defense in Federated Learning

Motivation

Despite all the privacy safeguards of FL, it remains vulnerable to membership inference attacks [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. The primary objective of this attack is to ascertain whether a particular data record has been utilized in training a target model. This vulnerability raises significant concerns, especially in sensitive domains like healthcare, where the inference of patient-specific data usage could compromise individual privacy and confidentiality. For instance, the application of a membership inference attack could enable adversaries to infer whether the medical records of a specific patient have been employed to train a classifier related to a particular disease. However, the spectrum of privacy attacks extends beyond membership inference alone. Ateniese et al. have introduced the concept of property inference attacks [START_REF] Ateniese | Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers[END_REF], which aim to extract specific dataset properties, even if these properties are unrelated to the primary training task. In a scenario where the primary objective involves training a model for tasks such as race or gender recognition, a property inference attack may strive to deduce extraneous attributes of the training dataset, such as whether individuals in the training images wear glasses or not. This type of attack underscores the critical need to protect not only the primary training task but also any auxiliary information that might be inadvertently exposed through the training process.

Moreover, privacy attacks in federated learning encompasses model inversion or attribute inversion attacks, as discussed by Hitaj et al. [START_REF] Hitaj | Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning[END_REF] and Hidano et al. [START_REF] Hidano | Model Inversion Attacks for Online Prediction Systems: Without Knowledge of Non-Sensitive Attributes[END_REF]. These attacks fall under the umbrella of reconstruction attacks, wherein adversaries, armed with output labels and partial knowledge of certain features, endeavor to reconstruct sensitive features or complete data samples. The potential ramifications of these attacks are considerable, as they could lead to the unintended disclosure of private information, jeopardizing the confidentiality of the individuals whose data contribute to the federated learning process.

In this chapter, we introduce the privacy threats associated with federated learning, focusing particularly on membership inference attacks. We outline the state-ofthe-art privacy defense mechanisms in FL, including perturbation methods, cryptographic techniques, gradient compressibility, and Trusted Execution Environments (TEEs). The advantages and limitations of these approaches are discussed, along 52 Chapter 5. Background on Privacy Threats and Privacy Defense in Federated Learning with the presentation of open research questions. Detailed exploration of these points will follow in subsequent sections of this chapter.

Membership Inference Attacks

In the domain of data privacy and machine learning, membership inference attacks (MIA) stand out as a significant threat. These attacks aim to discern whether a particular data point was part of the training set for a given model. The implications of such attacks can be far-reaching, as they expose the potential for unauthorized access to sensitive information used in model training. This text further delves into the concept of membership inference attacks, their methods, implications, and significance.

The foundational work by Shokri et al. [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF] introduced a black-box attack approach for MIA. This approach capitalizes on the probability distribution of output classes from the target model. In this scheme, attackers create shadow models, which replicate the behavior of the target model, and generate class probability distributions. These shadow models are then used to train a set of attack models, each specializing in identifying membership for a particular class. By providing confidence scores as input, these attack models predict whether a given data record was part of the training set. This methodology essentially exploits the subtle variations in class probabilities to reveal information about training data.

The research landscape evolved further with an extension to the original approach in [START_REF] Salem | ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[END_REF], which utilized a single shadow model and relaxed the assumption that the shadow model mimics the target model's construction. Moreover, efforts like [START_REF] Truex | Demystifying Membership Inference Attacks in Machine Learning as a Service[END_REF] broadened the scope of MIA by demonstrating its data-driven and transferable nature. This research found that membership inference attacks extend beyond specific architectures and exhibit transferability across different models.

Interestingly, the study in [START_REF] Melis | Exploiting Unintended Feature Leakage in Collaborative Learning[END_REF] delved into the mechanisms of membership privacy leakage through two facets: embedding layers and gradients. Notably, it highlighted how the gradients of an embedding layer can inadvertently expose the position of words in a training batch, enabling attackers to launch membership inference attacks.

To carry out a membership inference attack, the attacker employs a multilayer perceptron attack model, denoted as M attack , which is designed to produce a binary output. The goal is to assess whether a given record, denoted as r j , was likely part of the training data for the target model, M target . The attack model returns a value of 1 to signify that the record is a member of the training set or 0 to indicate that it is a non-member.

Below is a succinct description of the process employed in executing a membership inference attack:

1. Creating the Shadow Model (M shadow ): The attacker first constructs a shadow model, M shadow , utilizing the same architecture as the target model. This shadow model is trained using a dataset called D shadow , which is a combination of two subsets: D shadow train and D shadow test . The shadow model learns to mimic the behavior of the target model using this dataset. The ramifications of membership inference attacks are considerable. They illuminate the vulnerability of machine learning models to information leakage about their training data. As a result, these attacks have gained prominence as indicators of potential privacy violations in federated learning models, which involve distributed training across various data sources while preserving data privacy. An individual's privacy can be compromised when an attacker determines that their data was used for training, potentially leading to unauthorized access to sensitive information.

Consider an example in smart health ubiquitous applications: membership inference attacks could deduce a patient's medical condition based on the inference that their clinical record was part of the training set. This underscores the sensitivity of such attacks, as they could unveil personal information that individuals would not willingly disclose.

The significance of the issue has been recognized by organizations like the National Institute of Standards and Technology (NIST). Their report [START_REF] Tabassi | A Taxonomy and Terminology of Adversarial Machine Learning[END_REF] explicitly flags membership inference attacks as privacy violations. In summary, membership inference attacks pose a real and pressing concern in the intersection of machine learning and data privacy. Addressing these vulnerabilities is crucial to ensuring the integrity and security of sensitive data used in model training. 

Privacy Defense in Federated Learning

In the landscape of mitigating membership inference attacks, the previous stateof-the-art endeavors can be categorized into four primary domains, each offering distinctive strategies to enhance the security of machine learning models and data repositories. These categories encompass perturbation methods, involving the strategic introduction of controlled noise or modifications to obscure sensitive information; cryptographic methods, which leverage encryption techniques to render data and models indecipherable to attackers; gradient compressibility methods, focusing on manipulating gradients during training to minimize information leakage; and Trusted Execution Environments (TEEs)-based methods, utilizing secure enclaves to safeguard computations from unauthorized access. In the upcoming sections, we will delve deeply into each of these techniques, elucidating their underlying mechanisms, implementation intricacies, merits, and potential limitations. Table 5.1 provides a comparison of different privacy-preserving methods in the context of Federated Learning. It categorizes these methods into three groups: Cryptography-based methods, Trusted Execution Environment (TEE)-based methods, and Perturbationbased methods. For each method within these categories, the table offers information on their privacy protection techniques, a brief description of how they work, their impact on model privacy and utility, and whether they introduce negligible overhead.

Perturbation-Based Methods

Perturbation methods, like differential privacy (DP) [START_REF] Abaoud | Advancing Federated Learning Through Novel Mechanism for Privacy Preservation in Healthcare Applications[END_REF], introduce algorithm-specific random noise to safeguard against information leakage. In the context of FL, DP manifests in several forms: local differential privacy (LDP), central differential privacy (CDP), and weak differential privacy (WDP). LDP involves clients adding noise to their local models before transmission, while CDP entails the server aggregating models without noise and subsequently adding noise to the aggregated model [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF]. WDP, on the other hand, employs norm bounding and Gaussian noise addition to protect privacy [START_REF] Alharbi | Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition[END_REF].
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In a recent study [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF], a comparative evaluation of LDP, CDP, and WDP was conducted in the context of edge FL, assessing their viability and effectiveness against white-box membership inference attacks. The experiments indicated that both LDP and CDP strike a balance between model accuracy and membership inference attack resilience. These methods manage to reduce the efficacy of such attacks while still maintaining reasonable model accuracy.

Another study [START_REF] Arachchige | Local Differential Privacy for Federated Learning[END_REF] explored the integration of DP at both local and central levels to enhance participant privacy. This hybrid approach is designed to not only protect privacy but also improve model accuracy. To further enhance accuracy, sparse gradients and momentum gradient descent were implemented on both the server and client sides, which also contributed to decreased communication costs. The framework demonstrated remarkable outcomes, achieving up to 90% communication cost reduction while retaining superior accuracy and robust privacy protection.

In addition to the above examples, researchers have also investigated other approaches for mitigating membership inference attacks in FL. These might include advancements in cryptographic protocols that provide stronger privacy guarantees, techniques for enhancing the efficiency of noise addition to models, and innovations in secure aggregation methods that reduce the potential for information leakage.

Cryptography-Based Methods

Ccryptographic methods offer innovative techniques such as Homomorphic Encryption (HE) [START_REF] Fang | Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning[END_REF] and secure multi-party computing (SMC) [START_REF] Li | Privacy-Preserving Federated Learning Framework Based on Chained Secure Multiparty Computing[END_REF], which play pivotal roles in enhancing privacy and security in federated learning (FL). Homomorphic encryption introduces a groundbreaking concept where data is encrypted and then subjected to various mathematical operations, producing an output that, when decrypted, precisely mirrors the results that would have been obtained if the operations were performed on the original, unencrypted data. This property of homomorphic encryption preserves the integrity of the original data throughout computations, thereby maintaining performance consistency during model convergence. For instance, consider a scenario where a group of hospitals collaborates to train a machine learning model on patient data. By employing homomorphic encryption, they can jointly perform computations on encrypted medical records, producing accurate model updates without compromising patient privacy.

Nonetheless, the efficiency gains of homomorphic encryption are not without trade-offs. While it guarantees data integrity and confidentiality, the computational and memory overhead associated with homomorphic encryption can be substantial. This can lead to slower processing times and higher resource consumption, impacting the overall efficiency of the federated learning process. For example, financial institutions seeking to collaboratively train a fraud detection model might face challenges in achieving real-time model updates due to the computational complexities introduced by homomorphic encryption.

Secure multi-party computing (SMC), on the other hand, addresses the privacy concerns by allowing multiple participants to collectively compute functions on their individual private inputs. This approach ensures a high level of privacy and data accuracy as participants never have to expose their raw data to each other. A classic example could involve multiple organizations analyzing customer behavior Chapter 5. Background on Privacy Threats and Privacy Defense in Federated Learning data to develop a collaborative recommendation system. By employing SMC, these organizations can jointly compute personalized recommendations without sharing raw customer preferences or behaviors. However, the benefits of SMC also come with their own set of drawbacks. The extensive computational and communication requirements of SMC protocols can result in longer training times and increased communication overhead. For instance, in scenarios where telecommunication companies aim to collaboratively build a churn prediction model, the resource-intensive nature of SMC could impede the timely delivery of accurate model updates.

In the context of federated learning, a notable extension to secure multi-party computing is the application of secure aggregation techniques. These techniques, initially explored in [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] and later detailed in [START_REF] Kallista | Practical Secure Aggregation for Privacy-Preserving Machine Learning[END_REF], address the challenges posed by coordinating all clients in the federated learning process as required by traditional SMC. By leveraging secure aggregation, clients can contribute model updates without the need for direct coordination, streamlining the process and mitigating the complexity associated with traditional SMC. For instance, a consortium of research institutions collaborating on a global weather prediction model can benefit from secure aggregation, enabling them to efficiently aggregate model updates from various sources without requiring every institution to participate in every round of communication.

In the realm of cutting-edge developments, the HybridAlpha approach [START_REF] Xu | HybridAlpha: An Efficient Approach for Privacy-Preserving Federated Learning[END_REF] has emerged as a pioneering solution for privacy-preserving federated learning. This approach combines secure multi-party computing with functional encryption, resulting in a protocol that is both efficient and resilient to participant dropouts. By employing HybridAlpha, organizations can collaboratively train models while minimizing training time and data transfer volume. Consider a consortium of automotive manufacturers working on a federated model for autonomous vehicle safety. The HybridAlpha approach can ensure that even if some manufacturers leave the collaborative effort, the training process remains robust and effective.

In another innovative endeavor, researchers in [START_REF] Feng | sqSGD: Locally Private and Communication Efficient Federated Learning[END_REF] introduce the sqSGD (selective quantized stochastic gradient descent) algorithm. This algorithm addresses communication efficiency and high-dimensional compatibility issues in privacy-preserving federated learning. SqSGD allows for the training of large models with random initialization while maintaining min-max optimality under both communication and privacy constraints. For instance, a group of e-commerce platforms collaborating on a recommendation system can utilize sqSGD to efficiently train a model that accounts for the diverse range of products and user preferences.

Furthermore, an additional approach to bolstering privacy in federated learning involves gradient compression techniques [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF]. These techniques focus on minimizing the information leakage that can occur when gradients are transmitted between clients and the central server. By compressing gradients, the communication overhead is reduced while maintaining the confidentiality of sensitive information. For example, a consortium of educational institutions sharing student performance data for collaborative research could employ gradient compression techniques to ensure that individual student records are not exposed during the federated learning process.

In conclusion, the landscape of cryptographic methods in federated learning is 5.2. Privacy Defense in Federated Learning 57 marked by a diverse array of techniques such as homomorphic encryption, secure multi-party computing, secure aggregation, and innovative algorithms like Hybri-dAlpha and sqSGD. Each technique addresses different aspects of privacy, security, and efficiency, offering solutions that cater to the varying needs of collaborative machine learning scenarios across different domains.

TEEs-Based Methods

Trusted Execution Environments (TEEs) have gained significant attention as a promising approach to enhancing privacy protection in various domains. For instance, in the context of healthcare, TEEs can be employed to securely process sensitive patient data, such as electronic health records, enabling researchers and healthcare providers to perform analytics while maintaining data privacy [START_REF] Lebrun | MixNN: Protection of Federated Learning against Inference Attacks by Mixing Neural Network Layers[END_REF][START_REF] Ait | Shielding Federated Learning Systems against Inference Attacks with ARM TrustZone[END_REF]. Moreover, TEEs find applications in secure multiparty computation scenarios, where multiple parties collaborate on computations involving confidential data without exposing the raw data to each other.

Recent research has also focused on addressing the challenge of computational overhead when deploying TEE-based solutions. Innovative techniques, like hybrid approaches combining hardware-based TEEs with software optimizations, have shown promise in reducing the overhead associated with secure computations. These approaches aim to strike a better balance between privacy protection and efficient performance.

Additionally, the integration of TEEs with machine learning models is a noteworthy area of exploration. Privacy-preserving machine learning techniques, such as federated learning and secure model aggregation, can benefit from the security guarantees provided by TEEs, ensuring that sensitive model updates and data contributions remain confidential.

As TEEs continue to evolve, concerns surrounding their implementation cost and infrastructure have not gone unnoticed. Initial investment and setup for TEE infrastructure can indeed be substantial, potentially limiting their widespread adoption. Nonetheless, research efforts are being directed towards making TEEs more accessible and cost-effective.

Gradient Compression Methods

Gradient compressibility and sparsity techniques have emerged as critical strategies to mitigate the challenges posed by communication and computational overhead in various machine learning applications, including Federated Learning (FL) [START_REF] Haddadpour | Federated Learning with Compression: Unified Analysis and Sharp Guarantees[END_REF]. By reducing the volume of data exchanged between devices or nodes during the training process, these techniques offer efficiency gains that are particularly valuable in distributed settings.

