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Abstract

Localization has fascinated researchers for centuries and has motivated a large
amount of studies and developments in communications.

The aim of positioning problems is to determine the position of the mobile device.
Positioning algorithms can be divided into 3 methods: Trilateration, Multilateration and
Triangulation.

Trilateration utilizes the distances between the mobile device and all the base stations
around to estimate the mobile position. These distances can be estimated via the Time
of Arrival (ToA) or the Received Signal Strength (RSS).

In Multilateration, the position location is based on measured quantities whose values
are a function of the Time Difference of Arrival (TDoA) of the two ToAs.

As for Triangulation, the directions of the incident signals play the most crucial
role in the localization. Therefore, it is also referred to as Direction-based Localization.
The Direction of Arrival (DoA) of each incident wave is taken into account to solve the
positioning problem. Each DoA is expressed by a single angle in 2D scenarios, and a pair
of angles in 3D scenarios. There are noticeable differences between Network-Positioning
implemented at the Network of Base Stations and Self-Positioning implemented at the
Mobile Device. In Network-Positioning, the mobile device is directly localized based on
the DoAs of the incident signals; meanwhile, in Self-Positioning, its position is estimated
by the Direction Difference of Arrival (DDoA) between each pair of incident signals,
because the DoA of each signal arriving to the Mobile Device is ambiguous.

In this dissertation, we study all the localization approaches described above. Our
spotlight is for Triangulation, which has many sub-scenarios to analyze. The results are
obtained by MATLAB simulations.
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Résumé

Localisation a fasciné les chercheurs pendant des siècles et a motivé un grand nombre
d’études et de développements dans dans le domaine des communications.

L’objectif du positionnement est de localiser le dispositif mobile. Les algorithmes de
positionnement peuvent être divisés en 3 méthodes : Trilatération, Multilatération et
Triangulation.

La trilatération utilise les distances entre le dispositif mobile et toutes les stations
de base environnantes pour estimer la position du mobile. Ces distances peuvent être
estimées par le Temps d’Arrivée (Time of Arrival - ToA) ou l’Intensité du Signal Reçu
(Received Siganl Strength - RSS).

Dans la multilatération, la localisation est basée sur des quantités mesurées dont les
valeurs sont une fonction de la Différence de Temps d’Arrivée (Time Difference of Arrival
- TDoA) des deux ToAs.

La Triangulation, quand à elle, utilise les directions des signaux incidents. Par
conséquent, elle est également appelée localisation basée sur la direction. La Direction
d’Arrivée (Direction of Arrival - DoA) de chaque onde incidente est comptée pour résoudre
le problème de positionnement. Chaque DoA est exprimée par un angle dans les scénarios
2D, et par une paire d’angles dans les scénarios 3D. Il existe des différences notables
entre le positionnement par le réseau mis en œuvre dans le réseau de stations de base et
l’autopositionnement mis en œuvre dans le dispositif mobile. Dans le positionnement par
le réseau, le dispositif mobile est directement localisé sur la base des DoA des signaux
incidents ; tandis que dans l’autopositionnement, sa position est estimée par la Différence
de Direction d’Arrivée (Direction Difference of Arrival - DDoA) entre chaque paire de
signaux incidents, car la DoA de chaque signal arrivant au dispositif mobile est ambiguë.

Dans cette thèse, nous étudions toutes les approches de localisation ci-dessus. Nous
nous focalisons plus particulièrement sur la Triangulation, qui comporte de nombreux
sous-scénarios à analyser. Les résultats sont obtenus par des simulations MATLAB.
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iv



Acknowledgements

This dissertation is submitted to Sorbonne University. This work is funded by French
government FUI project GEOLOC.

Firstly, I would like to express my deep and sincere gratitude to my supervisors,
Dirk SLOCK from EURECOM and Jean-Pierre ROSSI from Orange Labs. Their
invaluable advice has been broadened my knowledge, given me the correct directions
so that I can complete my dissertation. In addition, my thankfulness is for Florian
KALTENBERGER and Mohsen AMADI (EURECOM). Besides, my gratefulness is also
for Fabien FERRERO (Laboratoire d’Electronique, Antennes et Télécommunications -
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The acronyms and abbreviations used throughout the manuscript are specified in
the following. They are presented here in their singular form, and their plural forms are
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of an acronym is also indicated the first time that it is used.
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SINR Signal to Noise and Interference Ratio.
SNR Signal-to-Noise Ratio.
SISO Single-Input Single-Output.
SSB Synchronization Signals Block.
SSS Secondary Synchronization Signal.
TDL Tapped Delay Line.
TDoA Time Differences of Arrival.
ToA Time(s) of Arrival.
TLS Total Least Squares.
TRP Transmission and Reception Point.
TX Transmitter(s).
UE User Equipment.
UL Uplink.
WLS Weighted Least Squares.
w.r.t. with respect to.
w.l.o.g. Without loss of generality.
ZF Zero Forcing.
2D (3D, 4D) two (three, four) dimensional.
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Notations

The next list describes an overview on the notation used throughout this manuscript.
We use boldface uppercase letters (X) for matrices, boldface lowercase letters for vectors
(x), and regular lowercase letters for scalars (x). The vector can be represented by a

regular lowercase accented by a right arrow
(−→
d
)

.

A† Moore-Penrose pseudo inverse of matrix A.
exp(a) denotes an exponentiation with the base e and the power a.
diag(a1, a2, . . . , an) the diagonal matrix whose diagonal elements are a1, a2, . . . , an.
log(·) stands for decimal logarithm.
ln(·) stands for natural logarithm.
E(·) stands for mean value.
var(·) stands for variance.
xi abscissa (x-coordinate) of the i-th base station.
yi ordinate (y-coordinate) of the i-th base station.
zi applicate (z-coordinate) of the i-th base station.
x abscissa (x-coordinate) of the mobile device.
y ordinate (y-coordinate) of the mobile device.
z applicate (z-coordinate) of the mobile device.
x coordinate vector of the mobile device. In 2D problem, x = [x y]T .

In 3D problem, x = [x y z]T .
ϕi In 2D problem, it represents the DoA of the signal related to the

i-th base station. In 3D problem, it represents the azimuth angle
of the signal related to the i-th base station.

θi In 3D problem, it represents the elevation angle of the signal related
to the i-th base station.

φi,j In 2D self-positioning problem, it represents the DDoA between
the signals coming from the i-th base station and j-th base station.

βi,j In 3D self-positioning problem, it represents the DDoA between
the signals coming from the i-th base station and j-th base station.

γi,j In 3D self-positioning problem, γi,j = cosβi,j .

In addition, we define some following less common mathematical functions:
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sign(x) =

{
1 , x ≥ 0
−1 , x < 0 .

(1)

Then for (x, y) 6= (0, 0), we have the definition of atan2 function

atan2(y, x) = arctan
(y
x

)
− (sign(x)− 1) sign(y)

π

2
. (2)

With (a, b) ∈ R2, the modulo operation is defined as:

mod(a, b) = r ⇐⇒ a = bq + r (3)

where q ∈ Z and 0 ≤ r < b
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Chapter 1

Introduction

1.1 Motivations

The primary goal of position location (PL) is to find or estimate the location of a point
of interest in a two-dimensional (2D) or three-dimensional (3D) space inside a coordinate
system established using certain known references. A new position is determined in
general location scenarios and at the site of interest, considering the displacement from
a previously known reference location. This could indicate some inertial and direction
estimation. We evaluate gadgets with transmission or reception capabilities that help
with the location procedure due to the widespread use of wireless technologies.

1.1.1 The demand for position location in history [1]

For millennia, scientists have been interested in the art of determining position. The
first positioning methods were probably devised several millennia ago, when people
realized how important it was to know where they were in order to travel in a systematic
manner. Orientation at natural landmarks such as mountains, rivers, or coasts is a simple
approach for accomplishing this goal. Early man-made monuments were paths and ways
that were often established for trading, such as the famed Silk Road, which united Europe
and Eastern Asia and dated back to roughly 500 B.C. Lighthouses are another man-made
landmark. They give orientation in repetitive areas, including at night, for ships near to
the coast, for example. On the other hand, landmarks are absent on the high seas. The
dead reckoning method, which involves gauging direction and velocity to keep track of a
journey, was the simple method employed by early ocean navigators. Another method
that uses well-known objects as position references is celestial navigation. The latitude is
calculated by measuring the angle of the pole star above the horizon. The determination
of longitude, which is directly tied to the precise measurement of time due to the Earth’s
rotation, has been a key concern for a long time.

Famous scientists such as Isaac Newton and Edmond Halley proposed and encouraged
astronomical procedures, or predictable astronomical phenomena, to determine time.
Such concepts include the ’lunar distance’ from a fixed star or the ecliptic of Jupiter’s
moons. The problem was overcome when accurate chronometers were invented, obviating
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the necessity for astronomical methods. During a five-week cruise to Jamaica in 1761,
John Harrison’s H.4 marine chronometer, built in 1759, showed a time inaccuracy of 5
seconds. All approaches that rely on visual observations at least in part necessitate clear
vision. This restricts the applicability of these techniques to specific periods of the day
or favorable weather conditions. The late-nineteenth-century discovery of radio waves
ushered in the discipline of radio navigation.

1.1.2 Literature Review

In order to determine the position of a mobile device, a network of base stations,
whose positions are already known, is required. In localization processes, the base stations
can be the transmitters (TXs) which transmit the signals to the mobile device, which
is the receiver (RX), or vice versa. The essential techniques of positioning systems are
described in this section. Various positioning systems are built on different combinations
of these techniques. The authors of [2] have summarized the following techniques:

Received Signal Strength (RSS)

RSS estimation enables for range or distance measurement, allowing for localization.
To locate a mobile device, multiple base stations work together. The strength of the
received signal represents the signal’s travel distance in this approach [3]. Although
RSS systems are very sensitive to shadowing and to NLoS scenarios, it still plays a
crucial role in localization because it requires the simplest hardware. For a coplanar
example, at least three base stations with three RSS measurements are required, given
that the transmission strength and channel (or environment in which the signal is moving)
parameters are known.

The position of the mobile device is estimated within a circle of radius di, with the
base station BSi at the center of the circle, using distance measurements. This position
can be determined by either base stations or the mobile device itself (see Fig. 1.1). At
least four base stations are required in non-coplanar cases.

Time of Arrival (ToA)

In ToA, similar to the RSS, many base nodes collaborate to locate a target node,
(see Fig. 1.1). Instead of measuring RSS at the receivers, the ToA is used to make
the position estimation. In some cases, numerous base stations may work together to
determine their own position before attempting to locate the mobile device without using
GPS. With particular, in inhomogeneous medium, the ToA estimation method would be
complicated [4,5]. A good example of such a medium is the human body.

ToA appears to be a reliable technique, on the other hand, it has several weaknesses [6]:

(a) It necessitates the perfect synchronization of all nodes (base stations and mobile
devices): a little timing error might result in a substantial error in the estimation
of the distance di.
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(b) To allow the receiver to know the moment at which the signal was generated at
the target node, the transmitted signal must be labeled with a timestamp. This
extra timestamp adds to the complexity of the transmitted signal, perhaps creating
another source of error.

Time Difference of Arrival (TDoA)

TDoA estimate necessitates the measurement of the time difference between signals
arriving at two receivers, as the name indicates. This approach, like ToA estimation,
presupposes that base station placements are known [6]. A hyperbola is used to show
the difference in ToA at each receiver. This hyperbola is the locus of a point in a plane
such that the difference of distances from two fixed points (known as the foci) remains
constant.

To locate a mobile device in a coplanar situation, three base stations with two TDoA
measurements are required (see Fig. 1.2). One base station is designated as the reference
base station and is numbered as BS1 in the diagram. TDoA measurements are taken
with the reference base station in mind. Non-coplanar scenarios need the placement of
four base stations and three TDoA measurements.

TDoA overcomes ToA’s first weakness by eliminating the need to synchronize the
mobile device’s clock with the base station’s clock. All base stations receive the same
signal provided by the mobile device in uplink TDoA. As a result, the inaccuracy in the
arrival time at each base node owing to unsynchronized clocks is the same as long as the
base stations’ clocks are synchronized. In the case of downlink TDoA, the synchronization
issue is completely eliminated.

