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Preface 
 

The research conducted in this thesis was motivated by the need to improve the experimental efficiency in 

the research and development of the hydrocracking process (HCK). For this purpose, the work sought a 

methodology to estimate the properties of the middle distillates (diesel and kerosene) without performing 

the distillation of the total effluent obtained from the process reactors or the analysis of the physical cuts.  

 

The development and implementation of the thesis were possible due to the collaboration between the 

research and training institute in the fields of energy, transport and environment IFP Energies Nouvelles 

(IFPEN) in Solaize (France), and the mixed research unit Informations, Technologies for Agro-Processes (ITAP) 

in Montpellier (France). The work was financially supported by IFPEN under the direction of Dr. Jean-Michel 

ROGER and Dr. Ryad BENDOULA, and under the supervision of Dr. Marion LACOUE-NEGRE, Dr. Julien 

GORNAY, and Dr. Silvia MAS GARCIA. 

 

During the three years of research dedicated to the development of the thesis, the synergic and collaborative 

work of all participants involved resulted in novel and promising results not only for optimizing the 

experimental activity in HCK process research but also for the analysis and monitoring of this process.   

 

Across the six chapters of the document, the reader shall find the sequence of the thesis development 

coherently and logically. The first chapter presents the context of the thesis, the motivation for the HCK 

process research, and the thesis research questions. Chapter 2 presents the materials and methods used to 

develop the thesis. Chapters 3 - 5 show the thesis development and the results that helped address the 

research questions formulated, while Chapter 6 reports the application of the findings in two cases study. 

Finally, the document presents the conclusions and perspectives of the research work. 

 

The thesis presented in this document is submitted to obtain the Doctor of Philosophy (Ph.D.) title from the 

doctoral school GAIA of the University of Montpellier and the Montpellier Agro institute. 
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Résumé étendu 
 

Le basculement de la consommation de l'essence vers le diesel, l'augmentation de la production de pétrole 

brut lourd et la demande constante de produits de haute qualité ont fait émerger le besoin de procédés de 

raffinage flexibles qui maximisent la production de distillats moyens (kérosène et gazole) à partir de charges 

de plus en plus lourdes tout en garantissant leur qualité afin de satisfaire aux législations environnementales 

et commerciales. En raison de sa grande flexibilité dans le traitement des charges lourdes, le procédé 

d'hydrocraquage (HCK) est fondamental pour répondre au besoin décrit. Ce procédé est aujourd'hui 

largement mis en œuvre dans les raffineries. C'est pour cette raison qu'il fait l'objet de recherches 

permanentes.  

La recherche sur le procédé HCK est notamment conduite en implémentant des plans expérimentaux dans 

des unités pilotes et des installations de laboratoire avec des conditions opératoires contrôlées. 

L'expérimentation ainsi mise en œuvre contribue à déterminer la meilleure configuration du procédé en 

traitant différentes charges types de résidus, principalement des distillats sous vide (DSV), à pour différentes 

conditions opératoires. Cette optimisation peut être décomposée en deux parties : En général, le 

déroulement des expériences se compose de deux étapes principales : (i) la section de réaction catalytique 

où se produisent les réactions d'hydrotraitement et d'hydrocraquage pour obtenir un effluent liquide léger 

appelé effluent total, et (ii) l'étape de distillation de l'effluent totalcet effluent et puis de caractérisation des 

coupes de distillationproduits. Les différentes coupes pétrolières générées produits HCK, en particulier les 

distillats moyens, sont  sont caractérisées en utilisant différentes méthodes normesnormalisées standard 

telles que celles de l'American Society for Testing and Materials (ASTM) et ou de l'Organisation internationale 

de normalisation (ISO) afin de vérifier notamment si elles respectent les spécifications des marchés. 

Contrairement à l'étape réactionnelle, la caractérisation des produits est effectuée de manière discontinue. 

Premièrement, les analyses de laboratoire sont effectuées hors ligne et sont conditionnées par les temps de 

réponse des différents laboratoires. Par ailleurs, pour effectuer les analyses de laboratoire en utilisant les 

normes mentionnées précédemment, l'échantillon physique du produit doit être obtenu à partir de la 

distillation de l'effluent total, qui est également effectuée dans une séquence non continue. La 

caractérisation des produits est une tâche fondamentale dans la recherche sur le procédé HCK. Cependant, 

le schéma analytique traditionnellement suivi exige à la fois du temps et du volume d’échantillon ce qui est 

contraignant et limite les temps de développement. Par conséquent, une alternative rapide, robuste et fiable 

pour la caractérisation des distillats moyens a été développée dans cette thèse. 

La première étape de la thèse a été de proposer une alternative de caractérisation permettant de lever la 

contrainte de temps liée à la distillation de l'effluent total et à la caractérisation des produits obtenus. Dans 

la littérature, différents articles mentionnent que sur la base d’informations spectroscopiques acquises pour 
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les distillats moyens, les propriétés de ces produits ont été estimées avec des performances statistiques 

proches des méthodes de référence standard normalement utilisées. Cette alternative a permis de réduire à 

la fois le volume d'échantillon nécessaire et le temps de réponse de l'analyse. Cependant, s'agissant d'une 

estimation basée sur les informations analytiques acquises sur les coupes des distillats moyens, l'échantillon 

physique des produits reste nécessaire, ce qui maintient la contrainte de temps donnée par la distillation de 

l'effluent total. Ainsi, il a été proposé d'étudier la possibilité d'estimer les propriétés des distillats moyens à 

partir des informations spectrales de l'effluent total. Quatre propriétés du diesel (nombre de cétane, point 

d'écoulement, point de trouble, température limite de filtrabilité) et trois propriétés du kérosène (nombre 

de cétane, point d'éclair, point de fumée) ont été considérées. Cet objectif une fois atteint,  l'optimisation du 

temps de réponse analytique était telle que l'estimation des propriétés pouvait être mise en œuvre dans le 

suivi et l'analyse des qualités produits issus du procédé en temps réel. En raison des avantages apportés par 

la spectroscopie proche infrarouge (PIR) pour répondre à la problématique posée, cette technique analytique 

a été le cœur du développement de la thèse.  

Afin d’atteindre l’objectif de la thèse, la première question de recherche à laquelle il a fallu répondre fut : 

Est-il possible de prédire les propriétés des distillats moyens à partir des spectres PIR acquis sur l'effluent 

total produit lors de test sur unité pilote HCK ? Pour ce faire, 4 méthodes de régression (PLS, SVM, ANN, LWR) 

ont été évaluées dans la calibration de modèles prédictifs à partir de spectres PIR acquis sur des échantillons 

d'effluents totaux. Trois conclusions générales ont été tirées de ce travail. Premièrement, il est possible 

d'estimer les propriétés des distillats moyen à partir des spectres PIR acquis sur l'effluent total. La 

performance statistique des modèles développés (erreurs quadratiques moyennes de la validation croisée et 

de la prédiction) était proche ou même inférieure à la reproductibilité des méthodes de référence. Les 

modèles d'estimation du nombre de cétane du diesel et du kéroséne étaient les plus performants, tandis que 

les propriétés à froid du diesel étaient les plus exigeantes à modéliser. Deuxièmement, les performances 

obtenues à partir des différentes méthodes sont similaires,  mais la régression PLS a l'avantage de produire 

un modèle interprétable et de présenter moins de risque de sur-apprentissage des modèles. Finalement, il 

convient de noter que malgré la performance acceptable des modèles développés, il était évident qu'il était 

possible d'améliorer la précision de l'estimation des propriétés étudiées. De plus, les performances des 

modèles sont affectées par l'évolution et la variabilité continues du procédé (charge, système catalytique, 

conditions opératoires), ce qui limite leur utilisation et leur fiabilité. Par conséquent, une compréhension 

plus approfondie des facteurs ayant un impact sur le comportement du procédé est nécessaire pour obtenir 

des estimations fiables. 

Les performances limitées de certains modèles de prédiction ont conduit à la deuxième question de 

recherche : l'ajout d'informations supplémentaires et descriptives au spectre PIR améliore-t-elle les 

performances du modèle ? Pour répondre à cette question, une étape complémentaire de modélisation a 
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été réalisée, comprenant l'utilisation simultanée d'informations analytiques provenant de diverses sources 

(fusion de données) et la sélection de variables. Trois blocs de données ont été utilisés pour cette analyse : 

les spectres PIR et RMN acquis sur l'effluent total et les données du procédé.  

Un premier étalonnage des modèles a été effectué en utilisant l'approche de fusion de données sans 

sélection de variables. Pour la modélisation de la fusion de données entre les deux blocs multivariés (spectres 

NIR et RMN), trois niveaux de fusion de données ont été évalués (bas, moyen et haut niveau). Pour le niveau 

bas de fusion, les méthodes de concaténation simple et SO-PLS ont été évaluées. Pour le niveau moyen de 

fusion, les scores de l'analyse PCA réalisés sur chaque bloc de données ont été utilisés comme caractéristique 

de fusion. À ce même niveau de fusion, le travail a été répété en utilisant les scores du modèle PLS calibrés à 

partir de chaque bloc de données pris séparément. Au niveau haut de fusion, la prédiction de la variable 

étudiée par les modèles PLS calibrés sur chaque bloc de données a été utilisée comme décision de fusion. 

Parmi les différents niveaux de fusion, le niveau moyen utilisant les scores des modèles PLS individuels était 

la meilleure stratégie pour améliorer les performances des modèles en fusionnant les informations de deux 

blocs spectroscopiques, mettant en avant la complémentarité des deux analyses. Pour la modélisation de la 

fusion des données entre les blocs multivariés et le bloc faiblement multivarié (données du procédé), les 

niveaux de fusion moyen et haut ont été évalués. Dans ce cas, le niveau haut de fusion a donné les meilleurs 

résultats. La fusion des données a amélioré les performances des modèles dans l'estimation de toutes les 

propriétés étudiées. Les modèles développés pour la prédiction des propriétés à froid de la coupe gazole ont 

présenté un gain important au niveau de leur performance.   

Pour aller plus loin, une optimisation supplémentaire des modèles a été réalisée en utilisant la sélection des 

variables avant la calibration des modèles. Six méthodes de sélection de variables ont été évaluées sur les 

blocs PIR et RMN (VIP, SR, GA, iPLS, rPLS, CovSel). Par rapport aux méthodes évaluées, la méthode CovSel a 

sélectionné le nombre minimal de variables pour obtenir un modèle de prédiction dont la performance est 

comparable à celle du modèle utilisant toutes les variables. En ce qui concerne le bloc de données des 

variables du procédé, neuf méthodes ont été évaluées (VIP, SR, LASSO, GA, RFE, XGBoost_FS, SFS, SFFS, 

CovSel). Contrairement aux résultats montrés pour la sélection des variables dans les blocs multivariés, la 

performance de la méthode CovSel était limitée lorsqu'elle était évaluée sur le bloc des données du procédé. 

Pour ce bloc, la méthode qui a donné les meilleurs résultats a été le SFFS en sélectionnant les variables en 

mode inverse (backward selection). Après la sélection des variables dans chaque bloc de données, la 

modélisation de fusion des données a été répétée en utilisant le niveau haut de fusion. Les résultats ont 

fourni une estimation plus précise des propriétés étudiées, prédisant les propriétés à froid du diesel de tous 

les échantillons dans les limites de reproductibilité des méthodes de référence. Une nouvelle méthode de 

sélection de variables multi-blocs a également été évaluée (SO-CovSel). Cependant, la performance de cette 

méthode était limitée dans la fusion des données entre les blocs spectroscopiques et les données du procédé. 
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Bien que les performances des modèles aient été améliorées par la fusion des données et la sélection des 

variables, la fiabilité des modèles peut être affectée par des paramètres externes intervenant dans 

l'acquisition de l'information spectrale, en particulier lors des estimations en temps réel. Ainsi, une troisième 

question de recherche a été analysée : l'impact des paramètres externes sur la qualité des spectres PIR peut-

elle être compensée/corrigée pour assurer une estimation en ligne fiable des propriétés ? Le travail 

développé pour répondre à cette question de recherche a été divisé en deux parties. La première partie 

correspondait à la définition des paramètres externes à étudier, et à l'acquisition des spectres aux conditions 

définies. Les paramètres identifiés ont été divisés en trois groupes : (i) modifications instrumentales, (ii) 

température de l'échantillon, et (iii) facteurs associés à l'acquisition en dynamique. Pour le premier groupe 

de paramètres externes évalués, deux types d'instruments (sonde et flowcell) avec deux trajets optiques 

différents (1mm et 2mm) ont été utilisés. En ce qui concerne la température de l'échantillon, 4 niveaux de 

température entre 60°C et 90°C avec un ΔT de 10°C ont été évalués. Pour le troisième groupe, un système 

de pompage en boucle fermée a été utilisé pour analyser la variation du débit et de la température de 

l'échantillon. La deuxième partie du travail correspondait à l'évaluation de différentes stratégies pour 

corriger l'impact des paramètres externes.  

Quatre stratégies de correction ont été évaluées. La première stratégie consistait à générer une fonction de 

transfert qui corrigeait la déviation du spectre causée par les paramètres externes. La méthode PDS a été 

utilisée dans cette stratégie. La deuxième stratégie a consisté à développer un modèle de régression pour 

chaque paramètre externe étudié. En conséquence, 5 modèles PLS ont été développés pour l'estimation 

d’une même propriété. La troisième stratégie a consisté à développer un modèle de régression global en en 

intégrant les spectres acquis aux différentes conditions d'analyse dans l’ensemble d’étalonnage. Enfin, la 

quatrième approche s'est concentrée sur la modélisation robuste. Dans cette dernière approche, les 

méthodes d'orthogonalisation EPO et DOP ont été utilisées. La modélisation robuste intégrant les méthodes 

EPO et DOP a donné les meilleurs résultats pour corriger l'impact causé par les paramètres externes. Les 

modèles robustes obtenus ont permis d'avoir des estimations fiables des propriétés des distillats moyens 

quelles que soient les conditions d'acquisition, stables ou dynamiques, et même avec différents types 

d'instruments. 

Pour valider le travail développé et les réponses aux questions de recherche proposées, deux cas d'étude ont 

été évalués. Le premier cas a évalué la performance des modèles développés pour prédire les propriétés des 

distillats moyens en utilisant des échantillons d'effluents totaux qui n'étaient pas inclus dans les ensembles 

de données initiaux de calibration et de validation des modèles. Certains de ces nouveaux échantillons ont 

été obtenus en traitant des charges et des systèmes catalytiques non pris en compte lors de la calibration du 

modèle. De plus, les spectres acquis sur ces échantillons l'ont été un an après l'acquisition des spectres 

utilisés pour la calibration des modèles. Les résultats de ce premier cas ont permis de valider les conclusions 
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faites précédemment. Plus précisément, il est possible de prédire les propriétés des distillats moyens à partir 

des informations spectroscopiques de l'effluent total. La précision de l'estimation peut être améliorée en 

utilisant des informations complémentaires aux spectres PIR. La fusion des données améliore la prédiction 

des propriétés, mais une amélioration plus importante est obtenue en utilisant la sélection des variables. 

Enfin, une modélisation robuste permet d'obtenir des estimations fiables des propriétés, quelles que soient 

les conditions d'acquisition.  

Dans le deuxième cas évalué, un modèle robuste de prédiction de la densité de l'effluent total a été 

développé à partir des spectres acquis dans des conditions contrôlées du laboratoire, et utilisé pour suivre 

en ligne la stabilité opérationnelle d'une unité pilote HCK d'IFPEN. Les résultats ont montré la capacité du 

modèle à prédire correctement la densité de l'effluent total en temps réel. Au cours du suivi du test 

expérimental réalisé, il est devenu évident que le modèle évalue correctement l'impact des variations des 

variables opérationnelles sur la stabilité du procédé, ce qui permet d'identifier opportunément les déviations 

indésirables pendant le déroulement de l'essai. Dans le même cas d’étude, une estimation du nombre du 

cétane du diesel a été effectuée. Deux des prédictions faites ont été comparées à des valeurs mesurées en 

laboratoire. La déviation de l'estimation du nombre du cétane s'est avérée être inférieure à la reproductibilité 

de la méthode de référence. Ces résultats ont corroboré l'importance de la robustesse du modèle. 

Les résultats obtenus dans ces travaux de recherche offrent une alternative fiable et robuste pour optimiser 

la recherche et le développement du procédé d'hydrocraquage. Comparé au schéma analytique 

conventionnel, le temps de réponse dans la caractérisation des distillats moyens en utilisant l'alternative 

étudiée pourrait être réduit de plusieurs semaines à quelques minutes. Par conséquent, les modèles 

développés peuvent être utilisés pour suivre la stabilité du procédé d'hydrocraquage en temps réel, 

favorisant ainsi une meilleure prise de décision. De plus, en ayant une connaissance en temps réel du 

comportement opérationnel du procédé et de son impact sur la qualité du produit, le chercheur peut décider 

quelles sont les analyses vraiment nécessaires, ce qui permet d'optimiser la recherche sur le procédé.             
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Cette thèse a étudié une alternative au schéma analytique classiquement appliqué pour caractériser les 

produits obtenus du procédé d'hydrocraquage. L'objectif principal de la recherche était donc de développer 

des modèles multivariés robustes à partir des informations spectroscopiques de l'effluent total 

d'hydrocraquage pour estimer les propriétés des distillats moyens (kérosène et gazole). Dans le cadre de ce 

projet, quatre propriétés du diesel (nombre de cétane, point d'écoulement, point de trouble, température 

limite de filtrabilité) et trois propriétés du kérosène (nombre de cétane, point d'éclair, point de fumée) ont 

été étudiés. 

La faisabilité de l'estimation des propriétés des distillats moyens à partir des spectres proche infrarouge (PIR) 

acquis sur l'effluent total a d'abord été validée par des modèles de régression PLS. Les modèles développés 

ont présenté des erreurs proches ou même inférieures à la reproductibilité des méthodes analytiques de 

référence. Bien que les modèles PIR affichent des performances acceptables, ils mettent en évidence la 

nécessité d'une amélioration supplémentaire, notamment en ce qui concerne l'homoscédasticité et le 

coefficient de corrélation des modèles pour l'estimation des propriétés à froid du diesel. Ainsi, l'approche de 

modélisation par fusion de données a été appliquée pour améliorer les performances des modèles. Trois 

blocs de données ont été utilisés : les spectres PIR et RMN acquis sur l'effluent total et les données du 

procédé. En conséquence, l'estimation de toutes les propriétés a été améliorée. Les modèles de prédiction 

des propriétés à froid du diesel ont montré la plus grande amélioration. Une optimisation supplémentaire 

des performances du modèle a été obtenue en appliquant différentes méthodes de sélection des variables 

sur chaque bloc de données. En identifiant et en utilisant les variables les plus descriptives dans chaque bloc 

de données, il a été possible d'augmenter la précision de l'estimation des propriétés et de comprendre de 

manière exhaustive l'interaction et l'influence des variables indépendantes sur les propriétés étudiées. 

Suite à la validation de la plausibilité de l'alternative étudiée, le problème du manque de robustesse des 

modèles a été abordé. Cette thèse a évalué l'impact des variations instrumentales, de la température de 

l'échantillon et des facteurs associés à l'acquisition dans des conditions dynamiques. Des modèles robustes 

ont été développés en utilisant les méthodes EPO (External Parameter Orthogonalization) et DOP (Dynamic 

Orthogonal Projection) pour corriger l'impact de ces paramètres. Les modèles robustes ont permis d'estimer 

de manière satisfaisante les propriétés des distillats moyens dans différents scénarios d'évaluation. Enfin, 

certains des modèles robustes développés ont été déployés pour suivre en temps réel la stabilité du procédé 

d'hydrocraquage, permettant une prise de décision opportune. Les résultats obtenus par ces travaux offrent 

une alternative fiable et robuste pour optimiser la recherche et le développement du procédé 

d'hydrocraquage. Comparé au schéma analytique traditionnel, le temps de réponse pour caractériser les 

distillats moyens en utilisant l'alternative étudiée pourrait être réduit de plusieurs semaines à quelques 
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minutes. De plus, en ayant une connaissance en temps réel du comportement opérationnel du procédé et 

de son impact sur la qualité du produit, le chercheur peut décider des analyses réellement nécessaires, ce 

qui permet d'optimiser la recherche sur le procédé.  
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Abstract (English) 
 

This thesis investigates an alternative to the analytical workflow normally followed when characterizing the 

products obtained from the hydrocracking process. Therefore, the main objective of the research was to 

develop robust multivariate models from spectroscopic information of the hydrocracking total effluent to 

estimate the properties of the middle distillates (kerosene and diesel). The work covered four properties of 

diesel (cetane number, pour point, cloud point, cold filter plugging point) and three properties of kerosene 

(cetane number, flash point, smoke point).  

First, the feasibility of estimating middle distillate properties from near infrared (NIR) spectra acquired on 

the total effluent was validated through PLS regression models. The developed models presented errors close 

to or even lower than the reproducibility of the reference analytical methods. Although the NIR models had 

acceptable performance, they evidence the need for further improvement, particularly in the 

homoscedasticity and the correlation coefficient of the models for diesel cold flow properties estimation. 

Thus, the data fusion modelling approach was applied to improve the models' performance. Three data 

blocks were used: the NIR and NMR spectra acquired on the total effluent and the process variables. As a 

result, the estimation of all properties was enhanced. The models for predicting the diesel cold flow 

properties showed the greatest improvement. Further optimization in model performance was achieved by 

applying different variable selection methods to each data block. By identifying and using the most 

descriptive variables in each block of data, it was possible to increase the properties estimation accuracy and 

comprehensively understand the interaction and influence of the independent variables on the studied 

properties.  

Following the plausibility validation of the investigated alternative, the lack of robustness of the models was 

addressed. This thesis evaluated the impact of instrumental changes, sample temperature, and factors 

associated with acquisition under dynamic conditions. Robust models were developed using the External 

Parameter Orthogonalization (EPO) and Dynamic Orthogonal Projection (DOP) methods for correcting the 

impact of these parameters. The robust models performed satisfactorily in estimating the middle distillate 

properties reliably under different evaluation scenarios. Finally, some of the developed robust models were 

deployed for monitoring in real-time the hydrocracking process stability, enabling timely decision-making. 

The results obtained from the research offer a reliable and robust alternative for optimizing the research and 

development of the hydrocracking process. Compared to the conventional analytical workflow, the response 

time in characterizing the middle distillates using the alternative investigated could be reduced from weeks 

to a few minutes. Furthermore, by having real-time knowledge of the process operation behavior and its 

impact on product quality, the researcher can decide on the actual analytics needed, leading to optimized 

process research. 
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General Introduction 
 

The increased demand for petroleum-based fuels has led to extensive and continuous research into the 

hydrocracking process. Most of the studies regarding this process are conducted to find the optimal operating 

conditions for maximizing the desired products while complying with the quality specifications required for 

their commercialization. Nonetheless, the extensive flexibility of the hydrocracking process makes its 

development, research, optimization, and innovation a high time- and cost-consuming labor. 

The first research constraint is given by the time consumed in distilling the hydrocracking total effluent and 

the laboratory analysis conducted on the resulting cuts. The second constraint is the experimental cost 

involved in the laboratory analysis and the volume required for the total effluent distillation, resulting in the 

need to process a significant volume of feedstock in the pilot plant facilities. 

The generation of mathematical models for feedstock and product properties estimation is a frequent 

practice in the oil & gas industry for process optimization and reduction of research costs. However, most of 

them are built based on other properties measured in the laboratory, thus maintaining the analysis response 

time constraint. Moreover, the models' performance is affected by the continuous evolution and variability 

of the process (feedstock, catalytic system, operating conditions), limiting their reliable use. Therefore, a 

more profound understanding of the factors impacting the process behavior is necessary for achieving 

reliable estimations.  

Near-infrared spectroscopy (NIR) is a technique that presents several attractive characteristics to satisfy the 

described needs since it requires a low sample volume, has real-time responses, and contains extensive 

physicochemical information of the analyzed samples. Combining this analytical technique with chemometric 

methods has proven to be effective in developing predicting models for crude oil and its fractions properties 

estimation. This alternative for product characterization has helped reduce the time constraint given by the 

laboratory analysis. However, most chemometric models developed for fuel properties estimation employ 

the spectroscopic information acquired on the same stream being analyzed. Consequently, the distillation of 

the total effluent to obtain the physical cuts is still necessary, thus maintaining the time constraint given by 

this experimental task. Besides the limitation of the chemometric models regarding the need for the physical 

product sample to estimate the properties, it is important to stress that the low robustness of developed 

models leads to a relatively easy deterioration of their performance. Hence, the models need to be 

continuously adjusted and recalibrated. 

Considering the given context, the thesis's main objective focused on optimizing the workflow employed for 

characterizing the fuels obtained from the hydrocracking process through reliable and accurate property 

estimation while avoiding the total effluent distillation. This objective addressed three research questions: 

(i) is it feasible to predict middle distillate properties from NIR spectra acquired on the total effluent obtained 
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from hydrocracking process reactors? (ii) including complementary and descriptive information to the NIR 

spectra improves the model performance?, and (iii) can external parameters' influence on the NIR spectra 

quality be compensated/corrected to ensure an online reliable properties estimation over time?. The work 

developed to answer these research questions led to obtaining robust chemometric models that estimate 

the properties of the middle distillates from the total effluent spectroscopic information. In this thesis, 

different regression models were developed for estimating four properties of diesel fuel and three properties 

of kerosene fuel. The obtained models have a statistical performance close to the reference methods used 

to measure the studied properties. The results drawn validated the feasibility of the characterization 

alternative investigated in this thesis, offering the potential to be deployed in real-time process monitoring 

applications. 

The content of the manuscript is divided into six chapters. The first chapter gives the thesis context and the 

generalities and terminology used in the petroleum refining field. Next, details of the hydrocracking process 

and the motivation for its research, discussing the workflow followed traditionally in this labor, are outlined. 

The research problem and the alternatives reported in the literature to solve it are also discussed in this 

chapter. At last, the research questions addressed in this thesis are presented. The second chapter details 

the materials and methods used to answer the challenge. In chapter 3, the first research question is 

addressed by developing chemometrics models based on NIR spectra acquired on total effluent samples. This 

chapter compares different regression methods, defining the most suitable for the thesis purposes. The 

advantages and opportunities for improving the developed models' performance are also discussed. Chapter 

4 shows the work done to improve the performance of the developed models through data fusion modelling, 

thus addressing the second research question. This chapter also discusses the advantages of using variable 

selection in property modelling. Chapter 5 discusses the issue of model robustness. This chapter answers the 

third research question by analyzing different approaches to correct the impact of external parameters on 

model performance. Chapter 6 presents the validation of the results and findings drawn in the previous 

chapters by implementing the models in two case studies. The first case study concerns evaluating the 

models' performance when the total effluent samples have been obtained under experimental conditions 

that were not considered during the models' calibration. The second case study evaluates the 

implementation of the models in the online monitoring of the hydrocracking process. Finally, conclusions and 

perspectives are presented. 

It should be emphasized that the content of chapters 3 to 5 of the manuscript was based on the scientific 

publications produced in the thesis. Therefore, these chapters show the main results that helped to address 

the research questions, thus providing a coherent and practical thread to follow throughout these chapters. 

In addition, the scientific articles elaborated, some published, others submitted, and others in the submission 
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process, are attached as supplementary information in the appendices of the manuscript to give the reader 

a comprehensive detail of the results that led to the conclusions and perspectives of the thesis.        
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Chapter I. Introduction 
 

 

This chapter has three main objectives. First, it seeks to introduce the reader to the domain of crude oil 

refining by presenting the general concepts and terminology used in this field. Then, it aims to give a general 

context of the relevance of petroleum product characterization in the research and optimization of the 

refining processes. Lastly, this chapter seeks to introduce the reader to the research problem addressed in 

the development of this thesis. 

The first section of this chapter describes a general definition of petroleum, its main characteristics, and the 

most relevant refining processes for obtaining the final products. Next, this section presents the generalities 

of the hydrocracking process and its associated streams, emphasizing the total effluent and the middle 

distillates, the focus of the thesis research. In addition, the importance of characterizing the final product for 

decision-making in process optimization is highlighted. The second section of this chapter shows the studies 

reported in the literature on the different alternatives used to perform the product characterization task. 

Finally, a third section presents a general conclusion and the research questions that motivated the 

development of this thesis. 

1. Research context 

1.1 Petroleum and refining 

Petroleum, also known as crude oil, is a complex mixture of hydrocarbons and heteroatomic compounds such 

as sulfur, oxygen, and nitrogen. The concentration of each component can vary according to the oil's origin. 

Hydrocarbon molecules contribute the highest percentage in this mixture (90-99 %wt)1. These compounds 

can be classified into four main groups according to their chemical nature: paraffins, olefins, naphthenes and 

aromatics (PONA). The fraction of each group in the oil is also variable1. The other compounds are found in 

smaller proportions in the crude oil and, being undesirable compounds, are considered contaminants. Sulfur 

(0.01-6 %wt) and nitrogen (0.05-0.5 wt%) compounds have a deleterious effect on the catalytic refining 

processes (they poison the catalyst) and impact the product quality obtained. The oxygenated compounds 

(0.1-0.5%wt) and other contaminants such as metals, mainly nickel and vanadium (0.005 - 0.15% wt)1, are 

also sought to be removed. The crude oil can be classified based on two physicochemical properties: API 

gravity and sulfur content. API gravity determines whether the crude oil is light (°API > 35 ) or heavy (°API < 

18 ), and the sulfur establishes whether the petroleum is sweet (< 0.5 %wt) or sour (> 1%)2.  

Crude oil is currently the primary energy source and feedstock for generating different products, from 

gasoline, kerosene, and diesel to plastics and textiles for example. For obtaining those products, crude oil 

requires different treatment and transformation processes, known as refining processes. Figure 1 shows a 
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general diagram of a refinery where it is observed that the crude oil is initially sent to the process of 

atmospheric distillation from which gas, the fuels already mentioned, atmospheric gas oil, and residue are 

obtained. The naphtha is hydrotreated to remove sulfur compounds. Next, this hydrotreated naphtha is sent 

to other processes such as isomerization and catalytic reforming to obtain gasoline that finally meets the 

required quality for commercialization. Kerosene or jet fuel obtained is generally sent to a complementary 

process for mercaptans removal. Diesel oil is also hydrotreated to remove sulfur compounds and 

contaminants.  

The residue is sent to another distillation process operated under vacuum conditions, thus obtaining vacuum 

gas oil (VGO) and its respective residue. Conversion processes, whether thermal such as Visbreaking and 

Delayed Coking, or catalytic such as Fluid Catalytic Cracking (FCC) and Hydrocracking (HCK), are then used to 

convert these cuts by cracking the long carbon chains into smaller ones. These lighter cuts are then 

hydrotreated to fulfill market requirements. 

 

Figure 1. General flow diagram of a refinery 
‘https://blog.gltproducts.com/blog/what-goes-on-at-an-oil-refinery’ 

 

The shift in consumption from gasoline to diesel has led over the last 20 years to a strong worldwide increase 

in demand for middle distillates (kerosene and diesel)3. At the same time, the increasing heavy crude oil 

production4 has resulted in low-quality feedstocks being processed. The outlined issues and the constant 

demand for high-quality products have led refineries to require flexible refining processes that maximize the 

production of middle distillates from heavy feedstocks while ensuring their quality for compliance with 

environmental and commercial legislations5, 6. Given its extensive flexibility, the hydrocracking (HCK) process 
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is essential in addressing the needs described 7. 

1.2 Hydrocracking process and research motivation 

Hydrocracking is a catalytic process that aims to convert heavy feedstocks (long-chain molecules with high-

boiling points) into lighter and high-quality products (lower-boiling points and short-chain molecules) 

through cracking of the carbon-carbon bonds and the hydrogenation of the shorter chains generated from 

this cracking8. The HCK process is commonly used for upgrading heavier fractions obtained from crude oil 

distillation, including the residue. It is also used to upgrade products from other processes, such as coker 

gasoil, deasphalted oil, FCC cycle oils, and tower bottoms. This process has emerged as the primary diesel 

producer in many refinery configurations addressing the need for maximizing the production of middle 

distillates from heavy feedstocks. Unlike the FCC process, HCK can effectively yield ultra-low sulfur diesel 

(ULSD), whereas middle-distillate range FCC products regularly require additional treatment to meet product 

environmental and commercial specifications9. As evidenced, HCK is a refining process with extensive 

flexibility in processing heavy feedstocks to obtain various high-quality fuel products10. This flexibility is linked 

to the operating conditions employed in the process, primarily the formulation of the catalytic system11.  

The hydrocracking process may consist of up to 6 configurations: one or two stages with no, partial, or total 

recycling12. Depending on the operating conditions (pressure and temperature), it can be categorized as 

mild or high-pressure hydrocracking. Despite the high investment cost (CAPEX) and its significant operating 

cost (OPEX), refiners express a high interest in high-pressure HCK because it has more flexibility in the 

process, and the middle distillates obtained have better quality (cetane number and cold flow properties 

for diesel). Table 1 summarizes the operating conditions used in the different schemes of this process. The 

most common and analyzed scheme in this thesis is depicted in Figure 2. In broad terms, the process has a 

first hydrotreatment (HDT) stage that removes heteroatoms, saturates the olefins, and partially 

hydrogenates the aromatics. Subsequently, the hydrotreated feedstock is sent to a reactor where, in the 

presence of a specific catalyst, the HCK reactions occur13. Finally, a lighter liquid product known as total 

effluent is obtained from the reaction section and distilled to obtain the desired products. In Figure 2 are 

shown the streams involved in the process: hydrogen, feedstock (mostly VGO), and the hydrocracked total 

effluent obtained from the HDT and HCK reactors. 

Table 1. HCK process operating conditions14  

Hydrocracking unit type 
Typical 

conversion, % 
Total 

Pressure, Bar 
Hydrogen partial 

pressure, Bar 
Reactor 

temperature, °C (°F) 

Mild 20-40 60-100 20-55 350-440 (662-824) 

Moderate/Medium-pressure 40-70 100-110 50-95 340-435 (644-815) 

Conventional/High-pressure 50-100 110-200 95-140 350-450 (662-842) 

Resid hydrocracking 65-100 97-340 73-255 385-490 (725-914) 
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Figure 2. Hydrocracking process global scheme 

As discussed previously, the HCK process is an extensively implemented refining process nowadays. Hence,  

it is the subject of ongoing research. In their study, "Hydrocracking: A Perspective towards Digitalization", 

Iplik et al.,15 showed the exponential increase in the number of scientific publications related to the 

hydrocracking process in the last two decades. Approximately 89% of the reported studies are related to 

process optimization focusing on three research lines: applied chemistry in catalyst development (30%), 

evaluation of sequencing system configurations and operational conditions (58%), and automation and 

control systems (1%)15. Considering these three research fronts, the variability of the HCK process to be 

investigated can be substantial, making the development and innovation of this process a cost- and time-

consuming task. 

The HCK process variability is commonly evaluated by conducting different experimental designs in pilot 

plants and laboratory facilities under various controlled conditions. Generally, the experimentation is divided 

into the catalytic reaction and distillation steps. The first step, summarized in block #1 of Figure 2, concerns 

the heating and conversion of the feedstock-hydrogen mixture into a lighter product (total effluent) through 

the HDT and HCK reactions. The impact of process operating conditions such as pressure (P), temperature 

(T), the residence time given by the liquid hourly space velocity (LHSV), and the catalytic system are screened 

during this step. This task is conducted in an uninterrupted sequence over the entire study's length. The 

second step, summarized in block #2 of Figure 2, involves the distillation of the total effluent to obtain the 

final products, including the middle distillates, for subsequent characterization. Finally, the resulting 

analytical information is gathered and analyzed for process monitoring and evaluation. 

In contrast to the catalytic reaction step, the characterization of the product is performed on a discontinuous 
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time basis. Firstly, the laboratory analyses are conducted offline and are conditioned to the different 

laboratories' response times. Moreover, the physical product samples are required to perform the laboratory 

analysis. The samples are obtained from the total effluent distillation conducted in a non-continuous 

sequence. 

Depending on the study purpose, the experimental scheme described requires processing considerable 

amounts of feedstock and catalyst to produce a sufficient volume of total effluent for its physical 

fractionation. To reduce the consumption of these supplies in the HCK process research, High Throughput 

Experimental units (HTE)16 are employed. They use small sample volumes of feedstock and catalyst and allow 

simultaneous process analysis (parallel studies/tests), helping the cost-benefit ratio of research projects. 

However, when using HTE units, a sufficient volume of total effluent is often not produced, limiting the 

detailed process analysis regarding product characterization. In addition, it should be noted that some HTE 

unit configurations allow producing the minimum required volume of total effluent for distillation; 

nevertheless, the volume of final cuts obtained is sometimes insufficient to perform a complete laboratory 

analysis. A common practice in HCK process research for optimizing experimental tests performed in pilot 

units is developing kinetic models and simulators. However, these models and simulators must be 

periodically fed with experimental test data to avoid deterioration and obsolescence.  

The characterization of the products obtained from the HCK process is a crucial but time- and cost-consuming 

task in its research. This labor can be accomplished by implementing different approaches. The most 

commonly employed approach is using standardized norms and methods. An alternative to optimize costs 

and response time is substituting these standardized analyses with multivariate analytical techniques 

coupled with statistical processing. The following section provides an overview of the latter alternative and 

its application in the oil & gas sector. 

2. Product characterization approaches 

2.1 Standard methods approach 

Whether for research or quality validation, the characterization of petroleum cuts must be conducted in a 

reliable, repeatable, and reproducible manner. Therefore, the characterization must comply with certain 

standardized guidance that can be applied at the international or world level. The most widely used analytical 

methods in the oil industry are the American Society of Testing Materials (ASTM) and the International 

Organization for Standardization (ISO) methods; yet these methods can be adapted to specific needs 

according to the legislation of each region. Table 2 presents the most representative laboratory analyses used 

to determine the quality of the petroleum products involved in the development of this thesis. 

The standard methodologies defined by ASTM and ISO require trained operators, an infrastructure that 
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guarantees the measuring conditions, a system for assuring results and specialized equipment to carry out 

the different tests according to the standard. In addition, the time required to obtain the results can vary 

between half an hour and eight hours, not considering the time required to distill the total effluent. Hence, 

the characterization of the HCK process streams according to the outlined standard norms restricts the 

opportune analysis and monitoring of the process. Therefore, a fast and efficient alternative for the crude oil 

cuts characterization is of great interest. 

Table 2. Standard analytical methods for quality determination of HCK process streams (feedstock, total effluent, middle distillates)  

Property Stream Method Reproducibility limits 

Viscosity @ 70°C & 100°C (µ) - cst 

Feedsctock 

ASTM D445-9717  ± 0.0082 (µ_measured + 1) 

Sulphur (S) - wt% ISO 2084618 ± 0.112(S_measured)+1.12 

Nitrogen (N) - mg/kg ppm 
ASTM D529119 

± 0.4456 

Hydrogen (%H) - w/w% ± 0.2314(H_measured0.5) 

Aromatic Carbon (AC) - wt% 

ASTM D3238-9520 

± 1.7 

Paraffinic Carbon (PC) - wt% ± 3.4 

Naphtenic Carbon (NC) - wt% ± 3.6 

Density (ρ) - gr/ml Feedstock 
Total effluent 
Middle 
distillates 

ASTM D1218 - 1221 
±0.0005 

Refractive Index (RI) @20°C ±0.0002 

Refractive Index (RI) @70°C ASTM D174722 ±0.0006 

Simulated distillation (SimDis) °C 

Feedstock ASTM D7213-1523   

Total effluent 
Middle 
distillates 

ASTM D2887-19ae224   

Cetane Number (CN) 
Middle 
distillates 

ASTM D613-0125 

Average CN Limits 

40 ± 2.8 

44 ± 3.3 

48 ± 3.8 

52 ± 4.3 

56 ± 4.8 

Flash Point (FP) - °C 
Kerosene 

ASTM D93-1826 ± 0.071*(FP_measured) 

Smoke Point (SP) - mm ASTM D1322-1227 ± 0.001651*(SP_measured+30) 

Cloud Point (CP) - °C 

Diesel 

NF EN 2301528 ± 4 

Pour Point (PP) - °C ASTM D594929 ± 6 

Cold Filter Pluging Point (CFPP) - °C NF EN 11630 ± 3-0.06*(FLT measured) 

  

2.2 Alternative approach 

In the last decades, combining analytical analysis and chemometric methods has drastically increased to 

assess fuels, from crude oils to refined cuts such as gasoline31, diesel32, 33 and biodiesel34, 35, or lubricants36. 

On the one hand, the main advantage of applying multivariate calibration methods to analytical techniques 

is both cost- and time-saving. On the other hand, the sample volume required is quite low compared to some 

standardized methods used to characterize fuels. 
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Among the known existing analytical methods, the vibrational spectroscopy is the most adequate to comply 

with the described optimization needs, highlighting the infrared spectroscopy37 (IR), either near (NIR) or mid 

(MIR). NIR is one of the most relevant and attractive techniques for developing predictive models as it is a 

non-destructive, non-invasive method, requires a small sample volume, requires minimal sample 

preparation, and is suitable for applications where real-time measurement is required38, 39. Furthermore, this 

analytical technique is highly flexible and used in research and industrial applications, from food quality 

analysis to chemical process control40.  

Another analytical technique for property estimation from regression models is the Nuclear Magnetic 

Resonance (NMR). The most important applications in organic chemistry are NMR spectrometry of proton 

(1H) and carbon-13 (13C). It is a powerful and versatile method that can be applied to solid and liquid materials 

and quickly analyze samples requiring minimal preparation41. The fundamental application of NMR 

spectroscopy is the structural determination of either organic, organometallic, or biological molecules. 

Compared to infrared spectroscopy, the NMR spectrum contains more detailed information on the molecular 

interactions and bonds present in the sample.  

The outlined analytical methods have characteristics that make them attractive for the purposes 

aforementioned. Table 3 illustrates and compares the main features of each of them. 

Table 3. Main features of NIR and NMR techniques  

 NIR NMR 

Molecular sample description   ✓ 

Prediction of samples' physicochemical properties ✓ ✓ 

Low sample volume ✓ ✓ 

Minimal ~No sample preparation ✓  

Analysis time <2h ✓ ✓ 

Real-time application ✓  

The growing need to take advantage of the large volume of information generated by the analytical 

techniques described has made chemometrics, which is defined as a “chemical discipline that uses 

mathematical, statistical and logical methods to extract valuable information from experimental data to 

optimize processes and/or products”42, very popular in the development of prediction models as an 

alternative for property characterization. To obtain reliable prediction models, it is fundamental to ensure 

the quality and suitability of the database utilized. This includes, but is not limited to, preprocessing of 

information, detecting anomalous data, and further statistical analysis of the database. In addition to 

ensuring an appropriate and reliable database, it is crucial to adequately select the chemometric methods to 

be used when calibrating the models. The methods used should optimally explain the relationship between 

the information extracted from the analytical technique and the property investigated. As mentioned at the 

beginning of this section, several studies have focused on applying chemometric methods to analytical 

techniques for petroleum product characterization. In the next pages, an analysis of these studies is given to 
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present the most relevant progress made on this subject and outline the research problem to be addressed 

in this line of work. It is important to point out that the methods employed in the studies analyzed are not 

discussed in this section. Instead, a general description of them and their respective references are reported 

in appendix 8 as complementary information for the reader.       

A recent review from Moro et al.43 points out the growing use of infrared spectroscopy and NMR to predict 

crude oil properties using chemometrics methods. They show in their study the compilation of 35 studies 

completed between 1998 and 2020. This compendium of studies focuses on estimating 24 crude oil 

properties, being the API gravity, nitrogen, and sulfur content the most investigated. NIR spectroscopy was 

used in 23% of these studies, 30% used MIR, and the remaining 47% used NMR.  

According to the literature analyzed in this thesis, there is no existing equivalent review for other petroleum 

cuts. However, several interesting studies can be found showing the interest in using IR and/or NMR and 

chemometrics to rapidly obtain properties of fuels with statistical performance close to the reference 

methods. Following the consolidation and analysis scheme made by Moro et al.43, Table 4 shows a non-

exhaustive compilation of these works. 

