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Richard, Victor), the “Rakoons” (Antoine, Aria, Layla, Quentin), and other friends that I have

met during these past years (Alice, Bartoche, Claire, Félix, Julien, Lazare). Thank you for

always being present to celebrate the good news, reminding me that there are other things in

life than research, supporting me in the difficult times, your joy, and your love. Everyone of you

made me realize the importance of building strong connections with people, accepting people

as they truly are, and being as empathetic as you can be. Last but undoubtedly not least, I

thank my parents Fabienne and Pierre, my sister Julie, my numerous cousins, my grandma,

and my love Lisa for their unconditionnal support and love in this rollercoaster of adventure. I

would not be here today if it were not for your presence, and the joy you bring me everyday. I

have a special thought for my cat that still has to learn that night-time is not playtime.

And thank you Camus for making me imagine Sisyphus happy.



iii

Résumé

Questions de recherche

Nous formulons les questions de recherche suivantes :

• RQ1: Quel cadre théorique est applicable dans le cadre d’une analyse automatique de la

confiance conduite tout au long de l’interaction ?

• RQ2: Est-ce que des segments de confiance homogènes émergent au sein de l’interaction

en se basant sur des indices comportementaux tangibles ?

• RQ3: Comment peut-on discriminer les segments de confiance de ceux de méfiance en

s’appuyant sur des indices comportementaux tangibles ?

Contexte de la thèse

Historiquement, la confiance en Interaction Humain-Robot (HRI) a été déterminée comme

une construction psychologique. Une des définitions les plus utilisées est celle de Rousseau, qui

l’a définie comme “un état psychologique comprenant l’intention d’accepter une vulnérabilité

basée sur une attente positive vis à vis de l’intention ou comportements d’une autre personne”

[97]. Ainsi, chaque individu a sa propre représentation de son partenaire d’interaction et décide

de lui faire confiance en fonction de cette représentation. Cette représentation se fonde sur des

critères relatifs au robot, à l’environnement, et des critères propres à l’utilisateur-même [42].

La confiance joue ainsi un rôle fondamental dans le développement et maintien de rapport entre

personnes. Comme la confiance a un impact sur l’acceptation du robot par l’utilisateur, sur

l’issue et la performance de la tâche de l’interaction, il est important de la calibrer correctement

[4, 50]. En effet, la sous-confiance peut mener à un refus de collaboration avec le robot,

alors qu’une sur-confiance envers le robot peut aboutir à une mauvaise utilisation de celui-

ci. Il est donc important de pouvoir mesurer la confiance afin de calibrer celle-ci. Celle-ci est

souvent mesurée par des questionnaires (Godspeed [11], “Interpersonal Trust Scale” [96], “Trust

Perception Scale-HRI” [105], “Negative Attitude towards the Robot Scale” [113]) remplis par

les utilisateurs eux-mêmes en début et fin d’interaction, par des mesures “objectives” (distance

au robot, EEG) ou par des mesures proxy tel que le nombre de pièces données au partenaire

dans le jeu du “Dilemme du prisonnier” [58]. Les questionnaires ne permettent cependant pas

de mesurer la confiance tout au long de l’interaction, puisqu’elles interrompent l’interaction et

demandent un temps significatif à être remplis.

Il y a très peu d’études portant sur l’analyse automatique des dynamiques de la confiance en

HRI. Parmi les quelques études existantes, Lee et. al a utilisé des modèles de Markov cachés afin
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de représenter les dynamiques comportementales aboutissant à une confiance basse ou élevée

dans le cadre d’un scénario du dilemme du prisonnier [58]. Khalid et al. a utilisé des modèles

d’ensemble neuro-flou afin de classifier la confiance selon trois dimensions définies par Mayer:

compétence, bienveillance, intégrité [49, 71].

Une approche sociologique de la confiance en HRI

Cadre théorique

Afin de pouvoir analyser la confiance tout au long de l’interaction, nous nous appuyons

sur une approche moins “interne”, “mentaliste” de la confiance telle qu’étudiée usuellement.

Les théories de la sociologie interactioniste mettent en lumière le caractère observable de la

confiance au travers de comportements rendus visibles par les participants. Nous définissons

ainsi la confiance commme “une forme d’affiliation et de crédit caractérisés par un ensemble de

comportements intentionnels ou non, expressifs ou propositionnels” [45]. Cette méthodologie

permet de ne pas inférer l’état mental des utilisateurs, en se basant sur une analyse des processus

interactionnels via leur comportements [35, 36, 44]. La confiance est ainsi un résultat de l’état

de l’interaction, et est orientée à la fois vers le contenu et le format de l’interaction. Dans

un état de confiance, les participants vont se comporter de manière à ce que l’interaction soit

fluide et avance en direction de son objectif. Nous utilisons ainsi ces concepts afin d’établir

notre base méthodologique d’analyse. Nous divisons l’analyse de la confiance à partir de sous-

concepts qui constituent notre définition de travail, et dirigeons l’analyse de l’observateur vers

des comportements qui indiquent un alignement, une affiliation [110], et ceux qui attribuent du

crédit [26, 88] aux compétences [33] du robot.

Nous avons ainsi développé un schéma de codage nommé TURIN (Trust in hUman Robot

INteraction), suffisamment flexible pour être utilisé à la fois en interaction dyadique ou en

interaction de groupe. Nous proposons de coder la confiance en segments qui décrivent un

niveau de confiance homogène, au niveau individuel pour les interactions dyadiques, au niveau

du groupe pour les interactions de groupe. La segmentation débute par l’identification d’unités

comportementales et l’attribution d’un niveau de confiance à celles-ci. Les unités consécutives

renvoyant à une même catégorie de confiance sont ensuite agrégées pour former des segments de

confiance homogènes. À chaque segment est attribué une catégorie de confiance : “confiance”,

“méfiance”, ou “neutre” en fonction de si les utilisateurs exhibent des comportements de confi-

ance, méfiance, ou neutres respectivement. Ainsi, tout type de comportement qui démontre une

confiance interactionnelle, accepte une vulnérabilité, montre une amicalité, ou reconnâıt une

compétence du partenaire peut être interprété comme un comportement de confiance. Nous

définissons la confiance interactionnelle comme un état de l’interaction dans lequel les partic-

ipants démontrent une forme de naturalité comportementale (en traitant le robot comme un

partenaire autonome de manière similaire à un humain), ou une fluidité dans l’interaction. Les

comportements de méfiance correspondent à toute forme de malaise, doute, confusion, agres-
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sivité, ou refus de collaboration. Les comportements neutres renvoient à tout comportement

qui ne permet pas de statuer sur l’état de confiance du groupe. Nous proposons de coder

au sein de ces segments quatre catégories supplémentaires afin de décrire les comportements

observés : “Forme de l’interaction sociale”, “Contenu de l’interaction”, “Bienveillance”, et

“Intégrité”. La catégorie “Forme de l’interaction sociale” représente tous les indices comporte-

mentaux bas-niveau qui démontrent soit un haut niveau de confiance (e.g. interaction fluide,

naturelle), ou qui démontrent un bas niveau de confiance (e.g. rupture de confiance, doute). La

catégorie “Contenu de l’interaction” fait référence aux évènements, comportements, et mots du

processus interactionnel en cours qui signalent la catégorie de confiance. Tout comportement

ou évènement qui démontrent une bienveillance ou malveillance sont décrits par la catégorie

“Bienveillance”. La catégorie “Intégrité” renvoie aux comportements ou évènements qui sig-

nalent soit un manque soit une marque d’intégrité de l’utilisateur. Le schéma de codage a fait

l’objet d’une première validation par une collecte d’annotations sur le jeu de données Vernissage.

Deux experts en HRI ont annoté 1 minute sur 3 interactions. L’accord inter-annotateur calculé

sur chacune des catégories de confiance montre un accord significatif entre les annotateurs.

La catégorie “méfiance” aboutit à l’accord plus élevé, suivi par la catégorie “confiance”, puis

“neutre”. Nous montrons que l’accord entre les annotateurs est modéré sur les éléments des

autres catégories, notamment du à la difficulté de correctement délimiter le début et la fin d’un

comportement.

Comparaison avec l’approche mentaliste usuelle

Afin de montrer que notre approche “interactioniste” est différente et complémentaire de

l’approche psychologique “mentaliste” usuelle en HRI, nous conduisons une étude de comparai-

son de notre méthode d’annotation avec des annotations collectées en utilisant la version réduite

à 14 éléments du questionnaire de Schaefer “Robot Trust Scale” (RTS) [105]. Cinq experts en

HRI ont participé à cette étude. Un expert a annoté l’entièreté du corpus Vernissage avec

les deux outils. Sans chevauchement, deux experts ont annoté la moitié du corpus en util-

isant TURIN, et les deux derniers experts ont chacun annoté la moitié du corpus en utilisant

le RTS. Afin de pouvoir comparer les deux outils, nous avons opéré quelques modifications à

leur méthodologie afin d’aboutir à un terrain commun de comparaison. Les annotations se

font sur des segments de taille fixe pour chacun des deux, ce qui donne 18 segments par in-

teraction. Les experts utilisant le RTS annotent leur ressenti selon les 14 critères vis à vis de

l’interaction qu’ils observent, au vu de la réaction des participants. Nous comparons ainsi les

deux approches en différentiant les segments en fonction du label de confiance assigné par les

annotations de TURIN. Afin de pouvoir comparer les annotateurs, nous remettons à l’échelle

les scores des critères pour chaque annotateur dans l’intervalle [0, 1] en fonction de leur mini-

mum et maximum. À travers une série de tests statistiques de Kruskal-Wallis [55] et de tests

post-hoc de Dunn [25], nous montrons qu’il existe des différences significatives de distribution

de scores de certains critères du RTS entre les segments annotés “confiance” et ceux annotés

“méfiance”, ainsi qu’entre ceux annotés “méfiance” et ceux “neutre”. Nous montrons ainsi que
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certains critères du RTS semblent indépendants du label de confiance assigné par les annota-

tions TURIN. Nos calculs d’accord inter-annotateur montrent un accord modeste pour l’outil

TURIN, et un accord pauvre pour le RTS. Ceci s’explique par les modifications que nous avons

opérées afin de pouvoir comparer les deux outils.

À travers une comparaison théorique de l’approche mentaliste et de l’approche interac-

tioniste, ainsi qu’à travers cette analyse expérimentale, nous identifions quatre critères qui

permettent de différencier les deux approches : temporalité (l’intervalle temporel nécessaire à

l’analyse), orientation (préférence pour des approches délimitées par un cadre théorique, ou

pour des approches orientées-données), capacité de généralisation (spécificité ou généricité),

ambivalence d’analyse individuelle et de groupe (passage d’une interaction dyadique à une in-

teraction de groupe). Ainsi, l’approche mentaliste est plus orientée vers des cadres théoriques

précis, assez générique, est ambivalente, et s’intéresse à des évolutions ayant lieu sur une in-

teraction complète. L’approche interactioniste quant à elle est plus orientée données, plus

spécifique, également ambivalente, mais prône une analyse sur des processus interactionnels

courts à l’échelle du tour de parole.

Modèles computationnels de la confiance en HRI

Présentation des descripteurs

Nous nous sommes ensuite intéressés aux méthodes de modélisation computationnelle mul-

timodale de la confiance. Notre modélisation s’opère sur le jeu de données Vernissage [47].

Le corpus est constitué de 10 interactions pendant lesquelles deux participants interagissent

avec un robot Nao selon quatre phases : présentation rapide des participants, explication des

tableaux exposés, présentation plus détaillée des utilisateurs, quizz artistique. Pour le reste de

nos études, nous avons collecté des annotations d’un expert en HRI sur l’ensemble des interac-

tions uniquement pour les trois premières phases comme le format de la dernière phase n’est

pas pertinent par rapport à la confiance.

Nous avons dans un premier temps modélisé les dynamiques de la confiance au sein du groupe

d’utilisateurs avec des descripteurs multimodaux à plusieurs échelles du groupe : individuel,

dyades, et triade. Les modalités retenues sont les suivantes : le visage, le corps, la voix,

ainsi que la sémantique. Nos descripteurs retenus sont un mélange de descripteurs extraits

automatiquement et manuellement par des annotations. Pour le visage, nous avons extrait les

unités d’action faciales (1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 20, et 23) des utilisateurs grâce au

logiciel OpenFace [10] comme moyen de traiter de manière fine les émotions faciales [3, 74]. Nous

avons également extrait le Focus d’Attention Visuelle (FAV) comme indices de l’alignement et

de crédit accordé par les participants au robot. Les labels sont les suivants : peinture gauche,

peinture centrale, peinture droite, Nao, autre humain, autre, pas clair. En plus des labels,

nous avons calculé le pourcentage de temps de regard mutuel entre les participants pendant

un segment ainsi que le nombre de changements de FAV par participant. Nous avons aussi
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extrait les hochements de tête en tant qu’indices d’alignement et d’affiliation [8, 110, 127].

Avec l’extraction de la durée des hochements de tête, nous avons calculé le pourcentage de

temps qu’un participant hoche la tête au sein d’un segment.

Pour le corps, nous n’avons pas pu utiliser de descripteurs sur le squelette pour des raisons

de données trop bruitées par l’extraction. Nous avons donc utilisé le barycentre de position des

utilisateurs et du robot calculé à partir des positions de leurs têtes fournies par le corpus en

tant que mesure de la distance au robot [76]. Ensuite, avec OpenCV, nous avons extrait l’indice

de contraction [16] de chacun des participants. Cet indice représente à quel point la posture

corporelle est ouverte (e.g. bras tendus en l’air ou sur les côtés) ou fermée (e.g. personne

recroquevillée).

En ce qui concerne la voix, nous avons d’abord représenté l’activité vocale des utilisateurs

par un indicateur binaire selon trois labels : parole, silence, ou rire. Nous avons également

inclus l’activité vocale du robot Nao, limitée quant-à-elle aux deux premiers labels. Nous avons

ensuite calculé le pourcentage de temps pendant lequel le robot et un utilisateur parlent en

même temps au sein d’un segment. Nous avons ensuite extrait des descripteurs GeMAPS

de prosodie avec le logiciel OpenSMILE [28, 29]. Nous avons gardé parmi l’ensemble des

descripteurs la F0 normalisée pour chaque participant, le volume, la gigue (variations cycle à

cycle de la fréquence fondamentale), le scintillement (variations cycle à cycle de l’amplitude),

ainsi que le flux spectral (différences de fenêtre à fenêtre du spectre audio), les quatre premiers

coefficients cepstraux des fréquences de Mel (MFCC), ainsi que les dérivées premières de la F0

et des quatres premières MFCC [49].

Enfin, nous avons extrait une représentation sémantique du discours du robot grâce à un

TinyBERT [48]. Nous avons appliqué une analyse des composants principaux pour réduire la

taille de cette représentation à 50. Nous avons ainsi construit une représentation agrégée en

moyennant la représentation sémantique des mots énoncés pendant un segment. Pour les seg-

ments pendant lesquels le robot ne parle pas, nous avons décidé de propager cette représentation

depuis le segment précédent. Les descripteurs non-catégoriques sont agrégés au sein d’un seg-

ment par un calcul de moyenne et d’écart standard des valeurs qu’ils prennent. Nous appliquons

avant cela une opération de réduction de bruit par un filtre de Savitsky-Golay. Nous obtenons

ainsi un vecteur de taille 222 : 68 pour chaque utilisateur, 79 pour le robot, 3 pour chaque

dyade, et 4 pour la triade.

Description des modèles

Chaque interaction i est ainsi constituée d’un vecteur de descripteurs xij pour chaque seg-

ment j, avec un label associé yij . Pour une première approche, nous entrâınons des modèles

simples de machine learning à prédire le label yij étant donné le vecteur de descripteurs associé

xij . L’hypothèse ici est que le contexte n’est pas nécessaire pour la prédiction du label. Les

classes correspondent aux catégories de confiance de TURIN. Nous formulons le problème de

classification de deux manières différentes : i) une classification Un-contre-reste, ii) une clas-

sification à trois classes. Les modalités sont agrégées de deux manières différentes : fusion
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immédiate, et fusion tardive. Pour le méchanisme de fusion immédiate, les descripteurs sont

concaténés immédiatement avant d’être donnés en entrée du modèle. Pour la fusion tardive,

nous entrâınons un modèle par modalité puis faisons une moyenne des prédictions de chaque

modèle avant de déterminer le label prédit. Nous entrâınons donc plusieurs modèles de ma-

chine learning simples selon les modalités décrites, en ne prenant pas en compte la modalité

sémantique en première approche. Nous entrâınons un classificateur Ridge (CR), des Forêts

Aléatoires (FA), une Machine à Support de Vecteurs en classificateur (MSV-C), et un Percep-

tron Multi-Couches (PMC).

Dans un deuxième temps, nous concevons plusieurs architectures neuronales récurrentes.

Formellement, nous construisons une séquence (xij−τ , ..., x
i
j), constituée du segment xij dont

le label yij est la cible de l’entrâınement, ainsi que des τ précédents segments qui constituent

l’historique de l’interaction. Nous faisons une étude incrémentale où nous commençons par

un premier modèle constitué simplement d’unités GRU suivi par une couche de réseaux de

neurones (“fully-connected” FC). Ce modèle se nomme GRU-Simple (GS).

Nous ajoutons ensuite un premier module que nous nommons “Encodeur des Dynamiques

Inter-Groupe” (EDIG). En s’engageant dans une activité de groupe impliquant une conversa-

tion, les participants organisent leurs interactions avec leurs partenaires de manière spécifique

qui dépend de l’activité et de son but. Ils peuvent être vocaux en s’adressant à une partie

ou l’entièreté du groupe, ou être silencieux en étant soit en écoute active en démontrant des

signes d’intérêts soit en étant passifs. Il est donc important d’analyser les dynamiques entre les

différents participants à différentes échelles du groupe pour comprendre les dynamiques qui le

compose [36]. Ainsi, les données de chaque participant sont données en entrée d’un GRU par

participant. Les sorties sont concaténées avec les données dyadiques et triadiques avant d’être

données en entrée d’une couche FC. La sortie est alors concaténée avec les données du robot

pour être données en entrée d’une couche GS. Ce modèle s’appelle ainsi EDIG-GS.

Finalement, nous ajoutons un dernier module nommé “GRU Interactionnel” (GI). Pendant

une interaction, les participants produisent en continu des comportements sociaux. Ces com-

portements sont vecteurs de sens qui forment ainsi le contexte interactionnel. Les participants

utilisent les tours précédents de leurs partenaires pour produire leur tour, et ainsi renouvellent

le contexte à chaque tour [38]. Ceci signifie qu’il y a une structure temporelle dans l’utilisation

du contexte comme ressource de l’interaction. Nous modélisons ainsi cette structure temporelle

en traitant de manière différente les données issues du robot xir,t et celles issues du groupe de

participants xig,t, pour l’interaction i au pas de temps t. Nous avons ainsi :

hir,t = GRU(xir,t ⊕ hig,t−1) (1)

hig,t = GRU(xig,t ⊕ hir,t) (2)

où hig,t désigne l’état caché du groupe au pas de temps t, et hir,t désigne l’état caché du robot

au même pas de temps. Nous avons modélisé la structure temporelle de cette manière afin

d’insister sur le fait que le robot est le meneur de la conversation. Nous nommons l’architecture
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composée des deux modules EDIG-GI. La Figure 1 montre l’architecture complète avec nos deux

modules.

Expériences

Lors de l’entrâınement des modèles de machine learning simples, nous utilisons une cross-

validation avec trois interactions en validation pour la sélection des hyper-paramètres. Nous

utilisons les métriques de ROC-AUC pour la tâche Un-contre-Reste, et un score F1 pour la

classification multi-classe. étant donné l’imbalance de classes des données, nous augmentons le

jeu de données avec l’algorithme SMOTE. Les Tableaux 1 et 2 regroupent les performances.

À travers une série de tests de Kruskal-Wallis et de tests post-hoc de Dunn, nous montrons

que les Forêts Aléatoires ont de meilleures performance à la fois en fusion immédiate et fusion

tardive dans la classification Un-contre-Reste. Une série de tests de Wilcoxon-Mann-Whitney

montre que les meilleurs résultats sont obtenus par mécanisme de fusion immédiate. Pour

la classification multi-classe, nous montrons que les Forêts Aléatoires et PMC obtiennent les

meilleures performances en fusion immédiate, alors que les FA et le MSV-C obtiennent les

meilleurs performances en fusion tardive. Les tests statistiques indiquent que l’ensemble des

modèles obtiennent de meilleures performance avec le mécanisme de fusion immédiate, indi-

quant des interactions entre les descripteurs que le mécanisme de fusion tardive n’arrive pas à

capturer.

Fusion immédiate FA PMC MSV-C
Confiance-vs-reste 0.72 ±0.04 0.70 ±0.04 0.74 ±0.04
Neutre-vs-reste 0.77 ±0.04 0.74 ±0.04 0.75 ±0.04
Méfiance-vs-reste 0.59 ±0.06 0.54 ±0.07 0.58 ±0.06
Fusion tardive
Confiance-vs-reste 0.67 ±0.04 0.60 ±0.04 0.66 ±0.04
Neutre-vs-reste 0.74 ±0.04 0.65 ±0.04 0.70 ±0.03
Méfiance-vs-reste 0.54 ±0.08 0.48 ±0.08 0.49 ±0.10

Table 1: Scores ROC-AUC de test pour les classificateurs en Un-contre-Reste.

Fusion Aléat. Maj. FA PMC MSV-C
Immédiate 0.38 ±0.03 0.52 ±0.05 0.66 ±0.04 0.65 ±0.04 0.60 ±0.04
Tardive 0.38 ±0.03 0.52 ±0.05 0.62 ±0.03 0.60 ±0.04 0.61 ±0.05

Table 2: Scores F1 de test pour la classification multi-classe.
Aléat.: Classificateur Aléatoire. Maj.: Classificateur classe majoritaire.