ToA is the time interval between the start time (ts) of the signal at the transmitter
and its end time(ti) at the receiver. TDoA, on the other hand, is the time difference
between the end timings (ti and tj) of the broadcast signal associated to two base stations
BSi and BSj , as illustrated in Figure 1.2. As a result, with the TDoA approach, there
is no need to synchronize the clocks of the mobile device and the base stations. It
significantly decreases the complexity of implementations.

Direction of Arrival (DoA)

In DoA estimation, the receivers determine the angle of the incident signals (Fig.
1.3). Base stations should be equipped with antenna arrays, and each antenna array
should have radio-frequency (RF) front-end components to allow them to estimate DoA.
However, this comes at a higher price, with more complexity and power consumption.
The DoA estimate is becoming increasingly exact with 5G technology. As a result, this
technology is quite promising and has the potential to be used for future localization.

In contrast to ToA and TDoA, only two base stations and two DoA measurements
are required in both coplanar and non-coplanar scenario. The primary lobe of an antenna
array is directed in the direction of the incident signal’s highest incoming energy to
identify the DoA [7].
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Direction Difference of Arrival (DDoA)

In DoA estimation, the orientation of the receiver must be fixed. Therefore, DoA-
based localization is feasible for Network-Positioning. However, when the receiver is the
mobile device, DoA estimation of the incident signal is a really challenging task, which
convolutes the localization. In this situation, DDoA is a suitable approach to tackle the
direction estimation problem [8,9] .

Similar to TDoA, DDoA measures the difference in directions of incident waves.
The DDoA-based positioning algorithms are more complex than the DoA-based ones in
general, and their accuracy is also usually lower. Nonetheless, this method is still crucial
in practical localization.

Hybrid localization

In some situations, the mobile device is localized by two or more methods combined.
This cooperation is expected to give more accurate position estimations.

1.2 Methodology

Localization requires a mobile device whose position has to be determined and a
network of base stations whose positions are fixed and already known. Based on where
the position is calculated, there are two approaches for positioning determination [10]:

• Self-Positioning: Signals are transmitted from the network base stations and re-
ceived by the mobile device. The position is then estimated at the device to localize
itself.

• Network-Positioning: A signal is transmitted by the mobile device and received
from the network of base stations. The position is calculated at a unit in the
network of base stations.

Positioning algorithms can be divided into three main methods:

• Trilateration: Position location is determined based on the distances from the
mobile device to the base stations. These distances can be estimated by Time
of Arrival (ToA) or Received Signal Strength (RSS) of the transmitted signals.
Chapter 2 details this type of algorithm.

• Multilateration: The differences in distances are used to determine position. The
Time Difference of Arrival (TDoA) approach is commonly used to estimate these
differences. The distance difference between two stations leads in an infinite number
of potential subject locations that match the TDoA. When these potential sites are
mapped, a hyperbolic curve emerges. Multilateration uses many TDoAs to pinpoint
the exact location of the subject along that curve. A second TDoA involving
a different pair of stations (usually one station is common to both pairings, so
only one station is new) will yield a second curve that intersects the first in two
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Figure 1.1: Operation of Trilateration in 2D

dimensions. When the two curves are compared, only a few viable user locations
(usually two) emerge. Chapter 3 details this type of algorithm.

• Triangulation: Literally, triangulation is the process of determining the location
of a point by forming triangles to the point from known points. To form the
necessary triangles, the Direction of Arrival (DoA) of the signals will be required.
Consequently, triangulation is referred as to direction-based positioning algorithm.

Unlike trilateration and multilateration, triangulation has different algorithms
between network-positioning and self-positioning. The DoA expressions are different
at the mobile device and at the base station. Furthermore, the orientation of the
mobile device is ambiguous and probably inconstant. Therefore, self-positioning
triangulation and network-positioning triangulation are generally contrasting. They
must be particularly analyzed in distinct chapters. Chapters 4, 5, 6 demonstrate
the studies for each sub-case of triangulation.

Furthermore, the cooperation of two or more methods above is also considered in this
thesis.

1.3 Contributions

In this dissertation, we address all the problems mentionned in the previous section
in order to make the localization processes more efficient. In particular,

Chapter 2. In Chapter 2, we start with Trilateration, the basic method of localization.
We study the geometric approach by forming the concerned circles and finding their
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Figure 1.2: Operation of Multilateration in 2D

Figure 1.3: Operation of Triangulation in 2D
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intersection point. In practical scenarios where noises always affect distance estimations,
such a point may not exist. Consequently, another geometric solution is proposed to
tackle this problem, regardless of the existence of the intersection point. An interpretation
using matrix is presented, which simplifies the solution.

Chapter 3. In Chapter 3, we tackle the localization problem in Multilateration. TDoA
estimation in multi path channels is investigated. Least-Squares method and Maximum
Likelihood estimator are also proposed. Practice-like simulations are implemented.

Chapter 4. From this chapter, the direction-based algorithms (Triangulation) are
considered. The localization problems at base stations are analyzed in both 2D and 3D
scenarios. We introduce a new definition for azimuth angle estimation, using atan2
function and phase jump corrections. This improves considerably the accuracy of
localization.

Chapter 5. In Chapter 5, we focus on Self-Positioning Triangulation in 2D scenarios.
As the DoA estimation of the incident wave to the mobile device is impossible to be
correctly estimated, the position algorithm based on Direction Difference of Arrival
(DDoA) is suggested. This chapter focus on the positioning problem in 2D scenarios,
where the DDoA is easily obtained by subtracting two concerned DoAs.

Chapter 6. In Chapter 6, we expand the problem, which is solved in chapter 5, into
3D scenarios. Computing DDoA from the related DoAs is much more challenging. In
addition, it is not straightforward to determine the mobile position from the DDoAs
obtained. Two methods are considered. One is localization based on pure DDoA, another
is the ToA-DDoA hybrid localization. In both methods, Least Squares and Maximum
Likelihood estimator are studied.

Chapter 7. In Chapter 7, we conclude the dissertation, and discuss about possible
further developments.

1.4 Publications

Some publications related to this dissertation:

Papers already published

• H. M. Le, D. Slock, J-P. Rossi, “A geometric interpretation of trilateration for
RSS-based localization”, 28th European Signal Processing Conference (EUSIPCO),
2020.

• H. M. Le, D. Slock, J-P. Rossi, “2D DDoA-based self-positioning for mobile devices”,
29th European Signal Processing Conference (EUSIPCO), 2021.

• H. M. Le, D. Slock, J-P. Rossi, “3D DoA-based localization with phase jump
corrections”, IEEE Jordan International Joint Conference on Electrical Engineering
and Information Technology (JEEIT), 2021.

• H. M. Le, D. Slock, J-P. Rossi, “2D DoA-based Positioning with Phase Jump
Corrections and An Approximate Maximum Likelihood Estimator”, 3rd IEEE
Middle East and North Africa COMMunications Conference (MENACOMM), 2021.
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• H. M. Le, D. Slock, J-P. Rossi, “3D Self-Positioning Algorithm at Mobile Devices
based on joint DDoA-ToA”, 3rd IEEE Middle East and North Africa COMMunica-
tions Conference (MENACOMM), 2021.

Pending paper

• H. M. Le, M. Ahadi, D. Slock, F. Kaltenberger, J-P. Rossi, “3D Localization in
5G New Radio Networks Using Downlink Time Difference of Arrival”, European
Conference on Networks and Communications (EuCNC) and 6G Summit, 2022.
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Chapter 2

RSS-based Trilateration in 2D

Trilateration is a popular approach in localization. Many related geometric approaches
have been proposed for 2D scenarios. In general, each approach has a standard case in
which the main solution is applied, and many specific cases. Each specific case has a
particular solution, which makes the algorithm more complex. This chapter introduces a
novel geometric approach that covers all the cases considered by previous algorithms. It
turns out though that this approach is a special case of an existing approach, for which
we hence provide a geometric interpretation. Numerical results illustrate the method in
RSS-based localization while estimating simultaneously the path loss exponent.

2.1 Introduction

In Trilateration, we calculate the distances from a mobile station and the base stations
around and use them to deduce its position. For ToA, the distance is estimated based on
the difference between the time instants when the signal was transmitted and when the
signal was received. For RSS, we need more parameters to estimate this distance. Beside
the ratio between transmitted signal power and received signal power, we also need path
loss exponent, a parameter showing the reduction in power density of an electromagnetic
wave as it propagates through space. In a 2D model, the received signals from at least 3
base stations are required to estimate position of a mobile station.

RSS-based localization with simultaneous path loss estimation is the subject of several
previous research papers [11–14].

This chapter proposes a new trilateration algorithm that uses 3 base stations of known
positions to locate one mobile station in 2D scenarios, by a geometric approach. It avoids
case division, which is the main weakness of some previously proposed algorithms. The
original motivation for the proposed approach was to estimate the position of a mobile
who possibly has a different height also and hence is not in the plane spanned by the
three BS. Compared to the usual trilateration, this scenario corresponds to one possible
error case, of the three estimated distances being larger than their true values.
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10 CHAPTER 2. RSS-BASED TRILATERATION IN 2D

Figure 2.1: All possible cases resulting from orientation and relative radii of the 3 circles,
as well as their radical axes. The yellow line is the radical axis of the red and green
circles. The purple line is the radical axis of the red and blue circles. The cyan line is
the radical axis of the green and blue circles. The 3 radical axes are always concurrent.

2.2 Trilateration

2.2.1 Previous works

Many algorithms on trilateration have been proposed so far. In 2D models, the
position of a mobile station is considered to be the point whose distance to the each
stations is equal to the distance between the mobile station and the corresponding base
station. It means that they find the intersection point of the circles whose centers are the
base stations (usually 3 base stations). The radius of each circle is the estimated distance
from the mobile station to the base station concerned. In the ideal scenario where there
is no noise as well as no inaccuracy in measurements, there must be a unique point in
which the 3 circles intersect. Undoubtedly, it is the position of the mobile station.

However, such an ideal scenario never exists in reality. The estimated distance is never
exactly the correct true distance. Therefore, the 3 circles never intersect in 1 point. [15]
summarizes all the possible cases of relative position of 3 circles. 2 circles can intersect
each other at 2 common points; or touch each other internally or externally (1 common
point); or lie inside or outside each other (0 common point). Hence, the total number of
intersection points of each pair of 3 circles is no more than 6. All ten possible cases are
illustrated in Fig. 2.1.

Frequently, the 3 circles intersect each other at 6 points (case 1). The composition of
3 points that are closest to each other will be selected. [16] proposed a rule to select the
correct 3 points needed. This rule selects the 3 points that stay closest to each other.
Nonetheless, when the noise is quite considerable, this rule leads to select the wrong
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Figure 2.2: Intersections of 3 circles in an ideal scenario (a) and in a scenario with
erroneous measurements (b).

Figure 2.3: Tetrahedron S.ABC formed by 3 base stations A, B, C and the intersection
point S of the 3 spheres
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composition of 3 points. Fig. 2.2a shows the ideal scenario when the 3 circles intersect
each other at one point. In Fig. 2.2b, a noticeable noise makes the radius of circle (C3)
much smaller. Based on the rule in [16], the selected points are D’, E, F because they are
closest to each other; instead of the correct composition of points D, E, F. As a result,
the estimated position can be sizeably erroneous.

The selected 3 points form a triangle. In [16], the Fermat Point (the point such that
the total distance from the three vertices of the triangle to the point is the minimum
possible) of the triangle is taken as the position of the mobile station. The authors of [17]
suggested the position to be the centroid of the triangle. Nevertheless, those algorithms
only work in the standard case where n = 6. As for the other cases (n < 6), more
functions, more analyses need to be performed.

In the paper [18] on localization in a 3D model, the author proposed a method to
position in 3D. Similar to 2D models where circles are drawn, in 3D spheres appear. Each
sphere has the center at the base station concerned and the radius as the distance between
this base station and the mobile station. The intersection points of the 3 spheres are
found, they are considered to be the position of the mobile station. Fig. 3 demonstrates
a tetrahedron SABC where A, B, C are the base stations and S is the intersection point
of the 3 spheres. Although this method could not solve the problem of the cases when
the intersection points don’t exist, it suggests a novel idea for positioning in 2D. We
consider the orthogonal projection point of the apex of the tetrahedron onto the base
plane as the position of the mobile station (point H is Fig. 2.3). We are going to prove
that there exists one and only one point like this in all the cases, even when there is no
intersection point of 3 spheres.

