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Security of Embedded Systems

Cryptography:
Embedded systems use
mathematically robust ciphers.

Side-channel attack (SCA):
Attack observing physical
measurements:
▶ Execution time
▶ Power consumption
▶ Electromagnetic radiation
▶ Temperature
▶ . . .
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Different Implementation Methods

Hardware implementation:
▶ Efficient for a dedicated task
▶ Not very flexible

Software implementation:
▶ High flexibility
▶ Basic instructions are

not designed for cryptography

Instruction set extension (ISE):
▶ Add new instructions for cryptographic operations
▶ A trade-off between software and hardware implementations
▶ Better performance while maintaining flexibility
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Thesis Objectives

Develop ISEs to protect against SCA:
▶ New instructions for masking countermeasure
▶ Support high security levels
▶ Flexible masking solution implemented in software and hardware

Implementation and evaluation:
▶ Implement our ISEs on an open source RISC-V processor
▶ Performance and area results of the FPGA implementation
▶ Security assessment of our solutions
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Symmetric Cryptography

p Enc c

k

ALICE
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BOB

Dec p

k

Insecure channel

EVE

▶ Enc encrypts a plaintext p into a ciphertext c using a secret key k

▶ Dec decrypts the ciphertext c using the same secret key k

▶ Eve can read the ciphertext c without obtaining any secret
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Power Analysis Attacks [KJJ99]

Measure power consumption
to deduce secret data:
▶ Target a sensitive variable
▶ Measure consumption
▶ Predict consumption
▶ Statistical comparison
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Masking Countermeasure [Cha+99]

Boolean masking of order d :
▶ Mask the variable x in d + 1 shares

(x ⊕m1 ⊕ · · · ⊕md ,m1, · · · ,md)

with m1, · · · ,md random masks
▶ Apply a d-order masked function F̂
▶ Demask to get y

x

y

F

Mask Rand

x ⊕m1 ⊕ · · · ⊕md m1 · · · md

F̂

· · ·

Demask
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Evaluating the Security of Masked Functions

Security analysis:
▶ Performing SCA Attacks
▶ Proving security in a

theoretical model

Probing model [ISW03]:
▶ Probe exact values of

d intermediate variable
▶ Mask and demask

functions are not probed

F̂

x

Mask
· · ·

Demask
· · ·

y

d probes...
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Recombinations of Shares [RP10]

Boolean AND masked at order 1:
▶ x masked in two shares (x0, x1)

▶ y masked in two shares (y0, y1)

▶ Get xy by demasking (z0, z1):

z0 ⊕ z1 = xy

Recombinations of shares:
Masked variables can be demasked
during calculation.

Prevent recombinations:
Add random values at well-chosen
places.

x0 x1 y0 y1

x0y0 x1y0 x0y1 x1y1

⊕ ⊕R

⊕ ⊕

z0 z1

⊗ ⊗ ⊗ ⊗

x0y0 ⊕ x1y0 ⊕ R
Independent of x and y

11 / 38



Security against Glitches

Glitch reconbinaisons [MPG05]:
Glitches can reveal information.

Prevent glitch recombinations [GMK16]:
Add registers to stop glitches.

x0 x1 y0 y1

x0y0 x1y0 x0y1 x1y1

⊕ ⊕R

Reg Reg Reg Reg

⊕ ⊕

z0 z1

⊗ ⊗ ⊗ ⊗

Depends only on
x0y0 and x1y0 ⊕ R
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How to Mask a Large Function?

F

G1 G2

G3

G4

F̂

Ĝ1 Ĝ2

Ĝ3

Ĝ4

· · · · · ·

· · · ··
·

· · ·

· ·
·

· · ·

· · ·

Mask
procedure

Composition of masked functions [RP10]:
▶ Divide the function into parts small enough to be easily masked
▶ Mask each part and compose them
▶ Composition of secure parts is not always secure

Composability properties:
▶ Strong Non-Interference (SNI) [Bar+16]
▶ Probe Isolating Non-Interference (PINI) [CS20]

13 / 38



Bit Slicing Implementations

Boolean calculations in processors:
▶ Calculation on only one bit
▶ Under utilization of resources

Bit slicing (BS) [Bih97]:
▶ Parallel calculation on several

independent data bits
▶ High-throughput implementations

USUBA [MD19]:
▶ Language to describe BS

implementations
▶ A compiler allows to synthesize

USUBA codes into C codes
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How to Mask Bit Slicing Implementations?

