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Cette thèse est consacrée à la construction d'actions géométriques sur des espaces à courbure négative ou nulle. Une première partie étudie les groupes de Dyer, qui généralisent les groupes de Coxeter et les groupes d'Artin à angles droits. Nous démontrons que ces groupes sont des sous-groupes distingués d'indice fini de groupes de Coxeter. Nous construisons ensuite des actions géométriques de groupes de Dyer sur des complexes euclidiens par morceaux, qui étendent les actions de groupes de Coxeter sur les complexes de Davis-Moussong et les actions de groupes d'Artin à angles droits sur les complexes de Salvetti. Les complexes euclidiens par morceaux construits sont CAT(0). La seconde partie de cette thèse est consacrée aux complexes simpliciaux systoliques. Nous donnons une réponse à la question suivante : soit G un groupe avec présentation finie ⟨S | R⟩. Quelles sont des conditions nécessaires et suffisantes sur S pour que le complexe de drapeaux du graphe de Cayley de G soit systolique? Nous appliquons notre résultat aux groupes de Garside et aux groupes d'Artin.

Introduction

One approach to the study of discrete groups is the construction of properly discontinuous and cocompact actions by isometries on locally compact spaces with interesting geometric properties. We will be focusing on proper metric spaces with non-positive curvature. A classical notion of curvature is the sectional curvature of a Riemannian manifold. Alexandrov generalized the Riemannian curvature notion to metric spaces. Gromov popularized this notion unter the name CAT(κ)inequality, in honour of Cartan, Alexandrov and Topogonov. A presentation of the properties of CAT(κ) spaces and of groups acting on them can be found in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF]. CAT(0) cube complexes have been a subject of a particular interest in this context. In [START_REF] Januszkiewicz | Simplicial nonpositive curvature[END_REF], Januszkiewicz and Świątkowski introduced systolicity as a non-positive curvature criterion for simplicial complexes. Other notions of nonpositive curvature have attracted attention recently such as weakly modular graphs [START_REF] Chalopin | Weakly modular graphs and nonpositive curvature[END_REF], Helly graphs [START_REF] Huang | Helly meets Garside and Artin[END_REF] or injective metric spaces [START_REF] Lang | Injective hulls of certain discrete metric spaces and groups[END_REF]. However the work in this thesis focuses in a first part on the construction of geometric actions of Dyer groups on CAT(0) spaces and in a second part on the construction of geometric actions of Garside groups on systolic complexes.

Let X be a geodesic metric space. A geodesic triangle T in X consists of the union of three points x, y, z ∈ X, its vertices, and three geodesic segments [x, y], [y, z] and [x, z] joining them. A geodesic triangle T in the Euclidean plane R 2 with vertices x, y, z ∈ R 2 satisfying d(x, y) = d(x, y), d(y, z) = d(y, z) and d(x, z) = d(x, z), is called a comparison triangle for T . A point p ∈ [x, y] is a comparison point for p ∈ [x, y] if d(p, x) = d(p, x). Comparison points on [y, z] and [x, z] are defined similarly. The triangle T satisfies the CAT(0) inequality if for all p, q ∈ T and all comparison points p, q ∈ T we have d(p, q) ≤ d(p, q). The geodesic metric space X is said to be CAT(0) if all geodesic triangles satisfy the CAT(0) inequality. In Chapter 1 we will also define CAT(κ) spaces for any real number κ. The other curvature related notion of interest in this thesis are systolic complexes. A simplicial complex X is systolic if it is simply connected and the link of every vertex is 6-large, where 6-large means it is a flag complex and all cycles of length 4 or 5 have diagonals. More generally one can consider k-systolic complexes for any k ∈ N. A group G is said to be CAT(0), resp. systolic, if it acts geometrically on a proper CAT(0) space, resp. a proper systolic complex. However the two notions are not equivalent, as we will see in Section 1.3.

The first class of groups studied in this thesis are Dyer groups. In his study of reflection subgroups of Coxeter groups [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF], Dyer introduces a family of groups which contains both Coxeter groups and graph products of cyclic groups. A close study of [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF] also implies that this class of groups, which we call Dyer groups, has the same solution to the word problem as Coxeter groups, given by Tits [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF], and graph products of cyclic groups, given by Green [START_REF] Ruth Green | Graph products of groups[END_REF]. Similarly to Coxeter groups and right-angled Artin groups, the presentation of a Dyer group can be encoded in a graph. Consider a simplicial graph Γ with set of vertices V = V (Γ) and set of edges E = E(Γ), a vertex labeling f : V → N ≥2 ∪{∞} and an edge labeling m : E → N ≥2 . We say that the triple (Γ, f, m) is a Dyer graph if for every edge e = {v, w} with f (v) ≥ 3 we have m(e) = 2. The associated Dyer group D = D(Γ, f, m) is given by the following presentation So one can see that in particular Coxeter groups and right-angled Artin groups are examples of Dyer groups. It is natural to ask the following question. Consider a property P satisfied by both Coxeter groups and graph products of cyclic groups. Do Dyer groups also satisfy P? There is extensive literature on Coxeter groups as well as on right-angled Artin groups and graph products of cyclic groups. In [START_REF] Davis | Right-angled Artin groups are commensurable with right-angled Coxeter groups[END_REF] Davis and Januszkiewicz show that right-angled Artin groups are finite index subgroups of right-angled Coxeter groups. For a right-angled Artin group A, they give right-angled Coxeter groups W and W ′ where W ′ and A are both finite index subgroups of W and moreover the cubical complexes corresponding to A and W ′ are identical. Inspired by this work, we consider the following question: Are Dyer groups finite index subgroups of Coxeter groups? Out of a Dyer graph (Γ, f, m), we build a Dyer graph (Λ, g, n). By construction, we have g(v) = 2 for all v ∈ V (Λ), so D(Λ, g, n) is a Coxeter group, which we denote by W (Λ). We prove the following statement.

D = ⟨x v , v ∈ V | x f (v) v = e if f (v) ̸ = ∞, [x v , x u ] m(e) = [x u , x v ] m(
Theorem (Theorem 3.1.8). We have W (Λ) ∼ = D(Γ, f, m) ⋊ ξ (Z/2Z) k for some determined k ∈ N and action ξ : (Z/2Z) k × D(Γ, f, m) → D(Γ, f, m).

The next corollary is a direct consequence.

Corollary (Corollary 3.1.9). Every Dyer group is a finite index subgroup of some Coxeter group. This has many interesting consequences, among others it implies that Dyer groups are CAT(0) [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]Theorem 12.3.3], linear [Bou81, Corollary 2], and biautomatic [START_REF] Osajda | Coxeter groups are biautomatic[END_REF]. This is the starting point for a more precise study of their geometry. Coxeter groups are known to act geometrically by isometries on the Davis-Moussong complex, right-angled Artin groups are known to act geometrically by isometries on the Salvetti complex. Moreover graph products of cyclic groups are known to be CAT(0) by [START_REF] Genevois | Cubical-like geometry of quasi-median graphs and applications to geometric group theory[END_REF]Theorem 8.20]. The aim is to construct an analog of the Davis-Moussong and Salvetti complexes for Dyer groups and by way of the construction give a unified description of them. The piecewise Euclidean cell complex Σ associated with a Dyer group D is constructed as follows. One considers an appropriate simple category without loops X and a complex of groups D(X ). The development C of D(X ) will then encode the necessary information in order to build Σ.

Theorem (Theorem 3.2.22). The cell complex Σ is CAT(0).

The second class of groups studied here are Garside groups. They were introduced by Dehornoy and Paris in [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF] as a generalization of spherical Artin groups. The Garside structure of a Garside group naturally gives a presentation leading to a simplicial Cayley graph, we call this the Garside presentation of a Garside group. So it is natural to ask when the flag complex of the Cayley graph with respect to the Garside presentation is systolic. More generally, any group endowed with a finite generating set acts geometrically on its Cayley graph. Can we give conditions on a group presentation which ensure that the flag complex of its Cayley graph is well-defined and systolic? We introduce the notion of a restricted triangular presentation. We say that a presentation ⟨S | R⟩ of some group G is a restricted triangular presentation if S ∩ S -1 = ∅, R = {a • b • c -1 | a, b, c ∈ S and abc -1 = e in G} and for a, b, c ∈ S abc ∈ S implies ab, bc ∈ S. Note that the Garside presentation of a Garside group is a restricted triangular presentation. We have the following result.

Theorem. (Theorem 4.2.5) Consider a group G endowed with a finite generating set S, where G has a finite restricted triangular presentation with respect to S. Then the complex Flag(G, S) is a simply connected simplicial complex. It is systolic if and only if the generating set S satisfies the following conditions: Moreover, this implies that G is a systolic group.

An important class of examples are the following Garside groups. Consider the following definitions. Let x 1 , . . . , x n be n letters and let m be a positive integer. We define prod(x 1 , . . . , x n ; m) = x 1 x 2 . . . x n x 1 x 2 . . . m and prod(x 1 , . . . , x n ; 0) = e. Consider the group G n,m = ⟨x 1 , . . . , x n | prod(x 1 , . . . , x n ; m) = prod(x 2 , . . . , x n , x 1 ; m) = . . . = prod(x n , x 1 , . . . , x n-1 ; m)⟩.

Consider the following set of generators

S n,m = {prod(x i , . . . , x i+n ; k) | 1 ≤ i ≤ n, 1 ≤ k ≤ m} ⊂ G,
where we consider all indices modulo n. Moreover let ∆ n,m = prod(x 1 , . . . , x n ; m) ∈ G n,m .

By Theorem 4.2.5, Flag(G n,m , S n,m ) is systolic. Applying Theorem 4.2.5 to the Garside presentation of a Garside group gives the following characterization.

a 1 a 4 a 3 a 2 Figure 1: a misdirected 4-cycle assignment o(e) for each edge e ∈ E(Γ) where o(e) is a set of one or two endpoints of e. An edge with both endpoints assigned is bioriented. The startpoint i(e) is an assignment of one or two startpoints of e. If o(e) consists of one point, i(e) consists of one point such that e = (i(e), o(e)), if o(e) consists of two points then so does i(e). So the startpoint i(e) is consistent with the choice of o(e). We say that a cycle γ is directed if for each v ∈ γ there is exactly one edge e ∈ γ with v ∈ o(e). A cycle is undirected if it is not directed. We say that a 4-cycle γ = (a 1 , a 2 , a 3 , a 4 ) is misdirected if a 2 ∈ o(a 1 , a 2 ), a 2 ∈ o(a 2 , a 3 ), a 4 ∈ o(a 3 , a 4 ) and a 4 ∈ o(a 4 , a 1 ), see Figure 1.

Given a finite labeled simplicial graph Γ, the Artin group associated with Γ is given by Theorem. (Theorem 4.3.21) Let Γ be a simplicial graph, with edges labeled by numbers ≥ 2 and with an orientation o such that an edge is bioriented if and only if it has label 2. Assume that every 3-cycle is directed and no 4-cycle is misdirected. Let A Γ be the Artin group associated with Γ. Then there exists a presentation of A Γ which is systolic.

A Γ = ⟨s v , v ∈ V | [s v s w s v . . . ] me = [s w s v s w . . .
This manuscript is structured as follows. Chapter 1 is dedicated to the two notions of non-positive curvature we will consider. We define the more general notions of CAT(κ) spaces for κ ∈ R and k-systolic simplicial complexes for k ∈ N. We then concentrate on CAT(0) spaces and systolic complexes and mention some important results as well as examples. We finally compare the two notions. Indeed the geometric realization of a two-dimensional equilateral triangle complex is known to be CAT(0) if and only if the simplicial complex is systolic. We present known counter-examples to such a statement in higher dimensions. In Chapter 2, we provide necessary background on simple categories without loop (scwols) and complexes of groups. We also present the contruction of actions of Coxeter groups on their Davis-Moussong complexes, as well as actions of right-angled Artin groups on their Salvetti complexes. Chapter 3 is devoted to Dyer groups. We first recall the definition and show Theorem 3.1.8 mentioned above. Then we construct a cell complex Σ associated with any given Dyer group, generalizing the Davis-Moussong complex. In Chapter 4, we go back to simplicial non-positive curvature and show Theorems 4.2.5, 4.3.10 and 4.3.21.

Chapter 1

Non-positive curvature

In this chapter we recall definitions and properties of CAT(0) spaces and systolic complexes, the two notions of non-positive curvature considered in this thesis. In Section 1.1, we define CAT(0) spaces and give some of their properties. We also present Moussong's Lemma 1.1.16, which is an essential tool to show that a piecewise Euclidean cell complex is CAT(0). In Section 1.2, we define systolic complexes, mention important properties and give some examples. In Section 1.3, we compare those two notions of non-positive curvature. In particular we present examples given by Januszkiewicz and Świątkowski showing that for a simplicial complex endowed with the standard metric these two notions are not equivalent.

1.1 CAT(0) spaces Definition 1.1.1. Let (X, d) be a metric space. A geodesic segment, or simply a geodesic, from x ∈ X to y ∈ X is the image of an isometric embedding c from an interval [0, ℓ] ⊂ R to X such that c(0) = x and c(ℓ) = y. We also call ℓ the length of the geodesic. A metric space (X, d) is geodesic if any two points x, y ∈ X can be joined by a geodesic.

Let κ ∈ R. In order to define CAT(κ) spaces, we first need to introduce the model space M 2 κ , which denotes the (unique up to isometry) simply connected, complete, Riemannian 2-manifold of constant curvature κ. More concretely, if κ = 0, we define M 2 κ to be the Euclidean plane R 2 . If κ > 0, we define M 2 κ to be the 2-sphere S 2 with its metric rescaled so that its curvature is κ, i.e. it is the sphere of radius 1/ √ κ. If κ < 0, we define M 2 κ to be the real hyperbolic plane H 2 with its metric rescaled, i.e. distances are multiplied by 1/ √ -κ. Let D κ be the diameter of M κ , so it is equal to π/ √ κ if κ > 0 and +∞ otherwise. 

+ d(y, z) + d(x, z) < 2D κ . A point p ∈ [x, y] is a comparison point for p ∈ [x, y] if d(p, x) = d(p, x).
Comparison points on [y, z] and [x, z] are defined similarly.

Definition 1.1.3. Let X be a metric space and κ ∈ R. Let T be a geodesic triangle in X with perimeter less than 2D κ . Let T be a comparison triangle in M 2 κ . The triangle T satisfies the CAT(κ) inequality if for all p, q ∈ T and all comparison points p, q ∈ T , we have d(p, q) ≤ d(p, q). Definition 1.1.4. For κ ≤ 0, a geodesic metric space X is said to be CAT(κ) if every geodesic triangle satisfies the CAT(κ) inequality. If κ > 0, a D κ -geodesic space X is said to be CAT(κ) if every geodesic triangle of perimeter less than 2D κ satisfies the CAT(κ) inequality. (Here D κ -geodesic means that all pairs of points x, y ∈ X with d(x, y) < D κ are joined by a geodesic.) A metric space X is said to be of curvature ≤ κ if it is locally a CAT(κ) space, i.e. if for every x ∈ X there exists r x > 0 such that the ball B rx (x), endowed with the induced metric, is a CAT(κ) space. A discrete group G is CAT(κ) if it acts properly discontinuously and cocompactly on a proper CAT(κ) space.

Example 1.1.5. Convex subsets of CAT(0) spaces are CAT(0). If X and Y are CAT(0) spaces, then the product space X × Y endowed with the ℓ 2 metric is CAT(0).

Example 1.1.6. In Chapter 2 Sections 2.2 and 2.3, we will present the Davis-Moussong complex associated to a Coxeter group and the Salvetti complex associated to a right-angled Artin group, which are both examples of CAT(0) spaces.

Let us state some fundamental results about CAT(κ) spaces.

Proposition 1.1.7. ([BH99, Proposition II.1.4]) Let X be a CAT(κ) space. Then there is a unique geodesic segment joining each pair of points x, y ∈ X provided that d(x, y) < D κ , and this geodesic segment varies continuously with its endpoints. Moreover the balls of radius less than D κ are contractible.

Corollary 1.1.8. ([BH99, Corollary II.1.5]) For κ ≤ 0, any CAT(κ) space is contractible, in particular it is simply connected and all of its homotopy groups are trivial.

Theorem 1.1.9. ([BH99, Cartan-Hadamard Theorem II.4.1]) Let X be a complete connected metric space and κ ≤ 0. If X is of curvature ≤ κ, then any universal cover X of X is a CAT(κ) space. Some notable properties of CAT(0) groups are mentioned in the next two theorems.

Theorem 1.1.10. [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]Theorem I.4.1.]) Suppose G is a CAT(0) group. Then 1. There is a model for EG (the universal space for proper G-actions) with EG/G compact.

The group G is finitely presented.

3. There are only finitely many conjugacy classes of finite subgroups in G. As we will be constructing a Euclidean polyhedral complex in Chapter 3, we give some criteria for recognizing when such a complex is CAT(0). Definition 1.1.12. Let K be a Euclidean polyhedral complex. Let v be a vertex in K. The link complex Lk(v, K) of v in K is the set of directions at v. It is naturally endowed with a piecewise spherical simplicial cell structure. Definition 1.1.13. An M κ -polyhedral complex K satisfies the link condition if for every vertex v ∈ K the link complex Lk(v, K) is a CAT(1) space.

We have cd

Q (G) < ∞.

The cohomology space

Theorem 1.1.14. ([BH99, Theorem II.5.4]) Let K be an M κ -polyhedral complex with only finitely many isometry types of cells. If κ ≤ 0, the following conditions are equivalent:

1. K is a CAT(κ) space.
2. K is uniquely geodesic.

K satisfies the link condition and contains no isometrically embedded circles.

4. K is simply connected and satisfies the link condition.

If κ > 0 then the following conditions are equivalent:

1. K is a CAT(κ) space. 2. K is (π/ √ κ)-uniquely geodesic.
3. K satisfies the link condition and contains no isometrically embedded circles of length less than 2π/ √ κ.

The main tool used to check the link condition for Euclidean cell complexes is Moussong's Lemma. Definition 1.1.15. A simplicial complex L with a piecewise spherical structure has simplices of size ≥ π/2 if each of its edges has length ≥ π/2. Such a simplicial complex is a metric flag complex if the following condition holds. Suppose the set {v

0 , . . . , v k } is a set of pairwise adjacent vertices of L. Put c ij = cos(d(v i , v j )).
Then {v 0 , . . . , v k } spans a simplex if and only if the matrix (c ij ) 0≤i,j≤k is positive definite.

Lemma 1.1.16 (Moussong's Lemma [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF] Lemma I.7.4.). Suppose L is a piecewise spherical simplicial cell complex in which all cells are simplices of size ≥ π/2. Then L is CAT(1) if and only if it is a metric flag complex.

Remark 1.1.17. Let K be a simplicial complex endowed with a piecewise Euclidean metric. Then the link Lk(v, K) of any vertex v is a piecewise spherical simplicial complex but not all simplices in Lk(v, K) are of size ≥ π/2. So we cannot apply Moussong's Lemma directly to such a setting.

For cube complexes, this characterization was given earlier by Gromov.

Corollary 1.1.18. ([Dav08, Corollary I.6.3.]) A piecewise Euclidean cubical complex X is nonpositively curved if and only if the link of each of its vertices is a metric flag complex.

In Chapter 3, we will be studying the link complex in the future piecewise Euclidean cell complex Σ. We will need the notion of spherical joins, which we define here. Definition 1.1.19. [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF][Appendix I] The spherical join of two metric spaces (X, d x ) and (Y,

d y ) is X ⋆ Y = (X × Y × [0, pi/2])/ ∼,
where ∼ is defined by: (x, y, θ) ∼ (x ′ , y ′ , θ ′ ) whenever θ = θ ′ = 0 and x = x ′ or θ = θ ′ = 1 and y = y ′ . We define a metric

d X π on X by d X π (x, x ′ ) = min{π, d X (x, x ′ )} and a metric d Y π on Y by d Y π (y, y ′ ) = min{π, d Y (y, y ′ )}.
We denote the image of (x, y, θ) in X ⋆ Y by cos(θ)x + sin(θ)y. The distance d between points z = cos(θ)x + sin(θ)y and z ′ = cos(θ ′ )x ′ + sin(θ ′ )y ′ is defined by requiring it to be at most π and satisfying cos

(d(z, z ′ )) = cos(θ) cos(θ ′ ) cos(d X π (x, x ′ )) + sin(θ) sin(θ ′ ) cos(d Y π (y, y ′ )).
The following result is important to understand iterated joins.

Lemma 1.1.20. Let (X, d X ), (Y, d Y ) be metric spaces. Then the product of Euclidean cones Cone 0 (X) × Cone 0 (Y ) endowed with the product metric is isometric with Cone 0 (X ⋆ Y ).

Systolic complexes

For simplicial complexes, Januszkiewicz and Świątkowski introduced a notion of non-positive curvature inspired by the characterizations of CAT(0) cube complexes.

Definition 1.2.1. Let X, Y be simplicial complexes. We denote its k-skeleton by X (k) . Then X (0) is the set of vertices of X. The subcomplex spanned by A ⊂ X (0) is the largest subcomplex of X which has A as its set of vertices. For a simplex σ ∈ X we can define its link in X,

Lk(σ, X) = {τ ∈ X | τ ∩ σ = ∅ and τ ∪ σ ∈ X}.
The join X ⋆ Y of X and Y is the simplicial complex, whose simplicies are the disjoint union of simplices in X and Y so

X ⋆ Y = {σ ⊔ τ | σ ∈ X, τ ∈ Y }.
Remark 1.2.2. Let X, Y be simplicial complexes. If X and Y are each endowed with a piecewise spherical structure, their simplicial join X ⋆ Y will carry the piecewise spherical struture of the spherical join given in Definition 1.1.19. In particular the distance between two vertices v ∈ X ⊂ X ⋆ Y and y ∈ Y ⊂ X ⋆ Y is π/2. Moreover using Lemma 1.1.20, one can see that the iterated spherical join ⋆ n i=1 X i of piecewise spherical simplicial complexes X i , i ∈ {1, . . . , n} is a well defined piecewise spherical simplicial complex. Its combinatorial structure is given by the (combinatorial) join ⋆ n i=1 X i defined in 1.2.1. Denote with d i the metric on

X i . The distance d between two vertices u, v in ⋆ n i=1 X i is d(u, v) = max{π, d i (u, v)} if u, v ∈ X i for some i ∈ {1, . . . , n} and d(u, v) = π/2 otherwise.
Definition 1.2.3. The simplicial complex X is a flag complex if any set of pairwise adjacent vertices spans a simplex in X.

Remark 1.2.4. A flag complex X is uniquely determined by its 1-skeleton. Moreover the link of a vertex v ∈ X is the subcomplex spanned the set of vertices adjacent to v. Definition 1.2.5. Let X be a simplicial complex. A cycle in X is the image of a simplicial map f : S 1 → X from a triangulation of the 1-sphere to X. If f is injective, the cycle is said to be embedded. Let γ be an embedded cycle in X. The length |γ| of γ is the number of edges of γ. We say that γ is a |γ|-cycle. A diagonal of γ is an edge that connects two nonconsecutive vertices of γ. An embedded cycle is diagonal-free if there are no edges between nonconsecutive vertices. We say that two vertices v and w are adjacent if there exists an edge between v and w, we then write v ∼ w. For every k ∈ N, a simplicial complex is k-large, if it is flag and every embedded cycle γ with 4 ≤ |γ| < k has a diagonal. Definition 1.2.6. A simplicial complex X is systolic if it is connected, simply connected and if the links of all vertices in X are 6-large. A group G is called systolic if it acts cocompactly and properly by simplicial automorphisms on a systolic complex X. (Properly means that X is locally finite and for each compact subcomplex K ⊂ X the set of g ∈ G such that g(K) ∩ K ̸ = ∅ is finite.) If the links of all vertices of X are additionally k-large with k ≥ 6, we call it (and the group) k-systolic.

Remark 1.2.7. Januszkiewicz's and Świątkowski's original definition given in [START_REF] Januszkiewicz | Simplicial nonpositive curvature[END_REF] of a k-systolic complex required that the links of all simplices be k-large. Moreover by [JŚ06, Proposition 1.4] a k-systolic complex with k ≥ 6 is k-large.

Let us consider some examples of systolic complexes and groups.

Example 1.2.8. ([JŚ06, Example 1.8.]) The triangulation of the Euclidean plane by equilateral triangles is systolic. The triangulation of the hyperbolic plane by equilateral triangles with angles 2π/m, m ≥ 7 is m-systolic. The triangulation of the 2-sphere is never k-large, for any k ≥ 6.

Remark 1.2.9. By [JŚ07, Corollary 6.4], there is no systolic simplicial subdivision of R n for n > 2. In particular there are no systolic flats of dimension strictly greater than 2.

Remark 1.2.10. Note that the Cayley 2-complex of ⟨a, b, ∆ | ∆ = ab, ∆ = ba⟩ ∼ = Z 2 is simplicially isomorphic to the triangulation of the Euclidean plane by equilateral triangles. In particular it is systolic. In Chapter 4 we will investigate the following question: When is the flag complex of a Cayley graph systolic? Example 1.2.11. By [START_REF] Elsner | Square complexes and simplicial nonpositive curvature[END_REF], the product of two free groups F n × F m , n, m ≥ 2 is systolic. More generally Elsner and Przytycki show that the fundamental group of 1.3. CAT(0) VERSUS SYSTOLIC a compact nonpositively curved VH-complex is systolic. In particular any rightangled Artin group with bipartite defining graph is systolic.

Let us state some results about systolic complexes and groups.

Theorem 1.2.12. [JŚ06, Theorem 4.1.1] Any finite dimensional systolic complex is contractible.

Theorem 1.2.13. [START_REF] Januszkiewicz | Simplicial nonpositive curvature[END_REF]Theorem 13.1] Let G be a systolic group. Then G is biautomatic. In particular, this implies the solvability of the Word Problem and of the Conjugacy Problem and a quadratic Dehn function.

Remark 1.2.14. In [START_REF] Huang | Large-type Artin groups are systolic[END_REF], Huang and Osajda show that Artin groups of almost large type are systolic and hence biautomatic by Theorem 1.2.13. In [START_REF] Holt | Biautomatic structures in systolic Artin groups[END_REF], Holt and Rees describe a slightly simpler variant of the biautomatic structure.