Table 4. Chemometrics studies applied for fuel properties estimation   

Year 
Spectral 

input 
data  

Cut 
analyzed  

Property estimated 
Number of 

samples 
Regression 

Method 
Preprocessing Reference 

1990 NIR Gasoline 

RON 

28 PLS 
Baseline 

correction 
Parisi44 MON 

PONA (wt%) 

1995 MIR Kerosene 

Density (g/mL) 

29 PLS 
mean 

centering 
Garrigues45 

Freezing point (°C) 

Flash point (°C) 

Aromatic content (wt%) 

Initial Boiling Point (IBP) (°C) 

Final Boiling Point (FBP) (°C) 

Viscosity (cSt) 

1997 MIR Kerosene 

Density (g/mL) 

29 
PLS, PCR, 

MLR 
mean centering Andrade46 

Freezing Point (°C) 

Flash Point (°C) 

Aromatics Content (v/v%) 

Initial Boiling Point (IBP) (°C) 

Final Boiling Point (FBP (°C) 

1998 
MIR 
NMR 

Base Oil  

Viscosity Index 

60 PLS mean centering Sastry47 Pour Point (°C) 

Carbon Type 

1999 NIR 
Diesel & 
Kerosene 

Cetane Number 

90 PLS 
mean 

centering 
Zanier-

Szydlowski48 

Refractive Index @20°C 

Density (g/ml) 

Hydrogen content (wt%) 

Aromatic Carbon (wt%) 

Aromatics Content (wt%) 

1999 
NIR & 
MIR 

Kerosene Distillation Curve 50 PLS mean centering Chung49 
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Table 4. Chemometrics studies applied for fuel properties estimation continuation 

Year 
Spectral 

input 
data  

Cut analyzed  Property estimated 
Number 

of 
samples 

Regression 
Method 

Preprocessing Reference 

2000 NIR 

LSR 

Model developed to 
classify the petroleum cuts 

57 

PCA & 
Bayesian 
classifier 

SNV Kim50 

Naphtha 61 

Kerosene 61 

Diesel 64 

LGO 64 

2001 NMR Gasoline 
RON 

>300 ANN mean centering Meusinger51 
MON 

2003 MIR Kerosene 

Flash point (°C) 

100 PLS mean centering 
Gômez-

Carracedo52 

Freezing point (°C) 

Initial Boiling Point (IBP) (°C) 

10% of distilled sample (°C) 

90% of distilled sample (°C) 

Final Boiling Point (FBP) (°C) 

Aromatics (wt%) 

Viscosity (cSt) 

2003 NMR Diesel Cetane Number 60 PCA-ANN mean centering Basu53 

2004 MIR 
Lubricating 

Oil 

Contaminants (gasoline, 
ethylene glycol, water) 

content (wt%) 
78 iPLS MSC Borin54 

2006 MIR 
Kerosene & 

Diesel 

Aromatics content (wt%) 

59 PLS mean center Baldrich55 
Sulfur content (ppm)  

50% of distilled sample (°C) 

Final Boiling Point (FBP) (°C) 

2007 NIR Gasoline 

Density (g/mL) 

106 

PLS 
PCR 
ANN 
MLR 

normalization 
autoscaling 

Balabin56 

Initial Boiling Point (IBP) (°C) 

10% of distilled sample (°C) 

50% of distilled sample (°C) 

90% of distilled sample (°C) 

Final Boiling Point (FBP) (°C) 

2008 NIR Gasoline 

Density (g/mL) 

227 WNN 
No 

preprocessing 
Balabin57 Benzene content (ppm) 

Ethanol content (ppm) 

2008 NIR Biodiesel 

Iodine value 311 

PLS 
Savitzky-Golay 

[9,3,1-2] 
Baptista58 

CFPP (°C) 71 

Viscosity (cst) 144 

Density (g/mL) 91 

2008 NIR Diesel 

Cetane Number 245 

GILS 1st derivative Özdemir59 

Boiling Point (°C) 246 

Freezing point (°C) 251 

Aromatics (wt%) 256 

Viscosity (cSt) 252 

Density (g/mL) 263 

2008 NIR Gasoline 
RON 

156 
PLS 

(calibration 
transfer) 

SNV 
MSC 

Pereira60 
Naphthenes content (wt%) 

2009 NIR Gasoline 
RON 

67 
PLS 

(calibration 
transfer) 

SNV 
Amat-

Tosello61 MON 

2010 MIR Motor Oil 
Viscosity Index 

30 PLS 
Savitzky-Golay 

[10,1,0] 
Al-Ghouti62 

Base number 

2010 NIR Motor Oil 
Model developed to classify 

motor oil by base stock 
225 PNN, SVM mean centering Balabin63 
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Table 4. Chemometrics studies applied for fuel properties estimation continuation 

Year 
Spectral 

input 
data  

Cut 
analyzed  

Property estimated 
Number 

of 
samples 

Regression 
Method 

Preprocessing Reference 

2010 NIR Gasoline RON 384 LPC & MLR Normalization Kardamakis64 

2010 NIR Diesel 

Density (g/mL) 

161 PLS 
Savitzky-Golay 

[11,2,1] 
Fátima65 Sulfur content (ppm)  

Distillation temperatures °C 

2010 NIR 
FCC 

feedstocks 

Sulfur (wt%) 

89 PLS mean center Baldrich66 

Density (kg/L) 

Basic Nitrogen (wt%) 

Microcarbon Residue (wt%) 

Nickel (ppm) 

Vanadium (ppm) 

2011 NIR Jet Fuel 

API gravity 

70 
PLS 

(calibration 
transfer) 

SNV Cooper67 

Aromatics content (%wt) 

Cetane index 

Density (g/mL) 
10% of distilled sample (°C) 
20% of distilled sample (°C) 
50% of distilled sample (°C) 
90% of distilled sample (°C) 

Flash point (°C) 

Hydrogen content (%wt) 

Saturates content (%wt) 

Viscosity (cSt) 

2011 NIR Biodiesel 
CFPP  (°C) 

101 PLS 
Savitzky-Golay 

[9,3,2] 
Balabin68 

Iodine value 

2011 NIR Biodiesel 

Density (g/mL) 

124 ANN 
Savitzky-Golay  

OSC 
Balabin69 

Viscosity (cSt) 

Methanol Content (ppm) 

Water content (ppm) 

2012 MIR 
Lubricating 

Oil 

Density (g/mL) 

100 PLS mean centering Marinovic70 Viscosity (cSt) 

Pour Point (°C) 

2012 MIR Motor Oil Adulteration grade 60 PLS2-DA SNV Bassbas71 

2012 NIR Diesel Cetane Number 245 PLS mean centering Yan-Kun72 

2012 MIR Diesel 

Cetane Number 

93 PLS mean centering Marinovic73 

Cetane Index 

Density (g/mL) 

Viscosity (cSt) 

10% of distilled sample (°C) 

50% of distilled sample (°C) 

90% of distilled sample (°C) 

Aromatics content (wt%) 

2012 NIR JetFuel 

Flash Point (°C) 

60 PLS First derivative Xu74 

Freezing Point (°C) 

10% of distilled sample (°C) 

50% of distilled sample (°C) 

90% of distilled sample (°C) 

2013 Vis-NIR 
Lubricating 

oil 
Insoluble content (wt%) 70 

PLS 
(Variable 
selection) 

Savitzky-Golay 
[5,1,2] 
MSC 

Villar75 
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Table 4. Chemometrics studies applied for fuel properties estimation continuation 

Year 
Spectral 

input 
data  

Cut 
analyzed  

Property estimated 
Number of 

samples 
Regression 

Method 
Preprocessing Reference 

2014 NMR Diesel Cetane Number 60 PLS mean centering Souza76 

2015 NIR Gasoline 

Density (g/ml) 

466 

Adaptive 
Algorithm 
ORL-PLS  

(Author’s 
creation) 

1st order 
derivative 

He77 

Freezing Point (°C) 

Aromatics Content (wt%) 

Viscosity (cSt) 

Cetane Number 

2015 NMR Diesel 

Cetane Index 

60 PLS - Santos78 
Density (g/mL) 

Flash Point (°C) 

50% of distilled sample (°C) 

2015 NIR Diesel 

Freezing point (°C) 

441 LS-SVM/PLS 
Savitzky-Golay  

MSC 
Feng79 

Density (g/mL) 

Viscosity (cSt) 

Boiling Point (°C) 

Cetane Number 

Aromatics (wt%) 
2016 NMR Diesel Cetane Number 125 MLR - Abdul Jameel80 

2016 NIR Shale oil Density (g/mL) 300 
PLS 

(calibration 
transfer) 

Cubic spline Baird81 

2016 NIR 

Diesel 

Density (g/mL) 166 

PLS 
Savitzky-Golay 

[11,3,1] 
Brouillette82 

Cetane Index 141 

Viscosity (cSt) 134 

Aromatics (wt%) 35 

Cloud Point (°C) 111 

Flash Point (°C) 107 

Pour Point (°C) 95 

Kerosene 

Density (g/mL) 89 

Aromatics (wt%) 50 

Flash point (°C) 92 

Pour Point (°C) 44 

Freezing point (°C) 86 

2017 NIR 
Gasoline + 

Ethanol 
Ethanol Content (v/v%) 23 MCR-ALS 

Savitzky-Golay 
[9,1,2] 

normalization 
Oliveira83 

2017 
NIR & 
MIR 

Bio-Diesel 

Distillation Curve 

16 PLS 
Savitzky-Golay 

[7,1,0] 
Câmara84 

Viscosity (cSt) 

Flash point (°C) 

Water content (ppm) 

2017 MIR Motor Oil Total Acid Number (TAN)  80 
PLS, SVM, RF, 

PPR 
normalization Leal de Rivas85 

2017 
MIR 
NIR 

Diesel 
biodiesel 

Fatty methyl esters 50 Data fusion 
Savitzky-Golay 

SNV 
Luna86 

2017 MIR Crude oil API gravity 96 
PLS 

(calibration 
transfer) 

Mean center Rodrigues87 

2017 NIR Diesel Cetane Number 381 LS-SVM 
Savitzky-Golay 

[15,1,1] 
Zhan88 
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Table 4. Chemometrics studies applied for fuel properties estimation continuation 

Year 
Spectral 

input 
data  

Cut analyzed  Property estimated 
Number 

of 
samples 

Regression 
Method 

Preprocessing Reference 

2017 NIR Diesel 

Density (g/mL) 

278 PLS 
Savitzky-Golay 

[11,2,0] 
Palou89 

Cetane Index 

FAME 

Cloud Point (°C) 

95% of distilled sample (°C) 
Flash Point (°C) 

Sulfur content (ppm)  

2017 NIR Gasoline 

10% of distilled sample (°C) 

103 
PLS 

(calibration 
transfer) 

SNV 
MSC 

Da Silva90 

50% of distilled sample (°C) 

90% of distilled sample (°C) 
Final Boiling Point (FBP) (°C) 

Density (g/mL) 

2018 MIR Diesel 

Density (g/mL) 

409 
PLS  

(Variable 
selection) 

OSC Nespeca32 

Flash Point (°C) 

Total Sulfur (ppm) 

Distillation curve (°C, v/v%) 

Cetane Index 

2018 NMR Diesel 

Cloud Point (°C) 

40 
ANN, 

Kriging 
normalization 

da Costa 
Soares91 

CFPP  (°C) 

Viscosity Index 

2018 NMR 

Kerosene 

Smoke Point (°C) 197 

PLS 
Savitzky-

Golay  
normalization 

Lacoue-
Nègre92 

Cetane 225 

Hydrogen content (wt%) 204 

Mono-Aromatics (wt%) 202 

Di-Aromatics (wt%) 71 

Total-Aromatics (wt%) 196 

Diesel 

Cloud Point (°C) 276 

Pour point (°C) 203 

CFPP (°C) 254 

Cetane 290 

Hydrogen content (wt%) 279 

Mono-Aromatics (wt%) 221 

Di-Aromatics (wt%) 221 

Total-Aromatics (wt%) 217 

370°C+ 

Hydrogen Content (wt%) 281 

Carbon Content (wt%) 269 

Pour Point (°C) 139 

Viscosity Index 344 

Lubricant Oil Pour Point + Viscosity Index 203 

2019 NMR Diesel 

Viscosity 

40 PLS 
mean 

centering 
Constantino93 Density 

Refractive Index 

2020 NIR Diesel Cetane Number 50 PLS 
Baseline 

correction 
Barra94 

2020 NIR Diesel 

Cetane Number 

784 

Regression 
tree 

(Variable 
selection) 

mean 
centering 

Shukla95 

Boiling point (°C) 

Freezing point (°C) 

Aromatics content (wt%) 

Viscosity (cSt) 

Density (g/mL) 
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Table 4. Chemometrics studies applied for fuel properties estimation continuation 

Year 
Spectral 

input 
data  

Cut 
analyzed  

Property estimated 
Number of 

samples 
Regression 

Method 
Preprocessing Reference 

2021 NIR Diesel 

Boiling Point (°C) 237 

PLS-SPORT Mishra96 
Density (g/mL) 237 

Aromatic (wt%) 237 

Viscosity (cst) 237 

2021 NIR Diesel 

Viscosity (cst) 67 

PLS 

mean 
centering Hradecká97 

CFPP (°C) 64 

Pour Point (°C) 57 

Aromatics (wt%) 70 

Sulfur content (ppm)  50 1st derivative 

2022 NIR Diesel Density (g/ml) 
243 

Automatic 
Model 

Constructio
n 

1st derivative 
Yu98 

53 
mean 
centering 

2022 NIR Diesel 

Freezing point (°C) 

389 IGWO 
mean 

centering 
Liu99 

Density (g/ml) 

Viscosity (cSt) 

Boiling Point (°C) 

Cetane Number 

Aromatics (wt%) 

2022 NMR Diesel Diesel adulteration  117 Data fusion normalization Aguiar100 

From the information reported in Table 4, it could be inferred that middle distillates are the most researched 

cuts, occupying 68% of the studies (51% diesel and 17% kerosene). On the other hand, gasoline and lubricant 

oils share the same number of studies (≈15%). The remaining 2% of the research was focused on light 

atmospheric gas oil (LGO). Forty-nine fuel properties were studied among all the research collected, 

corresponding to 11 properties of gasoline, 16 of diesel, 15 of kerosene, and 7 of lubricant oil. Regarding 

middle distillates, the most studied properties for diesel were the cetane number and density, while the 

aromatics content and the distillation curve for kerosene. 

58% of the 58 studies consolidated in Table 4 used NIR spectroscopy to develop the predictive models. MIR 

accounted for 30% of the studies, while the remaining 12% employed NMR spectra. For model development, 

the regression method most used was the partial least squares (PLS), representing 57% of utilization 

compared to other methods, including those related to machine learning, representing only 18% of 

implementation. Regarding spectroscopic information preprocessing, the two most frequently employed 

methods were the Savitzky-Golay (SavGol) derivative and the standard normal variate (SNV). A further fact 

extracted from the information analyzed was that the figure of merit most used for model evaluation was 

the root mean square error of cross-validation (RMSECV), using the leave-one-out method.  

An interesting fact to extract from the compilation made by Moro et al.,43 and the bibliographic analysis made 

in this thesis is that before 2009 all the studies used each spectroscopic technique independently to construct 
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the models. Since this year, the simultaneous use of information has begun to gain ground in developing 

chemometric models for property estimation in the oil and gas industry, mostly for crude oil analysis and to 

a lesser extent for fuels, especially middle distillates. The information discussed in the last paragraphs is 

summarized in Figure 3.  

a)  b)  

c)  d)  

e)  

Figure 3. Summary of the collection of chemometrics studies applied for fuel properties estimation. a) Product analyzed, b) 
Analytical technique employed, c) Preprocessing method employed, d) Regression method employed, e) Modelling approach 

employed 
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Since the focus of this thesis is the estimation of middle distillate properties, a more detailed analysis of the 

studies involving these cuts was performed as follows. 

2.2.1 Kerosene 

Three properties of kerosene were studied during the development of this thesis, namely the cetane number, 

the flash point, and the pour point. The description of the kerosene cut, and the properties studied can be 

found in Chapter II, "Materials and methods".  

The cetane number is generally measured using the ASTM D-613 standard25. This analysis is destructive, 

generally requires 500 ml of sample, and the reproducibility limits are defined as a function of the average 

measured value (see Table 2). For estimating this property, Zanier-Szydlowski et al.,48 developed a 5-Latent 

Variable (LVs) PLS model from a database containing 90 NIR spectra acquired on diesel and kerosene samples. 

Their objective was to develop a comprehensive model to evaluate this property in the measurement range 

of middle distillate cuts. Using the mean center as the only preprocessing of the spectroscopic information, 

they were able to obtain a standard error of prediction (SEP) of 2.0, a value that is below the reproducibility 

limits of the reference method. An advantage evidenced in this study was the model application range (20 - 

65) which is wider and covers more variability of the cetane number regarding the standard norm. 

Through an internal research project at IFPEN, a PLS model for the kerosene cetane number estimation from 

NIR spectra acquired in kerosene samples was developed. The results were compared and validated against 

the ASTM D613 standard25, showing prediction errors inferior to 1. This alternative for kerosene cetane 

number estimation is currently employed to characterize this stream. Going one step further in optimizing 

the response time to estimate the kerosene cetane number, it was demonstrated in an internal IFPEN study 

the potential of estimating this property from NMR spectra acquired on the total effluent obtained from the 

HCK process. From a database of 225 NMR spectra, a PLS model of 6 LVs with average prediction errors of 

0.8 was obtained. The application range of this model is between 27.8 and 46.3, offering more flexibility in 

the estimation of low cetane number value compared to the standard method. 

Concerning the flash point (FP), it is measured according to the ASTM D93-18 standard26. The reproducibility 

of this method is a function of the measured FP, and is defined by the formula ±0.071*FP. The FP of kerosene 

normally ranges between 35 and 65; therefore, the developed models should have prediction errors between 

2.5 and 4.5. Using NIR spectra acquired on 29 kerosene samples, Garrigues et al.,45 obtained a PLS model of 

3 LVs for estimating the FP with a SEP of 2.1. Although the SEP is lower than the reproducibility stipulated by 

the standard norm, it must be considered that the samples used in the development of the model are only a 

few (29). In addition, this study does not report the range of application of the model, thus avoiding 

determining its versatility. Alternatively, Brouillette et al.,82 used a more comprehensive database (92 

samples). Using the first derivative SavGol with a third-order polynomial and an 11-point window as a 

preprocessing method, they obtained a PLS model of 5 LVs that can be applied in an estimation range 
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between 40 and 65. However, the RMSECV reported in this study exceeds the reproducibility limit of the 

reference method (>4) and has a low correlation squared coefficient (r²CV) (0.53).      

Smoke point (SP) has the least reported studies compared to the other two properties. This property is 

measured using ASTM D1322-1227, and like the FP, the reproducibility is a function of the measured SP value 

given by the formula ±0.01651*(SP+30). Generally, kerosene has SP values between 15-45, which leads to 

expect regression models that present prediction errors around 1.2. In the same internal IFPEN study 

conducted on estimating the kerosene cetane number from the NMR acquired on total effluent samples, a 

PLS model of 8 LVs for predicting the kerosene SP was developed from 197 samples. The application range 

of this model is between 13 and 32, and its root mean squared error of prediction (RMSEP) is 1.1. Once again, 

the potential to reliably estimate kerosene properties from total effluent spectroscopic information is 

evident. 

2.2.2 Diesel 

In this thesis, the research work was focused on four properties of diesel, namely the cetane number and the 

cold flow properties (cloud point (CP), pour point (PP), and cold filter plugging point (CFPP)). The description 

of this cut and the properties studied are presented in detail in Chapter II, "Materials and methods". 

The most researched diesel property is the cetane number. This property in diesel is measured using the 

same standard procedure employed in measuring the kerosene cetane number. As discussed previously, 

Zanier-Szydlowski et al.,48 developed a model for cetane number prediction that covers diesel and kerosene 

cetane number ranges. In addition, in a homologous manner as for kerosene, at IFPEN it was developed a 

PLS model for predicting this property from NIR spectra acquired on diesel samples. This model validated 

against ASTM D61325 is included in the model set used for estimating certain properties of middle distillates. 

With an application range between 40 and 60, Özdemir et al.,59 developed a prediction model from the NIR 

spectra acquired on 245 diesel samples through a genetic regression algorithm associated with inverse least 

squares regression (GILS). The developed model shows an adequate performance by having a SEP of 2.1 and 

an r² of 0.86. Using the same analytical technique (NIR), Brouillette et al.82 developed a 5-LVs PLS model for 

diesel cetane number prediction having a similar SEP (2.2) and range of application (43-57).       

The most recent studies using NIR spectra in the diesel cetane number estimation are reported by Zhan et 

al. 101 and Barra et al. 94. In the first study, a least squares-support vector machine (LS-SVM) regression model 

was developed, showing errors of calibration (1.8) and prediction (2.0) lower than the reproducibility of the 

reference method. However, the squared correlation coefficients of calibration (r²c) and prediction (r²p) were 

quite low (0.66). In the second study, using a PLS regression model with 8 LVs, diesel cetane number 

estimations were obtained with an RMESP around 0.5 and an r²p value higher than 0.9. Regarding this last 

study, it should be noted that the number of samples used for testing the model developed is low (10) with 

a narrow cetane number range (49-59).      
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Using a different analytical technique from the one discussed in previous paragraphs, Souza et al.,76 present 

a study where estimation of the cetane number with errors below 0.7 is achieved using a PLS model of 4 LVs 

obtained from 60 NMR spectra acquired on diesel samples. While this is a rather promising result, it should 

be noted that the range of application of this model is limited (42-46.8). With similar results, Basu et al.,53 

propose an artificial neural network (ANN) model based on principal components using the NMR spectra 

acquired on 60 diesel samples. Unfortunately, the study does not report the application range of the model. 

Another study using the NMR acquired on diesel samples for predicting the cetane number of this product 

was developed by Santos et al.78. In this study, they estimate this property in diesel and blends of diesel with 

biodiesel, having errors lower than 0.8 and r² higher than 0.9. The application range of the PLS model 

developed is between 44 and 49.5. 

Following the same internal study developed at IFPEN for kerosene cetane number estimation from the NMR 

spectra acquired on total effluent samples obtained from the HCK process reactors, an 8-LVs PLS model was 

developed for predicting this property in diesel. The developed model has the widest application range (30.5-

70.7) regarding the studies discussed, including those developed with NIR spectra, and it provides estimates 

of this property with an RMSEP of 1.4. 

In addition to the diesel cetane number estimation, some studies developed for predicting the diesel cold 

flow properties were analyzed. These properties have represented a challenge for developing chemometric 

models that allow their estimation reliably while having errors close to the reproducibility limits of the 

reference methods.  

The CFPP is determined by NF EN 11630, and its reproducibility limits are given by the formula ±3-0.06*CFPP. 

The lowest typical value of this property in diesel is -50°C, while the highest can be up to 15°C. Baptista et 

al.,58 developed a PLS model of 3 LVs from NIR spectra acquired on 71 diesel samples. Using the second 

derivative of SG with a third-order polynomial and a 9-point window as a preprocessing method, they 

achieved an RMSEP of 1.1 for an estimation range between -14°C and 5°C. On the other hand, in a recent 

study reported by Hradecká et al.,97 a PLS model of 10 LVs was obtained, allowing a wider range of application 

(from -47°C to 6 °C). As expected, the prediction error in this model (3.6) is higher than that reported by 

Baptista; however, this value is still close to the reproducibility limits of the reference method. 

Another of the cold flow properties of diesel studies was the cloud point (CP). This property is measured 

using the ISO 3015 standard28, which has a reproducibility of ±4. To estimate this property using NIR 

spectroscopy, we can highlight the works of Palou et al.,89 and Brouillette et al.82. Both studies used the 

SavGol derivative as a preprocessing method. With a database of 278 diesel samples, Palou obtained a PLS 

model with 7 LVs that enables the CP estimation with an RMSEP of 1.15. This model has a range of application 

between -12.4°C and 2.2. In contrast, Brouillette obtained a PLS model with 5 LVs from NIR spectra acquired 

on 111 diesel samples. This model offers a wider range of CP estimation (from -25°C to 15°C); however, the 

RMSECV (3.6) is higher. Despite its higher RMSECV, its performance is acceptable compared to the standard 
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norm.  

The third cold flow property of diesel is the pour point (PP). The standard norm used for measuring this 

property is the ASTM D594929, and it has a reproducibility of ±6. Once again, Brouillitte et al.,82 succeeded in 

using a PLS model to obtain estimates of this property with errors close to the reproducibility limit of the 

reference method (5 vs. 6). The range of application of this model is between -28°C and -6°C. Hradecká et 

al.,97 obtained a better-performing model with a wider application range (from -51°C to -7°C). Using 57 diesel 

samples, they developed a PLS model with 9 LVs that provides diesel PP estimation with an RMSECV of 3.6.  

A very promising approach for estimating the cold flow properties of diesel, which was the foundation of the 

development of this thesis, is reflected in the internal IFPEN study where they succeed in predicting the three 

cold flow properties from NMR spectra acquired on total effluent samples from the HCK process. For the 

CFPP, a 10 LVs PLS model obtained from 254 NMR spectra estimates this property with an RMSEP of 2.61 and 

an application range between -32°C and -5°C. For the CP, 12 LVs of a PLS model are necessary to have 

estimates with an RMSEP around 2.3. This model has an application range between -40°C and -0.6°C.  Finally, 

with a PLS model of 12 LVs, the PP can be estimated with an RMSEP of 2.8 and a model application range 

between -45°C and 3°C. As in the case of kerosene properties, this approach shows the potential for 

optimizing the response time in estimating middle distillate properties.  

2.2.3 Real-time applications 

Considering the need described in the previous section about achieving fast and reliable property estimations 

for process monitoring in real-time, this section also summarizes the main developments in implementing 

online regression models and some success cases applied to the oil industry. 

The first step in process monitoring is to ensure that the chosen analytical method can produce results in 

real-time. As mentioned before, NIR spectroscopy meets this requirement, and its use in this type of 

application (online measurement) is not unknown. In the pharmaceutical industry, NIR spectrum online 

measurement for monitoring product quality is a growing practice. Its effectiveness and reliability have been 

demonstrated by several authors 102–104. 

In the oil and gas industry, online measurement of the NIR spectrum has different applications, such as the 

measurement of physicochemical properties of crude oil (viscosity, density, metals, among others) for the 

preparation of blends105. Similarly, Kim et al. 50 used online NIR measurement to classify oil products in real-

time with an error of less than 6% by combining PCA and Bayesian classifiers. The study conducted by Parisi 

et al.44 is related to this subject since they sought to determine online fuel (gasoline and diesel) quality 

parameters such as Research Octane Number (RON), Motor Octane Number (MON), cetane number, and 

distribution of Paraffins Olefins Naphthenes and Aromatics (PONA), using NIR spectroscopy. Their results 

concluded that the NIR provides a reliable alternative for online determination of physicochemical 
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properties. It is important to highlight that all the studies described, recommend having appropriate sampling 

techniques and controlled conditions to ensure the reliable acquisition of the spectrum, avoiding adding 

noise to the models caused by external parameters.  Other authors 106–110 used techniques other than NIR for 

predicting stream properties, including those in the domain of crude oil, showing interesting results in the 

use of the signal measured online. Each of these studies differs from the others in the regression method 

used. Due to the advantage that NIR has over NMR regarding its use in online (real-time) measurement 

applications, this method was the most exploited in this thesis. 

As can be evidenced in the analysis presented, the use of spectroscopic analytical techniques as an alternative 

for estimating the middle distillate properties is of great interest and application. Nevertheless, it is worth 

highlighting that all the studies compiled in this literature analysis, except for the studies conducted at the 

IFPEN, estimate fuel properties from spectroscopic information acquired on them. Namely, diesel properties 

are estimated from NIR, or NMR spectra acquired on the diesel. At the time of this thesis development, no 

scientific publications that employed the approach of predicting middle distillate properties from spectral 

information of other related streams were found. 

2.2.4 Conclusions 

The hydrocracking process is of great importance for obtaining valuable products such as middle distillates 

(kerosene and diesel) from low-value streams such as the residues of crude oil distillation. Research in this 

process is vital to investigate the influence of different parameters such as feed quality, catalyst 

characteristics, and operating conditions (pressure, temperature, residence time) on product quality to 

determine the best process operating configurations. However, due to the extensive flexibility of the process, 

its research is a time- and cost-consuming task. Therefore, the challenges in optimizing this task to be more 

efficient (lower costs and shorter response time) are increasing. 

Real-time estimation of middle distillates properties is an alternative for optimizing the response time. The 

adaptability and capabilities of the NIR spectroscopy make it suitable for achieving the analysis time 

reduction. In the oil & gas industry, the development of chemometric models from NIR spectra for estimating 

the physicochemical properties of these cuts has shown a promising outcoming. Even some process 

monitoring applications have been implemented, but none of them are in the hydrocracking process research 

field. 

The accurate identification and understanding of the parameters affecting the process are crucial in 

developing prediction models for evaluating their variability. This task can be facilitated using additional 

information, such as NMR and process variables, that contributes with more detailed information about the 

sample's nature, improving the model performance. While some studies have already been developed using 

simultaneously analytical information from different sources, none involve middle distillates. 
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Developments made in estimating middle distillate properties from spectral information have always been 

based on the analytical information acquired on these cuts. Whereas these developments have shown a 

reduction in response time in the property estimation, their application remains dependent on the physical 

availability of the cut to be analyzed. Therefore, these developments still maintain the time constraint given 

by the atmospheric distillation to obtain the middle distillates. Moreover, most of the obtained models do 

not exhibit sufficient robustness to ensure their long-term effectiveness since only 10% of them correct the 

influence that external parameters may have on the quality of the spectral information and the model's 

performance. Only one study performed robust modelling as a strategy to correct the influence of external 

parameters. 

An interesting approach, which solves the time constraint given by the distillation of the total effluent, is the 

one preliminarily investigated at IFPEN. This approach uses spectroscopic information acquired on the total 

effluent to estimate the properties of the middle distillates, thus reducing the need for the distillation 

procedure. Although the results are quite encouraging, the analytical technique employed in this first 

development (NMR) limits its application to real-time process monitoring. Predicting cut properties from the 

physical characteristics of a stream without going through distillation is a relatively new and growing 

approach that can make a significant contribution to process optimization using appropriate chemometric 

techniques.  

Finally, there is no development in the oil industry related to the online prediction of the middle distillates 

properties from spectroscopic information of the total effluent obtained from the catalytic conversion 

process reactors.  

3. Research problem 

Considering the conclusions outlined, the main objective of this thesis is to develop reliable multivariate 

models that evaluate in real-time the different parameters affecting the hydrocracking process by predicting 

the physicochemical properties of middle distillates considering the synergy that may exist between the 

spectroscopic information of the total effluent and the HCK process variables. Furthermore, based on the 

advantages previously described related to the versatility and time of spectrum acquisition, NIR spectroscopy 

was chosen as the main method for developing and implementing chemometric models in the online 

characterization of middle distillates. To achieve the objective described, three main research questions were 

proposed. 

1. Is it feasible to predict middle distillates properties from NIR spectra acquired on the total effluent 

obtained from hydrocracking process reactors? 

2. Including additional and descriptive information to the NIR spectra improves the model 

performance? 
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3. Can external parameters' influence on the NIR spectra quality be compensated/corrected to ensure 

an online reliable properties estimation over time? 

The results obtained during the thesis development made it possible to produce five scientific articles to 

address the research questions raised. These articles were the basis for constructing the manuscript chapters. 

Chapter 3 presents the results to respond to the first research question. This chapter is based on publications 

1 and 2, which address the problem of developing chemometric models that enable the middle distillate 

properties estimation from the spectral information of the total HCK effluent, considering the best 

preprocessing and regression method.  Chapter 4, based on publications 3 and 4, aims to address the research 

question related to the models' performance improvement when using complementary information to the 

NIR spectra when calibrating the models. Chapter 5 finally addresses the issue of model robustness. This 

chapter, linked to paper 5, shows the alternatives employed to estimate the middle distillate properties 

reliably under different evaluation conditions. The findings in these chapters were validated by applying the 

models in two case studies. The results of this validation are presented in chapter 6. Finally, the conclusions 

and perspectives are presented. 
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Chapter II. Material and methods 
 

 

This chapter describes the materials and methods used in both the experimental and modelling work. The 

information presented in this chapter is replicated in detail in the articles produced, both those already 

published and those in the process of publication. 

1. Analytical approach 

Two groups of samples were involved in the development of the thesis, the total effluent from the HCK 

process reactors and the middle distillates (diesel and kerosene) obtained from the distillation of the total 

effluent. This section describes the analytical approach used in each of these groups. 

1.1 Total effluent 

As a reminder, the total effluent is obtained when heavy oil residues, mainly VGO, are processed in the 

reactors of the HCK process. Before the thesis development, the total effluent obtained from processing 32 

feedstocks in the IFPEN pilot plants in Solaize, France, for over six years (between 2013 and 2018) were 

gathered. These samples were the core of the thesis experimentation since the spectra employed in the 

properties modelling were acquired on them. The following subsections broadly describe these samples' 

origins, the standard laboratory analyses used in their characterization, and the equipment employed in the 

experimental work implemented in the thesis. 

1.1.1 Origins and standard analysis 

During the thesis development, 294 samples were analyzed from different tests performed in the HCK pilot 

plants located at the IFPEN facilities in Solaize, France. Table 5 shows the diversity of the experimental 

conditions used in these pilot plants for producing the total effluent samples analyzed. 

Table 5. Diversity of the operating parameters of IFPEN pilot plants in obtaining 294 total effluent samples  

Process operating parameter Number of parameter changes 

Feedstock quality 32 

Pressure 8 

Temperature 5 

LSHV 10 

Catalytic system 17 

 

Table 6 summarizes the properties measured on the feedstocks used in the test conducted. In addition, this 

table shows four statistical parameters calculated on the information gathered to validate their 

physicochemical variability. 
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Table 6. Summary of the variability of the properties measured on the 32 HCK feedstocks 

Property Standard norm Minimum Maximum Mean Standard deviation 

Density (g/ml) ASTM D1218 - 1221 0.8457 0.9837 0.9136 0.02662 

Refractive index ASTM D174722 1.4442 1.5318 1.4853 0.02004 

Viscosity @ 70°C (cst) 
ASTM D445-9717 

3 21 8 3.0 

Viscosity @ 100°C (cst) 6 76 21 11.2 

Sulphur (wt%) ISO 2084618 7E-04 3.5 1.1 1.15 

Nitrogen (ppm) 
ASTM D529119 

2 4825 1161 1143.8 

Hydrogen (wt%) 10.6 13.8 12.5 0.75 

Aromatic Carbon (wt%) 

ASTM D3238-9520 

4.4 36.0 15.5 7.57 

Paraffinic Carbon (wt%) 43.1 71.6 57.1 5.33 

Naphthenic Carbon (wt%) 8.3 56.9 28.1 9.76 

SimDist IBP(°C) 

ASTM D7213-1523 

68.4 358.4 228.2 91.11 

SimDist T5(°C) 121.6 403.8 324.4 56.59 

SimDist T10(°C) 159.6 414.7 357.0 43.55 

SimDist T20(°C) 216.0 435.6 390.6 33.64 

SimDist T30(°C) 268.6 449.8 412.0 28.42 

SimDist T40(°C) 323.2 466.4 429.4 25.05 

SimDist T50(°C) 368.6 479.8 445.0 21.86 

SimDist T60(°C) 389.5 498.2 462.0 20.44 

SimDist T70(°C) 409.4 514.7 480.0 19.24 

SimDist T80(°C) 433.4 537.2 501.0 19.22 

SimDist T90(°C) 466.4 563.7 529.2 18.77 

SimDist T95(°C) 493.3 606.4 552.1 17.01 

SimDist FBP(°C) 558.1 685.7 611.0 17.92 

 

In turn, Table 7 summarizes the variability of the pilot plant operating conditions used during the conducted 

experimental tests.  

Table 7. Pilot plant operating conditions summary 

Parameter Minimum Maximum Mean Standard deviation 

Pressure (bar) 30 160 121 29.7 

Temperature R1 (°C) 350 415 385 14.6 

Temperature R2 (°C) 370 420 392 13.1 

LSVH (h-1) 0.4 4.0 1.6 0.92 

HDT catalyst Parameters CHDT1, CHDT2, CHDT3, CHDT4, CHDT5  

HCK catalyst Parameters CHCK1, CHCK2, CHCK3, CHCK4, CHCK5 

 

As shown in Table 7, the information regarding the catalytic system used was coded to respect the 

confidentiality agreements related to this type of information. Finally, the diversity of the total effluent 

samples can be observed in the properties reported in Table 8 and their color and opacity, as shown in Figure 

4. Since diesel and kerosene cuts are embedded in the total effluent, Table 8 also shows the variability of 

these cuts yields (cut weight percentage that can be recovered from the total effluent). 
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Table 8. Variability of the physicochemical properties of the 294 total effluent samples. SimDis IBP, T5 - T95, description: Simulated 
distillation to determine the temperatures to start the sample evaporation and to recover from 5% to 95% of sample distillate  

Property Standard norm Minimum Maximum Mean Standard deviation 

Density (g/ml) 
ASTM D1218 - 1221 

0.7891 0.9368 0.8640 0.03992 

Refractive index 1.2701 1.4975 1.4559 0.02874 

SimDist IBP(°C) 

ASTM D2887-19ae224 

60.2 280.4 119.5 46.82 

SimDist T5(°C) 69.1 376.2 207.1 89.55 

SimDist T10(°C) 90.0 401.0 242.7 95.86 

SimDist T20(°C) 117.8 426.3 285.3 95.84 

SimDist T30(°C) 143.9 442.0 316.2 92.49 

SimDist T40(°C) 168.8 456.9 343.0 87.17 

SimDist T50(°C) 194.3 472.5 368.8 80.78 

SimDist T60(°C) 219.9 489.1 394.7 73.07 

SimDist T70(°C) 250.6 506.6 422.1 64.91 

SimDist T80(°C) 282.8 528.8 451.6 55.92 

SimDist T90(°C) 329.0 554.0 488.5 46.72 

SimDist T95(°C) 367.2 585.3 516.4 41.35 

SimDist FBP(°C) 472.0 660.6 581.3 27.87 

Conversion in 370°C+ (wt%) - 3.4 96.0 38.7 28.28 

Kerosene yield (wt%) - 0.4 48.8 15.9 14.41 

Diesel yield (wt%) - 4.9 55.7 29.6 14.35 

 

 

Figure 4. Variability of the color and opacity of total effluent samples obtained from the HCK reactors 

 

1.1.2 Near infra-red (NIR) 

Two spectrometers were used to acquire NIR spectra on the total effluent samples. The first was a Fourier 

Transform Near-Infrared spectrometer (FT-NIR) MATRIX-F (Bruker, Optik GmbH, Ettligen - Germany), which 

with a resolution of 4 cm−1 recorded 4148 wavenumbers within the range of 12000 - 4000 cm−1. 32 scans 

were averaged in each acquisition to obtain the final spectrum. For acquiring absorbance spectra, the 

spectrometer system was equipped with an immersion transflectance Falcata Lab6 probe (Hellma GmbH & 

Co. KG, Müllheim – Germany) with an optical path fixed at 2 mm withstanding temperatures ranging from -

40 °C to 200 °C.  The software used with the spectrometer was OVP (OPUS Validation Program - Bruker, Optik 

GmbH, Ettligen - Germany) which automatically performs a series of analyses of the instrument's 

performance, evaluates them and ensures that it is operating within specifications (See Figure 5).  
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Figure 5. Experimental apparatus employed in the NIR spectra acquisition (Bruker spectrometer) 

The second spectrometer was a NIRS XDS Process Analyzer (Metrohm, Villebon - France). This spectrometer, 

having a resolution of 0.5 nm, recorded wavelengths within the 800 - 2200 nm spectral range. The final 

spectrum obtained in each acquisition was the average of 32 scans performed on the samples. The software 

used with the spectrometer was VISION (Metrohm, Villebon - France). During the thesis, this spectrometer 

was employed to acquire spectra at steady-state and dynamic conditions. A Falcata Lab6 immersion probe 

(Hellma GmbH & Co. KG, Müllheim - Germany) with two optical lengths of 1 and 2 mm was used for the 

steady-state acquisition (Figure 6 green square). For the dynamic acquisition, a transmission Flow cell of 1/4" 

OD tube and optical length of 1 mm was used (Figure 7). 

 

Figure 6. Experimental apparatus employed in the NIR spectra acquisition. Red square → NIR XDS spectrometer, green square → 
immersion probe 

 

Figure 7. Transmittance Flow cell 
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To preserve the total effluent samples' integrity, they were stored in a cold room (temperature below 0°C) 

and remained there until the experimental test. Once the spectral acquisition was completed, the samples 

were returned to the cold storing room. For this reason, prior to any acquisition of NIR spectra, the total 

effluent samples were heated in closed flasks at 60°C for one hour in a water bath and shaken manually to 

ensure their liquid state and homogeneity.  

1.1.3 Nuclear Magnetic Resonance (NMR) 

Although the development of the thesis focused on the exploitation of NIR spectroscopy, the use of NMR 

was crucial in solving one of the research questions. The NMR spectra of the total effluent samples were 

already available at the beginning of the research; nevertheless, the experimental setup employed in 

acquiring these spectra is described below. 

For the NMR spectra acquisition, 250µl of total effluent were mixed with 250µl of CDCl3 and 0,3mg of 

Fe(acac)3. 13C NMR spectra were recorded at 50°C on a Bruker Advance 600 MHz spectrometer (Bruker 

Biospin Gmbh, Rheinstetten, Germany) operating at 150.9 MHz using a 5 mm QNP probe (time-domain 128k, 

60° pulse, proton decoupling, acquisition time 56 min, relaxation delay 5 s, 512 scans). Zero filling and 

exponential line broadening (1 Hz) were applied before the Fourier transform. The spectra were accurately 

phased and baseline adjusted. The 13C NMR chemical shift of chloroform-d was set to 76.9 ppm as an internal 

standard. Once again, to ensure the homogeneity of the samples, they were heated at 70°C and manually 

shaken before performing the NMR analysis. 

1.2 Middle distillates 

For this thesis, the experimental work was limited to the spectral acquisition of the total effluent. The 

analytical information of the middle distillates used in developing the chemometric models was already 

available at the beginning of the thesis. Nevertheless, it is worthwhile to describe the materials and methods 

used to obtain and characterize these samples. Therefore, the analytical approach used in recovering the 

samples and obtaining the studied properties is described below. 

1.2.1 Samples recovery 

Based on the ASTM D2892-20 standard111, the kerosene and diesel samples were recovered from the 

distillation of the total effluent samples. For the kerosene cut, it was used an initial boiling point (IBP) between 

150 °C and 180 °C and a final boiling point (FBP) between 225 °C and 250 °C. For the diesel cut, it was used an 

IBP temperature between 250 and 275°C and a FBP temperature between 340 and 370°C.   

1.2.2 Kerosene 

The kerosene is the lightest cut of the middle distillates. The most relevant properties in the characterization 

of this product are the cetane number25, the flash point26, and the smoke point27.   
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The cetane number determines the ignitability of the sample using a standardized engine and reference fuel. 

The cetane number is determined by comparing the ignition time of a mixture of cetane and hepta-methyl-

nonane, having the same ignition time delay as the tested sample. The kerosene cetane number was 

measured on each diesel sample recovered using an IFPEN internal method, which estimates this property 

from diesel NIR spectra through a PLS model based on Zanier-Szydlowski et al. work 48, with a larger database 

and equivalent performance. The internal method outlined was developed using the cetane numbers 

measured using the ASTMD613-01 standard25 analysis as the reference method and validated against the 

reproducibility limits defined by this norm. Table 9 summarizes the available analytical information for this 

property. This table shows the variability of the cetane number using four statistical parameters. Also 

reported in this table is the analytical method to measure the property, its respective reproducibility value, 

and the amount of data available concerning the total effluent samples collected. 

The flash point (FP) is the lowest temperature at which sufficient vapor is emitted to form a flammable 

mixture in the air at standard atmospheric pressure. This property was measured by heating the sample at 

specific temperatures and under controlled conditions. At each temperature tested, a spark is applied until 

a flame is generated. The measurement of this property was performed using the ASTM D93-18 standard26. 

Table 9 also summarizes the available analytical information for this property. 

Finally, the smoke point (SP) in the kerosene samples was measured using the standard ASTM D1322-1227. 

This property measures the tendency of a fuel to generate smoke when burned. The smoke point is 

established by "the maximum height, in millimeters, of a smokeless flame of fuel burned in a wick-fed lamp 

of specified design"27. The higher the smoke point, the better the quality of fuel. Table 9 shows the 

consolidated information on this property.  

Table 9. Summary of the variability of the properties measured on kerosene samples and their respective reference method 

Property Minimum Maximum Mean 
Standard 
deviation 

Number 
of data 

available 

Reference 
Method 

Reproducibility 

Cetane number 21.5 46.0 38.5 5.12 93 IFPEN method ±3.6 

Flash Point (FP) (°C) 42.0 56.5 52.9 2.53 35 ASTM D93-18 ±0.071*FP 

Smoke Point (SP) (mm) 13.3 34.0 24.5 3.91 82 ISO 3014 ±3 

 

1.2.3 Diesel 

The properties analyzed in the diesel cut were the cetane number described previously and the cold flow 

properties, namely, the pour point (PP)29, the cloud point (CP)28, and the cold filter plugging point (CFPP)30.  

The CP is the most considered parameter for the formulation of diesel fuel112. This property specifies the 

temperature when the first paraffin or wax crystals appear, causing the fuel to turn cloudy. This measurement 

is done by cooling the diesel sample according to a given cooling curve and checking it periodically until the 
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first wax crystal is deposited at the bottom of the vessel. The standard norm used to measure this property 

is the ISO 301528. In turn, the PP is measured using the ASTM D594929. This method uses an optical device to 

measure the fluidity of the sample by applying a burst of nitrogen gas while the sample is being cooled. The 

PP seeks to determine the temperature at which the diesel stops flowing. Finally, the CFPP establishes the 

temperature at which the crystallized wax begins to plug a standardized filter arrangement (simulating the 

fuel filter in a diesel engine) in such a way as to hinder the fuel flow. The NF EN 11630 is the standard used to 

measure this property. 

Table 10 summarizes the statistical parameters calculated based on the information available for the diesel 

properties. 

Table 10. Summary of the variability of the properties measured on diesel samples, and their respective reference method 

Property Minimum Maximum Mean 
Standard 
deviation 

Number 
of data 

available 

Reference 
Method 

Reproducibility 

Cetane number 30.3 69.5 52.0 10.72 131 IFPEN method ±3.6 

Cloud Point (CP) (°C) -31.0 13.0 -15.6 7.93 139 ISO 3015 ±4 

Pour Point (PP) (°C) -42.0 15.0 -18.8 11.34 104 ASTM D5949 ±6 

Cold Filter Plugging 
Point (CFPP) (°C) 

-29.0 5.0 -13.1 8.71 127 NF EN 116 ±3-0.06*CFPP 

 

Table 9 and Table 10 evidence that the number of analytical information available for the middle distillates 

is not the same for all properties as it varies according to the previous studies' requirements and experimental 

planning. However, the analytical variability is sufficiently informative to be representative of the different 

scenarios that may arise in the HCK process research.  

 

2. Modelling approach 

The thesis work focused on exploiting the available and acquired spectroscopic information to develop 

regression models enabling the estimation of middle distillate properties from the analytical information of 

the total effluent. The different chemometric methods used in pursuing this objective are presented in this 

section. The detailed description regarding the use of the methods stated in this section can be found in the 

following chapters. 

2.1 Data analysis methods 

The analysis of the data before model development is an important task that contributes to the 

understanding and definition of the suitability of the information and the different parameters that may 

affect the data quality. Although different chemometric methods can be used for a preliminary data analysis, 



Chapter II. Material and Methods  

34  

the research limited these methods to the principal component analysis (PCA)113, the hierarchical cluster 

analysis (HCA)114, and the Q residual and Hotelling T² tests 115.  

The use of the PCA analysis had a twofold objective. First, this analysis was used to evaluate the variance of 

the total effluent samples, the distribution of the calibration and test data sets, and the relationship that 

might exist between the spectroscopic information and the different parameters that could affect both the 

quality of the spectra (type of experimental apparatus and the spectral acquisition conditions used) and the 

properties of the middle distillates studied (process variables). Second, This analysis was used in conjunction 

with the HCA analysis to evaluate the effectiveness of some preprocessing methods in correcting for the 

impact of consecutive and repetitive spectrum acquisition (noise associated with lack of repeatability and 

reproducibility) and sample temperature116. 

The combined analysis of the Q residual and Hotelling T² tests was used primarily to evaluate the consistency 

of each total effluent sample regarding the properties evaluated. In addition, this analysis allowed identifying 

potential anomalous data in the datasets (calibration or test), helping to identify the cause of such behavior.   

2.2 Preprocessing methods 

Preprocessing the spectral data is one of the first steps in constructing a chemometric model. Hence, an 

analysis was conducted to determine the best preprocessing scheme for each middle distillate property. This 

thesis analyzed 9 of the most common preprocessing methods applied to NIR spectra, summarized in Table 

22, using an in-house MATLAB script. Each method and its possible combinations were evaluated based on 

the performance of different PLS regression models built using the root mean square error of cross-validation 

(RMSECV) as the figure of merit. 

As mentioned in section 1.1.3 of this chapter, the NMR spectra of the total effluent samples collected were 

used in this thesis as complementary information to answer one of the research questions. However, unlike 

the NIR spectra, when NMR spectra were employed, the preprocessing applied was the same for all the 

properties studied. First, the NMR spectra were aligned using the Interval Correlation Optimized (icoshift) 

algorithm117. Subsequently, these spectra were preprocessed using the Savitzky-Golay smoothing (15-point 

window, polynomial order = 0)118 and normalized (each variable is divided by the sum of the absolute values 

of all the variables for a given spectrum)119. 
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Table 11. Pre-processing method evaluated on the NIR spectra of the HCK total effluent 

# Category Method Acronym Parameters 

1 

Normalization 

Variable Sorting for 
Normalization120 

VSN Automatic calculation 

2 Standard Normal Variate121 SNV   

3 
Multiplicative Signal 
Correction122 

MSC 
Reference data = mean of data,  
whole spectral range 

4 
Probabilistic Quotient 
Normalization123 

PQN   

5 

Filtering 

Automatic Weighted Least 
Squares Baseline124 

AWLS-B   

6 Detrend121 Dt Polynomial order (1-3) 

7 
Extended Multiplicative 
Scatter/Signal Correction125 

EMSC 

Reference spectrum (basis to remove the 
scatter)  = mean of each matrix generated,  
polynomial order = (1-4),  
whole spectral range, algorithm (CLS, ILS)*  

8 Norris-Williams Derivation126 NW-D 
Window points (9-25),  
gap size = (3-9),  
First order derivation 

9 Savitsky-Golay Derivative118 SG-D 
Window points (9-25),  
polynomial order = (1-4),  
derivative order (1-4) 

* CLS = Classical Least Squares, ILS = Inverse Least Squares. 

2.3 Regression methods 

From the analytical information described in section 1 of this chapter, a master database containing two data 

types, namely, low multivariate data (operational information) and high multivariate data (spectroscopic 

techniques), was consolidated. Both types of data were employed in the applied modelling approach, divided 

into two main groups: single data and data fusion modelling. The different regression methods applied in 

each modelling group are presented below. 

2.3.1 Single data modelling  

This type of modelling was used to calibrate NIR and NMR models from the spectra acquired on the total 

effluents, using each of these data blocks independently. Given the advances shown in recent years in the 

computational field for processing and analyzing multivariate data, different regression methods have been 

proposed and are currently the subject of research and development. For this reason, the performance of 3 

different multivariate regression methods was evaluated regarding PLS performance, particularly those that 

offer a solution to the possible nonlinearities that the collected information may present. Table 12 shows the 

methods evaluated.    



Chapter II. Material and Methods  

36  

Table 12. Regression methods employed in the single modelling approach 

Method Acronym 

Partial Least Squares PLS127 

Support Vector Machine SVM128 

Artificial Neural Network ANN129 

Locally Weighted Regression LWR130 

 

2.3.2 Data fusion modelling  

The continuous increase in the generation of information from different sources that can describe the sample 

physicochemical behavior has led to the simultaneous use of data in developing models. This type of data 

manipulation employs different strategies known as fusion levels (low-, mid-, and high-level) 131, 132. The low-

level fusion consists of using the information from the blocks directly in the development of the model either 

by simple concatenation of the blocks or using decomposition or factorization methods on one block 

regarding another 133. At the mid-level fusion, a feature extraction step from each dataset is performed first 

through statistical analyses such as PCA and PLS for their later fusion by simple concatenation 134. Finally, the 

high-level fusion combines the decisions or results obtained from developed prediction models separately 

with each data block 135. Table 13 summarizes the methods used to evaluate the different levels of data fusion 

described. 