One significant benefit of incorporating gradient compressibility and sparsity into FL relates to bolstering privacy protection mechanisms. By limiting the information shared among participants, these techniques contribute to thwarting privacy inference attacks, wherein malicious actors attempt to extract sensitive information from shared model updates [START_REF] Liu | Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives[END_REF]. This is of paramount importance in scenarios where data originates from different sources with varying privacy constraints. Notably, recent research has demonstrated the efficacy of gradient compression in preventing unintended model leakage and privacy breaches [START_REF] Zhu | Deep Leakage from Gradients[END_REF]. The ability of gradient compression techniques to effectively obfuscate sensitive information during communication has made them an attractive option for enhancing the privacy posture of FL systems. Nevertheless, it's essential to acknowledge that while gradient compression brings about enhanced privacy guarantees, it does come with trade-offs. Specifically, there's a marginal performance degradation observed in the global model's accuracy due to the compression process.

A comprehensive exploration of inference attacks within vertical Federated Learning has been undertaken by Fu et al. in [START_REF] Fu | Label Inference Attacks Against Vertical Federated Learning[END_REF]. Their study underscores the effectiveness of countering label inference attacks through the strategic deployment of gradient compression. By minimizing the availability of detailed gradient information, gradient compression serves as a potent defense mechanism against certain forms of privacy breaches. However, it's pertinent to recognize that this protective measure isn't without its consequences. The authors note that while gradient compression helps fortify the FL system against privacy threats, it can lead to a decline in the performance of the federated model's original primary task. This trade-off necessitates a careful balancing act between privacy preservation and maintaining model utility.

In conclusion, the integration of gradient compressibility and sparsity techniques into Federated Learning frameworks offers a promising approach to addressing communication and computational bottlenecks, while simultaneously enhancing privacy defenses. Despite the associated performance trade-offs, empirical evidence supports their utility in preventing privacy breaches and inference attacks. The ongoing challenge lies in refining these techniques to strike the optimal balance between privacy preservation and model effectiveness in federated scenarios.

Summary

In the realm of data privacy within federated learning (FL), the concept of differential privacy stands out as a promising approach. It offers intriguing privacy assurances by safeguarding against membership inference attacks, wherein malicious actors try to deduce whether a particular data point was part of the training dataset. Furthermore, it ensures that no participant can reverse-engineer the private data of another participant using the aggregated updates. However, while differential privacy holds great potential, its implementation often incurs substantial trade-offs. Notably, mechanisms hinged on differential privacy can exact a considerable toll on both the efficacy of the model and the computational resources required. This is particularly evident in methods like local differential privacy, where the utility and computational burden increase exponentially, as pointed out in the reference [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF].

Similarly, alternative techniques such as Secure Multi-Party Computation and Homomorphic Encryption, though offering enhanced security, introduce significant computational overheads. These methods, while protective, tend to clash with the integration demands of diverse FL architectures, as highlighted in [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF]. Moreover, while gradient compression strategies present an effective countermeasure against inference attacks, bolstering the privacy of the model, it's essential to acknowledge that this strategy might inadvertently lead to diminished performance in the model's primary task within the FL framework.

Summary
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In the upcoming chapter, we will delve into the introduction of two distinct methods: PASTEL and "Dinar," both tailored to mitigate membership inference attacks in federated learning. DINAR draws its essence from the concept of layer obfuscation, proposing a technique where the layers of the model are intentionally hidden to hinder attackers' attempts to infer membership. On the other hand, PASTEL hinges on a multiobjective training function. It strives to strike a balance between model accuracy and privacy while training, thereby fortifying the model against membership inference attacks. Our exploration will encompass the underlying design principles that govern these methods, shedding light on the intricacies of their implementation and their respective advantages.

The evaluation of these methods will serve as a critical focal point of the upcoming chapter. Through empirical analysis and experimentation, we will gauge the effectiveness of PASTEL and DINAR in mitigating membership inference attacks within the federated learning paradigm.

Chapter 5. Background on Privacy Threats and Privacy Defense in Federated Learning . However, finding the optimal balance between FL model privacy, utility, and computational cost remains a crucial objective for effective and privacy-preserving FL In this chapter, we propose DINAR, a fine-grained privacy-preserving FL method that tackles membership inference attacks. This approach is motivated by an interesting observation made in recent studies [START_REF] Mo | Layer-wise Characterization of Latent Information Leakage in Federated Learning[END_REF][START_REF] Mo | Quantifying Information Leakage from Gradients[END_REF], and confirmed in our empirical analysis in §6.2.2, that is there is a layer in neural networks that leaks more private information than other layers. Thus, DINAR is based on a simple yet effective approach that consists in protecting more specifically the FL model layer that is the most sensitive to membership privacy leakage. DINAR runs at the FL client-side, and allows to protect both the global FL model and the client models. Whereas for its own model predictions the client uses its privacy sensitive layer as part of the model, that privacy sensitive layer is obfuscated before sending client model updates to the FL server. Thus, the aggregated model produced by the FL server includes an obfuscated version of the privacy sensitive layer. And when the client receives the protected global model from the server, it first restores its local privacy sensitive layer (i.e., the non-obfuscated version of that layer) that was stored during the previous FL round, and integrates it into its copy of the global model, before actually using the resulting personalized model for client predictions. Furthermore, in order to improve the utility of the protected model, DINAR leverages the adaptive gradient descent technique to further maximize the 62 Chapter 6. DINAR: Fine-Grained Mitigation of Membership Inference Attacks in Federated Learning accuracy of the model [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF]. Indeed, given the high-dimensional nature of optimization problems in neural networks, adaptive gradient descent allows to dynamically adjust the model learning rate for each dimension in an iterative manner.

Design Principles of DINAR

In the following, we first outline the overarching objectives of our privacy-preserving FL method, before motivating its fine-grained approach, and then detailing the design principles of its different components.

Overall Objectives of DINAR

We propose DINAR, fine-graineD prIvacy-preserviNg federAted leaRning, a novel FL scheme for privacy protection against membership inference attacks. The overall objective of DINAR is threefold:

• Model privacy: The proposed FL privacy-preserving method must provide effective protection of model information exchanged between the FL server and the clients (i.e., global model parameters and clients' model updates), in order to protect the FL system against membership inference attacks. In other words, the objective of such a method is to minimize the accuracy of the model of the attacker that allows the latter to infer whether a given data sample was part of the FL training dataset.

• Model utility: The proposed FL privacy-preserving method must avoid any negative impact on the quality and accuracy of the FL models used by the clients, thus, providing a good overall performance of the FL system.

• No additional overhead: The proposed FL privacy-preserving method must ensure that no additional computational overhead is induced on the FL system, thus, allowing practical use of privacy protection in FL systems.

We will see in the following how DINAR reaches these objectives, respectively in §6.2.4 and §6.2.5 for model privacy, in §6.2.6 for model utility, and in §6.2.2 regarding overhead.

Motivation of DINAR's Fine-Grained Approach

Recent studies have analyzed the sensitivity and privacy risk of neural networks at a fine-grained level, to better characterize how much each layer of the model leaks privacy information [START_REF] Mo | Layer-wise Characterization of Latent Information Leakage in Federated Learning[END_REF][START_REF] Mo | Quantifying Information Leakage from Gradients[END_REF]. As claimed in these studies, a similar pattern appears in all models, namely, there is a layer that leaks more private information than other layers. To better illustrate this behavior, we conduct an empirical analysis with four different datasets (GTSRB, CelebA, Texas100, Purchase100) and their underlying models, deployed in a FL setting 1 . More precisely, we aim to characterize In other words and as described in §5.1.1, such an attacker is able to differentiate between member data samples and non-member data samples. Thus, using a trained FL model, we conduct, on the one hand, a set of predictions with member data samples, and on the other hand, another set of predictions with non-member data samples. We then compute the gradients of each layer resulting from the predictions of member samples, and the gradients of each layer resulting from the predictions of non-member samples. Finally, we compute the generalization gap of each layer, i.e., the difference between the gradients of member data samples and the gradients of non-member data samples. Thus, the higher the generalization gap, the more successful MIA is, i.e., the easier it is for the MIA to differentiate between members and non-members, as shown in recent studies [START_REF] Li | Membership Inference Attacks and Defenses in Supervised Learning via Generalization Gap[END_REF][START_REF] Wu | Understanding and Defending Against White-box Membership Inference Attack in Deep Learning[END_REF].

Our empirical results are presented in Figure 6.2, where the generalization gap is computed using the widely used Jensen-Shannon divergence [START_REF] Menendez | The Jensen-Shannon divergence[END_REF]. We observe that different layers of a model may exhibit different generalization gaps. We also observe a similar behavior in all models, namely, the generalization gap of the penultimate layer is notably higher than the generalization gap of the other layers. Thus, that layer leaks more privacy sensitive information (i.e., membership-related information), as shown in other studies [START_REF] Mo | Layer-wise Characterization of Latent Information Leakage in Federated Learning[END_REF][START_REF] Mo | Quantifying Information Leakage from Gradients[END_REF].

Overview of DINAR

Following the conclusions of §6.2.2, the intuition behind DINAR is to specifically handle the privacy sensitive layer of a FL model, in order to provide a non-intrusive yet effective solution to protect against MIAs. Indeed, existing privacy-preserving FL methods either apply perturbation on all model layers, or use cryptographic techniques and secure environments, which induce a high computational overhead (as shown in §5.2 and §7.2.5). The overall architecture of DINAR is presented in Figure 6.1. DINAR runs at the client-side, for each FL client that wants better protection against MIAs. Each DINAR instance on a client runs independently from the other clients' DINAR instances, and the interaction between the FL server and the clients follows the classical FL protocol, where at each FL round the clients send their local model updates to the server, and the server sends the aggregated global model to the clients.

The privacy-preserving method proposed by DINAR consists in tackling more specifically the penultimate layer of the model, i.e., the privacy sensitive layer, which reveals more client's privacy information than the others (c.f., §6.2.2). Whereas for its own model predictions the client uses its privacy sensitive layer as part of the model, that privacy sensitive layer is obfuscated before sending client model updates to the FL server. Thus, the global aggregated model produced by the FL server includes an obfuscated version of the privacy sensitive layer. Upon receiving the protected global model from the FL server, the client first restores its local privacy sensitive layer (i.e., the non-obfuscated version of that layer) that was stored in the previous FL round, and integrates it into the global model, before actually using the resulting personalized model for client predictions.

The pipeline of DINAR is described in Figure 6. 

Model Obfuscation

In the following, we consider a model W with J layers, and model parameters θ, where θ 1 . . . θ J are the parameters of the respective layers 1 . . . J. We denote p the index of the privacy sensitive layer of model W. According to our empirical analysis and previous studies presented in §6.2.2, the privacy sensitive layer is the penultimate layer of W, that is p = J -1. At each FL round, Client i that participates to that 66 Chapter 6. DINAR: Fine-Grained Mitigation of Membership Inference Attacks in Federated Learning round updates its model parameters θ i through local training. Before sending the local model updates to the FL server, the client obfuscates the privacy sensitive layer of its model, namely θ p i that is the client model parameters of layer p. This obfuscation is simply performed by replacing the actual value of θ p i by random values. The resulting local model updates are sent to the FL server for aggregation. Note that the raw parameters of the privacy sensitive layer (i.e., before obfuscation) are stored at the client side in θ p i * , and will be used in other stages of the DINAR pipeline.

Model Personalization

As presented in Figure 6.1, this is the first step of DINAR pipeline. When Client i participates to a FL round, it first receives the parameters θ of the global model W. In case of DINAR, θ p , i.e., the model parameters of the privacy sensitive layer p, contain obfuscated values. Here, the client integrates to its local model parameters θ i all global model layer parameters but the parameters θ p of layer p. Instead, the client restores for that layer θ p i * , its previously stored and non-obfuscated local model parameters of layer p. Thus, while the global FL model is protected against MIAs, Client i makes use of an effective personalized local model. This allows client model's privacy sensitive information to remain protected, while client data still contributes to the overall improvement of the global model through collaborative training.

Adaptive Model Training

While DINAR's model obfuscation and model personalization tackle model privacy against MIAs, this step of DINAR pipeline allows to improve model utility. Specifically, it aims to maximize the client model accuracy. This relies on the optimization of the loss function, denoted as L, for each Client i and its local model W i . The loss function L represents the cumulative errors of the client model W i across its training and testing data batches. In order to minimize the loss function L, client model parameters θ i are updated at each local training epoch, given a learning rate hyperparameter η (with η ∈ [0, 1]). The latter serves as a coefficient that scales the computed gradient values at each learning epoch. The learning rate plays a pivotal role in machine learning, significantly influencing both model accuracy and convergence of the loss function [START_REF] Smith | A Disciplined Approach to Neural Network Hyper-Parameters: Part 1 -Learning Rate, Batch Size, Momentum, and Weight Decay[END_REF]. Setting the learning rate too low may lead to overfitting, while using excessively high values can result in unstable model accuracy despite accelerating the training process.

To address these convergence challenges, we leverage the adaptive gradient descent technique, which effectively mitigates the issues associated with local minima and saddle points [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF]. This approach offers robust safeguards against overfitting. Firstly, when training intricate models like Convolutional Neural Networks (CNNs) over multiple iterations, adaptive gradient descent ensures a deliberate convergence, exhibiting a slower learning rate compared to algorithms such as Adam and RMSProp, particularly during the initial iterations [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF][START_REF] Chandra | Variants of RMSProp and Adagrad with Logarithmic Regret Bounds[END_REF]. Secondly, given the high-dimensional nature of optimization problems in neural networks, this technique dynamically adjusts the learning rate for each dimension in an iterative manner. Thus, it effectively addresses the challenges posed by saddle points and local 6.3. Summary 67 minima, thus facilitating a smoother convergence of L across all dimensions. As a result, DINAR encompasses distinctive elements that proactively prevent the loss function from being entrapped in local minima and saddle points. Consequently, it significantly mitigates overfitting risks and promotes the convergence of the loss function and the accuracy of the client model W i .

In summary, Algorithm 3 presents the different steps of DINAR pipeline, namely model personalization (lines 1-5), adaptive model training (lines 6-12), and model obfuscation (lines [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Bonawitz | Practical Secure Aggregation for Federated Learning on User-Held Data[END_REF]. And Table 6.1 recalls the general notations used throughout the chapter. 

Summary

In this chapter, we have presented DINAR, a novel method aimed to counter membership inference attacks. DINAR employs a straightforward yet efficient fine-grained strategy, focusing on safeguarding the model layer that is most vulnerable to privacy breaches related to membership information. This approach ensures robust and unobtrusive privacy protection in the context of Federated Learning. Additionally, DI-NAR addresses potential accuracy reductions in the protected model by harnessing adaptive gradient descent, thus maximizing the model's overall utility. In the upcoming chapter, we will undertake a practical assessment of DINAR's performance and compare it to state-of-the-art techniques.

Chapter 7

Experimental Evaluation of DINAR

Experimental Setup

This chapter presents evaluation results of DINAR. It first describes the used datasets and models, as well as the experimental setup. Then, the results obtained of our extensive experiments are presented, comparing DINAR with state-of-the-art mechanisms, and evaluating privacy, utility, and computational overhead.

Datasets and Models

To explore the wide-ranging performance of DINAR across different applications, we conduct experiments using a diverse set of datasets . Our evaluation encompasses four image datasets (Cifar-10, Cifar-100, GTSRB, and CelebA), tabular data (Purchase100, Texas100), and a raw audio waveform dataset (Speech Commands). We sum up these datasets in Table 7.1.

CelebA. CelebFaces Attributes Dataset is a large face images dataset, with 202,599 images for facial recognition and attribute detection. A subset of 40,000 images, resized to 64x64 pixels, was randomly selected. We create 32 classes by combining five pre-annotated binary facial attributes (Male, Pale Skin, Eyeglasses, Chubby, Mouth slightly Opened) for each picture [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF]. The VGG11 architecture was employed for image processing [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF].

