
HAL Id: tel-04430083
https://theses.hal.science/tel-04430083

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic aspects of reachability in temporal graphs
Filippo Brunelli

To cite this version:
Filippo Brunelli. Algorithmic aspects of reachability in temporal graphs. Computation and Language
[cs.CL]. Université Paris Cité, 2023. English. �NNT : 2023UNIP7019�. �tel-04430083�

https://theses.hal.science/tel-04430083
https://hal.archives-ouvertes.fr


Université Paris Cité

École Doctorale Sciences Mathématiques de Paris Centre (ED 386)
Institut de Recherche en Informatique Fondamentale

Institut national de recherche en informatique et en automatique

Thèse de Doctorat en Informatique

Algorithmic aspects of reachability
in temporal graphs

présentée par

Filippo Brunelli

dirigée par:

Directeur de thèse: Laurent Viennot, co-Directeur: Pierluigi Crescenzi

Soutenue publiquement le 11, Septembre 2023 devant un jury composé de:

Laurent Viennot Directeur de recherche, Inria Directeur de thèse
Pierluigi Crescenzi Professeur, Gran Sasso Science Institute Co-Directeur de thèse

Ana Silva Professeure, Universidade Federal do Ceará Rapporteuse
Matthieu Latapy Directeur de recherche, CNRS Rapporteur

Claire Mathieu Directrice de recherche, CNRS Présidente du jury
Tiphaine Viard Mâıtresse de conférences, Télécom Paris Examinatrice



Abstract

Temporal graphs are an extension of graphs which represent networks that evolve and change
over time. In this context, the edges can be available at certain times and unavailable at
others and they are called temporal edges. The length, or another property associated to
an edge, that could classically be captured by the weight of an arc, can now have different
values based on the time the edge is available. The classical notions from graph theory
require novel definitions for temporal graph, taking into account the temporal dimension.
A temporal walk, for instance, correspond to a sequence of adjacent temporal edges that are
available one are after the other. A node v is temporally reachable from a node u if there
exists a temporal walk from u to v.

In this dissertation we explore problems that can be grouped into two main topics:
temporal walk computation and temporalisation of a static graph.

We study the problem of computing minimum cost temporal walks, where “cost” is to
be intended in a very wide sense. Indeed, we introduce an algebraic cost structure that can
be instantiated to model all the classical criteria of walk optimisation in temporal graphs
such as arrival time or duration, as well as linear combination of them or lexicographic com-
positions. Moreover, we study this problem in temporal graphs that are subject to waiting
time constraints. Our main result on this topic is a temporal-edge scanning algorithm for
single-source minimum-cost walks taking as input an acyclic time-expanded representation
of the temporal graph and running in linear time. We also show that the setting in which
we obtain linear-time is the widest possible: an additional logarithmic factor is needed both
when the acyclicity assumption is dropped, or when a weaker temporal graph representation
is used.

When we speak about temporalisation we are referring to the network design problem
of turning a static graph into a temporal graph while optimising a certain criteria. In
particular, we study a problem inspired by the optimisation of bus/metro/tramway schedules
in a public transport network where each trajectory of a vehicle is modelled by a walk in the
directed graph representing the map of the network. We consider the problem of turning a
collection of such walks (called trips) in a directed graph into a temporal graph by assigning
a starting time to each trip so as to maximise the reachability among pairs of nodes. We
obtain several complexity results. Among them, we show that maximising reachability via
trip temporalisation is hard to approximate within a factor

√
n/12 in an n-vertex digraph,

even if we assume that for each pair of nodes, there exists a trip temporalisation connecting
them. On the positive side, we show that there must exist a trip temporalisation connecting a
constant fraction of all pairs if we additionally assume symmetry, that is, when the collection
of trips to be scheduled is such that, for each trip, there is a symmetric trip visiting the same
nodes in reverse order. Notice that symmetry is a fair assumption in the context of public
transit networks, where a bus or metro line usually consists in trips in both directions.

2



Keywords: Temporal graph, temporal reachability, temporal path, temporal walk, waiting-
time constraints, temporalisation, time assignment, edge scheduled network, public transit
network.

3



Résumé

Les graphes temporels sont une extension des graphes et représentent des réseaux évoluant
au fil du temps. Dans ce contexte, les arêtes peuvent être disponibles ou non à certains
moments, et sont appelées arêtes temporelles. La longueur, ou une autre propriété associée
à une arête, qui est classiquement capturée par le poids d’un arc, peut maintenant avoir
différentes valeurs en fonction du moment où l’arête est disponible. Les notions classiques
de la théorie des graphes nécessitent maintenant de nouvelles définitions tenant compte de
la dimension temporelle. Une marche temporelle, par exemple, correspond à une séquence
d’arêtes temporelles qui sont adjacentes l’une avec la suivante et qui sont disponibles l’une
après la suivante. Un nœud est temporellement accessible à partir d’un autre s’il existe une
marche temporelle allant de l’un à l’autre.

Dans cette thèse, nous explorons des problèmes qui peuvent être regroupés en deux
thèmes principaux : le calcul de la marche temporelle et la temporisation d’un graphe
statique.

Nous étudions le problème du calcul des marches temporelles à coût minimal, le terme
“coût” a ici un sens très large. En effet, nous introduisons une structure de coût algébrique
qui peut être instanciée afin de modéliser tous les critères classiques d’optimisation de marche
dans les graphes temporels, tels que le temps d’arrivée ou la durée, ainsi que leur combinaison
linéaire, ou leur composition lexicographique. De plus, nous étudions ce problème dans des
graphes temporels soumis à des contraintes sur le temps d’attente. Notre principal résultat
sur ce sujet est un algorithme scannant les arêtes temporelles pour calculer les marches
de coût minimal depuis une source donnée. Il prend en entrée la représentation classique
de graphe étendu dans le temps sous l’hypothèse de son acyclicité, et s’exécute en temps
linéaire. Nous montrons également que le cadre dans lequel nous obtenons un temps linéaire
est le plus large possible : un facteur logarithmique supplémentaire est nécessaire lorsque
l’hypothèse d’acyclicité est abandonnée ou lorsqu’une représentation plus faible du graphe
temporel est utilisée.

Lorsque nous parlons de temporisation, nous nous référons au problème de concep-
tion de réseau qui consiste à transformer un graphe statique en un graphe temporel tout
en optimisant un certain critère. En particulier, nous étudions un problème inspiré par
l’optimisation des horaires de bus, métro ou tramway, dans un réseau de transport public
où chaque trajectoire d’un véhicule est modélisée par une marche dans le graphe orienté
représentant la carte du réseau. Nous considérons le problème de la transformation d’une
collection de telles marches (appelées trajets) dans un graphe orienté en un graphe temporel
en assignant une heure de départ à chaque trajet de manière à maximiser l’accessibilité
entre les paires de nœuds. Nous obtenons plusieurs résultats de complexité. Nous montrons
notamment que la maximisation de l’accessibilité via la temporisation des trajets est difficile
à approximer avec un facteur meilleur que

√
n/12 dans un digraphe à n sommets, et ceci,

4



même si nous supposons que pour chaque paire de nœuds, il existe une temporisation des
trajets qui les relie. En revanche, en ajoutant une notion de symétrie sur les trajets, c’est-
à-dire, que pour chaque trajet il existe un trajet symétrique visitant les mêmes nœuds dans
l’ordre inverse, nous montrons qu’il doit exister une temporisation des trajets reliant une
fraction constante de toutes les paires. Notons que la symétrie est une hypothèse raisonnable
dans le contexte des réseaux de transport public, où une ligne de bus ou de métro comporte
généralement des trajets dans les deux sens.

Mots clés: Graphe temporel, connectivité temporelle, chemin temporel, marche tem-
porelle, temps d’attente contraint, temporalisation, assignation de temps, réseau avec or-
donnancement des arêtes, réseau de transport public.

5



Introduction en français

Les graphes sont un modèle qui représente les relations entre les entités d’un ensemble donné.
Ces entités peuvent être des personnes, des ordinateurs ou même des lieux. Habituellement,
lorsque nous considérons de telles entités existant dans un système réel, leurs relations, et
donc la manière dont elles sont liées, changent au fil du temps. Pour capturer ces com-
portements dynamiques, nous utilisons les graphes temporels. Les graphes temporels sont
une extension des graphes et dans ce modèle, les liens peuvent être disponibles à certains
moments et indisponibles à d’autres. La longueur ou tout autre propriété d’un lien, qui
pourrait classiquement être capturée par le poids d’un arc, peut maintenant changer en tant
que fonction arbitraire du temps. Différents modèles de graphes temporels peuvent être in-
troduits en fonction de l’application considérée. Prenons par exemple, un graphe temporel
qui modélise les interactions au sein d’un groupe de personnes, en utilisant une capture des
moments où les individus sont en contact. Les personnes sont représentées par des sommets
et les interactions sont représentées par des arêtes dotées d’étiquettes temporelles. Un autre
modèle pourrait décrire un réseau routier, où chaque croisement est représenté par un som-
met, et chaque segment de route reliant deux croisements est une arête dotée d’une fonction
décrivant le temps nécessaire pour parcourir cette portion de route à différents moments
de la journée. Les graphes temporels peuvent trouver une application dans une grande
variété de domaines, car de nombreux réseaux présentent un comportement dynamique.
Par exemple, on peut les utiliser pour modéliser les réseaux de transport déjà mentionnés,
mais aussi les réseaux sociaux, les réseaux mobiles et distribués, les réseaux d’interaction
avec les protéines, et bien d’autres encore. Comme nous l’avons mentionné précédemment,
différents modèles peuvent être plus appropriés pour traiter différentes applications. Cela
conduit malheureusement à une littérature fragmentée sur le sujet.

Depuis que les graphes temporels ont été envisagés pour la première fois il y a plusieurs
décennies, de nombreux chercheurs ont travaillé sur les définitions temporelles qui corre-
spondant aux notions standard de la théorie des graphes. L’une des notions fondamentales
des graphes temporels que nous explorerons dans cette thèse est celle de la connectivité
temporelle. Illustrons un exemple simple de graphe temporel qui modélise un réseau de vols
aériens. Dans la Figure 1 (a), nous avons cinq villes et six vols les reliant. Les villes sont
représentées par des nœuds, et un vol qui relie une ville à une autre est représenté par un
arc étiqueté avec l’heure de départ du vol et sa durée.

Une question qui se pose est de savoir s’il est possible de voyager de Paris à Berlin à
l’intérieur de ce réseau. Comme le vol Paris-Vienne atterrit à 17 heures, le vol Vienne-
Berlin est déjà parti. Il n’est donc pas possible de se rendre à Berlin depuis Paris dans
ce réseau, car les deux villes ne sont pas reliées par une séquence de vols pouvant être
embarqués l’un après l’autre. Nous allons utiliser le terme bord temporel pour décrire ce qui
est représenté ici comme un vol régulier, et chemin temporel pour désigner une séquence

6



Rome

Paris

Oslo

Vienne

Berlin

7am, 2h

5pm, 2h20m

1pm, 1h40m

4pm, 1h15m

7pm, 1h40m

3pm, 2h

(a)

Rome

Paris

Oslo

Vienne

Berlin

(b)

Figure 1: (a) : Représentation d’un réseau de vols par un graphe temporel. Il y a six vols
programmés. Par exemple, l’un d’entre eux relie Rome à Paris : le décollage a lieu à 7
heures du matin et le vol a une durée de 2 heures, ce qui signifie que l’avion atterrira à 9
heures du matin. (b) : Un graphe orienté qui représente les connexions du réseau de vols
illustré en (a), en ignorant les informations temporelles.

de vols qui permettent d’aller d’une ville de départ à une destination. Dans ce cas, nous
dirions que Paris n’est pas connecté temporellement à Berlin car aucun chemin temporel ne
relie Paris à Berlin.

Considérons maintenant ce qui se passe si nous ne tenons pas en compte l’information
temporelle et si nous essayons de représenter le réseau de vols comme dans la Figure 1 (b).
Dans ce cas, la quantité partielle d’informations n’est pas suffisante pour répondre à notre
question initiale, et pourrait même être trompeuse. Cela met en évidence le fait que si nous
essayons de comprimer les données disponibles d’un système intrinsèquement dynamique
dans une représentation statique, série de problèmes se posent et ne peuvent pas être abordés
correctement. L’information temporelle ne peut être ignorée et doit être traitée correcte-
ment. L’introduction de cette dimension temporelle rend inefficace ou inutile de nombreux
outils algorithmiques de la théorie classique des graphes. Pour résoudre les problèmes dans
ce contexte plus général, il est donc nécessaire de développer et de concevoir de nouvelles
procédures efficaces.

Une autre notion clé dans cette thèse est la définition temporelle correspondant à la
définition standard du “plus court chemin” dans la théorie des graphes. En effet, alors
qu’il est assez intuitif de savoir quel est le critère à optimiser dans un graphe lorsqu’on
parle de plus court chemin, il existe plusieurs options intéressantes dans les graphes tem-
porels. Minimiser l’heure d’arrivée, maximiser l’heure de départ, minimiser le temps de
voyage, minimiser la durée totale ou le nombre d’arêtes sont quelques-uns des critères les
plus couramment étudiés dans le domaine des graphes temporels. Pour revenir à l’exemple
du réseau de vols, ces concepts correspondent à un utilisateur qui pourrait être intéressé
par le fait d’arriver le plus tôt possible à sa destination, de quitter son domicile le plus tard

7



possible, de minimiser le temps passé dans les avions, de minimiser le temps total passé à
voyager ou le nombre de vols pris.

Supposons par exemple qu’un utilisateur souhaite prendre un vol de Rome à Oslo. Il a
le choix entre deux séquences de vols : l’une avec une escale à Paris et l’autre avec deux
escales, d’abord à Vienne puis à Berlin. La séquence de vols offrant l’heure d’arrivée la plus
précoce de Rome à Oslo est celle qui passe par Paris, puisqu’elle arrive à 19h20, tandis que
l’autre option arrive à 20h40. Le choix de faire l’arrêt intermédiaire à Paris est également
optimal en ce qui concerne le nombre de vols pris, puisqu’il s’agit de deux vols pour cette
option contre trois pour l’autre. D’autre part, la séquence de vols dont la durée totale est la
plus courte est celle qui passe par Vienne et Berlin, puisque le temps écoulé entre le départ
à 13 heures et l’arrivée à 20 h 40 est de 7 heures et 40 minutes, tandis que pour le choix
passant par Paris, cette durée est de 12 heures et 20 minutes. De plus, c’est aussi le choix
qui a le départ le plus tardif, puisque dans ce cas le décollage a lieu à 13 heures, alors qu’en
passant par Paris, il aurait lieu à 7 heures du matin.

Les graphes temporels peuvent représenter un comportement dynamique qui s’est pro-
duit et a été détecté dans un réseau, mais aussi des connexions programmées entre des entités
qui n’ont pas encore été observées. Cela conduit à tout un champ de problèmes de concep-
tion de réseaux temporels. Prenons un exemple simplifié, tel que le réseau de vols mentionné
précédemment. Une compagnie aérienne est confrontée au problème du choix des heures de
départ et des trajectoires de ses vols. Elle peut fonder ce choix sur différents critères tels
qu’une mesure de joignabilité, par exemple en essayant de maximiser le nombre de corre-
spondances possibles.Supposons que l’on nous donne un digraphe statique, comme celui de
la figure 1 (b). Notre tâche est de programmer les vols entre les villes de manière à maximiser
le nombre de paires de villes qui seront connectées temporellement par une séquence de vols.
Par exemple, un horaire possible serait celui représenté dans la figure 1 (a). Toutefois, il
ne s’agirait pas d’un horaire optimal, car en choisissant un décollage plus tôt pour le vol
Paris-Vienne, par exemple à 13 heures, nous relierions une paire de villes supplémentaire,
c’est-à-dire Paris à Berlin. Dans un contexte similaire, plutôt que de concevoir le réseau de
vols à partir de zéro, nous pourrions avoir la possibilité d’apporter quelques modifications,
comme retarder l’heure de départ d’un vol programmé.

Organisation

Dans le chapitre 1, nous commençons par rappeler et donner la notation des notions clas-
siques de la théorie des graphes. Ensuite, nous introduisons les graphes temporels en
utilisant une nouvelle définition qui peut être affinée pour décrire plusieurs modèles de
graphes temporels présents dans la littérature. Nous définissons également les problèmes de
chemins temporels les plus classiques qui ont été étudiés au cours des dernières décennies.
Le modèle que nous introduisons nous permet d’avoir un aperçu général de l’état de l’art
de ces problèmes de chemins temporels. Nous concluons le chapitre en décrivant quelques
résultats algorithmiques classiques.

Le reste de la thèse est divisé en deux parties principales : le calcul des marches
temporelles dans les chapitres 2 et 3, et la temporalisation d’un graphe statique dans le
chapitre 4.

Calcul de la marche temporelle. Le calcul des plus courts chemins est sans aucun
doute l’un des problèmes les plus fondamentaux de la théorie algorithmique des graphes, et

8



également l’un des sous-routines les plus importants pour une grande diversité d’applications
dans les réseaux. Bien que sa complexité ait été largement étudiée dans le contexte des
graphes statiques, des améliorations restent possibles dans le cas des graphes temporels.
Des algorithmes en temps linéaire pour de nombreux critères différents de marches tem-
porelles ont été conçus par différents chercheurs utilisant divers algorithmes. Notre objectif
était de fournir un outil algorithmique unique et efficace capable de calculer des marches
temporelles génériques optimales. Nous étudions le problème du calcul des marches tem-
porelles coût minimum, le terme “coût” étant pris dans un sens très large. En effet, nous
introduisons une structure de coût algébrique qui peut être instanciée pour modéliser tous
les critères classiques d’optimisation des marches dans les graphes temporels, ainsi que leurs
combinaisons linéaires ou leurs compositions lexicographiques. De plus, nous étudions ce
problème dans des graphes temporels soumis à des contraintes de temps d’attente. Cela
signifie que lors de la navigation dans le graphe temporel, il n’est pas possible de rester
stationnaire à un nœud plus d’un certain temps avant de passer au sommet suivant. Il con-
vient de noter que de telles contraintes d’attente sont naturelles dans plusieurs contextes,
tels que les réseaux de transport mentionnés précédemment. Considérons le réseau de vols
de la figure 1 (a). Un utilisateur peut ne pas vouloir passer plus de quelques heures dans un
arrêt intermédiaire. Dans ce cas, la séquence de vols de Rome à Oslo avec escale à Paris ne
serait plus un choix possible. En effet, le temps écoulé entre l’arrivée du premier vol et le
départ du second est de 8 heures. D’autre part, un utilisateur peut demander que le délai
entre un atterrissage et le décollage suivant soit d’au moins 3 heures, afin d’avoir le temps
d’utiliser la correspondance aérienne en toute sécurité. Dans ce cas, la séquence de vols de
Rome à Oslo avec escale à Vienne et à Berlin ne serait plus réalisable. En effet, le temps
écoulé entre l’arrivée à Vienne et le départ du vol suivant vers Berlin est seulement de 1
heure et 35 minutes.

Notre principal résultat sur ce sujet est un algorithme de balayage des arêtes tem-
porelles pour les marches à coût minimal à source unique prenant comme entrée une
représentation temporelle acyclique du graphe temporel et s’exécutant en temps linéaire.
Une représentation étendue dans le temps est une représentation classique d’un graphe tem-
porel à travers un graphe statique. L’hypothèse d’acyclicité signifie que le graphe temporel
ne contient pas de cycle d’arêtes temporelles avec un temps de parcours nul à chaque in-
stant. Nous montrons également que le cadre dans lequel nous obtenons un temps linéaire
est le plus large possible : un facteur logarithmique supplémentaire est nécessaire lorsque
l’hypothèse d’acyclicité est abandonnée ou lorsqu’une représentation plus faible du graphe
temporel est utilisée. De plus, nous étendons l’algorithme aux réseaux de transport pub-
lic, un modèle de graphe temporel où différents types d’arêtes temporelles représentent soit
des véhicules programmés se déplaçant dans le réseau, soit la possibilité de marcher à tout
moment d’un arrêt à l’autre.

Temporalisation. Inspirés par l’optimisation des horaires de bus/métro/tramway dans
un réseau de transport public, nous considérons le problème de conception de réseau consis-
tant à transformer une collection de promenades (appelées trajets) dans un graphe orienté
en un graphe temporel en assignant une heure de départ à chaque trajet de manière à max-
imiser la joignabilité entre les paires de nœuds. Chaque trajet représente la trajectoire d’un
véhicule et ses arêtes doivent être programmées l’une après l’autre. L’attribution d’une
heure de départ au trajet force donc l’heure de départ de toutes ses arêtes. Nous appelons
cette assignation d’une heure de départ une temporisation de voyage. Le problème que
nous étudions consiste à trouver une temporisation de voyage qui maximise le nombre de

9



paires de nœuds qui sont connectés par un chemin temporel. Le problème de la transforma-
tion d’un graphe non orienté en un graphe temporel en ordonnant chaque arc de manière
indépendante a déjà été étudié dans le cadre du bavardage. Dans ce contexte, l’objectif était
de comprendre quand il est possible de connecter temporellement toutes les paires [39]. Il est
surprenant de constater que l’approximation de la joignabilité temporelle maximale semble
avoir reçu peu d’attention dans la littérature. Notre problème de temporisation des trajets
prend en compte un nouveau type de dépendance temporelle où les arcs sont regroupés en
promenades qui doivent être programmées de manière séquentielle. A notre connaissance,
cette idée est nouvelle bien qu’elle semble naturelle dans des contextes tels que les réseaux
de transport en commun. De plus, nous étudions également le problème sans tenir compte
de la contrainte de déplacement, ce qui signifie que chaque arc d’un digraphe peut être
programmé indépendamment des autres arcs.

Nous obtenons plusieurs résultats de complexité. Parmi ceux-ci, nous montrons que la
maximisation de la joignabilité via la temporisation de voyage est difficile à approximer
avec un facteur

√
n/12 dans un digraphe de n-vertex, même si nous supposons que pour

chaque paire de nœuds, il existe une temporisation de voyage les reliant. En revanche, nous
montrons qu’il doit exister une temporisation de trajet reliant une fraction constante de
toutes les paires si nous supposons en plus une symétrie, c’est-à-dire lorsque pour chaque
trajet de la collection, il existe un trajet symétrique visitant les mêmes nœuds dans l’ordre
inverse. Il est à noter que la symétrie est une hypothèse raisonnable dans le contexte des
réseaux de transport public, où une ligne de bus ou de métro se compose généralement de
trajets dans les deux sens.

10



Contents

Introduction 13
Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Publications 17

1 Preliminaries and State of the Art 18
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Basic graphs notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2 Basic algorithmic notions . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.3 Basic complexity notions . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.4 Temporal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.5 Basic definitions in temporal graphs . . . . . . . . . . . . . . . . . . . 21
1.1.6 Differences with static graphs . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.2 Temporal graph representations . . . . . . . . . . . . . . . . . . . . . . 27
1.2.3 FIFO property and waiting policies . . . . . . . . . . . . . . . . . . . . 29
1.2.4 Temporal paths problems . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Temporal walks computation under waiting constraints 36
2.1 Model and representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Computing reachability under waiting constraints . . . . . . . . . . . . . . . . 41
2.3 Computing single-source all-reachable-edge minimum-cost walks . . . . . . . . 50

2.3.1 Computing shortest duration walks. . . . . . . . . . . . . . . . . . . . 52
2.4 Solving classical optimal temporal walks problems . . . . . . . . . . . . . . . 63

2.4.1 Single-source fewest-edges walks. . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Minimum-overall-waiting-time walks. . . . . . . . . . . . . . . . . . . . 63
2.4.3 Shortest-fastest walks . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.4 Linear combination of classical criteria . . . . . . . . . . . . . . . . . . 64
2.4.5 Pareto optimal walks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.6 Profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Lower bound for the single-source optimal walk problem . . . . . . . . . . . . 67
2.6 Handling zero travel-times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.6.1 Matching conditional lower-bound. . . . . . . . . . . . . . . . . . . . . 80
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11



3 Temporal walks in public transit networks 82
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Complexity study of the Connection Scan Algorithm . . . . . . . . . . . . . . 85

3.2.1 CSA complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Double Scan Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Double Scan complexity analysis . . . . . . . . . . . . . . . . . . . . . 95
3.3.2 Computing optimal journeys . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.3 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 97

4 Walk temporalisation 98
4.1 Preliminary definitions and results . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 The maximum reachability walk temporalisation

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.1 Bounding the number of used trips . . . . . . . . . . . . . . . . . . . . 111

4.3 Strongly temporalisable trip networks . . . . . . . . . . . . . . . . . . . . . . 112
4.3.1 Symmetric and strongly temporalisable trip networks . . . . . . . . . 120

4.4 Single arc trip networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.1 Hardness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.4.2 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5 Conclusions and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Conclusions and perspectives 141

12



Introduction

Graphs are a model that represents the way entities of a certain set are linked together.
For instance, these entities can be persons, computers or even places. Most of the time,
when we consider such entities that exist in an actual system, their relations, and thus
the way they are linked, change over time. Temporal graphs are an extension of graphs
that capture this dynamic behaviour. In this context, the links can be available at certain
times and unavailable at others. The length, or another property of a link, that could
classically be captured by the weight of an arc, can now change as an arbitrary function of
time. Different models of temporal graphs can be introduced depending on the application
that is considered. For example, a temporal graph can model the interactions in a group
of people, using a record of the time instants at which individuals have been in contact.
People are represented by vertices, and interactions are represented by edges equipped with
time labels. A different model can describe a road network. Each crossing is represented
by a vertex, and each segment of road connecting two crossings is an edge equipped with a
function that describes the amount of time it takes to traverse that portion of the road at
different times of the day. Temporal graphs can find application in a huge variety of domains,
since many networks have inherent dynamic behaviour. For example the already mentioned
transportation networks, but also social networks, mobile and distributed networks, protein
interaction networks, and several others. As we hinted before, different models can be
more suitable to deal with different applications. This unfortunately leads to a fragmented
literature on the topic.

Since temporal graphs have been considered for the first time decades ago, authors have
worked on defining the counterpart of standard notions from graph theory. One of the
fundamental notions in temporal graph that we will explore in this dissertation is temporal
connectivity. Let us present a small example of a temporal graph that models a flight
network. In Figure 2 (a) we have five cities and six flights between them. The cities are
represented as nodes, and a flight that connects a city to another is represented through an
arc labelled with the departure time of the flight and its duration.

A possible question would be whether it is possible to travel from Paris to Berlin inside
this network. As the flight from Paris to Vienna lands at 5pm, the flight from Vienna to
Berlin has already left. It is thus not possible to reach Berlin from Paris in this network,
because the two cities are not connected by a sequence of flights that can be boarded one
after the other. We are going to call temporal edge what here is represented as a scheduled
flight, and temporal path a sequence of flights that permit to go from a starting city to a
destination. In this case, we would say that Paris is not temporally connected to Berlin as
not temporal path connects Paris to Berlin.

Let us now take a look at what happens if we disregarded the temporal information and
tried to represent the flight network as in Figure 2 (b). In this case, the partial amount

13



Rome

Paris

Oslo

Vienna

Berlin

7am, 2h

5pm, 2h20m

1pm, 1h40m

4pm, 1h15m

7pm, 1h40m

3pm, 2h

(a)

Rome

Paris

Oslo

Vienna

Berlin

(b)

Figure 2: (a): The representation of a flight network through a temporal graph. There are
six scheduled flights. For example, one of them is from Rome to Paris: the take off is at
7am and the flight has a duration of 2 hours, meaning the plane will land at 9am.
(b): A directed graph that represents the connections of the flight network illustrated in
(a), ignoring the temporal information.

of information is not enough to answer our first question, and might even be misleading.
This to understand that, if we tried to compress available data from a system that is
inherently dynamic into a static representation, there is a whole set of problems that cannot
be approached correctly. The temporal information cannot be ignored and has to be handled
properly. The introduction of this temporal dimension makes many algorithmic tools of
classical graph theory inefficient or useless. In order to solve problems in this more general
context it is thus needed to develop and design novel efficient procedures.

Another notion that plays a key role in this dissertation is the counterpart of the standard
definition of “shortest path” from graph theory. Indeed, while it is fairly intuitive what is
the criteria to optimize in a graph when speaking about shortest paths, there are several
different interesting options in temporal graphs. Minimising the arrival time, maximising
the departure time, minimising the time spent travelling, minimising the overall duration or
the number of edges are some of the most common criteria studied in the field of temporal
graphs. Going back to the example of the flight network these concepts correspond to a
user that might be interested in respectively arriving as early as possible to the destination,
leaving their house as late as possible, minimising the time spent on planes, minimising the
overall time spent traveling or the number of flights taken.

For example, let us suppose that a user wants to fly from Rome to Oslo. There are two
sequences of flights they can choose from: one with an intermediate stop in Paris and the
other one with two intermediate stops, first in Vienna and then in Berlin. The sequence of
flights that has the earliest arrival time from Rome to Oslo is the one going through Paris,
as it arrives at time 7:20pm, while the other one arrives at 8:40pm. The choice to make the
intermediate stop in Paris is also optimal concerning the number of flights taken, as they are

14



two for this option and three for the other one. On the other hand, the sequence of flights
that has minimum overall duration is the journey going through Vienna and Berlin, as the
time elapsed between departure at 1pm and arrival at 8:40pm, is 7 hours and 40 minutes,
while for the choice through Paris this quantity is 12 hours and 20 minutes. Moreover, this
is also the choice that has the latest departure, as in this case the take off is at 1pm, while
going through Paris it would be at 7am.

Temporal graphs can represent dynamic behaviour that occurred and was detected in a
network, but also scheduled connections between entities that have yet to be observed. This
leads to a whole field of temporal network design problems. As a simplified example we
could think about the flight network discussed earlier. A flight company faces the problem
of choosing departure times and trajectories of their flights. They could base this choice on
different criteria as some reachability measure, for example trying to maximise the number
of possible connections. Let us imagine that we are given a static digraph, like the one in
Figure 2 (b). We are given the task to schedule flights between the cities in a way that
maximises the number of cities that will be temporally connected by a sequence of flights.
For example, a possible schedule would be the one represented in Figure 2 (a). However,
this would not be an optimal schedule, as by choosing an earlier take off for the flight from
Paris to Vienna, for example 1pm, we would connect one more pair of cities, that is Paris to
Berlin. In a similar setting, rather than designing the flight network from scratch, we might
only have the option to make some changes, like delaying the departure time of a scheduled
flight.

Organisation

In Chapter 1 we first recall and give the notation for classical graph theory notions. We
then introduce temporal graphs using a novel definition that can be refined to describe
several models of temporal graphs present in the literature. We also define the most classical
temporal path problems that have been studied in the last decades. The model we introduce
allows us to provide a wide picture about the state of the art of such temporal path problems.
We conclude the chapter by describing some classical algorithmic results.

The remaining of the thesis is divided into two main parts: temporal walk computation
in Chapter 2 and 3, and temporalisation of a static graph in Chapter 4.

Temporal walk computation. Computing shortest paths is certainly one of the most
fundamental problems within algorithmic graph theory, as well as one of the most important
subroutines for a large diversity of applications in networks. While its complexity has been
extensively covered in the context of static graphs, there is still room for improvement in
temporal graphs. Linear time algorithms for many different criteria of temporal walks were
designed by different authors using diverse algorithms. Our goal was to provide a single
efficient algorithmic tool capable to compute generic optimal temporal walks. We study the
problem of computing minimum cost temporal walks, where “cost” is to be intended in a
very wide sense. Indeed, we introduce an algebraic cost structure that can be instantiated
to model all the classical criteria of walk optimisation in temporal graphs, as well as linear
combinations of them or lexicographic compositions. Moreover, we study this problem in
temporal graphs that are subjected to waiting time constraints. This means that when
navigating the temporal graph it is not possible to stay stationary at a node more than
a certain amount of time before moving onto the next vertex. Note that such waiting

15



constraints are natural in several contexts, such as the transportation networks mentioned
before. Let us consider the flight network in Figure 2 (a). A user might not want to spend
more than a few hours in an intermediate stop. In this case, the sequence of flights from
Rome to Oslo stopping in Paris would not be a possible choice anymore. This is because
the time elapsed between the arrival of the first flight and the departure of the second one
is 8 hours. On the other hand, a user might request that the time between a landing and
the following take off is at least 3 hours, to have time to safely use the plane connection. In
this case, the sequence of flights from Rome to Oslo stopping in Vienna and Berlin would
not be feasible anymore. Indeed, the time elapsed between the arrival in Vienna and the
departure of the next flight to Berlin is just 1 hour and 35 minutes.

Our main result on this topic is a temporal-edge scanning algorithm for single-source
minimum-cost walks taking as input an acyclic time-expanded representation of the temporal
graph and running in linear time. A time-expanded representation is a classical represen-
tation for a temporal graph through a static graph. The acyclic assumption means that
the temporal graph does not contain a cycle of temporal edges with zero-travel time at any
time instant. We also show that the setting in which we obtain linear-time is the widest
possible: an additional logarithmic factor is needed both when the acyclicity assumption
is dropped, or when a weaker temporal graph representation is used. Moreover, we extend
the algorithm to the setting of public transit networks, a model of temporal graph where
different type of temporal edges represent either scheduled vehicles moving in the network
or the possibility to walk at any time from a stop to another.

Temporalisation. Inspired by the optimisation of bus/metro/tramway schedules in a
public transport network, we consider the network design problem of turning a collection of
walks (called trips) in a directed graph into a temporal graph by assigning a starting time
to each trip so as to maximise the reachability among pairs of nodes. Each trip represents
the trajectory of a vehicle and its edges must be scheduled one right after another. Setting
a starting time to the trip thus forces the departure time of all its edges. We call such a
starting time assignment a trip temporalisation. The problem we study consists in finding
a trip temporalisation that maximises the number of pairs of nodes that get connected by
a temporal path. The problem of turning an undirected graph into a temporal graph by
scheduling each arc independently has already been considered in the gossip setting. The fo-
cus in this context was to understand when it is possible to temporally connect all pairs [39].
Surprisingly, approximating maximum temporal reachability seems to have received little
attention in the literature. Our trip temporalisation problem takes into account a novel
type of temporal dependency where arcs are grouped into walks that must be sequentially
scheduled. To the best of our knowledge, this idea is new although it seems natural in
contexts such as transit networks. Moreover, we also study the problem disregarding the
trip constraint, meaning that each arc of a digraph can be scheduled independently from
the other arcs.

We obtain several complexity results. Among them, we show that maximising reacha-
bility via trip temporalisation is hard to approximate within a factor

√
n/12 in an n-vertex

digraph, even if we assume that for each pair of nodes, there exists a trip temporalisation
connecting them. On the positive side, we show that there must exist a trip temporalisation
connecting a constant fraction of all pairs if we additionally assume symmetry, that is, when
for each trip in the collection, there is a symmetric trip visiting the same nodes in reverse
order. Notice that symmetry is a fair assumption in the context of public transit networks,
where a bus or metro line usually consists in trips in both directions.

16



Publications

Parts of this dissertation appeared in the following publications:

Chapter 2:

[9] : Filippo Brunelli, Pierluigi Crescenzi, and Laurent Viennot. On computing pareto
optimal paths in weighted time-dependent networks. Information Processing Letters, 2021.

[11] : Filippo Brunelli and Laurent Viennot. Computing temporal reachability under
waiting-time constraints in linear time. To appear: 2nd Symposium on Algorithmic Foun-
dations of Dynamic Networks, SAND 2023, June 19-20, 2023, Pisa, Italy.

[12] : Filippo Brunelli and Laurent Viennot. Minimum-cost temporal walks under
waiting-time constraints in linear time. CoRR, 2022.

Chapter 4:

[10] : Filippo Brunelli, Pierluigi Crescenzi, and Laurent Viennot. Maximizing reach-
ability in a temporal graph obtained by assigning starting times to a collection of walks.
Networks, 2023.

[3] : Alkida Balliu, Filippo Brunelli, Pierluigi Crescenzi, Dennis Olivetti, and Laurent
Viennot. A note on the complexity of maximizing temporal reachability via edge temporal-
isation of directed graphs. CoRR, 2023.

17



Chapter 1

Preliminaries and State of the
Art

1.1 Preliminaries

1.1.1 Basic graphs notions

Definition 1 (Directed graph). A directed graph (or digraph) D is defined as a pair
(V, F ), where:

� V is a set of elements called vertices or nodes,

� F ⊆ V × V is a set of ordered pairs of nodes, called arcs (or edges).

In an undirected graph the edges are unordered pairs; since most of the time we deal
with directed graphs rather than undirected, we give all the basic definitions for the directed
model, and we are careful to mention that a graph is undirected when it is going to be the
case. Moreover, to emphasize the difference with temporal graphs, when we refer to a
directed or an undirected graph we might add the adjective static. We will prefer the
term arcs rather than edges when speaking about static graphs, in order to emphasize the
difference with temporal edges that are introduced later.

Let e = (u, v) ∈ F be an arc. We call u the tail of e and v the head of e, and we denote
them respectively with tail(e) and head(e). We define the out-neighbourhood of a node v
as the set of nodes Nout(v) = {w : (v, w) ∈ F}, and if w ∈ Nout(v) we say that w is an
out-neighbour of v. We define the out-degree of v as the cardinality of Nout(v). Similarly,
we define the in-neighbourhood of a node v as the set of nodes Nin(v) = {u : (u, v) ∈ F},
and if u ∈ Nin(v) we say that u is an in-neighbour of v. We define the in-degree of v as
the cardinality of Nin(v). In the following we will denote by [k] the set of natural numbers
{1, 2, . . . , k}.
Definition 2 (Walk). Given a directed graph D = (V, F ), a walk from a vertex u to a
vertex v is defined as a sequence of arcs ⟨ei, e2, . . . , ek⟩, where: tail(e1) = u, head(ek) = v,
and tail(ei+1) = head(ei) for each i ∈ [k − 1].

A path is a walk through distinct vertices. A node v is said to be reachable from a node
u if there exists a walk from u to v (in the following, we will assume that a node is reachable
from itself).

18



An out-arborescence rooted in r is a digraph D = (V, F ) such that for any vertex v ∈ V
there exists exactly one walk from r to v. Similarly, an in-arborescence rooted in r is a
directed graph D = (V, F ) such that for any vertex v ∈ V there exists exactly one walk
from v to r.

We call a multi directed graph (or multidigraph) a digraph D = (V, F ) that is allowed
to have multiple arcs with same tail and head, namely, F is a multiset. Here, the term
multiset or collection is used to denote a set in which order is ignored but multiplicity is
significant. The cardinality |A| of a multiset A denotes the sum of the multiplicities of the
distinct elements in A: in this case, |F | denotes the number of (not necessarily distinct)
arcs in F . We call a weighted multidigraph a multidigraph where each arc is associated to a
weight. We denote a weighted multidigraph D as a pair (V, F ) where V is the set of vertices
and F is the set of (weighted) arcs, and each weighted arc is represented as a triple (u, v, µ),
where u and v are vertices, respectively tail and head of the arc, and µ ∈ R≥0 is the weight
of the arc.

We define the length of a path P in a digraph as the number of its arcs, or the sum of
the weights of its arcs if it is a weighted digraph. We say that a path P from u to v is a
shortest path if there is no other path from u to v with inferior length. We call distance of
v from u the length of a shortest path from u to v.

1.1.2 Basic algorithmic notions

A breadth-first search (BFS) algorithm can be used to explore a digraph (V, F ) starting from
a vertex u and visiting all the nodes reachable from u by increasing distance. To be more
precise, the algorithm works in the following way. In the beginning, all vertices are marked
as non-visited. A queue, that follows the first-in-first-out rule, is instantiated and the input
vertex u is added to the queue. At each step, until the queue is empty, the algorithm extracts
a node from the queue, marks it as visited, and adds to the queue the out-neighbours of the
extracted node that have not been marked as visited yet. The algorithm has a complexity of
O(|V |+ |F |). The order in which the vertices are visited is called a BFS ordering. Moreover,
a BFS execution also induces an out-arborescence rooted in the input vertex.

A fundamental algorithmic result that we will use in the context of shortest path com-
putation is Dijkstra’s algorithm [28]. Given a weighted digraph with non-negative weights
D = (V, F ) and a source node s, it computes the shortest path towards every other node
in the graph. The algorithm performs the following instructions. It starts by marking all
nodes as non-visited and setting a parent pointer to a default value for each node. It assigns
to each node u a tentative distance d(u): assigns zero to the source and plus infinity to
every other node. This tentative distance represents the length of the shortest path found
so far by the algorithm and it is going to be updated during the execution. A plus infinity
distance means that no path has been found until that point. At each iteration we select
a node u that is non-visited with the lowest tentative distance. For each of the non-visited
out-neighbours v of u, if the tentative distance d(v) is greater than d(u) plus the weight of
(u, v), then d(v) is updated to the lower value and the parent pointer of v is set to u. After
this operation u is marked as visited. At the end of the execution d(v) is the distance from
s to v, and following the parent pointers we can retrieve a shortest path.

The complexity of the algorithm depends on the data structure used to store the non-
visited nodes, which affects the time needed to pick one with minimum distance. When
the algorithm is implemented using a Fibonacci Heap as priority queue the complexity is
O(|F |+ |V | log |V |).

19



1.1.3 Basic complexity notions

We denote with P the set of decision problems that can be solved in polynomial time with
respect to the input size by a deterministic Turing machine. We denote with NP the set of
decision problems that can be verified in polynomial time by a deterministic Turing machine,
where verify means check if a given solution is a feasible solution. We say that a problem
is NP-hard if every problem in NP can be reduced in polynomial time to it; which means
finding a polynomial time algorithm for any NP-hard problem would lead to polynomial
algorithms for all problems in NP. In different words we can say that a problem is NP-hard
if it is at least as hard as the hardest problem in NP. Finally, we say that a decision problem
is NP-complete if it is in NP and it is NP-hard.

Let us now present an example of NP-complete problem that we work with in the next
chapters. In order to define the problem we first introduce some additional notions.

A Booloean formula is a logical formula built from Boolean variables and logical oper-
ators. In particular we will consider the three following logical operators: the logical and
called conjunction and denoted by ∧, the logical or called disjunction and denoted by ∨,
and finally the logical not called negation and denoted by ¬. A literal is given by a variable
or the negation of a variable. In the following, a clause is a disjunction of literals. Finally,
a formula (in conjunctive normal form) is a conjunction of clauses. An assignment is a
function that associate to each variable a Boolean value, and a formula is satisfied by an
assignment if the expression obtained replacing the variables with the corresponding values
from the assignment evaluates to True.

The Boolean satisfiability problem ( sat) consists in determining whether a given formula
is satisfiable or not, meaning to establish if there exists an assignment that satisfies the
formula. We consider a particular variant of the sat problem which is called 3-sat. In this
case each clause in the formula contains exactly three literals. For example an instance of the
3-sat problem could be the formula Φ = (x1∨x2∨¬x3)∧(¬x1∨x2∨x3)∧(¬x1∨¬x2∨¬x3).
The assignment α such that α(x1) = False, α(x2) = True and α(x3) = False satisfies Φ,
which implies that Φ is satisfiable. The 3-sat problem is NP-complete, and in Chapter 4
several results are obtained through reductions from 3-sat. Notice that given a decision
problem P, since 3-sat is NP-complete, by showing a polynomial time reduction from 3-sat
to P we deduce that there exists a polynomial time reduction from any problem in NP to
P, that is P is NP-hard. If, on top of that, we show that it is possible to verify that a
given solution for P is a feasible solution, then P ∈ NP and we can conclude that P is
NP-complete.

1.1.4 Temporal graphs

Generally speaking, a temporal graph is a graph where the availability or the travel time
of the arcs changes over time. Following this general concept it is possible to provide a
definition which establishes a hierarchy among most models of temporal graphs that are
present in the literature. The following definition is not classical, but it helps to gather and
speak about state of the art results in a coherent way.

Definition 3 (Temporal graph). A temporal graph G is given by a set of vertices V and
a set of temporal edges E. A temporal edge is defined as a tuple e = (u, v, I, λ), where:

� u ∈ V is the tail of e,

� v ∈ V is the head of e,

20



� I is an interval in R which is called the availability interval of e,

� λ : I → R≥0 is a travel time (or delay) function.

The availability interval of a temporal edge could be a closed, open or mixed interval.
A temporal edge e = (u, v, I, λ) denotes the fact that it is possible to go from node u to
node v departing at any time instant τ ∈ I and taking λ(τ) amount of time to traverse
the edge. Multiple temporal edges with the same tail and head are allowed, and among
such temporal edges, overlapping availability intervals are allowed. The travel time function
λ of a temporal edge e induces an arrival time function arre : I → R that associates
to each possible departure time τ ∈ I the arrival time to the head of the edge, namely
arre(τ) = τ + λ(τ). The arrival time function and the travel time function can be easily
computed from one another, yielding to equivalent models if one or the other is given.

By assuming different properties on the travel time functions of the temporal edges we
obtain different temporal graph models. In particular, by considering stronger and stronger
assumptions we obtain a hierarchy of models where each model encompasses the next one.

Definition 4 (Piecewise linear temporal graph). A piecewise linear temporal graph
is a temporal graph such that, for each temporal edge, its travel time function λ is affine.

Definition 5 (Piecewise constant temporal graph). A piecewise constant temporal
graph is a piecewise linear temporal graph such that, for each temporal edge, its travel time
function λ is constant.

Given a temporal edge e = (u, v, I, λ), since λ is a constant function over the availability
interval I in the case of piecewise constant temporal graphs, with a slight abuse of notation,
we may represent the temporal edge using a scalar λ ∈ R which is the image of the travel
time function λ, instead of the travel time function itself.

Definition 6 (Point availability temporal graph). A point availability temporal graph
is a piecewise constant temporal graph such that for each temporal edge, its availability
interval I is a point τ ∈ R (i.e. I = [τ, τ ]).

In this case, a temporal edge e = (u, v, I, λ) can be denoted by a quadruple e = (u, v, τ, λ),
where τ, λ ∈ R.

Definition 7 (Uniform temporal graph). A uniform temporal graph is a point avail-
ability temporal graph such that the travel time is a constant c over all temporal edges. In
particular we say uniform strict when c = 1 and uniform non-strict when c = 0.

In this case a temporal edge e = (u, v, I, λ) can be denoted with a lighter notation by a
triple (u, v, τ) and the constant c is specified separately.

This hierarchy is useful to identify which results obtained in a model can be translated
to another, to understand which properties make a problem become difficult, and also to
get a better overview on a fragmented literature.

Whenever we will see a drawing of a temporal graph, the temporal edges are going to
be illustrated as in Figure1.1.

1.1.5 Basic definitions in temporal graphs

For what concerns temporal graphs and in particular this work, one of the most important
notion is the one of temporal walk.Intuitively, a temporal walk consists in moving from node

21



u v u v u v
[τl, τr], λ τ, λ τ ,

(a) (b) (c)

Figure 1.1: An illustration of a temporal edge in a piecewise constant temporal graph (a),
in a point availability temporal graph (b) and in a uniform temporal graph (c).

to node by traversing edges one after the other in a classical way, but also taking into
account a natural temporal constraint. More formally:

Definition 8 (Temporal walk). Given a temporal graph G = (V,E), a temporal walk
from u to v (or a uv-walk for short) is a sequence of pairs of temporal edges and departure
times ⟨(e1, τ1), (e2, τ2), . . . , (ek, τk)⟩ such that:

� ei is a temporal edge in E, for each i ∈ [k],

� τi ∈ Ii, where Ii is the availability interval of the temporal edge ei, for each i ∈ [k],

� tail(ei+1) = head(ei), for each i ∈ [k − 1], (walk constraint)

� τi+1 ≥ arrei(τi), for each i ∈ [k − 1]. (temporal constraint)

Definition 9 (Temporal path). A temporal path is a temporal walk through distinct
nodes.

Given a temporal walk Q = ⟨(e1, τ1), (e2, τ2), . . . , (ek, τk)⟩ the departure time and arrival
time of Q are defined as τ1 and arrek(τk), and denoted as dep(Q) and arr(Q), respectively.
A temporal walk is said to be strict if τi+1 > τi for each i ∈ [k − 1]; notice that temporal
walks are strict in case of temporal graphs where the travel times are strictly positive,
because τi+1 ≥ arrei(τi) = τi + λ(τi) > τi. We define the overall waiting time of Q as∑k−1

i=1 τi+1 − arrei(τi). We say that a node v is temporally reachable from a node u (or
u-reachable) when there exists a temporal walk from u to v. We also say that the temporal
walk connects u to v, and that the pair (u, v) is temporally connected. Moreover, we say
that a temporal edge e with head v is temporally reachable from u (or u-reachable) when
there exists an sv-walk ending with temporal edge e. Given a temporal graph G = (V,E)
we define its underlying graph as the digraph D = (V, F ), where (u, v) ∈ F if and only if
there exists a temporal edge e ∈ E such that tail(e) = u and head(e) = v. Moreover, in a
temporal graph, we say that a node v is an in-neighbour (resp. out-neighbour) of u, if v is
an in-neighbour (resp. out-neighbour) of u in the underlying graph. We define the temporal
in-degree of a node u as the cardinality of the set of temporal edges that have head u, and
the temporal out-degree as the cardinality of the set of temporal edges that have tail u. We
define the arc activity of an arc (u, v) in the underlying graph as the cardinality of the set of
temporal edges that have tail u and head v. Finally, we define the lifetime L of a temporal
graph as the minimum length of an interval in R that contains the union of the availability
intervals of the temporal edges.

Since the models that we use the most in this work are point availability and uniform
strict temporal graphs, we will introduce here some notation that will be useful in the next
chapters. In these two models each temporal edge e has a unique available departure time
τ , which is denoted by dep(e) and thus also a unique arrival time, τ + λ that is denoted by

22



s v

u t

s v

u t

s v

u t

s v

u t

[1, 3], 1

[1, 3], 2

[4, 6], 3

[2, 4], 2

1, 1

3, 2

4, 3

3, 2

1

3

4

3

(a) (b)

(c) (d)

Figure 1.2: An example of piecewise constant temporal graph (a), of point availability
temporal graph (b) and of uniform strict temporal graph (c). Each of these temporal
graphs has the same underlying graph (d).

arr(e). In the case of strict uniform temporal graphs, in particular, arr(e) = τ+1. Moreover,
whenever we consider a temporal walk ⟨(e1, τ1), (e2, τ2), . . . (ek, τk)⟩ in these models we can
drop the time labels and use ⟨e1, e2, . . . , ek⟩, since each τi must be equal to the time at which
ei is available.

Example Figure 1.2 represents three examples of temporal graphs that have the same
underlying graph. The pair (s, t) is temporally connected in all the examples. A walk that
connects s to t in the piecewise constant temporal graph (a) is Qa = ⟨((s, u, [1, 3], 2), 1),
((u, t, [4, 6], 3), 5)⟩. The departure time of Qa is 1 and the arrival time is 5 + 3 = 8. The
overall waiting time of Qa is 2, as the walks arrives in u at time 3 and leaves the node
at time 5. In the point availability temporal graph (b) it is not possible to connect s to t
using a temporal walk that goes through node u. Indeed, the sequence of temporal edges
⟨(s, u, 3, 2), (u, t, 4, 3)⟩ does not respect the temporal constraint in the definition of temporal
walk. Notice that the travel times of the corresponding temporal edges of the graphs in (a)
and (b) are the same, however the greater availability of the temporal edges in (a) allows
more flexibility which makes it possible to reach t from s going through u. Nonetheless,
Qb = ⟨(s, v, 1, 1), (v, t, 3, 2)⟩ is a temporal walk that connects s to t in (b). The departure
time of Qb is 1, the arrival time is 3 + 2 = 5 and the overall waiting time is 1, as the
walks arrives in node v at time 2 and leaves towards t at time 3. Finally, in the uniform

23



u v w
2 1

Figure 1.3: A uniform temporal graph where (u, v) and v, w are temporally connected but
(u,w) is not.

strict temporal graph (c), unlike (b), it is possible to connect s to t by a temporal walk
through node u. Notice that the departure times of the temporal edges in graphs (b) and
(c) are the same. However the greater travel time from s to u in (b) is greater than the
one in (c), and that informally makes the temporal edge arrive too late in u to ’catch’ the
next temporal edge. Thanks to the lower travel time in (c) there exists a temporal walk
Qc = ⟨(s, u, 3), (u, t, 4)⟩, with departure time 3, arrival time 4 that connects s to t going
through u. Notice that the overall waiting time of Qc is 0, as it arrives in node u at time 4
and leaves it at the same time.