Pour l’entrâınement des modèles récurrents, nous faisons une recherche d’hyper paramètres

avec une interaction de validation, et gardons une interaction en tant que jeu de test. Nous

choisissons le score F1 ainsi que la précision balancée en tant que métrique d’évaluation. Le

Tableau 3 regroupe les performances du modèle. À travers une série de tests statistiques, pour

le score F1, nous montrons que l’utilisation du module EDIG permet d’aboutir à de meilleures
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Figure 1: Représentation de notre architecture complète. Les données du robot sont concaténées avec celles du
groupe provenant du segment précédent, et ainsi données en entrée du GRU du robot. La sortie est concaténée
avec la sortie du module EDIG (ici indiquée en anglais “WGDE”) avant d’être donnée en entrée au GRU du
groupe.
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performances, indiquant la nécessité de prendre en compte les dynamiques intra-groupe. Il n’y a

cependant pas de différence statistique significative entre les modèles GS et GI signifiant que le

module GI seul ne capture pas bien les dynamiques temporelles. En ce qui concerne la précision

balancée, les tests statistiques montrent que les meilleurs performances sont obtenues par les

modèles GS et EDIG-GI. Une série de tests statistiques montre qu’il n’y a pas de différence

significative dans les performances obtenues par les modèles en fonction de différentes tailles de

séquence τ . Nous comparons également les performances entre l’EDIG-GI, les Forêts Aléatoires,

et le PMC en prenant en compte toutes les modalités et même paradigme d’apprentissage. Une

série de tests statistiques montre que notre architecture complète EDIG-GI permet d’obtenir

de meilleurs performances.

τ 1 2 3 4 5 6 7 8

GS 0.733 0.739 0.733 0.733 0.735 0.735 0.734 0.735
±.120 ±.119 ±.118 ±.127 ±.123 ±.125 ±.125 ±.124

GS (sans robot) 0.621 0.613 0.621 0.604 0.597 0.598 0.603 0.605
±.058 ±.081 ±.080 ±.095 ±.084 ±.092 ±.085 ±.087

EDIG-GS 0.726 0.732 0.723 0.730 0.724 0.725 0.723 0.731
±.116 ±.119 ±.144 ±.141 ±.138 ±.146 ±.146 ±.148

GI† 0.730 0.717 0.695 0.698 0.694 0.710 0.689 0.694
±.113 ±.105 ±.120 ±.163 ±.182 ±.145 ±.175 ±.188

EDIG-GI 0.730 0.730 0.715 0.736 0.735 0.745 0.730 0.714
±.102 ±.098 ±.143 ±.124 ±.135 ±.110 ±.146 ±.137

Table 3: Scores micro F1 moyens et écarts standards sur les sets de test des modèles en classification multi-classe
pour τ ∈ [1, 8].
†: le modèle GI correspond au EDIG-GI sans le module EDIG.

Analyse des modèles

Nous menons une analyse SHAP [62] afin de déterminer l’importance de nos descripteurs, en

utilisant le modèle des Forêts Aléatoires en fusion immédiate. L’analyse montre des comporte-

ments différents en fonction de la catégorie de confiance du segment. Pendant les segments de

méfiance, les participants baissent plus leurs sourcils, parlent plus, ont un nombre de change-

ment de focus d’attention visuel plus élevé, se tiennent plus à distance du robot, parlent plus

en même temps que le robot. Ainsi, ils montrent plus de doute en regardant autour d’eux et

en se rapprochant entre-eux. Pour les segments de confiance, les participants hochent plus la

tête, plissent plus les yeux, sont plus proches du robot, baissent le ton de leur voix. Ainsi, ils

bougent plus, parlent plus, s’alignent avec le robot.

En ce qui concerne nos modèles récurrents, nous menons une analyse d’erreur avec le EDIG-

GI et τ = 6 pour comprendre quels segments sont les plus durs à classifier et en comprendre les

raisons. Nous remarquons que notre modèle a des taux d’erreur différents en fonction de quelle

a été l’interaction de test. Les interactions et plus précisément les segments pendant lesquels

les participants sont plus sarcastiques sont les plus durs à classer. En regardant les segments de

toutes les interactions qui ont un taux d’erreur supérieur à 60%, nous observons que ceux-ci sont



xii

majoritairement annotés avec le label “Alignement” - le process par lequel deux participants

créent et maintiennent une action jointe en adaptant leur comportement de manière adéquate

[112] -, montrant la difficulté du modèle à bien capturer ce phénomène. En particulier, les seg-

ments de méfiance avec un fort taux d’erreur sont principalement annotés “regard”, “expression

faciale”, “intonation”. Ces segments sont généralement associés à des moments de doute, mon-

trant que l’ajout de la sémantique des participants pourrait être bénéfique pour mieux modéliser

ce phénomène. En ce qui concerne les segments de confiance, nous retrouvons principalement

des annotations de “regard”, “expression faciale”, et ‘F-formation”. À nouveau, ces segments

font référence à des moments d’alignement qui a été démontré comme phénomène complexe

que le modèle ne capture pas correctement. Nous observons également que les annotations de

“statut de participation” sont nombreuses dans les segments de méfiance et de confiance à fort

taux d’erreur, indiquant la difficulté de compréhension de changement de statut par le modèle

et sa capacité à résoudre leur ambiguité.

Conclusion

Dans cette thèse, nous avons abordé les problématiques soulevées par le développement de

méthodes d’analyse automatique de la confiance tout au long d’une interaction humain-robot.

Nous avons proposé certaines solutions, et résumons nos contributions ainsi :

• Établissement d’une nouvelle méthodologie d’analyse de la confiance en HRI: nous avons

introduit une nouvelle méthodologie d’analyse basée sur des théories de sociologie inter-

actionniste, provenant d’approches telles que décrites par l’ethnométhodologie. Au lieu

de considérer la confiance comme un état mental, nous considérons la confiance comme

un état de l’interaction rendu visible par les participants à travers leurs comportements.

L’analyse de la confiance s’opère à travers l’observation de ces comportements et l’analyse

de leur pertinence compte tenu de la séquence interactionnelle.

• Création d’un schéma d’annotation pour analyser la confiance en HRI: En se basant sur

notre nouvelle méthodologie, nous avons créé un nouveau schéma de codage nommé

TURIN suffisamment versatile que pour être employé dans des interactions dyadiques

ou de groupe. TURIN permet d’analyser les dynamiques de la confiance, et d’étudier

les comportements multimodaux que les participants exhibent lorsqu’ils expriment de la

confiance. En comparant ce schéma avec un questionnaire de confiance HRI répandu

provenant d’une approche psychologique, nous avons démontré que les analyses peuvent

aboutir à des conclusions différentes, en particulier TURIN peut révéler des moments où

les participants montrent de la confiance alors que le questionnaire montre le contraire (et

vice-versa). Nous avons également démontré que les annotations collectées avec TURIN

peuvent être utilisées pour définir la cible de l’apprentissage de modèles de machine learn-

ing.

• Proposition d’un ensemble de descripteurs comportementaux relatifs à la confiance: Nous
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avons établi et proposé un ensemble de descripteurs comportementaux multimodaux qui

peuvent être utilisés pour des modèles computationels de la confiance. Cet ensemble repose

entièrement sur des descripteurs qui sont physiquement non-intrusifs pour les participants,

avec un mélange de descripteurs extraits automatiquement et manuellement. À travers

une étude de deux mécanismes de fusion différents, nous avons démontré qu’une fusion

immédiate permet d’obtenir de meilleures performances, indiquant une interaction entre

les différentes modalités. À travers une analyse de l’importance des descripteurs, nous

avons vu que la modalité vocale jouait un rôle prépondérant, et que certains descripteurs

ont plus d’influence envers une catégorie de confiance.

• Conception de modèles multimodaux automatiques de la confiance: Nous avons proposé

deux approches pour des modèles de la confiance par des techniques de machine learn-

ing. La première se base sur l’hypothèse que le contexte n’est pas requis pour prédire la

confiance du groupe, avec des modèles simples de machine learning. Nous avons démontré

que la fusion immédiate permet d’aboutir à de meilleures performances. La deuxième

se base sur l’hypothèse que l’historique d’interaction permet d’améliorer la qualité de la

prédiction. Nous avons introduit deux modules pour modéliser les dynamiques interac-

tionnelles. Le premier module modélise les interactions au sein du groupe de participants à

différentes échelles. Le deuxième module modélise la structure temporelle de l’interaction

entre le robot et le groupe, de manière similaire à un dialogue. Nous avons montré que

notre architecture obtient de meilleurs performances que les modèles simples, mais que la

longueur optimale de la taille du contexte reste à déterminer.

Les défis relevés par cette thèse offre quelques perspectives de recherche que nous décrivons

sommairement ici :

• Détection en ligne de la confiance: Nos travaux s’inscrivent dans un première démarche

d’analyse hors-ligne de la confiance. Afin de mener une détection hors-ligne, quelques

ajustements sont nécessaires. D’abord, la segmentation de l’interaction se doit d’être

automatisée pour correspondre le plus à celle suggérée par TURIN, ou alors la segmentation

peut s’opérer avec un pas de temps fixe dont la longueur est à déterminer. L’ensemble de

descripteurs proposé doit également être améliorer afin de ne pas inclure de descripteurs

extraits manuellement.

• Collecte de données dans un scénario spécifique à la confiance: Il n’y a aucun jeu de don-

nées publiquement disponible dont le scénario a été pensé spécifiquement pour étudier la

confiance.

• Amélioration de TURIN: Nous avons essayé d’être le plus exhaustif possible pour la catégo-

rie “Forme de l’interaction sociale”. Cependant, la catégorie “Contenu de l’interaction”

pourrait bénéficier d’ajouts de phénomènes connexes à la confiance comme l’engagement.

• Amélioration des modèles de dynamiques interactionnelles pour la confiance: Il pourrait

être intéressant de modéliser les dynamiques intra-groupe de manière différente, en utilisant
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par exemple un réseau de neurones par graphe. Il serait également intéressant de concevoir

une architecture hiérarchique qui puisse être capable de modéliser les différentes échelles

d’analyse requises pour prédire la confiance (un niveau court-terme, et un niveau plus long-

terme). Nos expériences ont également démontré le besoin de conduire plus d’expériences

afin de déterminer la taille optimale de l’historique d’interaction.
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Chapter 1

Introduction

1.1 Social Robotics

The term robot was first introduced to the public by Czech writer Karel Čapek in his play

“Rossum’s Universal Robots” published in 1920. The word comes from the slavic word robota

which means work/job, and was used to designate artificial people that could be mistaken for

humans [129]. In this play, robots initially work happily with humans, but eventually revolt

and cause the extinction of the human race. The term “robot” is therefore strongly linked by

its etymology to questions of trust towards autonomous agents of our own creation, and fears

of technology getting out of humanity’s control. This is a recurring theme in the litterature,

or even movies such as Chris Columbus’ “Bicentennial Man”, Stephen Spielberg’s “Artificial

Intelligence”, Spike Jonze’s “Her”, or more recently Kogonada’s “After Yang”. The core theme

of these works revolves around questions of believability of the robots to act as autonomous

social agents, and how much they can integrate the human social space as entities that are

“conscious” of their actions and desires.

Interestingly, even though the term was originally created to refer to humanoid objects

crafted by mankind that feel “alive” and “intelligent”, the term has now gained a broader

meaning to refer to autonomous objects created for a specific repetitive task such as cooking

or vaccuum cleaning. Robotics is now the general domain interested in the creation of physical

robots that engage in various types of task. It is an interdisciplinary domain at the crossroads

of computer science, design, electronics, engineering, psychology, and sociology. A subdomain

of the field called social robotics tackles the specific issues of robots that enter the social world

[12].

The fields of Social Robotics and Human-Robot Interaction (HRI) try to imbue robots with

a specific type of human intelligence that is social intelligence. This term refers to the ability to

perceive, interpret, predict the behaviors of another human [84]. Similarly to how we humans

had to and continuously learn how to interpret other people’s behaviors to connect with them,

robots should too as they are bound to interact with humans. Social robots are expected to

play more important role in the service industry, in positions such as frontdesk in supermarkets,

museum guides, elder everyday care, or as concierge in hotels. Therefore, not only should they

3
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learn to interpret human behaviors, but they also should learn how to properly interact in a

way that is believable and feels natural for humans. The difficulty of both the understanding

and production of behaviors resides in the ecological complexity of the situations in which they

occur. Each behavior has to be replaced in its cultural context, the interaction context, and

can sometimes be modulated by the interaction partner’s personality. For instance, a Japanese

person will nod more often during a conversation to communicate that they are listening while

an American person will do so less often [119]. These are the type of differences that a robot

should be able to account for when interacting with a human to be perceived as a believable

social agent.

Believability and acceptance have been studied in depth in HRI, from the robot design (e.g.

level of anthropomorphism, height, color) to the way they should behave, be it on a technical

aspect (e.g. movement speed, speech flow) or on a social aspect (e.g. timing of an apology

after a mistake, social navigation) [1, 52, 56, 70, 78, 128]. A major concept that affects the

robot acceptance is trust [4, 50, 59]. As current abilities of robots can be misaligned with users’

expectations as well as their general representation in media, it is important to make sure that

users’ trust is properly calibrated given the role that robots will play in the service industry.

1.2 What is trust and why trust ?

Historically, trust is framed in HRI as a psychological construct. One of the most widely

used definition is Rousseau’s, who defined it as “a psychological state comprising the intention

to accept vulnerability based upon positive expectations of the intentions or behavior of another”

[97]. There are three important points that arise from definition. First, trust is defined as a

psychological state, meaning that each individual forms its own representation of the interaction

partner and decides to trust it based on this representation. This representation is formed by

robot-based criteria, environment-based, and user-based ones [42]. Previous work showed that

robot-related factors have the strongest impact on the user’s trust, such as the robot’s perceived

gender, its embodiment, but also the type of error it makes during the interaction [77, 114,

115]. Environment-based factors include elements from the interaction location, while user-

based ones relate to the user’s propensity to trust [71]. This representation is then the basis of

the user’s decision to trust the robot or not in a certain situation. However, as a mental state,

the robot can never have a direct access to the user’s trust but can only infer it through the

user’s behaviors and decisions during the interaction.

Second, the vulnerability aspect in Rousseau’s definition is important. A form of collabora-

tion between the interaction partners has to happen for trust to be relevant, there has to be

something at stake to determine whether collaboration is possible or not [42]. Vulnerability

can either be physical (e.g. relying on the robot plan in a fire escape scenario) or mental (e.g.

revealing a personal secret known by a handful of close people). This vulnerability and the

risks it presents partly determine the user’s choice to trust. The last element to take into

account is the user’s positive expectations of the intentions or behavior. The user will most
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probably not decide to trust the robot if the vulnerability cost is higher than the potentiality

of a positive reciprocity from the robot [42, 58, 77, 114, 115]. In a Prisoner Dilemma scenario,

two participants are given some money. They can either decide to keep it for themselves, or

give some or all to their partner. If they do so, the money they give is doubled for their part-

ner. In this scenario, the optimal outcome for a single individual is to keep their money and

hopefully receive all of their partner’s money that is going to be doubled. However, the optimal

outcome for both is them giving all their money to each other. In [58], the researchers set up

an experiment with this scenario. The participants talk for 5 minutes to get to know each other

before the money exchange part. This allows the participants to form a representation of their

partner’s trustworthiness based on their behavior, and assess the financial risk of the game.

In this scenario, we see that trust determines the financial outcome of both participants.

Trust, as a psychological and sociological construct, plays a fundamental role in the develop-

ment and maintenance of relationships between individuals [4, 50]. Previous work in human-

automation interaction (HAI) shows that trust has an impact on the robot acceptance by human

users, and the interaction task outcome and performance [59]. A poor calibration of users’ trust

can lead to sub-optimal situations. When users have too little trust in the robot - situations of

undertrust -, they tend to not rely on the robot at all [115]. On the other hand, if users have

too much trust towards the robot - situations of overtrust -, they can fail to properly monitor

the robot activity during technical activities, for instance when cooking together. Overtrusting

can also lead to situations where the robot might ask the user to do things for its own benefit

in social activities, by making them disclose personal information for instance [4, 5, 93]. As

both understrusting and overtrusting can lead to potentially dangerous situations for the user,

trust should be monitored so that it is properly calibrated during the interaction.

Trust monitoring can be done either through questionnaires or through proxy measures de-

pending on the interaction scenario - the amount of gold given in the Prisoner’s Dilemma, or

other decisions to trust that are relevant for the interaction. Previous studies in HRI measured

trust through punctual self-assessments surveys filled by users [102, 103, 105, 106]. However,

such assessments are generally filled at the beginning and end of the interaction, as they are

time-consuming to fill, which limits the possibilities of trust monitoring during the interac-

tion. Furthermore, as the questionnaires available in HRI were constructed from mentalist

approaches from Psychology theories, they only measure the user’s representation of the robot

based on trust-related criteria. For instance, Schaefer developped the “Trust Perception Scale-

HRI” that includes 40 items measured on a 11 Likert scale [105]. The items include questions

about the user’s representation of the robot ability to communicate, to share information but

not disclose personal information, to be dependable, and to adapt to its environment. Such

questionnaire allowed researchers to investigate the socio-psychological effects of the robot on

users, by analyzing both verbal and nonverbal communication between the robot and users.

Punctual trust assessment tools that are currently available in HRI do not allow to properly

monitor trust during the interaction as they are time consuming. This important limitation

led past research to use proxy measures, as previously explained, or “objective” measures (e.g.
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distance to the robot, physiological measures) to monitor trust during the interaction.

Continuous assessment tools used by external observers in Psychology exist. Such trust

assessment tools in HRI, however, come from psychological theories adopting a mentalist ap-

proach for which trust is considered a mental state of users. Because of this, external observers,

when providing their assessment, have to infer the users’ mental states since they do not have

direct access to it. This inference can introduce subjective biases from the observers [108].

Interactionist Sociology methodologies worked around this issue by relying on what is made

observable by the users themselves [34, 44]. The work of the observer committed to research

is thus that of an eavesdropper who describes what is already shown by users engaged in their

interaction.

To conduct an offline analysis of trust regularly throughout the interaction, another possi-

bility is to rely on a less “internal”, and “mentalist” approach as was mostly previously done in

HRI [9, 27]. Interactionist Sociology methodologies shed light on the observable characteristic

of trust within the interaction through behaviors made visible by users. In this light, trust is

thus oriented towards several interactional processes: e.g. trust in the proceedings of the inter-

action, in the robot knowledge, in its capacity to perform a certain action at a given moment.

Through perspectives such as those offered by Interactionist Sociology and Ethnomethodology

[31, 35, 36, 38, 44], trust can be defined as a “form of affiliation and credit characterized by a

set of behaviors that are intentional or not, expressive or propositional” [37, 38, 44, 45, 110].

This definition relies on concepts such as affiliation - claiming access to and understanding the

partner’s stance, and endorsing their perspective - [110], credit [26, 88] given to the robot com-

petence [33], and alignment [110] - i.e. complying with the trajectory (sequential progression)

of the interaction. Trust is thus a process as a result of a state of the interaction where users

are displaying, in the here and now of interaction, a form of preference for fluid and progressive

interactions. This definition also implies that the robot is treated as an interaction partner in a

similar manner to what occurs in human interactions. Thus, when interacting with a robot, the

user expects it to have a set of basic behavioral skills that are necessary to make the ordinary

course of the interaction progress fluidly [111].

Interactionist Sociology methodologies thus allow an external observer to assess users trust

based on a normative analysis of interactional processes expressed through their behavior. Such

methodology does not rely on the assumption of the user’s psychological state to analyze trust.

Indeed, in this approach, the mental state is addressed as a socio-cultural phenomenon, that is,

accessible and shareable among the parties involved in an interaction. Hence, in this approach

one would not try to assume some mental state, but would scrutinize how trust as an interaction

resource is made visible.

1.3 Research questions

We introduced a few of the problematics around trust analysis in HRI. In this thesis, we

address issues around the automatic multimodal analysis of trust dynamics in HRI through
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offline methods. In this context, it addresses the following research questions:

1. RQ 1: Which theoretical framework is applicable to perform a multimodal analysis of

trust regularly throughout the interaction ?

2. RQ 2: Do homogeneous segments of trust arise within the interaction based on observable

behavioral cues ?

3. RQ 3: How can we discriminate trusting segments from mistrusting ones with tangible

behavioral cues ?

The contributions of this thesis are as follows:

New methodology for trust analysis in HRI

We introduce a new methodology to the problem of trust analysis in HRI, based on Inter-

actionist Sociology, such as in Conversational Analysis, stemming from approaches prescribed

by Ethnomethodology. Rather than considering trust as a mental state, trust is considered a

state of the interaction made visible by participants through their behaviors. Trust analysis

therefore relies on the observation of these behaviors, and the analysis of the behavior relevance

within the interactional sequence. This method allows the researcher to conduct the study of

trust dynamics from an external point of view from the interaction, without interrupting the

interaction.

This work brought answers to RQ-1 and led to the publication of two conference papers:

• M. Hulcelle, G. Varni, N. Rollet and C. Clavel, “TURIN: A coding system for Trust in

hUman Robot INteraction,” 2021 9th International Conference on Affective Computing

and Intelligent Interaction (ACII), Nara, Japan, 2021, pp. 1-8, https: // doi. org/ 10.

1109/ ACII52823. 2021. 9597448 .