Table 13. Regression methods employed in the data fusion modelling approach  

Method Acronym Fusion-Level used 

Sequential Orthogonalised PLS SO-PLS136 
Low 

Response‐Oriented Sequential Alternation ROSA137 

Principal Component Analysis PCA 
Mid 

Partial Least Suares PLS 

High 
Multiple Linear Regression MLR 

 

2.4 Variable selection methods 

When generating a model using either univariate or multivariate data, some variables or characteristics might 

not have relevant information about the property being studied. For this reason, it is sometimes desirable to 

select the most descriptive variables and reduce their number as input to the model, either to optimize 

machine consumption, reduce costs in the use of sensors capturing the data, or improve model performance. 

This thesis conducted a variable selection analysis to determine the descriptors that would most impact 

estimating the properties studied. The purpose was twofold: to improve the predictive performance of the 

models and to understand the impact of the process variables and macroscopic characterization of the 

feedstock on the quality of the middle distillates. This section outlines the variable selection methods used 

in both univariate and multivariate data.    
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2.4.1 Low multivariate data  

The methods shown in Table 14 were used to perform the variable selection on low multivariate data blocks. 

Although the VIP, SR, CovSel and SO-Covsel methods are mostly applied to multivariate data, they were 

applied to univariate data to evaluate their performance in fusing spectral and process data.   

Table 14. Variable selection methods applied to low multivariate data block 

Method Acronym Parameters 

Variable Importance in Projection VIP138 
Automatic feature selection 

Selectivity Ratio SR139 

Least Absolute Shrinkage and Selection Operator LASSO140 Alpha tuning [0.01,0.07,0.05, 0.1, 1,2, 3, 5, 10] 

Genetic Algorithm GA141 
Window width = 3, mutation rate = 0.005, 30% 
initial terms, Convergence = 50%  
Algorithm = MLR, 15 runs 

Recursive Feature Elimination RFE142 Features tuning [9-22] 

eXtreme Gradient Boosting Feature Selection XGBoost_FS 
Algorithm = gblinear, automatic feature 
selection 

Sequential Forward Selection SFS143 

Algorithm = MLR, automatic feature selection 
Sequential Backward Selection SBS 

Sequential Forward Floating Selection SFFS144 

Sequiential Backward Floating Selection SBFS 

Covariance Selection CovSel145 Features tuning [9-22] 

Sequential Orthogonalised CovSel SO-Covsel146 Features tuning: Automatic and [9-22] 

 

2.4.2 Multivariate data  

The main goal of performing the variable selection analysis on multivariate data (NIR spectra) was to improve 

the performance of the developed models. The methods applied on this data type are summarized in Table 

15. 

Table 15. Variable selection methods applied to multivariate data  

Method Acronym Parameters 

Variable Importance in Projection VIP 
Automatic 

Selectivity Ratio SR 

Genetic Algorithm GA 
Window width = 50, mutation rate = 0.005, 30% initial terms, 
Convergence = 50% Algorithm = PLS (20LVs), 15 runs 

Forward interval PLS F-iPLS147 
Interval size [25,50,100,200] 

Backward interval PLS B-iPLS 

recursive PLS rPLS148 Max. iteration = 500, Max. LVs = 20 

Covariance Selection CovSel Features tuning [25,50,100,200,400,800] 

Sequential Orthogonalised CovSel SO-Covsel Features tuning: Automatic 
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2.5 Methods for external parameters influence correction 

The validity of a model relies on its performance over time; however, different parameters can impact the 

quality of the spectrum used as input to the model, affecting its reliability and rendering it obsolete and 

useless. There are four strategies to correct or compensate these parameters' incidence on the spectra: a 

priori correction, model correction, a posteriori correction, and robust modelling149. Although different 

methods can be used in each strategy, in this thesis, the evaluation was limited to the methods summarized 

in Table 16. 

Table 16. Methods for external parameters influence correction  

Method Acronym Parameters Associated strategy 

Piecewise Direct 
Standardization 

PDS150 Window [3 - 15] a priori 

Partial Least Squares PLS   Model Correction 

Bias and Slope 
Correction 

 BSC151   a posteriori 

External Parameter 
Orthogonalisation 

EPO152 EPO Components = [1-10] 
Robust modelling 

Dynamic Orthogonal 
Projection 

DOP153   

 

2.6 Model evaluation criteria 

As has been emphasized throughout this manuscript, the major motivation for this thesis, and hence its 

scope, is the development of robust models for predicting middle distillates properties from the 

spectroscopic data of the total effluent of the HCK process. As seen in the previous sections of this chapter, 

the volume of information available and the methods employed to develop the models are considerable. 

Consequently, it is necessary to establish evaluation criteria to select models with the best performance and 

maximum robustness.  

Throughout the development of the thesis, the Root Mean Square Error of Calibration (RMESC), Cross-

Validation (RMSECV), and Prediction (RMSEP) were systematically calculated on each model generated. 

These statistical parameters were the main criteria for evaluating the models and are summarized in Table 

17. Broadly speaking, the RMSEC measures how well the calibration data fit the model generated using all 

the points from the same calibration set. This value gives a general idea of how well the model performs with 

samples having identical characteristics to those used in the development of the model, leading to erroneous 

conclusions if only this statistical parameter were used in the evaluation. Therefore, RMSECV was calculated 

to have a more representative analysis of the model's predictive potential with future samples. This error is 

estimated from an internal validation using different subsets of data defined from the calibration set 

according to the selected validation method, being the Venetian blind 10-fold the one used in this thesis. 
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The RMSEC and RMSECV played a key role in selecting one model over another. The model with the lowest 

RMSECV was selected in the comparative evaluation as long as the RMSECV/RMSEC ratio did not exceed 1.7. 

This parameter, defined empirically in previous studies, was intended to avoid overtraining the models. This 

criterion was also applied in the definition of the LVs to be retained in the PLS models. Finally, the best-

performing models were tested using the independent validation set (different from the calibration set). The 

RMSEP, bias, and standard error of prediction (SEP) were calculated to evaluate the model performance on 

new samples. 

Another complementary statistical parameter used in the evaluation of the regression models was the 

squared correlation coefficient (r²) calculated between the measured value and the predicted value in both 

the cross-validation (r²CV) and the prediction of the model (r²P). Summarized in Table 17, this parameter 

helps to evaluate how well the variation of the studied properties is explained through the model.  

Lastly, the percentage of predicted samples with residual values less than or equal to the reproducibility of 

the standard reference norms was calculated. This parameter was named "percentage of effectiveness" and 

was used to validate the models as an alternative in estimating middle distillate properties.   

Table 17. Statistical parameters for model performance evaluation  

Parameter Equation 

Standard Error 

 

𝜎 =  √
∑ (𝑦̂𝑖  − 𝑦𝑖 − 𝐵𝑖𝑎𝑠)2𝑛

𝑖=1

𝑛 − 1
 

 

Bias 𝐵𝑖𝑎𝑠 =  
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)

𝑛

𝑖=1

 

Root Mean Square Error  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)2

𝑛

𝑖=1

 

  

Squared correlation coefficient  

 

𝑟2 =  𝑟(𝑦̂, 𝑦)2 
  

 
 

Percentage of effectiveness 
  

%𝑒𝑓𝑓 =  
∑ 1𝑛

𝑖=1 (𝑦𝑖̂−𝑦𝑖)≤𝑟𝑒𝑝

𝑛
 

𝑛: number of samples evaluated 

𝑦𝑖̂: predicted value of sample i 

𝑦𝑖: measured value of sample i  

𝑟𝑒𝑝: reproducibility limit of the reference method. 

 

The software employed in the development of the thesis were PLS_Toolbox V.8.9 (Eigenvector Research Inc. 

Wenatchee, WA, USA), MATLAB V.2020b (The MathWorks, Inc., Natick, MA, USA), and Python V3.6. 
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Chapter III. NIR Modelling 
 

The results discussed in this chapter are linked to the work reported in the scientific papers 1116 and 2154 (see 

appendices 1 and 2, respectively). The findings discussed in the papers, and this chapter, were the basis to 

address the first research question: "Is it feasible to predict middle distillates properties from NIR spectra 

acquired on the total effluent obtained from hydrocracking process reactors?" Accordingly, the work focused 

on seven properties of the middle distillates; four of the diesel cut (cetane number and cold flow properties 

(PP, CP, CFPP)) and three of the kerosene cut (cetane number, SP, FP).  

The information presented in this chapter was divided into three sections. The first section shows the 

different modelling approaches employed, including the preprocessing of the NIR spectra116 and the 

calibration of the predictive models154. It should be noted that this first section shows only in detail the work 

done on the diesel cetane number. Thus, the second section of this chapter summarizes the results for the 

other middle distillates properties. Finally, the third section presents the conclusions responding to the 

research question. 

   

1. Diesel cetane number modelling 

The first step was to generate the database employed in the diesel cetane number modelling. Chapter 2, 

"Materials and methods," details the protocol used to acquire the NIR spectra on the total effluent samples 

and measure the cetane number on the diesel samples. In summary, 98 total effluent samples were used for 

NIR spectra acquisition at constant conditions of sample temperature (60°C) and instrument optical length 

(2mm) to address the first research question. For modelling the diesel cetane number, a matrix x (Mx) 

containing the NIR spectra of the 98 samples and a matrix y (My) containing the corresponding 

measurements of diesel cetane number were generated.  

The second step was to define the spectral range used. This analysis was based on the studies of Yalvac et al. 

155 and Kelly et al. 156, resulting in choosing to work in the spectral region between 1110-2200 nm154. Next, 

the best preprocessing scheme applied to the NIR spectra was defined by evaluating the different methods 

summarized in chapter 2, Table 11. For the diesel cetane number, the best preprocessing scheme was the 

combination of the Standard Normal Variate (SNV) and the second derivative of Savitzky-Golay with a third 

polynomial order and a 23 window-point (SavGol[23,3,2]). Finally, the Mx and My matrices were divided into 

the calibration and test sets using the Kennard-Stone algorithm applied on the Mx. The second paper154, 

found in appendix 2, gives a detailed description of this second step. 

The final step was the NIR model calibration for predicting the diesel cetane number. Four regression 

methods (PLS, SVM, ANN, LWR) were evaluated using the datasets defined in the second step. Table 18 
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summarizes the calibration parameters defined in each method evaluated and the calculated statistical 

parameters, such as the errors (RMSEC, RMSECV, RMSEP) and the squared correlation coefficients (r²C, r²CV, 

r²P), for assessing their performance. Section 2.6 of chapter 2 described that the RMSECV was calculated 

from an internal validation using different subsets of data defined from the calibration set using the Venetian 

blind 10-fold methodology. Figure 8 shows graphically the comparison between the different regression 

methods evaluated. 

Table 18. NIR models for diesel cetane number estimation comparison  

Method 
Configurations 

evaluated 
Final 

configuration 
RMSEC RMSECV RMSEP 

Bias 
Pred 

SEP r²c r²CV r²P 
RMSE 
(CV/C) 

PLS LVs (1-20) 9 LVs 1.3 2.2 2.0 -0.6 1.9 0.986 0.959 0.955 1.7 

SVM 
Gamma (10-6 - 10) 

Cost (10-3 - 100) 
Ε (1.0, 0.1, 0.01) 
nu (0.2, 0.5, 0.8) 

Kernel type (RBF) 

Compression  
(PCA 1-20 PCs) 

12 PCs 1.2 2.4 1.9 -0.9 1.7 0.988 0.950 0.962 2.0 

Compression  
(PLS 1-20 LVs) 

7 LVs 1.3 2.4 1.9 -0.7 1.8 0.985 0.951 0.960 1.8 

Kernel type (Linear) 

Compression  
(PCA 1-20 PCs) 

15 PCs 1.4 2.5 2.2 -1.0 2.0 0.970 0.943 0.951 1.8 

Compression  
(PLS 1-20 LVs) 

10 LVs 1.1 2.3 2.0 -0.8 1.8 0.990 0.955 0.953 2.1 

ANN 
Algorithm (BPN) 

Learn rate (0.125) 
Learn cycles (20) 

Layers (2) Nodes (2-6) 

Compression  
(PCA 1-20 PCs)  

13 PCs  
4 & 1 nodes 

0.9 2.8 1.8 -0.5 1.7 0.993 0.896 0.962 3.1 

Compression  
(PLS 1-20 LVs) 

12 LVs  
4 & 2 nodes 

0.4 
  

2.5 
  

2.1 
  

-0.4 
  

2.1 
  

0.999 
  

0.949 
  

0.945 
  

6.3 
  

LWR 

Local points (10-30)  

PCR Algorithm  
(1-19 PCs) 

6 Pcs  
24 points 

0.7 2.2 2.2 -0.5 2.1 0.995 0.959 0.940 3.1 

PLS Algorithm  
(1-19 LVs) 

5 LVs  
30 points 

0.4 2.0 1.8 -0.5 1.7 0.998 0.964 0.960 5.0 

a) b)  

Figure 8. Performance comparison of regression methods employed for diesel cetane number modelling 
a) model errors. b) model squared correlation coefficients 

From Figure 8, it is observed that the performance of the different models developed are rather similar when 
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comparing them using the RMSEP as a figure of merit. This closeness of performance is also reflected in the 

models' r²P. Regarding the prediction bias, the PLS model presents a lower value (between 0.1 and 0.4 lower) 

than the different SVM models generated, ensuring a more accurate prediction. Compared to the ANN and 

LWR models, the prediction bias of the PLS model is slightly higher (between 0.1 and 0.2 higher). However, 

the impact of this value on the standard prediction error (SEP) is comparable for these three regression 

methods.  

Alternatively, the RMSECV/RMSEC ratio was used as an evaluation criterion. This criterion, established 

empirically in previous modelling works, gives an idea of the obtained model consistency. The closer the ratio 

is to unity, the higher the consistency. Therefore, this criterion facilitates the identification of possible model 

overtraining. From Table 18, it is observed that the PLS and SVM models have the closest values of this 

criterion to unity. On the contrary, the ANN and LWR regression models present the highest values (>3), 

indicating lower consistency and a possible overtraining. The results observed when using these two 

regression methods can be attributed mainly to the limited database size used in the model calibration (67 

samples).  

Considering the previously discussed results, it is possible to establish that the PLS and SVM regression 

methods are the most adequate to develop models for estimating the diesel cetane number reliably. 

Nevertheless, the PLS method has an advantage over the SVM related to the model interpretability. While a 

black-box model is retrieved with the SVM method, the PLS method enables analyzing and establishing the 

coherence between the chemical information contained in the NIR spectrum of the total effluent and the 

diesel cetane number (see appendix 2154). Therefore, the model developed with the PLS method was defined 

as the one with the best performance.  

In summary, a NIR PLS model with 9 LVs for the diesel cetane number estimation was developed from 67 

spectra acquired on hydrocracked total effluent samples having a corresponding diesel cetane number range 

between 30.3 and 69.5. The reliability of the retained model was validated by comparing its performance 

against the reproducibility of the reference method employed to measure the diesel cetane number. For this 

property, the reference used was the internal IFPEN method, which has a reproducibility of ±3.6 (see chapter 

2, section 1.5). The model validation was performed using the external test set composed of 31 total effluent 

spectra, with an associated diesel cetane number range from 37.3 to 69.3. 

The primary criteria used to validate the reliability of the model were the RMSECV and RMSEP, whose values 

(2.2 & 2.0) were lower than the reference method reproducibility. A secondary criterion employed was the 

percentage of effectiveness in predicting samples from the test data set within these reproducibility limits. 

Figure 9a shows the parity plot between the measured and predicted value, showing that only one of the 31 

samples predicted was outside the limits. Thus, this prediction of the diesel cetane number corresponds to 

97% of effectiveness. Finally, two additional criteria used, which are not explicitly related to the 

reproducibility of the reference method, were the r²P and the distribution of the residual predicted values. 
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From Table 18, it can be inferred that the correlation between the measured and predicted value is 

satisfactory enough since the r²P is higher than 0.95. Regarding the prediction residuals, Figure 9b shows a 

semi-homogeneous distribution of these values over the entire evaluation range, validating the 

homoscedasticity of the model.   

The analysis presented in the previous paragraph leads to the preliminary conclusion that reliable and 

reproducible estimation of the diesel cetane number using the NIR spectra of the HCK total effluent is 

feasible. 

a) b)  

Figure 9. a) Parity plot, b) residuals plot of PLS model for predicting the diesel cetane number from NIR spectra acquired on the 
hydrocracking total effluent. Red dotted lines: upper and lower limits of the reproducibility of the reference method (±3.6) 

Further analysis of the out-of-limit predicted sample revealed that, compared to the rest of the total effluent 

samples analyzed, this sample with atypical behavior was obtained under particular process conditions, being 

the only sample obtained when processing a high paraffinic carbon content feedstock (>60%) at low 

operating pressure (50 bar). The poor prediction observed raises the question of using this sample in the test 

data set due to the particularity of its origin. The sample distribution in the data sets was done by applying 

the unsupervised Kennard-Stone algorithm on the Mx matrix. Therefore, it could be assumed that either the 

NIR spectrum of this sample does not provide enough detail for the splitting algorithm to classify it in the 

calibration data set or that the algorithm could have constraints in identifying the specific behavior of the 

sample. This question can be discussed in future work. However, regardless of the poor sample estimation 

reason (misclassification of the sample in the test dataset or operating conditions particularity), it is 

important to address the model robustness constraint to ensure reliable performance over time and under 

different analytical conditions. In any case, the PLS model developed has a satisfactory performance in 

estimating the studied property at controlled analysis conditions, either the process or the spectra 

acquisition.   
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2. Middle distillates properties estimation 

The modelling work described in section 1 of this chapter was replicated for the remaining six middle distillate 

properties. From this work, it can be emphasized that the comparative analysis of the regression methods 

produced similar results for all six properties. Therefore, the regression method used to calibrate the final 

models was the PLS. Table 19 summarizes the performance of each developed model regarding errors and 

squared correlation coefficients, showing the reproducibility of the reference method used to measure the 

studied properties. The detailed results of the models, including the preprocessing scheme used, are 

reported in Appendix 6. 

Table 19. NIR models summary for middle distillates properties estimation 

  

Diesel Kerosene 

CN PP CP CFPP CN SP FP 

RRM ±3.6 ±6.0 ±4.0 ±3-0.06*CFPP ±3.6 ±3.0  ±0.071*FP  

PLS LVs 9 3 4 9 9 4 8 

RMSEC 1.3 4.2 3.8 3.2 0.7 1.5 1.3 

RMSECV 2.2 6.6 4.4 4.3 1.0 1.6 2.1 

RMSEP 2.0 5.6 3.0 3.9 0.6 1.5 1.9 

Bias -0.6 -0.5 -0.2 -0.1 0.2 -0.2 0.4 

SEP 1.9 5.6 3.0 3.9 0.6 2.5 1.9 

r²C 0.986 0.840 0.760 0.820 0.986 0.867 0.836 

r²CV 0.959 0.598 0.678 0.687 0.970 0.843 0.613 

r²P 0.955 0.692 0.758 0.711 0.964 0.838 0.659 

RMSE(CV/C) 1.7 1.6 1.2 1.3 1.4 1.1 1.6 

RMSE(P/C) 1.5 1.4 0.8 1.2 0.9 1.0 1.5 

NCD 67 54 76 65 61 55 41 

NTD 31 29 30 30 29 24 20 

%Eff 97 76 80 77 100  96  100 

Limit_min 30.3 -42.0 -31.0 -29.0 21.5 13.3 42.0 

Limit_max 69.5 0.0 0.0 3.0 46.0 34.0 58.0 
RRM = Reproducibility of the Reference Method 
CN = Cetane Number 
PP = Pour Point 
CP = Cloud Point 
CFPP = Cold Filter Plugging Point 
FP = Flash Point 
SP = Smoke Point 
NCD = Number of Calibration Data 
NTD = Number of Test Data 
%Eff = Effectiveness percentage 

The main finding drawn from the results reported is that the models' prediction errors are close to and even 

lower than the reproducibility of the reference methods. The results validate the feasibility of using the NIR 

spectra of the HCK total effluent for predicting the middle distillates properties. Table 19 shows that the 

models having the best performing are those for estimating the cetane number of diesel and kerosene, 
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evidenced in both the squared correlation coefficients (>0.95) and the percentage prediction effectiveness 

(>95%). Similarly, the models for predicting the flash and smoke point of the kerosene cut have a satisfactory 

performance regarding the errors and the prediction effectiveness (>95%). Nonetheless, the r²CV and r²P of 

the flash point are quite low. These values could be related to the number of data available over the entire 

range of this property evaluation. The lower range of the data set used (42 < FP < 50) has only 17% of the 

available information, while the remaining 83% is in the upper range (50 < FP < 58) (see Appendix 6, kerosene 

results).   

Concerning the diesel cold flow properties, the models present prediction errors close to the reproducibility 

of the reference methods. However, it is observed that these models are still susceptible to improvement as 

the r²CV and r²P are lower than 0.8, and the prediction efficiency is inferior to 80%. Figure 10 shows each 

model performance when estimating these three properties using the external test data set. 

a) b) c)  

Figure 10. a) Pour Point, b) Cloud Point, and c) Cold Filter Plugging Point parity plot of NIR PLS models  
Red dotted lines: upper and lower limits of the reproducibility of the reference method (CP = ±6.0, PP = ±4.0, CFPP = ±3-0.06*CFPP) 

An analysis of the operational information concerning the production of the samples estimated outside the 

reproducibility limits found no particular or anomalous cause for their poor estimation. The atypical behavior 

of these samples could be due to the molecular interactions that are not fully captured by the total effluent 

NIR spectral information. Still, these suboptimal results do not alter the overall finding of this chapter, i.e., 

the feasibility of predicting middle distillate properties from NIR spectral information acquired on the total 

effluent of the HCK process.  

 

3. Concluding remarks 

The results shown in this chapter addressed the first research question by validating the feasibility of 

estimating middle distillates properties from NIR spectra acquired on the total effluent of the HCK process 

with errors close to the reproducibility of the reference methods. This first milestone was achieved due to 

the versatility of the analytical technique NIR in capturing the chemical information of an intermediate 

process product (total effluent) to reliably describe the behavior of the process final products (middle 

distillates). This reliable property estimation is possible since diesel and kerosene are embedded in the total 
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effluent (these two cuts are recovered from the atmospheric distillation of the total effluent). Thus, the 

investigated characterization alternative offers reliable results since it captures the chemical relationship 

between these samples (total effluent and middle distillates).     

The properties estimation approach investigated can be applied to characterize the different products 

obtained from the HCK process, even those not included in this thesis (naphtha and unconverted oil). This 

finding is not limited to the HCK process alone. The results obtained offer the possibility of applying the 

investigated alternative to processes where a time- and cost-effective product characterization is sought 

(separation, thermal and catalytic conversion processes), capitalizing on the existing chemical relationship 

between an intermediate product and the final products.  

It is important to consider the analytical technique used and the information it can contribute to the 

description of the property studied when reproducing the work and the results shown in this chapter. This 

background knowledge helps establish the chemometric methods best suited to the research objective. For 

example, the core of this thesis was the analytical technique NIR since its response time is minimal (a few 

seconds), and it contains chemical information that enables the simultaneous analysis of multiple 

components. However, the interpretation and exploitation of this technique is not a straightforward task and 

must be conducted thoroughly by correctly employing the appropriate chemometric methods. One of the 

steps in chemometric Modelling is the proper selection of preprocessing methods. This step eliminates noisy 

and non-relevant information, extracting the information that best describes the property under study. 

During the thesis development, different preprocessing methods were evaluated, demonstrating that the 

impact of choosing the adequate method is significant. Even with slight variations in the parameters of some 

preprocessing methods (window-point size in the SavGol method), the model performance is affected. 

Therefore, it is recommended to perform the preprocessing method selection analysis for each studied 

property even if the same spectrum is used to estimate several properties. Moreover, it is also suggested to 

do this analysis when the databases are updated since there is a possibility that the interaction between the 

existing and added chemical information may be better captured with a different preprocessing method than 

the one currently used.  

Another task to be performed carefully is the generation of datasets for model calibration and testing, 

especially when large databases (#observations > 500) are not available, as in the case of this thesis. If this 

task is not implemented carefully, it can lead to flawed conclusions. An example can be found when a 

constant pattern is observed in developing models where the RMSECV and RMSEP are lower than the RMSEC. 

Although there are some cases where this trend is plausible, it should be suspected that the sample selection 

for model calibration and validation is adequate when this trend is the general rule and not the exception. 

Therefore, regardless of the method used for the database splitting, performing a preliminary analysis of the 

data (e.g., PCA) to determine the symmetric and coherent distribution of the selected samples in each dataset 

is highly recommended (see article 2 in appendix 2). 
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The choice of regression method is equally important to the steps described previously. The most commonly 

used regression method is PLS, while nonlinear regression methods and the booming use of machine learning 

methods have been of great interest in recent years. Nonetheless, the latter regression methods' 

effectiveness is limited when the database size is relatively small. Local regression and neural network 

methods have a high probability of overfitting problems, affecting model consistency regarding errors and 

r²'s. The SVM method is an alternative to these methods with a lower risk of model overfitting when a small 

size database is used. 

It shall always be convenient for the researcher to develop interpretable regression models since they enable 

a deep understanding of the phenomena and parameters affecting the property being studied. One of the 

disadvantages of machine learning and neural network regression methods, in addition to the complex 

calibration of their parameters, is the limited interpretability of the generated model. These regression 

methods are generally employed when a more accurate estimation of the studied property is sought or when 

it is necessary to consider nonlinearities that linear and conventional methods (PLS) fail to capture. If these 

methods do not significantly improve model performance over conventional regression methods, it is a good 

practice to retain interpretable models. Therefore, it is recommended to conduct a comprehensive 

comparison of the different regression methods available. For example, in this thesis, the regression method 

used for all properties was PLS since the other evaluated methods did not significantly improve the models' 

performance. However, by expanding the database with more observations, non-conventional regression 

methods could potentially give better results, especially when estimating the cold flow properties of diesel.         

A last important aspect to consider is the criteria or figures of merit used to select the best regression model. 

Generally, in a PLS model, the number of latent variables retained is defined as a function of the RMSECV. 

The method used to calculate this parameter can wrongly influence the decisions made in model calibration. 

This method should be carefully selected depending on the type and size of the database used. Accordingly, 

it is recommended to have an external database to complement the analysis of the regression model 

selection.  

In employing the investigated characterization approach, the response time in estimating the studied 

properties is significantly reduced as the distillation of the total effluent to recover the physical cuts is not 

required, offering the possibility of performing the properties estimation in real-time. However, it should be 

stressed that the results and findings discussed in this chapter are valid as long as it is ensured that the NIR 

spectrum acquisition conditions are repeatable and reproducible regarding those used in the database 

generation for model calibration. Hence, the performance of the models can be affected by external 

parameters that impact the quality of the acquired spectrum. Moreover, the obtained results evidenced that 

the process operating conditions influence the properties estimation. This issue, related to the calibration 

robustness157, could be addressed by developing predictive models that simultaneously use the information 

of the total effluent NIR spectra and the operating conditions employed in obtaining the sample. 
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In summary, all the studied properties can be accurately estimated from the NIR spectra acquired on the HCK 

total effluent with errors close to the reference methods. However, the diesel cold flow properties estimation 

is still susceptible to optimization and improvement to increase its accuracy. Furthermore, considering that 

the value of these properties can be impacted by different factors such as the type and interaction of the 

molecules present in the samples, as well as the operating conditions used in the HCK process, it could be 

expected that the performance improvement of the predictive models could be achieved by using 

complementary information to the NIR spectra. 
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Chapter IV. Data Fusion Modelling 
 

The seven middle distillates properties studied in this thesis were successfully estimated by PLS models 

calibrated using NIR spectra acquired on the total effluent of the HCK process. However, some predictive 

models, such as those used to estimate the cold flow properties of diesel, evidenced opportunities for 

improvement to increase their accuracy. Therefore, based on the scientific papers 3 and 4 (see appendices 3 

and 4, respectively), this chapter addressed the thesis's second research question: "Including additional and 

descriptive information to the NIR spectra improves the model performance?" 

This chapter is divided into three main sections. The first gives an overview of the strategies employed to 

improve the model performance. The second section presents the results obtained by applying the strategies 

described in the first section. Finally, the conclusions of the chapter are presented. This chapter presents only 

the work done on the Cold Filter Plugging Point (CFPP) of diesel. The results obtained on the other diesel cold 

flow properties, the diesel cetane number and the smoke point of kerosene are given in appendix 6. 

 

1. Methodology for improving model performance 

The main objective of this chapter is to validate the feasibility of improving the model performance by using 

complementary information to the NIR spectra. Data fusion modelling was employed to achieve this goal. 

The first step implemented in this modelling approach was defining and generating the data blocks used to 

calibrate the models. Compared to the NIR, the 13C NMR spectroscopy gives more detailed information on 

the molecular interactions and bonds present in the analyzed sample158–160. Hence, the data extracted from 

the NMR analytical technique was used as complementary information to improve the model performance 

(see paper 3 in appendix 3). In addition, to analyze the process variables' impact on the middle distillates 

properties, the operating conditions utilized in the pilot units and the characterization of the feedstock and 

total effluent samples were also employed (see paper 4 in appendix 4). In summary, three blocks of data 

were employed in the data fusion modelling: (i) NIR spectra, (ii) NMR spectra, and (iii) process variables (PVs). 

Considering the information available of each block, the corresponding independent x-matrices were 

constructed (Mx1 = NIR [58 x 2180], Mx2 = NMR [58 x 13926], Mx3 = PVs [58 x 53]). The dependent matrix 

containing the diesel CFPP measurements was also generated. The process variables used are summarized 

in tables Table 6, Table 7, and Table 8 of Chapter 2.  

The second step consisted of two stages. The first involved the preprocessing of each data block. As discussed 

in the preceding chapter, the proper preprocessing scheme selection is crucial in the models' development. 

For estimating the diesel CFPP, the NIR data block was preprocessed using the variable sorting for 

normalization (VSN) method, followed by the Savitzky-Golay third derivative using a 9-point window and a 
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fourth-order polynomial (SavGol[9,4,3]). Regarding the NMR spectra, they were first aligned using the 

Interval Correlation Optimized (icoshift) algorithm. Subsequently, the spectra were preprocessed using the 

Savitzky-Golay smoothing (Smooth SavGol) and normalized (each variable is divided by the sum of the 

absolute values of all the variables for a given spectrum). Lastly, the block of process variables was autoscaled 

to prevent their natural scale from influencing the result (see paper 4 appendix 4). The second stage 

concerned the generation of the calibration and test data sets by applying the Kennard-Stone algorithm on 

the Mx1.       

The third step was the calibration of the regression models. First, three individual models were calibrated 

using each block separately. Then, evaluating the performance of each fusion strategy summarized in Table 

13 of Chapter 2 (see paper 3 in appendix 3), three data fusion model sets were developed: (i) NIR + NMR, (ii) 

NIR + PV, (ii) NIR + NMR + PV. Finally, these models were analyzed to determine the best-performing model 

compared to the single NIR model.   

Once data fusion was applied, it was decided to evaluate the potential of variable selection to further improve 

the models' performance. First, the variable selection was applied to the different blocks. Table 14 of Chapter 

2 summarizes the methods applied on the PVs data block, while Table 15 shows the methods applied on the 

multivariate data blocks (NIR, NMR). Next, the best-performing model in each set of data fusion models 

without variable selection was recalibrated, and the results were compared (see paper 4 in appendix 4).  

The schematic diagram shown in Figure 11 summarizes the steps implemented to improve the performance 

of the NIR models. The detailed description of the methodology employed for selecting the best data fusion 

strategy and variable selection method for improving the NIR model performance is discussed in appendices 

3 and 4.  

 

Figure 11. Flow diagram describing the steps involved in improving the NIR model performance. *VS = Variable Selection applied  
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2. Results analysis 

The single models using the multivariate data blocks (NIR and NMR) without applying variable selection were 

calibrated using the PLS regression method, while the MLR method was used for calibrating the model from 

the process variable data (Mx3). Concerning the data fusion models, the best strategy for fusing the Mx1 and 

Mx2 blocks was the mid-level using the PLS model scores calibrated from each data block as the fusion 

features (see appendix 3). On the other hand, when fusing the multivariate data blocks and the process 

variables, the strategy having the best results was the high-level data fusion using the predicted variable for 

each block as the fusion decision. Table 20 summarizes the results of the models developed using all the 

variables available in each data block. 

Table 20. Single and data fusion models summary for diesel CFPP estimation using all available variables 

  Cold Filter Plugging Point (°C) 

Model 1 2 3 4 5 6 

RRM ±3-0.06*CFPP 

RMSEC 3.2 3.1 3.3 1.4 1.5 1.5 

RMSECV 4.6 4.6 4.7 1.9 1.6 1.6 

RMSEP 3.6 3.1 3.6 2.2 2.3 2.2 

Bias -0.9 0.3 0.7 0.5 -0.3 0.3 

SEP 3.5 3.1 3.5 2.1 2.3 2.2 

r²C 0.844 0.856 0.831 0.971 0.968 0.967 

r²CV 0.693 0.685 0.670 0.945 0.962 0.963 

r²P 0.795 0.849 0.792 0.925 0.914 0.920 

RMSE(CV/C) 1.4 1.5 1.4 1.4 1.1 1.1 

RMSE(P/C) 1.1 1.0 1.1 1.6 1.5 1.5 

NCD 40 

NTD 18 

%Eff 78 78 72 94 89 94 

Limit_min -29.0 

Limit_max 3.0 
1 = NIR, 2180 variables, PLS 4 LVs 
2 = NMR, 13926 variables, PLS 4 LVs 
3 = PVs, 53 variables, MLR 
4 = NIR [6LVs] + NMR[6LVs], mid-level scores PLS, PLS 6 LVs 
5 = NIR [6LVs] + PVs[53 var], high-level, predicted CFPP, MLR 
6 = NIR [6LVs] + NMR[6LVs] + PVs[53 var], high-level, predicted CFPP, MLR 
RRM = Reproducibility of the Reference Method 
NCD = Number of Calibration Data 
NTD = Number of Test Data 
%Eff = Effectiveness percentage in predicting new samples 

The performance of the three individual models regarding the RMSEC and RMSECV is comparable. However, 

concerning the other statistical parameters, the single model with the lowest prediction bias, lowest RMSEP, 

and highest r²P is the one calibrated from NMR spectra. These results show a better capture of the 
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relationship between the chemical information of the total effluent and the studied property. Furthermore, 

although the percentage of effectiveness in predicting new samples within the reference method 

reproducibility limits is the same as the NIR model, the NMR model presents a higher accuracy over the whole 

range of property evaluation (see Figure 12a,b). In turn, the performance of the model calibrated from PVs 

is significantly similar to the NIR model. 

From Table 20, it is observed that by the synergic use of the complementary information to the NIR block, 

the performance of the predictive models improves significantly. Compared to the single NIR model, the data 

fusion models achieve average reductions in RMSEC and RMSEP of 54% and 38%, respectively. The RMSECV 

has the largest reduction (≈63%). The model performance improvement is also reflected in the prediction 

bias reduction (≈60%) and the squared correlation coefficients by showing an increase of 15%, 38%, and 16% 

for r²C, r²CV, and r²P, respectively. The increasing model accuracy over the entire range of model application 

(see Figure 12) is another advantage observed when data fusion is employed, resulting in higher prediction 

effectiveness. However, 100% of effectiveness is still not achieved.  

 

Figure 12. Parity plot for model performance comparison with no variable selection. a) PLS model from Mx1, b) PLS model Mx2, c) 
MLR model from Mx3, d) data fusion model using Mx1+Mx2, e) data fusion model using Mx1+Mx3, f) data fusion model using 

Mx1+Mx2+Mx3. Red dotted lines: upper and lower limits of the reproducibility of the reference method 

The results previously discussed validate the viability of enhancing model performance when complementary 

information to the NIR spectrum is employed. However, some of the information may be redundant or non-

descriptive enough to improve the property estimation. Therefore, the variable selection was applied to each 

data block to determine if identifying relevant descriptors leads to further improvement in model 

performance. 

From the various methods evaluated for selecting variables in the multivariate data blocks, the best 

performing was CovSel. Regarding the process variables, the Backward-SFFS method gave the best results in 

identifying the appropriate descriptors (see paper 4 in appendix 4). After applying the variable selection in 

each data block, the calibration of individual and data fusion models was repeated. For this work step 

(variable selection), all individual models were developed using the MLR regression method. In addition, the 

high-level strategy was employed for the data fusion models using the CFPP predicted by each block as the 

fusion decision. Table 21 summarizes the results of the models developed using the variables selected in each 
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data block. 

Compared to the independent NIR model using all variables (Table 20 model 1), the RMSECV and RMSEP 

were reduced by about 17% when the single model was calibrated after applying variable selection on this 

block (Table 21 model 7). Although the prediction effectiveness remained unchanged, the accuracy over the 

entire range of model application is evident (see Figure 12a vs. Figure 13a). When the variable selection was 

applied, the model calibrated from the process variables showed the greatest reduction in prediction bias 

(57%) and RMSEP (42%). The error reduction of this model was reflected in the prediction accuracy 

improvement, the r²P and the percentage of effectiveness (see Figure 12c vs. Figure 13c). Lastly, it can be 

highlighted the higher effectiveness in predicting new samples achieved in the NMR model when variable 

selection is applied. Nonetheless, the RMSEC and r²C of this model were negatively impacted. This punctual 

model deterioration is due to the limited description of the calibration samples when the diesel CFPP is higher 

than -5°C. Analyzing Figure 13b, it is observed that most of the calibration data (82%) is in the range where 

the CFPP is lower than -5°C, which could affect the selection of variables in this data block omitting the 

information that best describes the samples with CFPP higher than -5°C. Regardless, it is evident that the 

variable selection helps better estimate the studied property than using all the available variables. 

Table 21. Single and data fusion models summary for diesel CFPP estimation using selected variables 

  Cold Filter Plugging Point (°C) 

Model 7 8 9 10 11 12 

RRM ±3-0.06*CFPP 

RMSEC 3.2 3.7 3.2 1.8 1.4 1.2 

RMSECV 3.8 4.5 3.8 2.1 1.6 1.3 

RMSEP 3.0 3.1 2.1 2.1 2.0 1.8 

Bias -0.8 0.6 0.3 0.6 -0.3 0.0 

SEP 2.9 3.0 2.1 2.0 2.0 1.8 

r²C 0.839 0.787 0.842 0.953 0.967 0.981 

r²CV 0.778 0.702 0.774 0.935 0.964 0.976 

r²P 0.860 0.848 0.927 0.932 0.934 0.949 

RMSE(CV/C) 1.2 1.2 1.2 1.2 1.1 1.1 

RMSE(P/C) 0.9 0.8 0.7 1.2 1.4 1.5 

NCD 40 

NTD 18 

%Eff 72 83 94 100 100 100 

Limit_min -29.0 

Limit_max 3.0 
7 = NIR, 5 variables, MLR 
8 = NMR, 4 variables, MLR 
9 = PVs, 11 variables, MLR 
10 = NIR [5 var] + NMR[4 var], high-level , MLR 
11 = NIR [5 var] + PVs[11 var], high-level, predicted CFPP, MLR 
12 = NIR [5 var] + NMR[4 var] + PVs[11 var], high-level, predicted CFPP, MLR 
RRM = Reproducibility of the Reference Method 
NCD = Number of Calibration Data 



Chapter IV. Data Fusion Modelling  
 

56  

NTD = Number of Test Data 
%Eff = Effectiveness percentage in predicting new samples 

When applying data fusion using only the variables identified and selected in each data block, it was possible 

to achieve 100% effectiveness in predicting new samples within the reproducibility limits. Compared to the 

single NIR models, the improvement in the diesel CFPP estimation is observed in all the statistical parameters 

calculated. The highest performance in predicting the property studied is obtained when the three data 

blocks are fused (model 12). In this data fusion model, the r²'s are equal to or greater than 0.95, the prediction 

bias is negligible, and all samples, both calibration and test, are predicted within the reproducibility limits 

(see Figure 13f). The second best-performing model is the data fusion model between the NIR and PV blocks 

(model 11). An advantage of this latter model over the preceding one is the possibility to be applied in real-

time.  

 

Figure 13. Parity plot for model performance comparison with variable selection. a) MLR model from Mx1, b) MLR model Mx2, c) 
MLR model from Mx3, d) data fusion model using Mx1+Mx2, e) data fusion model using Mx1+Mx3, f) data fusion model using 

Mx1+Mx2+Mx3. Red dotted lines: upper and lower limits of the reproducibility of the reference method 

Figure 14 compares all the models developed (individual and data fusion, with and without variable selection) 

to perform an integrated analysis in graphical form. From this figure, the two main conclusions of the work 

shown in this chapter can be corroborated. First, the synergic use of complementary information to the NIR 

spectroscopy improves the estimation of the diesel CFPP. Second, the estimation can be further enhanced 

by applying variable selection on the data blocks prior to their fusion.  

a) b) c)  

Figure 14. Model performance comparison a) RMSEC & r²C. b) RMSECV & r²CV. c) RMSEP & r²P 
Models using data blocks. M1: NIR, M2: NMR, M3 :PVs, M4: NIR+NMR, M5: NIR+PVs, M6: NIR + NMR + PVs  
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3. Concluding remarks 

The analysis presented in this chapter addressed the second research question related to the problem of 

improving the prediction model performance using supplementary information to NIR spectroscopy. The 

results demonstrated that the information from different sources, either analytical or operational, can be 

used synergically to improve the studied property description. One of the model performance improvements 

achieved by data fusion is the prediction bias reduction, leading to a more accurate property prediction. This 

improvement is due to the supplementary information provided by each data block. The NMR data block 

provides a more detailed description of the total effluent's chemical composition, helping to explain better 

the chemical relationship of this sample with the middle distillates. In turn, the block of process variables 

contributes to the property estimation improvement by describing the impact of these variables on the 

properties studied. 

The results have validated the performance improvement of the models by data fusion modelling. 

Nevertheless, it is imperative to consider the constraints linked to their implementation. For example, if it is 

planned to use these models in online monitoring applications, it must be considered which information can 

be acquired in real-time. In this case, models using NMR spectra and total effluent properties cannot be used 

to estimate middle distillate properties in real-time. Although it is possible to acquire this information online, 

this alternative would imply additional data acquisition costs. Therefore, it is recommended to analyze the 

cost-benefit ratio of using this information to improve the accuracy of property estimation. Alternatively, if 

it is intended to improve model performance while keeping data acquisition costs low, data fusion models 

between NIR spectra, operating conditions and feedstock properties are a suitable alternative. While the 

performance of these models is lower than those using NMR spectra and total effluent properties, compared 

to the base NIR model, the property estimation is more accurate.  

The proper choice of the strategy and data fusion methods is essential to ensure the most optimal model 

calibration. While some results may lead to a general decision to choose or discard a strategy or data fusion 

method, it is strongly recommended to evaluate the effectiveness of each method based on the research 

objective. This thesis found that certain data fusion strategies and methods have limited performance when 

fusing highly multivariate data blocks (NIR and NMR) with low multivariate data blocks (process variables). 

Namely, the low-level data fusion strategy, including the SO-PLS and ROSA methods. These findings validate 

the recommendation formerly suggested while enabling the development of new strategies to achieve a 

suitable fusion between these heterogeneous data. For example, the different data fusion levels (low-, mid-

, high-) are normally used independently. However, for one of the diesel cold flow properties (cloud point), 

it was found that the combination of two fusion levels offered the best result. First, the NIR and NMR data 

blocks were fused using the mid-level data fusion employing the scores of PLS models developed from each 
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block as the fusion features. Then, using the high-level fusion, the values predicted by the model developed 

from the process variables and the values predicted by the data fusion model of the spectroscopic blocks 

were used to calibrate the final model. These results showed that different strategies could be evaluated and 

applied to obtain an optimal performance model. 

In addition to choosing the most appropriate strategy and method for data fusion, the proper configuration 

of some data fusion methods is also important. An example can be found in using the SO-PLS method. The 

performance of this method is influenced by the order in which the data blocks are used. For properties 

where a more precise molecular description is needed, such as the diesel cold flow properties, the best 

results employing this data fusion method were obtained when the first block analyzed was the NMR. On the 

contrary, the best results were observed when the NIR block was first analyzed for the other middle distillate 

properties. For this reason, it is recommended to evaluate different use settings on the same method, in this 

case, SO-PLS. 

Similar to developing individual models (using a single block of data), splitting the database into calibration 

and test sets is key to obtaining representative and consistent models. Throughout the development of the 

thesis, it became evident that the data fusion results were impacted when the dataset generation was 

conducted by applying the Kennard-stone algorithm on a specific data block (either NIR, NMR or process 

variables). Different evaluations found that in most cases, the best results were obtained when the data 

splitting algorithm was applied to the NIR block.        

The data fusion approach investigated in this chapter has potential use for fast and accurate properties 

prediction where the performance of single models is limited compared with the reproducibility of the 

reference method. As discussed previously in this chapter, the data fusion modelling using all variables from 

each data block improves the estimation of the diesel CFPP compared to single models. However, applying 

variable selection to each data block before data fusion significantly improves the estimation of this property 

and leads to greater model consistency regarding the RMSE's and r²'s.  

It is important to point out that the choice of the variable selection method must be made carefully according 

to the characteristics of the analyzed information. The performance of a variable selection method on one 

data block is not necessarily reflected when applied to another block of data. Indeed, some variable selection 

methods are very effective in identifying relevant descriptors in multivariate data blocks, but when applied 

to a less multivariate data block (process variables), their performance is limited, as is the case of the CovSel 

method. Hence, it is important to use the appropriate variable selection method.  

It should be kept in mind that variable selection does not have the sole objective of increasing the 

performance of the developed models. Depending on the researcher's objective, the efficiency of variable 

selection methods can be evaluated under completely different criteria. For example, if the main objective is 

to improve the accuracy of property prediction, the application of variable selection on each data block is the 

most advisable approach since it extracts from each block the variables that best describe the studied 
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property. On the contrary, if the objective is to reduce costs regarding the sensors used to capture the 

information, a multi-block variable selection method, such as SO-CovSel, appears as one of the best methods, 

even when having heterogeneity in the data blocks (see paper 4 in appendix 4). The results obtained in this 

thesis showed that a maximum reduction of variables needed in each block is achieved using this method 

while preserving the performance of the single model. This effectiveness in selecting the pertinent variables 

is because this method efficiently captures the interaction between the information of each block, removing 

the redundancy that may exist between them.    

The scheme followed in this chapter to improve the models' performance consisted of first performing the 

variable selection, followed by the data fusion modelling. During the discussion of the results, the question 

arose as to whether the scheme order could be reversed. For example, performing a mid-level data fusion by 

concatenating the multivariate PLS model scores for a subsequent variable selection (scores of each model). 

Although it could result in something unreasonable or not practical, the versatility offered by these methods 

permits to suggest and apply new strategies when using them. 

The methodology for model performance improvement described in the previous sections was applied to the 

other middle distillate properties, obtaining results comparable to those presented in this chapter (see 

appendix 6). As mentioned in chapter 3, the measured values of the studied properties can be influenced by 

factors including the molecular behavior of the samples and the process operating conditions. While it has 

been shown in the present chapter that using supplementary information has the potential to increase the 

model accuracy by capturing the influence that these factors have on the properties analyzed, the model 

performance could still be affected by external parameters associated with the data acquisition conditions, 

particularly to the NIR spectra. Therefore, it is necessary to ensure the robustness of the model for an 

accurate and long-term reliable prediction. 
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Chapter V. Robust Modelling 
 

The middle distillates properties studied in this thesis were estimated through PLS regression models 

calibrated from the NIR spectra acquired on the total effluent of the HCK process with errors close to or even 

lower than the reproducibility of the reference methods. The accuracy in estimating some properties (diesel 

cold flow properties, diesel cetane number and kerosene smoke point) was improved by using 

complementary information to the NIR spectra. Except for models calibrated using NMR spectra and total 

effluent properties as complementary information, all developed NIR models have the potential to be used 

in real-time property estimation applications. However, the limited robustness of the models, defined as the 

ability to maintain a reliable performance under different application conditions 157, 161, may affect their 

performance due to the different external parameters associated with the acquisition of the NIR spectra. 

Based on the results discussed in the scientific paper 5 (see appendix 5), this chapter presents the work 

conducted to address the third research question formulated: "Can external parameters' influence on the 

NIR spectra quality be compensated/corrected to ensure a reliable properties estimation over time?". The 

external parameters investigated were classified into three main groups: (i) instrumental disturbances, (ii) 

sample temperature, and (iii) factors associated with dynamic spectra acquisition. 

This chapter is divided into three main sections. The first section summarizes the strategy employed for 

correcting the impact of external parameters. The second section shows the results obtained by applying the 

approaches described in the first section, while the third section summarizes the main conclusions. In this 

chapter, only the work results related to the diesel cetane number are presented. The results of the other 

middle distillate properties are summarized in appendix 6.  