Cifar-10 and Cifar-100. These are image dataset that consists of 60,000 images categorized into 10 classes for Cifar-10, and contains 100 classes for Cifar-100 [START_REF] Krizhevsky | Canadian Institute for Advanced Research[END_REF]. These datasets encompass a wide range of objects such as airplanes, automobiles, birds, cats, and more. Each image in these datasets has a resolution of 32x32 pixels. For our experiments, we employ the ResNet-20 model.

Speech Commands. This dataset is a Google-released audio waveform for speech recognition classification [START_REF] Warden | Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition[END_REF]. It consists of 64,727 utterances from 1,881 speakers pronouncing 35 words (respectively 35 classes). Each audio record was transformed into a frequency spectrum with a duration of 1 second. For classification, we use the M18 classifier, a convolutional model with 18 layers and 3.7M parameters [START_REF] Dai | Very Deep Convolutional Neural Networks for Raw Waveforms[END_REF]. 

GTSRB. German Traffic

Software and Hardware Setup

In the following, we describe our experimental setup. We detail the used hardware and software environment, as well as the state-of-the-art attack and defense implementations we compare with. All the experiments are conducted on an NVIDIA A40 GPU. We use PyTorch 1.13 to implement DINAR, and the underlying classification models. For the state-of)the-art defense mechanisms based on differential privacy, we employ the Opacus library [START_REF] Yousefpour | Opacus: User-Friendly Differential Privacy Library in PyTorch[END_REF], as mentioned in subsection 7.1.3. To evaluate the resilience of FL defense mechanisms against membership inference attacks, we use an existing implementation of the attack that is based on a single shadow model [START_REF] Shrebox | Privacy Attacks in Machine Learning[END_REF]. We consider a FL system with 5 FL clients. Data are carefully divided into disjoint splits for each FL client, following a non-IID distribution, using dirichlet distribution. Each dataset is splited into 80% for training, and 20% for testing. The learning rate is set to 10 -3 and the batch size to 64 for Resnet20, VGG, and M18 models on image and audio datasets. For FCNNs on tabular datasets, a learning rate of 10 -4 is used and a batch size of 100.

Experimental Setup

Baselines

Our evaluation compares DINAR with different defense scenarios, including a nodefense baseline and three state-of-the-art solutions inspired by Differential Privacy. These solutions, LDP, CDP, and WDP, employ various approaches for privacy preservation. For LDP and CDP, we set the privacy budget parameter ϵ = 2.2 and the probability of privacy leakage δ = 10 -5 , following the findings of [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF]. In the case of WDP, a norm bound of 5 is considered, and Gaussian noise with a standard deviation of σ = 0.025 is applied. These settings ensure an optimal level of privacy preservation in our experiments.

Evaluation Metrics

DINAR aims to improve FL privacy and utility, without inducing additional costs.

In the following, we define the performance metrics used to evaluate these different aspects.

Attack AUC. The attack success rate on a given model measures the percentage of successful MIAs conducted by an adversary. The attack AUC (Area Under the Curve) is a single value that measures the overall performance of the binary classifier implementing MIAs. The AUC value is within the range [50%-100%], where the minimum value represents the performance of a random MIA attacker, and the maximum value would correspond to a perfect attacker. The attack AUC is a robust overall measure to evaluate the performance of MIAs because its calculation involves all possible attacker's binary classification thresholds. Since the weakest (i.e., most naive) MIA attacker would reach a minimum attack AUC of 50%, the best defense against MIAs would approach that optimal value of attack AUC of 50%. Thus, we use attack AUC as a means to evaluate the privacy of a model.

Overall Model Privacy Metric. In a FL system that consists of the global FL model M, and N clients models M 1 . . . M N , we define a metric for measuring the overall privacy of all these models. Namely, we measure the highest potential privacy leakage from both the global model and clients' local models. Given the F AUC function for computing the attack AUC of a model, the overall model privacy of the FL system is computed as follows:

Max F AUC (M), ∑ N i=1 F AUC (M i ) N
Overall Model Utility Metric. We evaluate the utility of a protected model by measuring its accuracy, namely the ratio of correctly classified instances to the total number of instances. Considering DINAR's approach for protecting FL clients' models, we consider the average of accuracy of clients' protected models. Given N clients, M i the model of each Client i , and F Acc the function that calculates accuracy of a model, the overall model utility metric is as follows:

∑ N i=1 F Acc (M i ) N 7.2. Experimental Results
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DINAR, WDP, LDP, and CDP on both local and global models, considering the utility and the membership inference attack AUC. In Figure 7.1, we first plot distinctly the average attack AUC against local models and the attack AUC against the global model. In all plots, each bar represents one defense scenario amongst the baselines we consider. Our results show that DI-NAR exhibits privacy mitigation rates that closely approach the 50% mark across all datasets, indicating a strong level of privacy protection. This holds true for both global and local model inference attacks, while differencial privacy mechanisms are less constant at protecting the models. It is worth noting that DINAR achieves reducing the privacy leakage of local models by 29% in the best case, as shown in Figure 7.1(a), while differential privacy reveals its limits in that case : WDP only reduces the privacy leakage by 3% and in the best case, and even CDP is worse than DINAR by only reducing it by 25%.

By concealing sensitive layers and replacing parameters by random values, DI-NAR enables the perturbation of the attacked model outputs as received by the attacker, thereby mitigating membership inference attacks. Indeed, the attacker receives an altered version of the model with randomized layer parameters; when the attacker tries to reproduce the behaviour of the target model, the randomization necessarily impacts the outputs of the model, which makes them barely comparable to the outputs of the shadow model. This counters the logic of membership inference attacks and explains the significant drop of the attack AUC. These promising results underscore the potential of DINAR as an effective privacy-preserving technique, particularly in scenarios where differential privacy methods may have limitations.

Analyzing Impact on Model Loss and Utility

In order to provide an insight on DINAR's ability to preserve both privacy and model utility, we analyze the impact of DINAR and the considered baselines on the behavior of protected models. We evaluate the effectiveness of each defense technique in reducing loss distribution discrepancies beween member and non-member data records and minimizing significant loss values. Ideally, the loss distribution of members and non-members should match, indicating similar loss the model's lack of insightful information to distinguish members and non-members. Then, a distribution with mostly low loss values indicates model accuracy. We measure the loss of the attacked model separately for member and non-member records in each defense scenario for the Purchase100 dataset and its respective FL configuration.

Figure 9.5 plots the loss distribution for members and non-members for each defense scenario. Comparing the results, we gain scientific insights into the mechanisms' performances. Our findings support previous sections' limitations of existing techniques (LDP, CDP, WDP), which focus solely on minimizing loss between member and non-member data. Although the curves match better than in a no defense scenario, meaning that it is harder to distinguish members from non-members, these approaches often result in larger loss values, compromising the overall utility and accuracy. The loss peaks are between 0.001 and 0.006 for differential privacy defenses, while DINAR achives reducing the loss under 0.001 for most records. Moreover, DINAR shows a strong distribution match between member and non-member records, while there's a neat discrepancy for differential privacy based defenses. Thus, the combination of adaptive training and layer obfuscation in DINAR clearly demonstrates the effectiveness of the proposed approach. Indeed, this approach narrows the gap between member and non-member data distributions, while minimizing substantial loss occurrences.

Analyzing Privacy vs. Utility Trade-off

With the objective of empirically confirming the insights revealed in §7.2.2 on DI-NAR's ability to balance both privacy and model utility in a FL system, we evaluate its impact on local models behavior. We conduct the experiments on different datasets, by running the same attack scenario as the one presented in §7.2.1, introducing the consideration of both privacy and model utility metrics. To assess the balanced efficiency of DINAR, we expect it to both maximize the local models' accuracy and minimize the membership inference attack AUC.

Figure 7.3 shows our results by plotting both metrics on two axes: the x axis represents the average local model accuracy, while the y-axis plots the overall attack AUC we previously defined. In a best-case scenario, the dot should be located in the bottom-right corner of each plot, meaning that the effective defense mechanism both preserves the model accuracy and decreases the attack AUC to 50% We observe that WDP, CDP and LDP achieve reasonable attack mitigation but often reduce model utility. For example, on the Cifar-10 dataset, WDP reduces attack AUC by 3%, while CDP reduces it by 6% but with a significant 20% drop in model utility. In exchange, DINAR reduces the attack AUC by 29%, obtaining an optimal privacy, and the model accuracy drop is inferior to 1%.

In most cases, DINAR strikes a balance between privacy preservation and utility, emerging as a compelling solution. It achieves comparable attack mitigation to the undefended model while maintaining preserving the model accuracy in most cases. Notably, on the Speech Commands dataset, DINAR achieves the same level of attack mitigation as the undefended model and surpasses the baseline accuracy with a 90% model accuracy compared to the baseline's 86%. Indeed, DINAR outperforms its competitors by obfuscating layer parameters, while preserving local accessibility to the original values. This allows clients to maintain model quality without sacrificing privacy, leading to improved model accuracy compared to other privacy-preserving mechanisms that introduce noise to all model parameters. Thus, the approach followed by DINAR demonstrates its effectiveness in mitigating attacks, while preserving model utility, making it a promising solution for privacy-preserving FL systems.

Ablation Study of DINAR

In accordance with the details provided in §6.2.6, one of our objectives is to address the overfitting problems caused by DINAR by employing adaptive gradient descent techniques during the training of local models. Table 7.2 presents a comparison of the average accuracy achieved by local models, with and without adaptive gradient descent. In each scenario, we train 10 local models on Purchase100, utilizing a six-layer fully-connected neural network. Within each scenario, we measured the highest attack area under the curve (AUC) value against both the globaland local models. We also record the corresponding model accuracy for each scenario. With adaptive training, we achieve the best model utility across all clients, resulting in a 3% improvement in accuracy compared to the use of Adam. Further, Chapter 7. Experimental Evaluation of DINAR combining DINAR with adaptive training or not, has no significant impact on the objective of privacy preservation for both global and local models, as indicated by the results. In all the considered scenarios, the attack AUC remains close to 50% against both global and local models. This finding aligns with the observations made by [3], where AdaGrad outperforms Adam in an FL system involving a substantial number of FL rounds and a reasonable number of local training epochs (in our case, 10 epochs). Consequently, DINAR, in conjunction with adaptive training, achieves the highest accuracy for local models without compromising privacy protection.

Cost of Privacy-Preserving Mechanisms

With the objective of tackling state-of-the-art differencial privacy based mechanisms issues regarding coputational costs, we rigorously analyze the overheads of DINAR, a pioneering solution for addressing the high computation costs associated with differential privacy in federated learning. We meticulously evaluate DINAR's performance across key metrics, including average training duration, server aggregation duration, and peak GPU memory usage. Comparisons are made against carefully defined baselines, allowing for a comprehensive assessment of DINAR's efficiency. We compare the costs of different defense mechanisms for the FL training scenario using the GTSRB dataset with VGG11, following the FL system setup described in §7.

Model Training Time. We examine different scenarios to evaluate the average training duration per round for individual clients in federated learning. This duration refers to the total time required for all the local training epochs of a client during a round.

The impact of privacy mechanisms like LDP, CDP, and WDP on the training duration is depicted in Figure 7.4(a). Interestingly, our analysis shows that incorporating privacy-preserving techniques has a noticeable negative effect on the overall training duration. Despite the improvements made by the Opacus framework in speeding up differential privacy, there is still a significant cost. In the worst-case scenario, adding noise results in a training duration increased by 36%.

However, it is important to highlight that DINAR effectively addresses the computational overhead associated with differential privacy without compromising system performance. DINAR successfully mitigates the issue of increased training duration by obfuscating layers, which does not introduce any additional computational overhead. This ensures the system remains efficient and effective while maintaining privacy.

FL Aggregation Time.

We conduct measurements to determine the average duration for server aggregation in various scenarios. This involved tracking the time taken from when the server received all weights to be aggregated until it sent the aggregated weights. Notably, the use of CDP resulted in a significant increase in aggregation duration, reaching up to 30 times longer for GTSRB with VGG. This prolonged duration can be attributed to CDP's design principle, which involves introducing noise to the parameter aggregate before transmission to clients. This process substantially extends the time required for aggregation, measured in seconds in our case. However, when employing DINAR, LDP, and WDP, the durations exhibit 7.3. Summary 77 similar orders of magnitude compared to the scenario without any baseline. This suggests that these privacy mechanisms do not impose a substantial additional cost in terms of aggregation time, presenting a more efficient alternative.

Memory Usage. Our study delves deep into the realm of GPU memory usage in privacy-preserving federated learning, unraveling captivating insights. Through meticulous analysis, we unveil the impact of various privacy mechanisms, including LDP, CDP, and WDP, on memory consumption during local model training. Our findings paint a compelling picture, showcasing a systematic increase in GPU memory usage with the implementation of these privacy measures. They show that in that case, running differential privacy algorithms increases the GPU Memory usage by 168% compared to a no defense scenario. In exchange, DINAR doesn't introduce any computational comparable operation by definition, resulting in having no significant impact on GPU memory usage.

First, the addition of calibrated noise, a fundamental technique in differential privacy, requires storing the noise values, which increases memory usage. Second, tracking and managing the privacy budget, which represents the maximum allowable privacy loss, necessitates additional memory to maintain the budget information. Lastly, the need for maintaining an aggregation buffer to collect model updates before applying privacy mechanisms adds to the memory requirements. This reasonably explains why DINAR is optimal from the perspective of GPU memory in comparison with differential privacy, as it doesn't involve noise addition nor privacy budget management.

Summary

In this chapter, we assess the performance of DINAR, an inventive defense approach, aimed at mitigating membership inference attacks. Our practical investigation, conducted across diverse datasets, neural network architectures, and cutting-edge FL privacy protection mechanisms, highlights the effectiveness of DINAR in terms of enhancing privacy, preserving utility, and minimizing associated costs.

Furthermore, apart from bolstering FL defenses against membership inference attacks, we foresee that DINAR can also prove valuable in safeguarding against various other privacy threats, including property inference and model inversion attacks. Additionally, an intriguing avenue for future research involves developing methods to automatically identify the neural network layers most susceptible to privacy breaches, tailored to specific threat models, privacy attack types, and FL model structures.
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PASTEL Objectives

Although Federated Learning has brought a significant breakthrough in ML privacy by decentralizing the participants' data, recent works show that FL systems remain sensitive to a wide range of privacy attacks [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF][START_REF] Nasr | Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning[END_REF][START_REF] Lyu | Threats to Federated Learning: A Survey[END_REF]. Indeed, a malicious participant may infer some private and potentially sensitive information about another participant's data, by analyzing the model parameters. More specifically, in this work, we are interested in membership inference attacks (MIA), where a malicious participant tries to infer whether a data sample was used for training the model [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF].