Lemma 1.2.15. [START_REF] Zadnik | Finitely presented subgroups of systolic groups are systolic[END_REF] Finitely presented subgroups of systolic groups are systolic.

Theorem 1.2.16. [START_REF] Osajda | Classifying spaces for families of subgroups for systolic groups[END_REF]Proposition 5.6] The centraliser of an infinite order element in a systolic group is commensurable with F n × Z, where F n is the free group on n generators for some n ≥ 0.

Theorem 1.2.17. ([HO20, Theorem 2.2]) Solvable subgroups of systolic groups are either virtually cyclic or virtually Z 2 . Remark 1.2.18. Lemma 1.2.15 together with Remark 1.2.9 implies that if G is a group with Z 3 < G, then G is not systolic.

CAT(0) versus Systolic

We discuss the relationship between the CAT(0) and the k-systolic conditions. For a two-dimensional simplicial complex the connection between the CAT(0) and the systolic conditions is clear. Lemma 1.3.1. The geometric realization of a two-dimensional equilateral triangle complex X is CAT(0) if and only if the simplicial complex is systolic.

Proof. This follows from [BH99, Lemma II.5.6] and [BH99, Proposition II.5.25].

In higher dimensions Januszkiewicz und Świątkowski showed that the CAT(0) and the systolic conditions are not equivalent. One can build simplicial complexes of dimension n > 2 that are either systolic but not CAT(0) or CAT(0) but not systolic.

CHAPTER 1. NON-POSITIVE CURVATURE

Example 1.3.2 (CAT(0) but not systolic). [JŚ06, Section 14] Let n ∈ N. Let Y n be the simplicial join of an (n -2)-dimensional simplex σ and a 1-dimensional cycle consisting of 5 edges. The link Lk(σ, Y n ) is not 6-large so Y n is not systolic. But the dihedral angle β n between two codimension 1 faces in the regular n-simplex grows to π/2 as n goes to ∞. Moreover β n > 2π/5 for all n ≥ 4. So Y n is CAT(0) but not systolic for all n ≥ 4.

Example 1.3.3 (systolic but not CAT(0)). [JŚ06, Section 14] Let v 1 , v 2 , v 3 be vertices and e 1 , e 2 , e 3 be 1-simplices. Let X be the simplicial cone over

(v 1 ⋆ e 1 ) ∪ (e 1 ⋆ v 2 ) ∪ (v 2 ⋆ e 2 ) ∪ (e 2 ⋆ v 3 ) ∪ (v 3 ⋆ e 3 ) ∪ (e 3 ⋆ v 1 ).
Then X is 6-systolic but the link of the cone vertex contains a closed geodesic of length < 2π. Indeed in a regular Euclidean 3-simplex the angle α between a 2-face and a 1-face is less than π/3. The construction can be extended to higher dimensions. Let k ≥ 6, n ∈ N. Let X be the simplicial cone over i∈Z/kZ σ i ⋆ σ i+1 where each σ j , 1 ≤ j ≤ k is an n-dimensional simplex. Then X is k-systolic but not CAT(0). Remark 1.3.4. In [START_REF] Januszkiewicz | Simplicial nonpositive curvature[END_REF]Theorem 16.1] Januszkiewicz and Świątkowski show that for k ≥ 7π √ 2 2 • n + 2, any k-systolic simplicial complex with dim(X) ≤ n is CAT(0) with respect to the standard piecewise Euclidean metric. By considering n = 2, we obtain k ≥ 34, hence this bound is clearly not optimal (by Lemma 1.3.1 we only need k ≥ 6). The question whether a 6-systolic complex admits a piecewise Euclidean metric for which it is CAT(0) remains open.

Remark 1.3.5. Besides the relationship between systolic complexes and CAT(0) spaces, one can wonder about the relationship between systolic groups and CAT(0) groups. Clearly CAT(0) does not imply systolic, as evidenced by the group Z 3 which is CAT(0) but not systolic. The question whether systolic groups are CAT(0) groups remains open.

Remark 1.3.6. Even though these two notions of non-positive curvature are not equivalent, they share many properties. For example in [START_REF] Elsner | Flats and the flat torus theorem in systolic spaces[END_REF] Elsner gives a Systolic Flat Torus Theorem. In [START_REF] Przytycki | The fixed point theorem for simplicial nonpositive curvature[END_REF] Przytycki gives a coarse fixed point result for systolic complexes.

Chapter 2

Complexes of groups

As mentioned in the introduction, Chapter 3 will be devoted to the construction of actions of Dyer groups on a Euclidean cell complex Σ and the proof of its nonpositive curvature. We present the necessary background here. The construction of Σ uses simple categories without loops and complexes of groups, introduced by Haefliger in [START_REF] Haefliger | Complexes of groups and orbihedra[END_REF], [START_REF] Haefliger | Extension of complexes of groups[END_REF]. We also develop some specific examples, used later on. These are presented in Section 2.1. The construction in Chapter 3 aims to generalize actions of Coxeter groups on the Davis-Moussong complex, presented in Section 2.2, and actions of right-angled Artin groups on the Salvetti complex, presented in Section 2.3. The material presented here also appeared in [START_REF] Soergel | A generalized Davis-Moussong complex for Dyer groups[END_REF].

Complexes of groups

Small categories without loops (scwols) and complexes of groups were introduced by Haefliger in [START_REF] Haefliger | Complexes of groups and orbihedra[END_REF], [START_REF] Haefliger | Extension of complexes of groups[END_REF]. Based on [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF], we would like to recall some notions about scwols and complexes of groups, as we do not assume the reader to be familiar with these constructions. We hope to give all necessary definitions and results, details can be found in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF].

A small category without loops (scwol) X consists of a set V (X ), called the vertex set of X and a set E(X ), called the set of edges of X . Additionally two maps i : E(X ) → V (X ) and t : E(X ) → V (X ) are given. We call i(α) the initial vertex of α ∈ E(X ) and t(α) the terminal vertex of α ∈ E(X ). The set

E (2) (X ) denotes the pairs (α, β) ∈ E(X ) × E(X ) with i(α) = t(β). A third map • : E (2) (X ) → E(X )
associates to each pair (α, β) an edge αβ, called their composition. These sets and maps need to satisfy the following conditions:

1. for all (α, β) ∈ E (2) , we have i(αβ) = i(β) and t(αβ) = t(α), 2. for all α, β, γ ∈ E(X ), if i(α) = t(β) and i(β) = t(γ), then (αβ)γ = α(βγ),

for each α ∈ E(X ) we have i(α) ̸ = t(α).

A subscwol X ′ of X is given by subsets Definition 2.1.2 (Product of scwols). Given two scwols X and Y, their product X × Y is the scwol defined as follows:

V (X ′ ) ⊂ V (X ) and E(X ′ ) ⊂ E(X ) such that if α ∈ E(X ′ ), then i(α), t(α) ∈ V (X ′ ), and if α, β ∈ E(X ′ ) with i(α) = t(β) then αβ ∈ E(X ′ ).
V (X × Y) = V (X ) × V (Y) and E(X × Y) = (E(X ) × V (Y)) (E(X ) × E(Y)) (V (X ) × E(Y)) . The maps i, t : E(X × Y) → V (X × Y) are defined by i(α, β) = (i(α), i(β)) and t(α, β) = (t(α), t(β)) (we consider i(v) = t(v) = v for any v ∈ V (X ) V (Y)) the composition (α, α ′ )(β, β ′ ) = (αβ, α ′ β ′ ) whenever t(β, β ′ ) = i(α, α ′ ) (we consider αβ = α whenever α ∈ E(X ) ⊔ E(Y) and β = i(α) ∈ V (X ) ⊔ V (Y), and αβ = β whenever β ∈ E(X ) ⊔ E(Y) and α = t(β) ∈ V (X ) ⊔ V (Y)).
Remark 2.1.3. Let [n] = {1, . . . , n}. One can inductively define the product of n scwols X 1 , . . . , X n . Then the product X = Π i∈[n] X i is the scwol with vertices

V (X ) = Π i∈[n] V (X i ) and edges E(X ) = S⊂[n],S̸ =∅ (Π i∈S c V (X i )) × (Π i∈S E(X i )) . The maps i, t : E(X ) → V (X ) are defined by i(α) = i((α j ) j∈[n] ) = (i(α j )) j∈[n] and t(α) = t((α j ) j∈[n] ) = (t(α j )) j∈[n] (we consider i(v) = t(v) = v for any vertex v ∈ i∈[n] V (X i )) and the composition αβ = (α j ) j∈[n] (β j ) j∈[n] = (α j β j ) j∈[n] when- ever defined.
Example 2.1.4. Consider a finite set S. Let P(S) be the set of all subsets of S. Consider the poset (P(S), ⊂) and its associated scwol Y S . Then Y S = Π v∈S Y {v} . Moreover for any v ∈ S the scwol Y {v} , also denoted by Y v , has two vertices ∅ and {v} and a single edge e v with i(e v ) = ∅ and t(e v ) = {v}.

Example 2.1.5. Consider a finite set S. For v ∈ S let Z {v} = Z v be the scwol consisting of two vertices ∅ and {v} and of two edges denoted (∅, {v}, ∅) and (∅, {v}, {v}) with initial vertex i(∅, {v}, ∅) = i(∅, {v}, {v}) = ∅ and terminal vertex t(∅, {v}, ∅) = t(∅, {v}, {v}) = {v}. Let Z S = Π v∈S Z {v} . Note that V (Z S ) = P(S) and the edges can be described as

E(Z S ) = {(A, B, λ) | A ⊊ B ⊂ S, λ ⊂ B \ A},
where i(A, B, λ) = A and t(A, B, λ) = B. This example seems artificial at this point but will be quite useful later on, as the geometric realization of Z S is a torus T S and its fundamental group is Z S . Indeed in Chapter 3 we will be particularly interested in the case where S is the vertex set of a complete Dyer graph Γ for which all vertices are labeled by ∞.

A simple complex of groups G(X ) = (G v , ψ α ) over a scwol X is given by the following data:

1. for each v ∈ V (X ), a group G v called the local group at v, 2. for each α ∈ E(X ) an injective homomorphism ψ α : G i(α) → G t(α) , with the following compatibility condition: ψ αβ = ψ α ψ β whenever defined.

A simple complex of groups G(X ) = (G v , ψ α ) over a scwol X is called inclusive if it additionally satisfies the following condition: for each α ∈ E(X ) we have G i(α) < G t(α) and ψ α (g) = g for all g ∈ G i(α) . We will only be considering simple inclusive complexes of groups. These are restrictions on the more general definition of complexes of groups which can be found in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF].

Definition 2.1.6. The product G(X ) × G(Y) of two simple complexes of groups G(X ) and G(Y) is the simple complex of groups over the scwol X × Y given by the following data:

1. for each v = (v 1 , v 2 ) ∈ V (X × Y), the local group G v = G v 1 × G v 2
is the direct product of the corresponding local groups in G(X ) and G(Y),

2. for each α = (α 1 , α 2 ) ∈ E(X × Y), the injective homomorphism is ψ α = ψ α 1 × ψ α 2 (if one index α i is a vertex, we set ψ α i to be the identity on

G α i ).
As G(X ) and G(Y) are simple complexes of groups so is G(X ) × G(Y).

Similarly to the definition of products of scwols, this definition can be extended to finite products of simple complexes of groups. The product Π i∈[n] G(X i ) of simple complexes of groups G(X i ), i ∈ [n], is the simple complex of groups over the scwol Π i∈[n] X i given by the following data:

1. for each v = (v i ) i∈[n] ∈ V (Π i∈[n] X i ), the local group G v = Π i∈[n] G v i is the direct product of the corresponding local groups in G(X i ), 2. for each α = (α i ) i∈[n] ∈ E(Π i∈[n] X i ), the injective homomorphism is ψ α = Π i∈[n] ψ α i (if
an index α i is a vertex, we set ψ α i to be the identity on G α i ).

We will now give fundamental examples of complexes of groups and products of complexes of groups over the scwols introduced in Examples 2.1.4 and 2.1.5.

Example 2.1.7. We consider the scwols defined in Example 2.1.4. For every v ∈ S we choose a positive integer p v . Let C v be the finite cyclic group of order p v . For v ∈ S, let D(Y v ) be the simple complex of groups over Y v defined by choosing G ∅ = ⟨e⟩ the trivial group, G {v} = C v and ψ ev the trivial map. We define a simple complex of groups D(Y S ) over Y S as follows: Example 2.1.9. We consider the scwols defined in Example 2.1.5. We can always define the trivial complex of groups over a scwol. The product of trivial complexes of groups will again be trivial. This leads to the following notation. For every v ∈ S, we define a simple complex of groups D(Z v ) over each scwol Z v by choosing G ∅ = G {v} = ⟨e⟩ the trivial group and ψ (∅,{v},∅) = ψ (∅,{v},{v}) the trivial map. Similarly we define a simple complex of groups D(Z S ) by choosing G A = ⟨e⟩ the trivial group for every A ∈ V (Z S ) and ψ (A,B,λ) the trivial map for every (A, B, λ) ∈ E(Z S ). We have

1. for A ∈ V (Y S ) we set G A = Π v∈A C v , 2.
D(Z S ) = Π v∈S D(Z v ).
Assume that the scwol X is connected, i.e. there is only one equivalence class on V (X ) for the equivalence relation generated by i(α) ∼ t(α) for every edge α ∈ E(X ). One can define the fundamental group of a complex of groups G(X ) over a scwol X . For simplicity and as it suffices for the cases we consider, we give the following characterization. Definition 2.1.10. Consider a simple complex of groups G(X ) over a connected scwol X . Assume that each group G v is finitely presented with

G v = ⟨S v | R v ⟩.
Choose a maximal tree T in the graph with vertex set V (X ) and set of edges E(X ). Let E(X ) ± = {α ϵ | α ∈ E(X ), ϵ ∈ {+, -}}. Then the fundamental group π 1 (G(X ), T ) is generated by the set

  v∈V (X ) S v   ⊔ E(X ) ±
subject to the relations: all the relations R v in the groups G v , (α + ) -1 = α -for all edges α ∈ E(X ),

α + β + = (αβ) + for all α, β ∈ E(X ), such that αβ ∈ E(X ) is defined, ψ α (s) = α + sα -,
for all α ∈ E(X ) and every s ∈ S i(α) , α + = e, for every α ∈ T.

Different choices of T and of presentation G

v = ⟨S v | R v ⟩ will give isomorphic fundamental groups. So we can consider π 1 (G(X )) = π 1 (G(X ), T ) for any choice of maximal tree T .
Moreover the subgroup of π 1 (G(X ), T ) generated by {α + , α ∈ E(X )} defines the fundamental group of the scwol X . Remark 2.1.11. This definition is not the original definition given in III.C.3.5 [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF] but it is equivalent to it by Theorem III.C.3.7 in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF] and better suited to our use. Lemma 2.1.12. For two simple inclusive complexes of groups G(X ) and G(Y),

we have π 1 (G(X )) × π 1 (G(Y)) = π 1 (G(X ) × G(Y)).
Proof. We start by choosing maximal trees

T X in X and T Y in Y. In X × Y we fix a vertex v 0 = (v X ,0 , v Y,0
) and consider the tree T X × Y with vertices V (X ) × V (Y) and edges

{(v, α) ∈ E(X × Y) | v ∈ V (X ), α ∈ E(T Y )} ∪ {(α, v Y,0 ) ∈ E(X × Y) | α ∈ E(T X )}.
Since T X and T Y are maximal trees, so is T X × Y . In order to prove the statement, we give explicit homomorphisms

ϕ : π 1 (G(X ), T X ) × π 1 (G(Y), T Y ) → π 1 (G(X ) × G(Y), T X × Y ), and ξ : π 1 (G(X ) × G(Y), T X × Y ) → π 1 (G(X ), T X ) × π 1 (G(Y), T Y )
and show that their composition is the identity. Recall that the generating set

of π 1 (G(X ), T X ) is S X = v∈V (X ) S v ⊔ E(X ) ± and that the generating set of π 1 (G(Y), T Y ) is S Y = v∈V (Y) S v ⊔ E(Y) ± . So the generating set of π 1 (G(X )) × π 1 (G(Y)) is S X ⊔ S Y .
This generating set is subject to the relations in π 1 (G(X )) and π 1 (G(Y)) and to the commutation relations {st

= ts | s ∈ S X , t ∈ S Y }. The generating set of π 1 (G(X ) × G(Y), T X × Y ) is S X × Y = v∈V (X × Y) S v ⊔E(X × Y) ± . For a vertex v = (v X , v Y ) ∈ V (X × Y) we have G v = G v X × G v Y so we may assume that S v = S v X ⊔ S v Y and that the relations in the groups G v are R v = R v X ⊔ R v Y ⊔ {xy = yx | x ∈ S v X , y ∈ S v Y }.
There is a lot of redundancy in the generators of the group π 1 (G(X ) × G(Y), T X × Y ). In particular:

1. For all α ∈ E(X ), v, w ∈ V (Y) we claim that (α, v) + = (α, w) + . First assume that v and w are adjacent in T Y . So there is an edge γ ∈ E(T Y ) with i(γ) = v and t(γ) = w. By Definition 2.1.2 we have (t(α), γ)(α, v) = (α, γ) = (α, w)(i(α), γ) in X × Y. As (t(α), γ), (i(α), γ) ∈ E(T X × Y ), we get (t(α), γ) + = (i(α), γ) + = e, which implies (α, v) + = (α, γ) + = (α, w) + . If there is no such edge in T Y , there is a sequence of vertices v 1 , . . . , v k with v i = v and v k = w and such that for 1 ≤ i ≤ k -1 the vertices v i , v i+1 are adjacent in T Y . So for 1 ≤ i ≤ k -1 we have (α, v i ) + = (α, v i+1 ) + and hence (α, v) + = (α, w) + .
2. The previous statement implies that for every γ ∈ E(T X ) and every vertex v ∈ V (Y) we have (γ, v) + = e. So we can do a similar construction as for the previous statement to show that for all

α ∈ E(Y), v, w ∈ V (X ) we have (v, α) + = (w, α) + . 3. For α ∈ E(X ), β ∈ E(Y), v ∈ V (X ), w ∈ V (Y) we have on one hand (α, β) + = (α, t(β)) + (i(α), β) + = (α, w) + (v, β) + and on the other hand we have (α, β) + = (t(α), β) + (α, i(β)) + = (v, β) + (α, w) + . So we get (α, β) + = (α, w) + (v, β) + = (v, β) + (α, w) + . 4. Let v ∈ V (X ), α ∈ E(T Y ) and s ∈ S v . For w ∈ V (Y), write s (v,w) for s ∈ S (v,w) = S v ⊔ S w ⊂ S X × Y . Then s (v,i(α)) = s (v,t(α)) in π 1 (G(X ) × G(Y), T X × Y ). Indeed (v, α) + = (v, α) -= e and ψ (v,α) (s (v,i(α)) ) = (v, α) + s (v,i(α)) (v, α) -, hence ψ (v,α) (s (v,i(α)) ) = s (v,i(α)) . As s (v,i(α)) = s ∈ S v ⊂ S (v,i(α)) , ψ (v,α) (s (v,i(α)) ) = s (v,t(α)) = s ∈ S v ⊂ S (v,t(α)) . So s (v,i(α)) = s (v,t(α)) . Moreover this implies that for all w, w ′ ∈ V (Y), s (v,w) = s (v,w ′ ) . 5. Similarly let v, v ′ ∈ V (X ), w ∈ V (Y), s ∈ S w . We can write s (v,w) for s ∈ S (v,w) = S v ⊔ S w ⊂ S X × Y . So we have s (v,w) = s (v ′ ,w) . 6. Let v ∈ V (X ), w ∈ V (Y) and s ∈ S v , t ∈ S w . The local group at (v, w) is G (v,w) = G v × G w . So for s (v,w) ∈ S X × Y , t (v,w) ∈ S X × Y , we have s (v,w) t (v,w) = t (v,w) s (v,w)
. By the two previous statements, this implies that for v ′ ∈ V (X ) and

w ′ ∈ V (Y) we have s (v,w ′ ) t (v ′ ,w) = t (v ′ ,w) s (v,w ′ ) . 7. Let v, v ′ ∈ V (X ), w, w ′ ∈ V (Y), α ∈ E(X ), β ∈ E(Y), t ∈ S w , s ∈ S v . Then t (v,w) = t (i(α),w) = t (t(α),w) = ψ (α,w) (t (i(α),w) ) and (α, w ′ ) + = (α, w) + . So (α, w ′ ) + t (v,w) (α, w ′ ) -= t (v,w) and hence (α, w ′ ) + t (v,w) = t (v,w) (α, w ′ ) + . Similarly (v ′ , β) + s (v,w) (v ′ , β) -= s (v,w) and hence (v ′ , β) + s (v,w) = s (v,w) (v ′ , β) + .
We define the map ϕ

: π 1 (G(X ), T X )×π 1 (G(Y), T Y ) → π 1 (G(X ) × G(Y), T X × Y ) on the generators. For v ∈ V (X ), s ∈ S v , set ϕ(s) = s (v,v Y,0 ) and for w ∈ V (Y), s ∈ S w set ϕ(s) = s (v X ,0 ,w) . For α ∈ E(X ), set ϕ(α ± ) = (α, v Y,0 ) ± and for β ∈ E(Y) set ϕ(β ± ) = (v X ,0 , β) ± . The map ϕ restricts to a map E(X ) + ⊔E(Y) + → E(X × Y) + , which induces a map E(X ) ⊔ E(Y) → E(X × Y). This map from E(X ) ⊔ E(Y) → E(X × Y) respects the composition and sends an edge in T X ⊔ T Y to an edge in T X × Y . For α ∈ E(X ), s ∈ S i(α) we have by inclusiveness ϕ(ψ α (s)) = s (t(α),v Y,0 ) = (α, v Y,0 ) + s (i(α),v Y,0 ) (α, v Y,0 ) -= ϕ(α + )ϕ(s)ϕ(α -) . Also for v ∈ V (X ), we have R v ⊂ R (v,v Y,0
) . Similar statements hold when choosing w ∈ V (Y) and β ∈ E(Y). So the relations in π 1 (G(X )) and π 1 (G(Y)) are respected under ϕ. By the consequences listed above, the commutation relations are also satisfied. Indeed for α ∈ E(X ), β ∈ E(Y), by the claim 3 above

ϕ(α + β + ) = (α, v Y,0 ) + (v X ,0 , β) + = (v X ,0 , β) + (α, v Y,0 ) + = ϕ(β + α + ). For v ∈ V (X ), w ∈ V (Y), s ∈ S v , t ∈ S w we have ϕ(s)ϕ(t) = ϕ(t)ϕ(s) by the claim 6 above. Finally for α ∈ E(X ), w ∈ V (Y), t ∈ S w we have ϕ(t)ϕ(α + ) = ϕ(α + )ϕ(t)
by using the claim 7. There is a corresponding equality for

β ∈ E(Y), v ∈ V (X ), s ∈ S v . So ϕ is a homomorphism. We define the map ξ : π 1 (G(X ) × G(Y), T X × Y ) → π 1 (G(X ), T X )×π 1 (G(Y), T Y ) on the generators. For s = s (v,w) ∈ S X × Y , set ξ(s (v,w) ) = s ∈ S v ⊔ S w ⊂ S X ⊔ S Y . For α ∈ E(X ), w ∈ V (Y), let ξ((α, w) ± ) = α ± . For β ∈ E(Y), v ∈ V (X ), let ξ((v, β) ± ) = β ± . For (α, β) ∈ E(X ) × E(Y), let ξ((α, β) + ) = α + β + and ξ((α, β) -) = β -α -. Similarly to ϕ one can check that ξ is a homomorphism. Finally for v ∈ V (X )⊔V (Y), s ∈ S v we have ξ(ϕ(s)) = s. For α ∈ E(X )⊔E(Y), ξ(ϕ(α ± )) = α ± . For v ∈ V (X ), w ∈ V (Y), s ∈ S v , t ∈ S w we have ϕ(ξ(s (v,w) )) = ϕ(s) = s (v,v Y,0 ) = s (v,w) and ϕ(ξ(t (v,w) )) = t (v,w) . For v ∈ V (X ), w ∈ V (Y), α ∈ E(X ), β ∈ E(Y) we have ϕ(ξ((v, β) + )) = (v, β) + and ϕ(ξ((α, β) + )) = ϕ(α + β + ) = (α, v Y,0 ) + (v X ,0 , β) + = (α, β) + as well as ϕ(ξ((α, w) + )) = ϕ(α + ) = (α, v Y,0 ) + = (α, w) + . So ϕ and ξ are isomorphisms. Example 2.1.13. In Example 2.1.7, the fundamental group of D(Y S ) is × v∈S C v .
In Example 2.1.9, the fundamental group of D(Z S ) is Z S . In Example 2.1.8, the fundamental group of W(Y S ) is the Coxeter group W .