1.1.6 Differences with static graphs

Working on temporal graph algorithms raises some challenges that are not present in classical
digraphs. This is due to the fact that some properties holding in digraphs do not hold in the
temporal case anymore. In the following we will discuss a few such properties in the context
of paths by providing some simple counter-examples in the case of uniform temporal graphs.
Because of the hierarchy defined earlier, this means that such properties do not hold even
in the other (more general) models of temporal graphs we defined.

Transitivity of reachability In digraphs it is possible to rely on the transitivity of
reachability: given three nodes u, v and w, if v is reachable from u and w is reachable from
v then w is reachable from u. The reason for this is that it is possible to concatenate a walk
from u to v and a walk from v to w into a single walk from u to w. However, this is not true
for temporal walks any more. In the temporal graph displayed in Figure 1.3, there exists a
temporal path, made of a single temporal edge, from u to v, and another one from v to w.
However, there exists no temporal walk from u to w, since the sequence ⟨(u, v, 2), (v, w, 1)⟩
is not a temporal walk.

Prefix optimality of shortest paths Whenever a shortest path from a source to a
certain destination is given in a digraph, we can rely on the fact that any prefix of such a
path is also a shortest path. If it was not the case we would be able to find a shorter path
from the source to the destination.

In temporal graphs the notion of “shortest” has a wide variety of interpretations, that
we will discuss in more detail in the following sections and Chapter 2. Without going too

u v w
1

2

3

Figure 1.4: An example of a uniform temporal graph showing that the prefix of a temporal
path with minimum arrival time does not necessarily have minimum arrival time itself.

24



u

a

b

v

c

d

w

1

2

2

4

7

5

8

7

Figure 1.5: An example of a uniform temporal graph showing that the prefix of a temporal
path with minimum duration may not have minimum duration itself.

much into details, one of the possible ways to define a “shortest” temporal path is as a
temporal path that minimises arrival time to the destination. Let us consider the temporal
graph from Figure 1.4. Here the temporal path ⟨(u, v, 2), (v, w, 3)⟩ has minimum arrival time
among the temporal paths from u to v. However its prefix, i.e. the temporal edge (u, v, 2),
does not constitute a shortest temporal path from u to v since the temporal path made of
the sole temporal edge (u, v, 1) has an inferior arrival time.

One could argue that in this model, for this definition of “shortest”, it would al-
ways be possible to choose a shortest temporal path such that its prefixes are also short-
est temporal paths. This is indeed true, and in the figure this temporal path would be
⟨(u, v, 1), (v, w, 3)⟩. However, this is not valid anymore for other definitions of “shortest”
temporal path present in the literature. One other classical criterion to define a “shortest”
temporal path P is to minimise the duration, namely arr(P ) − dep(P ). In the temporal
graph represented in Figure 1.5 the temporal path with minimum duration from u to v is
⟨(u, b, 2), (b, v, 4), (v, d, 5), (d,w, 7)⟩, with a duration of 8−2 = 6. And, according to this def-
inition, this is the unique shortest temporal path from u to w. Its prefix ⟨(u, b, 2), (b, v, 4)⟩,
on the other hand, does not have minimum duration among the temporal paths from u to v,
as ⟨(u, a, 1), (a, v, 2)⟩ has duration 3−1 = 2. Moreover, notice that the temporal paths with
minimum duration from u to v and from v to w, ⟨(u, a, 1), (a, v, 2)⟩ and ⟨(v, c, 7), (c, w, 8)⟩
respectively, could be concatenated into a temporal path from u to w, but this would not
lead to a shortest temporal path.

1.2 State of the art

1.2.1 Models

Temporal graphs arose as an extension of graphs from the need to develop a tool that
better captures interactions which are dynamic and change over time. This concept of time
dependent network finds applications in a variety of domains. This led to a fragmented
literature about the topic, which progressed at different points in time, pushed by different
applications. In particular there are plenty of models, some of which are closely related,
and the notation between those is not always consistent.

One of the first models of temporal graph, and also one of the most flexible, was designed

25



u v u v

[1, 3], 2

[4, 6], 1

arruv

1 2 3 4 5 6

1

2

3

4

5

6

7

8

τ

arruv(τ)

Figure 1.6: A piecewise constant temporal graph on the left, with two temporal edges
sharing head and tail. The corresponding arrival time functions are merged into a single
arrival time function associated to the arc (u, v).

in the context of road networks [19, 29, 43] under the name of time-dependent network and
was studied in [52, 21, 22, 35, 23]. Different models have since been developed in the context
of gossiping [14, 40], mobile and distributed networks, as well as social networks, under the
name of evolving graphs [13], temporal networks [42, 46], time-varying graphs [17], and
also in the setting of public transit networks, where the model is called edge-scheduled
network [6], timetable [26, 25] or temporal graph [63]. Let us see how the models that we
introduced in Section 1.1.4 relate to the ones present in the literature.

Let us consider the assumption that the availability intervals of temporal edges with
the same tail and head are disjoint. In this case, it is then possible to merge the travel
time or arrival time functions of such edges into a single function. More precisely, let us
consider the temporal edges e such that tail(e) = u and head(e) = v, and the respective
arrival time functions arre. It is then possible to define by cases the function arr(u,v) : R→
R, by defining arr(u,v)(τ) = arre(τ) when τ belongs to the availability interval of e and
arr(u,v)(τ) = +∞ for each τ that does not belong to any availability interval of a temporal
edge from u to v. In the case of piecewise linear (resp. constant) temporal graphs, the
functions arr(u,v) are thus piecewise linear (resp. constant). See Figure 1.6 for an example
in the case of a piecewise constant temporal graph.

Dehne, Omran and Sack [23] and Foschini, Hershberger and Suri [35] define a time-
dependent network starting from a digraph, that in our case would correspond to the un-
derlying graph, and assigning to each arc (u, v) the arrival time function arr(u,v).

Xuan, Ferreira and Jarry [13] define an evolving graph as a sequence of subgraphs
G1, . . . , GT of a digraph G, their union corresponds to the underlying graph in our case.
An arc (u, v) in Gτ would correspond in our model to a temporal edge from u to v that is
available at time τ . In a variant of their model they group in intervals arcs appearing in
consecutive subgraphs, such intervals would correspond to our availability intervals.

In the link stream model by Latapy, Viard and Magnien [45], they define the temporal
graph as a set of times T , a set of nodes V and a set of links E ⊆ T × V × V . Two
nodes u and v are linked at time τ if (τ, {u, v}) belongs to E. When describing an instance,

26



they represent the links in E as a union of time intervals I1 ∪ · · · ∪ Ik together with a
(unordered) pair of nodes {u, v}. Moreover, as there is no notion of travel time, and based
on the definition they give of paths, such a model is close to our piecewise constant temporal
graphs where the travel time is zero for all temporal edges. They also define a more general
model, called stream graph, in which nodes can be unavailable during some interval of time.

The edge-scheduled network model considered by Berman [6], up to slight differences
in notation, corresponds to the point availability temporal graph model presented here,
while the temporal graph model considered by Wu, Cheng, Huan, Ke, Lu and Xu [63]
corresponds exactly to the point availability temporal graph model as we defined it. The
timetable model from Dibbelt, Pajor, Strasser and Wagner [26] and Delling, Pajor and
Werneck [25] encompasses the point availability model, and is closer to the application of
public transport. Indeed, there are connections corresponding to temporal edges available
at a single point in time, that are grouped into trips, which represent a scheduled vehicle
moving in the underlying graph. There are also footpaths, which correspond to temporal
edges that are available at any time instant with a constant travel time.

The temporal networks model from Mertzios, Michail and Spirakis [46] is a static graph
G = (V,E) labelled with a function λ : E → 2N that assigns a set of time labels to each
arc. Given their definition of temporal path that requires strictly increasing time labels,
this model is equivalent to the strict uniform temporal graphs defined before.

1.2.2 Temporal graph representations

When it comes to developing algorithms on temporal graphs, the way the graph is repre-
sented and given as input plays a key role. Different representations of the same model
could lead to algorithms with different time and space complexities. Let us see some of the
representations used in the literature.

Piecewise linear temporal graphs:

Arc arrival functions. A temporal graph G = (V,E) is given through a classical repre-
sentation (e.g. adjacency list) of the underlying graph D = (V, F ). On top of that, each
arc (u, v) is associated with a piecewise linear arrival time function arr(u,v) that associates
to each available time instant τ of a temporal edge e from u to v the corresponding arrival
time arre(τ). This representation was used for example by Dehne, Omran and Sack [23].

Piecewise constant temporal graphs:

Adjacency lists. For each node u there is a list storing the nodes v such that there exists
at least a temporal edge from u to v. Each such neighbour v is associated to the sorted list
of availability time intervals of temporal edges from u to v, with the corresponding travel
times. This representation was introduced by Xuan, Ferreira and Jarry [13].

Point availability temporal graphs:

List of quadruples. The whole temporal graph G = (V,E) is simply stored as a list con-
taining a quadruple e = (u, v, τ, λ) for each temporal edge e ∈ E. This list can additionally
be sorted either by departure time or arrival time of the temporal edges, in this case we say
that it is pre-sorted. Among others, this representation was used by Dibbelt, Pajor, Strasser
and Wagner [26] and Wu, Cheng, Huan, Ke, Lu and Xu [63].

27



Time-expanded graph. The idea behind a time-expanded representation tracks back to
the work of Étienne-Jules Marey [32] in 1885. In the context of temporal graphs it was first
fromalised by Ford and Fulkerson [34] and it consists in transforming the temporal graph
into a static graph by introducing a copy of each node for each possible time instant. Each
temporal edge is then turned into an arc from the two corresponding copies of its tail and
head. In this work we will consider a variant where we introduce copies of a node only for
time instants corresponding to a departure time of an edge from that node, or an arrival
time of an edge to that node, following the approach of Schulz, Wagner and Weihe [56]. This
allows to use a similar amount of space as the previous list representation up to a constant
factor. It is directly available in applications such as contact tracing where the temporal
graph is obtained by gathering traces from all nodes, and where each trace is a recording
of all edge events at the node. Although additional sorting is required to obtain a global
ordering of temporal edges according to time, it does provide a local ordering at each node.

Since we are going to use this representation in the next chapters we will also give a formal
definition here. Given a temporal graph G = (V,E), its time-expanded representation is a
directed graph D = (W,F c ∪ Fw), where:

� The nodes in W are labelled nodes vτ , where v ∈ V refers to a node of G and τ is
a time label. More precisely, vτ ∈ W if and only if there exists a temporal edge in
E with tail v and departure time τ or a temporal edge with head v and arrival time
τ . We will also refer to such nodes as copies of v. Let us denote with Predw(vτ ) the
copy of v in W with maximum time label less than τ , if it exists.

� We distinguish two types of arcs F c and Fw called connection arcs and waiting
arcs respectively. The set F c contains an arc (uτ , vτ+λ) for each temporal edge
e = (u, v, τ, λ) ∈ E. These arcs represent a temporal connection between the nodes
in V and are called connection arcs. Note that each arc (vτ , wν) in F c satisfies
τ ≤ ν, since travel times are non-negative. The set Fw is defined to contain an
arc (Predw(vτ ), vτ ) for each v ∈ V and for each copy vτ of v such that Predw(vτ ) is
defined. These arcs represent the possibility to wait at a node v ∈ V during a walk in
G and are called waiting arcs. Note that each arc (vτ , vν) in Fw satisfies τ < ν. As
we allow temporal edges which are self loops (i.e. edges (v, v, τ, λ)), there might exist
two copies of an arc in D, one in F c and one in Fw. Formally, D is thus a directed
multidigraph as we distinguish arcs in F c from those in Fw and assume F c ∩Fw = ∅.

Example The time-expanded representation of the temporal graph in Figure 1.5 is dis-
played in Figure 1.7. Notice that it is possible to associate to each path in the time-expanded
representation, which is a static graph, a temporal walk in the temporal graph and viceversa.
For example, let us consider the path ⟨(u1, a2), (a2, v3), (v3, v5), (v5, d6), (d6, d7), (d7, w8)⟩ in
the static graph. We can associate it to the temporal walk from u to w ⟨(u, a, 1), (a, v, 2),
(v, d, 5), (d,w, 7)⟩, in a way that each connection arc in the path corresponds to a temporal
edge in the temporal walk, and each waiting arc between consecutive copies of a node cor-
responds to time spent waiting in that node. With a similar reasoning we can associate any
temporal walk in the temporal graph to a walk in the time-expanded static digraph. Note
that when travel times are positive, the static walk is necessarily a path.

28



u

a

b

v

c

d

w

1 2 3 4 5 6 7 8 9

time

Figure 1.7: The time-expanded representation of the uniform strict temporal graph in Fig-
ure 1.5.

Uniform temporal graphs:

List of triples. The whole temporal graph G = (V,E) is stored simply through a sorted
list containing a triple e = (u, v, τ) for each temporal edge e ∈ E. Again, such a list
can additionally be sorted by the time labels of the temporal edges. This representation
is particularly suitable for algorithms that need to perform a linear scan of the temporal
edges, for example the one designed by Kempte, Kleinberg and Kumar [42].

Snapshots. Let us consider the set T of time labels τ such that there exists at least one
temporal edge with label τ . It is possible to consider for each node u an array Au of length
T , such that every entry Au[τ ] stores a pointer to a linked list of the nodes v such that there
exists (u, v, τ). This representation was used by Mertzios, Michail and Spirakis [46].

Adjacency lists. For each node u there is a list storing the nodes v such that there exists
at least one temporal edge from u to v. Each such neighbour v is associated to the sorted
list of availability time instants of temporal edges from u to v. This representation was
introduced by Ferreira and Viennot [33].

1.2.3 FIFO property and waiting policies

A property of temporal graphs which is well discussed in the literature, and most of the time
is assumed, is the so called FIFO (First In First Out) property. Informally, it states that a
later departure from a node u heading to a node v using a temporal edge results in a later
(or equal) arrival time. Let us assume the availability intervals of the temporal edges are
disjoint, and let us merge the arrival time functions of temporal edges between same nodes
into a single arrival time function arr(u,v), as explained before. In this setting the FIFO
property means that for any pair of nodes u and v, for τ ′ > τ then arr(u,v)(τ

′) ≥ arr(u,v)(τ),
namely arr(u,v) is non-decreasing.

The definitions of temporal walk and temporal path, and the examples given so far,
belong to the unrestricted waiting framework. This means that during a temporal walk it is

29



possible to wait an unbounded quantity of time at any node between a temporal edge and
the next one. Indeed, by our definition, given a temporal walk ⟨(e1, τ1), (e2, τ2), . . . , (ek, τk)⟩
we required that τi+1 ≥ arrei(τi) for any two consecutive temporal edges. This means that
the time spent waiting in the head of ei, namely τi+1 − arrei(τi), is not restricted and can
be any non-negative value.

Notice that when the FIFO property is not satisfied, a temporal path minimising the
arrival time might involve some time spent waiting in the nodes along the path, as it might
be convenient to wait until the arrival time function has a lower value. This suggests why it
is necessary to assume the FIFO property in algorithms that follow a Dijkstra-like approach
for temporal paths, like the one that we are describing in Section 1.2.4.

However, as explained by Orda and Rom [51], in a temporal graph with unrestricted
waiting that does not satisfy the FIFO property, it is possible to modify the travel time
functions in a way such that in the resulting temporal graph the earliest arrival times are
preserved and it is never convenient to wait in the nodes.

In the literature, models deviating from the unrestricted waiting have been investigated,
taking into account different kinds of waiting policies.

Orda and Rom [50] studied, among several cases, the forbidden waiting policy in which
it is not possible to wait at all at a node during a temporal walk. In other words, after
reaching a node using a temporal edge, it is necessary to take the following temporal edge
in the sequence leaving the node at the very same time it was reached. In particular they
proved a hardness result which can be stated as follows.

Theorem 1 [50]. Given a piecewise constant temporal graph G = (V,E) with forbidden
waiting, a departure time τ , a source node s and a destination node d, computing the earliest
arrival time among the walks from s to d departing at time τ is NP-hard.

A simpler and shorter proof is given by Sherali, Ozbay and Subramanian [57]. It works
even when waiting is allowed at the source. A reduction from the partition problem is
formulated in the following way. Let us first recall a formulation of the partition problem.

Partition Problem. Given n non-negative integers x1, x2, . . . , xn such that∑n
i=1 xi = 2S, does there exists a partition of these numbers into two sets such

that the sum of each set equals S?

We present their result with a very slight modification in the domains of the travel
time functions, so that their reduction proves that even computing whether there exists a
temporal walk from the source to the destination is NP-hard.

Given an instance of the partition problem they build a temporal graph G = (V,E),
where the set of vertices is V = {v0, v1, . . . , vn+1}, the source is s = v0 and the target
t = vn+1. There exist two temporal edges from the source s to v1, both available only
at time zero, one with travel time x1 and the other with travel time zero. Then, for each
i ∈ {1, . . . , n} there exist two temporal edges from vi to vi+1 with availability interval [0, S],
one with constant travel time xi and the other with constant travel time zero. Finally, there
exists a temporal edge from vn to t that is available only at time instant S with travel time
zero. The temporal graph obtained this way is represented in Figure 1.8. The idea is that
it is possible to reach t from s with a temporal walk if and only if there exists a temporal
walk departing from s at time zero, and arriving in t at time S. In particular, due to the
choice of travel times, such a walk corresponds to choosing a subset X ⊆ {x1, . . . , xn} such
that

∑
xi∈X xi = S, and thus a partition that solves the problem.

30



s v1 v2 v3 vn t

[0, 0], x1

[0, 0], 0

[0, S], x2

[0, S], 0

[0, S], x3

[0, S], 0

[S, S], 0

Figure 1.8: Representation of the reduction from the partition problem to the computation
of earliest arrival time in piecewise constant temporal graphs with forbidden waiting.

Another interesting result in the literature about temporal paths hardness was provided
by Casteigts, Himmel, Molter and Zschoche [18]. The authors worked on a model that cor-
responds to an undirected version of a uniform non-strict temporal graph. In the undirected
setting, a temporal edge that connects node u to node v at time τ also connects node v to
node u at the same time. They focused on the waiting policy called ∆-restless, which means
that in a temporal walk, in an intermediate node, it is possible to wait at most ∆ units of
time before moving to the next one. Let L be the lifetime of the temporal graph. The result
is formulated in a slightly weaker version for the sake of simplicity.

Theorem 2 [18]. Given a uniform non-strict temporal graph G = (V,E), a source node s
and a target node t, an integer ∆ ≥ 1 such that ∆+ 2 ≤ L, it is NP-complete to determine
whether there exists a temporal path from s to t.

Notice that this result, unlike the previous one from Orda and Rom, concerns exclu-
sively temporal paths and not temporal walks. Indeed, temporal walks under waiting time
constraints in this model are tractable, as shown by Bentert, Himmel, Nichterlein and Nie-
dermeir [5]. More details about this problem and related results are given in Chapter 2.

1.2.4 Temporal paths problems

When it comes to temporal graphs there are several paths and connectivity problems that
received attention in the literature. Let us summarize some of the most notable ones.

Earliest arrival time. Given a source node s and a destination node t, compute
the minimum arrival time among the temporal walks from s to t.

Shortest duration. Given a source node s and a destination node t, compute the
minimum duration among the temporal walks from s to t, where the duration of a
temporal walk Q is defined as dur(Q) = arr(Q)− dep(Q).

Profile. Given a source node s and a destination node t, compute a representation
of the function fst : R → R that associates to each time τ the earliest arrival time
among st-walks departing at time τ or later.

Fewest hops. Given a source node s and a destination node t, compute the mini-
mum number of edges that compose a temporal walk from s to t.

See Figure 1.9 for an example of a uniform strict temporal graph with two nodes s and
t. An example of an earliest arrival temporal path is ⟨(s, a, 1), (a, b, 3), (b, t, 4)⟩, which has

31



s

a

b

c

t

1

5

3

6

4

7

3

6

5

4

Figure 1.9: An example of a uniform strict temporal graph with different optimal walks for
different criteria.

arrival time 4+1 = 5. A shortest duration temporal path is ⟨(s, b, 5), (b, c, 6), (c, t, 7)⟩, which
has duration 7 + 1 − 5 = 3. A temporal path with fewest hops is ⟨(s, a, 1), (a, t, 6)⟩ which
has two temporal edges. Finally, the profile function is given by:

fst(τ) =


5 for τ ≤ 1

7 for 1 < τ ≤ 3

8 for 3 < τ ≤ 5

+∞ for τ > 5

For example, fst(2) = 7 because it is possible to wait at the source node until time 3
and then use the temporal path ⟨(s, c, 3), (c, b, 4), (b, a, 5), (a, t, 6)⟩ which has arrival time 7.

All the problems listed above are given in the respective single-source single-destination
formulation, which in the literature can also be referred to as one-to-one. However, each
of them could also be defined in the formulations single-source all-destinations, all-sources
single-destination and all-source all-destinations, that can appear in the literature as one-
to-all, all-to-one and all-to-all respectively.

We can now summarize several algorithmic results in the state of the art concerning
these problems in all the models described before (see Table 1.1). In order to express
the complexity of the algorithms we need to define a few parameters of a temporal graph
G = (V,E):

� n : the number of nodes, i.e. |V |,

� m : the number of arcs in the underlying graph,

� M : the number of temporal edges, i.e. |E|,

� ∆ : the maximum of temporal in-degree and out-degree among the nodes in the
temporal graph, this parameter is bounded by M ,

32



� η : the maximum arc activity over the arcs in the underlying graph, this parameter is
bounded by M ,

� D : the “diameter” of the temporal graph in terms of hops, informally the maximum
number of temporal edges needed to connect a pair of nodes, which is bounded by n
in the case of unrestricted waiting,

� P : the maximum number of parameters needed to represent the profile function
between any pair of nodes.

All results in the table refer to the single-source all-destinations version of the prob-
lems, except for the shortest duration and profile in the piecewise linear model that are
single-source single-destination. Moreover, all results refer to unrestricted waiting models.
Especially the algorithms in the piecewise constant and piecewise linear models, rely on the
FIFO property of the arrival functions of edges.

Problem Temporal graph model

Uniform strict Point availability Piecewise constant Piecewise linear

Earliest arrival time O(M)[46] O(M)[26, 63] O(m(log η + log n))[13] O(m log η + n log n)[52, 22]

Shortest duration O(M) O(M)[64] O(M(m+ n log n))[23] O(M(n log n+m))[35]

Profile O(M)[44]
O(M log∆)[26] O(M(m+ n log n))[23] O((P +M)(m+ n log n))[23]

O(M) Ω(Mm) Ω(nlogn)[35]

Fewest hops O(M)
O(M log∆)[63]

O(MD)[13] ?
O(M) [65]

Table 1.1: State of the art for shortest paths in temporal graphs. Our contribution is shown
in bold.

We will see a brief description of two results in the table, in order to have a first approach
on algorithms designed to solve problems in temporal graphs.

Temporal Dijkstra in piecewise constant temporal graphs A common technique
used to solve the earliest arrival time problem in models like piecewise constant and piecewise
linear temporal graphs, is a temporal variant of Dijkstra’s algorithm. Here we are going to
see how this algorithm works in the case of piecewise constant temporal graphs, given an
adjacency list representation as input, according to Xuan and Ferreira [13]. They assume
the FIFO property on the temporal graph: in this setting, if v is reachable from u there
exists an earliest arrival time path from u to v such that each prefix of such a temporal
path has itself minimum arrival time among the other temporal paths ending in the same
node as the prefix. The algorithm performs a Dijkstra-like procedure, with a different way
of computing distances. In this scenario the distance corresponds to the earliest arrival
time at each node. Whenever a node u, with associated earliest arrival time τ , is extracted
from the priority queue, the algorithm computes the arrival time to the out-neighbours
leaving u at time τ . For that, the algorithm performs a binary search among the intervals of
availability of temporal edges from u and each out-neighbour v. The FIFO property plays a
key role here, because it guarantees that the first time instant τ ′ ≥ τ in which it is possible
to leave u towards a neighbour is also the one that minimises the arrival time through the

33



u

a

b

v

c

d

w

1 2 3 4 5 6 7 8 9

time

Figure 1.10: The time-expanded representation of the uniform temporal graph in Figure 1.5.
The nodes on the top of the digraph correspond to the copies {u1, u2} of the source u. In
red there is the first BFS arborescence computed from u2 and in blue the second BFS
arborescence computed from u1.

corresponding edge. The correctness of the algorithm follows from similar arguments as for
Dijkstra’s algorithm and the logarithmic factor log η in the time complexity is due to the
binary search needed to compute the correct distance.

Solving shortest duration in point availability temporal graphs Wu, Cheng, Huan,
Ke, Lu and Xu [64] designed an algorithm that takes as input a time-expanded representation
of a point availability temporal graph and solves the shortest duration problem in linear time.
We describe the algorithm and show an example of execution using the temporal graph in
Figure 1.5 and its time-expanded representation which is displayed in Figure 1.7.

Let u be the source for the shortest duration problem. Let us consider the copies of
the source sorted by decreasing time label. In the example in Figure 1.7 those would be
{u2, u1}. The algorithm picks the first source copy and performs a BFS search from there.
From the paths in the BFS arborescence it obtains the earliest arrival time starting from
the source at the time corresponding to the label of the source copy. In Figure 1.10 the
first BFS computed by the algorithm starting from node u2 is represented in red. From
the paths in the BFS arborescence rooted in u2, it obtains the earliest arrival times of the
temporal walks departing from u at time 2.

For example, from u2, there is a path in the time-expanded representation that belongs
to the BFS arborescence that reaches a copy of v, such path is ⟨(u2, b3), (b3, b4), (b4, v5)⟩.
This path corresponds to the temporal path P = ⟨(u, b, 2), (b, v, 4)⟩ from s to u which has
earliest arrival time among the temporal paths from u to v with departure time 2. Then,
the algorithm computes the duration of the corresponding temporal paths, and this leads to
some tentative solutions of shortest duration temporal paths. In the example, the duration
of P is 4 + 1 − 2 = 3, thus we know that the shortest duration from u to v has to be less
or equal to 3. Then it picks the next copy of u, u1 in our example, performs a new BFS
search from there, stopping whenever it encounters a node that has already been visited
in a previous iteration. The BFS search from u1 visits node v5, which has already been
visited by the previous BFS, the algorithm thus would stop computing this branch of the

34



BFS arborescence in v5. This second BFS search is represented in blue in Figure 1.10.
Then, it compares the duration corresponding to each new path with the previous tentative
solution, and updates it by keeping the one with lower duration. The path from u1 to v3
found in this iteration through the BFS search from u1 corresponds to the temporal path
P ′ = ⟨(u, a, 1), (a, v, 2)⟩ which has duration 2 + 1 − 1 = 2, thus it improves the tentative
solution found so far, and the tentative shortest duration from u to v is updated to 2. After
repeating the process for each copy of the source, the tentative solutions correspond indeed
to the shortest duration. The algorithm visits each arc in the time expanded graph at most
once, and thus takes linear time.

Finally, notice that all temporal paths corresponding to paths in the time expanded
representation we would find by not stopping the BFS in the moment it visits the copy of
a node that was already found in a previous iteration, would have higher duration than the
ones we already found. In the first BFS search from u2 the algorithm finds a certain path
to w8. If the BFS search from u1 would not be stopped in v5, it would also find a path, now
from u1 instead of u2, to w8. The corresponding temporal walks have the same arrival time,
which is 8, as the time label of w8. However, the first has a later departure time than the
second (and possibly of the next temporal walks identified to w8 in the following iterations),
and thus a shorter duration.

35



Chapter 2

Temporal walks computation
under waiting constraints

This chapter is based on the results obtained in [9, 12, 11]. As the algorithmic results
in [12] improve those in [9] the latter will not be presented here. However, the model and
the algebraic cost structure, that allows us to solve in a very general way a great variety of
temporal walk optimization problems, was first introduced in [9].

As we hinted in Chapter 1, while the notion of “shortest” path is fairly standard for
static graphs, there exists several natural extensions for defining “shortest” temporal walks.
Indeed, the following natural criteria can be optimized: earliest arrival time, shortest du-
ration, or fewest number of edges, to the name most popular ones. Most criteria result in
optimal temporal walks which are indeed temporal paths. Minimizing overall waiting time
at nodes is a notable exception where walks obviously help compared to paths, as performing
a loop instead of waiting in a node reduces the overall waiting time.

Indeed, optimizing different criteria might appear as different problems and the single-
source optimal temporal path/walk problem has mostly been addressed with different algo-
rithms for different criteria. A further level of difficulty happens when the waiting time at
each node is bounded: the computation of temporal paths becomes NP-hard, as reported in
Theorem 2. However, as discovered in [5], by focusing on temporal walks instead, it is still
possible to work on connectivity and optimization problems in polynomial time. Indeed, in
this chapter we will consider point availability temporal graphs with waiting restrictions as
defined in [5]: for each node there is a minimum and a maximum amount of time that is
possible to wait in it during a walk. See Figure 2.1 for an example of a point availability
temporal graph with waiting time constraints and examples of “shortest” temporal walks
for different constraints, including shortest-fastest, which is a temporal walk that, among
temporal walks with minimum duration, is the one with fewest hops. Such a combination
is proposed in [45] for defining a temporal version of betweenness centrality.

Related work. Interestingly, after numerous works inspired by Dijkstra’s algorithm
(see e.g. [6, 8, 49, 53]), a linear-time algorithm for earliest arrival time in a point availability
temporal graph, with unrestricted waiting policy, was first claimed in [63, 64]. The algo-
rithm, operates through a single scan of temporal edges ordered by non-decreasing departure
time, as done in [26, 27]. Both works assume positive travel times, ensuring that temporal
paths are strict. Single-source shortest duration temporal paths are then obtained by basi-

36



c d

ba

t

s
1, 1 2, 3

4, 1 9, 4

5, 1

6, 1

3, 1

2, 2

8, 3 7, 3

5, 2

6, 1

Minimum waiting
time constraints:
αa = αc = αd = 0

αb = αs = αt = 1

Maximum waiting
time constraints:
βa = βs = βt = 2

βb = βc = βd = 5

Figure 2.1: A point availability temporal graph with waiting constraints. Different temporal
walks from s to t optimize different criteria: ⟨(s, a, 1, 1), (a, b, 2, 3), (b, t, 7, 3)⟩ has earliest ar-
rival time, ⟨(s, d, 3, 1), (d, t, 9, 4)⟩ has fewest hops, ⟨(s, d, 3, 1), (d, a, 5, 1), (a, b, 6, 1), (b, t, 8, 3)⟩
has shortest duration, ⟨(s, a, 1, 1), (a, c, 2, 2), (c, d, 4, 1), (d, a, 5, 1), (a, b, 6, 1), (b, t, 8, 3)⟩ has
minimum overall waiting time, ⟨(s, d, 3, 1), (d, b, 6, 1), (b, t, 8, 3)⟩ is shortest-fastest.

cally solving the profile problem with a more intricate version of the scanning algorithm [27]
that takes O(M log∆) time where M is the total number of temporal edges and ∆ ≤ M
is the maximum number of temporal edges with same head. A linear time algorithm for
shortest duration, the one explained in Chapter 1, was later included in [64] by taking as
input a time-expanded representation of the temporal graph. This time-expanded approach
is also used for temporal paths with fewest number of edges in [65] in linear time. However,
this approach uses a modified time-expanded representation where all node events at the
source are contracted to a single node, preventing it to support some other criteria such
as shortest duration. Overall, it was thus unclear whether linear time was possible for all
classical criteria (including overall waiting time) and possible combinations of them, and
a unifying linear-time algorithm was still missing. Despite the hardness result for tempo-
ral path computation [18], a recent break-through [5] shows that computing single-source
optimal walks is still possible under such waiting-time constraints in O(M logM) time.
Similarly to optimizing overall waiting time, such constraints indeed impose to switch from
paths to walks for other criteria also. The algorithm is generic in the sense that it optimizes
a linear combination of all classical criteria, although lexicographic combinations such as
shortest-fastest are not supported. Apart from an initial sorting of the temporal edges, the
logM factor comes from using several calls to Dijkstra’s algorithm on graphs that can have
up to Θ(M) nodes and Θ(M) edges. The high number of nodes comes from a preliminary
transformation introducing a dummy node for each temporal edge to obtain an equivalent
temporal graph where all travel times are zero. This leaves open the quest for a simpler al-
gorithm working directly on the original temporal graph, and whether linear time is possible
for any criterion under waiting-time constraints. Notice that the techniques used in [64, 65]
that rely on the time-expanded representation cannot be replicated in the context of waiting
restrictions. Indeed, we lose the correspondence between paths in the time-expanded and
temporal walks in the temporal graph, that we have in the unrestricted waiting model. See
Figure 2.2 for an example: the path s1, a2, a6, b7, b8, t11 would correspond to the sequence of
temporal edges ⟨(s, a, 1, 1), (a, b, 6, 1), (b, t, 8, 3)⟩, however the latter is not a temporal walk
as it does not satisfy the waiting time constraint at node a.

37



s1 s3

a2 a5 a6

b5 b7 b8

c4

d4 d5 d6 d9

t7 t10 t11 t13

s

a

b

c

d

t

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.2: The time-expanded representation of the temporal graph in Figure 2.1.

Contribution. In [9] we developed a general algorithm to compute optimal temporal
walks, supporting all classical criteria in the unrestricted waiting setting, including lexi-
cographic combination. The algorithm follows a similar approach as [27] and [64] with a
similar complexity including a logarithmic factor. As we improved this result in our next
work, it will not be discussed in this dissertation. Here we first present a warm-up algorithm
to compute reachability, disregarding any other optimization, which for simplicity is given
under the assumption of strictly positive travel times. It helps familiarize the reader with
waiting constraints and the use of the representation of temporal graphs with two lists, and
at the same time provide a useful tool, as it solves the reachability problem with waiting
constraints elegantly and in linear time.

Afterwards, we propose a temporal-edge scanning algorithm for single-source minimum-
cost walks that runs in linear time given an acyclic time-expanded representation. The
acyclic assumption means that the temporal graph does not contain a cycle of temporal edges
with zero travel-time at any time instant. This acyclicity property is obviously satisfied when
travel times are positive which is the case in many practical settings modelling the spread
of information or any kind of agent. The algorithm can handle waiting-time constraints as
defined in [5]. We use an algebraic definition of cost inspired by [59, 60], enabling a large
variety of cost definitions, including the linear combination considered in [5], or lexicographic
compositions such as shortest-fastest [45, 58]. This shows that linear time is possible for all
criteria given an acyclic time-expanded representation when this was unknown for shortest-
fastest and overall waiting time. Moreover, this holds even with waiting-time constraints
while a logarithmic factor was previously necessitated for all criteria in that context. Our
algorithm also solves the profile problem (again in linear time) with waiting-time constraints.
No such algorithm was previously claimed, although we suspect that [5] can be adapted for
that, but with a logarithmic slowdown. See Table 2.1 for a comparison with previous work.

Our algorithm does not work directly on the time-expanded representation but on two
locally ordered lists of temporal edges, one where edges arriving at any given node are

38



Criterion Time complexity Model Waiting restr. Input

Earliest arrival time O(M) [27, 64] λ > 0 ✗ pre-sorted
Shortest duration O(M) [64] λ > 0 ✗ time-expanded
Fewest hops O(M) [65] λ > 0 ✗ time-expanded
Any above

 O(M logM) [5] – ✓ anyOverall waiting time
Linear combination
Shortest-fastest O(M log∆) [9] λ > 0 ✗ pre-sorted
Profile O(M log∆) [27] λ > 0 ✗ pre-sorted

Chapter 2 Contribution

Any above O(M) Algorithm 2 acyclic ✓ time-expanded
Overall waiting time Ω(M logM) Theorem 5 λ > 0 ✗ pre-sorted
Any above O(M logn)Algorithm 5 – ✓ time-expanded
Latest-dep., min.-len. Ω(M logn) Theorem 7 – ✗ time-expanded

Table 2.1: Best time complexities for solving single-source optimal temporal walks for various
criteria in a temporal graph with M temporal edges, n nodes, and where the temporal in-
degree is at most ∆ ≤M . The “Model” column indicates if positive travel times are assumed
with “λ > 0”; “acyclic” stands for the more general setting where no cycle of zero-travel-
time edges occurs at any time instant; and a dash stands for the general model where such
cycles can occur. A check-mark in column “Waiting restr.” indicates that waiting-time
constraints are supported while a cross indicates that unrestricted waiting is assumed. The
“Input” column indicates if the input is required to be a “pre-sorted” list of temporal edges,
or a “time-expanded” representation, or a list of temporal edges in “any” order.

sorted by non-decreasing arrival time and one where edges departing from any given node
are sorted by non-decreasing departure time. We call this representation a “doubly-sorted”
representation of the temporal graph. It is indeed equivalent to the time-expanded repre-
sentation in the sense that one can easily be computed from the other in linear time and
space.

We also show that the setting in which we obtain a linear-time algorithm is the widest
possible. First, a single sorted list of temporal edges is not sufficient for obtaining linear
time. A classical sorting argument allows to derive a lower bound of Ω(M logM) with
such a “singly-sorted” representation for algorithms using comparisons only, which is in-
deed a desirable algorithmic feature in any approach supporting a wide variety of abstract
costs. This shows that our requirement for a time-expanded representation or equivalently
a doubly-sorted representation with two orderings is somehow necessary for allowing linear-
time computation. It also sheds light on why the time-expanded representation could enable
linear time for shortest duration and fewest number of edges. Second, dropping the acyclic
assumption with zero travel times leads to a setting encompassing classical shortest path
computation. An Ω(M log n) conditional lower-bound can easily be obtained assuming
that directed single-source shortest paths computation must take Ω(n log n) time in the
comparison-addition model. It is thus unlikely to reach linear time outside our acyclic set-
ting unless progress is made along the precise complexity of directed single-source shortest
paths which is still open as far as we know [66]. Note that such a lower-bound holds for
algorithms visiting nodes by non-decreasing distance or more generally those following the
component hierarchy approach [54] even though this approach leads to linear time in the
undirected setting [61].

Finally, we show how to handle the setting where cycles of edges with zero travel time

39



can occur. It is then possible to compute for a fixed source an adequate pair of orderings
allowing our algorithm to run correctly for that source. This pair can be computed in
O(M log n) time where n is the number of nodes, allowing to reduce the complexity from
O(M logM) to O(M log n) compared to previous work. Note that M is not bounded with
respect to n and can be much larger in practice. Note also that this matches the Ω(M log n)
conditional lower-bound.

Our main new technique consists in maintaining at each node a list of intervals spanning
a sliding window of outgoing temporal edges. It allows to update in constant time the cost
of candidate minimum-cost walks departing in a time interval. These intervals may be split
as temporal edges are scanned, and a careful use of the two orderings of temporal edges
given as input allows to manage them with linear amortized complexity. We think that
this technique is a valuable contribution and could appear useful for other temporal graph
problems involving temporal connectivity such as computing temporal betweenness [15] or
delay-robust temporal walks [37].

A main difficulty behind our algorithm resides in requiring the appropriate properties on
the order in which temporal edges are scanned. Good intuition can be obtained by seeing
them as sorted by non-decreasing arrival time, but such an ordering cannot be obtained
in linear time from a time-expanded representation. Instead, we rely on a locally ordered
list computed in linear time through a procedure which is similar to topological sorting of
the time-expanded representation. We also have to take care of tricky dependencies with
the other ordering of the doubly-sorted representation in the core algorithm. Overall, this
nevertheless results in a relatively simple algorithm unifying the temporal edge scanning
and time-expanded approaches while integrating waiting constraints in a novel manner.

The generality of the algorithm relies on computing for each temporal edge a temporal
walk with minimum abstract cost ending with that edge. This relies on a natural property of
these abstract costs called isotonicity [59, 60] and grasping that, when several temporal walks
can be extended by the same temporal edge, the minimum cost is obtained by extending the
walk with minimum cost. This property is formally defined in Section 2.3. Although most
classical criteria do not satisfy isotonicity, we can use an auxiliary cost structure which does
and that indirectly lets us find the optimum for such criteria after some post-processing.
Shortest duration is an example of non-isotonic cost: for example consider in Figure 2.1 the
sa temporal walks Q1 = ⟨(s, a, 1, 1)⟩ and Q2 = ⟨(s, d, 3, 1), (d, a, 5, 1)⟩. Temporal walk Q1

has duration 1 + 1 − 1 = 1, which is lower than the duration of Q2, that is 5 + 1 − 3 = 3.
Both temporal walks can be extended with temporal edge (a, t, 5, 2), but the first temporal
walk now has duration 5 + 2 − 1 = 6, while the second has duration 5 + 2 − 3 = 4. The
trick to compute temporal walks with shortest duration is to use the opposite of departure
time as an auxiliary cost, since a walk with latest possible departure arriving with a given
temporal edge also has minimum duration among temporal walks arriving with that edge.
A shortest duration temporal walk reaching a node is then obtained by minimizing over all
possible arrival edges at the node.

2.1 Model and representation

In this chapter we will call a temporal graph a point availability temporal graph subject
to waiting constraints, defined as follows. A temporal graph is a tuple G = (V,E, α, β),
where V is the set of nodes, E is the set of temporal edges and α, β ∈ [0,+∞]V are
minimum and maximum waiting-times at each node. In this model of temporal graph, a

40



temporal walk has to satisfy the following waiting policy. A sequence of temporal edges
Q = ⟨e1 = (u1, v1, τ1, λ1), . . . , ek = (uk, vk, τk, λk)⟩ ⊆ Ek is a temporal walk from u to v,
if in addition to the temporal walk constraints already defined in Section 1.1.5, it satisfies
ai−1 + αui

≤ τi ≤ ai−1 + βui
for all i ∈ {2, . . . , k}, where ai−1 = τi−1 + λi−1 is the arrival

time of ei−1. Note that the waiting time τi − ai−1 at node ui is constrained to be in the
interval [αui , βui ]. The unrestricted waiting policy can be modelled by setting αv = 0 and
βv = +∞ for all v ∈ V .

For the sake of brevity, when it is clear from the context, we often write edge instead of
temporal edge and walk instead of temporal walk.

We say that a temporal edge e = (x, y, τ, λ) extends Q when x = vk and arr(Q) + αx ≤
τ ≤ arr(Q) + βx. When e extends Q, we can indeed define the walk Q.e = ⟨e1, . . . , ek, e⟩
from u to y. Moreover, we also say that e extends ek as it indeed extends any walk Q having
ek as last edge. A zero-walk is a walk consisting of temporal edges with same departure time
and with zero travel time, and going through nodes with zero minimum waiting constraint.
More formally, we define a zero-walk as a walk ⟨e1 = (u1, v1, τ1, λ1), . . . , ek = (uk, vk, τk, λk)⟩
such that τi = τj for i, j ∈ [k], λi = 0 and αui = 0 for i ∈ [k]. Such a zero-walk is called a
zero-cycle when u1 = vk. We say that a temporal graph G is zero-acyclic when there is no
zero-cycle in G.

Without loss of generality, we can restrict our attention to nodes appearing as head or
tail of at least one temporal edge and we thus assume |V | = O(|E|). An algorithm is said
to be linear in time and space when it runs in O(|E|) time and uses O(|E|) space.

Doubly-sorted representation. In order to introduce a novel representation of a tem-
poral graph, we define the following type of orderings of temporal edges with respect to
time. We say that an ordering Eord of all temporal edges is node-departure sorted if all
edges departing from the same node are ordered by non-decreasing departure time in Eord,
that is we have e <Eord f whenever e, f ∈ E have the same tail and satisfy dep(e) < dep(f).
Similarly, we say that an ordering Eord of all temporal edges is node-arrival sorted if all
edges arriving to the same node are ordered by non-decreasing arrival time in Eord, that is
we have e <Eord f whenever e, f ∈ E have the same head and satisfy arr(e) < arr(f).

We can now define the doubly-sorted representation of a temporal graph (V,E, α, β) as a
data-structure with two lists (Edep, Earr), containing |E| quadruples each, representing all
temporal edges in E, where Earr is a node-arrival sorted list, and Edep is a node-departure
sorted list. Moreover, we assume that we have implicit pointers between the two lists, that
link each quadruple of one list to the quadruple representing the same temporal edge in the
other list. We also assume that each list of temporal edges is stored in an array T such that
each element T [i] can be accessed directly through its index i ∈ [1, |T |] in constant time.
Given two indexes i ≤ j, we also let T [i : j] denote the sub-array of elements of T with
index in [i, j].

We will see that it is possible to compute a doubly-sorted representation from a time-
expanded representation, and vice versa, in linear time and space. In Proposition 2 we will
provide a stronger result with more details.

2.2 Computing reachability under waiting constraints

Reachability, that is connectivity through a walk, is a fundamental notion in classical graphs.
There are trivial algorithms for static graphs that determine efficiently which nodes or

41



edges can be reached from a given source node. On the other hand, in temporal graphs,
especially with waiting constraints, this notion has not yet been extensively studied. In
this section we will focus on reachability without concern for any optimization criterion,
and we aim at designing a simple algorithm under waiting constraints. The main strength
of the algorithm we develop is its simplicity, which comes with no downplay in efficiency,
since it runs in linear time. It thus matches the time complexity O(M) of the state of the
art [62]. Our algorithm performs a linear scan of the list of temporal edges, in a spirit
similar to [26]. The algorithm will also serve as a warm-up to the more involved algorithms
that will follow in the next sections. For simplicity, it is presented in the more restrictive
setting where all temporal edges have a strictly positive travel time and the input doubly-
sorted representation satisfies a stronger property. In particular, we assume to be given a
fully doubly-sorted representation (Edep, Earr) of a temporal graph, which means that Edep

(resp. Earr) is sorted by non-decreasing departure time (resp. non-decreasing arrival time).
Let us formulate the reachability problem as follows.

Singles-Source Edge Reachability Problem. Given a temporal graph with
waiting constraints G = (V,E, α, β) and a source node s, compute the set of all
temporal edges that are s-reachable.

Notice that this problem generalises the single-source earliest arrival time problem. In-
deed, given the set of all s-reachable edges it is sufficient to perform a linear scan of the set
to identify for each node v the s-reachable edge with head v that has lowest arrival time,
and which corresponds to the earliest arrival time at v.

We design an algorithm which mainly consists of scanning linearly edges in Earr while
updating the set Av of s-reachable edges terminating sv-walks in the temporal graph re-
sulting from the edges read so far. To help identify edges that will appear in such walks in
next iterations, we also mark edges that extend these walks.

We now describe Algorithm 1 more precisely. We first build the lists Edep
v of temporal

edges with tail v sorted by non-decreasing departure time by bucket sorting Edep at Line 1.
We then identify the s-reachable edges as follows. We linearly scan Earr. In the temporal
graph resulting from the temporal edges read up to edge e = (u, v, τ, λ) ∈ Earr, the only
walks from s that have not been considered yet must contain e, and must have it as the last
edge. This comes from the positive travel time assumption, which implies that edges along
a walk have increasing arrival time and from the fact that Earr is sorted by non-decreasing
arrival time. If its tail u is s, or if e is marked, then we know that there exists a walk from
s to its head v. In that case, we add edge e to Av at Line 9, and we then mark edges that
extend e, that is edges in Edep

v with departure time in [a+αv, a+βv], since the arrival time
of e is a = τ + λ. These edges appear consecutively in Edep

v which is processed linearly as
walks from s to v are identified. This process is done in Lines 10-14 in Algorithm 1, starting
from the index pv of the last processed edge in Edep

v , and such edges f that extend e are
marked at Line 13 before updating pv. Moreover, we use classical parent pointers to be able
to compute an sv-walk for each s-reachable edge with head v. Each parent pointer P [f ] of
an edge f is initially set to a null value ⊥ at Line 6. Whenever we mark edge f , that extends
the currently scanned edge e, we set the parent pointer of f to e. If f is an s-reachable edge
at v, we can then get an sv-walk by following the parent pointers P [f ], P [P [f ]], . . . .

Example of execution We will now present an example of execution of an Algorithm 1
for computing the reachable temporal edges in the temporal graph represented in Figure 2.3
with source node s. The algorithm receives in input the list of temporal edges:

42



Input: A fully doubly-sorted representation (Earr, Edep) of a temporal graph G
with waiting constraints (α, β), and a source node s ∈ V .

Output: The sets (Av)v∈V of s-reachable edges at each node v sorted by
non-decreasing arrival time.

1 For each node v, generate the list Edep
v by bucket sorting Edep.

2 For each node v do
3 Set Av := ∅. /* Set of s-reachable edges (as a sorted list). */

4 Set pv := 0. /* Index of the last processed edge in Edep
v . */

5 Set all the edges in Earr as unmarked.
6 Set P [e] :=⊥ for each edge e ∈ Earr./* Parent of e, initially null. */

7 For each edge e = (u, v, τ, λ) in Earr do
8 If u = s or e is marked then

/* e is s-reachable. */

9 Av := Av ∪ {e}
10 Let a = τ + λ be the arrival time of e.

/* Process further edges from v until dep. time ≥ a+ βv: */

11 Let l > pv be the first index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≥ a+ αv (set l := |Edep
v |+ 1 if no such index exists).

12 Let r ≥ l be the last index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≤ a+ βv (set r := l − 1 if no such index exists).
/* Mark unmarked edges with dep. time in [a+ αv, a+ βv]: */

13 If l ≤ r then mark each edge f ∈ Edep
v [l : r] and set P [f ] := e.

14 Set pv := r.

15 Return the sets (Av)v∈V .

Algorithm 1: Computing, for each node v, the set Av of all s-reachable edges
with head v.

s u

vw

t
1, 1

2, 3

12, 1

5, 7

6, 3

2, 2

8, 110, 2

5, 2

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.3: A point availability temporal graph with waiting time constraints, where αs =
αu = αw = αt = 0 and αv = 2, βs = βt = +∞ and βu = βv = βw = 3.

Earr = {(s, u, 1, 1), (u, v, 2, 2), (s, w, 2, 3), (w, u, 5, 2), (v, u, 8, 1), (v, w, 6, 3),
(w, u, 10, 2), (v, t, 5, 7), (u, t, 12, 1)}

43



and

Edep = {(s, u, 1, 1), (s, w, 2, 3), (u, v, 2, 2), (w, u, 5, 2), (v, t, 5, 7), (v, w, 6, 3),
(v, u, 8, 1), (w, u, 10, 2), (u, t, 12, 1)}.

In the preprocessing step, the algorithm computes the following lists from Edep:

� Edep
s = {(s, u, 1, 1), (s, w, 2, 3)},

� Edep
u = {(u, v, 2, 2), (u, t, 12, 1)},

� Edep
v = {(v, t, 5, 7), (v, w, 6, 3), (v, u, 8, 1)},

� Edep
c = {(w, u, 5, 2), (w, u, 10, 2)}.

During the execution the algorithm will work on such lists rather then Edep. Moreover,
still in the preprocessing step, all sets Ax are initialised as empty. We will follow the
execution of the algorithm iteration by iteration: in each figure the temporal edge currently
scanned is coloured in red and the temporal edges that extends it are coloured in blue.
Moreover, we will mark with a ∗ edges that have been marked as reachable in the course of
the execution up until the end of the current iteration.

s u

vw

t
1, 1∗

2, 3

12, 1

5, 7

6, 3

2, 2∗

8, 110, 2

5, 2

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.4: Iteration 1.