In this chapter, we propose PASTEL, a novel privacy-preserving mechanism that allows FL systems to be resilient to membership inference attacks (MIAs). Roughly speaking, MIAs are based on a binary classifier that is able to differentiate between member data samples used to train a model and non-member data samples not used for training. PASTEL proposes a novel multi-objective learning function. On the one hand, PASTEL reduces model loss and leverages adaptive gradient descent optimization for higher model accuracy, and on the other hand, it decreases the generalization gap to reduce the difference between member data and non-member data. Indeed, recent works showed that sensitive information about model training data can be located in some layers of neural networks [START_REF] Mo | Layer-wise Characterization of Latent Information Leakage in Federated Learning[END_REF][START_REF] Mo | Quantifying Information Leakage from Gradients[END_REF], and inferred from the layers' gradients. Thus, PASTEL's primary motivation is to minimize the internal generalization gap during the training of the FL model, to effectively protect private information, and consequently reduce the MIA success rate. And thanks to its multi-objective approach, PASTEL is, as far as we know, the first FL defense mechanism that counters membership inference attacks while maintaining high model accuracy, with negligible computational overheads, thus, resulting in an effective solution for ubiquitous computing systems. In this chapter, we highlight the following key contributions:

Problem illustration

Although federated learning is privacy-preserving by design, it remains vulnerable to different types of inference attacks, such as membership inference attack [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF] that Chapter 8. PASTEL: Mitigating Membership Inference Attacks in Federated Learning aims to determine whether a specific data record is used for training a target model. For instance, it can be used to infer whether the records of a specific patient have been used to train a classifier related to a certain disease. Property inference is another privacy attack that aims to extract dataset properties [START_REF] Ateniese | Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers[END_REF]. In particular, these properties might be irrelevant to the training task. For example, when the main task is to train a model for race or gender recognition, the property inference attack may intend to infer whether people in the training images wear glasses or not. As another type of privacy attack, there are model inversion or attribute inversion attacks [START_REF] Hitaj | Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning[END_REF][START_REF] Hidano | Model Inversion Attacks for Online Prediction Systems: Without Knowledge of Non-Sensitive Attributes[END_REF] that fall in the category of reconstruction attacks, where given output labels and partial knowledge of some features, try to recover sensitive features or full data samples.

In this work, we are interested in the membership inference attack (MIA), a privacy attack that aims to determine if a specific data record is used in the training of the target model. The authors in [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF] introduce a black-box attack that relies on the output class probability distribution of the model. In this scenario, the attacker trains one or several shadow models to generate model probabilities per class, which is then used to train multiple attack models (one for each class). Using confidence scores as inputs, these attack models output the membership status of the given record as shown in Figure 8.1-➊. An extension of [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF] attack is proposed in [START_REF] Salem | ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[END_REF] which is based on a single shadow model and relaxes the assumption that the shadow model is constructed the same way as the target model. As well as [START_REF] Truex | Demystifying Membership Inference Attacks in Machine Learning as a Service[END_REF], the authors extended the membership attack presented in [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF] to a more general setting and showed that membership inference attacks are data-driven and largely transferable. The authors in [START_REF] Melis | Exploiting Unintended Feature Leakage in Collaborative Learning[END_REF] investigated the membership privacy leakage from two aspects: embedding layers and gradients. It was shown that the non-zero gradients of the embedding layer of a deep learning model can reveal the positions of the words in a training batch. This enables an adversary to conduct a membership inference attack.

Membership inference attacks exploit the information leakage of machine learning algorithms about their training data through the learned model. Hence, they have been investigated as an indicator that reveals the privacy leakage of federated learning models. They present a significant threat to the privacy of individuals whose data is used to train machine learning models. For example, if an attacker is able to determine that a person's data was used to train a model, he may be able to infer sensitive information about that person, in smart health ubiquitous applications, membership inference attacks can infer that the owner of a clinical record has the disease based on the fact that the clinical record was used to train a model based on the model prediction as described in Figure Figure 8.1-➋. A recent report [START_REF] Tabassi | A Taxonomy and Terminology of Adversarial Machine Learning[END_REF] published by the National Institute of Standards and Technology (NIST) mentions explicitly that a membership inference attack identifying whether an individual has been included in the dataset used to train the target model is a privacy violation.

On the Difficulty of Mitigating Membership Inference Attacks in Edge Federated

Learning Differential privacy has been widely used as a framework for privacypreserving machine learning, providing statistical guarantees against the information an adversary can infer through the output of a randomized algorithm. In the following, we describe a case that illustrates the problem of privacy leakage and the limitations of State-of-the-art systems in FL-based computing systems, in healthcare applications, computer vision and e-commerce applications. We focus on white-box inference membership inference attack proposed by [START_REF] Nasr | Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning[END_REF] for classification tasks. To evaluate privacy leakage in healthcare applications, we used Mo-tionSense dataset [START_REF] Malekzadeh | Mobile Sensor Data Anonymization[END_REF], which includes time-series data generated by accelerometer and gyroscope sensors (attitude, gravity, user acceleration, and rotation rate), For MotionSense we consider the classification task of determining the patient activity, for Purchase100 we train a classifier for determining the client type based on his purchases, and finally for CelebA the task consists in face attributes classification. We evaluate the attack with 3 differential privacy techniques namely WDP, LDP and CDP. The results for privacy leakage and model utility are presented in Figure 8.2. 
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Weak diffential privacy fails to protect against membership inference attacks since it results in very large values of ϵ, as it adds noise at every round ignoring the noise added in previous rounds. More specifically, in DP, the concept of composability ensures that the joint distribution of the outputs of differentially private mechanisms satisfies DP [START_REF] Mcsherry | Privacy integrated queries: an extensible platform for privacypreserving data analysis[END_REF]. Therefore, if we assume that, at every round, the server applies an ϵ-differentially private mechanism on participants' updates, then this weak DP mechanism results in spending r × ϵ privacy budget after r number of rounds. This yields larger values of ϵ, and thus significantly less privacy for participants. Concerning central differential privacy and local differential privacy, they provide to be efficient in mitigating membership inference attacks as shown in Figure 8.2, the attack AUC is reduced significantly. However, CDP and LDP come at a cost of sacrificing the performance of the model (it decreases from 60.6% to 35.4% with Purchase100 with LDP). Moreover, the main issue of differential privacy is the computation time, as more calculations are needed to add noise and other privacypreserving operations.

System Model and Problem Formulation

In the following, we present the problem definition, the underlying threat model and the defense model. Notations used in this chapter are detailed in Table 8.1.

Threat Model

We consider the standard setting of a white-box Membership Inference Attack. In the federated learning system configuration, we consider a malicious participant can be either on server-side or client-side.

Attacker's Objective. If the attacker is on server-side, its goal is to determine whether a data record r j is likely to have been used for training the model W i , i.e., if r j ∈ D i (member) or not (non-member). If the attacker is on client-side, its goal is to determine whether r j is likely to have been used for training one of the other clients models, ignoring which client.

The attacker performs the membership inference attack described in [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF] by training a multilayer perceptron attack model W attack with binary output. In order to determine whether a record r j was most likely used to train W target or not, the attack model W attack returns 1 (member) or 0 (non-Member). The attacker first creates a shadow model M shadow using the same architecture as the target model, considering the dataset 

D shadow = D shadow train ∪ D shadow test
The attacker trains the M attack model on D attack . The output prediction of W attack , taking p target (r j ) as input, is 1 (Member) if the record r j has most likely been used to train M target , and 0 (Non-Member) otherwise. The final task of the attacker is to maximize the AUC of W attack while testing it on the p target data.

Attacker's Capabilities. We make the assumption that the attacker has access to a data sample D shadow , using the same features and labels as the dataset D target used to train the target model. The attacker also knows the architecture of the target model.

In a case where the attacker is on server-side, it has access to parameters update W i sent by client i with i ∈ 1 ; N, and can identify which client sent the parameters update. This scenario is only possible in case there is no secure aggregation [START_REF] Bonawitz | Practical Secure Aggregation for Federated Learning on User-Held Data[END_REF] enabled in the FL system, as detailed in 8.3.2. In a case where the attacker is on client side, it has access to the aggregated parameters W sent by the server. Gradients of layer l j of member data X G l j (X ′ ) Gradients of layer l j of non-member data X

′ G W (X) Gradients of model W of member data X G W (X ′ )
Gradients of model W of non-member data X ′

Defender's Assumptions

Defender's Objective. We aim to design a FL defense mechanism that achieves privacy preservation against Membership Inference attacks from malicious participants, without sacrificing the local FL model's quality. We aim to fulfil the two following properties:

• Privacy. The defender needs to ensure that its model is protected against Membership inference attacks, i.e., that the attack model's accuracy is as close as possible to 50% (best case scenario for the defender).
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• Utility. The defender must ensure that, by defending itself, it does not impact its own model utility nor other participants' model utility through updates.

• Overhead The overhead costs of our solution in terms of computational performances, versus a non-defense scenario, must be as low as possible.

Defender's Capabilities. We assume the defender has no knowledge about the attacker's strategy, as in [24]. FL attack mitigation is accomplished at the client-side, whereby the training protocol integrates a regularization term in the loss function to minimize the similarity between the feature distributions of member and nonmember instances, thus enhancing the generalization performance of the model against potential FL threats. Contrary to several state-of-art privacy-preserving mechanisms [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF][START_REF] Cao | FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping[END_REF][START_REF] Sun | Can You Really Backdoor Federated Learning?[END_REF], our mechanism does not require an analysis of individual clients model updates before aggregating, thus it is compatible by design with secure aggregation [START_REF] Bonawitz | Practical Secure Aggregation for Federated Learning on User-Held Data[END_REF].

Design Principles of PASTEL

This section presents PASTEL, a federated learning framework for membership inference attack mitigation. First, §8.4.1 provides an overview of PASTEL. Then, §8.4.2 presents its design principles in detail. Finally, §8.4.3 analyzes the key properties of PASTEL.

Overview of PASTEL

We present PASTEL (PrivAcy preServing federaTEd Learning), a local side privacy protection scheme that counters membership inference attacks in FL systems, without breaking secure aggregation guarantees, nor deteriorating the performance of the FL task. The objective of PASTEL is to provide the best trade-off in terms of privacy/utility: (i) Privacy: mitigate membership inference attack by limiting the information shared with the server (ii) Utility: keep the same performance for the local models. PASTEL addresses the threat model introduced in §8.3.1, and fulfills the defense objectives presented in §8.3.2. The detailed pipeline of PASTEL is defined in Figure 8.3. PASTEL is on the client side, i.e., the entire process is fully disclosed to the FL server. PASTEL is designed to reduce the generalization gap, which is the difference between the model's performance on the training data and its performance on unseen data. This gap can be exploited by an adversary to infer whether a particular record was used during the training of the model, which can compromise the privacy of the individual. The workflow of PASTEL is illustrated in Figure 8.3. During the training process, each FL client considers minimizing the loss function based on the model output and the real label, and a novel loss function to protect privacy and improve the model's ability to generalize to unseen data, while also making it harder for an attacker to infer membership information. Furthermore, PASTEL applies adaptive gradient descent to further improve client model accuracy. It adapts the learning rate for each parameter based on the history of its gradient. This helps to prevent overfitting and distortion of the model by providing a finer-grained update scheme for each parameter. Intuitively, the generalization gap has been used to mount MIAs, and [START_REF] Li | Membership Inference Attacks and Defenses in Supervised Learning via Generalization Gap[END_REF] shows a strong correlation between them. In particular a model with large generalization gap is more vulnerable towards MIAs. A model generalization gap g is defined to be g = a M -a N M . where a M is the model accuracy on training data, i.e., member data and a N M is the model's accuracy on a dataset drawn from the same distribution as the training data i.e., non-member data. Moreover, [START_REF] Wu | Understanding and Defending Against White-box Membership Inference Attack in Deep Learning[END_REF] shows that the generalization gap on the hidden layers, defined as internal generalization gap, is more important than the output layer. The internal generalization gap is measured based on the divergence of member features and non-member features on the hidden layers. PASTEL focuses on the internal generalization gap. To evaluate the distribution shift between member and non-member features, we consider a distance function that we refer to as MnM (i.e., member vs. non-member) function, with the goal of minimizing the distance, i.e., reducing the generalization gap. In the following, we use Jensen-Shannon divergence (JSD) as an instance of MnM function [START_REF] Menendez | The Jensen-Shannon divergence[END_REF]. Indeed, JSD is a widely used measure of similarity between probability distributions, that is robust and less impacted by outliers and noise than other distance measures such as Euclidean distance or cosine similarity.

The primary objective of PASTEL is to reduce the divergence between the gradients of the latent layers of the model for member and non-member data. The Jensen-Shannon divergence (JSD), which is a symmetrized and smoothed variant of the Kullback-Leibler divergence (KL), is harnessed for this purpose. KL quantifies the information loss that results when a probability distribution q is used to approximate another distribution p. JSD, a derived metric, embodies the amalgamation of these divergences.The rationale for employing JSD is rooted in its capacity to measure the dissimilarity between two probability distributions. In the context of PASTEL, JSD facilitates the assessment of discrepancies in prediction distributions vis-à-vis a reference dataset. By introducing an element of uncertainty into the inference process, PASTEL endeavors to obfuscate the determination of data point membership, thereby conferring enhanced privacy.

Furthermore, JSD is a smoothed and symmetrized variant of KL, and it is calculated based on the latter. JSD provides an effective way to compare and assess Chapter 8. PASTEL: Mitigating Membership Inference Attacks in Federated Learning the dissimilarity between two probability distributions. Unlike KL, JSD is symmetric, meaning that the order of the distributions being compared does not affect the result. This symmetry property is advantageous because it ensures that the comparison is unbiased and accounts for both directions of divergence. In PASTEL, JSD is harnessed to introduce uncertainty into the inference process. By comparing the prediction distributions of member dara points with non member data points using JSD, PASTEL adds a layer of complexity that challenges adversaries attempting to discern whether a specific data point was part of the training dataset. Formally, let us consider a deep learning model which parameters are denoted as W, comprising n layers l 1 , l 2 , ..., l n . Gradients pertaining to a given layer l i within a batch of member data denoted as X, are represented by G l 1 (X), G l 2 (X), ..., G l n (X) and model gradient by G W (X). In the same vein, gradients of layer l i resulting from a batch of non-member data X ′ are denoted as

G l 1 (X ′ ), G l 2 (X ′ ) . . . G l n (X ′ ) and model gradient by G W (X ′ ).
To compute JSD, we first compute KL between member and non-member gradient distributions, and then KL between non-member and member gradient distributions as defined in respectively Eq. (8.4) and Eq. (8.5) as follows:

KL m = KL(G l i (X ′ )|| G l i (X) + G l i (X ′ ) 2 ) (8.4 
)

KL nm = KL(G l i (X)|| G l i (X) + G l i (X ′ ) 2 ) (8.5) 
JSD is the average of the two KL distances defined in the previous Eq. (8.4) and Eq. (8.5) and is computed as follows:

min i∈{1..n} JSD(G l i (X)||G l i (X ′ )) = 1 2 (KL m + KL nm ) (8.6)
And the KL divergence between two distributions p and q, denoted as KL(p||q), is measured as follows:

KL(p||q) = ∑ c p c log q c p c (8.7)
The overall loss of the model, denoted as L, is calculated based, on the one hand, on L priv , the novel privacy leakage loss that makes use of JSD loss, and on the other hand, on labels loss L acc which is the loss between the model output and the real label Y of an input batch X. The detailed algorithm of PASTEL is described in §4. It follows a multi-step process to optimize the model's performance. Firstly, the algorithm assesses how well the model is currently performing on the training data and identifies misclassified examples. Next, the algorithm calculates the label loss to determine the model's accuracy on the labeled training data and aims to improve it. Finally, PASTEL algorithm measures the similarity between the probability distributions of the training data and a data sample unseen by the model during training, using the MnM function as a loss function criterion to improve the model's generalization ability. We compare the output probability distribution for, on the one hand, the training data X (i.e., member data) of client i, and on the other hand, unseen data X ′ (i.e., non-member data) of client i, in order to minimize the distance between the two. By optimizing the model's performance based on these insights, the algorithm aims to improve its accuracy and generalization ability. This approach offers a novel way to optimize the performance of deep learning models by focusing on both the accuracy on the training data and the generalization ability to unseen data. The results of our experiments demonstrate the effectiveness of the proposed algorithm in improving the performance of the model on a wide range of datasets.