We will now consider morphisms. Consider two scwols X and Y. A morphism of scwols f : X → Y is a map that sends V (X ) to V (Y), sends E(X ) to E(Y) and such that:

1. for every α ∈ E(X ), f (i(α)) = i(f (α)) and f (t(α)) = t(f (α)), 2. for composable edges α, β ∈ E(X ), f (αβ) = f (α)f (β). Let G(X ) = (G v , ψ α ) and H(Y) = (H v , ξ α ) be two simple complexes of groups over scwols X and Y. Let f : X → Y be a morphism of scwols. A morphism of complexes of groups ϕ = (ϕ v , ϕ(α)) : G(X ) → H(Y) over f consists of: 1. a homomorphism ϕ v : G v → H f (v) for every v ∈ V (X ) and 2. an element ϕ(α) ∈ H t(f (α)) for every edge α ∈ E(X ) such that Ad(ϕ(α)) • ξ f (α) • ϕ i(α) = ϕ t(α) • ψ α and ϕ(αβ) = ϕ(α)ξ f (α) (ϕ(β)) for all composable edges α, β ∈ E(X ),
where Ad(ϕ(α)) is the conjugation by ϕ(α) (where Ad(ϕ(α)

)(g) = ϕ(α)gϕ(α -1 ) for g ∈ H t(f (α))
). This is illustrated in the following diagram:

G i(α) H i(f (α)) H t(f (α)) G i(α) G t(α) H t(f (α)). ϕ i(α) Id ξ f (α) Ad(ϕ(α)) ψα ϕ t(α) Finally let G be a group. A morphism ϕ = (ϕ v , ϕ(α)) : G(X ) → G consists of a homomorphism ϕ v : G v → G for each v ∈ V (X ) and an element ϕ(α) ∈ G for each α ∈ E(X ) such that Ad(ϕ(α)) • ϕ i(α) = ϕ t(α) • ψ α and ϕ(αβ) = ϕ(α)ϕ(β) whenever composable.
There is always a morphism from the complex of groups to the fundamental group of the complex of groups ϕ

= (ϕ v , ϕ(α)) : G(X ) → π 1 (G(X )) with ϕ(α) = α + ∈ π 1 (G(X )) for every edge α ∈ E(X ). Example 2.1.14. Consider the complex of groups D(Y S ) given in Example 2.1.7. Its fundamental group is π 1 (D(Y S )) = × v∈S C v . For A ∈ V (Y S ), let ϕ S A : × v∈A C v → × v∈S C v be the inclusion ϕ S A (g) = g and for α ∈ E(Y S ) let ϕ S (α) = e ∈ × v∈S C v . The morphism ϕ S = (ϕ S A , ϕ S (α)) : D(Y S ) → × v∈S C v is injective on the local groups. Example 2.1.15. Consider the complex of groups W(Y S ) given in Example 2.1.8. Its fundamental group is π 1 (W(Y S )) = W . For A ∈ V (Y S ), let ϕ A : W A → W be the inclusion ϕ A (g) = g and for α ∈ E(Y S ) let ϕ(α) = e ∈ W . The morphism ϕ = (ϕ A , ϕ(α)) : W(Y S ) → W is injective on the local groups.
Example 2.1.16. Consider the complex of groups D(Z S ) given in Example 2.1.9. Its fundamental group is π 1 (D(Z S )) = Z S . For the notation: let e be the trivial element in Z S and for s ∈ S, let x s be the standard generators of Z S . For

A ∈ V (Z S ), let ϕ S A : ⟨e⟩ → Z S with ϕ S A (e) = e and for (A, B, λ) ∈ E(Z S ) let ϕ S ((A, B, λ)) = Π s∈λ x s . The morphism ϕ S = (ϕ S A , ϕ S (α)) : D(Z S ) → Z S
is injective on the local groups (which are actually trivial).

Definition 2.1.17. A complex of groups G(X ) over a scwol X is developable if there exists a morphism ϕ from G(X ) to some group G which is injective on the local groups.

Remark 2.1.18. This definition is not the original definition given in III.C.2.11 [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF] but it is equivalent to it by Corollary III.C.2.15 in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF] and better suited to our use.

Let G(X ) be a complex of groups over a scwol X , let G be a group and let ϕ : G(X ) → G be a morphism. The development of X with respect to ϕ is the scwol C(X , ϕ) given as follows:

1. its vertices are

V (C(X , ϕ)) = {(gϕ v (G v ), v) | v ∈ V (X ), gϕ v (G v ) ∈ G/ϕ v (G v )}, 2. its edges are E(C(X , ϕ)) = {(gϕ i(α) (G i(α) ), α) | α ∈ E(X ), gϕ i(α) (G i(α) ) ∈ G/ϕ i(α) (G i(α) )}, 3. the maps i, t : E(C(X , ϕ)) → V (C(X , ϕ)) are i(gϕ i(α) (G i(α) ), α) = (gϕ i(α) (G i(α) ), i(α)) and t(gϕ i(α) (G i(α) ), α) = (gϕ(α) -1 ϕ t(α) (G t(α) ), t(α)), 4. the composition is (gϕ i(α) (G i(α) ), α)(hϕ i(β) (G i(β) ), β) = (hϕ i(β) (G i(β) ), αβ),
where α, β are composable and

gϕ i(α) (G i(α) ) = hϕ(β) -1 ϕ i(α) (G i(α) ).
Note that by Theorem III.C.2.13 in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF], C(X , ϕ) is indeed well-defined. Moreover there is an action of G on C(X , ϕ) where G\ C(X , ϕ) = X .

As for simplicial complexes, we can define geometric realizations of scwols. For a scwol X , denote its geometric realization by | X |. If a scwol does not have multiple edges, this construction coincides with the geometric realization of simplicial complexes. Indeed if a scwol does not have multiple edges, the graph with vertices V (X ) and edges E(X ) is simplicial and hence determines a unique flag simplicial complex. This is the only case we will need in this article and details on the general construction can be found in Chapter III.C.1 in [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF]. The action of

G on C(X , ϕ) induces an action of G on | C(X , ϕ)|. If we require the action of G on | C(X , ϕ)| to be by isometries, putting a metric on | C(X , ϕ)| corresponds to putting a metric on | X | as G\| C(X , ϕ)| = | X |.
Example 2.1.19. Consider the complex D(Y S ) and the morphism Example 2.1.20. Consider the complex W(Y S ) and the morphism ϕ :

ϕ S : D(Y S ) → Π v∈S C v from Example 2.1.14. One can check that the development C(Y S , ϕ S ) is the product Π v∈S C(Y {v} , ϕ {v} ). Each C(Y {v} , ϕ {v} ) is a scwol with set of vertices {(g, ∅) | g ∈ C v } ∪ {(C v , {v})} and set of edges {(g, e v ) | g ∈ C v } with i(g, e v ) = (g, ∅) and t(g, e v ) = (C v , {v}). So it is an oriented star on |C v | branches, the tips correspond to the vertices {(g, ∅) | g ∈ C v }, the central vertex is (C v ,
W(Y S ) → W from Example 2.1.15. The development C(Y S , ϕ) is a scwol with set of vertices {(gW A , A) | A ⊂ S, gW A ∈ W/W A } and {(gW A , (A, B)) | A ⊊ B, gW A ∈ W/W A } as set of edges where i(gW A , (A, B)) = (gW A , A) and t(gW A , (A, B)) = (gW B , B).
It is the scwol associated to the poset W P(S) = T ⊂S W/W T , the poset of parabolic cosets ordered by inclusion. In Section 2.2, we will introduce the Coxeter polytope C W of W , which is a geometric realization of C(Y S , ϕ).

Example 2.1.21. Consider the complex D(Z S ) and the morphism ϕ S : D(Z S ) → Z S from Example 2.1.16. One can check that the development

C(Z S , ϕ S ) of Z S with respect to ϕ S is the product × v∈S C(Z {v} , ϕ {v} ). Each C(Z {v} , ϕ {v} ) is a scwol with vertices V (C(Z {v} , ϕ {v} )) = {(g, ∅) | g ∈ ⟨x v ⟩} ∪ {(g, {v}) | g ∈ ⟨x v ⟩}
and edges

E(C(Z {v} , ϕ {v} )) = {(g, (∅, {v}, ∅)) | g ∈ ⟨x v ⟩} ∪ {(g, (∅, {v}, {v})) | g ∈ ⟨x v ⟩}
where i(g, (∅, {v}, ∅)) = (g, ∅), and t(g, (∅, {v}, ∅)) = (g, {v}), and i(g, (∅, {v}, {v})) = (g, ∅), and t(g, (∅, {v}, {v})) = (gx -1 v , {v}). There are two vertex orbits for the action of Z = ⟨x v ⟩ on V (X ), one corresponds to the vertices with incoming edges, one to the vertices with outgoing edges. A geometric realization of C(Z {v} , ϕ {v} ) is the real line R, where we identify (e, ∅) ∈ C(Z {v} , ϕ {v} ) with 0 ∈ R, and (e, {v}) with 0. 5 and(x -1 v , {v}) with -0.5. Since we want Z to act by isometries, this means that for every

x k v ∈ Z we identify the vertex (x k v , ∅) with k ∈ R and (x k v , {v}) with k + 0.5 ∈ R.
Using the product structure with the ℓ 2 -metric, we get that R S with the Euclidean metric is a geometric realization of C(Z S , ϕ S ) on which Z S acts by translation.

The Davis-Moussong complex

The discussion of the Davis-Moussong complex is based primarily on [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]. We will omit most proofs as they can be found in the literature, in particular in [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF] and [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF].

Let S be a finite set. Let M = (m(s, t)) s,t∈S be a symmetric matrix with m(s, t) ∈ N ∪{∞}, m(s, s) = 1 and m(s, t) = m(t, s) ≥ 2 if s ̸ = t. Such a matrix is called a Coxeter matrix. The Coxeter group associated to M is given by the following presentation

W = ⟨s ∈ S | (st) m(s,t) = e for all s, t ∈ S⟩,
where m(s, t) = ∞ means there is no relation given between s and t. The pair (W, S) is called a Coxeter system. Consider the S × S matrix c defined by c st = cos(π -π/m(s, t)), the matrix c is called the cosine matrix of the Coxeter matrix M . When m(s, t) = ∞, we intepret π/∞ to be 0 and cos(π -π/∞) = -1. The following fact states a classical result giving a necessary and sufficient condition for a Coxeter group to be finite. Fact 2.2.1 (Theorem 6.12.9 [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]). A Coxeter group W is finite if and only if the cosine matrix c is positive definite.

For T ⊆ S, let W T be the subgroup of W generated by T . Consider the poset of spherical subsets S = {T ⊆ S | W T is finite } ordered by inclusion. In an abuse of notation, let us also write S for the scwol associated to the poset S. Similarly to examples 2.1.8, 2.1.15 and 2.1.20, let W(S) be the complex of groups over S where the local group at T ∈ S is W T and for an edge (R, T ) the associated map

ψ (R,T ) : W R → W T is the inclusion ψ (R,T ) (r) = r for every r ∈ R.
The fundamental group of W(S) is W and there is an injective morphism ϕ = (ϕ T , ϕ((R, T ))) where ϕ T : W T → W is the inclusion and ϕ((R, T )) = e for every edge (R, T ). Let C(S, ϕ) be the development of W(S) with respect to ϕ. Let us also consider the poset W S = T ∈S W/W T ordered by inclusion, called the poset of spherical cosets. In a similar abuse of notation, let us also write W S for the scwol associated to the poset W S.

Remark 2.2.2. The set of vertices of C(S, ϕ) is {(wW T , T ) | T ∈ S, wW T ∈ W/W T }. The set of edges of C(S, ϕ) is {(wW R , (R, T )) | R, T ∈ S, R ⊊ T, wW R ∈ W/W R },
where (wW R , (R, T )) is an edge from the vertex (wW R , R) to the vertex (wW T , T ). In particular there is an edge from a vertex (wW

R , R) to a vertex (w ′ W T , T ) if and only if R ⊆ T and wW T = w ′ W T (i.e. w ′-1 w ∈ W T ).
Lemma 2.2.3. The scwols C(S, ϕ) and W S are equal.

Proof. It follows from Remark 2.2.2 that the two scwols have the same set of vertices. For the edges, note that for wW R , w ′ W T ∈ W S, we have wW R ⊂ w ′ W T if and only if R ⊂ T and w ′-1 w ∈ W T . So using Remark 2.2.2, the sets of edges also coincide.

Coxeter polytope For now, assume

W is finite. Let us recall the canonical representation of W . Consider Π = {α s | s ∈ S} and V = ⊕ s∈S R α s . Let ⟨•, •⟩ : V × V → R be the scalar product on V given by ⟨α s , α t ⟩ = -cos( π m(s,t) ). The canonical representation of W on GL(V ) is given by ρ : W → GL(V ) with ρ(s)(x) = x -2⟨α s , x⟩α s , for s ∈ S, x ∈ V . The scalar product on V is ρ(W )- invariant. There is a dual basis Π * = {α * s | s ∈ S}, satisfying ⟨α * s , α t ⟩ = 0 if s ̸ = t and ⟨α * s , α s ⟩ = 1. We choose x 0 = s∈S α * s ∈ V . The Coxeter polytope of (W, S), denoted Cox(W ), is the convex hull of {ρ(w)(x 0 ) ∈ V | w ∈ W }.
It is endowed with the Euclidean metric. Note that its interior is non-empty. For a subset 

T ⊂ S, let Π T = {α s | s ∈ T } and V T be the subvector space of V spanned by Π T . Let Π * T = {α * s,T | s ∈ T } be the dual basis of Π T in V T . Fix x 0,T = s∈T α * s,T . Let Cox(W T ) be the convex hull of {ρ(w)(x 0,T ) ∈ V T | w ∈ W T }.
Cox T (W ) be the convex hull of {ρ(w)(x 0 ) ∈ V | w ∈ W T }. Let u = x 0 -x 0,
T and t u : V → V be the translation by the vector u. This translation sends ρ(w)(x 0,T ) to ρ(w)(x 0 ) for every w ∈ W T . Specifically it is an isometry from Cox(W T ) to Cox T (W ). The General Case We now consider any Coxeter group W , so W need not necessarily be finite. We put a coarser cell structure on W S (or equivalently on C(S, ϕ)) in order to build the Davis-Moussong complex Σ by identifying each subposet (W S) ≤wW T , T ∈ S, which is isomorphic to the poset W T (S ≤T ), with a Coxeter polytope Cox(W T ). We can give the following description of Σ.

Theorem 2.2.5 ([Dav08] Proposition 7.3.4.). There is a natural cell structure on Σ so that 1. its vertex set is W , its 1-skeleton is the Cayley graph Cay(W, S), and its 2skeleton is the Cayley 2-complex over Cay(W, S) with the relations (st) m(s,t) = e for all s, t ∈ S, s ̸ = t. Note that here the Cayley graph Cay(W, S) is considered to be undirected, hence there are no double edges between vertices, even though all elements of S have order 2 in W . Furthermore all edges in Cay(W, S) are labeled, hence the edges of Σ are labeled. This labeling coincides with the labeling of vertices in Lk(v, Σ). By [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF][Lemma 12.1.1.], the piecewise Euclidean structure on Σ induces a piecewise spherical structure on the link Lk(v, Σ) of a vertex and as such on the abstract simplicial complex S >∅ with edge length

each cell is a

d(u, v) = π -π/m(u, v) for two adajcent vertices u, v ∈ S.
Now that we have an appropriate description of Σ, let us state the following geometric property of Σ.

Theorem 2.2.6 (Moussong's Theorem [START_REF] Moussong | Hyperbolic Coxeter groups[END_REF]). For any Coxeter system, the associated cell complex Σ, equipped with its natural piecewise Euclidean metric, is CAT(0).

Moussong's Theorem is the consequence of the following lemma and Moussong's Lemma 1.1.16. Lemma 2.2.7 ([Dav08] Lemma 12.3.1.). Let Lk be the link of a vertex in Σ with its natural piecewise spherical structure inherited from Σ. Then Lk is a simplicial complex and has simplices of size ≥ π/2. Moreover, it is a metric flag complex.

Note that using Fact 2.2.1 and Theorem 2.2.5, the set of vertices of Lk is S and T ⊆ S spans a simplex in Lk if and only if W T is finite. Moreover the distance between two vertices in Lk is given by d(v, w) = π -π/m(v, w).

The Salvetti complex

Every Coxeter group has an associated Artin group. We will concentrate on the class of right-angled Artin groups and present their analog to the Davis-Moussong complex, the Salvetti complex S Γ . An extensive discussion of right-angled Artin groups can be found in Charney's survey [START_REF] Charney | An introduction to right-angled Artin groups[END_REF].

Given a simplicial graph Γ, with vertex set V and edge set E, the associated right-angled Artin group A Γ is given by the following presentation

A Γ = ⟨x v , v ∈ V | for every e = {v, w} ∈ E, x v x w = x w x v ⟩.
If Γ has no edges, then A Γ is the free group of rank |V |. If Γ is a complete graph, then A Γ is the free abelian group of rank |V |.

Salvetti complex S Γ Let Γ be a simplicial graph with vertex set V . For any set of pairwise adjacent vertices V ′ = {v 1 , . . . , v n } consider the corresponding generators x i = x v i and let

C(V ′ ) = {x ϵ 1 1 • • • x ϵn n ∈ A Γ | ϵ i ∈ {0, 1} for every i ∈ {1, . . . , n}}.
Note that for two sets V ′ , V ′′ ⊂ V of pairwise adjacent vertices, we have

V ′ ̸ = V ′′ if and only if C(V ′ ) ̸ = C(V ′′ ).
The Salvetti complex S Γ is the cube complex with vertex set A Γ and for every a ∈ A Γ and every set of pairwise adjacent vertices V ′ ⊂ V there is a cube aC(V ′ ). The Salvetti complex S Γ is known to be a CAT(0) cube complex by [START_REF] Charney | Finite K(π, 1)s for Artin groups[END_REF] and A Γ acts properly and cocompactly on S Γ .

Chapter 3

A generalization of the Davis-Moussong complex for Dyer groups

There is extensive literature on Coxeter groups as well as on graph products of cyclic groups. One common feature of these two families of groups is their solution to the word problem. It was given by Tits for Coxeter groups [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF] and by Green for graph products of cyclic groups [START_REF] Ruth Green | Graph products of groups[END_REF]. The algorithm does not only give a solution to the word problem but also allows to detect whether a word is reduced or not. In his study of reflection subgroups of Coxeter groups, Dyer introduces a family of groups which contains both Coxeter groups and graph products of cyclic groups. A close study of [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF] also implies that this class of groups, which we call Dyer groups, has the same solution to the word problem as Coxeter groups and graph products of cyclic groups. A complete and explicit proof is given in [START_REF] Paris | Word problem and parabolic subgroups in Dyer groups[END_REF]. The isomorphism problem is solved for right-angled Artin groups but it is not solved for Coxeter groups, so its solution for Dyer groups seems currently out of reach. It is therefore natural to ask the following questions. Which of the properties shared by Coxeter groups and right-angled Artin groups are also satisfied by Dyer groups?

In Section 3.1, we define Dyer groups and Dyer systems, and show that every Dyer group is a finite index subgroup of a Coxeter group. In Section 3.2, actions of Dyer groups on CAT(0) spaces are constructed that extend those of Coxeter groups on Davis-Moussong complexes (presented in Section 2.2) and those of right-angled Artin groups on Salvetti complexes (presented in Section 2.3). This chapter also appeared in [START_REF] Soergel | A generalized Davis-Moussong complex for Dyer groups[END_REF].

Dyer groups

Similarly to Coxeter groups and right-angled Artin groups, the presentation of a Dyer group can be encoded in a graph. 

D = ⟨x v , v ∈ V | x f (v) v = e if f (v) ̸ = ∞, [x v , x u ] m(e) = [x u , x v ] m(
Let V 2 = {v ∈ V | f (v) = 2}, V ∞ = {v ∈ V | f (v) = ∞} and V p = V \ {V 2 ∪ V ∞ }.
For i ∈ {2, p, ∞}, let Γ i be the full subgraph spanned by V i and D i be the Dyer group associated to the triple (Γ i , f V i , m V i ). Note that D 2 is a Coxeter group, D ∞ a right angled Artin group and D p a graph product of finite cyclic groups.

Example 3.1.6. Let m, q ∈ N ≥2 . Consider the Dyer graph Γ m,q given in Figure 3.1. The associated Dyer group is

D m,q = ⟨a, b, c, d | b 2 = c 2 = d q = e, ab = ba, (bc) m = e, cd = dc⟩.
We recall the definition of Coxeter groups given by a labeled graph, instead of a matrix as in Section 2.2. One can easily go from one to the other by interpreting the labeling of the graph as a Coxeter matrix. 

W = ⟨x v , v ∈ V | x 2 v = e for all v ∈ V, [x v , x u ] m(e) = [x u , x v ] m(
∈ E the relation [x v , x u ] m(e) = [x u , x v ] m(e) is equivalent to the relation (x v x u ) m(e) = e, since x 2 u = x 2 v = e.

Dyer groups are finite index subgroups of Coxeter groups

The aim is now to show that every Dyer group is a finite index subgroup of a Coxeter group. From a given Dyer graph (Γ, f, m) we build a graph Λ with edge labeling m ′ . We then show that D(Γ, f, m) is a finite index subgroup of W (Λ). See Example 3.1.11 for a simple case. We define the undirected labeled simplicial graph Λ. Its set of vertices is

V (Λ) = V (V p ∪ V ∞
). We will refer to the elements of the disjoint copy of 

V p ∪ V ∞ as v ′ for v ∈ V p ∪ V ∞ . Two vertices u, v ∈ V ⊂ V (Λ)
∈ V p ∪ V ∞ and v ∈ V (Λ) \ {u, u ′ },
there is an edge e = {u ′ , v} ∈ E(Λ) labeled by m ′ (e) = 2. Finally for all u ∈ V p there is an edge e = {u, u ′ } ∈ E(Λ) labeled by m ′ (e) = f (u). So V ⊂ V (Λ) spans a copy of Γ in Λ and the disjoint copy V p ∪ V ∞ ⊂ V (Λ) spans a complete graph in Λ. Let W = W (Λ) be the Coxeter group associated to the graph Λ. We give an action of (Z/2Z) Vp∪V∞ on D.

For v ∈ V p ∪ V ∞ let ξ v : {x u , u ∈ V } → D with ξ v (x u ) = x u for any u ∈ V \ {v} and ξ v (x v ) = x -1 v . For all v ∈ V p ∪ V ∞
, the map ξ v extends to an involutive homomorphism ξ v : D → D, as all relations involving x v are commutation relations and ξ v restricts to the inclusion on 

{x u , u ∈ V \ {v}}. Moreover for all u, v ∈ V p ∪ V ∞ , ξ v • ξ u = ξ u • ξ v and (ξ v ) 2 =

Finally for every

u ∈ V p there is an edge {u ′ , u} ∈ E(Λ) with m ′ ({u ′ , u}) = f (u) and (ϕ(y u ′ )ϕ(y u )) f (u) = (ξ u ξ u x u ) f (u) = x f (u) u = e.
So the map ϕ extends to a homomorphism ϕ : W → U. Now consider the map ψ :

{x u , u ∈ V } ∪ {ξ v , v ∈ V p ∪ V ∞ } → W defined as follows: for u ∈ V 2 , ψ(x u ) = y u and for u ∈ V p ∪V ∞ , ψ(x u ) = y u ′ y u and ψ(ξ u ) = y u ′ .
We show that ψ extends to a homomorphism from U to W .

1. For all v ∈ V 2 , f (v) = 2 and so ψ(x v ) f (v) = y 2 v = e and for all v ∈ V p there is an edge e = {v, v ′ } ∈ E(Λ) with m ′ (e) = f (v) so ψ(x v ) f (v) = (y v ′ y v ) f (v) = e.
2. For all e = {u, v} ∈ E, there is an edge e = {u, v} ∈ E(Λ) with m ′ (e) = m(e).

If u, v ∈ V 2 we have

[ψ(x u ), ψ(x v )] m(e) = [y u , y v ] m(e) = [y v , y u ] m(e) = [ψ(x v ), ψ(x u )] m(e) . If u ∈ V 2 and v ∈ V p ∪ V ∞ , we have m(e) = 2 and ψ(x u )ψ(x v ) = y u y v ′ y v = y v ′ y u y v = y v ′ y v y u = ψ(x v )ψ(x u ). If u, v ∈ V p ∪ V ∞ , m(e) = 2 and ψ(x u )ψ(x v ) = y u ′ y u y v ′ y v = y u ′ y v ′ y u y v = y v ′ y u ′ y v y u = y v ′ y v y u ′ y u = ψ(x v )ψ(x u ), as y u y v ′ = y v ′ y u , y v y u ′ = y u ′ y v and y u ′ y v ′ = y v ′ y u ′ . 3. For all v ∈ V p ∪ V ∞ we have ψ(ξ v ) 2 = y 2 v ′ = e. 4. For all u, v ∈ V p ∪ V ∞ distinct, we have e = {u ′ , v ′ } ∈ E(Λ) with m ′ (e) = 2, so ψ(ξ u )ψ(ξ v ) = y u ′ y v ′ = y v ′ y u ′ = ψ(ξ v )ψ(ξ u ). 5. For all u ∈ V p ∪ V ∞ and v ∈ V \ {u}, we have {u ′ , v}, {u ′ , v ′ } ∈ E(Λ) with labels m ′ ({u ′ , v}) = 2 and m ′ ({u ′ , v ′ }) = 2. If v ∈ V 2 , we have ψ(ξ u )ψ(x v ) = y u ′ y v = y v y u ′ = ψ(x v )ψ(ξ u ). If v ∈ V p ∪ V ∞ , we have ψ(ξ u )ψ(x v ) = y u ′ y v ′ y v = y v ′ y u ′ y v = y v ′ y v y u ′ = ψ(x v )ψ(ξ u ). 6. For all u ∈ V p ∪ V ∞ , ψ(ξ u )ψ(x u )ψ(ξ u ) = y u ′ y u ′ y u y u ′ = y u y u ′ = (y u ′ y u ) -1 = ψ(x u ) -1 .
So the map ψ extends to a homomorphism ψ : U → W.

We now check that ϕ • ψ = Id U and ψ • ϕ = Id W by showing that these maps are the identity on the generators. For v ∈ V 2 , we have ϕ

(ψ(x v )) = ϕ(y v ) = x v and ψ(ϕ(y v )) = ψ(x v ) = y v . For v ∈ V p ∪ V ∞ , ϕ(ψ(x v )) = ϕ(y v ′ y v ) = ξ v ξ v x v = x v and ϕ(ψ(ξ v )) = ϕ(y v ′ ) = ξ v . For v ∈ V p ∪ V ∞ , ψ(ϕ(y v )) = ψ(ξ v x v ) = y v ′ y v ′ y v = y v and ψ(ϕ(y v ′ )) = ψ(ξ v ) = y v ′ .
Corollary 3.1.9. Every Dyer group is a finite index subgroup of some Coxeter group.

Remark 3.1.10. As mentioned in the introduction, Corollary 3.1.9 has many interesting consequences. It implies that Dyer groups are CAT(0) [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF][Theorem 12.3.3.], linear [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF], and biautomatic [START_REF] Osajda | Coxeter groups are biautomatic[END_REF], that they satisfy the Baum-Connes conjecture, the Farrell-Jones conjecture, the Haagerup property and the strong Tits alternative [START_REF] Èrnest | Strong tits alternative for subgroups of coxeter groups[END_REF]. They also admit a proper and virtually special action on a CAT(0) cube complex.