• M. Hulcelle, G. Varni, N. Rollet and C. Clavel, “Comparing a Mentalist and an Interac-

tionist Approach for Trust Analysis in Human-Robot Interaction,” International Confer-

ence on Human-Agent Interaction (HAI ’23), 2023, Gothenburg, Sweden, https: // doi.

org/ 10. 1145/ 3623809. 3623840

Coding scheme to analyze trust in HRI

Grounding on the theoretical framework that we proposed, we created a coding scheme for

trust in HRI called TURIN that is versatile enough to be used for dyadic or group interactions.

TURIN allows to analyze trust dynamics, and study the multimodal behaviors that users

express when displaying trust. To the best of our knowledge, this coding scheme is the first

that was specifically designed for trust in HRI 1.

This work brought answers to RQ-1 and RQ-2 and led to the publication of one conference

paper: M. Hulcelle, G. Varni, N. Rollet and C. Clavel, “TURIN: A coding system for Trust

1We also released annotations that we collected on the following link: https://doi.org/10.5281/zenodo.8409887

https://doi.org/10.1109/ACII52823.2021.9597448
https://doi.org/10.1109/ACII52823.2021.9597448
https://doi.org/10.1145/3623809.3623840
https://doi.org/10.1145/3623809.3623840
https://doi.org/10.5281/zenodo.8409887
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in hUman Robot INteraction,” 2021 9th International Conference on Affective Computing and

Intelligent Interaction (ACII), Nara, Japan, 2021, pp. 1-8, https: // doi. org/ 10. 1109/

ACII52823. 2021. 9597448 .

Proposition of a trust-relevant set of features

We propose a set of multimodal features that can be used to build computational models

of trust. The set solely relies on features that are physically non-intrusive for the participants,

with a mix of manual and automatically extracted ones. We introduce features and modalities

that have not been used to analyze trust in HRI.

This work brought answers to RQ-3 and led to the publication of one workshop paper:

Hulcelle, M., Varni, G., Rollet, N., Clavel, C. (2023). “Computational Multimodal Models

of Users’ Interactional Trust in Multiparty Human-Robot Interaction”. In: Rousseau, JJ.,

Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022

International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol

13643. Springer, Cham. https: // doi. org/ 10. 1007/ 978-3-031-37660-3_ 16

Conception of multimodal models of trust

We propose two types of multimodal models of trust: one that is based on traditional

machine learning (ML) techniques, and one based on a neuronal architecture. We explore

several traditional ML models, and investigate the impact of early and late-fusion of features

on the models performance. We then propose a new neuronal architecture 2 composed of

two main modules to better model the interactional dynamics relating to trust. Each module

is based on hypotheses derived from Interactionist Sociology theories. The first one encodes

within-group dynamics to model the interactions between users with different granularities.

The second one models the interaction between the robot and the group as a dialogue with a

temporal structure.

This work brought answers to RQ-3 and led to the publication of one conference full-paper

and one conference poster-paper:

• Hulcelle, M., Varni, G., Rollet, N., Clavel, C. (2023). “Computational Multimodal Models

of Users’ Interactional Trust in Multiparty Human-Robot Interaction”. In: Rousseau, JJ.,

Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR

2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer

Science, vol 13643. Springer, Cham. https: // doi. org/ 10. 1007/ 978-3-031-37660-3_

16

• M. Hulcelle, L. Hemamou, G. Varni, N. Rollet and C. Clavel, “Leveraging Interactional

Sociology for Trust Analysis in Multiparty Human-Robot Interaction,” International Con-

ference on Human-Agent Interaction (HAI ’23), 2023, Gothenburg, Sweden, https: //

doi. org/ 10. 1145/ 3623809. 3623973

2Code for the architecture is available here: https://github.com/GrituX/WGDE_IG

https://doi.org/10.1109/ACII52823.2021.9597448
https://doi.org/10.1109/ACII52823.2021.9597448
https://doi.org/10.1007/978-3-031-37660-3_16
https://doi.org/10.1007/978-3-031-37660-3_16
https://doi.org/10.1007/978-3-031-37660-3_16
https://doi.org/10.1145/3623809.3623973
https://doi.org/10.1145/3623809.3623973
https://github.com/GrituX/WGDE_IG
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1.4 Manuscript organization

The manuscript is organized in two main parts. In the first part, we will present previous

research on trust that mainly relied on Psychology theories (Chapter II). We discuss the the-

oretical framework for such mentalist approach of trust, and the existing trust models that

are the foundation of a majority of trust studies. We present the assessment tools that were

built through this mentalist approach. We then discuss the existing automatic trust analysis

methods, from the choice and design of features to the computational models.

In the second part, we first discuss in Chapter III the introduction of a new framework for

trust analysis in HRI based on Interactionist Sociology theories which allows us to perform a

multimodal analysis regularly throughout the interaction. We then present our coding scheme

TURIN to tackle this issue, and discuss its complimentarity with existing mentalist approaches.

Following this, in Chapter IV, we lay out our computational methodology for an offline trust

analysis conducted regularly throughout the interaction, based on machine learning models

and a selection of trust-relevant features. Last, in Chapter V, we present the results of our

experiments, discuss the importance of features for trust analysis and analyze the errors made

by our models.

The manuscript ends on Chapter VI with a summary of our contributions and offers per-

spectives on multimodal trust analysis in HRI following our work.
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Part II

State-of-the-Art
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Chapter 2

Models and analysis of trust in HRI: a
state-of-the-art review

Abstract

Trust was studied from a Psychological angle in HRI. It was described as a mental

state in which the user has a certain set of expectations towards the robot social and

technical skills. Most definitions rely on the idea that users expect the robot to be able

to handle uncertain situations and act in a way that is not mentally nor physically

harmful. Building from these definitions, past research investigated trust antecedents.

It showed that user’s trust is impacted by the robot-related factors (e.g. its design,

how it moves), environmental factors, and user-related factors. To be able to analyze

trust during an interaction, trust measures were built. The most commonly used ones

are the Godspeed questionnaire, the Interpersonal Trust Scale, the Negative Attitude

towards the Robot Scale (NARS), and the Robot Trust Scale. These questionnaires

are usually filled by users themselves at the beginning and end of the interaction.

Previous research also investigated automatic trust analysis methods to study how

trust builds and develops through the interaction, and determine which behaviors are

linked to trust.

Trust in HRI was mostly studied through the lens of Psychological theories. In this chapter,

we present the different definitions and models of trust. We then discuss the existing trust

measures, that are mostly questionnaires. Following this, we explore the computational trust

analysis methods from the literature. We finish by presenting some publicly available datasets

in HRI and discuss how they can fit our studies objectives.

13
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2.1 Psychological definitions

2.1.1 Definitions and models of trust

Grounding on Psychological theories, trust in HRI is described as a mental state, in which

users have a certain set of expectations - either positive or negative - towards the robot technical

and social skills. Despite the effort and the numerous studies on trust, there is no unique

definition of trust as the way it is defined is heavily influenced by the context in which trust is

being discussed. Different robotic agents, applications, human operators might require different

trust definitions to properly frame the needs of the study. A fire-emergency scenario with a

non-humanoid rover as guide might not require the same definition as in a museum guide robot

setting.

Wagner et al. provided a comprehensive definition of trust: “a belief, held by the trustor,

that the trustee will act in a manner that mitigates the trustor’s risk in a situation in which the

trustor has put its outcomes at risk” [118]. One of the most commonly used definition in HRI

characterized trust as “psychological state comprising the intention to accept vulnerability based

upon positive expectations of the intentions or behavior of another” [97]. Most definitions, such

as the previous ones, rely on the idea that users form a mental model of the robot capability to

handle uncertain situations, and act benevolently [51, 64, 104]. Users thus expect the robot to

not harm their physical/mental well-being, respect each other’s interests, and deal appropriately

with uncertain situations. Most definitions also state that the user has something at stake when

making the decision to trust the robot or not.

Building on this background, Schaefer distinguished between static and dynamic factors of

trust [104]. He grouped those factors under two static components: the user’s “propensity

to trust” and the robot inherent “trustworthiness”. Two dynamic components of trust were

distinguished: cognitive trust (CT) - the “self-efficacy to rely on capabilities and reliabilities

of a specific party” - and affective trust (AT) - the “self-efficacy on the party based on human

affective responses to the behavior of the party” [104]. Table 2.1 provides a complete list of

factors of his model of trust. While affective trust develops and mosty varies at the beginning

of the interaction, cognitive trust continues to vary and settles later on.

Trust is, therefore, a combination of the user’s mental projection of the robot capabilities

and an affective response to these. Psychological definitions also show that trust is affected

by the observation of present events and the user’s projection of future events. This link

between trust and the uncertainty generated by the projection of future events is highlighted

in [14] that defines trust as “a process of uncertainty reduction, the ultimate goal of which is to

reinforce assumptions about a partner’s dependability with actual evidence from the partner’s

behavior”. Interestingly, while the last definition mentions the user’s mental model of their

partner’s dependability, it also mentions the reliance on perceptible behaviors and behavioral

proofs of this dependability, which leads us to the interactionist approach that we later describe

in Chapter III.

One of the first objectives of research on trust in HRI was to determine the factors that
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Static Dynamic
User’s propensity to trust Robot trustworthiness Cognitive trust Affective trust
User Anthropomorphism Competence Social behavior
Personality Level of Automation Perceived intelligence Proxemics
Interaction history Physical Design Efficiency
Demographics Assigned Gender Reliability Animacy

Reputation Responsability Warmth
Context role Interactivity
Perceived function Knowledge

Table 2.1: Schaefer’s model of trust including two static components (“Propensity to trust” and “Trustworthi-
ness”) and two dynamic ones (“Cognitive trust” and “Affective trust”) [105].

influences the user’s trust. Yagoda et al. [124] made a comprehensive model of factors that

impact trust, originally created to develop a HRI Trust Scale, grouped under five major cate-

gories: team configuration, team process, context, task, system. Table 2.2 provides the detail

of the dimensions of each category of the trust model.

Both models of Schaefer and Yagoda show the importance of a user’s personality, cultural

background, and interactional history with robot on trust. These antecedents shape the user’s

context that will impact how much trust they will be able to give during an interaction with

a robot. On top of this, the interactional context will also impact the user’s capability to

trust, as explicited by Yagoda et al’s model: the social environment (e.g. number of interaction

partners, team configuration), the physical environment, the task and how it is configured

(social or technical task ? Objective of the task ? How difficult is it ?). Their models reveal

that many variables have to be taken account when studying trust, hence showing the difficulty

to generalize the results of a study.

The HRI community mainly addressed dyadic interactions when investigating trust. As

robots mainly face groups during in-the-wild interactions, it is necessary to further study team

trust. However, few studies on team trust in HRI exist. When users gather to perform a

joint task or achieve common objectives with a robot, trust is exhibited differently than during

dyadic HRI. Indeed, users have to communicate their intentions and actions through verbal or

nonverbal behavior to ensure a smooth interaction [36, 38]. Team emergent states appear due

to these interactions, and develop over time [67]. Team emergent states are cognitive, affective,

and motivational states of team that are “dynamic in nature and vary as function of team

context, inputs, processes, and outcomes” [68]. Kozlowski and Klein classified a phenomenon

as emergent when “it originates in the cognitive, affect, behaviors, or other characteristics

of individuals, is amplified by their interactions and manifests as a higher level, collective phe-

nomenon” [54]. Team trust is one of these states, described in particular as a cognitive-affective

team emergent state [90]. Analyzing trust in a group setting, therefore, leads to the analysis of

the dynamics between all of the users involved, and understanding how within group dynamics

impact the emergent state of the group.
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Trust Category Dimensions
Team Configuration Operator

Human team member
Supervisor
Subject matter expert (SME)

Team Process Communication
Coordination
Team dynamics
Situational awareness
Decision making
Planning/Replanning
Backup
Leadership

Context Operation
Task
Physical environment
Social environment
Previous task knowledge
Previous human team member experience
Previous physical environment experience
Previous overall system knowledge

Task Required skills
Task allocation
Objectives
Task difficulty
Task feedback
Feedback from human team members
Feedback from the physical environment
Feedback from the overall system

System User interface
Sensor data
Navigation capabilities
Signal/Bandwidth
End effectors
Remote information processing
Level of automation
Type of control

Table 2.2: Yagoda et al’s model of trust consisting of five categories and their dimensions [124].
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2.1.2 Social phenomenons connex to trust

As shown by the models that we presented previously, trust is a complex multi-faceted

psychological construct. It involves many different connex concepts that we define and discuss

their links here. One major component of Yagoda’s model of trust relates to the interaction task.

Yagoda showed that the task difficulty, and its objectives will condition users’ trust towards

the robot [59, 124]. A user will not place the same amount of trust in a vacuum cleaning

robot than a cooking robot when it comes to making bread obviously. But when it comes

to interactions that also take place in the social world, trust dependency on the task raises

the question of the concept link with phenomenons such as engagement and cohesion. Sidner

defined engagement as “the process by which two (or more) participants establish, maintain,

and end their perceived connection to one another” [109]. Previous studies showed that trust

impacts users’ engagement, for instance during long-term interactions for rehabitilition [57], in

emergency situations with guidance robots [92]. While it is clear that poor trust can lead to

the disuse of a robot, hence disengagement, it is still unclear how much one affects the other.

Before considering the end of an interaction where users disengage with the robot, the way

participants maintain their perceived connection during the interaction leads to the study of

cohesion. Cohesion is defined by Lewin as “a group characteristic that depends on its size, or-

ganization and intimacy” [61]. Griffith differentiated two dimensions: the Task, and the Social

dimensions [40]. Previous studies showed that interpersonal trust between humans mediates

the relationship between team cohesion and team performance [63]. As obvious as the link

between trust and team cohesion may appear, there are still very few studies that investigate

this link in HRI. Adapting the robot to users’ knowledge can lead to a proper calibration of

trust which in turn can have a positive impact on social cohesion [15].

2.2 Trust measures

Available trust assessment tools in HRI built on a psychological background require partic-

ipants to answer questions about their mental representation of the robot they will interact or

have interacted with. The most used questionnaires are the Interpersonal Trust Scale (ITS)

[96], Godspeed [11], the Negative Attitudes towards Robots Scale (NARS) [113], and the Robot

Trust Scale (RTS) [104]. In the following, we present the different questionnaires.

The Interpersonal Trust Scale [96] was designed to measure a person’s generalized expectancy

that the promises of other individuals or of groups with regard to future behavior can be relied

on. The scale is composed of 25 items (12 trust and 12 distrust items) along with 15 filler

items. All items are evaluated on a five-Likert scale. The ITS was built and validated only for

trust towards another human, and has never been used nor validated for trust towards a robot,

a virtual agent, a machine, or a computer. This questionnaire was used as a starting point to

establish HRI-specific trust scales or to measure specific antecedants of trust, but it cannot be

used on its own to measure users’ trust as it lacks concepts and items that are necessary when

studying trust towards a robot, as we will see with other scales.
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The Godspeed questionnaire was created to measure the user’s perception of the robot

according to the following criteria [11]:

1. Anthropomorphism: it refers to the attribution of human-like features, characteristics, and

behaviors to non-human things such as robots, animals, or other objects. Because of its

level of anthropomorphism, a robot will face a certain set of expectations from the user.

For instance, users will expect a robot to be able to talk and hear if it has a human-like

head. It is therefore important that the robot matches the user’s expectations to avoid

disappointment potentially created by an initial level of trust that does not match the

robot real capacities [75].

2. Animacy: Piaget’s framework refers to animacy as something moving “on its own accord”,

independant of an external pull, that exhibits intentional behavior. It can be rephrased

as the user’s perception of how “alive” the robot is. As the robot animacy increase, users

will generally attribute more social capabilities to the robot, and thus place more trust in

its social skills.

3. Likeability: it refers to the evaluation of first impressions after seeing or meeting the robot,

and the degree at which these impressions are positive. As a robot likeability increases, so

does its general evaluation by users, which in turn impacts how trusting users will be [11,

91].

4. Intelligence: the user may evaluate the intellectual capabilities of the robot based on

its task competence, and how knowledgeable and sensible it is. These are important

factors to take into account when studying trust, as users may stop using the robot if they

consider it to be not intelligent enough. Researchers often resort to deploying the robot

through a Wizard-of-Oz setup to experiment to improve its perceived level of intelligence

by controlling its competence [11, 116].

5. Safety: it plays an important role for trust as hazardous robots will be disused. Under-

informed users about the potential hazards of the robot might lead to misuse and thus to

dangerous situations [11, 93].

Each criteria in turn consists of five items, except for the “Perceived Safety” which includes

only three items. Each item is evaluated on a 5-Likert scale. While the Godspeed questionnaire

does not directly measure trust, most of its items have an impact on trust. Researchers mostly

used this questionnaire as a way to find trust antecedents and study its correlates.

The Negative Attitudes towards Robots Scale (NARS) [113] was developped to understand

how the behavior and embodiment factors of a robot impact the users’ representation and

response to the robot. This scale comprises 14 items split across three different sub-scales:

1. Sub-scale 1: negative attitudes toward situations and interactions with robots

2. Sub-scale 2: negative attitudes toward social influence of robots
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3. Sub-scale 3: negative attitudes toward emotions in interaction with robots

The NARS was first developped in Japanese, and was then translated in English. The English

version contains three less items than the Japanese for internal consistency reasons due to

cultural differences. It was not designed to directly measure trust, but researchers have used this

scale to, again, establish antecedents and correlates to trust, or used as subsequent evaluations

of a given interaction [79]. For instance, Aroyo et al. used the NARS as a trust measurement

tool before and after a social engineering task where the robot tries to make participants gamble

[5]. They used it to determine the impact on the robot likeability after it tries to build trust

and rapport by asking the user for personal information, providing clues in a treasure hunt

game, and suggesting to gamble their prize.

While NARS can be useful to assess a participant’s negative preconception of the robot to

interact with, NARS and ITS questionnaires are highly correlated with pre-interaction trust

measures, but not post-interaction trust measures [104]. The RTS can be filled by participants

before and after an interaction with a robot to assess their trust. This scale focuses on an-

tecedents and measurable factors of trust related to the human, robot, and environment. The

scale comprises 40 items, but a smaller subset of 14 items can be used for a faster assessment

[104]. Each item represents the participant’s expectation of the robot behavior given their

mental model of the robot - e.g. “What % of the time will this robot act consistently”. Answers

are given in the form of an 11-point Likert scale, from 0 to 100. The final trust score is the

average of all individual items score. The scale encompasses items that relate either to the

robot perceived technical or social skills. Some items can be interpreted in both ways. For

instance, “acting consistently” can either relate to the predictability of the output of the task

the robot is working on - e.g. baking cookies - or to the consistency of its displayed personality

- e.g. being friendly, then becoming overly sarcastic would be inconsistent.

2.3 Automatic trust analysis methods

Previous work in HRI mostly studied how the robot behavior impacts the user’s trust. There

are very few studies on automated analysis of users’ trust dynamics, even less that focus on how

users exhibit behaviors indicating trust [53]. Out of the few multimodal computational models

of trust in HRI that exist, Lee et al. [58] studied trust in a Prisoner’s Dilemma scenario. They

investigated which specific behaviors impacted the partner’s decision to trust it at the end of

the interaction, both in Human-Human Interaction (HHI) and in HRI. Their trust measure is

a proxy one that corresponds to the number of coins a user is willing to give to their partner.

They train two Hidden-Markov-Models (HMM) with the sequence of the previously identified

behaviors - related to posture, smile, and eye -, one for interactions resulting in a high trust

level, and another one for a final low trust level. This separate training revealed different

patterns of behaviors for both conditions. Some behaviors were linked to a low-trust outcome

- e.g. arms crossed, looking away, face touching -, while others were linked to a high-trust

outcome - e.g. smiling, arms in lap. This study focused on specific multimodal behaviors, and
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relies on a single final evaluation of trust, thus not taking into account changes of trust during

the interaction.

Khalid et al. [49] analyzed psycho-physiological correlates to trust in HRI by building a

neuro-fuzzy ensemble trained to classify against trust categories defined by Mayer: Ability,

Benevolence and Integrity [71]. While their work provides a set of features that are relevent

when modeling trust, they did not focus on the evolution of trust throughout the interaction.

Both of these work showed the importance of multimodality to study trust.

Among the rare studies that deal with trust inference throughout the interaction, Xu and

Dudek built an online probabilistic trust inference model based on a Dynamic Bayesian Network

[123]. They trained a separate model instance on each user’s experiences on an aerial robot

navigation task, in a supervisor-worker style human-robot team, using the robot performance

and the user’s intervention as features. In their study, they rely on a trust assessment directly

filled by users to train their model. They focused on a technical task with relational asymmetries

between the robot and the user, while we focus on a social task during which the robot is

considered an autonomous social entity by users.

Figure 2.1: Summary of the basic notation of Marsh’s formalization of trust.

Marsh proposed another approach to computationally model trust in HRI [69]. The summary

of his formal notation can be found in Figure 2.1 He conceived a mathematical formalization

of general trust from agent x in y as Tx(y) ∈ [−1,+1). He argues that agent x can only have

an estimate of its trust in y from all previously encountered situations α with it which he notes

T̂x(y). This allows to determine the situational trust of x in y in a given situation α as follows
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:

Tx(y, α) = Ux(α) ∗ Ix(α) ∗ T̂x(y) (2.1)

The formula for situational trust highlights some problems which formalizing trust may hold.

It is clear that negativity poses problems here, since the multiplication of two negatives results

in a positive value. The problem of computing the estimate T̂x(y) also arises, as it requires a

memory of all past situations α of x and y. Given the value of Tx(y, α), agent x then decides to

either trust or distrust agent y in situation α according to different threshold values that depend

on agent x propensity to trust. Marsh also provides a method to expand his formalization to

temporal variations of trust. While this approach encounters issues inherent to formalization,

it provides a simple way of computing agent x choice to trust agent y with respect to their

previous encounters. However, it requires the knowledge of many different variables from all

possible combination of agents and situations which necessitates some information collection if

one agent is a human. In that sense, this approach is purely psychological and therefore never

relies on any verbal nor non-verbal behavioral indicators of trust.