 

1. Methodology for correcting external parameters impact 

To address the issue of model robustness, the general strategy proposed by Chauchard et al. 149 for correcting 

external parameters impact was employed. The development of each step involved in this general strategy 

is briefly described hereafter, along with the information used. 

Step 1 consisted of defining the stable acquisition conditions, i.e., with no influence of any external 

parameter, to calibrate the reference PLS model. To be consistent with the progress of the thesis, the 

conditions used to develop the PLS model for estimating the diesel cetane number described in Chapter 3 

were adopted as stable conditions. In summary, 98 spectra were acquired on 98 total effluent samples at a 

sample temperature of 60°C, in steady-state conditions, using a reflectance probe with an optical length of 

2mm. 67 of these 98 samples were used for model development, and the remaining 31 were used for model 

testing.  
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Step 2 included establishing the external parameters G and their respective g-values to be studied and 

performing the spectra acquisition at the defined evaluation conditions. As outlined in the chapter 

introduction, three general external parameters were evaluated in this thesis. First, the change of the optical 

length (from 2mm to 1mm) was evaluated for instrumental disturbances. For this parameter, 27 spectra were 

acquired on 27 samples under steady-state conditions using the same reflectance probe utilized in step 1 but 

with an optical length of 1mm. Regarding the sample temperature, four temperature levels (60°C - 90°C ΔT 

= 10°C) were evaluated using the same reflectance probe already discussed with an optical length of 2 mm 

at steady-state conditions. As a result, 108 spectra were acquired on the 27 previously outlined samples to 

evaluate the impact of sample temperature. Finally, the dynamic acquisition of NIR spectra was conducted 

on four different samples for 30 minutes, increasing the sample temperature by 10°C every 10 minutes and 

using a transmittance flow cell with an optical length of 1 mm. In the dynamic acquisition, 211 spectra were 

obtained. Details of the external parameters evaluated and the acquisition of the spectra at the defined 

conditions are reported in scientific paper 5 (appendix 5).    

The third step involved determining whether each external parameter significantly impacted the reference 

model performance developed in step 1. Therefore, the PLS model calibrated at steady-state conditions was 

tested using the spectra acquired at the previously described conditions. To accomplish this step, 286 spectra 

were utilized (76 acquired at steady conditions and 210 at dynamic conditions) (see appendix 5). 

The fourth step concerned the evaluation of four approaches for correcting the impact of external 

parameters investigated: 

(i) Transfer function development. For this approach, the Piecewise Direct Standardization (PDS) 

method was used to develop a transfer function to be applied to the NIR spectra acquired at different 

conditions prior to their use in testing the reference PLS model developed at steady conditions. In 

this approach, two categories of transfer functions were developed. The first one with a global 

function enabling the simultaneous correction of all the studied parameters' impact. The second one 

with a transfer function developed for each parameter to be corrected, i.e., two transfer functions 

in total (instrumental disturbances & sample temperature). A transfer function for the dynamic 

acquisition was not possible since no reference spectra of the samples used in this type of acquisition 

were available. Therefore, the cetane number estimation at dynamic conditions was performed 

using the appropriate transfer function (optical length or sample temperature transfer functions).  

(ii) Calibration of an individual PLS regression model for each external parameter evaluated. Five 

different PLS models were developed. One at steady-state conditions, one for spectra acquired with 

an optical length of 1 mm, and one PLS model for each sample temperature other than 60°C 

evaluated (3 models in total - 70°C, 80°C, 90°C). The most suitable developed model was used 

according to the acquired acquisition conditions for estimating the diesel cetane number using the 

spectra acquired at dynamic conditions (optical length and sample temperature). 
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(iii) Global PLS model development using spectra obtained at different acquisition conditions in the 

model calibration dataset. In this approach, the Orthogonal Signal Correction (OSC) preprocessing 

method using nine components was complementary applied. 

(iv) Robust modelling using orthogonalization methods. In this last approach, the External Parameter 

Orthogonalization (EPO) and Dynamic Orthogonal Projection (DOP) methods were used to develop 

a robust model that simultaneously corrected the different external parameters evaluated. A 

detailed description of the robust model development can be found in paper 5 (appendix 5).    

 

2. Results analysis 

As mentioned in section 1 of this chapter, the reference PLS model used to evaluate the impact of the 

different external parameters was the one described in chapter 3. As a reminder, this model employs 9 latent 

variables having an RMSEC and RMSECV of 1.3 and 2.2, respectively. Table 22 column 1, summarizes the 

performance of this model as a function of SEP, bias, RMSEP and r²P using the spectra acquired at different 

measurement conditions. In Table 22, these assessment metrics have been calculated separately for each 

external parameter investigated and globally.  

From the results reported, it is possible to conclude that as long as the model is applied to NIR spectra 

acquired at the previously described steady-state conditions, its performance is satisfactory. However, it is 

observed that the different external parameters studied significantly affect the estimation of the diesel 

cetane number. This conclusion can be corroborated in the parity plot shown in Figure 15a. Excluding the 

samples with the highest and lowest cetane number values, the change in optical length is the parameter 

with the least impact, partially correctable by preprocessing the new spectra. On the other hand, the spectra 

acquired at different sample temperatures generate predictions with a low SEP (2.8) but a high bias (-12.2), 

resulting in a high RMSEP (12.5). The preprocessing scheme employed in developing the reference model 

fails to correct such bias. The analysis aforementioned is reflected in the high r²P value (0.938) of the samples 

predicted at different temperatures. Finally, the factors associated with the spectra dynamic acquisition have 

the greatest impact on the model performance resulting in a moderate value of SEP (3.3), with high values 

of bias (-27.4) and RMSEP (27.6), and a low r²P (0.065). When evaluating all parameters simultaneously, it is 

found that only 14% of the samples used to test the model are predicted within the reproducibility limits of 

the method. This effectiveness percentage corresponds mainly to the predicted samples whose NIR spectra 

were acquired at reference conditions.   
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Table 22. Approaches effectiveness comparison for correcting external parameters impact on diesel cetane estimation 

  Cetane Number 

Model 1 (i) 2 (i) 3 (ii) 4 (iii) 5 (iv) 6 

RMSEC 1.3 1.3 1.3 1.3 1.6 1.2 1.3 1.7 1.6 1.6 

RMSECV 2.2 2.2 2.2 2.2 2.6 2.2 2.3 2.4 2.2 2 

r²C 0.986 0.986 0.986 0.986 0.981 0.988 0.986 0.977 0.979 0.981 

r²CV 0.959 0.959 0.959 0.959 0.946 0.965 0.960 0.956 0.965 0.969 

RMSEP_P0 2.0 2.0 2.0 2.0 1.9 1.8 

Bias_P0 -1.0 -1.0 -1.0 -1.0 -0.1 -0.2 

SEP_P0 1.7 1.7 1.7 1.7 1.9 1.8 

r²P_P0 0.971 0.971 0.971 1.0 0.968 0.968 

RMSEP_P1 10.1 4.5 6.2 1.9 2.3 2.3 

Bias_P1 -7.9 -1.6 -3.0 -0.1 1.2 0.9 

SEP_P1 6.3 4.2 5.5 1.9 2.0 2.1 

r²P_P1 0.680 0.870 0.810 1.0 0.968 0.972 

RMSEP_P2 12.5 3.9 3.2 1.7 2.3 2.5 

Bias_P2 -12.2 -3.0 -2.2 -0.2 1.0 0.8 

SEP_P2 2.8 2.6 2.3 1.7 2.1 2.4 

r²P_P2 0.938 0.959 0.961 1.0 0.965 0.954 

RMSEP_P3 27.6 12.6 13.1 25.1 3.2 2.1 

Bias_P3 -27.4 -12.3 -12.8 24.9 -1.5 0.1 

SEP_P3 3.3 2.8 2.8 2.9 2.9 2.1 

r²P_P3 0.065 0.036 0.069 0.068 0.071 0.366 

RMSEP_PG 24.1 10.9 11.4 21.5 3.0 2.1 

Bias_PG -21.7 -9.5 -9.9 18.1 -1.0 0.1 

SEP_PG 10.4 5.4 5.7 11.6 2.8 2.1 

r²P_PG 0.019 0.456 0.410 0.7 0.850 0.917 

NTD 287 

%Eff_PG 14 22 23 25 85 92 

RRM ±3.6 
1 = Reference PLS NIR Model 9 LVs 
(i) 2 = General transfer function using PDS (11 point-window) 
(i) 3 = Specific transfer function using PDS (11 point-window) (Optical length and Sample T) 
(ii) 4 = Specific model for each external parameter (See Table 34) 
(iii) 5 = General PLS NIR model with 9 LVs using spectra acquired at different conditions 
(iv) 6 = PLS_EPO_DOP model with 8 LVs and 12 EPO components 
P0 = No external parameters evaluated (Sample T = 60°C, probe optical length = 2mm) 
P1 = Optical length impact evaluation (Sample T = 60°C, probe optical length = 1mm) 
P2 = Sample T impact evaluation (Sample T = 60°C - 90°C, probe optical length = 2mm) 
P3 = Dynamic impact evaluation (Sample T = 60°C - 90°C, flowcell optical length = 1mm) 
PG = All external parameters evaluated simultaneously 
RRM = Reproducibility of the Reference Method 
NTD = Number of Test Data 
%Eff = Effectiveness percentage in predicting new samples 

When applying the first correction approach (transfer function using the PDS method), it can be observed 

that the bias caused by the different external parameters is reduced, improving the RMSEP as well. Compared 

to the reference PLS model, the best-corrected external parameter is the optical length change with an 
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average bias reduction of 79%, followed by the bias caused by the sample temperature, which is reduced by 

about 76%, while the bias caused by the dynamic acquisition is reduced by 55%. In addition to the observed 

improvement in errors and r² values, the percentage of predicted samples within reproducibility limits 

increases by 8 percentage points. Despite the improvements achieved with this correction approach, the 

model still does not perform optimally, having an overall RMSEP (10.9) higher than the reproducibility of the 

reference method (±3.6). The factors associated with the dynamic acquisition of the spectrum are the ones 

that contribute the most to this error value. Completing the analysis of this first approach, it can be 

highlighted that a greater correction of the overall parameters impact is achieved when a general transfer 

function is developed to correct simultaneously the parameters' influence, rather than when a transfer 

function is developed for each external parameter (see Figure 15b and c). 

The second approach applied (development of a PLS model for each g value of the G parameters) showed 

promising results in correcting the impact caused by the change of optical length and sample temperature 

by reducing the bias by approximately 98%, resulting in RMSEP values (≈1.8) lower than the reproducibility 

of the reference method. However, this approach presents two main drawbacks. The first one is related to 

the low performance of the models developed to estimate the diesel cetane number using the spectra 

acquired under dynamic conditions. Table 22 column 4 shows that, compared to the reference PLS model, 

the bias has a very low reduction (9%). This lack of robustness to predict the diesel cetane number under 

dynamic conditions results in the global RMSEP being very similar to the obtained by the reference model 

without applying any correction (see Figure 15d). The second drawback of the evaluated approach concerns 

the complexity of applying multiple preprocessing methods and models to predict the same property (see 

Table 23). 

Table 23. Individual models description for correcting external parameters impact on diesel cetane estimation 

Model Description Preprocessing scheme Latent Variables 

(ii) 4a To estimate at steady conditions SNV + SavGol [23,3,2] 9 

(ii) 4b To correct optical length change MSC + SavGol [23,2,2] 5 

(ii) 4c To correct sample temperature (70°C) SNV + SavGol [17,2,2] 6 

(ii) 4d To correct sample temperature (80°C) MSC + SavGol [23,3,2] 6 

(ii) 4e To correct sample temperature (90°C) PQN + SavGol [25,2,2] 5 

The third approach employed (development of a global model using spectra acquired at different 

measurement conditions) succeeded in overcoming the two limitations exhibited by the second approach. 

With an average reduction of 90% of the bias caused by each external parameter, including dynamic 

acquisition, this approach achieves a percentage of predicted sample effectiveness of 85% (see Figure 15e). 

This effectiveness improvement is reflected in the reduction of bias (96%), SEP (73%), and hence RMSEP 

(88%) when evaluating the impact of external parameters simultaneously. In addition, the r²P is also 

significantly improved (98%). In summary, using this approach, the correction of the impact caused by the 

evaluated external parameters is considerable, given the advantage of using a single model. However, some 
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estimations at dynamic conditions are still predicted outside the reproducibility limits.  

By applying the fourth correction approach (robust modelling with orthogonal methods), the best results are 

obtained regarding the impact correction caused by the G-parameters. With a single regression model, a 

prediction effectiveness percentage of 92% (see Figure 15f), a reduction of bias, SEP, and overall RMSEP of 

99%, 80%, and 91%, respectively, are achieved. Similarly, the highest r²P improvement (99%) is achieved with 

the robust approach adopted. An advantage of using this approach is that there is no need for further 

transformation of the new spectra being analyzed.   

Based on the results obtained and analyzed in this chapter, the feasibility of achieving reliable estimates of 

the studied property under different application conditions can be validated, being the robust modelling 

using orthogonalization methods the approach that showed the best performance (see appendix 6). 

 

 

Figure 15. Parity plot for model performance comparison applying external parameters correction. a) reference PLS model b) 
approach (i) global PDS transfer function, c) approach (i) individual PDS transfer function, d) approach (ii) individual modelling, e) 

approach (iii) global modelling, f) approach (iv) robust modelling using orthogonalization. Red dotted lines: upper and lower limits of 
the reproducibility of the reference method 

At last, Figure 16 compares all the correction approaches implemented regarding the RMSE's and r²'s. The 

analysis conducted and the main conclusion drawn previously can be corroborated from this figure. Namely, 

the performance of the NIR model for estimating the diesel cetane number is affected by external parameters 

associated with the spectra acquisition conditions. The approach that best corrects this impact is robust 

modelling using the EPO and DOP methods synergically (see paper 5 in appendix 5).  

a) b) c)  

Figure 16. Model performance comparison applying external parameters correction a) RMSEC & r²C. b) RMSECV & r²CV. c) RMSEP & 
r²P. Legend. NC = no correction, C1 = correction using global PDS transfer function, C2 = correction using individual PDS transfer 

function, C3 = correction using individual modelling, C4 = correction using global modelling, C5 = correction using robust modelling 
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3. Concluding remarks 

The analysis presented in this chapter addressed the third research question related to the NIR model 

robustness issue. The results obtained validated that reliable estimation of diesel cetane number at different 

acquisition conditions of the NIR spectra is feasible. In this thesis, three general external parameters were 

studied. Among them, the sample temperature and factors associated with the dynamic acquisition are the 

parameters that most impact the spectra quality and the developed model's performance. To a lesser extent, 

the change of the optical length in the measuring instrument can also affect the reliability of the studied 

property estimation. Nevertheless, a suitable preprocessing scheme can partially correct this last parameter. 

As evidenced in the discussion of this chapter, there is no single solution to the issue of model robustness. 

Even in chapter 4, it was demonstrated that partial robustness of the model is achieved through data fusion 

modelling. Thus, as emphasized throughout the chapters of the manuscript, selecting the chemometric 

method that best meets the research need depends largely on the researcher's objective and the available 

information. This chapter addresses the model robustness issue regarding the external parameters 

associated with the NIR spectra acquisition.  

The correction of the external parameters is usually accomplished independently, i.e., correcting the 

influence of one parameter at a time. When the robustness constraint is linked to instrumental changes, the 

widely used option to compensate for the impact of this parameter is the a priori correction, being the PDS 

method the most employed. However, this method has the disadvantage of requiring the transformation of 

the new spectra using a transfer function, being necessary to have enough reference samples (typically 20) 

to achieve an optimal function fit. In addition, the developed transfer function is usually not generalized and 

can be affected by other external parameters, including slight instrumental changes that were supposedly 

already included in it. Even when a generalized transfer function is developed for correcting different external 

parameters simultaneously, it fails to fully compensate for the impact of parameters having a non-linear 

incidence on the spectra quality, such as sample temperature and dynamic acquisition. As a result, a 

recalibration of the function is required whenever a significant deviation in model performance is evident 

due to an external parameter.  

Another strategy for correcting the impact of several external parameters is calibrating a regression model 

for each G parameter. However, despite the promising results, its development and application are often 

impractical. Firstly, it requires a database for each parameter evaluated, rendering it an economically 

unfeasible alternative. Secondly, this strategy increases the complexity of analyzing, defining, and applying 

several regression models to predict a single property. Additionally, this strategy does not correct the impact 

of factors present in dynamic acquisition. 

 If reliable property estimation is intended for online monitoring applications, the strategies described in the 

previous paragraphs are limited. There is a high probability that the impact caused by several external 
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parameters occurs simultaneously in real-time property estimation applications. The generation of a global 

regression model using orthogonalization as a preprocessing method (OSC) partially corrects the effect that 

dynamic acquisition conditions have on the model accuracy. However, its robustness is not suitable enough. 

Based on the favorable outcome of the preprocessing method used in developing the generalized model, the 

combined use of EPO and DOP's orthogonalization methods was satisfactorily applied. 

When employing the EPO method, the simultaneous correction of several external parameters is achieved 

from a single, generalized PLS model. The effectiveness of this method lies in utilizing a detrimental matrix D 

that describes the impact that the different parameters have on the studied property. The EPO method has 

the advantage that the impact description of several external parameters can be included in this matrix D 

simultaneously. Therefore, it could be inferred that the impact caused by dynamic acquisition is corrected 

when using a PLS_EPO model calibrated using a D-matrix that includes the impact of instrumental changes 

and sample temperature. Nonetheless, the factors associated with the dynamic acquisition conditions are 

not always easily identified and analyzed. For instance, the impact of the flow rate that leads to instantaneous 

sample changes during the spectra acquisition. Therefore, extending the model robustness to consider these 

factors is necessary. However, since it is difficult to measure the impact of these factors, this task is highly 

complex. The DOP method offers an effective solution to overcome this drawback. 

This thesis implemented an integrated use of the EPO and DOP methods (see paper 5 appendix 5). As a result, 

a robust model that effectively corrects for the impact of all the external parameters studied was obtained. 

The integration of these two methods presents an advantage over the other correction methods by 

facilitating the incorporation in the D-matrix of any other external parameter impact. Consequently, the 

model robustness increases continuously by including the impact of external parameters evidenced during 

process monitoring and operation, such as feedstock and operating conditions changes. In addition, the 

integration of these two methods offers a relative simplicity in the model maintenance since it does not 

require a large volume of data or reference samples. For instance, the results shown in this chapter were 

achieved by updating the EPO model using a single NIR spectrum acquired under dynamic conditions. One 

limitation encountered when applying this strategy is the need to know the analyzed property's measured 

value to use the DOP method.    

In summary, the integrated application of the orthogonalization methods showed that regardless of the 

acquisition conditions, stable or variable, steady or dynamic, and even with different types of instruments, 

the middle distillate properties prediction is reliable over the whole range of estimation evaluated. In 

addition to the model robustness achieved, a great advantage of using orthogonalization methods is that no 

further processing or transformation of the new spectra is required, facilitating the maintenance of the 

models over time. 
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Chapter VI. Model Deployment 
 

The research questions formulated in this thesis were addressed considering different evaluation scenarios. 

As a result, a robust and reliable estimation of middle distillates properties was achieved. This milestone 

accomplished through the thesis development raises the perspective of implementing the obtained models 

in daily operation analysis, including real-time monitoring. Therefore, it was decided to validate the results 

and conclusions drawn in the previous chapters by implementing the models in scenarios not considered 

during their calibration and testing. 

This chapter is divided into three main sections. The first section presents the results obtained by applying 

each developed model to samples analyzed at steady-state and offline conditions. The second section shows 

the application of one of the developed models for monitoring a test conducted in a hydrocracking pilot 

plant. Finally, the third section summarizes the conclusions drawn from the analysis of the results. 

 

1. Case 1: Offline and steady acquisition conditions 

For this first case, NIR spectra were acquired on 26 total effluent samples obtained during a test conducted 

in 2021 in one of HCK's pilot plants located at the IFPEN in Solaize, France. Following the same acquisition 

protocol for steady-state conditions as described in the materials and methods section (see chapter 2), the 

spectra were acquired at a sample temperature of 60°C, using a Falcata Lab 6 immersion probe (reflectance) 

with a fixed optical length of 2 mm. 

The samples were classified into four groups:  

- Group 1: samples obtained by processing feedstocks under operating conditions and catalytic 

systems employed before when producing the samples used in the model calibration (7 samples); 

- Group 2: samples obtained by employing a catalytic system not previously included in the database, 

but processing feedstocks already used (9 samples); 

- Group 3: samples obtained by processing feedstocks not previously evaluated but using catalytic 

systems included in the database for generating the models (5 samples); 

- Group 4: samples obtained by processing feedstocks and catalytic systems not included in the 

database (5 samples). 

 

Eight different models were applied to the acquired spectra (see Table 24). For this first case, this chapter 

only shows the results and respective analysis of two diesel properties, namely the cetane number and the 

CFPP. The results of the remaining properties studied are reported in Appendix 7. 
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 Table 24. Description of the models applied to the 26 new total effluent samples  

Model Description Acronym 

1 NIR model Mod_1 

2 NIR model with EPO_DOP correcttion Mod_2 

3 NMR model Mod_3 

4 NIR + NMR data fusion model Mod_4 

5 NIR + PV_TE* data fusion model Mod_5 

6 NIR + PV_NTE** data fusion model Mod_6 

7 NIR + NMR + PV_TE data fusion model Mod_7 

8 NIR + NMR + PV_NTE data fusion model Mod_8 
*PV_TE = Process Variables including Total Effluente properties 
*PV_NTE = Process Variables not including Total Effluente properties 

1.1 Diesel Cetane Number 

Figure 17 compares the eight models' performance in estimating the diesel cetane number. The comparison 

analysis was performed regarding the SEP, the bias, the RMSEP and the r²P. This figure corroborates the 

conclusions proposed in the previous chapters, validating the responses given to each research question. A 

general analysis reveals that the NIR base model (Mod_1) has a lower RMSEP than the reproducibility of the 

reference method (±3.6). Next, it can be corroborated that when using complementary information to the 

NIR spectra (NMR spectra and process variables), the model's performance is improved (lower RMSEP and 

higher r²P). Finally, the robust model using only the NIR spectrum of the total effluent samples (Mod_2) has 

a better performance than the base NIR model.  

 

Figure 17. Model performance comparison for predicting diesel Cetane Number in 26 new samples 

Figure 18 provides further details for the model performance analysis. This figure shows the parity plots 

corresponding to each model. 

The NIR model successfully predicts 24 out of the 26 new samples within the reproducibility limits, 

representing a prediction effectiveness of 92%. From the two samples predicted out of limits, it can be 

observed that the one having the largest deviation corresponds to a sample obtained when processing a new 

feedstock. Conversely, all samples obtained using a new catalytic system were predicted within the 

reproducibility limits. When comparing the samples according to the defined group in the introduction of this 
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first case, those obtained from a new feedstock (blue squares) show a slightly larger deviation than those 

obtained using a new catalytic system (red diamonds). These results could be interpreted as if the chemical 

information extracted and exploited from the NIR spectra is better able to capture the changes in the catalytic 

system rather than in the properties of the feedstock. Nonetheless, the global performance of the NIR model 

is satisfactory in this study case.  

An interesting trend observed in the estimations obtained with the NIR model is a positive bias for samples 

with a cetane number higher than 60, while a negative bias is observed for samples with a cetane number 

lower than 60. When analyzing this behavior regarding the different feedstock, total effluent properties and 

the operating conditions, it was found that this trend is strongly associated with the process conversion. This 

parameter is directly influenced by the process operating temperature. The higher the temperature, the 

higher the conversion. Diesel, being a heavier product than total effluent and kerosene, its molecular 

interaction is more impacted by temperature. Hence, the trend of the NIR model estimate can be explained. 

When the robust EPO model (Mod_2) is applied, this effect is corrected, and the cetane number prediction 

is improved. This result validates the importance and reliability of the model's robustness.  

 
Figure 18. Parity plot for model performance comparison in predicting diesel Cetane Number in 26 new samples. Red dotted lines: 
reproducibility limits of the reference method (±3.6). Legend: Black circles → Samples group 1. Red diamonds → Samples group 2. 

Blue squares → Samples group 3. Purple stars → Samples group 4 

The most accurate estimates were obtained with the data fusion models between spectroscopic information 

and process variables. The lowest RMSEP and the highest r² are obtained when the total effluent properties 

are used in the cetane number prediction (Mod_5). However, if cetane number estimation is desired for 

online process monitoring, this model cannot be applied due to the unavailability of real-time total effluent 

properties information. Instead, the data fusion model using the NIR spectra, the feedstock properties, and 

the operating conditions (Mod_6) could be used with comparable performance.   
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1.2 Diesel CFPP 

As detailed in Chapters 3 and 4, the most complex diesel properties for modelling were the cold flow 

properties. This section shows the results of implementing the developed models for estimating the diesel 

CFPP of the 26 samples analyzed in this chapter. As a brief reminder, the results presented in the previous 

chapters indicated that while the base NIR model has an RMSEP close to the reference method 

reproducibility, the prediction bias and the r²P are not optimal, and some samples were predicted outside 

the reproducibility limits. However, when using data fusion, the prediction of diesel CFPP was improved.  

Figure 19 shows the comparison between the 8 models evaluated. The same trend described in the previous 

paragraph can be observed. Once again, it can be validated that the synergistic use of supplementary 

information contributes to a more accurate description of this diesel property. The data fusion model 

involving spectroscopic information and process variables, including the total effluent properties, is the best 

performing model. Compared to the NIR model, this data fusion model significantly improved the r²P and the 

RMSEP (67% reduction). Unfortunately, similar to cetane number estimation, this data fusion model is limited 

for online monitoring applications due to the unavailability in real-time of the NMR spectra and the total 

effluent information. Nevertheless, the data fusion model that uses the NIR spectrum and process variables 

without considering the total effluent properties provides a satisfactory estimate of the diesel CFPP.  

 

Figure 19. Model performance comparison for predicting diesel CFPP in 26 new samples 

The parity plots shown in Figure 20 provide further details for a deeper analysis of the models' performance. 

From these plots, it can be emphasized that, except for the data fusion model described previously (Mod_7), 

all models fail to predict the sample with the highest CFPP value within the reproducibility limits. The value 

of the studied property corresponding to this sample (+4) exceeds the upper limit of model applicability (+2), 

explaining the poor prediction observed.  

When analyzing the models' performance closely, it can be observed that out of the 26 samples evaluated, 

the NIR model predicts 20 of them within the reproducibility limits (77% prediction effectiveness). Five of the 

six samples estimated outside the limits correspond to samples acquired while processing feedstocks and 

evaluating catalytic systems not included in the initial database used for model calibration. Unlike the cetane 

number, the chemical information contained in the NIR spectra does not fully describe the impact of these 
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operational changes in the studied property. Regarding the robust EPO model, the improvement in property 

estimation is once again achieved. Compared to the NIR model, the prediction effectiveness percentage is 

improved (85%), the bias and RMSEP are reduced by 75% and 29%, respectively, and higher homoscedasticity 

of the model is observed. 

When applying the data fusion model employing NIR spectra and process variables, without including the 

total effluent properties (Mod_6), 25 out of the 26 samples analyzed are predicted within the reproducibility 

limits. This better property estimation is reflected in the RMSEP reduction and the r²P improvement. Such 

promising results suggest the possibility of deploying this model with relative reliability in online monitoring 

of the diesel CFPP behavior. Nevertheless, it is recommended to analyze the possible causes of the positive 

bias observed in this model. It is noteworthy that this bias is slightly corrected when two parameters related 

to the total effluent are included, i.e., conversion and the simulated distillation temperature used to recover 

the 30% of the diesel T30 (Mod_5). This bias reduction could be associated with the impact that the quality 

of the feedstock and the catalytic system have on the process conversion. Therefore, this parameter could 

provide complementary information to the model, helping to explain better the impact of the new operating 

conditions on the diesel CFPP.  

 
Figure 20. Parity plot for model performance comparison in predicting diesel CFPP in 26 new samples. Red dotted lines: 

reproducibility limits of the reference method (±3-0.06*CFPP). Legend: Black circles → Samples group 1. Red diamonds → Samples 
group 2. Blue squares → Samples group 3. Purple stars → Samples group 4 

Finally, as previously discussed, the best-performing model was the data fusion model using the samples' 

NMR spectra and the process variables as complementary information. The data description provided by the 

NMR contributes to describing the behavior of the analyzed property more accurately. When using this 

model, the prediction effectiveness is 100%. Compared to the NIR model, this model significantly reduces the 

SEP (59%), the bias (79%), and the RMSEP (67%). 
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The results discussed in this first case are relevant when validating the conclusions presented in the previous 

chapters. It is worth stressing that the samples used for model calibration were collected from tests 

performed in the IFPEN pilot plants between 2013 and 2018 using different feedstocks and operating 

conditions. In addition, the spectra were acquired on these samples during the second semester of 2020. The 

26 new samples evaluated in this section were obtained in 2021 using feedstocks and operating conditions 

different from those used in the previous years. Moreover, the spectra acquisition on these samples was 

conducted nearly a year after (2021) acquiring the initial spectra. Despite the variability described concerning 

the process and dates of sample analysis, the performance of the models was satisfactory.  

 

2. Case 2: Pilot plant test monitoring 

The results discussed throughout this manuscript have validated the feasibility of estimating middle distillate 

properties independently of the total effluent distillation. This alternative product characterization minimizes 

the response times. With a more opportune response, process analysis and decision-making are optimized. 

Hence, one of the further objectives of the thesis is to achieve the digital monitoring of the HCK process. This 

section shows the implementation of the developed work in the online monitoring of a test conducted in one 

of the IFPEN's pilot plants. A general description of the experimental setup in the pilot plants is given below 

to help the reader to have a more precise context of this study case. Subsequently, the conditions for 

acquiring the spectra and the description of the models used in this case are summarized. Finally, the results 

obtained are shown and discussed. 

In broad terms, a test in the HCK process pilot plants starts with the in-situ catalyst sulfiding using a gas oil 

spiked with aniline and dimethyl disulfide (DMDS). Following this step, the operating conditions are set, and 

the feedstock to be processed is injected. From this point on, the stability of the pilot unit is continually 

supervised. Monitoring the unit stability is crucial to ensure the representability of the total effluent samples 

collected. The unit stabilization is tracked by monitoring the total effluent density. This property is measured 

offline every 24 hours. The pilot unit operation is considered stable when the density variation is lower than 

0.0005 g/cm3. It should be noted that during the test in the pilot plant, different operational changes related 

to the feedstock, pressure, temperature, and residence time are evaluated. Once the stability is reached, the 

total effluent is collected to be further distilled for obtaining and characterizing the cuts. The results obtained 

from the characterization are used to evaluate the process performance.    

This second study case was conducted to evaluate the feasibility of online monitoring of the HCK process by 

implementing real-time NIR spectra acquisition on a pilot plant. To this end, a transmittance flowcell with an 

optical path of 1 mm was installed at the process reactor outlet. The spectrometer (Metrohm) used for the 

spectra acquisition is detailed in chapter 2. The acquisition frequency of the NIR spectra on the total effluent 

was 5 minutes.  
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The monitoring of the pilot plant test focused on two property estimations. First, the total effluent density 

was estimated to evaluate the pilot unit stability. This property was chosen for the daily measurements of 

the density on the total effluent giving access to an interesting amount of reference values to validate the 

NIR approach. A model was calibrated from a data set of 170 samples following the robust Modelling 

principles described in Chapter 5 to estimate this property. This model had an RMSEC and RMSECV of 0.0018 

g/mL and 0.0020 g/mL, respectively. The model’s r²C (0.994) and r²CV (0.991) were optimal. The model’s 

performance was validated using an external data set of 65 samples, resulting in an RMSEP of 0.0019 and an 

r²P of 0.991. The described model corresponds to a PLS model of 9 LV and 7 EPO components. Simultaneously 

to the total effluent density estimation, the diesel cetane number was predicted using the PLS_EPO model 

described in chapter 5. This property's prediction was performed to analyze its behavior throughout the test 

regarding the operational changes evaluated. Figure 21 shows the results obtained from the monitoring 

conducted for approximately 44 days.   

 

 

Figure 21. Online HCK process monitoring. Legend → Cond_1: catalyst sulfiding, Cond_2: Feedstock A injection, Cond_3: Feedstock B 
injection, Cond_4: Operating temperature increase, Cond_5: Operating temperature increase, Cond_6: Feedstock C injection, 
Cond_7: Operating temperature increase, Cond_5: Operating temperature increase, Cond_9: Operating temperature increase   
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Before presenting the analysis of the results, it is necessary to mention that the lack of properties prediction 

between days 14 and 19 was due to an unintentional shut-down of the spectrometer. 

2.1 Online total effluent density estimation 

The online density predictions (blue line Figure 21) were compared with the measured value of this property 

every 24 hours (red circles Figure 21). The first remark that can be made is the satisfactory prediction of the 

total effluent density over the entire test. Compared to the offline density measurement conducted every 24 

hours, it can be seen in Figure 21 that the online density estimation is accurate and correctly predicts the 

property behavior. In addition, the online density monitoring enabled timely observation of the impact on 

process stability caused by catalyst sulfiding (days 0 - 2), injection (day 2) and feedstock changes (days 6 and 

21), as well as changes in operating conditions (days 13, 16, 30, 34, and 37).  

Besides the accurate prediction of the process stability trend, the estimated and measured value difference 

is close to the reference reproducibility for this property in products such as total effluent (0.0011 g/cm3). 

When disregarding the offline density measurements made on days 6 and 27, the maximum difference found 

was 0.0024 g/cm3, while the minimum difference was 0.0001 g/cm3, with an average difference of 0.0014 

g/cm3. The estimated density on day 6 showed a difference of 0.0036 g/cm3 compared to the measured 

value. The accumulation of the total effluent sample under unstable conditions during the first two days 

could explain this difference. On the other hand, the prediction for day 27 was the one that presented the 

greatest difference (0.0042 g/cm3) without any particular explanation for this discrepancy. Despite these 

occasional differences, implementing the density model for monitoring the process was successful.  

Online process monitoring offers the possibility of reducing the time currently used to establish the unit 

stability. Moreover, an opportune analysis of the impact of different parameters on the process stability and 

product quality can be achieved. The response time optimization could be reflected in more efficient and 

expeditious process research. 

2.2 Online diesel cetane number estimation 

Unlike the total effluent density, the measured value of the diesel cetane number is conditioned to the total 

effluent distillation and the respective laboratory analysis. Six total effluent samples corresponding to the 

operational changes evaluated were produced during this test. These samples were subsequently distilled to 

recover the diesel cut, on which the cetane number was measured. It should be noted that the time gap 

between collecting each total effluent sample and measuring the diesel cetane number was between 3 and 

4 weeks. Keeping this in mind, the diesel cetane number values predicted online (black line Figure 21) could 

only be validated with the measurement of these six diesel cuts analyzed (red diamond Figure 21).  

Similar to the total effluent density, the estimate of the diesel cetane number consistently reflects the 
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behavior of this property as a function of the operational parameters evaluated during the test. For example, 

the higher the operating temperature at the same feedstock, the higher the diesel cetane number. Compared 

to the six measured values, the estimate of the diesel cetane number is accurate, with a minimum and 

maximum deviation of 0.2 and 1.6, respectively. These online estimates are not only reliable but also rapid. 

While it took 3 to 4 weeks to know the measured value of the cetane number after collecting the total effluent 

samples, the estimated value using the developed robust model enables the researcher and the process 

operators to know this value in a couple of minutes. 

In addition to the online process monitoring, a complementary analysis was performed using the six total 

effluent samples accumulated during the test. The analysis compared the robust model performance when 

predicting the total effluent density and the diesel cetane number under offline and online conditions. For 

the offline prediction, the NIR spectra were acquired under stationary conditions, at a constant sample 

temperature of 60°C and a fixed optical length of 2 mm using a reflectance instrument (see chapter 3). For 

the online prediction, the NIR spectra acquired during the process monitoring (possibility of variability related 

to the sample temperature and flowrate) with a transmittance instrument of 1 mm optical length were 

utilized. Figure 21 shows the capacity of the robust models to reliably predict these two properties at 

different acquisition conditions (blue line vs. green circles for density, black line vs. green diamond for diesel 

cetane number). 

 

3. Concluding remarks 

The results shown in this chapter validated the main findings and conclusions drawn in the previous chapters 

when using a test data set with information not included in the properties modelling. It was confirmed that 

predicting the middle distillates properties from the chemical information contained in the total effluent NIR 

spectra is feasible. It was also corroborated that the properties estimation can be improved when 

complementary information to the NIR spectrum, such as NMR and process variables, is used synergistically. 

Lastly, it was validated that developing a robust model is fundamental to ensuring reliable property 

estimation under different evaluation conditions over time.  

Obtaining robust models using orthogonalization methods was a crucial milestone in developing the thesis. 

The results showed that this model corrects the impact of temperature at the macro and micro levels. To 

give an example, let us take the diesel cetane number estimation. At the macro level, the model corrects the 

impact of sample temperature on the spectra quality, providing a reliable property estimate. Regarding the 

micro level, the impact that the operating temperature has on the property estimation can be outlined. When 

the reference NIR model is used to estimate the diesel cetane number, a positive and negative bias is 

observed, explained by this external parameter influence. On the contrary, using the robust model, the 
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impact is corrected by eliminating this parameter's biases on the property estimation.   

Compared to the robust NIR model, the data fusion models using process variables show a more accurate 

prediction when changes in process operation occur. This better performance could be interpreted as a 

greater capacity to correct the impact of operating conditions on the property estimation. However, this 

comparison is valid as long as the NIR spectrum acquisition conditions are the same as those used to obtain 

the spectra used in the model calibration. Recalling the results shown in chapter 5, it is evident that the 

external parameters related to the spectra acquisition significantly affect the models' performance. If the 

data fusion models were deployed under different NIR spectrum acquisition conditions, the information 

provided by this data block could be biased, affecting the model performance. In that case, the robust model 

developed from orthogonalization methods would give a more accurate estimate. This simplified analysis 

raises the perspective of finding a methodology that allows the complementary use of orthogonalization and 

data fusion methods. The synergistic use of the advantages that each approach brings to the table could 

result in a more robust model. 

The robust modelling done in this thesis was applied to a case study of online monitoring of the HCK process. 

Compared to the measured values of the property used to determine the process stability, the prediction 

model showed satisfactory performance. The robust model developed provided a reliable estimate over the 

entire test monitoring, thus demonstrating its high consistency. The results obtained were highly promising. 

The model consistently and reliably estimated the total effluent density, even when changes in process 

variables such as feedstock quality and reaction temperature occurred. Therefore, the online process 

monitoring using the robust model enabled the opportune analysis of different operating conditions' impact 

on the process stability, helping to have a more accurate and timely process analysis.  

One of the major advantages of the alternative investigated in this thesis is the property estimation of 

different products from a single NIR spectrum. In addition to the total effluent density prediction for the 

process stability analysis, the middle distillate properties could be reliably estimated, particularly the diesel 

cetane number. It should be pointed out that the correct property prediction using the robust model is 

achieved either from spectra acquired under dynamic or steady-state conditions. These results reinforce the 

power and versatility of orthogonalization methods in the robust model generation.   

Although the robust models developed had remarkable performance, it should be noted that these models 

are not necessarily flawless, and their performance may deteriorate in applications where the impact of 

certain external parameters has not been included in the model calibration. Therefore, it is important to 

maintain these models periodically. This thesis showed that the integrated use of the EPO and DOP methods 

gives a practical manner for model updating. 

Finally, it is worth highlighting that the response times in the middle distillate characterization could be 

reduced from several weeks to a few minutes. For example, the measured values of the diesel cetane number 

used to validate the robust model performance were available after several weeks: time employed to 
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perform the total effluent distillation to recover the diesel cut and its respective characterization. On the 

contrary, the estimation of the diesel cetane number could be achieved in a couple of minutes using robust 

models. The results obtained raise the prospect of integrating the models into the process control system.     
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Conclusions 
The hydrocracking process is an ongoing research subject. Characterizing the products obtained from this 

process, particularly middle distillates, is essential in the research work. However, the analytical workflow 

traditionally employed is both time- and volume-consuming. While the standard laboratory analyses 

contribute to sub-optimal response times, the total effluent distillation gives the major time constraint to 

obtain the physical cuts. This property was chosen for the daily measurements of the density on the total 

effluent giving access to an interesting amount of reference values to validate the NIR approach. Hence, this 

thesis addressed the need previously outlined. Considering that the major constraint is the total effluent 

distillation, the main challenge was developing an alternative to characterize the middle distillates reliably 

and robustly, avoiding the distillation step. That is, to achieve the product characterization without relying 

on the physical sample. In addition, this alternative had to demonstrate the potential to be applied in real-

time process monitoring. 

The combined use of analytical techniques and chemometric methods addressed the described need. Being 

an analytical technique that overcomes the limitations of response time and sample volume required, NIR 

spectroscopy was the focus of the thesis research. The first research problem was to evaluate the feasibility 

of using the total effluent spectroscopic information to estimate middle distillate properties. The results 

obtained validated this alternative in characterizing the HCK process products.  

The middle distillates characterization was achieved by calibrating PLS models from the NIR spectra acquired 

on the HCK total effluent. The prediction errors were close to the reproducibility limits of the reference 

methods regularly used. The best-estimated property was the cetane number of diesel and kerosene. On the 

contrary, the diesel cold flow properties were the most challenging to estimate reliably. Although the overall 

prediction error of these properties was close (equal to or slightly higher) than the reproducibility of the 

reference methods, the homoscedasticity of the developed model was not optimal. This limited performance 

was reflected in the r²P, the bias, and the prediction of some samples outside the reproducibility limits. A 

more detailed analysis of the results revealed that this model performance was mainly due to two factors. 

First, the complexity of the diesel cold flow properties to be described from only the NIR spectra of the total 

effluent, and second, the influence that operating variables could have on them. 

Data fusion modelling solved the performance limitations of the NIR regression models, especially those for 

estimating the diesel cold flow properties. Three data blocks were used in this modelling approach: the (i) 

NIR and (ii) NMR spectra of the total effluent and (iii) the process variables. The appropriate data fusion 

approach improved the homoscedasticity, squared correlation coefficient, bias, prediction error, and the 

number of predicted samples within reproducibility limits. While it was validated that combining the relevant 
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information provided by each data block contributes to the models' performance improvement, the selection 

and use of the most descriptive variables provide further enhancement. By employing the appropriate 

variable selection methods in each block, optimal performance of the models was evidenced, achieving the 

cold flow properties estimation of all samples within the reproducibility limits. In addition, the variable 

selection has improved the properties estimation and facilitated the identification, analysis, and validation 

of the parameters that impact the studied properties. Consequently, a comprehensive analysis of the process 

could be accomplished.  

The developed models showed satisfactory performance in estimating each studied property. A case study 

was implemented to validate the models' performance when considering total effluent samples not included 

in the initial calibration and validation datasets. These samples were obtained from processing feedstocks 

and catalytic systems not previously evaluated in the models. The samples and their respective spectroscopic 

information were acquired later than the models' development. Despite the differences described, the 

results confirmed the aforementioned findings, i.e., the prediction of middle distillates from total effluent 

spectroscopic information is feasible, and the estimation of properties is improved by using data fusion and 

variable selection.    

Despite the results obtained in the final models' validation, their performance can be affected by external 

parameters associated with the spectral acquisition conditions. Therefore, the development of robust models 

was a fundamental part of the thesis research. Orthogonalization methods, particularly EPO and DOP, were 

used in the robust modelling. The models obtained provided reliable estimates of middle distillate properties 

under different acquisition conditions. The external parameters corrected for were sample temperature, 

changes in the spectral acquisition instrument, and external factors involved in the dynamic acquisition of 

the spectra. 

The robust models were developed to ensure reliable property estimation under different evaluation 

conditions, especially in the dynamic spectra acquisition. Furthermore, the model robustness enables its 

deployment in online monitoring applications. Thus, a second case study was implemented to validate the 

performance of the developed robust models in the HCK process monitoring. The results showed the 

robustness of the developed total effluent density model. Over the entire test monitoring, the satisfactory 

model performance was consistent, providing insights into the influence that different operational changes 

had on the process stability. Furthermore, the estimated value of the density presented deviations close to 

the reproducibility of the reference method, ensuring the prediction accuracy. Another important fact to 

highlight is the capability of the model to predict the density of the total effluent under steady-state and 

dynamic conditions with satisfactory reproducibility. The diesel cetane number prediction validated the 

importance of model robustness. This property was also estimated during the online process monitoring with 
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similar results to those discussed already. 

The models using NMR spectra and total effluent properties are limited for online process monitoring due to 

the unavailability of this information in real-time. In contrast, with satisfactory performance, the robust NIR 

model and the data fusion models between the NIR spectra, feedstock properties and operating conditions 

can be implemented in real-time estimations. 

The research conducted in this thesis offers a reliable and robust alternative for optimizing the product 

characterization involved in the research and development of the HCK process. This alternative is a further 

step in research about generating and applying strategies for optimizing product characterization. Though 

the response time optimization of this task via spectroscopic techniques is extensively known, this option is 

generally conducted using the information acquired on the sample being analyzed. This characterization 

strategy is still dependent on the time employed to obtain the physical samples to be analyzed, which in this 

thesis is the total effluent distillation for obtaining the middle distillates. Additionally, if it is necessary to 

characterize more than one product, the strategy outlined above would require the spectra of each analyzed 

product. Implementing the alternative investigated in this thesis achieves further time and cost optimization. 

When using the spectroscopic information of the total effluent to estimate the middle distillate properties, 

the time constraint given by the distillation is overcome. Furthermore, this alternative has the advantage of 

using a single spectrum to estimate the properties of several products.  

As previously discussed, compared to standard reference methods for product characterization, one 

advantage of combining chemometrics with analytical techniques is the improved response time. Another 

advantage is the possibility of extending the property estimation range. For example, for diesel cetane 

number, the applicability range of the standard norm is between 40 and 56, whereas with the developed 

chemometric models, this property can be reliably estimated in a range between 36 and 70. This latter 

advantage is conditioned by the database utilized in developing the models. 

Using a representative database in model calibration is important to have an accurate and reliable description 

over the entire range of model evaluation. For instance, for some properties, particularly the diesel cold 

diesel flow properties and kerosene flash point, it was observed that the dataset was more populated at the 

upper end of the model application range. This non-homogeneous data population makes it difficult to 

explain the property reliably since samples from these sparsely populated areas far from the data set center 

could behave as outliers, even if they are not. Therefore, it is advisable to use a complete and homogeneous 

populated database to obtain better-performing base models.    

The analysis and detection of anomalous data are also important during model calibration to ensure that the 

models properly describe the behavior of the property being studied. In addition, this analysis should be 
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performed during model deployment using new data to determine if a poor model estimate is due to a model 

constraint or if it is indeed due to the outlier nature of the data. The most common method used in this thesis 

was the combined analysis of the Qresidual and Hotelling T² tests.  

The results obtained through the thesis development led to conclude that the investigated alternative can 

be reliably applied in real-time applications, resulting in optimized process analysis, either by its online 

monitoring or by estimating the middle distillate properties in real-time.  

Online process stability monitoring ensures that the decision-making is timely. As a result, the researcher can 

optimize the plant's operating time. For instance, the pilot plant stability is usually established by analyzing 

the total effluent density variability. This value is measured every 24 hours. To reliably determine stability 

using these measured values, at least three density points are required, implying that the decision-making 

time could be around two or three days. Through online monitoring, the pilot unit stability could be 

determined earlier, reducing operating times. Another advantage resulting from online monitoring is the 

early identification of unplanned deviations, enabling timely and accurate process adjustments.  

Estimating middle distillate properties in real-time has two main advantages. The first is the optimized 

process analysis that the researcher can perform by readily knowing the effect of operating conditions on 

product properties. The average response time for knowing this information following the traditional 

workflow can be several weeks. With the work developed in this thesis, this time can be reduced to a few 

minutes. The second advantage is related to cost optimization. Having real-time knowledge of the process 

operation behavior and its impact on product quality, the researcher can decide on the actual analytics 

needed for the research. 

When implementing the models in real-time monitoring and analysis applications, it is important to be aware 

of operating schemes whose products tend to deposit solid residues at low temperature on the instrument 

used for spectrum acquisition, affecting the light transmittance. This phenomenon mostly occurs when 

obtaining high paraffinic content products during the winter. Therefore, it is recommended to ensure a 

minimum safe temperature in the instrumentation related to spectrum acquisition, either through proper 

insulation or a complementary heating system.        

