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Abstract

This thesis focuses ongraph learningfor semi-supervised learningtasks to mitigate
the impact of noise in real-world graphs. One approach to learn graphs is using
bilevel optimization, whose inner problem optimizes the downstream model, and its
outer problem evaluates the performance of the optimized modelw.r.t. a labelling
loss and updates the graph accordingly. This problem is intractable in general.
One solution is replacing the inner optimizer by the output of an iterative algo-
rithm converging to a good proxy, and then employingautomatic di�erentiation
to evaluate its derivativew.r.t. the graph, which is learned using a gradient-based
algorithm. In this thesis, we �rst propose to apply this approach to learn analysis-
sparsity priors, which boils down to a graph learning problem in applications
related to graph Total Variation. Although the problem is non-smooth, we empir-
ically prove the capacity of this solver in 1D and 2D signal denoising tasks. We
then propose to use bilevel optimization to train a parametric model on predicting
similarity between nodes, instead of learning the graph directly. We show that
this notably improves performance over observed graphs. Finally, we identify and
analyze thegradient scarcity problem, which consists in a lack of supervision on
edges connecting distant unlabelled nodes. We prove that this issue emerges when
directly optimizing the observed edges while using graph neural networks or the
Laplacian regularization in the downstream task. We examine several solutions to
this issue including metric learning, graph regularization, or expanding the graph,
and prove their e�ciency.

Keywords: gradient scarcity, graph learning, bilevel optimization, semi-supervised
learning, automatic di�erentiation.
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R�esum�e

Cette th�ese se concentre sur l'apprentissage de graphespour les tâches d'apprentissage
semi-supervis�e a�n d'att�enuer l'impact du bruit dans les graphes du monde r�eel.
Une approche pour apprendre les graphes est d'utiliser l'optimisation bi-niveau,
dont le probl�eme interne optimise le mod�ele en aval, et son probl�eme externe
�evalue la performance du mod�ele optimis�e par rapport �a une fonction de perte
d'�etiquetage et met �a jour le graphe en cons�equence. Ce probl�eme est en g�en�eral
num�eriquement intractable. Une solution consiste �a remplacer l'optimiseur interne
par la sortie d'un algorithme it�eratif convergeant vers un bon proxy, puis �a utili-
ser la di��erentiation automatique pour �evaluer sa d�eriv�ee par rapport au graphe,
qui est appris �a l'aide d'un algorithme bas�e sur le gradient. Dans cette th�ese,
nous proposons d'abord d'appliquer cette approche pour apprendre les priorit�es
d'analyse-parcimonie, ce qui revient �a un probl�eme d'apprentissage de graphe dans
les applications li�ees �a la variation totale de graphe. Bien que le probl�eme soit
non-lisse, nous prouvons empiriquement la capacit�e de ce solveur dans les tâches
de d�ebruitage de signaux 1D et 2D. Nous proposons ensuite d'utiliser l'optimi-
sation bi-niveau pour entrâ�ner un mod�ele param�etrique sur la pr�ediction de la
similitude entre les n�uds, au lieu d'apprendre directement le graphe. Nous mon-
trons que cela am�eliore notablement les performances par rapport aux graphes
observ�es. En�n, nous identi�ons et analysons le probl�eme degradient scarcity,
qui consiste en un manque de supervision sur les arêtes reliant des n�uds non
�etiquet�es �eloign�es. Nous prouvons que ce probl�eme �emerge lors de l'optimisation
directe des arêtes observ�ees tout en utilisant des r�eseaux de neurones graphiques
ou la r�egularisation laplacienne dans la tâche en aval. Nous examinons plusieurs
solutions �a ce probl�eme, notamment l'apprentissage m�etrique, la r�egularisation de
graphe ou l'expansion du graphe, et prouvons leur e�cacit�e.

Mots cl�es : gradient scarcity, apprentissage de graphes, optimisation bi-niveau,
apprentissage semi-supervis�e, di��erentiation automatique.
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Chapter 1

Introduction

Graph structuresare important tools to model relations and interactions between
data points. The need for these structures can be traced back to 1679, when G.W.
Leibniz wrote to C. Huygens about the limitations of the traditional coordinate
geometry treatment of geometric �gures saying "we need yet another kind of anal-
ysis, geometric or linear, which deals directly with position, as algebra deals with
magnitude", (Tutte and Tutte, 2001). Following this, Leibniz started investigating
an alternative tool that he referred to as "geometry of positions" (geometria situs).
This geometry, as L. Euler stated in his 1736 renowned work on the K•onigsberg
Bridges problem, \is concerned only with the determination of position, and its
properties; it does not involve measurements nor calculations made with them",
(Euler, 1741). Euler's work, recognized to mark the beginning of graph theory,
and the ones that followed induced a rich literature on graph structures.

Indeed, graphs are used to model networks of interacting entities in many domains.
In social networks, graphs model connections between users (Newman et al., 2002).
In biology, it is deployed to model chemical interactions between molecules (Stelzl
et al., 2005). In transportation, it is used to model the connections between cities
(Yu et al., 2017). In these domains, exploiting relations between points when
solving the downstream task is important as, take social networks as example,
the network members share information resulting in some members changing their
beliefs based on the information they receive.

One of the main applications where graphs play a signi�cant role isSemi-Supervised
Learning (SSL), where only a small fraction of data points have labels and the goal
is to predict labels on the remaining unlabeled points. In this setting, graphs can
capture similarities and relations between data points and be used to propagate the
label information from labeled points to unlabeled ones. In fact, manygraph-based
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CHAPTER 1. INTRODUCTION 2

semi-supervised learning methodshave been developed to incorporate graphs when
solving SSL tasks. However, the quality and availability of graphs can signi�cantly
a�ect the performance of these methods. Therefore, there is a need to learn high-
quality graphs from data as real-world graphs are inherently noisy or even not
given.

In this thesis, we consider thegraph learning problem for semi-supervised learn-
ing tasks, which we address by optimizing graphs as to improve performance in
the downstream application. This methodology results in a hierarchical optimiza-
tion that is called bilevel optimization. In the presented material, we address the
following questions:

1. how can the aforementioned bilevel optimization be e�ectively used to learn
better graphs for semi-supervised learning tasks?

2. what issues arise when using this methodology? and how to address them?

1.1 Partially labeled datasets are ubiquitous

The amount of generated data has been growing exponentially with the arrival of
big data. One of the crucial problems is the extremely expensive cost for labeling all
of it. Indeed, generating unlabeled data (features) is easier due to the availability
of sensory systems which acquire observations non-stop. In addition, we have the
Internet that is a huge sink of data of all types from di�erent users worldwide.
However, labels are costly to obtain, as in most situations they are not parameters
that can be measured or easily calculated by a computer program,i.e., we do
not have access to the label generation process. For example, labeling medical
images requires expert knowledge and can be a time-consuming task. Similarly,
labeling text data can be a subjective task and may require multiple experts to
reach a consensus. In computer vision, labeling images or videos can be labor-
intensive and costly. Moreover, it may be impossible in some domains to obtain
fully labeled datasets. For instance, not all users in social networks provide the
information necessary to label them, and such information has to be inferred from
the available data.

Given the massive amount of data, it is clearly impossible to a�ord either the time
cost or the human resources to label all of it. As a result, it is common to observe
both labeled and unlabeled data points, the latter being usually the vast majority.
Learning tasks on datasets which comprise both labeled and unlabeled points is
referred to asSemi-Supervised Learning(SSL).

Various SSL methods have been developed to alleviate label scarcity, which makes
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predicting labels on unlabeled points more challenging. An early method, called
self-training, consists in training a model on the labeled data, then using its most
con�dent predictions on unlabeled points to augment the labeled data (Yarowsky,
1995). This is repeated for many rounds. As an extension of self-training, co-
training trains two models on di�erent views of the data to mitigate the bias
resulted from augmenting the labeled data with incorrect predictions. Co-training
iterates over both models, trains a model on the labeled data in each iteration,
then uses its con�dent predictions to augment the labeled data (Blum and Mitchell,
1998).

Another main approach is to incorporate extra assumptions on the data, which
provide additional knowledge to guide the learning process. The main one, called
homophily, refers to the fact that \nearby" points are likely to have similar labels
(Wang and Zhang, 2006). Moreover, points in many applications represent enti-
ties that are naturally linked to each other,e.g., in biology (Liu et al., 2018) or
social media (Liben-Nowell and Kleinberg, 2003). There again, linked entities are
likely to share the same label, which underlines the importance of exploiting the
links when solving SSL problems. A natural tool to model these relations isgraph
structures. In fact, graph structures enable a class of methods calledgraph-based
semi-supervised learning, which leverage the graph structure and the labeled data
to propagate label information to unlabeled points. Thanks to its good perfor-
mance, these methods have gained signi�cant attention, especially with the recent
advances in Graph Neural Networks (GNNs), which can learn more sophisticated
interpretations of relations beyond the homophily assumption and have shown
promising performance on various SSL tasks. We introduce graph structures in
the next section and follow it by a review of the graph-based SSL methods, in-
cluding homophily-based and GNN-based methods.

1.2 Graph structures

Graph structures are used to model a set of objects and their relations/interactions
with each other. While the nature of these objects and their interactions vary with
the application, the underlying modeling paradigm is the same for all applications:
objects are represented by nodes, and a relation between two objects is represented
by an edge between the corresponding two nodes. For instance, in a social network
like Facebook, nodes are users and edges are friendships between them. In a
biological network such as the brain, nodes are brain regions and edges are the
nerve connections in between. See Table 1.1 for a list of di�erent examples. Also
refer to Chami et al. (2022); Kazemi et al. (2020).

Notations and de�nitions: a graph G is a pair (V; E), where V is a set ofn



CHAPTER 1. INTRODUCTION 4

Network Nodes Node features Edges Edge features
Transportation system Cities Registered cars Routes Length, cost

Banking network Account holders Account status Transactions Transaction value
Social network Users Name, country Interactions Type (like, comment)

Table 1.1 { Examples of real-world graphs.

nodes andE � V � V is a set of edges. Any edge (i; i ) is called a self loop. In
general, two verticesi and j can be connected by more than one edge. A simple
graph is a graph with no self loops and no multiple edges. A graph is said to be
undirected if edges have no orientation,i.e., if ( i; j ) 2 E then (j; i ) 2 E. Here
we consider simple undirected graphs. We denote byV(i ) the set of neighbors of
node i . We also denote byX 2 Rn� p the matrix whose rows include the features
of corresponding nodes, wherep is the number of features. For example, the user
features in a social network might include age, address and work. While in citation
networks where nodes represent research publications and edges stand for citations,
features are a bag of words used to describe the according publication. Similarly, a
feature matrix on edges might be given; however, in this work we consider the case
where each edge has a scalar attribute that we refer to by the edge weight.

De�nition 1.2.1 (Adjacency matrix). The adjacency matrixA is a square matrix
of sizen � n that is used to represent a simple graph. Each entryA i;j equals the
weight of the edge from nodei to node j .

De�nition 1.2.2 (Degree matrix). The degree matrixD of a graph is a diagonal
matrix with node degrees on the diagonal:D i;i =

P
j A i;j .

De�nition 1.2.3 (Graph Laplacian). The unnormalized graph Laplacian is the
matrix de�ned as follows L = L (A ) = D � A , whereD is the according degree
matrix. L is symmetric and positive semi-de�nite for undirected simple graphs.
It is usually common to consider other variations that include normalizing the
graph Laplacian by means of the degree matrix. One popular variation isI �
D � 1=2LD � 1=2, whereI 2 Rn� n is the identity matrix.

De�nition 1.2.4 (Incidence matrix). The incidence matrix C of a graph is a
matrix of size n � j E j. For undirected graphs it is de�ned as follows:

C i;j =

(
1 if node i is an endpoint of thej -th edge,

0 otherwise,
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while for directed graphs it is de�ned as follows:

C i;j =

8
><

>:

1 if node i is the head of thej -th edge,

� 1 if node i is the tail of the j -th edge,

0 otherwise.

De�nition 1.2.5 (Path) . We say that the sequence of distinct nodes (u1; : : : ; uk)
is a path in the graph if (ui ; ui +1 ) 2 E for all i in f 1; � � � ; k � 1g. The length of
the path is the number of edges composing it which isk � 1.

De�nition 1.2.6 (Connected graphs). A connected graph is a graph where there
is at least one path connecting every pair of nodes.

De�nition 1.2.7 (Hop distance). We say that nodei is k-hop from nodej if the
minimum number of edges forming a path fromi to j is k. Similarly, a node i is
said to bek-hop from a subset of nodes if the minimum of hop distances to nodes
in the subset isk. We further refer to the set of nodes that are at mostk-hop from
i by its k-hop neighborhood.

1.3 Graph-based Semi-Supervised Learning (SSL)

In this section, we �rst de�ne the inductive and the transductive settings of SSL.
Then, we elaborate on graph-based SSL methods, and point out the main issue
we tackle in this thesis, that is, the dependence of these methods on the quality
of the input graph. Finally, we present many real-world applications of these
methods.

Given a partially labeled dataset, SSL aims at learning a labeling function that
can assign labels to both labeled and unlabeled data in a way that optimizes
some objective function, such as accuracy. Depending on the scope of the label-
ing function, SSL methods can be classi�ed into two categories:inductive and
transductive.

De�nition 1.3.1 (Inductive SSL). Given a dataset comprising a subset of unla-
beled pointsf (x i )gnu

i =1 � X and a subset of labeled pointsf (x i ; yi )g
n l
i =1 � X � Y ,

where X ; Y are the feature and the label space, respectively, inductive SSL aims
at learning a labeling function that is able to generalize to any pointx 2 X .

De�nition 1.3.2 (Transductive SSL). Given a dataset comprising a subset of
unlabeled pointsf (x i )gnu

i =1 � X and a subset of labeled pointsf (x i ; yi )g
n l
i =1 � X �Y ,

transductive SSL aims at learning from this dataset to be able to predict labels
only on the unlabeled subsetf (x i )gnu

i =1 without considering future data.
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Consequently, each category uses the unlabeled data in a di�erent manner. In-
ductive methods employ unlabeled points to improve the generalization ability of
the labeling function. For instance, self-training, which is an inductive method,
assumes that most con�dent predictions on unlabeled data are ground-truth with
the purpose of overcoming label scarcity and augmenting the training set, ulti-
mately improving the generalization ability of the learned labeling function. On
the other hand, transductive methods leverage unlabeled points to directly prop-
agate or infer their labels by relying on some assumptions such as homophily.
This explains why transductive methods usually outperform inductive methods on
unlabeled points present in the given dataset (Chong et al., 2020).

In this thesis, we look at graph-based SSL methods, which are developed to tackle
tasks where data points lie on a graph structure, regardless of whether the graph
is observed as in situations where points are naturally linked together,e.g., social
networks, or constructed from data. More precisely, we consider the set of methods
developed for the transductive setting. In fact, the majority of graph-based SSL
methods are transductive in nature (Chong et al., 2020; Song et al., 2022b), where
both labeled and unlabeled points appear as nodes in the graph, and edges are
used to model relations in between.

Given (X obs; Gobs; Y obs), whereGobs is the observed graph,X obs are the observed
node features (we will drop the subscript and writeX in the rest of the thesis)
and Y obs 2 Rn contains the labels of a subset of points at coordinatesi 2 Vtr � V
and, e.g., not-a-number \NaN" outside of Vtr , the goal of transductive graph-
based methods is to predict labels on unlabeled nodes while exploiting the graph
structure Gobs. From now on, we stop mentioning the transductive setting and refer
to these methods as graph-based methods for the convenience of the reader. We
also refer to SSL tasks involving a graph structure by graph-based SSL tasks.

Early graph-based methods focused on incorporating the homophily assumption,
which implies that the labelsY i ; Y j of nodesi; j that are neighbors in the graph
satisfy Y i � Y j . This is achieved by utilizing the graph structure to regularize the
learned labels. This family of methods is referred to as graph regularization meth-
ods. In this work, we deploy a commonly used representative of these methods,
namely theLaplacian regularizationwhich will be presented in the next section. A
more recent methodology consists in learning node embeddings by incorporating
the graph structure. Then, a model is placed on top of the embedding function
to predict labels. Methods in this paradigm are referred to as node embedding
methods. We review this methodology in Section 1.3.2, with a special focus on
Graph Neural Networks (GNNs) employed in this work as a representative method.
Refer to Song et al. (2022b,a) for a more comprehensive review on both method
categories.
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1.3.1 Graph regularization methods

This methodology consists inpropagatingknown labels using aregularization pro-
cess. The goal is that the output labels accurately approximate observed labels
on labelled nodes while ensuring smoothness on the graph. The regularization is
performed by introducing a penalty term to the objective function that evaluates
a candidate labeling. That is, learned labels read:

Y Reg 2 arg min
Y 2B

1
jVtr j

X

i 2 Vtr

`(Y i ; (Y obs) i )+ �R (Y;A ) ; (1.1)

whereB is an admissible set,̀ is usually a smooth loss function,R is a regulariza-
tion term, and � is a balancing parameter. In regression tasks,B is commonly the
spaceRn , and ` is chosen to be the Mean Squared Error (MSE) de�ned as:

`(Y i ; (Y obs) i ) = ( Y i � (Y obs) i )
2 :

Whilst in classi�cation tasks, the i -th element Y i is not a scalar but rather a
vector holding the probability distribution over classes. Formally,B = f Y 2
Rn� C j 8i;

P C
c=1 Y i;c = 1; 8i; c; Y i;c � 0g, whereC is the number of classes. In

this case,` is the Categorical Cross Entropy (CCE) loss de�ned as:

`(Y i ; (Y obs) i ) = � log(Y i; (Y obs ) i ) :

In fact, graph regularization methods usually di�er from each other by the choice
of the regularization function R. We next review the two most common choices,
the Laplacian regularization (Slepcev and Thorpe, 2019; Pang and Cheung, 2017),
which is deployed in this thesis, and the Label Propagation (LP) model (Zhu and
Ghahramani, 2002).

Graph Laplacian regularization: this is a commonly deployed method in this
category. This approach proved to have a good performance in many reconstruc-
tion problems, e.g., image �ltering (Milanfar, 2012). The associated choice of
the regularization term R is the following (Slepcev and Thorpe, 2019; Pang and
Cheung, 2017):

R(Y ; A ) =
1

jE j

X

i;j

A i;j kY i � Y j k2
2 ; (1.2)

which can be re-written as follows depending on the downstream task:

R(Y ; A ) =

(
1

jE j Y
> LY in regression tasks,

1
jE j

P C
c=1 (Y :;c)> LY :;c in classi�cation tasks,

(1.3)

where we denote byY :;c the c-th column of Y .
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Note that here the node featuresX are not used.

The Label Propagation (LP) model: to compute labels for unlabeled nodes,
Zhu and Ghahramani (2002) proposed to look at the graph as a 
ow network where
labels start propagating from labeled nodes through the graph till arriving an equi-
librium. Edges here can be seen as pipes that carry labels from one node to another
with capacity proportional to the edge weight. Formally, the sought-for labels are
obtained by performing a series of the following steps till convergence:

1. computeY t+1 = D � 1AY t . Remark that D � 1A is a well-de�ned transition
matrix, i.e., its elements are non-negative and its rows sum to one.

2. clamp the labels of nodes inVtr to their observed values inY obs.

Zhu and Ghahramani (2002) proved that the LP model converges to a steady-state
solution. Moreover, the authors proved that when the graph is connected the solu-
tion does not depend on the initialization on unlabeled nodes and is unique. In fact,
the solution is the minimizer of Eq. (1.1) with`(Y i ; (Y obs) i ) = 0 if Y i = ( Y obs) i

and 1 otherwise, andR(Y ; A ) being set as de�ned in Eq. (1.3). Later, di�erent
variants of LP have been developed like the modi�ed adsorption (Talukdar and
Crammer, 2009) and local and global consistency (Zhou et al., 2003) models.

Critics to graph regularization: despite its popularity and the good perfor-
mance observed in many tasks, most graph regularization methods have been
criticized for not exploiting the rich knowledge encoded in node features. Even
the methods that incorporate node features using a modelf W parameterized by
weights W to map node features to labels,i.e., the output labels Y W (X ) read
Y W (X ) = ( f W (X i ))n

i =1 , and solve forW instead ofY as follows

Y Reg = Y W ? (X ); where

W ? 2 arg min
W

1
jVtr j

X

i 2 Vtr

`
� �

Y W (X )
�

i
; (Y obs) i

�
+ �R

�
Y W (X ); A

�

are also criticized for not taking into account the graph structure when designing
the function f W (Yang et al., 2021). That is, these methods incorporate the graph
structure only through the regularization termR under the homophily assumption.
In many situations, relations between nodes model more complicated interactions
than the likelihood of having the same label (Kipf and Welling, 2017). Last but not
least, the challenge of matter in this thesis is the dependence of these methods on
the quality of the graph, which tends to be noisy or incomplete in many real-world
applications.
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1.3.2 Node embedding methods

In machine learning, embedding methods are concerned with learning a low-
dimensional representation of high-dimensional data while preserving some prox-
imity measure between points. A class of these methods have been developed for
graph-based SSL tasks that involve a graph structure, where two categories can
be distinguished: the �rst one outputs a representation vector for the graph, while
the second one outputs a representation vector for each node in the graph. Our
focus in this thesis is on the latter category, which is referred to asnode embedding
methods. These methods learn embeddings that capture the graph structure and
are informative about the relations of the according node to other nodes in the
graph. The produced embeddings are then fed to another model to predict labels
on unlabeled nodes. It is noteworthy that this model usually takes vector-based
input, i.e., it is not required to handle a graph structure as input.

Two classes of node embedding methods exist, the �rst one computes node em-
beddings based on input graphs, while the second one incorporates both the graph
structure and node features. The �rst approach includes factorization-based meth-
ods (Ahmed et al., 2013), and random walk-based methods (Grover and Leskovec,
2016; Perozzi et al., 2014). Likewise, these methods do not exploit node features
and lack scalability, as they compute an embedding for each node without learning
a set of shared parameters. Therefore, we do not consider them in this thesis. The
second set of methods, on the other hand, includes autoencoder-based methods,
e.g., GAE & VGAE (Kipf and Welling, 2016b) and SDNE (Wang et al., 2016).
It also includes Graph Neural Networks (GNNs), which we employ in this the-
sis.

Graph Neural Networks (GNNs): GNNs are considered to be the modern
node embedding framework, which provides state-of-the-art results in many graph
SSL tasks. Indeed, thanks to its success and promising results, GNN-based meth-
ods are the dominant graph-based methods. GNNs are a class of neural networks
that are designed to operate on graphs. The key component is the message passing
model implemented in each of the GNN layers, which computes a new embedding
of each node based on its features and the features of its neighbor nodes (Gilmer
et al., 2017; Wu et al., 2020). Speci�cally, the output embeddingX [l ]

i of the l-th
layer for nodei is computed as follows:

X [l ]
i = update

�
X [l � 1]

i ; aggregate(f X [l � 1]
j ; 8j 2 V (i )g)

�
;

where the �rst layer is fed with X [0] = X in input. That is, we �rst aggre-
gate the features of the neighbor nodes using a permutation invariant function,
e.g., weighted sum using edge weights, and then use the result to update the em-
bedding of the node using a feed-forward neural network for instance. Given that,
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di�erent GNN architectures di�er in the aggregation and update functions. In this
thesis, we adopt the architecture which computes embeddings following the model
(Morris et al., 2019):

X [l ] = � (X [l � 1]W [l ]
1 + AX [l � 1]W [l ]

2 + 1n (b[l ])> ) ; (1.4)

whereW [l ]
1 ; W [l ]

2 2 Rdl � 1 � dl are learnable weights,b[l ] 2 Rdl is a learnable bias,dl

is the output dimensionality of the l-th layer, 1n = (1 ; : : : ; 1)> 2 Rn , and � is a
non-linear function applied element-wise.

While in classic node embedding methods, predicted labels are obtained by feeding
the learned embeddings to another model, in GNN-based methods, it is common to
design the GNN and optimize its weights such that its output holds the predicted
labels. That is, setting the number of layersk and denoting by W the model
weights W = f W [l ]

1 ; W [l ]
2 ; b[l ]gk

l=1 , and by Y W (X ; A ) = X [k] its output obtained
after k rounds of message passing, the sought-for labels read

Y GNN = Y W ? (X ; A ); where

W ? 2 arg min
W

1
jVtr j

X

i 2 Vtr

`
� �

Y W (X ; A )
�

i
; (Y obs) i

�
: (1.5)

Drawbacks of GNNs: one issue with GNNs is that its performances signi�cantly
declines as labeled nodes get scarce. More importantly, its performances is highly
dependent on the graph quality. In this work, we focus on the latter issue.

Remark 1.3.1 (GNNs vs. graph regularization). Comparing the two procedures,
graph regularization promotes similarity between connected nodes but, unlike
GNNs, is not a supervised-based method capable of learning more complicated
schemes of how knowledge propagate through node connections. This is why it
generally yields lower performance (Ye et al., 2022).

1.3.3 Real-world applications of graph-based SSL

Graph-based SSL is widely applied in many domains. Some of these domains have
the data inherently lying on a graph structure, such as social, citation, and biologi-
cal networks. In other domains, data points do not exhibit relations between them,
and the graph is constructed from scratch, such as in computer vision and natural
language processing. In the following, we present a few example applications of
graph-based SSL in both scenarios.

Social networks: these networks present numerous problems that can be ad-
dressed with graph-based SSL. In Twitter for example, Balaanand et al. (2019)
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used graph-based SSL to detect fake users. Another work Alam et al. (2018)
employed these methods to classify tweets during natural disasters, which helps
to identify the most a�ected areas and provides fast feedback to humanitarian
organizations.

Biology: Graphs are used to model relations in omics data, then graph-based
methods are applied. On each omic level, such as chromosomes, DNA, gene
expression, microRNA, Kim et al. (2012) construct a graph and then employ a
graph-based SSL method to classify cells of glioblastoma multiforme (a tumor
that attacks the central nervous system) to low and high grade cells, where dif-
ferent grades in this context re
ect the spreading capacity of these cells. Finally,
the results of the di�erent omic levels are aggregated to obtain the �nal classi�-
cation. To better exploit relations between omic data points in di�erent levels,
Doostparast Torshizi and Petzold (2018) make use of extra biological knowledge,
known as biological pathways, to construct one graph across these levels, then
deploy graph-based SSL to enhance the classi�cation results on tumor cells.

Natural language processing: N-grams are sequences of N words de�ned to
characterize text data, thereby it is important to identify the part of speech of key
words in N-grams. This task is referred to as part-of-speech tagging (POS tagging).
To solve this task, Subramanya et al. (2010) construct a similarity graph on N-
grams, assume that the POS of a word tends to be the same in neighbor N-grams,
and then deploy LP to leverage this assumption and predict the POS tagging of
words. Similarly, Aliannejadi et al. (2017) solve this problem using GNN models.
Recent works make use of graph-based SSL for language model smoothing, which
is used to address the sparsity of training data (Mei et al., 2008).

1.4 Why graph learning?

Graph-based learning attracted notably more attention as Graph Convolution Net-
works (GCNs) showed high performance (Kipf and Welling, 2016a; Monti et al.,
2017). Similar to other graph-based methods, GNNs, however, signi�cantly de-
pend on the quality of its input graph (Hena� et al., 2015; De�errard et al., 2016).
Thus, ensuring access to high quality graphs has been a hot topic in research,
as real-world graphs are noisy, which signi�cantly degrades performance. Indeed,
various methods have been developed for that purpose.

The vast number of developed graph learning methods leads to di�erent possible
taxonomies of these methods. In fact, many criteria can be used to classify these
methods including:

ˆ the capacity to add/remove edges in the observed graph, where some meth-
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ods specialize in optimizing for edge weights in the observed graph, while
other methods can also add new edges. We refer to the former asedge re-
�nement methods and to the latter asgraph constructionmethods. In fact,
graph construction methods can be applied to a wider range of tasks, specif-
ically in situations where the observed graph includes missing edges or even
not given; however, they are computationally more expensive.