Example 3.1.11. We apply the previous theorem to Example 3.1.6. The corresponding graph Λ is given in Figure 3.2. So by Theorem 3.1.8, the Dyer group D m,q is an index 4 subgroup of the Coxeter group

W = ⟨a, b, c, d, a ′ , d ′ | a 2 = b 2 = c 2 = d 2 = a ′2 = d ′2 = e, ( ab 
) 2 = (bc) m = (cd) 2 = e, (a ′ b) 2 = (a ′ c) 2 = (a ′ d) 2 = (a ′ d ′ ) 2 = e, (d ′ a) 2 = (d ′ b) 2 = (d ′ c) 2 = e, (d ′ d) q = e⟩. a b c d a ′ d ′ m q Figure 3.2:
The graph Λ m,q built out of the Dyer graph Γ m,q for some m, q ∈ N ≥2 . We color coded the vertices V ⊂ V (Λ) and

{v ′ | v ∈ V p ∪ V ∞ }.
For the edges: for edges of the form e = {u, u ′ }, u ∈ V p and for edges of the form e = {u ′ , v} where

v ∈ V (Λ) \ {u, u ′ } and u ′ ∈ {v ′ | v ∈ V p ∪ V ∞ }.
Every edge is labeled by 2 if not specified otherwise.

The Dyer group D is not the only Dyer group, up to isomorphism, which is a finite index subgroup of W . We describe such another Dyer group D ′ = D(Ω, g, n) by giving the Dyer graph (Ω, g, n). The vertices of Ω are V (Ω) = V V ∞ . We will refer to the elements of the disjoint copy of V ∞ as v ′ for v ∈ V ∞ . The labeling of the vertices is defined as follows g (V 2 ∪V∞) V∞ = 2 and g Vp = f Vp . The subsets

V 2 ∪ V p ∪ V ∞ and (V 2 ∪ V p ) V ∞ both
span copies of Γ, with same labeling of edges, and for u, v ∈ V ∞ the vertices v, u ′ span an edge labeled by 2 in Ω if and only if v and u span an edge in Γ. Let D ′ be the Dyer group associated to Ω. Note that every generator x v , v ∈ V (Ω) of D ′ has finite order. We now give an action of (Z/2Z) Vp∪V∞ on D

′ . For v ∈ V p , let κ v : {x u , u ∈ V (Ω)} → D ′ with κ v (x u ) = x u for any u ∈ V (Ω) \ {v} and κ v (x v ) = x -1
v . As all relations involving x v are commutation relations and ξ v restricts to the inclusion on {x u , u ∈ V \ {v}, the map κ v extends to a homomorphism κ v :

D ′ → D ′ . For v ∈ V ∞ , consider the map κ v : {x u , u ∈ V (Ω)} → D ′ with κ v (x u ) = x u for any u ∈ V (Ω) \ {v, v ′ } and κ v (x v ) = x v ′ and κ v (x v ′ ) = x v .
The only relations involving x v or x v ′ are commutation relations and x v commutes with some other generator if and only if

x v ′ does, the map κ v extends to a homomorphism κ v : D ′ → D ′ . Moreover for all u, v ∈ V p ∪ V ∞ , κ v • κ u = κ u • κ v and (κ v ) 2 = e. Hence we have an action κ : (Z/2Z) Vp∪V∞ × D ′ → D ′ .
Theorem 3.1.12. We have

W ∼ = D ′ ⋊ κ (Z/2Z) Vp∪V∞ . Proof. Let us first recall the presentations of W , D ′ and U = D ′ ⋊ κ (Z/2Z) Vp∪V∞ . W = ⟨y v , v ∈ V (Λ) | ∀v ∈ V (Λ), (y v ) 2 = e and ∀e = {u, v} ∈ E(Λ), (y u y v ) m ′ (e) = e⟩, D ′ = ⟨x v , v ∈ V (Ω) | x g(v) v = e for all v ∈ V (Ω), [x v , x u ] n(e) = [x u , x v ] n(e) for all e = {u, v} ∈ E(Ω)⟩, U = ⟨{x u , u ∈ V (Ω)} ∪ {κ v , v ∈ V p ∪ V ∞ } | x g(u) u = e for all u ∈ V (Ω), [x v , x u ] n(e) = [x u , x v ] n(e) for all e = {u, v} ∈ E(Ω), κ 2 v = e for all v ∈ V p ∪ V ∞ , κ v κ u = κ u κ v for all u, v ∈ V p ∪ V ∞ , κ u x v = x v κ u for all u ∈ V p , v ∈ V (Ω) \ {u}, κ u x v = x v κ u for all u ∈ V ∞ , v ∈ V (Ω) \ {u, u ′ }, κ u x u κ u = x -1 u for all u ∈ V p , κ u x u κ u = x u ′ for all u ∈ V ∞ ⟩.
As in Theorem 3.1.8, we can check that U is isomorphic to W by considering explicit homomorphisms ϕ : W → U and ψ :

U → W satisfying ϕ • ψ = Id U and ψ • ϕ = Id W .
The map ϕ :

{y v , v ∈ V (Λ)} → U is given as follows: for u ∈ V 2 , ϕ(y u ) = x u , for u ∈ V p , ϕ(y u ) = κ u x u and ϕ(y u ′ ) = κ u and for u ∈ V ∞ , ϕ(y u ) = x u and ϕ(y u ′ ) = κ u . 8. For every u, v ∈ V p ∪V ∞ , there is an edge e = {u ′ , v ′ } ∈ E(Λ) with m ′ (e) = 2. We have (ϕ(y u ′ )ϕ(y v ′ )) 2 = (κ u κ v ) 2 = κ 2 u κ 2 v = e.
So the map ϕ induces a homomorphism ϕ :

W → U . The map ψ : {x u , u ∈ V (Ω)} ∪ {κ v , v ∈ V p ∪ V ∞ } → W is given as follows: for u ∈ V 2 , ψ(x u ) = y u and for u ∈ V p , ψ(x u ) = y u ′ y u and ψ(κ u ) = y u ′ , finally for u ∈ V ∞ , ψ(x u ) = y u , ψ(x u ′ ) = y u ′ y u y u ′ and ϕ(κ u ) = y u ′ .
Using similar methods to those used in the proof of Theorem 3.1.8, we show that the map ψ induces a homomorphism ψ :

U → W . 1. For every u ∈ V 2 , we have g(u) = 2 and ψ(x 2 ) 2 = y 2 u = e. For every u ∈ V ∞ , we have g(u) = g(u ′ ) = 2. So ψ(x u ) 2 = y 2 u = e and ψ(x u ′ ) 2 = (y u ′ y u y u ′ ) 2 = y 2 u = e.
For every u ∈ V p , we have g(u) = f (u) and there is an

edge e = {u, u ′ } ∈ E(Λ) with m ′ (e) = f (u) wo ψ(x u ) f (u) = (y u ′ y u ) f (u) = e.

For every edge

e = {u, v} ∈ E(Ω) with u, v ∈ V 2 , there is an edge e = {u, v} ∈ E(Λ) with m ′ (e) = n(e). So we have [ψ(x v ), ψ(x u )] n(e) = [y v , y u ] m ′ (e) = [y u , y v ] m ′ (e) = [ψ(x u ), ψ(x v )] n(e) .
For every edge e = {u, v}

∈ E(Ω) u ∈ V 2 , v ∈ V p , there is are edges e = {u, v}, e ′ = {u, v ′ } ∈ E(Λ) with m ′ (e ′ ) = m ′ (e) = n(e) = 2. So ψ(x u )ψ(x v ) = y u y v ′ y v = y v ′ y v y u = ψ(x v )ψ(x u ).
For every edge e = {u, v}

∈ E(Ω) u ∈ V 2 , v ∈ V ∞ , there is an edge e = {u, v} ∈ E(Λ) with m ′ (e) = n(e) = 2. So ψ(x u )ψ(x v ) = y u y v = y v y u = ψ(x v )ψ(x u ).
For every edge e = {u,

v ′ } ∈ E(Ω) u ∈ V 2 , v ∈ V ∞ , there is are edges e = {u, v}, e ′ = {u, v ′ } ∈ E(Λ) with m ′ (e ′ ) = m ′ (e) = n(e) = 2. So ψ(x u )ψ(x v ) = y u y v ′ y v y v ′ = y v ′ y v y v ′ y u = ψ(x v )ψ(x u ).
3. For every edge e = {u, v} ∈ E(Ω) with u ∈ V p , v ∈ V p , there are edges

e 1 = {u, v}, e 2 = {u ′ , v}, e 3 = {u, v ′ }, e 4 = {u ′ , v ′ } ∈ E(Λ) with m ′ (e 1 ) = m ′ (e 2 ) = m ′ (e 3 ) = m ′ (e 4 ) = n(e) = 2. So ψ(x u )ψ(x v ) = y u ′ y u y v ′ y v = y′y v y u ′ y u = ψ(x v )ψ(x u ).
For every edge e = {u, v}

∈ E(Λ) with u ∈ V p , v ∈ V ∞ , there are edges e = {u, v}, e ′ = {u ′ , v} ∈ E(Λ) with m ′ (e) = m ′ (e ′ ) = n(e) = 2. So ψ(x u )ψ(x v ) = y u ′ y u y v = y v y u ′ y u = ψ(x v )ψ(x u ).
For every edge e = {u,

v ′ } ∈ E(Ω) with u ∈ V p , v ∈ V ∞ , there are edges e 1 = {u, v}, e 2 = {u ′ , v}, e 3 = {u, v ′ }, e 4 = {u ′ , v ′ } ∈ E(Λ) with m ′ (e 1 ) = m ′ (e 2 ) = m ′ (e 3 ) = m ′ (e 4 ) = n(e) = 2. So ψ(x u )ψ(x v ) = y u ′ y u y v ′ y v y v ′ = y v ′ y v y v ′ y u ′ y u = ψ(x v )ψ(x u ).

For every edge

e = {u, v} ∈ E(Ω) with u, v ∈ V ∞ , there is an edge e = {u, v} ∈ E(Λ) with m ′ (e) = n(e) = 2. So ψ(x u )ψ(x v ) = y u y v = y v y u = ψ(x v )ψ(x u ).
For every edge e = {u,

v ′ } ∈ E(Λ) with u, v ∈ V ∞ , there are edges e = {u, v}, e ′ = {u, v ′ } ∈ E(Λ) with m ′ (e) = m ′ (e ′ ) = n(e) = 2. So ψ(x u )ψ(x v ′ ) = y u y v ′ y v y v ′ = y v ′ y v y v ′ y u = ψ(x v ′ )ψ(x u ).

For every edge

e = {u ′ , v ′ } ∈ E(Ω) with u, v ∈ V ∞ , there are edges e 1 = {u, v}, e 2 = {u ′ , v}, e 3 = {u, v ′ }, e 4 = {u ′ , v ′ } ∈ E(Λ) with m ′ (e 1 ) = m ′ (e 2 ) = m ′ (e 3 ) = m ′ (e 4 ) = n(e) = 2. So ψ(x u )ψ(x v ) = y u ′ y u y u ′ y v ′ y v y v ′ = y v ′ y v y v ′ y u ′ y u y u ′ = ψ(x v )ψ(x u ). 6. For every u ∈ V p ∪ V ∞ , we have ψ(κ u ) 2 = y 2 u ′ = e. For all distinct u, v ∈ V p ∪ V ∞ , there is an edge e = {u ′ , v ′ } ∈ E(Λ) with m ′ (e) = 2. So ψ(κ u )ψ(κ v ) = y u ′ y v ′ = y v ′ y u ′ = ψ(κ v )ψ(κ u ). 7. For every u ∈ V p ∪V ∞ and every v ∈ V p \{u}, there are edges e = {u ′ , v}, e ′ = {u ′ , v ′ } ∈ E(Λ) with m ′ (e) = m ′ (e ′ ) = 2. So ψ(κ u )ψ(x v ) = y u ′ y v ′ y v = y v ′ y v y u ′ = ψ(x v )ψ(κ u ).
For every u ∈ V p ∪V ∞ and every v ∈ V ∞ \{u}, there are edges e = {u ′ , v}, e

′ = {u ′ , v ′ } ∈ E(Λ) with m ′ (e) = m ′ (e ′ ) = 2. So ψ(κ u )ψ(x v ′ ) = y u ′ y v ′ y v y v ′ = y v ′ y v y v ′ y u ′ = ψ(x v ′ )ψ(κ u ) and ψ(κ u )ψ(x v ) = y u ′ y v = y v y u ′ = ψ(x v )ψ(κ u ).
For every u ∈ V p ∪ V ∞ and every v ∈ V 2 , there is an edge e = {u ′ , v} ∈ E(Λ)

with m ′ (e) = 2. So ψ(κ u )ψ(x v ) = y u ′ y v = y v y u ′ = ψ(x v )ψ(κ u ). 8. For every v ∈ V p , we have ψ(κ u )ψ(x u )ψ(κ u ) = y u ′ y u ′ y u y u ′ = y u y u ′ = (y u ′ y u ) -1 = ψ(x u ) -1 . For every u ∈ V ∞ , we have ψ(κ u )ψ(x u )ψ(κ u ) = y u ′ y u y u ′ = ψ(x u ′ ).
So the map ψ induces a homomorphism ψ :

U → W . We now check that ϕ • ψ = Id U and that ψ • ϕ = Id W . For v ∈ V 2 , we have ψ(ϕ(y u )) = y u and ϕ(ψ(x u )) = x u . For v ∈ V p , we have ψ(ϕ(y u )) = ψ(κ u x u ) = y u ′ y u ′ y u = y u and ψ(ϕ(y u ′ )) = ψ(κ u ) = y u ′ , as well as ϕ(ψ(x u )) = ϕ(y u ′ y u ) = κ u κ u x u = x u and ϕ(ψ(κ u )) = ϕ(y u ′ ) = κ u . For v ∈ V ∞ , we have ψ(ϕ(y u )) = cψ(x u ) = y u and ψ(ϕ(y u ′ )) = ψ(κ u ) = y u ′ , as well as ϕ(ψ(x u )) = ϕ(y u ) = x u and ϕ(ψ(x u ′ )) = ϕ(y u ′ y u y u ′ ) = κ u x u κ u = x u ′ and ϕ(ψ(κ u )) = ϕ(y u ′ ) = κ u . a b c d a ′ m q Figure 3.3:
The graph Ω m,q build out of the Dyer graph Γ m,q for some m, q ∈ N ≥2 .

There are two types of vertices: V ⊂ V (Λ m,q ) and {v ′ | v ∈ V ∞ }. Every vertex and every edge is labeled by 2 if not specified otherwise.

Example 3.1.13. We apply the previous theorem to Example 3.1.6. The corresponding graph Ω m,q is given in Figure 3.3. The associated Dyer group is

D ′ m,q = ⟨a, b, c, d, a ′ | a 2 = a ′2 = b 2 = c 2 = d q = e, ab = ba, a ′ b = ba ′ , (bc) m = e, cd = dc⟩.
It is an index 4 subgroup of the Coxeter group W associated to the graph Λ m,q given in Figure 3. 

The piecewise Euclidean cell complex Σ

The goal of this section is to show intrinsically that Dyer groups are CAT(0) by constructing an appropriate Euclidean cell complex Σ. The first step is to construct a scwol C associated to a Dyer group. The scwol C encodes the necessary information in order to build Σ. The vertices of C will correspond to subcomplexes of Σ and the edges of C will encode identifications between subcomplexes of Σ. Finally we will also be able to interpret C as a simplicial subdivision of the complex Σ. We will first focus on spherical Dyer groups D which factor as a direct product of a finite Coxeter group and cyclic groups. We start with the construction of a scwol X associated to a spherical Dyer group D and then define a complex of groups D(X ). The scwol C will be the development of the complex of groups D(X ). The second subsection will discuss this for general Dyer groups. The third subsection will be devoted to the Euclidean cell complex Σ.

A combinatorial structure for spherical Dyer groups

We As with Coxeter groups, we can characterize spherical Dyer groups through the cosine matrix. Let (Γ, f, m) be a Dyer graph and let V = V (Γ) and E = E(Γ). We extend the map m :

E → N ≥2 to a map m : V × V → N ≥2 ∪{∞} by setting m(u, v) = m({u, v}) if {u, v} ∈ E, and m(u, v) = ∞ if u ̸ = v and {u, v} /
∈ E, and m(u, u) = 1. We interpret π/∞ to be 0 and cos(π -π/∞) = cos(π) = -1. The cosine matrix associated with a Dyer graph (Γ, f, m) is the V × V matrix c = (c uv ) u,v∈V defined by c uv = cos(π -π/m(u, v)). Note c uu = 1 for all u ∈ V and that c uv = 0 whenever u, v are in disjoint components of 

V = V 2 ⊔ V p ⊔ V ∞ . This

Lemma 3.2.1. A Dyer group D(Γ, f, m) is spherical if and only if the cosine matrix c associated to (Γ, f, m) is positive definite.

Proof. Assume D is a spherical Dyer group. Then the restriction of c to V 2 × V 2 is positive definite. Since additionally Γ is a complete Dyer graph, the matrix c admits a block decomposition as above, where all three blocks are positive definite matrices. This implies that the matrix c is positive definite. Now assume the cosine matrix c associated to (Γ, f, m) is positive definite. Consider the matrix M = (m(u, v)) u,v∈V . Then the cosine matrix c associated to (Γ, f, m) is equal to the cosine matrix of the Coxeter matrix M as defined in Section 2.2. So by Fact 2.2.1 the cosine matrix c is positive definite if and only if the Coxeter group associated to M is finite. So we have m(u, v) ̸ = ∞ for all u, v ∈ V . Moreover since Γ is a Dyer graph this also implies that the restriction of c to V 2 × V 2 is positive definite. So the graph Γ is complete and D 2 is a finite Coxeter group by Fact 2.2.1. Hence D is a spherical Dyer group.

Let X = X (Γ) be the scwol with set of vertices V (X ) = {X ⊆ V } and set of edges

E(X ) = {(X, Y, ω) | X ⊊ Y ⊆ V (Γ), ω ⊆ (Y \ X) ∞ } with i(X, Y, ω) = X and t(X, Y, ω) = Y and (Y, Z, ω ′ )(X, Y, ω) = (X, Z, ω ∪ ω ′ ).
We call X the scwol associated with the spherical Dyer graph Γ. Similarly to the group D, we can also describe X as a direct product of scwols.

Lemma 3.2.2. Let X 2 = X (Γ 2 ), X p = X (Γ p ) and X ∞ = X (Γ ∞ ). Then we have the product decomposition X = X 2 × X p × X ∞ . Moreover X p = Y Vp = × v∈Vp Y v and X ∞ = Z V∞ = × v∈V∞ Z v as in Examples 2.1.4 and 2.1.5. Proof. Since V = V 2 ⊔ V p ⊔ V ∞ , every X ∈ V (X ) can be decomposed as a disjoint union X = X 2 ⊔X p ⊔X ∞ . Identifying X with (X 2 , X p , X ∞ ) gives V (X ) = V (X 2 )× V (X p ) × V (X ∞ ). For the edges, note that (X, Y, ω) ∈ E(X ) if and only if X i ⊂ Y i for every i ∈ {2, p, ∞} and at least one of those inclusions is strict and ω ⊂ Y ∞ \X ∞ . The edge (X, Y, ω) ∈ E(X ) is identified with (E 2 , E p , E ∞ ) ∈ E(X 2 × X p × X ∞ ), where E i = X i ∈ V (X i ) whenever X i = Y i , and E i = (X i , Y i , ω ∩ V i ) ∈ E(X i ) whenever X i ⊊ Y i for i ∈ {2, p, ∞}.
We now define a simple complex of groups D(X ) over the scwol X . For each X ∈ V (X ), let the local group be D f X = D X 2 ∪Xp . As mentioned in Remark 3.1.4, we know by [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF] 

that if X ⊂ Y , then D f X < D f Y < D. For each edge (X, Y, ω) ∈ E(X ), let ψ (X,Y,ω) : D f X → D f Y be the map induced by ψ(x v ) = x v for every v ∈ X 2 ∪ X p .
These maps are all injective. Note that they do not depend on ω. We also introduce the morphism ϕ = ϕ Γ : D(X ) → D where ϕ

X = ϕ Γ X : D f X → D is the natural inclusion and ϕ(X, Y, ω) = ϕ Γ (X, Y, ω) = Π v∈ω x v . Note that ϕ(X, Y, ω) is well-defined since the subgraph spanned by ω ⊂ V ∞ is complete. On can see that Ad(ϕ(X, Y, ω)) • ϕ X = ϕ X = ϕ Y • ψ (X,Y,ω) , as x v x u x -1 v = x u for every u ∈ X ⊂ Y and v ∈ ω ⊂ Y holds, and that for edges (Y, Z, λ), (X, Y, ω) and their composition (Y, Z, λ)(X, Y, ω) = (X, Z, ω ∪ λ) we have ϕ(Y, Z, λ)ϕ(X, Y, ω) = Π v∈λ x v Π v∈ω x v = Π v∈ω∪λ x v = ϕ(X, Z, λ ∪ ω).
Moreover ϕ(X, Y, ω) only depends on ω, so we will write ϕ(X, Y, ω) = ϕ(ω) = Π v∈ω x v . Also note that each local group D f X is finite.

Proof. This follows from the product decomposition of X , D(X ), D and ϕ.

Remark 3.2.7. For i ∈ {2, p, ∞}, Lemma 3.2.6 implies that we can consider each scwol C(X i , ϕ i ) to be a subscwol of C(X , ϕ). There is a canonical inclusion by identifying a vertex gX ∈ C(X i , ϕ i ) with gX ∈ C(X , ϕ). The subscwol C(X i , ϕ i ) is then stable under the action of D i .

Links and stars in C For a well-defined construction of the future cell complex Σ we need to understand the local combinatorial structure of the scowl C, when (Γ, f, m) is spherical. As edges in C(X , ϕ) are oriented, we will distinguish the incoming and the outgoing link and star of a vertex. 

(e Y, C) = St in (e Y 2 , C(X 2 , ϕ 2 )) × St in (e Y p , C(X p , ϕ p )) × St in (e Y ∞ , C(X ∞ , ϕ ∞ ))
and as such also a product decomposition for every St in (gY, C). Moreover for a vertex hZ ∈ St in (gY, C), the star St in (hZ, C) is a subscwol of St in (gY, C).

A combinatorial structure for general Dyer groups

Let us now give a similar construction with analogous results for general Dyer groups. Let (Γ, f, m) be a Dyer graph and D = D(Γ) be the associated Dyer group. We set V = V (Γ). Let X = X (Γ) be the scwol with set of vertices

V (X ) = {X ⊂ V | D(Γ X ) is a spherical Dyer group} and set of edges E(X ) = {(X, Y, ω) | X, Y ∈ V (X ), X ⊊ Y, ω ⊂ (Y \X) ∞ } with i(X, Y, ω) = X and t(X, Y, ω) = Y and (Y, Z, ω ′ )(X, Y, ω) = (X, Z, ω ∪ ω ′ ).
The main difference with the spherical case, is the set of vertices of X . Indeed we do not consider all subsets X ⊂ V but only those for which Γ X is complete and the group D f X = D X 2 ∪Xp is finite. We also define a complex of groups D(X ) over X . For each X ∈ V (X ), let the local group be D f X = D X 2 ∪Xp and for each edge (X, Y, ω) ∈ E(X ), let ψ (X,Y,ω) : D f X → D f Y be the natural inclusion map. By [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF], these maps are all injective. The local groups are all finite. We also introduce the morphism ϕ : D(X ) → D where ϕ X : D f X → D is the natural inclusion and ϕ(X, Y, ω) = ϕ(ω) = Π v∈ω x v (this element is well defined since ω ⊂ V ∞ and Γ ω is complete). We verify the compatibility conditions. First Ad(ϕ(X, Y, ω)

) • ϕ X = ϕ X = ϕ Y • ψ (X,Y,ω) , as D Y is a spherical Dyer group and so x v x u x -1 v = x u for every u ∈ X ⊂ Y and v ∈ ω ⊂ Y . Secondly for edges (Y, Z, λ), (X, Y, ω) and their composition (Y, Z, λ)(X, Y, ω) = (X, Z, ω ∪λ) we have ϕ(Y, Z, λ)ϕ(X, Y, ω) = Π v∈λ x v Π v∈ω x v = Π v∈ω∪λ x v = ϕ(X, Z, λ ∪ ω), as ω ∪ λ ⊂ Z
and D Z is a spherical Dyer group. As in the spherical case, we can write D(X (Γ)) and ϕ Γ when also considering the same construction on a subgraph. As before, we are interested in the development of the complex of groups D(X ), so we first show that D(X ) is developable.

Example 3.2.9. Consider the Dyer graph Γ m,q , given again in Figure 3.4, and the Dyer group D m,q from Example 3.1.6. The associated scwol X m,q = X (Γ m,q ) is drawn in Figure 3.5. Its vertex set is V (X m,q ) = {∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}}.

Its set of edges is E(X m,q ) = {(X, Y, ω) | X ⊊ Y ⊂ V (Γ m,q ), ω ⊆ Y ∞ \ X ∞ }.
So in particular as a ∈ V (Γ m,q ) ∞ , there are two edges between ∅ and {a}, namely (∅, {a}, ∅) and (∅, {a}, {a}), between {b} and {a, b}, namely ({b}, {a, b}, ∅) and ({b}, {a, b}, {a}), and between ∅ and {a, b}, namely (∅, {a, b}, ∅) and (∅, {a, b}, {a}). Proof. First we compare the sets of vertices.

If Y ∈ V (X ) then Y ∈ V (X Y ) hence Y ∈ V (Y). On the other hand if Y ∈ V (Y), we have Y ∈ V (X Z ) for some Z ∈ V (X ) hence Y ⊂ Z so that D Y is spherical. This implies V (X ) = V (Y). Now Note that gX = hY if and only if X = Y and g -1 h ∈ D f X . Similarly g(X, Y, ω) = h(X ′ , Y ′ , ω ′ ) if and only if X ′ = X, Y ′ = Y , ω ′ = ω and g -1 h ∈ D f X .
As in the spherical case, the scwol C does not have multiple edges between two vertices. Lemma 3.2.12. For every vertex gY ∈ V (C), the scwols St in (gY, C(X , ϕ)) and

Links and stars in

St in (e Y, C(X Y , ϕ Γ Y )) are isomorphic.
Proof. It suffices to show this for g = e. Then the statement is clear as it follows directly from the definitions.