Iteration 1. In the first iteration we scan the temporal edge (s, u, 1, 1). As its tail is
the source, it is reachable and we append it to Au. Its arrival time is a = 1 + 1 = 2.
The edges that extend (s, u, 1, 1), and that we want to mark as reachable, are those that
have tail u and a departure time that belongs to [a + αu, a + βu] = [2, 5]. As pu is set to
zero, we start scanning Edep

u from the beginning. The only edge that extends (s, u, 1, 1) is
(u, v, 2, 2), which is in the firs position of Edep

u . We mark it as reachable, set the parent
pointer P [(u, v, 2, 2)] = (s, u, 1, 1) and we set pu = 1.

44



s u

vw

t
1, 1∗

2, 3

12, 1

5, 7

6, 3∗

2, 2∗

8, 110, 2

5, 2

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.5: Iteration 2.

Iteration 2. In the second iteration we scan edge (u, v, 2, 2). It is marked as reachable,
thus we add it to Av. Its arrival time is a = 2 + 2 = 4. The edges that extend (u, v, 2, 2),
must have a departure time that belongs to [a+αv, a+ βv] = [6, 7]. As pv is set to zero, we
start processing Edep

v from the beginning. The first edge in Edep
v that we read is (v, t, 5, 7),

as it departs too early we do not mark it and move to the next one. The second edge is
(v, w, 6, 3) which extends (u, v, 2, 2), thus we mark it as reachable ans set the parent pointer
P [(v, w, 6, 3)] = (u, v, 2, 2). The next edge in Edep

v , which is (v, u, 8, 1), has a departure time
greater than a+ βv = 7, thus we stop processing Edep

v and we set pv = 2.

s u

vw

t
1, 1∗

2, 3∗

12, 1

5, 7

6, 3∗

2, 2∗

8, 110, 2

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.6: Iteration 3.

Iteration 3. We scan edge (s, w, 2, 3), as it departs from the source, it is reachable and
we add it to Aw. The edges that extend (s, w, 2, 3) must have a departure time that belongs
to [a + αw, a + βw] = [5, 8]. Since pw = 0 we start processing Edep

w from the beginning.
The first edge we read is (w, u, 5, 2) which extends (s, w, 2, 3), thus we mark it as reachable
and set its parent pointer to (s, w, 2, 3). The next edge in Edep

w , which is (w, u, 10, 2), has a
departure time greater than a+ βw = 8, thus we stop processing Edep

v and we set pw = 1.

45



s u

vw

t
1, 1∗

2, 3∗

12, 1

5, 7

6, 3∗

2, 2∗

8, 110, 2

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.7: Iteration 4.

Iteration 4. We scan edge (w, u, 5, 2). It is marked as reachable, thus we add it to Au.
Its arrival time is a = 5 + 2 = 7. The edges that extend (w, u, 5, 2) must have a departure
time that belongs to [a+αu, a+βu] = [7, 10]. As pu = 1 the first edge that we consider from
Edep

u is (u, t, 12, 1). As its departure time is greater than a + βu = 10, we do not process
any edge from Edep

u and do not increase the value of pu.

s u

vw

t
1, 1∗

2, 3∗

12, 1

5, 7

6, 3∗

2, 2∗

8, 110, 2

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.8: Iteration 5.

Iteration 5. We scan edge (v, u, 8, 1). As it does not depart from the source and it is not
marked as reachable we do not perform any operation.

s u

vw

t
1, 1∗

2, 3∗

12, 1

5, 7

6, 3∗

2, 2∗

8, 110, 2∗

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.9: Iteration 6.

Iteration 6. We scan edge (v, w, 6, 3). It is marked as reachable, thus we add it to Aw.

46



Its arrival time is a = 6 + 3 = 9. The edges that extend (v, w, 6, 3) must have a departure
time that belongs to [a + αw, a + βw] = [9, 12]. As pw = 1 the first edge that we consider
from Edep

w is (w, u, 10, 2). As it extends (v, w, 6, 3) we mark it as reachable and set its parent
pointer to (v, w, 6, 3). There are no more edges to consider in Edep

w , thus we set pw = 2 and
conclude the iteration.

s u

vw

t
1, 1∗

2, 3∗

12, 1∗

5, 7

6, 3∗

2, 2∗

8, 110, 2∗

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.10: Iteration 7.

Iteration 7. We scan edge (w, u, 10, 2). It is marked as reachable, thus we add it to
Au. Its arrival time is a = 10 + 2 = 12. The edges that extend (w, u, 10, 2) must have a
departure time that belongs to [a+ αu, a+ βu] = [12, 15]. As pu = 1 the first edge that we
consider from Edep

u is (u, t, 12, 1). As it extends (w, u, 10, 2) we mark it as reachable and set
its parent pointer to (w, u, 10, 2). There are no more edges to consider in Edep

u , thus we set
pu = 2 and conclude the iteration.

s u

vw

t
1, 1∗

2, 3∗

12, 1∗

5, 7

6, 3∗

2, 2∗

8, 110, 2∗

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.11: Iteration 8.

Iteration 8. We scan edge (v, t, 5, 7). As it does not depart from the source and it is not
marked as reachable we do not perform any operation.

47



s u

vw

t
1, 1∗

2, 3∗

12, 1∗

5, 7

6, 3∗

2, 2∗

8, 110, 2∗

5, 2∗

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.12: Iteration 9.

Iteration 9. We scan edge (u, t, 12, 1). It is marked as reachable, thus we add it to At.

As Edep
t = ∅ we conclude the iteration and the execution of Algorithm 1.

We identified all the s-reachable temporal edges in the temporal graph in Figure 2.3. Let
us suppose that we are interested in a particular destination node t. As there is at least an
s-reachable edge with head t we know that t is reachable, and we also know that the earliest
arrival time from s to t is 13. We can compute a temporal walk from s to t arriving at
time 13 following the parent pointers starting from (u, t, 12, 1). By doing so, we obtain the
sequence ⟨(s, u, 1, 1), (u, v, 2, 2), (v, w, 6, 3), (w, u, 10, 2), (u, t, 12, 1)⟩, which is represented in
green in Figure 2.13.

s u

vw

t
1, 1

2, 3

12, 1

5, 7

6, 3

2, 2

8, 110, 2

5, 2

βw = 3

βu = 3

αv = 2, βv = 3

Figure 2.13: A temporal walk from s to t obtained following the parent pointers computed
during the execution, starting from the one of (u, t, 12, 1).

Theorem 3. Given a fully doubly-sorted representation of a temporal graph G = (V,E, α, β)
having positive travel times, and a source node s ∈ V , Algorithm 1 computes all s-reachable
temporal edges in linear time and space.

Proof. Correctness. Let us denote by Gk = (V,Earr[1 : k], α, β) the temporal graph
induced by the first k temporal edges in Earr. We will prove, by induction on k, the
following two invariants:

(I1k) For every node v, Av contains all s-reachable edges with head v in Gk.

(I2k) The marked edges are all the edges in E that extend a walk from s in Gk.

48



The correctness of the algorithm will follow from the invariant (I1k) for k = |E|. The
invariants are satisfied for k = 0 since there are no edges in G0 while the sets (Av)v∈V of
s-reachable edges are initially empty and no edge is initially marked.

Now suppose that the two invariants hold for k − 1, with k ≥ 1, and let us prove that
they still hold for k after scanning the kth edge ek = (u, v, τ, λ) in Earr. To prove (I1k) and
(I2k), we first show that the condition of the if statement at Line 8 is met when ek is an
s-reachable edge in Gk. It is obviously the case when u = s as ⟨ek⟩ is in Gk, or when ek
was previously marked, as Invariant (I2k−1) then implies that it extends a walk Q from s in
Gk−1 and that Q.ek is a walk in Gk. The converse also holds: if ek is an edge of a walk Q
from s in Gk, then either it is the first edge and we have u = s or the sequence Q′ of edges
before ek in Q is a walk in Gk−1 and (I2k−1) implies that it is marked.

Note that when ek appears in a walk Q of Gk, it must be the last edge of Q as Earr is
sorted by non-decreasing arrival time and edges have positive travel time. This allows to
prove (I1k): as we assume (I1k−1), we just have to consider walks from s that are in Gk but
not in Gk−1, that is those containing ek. Since all these walks have ek as last edge, and ek
is the only edge added to Av when such walks exist, we can conclude that (I1k) holds.

Similarly, to prove (I2k) when (I2k−1) holds, we just have to consider the edges extending
a walk Q from s which is in Gk but not in Gk−1. As discussed above, when such a walk
Q exists, ek is its last edge and the condition of the if statement at Line 8 holds. Edges
extending such a walk Q are thus those extending ek, that is all edges f ∈ Edep

v such that
a + αv ≤ dep(f) ≤ a + βv. Note that the ordering of Edep

v implies that these edges are
consecutive in Edep

v . If no such edges exist, let l′ and r′ designate the first and last indexes
respectively where they are placed in Edep

v . To prove (I2k), it thus suffices to prove that all
edges in Edep

v [l′ : r′] are marked after scanning ek and that only edges in Edep
v [l′ : r′] are

marked during the iteration for ek (if no such edges exist we prove that we mark no edges).
Consider the values l and r computed at Lines 11 and 12 respectively. If no edge f extends
ek, then we get r = l− 1 and no edge is marked. Now, we assume that such edges exist and
that l′ and r′ are well defined. First assume l ≤ r and thus that l was not set to |Edep

v |+1.
The choice of l, r then imply a + αv ≤ dep(Edep

v [l]) and dep(Edep
v [r]) ≤ a + βv. We thus

have l′ ≤ l ≤ r ≤ r′ and all marked edges at Line 13 are in Edep
v [l′ : r′]. Moreover, the

choice of r indeed then implies r = r′. We still need to prove that edges in Edep
v [l′ : l − 1]

have already been marked. Otherwise, when r = l − 1, no edge is marked. This occurs
when pv ≥ r′ and we then have l = pv + 1. In both cases, it remains to prove that all edges
f ∈ Edep

v [l′ : min{l − 1, r′}] have already been marked. This interval is non-empty when
l′ ≤ l− 1 and thus pv = l− 1 by the choice of l. We thus have pv ≥ min{l− 1, r′}. Let i be
the index of f in Edep

v and consider the iteration j < k when pv was updated form a value
smaller than i to a value r′′ ≥ i where l′′ and r′′ denote the indexes computed for variables
l and r respectively during the j-th iteration for edge ej ∈ Earr.

Since Earr is sorted by non-decreasing arrival time, the arrival time a′ of ej satisfies
a′ ≤ a and we thus have dep(f) ≥ a+αv ≥ a′+αv. The choice of index l at Line 11 in that
iteration thus guarantees that the index l′′ must satisfy l′′ ≤ i. We thus have l′′ ≤ i ≤ r′′

and f was marked at Line 13 during the jth iteration. This completes the proof of (I2k).
We finally prove that the parent pointers allow us to compute for each s-reachable edge

f = (u, v, τ, λ) with head v an sv-walk ending with f . If f ∈ Av and it is not marked, then
P [f ] =⊥, and we must have u = s as f was added to Av. In this case, ⟨f⟩ is an sv-walk
itself. Now consider the case f ∈ Av and f is marked. Consider the iteration k where f was
marked. By (I2k−1) and (I2k), f extends a walk from s ending with ek, where ek is the edge
scanned at iteration k, and P [f ] was then set to ek.

49



This guarantees by a simple induction that, if P [f ] ̸=⊥, by following the parent pointers
in classical manner, namely P [f ], P [P [f ]], . . . , until ⊥ is found, it is possible to obtain a
walk terminating with edge f .

Complexity analysis. The preprocessing of Edep and the initialization from Line 1 to
Line 6 clearly takes linear time. The main for loop scans each temporal edge e = (u, v, τ, λ)
in Earr exactly once. For each iteration there are three operations that may require non-
constant time: the computation of l and r at Lines 11 and 12, and marking edges in Edep

v [l, r]
at Line 13. They all take O(r− pv) time as l and r can be found by scanning edges in Edep

v

from pv + 1. Thanks to the update of the index pv to r, each edge in Edep
v is processed at

most once for a total amortized cost of O(|Edep
v |). Overall, this leads to a time complexity

of O(|E| +
∑

v∈V |Edep
v |) = O(|E|). Algorithm 1 thus runs in linear time. Finally, let us

notice that for all nodes v, the set Av has size bounded by the number of temporal edges
with head v. We thus have

∑
v∈V |Av| ≤ |E|, and the space complexity of Algorithm 1 is

linear.

2.3 Computing single-source all-reachable-edge minimum-
cost walks

To solve the problem of computing minimum-cost walks from a single source s, we will
consider a more general problem consisting in computing at each destination v, and for each
possible s-reachable edge e with head v, an sv-walk with minimum cost among all sv-walks
ending with e.

General cost structure for walks. We integrate a temporal graph G = (V,E, α, β) with
an algebraic cost structure (C, γ,⊕,⪯), where C is the set of possible cost values, γ is a cost
function γ : E → C, ⊕ is a cost combination function ⊕ : C ×C → C, and ⪯ is a cost total
order ⪯ ⊆ C ×C. We also define the relation ≺ between the elements of C as a ≺ b if and
only if a ⪯ b and a ̸= b. For any walk Q = ⟨e1, . . . , ek⟩, the cost function of Q is recursively
defined as follows: γQ = γ⟨e1,...,ek−1⟩ ⊕ γ(ek), with γ⟨e1⟩ = γ(e1). In other words, the costs
combine along the walk according to the cost combination function. The cost structure is
supposed to satisfy the following right-isotonicity property [59, 60] (isotonicity for short):

for any c1, c2, c ∈ C such that c1 ⪯ c2, we have c1 ⊕ c ⪯ c2 ⊕ c. (isotonicity)

This property guarantees that if several walks are extended by a given temporal edge e,
then the best cost is obtained by extending the walk Q∗ with minimum cost: as for any
other walk Q we have γQ∗ ⪯ γQ, we get γQ∗.e ⪯ γQ.e by the isotonicity property and the
cost function definition. However, a prefix of a minimum-cost walk is not necessarily a
minimum-cost walk.

We define the single-source all-reachable-edge minimum-cost problem as follows.

single-source all-reachable-edge minimum-cost problem. Given a tempo-
ral graph G = (V,E, α, β) with cost structure (C, γ,⊕,⪯), and a source node s ∈ V ,
compute for each destination v ∈ V and each possible s-reachable edge e with head
v the minimum cost of any sv-walk ending with edge e.

The problem consists in computing for each node v all pairs (e, c) such that e ∈ Av

and c = min{γQ : Q is an sv-walk ending with edge e}, where Av denotes the set of all

50



s-reachable edges with head v. We will denote with A′
v the list of such pairs (e, c) ordered

by non-decreasing arrival time of the edges. In this section we consider this problem in
the case of zero-acyclic temporal graphs. Algorithm 1 represent a first step towards solving
the minimum-cost problem, as it detects whether there exists a temporal walk ending with
an edge, however there is no guarantee that the temporal walk computed is the one with
minimum cost. It is thus necessary to keep track of several temporal walks as the algorithm
progresses to find the optimal one.

We can now state our main result as follows.

Theorem 4. Given either a time-expanded representation or a doubly-sorted representation
of a zero-acyclic temporal graph G = (V,E, α, β) with cost structure (C, γ,⊕,⪯) satisfying
isotonicity, and a source node s ∈ V , the single-source all-reachable-edge minimum-cost
problem can be solved in linear time and space.

To prove the above theorem, we design an algorithm that scans linearly edges in Earr.
The general idea is to maintain for each unscanned edge f the minimum cost of any walk Q
from s in the partial temporal graph induced by edges scanned so far such that f extends
Q. We can update these costs each time a new edge e ∈ Earr is scanned relying on the
property that the edges of Q are scanned in order. In particular, the cost that has been
associated to e itself allows to infer easily the minimum cost of a walk from s ending with e.

More precisely, our algorithm considers only a subset of all walks from the source. This
subset subtly depends on the given doubly-sorted representation (Edep, Earr) and matches
the following definition. We say that a walk Q is (Edep, Earr)-respected when for each pair
e and f of consecutive edges in Q, and for each edge e′ ∈ E having same tail as f and
satisfying f ≤Edep e′, we have e <Earr e′. In particular, we get e <Earr f for e′ = f , and
the edges of Q must appear in order in Earr. It also implies that edges e′ after f in Edep

will be scanned after e by our algorithm, a property we will use for getting efficient updates.
In the zero-acyclic setting, we will later see that any walk is (Edep, Earr)-respected when
Earr satisfies some additional properties related to zero-acyclicity.

We now introduce two notions related to (Edep, Earr)-respected walks. An (s, Edep, Earr)-
reachable edge is defined as an s-reachable edge that ends an (Edep, Earr)-respected walk
from s. Moreover, given a subset E′ of edges, and an edge f ∈ E with tail v, we define its
best extendable cost with respect to E′ as the minimum cost of an sv-walk Q that f extends
in the partial graph induced by E′ ∪ {f} and such that Q.f is (Edep, Earr)-respected.

Our algorithm maintains the best extendable costs of all edges with respect to the prefix
of edges scanned so far as follows. Initially, all best extendable costs are undefined as
expressed by a special value ⊥. Then each time an edge e ∈ Earr is scanned, it is sufficient
to update the costs of edges f that extend e and such that ⟨e, f⟩ is (Edep, Earr)-respected as
detailed in the proof of Lemma 1. The main difficulty is to perform this update in constant
amortized time although a large number of edges f may extend e. For that purpose, by
proceeding as in Algorithm 1, Edep is first bucket sorted according to tails, and thus edges
from a node v that extend the same walks from s to v are grouped into intervals of the array
Edep

v of edges from v. These intervals are stored in a doubly linked list Iv of quadruples
where each interval (l, r, c, e) ∈ Iv represents the association of edges in Edep

v [l : r] to best
extendable cost c and parent edge e where e is an edge they all extend and such that there
exists an (Edep, Earr)-respected walk from s having cost c and ending with e. We also
maintain the overall interval (lv, rv) spanned by Iv. Note that this interval is considered
to be empty when rv < lv. Algorithm 2 describes how to update these intervals each time
an edge e with head v is scanned. It relies on the fact that intervals of Iv are consecutive

51



in Edep
v and are also ordered by non-decreasing associated costs. When the scan of Earr

has progressed sufficiently, the best extendable cost of some edges will not change any more
and it is then stored directly in an array B through the procedure FinalizeCosts(v, j) which
erases intervals of Iv up to index j and stores the cost associated to the corresponding edges
in B as detailed in Algorithm 3. At the end of the scan, our algorithm returns the lists
(A′

v)v∈V which contain the minimum cost associated to all possible (s, Edep, Earr)-reachable
edges. During the execution, we build parent pointers, that allow to represent, for each such
edge e ∈ A′

v, an sv-walk with minimum cost ending with edge e by associating to each edge
f the edge P [f ] preceding it in such a walk.

2.3.1 Computing shortest duration walks.

The duration of a walk Q is defined as the time arr(Q) − dep(Q) elapsed between its
departure and its arrival. It is one of the classical criteria for evaluating the quality of
walks, shortest duration being usually preferred. As an example, we now show how to obtain
shortest-duration walks with Algorithm 2 and obtain the following result as a corollary of
Theorem 4.

Corollary 1. Given a doubly-sorted representation (Earr, Edep) of a strict temporal graph
G = (V,E, α, β), and a source node s, the single-source shortest-duration walk problem, that
is computing a shortest duration sv-walk for all nodes v, can be solved in linear time and
space.

For a given destination v and a given edge e with head v and arrival time a, the duration
of any sv-walk Q terminating with e is a−dep(Q). To find walks that minimise this quantity,
we define the following cost structure (C, γ,⊕,⪯). The cost set is C = R, to each temporal
edge e = (u, v, τ, λ) we assign as cost its departure time γ(e) = τ . The cost combination
function ⊕ return the first parameter, thus τ⊕τ ′ = τ . Finally, the cost total order is defined
by τ ⪯ τ ′ when τ ≥ τ ′, meaning that later departure times are preferred. Note that the
⊕ definition implies that the cost of a walk Q = ⟨e1, . . . , ek⟩ depends only on its first edge
e1 = (u1, v1, τ1, λ1) and is given by γQ = γ(e1) = τ1 = dep(Q). The isotonicity property is
trivially satisfied: for any τ1, τ2, τ ∈ R, such that τ1 ⪯ τ2, as τ1 ⊕ τ = τ1 and τ2 ⊕ τ = τ2,
we have τ1 ⊕ τ ⪯ τ2 ⊕ τ .

Running Algorithm 2 results in a set A′
v for each node v where every possible edge e

terminating an sv-walk is associated to a walk Q minimum cost among those ending with e,
that is maximising dep(Q). The duration of Q, that is arr(Q)−dep(Q) = a−dep(Q), where
e is the arrival time of e, is thus guaranteed to be minimum among all sv-walks ending with
edge e, since they all have arrival time a. We can finally scan all pairs in A′

v to obtain an
sv-walk with shortest duration. Corollary 1 is thus a consequence of Theorem 4.

52



Input: A doubly-sorted representation (Edep, Earr) of a temporal graph G with
waiting-time constraints (α, β) and cost structure (C, γ,⊕,⪯) satisfying
isotonicity, and a source node s.

Output: Minimum cost of an (Edep, Earr)-respected sv-walk for each node v
and for each (s, Edep, Earr)-reachable edge e with head v.

1 For each node v, generate the list Edep
v by bucket sorting Edep.

2 For each node v do
3 Set A′

v := ∅. /* List of pairs of s-reachable edge and cost. */

4 Set Iv := ∅. /* Doubly linked list of consecutive intervals of

Edep
v . */

5 Set (lv, rv) := (1, 0). /* Overall interval of Edep
v spanned by Iv. */

6 Set best extendable cost B[e] :=⊥ and parent pointer P [e] :=⊥ for each edge
e ∈ Earr.

7 For each edge e = (u, v, τ, λ) in Earr do
8 Let i be the index of e in Edep

u .
9 If i ≥ lu then FinalizeCosts(u, i) /* Obtain B[e] in particular. */

10 If u = s or B[e] ̸=⊥ then
/* Get the minimum cost c of a walk having e as last edge: */

11 If u = s and (B[e] =⊥ or γ(e) ≺ B[e]⊕ γ(e)) then c := γ(e) and P [e] := e
12 else c := B[e]⊕ γ(e).
13 Append (e, c) to A′

v.

/* Find the interval (l, r) of edges in Edep
v that extend e: */

14 Let a = τ + λ be the arrival time of e.

15 Let l ≥ lv be the first index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≥ a+ αv (set l := |Edep
v |+ 1 if no such index exists).

16 Let r ≥ rv be the last index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≤ a+ βv (set r := rv if no such index exists).
/* Remove from Iv intervals preceding l and set lv := l: */

17 FinalizeCosts(v, l − 1)
/* Remove from Iv intervals with cost greater than c: */

18 Set lc := max{l, rv + 1}. /* First index in (l, r) after Iv. */

19 While Iv ̸= ∅ has last interval I ′ = (l′, r′, c′, e′) satisfying c ≺ c′ do
20 Remove I ′ from Iv and update lc := l′.

/* Associate cost c and parent e to edges in Edep
v [lc : r]: */

21 If lc ≤ r then append interval I = (lc, r, c, e) to Iv.
22 Set rv := r.

23 Return the lists (A′
v)v∈V .

Algorithm 2: Computing, for each node v and each (s, Edep, Earr)-reachable edge
e with head v, the minimum cost of any (Edep, Earr)-respected sv-walk ending with
e.

53



1 Procedure FinalizeCosts(v, j)
2 While the first interval I = (l, r, c, e) in Iv satisfies l ≤ j do
3 Let l′ = min{r, j}.
4 For each edge f = (v, w, τ, λ) in Edep

v [l : l′] do B[f ] := c and P [f ] := e.
5 If l′ = r then remove I from Iv else update I := (j + 1, r, c, e).

6 Set lv := j + 1.

Algorithm 3: Set the best extendable cost and parent of edges in Edep
v [lv : j] and

remove corresponding intervals from Iv.

Example of execution We will now present an example of execution of Algorithm 2 for
the specific case of computing shortest duration walks in the temporal graph represented in
Figure 2.14 with source node s.

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.14: A point availability temporal graph with waiting time constraints, where αs =
αa = αb = αt = 0, βs = βa = βt = +∞ and βb = 2.

The algorithm receives in input the list of temporal edges:

Earr = {(s, b, 1, 2), (s, a, 2, 2), (a, b, 4, 1), (a, b, 2, 3), (s, b, 5, 1), (b, t, 5, 1), (b, t, 6, 2)}

and

Edep = {(s, b, 1, 2), (a, b, 2, 3), (s, a, 2, 2), (a, b, 4, 1), (s, b, 5, 1), (b, t, 5, 1), (b, t, 6, 2)}.

In the preprocessing step, the algorithm computes the following lists from Edep:

� Edep
s = {(s, b, 1, 2), (s, a, 2, 2), (s, b, 5, 1)},

� Edep
a = {(a, b, 2, 3), (a, b, 4, 1)},

� Edep
b = {(b, t, 5, 1), (b, t, 6, 2)}.

During the execution the algorithm will work on such lists rather then Edep. Moreover,
still in the preprocessing step, all sets A′

v and sets of intervals Iv are empty, and for each
temporal edge its best extendable cost and parent pointer are set to ⊥. We will follow
what the algorithm does iteration by iteration: in each figure the temporal edge currently

54



scanned is coloured in red and the temporal edges that extends it are coloured in blue. We
will focus on the more meaningful operations and for example we do not mention the calls
to FinalizeCosts when they do not perform any action.

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.15: Iteration 1.

Iteration 1. In the first iteration we scan edge (s, b, 1, 2), whose tail is the source. Its
extendable cost B[(s, b, 1, 2)] is still set to ⊥ as for every other temporal edge, and thus c is
set to γ((s, b, 1, 2)) = 1. The pair ((s, b, 1, 2), 1) is added to A′

b. Because of the waiting time
constraint βb = 2, the only edge that extends (s, b, 1, 2) is (b, t, 5, 1). Since Ib is empty, we

create a new interval I1b that contains the index of (b, t, 5, 1) in Edep
b , associated to cost 1

and to the edge (s, b, 1, 2).

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.16: Iteration 2.

Iteration 2. We scan edge (s, a, 2, 2). Again, it is an edge from the source with no defined
best extendable cost, thus c is set to γ((s, a, 2, 2)) = 2. The pair ((s, a, 2, 2), 2) is added to
A′

a. The only edge that extends (s, a, 2, 2) is (a, b, 4, 1). Edge (a, b, 2, 3) is finalized as it
precedes (a, b, 4, 1) in Edep

a . Since it does not belong to an interval in the moment it is
finalized, its best extendable cost is still ⊥. Moreover, since Ia is empty, we create a new
interval I1a that contains the index of (a, b, 4, 1) in Edep

a , associated to cost 2 and to edge
(s, a, 2, 2).

55



s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.17: Iteration 3.

Iteration 3. We scan edge (a, b, 4, 1). It gets finalized and thus its best extendable
cost is set to the cost of the interval I1a that contains it, yielding B[(a, b, 4, 1)] = 2 and
P [(a, b, 4, 1)] = (s, a, 2, 2). Since its tail is not the source, c is set to 2 ⊕ 4 = 2. The pair
((a, b, 4, 1), 2) is added to A′

b. Both edges in the graph with tail b extends the edge that is
currently scanned. Since interval I1b is associated to cost 1, while the value of c is currently
2 which satisfies 2 ≺ 1, I1b is removed. We create a new interval, let us call it I2b , containing
the indexes of both (b, t, 5, 1) and (b, t, 6, 2), it is associated with cost 2 and edge (a, b, 4, 1).

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.18: Iteration 4.

Iteration 4. We scan edge (a, b, 2, 3). As its tail is not the source and its best extendable
cost is still equal to ⊥, the algorithm does not perform any operation.

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.19: Iteration 5.

Iteration 5. We scan edge (s, b, 5, 1). Its tail is the source and its best extendable cost
is undefined, thus c is set to γ((s, b, 5, 1)) = 5. The pair ((s, b, 5, 1), 5) is added to A′

b. The

only edge that extends it is (b, t, 6, 2). At this point Edep
b is finalized until (b, t, 6, 2), which

means that (b, t, 5, 1) is finalized, by setting B[(b, t, 5, 1)] = 2 and P [(b, t, 5, 1)] = (a, b, 4, 1),
as this values were associated to I2b . Moreover, I2b is updated to contain the sole index of
(b, t, 6, 2). Finally, as c = 5 ≺ 2 interval I2b is removed and a new interval is added, let us

56



call it I3b , containing the index of (b, t, 6, 2) in Edep
b , associated to cost 5 and edge (s, b, 5, 1).

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.20: Iteration 6.

Iteration 6. We scan edge (b, t, 5, 1). It has been finalized in the previous iteration and
B[(b, t, 5, 1)] = 2. The pair ((b, t, 5, 1), 2) is added to A′

t. Since there are no edges extending
it, the algorithm does not perform any further operation.

s a b t
2, 2

5, 1

1, 2

2, 3

4, 1

5, 1

6, 2

Figure 2.21: Iteration 7.

Iteration 7. In the last iteration, edge (b, t, 6, 2) is scanned. It gets finalized, thus its best
extendable cost is set to B[(b, t, 6, 2)] = 5 and the parent pointer is set to P [(b, t, 6, 2)] =
(s, b, 5, 1), as these values are associated to I3b . The pair ((b, t, 6, 2), 5) is added to A′

t. Since
there are no edges extending it, the algorithm does not perform any further operation.

Let us suppose we are interested in shortest duration temporal from s to t. We scan A′
t.

The first pair is ((b, t, 5, 1), 2): this means that there exists a temporal walk ending with
(b, t, 5, 1) and that the latest departure time of walks ending with such edge is 2, and this
correspond to a duration of arr((b, t, 5, 1)) − 2 = 4. The second pair is ((b, t, 6, 2), 5): this
means that there exists a temporal walk ending with (b, t, 6, 2) and that the latest departure
time of walks ending with this edge is 5, corresponding to a duration of arr((b, t, 6, 2))−5 =
3. To conclude, the minimum duration of a temporal walk from s to t is 3, and if we
are interested in the temporal walk itself we can follow that parent pointer starting from
(b, t, 6, 1) and obtain the walk ⟨(s, b, 5, 1), (b, t, 6, 2)⟩.

The correctness of the algorithm mainly follows from the following lemma.

Lemma 1. After the kth iteration of Algorithm 2, if an edge f with tail v is associated to
cost c, either through an interval (l, r, c, e) ∈ Iv containing the index of f in Edep

v or by the
value c = B[f ] when B[f ] ̸=⊥, then c is the best extendable cost of f with respect to the
subset Earr[1 : k] inducing graph Gk. Moreover, the edge ek scanned at the kth iteration
gets associated to cost c in A′

v if and only if it is an (s, Edep, Earr)-reachable edge and c is
the minimum cost of any (Edep, Earr)-respected sv-walk ending with ek.

57



Note that exactly one of the three following cases occurs: f has no associated cost, or f
is in an interval of Iv, or we have B[f ] ̸=⊥. This is due to the way we maintain the value
lv which is always the leftmost bound of an interval of Iv: once a value B[f ] is set for an
edge f with tail v by a call to FinalizeCosts(v, j), lv is updated to a value greater than j,
and f cannot appear in an interval of Iv anymore.

Proof. We prove the statement by induction on k. As there are no edges and no walks in
G0 and no edge has initially an associated cost, the statement holds for k = 0. Assume
that the statement holds for k− 1 and let us prove it for k. Recall that the best extendable
cost of an edge f with respect to Earr[1 : k] is the minimum cost of an sv-walk Q in Gk

that f extends and such that Q.f is (Edep, Earr)-respected (where v denotes the tail of f).
By the induction hypothesis, we must update the cost associated to f only when there is
such a walk Q with cost c which is in Gk but not in Gk−1 and such that c is lower than the
cost associated to f after the previous iteration. This can occur only when Q contains the
edge ek = Earr[k] = (u, v, τ, λ) which is scanned at the kth iteration. Moreover, as Q.f is
(Edep, Earr)-respected, so is Q. Its edges thus appear in order in Earr and ek must be its
last edge. It is thus sufficient to consider the minimum cost c∗ of an (Edep, Earr)-respected
sv-walk Q ending with ek and compare it with the cost associated to edges f that extend
ek and such that Q.f is (Edep, Earr)-respected.

We first show that the value c computed at Lines 11-12 is indeed c∗. Consider an
(Edep, Earr)-respected sv-walk Q ending with ek and having cost c∗. In the case where Q
has at least two edges, let Q′ denote the prefix of Q excluding ek. The induction hypothesis
and the call to FinalizeCosts(u, i) at Line 9 then ensure that B[ek] is set to the minimum
cost of such a walk Q′ that ek extends and such that Q′.ek is (Edep, Earr)-respected. By
isotonicity, this implies that B[ek]⊕γ(ek) is the minimum cost of an (Edep, Earr)-respected
sv-walk ending with ek and having at least two edges. In the case where Q has one edge,
we have Q = ⟨ek⟩, and ek must be an edge from s and the cost of Q is γ(ek). In both cases,
the test at Line 10 passes when ek is an (s, Edep, Earr)-reachable edge and the computation
of c at Lines 11-12 sets c to the minimum of γ(ek) and B[ek]⊕γ(ek) when both cases occur,
ensuring that c = c∗ is the minimum cost of any (Edep, Earr)-respected sv-walk ending with
ek. Moreover, Line 13 then ensures that ek gets associated to cost c = c∗ in A′

v.
We now show that the set F of edges f that extend ek and such that Q.f is (Edep, Earr)-

respected is precisely Edep
v [l : r] where (l, r) are the values computed at Lines 15-16. As

these edges extend ek, their departure time lies within arr(ek)+αv and arr(ek)+βv which
correspond to an interval (l′, r′) of Edep

v as Edep
v is node-departure sorted. We further restrict

our attention to those edges f such that Q.f is (Edep, Earr)-respected or equivalently ⟨ek, f⟩
is (Edep, Earr)-respected when Q is assumed to be (Edep, Earr)-respected. That is we should
consider only edges f so that no edge e′ with tail v satisfies both f ≤Edep e′ and e′ ≤Earr ek.
Let l′′ be the highest index in Edep

v of such an edge e′. The call to FinalizeCosts(u′, i′) at
Line 9, where u′ = v is the tail of such an edge e′ scanned before ek and i′ ≤ l′′ is the index of
e′ in Edep

v , ensures that lv is at least i′+1. When u = v, ek is itself such an edge e′, and the
call to FinalizeCosts(u, i) at Line 9 where i ≤ l′′ is the index of ek ensures that lv is at least
i+1. We thus have lv ≥ l′′+1. Note also that lv was updated to l′′+1 at most in these calls
from Line 9. Moreover, each call to FinalizeCosts(v, j) at Line 17 for an edge e′ <Earr ek
with head v was made for an arrival time arr(e′) ≤ arr(ek) as E

arr is node-arrival sorted.
This ensures that the argument j of such a call was at most max{l′′ + 1, l′}. Similarly, the
update of rv at the end of the corresponding iteration was at most r′. We thus conclude
that we have l′′ +1 ≤ lv ≤ max{l′, l′′ +1} and rv ≤ r′ at the beginning of the kth iteration.

58



The computation of l and r at Lines 8-13 thus implies l = max{l′, l′′ + 1} and r = r′ and
the interval (l, r) of Edep

v indeed corresponds to edges of F .
We finally show that each edge f ∈ F gets associated to its best extendable cost with

respect to Earr[1 : k]. This mainly relies on the induction hypothesis and the fact that
c = c∗ is the minimum cost of a walk Q in Gk and not in Gk−1 that f extends and such that
Q.f is (Edep, Earr)-respected. Among those edges f ∈ F which are already associated with
a cost c′, the removal of intervals at Lines 18-20 ensures that we modify their associated
cost only when c′ is greater than c = c∗. This relies on the property that Iv is sorted by
non-decreasing cost which is an invariant of the algorithm as the eventual interval (lc, r, c, e)
added at the end of Iv at Lines 21 has cost c which is greater or equal to the cost of
remaining intervals. The induction hypothesis and the optimality of c ensure that the best
extendable cost of these edges is c. The update of bound lc at Line 20 ensures that these
edges get associated to cost c. All edges in F that were not previously associated to a cost
are those in interval (max{l′′ + 1, l′, rv + 1}, r′) = (max{l, rv + 1}, r) which is included in
(lc, r) as lc is initialized to max{l, rv + 1} at Line 18 and can only decrease by the updates
at Line 20. These edges also get associated to c through interval (lc, r, c, e), and it is their
best extendable cost by optimality of c. Finally, all edges in F that were associated to a
cost c′ ≺ c remain associated to the same cost which is their best extendable cost by the
induction hypothesis.

We can now state the following.

Proposition 1. Given a doubly-sorted representation (Edep, Earr) of a temporal graph
G = (V,E, α, β) with cost structure (C, γ,⊕,⪯) satisfying isotonicity, and a source node
s, Algorithm 2 computes in linear time and space, for each node v and each (s, Edep, Earr)-
reachable edge e with head v, the minimum cost of any (Edep, Earr)-respected sv-walk ending
with e.

Proof. The correctness of the algorithm follows directly from Lemma 1. The reason is that
any (Edep, Earr)-respected sv-walk Q ending with an edge e must have edges appearing in
order in Earr so that if k is the index of e in Earr, all edges of Q are in Earr[1 : k], and Q
is also a walk in Gk.

Let us turn to the complexity analysis. Each edge e ∈ Earr is scanned only once.
For all nodes v, each edge f ∈ Edep

v with index i is finalized at most once: the first time
FinalizeCosts(v, j) is called with a value j ≥ i. The update of lv to j+1 in FinalizeCosts(v, j)
ensures that f is never finalized again. Computing the value of l at Line 15 takes O(l− lv)
time, which thanks to the update of lv to l in the call to FinalizeCosts(v, l − 1) results in
amortized time of O(|Edep

v |). Similarly, computing the value of r takes O(r−rv) time, which
thanks to the update of rv to r results in amortized time of O(|Edep

v |). In addition, at most
one interval is created at each iteration and later removed. The number of times we modify
the left bound of an interval is bounded by the number of times we update lv which is |Edep

v |
at most. As

∑
v∈V |Edep

v | = |E|, Algorithm 2 runs in linear time assuming that operations
with ⊕ and ⪯ can be computed in constant time. Finally, let us notice that for all nodes
v, Iv contains at most |Edep

v | intervals and the set A′
v has size bounded by the number of

temporal edges with head v. We thus have
∑

v∈V |Iv| ≤ |E| and
∑

v∈V |A′
v| ≤ |E|. The

space complexity of Algorithm 2 is thus linear.

In the remaining part of the section, we show that starting from a time-expanded rep-
resentation it is possible to compute a doubly-sorted representation (Edep, Earr) satisfying

59



some additional properties which guarantee that any temporal walk is (Edep, Earr)-respected
and thus allowing Algorithm 2 to indeed compute minimum cost walks. We start by defining
the following looser notion of extending. We say that an edge f = (x, y, τ, λ) half-extends an
edge e = (u, v, τ ′, λ′) when x = v and arr(e)+αx ≤ τ . Note that f half-extends e whenever
f extends e. Let us now introduce some orderings of temporal edges with respect to certain
temporal criteria. We say that an ordering Eord of all edges is half-extend-respecting when
for any pair e, f ∈ E of edges such that f half-extends e, then e appears before f in Eord

which is denoted by e <Eord f . We also write e ≤Eord f for e <Eord f or e = f . Note that
the edges of any walk Q in G must appear in order in such an ordering Eord as each edge
of Q half-extends the edge preceding it. We also say that a doubly-sorted representation
(Edep, Earr) is half-extend-respecting when Earr is additionally half-extend-respecting.

We can now state the following equivalence.

Proposition 2. Let G = (V,E, α, β) be a temporal graph.

A. If G is zero-acyclic and a time-expanded representation of G is given, it is possible
to compute in linear time and space a doubly-sorted representation (Edep, Earr) of G
such that Edep and Earr are both half-extend-respecting.

B. Given a doubly-sorted representation (Edep, Earr) of G it is possible to compute in
linear time and space a time-expanded representation of G.

Proof. In order to prove Proposition 2.A, we design an algorithm that computes a node-
arrival-sorted half-extend-respecting list from a time-expanded representation of a zero-
acyclic temporal graph. It is inspired by Kahn’s algorithm for computing a topological
ordering of a directed acyclic graph [41].

We first define a notion of extending for arcs in D, where D is the time-expanded
representation. Given two arcs f1, f2 in F c ∪ Fw, we say that f2 arc-extends f1 when the
head vν of f1 is also the tail of f2 and we have f1 ∈ Fw or f2 ∈ Fw or αv = 0 (v is the
node whose copy vν is the head of f1). In particular, when f1 and f2 are both connection
arcs, we must have αv = 0. Note that for every pair e1, e2 of temporal edges corresponding
respectively to two connection arcs f1, f2 in F c, and such that e2 extends e1, there must
exist a path P in D starting with f1, ending with f2, and containing possibly intermediate
waiting arcs in Fw. When arr(e1) = dep(e2), P contains only f1 and f2, and the minimum
waiting time αv at the head v of e1 must be zero since e2 extends e1. In all cases, each
arc in P arc-extends the preceding one according to our new definition. We say that an
ordering F ord of the arcs of D is arc-extend-respecting when we have f1 <F ord f2 whenever
f2 arc-extends f1 for any pair of arcs f1, f2 ∈ F c ∪ Fw. It is thus sufficient to produce an
arc-extend-respecting ordering F ord of F c ∪Fw to obtain a half-extend-respecting ordering
of the temporal edges according the respective positions of their corresponding arcs in F ord.

The main idea of the algorithm is to produce such an ordering by iteratively removing
an arc from D so that no other remaining arc arc-extends it. Each time an arc is removed, it
is prepended to the list F ord which is initially empty. When a node vν has out-degree zero,
we can safely remove all the arcs entering it. Repeating this would suffice when D is acyclic.
However, it may contain a cycle. This can only occur when all nodes in the cycle have same
time label τ as each arc (uτ , vν) satisfies τ ≤ ν. This implies that all the arcs of the cycle
must be in F c. In such a case, the zero-acyclicity of G ensures that at least one node vν of
the cycle is a copy a node v of the temporal graph with waiting-time constraint αv > 0 as
otherwise this cycle would correspond to a zero-cycle in G. When no node has out-degree
zero, the algorithm thus selects any node vν having no out-arc in Fw and satisfying αv > 0,

60



and then removes all its in-arcs that are in F c. Note that all out-arcs of vν are then in F c

and none of them arc-extends these in-arcs by the choice of vν such that αv ̸= 0. Such a
node must exist when G is zero-acyclic and no remaining node has out-degree zero as there
must then exist a cycle among nodes with maximum time label τ while no remaining waiting
arc can lead to a copy with time label greater than τ . As the algorithm can always progress,
it terminates when all arcs have been removed. See Algorithm 4 for a formal description,
where δcout(vτ ) is the number of out-neighbors of vτ through an arc in F c, δwout(vτ ) is the
number of out-neighbors of vτ through an arc in Fw. Furthermore, we denote with N c

in(vτ )
the set of in-neighbors wν of vτ such that (wν , vτ ) ∈ F c.

Input: A time-expanded representation D = (W,F c ∪ Fw) of a zero-acyclic
temporal graph G = (V,E, α, β), given as adjacency lists
N c

in(vτ ), P redw(vτ ) for each vτ ∈W .
Output: An arc-extend-respecting ordered list F ord of the arcs in D.

1 Compute δcout(vτ ) and δwout(vτ ) for each node vτ ∈W .
2 Compute the set S of nodes vτ such that δcout(vτ ) = 0 and δwout(vτ ) = 0.
3 Compute the set S′ of nodes vτ such that δwout(vτ ) = 0 and αv > 0.

4 Set F ord := ∅. /* Arc-extend-respecting ordered list. */

5 While S ∪ S′ ̸= ∅ do
6 If S ̸= ∅ then
7 Select any vτ ∈ S.
8 For each node uν in N c

in(vτ ) ∪ Predw(vτ ) do RemoveArc(uν , vτ ).
9 Remove vτ from D.

10 else
11 Select any vτ ∈ S′.
12 For each node uν in N c

in(vτ ) do RemoveArc(uν , vτ ).

13 Return F ord

14 Procedure RemoveArc(uν , vτ )
15 Prepend (uν , vτ ) to F ord and remove it from D.
16 Update accordingly the degrees of uν and the sets S, S′.

Algorithm 4: Computing an arc-extend-respecting arc ordering of a time-
expanded representation of a zero-acyclic temporal graph.

This algorithm runs in linear time by maintaining δcout(vτ ), δ
w
out(vτ ), and N c

in(vτ ) for
each node vτ . This allows to maintain the set S of nodes with out-degree zero, and the set
S′ of nodes vν having no out-edges in Fw and satisfying αv > 0. A node in S or S′ can then
be selected in constant time. Each arc removal is performed with constant-time updates of
out-degrees, in-neighbours, sets S and S′. As each node is considered at most twice, the
overall execution thus takes linear time.

Each time an arc is prepended to F ord by the algorithm, all arcs that arc-extend it must
have already been removed and are thus already in F ord. The resulting ordering F ord is
thus arc-extend-respecting. We then obtain a half-extend-respecting ordering Earr of the
temporal edges by removing waiting arcs from F ord and replacing each remaining connection
arc (uτ , vν) by its corresponding temporal edge (u, v, τ, ν− τ). Note that Earr is also node-
arrival sorted. This is due to the fact that for any node v and any time labels τ associated
to v, arcs entering the copy vτ cannot be removed as long as it has an out-edge in Fw, and

61



this out-edge is removed only when its next copy vν has out-degree zero. This implies that
all arcs entering a copy vµ with µ > τ are prepended to F ord before all arcs entering vτ .

A similar algorithm can be symmetrically designed to obtain an ordering Edep which
is half-extend-respecting and node-departure sorted. When producing a temporal edge in
Earr and in Edep, we can associate it to the index of its corresponding arc in F c so that we
can easily construct pointers linking each edge in Earr to its copy in Edep.

On the other side, to prove Proposition 2.B, we can use the following procedure. We
obtain for each v ∈ V , the lists Edep

v and Earr
v through bucket sorting. We merge these

two lists into a single list Eevent
v for each node v. A linear scan of Eevent

v then produces
all the sorted copies of v in W , and associates to each edge having v as head or tail the
corresponding copy of v. A linear scan of all temporal edges then allows to construct F c in
linear time. Finally, we construct Fw by scanning Eevent

v for each node v.

Interestingly, the above result implies that any zero-acyclic temporal graph admits a
half-extend-respecting ordering. Conversely, the existence of a half-extend-respecting or-
dering obviously prevents the presence of zero-cycles and implies zero-acyclicity. We thus
obtain the following statement grounding the notion of half-extend-respecting ordering as a
characterization of zero-acyclicity.

Proposition 3. A temporal graph G = (V,E, α, β) is zero-acyclic if and only if there exists
a half-extend-respecting ordering of its edges.

Moreover, notice that a fully doubly-sorted representation (Edep, Earr), is also a doubly-
sorted half-extend-respecting representation.

Proposition 2 also implies that a half-extend-respecting doubly-sorted representation
(Edep, Earr) can be computed in linear time and space from any doubly-sorted representa-
tion of a zero-acyclic temporal graph by constructing its time-expanded representation as
an intermediate step.

Now we show that any walk is (Edep, Earr)-respected when (Edep, Earr) is half-extend-
respecting.

Lemma 2. Let G be a zero-acyclic temporal graph and let (Edep, Earr) be a half-extend-
respecting doubly-sorted representation of G. Then any walk in G is (Edep, Earr)-respected
and any s-reachable edge is an (s, Edep, Earr)-reachable edge.

Proof. Consider a walk Q in G and consider two consecutive edges e, f of Q. We have
to prove that for any edge e′ with same tail v as f and satisfying f ≤Edep e′, we have
e <Earr e′. First, we have arr(e) + αv ≤ dep(f) as f extends e. Second, f ≤Edep e′ implies
dep(f) ≤ dep(e′) as Edep is node-departure sorted. Combining both inequalities, we get
arr(e) + αv ≤ dep(e′), that is e′ half-extends e. We must thus have e <Earr e′ as Earr is
half-extend-respecting.

Theorem 4 is a direct consequence of Lemma 2, Proposition 1 and Proposition 2.

62



2.4 Solving classical optimal temporal walks problems

2.4.1 Single-source fewest-edges walks.

As a very basic example, optimizing the number of edges in Algorithm 2 is straightforward:
it suffices to consider the cost structure (N, γ,+,≤) associated to integers ordered as usual
and where each edge e has cost γ(e) = 1, the combination function being addition. It
obviously satisfies isotonicity and the cost of a temporal walk coincides with its number
of temporal edges. Using Theorem 4 thus implies that the single-source fewest-edges walk
problem, can be solved in linear time and space.

2.4.2 Minimum-overall-waiting-time walks.

The overall waiting time of a walk Q = ⟨e1 = (v0, v1, τ1, λ1), . . . , ek = (vk−1, vk, τk, λk)⟩
is defined as arr(Q) − dep(Q) −

∑k
i=1 λi. In order to find for each temporal edge e a

walk that minimise such quantity among the walks from the source ending with e, we
define the following cost structure (C, γ,⊕,⪯). The cost set is C = R × R≥0. Given an
edge e = (u, v, τ, λ), we define its cost as γ(e) = (τ, λ) ∈ R × R≥0. We define the cost
combination function ⊕ by (τ, λ) ⊕ (τ ′, λ′) = (τ, λ + λ′). Finally, we define the cost total
order by (τ, λ) ⪯ (τ ′, λ′) when τ+λ ≥ τ ′+λ′. It is trivial to verify the isotonicity property for
this cost structure and that the cost associated to a walk Q = ⟨e1 = (v0, v1, τ1, λ1), . . . , ek =

(vk−1, vk, τk, λk)⟩ is γQ = (dep(Q),
∑k

i=1 λi). If we consider two walks Q and Q′ with same

arrival time a, if γQ ≺ γQ′ then the overall waiting time of Q, that is a− dep(Q)−
∑k

i=1 λi,
is lower than the overall waiting time of Q′. This guarantees that the cost we associate to
an edge e corresponds to a walk that, once extended with e, has minimum overall waiting
time among the walks from the source that end with e. We can thus obtain the minimum
overall waiting time of an sv-walk as W ∗ = min(e,(τ,λ))∈A′

v
arr(e)− τ − λ. Notice that the

cost associated to a walk is not the overall waiting time of the walk, however, it is a quantity
that when minimised corresponds to optimising the overall waiting time for walks with same
arrival time.

2.4.3 Shortest-fastest walks

A walk that among the ones with shortest duration has the minimum number of edges is
called a shortest-fastest walk. To find such walks, we define a cost structure (C, γ,⊕,⪯)
where C = R × N. In the first component we proceed as we did for shortest duration
in Section 2.3.1 and in the second component as we did for fewest hops in Section 2.4.1.
Therefore, given an edge e = (u, v, τ, λ), we define its cost γ(e) ∈ R×N as γ(e) = (τ, 1). We
define the cost combination function ⊕ by (τ, k) ⊕ (τ ′, k′) = (τ, k + k′). A walk departing
at time τ and having k edges thus has cost (τ, k). We define the cost total order by
(τ, k) ⪯ (τ ′, k′) when τ > τ ′ or τ = τ ′ and k ≤ k′. Among two walks, the one with latest
departure is thus always preferred, and among several walks with same departure time,
one with fewest edges is always preferred. Given a source s, Algorithm 2 now outputs for
each destination v the set A′

v of all pairs (e, c) such that e is an s-reachable edge with
head v and c = (τ, k) is the minimum cost of an sv-walk ending with e. Note that our
cost definition implies that τ is the latest departure time of an sv walk ending with e and
k is the minimum number of edges among walks with departure time τ and last edge e.
Similarly to the previous paragraph, we thus obtain the shortest duration of an sv-walk as

63



D∗ = min(e,(τ,k))∈A′
v
arr(e)− τ . And then, we also obtain the minimum number of edges in

a shortest duration sv-walk as k∗ = min(e,(τ,k))∈A′
v :arr(e)−τ=D∗ k. The edge e∗ for which we

get the minimum value allows to obtain, through parent pointers, a walk having duration D∗

and k∗ edges, that is a shortest-fastest walk. Theorem 4 thus implies that the single-source
shortest-fastest walk problem can be solved in linear time and space.