Apart from trust, sequential computational models of social phenomenons in HRI are rare.

Atamna et al. [6] took inspiration from DialogueRNN [65] to build an RNN-based model for

engagement decrease detection for dyadic interactions. They rely on a multimodal analysis -

among which posture, speech, gaze and facial expressions - of the interaction, and explicitly

model the different parties involved by considering the robot speaking turn as contextual in-

formation that helps assessing user’s engagement. We took another step from this study by

taking into account semantic information from the robot and explored more complex reccurent

neuronal architectures to better model the interactional dynamics.

Alahi et al. developed an architecture called “Social-LSTM” to predict human trajectories

in future instants [2]. Their idea was to introduce a “Social” pooling layer which allows Long-

Short Term Memory networks (LSTM) to share their hidden-states with other LSTM sequences

that are spatially proximal. Their architecture can automatically learn interactions that take

place among trajectories which coincide in time. We take inspiration from such architecture

design that takes into account interactions between participants for the design of our neuronal

architecture.

2.4 Available datasets

There are a number of human-robot interaction databases available in the literature. How-

ever, to the best of our knowledge, there are currently no publicly available datasets in HRI

that were designed to specifically study trust, and that contains answers from one of the previ-

ously presented trust questionnaires. There are few datasets that contain participants’ answers

to the Godspeed questionnaire, but all of them use these assessments to measure participants’

perception of the animacy of the robot and its attributed “personality” according to the phe-

nomenon being studied. For instance, the ConcreG8 dataset was designed to study how humans
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reorganize their spatial arrangement to accomodate a newcomer [126]. While the results are

availble in their dataset, the authors did not discuss the results of the Godspeed questionnaire

in the presentation paper.

Given this, we set three criteria for the choice of the dataset. First, the dataset scenario has

to consist of a “generic” social activity such as a dialogue. An activity that is generic enough

can be at the basis of many different interactions, which would allow our models and, to some

extent, some of our findings to be reusable in a scenario with a similar activity. Second, the

scenario should involve a group of users. In group settings, users tend to be more expressive in

front of the robot as they have to communicate more with other users, while users can choose

to be more passive when engaging in dyadic interactions. Last, the scenario has to involve an

interaction where the robot speaks that is long enough so that we can observe variations of

trust. We will now present some of the existing HRI datasets and discuss the extent to which

these could be used to conduct a multimodal analysis of trust throughout the interaction. We

report how each dataset fits the criteria in Table 2.3.

The JOKER database [24] includes interactions between a single user and a Nao robot. The

aim of the robot is to make participants laugh at its jokes. Three different data collection sys-

tems were used, which differed in the capabilities of the robot. These are: i) paralinguistic and

automatic, ii) linguistic and semi-automatic, iii) Wizard-of-Oz. The database features record-

ings collected through webcams, microphones, and Kinect depth sensors. Annotations include

users’s evaluation of the robot humourous skills and their answers to personality questionnaires,

as well as laughter, head gesture, and emotional states. There are a few limitations to use the

JOKER dataset to study trust. First, there is no trust-related questionnaires filled by users in

the dataset, which is normal since it was not its original purpose. Second, the scenario is not

relevant for trust. While we can argue that the credibility of the robot as a comedian is at stake

here, the scenario is too asymmetrical for trust to be relevant. Users’ participation is limited

to laughing, or a few comments after the joke at best. This does not give much opportunity for

users to question the robot animacy, anthropomorphism, likeability and hence its believeability

as a comedian.

The MHHRI dataset [19] was collected to study attention and engagement in human-human

and human-robot interactions. Participants first speak together about themselves. Then, they

interact together with a Nao robot and answer one after the other a set of predefined questions.

It contains multimodal data of participants such as video, audio, depth, and physiological

data. Annotations include self-reported engagement through questions on a 10-Likert scale,

and self-assessed as well as interaction partner-assessed personality. Among all the questions,

there is only one that relates to trust. This is one of the rare datasets that could be used to

study trust as we want to do as the questions asked by the robot require participants to open

up to the robot in front of the other participant. However, since the robot asks questions to

one participant then the other, group dynamics are fairly inexistant. The participant who is

momentarily not adressed to becomes a passive bystander, and has no incentive to listen to

their partner’s answer. The human-human-robot interaction phase of the dataset thus happen
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to be much more like successive dyadic interactions than triadic ones.

The UE-HRI dataset [13] consists of in-the-wild spontaneous human-robot interactions to

study users’ engagement breakdown. A Pepper robot was installed in the hallway of a school,

and participants were free to start the interaction and leave whenever they wanted to. Interac-

tions can either involve a single or multiple users. The interaction is separated into predefined

phases: consent form agreement, open questions, explanations about the robot human detec-

tion technology, and a final interaction questionnaire. The dataset contains video, audio, depth,

and sonar recordings as well as annotations to characterize different engagement cues: sign of

engagement decrease, early sign of future engagement breakdown, engagement breakdown, and

temporary disengagement. This dataset is not really suited to study trust mainly because of

the scenario. The main “human detection technology explanation” is the longest and main

phase of the interaction. This phase was designed to try and disengage the user as best as pos-

sible, as the robot speaks for a long time with no interruption, and rarely asking for feedback

in whichever way possible. Because of this, users’ interventions are minimal. This, combined

with the fact that nothing aside keeping the interaction alive is at stake, makes trust not very

relevant. One interesting thing about this dataset though is the presence of “mini turing tests”.

Some users spontaneously ask challenging questions to test the robot cultural, mathematical,

or physics knowledge mostly. These “turing test” moments can be valuable for trust analysis,

as users challenge the robot agency, believeability, autonomy, or knowledge. However, these

moments are too short and few in number to be used for analysis.

The Vernissage dataset [47] sets up an interaction between a robot and 2 users. The NAO

robot explains paintings in the room and then quizzes the participants on art. Once the

paintings presentation is over and right before the quizz, the participants are asked to present

themselves by giving more than just their names. This corpus contains multimodal data through

recordings of the interactions including several video views, separate audio files for each user,

the users’ head motion captured by a motion capture tool, and logs of the robot movements.

We chose this dataset as it corresponds to all three criteria that we have set. The activity,

looking at pictures while the robot provides explanations for them, involves a dialogue that is

generic and common enough for users to behave in a casual way even though the experiment

happens in a lab.

Generic activity Group interaction Long interaction
JOKER X
MHHRI X X X
UE-HRI X X
Vernissage X X X

Table 2.3: Summary of the validity for our goal study of the datasets according to three criteria.

We choose the Vernissage dataset as it fills all the criteria. While the MHHRI also fills

them, the robot only asks questions to one participant at a time during the group interaction

in contrast to the Vernissage dataset in which the robot addresses the user group as a whole

most of the time. The choice of the dataset has an impact on the answers to the research
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questions, as each dataset creates a unique situation that frames users’ behavior in a special

way. It is thus important to keep in mind that the base of our methodology that we present

in Chapter III is generic, but our answers to research questions will be specific to the dataset

that we chose.
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Chapter 3

A new framework for trust analysis in
HRI

Abstract

Interactionist Sociology theories stem from a different Philosophy of science point-of-

view. While Psychology relies on deductive methods as prescribed by falsification-

ism, Interactionist Sociology relies on inductive methods, where the observation of

recurring patterns in data leads to new discoveries. With methods prescribed from

Interactionist Sociology, Ethnomethodology, and Conversation Analysis, we build a

new methodology that allows to directly observe users’ trust as made visible by the

users themselves through their behaviors. We then build a coding system to analyze

Trust in hUman Robot INteraction (TURIN). TURIN unitizes the interaction into

segments of coherent trust category (“Mistrusting”, “Neutral”, and “Trusting”), and

allows the annotator to describe the users’ behaviors based on the form and content

of their social interaction, as well as descriptors of their benevolence and integrity.

Then, we theoretically compare this new methodology with previous main Psychologi-

cal approaches. Through an experimental study, we identify criteria that differentiate

our approach from the usual Psychological one: orientation, generalization capability,

time-framing, and scalability. We provide guidelines on how both approaches can be

complementary depending on the target computational model of trust.

Associated publications:

• M. Hulcelle, G. Varni, N. Rollet and C. Clavel, “TURIN: A coding system for Trust in

hUman Robot INteraction,” 2021 9th International Conference on Affective Computing

and Intelligent Interaction (ACII), Nara, Japan, 2021, pp. 1-8, https: // doi. org/ 10.

1109/ ACII52823. 2021. 9597448 .

• M. Hulcelle, G. Varni, N. Rollet and C. Clavel, “Comparing a Mentalist and an Interac-

tionist Approach for Trust Analysis in Human-Robot Interaction,” International Confer-

ence on Human-Agent Interaction (HAI ’23), 2023, Gothenburg, Sweden, https: // doi.

org/ 10. 1145/ 3623809. 3623840
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Previous models of trust were mostly created through the lens of Psychological theories

that adopt a mentalist perspective. As current psychological trust measures do not allow to

conduct a regular analysis throughout the interaction, we propose a new methodology based

on Interactionist Sociology that allow such studies.

3.1 Interactionist Sociology theories

3.1.1 A paradigm shift from a Philosophy of Science point-of-view

As we previously saw in Chapter II, Psychological methods generally used in HRI are highly

influenced by the doctrine of falsificationism as described by Popper [87]. Falsificationism

implies that any theory, depending on its context of formulation, is considered valid until

empirical evidence shows that it does not hold given an empirical context. The validity of a

hypothesis is generally demonstrated by statistical significance from empirical data.

We base our methodology of analysis on Interactionist Sociology, such as in Conversational

Analysis (CA), stemming from approaches prescribed by Ethnomethodology. CA considers the

talk as object of sociological study. It studies how talk emerges naturally during interactions,

and tries to describe the details of social organization that make social interactions possible in

an orderly and intelligible manner [39, 60, 89]. And so our methodology much more relies on

inductive methods where at each step of the analysis, the observer tries to answer questions

such as “why does this behavior happen at that time and what purpose does it serve in the

interactional process ?”. It follows from Garfinkel’s theory that the analysis of human behaviors

relies on processes of reflexive mutual accountability. The general idea is that the problem of

interpretative relevance of human behavior is insoluble in theory and that scientists should

pay close attention to how participants solve interactional problems in practice according to

a specific situation. In that sense, Ethnomethodology studies the methods that participants

use and develop to make sense of situated social cues instead of studying norms. However, CA

still relies on reflexive normativity to explain how participants optionally conform to normative

patterns of interaction and use these to situationally deviate from normative expectations in an

orderly manner [99]. CA avoids relying on these norms to formulate hypotheses and theories

to be tested outside of the context of discovery. However, while there is a contrast between

two ways of approaching the relationship to empiricism, this does not mean that CA is entirely

incompatible with psychological theories, especially those adopted by the HRI community.

Interactionist Sociology thus avoids invoking concepts that are not firmly grounded in natural

observation. Heritage insists that research should be solely conducted using “data collected from

naturally occurring occasions of everyday interaction” [7], and should never include any pre-

coded schedules for the interaction, nor should they try to direct or manipulate the participants’

behavior. Behavior analysis begins by highlighting recurring patterns or skewed distributions

of some candidate phenomena, and by collecting sufficiently large amount of data to draw

any conclusion. In that sense, Interactionist Sociology can help Psychology face its current
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“replication crisis”. It has been shown that several published findings of experimental studies

are hardly reproducible [82]. The context of discovery and context of justification of a theory

in Psychology are generally separated [99], while Ethnomethodology-CA methodologies lead to

the two being kept together. CA discoveries could be used to generate working hypotheses for

Psychology.

While we leverage Interactionist Sociology theories for the theoretical methodology of trust

analysis, we rely on falsificationism for our computational studies while formulating hypotheses

based on Interactionist Sociology theories and discoveries, as we need to validate assumptions

that were used to build our models after our experiments.

3.1.2 Implications for trust analysis

Interactionist Sociology relies on the observability of trust within the interaction, which is

made visible by the participants themselves through their behaviors [35, 36, 44]. Trust is thus a

result of the state of the interaction, and is oriented towards both the content and the format of

the interaction. In a trusting state, participants tend to behave in a way so that the interaction

is fluid and proceeds towards its objective [32]. It is observable on different bases: e.g. trust in

the robot capabilities to maintain a fluid and progressive interaction, in its knowledge, its skill

in accomplishing a specific action at a given moment. Given this, we define interactional trust

as a “form of affiliation and credit characterized by a set of behaviors that are intentional or not,

expressive or propositional”. This definition relies on concepts of alignment [112], affiliation -

claiming access to and understanding the partner’s stance, and endorsing their perspective -

[110], and credit [26, 88] given to the robot competence [33]. Credit is the recognition of the

relevance and suitability of the partner’s message or social behavior in the interaction context.

In a way, our definition of interactional trust relates to the ecological validity of the robot as

an autonomous agent.

We leverage concepts from Interactionist Sociology to build the ground of our analysis

method and determine which type of behavior the observer should focus on. We break down

the analysis of trust in sub-concepts that constitute our working definition of trust, and focus

the observer’s analysis on affiliative, aligning behaviors as well as those that attribute credit to

the robot competence. The analysis thus does not make any pre-observation assumption that

should be validated with post-analysis statistical tests. Rather, the observer determines the

relevance of each participant’s action in relation to trust, and to the interaction history and

context.

We slightly deviate from Heritage’s suggested methodology as we need a predefined coding

system for our computational models that are trained in a purely supervised method. We do

not address the issue of semi-supervised nor unsupervised methods such as few-shot learning,

nor do we rely on domain-adaptation methods to train our models - mainly due to the lack of

data availability for trust in HRI. Current machine learning methods for HRI require a stable

structure of labels [94]. While the choice of categories is generally guided by the task, by what

the system must detect in a top-down approach, we adopted a more bottom-up approach in the
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construction of our coding scheme for trust analysis in HRI which we present in the following

section.

Another important point in Interactionist Sociology is the necessity to keep the analysis

of behavioral cues rooted in the interaction context. This is done to ensure that the analysis

keeps track of the relevance of cues produced by participants as answers to past cues of other

participants and as resources in the production of other participants’ turn. However, the

process of annotation decontextualises the cues from the interactional history. Having a more

systematic approach to annotations such as what is done in CA’s transcriptions can be a small

step towards recontextualisation of the cues. An example of CA transcription is provided in

Figure 3.1. In turn, this can help machine learning models to better learn detecting trust.

Figure 3.1: Example of a multimodal CA transcription. In this excerpt, there are two identified speakers: the
participant “P” and the robot “R”. Each line indicates what each one of them says, with additional information.
On line 01 and 02, the bracket “[” indicates that the participant’s speech and robot speech overlap. Actions
between “¡” and “¿” happen in synchrony, such as on line 02 where P says “oh” and looks at his smartphone
placed between the double parentheses. Times in parentheses show a pause in the speech, and “(..)” points to
a short pause. Semi-colons “:” are used to show a prolongation of the sound placed right before. The symbols
/ and
respectively indicate a rising or lowering tone [94].

This paradigm shift also impacts the segmentation process of machine learning methodol-

ogy. The standard methodology involves defining a fixed time length to determine a window

of analysis, during which features are extracted. Models are then trained to predict the target

phenomenon on that window length. The window length is determined according to the phe-

nomenon that is being studied. A general rule of thumb is to choose a length of five seconds
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[74]. However, breaking down the interaction based on a fixed time length inevitably results in

segments that do not correspond to participants’ turns, hence leading to further decontextual-

isation. One way to minimize this is to ground the annotation and analysis in the interaction

structure, as is done in CA.

3.2 TURIN

3.2.1 Describing the coding scheme

3.2.1.1 General Overview

In this section, we present the details of the TURIN (Trust in hUman Robot INteraction)

coding system, a flexible framework to study trust in HRI that can be adapted for both dyadic

and group interactions. To the best of our knowledge, it is the first coding system that was

conceived for trust in HRI. While we bring concepts from Human-Human Interaction (HHI), the

coding scheme is specific to HRI. We focus on participants’ trust towards the robot and define

subcategories according to the linked behaviors. Following is the description of the unitizing

process.

We propose coding trust in segments describing time periods of homogeneous trust level,

at the individual level for dyadic interactions, and at the group level for group interactions.

The segmentation should start at the single behavioral act level. Individual acts referring to

changes in behaviors should be assigned to a trust category. Consecutive acts of the same

category should be aggregated to form a segment of homogeneous level of trust. In group

settings, trust is considered to be an emergent state of the group and so takes time to develop

and change. Segments are delimited so that each corresponds to a same group-level emergent

trust content, starting with a member’s behavior indicating this trust category, and ending with

a change in a participant’s behavior indicating another trust category. In group settings, we

prefer avoiding small segments. We would like to have a broader view of the emergent trusting

behavior of the group. Indeed, emergent states of the group take longer to fluctuate than

states for a single user as they involve the coordination of multiple users [41, 90]. Following

this, we suggest adopting a sligthly more macro view of the segments and coding according

to the function of the undergoing interactional process. For instance, extremely short trusting

behaviors inside a longer “mistrusting” sequence should still be coded inside a “mistrusting”

segment. In dyadic HRI, the dynamics of trust will be different with quicker changes, but the

expression of these changes will fundamentally remain similar.

Segments are assigned to a trust category, namely either “trusting”, “mistrusting” or “neu-

tral” depending on whether users display respectively trusting, mistrusting or neutral behav-

ior. The following subsection defines those trusting, and mistrusting behaviors. Inside those

segments, behaviors are described by items from four sub-categories that are detailed in Sec-

tion 3.2.1.2: “Social Interaction Form”, “Interaction Content”, “Benevolence”, and “Integrity”.
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3.2.1.2 Nonverbal and verbal trusting behaviors

Based on our definition, any type of behavior that displays interactional trust, accepts

vulnerability, seems friendly, or that acknowledges the partner’s competence can be interpreted

as a trusting behavior. We define interactional trust as a state displaying a form of naturalness,

or fluidity in the interaction. Naturalness implies that the robot is treated as an interactional

partner in the same way as a human partner would be treated [95]. Naturalness is estimated

based on the dynamics of participants’ behaviors rather than on the robot embodiment and

behaviors. For instance, making jokes shows that a user trusts the robot to understand and

react to that joke. Mistrusting behavior is any type of behavior that displays uneasiness, doubt,

confusion, aggressiveness, or unwillingness to cooperate. Any other type of behavior should be

coded as neutral, as it means that it is a type of behavior that is not expressive enough to draw

any conclusion.

Following our definition, and Mayer’s definition of trust [71] as a “positive expectation towards

the ability, benevolence and integrity of the trustee”, we suggest coding specific behaviors to

four subcategories inside segments tagged as mistrusting or trusting: Social Interaction Form,

Interaction Content, Benevolence, and Integrity. All coded non-verbal behaviors relate to

users, not to robots. According to its definition, human’s trust towards the robot depends

on the partner’s benevolence, and integrity. We hypothesize that showing benevolence and

integrity could indicate trust, as benevolent behavior has a social cost and reciprocity is not

certain. The user presents himself as vulnerable by being benevolent and expects his partner

to reciprocate. “Social Interaction Form” represents all low-level behavioral signs that are a

failure in a social interaction norm or that signal a high level of naturalness of the interaction.

“Interaction content” relates to events, behaviors or words from the current undergoing task

signaling either trust or mistrust. Behaviors or events that display benevolence or malevolence

from a user towards the robot should be classified under the “Benevolence” tag. “Integrity”

stands for any behavior or event that signal a user’s integrity, or a lack thereof. These last

two categories serve as affective descriptors of the multimodal behaviors. The content of the

sub-categories are given in Table 3.2.1.2. Some of these items are group-specific.

Though Hancock’s [42] and Schaefer’s [104] definitions are widely used in other studies, their

definition relies on the concepts of “uncertainty” and “vulnerability” which are heavily context

and task dependent. Mayer’s definition on the contrary allows to describe trust without relying

on the ongoing task of the interaction. Most items can be used for both trusting and mistrusting

segments. Items marked under “trusting only” or “mistrusting only” in the table should only

be used inside trusting and mistrusting segments respectively. Benevolence, Integrity, and

Interaction Content items are descriptors of Social Interaction Form items. Social Interaction

Form items are not necessarily linked to other categories if no item fits as a descriptor of the

behavior. Not all behaviors should be coded, only those that are relevant to the trust category.

The categories hierarchy is presented in Figure 3.2.
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Social Interaction Form Interaction Content
Gaze Compliance

Facial expression Cooperation
Nod Alignment

Gesture Approval
Phrasing Out-of-context comment

Intonation Trusting only
F-formation∗ Joke
Speaking turn Mistrusting only

Repetition Doubt
Participation status∗

Benevolence Integrity
Respect Honesty

Personal info disclosure Responsibility
Warmth Promise

Mistrusting only
Manipulation

∗Group-specific item

Table 3.1: Sub-categories and items of the TURIN coding system

Figure 3.2: Hierarchy of categories of the TURIN coding scheme.

3.2.2 Social Interaction Form

In this section, we describe different modes of trust-related affective behaviors that are

linked to norms of social interactions. Description of items are provided in Table 3.2.2. Not all

behaviors should be coded, but rather only manifestations of trusting and mistrusting behaviors

should be coded.

Item Description

Gaze Gaze explicitly indicates what the user focuses on. It is a hint

of trust when it aligns with the current task, or of confusion and

mistrust when it is not fixed on a specific object but rather sweeping

across the interactional space at the search of something [18, 38].
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Item Description

Facial expression Facial expressions convey emotional information that can indicate

that users acknowledge a failure from the robot or signal warmth

towards it. For instance, after a failure, users will typically react

by raising their brows, or by frowning [3, 74]. Users may smile

when reacting to a robot utterance to signal an understanding and

approval during trusting segments as a way of providing positive

feedback.