In a real-world setting, there are several means for FL clients to obtain non-member data, i.e., data that are not used by clients for model training. For instance, in ubiquitous computing systems, data sampling is a core process to determine the volume of collected data to be actually used for a given service [START_REF] Ben-Aboud | On Adaptive Sampling Algorithms for IoT Devices[END_REF], [START_REF] Alharbi | Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition[END_REF]. Thus, part of data samples that are collected but not used for the service (i.e., not used for FL client model training) can be used as non-member data for a FL client running PASTEL. Another means to get non-member data is to use generative model for producing synthetic data [START_REF] Kaya | When Does Data Augmentation Help With Membership Inference Attacks?[END_REF]. 

L priv ← JSD(G W i (X j ), G W i (X ′ j )) // Compute gradient 7 ∇ t ← AGD(L priv + L acc , W i ) // Update local model 8 W i ← W i + ∇Wi
L i = - M ∑ n=0 a o,c log b o,c (8.8) 
To minimize L , W i updates its parameters at each training round, according to the learning rate hyperparameter η, a coefficient multiplying the computed gradient values at each FL round, such as η ∈ 0, 1 . The learning rate is one the main impacting factors regarding model accuracy and loss convergence issues in ML, as shown by [START_REF] Smith | A Disciplined Approach to Neural Network Hyper-Parameters: Part 1 -Learning Rate, Batch Size, Momentum, and Weight Decay[END_REF]. A too small learning rate value can cause overfitting, while a too high value may cause model accuracy instability, despite of improving the model training speed.

The adaptive gradient descent technique allows to address issues related to local minima and saddle-points [START_REF] Staib | Escaping Saddle Points with Adaptive Gradient Methods[END_REF]3], and provides stronger guarantees against overfitting, as explained in section 6.2.6. First, when it comes to training complex models such as CNNs on a high number of iterations, this technique mitigates overfitting risks as the algorithm converges slower than Adam and RMSProp, notably in its first iterations, as shown by [START_REF] Perin | On the Influence of Optimizers in Deep Learning-based Side-channel Analysis[END_REF]. Second, given the high-dimensional properties of neural network optimization problems, this adaptive gradient descent method also presents the advantage of iteratively adjusting the learning rate separately for each dimension. Eq. (8.11) describes adaptive gradient descent, Eq. (8.9) initializes the variable v to zero. v is used to accumulate the squared gradients over time. Eq. (8.10) updates v in each iteration t + 1 by adding the squared gradient of the loss function L with respect to the model parameters W i,t . The gradient is squared to emphasize larger gradients and dampen smaller ones. Eq. (8.11) updates the model parameters W i for the i th parameter in iteration t + 1. As the denominator in Eq. (8.11) is a sum of square gradients increasing at each epoch, the algorithm will then attenuate the parameter updates with a too large delta, and accentuate the updates with a too small delta. This property allows to tackle saddle points and local minima, and smoothes the convergence of L over all its dimensions. Adding a constant to the denominator in Eq. (8.11) prevents from divisions by zero at first iteration t 0 . v 0 = 0 (8.9)

v t+1 = v t + ∇ W L(x, W i,t ) 2 (8.10) W i,t+1 = W i -η ∇ W L(x, W i,t ) √ v t+1 + 1e -5 (8.11)
To tackle the aforementioned convergence issues, PASTEL combines properties preventing L from being stuck at local minima and saddle points of the loss function over different dimensions, mitigating the risks of overfitting, and consequently improving the convergence of L and the accuracy of W i . We provide a model utility evaluation for different adaptive gradient descent optimizers in §9.3 to illustrate these statements and motivate our proposal.

Analytical Insights

In this section, we analyze the key properties that explain the effectiveness of PAS-TEL. We provide both analytical and empirical evidence explaining the impact of PASTEL on the generalization gap.

Generalization Gap Reduction with PASTEL. PASTEL is a regularization method that aims to reduce the internal generalization gap between member and non-member data. This is achieved by adding a regularization term to the loss function that encourages the model to produce similar outputs for member and non-member inputs. By doing so, PASTEL helps to prevent the model from overfitting to the member data and leaking sensitive information. In our study, we apply PASTEL to Pur-chase100 and plot the resulting loss histograms on member and non-member data in Figure 8.4. As shown in the figure, PASTEL blurs the shift between member and non-member loss distributions, indicating a reduction in the internal generalization gap, which naturally leads to a internal generalization gap and reduced privacy leakage [START_REF] Yeom | Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting[END_REF]25]. To further enhance the effectiveness of PASTEL, we used adaptive gradient descent to train the model and minimize the internal generalization gap. This combination of techniques resulted in a more robust and privacy-preserving model that can better handle real-world scenarios. Overall, our results demonstrate the effectiveness of PASTEL in reducing the internal generalization gap and improving the privacy-preserving capabilities of machine learning models. To demonstrate that the loss function with Jensen-Shannon Divergence converges, we need to show that it satisfies the conditions of a convex optimization problem [START_REF] Harold | Stochastic Approximation and Optimization of Random Systems[END_REF]. Let G W (X), model gradients of a batch of member data. and G w (X ′ ), model gradients of a batch of a non-member data, where W are the learnable parameters of the model. The JSD between G w (X) and G w (X ′ ) is defined in Eq. (8.6) The loss function with JSD can be written as:

L priv = JSD(G w (X), G w (X ′ )) (8.12) 90 
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Our goal is to minimize this loss function with respect to the parameters W, such that model gradients of member data G w (X) converges to the model gradients of non-member data G w (X ′ ). To show that the loss function with Jensen-Shannon Divergence converges with references, we need to prove the following conditions: The loss function L priv is convex with respect to W. The gradient of L priv with respect to W exists and is continuous. The global minimum of L priv corresponds to the model gradients of member data G w (X). Let's start with the first condition. We can write the JSD as a convex combination of KL divergences:

JSD(G w (X), G w (X ′ )) = KL(G w (X), m) + KL(G w (X ′ ), m) 2 (8.13)
where

m = G w (X) + G w (X ′ ) 2 (8.14)
Since KL divergence is a convex function, JSD is also a convex function. Therefore, the loss function L priv is convex with respect to W. For the second condition, we need to compute the gradient of L priv with respect to W. Using the chain rule, we have:

∇L(W) = ∇G w (X ′ )JSD(G w (X), G w (X ′ )) (8.15) 
where ∇G w (X ′ ) is the gradient of G w (X ′ ) with respect to W. To compute the gradient of JSD with respect to G w (X ′ ), we can use the following formula:

∇G w (X ′ )JSD(G w (X), G w (X ′ )) = ∇G w (X ′ )KL(G w (X), m) + ∇G w (X ′ )KL(G w (X ′ ), m) 2 (8.16
) Since KL divergence is differentiable, we can compute its gradient as:

∇G w (X ′ )KL(G w (X), G w (X ′ )) = - G w (X) G w (X ′ ) + 1 (8.17)
Using the above formula, we can compute the gradient of JSD with respect to G w (X ′ ) and then the gradient of L priv with respect to W. It can be shown that the gradient of L priv with respect to W exists and is continuous. Finally, for the third condition, we need to show that the global minimum of L priv corresponds to the reference distribution G w (X). Since JSD is symmetric and bounded, the minimum value of JSD(G w (X), G w (X ′ )) is 0, which occurs when p = G w (X ′ ). Therefore, the global minimum of L priv corresponds to the reference G w (X). In summary, we have shown that the loss function with Jensen-Shannon Divergence converges with references under the conditions of convexity, continuity, and global minimum. 

Summary

In this chapter, we have introduced PASTEL, a novel approach to thwart membership inference attacks. Unlike existing methods, PASTEL rely on narrowing the generalization gap to bolster defenses against such attacks. Furthermore, it uses adaptive gradient descent to enhance model accuracy. In the next chapter, we'll conduct a practical evaluation of PASTEL and gauge its performance against existing methods in the field. All our classifiers and methods are implemented using PyTorch 1.13. We use an existing implementation of membership inference attack [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF], and the Opacus library [START_REF] Yousefpour | Opacus: User-Friendly Differential Privacy Library in PyTorch[END_REF] for running differential privacy-based protection methods, as detailed in §9.1.4. Our experiments are performed using NVIDIA A40 GPUs. The software prototype of PASTEL is publicly available at 1 : https://anonymous.4open.science/r/pastel-CF24/

Datasets

To evaluate the performance of PASTEL across multiple applications, we consider various datasets, including four image datasets (Cifar-10, Cifar-100, GTSRB, and CelebA), three tabular datasets (MotionSense, Purchase100 and Texas100), and one raw audio waveform dataset (Speech Commands). 

Baselines

We compare PASTEL with a no-defense baseline scenario, and with five state-ofthe-art defense solutions, among which one is based on gradient compression (GC) method [START_REF] Fu | Label Inference Attacks Against Vertical Federated Learning[END_REF], a cryptographic-based solution with secure aggregation (SA) [START_REF] Zheng | Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization[END_REF], and three other methods based on differential privacy, namely local differential privacy (LDP) [START_REF] Arachchige | Local Differential Privacy for Federated Learning[END_REF], central differential privacy (CDP) [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF], weak differential privacy (WDP) [START_REF] Naseri | Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy[END_REF]. With LDP, the noise is applied locally by participants before aggregation. Each participant runs a random perturbation algorithm and sends its parameters to the server. With CDP, the server clips the L2 norm of clients updates, then aggregates the updates and adds Gaussian Noise, before sending the noisy model parameters to the clients. We use Opacus [START_REF] Yousefpour | Opacus: User-Friendly Differential Privacy Library in PyTorch[END_REF], an efficient and ready-to-use differential privacy framework. With CDP and LDP, ϵ parameter is set to 2.2, and the probability of privacy leakage δ is set to 10 -5 . With WDP [START_REF] Sun | Can You Really Backdoor Federated Learning?[END_REF], the server applies norm bounding with a norm set to 5, and adds gaussian noise with a standard deviation σ = 0.025.

Evaluation Metrics

PASTEL's goal as a privacy protection mechanism for FL systems is to maximize the data privacy against potential malicious participants within the FL system (either on 9.2. Evaluation of Privacy-Preserving Federated Learning 95 server or client side) and to ensure that the privacy protection has the least negative impact on the utility of the protected models. We focus on the evaluation of PASTEL by measuring the trade-off between the AUC of a Membership Inference Attack against models (on both client and server side) [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF], and the utility of the models.

For each dataset and model case, we compare PASTEL with the baselines described in §9.1.4 according to the metrics described in 7.1.4. The evaluation of computational costs is provided in §9.3.2.

Evaluation of Privacy-Preserving Federated Learning

We compare PASTEL with different other methods, including a baseline with nondefended models, as well as the aforementioned defense techniques in §9.1.4 against white box membership inference attack described in [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. We use seven datasets and target models which are widely used in prior works on MIA and defenses. We consider MotionSense with CNN described in Table9.1, Purchase100 with a 6 hidden-layers fully connected neural network. For CelebA, GTSRB, Cifar-10 and Cifar-100 we use ResNet18 and VGG9, finally, for Speech Commands we consider M18, a model specifically designed for this dataset. For each dataset, half of the data is used as prior knowledge of the attacker to run MIAs, and the other half is used for training and testing the FL system. For each dataset, we systematically evaluate PASTEL, WDP, LDP, CDP, GC, and SA, by considering both the utility and membership inference attack AUC on clients' local models and global FL model. Figure 9.2 depicts the results of the privacy leakage analysis for all datasets presented in Table 9.1. The privacy leakage is evaluated by means of the area under the curve (AUC) metric, which is used to assess the efficacy of membership inference attack. Our findings indicate that for both global and local model inference attacks, PASTEL offers mitigation rates that are in close proximity to the 50% mark across all datasets. A mitigation rate of 50% suggests that the attack is no better than random guessing, indicating that the privacy protection provided by PASTEL is strong. Furthermore, our results indicate that PASTEL performs similarly to differential privacy techniques, which are known to be effective in preserving privacy. In some cases, PASTEL even outperforms differential privacy methods in terms of privacy preservation. Secure aggregation serves as a robust safeguard for individual local models by employing encryption, thereby mitigating potential inference attacks, where the AUC becomes akin to that of a random guessing scenario, resulting in a statistically neutral 50% AUC. However, this protective efficacy does not uniformly extend to ensuring privacy for the overarching global model, given its accessibility.In contrast, gradient compression proves more adept at ensuring privacy for the global model as opposed to local models. This is attributed to the intrinsic function of gradient compression in curtailing data transmission to the server, thereby reducing the viability of inference attacks These findings demonstrate the potential of PASTEL as a privacy-preserving technique, particularly in scenarios where differential privacy techniques may not be applicable due to their limitations. Our experiments also indicate that LDP can effectively reduce the AUC of the membership inference attack. However, it does so at a significant cost to the model's utility. For example, on the Speech Commands dataset, the attack AUC is reduced to 50%, but the model's utility drops by almost 25%. Secure aggregation employs encryption to defend local models, rendering inference attacks as effective as random chance (50% accuracy). However, this level of protection does not translate equally to the global model, which retains certain vulnerabilities. In contrast, gradient compression is more effective at preserving privacy for the global model compared to local models. This is due to gradient compression's ability to reduce data transmission to the server, thus diminishing the viability of inference attacks and enhancing overall privacy. In the case of gradient compression, while it effectively enhances privacy for the global model, it also results in reduced accuracy. For instance, on the Speech Commands dataset, accuracy dropped from 86% for the baseline to 60% with gradient compression. In contrast, PASTEL offers the same level of mitigation as the undefended model while preserving better model utility. For example, on the same Speech Commands dataset, PASTEL guarantees the same level of mitigation against the attack as the undefended model while simultaneously maintaining better model utility. PASTEL allows to mitigate the attack on the different datasets and presents the most competitive results. The AUC attack does not go far from 50% on the local model or the global models while maintaining a fairly high model accuracy rate equal to the baseline one. In all the experiments, the model utility with PASTEL, is not lower than the one with baseline, in certain cases PASTEL also improves the model utility, for instance with Speech Commands in Figure 9.4(f), where the accuracy of the baseline is 86% vs. 90% with PASTEL. This suggests that PASTEL can effectively mitigate privacy leakage while preserving model accuracy, making it a promising alternative to traditional privacy-preserving methods like differential privacy.

In 9.5, we present an empirical analysis of the impact of the loss function introduced by the PASTEL mechanism on the loss values incurred by the model on the member and non-member data. Specifically, we evaluate the effectiveness of PAS-TEL in minimizing the difference in distribution between member and non-member data while avoiding the generation of larger loss values. Our results confirm the findings of the previous sections, where we showed that state-of-the-art mechanisms that focus solely on minimizing the loss between member and non-member data often result in larger loss values.

In contrast, the multi-objective function utilized in PASTEL allows for the minimization of both the classification loss and the difference between member and non-member data. Our analysis shows that this approach successfully minimizes the difference in distribution between member and non-member data, while incurring minimal loss values, thereby striking a balance between privacy and utility.