The piecewise Euclidean cell complex Σ

The scwol C, which is also a simplicial complex, described in the previous section is a combinatorial object. In order to build the cell complex Σ, we could try to endow the geometric realization of C with a CAT(0) metric. This would give a simplicial complex with a non-standard piecewise Euclidean metric. The problem is that Moussong's Lemma 1.1.16 does not apply directly to simplicial complexes with a piecewise Euclidean metric since dihedral angles should be at least π/2. The idea is to interpret C as some generalized face poset of Σ. Indeed C does not give us the face structure of Σ but some form of subcomplex structure. Each vertex in C corresponds to a subcomplex of Σ and edges give identifications between these subcomplexes. Nevertheless we will be able to interpret C as a simplicial subdivision of Σ. We start with the description and study of the subcomplexes associated to vertices, then build Σ and finally show that Σ is CAT(0) using Moussong's Lemma 1.1.16.

Let (Γ, f, m) be a Dyer graph, D = D(Γ, f, m) the associated Dyer group, X = X (Γ) the associated scwol and D(X ) the associated complex of groups. Consider the injective morphism ϕ : D(X ) → D given by the natural inclusion maps ϕ X : D f X → D and ϕ(X, Y, ω) = ϕ(ω) = Π v∈ω x v . As in the previous section, we construct the development C = C(X , ϕ). 

Elementary building blocks Let Y ∈ V (X ). First we consider elementary building blocks in the cases

Y = Y 2 , Y = Y ∞ and Y = Y p . For Y ∈ V (X ) with Y = Y 2 ,
Y . For Y ∈ V (X ) with Y = Y ∞ , consider [0, 1] Y ⊂ R Y
with its standard cubical structure. Its set of vertices is P(Y ), where 0 ∈ R Y corresponds to ∅ ∈ P(Y ). For v ∈ V p , let Stern(v) be the f (v)-branched star where each edge of the star is identified with [0, 1]. Its center is denoted by c v and its leaves are identified with the elements of the finite cyclic group 

C f (v) of order f (v). For Y ∈ V (X ) with Y = Y p , let Stern(Y ) be the product of stars Π v∈Y Stern(v) endowed with the ℓ 2 metric. So its vertex set is Π v∈Y ({c v } ∪ C f (v) ). Note that V (Stern(Y )) = Π v∈Y ({c v } ∪ C f (v) ) can be identified with Z⊂Y D Y /D Z . We identify a vertex (g v ) v∈Y ∈ Π v∈Y ({c v } ∪ C f (v) ) with gD Y /D Z ∈ Z⊂Y D Y /D Z where Z = {v ∈ Y | g v = c v } and g = Π v∈Y \Z g v . Since Γ Y is

The cell complex Cc(Y )

To every Y ∈ V (X ), we associate a Euclidean cell complex Cc(Y ) as follows. Let Cc(Y ) be the product Cox(Y 2 )×[0, 1] Y∞ ×Stern(Y p ) endowed with the ℓ 2 metric. Each of its factors is a piecewise Euclidean cell complex, so Cc(Y ) is a piecewise Euclidean cell complex. In particular,

Cc(Y ) = Cc(Y 2 ) × Cc(Y ∞ ) × Cc(Y p ).
The set of vertices of Cc(Y ) is

D Y 2 × P(Y ∞ ) × Π v∈Yp ({c v } ∪ C f (v) ). The group D f Y acts by isometries on Cc(Y ). Indeed D f Y = D Y 2 × Π v∈Yp C f (v) . So D f Y acts through D Y 2 on Cox(Y 2 ) and through C f (v) on Stern(v) for v ∈ Y p .
These actions are all isometries.

Remark 3.2.13 (Links of vertices). As we will need to understand links of vertices in subcomplexes, we start by studying links of vertices in Cc(Y ). Recall 1.2.2 for the iterated spherical join of piecewise spherical simplicial complexes. Consider a vertex l = (w, λ, gZ) ∈ Cc(Y ). Its link is the spherical join

Lk(w, Cox(Y 2 )) ⋆ Lk(λ, [0, 1] |Y∞| ) ⋆ Lk(gZ, Stern(Y p )).
As mentioned in 2.2, the term Lk(w, Cox(Y 2 )) is identified with the piecewise spherical flag complex with 1-skeletton Γ Y 2 and edge length d(u, v) = π-π/m(u, v) for two vertices u, v ∈ Y 2 . The link Lk(gZ, Stern(Y p )) is isometric to Lk(Z, Stern(Y p )) which is isometric to the spherical join The cell complex Σ(gY ) Let Y ∈ V (X ) and gD f Y ∈ D/D f Y so that gY ∈ V (C). We now describe the subcomplexes of Σ associated to vertices of C. We start by identifying the vertex set of Cc(Y ) with a subset of V (St in (Y, C)) and more generally with a subset of V (St in (gY, C)). Let V p (gY ) be the following subset of

⋆ v∈Z Lk(c v , Stern(v)) ⋆ v∈Yp\Z Lk(e, Stern(v)). Each term Lk(c v , Stern(v)) consists of |C f (v) | disjoint
V (St in (gY, C)): V p (gY ) = {kX ∈ V (C) | X ⊆ V p and kX ∈ V (St in (gY, C))}.
By definition kX ∈ V (St in (gY, C)) if and only if kX = gY or there exists an unique edge h(X, Y, ω) in C with initial vertex kX = hX and terminal vertex

gY = kϕ(ω) -1 Y . So kX ∈ V (St in (gY, C)) if and only if X ⊆ Y and there exists unique ω ⊆ Y ∞ \ X ∞ with k(Π v∈ω x v ) -1 D f Y = gD f Y . So V p (gY ) = {kX ∈ V (C) | X ⊆ V p ∩ Y and k(Π v∈ω x v ) -1 D f Y = gD f Y with ω ⊆ Y ∞ }.
Lemma 3.2.15. The map j :

V (Cc(Y )) → V p (e Y )
given by j(w, λ, hZ) = wϕ(λ)hZ is bijective. Moreover it induces a bijective map j g :

V (Cc(Y )) → V p (gY ) with j g (w, λ, hZ) = g • j(w, λ, hZ) = gwϕ(λ)hZ. Proof. Let Z ∈ V (X ) and kD f Z ∈ D/D f Z so that kZ ∈ V p (e Y ). So we have Z ⊆ V p ∩ Y and k(Π v∈λ x v ) -1 D f Y = D f Y for some λ ⊆ Y ∞ . As D f Y = D Y 2 × D Yp the representative k(Π v∈λ x v ) -1 has a unique decomposition k(Π v∈λ x v ) -1 = k 2 Π v∈Yp k v , with k 2 ∈ D Y 2 and k v ∈ C f (v) for every v ∈ Y p . This gives a unique decomposition k = k 2 (Π v∈λ x v )(Π v∈Yp k v ). In particular k ∈ D Y . As Γ Y is complete and the coset kD f Z ∈ D/D f Z , we can assume k v = e for every v ∈ Z p .
As D Z 2 is a parabolic subgroup of the Coxeter group D Y 2 , we can also assume k 2 to be the unique element of minimal length in

k 2 D Z 2 . So j(k 2 , λ, Π v∈Yp\Z k v Z) = kZ. Hence the map j is surjective. Such a choice of k 2 and k v , v ∈ Y p \ Z is independent of the representative k. Indeed let k ′ be another representative, so k ′ D f Z = kD f Z . Then again k ′ = k ′ 2 (Π v∈λ x v )(Π v∈Yp k ′ v ). As k -1 k ′ ∈ D f Z , we have k -1 2 k ′ 2 ∈ D Z 2 so k 2 D Z 2 = k 2 D Z 2 and so by uniqueness of the minimal representative k 2 = k ′ 2 . Similarly k v = k ′ v for every v ∈ Y p .
As there is a unique edge from kZ to e Y , the subset λ ⊆ Y ∞ is uniquely determined. Hence the map j is also injective so it is bijective.

Finally kZ ∈ V p (gY ) if and only if

Z ⊆ V p ∩ Y and k(Π v∈λ x v ) -1 D f Y = gD f Y for some λ ⊆ Y ∞ . So kZ ∈ V p (gY ) if and only if Z ⊆ V p ∩Y and g -1 k(Π v∈λ x v ) -1 D f Y = D f Y for some λ ⊆ Y ∞ . So kZ ∈ V p (gY ) if and only if g -1 kZ ∈ V p (e Y ). So the map j g is bijective. For Y ∈ V (X ) and gD f Y ∈ D/D f Y so that gY ∈ V (C)
, let Σ(gY ) be the piecewise Euclidean cell complex given as follows:

1. The set of vertices (or 0-cells) is V p (gY ).

Every cell in Σ(gY ) is isometric to a cell in Cc(Y ).

3. The map j g : V (Cc(Y )) → V p (gY ) extends to a cellular isometry j g : Cc(Y ) → Σ(gY ).

Let

hD f Y ∈ D/D f Y with hD f Y = gD f Y then j g •j -1
h is a cellular isometry from Σ(hY ) to Σ(gY ). So the cell structure on Σ(gY ) is well-defined.

We now discuss identifications of subcomplexes. Let Y ∈ V (X ) and

gD f Y ∈ D/D f Y so that gY ∈ V (C). Let Z ∈ V (X ) and hD f Z ∈ D/D f Z so that hZ ∈ V (St in (gY, C)). Then St in (hZ, C) is a subscwol of St in (gY, C) and hence V p (hZ) ⊂ V p (gY ).
The following lemma shows that this inclusion induces an isometric embedding of the cell complex Σ(hZ) into Σ(gY ).

Lemma 3.2.16. Let Y ∈ V (X ) and gD f Y ∈ D/D f Y so that gY ∈ V (C). Let Z ∈ V (X ) and hD f Z ∈ D/D f Z so that hZ ∈ V (St in (gY, C)). The cellular map ι : Σ(hZ) → Σ(gY ) satisfying ι(v) = v for every vertex v ∈ V (Σ(hZ)
) is an isometric embedding. In particular we can identify Σ(hZ) with ι(Σ(hZ)).

Proof. Since hZ ∈ V (St in (gY, C)) if and only if g -1 hZ ∈ St in (Y, C), it suffices to consider the case g = e. For hZ ∈ V (St in (e Y, C)) we can write h = h 2 h ∞ h p with h 2 ∈ D Y 2 , h ∞ = ϕ(κ) for a unique κ ⊂ (Y \ Z) ∞ and h p ∈ D Yp\Zp . We claim that the cellular map ι h : Cc(Z) → Cc(Y ) given by ι(w, λ, mM ) = (h 2 w, λ ∪ κ, h p mM ) for (w, λ, mM ) ∈ V (Cc(Z)) (so w ∈ D Z 2 , λ ⊆ Z ∞ , M ⊆ Z p and m ∈ D Zp\M ) is an isometric embedding. Both Cc(Z) = Cox(Z 2 ) × [0, 1] Z∞ × Stern(Z p ) and Cc(Y ) = Cox(Y 2 )×[0, 1] Y∞ ×Stern(Y p )
are endowed with the ℓ 2 metric. By Section 2.2, the cellular map

ι 2 : Cox(Z 2 ) → Cox(Y 2 ) with ι(w) = h 2 w for w ∈ V (Cox(Z 2 )) is an isometric embedding indentifying Cox(D Z 2 )) with h 2 • Cox Z 2 (D Y 2 ). The cellular map ι ∞ : [0, 1] Z∞ → [0, 1] Y∞ with ι ∞ (λ) = λ ∪ κ for λ ∈ P(Z ∞ ) is also an isometric embedding identifying Π v∈Z∞ [0, 1] with Π v∈Z∞ [0, 1] × Π v∈κ {1} × Π v∈Y∞\(κ∪Z∞) {0} ⊂ Π v∈Y∞ [0, 1]. The cellular map ι p : Stern(Z p ) → Stern(Y p ) with ι p (mM ) = h p mM for mM ∈ V (Stern(Z p )) is an isometric embedding identifying Stern(Z p ) with Stern(Z p ) × {h p } ⊂ Stern(Y p ). So map ι h decomposes as ι h = (ι 2 , ι ∞ , ι p ) : Cc(Z) → Cc(Y ),
hence it is a cellular isometric embedding. Then the map ι : Σ(hZ) → Σ(e Y ) given by j e •ι h •j -1 h is a cellular isometric embedding.

Simplicial subdivision

Let Y ∈ V (X ) and gD f Y ∈ D/D f Y so that gY ∈ V (C).
We describe a simplicial subdivision of Cc(Y ) and Σ(gY ). Let Bar(Cox(Y 2 )) be the barycentric subdivision of Cox(Y 2 ). Let Bar([0, 1]) be the barycentric subdivision of [0, 1]. Then Bar(Cox(Y 2 )), Bar[0, 1] and Stern(v), for v ∈ Y p are piecewise Euclidean simplicial complexes. Moreover the simplicial complex

Bar(Cox(Y 2 )) is isomorphic to St in (Y 2 , C) by Lemma 2.2.3. For v ∈ Y ∞ , the simplicial complex Bar([0, 1]) is isomorphic to St in ({v}, C). For v ∈ Y p the simplicial complex Stern(v)
is isomorphic to St in ({v}, C). The isomorphisms induce a scwol structure on the barycentric subdivisions and on Stern(v). So the scwol

Bar(Cc(Y )) = Bar(Cc(Y 2 )) × Π v∈Y∞ Bar(Cc({v})) × Π v∈Yp Cc({v}) is well-defined and isomorphic to St in (Y, C) = St in (Y 2 , C) × Π v∈Y∞ St in ({v}, C) × Π v∈Yp St in ({v}, C).
We endow Bar(Cc(Y )) with the ℓ 2 metric, so it is piecewise Euclidean simplicial complex isometric to Cc(Y ). We call Bar(Cc(Y )) the nice simplicial subdivision of Cc(Y ). We call the simplicial subdivision of Σ(gY ) induced by the isometry j g the nice simplicial subdivision of Σ(gY ).

The next lemma discusses how St in (gY, C) can be interpreted as a simplicial subdivision of Σ(gY ).

Lemma 3.2.17. Let Y ∈ V (X ) and gD f Y ∈ D/D f Y so that gY ∈ V (C). The nice simplicial subdivision of Σ(gY ) is simplicially isomorphic to the scwol St in (gY, C). For Z ∈ V (X ) and kD f Z ∈ D/D f Z so that kZ ∈ V (St in (gY, C))
, the isometric embedding ι : Σ(hZ) → Σ(gY ) given in Lemma 3.2.16 preserves the nice simplicial subdivision.

Proof. The nice simplicial subdivision is isomorphic to Bar(Cc(Y )) which is isomorphic to St in (Y, C) which is isomorphic to St in (gY, C).

The second statement follows from the product decomposition of the nice simplicial subdivision, the map ι and the complexes Σ(hZ) and Σ(gY ).

Example 3.2.18. Let m, q ∈ N ≥2 . We go back to the example of the Dyer graph Γ m,q with associated Dyer group D m,q and scwol X m,q given in Figure 3.1, Example 3.1.6 and Figure 3.5. Figure 3.7 shows the subcomplexes Σ(e{a, b}), Σ(e{b, c}), Σ(e{c, d}) and their simplicial subdivision in the case m = 4 and q = 3.

The cell complex Σ We now have the tools needed to build the cell complex

Σ. Consider Σ = gY ∈V (C) Σ(gY ),
where we identify Σ(hZ) with ι(Σ(hZ)) ⊂ Σ(gY ) whenever hZ ∈ St in (gY, C). So by Lemma 3.2.16, Σ has a well-defined piecewise Euclidean metric. We endow Σ with the associated length metric. The set of vertices of Σ is The subcomplexes associated to some vertices of the development of X m,q and their simplicial subdivision.

V p (C) = {gY ∈ V (C) | Y ∈ V (X ), Y ⊂ V p , gD f Y ∈ D/D f Y }.
The action of D on V p (C) induces an action by isometries of D on Σ, in particular for d ∈ D we have d • Σ(gY ) = Σ(dgY ). By Lemma 3.2.17, the nice simplicial subdivision of each Σ(gY ) induces a simplicial subdivision of Σ, which we call the nice simplicial subdivision of Σ.

Lemma 3.2.19. The scwol C is isomorphic to the nice simplicial subdivision of Σ. In particular this implies that Σ is a simply connected metric space.

Proof. Since C = gY ∈V (C) St in (gY, C) and by Lemma 3.2.17 every St in (gY, C) is isomorphic to the nice simplicial subdivision of Σ(gY ) preserved by ι, the complex C is isomorphic to the nice simplicial subdivion of Σ. This induces a metric on C with respect to which the geometric realization | C | is isometric to Σ. By [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF][Theorem III.C.3.14], the scwol C is simply connected. So Σ is a well-defined simply connected metric space.

We are finally in a position to show that Σ is CAT(0). Since Σ is simply connected, we only need to understand its local structure, so we are back to studying links of vertices. In order to have a precise description of the links of vertices, we introduce an edge labeling of Σ by V (Γ).

Edge labeling

Let Y ∈ V (X ) and hD f Y ∈ D/D f Y so that hY ∈ V (C)
. We start by labeling the edges of Σ(hY ) by elements of Y . To define this edge labeling, we study when two vertices of Σ(hY ) are adjacent and then give the corresponding label. Let X, Z ∈ V (X ) and kD f X ∈ D/D f X , lD f Z ∈ D/D f Z so that kX, lZ ∈ V p (hY ), i.e. they are vertices of Σ(hY ). Then kX and lZ are adjacent in Σ(hY ) if and only if their pre-images j

-1 h (kX), j -1 h (lZ) ∈ V (Cc(Y )) are adjacent in Cc(Y ). Let j -1 h (kX) = (k 2 , λ k , k p X), j -1 h (lZ) = (l 2 , λ l , l p Z) ∈ V (Cc(Y )) , hence hk 2 ϕ(λ k )k p X = kX and hl 2 ϕ(λ l )l p Z = lZ in V p (hY ). Remember that Cc(Y ) = Cc(Y )×Cc(Y )×Cc(Y ). Then j -1 h (kX), j -1 h (lZ) ∈ V (Cc(Y )) are adjacent in Cc(Y ) if and only if one of the following holds 1. k 2 , l 2 are adjacent in V (Cc(Y 2 )) and λ k = λ l and k p X = l p Z. Equivalently k -1 2 l 2 = x v for some v ∈ Y 2 and λ k = λ l and X = Z and k p l p ∈ D f X .
2. k 2 = l 2 and λ k , λ l are adjacent in V (Cc ∞ ) and k p X = l p Z. This is equivalent to one of the following:

(a) k 2 = l 2 and λ k ⊂ λ l and λ l \λ k = {v} ⊂ Y ∞ and X = Z and k -1 p l p ∈ D f Z . (b) k 2 = l 2 and λ l ⊂ λ k and λ k \λ l = {v} ⊂ Y ∞ and X = Z and k -1 p l p ∈ D f Z .
3. k 2 = l 2 and λ k = λ l and k p X, l p Z are adjacent in V (Cc(Y p )). This is equivalent to one of the following:

(a) k 2 = l 2 and λ k = λ l and X ⊂ Z and Z \ X = {x v } for some v ∈ Y p and k -1 p l p ∈ D f Z . (b) k 2 = l 2 and λ k = λ l and Z ⊂ X and X \ Z = {x v } for some v ∈ Y p and k -1 p l p ∈ D f X .
Using that Y ∈ V (X ) so D Y is a spherical Dyer group, this leads to the following characterization and labeling of edges by Y ⊂ V (Γ). The vertices kX, lZ ∈ V p (hY ) are adjacent in Σ(hY ) if and only if one of the following holds

1. X = Z and k -1 l ∈ x v D f X for some v ∈ Y 2 .
In this case, we label the edge by v ∈ Y 2 ⊂ V (Γ).

X = Z and k

-1 l = x ±1 v D f X for some v ∈ Y ∞ . In this case, we label the edge by v ∈ Y ∞ ⊂ V (Γ). 3. (a) X ⊂ Z and Z \ X = {x v } for some v ∈ Y p and k -1 l ∈ k -1 p l p ∈ D f Z . In this case, we label the edge by v ∈ Y p ⊂ V (Γ). (b) Z ⊂ X and X \ Z = {x v } for some v ∈ Y p and k -1 l ∈ k -1 p l p ∈ D f X . In this case, we label the edge by v ∈ Y p ⊂ V (Γ). Note that for h ′ Y ′ ∈ V (St in (gY, C)), the labeling of an edge in Σ(h ′ Y ′ ) is invariant under the inclusion ι : Σ(h ′ Y ′ ) → Σ(gY )
. Moreover the labeling of edges in Σ(e Y ) is invariant under the left action of D f Y . So this defines an equivariant labeling by V (Γ) of the edges of Σ.

Remark 3.2.20 (Links of vertices). As our goal is to apply Moussong's Lemma to Σ, we need to understand links of vertices in Σ. We start with links of vertices in Σ(gY ). This is crucial to prove later on that Σ is CAT(0). Let Y ∈ V (X ) and

hD f Y ∈ D/D f Y so that hY ∈ V (C). Let X ∈ V (X ) and kD f X ∈ D/D f X so that kX ∈ V p (hY ).
The edge labeling on Σ and Σ(gY ) induce a vertex labeling l : V (Lk(kX, Σ)) → V , which restricts to l : V (Lk(kX, Σ(hY ))) → Y . Using the map j h in Lemma 3.2.15, the link Lk(kX, Σ(hY )) is isometric to the link Lk(j -1 h (kX), Cc(Y )). With Remark 3.2.13, this implies that Lk(kX, Σ(hY )) can be identified with the spherical flag complex

Γ Y 2 ⋆ Γ Y∞ ⋆ Γ Yp\X ⋆ (⋆ v∈X {v i | 1 ≤ i ≤ f (v)}). The vertex labeling is given by l(v) = v for every v ∈ Y 2 ∪ Y ∞ ∪ Y p \ X and l(v i ) = v for every v i ∈ {v i | v ∈ X, 1 ≤ i ≤ f (v)}. By Remark 3.2.13, the edge length in Lk(kX, Σ(hY )) is given by d(v, w) = π -π/m(l(v), l(w)). As Y ∈ V (X ), the matrix (cos(d(v, w))) v,
w∈Y is positive definite by Lemma 3.2.1. So Lk(kX, Σ(hY )) is a metric flag complex. Additionally we have that v, w are adjacent vertices in Lk(kX, Σ(hY )) if and only if l(v) ̸ = l(w). As this holds for every gY ∈ V (C), it implies that if v, w are adjacent vertices in Lk(kX, Σ), we have l(v) ̸ = l(w). So for pairwise adjacent vertices v 1 , . . . , v n ∈ Lk(kX, Σ), we have l(v i ) ̸ = l(v j ) for every i ̸ = j. To simplify the notation we will write vi = l(v i ) ∈ V when considering pairwise adjacent vertices v 1 , . . . , v n ∈ Lk(kX, Σ).

Let us now give some more details on the link of vertices in Σ.

Lemma 3.2.21. Let Y ∈ V (X ) with Y ⊆ V p so that Y ∈ V p (C). Let the vertices v 1 , . . . , v k ∈ V (Lk(Y, Σ)) be pairwise adjacent. There exist Z ∈ V (X ) and g ∈ D such that Y ∈ V (Σ(gZ)) and v 1 , . . . , v k ∈ V (Lk(Y, Σ(gZ))) if and only if Y ∪ { v1 , . . . , vk } ∈ V (X ).
Proof. As v 1 , . . . , v k ∈ V (Lk(Y, Σ)) are pairwise adjacent, we have vi ̸ = vj . Assume that there exists Z ∈ V (X ) and g ∈ D such that Y ∈ V (Σ(gZ)) and the vertices

v 1 , . . . , v k ∈ V (Lk(Y, Σ(gZ))). Then Y ∈ V p (gZ) so Y ⊂ Z and { v1 , . . . , vk } ⊂ Z. Hence Y ∪ { v1 , . . . , vk } ⊂ Z which implies that Y ∪ { v1 , . . . , vk } ∈ V (X ). Now assume that Y ∪ { v1 , . . . , vk } ∈ V (X ). Each vertex v ∈ V (Lk(Y, Σ)) is an edge in Σ between e Y and some vertex h v Z v ∈ Σ. Let us define an element g v ∈ D. (i) If v ∈ V 2 , the vertex v ∈ V (Lk(Y, Σ)) is an edge between Y and x vY . In this case let g v = e. (ii) If v ∈ V ∞ , the vertex v ∈ V (Lk(Y, Σ)
) is an edge between Y and ϕ(v)Y or between Y and ϕ(v) -1 Y . In the first case let g v = e. In the second case let

g v = ϕ(v) -1 = x -1 v .
Note that only one of these cases can occur as v 1 , . . . , v k are pairwise adjacent.

(iii) For v ∈ V p \Y , the vertex v ∈ V (Lk(Y, Σ)) is an edge between Y and Y ∪{v}.

In this case we fix g v = e.

(iv) For v ∈ Y , the vertex v ∈ V (Lk(Y, Σ)) is an edge between Y and x t v(Y \{v}), for some 1 ≤ t ≤ f (v). In this case fix g v = e.

We claim that for Z = Y ∪{ v1 , . . . , vk } and

g = Π k i=1 g v i we have Y ∈ V (Σ(gZ)) and v 1 , . . . , v k ∈ V (Lk(Y, Σ(gZ))). Since Y ∪{ v1 , . . . , vk } ∈ V (X ), we have g v g w = g w g v for all v, w ∈ {v 1 , . . . , v k }. In fact g = ϕ(ω) -1 for ω = {v ∈ Z | g v = x -1 v } ⊂ (Z \ Y ) ∞ . Hence Y ∈ V p (gZ). Let v ∈ {v 1 , . . . , v k }. Now we need to show that the element h v Z v ∈ V p (gZ)
. We use the case by case analysis above to fix the following notation.