2.2.2 The most usual case

In this chapter, dAB denotes the length of the line segment AB, and (A, dA) is the
circle of center A and radius dA.

We consider the 3 base stations as the 3 vertices of a triangle. Generally, the 3 spheres
intersects each other at at least 1 point. This point together with the 3 base stations
form a tetrahedron in which it is the apex and the base plane is the plane through 3 base
station (Fig. 2.3). In our work, we consider the orthogonal projection of the apex S on
the base plane (ABC) as the estimated position of the mobile station.

We find that orthogonal projection point, as well as the foot of the tetrahedron’s
altitude through point S.

Defining dA, dB and dC are the measured distance from the mobile station to 3 base
stations A, B and C, respectively. We have SA = dA; SB = dB and SC = dC .

Let M be the foot of the altitude through point S of triangle SAB, N be the foot of
the altitude through point S of triangle SAC.

In plane (ABC), we draw a line perpendicular to AB through M and a line perpen-
dicular to AC through N. The 2 lines intersect at point H. We have:

SM ⊥ AB and HM ⊥ AB ⇒ (SHM) ⊥ AB ⇒ SH ⊥ AB

SN ⊥ AC and HN ⊥ AC ⇒ (SHN) ⊥ AC ⇒ SH ⊥ AC

SH ⊥ AB and SH ⊥ AC ⇒ SH ⊥ (ABC)
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Therefore, H is the foot of the altitude through point S of the tetrahedron SABC. We
consider H as the estimated position of the mobile station.

SM is the altitude of the triangle SAB so

d2SM = d2SA − d2AM = d2SB − d2BM (2.1)

Thus

d2AM − d2BM = d2SA − d2SB = d2A − d2B (2.2)

Similarly, triangle SAC, HAB, HAC has altitude SN, HM, HN, respectively.

d2AN − d2CN = d2SA − d2SC = d2A − d2C (2.3)

d2AM − d2BM = d2HA − d2HB (2.4)

d2AM − d2CN = d2HA − d2HC (2.5)

From (2.2)-(2.5), we deduce that

d2HA − d2HB = d2SA − d2SB = d2A − d2B (2.6)

d2HA − d2HC = d2SA − d2SC = d2A − d2C (2.7)

Therefore, H stays on the two lines: radical axis of circles (A, dA) and (B, dB) (line
1 ); radical axis of circles (A, dA), (C, dC) (line 2 ). As a result, H is the radical center of
3 circles (A, dA), (B, dB), (C, dC).

Short explanations: Radical axis of 2 non-concentric circles is the locus of a point
having equal power with regard to them. The geometric power of a point with respect to
a circle is a real number that reflects the relative distance of the point from the circle.
It is positive or 0 or negative when the point stays outside or on or inside the circle,
respectively. The theory of radical axis of 2 circles and radical center of 3 circles are
demonstrated in [19].

2.2.3 Suggested algorithm

The interesting thing is that we can always get the point H, even if we cannot form
a tetrahedron SABC or even if we cannot form any or all of the 3 triangles SAB, SAC,
SBC. Estimating the position of the mobile station becomes calculating the coordinate of
the radical center of 3 circles.

1. Name the 3 base stations A, B and C. Estimate the distance dA, dB, dC from the
mobile station to each base station, respectively.

2. Determine the 3 circles: (A, dA), (B, dB), (C, dC). Then determine their 3 radical
axes, taken in 3 pairs.
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3. The 3 radical axes must be concurrent [19]. The common point of the 3 lines is
estimated position of the mobile station (Fig. 2.1).

Let xA, xB, xC denote the abscissas of point A, B, C respectively and yA, yB, yC
denote the ordinates of point A, B, C respectively.

As the 3 radical axes are concurrent, we only need to find the intersection point of
any two of them.

The equation of the radical axis of circles (A, dA) and (B, dB)

(xB − xA)x+ (yB − yA)y = d2B − x2B − y2B − d2A + x2A + y2A (2.8)

The equation of the radical axis of circles (A, dA) and (B, dB)

(xC − xC)x+ (yC − yA)y = d2C − x2C − y2C − d2A + x2A + y2A (2.9)

Let x =
[
xH yH

]T
be the coordinate vector of the point H. Since H is the intersection

point of the 2 radical axes above:

Ax = b (2.10)

where

A =

[
xB − xA xC − xA
yB − yA yC − yA

]
(2.11)

b =

[
d2B − x2B − y2B − d2A + x2A + y2A
d2C − x2C − y2C − d2A + x2A + y2A

]
. (2.12)

Hence

x = A−1 b . (2.13)

(2.13) is the equation to compute the coordinate of point H, which is taken as the
estimated position of the mobile station.

When the number of base stations N is larger than 3, we will obtain N(N − 1)/2
radical axes. To estimate the radical center of those circles, Least Square (LS) is applied
to get the solution of the overdetermined equation system. It turns out that this proposed
method corresponds to method LS mentioned in [20], where an interesting state of the
art appears, including optimally weighted least-squares versions.

2.2.4 Least Squares method

In matrix formulation, we define

A =


−2x2 + 2x1 −2y2 + 2y1
−2x3 + 2x1 −2y3 + 2y1

. . . . . .
−2xN + 2x1 −2yN + 2y1

 ; x =

[
x
y

]
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b̂ =


d̂22 − x22 − y22 − d̂21 + x21 + y21
d̂23 − x23 − y23 − d̂21 + x21 + y21

. . .

d̂2N − x2N − y2N − d̂21 + x21 + y21


We then have the equation of approximation

A x ≈ b̂ (2.14)

Therefore, the estimate of x is

x̂ = min
x
‖Ax− b̂‖2 (2.15)

x̂ is calculated by Least-Square estimation of x

x̂ = Â†b̂ (2.16)

where A† = (ATA)−1AT is the Moore-Penrose pseudo inverse of matrix A.

2.2.5 Weighted Least Squares estimation

A Weighted Least Square estimation can also be applied. The estimate of x is
compute by:

x̂ =
(
ATW−1A

)−1
ATW−1b̂ (2.17)

where W is the covariance matrix of b̂:

W = var(d21) • 1 • 1T + diag
(
var(d22), var(d23), . . . , var(d2N )

)
(2.18)

with var(d2i ) is the variance of d2i and 1 = [1 1 . . . 1]T is the all-one vector.

2.3 RSS Model and Attenuation Exponent Estimation

2.3.1 RSS Model

RSS is the average power received over a wireless link. Field trials have validated
that the disturbance in RSS due to shadowing is log-normal distributed. Accordingly,
the log-normal path loss model can be expressed as:

Pi = P0 + 10αi log(d0)− 10αi log(di) + nRSS,i (2.19)

where P0 is the power received (in dBm) at a reference point at distance d0, di is the actual
distance from the i-th base station to the mobile station, Pi is the power received (in
dBm) at that base station, αi is the path loss exponent of the corresponding transmission
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link, nRSS,i is the log normal disturbance. The Path Loss Model (PLM) assumes that
this disturbance has a Gaussian distribution with zero mean and a variance of σ2RSS,i.

The RSS measurement is simplified to

ζRSS,i , Pi − P0 − 10α log d0 (2.20)

From the Appendix B, we have the expected value and variance of d2i as follows:

d̂2i = E(d2i ) = exp

(
−(ln 10)ζRSS,i

5αi
−

(ln 10)2σ2RSS,i

50α2
i

)
(2.21)

var(d2i ) = exp

(
−(ln 10)ζRSS,i

2.5αi
− (ln 10)2σ2i

12.5α2
i

)[
exp

(
(ln 10)2

25α2
i

σ2i

)
− 1

]
(2.22)

2.3.2 ML Position Optimization with Steepest-Descent

To optimize x̂ obtained in the section 2.2.4, an iterative Maximum Likelihood estimator
is applied.

In vector formulation, we denote

ζRSS =
[
ζRSS,1 ζRSS,2 . . . ζRSS,N

]T
(2.23)

fRSS(x) =


−10α1 log

√
(x− x1)2 + (y − y1)2

−10α2 log
√

(x− x2)2 + (y − y2)2
. . .

−10αN log
√

(x− xN )2 + (y − yN )2

 (2.24)

where x =
[
x y

]T
.

The vector ζRSS is Gaussian distributed with mean vector of f and covariance matrix
CRSS, we have the probability density function (pdf) [21]:

p(ζRSS|x) =
(2π)−

N
2

|CRSS|
1
2

exp

(
−1

2
(ζRSS−fRSS)TC−1RSS(ζRSS−fRSS)

)
(2.25)

where
CRSS = diag(σ2RSS,1, σ

2
RSS,2, . . . , σ

2
RSS,N ) (2.26)

Maximizing the pdf in (2.25) is equivalent to finding

x̂ = arg min
x

JRSS (2.27)

where JRSS(x) = (ζRSS − fRSS(x))TC−1RSS(ζRSS − fRSS(x))
We consider iterative Steepest-Descent procedure [22] for x̂. At iteration (u+1):

x̂(u+1) = x̂(u) − µ0∇(JRSS(x̂(u)) (2.28)
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with ∇(JRSS)(x̂(k)) is the Gradient vector of JRSS at the value x̂(u) which is detailed in
Appendix A; and µ0 is the step-size.

Stopping criterion: ‖x(u+1)−x(u)‖2 < εRSS, where εRSS is a sufficiently small positive
constant.

The initiation value x̂(1) is obtained by the geometric approach or Weighted Least
Squares method.

2.4 Estimation of Path Loss Exponent

To estimate the path loss exponent, beside the N base stations given, we also use M
emitters at known positions. In absence of disturbance:

Pi,j = P0 + 10α log(d0)− 10αi,j log(di,j) + nRSS,i,j (2.29)

where Pi,j is the power received at i-th base station, emitted by the j-th emitter, and
di,j is the actual distance between the i-th base station and the j-th emitter and nRSS,i,j

is the corresponding lognormal shadowing. We denote:

ζα =



P1,1 − P0

P1,2 − P0

. . .
P1,N − P0

. . .
PM,1 − P0

PM,2 − P0

. . .
PM,N − P0


, ψα =



10 log d0
d1,1

10 log d0
d1,2

. . .

10 log d0
d1,N

. . .

10 log d0
dM,1

10 log d0
dM,2

. . .

10 log d0
dM,N


, nRSS =



nRSS,1,1

nRSS,1,2

. . .
nRSS,1,N

. . .
nRSS,M,1

nRSS,M,2

. . .
nRSS,M,N


. (2.30)

We assume that all the transmission links have the same path loss exponent, or
α1,1 = · · · = αM,N = α. Therefore, the joint measurements can be written as

ζα = ψα α+ nRSS. (2.31)

The Least-Squares estimate is then

α̂ = ζ†αψα (2.32)

2.5 Simulation Results

2.5.1 Environment setup

Our simulation scenario considers an area of size 1000m x 1000m. As for other
parameters, P0 = -45 dBm at d0 = 10m.

The 3 base stations’ coordinators are (400; 400), (600; 400) and (500; 600). 1000
mobiles stations are randomly picked in the area (Fig. 2.4).
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Figure 2.4: Map of Base stations and Positions of Mobile Device

We assume that all the transmission links have the same path loss exponents (α1 =
α2 = · · · = αN ) and all the log-normal shadowings have the same standard deviation
(σRSS,1 = σRSS,2 = · · · = σRSS,N = σRSS).

2.5.2 Results

To compare the results among the algorithms, we calculate the Average Position
Error (AVE), which is defined:

AVE ,
1

Z

Z∑
l=1

‖x(l) − x̂(l)‖2 (2.33)

where x(l) is the l-th actual position of the mobile station, x̂(l) is the l-th estimated
position of the mobile station, Z is the number of positions randomly picked up (in this
setup, Z = 1000).

Three geometric solutions

There are 3 geometric solutions for Trilateration menntionned above: Centroid [17],
Fermat Point [16] and radii-square-differences (our proposed solution). We implement
simulations of the three solutions. The expected value and variance of d2i are estimated
by the equations (2.21) and (2.22), respectively.
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Figure 2.5: Comparisons of CDF and PDF among 3 geometric solutions, when α = 2
and σRSS = 2.