For instance, if we compare the results of PASTEL and LDP in Figure 7, we observe that loss values are generally higher for LDP than for PASTEL. This difference in loss values between the two systems can be attributed to the underlying optimization strategy and the trade-off they make between privacy and utility. LDP times bigger than no defended gradient). On the other hand, PASTEL incorporates a multi-objective function that strikes a balance between minimizing the distributional gap between member and non-member data and managing loss values. By considering both objectives, PASTEL manages to achieve competitive loss values while effectively addressing the distributional gap. Furthermore, the fact that the loss curves of members and non-members overlap for PASTEL, whereas they do not fully overlap for WDP, can be explained by the way PASTEL balances its objectives. PASTEL's multi-objective function is designed to ensure that the model learns meaningful representations for both member and non-member data while minimizing the distributional disparity. This balance allows the model to generalize better across different data types, resulting in similar loss values for both member and non-member data. In contrast, the disparity between member and non-member loss values for methods like WDP is proportional to the noise added during the differential privacy process. For techniques employing weak differential privacy, where the noise added is relatively small, the resulting loss values remain modest, and a discernible difference between the two curves can be observed. However, 102

Chapter 9. Experimental Evaluation of PASTEL for strong differential privacy, where a higher level of noise is introduced, the loss curves tend to overlap significantly, with one curve nearly overlaying the other. This phenomenon occurs because the added noise disrupts the optimization process substantially, leading to notably higher loss values. In summary, our findings highlight the nuanced impact of differential privacy techniques on loss values and curve overlap. PASTEL strategy of balancing objectives provides a favorable outcome, achieving both minimized distributional disparities and controlled loss values, while the noise introduced by strong differential privacy techniques can lead to significant overlap between loss curves and higher overall loss values. Thus, our results corroborate the findings presented in previous sections, where we demonstrated that state-of-the-art methods focusing solely on loss minimization between member and non-member data may lead to increased loss values. PASTEL, however, stands out by skillfully navigating this trade-off. It demonstrates remarkable success in minimizing the distributional gap between member and non-member data while effectively managing and mitigating loss values.

Evaluation of Privacy Protection in Non-IID Settings

Our previous experiments consider an IID data distribution (i.e., the same quantity of data and classes distribution for all clients). In practice, FL systems use to involve setups with clients respectively owning more or less disparate quantities of data and non-identical class distributions for each [START_REF] Zhao | Federated Learning with Non-IID Data[END_REF]. With the objective of evaluating PASTEL against other state-of-the-art defense mechanisms in realistic FL conditions, we then propose to reproduce the evaluation scenario performed in §9.2, while considering a non-IID data partitioning across FL clients. We apply the Dirichlet distribution function to generate data distribution across clients [START_REF] Kotz | Continuous multivariate distributions[END_REF]. Dirichlet function 's α parameter defines the data distribution ratio between clients for each class. A smaller α value induces a more non-IID distribution. We then implement a FL system using various non-IID distributions, by considering three five of α for the Dirichlet function, respectively 0.8, 2, 5 and ∞ (i.e., a high value, equivalent to an IID setting), in order to evaluate PASTEL against state-of-the-art mechanisms in more or less non-IID distributions. We run experiments with different non-IID distributions for the CelebA dataset with VGG11 model, in the same experimental conditions than in §9.3. Figure 9.6 depicts our experimental results for each α value considered, comparing PASTEL with all state-of-the-art defense mechanisms, and shows their respective behaviour. Figure 9.6(a) to Figure 9.6(h) show the tradeoff between model utility and privacy for each α value, for both global and local models. We first notice that PASTEL remains the most performing defense mechanism compared to considered state-of-the-art mechanisms, for both client and server models, as the Attack AUC remains close to 50%, with a low variation depending on the α value, including the lower values that involve a stronger non-IID distribution. In each case, the tendencies between baselines and PASTEL are similar to what we observed in §9.3, meaning that introducing non-IID distributions does not significantly impact the behaviour of PASTEL versus state-of-the-art defense mechanisms. We may still notice that a lower α value induces a lower model accuracy; this is an expected behaviour , resilience to MIA attacks) of PASTEL and state-of-the-art solutions depending on how far is a FL setting non-IID. Overall, and espacillay without defense, higher is the α Dirichlet parameter, higher is the attack success. This behavior remains true with CDP defense as well. Interestingly, with PASTEL and other defense mechanisms such as LDP and WDP, the defense success is poorly impacted by the degree of non-IID setting. Thus, PASTEL is able to maintain a good privacy protection against MIA attacks (cf. Figures 9.6(a) -9.6(h)) in non-IID FL settings.

Cost of Privacy-Preserving Mechanisms

We further analyze the computational costs of PASTEL, to evaluate to what extends our solution shows reasonable performances and tackles the high computation costs issues of protection mechanisms based on differential privacy. We provide an evaluation of PASTEL's performance with respect to the cost metrics defined in §9.1.5, i.e., the average training duration of local models, the average server aggregation duration, and the peak value of GPU memory usage. For each dataset and model considered in our evauation, we compare PASTEL with all the baselines defined in §9.1.4. All measures are performed with the experimental setup described in §9.1.

Client Local

Training Time. We evaluate the average training time per round for each client in various scenarios. This duration represents the total time taken for all the local training epochs of a single client during a FL round. Our results are summarized in Table 9.2. We observe that differential privacy mechanisms such as LDP, CDP, and WDP have a negative impact on the training time. Although the Opacus framework [START_REF] Yousefpour | Opacus: User-Friendly Differential Privacy Library in PyTorch[END_REF] significantly improves the speed of differential privacy, it still incurs a cost of up to 4.5 times in the worst-case scenario, such as when using the FCNN classifier. By the same way, the SA mechanism may highly impact the local training time, as shown by [START_REF] Zheng | Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization[END_REF]. The gradient compression process of GC implies a variable computational overhead, increasing the training time of 23% in the most favorable case, but it may reach an overhead up to 55%. On the other hand, PASTEL effectively addresses the computational extra-cost issue of differential privacy in terms of training time without notably affecting the system's average performance. In each scenario, we measure the average time for server aggregation per round. Specifically, we record the time elapsed between the moment the server received all the weights to be aggregated and the moment it sends the aggregated weights. We aim to compare defense mechanisms actually impacting the aggregation server, such as CDP and SA, against PASTEL. As seen in 9.2, the use of CDP increases the aggregation time by a factor of up to 20 in the case of CelebA with VGG. This additional cost can be attributed to the design principle of CDP, which involves adding noise to the parameter aggregate before transmitting it to clients. SA causes extra computational costs on server side by definition [START_REF] Zheng | Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization[END_REF], with an overhead up to 21,48% in the most extreme cases. These processes significantly increases the aggregation time, taking seconds in our case. However, with PASTEL, LDP, and WDP, the times were of the same order of magnitude as the scenario without any baseline.

Memory Usage. In each scenario, we computed the average value of GPU memory usage during the local model training step. Our findings indicate that the use of LDP, CDP, and WDP systematically increased the memory usage. The rise in memory usage was relatively small in scenarios using ResNet (an increase of approximately 8% for Cifar-10 with ResNet); however, it reached factors of up to 4 in the case of Purchase100 for these baselines, as shown in 9.2. As discussed in [START_REF] Yousefpour | Opacus: User-Friendly Differential Privacy Library in PyTorch[END_REF], the Opacus DP framework is optimized for batched per-sample gradient computation and speeds up the model training with differential privacy, but it inevitably impacts the memory usage. Furthermore, the memory increase depends on both the data feature size and the number of training parameters. For Fully Connected models, the memory usage can reach factors of up to 334, as observed in the FCNN classifier architecture with six layers of sizes 4096, 2048, 1024, 512, 256, and 128 and 600 features in the Purchase dataset. In contrast, PASTEL is a privacy-preserving optimization algorithm that does not have any impact on GPU memory usage during local model training. The training process PASTEL uses adaptive gradient descent, which is a variant of stochastic gradient descent (SGD) that adjusts the learning rate on a per-parameter basis. Unlike other differential privacy mechanisms, such as LDP, CDP, and WDP, PASTEL does not require any additional computations to be performed during local model training. Instead, it relies on a straightforward privacy-preserving update to the gradient estimates that reduces the amount of information that is leaked by each client's update. Because PASTEL does not require any additional computations during local model training, it has no impact on GPU memory usage. This makes it an attractive privacy-preserving optimization algorithm for federated learning scenarios in which GPU memory is a scarce resource.

Discussion

Different future directions of PASTEL could be studied, including further exploring the threat model, the underlying datasets and models, or the impact of data bias on privacy protection. Indeed, it could be interesting to consider a similar multi-objective approach for taking into account both model privacy and accuracy, in order to explore other threat models and counter other types of privacy attacks, such as property inference, or model inversion. Property inference involves attackers deducing sensitive attributes 9.3. Tradeoff Between Privacy and Utility 107 of individuals by querying a trained machine learning model, thereby compromising privacy [START_REF] Wang | Poisoning-Assisted Property Inference Attack Against Federated Learning[END_REF]. Model inversion [START_REF] Zhu | Deep Leakage from Gradients[END_REF], on the other hand, pertains to adversaries reconstructing original training data by analyzing a model's outputs or gradients, potentially unveiling confidential information. While PASTEL's primary focus lies in countering membership inference attacks by reducing the internal generalization gap, its specialized design may limit its applicability to other types of attacks. Unlike more versatile solutions such as Differential Privacy (DP), which offer a broader scope of defense against various privacy threats, PASTEL's effectiveness against attack types beyond membership inference remains uncertain. It's worth noting that DP, due to its inherent noise injection mechanisms, has demonstrated robustness against a wider array of attack strategies, making it a more comprehensive option for defending against diverse privacy breaches. To thoroughly understand PAS-TEL's strengths and limitations, future research should undertake rigorous comparative analyses, evaluating its performance against different attack vectors, including but not limited to attribute inference, model inversion, and adversarial attacks. Such investigations will shed light on the extent to which PASTEL's capabilities generalize across various privacy threatening scenarios and provide insights into its suitability as a holistic privacy-preserving solution.

In addition, it could also be interesting to further study the robustness of PASTEL with larger and more complex models. Indeed, PASTEL relies on the notion of a distance function between member data and non-member data. How such a distance function can handle more or less complex models, and whether some distance functions are more appropriate to some types of models could be interesting to explore. The curse of dimensionality, a well-known problem in high-dimensional data analysis, poses a significant and multifaceted obstacle to the effective application of PASTEL, designed to enhance the privacy and security of machine learning models, encounters challenges when dealing with datasets characterized by an increasingly large number of features or dimensions. As the dimensionality of the data grows, a crucial concern emerges: the available data points become progressively sparse within the expansive high-dimensional space. This sparsity fundamentally impacts the accuracy of probability and distribution estimations, which form the bedrock of techniques like PASTEL. The reliance on precise measurements of divergence between distributions, such as the Jensen-Shannon divergence often employed in PASTEL, can become compromised [START_REF] Keider | The Representation Jensen-Shannon Divergence[END_REF]. In high-dimensional scenarios, the Jensen-Shannon divergence may lose its reliability and informativeness, potentially leading to suboptimal regularization strategies and thereby diminishing PASTEL's effectiveness in bridging the internal generalization gap.

Furthermore, FL privacy protection encounters various challenges when dealing with some types of datasets. Biased datasets pose a significant obstacle [START_REF] Chang | Bias Propagation in Federated Learning[END_REF], as the model defending against membership inference attacks can inherit biases from its training data, rendering standard mitigation strategies inadequate. Moreover, datasets exhibiting pronounced patterns also undermine PASTEL's efficacy in countering membership inference attacks. These conspicuous patterns, whether attributed to attributes, features, or classes, can be exploited by adversaries to deduce membership more easily. future research directions include evaluating PASTEL with biased dataset. In the event of unsatisfactory outcomes, potential strategies could encompass a combination of approaches aimed at mitigating bias. Enhancing 108 Chapter 9. Experimental Evaluation of PASTEL fairness and evaluating the defended model's equity could be key in reducing exploitable patterns. Moreover, to counter strong patterns within data, PASTEL could adopt techniques disrupting inherent pattern structures while preserving data utility, including advanced data augmentation, generative models for diverse synthetic data, and targeted regularization methods. The aim is to introduce uncertainty, obscuring membership-related information while upholding the model's predictive accuracy. In summary, the challengesPASTEL faces with various types of datasets require innovative and tailored solutions. By addressing the complexities of dataset characteristics, biases, and strong patterns, PASTEL can be enhanced to provide robust defense against membership inference attacks. This necessitates a comprehensive approach that combines advanced techniques, adaptation to high dimensional spaces, and a deeper understanding of the underlying data dynamics.

Summary

This chapter evaluates PASTEL, an innovative defense method in federated learning designed to counter membership inference attacks. Our empirical assessment was conducted on seven real-world datasets, encompassing four image datasets (Cifar-10, Cifar-100, GTSRB, and CelebA), three tabular datasets (MotionSense, Pur-chase100, and Texas100), and one raw audio waveform dataset (Speech Commands). We employed widely recognized neural network architectures for this evaluation. Our results show that PASTEL outperforms state-of-the-art FL defense mechanisms. Three main benefits can be highlighted, namely, best privacy protection, high model accuracy and no perceptible computational overhead. This work opens a set of interesting research directions. First, it could be interesting to study the effectiveness of the proposed approach in protecting against other types of privacy attacks, such as property inference attacks and model inversion attacks [START_REF] Hidano | Model Inversion Attacks for Online Prediction Systems: Without Knowledge of Non-Sensitive Attributes[END_REF]. Property inference attacks leverage machine learning models' output probabilities to infer sensitive information about specific data attributes, and model inversion attacks aim to reconstruct training data by reverse engineering models. Another research direction is to enrich the multi-objective approach with additional interesting properties of FL systems, such as FL fairness for providing non-biased FL models [START_REF] Ray | Fairness in Federated Learning via Core-Stability[END_REF], and FL robustness to better protect FL systems against byzantine participants [START_REF] Blanchard | Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[END_REF]. Furthermore, PASTEL might be challenged by larger-scale and more complex models, which would require the exploration of other types of distance functions that would be more appropriate for reducing the generalization gap of such complex models.

Part III

Conclusion and Perspectives

Chapter 10

Conclusion and Perspectives 10.1 Conclusion

Federated Learning has emerged as a groundbreaking paradigm for privacy-preserving machine learning in ubiquitous computing systems. It allows multiple decentralized data owners, to collaboratively train models without exposing their raw data to external entities. Instead, clients send only their model updates to a central server, which aggregates them to produce a global model. This approach has found applications in various domains, including healthcare, autonomous driving, and predictive text input. In this thesis, we thoroughly investigated federated learning, focusing on addressing two main challenges: robustness and privacy. We began by enhancing the resilience of FL, specifically against poisoning attacks. Then, we transitioned to protecting privacy in FL, with a focus on mitigating inference attacks. We introduced three innovative mechanisms in the field of Federated Learning to enhance robustness and privacy preservation. These mechanisms are known as AR-MOR for robust FL, PASTEL and DINAR for privacy preservation in FL.

ARMOR focuses on mitigating edge-case backdoor attacks, a particularly challenging class of poisoning attacks in FL. These attacks aim to corrupt the global FL model with subtle misclassifications of rare and underrepresented data points. Existing FL defense mechanisms struggle to detect and counter these attacks effectively. ARMOR introduces a novel Generative Adversarial Network architecture to synthesize class representatives for the global model, allowing for the detection of edge-case backdoors. It achieves a remarkable 95% resilience to such attacks without compromising model quality. PASTEL is a pioneering FL defense mechanism designed to counter membership inference attacks while preserving model accuracy and minimizing computational overhead. It employs a multi-objective learning approach to simultaneously reduce model loss and narrow the generalization gap between member and non-member data. PASTEL significantly reduces the success rate of MIAs by up to -28% across various datasets and neural network architectures, offering robust privacy protection. DINAR focuses on fine-grained privacy protection in FL, and combines fine-grained obfuscation of private layer parameters, client model personalization, with adaptive gradient descent for maximizing model accuracy, while efficiently protecting the models against MIAs in a non-intrusive way. 