2.4.4 Linear combination of classical criteria

To exemplify the generality of the algebraic approach, we now give an example of cost struc-
ture allowing Algorithm 2 to compute optimal temporal walks for the linear combination of
criteria used in [5]. Our formalism enables more modularity as all complex updates required
by such an exhaustive combination are then encapsulated in operations ⊕ and ≺. Given a
walk Q = ⟨e1 = (v0, v1, τ1, λ1), . . . , ek = (vk−1, vk, τk, λk)⟩, we consider the following criteria
that we usually seek to minimize:

(1) τk + λk arrival time (or foremost)
(2) −τ1 departure time (or reverse-foremost)
(3) τk + λk − τ1 duration

(4)
∑k

i=1 λi total travel time

(5)
∑k

i=1 c(ei) total cost (each edge e ∈ E is associated to a cost c(e) ∈ R)
(6) k number of edges (or fewest-hops)

(7)
∑k−1

i=1 τi+1 − (τi + λi) overall waiting time

Given δ1, . . . , δ7 ∈ R, the linear combined cost of Q is defined in [5] as:

lin(Q) = δ1(τk + λk) + δ2(−τ1) + δ3(τk + λk − τ1)

+ δ4(

k∑
i=1

λi) + δ5(

k∑
i=1

c(ei)) + δ6 k + δ7(

k−1∑
i=1

τi+1 − (τi + λi)).

It is simply a linear combination of all classical criteria. Note that we do not need
to assume non-negativity of costs or scalars δ1, . . . , δ7, enabling a more general framework
than [5]. To optimize such a combined cost, we define the cost structure (C, γ,⊕,⪯) where
C = R×R. Given an edge e = (u, v, τ, λ), we define its combined cost δ(e) ∈ R and its cost
γ(e) ∈ R× R as:

δ(e) = (δ4 − δ7)λi + δ5c(ei) + δ6 and γ(e) = (τ, δ(e)).

Observe that they are linked to the linear combined cost of Q by:

lin(Q) = (δ1 + δ3 + δ7) arr(Q)− (δ2 + δ3 + δ7) dep(Q) +

k∑
i=1

δ(ei).

Recall that arr(Q) = τk + λk and dep(Q) = τ1 are the arrival time and the departure time
of Q respectively. We define the cost combination function ⊕ by

(τ,∆)⊕ (τ ′,∆′) = (τ,∆+∆′).

This definition implies that the cost of Q is then γQ = (τ1,
∑k

i=1 δ(ei)) = (τ,∆) with

τ = dep(Q) and ∆ =
∑k

i=1 δ(ei). We finally define the cost total order ⪯ by

(τ,∆) ⪯ (τ ′,∆′) when − (δ2 + δ3 + δ7)τ +∆ ≤ −(δ2 + δ3 + δ7)τ
′ +∆′.

64



This order is related to the minimization of lin(Q) for a fixed arrival time a: for all sv-
walks Q such that arr(Q) = a, minimizing lin(Q) is equivalent to minimizing −(δ2 + δ3 +

δ7) dep(Q) +
∑k

i=1 δ(ei) = −(δ2 + δ3 + δ7)τ +∆ where (τ,∆) = γQ is the cost of Q. A walk
Q with minimum cost according to ⪯ thus has minimum value for lin(Q) among all walks
with same arrival time.

Note that the cost structure satisfies the isotonicity property: for any costs (τ1,∆1), (τ2,∆2),
(τ,∆) ∈ R×R, we have (τ1,∆1)⊕(τ,∆) = (τ1,∆1+∆) and (τ2,∆2)⊕(τ,∆) = (τ2,∆2+∆).
If (τ1,∆1) ⪯ (τ2,∆2), then we have −(δ2 + δ3 + δ7)τ1 +∆1 ≤ −(δ2 + δ3 + δ7)τ2 +∆2. By
adding ∆ on both sides of the inequality, we obtain (τ1,∆1)⊕ (τ,∆) ⪯ (τ2,∆2)⊕ (τ,∆).

Now running Algorithm 2 with this cost structure from a source node s allows to compute
for each destination v the set A′

v of all pairs (e, c) such that e is an s-reachable edge with
head v and c = (τ,∆) is the minimum cost of any sv-walk end with e according to our
cost structure. The minimum linear combination cost of an sv-walk can then be obtained
through a linear scan of A′

v as:

min{lin(Q) : Q is an sv walk} = min
(e,(τ,∆))∈A′

v

(δ1 + δ3 + δ7) arr(e)− (δ2 + δ3 + δ7) τ +∆.

This is due to the fact that for a given arrival time arr(e), minimizing lin(Q) is equivalent
to minimizing γQ according to ⪯, as discussed above, and that A′

v contains a pair for all
s-reachable edges with head v. Using the above cost structure, we thus obtain the following
corollary.

Corollary 2. Given either a time-expanded representation or a doubly-sorted representation
of a zero-acyclic temporal graph G = (V,E, α, β), a source node s, and δ1, . . . , δ7 ∈ R, the
single-source minimum-combined-cost walk problem, that is computing for all nodes v an
sv-walk with minimum linear combined cost for (δ1, . . . , δ7), can be solved in linear time and
space.

2.4.5 Pareto optimal walks.

We now show how our algorithm generalizes the Pareto set computation defined as follows.
We first give the definition of the Pareto problem. We say that a pair (a1, c1) ∈ R × C
dominates a pair (a2, c2) ∈ R× C if a1 < a2 and c1 ⪯ c2, or a1 ≤ a2 and c1 ≺ c2. Consider
a strict temporal graph G = (V,E, α, β) with cost structure (C, γ,⊕,⪯). An sv-walk Q is
Pareto optimal if there is no sv-walk Q′ such that (arr(Q′), γQ′) dominates (arr(Q′), γQ′).
The single-source Pareto problem is then defined as follows. Given a source node s ∈ V ,
compute, for each destination v ∈ V , the set Pv containing all pairs (a, c) ∈ R × C for
which there exists a Pareto optimal walk Q such that a = arr(Q) and c = γQ. The Pareto
problem, in terms of generality, can be placed between all-reachable-edge minimum-cost
walks and the profile problems. Thus, it is a useful intermediate step to formalize profile
computations in the next Section 2.4.6. Moreover, it builds a connection with [27], where
the authors considered a Pareto problem based on the criteria of arrival time and number
of trips in public transit networks.

The single-source Pareto problem can easily be solved by Algorithm 2 as it computes for
each destination v the set A′

v of all pairs (e, c) such that some sv-walks ends with edge e
and such that c is the minimum cost among them. In particular, A′

v is ordered by increasing
arrival time of the temporal edges. We first replace each pair (e, c) in A′

v with (arr(e), c),
and then we keep only the pair with minimum cost among the ones with same arrival time.

65



1 2 3 4 5 6

1

2

3

4

5

6

7

8

dep.time

arr. time

Figure 2.22: The profile function from a source node s to a destination node t. It can
be computed starting from the set of Pareto optimal pairs {(2, 3), (4, 5), (5, 8)}. Each pair
(d, a) correspond to a walk departing at time d with earliest arrival time a among the walks
departing at time d.

Then, it suffices to remove from A′
v dominated pairs to obtain Pv. This operations can

easily be done in linear time due to the order of A′
v.

2.4.6 Profiles.

The profile function from a source node s to a destination node v associates to any starting
time τ the earliest arrival time of a walk from s to v departing at time τ or later. The
single-source profile problem consists in computing, for a given source s and for every node
v, a representation of the profile function from s to v.

A classical representation consists in listing all Pareto optimal pairs (d, a) where d is the
departure time of a sv-temporal walk and a is its arrival time. The Pareto optimality of a
pair (d, a) means that d is the latest departure time of a walk arriving at time a or before,
such that a is also the earliest arrival time at v when departing from s at time d or later.
The profile function is indeed the only piecewise-constant non-decreasing function passing
through these points. Note that this classical representation was introduced in the setting
where waiting is unrestricted. See Figure 2.22 for an example.

This extends naturally to waiting constraints when waiting at the source is unrestricted
at starting time, i.e. we impose the waiting constraint only between two consecutive edges
of a walk, and consider any walk from s departing at time τ ′ ≥ τ as a valid walk when
starting at time τ from s. By using the same cost structure introduced to solve shortest
duration in Section 2.3.1, and by solving the single-source Pareto problem with that cost
structure, we obtain for each node v a list of pairs (a, d), where a is an arrival time of an
sv-walk, and d is the latest departure time of a temporal walk with earliest arrival time
a. Such a list is ordered both by increasing arrival time and by increasing departure time.
One can easily see that it is a representation of the profile function. Note that filtering out
dominated pairs relies on the assumption that waiting is unrestricted at the source s when
starting from it.

We now consider the setting where waiting at s should be bounded by βs also when

66



starting from it, that is a walk from s departing at time τ ′ is considered as a valid walk
when starting at time τ from s, only if we have τ + αs ≤ τ ′ ≤ τ + βs. Note that the
profile function might not be non-decreasing in this setting. However, we can still solve
the all-sources single-destination profile problem as follows. We run our algorithm on the
reverse temporal graph where time is reversed, and which is obtained by turning each edge
(u, v, τ, λ) into (u, v,−(τ + λ), λ). This is equivalent to running a symmetric version of our
algorithm for solving the all-sources single-destination problem by scanning edges backwards
and computing for each departing edge at a node the earliest arrival time at the destination
(which corresponds to the latest departure time in the reverse temporal graph). For a given
destination t, this allows to obtain for each node v, and for each edge e departing from v,
the earliest arrival time a of walks from v to t starting with e. As this list is sorted by
departure time, we can obtain in linear time the pairs (d, a) where a is the minimum arrival
time among walks starting with edges departing at time d. Notice that this is different from
what we get by a normal execution of our algorithm, as this would normally lead to pairs
(d, a) where d is the latest departure time among walks terminating with edges arriving at
time a. In particular, now we have a pair for each departure time rather then a pair for
each arrival time. Now each pair (d, a) provides the earliest arrival time when starting in
interval (d−βv, d−αv) and using an edge departing at time d. A representation of the profile
function from v to t can be obtained by keeping for each window of time covered by multiple
overlapping intervals, the lowest earliest arrival time corresponding to such intervals. It can
be computed by merging the list of the left bounds of these intervals with the list of their
right bounds: scanning the resulting list, while maintaining a queue of currently open left
bounds with their associated arrival time, allows to compute for each consecutive interval
of starting times, the earliest arrival time. We omit the details of how to get efficiently the
minimum arrival time associated to open intervals in the queue.

2.5 Lower bound for the single-source optimal walk prob-
lem

We now show that computing optimal temporal walks in linear time somehow requires both
orderings needed by our algorithm. More precisely, we define an arrival-sorted representation
(resp. a departure-sorted representation) of a temporal graph as a list of its temporal edges
sorted by non-decreasing arrival times (resp. non-decreasing departure times). We say that
an algorithm is comparison-only when it uses only comparisons for deciding whether an edge
extends another one, or for deciding which walk has minimum cost among several walks.
We show that any comparison-only algorithm optimizing general costs that can encompass
overall waiting time, and taking as input either a departure-sorted representation or an
arrival-sorted representation, must be slower than linear time by a logarithmic factor at
least for some inputs.

Theorem 5. For each integral n there exists a family of instances In (resp. I ′n) of temporal
graphs with unrestricted waiting and strictly positive travel times, given as departure-sorted
representations (resp. arrival-sorted representations) with O(n) nodes and O(n) tempo-
ral edges, such that any comparison-only deterministic algorithm computing single-source
minimum-overall-waiting-time walks from instances in In (resp. I ′n) has time complex-
ity Ω(n log n). Moreover, for any comparison-only randomized algorithm computing single-
source minimum-overall-waiting-time walks from instances in In (resp. I ′n), there exists an
instance in In (resp. I ′n) for which the expected running time is Ω(n log n).

67



s

u

v1 v2 vn

eπ1 eπ2 eπn

f id
1 f id

2 f id
n

Figure 2.23: A generic representation of a temporal graph in In.

Recall that unrestricted waiting is equivalent to αu = 0 and βu = +∞ for all u. This
result also holds when restricting the temporal graph model to integer times and O(n)
lifetime.

Proof. The first step of the proof is to build In and I ′n. Let us fix 2n integer times τ1, . . . , τn
and t1, . . . , tn such that 0 < τ1 < t1 < τ2 < t2 < · · · < τn < tn < 3n. Consider the set
of vertices V = {s, u, v1, . . . , vn}. For any two permutation π and π′ of [n] = {1, . . . , n},
we define the temporal edges Eπ = {eπi = (s, u,−i, τπ(i) + i) : i = 1, . . . , n}, and Fπ′ =

{fπ′

j = (u, vj , tπ′(j), tn + j − tπ′(j)) : j = 1, . . . , n}. We can now define the temporal graphs
Gπ,π′ = (V,Eπ ∪ Fπ′ , α, β), where αx = 0 and βx = +∞ for all x ∈ V .

The family of instances In is given by the temporal graphs
⋃

π Gπ,id given as departure-
sorted representations, where s is marked as the source node and id denotes the identity
permutation. Notice that the ordering of its temporal edges Eπ ∪ Fid by non-decreasing
departure time, is (eπ1 , . . . , e

π
n, f

id
1 , . . . , f id

n ) for any π. See Figure 2.23 for a representation
of a temporal graph in In. Similarly, the family of instances I ′n is given by the temporal
graphs

⋃
π′ Gid,π′ given as arrival-sorted representations. Note also that the ordering of its

temporal edges Eid∪Fπ′ by non-decreasing arrival time, is (eid1 , . . . , eidn , fπ′

1 , . . . , fπ′

n ) for any
π′.

Now suppose that we are given a deterministic algorithm A for computing minimum
overall-waiting-time walks from s to all nodes. In the temporal graph Gπ,id the possible
temporal walks from s to vj are given by ⟨eπi , f id

j ⟩ such that τπ(i) ≤ tj , and the overall waiting
time of such walk is tj − τπ(i). The minimum overall waiting time is thus obtained for the
largest τπ(i) ≤ tj , that is for π(i) = j. This means that, there is a one to one correspondence
between the outputs of A and the permutations of [n]. In particular, if algorithm A is correct
then there are at least n! possible different outputs. Since A is a deterministic comparison
only algorithm and the input instance order (eπ1 , . . . , e

π
n, f

id
1 , . . . , f id

n ) does not depend on π,
two executions of A with same comparisons lead to the same output. This means that, if
we denote with c the maximum number of comparisons made by A, there are at most 2c

different outputs. The correctness of A thus implies 2c ≥ n!. We then get c ≥ n lnn − n

68



and conclude that the time complexity of A is Ω(n log n).
More precisely, consider the decision tree corresponding to each time comparison. We

have just argued that this tree has depth n(lnn − 1) at least. Consider the permutations
where the execution terminates after n

2 lnn comparisons only. As the subtree corresponding

to such executions has at most nn/2 leaves, there are at most nn/2 such permutations.
On instances built according to other permutations, algorithm A requires at least n

2 lnn
comparisons. With uniform distribution over the inputs in In, the average complexity of

A is thus at least n!−nn/2

n!
n
2 lnn ≥ (1 − exp(n − n

2 lnn))n2 lnn = Ω(n lnn). Yao’s principle
then implies that for any randomized algorithm solving the single-source minimum-overall-
waiting-time walk problem, there exists an instance in In on which its average running time
is Ω(n log n).

Similarly, in a temporal graph Gid,π′ the possible temporal walks from s to vj are given

by ⟨eidi , fπ′

j ⟩ such that τi ≤ tπ′(j), and the overall waiting time of such walk is tπ′(j) − τi.
The minimum overall waiting time is thus obtained for the largest τi ≤ tπ′(j), that is for
i = π′(j). This, again, means that, there is a one to one correspondence between the outputs
of A and permutations of [n] and we can conclude similarly to the previous case.

2.6 Handling zero travel-times

We now show how our approach can be adapted to handle instances containing zero-cycles.
Note that a temporal graph containing a zero-cycle fails to admit any half-extend-respecting
ordering of its edges. We will give an algorithm based on Algorithm 2, that solves the single-
source all-reachable-edge minimum-cost problem in O(|E| log |V |) in this setting, where E
is the set of temporal edges and V is the set of nodes. It still requires a doubly-sorted
representation as input. The key point of this algorithm is to compute an ordering of the
edges that can be handled correctly by Algorithm 2 for a given source as long as the temporal
graph satisfies the following property generalizing non-negative weights.

Consider a temporal graph G = (V,E, α, β) with a cost structure C = (C, γ,⊕,⪯). A
cost d ∈ C is said to be C-non-negative when it satisfies c ⪯ c ⊕ d for all c ∈ C. This
can be seen as a generalization of classical non-negativity. We consider instances satisfying
the following right-absorption property (absorption for short) which is a restriction to zero
travel time edges of a property similarly considered in [60]:

for any e = (u, v, τ, λ) ∈ E such that λ = 0 and αu = αv = 0,

γ(e) is C-non-negative, that is c ⪯ c⊕ γ(e) for all c ∈ C.

(absorption)

Notice that under absorption and isotonicity, there cannot exist any zero-walk Q in G such
that c ⊕ γQ ≺ c, for any cost c ∈ C. Indeed, this absorption property captures a property
similar to non-negativity of weights in classical shortest path computation.

Let us define the following property on a doubly sorted representation of a temporal
graph. Let G = (V,E, α, β) be a temporal graph, (Edep, Earr) be a doubly-sorted represen-
tation of G and s ∈ V be a source node. We say that (Edep, Earr) is s-optimal-respecting if
for each s-reachable edge e there exists a (Edep, Earr)-respected walk Q from s having last
edge e and with cost c, where c is the minimum cost of any walk from s ending with e. We
can now state the following result.

69



Theorem 6. Given a doubly-sorted representation (Earr, Edep) of a temporal graph G =
(V,E, α, β) with cost structure (C, γ,⊕,⪯) satisfying isotonicity and absorption, and a
source node s, the single-source all-reachable-edge minimum-cost problem can be solved in
O(|E| log |V |) time and space.

To prove this, we design an algorithm that reorders edges with zero travel time and
same arrival time in both Earr and Edep, producing a different doubly-sorted representa-
tion (Ēarr, Ēdep) while performing a linear scan like in Algorithm 2. The doubly-sorted
representation obtained through the reordering is s-optimal-respecting. The procedure is
formalised in Algorithm 5 and 6.

To identify efficiently such sequences of zero travel time edges, we first sort Earr accord-
ing to non-decreasing arrival times as follows. We obtain through bucket sorting the lists
Earr

v of edges with head v ordered by non-decreasing arrival time for all nodes v, and then
merge them back using a priority queue in O(|E| log |V |) time. We obtain the ordered list
Aarr of all the arrival times of the edges by scanning Earr. We can now refine the ordering
of the edges with same arrival time in the following way. By bucket sorting, we separate
edges with same arrival time into four blocks and then merge them back together one after
the other. The first block are those edges having positive travel time, the second the edges
with zero travel time and positive minimum waiting-time at the tail, the third the edges
with zero travel time and zero minimum waiting-time both at the source and the head, and
finally the fourth are the edges with zero travel time and positive minimum waiting-time at
the head. The reason for this separation is that an edge arriving at time a can be extended
by a zero-walk at time a only if its head has zero minimum waiting-time, and similarly, a
zero-walk at time a can be extend by an edge departing at time a only if its tail has zero
minimum waiting-time. More precisely, the notation we use to indicate the four blocks is
the following. We denote by Earr

a,λ>0 the sub-array of edges of Earr with arrival time a and
with positive travel time. Among the edges with arrival time a and with zero travel time
we distinguish the following three blocks. We denote by Earr

a,λ=0,αtail>0 the sub-array of
edges e = (u, v, τ, 0) such that αu > 0, by Earr

a,λ=0,α=0 the sub-array of edges e = (u, v, τ, 0)
that αu = αv = 0, and finally by Earr

a,λ=0,αhead>0 the sub-array of edges e = (u, v, τ, 0) such
that αv > 0. In particular we refer to Earr

a,λ=0,α=0 as a zero-block. Before scanning each
zero-block, its edges are reordered as described next.

Our goal is to identify certain minimum-cost walks that contain edges in the zero-block,
and preserve the ordering of their edges. We represent the edges of the zero-block through
a weighted static graph; indeed the time labels and the waiting constraints in this case
play a marginal role, since all the edges in the zero-block have same departure time, zero
travel time and no minimum waiting constraints on their head and tail. In particular, walks
in the digraph correspond to walks in the temporal graph. We first identify edges that
terminate minimum-cost walks containing exactly one edge in the zero-block. The heads of
such edges will serve as sources in the static graph, and are associated to the cost of the
aforementioned walks. From these sources, with their initial associated starting costs, we
run Dijkstra algorithm [28] and build a shortest path forest from them. We then reorder
the edges of the zero-block in the following way: first the edges terminating minimum cost
walks to the sources, then edges corresponding to arcs in the shortest path forest so as to
preserve path order for all paths in the forest, and finally the remaining edges of the zero-
block. Moreover, we will also partially reorder the edges in Edep: among the edges with
same departure time we will put first those edges that we identified preceding the sources.

The algorithm then scans the reordered zero-block and the following edges again as in
Algorithm 2 up to the next zero-block. We will prove that the two reordered lists obtained

70



Input: A doubly-sorted representation (Edep, Earr) of a temporal graph G with
waiting-time constraints (α, β) and cost structure (C, γ,⊕,⪯) satisfying
isotonicity and absorption, and a source node s.

Output: Minimum cost of an sv-walk for each node v and for each s-reachable
edge e with head v.

1 Sort Earr by non-decreasing arrival time.
2 Scan Earr to compute Aarr and blocks Earr

a,λ>0, E
arr
a,λ=0,αtail>0, E

arr
a,λ=0,α=0,

Earr
a,λ=0,αhead>0.

3 Rebuild Earr by concatenating these blocks for increasing a ∈ Aarr.
4 Initialize variables as in Algorithm 2 (Lines 1 - 6).
5 For each arrival time a in Aarr do
6 For e ∈ Earr

a,λ>0 do scan e as in Algorithm 2 (line 7 - 22).

7 For e ∈ Earr
a,λ=0,αtail>0 do scan e as in Algorithm 2 (line 7 - 22).

8 Eord := Reorder(Earr
a,λ=0,α=0, a).

9 Replace Earr
a,λ=0,α=0 by Eord in Earr.

10 For e ∈ Eord do scan e as in Algorithm 2 (line 7 - 22).
11 For e ∈ Earr

a,λ=0,αhead>0 do scan e as in Algorithm 2 (line 7 - 22).

12 Return the sets (A′
v)v∈V

Algorithm 5: Adaption of Algorithm 2 to handle edges with zero travel time.

are indeed a doubly-sorted representation which is s-optimal-respecting.
We now describe more precisely the call to Reorder(Earr

τ,λ=0,α=0, τ) which is formally
described in Algorithm 6. We first identify the set V ′ = V ′

tail ∪ V ′
head of nodes appearing

as tail or head of edges in the zero-block Earr
τ,λ=0,α=0 at Line 2. We notice that edges in the

zero-block sharing the same tail have the same associated cost according to Algorithm 2: as
they have same departure time τ they extend the same set of walks and they belong to the
same interval. This allows us to assign to each node u in V ′

tail the cost Btail[u] associated
to edges of the zero-block with tail u at the moment of the call to Reorder(), namely just
before scanning the edges of the zero-block (see Lines 3-6). This is the minimum cost of any
su-walk composed of edges scanned so far, excluding in particular walks containing edges
in Earr

τ,λ=0,α=0, that can be extended with edges departing at time τ . We also associate to

each u in V ′
tail the index of the first edge in Edep

u that has departure time τ at Lines 5-6.
Notice that this is not necessarily an edge in the zero-block.

Next, we compute for each edge e in the block the minimum cost to reach its head
considering both the case when e extends a walk from the source, and the case when starts
itself a walk from the source at Lines 7-16. In particular, by keeping the minimum among
the edges with same head, we compute for each node v in V ′

head the minimum cost B′[v]
of sv-walks that contain one, and only one, edge of the zero-block and terminate with it.
We store in P ′[v] the last edge of such a walk with minimum cost at Line 16. All nodes
v ∈ V ′

head that can be reached by such an sv-walk are stored in a set of sources S at Line 11.
We then build a weighted directed graph D with node set V ′

tail ∪ V ′
head and arc set A′

which is defined by associating an arc (u, v, γ(e)) to each edge e = (u, v, τ, 0) ∈ Earr
τ,λ=0,α=0

at Lines 17-18.
Finally, we reorder the edges in Earr

τ,λ=0,α=0 and Edep at Lines 19-26 based on a minimum-
cost forest F from S in D which is computed at Line 19 through an algebraic version of

71



1 Function Reorder(Earr
τ,λ=0,α=0, τ)

/* Identify nodes appearing in edges of Earr
τ,λ=0,α=0: */

2 Let V ′
tail := {u : ∃(u, v, τ, 0) ∈ Earr

τ,λ=0,α=0} and
V ′
head := {v : ∃(u, v, τ, 0) ∈ Earr

τ,λ=0,α=0}.
/* Set Btail[u] to the best extendable cost of edges from u in the

zero-block. */

3 For each node u ∈ V ′
tail do

4 Let I = (l, r, c, e) be the first interval in Iu containing an edge e with
dep(e) ≥ τ .

5 Let i be the index of the first edge e in I such that dep(e) = τ .
6 Set p[u] := i and Btail[u] := c.

/* Set B′[v] to the minimum cost of an sv-walk ending with exactly

one edge in the zero-block. */

7 For each node v ∈ V ′
head do Initialize B′[v] =⊥.

8 Initialize a set S := ∅ of reachable nodes.
9 For each edge e = (u, v, τ, 0) ∈ Earr

τ,λ=0,α=0 do

10 If u = s or Btail[u] ̸=⊥ then
11 S := S ∪ {v} /* v can be reached from s. */

12 If u = s and (Btail[u] =⊥ or γ(e) ≺ Btail[u]⊕ γ(e)) then c := γ(e)
13 else c := Btail[u]⊕ γ(e)
14 If B′[v] =⊥ or c ≺ B′[v] then
15 B′[v] := c
16 P ′[v] := e /* Last edge of a walk defining B′[v]. */

/* Define a weighted static digraph D = (V ′
tail ∪ V ′

head, A
′). */

17 A′ := {(u, v, γ(e)) : e = (u, v, τ, 0) ∈ Earr
τ,λ=0,α=0}

18 Construct a weighted digraph D with vertex set V ′
tail ∪ V ′

head and arc set A′.
/* Reorder the sets of edges Earr

τ,λ=0,α=0 and Edep. */

19 Compute a minimum-cost forest F := DijkstraFromSet(D,S,B′).
20 Eord := ∅
21 For v ∈ S such that F [v] =⊥ do
22 Let e = (u, v, τ, 0) := P ′[v] and append e to Eord.

23 Swap in Edep
u edge e with the edge that has index p[u] and set

p[u] := p[u] + 1.
24 Compute a BFS ordering Fv of the arcs of the tree rooted at v in F .

25 For each arc (u, v, c) ∈ Fv, append the associated edge (u, v, τ, 0) to Eord.

26 Append to Eord the remaining edges in Earr
τ,λ=0,α=0.

27 Return Eord.

Algorithm 6: Reorder the temporal edges in a zero-block so that a sufficiently
big set of minimum-cost walk are (Edep, Earr)-respected.

72



1 Function DijkstraFromSet((V ′, A′), S,B′)
2 For v ∈ V ′ do initialize a key K[v] :=⊥ and a parent pointer F [v] :=⊥.
3 Initialize a Fibonacci heap H := ∅.
4 For v ∈ S do add v to H with key K[v] := B′[v].
5 While H ̸= ∅ do
6 u := PopMin(H)
7 For (u, v, c) ∈ A′ do
8 If K[v] =⊥ or K[u]⊕ c ≺ K[v] then
9 K[v] := K[u]⊕ c

10 F [v] := (u, v, c)
11 If v /∈ H then add v to H with key K[v]
12 else decrease key of v in H to K[v].

13 return F .

Algorithm 7: Algebraic version of Dijkstra from a set S of sources with initial
costs B′ in a digraph (V ′, A′).

Dijkstra algorithm which is described in detail in the next paragraph. Note that this Dijkstra
computation uses the fact that all arcs of D have C-non-negative costs. The forest F is given
by parent pointers where F [v] provides for each node v an arc allowing to reach v from S
through a path with minimum cost in D. The pointer F [v] has value ⊥ if v is the root of a
tree or if it is not reachable from S in D. For each tree T rooted at a node v in F , we use
a BFS ordering of T to make sure at Lines 24-25 that any path in T corresponds to a walk
whose edges appear in order in Eord, and after P ′[v]. Note that such a walk extends edge
P ′[v] which is added first. Note also that the edge P ′[v] is added only once to Eord: since
it has head v which is a root, it cannot be associated to an arc of F (we have F [v] =⊥).
Additionally, we move edges P ′[v] with tail u in Edep

u at Line 23 so that they appear in
Edep

u before other edges of the zero-block. This guarantees that any walk resulting from
concatenating an edge P ′[v] and a walk corresponding to a path in the tree rooted at v will
be (Ēarr, Ēdep)-respected.

For the sake of completeness, we also include an algebraic version of Dijkstra algorithm as
detailed in Algorithm 7. It is similar to the version of [60] with slightly different hypothesis
and the mild generalization of computing minimum-cost paths in a weighted digraph (V ′, A′)
from a set S of sources where each source v ∈ S is associated to an initial cost B′[v]. More
precisely, any walk W = ⟨(u1, v1, c1), . . . , (uk, vk, ck)⟩ of k ≥ 1 arcs from a source u1 ∈ S in
the digraph is associated to a cost γD(B′,W ) = (· · · (B′[u1]⊕ c1) · · · ⊕ ck−1)⊕ ck. A node
v is said to be reachable from S in (V ′, A′) if there exists a walk from a node u ∈ S to v.
We consider that all nodes v ∈ S are reachable through an empty path with cost B′[v]. A
minimum-cost walk from S to v ∈ V ′ is defined as a walk W from any node u ∈ S to v such
that γD(B′,W ) ⪯ γD(B′,W ′) for any walk W ′ from u′ ∈ S to v. The following elementary
lemma allows us to focus on paths rather than walks.

Lemma 3. Let W be a walk in D from u ∈ S to v ∈ V ′, then there exists a path P in D
from u to v such that γD(B′, P ) ⪯ γD(B′,W ).

Proof. We show that we can iteratively remove any cycle from W without increasing the
cost of the walk. Let us decompose W into W1.Wc.W2, where Wc is a cycle. Then we

73



have γD(B′,W1) ⪯ γD(B′,W1.Wc) by absorption. We then obtain γD(B′,W1.W2) ⪯
γD(B′,W1.Wc.W2) = γD(B′,W ) by isotonicity.

We define a minimum-cost forest F from S as a union of minimum-cost paths from S
to all reachable nodes from S, that forms a forest, that is where each node v has at most
one entering arc F [v]. Such a forest can be computed through Dijkstra algorithm. Recall
that it consists in visiting nodes according to a non-decreasing cost order. More precisely,
each node v is associated to a key K[v] storing the minimum-cost of a path reaching v from
S that has been identified so far. Initially, only nodes in S have a defined key which is
initialized according to B′, see Line 4 in Algorithm 7. The next node u to visit, that is a
node with minimum key, can be found efficiently through a Fibonacci heap H at Line 6.
We can then update the keys of each out-neighbour v of u according to Lines 8-12. The
correctness of Algorithm 7 follows from the following lemma.

Lemma 4. Given a weighted digraph (V ′, A′) and a cost structure (C, γ,⊕,⪯) satisfying
isotonicity, suppose that for every arc (u, v, c) ∈ A′ the cost c is C-non-negative. Given
a set S ⊆ V ′ associated with initial costs B′[v] ∈ C for v ∈ S, Algorithm 7 returns a
minimum-cost forest F from S.

Before proving this lemma, note that C-non-negativity is not required for initial costs
B′[v] of nodes v ∈ S. Despite its algebraic abstraction, the proof is nevertheless similar to
the one found in algorithm textbooks [20] for the classical version.

Proof. As usual with Dijkstra algorithm, we can prove by induction that the nodes are
popped from the heap H at Line 6 by non-decreasing order of keys. The reason is that
all nodes v remaining in H when we pop u have a key K[v] satisfying K[u] ⪯ K[v] by the
correctness of the heap operations which rely on the fact that ⪯ is a total order. Second,
each node v added to the heap at Line 11, or whose key is decreased at Line 12, has key
K[v] = K[u] ⊕ c and we have K[u] ⪯ K[u] ⊕ c = K[v] as c is C-non-negative. This non-
decreasing order of popped keys together with the C-non-negativity of arc costs also imply
that once a node has been popped, it is never re-inserted in the heap later. As the parent
pointer F [v] of a node always correspond to an arc (u, v, c) such that u has been popped
before v, F cannot induce any cycle and is indeed a forest. Moreover, following recursively
the pointer F [u] as long as F [u] ̸=⊥, we obtain a path P v

F with nodes ordered according to
popping order. Note that the first node of P v

F must have been inserted in H initially and is
thus in S. The cost γD(B′, P v

F ) of P
v
F is thus defined and it equals the value of K[v] when

v is popped (this directly results from the mutual updates of K[v] and F [v]).
Suppose for the sake of contradiction that there exist nodes v ∈ V ′ which are reachable

from S and such that F does not contain a minimum-cost path from S to v. Without loss
of generality, we can choose such a node v so that no other such node is popped from H
before v. Consider a minimum cost path P from S to v. Either P is non-empty and we let
u ∈ S denote the tail of its first arc, or we have v ∈ S and no path from S to v has cost less
than B′[v], in which case we set u := v. As u ∈ S implies that u is initially added to H, it
must be popped at some point.

First assume that P is empty. We then have v = u ∈ S, and v has been added to
H, implying that v is popped at some point. The path P v

F from S to v in F has cost
γD(B′, P v

F ) = K[v]. As the key of u = v can only decrease, we get K[v] ⪯ B′[v] and thus
γD(B′, P v

F ) = B′[v] as no path from S to v has cost less than B′[v] in that case. This is in
contradiction with our hypothesis on v.

74



From now on, we assume that P is non-empty. Suppose additionally that v is popped
before u. This implies that the path P v

F from S to v in F has cost γD(B′, P v
F ) = K[v] ⪯

K[u]. As the key of u can only decrease, we have K[u] ⪯ B′[u]. Since the arcs of P
have C-non-negative costs, we have B′[u] ⪯ γD(B′, P ) and we get γD(B′, P v

F ) ⪯ γD(B′, P ),
contradicting again the choice of v.

Otherwise, we can consider the last node u′ in P such that all nodes from u to u′ in P
have been popped before v. Let (u′, v′, c) be the arc following u′ in P . The update of K[v′]
according to arc (u′, v′, c) at Lines 8-12 implies K[v′] ⪯ K[u′]⊕ c and v′ ∈ H. In particular,
v′ will be popped at some point. Our choice of v implies γD(B′, Pu′

F ) ⪯ γD(B′, P [u : u′])
where P [u : u′] denotes the subpath of P from u to u′. As discussed previously, we have
K[u′] = γD(B′, Pu′

F ) when u′ is popped, and we thus get K[v′] ⪯ γD(B′, P [u : u′]) ⊕ c =
γD(B′, P [u : v′]) by isotonicity. In the case v′ = v, we thus get γD(B′, P v

F ) ⪯ γD(B′, P ). In
the case v′ ̸= v, v is popped before v′ according to the choice of u′, implying γD(B′, P v

F ) =
K[v] ⪯ K[v′] ⪯ γD(B′, P [u : v′]) ⪯ γD(B′, P ) as the arcs of P [v′ : v] have C-non-negative
costs. In all cases, we get γD(B′, P v

F ) ⪯ γD(B′, P ), in contradiction with our hypothesis on
v.

We now prove Theorem 6.

Proof of Theorem 6. Our proof mainly relies on the correctness and the complexity of Al-
gorithm 5 thanks to the following observation.

Claim 1. The execution of Algorithm 5 corresponds to an execution of Algorithm 2 with
input (Ēdep, Ēarr) where Ēdep and Ēarr are the orderings resulting from the calls to Algo-
rithm 6.

Recall that, after line 3, the list Earr is a sequence of blocks Earr
a,λ>0, Earr

a,λ=0,αtail>0,

Earr
a,λ=0,α=0, E

arr
a,λ=0,αhead>0 by increasing value of a, and the ordering Ēarr is obtained from

it by replacing each zero-block Earr
a,λ=0,α=0 with the local order Eord computed through the

call to Reorder(Earr
a,λ=0,α=0). The ordering Ēdep is obtained as a concatenation of the lists

Ēdep
u , where Ēdep

u is the list obtained from Edep
u through the swaps made at Line 23 by

Algorithm 6.
We prove Claim 1 through the following observations. The zero-blocks of edges Earr

τ,λ=0,α=0

are reordered before any of its edges has been scanned, and edges are indeed scanned ac-
cording to the ordering of Ēarr. Concerning Ēdep, we first note that none of the edges in a
zero-block Earr

τ,λ=0,α=0 has been finalized when Reorder(Earr
τ,λ=0,α=0) is called for the follow-

ing two reasons. First, all edges with head u scanned so far have arrival time at most τ , and
since αu = 0 edges with departure time greater or equal to τ in Edep

u were not considered
by any call to FinalizeCosts() at Line 17 of Algorithm 2. Second, Earr

a,λ=0,αtail>0 does not
contain any edge with tail u since αu = 0, and all edges from u that have been scanned so far
have departure time less than τ . They thus appear before edges from u in Earr

τ,λ=0,α=0 since

Edep
u is sorted by non-decreasing departure time, and these edges have not been finalized

by any call at Line 9 of Algorithm 2 either. Finally, the swaps in Edep
u concern edges with

same departure time τ and same tail u. This means that they can extend exactly the same
set of walks and thus belong to the same interval in Iu. We thus have exactly the same
intervals in Iu for each node u as if the algorithm had been run with input (Ēdep, Ēarr)
from the beginning. As the subsequent processing occurs with edges ordered according to
(Ēdep, Ēarr) until the next-zero block, this concludes the proof of Claim 1

75



Correctness.
The core of the proof of correctness consists in showing that the reordered lists (Ēdep, Ēarr)

are an s-optimal-respecting doubly-sorted representation as we can then conclude by Propo-
sition 1.

First note, that the lists Ēdep and Ēarr are still node departure and node arrival sorted
respectively. The list Ēdep is node departure sorted, as it is a reordering of Edep obtained
by swapping edges with same tail and departure time. On the other side, the reordering
of Earr concerns only sets of edges within the same zero-block which all have same arrival
time, thus Ēarr is still ordered by non-decreasing arrival time of the edges.

The rest of the correctness part is dedicated to proving that (Ēdep, Ēarr) is s-optimal-
respecting. Suppose for the sake of contradiction that there exists an s-reachable edge e
such that there exists no minimum cost walk from s ending with e that is (Ēdep, Ēarr)-
respected. Without loss of generality, let e be the first edge in Ēarr such that this happens,
and let Q = ⟨e1, . . . , ek⟩ be a walk with minimum cost among the walks from s ending
with e = ek = (uk, vk, τk, λk). As our assumption implies that Q itself is not (Ēdep, Ēarr)-
respected, it must have at least two edges, we thus assume k ≥ 2.

Note. In the following, whenever we have to verify if e <Ēarr f , for some edges e and
f , it is sufficient to show that the block containing e precedes the block that contains f
according to the ordering of Earr computed at Line 3. This comes from the fact that Ēarr

follows the same sequence of blocks and differs only by swaps within the zero-blocks.

Case A: edge ek−1 does not belong to a zero-block or arr(ek − 1) < dep(ek). Let
us first consider the case in which ek−1 does not belong to a zero-block. This implies
ek−1 <Ēarr ek. The reason is that we have arr(ek−1) ≤ dep(ek) since ek extends ek−1

and Ēarr is ordered by non-decreasing arrival time. Hence, ek <Ēarr ek−1 would imply
arr(ek) ≤ arr(ek−1) and thus arr(ek−1) = dep(ek) = arr(ek). As ek extends ek−1, we
then must have αuk

= 0. If ek−1 does not belong to a zero-block we then have either
λk−1 > 0 or αuk−1

> 0, and thus ek−1 belongs to a block before the block of ek according
to the ordering of Earr computed at Line 3. As ek−1 <Ēarr ek, our choice of e = ek
implies that there exists a walk Q′ from s ending with ek−1 that is (Ēdep, Ēarr)-respected
and has minimum cost among the walks from s ending with ek−1. Because of isotonicity
we obtain that γ(Q′.ek) ⪯ γ(Q), and proving that Q′.ek is (Ēdep, Ēarr)-respected would
raise a contradiction. Since Q′ is (Ēdep, Ēarr)-respected, we just need to check that for
each edge e′ with tail uk such that ek ≤Ēdep e′, then ek−1 <Ēarr e′. Due to the fact
that ek extends ek−1 and ek ≤Ēdep e′, we have arr(ek−1) ≤ dep(ek) ≤ dep(e′) ≤ arr(e′). If
arr(ek−1) < arr(e′) we can conclude that ek−1 <Ēarr e′, since Ēarr is non-decreasing arrival
time sorted. Otherwise, arr(ek−1) = arr(e′) implies that the travel time of e′ is zero and
that αvk−1

= 0 as wet get arr(ek−1) = dep(ek) and ek extends ek−1. If ek−1 has positive
travel time, we can again conclude, as e′ has zero travel time and the two edges have same
arrival time, the block of ek−1 precedes the block of e′. Finally, suppose that ek−1 has also
zero travel time. As αvk−1

= 0 and ek−1 does not belong to a zero-block, we must have
αuk−1

> 0. On the other hand, vk−1 is the tail of e′ and we have αvk−1
= 0. Also in this

case the block of ek−1 precedes the block of e′.
We consider now the case in which arr(ek−1) < dep(ek). This implies arr(ek−1) <

arr(ek), and thus ek−1 <Ēarr ek. We can choose Q′ as above: a walk from s ending with
ek−1 that is (Ēdep, Ēarr)-respected and has minimum cost among the walks from s ending

76



with ek−1. If we prove that Q′.ek is (Ēdep, Ēarr)-respected we can conclude by isotonicity.
In particular, we just need to check that for each edge e′ with tail uk such that ek ≤Ēdep e′,
then ek−1 <Ēarr e′. Due to the fact that arr(ek−1) < dep(ek) and ek ≤Ēdep e′, we have
arr(ek−1) < dep(ek) ≤ dep(e′) ≤ arr(e′). As Ēarr is ordered by non-decreasing arrival time
we obtain ek−1 <Ēarr e′.

Case B: edge ek−1 belongs to a zero-block. We can now focus on the case where ek−1

belongs to a zero-block, namely ek−1 = (uk−1, vk−1, τ, 0) ∈ Earr
τ,λ=0,α=0 and αuk−1

= αvk−1
=

0. Consider the call to Reorder(Earr
τ,λ=0,α=0) from Algorithm 5. LetD = (V ′

tail∪V ′
head, A

′, A′)
be the digraph constructed at Lines 17-18 in Algorithm 6, and let S ⊆ V ′

head, A
′ be the set

of source nodes computed according to Line 11. The proof of correctness follows from the
last of the three following claims.

Claim 2. Any path P in D from a node in S corresponds to a walk QP in G with cost
γD(B′, P ) arriving at time τ .

The reason is twofold. First, each node v ∈ S is associated to the cost B′[v] of an sv-walk
Qv which ends with edge P ′[v] as set in Lines 10-16 in Algorithm 6. More precisely, suppose
P ′[v] = e = (u, v, τ, 0) ∈ Earr

τ,λ=0,α=0. In the case where u = s and the cost c = B′[v] is
indeed γ(e), we define Qv = ⟨e⟩. Otherwise, e must have an associated cost c′ = Btail[u]
computed using Algorithm 2 and we have c = Btail[u]⊕γ(e). The correctness of Algorithm 2
implies that c′ is the cost of an su-walk Qe that e can extend. We then define Qv = Qe.e
whose cost is precisely γQe.e = Btail[u]⊕ γ(e) = c.

Second, as edge P ′[v] has arrival time τ , Qv also has arrival time τ and any edge
(v, w, τ, 0) can extend it as long as αv = 0. More generally each arc (x, y, c) in a path
P from v in D corresponds to an edge f = (x, y, τ, 0) with cost γ(f) = c and such that
αx = αy = 0 according to the construction of A′ at Line 17. The condition αx = 0
implies that f extends the edge associated to the arc preceding (x, y, c) in P or extends
P ′[v] = e if it is the first arc. The path P is thus associated to a walk QP of edges
in Earr

τ,λ=0,α=0 such that Qv.QP is a walk. Moreover, the cost of P in D is obtained as

γD(B′, P ) = (· · · (B′[v]⊕ c1) · · · ⊕ ck−1)⊕ ck where c1, . . . , ck denote the respective costs of
arcs in P . As B′[v] = γQe , we get γD(B′, P ) = γQv.QP

.

Claim 3. There exists a path PQ from S to vk−1 = uk in D that has cost γD(B′, PQ) ⪯
γ⟨e1,...,ek−1⟩.

To prove this, we decompose ⟨e1, . . . , ek−1⟩ = Q1.Q2 where Q2 = ⟨ei, . . . , ek−1⟩ is its
longest suffix of edges in the zero-block Earr

τ,λ=0,α=0 containing ek−1. Note that all edges of
⟨e1, . . . , ek−1⟩ belonging to the zero-block must be consecutive as edges are sorted according
to non-decreasing arrival time in a walk and no edge of the zero-block can be extend by and
edge having positive travel time or positive minimum waiting-time.

First, consider the moment when ei = (ui, vi, τ, 0) is considered at Line 10 in Algorithm 6
for possibly updating B′[vi]. If its associated cost is not ⊥, we have Btail[ui] ⪯ γQ1 . The
reason is that Btail[ui] is the cost of a walk R that ei extends, which is composed of edges
scanned so far, and such that R.ei is (Ēdep, Ēarr)-respected. Moreover, it has minimum
cost among such walks according to Lemma 1. We thus have Btail[ui] ⪯ γQ1 since Q1

is (Ēdep, Ēarr)-respected by our choice of ek. Otherwise, Q1 is empty and we must have
ui = s and i = 1. In this latter case, we let Q1.ei denote the walk ⟨ei⟩. In both cases,
c is set at Lines 12-13 to a value such that c ⪯ γQ1.ei . The update of B′[vi] according to

77



Lines 14-15 then ensures B′[vi] ⪯ γQ1.ei . Second, each edge ej = (uj , vj , τ, 0) for j > i, is
associated to an arc e′j = (uj , vj , γ(ej)) in D according to the construction of A′ at Line 17.
Let WQ denote the walk ⟨e′i+1, . . . , e

′
k−1⟩ in D which has cost γD(B′,WQ) = (· · · (B′[vi] ⊕

γ(ei+1)) · · · )⊕γ(ek−1). As B′[vi] ⪯ γQ1.ei , we get γ
D(B′,WQ) ⪯ γQ according to isotonicity.

According to Lemma 3, there exists a path PQ in D from vi to vk−1 satisfying γD(B′, PQ) ⪯
γD(B′,WQ) ⪯ γQ. PQ is thus a path from vi ∈ S to vk−1 with cost γD(B′, PQ) ⪯ γ⟨e1,...,ek−1⟩
as claimed.

Claim 4. There exists a walk Q̃ such that Q̃.ek is a (Ēdep, Ēarr)-respected minimum-cost
walk among the walks from s that end with ek.

This claim will clearly conclude the proof of correctness. We first note that uk is reachable
from S according to Claim 3 through a path PQ with cost γD(B′, PQ) ⪯ γ⟨e1,...,ek−1⟩.
Lemma 4 then ensures that F contains a minimum-cost path P in D. Its cost must thus
satisfy γD(B′, P ) ⪯ γD(B′, PQ). Isotonicity then implies γD(B′, P )⊕γ(ek) ⪯ γD(B′, PQ)⊕
γ(ek) ⪯ γ⟨e1,...,ek−1⟩ ⊕ γ(ek) = γQ.

Let us denote with Q̃ = ⟨ẽ1, . . . , ẽl⟩ the walk corresponding to P according to Claim 2,
and ẽj = (ũj , ṽj , τ̃j , λ̃j) for j = 1, . . . , l. According to the construction of Q̃ in Claim 2, let h
be the index of the edge P ′[v], that is h is the (only) index satisfying ẽh = P ′[ṽh]. Note that
the subsequent edges ẽh+1, . . . , ẽl correspond to the arcs of P . On the other hand, edges
ẽ1, . . . , ẽh−1 precede the zero-block Earr

τ,λ=0,α=0 in Earr. Note that they thus also precede ek
in Ēarr as ek extends an edge of the zero-block and thus satisfy arr(ek) ≥ τ and αuk

= 0.

We can assume ek is not a P ′[v] edge for some v. If this was the case, as v is then the
head of ek, this is equivalent to ek = P ′[vk]. Then the walk Q′′ = ⟨ẽ1, . . . , ẽh⟩ ends with edge
ek = ẽh and has cost γQ′′ ⪯ γQ̃ by C-non-negativity of the edges ẽh+1, . . . , ẽl. As Claim 2

guarantees γQ̃ = γD(B′, P ), we then have γQ′′ ⪯ γD(B′, P )⊕ γ(ek) by C-non-negativity of
ek, implying γQ′′ ⪯ γQ. As ẽh−1 is not in the zero-block at time τ , then either ẽh−1 is not
in a zero-block or arr(ẽh−1) < dep(ek), and we can conclude as case A.

We now prove that Q̃.ek is a walk: first ek is not an edge of Q̃ and second, ek extends Q̃.
The only case where ek could be in Q̃ is when the edge ek itself belongs to the zero-block
Earr

τ,λ=0,α=0. Let us rule out this eventuality. As P is a path and not a walk, ṽl = uk cannot
be the tail of ẽj for any j ∈ [h+1, l]. We also just proved we can assume ek ̸= ẽh. Second, ek
extends Q̃. The reason is that it extends ek−1 which belongs to the zero-block Earr

τ,λ=0,α=0.
We thus have τ + αuk

= τ ≤ dep(ek) ≤ τ + βuk
. As ẽl also belongs to the zero-block, it has

also arrival time τ and ek also extends ẽl since ṽl = uk.
It just remains to prove that Q̃.ek is (Ēdep, Ēarr)-respected. Since ẽh−1 <Ēarr ek, our

choice of ek implies that we can assume without of loss of generality that ⟨ẽ1, . . . , ẽh−1⟩ is
(Ēdep, Ēarr)-respected. Thus, we have to consider the (Ēdep, Ēarr)-respected property with
respect to the following three types of pairs of consecutive edges in Q̃.ek:

1) ẽh−1, ẽh,

2) ẽj , ẽj+1 for j = h, . . . , l − 1,

3) ẽl, ek.

In Case 1, we have to prove that for each edge e′ such that tail(e′) = tail(ẽh) = ũh

and ẽh ≤Ēdep e′ we have ẽh−1 <Ēarr e′. As ẽh extends ẽh−1 and ẽh ≤Ēdep e′, we have

78



arr(ẽh−1) ≤ dep(ẽh) ≤ dep(e′) ≤ arr(e′). If arr(ẽh−1) < arr(e′) we can conclude since Ēarr

is sorted by non-decreasing arrival time. Thus let us suppose that arr(ẽh−1) = arr(e′), which
implies that the travel time of e′ is zero and arr(ẽh−1) = dep(ẽh) = τ . Moreover, we have
αtail(ẽh) = αtail(e′) = 0 since eh ∈ Earr

τ,λ=0,α=0. Since ẽh−1 is not in the zero-block Earr
τ,λ=0,α=0

and arr(ẽh−1) = τ , we must have αtail(ẽh−1) > 0. This implies ẽh−1 <Ēarr e′ since in Ēarr

the block of edges in Earr
a,λ=0,αtail>0 precedes block Earr

a,λ=0,α=0 and Earr
a,λ=0,αhead>0.