ˆ priors imposed on the learned graph, such as sparsity, low rank graphs, or
feature/label smoothness.

ˆ learned variables, where some methods directly learn the adjacency matrix,
while others learn the parameters of a graph generative model.

ˆ input to the graph optimization problem, where some methods use node
features in addition to the observed graph to learn a better graph, while other
methods also incorporate observed labels. We refer to these two categories
as

{ feature-based unsupervised graph learning.

{ label-based supervised graph learning.

The next sections provide a brief review of the literature of graph learning follow-
ing the last taxonomy. However, we try to elaborate on the other criteria when
possible. Refer to Zhu et al. (2021); Qiao et al. (2018) for a comprehensive review
of graph learning methods.

Before proceeding, we point out a common aspect in most graph learning algo-
rithms. They all seek for sparse graphs,i.e., graphs comprisingn nodes andO(n2)
edges. One might think that e�orts made to enforce sparsity is only in exchange
of providing an e�cient algorithm, with respect to both the computational and
storage costs. In fact, ensuring sparsity is crucial for additional reasons. First,
algorithms outputting sparse graphs are robust against noise (Jebara et al., 2009).
Moreover, real-world graphs are indeed sparse, which makes such property useful
to solve real-world problems. In addition, sparse graphs are easier to visualize,
analyse, and interpret as patterns are more detectable when having fewer edges
(Batjargal et al., 2019).

1.4.1 Feature-based unsupervised graph learning

This category includes the majority of graph learning methods, which mainly
di�ers from each other through the hypothesis made on the sought-for graph.
Early methods focus on constructing graphs that re
ect similarity between nodes,
whereas recent methods adopt more sophisticated hypotheses, such as a good
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graph is e�ective in denoising node features with message passing models, feature
smoothness, and low rank graphs, to mention just a few. It is interesting to notice
that such methods are suitable not only for SSL but for unsupervised problems as
well.

Early methods: early methods were developed to construct graphs from scratch.
Moreover, the output graph is usually not weighted,i.e., edge weights are binary.
One of the most popular algorithms in this context is thek-Nearest Neighbors (k-
NN) algorithm. In k-NN, a similarity measure is de�ned to quantify the strength
of the connection,i.e., edge weight, between a pair of nodes. Then, an edge from
node i to node j is constructed if j is among the mostk similar nodes toi (Zhu
et al., 2003; Belkin et al., 2006; Kalofolias and Perraudin, 2017). This method has
many drawbacks including the need to choose the value ofk and the similarity
criterion. The former is usually resolved by means of a validation process to assess
di�erent values of k, e.g., using the validation loss in machine learning problems.
On the other hand, the similarity measure most of the cases isa priori set to one
of the classical options,e.g., the Gaussian kernel (Szummer and Jaakkola, 2001),
or the cosine similarity. This justi�es why data-driven graph learners outperform
k-NN graphs. Yet, k-NN graphs are a reliable option and the classical method to
initialize graphs for the recent and more advanced learners (Fatemi et al., 2021;
Chen et al., 2020). Another shortcoming is the poor scalability as the similarity is
evaluated between all possible pairs of points,i.e., O(n2) complexity. The common
way to alleviate this problem is by using the Approximate Nearest Neighbor (ANN)
algorithm that is of cost O(n log(n)) (Dong et al., 2011; Muja and Lowe, 2014).
However, the gain in complexity in ANN comes at the expense of the quality of
the constructed graph.

Metric learning methods: a line of works focused on assigning weights to ob-
served edges or to edges constructed using early graph learners discussed above.
Recall that edge weights ink-NN graphs are binary. The core idea of this method-
ology is that edge weights should re
ect similarity between nodes, thereby a simi-
larity metric is needed. This metric is either user-de�ned or learned from data. A
popular choice in the former case is the Gaussian kernel coupled with the Euclidean
distance as a measure of dissimilarity:

A ij = exp
�

�
kX i � X j k2

2

2� 2

�
;

where � is the kernel bandwidth that is usually set using heuristic techniques.
For instance, Gretton et al. (2006) use the median distance between nodes. The
simplest instance of metric learning is learning the value� . Zhu et al. (2003)
suggested penalizing� by the average label entropy achieved by the graph-based
method on unlabeled nodes. Kapoor et al. (2005) formulate the problem using the
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Bayesian framework, where� is learned by maximizing the marginal likelihood
of the observed data. Li et al. (2018) went a step further and proposed a more
expressive model by replacing the Euclidean distance with the generalized Maha-
lanobis distance, which for nodesi; j writes (X i � X j )> MM > (X i � X j ), where
the projecting matrix M 2 Rp� m for some integerm has to be learned.

Locality-inducing methods: most researches in this paradigm optimize edge
weights in a given graph by assuming that each node can be produced by a lin-
ear combination of its neighbors, where the amplitude of the contribution of each
neighbor is the according edge weight. To that end, edges are optimized by min-
imizing the quadratic error between data points and the aforementioned linear
combinations (Saul and Roweis, 2003),i.e., solving the following optimization
problem:

min
A

nX

i =1

kX i �
X

j 2V (i )

A ij X j k2
2

s:t:
X

j 2V (i )

A ij = 1; 8i :

Resulted graphs, however, might have edges with negative weights, which is not
desirable for some graph SSL methods,e.g., label propagation models. Accord-
ingly, Wang and Zhang (2006) propose to further constraint edge weights to be
non-negative. Interestingly, Daitch et al. (2009) deploy this method to construct
the whole adjacency matrix, while theoretically proving that the solution is sparse.
This methodology has two main drawbacks, that the quadratic loss is noise sen-
sitive, and that it is prone to over�tting as the number of edges usually is larger
than the number of nodes (Qiao et al., 2018).

Smoothness-inducing methods: another line of work focused on learning ad-
jacency matrices that promote smoothness seen in node features on the learned
graph. The smoothness is quanti�ed by means of Dirichlet energy:

1
2

X

i;j

A i;j kX i � X j k2
2 :

Clearly, minimizing this energyw.r.t. A will lead to an undesired trivial solution
A = 0. To avoid that, one might add another penalty term to impose a desired
structure on the output graph, e.g., distribution of edges or sparsity. Kalofolias
(2016) expressed that in following generic optimization:

min
A

1
2

X

i;j

A i;j kX i � X j k2
2 + �( A ) ;
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where the function � is designed to promote speci�c structures in the graph de-
pending on the application. Hu et al. (2013) proposed the following version:

�( A ) = � 1kA 1k + � 2kA k2
F + 1(kA k1;1 = n) ;

where � 1; � 2 are trade-o� parameters, kA k1;1 =
P

i;j jA ij j, and 1(condition)= 0
if the condition is met, and 1 otherwise. While the third term forcesA to sum
up to n, the second term tries to divide this sum equally across all edges, and the
�rst one controls the sparsity of the graph by penalizing nodes with large degrees.
This choice of � produced stat-of-the-art results on graph learning from smooth
signals until another version was proposed in Kalofolias (2016):

�( A ) = � � 1> log(A 1) + � kA k2
F ; (1.6)

where the log term prevents producing isolated nodes in the graph,i.e., prevents
zero coe�cients in the node degrees vectorA 1. Likewise thek-NN method, this
framework costsO(n2) and does not scale well with the number of nodesn. Kalo-
folias and Perraudin (2017) made use of the ANN method to accelerate this frame-
work to O(n log(n)) with the choice of � as in Eq. (1.6) while obtaining quality
close to the one produced by the original method.

1.4.2 Label-based supervised graph learning

Our work falls in this category, where one incorporates observed labels in addition
to node features to learn graphs. Indeed, this is a natural response to the need
to graphs that improve performance in the downstream task. Interestingly, most
works in this direction learn together both the graph and the parameters of the
graph-based classi�er.

The Graph Agreement Model (GAM) is one example that achieved state-of-the-art
results in graph-based SSL (Stretcu et al., 2019). The GAM is a deep network
trained on predicting similarity between nodes,i.e., metric learning, by penalizing
the absence of an edge between nodes with the same label. Once GAM is trained,
its output is used to train the adopted GNN model, which is then used to augment
the set of labeled nodes by considering con�dent label predictions. This is repeated
for many rounds. The authors provide two versions of their algorithm, one for edge
re�nement and one for graph construction.

Unlike GAM, Wang and Leskovec (2020) directly learn the weights of observed
edges. The optimization also involves learning the parameters of the GNN model.
Since this leads to over�tting due to the large number of parameters, the authors
make use of the Label Propagation model (LP) to regularize the graph. The
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optimization problem is formulated as follows:

min
A ;W

1
jVtr j

X

i 2 Vtr

`
� �

Y W (X ; A )
�

i
; (Y obs) i

�
+ �

1
jVtr j

X

i 2 Vtr

`
� �

Y Reg(A )
�

i
; (Y obs) i

�
;

whereY W is the output of the GNN model,Y Reg is the output after � LP iterations
as in Section 1.3.1. The proposed framework produces state-of-the-art results on
SSL node classi�cation tasks.

It is important to notice that one objective function is used to jointly assess the
graph and the GNN model. We refer to such optimization setting asjoint optimiza-
tion. In general, joint optimization is addressed using gradient-based methods. We
point out that when computing gradients for these methods,A and W are consid-
ered asindependent variables,i.e., J W (A ) = J A (W ) = 0, whereW is a vector-
ized version ofW, and J W (A ) is the Jacobian matrix

�
J W (A )

�
i;j

= @(W ) i
@A j

.

Similarly, Fatemi et al. (2021) regularize the graph by enforcing the assumption
that a good graph must also perform well in denoising node features. Consequently,
the authors replace the LP-based regularization term above by an objective func-
tion that assesses the denoising performance of the graph.

Another sophisticated set of models based on joint optimization is attention mech-
anisms, where after each GNN layer, the edge weights are re-evaluated based on
the similarity between node representations in that layer. The similarity criterion
can be user-de�ned like the dot product (Luong et al., 2015; Vaswani et al., 2017),
learned locally at each layer by a single-layer feed-forward network (Veli�ckovi�c
et al., 2018), or a combination of both schemes (Kim and Oh, 2021). These mech-
anisms proved e�cient in edge re�nement for SSL tasks and some of its variants
produced state-of-the-art results. It is noteworthy that in addition to the cheap
memory cost of these methods thanks to shared parameters, they generalize well
to nodes unseen in training,i.e., the inductive setting.

The class of methods of matter in this thesis assesses a candidate graph by looking
at the performance of the graph-based model trained on it. That is to say, the
graph-based model is trained while �xing the graph, then the e�ciency of the graph
is evaluated using another objective function designed for this purpose. To better
understand this process, an analogy can be made with the graph being treated as
a hyperparameter in a machine learning task, which is typically optimized based
on a validation loss function.

One representative work is Franceschi et al. (2019). The authors learn the param-
eters of Bernoulli probability distributions over independent random edges. These
parameters are optimized to minimize the validation loss on a di�erent subset of
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nodes than the one used to train the GNN model. This method includes learning
n2 parameters which limits scalability. Similarly, Wan and Kokel (2021) spar-
sify the observed graph while keeping it connected by means of minimizing the
validation loss of the GNN model. However, resulted graphs do not necessarily
outperform the observed graph. Moreover, both previous methods su�er from not
generalizing to new points, as this requires re-running the optimization process
again.

It is important to notice the problem hierarchy in this class of methods. Specif-
ically, evaluating the performance of a candidate graph in the downstream task
requires optimizing the graph-based model, whose training process also requires
the candidate graph in input. In the next section, we introduce the reader tobilevel
optimization, which is the mathematical framework that allows us to tackle this
problem hierarchy. Simultaneously, we emphasize on the fact that when learning
the graph using gradient-based methods,J W (A ) 6= 0 and must be incorporated
in the gradient computation, unlike the joint optimization scenario. In fact, this is
the main challenge in this setting. Then, we present our contribution which mainly
includes using bilevel optimization to train a parametric model on node similarity
prediction, while mathematically justifying why optimizing edge weights, instead
of the parametric model, fails to learn good graphs.

1.5 Bilevel optimization

In this section, we introduce the reader to bilevel optimization. We �nd that it
is convenient to start with real-world examples in order to grasp its importance.
Following this, we present the history of bilevel optimization and the �rst works
that tackled it. Next, we provide a formal de�nition of it and discuss its inherent
complexity. We conclude this section by outlining the speci�c class of bilevel
problems that are of interest in this thesis and surveying the existing solutions to
these problems.

Optimization problems are commonly single-level, where one optimizes for a set
of variables to minimize (or maximize) a single objective function with some con-
straints. This can be expressed as follows:

min
� 2A

F (�)

s:t: G(�) � 0 ;

whereF is the objective function, � is the set of variables to be optimized for,A
is the admissible set, andG embeds the problem constraints. Indeed, single-level
optimization emerges naturally in applications with asingle decision makerthat
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controls the parameters of the problem. For example, if a single transportation
company designs the timetable of its trips and their stopping points, or if one team
of bankers decides on the investments the bank is making.

A di�erent situation takes place in various circumstances in daily life when having
two decision makers, where one sets the parameters of the problem while consid-
ering the prospective reaction of the other one. This reaction does not only a�ect
the outcome of the latter decision maker, but also the outcome of the former one.
That is, any decision made by either side provokes some reward and both sides
seek the decision that maximizes their reward. Formalizing this by modelling this
reward as a function of the problem variables leads to a hierarchical problem when
seen from the point of view of the �rst decision maker. This is thebilevel optimiza-
tion hierarchy. We tackle a few popular instances of this problem in real world to
help better understand the bilevel setting.

The �rst instance is the toll setting problem, where highway companies tend to
assign toll costs to several segments of the highway network as to maximize their
revenues. These assignments are made while anticipating the behavior of the
network users (drivers) who seek minimizing their traveling cost, which includes
toll costs. Therefore, drivers react to any change in toll pricing by varying the
frequency of using toll segments in order to travel at minimum cost. For example,
if toll costs are set too high, users refrain from using them. Highway companies,
on the other hand, take into account this behavior while setting their toll schedule,
which boils down to a bilevel optimization problem.

The second example is the pricing problem, where a manufacturer, as the �rst
decision maker, determines the prices of their produced goods to maximize their
pro�ts when selling them. Following this, customers, collectively considered as the
second decision maker, optimize for the purchased quantity of these items based
on their utility-price trade-o�. Therefore, the manufacturer's decision depends on
the customers optimal response, and conversely, the customers decision is reliant
on the pricing decisions of the manufacturer.

Hyper-parameter optimization is also another instance of bilevel optimization. In
the context of machine learning, an engineer, as the �rst decision maker, tunes
hyper-parameters to achieve the best validation results in the task in hand. In
response to each realization of the hyper-parameters, the optimizer of the machine
learning model, as the second decision maker, optimizes for the model weights to
obtain optimal results on training data. Vice versa, validation results, which are
the engineer's reward, directly depend on the optimized model weights.
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1.5.1 History of bilevel optimization

Bilevel optimization has its roots in game theory and economic planning, which
can be traced back to the pioneering work of Stackelberg (1952). Stackelberg
introduced the concept of leader-follower games, which can be interpreted as a
hierarchical game involving two players who interact sequentially. One player,
called the leader, is assumed to have complete knowledge of the behavior of the
second player, called the follower. The leader makes a move while the follower,
who only observes the decisions of the leader, optimizes its own strategies based
on that move. The leader anticipates the reactions of the follower and chooses his
best strategy to maximize gains. If the follower has multiple optimal responses
to a given selection of the leader, the best or worst follower's responsew.r.t. the
leader is assumed, resulting in an optimistic or pessimistic bilevel programming
problem, respectively. The optimistic approach is generally assumed; however, it
is challenging to ensure this assumption in practice. In fact, when the problem
corresponding to the follower game is not convex, it is even di�cult to obtain
one of the follower's optimal strategies. Instead, obtaining a \good" strategy is
considered su�cient. We elaborate on that later on when we discuss the problems
of matter in this thesis.

In this hierarchy, we refer to the problem where the leader optimizes its decision
as theouter problem, and to the problem where the follower does the same, given
the leader's decisions, as theinner problem.

The �rst application of the introduced bilevel problem was by Bracken and McGill
(1973) on the cost-minimal mix of weapons problem in military. Another one of the
�rst works pioneering bilevel programming problems is Candler and Norton (1977),
which started discussing the di�culty of these problems as we will see in the next
section. Afterwards, many studies deployed bilevel optimization to model real-
world problems of hierarchical structure with two decision makers at two distinct
levels. For instance in transportation (Marcotte, 1986; Ben-Ayed et al., 1988),
biology and chemistry (Clark, 1990; Sun et al., 2006), management (Bard, 1983;
Ryu et al., 2004), and the energy sector (Gabriel et al., 2012). Moreover, it is
applied in many machine learning tasks such as hyperparameter optimization,
multi-task, and meta-learning (Bennett et al., 2006; Flamary et al., 2014; Mu~noz-
Gonz�alez et al., 2017; Franceschi et al., 2018), to mention a few. See Colson et al.
(2007) for a review of applications in di�erent �elds.
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1.5.2 General formulation

In mathematical terms, a bilevel optimization problem reads:

min
� 2A

Fout (� ; W?(�))

s:t: Gout (� ; W?(�)) � 0 ;

W ?(�) 2 arg min
W 2B

Fin (W; �)

s:t: Gin (W; �) � 0 ;

where � is the set of variables controlled by the leader,W is the set of variables
adjustable by the follower in response to the leader's decision on �,W ?(�) is
the follower's optimal response (or the optimal response corresponding to the op-
timistic assumption if W ?(�) is not unique), Fin is the inner objective function
used by the follower to assess its strategyW, Fout is the outer objective function
similarly used by the leader to assess decisions on �,Gin ; Gout are the inner and
outer constraint functions, respectively, andA; B are the search spaces according
to � ; W, respectively. Note thatFin is parametrized by the leader's assignment to
�, and that Fout anticipates the followers optimal reactionW ?(�).

It is no doubt that bilevel problems are more complicated and di�cult to solve
than single-level problems, since the former comprises two nested optimization
problems that are dependent. But the question is how di�cult is that? Actu-
ally Hansen et al. (1992) showed that the simplest instance of bilevel optimization
where variables are continuous and all functions are linear is stronglyN P -hard.
This explains why most works that tackled bilevel optimization looked at its sim-
plest case. Otherwise, di�erent instances of this problem are treated using task-
driven methods depending the properties of functions at both levels. That is, every
set of properties de�nes a class of bilevel problems, each class accords to a set of
method designed accordingly.

1.5.3 Class of bilevel problems of interest

We consider two instances of bilevel optimization that do not involve the constraint
functions Gin and Gout . Such bilevel problems read:

min
� 2A

Fout (� ; W?(�)) (1.7a)

s:t: W ?(�) 2 arg min
W 2B

Fin (W; �) : (1.7b)

Unfortunately, in the majority of real-world applications, signal processing and
machine learning applications in particular,W ? does not have a closed form ex-
pression as a function of �. Hence, Eq. (1.7) cannot be reduced to a single-level
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problem, which might be easier to solve. However, many studies focused on ob-
taining single-level problems using di�erent methodologies. For instance, Hansen
et al. (1992); Shi et al. (2005) make use of the optimality conditions of the inner op-
timization (1.7b) for that purpose. That said, applying this technique results in a
single-level problem that includes a lot of constraints, which makes it impractical
to implement. Recently, there have been advancements in gradient-based algo-
rithms which are more practical. These algorithms can be grouped into two cat-
egories: the Approximate Implicit Di�erentiation (AID) approach (Domke, 2012;
Pedregosa, 2016; Lorraine et al., 2020) and the ITerative Di�erentiation (ITD)
approach (Domke, 2012; Maclaurin et al., 2015; Franceschi et al., 2017). We adopt
the latter method in the presented material. Gradient-based methods usually as-
sume that Fout ; W? are continuously di�erentiable and Fin is twice continuously
di�erentiable (Liu et al., 2021a). In order to distinguish between the outer gradient
r Fout and the inner gradientr Fin in this context, we refer to the outer gradient
r Fout as hypergradient.

To correctly express hypergradients, we replace from now on in this section �; W
by its vectorized version� ; W , respectively, such that� 2 Rd� ; W 2 RdW , where
d� ; dW are the number of outer and inner variables, respectively. From the chain
rule, the hypergradient at a given pair (� ; W ?(� )) writes:

r � Fout =
@Fout (� ; W ?(� ))

@�
+ J >

W ? (� )
@Fout (� ; W ?(� ))

@W
: (1.8)

The bottleneck when computing hypergradients is evaluatingJ W ? (� ). Recall
that in the majority of real-world occurrences of bilevel optimization,W ? does
not enjoy a closed-form expression that can be evaluated.

1.5.4 ITerative Di�erentiation (ITD)

In this section, we review the �rst methodology used to evaluate hypergradients.
That is, ITerative Di�erentiation (ITD), which has two main ingredients:

ˆ an iterative algorithm that converges to the solution of the inner problem
W ?(� ).

ˆ Automatic Di�erentiation (AD) which is capable of di�erentiating dynamic
systems thereby the aforementioned iterative algorithm. A detailed expla-
nation of AD is in Appendix A.

In detail, ITD involves performing � in updates on the inner problem variablesW
using the �rst ingredient, where the dynamics of thet-th update in general are
modeled using a continuously di�erentiable function t :

W t =  t (W t � 1; � ); t = 1; 2; : : : ; � in ;
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where W 0 is an initialization of W (usually sampled at random). For instance,
 t can perform updates of a gradient-based optimizer:

W t+1 = W t � Qt (W t ; r W t Fin ) ;

where Qt is a continuously di�erentiable function outputting the descent step
at iteration t. The simplest example is the gradient descent algorithm where
Qt (W t ; r W t Fin ) = � in r W t Fin , where � in 2 R is the according step size, also
called the learning rate.

The resulting set of parametersW � in (� ) is then considered as an approximation
of the true solution W ?(� ). In other words, ITD replaces the optimal solution
W ?(� ) with W � in (� ), hence the bilevel problem of interest (1.7) is replaced by
the following problem:

min
� 2A

Fout (� ; W � in (� )) :

With this substitution, the formula of the hypergradient consequently writes:

r � Fout =
@Fout

�
� ; W � in (� )

�

@�
+ J >

W � in
(� )

@Fout (� ; W � in (� ))
@W

:

At this point, AD is deployed to di�erentiate through the iterative updates  � in �
� � � �  2 �  1(W 0; � ) and evaluate the termJ >

W � in
(� ) and by extensionr � Fout .

The process of unfolding inner iterations to di�erentiate through them is known
as algorithm unrolling.

Note that machine learning problems in practice are not convex andW � in (� )
does not necessarily converge towards the optimal pointW ?(� ), rather does it
to a \good" local minima which is considered a good surrogate. Later, we show
empirically that in such case replacingW ?(� ) by such local minima when learning
graph structures provides good results.

1.5.5 Approximate Implicit Di�erentiation (AID)

The method of interest in this section employs the implicit function theorem to
express the hypergradient, then deploys iterative methods to evaluate anapprox-
imation of it. That is, using the optimality condition in the inner level, which
writes

@Fin (W ?(� ); � )
@W

= 0 ;

and di�erentiating its both sides with respect to � one gets:

J W ? (� ) = �
� @2Fin (W ?(� ); � )

@W > W

� � 1 @2Fin (W ?(� ); � )

@W > @�
:
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Substituting into the expression of the hypergradient in Eq. (1.8) we get:

r � Fout =
@Fout (� ; W ?(� ))

@�

�
� @2Fin (W ?(� ); � )

@W > @�

� > � @2Fin (W ?(� ); � )

@W > W

� � 1 @Fout (� ; W ?(� ))
@W

:

(1.9)

In words, AID provides an expression of the exact JacobianJ W ? (� ), hence the
hypergradient, when the matrix @2F in (W ? (� );� )

@W > W
is invertible. In practice, the hyper-

gradient is not calculated using the resulting expression, rather it is approximated
using numerical methods, similar to the ITD method. This is due to the following
facts:

ˆ W ? is typically not available in a closed-form formula that can be evaluated,
and is expensive to compute exactly using alternative iterative methods.

ˆ inverting the matrix @2F in (W ? (� );� )
@W > W

is expensive especially when the number
of inner variables is large.

To overcome the �rst issue, we replaceW ? by the output W � in obtained after � in

iterations by the inner optimizer. Consequently, the �rst step in approximating
the hypergradient consists in substitutingW ? by W � in in Eq. (1.9). The second
step is to approximate the inverse

� @2F in (W � in (� );� )
@W > W

� � 1
appearing in the resulted

expression. Many numerical methods can be used to accomplish that, among which
there are two commonly used algorithms:i) solving a linear system (Pedregosa,
2016; Rajeswaran et al., 2019);ii) using truncated Neumann series (Lorraine et al.,
2020). We present the former method for completeness.

Solving linear systems: this method directly approximates the inverse-Hessian-

vector product
� @2F in (W � in (� );� )

@W > W

� � 1 @Fout (� ;W � in (� ))
@W by solving the following linear

system forq:
@2Fin (W � in (� ); � )

@W > W
q =

@Fout (� ; W � in (� ))
@W

;

which yields lower computational and memory costs. This concludes the hyper-
gradient approximation as other terms can be evaluated using AD.

One notices that AID, in contrast to ITD, is independent from the optimization
trajectory leading from W 0 to W � in (� ). Therefore, AID is algorithm-agnostic
with regards to the iterative approach that computesW � in (� ).

Remark 1.5.1 (ITD vs. AID) . When we started this work, there was not enough
theoretical or empirical evidence on the superiority of one method over the other
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(Grazzi et al., 2020). That is, AID was known to be less memory-demanding than
ITD, but it was not clear whether it is more e�cient approximating the hyper-
gradient. Given that, and the fact that ITD is easier to implement thanks to
machine learning packages, we decided to use it in approximating hypergradients.
Meanwhile, recent studies started to slightly favor AID. With a set of assump-
tions including strong convexity and Lipschitz smoothness in the inner problem,
Grazzi et al. (2020) showed that both methods have linear convergence rates with
AID being slightly faster, and empirically validated their �ndings. Nonetheless,
experiments showed that ITD is more reliable when these assumption are not met.
Similarly and with di�erent assumptions including Fout , its derivative, Fin , its
derivative, and its second-order derivative being Lipschitz functions, and strong
convexity in the inner problem, Ji (2021) derived sharper bounds and showed a
slightly faster convergence rate for AID.

Remark 1.5.2 (Stochastic methods). Likewise single-level problems, many meth-
ods tackled the bilevel optimization (1.7) with a stochastic version of ITD or AID,
while motivated by the reduced cost thanks to the use of a single or a mini-batch
of points to approximate terms rather than using the full dataset at each iteration.
For instance, Maclaurin et al. (2015) make use of ITD when a Stochastic Gradient
Descent (SGD) with momentum is employed in the inner problem, which proved
e�cient in hyperparameter optimization for machine learning tasks. Similarly,
Ghadimi and Wang (2018); Ji (2021); Chen et al. (2021) proposed adopting SGD
updates in the inner problem while also sampling mini-batches for the Neumann
series-based AID to approximate hypergradients. Interestingly, Chen et al. (2021);
Dagr�eou et al. (2022) show that their AID-based stochastic methods has a sample
complexity that matches the one of SGD applied on single-level problems. As we
will see in Chapter 2, we leverage the stochastic version of ITD in the �rst task
we tackle in this thesis, since the dataset size in according experiments is large.