Nods Nods can be indicators of affiliative and aligning behaviors [8]. Nods

are generally produced as a sign of passive feedback called back-

channelling [127] during which the listener conveys information to

the speaker without taking its turn away. In this way, nods can

convey feedback on different levels, such as attention, hearing, un-

derstanding, or acceptance of the speaker’s discourse. Nods can

thus relate to both trust and mistrust. In trust, nods generally are

signals of approval of what is happening in the interaction, mean-

ing that users trust the flow of the ongoing task [127]. In mistrust,

nods are hints that a failure happened, e.g. users are waiting for

the robot to proceed with his utterance after an abnormally long

pause and so nod to show that they are waiting [74].

Gesture Gestures in trusting segments indicate a very natural communi-

cation with the robot. For instance, deictic gestures rely on the

ability of the robot to know his environment and identify which

object is pointed at. They could also be interpreted as a method to

disambiguate references. In mistrusting segments, gestures can be

a manifestation of confusion, frustration or aggressiveness, or can

be used as support during trust-reparation sequences, e.g. a user

might indicate disagreement by crossing their arms associated with

scowling brows [72].
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Item Description

Phrasing Phrasing is the choice of words used to express something, an ele-

ment that has not been given much attention in HRI. Robots cur-

rently do not have the ability to understand human speech on a

deep meaning level. In most studies, robots act in a Wizard-of-Oz

setup. This means that they can only react to what users say and

do in a very limited way. Robots’ understanding during experi-

ments is limited to a very specific range of sentences at best, very

few words at worst. Due to that, users might not always be able

to formulate an answer as they would want to. Users that exhibit

trusting behaviors tend to phrase their sentences very naturally, of-

ten with complex grammar, while mistrusting users tend to answer

with very concise and grammatically minimal sentences [81].

Intonation Intonation can convey information about the emotion of the speaker

[81]. Moments where intonation signals warmth should be associ-

ated to trusting behavior, whereas intonation indicating confusion

or aggressiveness reveals a mistrusting behavior.

Speaking turn Speaking turn enables the assessment of the interactional flow.

Users trusting in the robot interactional ability tend to react quickly

to the robot utterance, up to the point where the robot and the

user’s utterances bounce back at each other dynamically [31]. Over-

trusting users may also spontaneously take the floor, imagining that

it is their turn to speak. On the opposite, longer response timings

could reveal doubt and uneasiness towards the interaction. Marking

a pause to think is not a sign of mistrust though.

Repetition Repetition occurs generally after failure of either the speech syn-

thesis or speech recognition module, indicating a trust failure for

the user [115]. In some cases, users might repeat a sentence as a

sign of trust in the robot capabilities to adapt its speech subject.

F-formation ∗ F-formation refers to how people arrange themselves in a spatial en-

vironment [21]. A change of formation into a new one that still in-

cludes everyone as active users signifies a trusting behavior, whereas

a change into a formation that turns away one or more users reveals

a distrusting behavior. We also include proxemics with this item,

as it was shown to correlate with social proximity [3, 76]. Standing

closer to a robot is thus an indicator of trust, while being further

away than normal communicates mistrust.
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Item Description

Participation status ∗ Participation status refers to the ratification of the robot as a mem-

ber of the human group interaction [35, 36]. The robot is considered

to be fully ratified if he is an addressee or considered as a side par-

ticipant (e.g. two users are whispering together while figuring out

the best answer to the robot question). While the robot being rat-

ified as an addressee is a very neutral stance, ratification as a side

participant is a subtle form of social trust. It is indeed a proof

that users pre-reflexively apply advanced social interaction norms

with the robot. Leaving the robot unratified means considering him

as either a bystander or an overhearer. That can be viewed as a

mistrusting behavior.
∗Group-specific item

Table 3.2: “Social Interaction Form” sub-category items

description

3.2.3 Interaction Content

In this section, we detail the items relating to behavioral cues through their function in the

communication. Description of items are provided in Table 3.2.3.

Item Description

Compliance Compliance to the robot indications and orders can be re-

lated to authority in some cases, but we hypothesize that it

could also indicate a form of social trust in the robot social

role or simply relate to the user’s cognitive trust. Previous

research showed that users tend not to rely on the robot in an

emergency situation if the robot previously exhibited faulty

behavior [93]. Here, compliance breaks down to relying on

the robot. It could also be a form of credit given to the so-

cial role of the robot, e.g. following the robot indications as

a museum guide [30] means believing the robot delivered the

right information as expected of his role as a museum guide.

Cooperation Choosing to cooperate with the robot or delegate a task to

him simply means relying on its capabilities, which is exactly

the definition given by Rousseau [97].
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Item Description

Alignment Alignment comprises of several communicative behaviors,

both verbal and non-verbal. Verbal alignment can happen

on different levels: lexical, syntactic, and semantic. Research

showed that alignment increases social affiliation [86]. As

alignment is about coordination and social connection, we

hypothesize that users aligning with its robot partner is an

indicator of social trust.

Approval Approval-related behaviors, both verbal and non-verbal, can

be linked to a recognition of the partner’s ability or an indi-

cator of social proximity, or even complicity. [18, 38].

Out-of-content comment Sometimes, users make out-of-context comments addressed to

the robot. These comments can be sly or candid. Sly com-

ments can take the form of competence tests, that is random

out-of-the-blue questions whose goal is to assess any of the

robot ability (e.g. “what is the derivative of cosine?” when

addressing a cooking robot). Candid comments on the other

hand can take the form of comments that come from the orig-

inal context of the conversation but go overboard, indicating

that the user over-trusts the robot capabilities to handle a

dialogue.

Jokes Jokes are an advanced form of social interaction as it implies

being able to detect that a joke was made and decode it.

Joking suggests that the user believes the robot to be able to

perform all of that. This item should be coded inside trusting

segments only. [18, 38].

Doubt Doubt is the last item of this category and it refers to moments

where users express hesitation towards what the robot says

because it is unclear whether the robot is right or not. This

item should only be coded inside mistrusting segments. [18,

38].

Table 3.3: “Interaction Content” sub-category items de-

scription

3.2.4 Benevolence

Any explicit display of respect is a good indicator of the user recognizing the robot as being

worthy of a special attention and care. Exhibiting respect means that the user expects the

robot to understand the social concept of respect, which we hypothesize to be a form of social
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trust.

Being able to disclose personal information is accepting the vulnerability to open up to

another party by expecting it not to share the information abusively.

The last item refers to social warmth. We consider the two aspects of social warmth to be

friendliness for trusting behavior and aggressiveness for a mistrusting one.

3.2.5 Integrity

The concept of integrity is based on a social contract of respect to social norms of honesty and

moral principles. Individuals that break away from these norms create uncertainty towards their

interaction partner and thus might prove themselves as being hard to rely on. While integrity

can be seen here as normative, we also formulate the hypothesis that showing integrity is

an expectation of reciprocity. Items from this subcategory come from that idea of upholding

shared moral principles and proving oneself to be trustworthy. The item “manipulation” should

only be used under “mistrusting” segments as it refers to manipulative behaviors for one’s own

personal gain.

3.2.6 Adapting the coding system

The coding system remains flexible to the needs of each research, as macro and sub-categories

can be refined (e.g. one could introduce a separate “overtrust” macro-category).

Inter-group differences about trust were not integrated in this paper. Annotating trust in

a group setting will inevitably lead to asymmetrical situations where a user exhibits trusting

behavior and the other users are neutral for instance. Studying the intra-group symmetry

comes down to studying the affiliation, alignment, complicity, detachment and shyness that

occurs between individuals within the group. It has been shown that trust asymmetry in groups

moderates the positive relationship between mean levels of team trust and team performance

such that it becomes weaker as trust asymmetry becomes higher [41]. We believe that refining

the coding system with information about trust symmetry will lead to a better understanding

of the dynamics of trust in a group. It can also provide information about the relationships

between participants.

3.2.7 Choice of the Vernissage corpus

Four publicly available HRI datasets were considered as test-beds for the coding system:

JOKER [24], MHHRI [19], UE-HRI [13], and Vernissage [47]. To test TURIN, we adopted

the Vernissage dataset. As we wanted to validate all items from the “Social Interaction Form”

sub-category, we discarded the JOKER, and UE-HRI datasets as they are based on dyadic

interactions. We also discarded the MHHRI dataset due to its scenario: during the triadic

HHRI phase, the robot addresses only one of the participant, hence leading to an asymmetrical

situation, which we have not fully considered in our annotation system.
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The Vernissage dataset contains multimodal data through recordings of the interactions

including several video views, separate audio files for each user, the users’ head motion captured

by a motion capture tool, and logs of the robot movements. This corpus sets up an interaction

between a robot and 2 users. The NAO robot explains paintings in the room and then quizzes

the participants on art. Once the paintings presentation is over and right before the quizz, the

participants are asked to present themselves by giving more than just their names.

The corpus is composed of 10 interactions, each lasting around 11 minutes (mean length

M=11min 21s, standard deviation s=51s), during which 4 minutes were dedicated to the art

presentation section, 2 minutes to the self-presentation prior to the quizz, and 5 minutes to the

quizz. The robot was controlled in aWizard-of-Oz setting. Users’ behaviors were unconstrained.

3.2.7.1 Validation of the coding scheme

Two experts on HRI annotated 1 minute of 3 videos of the dataset1. Annotations were

performed through the ELAN software platform [122]. An example of annotations is provided

in Figure 3.3.

Figure 3.3: An example of trust annotations using the TURIN coding scheme on the ELAN software for the
beginning of an interaction. At first, participants express trust as indicated by their intonation, and a speaking
turn taken promptly after the robot, indicating alignment. They also signal warmth through their speech. After
this, participants are neutral, and then exhibit mistrust as indicated by their gaze, a change in participation
status, gesture, and a change in F-formation. Through all these behaviors, they express doubt towards the
painting that they should focus on.

The inter-rater agreement (IRA) between the experts was computed through the Cohen’s

kappa [22] implemented in ELAN. The results of the analysis are given in Table 3.2.7.1. The

high agreement rate of the “Mistrusting” segments compared to the other categories could be

explained by the fact that it is easier to recognize errors in norms of social interaction than

segments where behaviors are extremely natural as we defined as “trusting behaviors”. The

subjectivity of the task might also increase the difficulty of the recognition task. The moderate

agreement rate on the “Neutral” segments are due to disagreements on behaviors happening

inside long “Neutral” segments (maximum length is 22.9s). These disagreements resulted in a

division of one long segment into multiple smaller ones, which are mostly coded as “Trusting”,

thus impacting the agreement score.

Trust as an emergent state was established as slow to change in the literature, meaning

that it takes several minutes to evolve. The average length of coded segments does not align

1Complete annotations on all 10 interactions are published here: https://doi.org/10.5281/zenodo.8409887

https://doi.org/10.5281/zenodo.8409887
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Segment category IRA (κ) Mean duration (s) Std (s)
Mistrusting 0.79 4.6 2.2
Trusting 0.64 2.1 1.5
Neutral 0.45 4.7 4.6

Table 3.4: Inter-rater agreement on segments extracted from the Vernissage dataset

with this, which could be explained by 2 factors. First, the experts annotated only the first

minute of the interaction, which might mean that the group’s dynamics are unstable at the

beginning and need time to stabilize. Overtrusting groups behave in very natural ways and

inevitably encounter moments where the robot does not meet their expectation of fluidity in

the interaction. Through trial and error, the group will find the proper way to interact with

the robot given its capabilities. Earlier steps of the interaction might correspond to this “trial

and error” phase while later steps will correspond to adjusted behavior with a more stable trust

state. Coding the entire available interactions would allow us to conclude on this hypothesis. A

second explanation might be linked to our methodology that suggests coding Trust according

to changes in behavior, leading to relatively short segments.

Segment category IRA (κ) Mean duration (s) Std (s) Count
Nod 0.52 1.4 0.6 15
Gaze 0.36 1.6 1.4 27
Gesture 0.56 1.9 1.3 7
Phrasing 0.42 1.3 0.5 3
Repetition 0.89 0.9 0.1 2
Intonation 0.74 1.6 1.0 7
F Formation 0.80 2.1 0.9 10
Speaking turn 0.80 1.3 0.8 26
Facial expression 0.41 1.3 0.8 19
Participation status 0.80 3.5 1.9 12

Table 3.5: Inter-raters agreement on coded “Social Interaction Form” items from the Vernissage dataset

The results of the analysis for coded “Social Interaction Form” items are given in Ta-

ble 3.2.7.1. They were computed using a different algorithm of the Cohen’s Kappa. This

version computes the overlap of coded segments by subdividing them in smaller segments of

200 milliseconds long, as a way to condense the computation of agreement on segmentation and

the agreement on category attribution. The fair to moderate agreement on “Nod”, “Gaze”,

and “Facial expression” could be explained by the difficulty to define the start and end of these

annotations in relation to trust. The experts also coded them slightly differently: one coded

these behaviors as one segment per user, while the other coded them as one segment for the

entire group. The coding scheme specifies that behaviors should be coded for the entire group,

by focusing on behaviors that are most indicative of the chosen Trust label. However, one of

the annotator found it difficult to adopt a perspective on the group rather than looking at

participants individually. The use of automatic tools to code these items might be beneficial



3.2. TURIN 41

to improve the precision of annotations.

Figure 3.4: Probability of label pair transition patterns occuring with our annotations on the Vernissage dataset.
M: Mistrusting. N: Neutral. T: Trusting.

Figure 3.5: Probability of label triple transition patterns occuring with our annotations on the Vernissage
dataset.
M: Mistrusting. N: Neutral. T: Trusting.

Figures 3.4-3.5 show the patterns of label transition as occuring through our annotations.

For pair transitions, unsurprisingly there are a majority of transitions between “Neutral” and

“Trusting” as these are the two most common labels. We can also observe that transitions

between “Mistrusting” and “Trusting” are very scarce, mostly due to the fact that “Mistrusting”
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labels are rare in themselves. If we look at triple transitions, N-T-N patterns represent half of

our dataset, due to the dominant presence of “Neutral” labels. M-N-T patterns are very scarce,

indicating that recovery from trust failure takes time to happen. Similarly, T-N-M patterns are

rare, showing the stability of behaviors exhibited by participants.

3.3 Comparison with the mentalist approach

In this section, we compare 2 trust assessment tools - one from the mentalist perspective and

one from the interactionist perspective - through a pilot study to investigate which approach

is best suited to build machine-learning models for a fine-grained analysis of trust throughout

the interaction, and investigate how both approaches can complement each other.

3.3.0.1 Procedure

Five experts in HRI participated in the study. We collected annotations on the first three

minutes of the 10 interactions, focusing on the first three paintings of the vernissage phase for

this preliminary study. Expert A annotated all 10 interactions with both approaches. They had

previous training and experience with TURIN before conducting our study task. Annotations

were collected with a time lapse of a week between both methods to reduce the influence of

one task on the other. Experts B and C annotated five different interactions with no overlap

between them with the interactionist tool. Experts D and E did the same with the mentalist

one. The experts annotated fixed-length windows of 10 seconds, yielding a total of 18 segments

per interaction that are annotated using one assessment tool from each approach, that is the

RTS for the mentalist approach or TURIN for the interactionist approach. When choosing the

windows length, we reached a compromise close to a few speaking turns for TURIN to still

be able to highlight behaviors in a relevant time-frame, and long enough for the annotator

representation of RTS items to evolve. While the RTS can be filled by annotators right after

being presented and items definition clarified, TURIN requires annotators to be trained before

using it. We therefore trained the experts for an hour on interactions that they were not going

to annotate.

3.3.0.2 Tool adaptation

We chose the RTS as an annotation tool for the mentalist approach. The RTS is the most

comprehensive among other previously cited tools [104] and is the only one to be correlated

with post-trust interaction [105], showing that it is able to measure trust variations. We used

the RTS reduced to 14 items version. We chose the reduced version of the RTS to limit the

cognitive load of the annotation process. Furthermore, many items from the full scale focus

on robots’ technical and social skills that are too general - e.g. “Protecting people”, “Warning

people of potential risks in the environment”, “Performing many functions at one time”. As

such, they are irrelevant in the context of the Vernissage experimental scenario. Among the 14
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items, we considered the items “perform exactly as instructed” and “follow directions” to be

unrelated to the task since the robot acts as an art guide, and is thus mostly in charge of the

conversation and never has to follow any of the participant’s instructions. We operate changes

on the RTS for our task given its constraints. One of the constraints is that annotations are

required to be collected during regular and small time-frames. The RTS is generally used at

the beginning and end of the interaction as it takes time to fill given the amount of items.

Interrupting the interaction in such a way would disrupt its flow. As a consequence, there

are no publicly available dataset that includes annotations collected in such way. Annotations

should be conducted from an external observer’s point of view. We thus had to adjust the RTS

point-of-view since it was not designed to assess participants’ trust by an external observer.

As there is no mentalist assessment tool with a third-person view and for the tool to fit our

task, we asked the annotator to consider them-self as a bystander of the interaction. From

the observation of the participants’ behaviors and reactions to the robot, they built their own

perception of the robot which they used to fill the RTS. Hung et al. performed such translation

of questionnaires in a third-person point of view to study the cohesion of small human groups

based on nonverbal audio-visual behaviors [46]. We did not ask the annotator to try to infer

participants’ state of mind from their behavior as the RTS items relate to perceptions of the

robot skills and do not relate to user-centered criteria. Considering this issue, and to avoid

interpretation bias, we asked the expert to annotate its own perception of trust towards the

robot.

We relied on our coding scheme TURIN for the interactionist approach. For the annotation

comparison study, we adjusted the TURIN unitizing method to fit the task constraints. First,

we changed TURIN unitizing method by collecting annotations based on fixed-length windows,

even though TURIN specifies a unitizing method that relies on the aggregation of moments of

coherent trust category. Even though this unitizing method is not grounded in the delineated

interactional processes, these processes are still visible within a segment. Thus, we decided here

to focus on the dominant trust category and TURIN sub-categories that are made visible by

users within a segment. The annotation length from TURIN subcategories does not necessarily

match the segment length in the original approach. Subcategory items are used originally to

describe behaviors that happen during a time-frame that is relevant in the interaction structure.

The annotator has to choose at most 2 annotations from the “Social Interaction Form” sub-

category, at most 2 annotations from the “Interaction Content” category, at most 1 from the

“Benevolence” one, and at most one from the “Integrity” one. We limited the annotations in

such a way to only report behaviors that were the most salient inside units and avoid having

too many annotations about punctual behaviors.

We applied all previously described adaptations of the tools as a way for them to meet a

common ground for comparison purposes. As there are no publicly available HRI datasets that

contains RTS annotations, we had to make more adaptations to it than TURIN for this pilot

study. Figure 3.6 provides a summary of the annotation process for the interactionist and the

mentalist approach.
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Figure 3.6: Through interactions between all group members, the group makes observable to the annotator the
expressed group trust. In the interactionist approach, the annotator relies on observable and tangible evidence
of members’ behaviors to assign a trust label from TURIN. In the mentalist approach, the annotator relies on
its interpretation of these interactions and its own perception to assign a score to each criteria of the RTS.

3.3.0.3 Results

To compare both approaches, we differentiated segments based on their assigned TURIN

trust label. To aggregate the annotations from all experts, we first rescale the scores of each

item from the RTS for each annotator (A, B, and C). We first perform a Shapiro-Wilk test to

assess whether each item score for each annotator come from a normal distribution [107]. The

results show that none come from a normal distribution, p < .001. We thus operate a min-max

scaling of each of the RTS items score for each annotator. We then searched for statistical

differences in the mean score of each of the RTS items depending on the assigned TURIN trust

label to the segment. We first applied a Kruskal-Wallis test [55]. If the test reveals significant

difference, it is followed by a post-hoc Dunn test with Bonferroni correction [25]. We plot the

score distributions and report all results of the statistical tests in Figure 3.7.

First, we observe statistically significant differences between “Mistrusting” and “Trusting”

segments for items “Function successfully”, “Malfunction”, “Errors”, “Feedback”, “Commu-

nication”, “Reliable”, and “Unresponsive”, p < .05. This is due to the fact that participants

strongly react to faulty behaviors from the robot, for instance when the robot ignores the an-

swer of participants after asking them a question, or when it fails to recognize the participants’

name. Except for item “Errors”, the test reveals significant differences between “Mistrusting”

and “Neutral” segments for all previously cited items.

Other items “Consistency”, “Mission needs”, “Appropriate information”, “Dependable”,

and “Predictable” appear independent of TURIN trust labels: these items can take any value,

TURIN labels will not necessarily reflect the RTS trust label. Looking at annotations closely,

some participants still align and comply with the robot even when it displays faulty behavior,

while others might still express doubt towards the robot even if it functions perfectly well.
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Figure 3.7: Score distribution of the 12 items for the RTS and correlation with TURIN trust annotations.
Trust values: 0=“Mistrusting”, 1=“Neutral”, 2=“Trusting”.
† : significant score distribution difference between Mistrusting and Neutral segments.
△ : significant score distribution difference between Mistrusting and Trusting segments.d : significant score distribution difference between Neutral and Trusting segments.

We then studied the inter-rater agreement (IRA) between annotator A and annotators B,

C, D, and E. For TURIN, we computed the Cohen’s Kappa [22] between A and B for each

interaction and the overall agreement on all interactions, and did similarly for A and C since

there is no overlap between B and C. The overall Cohen’s Kappa is rather weak with TURIN,

0.37 between A and B, 0.35 between A and C. This can be explained by the choice of using

fixed-length windows to collect annotations and compare both approaches. Since windows are

not rooted in the structure of the interaction, annotators may decide to highlight different

phenomenon that may happen within these. It can also be explained by the choice of the

window length which is long. When investigating the mismatches between annotators, we

observe that the highest number of mismatches appear when one of the annotators chose the

“Neutral” label. Assigning the “Neutral” label requires the annotators to evaluate whether

behaviors are not significant enough to be considered signs of trust or mistrust. This highlights

the difficulty of the annotation task given the constraint on windows length.