(i) If v ∈ V 2 , we have h v Z v = x vY and we set λ v = ω ⊂ (Z \ Z v ) ∞ . (ii) If v ∈ V ∞ and h v Z v = ϕ(v)Y , let λ v = ω ∪ {v} ⊂ (Z \ Z v ) ∞ . If v ∈ V ∞ and h v Z v = ϕ(v) -1 Y , let λ v = ω \ {v} ⊂ (Z \ Z v ) ∞ . (iii) If v ∈ V p \ Y , we have h v Z v = Y ∪ {v} and we set λ v = ω ⊂ (Z \ Z v ) ∞ . (iv) If v ∈ Y , we have h v Z v = x t v(Y \ {v}) for some 1 ≤ t ≤ f (v) and we set λ v = ω ⊂ (Z \ Z v ) ∞ . As Z = Y ∪ { v1 , . . . , vk } ∈ V (X ), we have gZ = h v ϕ(λ v ) -1 Z and Z v ⊂ Z, so h v Z v ∈ V (St in (gZ, C)). As additionally Z v ⊂ Z ∩ V p , we have h v Z v ∈ V p (gZ).
We now have the necessary tools to show the following statement. Theorem 3.2.22. The cell complex Σ is CAT(0). Proof. By [BH99] Theorem II.5.4, Σ is CAT(0) if and only if it is simply connected and the link of every vertex is CAT(1). By Lemma 3.2.19, the cell complex Σ is simply connected. Let us now prove that the link of every vertex is CAT(1) by using Moussong's Lemma 1.1.16. Let Y ∈ V (X ) with Y ⊂ V p , and

gD f Y ∈ D/D f Y so that gY ∈ V (Σ). Assume gD f Y = D f Y so gY = e Y = Y ∈ V (Σ). Claim 3.2.23. Every edge in the link Lk(Y, Σ) of Y in Σ has length ≥ π/2. Proof. Since the vertex Y ∈ V (Σ) is contained in Σ(gZ) if and only if the vertex gZ ∈ St out (Y, C) we can describe Lk(Y, Σ) as the union gZ∈Stout(Y,C) Lk(Y, Σ(gZ)),
where Lk(Y, Σ(gZ)) is the link of Y in the subcomplex Σ(gZ). By Remark 3.2.20, for two adjacent vertices u, v ∈ V (Lk(Y, Σ(gZ))) the length of the edge is

d(u, v) = π -π/m(û, v) ≥ π/2 as m(û, v) ≥ 2. So each edge in Lk(Y, Σ) has length ≥ π/2.

Chapter 4

Systolic complexes and group presentations

In Chapter 1, we introduced systolic complexes as a form of non-positive curvature for simplicial complexes. As a group endowed with a generating set naturally acts on its Cayley graph, it is natural to wonder when such a Cayley graph is systolic. The goal is to give conditions on a group presentation ⟨S | R⟩, that ensure systolicity of the flag complex of the Cayley graph Cay(G, S). Recall that a simplicial complex X is systolic if it is connected, simply connected and if Lk(v, X) is 6-large for all vertices v ∈ X. A group is systolic if it acts properly discontinuously and cocompactly on a systolic complex.

In section 4.1, we investigate when the flag complex Flag(G, S) of the Cayley graph Cay(G, S) is simply connected. The goal of Section 4.2 is the proof of Theorem 4.2.5, which gives condition on a presentation ensuring that Flag(G, S) is systolic. In order to do so, we investigate the cycles of length 4 and 5 in Lk(v[e], Flag(G, S)) in Lemmas 4.2.2, 4.2.3 and 4.2.4. In Section 4.3, we apply Theorem 4.2.5 to Garside groups and Artin groups. The material presented here also appeared in [START_REF] Soergel | Systolic complexes and group presentations[END_REF].

Simply connected flag complexes

Let G be a group and S ⊂ G a finite generating set. Suppose additionally that S ∩ S -1 = ∅, this especially implies e / ∈ S and s 2 ̸ = e for all s ∈ S. This convention is common in the context of Garside groups and monoids, which will be one of our main examples. Let Cay(G, S) be the Cayley graph of G relative to S. Its vertices and edges are

V (Cay(G, S)) = {v[g] | g ∈ G} and E(Cay(G, S)) = {e[g, s] | g ∈ G, s ∈ S} where the edge e[g, s] goes from v[g] to v[gs]. We also write 63 e[g, s] = (v[g], v[gs]
). As S ∩ S -1 = ∅, the graph Cay(G, S) is simplicial. So we can define Flag(G, S) as the flag complex of Cay(G, S). As Flag(G, S) is the flag complex of Cay(G, S), the group G naturally acts properly discontinuously and cocompactly by isometries on Flag(G, S). Note that even though G acts freely on Cay(G, S), it does not necessarily act freely on Flag(G, S). Proposition 4.1.1. Let G be a group and S ⊂ G a finite generating set. Suppose additionally that S ∩ S -1 = ∅ and that the action of G on Flag(G, S) is free. Then Flag(G, S) is a simply connected simplicial complex and

π 1 (Flag(G, S)/G) = G if and only if G admits the presentation G = ⟨S | R⟩ where R = {a • b • c | a, b, c ∈ S with abc = e in G} ∪ {a • b • c -1 | a, b, c ∈ S with abc -1 = e in G}.
Proof. To see when Flag(G, S) is simply connected, it is enough to take a look at its 2-skeleton. There is a 2-simplex in Flag(G, S) for every set of 3 pairwise adjacent vertices. As in Cay(G, S) edges are labeled by elements in S and vertices correspond to elements of G, so are edges and vertices in Flag(G, S). Hence we can interpret the existence of a 2-simplex in terms of relations on the generators. At each vertex v[g] in Flag(G, S) and for every triple a, b, c ∈ S with a

• b • c = e or a • b • c -1 = e in G there is a 2-simplex with vertices v[g], v[ga],

v[gab] and edges e[g, a], e[ga, b], e[gab, c] or e[g, a], e[ga, b], e[g, c].

On the other hand each 2-simplex has vertices and edges which correspond to such a triple of generators. This implies

π 1 (Flag(G, S)/G) = ⟨S | a • b • c = e or a • b • c -1 = e for all a, b, c
for which one of these equalities holds in G⟩.

Finally Flag(G, S) is simply connected if and only if it is the universal cover of the quotient, so if and only if π 1 (Flag(G, S)/G) = G.

We call a presentation satisfying the conditions of Proposition 4.1.1 a triangular presentation. Proof. Let g ∈ G and x ∈ Flag(G, S) such that g • x = x. Let V be the set of vertices of the smallest simplex containing x. As the action of G is simplicial, g • V = V . The restriction of possible relations in R imposes an orientation on triangles in the graph, which in turn implies that in the subcomplex spanned by V , there exists a unique vertex v 0 ∈ V with only incoming edges i.e. there exists a unique vertex v 0 ∈ V such that for all w ∈ V \ {v 0 }, there exists k ∈ S such that v 0 = wk. Since S ∩ S -1 = ∅, the action of G on Cay(G, S) preserves the orientation of the edges and is free on the vertices. So g

• x = x implies g • v 0 = v 0 hence g = e.

Systolic Cayley Complexes

Consider a group G with a finite triangular presentation G = ⟨S | R⟩. Then we know that Flag(G, S) is a simply connected simplicial complex. We now want to know when Flag(G, S) is systolic. We already know that Flag(G, S) is simply connected. So we need to check whether Lk(v, Flag(G, S)) is 6-large for all vertices of Flag(G, S). So E(L) = {e[g, a] | g ∈ S ∪ S -1 and a ∈ S \ {g -1 } and ga ∈ S ∪ S -1 }. We write v ∼ w for two adjacent vertices v and w and e = (v, w) for the edge e between v and w. If there is an edge from v to w, we might also use the notation v → w. To simplify the notation, we will also denote the vertex v[s] with s and say the vertex s ∈ S is positive, s ∈ S -1 is negative.

We put some additional conditions on S and R:

(1) For all a, b, c ∈ S, if abc ∈ S then ab ∈ S and bc ∈ S.

(

2) R = {a • b • c -1 | abc -1 = e in G}, so we do not have relations of the form a • b • c in R.
We call a triangular presentation satisfying these additional conditions a restricted triangular presentation. These conditions are mostly technical. They limit the possible diagonal-free cycles in L and by Proposition 4.1.2 ensure that the action of G on Flag(G, S) is free. We don't know how to decide whether L is 6-large without them. So what can we say about diagonal free cycles in L of length 4 or 5 under these conditions?

Remark 4.2.1. The additional condition on R implies that there are no edges from vertices in S to vertices in S -1 , so from positive to negative vertices. The additional conditions on S imply that every cycle γ in L which contains one of the following configurations of adjacent vertices has a diagonal. So if a, b, c

∈ S with a) a, b, c ∈ V (γ) and a → b → c then a → c. b) a -1 , b -1 , c -1 ∈ V (γ) and a -1 → b -1 → c -1 then a -1 → c -1 . c) a -1 , b, c ∈ V (γ) and a -1 → b ← c then a -1 → c. d) a -1 , b -1 , c ∈ V (γ) and a -1 ← b -1 → c then a -1 → c.
So all of these configurations of vertices cannot occur in diagonal-free cycles. This leads us to the following statement about potential cycles of length 4 or 5. Lemma 4.2.2. Every cycle of length 5 in L contains a diagonal.

Proof. Let γ be a cycle of length 5 in L.

As 5 is odd, if γ has 5 positive or 5 negative vertices, it has a diagonal (situation a) or b) always occurs).

Assume γ contains one negative and four positive vertices. As there are only edges from negative to positive vertices, the direction of two of the edges in γ is already determined. Every possible direction of the three other edges leads to one of the situations above (avoiding situation c) necessarily leads to situation a)). The same argument holds if γ has one positive and four negative vertices.

Assume γ has two negative and 3 positive vertices. As each negative vertex is adjacent to at least one positive vertex, the direction of at least two edges of γ is already determined. Every possible direction of the three other edges leads to one of the situations above (if the two negative vertices are adjacent we have situation d) otherwise we have situation c)). The same argument holds if γ has two positive and three negative vertices. 2) 3) 4) 5)

u d x w c a v b u -1 d x -1 w -1 c a v -1 b u -1 d x c w a v b u -1 d x -1 c w a v -1 b u -1 d x w -1 c a v b
Proof. Let γ be a cycle of length 4. Assume γ has 4 positive vertices. In order not to be in the situation of Remark 4.2.1 a), each vertex has either two incoming or two outgoing edges. This corresponds to the first cycle. The same argument holds if γ has 4 negative vertices. Then we have the second cycle.

Assume γ has 1 negative and 3 positive vertices. Then the negative vertex is adjacent to two positive vertices and hence the direction of two edges is already determined. As we do not allow the configuration of Remark 4.2.1 c), the only possible cycle is the third cycle. The same argument holds for 1 positive and 3 negative vertices, which gives the fourth cycle.

Assume γ has 2 positive and 2 negative vertices. Then if the two negative vertices are adjacent, we are necessarily in the situation of Remark 4.2.1 d). So the negative vertices are not adjacent. Hence they are both adjacent to the two positive vertices and the direction of these edges is determined. This gives the fifth cycle.

So to see if L is 6-large we need to concentrate on the cycles of length 4 presented in Lemma 4.2.3. When do they exist? Under which conditions do they have a diagonal? The next lemma aims to answer those questions. Note that u, v, w, x ∈ S correspond to vertices in 4-cycles in L and a, b, c, d ∈ S to edges. Also note that these conditions are all necessary as one can see in Lemma 4.2.6.

Proof. As mentioned above, L is a flag complex as Flag(G, S) is a flag complex. We know by Lemma 4.2.2 that there are no diagonal-free cycles of length 5 in L. By Lemma 4.2.3, we know that there are only five problematic cycles of length 4. We show here under which conditions on S such cycles exists and which conditions are necessary for the existence of a diagonal. If those five tyoes of 4-cycles have a diagonal, all cycles of length 4 have a diagonal. So all cycles of length < 6 have a diagonal, so L is 6-large. The existence of the 4-cycle relies on two elements: we need four distinct vertices u, v, w, x and we need the appropriate edges a, b, c, d between these vertices. where k ∈ S is the label on the diagonal. As v = ua = wb and x = ud = wc, this corresponds to condition 1).

ii) In the second cycle of length 4: the existence of the cycle is equivalent to the following statement about elements of S:

∃ a, b, c, d, u, v, w, x ∈ S, u -1 , v -1 , w -1 , x -1 pairwise distinct such that v -1 = u -1 a = w -1 b and x -1 = w -1 c = u -1 d
where a, b, c, d ∈ S are the labels on the edges. There is a diagonal if v -1 ∼ x -1 or u -1 ∼ w -1 which is equivalent to

∃ k ∈ S : w -1 = u -1 k, u -1 = w -1 k, v -1 = x -1 k or x -1 = v -1 k
where k ∈ S is the label on the diagonal. As v -1 = u -1 a = w -1 b and x -1 = w -1 c = u -1 d, this corresponds to condition 2).

iii) In the third cycle of length 4: the existence of the cycle is equivalent to the following statement about elements of S:

∃ a, b, c, d, u, v, w, x ∈ S with u -1 , v, w, x pairwise distinct such that v = u -1 a, x = u -1 d, w = vb and w = xc
where a, b, c, d ∈ S are the labels on the edges. There is a diagonal if v ∼ x or u -1 ∼ w which is equivalent to

∃k ∈ S : uw = k, v = xk or x = vk
where k ∈ S is the label on the diagonal. As u -1 is a negative vertex and w is a positive one, there is only one possible direction for the diagonal from u -1 to w. As v = u -1 a, x = u -1 d, w = vb and w = xc, this corresponds to condition 3). iv) In the fourth cycle of length 4: the existence of the cycle is equivalent to the following statement about elements of S:

∃ a, b, c, d, u, v, w, x ∈ S with u -1 , v -1 , w, x -1 pairwise distinct such that v -1 = u -1 a, w = v -1 b = x -1 c and x -1 = u -1 d
where a, b, c, d ∈ S are the labels on the edges. There is a diagonal if

v -1 ∼ x -1 or u -1 ∼ w which is equivalent to ∃k ∈ S : uw = k, v -1 = x -1 k or x -1 = v -1 k
where k ∈ S is the label on the diagonal. As u -1 is a negative vertex and w is a positive one, there is only one possible direction for the diagonal from u -1 to w. As v -1 = u -1 a, w = v -1 b = x -1 c and x -1 = u -1 d, this corresponds to condition 4).

v) In the fifth cycle of length 4: the existence of the cycle is equivalent to the following statement about elements of S:

∃ a, b, c, d, u, v, w, x ∈ S with u -1 , v, w -1 , x pairwise distinct such that v = u -1 a = w -1 b and x = u -1 d = w -1 c
where a, b, c, d ∈ S are the labels on the edges. There is a diagonal if v ∼ x or u -1 ∼ w -1 which is equivalent to

∃ k ∈ S : w -1 = u -1 k, u -1 = w -1 k, v = xk or x = vk
where k ∈ S is the label on the diagonal. As v = u -1 a = w -1 b and x = u -1 d = w -1 c, this corresponds to condition 5).

We can now get back to the original question: when is Flag(G, S) systolic? Moreover, this implies that G is a systolic group.

(s u , s v , s x , s b , s c ) = (u, x, v, c, b) satisfy s v s b = s x s c ∈ S, s u s x ∈ S and s u s v ∈ S.
We check that condition 3) fails in at least one of those cases so we check that for all s ∈ S we have s ̸ = s u s v s b and s v ̸ = s x s for at least one of those tuples.

Example 4.2.7. The conditions in Theorem 4.2.5 are all necessary as shown in Lemma 4.2.6. One can note that the given presentations are not systolic but the underlying groups are, since free groups are known to be systolic and even Cayley systolic with respect to the standard generating system. Also note that the following presentation

F 2 × F 2 = ⟨a, b, c, d, ∆ 1 , ∆ 2 , ∆ 3 , ∆ 4 | ∆ 1 = ab = ba, ∆ 2 = bc = cb, ∆ 3 = cd = dc, ∆ 4 = da = ad⟩
satisfies conditions 1)-4) but not condition 5) (as u = a, v = b, w = c and x = d do not satisfy condition 5)). Again F 2 × F 2 is known to be systolic, using a construction by Elsner and Przytycki [START_REF] Elsner | Square complexes and simplicial nonpositive curvature[END_REF]. We do not know whether it is Cayley systolic.

Remark 4.2.8. We can also interpret the conditions in Lemma 4.2.4 as conditions using orders on S. We first introduce left and right orders on S ∪ e by defining for a, b ∈ S ∪ {e}:

a) a ≤ L b if ∃c ∈ S ∪ {e} such that ac = b. b) a ≤ R b if ∃c ∈ S ∪ {e} such that ca = b.
These are indeed orders on S ∪ {e}: as e ∈ S ∪ {e} they are reflexive, as there are no inverses in S they are antisymmetric and by the additional condition (1) on S they are transitive. The existence of an edge v → w in L is equivalent to

1. v ≤ L w if v, w ∈ S 2. w -1 ≤ R v -1 if v, w ∈ S -1 3. v -1 w ∈ S if w ∈ S and v ∈ S -1 .
Then the conditions on the existence of diagonals in given 4-cycles could be reformulated in the following way:

1) If there exist u, v, w, x ∈ S pairwise distinct with u ≤ L v and w ≤ L v and u ≤ L x and w ≤ L x then u ≤ L w or x ≤ L v or w ≤ L u or v ≤ L v. 2) If there exist u, v, w, x ∈ S pairwise distinct with v ≤ R u and x ≤ R u and v ≤ R w and x ≤ R w then u ≤ R w or x ≤ R v or w ≤ R u or v ≤ R x.
3) If there exist u, v, w, x ∈ S pairwise distinct with uv ∈ S and ux ∈ S and v ≤ L w and x ≤ L w then uw ∈ S or x ≤ L v or v ≤ L x.

4) If there exist u, v, w, x ∈ S pairwise distinct with vw ∈ S and xw ∈ S and

x ≤ R u and v ≤ R u then uw ∈ S or v ≤ R x or x ≤ R v.
5) If there exist u, v, w, x ∈ S pairwise distinct with uv ∈ S and ux ∈ S and wv ∈ S and wx ∈ S then v ≤ L x or u ≤ R w or x ≤ L v or w ≤ R u.

Here the conditions are only given in terms of elements of S associated to the vertices of the 4-cycles. 3. Conjugation by ∆ preserves P i.e. ∆ -1 P ∆ = P .

Applications

Garside groups

4. For all x ∈ P \ {e} we have Remark 4.3.4. The monoid P also induces a partial order ≤ R which is invariant under right multiplication. We define a ≤ R b ⇔ ba -1 ∈ P . It follows from the properties of G that ≤ R is also a lattice order, that P is the set of elements a such that e ≤ R a and that the simple elements are the elements a such that e ≤ R a ≤ R ∆. We denote by a ∨ R b the lcm and by a ∧ R b the gcd with respect to ≤ R . We say that an element

∥x∥ = sup{k ∈ N | ∃a 1 , . . . , a k ∈ P \ {e} such that x = a 1 • • • a k } < ∞.
g ∈ G is balanced if {a ∈ G | e ≤ L a ≤ L g} = {a ∈ G | e ≤ R a ≤ R g}. So {a ∈ G | e ≤ L a ≤ L ∆} = {a ∈ G | e ≤ R a ≤ R ∆}, hence ∆ is balanced.
Example 4.3.5. Spherical Artin groups are Garside groups, in particular braid groups are Garside. Torus knot groups ⟨x, y | x p = y q ⟩ with p, q > 1 are Garside groups with Garside element ∆ = x p = y q and monoid of positive elements P = ⟨x, y | x p = y q ⟩ + . The fundamental group of the complement of n lines through the origin in C 2 , with presentation

⟨x 1 , . . . , x n | x 1 x 2 . . . x n = x 2 . . . x n x 1 = • • • = x n x 1 . . . x n-1 ⟩
is also a Garside group with Garside element ∆ = x 1 x 2 . . . x n and monoid of positive words P = ⟨x 1 , . . . ,

x n | x 1 x 2 . . . x n = x 2 . . . x n x 1 = • • • = x n x 1 . . . x n-1 ⟩ + .
Lemma 4.3.6. Let G be a Garside group with Garside structure (G, P, ∆) and set of non-trivial simple elements S. Then ⟨S | s • t = st ∀s, t ∈ S such that st ∈ S⟩ is a restricted triangular presentation of G.

Proof. This presentation is a direct consequence of Theorem 6.1 in [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF]. It can also be found in [DDG + 15, Proposition IV.3.4] in the more general context of Garside categories and groupoids, alternatively it is also mentioned for Garside groups in [START_REF] Picantin | Petits groupes gaussien[END_REF]. It is a restricted triangular presentation as all relations are of the form a • b = c for some a, b, c ∈ S and S is the set of non-trivial simple elements of a Garside group.

We call this presentation the Garside presentation of G associated with the Garside structure (G, P, ∆). We can now state one of our main results. 

; m) = . . . = prod(x n , x 1 , . . . , x n-1 ; m)⟩ + .
When considering all indices modulo n, we can write the set of non trivial simple elements as

S = {prod(x i , . . . , x i+n ; k) | 1 ≤ k ≤ m and 1 ≤ i ≤ n}.
In particular, for n = 1, we have G 1,m = ⟨x 1 ⟩ with Garside element x m 1 and the simple elements are S = {x

i 1 | 1 ≤ i ≤ m}. Note that if m = n = 1 we have x 1 = ∆ 1,1 and S = {x 1 }. For n ∈ N, we have G n,1 = ⟨x 1 , . . . , x n | x 1 = x 2 = • • • = x n ⟩,
with Garside element ∆ n,1 = x 1 and set of non trivial simple elements S = {x 1 , . . . , x n } = {x 1 }. So for n > 1, we can assume m > 1.

More generally by Proposition 5.3 in [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF], for some positive integers p, n 1 , . . . , n p , m 1 , . . . , m p , the product

G = ( * p i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j) is a Garside group with Garside element ∆ = ∆ n 1 ,m 1 = • • • = ∆ np,mp .
The monoid of positive elements is the monoid P = ( * p i=1 P n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j). We would like to remark that if p > 1 and n i = m i = 1 for some i, say i = p, we have

( * p i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j) ∼ = ( * p-1 i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j).
So we can assume that if p > 1, we have m i ≥ 2 for all i ∈ {1, . . . , p}. The next theorem shows that these are the only Garside groups with systolic Garside presentation.

Theorem 4.3.10. Let G be a Garside group of finite type with Garside structure (G, P, ∆). Then the Garside presentation of G associated with the Garside structure (G, P, ∆) is systolic if and only if G is isomorphic to the group

( * p i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j)
for some positive integers p, n 1 , . . . , n p and m 1 , . . . , m p and the isomorphism maps ∆ to ∆ n 1 ,m 1 and P to the monoid

( * p i=1 P n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j).
Proof. Let p, n 1 , . . . , n p , m 1 , . . . , m p N.

We start by showing that if G = ( * p i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j) and P = ( * p i=1 P n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j) and ∆ = ∆ n 1 ,m 1 , the Garside presentation of G associated with the Garside structure (G, P, ∆) is systolic. Let S be the set of non trivial simple elements. Assume that p = 1. If n = m = 1, we have S = {x 1 } so the Garside presentation is systolic. Otherwise G = G n,m for some positive integers n and m, 2 ≤ m and the Garside element is ∆ = ∆ n,m = prod(x 1 , . . . , x n ; m). For simpler notation we always consider the index i modulo n. The set of non trivial simple elements is 

S = {prod(x i , . . . , x i+n ; k) | 1 ≤ i ≤ n and 1 ≤ k ≤ m}. Then for 0 ≤ k ≤ l ≤ m,
G = ⟨x 1 , . . . , x n | x p 1 1 = x p 2 2 = • • • = x pn n ⟩
has a systolic Garside presentation with respect to the Garside element ∆ = x p 1 1 . In particular torus knot groups ⟨x, y | x p = y q ⟩ have a systolic Garside presentation with respect to the Garside element ∆ = x p . Remark 4.3.12. In ∈ ⟨a⟩. Then δ l is in the center of the subgroup of G generated by T for some positive integer l. If ⟨T ⟩ ̸ = G, we have ⟨a, δ l , ∆ k ⟩ ∼ = Z 3 . By Theorem 1.2.17, this implies in particular that G is not systolic.

Remark 4.3.15 (Cohomological dimension). The cohomological dimension of Garside groups is known to be bounded [START_REF] Dehornoy | Homology of Gaussian groups[END_REF], [START_REF] Charney | Bestvina's normal form complex and the homology of Garside groups[END_REF]. For n ∈ N, we know that cd(G n,n ) = 2 as G n,n is the direct product of Z with a free group of rank n -1. For n, m ∈ N we expect that cd(G n,m ) = 2. Moreover for p, q ∈ N the torus knot groups T p,q = ⟨x, y | x p = y q ⟩ also satisfies cd(T p,q ) = 2. So we do not expect these groups to produce knew examples of groups with higher cohomological dimension. consists of two points then so does i(e) and we have i(e) = o(e). So the startpoint i(e) is consistent with the choice of o(e). We say that a cycle γ is directed if for each vertex v ∈ γ there is exactly one edge e ∈ γ with v ∈ o(e). A cycle is undirected if it is not directed. We say that a 4-cycle γ = (a 1 , a 2 , a 3 , a 4 ) is misdirected if a 2 ∈ o(a 1 , a 2 ), a 2 ∈ o(a 2 , a 3 ), a 4 ∈ o(a 3 , a 4 ) and a 4 ∈ o(a 4 , a 1 ). For each e ∈ E(Γ) with label m e = 2 and with o(e) = i(e) = {v i , v j }, we consider the set R e = {x i x j ∆ -1 e , x j x i ∆ -1 e }. Let R = e∈E(Γ) R e . Then the presentation ⟨S | R⟩ is a restricted triangular presentation of the Artin group A Γ . We call this the dual presentation of A Γ with orientation o.

Artin groups

Proof. The standard presentation of A Γ is A Γ = ⟨x 1 , . . . , x n | [x i x j x i . . . ] me = [x j x i x j . . . ] me for all edges e = (v i , v j ) with label m e ⟩.