Remark 1.5.3 (The convexity assumption). ITD and AID assume access to an
iterative algorithm that converges toW ?(� ). Furthermore, the use of a gradient-
based algorithm on top of these methods to learn the outer variables implies that
the bilevel problem is convex in� . We emphasize that this is not satis�ed in this
work, since the problems we consider are not convex in� , and only one of the
three inner problem instances is convex inW , speci�cally when the inner problem
involves the Laplacian regularization model as presented in Section 1.6. In fact,
this is usually the case in machine learning tasks, where in practice gradient-based
algorithms are applied to obtain a good local minima instead. Despite the non-
convex setting, we show empirically that ITD is still e�cient when gradient-based
optimizers are deployed in the inner and the outer problems, as it outputs graph
structures that notably improve over the observed ones.
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1.6 Graph learning with bilevel optimization

Having introduced bilevel optimization and the necessity of graph learning, we
can now formulate the problem of graph learning using bilevel optimization. For-
mally, we consider the case where the graph objective function is a function of the
trained graph-based model, which, in our work, can be a GNN or the Laplacian
regularization model, chosen as a representative method for graph regularization
and node embedding methodologies, respectively. Given a second set of labeled
nodesVout � V distinct from Vtr used to train the graph-based model, the vector
Y obs 2 Rn which contains the labels of nodes at coordinatesi 2 Vtr [ Vout and,
e.g., not-a-number \NaN" outside of Vtr [ Vout , and a set of admissible adjacency
matrices A , the bilevel graph optimization is cast as

A ? 2 arg min
A 2A

Fout = 1
jVout j

X

i 2 Vout

`(Y (A ) i ; (Y obs) i ); (1.10)

such that Y (A ) = Y GNN (X ; A ) (GNN case) or Y (A ) = Y Reg(A ) (the Lapla-
cian regularization case). That is, the graph learning problem, called theouter
problem, is a constrained optimization, where its constraint involves the output
of the inner optimization problem Y (A ): either (1.2) over Y or (1.5) over W.
One may add a regularization term toFout to impose some regularity or priors on
the generated graph. In fact, we do that in Section 1.7.3 and Chapter 4 in order
to alleviate an issue in graph learning, which we analyse in the aforementioned
chapter. If no regularization term is added,Fout can be seen as the validation loss
in classi�cation/regression tasks, andVout can be seen as the validation set.

Several models are possible forA when directly optimizing for the graph includ-
ing

ˆ Full learning : A = [ a; b]n� n is the set of all weighted adjacency matrices
(generally with some boundsa; b on the weights). This choice necessarily
leads to an impractical quadratic complexity on the minimization.

ˆ Edge re�nement : the learned adjacency matrix has the same zero-pattern
as the observed adjacency matrix, that is, we learn weights only on existing
edges.

A = f A 2 [a; b]n� n jA i;j = 0 when (A obs) i;j = 0g:

The complexity is proportional to the number of edges, generally less than
quadratic in n as graphs tend to be sparse.

ˆ Generalized edge re�nement : same principle, but the zero-pattern is
given by a modi�cation of the observed adjacency matrix. For instance,
taking the zero-pattern of A r

obs yields an edge between neighbors that are
less thanr -hop from each other inGobs.
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Another model for A can be obtained by adopting metric learning:

ˆ Metric Learning : the learned graph is the output of a modelf � parame-
terized by the weights �. The model takes as input node features and the
observed graph, that is,A = f A � = f � (A obs; X )g. In this scenario, the
outer optimization problem is carried out on � instead of A , i.e., the bilevel
optimization is cast as

� ? 2 arg min
�

Fout = 1
jVout j

X

i 2 Vout

`(Y (A � ) i ; (Y obs) i ); (1.11)

such that Y (A � ) = Y GNN (X ; A � ) or Y (A � ) = Y Reg(A � ). For the best
of our knowledge, the metric learning model has not been considered in the
literature with bilevel optimization. In fact, adopting this model is one of
our contributions that we highlight in Section 1.7.2 and discuss in details in
Chapter 3.

Note that in addition to SSL tasks that are of interest in this thesis, the bilevel
framework can be applied toany supervised learning problem too.

1.7 Contribution

The contribution of this thesis is threefold. In the �rst part, and as a simple
starting point, we look at the problem of learning analysis-sparsity priors with
bilevel optimization, which will be introduced to the reader in the next section.
The second part presents a novel framework for learning graph structures, which
consists in adopting metric learning in the bilevel framework. That is, we train
a parametric model on predicting edge weights. In the last part, we identify a
lack of supervision induced when optimizing directly for the graph in the bilevel
framework under the edge re�nement setting. We give a precise mathematical
characterization of this phenomenon for di�erent graph-based models, and examine
possible solutions to it, including the framework proposed in the second part.

1.7.1 Warming up: learning analysis-sparsity priors with
bilevel optimization

Denoising is a widely-tackled problem that emerges in many �elds, ranging from
biomedical engineering (McCann et al., 2019) to computer vision (Yang et al.,
2017) and remote sensing (Addesso et al., 2017). The goal is to restore the signal
from its noisy observations. Usually, the model of the imaging system isa priori
known: y = w + " , where w ; y 2 Rp are the true and the measured signals,
respectively, and" 2 Rp is additive noise. In addition, a prior hypothesis on the
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nature of the signal might be available, like sparsity (McCann and Ravishankar,
2020). Such extra knowledge can be incorporated in the optimization process to
get better reconstructions,e.g., a higher Signal to Noise Ratio (SNR).

Sparsity priors exist in two forms (Elad et al., 2007): i) synthesis (traditional)
sparsity wherew = 
 u , 
 is a linear operator, andu is sparse;ii) analysis-
sparsity wherev = 
 > w 2 Rm is sparse. This section is interested in the latter.
As a convex surrogate, this prior is enforced onw by adding the term k
 > wk1

to the (generally quadratic) loss function (Mancera and Portilla, 2006), where
k � k1 is the `1 norm. Putting all together, the problem consists in �nding: ŵ =
arg minw ky � wk2

2+ � k
 > wk1 for some regularization amplitude parameter� � 0.
The linear operator 
 is either user-de�ned, or learned directly from data.

The main problem we tackle in this part is to extract both
 and � from data
for denoising tasks with supervised learning. Therefore, the downstream task here
is not a graph-based SSL problem. Having that� k
 > wk1 = k(� 
 )> wk1, this
problem is equivalent to extracting the product� 
 as one object, thus we stop
writing � explicitly from now on and keep
 . Formally, the task we are interested
in is the following: having a dataset (y l ; w l )L

l=1 of L pairs of measurements and
its associated ground-truth signals, �nd the operator
 that minimizes the mean
squared error between reconstructions and ground truth signals:

min

 2A

LX

l=1




 ŵ (
 ; y l ) � w l




 2

2
(1.12a)

s:t: ŵ (
 ; y ) = arg min
w 2 Rp

1
2

ky � wk2
2 + k
 > wk1 : (1.12b)

Equation (1.12) is abilevel optimization problem: in the outer problem, we opti-
mize for the dictionary 
 , while in the inner problem we denoise measurements.
That is, � = f 
 g; W?(�) = f ŵ (
 ; y l )g

L
l=1 . We already know that the inner

part can be solved applying the Forward-Backward splitting (FB) algorithm on
the dual problem (Chambolle et al., 2010). However, due to thè1 norm, neither
the solution nor its gradient w.r.t. 
 have a closed-form expression. Thus, the
solution of the bilevel problem cannot be derived analytically nor obtained with
gradient-based methods.

Contribution: we approximately recover the analysis-sparsity operator employ-
ing ITerative Di�erentiation (ITD) by unrolling the FB algorithm applied on the
dual problem of Eq. (1.12b). This is, for the best of our knowledge, the �rst work
that uses ITD to learn analysis-sparsity priors as in Eq. (1.12), which is highly non-
smooth, without relying on any relaxation technique. This permits to examine the
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capacity of ITD, the AD phase in particular, in such setting. Indeed, experiments
prove the e�ectiveness of ITD in learning the operator from 1D piecewise constant
signals and from 2D images. Moreover, we propose to reduce the admissible set
A to dictionaries with columns summing up to zero when learning from piecewise
constant signals, and empirically prove that this increases stability and extracts
an operator with higher quality than a previous baseline method.

Why this problem as a starting point?

As previously stated, this problem serves as a starting point before proceeding to
the problem of graph learning. This is due to the following reasons:

ˆ the FB updates on the inner level are available in a closed-form expression,
thereby AD is required to perform �rst-order di�erentiation to compute the
hypergradient. In contrast, the inner problem in the graph learning case
(e.g., learning the weights of a GNN model) is optimized with a gradient-
based method with gradients being evaluated via AD. That is, AD for graph
learning is required to evaluate gradients for the inner problem, andgradi-
ents of gradientsto compute the hypergradient. Therefore, (1.12) is a good
starting point to get familiar with the use of AD in the context of bilevel
optimization.

ˆ problem (1.12) is non-smooth which is a challenging setting for ITD. Given
that Peyr�e and Fadili (2011) relaxed Eq. (1.12) and derived a formula of
the hypergradient, we can validate the ITD's performance in this setting by
comparing its output to the hypergradient of the relaxed problem.

ˆ problem (1.12) is indeed used in the context of graph learning in many ap-
plications. In fact, when the coe�cients in signalsw l lie on a graph and are
known to be neighborhood-wise constant, which meansf (w l ) i � (w l ) j g(i;j )2 E

is sparse, (1.12) is used to learn the graph by learning its incidence matrix,
i.e., A is the set of all incidence matrices ofm edges.

Related work: problem (1.12) was �rst posed in Peyr�e and Fadili (2011), where
authors smoothed the`1 norm so that the hypergradient has a closed-form ex-
pression. Similarly in Sprechmann et al. (2013), a di�erent smoothing regime is
adopted. However, the sought for sparsity is degraded with similar regimes that
smooth`1 at zero (Nikolova, 2000). Recently in McCann and Ravishankar (2020),
a formula of the hypergradient has been derived under some conditions, but it
includes iteratively inverting a large matrix for each data point, which makes its
implementation impractical. Chambolle and Pock (2021) conduct sensitivity anal-
ysis to compute hypergradients to learnconvolution-type dictionaries with small
support for piecewise constant signals. Such strong constraints are not considered
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in our work; however, we will see that simple column-centering su�ces to learn a
high-quality dictionary. Another class of methods deploy learned neural networks
to perform regularization (Kobler et al., 2020; Lecouat et al., 2020). Although
data-driven regularizers are argued to leverage large amounts of data, analysis-
sparsity regularizers guarantee that
 > ŵ is zero-valued on large zones that are
insensitive to small perturbations of data (Nikolova, 2000). Finally, the major
di�erence against aforementioned methods is the use of AD to get hypergradients
in such non-smooth setting, without using smoothing techniques, nor analytically
deriving an algorithm that outputs this gradient when it is de�ned. We prove with
empirical results the capacity of this framework.

1.7.2 Learning graph-to-graph models with bilevel opti-
mization

In the second part of this thesis, we look at the problem of real-world graphs
being corrupted or not given, which degrades performance in graph-based Semi-
Supervised Learning (SSL) tasks. We address this problem bylearning graphsof
high-quality. More speci�cally, we look at the case where the objective guiding the
learning process is to improve the performance of the trained graph-based model
in the downstream task. That is, we look at abilevel optimization.

The most straightforward idea is to deploy the bilevel optimization (1.10) under
the edge re�nement setting or the full learning setting. For the former case, we
show in Section 1.7.3 and Chapter 4 that this induces a phenomenon of lack of
supervision that we refer to asgradient scarcity, which notably degrades the quality
of the learned graph. The latter case, on the other hand, is not practical due to
the quadratic complexity in the number of nodesn.

Instead, we propose to solve the bilevel optimization problem under the metric
learning setting as in Eq. (1.11). In words, we train aparametric model to learn a
pair-wise similarity metric between nodes. This model takes in input the features
of a pair of nodes and the observed edge weight between them and outputs the
optimized edge weight. We refer to this model by G2G (Graph to Graph), named
with inspiration from Set2Graph models (Serviansky et al., 2020). Indeed when
the observed graph is edgeless, G2G is a function from sets to graphs. More details
on the G2G structure is available in Section 3.3.1.

The bilevel problem (1.11) is intractable as neither the solution of the inner prob-
lem nor its gradient w.r.t. � has a closed form expression that can be evaluated.
Hence, � ? cannot be evaluated nor computed iteratively by a gradient-based algo-
rithm. In addition, and as it is usually the case in modern machine learning, the
outer problem is non-convex, thus we don't adopt �nding an optimizer �?, but



CHAPTER 1. INTRODUCTION 30

rather a good set of weights that proves the e�ciency of our algorithm compared
to baselines operating on the observed graph.

Contribution: we propose to train the G2G model by solving Eq. (1.11) via
ITD. Remark here that the AD evaluatesgradients of gradientsas it: i) computes
r W Fin for the inner updates,ii) evaluates the gradient of the output after these
updatesw.r.t. �. We optimize � afterwards using a gradient-based algorithm. To
our knowledge, this is the �rst work that trains a G2G model through a bilevel
optimization framework. The resulted G2G model then can be employed to re-
construct a high-quality graph. Even though we focus on the transductive setting,
it is noteworthy that this model, once trained, can still be employed when adding
new points to the dataset. That is, unlike when optimizing directly for the graph,
the G2G model generalizes to the inductive setting and can be used to construct
graphs for new datasets. Experiments on SSL datasets prove that our framework
considerably outperforms models operating on the observed graph.

The reader will see in the third part (Section 1.7.3 and Chapter 4) that, in ad-
dition to the previously stated advantages of using G2G over directly optimizing
for the graph, G2G models alleviate the gradient scarcity issue emerging in edge
re�nement tasks on SSL datasets.

1.7.3 Gradient scarcity in graph learning with bilevel op-
timization

In this part we extensively study the problem ofgradient scarcity which appears
when directly optimizing edge weights in the observed graph for graph-based SSL
tasks. Gradient scarcity refers to the fact that edges between unlabeled nodes
\far" from the labeled ones receivezero gradients, i.e., they receive no supervision
during the optimization and are not learned.

Fatemi et al. (2021) observed gradient scarcity when learning the graph and a
GNN model with joint optimization explained in Section 1.4.2. Indeed, ak-layer
GNN computes the label of a node using information from nodes at mostk-hop
far from it. This label is then not a function of edges connecting nodes outside of
this neighborhood, and the term in the labeling loss corresponding to this label
returns null gradients on those distant edges. In words, gradient scarcity is due to
the �nite receptive �eld (depth) of message-passing GNNs.

However, it is not straightforward how to extend this argument to the bilevel
optimization (1.10) under the edge re�nement setting. Speci�cally, the previous
discussion assumes that the trained weights of the GNN after undergoing gradient-
based updates do not depend on the adjacency matrixA , which is not the case
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in bilevel optimization. Moreover, if the problem holds in the bilevel setting, the
roles of Vtr and Vout need to be clari�ed. Another question is if this problem is
mitigated by resorting to graph-based models with in�nite receptive �eld,e.g., the
Laplacian regularization.

Contributions : we prove that hypergradient scarcity occurs under the bilevel
optimization setting when adopting GNNs. We show that using ak-layer GNN
induces null hypergradients on edges between nodes at leastk-hop from Vtr [ Vout .
For the Laplacian regularization, we prove that the problem persists, as hypergra-
dients are exponentially damped with distance from labeled nodes. We empirically
validate our �ndings. Then, we test three possible strategies to solve this issue:
metric learning with G2G models, graph regularization and generalized edge re-
�nement. Furthermore, we empirically distinguish between hypergradient scarcity
and over�tting, in the sense that solving the former does not necessarily resolve
the latter. To the best of our knowledge, this is the �rst work that mathemati-
cally tackles the gradient scarcity problem for bilevel optimization of graphs, and
examines the phenomenon for models with in�nite receptive �eld.

The main theorems we prove are the following:

Hypergradient scarcity with GNNs: we consider the bilevel optimization
(1.10) adopting the GNN methodY (A ) = Y GNN (X ; A ).

Theorem 1.7.1. Let Y W be a k-layer GNN parametrized by the set of weights
W. Assume that the inner optimization problem is solved with a gradient-based
algorithm. Then, for any pair of nodesi; j at least k-hop from nodes inVout [ Vtr ,
we have@Fout

@A i;j
= 0.

Note that with GNNs, the inner optimization is not a convex problem thereby we
optimize to obtain a good local minima. However, our analysis demonstrates that
hypergradient scarcity occurs precisely in this scenario, and does not necessitate
the gradient-based algorithm to converge to the inner problem's optimizer.

Hypergradient scarcity with the Laplacian regularization: We show that
although to a lesser degree, this issue still arises when adopting the Laplacian
regularization, i.e., Y (A ) = Y Reg(A ). Speci�cally, we establish that the hyper-
gradient's magnitude diminishesexponentiallyas the sum of the two distances to
Vtr and Vout increases. Our study is focused on regression tasks, where` is the
MSE loss function in Eqs. (1.1) and (1.10). LetS in 2 Rn� n be the diagonal matrix
with entries equal to 1 for nodes inVtr and 0 otherwise, the solutionY (A ) enjoys
a closed-form expression:

Y (A ) = B � 1 ~S in Y obs ;
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where ~S in = S in
jVtr j and B = S in

jVtr j + � L
jE j . Given that, we now state the main result

for the Laplacian regularization scenario.

Theorem 1.7.2. Let nodesi; j be at leastk-hop from Vout , and q-hop from Vtr .
Then we have:

�
�
�
�
@Fout

@A ij

�
�
�
� . �

p
jVout j + � min

p
jVtr jjVout j

� 3
min jVtr jjE j

y2
1 (1 � � )q+ k ;

s.t. � min (� max ) is the smallest (largest) eigenvalue ofB which we prove to satisfy
0 < � min < � max , � = � min

� max
, and y1 = kY obsk1 .

Since 0< 1� � < 1, Theorem 1.7.2 states that the hypergradient is exponentially
damped asq+ k increases.

1.8 Outline

In Chapter 2, we employ bilevel optimization to learn analysis-sparsity operators
for regularizing denoising tasks as in Eq. (1.12). We show how the inner optimiza-
tion, i.e., the denoising task, can be addressed with the Forward-Backward split-
ting (FB) algorithm. We then present our proposed method, which applies ITD
to approximate hypergradients without relaxing non-smooth terms, and considers
operators with columns summing up to zero when learning from piecewise constant
signals (Algorithm 1). We empirically prove the e�ectiveness of this method in
learning operators from 1D piecewise constant signals and 2D images.

Publications/preprints

Hashem Ghanem, Joseph Salmon, Nicolas Keriven, Samuel Vaiter. Supervised
learning of analysis-sparsity priors with automatic di�erentiation. IEEE Signal
Processing Letters, 2023.

We proceed to graph learning to improve performance in graph-based SSL tasks
in Chapter 3. We show that this problem can be naturally cast as a bilevel opti-
mization. We then propose to train a deep G2G model on predicting edge weights
instead of directly optimizing for the graph. After proposing the model structure,
we present the ITD-based bilevel optimizer (Algorithm 2), and emphasize that AD
performs �rst order and second order di�erentiation in this task. Afterwards, we
empirically demonstrate that our framework outputs graphs that notably improve
the performance of graph-based methods compared to observed graphs.

Publications/preprints
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Hashem Ghanem, Nicolas Keriven, Joseph Salmon, Samuel Vaiter. Supervised
graph learning with bilevel optimization. 18th International Workshop on Mining
and Learning with Graphs, 2022.

In Chapter 4, we study gradient scarcity which emerges when optimizing the
weights of observed edges to minimize a labelling loss under the SSL setting,
i.e., label-based supervised graph learning as in Section 1.4.2. We �rst de�ne
this problem by edges between nodes far from the labelled set receiving null gra-
dients during the optimization. Then, we prove that gradient scarcity emerges
with bilevel optimization when adopting GNNs as the graph-based model as in
Theorem 4.5.3. We next prove that it also emerges when adopting the Laplacian
regularization model, and that hypergradients are exponentially damped with dis-
tance from labeled nodes (Theorem 4.6.2). We empirically validate our �ndings,
then we show that among the following strategies: metric learning with G2G mod-
els, graph regularization and generalized edge re�nement, the �rst two are e�cient
in resolving this issue.

Publications/preprints

Hashem Ghanem, Samuel Vaiter, Nicolas Keriven. Gradient scarcity with bilevel
optimization for graph learning. In arXiv preprint, 2023.



Chapter 2

Bilevel learning of
analysis-sparsity priors

In this chapter, we deploy ITerative Di�erentiation (ITD) to learn analysis-sparsity
operators with bilevel optimization. We introduce the analysis-sparsity regular-
ization, and formulate learning its operator from data as a bilevel optimization
problem in Section 2.1. Next, in Section 2.2, we review related works which of-
ten smooth the inner problem, then we point out the importance of preserving
the non-smoothness. Consequently in Section 2.3, we propose to apply ITD to
learn the operator using projected gradient descent without smoothing the inner
problem. In addition to preserving non-smoothness, this permits to examine the
capacity of ITD in non-smooth settings. We also restrict the search to operators
with 0-centered columns when learning from piecewise constant signals, or from
signals which lie on a graph and are neighborhood-wise constant, and empirically
show that this removes undesired local minima and improves numerical stability.
In Section 2.4, we empirically show that the proposed method successfully recovers
the analysis-sparsity operator from 1D piecewise constant signals and validate its
e�ciency in 2D image denoising.

This chapter presents the content of our publication Ghanem et al. (2023a).

2.1 Introduction

Denoising consists in restoring signals from noisy observations. Usually, the model
of the imaging system isa priori known: y = w + " , wherew ; y 2 Rp are the true
and the measured signals, respectively, and" 2 Rp is additive noise. In addition,
a prior hypothesis on the nature of the signal might be available, like sparsity

34
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(McCann and Ravishankar, 2020). Such extra knowledge can be incorporated in
the optimization process to get better reconstructions (e.g., a higher Signal to
Noise Ratio (SNR)).

Sparsity priors exist in two forms (Elad et al., 2007): i) synthesis (traditional)
sparsity wherew = 
 u , 
 is a linear operator, andu is sparse;ii) analysis-
sparsity wherev = 
 > w 2 Rm is sparse. This work is interested in the latter.
As a convex surrogate, this prior is enforced onw by adding the term k
 > wk1

to the (generally quadratic) loss function (Mancera and Portilla, 2006), where
k � k1 is the `1 norm. Putting all together, the problem consists in �nding: ŵ =
arg minw ky � wk2

2 + � k
 > wk1 for some regularization amplitude� � 0. The
linear operator 
 is either user-de�ned, or learned directly from data.

The main problem we tackle in this chapter is to extract both
 and � from data
with supervised learning. Having that� k
 > wk1 = k(� 
 )> wk1, this problem is
equivalent to extracting the product � 
 as one object, thus we stop writing�
explicitly from now on and keep
 . To avoid trivial solutions and undesired local
minima, it is common to restrict the search space to an admissible setA � Rp� m ,
where dictionaries have a speci�c property. In Ravishankar and Bresler (2015)
for instance, 
 is forced to be orthogonal,i.e., A = f 
 ; 

 > = I pg. In Peyr�e
and Fadili (2011), 
 is constrained to be a convolution dictionary. However, it
is still challenging to �nd an admissible set that performs well in all applications
of this problem (Yaghoobi et al., 2012). In this work, we do not commit to �nd
such universal set. The task we are interested in is the following: having a dataset
(y l ; w l )L

l=1 of L pairs of measurements and its associated ground-truth signals, �nd
the operator 
 that minimizes the mean squared error between reconstructions
and ground truth signals:


 ? 2 arg min

 2A

Fout =
LX

l=1




 ŵ (
 ; y l ) � w l




 2

2
(2.1a)

s:t: ŵ (
 ; y ) = arg min
w 2 Rp

Fin =
1
2

ky � wk2
2 + k
 > wk1 : (2.1b)

Equation (2.1) is abilevel optimization problemas in (1.7): in the outer problem,
we optimize � = f 
 g as in Eq. (2.1a), while in the inner problem we denoise
measurements to obtainW ?(�) = f ŵ (
 ; y l )g

L
l=1 following Eq. (2.1b).

We already know that the inner part can be solved applying the Forward-Backward
splitting (FB) algorithm on its dual problem (Chambolle et al., 2010), see Sec-
tion 2.3.1. However, due to thè 1 norm, neither the solution nor its gradient
w.r.t. 
 have closed form expressions. Thus, the minimizer
 ? cannot be derived
analytically nor obtained with gradient-based methods.
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Before stating our contribution in mitigating this issue, we �rst present the two
applications we consider to validate the e�ciency of our method. The �rst one is
the well-known problem of1D piecewise constant signals reconstruction(Cham-
bolle et al., 2010), where given a signalw = ( w1 : : : ; wp)> , this prior indicates
that ( w2 � w1; w3 � w2; : : : ; w1 � wp)> is sparse. The estimator is often written as
an instance of Eq. (2.1b), with
 = 
 T V the dictionary associated with the 1D
Total Variation (TV) regularization: for all i 2 f 1; : : : ; pg; 
 i;i = � 1; 
 i +1 ;i = 1,
and 0 otherwise, up to rescaling. The second application is 2D image denoising,
where we deploy the learned dictionary to denoise image rows one by one to get
one image, repeat the process column-wise to get another one, and �nally average
both results.

In this work, we propose to approximately recover the analysis-sparsity operator

 ? by: i) replacing the true minimizerŵ (
 ; y ) by the output of the FB algorithm
applied on the dual problem of Eq. (2.1b);ii) deploying Automatic Di�erentia-
tion (AD) to solve Eq. (2.1a) with projected gradient descent. That is the ITD
algorithm detailed in Section 1.5.4. Although ITD is a standard approach to solve
bilevel problems, this is, to the best of our knowledge, the �rst work that uses
this method to learn analysis-sparsity priors as in Eq. (2.1), which is highly non-
smooth, without relying on any relaxation technique. This permits to examine
the capacity of AD in such setting. We empirically demonstrate that our method
recovers the TV dictionary 
 T V from piecewise constant signals. Moreover, we
reduce the admissible setA to dictionaries with columns summing up to zero for
this experiment, and empirically prove that this increases stability and extracts
the TV operator with higher quality than previous methods. We also show that
our algorithm performs reasonably well on 2D image denoising, where we average
row-wise and column-wise denoising.

2.2 Related work

The bilevel problem (2.1) was �rst posed in Peyr�e and Fadili (2011), where au-
thors smoothed thè 1 norm so that the derivative ofŵ (
 ; y ) w.r.t. 
 has a closed
form expression. Then, they applied gradient descent to �nd a local minimizer
 .
Similarly in Sprechmann et al. (2013), a di�erent relaxation regime by means of
the smooth `2 norm is adopted. However, the sought-for sparsity is degraded in
the same manner than smooth̀1 at zero (Nikolova, 2000). Recently in McCann
and Ravishankar (2020), a formula of the gradient of the outer problem has been
derived under some conditions, but it includes iteratively inverting a large matrix
(with worst-case complexity inR(p+ m)2

) for each data point. Even though it was
shown to perform well on reasonably small datasets, this method is too expensive
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for large datasets. The work in Chambolle and Pock (2021) solves the 2D piece-
wise signals reconstruction problem, and conducts sensitivity analysis to compute
hypergradients to learnconvolution-type dictionaries with small support. Such
strong constraints are not considered in our work, however we will see that simple
column-centering su�ces to learn a high-quality dictionary in the 1D version of
this problem.

Instead of considering o�-the-shelf regularizers, a class of methods deploy learned
neural networks to perform regularization. In Heaton et al. (2021); Gilton et al.
(2021), the proposed models are trained by looking at inner updates as �xed-point
iterations, which is leveraged to compute hypergradients instead of using ITD.
These hypergradients are evaluated iteratively either with �xed-point updates or
using Jacobian-free backpropagation (Fung et al., 2021). Fixed-point based opti-
mization yields bene�tsw.r.t. memory, computation cost and accuracy, but, unlike
ITD, it is not applicable on dynamic inner updates. In Kobler et al. (2020), a U-Net
based regularizer is trained by writing the bilevel problem as an optimal control
problem, where gradients are computed deriving adjoint state equations. This
model achieved state-of-the-art results for image denoising with a low number of
trained parameters. In Lecouat et al. (2020), the regularizer is a combination of
classical priors, including total variation. The inner problem is iteratively solved
within the context of non-cooperative games, then AD is used to get hypergra-
dients. However, non-smooth terms are relaxed with Moreau-Yosida smoothing
(Hiriart-Urruty and Lemar�echal, 2013). Still, the regularizer is interpretable and
achieves competitive results on image processing applications. Although data-
driven regularizers are argued to leverage large amounts of data, analysis-sparsity
regularizers guarantee that
 > ŵ is zero-valued on large zones that are insensi-
tive to small perturbations of data (Nikolova, 2000). Thus, it leverages recovering
signalsa priori known to exhibit analysis-sparsity.