Perspectives

In the following, we outline potential research directions stemming from the investigations into privacy preservation and robustness covered in this thesis. These research avenues extend our understanding and open new possibilities for further advancement in the field of federated learning privacy and security.

Enhancing Robustness in Federated Learning

ARMOR, our defense mechanism against edge-case backdoors, demonstrates its effectiveness in countering such attacks in FL systems. This novel approach has significant potential across a spectrum of learning tasks in FL. For instance, it can be applied to binary classification tasks, such as diagnosing diseases or detecting spam emails, as well as multi-class classification tasks, encompassing domains like agriculture, medicine, and chemistry. While ARMOR's applicability is broad, it may face practical limitations when dealing with extremely complex classifiers with a vast number of classes, such as those found in natural language processing and text classification.

One promising research direction is to optimize the computational cost associated with ARMOR. While parallel GPU computations and advancements in GAN convergence speed may help mitigate this cost, further investigations into efficient training techniques and optimizations are warranted. Additionally, assessing AR-MOR's efficacy in protecting against different types of privacy attacks, such as property inference and model inversion attacks, could broaden its scope of applicability.

Enhancing Privacy in Federated Learning

PASTEL, our multi-objective approach for privacy protection against membership inference attacks, has demonstrated its effectiveness without introducing significant computational overhead. This research direction offers several intriguing avenues for further exploration. Firstly, it could be valuable to investigate the suitability of PASTEL in safeguarding FL systems against other types of privacy attacks, such as property inference attacks and model inversion attacks.

Furthermore, enriching the multi-objective approach of PASTEL with additional dimensions of FL, such as fairness and robustness, presents exciting prospects. Research into FL fairness aims to provide non-biased FL models, and incorporating fairness considerations into PASTEL could contribute to more equitable FL outcomes. Additionally, exploring ways to bolster FL robustness against byzantine participants, building upon the principles of PASTEL, could enhance the security of FL systems.

As PASTEL continues to prove its efficacy, it may encounter challenges when applied to larger-scale and more complex models. Investigating alternative distance functions that are better suited for reducing the generalization gap in such scenarios could be a promising avenue for future research.

DINAR's focus on fine-grained privacy protection in FL positions it as a versatile defense mechanism. Beyond its role in mitigating membership inference attacks, DINAR can be leveraged to address various privacy concerns. Research directions 10.2. Perspectives 113 in this context include evaluating DINAR's effectiveness against different privacy attack types, such as property inference and model inversion attacks.

Another intriguing avenue for exploration is the development of automated methods for identifying the most privacy-sensitive neural network layers. Such methods could adapt to specific threat models, privacy attack types, and FL model architectures, enhancing the precision and efficiency of privacy protection mechanisms like DINAR. Dans le monde numérique en perpétuelle mutation d'aujourd'hui, l'apprentissage automatique est désormais une puissance essentielle et révolutionnaire, comme le démontrent de multiples recherches. Son impact profond s'étend à travers diverses industries, offrant des solutions et des innovations révolutionnaires qui ont remod-elé la manière dont nous interagissons avec la technologie et prenons des décisions. Des systèmes de recommandation améliorant la diffusion de contenu sur les plate-formes à la présence d'assistants personnels virtuels comme Siri et Alexa, capables de comprendre et de répondre à des commandes en langage naturel, les applica-tions de l'apprentissage automatique sont à la fois diverses et impactantes. Dans des domaines tels que la santé, il contribue au diagnostic des maladies, tandis que dans la finance, il renforce la détection de la fraude et l'évaluation des risques. Cette ubiquité de l'apprentissage automatique signifie non seulement une tendance tech-nologique, mais aussi un changement fondamental dans les approches de résolu-tion de problèmes et de prise de décisions. Cependant, cette vague d'innovation axée sur les données a soulevé une préoccupation primordiale : la protection de la vie privée des individus et de leurs données personnelles. Le Règlement général sur la protection des données (RGPD) illustre l'importance accrue de la protection des données à l'ère moderne. À mesure que l'apprentissage automatique s'intègre de plus en plus dans notre vie quotidienne, trouver un équilibre délicat entre les avancées technologiques et la protection de la vie privée individuelle est devenu im-pératif. De plus, L'attention portée à ces préoccupations a donné naissance au con-cept de l'apprentissage automatique préservant la vie privée, avec l'apprentissage fédéré émergeant comme une technique cruciale, redéfinissant l'apprentissage automatique collaboratif en permettant à plusieurs parties de construire un modèle partagé sans partager leurs données brutes. L'apprentissage fédéré représente un paradigme prometteur en apprentissage au-tomatique, permettant la formation collaborative de modèles entre des appareils décentralisés dans des systèmes de calcul en périphérie. Cependant, il présente une vulnérabilité à diverses attaques. Cette recherche est divisée en deux axes princi-paux, chacun abordant des défis cruciaux en matière de sécurité et de confidentialité dans le contexte de l'apprentissage fédéré. Le premier axe se concentre sur la lutte contre les attaques d'empoisonnement pour un apprentissage fédéré robuste, où les adversaires cherchent à introduire des tâches nuisibles dans les modèles fédérés en plus de leurs tâches principales. Pour détecter ces attaques, on introduit ARMOR, un nouveau système de détection d'attaque basé sur GAN qui analyse les infor-mations intégrées dans les mises à jour du modèle. Le deuxième axe concerne la lutte contre les attaques d'inférence pour l'apprentissage fédéré préservant la vie privée, en particulier les attaques d'inférence d'appartenance. Pour renforcer la confidentialité en apprentissage fédéré, deux approches novatrices sont introduites : PASTEL, qui améliore la résilience des systèmes d'apprentissage fédéré contre les MIAs en minimisant la différence de généralisation interne, et DINAR, une méth-ode d'apprentissage fédéré préservant la confidentialité à grain fin qui obscurcit les couches sensibles à la
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 12 Global Model Broadcasting: The server broadcasts the current global model parameter W = {W (l) } l=1 K to all clients for local model training. Local Model Training: Once receiving the global model parameter W = {W (l) } l=1 K , each client C k computes local gradients ∇F(W, D k ) by running the stochastic gradient descent (SGD) algorithm on the local training dataset D k . Generally, for each training sample (x, ȳ) ∈ D k , the training process includes two steps: forward propagation and backward propagation.
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 22 FIGURE 2.2: Edge-case backdoor in automatic traffic sign image classification. The trigger used by the attacker to introduce the edge-case backdoor is unlikely to be part of benign clients' data
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 31 FIGURE 3.1: Effectiveness of edge-case backdoors with existing FL defense mechanisms. Attacks start from the first round, and occur every round. Considered cases: (a) defense mechanisms with a prior knowledge of a validation dataset on the FL server; (b) defenses without a prior knowledge of a validation dataset
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 32 FIGURE 3.2: Privacy leakage through membership inference, with and without secure aggregation, with different datasets and model architectures [83]. Considered cases: (i) CIFAR100 with Alexnet neural network; (ii) CIFAR100 with DenseNet neural network; (iii) Texas100 with a fully connected neural network; (iv) Ourchase100 with a fully connected neural network
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 4 ARMOR Design Principles 27 model inspection. ARMOR addresses the threat model introduced in §3.3.1, and has the defense objectives presented §3.3.2. The overall architecture of ARMOR is described in 3.3, with two main components: ARgan and MORpheus. ARgan is used to generate a synthetic dataset based on model updates, which is further leveraged by MORpheus to provide proper mitigation against poisoning attacks.
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 33 FIGURE 3.3: Overview of ARMOR architecture. The attacker is a FL client that trains a model on its poisoned data and feeds the FL model with its poisoned local model. ARMOR's first component, ARgan, generates class representatives from the FL model. ARMOR's second component, MORpheus, monitors loss variations to mitigate the backdoors
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 4 ARMOR Design Principles 29 real data by artificial gradients computed based on the FL global model. We call this new GAN architecture ARgan.
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 34 FIGURE 3.4: Comparison between ARgan structure and regular GAN structure. A regular GAN's discriminator is fed with real data samples. In ARgan, no real data samples are needed. The FL model is augmented with an additional output in the last layer and the same architecture is used for the ARgan's discriminator.
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 35 FIGURE 3.5: Overview of ARgan. It produces synthetic class representative set D t , including benign data samples as well as backdoor samples
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 36 FIGURE 3.6: Overview of MORpheus. It uses the synthetic class representative dataset produced by ARgan, and monitors loss variations to mitigate backdoors

  ARMOR Compare to Other Federated Learning Defenses 4.3 evaluates the success of the edge-case backdoor task in a FL system, with MNIST, FashionMNIST and Cifar-10 datasets, in respectively Figures 4.3(a), 4.3(b) and 4.8(a).
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 4 FIGURE 4.1: Impact of edge-case backdoors on main task accuracy and backdoor task accuracy, with different datasets, without a FL defense (left side) and with ARMOR FL defense (right side). Attacks start at round 50, and occur every round

  (a) Static θ = exp(-0.2) (b) Static θ = exp(-1) (c) Adaptive θ
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 42 FIGURE 4.2: Impact of edge-case backdoors on main task accuracy and backdoor task accuracy, with ARMOR. Attacks start at round 30, and occur every round. Different values of ARMOR's θ mitigation parameter are considered: (a) static value θ = exp(-0.2); (b) static value θ = exp(-1); (c) adaptive value of θ
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 4041043 FIGURE 4.3: Effectiveness of edge-case backdoor attacks, with ARMOR and existing FL defenses, and with different datasets. Attacks start at round 50, and occur every round.
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 44 FIGURE 4.4: Trade-off between resilience to edge-case backdoors and model utility, through edge-case backdoor task accuracy vs. main task accuracy, with ARMOR and existing defense mechanisms.
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 45 FIGURE 4.5: Effectiveness of edge-case backdoor attacks, with various numbers of attackers, under ARMOR and other existing FL defenses. Attacks start at round 50, and occur every round. Considered ratios of clients that represent attackers: (a) 20%; (b) 50%; (c) 60%
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 47 FIGURE 4.7: Edge-case backdoor task accuracy, with ARMOR and other existing FL defenses. Attacks occur every round starting from: (a) round 3; (b) round 5; (c) round 30
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 48 FIGURE 4.8: Effectiveness of edge-case backdoor attacks, with ARMOR and existing FL defenses. Attacks start at round 50, and occur every round, with Cifar-10. Model poisoning on the left side and data poisoning on the right side.
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 49 FIGURE 4.9: Membership inference attack against vanilla GAN vs. ARgan
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 61 FIGURE 6.1: Overview of DINAR
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 62 FIGURE 6.2: Layer-level analysis of divergence between member data samples and non-member data samples, using Jensen-Shannon divergence, when FL models are not protected against membership inference attacks -FL models of GTSRB and CelebA have eight convolutional layers, and FL models of Texas100 and Purchase100 have six fully connected layers
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 72 FIGURE 7.2: Model loss distribution in different FL defense scenarios. The dark curve shows the loss distribution for member records, and the light curve shows the distribution for non-members
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 28181 FIGURE 8.1: Membership inference attack in healthcare applications
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 82 FIGURE 8.2: Privacy leakage from edge computing image analysis -Impact on FL clients' models protected with existing FL privacypreserving mechanisms. The dashed line in first plot indicates the optimal privacy value.
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 83 FIGURE 8.3: PASTEL pipeline at the client-side
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 45 PASTEL algorithm on FL client i Inputs:W: Global FL model parameters (X , Y ) = {(X 1 , Y 1 ), . . . , (X k , Y k )}: Client'straining data, i.e., member data (: Client's non-member data Output: W i : Client's model parameters // Initialization 1 W i ← W 2 foreach local training epoch do 3 foreach (X j , Y j ) ∈ (X , Y ) do // Perform forward pass 4 Y j ← W i (X j ) // Compute model loss acc ← L(Y j , Y j ) // Compute privacy leakage loss 6

9 return W i

 i Improving Accuracy with Adaptive Gradient Descent. In addition to countering MIAs, PASTEL aims to improve the model utility FL clients, i.e., by maximizing client model accuracy as defined in §9.1.5. Thus, for each client i, the loss function L of its local model W i . The loss function L is the summation of errors of W i for each sample of the models training and testing set. It L is computed with the cross entropy function described in Eq. (8.8), with M the number of output classes of the model, a a binary indicator equals to 1 if class label c is the true class and 0 if not 88 Chapter 8. PASTEL: Mitigating Membership Inference Attacks in Federated Learning for observation o, and b is the probability that observation o is of class c. The goal of model training is to minimize L.
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 84 FIGURE 8.4: Loss histogram with Purchase100 with fully connected neural network
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 9294 FIGURE 9.2: Privacy leakage with PASTEL and state-of-the-art protection mechanisms -Image Dataset
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 94 FIGURE 9.4: Privacy-Utility tradeoff with PASTEL and state-of-the-art protection mechanisms
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 95 FIGURE 9.5: Loss histogram with Purchase100 with fully connected neural network

Figure 9 .

 9 Figure 9.7(a) and Figure9.7(b) present the scalability of the privacy (i.e., resilience to MIA attacks) of PASTEL and state-of-the-art solutions depending on how far is a FL setting non-IID. Overall, and espacillay without defense, higher is the α Dirichlet parameter, higher is the attack success. This behavior remains true with CDP defense as well. Interestingly, with PASTEL and other defense mechanisms such as LDP and WDP, the defense success is poorly impacted by the degree of non-IID setting. Thus, PASTEL is able to maintain a good privacy protection against MIA attacks (cf. Figures 9.6(a) -9.6(h)) in non-IID FL settings.
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1. Model Updates Selection: In each FL round, Krum collects model

  

	Multi-Krum is an enhanced variant of the Krum defense mechanism introduced
	by Author et al. [13]. Multi-Krum combines the resilience properties of Krum with
	the convergence speed of model averaging, making it a powerful defense against ad-
	versarial attacks in Federated Learning. Here's how Multi-Krum extends the Krum
	approach:
	1. Model Updates Selection: Similar to Krum, Multi-Krum begins by collecting
	model updates from all participating FL clients in each training round.
	2. Distance Calculation: Multi-Krum calculates pairwise distances between the
	model update of each client and the updates of all other clients. This distance
	calculation employs metrics like Euclidean distance.
	3. Sorting by Distance: The computed distances are sorted in ascending order
	for each client, as in Krum. This sorting helps identify close neighbors for
	potential exclusion.
	4. Identifying Central Clients: Multi-Krum, like Krum, selects a set of central
	clients based on their rankings. These central clients are chosen to form a ro-
	bust subset for model aggregation.
	5. Aggregation: Where Multi-Krum differs from Krum is in its aggregation strat-
	egy. Instead of aggregating only the central clients' updates, Multi-Krum com-
	bines the central clients' updates with the updates from all clients. This com-
	bination leverages the robustness of Krum while benefiting from the conver-
	gence speed of averaging.
	updates
	from all participating clients. These updates represent the changes made to
	the model based on each client's local data.
	2. Distance Calculation: Krum calculates the pairwise distances between each
	client's model update and the updates of all other clients. This distance calcu-
	lation is typically based on metrics such as Euclidean distance.
	3. Sorting by Distance: The distances are then ranked in ascending order for
	each client. This ranking helps identify which clients' updates are the closest
	to the updates of other clients, making them candidates for potential exclusion.
	4. Identifying Central Clients: Krum selects a predefined number of central
	clients based on their rankings. The number of central clients chosen depends
	on the desired robustness level, with a lower number making the defense more
	resilient against adversarial attacks.
	5. Aggregation: The selected central clients' model updates are aggregated to
	compute the global FL model.