In Case 2, we have to prove that for each edge e′ such that tail(e′) = tail(ẽj+1) = ũj+1

and ẽj+1 ≤Ēdep e′ we have ẽj <Ēarr e′. Again, we have arr(ẽj) ≤ dep(ẽj+1) ≤ dep(e′) ≤
arr(e′) and if arr(ẽj) < arr(e′) we can conclude. So let us suppose arr(ẽj) = arr(e′),
implying that e′ has zero travel time and departure τ . If αhead(e′)>0, we then have ẽj <Ēarr e′

since ẽj belongs to the zero-block and e′ is scanned after the zero-block. Otherwise, we have
αhead(e′)=0 and e′ is in the zero-block Earr

τ,λ=0,α=0. Having e′ = P ′[head(e′)] would contradict
ẽj+1 ≤Ēdep e′. The reason is that ẽj+1 is in F while the swaps performed at Line 23
ensures that all edges P ′[v] with tail tail(ẽj+1) for some v ∈ V ′

head precede other edges with
same tail and same departure time in Ēdep. We can thus assume e′ ̸= P ′[head(e′)]. If
e′ ∈ F , notice that either ẽj = P ′[ṽj ] or ẽj ∈ F and precede e′ in the BFS ordering, since
tail(e′) = head(ẽj), and thus in both cases we have ẽj <Ēarr e′. Finally, if e′ is not in F , it
is added at the end of the reordered zero-block at Line 26 and we again have ẽj <Ēarr e′.

In Case 3, we have to prove that for each edge e′ such that tail(e′) = tail(ek) = uk and
ek ≤Ēdep e′ we have ẽl <Ēarr e′. Since ek ≤Ēdep e′ and ek ̸= P ′[vk], we deduce that e′, as
ek is ordered after edges with tail uk of the form P ′[v] for some v ∈ V ′

head, which implies
e′ ̸= P ′[head(e′)]. The proof is now similar to the previous case: if arr(ẽl) < arr(e′), we
can directly conclude. Otherwise, e′ has zero travel time and arrival time τ . In the three
cases αhead(e′) > 0, e′ ∈ F and e′ /∈ F , we conclude similarly. This achieves the proof of
correctness.

Complexity analysis.
We finally analyse the complexity of Algorithm 5. As discussed previously, sorting Earr

by non-decreasing arrival time can be done in O(|E| log |V |) time by computing the lists
(Earr

v )v∈V and then merging them using a priority queue. Once Earr is sorted by non
decreasing arrival time we can partition the list of edges with same arrival time into Earr

a,λ>0,
Earr

a,λ=0,αtail>0, E
arr
a,λ=0,α=0 and Earr

a,λ=0,αhead>0 by bucket sorting into the four lists.
The calls to Reorder(Earr

τ,λ=0,α=0, τ) incur the only other additional costs compared to
Algorithm 2. The nodes in V ′

tail and V ′
head are identified in O(|Earr

τ,λ=0,α=0|), and both sets
cardinality is bounded by |Earr

τ,λ=0,α=0|. Thus the construction of digraph D is linear in
|Earr

τ,λ=0,α=0|. In order to identify interval I at Line 4 we might scan up to |Iu| intervals.
However, all interval scanned contain edges with departure time less or equal to τ . This
means that, at the moment of the next call to Reorder() these intervals will have already
been removed by the calls to FinalizeCosts() at Line 9 of Algorithm 2, and thus will not be
scanned again. Overall, we can bound the time complexity of this operation by the total
number of intervals created during the execution of the algorithm, which is bounded by |E|.
Similarly, the computation of index i at Line 5 requires to scan all the edges from Edep

u [lu]
until an edge with departure time τ is found. We know that such an edge exists in interval
I as some edges in the zero-block have tail u, and again, at the moment of the next call to
Reorder() these edges will have already been processed, and thus will not be scanned again.
Overall, we can bound the time complexity of this operation by the total number of edges
|E|. Computing set S and computing for each node v in such set the cost B′[v] and the edge
P ′[v] is linear in |Earr

τ,λ=0,α=0|, since it requires a single scan of the edges in the zero-block

79



and few constant time operations per edge.
The time complexity of Algorithm 6 is thus dominated by the Dijkstra call which

costs time O(|A′| + n′ log n′) where n′ = |V ′
tail ∪ V ′

head| ≤ |V |. As |A′| = |Earr
τ,λ=0,α=0|

and n′ = O(|Earr
τ,λ=0,α=0|), the overall time complexity of the calls to Algorithm 6 is

O(
∑

a∈Aarr |Earr
τ,λ=0,α=0|(1 + log |V |)) = O(|E| log |V |). The space complexity is clearly lin-

ear.

Optimizing a linear combination of classical criteria. A temporal graph with the
cost structure defined in Section 2.4 for optimizing a linear combination of classical criteria
also satisfies the absorption property under the following assumption: for any edge e =
(u, v, τ, λ) such that λ = 0, αu = 0 and αv = 0, we require δ(e) = δ5c(e) + δ6 ≥ 0.
This implies that for any cost (τ,∆) ∈ R × R, we indeed have (τ,∆) ⪯ (τ,∆) ⊕ γ(e) as
(τ,∆) ⊕ γ(e) = (τ,∆ + δ(e)) and ∆ + δ(e) ≥ ∆. If we assume δ5, δ6 ≥ 0, non-negativity
of costs is required only for edges with zero travel time, and negative values are allowed
for δ1, . . . , δ4 and δ7. Theorem 6 thus extends the result of [5] to a wider range of linear
combinations, and has a slightly better complexity.

2.6.1 Matching conditional lower-bound.

We now state that our algorithm seems optimal according to current knowledge about the
complexity of directed single-source shortest paths in the comparison-addition model where
lengths of paths are obtained through addition and comparison only [66, 54].

Theorem 7. Solving the single-source all-reachable-edge minimum-cost problem on a tem-
poral graph with M edges and n nodes requires Ω(M log n) time assuming a lower-bound of
Ω(n log n) for solving single-source shortest paths in directed graphs with n nodes and Θ(n)
arcs.

The idea is simply to consider k instances of single-source shortest paths with n nodes and
Θ(n) edges. Without loss of generality, all instances have same set of nodes and same source.
Each instance is then considered as a temporal sub-graph with zero travel time edges at a
certain time slot. This union over time results in a temporal graph with M = Θ(kn) edges.
Preferring walks with latest departure time, and among those with latest departure time, one
with shortest length, indeed allows to solve all instances of shortest paths within a single
instance of the single-source all-reachable-edge minimum cost problem on this temporal
graph.

Proof. Given k instances (D1, s1), . . . , (Dk, s2) of single-source shortest paths in directed
graphs D1 = (V1, A1), . . . , Dk = (Vk, Ak) with n nodes and Θ(n) edges each, from sources
s1 ∈ V1, . . . , sk ∈ Vk respectively, we construct a temporal graph G = (V,E, α, β) with

n nodes and M =
∑k

i=1 |Ai| edges such that a solution to the single-source all-reachable-
edge minimum-cost problem provides a solution for each instance as follows. We number
the nodes in each directed graph Di from 1 to n so that si is 1. We can then assume
V = [n] = V1 = · · · = Vk and s1 = · · · = sk = 1. For each time i ∈ [n] and for each arc
(u, v) ∈ Ai, we create a temporal edge e = (u, v, i, 0) ∈ E with associated length ℓ(e) the
length of (u, v) in Di. We assume unrestricted waiting: we set αu = 0 and βu = ∞ for all
u ∈ V .

We now define the cost structure (C, γ,⊕,⪯) where C = R × R≥0. Given an edge
e = (u, v, τ, 0), we define its cost as γ(e) = (τ, ℓ(e)). We define the cost combination

80



function ⊕ by (τ, ℓ) ⊕ (τ ′, ℓ′) = (τ, ℓ + ℓ′) so that the cost of a walk Q is (dep(Q), ℓ(Q))
where ℓ(Q) denotes the sum of the lengths of edges in Q. We finally define the cost total
order by (τ, ℓ) ⪯ (τ ′, ℓ′) when τ > τ ′ or τ = τ ′ and ℓ ≤ ℓ′ so that among several walks,
we always prefer one with latest departure, and among several walks with same departure
time, we prefer one with shortest length.

Now consider a solution to the single-source all-reachable-edge minimum-cost problem
on G with source s = 1 and cost structure (C, γ,⊕,⪯). Let v ∈ Vi be a node of instance
Di. If no arc enters v in Di, we know that it is not reachable from si and that its distance
is ∞. Otherwise, consider an arc (u, v) ∈ Ai. If there exists a path P from si to v ending
with arc (u, v), it corresponds to a walk Q from s = si that ends with e = (u, v, i, 0) and
has cost (i, ℓ(P )). Conversely, any walk with departure time i, cost (i, ℓ), and ending with
e must have all its edges departing at time i and corresponds to a path in Di with length
ℓ. To obtain the distance dDi

(si, v), we thus consider edges e with departure time i and
entering v. If no such edge is associated to a cost in A′

v, no walk departing at i or before
can reach v and we have dDi

(si, v) = ∞. Otherwise, let c = (τ, ℓ) be the minimum cost
associated to such an edge in A′

v. If τ = i, there exists paths from si to v in Di and ℓ is
the minimum length of such a path by the definition of ⪯, implying dDi(si, v) = ℓ. On the
other side, when τ < i, we can conclude that there is no path from si to v in Di and that we
have dDi

(si, v) =∞. Note that a shortest path tree from si in Di can obtained from parent
pointers allowing to recover minimum-cost walks such as constructed by our single-source
all-reachable-edge minimum-cost algorithm.

2.7 Conclusions

In this chapter we worked on the problem of computing optimal temporal walks in temporal
graphs subjects to waiting constraints. We designed algorithms that compute minimum
cost walks, from a single source node towards all possible destinations. The term “cost” is
very general as it can model all classical criteria of optimisation, their linear combination
and even lexicographical composition.

The algorithm proposed in the first part works under the assumption that the temporal
graph at handle is zero-acyclic and solves the problem in linear time. The graph can be
given in input either as a doubly-sorted representation of the temporal graph or as a, more
classical, time-expanded representation. Indeed, we proved that the two representations
are “equivalent”, in the sense that it is possible to compute in linear time and space one
from the other. Moreover, we prove some lower bounds showing that either by weakening
the input assumption or dropping the zero-acyclicity property, an additional logarithmic
factor is need. In particular if the input consists in a single sorted list of temporal edges,
Ω(M logM) time is needed for any comparison-only algorithm to compute minimum overall
waiting time walks. On the other hand, if the zero-acyclicity assumption is dropped, even
identifying the temporal edges that are reachable from a given source takes Ω(M log n)
time, assuming a lower bound of Ω(n log n) for solving single-source shortest paths in static
digraphs with n nodes and Θ(n) arcs.

The algorithm that we propose in the second part works without relying on the zero-
acyclicity assumption, and solves the problem with time complexityO(M log n), that matches
the lower bound. It relies on the first algorithm as a subroutine, but it needs to carefully
reorder the lists of temporal edges during the execution.

81



Chapter 3

Temporal walks in public transit
networks

Profile computation in public transit networks. In this chapter we are going to present
a particular case of temporal graph model that is especially suitable for application in public
transit networks. In a public transit network there are scheduled vehicles, like buses, trains
or metros, that move from a stop to another following predefined routes. A scheduled vehicle
leaves each stop in its route at specific points in time and takes a certain amount of time
to reach the next stop. These movements can be modelled by a point availability temporal
graph. However, it is also necessary to consider possible walking transfers from certain stops
to some others. This enables, like in the real life application, to navigate the network in
more efficient ways. An example of these concepts is represented in Figure 3.1. There are
public available data containing the information to represent this type of networks. They
are usually stored in what is called General Transit Feed Specification (GTFS) format,
containing the public transportation schedules of vehicles together with a representation of
the pedestrian network. The GTFS files consist in a collection of CSV files, that encodes
routes, trips and stops with IDs, geographic locations and walking transfers. This type of
representation can also be referred to as GTFS static, to highlight the fact that they are
not updated with real time information.

In this chapter we will focus on the profile problem. We are given a source stop s, that
represent the starting point of a user in the network, and a target stop t, that the user
desires to reach. We are interested in a function that tells us for each possible departure
time from s what is the earliest arrival time to the target, and what is the journey that
leads to this arrival time.

Related work. The problem of studying profile computation in public transit networks
has already received attention in the past decade. The two most notable works are from
Dibbelt, Pajor, Strasser and Wagner [26] and Delling, Pajor and Werneck [25]. The first
proposed an algorithm named Connection Scan Algorithm (CSA), while the second intro-
duced an algorithm called Round bAsed Public Transit Optimized Router (RAPTOR). Both
algorithms brought some novel approaches to solve the problem as they are not based on a
Dijsktra-like procedure. However, even if experiments show how successful they are in prac-
tice, both algorithms lack a precise theoretical complexity analysis. The model of public
transit network we present here is very closely related to the timetable model used in [26]
and in [25].

82



7:30,4m

7:34,6m

7:40,5m

7:20,7m

7:27,10m

7:37,5m 7:42,8m

7:40,5m 7:45,6m

7:51,6m

7:57,5m

5m

5m

6m

6m

Figure 3.1: On the left, a partial representation of a public transit network through the
routes that compose it and dotted arcs between stops that are reachable by foot from each
other. On the right, a scheduled vehicle for each route represented on the right gener-
ates connections (temporal edges) between stops. There are dotted arcs representing the
footpaths labelled with the travel time distance.

Contribution. We first briefly present the Connection Scan Algorithm [26] for profile
computation, we then proceed to provide a time complexity analysis of this algorithm that
was not present in the literature. Finally, we propose an algorithm for profile computation
in public transit networks that relies on Algorithm 2 presented in Chapter 2. The algorithm
we designed brings a slight improvement compared to the theoretical complexity of CSA.
Moreover, due to its generality, it can be used to solve a great variety of journey computation
problems in public transit networks. The notation that we use in this chapter is different
from the one used in the rest of the dissertation. The aim is to propose an algorithm that
could be useful to the community working in public transit networks. Thus, we tried to get
closer to the application by adapting our notation, even though we give definitions that are
consistent with what has been introduced so far.

3.1 Model

Transit network The aim of the model we are about to introduce is to depict the scenario
where vehicles like buses, trains and metros travel through stops in a network following
scheduled trips during the course of a day (or multiple days). A user can navigate such
network by getting on and off scheduled vehicles at stops and also walking from a stop to
another. In addition to that, we are able to represent a user preferences about how much
time they are willing to wait at each stop.

We define a model that is a variation of the timetable model and that brings it closer to
our temporal graph definition. After giving the definitions, we comment about similarities
and differences with the temporal graph models introduced so far. We define a transit
network as a tuple N = (V,E, F, β), where V is a set of stops, E is a set of connections, F
is a set of footpaths and β ∈ [0,+∞]V is the maximum waiting-time at each stop.

83



A connection e is a quintuple (u, v, τ, λ, id), where:

� u ∈ V is the departure stop, or tail, of e, denoted by tail(e),

� v ∈ V is the arrival stop, or head of e, denoted by head(e),

� τ ∈ R is the departure time of e, denoted by dep(e),

� λ ∈ R>0 is the travel time of e,

� id ∈ N is the trip ID of e, denoted by trip(e).

Moreover, we define the arrival time of e as τ +λ, and we denote it by arr(e). Connections
with the same trip ID form a sequence ⟨e1, . . . , ek⟩ such that head(ei) = tail(ei+1) and
arr(ei) ≤ dep(ei+1) for 1 ≤ i < k. We denote by next(ei) the connection ei+1 after ei in
such a sequence. Similarly, we denote by prev(ei) the connection ei−1 preceding ei in such
a sequence.

On the other side, a footpath is a weighted arc (u, v, µ) ∈ F , where u, v ∈ V , and µ ∈ R≥0

is its weight, which represent the travel time that it takes to go walking from stop u to stop
v. We assume the following properties on the set of footpaths. Let us denote by GF = (V, F )
the footpath weighted digraph. We assume that GF is transitively closed and that its edges
satisfy the triangle inequality. This means that if there exist a footpath (u, v, µ1) and a
footpath (v, w, µ2), then there exists also a footpath (u,w, µ3), such that µ3 ≤ µ1 + µ2.
We also assume that for each stop u ∈ V there exists a selfloop footpath (u, u, µ) which
represents the time needed to change trip at stop u. Such selfloops are the only footpaths
allowed to have zero duration. We define a footpath event as a pair f = ((u, v, µ), τ) where
(u, v, µ) ∈ F is a footpath and τ ∈ R is a time label. A footpath event represent a passenger
moving from a stop to another through a footpath by departing at time τ . Notice that
a footpath event ((u, v, µ), τ) can correspond to a quintuple (u, v, τ, µ,⊥), similarly to a
connection with an undefined value for the trip ID field, denoting the fact that it indeed
corresponds to a footpath rather than a connection. This way, similarly to connections,
given a footpath event f = ((u, v, µ), τ) we can refer to u as tail(f), to v as head(f), to τ
as dep(f) and to τ + µ as arr(f).

Let us introduce some notation that we will use for the remaining of the chapter. Given
a transit network N = (V,E, F, β) we denote with M = |E| the number of connections. We
denote with NF

in(u) and NF
out(u) respectively the in-neighbours and the out-neighbours of

u in the footpaths graph GF , with δinu and δoutu the in-degree and out-degree of u in GF ,
and let δ = maxu∈V max{δinu , δoutu }. Finally, we denote with ∆u the number of connections
e ∈ E with tail(e) = u, and with ∆ = maxu∈V ∆u. To represent lists of connections we
adopt the same notation used for list of temporal edges in Chapter 2.

Journeys A journey represent a passenger’s way to move from a stop to another one,
possibly alternating connections and footpath events. A journey alternates sequences of
connections within the same trip with footpaths that connect each sequence. In the following
we will only consider journeys that contain at least a connection and that start with a
footpath event. More formally, given a transit network N = (V,E, F, β) a journey J from
a stop u to a stop v, or a uv-journey for short, is a sequence of connections and footpath
events ⟨x1, . . . , xk⟩ such that, x1 is a footpath event, tail(x1) = u, arr(x1) = dep(x2),
head(xk) = v and for 1 ≤ i < k:

84



� if xi+1 is a footpath event f , then xi is a connection, tail(f) = head(xi) and dep(f) =
arr(xi). Moreover, if xi+2 exists, it is also a connection and arr(f) ≤ dep(xi+2) ≤
arr(f) + βv, where v = tail(xi+2),

� if both xi and xi+1 are connections then next(xi) = xi+1.

We say that a connection e (resp. a footpath event f) extends a journey J = ⟨x1, . . . , xk⟩
if the sequence ⟨x1, . . . , xk, e⟩ (resp ⟨x1, . . . , xk, f⟩) is a journey, and we denote it by J.e (resp
J.f). In this case, we also say that e (resp. f) extends xk, since it does indeed extend any
journey ending with xk. Moreover, let s be a stop, we say that a connection e with arrival
stop v is s-reachable if there exists a sv-journey ending with e. In the following we will
assume that if a journey starts with a footpath event, the arrival of this footpath event
coincides with the departure time of the first connection. Moreover, whenever a footpath
event follows a connection, the departure time of the footpath event coincides with the
arrival time of the connection.

This definitions of transit network and journey are closely related to the definitions
of temporal graphs and temporal walk used so far, but with some key differences. The
connections in this model correspond to temporal edges that are available at specific points
in time, while footpaths correspond to temporal edges that have constant travel time and are
available during the whole lifespan of the temporal graph. Thus, speaking about availability
intervals and travel times only, transit networks can be seen as a particular case of piecewise
constant temporal graphs. We can associate to a transit network a temporal graph in a way
that each journey corresponds to a temporal walk in it. However, the fact that connections
belong to trips constitutes an extension compared to the temporal graph models. Notice that
the trip IDs are needed when there are two adjacent connections to know if a footpath loop
is needed for the transfer or if it possible to stay in the same vehicle. Moreover, connections
and footpath events have specific interactions when navigating the transit network through
journeys, hence they have to be treated as different objects rather then considering them
grouped into single set of temporal edges.

3.2 Complexity study of the Connection Scan Algo-
rithm

In this section we first recall how the classical algorithm for public transit networks called
Connection Scan Algorithm (CSA) operates. Then we proceed to study its complexity,
which was not provided in the paper that introduced this algorithm. The algorithm, which
was first proposed in [26], solves the profile problem in the formulation all-source single-
destination. For simplicity, as it does not change the complexity of the algorithm, we will
present the simpler version of the algorithm without parent pointers to extract journeys
corresponding to points in the profile function. The algorithm is not designed to handle
waiting time restrictions, thus, in the remaining of the section, β is intended to be ∞.
Moreover, the algorithm only considers journeys starting and ending with a footpath event.
The goal is to compute for each stop a representation of the profile function, stored as a
list of pairs (departure time, arrival time) as explained in Section 2.4.6. The overall idea
of the algorithm is to scan the list of connections by non-increasing departure time and
compute journeys from later to earlier departure times, exploiting the fact that a journey
can only have a journey departing later as suffix. A key observation in the following is that

85



a passenger who is currently using a connection e has three options to continue their journey
towards the destination:

� exit the vehicle at the head of the connection and walk to the destination, if there is
a footpath that enables it;

� keep sitting in the same vehicle, thus keep using the same trip, and take the next
connection in the trip, if it exists;

� exit the vehicle at the head of the connection and get on another vehicle, meaning to
take a connection that belongs to a different trip, either by changing vehicle at the
same stop through the selfloop footpath or by walking to a different stop.

Now we describe more precisely how the profile functions are computed as formalized in

Algorithm 8. First of all the transit network (V,E, F, β) is given in input as sorted list
←−−
Edep

of the connections ordered by non-increasing departure time, and the footpath graph GF is

given as an adjacency array. Notice that
←−−
Edep in this section is thus sorted in the opposite

way compared to Edep in Chapter 2, we use a different notation to highlight the difference.
The algorithm performs a linear scan of the connections by non-increasing departure

time. It makes use of three arrays T , S and D. Let us describe what is stored in each of
these arrays at the k-th iteration. Let us denote with Nk = (V,Edep[1 : k], F, β) the transit

network induced by the first k connection in
←−−
Edep, namely, the first k connections scanned.

The array T stores for each trip ID id the earliest arrival time of a journey reaching the

target stop t in Nk, i. e. starting with the last scanned connection in
←−−
Edep[1 : k] with trip ID

id if there is one. The array S stores for each stop s a representation of the profile function
from s to t in Nk. The elements of S are Pareto optimal pairs (departure time, arrival time).
The array D, stores for each stop s the walking distance to the target or ∞ if there is no
footpath from s to the target. Notice that this array does not change during the execution
as these distances are fixed. Let us see how these arrays get updated. At each iteration,
when we scan the connection e = (u, v, τ, λ, id), the algorithm computes the earliest arrival
time ae of a journey to the destination t that uses e, and then integrates this information
in S and T . The arrival time ae is computed by analysing the three scenarios listed before.
The first option corresponds to a1, which consists in the arrival time of the connection,
that is τ + λ, plus the time to walk to the target D[v]. The second option corresponds to
a2, which is the earliest arrival time using the next connection of the trip, namely next(e),
and it is stored in T [id], as next(e) is the last connection scanned with trip ID equal to id.
Finally the third option corresponds to a3, which is computed as follows. The arrival time
of the connection e in v is τ +λ. We want the earliest arrival time to reach the destination,
leaving v at time τ+λ, either by changing trip in v or by walking to a different stop to catch
another connection. This information is the result of a call to the profile function from v to
t at time τ+λ. The minimum among these three possible arrival times is the earliest arrival
time ae = {a1, a2, a3} of a journey that uses connection e. Now we include this information
in the profile function of u and of each stop from which it is possible to walk to u. Let be
u′ a stop from which it is possible to reach u with a footpath of length µ. This means that
the journey starting from u′ at time τ − µ and using connection e has arrival time ae. To
incorporate this information in S[u′] we add (τ − µ, ae) to the array if it is not dominated
by other pairs, and then, if this is the case, we remove the pairs it dominates. Finally, to
update T [id] is sufficient to set it to ae, as this is the earliest arrival time of a journey using
e, which is now the last connection scanned with trip ID id.

86



Input: A list
←−−
Edep of the connections sorted by non-increasing departure time

and adjacency list of the footpath graph representing a transit network
N = (V,E, F, β), and a target stop t ∈ V .

Output: A representation of the profile function from v to t is sorted in S[v], for
each stop v ∈ V .

1 For each stop v ∈ V do Set D[v] =∞ and S[v] = {(∞,∞)}.
2 For each trip ID id do Set T [id] =∞.

3 For each footpath (v, t, µ) : v ∈ NF
in(t) do set D[v] = µ.

4 For each connection e = (u, v, τ, λ, id) in
←−−
Edep do

5 Set a1 = τ + λ+D[v].
6 Set a2 = T [id].
7 Let a3 be the evaluation of S[v] at time τ + λ.
8 Set ae = min{a1, a2, a3}.
9 If (τ, ae) is non-dominated in the profile S[u] then

10 For each footpath (u′, u, µ) : u′ ∈ NF
in(u) do

11 Incorporate (τ − µ, ae) into the profile S[u′].

12 Set T [id] = ae.

Algorithm 8: Connection Scan Algorithm [26, 27]. It computes, for each stop v,
a representation S[v] of the profile function from v to t.

3.2.1 CSA complexity analysis

Let us analyse CSA 8 algorithm to study its time complexity. First we are going to consider
the case where the algorithm is implemented as explained in [26, 27]. This means that the
profile function representation from u to t is an array S[u] of pairs (departure time, arrival
time) sorted by non-increasing departure time. Every search in S[u], is performed as a
binary search, as the array is sorted. Elements can be appended in constant time. However,
if a pair (d, a) has to be inserted in the array in position i, the pairs from position i to
|S[u]|, that are the ones with departure time earlier than d, are sequentially removed, then
(d, a) is appended if it is not dominated, and finally the removed pairs are appended back
if they are not dominated by (d, a). This choice is likely to be the most efficient when the
algorithm is run on real world instances, where we expect changes in S[u] to occur mainly
close to the end of the array. However, when it comes to the theoretical time complexity
of the algorithm, different choices can lead to better results. This is the case when S[u] is
stored as a balanced binary search tree. We will cover this case after the proof of Theorem 8.

Theorem 8. The worst case time complexity of Connection Scan Algorithm, with a basic
array implementation of the profile function representation S, is Θ(Mδ2∆).

Proof. Upper bound on time complexity. First we are going to bound the number of
elements added to the profile functions.

Observation: The number of pairs (departure time, arrival time) added to the repre-
sentation S[u] of a profile function from u to t is bounded by δ∆. This is the case because
δ∆ bounds the number of all the possible ways to start a journey from u to t. Indeed, any
journey from u starts with a footpath to a neighbour v ∈ NF

out(u) and a connection e with
tail(e) = v. In particular, the number of neighbours of u in the footpath graph is bounded

87



by δ and the number of connections departing from a stop v is bounded ∆. This also means
that the size of S[u] is bounded by δ∆ at any point during the execution.

The number of iteration performed by the algorithm is M , as in each iteration we scan

a connection e ∈
←−−
Edep. The computation of a1 and a2 at Line 5 and Line 6 respectively,

requires constant time. To compute a3 we need to locate in S[v] the two consecutive pairs
whose departure times define the interval containing τ+λ. The search requires O(log |S[v]|)
when performed as a binary search. Similarly, the time needed to check if (τ, ae) is dominated
in S[u] at Line 9 is O(log |S[u]|). Finally, the number of footpaths considered at Line 11
is bounded by δ. For each footpath (u′, u, µ), the departure time τ − µ has to be located
in S[u′], which requires O(log |S[u′]|) time. If (τ − µ, ae) is not dominated, it is added to
S[u′] in O(|S[u′]|) time. With the same time complexity we also remove the pairs that are
eventually dominated by (τ − µ, ae). Thanks to the above observation, we obtain a bound
on the overall running time as O(Mδ2∆).

Reaching maximal complexity. Due to the assumption of transitive closure and triangle
inequality of the footpaths, it is not trivial to understand whether there exist instances
in which this time complexity is actually matched by the algorithm execution. Let us
now prove that this is indeed the case. We define the following family of transit networks
N = (V,E, F, β) parameterised by δ, ∆, L, l and K. Let us assume that δ is even.

Stops. We define the set of nodes as V = A ∪ B ∪ {t}, where A = {a1, a2, . . . , aδ/2} and
B = {b1, b2, . . . , bδ/2}. The stop t is the destination for the all-source single-destination
instance of the profile problem.

Footpaths. We define the set F of footpaths as follows:

� (ai, aj , l) ∈ F , for each i, j ∈ [δ/2],

� (bi, bj , l) ∈ F , for each i, j ∈ [δ/2],

� (ai, bj , L) ∈ F and (bi, aj , L) ∈ F , for each i, j ∈ [δ/2],

where L > l. We will need further assumptions on the relation between L and l that we
will discuss later. The idea is that each stop is close to the other stops in the same set, and
far from the other ones. Finally, (t, t, 0) ∈ F , namely there is a self loop of length zero in
t. Note that the set F of footpaths defined this way respects the properties of transitively
closed and triangle inequality as required. Moreover, each stop except t has δ incoming
footpaths and δ outgoing footpaths.

Connections. In the following we assume that each connection has a different trip ID. For
simplicity we will omit the corresponding field and represent each connection as a quadruple.
The set of connections is partitioned into two sets E = EA ∪ EB , where:

EA =
⋃

1≤i≤δ/2
0≤k≤∆

(
ai, t,K −∆

δ

2
− k

δ

2
− (i− 1),K + 2h− k

δ

2
− (i− 1)

)
,

EB =
⋃

1≤i≤δ/2
0≤k≤∆

(
bi, t,K − k

δ

2
− (i− 1),K + h− k

δ

2
− (i− 1)

)
,

88



and K and h are parameters that will be discussed later. Notice that for each stop
v ∈ A ∪B there are exactly ∆ connections with tail v.

Execution. The connections are scanned by non-increasing departure time. This means
that the connections in EB are scanned before the connection in EA, in particular e =
(b1, t,K,K + h) being the first one. In the first iteration ae is set to K + h, and the
pair (K − L,K + h) is added to the profile representation S[ai] for each stop ai ∈ A.
The next connection scanned is (b2, v,K − 1,K + t − 1), during this iteration, the pair
(K− 1−L,K+ t− 1) is appended to the profile of each stop ai. Note that this pair, has an
earlier departure time than the previous one and it is not dominated, thus it is appended
to S[ai] and no pair is removed from the profile. Once all the connections in EB have been
scanned, for each stop ai ∈ A its profile representation S[ai] is given by the elements:⋃

1≤i≤δ/2
0≤k≤∆

(
K − k

δ

2
− (i− 1)− L,K + t− k

δ

2
− (i− 1)

)
,

placed in an array sorted by non-increasing departure time. Each connection in EB

caused a new pair to be added to S[ai] with earlier departure time compared to the paris
already in the array and without removing any other pair. At this point of the execution
|S[ai]| = δ

2∆, for i = 1, . . . , δ/2. However, as each pair that is added has departure time
earlier than all pairs already stored in S[ai], the computational cost is constant for each
insertion.

In the next iterations we scan the connections in EA. The network is designed with
the idea that in these iterations, pairs (departure time, arrival time) are added to all the
profiles S[ai] and have departure time greater than all pairs already stored. The first
connection scanned from EA is (a1, v,K − ∆ δ

2 ,K + 2t). This leads to the insertion of

the pair (K − ∆ δ
2 − l,K + 2t) to S[ai], for i ∈ [δ/2]. In order to accomplish our goal, we

need K−∆ δ
2 − l to be greater than each departure time in S[ai], namely we are asking that:

K − k
δ

2
− (j − 1)− L < K −∆

δ

2
− l , 0 ≤ k ≤ ∆ and 1 ≤ j ≤ δ

2
,

which is true if L > ∆ δ
2 + l. Note that this way, the pair we are adding to S[ai] is not

dominated and does not dominate any other pair. To insert this pair we have to search in
the profile representation S[ai] whose cardinality is ∆ δ

2 . Then we need to insert it in the
first position of the array, which requires linear time in its size.

The next iterations generalise this process. Each one of the connections in EA leads to
the insertion in S[ai] of a pair (departure time, arrival time) with departure time grater
than the departure times of the ∆ δ

2 elements already in S[ai]. In order for this to happen
we need to require that the earliest departure time induced by a connection in EA is greater
than the latest departure time in S[ai], namely:

K − L < K −∆
δ

2
− δ

2
(∆− 1)−

(
δ

2
− 1

)
− l,

which is true if L > ∆δ − 1 + l. Finally, we have to avoid the scenario where the new
pairs dominate and delete all the pairs in the profile representations. To do this we have
to make an assumption on h. In particular, we need that the new candidate pairs have an
arrival time which is greater than the arrival time of the pairs that are already in the profile.

89



To do that we have to find a value of h such that the earliest arrival time of the new pairs
is greater than the latest arrival time of the pairs previously stored:

K + h < K + 2h− (∆− 1)
δ

2
−

(
δ

2
− 1

)
,

which is true for h > ∆ δ
2 − 1.

To conclude, we produced an instance such that, when the profile function representa-
tions are stored as arrays, an execution of CSA has to perform at least M/2 iterations that
require O(δ2∆) operations each.

Let us now consider the case in which the profile function representations S[u] are imple-
mented as balanced binary search trees. We can bound the time needed to perform searches,
insertions and deletions in S[u] with O(log |S[u]|). Each connection (u, v, τ, λ, id) can lead to
the creation of at most δ pairs, one for each incoming footpath in u, thus Mδ in total. Each
pair in a profile representation can be deleted only once. Thus the overall time complexity
is bounded by O(Mδ log(δ∆)).

The family of transit networks defined in the proof of Theorem 8 leads also in this case
to maximal complexity executions. Indeed, each search in the profile representation S[u]
requires O(log δ∆). Notice that as we are adding specifically elements with lowest or greatest
departure times this searches could be performed in linear time with a slight modification
in the data structure. However, it is possible to define a relation between L and l such
that the departure time of the the pairs added from the scan of EA is in arbitrary positions
of the profiles. In this case, the pair would not be added, as it is dominated by the pairs
with greater departure time, since they have earlier arrival time as well. Nevertheless, the
algorithm needs O(log(δ∆)) to locate the correct interval in the profile.

We can thus formulate the following result.

Theorem 9. The worst case time complexity of Connection Scan Algorithm, when profile
function representations are implemented as balancaed binary search trees, is Θ(Mδ log(δ∆)).

3.3 Double Scan Algorithm

Let us now present an algorithm that extends Algorithm 2 for computing minimum-cost
journeys in transit networks, solving, in particular, the profile problem as well. The idea
is to emulate an execution of Algorithm 2 in a temporal graph obtained from the transit
network. In this temporal graph each connection is turned into a temporal edge, and each
footpath is turned into 2∆ temporal edges. Indeed, even if a footpath (u, v, µ) is available
during the whole lifespan of the temporal graph, we are only interested in footpath events
((u, v, µ), τ) such that τ coincides with the arrival time of a connection with head u or such
that τ+µ coincides with the departure time of a connection with tail v. However, generating
an instance of this temporal graph and reordering its temporal edges would not be efficient
in terms of time and space.

General cost structure for journeys. We integrate a transit network N = (V,E, F, β)
with an algebraic cost structure (C, γ,⊕,⪯), similarly to what we did in Chapter 2 for
temporal walks. The set C is the set of possible cost values, γ is a cost function γ :
E ∪ (F × R) → C, ⊕ is a cost combination function ⊕ : C × C → C, and ⪯ is a cost total

90



order ⪯ ⊆ C × C. We also define the relation ≺ between the elements of C as a ≺ b if
and only if a ⪯ b and a ̸= b. For any journey J = ⟨x1, . . . , xk⟩, the cost function of J is
recursively defined as follows: γJ = γ⟨x1,...,xk−1⟩⊕γ(xk), with γ⟨x1⟩ = γ(x1). In other words,
the costs combine along the journey according to the cost combination function. We suppose
also in this case that right-isotonicity property is satisfied, as defined in Section 2.3. This
guarantees that if several journeys are extended by a given connection or footpath event x,
then the best cost is obtained by extending the journey J∗ with minimum cost: as for any
other journey J we have γJ∗ ⪯ γJ , we get γJ∗.x ⪯ γJ.x by the isotonicity property and the
cost function definition. However, a prefix of a minimum-cost journey is not necessarily a
minimum-cost journey. Finally, we denote an undefined cost as ⊥ and consider that c ≺⊥
for any cost c ∈ C.

To solve the problem of computing minimum-cost journeys from a single source s, we
will consider a more general problem consisting in computing at each destination v, and
for each possible s-reachable connection e with arrival stop v, an sv-journey with minimum
cost among all sv-journeys ending with e.

We define the single-source all-reachable-connection minimum-cost problem as follows.

single-source all-reachable-connection minimum-cost problem. Given a
transit network N = (V,E, F, β) with cost structure (C, γ,⊕,⪯), and a source stop
s ∈ V , compute for each destination v ∈ V and each possible s-reachable connection
e with arrival stop v the minimum cost of any sv-journey ending with connection e.

Notice that we are using a single-source all-destination kind of approach, rather then
the all-source single-destination used in CSA. In this formulation of the problem, and in the
algorithm we designed, we are considering journeys that end with a connection. However,
it is possible to obtain also the journeys that end with a footpath event by applying a patch
as explained after the proof of Theorem 10, without changing the time complexity.

Letting Av denote the set of all s-reachable connections with head v, the problem con-
sists in computing for each node v all pairs (e, c) such that e ∈ Av and c = min{γJ :
J is an sv-journey ending with connection e}. We will denote with A′

v the list of such pairs
(e, c) ordered by non-decreasing arrival time of the connections. In the next algorithmic
result, we represent a transit network (V,E, F, β) as two lists (Edep, Earr) and an adjacency
list representation of GF . The lists contain |E| quintuples each, representing all connec-
tions in E, where Earr is sorted by non-decreasing arrival time and Edep by non-decreasing
departure time. We assume that we have implicit pointers between the two lists, that link
each quintuple of one list to the quintuple representing the same connection in the other
list.

We adapt the ideas from Algorithm 2 to handle footpaths and solve the single-source
all-reachable-connection minimum-cost problem. The algorithm consists in a main scan of
the connections sorted by non-decreasing arrival time. When a connection e is scanned
we compute the minimum cost of a journey that e can extend, which consists in the most
involved operation of the algorithm. Then, with this information, we compute the minimum
cost of a journey ending with e, taking into account that e might be the first connection of
a journey that was not detected before.

Let us describe more precisely the operations performed by Algorithm 9, focusing on
the differences compared to Algorithm 2. The first task when we scan a connection e =
(v, w, τ, λ, id) consists in computing its best extendable cost, namely the minimum cost

91



among the journeys from the source that e can extend. We can distinguish two types of
such journeys to v:

� journeys that end with a footpath event and that have an arrival time consistent such
that e can extend it, taking into account the waiting time restriction,

� journeys that end with the connection that precedes e in the trip.

The first case is the hardest to handle. The idea for finding this type of journeys is to
consider journeys ending with a connection in a stop u where it is possible to walk to v.
This information, together with the minimum cost for such journeys is stored in A′

u for
u ∈ NF

in(u). Each connection in these sets, corresponds to a journey that, when extended
with a footpath event, leads to a journey to v that e might extend. To handle together all
these journeys we apply the same interval strategy as we did in Algorithm 2. The main
difference is that in the temporal graph case, a temporal edge from v could only extend
temporal walks ending in v, thus it was sufficient to analyse the sorted set A′

v to produce
the correct intervals. In this case, on the other hand, we do not have the whole set of
connections in

⋃
u∈NF

in(u)
A′

u sorted by arrival time. For this reason we need to introduce a

priority queue. In the priority queue we add the connections from
⋃

u∈NF
in(u)

A′
u based on

their arrival time plus the travel time of the footpaths from u to v. We can thus extract
them in order and build correctly the intervals. Due to the order in which we are scanning
the connections, each element of

⋃
u∈NF

in(u)
A′

u has to be considered just once. However,

notice that a connection in A′
u needs to be considered again when in the main cycle we scan

a different connection e′ with tail v′ if there is a footpath from u to v′. The indexes puv
associated to each arc in GF serve exactly this purpose.

The second case is handled in the moment e gets finalized. It is sufficient to follow a
pointer to the connection prev(e) preceding e in the trip. This connection has already been
scanned and finalized, due to the earlier arrival time, which means the minimum cost of a
journey ending with prev(e) has already been computed.

92



Input: Two sorted lists (Edep, Earr) of connections and an adjacency list of the
footpath graph representing a transit network (V,E, F, β), a cost
structure (C, γ,⊕,⪯) satisfying isotonicity, and a source stop s.

Output: Minimum cost of an sv-journey for each node v and for each
s-reachable connection e with arrival stop v.

1 For each stop v, generate the list Edep
v by bucket sorting Edep.

2 For each stop v do
3 Set A′

v := ∅. /* List of pairs (s-reachable connection, cost). */

4 Set puv := 1 for each u ∈ NF
in(v). /* Next connection to consider in A′

u

that leads to an arrival at v. */

5 Set Iv := ∅. /* List of consecutive intervals of Edep
v . */

6 Set (lv, rv) := (1, 0). /* Overall interval of Edep
v spanned by Iv. */

7 For each connection e ∈ Earr do
8 Set best extendable cost B[e] :=⊥ and parent pointer P [e] := (⊥,⊥).
9 For each connection e = (v, w, τ, λ, id) in Earr do

10 Let i be the index of e in Edep
v .

/* Compute B[e] for each connection in Edep
v up to e included. */

11 UpdateCost(v, i)

12 If v = s or v ∈ NF
out(s) or B[e] ̸=⊥ then

/* Get the minimum cost c of a journey ending with e: */

13 If v = s then set c1 := γ(e).

14 If v ∈ NF
out(s) then

15 Let (s, v, µsv) ∈ F be the footpath from s to v.
16 Set f := ((s, v, µsv), dep(e)− µsv) and c2 := γ(f)⊕ γ(e).

17 If B[e] ̸=⊥ then set c3 := B[e]⊕ γ(e).
18 Set c := min{c1, c2, c3}./* Minimum among defined costs. */

19 If c = c1 then P [e] := (⊥,⊥).
20 else if c = c2 then P [e] := (⊥, f).
21 Append (e, c) to A′

w.

22 Return the lists (A′
v)v∈V .

Algorithm 9: Computing, for each stop v and each s-reachable connection e with
head v, the minimum cost of any sv-journey ending with e.

93



1 Procedure UpdateCost(v, j)
2 Set τ := dep(Edep

v [j]).
3 Initialize a priority queue Q := ∅.
4 For each u ∈ NF

in(v) do
5 Let (u, v, µuv) be the footpath from u to v and Enqueue(Q, (u, v, µuv), τ).

6 While Q ̸= ∅ do
7 (e, c, (u, v, µuv)) := PopMin(Q).
8 Set a := arr(e) + µuv and f := ((u, v, µuv), arr(e)).

/* Find interval (l, r) of connections in Edep
v extending f: */

9 Let l ≥ lv be the first index of a connection (v, w, τ ′, λ′, id′) ∈ Edep
v such

that τ ′ ≥ a (set l := |Edep
v |+ 1 if no such index exists).

10 Let r ≥ rv be the last index of a connection (v, w, τ ′, λ′, id′) ∈ Edep
v such

that τ ′ ≤ a+ βv (set r := rv if no such index exists).
/* Remove from Iv intervals with cost greater than c: */

11 Set lc := max{l, rv + 1}. /* First index in (l, r) after Iv. */

12 While Iv ̸= ∅ has last interval I ′ = (l′, r′, c′, (e′, f ′)) satisfying c ≺ c′ do
13 Remove I ′ from Iv and update lc := l′.

/* Assign cost c and parent (e, f) to connections Edep
v [lc : r]: */

14 If lc ≤ r then append interval I = (lc, r, c, (e, f)) to Iv.
15 FinalizeCosts(v, lv, l − 1)
16 Set lv := l and rv := r.

/* Insert next element of A′
u in the priority queue */

17 Enqueue(Q, (u, v, µuv), τ)

18 FinalizeCosts(v, lv, j)
19 Set lv := j + 1.

20 Procedure Enqueue(Q, (u, v, µuv), τ)
21 If puv ≤ |A′

u| then
22 Set (e, c) := A′

u[puv] and c̄ := c⊕ γ((u, v, µuv), arr(e)).
23 Associate (e, c̄, (u, v, µuv)) with key Key(e, c̄, (u, v, µuv)) = arr(e) + µuv.
24 If Key(e, c̄, (u, v, µuv)) ≤ τ then
25 Add (e, c̄, (u, v, µuv)) to Q and set puv := puv + 1.

26 Procedure FinalizeCosts(v, i, j)
/* Find connections in Edep

v [i : j] reachable using the same trip */

27 For each connection e′ = (v, w, τ, λ, id) in Edep
v [i : j] do

28 If B[prev(e′)] ̸=⊥ then
29 B[e′] := B[prev(e′)]⊕ γ(prev(e′)) and P [e′] := (prev(e′),⊥).

/* Get the best extendable cost and parent of connections in

Edep
v [i : j] and remove corresponding intervals. */

30 While the first interval I = (l, r, c, (e, f)) in Iv satisfies l ≤ j do
31 Let l′ = min{r, j}.
32 For each connection e′ = (v, w, τ, λ, id) in Edep

v [l : l′] do
33 If B[e′] =⊥ or c ≺ B[e′] then B[e′] := c and P [e′] := (e, f).

34 If l′ = r then remove I from Iv else update I := (j + 1, r, c, (e, f)).

Algorithm 10: Associate its best extendable cost to each connection e in Edep
v

up until the j-th one. 94



3.3.1 Double Scan complexity analysis

Theorem 10. Given a transit network N = (V,E, F, β) a source node s, Algorithm 9 solves
the single-source all-reachable-connection minimum-cost problem in O(Mδ log δ) time and
linear space.

Proof. Let us start by analysing the complexity of the preprocessing steps. First we compute
the lists Edep

v by bucket sorting Edep, which can be done in O(M) time. Initialising A′
v,

Iv and (lv, rv) requires O(n) time, while each index puv corresponds to footpath in F , thus
they can be initialised in O(|F |) time. To conclude the preprocessing, the array of best
extendable costs B and parent pointers P can be defined in O(M) time. In the following
we will assume that operations with ⊕ and ⪯ can be computed in constant time. Let
us consider the main cycle in the execution. At each iteration we scan a connection e =
(v, w, τ, λ, id) from Earr, thus the algorithm performs M iterations. For the moment we
neglect the call to UpdateCost, and we will come back to it with an amortized analysis.
During each iteration we might compute three different costs c1, c2 and c3. Cost c1 and
c3 can be computed in constant time, while c2 requires δ time to scan the adjacency list.
Computing the minimum among these three costs, setting the parent pointer and appending
the connection to A′

w requires constant time. Let us conclude with an amortized analysis
of the calls to UpdateCost. First we analyse the cost needed to handle the priority queues.
Each footpath (u, v, µuv) ∈ F is added to a priority queue, together with a time instant
τ , at most |A′

v| times, thanks to the update of index puv. We can thus bound the overall
number of elements enqueued and removed from the priority queues by (

∑
v∈V |A′

v|)δ ≤Mδ.
Moreover, at any time during the execution of a call UpdateCost(v, j), in the priority queue
Q there is at most an element per footpath entering v. Moreover, the key associated to
each element can be computed in constant time. This means that the size of the priority
queue is bounded by |NF

in(v)| ≤ δ. Thus we can enqueue and pop each element with a time
complexity of O(log δ). The total cost to handle the priority queues can be expressed as
Mδ log δ. The intervals Iv, similarly to Algorithm 2 are handled in linear time with respect
to the number of arrival times to v. In the case of temporal graphs this was bounded by
the number of temporal edges entering v. In the case of transit networks this is bounded by
the number of connections entering a neighbour of v in the footpath graph. Overall we can
thus bound the total cost to handle intervals with O(Mδ). Finally, the calls to FinalizeCosts
require linear time in the number of connections in E, as in Algorithm 2. The only difference
is that for each connection, for computing its correct best extendable cost B before finalizing
it, we also need to check the cost obtained by coming from the previous connection of the
same trip. This can be done in constant time for each connection. To conclude, the time
complexity needed for the calls to UpdateCost and of the whole execution of Algorithm 9
is O(Mδ log δ).

Let us turn to the space complexity. Each set of interval Iv contains at most |Edep
v |

intervals, each set A′
v has size bounded by the number of connections with head v. Thus

we have
∑

v∈V |Iv| ≤ |E| and
∑

v∈V |A′
v| ≤ |E|. As we already mentioned the size of each

priority queue Q is bounded by δ. Finally, the number the number of indexes puv is |F |.
We can conclude that Algorithm 9 runs in linear space O(|E|+ |F |).

As we mentioned before, Algorithm 9 solves the problem of computing the optimum
cost of journeys ending with a connection. It is possible to patch the algorithm to compute
also journeys that end with a footpath event. To do this we introduce for each node v
a set A′′

v that contains the minimum cost for both journeys ending with connection and

95



footpath event with head(v). The connections are added exactly in the same way as we add
them to A′

v. For the footpath events, whenever we pop an element (e, c, (u, v, µuv)) from
Q we add to A′′

v the footpath event ((u, v, µuv), arr(e)) together with cost c. Notice that
these values are already computed by the algorithm but they are not stored for efficiency
reason. Indeed, computing also these journeys ending with a footpath event would lead to an
increase of space complexity to O(Mδ), since each connection ending a journey corresponds
to δ journeys ending with a footpath event.

If we are interested in a single destination t, rather than patching the algorithm it is
possible to do a post processing step, that does not change the time and space complexity
of the algorithm. It is sufficient to consider the sets A′

v for each v ∈ NF
in(t), extract their

elements with the help of a priority queue. Let (v, t, µvt) denote the footpath from v to t.
Each element (e, c) from A′

v corresponds to a journey from s to t ending with a footpath
event f = ((v, t, µvt), arr(e)) and cost c⊕ γ(f).

3.3.2 Computing optimal journeys

The algebraic cost structure we introduced for journeys allows us to model and solve many
different problems, as we did for the case of point availability temporal graphs in Section 2.4.
We can easily define cost structures to solve profile, shortest duration and minimum waiting
time problems, considering connections and footpath events as temporal edges.

Profile The first step is to define a cost structure that allows to compute shortest duration
journeys. As we did before, to achieve this results, we actually compute for a fixed connection
e journeys with latest departure time ending with e. To find these journeys we define
the following cost structure (C, γ,⊕,⪯). The cost set is C = R, to each connection e =
(u, v, τ, λ) we assign as cost its departure time γ(e) = τ . Similarly, to each footpath event
f = ((uv, µuv), τ) we assign γ(f) = τ . The cost combination function ⊕ return the first
parameter, thus τ ⊕ τ ′ = τ . Finally, the cost total order is defined by τ ⪯ τ ′ when τ ≥ τ ′,
meaning that later departure times are preferred. To obtain a representation of the profile
function from s to v it is sufficient to remove from A′

v the paris dominated in a Pareto sense
with a linear scan.

There are some other interesting problems we can easily model and solve in this setting.

Minimum number of trips The problem consists in computing journeys that minimise
the number of different trips that appear in the journey. As every time we change trip in
a journey, we need by definition to use a footpath between the connections belonging to
two different trips, it is sufficient to count the number of footpaths. Thus, we define the
following cost structure (C, γ,⊕,⪯), where C = N, ⊕ = + and ⪯=≤. Then, we define
γ(e) = 0 for each e ∈ E, γ((u, v, µuv), τ) = 1 for each footpath event. Given a journey J , its
cost γJ is number of trips used in J , thus γJ − 1 corresponds to the number of trip changes
in J . With a linear scan of the set A′

v we can thus compute the minimum number of trips
of a journey from s to v.