The major di�erence against the aforementioned methods is the use of AD to get
hypergradients in suchnon-smooth settings, without using smoothing techniques,
or analytically deriving an algorithm that outputs the hypergradient when it is
de�ned. We prove with empirical results the capacity of this framework.

2.3 Proposed algorithm

We solve thedual problem of Eq. (2.1b) with Forward-Backward splitting (FB).
Using Automatic Di�erentiation, we obtain gradients of the FB algorithm w.r.t. 
 .
Hypergradients are then used to learn a local minimum using gradient descent,
while projecting 
 on the admissible setA at every iteration.



CHAPTER 2. BILEVEL LEARNING OF ANALYSIS-SPARSITY PRIORS 38

2.3.1 Deriving and solving the dual problem of Eq. (2.1b)

The term k
 > wk1 in Eq. (2.1b) is neither di�erentiable w.r.t. w , nor does it have
a simple proximal operator that can be e�ciently computed; see Appendix B.2.
Hence, we cannot apply gradient descent or the FB algorithm directly to evaluate
ŵ (
 ; y ). However, the latter is possible if we tackle this optimization from the
dual perspective (Rockafellar, 1974). In fact, one can prove that Eq. (2.1b) is
equivalent to its dual problem (Chambolle et al., 2010):

ẑ (
 ; y ) = arg min
z2 Rm

1
2




 
 z � y




 2

2
+ �B 1 (z) ; (2.2)

where B1 = f z 2 Rm ; jzi j � 1; 8i 2 [m]g is the unit ball of the `1 norm. The
target recoveryŵ is then given by:

ŵ (
 ; y ) = y � 
 ẑ (
 ; y ): (2.3)

The dual problem in Eq. (2.2) can be solved with any FB algorithm. Here, we
adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and
Teboulle, 2009); see Appendix B.1.

2.3.2 Outer loop design to learn the dictionary

Let us �rst notice that when the admissible setA = Rp� m , the solution 
 ? is not
unique ask�k1 is invariant to the coe�cients order in a vector, e.g., k(u1; u2)> k1 =
k(u2; u1)> k1. Thus, permuting columns in 
 will lead to the sameŵ (
 ; y ) in
Eq. (2.1b), which means the same costFout (
 ). Given this, further simple analysis
can show that the problem isnot convex. As we will see later in this section, we
optimize the operator 
 using a gradient-based algorithm, therefore we consider
the \good" local minimum that our framework converges to. We also assume that
the second dimension of
 is given, while optimizing for it might be the subject
of a future work.

Towards our goal, we use AD to get hypergradients ofFout , by tracing the FB
algorithm that solves Eq. (2.1b). In fact, to reduce the computation cost, we do
not compute the full MSE but sample a batch of training signals at each iteration
(see Alg. 1). Since proving the convergence of AD's Jacobian to the variational
one is complicated in such non-smooth setting, and that computinĝw (
 ; y ) with
high precision is computationally expensive, we replace the true reconstruction
ŵ (
 ; y ) with the output of the FB algorithm after � in iterations ŵ � in (
 ; y ), and
empirically show that it is a good proxy. In other words, we use ITD to obtain
hypergradients. We randomly initialize 
 0, then we start each iteration t by
setting PyTorch AD framework to record operations on
 t . We can then compute



CHAPTER 2. BILEVEL LEARNING OF ANALYSIS-SPARSITY PRIORS 39

0 20 40 60

0

20

40

60

(a) True dict ionary TV

0 20 40 60

0

20

40

60

(b) = 0.5

0 20 40 60

0

20

40

60

(c) = 0.75

0 20 40 60

0

20

40

60

(d) = 1

0 20 40 60

0

20

40

60

(e) = 2

0 20 40 60

0

20

40

60

(f) = 3

1.0

0.5

0.0

0.5

1.0

Figure 2.1 { Performance of our projected gradient descent algorithm 1,w.r.t. to
noise level. We plot a sorted view of the dictionary
 ?. We rescale all dictionaries
to [� 1; 1] for a better visualization of the structure recovered in
 ?. (a) 
 T V

our algorithm is expected to learn. From (b) to (f): 
 ? for di�erent values of � ,
the standard deviation of noise. Jumps in the dataset have the same amplitude:
0 ! 10 or 10! 0.

the output ŵ � in (
 ; y ) thereby Fout (
 t ). Now, we use the PyTorch AD to get the
gradient r Fout (
 t ), and update 
 t as follows:


 t+1 = 
 t � � out r Fout (
 t ) ; (2.4)

where � out > 0 is a step size. Lastly, we project
 t on the admissible setA by
computing � A (
 t ). We keep using the same notation
 ? for the learned operator.
The resulting algorithm is summarized in Algorithm 1.

2.4 Experiments

We conduct two sets of experiments, the �rst is on 1D synthetic signals and the
second is on 2D real-world images.

Synthetic dataset: we consider the 1D piecewise constant signals reconstruction
problem, with p = m = 64. Ground-truth examplesw are generated s.t. they have
4 discontinuities. The coe�cients where discontinuities take place are randomly
chosen in eachw . Their amplitude varies through experiments and is speci�ed
whenever necessary. Observationsy are constructed by adding a noise vector to
each ground-truth signal, such vector is sampled fromN (0; � 2I p), where � varies
through experiments. The \true" underlying dictionary 
 T V is shown in Fig. 2.1
(a), up to permuting its columns, and to rescaling with� , which we compute in
each experiment with a grid search solving Eq. (2.1a). Matrices
 ? shown in this
section have their columns sorted by magnitudes, to ease the comparison with

 T V . Training set size: 640000, validation set size: 256.

Real-world dataset: we use the MNIST dataset (LeCun, 1998), which includes
images of handwritten digits. Therefore, images tend to be piecewise constant. We
perform 2D image denoising by applying the 1D denoiser in Eq. (2.1b) on rows as
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Algorithm 1: ITD-based projected gradient descent
Input: f (w l ; y l )gl2f 1;:::;L g: dataset.
Output: 
 ?: approximating a minimizer ofFout (
 ) in Eq. (2.1a).
Params: m; � in ; � out ; � in ; � out ; batch sz
Algorithm:
Initialize 
 iid from N (0; 10� 4).
Set PyTorch AD to track computations on
 .
for t 2 f 0; : : : ; � out � 1g:
do

Fout (
 )  0
for l 2 f t � batch sz; : : : ;(t + 1) � batch sz � 1g
do

z  � in iterations of FISTA( 
 ; yl ; � in ) as in Appendix B.1.
ŵ � in (
 ; y l )  y l � 
 z:
Fout (
 )  Fout (
 ) +




 ŵ � in (
 ; y l ) � w l




 2

2
:

r Fout (
 )  PyTorch AD gradient.

  � A

�

 � � out

batch sz r Fout (
 )
�
.

Return 
 ? = 


well as on columns, then average the two resulted images. To this end, we extract
all rows and columns in 28� 28 MNIST images and contaminate these signals with
iid additive Gaussian noise. The added noise is 0-mean and its standard deviation
equals 0:04. Then, we use the output dataset to learn the dictionary
 ? as in
Eq. (2.1). We respect the standard training/validation split of MNIST dataset.
Once training is performed, we deploy the trained denoiser for 2D denoising. We
do not claim competing against state-of-the-arts on 2D image denoising, but we
prove the capacity of our framework by showing its reasonably good performance
on this task, evaluated by means of theSNR criterion.

Training setup: FISTA's step size� in , refer to Appendix B.1, is assigned auto-
matically to � in = 0:95=k
 > 
 k2 to guarantee convergence inz, where k
 > 
 k2

is the Lipschitz constant ofr 1
2




 
 z � y




 2

2
. We assume convergence in the inner

problem, which determines the value of� in , if kz i +1 � z i k1 =kz i k1 < 10� 4. We
considerstochastic gradient descentupdates with batch size 64 for the synthetic
dataset, and 32 for MNIST. The step size� out is set with grid search to 0:04 for
synthetic data, and to 0:01 for MNIST. We adopt random white noise initialization
with varying variance. We apply early stopping on the validation loss:Fout (
 )
evaluated on the validation set.
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Figure 2.2 { The di�erence made by our proposed admissible setA . We plot 
 ?

produced by our algorithm. Left: with our proposedA. Right: with A = Rp� p.
Jumps in the dataset can randomly occur between any two values in [0; 10], thus
they have random amplitudes.� = 0:5.

2.4.1 Projection proposed for piecewise constant signals

We reduce the admissible setA in our proposed algorithm 1 to dictionaries whose
columns sum up to zero,i.e., A = f 
 j1>

p 
 = 0mg. This property is seen in the
prior operator 
 T V our algorithm is expected to learn from piecewise constant
signals, and in the more general family of problems known as graph total variation
(Berger et al., 2017),i.e., learning from neighborhood-wise constant graph signals.
This very simple prior greatly improves the results by �ltering out many local
minima. Di�erent priors for other cases will be the goal of future investigations.
Referring to the c-th column of 
 by 
 :;c, and by mean(
 :;c) to the mean value
of this column, we project
 t+1 as follows:

(
 t+1 ):;c = ( 
 t+1 ):;c � mean
�
(
 t+1 ):;c

�
; 8c 2 [m]: (2.5)

In Fig. 2.2 and Fig. 2.3(left), we run our algorithm twice on the synthetic dataset:
i) with the projection; ii) without the projection; and plot the learned dictionary

 ? in both cases. Discontinuities in the used dataset are of random magnitudes
(between any two values in [0,10]), and the noise has a standard deviation� = 0:5.
Our algorithm coupled with the projection successfully captures
 T V -like structure
from the dataset, unlike when the projection is not considered, which shows its
capability in this problem setting.

2.4.2 Sensitivity w.r.t. to the noise level

In this experiment, we consider the synthetic dataset, where signalsw take values
in f 0; 10g. When observations are noise-free,i.e., � = 0 and y = w, it is clear
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Figure 2.3 { Benchmark against the unconstrained optimization with̀1-smoothing
proposed in Peyr�e and Fadili (2011), with identical problem setting to Fig. 2.2.
Left: training loss curves of di�erent algorithms. Right: 
 ? produced by the
algorithm in Peyr�e and Fadili (2011). Dataset: same as in Fig. 2.2.


 = 0 is the optimal dictionary, as no regularization is required to retrieve the
true signal. Therefore, when� is small, we don't expect our algorithm to learn
the structure in 
 T V , since in such case, its magnitude is of the same level as
numerical errors. See Fig. 2.1 (b). On the other hand, when the noise level is
high, the piecewise constant prior is degraded and poorly seen in observations. As
a result, the learnt dictionary is a distorted version of
 T V , as in Fig. 2.1 (f).

In between, it is important to verify that our algorithm is stable, and can ex-
tract 
 T V out from data. As shown in Fig. 2.1 (c-e), this is indeed true when
� 2 [0:75; 2], which spans a non-trivial range inSNR scale [12; 89]. For � = 1,
we depict in Fig. 2.4 the evolution of losses through training, and the denoising
performance on an observation from the validation set.

2.4.3 Benchmark against the algorithm proposed in Peyr�e
et Fadili (2011)

In Fig. 2.3, we compare our output to the one of the unconstrained learning algo-
rithm based on smoothing̀ 1 in Peyr�e and Fadili (2011). We �x the `1-smoothing
parameter � = 10� 3. The synthetic dataset here has discontinuities of random
magnitudes in [0,10], and noise's standard deviation� = 0:5, i.e., same setup as in
Fig. 2.2. Unlike our method, the other algorithm fails to learn the
 T V structure
from the data. Although the smoothing regime degrades reconstruction in the
denoising phase, yet another main reason behind this failure is the absence of a
projection like the centering projection, which helps our framework �ltering out
undesired local minima, like the one found by the algorithm in Peyr�e and Fadili
(2011).
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Figure 2.5 { Denoising performance on an MNIST image from the validation set.
We report the SNR ratio in sub-captions.

2.4.4 2D image denoising on MNIST

Fig. 2.5 shows the denoising performance on an arbitrary image from the valida-
tion set. The learned dictionary 
 ? achieves a competitiveSNR compared to

 T V , which is a popular choice for image denoising tasks, especially on piecewise
constant images as in MNIST. Qualitatively, our framework struggles in learning
the piecewise constant prior on pixels close to the image center, but succeeds on
borders-nearby pixels. This is due to the fact that written digits are centered in
most images in MNIST dataset, thus pixels close to the borders are more likely
to equal zero, unlike pixels in the center whose value varies across images in the
dataset.



Chapter 3

Bilevel learning of G2G models

From this point, we focus on graph learning with bilevel optimization. The simplest
way to do that when an observed graph is given is to directly optimize the edge
weights. Surprisingly, we show later in Chapter 4 that this leads to a phenomenon
of lack of supervision that we termgradient scarcity, which signi�cantly reduces
the quality of the learned graph. Here in this chapter, we propose a novel frame-
work to train G2G (Graph to Graph) models on predicting edge weights, which
can be applied not only for edge re�nement, but also for graph construction. In
Section 3.1, we brie
y restate the importance of graphs, and the motivation for
graph learning. Then in the context of SSL, we formulate the problem as a bilevel
optimization. Afterwards in Section 3.2, we review previous works that use ob-
served labels for graph learning. In Section 3.3, we propose a framework that
employs bilevel optimization to train parametric G2G models to learn a similarity
metric between nodes. After presenting the proposed structure of G2G models,
we then make use of ITD to solve the bilevel problem. Finally, in Section 3.5, we
evaluate the proposed framework on SSL benchmark datasets and show that it
notably improves performance compared to real-world observed graphs.

This chapter is based on the content of our workshop paper Ghanem et al. (2022).

3.1 Motivation and problem formulation

Graph-based learning has received increasing attention since data lying on graph
structures is ubiquitous in many �elds, ranging from social networks (Liben-Nowell
and Kleinberg, 2003) to knowledge base (Ji et al., 2021), chemistry and medicine
(Rong et al., 2020; Liu et al., 2018) and tra�c (Wu et al., 2019). In these domains,
it is important to deploy graph structures together with the given features to ex-

44
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tract the sought for information. In social networks for example, the thoughts and
beliefs of an individual are likely to be shared by his/her community and a�ected
by what is called belief propagation through the network. Thus, leveraging the
graph network is vital when solving member-level or network-level problems.

However, graph-based methods are sensitive to the graph quality, and unfortu-
nately, graphs in practice are often noisy or not given. Usually in the former case
the given graph is considered ground-truth, while in the latter case samples are
processed as if they were mutually independent. This degrades the performance
and leads to a sub-optimal solution.

In this work, we alleviate this issue by solving abilevel optimization problemto
train a model on capturing pairwise similarity between nodes, which eventually
re
ects the according edge weights. This model, referred to as G2G (Graph to
Graph), takes in input node features and the observed graph. The name is in-
spired by Set2Graph models (Serviansky et al., 2020). Indeed, when the graph is
edgeless, G2G is a function from sets to graphs. While this framework is capable of
improving performance inany supervised or semi-supervised learning problem, we
choose to specialize in the range of transductive SSL problems. We next present
the graph-based models we consider to examine the e�ciency of our framework,
then we formulate the bilevel graph learning problem.

As reviewed in Section 1.3, there are roughly two main strategies to solve graph SSL
problems. The �rst is to propagate known labels using a regularization process,
and the second is to resort to node embedding methods. As a representative
method for both strategies, we consider the Laplacian regularization and GNNs,
respectively. Using Laplacian regularization, predicted labels read:

Y Reg(A ) 2 arg min
Y 2B

1
jVtr j

X

i 2 Vtr

`(Y i ; (Y obs) i )+ �
1

jE j

X

i;j

A i;j kY i � Y j k2
2; (3.1)

whereas for GNNs, the objective reads:

Y GNN = Y W ? (X ; A ); where

W ? 2 arg min
W

1
jVtr j

X

i 2 Vtr

`
� �

Y W (X ; A )
�

i
; (Y obs) i

�
: (3.2)

Recall that the admissible setB is a subset ofRn in regression tasks, andRn� C in
classi�cation tasks whereC is the number of classes,̀ is a smooth loss function
commonly chosen to be the Categorical Cross Entropy (CCE) loss for classi�cation,
and the Mean Square Error (MSE) for regression,� is a balancing parameter,Vtr is
the training set of labeled nodes, andW is the set of the GNN weights. The reader
can refer to Section 1.3.2 regarding the GNN model we adopt in this work.
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To train the G2G model, we consider the case where its objective is a function of
the trained graph-based model, thereby, we look at abilevel optimization. Denoting
by � the weights of the G2G model, A � = G2G(X ; A obs) its output adjacency
matrix, and using a second set of labeled nodesVout � V distinct from Vtr , the
bilevel optimization is cast as

� ? 2 arg min
�

Fout = 1
jVout j

X

i 2 Vout

`(Y (A � ) i ; (Y obs) i ); (3.3)

such that Y (A � ) = Y GNN (X ; A � ) (GNN case) orY (A � ) = Y Reg(A � ) (Lapla-
cian regularization case). That is, the minimization of the outer objective function
Fout involves Y (A � ), which is itself the result of an inner optimization problem,
either (3.1) overY or (3.2) overW. One may add a regularization term toFout to
impose some regularity or priors on the generated graph, but this is not considered
in this chapter.

The bilevel problem (3.3) is intractable as neither the solution of the inner problem
nor its gradient w.r.t. � has a closed form expression. Hence, �? cannot be
evaluated nor computed iteratively by a gradient-based algorithm. In addition,
and as it is usually the case in machine learning, this problem is non-convex,
thus we don't adopt �nding an optimizer � ?, but rather a good set of weights
that proves the e�ciency of our algorithm compared to baselines operating on the
observed graph.

In the present work, we propose to train the G2G model with a gradient-based
algorithm while using ITD to approximate hypergradients. This includes replacing
the inner problem by a repeated application of any iterative algorithm that is guar-
anteed to converge to a good proxy. Here we consider gradient-based optimizers
for the inner problem too. Then, we use automatic di�erentiation, more precisely
higher-order automatic di�erentiation through the Higher package (Grefenstette
et al., 2019), to trace these dynamics and �nally computer � Fout , where� is the
vectorized version of �. Similarly, we denote byW the vectorized version ofW.
Remark here that the Higher package evaluatesgradients of gradientsas it: i)
computesr W Fin for the inner updates;ii) evaluates the gradient of the output
after these updatesw.r.t. �. The resulted G2G model can be then employed to
reconstruct the underlying graph, even when adding new points to the dataset.
In addition, we show that it is su�cient to trace the last few inner updates, here
10 iterations, to get a good approximation ofr � Fout , which signi�cantly reduce
memory and time costs. To our knowledge, this is the �rst work that trains a G2G
model through a bilevel optimization framework. Experiments on SSL datasets
prove that our framework considerably outperforms models operating on the ob-
served graph.
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3.2 Related work

Bilevel optimization is used in many applications like multi-task and meta learning
(Bennett et al., 2006; Flamary et al., 2014; Franceschi et al., 2018). See Section 1.5
for applications in other �elds. Graph structure learning, on the other hand, gained
in importance since the success of GNNs in relational learning, stemming from
the fact that real-world graphs usually have corrupted edges. In this section, we
review relevant works to ours which incorporate given labels in learning the graph
structure. The reader can refer to Section 1.4 for a comprehensive review of other
graph learners.

Franceschi et al. (2019) use bilevel optimization to learn the parameters of Bernoulli
probability distributions over independent random edges, where these parameters
are optimized to minimize the GNN's validation loss. This method includes learn-
ing n2 parameters which limits scalability. Moreover, it does not generalize to new
pairs of points, as this requires re-running the optimization process to learn the ac-
cording parameters. This is mitigated in our proposed method, as the G2G model
can be dynamically applied on new points to expand the constructed graph, and
the number of its parameters does not depend on the dataset size, but rather on
the problem complexity. On the other hand, Wan and Kokel (2021) solve a graph
sparsi�cation problem to remove edges from the observed graph by means of min-
imizing the GNN's validation loss, while keeping the graph connected. However,
resulted graphs do not necessarily outperform the observed graph. We believe that
the hypergradient scarcity problemthat we characterize in Chapter 4 is the reason
behind this.

Another set of methods learn both the graph and the graph-based model under
the joint optimization setting. One example is the approach proposed by Wang
and Leskovec (2020), where the weights of observed edges and a GNN model are
jointly optimized to minimize the training loss. However, due to the large number
of parameters, this often leads to over�tting. To address this issue, the authors
incorporate the Label Propagation model (LP) to regularize the graph. The pro-
posed framework produces state-of-the-art results on SSL node classi�cation tasks.
Likewise, in the work of Fatemi et al. (2021), the graph is regularized by imposing
the assumption that a good graph must also perform well in denoising node fea-
tures. For that end, the authors introduce a regularization penality which assesses
the denoising performance.

Another advanced category of models that utilizes joint optimization are atten-
tion mechanisms, where the edge weights are re-evaluated after each GNN layer
based on the similarity between node representations in that layer. The similarity
criterion can either be user-de�ned, such as the dot product (Luong et al., 2015;
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Vaswani et al., 2017), or learned locally at each layer by a single-layer feed-forward
network (Veli�ckovi�c et al., 2018), or a combination of both approaches (Kim and
Oh, 2021). These mechanisms proved e�ective in edge re�nement tasks. In con-
trast to our method, these mechanisms are trained and used within a GNN model
in one optimization problem.

In Stretcu et al. (2019), a deep model called the Graph Agreement Model (GAM) is
trained on predicting edge weights. Unlike previous methods, the graph objective
does not depend on a graph-based model and is not optimized under the bilevel
nor the joint setting. Instead, it learns graphs by penalizing the absence of an edge
between nodes with the same label. Once the GAM model is trained, its output
graph is used to train a GNN model. The GNN model is then used to improve
the set of labeled nodes by considering its con�dent predictions as ground truth.
This training process is repeated fork iterations, and is called co-training (Blum
and Mitchell, 1998).

3.3 Proposed method

We �rst present the structure of the G2G model adopted in our framework. Then,
we state the bilevel learning routine we propose to train this model, withHigher
package as a key ingredient to compute the hypergradients of problem (3.3).

3.3.1 G2G model design

Our proposed model takes as input the featuresX i ; X j of any two nodesi; j ,
their edge weight in the observed graph (A obs) i;j , and outputs a scalar edge weight
(A � ) i;j . It can be expressed as a combination of three functions:

(A � ) i;j = 

�

�
�
� (X i ); � (X j )

�
; (A obs) i;j

�
; (3.4)

where:

ˆ the encoder� : Rp ! Rp� is a Multi-Layer Perceptron (MLP) that computes
a new representation vector for a node in a new embedding space of dimension
p� . A MLP network is composed of several fully connected feedforward
layers. That is, given the output featuresX [l ] of the l-th layer, the output
of the next layer is computed as follows:

X [l+1] = � [l+1] (X [l ]W [l+1]
1 + 1n (b[l+1] )> ) ; (3.5)

where W [l+1]
1 2 Rdl � dl +1 ; b[l+1] 2 Rdl +1 are learnable parameters,dl is the

output dimensionality of the (l)-th layer, and � is the non-linear activation
function.
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ˆ the aggregator� : Rp� � Rp� ! Rp� takes the embeddings of a pair of nodes
from the previous stage� , and merges them to have a single representation
vector in output. Let ~X i ; ~X j be the embeddings of nodesi; j , the aggregator
we consider is the function:

� : ( ~X i ; ~X j ) 7! ( ~X i � ~X j )2; (3.6)

where (�)2 is the square function applied at each dimension. One notices that
this function is invariant to the order of its inputs.

ˆ the regressor
 : Rp� � R ! [0; 1] is an MLP with sigmoid as the output
activation function. For two nodes,
 takes the according aggregator output,
the observed edge weight if provided, and outputs the sought for edge weight.

The proposed G2G architecture can be easily shown to bepermutation-equivariant,
that is, permuting the input graph permutes the output graph in the same manner.
In mathematical terms, given any permutation function � : [n] ! [n], where
[n] = f 1; : : : ; ng, and P 2 f 0; 1gn� n the according permutation matrix, then the
following condition holds:

G2G(P X ; P A obsP ) = P G2G(X ; A obs)P : (3.7)

Permutation equivariance (or invariance) is a critical attribute to enforce in graph
processing. Here, it guarantees that the structure of the output graph is inde-
pendent to relabeling the points in the input dataset, and can generalize to new
graphs.

3.3.2 Learning routine

Neither the inner minimizer nor its gradient as a function of the graph used in
training have a closed form expression in general. This makes it impossible to
evaluate G2G optimal weights �? or learn it with a gradient-based algorithm. We
propose to deploy ITD to evaluate hypergradients and learn � using a gradient-
based method. This means that we �rst replaceW ?(�) by the output of an
iterative algorithm known to converge to a good proxy. For example, if we consider
the Adaptive Moment Estimation algorithm (Adam), which is characterized in
Eq. (A.1), as an optimizer, then we assume thatW ?(�) is close to the output
after � in iterations W� in (�).

In contrast to denoising with analysis-sparsity regularization discussed in Chap-
ter 2, where inner updates are available in closed form expression, inner updates
here do not enjoy such property. Instead, they require AD to evaluate the gra-
dients r W t Fin for each Adam-based update, especially when using GNNs as the



CHAPTER 3. BILEVEL LEARNING OF G2G MODELS 50

Algorithm 2: Learning algorithm
Input: X ; Y ; A obs

Output: � : G2G trained weights.
Hyperparameters: � out ; � in (learning rates), � in ; � out (number of iterations),
� AD (number of unrolled inner iterations, in our work� AD = 10).
Randomly initialize � .
for k = 1 to � out do

A �  G2G(X ; A obs)
Randomly initialize W 0.
for t = 1 to � in do

Y W t (X ; A t )  graph-based model's output.
r W t Fin  PyTorch AD on Fin (Y ; Y W t ; A � )
W t+1  Adam-step(W t ; r W t Fin ; � in )
if t == � in � � AD then

Track next � AD inner updates as a function of� with Higher package.
end if

end for
Y W � in

(X ; A � )  evaluate inner model.
r � Fout  Higher AD on Fout (Y ; Y W � in

; A � )
�  Adam-step(� ; r � Fout ; � out )

end for
Return: � ; W � in (optional).

graph-based model. That said, AD is still capable of looking at the sequence of
such updates as an algorithm, and evaluates the Jacobian of its output as a func-
tion of �, i.e., J W � in

(� ). In other words, we have a double application of AD, the
�rst is the traditional one used to train models in most machine learning problems,
while the second di�erentiates the resulting trained modelsw.r.t. other variables,
which is not trivial. Therefore, AD can evaluate hypergradients. Additionally,
we propose to use a warm start strategy where we reduce the number of unrolled
iterations. Speci�cally, we perform� in inner iterations, but di�erentiate through
only the last � AD iterations using AD to obtain hypergradients. This signi�cantly
reduces memory and time costs compared to unrolling all� in updates, which can
be substantial when� in is large, and yet leads to better graphs than the observed
ones as we empirically demonstrate.

Indeed, we use AD to approximater � Fout and apply a gradient-based algorithm,
Adam, to converge to a good set of weights �, as described in Algorithm 2.