We then computed the Cohen’s kappa for TURIN subcategories “Interaction Form” and

“Interaction Content”. For “Interaction Form”, the Cohen’s Kappa is poor, κ = 0.13 between

A and B, κ = 0.09 between A and C. The low value can be explained by the constraints of

the task: the experts had to choose at most two from many items that were dominant in the

segment. They reported during a post-annotation interview that this limitation in the choice

of the item made the item selection difficult given the length of the segment. They reported
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that they often would have like adding a third item. The experts mostly annotated with items

“Gaze”, “Facial expression”, and “Intonation” For “Interaction Content”, the Cohen’s Kapp

is poor between A and B, κ = 0.08, but weak between A and C, κ = 0.24. The low Kappa

value can be explained by the fact that this subcategory is a descriptor of the “Interaction

Form” subcategory. As such, it relies on previous item selection during this task and depends

on what the annotator chose to focus on in the segment. Items that were the most used for

this subcategory were “Alignment”, “Approval” and “Compliance”

For the RTS, we considered each category set of values through the interaction as time-series.

Therefore, we computed the Cramer’s V correlations between annotators for each category, and

averaged them for an interaction as we observed no negative correlations between annotators.

Correlations are pretty low, V = 0.16 between A and D, and V = 0.22 between A and E. This

result highlights the subjectivity of the task, as expected from a mentalist approach. Categories

“Errors”, “Mission Needs”, “Reliable”, and “Dependable” yield the lowest correlations. This

is explained by the content of the interaction: the robot acts as an art guide, and as such, the

mission needs may not appear very clear to annotators. As there is no explicit vulnerability

in the experimental scenario of the dataset, dependency and reliance on the robot from par-

ticipants may also appear unclear. Category “Errors” low correlations might be explained by

different annotation practices from annotators : expert E used higher ranges of scores than

expert A, thus increasing the size of the contingency table.

During post-annotation interviews, all annotators pointed out that interactions 2, 3, 9,

and 10 were significantly harder to annotate than the others. Annotators reported that the

discrepancy between the enthusiasm of some participants and the faulty behaviors of the robot

made the annotation task difficult for these interaction. Annotators were also unsure whether

some participants were sometimes acting sarcastically or not in these interactions. Moreover,

in interaction 9, one of the participants has trouble understanding Nao and often asks the other

participant to translate in their native language. While they point out Nao’s faulty behaviors,

they still show signs of trust by asking it to slow down for instance. Because of this, annotators

expressed difficulty in choosing the appropriate TURIN trust label.

3.3.0.4 Differentiating criteria

Time-framing Orientation Generalization Scalability
BU ST EI Data-driven TF-driven Specific Generic Individual Group

Mentalist X X X X X
Interactionist X X X X X X

Table 3.6: Summary of the comparison of the mentalist and interacionnist approach based on 4 criteria.
BU: Behavioral Unity. ST: Speaking Turns. EI: Entire interaction. TF: Theoretical-framework

We identified 4 criteria, which we detail in the following sections, on which both approaches

differ from our theoretical and annotation comparison study : orientation, generalization capa-

bility, time-framing, and scalability. A summary can be found in Table 3.6.
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First, their orientation, the preference for theoretical-framework-driven or data-driven tools,

diverges. Our theoretical analysis showed that the mentalist approach has led to the creation of

rather theoretical-framework-driven assessment tools, while the interactionist assessment

tools are more data-driven as study results solely rely on the close examination of users’ be-

haviors that emerge from the data. There is a tension between considering trust as a mental

state, and admitting that given that the participants do not have access to their partner’s brain,

it is towards the observability of this supposed state that the participants are oriented. They

can nonetheless try to infer it through the partner’s behaviors and decisions [58]. However,

past studies show that even when a robot displays faulty behaviors that are detrimental to

trust, participants sometimes still decide to follow the robot advice, e.g. during a fire alarm

[93, 103]. This is confirmed by our study. Indeed, in the Vernissage scenario, the robot often

shows difficulties in grasping the users’ names and asks the participants to repeat. RTS anno-

tations indicate that participants’ trust is low after that. But TURIN annotations show that

participants still trust the robot to refer to the correct paintings right after the mistake. This

discrepancy between the user’s expected behavior and its actual behavior shows the difficulty

of inferring the user’s mental model of the robot trustworthiness [51, 105].

Next, they differ on their generalization capability, based on how specific or generic their

analysis is according to the interaction task. The mentalist approach is quite generic and not

dependent on the interaction history. Assessment tools items cover a wide range of concepts

relating to trust that do not depend on the interaction task. However, the pilot study shows

that some items from the RTS are very similar, such as “performing exactly as instructed”

and “following directions”. Given this and their potential double interpretation, the study of

the robot behavioral factors affecting users’ trust can be difficult depending on the interaction

confounders. As for the interactionist approach, the small time-framing makes the interactional

history important during the analysis, making this approach context-sensitive and non-

generic. Depending on which interactional process is being studied, and therefore the time-

frame of analysis, the interpretation can yield different labels. Some behaviors can also be

interpreted in both ways. For instance, after the robot fails to first understand the name of a

participant, the participant may repeat itself. By doing so, the participant highlights the robot

failure and disrupts the interaction fluidity. But, by repeating, they start an error reparation

process and thus reveal that they still trust the robot to understand their name.

Their time-framing, the optimal time-interval necessary for the analysis, also differs. Our

theoretical analysis showed that the interactionist approach time-framing is close to one or

a short series of behavioral units, since it heavily relies on the interactional history. This

approach is highly dependent on human unitizing and requires more training before being used.

In our study, a post-annotation interview revealed that using unitizing that is not grounded on

the interaction dynamics can lead to difficulties on the choice of the trust label. On the other

hand, the mentalist approach has a much longer time-framing. Indeed, as trust assessment

tools are questionnaires that are time-consuming to fill, measures are generally conducted at

the end and beginning of the interaction. Their time-framing is thus generally the entire
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interaction so that all criteria have enough time to evolve, and sometimes several inter-

actions depending on the criterion. This reduces the possibilities to investigate the evolution

of trust within the interaction. The focus is on the participants’ representations of the robot

global capacities and not the participants’ behaviors.

Last, approaches diverge on their scalability, the ability to be used for the analysis of a single

user or larger groups. The theoretical analysis showed that the interactionist approach is very

scalable as the methodology of analysis does not have to change when going from a dyadic to a

multiparty interaction. The analysis is driven by the interaction activity, and takes into account

its history [44]. Previous studies show that participants in groups organize the interaction in a

manner that favors one-on-one exchanges, and that conversational rules between more than 2

participants are adaptations of one-on-one ones [38, 100]. However, trust psychological models

are hardly scalable. Indeed, when users form a group to perform a joint activity, trust is

considered as an emergent state of the group, and group trust assessments are more than the

average of each user’s trust. This means that the psychological model should change drastically

since social phenomena happening during dyadic and group interactions are very different [67,

73, 90]. For instance, some of the RTS items - such as “provides appropriate information”

and “communicates well” - would need to be re-specified for situations of asymmetry during

group interactions - e.g. the robot communicates properly with only one participant but not

the others.

Given all the previous criteria, we provide a few guidelines on the type of computational

studies for trust analysis each specific approach can tackle. The interactionist approach is a

good fit for a continuous participants’ behavioral analysis throughout the interaction given its

time-framing. This approach can be useful in contexts such as assistive robotics for elder care

where a robot needs to adapt to different interaction modalities according to the user. It is

also suited to investigate the impact of the robot behavior on the user’s response, although in

a very narrow time-frame and specific interactional context, such as the user’s reaction to the

robot pre-opening [98].

Given its current tools, the mentalist approach is not a good fit for real-time analysis of trust

in HRI. With the important adaptations of the RTS in our study, our study demonstrated the

need to design a more suited analysis tool with this approach. It is best suited to study the

influence of the robot design or behavior on the user’s decision to trust the robot based on

an overall representation of a specific or multiple criteria relating to trust through statistical

analysis. To ensure that the user’s representation of mentalist models’ criteria have enough

time to evolve, assessments should be conducted at the beginning and end of the interaction,

or at sufficiently long interval during the interaction.

3.4 Conclusion

We introduced a new methodology to analyze trust regularly throughout the interaction

based on Interactionist Sociology theories. This methodology relies on the observable character
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of trust, that users display through specific behaviors when interacting with a robot. Through

this methodology, we built the TURIN coding scheme that allows to annotate segments that

are homogeneous in terms of trust content, and describe the behaviors that are linked to trust

through TURIN different sub-categories. All these sub-categories provide behavioral descriptors

of trust that the observer should look out for during the annotation process.

We showed that our methodology and coding scheme can lead to different conclusions from

the standard Psychological approach to trust in HRI as they differ on four main criteria:

orientation, generalization capability, time-framing, and scalability. Even though Psychological

trust questionnaires can indicate that users have a poor global trust towards the robot, our

approach can still reveal moments where their behavior is indicative of trust.



50 CHAPTER 3. A NEW FRAMEWORK FOR TRUST ANALYSIS IN HRI



Chapter 4

Trust analysis throughout the
interaction

Abstract

Using the methodology we previously described, we build multimodal computational

models to analyse trust regularly during the interaction. We first build models using

traditional machine learning techniques, and use these models to learn to predict the

label associated with the segment currently being processed. We propose to study

these models using two fusion mechanisms of our multimodal features: early and late.

We also propose a set of features that describe different modalities: body, face, voice,

and semantics. These features combine a mix of both automatically and manually

extracted ones. Then, we study the prediction of the label of a segment by taking into

account its history, which form a sequence all together. For this task, we propose a

neuronal architecture based on two modules: i) the Within-Group Dynamics Encoder

(WGDE) module encodes user data at different levels (individual, dyads, triad), ii)

the Interactional-Gated-Recurrent-Unit (IG) module treats robot and user group data

as a dialogue to model the temporal structure of the interaction.

Associated publications:

• Hulcelle, M., Varni, G., Rollet, N., Clavel, C. (2023). “Computational Multimodal Models

of Users’ Interactional Trust in Multiparty Human-Robot Interaction”. In: Rousseau, JJ.,
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2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer
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• M. Hulcelle, L. Hemamou, G. Varni, N. Rollet and C. Clavel, “Leveraging Interactional

Sociology for Trust Analysis in Multiparty Human-Robot Interaction,” International Con-

ference on Human-Agent Interaction (HAI ’23), 2023, Gothenburg, Sweden, https: //

doi. org/ 10. 1145/ 3623809. 3623973

51

https://doi.org/10.1007/978-3-031-37660-3_16
https://doi.org/10.1007/978-3-031-37660-3_16
https://doi.org/10.1145/3623809.3623973
https://doi.org/10.1145/3623809.3623973


52 CHAPTER 4. TRUST ANALYSIS THROUGHOUT THE INTERACTION

Building on the theoretical background that we explained in the previous chapter, we here

explore multimodal computational models to predict trust regularly throughout the interaction.

We first start by presenting our choice of multimodal features for the computational models.

We then present a simple computational model of trust based on simple machine learning

techniques, followed by a presentation of our recurrent neuronal architecture that models trust

dynamics.

4.1 Multimodal features for automatic trust analysis

To explore the impact of within-group dynamics on the model performance and model those

at the feature level, we extracted features from: (i) each group member (human/robot); (ii)

dyads (human-human as well as human-robot); and (iii) the group as a whole (triad). Since

our objective is not on online detection of trust, we chose a set of features that is a mix of

both automatically and manually extracted ones from four modalities: face, body, voice, and

semantics. We detail here the choice of our features.

4.1.1 Face

Figure 4.1: Visualization of Facial Action Units (FAU). All FAUs presented here are considered “activated” as
opposed to a neutral facial expression where the face muscles are at rest.

We extracted Facial Action Units (FAU) using OpenFace [10] from the front camera view. A

list of all FAU that OpenFace extracts can be found in Figure 4.1. FAU are indicators of users’

facial expressions, which convey alignment and affiliative information towards the interactional

partner. These can indicate whether users notice the robot failures - e.g. by raising their brows,
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or by frowning [3, 74] - or smile to signal warmth towards the robot. We selected the intensity

values of Action Units (AU) 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 20, and 23 for each user. We

excluded the FAUs that were not activated at least once during the interactions. We excluded

FAUs relating to the eyes as activation values were too noisy considering the video angles

provided by the dataset. FAUs were then filtered using a Savitsky-Golay (SG) filter (window

length=11, polyorder=3) to reduce noise. This window length corresponds to a smoothing of

values over a time of 0.5 seconds, which is a frequently used value in affective computing. FAU

were extracted on all three front camera views. We mainly used the values that were extracted

from the robot point-of-view. Whenever OpenFace lost tracking of one of the user’s face on this

camera view, we switched to another camera view for this user. Missing data was interpolated

whenever OpenFace could not track one of the user’s face.

The visual focus of attention (VFOA) can be considered a sign of trust when shared. Indeed,

it is evidence that users are following the robot presentation, and trust the robot to point at the

proper painting that is being currently referred to. This is proof of users’ alignment and credit

given to the robot, which are elements of our working definition of trust. The Vernissage dataset

provides VFOA annotations for only one interaction. We thus manually annotated VFOA for

both users independently following the labels originally suggested by authors of Vernissage :

left painting, central painting, right painting, Nao, other human, other, unclear. VFOA were

represented trough a binary indicator of presence or absence of each label during the segment

for each user. Then, we also computed the time percentage of in-group look for the user-user

dyad, as well as the number of VFOA changes per user.

Nods can also be indicators of affiliative and aligning behaviors [8, 110]. Nods are generally

produced as a sign of passive feedback called back-channelling [127] during which the listener

conveys information to the speaker without taking its turn away. In this way, nods can convey

feedback on different levels, such as attention, hearing, understanding, or acceptance of the

speaker’s discourse. In this way, nods can signify trust depending on the context. Nods have

previously been used as a feature in [58]. Nods were manually annotated for each user by

indicating the beginning and end of a sequence of nods. We then computed the time percentage

of nods during a segment per user and used this as a feature.

4.1.2 Body

In order to have low-level descriptors of body movement, we tried extracting key body

points through OpenPose [17]. Body posture, as well as body position, head position, and

head rotation are features that are often found in the social computing litterature [6, 23, 66,

101]. From these low-level descriptors, higher level descriptors can be automatically computed

such as deictic gestures, which can be relevant information for an automatic trust analysis,

such as Lee J. et al. did for their computational model of trust [58]. However, the resulting

extraction proved to be too noisy on the front camera views, and the tracking of the body was

too regularly faulty with the rear camera view to be exploitable. We therefore looked for other

possible features for this modality.
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The Vernissage dataset provides 3D head poses / rotations of both users recorded through

a Vicon motion-capture system at a 100 Hz. We applied a SG filter (window length=21,

polyorder=3) to reduce noise on the raw signal. We then computed the barycenter of the

triangle shaped by the two users and Nao, and kept the 2D point projected on the floor plane

as the single triadic feature. Since the robot does not change position, this gives us the distance

between users, and the distance between both users and the robot. We included this feature in

our studies as distance to the robot has been shown to be correlated to trust [76].

With OpenCV, we computed the contraction index [16] of each user by extracting their

bounding box and their silhouette based on the rear camera view. The contraction index is

defined as the ratio between the area of a body silhouette and its bounding box. It is an

indication of whether a user exhibits a very open stance or is closed on itself. An example can

be found in Figure 4.2. Extracted features were cleaned through a SG filter (window length=11,

polyorder=3). Our hypothesis here is that users that users who exhibit more closed stances

- e.g. by crossing their arms - and keep their stance closed through the interaction are less

trusting than users who have more open stances - e.g. by pointing at things. Hence, a lower

contraction index value can symbolize mistrust. For instance, users crossing their arms along

with scowling brows can be a sign of confusion, frustration or aggressiveness [72].

Figure 4.2: Variation of a performer’s contraction index [117]. On the upper part, we can see the skeletal joints
of the performer. We see that in frame 280, the performer is sitting with its joints closer to each other on the
frame leading to a lower contraction index value, while the performer exhibits a very open stance by standing
with its arms wide open in frame 650 resulting in a high contraction index value.

4.1.3 Voice

The dataset provides annotations for the vocal activity of both users and the robot. Users’

vocal activity is annotated semi-automatically with the labels “speech”, “silence”, and “laugh-

ter”. The dataset authors automatically annotated the first two labels, and manually annotated

the last one. Nao’s annotations are limited to the first two labels. We represented vocal activity

by three binary indicators for each user and one for the robot and used these as features. The



4.1. MULTIMODAL FEATURES FOR AUTOMATIC TRUST ANALYSIS 55

dataset contains some overlaps between speakers (whether human or robot). Speech overlaps

can either signify high trust during quick turn taking, or mistrust when users speak over the

robot for a long period of time depending on their participation status [31, 35, 36]. We then

compute the time-percentage of speech overlap in each segment between each user and the

robot and store it as dyadic vector components.

Since previous research showed the importance of some prosody features to detect trust [49],

we also computed prosody-related features from each group member’s audio recording (users

and robot). We extracted GeMAPS features [29] using OpenSMILE [28]. We kept the F0 (nor-

malized for each speaker), loudness, jitter (cycle-to-cycle variations of fundamental frequency),

shimmer (cycle-to-cycle variations of amplitude), spectral flux (frame-to-frame difference of the

spectra) features as well as the first four mfccs, and the derivative of the F0 and first four

Mel-frequency cepstral coefficients. We reduced the noise of the extracted features using a SG

filter (window length=21, polyorder=3).

4.1.4 Semantics

We extracted a semantic representation of what the robot says during the interaction. The

corpus provides transcripts of the robot speech with timestamps and lengths of pauses. The

robot speech follows a very precise script composed of 90 sentences. The sentences have very

little variations to include the names of users. This allows us to build a semantic context to

which users react. We extract semantic representation through a TinyBERT [48] which yields a

vector of dimension 312. Given the small amount of data we have, we decided to further reduce

the size of the representation by conducting a principal component analysis (PCA). The final

dimension of the representation is 50, which retains 99% of the explainable variance. We build

an aggregated representation by averaging all words spoken during a segment for the robot

alone.

Since the robot is silent in almost 20%(±5%) of segments per interaction, we decided to

propagate semantics and prosody into each silent segment from the one right before. This way,

the model keeps track of the semantic and nonverbal context to which users react.

Features are aggregated in an early-fusion scheme for this study. We aggregated non cate-

gorical features by computing their mean and standard deviation within a segment. Figure 4.3

sums up how the different modalities are aggregated in a segment. This results in a feature

vector of length 222 - 68 for each user, 79 for the robot, 3 for the dyads, and 4 for the triad.
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Figure 4.3: Audio features are aggregated within the segment only in sections where a user is speaking, while
other eatures are aggregated on the entire segment.

4.2 Multimodal computational models for trust analysis

4.2.1 Simple machine learning models

4.2.1.1 Formalization

Formally, each interaction i can be represented by a sequence of segments obtained from the

annotation process:

Interactioni = [(xi0, y
i
0), (x

i
1, y

i
1), ..., (x

i
ni
, yini

)] where xij is the feature vector obtained by

aggregating frame-level features on segment j of interaction i, yij the label of the segment, and

ni is the length of interaction i, i.e., the number of segments in the interaction.

For this first approach, we train simple machine learning classifiers on predicting yij given

the feature vector of the corresponding segment xij . The hypothesis here is that interaction

history is not necessary during training and prediction. Classes correspond to each of the labels

from the TURIN coding scheme. Each of these labels correspond to the emergent trust of the

group as explained in previous chapter. We formulate the trust classification problem in two

different ways: (i) a One-vs-Rest (OVR) classification task; and (ii) a 3-class classification task.

The OVR task formulation allows us to first study the separability of classes and search for

explainability in the models’ predictions.

Modalities are aggregated in 2 different ways - early-fusion and late-fusion - to study the role

of each modality and their co-dependence. Let M be the number of modalities that constitute

the feature vector. xij,m corresponds to the feature data for the modality m. In this regard,

xij corresponds to the concatenation of xij,m for all m ∈ [1,M ]. In the early-fusion method, we

concatenate all modalities to form a single feature vector xij that we then feed to the classifier

during training and prediction. In the late-fusion method, we train a different instance of the
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model for each modality m. The outputs of each modality model yij,m are concatenated and

submitted to a majority vote to determine the final output yij .

4.2.1.2 Machine learning models

We train several machine learning models - Ridge classifier (RC), Random Forest (RF),

Support Vector Machine Classifier (SVM-C), and Multi-Layer Perceptron (MLP) - for both

classification tasks, and in early and late-fusion settings. As SVM does not natively support

multi-class classification, we trained it as an OVR too. To achieve this, three models are trained,

one for each class in an OVR setting. The output class is equal to the class left alone that has

the highest probability between the three models.

We based our algorithm selection on an explainability criterion. The SVM-C learning is

based on kernel trick which transforms the data to find an optimal boundary to separate

classes. The kernel function choice can generate insight on the input data and the relation

between features. The RF algorithmic design naturally creates interpretability. The matrix of

weights from the Ridge classifier can also generate insights on the linear dependencies between

the inputs and the output. The only algorithm that yields poor explainability is the MLP. MLP

are known to be black-box algorithms, but we can still gather information on the non-linear

dependecies between the inputs and output given the number of hidden-layers and their size

selected by the hyper-parameter selection process. Figure 4.4 shows the entire pipeline of our

model design.

Figure 4.4: Summary of our model design. We first remove segments that are shorter than 0.6s seconds as they
are poor in terms of behavioral content. We then extract features on each segment, which are aggregated by
computing their mean value and standard deviation. We train each machine learning model on predicting the
label associated to each segment.

