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Introduction

Business context and motivation

Omnichannel retailing is of growing importance. The omnichannel business seeks a seam-
less shopping experience, allowing customers to order anytime from anywhere, in person
or through digital devices, and to have their purchase delivered at their preferred time
and location (Bell et al. 2014). It offers flexibility to consumers in shopping through
stores or online and the convenience of picking and delivery. Before the internet boom in
the 2000s, customers’ accessibility to information was limited and required physical effort
to compare between products. This was not the case after the 2000s as customers now
expect more service, convenience, and less tolerance to lack of virtual accessibility. As
Chopra (2018) pointed out, retailers who failed to adapt to online presence slowly went
out of business or lost a big portion of their market share. For example, Barnes and Noble
against AMAZON’s early online bookstore business, Barnes and Noble had a physically
intensive infrastructure across the United States. At the same time, AMAZON only relied
on small storage hubs at the time to sell books, which led to significant price differences
in the price of books and more convenient delivery options of books in favor of AMAZON.
Customers now expect the option to buy from physical stores their basic needs and shop
through online platforms when buying more sophisticated items. In addition, customers
tend to shop physically for new items to get familiarized with their features, afterwards, if
they like the items, they can buy them again more conveniently through online platforms.
In terms of delivery, customers can shop online and ask for products to be delivered door
to door or go to a nearby store for pick up.

This change in customer behavior and retailer dynamics has led to the existence of
three types of retail channels: i) a traditional retail channel that carries a high level
of inventory and is capital-intensive. Such examples can be department stores, jewelry
stores, and supermarkets as well as small convenience stores and small specialty stores.
This type of service offers faster fulfillment and better customer experience, yet except for
hyper stores, small to medium traditional retail stores have less assortment and offerings
than online stores due to the restriction of physical space, ii) the second category is pure
online stores which only offer through online platforms such as Blue Nile a specialty
jewelry online store that offers more assortment than the traditional jewelry store and is
also less expensive due to the economics of scale and inventory aggregation. However,
transportation cost is higher as the main hub is distant from different destinations where
customer orders, iii) finally, an omnichannel retailer by default invests in both capital-
intensive physical stores and online fulfillment capabilities. Not only this, the supply chain
operations must be adaptable to the cross-channel flows when it comes to information and
physical flow of products, for example, buy online pick up from store (BOPS) where a
customer order online and pick from a store, this implies more sophisticated technological
resource planning systems and more collaboration between channels.

Another important customer behavior encountered nowadays in the retail context is
that customers tend to buy various items in one basket for several reasons. For example,
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the trip-to-store cost and time, lead to buying more items to save on cost. Another
incentive is the promotions offered by retailers such as buy one get one or minimum order
value for a discount or when buying online to be eligible for free delivery. Note that the
baskets are often multiple-item baskets. Moreover, the items within the baskets usually
show some form of association whether positive in the case of items complementing each
other, neutral where items are not related to each other, or negative in the case of the
existence of competitive characteristics between these items. Interestingly, other than
marketing and product recommendations, such abundant and available characteristics
are often not considered in demand forecasting or omnichannel fulfillment.

Furthermore, the availability of information online and standardization of products has
led to increased competition over price and service level to customers. As a result, retail-
ers differentiate themselves through bundling and loyalty programs as well as campaigns
and promotions in terms of pricing. As for service level, the margin of differentiation in-
cludes after-sales support, returns program, ease of platform use in terms of omnichannel
retailers and pure online retailers, improved delivery convenience, and availability of prod-
ucts consistently with less exposure to stock-outs. In addition, logistics providers have
boomed with the evolution of omnichannel offering logistical support to retailers about
packaging, storage, consolidated transportation, and last-mile delivery. This has also led
to extra complexity in terms of information flow between the customer, the retailer, and
the logistics service provider.

One of the most important aspects of service level is delivery time to customers, due to
competition, customers expect their orders faster in the standard delivery option. For ex-
ample, AMAZON, Walmart, and Instacart are now delivering within a two-hour window.
This entails that orders with a quick delivery option should be available near the cus-
tomer. In 2011, AMAZON issued a patent named speculative shipping Bensinger (2014)
that uses real-time information from customers, along with collaboration with third-party
suppliers, they can package the orders for unnamed customers before they make an order
as an anticipation of their order beforehand. If the customer does not finally buy the
order, they can circulate the packaged order to other customers at a discounted rate. Ap-
plication of such a strategy would significantly reduce delivery time for customers without
the need for more fast and expensive options of delivery.

It should also be stressed that even though omnichannel retailers enjoy higher mar-
ket exposure to customers, there is a need for collaborative strategic planning, buying,
transportation, assortment, and allocation. This is what has led to retailers adopting
collaborative space sharing of inventory between traditional retail and other channels in
some stores and regional hubs. As for buying, omni-channel benefits from the drop ship-
ping concept where products remain at the supplier and are shipped when a customer
makes an order reducing inventory space and the need to pre-purchase products from the
supplier in some cases. Retailers also can benefit from the reduction of purchasing costs
because of the increased quantity of buying for multiple channels. Omnichannel retailers
can use channel integration by fulfilling online orders from the store’s backroom. The
order’s item can be advanced from the online fulfillment center or served from store in-
ventories. Retailers consider the implementation of “buy online pick-up at store” (BOPS)
and “ship-from-store” (SFS) policies through the online channel to ensure a competitive
response time that is also supported via the fulfillment center. SFS takes advantage of
the existing physical network by turning certain store locations to ship-from points for
online sales. The inventory for SFS can come from a BM store replenishment stock that
happens to be available online as well. However, SFS requires online fulfillment operations
in-store.

In addition, we attempt to answer a question about where the inventory of each chan-
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nel should be allocated, and if they should be merged. The same question is valid for
forecasting: should each channel be forecast separately or jointly? These questions face
omnichannel retailers constantly as customers expect more than ever products delivered
or available to them in a short lead time given the nature of the multi-channel environ-
ment they experience. Omnichannel retailers have to choose which products to offer on
online platforms, which to offer in BM stores, and which to offer in all channels. Chopra
and Meindl (2016) stated that retailers should keep slow-moving high-value items in a
centralized location for online offerings to reduce inventory cost and risk of obsolesce and
advance fast-moving items to stores. This is more significant when centralized fulfillment
locations are far from BM stores. Furthermore, demand planning becomes more complex
as the demand is generated from different streams, this poses the challenge of aggregating
demand across channels and doing segregation afterward or having a separate division
for demand planning for each channel. Demand planning has a direct impact on inven-
tory volume, aggregating demand and inventory of both channels is a question yet to be
investigated.

Omnichannel retailers are dealing with these challenges by advancing internet-based
sales like home delivery or buying online and pick up from the store (BOPS) to physical
store locations. This leads to a level of consolidation that would reduce transportation
costs and at the same time reduce the delivery time to the customers, providing them with
instant gratification and pick-up of the product at the time of their choice Rooderkerk
et al. (2023). However, the preparation and the packaging of the order can significantly
increase complexity if it is handled in a physical store instead of a fulfillment center with
extra operations and backroom store space required. This operation is commonly known
as a ship-from-store (SFS). Another variant is BOPS where the customer picks the basket
from the store instead of home delivery. All of this has led retailers to ask the question of
how to plan inventory for these integrated channels noting that research has been silent
on forecasting in an omnichannel context Rooderkerk and Kök (2019), Rooderkerk et al.
(2023).

With this challenging strategic planning, there is an additional dimension specific
to the retail industry, customers tend to buy several items in a basket. Often times
products are associated with each other, or they are competing with each other, and in
some cases, they have no association or a distinctive pattern. This complicates the pre-
packaging of online baskets for anticipatory shipping. There is also another possibility
that part of the basket is available in a nearby store and the rest of the basket is in a
centralized location, which leads to online orders suffering idle time and being delayed
to customers if online fulfillment was made from the store. In addition, online orders
are usually sent from a centralized hub where packaging capabilities are economically
viable. However, this is done from a distance not close to every demand zone leading
to high single shipments transportation costs due to irregular times of shipment and not
benefiting from consolidation or economics of scale like the physical channel replenishment.
Furthermore, although product associations and competitiveness were researched from a
marketing perspective (Berry and Linoff 2004, Ghoshal and Sarkar 2014, Kim et al. 2012,
Manchanda et al. 1999) the information related to product association is lacking from the
forecasting research stream.

With this in mind, the motivation behind this work is to fill the gap in research
concerning basket data in the omnichannel supply chain. Basket data has always been a
tool for marketing and sales operations to recommend products to customers. AMAZON
and similar online retailers use basket association rules to recommend complementary
products to customers and Netflix uses the same methodology to recommend movies to
subscribers. In Both cases, basket data and product associations are used to derive more
sales, and more convenience for users and customers. We aim to use product associations
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from basket data to motivate more accurate forecasting in an omnichannel environment.
The shopping basket notion has gained increasing importance in omnichannel retailing. It
has become a crucial vehicle to capture sales through continuous promotional periods and
various bundling offers. For instance, the data of a major cosmetics retailer used in this
work reveals that, out of 2.2 million online orders over the year, 50% of them occurred in
baskets with two distinct products or more, and there were 2.4 ordered products on average
per basket. This raises the question of how data from multiple product baskets could
be considered by operations managers to improve the accuracy of demand forecasting
in omnichannel retailing. In an omnichannel environment, customers expect to order
products either by visiting stores or online interfaces such as websites or third-party
applications, and more often than not, orders made by customers are in bundles, and
more than one item in an order, this motivates using basket data for forecasting.

Objectives
This thesis aims to address these questions through the following objectives:

• Omnichannel forecasting and inventory performance using basket data. We intend
to explore how basket data can be used to gain information that helps more accurate
forecasting. Basket data can inform about associations between products and the
competition between products among each other. It is more likely when a product
has many substitutes that it will have fewer sales than a product with fewer substi-
tutes. In addition, a product that usually comes in orders of size more than one is
likely to have more sales than a product that usually comes in a single-item basket.
We also aim to test forecasting the omnichannel by focusing on the BM sales and
online sales of one region and see if there is an improvement in forecasting accuracy
and inventory performance through channel aggregation.

• We aim to use basket data for anticipatory shipping and investigate if basket data
can be used to predict basket content. Retailers face increased pressure to reduce
lead time to deliver orders to customers. Utilizing store space for online orders for
either home delivery or BOPS is a leverage that needs more specialized and dedicated
advancement approaches that take into account order heterogeneity. We attempt
to provide an approach to tackle this problem by looking at product associations.

• Basket data impact on forecasting aggregation and inventory performance. aggrega-
tion of products on a natural level or temporal level attempts to capture information
hierarchies from all the levels of the series. However, information is lost during ag-
gregation to upper levels while basket data is information that is compatible with
many levels of the hierarchy for example; at the store level, there is basket data as
well at the regional level. We aim to utilize basket data through a select of models
to forecast store sales, regional sales, and top-level sales.

Thesis content and outline
This work attempts to tackle these challenges in three different folds. First, for product
association integration and omnichannel forecasting, we investigate developing a fore-
casting approach using basket data and graph theory that extracts attributes to predict
product relations and interdependence. Graph theory is a modeling approach that is used
to formalize the connections between items within a network and analyze the magnitude
of their connectivity. Two variables are often used in the literature to characterize these
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connections, namely: the degree of connectivity and the strength. These two variables
can also be used to reflect the complementarity level of products since they measure the
magnitude of connections between products that are often sold together within the same
category or across categories. We also consider complementarity and substitutability for
within-category associations. Following the recommendation of the M5 competition on
the benefit of considering exogenous/explanatory variables when forecasting the demand
in the retail context Makridakis et al. (2020), we consider the four cited above variables
for the sales forecasting using baskets data in the omnichannel context.

In the second fold, for anticipatory shipping, we develop a two-step advanced inventory
approach that develops a strategy for basket advancement near customers before an order
is made, we also develop a profit model that captures all the related costs when applying
such strategies, costs such as packaging cost, inventory cost, transportation cost, shortage
cost, unpacking cost, and salvage cost. Unlike the first fold, here the approach tackles
predicting the arc, not the nodes and thus graph theory is used to extract attributes
related to the arcs (bi-product connection). Mainly three sets of attributes; nodes to the
arc attributes, arc related attributes, and probability/Bayes related attributes. It is worth
noting that to the best of our knowledge, no research explicitly considered basket data to
forecast the content of a basket in advance. We endeavor to fill this gap in this work.

In the third fold, we investigate the impact of basket data attributes on forecasting
aggregation. This has also not been investigated before in the literature and this work
attempts to fill the gap. The work focuses on one city’s transnational data from our
industry partner. Basket data are extracted and used as regressors with a statistical
model and a machine learning model across different grouped-natural aggregation levels
such as product/store level, product/region level, and aggregated sales level. The resulting
forecasts are then simulated with inventory policy to measure inventory performance
noting that we are among the first that measure the performance of hierarchical forecasting
approaches on inventory performance in a retail context.

Finally, we give the conclusion and perspectives of the work and future avenues that
could be explored to extend the work carried out in this thesis.

Main contributions
The main contributions of this dissertation are listed as follows:

• Contribution 1

– Building on findings from marketing and graph theory, we propose a novel fore-
casting approach for online and store sales that is driven by data on customers’
shopping baskets. It builds on a multi-category graph-learning approach from
the basket data using an original set of cross- and within-categories regressors.
Using this approach, four forecasting methods are proposed based on linear
and polynomial regressions and machine learning. To the best of our knowl-
edge, we are among the first contributors to the literature that considers the
shopping basket in demand forecasting.

– Through the analysis of more than 2 million orders in the online channel of a
major cosmetics retailer, we characterize the demand patterns, and we provide
empirical evidence of the dominance of cross-category complementarity and the
high level of within-category substitutability of products in the market baskets.
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– Based on a dataset of an assortment of 24,029 products in both the online
and store channels, we empirically show the outperformance of four proposed
forecasting methods compared to two benchmark forecasting methods, namely:
Croston’s method and the autoregressive integrated moving average (ARIMA)
method, which are often used in the retail context as shown in (Syntetos et al.
2010, Babai et al. 2013, Fildes et al. 2019). The outperformance is shown to
be substantial for the class of lumpy demands due to the high connectivity of
products. We also empirically show the benefit of joint forecasting of online
and store sales. This holds for all the proposed forecasting methods.

– Through an investigation based on the order-up-to-level inventory control pol-
icy, we provide empirical evidence that using joint forecasting and shared in-
ventory in an omnichannel context leads to a reduction of inventory shortages
and an increase in the achieved service levels. This is shown by comparing the
inventory performance of three fulfillment scenarios where the sales of both
channels are forecasted separately or jointly and the inventory is either dedi-
cated to each channel or shared by both channels. We are also among the first
that consider channel hierarchical aggregation

• Contribution 2

– Building on findings from graph theory and Bayes theory, we propose a two-
step approach to advancing baskets near customers before an order is made.
In the first step, we suggest an arc prediction method instead of the traditional
individual product forecasting method using three sets of attributes; arc at-
tributes, nodes to the arc attributes, and probability/Bayes attributes. In the
second step, we propose a policy and an algorithm based on the size of the
basket, Baskets that contain two items or baskets of size 2 (BS2) are advanced
consolidated and packaged while baskets of size more than 2 (BS>2) are sent
not packaged. BS>2 consist of more than one arc which requires the algorithm
to retrieve baskets from arcs and reshape arcs into baskets of different sizes.
.

– A multi-period profit model is proposed to evaluate the performance of the con-
sidered approach. The model is used to compare the performance of our pro-
posed approach (TO-BE) and the baseline (AS-IS) with various costing com-
ponents including packaging, inventory, handling, and transportation costs.
Key performance indicators that evaluate the approach from a service-level
perspective are also considered.

– Based on the dataset of baskets from one city from a major cosmetics retailer
based in France. We formulate and run a multi-period simulation on basket ad-
vancements that is suitable for the proposed two-step approach as it uniquely
tackles bi-products advancement which is not compatible with the traditional
inventory policies such as (R,S) policies. The resulting outcome of the sim-
ulations is assessed through proposed fulfillment key performance indicators
and a multi-period costing model. We also provide empirical evidence that
arc-proposed attributes utilized by machine learning methods successfully pre-
dict arcs that will be ordered in the future and eliminate arcs that will not be
ordered.
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• Contribution 3

– Building on findings from basket data, cross-category attributes; degree and
strength, and within-category attributes; substitutability, and complementar-
ity, we assess the impact of the aforementioned basket attributes on hierarchical
aggregation approaches.

– The forecasts generated are used to simulate inventory planning in stores and
the warehouse of the region and then are compared for inventory shortage and
inventory volume which to the best of our knowledge, we are among the first to
to investigate inventory performance with hierarchical forecasting approaches.
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Chapter 1

Problem statement and literature
review

1.1 Introduction and Problem Statement
This chapter provides an overall academic perspective, the objectives of this work, and the
steps required to meet them. First, we define some key terms that are used in the work in
relation to graph theory, omnichannel, forecasting, inventory, and demand aggregation.
Following that, we explain the business context, the research background, and we provide
an overview of the research objectives. We elaborate on our contribution to the state of
the art in chapters 3 to 5. The following section includes the definitions of the key terms
that are used in this work.

1.1.1 Definitions
Omnichannel

Chopra (2018) defined omnichannel retailing as using various channels to interact
with customers and fulfill their orders. The interaction between a customer and a
retail channel is primarily in terms of three flows – information, product, and funds.
First, the retailer provides product and pricing information to the customer who
then places an order. Following that, the order information is used by the retailer
to move the product to the customer. Finally, payment is transferred from the cus-
tomer to the retailer. From an operations point of view, the various channels offered
to customers require integration of the supply chain in terms of transportation, in-
ventory, packaging, and fulfillment.

Time series
Durlauf and Blume (2016) defined time series as any series of observations ordered
along a single dimension, such as time, may be thought of as a time series. The
emphasis in time series analysis is on studying the dependence among observations
at different points in time. What distinguishes time series analysis from general
multivariate analysis is precisely the temporal order imposed on the observations.
In this work context, a time series refers to the sales or the demand for a product
over time. These products can be categorized by store, by the fulfillment center, by
channel, or by multiple channels aggregated.

A forecasting model
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Hyndman and Athanasopoulos (2018) defined forecasting as predicting the future
as accurately as possible, using all of the information available, including histori-
cal data and knowledge of any future events that may impact the forecasts. The
models can be statistical or machine learning in nature, extrapolated, or causal
Petropoulos et al. (2022). In this work, we rely on two statistical methods: ARIMA
and Croston as a benchmark of widely used models in retail supply chains. As for
machine learning and causal methods, in chapters 3 and 5, we rely on LightGBM
as a top-performing model in machine learning methods as well as linear regression
as a standard used model to capture relations between dependant and independent
variables. In Chapter 3 where we predict basket content, multiple machine-learning
models are tested and compared.

Forecasting aggregation
Forecasting aggregation relates to the aggregation of several data time points. This
can be a temporal aggregation such as aggregating daily demand data to weekly for
a particular product. Moreover, the aggregation can be cross-sectional, for example
in a retail context, it can be an aggregation of multiple product revenue under a
specific category. Besides, it can be a natural aggregation by location for example
(store/region/country/continent). In this work, we implement a grouped natural
structure aggregation where each product is not aggregated at the store level, sales
of each product are aggregated at a regional level Babai et al. (2022).

Accuracy measures
Accuracy measures the errors of the forecasts where the latter is the difference
between observed and predicted value. It is important to note that an error is not
a mistake but an unpredictable part of the forecast Hyndman and Athanasopoulos
(2018). Accuracy measures are used to explain how well a model predicts new time
data points not fitted by the model. They are considered performance measurements
that measure and compare characteristics in the forecast in relation to the resulting
error. For example, mean error (ME) is used to calculate the bias of forecast if
it is usually overshooting and optimistic in its prediction or undershooting and
pessimistic in its prediction while mean squared error (MSE) is used to magnify the
error.
Accuracy measures can be divided into three categories; the first category is scale-
dependant errors which measure directly the error and this works well when all the
time series have the same unit scale, volume, and frequency or when the comparison
is between several models on the same time-series. From scale-dependant errors are
the mean absolute error (MAE) which is equal to mean(|et|) and the root mean
squared error (RMSE) which is equal to

√
(mean(e2

t )) where et is the error at period
t.
The second category is scale in-dependant errors which does not depend on the unit
scale of the time series. as it compares a forecast prediction and a simple forecasting
method from the training sample Hyndman and Koehler (2006), Hyndman and
Athanasopoulos (2018). The widely used metrics in this category are the root mean
squared scaled error (RMSSE) and mean absolute scaled error (MASE). The error
for MASE is calculated as follows.

qj = ej

1
T −m

∑T
t=m+1 |yt|−yt−1

(1.1)
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and accordingly the MASE is calculated as mean(|qi|). While the error for RMSSE
is calculated as follows.

qj = ej

1
T −m

∑T
t=m+1(yt − yt−1)2 (1.2)

and accordingly the RMSSE is calculated as
√

mean(q2
i ).

The last category is percentage errors, where the error is calculated as a percentage
of the observation. It is useful when forecasting performance is compared against
different time series. The most common metric is the mean absolute percentage
error which is equal to mean(|100et/yt|). However, this metric is prone to inf-finite
results and is not interpreted when yt at any period is equal to zero. and the Scaled
mean absolute percentage error which is calculated as mean(200|yt−ft|

yt+ft
), where ft is

the forecast at time t.

Graph theory
Graph theory is a modeling approach that is used to formalize the connections be-
tween items within a network and analyze the magnitude of their connectivity Gross
and Yellen (2005), Dooley et al. (2019). A graph is made of nodes and arcs. A node
is an object that is considered in this work’s context as a product, while an arc
is a connection between two products. In this work’s context it is two products
that were bought together at least once in a basket. Furthermore, two variables
are often used in the literature to characterize connections between two entities in
the graph, namely: the degree of connectivity and the strength In Figure 1.1, a
sample of products is presented where nodes model products (A,B,C,D) and they
are connected through arcs (A-B, A-C, A-D, B-D, D-C) as the graph is un-directed:
arc A-C is equal to arc C-A, and arc A-C ahas a frequency of 2 which means that
this connection appeared twice in two baskets.

Figure 1.1: A graph of products

Network horizon
In our context, "Network horizon" is the number of historical collective periods con-
sidered in a graph of products. The product or arc attributes are collected based on
the time length (duration) of the graph. The attributes extracted from the graph
are utilized as regressors with a forecasting model to predict products or to predict
baskets.

Inventory policy
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An inventory policy is a policy that contains a set of thresholds and parameters that
guide the quantity and the time of replenishment. There is a plethora of inventory
policies used in industries and applied in the literature Babai and Dallery (2009).
Some of these policies are periodic such as the periodic (R,S) policy which defines
a review period at which a product is ordered to a defined level (max), and (R,s,S)
policy at which a product is ordered every review period to a defined level (max)
but only when the inventory position is below min at the time of the review period.
Besides, a base stock policy is a periodic review period where a base is set and the
quantity sold is ordered every time period. From the continuous policies where the
stock level is always monitored, there is the (s,Q) policy, where a fixed quantity is
ordered when the inventory position reaches s (min), also known as re-order point.
Moreover, there is the (s,S) policy, where an offset between inventory position and
max is ordered when the inventory position reaches min. We use the periodic review
policy (R,S), in this work, as it matches the setup employed by the industry partner.

Industry partner
The industry partner -hereinafter referred to as the retailer- of this work is a multi-
national cosmetics retailer that has stores globally. It is based in France. The
retailer sells a broad range of assortment that includes perfumes, skincare, lotions,
and beauty products. The retailer not only sells its brand’s products, but also
brands from other third-party partners. They own and operate a dynamic and in-
tegrated omnichannel where products sold through their website can be stored in
Brick and Mortar stores and where a portion of their offering is sold through third-
party sellers. They also have exclusive products that are only sold in their physical
stores and products that are sold online as well as products that are sold in both
channels. This work uses retail transaction data of a particular city in France that
is segregated by channel and investigates the contribution of this work to the pro-
vided data through empirical investigation. The retailer in France has a fulfillment
where most online orders are sent to all cities in France and neighboring countries.
Physical store replenishment is made through scheduled transportation deliveries
from regional warehouse hubs.

Transaction data
In this work’s context, transaction data refers to the daily purchase data of online
and physical stores. The data includes the date of the order, the products purchased
within the order, and their quantities, the order number and description of the prod-
ucts. Each store has its transaction data, the daily transactions data. Besides, the
daily transactions can be aggregated into daily, weekly, and monthly as a form of
temporal aggregation, and also, can be aggregated by city, cluster, and country as
a form of natural aggregation. Finally, it can be aggregated by channel; BM and
online channel.

Cycle service level (CSL)
Cycle service level is a performance metric that evaluates the performance of the
inventory policy. The CSL relates to the number of periods where demand was
satisfied in full from the total periods of the simulation Babai and Dallery (2009).

Profit model
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A profit model is a model that includes all the related costs and revenue set up
for a specific order fulfillment setup Meixell and Gargeya (2005). Costs include for
example the cost of packaging a product either in a fulfillment center or a store,
the cost of handling, the cost of transportation of an order either consolidated or
sent by freight forwarding, the penalty cost of not having the order on time, and
inventory cost for keeping a product either in fulfillment center or store. The model
serves as a comparison approach for different fulfillment scenarios as explained in
detail in Chapter 4. As for the revenue in the profit model, it relates to the selling
price of a basket as well as the bonus resulting from having the order available on
time for a customer.

1.2 Research background
In this chapter, an overview of the literature is provided that draws on research in the
areas of omnichannel retailing, demand forecasting for retail, forecasting aggregation,
inventory performance in retail, and anticipatory shipping.

1.2.1 Introduction
The retail industry is a broad industry that includes many different functions and utili-
ties. It ranges from electronics retail, consumer goods retail, and specialty retailers like
Ikea, Home Dept, and Zara to small convenience stores and kiosks that sell snacks and
desserts. Retailers provide a wide range of services: they can enable access to informa-
tion, gives products’ accessibility to customers, promote products of suppliers, organize
the assortment for customers, allow for product timely introduction to the market, and
create a presentable and acceptable user experience for customers Gauri et al. (2021). Re-
tailers that provide an assortment that serves the same utility to customers differ in their
service offering which justifies a customer’s willingness to pay an extra margin against
the extra service offering. For instance, Tesco provides a nice ambiance for customers, a
tidy assortment organization, and accordingly a little more extra margin than COSTCO
which depends more on the wholesale price offering and bulk buying. Retailers have come
a long way since the middle of the nineteenth century. In fact, retailers used to be small
stores that were owned as family businesses where crops and general merchandise were
sold. Then, department stores were introduced in the nineteenth century followed by
malls and super stores, limited assortment stores and convenience stores. The biggest
revolution in retail in the last thirty years is the commencement of online retailing using
the World Wide Web. Retailers, before the internet, used to reach the customer through
a multi-channel approach. They often extend their reach to customers either through
catalogs that are delivered by mail or through delivery by phone. On the other hand,
show-rooming stores also gained popularity, customers visit the show-rooming store and
check the products which can be delivered to them by home delivery.

As for the online channel evolution, it already evolved significantly in the last thirty
years, with the flourishing of AMAZON in the online retail space. Other retailers, also,
started to focus exclusively on selling online through websites such as (E-bay). where
they sell products not necessarily new, it can be used or antiques through the general
public and the notion of marketplace started to evolve. After that, pure online stores
were introduced such as Blue Nile, which sells jewelry at a considerably reduced price,
and Indochino which sells customized suites (Chopra and Meindl (2016)). The online
space, also, availed non-retailers to craft products and merchandise through specialized
crafting marketplaces like ETSY (Chandna and Salimath (2018)). In addition, online sales
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integrated solution provider, like Shopify, allows entrepreneurs to sell merchandise they
make or consolidate through their own customized website. In the food retail business, the
emergence of food aggregation applications significantly impacted the way restaurants and
grocery stores deliver products to customers and served as a complimentary marketplace
to restaurants like Delivery Hero, Deliveroo, and Uber Eats Farah et al. (2022). Food
aggregators became much more popular such that shadow kitchens (multiple brands in one
kitchen) that have multiple brand labels serve customers only through food aggregators.
Specialty retailers and original equipment manufacturing (OEM) started to take notice
early on in the online revolution and online stores such as DELL, FORD, and APPLE
started to establish their online presence. DELL even shifted its strategy drastically from
2005 to 2012 to sell online their laptop assortment online exclusively through its online
platform in the United States following a make-to-order strategy where a customer can
customize their laptop and receive it via home delivery within 3 to 7 days Chopra and
Meindl (2016). Gauri et al. (2021) presented a summary of the evolution of retail and the
integration between physical stores and online stores in Figure 1.2. This has subsequently
become omni-channel retailing.

While there is a constant argument that the enormous boom of online retail is here to
stay and that there is an impressive growth of online sales year by year, BM is still here
to say contradicting some consensus that it might disappear soon Gao and Su (2019).
Besides, physical retail stores offer a tangible ambiance that online stores do not offer, for
instance, big stores like FNAC in France, IKEA offer food court and coffee shops inside
their stores which offer a sort of social shopping to customers.

Figure 1.2: different retail formats

1.2.2 Omni-channel retailing
The term omnichannel was introduced by Strang (2013) as a boundary-less retail experi-
ence to customers where a customer can research a product online or through a catalog,
mobile applications, showrooms, or physical stores and then decide to buy through one
of these channels. This is congruent with most of the definitions referring to omnichannel
retailing as the use of a variety of channels to interact with customers and fulfill their
orders (Bell et al. 2014, Chopra 2018, Marty 2022, Jasin et al. 2019, Melacini et al. 2018,
Cai and Lo 2020). Gallino and Moreno (2014) are among the first to cover the integration
of online and offline channels in retail. They discussed the important effects of the imple-
mentation of a buy online pick up from store (BOPS) channel, especially the cross-selling
effect and the channel-shift effect. Gradually, Brick & Mortar BM started to gain market
entry and have an online presence, which led to gradually blurring the line between BM
and web shops Brynjolfsson et al. (2013), Hübner et al. (2016). It is evident that the
emergence of online channels led to direct competition with physical stores. However, it,
also,presents an opportunity for expansion of market share Goedhart et al. (2023). Recent
contributions on network design (Arslan et al. 2021, Guerrero-Lorente et al. 2020), inven-
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tory management (Saha and Bhattacharya 2021, Hu et al. 2021) and fulfillment (Gao and
Su 2016, Bayram and Cesaret 2021), showed the benefit of using ship-from-store (SFS)
channel and/or of using BOPS channel. Such benefit was also discussed in Gallino et al.
(2019) and Jasin et al. (2019), where the authors argued that adapting an SFS model can
increase the service level perceived by customers.

Goic and Olivares (2019) reported that in a data-driven omnichannel framework, the
boundaries between online and offline data are disappearing and the methodologies to
analyze these data are converging. From a consumer point of view, Ailawadi and Far-
ris (2017) underlined the heterogeneity in consumer reasons for buying online and the
unknown path to purchasing across channels, which is challenging from a forecasting per-
spective.
In the last years, several studies in the literature rely on empirical studies to explore this
novel topic.

Hübner et al. (2016) provided an exploratory study with 33 retailers and reported that
inventory integration and allocation, are among the most important areas for fulfilling
distribution requirements. Ishfaq et al. (2016) underlined the role of store-based retailing
on the omnichannel fulfillment strategy, which would be improved by forward placement
of inventory. Gallino et al. (2016) empirically studied how the deployment of ship-to-store
policy at a major US retailer generated sales dispersion and affected inventory-ordering
models with an increase of cycle and safety inventories. Similarly, Gallino and Moreno
(2014) studied the importance of sharing reliable available inventory information with
customers when channels are integrated. All these empirical investigations highlight the
need to integrate store and online channel operations and to investigate cost-service trade-
offs when channels are planned and operated jointly.