CHAPTER 3. BILEVEL LEARNING OF G2G MODELS 51

3.4 Memory and computation costs

Our experiments in Section 3.5 demonstrate that hypergradients obtained by trac-
ing � AD = 10 inner iterations provide a reliable estimation of the true hypergra-
dients, as the output graphs notably outperform the observed graph. Therefore,
our algorithm needs memory to place G2G weights, 10 copies of the GNN weights,
or 10 copies of the optimized labelsY when using the Laplacian regularization
method. That is in addition to points in the dataset, and other hyperparameters
that can be ignored. Since GNN models usually don't get better results when
having more than 2 layers, the memory need is of the same magnitude as the
co-training method,e.g., GAM (Stretcu et al., 2019), the graph attention models,
and the LDS model (Franceschi et al., 2019). Regarding the computation cost,
our algorithm and GAM have comparable costs when the number of co-training
rounds equals the number of outer iterations. Compared to the LDS method,
our framework costs less thanks to tracking just the last 10 inner iterations by
AD. However, graph attention models are still the least expensive among previous
algorithms.

3.5 Experiments

We design a synthetic dataset to examine the capacity of the G2G model in our
framework, by trying di�erent schemes to generate the ground-truth graph as
a function of node features. On real datasets, we show that using G2G yields
signi�cant bene�ts over the observed graph.

Synthetic dataset: we samplei.i.d. latent variables X 0 2 Rn� p for points
uniformly at random from [0; 1]p with n = 256; p = 2, unless otherwise speci�ed.
The Ground-Truth (GT) graph A GT is then constructed s.t. an edge between
points i; j has the weight

(A GT ) i;j = exp ( �k X 0
i � X 0

j k
2
2=2� 2):

We generate observed featuresX as a function of latent variablesX = f (X 0) 2
Rn� p. Each point i in the inner training set Vtr is labeled as follows:

Y i = � (e�
( X 0

i � a 1 ) 2

2(0 :2) 2 + e
� ( X 0

i � a 2 ) 2

2(0 :2) 2 + e
� ( X 0

i � a 3 ) 2

2(0 :2) 2 ) ;

wherea1; a2; a3 are randomly sampled from [0; 1]p, and � is a scaling factor such
that labels lie in [0; 1]. By this construction, the assumption of label smoothness on
the graph is met, and the Laplacian regularization Eq. (3.1) is a reasonably good
strategy. To generate labels in the outer training and the validation setsVout ; Vval ,
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respectively, we plug the labels ofVtr and A GT in Eq. (3.1) with � = 1, and take
the solution as ground-truth labels. This way, if the G2G model learns exactly the
ground-truth graph A GT , then the validation and outer losses are exactly equal
to zero. To generate the observed graphA obs, we consider a classical model of
random graphs:

(A obs) i;j � Ber
�
(A GT ) i;j

�
:

Each dataset is evenly divided into 4 subsets: inner training, outer training, valida-
tion, and unlabeled sets.� is user-de�ned, our choice was s.t. the average number
of edges inA obs equalsn logn (balance between a sparse and a complete graph).
Experiments on this dataset use the Laplacian regularization as in Eq. (3.1).

Real world datasets: we demonstrate the capacity of our method on common
SSL benchmark datasets for node classi�cation: the Cora dataset which consists
of 2708 nodes and 5429 edges (Lu and Getoor, 2003), the CiteSeer dataset which
consists of 3327 nodes and 4732 edges (Bhattacharya and Getoor, 2007), and
the PubMed dataset which consists of 19717 nodes and 44338 edges (Namata
et al., 2012). These are citation datasets where points represent research publica-
tions described by means of a bag of words, and edges stand for citations. The
task is to classify the unlabeled onesw.r.t. their main topic. From the default
train/validation/test split in Yang et al. (2016); Kipf and Welling (2017), we use
the training set as the inner training setVtr , while we use half of the validation
set as the outer training setVout . The other half is kept as a validation set as in
Franceschi et al. (2019).

Models: our G2G and GNN models are implemented usingPyTorch (Paszke
et al., 2019) andPyTorch Geometric (Fey and Lenssen, 2019), respectively. The
encoder� and the regressor
 in the G2G model are an MLP of 1 hidden layer
each. Likewise, the GNN has 1 hidden layer. All hidden layers in all models have
128 hidden neurons, and equipped with theReLu activation function. The GNN
output layer is equipped with the sof tmax function, while the one of the G2G
model with the sigmoid function.

Setup: we use Adam as the inner and outer optimizer with the default param-
eters ofPyTorch, except for the learning rate set with a grid search to:� in = 0:1
with Laplacian regularization, � in = 0:06 with GNN models, and� out = 0:003.
We useHigher package to track unrolled inner iterations and apply the second-
order automatic di�erentiation to compute r � Fout (Grefenstette et al., 2019). We
�x � in = 300 with the GNN model and � in = 100 with Laplacian regularization.
We unroll the last � AD = 10 iterations. GNN weights W and Y when using the
Laplacian regularization are initialized at random after each outer iteration, using
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Figure 3.1 { The capacity of G2G when varyingX as a function ofX 0. We try
three functions as in Section 3.5.1. Left: we plot the outer loss. Right: we plot
the error between the ground-truth graphA GT and the G2G's output in the case
of f 2.

Xavier initialization and U(0; 1), respectively. The Laplacian regularization mag-
nitude � is fed to the algorithm in the experiments on the synthetic dataset, while
set with a grid search to� = 0:01 for Cora and CiteSeer datasets, and to� = 1
for PubMed. We apply early stopping on the validation loss.

3.5.1 G2G capacity

To examine the expressive power of the G2G model in our proposed method, we
try several options for the choice of the functionf , which maps from latent vari-
ables to observed featuresf : Rn� p ! Rn� p; X 0 7! X . Let (x0

1; x0
2) 2 R2 be the

latent variable of a point, the considered options are:f 0(x0
1; x0

2) = ( x0
1; x0

2), the
linear transformation f 1(x0

1; x0
2) = ( x0

1 + x0
2; x0

1 � x0
2), and the non-linear function

f 2(x0
1; x0

2) = (cos(�x 0
1); cos(�2 (x0

1 + x0
2)). In contrast to other experiments, we tend

not to feed the observed graphA obs to the G2G model here. Fig. 3.1 shows con-
vergence in the outer loss in all cases, and that the G2G model manages to notably
outperform A obs for Laplacian regularization in Eq. (3.1). More importantly, the
G2G's output converges to the ground-truth grapheven with the non-linear map-
ping f 2. As G2G doesn't have access toA obs during training, this implies the
capacity of this framework processing onlyX to extract X 0, and then capture
the rules governing the construction of the graphA GT , while being only guided by
maximizing regression performance in Eq. (3.3). This proves the power of the G2G
model, and the e�ciency in computing hypergradients using the packageHigher,
as well as indicates some information-preservation phenomenon when construct-
ing the latent position graph and its labels, which will be analyzed theoretically
in future work.
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Table 3.1 { Benchmark against a GNN model operating on the given graph and
the GAM model on real-world datasets. We report the classi�cation test accuracy.
The subscript of models indicates the number of hidden neurons in each hidden
layer. Results of GAM method are reported from the according paper.

Model
Dataset

Cora CiteSeer PubMed

GNN 128 77:0 67:0 75:2
GNN 128 + GAM 84:8 72:2 81:0
GNN 128 + G2G 79:6 71:8 79:2
Laplacian + G2G 78:9 54:7 70:3

3.5.2 Results on real-world datasets

We conduct our experiments on Cora, CiteSeer and PubMed datasets. During
training, we augment the given graph by sampling 1000 edges from all possible
edges at every iteration in the outer problem. We keep up to 10000 edges that
were assigned the highest weights by the G2G model. This way, we don't just
denoise the given edges, but we are likely to �nd more helpful edges, while avoiding
processing the complete graph with these datasets, which is memory consuming
and time costly. We run our algorithm two times on these datasets, where we use
the Laplacian regularization in the inner problem in one, and a GNN model in the
second time. As seen in Table 3.1, GNNs outperform the Laplacian regularizer
when used in the inner problem, which is expected due to the message passing
model in GNNs. Besides, we see that our algorithm with a GNN in the inner
problem yields signi�cant improvement over the GNN model operating on the
given graph. On the other hand, the Graph Agreement Model (GAM) produces
higher accuracy on the three datasets, thus our framework is not state-of-the-
art.



Chapter 4

Hypergradient scarcity in graph
learning

We stated in the previous chapter that edge re�nement by optimizing observed
edge weights via the bilevel framework does not produce graphs of quality. Instead,
we proposed to incorporate metric learning in the bilevel framework using G2G
models. In this chapter, which includes the theoretical contribution of this thesis,
we theoretically support our statement. Precisely, we investigate a phenomenon in
graph learning under the SSL setting that we refer to asgradient scarcity, which
deteriorates the quality of the learned graph. In Section 4.1, we introduce the
context in which this phenomenon was �rst identi�ed, which involves optimizing
for observed edge weights and the weights of a GNN using joint optimization
to minimize a labeling loss. Under this setting, edges between unlabeled nodes
that are far from labeled ones receive zero gradients. Subsequently, we formulate
the problem of edge re�nement with bilevel optimization in Section 4.2. Next,
we pose the research questions we tackle in this chapter, mainly examining this
issue within the bilevel optimization setting and with other graph-based models.
We then outline our contributions. In Section 4.4 we review related works that
identi�ed this issue or used bilevel optimization for graph learning. In Section 4.5,
we give a precise mathematical characterization of this phenomenon, and prove
that it also emerges inbilevel optimization, where additional dependency exists
between the parameters of the problem. While gradient scarcity with GNNs occurs
due to their �nite receptive �eld, we show in Section 4.6 that it also occurs with
the Laplacian regularization model, in the sense that hypergradients amplitude
decreases exponentially with distance to labeled nodes. In Section 4.7, we study
several solutions to alleviate this issue including metric learning using G2G models,
graph regularization, or optimizing on a larger graph than the original one with

55
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a reduced diameter. Finally in Section 4.8, we present our empirical results on
synthetic and real datasets that validate our analysis and prove the e�ciency of
the proposed solutions.

The content of this chapter has been submitted for publication in our article
Ghanem et al. (2023b), and is currently under revision.

4.1 Understanding gradient scarcity:
context and observations

As discussed in Section 1.4.2, a mainstream approach in graph learning for graph-
based SSL is to optimize the graph by means of optimizing the performance in the
downstream task. This involves generating a graph that, when used by the graph-
based model, minimizes some loss on labeled nodes. However, the graph-based
model itself requires an optimization process on its parameters to minimize the
classi�cation or the regression loss for instance. Therefore, both the graph learner
and the graph-based model need to learn by minimizing the \same" loss. There
are two methodologies to formulate this mathematically, namelyjoint and bilevel
optimization, which both are usually solved by gradient-based algorithms.

In joint optimization, one objective function F is de�ned as a function of both the
graphA and the graph-based model. Let us denote byW the learnable parameters
of the graph-based modelY W , then joint optimization minimizes:

min
A ;W

F =
1

jVtr j

X

i 2 Vtr

`
� �

Y W (X ; A )
�

i
; (Y obs) i

�
;

where ` is a smooth loss function andVtr is the training set of labeled nodes.
In this scenario, bothA and W are simultaneously updated in each iteration of
the gradient-based algorithm. Another scheme of updates, calledalternating opti-
mization, that can be employed in this scenario �xes one object while the other is
updated in one iteration, and vice versa in the next iteration. Nonetheless, alter-
nating optimization is not commonly used in the graph learning paradigm.

For Graph Neural Networks (GNNs) as the graph-based model, Fatemi et al. (2021)
show that directly learning the weights of observed edges with joint optimization
leads togradient scarcity. This phenomenon refers to the fact that connections be-
tween unlabeled nodes \far" from the labeled ones receivezero gradients, i.e., they
receive no supervision during the optimization and are not learned. This is due to
the �nite receptive �eld (depth) of message-passing GNNs. Putting all together,
gradient scarcity was identi�ed under the edge re�nement setting when learning
edge weights and a GNN model using joint optimization.
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In this work, we focus on bilevel optimization and prove that gradient scarcity
also occurs for GNNs, despite additional dependency between the parameters in
the bilevel setting. We also prove that this issue emerges with other graph-based
models, including the Laplacian regularization, which, unlike GNNs, has an in�nite
receptive �eld.

Next, we formulate the problem of learning the weights of observed edges with
bilevel optimization. Then, we state the research questions we tackle and the
contributions of this chapter.

4.2 Edge re�nement with bilevel optimization

In bilevel optimization, we consider the case where the graph objective function is
a function of the trained graph-based model. Using a second set of labeled nodes
Vout � V distinct from Vtr , the bilevel optimization is cast as

A ? 2 arg min
A 2A

Fout (A )= 1
jVout j

X

i 2 Vout

`(Y (A ) i ; (Y obs) i ); (4.1)

such that Y (A ) = Y GNN (X ; A ) in the scenario of a GNN as the graph-based
model, or Y (A ) = Y Reg(A ) in the Laplacian regularization scenario. The model
we consider in this chapter for the set of admissible adjacency matricesA is edge re-
�nement : the learned adjacency matrix has the same zero-pattern as the observed
adjacency matrix:

A = f A 2 [a; b]n� n jA ij = 0 when (A obs) ij = 0g;

for some boundsa; b. Recall that the complexity in this setting is proportional
to the number of edges, generally less than quadratic in the number of nodesn
as graphs are usually sparse, which makes edge re�nement more scalable than the
full learning setting.

4.3 Research questions and contribution

Previous works observed gradient scarcity when learning the graph and a GNN
model with joint optimization. This issue is due to the �nite receptive �eld of
GNNs, since ak-layer GNN computes the label of a node using information only
from r -hop far nodes with r � k. This label is then not a function of edges
connecting nodes outside of this neighborhood, and the term in the learning loss
corresponding to this label returns null gradients on those distant edges. However,
it is not straightforward how to extend this argument to the bilevel setting. Specif-
ically, the previous discussion is in the context of joint optimization which assumes
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that the trained weights of the GNN after many gradient-based updates do not
depend on the adjacency matrixA , which is not the case in bilevel optimization.
Moreover, if the problem holds in this setting, the roles ofVtr and Vout need to be
clari�ed. Another question is if this problem is mitigated by resorting to graph-
based models with in�nite receptive �eld, e.g., the Laplacian regularization.

In this chapter, we prove that hypergradient scarcity occurs under the
bilevel optimization setting when adopting GNNs as a graph-based
model. We show that using ak-layer GNN induces null hypergradients on edges
between nodes at leastk-hop from labeled nodes inVtr [ Vout . For the Laplacian
regularization, we prove that the problem persists , as hypergradients are
exponentially damped with distance from labeled nodes.We empirically val-
idate our �ndings . Then, we test three possible strategies to solve this issue:
metric learning with G2G models, graph regularization and re�ning a power of the
observed adjacency matrix. Furthermore, we empiricallydistinguish between
hypergradient scarcity and over�tting , in the sense that solving the former
does not necessarily resolve the latter. To the best of our knowledge, this is the
�rst work that mathematically tackles the gradient scarcity problem for bilevel
optimization of graphs, and examines the phenomenon for models with in�nite
receptive �eld.

In the next section, we review the relevant literature with a special focus on works
that tackled graph learning with bilevel optimizations and the ones that identi�ed
gradient scarcity. Then we prove the theorems that support our claims.

4.4 Related work

As reviewed in Section 1.5, bilevel optimization applications are numerous, in-
cluding multi-task and meta learning (Bennett et al., 2006; Flamary et al., 2014;
Franceschi et al., 2018). Graph learning, on the other hand, plays a crucial role in
handling real-world graphs that often exhibit noisy edges. To learn better graphs,
various methods have been proposed in the literature; however, only a few of them
leverage bilevel optimization.

One work in this direction is Franceschi et al. (2019). The authors learn the
parameters of Bernoulli probability distributions over independent random edges.
The problem is similarly framed as a bilevel optimization, where these parameters
are optimized to minimize the GNN's validation loss. Similar to Eq. (4.1) with full
learning ofA , this method includes learningn2 parameters which limits scalability.
Instead of learning observed edge weights, Wan and Kokel (2021) sparsify the
observed graph while keeping it connected by means of minimizing the validation
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loss of the GNN model. However, resulted graphs do not necessarily outperform
the observed one.

Another line of research adopts the joint optimization scenario. One instance is the
work of Wang and Leskovec (2020), where authors propose to alleviate over�tting
resulted from learning the GNN parameters and edge weights together by using the
Label Propagation model (LP) (Zhu, 2005) to regularize the graph. The proposed
framework produces state-of-the-art results on node classi�cation tasks. Another
example is attention mechanisms, where edge weights are re-evaluated after each
GNN layer considering the similarity between node representations,i.e., edge re-
�nement. The similarity criterion can be user-de�ned like the dot product (Luong
et al., 2015; Vaswani et al., 2017), learned locally at each layer by a single-layer
feed-forward network (Veli�ckovi�c et al., 2018), or a combination of both schemes
(Kim and Oh, 2021).

Other graph learning methods do not involve the joint optimization nor the bilevel
optimization schemes. In Stretcu et al. (2019) for example, a state-of-the-art
method referred to as Graph Agreement Model (GAM) is proposed to learn graphs
by penalizing the absence of an edge between nodes with the same label.

The gradient scarcity problem was studied in Fatemi et al. (2021) where the authors
looked at this problem with the intuition that learning a graph in SSL problems
is done to improve performance in the downstream task, thus optimizing both
requires such supervision that is not available in small labeled subsets. Then, for
downstream tasks adopting ak-layer GNN model (with k = 2 in their case), they
identi�ed what they refer to as the supervision starvation problem, which states
that edges between unlabeled nodes do not receive any supervision if they are at
least 2-hop from labeled nodes. They quantify the starvation for the special case of
Erd•os-R�enyi graphs. Note that gradient scarcity and supervision starvation refer
to the same phenomenon.

This issue cannot be resolved by adding more layers to the GNN as this will increase
its complexity on one hand, which means more data and labels are needed, and
due to the oversmoothing issue on the other hand (Keriven, 2022). To mitigate
this issue and provide more supervision on the graph level, authors make use of
the assumption that a good graph does not only perform well in labeling nodes,
but also in denoising node features. Therefore, they regularize the learned graph
by a contrastive loss (Liu et al., 2021b; Wu et al., 2021; Liu et al., 2022a), which
evaluates its denoising performance. Overall, this results in a joint optimization
problem.

That said, authors implicitly assumed no dependence between the GNN weights
and the graph when identifying gradient scarcity, which is the case in joint/alternating
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optimization schemes. To the best of our knowledge, this issue has not yet been
studied for the bilevel optimization setting. Moreover, it is not clear if this problem
is resolved with graph-based models with in�nite receptive �eld,e.g., the Laplacian
regularization. We treat both these topics in this chapter.

In Liu et al. (2022b), authors state that optimizing both the graph and a GNN
model under the supervision of a classi�cation task introduces reliance on available
labels, bias in the edge distribution and even reduce the span of potential applica-
tion tasks. Still, this statement is not accompanied with a theoretical justi�cation,
especially regarding the �rst two consequences. To overcome this problem, authors
suggested to avoid label-based graph optimization, and proposed anunsupervised
graph learning framework based on contrastive learning (Liu et al., 2021b). Al-
though the unsupervised framework proved e�ective and competed state-of-the-art
methods, we believe that labels contain informative knowledge that is not exploited
when deploying unsupervised learners, and that better results are obtained by get-
ting the best of both worlds.

4.5 The GNNs scenario

In this section, we consider the bilevel optimization (4.1) in theedge re�nement
setting, i.e., we optimize the weight of every existing edge inA obs, and the GNN
caseY (A ) = Y GNN (X ; A ) = Y W ? (X ; A ). For the convenience of the reader,
we recall the GNN model we adopt in this work. This model propagates the �rst
layer X [0] = X as follows

X [l ] = � (X [l � 1]W [l ]
1 + AX [l � 1]W [l ]

2 + 1n (b[l ])> ) ; (4.2)

where W = f W [l ]
1 ; W [l ]

2 ; b[l ]gk
l=1 is the set including the model weights,� is a

non-linear function applied element-wise, and the outputY W (X ; A ) = X [k] is
obtained after k rounds of message passing. We denote byW the vectorized
version ofW.

First, we examine the joint/alternating optimization schemes, where the depen-
dency betweenW and A is dropped,i.e., J W (A ) = 0, and prove the existence of
the problem for a generic number of layersk, similar to Fatemi et al. (2021). For
the bilevel optimization setting, we then prove that the optimized weightsW ? are
not a function of edges connecting nodes at leastk-hop from nodes inVtr . After
that, we conclude that hypergradient scarcity holds in the bilevel setting for edges
connecting nodes at leastk-hop from nodes in theunion Vtr [ Vout .
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4.5.1 Scarcity with joint or alternating optimization

In this �rst result, we will assume that the weights W do not depend onA , as is
the case in joint/alternating minimization, and show gradient scarcity by analyzing
Y W (X ; A ).

Theorem 4.5.1. Let Y W = Y W (X ; A ) be the output of ak-layer GNN param-
eterized byW . Let i; j; u be such that nodesi; j are at leastk-hop from nodeu.
Assume that @W

@A i;j
= 0. Then:

@(Y W )u

@A i;j
= 0 : (4.3)

Proof. The proof is done by induction onk. For k = 1, this is indeed the case
sinceX [0] = X does not depend onA , and that A i;j does not belong to the row
A u;: which is the only row in A that contributes in the value (X [1])u;:.

Assume that the statement is true for some arbitrary positive integerk, we show
that it is also true for a (k + 1)-layer GNN. If i; j are at least (k + 1)-hop from
u, then clearly they are at leastk-hop far from it too. Thus from the induction
assumption, we have that (X [k])u;: is independent ofA i;j . Also, W [k+1]

1 does not
depend onA i;j since we assume@W

@A i;j
= 0. Therefore, (X [k]W [k+1]

1 )u;: in (4.2) does
not depend onA i;j too.

In a similar way, if i; j are at least (k +1)-hop from u, then they are at leastk-hop
far from any of its neighborsv where A u;v 6= 0. Therefore, for all v, A u;v 6= 0,

then @(X [k ] )v; :

@A i;j
= 0. Moreover, @W [k +1]

2
@A i;j

= 0 since we assume@W
@A i;j

= 0. This makes

(AX [k]W [k+1]
2 )u;: = A u;:X [k]W [k+1]

2 in (4.2) independent ofA i;j . This concludes

the proof, as @(Y W )u

@A i;j
= @(X [k +1] )u

@A i;j
= 0.

4.5.2 Gradient of the optimized weights

Theorem 4.5.1 assumes thatW is not a function of the edgeA i;j , and states,
in such case, that edges between nodes at leastk-hop from the training nodes
used to optimize the graph (Vout in our case) receive no supervision. However,
W may depend onA after the �rst outer iteration in the bilevel optimization
scenario. The next theorem shows that gradient scarcity still occurs in the bilevel
optimization framework, as the \optimal" weights used in practice are the result
of a gradient-based algorithm. More precisely, we consider a sequence

W t+1 = W t � Qt (W t ; r W t Fin ) ; (4.4)
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where Qt is a smooth function. Note that W t does not necessarily converge
towards the true optimal point W ?.

Theorem 4.5.2. Let A be an input graph to ak-layer GNN with weightsW ,
and W t be the output obtained by optimizing(1.5) for W using a gradient-based
iterates sequence. Leti; j be nodes that are at leastk-hop from any node inVtr .
Then, for all t 2 N,

@W t (A )
@A i;j

= 0 : (4.5)

Proof. The proof is carried out by induction on the iteration indext of the gradient-
based optimizer. Denote byFin the objective function in (1.5). For t = 0, W 0 is
the initialization of W which is usually random and does not depend onA . For
t � 0, we assume that@W t

@A i;j
= 0 and prove this must be true fort +1. By the chain

rule, proving that @(r W t F in )
@A i;j

= 0 is su�cient to complete the proof. The gradient
r W t Fin writes:

r W t Fin =
1

jVtr j

X

u2 Vtr

r W t `
� �

Y W t (X ; A )
�

u
; (Y obs)u

�
:

For all u 2 Vtr , the term r W t `
� �

Y W t (X ; A )
�

u
; (Y obs)u

�
is a function ofW t and

�
Y W t (X ; A )

�
u
. But @W t

@A i;j
= 0 from the induction assumption, and, given that,

we have
@
�

Y W t (X ;A )
�

u
@A i;j

= 0 from Theorem 4.5.1. Thus, we have for allu 2 Vtr ,
@

@A i;j
r W t `

� �
Y W t (X ; A )

�
u
; (Y obs)u

�
= 0. This concludes the proof of (4.5) as it

gives @(r W t F in )
@A i;j

= 0.

4.5.3 Hypergradient scarcity

Finally, we put the two previous results together. The next theorem states that
within the bilevel optimization framework, edges between nodes at leastk-hop
from nodes inVtr [ Vout receive no supervision.

Theorem 4.5.3. Let Y W be ak-layer GNN. Assume that the inner optimization
problem is solved with a gradient-based algorithm(4.4). Then, for any pair of
nodesi; j at least k-hop from nodes inVout [ Vtr , we have@Fout

@A i;j
= 0.

Proof. Directly from Theorem 4.5.2 we have that@W t (A )
@A i;j

= 0 sincei; j are at least
k-hop from nodes inVtr . This makes it possible to apply Theorem 4.5.1 to get
that 8u 2 Vout ;

@(Y W t )u

@A i;j
= 0, as i; j are at least k-hop from nodes inVout and
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@W t (A )
@A i;j

= 0. This concludes the proof asFout penalizes the labeling error only on
nodes inVout .

Theorem 4.5.3 shows that the hypergradient scarcity problem emerges when solv-
ing edge re�nement tasks: if two nodes are at leastk-hop from nodes inVout [ Vtr

in A obs, the edge in between receives no hypergradients. In Section 4.7, we will
examine several strategies to mitigate this phenomenon.

4.6 The Laplacian regularization scenario

In the previous section, we have seen how the �nite receptive �eld of GNNs directly
induces the gradient scarcity problem. We now examine hypergradient scarcity
whenY (A ) = Y Reg(A ) as in (1.1) with the Laplacian regularization (1.2). Indeed,
in this case the inner problem (1.1) does not have a �nite receptive �eld, in the
sense that in general@Y (A )

@A ij
6= 0 for all i; j , unlike the GNN case as proven by

Theorem 4.5.1.

Surprisingly, we show that hypergradient scarcity still occurs in some sense. More
precisely, we prove that the magnitude of hypergradients decreases exponentially
with the sum of the distance toVtr and the distance toVout .

We consider the case where the downstream task is a regression problem,i.e., `
in Eqs. (1.1) and (4.1) is the MSE loss function. LetS in 2 Rn� n be the diagonal
selection matrix whose entries equal 1 if the corresponding node is inVtr and 0
otherwise, the solutionY (A ) enjoys a closed-from expression:

Y (A ) =
�

~S in + � ~L
� � 1

~S in Y obs ;

where ~S in = S in
jVtr j and ~L = L

jE j . For simplicity from now on, we denoteB =
~S in + � ~L . Then, we write Y (A ) as:

Y (A ) = B � 1 ~S in Y obs : (4.6)

It is well-de�ned thanks to the following result.

Lemma 4.6.1. Assume that the graph is connected. The eigenvalues� i of B
satisfy, for all i :

0 < � min � � i � � max �
1

jVtr j
+ 2 � : (4.7)

Given that, we now state the main result of this section.
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Theorem 4.6.2. Let nodesi; j be at leastk-hop from Vout , and q-hop from Vtr .
Then we have:

�
�
�
�
@Fout

@A ij

�
�
�
� . �

p
jVout j + � min

p
jVtr jjVout j

� 3
min jVtr jjE j

y2
1 (1 � � )q+ k ; (4.8)

where� = � min
� max

and y1 = kY obsk1 .