Masking using Tornado [Bel+20]:
▶ Shares of one bit are placed into different physical registers
▶ Recombinations of shares can occur by writing a register

Registers
share 0 share 0 · · · share 0

share 1 share 1 · · · share 1

Share slicing [JS17]:
▶ Shares of one bit are placed in the same physical register
▶ Avoids recombinations of shares

Register share 0 share 1 share 0 share 1 · · · share 0 share 1
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Masked ISE of the State of the Art

▶ Protection limited to small masking orders
▶ Not flexible enough to change the masking order

at design time and run time

Reference RISC-V Masking
order

Flexbility at
design time

Flexbility at
run time

[Gro+16] ✓ {1, 2, 3, 4} ✓ ✗

[DGH19] ✓ 1 ✗ ✗

[Gao+21] ✓ 1 ✗ ✗

SKIVA [Kia+21] ✗ {1, 3} ✗ ✓

SME [MP21] ✓ {1, 2, 3} ✓ ✗
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Experimental Environment

C code

Compiler RISC-V ISA

Spike

Nb instructions
Functional verification

CV32E40P

Verilator

Nb cycles
Functional verification

Vivado

Area
Frequency
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Reimplementation of Works from the State of the Art
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Encryption times in log scale for one AES block:
▶ SW-BW is unmasked and byte-wise [DR02]
▶ SW-BS is unmasked and bit-sliced [MD19]
▶ SW-M-BW is masked and byte-wise [Cor+14]
▶ SW-M-BS is masked and bit-sliced [Bel+20]
▶ SW-M-SS is masked and share-slicing [JS17]
▶ HW-M-SME is masked with SME [MP21]
▶ HW-M-SKIVA is masked with SKIVA [Kia+21]
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Analysis of Resistance against SCA Attacks

Generation of simulated
consumption traces:
▶ Extracts internal state of

the register file
▶ Simulates consumption

with Hamming distance

SCA analysis:
▶ Leakage assessment

of order 1
▶ SCA attacks of order 1

C code
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ISE1: Specification of our Extension

▶ Masked instructions for share slicing implementations
▶ Masking order d ∈ {1, · · · , 31} is fixed at synthesis time
▶ Masked codes are generated using USUBA
▶ PINI instructions for secure code by direct composition

Instruction Format Latency Random bits
masked AND ise1.and rd, rs1, rs2 2 32(d − 2)
masked OR ise1.or rd, rs1, rs2 2 32(d − 2)

masked NOT ise1.not rd, rs1, rs2 1 0
masked XOR ise1.xor rd, rs1, rs2 1 0
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ISE1: Proposed Masked ALU

▶ Source registers are divided into blocks of d + 1 bits
▶ Masked PINI gates mand, mxor and mnot are applied to each block
▶ An FSM controls the masked ALU
▶ A PRNG provides random values

reg[rs1] 0 · · · d · · · 30 − d · · · 31

reg[rs2] 0 · · · d · · · 30 − d · · · 31

mnot mnot mnot mnot

mand mxor mand mxor

PRNG

seed

mnot mnot

reg[rd] 0 · · · d · · · 30 − d · · · 31

· · ·

· · ·

· · ·

m
as

ke
d

A
LU

FSM

stall

op
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ISE1: Integration into the CV32E40P Core

▶ CV32E40P is a 32-bit RISC-V processor from the OpenHW Group
▶ Red parts are added or modified for our masked ISE1
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ISE1: Evaluation of Performances
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Encryption times in log scale for one AES block:
▶ SW-BW is unmasked and byte-wise [DR02]
▶ SW-BS is unmasked and bit-sliced [MD19]
▶ SW-M-BW is masked and byte-wise [Cor+14]
▶ SW-M-BS is masked and bit-sliced [Bel+20]
▶ SW-M-SS is masked and share-slicing [JS17]
▶ HW-M-SME is masked with SME [MP21]
▶ HW-M-SKIVA is masked with SKIVA [Kia+21]
▶ HW-M-ISE1 is masked with our masked ISE1
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Implementation on FPGA

Area/frequency results on a Digilent Arty A7 FPGA board of the
CV32E40P with Skiva, SME and our masked ISE1.
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ISE2: Specification of our Extension

Constraints of ISE1:
▶ ISE1 encrypts several independent blocks in parallel
▶ Limits usable encryption modes

Our masked ISE2:
▶ Extends ISE1 to reduce the number of independent

blocks encrypted in parallel
▶ Allows to mask one block at a time at orders 1, 3, 7, 15
▶ Larger and slower than ISE1

Instruction Format Latency Random bits
masked SLL ise2.sll rd, rs1, rs2 1 0
masked SRL ise2.srl rd, rs1, rs2 1 0
masked SLLI ise2.slli rd, rs1, imm 1 0
masked SRLI ise2.srli rd, rs1, imm 1 0
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ISE3: Specification of our Extension