Minimum walking time The problem consists in computing journeys that minimise the
time spent walking during the journey. In this case we define the following cost structure
(C, γ,⊕,⪯), where C = R, ⊕ = + and ⪯=≤. Then, we define γ(e) = 0 for each e ∈ E,
γ((u, v, µuv), τ) = µuv for each footpath in F . This way the cost γJ of a journey J correspond

96



to the sum of the duration of the footpaths along the journey. To conclude, with a linear
scan of the set A′

v we can thus compute the minimum time spent walking needed from a
journey from s to v.

Pareto optimal journeys By proceeding in a similar way as we did in Section 2.4.5 we
can compute Pareto optimal sets combining arrival time and any other cost we can define
with the algebraic cost structure. An interesting case is to optimize arrival time and number
of trips in a Pareto sense. This is done also by Dibbelt et al. [27], motivated by the fact that
an optimal journey for a certain single criterion could actually be a bad choice in practice.In
order to solve this problem they bound the maximum number of trips used in a journey by
a value tmax. Then, all the variables for each trip ID T [id] and for each stop S[v] appearing
in the algorithm have to be represented as vectors of length tmax. For each entry i of these
vectors they store the value that correspond to journeys with at most i trips. On the other
side, we do not need to modify our algorithm in any way and we do not need extra space
usage to solve this problem.

3.3.3 Conclusions and future work

We summarised and analysed the complexity of Connection Scan Algorithm, an algorithm
that computes single-destination profiles in public transit networks. Then we propose a
flexible algorithm that in its generality can solve the single-source profile problem and sev-
eral other journey computation problems. The time complexity of our algorithm slightly
improves over the CSA one and can take waiting restrictions into account.

Future work resides in implementing Algorithm 9, to test it on GTFS datasets. and
compare it with CSA. The slight advantage that it brings in terms of theoretical complexity
does not guarantee a better performance in real life applications. However, we expect better
results in the context of Pareto optimal journeys, as the technique presented for CSA does
not seem to be the most efficient. Finally, it would be interesting to study the theoretical
complexity of RAPTOR as well, and compare with it our implementation of Algorithm 9.

97



Chapter 4

Walk temporalisation

This chapter is based on the results obtained in [10, 3].

Inspired by the problem of scheduling buses/metros/tramways in a public transport
network, we consider the problem of assigning departure times to the arcs of a directed graph
so that the resulting temporal graph maximises temporal reachability. Given a weighted
directed multigraph D with strictly positive weights, an arc temporalisation assigns to each
arc (u, v, λ) of D a departure time τ , making it a temporal edge (u, v, τ, λ). For example,
the weighted directed multigraph D could represent the map of a public transit network
where the weight of an arc represents the time needed by a vehicle to travel along that arc.
Multiple types of vehicle traversing the same arc can be captured by multiple arcs with
appropriate weights.

However, in this public transit context, the arcs are not “independent”, in the sense that
a departure time cannot be assigned to an arc independently of the departure time assigned
to other arcs. Indeed, we assume that the trajectory of each bus/metro/tramway is fixed
and is given by a walk in the digraph so that the arcs of that walk must be scheduled one
right after another. We are thus given a collection T of walks in D that we call trips, in
reference to the application to transit networks, to distinguish them from other arbitrary
walks in D. When several vehicles travel along the same walk, we assume that a distinct
trip is associated to each one of them. We also suppose that the time spent by a vehicle
between arriving at a stop and departing from it is negligible and that scheduling a vehicle
amounts to assigning a departure time to the first arc of the corresponding trip, and that
all the other departure times are a consequence of it: indeed, each temporal edge resulting
from a scheduled trip departs right after the arrival of the previous one. The operation of
assigning a starting time to each walk in T is called trip temporalisation. The temporal
graph induced by a trip temporalisation of T is the temporal graph whose node set is the
same as the node set of D, and whose set of temporal edges is the disjoint union of all
the temporal edges resulting from the assignment of the starting times to the walks in T.
As a specific point in time is assigned to each arc in a trip as departure time, rather than
a whole availability interval, the induced temporal graph is a point availability temporal
graph. Moreover, for the rest of the chapter we will consider temporal graphs that are not
subject to waiting constraints.

The goal is to maximise the reachability of the induced temporal graph, that is the
number of pairs of nodes that are temporally connected.

98



To summarise, the main network optimisation problem that we will analyse in this chap-
ter is called Maximum Reachability Trip Temporalisation (in short, mrtt): given a
weighted directed multigraph D and a collection T of walks on D, find a trip temporalisation
of T which maximises the reachability of the induced temporal graph.

Related work. Optimisation of timetables in a transit network has been studied as
an operation research problem (for a survey see the work of Cacchiani and Toth [16]) at
a fine grained level of modelling, taking into account sharing of route segments or tracks,
and mixing various objectives such as operation costs or overall user waiting time when
the traffic demand is known. We have a higher level approach that aims at grasping the
connectivity of the network.

Some problems similar to the one considered in this chapter have already been analysed
in the literature. For instance, Kempe, Kleinberg and Kumar [42] study a problem that
consists in reconstructing a partially specified time-labelling of a network in a consistent
way with an observed history of information flow. The input is an undirected graph such
that a time interval is assigned to each arc, together with a source node, and two disjoint
sets of nodes P and N . The goal is to assign to each arc a departure time that has to
lie inside the corresponding time interval, in a way that P is temporally reachable from
r and N is not. They provide a polynomial time algorithm that detects whether or not
such an assignment exists, and returns one whenever it does. Another related problem is
considered by Enright, Meeks, Mertzios and Zamaraev [30], where the authors analyse the
problem of deleting edges from a given temporal graph in order to reduce its reachability,
motivated by the context of epidemiology. Later on, the problem of assigning departure
times to the arcs of a graph in order to minimise the reachability of the resulting temporal
graph is studied by Enright, Meeks and Skerman [31]. Another example is from Mertzios,
Michail and Spirakis [47], where the authors propose two cost minimisation parameters
for temporal network design (that is, the maximum number of departure times of an edge
and the total number of departure times of all edges), and study the problem of optimizing
these parameters subject to some connectivity constraint. Another closely related work from
Deligkas and Potapov [24] studies the problem of minimising the average reachability (as
well as other similar objectives which could be interesting goals in the context of transport
networks too) in a temporal graph by delaying some edges. Various NP-hardness results as
well as a polynomial-time algorithm are given, depending on the type of delay operations
that are permitted. The authors leave as open the complexity of maximising reachability
which is similar to our goal. The same problem of delaying has then been further investigated
by Molter, Renken and Zschoche [48].

As far as we know, the trip temporalisation problem has never been studied before in
such generality. The topic of temporalising arcs to increase reachability is related to gossip
and broadcasting protocols (for a survey see the work of S. M. Hedetniemi, S.T. Hedetniemi
and Liestman [40]). The problem studied by Göbel, Cerdeira and Veldman [39] is closely
related to our setting when the trips are one arc long (case that we also analyse) but in an
undirected model. They show that the problem of deciding whether the resulting temporal
graph is temporally connected (that is, for any two nodes u and v, v is temporally reachable
from u) is NP-complete (clearly, this implies that the mrat problem restricted to undirected
graphs is NP-hard). It is also easy to see that the mrat problem restricted to undirected
connected graphs can be approximated within a constant approximation ratio, since this
simply requires to look for a “centroid” in a spanning tree as a temporalisation where
half of the nodes can reach the other half can then easily be computed. Note, however,
that temporalising a symmetric digraph is not equivalent to temporalising an undirected

99



graph as different times can be assigned to an arc (u, v) and the symmetric arc (v, u).
Nonetheless, apart from [39] where the undirected setting and the independence of edges
makes the problem different from here, the objective in gossiping is usually different, that
is, minimising the time for a message to reach all nodes.

Contribution. Our results are summarised in Table 4.1, where three other combinato-
rial problems are also considered. The first decision problem, denoted by o2o-rtt, is the
one-to-one version of the mrtt problem, in which the question is whether a trip temporali-
sation exists making a given target node t temporally reachable from another given source
node s. The second maximisation problem, denoted by ss-mrtt, is the single-source version
of the mrtt problem, in which the question is to find a trip temporalisation maximising
the number of nodes temporally reachable from a given source node s. Finally, the third
maximisation problem, denoted by mrat which stands for Maximum Reachability Arc
Temporalisation, is the particular case of mrtt where all trips are one arc long.

Note that, although we assume that the arcs of a trip must be scheduled one right after
the other, our results can be generalized in a setting where, for each pair of consecutive arcs
of a trip, a fixed amount of time is imposed between the arrival and departure time. The
reason is similar to the fact that we can restrict ourselves to a setting where all travel times
are 1 as explained in the Section 4.1.

Quite surprisingly, our first result (see Theorem 11) shows that the o2o-rtt problem
is NP-complete. Using a classical gap technique, we then obtain that if P ̸= NP, then
the mrtt and the ss-mrtt problems cannot be approximated within a factor n1−ε for any
ε > 0, where n is the number of nodes (see Theorems 12 and 13). We also show that
the parameterised version of the o2o-rtt problem with respect to the number k of trips
used in the resulting temporal graph, in order to go from s to t, can be solved in time
2O(k)M log |T| where M =

∑
T∈T |T | is the sum of the number of arcs that compose each

trip (see Theorem 14).
The above non-approximability results are the main reason for focusing our attention

to an interesting restriction of the mrtt problem, that is, the one in which the collections
of trips T satisfies the very natural property of being “temporally” strongly connected in
the following sense. A collection of trips T is strongly temporalisable if, for each pair of
nodes u and v, there exists a trip temporalisation of T that allows u to (temporally) reach
v. Note that this requirement is a rather weak one, since we are not asking for a unique
trip temporalisation, but for a trip temporalisation for each pair of nodes (indeed, this is a
requirement which is satisfied in many applications of temporal graphs). We first show that
the strong temporalisability property is not sufficient to get high reachability. To this aim,
we prove that there exists an infinite family of trip collections, all strongly temporalisable,
such that any trip temporalisation connects at most an O(1/

√
n) fraction of all pairs (see

Theorem 15). By using this construction, we then show that if P ̸= NP, then the mrtt
and the ss-mrtt problems cannot be approximated within a factor less than

√
n/12, when

restricted to strongly temporalisable trip networks (see Theorems 16 and 17).
However, the situation changes if we add another quite natural property of a trip collec-

tion, that is, symmetry. A trip collection T is symmetric if, for each trip T ∈ T, T includes
also a reverse trip, that is, a trip starting from the last node of T , arriving in the first node
of T , and passing through all the nodes in T in reverse order. Referring to public transport
systems, symmetry is almost always respected, since for any bus/metro/tramway trip, there
is usually also the same bus/metro/tramway trip in the opposite direction. It is quite easy
to show that, if the collection of trips T is symmetric, then T is strongly temporalisable if
and only if the weighted directed multigraph D is strongly connected (see Corollary 3).

100



Maximisation problems

Problem Complexity

mrtt Not approximable within a factor n1−ε for any ε > 0 (Theorem 12)
ss-mrtt Not approximable within a factor n1−ε for any ε > 0 (Theorem 13))
mrat NP-hard (Theorem 20)

Decision problems

Problem Complexity

o2o-rtt NP-complete (Theorem 11)
k-o2o-rtt Solvable in time 2O(k)l log |T| (Theorem 14)

Problem Property

Strongly temporalisable Strongly temporalisable and symmetric

o2o-rtt Linear-time solvable (trivial) Linear-time solvable (trivial)

mrtt
Not approximable within a factor
less than

√
n/12 (Theorem 16)

NP-hard (Theorem 18) and constant
factor approximable (Theorem 19)

ss-mrtt
Not approximable within a factor
less than

√
n/12 (Theorem 17)

Linear-time solvable (Fact 2)

Table 4.1: Our results assuming P ̸= NP (n denotes the number of nodes, M =
∑

T∈T |T |
denotes the sum of number of arcs in each trip, and k denotes the number of trips that can
be used in a temporal path). The approximability result is obtained by proving that we can
get a high temporal reachability (that is, a temporal reachability proportional to the total
number of pairs of nodes). A further result is Theorem 15, which intuitively states that
the strong temporalisability property is not sufficient to get high reachability. The table
leaves as the main open problem the question whether the mrtt and the ss-mrtt problems
are approximable within a sub-linear factor, when restricted to strongly temporalisable
collections of trips. Moreover, the table also leaves open whether or not it is possible to
approximate mrat, which was later proved possible within a constant factor approximation
in [7].

We show that the mrtt problem is NP-hard even if restricted to symmetric and strongly
temporalisable collection of trips (see Theorem 18). However, we also show that, given a
symmetric and strongly temporalisable collection of trips, it is possible to find in polynomial
time a trip temporalisation achieving a reachability proportional to the total number of pairs
(see Theorem 19). This implies the existence of a constant-factor approximation algorithm
in the symmetric and strongly temporalisable setting. It also gives ground to the classical
design of public transit networks using symmetric lines.

We finally analyse the mrat problem, namely the case of single arc trips, which corre-
spond to assigning starting times to arcs of a digraph without the trip constraint. We prove
that the mrat problem is NP-hard, even when restricted to strongly connected digraphs.
We will conclude by speculating whether the problem is approximable within a constant ap-
proximation ratio, and suggesting a graph theory conjecture which could be used to prove
such approximation result for the mrat problem. This conjecture has later been proved by
Bessy, Thomassé and Viennot [7].

101



All our hardness results are proved starting from the 3-sat problem, which is NP-
complete [38]. Moreover, it is easy to show that the decision and maximisation problems
we consider are in NP or in NPO (that is, the class of NP optimisations problems [2]),
respectively. Indeed, given an instance of the problem and a trip temporalisation, checking
that a node t is reachable from a node s in the induced temporal graph can be done in
polynomial time.

4.1 Preliminary definitions and results

A trip network is a weighted multidigraph D = (V, F ) with positive weights (also called
the underlying multidigraph of the trip network) along with a collection T = {T1, . . . , T|T|}
of, not necessarily distinct, walks in D. The walks in T are also called trips to distinguish
them from other arbitrary walks in D. In the following, without loss of generality, we will
assume that any node in V and any arc in F appears in at least one trip in T. Note that the
disjoint union of the trips in T defines a weighted multidigraphMchanged notation that we
call the induced multidigraph of (D,T) (we assume that the arcs of M have an additional
label specifying which trip they belong to, and which is represented in the figures by means
of different line colors and styles). The length of a trip l(T ) is defined as the sum of the
weights of all arcs of T .

Given a trip network (D,T), a temporalisation σ of the trip network assigns a real
number σ(T ) to each trip T in T, indicating the starting time of T . Such a temporalisation
induces a point availability temporal graph G[D,T, σ] = (V,E) defined as follows. For each
T = ⟨e1, . . . , ek⟩ in T, with ei = (ui, vi, λi), E contains the temporal edges (ui, vi, σ(T ) +∑i−1

j=1 λj , λi)
1: we say that these temporal edges are induced by T (with respect to the

temporalisation σ). Notice that the assumption of positive weights of arcs in the underlying
digraph translates into an assumption of positive travel times in the temporal graph. The set
of nodes temporally reachable from a node u in a temporal graph G is denoted as RG(u) (we
assume that a node is reachable from itself, thus u ∈ RG(u) for each node u). The temporal
reachability of a node u in G is thus |RG(u)|. We define the temporal reachability of a
temporal graph as the number of pairs of nodes that are temporally connected, namely the
temporal reachability of G is defined as

∑
u∈V |RG(u)|. In this setting, the nodes reachable

from a given node can be computed in O(M), where M is the number of temporal edges
in the temporal graph, for example using the earliest arrival time algorithm from [63]. This
means the temporal reachability of a temporal graph can be computed in O(nM). See
Figure 4.1 for an example about the notion of temporal reachability. A node v is said to
be σ-reachable from a node u if v ∈ RG[D,T,σ](u). The σ-reachability of a node u is the

temporal reachability of u in G[D,T, σ], and the σ-reachability of the trip network is the
temporal reachability of G[D,T, σ].

For example, let us consider the weighted directed multigraph D shown in the left part
of Figure 4.2, and the following collection T of walks on D (depicted in the right part of
the figure): T1 = (v1, v2, 1), (v2, v3, 2), (v3, v4, 2) (blue solid trip), T2 = (v2, v3, 1), (v3, v6, 1),
(v6, v7, 1), (v7, v2, 1) (green dashed trip), and T3 = (v5, v6, 1), (v6, v7, 1), (v7, v8, 2) (red dot-
ted trip). Note how the arc (v6, v7, 1) is “used” by two different trips (that is, T2 and T3):
this might correspond to two different vehicles travelling through this arc. Note also that
there is no trip temporalisation such that both pairs of nodes v1, v8 and v5, v4 are temporally

1As it is standard, we assume that the summation with no summands evaluates to zero.

102



v3v4

v6

v7 v8

v1 v2 v5
1, 1

2, 26, 1

4, 2

10, 1

11, 18, 1

12, 2

7, 1 9, 1

Figure 4.1: A point availability temporal graph. Node v1 can reach v8 at time 14 by fol-
lowing the temporal path ⟨(v1, v2, 1, 1), (v2, v3, 6, 1), (v3, v6, 7, 1), (v6, v7, 8, 1), (v7, v8, 12, 2)⟩.
However, the pair v5, v4 is not temporally connected as v5 cannot reach v7 before time 12
while the only temporal edge crossing the cut {v5, v6, v7, v8}, {v1, v2, v3, v4} is (v7, v2, 9, 1)
whose departure time is 9 < 12. Indeed, node v1 can reach all nodes but node v5, while
node v7 can reach only nodes v2, v7, and v8. The reachability of this temporal graph is 30.

v1 v2

v3v4

v5v6

v7 v8

1

21

2

1

1

2

1 1
v3v4

v6

v7 v8

v1 v2 v5
1

21

2

1

1 1

2

1 1

Figure 4.2: An example of a weighted directed multigraph D (left) where weights represent
travel times of arcs, and a collection T of walks on D (right) called “trips”. Each starting
node of a trip has a colored border. The arc (v6, v7, 1) of D is “used” by both the green
dashed trip T2 and the red dotted trip T3. The length of the blue solid trip T1 is the sum
of the travel times of its arcs which amounts to 5, while the length of the other two trips is
4. No trip temporalisation exists such that both v8 is reachable from v1 and v4 is reachable
from v5 in the induced temporal graph.

connected in the induced temporal graph. Indeed, if v8 is reachable from v1, then the start-
ing time assigned to T1 has to be smaller than the starting time assigned to T3 as reaching
v7 from v2 requires at least 3 units of time (using arcs of T2), while if v4 is reachable from
v5, then the starting time assigned to T3 has to be smaller than the starting time assigned
to T1 as reaching v3 from v6 also requires at least 3 units of time: these two inequalities
cannot be satisfied at the same time. Let us consider the trip temporalisation which assigns
to T1 the starting time 1, to T2 the starting time 6, and to T3 the starting time 10 (this trip
temporalisation intuitively corresponds to scheduling the three trips one after the other).
The temporal graph induced by this trip temporalisation is indeed shown in Figure 4.1 and
its reachability is equal to 30 as mentioned in the caption. On the other hand, it is possible
to verify that the trip temporalisation which assigns to T1 the starting time 9, to T2 the
starting time 5, and to T3 the starting time 1 induces a temporal graph whose reachability
is 32 (see also Table 4.2 at page 104).

103



T1, T2, T3 T1, T3, T2 T2, T1, T3 T2, T3, T1 T3, T1, T2 T3, T2, T1

v1 : V \ {v5} V \ {v5, v8} {v1, v2, v3, v4} {v1, v2, v3, v4} V \ {v5, v8} {v1, v2, v3, v4}
v2 : V \ {v1, v5} V \ {v1, v5, v8} V \ {v1, v5} V \ {v1, v5} V \ {v1, v5, v8} V \ {v1, v5, v8}
v3 : V \ {v1, v5} V \ {v1, v5, v8} V \ {v1, v5} V \ {v1, v5} V \ {v1, v5, v8} V \ {v1, v5, v8}
v5 : {v5, v6, v7, v8} V \ {v1, v3, v4} {v5, v6, v7, v8} {v5, v6, v7, v8} V \ {v1, v3, v4} V \ {v1}
v6 : {v2, v6, v7, v8} {v2, v6, v7, v8} {v2, v6, v7, v8} V \ {v1, v5} {v2, v6, v7, v8} V \ {v1, v5}
v7 : {v2, v7, v8} {v2, v7, v8} V \ {v1, v5, v6} V \ {v1, v5, v6} {v2, v7, v8} V \ {v1, v6, v5}

30 28 29 31 28 32

Table 4.2: Possible schedules of the trip network of Figure 4.2. For each schedule S of trips
one after another, and for each source node v, the corresponding cell shows the set of nodes
S-reachable from v (the last row shows the value of the S-reachability). Note that in the
underlying multidigraph of the trip network the number of pairs of nodes u and v such that
v is reachable from u is equal to 38.

Our main optimisation problem is the following one.

Maximum Reachability Trip Temporalisation (mrtt). Given a trip net-
work (D,T), find a temporalisation σ of the trip network which maximises its σ-
reachability.

We will also study the restriction of the mrtt problem to the case in which, for each pair
of nodes, there exists a temporalisation allowing to reach one from the other. More precisely,
given a trip network (D,T) and two nodes s and t, (D,T) is said to be (s, t)-temporalisable
if there exists a temporalisation σ of (D,T) such that t is σ-reachable from s, and it is said
to be strongly temporalisable if, for any two nodes s and t, (D,T) is (s, t)-temporalisable.
Moreover, we will also consider symmetric trip networks in the following sense. We say that
a trip network (D,T) is symmetric if all trips in T can be grouped into disjoint pairs (T, T)
such that Tis the reverse of T (T and Tare two distinct trips in T): Tvisits the same
nodes as T , but in reverse order.

We will often refer to a particular kind of temporalisations. Given a trip network (D,T),
a schedule of the trip network is an ordering of the trips in T. Note that a schedule
S immediately induces a temporalisation σS of the trip network defined as follows. If
S = T1, . . . , T|T|, then σS(T1) = 0 and σS(Ti+1) =

∑i
j=1 l(Tj), for i ∈ [|T| − 1]. A node v

is said to be S-reachable from a node u if it is σS-reachable. The S-reachability of the trip
network is defined as its σS-reachability (see Table 4.2 where, for any possible schedule S,
we indicate the S-reachability of the trip network shown in Figure 4.2).

Fact 1. Let (D,T) be a trip network and S be a schedule of (D,T). Let C be a weighted
multidigraph obtained starting from D by arbitrarily modifying only the weights of the arcs
of D. The S-reachability of (D,T) is equal to the S-reachability of (C,T).

Proof. The fact simply follows from the fact that a temporal path in G[D,T, σS ] is also a
temporal path in G[C,T, σS ], since temporal edges from different trips cannot be interleaved
inside a temporal path obtained through a schedule, where all arcs of a trip T are assigned
smaller starting times than all arcs of the trips scheduled after T .

104



v1 v2

v3

v4 v5

v3

v4 v5

v1 v2

Figure 4.3: An example of a trip network (D,T), where the underlying digraph D is depicted
on the left (all arcs have weight 1, so that D is a simple digraph) and T (depicted in the
induced multidigraph on the right) contains the trips T1 = ⟨v1, v3, v5⟩ (blue solid trip)
and T2 = ⟨v2, v3, v4⟩ (red dotted trip), such that the maximum σ-reachability obtainable
through a temporalisation is higher than the maximum S-reachability obtainable through a
schedule. Indeed, the two possible schedules both achieve a reachability equal to 12, while
a temporalisation that assigns the same starting time to T1 and T2 achieves a reachability
equal to 13 (which is also the number of pairs of nodes u and v such that v is reachable
from u in the underlying digraph).

For the sake of simplicity and without loss of generality, in the following we will present
our results by referring to trip networks in which the weight of all arcs are equal to 1:
indeed, as a consequence of Fact 1, all our results will apply to general trip networks as
well (either because they are hardness results or because the lower bounds on the tem-
poral reachability are obtained by referring to schedules). Under this assumption, a trip
Ti = ⟨(u0, u1, 1), . . . , (uk−1, uk, 1)⟩ will also be indicated as Ti = ⟨u0, . . . , uk⟩. This means
that the induced temporal graph will be a specific case of a point availability temporal graph,
namely a uniform strict one. Note that, however, in general, the maximum σ-reachability
obtainable through a temporalisation can be higher than the maximum S-reachability ob-
tainable through a schedule (see, for example, Figure 4.3), and that the presence of weights
can, in general, increase (or decrease) the maximum σ-reachability of a trip network (see,
for example, Figure 4.4).

Finally, we could consider an extension of the model that takes into account footpaths,
in the same spirit as in Chapter 3. The results of this chapter would still hold in this more
general setting. On one hand, this would not affect the hardness results. On the other hand,
the lower bounds on the temporal reachability are obtained using schedules. In this case,
it would be sufficient to define temporalisations starting from these schedules. We need to
shift the starting time of each trip after the arrival time of the previous one, by enough time
to enable any transfer through footpaths.

4.2 The maximum reachability walk temporalisation
problem

We first consider the following one-to-one version of the mrtt problem, called One-To-
One Reachability Walk Temporalisation (in short, o2o-rtt): given a trip network
(D,T) and two nodes s and t, is (D,T) (s, t)-temporalisable? Quite surprisingly, even this
restricted version of the mrtt problem seems to be difficult to be solved in polynomial time.

Theorem 11. The o2o-rtt problem is NP-complete.

105



v1 v2

v4

v5 v10 v6v7

v8

v3

v9 v4

v5 v10 v6v7

v8 v9

v1 v2

v3

Figure 4.4: An example of a trip network (D,T), where the underlying digraph D is depicted
on the left and T contains the three trips (depicted on the right) T1 (blue solid trip), T2

(green dashed trip), and T3 (red dotted trip), such that the presence of weights can increase
the maximum σ-reachability obtainable through a temporalisation. Indeed, if all weights are
equal to 1, no temporalisation σ can make the four nodes v7, v8, v9, and v10 all σ-reachable
from the three nodes v1, v2, and v3: hence, for any temporalisation σ, the σ-reachability
is less than the number R of pairs of nodes u and v such that v is reachable from u in D.
On the contrary, if the arc from v4 to v5 has weight 3, then there exists a temporalisation
whose reachability is equal to R (such a temporalisation assigns 1 to the trips T1 and T2,
and 2 to T3).

Proof. We reduce in polynomial time 3-sat to o2o-rtt. We remind to Section 1.1.3 for a
definition of the problem. Let us consider a 3-sat formula Φ, with n variables x1, . . . , xn

and m clauses c1, . . . , cm. We first define the directed graph D = (V, F ) as the union of the
following gadgets.

Intermediate and final nodes. V contains two nodes vn+1 and wm+1.

Variable gadgets (see Figure 4.5(a)). For each variable xi with i ∈ [n], let pi be the number
of clauses that contains the literal xi, and ni the number of clauses that contains the literal
¬xi (without loss of generality, we may assume that both pi and ni are positive numbers).
Then, V contains the following pi + ni + 1 nodes: vi, f

1
i , . . . , f

pi

i , t1i , . . . , t
ni
i . Moreover, F

contains the following pi+ni+2 directed arcs: (vi, f
1
i ), (f

h
i , f

h+1
i ) for h ∈ [pi−1], (fpi

i , vi+1),
(vi, t

1
i ), (t

h
i , t

h+1
i ) for h ∈ [ni − 1], and (tni

i , vi+1).

Clause gadgets (see Figure 4.5(b)). For each clause cj with j ∈ [m], V contains the
following four nodes: wj , l

1
j , l

2
j , l

3
j . Moreover, F contains the following six arcs: (wj , l

h
j ) and

(lhj , wj+1), for h ∈ [3].

Variable-clause arc. F contains the arc (vn+1, w1).

Clause-variable arcs (see Figure 4.5(c)). For each clause cj with j ∈ [m], for each variable
xi with i ∈ [n], for h ∈ [3], and for k ∈ [ni], F contains the arc (lhj , t

k
i ) if the h-th literal of cj

is ¬xi and cj is the k-th clause in which the literal ¬xi occurs. Analogously, for each clause
cj with j ∈ [m], for each variable xi with i ∈ [n], for h ∈ [3], and for k ∈ [pi], F contains
the arc (lhj , f

k
i ) if the h-th literal of cj is xi and cj is the k-th clause in which the literal xi

occurs.

We now define the trip collection T on D. For each clause cj with j ∈ [m] and for
h ∈ [3], T contains the trip ⟨wj , l

h
j , t

k
i , o

k
i ⟩, if (lhj , tki ) ∈ F and oki is defined as the unique

out-neighbour of tki (that is, oki = tk+1
i if k < ni, and oki = vi+1 if k = ni), and the trip

⟨wj , l
h
j , f

k
i , o

k
i ⟩, if (lhj , fk

i ) ∈ F and oki is defined as the unique out-neighbour of fk
i (that is,

oki = fk+1
i if k < pi, and oki = vi+1 if k = pi). Each of the other 2n+3m+1 arcs, that are not

106



(a)

(b)

(c)

vi

f1
i

· · ·

f
pi
i

t1i

· · ·

t
ni
i

vi+1

wj

l3jl2jl1j

wj+1

v1

f1
1

t11

t21

v2

f1
2

f2
2

t12

v3

f1
3

t13

t23

v4

w1

l31l21l11

w2

l32l22l12

w3

l33l23l13

w4

Figure 4.5: The reduction from 3-sat to o2o-rtt. The variable gadget (a) corresponding
to the variable xi (pi is the number of clauses that contains the literal xi, while ni is the
number of clauses that contains the literal ¬xi), the clause gadget (b) corresponding to the
clause cj , and the trip network (c) corresponding to the 3-sat formula (x1 ∨ x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) (the trips in red, blue, and green are the three trips
corresponding to the first clause (solid arcs), to the second clause (dashed arcs), and to the
third clause (dotted arcs), and each black arc forms a trip of length one).

107



yet included in a trip, forms a one-arc trip. Figure 4.5(c) shows an example of the reduction
in the case of the Boolean formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

Let σ be a temporalisation of the trip network (D,T) and let G = G[D,T, σ] be the
temporal graph induced by σ. Note that, each arc in D belongs to exactly one trip in T,
which means that, for each arc e ∈ F , there is exactly one temporal arc in G with the same
head and tail of e. Note also that, due to the topology of D, if wm+1 ∈ RG(v1), then the
first part of the temporal path P from v1 to wm+1 consists in moving from v1 to vn+1 by
passing, for each i ∈ [n], through the node vi and either through the nodes t1i , . . . , t

ni
i or

through the nodes f1
i , . . . , f

pi

i . The second part of the temporal path P consists in moving
from vn+1 to w1 and, then, from w1 to wm+1 by passing, for each j ∈ [m], through the node
wj and exactly one lj-node. Indeed, we can assume that P does not go back from a lj-node
to a variable node to which it is connected, since otherwise P should have to pass again
through the arc (vn+1, w1), contradicting the fact that, as observed above, there is only one
temporal edge in G corresponding to this arc. Moreover, if P uses a temporal edge with
tail wj and head lhj , for some h ∈ [3], and if (lhj , t

k
i ) ∈ F (respectively, (lhj , f

k
i ) ∈ F ), for

some i ∈ [n] and k ∈ [ni] (respectively, k ∈ [pi]), then P must have passed, in its first part,
through the fi-nodes (respectively, ti-nodes) corresponding to the variable xi. Otherwise,
as P is a temporal path, the edge outgoing tki (respectively, fk

i ) with head oki would have a
departure time smaller than the one assigned to (wj , l

h
j ), contradicting the fact that σ is a

temporalisation of the trip ⟨wj , l
h
j , t

k
i , o

k
i ⟩ (respectively, ⟨wj , l

h
j , f

k
i , o

k
i ⟩).

Let us now prove that (D,T) is (v1, wm+1)-temporalisable if and only if there exists an
assignment α to the variables that satisfies the Boolean formula Φ. Let us first suppose that
(D,T) is (v1, wm+1)-temporalisable, that is, there exists a temporalisation σ of (D,T) such
that wm+1 ∈ RG(v1), where G = G[D,T, σ] is the temporal graph induced by σ. Let P be a
temporal path from v1 to wm+1 in G. For each variable xi with i ∈ [n], we set α(xi) = True
if and only if P passes through the ti-nodes corresponding to xi. We now prove that any
clause cj , with j ∈ [m], is satisfied by α. Let lhj , for some h ∈ [3], be the node which P

goes to, when moving from wj . If (lhj , f
k
i ) ∈ F (respectively, (lhj , t

k
i ) ∈ F ), for some i ∈ [n]

and k ∈ [pi] (respectively, k ∈ [ni]), then the h-th literal of cj is xi (respectively, ¬xi), and,
because of the previous observations, P passes through the ti-nodes (respectively, fi-nodes)
corresponding to xi: this implies that α(xi) = True (respectively, α(xi) = False) and,
hence, that the clause cj is satisfied.

Let us now suppose that there exists an assignment α to the variables that satisfies the
formula Φ, and let us consider the following walk P in D, which starts from v1 and arrives in
wm+1. The first part of P arrives at vn+1 and consists in moving from vi to vi+1, for i ∈ [n],
by passing through the ti-nodes (respectively, fi-nodes) corresponding to xi, if α(xi) = True
(respectively, α(xi) = False). We know that, for each clause cj with j ∈ [m], at least one
literal of cj is satisfied: suppose that the first such literal is the hj-th one, for some hj ∈ [3].
Note that the choice of hj implies that the first part of P does not use any arc of the trip

T containing the arc (cj , l
hj

j ): indeed, if the corresponding literal is xi (respectively, ¬xi),
T goes through the fi-nodes (respectively, ti-nodes), while P goes through the ti-nodes
(respectively, fi-nodes) as α(xi) = True (respectively, α(xi) = False). The second part of
P starts from vn+1, moves to w1, arrives at wm+1, and consists in moving from wj to wj+1,

for j ∈ [m], by passing through the node l
hj

j . Because of the definition of T and the choice of
h1, . . . , hm, each arc of P belongs to a different trip in T. We can then consider a schedule S
of (D,T) in which the trips corresponding to the arcs in P are scheduled in the same order
as they appear in P itself. The walk P thus induces a temporal path in G[D,T, σS ] from v1

108



to wm+1. Thus, (D,T) is (s, t)-temporalisable and the theorem has been proved.

Note that, as a consequence of its proof, the above theorem holds even with the following
restrictions: the in-degree and the out-degree of the nodes in D are bounded by 3, and T
contains only simple trips (that is, trips that do not pass through the same node more than
once), which are pairwise arc-disjoint.

We are now ready to prove the inapproximability result of the mrtt problem. Note that,
given an instance (D,T) with n nodes, any solution of the problem has a value greater than
or equal to n (since we have assumed that any node is temporally reachable from itself).
Since the number of pairs of nodes is n2, the mrtt problem is trivially n-approximable.
The following theorem states that a better approximation is not achievable, unless P = NP.

Theorem 12. Unless P = NP, the mrtt problem is not r(·)-approximable, for any ϵ ∈ (0, 1)
and for any non-decreasing function r in O(n1−ϵ), where n is the number of nodes.

Proof. The proof makes use of the well-known gap technique (see Section 3.1.4 of [2]).
Suppose by contradiction that there exists a r(·)-approximation algorithm A for the mrtt
problem, for some ϵ ∈ (0, 1) and for some function r(n) of the number n of nodes that satisfies
r(n) ≤ cn1−ϵ for some constant c. We will now show that it is possible to exploit such an
algorithm in order to solve in polynomial time the o2o-rtt problem, which would imply
that P = NP (because of Theorem 11). Let us consider an instance ⟨(D = (V, F ),T), s, t⟩
of the o2o-rtt problem, where V = {s = v1, . . . , vn = t}. Without loss of generality, we
assume that n > c+ 1. We define an instance (D′ = (V ′, F ′),T′) of mrtt as follows.

� V ′ = V ∪ {vn+i : i ∈ [2K]} with K =
⌈
(cn)1/ϵ(n+ 2)

2−ϵ
ϵ

⌉
.

� F ′ = F ∪ {(vn+i, s), (t, vn+K+i) : i ∈ [K]}}.

� T′ is the union of T with all the one-arc trips corresponding to the arcs in F ′ \ F .

Consider an optimal temporalisation σ∗ of (D′,T′): the maximum reachability is thus
opt =

∑
u∈V |RG[D′,T′

,σ∗]
(u)|. Moreover, let x be the value of the reachability achieved

by the temporalisation computed by the approximation algorithm A with input (D′,T′):
hence, opt

r(n′) ≤ x ≤ opt where n′ = n+ 2K.

Let us upper bound opt in the case in which (D,T) is not (s, t)-temporalisable. To
this aim, we upper bound the number of nodes σ′-reachable from each node in V ′, for any
temporalisation σ′ of (D′,T′) (in the following, G′ = G[D′,T′, σ′] is the temporal graph
induced by σ′).

� |RG′(v1)| ≤ n− 1 (since t is not σ′-reachable from s = v1).

� For each i ∈ [n − 1], |RG′(vi+1)| ≤ n + K (since all nodes vn+i with i ∈ [K] have
in-degree equal to zero in D′).

� For each i ∈ [K], |RG′(vn+i)| ≤ n (since t is not σ′-reachable from s).

� For each i ∈ [K], |RG′(vn+K+i)| = 1 (since all these nodes have out-degree equal to
zero in D′).

109



Thus, if (D,T) is not (s, t)-temporalisable, we have that x ≤ opt ≤ (n−1)+(n−1)(n+
K)+Kn+K = n2 +2nK − 1. On the other hand, if (D,T) is (s, t)-temporalisable, then it
is easy to produce a temporalisation σ′ of (D′,T′) such that vn+K+i ∈ RG[D′,T′

,σ′]
(vn+j),

for any i, j ∈ [K]. Hence, in this case we have that x ≥ opt
r(n′) ≥

K2

r(n′) .

If we prove that K2

r(n′) > n2 + 2nK − 1, then we have that x > n2 + 2nK − 1 if and only

if (D,T) is (s, t)-temporalisable. This would imply that the o2o-rtt problem is solvable in

polynomial time, and the theorem is proved. Let us then show that K2

r(n′) > n2 + 2nK − 1.

Since

K2

r(n′)
≥ K2

c(n+ 2K)1−ϵ
>

K2

c(n+ 2)1−ϵK1−ϵ
=

K1+ϵ

c(n+ 2)1−ϵ
,

it is sufficient to prove that K1+ϵ ≥ c(n + 2)1−ϵn(n + 2K). Since, by definition, K ≥
(cn)1/ϵ(n + 2)

2−ϵ
ϵ , that is, Kϵ ≥ cn(n + 2)2−ϵ, we have that K1+ϵ ≥ cnK(n + 2)2−ϵ >

cn(n+ 2K)(n+ 2)1−ϵ, and the proof is completed.

We can state a third hardness result (whose proof is given in the appendix), concerning
an optimisation problem which is, somehow, in between the o2o-rtt problem and the
mrtt problem, that is, the following Single Source Maximum Reachability Walk
Temporalisation (in short, ss-mrtt) problem: given a trip network (D,T) and a node
s, find a temporalisation σ of (D,T) which maximises the σ-reachability of s. Note that,
given an instance of this problem, any solution has a value greater than or equal to 1.
Since the maximum number of nodes temporally reachable from s is n, we have that the
ss-mrtt problem is trivially n-approximable. The following theorem states that a better
approximation is not achievable, unless P = NP.

Theorem 13. Unless P = NP, the ss-mrtt problem is not r(·)-approximable, for any
ϵ ∈ (0, 1) and for any non-decreasing function r in O(n1−ϵ), where n is the number of
nodes.

Proof. Similarly to the proof of Theorem 12, we will make use of the gap technique. Suppose
by contradiction that there exists a r(·)-approximation algorithm A for the ss-mrtt prob-
lem, for some ϵ ∈ (0, 1) and for some function r(n) of the number n of nodes that satisfies
r(n) ≤ cn1−ϵ for some constant c. We will now show that it is possible to exploit such an
algorithm in order to solve in polynomial time the o2o-rtt problem, which would imply
that P = NP (because of Theorem 11). Let us consider an instance ⟨(D = (V, F ),T), s, t⟩
of the o2o-rtt problem, where V = {s = v1, . . . , vn = t}. Without loss of generality, we
assume that n > c+ 1. We define an instance (D′ = (V ′, F ′),T′) of ss-mrtt as follows.

� V ′ = V ∪ {vn+i : i ∈ [K]} with K = ⌈cn2/ϵ⌉.

� F ′ = F ∪ {(t, vn+i) : i ∈ [K]}.

The trip collection T′ is then defined as the union of T with all the one-arc trips correspond-
ing to the arcs in F ′ \ F .

Consider an optimal temporalisation σ∗ of (D′,T′): the maximum reachability of s is
thus opt = |R

G[D′,T′
,σ∗]

(s)|. Moreover, let x be the value of the temporalisation computed

by the approximation algorithm A: hence, opt
r(n′) ≤ x ≤ opt where n′ = n+K.

110



If (D,T) is (s, t)-temporalisable, then opt ≥ K + 2. Indeed, the very same temporalisa-
tion can be extended to (D′,T′), by assigning to all the new one-arc trips a starting time
greater than the arrival time in t, so that all the K new out-neighbours of t are reachable.

Note that opt ≥ K + 2 implies that x ≥ opt
r(n′) ≥

K+2
r(n′) ≥

cn2/ϵ

r(n′) . Since n′ = n + K, we

have that n′ < n + cn2/ϵ + 1 < n1+2/ϵ (since n > c + 1 and ϵ ∈ (0, 1)). Since r is non-

decreasing, we get x ≥ cn2/ϵ

r(n′) > cn2/ϵ

r(n1+2/ϵ)
≥ cn2/ϵ

c(n1+2/ϵ)1−ϵ = n1+ϵ > n. Hence, if (D,T) is

(s, t)-temporalisable, then x > n. On the other hand, if (D,T) is not (s, t)-temporalisable,
then opt < n, since none of the new out-neighbors of t are σ′-reachable from s (without
passing through t), for any temporalisation σ′ of (D′,T′). Hence, x ≤ opt < n.

We can conclude that (D,T) is (s, t)-temporalisable if and only if the value x of the
solution computed by the approximation algorithm A is greater than n. This implies that
the o2o-rtt problem is solvable in polynomial time, and the theorem is proved.

4.2.1 Bounding the number of used trips

In this section, we study the o2o-rtt problem parameterised by the number of trips needed
to go from the source to the destination.

Given a trip network (D,T), a temporalisation σ and k ∈ N, a node v is said to be
(k, σ)-reachable from u if there exists a temporal path P in G = G[D,T, σ] from u to v
which is composed of edges induced by at most k different trips in T: let P be the set of
such trips. Note that, without loss of generality, we can suppose that the edges induced by
the same trip are contiguous in P . Indeed, if P = e1, . . . , ep, let T1 ∈ P be one of the trips
that induces e1 and let eh be the last edge in P which is induced by T1. The temporalisation
of T1 induces a temporal path e′1 = e1, e

′
2, . . . , e

′
l−1, e

′
l = eh in G. We can then consider the

temporal path P ′ = e′1, . . . , e
′
l, eh+1, . . . , ep, which has the property that all the edges which

are induced by T1 are contiguous. We can now apply the same argument by considering
the trip T2 ∈ P as one of the trips that induces eh+1, and go on like this until all the edges
induced by each trip considered are contiguous in the final temporal path from u to v.

We now consider the o2o-rtt problem parameterised by the number k of trips used in
the resulting temporal graph, in order to go from s to t. More precisely, given a trip network
(D,T), a source node s, and a target node t, the parameterised problem k-o2o-rtt consists
in deciding whether there exists a temporalisation σ such that v is (k, σ)-reachable from u.
By using the color coding technique developed in [1], we can obtain the following result.

Theorem 14. The k-o2o-rtt problem can be solved in 2O(k)M log |T| time where M =∑
T∈T |T | is the number of arcs in the induced multidigraphM.

Proof. Let us consider a trip network (D = (V, F ),T), a source node s and a target node
t, and let M be the induced multidigraph of (D,T). Note that M =

∑
T∈T |T | is also

the number of arcs in M. We suppose that for each trip T , we are given the list of its
arcs in their respective order in T . We also let V (T ) denote the set of nodes appearing in
T and write u ≺T v when u, v ∈ V (T ) and u precedes v in T . Let χ : T → [k] be any
color assignment to the trips in T. For i ∈ [k], a (i, χ)-path P inM is a path which is the
concatenation of exactly i subtrips of distinct trips in T with pairwise distinct colors (in
the following, χ(P ) will denote the set of colors “used” by such a path P ). Note that the
existence of a (i, χ)-path inM from s to t with i ∈ [k] implies the existence of a schedule S
such that t is (k, σS)-reachable from s: indeed, we can first schedule the i trips of the path
in the order they appear in it, and then the remaining trips of T in any order. In order

111



to test the existence of a (i, χ)-path in M from s to t for i ∈ [k], we can use the dynamic
programming technique [4]. For any node v ∈ V , let Aχ[v, i] denote the collection of sets
C of colors for which there exists a (i, χ)-path P in M from s to v such that χ(P ) = C.
Clearly, there exists a (i, χ)-path inM from s to t if and only if Aχ[t, i] ̸= ∅. We have that,
for any node v ∈ V ,

Aχ[v, 1] = {{χ(T )} : T ∈ T ∧ s ≺T v}.

Moreover, for any i ∈ [k − 1],

Aχ[v, i+ 1] =
⋃

T∈T:v∈V (T)

{C ∪ {χ(T )} : u ≺T v ∧ C ∈ Aχ[u, i] ∧ χ(T ) ̸∈ C}

=
⋃

T∈T:v∈V (T)

{C ∪ {χ(T )} : C ∈ C(T, v) ∧ χ(T ) ̸∈ C}

where C(T, v) =
⋃

u≺T v Aχ[u, i]. We can compute Aχ[v, 1] for all v ∈ V by scanning all
trips that contain s. These trips can be obtained in O(M) time by scanning all trips
in T. Moreover, we can execute the above update rule for all v ∈ V by scanning once
each trip T ∈ T as follows. We first set Aχ[v, i + 1] := ∅ for all v ∈ V . Then, for each
trip T , we iterate over the arcs of T in their respective order in T . For each arc (u, v)
of T , we compute C(T, v) = C(T, u) ∪ Aχ[u, i] and update Aχ[v, i + 1] := Aχ[v, i + 1] ∪
{C ∪ {χ(T )} : C ∈ C(T, v) ∧ χ(T ) ̸∈ C} (if (u, v) is the first arc of T we simply use C(T, v) =
Aχ[u, i] as u is then the only node preceding v in T ). Note that both the computation of
C(T, v) and the update of Aχ[v, i + 1] take O(2k) time since, for any node u ∈ V and for
j ∈ [k], |Aχ[u, j]| ≤ 2k. Each update step is thus performed in O(2kM) time and the whole
computation requires 2O(k)M time.

Observe now that if there exists a temporalisation of (D,T) such that t is (k, σ)-reachable
from s, then there must exist a color assignment χ such thatM includes a (i, χ)-path from
s to t for some i ∈ [k]. In order to find such a path, we can use an appropriate set of perfect
hash functions from [|T|] to [k]. Indeed, it is possible to design 2O(k) log |T| hash functions
such that any subset of k trips has image {1, . . . , k} for at least one function [55]. This
implies that any subset of i trips has i pairwise distinct colors as image for at least one
function as such a set can be completed in a set of k trips. Each hash function can be coded
with O(k + log log |T|) bits, and can be generated in O(k3 log |T|) time [36]. The number
of such functions is O(2k log |T|) and their computation takes 2O(k) log2 |T| time. As they
can be accessed in O(1) time, testing the coloring obtained through each function yields a
2O(k)M log |T|-time algorithm for solving the k-o2o-rtt problem (we use log |T| = O(|T|)
and |T| ≤M). The theorem is thus proved.

4.3 Strongly temporalisable trip networks

We now switch to strongly temporalisable trip networks where one-to-one reachability is
assumed for all pairs of nodes. This clearly implies that the o2o-rtt problem is trivially
solvable when restricted to strongly temporalisable trip networks, since the answer is always
yes (actually, one-to-one reachability is always satisfied under strong temporalisability).
On the other hand, we will prove that both the mrtt and the ss-mrtt problem cannot

be approximated within a factor less than
√
n

12 (unless P = NP). To this aim, we first

112



show that the strong temporalisability by itself is not enough to ensure the existence of a
temporalisation σ with a σ-reachability which is a constant fraction of all pairs of nodes.

Theorem 15. For any r > 3, there exists a strongly temporalisable trip network (Dr,Tr)
with n = r2 + 2r nodes, such that any temporalisation σ of (Dr,Tr) has σ-reachability

O(n
3
2 ).

Proof. We first define the trip network (Dr,Tr) through the gadgets that compose it (see
Figure 4.6). We then prove that the trip network is strongly temporalisable and, finally, we

prove that, for any temporalisation σ, the σ-reachability is O(n
3
2 ).

Upper gadget V U , FU ,TU . The set V U contains the nodes c1, . . . , cr, and the nodes
u1, . . . , ur. These nodes are connected through the following set of directed arcs:

FU = {(ci+1, ci) : i ∈ [r − 1]} ∪ {(ci, ci+2) : i ∈ [r − 2]} ∪ {(c1, ui), (ui, c2) : i ∈ [r]}.

On this gadget, we have the following collection of trips: TU = {TU
i : i ∈ [r]}, where

TU
i = ⟨c1, ui, c2, c1, c3, c2, . . . , cr−1, cr−2, cr, cr−1⟩

(each arc (ci+1, ci) is followed by (ci, ci+2), see also Figure 4.6, where the upper red
solid trip is TU

3 ).

Lower gadget V L, FL,TL. The set V L contains the nodes cr+1, . . . , c2r, and the nodes
l1, . . . , lr. These nodes are connected through the following set of directed arcs:

FL = {(cr+i+1, cr+i) : i ∈ [r − 1]} ∪ {(cr+i, cr+i+2) : i ∈ [r − 2]}
∪{(c2r−1, li), (li, c2r) : i ∈ [r]}.

On this gadget, we have the following collection of trips: TL = {TL
i : i ∈ [r]}, where

TL
i = ⟨cr+2, cr+1, cr+3, cr+2, . . . , c2r−2, c2r, c2r−1, li, c2r⟩

(each arc (cr+i+1, cr+i) is followed by (cr+i, cr+i+2), see also Figure 4.6, where the
lower red solid trip is TL

3 ).

Descending gadgets V ↓
i , F ↓

i ,T
↓. For any i with i ∈ [r], we refer to node ui and li as

d1i and dri , respectively. The set V ↓
i contains the nodes d2i , . . . , d

r−1
i . These nodes

are connected among them and to the previous gadgets through the following set of
directed arcs:

F ↓
i = {(dji , d

j+1
i ) : j ∈ [r − 1]}.

On this gadget, we have the following collection of trips: T↓ = {T ↓l
i , T ↓r

i : i ∈ [r]},
where

T ↓l
i = T ↓r

i = ⟨ui = d1i , d
2
i , . . . , d

r−1
i , dri = li⟩

(see Figure 4.6, where the blue dashed trip is T ↓l
3 and the violet dotted trip is T ↓r

3 ).

Ascending gadget e↑ , T ↑ . This gadget contains the arc e↑ = (cr+1, cr), which connects
the lower gadget to the upper gadget, and is also a one-arc trip T ↑. Note that this
gadget does not introduce any new nodes.