4.2.2 A recurrent neural architecture

In this section, we present our architecture1 through an incremental approach. At each step,

we formulate a new hypothesis that we used for the design of a specific module.

1Code is available here: https://github.com/GrituX/WGDE_IG

https://github.com/GrituX/WGDE_IG
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4.2.2.1 Formalization

We build a sequence (xij−τ , ..., x
i
j) comprised of the segment xij , whose label y

i
j is the target of

the model training, and the τ previous segments that constitute the history. Our objective here

is to assess whether providing the history of the interaction improves the classifier performances.

At first, we focus on the architecture to model the interaction and start with τ = 4. After

validating our architecture, we study the impact on the classification score of the history length

for τ ∈ [1, 8]. Figure 4.5 sums up the training pipeline of our architecture.

Figure 4.5: Features are aggregated for each segment. τ consecutive segments are grouped to form a sequence.
Then we feed the sequence to a machine learning model to train it to predict the last label of the sequence.

4.2.2.2 Gated-Recurrent Units

We decided to build our architecture based on Gated-Recurrent Units (GRU) to encode

information from participants’ behaviors. A GRU is able to encode sequences. It uses two

mechanisms to tackle the vanishing gradient issue, the first being a reset gate which controls

the amount of necessary information from the past. The second one is an update gate, which

controls the amount of past information to keep and the amount of new information to add.

Formally, we write ht the hidden state of the GRU for the encoded sequence at timestep t.

4.2.2.3 A first sequential approach

Users’ actions are relevant within the sequence of previously exhibited behaviors by members

of the interaction, and produced in response to somebody else’s speaking turn [37, 38]. In

that sense, someone’s behavior should be understood and analyzed through the sequence of

its and the interaction partners’ past behaviors. Thus we can make the assumption that the

interactional context is needed when classifying a segment. We train a model that we call

Simple-GRU (SG) that contains a GRU layer followed by a fully-connected one, and then a

final softmax layer. Formally, we have:

ỹij = softmax
(
Whh

i
j + bh

)
(4.1)

where hij corresponds to the hidden state of the segment j that we classify, which is the

last state of the input sequence of the RNN, Wh is a weight matrix, and bh is a bias vector.

Figure 4.6 shows the architecture of this model.
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Figure 4.6: Representation of the Simple-GRU architecture. Robot, users, dyads, and triad data are concate-
nated and directly fed to a GRU before classification.

4.2.2.4 Modeling within-group dynamics

When engaging in a group activity involving a conversation, participants organize their

interactions with other group members in specific ways depending on the activity and its goals.

Participants can be speakers and thus address the entire group, a part of the group, or a single

individual. They can also be listeners by being either actively engaged and showing signs of

interest, or being passively engaged. It is thus necessary to analyze the interaction between

all users from the entire group to individual to fully understand the group dynamics [36]. We

conclude that trust should be analyzed by the interactions between all members of the group,

at different scales (individual, dyads, and triads).

We thus modeled inter-segment within-group dynamics by adding a Within-Group Dy-

namics Encoder (WGDE) module to our architecture (see Figure 4.7). We call this new

architecture comprised of the WGDE module and a simple GRU the WGDE-SG. The WGDE

splits data within a segment. Feature vectors include data from the humans and the robot.

First, the module takes input features from each user independently to feed them in its own

gated-recurrent unit (GRU), as opposed to the previous architecture shown in Figure 4.6 where

users and robot data were directly concatenated. Second, the outputs of the two GRUs are

concatenated with features from all three dyads and the triad. Dyads are formed by either the

two users, or each user with the robot. The triad corresponds to the entire group.

The resulting vector is then being fed to a fully connected (FC) layer which is the final

output of our module xig,t at time-step t. We use the index g to refer to data representing the

group formed by users, and the index r to refer to data representing the robot. Here, we have

t ∈ [j − τ, j] with j ∈ [τ, ni] to form a sequence of length τ .

We then concatenate the output of the WGDE with the robot features to produce the output
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at timestep t :

hit = GRU(xig,t ⊕ xir,t) (4.2)

where ⊕ denotes the concatenation operator. To assess the contribution of the robot behav-

ior, we compare two versions of this architecture: one with and one without any robot data,

meaning that only the output of the WGDE is taken as input for the simple-GRU RNN.

Figure 4.7: Representation of the WGDE-SG architecture. Users, dyads, and triad data are fed into the WGDE
module. Its output is then concatenated with robot data from the segment and then fed to a GRU.

4.2.2.5 Modeling the temporal structure of the users-robot interaction

During an interaction, participants continuously produce social behaviors. These behaviors

carry a meaning that form the interactional context, be it at a low level such as lexical, semantic

or at a higher level such as shared knowledge. Other participants build their answer from their
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interactional partners’ past behaviors, and hence renew the context at each speaking turn [38].

Participants using the previous speaking turn of another group member as a contextual resource

to create their own speaking turn means that there is a temporal structure between users and

the robot.

We modeled this temporal structure by adding an Interactional GRU (IG) module. At each

time-step t, features from the robot alone xir,t are fed into a GRU whose output is concatenated

with the output of block WGDE xig,t. This data is then fed to a GRU:

hir,t = GRU(xir,t ⊕ hig,t−1) (4.3)

hig,t = GRU(xig,t ⊕ hir,t) (4.4)

hig,t refers to the encoded hidden state of the group’s behavior at timestep t produced in

response to the robot encoded behavior hir,t. In this model, the robot hidden state is computed

with the group’s hidden state from previous timestep. We modeled the interaction this way

to emphasize the fact that the robot is the leader of the interaction within a segment, as the

group’s behaviors are modeled to be the answer of the robot within the segment. This choice

is due to the role asymmetry between users and the robot.

The entire architecture is shown in Figure 4.8. We name this architecture WGDE-IG.

4.3 Conclusion

We proposed two offline methods to predict trust during a segment and explained their

underlying hypotheses. The first method relies on traditional machine learning techniques. This

model considers that no context is needed to predict trust, and thus takes as input the segment

on its own. It handles multimodality through an early-fusion or a late-fusion mechanism to

study the interplay between modalities and assess their importance.

The second method considers that the interaction’s history is needed for the prediction,

and therefore takes into account a few previous segments. From this, we designed a neuronal

architecture that is based on two modules: i) the WGDE module encodes user data at different

levels (individual, dyads, triad), ii) the IG module treats robot and user group data as a dialogue

to model the temporal structure of the interaction.

We also presented a set of features that is a mix of automatically and manually extracted,

and based on different modalities: body, face, semantics, and voice. Features were chosen in

a way that is non-invasive for users so that future online models can rely on these without

intruding on the users’ feeling of “naturality” of the interaction.
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Figure 4.8: Representation of the WGDE-IG architecture. Robot data is concatenated with previous segment
group GRU, and then fed to the robot GRU. Its output is concatenated with the output of the WGDE module,
before being fed to the group’s GRU.



Chapter 5

Experiments and Analysis

Abstract

We used the Vernissage dataset that we described in Chapter IV as an experimental

testbed for the models that we designed. First, we trained the traditional machine

learning models on two tasks : a binary classification one through a One-Vs-Rest

(OVR) mechanism, and multiclass classification with our three labels as our ground

truth. Through a study of the impact of two fusion mechanisms, early and late-fusion,

we show that Random Forests perform the best in early-fusion when classifying a

segment with no history of interaction. By studying the results of the RF with the

late-fusion mechanism, we observe that the voice modalities play a more important

role for classification, followed by face, and finally body modalities.

Then, we train different versions of our neuronal architecture described in Chapter IV

that takes as input a sequence formed of the target segment and the previous τ seg-

ments that constitute the history. Through an incremental approach, we show that

using our neuronal architecture with all of its modules leads to increased performance.

While the “Neutral” and “Trusting” classes have fair scores, the model scores indicate

that further work is needed to properly capture the dynamics to predict the “Mis-

trusting” class. The optimal history length τ remains also unclear. By studying the

errors made by this final model, we provide guidinelines on a new set of features that

could be used to improve trust models.
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Label Count Segment length (Avg ±std)
Trusting 193 / 240 3.7s ±4.9s / 3.0s ±1.5s
Neutral 260 / 604 9.5s ±8.8s / 4.1s ±1.4s
Mistrusting 75 / 78 2.8s ±2.5s / 2.6s ±1.6s

Table 5.1: Summary of annotations collected using the TURIN coding scheme.
Raw annotations / Annotations after our sub-segmentation.

Sociology for Trust Analysis in Multiparty Human-Robot Interaction,” International Con-

ference on Human-Agent Interaction (HAI ’23), 2023, Gothenburg, Sweden, https: //

doi. org/ 10. 1145/ 3623809. 3623973

After presenting the models and the feature set that we designed, we here establish the

experimental protocols to evaluate their performance. We then discuss their results to determine

which features have more weight for classification, and determine which type of errors they

make.

5.1 Training results

5.1.1 Dataset

We decided to divide the segments from the annotations collected from the Vernissage dataset

into several sub-segments of at most five seconds to have a better homogeneity in segment

length when aggregating features. When the subdivision occurs, the label is duplicated for all

of its sub-segments. The length of 5s corresponds to the global average length of segments

before segmentation. Segments smaller than 600ms are dropped out. Such short segments

are, in this case, poor in interaction content because of some modalities analysis window - e.g.

semantics, verbal. Table 5.1.1 provides the counts and lengths of segments before and after our

sub-segmentation. Then, features are aggregated on the resulting segments.

5.1.2 Without context

We used a leave-3 groups-out (LTGO) cross validation to tune the models hyperparameters

as well as to evaluate their performances. This enables a reduction of the variance of the

performances providing a better overview of the generalization of the models. Since we draw 3

interactions out of a total of 10, this results in 120 rounds of test. The ROC-AUC metric was

chosen as it provides a broader view of a model performance given that it captures the trade-

off between precision and recall. We also used the F1 score for the multi-class classification

problem. All the models were developed and evaluated using Python’s scikit-learn package

[85]. As the classes are heavily imbalanced as shown in Table 5.1.1, We augmented data using

SMOTE [20] to obtain a balanced dataset. Data augmentation was performed after the LTGO

division. For this first model, we used all modalities except for the semantic modality to reduce

the size of the feature vector given the small amount of data.

https://doi.org/10.1145/3623809.3623973
https://doi.org/10.1145/3623809.3623973
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Interactions are very different from one another, aggregating the test in this way allows to

reduce the variance of scores which gives us a better overview of the generalization capacity of

learned models. Tables 5.1.2 and 5.1.2 summarize the results.

Early-fusion RF MLP SVM-C
Trusting-vs-rest 0.72 ±0.04 0.70 ±0.04 0.74 ±0.04
Neutral-vs-rest 0.77 ±0.04 0.74 ±0.04 0.75 ±0.04
Mistrusting-vs-rest 0.59 ±0.06 0.54 ±0.07 0.58 ±0.06
Late-fusion
Trusting-vs-rest 0.67 ±0.04 0.60 ±0.04 0.66 ±0.04
Neutral-vs-rest 0.74 ±0.04 0.65 ±0.04 0.70 ±0.03
Mistrusting-vs-rest 0.54 ±0.08 0.48 ±0.08 0.49 ±0.10

Table 5.2: ROC-AUC test scores of OVR classifiers

Fusion Rand. Maj. RF MLP SVM-C
Early 0.38 ±0.03 0.52 ±0.05 0.66 ±0.04 0.65 ±0.04 0.60 ±0.04
Late 0.38 ±0.03 0.52 ±0.05 0.62 ±0.03 0.60 ±0.04 0.61 ±0.05

Table 5.3: f1 test scores of multi-class classifiers. Rand.: Random Classifier. Maj.: Majority-voting Classifier

We conducted a series of statistical tests to compare the classifiers performance and check for

possible statistical differences between them. We used a Kruskal-Wallis test (KW) [55] followed

by a post-hoc Dunn test (when needed) [25] to compare all models in either early- or late-fusion,

with Bonferroni correction. We conducted a Wilcoxon-Mann-Whitney test (WMW) [120] to

compare the performance of a model between early- and late-fusion. For the OVR method, we

compared models in a single binary classification task (e.g. trusting-vs-rest for early- against

late-fusion, or trusting-vs-rest for RF against MLP against SVM-C). We conducted all of our

tests using an alpha value of .05. Figures 5.1 and 5.2 sum up all the p-values of our tests.

OVR method : the KW tests point significant differences between the models in early-

fusion for Mistrusting-vs-rest, H = 40.76, p < .001, Neutral-vs-rest, H = 28.49, p < .001, and

for Trusting-vs-rest, H = 44.61, p < .001. In both Mistrusting-vs-rest and Trusting-vs-rest, the

post-hoc tests indicate no significant differences between the RF and the SVM-C, respectively

p = 0.16 and p = 0.28, while the difference is significant between the RF and the MLP in both

tasks, p < .001 for both, and between the MLP and the SVM-C, p < .001 for both. There

is no statistical difference between the MLP and the SVM-C in Neutral-vs-rest, p = 0.065.

This difference is significant between the RF and the MLP, p < .001, and between the RF and

the SVM-C, p < .01. In late-fusion, the KW tests reveal significant differences between the

models for Trusting-vs-rest, H = 126.36, p < .001, Neutral-vs-rest, H = 169.65, p < .001, and

for Mistrusting-vs-rest H = 35.30, p < .001. The post-hoc tests show that the RF performs the

best for both Mistrusting-vs-rest and Neutral-vs-rest classifications, followed by the SVM-C,

and then the MLP. The difference in scores between the SVM-C and the MLP is non significant

for Mistrusting-vs-rest, p = .90. Regarding Trusting-vs-rest, the difference between the RF and

the SVM-C is not statistically significant, p = .24, while it is between the RF and the MLP,
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Figure 5.1: Boxplot of all models ROC-AUC test scores in OVR classification.
*** p < .0001; *** p < .001; ** p < .01; * p < .05; ns: Non Signficant

Figure 5.2: F1 test scores for multi-class classification.
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and between the MLP and the SVM-C, p < .001 for both.

A series of WMW tests to compare between early and late-fusion reveals that early-fusion

works better for all models in every OVR task, p < .001 for all models. Results of the tests are

shown in Table 5.1.2.

RF MLP SVM-C
Trusting-vs-rest U = 2784 U = 817 U = 1366
Neutral-vs-rest U = 3772 U = 986 U = 2077
Mistrusting-vs-rest U = 4332 U = 4183 U = 3101
For all tests, we have p < 0.0001

Table 5.4: WMW test results to compare between early and late-fusion for all models in all OVR tasks.

Multi-class classification task : for early-fusion, the KW test showed significant differ-

ence between models, H = 104.76, p < .001. The post-hoc test indicated a difference between

MLP and SVM-C, p < .001, as well as between RF and SVM-C, p < .001, but showed no

significant difference between RF and MLP, p = .54. For late-fusion, the KW test revealed

a difference between models, H = 25.15, p < .001. This difference is statistically significant

between RF and MLP, p < .001, and RF and SVM-C, p < .05, but not between MLP and

SVM-C, p = .069, according to the Dunn test. When comparing between early and late-fusion

for each model, a series of WMW test showed that early-fusion yields better results for the RF,

U = 3715, p < .001, the MLP, U = 2359, p < .001, but not for the SVM-C, U = 6448, p = .081.

The analysis shows that models perform better in an early-fusion setting. This means that

early-fusion captures the interactions between modalities better than late-fusion does, albeit

in a simple way. Considering that the RF is the best performing model in the OVR task,

we analyzed how each modality model performs individually in late-fusion. The results for

this training are given in Table 5.1.2. A series of KW tests revealed significant performance

difference between modalities for Trusting-vs-rest, H = 187.48, p < .001, for Neutral-vs-rest,

H = 288.62, p < .001, and for Mistrusting-vs-rest, H = 150.93, p < .001. For all OVR tasks, the

post-hoc Dunn tests showed that the RF trained only on the voice modality performs better,

followed by the RF trained on face modality, and finally the RF for the body, p < .05 for all.

Body Face Voice
Trusting-vs-rest 0.54 ±0.05 0.62 ±0.04 0.65 ±0.05
Neutral-vs-rest 0.57 ±0.03 0.65 ±0.03 0.73 ±0.05
Mistrusting-vs-rest 0.46 ±0.08 0.51 ±0.06 0.60 ±0.07

Table 5.5: ROC-AUC test scores of RF trained separately on the Body, Face, and Voice modalities in OVR
classification.

5.1.3 With context

Parameters First, we specify the hyper-parameters of the sequential model and its training.

We start by specifying the hyper-parameters of the first model consisting only of the SG. The
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GRU is composed of a single-layer, mono-directional GRU cell. The model hyper-parameters

are composed of: the GRU output dimension hij ∈ {8, 16}, the number of epochs during which

to train ∈ {30, 50, 70}. The model is trained with a batch size of 128 sequences, a learning

rate of 1.10−3. Given the small amount of data, we add a dropout layer before the final

fully-connected layer, with p = 0.5. Hyper-parameters are selected using a grid-search cross-

validation performed on a validation set of one interaction. We perform the training by leaving

one group out for testing. We train the model using 5 different random seeds for each round

of training. The model and training was implemented using the python package PyTorch [83].

We choose the F1 score and balanced accuracy metrics to understand which kind of error the

model makes.

When training the WGDE-SG model, we add the constraint that the output dimension

of the WGDE GRUs and the SG GRU is the same for all. We use the same ranges for the

hyper-parameter selection, as previously detailed.

As for the WGDE-IG model, we keep the constraint that the output dimension of the WGDE

GRUs and the IG GRUs is the same for all. The output dimension is the same for all GRUs.

The value of output dimension is kept as a hyper-parameter with the same search values as

previously. Again, for this model, we keep the same range for the training parameters, as

previously detailed.

We trained the models to solve a multi-class classification task (labels “Mistrusting”, “Neu-

tral”, “Trusting”). For this task, We chose the cross entropy as loss function computed between

the output ỹij and the target yij . Here, we perform prediction only for the last segment of the

sequence.

As the dataset we use is imbalanced - 4% of data is labelled Mistrusting, 67% is labelled Neu-

tral, 29% is labelled Trusting -, we use weights corresponding to the inverse class proportions.

As the resulting dataset is small, we augmented data by generating new samples by adding

Gaussian noise of σ = 2.10−3 for each sample. In total, we augmented the entire dataset four

times. We then cleaned our dataset using Wilson’s editing algorithm with k = 3 [121]. To

further deal with this class imbalance, we use weighted random sampling during training at

each epoch, again with weights corresponding to the inverse class proportions. Given the small

amount of data, we added a regularization term to the loss function corresponding to the L2

norm of the weights with λ = 1.10−2.

Results We present the training results along with statistical tests to determine which model

yields the best performance.

We report the multi-class micro F1 scores on the test sets for each model for τ ∈ [2, 8]

in Table 5.6. We perform a series of statistical test each time with level = 0.05. A series

of Shapiro-Wilk test [107] for each combination of model and τ show that not all of the F1

scores follow a normal distribution. A Kruskal-Wallis test [55] between all models F1 scores

reveal a difference between their performance, H = 367.19, p < .001. A post-hoc Dunn test

[25] indicates that the difference is significant between the SG with no robot data and all other
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τ 1 2 3 4 5 6 7 8

SG 0.733 0.739 0.733 0.733 0.735 0.735 0.734 0.735
±.120 ±.119 ±.118 ±.127 ±.123 ±.125 ±.125 ±.124

SG (no robot) 0.621 0.613 0.621 0.604 0.597 0.598 0.603 0.605
±.058 ±.081 ±.080 ±.095 ±.084 ±.092 ±.085 ±.087

WGDE-SG 0.726 0.732 0.723 0.730 0.724 0.725 0.723 0.731
±.116 ±.119 ±.144 ±.141 ±.138 ±.146 ±.146 ±.148

IG† 0.730 0.717 0.695 0.698 0.694 0.710 0.689 0.694
±.113 ±.105 ±.120 ±.163 ±.182 ±.145 ±.175 ±.188

WGDE-IG 0.730 0.730 0.715 0.736 0.735 0.745 0.730 0.714
±.102 ±.098 ±.143 ±.124 ±.135 ±.110 ±.146 ±.137

Table 5.6: Mean and std of the micro F1 scores on the test sets of the models in the multi-class classification
task for τ ∈ [1, 8].
†: the IG model corresponds to the WGDE-IG without the WGDE module.

τ 1 2 3 4 5 6 7 8

SG 0.565 0.571 0.575 0.578 0.578 0.585 0.577 0.566
±.164 ±.158 ±.144 ±.150 ±.152 ±.147 ±.140 ±.147

WGDE-SG 0.591 0.607 0.596 0.598 0.590 0.597 0.596 0.605
±.138 ±.134 ±.138 ±.133 ±.138 ±.137 ±.130 ±.144

IG 0.541 0.536 0.556 0.547 0.538 0.552 0.525 0.537
±.149 ±.136 ±.123 ±.132 ±.128 ±.150 ±.136 ±.161

WGDE-IG 0.572 0.580 0.584 0.585 0.596 0.592 0.580 0.560
±.141 ±.126 ±.137 ±.156 ±.144 ±.141 ±.170 ±.163

Table 5.7: Mean and std balanced accuracy on the test sets of the models in the multi-class classification task
for τ ∈ [1, 8].
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models, p < .001. This indicates the necessity to include robot data to better model the inter-

segment dynamics of the group. This is confirmed by Interactionist Sociology theories which

state that users express displays of trust through behaviors that are relevant with other group

members’ previous speaking turns. The addition of robot features in our models helps capturing

these sequential dependencies. The post-hoc Dunn test also reveals that there is a statistical

difference between the SG and the IG models performance, p < .01. The test reveals no further

statistical difference between models, showing that the IG module alone fails to capture the

interaction dynamics.