We first see that the dual presentation is indeed a presentation of A Γ . Let e ∈ E(Γ)

with m e = 2, i(e) = o(e) = {v i , v j }. Then the standard presentation states x i x j = x j x i . In the dual presentation the relations R e imply ∆ e = x i x j and ∆ e = x j x i and hence x i x j = x j x i . Let e ∈ E(Γ) with m e ≥ 3, i(e) = v i and o(e) = v j . For k ∈ {1, . . . , m e -2}, the relations R e imply t e 1 = x -1 j x i x j and t e 2 = (t Finally when k = m e -2 we have t e me-2 x i = ([. . . x j x i x j ] me-2 ) -1 [. . . x j x i x j ] me-1 x i = ([. . . x j x i x j ] me-2 ) -1 [. . . x i x j x i ] me = ([. . . x j x i x j ] me-2 ) -1 [. . . x j x i x j ] me = x i x j .

Let a, b, c ∈ S. In order to see that the dual presentation is a restricted the relation [x p x q x p . . . ] m f = [x q x p x q . . . ] m f . So we need k = p and l = m f -2. This implies x p x q = x i x j hence i = p and j = q. So f = e, a = t e me-2 and b = x i and the corresponding relation is in R.

Finally let a = t f k and b = t g l with f = (v p , v q ), g = (v r , v s ) ∈ E(Γ), m f , m g ≥ 3, 1 ≤ k ≤ m f -2 and 1 ≤ l ≤ m g -2. Set l ′ = m g -l -1. Then ab = c implies t f k t g l = x i x j so by equations (4.1) and (4.2), we have [. . . x q x p x q ] k+1 [x r x s x r . . . ] l ′ +1 = [. . . x q x p x q ] k x i x j [x r x s x r . . . ] l ′ in A + Γ . As all 3-cycles are directed, x r and x i cannot commute with both x p and x q . Similarly x q and x j cannot commute with both x r and x s . So the first letter on the left and on the right hand side is different and is either x p or x q . Similarly the last letter on the left and on the right hand side is different and is either x r or x s . So we need to apply the relations [x p x q x p . . . ] m f = [x q x p x q . . . ] m f and [x r x s x r . . . ] mg = [x s x r x s . . . ] mg . This requires r = p and s = q and m f ≤ k + l ′ + 2. If k + l ′ + 2 > m f , we can apply the relation [x p x q x p . . . ] m f = [x q x p x q . . . ] m f on a piece of the left hand side of length m f . But since k +l ′ +2 < 2m f , this only allows us to change either the first or the last letter but not both. So we necessarily have k + l ′ + 2 = m f , so k = m f -l ′ -2 = l -1. Applying the relation leads to x i x j = x p x q and i = p and j = q. So f = g = e, a = t e k and b = t e k+1 for some k ∈ {1, . . . , m e -3} and the corresponding relation is in R.

So we have indeed that abc ̸ = e, abc / ∈ S and that abc -1 = e implies abc -1 ∈ R for a, b, c ∈ S so this is a restricted triangular presentation.

Remark 4.3.19. Let Γ be a simplicial graph, with edges labeled by numbers ≥ 2 and with an orientation o such that an edge is bioriented if and only if it has label 2. Then it follows from the proof of Lemma 4.3.18 that the dual presentation of A Γ with orientation o is always a presentation of A Γ but it is not always a restricted triangular presentation. For example if Γ is a 3-cycle with one edge labeled by 2 and the two others labeled by m, n ≥ 3, the presentation is not a restricted triangular presentation.

Remark 4.3.20. In Corollary 4.3.16, we used the Garside structure on DA n induced by G 2,n . Lemma 4.3.18 implies that DA n ∼ = G n,2 , this presentation corresponds to another Garside structure. So in particular G 2,n ∼ = G n,2 as groups but with different Garside structures. Theorem 4.3.21. Let Γ be a simplicial graph, with edges labeled by numbers ≥ 2 and with an orientation o such that an edge is bioriented if and only if it has label 2. Assume that every 3-cycle is directed and no 4-cycle is misdirected. Let A Γ be the Artin group associated to Γ. Then A Γ is Cayley systolic. 4) Assume there exist v, w, x, a, b ∈ S, v ̸ = x, with vw, xw, dx, av ∈ S and dx = av. Then vw = ∆ e , xw = ∆ f and dx = av = ∆ g for some e, f, g ∈ E(Γ).

• If e = f we have x = v which is a contradiction.

• If e = g and e ̸ = f then w, x ∈ {x 1 , . . . , x n }.

But then o(e) ∪ i(e) = {w, x} = o(f ) ∪ i(f ). So e = f , which is a contradiction. As such they were known to be systolic by [START_REF] Huang | Large-type Artin groups are systolic[END_REF]. The complex given here is of independent interest as it is two-dimensional. One can note that for any Artin group A Γ satisfying the conditions of Theorem 4.3.21 we have cd(A Γ ) = 2. For a general Artin group A Γ , its cohomological dimension is conjectured to be cd(A Γ ) = max{|X| | X ⊂ S, A X is spherical }.

Remark 4.3.23. The Cayley complex of A Γ with respect to the dual presentation was known to be CAT(0) by [START_REF] Brady | Three-generator Artin groups of large type are biautomatic[END_REF]. Since it is a two dimensional simplicial complex, this already implies that it is systolic. One may note that [START_REF] Brady | Three-generator Artin groups of large type are biautomatic[END_REF] predates the introduction of systolic complexes in [START_REF] Januszkiewicz | Simplicial nonpositive curvature[END_REF].

  e) for all e = {u, v} ∈ E⟩, where [a, b] k = aba . . . k for any a, b ∈ D, k ∈ N and we denote the identity with e.

1)

  If there exists u, w, a, b, c, d ∈ S, u ̸ = w, a ̸ = d, with ua = wb ∈ S and ud = wc ∈ S, then there exists k ∈ S such that w = uk or ua = udk or u = wk or ud = uak. Introduction 2) If there exist v, x, a, b, c, d ∈ S, v ̸ = x, a ̸ = b, with bv = cx ∈ S and av = dx ∈ S, then there exists k ∈ S such that v = kx or av = kbv or x = kv or kav = bv. 3) If there exist u, v, x, b, c ∈ S, v ̸ = x, with ux ∈ S, uv ∈ S and vb = xc ∈ S, then there exists k ∈ S such that k = uvb or v = xk or x = vk. 4) If there exist v, w, x, a, d ∈ S, v ̸ = x, with vw ∈ S, xw ∈ S and dx = av ∈ S, then there exists k ∈ S such that k = avw or x = kv or v = kx. 5) If there exist u, v, w, x ∈ S, v ̸ = x, u ̸ = w, with wv ∈ S, wx ∈ S, uv ∈ S and ux ∈ S, then there exists k ∈ S such that w = ku or x = vk or u = kw or v = xk.

  ] me for all edges e = (v, w) with label m e ⟩, where as above [xyx . . . ] k = xyx . . . k for k ∈ N.

  Example 2.1.1. To any poset (P, <) we can associate a scwol X where the set of vertices is P and the set of edges are pairs (a, b) ∈ P × P such that b < a, t((a, b)) = a and i((a, b)) = b.

  {v}) and the edges are oriented from the tips to the center. The group C v acts by rotation and stabilizes the central vertex. For each v ∈ S, choose ℓ v > 0. Let Stern(v) be the geometric realization of C(Y v , ϕ {v} ) as follows: for g ∈ C v consider the interval I g = [0, ℓ v ] then Stern(v) = g∈Cv I g / ∼ where ∼ is the equivalence relation generated by 0 ∈ I g ∼ 0 ∈ I e . Note that C v acts by isometries on Stern(v). The space Stern(S) = Π v∈S Stern(v) with the product metric is a geometric realization of C(Y S , ϕ S ), due to the product structure of C(Y S , ϕ S ). Moreover Π v∈S C v acts by isometries on Stern(S).

Figure 2

 2 Figure 2.1: The Coxeter polytope of (⟨b, c | b 2 = c 2 = (bc) 4 = e⟩, {b, c})

  Lemma 2.2.4 (Lemma 7.3.3[START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]). The poset W S and the face posetF(Cox(W )) of Cox(W ) are isomorphic.Specifically the correspondance wW T → w Cox T (W ) induces an isomorphism of posets. So we can identify W S and hence C(S, ϕ) with the barycentric subdivision of the Coxeter polytope Cox(W ), thus identifying | C(S, ϕ)| isometrically with Cox(W ). The metric on | C(S, ϕ)| induced by the identification with Cox(W ) is called the Moussong metric. In particular for wW T ∈ W S the geometric realisation |W S ≤wW T | ⊆ |W S | is identified with the face w Cox T (W ).

  Definition 3.1.1. Let Γ be a simplicial graph with set of vertices V = V (Γ) and set of edges E = E(Γ). Consider maps f : V → N ≥2 ∪{∞} and m : E → N ≥2 such that for every edge e = {v, w} with f (v) ≥ 3 we have m(e) = 2. We call the triple (Γ, f, m) a Dyer graph. Definition 3.1.2. Let (Γ, f, m) be a Dyer graph. The Dyer group D = D(Γ, f, m) associated with the Dyer graph (Γ, f, m) is given by the following presentation

  e) for all e = {u, v} ∈ E⟩, where [a, b] k = aba . . . k for any a, b ∈ D, k ∈ N and we denote the identity with e. The pair (D(Γ, f, m), {x v , v ∈ V (Γ)}) is called a Dyer system. Example 3.1.3. As mentioned in the introduction, Coxeter groups, right-angled Artin groups and graph products of cyclic groups are examples of Dyer groups. Remark 3.1.4. For a subset W ⊂ V , we can consider Γ W the full subgraph of Γ spanned by W and the restrictions f W = f W and m W = m E(Γ W ) . The triple (Γ W , f W , m W ) is again a Dyer graph. We denote the associated Dyer group by D W . From [Dye90], we know that that the homomorphism D W → D induced by the inclusion W → V is injective, hence D W can be regarded as a subgroup of D. Definition 3.1.5.

Figure 3 . 1 :

 31 Figure3.1: Dyer graph Γ m,q for some m, q ∈ N ≥2

  e) for all e = {u, v} ∈ E⟩, where [a, b] k = aba . . . k for any a, b ∈ W , k ∈ N and we denote the identity with e. Note that for an edge e = {u, v}

  span an edge in Λ if and only if they span an edge e = {u, v} in Γ, and we set the label of the edge e = {u, v} ∈ E(Λ) to be m ′ (e) = m(e). For all u

  e. Hence we have an action ξ : (Z/2Z) Vp∪V∞ × D → D. Theorem 3.1.8. We have W ∼ = D ⋊ ξ (Z/2Z) Vp∪V∞ .

2 .

 2 Remark 3.1.14. If the Dyer group D is a right-angled Artin group, i.e. V = V ∞ , the constructions described here are those given in [DJ00]. In particular if D is a right-angled Artin group, the groups W and D ′ are right-angled Coxeter groups. So there is a decomposition of W as a semi direct product of a right-angled Artin group and the right-angled Coxeter group (Z/2Z) V . On the other hand if V ∞ = ∅, we have (Ω, g, n) = (Γ, f, m) and so D = D ′ . Remark 3.1.15. There is a Coxeter group W ′ associated to the Dyer group D ′ such that W ′ = D ′ ⋊ (Z /2 Z) Vp . It follows from Remark 3.1.14, that the Dyer groups D and D ′ are not necessarily isomorphic. Question: do W and W ′ relate in any (meaningful) way? What can we say about their Davis-Moussong complexes? How do D and D ′ relate to each other? What are all the Dyer subgroups of a given Coxeter group?

  induces a decomposition of the matrix c into three blocks c 2 = (c uv ) u,v∈V 2 , c p = (c uv ) u,v∈Vp and c ∞ = (c uv ) u,v∈V∞ . The blocks c p and c ∞ are the identity matrix, as m(u, v) = 2 and so c uv = 0 for all distinct u, v ∈ V p ∪V ∞ .The following characterization of spherical Dyer groups follows from Fact 2.2.1.

Figure 3 . 4 :

 34 Figure3.4: Dyer graph Γ m,q for some m, q ∈ N ≥2 as given in Figure3.1

C

  As before, we need to understand the local combinatorial strucuture of the scwol C. As edges in C are oriented, we will distinguish the incoming and the outgoing link and star of a vertex. We recall the definitions here. Let gY ∈ V (C). The incoming link Lk in (gY, C) is the full subscwol of C spanned by the set of vertices {hZ | ∃e ∈ E(C) : t(e) = gY and i(e) = hZ}. Similarly the outgoing link Lk out (gY, C) is the full subscwol of C spanned by the set of vertices {hZ | ∃e ∈ E(C) : i(e) = gY and t(e) = hZ}. The incoming star is the subscwol spanned by gY and its incoming link so it is the oriented combinatorial join St in (gY, C) = Lk in (gY, C) ⋆ {gY } and the outgoing star is defined similarly St out (gY, C) = {gY } ⋆ Lk out (gY, C).

  a complete graph and Y = Y p the element g ∈ D Y is well-defined.Let us denote a vertex gD Z ∈ D Y /D Z in Stern(Y ) with gZ.

  vertices and each term Lk(e, Stern(v)) consists of a single vertex. For everyλ ⊂ Y ∞ , the term Lk(λ, [0, 1] |Y∞| ) is isometric to the spherical join (⋆ v∈λ λ \ {v}) ⋆ ⋆ v∈Y∞\λ λ ∪ {v} . So the link Lk(l, Cc(Y )) is isometric to the spherical join Lk(w, Cox(Y 2 )) ⋆ (⋆ v∈λ λ \ {v}) ⋆ ⋆ v∈Y∞\λ λ ∪ {v} ⋆ (⋆ v∈Z Lk(c v , Stern(v))) ⋆ (⋆ v∈Yp\Z Lk(e, Stern(v))).Note that in particular for two vertices u, v ∈ V (Lk(l, Cc(Y ))) in two different terms of the decomposition, we have d(u, v) = π/2. Example 3.2.14. Let m, p ∈ N ≥2 . We go back to the example of the Dyer graph Γ m,p with associated Dyer group D m,p and scwol X m,p given in Figure3.1, Example 3.1.6 and Figure3.5. Figure3.6 shows the cell complexes Cc({a, b}), Cc({b, c}), Cc({c, d}) in the case m = 4 and p = 3.

  Figure 3.6: The cell complexes associated to some vertices of X m,p .

  Figure3.7: The subcomplexes associated to some vertices of the development of X m,q and their simplicial subdivision.

Proposition 4.1. 2 .

 2 Assume a group G has a triangular presentation⟨S | R⟩. Assume additionally R = {a • b • c -1 | a, b, c ∈ S with abc -1 = e in G},so in particular s 3 ̸ = e for all s ∈ S. Then the action of G on Flag(G, S) is free.

  As the action of G on Flag(G, S) is transitive and by isometries on the vertices, we only need to check if Lk(v[e], Flag(G, S)) is 6-large. Moreover as Flag(G, S) is flag, Lk(v[e], Flag(G, S)) is flag. So we are left with checking whether in Lk(v[e], Flag(G, S)) every embedded cycle γ with 4 ≤ |γ| < 6 has a diagonal. For simpler notation we set L = Lk(v[e], Flag(G, S)). Then the vertices of L are V (L) = {v[s] | s ∈ S ∪ S -1 }. As we differentiate between elements in S and elements in S -1 , we will call vertices v[s] with s ∈ S positive and vertices v[s] with s ∈ S -1 negative. Edges between these vertices are oriented and labeled by elements in S. We have E(L) = {e[g, a] | g ∈ S∪S -1 and a ∈ S and ga ∈ S∪S -1 }, where e[g, a] is the edge labeled by a ∈ S going from v[g] to v[ga]. Note that e[g, a] ∈ E(L) implies ga ∈ S ∪ S -1 so in particular ga ̸ = e and hence a ̸ = g -1 .

Lemma 4.2. 3 .

 3 Let u, v, w, x, a, b, c, d ∈ S. The only cycles of length 4 in L that do not contain one of the situations mentioned in Remark 4.2.1 are: 1)

  Lemma 4.2.4. The link L is 6-large if and only if the following additional conditions on S are satisfied: 1) If there exist u, w, a, b, c, d ∈ S, u ̸ = w, a ̸ = d, with ua = wb ∈ S and ud = wc ∈ S, then there exists k ∈ S such that w = uk or ua = udk or u = wk or ud = uak. 2) If there exist v, x, a, b, c, d ∈ S, v ̸ = x, a ̸ = b, with bv = cx ∈ S and av = dx ∈ S, then there exists k ∈ S such that v = kx or av = kbv or x = kv or kav = bv. 3) If there exist u, v, x, b, c ∈ S, v ̸ = x, with ux ∈ S, uv ∈ S and vb = xc ∈ S, then there exists k ∈ S such that k = uvb or v = xk or x = vk. 4) If there exist v, w, x, a, d ∈ S, v ̸ = x, with vw ∈ S, xw ∈ S and dx = av ∈ S, then there exists k ∈ S such that k = avw or x = kv or v = kx. 5) If there exist u, v, w, x ∈ S, v ̸ = x, u ̸ = w, with wv ∈ S, wx ∈ S, uv ∈ S and ux ∈ S, then there exists k ∈ S such that w = ku or x = vk or u = kw or v = xk.

  i) In the first cycle of length 4: the existence of the cycle is equivalent to the following statement about elements of S: ∃ a, b, c, d, u, v, w, x ∈ S with u, v, w, x pairwise distinct such that v = ua = wb and x = ud = wc where u, v, w, x ∈ S are the labels on the vertices and a, b, c, d are the labels on the edges. There is a diagonal if v ∼ x or u ∼ w which is equivalent to ∃ k ∈ S : w = uk, u = wk, v = xk or x = vk

Theorem 4.2. 5 .

 5 Consider a group G with generating set S, where G has a finite restricted triangular presentation with respect to S. Then the complex Flag(G, S) is a simply connected simplicial complex. It is systolic if and only if the generating set S satisfies the following conditions: 1) If there exists u, w, a, b, c, d ∈ S, u ̸ = w, a ̸ = d, with ua = wb ∈ S and ud = wc ∈ S, then there exists k ∈ S such that w = uk or ua = udk or u = wk or ud = uak. 2) If there exist v, x, a, b, c, d ∈ S, v ̸ = x, a ̸ = b, with bv = cx ∈ S and av = dx ∈ S, then there exists k ∈ S such that v = kx or av = kbv or x = kv or kav = bv. 3) If there exist u, v, x, b, c ∈ S, v ̸ = x, with ux ∈ S, uv ∈ S and vb = xc ∈ S, then there exists k ∈ S such that k = uvb or v = xk or x = vk. 4) If there exist v, w, x, a, d ∈ S, v ̸ = x, with vw ∈ S, xw ∈ S and dx = av ∈ S, then there exists k ∈ S such that k = avw or x = kv or v = kx. 5) If there exist u, v, w, x ∈ S, v ̸ = x, u ̸ = w, with wv ∈ S, wx ∈ S, uv ∈ S and ux ∈ S, then there exists k ∈ S such that w = ku or x = vk or u = kw or v = xk.

  Garside groups were introduced by Dehornoy and Paris in [DP99] as a generalization of spherical Artin groups. Definition 4.3.1. A group G is said to be a Garside group with Garside structure (G, P, ∆) if it admits a submonoid P with P ∩ P -1 = {e}, called the monoid of positive elements and a special element ∆ ∈ P called the Garside element such that the following properties are satisfied: 1. The partial order ≤ L defined by a ≤ L b ⇔ a -1 b ∈ P is a lattice order, i.e. for every a, b ∈ G there exists an lcm a ∨ L b and a gcd a ∧ L b with respect to ≤ L i.e. for all a, b ∈ G there exists an element (a ∨ L b) such that a ≤ L (a ∨ L b), b ≤ L (a ∨ L b) and for every c ∈ G, if a ≤ L c and b ≤ L c then (a ∨ L b) ≤ L c. Similarly for all a, b ∈ G there exists an element (a ∧ L b) such that (a ∧ L b) ≤ L a, (a ∧ L b) ≤ L b and for every c ∈ G, if c ≤ L a and c ≤ L b imply c ≤ L (a ∧ L b). 2. The set [e, ∆] = {a ∈ G | e ≤ L a ≤ L ∆}, called the set of simple elements, generates the monoid P .

  Remark 4.3.3. Note that the lcm and gcd of two elements a, b ∈ G is unique. So a ∨ L b is the unique lcm and a ∧ b is the unique gcd of the elements a and b.

  Theorem 4.3.7. Let G be a Garside group of finite type with Garside structure (G, P, ∆) and set of non trivial simple elements S. Then Flag(G, S) is systolic if and only if for all a, b ∈ S, a ∧ L b ∈ {e, a, b} and a ∧ R b ∈ {e, a, b}. In particular if Flag(G, S) is systolic then so is G.Proof. By Lemma 4.3.6, the Garside presentation of G associated with the Garside structure (G, P, ∆) is a restricted triangular presentation. By Proposition 4.1.1, Flag(G, S) is well-defined. By Theorem 4.2.5, Flag(G, S) is systolic if and only if the conditions 1)-5) are satisfied.Assume first that for all a, b ∈ S, we have a ∧ L b, a ∧ R b ∈ {e, a, b}. Then 1) If there exist u, w, a, b, c, d ∈ S, u ̸ = w, a ̸ = b with ua = wb ∈ S and ud = wc ∈ S, then u ≤ L ua and u ≤ L ud so ua ∧ L ud ̸ = e, so either ua ∧ L ud = ua or ua ∧ L ud = ud, say ua ∧ L ud = ud so ua = udk for some k ∈ P . As k ≤ R ua and ua ∈ S, we have k ∈ S.2) If there exist v, x, a, b, c, d ∈ S, v ̸ = x, a ̸ = b with bv = cx ∈ S and av = dx ∈ S then v ≤ R bv and v ≤ R av then av ∧ R bv ̸ = e, so either av ∧ R bv = av or av ∧ R bv = bv, say av ∧ R bv = bv so av = kbv for some k ∈ P . As k ≤ L av and av ∈ S, we have k ∈ S. 3) If there exist u, v, x, b, c ∈ S, v ̸ = x with ux ∈ S, uv ∈ S and vb = xc ∈ S then u ≤ L ux and u ≤ L uv so uv ∧ L ux ̸ = e, so either uv ∧ L ux = uv or uv ∧ L ux = ux, say uv ∧ L ux = ux so uv = uxk for some k ∈ P and then v = xk. As k ≤ R vand v ∈ S, we have k ∈ S. 4) If there exist v, w, x, a, d ∈ S, v ̸ = x with vw ∈ S, xw ∈ S and dx = av ∈ S then w ≤ R vw and w ≤ R xw so vw ∧ R xw ̸ = e, so either vw ∧ R xw = vw or vw ∧ R xw = xw, say xw ∧ R vw = vw so xw = kvw for some k ∈ P and then x = kv. As k ≤ L u and u ∈ S, we have k ∈ S. 5) If there exist u, v, w, x ∈ S, v ̸ = x, u ̸ = w with wv ∈ S, wx ∈ S, uv ∈ S and ux ∈ S then u ≤ L uv and u ≤ L ux so uv ∧ L ux ̸ = e, so either uv ∧ L ux = uv or uv ∧ L ux = ux, say uv ∧ L ux = uv so uv = uxk for some k ∈ P and then v = xk. As k ≤ R v and v ∈ S, we have k ∈ S.So if for all a, b ∈ S, a ∧ R b, a ∧ L b ∈ {e, a, b}, the conditions 1)-5) of Theorem 4.2.5 are satisfied and so Flag(G, S) is systolic, which directly implies that G is sytolic.We now show the other implication. Note that for every a, b ∈ S, we havea ∧ L b ≤ L a and so a ∧ L b ∈ S ∪ {e}.First assume there exist a, b ∈ S, a ̸ = b, with a ∧ L b = c for some c ∈ S \ {a, b}, i.e c ̸ = e, a, b. Then there exist k a , k b , r a , r b ∈ S with a = ck a , b = ck b and ∆ = k a r a = k b r b . Then c, k a , k b , r a , r b ∈ S and k a ̸ = k b , ck a = a ∈ S, ck b = b ∈ S and ∆ = k a r a = k b r b ∈ S. But ck a r a = c∆ / ∈ S and ∄k ∈ S with k a = k b k since c = a∧ L b ̸ = b, similarly there is no k ∈ S with k b = k a k since c = a ∧ L b ̸ = a. So condition 3) of Theorem 4.2.5 fails. So Flag(G, S) is not systolic. Finally assume there exist a, b ∈ S, a ̸ = b, with a ∧ R b = c for some c ∈ S \ {a, b}, i.e. c ̸ = e, a, b. Then there exist k a , k b , r a , r b ∈ S with a = k a c, b = k b c and ∆ = r a k a = r b k b . Then k a , c, k b , r a , r b ∈ S and k a ̸ = k b , k a c = a ∈ S, k b c = b ∈ S and ∆ = r a k a = r b k b ∈ S. But r a k a c = ∆c / ∈ S and there is no k ∈ S with k a = kk b or k b = kk a since c = a ∧ R b ̸ = a, b. So condition 4) of Theorem 4.2.5 fails. So Flag(G, S) is not systolic. So if there exist a, b ∈ S with a ∧ L b / ∈ {e

  [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF], Example 5 mentions a generalization of the groups G n,m . Let p, n, m ∈ N, 2 ≤ m, 2 ≤ p ≤ n. It claims thatK n,p,m = ⟨x 1 , x 2 , . . . , x n | prod(x 1 , . . . , x p ; m) = prod(x 2 , . . . , x p+1 ; m) = . . . = prod(x n-p+1 , . . . , x n ; m) = prod(x n-p+2 , . . . , x n , x 1 ; m) = . . . = prod(x n , x 1 , . . . , x p-1 ; m)⟩is a Garside group by [DP99] Proposition 5.2. But this is a wrong application of [DP99] Proposition 5.2, as one can see by considering for example the case n = 5, p = 3 and m = 4 or more generally m = p + 1. So the question of whether K n,p,m is a Garside group when p ̸ = n remains open. Remark 4.3.13. For k ≥ 2, the group G k = ⟨a, b | b k = aba⟩ is a Garside group with Garside element ∆ = b k+1 = abab = baba. The elements b k and bab are both simple elements, but b k ∧ L bab = b / ∈ {e, b k , bab}. So it does not satisfy the conditions of Theorem 4.3.7. Yet it is systolic as it is isomorphic to the group ⟨x, b | x 2 = b k+1 ⟩. This leads to the following question: Do all systolic Garside groups have a Garside structure with respect to which they have a systolic Garside presentation? Remark 4.3.14 (Restrictions on systolicity in Garside groups). Consider a Garside group of finite type G with Garside element ∆. Then ∆ k is in the center of G for some positive integer k. Let S be the set of simple elements. Suppose there is some balanced element δ ∈ S \ {∆, e}. Let T = {a ∈ G | e ≤ L a ≤ L δ} = {a ∈ G | e ≤ R a ≤ R δ}. Let a ∈ T be an atom and suppose δ /

  Recall the notation [xyx . . . ] k = xyx . . . k and [. . . xyx] k = . . . xyx k for some k ∈ N.Given a finite labeled simplicial graph Γ, the Artin group associated to Γ is given byA Γ = ⟨s v , v ∈ V | [s v s w s v . . . ] me = [s w s v s w . . . ] mefor all edges e = (v, w) with label m e ⟩.For n ∈ N ≥2 , the dihedral Artin group DA n is the Artin group defined by the grapha n b . So DA n = ⟨a, b | [aba . . . ] n = [bab . . . ] n ⟩.The Artin monoid associated to Γ is given byA + Γ = ⟨s v , v ∈ V | [s v s w s v . . . ] me =[s w s v s w . . . ] me for all edges e = (v, w) with label m e ⟩ + . By [Par02] Theorem 1.1, the canonical homomorphism ι : A + Γ → A Γ is an injection. Corollary 4.3.16. The dihedral Artin group DA n is Cayley systolic for all n ∈ N ≥2 . Proof. The dihedral Artin group DA n corresponds to the Garside group G 2,n with Garside element ∆ = [aba . . . ] n . So by Theorem 4.3.10 it is Cayley systolic. Consider the following definitions. Definition 4.3.17. An orientation on a simplicial graph Γ is an assignement o(e) for each edge e = {v, w} ∈ E(Γ) where o(e) ⊆ {v, w} is a set of one or two endpoints of e. An edge with both endpoints assigned is bioriented. The startpoint i(e) ⊆ {v, w} is an assignement of one or two startpoints of e = {v, w}. If o(e) consists of one point, i(e) consists of one point such that e = (i(e), o(e)), if o(e)

•

  If e ̸ = g, f ̸ = g, e ̸ = f then v, w, x ∈ {x 1 , . . . , x n } and w ∈ o(e), w ∈ o(f ) and v ∈ i(e), x ∈ i(f ) and o(g) ∪ i(g) = {v, x}. But this corresponds to an undirected triangle in the defining graph Γ. 5) Assume there exist u, v, w, x ∈ S, v ̸ = x, u ̸ = w with wv, wx, uv, ux ∈ S. Then wv = ∆ e , wx = ∆ f , uv = ∆ g and ux = ∆ h for some e, f, g, h ∈ E(Γ). Then v ̸ = x implies e ̸ = f and g ̸ = h, and u ̸ = w implies e ̸ = g and f̸ = h. So u, v, w, x ∈ {x 1 , . . . , x n } and v ∈ o(e) ∩ o(g), x ∈ o(f ) ∩ o(h), w ∈ i(e) ∩ i(f ) and u ∈ i(g) ∩ i(h). Furthermore i(e) ∪ o(e) = {w, v} which implies v ̸ = w and i(h) ∪ o(h) = {u, x} which implies u ̸ = x. So the 4-cycle (u, v, w, x) is misdirected.This is a contradiction to the orientation assumption on Γ. Remark 4.3.22. The Artin groups in Theorem 4.3.21 are all of almost large type.

  for e ∈ E(Y S ) with i(e) = A and t(e) = B we have A ⊂ B so G A < G B and so there is a canonical inclusion ψ e : G A → G B . These inclusions satisfy the compatibility condition. We indeed have D(Y S ) = Π v∈S D(Y {v} ).