Robust- consious category Protection method Model utility Computation overhead Compatible with secure aggregation Does not require validation dataset

  

	2.5. Summary	19
	TABLE 2.1: Comparison of robust FL methods	
	They	
	operate by manipulating the model's behavior in a manner that goes unnoticed by	
	conventional defense mechanisms. Unlike conventional poisoning attacks that may	

Chapter 3 ARMOR: Mitigating Poisoning Attacks in Federated Learning 3.1 ARMOR Objectives

  

	Federated learning (FL) is a promising paradigm that is gaining grip in the context
	of privacy-preserving machine learning (ML) for ubiquitous computing systems.
	Thanks to FL, several data owners called clients (e.g., mobile devices in cross-device
	FL, or organizations in cross-silo FL) can collaboratively train a model on their pri-
	vate and decentralized data, without having to send their raw data to external ser-
	vice providers. To this end, clients iteratively update a global model using their local
	training data, and send only their model updates to a central party called the server
	that orchestrates the training process. The FL server aggregates the received model
	updates to produce a new version of the global model, which is, in turn, distributed
	to the clients.

Feder- ated Learning 3.2.1 Existing Defense Mechanisms Are Not Effective Against Edge- Case Backdoors.

  

TABLE 3 .

 3 

	1: Notations

kt Discriminator of class C k at round t Gen kt Generator of class C k at round t L attack Attacker loss function L(D t , w t ) Testing loss obtained when evaluating D t using the model w t L Gen (x, C f ake ) ARgan generator loss function L Dis (x, y) ARgan discriminator loss function C f ake Fake images label C real real images label T ARgan training epoch number

  Since the training data is kept private on workers' devices, this type of attack can not be directly detected by the FL server, since the latter can not check the labels of the training data of the worker. On the other hand, instead of tempering with training data, model poisoning attacks directly temper with the model updates. Thus, for a target poisoned version of the model, if the attacker has knowledge about the number of workers participating in the FL training round as well as the aggregation algorithm used by the FL server, the attacker can forge a model update that aims to bring the global

model very close to the poisoned model. In Figure

4

.8, we present results for data and model poisoning attacks both without defenses, with ARMOR and other stateof-the-art mechanisms. We notice that all the defense systems are more efficient with data poisoning attacks compared to model poisoning attacks, due to the nature of the attack. Actually, model poisoning attacks are designed more efficiently 44 Chapter 4. Experimental Evaluation of ARMOR

TABLE 4 .

 4 

				1: Cost of robust FL systems	
	Defense mechanism	FLTrust DLMP	Multi-Krum	NDC	Trimmed Mean	ARMOR
	Server-side cost	11 ms	9 ms	7 ms	8 ms	3 ms	2.1 s
	Client-side	minutes to hours, depending on underlying
	cost		cross-silo or cross-device FL workloads

  Building the Attack Model Training Dataset (D attack ): The attacker then constructs the dataset D attack , which will be used to train the attack model M attack . This dataset is created by considering two subsets: D attack Member and D attack NonMember . a. D attack Member is formed by taking the features of data records from D shadow train and assigning a label of 1 (indicating membership) to each record. b. D attack NonMember is formed by taking the features of data records from D shadow test and assigning a label of 0 (indicating non-membership) to each record. 3. Training the Attack Model (M attack ): With D attack in place, the attacker trains the attack model M attack using this dataset. The attack model learns the relationship between the features extracted from the shadow model's predictions (p shadow ) and the membership status labels (1 for members and 0 for nonmembers). Once trained, the attack model M attack can be utilized to make predictions about the membership status of a given data record r j . The attack model takes the class probability distribution (p target (r j )) of the target model's prediction as input. If the attack model outputs a value of 1, it indicates that the record r j is likely a member of the training set for M target , and if it outputs 0, it implies that the record is probably not part of the training set.

	5.1. Motivation	53
	2.	

4. Utilizing the Attack Model for Inference: 5. Maximizing the Attack Model's Performance: The attacker's final objective is to maximize the Area Under the Curve (AUC) of the attack model's predictions. This involves optimizing the attack model's ability to accurately distinguish between members and non-members while testing it against the class probability distribution (p target ) of the target model's predictions.

TABLE 5 .

 5 1: Comparison of FL privacy-preserving methods

	Privacy -preserving category	Protection method	Description	Model privacy	Model utility	Negligible overhead
			Apply homomorphic cryptography			
			to secure local models			
	Cryptography-	PEFL [118]	parameters without compromising its utility but causes high	✓	✓	✗
	based		computational overhead			
	methods		with IOT devices			
		HybridAlpha [111]	Use an SMC protocol based on functional encryption	✓	✓	✗
			Use multiparty computation			
			and modify the aggregation protocol,			
		[26]	allowing participants	✓	✓	✗
			to train without accessing			
			the global model.			
			Mixes layers between			
	TEE-based	MixNN [62]	participants before sending the mixed updates to	✓	✓	✗
	methods		the aggregation server			
	-		Protect sensitive layers			
		GradSec [77]	with TEEs to reduce the leakage and keep good	✓	✓	✗
			model utility			
			Introduce noise to the global			
			model prior to distributing			
			it to clients, it allows to reduce			
	-based methods Perturbation-	CDP [82]	computational overhead. model accuracy and significant but leads to compromised information leakage,	✓ / ✗	✗	✗
			Add noise to local			
			models before sharing			
		LDP [82]	with the server. it reduces model leakage but decrease	✓ / ✗	✗	✗
			model utilty and increase			
			computational overhead			
			This approach utilizes federated			
			GANs to generate			
			an artificial dataset based			
			on participants' data,			
			preserving privacy and reducing			
			information leakage.			
		FedGP [102]	However, it may face limitations	✓ / ✗	✗	✗
			such as training instability			
			and the need for a sufficient number			
			of training examples,			
			while its privacy guarantee is not as			
			strong as traditional differential			
			privacy methods.			
			By employing norm bounding			
			and introducing Gaussian			
			noise with a low magnitude,			
		WDP [99]	the utility remains	✗	✓	✗
			unaffected, while the effectiveness			
			of attack mitigation			
			is compromised			
			Obfuscate sensitive layers parameters			
	Our method	DINAR	in order to reduce layer-based generalization gap	✓	✓	✓
			without compromising model utility			
			Use multiobjective optimization			
		PASTEL	training to reduce	✓	✓	✓
			generalization gap			

The current landscape of machine learning has seen a surge in Federated Learning (FL), a paradigm addressing privacy concerns by enabling collaborative model training across decentralized devices. In FL, participants locally train models with private data, transmitting only model parameters to a central server for aggregation into a global model. Applications range from e-health monitoring to fraud detection. Despite its privacy advantages, FL systems face privacy inference attacks, notably Membership Inference Attacks (MIAs), which exploit shared model parameters to glean sensitive training data information. Various defense mechanisms, employing cryptographic methods, secure computation, trusted environments, and perturbation-based techniques, have been proposed

  1, through the successive stages of client model personalization (step ➊), adaptive model training for improving model utility (step ➋), and model obfuscation (step ➌). In the following, we first describe DINAR's model obfuscation in §6.2.4, before presenting DINAR's client model personalization in §6.2.5, and adaptive model training in §6.2.6. G + ∇L θ (Y k , Y k ) // Update local model with adaptive gradient descent 11 θ i ← θ iη ∇ θ .loss

	Algorithm 3: DINAR algorithm on FL Client i
	Input: θ: global model parameters
	Output: θ i : client model parameters
	Local variables: θ p * : parameters of private layer of client model i (B i , Y) = {(B i x , Y x )}: training batches of Client i 1 , Y 1 ), . . . , (B i η: learning rate
	// Model Personalization
	1 for j in {1..J} do
	2	if j ̸ = p then
		// Use j th layer parameters from global model
	3	θ	j i ← θ j	
	4	else			
		// Restore parameters of client's private layer
	5	θ	j i ← θ	i p	*
	// Adaptive Model Training
	// Set initial accumulated gradients matrix
	6 G ← 0			
	7 foreach local training epoch do
	8	foreach (B i k , Y k ) ∈ (B i , Y)) do // Perform local prediction
	9	Y k ← θ i (B i k ) // Compute new accumulated gradients
					√	G+1e -5
	// Model Obfuscation
	// Save parameters of client's private layer 12 θ p i p * ← θ i // Obfuscate parameters of client's private layer
	13 θ	p i ← random_values
	14 return θ i			

10

G ←

TABLE 6 .
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				1: Notations
	Notation Description
	N	Number of FL clients
	D i	Local training data of Client i
	W	Global FL model
		J		Number of layers in global FL model
	W i	Local model of Client i
		θ		Global model parameters
	θ i	Model parameters of Client i
	θ p i are the parameters of the private layer of W i
	θ	p i	*	Non-obfuscated parameters of private layer of W i stored on Client i
	η		Model learning rate
	L	Model loss function

j Parameters of the j th layer of global model θ j i Parameters of the j th layer of Client i 's model p The index of the private layer of a model, e.g., θ

  Chapter 7. Experimental Evaluation of DINAR algorithms and developing machine learning models for autonomous driving. We use VGG11 model architecture for this dataset[START_REF] Houben | Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark[END_REF][START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]. It consists in a tabular data sourced from the Texas Department of State Health Services, which encompasses information on inpatient stays across various health facilities. The dataset includes details like injury causes, diagnoses, performed surgeries, and general patient information (race, age, gender, ID, etc.). We use the same model as in Purchase100 for the classification task.

	Purchase100. It is a tabular dataset adapted from Kaggle's "Acquire Valued Shop-
	pers" challenge, consisting of 97,324 records with 600 binary features representing
	customer purchases. The goal was to classify customers into 100 types based on
	their buying behavior [93]. For modeling, we use a fully-connected neural network
	architecture with layers of sizes 4096, 2048, 1024, 512, 256, and 128, leveraging Tanh
	activation functions and a fully-connected classification layer [52].
	Texas100.

Sign Recognition Benchmark dataset comprises 51,389 records across 43 classes, specifically designed for traffic sign recognition. It captures realworld traffic scenarios, including variations in lighting, weather conditions, and camera angles. This dataset is widely used for evaluating traffic sign recognition

TABLE 7 .
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	1: Summary of used datasets
	Dataset	#Records #Features
	Cifar-10	50,000	3,072
	Cifar-100	50,000	3,072
	GTSRB	51,389	6,912
	Speech Commands	64,727	16,000
	Texas100	67,330	6,170
	Purchase100	97,324	600
	CelebA	202,599	4,096

TABLE 7 . 2 :

 72 Performance of DINAR with and without adaptive model training

	Performance	No defense	DINAR w/o adapt. train.	DINAR w/ adapt. train.
	Model accuracy	61%	59%	62%
	Local model privacy	78%	50%	50%
	Global model privacy	74%	50%	50%

  . The shadow model is trained on D shadow train , then the attacker creates the attack model training dataset D attack , such as : 8.3. System Model and Problem Formulation 83 D attack = D attack Member ∪ D attack NonMember (8.1) D attack Member = (p shadow (D shadow train )

		, 1	)	(8.2)
	f eatures	label	
	D attack NonMember = (p shadow (D shadow test )	, 0	
	f eatures		

label

)

TABLE 8 .
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	1: Notations

TABLE 9 . 1 :

 91 Used datasets and modelsWe run our experiments in a FL configuration with 5 clients for images and audio datasets, and 10 clients for Purchase100 and Texas100. For all datasets, we split the data into 4 disjoint splits of equal size (in accordance with the Membership Inference attack's optimal efficiency conditions[START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]) respectively corresponding to the target model's training and testing set, and the shadow model's training and testing set. We train a single shadow model used for running the attack against all models, while the target model's training set is split into disjoint slices of equal sizes, according to the number of clients, in an IID configuration. As classically done in privacy-preserving FL experiments, we use a test set that is the union of the test sets of all clients, and apply that union test set to all clients in a first time. We also compare to a more realistic scenario where each client makes use of its own test set. We conducted such a scenario with 3 different datasets and with the different baselines. This shows a negligible difference with the former case, below 1% for both attack AUC and model accuracy. Furthermore, we use the Adam[START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF] optimizer by default in the No-defense scenario and the Cross Entropy loss function in all scenarios. The model learning rate is 10 -3 when using Resnet20, VGG and M18 (for images and audio datasets), and 10 -4 for FCNNs with tabular datasets. For experiments using FCNNs on Purchase100 and Texas100, we run the experiments on 300 FL rounds with 10 local epochs per client, and we throw the membership inference attack starting from the 290th round. With VGG and ResNet on CelebA, GTSRB, Cifar-10 and Cifar-100, we run 50 FL rounds with 5 local epochs per clients, and we throw the attack from the 40th round. For the M18 model trained on Speech Commands, we run 80 FL rounds and we throw the attack from the 70th round.

	Dataset	#Records #Features	Model
	MotionSense	345,890	10	CNN with 3 convolutional layers and 4 FC layers
	CelebA	202,599	64x64	VGG11 (CNN) with batchnorm layers [95]
	GTSRB	51,389	3x48x48	VGG11 (CNN) with batchnorm layers [95]
	Cifar-10	50,000	3x32x32	ResNet20 (CNN) [44]
	Cifar-100	50,000	3x32x32	ResNet20 (CNN) [44]
				M18: 17 layers CNN
	Speech Commands	64,727	16,000	with a batchnorm layer after each convolutional layer,
				and a fully-connected classification layer
	Purchase100	97,324	600	6 hidden layers FCNN with respective sizes 4096, 2048, 1024, 512, 256 and 128
	Texas100	67,330	6,170	6 hidden layers FCNN with respective sizes 4096, 2048, 1024, 512, 256 and 128

  CDP reduces the attack AUC by only 6%, while the model's utility drops by almost 20%.

	98	Chapter 9. Experimental Evaluation of PASTEL
	Similarly,	

Our analysis reveals that state-of-the-art mechanisms such as WDP and LDP offer reasonable mitigation rates against the attack, but they also exhibit a negative impact on the model's utility. For instance, on the Cifar-10 dataset, WDP only reduces the attack AUC by 2% on the global model and 3% on the local models.

TABLE 9 .

 9 2: Cost of FL privacy-preserving mechanisms in terms of training time and FL aggregation time and memory usage

	9.3. Tradeoff Between Privacy and Utility

* 

The computational costs of the Secure Aggregation mechanism are estimated on the basis of the experimental results provided in

[START_REF] Zheng | Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization[END_REF]

. 106 Chapter 9. Experimental Evaluation of PASTEL Server-Side Aggregation Time.
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Chapter 7. Experimental Evaluation of DINAR Cost-Related Metrics. We also evaluate the additional costs that can be induced by a privacy-preserving FL mechanism, both in terms of execution times and memory usage. For instance, we measure the necessary time for a client to train a model during a FL round. We also measure the necessary time for the FL server to perform aggregation of client model updates. Finally, we measure the memory used by a client during model training,. 

Experimental Results

Evaluation of Privacy Protection

We first measure the effectiveness of DINAR at countering membership inference attacks, i.e., minimizing the overall model privacy metric described in §7.1.4 for attacks against both global and local models. The attacker runs a white box membership inference attack, as described [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. For each dataset and respectively considered model, we compare DINAR with defense baselines. We partition the data into training and test sets, with the attacker's prior knowledge corresponding to half of these datasets. The success of the membership inference attack is then assessed on the remaining half. We systematically evaluate Model accuracy (%)