Furthermore, Rooderkerk and Kök (2019) appealed to revoking the classical predictive
and prescriptive modeling approaches in an omnichannel context that all work by a sepa-
rate demand stream and by location (stores or fulfillment centers). The authors reported
that academic research has been largely silent on the challenges of forecasting the demand
streams of the various types of omnichannel flows. To the best of our knowledge, there
is no research work in the literature that considers forecasting and inventory planning to
operate an omnichannel distribution network under online and store demand.

Asmare and Zewdie (2022) argued that omnichannel retailing has made the customer
touch points more holistic. Jasin et al. (2019) segregated the types of retailers into five
categories; a single channel retailer, for example, Shopify sellers, the retailers of this
type have a big opportunity to optimize their supply channel. The multi-channel retailer
runs a separate channel for each business (almost). For example, Walmart started an
online business where they had a dedicated warehouse for online baskets. They argued
that complexity is low as they are separate channels but they can achieve economies of
scale with aggregate buying. Cross-channel where the supply chain is integrated between
multiple channels this is abundantly evident when a customer orders a basket online
and picks it up from the store or the retailer chooses to send an item to a customer
directly from the store and finally an omnichannel retailer which is a completely seamless
experience where the customer can surf online, check the product in a showroom and
have it delivered it to home. As most retailers now are moving towards an omnichannel
environment, delivery time has become more of a determining factor in retailer selection.
AMAZON was one of the first movers through AMAZON Prime to offer 2-day delivery.
Other retailers started to compete within the same arena. For example, Target started
to offer 2-hour delivery (Jasin et al. (2019)). they attempt to achieve reduced lead-time
time slots by utilizing store space or establishing mini hubs near expected demand zones.

When a customer purchases an item online, the item’s processing takes a different route
than the Brick and Mortar fulfillment. More Generally, when an omnichannel retailer has
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a strong online retail business, and a dedicated fulfillment warehouse is established and
designed to be as efficient as possible. In such cases, online orders would be shipped from
online fulfillment centres to customers. Activities of online fulfillment include processing
order requests, picking, sorting, and packing. When these activities are made inside
a dedicated online fulfillment warehouse, the opportunity of the economics of scale is
achieved. However, there is a high risk of delaying customer orders could be distant from
potential demand zones. Having online orders stored in a store near a customer location
in large quantities risks interrupting the shopping experience of walk-in customers. In
addition, shipping from the store requires manual picking operations that divide the
tasks of store staff and take extra backroom space that not all retail stores might have.
There is also the constraint of multiple items in a basket and not all of the requested
items being available near the demand zone which would potentially lead to a delay
in order to the customer. However, generally, shipping from the store lead to reduced
shipping cost due to demand pooling. A plethora of models were developed to deal with
this dynamic allocation problem. For instance, Mahar et al. (2009) developed a dynamic
model using real-time data. They argued that having a dynamic assignment may reduce
inventory cost, back-ordering cost, and transportation by 8.2 percent. Jasin et al. (2019)
developed a split assignment linear deterministic model where orders allow for multiple
items in a basket. Gallino and Moreno (2014) are among the first to cover the integration
of online and offline channels in retail. Recent contributions on network design (Arslan
et al. 2021, Guerrero-Lorente et al. 2020), inventory management (Saha and Bhattacharya
2021, Hu et al. 2021) and fulfillment (Gao and Su 2016, Bayram and Cesaret 2021)
showed the benefit of using SFS channel and/or of using BOPS channel. In terms of
assortment planning, customer behavior has shifted dramatically with the emergence of
digital and social media which consequently affects the approach retailers offer and profile
their assortment in each channel, the models of Rooderkerk and Kök (2019), Bijmolt
et al. (2019) for the customer journey is adapted and it depicts a traditional omnichannel
customer journey from recognition to evaluation or review of order.
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Figure 1.3: Customer journey

In their flow model, an illustration is made between the interaction between the cus-
tomer journey, the decisions that the retailers make in reaction to the customer, and the
respective product flow. Central panel b demonstrates the decision areas that relate to
the customer journey in panel A and the product flow in panel C.

In the customer journey (panel C), the retailer has to ensure a seamless experience
for a customer from his/her need of recognition, either by targeted advertising or other
media of advertisement. Followed by the previous options, a customer could consider
gathering information about the product either by web search or physical showrooming
or tutorials ...etc. Followed by price comparisons either by similar products from the same
retailer physically or through their online website or from price comparison websites. Food
aggregators are well-established examples of price comparisons. The ordering phase can
be through the BM store, the retailer’s website, the retailer’s application, and third-party
sellers among other options. Picking up can be at a designated point, at a store, or
third-party logistics provider’s office among others. Finally the return of the product is
either at a specific designation, near the store, or via third-party partners. As shown,
each decision in the customer journey can have multiple channels to choose from.

In the case of product flow, which is facilitated by the operations and design team, a
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customer has the ability to buy an item through digital and social media, or by visiting
the store. This step starts with an order step by the customer, the retailer previously-
stored the items of the order in some location and the is an item is distributed near a
demand zone of the customer if not already assailable in the demand zone via a store or
if the retailer does not support ship from store capabilities in this location. Then, the
last mile delivery is usually made by a third-party logistics provider in case the customer
does not pick it up followed by the return process and distribution of return in case of
defect or other policy allowances.

Finally, panel B which is the retailer marketing and operations decisions, note that
these decisions affect both the customer journey and product flow, which summarizes into
three key decisions: (1) inventory and assortment decisions,(2) distribution and delivery
decisions which include order processing, and design of last-mile delivery, and (3) return
process decisions. The red arrows illustrate at which stage the marketing/operations
coincide with the customer journey and product flow. Interestingly, the retailer choice
with regard to assortment design would dictate where the product is shipped from. If the
products inside the basket are not included in the BM assortment, it is shipped from the
online fulfillment center.

In the assortment choice, the breadth and the depth of the assortment have a direct
impact on retail operations and the depth has significantly increased with the advent
of online retail operations Rooderkerk and Kök (2019), Bijmolt et al. (2019). As the
depth of assortment increases, the inventory volume naturally becomes more complex and
potentially increases. In addition, the chance of a particular product not being available
in multiple locations increases, and reduces the flexibility of the retailer to offer a complete
basket near the customer. While for the customer it can cause overload and stress. On
the other side, marketing and sales derive higher depth and breadth of assortment for the
sake of an increase in customer retention and sales. Furthermore, to provide exclusivity
for each channel and eagerness by the customer to check each channel. Retailers might
overcome the burden of keeping extensive depth by having consignment options by which
the retailer keeps the inventory but only pays for it when it is sold. Hence, operations
and marketing decisions are jointly established for inventory and assortment decisions.

Consequently, retailers reduce inventory overload especially if they accept products
from multiple suppliers to offer a drop shipping strategy for online retail fulfillment Cheng
et al. (2016) or by consignment options which free cash flow for retailers, although it in-
creases space utilization. However, depending entirely on the supplier’s assortment might
cause retailers to lose control over the supply chain. This is why some retailers offer
their own assortment side by side with the supplier’s offering. A lot of examples are in
this space such as AMAZON and CARREFOUR. In general, more depth provides an
opportunity for up-selling while more breadth provides an opportunity for cross-selling
Bijmolt et al. (2019). In terms of inventory, the choice of which strategy to adopt with
suppliers implies the inventory and operational costs that can be incurred. The retailer
owning the inventory would increase the inventory and operational cost but would pro-
vide more control over where to allocate the inventory. Selling on a consignment basis
provides flexibility to the retailer on where to allocate products as well as dynamically
assigning products to home delivery, delivery from the fulfillment center, and BOPS. In
terms of locating inventory positions for each channel, there was a lot of research on the
subject Ishfaq et al. (2016), Goedhart et al. (2023). Govindarajan et al. (2018) considered
inventory and fulfillment optimization on a retailer network facing two demands—online
and in-store for a single product—but demand by channel was kept separate. Gao and Su
(2019) illustrated that the recent trend is to move more inventory to the store for seam-
less omnichannel integration and to offer BOPS. In addition, offering BOPS increases
the sales area of the retailer and offers the customer more opportunity to check other
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products in the store Gallino et al. (2017).Ishfaq and Raja (2018) demonstrated that it
is more efficient to pool demand in the fulfillment center than to send from stores due to
extra time suffered by staff costs for picking and packing.

As for distribution decisions, traditionally the BM replenishment is sent with consol-
idated shipments with a full truckload and less truck load and this depends on the size
of the store and the quantity replenished by the supplier if it is a direct delivery from
the supplier. The strategy of the retailer defines greatly how the design is implemented.
Chopra and Meindl (2016) argued that specific customer attributes are defined by the
distribution strategy; 1) response time, 2) product variety, 3) product availability, 4) cus-
tomer experience, 5) time to market,6) order visibility, and 7) returnability. On the other
hand, operational attributes are 1) inventory 2) transportation, 3) facility and handling,
and 4)information. Figure 1.4 shows the performance of each design with the attributes
that impact the customer journey 1 being the strongest performance.

Figure 1.4: Different distribution design - Chopra and Meindl (2016)

The BM Retailers fall in the first category "Retail Storage with Customer Pickup"
where a customer goes to the store and buys products such as Walmart and Target. Re-
sponse time to the customer is highest but with extra hassle cost on the customer, product
availability and variety is low as it is constrained by the shelf space, time to market is long
as it is far from the source, order visibility is high as the customer can instantly see the
product in stock or out of stock and Returnability is considerable easy for the customer.
Interestingly when Walmart decided to enter the online space, established a "Distributor
strategy with last-mile delivery" along with the already existing BM supply chain. AMA-
ZON established a supply network that includes three different distribution networks;
"Manufacturer Storage with Direct shipping" for their drop shipping business where a
customer orders an item that is stored by agreement at the supplier premise, AMAZON
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processes the order, and then the supplier ships it to the customer. If a customer is orders
an item and there is no local fulfillment center, last-mile delivery is not an option and
the item is sent by carrier delivery to the customer. Finally, AMAZON keeps the usual
in-demand assortment in the local fulfillment center following a "Distributor Storage with
Last-Mil Delivery". DELL, when they were selling desktop computers, they were following
"manufacturer storage with in-transit merge" when they were compiling the CPU manu-
factured by DELL and the monitor by SONY Chopra and Meindl (2016). Notably, with
the current dominance of omnichannel retail, it can be observed that a single-channel
retailer applies one distribution network while a multi-channel or omnichannel retailer
applies more than one distribution network. Lim et al. (2018) illustrated that there are
three categories of last-mile delivery for omnichannel retailers: a push last mile delivery
system, where the customer plays no role in the product flow of the delivery process and
delivery is handled either by the omnichannel retailer or a third-party logistics provider.
The second category is a pull last mile delivery system where a customer makes the effort
of going to the store or directly to pick-up point. Usually, in this scenario ,transporation
cost is saved due to customer contribution. Finally, a hybrid system where the omnichan-
nel retailer or the logistics provider ships the products to a hub point near customer’s
location and the customer picks the item from the location. This strategy is a balance
between the push system and the pull system. However, the contribution of the customer
does not result always in savings of cost for the total supply chain cost due to schedule
conflicts that might hinder the customer from receiving the product at home or picking
it up from a named location which results in returns or shipping the products again.

For returns decisions, which are the last marketing-operations in panel b (Bijmolt
et al. (2021)), it is a major factor in supply chain cost, especially in the online channel
from the omnichannel as customers do not have the chance to try the products if it was
apparel or fashion. In addition, the online sales channel depends heavily on third-party
suppliers the product is not entirely controlled by the retailer. Any retailer, if they have
a return policy, determines when the customer could return a product, for what reasons,
and the method of this return. In general, a customer plays a part when the customer
returns a product, the customer might go to a nearby store, or package the item and leave
it at a destination point, or pay for the whole delivery to the main hub of the retailer.
In a study made by de Leeuw et al. (2016), they showed that consumer returns could
reach 50 % of the fashion market. The location of where the retailer collects products
can vary supply chain costs significantly but it can also from a marketing perspective be
a determinant if a customer would purchase from the same retailer again. For instance, a
customer would prefer a returns location that is more accessible and has fewer returning
procedures. de Leeuw et al. (2016) argued that returning a product to a store from an
online purchase, particularly from omnichannel retailers is appreciated by customers and
might facilitate the quick return of an item to be in stock and assortment again. Items
returned can either be recycled and enter into the making of other products, refurbished
and sold in the secondary market which is a big market considering the amount of returns
and finally it can be re-sold if it was returned for reasons other than malfunction. In
general, it is particularly effective to return the product quickly back to the supply chain
if the product is intended to be resold as products lose value over time especially if they
are resold.

1.2.3 Anticipatory shipping
Anticipatory shipping is a recent discipline of research that closely impacts omnichannel
retail, it can be described as the planning and partial shipping of baskets close to the
customer in anticipation of a customer order. The first notable literature in this area, to
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the best of our knowledge, is the research and development made by AMAZON. Spiegel
et al. (2014), Pöchhacker and Nyckel (2020) introduced a concept that suggests real-time
tracking of customer preferences on their website, collaboration with suppliers, and use of
quantitative models to package in advance a basket to the customer demand zone without
a name tag or a specified address. So, as when the customer actually orders the basket,
it is delivered within hours to his/her home, in case the basket is not eventually bought
by the him/her, it is promoted at a discounted price to other customers. This strategy
would allow for same-day delivery and next-day delivery for a lot of baskets that had
products in a distant fulfillment center or at an OEM supplier. Such a strategy when
implemented would increase the retailer’s competitiveness. For example, consumer goods
that are similar in utility and approximately similar in price, such similarity would give
room for service level, bundling, and pricing to differentiate a retailer.

The work on anticipatory shipping is rather limited and still in its early stages. Lee
(2017) proposed a genetic algorithm optimization model complemented by baskets data
association rules to anticipate the basket in advance on clustered historical data. A close
approach was proposed by Viet et al. (2020), where they used basket data association rules
with the addition of a time constraint for perishable food items for the agri-food industry.
Baskets data are heavily used by retailers, especially in marketing. It is a vital input
to increase basket value and size through investigations of associations between different
products of the retail assortment Manchanda et al. (1999), Cachon and Kök (2007).
Walmart entered a strategic partnership with JingDong to provide customers with a one-
hour delivery service. The customer can order online through the Walmart website, and
then JingDong goes to the nearby physical store, picks up the items, and delivers them
to customers Ren et al. (2023). For a purely online retailer, anticipatory shipping can be
achieved by advancing baskets either packaged or not packaged to a close point near the
demand zone. While omnichannel retailers can advance online baskets to nearby stores in
the back room to avail one-day delivery and next-day delivery. From the recent research
on the omnichannel, there is the ship from store concept (SFS), Goedhart et al. (2023)
focused on the use of physical stores for online fulfillment as it can significantly reduce
lead time to customers. This strategy would allow BM retailers to compete against large
online retailers. They developed an exact solution approach to solve the online allocation
of baskets to physical stores as well as formulating a model that incorporates revenue
and costs realized from such operations.. However, in Goedhart et al. (2023) proposeed
to satisfy the demand for online baskets in advance, not to anticipate customer baskets
in advance and ship them to physical stores. Xiao et al. (2009) were among the first to
propose fulfillment of online orders through stores, they used dynamic programming to
assign inventory to stores compared to a static policy where inventory is automatically
allocated to the closest store. They found that the static policy leads to an imbalance of
inventory and would cause revenue loss while the dynamic programming policy balances
inventory. The dynamic problem becomes more complicated as the number of stores
increases and it becomes more computationally expensive, this suggests that the use of
heuristics is recommended for online order allocation to store problems Bretthauer et al.
(2010)

Furthermore, Ren et al. (2022) introduced a forecasting algorithm that recommends
items to be advanced based on product demand data with individual product-by-product
demand prediction. This strategy works well in availing baskets if they are single basket
items. They proposed an integrated approach to advance products to nearby customer
hubs. In addition, Lee (2017) proposed a Genetic algorithm optimization model comple-
mented by baskets data association rules to anticipate the basket in advance on clustered
historical data. Baskets’ data are heavily used by retailers, especially in marketing, as-
sociations between products provide a variety of insights for marketing and operations in

29



online and BM retail.
Mainly, through the use of association rules and recommendation algorithms, retail-

ers like AMAZON and ALIBABA propose to customers products that complement the
basket of a customer through similar historical purchases. Weingarten and Spinler (2021)
proposed a customer-product anticipatory shipping approach where they were provided
with customer clicks data. Aclassification model is developed to predict if a customer is
likely to buy a product. This effectively focuses on customer real-time click stream data
and the prediction model is customer-product based which is different from the general
allocation problems where product demand and inventory are concerned.

In conclusion, anticipatory shipping is a growing field of research still in its early
stages, it can prove vital to the success of omnichannel retailers to compete with large
online retailers who have large fulfillment centers across the globe, particularly since online
retail is growing rapidly, especially after the COVID-19 pandemic, where the growth of
online sales grew at a much higher rate than physical retail. We can divide the existing
literature on anticipatory shipping into two folds, a fold that focuses on the dynamic
allocation of inventory that is targeted to be consumed by traditional walk-in customers
and customers who order online and a fold that focuses and advancing a particular set
of products exclusively intended for online sales and anticipation of customer order. It is
worth mentioning that such strategies would lead to overage cost if the advanced baskets
are not required by customers leading to discounted sales or obsolescence, and underage
costs if the advanced quantities are less than what is requested by online customers or if
the advanced basket is incomplete.

In Omar et al. (2022), the dimension of quantity (frequency) and the time frame were
addressed through modeling historical basket sales as a graph where products are nodes
and association frequency are arcs. The features extracted from the graph are then used
as relational features to the products that improve the forecast of individual products in
an omnichannel context. Such methodology will, also, fail to predict basket content as
it focuses on the nodes of the graph and improves the forecasts of individual products.
Accordingly, in Chapter 3, we divert the focus on the arcs of the graph and the nodes
related to these arcs. This is because every arc represents a bi-product combination that
has a cretin frequency from previous purchases which can be forecast and each graph
represents a time frame of historical bi-product combinations. In addition, modeling
the arcs of the graph presents an opportunity to extract the historical basket size of bi-
product combinations. For example, one arc can likely be purchased in a basket of size
2, while another arc is usually purchased in a basket of size 6. As a result, the basket
size for each arc historically can be added as lags to the arc. Furthermore, addressing
basket forecasting as an arc modeling approach (bi-product combinations) instead of node
(product) modeling will allow for probability inference measures related to the arc with
relation to the entire graph structure which proves to be highly significant to the predictive
power of machine learning models as explained later on in empirical analysis.

1.2.4 Demand Forecasting in Retail
A plethora of forecasting methods have been studied since the 1980s (Syntetos et al. 2016,
Petropoulos et al. 2020). Such methods include simple extrapolative methods, such as ex-
ponential smoothing and moving averages (Gardner Jr 1985, Svetunkov and Petropoulos
2018), ARIMA-type models (Gilbert 2005, Babai et al. 2013), machine learning meth-
ods (Zhang and Qi 2005, Punia et al. 2020), and judgmental methods (Petropoulos et al.
2016, 2018). A considerable amount of research work has been dedicated to analyzing and
comparing the performance of such methods through empirical investigations and inter-
national forecasting competitions using supply chain data (Petropoulos and Makridakis
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2020). The M5 competition was built on the case of a Walmart retail supply chain with
more than 30,000 products (Makridakis et al. 2020). It showed the outperformance of ma-
chine learning methods compared to standard statistical forecasting methods, especially
the LightGBM-based method. The M5 competition has also shown the ability to improve
the accuracy of demand forecasting by considering exogenous/explanatory variables. The
inclusion of such variables in the forecasting approach as well as the machine learning
methods will be part of this research.

Demand forecasting is considered the starting point in many retail and non-retail,
strategic, tactical, and operational decisions. Retail companies rely on forecasts across
different dimensional spaces, and the position in the supply chain is in the store, in the
distribution center, or at the OEM. The product hierarchy level such as product /brand/
section /subfamily/family, such level is important for communicating with suppliers as
the granularity level and time aggregation. For instance, a forecast of stores is usually
provided in days and in distribution centers at the weekly level Syntetos et al. (2016).
Inaccurate forecasts cause a lot of problems for retailers, it may lead to out-of-stock
periods and accordingly, loss of sales, loss of customers for future purchases, excessive
inventory costs, and Bullwhip effect Lee et al. (1997).

In addition, retail sales are hardly stable especially when products are seasonal or
if the retailer applies different kinds of promotions, if there are unseen events and pan-
demics. For example, during the COVID-19 pandemic, BM sales suffered considerably
especially for luxury items while everyday food and non-food products suffered from in-
ventory shortages due to high spikes in demand. Besides, online sales boomed, which
led pure BM retailers to seek online channels to compensate for the loss of sales in BM
retail. Furthermore, Fildes et al. (2019) argued that retail sales at the product and daily
levels are characterized by a high degree of intermittence, that is, frequent zero sales.
This demand characteristic attracted a considerable amount of research, and several fore-
casting methods were proposed to deal with demand intermittence. Syntetos and Boylan
(2005) developed a commonly used framework to categorize demand into four categories;
smooth, lumpy, erratic, and intermittent. For a recent overview of the research dealing
with intermittent demand, readers are referred to Nikolopoulos (2020).

Another problem that exists in retail sales, is the bias forecasting in out-of-stock
periods. In this case, the demand series do not show if the item has no sales due to out-
of-stock instances or customers simply not wanting to buy the products. One advantage
of causal methods is that they allow taking into consideration factors such as promotions,
out-of-stock instances, and holiday sales.

Although the sales of a particular product in the same area via online and BM should
exhibit the same pattern, there are extra features that can be extracted from the online
channel that are not available in the retail channel such as click stream data and baskets
previously purchased and association between baskets. With this dynamic interaction
between online , BM and the BOPS, a lot of questions arise about aggregate forecasting
of channels also known as omnichannel sales or forecasting each channel separately Omar
et al. (2022). Promotions by itself play an important role in deriving sales and footfall
for BM or click volume in terms of online. Retailers usually have a promotional calendar
where they plan for long to medium-term different kinds of promotions. This can be done
along with pricing and product associations while doing forecasting. For example, there
are products that complement each other like a tortilla and tortilla sauce, and products
that are competing with each other like two different brands of the same product like
chocolate spread. In fact, a chocolate spread and a peanut butter spread can be compli-
mentary products and competing products based on customer’s behavior and preference
Manchanda et al. (1999), Cachon and Kök (2007). Accordingly, promotional models are
used to forecast product data Ma et al. (2016), Trapero et al. (2015).
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In the omnichannel retail context, Armstrong (2016) argued that forecasting strongly
depends on the retailer’s omnichannel strategy, noting that both forecasts of the online
orders and sales at stores are important for fulfillment decisions. This issue can be ad-
dressed through hierarchical forecasting. Fildes et al. (2019) presented an overview of the
practice and research of retail forecasting. They reported that, at the product level, the
time horizon of forecasting changes across the supply chain from quarterly to monthly
to daily depending on the location (e.g., monthly forecasting at the distribution center
level and quarterly forecasting at the factory level). They highlighted the complexity of
product forecasting due to different physical attributes such as color, size, and packaging.
They also highlighted the importance of product mix across product categories and they
recommended that category management starts with forecasting the category level with
a judgmental approach, taking into account inter-category purchasing behavior or the
product mix. Ma and Fildes (2021) presented a meta-learning framework based on deep
convolution neural networks to forecast retail sales. Based on weekly data of a grocery
and drug chain related to a sample of 50 stores and 30 product categories, they showed
the superior forecasting performance of the proposed meta-learner. They recommended,
for forecasting retail sales, building a pool of base forecasters using both individual and
pooled forecasting methods, to target finding the best combination of forecasts instead of
the best individual method. Shang et al. (2020) showed that online retailers, especially in
fashion, face a much bigger forecasting issue compared to physical retailers, which relates
to product returns.

There has been extensive review and research on the field of forecasting Petropoulos
et al. (2022), it has seen significant growth in theory and practice due to the increase in
business and academic operations over time. Thus, the need for a forecast for planning,
the technological advances in the field of big data, computing, and cloud storage which
also led to exponential growth and innovation in the field of forecasting and machine
earning. Computing particularly has enabled the analysis of larger and more complex
data sets which was not possible before. Computer science and computing power and
speed increase have led to applications of complex models on big data sets such as neural
networks random forests, XGBOOST, LightGBM, and many others, these kinds of ma-
chine learning models have gained big attention in both theory and practice Petropoulos
and Makridakis (2020) while computing as well enabled the processing and application
of complex statistical models such as Bayesian regression, Linear regression and Lasso
Regression and ARIMAX models. There is also growing research on the branch of judg-
mental forecasting which relies on insights proposed by subject matter experts that either
complement quantitative methods or become stand-alone models used in practice, judg-
mental methods are particularly useful when there is not enough historical data or there
are unrecognized patterns of future events expected that is not recognized by historical
data among other reasons Petropoulos et al. (2018).

Morever, there is a mixture of models that can be used also, known as a combination of
models or ensemble models. These approaches have been known to provide more accurate
results in forecasting especially since models tend to perform well on some aspects, so com-
bining multiple models could naturally lead to better results. Besides, growing literature
and research do not show for certain if statistical models are better than machine learning
models or vice versa. Prior to implementing quantitative forecasting, pre-processing tech-
niques could be applied to segregate patterns in historical data and provide a clear focus
on the pattern of the time series. For example, to reduce outliers in data, practitioners
apply BOX-COX transformation or variations of it (Box et al. (1994), Atkinson et al.
(2021)). After modeling, these forecasts are back-transformed to the actual sales of ob-
served data. In addition, there is the decomposition of time series data Macaulay (1931)
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to the trend component, seasonality component, and remainder component. In the field
of forecasting, anomaly detection is also researched as anomalies can occur due to many
reasons; as an example an unexpected event in historical data such as distastes, wars,
and pandemics and those anomalies should be handled when modeling for forecasting,
another type of anomalies is anomalies that appear due to missing data, wrong entries,
extremes, and duplicates Talagala et al. (2020). In addition to anomalies, there could be
outliers in data such as extreme observations that can appear in weather conditions or
sales. Treating outliers is also recommended when forecasting as it biases the coefficients
of the models and decreases the efficiency of predictions Bianco et al. (2001).

Exogenous variables are also variables that are included in forecasting. Naturally, if
they impact the independent variable or are co-related to it, it leadS to improvement
in prediction. For instance, when we predict sales in a particular store, the weather
conditions might be a factor in the increase or decrease of sales of this product if it is
impacted by weather, for example, umbrellas, this is considered a continuous variable
or a promotion that Will be initiated by the store for umbrellas which in this case is
considered a categorical variable, there are also time series components that can be added
to the independent variables such as lags, rolling averages, rolling demand interval and
sales of other associated products. Not only so, but the interaction of different variables
and polynomials is also known to capture non-linear effects and is useful for linear models.
However, preparing for independent variables can be extensive and requires extra effort.
In addition, independent variables can lead to biased predictions if regressors are co-
related to each other and have an inverse effect of what it is intended for. Such events
can be handled by approaches like principle component analysis (PCA), which is used
as a method for liner dimension reduction. Note that this correlation problem does not
impact non-linear models that depend on ranking such as tree-based models Petropoulos
et al. (2022), Bishop and Nasrabadi (2006)

As a result, when we develop forecasting models based on exogenous variables, prac-
titioners tend to do variable selection methods that rank the independent variables based
on their effect on the target forecast. Reducing the features, based on a ranking, would
reduce the dimension of data in the model. Note that regression models tend to per-
form poorly when there is a lot of explanatory variables (Bishop and Nasrabadi (2006),
Petropoulos et al. (2022)). Effective and popular models such as Least Absolute and
Selection Operator (LASSO) are known to penalize having too many coefficients in a
model, thus reducing the number of coefficients. This reduce the error resulting from the
model(Tibshirani (1996)). There was another update to the LASSO procedure, partic-
ularly by Rapach et al. (2019). In addition, a notable extension for forecasting is the
complete subset regression (CSR) model where all the possible combinations of features
are tested and the best possible features are selected Elliott et al. (2015).

From the known statistical models used in retail and used in other fields as well as
exponential smoothing, which is one of the most flexible models and always ranks high in
benchmarks (Petropoulos et al. (2022), Makridakis et al. (2020)). The method’s idea is
simple yet effective. It relies on the weighted average of past observations, these weights
decrease exponentially for older observations as we move back in time, based on the
pattern of data, there could be variations of exponentially smoothing that includes trends
such as Holt model that incorporates exponential smoothing with the trend and Holt-
Winters models which incorporates exponential smoothing with trend and seasonality
Gardner Jr and McKenzie (1985). Exponential smoothing can be denoted as :

ft+1 = αyt + (1− α)ft (1.3)

Simple exponential smoothing forecasting (SES) must use first an initial forecast and
a paremeter α ∈ [0, 1] , deduced by minimizing the sum of squares of one step ahead
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forecast errors. Hyndman et al. (2002) introduced a variation of traditional exponential
smoothing that is widely used in practice as it allowed the point forecast of exponential
smoothing to have a predication interval which allows for future probabilistic forecasting.

Another model that is widely used in retail is Auto-regressive integrated moving aver-
age(ARIMA) models Box et al. (1994) where it gains information from the previous lags
of the time series based on the orders of auto-regression p, integration or differencing d
and moving average error q. For example an ARIMA (1,0,1) model would be denoted as
Petropoulos et al. (2022) :

yt = c + ϕyt−1 + ϵt + θϵt−1 (1.4)

where ϵt is the zero mean uncorrelated process, ϕ is the coefficient of the autoregres-
sion for previous observation and θ is the coefficient of the moving average error, there
are various ways to identify the (p, d, q) either by observing the auto-correlation lags or
the partial auto-correlation lags and observe the significant autocorrelation lags, apply a
grid of combination of orders and identify the one that provides the lowest Akaike infor-
mation criterion (AIC). There is also the auto.arima function in Python and R statistical
software (programming language), that applies an algorithm to quickly identify, not only
the ARIMA’s orders (p, d, q) but also the seasonal orders if any (P, D, Q) which are the
seasonal lags. In fact, It is known to be quick and very effective(Hyndman et al. (2002),
Petropoulos et al. (2022)). For retail data, where demand sporadically appears, with no
demand and all in some periods Croston (1972), forecasting is very challenging. The de-
mand characteristics for such timer series can be classified into two categories; parametric
and non-parametric. The parametric supposes that the distribution of demand can be pre-
sented in the time series such as Poisson, and negative binomial while for non-parametric,
demand distribution is unrecognized.

Simple exponential smoothing is known to forecast intermittent demand data but as
Synetos mentioned in Petropoulos et al. (2022), SES has a positive bias issue and no
tolerance for sporadic data, it cannot capture the inter-demand intervals and the size of
the demand. Croston (1972) developed the Croston method where the demand size and
demand interval are forecasted separately using simple exponential smoothing and the
ratio of demand size divided by the demand interval forms the mean demand. It is the
only method that is available in major ERP-type solutions such as SAP and specialized
forecasting software packages. The M5 competition is the first forecasting competition
that has included the Croston method to deal with intermittent demand. However, it is
worth noting that for a high degree of intermittence and lumpiness, the Croston method
often leads to low forecasting accuracy (Syntetos et al. 2015, Makridakis et al. 2020).
Croston’s method is included in Chapter 2 as a benchmark for the performance analysis
of the proposed approach.
A modification of the Croston method was proposed by Syntetos and Boylan (2001) that
deals with the inversion bias that the Croston method does not overcome. The forecast
method is known as The Syntetos and Bolyan Approximation (SBA). For non-parametric
forecasting approaches for intermittent demand, there are two common methods; the
bootstrapping approach where a re-sampling of the historical demand is done to deduce
empirically the distribution of the demand Rubin (1981), Hasni et al. (2019). Development
of the method was proposed by Hasni et al. (2019), where they assumed that the first
day of demand lead time is a non-zero demand. As for the method of aggregation with
overlapping and non-overlapping blocks, the overlapping blocks divide the time series into
time buckets where the oldest observation is dropped and a new one is added creating an
overlap of buckets while for the non-overlapping block, the demand series is divided into
non-overlapping blocks at a time Porras and Dekker (2008).