Fig. 2.5 compares the Cumulative Distribution Function (CDF) and Probability
Distribution Function (PDF) of the AVE of the three solutions, when α = 2 and σRSS = 2.
It is obvious that our proposed solution (radii-difference-square) has the most accurate
positioning estimations.

Estimation of path loss exponent

Table 2.1 illustrates the AVE obtained when we do not re-estimate the path loss
component. The value of α varies from 2 to 6, the variance of additive disturbance is 1
and 2.

Table 2.2 illustrates the AVE obtained when we re-estimate the path loss component
before estimating the position of the mobile station. 5 fixed emitters are placed at (0;
0), (0; 1000), (1000; 0), (1000; 1000) and (500; 500). The estimated value of path loss
components are also presented in the table.

In a nutshell, the results shown in the two tables above are summarized in Fig. 2.6,
in order to give a clear comparison.

2.6 Conclusions

In the range of Trilateration positioning, this section proposes a new geometric
method that can be applied in all measurement error cases. The numerical results shows,
compared to the centroid algorithm and the Fermat Point algorithm, that our proposed
approach helps to significantly improve the accuracy in localization and reduce the
complexity by avoiding case division. Furthermore, experimental results also demonstrate
that integrating path loss estimation can make the position estimation more accurate.
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Nevertheless, only results in 2D simulation are shown. As for 3D models, algorithms are
more complicated and are currently being investigated.

σ = 1 σ = 2

α = 2 79.459 161.481
α = 2.5 57.289 130.180
α = 3 47.187 102.248
α = 3.5 41.074 83.031
α = 4 34.003 75.210
α = 4.5 30.890 63.755
α = 5 27.036 58.434
α = 5.5 25.604 51.040
α = 6 23.480 46.820

Table 2.1: Average Position Error in localization without estimation of path loss compo-
nent

σ = 1 σ = 2

α = 2 α̂ = 2.0055 76.953 α̂ = 2.0075 156.388
α = 2.5 α̂ = 2.504 56.524 α̂ = 2.511 122.647
α = 3 α̂ = 3.0026 47.489 α̂ = 3.0099 105.778
α = 3.5 α̂ = 3.5024 41.337 α̂ = 3.5148 88.051
α = 4 α̂ = 4.0015 33.963 α̂ = 4.0166 74.850
α = 4.5 α̂ = 4.5036 28.722 α̂ = 4.5043 63.919
α = 5 α̂ = 5.0008 27.663 α̂ = 5.0192 58.098
α = 5.5 α̂ = 5.5045 25.751 α̂ = 5.5134 50.735
α = 6 α̂ = 6.0018 22.740 α̂ = 6.0091 47.981

Table 2.2: Average Position Error in localization with estimation of path loss component
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Chapter 3

Multilateration: TDoA-based
localization

3.1 Introduction

Immense amount of data can be shared on the recently developed open source platforms
since 5G wireless networks are developing. Location information of mobile devices are
greatly advantageous among the new services which can be developed with these data,
for instance, supporting wireless operators to enhance the network performance [23].

TDoA systems avoid the requirements of clock synchronization at the point of interest
or tag-end by considering the different arrival times of signals that originate at two
distinct reference points [24]. The time difference calculation effectively cancels out time
synchronization errors at the tag. We notice that TDoA-based positioning schemes still
require clock synchronization among all the beacons in the system. Measurements of
TDoA also involve the correlation of transmitted and received signals to determine the
arrival time of the strongest correlation peak. Thus, excluding synchronization issues,
the sources of error of TDoA-based systems are the same as the ones described for ToA
schemes.

TDoA-based positioning algorithm is a popular topic of many previous works. The
authors of [25] propose a geometric approach for positioning problems, but optimization is
not considered. In the paper, [26–29], the theories for TDoA-based positioning algorithms
are proposed to make the position estimations much more robust. However, the practical
implementations are not well-considered, neither are the practice-like simulations. They
also assume that all the TDoA estimations have the same characteristics, which is difficult
to witness in practice.

In this chapter, we measure TDoA estimation in practice scenarios. Section 3.2
illustrates the TDoA estimation in a selected practical scenario. All the related positioning
algorithms are analyzed in section 3.3. In the last two sections, we provide the simulations,
their results, and our conclusions.
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3.2 TDoA estimation

3.2.1 General description of NR positioning

The 3GPP NR technology, particularly in Release-16, contributes to location-based
services such as precision UE positioning. This operation occurs in the low and high-
frequency bands FR1 and FR2 (below and above 6GHz), allowing for the utilization of
wide signal bandwidths of 100MHz and 400MHz for FR1 and FR2, respectively. This will
result in new performance constraints for approaches such as DL TDoA, which use timing
measurements to find the user. However, it has some propagation issues in mmWave
communications. In comparison to LTE, more bandwidth and large antenna arrays
(massive MIMO) in NR positioning systems offer more degrees of freedom for improved
location accuracy. The following are NR design goals for commercial positioning use
cases:

• Support for a variety of accuracy, latency, and device types.

• For some use cases, support accuracy and latency as described in TR 22.862.

• Reduced network complexity.

3.2.2 General description of NR positioning

For evaluating baseline performance, scenarios (with various options/configurations)
are defined below for RAT- dependent positioning techniques for NR positioning study:

• Scenario 1: Indoor Office for FR1 and FR2 (Open office).

• Scenario 2: UMi street canyon for FR1 and FR2 (ISD 200m).

• Scenario 3: UMa (ISD 500m) for FR1 only (Macro cell only deployment scenario).

For regulatory use cases, the following requirements are considered as a minimum
performance targets for NR positioning:

• Horizontal positioning error ≤ 50m for 80% of UEs.

• Vertical positioning error < 5m for 80% of UEs.

As a starting point for commercial use cases, the following requirements are considered:

• Horizontal positioning error < 3m for 80% of UEs in indoor deployment scenarios.

• Vertical positioning error < 3m for 80% of UEs in indoor deployment scenarios.

• Horizontal positioning error < 10m for 80% of UEs in outdoor deployments scenarios.

• Vertical positioning error < 3m for 80% of UEs in outdoor deployment scenarios
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Figure 3.1: PRS resource and resouce set

PRS Resource Set and Resource

One positioning frequency layer is made up of one or more PRS resource sets dis-
tributed over one or more sites, all of which use the same carrier frequency and OFDM
numerology. Each PRS resource in a resource set corresponds to a beam from a single
location. When configuring a device to measure on a specific PRS resource in a PRS
resource set, the location server learns not only which site the reported measurements for
this PRS resource set belong to, but also the specific beam from that site.

PRS Comb Size

PRS setup enables permuted staggered comb. In this application, permuted indicates
that the comb in each OFDM symbol has a distinct, and not necessarily monotonically
increasing, offset in the frequency domain. The comb factor can be adjusted to 2, 4, 6, or
12 subcarriers, which means that the comb is used on every 2nd to every 12th subcarrier.
Using various combs, numerous simultaneous PRSs may be multiplexed using a comb.

PRS Bandwidth

A PRS resource in the frequency domain can be configured to have a bandwidth
of up to 272 resource blocks (100MHz), with all PRS resources in a PRS resource set
having the same bandwidth and frequency domain location. In the time domain, one
PRS resource is represented by two, four, six, or twelve OFDM signals. A PRS resource
occurs periodically in each cell in the time domain, with the periodicity adjustable from
a few milliseconds to several seconds. The beginning points and periodicities of various
PRS resources within the same PRS resource set may differ.

PRS Muting Patterns

Because the device must listen to positional reference signals from relatively distant
locations, the near-far problem must be considered. As a result, a method is necessary
to guarantee that the close base station remains silent while measuring on the far base
station. This is achieved by utilizing a bitmap to describe various muting patterns. When
a bit in the bitmap is set to zero, the positioning reference signals at that time instant
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(a) single PRS resource (b) multiple PRS

Figure 3.2: PRS resources arranged in comb-6

are not sent. When this is combined with not sending data from that location at the
same time, the overall result is a silent gap from that location, allowing the device to
measure on a positing reference signal from a more distant base station.

3.2.3 Propagation model

To calculate propagation paths, ray tracing models employ 3-D environment geometry
[30]. They estimate the path loss and phase shift of each ray using electromagnetic
analysis, which includes tracking the horizontal and vertical polarization of a signal over
the propagation path. The path loss includes both free-space and reflection losses. The
model calculates losses on horizontal and vertical polarization for each reflection using
the Fresnel equation, the incidence angle, and the relative permittivity and conductivity
of the surface material at the specified frequency. Ray tracing models compute multiple
propagation pathways, whereas the other available models compute single propagation
paths. These models support both 3-D outdoor and indoor environments.

Image Method

This technique determines precise propagation paths and supports up to two path
reflections. The amount of reflections raises the computational complexity significantly.
The Image technique calculates the propagation path of a single reflection ray from a
transmitter, Tx, to a receiver, Rx, as shown in the figure 3.3. Tx’s image is located with
regard to a flat reflection surface using the Image technique. The technique then uses a
line segment to link Tx’ and Rx. A valid path from Tx to Rx occurs if the line segment
touches the planar reflection surface, represented as Q in the image. By recursively
expanding these stages, the technique discovers paths with numerous reflections.
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Figure 3.3: Ray tracing Image Method

SBR Method

In Shooting and Bouncing Ray (SBR), Up to ten path reflections are supported, and
estimated propagation paths are calculated. As a result, the SBR method’s estimated
receiver site positions are not precise. As the length of the routes grows longer, the
accuracy of the computed propagation paths diminishes. The amount of reflections raises
the computational complexity linearly. As a result, the SBR technique is quicker than
the image method in most cases.

This figure indicates how the SBR technique estimates the identical ray’s propagation
route. From a geodesic sphere centered at Tx, the SBR technique fires numerous rays.
The technique then follows each ray from Tx as it reflects, diffracts, refracts, or scatters
off nearby objects. It’s worth noting that the implementation solely takes into account
reflections. The technique surrounds Rx with a sphere, called a receiving sphere, having
a radius proportional to the angular spacing of the launched rays and the distance the
ray travels. The model considers the ray a legitimate path from Tx to Rx if it crosses
the sphere. Both approaches may be used in conjunction with rain, fog, and gas in the
environment.

3.2.4 NR TDL channel

To obtain the channel-impaired signal, the TDL-Channel System transmits an input
signal through a tapped delay line (TDL) multi-input multi-output (MIMO) link-level
fading channel. TDL-delay profile can be contumely configured using the propagation
model outputs, Path Delay and Path Gain. More properties are available to be configured
in this channel model such as Fading Distribution which can be Rician to consider the
small scale fading as well as Sample Rate which is extracted from the input signal.
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Figure 3.4: Ray Tracing SBR Method

3.2.5 Synchronization at signal reception

By the time that positioning signals are generated and transmitted through the
channel, it is time for signal reception by UEs [31]. The first step before extracting
PRS signals is for UEs to sync themselves with one gNB. since gNBs have tight timing
synchronization, in the DL TDOA method we try to sync our UE to the same clock as
gNBs. We obtain PSS (Primary Synchronization Signal) from SSB (Synchronization
Signals Block), which is at the start of each radio slot, and cross-correlate it with the
reference signals generated from NID2 values. For each transmitting cell, we repeat the
same process to locate NID1 to get SSS(Secondary Synchronization Signal). We may
compute their cell ID and pick the best of them in terms of received signal strength as
the reference gNB to sync with once we have both NID1 and NID2 from all transmitters.
There are 1008 unique physical-layer cell identities given by

N cell
ID = 3N

(1)
ID +N

(2)
ID (3.1)

where N
(1)
ID ∈ {0, 1, . . . , 335} and N

(2)
ID ∈ {0, 1, 2}.

We can extract various PRS symbols using their reference grid after demodulating
the summation of received signals on the receiver side. We may begin to comprehend how
our channel truly influenced the sent waveforms by using the least square approximation
between the received and reference PRS.