Finally, it is important to emphasize the importance of periodic model maintenance to ensure optimal 

performance over time. Different alternatives can be used to perform this task. However, for online 

monitoring and real-time property estimation applications where the dynamics of the operation can rapidly 

deteriorate the performance of the models, the integration of the EPO and DOP methods becomes an 

effective and easy-to-implement alternative. 
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Perspectives 
The research findings validated the feasibility of optimizing the research and development of the HCK 

process. However, this work still has a long way to go. In consequence, from the conclusions drawn, it is 

recommended that the following perspectives be taken into account: 

 

- Integral model deployment in real-time process analysis and monitoring: the results obtained in 

the process monitoring case study demonstrated the benefits of the investigated alternative. 

However, its implementation and definitive use are not yet complete. The remaining work is related 

to developing computational tools and interfaces for simplified use of the models. This work involves 

disclosing and teaching each person involved in the research labor the model handling and the 

interpretation of results.    

- Model prediction integration in the process control system: the next step in optimizing the HCK 

process research is to employ the information obtained from the real-time estimations in the process 

control. As the thesis was developed, most of the principles used today in applying process analysis 

technology (PAT) and multivariate statistical process control (MSPC) were employed. Based on the 

research conducted, these methodologies could be implemented in the process operation.   

- Protocol development for model evaluation and maintenance: The robust models developed 

efficiently estimate properties under different analysis conditions. However, model suitability may 

deteriorate over time due to operational changes or external parameters not being considered. For 

this reason, it is imperative that the models' performance is validated regularly and that an optimal 

methodology for models' maintenance is in place. For the case of real-time process monitoring and 

control, the orthogonalization method DOP has shown a good performance. 

- Development of regression models for estimating other relevant properties of middle distillates 

and other products obtained from the HCK process: 7 middle distillates properties were studied in 

this thesis (4 for diesel and 3 for kerosene). However, there are other properties of these cuts that 

may be of interest in the HCK process research. Similarly, the properties of other products obtained, 

such as gasoline, unconverted oil (UCO), and dewaxed oil, may also be of interest. Thus, applying the 

methodology investigated in this thesis is recommended to analyze new streams or properties.  

- Extrapolate the work developed to other refining processes: The work of this thesis focused on the 

HCK process. Nevertheless, the results obtained offer the possibility of using the methodology 

investigated in this thesis in other processes or industries when the same goal of optimizing the 

analytical workflow is sought. 
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Abstract 

This study uses a novel analysis methodology based on the Hierarchical Clustering Analysis (HCA) to determine the ef- 

fectiveness of different preprocessing methods in minimizing undesired spectral variability in near infrared spectroscopy due 

to both the consecutive and repetitive acquisition of the spectrum and the sample temperature. Nine preprocessing methods 

and different combinations of them were evaluated in four case studies: reproducibility, repeatability, sample temperature, 

and combination of the before mentioned cases. Eighty-four spectra acquired on seven different hydrocarbon samples from 

catalytic conversion processes have been selected as the real case study to illustrate the potential of the mentioned 

methodology. The approach proposed allows a more detailed discriminatory analysis compared to the classical methods for 
comparing the between-class and the within-class variances, such as the Wilks’ lambda criterion, and hence constitutes a 

powerful tool to determine adequate spectral preprocessing strategies. This study also proves the potential of the dis- 

crimination analysis methodology as a general scheme to identify atypical behaviors either in the spectrum acquisition or in the 

measured samples. 
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Introduction 

In the past few decades, the use of near infrared (NIR) 

spectroscopy in the development of non-destructive and 

rapid measurement applications has been significantly 

increasing in several industries, such as food,1,2 

pharmaceuticals,3,4 and petroleum.5,6 Due to the recent 

growth boom in using NIR spectroscopy for real-time 

acquisition data,7,8 the need to determine, analyze, and 

minimize spectral variability that is not associated with 

the physicochemical characteristics of the sample has 

notably arisen. This need becomes particularly evident 

when spectral variability is mainly generated by factors 

associated with the spectrum acquisition, such as 

spectrometer system, operator, measurement condi- 

analysis and interpretation of spectroscopic informa- 

tion, misleading conclusions and flawed decision 

making.9,10 

Among the classical performance parameters needed to 

validate a measurement methodology, precision is the most 

affected by the aforementioned factors. Precision is defined 

as the closeness of agreement between measured values 

obtained by replicate measurements on the same or similar 

samples under conditions of repeatability or reproducibil- 

ity.11 Repeatability conditions include the same measure- 

ment procedure, the same operator, the same instrument and 

measurement conditions, the same location, and a short interval 

between repetitions.12 On the other hand, reproducibility 

implies successive measurements of the same sample under 

tions, and environmental factors such as temperature    

and humidity, rather than the physicochemical charac- 

teristics of the sample. An example of this is the possible 

generation of spectral variability in the consecutive and 

repetitive acquisition of NIR spectra on a sample whose 

physicochemical characteristics remain constant over 

the spectrum acquisition. A lack of minimization of this 

type of spectral variability can result in inaccurate 
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changing measurement conditions,13 such as measurement 

principle, measurement method, operator, measurement in- 

strument, reference standard, location, conditions of use, and 

time. spectral acquisition is very sensitive to any change in 

measurement. Despite ensuring that both the spectral ac- 

quisition conditions and the physicochemical characteristics 

of the sample do not change in a repetitive NIR spectral 

acquisition, the resulting spectra may have differences that 

can lead to random errors and deviations, which must be 

corrected or minimized. 

Due to its high impact on NIR spectral acquisition accuracy, 

temperature is the most studied influencing parameter.14,15 

Hansen et al.16 showed that molecular bond vibration inten- 

sity depends on temperature, leading to changes in the spectrum 

according to temperature variation. Furthermore, some physi- 

cochemical properties of samples, such as viscosity and density, 

are temperature-dependent, and these changes in the sample due 

to temperature are not permanent and do not reflect the intrinsic 

nature of the sample.17–19 Nevertheless, these changes can 

significantly affect spectral acquisition. As with the spectral 

variability generated by repetitive spectrum acquisition of a 

specific sample, the variability caused by sample temperature 

must be minimized to ensure the reliable description of the 

sample physicochemical behavior from the spectroscopic in- 

formation extracted. 

Data preprocessing is a common step for reducing un- 

desired effects and for minimizing spectral variability. There 

are different preprocessing algorithms for the correction of 

the undesired spectral variation; these can be divided into two 

main categories: scatter-correction methods, employed to 

correct the additive and multiplicative effects, and spectral 

derivatives, used to minimize the sources of unwanted and 

non-informative spectral variations.20 Among the most 

common preprocessing methods used in NIR spectroscopy, 

Savitsky–Golay derivative (Sav–Gol),21 Extended Multiple 

Signal Correction (EMSC),22 Standard Normal Variate 

(SNV),23 and recently, Variable Sorting for Normalization 

(VSN),24 can be highlighted. However, the effectiveness of 

preprocessing methods is highly dependent on the type of 

spectroscopic information analyzed and the factors that are 

causing its variability.9 

Evaluation of the preprocessing method effective- 
ness is generally based on the performance of prediction 

models.25–27 Among the contributions reported in the 

literature, the work of Gerretzen et al.,28 which presents a 

novel approach for the selection of the most appropriate 

preprocessing methods based on the design of experiments, 

is worth mentioning. Similarly, the studies of Devos et al.29 

and Allegrini et al.30 which, by means of a parallel 

workflow approach of preprocessing and variable selection, 

present an interesting alternative to the optimization of the 

preprocessing method selection. Nonetheless, the applica- 

tion of these approaches may be limited when the variability 

of the physicochemical characteristics of the samples is 

negligible, but significant spectral variability exists as a 

result of the repetitive spectrum acquisition and the sample 

temperature. In that case, a different analysis approach may 

yield more detailed results, helping to improve under- 

standing of the impact of these parameters. Another less 

common approach to assessing preprocessing methods 

effectiveness is analyzing the spectral variance.31 Different 

statistical tools are available to determine both within-class 

variance (multiple measurements of the same sample) and 

between-class variance (measurements of different sam- 

ples). One of the most common criteria used to evaluate 

between-class and within-class variances is the Wilks’ 
lambda.32 

In this study, a novel and general strategy based on 

Hierarchical Clustering Analysis (HCA)33 was proposed for 

evaluating the effectiveness of preprocessing methods in 

reducing the spectral variability generated by parameters 

related to the continuous and dynamic spectrum acquisition. 

To this aim, the effectiveness of nine preprocessing methods 

and different combinations of them in minimizing unde- 

sired spectral variability due to repeatability, reproduc- 

ibility, sample temperature, and combination of these 

parameters was evaluated. Eighty-four spectra acquired on 

seven different hydrocarbon samples from catalytic con- 

version processes have been selected as the real case study 

to illustrate the potential of the mentioned methodology. 

To obtain reliable conclusions and validate the results 

obtained by the analysis methodology proposed, the Wilks’ 
lambda criterion32 was used as a reference method. 

 
Material and methods 

Samples 

Twenty-four vacuum gasoil (VGO) samples were processed 

in the catalytic conversion pilot plant reactors at IFPEN 

(Solaize, France). From these reactors, ninety-three dif- 

ferent hydrocarbon samples, known as total effluent, were 

obtained (see references34,35 for a detailed description of 

catalytic conversion processes). From these 93 samples, 7 

samples were selected, ensuring their representativeness 

and physicochemical diversity. Table 1 summarizes four 

relevant physicochemical properties of the selected sam- 

ples: the density36, the simulated initial boiling point and 

the distillation temperature range to obtain both 5% and 

95% of sample distillate (Simulated Distillation IBP, T5 and 

T95).37 It can be observed that physicochemical variability 

between the selected samples is guaranteed. 

 
Spectral acquisition 

The spectra were recorded with a Fourier-transform 
nearinfrared (FT-NIR) spectrometer (Matrix-F, Bruker 
Optik GmbH, Ettlingen, Germany) within the range of 

9090–4600 cm—1 and a resolution of 4 cm—1. A total of 32 

scans were used to obtain the final spectrum for each 

measurement. For acquiring absorbance spectra, the 

spectrometer system was equipped with an immersion 

transflectance probe with an optical path fixed at 2 mm 

withstanding temperatures ranging from 40°C to 200°C. 

The software used with the spectrometer was OVP 

(OPUS Validation Program—Bruker Optik GmbH, Et- 

tlingen, Germany) which automatically performs a series of 

analyses of the instrument’s performance, evaluates them, 

and ensures that it is operating within specifications. In 

addition, to ensure the spectrometer operation within 
specifications and that the spectral variability generated was 

due to the parameters evaluated and not to the instrument’s 
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Table 1. Samples physicochemical properties. SimDis IBP, T5 & T95 description: Simulated distillation to determine the temperatures to 
start the sample evaporation and to recover both 5% and 95% of sample distillate. 

Sample physicochemical properties 
 

 Distillation temperatures  

Sample ID Density g/mL IBP (°C) SimDis T5 (°C) SimDis T95 (°C) 

Sample 1 0.8049 84.7 121.6 425.8 

Sample 2 0.8186 79.8 111.5 474.5 

Sample 3 0.8219 80.3 117.8 516.0 

Sample 4 0.8411 83.8 136.1 503.5 

Sample 5 0.8470 83.7 129.1 512.6 

Sample 6 0.8962 148.9 227.6 504.6 

Sample 7 0.9181 159.8 231.6 502.9 

 
 

• Case 2. Spectral variability due to repeatability: Each of 
the seven samples was analyzed three times on the 
same day at 60°C. All samples were analyzed in less 
than 8 h. Twenty-one spectra were obtained. 

• Case 3. Spectral variability due to the sample tem- 
perature: Each of the seven samples was analyzed at 
five different temperatures, ranging from 60°C to 80°C 

with a temperature increment of 5°C. The samples 

were heated in closed flasks at the desired temperature 

for 1 h. Evaporation losses of volatiles were null or 

negligible (see IBP in Table 1). Twenty-eight spectra 

were obtained. 

• Case 4. Spectral variability due to the combination of 
the aforementioned cases: In this  case,  all spectra 

acquired in the above-described cases were used. 

 
For each case, a matrix was generated. Each analyzed 

sample was defined as a class; thus, seven classes were 

defined in all matrices. 

 

 

 

 

 

 
 

Figure 1. Methodology flow diagram. 

 

inadequate functioning, the spectrometer performance was 

validated once a day using cyclohexane as an external ref- 

erence sample. Before NIR analysis, the samples were heated 

in closed flasks at 60°C for 1 h in a water bath and shaken 

manually to ensure their liquid state and homogeneity. The 

initial boiling point (IBP) reported in Table 1 guarantees no 

loss of volatiles. 

Ensuring the integrity and stability of both the sample and 

the NIR spectrum acquisition conditions, spectral variability 

due to repeatability, reproducibility, and sample temperature 

was generated. A short description of the spectrum acqui- 

sition for the cases evaluated in this study is presented below. 

 

• Case 1. Spectral variability due to reproducibility: Each of 
the seven samples was analyzed once per day for five 
consecutive days at 60°C. Thirty-five spectra were obtained. 

Analysis methodology 

The main steps of the data analysis workflow proposed in 

this study are schematized in Figure 1. A brief explanation 

of the procedure is given as follows. 

The first step consisted in preprocessing each of the 

generated matrices. The nine most common preprocessing 

methods used in NIR data were divided into two categories: 

filtering and normalization methods. The preprocessing 

methods from each category were analyzed individually. If 

the total reduction or compensation of the studied spectral 

variability was not achieved, the evaluated preprocessing 

method was complemented with the methods belonging to 

the opposite category. This allowed the evaluation of all 

possible combinations and order of use of the preprocessing 

methods. The methods evaluated are described in Table 2. It 

should be emphasized that each preprocessing scenario 

evaluated includes the data centering by columns. 

Afterwards, a preliminary inspection and dimension 

reduction of corresponding dataset were performed by 

using principal component analysis (PCA).41 The number 

of chosen principal components (PCs) captured at least 99 

% of the total variance in the dataset. The Q residual and 

Hotelling’s T2 tests were performed to determine the 

possible presence of anomalous data.42 
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Table 2. Preprocessing methods description. 
 

# Category Name Acronym Parameters 

1 Filtering Automatic Weighted Least 
Squares Baseline20 

AWLS-B  

2 Norris-Williams Derivation38 NW-D 15-Point window, gap size = 7, 
   First-order derivation 

3 Savitsky–Golay Derivative21 SG-D 15-Point window, polynomial order = 2 first-order derivative 

4 Detrend23 Dtd Polynomial order = 1 

5 Extended Multiplicative Scatter/ EMSC Reference spectrum (basis to remove the scatter) = mean of each matrix 
 Signal Correction22  generated, polynomial order = 2, whole spectral range 

6 Normalization Multiplicative Signal Correction39 MSC Reference data = mean of data, whole spectral range 

7 Standard Normal Variate23 SNV  

8 Probabilistic Quotient PQN  

 Normalization40   

9 Variable Sorting for VSN Automatic calculation 

 Normalization24   

 
The chosen PCs scores were then used to perform the 

hierarchical clustering analysis (HCA) employing Ward’s al- 

gorithm and Mahalanobis distance. The HCA aims to group 
clusters to form a new one to either minimize a statistical 
distance between classes or maximize a measure of similarity 

between them.43,44 The analysis starts with as many groups as 
individuals contained in the dataset. From these initial groups, 
clusters are formed in an ascending manner until all cases 

treated are included in at least one of them. Ward’s algorithm 

seeks to minimize each group variance by calculating all 

samples mean in each cluster. The algorithm then calculates 

each case distance and the cluster mean, adding up the distances 

between all cases. Finally, the clusters whose sum of distances 

is minimal are grouped. This procedure creates homogeneous 

groups of a similar amount of individuals. For achieving the 

grouping of classes, it is necessary to define a comparison 

parameter to calculate the variance of each class concerning the 

others. The most common is the Mahalanobis distance.39 

A common manner of displaying the cluster analysis 
results is constructing a tree diagram known as a dendro- 

gram. The resulting diagram shows the different groups’ 

clustering order and the association measure’s value, also 
known as the fusion level. The fusion level was defined for 

obtaining seven clusters corresponding to the seven classes. 

Finally, the number of correctly grouped sample measure- 

ments in each cluster was determined, and the percentage of 

clustering was calculated as the following: Number of cor- 

rectly grouped samples/Total number of samples * 100. 

These steps were repeated for each preprocessing 

method scenario, and the results obtained were compared 

using the percentage of samples correctly grouped as a 

figure of merit to determine the effectiveness of the pre- 

processing methods evaluated. 

All the analyses were conducted with the PLS_Toolbox 

version 8.8 (Eigenvector Research Inc., Wenatchee, WA, USA) 

for MATLAB version R2019b (MathWorks, Natick, MA, USA). 

 

Results comparison 

To validate the results obtained with the methodology 

proposed in this study, the Wilks’ lambda was used as a 

comparative criterion. This criterion evaluates how well the 
data set classes are separated by calculating a ratio 

 

 

Figure 2. 35 raw spectra used in Case 1 evaluation over the entire 
spectral range. Legend: Color → samples analyzed. Black square 

→ 35 raw spectra used in Case 1 evaluation magnified over the 
7463 cm–1 - 6993 cm–1 spectral range. 

 
 

involving between-class and within-class variances. Sev- 

eral versions of the Wilks’ lambda exist. In this article, the 

ratio of the between-class variance over the total variance 
was used. This ratio varies between 0 and 1, where 0 means 
that all the classes are superimposed, and 1 means that all 

the classes are perfectly separated. 

 
Results and discussion 

This section shows the results obtained from the application 

of the proposed methodology. A comprehensive description 

of its application for the case study of reproducibility (Case 

1) is presented. However, only the main results from the 

case studies of repeatability, temperature effect, and the 

combination of all cases are showed. Finally, the validation 

and the advantages of the proposed methodology are 

offered. 

 

Case 1—Reproducibility 

For the reproducibility case, 35 spectra were used (5 daily 

spectra for each sample, Figure 2 shows the raw spectra 

over the entire spectral range used. At first glance, it can be 
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Figure 3. (a) Score plot of PC1 and PC2 for Case 1 with centered spectra, (b) score plot of PC3 and PC4 for Case 1 with centered spectra, 
and (c) reduced Qresidual and Hotelling’s T2 for Case 1 using 4 PCs with centered spectra. Legend: Shapes → acquisition day. Color → 
samples analyzed (classes). 

 
observed the variability of spectra due to the physico- 

chemical nature of the sample, showing, with some ex- 

ceptions, a trend consistent with the properties reported in 

Table 1; that is, the spectra acquired on the sample with the 

lowest density (sample 1—dark blue) is at the bottom of the 

plot, and the spectra acquired on the sample with the highest 

density (sample 7—red) is at the top. This observation 

becomes more evident in the black square of Figure 2 where 

the spectra are magnified over a defined range 7463 cm–1- 

6993 cm–1. In this same figure, it is possible to visualize that 

the reproducibility measurements made on a single sample 

generate a variability that has a similar behavior to the 

variability caused by multiplicative effects, which can 

impact the final results obtained. 

In this first case, the proposed methodology application 

shows the impact of the variability in NIR spectra acqui- 

sition caused by reproducibility measurements as well as 

the effectiveness of preprocessing methods in minimizing 

this spectral variability. 

First, an exploratory analysis using PCA was performed 

to visualize the similarity/dissimilarity among the 5 spectra 

(1 per day) acquired for each of the 7 hydrocarbon samples 

analyzed. The data set (35 spectra) was merely centered. 

The first two components (PC1 and PC2) explained 96.7% 

of the data set total variance. From the score plot of the first 

two components (see Figure 3(a)), it can be seen that all 5 

measurements of samples 1 to 6 are grouped in a consistent 

pattern regarding to the variance within classes. However, 

there are measurements of different samples that intersect 

with each other (between-class variance) (see Figure 3(a) 

and (b)), and hence their clustering can be influenced. 

Additionally, from these score plots, it can also be observed 

that the measurement of sample 7 on the fifth day is rel- 

atively distant from the other measurements of this sample. 

This could mean the presence of possible outliers in the 

dataset. Figure 3(c) shows the Hotelling’s T2 and Q residual 

scores for the dataset. It can be observed that the same 
measurement identified previously (Sample 7, fifth acqui- 
sition day) was found to be above the threshold of both 

tests. Therefore, this measurement can be confirmed as an 

outlier. 

The scores of the first 4 principal components yielded by 

the PCA analysis (99% explained variance) were used to 

perform the HCA analysis. Figure 4 shows the dendrogram 

obtained from the HCA, where a fusion level (black line) for 

obtaining seven clusters corresponding to the seven hy- 

drocarbon samples is defined. This Figure also shows the 

correct grouping percentage achieved for each class. From 

the table embedded in the Figure, it can be observed that no 

sample achieves an accurate grouping of all its measure- 

ments. Samples 2 and 7 (orange and red classes) are the 

classes with the highest correct grouping percentage (4 out 

of 5 for 80%), while classes 3 and 4 (yellow and purple 

classes) do not have any correctly grouped measurements. 
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Figure 4. Dendrogram for Case 1 (all measurements) with centered spectra. Legend: Color samples measured (classes). Table: Correct 
grouping percentage for each class. 

 
 

Figure 5. (a) Score plot of PC1 and PC2 for Case 1 with EMSC preprocessing and (b) reduced Qresidual and Hotelling’s T2 for Case 1 using 
2 PCs with EMSC preprocessing. Legend: Shapes → day of measurement. Color → samples measured (classes). 

 
 

Furthermore, measurement 35 that belongs to class 7 (red 

class) and identified in the previous steps as a potential 

outlier is the only measurement grouped in class 4 (purple 

class). Based on these results, it can be considered that this 

measurement has no similarity with any of the other 34 

measurements, which confirms its outlier status. 

In order to compensate the spectral variability caused by 

the lack of reproducibility and hence achieve a better 

clustering of all the classes, the use of appropriate pre- 

processing methods is needed. Nine preprocessing methods 

and different combinations of them were evaluated. Figure 

A1, which can be found in the article’s supplementary 

section, summarizes the correct grouping percentage results 

for each preprocessing scenario evaluated in the 4 cases. 

From this Figure, it can be seen that for Case 1 (blue 

diamond), none of the evaluated scenarios reaches a 

correct grouping percentage of 100%, implying that none 

of the scenarios achieved the total reduction of the spectral 

variability generated by the reproducibility measurements. 

With a correct grouping of 85%, the EMSC was the most 

effective preprocessing method scenario. Figure 5 shows 

for this scenario the score plot of the first two principal 
components of the PCA analysis and the Q residual and 

Hotelling’s T2 results achieved using 2 PCs. It can be seen 

that all measurements are consistently grouped and are 
within the threshold of the two tests, except for mea- 

surement 35 (potential outlier identified). From the 

HCA dendrogram and the table of its corresponding 

correct grouping percentage (see Figure 6), it could be 

observed that this measurement is still incorrectly 

grouped as the unique measurement in class 2 (orange 

class). From these results, it can be assumed that all 

other measurements could be correctly grouped without 

this misgrouped measurement. Therefore, measurement 

35 was removed from the data set, and the preprocessing 

method scenarios were re-evaluated to confirm this 

assumption. 

Figure A1 (red diamond) shows that by removing 

measurement 35 from the data set, correct grouping of all 

measurements is possible in 6 scenarios (EMSC, AWLS- 

B+MSC, AWLS-B+SNV, AWLS-B+VSN, SG-D+SNV, and 

MSC+AWLS-B). However, only one scenario uses a single 
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Figure 6. Dendrogram for Case 1 (all measures) with EMSC preprocessing. Legend: Color samples measured (classes). Table: Correct 
grouping percentage for each class. 

 
 

 

Figure 7. 21 raw spectra used in Case 2 evaluation over the entire 
spectral range. Legend: Color → samples analyzed. Black square → 
21 raw spectra used in Case 2 evaluation magnified over the 

7463 cm–1 - 6993 cm–1 spectral range. 

 
method, which is the EMSC. In order to prevent loss of 

relevant information, the use of a minimum number of 

methods in the data preprocessing is generally recom- 

mended. Therefore, in this case, EMSC could be selected as 

the most efficient preprocessing method scenario to reduce 

the spectral variability due to the lack of reproducibility (see 

HCA dendrogram in Figure A2 in the supplementary 

section). 

Figure A1 also shows that both the order of use and the 

combination of preprocessing methods can influence the 

final result. An example of this statement can be seen by 

comparing the scenarios from Case 1 without the mea- 

surement 35, where the NW-D method was combined with 

the MSC, PQN, SNV, and VSN methods. When the NW-D 

method (filtering category) is used before applying the other 

preprocessing methods (normalization category), the 

correct clustering is lower (about 30%) compared to when 

using the normalization preprocessing methods before the 

NW-D method. Comparing the same scenarios indicates 

that using complementary preprocessing methods does not 

always yield better correct clustering results than using a 

single method (NW-D+PQN → 38% Vs NW-D → 47%). 

This is an important consideration when using more than 
one preprocessing method. 

The results obtained in this case show the proposed 

discrimination methodology’s ability to evaluate the ef- 

fectiveness of preprocessing methods in minimizing 
spectral variability in NIR measurements due to the lack of 

reproducibility. Moreover, it is worth mentioning that these 

results also illustrate the versatility of the proposed meth- 

odology for detecting potential anomalous data (outliers) 

caused by possible errors in spectrum acquisition. 

As mentioned before, no detailed description for cases 2, 
3, and 4 is presented; only their main results are shown. The 

detailed results of these cases are shown in the article’s 

supplementary section. 

 

Case 2—Repeatability 

Figure 7 shows the raw spectra used in the analysis of the 

variability caused by repeatability measurements. Analo- 

gous to case 1, the spectral variability generated by the 

physicochemical nature of the sample can be observed, 

presenting the same relationship (trend) with the properties 

reported in Table 1. However, the black square in Figure 7 

shows that the variability caused by repeatability measure- 

ments seems to present a similar behavior to the variability 

generated by the combination of two different effects (ad- 

ditive and multiplicative), making the spectral differences of 

a single sample more evident in comparison with case 1. 

In this second case, a total of 21 spectra (7 samples 
performed in triplicate) were analyzed to demonstrate the 

proposed methodology’s ability to evaluate the effective- 

ness of preprocessing methods in minimizing unwanted 
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Figure 8. (a) 35 raw spectra used in Case 3 evaluation over the 
entire spectral range. Legend: Color → samples analyzed. Black 

square → 35 raw spectra used in Case 3 evaluation magnified over 

the 7463 cm–1 - 6993 cm–1 spectral range. 

 
spectral variability due to the lack of repeatability. The 

correct grouping percentage achieved from all the pre- 

processing methods scenarios is shown in Figure A1 (or- 

ange square). 

In the scenario that is assumed that the variability gen- 

erated in the repeatability measurements do not have a 

significant impact on the grouping of sample measurements, 

that is, that no additional preprocessing methods are needed 

besides the data centering, only 48% of the measurements 

were correctly grouped (see Figure A1 (orange square) mean 

center scenario). Therefore, it can be preliminarily concluded 

that preprocessing methods to reduce spectral variations due 

to repeatability are needed. From the PCA analysis (data not 

shown) of this scenario (centered data), it could be deter- 

mined that the first repetition of each sample differs sig- 

nificantly from its second and third repetitions. However, all 

of them were within the Q residual and Hotelling’s T2 test 

thresholds (data not shown). Therefore, they cannot be 

considered as anomalous data (outliers). 

From all the evaluated scenarios, fourteen achieved a 

correct grouping of 100% (AWLS-B+MSC, AWLS-B+SNV, 

Dtd+MSC, Dtd+PQN, Dtd+SNV, EMSC+PQN, 

EMSC+SNV, MSC+AWLS-B, MSC+Dtd, PQN+EMSC, 

SNV+AWLS-B, SNV+Dtd, SNV+EMSC, and VSN). 

Among these scenarios, only one uses a single method, which 

is VSN (see HCA dendrogram in Figure A4). Therefore, VSN 

could be selected as the most effective preprocessing method 

to minimize the spectral variability due to the lack of re- 

peatability. As in Case 1, Figure A1 shows that the order of use 

of the preprocessing methods affects the correct grouping 

result. Comparing the same scenarios as in Case 1, it can be 

reaffirmed that the results are more promising when the fil- 

tering methods are applied after the normalization methods. 

From these results, it can be concluded that spectral 

variability due to repeatability has a lesser impact than those 

generated by reproducibility. Nevertheless, the proposed 

methodology demonstrated that the two cases’ variability 

could be entirely compensated using an appropriate data 

preprocessing strategy. 

Case 3—Temperature effect 

As previously mentioned in the introduction of the man- 

uscript, sample temperature is one of the factors having 

significant impact on the NIR spectra acquisition. Figure 8 

shows that the spectral variability generated by the sample 

temperature presents a behavior similar to the multipli- 

cative effect. However due to the absorbance shift caused 

by the temperature increase, which prevents having a 

direct relationship between this parameter and the height 

of the acquired spectra, the spectral difference presents a 

non-linear growth.45 This can be corroborated in the black 

square of Figure 8, where it is observed that with a 

temperature variation greater than 15°C, the spectral 

variability is more evident than when the delta in tem- 

perature is less than 15°C. This non-linear impact of the 

sample temperature on the spectrum acquisition could 

limit the performance of the different preprocessing 

methods evaluated. 

In this third case, spectra acquired at 5 different sample 

temperatures (35 spectra) were analyzed to find the most 

effective preprocessing scenario to reduce undesired spectral 

variability due to  the sample temperature.  The correct 

grouping percentage achieved from all the evaluated pre- 

processing strategies is shown in Figure A1 (green triangle). 

From Figure A1, it can be seen that if no other pre- 

processing method than data centering is applied, the per- 

centage of correctly grouped measurements is 49%. This result 

reflects, as expected, the need to apply preprocessing methods 

to reduce variability caused by sample temperature. The 

clustering results shown in Figure A1 reveal that no evaluated 

preprocessing scenario could entirely compensate the spectral 

variability due to temperature variations, meaning that the 

entire accurate measurement grouping was not achieved in any 

scenario. The best performing scenario is the SG-D+SNV with 

an accurate grouping percentage of 80%. Although Figure A1 

shows that the best performance scenario does not achieve the 

correct grouping of all 35 measurements, the results shown in 

Figure A5 (scenario SG-D+SNV) show that samples 1, 2, 3, 5, 

and 6 have an accurate grouping in all their measurements (5 

out of 5 = 100%). The class affecting the overall measurement 

clustering is sample 4 (purple), which does not have any 

measurements grouped correctly. As in Case 1, it could be 

assumed that the whole misgrouping of sample 4 is due to the 

presence of some atypical data. However, no measurement 

was found above the Q residual and Hotelling’s T2 tests 

thresholds in any scenario (data not shown). 

The results analyzed in this case show that sample 

temperature is a very influential parameter on the spectrum 

acquisition. Therefore, it is recommended to use a strategy 

that evaluates this variable’s impact more thoroughly for a 

more efficient solution.9,45 

 
Case 4—cases 1, 2, and 3 combined 

The parameters causing unwanted spectral variability 

evaluated in the 3 cases previously described are likely to 

occur simultaneously, mainly when online NIR measure- 

ment is used for real-time data analysis. For this reason, a 

fourth case was evaluated where the spectral variability 

generated by these three cases was combined. 
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Figure 9. (a) Score plot of PC1 and PC2 for Case 4 with VSN+EMSC preprocessing and (b) reduced Qresidual and Hotelling’s T2 for Case 
4 using 3 PCs with VSN+EMSC preprocessing. Legend: Color → samples measured (classes). 

 

The dataset used in this case comprises 84 spectra in 
total. As in the 3 cases already studied, the Q residual and 

Hotelling’s T2 analyses were applied to the centered dataset 

to determine the possible presence of atypical data (data not 
shown). The measurement identified as an outlier in Case 1 

(Sample 7, fifth acquisition day) once again exceeds the 

thresholds of the two tests. Thus, this measurement was 

removed, and the methodology proposed in this study was 

applied to the other 83 measurements. 

In this case, 5 scenarios (EMSC, EMSC+PQN, 

PQN+EMSC, SNV+EMSC, and VSN+EMSC) had the best 

performance, where 80 out of 83 measurements were correctly 

grouped, that is, 96% of correct grouping. All 5 scenarios 

identified involve the use of EMSC, which, when evaluated 

individually, yields the same percentage of correct grouping 

(96%). It could be preliminarily inferred that for this case, the 

normalization methods do not give any additional improve- 

ment, and thus EMSC would be selected as the most effective 

preprocessing method scheme. Nevertheless, the use of the 

proposed methodology allows a more detailed analysis to 

determine at what level each type of variability is minimized in 

each of the 5 scenarios mentioned. In this way, the most 

effective preprocessing scheme’s determination can be done 

more conveniently according to the researcher’s objective. 

Figure 9 shows the PCA score plot and the Q residual and 

Hotelling’s T2 results for the VSN+EMSC preprocessing 

method scenario. The three measurements that were not cor- 
rectly grouped correspond to the measurement at 80°C of 

samples 3 (highest value of residual Q test) and 4, and the 

measurement at 75°C of sample 4. From Figure A1, it is also 

concluded that the EMSC and VSN methods have a better 

performance when grouping the samples measured at different 

temperatures in Case 4 (circle shape—purple color, combined 

cases) than in Case 3 (triangle shape—green color, sample 
temperature case). 

Although the conclusion made previously that no 

method can entirely compensate the measurement vari- 

ability caused by sample temperature is reaffirmed, the 

reduction of this variability was quite considerable in delta 

temperature lower than 20°C. 

To sum up the results obtained by using the analysis 

methodology proposed, it could be concluded that for cases 

1 and 2 (reproducibility and repeatability), the variability 

affecting the measurement clustering was fully compen- 

sated using a single preprocessing method. On the other 

hand, cases 3 and 4 (sample temperature and combination 

of cases) needed the combination of two methods, and still, 

the correct grouping of all the measurements was not 

achieved. The sample temperature has a high impact on the 

spectrum acquisition. Therefore, it is recommended to use a 

methodology that evaluates this variable more thoroughly 

for a more efficient solution.9,45 

 
Results comparison 

In order to validate the consistency and reliability of the 
proposed approach, the analysis methodology results were 

compared with those obtained by Wilks’ lambda criterion. 

Table 3 summarizes each case’s most relevant results 

achieved by both the proposed approach and Wilks’ 
Lambda. 

The results shown in Table 3 validate the approach 

proposed in this study. It can be seen that the results between 

the two methodologies are comparable, except for Case 1, 

including all measurements, when the data have been only 

mean-centered. In this case, Wilks’ Lambda value is close to 

1, while the value obtained by the proposed methodology is 

0.46. The difference may be attributable to the presence of 
the outlier identified in Case 1 and how each approach 

handles this type of data. While the Wilks’ lambda criterion 

assumes that there is no presence of outliers in the analyzed 

dataset, the methodology used in this study provides a 
preliminary analysis of the dataset for the identification and 
removal of possible anomalous data. This premise can be 

supported by observing that the two approaches’ results are 

comparable when the identified outlier is removed from the 

dataset (see Table 3—Case 1 (Measurement removed)). 

Moreover, the proposed methodology provides a more 

detailed discrimination analysis in comparison with Wilks’ 
lambda criterion. As a way of example, both the proposed 

approach and the Wilks’ lambda results obtained from the 

individual evaluation of the nine preprocessing methods in 

Case 1 were compared. From Table 4, it can be seen that 

Wilks’ lambda criterion presents no significant differences in 

4 preprocessing methods (SG-D, EMSC, MSC, and SNV), 
which could lead to the conclusion that the 4 methods have 

equal effectiveness in minimizing the unwanted spectral 

variability. On the contrary, the proposed methodology 

identifies that out of these 4 methods, two are equally ef- 

fective in minimizing the unwanted spectral variability (MSC 



 

 

10 Journal of Near Infrared Spectroscopy 0(0) 

 

 

  

 
 

 

 

Table 3. % Results comparison using Wilk’s Lambda algorithm. 

Case Preprocessing method Methodology (% Grouped/100) Wilk’s Lambda 

Case 1 (All measurements) Mean center 0.46 0.95 
 EMSC 0.85 0.96 

Case 1 (measurement 35 removed) Mean center 0.53 0.68 
 EMSC 1.00 0.99 

Case 2 Mean center 0.48 0.69 
 VSN 1.00 0.99 

Case 3 Mean center 0.49 0.55 
 Sav–Gol + SNV 0.82 0.95 

Case 4 Mean center 0.51 0.66 

 VSN+EMSC 0.96 0.99 

 
 

Table 4. Case 1 detailed results comparison.  

Preprocessing method Explored methodology (% Grouped/100) Wilk’s Lambda 

Mean center 0.53 0.68 

AWLS-B 0.65 0.88 

NW-D 0.56 0.73 

SG-D 0.65 0.98 

Dtd 0.65 0.90 

EMSC 1.00 0.99 

MSC 0.82 0.99 

PQN 0.68 0.87 

SNV 0.82 0.99 

VSN 0.94 0.85 

 

 
and SNV), the least effective is the SG-D, and the most 

effective preprocessing method, which achieves the maximum 

compensation of the unwanted spectral variability, is the 

EMSC. Therefore, the methodology used in this work could 

help to select the preprocessing method in a more precise and 

reliable way. Finally, the proposed methodology enables 

identification of measurements and samples that have been 

properly or poorly discriminated, information that the Wilks’ 
lambda does not provide as it is a global measurement. 

 
Conclusions 

The results obtained in this study show the capacity of the 

analysis methodology used to assess the effectiveness of 

preprocessing methods in reducing the undesired spectral 

variability of nearinfrared spectroscopy measurements in a 

more thoughtfully and detailed manner than other ap- 

proaches based on the dataset variance analysis such as the 

Wilks’ lambda criterion. 
In this study, an original strategy not previously re- 

ported in the literature was proposed to evaluate and 

determine the effectiveness of different preprocessing 

methods in minimizing the unwanted spectral variability 

due to parameters related to the continuous and repetitive 

NIR spectra acquisition such as repeatability, reproduc- 

ibility, sample temperature, and the combination of these 

three parameters. 

It is essential to stress the twofold benefit of using the 

proposed methodology. On the one hand, the detailed 

discrimination analysis provides a significant aid in de- 

termining the most effective data preprocessing scheme. On 

 
the other hand, the methodology provides a preliminary 

data analysis step for identifying and removing the potential 

anomalous data from the dataset, thus improving the reli- 

ability of the final results. 

The results obtained using the proposed analysis meth- 

odology suggest that the variability caused by repeatability 

and reproducibility can be fully corrected when using the 

adequate preprocessing scheme; however, no preprocessing 

scenario could entirely compensate the unwanted spectral 

variability caused by the sample temperature. Similarly, the 

detailed discriminant analysis employed in this study showed 

that the EMSC preprocessing method presents interesting 

and promising results in all cases. 

The preprocessing scheme’s ultimate selection should be 

conducted in a careful manner considering the researcher’s 
objective. The proposed methodology offers an analysis 

strategy that could help determine the most effective pre- 

processing scheme more reliably. 

The conclusions reached in this work promote further 

optimization and automation of the proposed methodology 

to improve its implementation in large datasets. 

The strategy proposed was shown to work for a case 

study including seven different hydrocarbon samples but 

can be generally applicable in any study involving spec- 

troscopic information analysis 
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Appendix 
 

 

Figure A1. Comparative summary of the effectiveness of the preprocessing scenarios evaluated in the 4 case studies. Legend: Shapes and 
color → Case studies. Description: Circumferential lines → Percentage of correct grouping (0% Center—100% outer line). Radial lines → 
Evaluated preprocessing scenario, from left to right the order of use of the methods. 
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Figure A2. Dendrogram for Case 1 (all measurements) with EMSC preprocessing. Legend: Color samples measured (classes). Table: 
Correct grouping percentage for each class 

 
 

Figure A3. Dendrogram for Case 1 (removing measurement 35) with EMSC preprocessing. Legend: Color samples measured (classes). 

Table: Correct grouping percentage for each class 
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Figure A4. Dendrogram for Case 2 with VSN preprocessing. Legend: Color samples measured (classes). Table: Correct grouping 
percentage for each class 

 
 

Figure A5. Dendrogram for Case 3 with SG-D+SNV preprocessing. Legend: Color samples measured (classes). Table: Correct grouping 

percentage for each class 
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Figure A6. Dendrogram for Case 4 with VSN+EMSC preprocessing. Legend: Color samples measured (classes). Table: Correct grouping 
percentage for each class. 
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Abstract 
The work shown in this paper offers a fast and efficient alternative for estimating the cetane number of the 

diesel obtained from the distillation of the hydrocracking total effluent. In this study, the estimation of this 

diesel property was achieved through a partial least squares regression (PLSR) model using only the NIR 

spectrum of the hydrocracking total effluent. For calibrating and validating the PLS model, it was used a 

database containing the NIR spectra acquired on 98 total effluent samples and the cetane number measured 

on the 98 diesel fractions recovered from each total effluent sample distillation. The database was divided 

into the calibration and test data sets using the Kennard-Stone algorithm. The regression model developed 

exhibited good performance in estimating the studied property with errors of calibration (1.3), cross-

validation (2.2), and prediction (2.0), close to the reproducibility of the reference method (±3.6). The 

alternative method for diesel cetane number estimation discussed in this article evidences its feasibility in 

optimizing diesel fuel characterization by reducing the necessity of the total effluent distillation. 

Furthermore, the results also show the potential of the alternative proposed to be applied in predicting other 

properties of fuels obtained from the hydrocracking process. 

Keywords 
Hydrocracking, Total effluent, Diesel, Cetane Number, Near-Infrared (NIR), Chemometrics. 

 

1. Introduction 
The shift in consumption from gasoline to diesel has led over the last 20 years to a strong worldwide increase 

in demand for middle distillates (kerosene and diesel) [1]. At the same time, the increasing heavy crude oil 

production [2] has resulted in low-quality feedstocks being processed. The outlined issues and the constant 

demand for high-quality products have raised the need for flexible refining processes that maximize the 

production of middle distillates from heavy feedstocks while ensuring their quality for compliance with 

environmental and commercial legislations[2,3]. Given its extensive flexibility in processing heavy feedstocks, 

the hydrocracking (HCK) process is essential in addressing the need described [4]. Moreover, as an extensively 

implemented process nowadays, it is the subject of ongoing research.  

The research on the HCK process is conducted by implementing experimental designs in pilot plants and 

laboratory facilities under controlled conditions. The implemented experimentation contributes to 

determining the best process configuration by processing different types of residues, mostly vacuum gas oil 

mailto:marion.lacoue-negre@ifpen.fr


Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 2  

  

 

(VGO), under different operating conditions. In general, the experimentation is carried out in two main steps. 

In the first step, a hydrotreating stage (HDT) is applied to remove heteroatoms, saturate the olefins, and 

partially hydrogenate the aromatics. Subsequently, the hydrotreated effluent is sent to a reactor where, in 

the presence of a specific catalyst, the hydrocracking reactions occur [5] (See block #1 – Figure 1). In the 

second step, the liquid product obtained from the reaction section, known as total effluent, is distilled under 

atmospheric conditions to obtain the middle distillates, particularly diesel. These cuts are characterized using 

different standard norms such as the American Society for Testing and Materials (ASTM) and the 

International Organization for Standardization (ISO) (See block #2 – Figure 1). Finally, the analytical 

information obtained from this last step is gathered and analyzed to evaluate the impact of the operating 

conditions, including the catalytic system parameters, on the yield and quality of the diesel as a function of 

the processed feedstock. 

In contrast to the reaction section, the characterization of the products is performed on a discontinuous time 

basis. Firstly, the laboratory analyses are conducted offline and are conditioned to the different laboratories' 

response times. Moreover, to perform the laboratory analyses based on the standards mentioned above, the 

physical product sample must be obtained from the total effluent distillation, which is also conducted in a 

non-continuous sequence. The products characterization is a fundamental task in the HCK process research. 

However, as previously discussed, the analytical workflow traditionally followed is both time- and volume-

consuming. Therefore, a fast and efficient alternative for diesel fuel characterization is of great interest.    

 

Figure 1. Workflow scheme for the characterization of fuels obtained from the HCK process 

 

 

 



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 2  

  

 

In the last decades, combining infrared spectroscopy analysis and chemometric methods has drastically 

increased for fuels characterization, from crude oils to refined cuts such as gasoline [6], diesel [7,8], biodiesel 

[7–10], and lubricants [11]. On the one hand, the main advantage of applying multivariate calibration 

methods to analytical techniques such as vibrational spectroscopy is both money- and time-saving. On the 

other hand, the sample volume required is quite low (up to a few milliliters) compared to some normalized 

methods generally used to characterize fuels. A recent review from Moro et al. [12] points out the growing 

use of infrared spectroscopy (IRS) to predict crude oil properties using chemometrics methods. To our 

knowledge, there is no existing equivalent review for other petroleum fractions. However, a plethora of 

interesting studies can be found showing the interest in using IRS and chemometrics to rapidly estimate fuel 

properties with statistical performance close to the reference methods [13–16].  

Due to its extensive set of applications [17], NIR spectroscopy is particularly popular in laboratories to 

characterize fuels. Concerning diesel fuel, Hradecká et al. [15] recently demonstrated the feasibility of 

employing this vibrational technique to assess its quality. Using the partial least squares (PLS) algorithm, they 

estimated the kinematic viscosity, the cold filter plugging point, the pour point, and the sulfur and aromatics 

content from the NIR spectra acquired on different diesel samples. Each of the developed models enabled 

fast and reliable property predictions. Another recent study was developed by Yu et al. [18], where the 

estimation of diesel density from NIR spectra acquired on diesel samples was achieved using a "novel 

automatic model construction method." The resulting errors and squared correlation coefficients of the cited 

studies corroborated that an adequate application of chemometric methods on spectroscopic information 

leads to an accurate fuel properties estimation.  

Among all the diesel fuel properties that can be investigated, the study shown in this article was focused on 

the diesel cetane number [19]. This property determines the ignitability of the diesel fuel using a standardized 

engine and a reference fuel. The cetane number is determined by comparing the ignition time of a mixture 

of cetane and hepta-methyl-nonane having the same ignition time delay as the tested sample. The cetane 

number on diesel is generally measured using the ASTM D613-01 standard [19], a destructive test requiring 

a significant sample volume (500 ml), and its response time is a couple of hours. 

Regarding the diesel cetane number estimation using NIR spectroscopy, the most recent studies are reported 

by Zhan et al. [20] and Barra et al. [21]. In the first study, a least squares-support vector machine (LS-SVM) 

regression model was developed with errors of calibration (1.8) and prediction (2.0) lower than the 

reproducibility of the ASTM D613-01 standard method (~3.3). However, the squared correlation coefficients 

of calibration (r²c) and prediction (r²p) were quite low (0.66). In the second study, diesel cetane number 

estimations with prediction errors around 0.5 and an r²p value higher than 0.9 were achieved using a PLS 

regression model with 8 latent variables (LVs). Another study worth mentioning is the one developed by 

Zanier-Szydlowski et al. [22], who worked on predicting various fuel properties, including the diesel cetane 

number, developing a PLS model with a standard error of prediction (SEP) of 2.0.  
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All studies before-reported show that using NIR spectroscopy combined with proper chemometric methods 

in diesel properties estimation reduces the required sample volume and response time. However, the 

dependence on the distillation step of crude oil or HCK total effluent to obtain the diesel fraction and its 

subsequent characterization remains since the developed models are based on the NIR spectra acquired on 

the diesel cut. Therefore, aiming to go a step further in optimizing the analysis response time, this study 

presents an alternative for the cetane number estimation consisting of using the NIR spectra acquired on the 

HCK total effluent, avoiding the distillation step (see Figure 1). This main objective was achieved through four 

work steps. First, the total effluent samples obtained in different experimental tests of the HCK process 

conducted at a pilot level were identified and recovered. Next, the cetane number was measured on the 

diesel cuts corresponding to the total effluent samples. Then, the NIR spectra were acquired on the total 

effluent samples to finally perform all the necessary chemometric analysis, which included the preprocessing 

of the information and the calibration of the predictive model. To our knowledge, no comparative research 

has been reported.   

 

2. Materials and methods 
This section gives the origins and details of the sample physicochemical characterization. As a reminder, two 

sets of samples were considered: (i) the total effluents produced from HCK process reactors and (ii) the 

recovered diesel fractions.   

2.1 Total effluent  
In this study, 27 different feedstocks, mainly VGO, were processed in the HCK pilot plant units at IFPEN 

(Solaize, France) under various operating conditions involving different catalytic systems. The process 

variability ensured the physicochemical properties diversity of the 98 total effluent samples used in this 

research, as shown in Table 1. This table summarizes four relevant physicochemical properties of the 

obtained samples: the density,[23] the simulated initial boiling point (IBP), and distillation temperatures 

range to recover both 5% and 95% of sample distillate (Simulated Distillation T5 and T95)[24]. Table 1 also 

shows the fraction of the total effluent corresponding to the diesel cut.  