34



Forecasting methods fall broadly under two categories; statistical forecasting and ma-
chine learning models (ML). While there is no clear distinction between them, it can be
assumed that ML is hard to explain and a black box compared to statistical forecasting
models. For example in machine learning models, generally, we cannot understand the
coefficients resulting from the fitted model, while in statistical models, the coefficients are
explainable (Makridakis et al. (2018), Barker (2020)). ML models are easier to adapt to
different time series and they can deal well with noisy data, for example, linear regression
models are prune to over-fitting especially if there a lot of independent variables included.
In addition, machine learning models capture complex relationships that linear models
fail to capture, one popular method to capture non-linear relationships is neural networks
Barron (1994). However, they require sufficient data to be fitted opposing to exponen-
tial smoothing for example. ML models also are usually more computationally expensive
compared to statistical models Makridakis et al. (2020) which might be challenging in
a retail environment where there are a lot of products to be foretasted. This can give
preference to aggregation approaches as top-down or middle-out. In addition, ML models
require more intensive training than statistical models as their parameters need to be
tuned using a grid search.

As forecasting in retail is directly linked with inventory, the areas of performance
management and bullwhip effect have been studied in line with different forecasting ap-
proaches and methods Petropoulos et al. (2022). The bullwhip effect occurs due to the
variability of demand in different stock points across the supply chain, for example, a
retailer might have an overstock of products in the supply facilities and fulfillment centers
based on the previous sudden spikes in demands at the retail stores causing accumulation
of non utilized stocks across the supply chain as well as incorrect or slow processing of
information across various echelons of the retailer Lee et al. (1997). There was further
research on the subject indicating that information sharing is important to mitigate the
Bullwhip effect unless the wholesaler or the upstream side directly forecasts the retailer
orders or the demand of the retailer is available on a real-time basis for the wholesaler
or the manufacturing facility Ali et al. (2017), Graves (1999). When the lead time is
more than one period, a forecast of multiple periods ahead is required and the variance of
forecast errors is needed to determine the level of safety stock for this particular product.
Traditionally, the forecast error is multiplied by the lead time period with a desired service
level cover. However, recent approaches recommend that the forecast error be smoothed
over multiple periods instead of directly multiplying by lead time period Boylan et al.
(2006) to measure inventory performance with regard to multiple forecasting comparisons
to conclude which method is better, an exchange curve is recommended where it can be
noted the effect of sequentially increasing service levels on the inventory holding volume
and inventory shortage. The forecast with a lower curve on both axes is a more suitable
one.

Another important body of literature in retail forecasting deals with demand aggrega-
tion. In fact, demand in a retail supply chain can be aggregated at several levels, such as
the product level (e.g., stock-keeping unit, family, etc.), geographic location (e.g., store,
region, etc.), or time (e.g., day, week, month, quarter, etc.). These different aggregation
strategies can be either hierarchical and/or temporal and necessitate different forecasting
methods (Rostami-Tabar et al. 2013). However, it should be noted that demand aggrega-
tion in an omnichannel context has never been analyzed in the literature. In Chapter 2, we
bridge this gap in the literature by analyzing the forecasting and inventory management
performance of demand aggregation at the product level across channels.
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1.2.5 Forecasting aggregation in supply chain

Retail data is known to be numerous and diverse, depending on the type of retailer, it can
generate up to millions of product’s sales records per year. Researchers have long tack-
led the forecasting of products in the retail environment through aggregation. In fact,
time series can be aggregated to many levels. First of all, geographical aggregation is
one common aggregation scheme in retail especially with the abundance of many stores in
different places across the globe, as each region can have its own taste and preference. Sec-
ondly,another kind of aggregation is cross-sectional aggregation. For example, the product
level can be aggregated to the sub-family level and the latter level can be aggregated to
the family level, all the way to the department/segment level.Finally, Another approach
is temporal aggregation where we derive low-frequency series from high frequency ones
(daily/weekly/monthly) Babai et al. (2022) . This aggregation is also applicable in retail
as retailers need long-term planning for purchasing products, planning for manpower, ne-
gotiating contracts, and hedging product purchases if needed. Temporal aggregation is
also vital for the retailer to model business growth and budgeting. In terms of tactical and
operational planning, a retailer uses daily forecasting for replenishment while distribution
centers may use weekly and monthly time series for their replenishment (Oliveira and
Ramos (2019), Mircetic et al. (2022), Babai et al. (2022)).Hierarchical forecasts are said
to be coherent when the bottom-level series sum up to the forecast of the higher levels. If
every level is forecasted independently and directly, this means that the hierarchy is not
coherent (Hyndman and Athanasopoulos (2018), Babai et al. (2022)). The most common
approaches in hierarchical forecasting are bottom-up, middle-out, and top-down. In the
bottom-up approach, the bottom series are summed up to the higher level. This procedure
is iterated until the highest level is reached. The bottom level is recognized as the base
forecast. Since the process starts from the bottom level, no information is lost during the
aggregation. However, if the base forecast error is significant, the error is amplified at the
upper levels. In the the top-down approach, the base forecast is in the upper level, this
level is, then, disaggregated to lower levels using approaches such as average historical
proportions or forecasting proportions.

Finally, the middle-out approach starts in the middle level of the hierarchy and is
forecasted directly which is then recognized as the base forecast (Hyndman and Athana-
sopoulos (2018), Gross and Sohl (1990)). It is then summed up to higher levels and
dis-aggregated to lower levels based on a procedure such as average historical proportions
of the lowest level compared to the mid-level or forecast proportions which is the pro-
portion of the h-step ahead lowest level forecast to the h-step ahead mid-level forecast.
Hyndman et al. (2011) stated that top-down forecasting using average proportions may
lead to biased forecasts at the bottom level. While bottom-up forecasting could be biased
to the high variability of the low-level data. Accordingly, popular methods were intro-
duced to capture variability from all the hierarchical levels. Reconciled forecasts are a
common method to obtain relations from the entire hierarchy, where each level forecast
is obtained separately (bottom/middle/top) and they are adjusted to obtain coherent
forecasts Hyndman and Koehler (2006), Wickramasuriya et al. (2019). A layout of the
aggregation procedures as provided by Babai et al. (2022) is provided in Figure 1.5
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Figure 1.5: Layout of forecast aggregation approaches from Babai et al. (2022)

Another simpler approach is the combination (COMB) approach where several aggre-
gation approaches are averaged at a level of choice in the hierarchy and then summed up
or disaggregated accordingly Mircetic et al. (2022). For example, if the COMB approach
starts at the bottom level, the forecast of TD and BU at the low level can be averaged
and then summed up through the entire hierarchy. More details are provided in Chapter
4.

In General, hierarchical approaches can be efficient for retailers if they provide good
accuracy in forecasting and less computing time. Note that in the M5 competition, a lot
of ranking competitors used hierarchical approaches as the data itself was a geographical
hierarchy.

1.3 Conclusion
We have outlined the research work on omnichannel fulfillment, forecasting in retail,
anticipatory shipping, and hierarchical aggregation. There is a clear gap in the use of
basket data or lack thereof in omnichannel fulfillment even-though a basket ordered by
a customer is often,more than not, a multi-item or omni-item basket. We will explore
the use of this information in all of the related disciplines presented in this chapter.
Starting with omnichannel forecasting and inventory fulfillment, followed by omnichannel
fulfillment, cost minimization, and anticipatory shipping. Finally, its use of basket data
in forecasting aggregation.
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Chapter 2

Basket Data driven approach for
omnichannel demand forecasting

2.1 Introduction

2.1.1 General introduction and motivation

Omnichannel retailing uses a variety of channels to interact with customers and fulfill
their orders in a seamless shopping experience, enabling customers to order anytime from
anywhere, in person or through digital devices, and to have their purchase be delivered
at their preferred time and location (Strang 2013, Bell et al. 2014, Chopra 2018). From
an operations management perspective, omnichannel retailing implies the integration of
different demand streams, which raises several key issues, related to pricing optimization,
assortment planning, demand forecasting, inventory management, and network design.
These issues are far from being resolved today.
Byrne (2016) highlighted that omnichannel retailing adds complexity and that part of the
change retailers would need to make involves their forecasting and planning processes,
which work well for shelf sales but not necessarily for online order fulfillment. Rooderkerk
and Kök (2019) argued that inventory replenishment traditionally relies on a separate
forecasting demand of channels, whereas the demand cannot be truly captured because of
the omnichannel customer’s journey between showrooming and webrooming (discussed in
Bell et al. (2018)). Moreover, Byrne (2016) argued that among the most common trends
in omnichannel distribution is the recognition of the need for a shared view of inventory
across all channels.
Furthermore, the shopping basket notion has gained an increasing importance in om-
nichannel retailing. It has become a crucial vehicle to capture sales through continuous
promotional periods and various bundling offers. For instance, the data panel of a major
cosmetics retailer used in this work reveals that, out of 2.2 million online orders over the
year, 50% of them occurred in baskets with two distinct products or more, and there
were 2.4 ordered products on average per basket. This raises the question of how data
from multiple product baskets could be considered by operations managers to improve the
accuracy of demand forecasting in omnichannel retailing. Boone et al. (2019) highlighted
the existence of influences between products purchased within customers’ baskets and
they stated the use of basket data in forecasting as one of the research avenues that are
yet to be explored. It is worth noticing that little research has been devoted to demand
forecasting within an omnichannel context, and to the best of our knowledge, no research
explicitly considering basket data in a forecasting method has been previously proposed
in the literature. We endeavor to fill this gap in this chapter.

38



This research work builds on some findings and evidence from both marketing and oper-
ations. In fact, the marketing literature highlights the existence of an interdependence of
products’ sales within single and multiple category purchases in market baskets (Russell
et al. 1999, Manchanda et al. 1999, Russell and Petersen 2000). Products’ complementar-
ity and substitution have emerged in this literature as important aspects of this products’
interdependence. In fact, complementarity could be for example the result of a market-
ing activity (price or promotion) of a product that influences the consumers’ purchase
of another product. The substitution can be viewed as a negative complementarity, i.e.
purchases between a pair of products are negatively related. Furthermore, graph theory is
another modeling approach that is used to formalize the connections between items within
a network and analyze the magnitude of their connectivity. Two variables are often used
in the literature to characterize these connections, namely: the degree of connectivity and
the strength. These two variables can also be used to reflect the complementarity level
of products since they measure the magnitude of connections between products that are
often sold together within the same category or across categories. Following the recom-
mendation of the M5 competition on the benefit of considering exogenous/explanatory
variables when forecasting the demand in the retail context (Makridakis et al. 2020), we
consider the four cited above variables for the sales forecasting using baskets data in the
omnichannel context.

2.1.2 Business context
Our research work is part of a project in collaboration with a large retailer in the cosmetics
industry that sells a broad catalog of products through stores and online channels. The
project aims at the integration of in-store and online channels from demand forecasting
and fulfillment perspectives. Figure 2.1 illustrates the retailer’s downstream supply chain
schema composed of a set of customers and their locations, a selected store, a retail ware-
house, and a fulfillment center.

Figure 2.1: Omnichannel fulfillment

The retailer has been operating its in-store sales for a long time, relying on the de-
ployment of a brick-and-mortar store network, replenished periodically from a central
warehouse (denoted BMS). With the advent of e-commerce, the retailer started offering
online sales based on a ship-to-customer delivery process from a dedicated fulfillment
center. Recently, the retailer considered the implementation of “buy online pick-up at
store” (BOPS) and “ship-from-store” (SFS) policies through the online channel to ensure
a competitive response time that is also supported via the fulfillment center. SFS takes
advantage of the existing physical network by turning certain store locations to ship-from
points for online sales. Figure 1 depicts the replenishment-storage-shipment flows at the
store under the omnichannel context, with dual product flow replenishment to the store
(bold arrows), ship-to customer flows for SFS (a regular arrow), and customer moves to
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the store for BMS and for BOPS options (dotted arrows). Hence, a key question tackled
in this work is, how can omnichannel demand forecasting be used to improve inventory
management and fulfillment performance in retailing?

2.1.3 Contributions and organization of the chapter
Our chapter contributes to the literature in four ways:
1. Building on findings from marketing and graph theory, we propose a novel forecasting
approach for online and store sales that is driven by data on customers’ shopping baskets.
It builds on a multi-category graph-learning approach from the basket data using an orig-
inal set of cross- and within-categories regressors. Using this approach, four forecasting
methods are proposed based on linear and polynomial regressions and machine learning.
To the best of our knowledge, our chapter is among the first contributions to the literature
that consider the shopping basket in demand forecasting.
2. Through the analysis of more than 2 million orders in the online channel of a major cos-
metics retailer, we characterize the demand patterns, and we provide empirical evidence
of the dominance of cross-category complementarity and the high level of within-category
substitutability of products in market baskets.
3. Based on a dataset of an assortment of 24,029 products in both the online and store
channels, we empirically show the outperformance of four proposed forecasting methods
compared to two benchmark forecasting methods, namely: Croston’s method and the
autoregressive integrated moving average (ARIMA) method, which are often used in the
retail context as shown in (Syntetos et al. 2010, Babai et al. 2013, Fildes et al. 2019).
The outperformance is shown to be substantial for the class of lumpy demands due to the
high connectivity of products. We also empirically show the benefit of joint forecasting
of online and store sales. This holds for all the considered forecasting methods.
4. Through an investigation based on the order-up-to-level inventory control policy, we
provide empirical evidence that using joint forecasting and shared inventory in an om-
nichannel context leads to a reduction of inventory shortages and an increase in the
achieved service levels. This is shown by comparing the inventory performance of three
fulfillment scenarios where the sales of both channels are forecasted separately or jointly
and the inventory is either dedicated to each channel or shared by both channels.

The remainder of the chapter is organized as follows. Section 2 is dedicated to a
review of market baskets In Section 3, we present our basket data–driven forecasting
approach and the considered alternative forecasting methods. We empirically assess the
performance of the alternative forecasting methods in Section 4, along with an analysis of
the impact of omnichannel forecasting on inventory and fulfillment performance. Finally,
in Section 5, we present the conclusions of the chapter in addition to suggesting some
avenues for further research.

2.2 Market Baskets
Market baskets have been largely considered in the marketing and operations literature
to analyze consumer purchase behavior in the retail context and to make marketing and
planning decisions (Manchanda et al. 1999, Cachon and Kök 2007). One of the main
observations that arises from this literature when analyzing basket data is the existence
of single-category and multiple-category purchases in market baskets (Russell et al. 1999).
Moreover, this literature points out the existence of interdependence between products.
Such interdependence occurs within a single category and across categories. This is ob-
vious since consumer preference for a product in one category is contingent on the sales,
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price or promotions of products in the same and in other categories (Russell and Petersen
2000).
Among the important features of the interdependence of products within market bas-
kets, complementarity and substitutability (also called negative complementarity) have
emerged in the literature. Manchanda et al. (1999) empirically showed, when analyzing
the case of more than 17000 sales for households in the grocery retail context in the US,
that for example the detergent and softener are complementary as well as cake mix and
frosting. Harlam and Lodish (1995) developed a consumer choice model in the retail gro-
cery context where product complementarity in the same category is considered to link
choices of purchased products. Manchanda et al. (1999) and Ma et al. (2012) among oth-
ers incorporated aspects of complementarity and substitution in modeling multicategory
consumer purchase decisions in market baskets. Hence, in this chapter, we build on this
literature to consider both complementarity and substitution as explanatory variables to
forecast the sales of a product within a particular category of products.
Furthermore, there are other measures that emerge from graph theory to characterize the
complementarity of products sold together within a shopping basket across categories.
Two of these measures that are often used in the literature are: Strength and Degree
(Berry and Linoff 2004). These two attributes are also included in our work as explana-
tory variables to forecast the sales of a product across different product categories. Note
that multivariate forecasting methods could have been used to take into account the in-
terdependencies between products when forecasting their sales. However, as discussed in
(Koop 2013, Wang et al. 2019), such methods have dimensionality issues when dealing
with a large number of SKUs, which is the case in the retailing context.
To conclude this section, it is worth pointing out that despite the richness of the forecast-
ing literature in the retail context and the integration of different exogenous variables,
attributes of shopping baskets, such as degree, strength, complementarity, and substi-
tutability, have never been considered in terms of demand forecasting. This gap in the
literature motivates our research to consider these variables when forecasting sales in the
omnichannel retailing context.

2.3 Basket data-driven forecasting approach
Starting from historical sales, we rely explicitly on graph theory in order to model a
graph-like structure that captures cross-categories and within-categories characteristics.
Such a multi-category graph modeling approach captures the relationship between sold
products on various dimensions such as the baskets, the days, and/or the categories. Next,
based on the findings of the literature described above, the four identified attributes (i.e.
degree, strength, substitutability, complementarity) will be used as exogenous variables
in a forecasting method. The proposed forecasting approach can be summarized into two
steps and is illustrated in Figure 2.2. The two steps of the proposed approach are detailed
in the following subsections.

• Step 1. a) Shopping baskets data (from the sales history) are used to build the
network, b) the network is then considered to calculate the four attributes: Degree,
Strength, Substitutability, and Complementarity.

• Step 2. The four attributes are used as regressors along with historical sales data
within a forecasting method. Such a method should be selected from the set of
forecasting methodologies that allow for the incorporation of exogenous variables,
which are mainly regression-type models, ARIMAX models, and machine learning
models (Poyil 2019, Sheppard 2019). Hence, four forecasting methods are proposed
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in this chapter integrating the basket-data-based regressors, namely: (1) an ARI-
MAX method, (2) a linear regression method with one lag of sales, hereafter denoted
by LinReg-LS, (3) a polynomial regression method with one lag of sales, hereafter
denoted by PolyReg-LS, and (4) a machine learning method based on lightGBM.

Figure 2.2: Illustration of the forecasting approach

2.3.1 Network characterization and attributes extraction
Graph theory is widely applied to conceptualize and analyze complex networks in supply
chains (Gross and Yellen 2005, Kim et al. 2015, Dooley et al. 2019). In our context, we rely
explicitly on graph theory in order to: 1) model a graph-like structure from historical sales
that captures cross-categories and within-categories characteristics, 2) explore a graph-
learning from the basket data using an original set of regressors. More specifically, we
consider a weighted graph to model the relationship between sold products pertaining to
various categories (i.e., a multi-category graph). The nodes correspond to the products
in the considered assortment, and when there is a pair of products sold together within
at least one basket (we refer to this as a connection between the two products), the
edge linking the two products is associated with the number of baskets in which the
two products are sold together. This number is referred to as the frequency of this
connection. We note that in our graph representation, we assume that the relational
attributes of products are the only associations and there is no causal relationship; thus,
the network is undirected. Figure 2.3 illustrates a typical basket data representation in a
multi-category graph. The data is extracted as follows, each basket’s data is transformed
into every two possible pairs, this process is done on all baskets for a period of seven
consecutive days (the graph horizon), attributes are then calculated on those pairs and
they would be effectively the attributes values for the next day of forecast. This process
was implemented on two panels of data: the first panel is one year of online sales data of
many cities and the second panel is one year of physical retail data of one city. Figure
2.3 represents a graph subset of seven days period graph from panel A. One can note how
pairs of products are from different substitutability sets/categories.

With this in mind, we identify the four attributes of the product considered in the
proposed forecasting approach: (1) Degree of the product, the number of connections (or
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Figure 2.3: Basket data representation in a multi-category graph

arrows) with the other products of the multi-category graph; (2) Strength of the product,
the total frequency with all connected products; (3) Substitutability of the product, the
chance to be sold as a substitute among all the products within its substitutability set; and
(4) Complementarity of the product, the proportion between the number of connections
within the substitutability set and the number of connections with the other products of
the assortment (i.e., Degree). We notice that the first and second attributes capture cross-
category features, whereas the third and fourth attributes are focused on within-category
characteristics.

Note that the substitutability set is a subjective managerial decision based on assort-
ment breadth and depth, and also on the sector in which the omnichannel retailer operates.
In this research, the substitutability set consists of the lowest level category, which is the
level above the product level (also defined as category breadth for some retailers). An
example from our empirical study is the products from the fragrance department, which
may be categorized based on gender (i.e., Men, Women), the concentration of alcohol
(i.e. "Eau de toilette" (EDT), "Eau de parfum" (EDP) which is known to have much
higher concentration than EDT, and "Eau de cologne" (EDC) which has less concentra-
tion than "EDT"). Accordingly, the lowest level category that could constitute a substi-
tutability set may be (Fragrance/Men/Alcohol/EDT) or (Fragrance/Men/Alcohol/EDP),
or (Men/Fragrance/Alcohol/EDC). To select the lowest level category in this chapter, we
worked closely with supply chain leaders from the company and leveraged company data
to make an empirical test in the empirical investigation section. Other retailers may
follow the same empirical approach to determine the appropriate category level to de-
fine their substitutability sets. They could also end up with a different categorization (a
higher level category) and substitutability set such as (Fragrance/Men/Alcohol), which
fits, straightforwardly, in our forecasting approach.

In order to illustrate the graph and the characterization of the attributes, we consider
an example of six products (A, B, C, D, E, F). In this example, two substitutability sets
are distinguished: (A, C, E, F) in grey and (B, D) in blue. Here, for instance, product A
is sold nine times. It is sold in two baskets with product F, in two baskets with product
C, and in five baskets with product D. The graph in Figure 2.4 presents the network
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structure of this example, and the table in Figure 2.4 shows the calculation of the four
attributes for the six products. For example, the degree of product A is 3 because this
product is sold with three other products, whereas the strength is 9, which is the sum
of the frequency of the arrows. The substitutability of product A is 1/4 because the
substitutability set of this product is composed of four products (A, C, E, F). Finally, the
within-category complementarity is 2/3 as it is connected to two other products (C, F)
in its substitutability set among all the connected products (C, D, F).

Figure 2.4: Illustrative example of a multi-category graph and the associated calculation
of the attributes

From a graph-theoretic perspective, we can conceptualize the network of connections
between products in baskets as follows. Let t ∈ T be the set of historical sales periods
(days) and b ∈ B be the set of sold baskets, where Bt is the subset of baskets sold in pe-
riod t ∈ T . Let p ∈ P be the set of products, where Pb is the subset of products included
in sold basket b. Let Sp ⊂ P be the subset of substitutable products for a given product
p ∈ P , that could be built based on the product categories. We define G as an undirected
graph, denoted by G = (N, E), composed of N nodes, representing the number of prod-
ucts (N = P ) and E edges representing pairs of products, where E : (p, p′),∀p, p′ ∈ P .
Accordingly, the graph Gt is defined for a given period t, and is composed by a set of
subgraphs Gt

b per basket b ∈ Bt.

The network is produced on a daily basis with a rolling time, and the attributes are
determined for each product and for each forecasting period t (using basket data on peri-
ods t− 1, t− 2, t− 3,...). Let h(t) be the historical horizon used to build the network (i.e.
7, 14, 21, or 28 days prior to period t) related to the estimation at period t (i.e. period
where the forecast is made), composed by [t− 1, ..., t− h], for the collection of baskets
Bh(t). Consequently, Gh(t) defines the network graph associated with the set of periods in
h(t) such that Gh(t) = ∪[t−1,...,t−h]G

t. For a given period t, based on the historical horizon
h(t) data, the four attributes are computed as follows.
We introduce λt

b(p,p′) as a counter that takes 1 if edge (p, p′) ∈ Gt
b (i.e., when both prod-

ucts are in the same basket), and 0 otherwise. It is then used to compute λt
(p,p′) =∑

t∈h(t)
∑

b∈Bh(t) λt
b(p,p′),∀p, p′ ∈ P , which assesses the number of occurrences of a given

edge (p, p′) (i.e. a pair of products), in the set of baskets, over the historical horizon
h(t). The Strength attribute in period t is based on the number of incident edges for
product p in basket b, which is computed as Strengthpt = ∑

p′∈P λt
(p,p′). The Degree at-

tribute in period t of product p, is expressed as Degreept = ∑
p′∈P min(1, λt

(p,p′)). Let Sh(t)
p

be the subset of substitutable products for a given product p ∈ P that appears in the
set of baskets, over the historic horizon h(t). The Substitutability attribute in period t of
product p, is expressed by Substitutabilitypt = 1/|Sh(t)

p |, where |Sh(t)
p | is the cardinality of

Sh(t)
p . The Complementarity attribute in period t of product p is based on the number

44



of incident arcs within the substitutability subset Sp and the Degreept, that is expressed
by Complementaritypt = ∑

p′∈Sp
min(1, λt

(p,p′))/Degreept. Note that the product quantity
information is captured by the historical sales of the product and it is not represented in
the graph.

2.3.2 Forecasting methods
We present in this subsection the four forecasting methods considered in this chapter:
the ARIMAX method, the linear regression method with one lag of sales, the polynomial
regression method with one lag of sales, and the lightGBM machine learning method.
The reason we choose these methods is that first; they allow for using regressors; second;
compare linear and non-linear methods and third; evaluate the impact of adding regressors
on ARIMA methods and finally; lightGBM is known to be a top-performing machine
learning model in forecasting competitions Makridakis et al. (2020).

At any time period t and for each product p, the forecast, denoted by ypt, is cal-
culated for a network historic horizon h(t) using the degree, strength, substitutability,
and complementarity regressors, denoted by Degreept, Strengthpt, Substitutabilitypt, and
Complementaritypt respectively (regressors calculated using basket data on periods t−1,
t− 2,..., t− h), in each proposed forecasting method as follows:

• In the ARIMAX method:

ypt = aDegreept + bStrengthpt + cSubstitutabilitypt + dComplementaritypt + npt (2.1)

where a, b, c, and d are the regressors respective coefficients. We assume that npt is
given by an ARIMA(r, k, q) model, where r is the auto-regressive order, k is the differ-
encing order, and q is the moving average order.

• In the linear regression method, LinReg-LS:

ypt = aDegreept + bStrengthpt + cSubstitutabilitypt + dComplementaritypt + eDpt−1 (2.2)

where Dpt−1 is the lag of sales of product p at time period t − 1 and a, b, c, d and e
are the regressors respective coefficients

• In the polynomial regression method, PolyReg-LS:

ypt =
n1∑

n=1
anDegreen

pt+
n2∑

n=1
bnStrengthn

pt+
n3∑

n=1
cnSubstitutabilityn

pt+
n4∑

n=1
dnComplementarityn

pt+eDpt−1

(2.3)

where Dpt−1 is the lag of sales of product p at time period t−1; an, bn, cn and dn are the
polynomial regressors’ coefficients; and n1, n2, n3 and n4 are the polynomial regressors’
powers.

• The LightGBM machine learning method:

We recall that LightGBM is a gradient-boosting model based on the decision tree
algorithm. We use degree, strength, substitutability, complementarity, and lag sales of
product p at time period t−1 as inputs of this method to forecast the sales at time period
t. For the model selection and tuning, we make a grid search that consists of a number of
leaves between 1 and 100, maximum depth between 1 and 30, and minimum data points
in leaf between 20 and 200. We split the training set into training and validation sets.
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The model with the lowest absolute error against the grid search is then selected to fore-
cast the test set. More details on the implementation of the LightGBM method using
exogenous variables can be found in Abolghasemi and Esmaeilbeigi (2021).
The forecast accuracy of the four proposed forecasting methods is empirically analyzed
further in the chapter using the sales and basket shopping data of the considered cos-
metics retailer. The performance of the proposed methods is compared to that of two
benchmark methods: Croston’s method and the ARIMA method, which are commonly
used in the intermittent demand forecasting literature (Gamberini et al. 2010, Shenstone
and Hyndman 2005, Murray et al. 2018).

2.3.3 Inventory and fulfillment performance
An important question is whether the proposed forecasting approach can be used to im-
prove the inventory and fulfillment performance in the omnichannel network, in addition
to the forecast accuracy. To answer this question, we first analyze the inventory and
fulfillment performance of the different forecasting methods. Then, under a proposed
forecasting method, we analyze the fulfillment performance at the store using a separate
versus a joint forecasting method and a dedicated versus a shared inventory. Recall that,
as illustrated in Figure 1, the business context considers that the store has a dual source
replenishment (a central warehouse and a fulfillment center) and that inventories kept at
the store are for online and store sales. Hence, the three scenarios are as follows:

• Scenario 1: Dedicated inventory and separate forecasting scenario (referred to as
the DISF scenario). In this baseline scenario, the store inventory is split by sales
channel and the forecast is separated by channel.

• Scenario 2: Shared inventory and separate forecast scenario (referred to as the
SISF scenario). In this scenario, the two sales channels share the same inventory at
the store. However, the replenishment system depends separately on the forecast of
demand of the store channel and the online channel.

• Scenario 3: Shared inventory and joint forecasting scenario (referred to as the SIJF
scenario). In this scenario, the store and online channels share the same inventory
at the store. However, the forecast is made jointly using the aggregated data from
both channels.

The inventory performance of a forecasting method or a fulfillment scenario is assessed by
measuring the resulting stock on hand, the inventory backorder and the achieved service
level. To do so, we consider a periodic order-up-to-level inventory control policy, where
the order-up-to level is calculated to satisfy a target cycle service level (CSL, the fraction
of replenishment periods in which all of the demand can be met from stock). This policy
is among the state-of-the-art inventory policies that are considered in the omnichannel
context (Hu et al. 2021, Saha and Bhattacharya 2021). Recall that under this policy, each
day, the inventory position is reviewed and an order is triggered if it is found to be below
the order-up-to level to raise it up to the order-up-to level. The order arrives after a lead
time, and any demand that is not satisfied from stock on hand is backordered.

To calculate the order-up-to-level at any period t, as commonly recommended in the lit-
erature (Syntetos et al. 2015, Van der Auweraer and Boute 2019), the mean and variance of
the lead-time demand distribution, denoted by µLT and V arLT respectively, are estimated
as: µLT = (L + 1) ∗ ypt and V arLT = (L + 1) ∗MSEpt where L is the lead-time, ypt is the
forecast of sales at period t and MSEpt is the mean squared forecast error at period t (L+1
periods are considered instead of L to account for the protection interval under a periodic
review). Note also that MSEpt is given by: MSEpt = α[ypt −Dpt]2 + (1− α)MSEp(t−1),
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where α is a smoothing constant between 0 and 1. The order-up-to-level at any period t,
denoted by Spt, is then calculated as: Spt = F −1

LT D(CSL) where FLT D(.) is the cumulative
distribution function of the lead-time demand, having the mean and variance equal to
µLT and V arLT . More details on the calculation of the order-up-to-level and the imple-
mentation of the simulation model of the inventory policy are given in (Hasni et al. 2019,
Babai et al. 2019).

2.4 Empirical investigation

2.4.1 Supply chain and data description
We empirically analyze the performance of the proposed forecasting approach by con-
sidering real data of a major French cosmetics retailer. We use an assortment of 24,029
products that are divided into six product families: perfume, care, makeup, bath, hair,
and accessories. The retailer is globally deployed in more than 25 countries and is specif-
ically well established in France with hundreds of stores in many cities and an online
sales platform. As illustrated in Figure 3.1, the retailer operated a retail warehouse and
an online fulfillment platform, both located in France. The retailer data used for the
purpose of this research relates to sales in 2018. The data contain the product reference,
the description of the product, the sold quantity, the selling date, the delivery date, and
the invoice (order) number. Based on this information, two datasets are built. The first
dataset, referred here to as Panel A, contains the online sales in all of France for the
year 2018 with about 2.2 million orders (single- and multiple-item baskets). Panel A is
used to make the network analysis and to show the accuracy of the proposed forecasting
approach. The second dataset, referred to here as Panel B, represents the orders of the
online and store channels in one of the largest region in France in 2018. Panel B is used
to assess the omnichannel forecasting accuracy and inventory fulfillment performance.

2.4.2 Network and basket analysis
We start by presenting the empirical results of the network analysis and the exploratory
analysis of the sold products and baskets.