3.2.6 Channel estimation

We average our recovered pilot symbols across time, then frequency bandwidth, with
a growing window size that is proportional to the channel coherence time. Finally, we
interpolate the findings over the whole subcarriers in the bandwidth, leaving us with
channel estimation and some peaks that demonstrate when we received positional signals
at different symbols over time.
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Figure 3.5: Channel Estimation Procedure

(a) PRS Pilots (b) Time Averaging

(c) Frequency Averaging

Figure 3.6: Channel Estimation over PRS
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Figure 3.7: PRS Channel Impulse Response

3.3 Downlink TDoA-based localization

Let ti be the true propagation time of the signal from the i-th base station to the
mobile deivce and t̂i be its estimate, with i from 1 to N (N is the number of base stations).
We have the following equation

t̂i = ti + t̃i (3.2)

where t̃i is the ToA estimation error and assumed to be Gaussian distributed with
zero-mean and variance of σ2ToA,i.

As a result, the distance is estimated based on multiplying t̂i by c (c is the speed of
light), denoted by d̂i is modeled as:

d̂i = di + d̃i (3.3)

where di = cti is the true distance and d̃i = ct̃i is the distance estimation error based on
the i-th ToA with zero-mean and variance of σ2i = c2σ2ToA,i.

Thus, when i ≥ 2, the distance differences are modeled:

ri = di − d1 (3.4)

In presence of noises:

r̂i = di − d1 + r̃i (3.5)

where r̃i = d̃i − d̃1 is the error measurement, which has zero-mean and variance of
c2(σ2ToA,i + σ2ToA,1).
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3.3.1 Equations

(x, y, z) is the coordinate of the undefined mobile device and (xi, yi, zi) is the
coordinate of the i-th base station, i from 1 to N .

When i ≥ 2, we have

ri =

√
(x− xi)2 + (y − yi)2 + (z − zi)2 −

√
(x− x1)2 + (y − y1)2 + (z − z1)2 (3.6)

√
(x− xi)2 + (y − yi)2 + (z − zi)2 = ri +

√
(x− x1)2 + (y − y1)2 + (z − z1)2 (3.7)

(x− xi)2 + (y − yi)2 + (z − zi)2 = r2i + 2ri

√
(x− x1)2 + (y − y1)2 + (z − z1)2 (3.8)

2(x1 − xi)(x− x1) + 2(y1 − yi)(y − y1) + 2(z1 − zi)(z − z1)− 2riR
= r2i − (x1 − xi)2 − (y1 − yi)2 − (z1 − zi)2

(3.9)

with

R =

√
(x− x1)2 + (y − y1)2 + (z − z1)2 (3.10)

3.3.2 Geometric approach

(3.10) is the equation of an hyperboloid surface. In ideal scenarios where there is no
error in TDoA estimation, the position of the mobile device is the intersection point of
all the hyperboloids concerned.

Nevertheless, in practice, noises always exist in measurements, which cause certain
errors in TDoA estimations. It is impossible to obtain such a common intersection point.

Algorithms have been proposed to overcome this issue. Naturally, a geometric
approach was firstly considered [25]. In geometry, 3 hyperboloids have a limited number
of the intersection points. Consequently, with a composition of 3 hyperboloids, one or
two possible mobile positions can be obtained. The estimated position of the mobile,
in geometric approach, is supposed to be the center of gravity (centroid) of all the
intersection points mentioned above.

3.3.3 Least Squares method

In matrix formulation

ÂTDoA =


2(x1 − x2) 2(y1 − y2) 2(z1 − z2) −2r̂2
2(x1 − x3) 2(y1 − y3) 2(z1 − z3) −2r̂3

. . . . . . . . . . . .
2(x1 − xN ) 2(y1 − yN ) 2(z1 − zN ) −2r̂N

 ; ωTDoA =


x− x1
y − y1
z − z1
R


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b̂ =


r̂22 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2
r̂23 − (x1 − x3)2 − (y1 − y3)2 − (z1 − z3)2

. . .
r̂2N − (x1 − xN )2 − (y1 − yN )2 − (z1 − zN )2


We have the equation of approximation

ÂTDoA ωTDoA ≈ b̂TDoA (3.11)

We have
ω̂TDoA = min

ωTDoA

‖ÂTDoAωTDoA − b̂TDoA‖2 (3.12)

leading to the estimate of ωTDoA being calculated by Least-Square estimation:

ω̂TDoA = Â†TDoAb̂TDoA (3.13)

where A† = (ATA)−1AT

Estimated coordinate vector of the mobile device are the 3 first elements of ω̂TDoA

x̂ =
[
[ω̂TDoA]1 + x1 [ω̂TDoA]2 + y1 [ω̂TDoA]3 + z1

]T
(3.14)

3.3.4 Iterative Procedure for Optimization

To optimize x̂ obtained in (3.14), iterative procedures are applied.
In vector form, we denote

r̂ =
[
r̂2 r̂3 . . . r̂N

]T
(3.15)

fTDoA(x) =


√

(x− x2)2 + (y − y2)2 + (z − z2)2 −
√

(x− x1)2 + (y − y1)2 + (z − z1)2√
(x− x3)2 + (y − y3)2 + (z − z3)2 −

√
(x− x1)2 + (y − y1)2 + (z − z1)2

. . .√
(x− xN )2 + (y − yN )2 + (z − zN )2 −

√
(x− x1)2 + (y − y1)2 + (z − z1)2


(3.16)

where x =
[
x y z

]T
.

We have the Cost Function

JTDoA = (r̂−fTDoA)T (r̂−fTDoA) (3.17)

The optimized estimate of x is the value that minimizes this Cost Function:

x̂ = arg min
x

(r̂ − fTDoA(x))T (r̂ − fTDoA(x)) (3.18)

We consider Gauss-Newton procedure [22] for x̂. At iteration (u+1):

x̂(u+1)= x̂(u)+(GT
TDoAGTDoA)−1GT

TDoA(r̂−f(x̂(u)) (3.19)
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where GTDoA is the Jacobian matrix of f(x), which is introduced in Appendix A.

GTDoA = G(x̂(u)) , G(x) =
∂f(x)

∂xT
. (3.20)

A procedure is expected to terminate when ‖x̂(u+1)− x̂(u)‖2 < εTDoA, for the stopping
criterion εTDoA sufficiently small. Then, the final position of the procedure is considered
to be the coordinates of the mobile device in the xyz space.

However, the iterative procedures do not always converge. There are three possible
outcomes for an iterative procedure:

• Convergence: The procedure quickly meets the stopping criterion and reaches the
finite values.

• Divergence: The procedure reaches infinite values, and then it is forced to stop.

• Oscillation: The procedure oscillates with 2 or more repeated finite values. It does
not diverge, but it is not able to converge. Experiments show that convergence or
divergence appears in tens of iterations. Therefore, we set up the maximum number
of iterations for each procedure is 1000. If at 1001st value, the stopping criterion is
not met, the iterative procedure will be considered as an oscillating procedure and
then forced to stop.

We take the final position of a converging procedure as the estimated position for
the mobile device. As for a diverging procedure or an oscillating procedure, the initial
position is selected.

In a nutshell, the Algorithm 1 is proposed for the Gauss-Newton iterative procedure
of Maximum Likelihood estimator.

Algorithm 1: Proposed Maximum Likelihood estimtor with Gauss-Newton pro-
cedure

1 Take the estimated TDoA-based distance differences r̂2, r̂3, ..., r̂N .
2 Assign u = 1 and εTDoA sufficiently small.
3 Compute the estimation x̂ by (3.14) as the first estimated coordinates of the

mobile device.
4 repeat

5 Compute the following estimated coordinates x̂(u+1) of the mobile device by
(3.19).

6 u = u+ 1;

7 until ‖x̂(u+1) − x̂(u)‖2 < εTDoA or u > 1000 or x̂(u+1) = ±∞;

8 if u > 1000 or x̂(u+1) = ±∞ then

9 x̂(1) is the estimated position of the mobile device;
10 else

11 x̂(u) is the estimated position of the mobile device;
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Base station Latitude Longitude Elevation

1 43.62177433110298 N 7.064024322237882 E 26

2 43.62328962324262 N 7.070071763377428 E 27

3 43.62254112669301 N 7.075979940828803 E 28

4 43.61976908041876 N 7.075641936109399 E 29

5 43.61771330834758 N 7.075141249700595 E 30

6 43.61675026847668 N 7.071122828360069 E 31

7 43.61813047305591 N 7.066031724625405 E 32

Table 3.1: Spherical coordinates of the base stations

3.4 Simulations and Results

3.4.1 MatLab Simulation Setup

MatLab toolboxes

A couple of Matlab toolboxes are used to create the simulation environment where
several gNBs and UEs can be placed. 5G toolbox is a key enabler for configured PRS
properties such as PRS resource set period, Number of PRS Symbols in time and where
they start in time, and how they multiplex with each other from different transmitters
using their specific comb size and repetition period as well as Muting patterns. Another
Useful tool is Communication Toolbox which allows defining transmitter and receiver sites
by their Geographic location coordinates [Latitude, Longitude]. Antenna type, height,
and angle would be configurable in this toolbox as well as system loss, transmitting
frequency and power, also receiver Receiver Sensitivity. After developing the environment,
this toolbox can visualize transmitter and receiver sites on the map. Different site
distances, angles, and elevation will be available as well as their coverage, radiation
pattern, and signal strength.

Simulation Setup

In the simulation setup, we pick up 7 base stations and 100 mobile devices.

Table 3.1 demonstrates the spherical coordinates of the 7 base stations in the golf
course in front of EURECOM, which are illustrated in Fig. 3.8.

With each point, we convert from a spherical coordinate system to Universal Transverse
Mercator (UTM) coordinate system [32]. The coordinates in UTM are used in position
estimation.

The positions of base stations, the true positions and estimated positions by different
algorithms of the mobile devices are illustrated by a view from to (Fig. 3.9a) and a view
from one side (Fig. 3.9b). In both figures, the coordinates of all the base stations are
already converted into UTM.

The value εTDoA for the stopping criterion is 0.01.

34



Chapter 3. Multilateration: TDoA-based localization

Figure 3.8: Geographic map of the simulated scenario

(a) View from top (b) View from one side

Figure 3.9: Map of base stations and random positions of the mobile device
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3.4.2 Results

We define the term Position Error. The Geographic Position Error of the j-th mobile
position (GPEj) is the distance between the true position and the estimated position. In
addition, the two-dimensional position error is also considered. The Horizontal Position
Error of the j-th mobile position (HPEj) is defined as this distance with only x and y
coordinates are involved.

GPEj =

√(
x(j) − x̂(j)

)2
+
(
y(j) − ŷ(j)

)2
+
(
z(j) − ẑ(j)

)2
(3.21)

HPEj =

√(
x(j) − x̂(j)

)2
+
(
y(j) − ŷ(j)

)2
(3.22)

where
(
x(j), y(j), z(j)

)
are the true coordinates of the j-th mobile device and

(
x̂(j), ŷ(j), ẑ(j)

)
are their estimates.

To analytically compare the quality among of algorithms, we use Geographic Root
Mean Square Position Error (GRMSE) and Horizontal Root Mean Square Position Error
(HRMSE) which are defined by

GRMSE =

√√√√ 1

M

M∑
j=1

(
GPE2

j

)
(3.23)

HRMSE =

√√√√ 1

M

M∑
j=1

(
HPE2

j

)
(3.24)

where M is the number of mobile positions in simulations. In our research, M = 100.

Table 3.2 illustrates the HRMSE and GRMSE of 4 different algorithms

• Geometric approach in section 3.3.2.

• ML estimator with the initialization obtained by geometric approach.

• LS method in section 3.3.3.

• ML estimator with the initialization obtained by LS method.

Fig. 3.10 compares the Cumulative Distribution Functions (CDFs) of HPE and GPE
of the 4 algorithms above.

It is obvious that the LS method gives a more accurate position estimation than
the geometric approach. The ML estimator with initialization obtained from the LS
method also has a better performance. The Position Error is noticeable escalated with
the existence of the z-coordinate. This explains the Fig. 3.9.
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Figure 3.10: CDF comparisons
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Algorithm HRMSE GRMSE

Geometric approach 25.4859 57.9900

Iterative procedure with initialization
obtained by Geometric approach

0.5306 26.2188

LS method 0.3696 19.0952

Iterative procedure with initialization
obtained by LS method

0.3696 9.6546

Table 3.2: RMSE comparisons of the algorithms

3.5 Conclusions

This chapter robustifies the accuracy of TDoA-based localization by a proposed ML
estimator, whose performance is also facilitated by a more precise initialization acquired
from the LS method. All the results are based on data obtained from realistic ray-tracing
simulations, integrated in a MatLab environment.