Since both� min ; � max are strictly positive, as shown in the proof in Section 4.6.3,
then 0 < 1 � � < 1. Therefore, Theorem 4.6.2 states that the magnitude of the
hypergradient isexponentially damped in a speed that is at least proportional to
(1 � u)q+ k , leading to a form of hypergradient scarcity.

The rest of this section is dedicated to proving Lemma 4.6.1 and Theorem 4.6.2.
We �rst expressY (A ) as a Neumann series, then we bound the derivative of terms
in the resulted series, and by extension the gradient ofFout .

4.6.1 Proof of Lemma 4.6.1 and Neumann series expan-
sion

In the �rst step, we re-write the inverse ofB using Neumann series. We �rst need
to prove that kI � B k < 1 (seee.g., Stewart (1998)), whereI 2 Rn� n is the
identity matrix. Remark that the eigenvalues ofI � B are 1� � i where� 1; : : : ; � n

are the eigenvalues ofB . Assuming the graph is connected, the ordered eigenvalues
f � i gn

i =0 of ~L satisfy:
0 = � 1 < � 2 � : : : � � n � 2 : (4.9)

The last inequality holds becausekL k � 2dmax � 2jE j, wheredmax is the maximum
degree of the graph. Letu 1; : : : ; u n be the eigenvectors of~L , where u 1 / 1n is
associated to 0.

Proof of Lemma 4.6.1. We havek~S in k � 1=jVtr j and k~L k � 2 so by a triangular
inequality the upper bound is proved.

Using the eigendecomposition of~L and recalling that � 1 = 0, for any x 2 Rn :

x > Bx = � x > ~Lx + x > ~S in x

= �
nX

i =2

(x > u i )2� i +

P
i 2 Vtr

x 2
i

jVtr j

which, minimized over the unit sphere, gives the expression of� min . It is immediate
that � min � 0. We prove that this value is strictly positive. Indeed,x > Bx = 0
implies that x > S in x = 0 and therefore x i = 0 for i 2 Vtr , but also that Lx = 0
and therefore that x / 1n , which implies that x = 0.



CHAPTER 4. HYPERGRADIENT SCARCITY IN GRAPH LEARNING 65

Let ~B = B =� max , with eigenvalues

0 � 1 � � i =� max � 1 � � < 1 ;

where� = � min
� max

. Using Neumann expansion,~B
� 1

writes:

~B
� 1

=
1X

r =0

(I � ~B )r ) Y (A ) =
1X

r =0

(I � ~B )r � � 1
max

~S in Y obs : (4.10)

We denote byT r the r -th term in Y (A ):

T r = ( I � ~B )r � � 1
max

~S in Y obs : (4.11)

Note that sincekS in Y obsk �
p

jVtr jkY obsk1 , we have:

kT r k �
� r y1

� max

p
jVtr j

; (4.12)

where y1 = kYobsk1 and � = 1 � � . Similarly, kY (A )k � y1

� min

p
jVtr j

. Moreover,

since I � ~B has the same zero-pattern thanA (except on the diagonal), ifu is
more than r hops fromVtr , we get (T r )u = 0.

4.6.2 Gradient of (T r )u

In the second step, we derive the formula of the gradient of (T r )u w.r.t. A , and
derive a bound on its magnitude as a function ofr , q the distance toVtr , and k the
distance toVout . For r > 0, the gradient of theu-th coe�cient in T r w.r.t. I � ~B
is:

r I � ~B (T r )u =
rX

h=1

� �
(I � ~B )r � h

�
u;:

� >

�
�
(I � ~B )h� 1� � 1

max
~S in Y obs

� >
;

by the product rule of di�erentiation, and we have

r I � ~B (T r )u =
rX

h=1

� �
(I � ~B )r � h

�
u;:

� >
(T h� 1)> :

Using that I � ~B = I � 1
� max

( ~S in + � ~L ), we have

r ~L (T r )u = �
�

� max
r I � ~B (T r )u

= �
�

� max

rX

h=1

� �
(I � ~B )r � h

�
u;:

� >
(T h� 1)> : (4.13)
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And �nally, by deriving ~L w.r.t. A ij :

@(T r )u

@A ij
= �

�
jE j� max

rX

h=1

�
(I � ~B )r � h

�
ui

(T h� 1) i (4.14)

+
�
(I � ~B )r � h

�
uj

(T h� 1) j

�
�
(I � ~B )r � h

�
uj

(T h� 1) i

�
�
(I � ~B )r � h

�
ui

(T h� 1) j ;

which allows us to prove the following.

Lemma 4.6.3. Let i; j; u such that: i; j are at least k-hop from u, and at least
q-hop from Vtr . Then:

�
�
�
�
@(T r )u

@A ij

�
�
�
� �

(
0 if q+ k > r

4�y 1

jE j� 2
max

p
jVtr j

(r � q � k)� r � 1 otherwise. (4.15)

Proof. Recall that (T r )u = 0 if u is more than r -hop from Vtr . Similarly, (( I �
~B )r )ui = 0 if u and i are more than r -hop from each other. Hence, the term�
(I � ~B )r � h

�
ui

(T h� 1) i appearing in (4.14) is 0 ifr � h < k or h � 1 < q, and
bounded by (� max

p
jVtr j)� 1� r � 1y1 otherwise. Similarly for the other terms, so

the sum in (4.14) runs over the indicesh that satisfy q + 1 � h � r � k, which
is either none ifq+ 1 + k > r , or r � q � k terms otherwise, which concludes the
proof.

4.6.3 Proof of Theorem 4.6.2

We �nally examine the hypergradient, and prove an exponential damping rate
of its magnitude with the cumulative distance toVtr and Vout (the sum of both
distances). ConsideringFout = kSout (Y (A ) � Y obs)k2, whereSout is the diagonal
selection matrix whose diagonal entries equal 1 if the corresponding node is inVout

and 0 otherwise, we have:

@Fout

@A ij
= 2(

@Y (A )
@A ij

)> Sout (Y (A ) � Y obs)

= 2
1X

r =0

(
@T r

@A ij
)> Sout (Y (A ) � Y obs) :

Using a triangular inequality, the bound on kY (A )k, and that kSout Y obsk �p
jVout jy1 we get:

kSout (Y (A ) � Y obs)k �
1 + � min

p
jVtr jjVout j

� min

p
jVtr j

y1 :
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By incorporating the resulting inequality in bounding the hypergradient, and by
noticing that Sout = S2

out we have:
�
�
�
�
@Fout

@A ij

�
�
�
� .

1 + � min

p
jVtr jjVout j

� min

p
jVtr j

y1

1X

r =0

kSout
@T r

@A ij
k

.
1 + � min

p
jVtr jjVout j

� min

p
jVtr j

y1

1X

r =0

 
X

u2 Vout

�
�
�
�
@(T r )u

@A ij

�
�
�
�

2
! 1

2

:

Using Lemma 4.6.3 and the hypotheses oni and j , for u in Vout , the term
�
�
� @(T r )u

@A ij

�
�
�

is 0 if r < q + k + 1, and bounded by 4�y 1

jE j� 2
max

p
jVtr j

(r � q � k)� r � 1 otherwise.

Hence:
�
�
�
�
@Fout

@A ij

�
�
�
� . �

p
jVout j + � min

p
jVtr jjVout j

� min jVtr jjE j� 2
max

y2
1

�
1X

r = q+ k+1

(r � q � k)� r � 1 :

Then we see that for� < 1 we have
1X

r = q+ k+1

(r � q � k)� r � 1 = � q+ k
1X

r =1

r� r � 1 ;

and
P 1

r =1 r� r � 1 = 1
(1� � )2 = 1

� 2 , which concludes the proof.

4.7 Alleviating hypergradient scarcity

In this section, we review strategies to mitigate the hypergradient scarcity prob-
lem. However, it is important that we make a distinction between resolving this
issue and resolving the over�tting problem. Indeed, if gradient scarcity is also
caused by the limited quantity of available labeled data, it is important to avoid
confusion with traditional over�tting. In particular, while traditional over�tting
is generally reduced by adding more training data,gradient scarcity is still ob-
served when optimizing edges far from labeled nodes regardless of the dataset size
and the number of labels.We study several strategies to mitigate hypergradient
scarcity in the bilevel setting, but we emphasize that they might not lead to a
better generalization error altogether.

Generalized edge re�nement by optimizing A r
obs. As hypergradient scarcity

is observed on edges connecting nodes distant from the labeled ones, a natural �x
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is to reduce this distance. One way to do that is by re�ning edges in a power of
A obs, as the matrix A r

obs includesr -edge long connections between nodes. In our
experiments we adoptA 6

obs as this notably expands the graph but does not achieve
the extreme case where the result is a complete graph.

Graph regularization. Graph regularization is used to impose a prior structure
on the learned graph, by adding a regularization term toFout to penalize graphs
with undesirable properties. For instance, Kalofolias (2016) propose the regular-
ization term � 
 1>

n logA 1n for some
 > 0, to penalize low-degree nodes. We
use this choice in the experiments, but note that imposing task-related priors and
regularization terms could lead to better performance. This will be the topic of
future work.

G2G for edge re�nement. The third �x we suggest is metric learning using
G2G models. In the outer problem, we propose to replace optimizing edge weights
by optimizing the parameters of a G2G model to predict similarity between nodes.
Let � be the weights of this model, and A � be its output graph, the G2G model we
adopt is (A � ) i;j = �

�
(X i � X j )2

�
, where the square function is applied entrywise,

� : Rp ! R is a Multi-Layer Perceptron (MLP) model consisting ofkG2G layers,
each is of the form:

X [l ] = � [l ](X [l � 1]W [l ]
1 + 1n (b[l ])> ) ;

where W [l ]
1 2 Rdl � 1 � dl ; b[l ] 2 Rdl are learnable parameters, anddl is the output

dimensionality of the l-th layer. The parameters are gathered as follows � =
f W [l ]

1 ; b[l ]gkG 2G
l=1 .

4.8 Experiments

We1 use two synthetic datasets, the �rst one, called synthetic dataset 1, is designed
to examine hypergradient scarcity in the Laplacian regularization scenario. The
second one is a binary classi�cation dataset that can be used for both graph-based
models. Due to the paradigm behind construction, we call it the cheaters dataset.
We also illustrate our �ndings on the real-world Cora dataset.

Bilevel optimization routine: likewise the scenario of learning G2G models via
bilevel optimization in Chapter 3, the problem Eq. (4.1) is intractable as neither
the solution of the inner problem nor its gradientw.r.t. A (or to � with G2G
models) has a closed form expression that can be evaluated. To overcome this

1Our Python implementation is available at https://github.com/hashemghanem/
Gradients_scarcity_graph_learning .

https://github.com/hashemghanem/Gradients_scarcity_graph_learning
https://github.com/hashemghanem/Gradients_scarcity_graph_learning
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di�culty, we employ ITD to approximate hypergradients. That is, we unroll (Gre-
gor and LeCun, 2010)� in iterations of the gradient-based inner optimizer, then
use theHigher package (Grefenstette et al., 2019) to trace iterations and perform
higher-order automatic di�erentiation to obtain hypergradients. For both the in-
ner and the outer optimizers, we consider the Adam algorithm (Kingma and Ba,
2014).

Synthetic dataset 1: we samplei.i.d. latent variables X 2 Rn� p for nodes
uniformly at random from [0; 1] with n = 1536; p = 2. The ground-truth graph
A GT is constructed s.t. (A GT ) i;j = 1 if kX i � X j k2 < � , and 0 otherwise. � is
set to 0:06 in our experiments. Two distinct procedures were employed to sample
the nodes that compriseVtr , leading to two distinct realizations of the dataset
as illustrated in Fig. 4.1(top). The �rst procedure randomly samples 100 nodes
from the setV, henceVtr is well-spread, whereas the second procedure selects the
100 nodes with the smallest Euclidean distance to the point (0:5; 0:5), thus Vtr is
concentrated in a small neighborhood in this case. In both cases, we randomly
sample 25 nodes fromV to construct Vout . The remaining nodes are equally divided
between the validation and the test sets. Then, each nodei in Vtr is labeled as
follows:

(Y obs) i = � (e� kX i � a 1k2

2(0 :2) 2 + e
�k X i � a 2k2

2(0 :2) 2 + e
�k X i � a 3k2

2(0 :2) 2 ) ;

wherea1; a2; a3 are randomly sampled from [0; 1]2, and � is a scaling factor such
that labels lie in [0; 1]. By this construction, the assumption of label smooth-
ness on the graph is met, and the Laplacian regularization can be applied as in
Eq. (1.1).

To generate labels for other nodes, we plug the labels ofVtr and A GT in Eq. (1.1)
with the Laplacian regularization model (1.2) �xing � = 1, such that the solution
holds the sought-for labels. This way, the ground-truth graph actually plays a role
in labeling nodes inVout and in the validation set.

The noisy observed graph is built upon random weights

(A obs) i;j = � i;j (A GT ) i;j where � i;j � U ([0; 1]) :

Experiments on this dataset are done with the Laplacian regularization in the
inner problem as in Eq. (1.1).
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Figure 4.1 { hypergradient scarcity under the bilevel optimization setting on the
synthetic dataset 1, adopting the Laplacian regularization in the inner problem.
Top : illustration of the graph. The training nodes Vtr are circled in red, the
colors correspond to the distance toVtr . The eigenvalue� min is given as a ratio of
the smallest positive eigenvalue of~L . Vout is randomly sampled fromV but not
shown here.Bottom : Hypergradient magnitude

�
�
� @Fout

@A ij

�
�
� with respect to thesum of

distances toVtr and Vout . Left : the training set Vtr is well-spread thereby aligned
with the high-frequency eigenvectors of the graph, resulting in ahigh � min . The
decrease of the hypergradients is sharp with the distance.Right : Vtr is aligned
with the low-frequency eigenvectors of the graph, resulting in alow � min . The
decrease of hypergradients magnitude is not as sharp as the previous case.

Cheaters dataset: nodes in this graph represent students in an exam classroom.
Setting n = 256; p = 10, the i.i.d. featuresX 2 R256� 10 are sampled uniformly
at random from [0; 1]. For a nodei , X i; 0 represents the position of the according
student in the classroom. For visualization purposes we enumerate nodes following
the ascending order ofX :;0. The remaining 9 features of a student represent the
grades he is capable of scoring in the corresponding exam question. However,
students tend to cheat with their neighbors in the graph. The ground-truth graph
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A GT is constructed as follows:

(A GT ) i;j = exp ( �k X i; 0 � X j; 0k2
2=2� 2) :

The observed graphA obs is drawn from a random model as

(A obs) i;j � Ber ((A GT ) i;j ) :

We set � = 0:027 s.t. the number of edges inA obs approximatesn logn. Students
cheat such that their gradesY grade after the exam are

Y grade = A GT X :;1:919 :

A student passes the exam if his grade is greater than a threshold� , i.e., (Y obs) i =
1 if (Y grade) i > � and 0 otherwise. We put� = 60 so that approximately half
of students pass the exam.Vtr includes nodes inf 0; 1; : : : ; n=8g [ f 7n=8; : : : ; n �
1g, i.e., near the two ends of the 1-dimensional class.Vout = f 3n=8; : : : ; 5n=8g,
i.e., centered around the middle of the class. Remaining nodes are equally divided
into a validation and a test set. Experiments on this dataset are done with a GNN
model.

Real-world dataset: we validate our �ndings on the Cora dataset (Lu and
Getoor, 2003). Cora is a citation datasets, where nodes represent research pub-
lications described by a bag of words, and edges stand for citations. The task is
to classify articlesw.r.t. their topic. We limit our experimentation on real-world
datasets to the Cora dataset, as our empirical results are intended to establish
a proof-of-concept. Therefore, we refrain from conducting experiments on other
benchmark datasets.

Models: G2G and GNN models are implemented usingPyTorch (Paszke et al.,
2019) andPyTorch Geometric (Fey and Lenssen, 2019), respectively. The function
� in the G2G model is an MLP with 2 hidden layers, each is followed by theReLu
activation function and has 16 neurons for the cheaters dataset and 32 neurons
for Cora. The GNN has 1 hidden layer of 8 neurons for the cheaters dataset and
128 for Cora. This layer is followedReLu, while the output is followed by the
sof tmax function.

Setup: we use Adam as the inner and the outer optimizer with the default pa-
rameters of PyTorch, except for the inner learning rate� in and the outer one
� out , which are tuned from the setf 10� 4; 10� 3; : : : ; 10g. The best values were
� in = 10� 2 with GNNs as a graph-based model,� in = 10� 1 and � in = 10 with
the Laplacian regularization on Cora and on the synthetic dataset 1, respectively.
On the cheaters dataset,� out = 10� 3 adopting a G2G model, while� out = 10� 2

in other cases. On the synthetic dataset 1,� out = 10� 1. On Cora, � out = 10� 2 in
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Figure 4.2 { Hypergradient scarcity observed when solving the edge re�nement
task with the bilevel optimization framework. We run the experiment on the
cheaters dataset, and use a 2-layer GNN as a graph-based model. Left: graph
initialization. Right: hypergradient at an arbitrary outer iteration, namely 9. It
is clear that the hypergradient on edges between unlabeled nodes far from the
ones inVout [ Vtr equals zero. Recall thatVtr = f 0; 1; : : : ; 32g [ f 224; : : : ; 255g and
Vout = f 96; : : : ; 160g.

all experiments without a G2G model, otherwise� out = 10� 4 adopting the GNN
model, and � out = 10� 3 adopting the Laplacian regularization. We set, with a
grid search, � in to 200 for the cheaters dataset, 500 for the synthetic dataset 1
and Cora adopting the Laplacian regularization, and 100 for Cora with a GNN
model. In experiments on the cheaters dataset, we multiply the default initial-
ization of the last layer of the G2G model by 10� 5 s.t. its output edges at the
�rst iteration are of small magnitude. We adopt this strategy to measure the level
of scarcity by counting the number of learned edges of magnitude greater than a
chosen threshold. GNN weightsW and the initialization of labels when using the
Laplacian regularization are initialized at random after each outer iteration, using
Xavier initialization and uniformly at random from [0; 1], respectively. Edges to be
re�ned are initialized uniformly at random from [0; 1], except for experiments on
the cheaters dataset where the interval becomes 10� 5 � [0; 1]. We set the number of
outer iterations � out to 150 while ensuring convergence, and we select the graph (or
the G2G weights) with the highest validation accuracy. We set� = 1 in training
when considering the Laplacian regularization, as we expect the bilevel algorithm
to learn this parameter by scaling the learned adjacency matrix. When applying
the Laplacian regularization fed withA obs on Cora, we set� = 0:1 after a grid
search. 
 in the graph regularization term is set to 1 following a grid search on
the set f 10� 3; 10� 2; : : : ; 10g.
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4.8.1 Hypergradient scarcity with GNN models

In this experiment, we consider a 2-layer GNN model in the bilevel framework. We
solve the edge re�nement task (4.1) on the cheaters dataset, where` in Eqs. (1.1)
and (4.1) is the CCE function. Fig. 4.2(left) depicts the initialization of the ad-
jacency matrix. It also shows what edges are to be optimized, that is, edges
whose initialization is nonzero. In Fig. 4.2(right), we show the hypergradient at
the outer iteration 9, which is arbitrarily chosen, where it is clear that edges be-
tween unlabeled nodes far from the ones in the unionVout [ Vtr get no supervision
during the training process. Recall thatVtr = f 0; 1; : : : ; 32g [ f 224; : : : ; 255g and
Vout = f 96; : : : ; 160g. This aligns with our �ndings, which state that edges be-
tween nodes at least 2-hop from nodes inVout [ Vtr receive zero hypergradients.
This, as seen in Fig. 4.3, leads to a learned graph that over�ts training nodes and
even generalizes worse thanA obs. We believe that this is the main reason why the
method proposed in Wan and Kokel (2021), which solves a graph sparsi�cation
task using bilevel optimization with a GNN classi�er, does not necessarily improve
over the observed graph.

4.8.2 Hypergradient scarcity with Laplacian regularization

We here examine hypergradient scarcity when adopting the Laplacian regulariza-
tion in the inner problem. We run the bilevel optimizer to solve the edge re�nement
task on the synthetic dataset 1. The dataset corresponds to a regression problem,
so ` in Eqs. (1.1) and (4.1) is the MSE loss function.

In Fig. 4.1(bottom), we plot the absolute value of hypergradients at the outer
iteration 6 as a function of the edge cumulative distance toVtr and Vout , which is
de�ned as follows: we computeq + k, the sum of hop distances toVtr and Vout ,
respectively, for its both endpoint nodes, then we take the minimum of the two re-
sults. One observes the hypergradient scarcity phenomenon, since hypergradients
decay exponentially as the edge distance increases. This validates our analysis
articulated in Theorem 4.6.2. In addition, we observe in practice that� is never-
theless quite small, and that our bound in Theorem 4.6.2 is quite loose. Another
observation is that the decrease rate is higher whenVtr is well-spread in the graph.
Deriving a tighter bound on the magnitude of hypergradients and investigating the
link between the distribution of labeled nodes and this bound will be the subject
of a future work.

4.8.3 Testing solutions to mitigate hypergradient scarcity

We run our experiments on the cheaters dataset using the 2-layer GNN as a graph-
based model. In each experiment, we run our bilevel optimization framework with
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(a) (b) (c)

Figure 4.3 { E�ciency of proposed solutions to hypergradient scarcityw.r.t. the
number of re�ned edges and the generalization capacity. An edge is considered well
re�ned if its learned weight is larger than one percent of the maximum learned edge
weight. The solutions are graph regularization with� 1> logA 1, metric learning
using a G2G model, and generalized edge re�nement by re�ning edges inA 6

obs.
(a): training accuracy onVout . (b): number of re�ned edges. (c) test accuracy.

one of the suggested �xes. We consider two criteria to measure the e�ciency of
each solution, the �rst one is counting the number of re�ned edges. At any outer
iteration, we say that an edge is re�ned if its learned weight is greater that one
percent of the maximum learned edge weight at the same iteration. Recall that
we initialize the graph/G2G with small weights (� 10� 5). The second criterion is
the test accuracy. The �rst criterion assesses the ability to alleviate hypergradi-
ent scarcity, while the second assesses the generalization to unseen nodes during
training, and thus if the learned graph is meaningful.

Fig. 4.3 shows that all three �xes produce better resultsw.r.t. the �rst criterion,
as the number of re�ned edges is larger at almost every iteration, with optimizing
edges inA 6

obs being the most e�cient, and the G2G model and graph regularization
having similar performance. Moreover, one notices that this number decreases with
the iteration when re�ning edges inA obs or in A 6

obs, which is expected as only a
small portion of edges receive supervision; however this portion is larger when
re�ning A 6

obs.

Regarding the second criterion, the G2G model and the graph regularization gen-
eralize well, as both combat hypergradient scarcity without increasing (or even by
decreasing) the number of parameters to learn. On the other hand, optimizing
edges inA 6

obs deteriorates performance in the test phase. A likely explanation
is that by expanding the graph, we increase the number of parameters to learn,
which means a more complex model that is more likely to over�t training nodes.
This experiment illustrates that hypergradient scarcity is not the traditional
over�tting related to data/label scarcity, and resolving it does not necessarily
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Figure 4.4 { Observing hypergradient scarcity and the e�ect of graph regularization
on Cora. Left: adopting the GNN as the graph-based method. Right: adopting the
Laplacian regularization model. We plot the hypergradient against edge distance.
In connected components without at least a node from each ofVtr and Vout in
the Laplacian regularization case (or without a node fromVtr [ Vout in the GNN
case), edge distance is not de�ned. We assign the distance 15 to edges in such
components for visualization purpose.

promote better generalization.

4.8.4 Results on Cora

We use bilevel optimization (4.1) to solve an edge re�nement task on Cora, trying
both the GNN and the Laplacian models. Here the downstream task is a multi-
label classi�cation problem and` is the CCE function. We depict in Fig. 4.4
the received hypergradient on edges at outer iteration 9 as a function of their
distance to labeled nodes. For the Laplacian regularization case, that is the edge
cumulative distance toVtr and Vout as de�ned in Section 4.8.2. To compute the
edge distance in the GNN case, we compute for each of its endpoint nodes its hop
distance toVtr [ Vout , then we take the minimum. In accordance with our analysis,
the �gure displays a null hypergradient for distances greater than 2 in the GNN
case, while the Laplacian regularization scenario exhibits a hypergradient that
diminishes exponentially with distance.

Regarding the generalization capacity, Table 4.1 shows that the learned graph
is inferior to A obs in the GNN case for the test error. Given that the learned
graph achieves 100%; 94:9% accuracies onVtr ; Vout , respectively, one concludes that
hypergradient scarcity provokes over�tting. This is indeed expected due to the
extreme scarcity in the GNN scenario, as edges of distance greater than 2 keep
their random initialization after the training process. This is, however, not the
case in the Laplacian regularization scenario as most edges are of distance less
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Table 4.1 { Accuracies obtained on Cora when the graph-based model is trained
using the output graph of the Bilevel Optimization (BO) framework, the same
framework equipped with graph regularization, the same framework optimizing
a G2G model as in Chapter 3. We also benchmark against GAM (the result
is reported from the according paper) and againstA obs. For each graph-based
method, we report test accuracy in the according �rst line and training accuracy
on Vout in the second one. Training accuracy onVtr equals 100% for all methods.

Graph A obs BO BO+regularization BO+G2G GAM

GNN
77:0 76:2 80:3 82:0 84:8
77:4 94:9 94:1 97:4 -

Laplacian
71:7 76:2 78:3 76:2 -
71:0 81:9 83:2 83:5 -

than 11, thereby they do not exhibit damped hypergradients and the impact on
generalization is not observed.

Next, we test the e�ciency of the proposed solutions to mitigate hypergradient
scarcity. We do not try learning a power ofA obs as the memory requirement
goes beyond the limits we have access to. Results in Fig. 4.4 prove the e�ciency of
graph regularization as all edges receive non-zero hypergradients with a comparable
magnitude to those on edges of small distance. Note that hypergradients are
received on the G2G weights when it is deployed, not on edges, so we do not
depict them in this �gure. Regarding the impact on generalization, Table 4.1
shows that both �xes yield signi�cant improvements in test accuracy overA obs

with the GNN model. In the Laplacian regularization case, graph regularization
produces a higher test accuracy, unlike the G2G model which generalizes equally
good as when learning directly edge weights. We also notice that GNN model
leads to superior results in all scenarios, with a notable gap for the G2G model
and graph regularization, and when directly usingA obs. This is expected, as the
Laplacian regularization promotes similarity between connected nodes but, unlike
GNNs, is not a supervised-based method. We �nally point out that the bilevel
optimization framework with either �x does not achieve state-of-the-art results
produced by GAM with the same GNN model.

Other experiments suggest that although G2G models alleviate hypergradient
scarcity, regardless of the number of neurons in its layers, the generalization perfor-
mance is sensitive to this number and if set large, clear over�tting is observed.



Chapter 5

Conclusion

The main focus of this thesis was graph learning with bilevel optimization for
Semi-Supervised Learning (SSL) tasks. The �rst part of it was dedicated to learn-
ing analysis-sparsity priors for denoising problems (Chapter 2). This problem is
indeed a graph learning problem in graph total variation-related tasks. Since the
problem is intractable and hypergradients are not accessible, we proposed to em-
ploy ITerative Di�erentiation (ITD) to approximate hypergradients w.r.t. priors
and then learn them using a gradient-descent optimizer. Despite non-smoothness
present due to the`1 norm in the inner problem, and that no relaxation regime
is adopted in our method, experiments proved its e�ectiveness in extracting the
analysis-sparsity operator from 1D piecewise constant signals and from 2D images.
Moreover, we proposed a simple column-wise centering projection in the former ap-
plication, and empirically proved that it increases stability and extracts operators
with higher quality than a representative of relaxation-based methods.