2.4.2.1 Characteristics of the network

We empirically analyze the obtained networks through some characteristics, namely, the
density, the assortativity, and the average path length. The density of the network is the
ratio between the number of connections in the network and all the possible connections.
This characteristic enables us to show if the products in the network have a high connec-
tivity (i.e., degree). The empirical results show that the density of the network is equal
to 0.3%, which proves that the network is characterized by a low density. However, from
our analysis, we find that a few products have a very high degree of connectivity, whereas
most of the products have a low degree. This shows that the network is heavily skewed in
terms of degree distribution to some products with high connectivity. The assortativity
of the network enables testing whether the baskets are composed of products from the
same product category. A network is highly assortative if its correlation coefficient is
close to 1, non-assortative if it is 0, and disassortative if it has a coefficient less than 0
(Newman 2002, Noldus and Van Mieghem 2015). The empirical results show that the
overall network assortativity is 0.23, which means that 77 % of the retail baskets are
cross-category orders. Finally, we investigate if the omnichannel retail network follows a
small-world network (Newman 2003). To do so, we calculate the average path length of
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the network. Note that small-world networks are often characterized by a short average
path length. The empirical results show a high average path length of 2.85 compared with
the case of randomized networks in which the average path length is 2.8 (for the latter, we
used 50 randomly generated networks with the same number of nodes and density). This
empirical result shows that this retail network is not considered a small-world network.
Furthermore, in the following section, we present the investigation of network density and
assortativity. Note that density and network assortativity are not attributes included in
the methodology but are important characteristics to investigate on the retail network,

2.4.3 Substitutability set tests

As the substitutability set definition may be context-dependent, we provide a simple ap-
proach to determine the category level that can be used to define the substitutability
set using the basket data. To illustrate the approach, we consider categories of products
within the case study organization. In fact, we focus on products that belong to the
fragrance category for men sold in one big store. We test different categories at differ-
ent levels to identify the lowest-level category. Let S1 be a higher level category (Fra-
grance/Men/Alcohol) where the alcohol concentration can be "Eau de toillete" (EDT),
"Eau de parfum" (EDP) or "Eau de cologne" (EDC). Let S2, S3,S4 be lower level cat-
egories which are (Fragrance/Men/Alcohol/EDT),(Fragrance/Men/Alcohol/EDC), and
(Fragrance/Men/Alcohol/EDP), respectively. Our approach assumes that a customer is
less likely to buy two products in a basket from the same substitutability set as they
are competing with each other. Accordingly, the category with the lowest percentage of
orders where two products within the same basket are bought would be more appropriate
to be the substitutability set.

In Table 2.1, we report for the four substitutability sets (SS), S1, S2, S3,S4, the number
of times two items from the same SS appeared in a basket, the number of times only one
item from the same SS appeared in a basket, the percentage of times two items from the
same SS appeared in a basket and the number of substitutes in the SS. Note that the
results relate to four randomly sampled days from the historical sales.
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Substitutability
set (SS)

Sampled day from
historical sales

Number of times
two items from
the same SS ap-
peared in a basket

Number of
times only
one item
from the
same SS
appeared in
a basket

Percentage
to which
two items
from the
same SS
appeared in
a basket

Number of
substitutes

S1 Sample day -Jan 28 201 12.23% 134
S2 Sample day -Jan 20 169 10.58% 104
S3 Sample day -Jan 00 06 0% 5
S4 Sample day -Jan 00 42 0% 025
S1 Sample day -Apr 26 222 10.48% 136
S2 Sample day -Apr 18 167 9.73% 101
S3 Sample day -Apr 00 11 0% 6
S4 Sample day -Apr 02 55 3.51% 28
S1 Sample day -Sep 36 238 13.14% 151
S2 Sample day -Sep 22 185 10.63% 112
S3 Sample day -Sep 00 16 0% 9
S4 Sample day -Sep 04 55 6.78% 28
S1 Sample day -Nov 139 727 16.05% 247
S2 Sample day -Nov 74 551 11.84% 174
S3 Sample day -Nov 02 18 10.00% 9
S4 Sample day -Nov 31 241 11.40% 63

Table 2.1: Results of the substitutability set tests

The results show that the lowest percentages where two products are ordered together
in a basket correspond to the lower level categories S2, S3,S4, whereas the highest percent-
ages and number of times two items from the same SS appeared in a basket correspond
to the substitutability set S1. The results also show that the number of substitutes can
also be high in the substitutability sets. Hence, it is clear that the lowest level categories
can be defined as the substitutability sets.

2.4.3.1 Exploratory analysis of products and sold baskets

We start by analyzing the sales patterns and the degree of intermittence. To do so, we
analyze the data by using the demand classification proposed by Syntetos and Boylan
(2005), referred to hereafter as SBC. Recall that in the SBC scheme, the demand is
classified based on the average demand interval (ADI) and squared coefficient of variation
of demand sizes (CV2) with the cut-off values of ADI = 1.32 and CV2 = 0.49 (as illustrated
in Figure 2.5 in Figure 2.5. Four classes are identified: smooth (ADI < 1.32 and CV2 <
0.49), lumpy (ADI > 1.32 and CV2 > 0.49), erratic (ADI <1.32 and CV2 > 0.49), and
intermittent (ADI > 1.32 and CV2 < 0.49). The class of smooth demand is the class
where the demand has a high number of demand occurrences (i.e. low demand intervals)
and a low variation of demand sizes. The erratic demand is also characterized by a high
number of demand occurrences but it has high demand sizes’ variability. The intermittent
demand has few demand occurrences and a low variation of demand sizes. Finally, the
class of lumpy demands is characterized by few demand occurrences but a high variation of
demand sizes. This classification is used further in the chapter to identify the appropriate
forecasting method in each class and the related inventory performance. We report in
Figure 2.6 the percentage of products within each class.

Figure 2.5 illustrates the classification proposed by Syntetos et al. (2005) for a demand
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over 12 months (from January to December). It shows the four classes: smooth, erratic,
intermittent, and lumpy, with the two cut-off values between the classes, ADI = 1.32 and
CV 2 = 0.49.

Figure 2.5: Illustration of the demand classification proposed by Syntetos et al. (2005)

Figure 2.6: Percentage of products in each class in the online channel

The results in Figure 2.6 show that the majority of products (66.6%) are characterized
by an intermittent demand pattern. This confirms that the online sales considered in our
case are in line with the case presented by Fildes et al. (2019) in the physical retail space,
where 52.2% of the sold products had an intermittent demand pattern. Figure 2.6 shows
as well that products with lumpy and erratic demand patterns represent more than 30%,
whereas those with a smooth demand constitute only 3.3% of the assortment. A focus
on the average demand intervals of the products in each class shows that a product with
an intermittent demand is sold on average once every 14 days, whereas a product with a
smooth demand is sold on average every 1.1 days.

We now analyze the composition of orders made for the considered assortment of prod-
ucts. We present in Figure 2.7 the percentage of orders with the number of products in
these orders. The results in Figure 2.7 show that 48.5% of the total baskets have only one
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Figure 2.7: Percentage of single-product baskets and multiple-product baskets

product, whereas 51.5% of the baskets have two products or more. More precisely, the
average number of products in a basket is 2.4; a third quartile equals 3, and a maximum
equals 90. This concurs with our initial inference that there could be a singularity of buy-
ing for certain products, and effectively these products will have low degree and strength,
whereas many products will have higher degrees, which means higher connectivity to other
products as well as a higher strength.

We now check whether a product is usually sold in a single-product basket or in
a multiple-product basket. Our initial intuition is that the new forecasting approach
would work well for a product that is sold at least once with another product in the
training horizon. Obviously, a product that is sold all the time as a single product in a
basket would be equally well forecasted using the proposed ARIMAX or a basic ARIMA
approach. To conduct this analysis, we report in Figure 2.8 the percentage of products
and the percentage of times (across all orders) each product is sold in multiple-product
baskets.

Figure 2.8: The number of times (percentage wise) each product was sold with other
products

The results in Figure 2.8 show that only 2.7% of the products are sold individually,
whereas 59.4% of the products are sold more than 75% of the time with other products.
This confirms that the majority of products are sold with other products in a basket more
than once, which also shows the importance of degree and strength attributes when fore-
casting demand for these products. Finally, we report in Figure 2.9 the degree distribution
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of the four classes. The results show that the majority of products in the intermittent
class have a weekly average degree of 4.08 and a weekly average strength of 4.9 (see Figure
2.11, which implies that there is a low frequency of products being ordered together across
this class and that this behavior is translated as coincidental buying, while in the lumpy
class, the ratio of strength to degree is higher, almost 2 to 1, which implies that there is
a regularity of certain products being ordered together.

As for the erratic and smooth classes, they exhibit a much higher degree of connec-
tivity with an average weekly of 71 connections per product in the erratic class and 105
connections per product in the smooth class. It is also noticed that they have an average
weekly strength of 96.6 for the erratic class and 136 for the smooth one, which implies
that within those classes, there is a habit of buying certain products together with high
frequency among many customers. Note that the degree and strength attributes are indi-
cators of the cross-category connectivity and complementarity of products as evidenced
by the assortativity indicator presented earlier.
As for the within-category complementarity represented in Figure 2.10, we can notice that
the average within category complementarity 0.0675. Recall that the within-category com-
plementarity is the proportion of connections of a product to products within the same
category. This average low measure implies that most of the products when they are
bought in multiple product baskets, they are bought with different products from other
categories. Only a few products are bought with other products from the same category.
For example, based on our empirical findings, it was found that perfumes are usually
bought with products from other categories while lipstick is bought many times with
other lipsticks in the same category. Products like lipstick exhibit a high within-category
complementarity. This concurs with the findings of the marketing literature regarding
cross-category purchasing behavior Cachon and Kök (2007).

As for substitutability, it is the probability of a customer buying a product from a set
of product substitutes given the number of product substitutes available. For example
in our empirical study of panel A, it was found that the average substitutes for a given
product is 89, with a min of 1, a median of 13, and a maximum of 2500 substitutes within
a category. It is expected that as the number of substitutes in a category increases,
the average sales for a product in this category will decrease as the customers will have
more options to choose from, and subsequently the substitutability attribute captures
this information. The relation between the number of substitutes in a category and the
average sales for a product in this category is shown in Figure 2.10.
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Figure 2.9: Degree distribution of products per class of products

Figure 2.10: Relation between number of substitutes and average sales (left handside),
distribution of complementarity (right handside)
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Figure 2.11: Strength distribution of products per class of products

2.4.4 Attributes testing and validation results

Table 2.2 reports the R2 of the regression models, the root mean squared error (RMSE),
the Akaike information criterion (AIC), and the Bayesian information criterion (BIC). It
is shown that R2 improves as attributes are added as well as a decrease in the residual
error.
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Linear Model
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.099 0.095 583 597 1.63
Degree , strength and
substitutability

0.118 0.105 575 593 1.61

Degree , strength, sub-
stitutability and com-
plementarity

0.119 0.120 570 592 1.60

Linear Model with one lag of sales
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.136 0.130 563 582 1.52
Degree , strength and
substitutability

0.145 0.137 560 581 1.51

Degree , strength, sub-
stitutability and com-
plementarity

0.159 0.148 554 580 1.50

Polynomial Model with one lag of sales
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.258 0.200 -9.64 76.6 1.134
Degree , strength and
substitutability

0.297 0.234 -237 -122.3 1.036

Degree , strength, sub-
stitutability and com-
plementarity

0.367 0.254 -1286.541 -1116.663 0.942

Table 2.2: Attributes significance

Table 2.3 reports the results of the tests of the regression models under the four
demand classes, which shows the higher R2 values for the lumpy and erratic classes.
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Erratic Class
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.358 0.303 2068 2217 4.908
Degree , strength and
substitutability

0.395 0.312 2077.47 2288.06 4.74

Degree , strength, sub-
stitutability and com-
plementarity

0.431 0.314 2074 2325 . 4.59

Lumpy Class
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.380 0.319 -413.99 -321.89 1.86
Degree , strength and
substitutability

0.419 0.365 -882 -759.322 1.662

Degree , strength, sub-
stitutability and com-
plementarity

0.4932 0.384 -3021.290 -2849.333 1.477

Intermittent Class
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.166 0.109 187.59 266.499 0.433
Degree , strength and
substitutability

0.204 0.136 123.185 228.65 0.412

Degree , strength, sub-
stitutability and com-
plementarity

0.274 0.156 -185.826 -21.48 0.388

Smooth Class
Attributes R2 Adjusted R2 AIC BIC RMSE
Degree and strength 0.229 0.152 1906.253 2060.123 3.558
Degree , strength and
substitutability

0.273 0.161 1916.30 2132.62 3.443

Degree , strength, sub-
stitutability and com-
plementarity

0.308 0.163 -1916.854 2171.73 3.341

Table 2.3: Attributes significance per class under the polynomial regression model

2.4.5 Forecast accuracy based on different network horizons

We have made some preliminary tests using store retail data from panel B (related to the
biggest store of the case study organization) to make a comparison between variations of
the proposed methods where the length of the network horizon is equal to 7, 14, 21, and
28 days. Tables D.1 - D.2 show the average forecast accuracy (across all products) as well
as the percentage of products where the method variation is better. The results relate
to two of our proposed methods: ARIMAX(h) and LinReg-LS(h) where h is the network
horizon length. The results show clearly that the network horizon of 7 days leads to the
best forecast accuracy as compared to the other horizons.
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ARIMAX(7) ARIMAX(14) ARIMAX(21) ARIMAX(28)

sMAPE Average error 196 195 195 195
% of products 54.4% 14.13% 12.36% 19.07%

MASE Average error 1.46 1.46 2.02 2.51
% of products 40.41% 19.87% 18.02% 21.69%

RMSE Average error 0.287 0.313 0.372 0.378
% of products 39.93% 21.08% 17.84% 8.56%

RMSSE Average error 0.741 0.742 0.877 0.969
% of products 39.93% 21.08% 17.84% 8.56%

Table 2.4: Forecasting accuracy results for different horizon lengths-ARIMAX

LinReg-LS(7) LinReg-LS(14) LinReg-LS(21) LinReg-LS(28)

sMAPE Average error 196 196 196 196
% of products 56.13% 11.15% 10.81% 21.91%

MASE Average error 1.24 1.44 1.75 2.27
% of products 43.03% 17.23% 15.22% 14.52%

RMSE Average error 0.313 0.336 0.379 0.412
% of products 40.26% 11.1% 10.81% 21.91%

RMSSE Average error 0.683 0.741 0.807 0.934
% of products 40.26% 11.1% 10.81% 21.91%

Table 2.5: Forecasting accuracy results for different horizon lengths-LinReg-LS

2.4.5.1 Forecasting methods’ settings

We test the significance of the four attributes to predict sales using regression models.
We start with degree and strength as independent variables, then degree, strength, and
substitutability, and finally the four attributes as independent variables. Different re-
gression models are considered, namely: (1) a linear regression model including only the
attributes, (2) a linear regression model including one lag of sales and the attributes,
and (3) a polynomial regression model including one lag of sales and the attributes. The
tests are performed on every product from panel A. The average results (across all SKUs)
are reported in Table 2.2, where the R2, the adjusted R2, the root mean squared error
(RMSE), the Akaike information criterion (AIC), and the Bayesian information criterion
(BIC) of the different regression models are reported. The results show that, regardless of
the regression model, the R2 increases (and the residual errors decrease) as the attributes
are added in the regression models, which shows that using the four attributes of degree,
strength, substitutability and complementarity provides the best fit. The results also show
that when a non-linear regression model is used, the four attributes are more significant
compared to the linear one. Finally, we show that higher R2 values are obtained when
the lumpy and Erratic product classes are considered as reported in Table 2.3 under the
polynomial model. Note that showing the value of considering the four attributes as well
as the non-linear model, is behind the motivation to propose the LinReg-LS, PolyReg-LS,
and lightGBM forceasting methods. Note also that the correlation between all the regres-
sors was tested within the models and across all SKUs to ensure that the correlation is
not significant.
Furthermore, for the implementation of Croston, LinReg-LS, PolyReg-LS, and lightGBM
we coded the fitting and forecasting functions in R language while for the ARIMA and
ARIMAX models, we used the R package Fable developed by Rob J.Hyndman. In order to
have a fair comparison to the other forecasting methods, we parametrized the R package
to use stationary ARIMA models. With regard to the network regressors in ARIMAX,
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we developed a function that extracts the attributes from basket data. Note that the
computational complexity is relatively low as, for our graph consisting of 24000 products,
the algorithm takes less than two minutes to extract the attributes for all products each
day. Finally, since the proposed forecasting approach requires a network horizon to deter-
mine the exogenous variables, we tested a network horizon with 7 days, 14 days, 21 days
and 28 days. We recall that for every day of the forecast, a new network is built using
the predetermined historical horizon since every horizon has a different set of products,
orders, and accordingly attributes. As shown in section 2.5.6, the preliminary results
reveal that the 7-day horizon overall provides the best performance, and will be further
used in the chapter.

2.4.6 Forecasting accuracy analysis

The forecasting accuracy of the proposed approach is first evaluated using the Panel A
data. We use two forecasting methods as a benchmark to show the performance of the
proposed forecasting methods, namely, the ARIMA model and the Croston method. As
argued in the literature review, these methods are commonly used in the retail context
when dealing with products with intermittent demand patterns. The performance of
the three methods is evaluated using a training/testing split of the demand history. We
consider a within-sample (i.e., the training set of periods of the history) from January
1 to October 19, 2018, and we use the out-of-sample (i.e., the testing set of periods
from October 20 to December 31, 2018, to evaluate the performance of the forecasting
methods. The smoothing coefficients of Croston are selected such that they optimize
the mean squared error (MSE) over the within sample. We evaluate the accuracy of
the forecasting methods by means of four measures that are commonly considered in the
intermittent demand context: the symmetric mean absolute percentage error (sMAPE),
the mean absolute scaled error (MASE), the root mean square error (RMSE) and the
root mean squared scaled error (RMSSE). MASE, sMAPE, and RMSSE are scale-free
measures of forecasting accuracy. In both MASE and RMSSE, the scaling of the errors is
based on the in-sample mean absolute error of the naïve forecasting method (Hyndman
and Koehler 2006, Steinker et al. 2017, Babai et al. 2020, Siddiqui et al. 2022). In sMAPE,
the scaling of the error in each period in the out-of-sample is based on an average of the
actual demand and its forecast. Note that the RMSSE measure has been recommended
in the M5 forecasting competition as it is known to be robust with series that have
intermittent sales or series with higher demand values and the fact that it does not rely
on values close to zero as the other relative measures do (Makridakis et al. 2020). RMSE
is an indication of the standard deviation of forecast errors. This measure does suffer
from a scale dependence issue but it is used in this chapter because it is the criterion used
in optimizing the parameters of some forecasting methods.

2.4.6.1 Forecasting accuracy results of the online channel

Table 2.6 shows the empirical results using the data of Panel A. For each forecasting
method and accuracy measure, we report two figures: the upper one represents the average
error (across all products) and the one below represents the percentage of products where
the forecasting method is the best for the accuracy measure. The lower forecasting errors
are highlighted in bold font.
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Croston ARIMA LinReg-LS PolyReg-LS ARIMAX LightGBM

sMAPE Average error 185.909 186.773 183.716 184.182 184.161 188.317
% of products 27.1% 31.4% 10.4% 15.8% 13.1% 2.2%

MASE Average error 2.613 1.267 1.283 1.243 1.150 0.723
% of products 1.34% 8% 2.3% 2.1% 5.9% 80%

RMSE Average error 1.229 0.603 0.491 0.510 0.517 0.491
% of products 21% 15% 11.6% 10.9% 11.4% 30.1%

RMSSE Average error 0.776 0.587 0.621 0.676 0.610 0.611
% of products 21% 15% 11.6% 10.9% 11.4% 30.1%

Table 2.6: Forecasting accuracy results

The results in Table 2.6 show that the proposed forecasting methods lead to the
best performance when compared to the two benchmarks in terms of both the forecast
accuracy and the highest number of products within the assortment. The method that
is associated with the lowest forecasting accuracy is the Croston method. This is not
surprising since the relatively low empirical performance of Croston when dealing with
highly intermittent and lumpy demand data is shown in the literature (Babai et al. 2014,
Syntetos et al. 2015). Note that LightGBM provides the best accuracy results in MASE
and RMSE and in RMSSE (for the highest number of products within the assortment).
However, for sMAPE it is the least performing method, which is due to the fact that for
most of the SKUs with intermittent demand, LightGBM produces forecasts that are equal
or close to zero, which leads to high values of sMAPE (since both demands and forecasts
are close to zero in the denominator of the sMAPE measure). Such an issue with the
sMAPE measure when forecasting intermittent demands using methods producing many
zero forecasts is well known in the literature (Teunter and Duncan 2009, Makridakis et al.
2020).

In order to gain additional insights on the comparative performance of the forecasting
methods without having the scaling and metric-dependence issue, the performance of the
methods was statistically measured for significant differences through pair-wise compar-
isons of the absolute error, the squared error, and the symmetric absolute percentage error
between sales and forecast per product and per day. The results of the tests are reported
in Section 2.5.8. The results show that all our proposed methods perform significantly (at
the 1% and 5% levels) better than Croston’s method. It is also shown that both ARIMAX
and LightGBM perform significantly better than ARIMA.

Furthermore, to better understand the performance of the proposed approach (and
therefore the four forecasting methods) with respect to the connectivity of products, we
analyze the forecasting accuracy results per demand class according to the SBC classifi-
cation scheme. The results for the four classes are reported in Table 2.7 and the lower
forecast errors are highlighted by a bold font.
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Lumpy Smooth
sMAPE MASE RMSE RMSSE sMAPE MASE RMSE RMSSE

Croston 180.67 4.468 2.438 0.798 Croston 88.299 0.912 2.386 2.612
ARIMA 181.627 1.473 0.956 0.554 ARIMA 86.958 0.867 2.332 0.407

LinReg-LS 171.392 1.026 0.799 0.557 LinReg-LS 130.053 0.442 1.153 0.381
PolyReg-LS 173.051 1.083 0.820 0.589 PolyReg-LS 129.669 0.437 1.151 0.383
ARIMAX 175.975 1.097 0.713 0.560 ARIMAX 88.488 0.823 2.116 0.400
LightGBM 173.762 0.828 0.793 0.573 LightGBM 95.462 0.406 1.202 0.393

Intermittent Erratic
sMAPE MASE RMSE RMSSE sMAPE MASE RMSE RMSSE

Croston 189.943 1.596 0.539 0.724 Croston 92.672 0.812 2.361 1.423
ARIMA 190.582 1.156 0.384 0.607 ARIMA 93.089 0.815 2.377 0.337

LinReg-LS 189.139 1.189 0.370 0.652 LinReg-LS 136.979 0.388 1.141 0.307
PolyReg-LS 189.334 1.372 0.390 0.717 PolyReg-LS 137.170 0.375 1.101 0.304
ARIMAX 188.987 1.183 0.394 0.637 ARIMAX 91.334 0.737 2.187 0.329
LightGBM 194.935 0.707 0.372 0.634 LightGBM 114.568 0.335 1.134 0.307

Table 2.7: Forecasting accuracy results per category of products

The results in Table 2.7 show that in the lumpy and erratic demand classes, the com-
parative performance significantly increases in favor of our proposed methods compared
to the benchmark methods. The results per demand class show that for example the
relative error reduction by using ARIMAX for the lumpy class is much higher compared
to the results for all classes, going up to 3.1% when compared to ARIMA (under sMAPE)
and 2.6% when compared to Croston. Under MASE, the error reduction is equal to 26%
when compared to ARIMA and goes up to 75% when compared to Croston. The re-
sults also show that for the erratic demand class, the relative error reduction by using
PolyReg-LS reaches 9.8% when compared to ARIMA and 78.6% when compared to Cros-
ton (under RMSSE). Under RMSE and MASE, the relative reduction is even higher than
in RMSSE. This high relative reduction also holds for LightGBM and LinReg-LS. The
outperformance of the proposed approach under these classes can be explained by the fact
that under lumpy and erratic demands, demand sizes are higher and the attributes-based
forecasting approach better captures the connection between the sold products, which
improves its forecasting accuracy. This in line with the findings of Section 4.2, where we
have shown that the connectivity of products is high under the lumpy class. Moreover,
as expected, the results reveal that for the intermittent demand class, the relative per-
formance of Croston improves. The Croston method has been developed for the specific
case of intermittent demand with stationary demand intervals and demand sizes, which
means that when the degree of lumpiness or erraticness increases, the method loses its
performance.

2.4.6.2 Omnichannel forecasting results

For the purpose of omnichannel forecasting, we consider the data of Panel B, which relates
to the online and store channels. We first analyze the characteristics of the baskets in
the omnichannel case. The results are shown in Figure 2.12. On the left, we report the
percentage of single-product baskets and multiple-product Baskets and on the right, we
report the number of times (percentage-wise) each product was sold with other products.
The results in Figure 2.12 show that 62% of the total baskets have two products or
more. This exceeds the percentage in the online case (reported in Figure 2.7), which
further endorses the importance of the shopping basket behavior in the omnichannel case.
Moreover, the results in Figure 2.12 show that 86.6% of the products are sold more than
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75% of the time with other products. This percentage is higher than the online channel
case (reported in Figure 2.8). This further confirms that the majority of products are
sold with other products in a basket more than once, which is more pronounced in the
omnichannel case.

Figure 2.12: Baskets characteristics for the omnichannel case

Next, a joint sales forecast is made after aggregating the daily online and store sales
(i.e. at any day t, the aggregate sale used to forecast is the sum of the sales from both
channels on the same day). We analyze the forecasting accuracy of all the forecasting
methods using the online sales channel, the sales of the store channel, and the omnichannel
aggregated sales. We report in Table 2.8 the average sMAPE results for the three cases.
Results are shown using only sMAPE because this is a relative error measure that enables
a fair comparison among the three cases.

Channel Croston ARIMA LinReg-LS PolyReg-LS ARIMAX LightGBM

sMAPE
Online sales 199.778 199.807 198.772 198.659 199.788 198.824
Store sales 197.413 197.525 188.756 188.898 197.301 194.240

Omnichannel sales 197.329 197.525 186.339 186.583 197.245 193.260

Table 2.8: Omnichannel forecasting results

The results in Table 2.8 show that by using the omnichannel case, the sMAPE error
decreases, which means that the forecasting accuracy improves by forecasting the sales
based on an aggregation of the two channels. It is important to note that the improvement
of the performance with the joint forecasting of both sales channels is realized under all
the forecasting methods. Table 2.8 also shows that although the ARIMAX method is
not the most accurate for the online sales channel, it is better than the two benchmarks
in the case of the omnichannel sales. Furthermore, it should be noted that under this
panel B data and omnichannel case, the accuracy of the LightGBM method improves and
it becomes higher than that of the two benchmarks, even under the sMAPE measure.
This shows that in the case of the omnichannel sale, the connectivity between products
is better captured, which improves the performance of LightGBM and also of our other
proposed forecasting methods.

2.4.7 Statistical significance test for forecasting methods
The Z-test significance for proportions is used to measure the significant differences be-
tween methods through pair-wise comparisons on the absolute error (AE), the squared
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error (SE), and the symmetric absolute percentage error (sAPE) between sales and fore-
cast per product and per day. Note that the comparison using these errors per period
and per product enables the comparative performance of the forecasting methods without
having the scaling issue resulting from the average across SKUs. It should be noted that
for each product MAD, MSE, and sMAPE are the mean values of AE, SE, and sAPE
respectively. Moreover, comparing SE per period of two methods is sufficient to have the
comparative performance of RMSSE since the Naïve mean error in the denominator of
this measure is the same between the two methods. Let p1 denote the percentage of days
on which method 1 has a higher error than method 2 (i.e., the latter performs better
than the former) and n be the size of the considered sample (total number of days and
products). The Z-test statistic is then given by:

Z = p1 − 0.5√
25
n

(2.4)

The critical values at 5% and at 1% level are equal to 1.6449 and 2.3263, respectively.
Note that if the error (i.e AE, SE, and sAPE) for two given methods are equal, they are
eliminated from proportion calculation. The Z-test statistic values are indicated, for all
pair-wise comparisons of the considered methods for the AE, SE, and sAPE errors, in
Table 2.9. Positive values indicate that method 1 is more accurate than method 2.

Method 1 Method 2 AE SE sAPE
p1 Z p1 Z p1 Z

ARIMA Croston 71.0% 495.784 71.0% 497.936 63.7% 161.239
ARIMA ARIMAX 47.0% -68.560 47.1% -67.726 35.4% -196.197
ARIMA LightGBM 14.7% -799.205 14.9% -793.723 13.9% -791.125
ARIMA LinReg-LS 54.9% 115.948 55.4% 127.711 59.1% 110.559
ARIMA PolyReg-LS 54.5% 105.853 55.0% 117.370 58.4% 103.567
Croston ARIMAX 31.5% -436.403 31.5% -438.893 24.7% -345.757
Croston LightGBM 13.1% -874.175 13.2% -871.468 12.8% -854.194
Croston LinReg-LS 27.9% -523.274 28.2% -517.514 42.6% -74.586
Croston PolyReg-LS 27.4% -534.978 27.2% -529.320 42.5% -78.096

ARIMAX LightGBM 15.8% -734.378 16% -729.812 15.5% -716.095
ARIMAX LinReg-LS 62.0% 281.211 62.6% 294.698 71.2% 284.49
ARIMAX PolyReg-LS 58.3% 194.559 58.8% 207.192 70.1% 278.420
LightGBM LinReg-LS 86.3% 846.676 86.3% 846.676 86.7% 830.980
LightGBM PolyReg-LS 86.4% 845.529 86.4% 845.528 86.9% 831.519
LinReg-LS PolyReg-LS 46.2% -90.352 46.2% -90.352 50.2% -2.465

Table 2.9: Z-test scores - absolute, squared and symmetric absolute percentage errors

2.4.8 Omnichannel inventory performance
We start the inventory performance investigation by conducting a goodness-of-fit analysis
to test the fit of different distributions with the demand in the different channels. This is
needed in order to select the best demand distribution for the lead-time demand. We con-
sider five distributions: normal, Poisson, gamma, negative binomial distribution (NBD),
and stuttering Poisson (StPoisson). These distributions are commonly considered in mod-
eling intermittent and non-intermittent demand data (Syntetos et al. 2013, Turrini and
Meissner 2019). We show in Table 2.10 the results obtained with a Kolmogorov-Smirnov
test at a 5% significance level. For each distribution, the "Fit" percentage shown in Table
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2.10 corresponds to the percentage of products for which the hypothesis that the demand
data fits the distribution (i.e., the p-value is less than the critical value calculated using
the K-S statistical table for 5%), is not rejected.

Poisson NBD Normal Gamma StPoisson

Online sales Fit 99.23% 100.00% 94.04% 99.65% 99.98%
No fit 0.77% 0.00% 5.96% 0.35% 0.02%

Store sales Fit 98.54% 99.80% 93.49% 97.77% 99.78%
No fit 1.30% 0.04% 6.35% 2.07% 0.07%

Omnichannel sales Fit 97.83% 99.87% 90.97% 96.84% 99.81%
No fit 2.17% 0.13% 9.03% 3.16% 0.19%

Table 2.10: Empirical goodness-of-fit results

The results show the strong empirical fit of the NBD followed by the StPoisson distri-
bution, with normal being the distribution associated with the lowest fit. These results
are expected knowing that the demand data are characterized by a high degree of inter-
mittence.

Therefore, for the purpose of the inventory performance investigation, NBD is selected
to model the lead-time demand. The lead time is fixed to 2 days. For the purpose of the
analysis, we fix three target CSLs—90%, 95%, and 99%—and for target CSL and each
scenario, we measure the average inventory holding volumes, the average back ordering
volumes, and the achieved CSLs (averages calculated over the evaluation period and across
all products). Note that the last 73 days (from October 20, 2018, to December 31, 2018)
are used to evaluate the performance. The inventory performance results of the different
forecasting methods are reported in Table 2.11.