 Table 1. Summary of physicochemical properties measured on the total effluent samples obtained from the hydrocracking process 
experimental tests. 

  Méthod Minimum Maximum Mean Standard Deviation 

Density (g/mL) ASTM D1218-12[23] 0.79 0.94 0.85 0.043 

IBP (°C) ASTM D2887-19[24] 38 205 106 42.1 

SimDis T5 (°C) ASTM D2887-19 69 345 179 83.3 

SimDis T95 (°C) ASTM D2887-19 401 585 503 44.6 

Diesel yield (%) ASTM D2892-20[25] 5.6 45.7 23.6 9.73 
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Near-infrared analysis  
Before NIR spectra acquisition, the samples were first heated in a water bath at 60°C in a closed flask for one 

hour and then manually shaken to ensure homogeneity. Subsequently, NIR analysis was performed on each 

of the total effluents obtained using a Falcata Lab6 immersion reflectance probe (Hellma GmbH & Co. KG, 

Müllheim – Germany) with an optical path fixed at 2 mm. A spectrometer NIRS XDS Process Analyzer 

(Metrohm, Villebon - France) recording wavelengths within the 800 - 2200 nm spectral range with a 

resolution of 0.5 nm was used to acquire the spectra. Each final spectrum obtained was the average of 32 

scans performed on the sample. The software used with the spectrometer was VISION (Metrohm, Villebon - 

France). 

2.2 Diesel 
The diesel samples used in this study were recovered from the atmospheric distillation of each of the 98 total 

effluents according to the ASTM D2892-20[25] standard. The cetane number was measured on each diesel 

sample recovered using an IFPEN internal method, which estimates this property from diesel NIR spectra 

through a PLS model based on Zanier-Szydlowski et al. work [22], with a larger database and equivalent 

performance. The internal method outlined was developed using the cetane numbers measured using the 

ASTMD613-01 standard [19] analysis as the reference method and validated against the reproducibility limits 

defined by this norm. Table 2 summarizes the general statistical information of the cetane number, the 

density and the Simulated Distillation SimDis T5 and T95 of the diesel samples considered in this study. 

Table 2. General statistical information of the cetane number, density and simulated distillation measured on 98 diesel samples 
recovered from the total effluent distillation 

  Method Minimum Maximum Mean Standard Deviation 

Cetane Number (CN) ASTM D5949 30.3 69.5 51.6 11.07 

Density (g/mL) ASTM D1218-12 0.81 0.91 0.86 0.031 

SimDis T5 (°C) ASTM D2887-19 213 258 245 9.1 

SimDis T95 (°C) ASTM D2887-19 246 431 367 15.3 

 

2.3 Modelling 
An analysis to determine the best preprocessing scheme to be used was conducted. This study analyzed eight 

of the most common preprocessing methods applied to NIR spectra (see Table 3) [26] using an in-house 

MATLAB script. Each method was evaluated, taking their different parameter settings and possible 

combinations into account, based on the performance of different PLS regression models built using the root 

mean square error of cross-validation (RMSECV) and the squared coefficient of correlation (r²C) as the figures 

of merit. For all models, the RMSECV was determined using the Venetian blind 10-fold.   
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Table 3. Pre-processing method evaluated on the NIR spectra of the HCK total effluent 

# Category Method Acronym Parameters 

1 

Normalization 

Variable Sorting for 
Normalization [27] 

VSN Automatic calculation 

2 Standard Normal Variate [28] SNV   

3 
Multiplicative Signal 
Correction [29] 

MSC 
Reference data = mean of data,  
whole spectral range 

4 
Probabilistic Quotient 
Normalization [30] 

PQN   

5 

Filtering 

Automatic Weighted Least 
Squares Baseline [26] 

AWLS-B   

6 Detrend [28] Dt Polynomial order (1-3) 

7 
Extended Multiplicative 
Scatter/Signal Correction [31] 

EMSC 

Reference spectrum (basis to remove the 
scatter) = mean of each matrix generated,  
polynomial order = (1-4),  
whole spectral range, algorithm (CLS, ILS)*  

8 Savitsky-Golay Derivative [32] SG-D 
Window points (9-25),  
polynomial order = (1-4),  
derivative order (1-4) 

* CLS = Classical Least Squares, ILS = Inverse Least Squares. 

For building and testing the regression models, the database was split into two datasets using the Kennard-

Stone (KS) algorithm[33]: the calibration set (70% samples), which was used in model calibration and internal 

validation (cross-validation), and the independent test set (30% samples), which was used in the performance 

evaluation of the final developed model. For each PLS model developed, the number of latent variables (LVs) 

with the lowest RMSECV was retained as long as the cross-validation and calibration error ratio 

(RMSECV/RMSEC) did not exceed 1.7. This criterion was established empirically through previous modelling 

results to avoid model overfitting. In addition, analogous statistics were calculated on the test set (RMSEP, 

r2P) to evaluate the model performance. The model errors were calculated using Eq. (1), where y_i and (y_i 

)  ̂are the cetane number measured and predicted on sample i, respectively, and n is the number of samples. 

For the squared correlation coefficients calculation, Eq. (2) was utilized, where Cov and Var correspond to 

covariance and variance. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1          (1) 

𝑟2 =  (
𝐶𝑜𝑣(𝑦,𝑦̂)

√𝑉𝑎𝑟(𝑦)𝑉𝑎𝑟(𝑦̂)
)

2

          (2) 

The models were developed with the PLS_Toolbox V.8.9 (Eigenvector Research Inc. Wenatchee, WA, USA) 

and MATLAB V.2020b (The MathWorks, Inc., Natick, MA, USA).   
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3. Results and discussion 

3.1 Preliminary spectral analysis 
Before developing the regression models, a preliminary analysis of the NIR spectra was performed to 

determine the spectral range used. Based on the studies conducted by Yalvac et al.[34] and Kelly et al.[35], 

it was established that the spectral region between 1100 and 2200 nm provides the most informative spectral 

features for hydrocarbon samples. Figure 2a shows the absorbance spectra of the total effluent samples in 

this spectral range. Although assigning each band of a near-infrared spectrum to a hydrocarbon molecule is 

difficult, a global attribution can be done as follows: (A) the bands around 1200 nm correspond to the second 

overtone of the CH bands; (B) the bands in the spectral region 1300-1500 nm can be attributed to the 

combinations of vibrational modes for the stretching of CH bonds; (C) the bands in the spectral interval 1600-

1850 nm correspond to the first overtone bands of -CH stretch in -CH2 and -CH3; (D) the bands around 2200 

nm can be attributed to the combination absorption bands of -CH stretching bonds and C=C stretching bonds 

in the aromatic ring. According to the previously outlined information, it was decided to develop the models 

on the 1110-2200 nm spectral region.  

The different preprocessing methods summarized in Table 3 were evaluated using the spectral range defined. 

The best performance scenario obtained for this study was the combination of the Standard Normal Variate 

(SNV) and the second derivative of Savitzky-Golay with a third polynomial order (SavGol[23,3,2]). The 

preprocessing scheme was completed by centering the matrix by columns (mean center). Figure 2b shows 

the spectra preprocessed where the four spectral zones identified before can be observed. 

a) b)  

Figure 2. a) NIR spectra in absorbance, b) NIR preprocessed spectra. Spectral range used in modelling (1110-2200 nm).  
Highlighted regions: (A)(1100-1250 nm), (B)(1300-1500 nm), (C)(1600-1850 nm), (D)(2100-2200 nm) 

3.2 Model performance analysis 
After data preprocessing, a PLS model for the cetane number estimation was calibrated from the NIR spectra 

of 67 hydrocracked total effluent samples. The 67 corresponding diesel samples had a cetane number 

between 30.3 and 69.5. The external test set consisted of 31 total effluent spectra with an associated diesel 

cetane number ranging from 37.3 to 69.3. The score plot of the first two LVs of the developed PLS model 

shows a homogeneous distribution between the calibration and test samples (see Figure 3). This distribution 

ensures a representative evaluation of the model performance within the domain used in the model 

calibration. The distribution remains homogeneous throughout the other LVs (information not shown).        
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Figure 3. Projection of the calibration and test sets over the first and second latent variables (Score-plot)  

The developed model uses 9 LVs to explain by about 99% the variance of the studied property. Considering 

the most recent studies regarding the estimation of diesel cetane number from NIR spectroscopy, the model 

developed in this study presents an RMSEP (2.0) comparable to the one obtained by Zhan et al.[20] (2.0) but 

presenting a better r²P (0.96 vs. 0.55). Additionally, compared to the regression method employed by them 

(LS-SVM), by using the PLS method in this study, the obtained model was interpretable, helping to understand 

the chemical information of the total effluent having an impact on the diesel cetane number. Regarding the 

study done by Barra et al. [21], which presents a lower RMSEP (0.42) using a PLS model of 8LVs, it should be 

noted that the data set used for testing their model is smaller (10 vs. 31) with a narrower cetane number 

range. The limited application range of the models reported in the two previously analyzed studies highlights 

another advantage of the model described in this article. While in the studies of Zhan and Barra the applicable 

model range is between 20.4-49.5 and 49-59, respectively, for the model developed is between 30.9-69.5. 

Although the results of these studies are not rigorously comparable with the research shown in this paper 

due to the type of sample used for the NIR spectra acquisition (diesel vs. HCK total effluent), it can be 

observed that improvements in certain aspects are achieved. Furthermore, it is worth emphasizing that the 

alternative investigated in this study optimizes the diesel characterization response time, which was 

restricted by the distillation step. Finally, compared to ASTM D613-01 [19], the RMSEP of the developed 

model is below the reproducibility of all the cetane number ranges established by this standard.  

In summary, using a PLS regression model with 9 LVs, it is possible to estimate the diesel cetane number from 

the spectroscopic information of the HCK total effluent with errors below the reproducibility limit of the 

IFPEN internal reference method (±3.6) and the ASTM D613-01 norm [19]. Moreover, the developed model 

ensures a reliable prediction throughout the entire range of property evaluation by presenting squared 

correlation coefficients higher than 0.95, showing a good correlation between the reference and predicted 

values. Table 4 shows the main information describing the chemometric model developed.    
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Table 4 Statistical parameters and model information for predicting diesel cetane number (CN) 

Regression method PLS 

Latent variables 9 

X Explained Variance  99.4% 

Y Explained Variance  98.6% 

RMSEC 1.3 

RMSECV 2.2 

RMSEP 2.0 

r²C 0.986 

r²CV 0.959 

r²P 0.955 

Prediction Bias -0.6 

The satisfactory performance of the model obtained is reflected in the parity and residual plots shown in 

Figure 3a and Figure 3b, respectively. Figure 3a shows that out of the 31 samples used in the model test set, 

30 were predicted between the lower and upper limits of the reference method reproducibility, resulting in 

a prediction effectiveness of approximately 97%. In turn, Figure 3b illustrates the homogeneous distribution 

of the residual values obtained in both the calibration and the test of the model, showing its homoscedasticity 

in the whole evaluation range of the studied property, and evidencing the absence of model overtraining.  

a)  b)  

Figure 3. a) Parity plot, b) prediction residuals plot of PLS model for predicting the diesel cetane number  
Red dotted lines: upper and lower limits of the reproducibility of the reference method (±3.6)  

A graphical analysis combining the Q residual and the Hotelling T² statistical analyses was performed to 

establish if the predicted sample outside the reproducibility limits of the reference method corresponds to 

an outlier. The Q residual test determines the samples with atypical behavior by measuring the difference 

between a sample and its projection into the LVs retained in the model [36]. If the residual Q value of a 

sample exceeds the unit, this sample can be considered a weak outlier, and its cause would be mainly related 

to the acquisition spectrum quality. Analogously, Hotelling's T² determines the atypicality of the samples 

using the measure of the variation in each sample within the model [36]. If the resulting test value of a sample 

exceeds the unit, it could be considered a strong outlier, and the cause would be mostly related either to the 

quality of the studied variable measurement or to the physicochemical properties of the sample. Finally, if a 

sample simultaneously exceeds the established thresholds of the two tests, the information from this sample 
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could substantially impact the model performance. Therefore, its use in the model should be reconsidered.  

Figure 5 shows the reduced Q residual and Hotelling T² analysis applied to the test set. Firstly, it can be 

observed in this figure that no sample is above the threshold of the two tests simultaneously. Secondly, two 

of the samples used in testing the model are above the threshold of the residual Q test. However, neither of 

these two samples corresponds to the sample predicted outside the limits. On the contrary, this sample is 

between the threshold limits of both tests (red point Figure 5). Consequently, it cannot be identified as an 

outlier. By a deeper analysis of this sample information regarding the operating and spectrum acquisition 

conditions, it was found that the total effluent sample analyzed was produced during a test with particular 

operating conditions in comparison to the rest of the sample set (feedstock with a high content of paraffinic 

carbon (>60%) processed under lower operating pressure). Thereby, the poor prediction of this sample could 

be attributed to the fact that the spectroscopic information used in the model calibration is not capturing 

the sample chemical description given by the particularity of the sample's origin. The present study focuses 

on estimating the studied property using NIR spectroscopy. The results indicate that this estimation is 

possible and that some external parameters can influence the prediction, such as operating conditions. This 

issue, related to the calibration robustness [37], could be addressed by developing predictive models that 

simultaneously use the information of the total effluent NIR spectra and the operating conditions employed 

in obtaining the sample. 

 

Figure 5. Reduced Q residual and Hotelling T² analysis using a 9 LVs PLS model 

3.3 Model interpretation analysis 
As mentioned before, one advantage of using the PLS regression method is to obtain predictive models 

helping to have a more detailed understanding of the effect that the different chemical compounds present 

in the sample may have on the estimation of the studied property. Figure 6 shows the PLS model loadings of 

the first 2 LVs, explaining 94% of the variance of the investigated property. This figure shows that the four 

zones previously identified influence the cetane number estimation. The zone between 1610 and 1810 nm is 

the one that presents the greatest impact. As mentioned formerly, this zone corresponds to the first overtone 

of the -CH stretching bands in -CH2 and -CH3. The behavior of the diesel cetane number is directly related to 

the type of isomerization, the length, and the amount of the identified linear hydrocarbons compounds. 

Therefore, the coherent relationship between the studied property and the chemical information extracted 
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from the NIR spectra acquired on the total effluent is demonstrated. This consistency suggests the possibility 

of applying the alternative proposed in this study to estimate other diesel properties.   

 a)  b)  

Figure 6. PLS model loadings plot for a) 1st latent variable (65.8% of Y variable variance explained), b) 2nd latent variable (28.3% of Y 
variable variance explained) 

The previous description and results analysis validated the suitability of applying the alternative investigated 

in this article for estimating middle distillate properties with errors close to the reproducibility of the 

reference method. The diesel characterization alternative discussed in this study is based on exploiting the 

NIR spectra acquired on the HCK total effluent. The predictive model calibration represented a challenge 

during the research work due to the complex extraction and exploitation of the total effluent chemical 

information for correctly describing the studied property. Nonetheless, compared to the models for diesel 

cetane number estimation reported in the literature, the model developed in this study showed satisfactory 

performance. In addition, the model presents some further advantages concerning its homoscedasticity and 

its application range. Finally, as discussed in the introduction section, the interest in employing the total 

effluent NIR spectra was motivated by the need to go a step further in the response time optimization when 

characterizing the diesel fuel. Through the approach developed, this need is fully addressed as the distillation 

of the total effluent to recover the physical cuts is not required, offering the possibility of performing the 

properties estimation in real-time. 

 

Conclusions 
The proper application of chemometric methods enables the physicochemical properties estimation of a 

crude oil cut using spectral information from another related product. This study developed a chemometric 

model for predicting the diesel cetane number using NIR spectroscopy information acquired on the total 

effluent obtained from the hydrocracking process. Hence, a fast and efficient alternative for fuel properties 

estimation was presented. 

The PLS regression model obtained provides a reliable and fast estimation of the diesel cetane number with 

errors within the reproducibility of the reference method and correlation squared coefficients above 0.95. 

These results demonstrate the potential of the alternative investigated to minimize the required sample 

volume and the response time for property estimation by reducing the necessity to perform the total effluent 
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distillation. Furthermore, this optimization could lead to real-time and cost-effective research of the 

hydrocracking process by real-time estimating the studied property. 

When estimating diesel properties using the spectroscopic information acquired on the total effluent, the 

predictive performance could be affected by the total effluent properties, which are impacted by parameters 

related to the feedstock quality and operating conditions. Therefore, it is important to address the model 

robustness constraint to ensure reliable performance over time and under different analytical conditions.  

The study exposed in this paper highlights the wide application field of chemometrics, which facilitates the 

use of spectral information in the development of prediction models and enables the analysis and 

identification of atypical behaviors that fuel properties may have, helping to establish and understand the 

possible causes. Therefore, a better description of the influence of different process parameters and variables 

on the studied properties can be achieved, contributing to efficient process optimization. 

The results obtained raise the prospect of using the alternative presented in this study for estimating other 

diesel properties as well as for properties prediction of different fuel products, namely, kerosene. 

Finally, it should be highlighted that no regression model was found in the literature to predict diesel 

cetane number from NIR spectroscopy information of the hydrocracking total effluent, making this work 

the first one developed. 
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Abstract 
This work presents a significant improvement in predicting diesel fuel properties by near-infrared (NIR) and 

13C nuclear magnetic resonance (NMR) data fusion modelling compared to separately generated models. In 

this study, the potential of three data fusion strategies (low-, mid-, and high-level) to improve the prediction 

of the diesel cold flow properties (pour point (PP), cloud point (CP), and cold filter plugging point (CFPP)) was 

investigated. The NIR and 13C NMR spectra recorded on 84 total effluent samples obtained from 

hydrocracking process reactors were employed for developing the prediction models. For establishing the 

base case for comparison, partial least squares (PLS) regression models were developed using each data block 

separately. Then, data fusion models were built using the three strategies mentioned. The models were 

compared using the root mean square errors of calibration (RMSEC), cross-validation (RMSECV), and 

prediction (RMSEP) as figures of merit. The mid-level data fusion modelling using the PLS scores as features 

extracted from each data block gave the best results. The RMSEP of the PP, CP, and CFPP was reduced by 

about 33%, 22%, and 20%, respectively, regarding the NIR model. The reduction in the RMSEC and RMSECV 

was between 19% and 43%. In addition, the squared correlation coefficients r² were also improved. All other 

data fusion strategies showed minor improvements. The results obtained illustrate the potential of the data 

fusion modelling to improve the diesel cold flow properties estimation.     

Keywords 
Data fusion, Near-Infrared (NIR), Nuclear Magnetic Resonance (NMR), hydrocracking total effluent, diesel 
fuel, cold flow properties. 
 

1. Introduction 
Diesel characterization is fundamental for fuel assessment and refining process control and optimization [1–

3]. Three of the most relevant properties measured in diesel fuel to determine its quality and performance 

are the pour point (PP) [4], the cloud point (CP) [5], and the cold filter plugging point (CFPP) [6]. These 

properties are also known as cold flow properties. In regions and countries where low temperatures (≤5°C) 
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are known to occur, the CP is the most considered parameter for the formulation of diesel fuel [7]. This 

property specifies the temperature at which the first paraffin or wax crystals appear. In turn, the PP seeks to 

determine the temperature at which the diesel stops flowing, and the CFPP establishes the temperature at 

which the crystallized wax begins to plug a standardized filter arrangement (simulating the fuel filter in a 

diesel engine) in such a way as to hinder the fuel flow. 

The measurement of diesel cold flow properties is typically carried out using different laboratory standard 

norms such as the American Society of Testing Materials (ASTM) [4] and the International Organization for 

Standardization (ISO) [5, 6]. Due to the destructive and time-consuming nature of some of these standards, 

a common practice in the oil industry is the development of mathematical models as an alternative in 

estimating the properties using other analytical information from the analyzed stream [8]. In the last decades, 

an increasing interest in using vibrational spectroscopy to develop such models with statistical performance 

close to the reference methods has been reported [9].  

The exploitation of information extracted from spectroscopic techniques for diesel characterization is 

feasible since these techniques can describe the behavior of hydrocarbon molecules present in a fuel sample. 

For instance, infrared spectroscopy (IR) provides information about the interactions of the C-H, C=C, aromatic 

=C-H, N-H, and O-H bonds. Some spectroscopic model developments can be found in the studies done by 

Hradecká et al., [10] where 7 diesel properties, including CFPP and PP, are predicted from the NIR spectra of 

diesel, and by Pasadakis et al., who developed regression models for diesel CP and PP prediction using MIR 

spectra acquired on diesel samples [11]. These studies show the complexity and difficulty of obtaining 

optimal regression models to predict diesel cold flow properties.  

Although NIR spectroscopy provides information about the interactions of hydrocarbon molecules, this 

molecular information is quite general and may not be informative enough, yielding models with limited 

predictive performance. Therefore, combining the information from this technique with complementary and 

synergetic information such as the 13C NMR spectroscopy, which, compared to NIR, contains more detailed 

information of the molecular interactions and bonds present in the sample, could help to improve the 

estimation of the fuel physicochemical properties [12–14]. 

Simultaneous use of information obtained from different analytical techniques for developing predictive 

models is generally referred to as data fusion. In their recent work, Azcarate et al. [15] detail the different 

strategies and applications of data fusion according to the structure of the data employed. This type of data 

manipulation generally employs different strategies known as fusion levels (low-, mid-, and high-level) [16]. 

The low-level fusion consists of using the information from the blocks directly in the development of the 

model either by simple concatenation of the blocks or using decomposition or factorization methods on one 

block regarding another [17]. At the mid-level fusion, a step of feature extraction from each dataset is 
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performed first through statistical analyses such as PCA and PLS for their later fusion by simple concatenation 

[18]. Finally, the high-level fusion combines the decisions or results obtained from developed prediction 

models separately with each data block [19]. 

Although data fusion methodology has been mostly used in the food industry [20], this type of modelling has 

also been employed in the oil industry. For example, Dearing et al. [13] employed the low-level data fusion 

strategy to estimate crude oil's API gravity and hydrogen content from three spectral signals (Raman, IR, 

NMR). They showed that compared to the individual models generated from each data block, data fusion 

reduced the prediction error by about 50%. Another study that employed data fusion for predicting the API 

gravity of crude oil was developed by Muhammad et al. [21]. In their study, they used two 1H NMR signals 

acquired at different relaxation times. The standard error of prediction (SEP) had a reduction of about 30% 

when the data fusion was performed. Recently Moro et al. [14] evaluated the three data fusion strategies 

described previously to predict seven crude oil properties (sulphur content (S), total nitrogen content (TN), 

basic nitrogen content (BN), total acid number (TAN), saturated (SAT), aromatic (ARO) and polar (POL) 

contents) using NIR, 1H and 13C NMR spectra acquired on crude oil samples. Their study showed that for all 

properties, the best data fusion strategy was the mid-level using the PLS scores.  

Regarding using data fusion strategies for petroleum cuts characterization, Li et al. [22] compared the low-

level and mid-level strategies to improve the estimation of methanol content in gasoline samples by fusing 

Raman and NIR spectral information. Showing improvements in the prediction error by around 50%, the mid-

level strategy offered the best performance. Finally, Aguiar et al. [23] employed the mid-level data fusion 

strategy to improve the identification and characterization of adulterated diesel from NMR signals. 

It is important to highlight that the regression models obtained in the studies mentioned above were 

developed using the spectroscopic information acquired on the stream being evaluated, for instance, 

predicting crude oil sulphur content using data fusion of MIR and NMR spectra acquired on the crude oil [14]. 

This approach is commonly used to develop prediction models; nevertheless, it may be useful for different 

applications to employ the approach of using spectroscopic information from one stream to predict the 

properties of another related stream [24]. To our knowledge, no data fusion models for predicting the diesel 

cold flow properties using the latter approach have been documented in the literature. 

Considering the context previously outlined, the main objective of the work presented in this paper was to 

investigate the potential of the three data fusion strategies formerly described (low-, mid-, and high-level) to 

improve the prediction of the diesel cold flow properties using the NIR and the 13C NMR spectra acquired on 

hydrocracking (HCK) total effluent samples. A detailed context on the modelling approach for predicting 

diesel properties from spectroscopic information of HCK total effluent can be found in [24].  
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2. Materials and methods 
In this study, two sets of samples are considered: total effluents produced from HCK reactors (used for NIR 

and 13C NMR spectra acquisition) and their distilled diesel cuts (used for cold flow properties laboratory 

analysis). This section gives the origins and details of the physicochemical characterization of the analyzed 

samples.  

2.1 Total effluent  
84 total effluent samples were obtained by processing 17 different vacuum gasoils (VGO's) in the 

hydrocracking (HCK) pilot plant units at IFPEN (Solaize, France) under different operating conditions and 

involving different catalytic systems. The process variability employed ensured samples having a wide 

diversity of their physicochemical properties, as shown in Table 1. This table also shows the fraction of the 

total effluent corresponding to the diesel cut.  

 Table 1. Summary of physicochemical properties measured on the total effluent samples obtained from the 
hydrocracking process  

  Method Minimum Maximum Mean Standard Deviation 

Density (gr/ml) ASTM D1218-1221 0.7818 0.9209 0.8507 0.0369 

IBP (°C) ASTM D2887-1924 59.3 179.4 98.8 33.6 

SimDis T5 (°C) ASTM D2887-19 80.9 335.5 165.8 69.0 

SimDis T95 (°C) ASTM D2887-19 404.7 588.3 503.8 36.2 

Diesel yield (%) ASTM D2892111 6.9 45.2 25.1 6.3 

 

2.1.1 Near-infrared analysis  
To ensure the liquid state and homogeneity of the samples, they were heated in a water bath at 60°C in a 

closed flask for one hour and then manually shaken. Next, NIR analysis was performed on each of the total 

effluent samples obtained using a Fourier Transform Near-Infrared spectrometer (FT-NIR) MATRIX-F (Bruker, 

Optik GmbH, Ettligen - Germany), which with a resolution of 4 cm−1 recorded 4148 wavenumbers within the 

range of 12000 - 4000 cm−1 (833 - 2500 nm). Each final spectrum obtained was the average of 32 scans 

performed on the sample. An immersion Falcata Lab6 probe (Hellma GmbH & Co. KG, Müllheim – Germany) 

with an optical path fixed at 2 mm withstanding temperatures ranging from -40 °C to 200 °C was used to 

acquire the spectra. The software used with the spectrometer was OVP (OPUS Validation Program - Bruker, 

Optik GmbH, Ettligen - Germany). 

2.1.2 13C NMR analysis 
Prior to NMR analysis, the samples were heated at 70°C and manually shaken to ensure the homogeneity of 

the sample. 250µl of total effluent were mixed with 250µl of CDCl3 and 0,3mg of Fe(acac)3. 13C NMR spectra 

were recorded at 50°C on a Bruker Avance 600 MHz spectrometer (Bruker Biospin Gmbh, Rheinstetten, 

Germany) operating at 150.9 MHz using a 5 mm QNP probe (time-domain 128k, 60° pulse, proton decoupling, 

acquisition time 56 min, relaxation delay 5 s, 512 scans). Zero filling and exponential line broadening (1 Hz) 

were applied before Fourier transform. The spectra were accurately phased and baseline adjusted. The 13C 
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NMR chemical shift of chloroform-d was set to 76.9 ppm as an internal standard. 

2.2 Diesel 
The cold flow properties were measured on the diesel recovered from the distillation of each of the 84 total 

effluents by using the ASTM D5949 method for the pour point (PP)[4], the ISO 3015 method for the cloud 

point (CP) [5], and the NF EN 116 method for the cold filter plugging point (CFPP)[6]. Table 2 summarizes the 

general statistical information of these three properties, as well as the density [25] and the simulated 

distillation temperatures range to obtain both 5% and 95% of sample distillate (Simulated Distillation T5 and 

T95) [26]. 

Table 2. General statistical information of the cold flow properties, density and simulated distillation 
measured on 84 diesel samples obtained from the hydrocracking process 

  Méthod Minimum Maximum Mean Standard Deviation 

Pour Point (PP) ASTM D5949 -48 -3 -22.4 11.1 

Cloud Point (CP) ISO 3015 -44 -1 -18.2 7.99 

Cold Filter Plugging Point (CFPP) NF EN 116 -32 5 -14.6 9.1 

Density (gr/ml) ASTM D1218-12 0.8135 0.9106 0.8612 0.0275 

SimDis T5 (°C) ASTM D2887-19 246.7 288.7 262.0 8.7 

SimDis T95 (°C) ASTM D2887-19 344.0 408.3 361.1 9.1 

 

2.3 Modelling 
Before modelling, each data block was preprocessed to remove any noise that could affect the results. Table 

3 summarizes the preprocessing schemes applied on the NIR block for each property studied. 

Table 3 Preprocessing methods scheme applied to the NIR block according to each cold flow property studied  

Property Methods Parameters 

Pour Point (PP) 

Variable Sorting for Normalization 
(VSN)120 

Tolerance = 0.0017, #Parameters = 3 

Savitsky-Golay Derivative (SG-D)118  
19-point window, polynomial order = 3 
First order derivative 

Cloud Point (CP) 

Standard Normal Variate (SNV)162   

Extended Multiplicative Scatter/Signal 
Correction (EMSC) 163 

Reference spectrum (basis to remove 
the scatter)  = mean of each matrix 
generated, polynomial order = 3,  
whole spectral range 

Cold Filter Plugging 
Point (CFPP) 

Standard Normal Variate (SNV)   

Savitsky-Golay Derivative (SG-D) 
25-point window, polynomial order = 1 
First order derivative 

Unlike the NIR spectra, the preprocessing applied to the NMR spectra was the same for the 3 diesel cold flow 

properties. First, the NMR spectra were aligned using the Interval Correlation Optimized (icoshift) algorithm 

[32]. Subsequently, these spectra were preprocessed using the Savitzky-Golay smoothing (15-point window, 

polynomial order = 0) and normalized (each variable is divided by the sum of the absolute values of all the 

variables for a given spectrum) [33]. 
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For building and testing the models, the database was split into two datasets: the calibration set (70% 

samples), which was used both in model creation and cross-validation, and the independent test set (30% 

samples), which was used in the performance evaluation of the developed models. The database splitting 

was effected once only using the Kennard_Stone (KS) algorithm [34] applied on the NMR spectra, and the 

two resulting data sets were used in the models' development; in other words, the calibration and testing 

datasets are the same for all models.     

In summary, PLS models for each property were developed from the spectroscopic information of each data 

block (NIR, 13C NMR). These models were identified as individual models. Afterward, the spectroscopic 

information from each data block was combined using the low-, mid-, and high-level data fusion strategies. 

These models were identified as data fusion models. For each PLS model developed, the number of latent 

variables (LVs) with the lowest cross-validation error (RMSECV) was selected as long as the cross-validation 

and calibration error ratio (RMSECV/RMSEC) did not exceed 1.7. This criterion, established empirically 

through previous results, was used to avoid the overfitting of the models. For all models, the RMSECV was 

determined using the Venetian blind 10-fold. 

From each developed model, the root mean square errors and the squared correlation coefficients of 

calibration and cross-validation (RMSEC, RMSECV, r²C, r²CV) were calculated to select the best performing 

model. In addition, analogous statistics were calculated on the test set (RMSEP, r2P) to evaluate the 

performance of the models. A more detailed description of the modelling procedure is provided in the 

following sub-sections. 

The models were developed with the PLS_Toolbox V.8.8 (Eigenvector Research Inc. Wenatchee, WA, USA) 

and MATLAB V.2019b (The MathWorks, Inc., Natick, MA, USA).  

Individual modelling 
Following the preprocessing, splitting, and centering of the data sets, PLS regression models were calibrated 

for each property analyzed in this study using the NIR and the 13C NMR blocks separately. These models, 

labeled as individual models, were established as the base case for comparison to investigate the potential 

of data fusion modelling. 

Data fusion modelling 
As mentioned before, three data fusion strategies (levels) were used; a global description of the approach 

used in each of them is given below.  

In low-level fusion, each data block was preprocessed separately (see section 2.3.1). Two approaches were 

used:  



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 3  

  

 

− Simple concatenation: the preprocessed data were scaled considering each block variance and 

subsequently concatenated according to rows into a single matrix. Finally, a PLS regression model 

was created using the fused matrix, determining the number of LVs by cross-validation. 

− SO-PLS [35]: a PLS model was developed from one preprocessed data block. Next, the second data 

block was orthogonalized according to the scores of the already developed model. Finally, a model 

was obtained using the fused information from block 1 and orthogonalized block 2. It is essential to 

mention that in this second approach, the number of LVs in each block and the order of use of each 

of them (data block) can affect the result. For this reason, the evaluation of all possible combinations 

of latent variables of each block and their order of use was made to define the best prediction model 

(final model to be compared).  

In mid-level fusion, a PCA was applied to each preprocessed block separately. The scores resulting from each 

PCA were concatenated into a single matrix, which was used to develop the final PLS regression model. To 

avoid arbitrariness in deciding the number of principal components (PCs) of each block to be fused, all 

possible combinations between 1 and 20 PCs for each block were evaluated when developing the prediction 

model. The best-performing model was selected based on the criteria previously mentioned for the final 

comparison. This model was identified as the "PCA mid-level fusion model". A second mid-level fusion model 

was developed following the same described procedure but using the PLS analysis scores conducted on each 

data block. This model was called the "PLS mid-level fusion model". 

In high-level fusion, an individual PLS model from each data block was developed to predict each cold flow 

property. The values predicted were concatenated into a single matrix, which was used to develop a multiple 

linear regression (MLR) model. All possible combinations of latent variables (LVs) in developing the individual 

models were evaluated. 

Although the final decision on the number of LVs and PCs to be used in the final model was made based on 

the performance of the models obtained, the maximum number of these parameters to be evaluated was 

limited to 20. In order to optimize the comparison of the different combinations of these parameters in the 

data fusion models, a MATLAB function was developed to perform this process automatically. At the end, 5 

final data fusion models were selected, and their performance was compared to the individual models.  

3. Results and discussion 
The first step implemented in this study was defining the spectral range used. Buendia et al.[24] validated, 

based on the study of Yalvac [36] and Kelly et al. [37], that the region of the NIR spectrum that provides the 

most descriptive information of hydrocarbon molecule behavior is between 9000 and 4500 cm-1. This region 

has four main zones that describe (A) the second overtone of the CH bands (around 8300 cm-1), (B) the 

combinations of vibrational modes for the stretching of CH bonds (7600-6600 cm-1), (C) the first overtone 
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bands of -CH stretch in -CH2 and -CH3 (6250-5400 cm-1), and (D) the combination absorption bands of -CH 

stretching bonds and C=C stretching bonds in benzene ring (around 4500 cm-1). Figure 1a shows these 

spectral regions identified over the whole spectral range of the raw spectra (12000-4000 cm-1), while Figure 

1b shows the raw spectra in the spectral range used for modelling properties.  

a)  b)  
Figure 1. a) NIR spectra full spectral range (12000-4000 cm-1), b) NIR spectra spectral range used in modelling (9000-4500 cm-1).  

Identified regions: (A)(9000-8000 cm-1), (B)(7600-6600 cm-1), (C)(6250-5400 cm-1, (D)(5800-4500 cm-1) 

Regarding the NMR analysis, in this study were used the chemical shifts in the region corresponding to the 

aliphatic carbons (0-60 ppm). The intensity of the peaks identified in the region corresponding to the aromatic 

carbons (100-150 ppm) does not significantly contribute to the developed models' performance. Figure 2 

shows the NMR spectra of 3 total effluent samples in the 25-30 ppm chemical shift region. In this figure, a 

difference in the intensity of the peaks corresponding to the methyl branching in carbon β (22.8 ppm) and 

the methyl branching in a straight chain (29.9 ppm) [38] can be observed between the 3 samples spectra. 

This intensity pattern could provide complementary information related to the influence of this type of 

carbons on the diesel properties studied, contributing to the improvement of their estimation from spectral 

information. 

 
Figure 2. NMR spectra peak intensity pattern. Left spectra: peaks in the 22-23 ppm chemical shit region. Right spectra: peaks in the 

29-30 ppm chemical shit region  

Aft er defining the spectral range to be used in each data block, the best-performing models in each category 
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(individual and data fusion) were defined and compared to evaluate the potential of data fusion modelling 

to improve the diesel cold flow properties prediction. 

 

3.1 Pour Point (PP) regression models 
The results of the regression models developed for PP prediction are presented in Table 4. This table shows 

that, with an equal optimal number of LVs, the individual models (NIR, 13C NMR) present a similar calibration 

error (RMSEC) and equal prediction bias. However, the RMSECV is lower in the NIR model, while the RMESP 

is lower in the 13C NMR model. This error trend discrepancy shows that the stability of the individual models, 

which is determined by the consistency of the model errors, is limited for describing the diesel PP behavior.  

Table 4. Statistical parameters and model information based on individual and fused spectra for predicting diesel pour point (PP) 

    RMSEC r²C RMSECV r²CV RMSEP r²P SEP Bias Pre LV* LV/PC** 

Individual 
NIR 4.1 0.854 5.5 0.736 5.7 0.754 5.7 -0.3 5 - 

13C NMR 4.0 0.864 6.0 0.696 4.9 0.821 4.9 -0.3 5 - 

Low-level 
Concatenation 3.5 0.906 5.1 0.798 5.4 0.812 5.4 -0.03 5 - 

SO-PLS 3.4 0.912 4.7 0.829 5.6 0.763 5.6 0.02 - 3 NIR,5 NMR 

Mid-level 
PCA 4.2 0.866 5.0 0.810 5.7 0.746 5.7 -0.2 5 15 NIR,13 NMR 

PLS 2.6 0.940 3.3 0.907 3.9 0.899 3.9 -0.3 4 2 NIR,14 NMR 

High-level -  3.2 0.910 3.4 0.897 4.7 0.848 4.6 -1.1 - 3 NIR,6 NMR 
*Latent variables used in the final model, ** Latent variables or principal components used in data fusion models 

Compared to the individual models, the best performing data fusion model is the mid-level model that uses 

PLS scores as features extracted from each block. This model is also known as PLS mid-level fusion model. 

Using this model, the RMSEC, RMSECV, and RMSEP are reduced by about 36%, 43%, and 33%, respectively. 

Another interesting finding is that the prediction bias is the same as the individual models. The consistency 

shown in these results demonstrates the potential of data fusion to better capture the descriptive 

information of each block of data, making the regression model more stable. The squared correlation 

coefficients r² were also improved. 

 
Figure 3. Parity plots of the NIR, 13C NMR, PLS mid-level, and high-level fusion models for predicting the diesel pour point (PP).  

Series legend: circles  calibration samples, diamond  test samples. Red dotted lines: upper and lower limits of the reproducibility of 
the standard method (± 6°C) [4] 
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The previous analysis can be corroborated in the parity plots shown in Figure 3, where the improvement in 

PP prediction when using data fusion is observed. Whereas the maximum percentage of predicted samples 

within the reproducibility limits of the reference method in the individual models is achieved in the NMR 

model with percentages of 84% in the calibration samples and 82% in the test samples, when using the PLS 

mid-level data fusion model these percentages increase to 100% and 88% for the calibration and test 

samples, respectively.    

3.2 Cold Filter Plugging Point (CFPP) regression models 
Table 5 summarizes the statistical parameters of the final models selected for diesel CFPP prediction. As for 

the PP prediction, the individual regression models for predicting diesel CFPP show similarity in calibration 

error and prediction bias. The lack of consistency in the errors is again evident as the same trend found in 

the PP estimation is observed, i.e., the RMSECV is lower in the NIR model, and the RMSEP is lower in the 13C 

NMR model. The major difference between the individual models is found in the squared coefficient of 

correlation r² of prediction, which is considerably lower in the NIR model, indicating the poor description of 

the CFPP behavior when using this data block. This low value is due to the inadequate prediction of the diesel 

samples having high CFPP values (> -2°C) (See Figure 4a).         

Table 5. Statistical parameters and model information based on individual and fused spectra for predicting diesel cold filter plugging 
point (CFPP) 

    RMSEC R²C RMSECV R²CV RMSEP R²P SEP Bias Pre LV* LV/PC** 

Individual 
NIR 4.6 0.743 5.3 0.664 6.1 0.513 5.9 -1.4 5 - 

13C NMR 3.8 0.828 5.8 0.619 4.9 0.863 4.8 -1.2 6 - 

Low-level 
Concatenation 3.8 0.813 4.8 0.726 5.9 0.636 5.8 -1.3 5 - 

SO-PLS 3.3 0.867 4.1 0.802 7.1 0.501 6.8 -2.1 - 3 NIR,3 NMR 

Mid-level 
PCA 4.1 0.799 4.8 0.726 6.0 0.628 5.8 -1.5 5 14 NIR,9 NMR 

PLS 3.4 0.865 3.5 0.814 4.4 0.874 4.3 -0.8 5 2 NIR,7 NMR 

High-level -  3.4 0.866 3.4 0.859 5.4 0.675 5.3 -0.8 - 8 NIR,6 NMR 
*Latent variables used in the final model, ** Latent variables or principal components used in data fusion models 

 
Figure 4. Parity plots of the NIR, 13C NMR, PLS mid-level, and high-level fusion models for predicting the diesel cold filter plugging 
point (CFPP). Series legend: circles  calibration samples, diamond  test samples. Red dotted lines: upper and lower limits of the 

reproducibility of the standard method (±(3-0.06*CFPP)°C)[6] 
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When using the PLS mid-level and high-level data fusion models, the RMSEC and RMSECV are reduced by an 

average of 19% and 37%, respectively. These models also reduce the prediction bias by 38%. However, the 

model with better stability and the better prediction error is the PLS mid-level fusion model. This model 

achieves a reduction in RMSEP of about 20% compared to the individual models.  

By better capturing the relevant descriptive information of each block, the PLS mid-level fusion model 

reduces the influence that diesel samples with high CFPP values may have on the model performance. This 

model enhancement is observed in the parity plots shown in Figure 4, where the improved prediction of 

these samples (0°C > CFPP > -2°C) is evident. However, no evaluated approach allows to correctly model the 

samples with CFPP values > 0°C, whose predictions do not show a clear improvement. Since it was decided 

to keep the same calibration and test data set for the 3 cold flow properties of diesel, these values were not 

extracted in the present study. Figure 4 shows that out of the 84 diesel samples analyzed, only 2 have a high 

CFPP value (~5°C). One of the main reasons for a diesel sample to have this CFPP value is its high paraffin 

content. Since the estimation of this diesel property is being made from spectroscopic information acquired 

on the hydrocracking total effluent, and the percentage of samples having CFPP values greater than 0 is low 

(~2%), it is possible that the model developed does not capture the chemical information that these two 

samples can provide.  

Although the cross-validation and prediction errors are significantly reduced, the percentage of predicted 

calibration samples within the reproducibility limits of the method is not significantly impacted. The single 

NMR model has 81% of predicted calibration samples within the reproducibility limits, while the PLS mid-

level data fusion model has 82% of these samples within the limits. The percentage of predicted test samples 

within limits shows a slight improvement from 52% to 63%. 

3.3 Cloud Point (CP) regression models 
From Table 6, it can be observed that, unlike the two previously described cold flow properties, the errors of 

the regression models for the estimation of diesel CP present a better consistency and, therefore, better 

stability. Additionally, it can be observed from Table 6 that the prediction bias of the NIR model for CP 

estimation is the smallest compared to the individual models for estimating the cold flow properties of diesel. 

On the contrary, the prediction bias of the 13C NMR model is significantly higher concerning all the models 

developed to estimate this property. This bias could be due to an insufficiently explained variance of the Y-

block (85%) using 4 LVs, preventing an adequate description of the diesel CP behavior. 
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Table 6. Statistical parameters and model information based on individual and fused spectra for predicting diesel cloud point (CP) 

    RMSEC R²C RMSECV R²CV RMSEP R²P SEP Bias Pre LV* LV/PC** 

Individual 
NIR 3.6 0.799 4.0 0.747 4.5 0.672 4.5 0.1 4 - 

13C NMR 3.0 0.855 4.6 0.669 5.0 0.598 4.9 -1.2 4 - 

Low-level 
Concatenation 2.6 0.916 4.0 0.792 3.3 0.824 3.3 0.4 6 - 

SO-PLS 2.4 0.908 3.4 0.816 4.3 0.764 4.3 -0.2 - 7 NIR,1 NMR 

Mid-level 
PCA 3.1 0.849 3.8 0.776 4.0 0.812 4 -0.6 8 4 NIR,9 NMR 

PLS 2.3 0.915 2.8 0.882 3.7 0.891 3.6 -0.7 5 9 NIR,15 NMR 

High-level  - 2.7 0.887 2.8 0.875 3.8 0.816 3.8 -0.2 - 6 NIR,6 NMR 
*Latent variables used in the final model, ** Latent variables or principal components used in data fusion models 

 
Figure 5. Parity plots of the NIR, 13C NMR, PLS mid-level, and high-level fusion models for predicting the diesel cloud point (CP).  

Series legend: circles  calibration samples, diamond  test samples. Red dotted lines: upper and lower limits of the reproducibility of 
the standard method (±4°C)[5] 

Similar to the other two diesel cold flow properties, data fusion modelling, improves the prediction of diesel 

CP. The best performing models were the PLS mid-level and the high-level fusion models. These two models 

reduced the RMSECV and RMSEP by 34% and 22%, respectively. Although both models gave similar RMSEP, 

the squared correlation coefficient of prediction r²P is better in the PLS mid-level fusion model. 

Once again, the potential of this model to optimally capture each data block relevant information for the 

prediction improvement of the studied properties is evident. Finally, Figure 5 shows the parity plots where 

the compensation of endpoints effect on the model performance can be observed again.  

In comparison with the individual NMR model, the PLS mid-level data fusion model also improves the 

percentage of predicted samples within the reproducibility limits of the method, being more evident in the 

calibration samples (from 79% to 88%) than in the test samples (from 63% to 70%). It should be noted that 

the calibration and test data sets have been defined identically for all properties, and in the case of this 

property, the test basis may not be the best defined. 

3.4 Final model comparison 
A general model comparison was made to summarize the advantages of the data fusion modelling for 

predicting the diesel cold flow properties.  
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Compared to the individual models, the only property that showed a reduction in prediction error when using 

the low-level data fusion was the CP. For the other two properties, the prediction error reduction was 

negligible or even non-existent, i.e., the prediction error was higher in the low-level data fusion models than 

the individual models.   

Regarding the mid-level data fusion strategy, no improvement in any cold flow property's calibration error 

was observed when using the PCA scores as features extracted from each data block; on the contrary, all 

calibration errors are higher than the individual models. Similarly, no reduction in PP and CFPP prediction 

errors was observed. The only variable that shows a reduction in this error was the CP. In contrast to the PCA 

mid-level fusion model, using the PLS regression scores as features extracted from each data block, significant 

reductions in all errors (RMSEC, RMSECV, RMSEP) were obtained for all properties studied. The r² correlation 

coefficients of all properties were also improved using the PLS mid-level fusion model. In Figure 4 and Figure 

5, it can be observed that this mid-level model helps to reduce the effect that endpoints can have on the 

performance of the developed model.  

The high-level data fusion modelling yielded lower calibration, cross-validation, and prediction errors than 

the individual models. Compared to the PLS mid-level model, the cross-validation error for all properties is 

fairly similar; however, the calibration error for the CP and PP properties and the prediction error for all 3 

properties are higher in the high-level model. This is reflected in the squared coefficient of correlation, which 

is generally higher in the PLS mid-level fusion model.  

In summary, the developed model comparison shows that the PLS mid-level and high-level models are the 

two best-performing models for diesel cold flow properties prediction. The results obtained from the high-

level data fusion model are similar to those obtained with the PLS mid-level model; however, the latter 

presents greater stability in the errors, and it significantly reduces the negative impact that data endpoints 

can have on the model. 

Figure 3 - 5 show the parity plots for the individual, mid-level PLS, and high-level models developed, where 

the upper and lower limits of the reference methods are shown (red dotted lines) (PP ±6°C[4], CP ±4°C[5], 

±(3-0.06*CFPP)°C[6]).. These figures confirmed what was described in the previous paragraph, especially 

Figure 4 and Figure 5, where the improvement in upper endpoints prediction is observed, contributing to the 

prediction bias reduction, the r² coefficient increasing, and the model stability. This leads to the conclusion 

that the synergistic interaction between the two spectroscopic techniques (NIR and 13C NMR) is better 

captured by the information extracted in the PLS mid-level fusion model than in the high-level model.  
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Conclusions 
This article investigates the potential of three data fusion strategies (low-, mid-, and high-level) to improve 

the prediction of three of the most important diesel fuel properties known as cold flow properties (pour point 

(PP), cloud point (CP), and cold filter plugging point (CFPP)). The data fusion modelling potential evaluation 

was conducted by comparing 7 final models: 2 individual models, 2 low-level data fusion models, 2 mid-level 

models, and 1 high-level model. The models were developed using 2 data blocks (NIR & 13C NMR). 