The second part of this thesis was concerned with real-world graphs being noisy
or not given in SSL applications. We proposed a bilevel optimization framework
to train parametric models, which we referred to as G2G, on predicting node sim-
ilarity thereby better graphs (Chapter 3). G2G models have lower memory and
training costs compared to optimizing edge weights thanks to its shared parame-
ters, and have the advantage to generalize by expanding the graph on new points.
Similarly, we resorted to ITD to approximate hypergradientsw.r.t. G2G weights,
and empirically showed that unrolling only the last 10 inner iterations produces
high-quality graphs, which notably saves memory and training time. Experiments
on synthetic data proved the capacity of our method to learn graphs in the absence
of an observed graph,i.e., learning the similarity criterion from features. Com-
pared to observed graphs, experiments on real datasets showed that G2G boosts
the performance of GNN models and generalizes well on the test set.

77
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Next, we identi�ed and studied the hypergradient scarcity phenomenon when di-
rectly optimizing observed edges instead of G2G models (Chapter 4). This phe-
nomenon manifests as a situation where edges linking nodes far from labeled nodes
receive zero gradients. We proved that this problem occurs for GNNs as the graph-
based model. We also proved that replacing GNNs by the Laplacian regularization
does not resolve the issue; however, the phenomenon is less severe: we bounded
the magnitude of hypergradients and proved that they are exponentially damped
with distance to labelled nodes. To alleviate this issue, we proposed to resort to
metric learning using G2G models as in Chapter 3, graph regularization, and re�n-
ing edges in a power of the observed adjacency matrix. Our experiments validated
our �ndings, and privileged the �rst two solutions over the latter. Moreover, we
showed that alleviating the hypergradient scarcity does not necessarily alleviate
over�tting.

Many questions remain unanswered and are left for future works.

Learning analysis-sparsity operators of unknown dimensions. In Chap-
ter 2, our framework assumed that the number of columns in the analysis-sparsity
operator is given. Recall that this number in applications related to graph to-
tal variation is the number of edges in the graph. Learning this hyperparameter
when not given seems to be challenging in this point, since it is a discrete variable
therefore cannot be learned using gradient-based methods and since grid search
methods can be expansive due the large number of possible values.

The number of parameters in G2G models. At the end of Chapter 4 where
G2G models are trained to solveedge re�nement tasks, we highlighted that the
number of parameters in G2G models a�ects their generalization performance and
that large values cause over�tting. Interestingly with graph construction tasks in
Chapter 3, speci�cally in Section 3.5.1, the G2G managed to recover the ground-
truth graph while having a relatively large number of neurons, even though no
observed graph is given in this setting. This showed an information-preservation
phenomenon when constructing the latent position graph and its labels. Investigat-
ing the factors that promote this phenomenon and how the edge re�nement setting
a�ects it is an important question and a good continuation of our work.

Hypergradient scarcity in the Laplacian regularization case. In Chap-
ter 4, we proved that the hypergradient decreases exponentially with distance to
labeled nodes in the Laplacian regularization case. However, experiments in Sec-
tion 4.8.2 showed that the empirical rate is much faster than the theoretical one
hence implying that our bound is loose. We also observed that the decrease rate is
higher when the inner training setVtr is well-spread through the graph as shown
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in Fig. 4.1. Deriving a tighter bound on the magnitude of hypergradients and in-
vestigating the link to the distribution of labelled nodes is an interesting point to
consider. This could be achieved by considering the zero pattern inB = S in

jVtr j + � L
jE j

in Lemma 4.6.3, rather than treating it as a generic matrix as we did. Alternatively,
employing di�erent techniques than the Neumann expansion can also contribute
to the analysis. Last, our analysis focused only on regression tasks, we believe that
following similar steps can extend it to the classi�cation setting.



Appendix A

Automatic Di�erentiation (AD)

In this appendix, we introduce Automatic Di�erentiation (AD), which is a key
ingredient in the ITD bilevel optimization routine. We �rst present the di�erent
techniques used to evaluate derivatives, including AD, symbolic and numerical dif-
ferentiation, while highlighting AD's capacity to di�erentiate iterative algorithms.
We also present the two implementation schemes of AD, theforward modeand the
reverse modeadopted in this work. We �nally present our empirical contribution,
which points out the limitation of AD in di�erentiating a high number of iterations
depending on the choice of the iterative optimizer.

Gradients evaluation is a key stage in optimization and machine learning, where
one usually implements a computer program to maximize (or minimize) a target
function moving along (or opposite to) its gradient. Four methods exist to compute
gradients, the �rst method includes manually writing down the analytical gradi-
ent, and letting a program evaluate it. For complex functions, this can be time
consuming, extremely di�cult, and prone to mistakes. Moreover, this technique
works on functions with a closed-form expression that can be evaluated, which is
not the case in the problems of interest in this work. The second method approx-
imates gradients using numerical di�erentiation, which is easy to implement, but
is exposed to round-o� errors (Jerrell, 1997), and still expensive in case of a high
number of variables.

The remaining two methods have a notable intersection, algorithmically speak-
ing. Symbolic di�erentiation, as the third method, is automatically performed by
computer tools like Mathematica, which output a symbolic expression of deriva-
tives. In detail, after the expressionof a function is written, such tools break
it apart into a sequence of basic operations (sum, product, composition, etc..)
applied on functions whose derivative is known (Grabmeier and Kaltofen, 2003).
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Then, the overall derivative is made up by using the according di�erentiation
rules, e.g., d

dx (f + g) = df
dx + dg

dx , also the chain rule for function composition. This
derivative then can be evaluated at any given point.

Symbolic di�erentiation addresses the problem of errors, and the large time needed
to manually calculate derivatives. On the other hand, incautious application of
the previous rules can lead to exponential growth in the derivative expression,
as some terms are unnecessarily repeated resulting in a higher evaluation cost,
this is known as expression swell (Corliss, 1988). More importantly, symbolic
di�erentiation works only on functions of closed-form expression, which severely
limits the expressivity of models that can be di�erentiated.

The fourth method is Automatic Di�erentiation (AD), that is of interest in this
work as it mitigates previous drawbacks. AD manipulates the computation 
ow
in a computer program (not symbolic expressions). The underlying claim is: all
numerical computations can be reduced to compositions of elementary operations,
whose derivative rule is known (Verma, 2000).

AD technique works as follows (Baydin et al., 2018), �rst a value is assigned to
each input variable, then during the execution of the program:i) AD traces all new
de�ned variables that are dependent on the ones we want to di�erentiate for;ii)
once an operation is performed on a dependent variable, sayvi , to evaluate another
vj , directly compute the derivative valuedvj =dvi ; iii) accumulate the derivatives
in step 2 through the chain rule; this gives the derivative value (not expression) of
the whole compositionw.r.t. a chosen variable.

Although AD and symbolic di�erentiation rely on the chain rule, AD can e�ciently
di�erentiate not only closed-form formulas, but also iterative algorithms. That is
to say, AD can compute the derivative of the output of an iterative algorithm
w.r.t. its input variables. Moreover, AD does not require these algorithms to
perform the same set of operations at each iteration, as it can trace the overall
computation 
ow when the operations change from one iteration to the other,
which can be the case when using conditioned statements and loops (if, while,
for ). This makes AD suitable for gradient-based optimization.

In practice, AD can be implemented in two ways:forward modeand reverse mode.
We present both schemes in the following sections.

A.1 Forward mode

This mode specializes in computing the directional derivative. That is, given a
vector that de�nes a direction in the input space, the forward mode computes the
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Computation 
ow to evaluate y?
?
?
?
?
?
?
?
?
?
?
?
?
?
y

x1 = 3
x2 = 1
v1 = ln x1 = 1.1

v2 = x1x2 = 3
v3 = cos (v2) = -0.99

y = v1 + v3 = 0.11

Computation 
ow of AD forward mode?
?
?
?
?
?
?
?
?
?
?
?
?
?
y

_x1 = 1
_x2 = 0
_v1 = _x1

@v1
@x1

= 0.33
_v2 = _x1

@v2
@x1

+ _x2
@v2
@x2

= 1
_v3 = _v2

@v3
@v2

= -0.14
_y = _v1

@y
@v1

+ _v3
@y
@v3

= 0:19

Table A.1 { Illustration of the forward mode of AD, we consider the exampley =
f (x1; x2) = ln x1 + cos(x1x2) at x = ( x1; x2) = (3 ; 1). We compute the derivatives
@y

@x1
jx1=3 , thereby we initialize with _x1 = 1; _x2 = 0. Left: the computation trace of

y, right: AD forward accumulation of derivatives using the chain rule.

derivative of each output component along this direction. Letx = ( x1; : : : ; xn )
be the input variable, v be an intermediate variable that is de�ned through the
program execution, andy = ( y1; : : : ; ym ) be the program output that is a function
of v, the forward scheme takes in input the direction vector_x = ( _x1; : : : ; _xn )> ,
and construct derivatives using the chain rule starting fromx , then v, and ending
in y . Formally, it �rst evaluates _v = J v (x ) _x , then _y = J y (v) _v. The output _y
is nothing but the Jacobian-vector productJ y (x ) _x . Our example in Table A.1
shows this process step by step.

It is noteworthy that once an intermediate variable is evaluated in the program,
it is directly augmented with the value of its derivative in the forward mode. On
the one hand, this gives that the computational 
ow of derivatives has the same
order as the main program, and the �nal derivatives are obtained once the output
is evaluated. On the other hand, there is no need to store the computation 
ow
that led to a variable if it is no further used in the program,i.e., this mode has a
low memory cost. One may also notice that to compute the derivativesw.r.t. each
componenti in the input variable, a di�erent call of the forward mode is needed
considering the direction _x , where _x j = 1 if j = i and 0 otherwise.

A.2 Reverse mode

This mode returns the value of the partial derivativew.r.t. each component in
the input variable. In contrast to the forward mode, here we �rst complete the
computations needed to evaluate the output, then we start the ones needed to
evaluate derivatives. That is, the chain rule accumulates derivatives in an opposite
order to the computer program. Given an initialization vector�y = (�y1; : : : ; �ym ),
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Computation 
ow to evaluate y?
?
?
?
?
?
?
?
?
?
?
?
?
?
y

x1 = 3

x2 = 1
v1 = ln x1 = 1.1

v2 = x1x2 = 3
v3 = cos (v2) = -0.99

y = v1 + v3 = 0.11

Computation 
ow of AD reverse modex
?
?
?
?
?
?
?
?
?
?
?
?
?
?

�x1 = �v2
@v2
@x1

+ �v1
@v1
@x1

= 0.19
�x2 = �v2

@v2
@x2

= -0.42
�v1 = �y @y

@v1
= 1

�v2 = �v3
@v3
@v2

= -0.14
�v3 = �y @y

@v3
= 1

�y = 1

Table A.2 { Illustration of the reverse mode of AD, we consider the example
y = f (x1; x2) = ln x1 + cos(x1x2) at x = ( x1; x2) = (3 ; 1). We compute the
derivatives �x1 = @y

@x1
jx1=3 and �x2 = @y

@x2
jx2=1 . Left: the computation trace of y,

right: AD reverse accumulation of derivatives using the chain rule.

this mode computes derivatives starting from�v = J >
y (v) �y , then �x = J >

v (x ) �v . In
other words, �x is the transpose Jacobian-vector productJ >

y (x ) �y . Our example in
Table A.2 shows this process step by step.

Note that to compute the partial derivatives ofyi with respect to components inx ,
�y must be de�ned as follows:�y j = 1 if i = j and 0 otherwise. Therefore, one call
of this mode is needed to compute the partial derivatives of each component in the
output y . Also note that the computation 
ow outputting y needs to be stored
when deploying this mode,i.e., the reverse mode has a higher memory cost.

A.3 Reverse mode vs. forward mode

As we previously mentioned, the number of calls in the forward (reverse) mode
equals the input (output) dimensionalityn (m). For that reason, the forward mode
is usually preferred whenn � m due to its e�ciency in that scenario. Conversely,
the reverse mode is more suitable whenm � n. Following this logic, we adopt the
reverse mode in our work since the output is a scalar loss function and the input
is of high dimensionality.

A.4 Sensitivity to the inner optimizer

In the section, we present one of our empirical observations which implies that
AD, thereby the ITD method, fails to di�erentiate through a high number of
iterations depending on the choice of the inner optimizer. This is, to the best of
our knowledge, the �rst work that identify this issue in the literature.
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Motivated by the popular optimizer called the Adaptive Moment Estimation algo-
rithm (Adam) signi�cantly outperforming SGD in all graph-based SSL experiments
(Chapters 3 and 4), we decided to adopt it as the inner optimizer. LetW t be the
parameters of the inner problem at thet-th inner iteration, then Adam's update
rule is given by (Kingma and Ba, 2014):

W t+1 = W t � � in cm t=(
p

bv t + � ) ; (A.1)

wherecm t = m t=(1� � t
1); bv t = v t=(1� � t

2) are the bias-corrected moment estimates,
� 1; � 2 are exponential decay rates de�ned by user (so is� ), m t = � 1m t � 1 + (1 �
� 1)r W t � 1 Fin ; v t = � 2v t � 1 + (1 � � 2)(r W t � 1 Fin )2 are the biased moment estimates
with m 0 = v0 = 0.
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Figure A.1 { Examining the capacity of ITD in di�erentiating through a large
number of inner iterations. We experiment on toy inner problems: Eq. (A.2) and
Eq. (A.3). We also consider two inner optimizers: Adam and SGD. We set the
outer level variablea = 4. For each pair (inner problem, optimizer), we vary the
number of iterations � in , then we run AD to compute the gradient of its output
w.r.t. a. We obtain the gradient r xFin using AD implemented in thePyTorch
package (Paszke et al., 2019). To di�erentiate through the iterative optimizer
and computer ax � in , we use AD implemented in theHigher package(Grefenstette
et al., 2019). Top: experiments on Eq. (A.2).Down: experiments on Eq. (A.3).
Left: the optimizer output x � in (a). Right: the gradient r ax � in . We observe that
in all experiments, x � in converges to the true solutionx?. However, AD fails to
di�erentiate through Adam's iterations when � in gets large, while it succeeds in
the case of SGD.

To verify the pro�ciency of ITD in this case, we designed simple inner problems
to examine the capacity of AD in di�erentiating through Adam's iterations and
producing an accurate approximation of the hypergradient. We found that when
the number of iteration is large, AD-based hypergradient either diminishes to zero,
explodes or holds not-a-number \NaN" output. To illustrate this, let us consider



APPENDIX A. AUTOMATIC DIFFERENTIATION (AD) 86

the following two toy inner problems:

x?(a) = min
x2 R

Fin (x; a) = ( x � exp(a))2 ; (A.2)

x?(a) = min
x2 R

Fin (x; a) = ( x � a)2 ; (A.3)

where a 2 R is the outer variable, i.e., � in Eq. (1.7) is the set f ag. In each
scenario, we seta = 4 (chosen arbitrarily) and solve the inner problem once using
the Adam optimizer and a second time using the SGD optimizer, while varying
the number of iterations � in . In all experiments we initializex with the value 0,
and the learning rate is set to 0:1. Fig. A.1 shows the optimizer outputx � in (a)
and its gradient r ax � in evaluated using AD. Although both optimizers converge to
the true solution for every choice of� in , we observe that AD fails to di�erentiate
through Adam's iterations when � in gets large (larger than 10555 for Eq. (A.2)
and 7500 for Eq. (A.3)), while it succeeds in the case of SGD. The reason behind
this behavior is still ambiguous. It is possibly related to the implementation of
AD in the Higher package (Grefenstette et al., 2019), which we use to di�erentiate
iterative optimizers. We leave the investigation of this issue for future work.

Fortunately, the number of iterations � in in our experiments has small values that
do not exceed 500, which are set based on the validation loss while ensuring con-
vergence too. To further ensure the stability of ITD in our experiments, we com-
pared the produced hypergradient against the theoretical approximations of the
true hypergradient whenever available. For instance, we saw in Section 1.7.3 that
the solution of the inner problem when adopting the Laplacian regularization in
regression SSL tasks has a formula that can be analytically approximated using
truncated Neumann series. The hypergradient adopting this approximation in the
inner problem can be analytically derived and evaluated in order to compare it
against the one produced by ITD. We found that both hypergradients are close
to each other. Last, we considered that the output of the bilevel optimization
with Adam outperforming the one with SGD as another indication that ITD pro-
duces hypergradients of high quality. The performance criteria here are again the
validation and outer losses.



Appendix B

Bilevel learning of
analysis-sparsity priors

B.1 Solving the dual problem of Eq. (2.1b) with
FISTA

Fortunately, the term �B 1 (z) in the dual problem in Eq. (2.2) has a simple proximal
function given by � B 1 : the orthogonal projection on the ballB1 . So indeed,
we solve Eq. (2.2) with an accelerated FB algorithm, namely the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009). At each
iteration we update z as follows:

z i +1 = prox � B 1

�
qi � � in r (

1
2




 
 qi � y




 2

2
)
�

= � B 1

�
qi � � in 
 > (
 qi � y )

� (B.1)

s.t. q1 = z0 is the initialization of z, � in is the step size, and:

qi +1 = z i +
t i � 1
t i +1

(z i � z i � 1)

t i +1 =
1
2

(1 +
q

1 + 4t2
i ) ; t1 = 1:

(B.2)

To conclude with the inner part: having
 and y as input, one computeẑ(
 ; y )
with a su�cient number of updates as in Eq. (B.1), then get ŵ (
 ; y ) in output
using Eq. (2.3).
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B.2 Proximal operator of the analysis-sparsity
regularizer

We show in this section why evaluating the proximal operator of the analysis-
sparsity regularizerk
 > �k1 is not e�cient, thus, as a straightforward result, solving
the inner problem Eq. (2.1b) directly with a FB algorithm is impractical.

By de�nition, the proximal operator is de�ned as follows:

prox� k
 > �k1
(w ) , arg min

x 2 Rp

1
2

kx � wk2
2 + � k
 > x k1 ; (B.3)

where � > 0 is usually the step size of the used FB algorithm. One notices
that for � = 1, this problem is the same inner problem Eq. (2.1b). For other
values of� , one can still show that both problems are equivalent by noticing that
� k
 > x k1 = k(� 
 )> x k1. The di�culty in evaluating the proximal operator stems
from the fact that the solution of Eq. (B.3) doesn't have a closed-form expression,
as explained in the main script.

In practice, iterative optimizers are implemented to evaluate prox� k
 > �k1
, e.g.,writ-

ing the dual problem of Eq. (B.3) and solving it with any FB algorithm Chambolle
et al. (2010). In our work, we choose to apply such optimizer directly on the in-
ner problem based on the equivalence between Eqs. (2.1b) and (B.3). This saves
us from introducing Eq. (B.3) as another nested optimization that would pro-
hibitively increase the computation cost of our method, while yielding no bene�ts
to the quality of denoised signals.



Annexe C

R�esum�e des travaux

C.1 Contexte

Le coût �elev�e de l'�etiquetage des donn�ees repr�esente un d�e� car la quantit�e de
donn�ees g�en�er�ees augmente de fa�con exponentielle. En cons�equence, il est cou-
rant d'observer �a la fois des points de donn�ees �etiquet�es et non �etiquet�es, ces
derniers �etant g�en�eralement la grande majorit�e. Les tâches d'apprentissage sur
des ensembles de donn�ees qui comprennent des points �etiquet�es et non �etiquet�es
sont appel�ees apprentissage semi-supervis�e (SSL). Le SSL est g�en�eralement trait�e
avec des hypoth�eses suppl�ementaires sur les donn�ees. La principale, appel�eehomo-
philie, se r�ef�ere au fait que les points \proches" ont probablement des �etiquettes
similaires (Wang and Zhang, 2006). De plus, les points dans de nombreuses appli-
cations repr�esentent des entit�es qui sont naturellement li�ees les unes aux autres,
e.g., en biologie (Liu et al., 2018) ou dans les m�edias sociaux (Liben-Nowell and
Kleinberg, 2003). L�a encore, les entit�es li�ees ont probablement la même �etiquette,
ce qui souligne l'importance d'exploiter les liens lors de la r�esolution de probl�emes
SSL. Par cons�equent, diverses m�ethodes bas�ees sur les graphes ont �et�e d�evelopp�ees
pour le SSL.

Un probl�eme avec de telles m�ethodes est que leurs performances d�ependent forte-
ment de la qualit�e du graphe. Ce probl�eme pose un d�e� important car les graphes
du monde r�eel sont intrins�equement bruit�es, ce qui d�egrade consid�erablement les
performances. Dans ce travail, nous nous concentrons sur le probl�eme de l'ap-
prentissage de graphes de haute qualit�e pour des tâches d'apprentissage semi-
supervis�e. Dans la prochaine section, nous formulons le probl�eme d'apprentissage
semi-supervis�e bas�e sur le graphe et discutons des approches existantes pour le
r�esoudre. Puis, nous formulons le probl�eme de l'apprentissage de graphes que nous
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abordons. Ensuite, nous passons en revue les travaux existants sur l'apprentissage
de graphes, et en�n nous pr�esentons nos contributions.

C.2 Apprentissage semi-supervis�e
bas�e sur le graphe

Un graphe G est une paire (V; E), o�u V est un ensemble den n�uds et E �
V � V est un ensemble d'arêtes. Nous repr�esentons un graphe par sa matrice
d'adjacenceA 2 Rn� n , o�u A i;j est le poids de l'arête entre les n�udsi et j . Nous
d�esignons parX 2 Rn� p la matrice de caract�eristiques dont les lignes incluent les
caract�eristiques des n�uds correspondants, et parY 2 Rn le vecteur des �etiquettes
des n�uds.

Nous nous int�eressons aux probl�emes d'apprentissage semi-supervis�e transductifs,
o�u nous avons un ensemble de points, dont un sous-ensemble est �etiquet�e, et
l'objectif est d'approximer la fonction d'�etiquetage sur les points non �etiquet�es.
Formellement, nous avons (X ; Gobs; Y obs), o�u X repr�esente les caract�eristiques
des n�uds, Gobs est le graphe observ�e, etY obs 2 Rn contient les �etiquettes d'un
sous-ensemble de points aux coordonn�eesi 2 Vtr � V et, par exemple, la valeur
\ NaN" en dehors deVtr . Il existe essentiellement deux strat�egies principales pour
r�esoudre les probl�emes d'apprentissage semi-supervis�e bas�es sur les graphes. La
premi�ere consiste �a propager les �etiquettes connues en utilisant un processus de
r�egularisation . Les �etiquettes pr�edites sont donn�ees par la formule suivante :

Y Reg 2 arg min
Y 2B

1
jVtr j

X

i 2 Vtr

`(Y i ; (Y obs) i )+ �R (Y;A ) ; (C.1)

o�u B est un ensemble admissible,` est g�en�eralement une fonction de coût r�eguli�ere,
R est un terme de r�egularisation et� est un param�etre de r�egularisation. Dans les
tâches de r�egression,B est g�en�eralement l'espaceRn et ` est choisie comme �etant
l'erreur quadratique moyenne (MSE). En revanche, dans les tâches de classi�cation,
` est l'entropie crois�ee cat�egorielle (CCE) et lei -�eme �el�ement Y i n'est pas un
scalaire mais plutôt un vecteur contenant la distribution de probabilit�e sur les
classes. Formellement,B = f Y 2 Rn� C j 8i;

P C
c=1 Y i;c = 1; 8i; c; Y i;c � 0g,

o�u C est le nombre de classes. Un choix populaire que nous consid�erons dans ce
travail est la r�egularisation laplacienne (Slepcev and Thorpe, 2019) :

R(Y ; A )= 1
jE j

X

i;j

A i;j kY i � Y j k2
2 =

(
1

jE j Y
> LY r�egression,

1
jE j

P C
c=1 (Y :;c)> LY :;c classi�cation,

(C.2)

o�u L = D � A est le Laplacien du graphe,D est la matrice diagonale des degr�es :
D i;i =

P
j A i;j et Y :;c est la c-�eme colonne deY .
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La deuxi�eme strat�egie principale pour l'apprentissage semi-supervis�e est d'en-
trâ�ner un mod�ele param�etrique Y W (X ; A ) param�etr�e par les poids W, tels que
les GNNs. L'objectif s'�ecrit comme suit :

Y GNN (A ) = Y W ? (X ; A ); o�u

W ? = arg min
W

1
jVtr j

X

i 2 Vtr

`
� �

Y W (X ; A )
�

i
; (Y obs) i

�
: (C.3)

Dans ce travail, nous utilisons des GNN �a passage de messages avec agr�egation de
la somme. La premi�ere couche estX [0] = X , propag�ee comme suit :

X [l ] = � (X [l � 1]W [l ]
1 + AX [l � 1]W [l ]

2 + 1n (b[l ])> ) ; (C.4)

o�u W [l ]
1 ; W [l ]

2 2 Rdl � 1 � dl ; b[l ] 2 Rdl sont des poids ajustables,dl est la dimensionna-
lit�e de sortie de la l-�eme couche,1n = (1 ; : : : ; 1)> 2 Rn , et � est une fonction non
lin�eaire appliqu�ee �el�ement par �el�ement. La sortie Y W (X ; A ) = X [k] est obtenue
apr�es k it�erations de propagation de messages, et les param�etres sont rassembl�es
dansW = f W [l ]

1 ; W [l ]
2 ; b[l ]gk

l=1 .

C.2.1 Optimisation bi-niveau pour l'apprentissage
de graphes

Dans cette th�ese, nous nous concentrons sur le probl�eme de l'apprentissage de
graphes pour les m�ethodes SSL bas�ees sur les graphes. Nous consid�erons le cas
o�u la fonction objectif du graphe est une fonction du mod�ele bas�e sur le graphe
entrâ�n�e , c'est-�a-dire que nous examinons uneoptimisation bi-niveau. En utilisant
un deuxi�eme ensemble de n�uds �etiquet�es Vout � V distinct de Vtr et �etant donn�e
un ensemble de matrices d'adjacence admissiblesA , l'optimisation bi-niveau est
formul�ee comme suit :

A ? 2 arg min
A 2A

Fout = 1
jVout j

X

i 2 Vout

`(Y (A ) i ; (Y obs) i ); (C.5)

tel queY (A ) = Y GNN (A ) ou Y (A ) = Y Reg(A ). Autrement dit, le probl�eme d'ap-
prentissage de graphe, appel�e probl�emeexterne, est une optimisation contrainte,
o�u sa contrainte implique la sortie du probl�eme d'optimisationinterne Y (A ) : soit
(C.2) sur Y ou (C.3) sur W. Plusieurs mod�eles sont possibles pourA :

ˆ Apprentissage complet : A = [ a; b]n� n est l'ensemble de toutes les ma-
trices d'adjacence pond�er�ees (g�en�eralement avec des bornesa; bsur les poids).
Ce choix conduit n�ecessairement �a une complexit�e quadratique impraticable
pour la minimisation.
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ˆ A�nement des arêtes : nous n'apprenons les poids que sur les arêtes
existantes :

A = f A 2 [a; b]n� n jA i;j = 0 lorsque (A obs) i;j = 0g:

La complexit�e est proportionnelle au nombre d'arêtes, g�en�eralement inf�erieure
�a quadratique en n car les graphes tendent �a être �epars.

ˆ A�nement g�en�eralis�e des arêtes : prise en compte d'un motif z�ero obtenu
par une modi�cation de la matrice d'adjacence observ�ee. Par exemple, le
motif z�ero de A r

obs produit une arête entre les voisins qui sont �a moins de
r -hop l'un de l'autre dansGobs, o�u les n�uds i et j sont �a r -hop l'un de l'autre
si la longueur du chemin le plus court entre eux dansGobs est der .

Un autre mod�ele pourA peut être obtenu en adoptantl'apprentissage m�etrique ,
o�u le graphe appris est la sortie d'un mod�elef � param�etr�e par les poids � :
A = f A � = f � (A obs; X )g. Dans ce sc�enario, le probl�eme d'optimisation externe
est e�ectu�e sur � au lieu de A , c'est-�a-dire que l'optimisation bi-niveau est for-
mul�ee comme suit :

� ? 2 arg min
�

Fout = 1
jVout j

X

i 2 Vout

`(Y (A � ) i ; (Y obs) i ); (C.6)

tel que Y (A � ) = Y GNN (A � ) ou Y (A � ) = Y Reg(A � ). �A notre connaissance, le
mod�ele d'apprentissage m�etrique n'a pas �et�e consid�er�e dans la litt�erature avec l'op-
timisation bi-niveau. En fait, l'adoption de ce mod�ele est l'une de nos contributions
que nous mettons en �evidence dans Appendix C.5.2.