Holding Volumes Backordering Volumes Achieved CSL (%)

Croston
CSL=90% 1.159 0.045 91.42
CSL=95% 1.691 0.027 94.87
CSL=99% 3.721 0.005 99.19

ARIMA
CSL=90% 0.671 0.030 93.25
CSL=95% 1.101 0.017 96.07
CSL=99% 2.762 0.007 98.22

ARIMAX
CSL=90% 0.723 0.033 92.51
CSL=95% 1.150 0.019 95.42
CSL=99% 2.754 0.008 98.05

LinReg-LS
CSL=90% 0.872 0.020 95.24
CSL=95% 1.637 0.011 97.58
CSL=99% 3.493 0.002 99.66

PolyReg-LS
CSL=90% 1.329 0.024 94.96
CSL=95% 1.918 0.012 97.,50
CSL=99% 3.773 0.002 99.58

LightGBM
CSL=90% 0.051 0.101 79.06
CSL=95% 0.066 0.101 79.18
CSL=99% 0.120 0.099 79.45

Table 2.11: Inventory performance results

The results in Table 2.11 show that except lightGBM, all the forecasting methods
are able to achieve the 90% target CSL whereas, only Croston’s method, LinReg-LS and
PolyReg-LS over-achieves the 99% target CSL. Note that LightGBM is associated with
a very poor inventory performance. By looking at this method’s performance closely,
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we have noticed that it results in many zero forecasts for several SKUs which leads to
low holding volumes, low achieved CSLs and high backordering volumes. This inventory
performance behavior is similar to that shown in the literature when for example the zero
forecast method is used (Teunter and Duncan 2009). In fact, a high forecast accuracy
for the zero forecast method is associated with a very low inventory performance. The
results also show that our proposed LingReg-LS method provides the highest achieved
CSL for all target CSLs. However, it should be noted that these results cannot lead to
a conclusive comparative performance between the methods since in many cases. higher
holding volumes lead to higher achieved CSLs and lower backordering volumes. In order
to have a fair comparison of the forecasting methods. We plot their efficiency curves
showing: (1) inventory holding versus backordering volumes. and (2) inventory holding
versus achieved CSLs. In the former curves, the method that has its curve closer to the
x-axis for a certain inventory holding volume implies a lower backordering volume and
thus higher efficiency. In the latter, the method that has its efficiency curve further to the
x-axis (i.e. on the top) for a certain inventory holding volume implies a higher achieved
CSL. The efficiency curves of the different forecast methods are reported in Figure 2.13.
Note that the efficiency curve of LightGBM does not appear in the figure due to the huge
performance gap with the other efficiency curves, knowing that we used this scale for
readability purposes. Note also that all these performance results are based on Panel B
data.

Figure 2.13: Efficiency curves of the different forecasting methods

The results in Figure 2.13 show that the LinReg-LS forecasting method leads to the
highest inventory efficiency both when holding volumes-Backordering volumes and holding
volumes-achieved CSL trade-offs are considered, whereas Croston’s method leads to the
lowest efficiency. The over-achievement of the CSL at 90% when Croston is used despite
its low forecast accuracy and inventory efficiency may be attributed to its positive bias as
often reported in the literature (Babai et al. 2020). The efficiency curves also show that
ARIMA leads to a higher inventory efficiency than ARIMAX. This is not in line with the
comparative forecast accuracy of the two methods but this is not surprising since it has
been shown in the literature that a higher forecast accuracy does not necessarily lead to
a higher inventory performance (Syntetos et al. 2016). This discrepancy between forecast
accuracy and inventory performance may be partially due to the difference between the
forecast horizon considered to show the accuracy and the replenishment lead time used
in the inventory control policy. Tackling this issue constitutes an interesting avenue for
further research.

We now report in Figure 2.14 the efficiency curves contrasting the three fulfillment
scenarios. We do so for both the ARIMAX and LinReg-LS methods (since those are the
best-proposed methods in terms of both forecast accuracy and inventory performance).
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We do not report the achieved CSLs in these figures because for the DISF scenario, the
CSL cannot be reported and compared to that of the two other scenarios. The results
in Figure 2.14 show that the shared inventory and joint forecast scenario leads to the
lowest inventory backordering for fixed inventory holding volumes, which indicates that
this scenario is associated with the highest inventory efficiency.

Figure 2.14: Efficiency curves: holding Versus backordering volumes of the fulfillment
scenarios

2.5 Conclusion
There is an agreement in the omnichannel retail literature that forecasting omnichannel
sales is a challenging task, and research devoted to dealing with this issue is lacking.
This study has proposed a new approach to forecasting demand in an omnichannel re-
tail context using data on customers’ shopping baskets. The forecasting approach builds
on findings from the marketing literature and graph theory to identify attributes of the
products, which can be used with a time-series forecasting model. We have conducted an
empirical analysis of the proposed forecasting approach and other benchmark forecasting
methods commonly used in the retail context. A dataset of an assortment of more than
24,000 products in the online and store channels from a global leading cosmetics retailer
was used for this purpose. Our study is the first to make an empirical analysis of both
online and store sales and the first to use information on shopping baskets to forecast
demand.
We have characterized the empirical behavior of more than 2 million online orders. Our
investigation has shown that more than 95% of the sold products are characterized by
an intermittent demand pattern, with 30% of them having a high lumpiness. By ana-
lyzing the composition of orders, we find that more than 50% of products are sold in
baskets with more than two products per basket. Our findings reveal as well that the
network of omnichannel retail sales is characterized by low density and a high average
path length, and thus cannot be considered to be a small-world network. However, the
connectivity (i.e., degree) distribution is heavily skewed to a few products in the network.
Through a regression analysis, our study also reveals the importance of considering the
degree, strength, substitutability, and complementarity of the network as good regressors
for forecasting purposes.
The empirical assessment of the performance of the forecasting methods shows that one
of the most popular methods for intermittent demand forecasting (the Croston method)
leads to poor forecasting accuracy in the omnichannel context. This underperformance
is accentuated in the product category with lumpy demand patterns. Our proposed fore-
casting approach, which uses the degree, strength, substitutability and complementarity
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attributes within four forecasting methods, namely: ARIMAX, LinReg-LS, PolyReg-LS
and LightGBM, tackles this issue by improving the forecasting accuracy, especially for
lumpy demand patterns due to the high connectivity of products in this demand class.
These empirical findings highlight the value of considering attributes of the linkages be-
tween sold products in baskets for omnichannel forecasting purposes. The results also
show that the machine learning method, LightGBM, is associated with a high forecast
accuracy but leads though to poor inventory performance.

Furthermore, the empirical study also shows that joint forecasting based on the sales
of both online and store sales leads to higher forecasting accuracy and inventory per-
formance. Such an omnichannel forecasting approach is recommended to consolidate
inventories at stores, likely leading to a considerable reduction of inventory shortages.
These findings enable an omnichannel network designer to gain valuable insights on how
to deploy inventories in a set of fulfillment centers and on how stores could play a major
role in efficient urban fulfillment. The findings also provide interesting insights on om-
nichannel assortment planning based on the data-driven network analysis of the baskets.

In summary, omnichannel retailing has changed the purchasing behavior of customers
in recent years, especially in online shopping, which has led to higher complexity in sup-
ply chain demand forecasting. Nowadays customers buy a variety of products in baskets
that do not share similar characteristics and across various channels. In this chapter, we
propose a new approach to forecasting demand, driven by data on customers’ shopping
baskets. Drawing on network graph theory and findings from the marketing literature,
we identify for a given product four attributes to promote the connectivity with other
products sold together in a basket: degree and strength for cross-categories connection,
substitutability and complementarity for within-categories connection. These attributes
are used as predictor variables within four proposed methods: an autoregressive integrated
moving average model with exogenous variables (ARIMAX), a linear and a polynomial
regression with one lag of sales and a machine learning method. We conduct an empirical
investigation using online and physical sales related to an assortment of 24,000 products
from a major cosmetics retailer in France. We provide empirical evidence that using the
shopping basket data with the proposed forecasting methods improves the forecasting
accuracy and the stock control performance in omnichannel retailing. We also show that
there is a benefit from joint forecasting of the online and store channels and a benefit
of shared inventory between both channels in terms of shortage reduction. in the next
chapter, we reduce the focus on the product and increase the focus on the basket and how
it can be used to minimize the cost of omnichannel fulfillment and reduce the waiting
time for order delivery to customers.
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Chapter 3

A new basket data-driven approach
for forecast-based anticipatory
shipping

3.1 Introduction

3.1.1 General introduction and motivation
In the previous chapter, omnichannel fulfillment was under the assumption that inventory
of online and physical retail can be held in one place mainly the store (shared inventory
strategy). While this is applicable and implemented in many omnichannel contexts, the
space inside the retail store could be limited to a select number of online products and not
for all the online products in a demand zone of this store. In case store or mini-hub space
is limited, such strategy of shared inventory as stated in the previous chapter will not work
especially for high-demand zones. With this in mind, customers now expect products to
be delivered to them faster than before and they have less tolerance for stock-outs Gallino
et al. (2019). For such cases, this creates the need for a more efficient advancement of
baskets to stores/mini-hubs of online demand zones.
Fisher et al. (2019) deduced by an empirical investigation of an omnichannel retailer that
there is an expected 1.45% increase in sales for every business day delivery reduction.
AMAZON is one of the pioneers to offer 2-day delivery to customers through their prime
service for example and BM retailers are catching up Jasin et al. (2019). Not only AMA-
ZON, Google, and Instacart are also developing strategies to deliver physical products to
customers within 2 hours from online orders Chopra (2018).

For omnichannel retailers, utilizing store space to offer SFS (ship from store) and BOPS
(Buy online pick from store) are means to achieve such optimistic deadlines Rooderkerk
et al. (2023). Such initiatives save on capital investments in fulfillment centers, reduce
transport cost because of consolidation, and increase customer satisfaction because of
the reduction of delivery times. Yet packaging of baskets and finalizing order shipping
details is still more economical in fulfillment centers due to pooling and economic of scales
Alptekinoğlu and Tang (2005), Bretthauer et al. (2010).

The data panel of a cosmetics retailer used in this work reveals that 65 % of ordered
baskets by customers have two distinct products or more, and there were 2.5 ordered
products on average per basket. This increases the complexity of advancing online baskets
near to customer’s location before the customer makes the order as the content of the
basket is challenging to forecast in advance due to all the bi-product combinations that
could constitute a basket.

This raises the question of how data from multiple product baskets could be considered
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by operations managers to improve the fulfillment of basket orders made by customers
by predicting the basket content in advance thus reducing the delivery time to customers
and benefiting from economies of scale in transportation, picking and packaging. Boone
et al. (2019) highlighted the existence of influences between products purchased within
customers’ baskets and they stated the use of basket data in forecasting as one of the
research avenues that are yet to be explored. Unlike Omar et al. (2022) where they
aimed at utilizing the basket data to improve forecasting of individual products and
consequently inventory performance on omnichannel demand streams. In this research,
we explore predicting the whole basket before the customer makes the order to optimize
many aspects of order fulfillment and increase customer satisfaction.

There has been limited and recent literature on anticipatory shipping where retailers
attempt to predict customers’ orders, however, to the best of our knowledge, there is no
previous research that used basket data to forecast and advance the basket itself with
its content -not only the product level- in supply chains. While there is recent literature
on predicting customer demand and advancing products near to the customers. For
example; Ren et al. (2022) introduced a forecasting algorithm that recommends items
to be advanced based on product demand data with the individual product-by-product
demand prediction. In addition, Lee (2017) proposed a Genetic algorithm optimization
model complemented by baskets data association rules to anticipate the basket in advance
on clustered historical data. A close approach was proposed by Viet et al. (2020) where
they used basket data association rules with the addition of a time constraint for perishable
food items for the agri-food industry. Our work adds to the existing literature on a
number of levels. First, we take advantage of the rich quantitative attributes of graph
theory compared to association rules where association rules are limited to confidence and
support attributes and do not have an explicit quantity measure. Second, we model the
association between products as an arc in a graph which gives flexibility in adding time
constraints to the graph by defining the duration of the graph from historical baskets
data as well as adjusting the future forecast horizon, for example, one day, one week,
one month which suits perishable and non-perishable items. Third, our approach sources
only from product data which are abundantly available for most retailers compared to
customer information and click stream data, also, the prediction outcome in our proposed
approach is a regression variable that allows for high quantities prediction compared to
classification problems. Finally, we predict the content of the baskets which allows for
pre-processing activities of baskets such as allocation, price tagging, and packaging before
a customer makes an order.

Baskets being correctly predicted will enable retailers to maximize utilization in both
fulfillment centers and stores near the customer and at the same time reduce delivery
time and overstocking or obsolescence of baskets. Furthermore, It will reduce the load on
store staff with regard to packaging if shipped from the point of sale. This motivates our
research work to propose a new approach that predicts the demand using basket data for
the purpose of anticipatory shipping.

3.1.2 Business context
While this project focuses on omnichannel retailers that have store space that can be used
for online fulfillment, the work also applies to using warehouse or mini-hub space to satisfy
demand zones near the customer. This project is in collaboration with a cosmetics retailer
that owns its Brick and Mortar stores, has a prominent website for online shopping, and
entered into partnerships with other BM/online retailers where the retailer is not operat-
ing or does not have a distribution infrastructure. The company has a broad assortment
of cosmetics and perfumes. The project focuses on availing baskets to online customers

68



in 2 hours to 48 hours through anticipatory shipping. The retailer has been operating
traditionally through retail stores with a periodic replenishment to stores via a centralized
retail warehouse. The frequency of replenishment depends on the size and popularity of
stores. With the introduction of online sales at the beginning of the 2000s, online orders
were fulfilled through a Central online fulfillment center. Recently, the retailer has been
considering 3 approaches for fulfilling online orders besides sending to customers directly
from the centralized fulfillment center. One of them we are proposing in this work is
ship-to-store (STS), and the other two are previously discussed in Chapter 2 which are
Ship-from-store (SFS) and Buy-online pick-up from store (BOPS). In the new proposed
STS concept, the baskets are sent consolidated and packaged to the store of the demand
zone before the customers’ orders and no further operations are required from store staff.
We anticipate that this will work well for certain cases illustrated in the proposed fulfill-
ment strategies of basket advancements as opposed to sending the baskets not packaged.
Note that for SFS, the demand is served from store stock or sent from the fulfillment
center then packaged and processed in-store. Figure 3.1 illustrates the retailer’s down-
stream AS-IS versus the TO-BE supply chain schema composed of a set of customers
and their locations, a selected store, a retail warehouse, and a fulfillment center. The
dashed arrows represent decisions while the complete arrows represent flows. Note that
the upper decision schema in Figure 3.1 relates to the fulfillment decision-making without
applying anticipatory shipping (AS-IS)While the lower-level decision schema represents
the anticipatory (TO-BE )strategy.

Figure 3.1: Omni-channel fulfillment- AS-IS VS TO-BE

SFS takes advantage of the existing physical network by turning certain store loca-
tions to ship-from points for online sales. The stock for SFS can come from a BM store
replenishment stock that happens to be available online as well. However, SFS requires
online fulfillment operations in-store. Note that STS/SFS are not distinguished by cus-
tomer but it’s a fulfillment strategy on where the basket fulfillment is finalized. However,
BOPS requires extra effort from customers for fulfillment. The average delivery lead time
for the ship to a customer from a central fulfillment center is 4 days while if the online
order items are available in a nearby store with packaging capabilities is 2 hours-2 days,
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noting that most of the shipments are shipped with the former option.
In the AS-IS strategy, if a customer places an order online and the content of the

basket is not available in the nearby store, it is shipped directly from the fulfillment
center (green arrow), while if there is a high volume of customers ordering online from
the same region. The baskets could be packaged, consolidated, and shipped to a store
near the customer demand zone following an STS approach (purple arrow). This reduces
shipping costs compared to shipping directly to the customer but increases the time to
delivery for the customer. The third flow for AS-IS fulfillment is SFS where the content of
the basket is already available in-store through regular store replenishment and the store
has packaging, picking, and shipping capabilities and performs last-mile delivery to the
customer (orange arrow) or the customer may pick the basket up from the store following
BOPS. Note that in the AS-IS traditional flow, no decision is made before the order of a
customer. Hence, unless the online basket content is already available in a store near the
customer from BM replenishment, online orders suffer long lead times customers.

With this AS-IS strategy, it is difficult to package baskets in a fulfillment center before
customers order baskets as they usually buy online baskets that contain several products
Omar et al. (2022). There is also another possibility that part of the basket is available in
a nearby store and the rest of the basket is in a centralized location, which leads to online
orders suffering idle time and being delayed to customers. In addition, online orders are
usually sent from a centralized hub where packaging capabilities are economical but from
a distance not close to every demand zone leading to high single shipments transportation
costs due to irregular times of shipment and not benefiting from consolidation or economics
of scale like the physical channel replenishment. Only in the case where the total basket is
already available in a nearby store then it be delivered within 2 to 48 hours provided that
the store has packaging capabilities which are a few orders from the total online baskets.

In the TO-BE strategy that this work is proposing in the lower decision schema in
Figure 3.1, baskets are advanced to store before an order is placed. Baskets are classified
into baskets of size 2 (BS2) which are 2 items ordered in a basket and baskets of size more
than 2 (BS>2). This classification is important due to the natural structure of baskets as
a basket of size 2 consists of one arc and can be packaged without high uncertainty while
a basket of size more than 2 consists of 2 arcs or more increasing uncertainty with regards
to which arc combinations make a basket of size more than 2. Thus, further processing
is needed for baskets of size >2. We propose a two-step basket prediction approach that
uses bi-product (arc) attributes to predict the quantity of the bi-product links for BS2
and BS>2 separately. Hence, every bi-product link (arc) has two continuous prediction
targets (BS2 and BS>2). For BS>2, an algorithm is triggered to retrieve BS>2 baskets
from arcs. Note that this is not required for BS2 as BS2 has only one arc.

Recall that in the AS-IS strategy, the baskets are shipped from the store only if the
basket content is available in-store through BM replenishment which is minimal compared
to the volume of online baskets shipped directly from the fulfillment center. In the TO-BE
strategy, the predicted baskets take a separate fulfillment path based on size. If the size
of the predicted basket is 2, then the basket is advanced packaged from the fulfillment
center one week before the actual order is to be made. If the basket is of size more
than 2, then the basket content is shipped not packaged one week in advance from the
fulfillment center to the store near the customer, then packaged and fulfilled from the
store, as a form of basket assemble-to-order. Finally, if a basket is not picked by the two-
step approach, i.e. the prediction is zero, then traditional direct delivery of the basket
from the fulfillment center is triggered. The benefit of this strategy is that first, only the
most probable baskets are shipped in advance to the store which reduces overstock and
space utilization, second, it achieves the economics of scale by packaging in the fulfillment
center and reducing the workload on store staff. Third it reduces the delivery time from
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the traditional 4 days to possibly 2-24 hours, especially for BS2. Finally, it reduces the
cost of transportation by consolidating several anticipated baskets rather than express or
traditional delivery from the fulfillment center to the customer.

3.2 Two-step advancement shipping approach

3.2.1 Basket Prediction

Starting from historical sales, we rely explicitly on graph theory in order to model a
graph-like structure that captures the attributes of bi-product links. These attributes
will be used as features in state-of-the-art machine learning models to predict the future
sales of the arcs. These arcs will, later on, formulate baskets. the response targets (BS2
and BS>2) are continuous variable in this research. However, this approach can also be
implemented with ordered classification targets.

The proposed arc prediction step can be summarized in Figure 3.2. The steps of the
proposed approach are detailed in the following subsections.

• a) Shopping baskets data (from the sales history) are used to build the network, b)
the network is then considered to calculate attributes that are arc related namely
three sets of attributes; arc attributes, nodes to the arc attributes, and arc probabil-
ity/Bayes attributes, where every observation is an arc that appeared in historical
sales of baskets. Each observation has two targets; how many times an arc will
appear within a given time period in a basket of size 2 and how many times an arc
will appear in an order of size more than 2.

• b) Each target is binned to ordered classes for under-sampling purposes only namely;
no event which is an arc that has a response variable of zero, one event which is
an arc that has a response variable of one, two events, and more than two events.
The resulting new classes are likely to be imbalanced as shown from our empirical
investigation with more frequencies on the "no event" and decrease as the number of
events increases. Thus, a supplementary procedure of under-sampling followed by
duplication of low frequencies is recommended for the training and tuning of machine
learning models only. No such operations are necessary for testing or prediction.

• c) After under-sampling and removal of the order binning classes, The attributes are
used as regressors along with historical basket sales data within a machine learning
method. Note that the two targets to predict; basket of size 2 (BS2) and basket
of size more than 2 (BS>2) are numerical. The ordered class binning is only for
under-sampling and duplication purposes but is not included in model training.
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Figure 3.2: Illustration of the prediction approach

3.2.1.1 Network characterization and attributes extraction

Using what we have concluded in Chapter 2, we further utilize the graph attributes
by focusing on the arcs and the nodes of the network to shape the baskets ordered by
customers and not only the forecasting of individual products(Gross and Yellen 2005, Kim
et al. 2015, Dooley et al. 2019). In this context, we rely explicitly on graph theory in order
to: 1) model a graph-like structure from historical sales that captures the characteristics
of the products (node) and the bi-product purchases within baskets (arc) knowing that
every arc can appear in a basket where only two items are bought (BS2) or a basket where
more than two products are bought. If a customer for example buys a perfume product
with two units of identical mascara, it is considered as a basket of more than size 2 (BS>2)
2) Explore a graph-learning from the basket data using an original set of attributes. The
arc linking the two products is associated with the number of baskets in which the two
products are sold together. This number is referred to as the frequency of this connection.
We note that in our graph representation, we assume that the relational attributes of
products are the only associations and there is no causal relationship; thus, the network
is undirected. Figure 3.3 illustrates a typical basket data representation in a graph. The
data is extracted as follows, each basket data is transformed into every two possible pairs,
this process is done on all baskets for a period of twenty-eight consecutive days (the graph
horizon), and attributes are then calculated on those pairs Figure 3.3 represents a subset
of a graph of twenty-eight days period graph. With this in mind, we identify three sets
of attributes that use the graph and historical basket data in the proposed forecasting
approach; nodes to the arc attributes, arc attributes, and probability/Bayes attributes.
Noting that we will focus on arc (A-B) to illustrate these attributes

3.2.1.2 Nodes to the arc

For the nodes related to every arc, we identify six attributes of the product considered
in the proposed forecasting approach: (1) Degree of the product, (2) Strength of the
product, refer to their definitions in Chapter 2 (3) Weighted transitivity of the node is
the probability that the adjacent nodes of a node are connected. This is sometimes
also called the clustering coefficient Barrat et al. (2004),(4) closeness centrality which
measures how many steps are required to access every other node from a given node
Freeman (1978),(5) triangles which counts how many triangles the node is a part of and
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Figure 3.3: Basket data representation in a weighted graph

(5) weighted betweenness which is how many weighted shortest path passed through the
node, the weights being the frequency of the arc Brandes (2001). So in total, every arc
will have twelve node-related attributes. In Figure 3.4, arc(A-B) has two related products,

Figure 3.4: Nodes to the arc attributes

product A and product B. Product A has connections with four connections (B, C, D, E)
and the sum of frequencies of those connections is eleven. Thus, the degree and strength
of product A and B are four and eleven respectively. While product A has 4 adjacent
products, it only has two closed triangles; (A, B, C) and (A, C, D). Applying weighted
transitivity on product A will result in 0.36 which is the average weight of every connected
arc where product A is centered, conditioned that it’s part of a closed triangle divided by
all the triplets where product A is centered. Product A also exhibits the highest closeness
centrality as it has the highest degree of connection with other products. For product
A, the attribute count triangles count how many closed triads of products the product
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is a part of. As noted before, product A is a part of two triangles of products. Finally,
betweenness is the sum of the weighted distances the shortest paths pass through product
A. The six product attributes of Product A (node 1) and Product B (node 2) together
are the nodes to the arc attributes set to arc (A-B)

3.2.1.3 Arc attributes

In the arc attributes set, attributes explicitly related to the arc are proposed to be ex-
tracted; 1)frequency of the arc, which is the number of times an arc appeared in all bas-
kets,2)arc betweenness which is how many weighted shortest path are passing through the
arc, 3)frequency count for basket of size n where n is a subset of all basket sizes(number
of products inside basket) that the arc appeared in from historical basket data. Note that
in Figure 3.5, as we only took a subset of a graph from our empirical analysis frequency
for basket size n have only three cases; basket size 2, basket size 3, and basket size 4,
while in our empirical analysis, panel data have up to 11 cases from basket of size 2 to
basket of size 12. And finally, 4) total baskets size >2 which is the sum of n3 to nx where
x is the highest basket size for this arc. This measure could be considered as a lag for
the target prediction BS>2. And basket size 2 attribute could be considered as the lag
for the prediction target of BS2 In Figure 3.5, it is noted that some arcs appear in more
baskets of size 2 such as Arc (A-D) while other arcs appear more in high-size baskets as
arc (A-E).

Figure 3.5: Arc attributes

3.2.1.4 Probability/Bayes attributes

The last set of attributes extracts information from the nodes to the arc and the arc itself
with relation to graph(t), recall that graph (t) is a graph that represents historical basket
data in the last 28 days. We rely on conditional probability and Bayes rule to infer the
chance that a specific arc from the graph will be likely purchased again in a future basket
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given prior knowledge (Prior) about specific characteristics of the graph and basket data
and then update the probability with new information (posterior) Reich and Ghosh (2019).
Continuing on the previous sub-graph, an extraction of probability/Bayes attributes of
arc (A-B) is demonstrated in Figure 3.6. First, node 1 proportion is the proportion of arc
(A-B) frequency to the total frequency that node 1 (A) participates in,total basket size 2
node 1 is the total orders which node 1 participates in all of the basket size 2 orders in
graph(t), total basket size>2 node 1 is the total orders which node 1 participates in all of
basket size more than 2 orders in graph(t),Bayes node 1 is calculated as the probability of
basket size 2 of arc (A-B) to the total basket size 2 that node 1 participates in multiplied
by the likelihood of basket size 2 for node 1 divided by node 1 probability. And probability
basket size 2 given node 1 total baskets which is the conditional probability that a new
basket size 2 from the arc (A-B) that node 1 participates in given that the total baskets
that node 1 participates in are eleven baskets. Node 2 proportion,total basket size 2 node
2,total basket size >2 node 2,Bayes node 2 And probability basket size 2 given node 2 total
baskets are the same but for the baskets that node 2 participates in for graph(t). Finally,
the arc attributes which are related to the graph, arc proportion which is the proportion
of arc (A-B) with relation to all the arcs in graph(t), total baskets size 2 are the total
baskets of size 2 in graph(t), total baskets size >2 are the total baskets of size more than
two in graph(t) and prop arc size 2 given all baskets which is the probability that arc
(A-B) is of size 2 given the total baskets of graph(t).

Figure 3.6: Probability/Bayes attributes

From a graph-theoretic perspective, we can conceptualize the network of connections
between products in baskets as follows. Let t ∈ T be the set of historical sales periods
(days) and b ∈ B be the set of sold baskets, where Bt is the subset of baskets sold in
period t ∈ T . Let p ∈ P be the set of products, where Pb is the subset of products
included in sold basket b. Accordingly, the graph Gt is defined for a given period t, and
is composed of a set of subgraphs Gt

b per basket b ∈ Bt.
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The network is produced on a daily basis with a rolling time, and the attributes are
determined for each arc and for each forecasting period t (using basket data on periods
t − 1, t − 2, t − 3,...). Let h(t) be the historical horizon used to build the network (i.e.
7, 14, 21, or 28 days prior to period t) related to the estimation at period t (i.e. period
where the forecast is made), composed by [t− 1, ..., t− h], for the collection of baskets
Bh(t). Consequently, Gh(t) defines the network graph associated with the set of periods in
h(t) such that Gh(t) = ∪[t−1,...,t−h]G

t. For a given period t, based on the historical horizon
h(t) data.

3.2.1.5 Machine learning methods for basket prediction

Machine learning methods have become mainstream in forecasting operations and have
been shown to outperform statistical models. This has been demonstrated in recent fore-
casting competitions. In addition, they provide the advantage of adding exogenous vari-
ables Petropoulos et al. (2022). We apply several machine learning models (AutoML) to
the training data. The models that provide the best metrics accuracy after 10-fold cross-
validation are then selected for further simulations and costing analysis. The graph and
arc modeling are made using IGRAPH package in R and the search space for state-of-the-
art machine learning models as well as model accuracy results is made using PYCARET
library in Python which is a low code library that provides state-of-the-art machine learn-
ing and feature engineering capabilities.

The nature of this new approach of arc modeling to forecast produces a vast amount
of data as input observations/records to the model, as an example from our empirical
investigation. An online or a physical store that processes around 600 orders per day,
for a graph of 28 consecutive days, the arcs resulting observations from this graph may
reach 60000 different arcs. As a result, to properly train the machine learning models, an
intermediate process of binning the two targets and then under-sampling the zero sales
instances is recommended to present the models with sufficient samples of different target
frequencies and also reduce the training load/time when doing cross-validation. However,
this intermediate process of binning and downsampling does not take part in arc modeling
or prediction. It is only for providing a moderate informative sample to the prediction
model

While the graph is produced on a sequential daily basis to forecast one week ahead of
baskets and there is a time dependency on the sales volume/frequency of every arc, this
approach is not considered a traditional time series where there is an index time stamp
and a key arc that appears over time, this is due to the fact that most of the arcs do not
exhibit a long term repetitive nature. However, the time stamp is sequential in nature
and every day has the attributes for the sets of arcs that appeared in the preceding 28
days. This characteristic does not allow for relative error measures traditionally used
for forecasting such as MASE, RMSSE and SMAPE. Those metrics need the availability
of the arc key on every week of prediction. In addition, we also investigate adding the
predictions of several models as a form of ensemble along with the arc features to reduce
prediction errors as investigated by Tyralis et al. (2021). While there are many forms of
model ensemble, we only use the weighted average of best-performing models in some of
the simulation runs as later illustrated in empirical investigation.

We present below the significant machine learning models tested via AutoML on the
proposed arc prediction approach, the models that showed low forecasting error and a
good inventory performance while the other AutoML results are shown in Appendix 2:

Random forest is a tree-based ensemble method, it consists of a large number of weak
decision tree learners which are grown in parallel. Each tree takes a subset of features
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and training samples randomly. As a final step, the weak decision learners are aggregated
together to reduce the variance and the bias of the model Rodriguez-Galiano et al. (2015).

Extra trees, extremely randomized trees are an extension of the random forest. It
employs the same logic of random forest and chooses a random set of features t train
every tree, however, it chooses the best available feature and threshold for every split in
the tree Ahmad et al. (2018).

Catboost is one of the flexible tree models that often produce high accuracy results
without the need for tuning, Like Random forest, Catboost combines several week pre-
dictors but unlike random forest, they are not random and are fitted sequentially using
gradient boosting Lainder and Wolfinger (2022)

Linear regression is considered the standard machine learning model where the inde-
pendent variables are fitted linearly against the target variable, while Linear Regression
is not generally the best-performing machine learning model, it is one of the fast and
intuitive models to use that works well with highly correlated data Ciulla and D’Amico
(2019).

XGBoost or extreme gradient boosting system is a widely used machine learning algo-
rithm and is known to outperform in both forecasting and machine learning competitions
on Kaggle and also the M4 forecasting competition. Although, it is similar to the bagged
tree and random forest in the sense that a group of weak classifiers builds a stronger
classifier. It is a sequential iterative approach where each predictor reduces the prior pre-
dictor’s error. The wrong predictors have higher weights while the lighter predictors have
lower weights and they are the ones used after training. The trees are built in parallel
using modern computation systems Chen and Guestrin (2016).