The performance of the individual models (NIR and 13C NMR) is quite low in predicting diesel cold flow 

properties. The results of these models evidence the need to obtain more accurate predictions for these 

properties. Compared to these models, the low-level and mid-level data fusion using the PCA scores did not 

show significant improvements in the models' overall performance. Despite some punctual improvements in 

the errors and determination coefficients, there was a lack of stability and consistency in these models 

results. Based on the results analyzed, it can be determined that the use of these data fusion models, 

particularly the PCA mid-level model, is not desirable for predicting the diesel cold flow properties. 

In contrast, the PLS mid-level and high-level data fusion models showed significant improvements in both 

errors and squared correlation coefficients compared to the individual models. Although the results obtained 

from the high-level and mid-level PLS models are comparable, the latter better captures the complementary 

information of each spectroscopic technique in the modelling. This is evident in the stability of the models, 

as well as in the reduction of the impact that data endpoints of the studied properties may have. Therefore, 

mid-level data fusion using PLS scores is the best strategy for developing the diesel cold flow properties 

predictive models.    

The results demonstrated that the spectroscopic information from two different techniques could 

complement each other to improve the studied variables' behavior description. For the particular case of this 

study, it can be observed that the 13C NMR spectrum provides detailed and complementary information to 

the NIR spectra. Therefore, the data fusion of the two spectroscopic techniques employed in this study has 

potential use for fast and accurate properties prediction where errors of single models are higher than the 

reproducibility of the reference method. 

In this study, models for predicting the diesel cold flow properties were developed using spectroscopic 

information acquired on the total effluent obtained from the hydrocracking process. The results obtained 

from both the individual and the data fusion models allowed validating the feasibility of using spectroscopic 

information from one stream (NIR and 13C NMR of the hydrocracking total effluent) to predict 

physicochemical properties of another related stream (cold flow properties of the diesel cut without 

distillation of the total effluent). No data fusion model was found in the literature to predict diesel cold flow 

properties from spectroscopic information of the total effluent obtained from the hydrocracking process, 
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making this work the first one developed. 
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Abstract 
This study evaluates the potential of variable selection to improve the performance of data fusion between 

NIR spectroscopy information acquired on total effluent samples obtained from the hydrocracking process 

and their operating variables to estimate diesel cetane number. The evaluation conducted in this research 

was divided into four steps. First, predictive models were developed using each data block separately. Next, 

seven variable selection methods were applied on the NIR block, and eleven methods were applied on the 

process variable block. Then, with each data set generated from the variable selection analysis, single 

prediction models were generated and compared with those developed in the first step. Finally, data fusion 

was performed once the best variable selection method was defined for each data block. Two data fusion 

models were generated, a first using all the variables in the two blocks and a second using only the previously 

selected variables. In addition, the potential of the sequential and orthogonalized covariance selection (SO-

CovSel) method was also analyzed. The results showed that the data fusion modelling using all variables from 

each data block improves the estimation of the diesel cetane number compared to single models (about 20% 

reduction of the RMSEP). However, using variable selection analysis before data fusion significantly improves 

the estimation of this property and leads to greater model stability regarding the RMSE's and r²'s (about 47% 

of the RMSEP). The Covariance Selection (CovSel) method was the most efficient in the NIR data block, while 

for the process variable data block, it was the sequential backward floating feature selection method (SBFFS) 

that gave the best performance. The advantages offered by the variable selection resulted in having a more 

accurate prediction of the property and improving the analysis and understanding of the process by 

determining the variables that significantly impact the property studied. 

Keywords 
Variable selection, Near-Infrared (NIR), process variables, data fusion, hydrocracking, diesel fuel, cetane 
number. 
 

1. Introduction 
The increasing use of analytical techniques such as vibrational spectroscopy for the rapid estimation of 

petroleum properties and their cuts has enhanced to some degree the analysis of refining processes 

providing valuable insights in their investigation and contributing to identify improvement and optimization 

opportunities [1,2]. Moreover, spectral modelling has been used for process monitoring and real-time 

decision-making based on the estimation of product properties. Some examples can be found in biodiesel 
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production reaction monitoring [3], gasoline property estimation to optimize the blending process [4], 

gasoline-ethanol blend distillation process control [5], and advanced crude oil refining planning [6]. 

Another source of data used for property estimation and process monitoring is related to the 

physicochemical information of the streams involved in the process and its operating conditions [7]. 

Generally, the quality of the streams is obtained by using various standardized methods, while different 

process sensors collect the information concerning the process operation. The estimation of product 

properties used in the analysis and understanding of the process must be done reliably and accurately, 

allowing to consider the different changes that may occur in the process operation. In the oil refining industry, 

the process variables most frequently used in the analysis are pressure, flow rate, temperature, and the 

characteristics of the catalytic systems used in the conversion processes [2]. 

The extensive availability of information and the increasing methodologies development observed in the last 

decades for exploiting data from different sources (analytical techniques and process variables) 

simultaneously, have helped to address the continuous need to improve the accuracy and stability of 

predictive models in several research and application fields, including the oil & gas segment. The model 

performance improvement using this type of data exploitation, known as data fusion, relies mainly on how 

is performed the interaction between the information obtained from the different sources. The simplest form 

of interaction is generally referred to as low-level fusion and involves the direct concatenation of the 

information contained in each data block. Two additional fusion levels such as mid-level, which consists of 

concatenating the features extracted from a statistical analysis performed on the different data blocks, or 

high-level, which uses the decisions or results obtained from prediction models calibrated on each data block, 

can be used for the data blocks interaction [8].     

The application of data fusion has improved the properties estimation of both crude oil [9] and its cuts, 

particularly diesel [10,11]. However, studies in this area have mainly used information from spectroscopic 

techniques, such as infrared spectroscopy (IRS) and nuclear magnetic resonance (NMR). While the 

improvement in property estimation is evident, the performance of the models may be affected by the 

inherent variability of the processes. To overcome this drawback, the fusion of data related to the process 

operation and spectroscopic techniques is an alternative that is being used increasingly nowadays. Among 

the most recent works, de Oliveira et al. [12] using the mid-level data fusion strategy, evaluated the potential 

of using data simultaneously from process sensors and NIR spectra acquired on the product for process 

monitoring and control in three case studies ("Fluidized bed drying of pharmaceutical granules"," Polyester 

production process", and "Automated benchtop batch gasoline distillation") . In addition, Strani et al. [13] 

used data fusion between two sets of NIR spectra acquired on process streams and process operating 

variables to monitor polymer production. In these studies, the simultaneous and synergic use of 

heterogeneous data improved the monitoring and control of the analyzed processes.  
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The advantages of using process and analytical information simultaneously are straightforward. Nonetheless, 

using too many variables is risky and can lead to deteriorate the model performances, especially if a few 

samples are available. Some attention must be paid in this case, and a solution is to remove the information 

which does not provide an adequate description of the analyzed property behavior. Therefore, the 

determination of the most relevant descriptors is an important task in the optimization of the process 

analysis. This task, known as variable selection, can be implemented either for cost reduction in data 

acquisition (design and selection of sensors), for optimization of machine consumption, or for model 

optimization (accuracy or stability). An intrinsic advantage of performing variable selection is a better 

understanding of the interaction between the independent variables and the estimated property, leading to 

a better understanding of the evaluated process and its potential optimization.  

Various variable selection methods in the literature can be applied to highly multivariate data sets, such as 

NIR spectroscopy, and to data sets consisting of process variables. Several studies can be found summarizing 

the best known and most widely used chemometric variable selection methods [14–17], highlighting Variable 

Importance in Projection (VIP) [18], Selectivity Ratio (SR) [19], interval PLS (iPLS) [20], and the Genetic 

Algorithms (GA) [21]. Some of the most recent developments in variable selection analysis on highly 

multivariate information are the works developed by Roger et al., [22] and Biaconlillo et al., [23]. They 

proposed two variable selection methods known as Covariance Selection (CovSel) and Sequential and 

Orthogonalized CovSel (SO-CovSel), respectively. The fundamental principle of both methods is the same. It 

consists in eliminating the collinear information linked to the independent variables (identified in each 

iteration of the method) that have a maximum covariance relationship with the response variable. The main 

difference between the proposed methods lies in the type of modelling applied, either single block (where 

CovSel is applied) or multi-block (where SO-CovSel is applied). 

Variable selection on highly multivariate data has a wide range of applications and can be found in the fields 

of medicine [24], microbiology [25], food [26,27], and pharmaceuticals [28]. In the fuel domain, Villar et al. 

[29] evaluated the potential of the Martens uncertainty test, iPLS, and GA methods in selecting variables for 

the development of predictive models from Vis-NIR spectra acquired in marine diesel engine lubricating oil 

samples. They determined that when using the retained variables identified with the iPLS method (261/351), 

the online monitoring of the oil quality was improved. 

Two more recent studies using variable selection to determine the quality of diesel fuel are worth 

mentioning. Nespeca et al. [30] evaluated the potential of three variable selection methods (Forward-iPLS, 

Backward iPLS, GA) applied on ATR-FTIR analysis performed on diesel samples to identify the variables that 

best described 8 properties of this fuel (density, flash point, sulfur content, cetane number, biodiesel content, 

and simulated distillation temperatures range to obtain 10%, 50% and 85% of sample distillate, T5, T50, and 

T85 respectively). With a similar performance of the three methods evaluated, the selection of variables 
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provided a more accurate description of the variables studied, except for T85. Shukla et al. [31] evaluated 

four variable selection methods (LASSO, correlation coefficient, Mallow's Cp criterion, Relative sensitivity 

ratio) applied on NIR spectra to improve the prediction of six diesel properties (cetane number, boiling point, 

freezing point, total aromatic content, viscosity and density), with the LASSO method showing the best 

performance. 

Concerning the analysis of variable selection in a block of low univariate data, a study developed by 

Desboulets [32] describing the methods and its applications can be found. Among the methods that have 

shown better performance, the Least Absolute Shrinkage and Selection Operator (LASSO) [33], Recursive 

Feature Elimination (RFE)[34], and the sequential feature selection (SFS) [35], along with its variant the 

sequential floating feature selection method (SFFS) [36], can be highlighted.  

The different studies for improving the estimation of final product properties and optimizing process 

monitoring reported in the literature and analyzed in this study can be classified into two approaches: fusion 

of analytical data and process variables, and variable selection. Taking into account this context and seeking 

to take advantage of the full potential of these two approaches, in this paper was analyzed a combined 

approach not reported in the literature related to fuel characterization. In summary, this study investigated 

the impact of different variable selection methods on the performance of data fusion models between the 

NIR spectra acquired on the total effluent obtained from the hydrocracking (HCK) process and the variables 

involved in this process for estimating the diesel cetane number. The work presented in this article was 

divided in three main steps, (i) the single modelling using each data block, (ii) the variable selection applied 

on the high and low multivariate blocks, and (iii) the data fusion. More information on the context of 

predicting the diesel cetane number from the analytical information of the total effluent can be found in [2].      

2. Materials and methods 
In this study, three different data sets were considered: HCK process information collected from laboratory 

analysis and process conditions, NIR spectra acquired the HCK total effluent samples, and cetane number 

measured on the diesel samples recovered from the distillation of the above-mentioned total effluent 

samples. This section details the source of these three data sets.  

2.1 Hydrocracking process information 

The first set of data consolidated was related to the HCK process operation. In this study, 53 variables, split 

in 3 groups, regarding the HCK process were collected from 64 experimental tests conducted at IFPEN HCK 

pilot plants in Solaize, France: (1) 23 are related to the quality of the feedstock, (2) 14 to the operational 

conditions, and (3) 16 to the total effluent characteristics. Table App 1 to Table App 3, provided as 

supplementary information in the appendix section, show the detail of each group and four statistical 

parameters calculated from the information gathered on these variables. It is important to highlight that in 
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Table App 2 the information regarding the catalytic system used was coded to respect the confidentiality 

agreements related to this type of information. 

2.2 NIR spectra  
From the experimental tests conducted in the HCK pilot plants at IFPEN under the different operating 

conditions summarized in Table App 2 and involving different catalytic systems, 64 total effluent samples 

were obtained by processing 13 different vacuum gasoils (VGO). Table App 3 shows the variability of the total 

effluent samples analyzed in this study. The NIR spectra employed in this study were acquired on the total 

effluent samples, which before acquisition were heated in a water bath at 60°C in a closed flask for one hour 

and then manually shaken to ensure their liquid state and homogeneity. The NIR spectra acquisition was 

conducted using a NIRS XDS Process Analyzer (Metrohm, Villebon - France) spectrometer, recording 

wavelengths from 800 - 2200 nm with a resolution of 0.5 nm. The immersion probe used was a reflectance 

Falcata Lab6 (Hellma GmbH & Co. KG, Müllheim – Germany) with an optical path fixed at 2 mm. Each final 

spectrum was the average of 32 scans performed on each sample. The software used with the spectrometer 

was VISION (Metrohm, Villebon - France). 

Buendia Garcia et al. [2] validated and established that the region of the total effluent NIR spectrum providing 

the most descriptive information to predict the diesel cetane number is between 1110 and 2200 nm. 

Therefore, in this study, it was employed the same spectral region.  

2.3 Cetane number 
The diesel samples on which the cetane number was measured were recovered by atmospheric distillation 

of each of the 64 total effluents using the ASTM D2892-20 standard [37]. In other words, 64 diesel samples 

corresponding to the total effluents described previously were used in this study. The cetane number was 

measured on the diesel samples using an internal method developed in the IFPEN validated against the ASTM 

D613 standard method [38]. Table App 4 in the appendix section summarizes the general statistical 

information of this property, as well as of the density [39], and the simulated distillation temperatures range 

to obtain both 5% and 95% of sample distillate (Simulated Distillation T5 and T95) [40]. 

2.4 Modelling 
For purposes of this study, two main data blocks were used; the NIR data block, identified in the study as 

Mx1 and having a size of [64 X 2180], and the process variables data block identified as Mx2 and having a size 

of [64 X 53]. In addition, the dependent variable matrix (My) was built with the respective measured diesel 

cetane number.   

After consolidating each data block, they were split into the calibration and test sub-datasets using the 

Kennard and Stone (KS) algorithm [41] applied on the NIR block. The calibration sub-set (70% samples) was 

used both in model creation and cross-validation, and the independent test sub-set (30% samples) was used 

in the performance evaluation of the developed models. In this study, the calibration and test sub-datasets 



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 4  

  

 

used in developing all models were the same.  

Before model calibration, the two data blocks were preprocessed either to correct and remove information 

not related to the chemical nature of the sample, as in the case of the NIR block, or to reduce the impact that 

the difference in scale of the variables may have on the data analysis, as in the case of the process data block. 

The NIR data block was preprocessed using the variable sorting for normalization (VSN) method [42], 

followed by the Savitzky-Golay first derivative using a 25-point window and a first-order polynomial 

(SavGol[25,1,1]) [43], and a column-wise data centering (mean center). Regarding the process variable data 

block, it should be highlighted that the source of information for each variable is diverse, resulting in different 

units of measurement and different scales. Therefore, to avoid that each variable impact on the model was 

governed by its scale rather than by its true contribution to the property description, this data block was 

scaled by subtracting the mean of each variable and then dividing each variable by its standard deviation.  

The first step was to create single models for diesel cetane number estimation using each data block 

separately. The regression method used for the NIR data block was partial least squares (PLS), while the 

multiple linear regression (MLR) method was used for the process variable data block. The root mean squared 

errors of calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) were calculated for 

subsequent model performance evaluation. The RMSECV was used as the main criterion for defining the 

number of latent variables retained in the PLS model. These single models were defined as a reference for 

comparison with the models developed when applying the variable selection analysis.   

The next step was implementing different variable selection methods on each data block. As summarized in 

Table App 5, seven different strategies were employed on the matrix Mx1 (NIR spectra). The RMSEC, RMSECV, 

and RMSEP, calculated on the different PLS models (MLR model for the CovSel method) developed from the 

datasets generated with each variable selection method implementation, were used to evaluate the 

performance of the different variable selection strategies. Moreover, the respective squared correlation 

coefficients between actual and predicted values (r²C, r²CV, r²P) complemented the evaluation. Similarly, 11 

different variable selection strategies, summarized in Table App 6, were applied on the matrix Mx2 (process 

variables). The best performing variable selection method was determined using the same evaluation criteria 

but calculated from a multiple linear regression (MLR) model. 

Once the most descriptive variables for each data block were identified using the adequate variable selection 

method, two data fusion models were developed using the high-level strategy [44] with the cetane number 

predicted from each block as the decision to fuse. The two models were developed using the data blocks with 

and without variable selection. Finally, the SO-CovSel method was evaluated. This method was proposed as 

a multi-block algorithm for variable selection and aimed to perform a more accurate selection of the 

descriptive variables of each data block by capturing their interaction. These three final models were 
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compared using the same six statistical criteria described before.  

The models and variable selection analysis were performed using the PLS_Toolbox V.8.8 (Eigenvector 

Research Inc. Wenatchee, WA, USA), MATLAB V.2019b (The MathWorks, Inc., Natick, MA, USA), and Python 

V3.6.   

3. Results and discussion 
Figure 1a shows the NIR raw spectra, while Figure 1b shows the preprocessed data. From Figure 1b, the four 

most influential zones containing the chemical information that best describes the behavior of the 

hydrocarbon molecules present in the samples can be observed [45,46]. Concerning the process information 

data set, an example of the difference in the scale of these variables that could impact the evaluation of the 

different variable methods is shown in Figure 2a, where three properties of the feedstock (density, initial 

boiling point (IBP), and nitrogen content) are compared. After preprocessing this data block (autoscale) it can 

be observed that the variables scale is comparable (Figure 2b). 

a) b)  

Figure 1. NIR spectra comparison. a) Raw signal, b) preprocessed signal (VSN+SavGol[25,1,1]) 

a) b)  

Figure 2. Process data comparison. a) Raw data, b) preprocessed data (auto scale) 
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3.1 Single modelling 
From the matrix Mx1, a PLS model of 5 latent variables (LVs) was developed, capturing 99% and 97% of the 

explained variance of the x and y matrices, respectively. In general, this model allows estimating the diesel 

cetane number reliably in a range of 35.1-67.9 from the NIR spectra of the total effluent, having errors close 

to and even lower than the reproducibility of the reference method (±3.6) (RMSEC = 1.6, RMSECV = 2.0, 

RMSEP = 1.9). Nevertheless, a detailed analysis of the model performance shows that four samples, three 

corresponding to the calibration set and 1 to the test set, are predicted outside the confidence limits 

presenting errors in the prediction up to 1.5 times the reproducibility of the reference method (see Figure 

9a). 

To confirm whether the four poorly predicted samples are outliers, the Q residual and Hotelling T² analysis 

applied to the calibration and test data sets was conducted. Figure 3 shows that all four samples (red color) 

are within the thresholds of the two analyses confirming their non-outlier condition. After discarding the 

outlier character of these samples in the model, a more detailed analysis was performed on the operating 

conditions for obtaining the total effluent and the acquisition of the NIR spectra, resulting in not finding any 

particular explanation for the anomalous behavior of these samples. This suggests that the model may not 

fully capture the descriptive information of the samples NIR spectra to predict them correctly. 

 

Figure 3. Reduced Q residual and Hotelling T² analysis using a 5 LVs PLS model 

The second single model generated was from the Mx2 matrix. The MLR model obtained presents an RMSEP 

(1.8) close to the one obtained with the PLS model using the Mx1. However, the RMSEP/RMSEC ratio (4.5) is 

quite high, indicating the possible overfitting of the model. This can be seen in Figure 9b, where an almost 

perfect prediction is observed for the calibration dataset (r²C = 0.998), while the prediction of the test set 

samples presents a higher scatter (r²P = 0.955). The notion of a possible model overtraining is strengthened 

when the RMSECV (3.8) is included in the analysis. For this reason, the use of this model should be done 

cautiously. 
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An interesting finding in the analysis of this MLR model is that one of the samples of the test dataset that the 

single NIR model predicted outside the reproducibility limits is now predicted within these limits. However, 

the MLR model predicts a sample outside the same limits correctly estimated in the individual NIR model. 

This leads to assume that the information contained in the two data sets could complement each other for 

better accuracy in the diesel cetane number estimation. 

The final comparison table reports detailed information of the two single models developed (see Table 4).  

3.2 Variable selection analysis on NIR data block 
The different variable selection methods, along with their application parameters summarized in Table App 

5, were applied to the calibration data set of the Mx1. Table 1 shows the statistical parameters calculated for 

evaluating each model performance, while the Figure 4 summarizes the number of variables selected by each 

method. In addition, as described in the materials and methods section, PLS models were developed from 

the different groups of selected variables (MLR for the CovSel method) and then applied on the test data set 

to evaluate the effectiveness of each selection method in defining the most descriptive variables. The 

evaluation parameters of these models (errors and squared correlation coefficients) are also summarized in 

Table 1.  

Table 1. Results summary of variable selection methods applied on NIR data block  

 Models description 

Method Model LVs RMSEC r²C RMSECV r²CV RMSEP r²P 

VIP 

PLS 

5 1.7 0.986 2.0 0.955 1.9 0.951 

SR 5 1.7 0.968 2.0 0.955 1.9 0.951 

GA 5 1.4 0.976 1.8 0.962 1.9 0.950 

F-iPLS 8 1.3 0.981 1.8 0.962 2.0 0.951 

B-iPLS 5 1.6 0.970 1.9 0.960 1.9 0.954 

rPLS 4 1.6 0.971 1.8 0.964 1.9 0.956 

CovSel MLR - 0.8 0.993 1.5 0.975 1.4 0.976 

 

Figure 4. Comparison of the number of selected variables in the NIR data block by each method   
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Figure 5 graphically shows the performance comparison of the different models developed. Compared to the 

single model using all NIR variables, this figure indicates that the performance of the different PLS models 

obtained with the selected variables is quite close regarding the RMSE's and their respective r²'s. 

Nevertheless, the reduction in the number of variables to be used is evident, especially with the GA, F-iPLS, 

and rPLS methods (See Figure 4). Although a significant improvement in the estimation of the studied 

property was not achieved, the selection of variables helps to identify the wavelengths of the NIR spectra 

acquired on the total effluent that best describe the behavior of the diesel cetane number, which could lead 

to cost optimization in acquiring the data.  

Compared to the analyzed methods for selecting variables on the present dataset, CovSel outperforms the 

others, since, with an optimal selection of the number of variables to be used (18), it is the one that exhibits 

the lowest RMSECV and RMSEP, reflected in the improvement of the r²CV and r²P. Figure 9c shows the 

improvement in the estimation of the diesel cetane number by correctly predicting the three samples of the 

calibration dataset that the NIR model developed using all variables estimated outside the reproducibility 

limits of the reference method. However, this improvement is not reflected in the test set sample initially 

estimated outside these limits, corroborating the possible lack of descriptive information that the PLS model 

cannot capture from the NIR spectra. 

a) b)  

Figure 5. Performance comparison of variable selection methods applied on NIR data block. a) model errors, red dotted line  
reproducibility of the reference method (3.6). b) model squared correlation coefficients  

In order to evaluate the coherence of the variables selected by the CovSel method, they were identified along 

the NIR spectrum acquired on one of the total effluent samples used in this study. From Figure 6, it can be 

observed that 12 of the selected variables are located in the spectral region corresponding to the first 

overtone bands of -CH stretch in -CH2 and -CH3 (1600-1900 nm), while the other six variables are located in 

the region corresponding to the combination absorption bands of -CH stretching bonds and C=C stretching 

bonds in the aromatic ring (2100-2200 nm). Analyzing the MLR model in detail, it was found that the group 

of the 12 variables identified in the region between 1600-1900 nm contributes 80% of the weight in the 

estimation of the diesel cetane number. Therefore, if it is considered that the amount and interaction of 
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linear hydrocarbons compounds ([CH3-(CH2)n-CH3]) directly impacts the behavior of the cetane number 221, 

the variables selected by the CovSel method are meaningful and validate their consistency.   

 

Figure 6. CovSel selected variables identification over an average NIR spectrum acquired on a total effluent sample  

3.3 Variable selection analysis on process variables data block 
For the variable selection analysis applied in Mx2, the 11 methods summarized in Table App 6 were used. 

The performance of the different methods evaluated was assessed based on the RMSE's and r²'s calculated 

for the different MLR models developed from the groups of the selected variables. Table 2 shows the results 

obtained in this evaluation, while Figure 7 shows the number of variables selected by each method.  

Table 2 Results summary of variable selection methods applied on process variables data block 

 Models description 

Method RMSEC r²C RMSECV r²CV RMSEP r²P 

VIP 0.5 0.997 3.7 0.670 2.0 0.946 

SR 0.4 0.998 3.8 0.862 1.8 0.955 

LASSO 1.8 0.964 2.5 0.927 2.0 0.944 

GA 1.2 0.983 1.6 0.971 2.2 0.929 

RFE 1.3 0.981 1.7 0.910 1.9 0.960 

XGBoost_FS 1.6 0.971 2.4 0.933 1.7 0.960 

SFS 2.5 0.931 3.4 0.868 2.5 0.935 

SBS 1.5 0.974 3.2 0.890 1.8 0.963 

SFFFS 1.1 0.987 1.7 0.965 1.5 0.970 

SBFFS 1.4 0.978 1.7 0.969 1.1 0.984 

CovSel 0.5 0.997 2.9 0.914 1.6 0.968 
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Figure 7. Comparison of the number of selected variables in the process information data block by each method   

Analogously to the analysis done on the NIR block, Figure 8 shows the performance of the different MLR 

models developed according to the RMSEs and r²s. The first issue that stands out is the ineffectiveness of the 

VIP and SR methods in selecting variables when analyzing this type of data, as they provide a small reduction 

of variables employed, or none at all as in the case of SR. The other methods show greater efficiency in the 

variable selection procedure, reflected in the improved stability of the errors, particularly the RMSECV. Out 

of these methods, GA, RFE, SFFFS, and SBFFS stand out. With 22 selected variables, the SBFFS method has 

the best performance. Besides presenting the highest accuracy in estimating the diesel cetane number, the 

variables identified with this method allow having the lowest RMSEP and the highest R²P.  

Interestingly, the high efficiency in variable selection shown by the CovSel method on the NIR data block is 

not observed when applied to the process variable data block. This could be attributed to the premise that 

the principle of this method was based on highly multivariate data, limiting its performance on less 

multivariate data.    

a)  b)  

Figure 8. Performance comparison of variable selection methods applied on process variables data block. a) model errors, red dotted 
line  reproducibility of the reference method (3.6). b) model squared correlation coefficients  
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When thoroughly analyzing the performance of the MLR model developed from the 22 variables selected by 

the SBFFS method, it was possible to verify the improvement in the estimation of the cetane number in new 

samples by predicting within the reproducibility limits all the samples corresponding to the test data set. 

However, one sample from the calibration data set is predicted outside these limits (See Figure 9d).  

The variables selected by the SBFFS method, summarized in Table 3, were analyzed to determine their 

relationship with the diesel cetane number. It should be emphasized that 50% of the selected variables 

correspond to the total effluent. These variables can be summarized as density, refractive index, and 

simulated distillation. An analysis of the MLR model determined that these 11 variables represent 67% of the 

weight in the model, being the density and the refractive index the most significant contributors. A general 

analysis can illustrate their consistent relationship with the cetane number. Firstly, the simulated distillation 

provides information about the diesel volume to be recovered (also known as diesel conversion). Secondly, 

the density and refractive index supply information about the interaction of the linear chains and aromatic 

compounds contained in the sample [47,48]. 

Regarding the variables selected concerning the operating conditions, they contribute to 18% of the weight 

in the model, being the reaction temperature in the HDT reactor and the catalyst of the HCK stage the most 

important contributors to the explanation of the diesel cetane number behavior. Once again, the coherence 

between the selected variables and the studied property can be verified since is in the HCK stage where the 

reactions for cracking the long-chain molecules occur leading to the generation of hydrogenated linear chains 

of smaller size. These short-chain molecules generated impact the cetane number directly. Finally, the 

remaining 15% of the model weight is given by the quality of the feedstock, where the paraffinic carbon 

content and the simulated distillation are the most informative variables.     

3.4 Data fusion modelling 
Aiming to evaluate the contribution of the variable selection in the synergic use of the two data blocks for 

estimating the cetane number, two data fusion models were generated using the high-level strategy with the 

cetane number predicted from each block as the decision to fuse. Table 4 presents the description of the 

models developed, while Figure 9 shows the comparative analysis of these models.  

The first model was calibrated using all the variables of the two data blocks to determine the data fusion 

decision. In addition, the possible combinations of latent variables in the PLS model from the Mx1 matrix 

with the MLR model from the Mx2 matrix were tested in this first model. Compared to the individual model 

of the NIR block using all variables (information summarized in Table 4), this first data fusion model reduces 

the RMSECV and RMSEP by about 50% and 20%, respectively. Concerning the individual model of the process 

variable block, the errors are improved by about 74% and 15%. The resulting performance improvement of 

the model due to data fusion is also reflected in the r²C and r²P. However, although a significant reduction in 
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the prediction error of the samples corresponding to the test data set is achieved, a sample is still not 

estimated within the reproducibility limits (see Figure 9e). This can be attributed to the use of redundant or 

uninformative information in the development of the model, a limitation that can be addressed with the 

proper selection of each data block descriptors. 

Table 3. Results summary of variable selection methods applied on process variables data block 

Process group source Variable 

Feedstock 

Nitrogen (ppm) 

Paraffinic carbon (%wt) 

Initial Boiling Point (°C) 

SimDis T40(°C) 

SimDis T70(°C) 

SimDis T95(°C) 

Final Boiling Point (°C) 

Operating conditions 

Pressure (bar) 

Temperature R1 (°C) 

HDT Catalyst . Parameter 1 

HCK Catalyst. Parameter 2 

Total effluent 

Density (g/ml) 

Refractive Index 

SimDis T5(°C) 

SimDis T10(°C) 

SimDis T30(°C) 

SimDis T50(°C) 

SimDis T60(°C) 

SimDis T80(°C) 

SimDis T90(°C) 

SimDis T95(°C) 

Final Boiling Point (°C) 

 

Table 4. Results summary of single and data fusion models 

Model 
type 

Data block 
Variable 
selection 
method 

Variables 
used 

Model RMSEC r²C RMSECV r²CV RMSEP r²P 

Single 

NIR 
- 2180 

PLS 
(5 LV's) 

1.6 0.969 2.0 0.954 1.9 0.947 

CovSel 18 

MLR 

0.8 0.993 1.5 0.975 1.4 0.976 

Process 
variables 
(ProVar) 

- 53 0.5 0.998 3.8 0.862 1.8 0.955 

SBFS 22 1.4 0.978 1.7 0.969 1.1 0.984 

Data 
fusion 

NIR + Provar 

- 
2*  

[2180+53] 

MLR** 
[PLS+MLR] 1.0 0.989 1.0 0.988 1.5 0.972 

CovSel-SBFS 
2*  

[18+22] 
MLR** 

[MLR+MLR] 
0.6 0.981 0.7 0.995 0.9 0.988 

* The two variables are the cetane number predicted from each data block as the decision to fuse 
** The MLR model was developed from the cetane number predicted from each data block 
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The second data fusion model was developed using only the variables selected in each data block, i.e., 18 

variables from the NIR block identified with the CovSel method and 22 descriptors from the process 

information block defined with the SBFS method. This data fusion model presents an outstanding 

performance by reducing around 67% and 47% the RMSECV and RMSEP compared to the individual NIR 

model, estimating all the samples of both the calibration and test datasets within the reproducibility limits 

(see Figure 9f). In addition, the model presents higher stability regarding the RMSE's and the r²'s. Analyzing 

the performance of the two data fusion models, the importance of the identification and selection of 

variables that best describe the studied property is evident.    

      
a)                    b)           c)             d)  e)      f) 
Figure 9. Parity plot for model performance comparison. a) PLS model using all variables from Mx1, b) MLR model using all variables 
from Mx2, c) MLR model using selected variables from Mx1, d) MLR model using selected variables from Mx2, e) Data fusion model 

using all variables from Mx1 & Mx2, f) Data fusion model using selected variables from Mx1 & Mx2. Circle shape  calibration 
samples, diamond shape  test samples 

The results shown in this study suggest that the selection of most descriptive variables and the method used 

to do so have a significant impact in optimizing the performance of the data fusion model. Therefore, it was 

desired to evaluate the SO-CovSel method, whose objective is focused on the variable selection in multi-

block modelling. Using a MATLAB script developed by Federico Marini [23] which applying the SO-CovSel 

concept evaluates different combinations of variables between the two data blocks selecting the best 

combination based on the RMSECV of the final orthogonalized model, it was possible to construct the error 

plot shown in Figure 10. In this figure, it can be observed that the best-performing model is obtained using 

seven variables in total (5 from the Mx1 and 2 from the Mx2) having RMSEC, RMSECV, and RMSEP of 1.4, 2.3 

and 3.1, respectively. Compared to the individual and data fusion models with variable selection, the model 

developed by the SO-CovSel method shows no improvement in estimating the diesel cetane number, having 

higher RMSEP. However, it should be noted that the RMSE's are still below the reproducibility limit of the 

reference method using only seven variables. In the scenario where the main objective of the variable 

selection was the costs optimization in the information acquisition process rather than the improvement of 

the estimation of the studied property, the SO-CovSel presents great effectiveness in identifying the 

descriptors allowing an estimation with errors close to the reference method. Furthermore, the possible 

limited performance of the SO-CovSel method shown in this study could be attributed to the low multivariate 

nature of the Mx2, as previously evidenced by the application of the CovSel method on this data block. 
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Figure 10. SO-CovSel model RMSE's trend 

Conclusions 
This study evaluated the contribution of variable selection analysis in improving NIR and process information 

data fusion model performance in predicting diesel cetane number. The evaluation was conducted applying 

seven variable selection methods on the NIR block and eleven methods on the process variable block before 

data fusion modelling. In addition, the potential of the SO-CovSel multi-block variable selection method was 

also analyzed.    

The data fusion modelling using all variables from each data block improves the estimation of the diesel 

cetane number compared to single models. However, using variable selection analysis before data fusion 

significantly improves the estimation of this property and leads to greater model stability regarding the 

RMSE's and r²'s.  

The CovSel method for variable selection exhibited a remarkable performance when applied to the NIR data 

block. Compared to the other methods evaluated on this block, CovSel achieved the highest optimization in 

the number of identified variables that best explained the property behavior, resulting in a better estimation. 

However, the performance of this method was not as good when applied to the data block of process 

variables. Considering that the CovSel method was developed primarily for highly multivariate data, its 

effectiveness could be affected by a less multivariate data set, such as the process variables information. For 

this dataset, the method that presented the best performance was the SBFS.  

The multi-block variable selection method SO-CovSel did not improve the estimation of the studied property. 

Adopting the CovSel method as the underlying multi-block modelling algorithm, the limited performance of 

SO-CovSel could be attributed to the low multivariate nature of the process variable data block. However, 

when compared to the reference method used for cetane number measurement, the SO-CovSel method 

provides estimates with errors close to its reproducibility using a minimum number of variables. This could 

potentially lead to an optimization of data acquisition costs. 
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The results from this study highlight the great impact that variable selection can have in improving the 

estimation of diesel cetane number and understanding the parameters affecting the behavior of this 

property. Furthermore, the advantage offered by this analysis could be resulted not only in having a more 

accurate prediction but also in optimizing the process analysis and the resources required for data 

acquisition. 
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Table App 4.1. Summary of the variability of the properties measured on the HCK process feedstocks 

   Property Standard Method Minimum Maximum Mean Standard deviation 

Density (g/mL) 
ASTM S1218-12 [39] 

0.85 0.98 0.91 0.027 

Refractive index 1.44 1.53 1.48 0.020 

Viscosity @ 70°C (cSt) 
ASTM D445-97 [49] 

3.0 20.6 8.2 2.96 

Viscosity @ 100°C (cSt) 6.1 75.9 20.8 11.22 

Sulphur (wt%) ISO 20846, 2011 [50] 7E-04 3.5 1.1 1.08 

Nitrogen (ppm) 
ASTM D5291, 2007 [51] 

2.2 4825.0 1160.9 1143.79 

Hydrogen (wt%) 10.6 13.8 12.5 0.74 

Aromatic Carbon (wt%) 

ASTM D3238-95, 2000 [52] 

4.4 36.0 15.5 7.45 

Paraffinic Carbon (wt%) 43.1 71.6 57.1 5.33 

Naphtenic Carbon (wt%) 8.3 56.9 28.1 9.69 

SimDis IBP(°C) 

ASTM D7213-15,2015 [53] 

68 358 228 91.1 

SimDis T5(°C) 122 404 324 56.5 

SimDis T10(°C) 160 415 357 43.5 

SimDis T20(°C) 216 436 391 33.6 

SimDis T30(°C) 269 450 412 28.4 

SimDis T40(°C) 323 466 429 25.0 

SimDis T50(°C) 369 480 445 21.8 

SimDis T60(°C) 390 498 462 20.4 

SimDis T70(°C) 409 515 480 19.2 

SimDis T80(°C) 433 537 501 19.2 

SimDis T90(°C) 466 563 529 18.7 

SimDis T95(°C) 493 606 552 17.0 

SimDis FBP(°C) 558 686 611 17.9 
SimDis = Simulated Distillation 
IBP = Initial Boiling Point 
T5-T95 = Temperature to recover 5%-95% of distilled sample 
FBP = Final Boiling Point 

Table App 4.2. Summary of the variability of the HCK process operating conditions 

Parameter Minimum Maximum Mean Standard deviation 

Pressure (bar) 30 160 121 29.67 

Temperature R1 (°C) 350 415 385 14.6 

Temperature R2 (°C) 370 420 392 13.1 

LHSV (s-1) 0.4 4.0 1.6 0.97 

HDT catalyst Parameters CHDT1, CHDT2, CHDT3, CHDT4, CHDT5  

HCK catalyst Parameters CHCK1, CHCK2, CHCK3, CHCK4, CHCK5 
LHSV = Liquid Hourly Space Velocity 
HDT = Hydrotreating 
HDT = Hydrocracking 
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Table App 4.3. Summary of the variability of the HCK process total effluents 

Property Standard method Minimum Maximum Mean Standard deviation 

Density (g/mL) 
ASTM D1218-12 [39] 

0.79 0.94 0.86 0.040 

Refractive index 1.27 1.50 1.46 0.029 

SimDis IBP(°C) 

ASTM D2887-19ae2 
[40] 

60 280 120 46.8 

SimDis T5(°C) 69 376 207 89.5 

SimDis T10(°C) 90 401 243 95.8 

SimDis T20(°C) 118 426 285 95.8 

SimDis T30(°C) 145 442 316 92.4 

SimDis T40(°C) 169 457 343 87.1 

SimDis T50(°C) 194 472 369 80.7 

SimDis T60(°C) 220 489 395 73.0 

SimDis T70(°C) 251 507 422 64.9 

SimDis T80(°C) 283 529 452 55.9 

SimDis T90(°C) 329 554 488 46.7 

SimDis T95(°C) 367 585 516 41.3 

SimDis FBP(°C) 472 661 581 27.8 

Conversion 370°C+ Calculated from SimDis 3.4 96.0 38.7 28.20 

Table App 4.4. General statistical information of the cetane number estimated on 64 diesel samples obtained from the 
hydrocracking process. 

  Méthod Minimum Maximum Mean Standard Deviation 

Cetane number IFPEN  35.1 67.9 53.0 9.17 

Density (g/mL) ASTM D1218-12 0.82 0.91 0.86 0.029 

SimDis T5 (°C) ASTM D2887-19 112 253.7 208.5 27.6 

SimDis T95 (°C) ASTM D2887-19 246 431 367 14.3 

Table App 4.5. Variable selection methods applied on the NIR data block 

Method Acronym Parameters 

Variable Importance in Projection [18] VIP 
Automatic 

Selectivity Ratio [19] SR  

Genetic Algorithm [21] GA  
Windowwidth = 50, mutation rate = 0.005, 30% 
initial terms, Convergence = 50% Algorithm = PLS 
(20LVs), 15 runs 

Forward interval PLS [20] 
iPLS  
(Forward & Backward) 

Interval size [25,50,100,200] 

recursive PLS [54] rPLS  Max. interation = 500, Max. LVs = 20 

Covariance Selection [22] CovSel  Features tuning [1-44] 
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Table App 4.6. Variable selection methods applied on the process variables data block 

Method Acronym Parameters 

Variable Importance in Projection VIP 
Automatic feature selection 

Selectivity Ratio SR 

Least Absolute Shrinkage and Selection Operator 
[33] 

LASSO 
Alpha tuning  
[0.01,0.07,0.05, 0.1, 1,2, 3, 5, 10] 

Genetic Algorithm GA  

Windowwidth = 1,  
mutation rate = 0.005, 30% initial 
terms, Convergence = 50%  
Algorithm = MLR, 15 runs 

Recursive Feature Elimination 
[34] 

RFE Features tuning [9-22] 

eXtreme Gradient Boosting Feature Selection 
[55] 

XGBoost_FS 
Algorithm = gblinear, automatic 
feature selection 

Sequential Feature Selection 
[35] 

SFS 
(Forward & Backward) 

Algorithm = MLR, automatic feature 
selection 

Sequential Floating Feature Selection 
[36] 

SFFS  
(Forward & Backward) 

 

Covariance Selection CovSel Features tuning [1-44] 
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Abstract 
The accuracy of NIR models for predicting cetane number can be affected by external parameters related to 

spectrum acquisition. In this article, robust modelling to address this problem is investigated. This study 

evaluated the effectiveness of the external parameter orthogonalization (EPO) and dynamic orthogonal 

projection (DOP) methods in simultaneously correcting the impact of different external parameters affecting 

the performance of a NIR model for predicting diesel cetane number from spectra acquired on the 

hydrocracking (HCK) process total effluent. The impact of two types of optical instruments (probe and flow 

cell), two optical lengths (1 and 2 mm), four sample temperature levels (60°C – 90°C), and the effects caused 

by dynamic acquisition were analyzed using 444 spectra acquired on 129 samples. A reference partial least 

squares (PLS) model was developed using the spectra acquired at steady and constant conditions. Then a first 

model orthogonalization was conducted by applying the EPO method. As a result, the RMSEP was reduced 

by 76%. However, the effect caused by dynamic acquisition was slightly corrected. By applying a synergic 

orthogonalization using the DOP and EPO methods integrated, it was possible to obtain a robust model with 

RMSEP values (2.1) below the reproducibility of the reference method and reducing the bias caused by the 

external parameters by 99%. The robust modelling investigated in this study can be applied to estimating 

other diesel properties and characterizing other fuel products. In addition to the model robustness achieved, 

orthogonalization methods have a great advantage because no further processing or transformation of the 

new spectra is required, facilitating future model maintenance over time. 

Keywords 
Orthogonalization, Near-Infrared (NIR), robustness, external parameters, hydrocracking total effluent, diesel 
fuel, cetane number. 

 
1. Introduction 
Near-infrared spectroscopy (NIR) is a fast and non-destructive analytical technique requiring minimal sample 

preparation that has been widely used in the last decades in the energy sector as an efficient alternative in 

the estimation of properties of crude oil [1], fuels [2–5], and biofuels [6–8] with errors close to the 

reproducibility of the standard reference methods. 
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The recent advances in the chemometrics domain have contributed to the recent growth in using NIR 

spectroscopy for developing more accurate predictive models. However, one of the main challenges 

encountered is to achieve the model robustness, defined as the ability to maintain a reliable performance 

under different application conditions [9, 10]. Generally, chemometric models are calibrated using databases 

with data acquired under stabilized and controlled laboratory conditions that adequately reflect the behavior 

of the studied variables. Hence, the model suitability is guaranteed if the information of new samples is 

obtained under repeatable conditions. Nevertheless, spectroscopic data, especially NIR, are very sensitive to 

any change in the acquisition conditions, and the model's predictive performance may be affected [11]. 

Although multiple acquisition conditions, also known as external parameters, can affect the spectrum quality 

and model performance, the most representatives can be classified into two groups. Parameters related to 

the experimental equipment used in the acquisition, such as the instrument type (probe, flow cell, 

reflectance, transmittance, optical length), and those related to the environment, such as humidity and 

temperature. Due to its high impact on spectra acquisition accuracy, temperature is the most studied 

influencing parameter [12, 13]. For instance, Hansen et al. [14] showed that molecular bonds vibration 

intensity depends on temperature, leading to changes in the spectrum according to temperature variation. 

Furthermore, some physicochemical properties of samples, such as viscosity and density, are temperature-

dependent, and many changes in the sample due to temperature are not permanent and do not reflect the 

intrinsic nature of the sample [15–17]. Nevertheless, these changes can significantly affect spectrum 

acquisition. A third general parameter that can impact the model performance is the continuous spectral 

acquisition performed during real-time process monitoring. Even ensuring non-instrumental disturbances, 

the dynamic factors present during the spectra acquisition may lead to interferences, leading to random 

errors and deviations.    

The spectral variability generated by an external parameter must be corrected, or at least minimized, to 

ensure a reliable description of the sample physicochemical behavior from the spectroscopic information 

extracted. In chemometrics, this issue is known as calibration transfer, or calibration adaptation, and is 

generally divided into four levels according to the problem to be corrected, bias, slope, dispersion and 

nonlinearities. Accordingly, Chauchard et al. [11] proposed a general methodology to determine the best 

strategy to correct the influence caused by an external parameter. In summary, when identifying an external 

parameter (G) with potential impact on the model performance, it must be determined whether the 

influence is significant or negligible. If it is a highly influential parameter, the next step is to determine if it 

can be controlled. Finally, in case of a negative outcome, it must be established whether the value (g) of G is 

known when using the model. If g is known, there are three strategies for correcting the influence of this 

parameter; a priori, a posteriori, and model correction. Otherwise, robust modelling must be conducted. 

The a priori correction strategy, as its name indicates, is focused on the correction of the new spectrum 
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before its use. This correction is based on the difference between the existing spectra and the new spectrum 

affected by the G parameter. The most employed methods are the piecewise direct standardization (PDS) 

[18] and the spectral space transformation (SST) [19]. Concerning the model correction strategy, local 

modelling can be taken as an example. In this case, different regression models are generated with 

consolidated databases at different acquisition conditions defined by g. When a new sample is evaluated, its 

value is predicted from the sum of the (y ) ôbtained in each developed model, adjusted by a differential factor 

between the g used in the model development and the g of the new sample. Finally, the most frequent 

application of the a posteriori correction strategy is adjusting the value predicted by correcting the bias and 

slope, which are affected by the influence of G.  

In the oil & gas industry, some studies related to the correction of external parameters affecting the model 

performance for predicting fuel properties can be found. In their study, Pereira et al. [20] compared five 

calibration transfer methods (DS, PDS, orthogonal signal correction (OSC), reverse standardization (RS), and 

piecewise reverse standardization (PRS)), to correct the impact of instrument change. They searched to 

estimate two gasoline properties (naphthenes content and research octane number (RON)) from NIR spectra 

acquired in 3 different NIR spectrometers. In addition to the a priori correction strategy evaluated, they also 

analyzed the slope/bias correction and model update strategies. The best results were obtained by using RS.  

Another study that used the RS as a calibration transfer method for correcting the impact generated by 

instrument change was developed by da Silva et al. [21]. They corrected the impact in predicting five fuel 

quality parameters (density and the simulated distillation (SimDis) temperatures (T) to recover the 10%, 50%, 

90% of the sample and the final boiling point (FBP)). Moreover, in a complementary work to the developed 

by Cooper et al., [22] Abdelkader et al., [23] compared the PDS method and the slope/bias adjustment 

strategy to correct the influence of this external parameter in estimating 13 jet fuel properties. In their study, 

they showed that the two strategies present similar results in 6 (SimDis T10, T20, T50, flash point, freezing 

point, hydrogen content) of the 13 properties, while in the remaining 7 (API gravity, cetane index, saturates, 

aromatics, density, SimDis T90, viscosity) the effect of the external parameter is better corrected by the slope 

and bias adjustment. Complementing the studies conducted to correct the instrument change impact on 

model performance, it can be highlighted the work of Rodrigues et al.[24] They compared the DS, PDS and 

the orthogonal projections in latent structures (OPLS) methods, being the latter the one that presented 

better results in correcting the influence of this external parameter in the prediction of oil density.  