Practical implementation is currently being carried out, to evaluate all the related
positioning algorithms as realistically and objectively as possible.
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Chapter 4

Direction-based localization at
network of base stations

Direction of arrival (DoA) estimation is crucial to improve communications systems’
performance, leading to much more accurate results in localization, one of the most vital
applications in the Internet of Things (IoT). Unlike the range-based ones, the direction-
based positioning algorithms estimate the unknown position by the measured angles whose
values must be predefined in an interval of 2π-length. Noisy measurements with values
near the edges of this interval can lead to drastic estimation errors, making the convergence
of iterative procedures much more challenging. In this chapter, we propose a Maximum
Likelihood (ML) estimator, which applies iterative procedures for position estimation.
Our procedure is based on the atan2 function, which has the 2π-long codomain to map
the DoA. Moreover, a novel mechanism to make the estimation near the edges much more
robust, phase jump corrections are proposed to rectify the final estimates. In addition, a
new approximate ML estimator, where the effects of approximately normal distributed
DoA estimation errors are limited to first-order perturbations, is also introduced. Outputs
of this approximate estimator help to enhance the accuracy of the true ML estimator.
Simulation results show significant performance improvements.

4.1 Introduction

DoA estimation schemes are usually thought of as computationally expensive. However,
recent developments propose computationally simple DoA estimation schemes that enable
small antenna arrays with a reduced number of elements [24].

Direction-based localization computes the coordinate of the mobile device based
on the direction of incident waves to base stations. The numerical expression of this
direction is the trigonometric angle between the x-direction and the wave (Fig. 4.1). To
avoid confusion in measuring angle, all the angles’ value must be defined in an interval
whose length is 2π. At the bound of the interval, the DoA is very sensitive to noise. On
condition that the DoA’s set of definition is [0; 2π), when the true value of an angle is

âOb = εa, a small noise of εa + εb (εa and εb are small positive values) can make the
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Figure 4.1: DoA-based localization in 2D scenarios

angle’s measured value âOb′ = 2π − εb (Fig. 4.2).

Related papers [33–36] about 2D DoA-based localization use arctan function to define
DoA; meanwhile the codomain of that function is [−π/2; π/2] (we assume that arctan
(−∞) = −π/2 and arctan (+∞) = π/2). This codomain does not cover all the possible
values of an angle. In the paper [36], a ML estimator is proposed to optimize the
positioning. However, the sensitivity to noise of a value near the bound of the set of
definition is not well considered. In addition, the localization is studied when all the DoA
measurements are considered to be distributed with one common variance.

Our contributions in this chapter are:

• Expressing location in terms of the atan2 function; introducing and optimizing
associated phase wrapping correction terms for ML estimator in section 4.2. In
the definition of DoA, the atan2 function is utilized instead of arctan function.
Furthermore, phase jump corrections are added in estimating the estimated DoA
to avoid possible huge computing errors caused by small mistakes in practical
measurements. Evaluations on the effect of the phase jump corrections are carefully
analyzed.

• Propose an approximate ML estimator for DoA-based localization (section 4.5).

• In section 4.6, we analyse the true ML estimator with the new DoA definition and
the additional correction proposed in section 4.2.

In the last two sections, we illustrate the simulations and then compare our results
to the related results, in order to prove the superiority of our proposed algorithm.

4.2 Definition of DoA

Let (x, y, z) be the coordinates of the mobile device and (xi, yi, zi) the coordinates
of the i-th base station. An azimuth angle is a horizontal angle measured anticlockwise
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Figure 4.2: Sensitivity to noise of an angle’s measured value

from the x-direction. Therefore, its value is in the interval [0; 2π). We then have the true
azimuth of DoA of the signal to the i-th base station:

ϕi = mod(atan2(y − yi, x− xi), 2π) (4.1)

Since the codomain of atan2 function is (−π;π], a modulo operation with the divisor
of 2π is applied to make the true value ϕi in the interval [0; 2π).

In practical measurements, there are always errors in azimuth estimations. When the
size of the angle is near to 0 or 2π, the measured value is very sensitive to noise (a small
change in noise can cause a big difference in measured value). To avoid this unexpected
difference, a phase jump correction is applied. Consequently, the measured value of i-th
azimuth angle can be expressed as:

ϕ̂i = ϕi + ϕ̃i + ki2π (4.2)

where ϕ̃i is the error in azimuth estimation. We name the action of adding the phase
jump correction of ki2π as k-correction. We then have the expression of ki.

ki =


1 , ϕi + ϕ̃i < 0

−1 , ϕi + ϕ̃i ≥ 2π

0 otherwise.

(4.3)

Thanks to the k-correction, the estimated azimuth angle is also in the interval:
0 ≤ ϕ̂i < 2π.

As for the i-th elevation angle, its true value is expressed as:

θi = arctan
z − zi√

(x− xi)2 + (y − yi)2
(4.4)

The true elevation angle is in the range of [−π/2;π/2], or −π/2 ≤ θi ≤ π/2. Its
measured value is
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Figure 4.3: M -element Uniform Circular Array (UCA) with radius r at the i-th base
station to estimate azimuth angle ϕi and elevation angle θi

θ̂i = θi + θ̃i (4.5)

where θ̃i is the error in elevation estimation. When θi is far enough from the 2 boundaries
of the interval [−π/2, π/2] and θ̃i is small enough, the estimated value θ̂i of the elevation
angle can be considered to be also in this interval: −π/2 ≤ θ̂i ≤ π/2.

At each base station, an M -element Uniform Circular Array (UCA) is installed to
estimate the azimuth angle and the elevation angle of the incident wave (Fig. 4.3). In [37],
it is proved that if noises in received signals are Gaussian distributed, ϕ̃i and θ̃i will be
asymptotically independently Gaussian distributed with zero-mean. Their variances are
σ2az,i and σ2el,i, correspondingly.

Since all ϕ̃i and θ̃i are independent, we have covariance matrix of the noise vector n:

C = E{nnT } = diag{σ2
az,1, . . . , σ

2
az,N , σ

2
el,1, . . . , σ

2
el,N} (4.6)

where n = [ϕ̃1 ϕ̃2 . . . ϕ̃N θ̃1 θ̃2 . . . θ̃N ]T and N is the number of base stations.

4.3 Probability analysis

4.3.1 Azimuth angle

We evaluate the effect of the phase jump corrections on localization. A phase jump
correction is meaningful when it is non-zero. Let ρ(ϕi) be the probability of that event,
at the argument ϕi . We have
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ρ(ϕi) = p(ϕ̃i < −ϕi) + p(ϕ̃i ≥ 2π − ϕi)
= Φ

(−ϕi
σaz,i

)
+ 1− Φ

(
2π − ϕi
σaz,i

) (4.7)

where Φ(x) = 1√
2π

x∫
0

e−t
2/2 dt

Since ϕi is in [0, 2π), the probability paz,i that the phase jump correction is non-zero
is

paz,i =
1

2π

2π∫
0

ρ(ϕi) dϕi (4.8)

In [38], it is approximated that Φ(x) ≈ e
2
√

2
π
x

1 + e
2
√

2
π
x

when x is very large.

Thus, when σaz,i is small enough

paz,i ≈
1

2π

2π∫
0

 e
2
√

2
π

−ϕi
σaz,i

1 + e
2
√

2
π

−ϕi
σaz,i

+ 1− e
2
√

2
π

2π−ϕi
σaz,i

1 + e
2
√

2
π

2π−ϕi
σaz,i

 dϕi (4.9)

paz,i ≈ σaz,i
ln 2− ln

(
e

4
√
2π

σaz,i + 1

)
2
√

2π
+ 2 (4.10)

Since σaz,i is small, we approximate

ln

(
e

4
√
2π

σaz,i + 1

)
≈ ln

(
e

4
√
2π

σaz,i

)
=

4
√

2π

σaz,i
(4.11)

As a result, (4.10) and (4.11) give an approximation:

paz,i ≈ σaz,i
ln 2− 4

√
2π

σaz,i

2
√

2π
+ 2 = σaz,i

ln 2

2
√

2π
(4.12)

Therefore, when σaz,i is small enough, paz,i is proportional to σaz,i with the coefficient
of ln 2

2
√
2π

. The network has multiple base stations, so the probability that at least one

phase jump correction is non-zero is much higher in practical localization.

4.3.2 Elevation angle

We compute the probability that θ̂i < −π/2 or θ̂i > π/2. It is equivalent to
θ̃i < −π/2 − θi or θ̃i > π/2 − θi. Let ρ(θi) be the probability of that event, at the
argument θi . We have

ρ(θi) = p(θ̃i < −π/2− θi) + p(θ̃i > π/2− θi)

= Φ

(
−π/2− θi

σel,i

)
+ 1− Φ

(
π/2− θi
σel,i

)
(4.13)
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Figure 4.4: Probability (%) that a phase jump correction is non-zero, in terms of σaz,i,
when σaz,i is small.

When σel,i is small enough, it is approximated that

pel,i ≈
1

π

a∫
−a

 e
2
√

2
π

−π/2−θi
σel,i

1 + e
2
√

2
π

−π/2−θi
σel,i

+ 1− e
2
√

2
π

π/2−θi
σel,i

1 + e
2
√

2
π

π/2−ϕi
σel,i

 dθi (4.14)

pel,i ≈ σel,i

ln

(
1 + e

−2
√
2a√

πσel,i
+
√
2π

σel,i

)
− ln

(
e

(2a+π)
√
2√

πσel,i + 1

)
√

2π
+

4a

π
(4.15)

Since σaz,i is small, we approximate

ln

(
e

(2a+π)
√
2√

πσel,i + 1

)
≈ ln

(
e

(2a+π)
√
2√

πσel,i

)
=

(2a+ π)
√

2√
πσel,i

(4.16)

As a result, (4.15) and (4.16) give an approximation:

pel,i ≈ σel,i
ln

(
1 + e

−2
√
2a√

πσel,i
+
√
2π

σel,i

)
− (2a+ π)

√
2√

πσel,i√
2π

+
4a

π
(4.17)

pel,i ≈
2a

π
− 1 +

σel,i√
2π

ln

(
1 + e

−2
√
2a√

πσel,i
+
√
2π

σel,i

)
(4.18)
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pel,i ≈
σel,i√

2π
ln

1 + e
−2
√
2a√

πσel,i
+
√
2π

σel,i

e
−2
√
2a√

πσel,i
+
√
2π

σel,i

(4.19)

Considering that σel,i ≤ 5π/180

pel,i ≤ 10−6 ⇐⇒ a ≤ π/2.8

4.4 Estimating position by Least Squares method

From equation (4.1), we have

tanϕi =
y − yi
x− xi

(4.20)

x sinϕi − y cosϕi = xi sinϕi − yi cosϕi (4.21)

As ϕ̃i is very small, we approximate that sin ϕ̃i ≈ 0 and cos ϕ̃i ≈ 1. Thus

sinϕi = sin(ϕ̂i − ϕ̃i − ki2π) = sin(ϕ̂i − ϕ̃i) ≈ sin ϕ̂i (4.22)

cosϕi = cos(ϕ̂i − ϕ̃i − ki2π) = cos(ϕ̂i − ϕ̃i) ≈ cos ϕ̂i (4.23)

Hence, from (4.21), it is approximated that

x sin ϕ̂i − y cos ϕ̂i = xi sin ϕ̂i − yi cos ϕ̂i (4.24)

From equation (4.4), we have

tan θi =
z − zi√

(x− xi)2 + (y − yi)2
=

(z − zi) cosϕi
x− xi

(4.25)

As θ̃i is very small, we approximate that sin θ̃i ≈ 0 and cos ϕ̃i ≈ 1, so tan θ̃i ≈ 0.
Thus tan θi ≈ tan θ̂i

We have the approximation

tan θ̂i =
(z − zi) cos ϕ̂i

x− xi
(4.26)

x tan θ̂i − z cos ϕ̂i = xi tan θ̂i − zi cos ϕ̂i (4.27)
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In matrix formulation, we define

Â =



sin ϕ̂1 − cos ϕ̂1 0
sin ϕ̂2 − cos ϕ̂2 0
. . . . . . . . .

sin ϕ̂N − cos ϕ̂N 0

tan θ̂1 0 − cos ϕ̂1

tan θ̂2 0 − cos ϕ̂2

. . . . . . . . .

tan θ̂N 0 − cos ϕ̂N


; b̂ =



x1 sin ϕ̂1 − y1 cos ϕ̂1

x2 sin ϕ̂2 − y2 cos ϕ̂2

. . .
xN sin ϕ̂N − yN cos ϕ̂N
x1 tan θ̂1 − z1 cos ϕ̂1

x2 tan θ̂2 − z2 cos ϕ̂2

. . .

xN tan θ̂N − zN cos ϕ̂N


x =

[
x y z

]T
We then have the equation of approximation

Â x = b̂ (4.28)

Therefore, the estimate of x is

x̂ = min
x
‖Âx− b̂‖2 (4.29)

x̂ is calculated by Least-Square estimation of x

x̂ = Â†b̂ (4.30)

where A† = (ATA)−1AT is the Moore-Penrose pseudo inverse of matrix A.