LightGBM is another popular gradient boost decision tree implementation. Unlike
XGBoost, LightGBM is a leaf-based tree-splitting mechanism. LightGBM focuses on
reducing the training sample size using gradient-based one-side sampling (GOSS) which
puts more importance on h samples with the highest residual errors and Exclusive feature
bundling (EFB) which reduces the number of effective features that are mostly mutually
exclusive. Together, they provide a more efficient gradient boosting algorithm on big-sized
data with high feature dimensional Ke et al. (2017).

Finally, as BS2 and BS>2 are continuous target variables and because in this modeling
approach, the majority of arcs do not appear in the forecast week ahead as later presented
in the empirical investigation, we propose a conservation threshold that excludes any
target observation that is below it. And rounds any target threshold that is above it. This
increases the certainty of the prediction and reduces the wasteful advancement of baskets.
As the conservation threshold increases, the number of baskets advanced decreases, and
the certainty increases. And evidently, some models will be better than others in selecting
which baskets to advance.

After discussions with supply chain leaders from the retail organization, we suggest
a complimentary judgmental approach to calibrate the results of the ML models. As an
example, if the model predicts that for a specific arc, 4 sales for a BS2 will occur. A
decision maker can be pessimistic and advance 2-3 packaged baskets, or optimistic and
advance four baskets or more. Such a decision could be based on basket value and the
cost of advancing. We acknowledge that such judgmental interpretations are useful to
calibrate the basket forecasting model over time Alroomi et al. (2022). This is also why a
conservation threshold is proposed to calibrate the outcomes of the models when needed.
Another dimension that is subjective and based on discussion with supply chain leaders is
the forecasting and graph horizon. As previously stated, the forecasting horizon for every
graph of 28 days is one week. We chose the 28-day graph/7-day forecast for two reasons;
first, a longer forecasting horizon gives decision-makers more time to advance baskets to
stores in anticipation of demand which will be difficult for a one-day duration. Second,
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both our preliminary findings and previous research suggest that temporal aggregation
provides more accuracy Kourentzes et al. (2017), Babai et al. (2012), our investigation
shows that this case holds true with the proposed two-step approach.

3.2.2 Prediction-based basket retrieval algorithm
Step 2 of our approach is deciding which arcs to advance for BS2 and BS>2 from step
1 and applying the policy of the T0-BE strategy. An important question is how the
predictions for BS>2 could be advanced to a near store using the arcs. We do not have
this problem for a basket of size 2 as a basket of size 2 has only one arc. While a basket
of size 5 has 9 different arcs and cannot be sent to stores directly in its arc form as every
node in a basket of size 5 is duplicated 4 times in its arc form, hence we propose the
following basket retrieval algorithm that has the two following advantages :

• Remove duplication caused by arc modeling for BS>2. For example, if a basket has
three items A, B, and C, this will consist of arc (A-B),(A-C), (B-C) which means
that every node is repeated twice in all the arcs.

• Retrieve the products from arcs to baskets of different sizes instead of arcs.

Figure 3.7: Basket data representation in a weighted graph/Arc attributes

In Figure 3.7, an illustration of the proposed basket retrieval algorithm will translate
the arcs back into baskets, as noted, every arc in every basket has a frequency of one. As a
result, with every arc that is dispatched to a basket, one of the arc predictions is reduced
by one. This operation is iterated until all of the basket predictions of size >2 become
zero. The algorithm logic is that in order to make a basket, all the products of the basket
must be connected to each other. In other words, any basket should be a clique in its
graph form Eppstein et al. (2010). Our assumption is that the algorithm always chooses
a basket with the maximal clique first. It is also noted that the algorithm is not exact.
As there can be different basket shapes from the same arc set. We provide an example
of two different baskets in section 3.2.3. This is why we recommend advancing baskets of
size >2 not packaged for potential minimal change at the store afterward. The algorithm
starts with initiating an arc counter a basket counter and an empty basket list where
the products in the cliques are stored. Effectively, we are reducing the arc predictions
by distributing them into baskets until the remaining arc predictions become zero. The
starting point would be products with the highest connectivity. i.e highest strength, the
maximal clique this product is a part of will constitute the first basket. The algorithm is
run week by week where the output is the BS>2 forecasts of next week. The algorithm
can be presented as follows :
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Algorithm 1: Prediction-based Basket Retrieval Algorithm
Input: F arcs

ij = [farc
11 , farc

12 , farc
13 , . . . , farc

nj ];
Pi = [p1, p2, p3, . . . , n];
SPi = [sp1, sp2, sp3, sp4, . . . , n] at time t
Output: ListBasketi

= [f basket
1 , f basket

2 , f basket
3 , . . . , f basket

n ] at time t
Cfarc

ij
← 0; CBi

← 0
ListBasketi

← [] Arcs ← ∑ ∑
F arcs

ij

Arrange Pi by decreasing SPi

While Arcs > Cfarc
ij

:
for pi in Pi:

F arcs
ij ← Remove farc

ij = 0
Q← Filter farc

ij if ij in pi

M ← Get Maximal clique from Q where Q has pi

CBi
← CBi

+ 1
Add distinct pi in M to ListBasketi

[CBi]
Cfarc

ij
← Cfarc

ij
+ ∑

farc
ij in M

F arcs
ij ← F arcs

ij − farc
ij in M s.t. farc

ij ≥ 0

3.2.3 Retrieval algorithm variations
We provide an example where the dispatch algorithm does not provide the exact predicted
baskets but is close to the optimal basket shapes. Recall that every order is a graph clique
and the algorithm rotates over every node and gathers the cliques which every node is
a part of forming the baskets and eliminating used arcs in the process. However, the
solution might change based on the starting node, this is why there might be changes in
some of the output baskets. In Figure 3.8, we give an example of this variation. The
table represents the predictions coming from the baskets of more than size 2 model. Per
the algorithm, there are 4 nodes with the same highest strength that are eligible to be
a starting point, nodes A, B, C, and D. Accordingly the algorithm starts with node A
forming the basket cliques around it. Based on that node A has four adjacent nodes,
nodes B, D, C, and F. And since B, D, C, and F are all connected to each other and to
A, then together they are the maximal clique available for node A and the first basket
is formed, basket A, B, C, D, F. Note that the first basket from the algorithm is also
available in the actual baskets. Afterwards, the consumed arcs are eliminated and the
next maximal cliques for node A is also A, B, C,D, and F as each of the corresponding
arcs to these nodes has a prediction of more than one so they are formed again. Note
that the second basket formed by the algorithm is not in the actual baskets. The reason
is that in the actual baskets, Basket A, B, C, D are forming a clique and F is connected
to A and B in basket A, B, F and C, D in basket E, C, D, F which essentially from the
algorithm logic of maximal cliques, the second basket that should be formed is A, B, C,
D, F. However, the algorithm removes accurately all the duplicates of nodes caused by
the arcs even if the shape of the baskets is different.

3.3 Performance Evaluation- Fulfillment and Costing
The proposed approach is evaluated for eight consecutive weeks which is also the out-of-
sample panel that is indicated later in the empirical investigation. As a result, inventory
cost is calculated week by week while salvage, penalty costs, and unpackaging costs are
applied at the end of the eighth week. Knowing that a basket that is advanced and not
sold as expected in the following week has the potential to be sold in the remaining weeks
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Figure 3.8: Retrieval algorithm variations

of the simulation.
The strategy works as follows; as the forecast is a continuous variable it is converted

to a discrete variable based on a conservation threshold, for example, if the threshold is
3.5 and the prediction is 3.51, then the prediction is converted to 4 else if the prediction
is 3.49 it is zero. The conservation threshold value is sequentially tested against inventory
and costing simulation metrics using a grid of 500 values from 0 to 4. As the threshold
increases, a model becomes more conservative and selects fewer arcs to be advanced.

Figure 3.9: Multi-period 8-week simulation

Figure 3.9 illustrates how the inventory simulation procedure works. The inventory
simulation of BS2 is carried out separately from BS>2. In the first week, threshold
calibrated forecasts are advanced to store, and then if there are basket leftovers from a
particular basket that was not sold during the first week, the forecast of the following week
will be offset with leftovers from the previous week. Consequently, some of the baskets
of the following weeks are served from leftovers. This procedure is carried out for the
entire eight-week duration of the simulation. For every week a unit from BS2 or BS>2 is
leftover or unsold at the end of the week, an inventory holding cost is incurred and it is
more expensive than the main fulfillment center.

For BS2, if a basket is advanced and not sold- while it is not always the case, we assume
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that the basket will be sold in later weeks. If it is not sold in a later week, the packaging
is removed and the product is salvaged at the end of the eight weeks. This is because the
basket is already packaged and its options are constrained. while for BS>2, a particular
basket that is not sold is not lost sales due to the flexibility of sending the basket in a
tote not packaged, this improves both the fulfillment rate and customer satisfaction with
BS>2 assemble-to-order strategy at the store. However, even though packaging is more
expensive in-store than in the fulfillment center, having the right basket in a tote would
reduce the picking time by store staff. Accordingly, the fulfillment rate from BS>2 is
the result of the items advanced being sold regardless of the shape and size of baskets
as long as the basket content is within advanced items. Every week of BS>2 forecast is
calibrated with conservation threshold and then baskets are retrieved from arcs forecast
through basket retrieval algorithm. Note that inventory remaining at the end of every
week Lt is ((F tbp − L(t−1)bp)+ + L(t−1)bp −Dtbp)+ where (F tbp − L(t−1)bp)+ is the advanced
quantity of baskets after deducting leftovers and L(t−1)bp is the leftovers of the previous
week.

To be able to compare the viability of our approach, there are two main criteria to
consider, cost and fulfillment KPIs. For fulfillment, the below KPIs are measured against
each model and also compared to determine which model is better for BS2 and BS>2,
noting that the KPIs are measured against the grid of conservation thresholds :

• fulfillment rate the percentage of baskets fulfilled from baskets advanced. Conse-
quently, the leftovers rate is 1- (quantity fulfilled/ quantity advanced)

• elimination rate the percentage of baskets that appeared in historical basket data
and correctly predicted that it will not appear in the future week ahead.

• percentage not advanced the percentage of baskets that are ordered online but not
picked by the model.

For Costing, the models are compared against a baseline which is fulfilling online
orders from the main fulfillment center. We do not assume there is an order lost if the
content of the basket is not advanced. It is assumed that it will arrive within 3-4 days to
the customer as a freight forwarded package through a third-party logistics provider and
is not a lost order. For example, in Ren et al. (2023), they assumed that there would be
emergency shipping in case a basket is not available at a pickup point near the customer.

One important question is how the inventory performance assessment can be measured
for the proposed omnichannel strategy especially since traditional inventory policies are
not compatible with the basket advancements approach. In addition, to compare between
the decision to advance and not to advance is subject to multiple factors with regard to
demand satisfaction, customer satisfaction, and operational cost. In Table 3.1 we present
the implications of the baseline strategy which is shipping exclusively from the fulfillment
center directly to the customer against advancements of BS2 and BS>2 Chopra (2018).
Lead time is within desired targets in the proposed advancement strategies as the baskets
are near the customer from where the basket is ordered. For the baseline, the shipping
cost is high as the shipments are sent in the form of single shipments while in the proposed
strategies shipments are consolidated as traditional physical shipments. As for packaging
cost, both BS2 and baseline are packaged in the fulfillment center reducing packaging
cost and workload on store staff, while BS>2 packaging cost is high as it is made in-store
as a form of assemble-to-order for basket content. However, BS>2 enjoys the highest
level of flexibility and customer satisfaction as the advanced products can be assembled
in many basket sizes in case of leftovers. Note that in BS>2, the bi-product rule is
not strict or constrained by packaging which gives the opportunity to sell different other
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combinations as long as items are available from baskets advanced or leftovers. The selling
price and cost per unit are available and extracted from the data set used in this work. All
logistics cost such as packaging cost in the fulfillment center, packaging cost in the store,
shipping single baskets, shipping consolidated baskets, salvage, and package removal cost
are calculated on average per unit basis based on costs/flows of this region at the year of
the dataset. Upon discussion with supply chain leaders in the company, what is the most
likely scenario for a basket that is advanced before the customer makes an order and not
sold at the week of the forecast? They advised that a basket that is not sold would be
un-packaged, displayed in the store, sold as BM, and go through the normal markdown
cycle if necessary. In most cases, the content of the basket would be on 20 % promotional
discount on the selling price during promotional days and events. We also conclude that
proceeding with the basket advancement options would lead to a 4 % increase in sales on
average due to the lead time reduction of 1 to 3 days on average Fisher et al. (2019). As
a result, to be able to capture this revenue increase in the model, we assume there is a 4
% increase in revenue as a premium paid by the customer for any basket fulfilled through
anticipatory advancement.

Strategies
Not Advanced
(Baseline)

Advanced BS2 Advanced BS>2

Lead time 2-4 days 2 hours to 24
hours

2 hours to 24
hours

Shipping Cost/unit High (1.63 Euro ) low (0.14 Euro ) low (0.14 Euro )
Packaging location Fulfillment centre Fulfillment centre In store
Packaging cost/unit Low (0.3 Euro ) Low (0.3 Euro ) High(1.3 Euro )

Unpackaging cost/unit Not applicable 0.7 Euro Not applicable
Inventory holding cost per week/unit 1.2 Euro 2 Euro 2 Euro

Salvage Not applicable 80 % of selling
price

80 % of selling
price

Customer satisfaction Low High High
Percentage of Increase in sales 0 (4 % extra Rev-

enue )
(4% extra Revenue
)

Table 3.1: Comparison between No advancement(baseline) and baskets advancement

Table 3.2 below shows the notation used for the cost model for the baseline scenario,
BS2 and BS>2.
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Table 3.2: Notation

Sets

P Set of products indexed by p
T Set of weeks periods indexed by t with T t+1 being the week after simulation weeks
B Set of baskets indexed by b

Parameters

Cpb Unit cost of product p in basket b

Cpb
ps/Cpb

pf Unit packing cost of product p in-store/ fulfillment centre

Ctpb
hs /Ctpb

hf Unit holding cost of product p in-store/ fulfillment centre in advanced basket b at week t

Ctpb
ts Unit transportation cost of product p in basket b at time t directly to customer

Ctpb
tc Unit transportation cost of product p in basket b at time t from fulfillment centre consolidated to store

Ctpb
us unpacking cost of product p in basket b at T t+1 at store

Rtpb
c Retail price of product p in basket b

Spb Salvage value from product p in basket b at T t+1

Dtb Online demand at time t for basket b

Ltbp Leftovers of basket b at end of week t

L(T +1)bp Leftovers of basket b at end of week t

Bbp Unit penalty cost of product p in advanced basket b

F tb
z′ forecast of basket b at time t

π profit function for BS2,BS>2 and baseline.

For BS2, the equation can be presented in equation 3.1:

π(BS2) =
∑
bp

∑
t

[1.04Rpbmin(Dtb
z′ , (F tbp − L(t−1)bp)+ + L(t−1)bp))− (3.1)

(F tbp − L(t−1)bp)+Cpb− (3.2)
(F tbp − L(t−1)bp)+(Ctpb

tc + Cpb
pf )− (3.3)

((F tbp − L(t−1)bp)+ + L(t−1)bp −Dtbp)+Ctpb
hs ]− (3.4)

L(T +1)bp(Bbp + Ctpb
us ) + L(T +1)bpSpb (3.5)

while for BS>2, there are consolidated shipments, packaging in store after the cus-
tomer makes the order, and no unpacking cost, it can be presented in equation 3.6 as
follows:

π(BS > 2) =
∑
bp

∑
t

[1.04Rpbmin(Dtb
z′ , (F tbp − L(t−1)bp)+ + L(t−1)bp))− (3.6)

(F tbp − L(t−1)bp)+Cpb− (3.7)
(F tbp − L(t−1)bp)+(Ctpb

tc + Cpb
ps)− (3.8)

((F tbp − L(t−1)bp)+ + L(t−1)bp −Dtbp)+Ctpb
hs ]− (3.9)

L(T +1)bpBbp + L(T +1)bpSpb (3.10)

Finally, in the baseline scenario we assume the profit of baskets advanced for BS2 and
BS2 had they remained in the fulfillment center and not advanced, they would incur the
holding cost of the fulfillment center, transport cost for shipping directly to the customer,
and packaging cost of the fulfillment center. Note that there is no penalty, unpacking cost
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or salvage or remaining baskets as we assume they can be sold in other regions and have
a higher opportunity to be sold in other regions at full price :

π(Baseline) =
∑
bp

∑
t

[Rpbmin(Dtb
z′ , (F tbp − L(t−1)bp)+ + L(t−1)bp))− (3.11)

(F tbp − L(t−1)bp)+Cpb− (3.12)
(F tbp − L(t−1)bp)+(Ctpb

ts + Cpb
pf )− (3.13)

((F tbp − L(t−1)bp)+ + L(t−1)bp −Dtbp)+Ctpb
hf ]+ (3.14)

L(T +1)bpRpb (3.15)

3.4 Empirical investigation

3.4.1 Supply chain and data description
The basket data in focus is the online orders of one city in France for a major cosmetics
leader. The data contains the transaction data of baskets including the date of purchase,
order number, and list of items inside the order (Basket). On average, 600 baskets are
purchased per day with different size variations. The data length is one year from January
1 to December 31, 2018. To understand the nature of basket sizes purchased, we analyzed
the different basket sizes as shown in Figure 3.10. The results motivate our approach as
baskets of size 2 are 29 % of the total baskets ordered in the city and baskets of more
than size 2 are 37 % of the baskets. Furthermore, this result confirms the tendency of
customers to buy more than one item in a basket as baskets of size 1 are only 35 % of
the baskets. Also, we can note from the distribution of different size lengths that the
average basket size is 2.55 items in a basket. This further strengthens the need to study
relational features through graphical representations. For the one-year duration data set,
from the first of January to 30 of October is used for initial model training (Panel A),
from 1 November 31 of December ( Panel B) is used for two purposes, it is used to test
the different models that are using the three sets of attributes. In addition, as every
forecasting day represents a week ahead forecast, eight days are extracted from Panel
B, specifically the days at the beginning of each week to represent the eight weeks of
simulation from 1 November to 31 December. Panel A is under-sampled while panel B is
unbalanced, not under-sampled, and not seen by any of the models before forecast tasting
or inventory/costing simulation.

3.4.2 Arc modeling and feature analysis
Modeling baskets data as arcs results in bigger data size than the original data. As an
example, the original online data of the retailer for this city is 540000 rows of tabular
transactions data resulting in 180000 million rows of arc-modeled data. Recall that every
day of forecast represents the arc that occurred in the previous 28 days to forecast what
will happen in the next 7 days. And most of the arcs that appeared in history will not
appear in the forecast horizon. From the reasons that lead to this observation possible
that many of the baskets bought by customers are uncorrelated and triggered by impulsive
complimentary buying, the availability of many substitutes for a customer to choose from
Omar et al. (2022). Also, in retail, the turnaround of merchandise is higher than in other
industries and shows a high rate of seasonality especially for cosmetics retailers. Finally,
the items previously bought can be out of stock and cannot be bought in the forecast
horizon. In Figure 3.11 we show that on an average day of forecast, 95 % of historical arcs
are likely not to be bought again in the following seven days while only 5 % of the arcs will
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Figure 3.10: Basket data size frequencies and histogram

be bought one time or more in a basket of size 2 or a basket of size more than 2. This is
why the down-sampling prepossessing step is important before applying cross-validation
to the training data. In addition, the nominated forecasting model should be good at
eliminating the no sales basket future occurrences as well as detecting the fewer basket
sales occurrences.

Figure 3.11: Future occurrences of historical exact baskets

Another important analysis is the correlation analysis between the proposed attributes
and the two targets baskets of size 2 and baskets of size more than 2. One important pre-
possessing step is improving the correlation between the features and the target variables
either by doing dimension reduction or adding synthetic features such as polynomials for
independent variables and/or feature interactions. These steps improve the information
gain and accuracy of the models. In Figure 3.12, it is noted that the target basket of size
2 has significant positive correlations with arc frequency, historical baskets of size 2, his-
torical baskets of size 3, arc probability, and probability basket size 2 given total baskets.
It has mild correlations with the other features and a notable negative correlation with
node1 transitivity and node2 transitivity. While the target basket of size more than 2 has
stronger correlations with historical baskets of more than size 2 compared to historical
baskets of size 2, the negative probability with the transitivity of the nodes and strong
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positive probability with frequency, arc probability, and probability basket size 2 given
total baskets. Also, it can be noted there are implicit correlations that indirectly corre-
late with the targets. For instance, Bayes node 1 and Bayes node 2 have strong positive
correlations with historical baskets of size 2 and strong negative correlations with other
historical basket sizes even though the Bayesian features have weak correlations with the
targets directly. The same applies to the negative correlations between transitivity from
one side and degree, strength, and closeness, even though that degree, strength, and close-
ness have weak direct correlations with the targets directly. This analysis clearly shows
the impact of proposed features on future basket predictions. While a number of features
more than others, this will be further strengthened by applying polynomial transforma-
tion of degree 2 on the features and feature interaction as shown in the section of model
analysis.

Figure 3.12: Correlation between attributes,BS2 and BS>2

3.4.2.1 Models predictive performance against conservation thresholds

Panel A is used for training all the models in PYCARET, other than model tuning, we
have found no significant difference in doing prepossessing steps such as normalization
or extraction of polynomial/ interactive features. we present all test results on Panel B
from the AUTOML procedure in PYCARET which depends on the sci-kit-learn library
for machine learning in Python. The results show that LightGBM achieves the lowest
MAE, MSE and RMSE, and RMSLE together with XGBoost, Linear Regression, and
Catboost Regressor they are vastly better than the other models. The same process is
applied to baskets of size >2 where the data for the training horizon is under-sampled
for the data of the training horizon. After the models are fitted on the training data, the
results on unseen unbalanced future data are presented in Table 3.3. The results show
that XGBoost and LightGBM are providing the best results. LightGBM is the lowest
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error in terms of MAE and XGBoost achieves the lowest error in terms of MSE, RMSE,
and RMSLE.

BS2 BS>2
Model MAE MSE RMSE RMSLE MAE MSE RMSE RMSLE
Extra Trees Re-
gressor

0.0472 0.0166 0.129 0.096 0.3268 0.3731 0.6108 0.327

Random Forest
Regressor

0.0545 0.0196 0.1399 0.1056 0.3546 0.4287 0.6547 0.3473

CatBoost Regres-
sor

0.0162 0.00444 0.0666 0.1135 0.0882 0.0559 0.2248 0.1375

Light Gradient
Boosting Machine

0.0115 0.0040 0.0630 0.0404 0.0750 0.0518 0.2776 0.1281

Extreme Gradi-
ent Boosting

0.0158 0.0051 0.07171 0.047 0.0876 0.0398 0.1195 0.1262

Linear Regression 0.0434 0.0191 0.1046 0.0760 0.2653 0.24479 0.4979 0.2604

Table 3.3: ML Models performance on Panel B

In Table 4.9, We present 10 samples for observations from Panel B, 5 samples where
there are sales on arcs of both targets and 5 samples where there were no sales on arcs
of both targets for the sake of comparison between target and predictions. The first 5
arcs have sales on both targets, the prediction is approaching 1 when the sales are 1.
However, if this rule is applied, Then sample 5 for the target basket of size 2 does not
follow the criteria as it is reaching 0. Also, it is noted when the arc sales are more than
1 as in sample 3 for example, both predictions capture this up trend in sales. The last
5 samples are the samples where there is no sales on both targets, it can be noted that
all the predictions are approaching 0. This concurs with our findings that the proposed
attributes are important for accurate predictions. However, as noted in Figure 3.11,
there will be a lot of bi-product combinations that will have no sales occurrences in
the forecasting week So elimination of non-reoccurring baskets is as equally important as
detecting reoccurring baskets. With this observation, we apply the conservation threshold
on each model to reduce the number of arcs that are predicted as having sales. in Figure
3.13, the effect of the conservation threshold is illustrated against arc fulfillment rate, the
number of resulting arcs from the approach that is requested in the week of the forecast,
the number of arcs that were requested but not picked by the models and arc leftovers
when advanced and not requested by customers. For BS2, every arc is effectively a basket
while for BS>2, the conservation threshold is applied before the implementation of the
basket retrieval algorithm. It is shown that as the conservation threshold increases, the
number of arcs recommended decreases leading to a reduction of inventory leftovers but
also a reduction of arcs advanced and subsequently increase in fulfillment rate. As the
conservation threshold decreases, the number of arcs advanced increases. With that note,
LightGBM is performing better than other models for BS2 across the four measures while
XGBOOST is significantly worse even though XGBOOST is the second best model in
terms of accuracy measures for BS2. For BS>2, XGBOOST is performing much better
than LightGBM even though LightGBM is the second-best model in accuracy measures
for BS>2. It is also noted that simple linear regression is performing consistently well on
BS2 and BS>2. Accordingly, there is no evidence that a low-error ML model based on
traditional accuracy metrics would result in an effective advancement strategy. Hence, in
the following section, we rely on fulfillment KPIs and profit models to determine model
efficacy.
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Figure 3.13: Conservation threshold effect on prediction

arc product 1 product2 target bas-
ket size 2

prediction
basket size
2

target bas-
ket size >2

prediction
basket size
>2

1 54995 354410 1 0.93 1 1.46
2 67221 285138 1 0.62 2 1.04
3 125586 263476 4 3.27 4 5.21
4 125586 420731 1 1.15 3 2.36
5 203564 321594 1 0.14 1 0.62
6 1 262101 0 0.02 0 0.3
7 1 292884 0 0.02 0 0.19
8 1 397873 0 0.02 0 0.12
9 1 435785 0 0.01 0 0.19
10 1 442550 0 0.01 0 0.13

Table 3.4: Forecasting samples from test set

3.4.2.2 Fulfillment KPIs and Costing results

As the ML models are trained and tested, the results of the simulation of 8 consecutive
weeks are presented below, we only outline some of the significant models and discuss the
output of these models. The simulation was made over the grid of different thresholds
from 1 to 4 with 5000 runs. Note that the forecasts from the second to the eighth week
are adjusted with remaining basket inventories from the previous weeks. The results in
Table 3.5 show the basket strategy results for BS2. The conclusion from the table shows
there are trade-offs that should be addressed by decision-makers for example the Ensemble
model that uses a weighted average of three models at a conservation threshold of 2.79
achieves a 100 % fulfillment rate which means that all advanced baskets are sold through
the eight weeks, yet only 17 baskets were advanced from 2997 baskets requested during
the eight weeks. This model is suitable for a conservative high-basket value retail supply
chain. While the LightGBM of threshold 0.1 achieves a much more fulfillment quantity
of up to 29 % of baskets ordered. However with much more leftovers at the end of the
eight-week period. A retailer can afford to keep this much of leftovers if the basket value
is low, it is a fast-moving item or competitive advantage and customer satisfaction is
the deciding criterion. A balanced model between the high fulfillment rate/low fulfilled
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quantity and the low fulfillment rate/high fulfilled quantity is for example the Linear
Regression model of threshold 1. Where the fulfillment rate is up to 43 % and the
fulfilled quantity is 310 baskets or the Ensemble model of conservation threshold of 2.51.
We can note that there is a trade-off between fulfilled quantity and the fulfillment rate.
As for costing results based on the proposed model, the first six models which exhibit
high advanced quantities are less in terms of profit than the baseline scenario, however,
there is still realized profit despite high advanced quantities as shown in Random Forest,
Catboost, and Linear Regression. This concurs with our conclusion that these models
are suitable when customer satisfaction is the deciding criterion. As The models become
more conservative, the BS2 strategy becomes more profitable than the baseline scenario
as there are fewer leftovers, inventory holding costs, and a reduction in selling price than
the first six models.

Model threshold Leftovers Advanced Fulfilled F.R P.NA Baseline BS2
Light GBM 0.1 3133 4001 868 0.22 0.71 23010.92 -17048.32
Random Forest 0.9 1101 1447 346 0.24 0.88 15742.39 707.85
Extra Trees 0.7 1161 1606 445 0.28 0.85 14610.32 -700.24
Catboost 1.1 311 434 123 0.28 0.96 5500.02 1355.8
Linear Regression 1.16 162 283 121 0.43 0.96 3548 2136.89
Linear Regression 1 181 672 310 0.46 0.9 8114.75 5171.77
Ensemble(LGBM-
RF-XGB)

2.51 12 47 35 0.74 0.99 989.53 999.69

Light GBM 2.38 5 20 15 0.75 0.99 518.87 526.78
Ensemble(LGBM-
RF-XGB)

2.55 7 29 22 0.76 0.99 765.4 778.8

Light GBM 2.42 5 24 19 0.79 0.99 628.53 656.15
Ensemble(LGBM-
RF-XGB)

2.79 0 17 17 1 0.99 235.27 303.99

Table 3.5: Fulfillment/Costing -BS2

As for BS>2, after the application of the basket retrieval algorithm, and as the baskets
are not packaged and a basket can contribute to the sales of another basket, the results
are product-based, not basket-based. In general, the fulfilled baskets are much higher in
BS>2 than BS2 for two main reasons; first, they have higher demand as shown in Figure 9,
and second, the assemble to order in store technique has led to much more flexibility when
customizing the basket for a customer’s order. In Table 3.6, there are strict models that
achieve a 100 % fulfillment rate, for example, CatBoost with a threshold of 2.6 results
in having all of the baskets advanced effectively to be fulfilled in purchased baskets.
However, the percentage of baskets advanced is 99 %. This model would work well for a
decision-maker who does not want any leftovers from the basket advancement operations.
Note that with all the models there is no loss incurred in costing even with the model
of the highest leftovers such as XGboost of threshold 1.21, almost half of the advanced
quantities are sold during the eight-week period, and the other half are sold after the
season. Starting from a fulfillment rate of 91 %, the BS>2 models start to become more
profitable than the baseline scenario. One consideration here for the decision maker is
the inventory capacity of the store that might decide on which model to choose. We can
deduce as well that simple linear regression is providing a balanced advancement approach
results for BS2 and BS>2 which is in line with our conclusion in the accuracy measure
section.