C.3 Travaux connexes

Stretcu et al. (2019) ont propos�e le mod�ele d'accord de graphe (Graph Agreement
Model, GAM) pour l'apprentissage de graphes, qui a obtenu des r�esultats de pointe
bas�e sur les graphes. GAM est un r�eseau profond entrâ�n�e �a pr�edire la similarit�e
entre les n�uds, c'est-�a-dire l'apprentissage de m�etrique, en p�enalisant l'absence
d'une arête entre des n�uds ayant la même �etiquette. Contrairement �a GAM,
Wang and Leskovec (2020) apprennent directement les poids des arêtes observ�ees.
L'optimisation implique l'apprentissage des param�etres du mod�ele GNN adopt�e.
�Etant donn�e que cela conduit �a un surajustement en raison du grand nombre de
param�etres, les auteurs utilisent le mod�ele de propagation d'�etiquettes (Label Pro-
pagation, LP) (Zhu, 2005) pour r�egulariser le graphe. Le probl�eme d'optimisation
est formul�e comme suit :

min
A ;W

1
jVtr j

X

i 2 Vtr

`
� �

Y W (X ; A )
�

i
; (Y obs) i

�
+ RLP (Y obs; A ) ;
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o�u Y W est la sortie du mod�ele GNN,RLP (Y obs; A ) est le terme de r�egularisation
bas�e sur LP. Le cadre propos�e produit des r�esultats de pointe. Notez ici qu'une
seule fonction objectif est utilis�ee pour �evaluer conjointement le graphe et le
mod�ele GNN. Nous d�esignons un tel param�etrage d'optimisation sous le nom
d'optimisation conjointe. En g�en�eral, l'optimisation conjointe est abord�ee �a l'aide
de m�ethodes bas�ees sur les gradients. Nous soulignons que lors du calcul des gra-
dients, A et W sont consid�er�es comme des variablesind�ependantes , c'est-�a-dire
que J W (A ) = J A (W ) = 0, o�u W est une version vectoris�ee deW, et J W (A )
est la matrice jacobienne

�
J W (A )

�
i;j

= @(W ) i
@A j

. De même, Fatemi et al. (2021)
r�egularisent le graphe �a l'aide d'un terme di��erent qui impose l'hypoth�ese selon
laquelle un bon graphe doit �egalement bien fonctionner pour le d�ebruitage des
caract�eristiques des n�uds. De même, les m�ecanismes d'attention sont bas�es sur
une optimisation conjointe, o�u apr�es chaque couche GNN, les poids des arêtes sont
r�e�evalu�es en fonction de la similarit�e entre les repr�esentations des n�uds dans cette
couche. Le crit�ere de similarit�e peut être d�e�ni par l'utilisateur, comme le produit
scalaire (Luong et al., 2015; Vaswani et al., 2017), appris localement �a chaque
couche par un r�eseau feed-forward (Veli�ckovi�c et al., 2018), ou une combinaison
des deux sch�emas (Kim and Oh, 2021). Ces m�ecanismes se sont r�ev�el�es e�caces
pour l'a�nement des arêtes dans les tâches SSL.

Peu de travaux se sont attaqu�es �a l'apprentissage de graphes en utilisant l'optimi-
sation bi-niveau. Franceschi et al. (2019) apprennent les param�etres des distribu-
tions de probabilit�e de Bernoulli sur des arêtes al�eatoires ind�ependantes. Ces pa-
ram�etres sont optimis�es pour minimiser la perte de validation sur un sous-ensemble
de n�uds di��erent de celui utilis�e pour entrâ�ner le mod�ele GNN. Cette m�ethode
inclut l'apprentissage den2 param�etres, ce qui limite sa scalabilit�e. De même,
Wan and Kokel (2021) �etablissent une sparsi�cation du graphe observ�e tout en
maintenant sa connectivit�e en minimisant la perte de validation du mod�ele GNN.
Cependant, cette m�ethode ne surpasse pas n�ecessairement le graphe observ�e. Les
deux m�ethodes pr�ec�edentes sou�rent de ne pas g�en�eraliser aux nouveaux points,
car cela n�ecessite de relancer le processus d'optimisation.

Une di��erence importante entre les param�etrages d'optimisation conjointe et bi-
niveau lors de l'apprentissage du graphe �a l'aide de m�ethodes bas�ees sur les gra-
dients est queJ W (A ) 6= 0 dans le cas du param�etrage bi-niveau, il est donc
n�ecessaire d'incorporerJ W (A ) dans le calcul du gradient. Il s'agit du principal
d�e� du param�etrage bi-niveau.
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C.4 Di��erentiation it�erative (ITD)

Les deux probl�emes bi-niveaux dans les �equations (C.6) et (C.5) sont intractables
num�eriquement car ni la solution du probl�eme interne ni son gradient par rapport
�a A ou �a � n'ont une expression analytique qui puisse être �evalu�ee. Ainsi, ni
� ? ni A ? ne peuvent être �evalu�es ou calcul�es it�erativement par un algorithme
du premier ordre. De plus, comme c'est g�en�eralement le cas dans l'apprentissage
automatique moderne, le probl�eme externe n'est pas convexe, nous ne cherchons
donc pas �a trouver son minimiseur, mais plutôt un bon ensemble de poids qui
prouve l'e�cacit�e de notre algorithme par rapport au graphe observ�e.

R�ecemment, des avanc�ees ont �et�e r�ealis�ees dans les algorithmes bas�es sur les gra-
dients qui peuvent être appliqu�es dans de telles circonstances. La m�ethode que nous
adoptons, appel�ee di��erentiation it�erative ( Iterative Di�erentiation , ITD), est une
approche importante dans ce paradigme (Domke, 2012; Maclaurin et al., 2015;
Franceschi et al., 2017). Dor�enavant, nous d�esignons le gradient externer Fout

sous le nom d'hypergradienta�n de le distinguer du gradient interner Fin .

�A la recherche de simplicit�e, nous illustrons le fonctionnement de l'ITD sur Eq. (C.5).
�Etant donn�e un algorithme it�eratif qui converge vers la solution interneY (A ) ou
vers une bonne approximation de celle-ci, et le nombre d'it�erations internes� in ,
l'ITD consiste �a remplacer Y (A ) par la sortie de l'algorithme apr�es� in it�erations,
puis �a approximer l'hypergradient r Fout �a l'aide de la di��erentiation automatique
(Automatic Di�erentiation , AD) (Baydin et al., 2018; Verma, 2000). L'AD est une
technique capable d'�evaluer le gradient de la sortie d'un algorithme it�eratif par
rapport aux variables d'entr�ee.

C.5 Contribution

La contribution de cette th�ese est triple. Dans la premi�ere partie, nous abordons le
probl�eme de l'apprentissage d'aprioris parcimonieux de type analyse avec une opti-
misation bi-niveau en tant que point de d�epart simple. La deuxi�eme partie pr�esente
un nouveau cadre pour l'apprentissage des structures de graphe, qui consiste �a
adopter l'apprentissage m�etrique dans le cadre bi-niveau. Cela signi�e que nous
entrâ�nons un mod�ele param�etrique �a pr�edire les poids des arêtes. Dans la derni�ere
partie, nous identi�ons un manque de supervision induit lors de l'optimisation pour
le graphe dans le cadre bi-niveau en mode de ra�nement des arêtes. Nous donnons
une caract�erisation math�ematique de ce ph�enom�ene pour di��erents mod�eles bas�es
sur le graphe, et examinons des solutions possibles, y compris le cadre propos�e
dans la deuxi�eme partie.
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C.5.1 Apprentissage d'aprioris parcimonieux de type ana-
lyse avec une optimisation bi-niveau

Le d�ebruitage est un probl�eme largement abord�e qui apparâ�t dans de nombreux
domaines, allant de l'ing�enierie biom�edicale (McCann et al., 2019) �a la vision par
ordinateur (Yang et al., 2017) en passant par la t�el�ed�etection (Addesso et al.,
2017). L'objectif est de restaurer le signal �a partir d'une observation bruit�ee.
G�en�eralement, le mod�ele du syst�eme d'imagerie esta priori connu : y = w + " ,
o�u w ; y 2 Rp sont respectivement les signaux r�eels et mesur�es, et" 2 Rp est un
bruit additif. De plus, une hypoth�ese pr�ealable sur la nature du signal peut être
disponible, comme la parcimonie (McCann and Ravishankar, 2020). Cette connais-
sance suppl�ementaire peut être incorpor�ee dans le processus d'optimisation pour
obtenir de meilleures reconstructions, par exemple un rapport signal sur bruit plus
�elev�e.

Les aprioris de parcimonie existent sous deux formes (Elad et al., 2007) :i) la par-
cimonie de type synth�ese (traditionnelle) o�uw = 
 u , 
 est un op�erateur lin�eaire,
et u est parcimonieux ; ii) la parcimonie de type analyse o�uv = 
 > w 2 Rm

est parcimonieux. Cette section s'int�eresse �a ce dernier cas. En tant que substitut
convexe, cet apriori est impos�ee surw en ajoutant le termek
 > wk1 �a la fonction
de perte (g�en�eralement quadratique) (Mancera and Portilla, 2006), o�uk � k1 est
la norme `1. En rassemblant tous les �el�ements, le probl�eme consiste �a trouver :
ŵ = arg minw ky � wk2

2 + � k
 > wk1 pour une valeur de param�etre d'amplitude
de r�egularisation � � 0. L'op�erateur lin�eaire 
 est soit d�e�ni par l'utilisateur, soit
appris directement �a partir des donn�ees.

Le principal probl�eme que nous abordons dans cette partie est d'extraire �a la fois

 et � �a partir des donn�ees pour des tâches de d�ebruitage avec apprentissage
supervis�e. Par cons�equent, la tâche interne ici n'est pas un probl�eme SSL (Semi-
Supervised Learning) bas�e sur un graphe. En utilisant� k
 > wk1 = k(� 
 )> wk1, ce
probl�eme �equivaut �a extraire le produit � 
 en tant qu'objet unique, nous arrêtons
donc d'�ecrire � explicitement �a partir de maintenant et nous conservons
 . For-
mellement, la tâche qui nous int�eresse est la suivante : �etant donn�e un ensemble
de donn�ees (y l ; w l )L

l=1 de L paires de mesures et de signaux r�eels associ�es, trouver
l'op�erateur 
 qui minimise l'erreur quadratique moyenne entre les reconstructions
et les signaux r�eels :
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min

 2A

LX

l=1




 ŵ (
 ; y l ) � w l




 2

2
(C.7a)

o�u ŵ (
 ; y ) = arg min
w 2 Rp

1
2

ky � wk2
2 + k
 > wk1 : (C.7b)

Eq. (C.7) est unprobl�eme d'optimisation bi-niveau: dans le probl�eme externe, nous
optimisons le dictionnaire
 , tandis que dans le probl�eme interne, nous d�ebruitons
les mesures. Nous savons d�ej�a que la partie interne peut être r�esolue en appli-
quant l'algorithme de d�ecomposition avant-arri�ere (Forward-Backward, FB) sur le
probl�eme dual (Chambolle et al., 2010). Cependant, en raison de la norme`1, ni la
solution ni son gradient par rapport �a 
 n'ont une expression analytique. Ainsi, la
solution du probl�eme bi-niveau ne peut pas être d�eriv�ee analytiquement ni obtenue
avec des m�ethodes bas�ees sur les gradients.

Contribution : nous estimons l'op�erateur analyse en utilisant ITD en d�eveloppant
l'algorithme FB appliqu�e sur le probl�eme dual de Eq. (C.7b). C'est, �a notre connais-
sance, le premier travail qui utilise l'ITD pour apprendre des aprioris parcimonieux
de type analyse comme dans Eq. (C.7), qui est fortement non-lisse, sans recourir �a
une technique de relaxation. Cela permet d'examiner la capacit�e de l'ITD, en par-
ticulier de la phase d'AD, dans un tel contexte. En e�et, les exp�eriences prouvent
l'e�cacit�e de l'ITD dans l'apprentissage de l'op�erateur �a partir de signaux unidi-
mensionnels constants par morceaux et d'images bidimensionnelles. De plus, nous
proposons de r�eduire l'ensemble admissibleA aux dictionnaires dont les colonnes
somment �a z�ero lors de l'apprentissage �a partir de signaux constants par mor-
ceaux, et nous prouvons empiriquement que cela augmente la stabilit�e et extrait
un op�erateur de meilleure qualit�e qu'une m�ethode de r�ef�erence pr�ec�edente.

Pourquoi ce probl�eme comme point de d�epart ?

Comme indiqu�e pr�ec�edemment, ce probl�eme sert de point de d�epart avant de passer
au probl�eme de l'apprentissage de graphes. Cela est dû aux raisons suivantes :

ˆ Les mises �a jour FB au niveau interne sont disponibles sous une forme ana-
lytique, ce qui n�ecessite l'utilisation de la di��erentiation automatique (AD)
pour e�ectuer une di��erentiation du premier ordre a�n de calculer l'hyper-
gradient. En revanche, pour le cas de l'apprentissage de graphes, le probl�eme
interne est optimis�e �a l'aide d'une m�ethode bas�ee sur les gradients avec des
gradients �evalu�es via AD. Autrement dit, AD pour l'apprentissage de graphes
n�ecessite l'�evaluation desgradients des gradients. Par cons�equent, (C.7) est
un bon point de d�epart pour se familiariser avec l'utilisation de l'AD dans
les probl�emes bi-niveaux.
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ˆ Le probl�eme (C.7) est non lisse, ce qui constitue un cadre di�cile pour l'ITD.
�Etant donn�e que Peyr�e and Fadili (2011) ont relax�e Eq. (C.7) et ont d�eriv�e
une formule de l'hypergradient, nous pouvons valider les performances de
l'ITD dans ce cadre en comparant sa sortie �a l'hypergradient du probl�eme
relax�e.

ˆ Le probl�eme (C.7) est e�ectivement utilis�e dans le contexte de l'apprentissage
de graphes dans de nombreuses applications. En fait, lorsque les coe�cients
des signauxw l se trouvent sur un graphe et sont connus pour être constants
dans les voisinages, ce qui signi�e quef (w l ) i � (w l ) j g(i;j )2 E est parcimonieux,
(C.7) est utilis�e pour apprendre le graphe en apprenant sa matrice d'inci-
dence, c'est-�a-dire queA est l'ensemble de toutes les matrices d'incidence
desm arêtes.

Travaux connexes : Le probl�eme (C.7) a �et�e formul�e pour la premi�ere fois dans
Peyr�e and Fadili (2011), o�u les auteurs ont r�egularis�e la norme`1 de mani�ere �a
ce que l'hypergradient ait une expression analytique. De même, dans Sprechmann
et al. (2013), un r�egime de r�egularisation di��erent est adopt�e. Cependant, la par-
cimonie recherch�ee est d�egrad�ee avec des r�egimes similaires qui r�egularisent`1 �a
z�ero (Nikolova, 2000). R�ecemment, dans McCann and Ravishankar (2020), une for-
mule de l'hypergradient a �et�e d�eriv�ee sous certaines conditions, mais elle n�ecessite
l'inversion it�erative d'une grande matrice pour chaque point de donn�ees, ce qui
rend son impl�ementation peu pratique. Chambolle and Pock (2021) r�ealisent une
analyse de sensibilit�e pour calculer les hypergradients a�n d'apprendre des dic-
tionnaires de type convolution avec un petit support pour des signaux constants
par morceaux. De telles contraintes fortes ne sont pas prises en compte dans notre
travail ; cependant, nous montrons empiriquement qu'un simple recentrage des co-
lonnes su�t pour apprendre un dictionnaire de haute qualit�e. En�n, la di��erence
majeure par rapport aux m�ethodes mentionn�ees pr�ec�edemment r�eside dans l'uti-
lisation de l'AD pour obtenir des hypergradients dans un telcadre non lisse, sans
utiliser de techniques de r�egularisation, ni d�eriver analytiquement un algorithme
produisant ce gradient lorsqu'il est d�e�ni. Nous montrons avec des r�esultats empi-
riques la capacit�e de cette approche.

C.5.2 Apprentissage de mod�eles de graphe �a graphe avec
l'optimisation bi-niveau

Dans la deuxi�eme partie de cette th�ese, nous abordons l'apprentissage de graphes
pour les m�ethodes d'apprentissage semi-supervis�ees. Plus pr�ecis�ement, nous nous
int�eressons au cas o�u l'objectif guidant le processus d'apprentissage est d'am�eliorer
les performances du mod�ele bas�e sur le graphe entrâ�n�e dans la tâche SSL. C'est-
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�a-dire que nous nous int�eressons �a uneoptimisation bi-niveau.

L'id�ee directe consiste �a utiliser l'optimisation bi-niveau (C.5) dans le cadre de
l'a�nement des arêtes ou de l'apprentissage complet. Pour le premier cas, nous
montrons dans l'Appendix C.5.3 que cela induit un ph�enom�ene de manque de
supervision que nous appelonsgradient scarcity, qui d�egrade notablement la qualit�e
du graphe appris. En revanche, le dernier cas n'est pas pratique en raison de la
complexit�e quadratique en le nombre de n�udsn.

�A la place, nous proposons de r�esoudre le probl�eme d'optimisation bi-niveau dans
le cadre de l'apprentissage de la m�etrique, comme dans Eq. (C.6). En d'autres
termes, nous entrâ�nons unmod�ele param�etrique pour apprendre une m�etrique de
similarit�e par paires entre les n�uds. Ce mod�ele prend en entr�ee les caract�eristiques
d'une paire de n�uds et le poids d'arête observ�e entre eux, et produit le poids
d'arête optimis�e en sortie. Nous appelons ce mod�ele G2G (Graph to Graph), en
nous inspirant des mod�eles Set2Graph (Serviansky et al., 2020). En e�et, lorsque le
graphe observ�e est sans arête, G2G est une fonction qui transforme des ensembles
en graphes.

Structure du mod�ele G2G : notre mod�ele propos�e peut être exprim�e comme
suit

(A � ) i;j = 

�

�
�
� (X i ); � (X j )

�
; (A obs) i;j

�
; (C.8)

o�u :

ˆ l'encodeur� : Rp ! Rp� est un Multi-Layer Perceptron (MLP) qui calcule un
nouveau vecteur de repr�esentation de dimensionp� pour son n�ud d'entr�ee.
Un MLP est un r�eseau compos�e de plusieurs couches enti�erement connect�ees.
Ainsi, �etant donn�e les caract�eristiques de sortieX [l ] de la l-�eme couche, la
sortie de la couche suivante est calcul�ee comme suit :

X [l+1] = � [l+1] (X [l ]W [l+1]
1 + 1n (b[l+1] )> ) ; (C.9)

o�u W [l+1]
1 2 Rdl � dl +1 ; b[l+1] 2 Rdl +1 sont des param�etres ajustables,dl est la

dimension de sortie de lal-�eme couche, et� est la fonction d'activation non
lin�eaire.

ˆ l'agr�egateur � : Rp� � Rp� ! Rp� prend les plongements~X i ; ~X j d'une paire
de n�uds i; j et calcule

� : ( ~X i ; ~X j ) 7! ( ~X i � ~X j )2; (C.10)

o�u ( �)2 est la fonction carr�ee appliqu�ee �a chaque dimension. On remarque
que cette fonction est invariante par rapport �a l'ordre de ses entr�ees.
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ˆ le r�egresseur
 : Rp� � R ! [0; 1] est un MLP avec la fonction d'activation
sigmo•�de en sortie, qui produit le poids d'arête pr�edit.

L'architecture G2G propos�ee peut facilement être montr�ee comme �etantpermutation-
�equivariante, c'est-�a-dire que la permutation du graphe d'entr�ee permute de la
même mani�ere le graphe de sortie. La permutation-�equivariance (ou invariance)
est une caract�eristique essentielle �a appliquer dans le traitement des graphes. Elle
garantit que la structure du graphe de sortie est ind�ependante du re�etiquetage des
points dans l'ensemble de donn�ees et peutg�en�eraliser �a de nouveaux graphes.

Contribution : nous proposons d'entrâ�ner le mod�ele G2G en r�esolvant Eq. (C.6)
via ITD. Remarquons ici que la di��erentiation automatique �evalue les gradients
des gradientscar elle : i) calculer W Fin pour les mises �a jour internes,ii) �evalue
le gradient de la sortie apr�es ces mises �a jour par rapport �a �. Nous optimisons
ensuite � �a l'aide d'un algorithme du premier ordre. �A notre connaissance, il s'agit
de la premi�ere �etude qui entrâ�ne un mod�ele G2G en utilisant l'optimisation bi-
niveau. Contrairement �a l'optimisation directe du graphe, le mod�ele G2G entrâ�n�e
peut ensuite être utilis�e pour reconstruire un graphe de haute qualit�e, même lors
de l'ajout de nouveaux points �a l'ensemble de donn�ees. Des exp�eriences sur des
ensembles de donn�ees SSL d�emontrent que notre cadre surpasse consid�erablement
les mod�eles op�erant sur le graphe observ�e.

Le lecteur constatera dans l'Appendix C.5.3 que, en plus des avantages pr�ec�edemment
mentionn�es de l'utilisation de G2G par rapport �a l'optimisation directe du graphe,
les mod�eles G2G att�enuent le probl�eme de gradient scarcity qui se manifeste dans
les tâches d'a�nement des arêtes sur les bases de donn�ees de probl�emes SSL.

C.5.3 Gradient scarcity dans l'apprentissage de graphes
avec optimisation bi-niveau

Dans cette partie, nous �etudions en d�etail le probl�eme dugradient scarcity qui
apparâ�t lors de la r�esolution de Eq. (C.5) dans le cadre de l'a�nement des arêtes.
le gradient scarcity se r�ef�ere au fait que les arêtes entre les n�uds non �etiquet�es
"�eloign�es" des n�uds �etiquet�es re�coivent des gradients nuls, c'est-�a-dire qu'elles ne
re�coivent aucune supervision pendant l'optimisation.

Fatemi et al. (2021) ont observ�e le gradient scarcity lors de l'apprentissage du
graphe et d'un mod�ele GNN par une optimisation conjointe. En e�et, un GNN �a
k couches calcule l'�etiquette d'un n�ud en utilisant des informations provenant de
n�uds situ�es �a une distance au plus k de celui-ci. Cette �etiquette ne d�epend donc
pas des arêtes reliant les n�uds en dehors de ce voisinage, et le terme de perte
correspondant �a cette �etiquette renvoie des gradients nuls sur ces arêtes lointaines.
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En d'autres termes, le gradient scarcity est dû au champ r�ecepteur de profondeur
�nie des GNN �a propagation de messages.

Cependant, il n'est pas �evident de g�en�eraliser cet argument �a l'optimisation bi-
niveau (C.5) dans le cadre de l'a�nement des arêtes. Plus pr�ecis�ement, la discus-
sion pr�ec�edente suppose que les poids entrâ�n�es du GNN apr�es des mises �a jour
bas�ees sur les gradients ne d�ependent pas de la matrice d'adjacenceA , ce qui
n'est pas le cas dans l'optimisation bi-niveau. De plus, si le probl�eme se pose dans
le cadre bi-niveau, les rôles deVtr et Vout doivent être pr�ecis�es. Une autre ques-
tion concerne la r�esolution de ce probl�eme en recourant �a des mod�eles bas�es sur
les graphes avec un champ r�ecepteur in�ni, par exemple la r�egularisation lapla-
cienne.

Contributions : nous prouvons que le gradient scarcity se produit dans le cadre
de l'optimisation bi-niveau lors de l'utilisation de GNN en tant que classi�ca-
teur. Nous montrons qu'en utilisant un GNN �a k couches, les hypergradients sont
nuls sur les arêtes entre les n�uds situ�es �a au moinsk-hop des n�uds �etiquet�es
dansVtr [ Vout . Pour la r�egularisation laplacienne, nous prouvons que le probl�eme
persiste, car les hypergradients sont att�enu�es de mani�ere exponentielle avec la dis-
tance par rapport aux n�uds �etiquet�es. Nous validons empiriquement nos r�esultats.
Ensuite, nous testons trois strat�egies possibles pour r�esoudre ce probl�eme : l'ap-
prentissage m�etrique avec les mod�eles G2G, la r�egularisation des graphes et l'af-
�nement g�en�eralis�e des arêtes. De plus, nous distinguons empiriquement le gra-
dient scarcity du surajustement, dans le sens o�u r�esoudre le premier ne r�esout pas
n�ecessairement le second.�A notre connaissance, il s'agit de la premi�ere �etude qui
aborde math�ematiquement le probl�eme du gradient scarcity pour l'optimisation
bi-niveau des graphes, et examine ce ph�enom�ene pour les mod�eles avec un champ
r�ecepteur in�ni.

Les principaux th�eor�emes que nous prouvons sont les suivants :

Hypergradient scarcity avec les GNN : Nous consid�erons l'optimisation bi-
niveau (C.5) en adoptant la m�ethode GNNY (A ) = Y GNN (A ).

Th�eor�eme C.5.1. Soit Y W un GNN �a k couches param�etr�e par l'ensemble de
poids W. Supposons que le probl�eme d'optimisation interne soit r�esolu avec un
algorithme du premier ordre. Alors, pour toute paire de n�udsi; j situ�es �a au
moins k-hop des n�uds deVout [ Vtr , nous avons@Fout

@A i;j
= 0.

Notez qu'avec les GNN, l'optimisation interne n'est pas un probl�eme convexe, ce
qui n�ecessite d'optimiser pour obtenir un bon minimum local. Cependant, notre
analyse d�emontre que le hypergradient scarcity se produit pr�ecis�ement dans ce
sc�enario, et n'exige pas que l'algorithme du premier ordre converge vers l'minimi-
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seur du probl�eme interne.

Hypergradient scarcity avec la r�egularisation laplacienne : Nous mon-
trons que bien que dans une moindre mesure, ce probl�eme se pose �egalement
lorsque l'on adopte la r�egularisation laplacienne, c'est-�a-direY (A ) = Y Reg(A ).
Plus pr�ecis�ement, nous �etablissons que l'amplitude de l'hypergradient diminue de
mani�ere exponentiellelorsque la somme des deux distances par rapport �aVtr et Vout

augmente. Notre �etude est ax�ee sur les tâches de r�egression, o�u` est la fonction de
perte MSE dans les �equations (C.1) et (C.5). SoitS in 2 Rn� n la matrice diagonale
dont les entr�ees sont �egales �a 1 pour les n�uds deVtr et 0 sinon, la solutionY (A )
b�en�e�cie d'une expression analytique :

Y (A ) = B � 1 ~S in Y obs ;

o�u ~S in = S in
jVtr j et B = S in

jVtr j + � L
jE j . Maintenant que nous avons cela, nous �enon�cons

le r�esultat principal pour le sc�enario de r�egularisation laplacienne.

Th�eor�eme C.5.2. Soient les n�uds i; j situ�es �a au moins k-hop deVout , et q-hop
de Vtr . Alors nous avons :

�
�
�
�
@Fout

@A ij

�
�
�
� . �

p
jVout j + � min

p
jVtr jjVout j

� 3
min jVtr jjE j

y2
1 (1 � � )q+ k ;

o�u � min (� max ) est la plus petite (la plus grande) valeur propre deB que nous
prouvons satisfaire0 < � min < � max , � = � min

� max
, et y1 = kY obsk1 .

Puisque 0< 1 � � < 1, le Th�eor�eme C.5.2 indique que l'hypergradient est expo-
nentiellement att�enu�e lorsque q+ k augmente.
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