113



c1c2c3· · ·cr−2cr−1cr u1 u2 u3 · · · ur−1 ur

cr+1 cr+2 cr+3 · · · c2r−2 c2r−1 c2r l1 l2 l3 · · · lr−1 lr

d2
1 d2

2 d2
3 · · · d2

r−1 d2
r

d3
1 d3

2 d3
3 · · · d3

r−1 d3
r

· · · · · · · · · · · · · · · · · ·

dr−2
1 dr−2

2 dr−2
3 · · · dr−2

r−1 dr−2
r

dr−1
1 dr−1

2 dr−1
3 · · · dr−1

r−1 dr−1
r

Figure 4.6: An example of a strongly temporalisable trip network, such that any tempo-
ralisation cannot connect a constant fraction of the total pairs of nodes, obtained via the
construction described in the proof of Theorem 15. The two red solid trips, starting from
the two red nodes, correspond to the trip TU

3 and TL
3 , respectively, in the construction (the

first time a trip passes through a node with more than one red outgoing arc, it continues
towards the node with the smaller index). The blue dashed (respectively, violet dotted)

trip, starting from the half blue (respectively, violet) node, corresponds to the trip T ↓l
3 (re-

spectively, T ↓r
3 ) in the construction. Finally, the green solid trip, starting from the green

node, corresponds to the trip T ↑ in the construction.

114



To conclude the definition of the network, we set Dr = (V, F ) where

V = V U ∪ V L ∪
r⋃

i=1

V ↓
i

(note that |V | = 2r + 2r + r(r − 2) = r2 + 2r) and

F = FU ∪ FL ∪
r⋃

i=1

F ↓
i ∪ {e

↑},

and we set
Tr = TU ∪ TL ∪ T↓ ∪ {T ↑}.

Note that the descending gadgets contain the majority of the nodes in the trip network,
and that it is possible to visit them by entering from the upper nodes and by travelling all
the way down (the second descending trip T ↓r

i is necessary in order to ensure that the trip
network is strongly temporalisable).

(Dr,Tr) is strongly temporalisable. In order to ease the reading of the proof let us
first define the following r (partial) schedules of the trip networks (Dr,TU ) and (Dr,TL),
respectively.

� Schedule SU
i for i ∈ [r]. This schedule has the purpose of making ui SU

i -reachable
from cr. The schedule SU

i consists in having the trips TU scheduled in any order that
has TU

i as the last one. Starting from cr, it is possible to go to cr−1 through the arc
(cr, cr−1) of the first trip scheduled, to cr−2 through the arc (cr−1, cr−2) of the second
trip scheduled, and so on. In this way, it is possible to reach c1 using the first r − 1
trips scheduled. Finally, from c1 it is possible to go to ui through the arc (c1, ui)
of the trip TU

i . Note that this also shows that, for any h, k ∈ [r] with h > k, ck is
SU
i -reachable from ch.

� Schedule SL
i for i ∈ [r]. This schedule is similar to the previous one, but applied to

the lower gadget. It allows node cr+1 to be SL
i -reachable from li. The schedule SL

i

consists in having the trips TL scheduled in any order that has TL
i as the first one.

Starting from li, it is possible to go to c2r through the arc (li, c2r) of the trip TL
i .

At this point, it is possible to reach cr+1 from c2r by using one arc of each of the
remaining r − 1 trips. Note that this also shows that, for any h, k ∈ [r] with h > k,
ck+r is SL

i -reachable from ch+r.

By using the (partial) schedules above, we can now easily show that, for any two nodes
u and v in V , there exists a schedule S such that v is S-reachable from u. These schedules
are specified in Table 4.3 for each possible pair of nodes. For example, in order to reach
dl2h ∈ V ↓ from dl1h ∈ V ↓ with l2 < l1, we first schedule the trip T ↓l

h in order to reach lh ∈ V L,
we then use the (partial) schedule SL

h in order to reach cr+1, we then schedule the trip T ↑ in
order to reach cr, we then use the (partial) schedule SU

h in order to reach uh, and we finally

schedule the trip T ↓r
h to reach dl2h (note how, in this case, we need the second descending

trip).

Any temporalisation σ has O(n
√
n) σ-reachability. Given any temporalisation σ of the

trip network (Dr,Tr), let T
L
imin

be one of the trips with minimum starting time according to

115



Source Destination

ck ∈ V U uk ∈ V U ck ∈ V L lk ∈ V L dl2k ∈ V ↓l
k

ch ∈ V U SU
1 if k < h

TU
1 if k > h

SU
k SU

1 , T ↓l
1 , SL

1 SU
k , T ↓l

k SU
k , T ↓l

k

uh ∈ V U TU
h TU

h , TU
k T ↓l

h , SL
h

T ↓l
k if k = h

TU
h , TU

k , T ↓l
k if k ̸= h

T ↓l
k if k = h

TU
h , TU

k , T ↓l
k if k ̸= h

ch ∈ V L SL
1 , T

↑, SU
1 SL

1 , T
↑, SU

k

SU
1 if k < h

TL
1 if k > h

TL
k SL

h , T
↑, SU

k , T ↓l
k

lh ∈ V L SU
h , T ↑, SU

k SU
h , T ↑, SU

k SL
h TL

h , TL
k SL

h , T
↑, SU

k , T ↓l
k

dl1h ∈ V ↓l
h T ↓l

h , SL
h , T

↑, SU
k T ↓l

h , SL
h , T

↑, SU
k T ↓l

h , SL
h

T ↓l
h if k = h

T ↓l
h , TL

h , TL
k if k ̸= h

T ↓l
h , SL

h , T
↑, SU

k , T ↓l
k if k ̸= h

T ↓l
h if k = h ∧ l2 > l1

T ↓l
h , SL

h , T
↑, SU

k , T ↓r
k if k = h ∧ l2 < l1

Table 4.3: The different cases in the proof that the trip network (Dr,Tr), defined in the
proof of Theorem 15 and illustrated in Figure 4.6, is strongly temporalisable. For each node
u labeling the row and for each node v labeling the column, the corresponding cell specifies
which (partial) schedule S has to be used in order to guarantee that v is S-reachable from
u (the trips that do not appear can be scheduled in any order).

σ among all the trips in the lower gadget, and let TU
imax

be one of the trips with maximum
starting time according to σ among all the trips in the upper gadget. We will prove the
following claim.

Claim 5. For any pair of nodes (dl1h1
, dl2h2

) with 1 < l1, l2 < r, h1, h2 ∈ [r], h1 ̸= h2, and

h1 ̸= imin ∨ h2 ̸= imax, d
l2
h2

is not σ-reachable from dl1h1
.

Note that the number of pairs of nodes satisfying the conditions in the claim is at least
(r − 1)(r − 2)3 > (r − 1)(r3 − 6r2) = r4 − 7r3 + 6r2 > r4 − 7r3, thus implying that, since
n = r2+2r, the σ-reachability is at most (r2+2r)2−(r4−7r3) = r4+4r3+4r2−r4+7r3 =
11r3 + 4r2 < 15r3. Since n = r2 + 2r, we have that r <

√
n, and that the σ-reachability is

at most 15n
√
n. The theorem thus follows.

It thus remains to prove the claim. To this aim, let (dl1h1
, dl2h2

) be such that 1 < l1, l2 < r,
h1, h2 ∈ [r], h1 ̸= h2, and h1 ̸= imin ∨ h2 ̸= imax. Note that, since h1 ̸= h2, each walk in
Dr from dl1h1

to dl2h2
has to pass through the nodes lh1

, cr+1, cr, and uh2
in this order. Note

also that any walk from lh1
to cr+1 contains at least r arcs. Since travelling on more than

one arc of the same trip in the lower gadget results in going back towards lh1
, all the r trips

in TL have to be used in order to go from lh1 to cr+1. As in any temporal path from lh1

to cr+1 in G[Dr,Tr, σ], the starting times of the temporal edges must increase, this implies
that all starting times of trips in TL must be pairwise distinct and that the trip with the
earliest starting time is TL

h1
as it is the only one containing the arc (lh1

, c2r). If h1 ̸= imin,
then σ fails to make cr+1 σ-reachable from lh1

. If h2 ̸= imax, a similar reasoning allows us
to show that σ fails to make uh2

reachable from cr by considering a temporal path from
cr to uh2 in G[Dr,Tr, σ], and the trips in TU . Hence, h1 ̸= imin ∨ h2 ̸= imax and h1 ̸= h2

implies that σ fails to make dl2h2
σ-reachable from dl1h1

, and the claim is proved.

The construction of the trip network (Dr,Tr) in the proof of the above theorem can be
adapted in order to prove the following inapproximability results for both the mrtt and the
ss-mrtt problem, in the case of strongly temporalisable trip networks.

Theorem 16. Unless P = NP , the mrtt problem cannot be approximated within a factor

less than
√
n

12 even if the input trip network is strongly temporalisable.

116



c1c2c3· · ·cr−2cr−1cr u1 u2 · · · ur−1 t

cr+1 cr+2 cr+3 · · · c2r−2 c2r−1 c2r l1 l2 · · · lr−1 lr

d21 d22 · · · d2r−1 x2

d31 d32 · · · d3r−1 x3

· · · · · · · · · · · · · · ·

dr−2
1 dr−2

2 · · · dr−2
r−1

xp−1

dr−1
1 dr−1

2 · · · dr−1
r−1 s

(D = (V,E),T)

Figure 4.7: The reduction from o2o-rtt to mrtt used in the proof of Theorem 16 (the arcs
in D are not shown, unless they coincide with one of the shown arcs). All the arcs without
arrows are present in both directions (for instance, both (t, x2) and (x2, t) are included in
the set of arcs, while only (t, ur−1) is included in the set of arcs).

Proof. As in the proof of Theorem 12, we use the gap technique by reducing in polynomial
time the o2o-rtt decision problem to the mrtt problem. Consider an instance ⟨(D =
(V, F ),T), s, t⟩ of the o2o-rtt problem, where V = {t = x1, . . . , xp = s} (without loss
of generality, we assume that p > 22). We then define a trip network (D′ = (V ′, F ′),T′)
as follows (see Figure 4.7). Let (Dr = (Vr, Fr),Tr), with r = p + 1, be the trip network
constructed in the proof of Theorem 15 (note that r > 23): in the following, we identify
each node xi ∈ V with the node dir of the last descending gadget of Dr (that is, we consider
V = {d1r = ur = t, d2r = x2, . . . , d

r−2
r = xr−2 = xp−1, d

r−1
r = s}). Note that lr = drr is not a

node in V .. We then set V ′ = Vr and

F ′ = Fr ∪ {(dir, djr) : (xi, xj) ∈ F ∪ {(di+1
r , dir) : i ∈ [r − 1]}

∪{(ui+1, ui) : i ∈ [r − 1]} ∪ {(li, li+1) : i ∈ [r − 1]} ∪ {(u1, c1), (c2r, l1)}.

Note that, according to the definition of V ′ and F ′, each trip in T can be considered as a

117



walk in D′. We then set

T′ = T ∪ Tr \ {TU
r , TL

r , T ↓l
r , T ↓r

r } ∪ {TU , TL, T↑↓},

where TU , TL, T↑↓ are the following three trips.

� TU = ⟨t, ur−1, . . . , u1, c1, t, c2, c1, c3, c2, . . . , cr−1, cr−2, cr, cr−1⟩ (intuitively, TU re-
places TU

r : it first visits t = ur, . . . , u1, it then goes to c1, and it finally continues
exactly as TU

r ).

� TL = ⟨cr+2, cr+1, cr+3, cr+2, . . . , c2r−2, c2r, c2r−1, lr, c2r, l1, l2, . . . , lr⟩ (intuitively, TL

replaces TL
r : it first starts exactly as TL

r , and it then visits l1, . . . , lr).

� T↑↓ = ⟨s, dr−2
r , . . . , t, d2r, . . . , d

r−2
r , s, lr, s⟩ (intuitively, T↑↓ replaces both T ↓l

r and T ↓r
r ).

(D′,T′) is strongly temporalisable (even if (D,T) is not). The proof is similar to the
one proving that (Dr,Tr) is strongly temporalisable (see the proof of Theorem 15). Indeed,
whenever h = r or k = r in Table 4.3, we can replace TU

h or TU
k by TU (respectively,

TL
h or TL

k by TL and T ↓l
h or T ↓l

k by T↑↓) in the schedules included in the table. Since TU
r

(respectively, TL
r and T ↓l

r ) is included in TU (respectively, TL and T↑↓), by doing so we have
that all the reachability properties of the table are still satisfied apart from the last case of
the last cell of the table itself, with h = k = r. However, in this case, for any temporalisation
σ, we have that dl2r ∈ V ↓ is σ-reachable from dl1r ∈ V ↓ with l2 < l1, since we can just use
the trip T↑↓ (which allows to go up from dl1r to dl2r ).

If (D,T) is (s, t)-temporalisable, then there exists a temporalisation σ′ of
(D′,T′) with σ′-reachability at least ((r−1)r)2. To this aim, first note that, for any tem-
poralisation σ′ of (D′,T′), if σ′(T↑↓) = τ ′, then the trip T↑↓ arrives at lr at time τ ′ +2r− 3,
and terminates in s at time τ ′+2r− 2. If (D,T) is (s, t)-temporalisable, then there exists a
temporalisation σ of (D,T) such that t is σ-reachable from s. Let P be any temporal path
in G[D,T, σ] from s to t, and let τs (respectively, τa) be the departure (respectively, arrival)
time of P from s (respectively, in t). We then define a temporalisation σ′ of (D′,T′) as fol-
lows. For any T ∈ T, σ′(T ) = σ(T ). Moreover, for any h ∈ [r−1], σ′(T ↓l

h ) = τs−2r+1, and

σ′(TL) = τs−1−|TL| = τs−3r. This allows the trips T ↓l
h to “meet” the trip TL in lh at time

τs− (r−h)−1: note that TL arrives in lr at time τs−1. Hence, we set σ′(T↑↓) = τs−2r+2
so that T↑↓ arrives in lr also at time τs−1. By using the (last edge of the) trip T↑↓, and then
the path P , we can arrive in t at time τa. By setting σ′(TU ) = τa and, for any h ∈ [r − 1],

σ′(T ↓r
h ) = τa + r − h, we can arrive at any node dkh at time τa + r − h + k − 1. In other

words, we have shown that all nodes of the first r − 1 descending gadgets are σ′-reachable
one from the other. That is, the σ′-reachability is at least ((r − 1)r)2.

If (D,T) is not (s, t)-temporalisable, then the σ′-reachability of any tempo-
ralisation σ′ of (D′,T′) is at most 3rn + 7r2(r − 1). Let σ′ be a temporalisation of
(D′,T′). First note that σ′ induces a temporalisation σ of (D,T). Since (D,T) is not (s, t)-
temporalisable, we have that t is not σ-reachable from s. Moreover, since the arc (lr, s)
is the last arc in the trip T↑↓, it cannot be used before the other arcs in this trip. As a
consequence, t is not σ′′-reachable from lr, where σ′′ is the temporalisation induced by σ′

on (D′,T ∪ {T↑↓}). The topology of D′ thus implies that, for all i, j ∈ [r], all temporal
paths from li to uj in G[D′,T′, σ′] must pass through the nodes c2r, c2r−1, . . . , cr+1, the arc
(cr+1, cr), and the nodes cr, cr−1, . . . , c1.

118



Let TL
imin

be one of the trips with minimum starting time according to σ′ among all the
trips in the lower gadget (imin = r if TL is the only trip with minimum starting time), and
let TU

imax
be one of the trips with maximum starting time according to σ′ among all the trips

in the upper gadget (imax = r if TU is the only trip with maximum starting time). Similarly
to the proof of Theorem 15, we can then show that there is no temporal path in G[D′,T′, σ′]
from lh to cr+1 for h ∈ [r] \ {imin} nor from cr to uk for k ∈ [r] \ {imax}. Note that the
additional part ⟨c2r, l1, . . . , lr⟩ of TL (respectively, ⟨t, ur−1, . . . , u1, c1⟩ of TU ), compared to
TL
r (respectively, TU

r ), does not change the reasoning as it comes at the end (respectively,
the beginning) of the trip and, in particular, after arc (lr, c2r) (respectively, before the arc
(c1, l1)).

We can thus similarly conclude that dl2h2
is not σ′-reachable from dl1h1

for all h1, h2 ∈ [r−1]
with h1 ̸= imin or h2 ̸= imax and all l1, l2 with 1 < l1, l2 < r. Note that the situation is
different from the previous construction for l1 = l2 = r or l1 = l2 = 1 as TL makes drh2

= lh2

σ′-reachable from drh1
= lh1

for h1 < h2 and that TU makes d1h1
= uh1

σ′-reachable from
d1h2

= uh2
for h1 < h2. Overall, this means that only nodes in

{d1h1
, . . . drh1

, l1, . . . , lr, c1, . . . , c2r, u1, . . . , ur, d
1
imax

, . . . , drimax
, d1r, . . . , d

r
r}

can be σ′-reachable from dl1h1
for h1 ∈ [r− 1] and l1 ∈ [r]. Thus, the nodes in the first r− 1

descending gadgets have σ′-reachability at most 7r. The other 3r nodes have σ′-reachability
at most n.

The MRTT problem cannot be approximated within a factor less than
√
n

12 . We
now prove that any polynomial-time algorithm A solving mrtt with approximation ratio

ρ <
√
n

12 would allow us to decide in polynomial-time whether (D,T) is (s, t)-temporalisable.
As this latter problem is NP-complete, as stated by Theorem 11, this will conclude the proof
of the theorem. If (D,T) is (s, t)-temporalisable, then then there exists a temporalisation of
(D′,T′) whose reachability is at least ((r − 1)r)2. This implies that A, with input the trip

network (D′,T′), has to provide a temporalisation σ′ with σ′-reachability at least ((r−1)r)2

ρ >
12r2(r−1)2

r+1 > 11r2(r − 1) (note that
√
n =

√
r2 + 2r < r + 1 and r−1

r+1 = 1 − 2
r+1 > 11

12 for
r > 23). On the other hand, if (D,T) is not (s, t)-temporalisable, then the σ′-reachability
of any temporalisation σ′ of (D′,T′) is at most 3rn+ 7r2(r − 1) = 10r3 − r2 < 11r2(r − 1)
(note that r3 > 10r2 for r > 10). In summary, (D,T) is (s, t)-temporalisable if and only
if A, with input the trip network (D′,T′), returns a temporalisation whose reachability is
greater than 11r2(r − 1).

Theorem 17. Unless P = NP , the ss-mrtt problem cannot be approximated within a

factor less than
√
n

12 even if the input trip network is strongly temporalisable.

Proof. The reduction is exactly the same as the one used in the proof of the previous
theorem. According to that proof, if (D,T) is (s, t)-temporalisable, then there exists a
temporalisation σ′ of (D′,T′) such that any source in one of the first r − 1 descending
gadgets has σ′-reachability at least r(r − 1). On the other hand, if (D,T) is not (s, t)-
temporalisable, then, for any temporalisation σ′ of (D′,T′), any source in one of the first
r − 1 descending gadgets has σ′-reachability at most 7r. Any polynomial-time algorithm

A solving ss-mrtt with approximation ratio ρ <
√
n

12 would then allow us to decide, in

polynomial-time, whether (D,T) is (s, t)-temporalisable, since r(r−1)
ρ > 12r(r−1)

r+1 > 11r > 7r
for r > 23. This concludes the proof of the theorem.

119



4.3.1 Symmetric and strongly temporalisable trip networks

Because of the last theorem, we now focus on symmetric and strongly temporalisable trip
networks.

Fact 2. Let (D,T) be a symmetric trip network. For any node u, there exists a schedule S
of (D,T) such that, for any node v reachable from u in D, v is S-reachable from u.

Proof. We first note that, due to the symmetricity, any schedule S of (D,T) is such that
each node of a trip T ∈ T is S-reachable from any other node of T . Let Tu be a breadth-first
search tree in the induced multidigraphM rooted in u, whose height is hTu

. By using Tu,
we will now define a schedule S of (D,T) such that, for any node v in Tu, v is S-reachable
from u. This will prove the fact.

We will construct nested partial schedules S0, . . . , ShTu
= S where a larger and larger

subset of T is scheduled. Given a partial schedule Sℓ, we say that an arc is “covered” by
Sℓ if it belongs to one of the trips scheduled in Sℓ. Similarly, a node is “covered” by Sℓ if
it is the head or the tail of an arc covered by Sℓ. At the beginning, we consider an empty
schedule S0. For each level ℓ of Tu with ℓ ∈ [hTu ], let e1, . . . , ekℓ

be the arcs connecting a
node at level ℓ− 1 to a node at level ℓ which are not yet covered by Sℓ−1. Let Tℓ,1, . . . , Tℓ,kℓ

be kℓ (not necessarily distinct) trips in T, which contain the arcs e1, . . . , ekℓ
, respectively.

Recall that Tℓ,1,. . . , Tℓ,kℓ
denote their respective reverse trips. Let Tℓ denote the set of trips

in {Tℓ,1, Tℓ,1, . . . , Tℓ,kℓ
, Tℓ,kℓ

}. As the arcs e1, . . . , ekℓ
were not covered by Sℓ−1, trips in Tℓ

are not included in Sℓ−1. We can thus define Sℓ as Sℓ−1 followed by the trips in Tℓ in an
arbitrary order. Note that all arcs from level ℓ − 1 to level ℓ are now covered by Sℓ. We
continue similarly for the next levels and define S = ShTu

as the schedule obtained for the
last layer.

To prove that any node v in Tu is S-reachable, we show that the following invariant is
preserved: after processing each level ℓ, any node covered by Sℓ is Sℓ-reachable. Consider
an arc e which is covered by Sℓ but not by Sℓ−1 and let v′ be its head or tail. Let Tℓ,i, Tℓ,i
denote the trip pair in Tℓ that contains e. Consider the arc ei from level ℓ − 1 to ℓ that
belongs to Tℓ,i. The tail u′ of ei is either u or the head of an arc from level ℓ− 2 to ℓ− 1.
As such an arc is covered by Sℓ−1, u

′ is thus Sℓ−1-reachable according to the invariant. As
Tℓ,i or Tℓ,i contains a walk from u′ to v′, and both Tℓ,i and Tℓ,i are scheduled after Sℓ−1 in
Sℓ, v

′ is Sℓ-reachable. The conclusion follows from the fact that all nodes in Tu are covered
by S = ShTu

.

Fact 3. Let (D,T) be a symmetric trip network. For any node u, there exists a schedule S
of (D,T) such that, for any node v such that u is reachable from v in D, u is S-reachable
from v.

Proof. The proof is similar to the proof of Fact 2.

Corollary 3. Let (D,T) be a symmetric trip network. Then, (D,T) is strongly temporalis-
able if and only if D is strongly connected.

Proof. If (D,T) is strongly temporalisable, then, for any two nodes u and v in D, there
exists a temporalisation σu,v of (D,T), such that v is σu,v-reachable from u. In other words,
there exists a temporal path Pu→v from u to v in G[D,T, σu,v]. Hence, v is reachable from
u in D. The converse implication is a direct consequence of Fact 2.

120



t1i

a3
i

f2
i

a2
ia1

i

f1
i

t2i

Figure 4.8: The variable gadget in the reduction of 3-sat to symmetric mrtt (see the proof
of Theorem 18).

t1i1

a3
i1

f2
i1

a2
i1

a1
i1

f1
i1

t2i1

t1i2

a3
i2

f2
i2

a2
i2

a1
i2

f1
i2

t2i2

t1i3

a3
i3

f2
i3

a2
i3

a1
i3

f1
i3

t2i3

c1j

c2j
e
i1
j

e
i2
j

e
i3
j

g1
j · · · gj−1

j gj+1
j · · · gm

j

d1
j d2

j · · · dl
j

Figure 4.9: The clause gadget in the reduction of 3-sat to symmetric mrtt (see the proof of
Theorem 18), corresponding to the clause cj = xi1 ∨¬xi2 ∨xi3 (the dotted arcs are included
in the variable gadgets corresponding to the variables xi1 , xi2 , and xi3). Note that, for each
h ∈ [m] with h ̸= j, F includes also the arc (c1j , c

2
h) (and its reverse arc).

We now prove that the mrtt problem remains NP-hard, even when we assume that the
underlying multidigraph is strongly connected and that the trip network is symmetric (from
the previous corollary, this implies that the trip networks is strongly temporalisable).

Theorem 18. The mrtt problem problem is NP-hard, even if (D,T) is a symmetric trip
network and D is strongly connected.

Proof. We reduce 3-sat to mrtt as follows. Let us consider a 3-sat formula Φ, with n
variables x1, . . . , xn and m clauses c1, . . . , cm. Without loss of generality, we will assume
that each variable appears positive in at least one clause and negative in at least one clause,
that no literal appears in all clauses, and that there are at least two clauses. We set
l = ⌈(7n + m(m + 3))2/(m + 2)⌉ + 1 and L = (7n + m(m + 3))2 + 1, and we define the
digraph D = (V, F ) as the union of the following gadgets (in the following, for each arc
included in F , its reverse arc is implicitly also included in F ).

Variable gadgets (see Figure 4.8). For each variable xi of Φ with i ∈ [n], V contains the

121



d1
j d2

j · · · dl
j c1j

B

uL
j,i1

· · ·

u2
j,i1

u1
j,i1

uL
j,i2

· · ·

u2
j,i2

u1
j,i2

uL
j,i3

· · ·

u2
j,i3

u1
j,i3

vL
j,1

· · ·

v2
j,1

v1
j,1

· · ·

· · ·

· · ·

· · ·

vL
j,j−1

· · ·

v2
j,j−1

v1
j,j−1

vL
j,j+1

· · ·

v2
j,j+1

v1
j,j+1

· · ·

· · ·

· · ·

· · ·

vL
j,m

· · ·

v2
j,m

v1
j,m

Figure 4.10: The part of the bottom hub gadget in the reduction of 3-sat to symmetric
mrtt (see the proof of Theorem 18), corresponding to the clause cj which contains the
variables xi1 , xi2 , and xi3 (the dotted arcs are included in the clause gadget corresponding
to the clause cj).

seven variable nodes t1i , t
2
i , f

1
i , f

2
i , a

1
i , a

2
i , and a3i , and F contains the six arcs (t1i , a

3
i ),

(a3i , f
2
i ), (a

1
i , a

2
i ), (a

2
i , a

3
i ), (f

1
i , a

1
i ), and (a1i , t

2
i ).

Clause gadgets (see Figure 4.9). For each clause cj of Φ with j ∈ [m], V contains the two
clause nodes c1j and c2j (we will call c11, . . . , c

1
m the bottom clause nodes and c21, . . . , c

2
m

the top clause nodes), and the middle nodes dkj for k ∈ [l]. For each variable xi which

appears (positive or negative) in cj , V contains the head node eij . Finally, for each

h ∈ [m] with h ̸= j, V contains the head node ghj . Concerning the arcs, for each

variable xi which appears positive in cj , F contains the arcs (c1j , t
1
i ) and (t2i , c

2
j ), while,

for each variable xi which appears negative in cj , F contains the arcs (c1j , f
1
i ) and

(f2
i , c

2
j ). In both cases, F contains the arc (c2j , e

i
j). For each h ∈ [m] with h ̸= j,

F contains the arcs (c1j , c
2
h) and (c2j , g

h
j ). Finally, F contains the arcs (dkj , d

k+1
j ), for

k ∈ [l − 1], and the arc (dlj , c
1
j ).

Bottom hub gadget (see Figure 4.10). V contains the bottom hub node B. For each clause
cj of Φ with j ∈ [m], and for each variable xi that appears (positive or negative) in
cj , V contains the set Au

j,i = {uk
j,i : k ∈ [L]}. Moreover, for each h ∈ [m], such that

h ̸= j, V contains the set Av
j,h = {vkj,h : k ∈ [L]}. We will refer to the nodes in

Au
j,i and in Av

j,h as the bottom tail nodes. Concerning the arcs, F contains the arc

(B, d1j ), and, for each variable xi that appears (positive or negative) in cj , the set

{(uk
j,i, u

k+1
j,i ) : k ∈ [L − 1]} and the arc (uL

j,i, B). Finally, for each h ∈ [m], such that

h ̸= j, F contains the set {(vkj,h, v
k+1
j,h ) : k ∈ [L− 1]} and the arc (vLj,i, B).

Top hub gadget (see Figure 4.11) V contains the top hub node U . For each clause cj of
Φ with j ∈ [m], and for each variable xi that appears (positive or negative) in cj , V

122



t1i1

a3
i1

f2
i1

a2
i1

a1
i1

f1
i1

t2i1

t1i2

a3
i2

f2
i2

a2
i2

a1
i2

f1
i2

t2i2

t1i3

a3
i3

f2
i3

a2
i3

a1
i3

f1
i3

t2i3

U

wL
j,i1

· · ·

w2
j,i1

w1
j,i1

wL
j,i2

· · ·

w2
j,i2

w1
j,i2

wL
j,i3

· · ·

w2
j,i3

w1
j,i3

Figure 4.11: The part of the top hub gadget in the reduction of 3-sat to symmetric mrtt
(see the proof of Theorem 18), corresponding to the clause cj = xi1 ∨¬xi2 ∨xi3 (the dotted
arcs are included in the variable gadgets corresponding to the variables xi1 , xi2 , and xi3).

contains the set Aw
j,i = {wk

j,i : k ∈ [L]}. We will refer to the nodes in Aw
j,i as the top tail

nodes. Concerning the arcs, for each variable xi that appears (positive or negative) in
cj , F contains the set {(wk

j,i, w
k+1
j,i ) : k ∈ [L− 1]} and the arc (wL

j,i, U). Finally, if xi

appears positive in cj , F contains the arc (U, t2i ), while if xi appears negative in cj , F
contains the arc (U, f2

i ).

Number of nodes. Let us first compute the cardinality of V . There are 7n variable nodes,
2m clause nodes, 3m+m(m−1) head nodes, ml middle nodes, 2 hub nodes, 3mL+m(m−1)L
bottom tail nodes, and 3mL top tail nodes. Thus, |V | = 2+7n+m(L+1)(m+4)+ml+mL.

Trips. We now define the trip collection T in D (see Figure 4.12). In the following, for each
trip T included in T, we implicitly assume that the symmetric trip Tis also included in T.

Variable trips. For each i ∈ [n], T contains the trips T t
i = ⟨t1i , a3i , f2

i ⟩, T f
i = ⟨f1

i , a
1
i , t

2
i ⟩,

and T a
i = ⟨a1i , a2i , a3i ⟩ (see Figure 4.12(a)).

Bottom-variable trips. For each clause cj of Φ with j ∈ [m], if cj contains the literal xi, T
contains the trip T u

j,i = ⟨u1
j,i, . . . , u

L
j,i, B, d1j , . . . , d

l
j , c

1
j , t

1
i ⟩ (see Figure 4.12(b)), while if

cj contains the literal ¬xi, T contains the trip T u
j,i = ⟨u1

j,i, . . . , u
L
j,i, B, d1j , . . . , d

l
j , c

1
j , f

1
i ⟩

(see Figure 4.12(c)).

Bottom-clause trips. For each (j, h) ∈ [m]2 such that j ̸= h, T contains the trip T v
j,h =

⟨v1j,h, . . . , vLj,h, B, d1j , . . . , d
l
j , c

1
j , c

2
h, g

h
j ⟩ (see Figure 4.12(d)).

123



(a)

(b)

(c)

(d)

(e)

(f)

t1i a3
i f2

i T t
i f1

i a1
i t2i T f

i a1
i a2

i a3
i

T a
i

Tu
j,i

B d1
j · · · dl

j c1j c2h gj
h

T v
j,hvL

j,h· · ·v1
j,h

B d1
j · · · dl

j c1j t1iuL
j,i· · ·u1

j,i

B d1
j · · · dl

j c1j f1
iuL

j,i· · ·u1
j,i

Tw
j,i

U t2i c2j eijwL
j,i· · ·w1

j,i

U f2
i c2j eijwL

j,i· · ·w1
j,i

Figure 4.12: The trips in the reduction of 3-sat to symmetric mrtt (see the proof of
Theorem 18): (a) variable trips, (b) and (c) bottom-variable trips, (d) bottom-clause trips,
and (e) and (f) top trips. Each kind of trip is included in both directions (that is, the trip
collection is symmetric).

Top trips. For each clause cjof Φ with j ∈ [m], if cj contains the literal xi, T contains
the trip Tw

j,i = ⟨w1
j,i, . . . , w

L
j,i, U, t

2
i , c

2
j , e

i
j⟩ (see Figure 4.12(e)), while if cj contains the

literal ¬xi, T contains the trip Tw
j,i = ⟨w1

j,i, . . . , w
L
j,i, U, f

2
i , c

2
j , e

i
j⟩ (see Figure 4.12(f)).

See Figure 4.13 for a global view of the trip network (D,T).

Basic idea of the reduction. The temporal connections that are made possible by a
temporalisation of the variable trips T t

i , T
f
i , and T a

i correspond to choosing whether the
variable xi is set to true or false. Enabling temporal connections from the middle nodes,
which are between the bottom hub B and a bottom clause node c1j , to the head nodes

connected to the top clause node c2j , corresponds to a “reward” in terms of reachability
for satisfying the clause. The large size of the tails forces some constraints on the tempo-
ralisations with high reachability. This ensures that the “reward” is obtained only if the
clause is satisfied. In particular, we will show that if there exists a satisfying assignment
for Φ, then it is possible to produce a temporalisation σ such that the σ-reachability is at
least Q, where Q = |V |2 − (7n + m(m + 3))2. Otherwise, if Φ is not satisfiable, then any
temporalisation has reachability less than Q. More precisely, since Q > |V |2 − L (recall
that L = (7n + m(m + 3))2 + 1), we will show that any temporalisation that misses a
connection from a bottom/top tail node to any node or from a node to any bottom/top
tail node has reachability less than Q. Similarly, since Q > |V 2| − (m + 2)l (recall that
l = ⌈(7n + m(m + 3))2/(m + 2)⌉ + 1), we will show that missing the connections from
the middle nodes to the head nodes of the corresponding top clause node, also leads to a
reachability lower than Q.

Activation of pairs of variable nodes. Consider a variable xi and the associated variable
gadget (see Figure 4.8). For a given temporalisation σ, let τ1 = σ(T f

i ), τ2 = σ(T a
i ), and τ3 =

σ(T t
i ). Note that f2

i is σ-reachable from f1
i by using only the variable trips corresponding

to the variable xi if and only if τ1 + 1 ≤ τ2 and τ2 + 2 ≤ τ3 + 1, as these conditions
enable transfers at a1i and a3i . When this is the case, we say that σ activates (f1

i , f
2
i ).

124



1
2t

1
1f

1
2f 2

2t

2
1f

2
2f

2
1t

n
2t

n
1f

n
2f

n
1t1

1t

1c jc mc

1c jc mc2 2 2

. . .

. . .

. . .

B

U

. . .

i
2t

i
1f

i
2f

i
1t

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

L

l

L

top tails

bottom tails

heads

middle nodes

variable gadgets
1 1 1

i
1a i

2a i
3a2

1a 2
2a 2

3a1
1a 1

2a 1
3a n

1a n
2a n

3a

. . .

Figure 4.13: A global view of the reduction of 3-sat to symmetric mrtt. Here the clause
cj = (x1∧x2∧xi) is associated to two nodes c1j and c2j that are connected to variable gadgets
for x1, x2 and xi through green lines (plain lines for bottom-variable trips and dotted lines
for top trips). For a more detailed view of each gadget, see Figures 4.8, 4.9, 4.10, 4.11, and
4.12.

125



T u
j,i

1 L + 1 L + l + 1 tv = L + l + 3

T t
it1iB d1

j · · · dl
j c1juL

j,i· · ·u1
j,i

a3
i

f2
i

Tai

tv + 1a1
i a2

i

T f
i

tv + 2

tv + 3

tv + 4

f1
i

t2i

Tw
j,i

tv + 4 − (L + 1) tv + 3 tv + 5 tv + 6

U c2j eijwL
j,i· · ·w1

j,i

T v
j,h

tv − (L + l) + 3 tv − l + 3 tv + 3 tv + 4 tv + 5 tv + 6

B d1
j · · · dl

j c1j c2h gj
h

vL
j,h· · ·v1

j,h

Figure 4.14: The temporalisation of the “forward” trips obtained from a truth assignment
α satisfying the Boolean formula Φ (here, we assume that the variable xi appears positive
in the clause cj , and that α(xi) = True). The colored nodes are the starting nodes of the
trips. Note that Tu

j,i arrives in B at time L+ 1 = tv − l − 2.

Note that if σ activates (f1
i , f

2
i ), then τ1 ≤ τ3 − 2. Similarly, t2i is σ-reachable from t1i by

using only the variable trips corresponding to the variable xi if and only if τ3 + 1 ≤ τ4 and
τ4 + 2 ≤ τ1 + 1, where τ4 = σ( Tai ). When this is the case, we say that σ activates pair
(t1i , t

2
i ). Note that if σ activates (t1i , t

2
i ), then τ3 ≤ τ1−2. The key observation for the sequel

is that no temporalisation can activate both (f1
i , f

2
i ) and (t1i , t

2
i ). We similarly say that σ

activates pair (f2
i , f

1
i ) (respectively, (t2i , t

1
i )) when f1

i (respectively, t1i ) is σ-reachable from
f2
i (respectively, t2i ), by using only the variable trips corresponding to the variable xi. Once
again, no temporalisation can activate both (f2

i , f
1
i ) and (t2i , t

1
i ). However, one can easily

see that it is possible to activate either both (f1
i , f

2
i ) and (f2

i , f
1
i ) or both (t1i , t

2
i ) and (t2i , t

1
i ).

Constructing a temporalisation from a satisfying assignment. We first show how
to construct a temporalisation σ, when Φ is satisfiable, with reachability at least Q. Let α
be a truth assignment to x1, . . . , xn that satisfies Φ (see Figures 4.14 and 4.15, where we
assume that xi appears positive in cj and that α(xi) = True).

For any clause cj and for any variable xi appearing in cj , we set σ(T u
j,i) = 1. Note that

T u
j,i arrives in B at time L+1, in c1j at time L+ l+2, and in the variable node connected to

c1j and included in the variable gadget corresponding to xi at time τv = L+ l+ 3. For each

i ∈ [n], if α(xi) = True, then we set σ(T t
i ) = τv, σ( Tai ) = τv+1, and σ(T f

i ) = τv+2, so that
σ activates (t1i , t

2
i ) (t

2
i being reachable at time τv + 4). Otherwise (that is, α(xi) = False),

we set σ(T f
i ) = τv, σ(T

a
i ) = τv + 1, and σ(T t

i ) = τv + 2 so that σ activates (f1
i , f

2
i ) (f2

i

being reachable at time τv + 4). For any clause cj and for any variable xi appearing in cj ,
we set σ(Tw

j,i) = τv + 4 − (L + 1), and, for any two clause cj and ch with j ̸= h, we set
σ(T v

j,h) = τv − (L + l) + 3: this implies that all these trips reach their top clause node at
the same time, that is, τv + 5.

For any clause cj and for any variable xi appearing in cj , we set σ( Twj,i) = τv + 6, and,

126



tv + 14 + l + L tv + 14 + l tv + 14 tv + 12

Tuj,it1iB d1
j · · · dl

j c1juL
j,i· · ·u1

j,i

tv + 10Tti

a3
i

f2
i

tv + 11

T a
i

a1
i a2

i

tv + 10

tv + 9

tv + 8 Tfi

f1
i

t2i

tv + 9 + L tv + 9 tv + 7 tv + 6

Twj,iU c2j eijwL
j,i· · ·w1

j,i

tv + 9 + l + L tv + 9 + l tv + 9 tv + 8 tv + 7 tv + 6

Tvj,hB d1
j · · · dl

j c1j c2h gj
h

vL
j,h· · ·v1

j,h

Figure 4.15: The temporalisation of the “backward” trips obtained from a truth assignment
α satisfying the Boolean formula Φ (here, we assume that the variable xi appears positive
in the clause cj , and that α(xi) = True). The colored nodes are the starting nodes of the
trips and τv = L+ l + 3.

for any two clause cj and ch with j ̸= h, we set σ( Tvj,h) = τv + 6: this implies that all
these trips reach their top clause node at the same time, that is, τv + 7. For each i ∈ [n], if
α(xi) = True, then we set σ( Tfi) = τv + 8, σ(T a

i ) = τv + 9, and σ( Tti) = τv + 10, so that σ
activates (t2i , t

1
i ) (t

1
i being reachable at time τv + 12). Otherwise (that is, α(xi) = False),

we set σ( Tti) = τv + 8, σ( Tai ) = τv + 9, and σ( Tfi) = τv + 10 so that σ activates (f2
i , f

1
i ) (f

1
i

being reachable at time τv + 12). For any clause cj and for any variable xi appearing in cj ,
we set σ( Tuj,i) = τv + 12. Note that Tuj,i arrives in B at time τv + 14 + l.

We now show that the σ-reachability is at least Q. To this aim, let G = G[D,T, σ] be
the temporal graph induced by σ, and let X be set of the following nodes: the top and
bottom tail nodes, the middle nodes, the two hub nodes, and the nodes c1j for j ∈ [m] (note

that V \X contains all the head nodes, all the variable nodes, and the nodes c2j for j ∈ [m]).

Claim 6. For any node x ∈ X and for any node v ∈ V , v ∈ RG(x) and x ∈ RG(v).

Proof. Let us first show that, for any node x ∈ X and for any node v ∈ V \X, x ∈ RG(v).
First note that each top clause node c2j can be reached at time at most τv+7 by the following

set Rj of nodes: c2j itself, each head eij through the trip Twj,i and each head ghj with h ̸= j
through the trip Tvj,h (see Figure 4.15), and all variable nodes of any gadget associated to

a variable xi appearing in cj through the trips T t
i , Tai , and T f

i or through the trips T f
i , T

a
i ,

and T t
i (see Figure 4.14). Notice that

⋃
j∈[m] Rj = V \X. Now we show that, by departing

from c2j at time τv + 7, it is possible to reach each node in X, thus implying that, for any
node x ∈ X and for any node v ∈ V \X, x ∈ RG(v).

� The top hub U can be reached at time τv +9 through any trip Twj,i such that variable
xi appears in cj (see Figure 4.15).

127



� All top tail nodes wr
p,q are reachable through the trips Twp,q, which all “meet” in U at

time τv + 9 (see Figure 4.15).

� For any h ∈ [m] with h ̸= j, the bottom clause nodes c1h, the middle nodes drh for
r ∈ [l], the bottom hub B, and the bottom tail nodes vsh,j for s ∈ [L] are reachable
through the trips Tvh,j (see Figure 4.15). Note that all these trips arrive in B at time
τv + 9 + l.

� Consider a variable xi appearing in cj and such that the associated literal has value
True according to the assignment α satisfying Φ. The bottom clause node c1j , the
middle nodes drj for r ∈ [l], and all bottom tail nodes ur

j,i for r ∈ [L] are reachable

through the trips Tfi, T
a
i , Tti, and Tuj,i or through the trips Tti, Tai , Tfi, and Tuj,i (see

Figure 4.15).

� All bottom tail nodes ur
h,i with h ̸= j and r ∈ [L] are reachable through the trips

Tuh,i, which all “meet” in the bottom hub B at time τv +14+ l, that is, later than the
bottom-clause trips Tvh,j (see Figure 4.15).

Let us now prove that, for any node x ∈ X and for any node v ∈ V , v ∈ RG(x). First
we prove that, for each j ∈ [m], the top clause node c2j is reachable at time tv +5 from each
node in X.

� The bottom hub B and all the bottom tail nodes ur
p,q and vrp,q can reach B at time at

most τv − l + 3 through the trips T u
p,q and T v

p,q, and, hence, can reach the top clause
node c2j at time τv + 5 through the trips T v

p,q (see Figure 4.14).

� The top hub U and all the top tail nodes wr
p,q can reach c2j at time τv +5 through the

trips Tw
p,q, which all “meet” in U at time τv + 3 (see Figure 4.14).

� The bottom clause nodes c1h, with h ̸= j, and the middle nodes drh for r ∈ [l] can reach
the top clause node c2j at time τv + 5 through the trips T v

h,j (see Figure 4.14).

� The bottom clause node c1j and the middle nodes drj for r ∈ [l] can reach c2j at time

τv + 5 through the trips T t
i , Tai , and T f

i or through the trips T f
i , T

a
i , and T t

i (see
Figure 4.14), where xi is a variable whose truth assignment satisfies the clause cj
(note that the satisfiability of the formula Φ is also required here).

Now we show that, by departing from c2j at time τv +5, it is possible to reach the following
set of nodes Sj : all nodes in X (since we already proved that these nodes are reachable from
c2j , departing at time τv + 7 > τv + 5), the head nodes erj and grj through the trips Tw

j,r and
T v
j,r, and all variable nodes of the gadget associated to a variable xi appearing in cj through

the trips Tfi, T
a
i , and Tti or through the trips Tti, Tai , and Tfi (see Figure 4.15). Notice that⋃

j∈[m] Sj = V , and this concludes the proof of the claim.

We now determine a lower bound on the σ-reachability by counting the number of nodes
temporally reachable from different sources.

� From the nodes in X, that is the 3mL+m(m+2)L top and bottom tail nodes, the ml
middle nodes, the 2 hub nodes, and the m bottom clause nodes, it is possible to reach
each node in V . This adds |X| · |V | = |V |2 − (|V | − |X|) · |V | to the σ-reachability.
Note that |X| = Lm(m+ 5) +ml + 2 +m.

128



� From the nodes in V \ X, that is the 7n variable nodes, the m(m + 2) head nodes,
and the m top clause nodes it is possible to reach the nodes in X. This adds (7n +
m(m+ 3)) · |X| = (|V | − |X|) · |X| to the σ-reachability.

Hence, the σ-reachability is at least equal to |V |2−(|V |−|X|)2 = |V |2−(7n+m(m+3))2 = Q
(note that |V | = 2+7n+m(L+1)(m+4)+ml+mL = (Lm(m+5)+ml+2+m)+ (7n+
m(m+ 3)) = |X|+ (|V | − |X|)).

Bounding reachability when Φ is not satisfiable. Let σ be any trip temporalisation
of the trip network (D,T) and let G = G[D,T, σ] be the temporal graph induced by σ.

Claim 7. If the σ-reachability is at least equal to Q, then, for any v ∈ V and for any
bottom/top tail node x, we have v ∈ RG(x) and x ∈ RG(v).

Proof. Without loss of generality, we prove the claim in the case in which x ∈ Au
j,i, for some

clause cj of Φ with j ∈ [m] and for some variable xi that appears (positive or negative)
in cj (the proofs of the other cases are similar). First of all observe that all nodes in Au

j,i

have the same reachability set and belong to the same reachability sets. Formally, for any
two nodes ur

j,i and us
j,i in Au

j,i with r, s ∈ [L], we have that RG(u
r
j,i) = RG(u

s
j,i), and that,

for any node v ∈ V , ur
j,i ∈ RG(v) if and only if us

j,i ∈ RG(v). This is due to the fact the
bottom-variable trips T u

j,i and Tuj,i are the only trips passing through the nodes in Au
j,i. This

observation implies that if there exists v ∈ V such that either v ̸∈ RG(u
r
j,i) or u

r
j,i ̸∈ RG(v)

for some bottom tail node ur
j,i, then the σ-reachability is at most |V |2 −L < Q. Hence, the

claim follows.

Let us now consider the following time constraints that, as a consequence of the above
claim, need to be satisfied by σ, if the σ-reachability is at least equal to Q. For the sake
of brevity, we will give a detailed proof of the first constraint only, since the proofs of the
other ones are similar: intuitively, these proofs are based on the fact that the connections
provided by some trips between two nodes use the minimum number of arcs.

C1 For all clauses cj of Φ with j ∈ [m] and for all variables xi that appear (positive or
negative) in cj , all trips T

w
j,i are assigned the same starting time τw, that is, σ(Tw

j,i) =

τw (this implies that all these trips reach node U at time tU = τw + L and the node
c2j at time τU + 2). This constraint is needed in order to have any top tail node
able to reach any head node at the end of a top trip. Indeed, if there exists two
trips Tw

j1,i1
and Tw

j2,i2
, with j1, j2 ∈ [m], i1, i2 ∈ [n], and the variable xi1 (respectively,

xi2) appearing (positive or negative) in the clause cj1 (respectively, cj2), such that
σ(Tw

j1,i1
) > σ(Tw

j2,i2
), since there is no trip connecting U to c2j2 by using less than two

arcs, any top tail node in Aw
j1,i1

reaches c2j2 at time σ(Tw
j1,i1

)+L+2 > σ(Tw
j2,i2

)+L+2,

thus implying that it cannot reach the head node ei2j2 (since the arc (c2j2 , e
i2
j2
) is assigned

departure time σ(Tw
j2,i2

) + L+ 2). Because of the previous claim, this contradicts the
assumption that the σ-reachability is at least equal to Q.

C2 For all clauses cj of Φ with j ∈ [m] and for all variables xi that appear (positive
or negative) in cj , all trips Twj,i are assigned the same starting time τw,s, that is,

σ( Twj,i) = τw,s (this implies that all these trips reach node U at time τU,s = τw,s + 3).
This constraint is needed in order to have any head node at the end of a top trip able
to reach any top tail node.

129



C3 τU ≤ τU,s. This constraint is needed in order to have any top tail node in Aw
j1,i1

able
to reach any top tail node in Aw

j2,i2
, by first using the trip Tw

j1,i1
(in order to reach U

at time tU, as stated in C1) and then using the trip Twj2,i2 (which passes through U at

time τU,s, as stated in C2).

C4 For each clause cj of Φ with j ∈ [m] and for any h ∈ [m] with h ̸= j, σ(T v
j,h) = τU−L−l.

This constraint is needed in order to have any top tail node able to reach any head
node at the end of a bottom-clause trip and any bottom tail node able to reach any
head node at the end of a top trip.

C5 For each clause cj of Φ with j ∈ [m] and for any h ∈ [m] with h ̸= j, σ( Tvj,h) = τU,s−3.
This constraint is needed in order to have any head node able to reach both any top
tail node and any bottom tail node.

C6 For each clause cj of Φ with j ∈ [m] and for each variable xi that appears (positive or
negative) in cj , σ(T

u
j,i) ≤ τU − L − l. This constraint is needed in order to have any

bottom tail node able to reach any head node at the end of a bottom-clause trip.

C7 For each clause cj of Φ with j ∈ [m] and for each variable xi that appears (positive
or negative) in cj , σ( Tuj,i) ≥ τU,s − 2. This constraint is needed in order to have any
head node at the end of a bottom-clause trip able to reach any bottom tail node.

C8 For each clause cj of Φ with j ∈ [m], for each variable xi that appears (positive or
negative) in cj , and for any h ∈ [m] with h ̸= j, σ(T v

j,h), σ(T
u
j,i) ≤ τU,s − L − l − 4.

These constraints are needed in order to have any bottom tail node able to reach any
top tail node.

The above constraints have been derived by using the fact that Q > |V |2 − L. We now
take advantage of the fact that Q > |V |2− (m+2)l. Note that, since Φ is not satisfiable, for
any truth-assignment to the variables of Φ, there must exist a clause which is not satisfied by
the assignment. Let us then consider the following truth-assignment α, which is derived from
σ. For each variable gadget corresponding to a variable xi, α(xi) = True if σ(T t

i ) ≤ σ(T f
i ),

otherwise α(xi) = False. Note that from the paragraph about the activation of pairs of
variable nodes, it follows that if α(xi) = True (respectively, α(xi) = False), then σ does
not activate (f1

i , f
2
i ) (respectively, (t

1
i , t

2
i )). Let cjα be a clause which is not satisfied by α.

We now show that the middle nodes dkjα , for k ∈ [l], cannot reach the head nodes connected

to c2jα . Intuitively, the main reason is that c2jα cannot be reached from the middle nodes
through any of the variable gadgets associated to the variables appearing in cjα , as σ does
not activate, in these gadgets, the pair connected to c1jα and c2jα , and no other temporal
path is possible. More formally, let us analyse all possible temporal paths from a middle
node x (with x = dkjα , for some k ∈ [l]) to a head node h connected to c2jα .

� Going through a node c2k with k ̸= jα is not allowed by the above time constraints
(in particular, by the synchronization of forward bottom-clause trips and forward top
trips at c2jα and c2k). Indeed, each temporal path from x to c2k reaches c2k using either

a top forward trip or a bottom-clause forward trip, which both arrive in c2k at time
τU + 2 according to time constraints C1 and C4. Although c2jα might be σ-reachable

from c2k, the arrival time will be greater than τU + 2 while the trip to h depart from
c2jα at time tU + 2.