89



model threshold advanced fulfilled leftovers F.R P.NA baseline BS>2
XGBoost 1.21 164113 85108 79005 0.52 0.13 773885.81 374465.3
CatBoost 0.88 69502 52578 16924 0.76 0.46 322531.12 294753.87

Linear Regression 0.63 22306 16887 5419 0.76 0.83 72420.85 69494.36
Linear Regression 1.11 10626 9696 930 0.91 0.9 19783.23 25227.44
Linear Regression 1.68 8087 7537 550 0.93 0.92 9790.94 14033.24

Extra Tree Regrssion 2 3339 3151 188 0.94 0.97 7209.55 9066.13
Linear Regression 2.93 5874 5586 288 0.95 0.94 3172.69 6207.7

LightGBM 1.91 4150 3987 163 0.96 0.96 6022.73 8707.89
LightGBM 2.04 3117 3018 99 0.97 0.97 4183.24 6337.35
CatBoost 2.56 774 774 0 1 0.99 828.29 1416.56

Table 3.6: Fulfillment/Costing -BS2

3.5 Conclusion
Anticipatory shipping can result in significant cost savings, more satisfied customers, an
increase in sales, and a competitive edge for retailers. Yet, it is challenging to have the
perfect order available to a customer beforehand as the baskets ordered by customers
enjoy high variety in terms of quantity and diversity. In addition, assortment in certain
retail industries enjoys high turnovers with some of the product offerings lasting for a
short period of time which presents a further challenge in anticipating the content of
future baskets. In this research, we attempted to tackle this challenge by studying the
associations between products separately and collectively by means of arc analysis and
attribute extraction using the rich literature on graph theory. Through the nodes to the
arc attributes and the arc attributes as these features concern, every two specific products
and their sales in a specific historical time period features such as degree, strength, edge
betweenness, and frequency of the arc. And collectively through arc probability and Bayes
attributes which look at every two products in relation to the whole graph or the whole
baskets ordered during a specific time horizon. This approach is flexible to adjust the
graph span based on industry and what works for each assortment seasonal life span. We
have shown through correlation analysis the impact of these proposed attributes on the
prediction of an arc that will come in a basket of size 2 and a basket of more than size
2. However, due to the different nature of arcs in baskets of size more than 2, where a
product contributes as a node for more than one arc, the integer prediction forecast has
to go to an additional basket retrieval algorithm to reshape the arcs into baskets and
remove redundancy because of product repetition. While a basket of size 2 has only one
arc and does not need redundancy removal or basket reshaping. Also, forecasting the
arcs of baskets of size 2 separately provides more certainty on the content of the basket,
and further action of packaging and fulfillment could be done at the fulfillment center
where economies of scale is achieved. As for baskets of size more than 2, advancing the
baskets not packaged and as predicted modular bundles mitigates the uncertainty, reduces
the transportation cost, and offers more flexibility in satisfying a customer demand from
advanced modular baskets. The shortcomings of the approach are the amount of leftovers
that could result from this strategy, however, we have shown that specific models can have
up to 100 % fulfillment of baskets advanced which is a good strategy if the basket is of high
value. Or retailers can choose more forthcoming models that advance More baskets with
higher left-overs quantity. This is why we recommend judgmental complimentary decision-
making post-model selection. The forecasting accuracy results signified the accuracy
of LightGBM models as the best model for Baskets of size 2 while XGBoost provides
better accuracy for baskets of size more than 2. Upon applying simulation of baskets
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across the forecasting models, however, more accurate models do not correspond to better
advancement strategies. For example, in baskets of size 2 tuned LightGBM leads to the
highest fulfillment rate but the least number of baskets advancement compared to a less
accurate model like linear regression where more advanced quantities are fulfilled with
higher leftovers. Also, for baskets of size more than 2, XGBoost is considered the best-
performing model, yet it has the highest leftovers during the eight-week duration amongst
all the simulated models and as well the highest advanced arc quantities.
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Chapter 4

Basket data impact on forecasting
aggregation and inventory fulfillment

4.1 Introduction

4.1.1 General introduction and motivation
Supply chain operations in omnichannel retail are characterized by product hierarchies.
The natural hierarchies can be structural, for example, when an omnichannel retailer
operates in different segments such as appliances, decorations, and furniture. It can
be geographically based on regions of sales or it can be cross-sectional such as section,
product family, subfamily, and brand. As for the temporal hierarchy, naturally, a daily
time series can be summed up into weekly, monthly, bi-monthly, quarterly, or annually
or divided from aggregated temporal series to disaggregated temporal series. The upper
levels tend to have lower variability than the lower dis-aggregated levels but lack details.
A hierarchical forecast is considered coherent if the sum lower levels forecast is equal to
the forecast of the upper levels Babai et al. (2022).

Hierarchical forecasting in supply chain management serves a variety of purposes in
planning inventory, capacity planning, buying products/ raw materials, and budgeting.
It complements and enforces decisions on multiple organizational levels. In the case of an
omnichannel retailer, the lower levels of the forecasting hierarchy enforce the inventory
planning inside the stores while a level up to the bottom level derives regional planning of
inventory and distribution of products to these regions passing through country planning
and reaching top-level organizational forecasting for budgeting and buying purposes. As
a consequence, time-series hierarchies have natural hierarchical structures and temporal
hierarchical structures Syntetos et al. (2016).

Furthermore, retail sales show the complementarity of specific products being bought
together, in addition, customers tend to buy multiple-item baskets rather than one item
per basket Omar et al. (2022). Our collaboration with an international cosmetics multi-
channel retailer showed that a customer on average buys 2.5 items per order and that 65
% of baskets are baskets of items more than size 1. Moreover, When a customer chooses
to buy a product, most likely the product has alternatives. The more alternatives during
the recent historical period, the less the chance that this product will be bought. The
attribute to measure this behavior is substitutability which is derived from basket data,
as for complementarity, some products are usually bought with other products from the
same category for example socks of different brands. We consider those attributes within
category attributes. As for cross-category attributes, we use degree which is the number
of distinct connections with other products within orders, and strength which is the sum
of these connections per product Omar et al. (2022).
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These findings raise questions on how can attributes from basket data improves the
performance of forecasting methods on different structural hierarchical levels, especially
since the basket attributes differ from a store level to a region level to an aggregate level.

4.1.2 Business context
Our research is with the same global omnichannel cosmetics retailer. They have large
warehouses for brick-and-mortar (BM) products and international fulfillment centers for
online channels. The retailer requires inventory and transportation management for every
warehouse/fulfillment center/ store they operate. This mandates forecasting and planning
for products from a short operational period for inventory, transportation, and promo-
tion and a longer strategic period for strategic buying, resource availing, and allocation.
For that purpose, the retailer applies a temporal forecasting hierarchy that is generated
quarterly and divided into monthly, weekly, and daily. Furthermore, the forecast can
be grouped by geographical dimension by store, warehouse, and central. Such flexibil-
ity is required by multinational retailers almost on a daily basis or planning. As such,
an important question for such temporal/hierarchical planning is at which geographi-
cal level the main forecast should be applied with which forecasting model, and which
aggregation/dis-aggregation approach should be followed. Note that retailers have an
abundance of information on the association between products and that products influ-
ence each other positively by complimentary buying or negatively by substituting each
other. As a result, in this project, we aim to test this hypothesis by incorporating basket
data attributes to various hierarchical approaches and report their influence on both fore-
casting accuracy and inventory performance. In our research, we focus only on one city
from this global supply chain where we test the impact of forecasting on the local ware-
house (regional level) of this city and three stores (store level). Four different models are
tested. AutoARIMA model where the orders and seasonal orders are automatically opti-
mized (ARIMA), ARIMAX model where the basket data is used as regressors (ARIMA
BASKET). A LightGBM model (LGBM) where only the lag of sales is used as regressor
(LGBM-Lag), and finally, a LightGBM model where basket data attributes and the lag
of sales are used (LGBM-BASKET).

4.1.3 Contributions and organization of the chapter
In this research work, we build on our previous work on modeling historical sales as a
graph where products are the nodes and links between products are the baskets, we use
the graph to extract degree, strength, complementarity, and substitutability from each
product and use them as exogenous variables for forecasting each product at the store
level and regional level. At the regional level, the sales of every product at the store level
are aggregated as well as the graph for baskets. In other words, the entire basket sales
of the region for a given time period is considered as one graph. Hence, this chapter
contributes to the literature in two ways:
1. We assess the impact of the aforementioned basket sales attributes on the forecast
accuracy of hierarchical aggregation approaches. To the best of our knowledge, none of
the earlier research works has considered basket data in hierarchical forecasting
2. We are among the first to assess the inventory performance of hierarchical forecasting
methods. We analyze the impact of hierarchical forecasting methods on the service level,
safety stock, and lost sales using real data from the cosmetics retailer considered in the
previous chapters.
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The remainder of the chapter is organized as follows. Section 2 is dedicated to a review
of the hierarchical forecasting approaches. In Section 3, we present our empirical analysis
for forecast accuracy and inventory performance of the considered hierarchical forecasting
approaches.

4.2 Hierarchical forecasting approaches
Demand forecasts are essential for planning in supply chain management. A considerable
part of forecasting literature has been focused on natural level forecasts or single level
forecasts Rostami-Tabar et al. (2015). Natural level forecasts do not always provide the
best results as they do not take all information from lower levels or higher levels. In the
framework proposed by Babai et al. (2022), they suggested that the level of granularity
is determined by the decision impact and level of supply chain organization, the higher
the level of the decision, the lower the granularity on both the natural and the temporal
structure. In general, there has been an extensive body of literature on aggregation
of forecasting levels since the 1950s mainly on the econometrics literature. There are
several hierarchical forecasting approaches that have been proposed within the supply
chain forecasting literature. Among these approaches, are the top-down (TD), the bottom-
up (BU), the middle-out (MO), and the combination (COMB) approach.

4.2.1 Approaches’ definitions
• Bottom-Up approach

In the BU forecasting approach, the lower levels are summed to make the aggregated
levels thus constructing coherent forecasts. It can be illustrated as an S matrix that
can show how the higher level of the hierarchical structure is calculated as:

yh,t = S.yb,t (4.1)

Where yb,t is the bottom-level forecasts and yh,t is the vector of hierarchical forecasts
in the hierarchical structure, S is the matrix that includes the ownership of the
lower level to the higher level, and in this approach, the base forecast is the lower
level forecast which amongst the BU, TD, and MO is considered the approach
with the highest cost, yet it is the approach that captures the most variability and
characteristics From the lowest level.

• Top-Down approach
In the top-down approach, the upper-level forecast is disaggregated into the lower
levels using calculated proportions. This will generate coherent forecasts in the hi-
erarchy. There are many methods discussed in the literature for dis-aggregation,
they are methods that use historical periods of the series and there are methods
that use the forecasting proportions, some of the disaggregation methods use aver-
ages, lagged averages, and lagged proportions and combined proportions Mircetic
et al. (2022). The most two common top-down approaches are average historical
proportions and proportions of the historical averages Gross and Sohl (1990). In
average historical proportions, the proportions can be denoted as :

pj = 1
T

T∑
t=1

yj,t

yt

(4.2)
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where pj is the proportion of the product and yj,t is the forecast of product j at
time t and yj,t is the base forecast of the upper level. While the proportions of the
historical averages are calculated by :

pj =
∑T

i=1
yj,t

T∑T
i=1

yt

T

(4.3)

The forecasting proportion methods have the advantage of using forward-looking
proportions as they change over time. In addition, top-down approaches based
on historical averages tend to produce less accurate forecasts than bottom-up ap-
proaches Athanasopoulos et al. (2009). An h-step forecast is calculated at the bot-
tom level for each series. These h-step forecasts are aggregated and the proportion
for each series is calculated as the ratio of the h-step forecast of the series to the
aggregated forecast. It can be summarized as :

pj =
K−1∏
l=0

yl
j,h

Sl
j,h

(4.4)

where yl
j,h is the h-step initial forecast of the series that corresponds to the node

which is l levels above node j and yl
j,h is the sum of h-step initial forecasts.

• Middle-Out approach
The middle-out approach is a mix of the BU approach and the TD approach. The
approach is only applicable when the structure has more than two levels as is the case
of this work (product-store/product-region-total) or more levels are also possible.
In this case, a middle level is chosen and the base forecast would be the level chosen,
BU is implemented at the upper levels while TD is implemented at the lower levels
Hyndman and Athanasopoulos (2018).

• Combination approach
The combination approach is the average combination of several approaches of the
same model as an approach of ensemble. There is also the weighted combination
approach where models are combined by a specified weight. The level of choice
of the combination can be the middle level, bottom level, and top level. After
the combination of levels of choice is selected, the forecast is either aggregated to
upper levels or disaggregated to lower levels to generate coherent forecasts. Another
weighted average approach is that the weight of each variation will be determined
by the inverse of the error of each forecasting variation Mircetic et al. (2022), Ballou
(2004). The weight of each product can be calculated as

yCOMBw,h =
M∑

m=1
Wm.yB,hm (4.5)

4.2.2 Findings on the approaches’ performance
Having accurate forecasts is particularly important in supply chain operational and strate-
gic planning. In strategic planning, forecasts generate budgeting and growth projections
which in turn translate to material requirements, new contracts with suppliers and man-
power,etc. While in operational planning, forecasts of demand lead to replenishment
management, transport planning, and production planning. The decision on which fore-
cast to select is based on the accuracy of the forecast model. In fact,having high forecast
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errors can lead to higher /lower inventory, high transportation costs, higher wastes, and
unnecessary promotions Chopra and Meindl (2016). As a result, hierarchical forecasting
needs to be accurate on all levels not only the lower level or the higher level Fliedner
(1999).

Researchers have a majority that BU forecasts lead to better overall performance com-
pared to TD and MO. However, there is merit in using different approaches as evidenced
by Hyndman et al. (2011). For instance, Vogel (2013) argued that lower-level data is
more subject to errors and would lead to higher errors on higher levels. In addition,
the cost of implementing a TD is significantly lower than BU or COMB approach and
works well when the demand at the lower levels is stable Weatherford et al. (2001). As
for BU proponents, they suggest that when there is a distinction in lower-level demand
variability, the BU approach is more accurate. Rostami-Tabar et al. (2015) made an an-
alytical investigation to identify when BU is superior to TD and vice versa. They used
real demand data from a European flagship store. They concluded that when the moving
average of the lower levels is identical, there is no significant difference between TD and
BU at the upper level. While the TD performs better when the moving average of lower
level products is of apposing sign amongst each other and they exhibit a high correlation
among each other. While if the correlation is negative or low positive, BU performs bet-
ter. In general, the BU performance becomes superior when the cross-correlation on the
lower level decreases.

When forecasting demand for hierarchical structures, practitioners should determine
first the forecasting model to use, second the structure of the hierarchy how it should be
if grouped, hierarchical or temporal structure, this is based on the needs of the decision-
makers and the level of the decision. Finally, the approach to be used should provide
the most accurate forecasting Mircetic et al. (2022). It is considered that hierarchical
forecasting is more challenging than direct traditional forecasting in general because they
must be coherent. For example, in temporal forecasting, the higher monthly level must
correspond to the combined values of the lower weekly levels and consequently, the weekly
must correspond to the daily levels. Same for hierarchical cross-sectional forecasting, the
forecast of one product in a region must correspond to the forecast of the same product
in every store. In this work, we investigate the impact of utilizing basket attributes on a
real data set on accuracy and inventory performance. We note that the granularity of the
data is daily. The structure of the hierarchy is considered to be a grouped hierarchical
structure (Store-Product),(Region-Product) and the top level. The bottom level consists
of the product sales in each store and this level will be used later on for inventory re-
plenishment inside the stores. there are three stores in the structure (level 0), the upper
level is the total sales of a product in the region, this level is used to plan for stocks of
the chapter in the regional warehouse and the frequent regional transportation from the
main fulfillment center. While the top-level forecast is the aggregate daily sales in the
region. The comparison of performance between the different forecasting approaches in
this research will be between BU, MO, TD (proportions of the historical averages), and
COMB. The models used in the comparison are ARIMA, ARIMAX with basket attributes
(ARIMA BASKET), Light gradient boosting model with a lag of sales (LGBM), and with
a lag of sales and basket attributes (LGBM BASKET).

4.3 Considered basket data attributes and methods

4.3.1 Basket data attributes
To illustrate basket data attributes, we refer to Figure 3.10 from chapter 2 which illustrates
a sample network of products where basket data is calculated. In this work, four basket
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attributes are identified, based on the shopping basket data from sales history at the store
level: (1) Degree of the product, the number of connections (or arrows) with the other
products of the multi-category graph; (2) Strength of the product, the total frequency
with all connected products; (3) Substitutability of the product, the chance to be sold as a
substitute among all the products within its substitutability set; (4) Complementarity of
the product, the proportion between the number of connections within the substitutability
set and the number of connections with the other products of the assortment (i.e., Degree).
The four attributes are used as regressors with historical sales within a forecasting model.
This forecasting model can be any model that accepts regressors.

As the basket data is directly related to basket information, it can also be extracted
from higher levels, not only the store level. Practitioners have two choices when calculating
higher-level basket data regressors. Either by aggregating the regressor values of the
bottom level to form the higher level or by constructing graphs directly on higher levels
to extract basket attributes. For example, at the regional level, the whole baskets in the
region can be used to construct the graph, where basket attributes are extracted and the
same for higher levels as the country. In Figure 4.1, we present the hierarchy of the work.
Note that this is a grouped hierarchical structure as level 1 (Region/Product). It is still
segregated by the product contrary to traditional hierarchy where the aggregate sales of
the region per time period is constructed. The reason is that operationally the forecast
of every product by region is required for inventory and transportation planning to this
region. As shown, the structure is only a part of the hierarchy, for instance, the total sales
of the region by product are further processed at higher levels from regional fulfillment
centers to manufacturing facilities and/or suppliers.

Figure 4.1: Hierarchical grouped structure

4.3.2 Forecasting models
To be able to assess the impact of basket data on hierarchical forecasting, four differ-
ent models are tested. AutoARIMA model, where the orders and seasonal orders are
automatically optimized (ARIMA), ARIMAX model, where the basket data is used as
regressors (ARIMA BASKET). A LightGBM model, where only lag of sales is used as
regressor (LGBM), and finally, a LightGBM model, where basket data attributes and the
lag of sales are used (LGBM-BASKET).

At any time period t and for each product p, the forecast, denoted by ypt, is cal-
culated for a network historic horizon h(t) using the degree, strength, substitutability,
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and complementarity regressors, denoted by Degreept, Strengthpt, Substitutabilitypt, and
Complementaritypt respectively (regressors calculated using basket data on periods t−1,
t− 2,..., t− h), in each proposed forecasting model as follows:

• The ARIMAX model:

ypt = aDegreept + bStrengthpt + cSubstitutabilitypt + dComplementaritypt + npt (4.6)

where a, b, c, and d are the regressors respective coefficients. We assume that npt is
given by an ARIMA(r, k, q) model, where r is the auto-regressive order, k is the differ-
encing order, and q is the moving average order.

• The LightGBM machine learning model:

We recall that LightGBM is a gradient-boosting model based on the decision tree
algorithm. We use degree, strength, substitutability, complementarity, transitivity, and
lag sales of product p at time period t− 1 as inputs of this model to forecast the sales at
time period t (LGBM BASKET). While LGBM is using only the lag of sales as a regressor
(LGBM). The forecasts are all performed using the SKTIME library in Python.

4.3.3 Forecast accuracy measures
In order to evaluate the forecasting performance of each model/approach, each time series
is divided into training and out-of-sample. Training data starts from the beginning of
the year to 18 October and testing from 19 October to 31 December 2018. The root
mean squared scaled error (RMSSE), mean error (ME) and mean absolute scaled error
(MASE) will be used to report the accuracy of each mode/approach. The RMSSE and
MASE are used to calculate the scaled errors dependent on the scale of the time series
as recommended by Hyndman and Koehler (2006). The accuracy will be calculated at
each time series and then averaged per model/approach. there will also be a separate
accuracy reporting on the bottom level segregated by the classification of Syntetos and
Boylan (2005) as will be later presented in the following section. The errors considered
will be the MASE and the RMSE.

4.3.4 Inventory performance
The resulting forecasting results from all of the hierarchical structures are tested on inven-
tory performance using a periodic order up-to-level policy (R,S),where an order is made
for replenishment frequently every given time period noting that this policy adheres to
the policy implemented by the retailer in stores and local fulfillment centers. The time
from order to delivery is one day in both the stores and local fulfillment centers. To cal-
culate the order-up-to-level at any period t, as commonly recommended in the literature
(Syntetos et al. 2015, Van der Auweraer and Boute 2019), the mean and variance of the
lead-time demand distribution, denoted by µLT and V arLT respectively, is estimated as
µLT = (L+1)∗ypt and V arLT = (L+1)∗MSEpt where L is the lead-time, ypt is the fore-
cast of sales at period t and MSEpt is the mean squared forecast error at period t (L + 1
periods are considered instead of L to account for the protection interval under a periodic
review). Note also that MSEpt is given by: MSEpt = α[ypt −Dpt]2 + (1− α)MSEp(t−1),
where α is a smoothing constant between 0 and 1. The order-up-to-level at any period t,
denoted by Spt, is then calculated as Spt = F −1

LT D(CSL) where FLT D(.) is the cumulative
distribution function of the lead-time demand, having the mean and variance equal to
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µLT and V arLT . More details on the calculation of the order-up-to-level and the imple-
mentation of the simulation model of the inventory policy are given in (Hasni et al. 2019,
Babai et al. 2019).

The resulting outcome will be compared on two levels, level 2 where the demand is dis-
aggregated by store, and level 1 where demand is aggregated at local fulfillment centers
for each model; ARIMA, ARIMA BASKET, LGBM, and LGBM BASKET, for each
hierarchical forecasting approach TD, BU, MO and COMB. The comparison shows the
performance of each model/approach on average inventory holding quantity and backlog
quantity across 5 points of CSL from 90% to 99%.

4.3.5 Empirical investigation

This work is part of a collaboration project with a multinational cosmetics retailer based
in France. The retailer operates in multiple channels that started with brick-and-mortar
stores and then online channels at the beginning of the 2000s and integration between
both channels such as buy online pick from store (BOPS) where a customer buys online
and picks the product from the store. The data of focus in this project is three stores in
one major city in France. The data contains the transaction data of baskets including the
date of purchase, order number, and list of items inside the order (Basket). On average,
600 baskets are purchased per day with different size variations. The data length is one
year from January 1 to December 31, 2018. To be able to formulate the hierarchies,
a group of products was selected from the total offerings. In our attempt to filter the
products in the study we adhered to the following conditions : 1- It must be sold in the
three stores. 2- A sufficient sample and representation of each classification of product
demand based on Syntetos and Boylan (2005) referred to hereafter as SBC.

While adhering to the criteria, not all classes have the same number in each store,
there is a domination of the Intermittent class, followed by Lumpy, then erratic, and
finally smooth. Recall that in the SBC scheme, the demand is classified based on the
average demand interval (ADI) and squared coefficient of variation of demand sizes (CV2)
with the cut-off values of ADI = 1.32 and CV2 = 0.49. Four classes are identified: smooth
(ADI < 1.32 and CV2 < 0.49), lumpy (ADI > 1.32 and CV2 > 0.49), erratic (ADI <1.32
and CV2 > 0.49), and intermittent (ADI > 1.32 and CV2 < 0.49). The class of smooth
demand is the class where the demand has a high number of demand occurrences (i.e.
low demand intervals) and a low variation of demand sizes. The erratic demand is also
characterized by a high number of demand occurrences but it has high demand sizes’
variability. The intermittent demand has few demand occurrences and a low variation
of demand sizes. Finally, the class of lumpy demands is characterized by few demand
occurrences but a high variation of demand sizes. This classification is used further in
the chapter to identify the appropriate forecasting method in each class and the related
inventory performance.

In Figure 4.2, the ADI is plotted against CV2 for the three stores and the aggregated
city, we notice there are slight differences in pattern between the aggregated city and
the stores. For example, the aggregation of sales of a particular product across the three
stores leads to a reduction of the average demand interval in the aggregated/city. We also
note that the majority of products are either lumpy or intermittent with few products
that are smooth or erratic. Also, it is interesting to see if there is a rate of change between
classification from one store to another store and from stores to aggregated product sales
of the city. It is noted in Table 4.1 that aggregation leads to a reduction of intermittent
classification and an increase of smooth, erratic, and lumpy by a small percentage.
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Figure 4.2: Hierarchical grouped structure

aggregated/region store1 store2 store3
Erratic 1.5% 0.1% 0.1% 1.5%

Intermittent 88.9% 90.3% 95.0% 90%
Lumpy 9.2% 8.9% 4.8% 8.2%

Smooth 1.5% 0.7% 0.1% 0.13%

Table 4.1: Percentage of products obtained after aggregation

4.4 Forecast accuracy results
In this section, the results of the different accuracy measures across all levels are pre-
sented. There are four forecasting models with four aggregation forecasting approaches:
the ARIMA model with its aggregation variations; MO, BU, TD, COMB which is a simple
average of the former 3, it is the same with ARIMA BASKET, the LGBM model with a
lag of sales only included, and finally, LGBM model with a lag of sales degree, strength,
substitutability, and complementarity. In Table 4.2, the results of the top aggregated
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level are presented. We notice the out-performance of the ARIMA BASKET aggrega-
tions over the other model/ aggregation approaches particularly the ARIMA BASKET
COMB and the ARIMA BASKET TD, if RMSSE is to be the determinant. ARIMA
BASKET COMB is the better-performing model across all variations. Note that in the
machine learning comparison, LGBM COMB is the better-performing model across all
LGBM variations. In addition, we notice that basket attributes with LGBM are not
better in performance compared to all the variations of aggregation approaches. On the
contrary, ARIMA basket (ARIMAX) variations are more accurate than their ARIMA
counterparts. For example, there is a 12% reduction in error between ARIMA BASKET
BU and ARIMA BU for MASE, an 18% reduction in error between ARIMA BASKET
COMB and ARIMA COMB and a much more significant reduction of 40% between the
ARIMA BASKET TD and ARIMA TD. Similar performance is achieved by the RMSSE
metric error with 21%, 16%, and 34 % respectively.

model MASE RMSSE
1 ARIMA BASKET BU 1.124 1.106
2 ARIMA BASKET COMB 1.081 1.070
3 ARIMA BASKET MO 1.175 1.112
4 ARIMA BASKET TD 1.101 1.073
5 ARIMA BU 1.186 1.162
6 ARIMA COMB 1.332 1.285
7 ARIMA MO 1.167 1.153
8 ARIMA TD 1.864 1.636
9 LGBM BASKET BU 1.288 1.243
10 LGBM BASKET COMB 1.187 1.181
11 LGBM BASKET MO 1.262 1.217
12 LGBM BASKET TD 1.213 1.157
13 LGBM BU 1.202 1.180
14 LGBM COMB 1.129 1.119
15 LGBM MO 1.211 1.177
16 LGBM TD 1.094 1.060

Table 4.2: Aggregated top-level accuracy

For the Region/product level, we present the accuracy measures over all models in
Table 4.3 and the quartile distribution starting from the 10th percentile to the 90th per-
centile in Figure 4.3. The results show, while calculating the aggregate average in Ta-
ble 4.3, ARIMA models are generally better than ARIMA basket models. For machine
learning models, LGBM basket variations remain the better-performing model among
all variations. Consequently, the best performing models are ARIMA TD for MASE
and ARIMA COMB for RMSSE. However, based on the the box plot in Figure 4.3, the
ARIMA BASKET TD is the best-performing model across the distribution of RMSSE
the difference is not significant across all models. When a deeper analysis considering
the SBC classification in Figure 4.4, we can note that there is a significant difference in
error distribution particularly in the lumpy, smooth, and erratic classes. For example in
the smooth category, the ARIMA BASKET variations are consistently outperforming the
ARIMA variations across TD, BU, and MO with a significant difference in the range of
the distribution. This concurs with Omar et al. (2022) that ARIMA basket attributes
perform well with the lumpy category. For the erratic category, the ARIMA MO is a
distinct winner for having a lower median and a lower third quartile. For the intermittent
category, there is no clear winner as all models are in line with each other. However, the
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model with the lowest median error is ARIMA BASKET TD. For the smooth category,
the model with the lowest median is ARIMA BASKET COMB. While the average ac-
curacy measures in Table 4.3 shows that ARIMA basket is not a top performer model,
the average measure tends to be skewed by high error values. Accordingly, we adhere to
Mircetic et al. (2022) when comparing distribution across all errors via Figure 4.3 and
Figure 4.4. Upon investigation , we notice that the basket methods result in high er-
rors when there are no sales observations during the initial training window, accordingly,
there are no attributes sufficient enough for the model to be well trained on the pattern
on demand. However, these products are outliers to the data such as limited promotion
products that are only introduced during the testing period. A sample of the demand
pattern of these products is presented in Figure 4.9

model MASE RMSSE
1 ARIMA BASKET BU 2.408 1.025
2 ARIMA BASKET COMB 3.523 1.167
3 ARIMA BASKET MO 4.590 1.368
4 ARIMA BASKET TD 1.745 0.864
5 ARIMA BU 1.789 0.837
6 ARIMA COMB 1.718 0.835
7 ARIMA MO 1.911 0.853
8 ARIMA TD 1.595 0.867
9 LGBM BASKET BU 1.788 0.873
10 LGBM BASKET COMB 1.794 0.870
11 LGBM BASKET MO 1.787 0.880
12 LGBM BASKET TD 1.814 0.875
13 LGBM BU 1.810 0.885
14 LGBM COMB 1.809 0.873
15 LGBM MO 1.826 0.905
16 LGBM TD 1.802 0.870

Table 4.3: Regional level accuracy

To further illustrate the performance of the forecasting methods, we present the per-
centiles overall and for the erratic and lumpy categories at the regional level. Overall in
Table 4.4, the only consistent performance across the percentiles between a basket method
and a method that is not using basket attributes on the aggregation approach is LGBM
BASKET MO against LGBM MO for the RMSSE, while for all other comparisons, there is
no significant difference. For the lumpy category, note the out-performance of the ARIMA
BASKET BU compared to the ARIMA BU and the out-performance of this particular
model compared to all the other models in this category, same for the erratic category
the ARIMA BASKET BU is better than the ARIMA BU up to the 70th percentile. But
overall, the best model in this category is the ARIMA MO which is consistently lower
than all the other models.