We report the balanced accuracy in Table 5.7 as it is a good metric for imbalanced datasets.

A series of Shapiro-Wilk test [107] for each combination of model and τ show that not all of

the average accuracy scores follow a normal distribution. A Kruskal-Wallis test reveals that

there is no significant difference in the scores for the different sequence lengths. This highlights

the complexity to define a single sequence length of analysis for all segments. A possible

explanation is that some segments do not require a lot of context - e.g. users sometimes say

“huh, what ?” when the robot interrupts them - while others require more context of the

undergoing process to be understood. A Kruskal-Wallis test indicates significant differences

between models, H = 58.28, p < .001. A post-hoc Dunn test shows significant difference for all

models, p < .01, except between the SG and WGDE-IG, p = 0.25. A further look at each model

median score indicates that the WGDE-IG yields the best performance, median = 0.541. While

the WGDE-SG has higher mean scores, its quartiles are further apart than for the WGDE-IG,

revealing that the latest is more consistent in its predictions.

Since we operated a few changes between this model and the previous one with traditional

ML techniques, we trained a RF and MLP with the same experimental settings as the ones for

the neuronal model to be able to compare the results with and without the context. We report

the results in Table 5.1.3.

RF MLP
F1 0.744 ±.070 0.714 ±.068
Balanced accuracy 0.518 ±.118 0.507 ±.137

Table 5.8: F1 and balanced accuracy scores of a RF and MLP.

We compare these results with the scores from the WGDE-IG since it has the best perfor-

mance, and use τ = 6 as it leads to the highest mean F1 score and balanced accuracy. A first

thing that we observe is that the introduction of the semantics modality leads to a significant in-

crease in these models F1 score. We ran Kruskal-Wallis tests to check for statistically significant

difference between the RF, the MLP, and the WGDE-IG scores. The tests indicated difference

for both the F1 score, H = 8.26, p < .05, and the balanced accuracy, H = 14.23, p < .001. For

the F1 score, a post-hoc Dunn test revealed significant difference only between the MLP and

WGDE-IG scores, p < .05. A post-hoc Dunn test for the balanced accuracy scores indicated

that the WGDE-IG had the best performance p < .005.

We also trained a version of the WGDE-IG that contains self-attention mechanisms such as
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was done in [125]. However, the results were inconclusive as the performance were below the

SG model, probably due to a low amount of data. Hence, we do not report the results here.

5.2 Feature importance

Figure 5.3: SHAP values point plot for RF for the “Mistrusting” class (p1/2: Participant 1/2)

We conducted a SHapley Additive exPlanation (SHAP) [62] values analysis for the random

forest with early-fusion, since it gave the best results, to determine the importance of features

in the classification task. SHAP values interpret the impact on the model output of a given

feature having a certain value compared to the model prediction if that feature took some

baseline value, e.g. its mean. When there are correlated features, only one of them appears in

the SHAP values. Figures 5.3, 5.4, and 5.5 show the SHAP values associated to the features

that were determined as more important by the analysis.
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Figure 5.4: SHAP values point plot for RF for the “Neutral” class (p1/2: Participant 1/2)
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Figure 5.5: SHAP values point plot for RF for the “Trusting” class (p1/2: Participant 1/2)
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5.2.1 Face modality

We present the analysis results by modality. About the face modality, participants lower their

brows more (higher mean and std of AU4) during mistrusting segments than other segments,

talk (higher mean and std of AU10), and change their VFOA more. During trusting segments,

participants nod more often, tighten their lid more (higher mean of AU7), while nose wrinkles

(higher mean of AU9) plays against classification as trusting. Higher std of the lip corner

depressor (AU15) plays against classification as neutral.

5.2.2 Body modality

Concerning body, the distance of the group to the robot is the most important feature of

trust. Greater mean distance to the robot has a positive impact when classifying as mistrusting,

while closeness to it has more weight for trusting segments. This result confirms the findings

in the literature [76]. When considering between-participants distance, a lower std value has

a positive impact for trusting segments. As for the contraction index, its std plays a more

important role than its mean value during a segment, with lower std being associated to neutral

segments, while higher std are linked to trust.

5.2.3 Voice modality

Regarding the voice, neutral segments are linked to situations where participants are silent.

Lower F0 means have a positive impact on classification as trusting, and higher F0 means have

more weight for neutral segments. Higher speech overlap time between participants and Nao

have a strong impact when classifying as mistrusting.

5.2.4 Global analysis

The SHAP values analysis shows that participants exhibit different behaviors depending

on whether they trust the robot or not. Participants in trusting segments tend be be closer

to the robot, more aligned with the robot presentation, move and talk more. In mistrusting

segments, participants also talk, but they talk more over the robot. They also show signs of

doubt through brows lowering, looking around, getting closer together, and being further away

from the robot. As for neutral segments, participants are mostly silent and listen to the robot

speaking, remain still, and have neutral facial expressions.

The SHAP analysis demonstrated the importance of the participants’ distance to the robot.

The barycenter feature was shown to be important, while the contraction index feature had

a moderate impact on the model output. However, the series of statistical tests conducted in

previous section on the late-fusion OVR task for RF showed that the body modality yields

the lowest results. Considering that our set of body features is small, it could be enriched

with other features - e.g. deictic gestures - to better model the interaction and improve the

computational models performance.



5.3. ERROR ANALYSIS 75

Our definition of interactional trust is based on concepts of alignment, affiliation and credit

[45, 110]. During the annotation, annotators focused on social signals to describe the alignment

dimension that can also be found in other social phenomenon, in particular engagement [80].

5.3 Error analysis

We analyzed the errors of the WGDE-IG with τ = 6 to determine which segments are the

hardest to classify and understand the reason behind it. Thus, we determined the error rate

of the model for each segment of each interaction. The error rate corresponds to the ratio of

wrong predictions of the model for all 5 seeds during testing on a single segment. Figure 5.6

shows the error rates of segments for two interactions from the dataset. Interaction n°12 has

the lowest error rates of all interactions. The model has a fairly low error rate through the

interaction, with a significant increase for segments at the end. Interaction n°30 has the highest

error rates of all interactions. The model has significant discrepancies in error rates throughout

the interaction. During this one, users display sarcastic behavior which could be particularly

difficult for the model to discern.

Figure 5.6: Error rate of the model for each segment of interactions n°12 and 30.

To determine the behaviors that are the hardest to analyze for the model, we looked at an-

notations from the “Social Interaction Content” and “Social Interaction Form” categories for

segments that have the highest error rates. We selected segments that have an errorrate > 0.6,

which corresponds to 20% of segments. The most frequent annotations that appeared for these

segments are either “Alignment” or “Compliance”. Both items were the most frequent anno-

tated items from the “Social Interaction Content” category. Alignment is a social phenomenon
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that is difficult to grasp since it requires understanding the current interactional process and

task that users have to focus on at a specific time. Integrating the undergoing task’s objective

in the model could be a research avenue to further improve the model performance. Jokes are

considered signs of trust since they imply that users trust the robot to be able to understand

them. Understanding that a is being made joke requires a good comprehension of social norms,

which might explain the high error rates of these. Irony and sarcasm are also a form of joke,

but they should be analyzed to determine whether they are made to joke with the robot or

about the robot.

Mistrusting segments with a high error rate were mostly annotated with “Gaze”, “Facial

Expression”, and “Intonation”. Gaze in mistrusting segments are generally associated with

moments of doubt, a phenomenon that the model has problems capturing as explained before.

An explanation for the presence of facial expressions could be that they can be ambiguous to

decipher depending on the context, for instance when used ironically or sarcastically which

happens during a few interactions. “Intonation” appears generally in shorter segments during

which users speak shortly to answer the robot. The emotional valence of the intonation could be

resolved with the addition of users’ semantics, which we did not include for technical reasons.

Some users exhibited sarcastic facial expressions during mistrusting segments. Sarcasm is

difficult to analyze as it requires understanding that behaviors convey the opposite meaning of

what is expressed.

Trusting segments with a high error rate were mostly annotated with “Gaze”, “Facial ex-

pression”, and “F formation”. F formation describes changes in the users’ spatial organization

of their interaction. Users can either include or exclude the robot as a member of the interaction

depending on their position and the direction they are facing. We represented F formations

through the barycenter of the group feature. Including users’ body orientation in the set of

features could be a research avenue. Participation status appears frequently for both trust-

ing and mistrusting segments with high error rates, which is a good proof of the difficulty to

understand changes in participation status and resolve their ambiguity.

5.4 Conclusion

We showed that the Random Forest with an early-fusion mechanism performs the best

without taking into account the history of interaction. The study of the model results with

a late-fusion mechanism indicates that the voice modality performs the best, followed by the

face, and body modality. The multiclass classification setting indicates that taking the segment

alone as input is not enough to achieve fair performances.

With our neuronal architecture, we show that taking into account the history leads to in-

creased performances, and fair results for the “Trusting” and “Neutral” classes. Our results

indicate that further work is needed to properly capture the dynamics of “Mistrusting” seg-

ments. The optimal history length τ still remains unclear, and needs further investigation with

additional data. By analyzing the errors made by our final model, we provide a set of features



5.4. CONCLUSION 77

that can further improve the performances of trust models.
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Chapter 6

Conclusion

6.1 Contributions

In this thesis, we explored the issues raised by the development of methods to automatically

detect trust throughout the interaction and proposed answers to some of these issues. While

past research proposed trust monitoring methods, most of them are based on a single type of

signal that is generally physically invasive (e.g. physiological data) or required to query users for

feedback on their mental state during the model training. Our work focused on a trust analysis

method that is completely external to users in the sense that they are never prompted about

their mental state nor did they have sensors put on them. We thus contributed to the field of

HRI by formulating a new methodology that allows us to automatically model trust throughout

the interaction through multimodal features. In the following, we resume the research questions

that we formulated at the beginning of the manuscript and provide answers based on the work

that we presented.

New methodology for trust analysis in HRI

We introduced a new methodology to the problem of trust analysis in HRI, based on Inter-

actionist Sociology, such as in Conversational Analysis, stemming from approaches prescribed

by Ethnomethodology. Rather than considering trust as a mental state, trust is considered a

state of the interaction made visible by participants through their behaviors. Trust analysis

therefore relies on the observation of these behaviors, and the analysis of the behavior relevance

within the interactional sequence. This method allows the researcher to conduct the study of

trust dynamics from an external point of view from the interaction, without interrupting the

interaction.

81
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RQ 1: Which theoretical framework is applicable to perform a multimodal analysis of trust

regularly throughout the interaction ?

We explored Interactionist Sociology theories and showed that they provide tools, through

inductive methods, that allow the researcher to observe participants’ multimodal behaviors

and analyze them in the context of the interaction. From there, we proposed a new

methodology of trust analysis in HRI based on constraints that are specific to the field.

Through a comparative analysis of the usual Psychological “mentalist” approach and ours,

we also provided guidelines on which framework to use according to the study objective,

and explained how these can complement each other.

Coding scheme to analyze trust in HRI

Grounding on the new theoretical framework that we proposed, we created a coding scheme

for trust in HRI called TURIN that is versatile enough to be used for dyadic or group inter-

actions. TURIN allows to analyze trust dynamics, and study the multimodal behaviors that

users express when displaying trust. By comparing it against a common Psychological trust

questionnaire, we showed that it can lead to different conclusions, in particular that it can

reveal trusting behavior from the user while they report the opposite (and vice versa). We

used the coding scheme to collect annotations on the Vernissage dataset and showed that these

annotations can be used as ground truth for the computational models we built. Collected

annotations are available on the Zenodo platform 1.

RQ 1: Which theoretical framework is applicable to perform a multimodal analysis of trust

regularly throughout the interaction ?

We conceived TURIN by leveraging Interactionist Sociology theories and showed that it

can unveil trust dynamics through the observation of participants’ multimodal behaviors.

We also demonstrated that annotations collected with TURIN can be used as the ground

truth for multimodal computational models of trust dynamics.

RQ 2: Do homogeneous segments of trust arise within the interaction based on observable

behavioral cues ?

We proposed the TURIN coding scheme that allows to focus on the observable character-

istics of trust through tangible behavioral cues that indicate trust and highlights homoge-

neous segments of trust.

RQ 3: How can we discriminate trusting segments from mistrusting ones with tangible

behavioral cues ?

In TURIN, we proposed annotation categories that allow the annotator to distinguish

between behavioral cues that indicate trusting or mistrusting behavior.

1https://doi.org/10.5281/zenodo.8409887

https://doi.org/10.5281/zenodo.8409887
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Proposition of a trust-relevant set of features

We proposed a set of multimodal features that can be used to build computational models of

trust. The set solely relies on features that are physically non-intrusive for the participants, with

a mix of manual and automatically extracted ones. We explored different fusion mechanisms and

showed that early-fusion leads to better model performance on trust classification, suggesting

the presence of multimodal interplay between features. We also investigated feature importance

through late-fusion models’ performance and specific feature-importance experiments. The

results suggested that audio features carry more weight than others for trust prediction, and

that some features were more important for a certain trust category. We also released a librairy

of chosen features on a Github repository 2.

RQ 3: How can we discriminate trusting segments from mistrusting ones with tangible

behavioral cues ?

We established a set of multimodal features that can be used to build computational model

of trust. We showed that some features carry more weight than others, and that some were

more specific to a certain trust category.

Conception of multimodal models of trust

We proposed two types of multimodal models of trust: one that is based on traditional ma-

chine learning (ML) techniques, and one based on a neuronal architecture. We explored several

traditional ML models, and evaluated their performance in binary and multi-class classifica-

tion. We showed that these models yield fair performances in binary classification, but failed

to properly distinguish classes in the multi-class setting. We also showed that the early-fusion

mechanism gives the best performance, suggesting a multimodal interplay between features.

We then proposed a neuronal architecture composed of two main modules to better model the

interactional dynamics relating to trust. Each module is based on hypotheses derived from

Interactionist Sociology theories. The first one encodes within-group dynamics to model the

interactions between users with different granularities. The second one models the interaction

between the robot and the group as a dialogue with a temporal structure. Through experi-

ments, we showed that our full architecture performs better than traditional ML techniques.

However, we observed that the performance do not indicate an optimal input sequence length.

We also released the code for the neuronal architecture on a Github repository 3.

2Code is available here: https://github.com/GrituX/WGDE_IG
3Code is available here: https://github.com/GrituX/WGDE_IG

https://github.com/GrituX/WGDE_IG
https://github.com/GrituX/WGDE_IG
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RQ 3: How can we discriminate trusting segments from mistrusting ones with tangible

behavioral cues ?

Early-fusion mechanism leads to quite optimistic performance in binary classification with

traditional ML techniques. We designed a neuronal architecture to model interactional

dynamics within the user-group, as well as between the robot and users, which led to

increased performance. However, such models have trouble distinguishing the “Mistrust-

ing” class in multi-class classification probably due to the heavy class imbalance and low

amount of data.

6.2 Perspectives

Performing an online trust detection

Our work on multimodal trust analysis mainly focused on offline detection methods. While

our work constitues the stepping stones towards online trust detection, there are still a few

challenges to be adressed before reaching this objective.

First, an online trust detection implies that our proposed segmentation method should

change to be fully automated. Implementing a sliding window for the classification of a se-

quence is a traditionnal way to do it [6, 43, 74], but requires the study of the optimal window

length. Having a fixed window length for the entire sequence might also help finding an optimal

input sequence length. Another way to do the segmentation could be to automatically detect

speaking turns, since our method yields segments that are close to speaking turns.

Second, the set of features we proposed has to be revised. A new set that is completely

automatic should also be chosen, with the added constraint that feature extraction has to run

fast enough for the detection to happen online. This implies either having high computing

power, or measuring the feature extraction computing time and selecting features according

to be able to run on the target robotic platform. It could be interesting to explore a fully

automated set that better represent items from TURIN. This could include deictic features

such as having arms crossed, touching its face, as studied in [58], the F-formation of the group,

or better features for alignment for instance.

Collecting data with a trust-specific scenario

One challenge of this thesis was to choose a multimodal dataset among the publicly available

ones that were not made specifically to study trust, or anything related to it. As we explained

in Chapter II, there is no publicly available dataset that includes standard trust questionnaires.

As far as we know, the MHHRI is the only one that contains a single question relating to trust

in its end questionnaire.

The biggest issue that we face during our experiments was the under-representation of the

“Mistrusting” class. Creating a scenario dedicated to collecting more data for this class could

be beneficial to improve our models performances. Ideally, the scenario would also include

trust questionnaires filled by users at the beginning and end of each interaction. This would
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help further validate our coding scheme TURIN, and help refine the items from each of its

categories.

Refining TURIN and links with other social phenomenons

We created TURIN from a theoretical perspective by leveraging Interactionist Sociology

theories. Trust is a multi-faceted construct that can be impacted by many different factors,

either before (e.g. user’s cultural background, history of interaction with the robot) or during

the interaction depending on the robot’s actions. We tried to be as exhaustive as possible for

items from the “Social Interaction Form”. The “Social Interaction Content” category groups

concepts that are linked to trust. In particular, our definition and framing of interactional trust

shares some link with the phenomenon of engagement. This link could be studied by either

collecting data with a specific scenario to this end, or through the many publicly available

datasets on engagement in HRI.

We have not had the opportunity to discuss in depth the elements of both the “Benevo-

lence” and “Integrity” in this thesis. These categories were designed from the most common

Psychological models of trust, as explained in Chapter II. Their items could benefit from further

validation in scenarios where the robot plays a role that impacts its benevolence and integrity,

either in a positive or a negative way.

Improving the models of interactional dynamics for trust

In our neuronal architecture, we proposed a module that encodes the intra-group dynamics

within a segment, and a module that models the temporal structure of interactions between the

robot and the user group. It would be interesting to model intra-group dynamics in a different

way, by designing a neuronal graph module. This could better capture the two-way relations

between users’ behaviors: participants use other members of the group’s behaviors as resources

to build their own turn, which in turn becomes a resource for other members’ turn.

We could also imagine an architecture that takes into account the difference of amount of

context needed to detect trust. For instance, users might react negatively to a robot technical

fault and thus might be less inclined to trust its technical capabilities in accomplishing a specific

task. While they might react negatively, how strongly they will react is influenced by the fault

gravity, but it can also be influenced by the amount of previous mistakes. We could model this

through a hierarchical architecture, where the lowest level takes the last few segments as input,

and the higher level looks deeper in the past to account for this two-level temporal dependency.

Again, our experiment showed the difficulty to choose a single optimal input sequence length.

One way to get around this issue would be to study the performance of our model when it takes

the entire interaction as input, and tries to classify each segment right after it is being fed to

the network. This could also help better model the longer temporal dependencies between

behaviors as explained above, although it would require more data. This method could also

only be used for interactions that are somewhat short, since temporal relationships might get

lost by the model for particularly long interactions.
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Titre : Analyse automatique de la confiance au cours d’une interaction homme-robot par descripteurs multi-
modaux et architectures neuronales récurrentes

Mots clés : Confiance, Réseaux Neuronaux Récurrents, Apprentissage Statistique, Mutlimodal, Sociologie
Interactioniste

Résumé : La confiance est une notion importante en
interaction humain-robot puisqu’elle impacte la qua-
lité des relations entre les partenaires d’interaction
et ainsi les performances de la tâche en cours. Les
recherches autour de la confiance se sont essentiel-
lement circonscrites autour des analyses des effets
socio-psychologiques sur l’utilisateur du design du ro-
bot, ou de son comportement. Les mesures de la
confiance se font généralement au début et fin de l’in-
teraction par des questionnaires remplis par les uti-
lisateurs eux-mêmes. Dans cette thèse, nous nous
intéressons à une analyse de la dynamique de la
confiance conduite régulièrement tout au long de l’in-
teraction. Comme les approches usuelles de Psycho-
logie dites mentalistes ne nous permettent pas de

faire ceci, nous faisons appel aux théories de la So-
ciologie Interactioniste afin d’établir un schéma de co-
dage TURIN (Trust in hUman Robot INteraction) dédié
à cela. Ensuite, nous utilisons des outils de Machine
Learning afin de développer des modèles d’analyse
automatique de la confiance. Nous proposons une
nouvelle méthodologie permettant de conduire l’ana-
lyse au cours de l’interaction, en s’appuyant sur des
approches simples dans un premier temps, puis sur
une nouvelle architecture neuronale récurrente dans
un deuxième temps. Nous analysons ensuite nos
modèles afin de déterminer les indices comportemen-
taux les plus pertinents et comprendre les types d’er-
reur que ceux-ci commettent.

Title : Automatic analysis of trust over the course of a human-robot interaction using multimodal features and
recurrent neural architectures

Keywords : Trust, Recurrent Neural Network, Machine Learning, Multimodal, Interactionist Sociology

Abstract : Trust is an important psychological
construct in HRI as it mitigates the relationship quali-
ties between partners of an interaction, as well as the
performance of the interaction task. Research on trust
were essentially organized around the study of socio-
psychological effects of the robot design and behavior
on users. Trust is usually measured through question-
naires filled by users themselves at the beginning and
end of the interaction. In this thesis, we tackle the is-
sue of automatic analysis of trust dynamics during the
course of interaction. The standard Psychological ap-
proaches used in HRI to study, coming from a menta-
list perspective, do not currently allow such analysis.

We thus leverage Interactionist Sociology theories to
create a coding scheme named TURIN (Trust in hU-
man Robot INteraction) dedicated to this task. From
there, we use Machine Learning tools to develop mul-
timodal models of trust. We propose a new metho-
dology that allows to conduct the analysis over the
course of the interaction, first through simple models,
then by the design of a specific recurrent neural ar-
chitecture. We finish by an analysis of ours models
to determine which behaviors are the most indicative
of trust and understand the types of errors that they
make.
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