For a more accurate estimation of the mobile’s position, this estimate is taken as the
initialization of an iterative procedure, which will be discussed in the following section.

4.5 Optimizing position estimation by an approximate Maximum

Likelihood estimator

Unlike Least Squares method, in this approximate estimator, we assume that the
effect of approximately Gaussian DoA estimation errors ϕ̃i and θ̃i can be limited to
first-order perturbations, so we have the approximations: sin ϕ̃i ≈ ϕ̃i; cos ϕ̃i ≈ 1 and
tan θ̃i ≈ θ̃i. As a result, we have:

sinϕi = sin(ϕ̂i − ϕ̃i − ki2π) = sin(ϕ̂i − ϕ̃i) ≈ sin ϕ̂i − ϕ̃i cos ϕ̂i (4.31)

cosϕi = cos(ϕ̂i − ϕ̃i − ki2π) = cos(ϕ̂i − ϕ̃i) ≈ cos ϕ̂i + ϕ̃i sin ϕ̂i (4.32)

Therefore, from (4.21), we have the following approximations:

(x− xi)(sin ϕ̂i − ϕ̃i cos ϕ̂i)− (y − yi)(cos ϕ̂i + ϕ̃i sin ϕ̂i) ≈ 0 (4.33)
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ϕ̃i ≈
−(x− xi) sin ϕ̂i + (y − yi) cos ϕ̂i
−(x− xi) cos ϕ̂i − (y − yi) sin ϕ̂i

(4.34)

cosϕi ≈ cos ϕ̂i + ϕ̃i sin ϕ̂i

=
−(x− xi) cos2 ϕ̂i − (y − yi) sin ϕ̂i cos ϕ̂i
−(x− xi) cos ϕ̂i − (y − yi) sin ϕ̂i

+
−(x− xi) sin2 ϕ̂i + (y − yi) sin ϕ̂i cos ϕ̂i
−(x− xi) cos ϕ̂i − (y − yi) sin ϕ̂i

=
−(x− xi)

−(x− xi) cos ϕ̂i − (y − yi) sin ϕ̂i
= x− xi

(x− xi) cos ϕ̂i + (y − yi) sin ϕ̂i
(4.35)

tan θi =
(z − zi) cosϕi

x− xi
≈ z − zi

(x− xi) cos ϕ̂i + (y − yi) sin ϕ̂i
(4.36)

θ̃i ≈ tan θ̃i = tan(θ̂i − θi) =
tan θ̂i − z − zi

(x− xi) cos ϕ̂i + (y − yi) sin ϕ̂i

1 + tan θ̂i
z − zi

(x− xi) cos ϕ̂i + (y − yi) sin ϕ̂i

(4.37)

θ̃i ≈
(x− xi) cos ϕ̂i tan θ̂i + (y − yi) sin ϕ̂i tan θ̂i − (z − zi)

(x− xi) cos ϕ̂i + (y − yi) sin ϕ̂i + (z − zi) tan θ̂i
(4.38)

The Cost Function of this approximate ML estimator is expressed as

L =
N∑
i=1

(
ϕ̃2
i

σ2az,i
+

θ̃2i
σ2el,i

)
(4.39)

where ϕ̃i and θ̃i are approximated in (4.34) and (4.38), respectively.
Our task is to find an estimate x̂ that minimizes the Cost Function, or

x̂ = arg min
x

L (4.40)

Finding x̂ = [x̂ ŷ ẑ]T is really a challenging task. A solution is to use a local search,
which is an iterative algorithm requiring an initial position estimate. We consider Gauss
Newton algorithm [22] for x̂. At the iteration (u+1):

x̂(u+1) = x̂(u) − (GT
n (x̂(u))Gn(x̂(u)))−1GT

n (x̂(u))nT (4.41)

where x̂(u) is the estimated coordinate vector of the mobile at the u-th iteration. Gn(x)
is the following Jacobian matrix:

Gn(x) =
∂n

∂xT
(4.42)

The procedure is expected to terminate when ‖x̂(u+1) − x̂(u)‖2 < ε1, for the stopping
criterion ε1 sufficiently small. Then, the final position of the procedure is considered to be
the coordinates of the mobile device in the xy plane. However, the iterative procedures
do not always converge. The possible outcomes of an iterative procedure and how the
estimated position of the mobile device is taken from that procedure are carefully analyzed
in section 3.3.4.

The Algorithm 2 illustrates the Gauss-Newton iterative procedure of the approximate
ML estimator.
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Algorithm 2: Proposed Approximate ML Estimator

1 Take the measured Direction of Arrival ϕ̂i.
2 Assign u = 1 and ε1 sufficiently small.
3 Assign the coordinate vector computed by (4.30) as the first estimated coordinate

vector x̂(1) of the mobile device.
4 repeat

5 Compute the following estimated coordinate vector x̂(u+1) of the mobile
device by (4.41).

6 u = u+ 1;

7 until ‖x̂(u+1) − x̂(u)‖2 < ε or u > 1000 or ‖x̂(u+1)‖2 = ±∞;

8 if u > 1000 or ‖x̂(u+1)‖2 = ±∞ then

9 x̂(1) is the estimated position of the mobile device;
10 else

11 x̂(u) is the estimated position of the mobile device;

4.6 Optimizing position estimation by the true Maximum Likeli-

hood estimator

In this section, we apply an iterative Maximum Likelihood estimator, to optimize x̂
obtained in (4.30),

In vector form, we denote

ϕ̂ =
[
ϕ̂1 . . . ϕ̂N θ̂1 . . . θ̂N

]T
(4.43)

f(x,k) =



ϕ1(x) + k12π
ϕ2(x) + k22π

. . .
ϕN (x) + kN2π

θ1(x)
θ2(x)
. . .

θN (x)


(4.44)

where k = [k1 k2 · · · kN ]T ; ϕi(x) and θi(x) are the estimated azimuth and elevation
angles, respectively, depending on x = [x y z]T and are computed by

ϕi(x) = mod(atan2(x− xi, y − yi), 2π) (4.45)

θi(x) = arctan
z − zi√

(x− xi)2 + (y − yi)2
(4.46)

Treating the phase shift vector k as unknown parameters and ignoring their dependence
on the noise, the measurement vector ϕ̂ is Gaussian with mean vector of f and covariance
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matrix C, we have the probability density function (pdf) [21]:

p(ϕ̂|x,k) =
(2π)−N

|C|1/2
exp

[−1
2 (ϕ̂−f)TC−1(ϕ̂−f)

]
(4.47)

Maximizing the pdf in (4.47) is equivalent to finding

x̂, k̂ = arg min
x,k

(ϕ̂− f(x,k))TC−1(ϕ̂− f(x,k)) (4.48)

which we shall perform alternatingly. We consider Gauss Newton [22] for x̂. At the
iteration (u+1):

x̂(u+1)= x̂(u)+(GTC−1G)−1GTC−1(ϕ̂−f(x̂(u),k(u+1))) (4.49)

where G is the Jacobian matrix.

G = G
(
x̂(u),k(u+1)

)
, G(x,k) =

∂f(x,k)

∂xT
. (4.50)

At this point, it is important to determine the value of ki. As the additive noise in
each DoA measurement is unclear, ki cannot be determined by equation (4.3). From
(4.2), we have

|ϕ̃i| = |ϕ̂i − ϕi(x)− ki2π| (4.51)

We assume ϕ̃i small enough, so |ϕ̃i| < π with the probability almost 1. Thus k̂i can be
estimated by

k̂
(u+1)
i = arg min

ki∈{0;±1}
|ϕ̂i − ϕi(x̂(u))− ki2π| (4.52)

where x̂(u) is the estimated coordinate vector of the mobile device at the u-th iteration.

The procedure is expected to terminate when ‖x̂(u) − x̂(u−1)‖2 < ε, for the stopping
value ε sufficiently small. However, iterative procedures do not always converge. The
possible outcomes of an iterative procedure and how the estimated position of the mobile
device is taken from that procedure are carefully analyzed in section 3.3.4.

In summary, the Algorithm 3, a Gauss-Newton iterative procedure of Maximum
Likelihood estimator, is proposed.

4.7 Simulations and Results

In this section, we simulate the theories in 2D and 3D scenarios. In 2D scenarios, all
the data related to elevation elements are removed. The definition of DoA is the azimuth
expression.
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Algorithm 3: Proposed Maximum Likelihood estimator with estimation of k̂

1 Take the measured Direction of Arrival: azimuth ϕ̂i and elevation θ̂i.
2 Assign u = 1 and ε sufficiently small.

3 Assign a vector as the first estimated coordinate vector x̂(1) of the mobile device.
This vector can be the estimate of Least Squares in equation (4.30) or the the
result of approximate ML by Algorithm 2 in section 4.5.

4 repeat

5 Compute the estimated azimuth ϕ̂i and elevation θ̂i by (4.45) and (4.46),
respectively.

6 if |ϕi(x̂(u))− ϕ̂i| ≥ π then

7 k̂i = sign(ϕi(x̂
(u))− ϕ̂i)

8 else

9 k̂i = 0 ;

10 Compute the following estimated coordinate vector x̂(u+1) of the mobile
device by (4.49).

11 u = u+ 1;

12 until ‖x(u) − x(u−1)‖2 < ε or u > 1000 or ‖x(u)‖2 = ±∞;

13 if u > 1000 or ‖x̂(u)‖2 = ±∞ then

14 x̂(1) is the estimated position of the mobile device;
15 else

16 x̂(u) is the estimated position of the mobile device;
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Figure 4.5: Map of base stations’ network, random points of the mobile device in 2D.

4.7.1 Cramer Rao Bound (CRB) analysis

The Cramer-Rao Bound (CRB) is computed for the quaility evaluation of the algo-
rithm. The Fisher Information Matrix (FIM) is calculated by

I(x) = GT (x)C−1G(x) (4.53)

The CRB is the trace of the inverse of FIM:

CRB = tr(I−1) (4.54)

To compare the quality among the algorithms and CRB, we use Root Mean Square
Position Error (RMSE) which is defined by

RMSE =
√

E (‖x− x‖2) (4.55)

where x is the true position of the mobile device and x̂ is its estimate.

4.7.2 2D scenarios

Simulations

In the xy plane, RMSE averaging is over 1000 mobile positions picked randomly in
a square of 1000m x 1000m centered in the BS circle. The network of 8 Base stations
(numbered from 1 to 8) forms the circumscribed circle of this square. All the related
points are shown in Fig. 4.5. Stopping criteria for the approximate ML and true ML
estimators are ε1 = ε2 = 0.01.
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Figure 4.6: Comparisons of RMSEs among the algorithms when N = 8 BSs, the standard
deviation of DOA measurements varies from 0.5◦ to 4◦.
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Results

Instead of comparing the MSEs to the CRB, we compare their square roots: The
Root Mean Square Error (RMSE) =

√
MSE and square root of CRB (

√
CRB). In each

scheme, a common standard deviation is assumed for all the DoA measurements. More
comprehensively, Fig. 4.6 compares the RMSEs of the 6 positioning algorithms:

(a) Least Squares method shown in section 4.4.