For the bottom-level accuracy, on the average measure the ARIMA COMB, ARIMA
TD, and ARIMA BU are performing better than their counterparts. This is due to the
existence of outliers that derive the average higher for other models as explained in the
regional forecasting performance, we follow suit of Mircetic et al. (2022) and present the
error distribution using a box plot to understand more the performance of the models.
In Figure 4.5, there is no significant accuracy top performer across all models overall.
However, the model with the lowest median is ARIMA BASKET TD with a median of
0.615, if it is compared with ARIMA TD, the median is 0.618. This is also shown in detail
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model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1 ARIMA BASKET BU 0.04 0.20 0.47 0.59 0.69 0.78 0.89 1.04 1.35 8.03
2 ARIMA BASKET COMB 0.09 0.22 0.46 0.58 0.67 0.77 0.87 1.02 1.31 9.06
3 ARIMA BASKET MO 0.00 0.20 0.47 0.59 0.69 0.78 0.89 1.04 1.34 10.50
4 ARIMA BASKET TD 0.15 0.32 0.47 0.57 0.67 0.76 0.86 1.01 1.29 6.52
5 ARIMA BU 0.05 0.21 0.46 0.58 0.68 0.77 0.88 1.02 1.29 5.86
6 ARIMA COMB 0.07 0.19 0.45 0.57 0.67 0.77 0.88 1.02 1.29 6.09
7 ARIMA MO 0.00 0.21 0.46 0.58 0.68 0.78 0.88 1.02 1.31 7.45
8 ARIMA TD 0.10 0.24 0.45 0.57 0.69 0.79 0.89 1.05 1.34 6.54
9 LGBM BASKET BU 0.14 0.33 0.49 0.59 0.68 0.78 0.88 1.02 1.31 6.55

10 LGBM BASKET COMB 0.16 0.33 0.48 0.58 0.68 0.77 0.87 1.02 1.30 6.54
11 LGBM BASKET MO 0.14 0.34 0.50 0.61 0.69 0.79 0.89 1.04 1.31 6.55
12 LGBM BASKET TD 0.18 0.35 0.49 0.59 0.68 0.77 0.87 1.02 1.30 6.51

13 LGBM BU 0.14 0.34 0.50 0.62 0.70 0.80 0.89 1.04 1.31 6.55
14 LGBM COMB 0.16 0.34 0.49 0.60 0.68 0.77 0.88 1.02 1.29 6.54
15 LGBM MO 0.15 0.36 0.54 0.64 0.73 0.82 0.92 1.05 1.32 6.55
16 LGBM TD 0.17 0.35 0.49 0.58 0.67 0.76 0.86 1.01 1.28 6.51

Table 4.4: Regional level accuracy percentiles-RMSSE

in Table 4.8, it also has the lowest error up to the 99th percentile. Note that the median is
calculated with outliers included. When a deeper analysis of the SBC is made in Figure
4.6,we note the big difference in the lumpy category distribution for the ARIMA BASKET
BU compared to the other models, it is a clear top-performing model in this category. In
the erratic category, the ARIMA BU with a wider distribution has the lowest median.
As for intermittent and smooth, there is no clear difference in which model is a better
performing model. This is also shown in Table 4.9 where on the 70th percentile, where
the performance improvement between the ARIMA BASKET BU and the ARIMA BU is
47%. As for the erratic category shown in Table 4.10, there is also an improvement across
percentiles between the forecasting methods using basket attributes and the forecasting
methods without basket attributes. For example, the performance improvement at the
median level between ARIMA BASKET BU and ARIMA BU is 46 %.
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model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1 ARIMA BASKET BU 0.00 0.00 0.00 0.01 0.03 0.08 0.19 1.06 3.05 25.21
2 ARIMA BASKET COMB 0.00 0.02 0.04 0.06 0.10 0.14 0.28 0.87 3.33 27.83
3 ARIMA BASKET MO 0.00 0.00 0.00 0.00 0.00 0.10 0.27 0.94 2.96 32.25
4 ARIMA BASKET TD 0.00 0.06 0.10 0.16 0.23 0.29 0.41 0.81 2.95 25.15
5 ARIMA BU 0.00 0.00 0.00 0.02 0.07 0.14 0.25 0.83 3.23 23.37
6 ARIMA COMB 0.00 0.01 0.03 0.06 0.09 0.15 0.23 0.83 2.93 23.91
7 ARIMA MO 0.00 0.00 0.00 0.00 0.03 0.15 0.29 0.83 3.23 25.14
8 ARIMA TD 0.00 0.04 0.07 0.11 0.15 0.20 0.29 0.77 3.16 25.23
9 LGBM BASKET BU 0.00 0.01 0.07 0.11 0.20 0.31 0.46 0.86 2.90 25.25

10 LGBM BASKET COMB 0.00 0.03 0.08 0.14 0.22 0.31 0.45 0.87 2.86 25.22
11 LGBM BASKET MO 0.00 0.01 0.06 0.11 0.20 0.33 0.49 1.13 2.81 25.25
12 LGBM BASKET TD 0.00 0.06 0.12 0.18 0.25 0.33 0.46 0.82 2.93 25.16
13 LGBM BU 0.00 0.01 0.06 0.12 0.21 0.31 0.51 1.12 2.81 25.25
14 LGBM COMB 0.00 0.03 0.08 0.15 0.22 0.32 0.47 1.08 2.83 25.22
15 LGBM MO 0.00 0.01 0.05 0.12 0.22 0.35 0.58 1.22 2.82 25.25
16 LGBM TD 0.00 0.06 0.11 0.18 0.25 0.32 0.45 0.81 2.93 25.15

Table 4.5: Regional level accuracy percentile-Lumpy-RMSSE

model MASE RMSSE
1 ARIMA BASKET BU 1.855 0.822
2 ARIMA BASKET COMB 2.261 0.851
3 ARIMA BASKET MO 2.709 0.929
4 ARIMA BASKET TD 1.474 0.733
5 ARIMA BU 1.553 0.724
6 ARIMA COMB 1.468 0.716
7 ARIMA MO 1.611 0.725
8 ARIMA TD 1.300 0.727
9 LGBM BASKET BU 1.509 0.739
10 LGBM BASKET COMB 1.519 0.736
11 LGBM BASKET MO 1.507 0.739
12 LGBM BASKET TD 1.543 0.741
13 LGBM BU 1.530 0.751
14 LGBM COMB 1.536 0.739
15 LGBM MO 1.548 0.753
16 LGBM TD 1.533 0.738

Table 4.7: Store level accuracy

104



model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1 ARIMA BASKET BU 0.00 0.00 0.01 0.07 0.18 0.52 0.59 0.81 1.34 1.66
2 ARIMA BASKET COMB 0.06 0.20 0.23 0.25 0.44 0.61 0.68 0.74 1.13 1.72
3 ARIMA BASKET MO 0.00 0.00 0.01 0.02 0.36 0.67 0.81 0.93 1.12 1.69
4 ARIMA BASKET TD 0.17 0.51 0.53 0.59 0.62 0.65 0.69 0.83 1.20 1.80
5 ARIMA BU 0.00 0.00 0.01 0.02 0.30 0.58 0.63 0.64 1.45 1.91
6 ARIMA COMB 0.04 0.14 0.15 0.16 0.34 0.58 0.63 0.69 1.43 1.98
7 ARIMA MO 0.00 0.00 0.00 0.00 0.28 0.59 0.65 0.84 1.41 2.01
8 ARIMA TD 0.11 0.37 0.41 0.43 0.51 0.64 0.65 0.69 1.45 2.05
9 LGBM BASKET BU 0.02 0.05 0.08 0.16 0.56 0.60 0.71 0.99 1.43 1.97

10 LGBM BASKET COMB 0.07 0.26 0.28 0.31 0.55 0.61 0.71 0.91 1.35 1.93
11 LGBM BASKET MO 0.01 0.03 0.05 0.08 0.56 0.64 0.71 1.04 1.44 1.96
12 LGBM BASKET TD 0.19 0.61 0.64 0.69 0.71 0.76 0.82 0.95 1.26 1.90
13 LGBM BU 0.01 0.03 0.07 0.17 0.56 0.58 0.67 1.07 1.29 1.77
14 LGBM COMB 0.06 0.25 0.27 0.30 0.55 0.59 0.63 0.99 1.26 1.82
15 LGBM MO 0.00 0.01 0.02 0.03 0.59 0.68 0.70 1.07 1.36 1.94
16 LGBM TD 0.18 0.57 0.59 0.64 0.70 0.74 0.77 0.93 1.20 1.83

Table 4.6: Regional level accuracy percentile-Erratic-RMSSE

Figure 4.5: Store level error quartiles
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Figure 4.3: Regional level error quarterlies

Figure 4.6: Store level error quartiles by class
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Figure 4.4: Regional level error quartiles by class

4.5 Inventory performance results
For the purpose of the analysis, we fix three target CSLs—90%, to 99%—and for target
CSL and each scenario, we measure the average inventory holding volumes, the average
back-ordering volumes, and the achieved CSLs (averages calculated over the evaluation
period and across all products). Note that the last 73 days (from October 20, 2018, to
December 31, 2018) are used to evaluate the performance. The lead time L is 2 days,
and the smoothing error is 0.7. we first present the aggregate level results on the mid-
level distribution center and the bottom-level stores. In Table 4.11, we give the average
inventory performance per model at three service level points 0.9, 0.95, and 0.99. The
average is calculated up to the 95 percentile to remove outliers which means that average
calculations represent 95 % of the product simulations. Inventory volume ( I.V) represents
the average inventory holding per period per product under each model implementation.
Lost sales are the average of the total lost sales per product when no there is no inventory
at the time of demand. Csl is the average realized cycle service level and safety stock (S.S)
is the average safety stock per period per product under each model. It can be noted at
the distribution center overall, the lower the average safety stock, the more accurate the
forecast as the error is less and thus the safety stock quantity. Yet, it does not necessarily
result in better inventory performance. On the other hand, combination models result in
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model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1 ARIMA BASKET BU 0.00 0.06 0.11 0.47 0.62 0.75 0.89 1.07 1.41 4.67
2 ARIMA BASKET COMB 0.04 0.07 0.12 0.46 0.62 0.74 0.88 1.05 1.40 4.69
3 ARIMA BASKET MO 0.00 0.07 0.12 0.47 0.62 0.74 0.88 1.06 1.40 5.23
4 ARIMA BASKET TD 0.06 0.10 0.17 0.47 0.61 0.73 0.87 1.04 1.40 3.87
5 ARIMA BU 0.00 0.07 0.12 0.47 0.62 0.74 0.88 1.05 1.41 4.22
6 ARIMA COMB 0.04 0.06 0.10 0.45 0.62 0.74 0.88 1.05 1.40 3.92
7 ARIMA MO 0.00 0.06 0.11 0.46 0.62 0.74 0.88 1.05 1.40 3.98
8 ARIMA TD 0.04 0.06 0.11 0.45 0.62 0.74 0.88 1.07 1.40 3.94
9 LGBM BASKET BU 0.06 0.10 0.17 0.47 0.62 0.74 0.88 1.06 1.40 3.95

10 LGBM BASKET COMB 0.07 0.10 0.17 0.47 0.62 0.74 0.88 1.05 1.40 3.94
11 LGBM BASKET MO 0.06 0.09 0.17 0.47 0.62 0.74 0.88 1.06 1.40 3.95
12 LGBM BASKET TD 0.07 0.11 0.19 0.47 0.62 0.74 0.87 1.04 1.40 3.86
13 LGBM BU 0.06 0.10 0.18 0.50 0.64 0.76 0.90 1.07 1.40 3.95
14 LGBM COMB 0.07 0.10 0.18 0.48 0.62 0.74 0.88 1.05 1.40 3.93
15 LGBM MO 0.06 0.11 0.21 0.50 0.64 0.76 0.89 1.07 1.40 3.95
16 LGBM TD 0.07 0.11 0.19 0.47 0.62 0.73 0.87 1.04 1.40 3.85

Table 4.8: Store level accuracy percentile-RMSSE

better fulfillment, specifically the ARIMA BASKET COMB which has the best fulfillment
at the cycle service level points of 0.9 and 0.99. In addition, if we compare the ARIMA
basket BU and the ARIMA BU, the ARIMA BASKET BU is consistently less in safety
stock and less in lost sales at the cycle service level point of 0.9 and 0.95. The same
consistently prevails on store level where ARIMA BASKET COMB is better in fulfillment
at the cycle service level 0.95 and 0.99.

model csl= 90% csl= 95% csl= 99%
lost sales csl S.S lost sales csl S.S lost sales csl S.S

ARIMA BASKET TD 2.72 95 1.53 1.86 96 2.30 0.71 98 4.32
ARIMA TD 1.51 93 1.05 2.18 95 1.64 1.23 97 3.45

LGBM BASKET TD 2.18 96 1.63 1.47 97 6.50 0.56 98 4.51
LGBM TD 2.39 96 1.65 1.60 97 6.24 0.63 98 4.52

ARIMA BASKET MO 2.39 96 1.35 1.74 97 1.95 0.99 98 3.35
ARIMA MO 2.38 96 1.44 1.58 97 2.15 0.63 98 3.96

LGBM BASKET MO 3.00 95 1.50 2.16 96 2.24 1.04 97 4.08
LGBM MO 2.87 95 1.37 2.22 96 1.92 1.42 97 3.18

ARIMA BASKET BU 2.21 96 1.49 1.46 97 2.21 0.62 98 4.01
ARIMA BU 2.32 96 1.52 1.50 97 2.26 0.57 98 4.16

LGBM BASKET BU 2.87 95 1.58 2.01 96 2.36 0.99 97 4.27
LGBM BU 2.69 95 1.56 1.94 96 2.33 0.96 97 4.25

ARIMA BASKET COMB 2.25 96 1.58 1.44 97 2.34 0.55 98 4.27
ARIMA COMB 2.81 96 1.46 1.83 97 2.22 0.64 98 4.25

LGBM BASKET COMB 2.61 96 1.62 1.79 96 6.20 0.75 98 4.45
LGBM COMB 2.54 96 1.64 1.75 96 2.43 0.74 98 4.45

Table 4.11: Inventory performance - regional level
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model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1 ARIMA BASKET BU 0.00 0.00 0.00 0.00 0.00 0.02 0.11 0.72 2.58 18.51
2 ARIMA BASKET COMB 0.00 0.01 0.03 0.04 0.07 0.10 0.19 0.67 2.51 19.52
3 ARIMA BASKET MO 0.00 0.00 0.00 0.00 0.00 0.06 0.18 0.76 2.49 23.13
4 ARIMA BASKET TD 0.00 0.05 0.07 0.11 0.15 0.23 0.32 0.65 2.55 18.13
5 ARIMA BU 0.00 0.00 0.00 0.00 0.00 0.10 0.21 0.72 2.65 17.66
6 ARIMA COMB 0.00 0.01 0.02 0.04 0.06 0.10 0.17 0.68 2.52 16.54
7 ARIMA MO 0.00 0.00 0.00 0.00 0.00 0.08 0.19 0.74 2.63 17.96
8 ARIMA TD 0.00 0.03 0.05 0.07 0.10 0.15 0.23 0.67 2.64 18.18
9 LGBM BASKET BU 0.00 0.01 0.03 0.08 0.13 0.21 0.36 0.81 2.54 18.24

10 LGBM BASKET COMB 0.00 0.02 0.06 0.09 0.14 0.21 0.34 0.72 2.51 18.20
11 LGBM BASKET MO 0.00 0.01 0.04 0.07 0.12 0.21 0.36 0.87 2.50 18.23
12 LGBM BASKET TD 0.00 0.05 0.08 0.13 0.17 0.25 0.36 0.70 2.55 18.12
13 LGBM BU 0.00 0.01 0.03 0.08 0.14 0.23 0.40 0.99 2.54 18.24
14 LGBM COMB 0.00 0.02 0.06 0.09 0.15 0.23 0.37 0.77 2.52 18.20
15 LGBM MO 0.00 0.00 0.03 0.07 0.14 0.25 0.44 0.97 2.56 18.23
16 LGBM TD 0.00 0.05 0.08 0.12 0.17 0.25 0.35 0.69 2.53 18.12

Table 4.9: Store level accuracy percentile-Lumpy-RMSSE

model csl= 90% csl= 95% csl= 99%
lost sales csl S.S lost sales csl S.S lost sales csl S.S

ARIMA BASKET TD 1.12 97 0.74 0.69 98 1.20 0.21 99 2.34
ARIMA TD 1.83 96 0.47 1.25 97 0.81 0.36 98 1.76

LGBM BASKET TD 0.89 98 0.82 0.54 98 1.28 0.16 99 2.47
LGBM TD 0.98 97 0.82 0.61 98 1.29 0.19 99 2.48

ARIMA BASKET MO 1.06 98 0.59 0.76 98 0.93 0.38 99 1.80
ARIMA MO 1.01 98 0.68 0.64 98 1.10 0.20 99 2.14

LGBM BASKET MO 1.17 97 0.71 0.81 98 1.13 3.04 98 2.19
LGBM MO 1.27 97 0.54 0.99 97 0.84 0.54 0.98 1.61

ARIMA BASKET BU 1.16 98 0.57 0.83 98 0.92 0.52 98 1.71
ARIMA BU 1.04 98 0.69 0.67 98 1.11 0.28 99 2.12

LGBM BASKET BU 1.16 97 0.74 0.80 98 1.15 0.35 98 2.26
LGBM BU 1.25 97 0.60 0.98 97 0.94 0.51 98 1.83

ARIMA BASKET COMB 0.92 98 0.76 0.53 98 1.22 0.14 99 2.37
ARIMA COMB 1.15 98 0.69 0.69 98 1.13 0.19 99 2.27

LGBM BASKET COMB 1.02 97 0.81 0.63 98 1.28 0.19 99 2.46
LGBM COMB 0.98 97 0.81 0.62 98 1.28 0.20 99 2.45

Table 4.12: Inventory Performance - store level

We further investigate the inventory performance of the SBC in both the store and
the distribution center. The results in Figure4.7 show the ARIMA model performance
on average safety stock per product on the x-axis, average lost orders per product on the
y-axis, and the same for stores in 4.8. The results show the out-performance of ARIMA
BASKET BU compared to other models in the lumpy and erratic categories as on the
three points of cycle service level it consistently provides lower safety stock quantity and
lower number of average lost sales. This finding coincides with the findings in forecasting
shown in Figures 4.4 and 4.6 respectively. Lower error leads to lower safety stock and
better performance on fulfillment. For the smooth and intermittent category, there is no
clear winner. For example, for the smooth category in the distribution center and in the
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model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1 ARIMA BASKET BU 0.00 0.00 0.02 0.11 0.29 0.51 0.60 0.76 1.22 1.83
2 ARIMA BASKET COMB 0.07 0.18 0.22 0.26 0.49 0.59 0.64 0.71 1.19 1.78
3 ARIMA BASKET MO 0.00 0.00 0.01 0.03 0.49 0.66 0.72 0.84 1.18 1.75
4 ARIMA BASKET TD 0.20 0.50 0.52 0.56 0.60 0.63 0.71 0.78 1.26 1.86
5 ARIMA BU 0.00 0.00 0.00 0.02 0.54 0.59 0.63 0.69 1.46 2.01
6 ARIMA COMB 0.04 0.11 0.14 0.17 0.52 0.59 0.62 0.68 1.32 2.04
7 ARIMA MO 0.00 0.00 0.00 0.01 0.59 0.63 0.69 0.80 1.32 2.04
8 ARIMA TD 0.13 0.34 0.41 0.48 0.51 0.60 0.66 0.74 1.45 2.08
9 LGBM BASKET BU 0.01 0.03 0.05 0.51 0.63 0.66 0.81 1.06 1.36 2.02

10 LGBM BASKET COMB 0.09 0.20 0.26 0.52 0.59 0.66 0.75 0.90 1.30 1.97
11 LGBM BASKET MO 0.01 0.01 0.07 0.54 0.58 0.68 0.74 0.92 1.37 2.00
12 LGBM BASKET TD 0.23 0.58 0.61 0.66 0.70 0.75 0.81 0.88 1.28 1.93
13 LGBM BU 0.00 0.01 0.02 0.56 0.65 0.70 0.81 1.18 1.35 1.91
14 LGBM COMB 0.07 0.19 0.25 0.51 0.59 0.62 0.74 1.09 1.32 1.86
15 LGBM MO 0.00 0.00 0.02 0.55 0.60 0.68 0.72 1.18 1.37 1.99
16 LGBM TD 0.22 0.56 0.58 0.64 0.65 0.69 0.79 0.87 1.26 1.86

Table 4.10: Store level accuracy percentile-Erratic-RMSSE

store, the best model by a very small margin is ARIMA BASKET MO at one unit less
in shortage on average.
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Figure 4.7: Average lost sales vs average safety stock- Distribution Centre

111



Figure 4.8: Average lost sales vs average safety stock-Store

4.5.1 Outliers
As noted in the Empirical investigation, outliers are removed from the inventory perfor-
mance. Upon investigation, it was concluded that high loss of sales is directly related
to the forecast error, especially in the lumpy category as high errors affect its perfor-
mance. Upon investigation, the outliers show time series with high interrupted demand
that occurs in the test period or near the test period which leads to models not efficiently
trained on data, This leads to high errors in the basket forecasts. In Figure 4.9, the time
series on the left are samples with high errors in the lumpy category, it can be seen there
is not enough data to be trained while the samples on the right are samples within the
90 percentile of errors which leads to improved forecasting errors and effectively better
inventory performance. Finally, we present the outlier’s inventory performance in 4.10.
Note the high level of lost orders and safety stock, for those products, we propose ARIMA
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COMB.

Figure 4.10: Inventory performance of outliers

4.6 Conclusion
In this work, we have investigated the impact of forecasting aggregation on supply chain
inventory. The case was focused on a retail supply chain in which the sales data of 2018
in one city was used to simulate the physical flow of products from OEM to DC in the
city and from DC to three stores based on an order up-to-level policy. In addition, Basket
data attributes proposed in Omar et al. (2022) are added to both the ARIMA model and
LGBM model with four forecasting aggregation approaches; mainly middle-out, bottom-
up, top-down, and COMB. The data included 4000 products that are mostly sold in all
three stores at least once and are delivered from the DC to the stores. In the middle level
at the DC (Region/Product), the basket data are calculated based on the entire basket
orders of the region while in the top non-grouped level which is a single time series, the
basket data attributes are the result of the summation of the regional basket attributes.
The level forecasting result shows a better performance for the basket attributes for the
ARIMA models but not for the LGBM models. The best model in terms of MASE is the
ARIMA BASKET COMB, and the best model in terms of RMSE is the LGBM TD. For
Mid-level (Region/Product) accuracy, ARIMA COMB and ARIMA MO are best in terms
of accuracy. However, the average measure tends to be skewed by high error values. If we
look at the error quartiles, the results show better performance for basket models with
the model having the lowest median in terms of RMSSE being the ARIMA BASKET
TD. As for the SBC classification, the ARIMA BASKET variations are outperforming
the ARIMA variations across TD, BU, and MO with a significant difference in the range
of the distribution. Especially ARIMA BASKET MO and ARIMA BASKET BU for the
lumpy category and a slightly better margin of improvement with ARIMA BASKET TD
in the smooth category. For the Bottom store level,the best-performing model is ARIMA
BASKET TD, based on error distribution. For SBC, ARIMA BASKET BU is much
better performing in the lumpy category and also the model with the lowest median
in the erratic category, As for intermittent and smooth, there is no clear difference in
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Figure 4.9: Outliers in lumpy Vs standard lumpy class
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which model is a better performing model. The inventory results coincide well with the
forecasting results, especially for safety stock volume against the lost sales, especially for
the Lumpy and erratic categories where ARIMA BASKET BU is the model holding the
lowest safety stock quantity and the lowest lost sales on average. In addition, ARIMA
BASKET COMB performs well in the intermittent category. We, thus,recommend using
basket attributes for low-level hierarchy and mid-level hierarchy.

115



Conclusion and Perspectives

In this dissertation, we have focused on the utilization of basket data for the omnichan-
nel supply chain. We have found that basket data leads to significant improvement in
operational performance and customer satisfaction which are utilized beyond the current
application of basket data for marketing and product recommendations. Furthermore,
modeling basket data in a multi-period graph enables quantifying significant attributes of
connectivity and relations among products more comprehensively than approaches such
as market basket analysis and apriori algorithm. Basket data can have significant im-
provements on the allocation of products to stores which we did not discuss in detail
in this dissertation and could be an avenue that could be explored in future research.
Improving the forecasting can be a result also of basket data associations. In this disser-
tation, we have used basket data to improve the forecasting of individual products either
through direct forecasting or by form of aggregation. And in both cases, it proved to be
significantly better in the lumpy and erratic category. We have also considered using bas-
ket data and graph theory in omnichannel anticipatory shipping with promising results
on both service and cost. Our contribution from Chapter 2 through Chapter 4 can be
concluded as follows:

• For chapter 2, our investigation in this chapter has shown that 95 % of products
show an intermittent or lumpy demand pattern and that 50 % of products are sold
in a basket of two items or more, we have also demonstrated that a retail network
is characterized by being a low-density network which proves that select products
have high connectivity and are usually bought with other products many times
while the remaining products have very low connectivity. We have also empirically
through regression modeling proved the significance of the basket data attributes
to demand prediction. Accordingly, We have developed a basket data-driven fore-
casting approach to improve the accuracy of forecasting and inventory performance
based on the analysis of the significance of these attributes. Upon evaluating the
performance of forecasting models, the Croston method which is known to work
well for intermittent demand exhibited poor performance due to the lumpiness of
demand in the retail context, contrary to our proposed forecasting approach which
improves the forecasting accuracy as it takes into account the lumpiness of demand
in the retail context. Finally, our investigation also showed that our proposed fore-
casting approach improves the accuracy of forecasts in lumpy and erratic demand
and that forecasting both the online and physical retail channels together leads to
better forecasting accuracy and inventory performance.

• In chapter 3, we have developed a two-step approach for anticipatory shipping, It is
complicated to have the order available to the customer beforehand as a customer’s
basket may include different quantities of different products, one practical approach
for such complexity is modeling basket data as a graph and deriving attributes and
predictions from them. The basket with the lowest uncertainty is a basket of one
item, then a basket of two items, and then more than two items will have much
higher complexity. We tackled this challenge by studying the associations between
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products separately and collectively using arc analysis and attribute extraction using
the rich literature on graph theory. Through the nodes to the arc attributes and
the arc attributes as these features concern, every two specific products and their
sales in a specific historical time period features such as degree, strength, edge
betweenness, and frequency of the arc. And collectively through arc probability
and Bayes attributes which look at every two products in relation to the whole
graph or the whole baskets ordered during a specific time horizon. This approach
is flexible to adjust the graph span based on industry and what works for each
assortment seasonal life span. It also shows quantity prediction as a continuous
variable which is more flexible and realistic than classification prediction in this
context. Furthermore, the same attributes are used to predict two targets; baskets
of size 2 and baskets of size more than 2 reducing redundancy and duplication.
While a basket of size 2 has only one arc and does not need redundancy removal or
basket reshaping. Baskets of size more than 2 are passed through a basket retrieval
algorithm to retrieve the baskets from arcs. The input of this 2-step approach is used
to develop a strategy for efficient moving of online sales through the stores ahead of
customer orders to reduce lead time, save on transportation costs, and packaging,
and increase revenue and competitiveness utilizing basket data. Forecasting the arcs
of baskets of size 2 separately provides more certainty on the content of the basket,
and further action of packaging and fulfillment could be done at the fulfillment center
where economies of scale are achieved (STS). As for baskets of size more than 2,
advancing the baskets not packaged and as predicted modular bundles mitigates the
uncertainty, reduces the transportation cost, and offers more flexibility in satisfying
a customer demand from advanced modular baskets (SFS). We have shown that
specific models can have up to 100 % fulfillment of baskets advanced which is a
good strategy if the basket is of high value. Or retailers can choose less conservative
models that advance More baskets with higher left-overs quantity if the chance of
selling this product as a leftover is high (fast-moving items).

• As for Chapter 4, we have worked on incorporating basket data into hierarchical
forecasting approaches. Basket data is an important dimension that if added to
hierarchical forecasting approaches will result in improvement in the forecasting ac-
curacy across the different hierarchy levels and also for inventory performance. Our
investigation has shown that ARIMA BASKET BU is superior in the Lumpy and
erratic category both in forecasting and inventory performance. However, Basket
forecasting approaches do not result in good performance for outliers. Outliers are
products that are only sold during the test period and with no sales during the
training period. for these products, a traditional ARIMA model will work better.
Overall, in terms of inventory performance, ARIMA BASKET COMB works best
for intermittent demand, ARIMA MO works best for smooth demand, and by a
higher margin, ARIMA BASKET BU works best for lumpy and erratic demand.

To extend this dissertation, some interesting avenues for further research could be
considered:

• We have used basket data to improve forecasting in an omnichannel context and
advancement of products close to customers mainly through developing graphs of
products based on historical sales. Another aspect could be retail assortment allo-
cation inside stores based on graph attributes. In addition, traditionally product
recommendations use market basket analysis while graph theory provides richer at-
tributes and more clearer association of bi-product links and product communities.
This could be interesting to investigate and compare with market basket analysis.
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• Another interesting avenue for further research would be to deepen the analysis
using findings from marketing and graph theory to identify other attributes (ex:
brand loyalty, promotions, etc.) than those that can be considered for forecasting
purposes in the omnichannel context. Such attributes can also be considered within
machine learning approaches, which have been recommended in the literature for
their superior performance when using data from exogenous variables. More specif-
ically, machine learning methods that have a graph-like structure, such as random
forest or neural networks could be worthy of exploring for basket data as well as
gradient boosting methods such as xgboost and light GBM which have been proven
to provide good forecasting results in forecasting competitions (Makridakis et al.
2020). It would also be interesting to broaden the empirical investigation of fore-
cast accuracy by testing other forecast horizons, including a horizon equal to the
replenishment lead time. This can reduce the discrepancy between the forecast ac-
curacy and the inventory performance of the analyzed methods. Another extension
of this work would be to investigate alternative inventory rationing and fulfillment
scenarios that integrate joint forecasting. It is worth pointing out that the data
set considered in the empirical investigation in this chapter is rich enough to be
representative of general contexts; however, for a generalization of the results and
to draw more conclusive findings, it would be interesting to broaden the empirical
investigation using other demand data sets and theoretically generated data. Fi-
nally, another avenue for future research could be to study the impact of product
assortments at stores on customer channel choice using the linkages between sold
product baskets.

• In chapter 3, we have explored basket data to advance baskets either packaged
when they are baskets of size 2 and not packaged when they are baskets of size
more than 2. We relied on machine learning methods and a conservation threshold
that converts the continuous prediction of the arc to an integer if above or equal
to the conservation threshold and zero if less, it could an area to explore is how to
optimize the value of the conservation threshold through an algorithm to minimize
the arcs being advanced and not sold at the week of advancement. Another aspect
we explored is advancing online orders from fulfillment center to store in antici-
pation of customer orders, the same methodology could be explored with moving
baskets between stores in anticipation of customer orders as it can further reduce
transportation costs and obsolescence of products not sold. This would be based on
basket attributes in every demand zone.

• Applying forecast reconciliation on the hierarchical aggregation of basket data, fore-
casting reconciliation has been shown to improve the hierarchy accuracy perfor-
mance as it calculates the error of forecasting on each level and adjusts the forecast
based on the error of forecasting at each level. Such an approach could potentially
further improve the accuracy of the forecast using basket data attributes.

• Evaluating other graph attributes that can potentially improve the accuracy further
for the product prediction approach, for example, we explored the notion of substi-
tutability which measures how likely a customer would buy a product based on the
range of products in this category, a complement to it could be the contribution of
product in sales to all products in the range of its category.
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TITRE : PREVISION ET GESTION DE STOCKS BASES SUR LES
DONNEES DE PANIER DANS LA SUPPLY CHAIN OMNICANAL

Résumé
La vente au détail omnicanal est devenue la stratégie permettant d’obtenir un avantage con-
currentiel pour la plupart des détaillants qui s’appuient sur un réseau de magasins physiques.
La pandémie de COVID-19 a accéléré la tendance avec de nouvelles préférences des consom-
mateurs et une refonte du secteur de la vente au détail axée sur les données et les nouvelles
technologies. Dans un environnement omnicanal, le client dispose de plusieurs options pour in-
specter, commander et recevoir la commande via une livraison ou un retrait des produits. Avec
ce parcours client ultime, tout détaillant omnicanal est particulièrement confronté à des défis en
termes de décisions d’inventaire et de réapprovisionnement, de planification des transports et de
prévisions, qui sont décuplés lorsque les ventes se font principalement dans des paniers et pas
seulement dans des articles individuels. La thèse s’appuie sur une approche basée sur les don-
nées de panier pour répondre à certains de ces défis en matière de prévision et de planification
des stocks. Premièrement, nous proposons une nouvelle approche de prévision omnicanal util-
isant les données de panier qui améliore la précision des prévisions et la performance des stocks.
Deuxièmement, une stratégie d’expédition anticipée est conçue et testée, qui s’appuie sur la
prédiction des données du panier, ce qui permet d’améliorer les délais de livraison aux clients
et une réduction des coûts. Troisièmement, nous développons et comparons la performance de
plusieurs approches de prévision hiérarchique prenant en compte les données de panier. Toutes
ces contributions s’appuient méthodologiquement sur des techniques avancées de prévision et
d’apprentissage automatique, la théorie des graphes et la simulation des stocks. De plus, ils
impliquent des données provenant d’un grand détaillant européen de l’industrie cosmétique et
fournissent ainsi des recommandations managériales pour la pratique.
Mots clés: données de panier, prévision, expédition anticipée, modèle de profit, agrégation,
théorie des graphes, omnicanal.

TITLE: Basket Data-Driven Forecasting and Inventory Management for Om-
nichannel Supply chain.

Abstract
Omni-channel retailing has become the strategy for a competitive edge for most of the retailers
relying on a network of brick-and-mortar stores. The COVID-19 pandemic accelerated the trend
with new consumer preferences along with a technology-driven and data-driven redesign of the
retail industry. In an omnichannel environment, the customer has several options to inspect,
to order, and to receive an ordered product via a delivery or a pick up of the product. With
this ultimate customer journey, any omnichannel retailer is particularly challenged in terms of
inventory and replenishment decisions, transportation planning, and forecasting, which increase
tenfold when sales are mainly in baskets and not only individual items. Accordingly, the the-
sis builds on a basket data-driven approach to answer some of these challenges when it comes
to forecasting and inventory planning. First, we propose a novel omnichannel forecasting ap-
proach using basket data that provides an improvement in forecasting accuracy and inventory
performance. Second, an anticipatory shipping strategy is designed and tested that builds on
basket data prediction, which provides an improvement in the delivery lead time to customers
and reduces costs. Third, we develop and compare the performance of several hierarchical fore-
casting approaches considering basket data. All these contributions, build methodologically on
advanced forecasting and machine learning techniques, graph theory, and inventory simulation.
In addition, they involve data from a large European retailer in the cosmetics industry and thus
provide valuable insights for practice.
Keywords: basket data, forecasting, anticipatory shipping, profit model, aggregation, graph
theory, omnichannel.
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