	Example 2.1.8. For a finite Coxeter system (W, S), we can define a simple complex
	of groups over Y S denoted by W(Y S ) as follows:
	1. for A ∈ V (Y S ), we choose the local group to be W A , the subgroup of W
	generated by A,
	2. for e ∈ E(Y S ) with i(e) = A and t(e) = B, we have A ⊂ B so there
	is a canonical inclusion ψ e : W A → W B . These inclusions satisfy the
	compatibility condition.
	In general in this case we have W(Y S ) ̸ = Π v∈S W(Y {v} ) even though the scwols
	satisfy Y S = Π v∈S Y {v} .

  say that a Dyer graph (Γ, f, m) is spherical, if Γ is comple and the groupD 2 associated with the subgraph (Γ 2 , f V 2 , m V 2 ) is a finite group. A Dyer group D = D(Γ, f, m) is spherical if it the Dyer graph (Γ, f, m) is spherical.In this section, we will assume that D is a spherical Dyer group. In particular with Remark 3.1.4, we then have D = D 2 × D p × D ∞ , where D 2 is a finite Coxeter group, D p is a direct product of finite cyclic groups and D ∞ = Z V∞ .

  Let gY ∈ V (C). The incoming link Lk in (gY, C) is the full subscwol of C spanned by the vertices {hZ | ∃e ∈ E(C) :

t(e) = gY and i(e) = hZ}. Similarly the outgoing link Lk out (gY, C) is the full subscwol of C spanned by the vertices {hZ | ∃e ∈ E(C) : i(e) = gY and t(e) = hZ}. The incoming star is the subscwol spanned by gY and its incoming link so it is the oriented combinatorial join St in (gY, C) = Lk in (gY, C) ⋆ {gY } and the outgoing star is defined similarly St out (gY, C) = {gY } ⋆ Lk out (gY, C). Remark 3.2.8. The incoming star St in (gY, C) is isomorphic to the incoming star St in (e Y, C(X (Γ Y ), ϕ Γ Y )). Moreover the product decomposition of C induces a product decomposition of the incoming star St in

  let Cox(Y ) be the Coxeter polytope associated to the Coxeter group D Y endowed with its natural Euclidean metric as described in Section 2.2. Its set of vertices is D

  Definition 4.3.2. A Garside structure (G, P, ∆) is said to be of finite type if the set of simple elements [e, ∆] is finite. A group G is said to be a Garside group of finite type if it admits a Garside structure of finite type. Elements x ∈ P \ {e} with ∥x∥ = 1 are called atoms. The set of atoms also generates P .

  , a, b} or a ∧ R b / ∈ {e, a, b}, the complex Flag(G, S) is not systolic. Remark 4.3.8. Note that the statement of Theorem 4.3.7 is equivalent to the following statement. Let G be a Garside group of finite type with Garside structure (G, P, ∆) and set of simple elements Ŝ. Then Flag(G, Ŝ \ {e}) is systolic if and only if for all a, b ∈ Ŝ, a ∧ L b ∈ {e, a, b} and a ∧ R b ∈ {e, a, b}. In particular if Flag(G, Ŝ \ {e}) is systolic then so is G.

Example 4.3.9. Let x 1 , . . . , x n be n letters and let m be a positive integer. We define prod(x 1 , . . . ,

x p ; m) = x 1 x 2 . . . x p x 1 x 2 . . . m .

and prod(x 1 , . . . , x p ; 0) = e. Consider the group

G n,m = ⟨x 1 , . . . , x n | prod(x 1 , . . . , x n ; m) = prod(x 2 , . . . , x n , x 1 ; m) = . . . = prod(x n , x 1 , . . . , x n-1 ; m)⟩.

By Proposition 5.2 in

[START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF]

, this is a Garside group with Garside element ∆ n,m = prod(x 1 , . . . , x n ; m) and monoid of positive elements P n,m = ⟨x 1 , . . . , x n | prod(x 1 , . . . , x n ; m) = prod(x 2 , . . . , x n , x 1

  we have prod(x i , . . . , x i+n ; k) ∧ L prod(x j , . . . , x j+n ; l)prod(x i , . . . , x i+n ; k) if i = j or l = m.prod(a i,1 , . . . , a i,n i ; m i ) is a simple element and so prod(a i,1 , . . . , a i,n i ;m i ) = prod(a i,2 , a i,3 , . . . , a i,n i , a i,1 ; m i ) = • • • = prod(a i,n i , a i,1 , . . . , a i,n i -1 ; m i ).The set A i = {a i,1 , . . . , a i,n i } corresponds to the atoms of G n i ,m i . As for 1 ≤ i < j ≤ p, a ∈ A i and b ∈ A j we have ab / ∈ S, using Lemma 4.3.6, we get thatG ∼ = ( * p i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j). = ⟨x 1 , . . . , x n | x 1 x 2 . . . x n = x 2 x 3 . . . x n x 1 = • • • = x n x 1 . . . x n-1 ⟩,which is the fundamental group of the complement of n lines through the origin in C 2 , has a systolic Garside presentation with respect to the Garside element ∆ = x 1 x 2 . . . x n .

	Corollary 4.3.11.	1. The group		
	G n,n			
		=	 	e	if i ̸ = j and l < m
				

2. Consider n positive integers p 1 , . . . , p n , p i ≥ 2. The group

Lemma 4.3.18. Let

  Γ be a labeled simplicial graph with an orientation o such that an edge is bioriented if and only if it has label 2. Assume that every 3-cycle inΓ is directed. Let V (Γ) = {v 1 , . . . , v n }. Consider the set S = {x 1 , x 2 , . . . , x n } ∪ {∆ e ,t e 1 , t e 2 , . . . , t e me-2 | e ∈ E(Γ) with label m e }.In particular there is nont e i ∈ S if m e = 2.For each e ∈ E(Γ) with label m e ≥ 3 and with i(e) = v i and o(e) = v j , we consider the set R e = {x i x j ∆ -1

	a 2	a 3
	a 1	a 4
		e , x j t e 1 ∆ -1 e , t e 1 t e 2 ∆ -1 e , t e 2 t e 3 ∆ -1 e , . . . , t e me-3 t e me-2 ∆ -1 e , t e me-2 x i ∆ -1 e }.

  e 1 ) -1 x j t e 1 and t e k = (t e k-1 ) -1 t e k-2 t e k-1 for k ∈ {3, . . . , m e -2}. So for k ∈ {1, . . . , m e -2} we havet e k = ([. . . x j x i x j ] k ) -1 [. . . x j x i x j ] k+1 . (4.1)For k ∈ {1, . . . , m e -2}, the relations R e imply t e me-2 = x i x j x -1 )x i (t e me-2 ) -1 and t e k = (t e k+1 )t e k+2 (t e k+1 ) -1 for k ∈ {1, . . . , m e -4}. So for k ∈ {1, . . . , m e -2} we havet e k = [x i x j x i . . . ] me-k ([x i x j x i . . . ] me-k-1 ) -1 . (4.2)This implies the relation [x i x j x i . . . ] me = [x j x i x j . . . ] me . Conversely the relation[x i x j x i . . . ] me = [x j x i x j . . . ] me implies x i x j = [x j x i x j . . . ] me ([x i x j x i . . . ] me-2 ) -1 = x j t e 1 .For k ∈ {1, . . . , m e -3} we also havet e k t e k+1 = ([. . . x j x i x j ] k ) -1 [. . . x j x i x j ] k+1 ([. . . x j x i x j ] k+1 ) -1 [. . . x j x i x j ] k+2 = ([. . . x j x i x j ] k ) -1 [. . . x j x i x j ]

	i	and t e me-3 =
	(t e me-2	

k+2 = x i x j .
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Proof. Let us first recall the presentations of W , D and U = D ⋊ ξ (Z/2Z) Vp∪V∞ . W = ⟨y v , v ∈ V (Λ) | ∀v ∈ V (Λ), (y v ) 2 = e and ∀e = {u, v} ∈ E(Λ), (y u y v ) m ′ (e) = e⟩,

for all e = {u, v} ∈ E⟩,

for all e = {u, v} ∈ E,

We show that U is isomorphic to W by giving explicit homomorphisms ϕ : W → U and ψ : U → W satisfying ϕ • ψ = Id U and ψ • ϕ = Id W .

First consider the map ϕ : {y v , v ∈ V (Λ)} → U defined as follows: for u ∈ V 2 , ϕ(y u ) = x u and for u ∈ V p ∪ V ∞ , ϕ(y u ) = ξ u x u and ϕ(y u ′ ) = ξ u . We show that ϕ extends to a homomorphism ϕ : W → U . 1. For u ∈ V 2 , ϕ(y u ) 2 = x 2 u = e. For u ∈ V p ∪ V ∞ , ϕ(y u ′ ) 2 = ξ 2 u = e and ϕ(y u ) 2 = ξ u x u ξ u x u = x -1 u x u = e. So ϕ(y u ) 2 = e for all u ∈ V (Λ).

2. Let u, v ∈ V ⊂ V (Λ) with e = {u, v} ∈ E(Λ) so e ∈ E and m ′ (e) = m(e). If u, v ∈ V 2 , we have (ϕ(y u )ϕ(y v )) m ′ (e) = (x u x v ) m(e) = e since x 2 u = x 2 v = e and hence [x u , x v ] m(e) = [x v , x u ] m(e) is equivalent to (x u x v ) m(e) = e. If u ∈ V 2 and v ∈ V p ∪ V ∞ , we have m ′ (e) = 2 and so the relations in U give the equality ϕ(y u )ϕ(y

Using similar methods to those used in the proof of Theorem 3.1.8, we show that the map ϕ induces a homomorphism ϕ : W → U .

1. For every u ∈ V 2 , we have g(u) = 2 and so ϕ(y u ) 2 = x 2 u = e. For every u ∈ V p , we have (ϕ(y u )

For every u ∈ V ∞ , we have g(u) = 2 and so (ϕ(y u )) 2 = x 2 u = e and (ϕ(y u ′ )) 2 = κ 2 u = e.

For every edge

For every edge

5. For every edge e = {u, v} ∈ E(Λ) with u, v ∈ V p , there is an edge e = {u, v} ∈ E(Ω) and we have m

For every edge e = {u, v} ∈ E(Λ) with u ∈ V p , v ∈ V ∞ , there is an edge e = {u, v} ∈ E(Ω) and we have m ′ (e) = n(e) = 2. So (ϕ(y u )ϕ(

For every edge e = {u, v} ∈ E(Λ) with u, v ∈ V ∞ , there is an edge e = {u, v} ∈ E(Ω) and we have m ′ (e) = n(e) = 2 as well as

For every

7. For every u ∈ V p , we have f (u) = g(u) and there is an edge

Remark 3.2.3. For every X ∈ V (X ), the local group D f X can be decomposed as

Lemma 3.2.4. The fundamental group of D(X ) is D and the complex of groups D(X ) is developable.

Proof. We use the product decomposition given in Remark 3.2.3. The scwol X 2 is associated to the poset P(V 2 ) so it is simply connected. Moreover it contains a unique maximal element

Remark 3.2.5. Since D f X < D and the maps ϕ X are canonical inclusions, we will identify the image ϕ

The set of edges of C is

For a simpler notation, we write gX for a vertex (gD f X , X) and g(X, Y, ω) for an edge

In particular, the scwol X is the quotient of C by the action of the group D. Lemma 3.2.6. The development C(X , ϕ) has a product decomposition 

We can now apply the Seifert-van Kampen theorem for the fundamental group of a complex of groups [START_REF] Bridson | Metric spaces of nonpositive curvature[END_REF][III.C Example 3.11(5)] to Y. The set V (X ) is finite and each scwol X Y is connected. We have ∅ ∈ V (X Y ) for all Y ∈ V (X ) and ∅ is adjacent to any vertex in any X Y . So Y ∈V (X ) X Y is nonempty and connected. We can then use the presentations to see that the fundamental group of D(X ) is D. Finally, by [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF], the maps ϕ X : D f X → D are all injective. Therefore D(X ) is developable.

Since the complex D(X ) is developable, we can define its development

Remark 3.2.11. Since D f X < D and the maps ϕ X are canonical inclusions, we will identify the image ϕ

The set of edges of C(X , ϕ) is

where initial vertices are given by i(gD f X , (X, Y, ω)) = (gD f X , X) and terminal vertices are given by t(gD f X , (X, Y, ω)) = (gϕ(ω) -1 D f Y , Y ). For a simpler notation, we write gX for a vertex (gD f X , X) and g(X, Y, ω) for an edge (gD f X , (X, Y, ω)). So by Moussong's Lemma, Lk(Y, Σ) is CAT(1). Since D acts by isometries on Σ, the link Lk(gY, Σ) is CAT(1) for every g ∈ D. We conclude that Σ is CAT(0). Remark 3.2.25. If D is a spherical Dyer group the scwol C decomposes as a product C 2 × C p × C ∞ . For every i ∈ {2, p, ∞}, let Σ i be the cell complex associated to

where each factor is known to be CAT(0). So Σ is CAT(0).

Corollary 3.2.26. The Dyer group D is CAT(0).

Proof. The group D acts properly discontinuously and cocompactly by isometries on Σ. Remark 3.2.27. If the Dyer group D is a Coxeter group, Σ is the Davis-Moussong complex described in Theorem 2.2.5. If the Dyer group D is a right-angled Artin Proof. It follows from Propositions 4.1.1 and 4.1.2, and the definition of a restricted triangular presentation that Cay(G, S) is a connected simplicial graph and Flag(G, S) is a welldefined simply connected flag complex. The complex Flag(G, S) is systolic if and only if the link of every vertex is 6-large. The action of G on the vertices of Cay(G, S) = Flag(G, S) (1) is transitive and by isometries. So Flag(G, S) is systolic if and only if the link L = Lk(e, Flag(G, S)) is 6-large. As every link in a flag complex is also a flag complex, this is equivalent to the conditions given by Lemma 4.2.4. Since G acts properly discontinuously and cocompactly on Flag(G, S), the group G is systolic if Flag(G, S) is systolic.

We call a presentation satisfying the conditions of Theorem 4.2.5, a systolic presentation. We say a group is Cayley systolic if it admits a systolic presentation. By Proposition 4.1.2, a Cayley systolic group G with systolic presentation ⟨S | R⟩ acts freely on Flag(G, S). One can also note that free products of Cayley systolic groups are also Cayley systolic. More generally we do not know under which conditions amalgamated products of Cayley systolic groups are systolic or Cayley systolic.

Lemma 4.2.6. Consider the set S = {a, b, c, d, u, v, w, x} and the sets

For all i ∈ {1, 2, 3, 4, 5}, the presentation ⟨S | R i ⟩ is a restricted triangular presentation. Additionally the presentation ⟨S | R i ⟩ satisfies all the conditions of Theorem 4.2.5 except condition i.

Proof. We show this for ⟨S | R 3 ⟩. The other cases can be checked in the same way. First note that a = uv, b = v -1 w, c = x -1 w and d = ux. So the group u,v,w,x) the free group on the generators u, v, w and x. So the word problem in C 3 is solvable. We do the following calculations using SageMath. We check for all triples (α, β, γ) ∈ S 3 that αβγ ̸ = e, αβγ / ∈ S and

So the presentation ⟨S | R 3 ⟩ is a restricted triangular presentation. Now we need to check the different conditions of Theorem 4.2.5. Using SageMath, we see that there are no elements s u , s v , s w , s x , s a , s b , s c , s d ∈ S satisfying the hypothesis of one of the conditions 1), 2), 4) and 5) but the tuples (s u , s v , s x , s b , s c ) = (u, v, x, b, c) and Similarly for 0 ≤ k ≤ l ≤ m, we have prod(x i , . . . , x i+n ; k) ∧ R prod(x j , . . . , x j+n ; l)

So by Theorem 4.3.7 the Garside presentation of G n,m associated with the Garside structure (G n,m , P n,m , ∆ n,m ) is systolic.

is the Garside element of G. Let Ŝ be the set of simple elements of G and Ŝi the set of simple elements of G n i ,m i for i = 1, . . . , p. Then Ŝ = ⊔ p i=1 ( Ŝi \ {∆ n i ,m i , e}) ⊔ {∆, e} is a partition of the set of simple elements. For every i, j ∈ {1, . . . , p}, S i satisfies s ∧ L t, s ∧ R t ∈ {e, s, t} for all s, t ∈ Ŝi and we have s

Hence by Theorem 4.3.7, the Garside presentation of G associated with the Garside structure (G, P, ∆) is systolic. Now let G be a Garside group with Garside structure (G, P, ∆). Assume the Garside presentation of G associated with the Garside structure (G, P, ∆) is systolic. Let Ŝ the set of simple elements and A the set of atoms of P . So by Theorem 4.3.7, we have for all s, t ∈ Ŝ, s ∧ L t, s ∧ R t ∈ {e, s, t}. First note that if ∆ ∈ A we have Ŝ = {e, ∆}, A = {∆}, G = Z and P = N. Hence we can write G as ( * p i=1 G n i ,m i )/(∆ n i ,m i = ∆ n j ,m j ∀i, j) with p = 1 and n 1 = m 1 = 1. So we can now assume that ∆ / ∈ A.

We start with showing that for all a ∈ A there exists a unique ξ(a) ∈ A such that aξ(a) ∈ Ŝ. As ∆ / ∈ A, such a ξ(a) ∈ A exists. Assume it is not unique, so let a 1 , a 2 ∈ A with aa 1 , aa 2 ∈ Ŝ. Since aa 1 ∧ L aa 2 ∈ {e, aa 1 , aa 2 } and a, a 1 , a 2 are atoms, aa 1 = aa 2 and hence a 1 = a 2 . Similarly for all a ∈ A there exists a unique ρ(a) ∈ A such that ρ(a)a ∈ Ŝ. In particular for all a ∈ A, ρ(ξ(a)) = a = ξ(ρ(a)). So the map ξ : A → A is bijective with inverse map ρ : A → A. As A is finite, the map ξ is a permutation of A. So the orbits of ξ form a partition of A and ξ can be written as a product of cycles of disjoint support,

Then for any 1 ≤ i ≤ p, as A generates P , there exists m i ≥ 2 such that ∆ = prod(a i,1 , . . . , a i,n i ; m i ).

Since ∆ is balanced, every subproduct of triangular presentation we check that abc ̸ = e, abc / ∈ S and that abc -1 = e implies abc -1 ∈ R. Note that abc / ∈ S implies that S ∩ S -1 = ∅. We consider the following map ξ : S → Z defined by ξ(∆ e ) = 2 and ξ(t e i ) = 1 for all e ∈ E(Γ), i ∈ {1, . . . , m e -2} and ξ(x i ) = 1 for i ∈ {1, . . . , n}. As ξ(a) + ξ(b) -ξ(c) = 0 for all abc -1 ∈ R, the map extends to a homomorphism ξ : A Γ → Z. Our proof relies on the following property of A + Γ : Let α = x i 1 x i 2 . . . x i l and β = x j 1 x j 2 . . . x j k be two words on x 1 , . . . , x n . They represent the same element in A + Γ if and only if we can transform α into β using a finite number of transformations of the form u

If α does not contain a subword of this form, no transformation is possible and the expression is unique.

Let a = x k and b = x l for some k, l ∈ {1, . . . , n}. Then ab = c implies x k x l = x i x j in A Γ hence the equality also holds in A + Γ . If m e ≥ 3 this necessarily implies k = i and l = j. If m e = 2, this implies either k = i and l = j or k = j and l = i. In all of these cases the corresponding, relation is in R.

Then ab = c implies that x k t f l = x i x j so by equation (4.2), we have that

Γ . As all 3-cycles are directed, neither x i , nor x j , nor x k can commute with both x p and x q . So the last letter on the left hand side and on the right hand side is different and is either x p or x q . The only way to change this last letter is to apply the relation [x p x q x p . . . ] m f = [x q x p x q . . . ] m f . So we need k = q and l ′ = m f -2 so l = 1. Since t f 1 = x -1 q x p x q by equation (4.1), this implies the equality x p x q = x i x j so p = i and j = q. Hence f = e, a = x j , b = t e 1 and the corresponding relation is in R.

Let

Γ . As all 3-cycles are directed, neither x i , nor x j , nor x k can commute with both x p and x q . The first letter on the left hand side and on the right hand side is different and is either x p or x q . The only way to change this first letter is to use Proof. We prove using Theorem 4.2.5 that Flag(A Γ , S) with respect to the dual presentation with orientation o is systolic. Note that with respect to the partial order defined in Remark 4.2.8, since the presentation ⟨S | R⟩ is a restricted triangular presentation by Lemma 4.3.18 and by a careful inspection of the relations R, we have that:

• If a, b ∈ S with ab ∈ S, then ab = ∆ e for some e ∈ E(Γ).

• For s ∈ S, e ∈ E(Γ), we have s ≤ L ∆ e ⇔ s ≤ R ∆ e .

• If s ≤ L ∆ e and s ≤ L ∆ f for some s ∈ S, e, f ∈ E(Γ), e ̸ = f , then s ∈ {x 1 , x 2 , . . . , x n }.

• If s ≤ R ∆ e and s ≤ R ∆ f for some s ∈ S, e, f ∈ E(Γ), e ̸ = f , then s ∈ {x 1 , x 2 , . . . , x n }.

• If s, t ≤ L ∆ e and s, t ≤ L ∆ f for some s, t ∈ S, s ̸ = t, then e = f .

• If s, t ≤ R ∆ e and s, t ≤ R ∆ f for some s, t ∈ S, s ̸ = t, then e = f .

• If x i ≤ L ∆ e , then v i ∈ o(e) ∪ i(e).

• If x i ≤ R ∆ e , then v i ∈ o(e) ∪ i(e).

• If ∆ e = x i x j , then i(e) ∪ o(e) = {v i , v j }.

We check the different conditions of Theorem 4. • If e = f we have x = v which is a contradiction.

• If e = g and e ̸ = f then u, x ∈ {x 1 , . . . , x n }.

But then o(e) ∪ i(e) = {u, x} = o(f ) ∪ i(f ). So e = f , which is a contradiction.

• If e ̸ = g, f ̸ = g, e ̸ = f then u, v, x ∈ {x 1 , . . . , x n } and u ∈ i(e), u ∈ i(f ), v ∈ o(e), x ∈ o(f ), and {x, v} = i(g) ∪ o(g). But this corresponds to an undirected triangle in the defining graph Γ.