▶ Modifies ISE1 to
increase security

▶ Source registers are
refreshed at each use

▶ Protection against an
attacker probing d/2
bits per instruction

reg[rs1] 0 · · · d · · ·

reg[rs2] 0 · · · d · · ·

refresh refresh refresh refresh

mnot mnot

mand mxor

mnot

· · ·

· · ·

· · ·

· · ·

· · ·
m

as
ke

d
A
LU

reg[rs1] 0 · · · d · · ·

reg[rd] 0 · · · d · · ·

reg[rs2] 0 · · · d · · ·

PRNG

seed

FSM

stall

op
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ISE3: Integration into the CV32E40P Core

Red parts are added or modified for our masked ISE3.

IF ID EX WB

in
st

ru
ct

io
n

in
te

rf
ac

e

fetch decoder

Register
file

ALU

masked
ALU

controller

LSU

da
ta

in
te

rf
ac

e

29 / 38



ISE3: Evaluation of Performances
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Encryption times in log scale for one AES block:
▶ SW-BS is unmasked and bit-sliced [MD19]
▶ SW-M-BW is masked and byte-wise [Cor+14]
▶ SW-M-BS is masked and bit-sliced [Bel+20]
▶ SW-M-SS is masked and share-slicing [JS17]
▶ HW-M-SME is masked with SME [MP21]
▶ HW-M-SKIVA is masked with SKIVA [Kia+21]
▶ HW-M-ISE1 is masked with our masked ISE1
▶ HW-M-ISE3 is masked with our masked ISE3
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ISE3: Implementation on FPGA

Area/frequency results on a Digilent Arty A7 FPGA board of the
CV32E40P with Skiva, SME, our masked ISE1 and our masked ISE3.
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HW-SW: Mixed Masking Solution

Hardware masking:
Our masked ISE1 whose order dH is fixed at the synthesis time.

Software masking:
Secure composition over the masked instructions to mask at order:

d = (dS + 1)(dH + 1)− 1,

where dS is the software masking order fixed at compilation time.

Flexibility of our solution:
▶ Allows to adapt the level of security over time
▶ Allows different cost/performance trade-offs
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HW-SW: Our Masked Representation

▶ Mask at order dS by placing the shares in different registers
▶ Each share is masked at order dH using share slicing representation
▶ Total masking order is d = (dS + 1)(dH + 1)− 1

Registers

share 0 share 0 share 0· · ·share 3 share 3 share 3

share 1 share 1 share 1· · ·share 4 share 4 share 4

share 2 share 2 share 2· · ·share 5 share 5 share 5
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HW-SW: Our Masking Scheme

▶ AND gate masked in
software at order dS and PINI

▶ Replace elementary operations by
instructions of ISE1 masked at order dH

▶ Resulting AND gate is PINI and
masked at total order:

d = (dS + 1)(dH + 1)− 1

Require: xi ∈ GF(2)dS+1 et yi ∈ GF(2)dS+1

Ensure: zi ∈ GF(2)dS+1

for i = 0 à dS do
ui,i ←− ise1.and(xi , yi )
for j = i + 1 à dS do

ri,j
$←− GF(32)

ai,j ←− ise1.xor(yj , ri,j )
bi,j ←− ise1.and(xi , ai,j )
ci,j ←− ise1.not(xi )
di,j ←− ise1.and(ci,j , ri,j )
uj,i ←− ise1.xor(bi,j , di,j )
aj,i ←− ise1.xor(yi , ri,j )
bj,i ←− ise1.and(xj , aj,i )
cj,i ←− ise1.not(xj )
dj,i ←− ise1.and(cj,i , ri,j )
uj,i ←− ise1.xor(bj,i , dj,i )

end for
end for
for i = 0 à dS do

vi,0 ←− ui,j
for j = 1 à dS do

vi,j ←− ise1.xor(vi,j−1, ui,j )
end for
zi ←− vi,dS

end for
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HW-SW: Implementation Results of our Solution

Encryption times in log scale for one AES block and area/period
overheads for our ISE masked at orders dH ∈ {1, 2, 3, 5, 7} and various
total orders.
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Conclusion and Future Prospects

Our contributions:
▶ ISEs for masking countermeasure
▶ High order masking
▶ Good speeds up with a limited silicon cost
▶ Flexibility at synthesis time and compile time
▶ Can be used on various cryptosystems

Future works:
▶ Implement other cryptosystems with our solutions
▶ Security evaluation using physical attacks
▶ Masked ISE optimized for post-quantum cryptography
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End of Presentation

Thank you for your attention

Do you have any questions?
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