130



� Using any trip to go to B and then reach h through a node c1k with k ̸= jα is also not
possible. Let us suppose we use a backward bottom-variable or bottom-clause trip T1

to go from x to B, arrive in B at time τ , and then use a forward bottom-variable or
bottom-clause trip T2 to reach c1k, and let τ ′ be the time T2 goes through B. Clearly,
τ ′ ≥ τ . Because of the temporal constraints C5 and C7, we have that τ ≥ τU,s + l,
which implies τ ≥ τU + l because of constraint C3. However, because of temporal
constraints C4 and C6 we have that τ ′ ≤ τU − l in contradiction with τ ≤ τ ′.

� Going through a variable node t1i , if we assume that xi appears positive in cjα , is not
possible either. As mentioned before the choice of cjα implies that σ does not activate
pair (t1i , t

2
i ) and the path of length four through the variable gadget for xi from t1i to t2i

is not σ-compatible. We could consider reaching f2
i and then a clause node c2k but the

situation would be similar as in the first case. We could finally consider to go from t1i
to another clause node c1k such that xi also appears positive in ck. Let Tk denote the
backward bottom-variable trip allowing to go from t1i to c1k and let t denote the time
when it arrives in c1k. The time constraint C7 then imply that τ = σ( Tk)+1 ≥ τU,s−1.
Let T be a bottom-variable or bottom-clause trip that we use to leave c1k and later
reach h. T has to arrive in c1k at τ ′ ≥ τ . Since τ ′ = σ(T ) + L + l + 1, from the time
constraint C8 it follows that τ ′ ≤ τU,s − 3 in contradiction with τ ′ ≥ τ .

� Going through a variable node f1
i , if we assume that xi appears negative in cjα , is not

possible either for similar reasons.

We have thus proved that no head connected to c2jα is σ-reachable from any middle node

between B and c1jα : this implies that the reachability of σ is at most |V |2 − l(m+ 2) < Q.
This concludes the proof of the theorem.

Our last result shows that the maximum temporal reachability obtainable in symmetric
strongly temporalisable trip networks is quadratic with respect to the number of nodes. The
general idea to prove this result is to find a somewhat central trip, and then schedule trips
so that a constant fraction of nodes can reach the central trip and a constant fraction of
nodes are reached from the central trip relying on Facts 2 and 3. We will find this central
trip as a centroid in a weighted tree.

Let us, then, first recall the definition of centroid. Given a node-weighted tree R, the
weight of R is defined as the sum of the weights of its nodes. We then define a weighted
centroid of a tree R of weight K as a node c such that the removal of c disconnects R into
subtrees of weight 2K/3 at most. Such a centroid can be found efficiently as stated below.

Lemma 5 (Folklore). Given a node-weighted tree R, a centroid node c can be found in
linear time. Moreover, if the weight of R is K and the centroid c has weight 2K/3 at most,
then there exists a partition P1, P2 of its pending subtrees such that both P1 ∪ {c} and P2

have total weight 2K/3 at most. Such a partition can be computed at the cost of sorting the
subtrees by non-decreasing weight.

Proof. Note that the classical algorithm for finding a centroid in an unweighted tree can
easily be adapted to the weighted case. Recall that it consists in starting from any node
v. If it is not a centroid, then move to a neighbor whose subtree has weight greater than
K/2 and repeat the test until finding a centroid. The partition P1, P2 is obtained by trying
to add subtrees in P1 one after another by non-decreasing weight and stopping as soon as
P1 ∪ {c} has weight K/3 or more.

131



Theorem 19. Let (D,T) be a symmetric and strongly temporalisable trip network. Then
there exists a schedule S such that the S-reachability of (D,T) is at least a fraction 2/9 of
all node pairs. Such a schedule can be computed in polynomial time.

Proof. Without loss of generality, we can assume that all trips in T are distinct. If this is
not the case, we can keep only one of multiple copies of the same trip: this can only reduces
the reachability of the modified trip network. We can then consider trips in pairs (T, T),
where Tis the reverse trip of T , and we denote by TP the set of such pairs. For any trip T ,
we also denote by V (T ) ⊆ V the set of nodes which T (and T) passes through. Finally, we
assign arbitrarily each node v ∈ V to a single trip pair (T, T) such that v ∈ V (T ), and let
nT denote the number of nodes assigned to the pair (T, T).

We now define the transfer undirected graph P = (TP,FP), where two trip pairs are
connected when they share a node, that is, {(T1, T1), (T2, T2)} ∈ FP if and only if V (T1) ∩
V (T2) ̸= ∅. Let M denote the multidigraph induced by (D,T). According to Corollary 3,
M is strongly connected and, hence, P is connected. We then compute in linear time a
weighted spanning tree R of P, where each trip pair (T, T) is weighted by the number nT .
Note that the weight of R is the number n = |V | of nodes in D. We then find a centroid
(C, C) of R according to Lemma 5.

First suppose that (C, C) has weight greater than 2n/3. Let S be any schedule of (D,T)
that starts with C followed by C. Then, we have that, for any u and v in V (C), v is
S-reachable from u, that is, the S-reachability is greater than 4n2/9. The theorem follows.

Conversely, let us suppose that (C, C) has weight 2n/3 at most. According to Lemma 5,
we then consider a partition P1, P2 of R \ {(C, C)} such that both P1 ∪ {(C, C)} and P2

have weight 2n/3 at most. For i = 1, 2, let V (Pi) denote the set of nodes assigned to
T , for some trip T such that (T, T) ∈ Pi. Let B1, . . . , B|P1| be the subtrees in P1, sorted
in an arbitrary way. For each i with i ∈ [|P1|], the subtree Bi corresponds to a strongly
connected set Vi of D. Moreover, Vi must contain a node ui ∈ V (C) as some trip pair of
Bi is connected to (C, C) in P. We can then define a schedule Si of the trip pairs in Bi

according to Fact 3 so that, for any node v in Bi, ui is Si-reachable from v. Hence, the
schedule S = S1, . . . , S|P1|, C, Cis such that, for any u ∈ V (P1) ∪ V (C) and c ∈ V (C), c
is S-reachable from u. Similarly, by reasoning on the subtrees in P2, we can extend S, so
that, for any u ∈ V (P2) and c ∈ V (C), u is S-reachable from c. In other words, the final
schedule S is such that, for any u ∈ V (P1) ∪ V (C) and v ∈ V (P2), v is S-reachable from u.

Let n2 denote the weight of P2, that is, n2 = |V (P2)|. As both P1 ∪ {(C, C)} and P2

have weight 2n/3 at most, we have that n/3 ≤ n2 ≤ 2n/3. Hence, the number of pairs of
nodes u and v such that u ∈ V (P1) ∪ V (C) and v ∈ V (P2) is at least (n− n2)n2 ≥ 2

9n
2 for

n/3 ≤ n2 ≤ 2n/3. The theorem thus follows.

4.4 Single arc trip networks

An interesting special case of trip network is met when all trips consist of a single arc.
To lighten the notation, we can thus consider the problem of directly assigning departure
times to the arcs in the digraph (or multidigraph) in input without going through the trip
set, which becomes redundant. As we did for the previous problems, also in this case for
simplicity we will keep working under the assumption that the weights of the arcs are one,
leading to uniform strict temporal graphs after the temporalisation. However, all the results
and considerations can be applied to arbitrary positive weights.

132



x

y w

z

4

1

1

5 3
2

x

y w

z

Figure 4.16: A digraph D (left), and an arc temporalisation of D (right). The temporal
reachability of the resulting temporal graph is 16, since each node is temporally reachable
from any other node.

The problem is formulated as follows.

Maximum Reachability Arc Temporalisation (mrat). Given a directed
graph D = (V, F ), find an arc temporalisation σ : F → N such that the tempo-
ral reachability of the resulting temporal graph is maximized.

For example, let us consider the digraph shown in the left part of Figure 4.16. In the
right part of the figure, we show an arc temporalisation of a digraph D with four nodes,
such that the temporal reachability of the resulting temporal graph is equal to 16, which is
clearly the maximum possible temporal reachability.

4.4.1 Hardness result

The next result shows that there is no polynomial-time algorithm solving the mrat problem,
unless P is equal to NP. Following the approach used until here, we will work with a particular
case of arc temporalisation, that is schedules, which consist in orderings of the arcs of the
digraph. Indeed, one can easily transform an arc temporalisation σ into a schedule Sσ with
greater or equal reachability. Given a digraph D = (V, F ) and an arc temporalisation σ,
it is sufficient to consider the arcs (u, v) ∈ F sorted by non-decreasing value of σ((u, v))
breaking ties arbitrarily to obtain such a schedule Sσ. For any two nodes u and v such
that v is temporally reachable from u in the temporal graph G[D,σ] induced by σ, v is also
temporally reachable from u in the temporal graph G[D,Sσ] induced by Sσ. This because
the arcs corresponding to a temporal walk in G[D,σ] are scheduled in order by Sσ.

Theorem 20. The mrat problem is NP-hard, even if the digraph D is strongly connected.

Proof. We reduce 3-sat to mrat as follows. Let us consider a 3-sat formula Φ, with n
variables x1, . . . , xn and m clauses c1, . . . , cm. Without loss of generality we will assume
that each variable appears positive in at least one clause and negative in at least one clause.
We first define the unweighted digraph D = (V, F ) as the union of the following gadgets
(see Figure 4.17).

Variable gadgets For each variable xi of Φ, V contains the nodes t1i , t
2
i , f

1
i ,and f2

i and F
contains the arcs (t1i , f

2
i ), (f

2
i , f

1
i ), (f

1
i , t

2
i ), and (t2i , t

1
i ).

Clause gadgets For each clause cj , V contains the nodes c1j and c2j . If the literal xi appears

in cj , F contains the arcs (c1j , t
1
i ) and (t2i , c

2
j ), while if the literal ¬xi appears in cj , F

133



f1
1

t21

t11

f2
1

f1
2

t22

t12

f2
2

f1
3

t23

t13

f2
3

c11 c12 c13

c21 c22 c23

d1
1 · · · dK

1 d1
2 · · · dK

2 d1
3 · · · dK

3

e11 · · · eK1 e12 · · · eK2 e13 · · · eK3

u2 u1

u3 u4

b1 · · · bM

Figure 4.17: An example of the reduction of 3-sat to mrat. The 3-sat formula is (x1 ∨
x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

contains the arcs (c1j , f
1
i ) and (f2

i , c
2
j ). Moreover, for each two clauses ch and cj with

h ̸= j, F contains the arc (c1j , c
2
h) (see the dashed arcs in the figure). Finally, for each

clause cj , V also contains the nodes dij and eij , for i ∈ [K] (the value of K will be

specified later in the proof), and F contains the arcs (dij , c
1
j ) and (c2j , e

i
j), for i ∈ [K].

Block gadget V contains the nodes u1, u2, u3, and u4, and the nodes bi, for i ∈ [X] (the
value of X will be specified later in the proof). F contains the arcs {(bi, u1) : i ∈ [X]},
(u1, u2), {(u2, d

l
j) : j ∈ [m], l ∈ [K]}, {(elj , u3) : j ∈ [m], l ∈ [K]}, (u3, u4), and

{(u4, bi) : i ∈ [X]}.

Note that D is strongly connected. Indeed, let us consider the cycles

Ci,j,l,p = ⟨u1, u2, d
l
j , c

1
j , t

1
i , f

2
i , f

1
i , t

2
i , c

2
j , e

l
j , u3, u4, bp, u1⟩,

where j ∈ [m], i is such that xi is a literal of the clause cj , l ∈ [K], and p ∈ [X], and the
cycles

Ci,j,l,p = ⟨u1, u2, d
l
j , c

1
j , f

1
i , t

2
i , t

1
i , f

2
i , c

2
j , e

l
j , u3, u4, bp, u1⟩,

134



where j ∈ [m], i is such that ¬xi is a literal of the clause cj , l ∈ [K], and p ∈ [X]. The
union of these cycles contains each node in V , and each of these cycles contains node u1.
This proves the strong connectivity of D.

In the following, B denotes the set {bi : i ∈ [X]} and H denotes the set of nodes
which do not belong to the block gadget, that is, H = V \ ({u1, u2, u3, u4} ∪B) (note that
|V | = X + |H|+ 4 and that |H| = 2(K + 1)m+ 4n).

Activation of pairs of nodes in a variable gadget Consider a variable xi and the
associated variable gadget and a schedule S of the 4 arcs associated to the variable gadget.
We say that S activates the pair (t1i , t

2
i ) (respectively, (f

1
i , f

2
i )) if t

2
i (respectively, f2

i ) is S-
reachable from t1i (respectively, f1

i ) within the gadget, that is (t1i , f
2
i ), (f

2
i , f

1
i ), and (f1

i , t
2
i )

(respectively, (f1
i , t

2
i ), (t

2
i , t

1
i ), (t

1
i , f

2
i )) are scheduled in that order. Note that no schedule

can activate both (t1i , t
2
i ) and (f1

i , f
2
i ) as the arc (t1i , f

2
i ) is scheduled either before or after

the arc (f1
i , t

2
i ).

Constructing a schedule from a satisfying assignment. Suppose that there is an
assignment α that satisfies Φ, and let us consider the following schedule S. First we schedule
the arcs in {(bi, u1) : i ∈ [X]} (in any arbitrary order), then the arc (u1, u2), and then the arcs
in {(u2, d

i
j) : j ∈ [m], i ∈ [K]} (in any arbitrary order). Then we schedule the arcs {(dij , c1j ) :

j ∈ [m], i ∈ [K]} (in any arbitrary order), and, then, the arcs going out from the nodes c1j ,
for j ∈ [m] (in any arbitrary order). Then, for each i ∈ [n], if α(xi) = True, we schedule the
arcs (t1i , f

2
i ), (f

2
i , f

1
i ), (f

1
i , t

2
i ), and (t2i , t

1
i ) in this order (thus activating (t1i , t

2
i )). Otherwise

(that is, α(xi) = False), we schedule the arcs (f1
i , t

2
i ), (t

2
i , t

1
i ), (t

1
i , f

2
i ), and (f2

i , f
1
i ) in this

order (thus activating (f1
i , f

2
i )). Then we schedule all the arcs entering the nodes c2j , for

j ∈ [m] (in any arbitrary order), and then all the arcs going out from the nodes c2j , for

j ∈ [m] (in any arbitrary order). Finally, we schedule the arcs in {(elj , u3) : j ∈ [m], l ∈ [K]}
(in any arbitrary order), then the arc (u3, u4), and all the arcs in {(u4, bi) : i ∈ [X]} (in any
arbitrary order). Let G be the temporal graph induced by D and the schedule S.

First observe that, for any clause cj with j ∈ [m], there exists a literal that satisfies cj
according to the assignment α. Let xi (respectively, ¬xi) be a literal satisfying cj . Since
(t1i , t

2
i ) (respectively, (f

1
i , f

2
i )) is activated, there exists a temporal path from c1j to c2j that

goes through variable gadget corresponding to xi. This means that c2j ∈ RG(c
1
j ) and that,

for l, l′ ∈ [K], el
′

j ∈ RG(d
l
j). We now prove a lower bound L on the S-reachability by showing

a lower bound on the number of nodes temporally reachable from each possible source.

� For any v ∈ V and for i ∈ [X], v ∈ RG(bi). This adds X(X + |H|+ 4) to L.

� For i ∈ [4] and for j ∈ [X], bj ∈ RG(ui). Moreover, {u1, u2, u3, u4} ∪ H ⊆ RG(u1),
{u2, u3, u4} ∪ H ⊆ RG(u2), u3, u4 ∈ RG(u3), and u4 ∈ RG(u4). This adds 4X +
2|H|+ 10 to L.

� For j, h ∈ [m], i, l ∈ [K], and p ∈ [X], c2h, e
l
h ∈ RG(d

i
j) (because of the above observa-

tion) and bp ∈ RG(d
i
j). This adds Km(X +Km+m) to L.

� For j, h ∈ [m], l ∈ [K], and i ∈ [X], c2h, e
l
h, bi ∈ RG(c

1
j ). This adds m(X +Km +m)

to L.

� For i ∈ [n], there exists j ∈ [m] such that cj is satisfied by α(xi). Hence, for p ∈ [2],
l ∈ [K], and h ∈ [X], elj , bh ∈ RG(t

p
i ) and elj , bh ∈ RG(f

p
i ). This adds 4n(X +K) to

L.

135



� For j ∈ [m], l ∈ [K], and h ∈ [X], elj , bh ∈ RG(c
2
j ). This adds m(X +K) to L.

� For j ∈ [m], l ∈ [K], and h ∈ [X], bh ∈ RG(e
l
j). This adds XKm to L.

Thus, the S-reachability is at least

L = X(X + |H|+ 4) + (4X + 2|H|+ 10) +Km(X +Km+m)

+m(X +Km+m) + 4n(X +K) +m(X +K) +XKm.

Bounding reachability when Φ is not satisfiable. Let us set X equal to any value
greater than (|H| + 5)2. We now prove that, if there exists no truth-assignment satisfying
the formula Φ, then no schedule S can have S-reachability greater than or equal to L. First
notice that if S assigns to the edge (u3, u4) a departure time smaller than the departure
time assigned to (u1, u2), then the S-reachability is less than L. This is because, in this
case, for i, j ∈ [X] with i ̸= j, bj is not S-reachable from bi. Hence, the S-reachability is
bounded by U1 = X(|H|+ 4 + 1) + (|H|+ 4)(X + |H|+ 4): this would happen if, for each
node v ̸∈ B, RG(v) = V . Since L > X2, U1 = X(|H|+ 4 + 1) + (|H|+ 4)(X + |H|+ 4) =
2X(|H| + 4) + (|H| + 4)2 +X < X(|H| + 5)2, and X > (|H| + 5)2, it holds that L > U1.
We can then focus on schedules that assign to the arc (u1, u2) a departure time smaller
than the departure time assigned to the arc (u3, u4). Let S be such a schedule and let G
be the temporal graph induced by D and S. We now prove an upper bound U2 on the
S-reachability by giving an upper bound on the nodes reachable from each possible source.
Observe that, for any two nodes u and v, v might belong to RG(u) only if in D there exists
a path from u to v that does not include the arc (u3, u4) before the arc (u1, u2).

� For i ∈ [X], |RG(bi)| ≤ |V |. This adds X(X + |H|+ 4) to U2.

� For i ∈ [2], |RG(ui)| ≤ |V |, while |RG(u3)| ≤ X+3 and |RG(u4)| ≤ |V | = X+ |H|+4.

� For j ∈ [m] and i ∈ [K], in the best case RG(d
i
j) contains dij , c1j , the 12 nodes

corresponding to the three variables appearing in cj , and the nodes in {c2h : h ∈
[m]}∪{elh : h ∈ [m], l ∈ [K]}∪{u1, u3, u4}∪B, yielding |RG(d

i
j)| ≤ X+Km+m+17.

However, we can show that there exists an index j∗ such that, for l, l′ ∈ [K], el
′

j∗ ̸∈
RG(d

l
j∗), implying that the d-nodes add at most Km(X +Km+m+17)−K2 to U2.

For defining j∗, we consider the following truth-assignment α: for any variable xi with
i ∈ [n], α(xi) = True if (t1i , f

2
i ) is scheduled before (f1

i , t
2
i ), otherwise α(xi) = False.

Note that if α(xi) = True (respectively, α(xi) = False) we know that S does not
activate (f1

i , f
2
i ) (respectively, (t1i , t

2
i )). Since the formula Φ is not satisfiable there

exists j∗ ∈ [m] such that cj∗ is not satisfied by α. Let xi (respectively, ¬xi) be a
literal in cj∗ . Since cj∗ is not satisfied by α, we that α(xi) = False (respectively,
α(xi) = True) and that (t1i , t

2
i ) (respectively, (f1

i , f
2
i )) is not activated. It is thus

impossible to reach c2j∗ from c1j∗ through the variable gadget of xi. On the other hand,

in all the other walks in D that connect c1j∗ to c2j∗ the arc (u3, u4) appears before the

arc (u1, u2). Hence, c2j∗ ̸∈ RG(c
1
j∗) and el

′

j∗ ̸∈ RG(d
l
j∗) for l, l

′ ∈ [K].

� For j ∈ [m], in the best case RG(c
1
j ) contains c1j , the 12 nodes corresponding to the

three variables appearing in clause cj , and the nodes in {c2h : h ∈ [m]} ∪ {elh : h ∈
[m], l ∈ [K]} ∪ {u1, u3, u4} ∪B. This adds m(X +Km+m+ 16) to U2.

136



� For i ∈ [n] and for j ∈ [2], in the best case RG(t
j
i ) and RG(f

j
i ) contain the corre-

sponding four variable nodes and the nodes in {c2h : h ∈ [m]} ∪ {elh : h ∈ [m], l ∈
[K]} ∪ {u1, u3, u4} ∪B. This adds 4n(X +Km+m+ 7) to U2.

� For j ∈ [m], in the best case RG(c
2
j ) contains c2j and the nodes in {elj : l ∈ [K]} ∪

{u1, u3, u4} ∪B. This adds m(X +K + 4) to U2.

� For j ∈ [m] and i ∈ [K], in the best case RG(e
i
j) contains eij and the nodes in

{u1, u3, u4} ∪B. This adds with Km(X + 4) to U2.

In summary,

U2 = X(X + |H|+ 4) + (4X + 3|H|+ 15) + (Km(X +Km+m+ 17)−K2)

+m(X +Km+m+ 16) + 4n(X +Km+m+ 7) +m(X +K + 4)

+Km(X + 4).

We have that L−U2 = −|H|−5K2−21Km−4n(K(m−1)+m+7)−20m = K2−23Km−
4n(K(m− 1) +m+8)− 22m− 5 > K2 −Knm(23+ 4(1+ 1+ 8)+ 22+ 5) = K2 − 90Knm
using K,n,m ≥ 1. Let us set K equal to any value greater than or equal to 91nm. We then
have K2 > 90Knm and, thus, L > U2. That is, the S-reachability has to be smaller than
L.

Conclusion. We have thus proved that the formula Φ is satisfiable if and only if there
exists a schedule S such that the S-reachability of D is at least L. This completes the proof
of the theorem.

4.4.2 Approximation

We have considered mrat problem, that is, the problem of assigning departure times to
the arcs of a digraph in order to maximize the total reachability of the resulting temporal
graph. We have proved that this problem is NP-hard, even when the digraph is strongly
connected. We conjecture that the mrat problem can be approximated within a constant
approximation ratio. In particular, we conjecture that any strongly connected digraph
admits an arc temporalisation with temporal reachability at least equal to c · n2 for some
constant c > 0. One way to prove such a statement would be to prove the following
interesting graph theory conjecture.

Almost Spanning Two Rooted-Arborescences conjecture (astra). Any strongly
connected digraph admits an out-arborescence and an in-arborescence that are arc-disjoint,
have the same root, and each spans Ω(n) nodes.

Note that it is not difficult to prove that the root of the two arborescences mentioned
in the astra conjecture cannot be any node in the graph. For example, let us consider the
graph shown in Figure 4.18. In this case, the node x1 cannot be the common root of the
two arborescences, since the only in-arborescence and the only out-arborescence with root
x1 share the arc (x2, y2), so that one of the two arborescences cannot include more than one
node (of course, this example can be generalised to any even number of nodes).

Note also that the astra conjecture is false if we require that the two arborescences
span at least n

3−ϵ nodes, for any positive constant ϵ. For example, consider the digraph
G = (V, F ) shown in Figure 4.19, where, for some integer parameter k > 0, the set of nodes
is V = {x, y, x1, y1, x2, y2, x3, y3} ∪ {zji | 1 ≤ 1 ≤ 3, 1 ≤ j ≤ k}, and the set of arcs is

137



F = {(x, y)} ∪ {(y, xi), (xi, yi), (yi, x), (yi, z
1
i ), (z

k
i , xi) | 1 ≤ i ≤ 3} ∪ {(zji , z

j+1
i ) | 1 ≤ i ≤

3, 1 ≤ j < k}. Observe that the total number of nodes is n = 3k + 8. Let us first give an
upper bound on the minimum between the amount of nodes in the in-arborescence and in
the out-arborescence in the case where the root is not x nor y. For any such node, either
the in-arborescence or the out-arborescence can contain at most k + 3 nodes, since the arc
(x, y) can be in one arborescence only. Consider now the case in which either x or y is the
root. Let us suppose that the root is x (the other case can be analysed in a similar way).
Since, for each i = 1, 2, 3, the arc (xi, yi) can be in one arborescence only, then either the in-
arborescence or the out-arborescence rooted at x can contain at most n− 2k = k+8 nodes.
We thus obtained that, in all cases, either the in-arborescence or the out-arborescence is
upper bounded by k + 8 = n/3 +O(1).

Bessy, Thomassé and Viennot [7] solved the astra conjecture, proving it is possible
to compute in O(n2) time an in-arborescence and an out-arborescence with the desired
properties and both having size at least n/6. The idea to prove this result is to partition
the set of vertices into three components I, C,O, such that C is a circuit (i.e. a closed walk
with no arc repetition), there are no arcs from nodes in I to node in O, and I ∪O and O∪C
are balanced, meaning that both sets contain at least n/3 nodes. In order to get this kind
of partition the authors exploit a particular kind of depth-first-search (DFS) tree which is
left-maximal, which is a DFS tree such that the children of any node are ordered from left
to right by non-increasing sub-tree size.

This result implies that the mrat problem can be approximated within a factor 18.

4.5 Conclusions and open problems

In this chapter we studied the problem of assigning starting times to a set of walks in
a digraph, turning the static graph into a temporal one. We focus on the reachability
properties of the resulting temporal graph, with the main goal of maximising it. The
digraph together with the set of walks, called trips, is named a trip network. We proved
that even deciding whether exists a trip temporalisation that connects two given node in a
trip network is NP-complete, even though it is FPT in the number of trips to reach the target
from the source. This result leads to the fact that maximising the total number of pairs
reachable, or the pairs reachable from a given source, is NP-hard and not even approximable.
This pushed us to make further assumptions on the trip network, possibly reasonable from
a public transit point of view, to find a setting in which the problem is tractable. The

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 4.18: An example of a digraph for which only some nodes can be roots of two
arborescences each spanning Ω(n) nodes.

138



x y

x1y1

z1
1 zk

1

x2y2

z1
2 zk

2

x3y3

z1
3 zk

3

Figure 4.19: An example of a digraph for which there are no two arc-disjoint arborescences
with a common root and each spanning more than n/3+c nodes, for some positive constant
c.

first assumption we made is that the trip network is strongly temporalisable, meaning that
for each pair of node there exists a temporalisation that connects them. However, in this
case the problem is still hard and not approximable within a reasonable factor. Thus, we
introduced a second assumption, and we required that the trip network is symmetric as
well. This means that for each trip there exists a symmetric one that visits the same nodes
in opposite order. The problem of maximising the reachability is still NP-hard even with
these restrictions. However, it is finally possible to approximate it within a constant factor
in polynomial time.

Finally, deviating from the public transport application, we studied the case without
the trip constraint. This means that a starting time can be assigned to each arc in the
digraph independently from the other arcs. We proved a hardness result also in this case
and conjectured a graph theory result that would imply approximability within a constant
factor. This conjecture was later proved by Bessy et al. [7].

Open problems. From a theoretical point of view, it would be interesting to close the gap
between Theorems 16 and 12 with regard to the inapproximability of mrtt in a strongly
temporalisable network.

139



A challenging variant of the mrtt problem is obtained when the reachability of the
induced temporal graph is measured within a given time window. In particular, when the
time window is shorter than the sum of the weights of the arcs, temporalisations that are not
schedules would be preferred. The FPT result for the o2o-rtt problem, Theorem 14, seems
likely to still hold, even though some non-trivial adjustments are required. For example,
the existence of a schedule that connects a source s to a destination t with a temporal walk
using k trips, does not imply that there exists a temporalisation where (s, t) is connected
in a given time window. This because the duration of the temporal walks is not taken into
account in the o2o-rtt problem. However, given a temporal walk from s to t in a temporal
graph induced by a schedule, it possible to produce a temporalisation that minimises the
duration of the corresponding temporal walk. On the other hand, the approximation result,
Theorem 19, cannot be easily translated into this setting. This leaves open whether it is
possible to approximate reachability in the model.

Moreover, we proved an FPT results for the o2o-rtt problem, however it is still open
to design an FPT algorithm for the general problem mrtt. In particular, we could define
a different measure of reachability Rk

G(u) which consists in the nodes reachable from u
using at most k trips. Then, the reachability of the temporal graph would be the sum of
the cardinalities of these sets. Regarding mrat, it would be interesting to understand if
it is possible to close the gap on the arborescences size. We showed an example proving
that upper bounds the size with n/3, and the result from Bessy et al. builds arborescences
with size n/6. From a more applicative point of view, it would be worth exploring other
restrictions of the problem where constant approximation is possible.

Finally, an interesting generalisation consists in allowing variable waiting times in-
between two consecutive arcs of a trip. In other words, a temporalisation would not assign
a departure time just to the first arc, but to each arc of a trip so that each induced temporal
edge departs after the arrival time of the previous edge. In particular it would be interesting
whenever the difference between the arrival time of an edge and the departure time of the
next one is bounded.

140



Conclusions and perspectives

In this dissertation we explored part of two wide research topics in temporal graphs, temporal
walk computation and temporal network design.

Our results on temporal walk computation are concentrated in the point availability
model. In this context, we managed to complete the algorithmic picture for the computation
of optimal temporal walks for a great variety of optimisation criteria. We achieved this
result by designing efficient procedures that improve over sections of the state the art for
both restricted and unrestricted waiting settings. We first designed a simple algorithm that
computes reachability through temporal walks from a single source to all destinations in
linear time and space with respect to the number of temporal edges. A second procedure,
which exploits a core idea from the first one, finds the optimal cost of these temporal walks
that connect the source to the destinations. The operations executed, more involved than the
operations in the first one, can still be performed in linear time and space. As the algebraic
definition of cost we give is very general, it is possible to model all classical criteria of
optimisation. Finally, we designed a third algorithm to solve the same optimisation problem
when all the hypothesis on zero travel times are dropped. In this case the complexity
increases by a logarithmic factor.

We proved complexity lower bounds, shuttering any possibility of future theoretical
improvements for this specific set of problems, as displayed in the summary of the state of
the art about this topic in Section 1.2.4. This moves the focus of future lines of research
about temporal path and walk computation towards either variations of these problems, for
instance, all-sources all-destinations or multiple (disjoint) temporal walk, or towards models
where temporal edges have proper intervals of availability rather then points. Computing
fewest hops temporal paths in piecewise constant and piecewise linear temporal graphs
could be a problem where there is still room for improvement. Moreover, in the linkstream
model temporal edges have intervals of availability and it can be seen as a particular case
of piecewise constant temporal graph as we defined it. In this model there is still room for
improvement for the shortest duration and fewest hops temporal paths, either by designing
algorithms that perform better than the ones working for the piecewise constant case, or
by proving matching lower bounds. Furthermore, the restricted waiting setting is also open
in this case. Indeed, the NP-hardness result for temporal walks by Orda and Rom [50],
leverages on a large range of travel times for the temporal edges, while in linkstreams it is
always zero. Notice that the setting where no waiting time at all is allowed is not particularly
interesting, precisely due to the zero travel time. However, the case where the waiting time
is lower and upper bounded in each node should be explored.

An interesting extension of temporal graphs that we did not consider in the thesis is the
case in which, not only the edges, but also vertices are subject to temporal behaviour. For
example, nodes could be available during certain intervals of time and unavailable during

141



some others. This would greatly impact all the problems we approached. Indeed, this
implicitly leads to waiting restrictions, as it is not possible to wait in a node that is currently
unavailable. A first step would be to understand if the problems that become hard with this
new restrictions are the same ones that become hard introducing the waiting restrictions
considered in this thesis. A second one would be to develop new efficient algorithms to
solve problems subject to this restrictions. Moreover, this leads to interesting settings and
variations also in the network temporsalisation problems. For example each node is given
a certain amount of time in which it could be available, and the availability intervals of the
nodes need to be assigned. Using this approach, temporsalisations that are not schedules
would be preferred, raising new challenges.

As we pointed out in the dissertation, the representation chosen to give temporal graphs
as input affects the time and space complexity of the algorithms. For the algorithms pre-
sented in Chapter 2 we adopted what we call a doubly-sorted representations, which consists
in two lists of the temporal edges sorted according to certain temporal criteria. Working
with this representation we obtained algorithms that perform in linear time and space, while
we also proved that for certain problems a single list would not be sufficient. Moreover, we
proved that this newly introduced representation is equivalent to the classical time-expanded
representation. This raises a number of questions. For instance, which are the problems
that could be solved in linear time with a single sorted list of temporal edges? The reach-
ability problem could be a candidate. In temporal graph models higher in the hierarchy
with respect to the point availability model, the representations become more involved.
A future line of research could include designing new temporal graphs representations in
these models to speed up pre-existing algorithms or develop procedures to exploit the new
representations.

A setting that we did not explore in this dissertation is the probabilistic one. Temporal
edges could be available at specific points in time or during intervals of time with a certain
probability. Also, the travel time of the temporal edges could be a probabilistic function.
Different assumptions on the probability space could lead to different problems that can be
approached. This would be particularly interesting if studied in the public transit network
model. In this case trips could have a certain probability of departing later, or certain
connections can have different travel times based on the probability to have traffic jams or
other scenarios. This can give a closer model to reality, as in public transport networks
there are trips that are more likely to have delays compared to others and road segments
that are more likely to be subjected to traffic jams or accidents. In this type of setting,
we can try to compute temporal walks or journeys that are “robust”, meaning that with a
certain amount of probability they enable a user to go from a source to a destination earlier
than a fixed time.

Among the many interesting possibilities in temporal network design we focused in par-
ticular on temporalisation problems. A static network is given as input and the task is to
transform it into a temporal graph from scratch and, in our case, optimise some reacha-
bility measure. In this context we designed a novel problem called trip temporalisation,
motivated by the application of scheduling in public transit networks. The problem consists
in assigning starting time to trips in a digraph with the goal to maximise the number of
temporally connected pairs in the resulting temporal graph. A restriction of the problem
which consists in deciding whether there exists a temporalisation that temporally connects
a given pair of nodes, turned out to be NP-complete. This pushed us tome make further
assumptions on the trip network, and after several hardness results we managed to find a
setting with reasonable assumptions that allows polynomial time approximation algorithms.

142



There are still challenging open ways to explore variations of this same problem. Introducing
waiting times for the trips, bounding the number of trips used or studying the reachability
inside a time window are natural first step enhancements, but they could greatly affect the
problem. Moreover, it could be possible to find other assumptions that are meaningful from
an application point of view that could lead to further and more promising approxima-
tion algorithms. Finally, adopting different measures of reachability could bring interesting
variations.

On a more general note, several temporal network design problems have received far
less attention than their static counterpart. Thus, there is still a broad collection of prob-
lems that can be studied in many different temporal graph models. Without going too far
from the setting analysed in this dissertation, a different kind of operation compared to
temporalisation could be addition or removal of temporal edges (or trips), and, instead of
reachability, other notions that could be explored are temporal diameter or survivability.

Finally, it would be interesting to implement and test the procedures for temporal walk
computation described in the thesis, and compare them to state of the art results. Moreover,
from an application and implementation point of view, it would be appealing to study
heuristics for the trip temporalisation problem, as the hardness results and low reachability
example are obtained through ad hoc trip networks that are far from being realistic public
transit networks.

143



Bibliography

[1] Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. In Encyclopedia
of Algorithms, pages 335–338. Springer, 2016. URL: https://doi.org/10.1007/

978-1-4939-2864-4_76.

[2] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gam-
bosi, Marco Protasi, and Viggo Kann. Complexity and approximation: Combinato-
rial optimization problems and their approximability properties. Springer, 1999. URL:
https://link.springer.com/book/10.1007/978-3-642-58412-1.

[3] Alkida Balliu, Filippo Brunelli, Pierluigi Crescenzi, Dennis Olivetti, and Laurent Vi-
ennot. A note on the complexity of maximizing temporal reachability via edge tem-
poralisation of directed graphs. CoRR, abs/2304.00817, 2023. arXiv:2304.00817,
doi:10.48550/arXiv.2304.00817.

[4] Richard Bellman. The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–516, 1954.

[5] Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Ef-
ficient computation of optimal temporal walks under waiting-time constraints. Appl.
Netw. Sci., 5(1):73, 2020. URL: https://doi.org/10.1007/s41109-020-00311-0.

[6] Kenneth A. Berman. Vulnerability of scheduled networks and a generalization of
menger’s theorem. Networks, 28(3):125–134, 1996.

[7] Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot. Temporalizing digraphs
via linear-size balanced bi-trees. CoRR, abs/2304.03567, 2023. arXiv:2304.03567,
doi:10.48550/arXiv.2304.03567.

[8] Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models to achieve
fast exact time-table queries. Electron. Notes Theor. Comput. Sci., 92:3–15, 2004. URL:
https://doi.org/10.1016/j.entcs.2003.12.019.

[9] Filippo Brunelli, Pierluigi Crescenzi, and Laurent Viennot. On computing pareto opti-
mal paths in weighted time-dependent networks. Inf. Process. Lett., 168:106086, 2021.
URL: https://doi.org/10.1016/j.ipl.2020.106086.

[10] Filippo Brunelli, Pierluigi Crescenzi, and Laurent Viennot. Maximizing reachability in a
temporal graph obtained by assigning starting times to a collection of walks. Networks,
81(2):177–203, 2023. doi:10.1002/net.22123.

144

https://doi.org/10.1007/978-1-4939-2864-4_76
https://doi.org/10.1007/978-1-4939-2864-4_76
https://link.springer.com/book/10.1007/978-3-642-58412-1
https://arxiv.org/abs/2304.00817
https://doi.org/10.48550/arXiv.2304.00817
https://doi.org/10.1007/s41109-020-00311-0
https://arxiv.org/abs/2304.03567
https://doi.org/10.48550/arXiv.2304.03567
https://doi.org/10.1016/j.entcs.2003.12.019
https://doi.org/10.1016/j.ipl.2020.106086
https://doi.org/10.1002/net.22123


[11] Filippo Brunelli and Laurent Viennot. To appear: Computing temporal reachability
under waiting-time constraints in linear time. In David Doty and Paul Spirakis, editors,
2nd Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2023, June
19-20, 2023, Pisa, Italy.

[12] Filippo Brunelli and Laurent Viennot. Minimum-cost temporal walks under waiting-
time constraints in linear time. CoRR, abs/2211.12136, 2022. URL: https://doi.
org/10.48550/arXiv.2211.12136.

[13] Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. International Journal of Founda-
tions of Computer Science, 14(02):267–285, 2003. URL: https://doi.org/10.1142/
S0129054103001728.

[14] Richard T. Bumby. A problem with telephones. SIAM. J. on Algebraic and Discrete
Methods, 2(1):13–18, 1981. URL: https://doi.org/10.1137/0602002.

[15] Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic as-
pects of temporal betweenness. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya
Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 2084–2092.
ACM, 2020. URL: https://doi.org/10.1145/3394486.3403259.

[16] Valentina Cacchiani and Paolo Toth. Nominal and robust train timetabling problems.
Eur. J. Oper. Res., 219(3):727–737, 2012. URL: https://doi.org/10.1016/j.ejor.
2011.11.003.

[17] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. IJPEDS, 27(5):387–408, 2012. URL: https:
//doi.org/10.1080/17445760.2012.668546.

[18] Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Find-
ing temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802,
2021. URL: https://doi.org/10.1007/s00453-021-00831-w.

[19] Kenneth L. Cooke and Eric Halsey. The shortest route through a network with time-
dependent internodal transit times. Journal of Mathematical Analysis and Applications,
14(3):493–498, 1966. URL: https://doi.org/10.1016/0022-247X(66)90009-6.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, chapter Single-Source Shortest Paths and All-Pairs Shortest
Paths, page 580–642. MIT Press and McGraw-Hill, 2001. URL: http://mitpress.
mit.edu/books/introduction-algorithms.

[21] Brian Dean. Continuous-time dynamics shortest path algorithms. PhD thesis, May
1999.

[22] Brian C Dean. Shortest Paths in FIFO Time-Dependent Networks: Theory and Algo-
rithms. Technical report, MIT Department of Computer Science, 2004.

[23] Frank Dehne, Masoud T. Omran, and Jörg-Rüdiger Sack. Shortest Paths in Time-
Dependent FIFO Networks. Algorithmica, 62(1-2):416–435, 2012. URL: https://doi.
org/10.1007/s00453-010-9461-6.

145

https://doi.org/10.48550/arXiv.2211.12136
https://doi.org/10.48550/arXiv.2211.12136
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1137/0602002
https://doi.org/10.1145/3394486.3403259
https://doi.org/10.1016/j.ejor.2011.11.003
https://doi.org/10.1016/j.ejor.2011.11.003
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1016/0022-247X(66)90009-6
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/s00453-010-9461-6
https://doi.org/10.1007/s00453-010-9461-6


[24] Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs
by delaying. In AAAI, pages 9810–9817, 2020. URL: https://doi.org/10.1016/j.
ic.2022.104890.

[25] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit
Routing. Transportation Science, 49(3):591–604, 2015. doi:10.1287/trsc.2014.0534.

[26] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly
Simple and Fast Transit Routing. In Experimental Algorithms, Lecture Notes in
Computer Science, pages 43–54. Springer, 2013. URL: https://doi.org/10.1007/
978-3-642-38527-8_6.

[27] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection scan
algorithm. ACM Journal of Experimental Algorithmics, 23:1.7:1–1.7:56, 2018. URL:
https://doi.org/10.1145/3274661.

[28] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959. URL: https://doi.org/10.1007/BF01386390.

[29] Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412, 1969. URL: https://doi.org/10.1287/opre.17.3.395.

[30] Jessica A. Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting
edges to restrict the size of an epidemic in temporal networks. In MFCS, pages 57:1–
57:15, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.57.

[31] Jessica A. Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise
reachability in temporal graphs. Journal of Computer and System Sciences, 115:169–
186, 2021. URL: https://doi.org/10.1016/j.jcss.2020.08.001.

[32] Étienne Jules Marey. La méthode graphique. G. Masson éditeur, 1885.

[33] Afonso Ferreira and Laurent Viennot. A Note on Models, Algorithms, and Data Struc-
tures for Dynamic Communication Networks. Research Report RR-4403, INRIA, 2002.
URL: https://inria.hal.science/inria-00072185.

[34] Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton Uni-
versity Press, Princeton, New Jersey, 1962. URL: https://doi.org/10.1515/

9781400875184.

[35] Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity of Time-
Dependent Shortest Paths. Algorithmica, 68(4):1075–1097, 2014. URL: https://doi.
org/10.1007/s00453-012-9714-7.

[36] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with
0(1) worst case access time. J. ACM, 31(3):538–544, 1984. URL: https://doi.org/
10.1145/828.1884.

[37] Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust
routes in temporal graphs. In Petra Berenbrink and Benjamin Monmege, editors, 39th
International Symposium on Theoretical Aspects of Computer Science, STACS 2022,
March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs,
pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL:
https://doi.org/10.4230/LIPIcs.STACS.2022.30.

146

https://doi.org/10.1016/j.ic.2022.104890
https://doi.org/10.1016/j.ic.2022.104890
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1145/3274661
https://doi.org/10.1007/BF01386390
https://doi.org/10.1287/opre.17.3.395
https://doi.org/10.4230/LIPIcs.MFCS.2019.57
https://doi.org/10.1016/j.jcss.2020.08.001
https://inria.hal.science/inria-00072185
https://doi.org/10.1515/9781400875184
https://doi.org/10.1515/9781400875184
https://doi.org/10.1007/s00453-012-9714-7
https://doi.org/10.1007/s00453-012-9714-7
https://doi.org/10.1145/828.1884
https://doi.org/10.1145/828.1884
https://doi.org/10.4230/LIPIcs.STACS.2022.30


[38] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[39] F. Göbel, J. Orestes Cerdeira, and Henk Jan Veldman. Label-connected graphs and
the gossip problem. Discrete Mathematics, 87(1):29–40, 1991. URL: https://doi.
org/10.1016/0012-365X(91)90068-D.

[40] S. Mitchell Hedetniemi, S.T. Hedetniemi, and A.L. Liestman. A survey of gossiping
and broadcasting in communication networks. Networks, 18(4):319–349, 1988. URL:
https://doi.org/10.1002/net.3230180406.

[41] Arthur B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562,
1962. URL: https://doi.org/10.1145/368996.369025.

[42] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820 – 842,
2002. URL: https://doi.org/10.1006/jcss.2002.1829.

[43] Emil Klafszky. Determination of shortest path in a network with time-dependent edge-
lengths. Mathematische Operationsforschung und Statistik, 3(4):255–257, 1972. doi:

10.1080/02331887208801081.

[44] Gueorgi Kossinets, Jon M. Kleinberg, and Duncan J. Watts. The structure of in-
formation pathways in a social communication network. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Las Vegas, Nevada, USA, August 24-27, 2008, pages 435–443, 2008. URL:
https://doi.org/10.1145/1401890.1401945.

[45] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link
streams for the modeling of interactions over time. Social Netw. Analys. Mining,
8(1):61:1–61:29, 2018. URL: https://doi.org/10.1007/s13278-018-0537-7.

[46] George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis.
Temporal network optimization subject to connectivity constraints. In ICALP, pages
657–668, 2013. URL: https://doi.org/10.1007/978-3-642-39212-2_57.

[47] George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal network optimiza-
tion subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019. URL:
https://doi.org/10.1007/s00453-018-0478-6.

[48] Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability mini-
mization: Delaying vs. deleting. In MFCS, volume 202 of LIPIcs, pages 76:1–76:15,
2021. URL: https://doi.org/10.4230/LIPIcs.MFCS.2021.76.

[49] Karl Nachtigall. Time depending shortest-path problems with applications to rail-
way networks. European Journal of Operational Research, 83(1):154–166, 1995. URL:
https://doi.org/10.1016/0377-2217(94)E0349-G.

[50] Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent networks
is np-hard. Technical report, Institute of Technology, Haifa, 1989.

147

https://doi.org/10.1016/0012-365X(91)90068-D
https://doi.org/10.1016/0012-365X(91)90068-D
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1145/368996.369025
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1080/02331887208801081
https://doi.org/10.1080/02331887208801081
https://doi.org/10.1145/1401890.1401945
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/978-3-642-39212-2_57
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.4230/LIPIcs.MFCS.2021.76
https://doi.org/10.1016/0377-2217(94)E0349-G


[51] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in net-
works with time-dependent edge-length. J. ACM, 37(3):607–625, 1990. doi:10.1145/
79147.214078.

[52] Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent networks.
Networks, 21(3):295–319, 1991. URL: https://doi.org/10.1002/net.3230210304.

[53] Stefano Pallottino and Maria Grazia Scutellà. Equilibrium and Advanced Transporta-
tion Modelling, chapter Shortest path algorithms in transportation models: classical
and innovative aspects, pages 245–281. Kluwer Academic Publishers, 1998. URL:
https://doi.org/10.1007/978-1-4615-5757-9_11.

[54] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor.
Comput. Sci., 312(1):47–74, 2004. URL: https://doi.org/10.1016/S0304-3975(03)
00402-X.

[55] Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM J. Comput., 19(5):775–786, 1990. URL: https://doi.org/10.1137/
0219054.

[56] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-line: An
empirical case study from public railroad transport. ACM J. Exp. Algorithmics, 5:12,
2000. URL: https://doi.org/10.1145/351827.384254.

[57] Hanif D. Sherali, Kaan Özbay, and Shivaram Subramanian. The time-dependent short-
est pair of disjoint paths problem: Complexity, models, and algorithms. Networks,
31(4):259–272, 1998.

[58] Frédéric Simard. Evaluating metrics in link streams. Soc. Netw. Anal. Min., 11(1):51,
2021. URL: https://doi.org/10.1007/s13278-021-00759-7.

[59] João L. Sobrinho. An algebraic theory of dynamic network routing. IEEE/ACM Trans.
Netw., 13(5):1160–1173, 2005. URL: https://doi.org/10.1109/TNET.2005.857111.

[60] João L. Sobrinho and Timothy G. Griffin. Routing in equilibrium. 19th International
Symposium on Mathematical Theory of Networks and System, pages 941–947, 2010.

[61] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in
linear time. J. ACM, 46(3):362–394, 1999. URL: https://doi.org/10.1145/316542.
316548.

[62] Juan Villacis-Llobet, Binh-Minh Bui-Xuan, and Maria Potop-Butucaru. Foremost non-
stop journey arrival in linear time. In Merav Parter, editor, Structural Information and
Communication Complexity - 29th International Colloquium, SIROCCO 2022, Pader-
born, Germany, June 27-29, 2022, Proceedings, volume 13298 of Lecture Notes in Com-
puter Science, pages 283–301. Springer, 2022. doi:10.1007/978-3-031-09993-9\_16.

[63] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path
Problems in Temporal Graphs. VLDB Endowment, 7(9):721–732, 2014. URL: https:
//doi.org/10.14778/2732939.2732945.

148

https://doi.org/10.1145/79147.214078
https://doi.org/10.1145/79147.214078
https://doi.org/10.1002/net.3230210304
https://doi.org/10.1007/978-1-4615-5757-9_11
https://doi.org/10.1016/S0304-3975(03)00402-X
https://doi.org/10.1016/S0304-3975(03)00402-X
https://doi.org/10.1137/0219054
https://doi.org/10.1137/0219054
https://doi.org/10.1145/351827.384254
https://doi.org/10.1007/s13278-021-00759-7
https://doi.org/10.1109/TNET.2005.857111
https://doi.org/10.1145/316542.316548
https://doi.org/10.1145/316542.316548
https://doi.org/10.1007/978-3-031-09993-9_16
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/2732939.2732945


[64] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu.
Efficient Algorithms for Temporal Path Computation. IEEE Transactions on Knowl-
edge and Data Engineering, 28:2927–2942, 2016. URL: https://doi.org/10.1109/
TKDE.2016.2594065.

[65] Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complex-
ity of finding small separators in temporal graphs. J. Comput. Syst. Sci., 107:72–92,
2020. URL: https://doi.org/10.1016/j.jcss.2019.07.006.

[66] Uri Zwick. Exact and approximate distances in graphs - A survey. In Friedhelm Meyer
auf der Heide, editor, Algorithms - ESA 2001, 9th Annual European Symposium,
Aarhus, Denmark, August 28-31, 2001, Proceedings, volume 2161 of Lecture Notes
in Computer Science, pages 33–48. Springer, 2001. URL: https://doi.org/10.1007/
3-540-44676-1_3.

149

https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1007/3-540-44676-1_3
https://doi.org/10.1007/3-540-44676-1_3

	Introduction
	Organisation

	Publications
	Preliminaries and State of the Art
	Preliminaries
	Basic graphs notions
	Basic algorithmic notions
	Basic complexity notions
	Temporal graphs
	Basic definitions in temporal graphs
	Differences with static graphs

	State of the art
	Models
	Temporal graph representations
	FIFO property and waiting policies
	Temporal paths problems


	Temporal walks computation under waiting constraints
	Model and representation
	Computing reachability under waiting constraints
	Computing single-source all-reachable-edge minimum-cost walks
	Computing shortest duration walks.

	Solving classical optimal temporal walks problems
	Single-source fewest-edges walks.
	Minimum-overall-waiting-time walks.
	Shortest-fastest walks
	Linear combination of classical criteria
	Pareto optimal walks.
	Profiles.

	Lower bound for the single-source optimal walk problem
	Handling zero travel-times
	Matching conditional lower-bound.

	Conclusions

	Temporal walks in public transit networks
	Model
	Complexity study of the Connection Scan Algorithm
	CSA complexity analysis

	Double Scan Algorithm
	Double Scan complexity analysis
	Computing optimal journeys
	Conclusions and future work


	Walk temporalisation
	Preliminary definitions and results
	The maximum reachability walk temporalisation  problem
	Bounding the number of used trips

	Strongly temporalisable trip networks
	Symmetric and strongly temporalisable trip networks

	Single arc trip networks
	Hardness result
	Approximation

	Conclusions and open problems

	Conclusions and perspectives