Regarding temperature impact correction, most of the studies are developed in the food and agricultural 

sector [11, 25, 26], while in the oil & gas area, the literature is very limited. Although not directly related to 

this industry, the study done by Haroon et al. [27] can give a glimpse of the different methods for correcting 

the temperature influence on NIR model performance for property prediction in liquid samples. They 

evaluated the a priori correction strategy using the generalized least squares weighting (GLSW) and DS 
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methods. They also evaluated the model correction strategy using two different approaches (temperature as 

dependent and independent variable). This study concluded that the method that best corrected the effect 

of temperature on predicting micellar liquid viscosity was the GLSW. Related to the fuels field, Baird et al. 

[28] employed the a posteriori correction strategy to correct the temperature effect on gasoline and diesel 

density prediction. They first developed a model using the support vector regression (SVR) method from a 

calibration data set acquired at a defined and constant temperature (20°C). Then using the same SVR method, 

they developed a second model to predict the slope coefficient used in correcting the value predicted by the 

first model.  

Concerning the correction of the dynamic spectra acquisition impact, Macho et al. [29] developed a model 

to monitor in real-time the ethylene content in polypropylene polymers which, after an optimal performance 

window of 55 days, was affected by an instrumental drift caused by a change in the wavelength position. The 

impact generated by this parameter was corrected using a model slope/bias correction.    

A strategy less employed to correct the impact of external parameters on the model performance is the 

robust modelling strategy. Compared to the strategies described previously, robust modelling is an 

alternative having higher efficiency in solving the problem of the constant and sometimes unexpected 

variability that may occur in the acquisition of a spectrum. This is because its basic principle is the adaptation 

(transformation) of the domain of the calibration data set, which implies a non-need to transform, correct or 

adapt the spectral information of the new sample evaluated. In this strategy, it can be found mainly the 

orthogonalization methods, such as the external parameter orthogonalization (EPO) [30] and the dynamic 

orthogonal projection (DOP) [31]. 

From the reviewed literature concerning the correction of external parameters impact on NIR model 

performance in the oil & gas industry, it was found that generally the correction of these parameters is 

investigated separately. In other words, one parameter is corrected at a time. Another finding that can be 

highlighted is that the reported studies use the first three strategies (a priori, a posteriori, and model 

correction) to correct the calibration adaptation problem. The only study found in the oil & gas industry that 

corrects multiple parameters at the same time (instrumental disturbance and sample temperature) using 

robust modelling is the one reported by Amat-Tosello et al [32]. In their study they used the EPO method to 

obtain a robust predictive model to estimate the research octane number (RON) and the motor octane 

number (MON) of gasoline from the NIR spectra acquired in four different instruments. Their results showed 

the advantage of the EPO method in not needing a transfer function to transform the new spectra. 

Considering the importance of correcting the external parameters influence to ensure the robustness of 

prediction models, the study presented in this article evaluated the potential of two orthogonalization 

methods (EPO and DOP) to simultaneously correct the impact of three external parameters: (i) instrumental 



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 5  

  

 

disturbances (instrument type (probe and flow cell) and optical length (1 and 2 mm)), (ii) sample 

temperature, and (iii) influence of dynamic spectra acquisition on the diesel cetane number estimation. The 

evaluation was carried out in 3 steps: the generation of the database containing the spectra obtained at 

different acquisition conditions, the development of the baseline model for assessing the impact of the 

external parameters studied, and the development of the robust model by applying the orthogonalization 

methods described before. As a result, in this study was developed a robust model for predicting the property 

investigated from NIR spectra acquired on the total effluent of the HCK process. The context of predicting 

the diesel cetane number from NIR spectra of the total effluent can be found in [33].  

2. Materials and methods 
In this study, two types of samples were considered; the total effluent obtained from the HCK process for 

NIR spectra acquisition and the diesel recovered from the distillation of the total effluent on which the cetane 

number was measured [33]. This section details the experiments conducted to obtain each type of sample, 

the laboratory analyses carried out on each of them, and the methodology for developing the models.   

2.1 Total effluent samples 
Generally, the total effluent samples are obtained when heavy crude oil residues, mostly vacuum gas oils 

(VGO's), are processed in the HCK process reactors. In this study, 129 total effluent samples were obtained 

by processing 29 different feedstocks in the HCK pilot plants at the IFPEN in Solaize, France, under different 

operating conditions ensuring that the diversity of the total effluent physicochemical properties was 

representative of the different HCK process scenarios [33].  

The NIR spectra used in this study were acquired on the 129 total effluent samples obtained and under two 

general acquisition categories (steady and dynamic). The detailed acquisition conditions and the number of 

spectra acquired are summarized in Table 2. 

 Table 2. NIR spectra acquisition conditions 

Instrument Optical lenght (mm) Sample temperature (°C) Condition Spectra aquired Use 

Probe 
2 

60 

Static 

98 Baseline modelling 

60 27 

Orthogonalization 

70 27 

80 27 

90 27 

1 60 27 

Flowcell 1 60-90 Dynamic 211 

 

Before to describe each acquisition category, it is important to mention that all spectra were acquired using 

a NIRS XDS Process Analyzer (Metrohm, Villebon - France) spectrometer, recording wavelengths from 800 - 

2200 nm with a resolution of 0.5 nm. 32 scans were acquired on the sample and then averaged to produce 
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the final spectrum. The software used with the spectrometer was VISION (Metrohm, Villebon - France).  

Moreover, before any spectra acquisition (in steady or dynamic conditions), the total effluent samples were 

heated in a water bath at 60°C in a closed flask for one hour and then manually shaken to ensure their liquid 

state and homogeneity. In the steady acquisition of spectra at temperatures other than 60°C, the sample was 

heated for thirty additional minutes at the desired temperature. 

Spectra acquisition at steady conditions 
The NIR spectra acquired at steady conditions were divided into two groups. The first corresponds to the 

spectra used for calibration of the reference model. A total of 98 total effluent samples were gathered in this 

group, and their spectra were acquired at a constant sample temperature of 60°C and using a reflectance 

Falcata Lab6 probe (Hellma GmbH & Co. KG, Müllheim - Germany) with an optical length of 2 mm. The second 

group corresponds to the spectra used in the model orthogonalization. In this group, 135 NIR spectra 

acquired on 27 total effluent samples at different conditions were consolidated. Firstly, using the same probe 

as described before, 108 spectra were acquired by varying the sample temperature between 60°C and 90°C 

at a ΔT of 10°C. Then, using a 1 mm optical length in the Falcata probe and a sample temperature of 60°C, 

the remaining 27 spectra were acquired.      

Spectra acquisition at dynamic conditions 
For the dynamic acquisition of the NIR spectra, a closed circulation loop with a 1/8" OD tubing was used. A 

305 HPLC pump (Gilson, Villiers le bel, France) was employed to set the sample flow rate at 10 ml/min. A 

water bath regulated the sample temperature with an integrated control system. A heating ribbon was 

installed on the tubing lines and instruments and then coated with glass fiber as an insulating material to 

avoid significant heat losses during the sample recirculation. A transmission NIR Flow cell 1/4" OD tube 

(Metrohm, Villebon - France) with an optical length of 1 mm was employed for the spectra acquisition. 

The samples were heated at 60°C in the water bath before the spectra acquisition and recirculated for 10 

minutes. Next, the NIR spectra were acquired every 30 seconds during 30 minutes, increasing the sample 

temperature by 10°C every 10 minutes. This procedure was applied on four new samples of total effluent, 

i.e., different from the 125 samples analyzed in the steady acquisition.  

2.2 Diesel samples 
The diesel samples used in this study were recovered after distillation of each of the total effluent samples 

using the ASTM D2892-20 standard [34]. The diverse quality of the recovered diesel samples was assured. 

Table 3 presents four statistical parameters calculated on the diesel density [35] and the simulated distillation 

temperatures range to obtain both 5% and 95% of sample distillate (Simulated Distillation T5 and T95) [36]. 

Using an internal method developed in the IFPEN validated against the ASTM D613 standard method,[37] the 

cetane number was estimated on the diesel samples. The general statistical information of this property is 

also shown in Table 3. 
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Table 3. General statistical information of the cetane number estimated on 98 diesel samples obtained from the hydrocracking 

process 

  Méthod Minimum Maximum Mean Standard Deviation 

Cetane number PackPIR 30.3 69.5 51.6 11.1 

Density (gr/ml) ASTM D1218-12 0.8100 0.9114 0.8604 0.0312 

SimDis T5 (°C) ASTM D2887-19 212.6 257.6 245 9.1 

SimDis T95 (°C) ASTM D2887-19 245.8 430.9 366.6 15.3 

 

2.3 Modelling 

This study employed the spectral region between 1110 and 2200 nm taking into account that this region of 

the total effluent NIR spectrum provides the most descriptive information to predict the diesel properties 

[33, 38, 39].  

In this article it was evaluated the effectiveness of two orthogonalization methods (EPO and DOP) to correct 

simultaneously the impact of three external parameters on the model performance for diesel cetane number 

estimation. Namely, the sample temperature, the instrument perturbance (type and optical lenght), and the 

dynamic acquisition conditions. Therefore, the work was developed implementing seven modelling steps. 

Table 4 summarizes the information used in the development of the study. 

Table 4. Summary of NIR spectra employed in each modelling step 

#Spectra Acquisition conditions Data set 
Cetane number 

Modelling step 
Min Max 

67 
Sample temperature = 60°C 

Instrument = Probe 
Optical length = 2 mm 

Calibration 30.3 69.5 
Baseline model 

91 Sample temperature = 60°C - 90°C 
Instrument = Probe & Flow cell 

Optical length = 1 & 2 mm  

Orthogonalization 

286 Test 35.4 69.3 
Tets reference and orthogonalized 

models 

Step 1: Considering the information described in section 2.1 and summarized in Table 2, the first modelling 

step was completed by generating three sets of data corresponding to the information of the independent 

variables (NIR spectra). The Mx1 matrix containing the spectra acquired at steady and constant temperature 

conditions, the Mx2 matrix containing the spectra acquired at steady conditions but varying the temperature 

and the probe optical length, and the Mx3 matrix corresponding to the spectra acquired under dynamic 

conditions. For each NIR matrix generated, its respective dependent variable matrix (My) was generated. 

Step 2: The second implemented step involved the preprocessing of the Mx matrices through the 

combination of the Standard Normal Variate (SNV) [40] and the second derivative of Savitzky-Golay with a 

third polynomial order and a 23 window-point (SavGol[23,3,2]) [41].  

Step 3: The third step was the definition of the different sub-datasets employed in the study as follows. The 

Mx1 was split into the calibration (Mx1C, 70% samples) and the test (Mx1T, 30% samples) sub-datasets using 

the Kennard-Stone (KS) algorithm [42]. In turn, the Mx2 was sorted in ascending order regarding the 
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corresponding My values. Then taking 1 out of 3 samples, the Mx2 with its associated My was divided into 

four sub-datasets: (i) Mx2DC (NIR spectra acquired at steady conditions using a constant temperature of 60°C 

and an optic length of 2mm), (ii) Mx2DV (NIR spectra acquired on the same samples of Mx2DC but varying 

sample temperature and the optic length), (iii) Mx2A and (iv) Mx2T (NIR spectra acquired on the remaining 

samples varying sample temperature and the optic length). Finally, the Mx2T and the test dataset defined in 

the PLS reference model were concatenated to test the developed models.      

Step 4: A reference partial least squares (PLS) model was developed based on the calibration sub-dataset 

defined from Mx1 matrix (Mx1C). The number of latent variables (LV's) retained in the developed PLS model 

was defined using the RMSECV as the Figure of merit [33]. 

Step 5: In the fifth step a first orthogonalization of the reference model was implemented utilizing the 

method EPO [30] to achieve the robust prediction of the diesel cetane number. To do so, the detrimental 

matrix D representing the influence spectra was calculated using the preprocessed Mx2DC and Mx2DV 

matrices (D = Mx2DC - Mx2DV). Next, the optimal combination of the number of EPO components (EPOC) 

and the number of LV's to be used were determined evaluating different orthogonalized PLS models obtained 

from the calibration dataset (MxC_EPO) composed of the matrices Mx1C, Mx2DC, Mx2DV using the SEP as a 

figure of merit calculated from the Mx2A matrix. Finally, the MxC_EPO matrix was orthogonalized using the 

defined EPOC's, and a PLS model was calibrated, retaining the established LV's. In summary, the matrices 

Mx2DC and Mx2DV were used to calculate the detrimental matrix D employed in the orthogonalization of 

the model, while the Mx2A matrix was considered to adjust the number of the EPO method components 

used and the LV's of the orthogonalized model retained.    

Step 6: A second orthogonalization modelling focused on synergic applying the DOP and EPO methods [31] 

to correct any disturbances generated by the dynamic acquisition of the spectra that were not captured in 

the initial orthogonalization of the model was implemented. In this step, the Mx3 and its corresponding My 

were employed. First, the DOP method was applied on a sample spectrum analyzed in dynamic conditions to 

obtain the corresponding "ideal" spectrum. Then, the "ideal" spectrum calculated with the DOP method is 

included in the Mx2DC sub-dataset, and the spectrum acquired under dynamic conditions is integrated into 

the Mx2DV sub-dataset. With these updated sets of data, the steps previously described to apply the EPO 

method (see step 6) were implemented once again. Knowing the measured value of the variable (y) of the 

analyzed samples, one spectrum corresponding to a sample within the worst dynamic prediction group was 

randomly selected to apply the DOP method (spectrum 30 sample 4).   

Step 7: The last step was the performance evaluation of the different models developed. Using the test sub-

dataset generated in step 2, all models were tested. This sub-dataset contains the spectra acquired a steady 

and dynamic conditions. The figures of merit used to evaluate the model performance was the standard error 
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of prediction (SEP), the bias, and the root mean squared error of prediction (RMSEP). The reduced Q residual 

and the Hotelling T² analysis were employed complementary to evaluate the suitability of the models for 

predicting the diesel cetane number from NIR spectra acquired at different conditions. 

The models and variable selection analysis were performed using the PLS_Toolbox V.8.8 (Eigenvector 

Research Inc. Wenatchee, WA, USA), MATLAB V.2019b (The MathWorks, Inc., Natick, MA, USA).   

3. Results and discussion 
The results and their discussion were divided into two main parts: developing the reference model and 

applying the orthogonalization methods. Table 5 presents the statistical information calculated for the final 

comparison of the developed models' performance (reference vs. orthogonalized). 

3.1 Baseline model calibration 
A PLS model with 9 LV's was calibrated from the 67 spectra acquired at steady and constant conditions (see 

Table 4). This model captures 99% of the X and Y matrices explained variance, presenting values of root mean 

squared error of calibration (RMSEC = 1.3) and cross-validation (RMSECV = 2.2) below the reproducibility 

limits of the reference method (±3.6). Furthermore, the respective squared correlation coefficients (r²C & 

r²C) are greater than 0.96. For determining the impact of external parameters on the diesel cetane number 

estimation, the model performance was evaluated using the 286 spectra described in Table 4 (76 acquired at 

steady conditions and 210 at dynamic conditions).  

Table 5 reports that the RMSEP of the model when using the entire test data set is 24.1 with a bias of -21.7 

(SEP = 10.5). These values are mostly due to the estimation of cetane number in samples whose NIR spectra 

were acquired at varying conditions. Figure 3a shows that 99% of these samples were predicted outside the 

reproducibility limits of the reference method, i.e., 284 out of 286 samples. The samples predicted within the 

defined limits correspond to two of the nine samples having spectra acquired using the probe with a path 

length of 1mm. The samples with the highest error in the property estimation are those whose NIR spectra 

were acquired under dynamic conditions. In contrast, all but one of the samples whose NIR spectra had been 

acquired at the same conditions as those employed in the model calibration data set (sample temperature = 

60°C, probe, and path length = 2mm) were predicted within these limits; representing a 98% effectiveness in 

cetane number estimation at these conditions.  

When performing the graphical analysis of the Qresidual and Hotelling T² statistical tests applied on the test 

samples using the 9LV's of the developed PLS model, the significant impact of the external parameters on 

the quality of the spectra can be validated. Figure 4a shows that 98% of the samples with NIR acquired at 

variable and dynamic conditions exceed the threshold of the two tests. This Figure also validates that dynamic 

conditions greatly impact the spectra quality.  
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Typically, samples identified above the threshold of these two tests would be categorized as outliers and 

should be discarded or, since the atypical behavior is due to the acquisition conditions and not properly to 

an error in the measurement or recording of the information, the spectra of these samples should be re-

acquired at the stable and steady conditions used in the calibration set. Another possible solution is the 

development of transfer functions to transform the acquired spectra at varying conditions so that they can 

be used with confidence in the model. The main shortcomings of these options are the cost of 

experimentation and the continuous reprocessing of the information, especially with the variability that may 

occur in acquiring new spectra. Additionally, combining different external parameters makes this task even 

more complex. Therefore, a more efficient solution must be applied. 

3.2 Model orthogonalization 
A first orthogonalization for correcting the impact of external parameters on the developed PLS model was 

performed by applying the EPO method. With a Matlab script adapted from Roger et al., [30] this first 

orthogonalization was implemented as described in section 2.3 step 5. 

Figure 1 shows the SEP's obtained from the different combinations of EPOC's and LV's, evidencing a region 

with SEP's below 2.0 between EPOC's 9 & 12 and LV's 7 & 9. The combination with the lowest SEP (1.2) was 

12 EPOc's and 7 LV's.     

 

Figure 1. Standard error of prediction on Mx2A as a function of the number of PLS latent variables and EPO components 

The orthogonalized PLS model with the EPO method (PLS_EPO) presented a slightly higher RMSEC (1.6) than 

the baseline PLS model. This model "deterioration" is evidenced when, compared with the reference PLS 

model, the sample with the lowest cetane number is predicted outside the reproducibility limits, even when 

its spectrum has been acquired at steady and constant conditions (see Figure 3b). On the contrary, the 

RMSECV remained nearly the same (2.0). The performance of the PLS_EPO model was evaluated with the 

same 286 spectra previously used in testing the reference PLS model. In Figure 3b, it is observed that the 

prediction of the samples whose NIR spectra were acquired at varying conditions is improved. Out of 9 

samples acquired at 60°C and using an optical length of 1mm, 8 are predicted within the reproducibility limits 

of the reference method. The correction of the impact of sample temperature is also evident. Regardless of 
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the value employed on this parameter, the cetane values are satisfactorily predicted, except for the sample 

with the lowest cetane value. Two of the four samples analyzed under dynamic conditions are predicted close 

to the reproducibility limits, while the other two are still predicted outside these limits. An important fact to 

highlight is that despite the "model deterioration," the effectiveness in predicting the samples analyzed at 

60°C and optical length of 2 mm is barely affected.  

Table 5 summarizes the statistical information of this model where it can be observed that as a result of the 

correction achieved with the model orthogonalization, the RMSEP (5.8) and the bias (-4.18, SEP = 4.0) are 

significantly reduced. At the same time, the squared correlation coefficient of prediction is improved (r²P, 

0.698 vs. 0.019). However, the RMSEP value is still higher than the reproducibility limit of the reference 

method. This value is mainly due to the samples analyzed in dynamic conditions predicted outside these 

limits. Figure 4b shows that these samples are still having a significant impact on model performance. 

Although the conditions used to acquire the spectra under dynamic conditions are similar to those used 

under steady conditions (sample temperature = 60°C - 90°C, optical length = 1 & 2mm), it should be noted 

that the instrument is different. While a reflectance probe was used in the steady acquisitions, a 

transmittance flow-cell was used in the dynamic acquisitions. The results show that this instrument change 

also significantly affects the quality of the spectra, impacting the model performance.  

The impact caused by the instrument type could be corrected in the orthogonalization of the model. 

Nevertheless, for this case, the EPO method cannot be applied directly to the calibration dataset since there 

is no reference spectrum of these samples, i.e., a spectrum acquired at 60°C and optical length of 2 mm, 

impeding an updated D matrix calculation. To mitigate this problem, the DOP method plays an essential part.  

To correct the impact of the instrument type, and any other effects that acquisition under dynamic conditions 

may be having on model performance, an integrated orthogonalization was performed using the EPO and 

DOP methods in a complementary approach (see section 2.3 step 6).    

Figure 2 shows the SEP's obtained from the EPOc's and LV's combinations evaluated in this integrated 

orthogonalization. In this second analysis, the region with SEP's below 2.0 is observed between EPOc's 9 & 

14 and LV's 8 & 10. The combination with the lowest SEP's (1.3) was 12 EPOc's and 8 LV's.   
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Figure 2. Standard error of prediction on Mx2A as a function of the number of PLS latent variables and EPO components when DOP 
is applied 

The new orthogonalized PLS model using the EPO and DOP methods combined (PLS_EPO_DOP) presents an 

RMSEC (1.6) and an RMSECV (2.0) equal to those shown by the PLS_EPO model. These values validate the 

consistency in the application of the orthogonalization methods. Regarding the RMSEP (2.1) and bias (-0.285, 

SEP = 2.1), the PLS_EPO_DOP model reduces them to values close to and even lower than the reproducibility 

of the reference method (±3.6). The parity plot shown in Figure 3c shows how, with some exceptions, the 

impact of all the parameters evaluated in this study is corrected, resulting in a robust model. This is also 

reflected in the significant improvement of the r²P (0.917).  

Figure 4c also shows how the impact of the different parameters is compensated, and the Qresidual vs. 

Hotelling T² analysis can be performed objectively and reliably to determine the samples with atypical 

behavior. For example, the five estimated values that significantly exceed the threshold of the two tests 

correspond accurately to the sample with the lowest cetane number, which was predicted slightly outside 

the reproducibility limits. This sample corresponds to a set of four samples analyzed during an HCK test, being 

the only one with a poor prediction. The difference between these four samples is the temperature used in 

the HCK reactor. It is normally expected that the higher the reaction temperature, the higher the cetane 

number of the diesel. While this trend is observed in the three correctly estimated samples, the predicted 

sample outside the limits slightly disrupts this trend. Therefore, the poor prediction could be attributed to 

the disrupted trend. Nonetheless, as discussed before, the poor prediction could be rather caused for the " 

model deterioration" when the orthogonalization is applied. 
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Table 5. Statistical parameters summary for cetane number models comparison 

  PLS PLS_EPO PLS_EPO_DOP 

#EPOC - 12 12 

#LV's 9 7 8 

RMSEC 1.3 1.6 1.6 

BiasC 0.00 0.04 -0.01 

r²C 0.986 0.981 0.981 

RMSECV 2.1 2.0 2.0 

BiasCV -0.05 -0.01 -0.01 

r²CV 0.962 0.970 0.969 

RMSEP 24.1 5.8 2.1 

BiasP -21.70 -4.18 -0.28 

r²P 0.019 0.698 0.917 

SEP 10.5 4.0 2.1 

 

Figure 3. Parity chart of cetane number estimations. a) PLS model, b) PLS_EPO model, c) PLS_EPO_DOP model 

 

Figure 4. Reduced Q residual and Hotelling T² analysis. a) 9 LVs PLS model, b) 7 LVs PLS_EPO model, c) 8LVs PLS_EPO_DOP model 

Conclusions 

This paper evaluated the efficiency of the EPO and DOP orthogonalization methods to compensate the 

impact of three external parameters on the model performance for diesel cetane number prediction from 

NIR spectra of HCK total effluent. Namely, sample temperature, instrument optical length, instrument type, 

and acquisition conditions (steady and dynamic). 

The two external parameters of greatest influence on the spectra quality and therefore on the model 

performance are the sample temperature and the acquisition under dynamic conditions, the latter having 

the greatest impact. On the contrary, the influence of the probe path length is of the least consequence.      
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The EPO orthogonalization method significantly corrects the impact of the external parameters studied in 

this article. The influence of sample temperature and path length is the best corrected. Although these two 

parameters are immersed in the correction of the dynamic acquisition conditions impact, the type of 

instrument and other effects inherent to the dynamics, such as flow rate, are not fully corrected. This 

limitation is overcome by integrating the DOP method.  

The orthogonalized prediction model shows a slight deterioration compared to the baseline model in 

predicting samples analyzed at steady-state conditions. However, this deterioration is negligible compared 

to the robustness achieved in the model. 

The integrated application of the orthogonalization methods showed that regardless of the acquisition 

conditions, stable or variable, steady or dynamic, and even with different types of instrument, the predictions 

of the diesel cetane number are reliable over the whole range of estimation evaluated. In addition to the 

model robustness achieved, a great advantage of using orthogonalization methods is that no further 

processing or transformation of the new spectra is required, facilitating the maintenance of the models over 

time.   

Acknowledgments 

The authors would like to thank IFP Energies Nouvelles for providing the total effluent samples from the HCK 

process reactors, the facilities for the distillation to obtain the diesel samples, and the facilities for spectra 

acquisition and data analysis. Special thanks to Sebastien Giroud its valuable help in constructing the loop 

used for the dynamic analysis.  Thanks also to Axel One Analysis for providing the probe for the NIR spectra 

acquisition. 

CRediT authorship contribution statement 
J. Buendia-Garcia: Conceptualization, Data curation, Writing - original draft. J. Gornay: Conceptualization, 
Writing - original draft. M. Lacoue-Negre: Conceptualization, Writing - original draft. S. Mas-Garcia: Writing 
- original draft. R. Bendoula: Writing - original draft, J.M Roger: Conceptualization, Writing - original draft  
 

Declaration of conflicting interests 
The Author(s) declare(s) that there is no conflict of interest 
 

REFERENCES 

[1] M. K. Moro, F. D. dos Santos, G. S. Folli, W. Romão, P. R. Filgueiras, Fuel 2021, 303. 
[2] N. Zanier-Szydlowski, A. Quignard, F. Baco, H. Biguerd, L. Carpot, F. Wahl, Oil & gas science and 
technology - rev IFP 1999, 54, 463–472. 
[3] J. Li, X. Chu, Energy Fuels 2018, 32, 12013–12020. 
[4] I. Hradecká, R. Velvarská, K. Dlasková Jaklová, A. Vráblík, Infrared Physics & Technology 2021. 
[5] M. Gómez-Carracedo, J. Andrade, M. Calviño, E. Fernández, D. Prada, S. Muniategui, Fuel 2003, 82, 
1211–1218. 
[6] J. Skvaril, K. Kyprianidis, A. Avelin, M. Odlare, E. Dahlquist, Energy Procedia 2017, 105, 1309–1317. 
[7] E. Wikberg, S. Heikkilä, K. Sirviö, P. Välisuo, S. Niemi, A. Niemi, Fuels 2021, 2, 179–193. 



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 5  

  

 

[8] M. Pilar Dorado, S. Pinzi, A. de Haro, R. Font, J. Garcia-Olmo, Fuel 2011, 90, 2321–2325. 
[9] M. Zeaiter, J.-M. Roger, V. Bellon-Maurel, D. N. Rutledge, TrAC Trends in Analytical Chemistry 2004, 23, 
157–170. 
[10] M. Zeaiter, J.-M. Roger, V. Bellon-Maurel, TrAC Trends in Analytical Chemistry 2005, 24, 437–445. 
[11] F. Chauchard, J.M. Roger and V. Bellon-Maurel, Journal of Near Infrared Spectroscopy 2004, 12, 199–
205. 
[12] Florian Wülfert,†, Wim Th. Kok,† and, and Age K. Smilde*,†, Analytical Chemistry 1998, 70, 1761–1767. 
[13] Hideyuki Abe, Chie Iyo, and Sumio Kawano, Journal of Near Infrared Spectroscopy 2000, 8, 209–213. 
[14] W.G. Hansen, S.C.C. Wiedemann, M. Snieder, and V.A.L. Wortel, Journal of Near Infrared Spectroscopy 
2000, 8, 125–132. 
[15] Jasem M. Al-Besharah/Saed A. Akashah/Clive J. Mumford, Industrial & Engineering Chemistry 1989, 
213–221. 
[16] P. Luo, Y. Gu, Fuel 2007, 86, 1069–1078. 
[17] R. Payri, F. J. Salvador, J. Gimeno, G. Bracho, Fuel 2011, 90, 1172–1180. 
[18] Y. Wang, D. J. Veltkamp, B. R. Kowalski, Anal. Chem. 2002, 63, 2750–2756. 
[19] W. Du, Z.-P. Chen, L.-J. Zhong, S.-X. Wang, R.-Q. Yu, A. Nordon, D. Littlejohn, M. Holden, Analytica 
Chimica Acta 2011, 690, 64–70. 
[20] C. F. Pereira, M. F. Pimentel, R. K. H. Galvão, F. A. Honorato, L. Stragevitch, M. N. Martins, Analytica 
Chimica Acta 2008, 611, 41–47. 
[21] N. C. da Silva, C. J. Cavalcanti, F. A. Honorato, J. M. Amigo, M. F. Pimentel, Analytica Chimica Acta 2017, 
954, 32–42. 
[22] J. B. Cooper, C. M. Larkin, M. F. Abdelkader, Journal of Near Infrared Spectroscopy 2011, 19, 139–150. 
[23] M. F. Abdelkader, J. B. Cooper, C. M. Larkin, Chemometrics and Intelligent Laboratory Systems 2012, 
110, 64–73. 
[24] R. R. Rodrigues, J. T. Rocha, L. M. S. Oliveira, J. C. M. Dias, E. I. Müller, E. V. Castro, P. R. Filgueiras, 
Chemometrics and Intelligent Laboratory Systems 2017, 166, 7–13. 
[25] H. Kaur, R. Künnemeyer, A. McGlone, Molecules (Basel, Switzerland) 2022, 27. 
[26] X. Sun, P. Subedi, K. B. Walsh, Postharvest Biology and Technology 2020, 162, 111117. 
[27] K. Haroon, A. Arafeh, T. Rodgers, Ć. Mendoza, M. Baker, P. Martin, J. Chemometrics 2020, 34. 
[28] Z. S. Baird, V. Oja, Chemometrics and Intelligent Laboratory Systems 2016, 158, 41–47. 
[29] S. Macho, M. S. Larrechi, TrAC Trends in Analytical Chemistry 2002, 21, 799–806. 
[30] J.-M. Roger, F. Chauchard, V. Bellon-Maurel, Chemometrics and Intelligent Laboratory Systems 2003, 
66, 191–204. 
[31] M. Zeaiter, J. M. Roger, V. Bellon-Maurel, Chemometrics intelligent laboratory systems 2005. 
[32] S. Amat-Tosello, N. Dupuy, J. Kister, Analytica Chimica Acta 2009, 642, 6–11. 
[33] J. Buendia Garcia, M. Lacoue-Negre, J. Gornay, S. Mas Garcia, R. Bendoula, J. M. Roger, Submitted to 
Fuel 2022. 
[34] ASTM D 2892-20, Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate 
Column), 2020, ASTM International, West Conshohocken, PA. 
[35] ASTM D1218 - 12, Standard Test Method for Refractive Index and Refractive Dispersion of Hydrocarbon 
Liquids, can be found under https://www.astm.org/Standards/D1218.htm. 
[36] ASTM D2887 - 19ae1, Standard Test Method for Boiling Range Distribution of Petroleum Fractions by 
Gas Chromatography, can be found under https://www.astm.org/Standards/D2887.htm. 
[37] ASTM D613-01, Test Method for Cetane Number of Diesel Fuel Oil, 2001, ASTM International, West 
Conshohocken, PA. 
[38] E. D. Yalvac, M. B. Seasholtz, S. R. Crouch, Appl. Spectrosc., AS 1997, 51, 1303–1310. 
[39] J. J. Kelly, J. B. Callis, Anal. Chem. 1990, 62, 1444–1451. 
[40] R. J. Barnes, M. S. Dhanoa, S. J. Lister, Appl Spectrosc 1989, 43, 772–777. 
[41] Abraham. Savitzky/M. J. E. Golay, Analytical Chemistry 1964, 36. 
[42] R. W. Kennard, L. A. Stone, Technometrics 1969, 11, 137–148. 

 
 



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 6  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 6: Detailed modelling 
results 

 

 
 
 
 
 
 
 
 
 
 
  



Sdffghfghfggggggggggggggggggggdddddddddddgh  
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Appendix 6  

  

 

Table 1 Appendix 6. Description of the models 

Model Description Acronym 

1 NIR model Mod_1 

2 NIR model with EPO correcttion Mod_2 

3 NMR model Mod_3 

4 NIR + NMR data fusion model Mod_4 

5 NIR + PV_TE* data fusion model Mod_5 

6 NIR + PV_NTE** data fusion model Mod_6 

7 NIR + NMR + PV_TE data fusion model Mod_7 

8 NIR + NMR + PV_NTE data fusion model Mod_8 
*PV_TE = Process Variables including Total Effluente properties 
*PV_NTE = Process Variables not including Total Effluente properties 

Table 2 Appendix 6. Diesel cetane number modelling results 

PP1 = SNV + SavGol[23,2,2], PP2 = Icoshift + SavGol(25,0,0) + Normalization PP3 = PP1 & PP2 on each data block 
PP4 = VSN + SavGol[25,1,1], PP5 = PP4 & PP3 on each data block 
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Table 3 Appendix 6. Diesel pour point modelling results 

 
PP1 = VSN + SavGol[13,4,4], PP2 = Icoshift + SavGol(25,0,0) + Normalization, PP3 = PP1 & PP2 on each data block,  
PP4 = SNV + SavGol[11,3,3], PP5 = PP4 & PP3 on each data block 

 
Table 4 Appendix 6. Diesel cloud point modelling results 

 
PP1 = VSN + SavGol[13,4,3], PP2 = Icoshift + SavGol(25,0,0) + Normalization, PP3 = PP1 & PP2 on each data block,  
PP4 = SNV + SavGol[25,2,2], PP5 = PP4 & PP3 on each data block 
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Table 5 Appendix 6. Diesel cold filter plugging point modelling results 

 
PP1 = VSN + EMSC, PP2 = Icoshift + SavGol(25,0,0) + Normalization, PP3 = PP1 & PP2 on each data block,  
PP4 = VSN + SavGol[9,4,3], PP5 = PP4 & PP3 on each data block 

 
Table 6 Appendix 6. Kerosene cetane number modelling results 

 
PP1 = SNV + SavGol [23,3,2] 
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Table 7 Appendix 5. Kerosene flash point modelling results 

 
PP1 = SNV + SavGol [13,3,3] 
 

Table 8 Appendix 6. Kerosene smoke point modelling results 

 
PP1 = VSN + SavGol[9,4,3], PP2 = Icoshift + SavGol(25,0,0) + Normalization, PP3 = PP1 & PP2 on each data block,  
PP4 = VSN + SavGol[9,4,3], PP5 = PP4 & PP3 on each data block 
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a)  b)  

c) d)  

e) f)  

g) h)  

Figure 1 Appendix 6. Diesel cetane number model parity charts. a) Model 1, b) Model 2, c) Model 3, d) Model 4, e) Model 5,  f) Model 
6, g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 2 Appendix 6. Diesel pour point model parity charts. a) Model 1, b) Model 2, c) Model 3, d) Model 4, e) Model 5,  f) Model 6, 

g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 3 Appendix 6. Diesel cloud point model parity charts. a) Model 1, b) Model 2, c) Model 3, d) Model 4, e) Model 5,  f) Model 6, 

g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 4 Appendix 6. Diesel cold filter plugging point model parity charts. a) Model 1, b) Model 2, c) Model 3, d) Model 4, e) Model 5,  

f) Model 6, g) Model 7, h) Model 8 
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a) b)  
Figure 5 Appendix 6. Kerosene cetane number model parity charts. a) Model 1, b) Model 2 

 

a)  
Figure 6 Appendix 6. Kerosene flash point model parity charts. a) Model 1 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 7 Appendix 6. Kerosene smoke point model parity charts. a) Model 1, b) Model 2, c) Model 3, d) Model 4, e) Model 5,  f) 

Model 6, g) Model 7, h) Model 8 
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Appendix 7: Detailed models 
validation results 
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Table 1 Appendix 7. Description of the models 

Model Description Acronym 

1 NIR model Mod_1 

2 NIR model with EPO correcttion Mod_2 

3 NMR model Mod_3 

4 NIR + NMR data fusion model Mod_4 

5 NIR + PV_TE* data fusion model Mod_5 

6 NIR + PV_NTE** data fusion model Mod_6 

7 NIR + NMR + PV_TE data fusion model Mod_7 

8 NIR + NMR + PV_NTE data fusion model Mod_8 
*PV_TE = Process Variables including Total Effluente properties 
*PV_NTE = Process Variables not including Total Effluente properties 
 

Table 2 Appendix 7. Diesel cetane number validation results with 26 new samples 

 
 

Table 3 Appendix 7. Diesel pour point validation results with 26 new samples 

 
 

Table 4 Appendix 7. Diesel cloud point validation results with 26 new samples 
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Table 5 Appendix 7. Diesel cold filter plugging point validation results with 26 new samples 

 
 

Table 6 Appendix 7. Kerosene smoke point validation results with 26 new samples 

 
 

Table 7 Appendix 7. Kerosene cetane number validation results with 26 new samples 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 1 Appendix 7. Parity charts of diesel cetane number validation with 26 new samples. a) Model 1, b) Model 2, c) Model 3, d) 

Model 4, e) Model 5,  f) Model 6, g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 2 Appendix 7. Parity charts of diesel pour point validation with 26 new samples. a) Model 1, b) Model 2, c) Model 3, d) Model 

4, e) Model 5,  f) Model 6, g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 3 Appendix 7. Parity charts of diesel cloud point validation with 26 new samples. a) Model 1, b) Model 2, c) Model 3, d) Model 

4, e) Model 5,  f) Model 6, g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 4 Appendix 7. Parity charts of diesel cold filter plugging point validation with 26 new samples. a) Model 1, b) Model 2, c) 

Model 3, d) Model 4, e) Model 5,  f) Model 6, g) Model 7, h) Model 8 
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a) b)  

c) d)  

e) f)  

g) h)  
Figure 5 Appendix 7. Parity charts of kerosene smoke point validation with 26 new samples. a) Model 1, b) Model 2, c) Model 3, d) 

Model 4, e) Model 5,  f) Model 6, g) Model 7, h) Model 8 
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a) b)  
Figure 6 Appendix 7. Parity charts of kerosene cetane number validation with 26 new samples. a) Model 1, b) Model 2 
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Preprocessing methods 

There is substantial literature on spectroscopic modelling applied to different industries where preprocessing 

is an integral part of the studies. In the case of vibrational spectroscopy, there are several preprocessing 

techniques164 since spectrum quality can be affected by systemic noise, such as baseline variation and 

multiplicative effects. Different mathematical methods can be used to remove the noisy information from 

the spectral signal. However, the preprocessing must be carefully done as it can also lead to the removal of 

relevant information165. There is no single procedure or routine established for data preprocessing. This task 

is far from being unique and simple, as it depends on the database characteristics, data source, nature of the 

sample and the modelling objective166. The most common approach for selecting the preprocessing method 

is to evaluate the information retained after preprocessing that best describes the studied property. 

Preprocessing methods for spectroscopic data can be divided into two main groups according to the 

causative effect of the noise: dispersion correction methods (scatter-corrective) and spectral derivatives164. 

The main difference between these two groups is that the scatter correction methods are used to reduce the 

scatter effects occurring between samples, whereas derivatives methods are employed to remove baseline 

effects and any offset differences between the data. Table App 8.1 shows the most used preprocessing 

methods according to their group.  

Table App 8.1. Most common preprocessing methods for spectral information 167, 164  

Scatter-Corrective Spectral derivatives 

Multiplicative Scatter Correction (MSC)122 
Automatic Weighted Least Squares Baseline (AWLS-
B)124 

Extended MSC (EMSC)125 Norris-Williams derivation (NW-D)126 

Detrend121 Savitzky-Golay derivative (SavGol)118 

Standard Normal Variate (SNV)121 Piecewise Direct Standardization (PDS)150 

Variable Sorting for Normalization (VSN)120 Loading Space Standardization (LSS)168 

Probabilistic Quotient Normalization (PQN)123 

  
Optical Path Lenght Estimation and Correction 
(OPLEC)169 

 
Regression methods 

According to the number of independent variables used in the model development, the regression can be 

highly multivariate. The higher the number of independent variables used, the greater the complexity of the 

regression process. In the case of spectral information, the regression is considered highly multivariate since 

a single spectrum contains a large number of wavelengths (or chemical shifts in the case of the NMR spectra), 

each of which is an x-variable. Since a spectrum can contain more than 1000 variables, performing a 

multivariate regression using that amount of information in a conventional approach could be impossible 

since the X matrix may have more variables than observations. For this reason, it is necessary to reduce the 

size of the X matrix used without losing relevant information from the evaluated sample. Multivariate analysis 

using projection techniques on latent variables is a widely practiced procedure to achieve this purpose, being 
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the Partial Least Square (PLS) the most common.91     

There are different methods to obtain appropriate and consistent regression models. Selecting the best 

method depends directly on the nature of the independent variables and their relationship with the 

dependent variables, which can be null (no dependence), directly or inversely proportional, linear or non-

linear. A summary of the most used methods in multivariate regression is presented below in Table App 8.2 

y Table App 8.3. 

Table App 8.2. Most common linear multivariate methods for linear regression 

Method 

Classical Least Squares (CLS)170 

Multiple Linear Regression (MLR)171 

Partial Least Squares (PLS)127 

Interval PLS (iPLS)147 

Principal Component Regression (PCR)113 
 

Table App 8.3. Most common non-linear multivariate methods for linear regression 

Method 

Support Vactor Machine (SVM)128 

Artificial Neural Networks (ANN)129 

Back-Propagation Neural Networks 
(BPNN)172 

Probabilistic Neural Network (PNN)173 

Random Forest (FR)174 

Projection Pursuit Regression (PPR)175 

Locally Weighted Regression (LWR)130 

 
 
Data fusion modelling 

Lahat et al.176 emphasize the need to find the answer to "how to exploit the diversity of information" found 

in a database. Solving this concern is relevant since the nature, origin, values, and units of measurement of 

the data integrated directly affect the suitability and veracity of the regression model. Data fusion, whose 

definition is "the analysis of several data sets such that different data sets can interact and inform each other" 

177 seeks to provide an answer to the need addressed. 

The data from different sources used in the same regression process (data fusion modelling) must have a 

common characteristic for their concatenation and integration. In general, there are three structures of 

information concatenation. (A) Data blocks of the same order, either 2D sharing a common characteristic or 

3D sharing two common characteristics, (B) data blocks of the same order 3D sharing one characteristic in 

common, and (C) data blocks of different order sharing at least one characteristic in common.  

Regardless of the data block structure used to perform the data fusion, this modelling approach is 

characterized by different strategies known as fusion levels (low-, mid-, and high-level)131. The low-level 

fusion consists of using the information from the blocks directly in the development of the model either by 
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simple concatenation of the blocks or using decomposition or factorization methods on one block regarding 

another133. At the mid-level fusion, a feature extraction step from each dataset is performed first through 

statistical analyses such as PCA and PLS for their later fusion by simple concatenation134. Finally, the high-

level fusion combines the decisions or results obtained from developed prediction models separately with 

each data block 135. Figure App 8.1 shows a representation of these three levels. 

 

Figure App 8.1. Data fusion strategies (levels) 178 

The primary aim of data fusion is to improve regression model performance by using the most relevant 

characteristics of different information sources. Different authors179–183 showed in their research that data 

fusion improves not only model performance, but also the extraction of relevant descriptors of influence. 

However, the data fusion results depend highly on the nature of the sample analyzed, the fusion techniques 

employed184 and the source information used. 

 
 
Outlier detection analysis 

Outlier detection methods can be classified into two main categories, unsupervised methods (based on an a 

priori analysis of available data) and supervised methods (based on an a posteriori analysis following a 

predefined model). The most common supervised outlier detection methods are leverage effect, Covariance 

Ratio, and Cook-Distance.  

Concerning the unsupervised methods, the most common approach used in the multivariate analysis by 

projection on latent variables (dimensionality reduction) is the combination of the Q residual test (a measure 

of the difference between a sample and its projection into the k factors retained in the model) and Hotelling's 

T-Squared (a measure of the variation in each sample within the model)185, 186. An example of using these 

methods is shown in Figure App 8.2185, where some data exceeding the threshold of either the Hotelling's T-

Squared test (strong outlier) or the Residual Q test (weak outlier) can be observed. This figure also shows a 

data point exceeding the threshold of both tests. This combined analysis facilitates the identification of 

potential anomalous data, whether they are of a strong or weak nature. Weak outliers can be excluded from 

the database if they have significant repercussions on the model. On the other hand, removing strong outliers 

from the dataset can affect the quality and robustness of the model since their influence on the database is 
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strong (they may contain relevant descriptors information). If a data point simultaneously exceeds the 

established thresholds of the two tests, using this information in the model should be reconsidered. 

 

Figure App 8.2. Data Hotelling T² & Q Residuals Tests185 

There is no single solution for detecting and handling outliers 187. Different methods can be applied depending 

on the available information and its use in the prediction models developed. The methodology most 

appropriate is defined by each research study which has to adapt the methods used to its needs. 

 
 
Variable selection 

Variable selection in the modelling process can be implemented either for cost reduction in data acquisition 

(design and sensor selection), optimization in machine consumption, or improvement of model performance, 

whether related to its accurate prediction or its homoscedasticity in evaluating different parameters affecting 

the predicted variable. An intrinsic advantage of performing variable selection is a better understanding of 

the interaction between the independent variables and the estimated variable, which could lead to a better 

understanding of the evaluated process and its potential optimization. 

In 2010 Andersen et al.,188 conducted a study presenting the use and most common errors committed when 

applying variable selection methods in highly multivariate data. In this study, four variable selection methods 

were described: Variable Importance in Projection (VIP)138, Selectivity Ratio (SR)139, interval PLS (iPLS)147, and 

the Genetic Algorithms (GA)141. 

Some of the most recent developments in the variable selection analysis on highly multivariate information 

are the works developed by Roger and Biaconlillo et al.145, 146. They proposed two methods for variable 

selection known as Covariance Selection (CovSel) and sequential and orthogonalized CovSel (SO-CovSel).  

The variable selection is also applied to low multivariate data. The most methods include the Least Absolute 

Shrinkage and Selection Operator (LASSO)140, Recursive Feature Elimination (RFE)142, and the sequential 

feature selection (SFS)143 along with its variant, the sequential floating feature selection method (SFFS)144.         

The application scope of variable selection analysis is quite broad. A comprehensive study related to this 

subject can be found in the works of Anzanello et al.,189 and Heinze et al. 190 
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External parameters influence correction 

The spectral variability generated by an external parameter must be corrected, or at least minimized, to 

ensure a reliable description of the sample physicochemical behavior from the spectroscopic information 

extracted. Accordingly, Chauchard et al.149proposed a general methodology to determine the best strategy 

to correct the influence caused by an external parameter. In Figure App 8.3, the methodology is summarized, 

where G is the external parameter and g is its respective value. In summary, when identifying an external 

parameter with potential impact on the quality of the spectrum, and hence on the model performance, it 

must be determined whether the influence is significant or negligible. If it is a highly influential parameter, 

the next step is to determine if it can be controlled. Finally, in case of a negative outcome, it must be 

established whether the value g of the parameter G is known when using the model. If g is known, there are 

three strategies for correcting the influence of this parameter. Otherwise, robust modelling must be 

conducted. 

 

Figure App 8.3. General methodology for external parameter influence correction149  
Legend: G = external parameter studied, g = value of G, x = x matrix (NIR spectra), b = model slope, y = dependant varuable. 

The a priori correction strategy, as its name indicates, is focused on the correction of the new spectra before 

it is used. This correction is based on the difference between the existing and the new spectra affected by 

the G parameter. The most employed methods are the piece direct standardization (PDS)150 and the spectral 

space transformation (SST)191. Concerning the model correction strategy, local modelling can be taken as an 

example. In this case, different regression models are generated with consolidated databases at different 

acquisition conditions defined by g. When a new sample is evaluated, its value is estimated from the sum of 

the 𝑦 ̂obtained in each developed model, adjusted by a differential factor between the g used in the model 

development and the g of the new sample. Finally, the most frequent application of the a posteriori 

correction strategy is the adjustment of the value predicted by correcting the bias and slope, which are 

affected by the influence of the G parameter.  

Compared to the strategies described previously, robust modelling is an alternative having higher efficiency 

in solving the problem of the constant and sometimes unexpected variability that may occur in the spectra 

acquisition. In this strategy can be found mainly the orthogonalization methods, such as the external 
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parameter orthogonalization (EPO)152 and the dynamic orthogonal projection (DOP)153. Another widely used 

method in this strategy is data augmentation192.   

The definition of the external parameters that can affect the model performance and their respective 

correction is a task that must be done comprehensively to ensure that the models remain valid over time, 

and that they can evaluate the influence of the parameters on the estimated properties. This activity 

becomes even more important when prediction models are intended to be used in real-time process 

monitoring applications. 