(b) Approximate ML estimator shown in section 4.5, with the initialization obtained
by Least Squares method.

(c) True ML estimator (section 4.6), with k-correction; the DoA definition using atan2
function. The initialization is obtained by Least Squares method.

(d) True ML estimator (section 4.6), with k-correction; the DoA definition using atan2
function. The initialization is obtained by Approximate ML.

(e) True ML estimator (section 4.6), without k-correction; the DoA definition using
atan2 function. The initialization is obtained by by Approximate ML.

(f) True ML estimator (section 4.6), with the DoA definition using arctan function [36].
The initialization is obtained by the Approximate ML.

The
√

CRB is also added to validate their performances.
Section 3.3.4 introduces 3 possible outcomes of an iterative procedure. We compare

the algorithms in terms of the accuracy (evaluated by the RMSEs) and the time delay
(evaluated by the average number of iterations). When a procedure is diverging or
oscillating, the initial position is taken as its estimate, which increases the RMSE and
thus makes the location less exact. Moreover, an oscillating procedure raises remarkably
the number of iterations, which makes the localization processes slower. As a result, the
figures, which compare the RMSEs, the number of non-converging procedures and the
average number of iterations among the algorithms, are demonstrated.

Fig. 4.6 compares the RMSEs of the 6 algorithms above in the scenario of 8 base
stations and the standard deviation of DoA measurements varies from 0.5◦ to 4◦. RMSE
stands for the accuracy in estimation. Furthermore, Fig. 4.7 gives us an overview on
how efficient the iterative procedures are in approximate ML and true ML estimators.
More specifically, Fig 4.7a illustrates the number of non-converging procedures out of
1000 testing procedures. Non-converging procedures are the combination of diverging
procedures and oscillating procedures defined in section 4.5. Our proposed algorithm
for true ML estimator has zero non-converging procedure, or in other words, all the
procedures converge to local minima. Fig. 4.7b presents the average number of iterations.
Our proposed algorithm has the fewest average number of iterations, which reduces the
time delay for localization processes.

From the results above, it is obvious that

• The true ML estimator gives the best accurate position estimation, compared to
approximate ML estimator and Least Squares method.
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(a) View from top
(b) View from one side

Figure 4.8: Map of base stations and random positions of the mobile device in 3D

• In the true ML estimator, the initialization obtained by approximate ML gives a
little smaller RMSE than that has initialization obtained by Least Squares. On the
other hand, this RMSE is still larger than the

√
CRB, which assures the unbiased

property of the estimator.

• The positioning algorithm with the k-correction and the definition of DoA using
atan2 function has the best performance, in both accuracy and time delay, compared
to the algorithms, of which the DoA is defined by arctan function, or by atan2
function but no k-correction for the iterative procedures. With this proposed
algorithm, the RMSE is lowest but still higher than the

√
CRB, and the average

number of iterations is noticeably smaller than the 2 other algorithms. This is the
most important contribution of this section.

In essence, the true ML likelihood estimator, of which the DoA is defined with atan2
function and an addition k-correction is used, is the best estimator. The initialization by
an approximate ML can enhance the performance of the true ML.

4.7.3 3D scenarios

Simulations

We consider an area of 1000m x 1000m with the height of 20m. RMSE averaging is
over 1000 mobile positions picked randomly in this space (Fig. 4.8). The center of this
space is at the coordinates (500; 500; 10). At the height of 10m, 4 base stations of the
coordinates (200; 200; 10), (800; 200; 10), (200; 800; 10) and (800; 800; 10) are placed,
which forms a square. To enhance the localization in 3D, two similar sets of base stations
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Figure 4.9: DoA-based localization at network of base stations: Comparison of RMSE
when the standard deviation of DoA measurements varies from 0.5◦ to 4◦

are installed at the height of 15m and 20m, respectively. As a result, there are totally 12
base stations in our network.

The positions of the base stations, as well as the space where the mobile device is
arbitrarily placed, are illustrated with a view from top (Fig. 4.8a) and a view from one
side (Fig. 4.8b). In Fig. 4.8a, the x-coordinate and y-coordinate of any random position
of the mobile device are set up to be far enough from those coordinates of all the base
stations, so that the true elevation angles are far from the 2 boundaries −π/2 and π/2.

The value ε2 for the stopping criterion is 0.01.
In the simulations, we assume that all the estimations of azimuth and elevation angles

have the same standard deviation: σaz,1 = σel,1 = · · · = σaz,N = σel,N = σ.

Results

Fig. 4.9 and Fig. 4.10 illustrate the results when the common standard deviation of
DoA estimations (σ) varies from 0.5◦ to 4◦. Specifically, Fig. 4.9 compares the RMSEs
of the 4 algorithms:

(a) The initial position obtained by Least Squares method shown in section 4.4.

(b) Maximum Likelihood estimator with the definition of azimuth angle using arctan
function [39].

(c) Maximum Likelihood estimator without k-correction; the definition of azimuth
angle using atan2 function without k-correction.
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(d) Maximum Likelihood estimator with k-correction; the definition of azimuth angle
using atan2 function (our proposed algorithm).

To validate the performances of the algorithms, we added the
√

CRB. Fig. 4.10
compares the average number of iterations of the three algorithms (b), (c) and (d).

Section 4.6 introduces 3 possible outcomes of an iterative procedure. Table 6.1
compares their results on RMSE and number of iterations.

In Fig. 4.9, the RMSE of our proposed algorithm (d) is much smaller than the “initial
point” and higher than the

√
CRB, which shows that the algorithm (d) is efficient and

unbiased. Compared to the algorithms (b) and (c), the algorithm (d) has the lowest
RMSE so its positioning results are the most accurate. Furthermore, in Fig. 4.10, the
average number of iterations of our proposed algorithm (d) is the lowest, which proves
that this algorithm has the most converging procedures and the fewest combinations of
diverging and oscillating procedures. As a result, it reduces remarkably the time delay
for localization.
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Chapter 5

Direction-based localization at mobile
device in 2D scenarios

5.1 Introduction

DoA-based localization computes the coordinates of the mobile device based on the
direction of incident waves to base stations. The numerical expression of this direction is
the trigonometric angle between the x-direction and the signal wave (Fig. 5.2). To avoid
confusion in measuring angles, all the angles’ values must be defined in an interval whose
length is 2π. Furthermore, at the boundaries of the interval, the DoA is very sensitive to
noise. For instance, on the condition that an angle’s set of definition is [0; 2π), when the
true value of the angle is εa, a small noise can make the angle’s value −εb (εa and εb are
very small positive value). However, as the set of definition is [0; 2π), the estimated value
of this angle is supposed to be 2π − εb, which is very different from the true value.

DoA-based positioning is only feasible for Network-Positioning because the orientation
of each base station is fixed and known. However, as for Self-Positioning, since the
orientation of a mobile device is unknown, it cannot refer to the x-direction to calculate
the angle of arrival. Consequently, Direction Difference of Arrival (DDoA) is proposed.
In this technique, only the difference in directions of arrival of incident waves from a
pair of base stations is required (Fig. 5.1). Mathematically, a DDoA is calculated by
subtracting the 2 DoAs concerned. Recent achievements in DoA estimations at mobile
devices [40–43] make the DDoA-based positioning algorithms potential and promising.

In [9], the very first ideas about DDoA are introduced. A DoA-based positioning
method for mobile devices, in which the prior knowledge of the x-direction is not required,
is also presented in [44]. Nevertheless, the authors use arctan function in the definition
of DoA, which cannot cover all the possible values of an angle. In [45, 46] the authors
also demonstrate DDoA in different ways of explication. In general, they do not consider
the sensitivity to noise of an angle’s measured value.

This chapter gives a clear analysis of localization based on the DDoAs of the incident
wave from the mobile device to the network of base stations. In the definition of DoA,
the atan2 function is utilized instead of arctan function. Subtraction of two DoAs returns
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Figure 5.1: DDoA approach for mobile-based localization

a value in the range of (−2π; 2π), so a modulo operation with a divisor of 2π is applied.
For this reason, the codomain of DDoA computations is [0; 2π). This interval is also
the set of definition of DDoA measured values. Furthermore, an additional correction is
added to the subtraction of two DoAs to avoid possible huge computing errors caused by
small mistakes in practical measurements. Compared to [9], we formulate a Maximum
Likelihood estimator with the fitting criterion at the level of DDoAs instead of their
tangents, allowing the original introduction of phase corrections (to offset the modulo
operations).

5.2 Problem Formulation

Let θ be the angle demonstrating the orientation of the mobile device (Fig. 5.2). We
assume that −π < θ ≤ π.

Let ψi be the DoA compared to the x-axis, ϕi is the DoA measured at the antenna
arrays of the mobile device.

We have:

ψi = mod(atan2(yi − y, xi − x), 2π) (5.1)

ϕi = mod(ϕi − θ, 2π) (5.2)

At the mobile device, we can only get the estimate of ϕi, which is not directly linked
to the related coordinates. We have two solutions to solve this self-positioning problem:

• Based on the estimates of ϕi, we calculate the coordinates of the mobile device
with the simultaneous estimation of orientation.

• Compute the estimated Direction Difference of Arrival (DDoA) from the estimated
DoA, then localize the mobile device.
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Figure 5.2: Illustration of 2D Self-Positioning

5.3 Localization with joint estimation of mobile orientation

DoA estimation can be expressed as:

ψ̂i = ψi + nDoA,i + kDoA,i2π (5.3)

where nDoA,i is the error in DoA estimation. It is assumed that nDoA,i is Gaussian
distributed with zero-mean and variance of σ2DoA.

We name the action of adding the phase jump correction of ki2π as k-correction. We
then have the expression of ki.

kDoA,i =


1 , ψi + nDoA,i < 0

−1 , ψi + nDoA,i ≥ 2π

0 otherwise.

(5.4)

Thanks to the k-correction, the estimated DoA is also in the interval: 0 ≤ ψ̂i < 2π.

5.3.1 Least Squares method

We have the relation between the DoA and the coordinates:

tanψi = tan(ϕi + θ) =
yi − y
xi − x

(5.5)

From the Appendix C, we have the following equation:
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tanϕi(x+ y tan θ)− (y − x tan θ)− (xi + yi tanϕi) tan θ = xi tanϕi − yi (5.6)

In matrix formulation, we denote

ÂDoA =


tan ϕ̂1 −1 −(x1 + y1 tan ϕ̂1)
tan ϕ̂2 −1 −(x2 + y2 tan ϕ̂2)
. . . . . . . . .

tan ϕ̂N −1 −(xN + yN tan ϕ̂N )



ωDoA =

x+ y tan θ
y − x tan θ

tan θ

 ; b̂DoA =


x1 tan ϕ̂1 − y1
x2 tan ϕ̂2 − y2

. . .
xN tan ϕ̂N − yN


We have ÂDoAωDoA = b̂DoA so

ω̂DoA = Â†DoAb̂DoA (5.7)

The estimates of coordinates and orientation:

x̂ =
[ω̂DoA]1 − [ω̂DoA]2[ω̂DoA]3

1 + [ω̂DoA]23
(5.8)

ŷ =
[ω̂DoA]2 + [ω̂DoA]1[ω̂DoA]3

1 + [ω̂DoA]23
(5.9)

tan θ̂ = [ω̂DoA]3 (5.10)

Only the tangent of the mobile orientation is computed. We consider that the
estimated mobile orientation is

θ̂ = arctan[ω̂DoA]3 (5.11)

5.3.2 Maximum Likelihood estimator

The estimated DoA is computed by

ψ̂i = mod(ϕ̂i + θ̂i, 2π) (5.12)

where θ̂i is the estimated orientation of the mobile device and computed by (5.11).

In vector form, we denote

ψ̂ =
[
ψ̂1 ψ̂2 . . . ψ̂N

]T
(5.13)
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fDoA(x̂,kDoA) =


ψ̂1(x̂) + kDoA,12π

ψ̂2(x̂) + kDoA,22π
. . .

ψ̂N (x̂) + kDoA,N2π

 (5.14)

where kDoA = [kDoA,1 kDoA,2 · · · kDoA,N ]T , ϕ̂i(x̂) is the estimated DoA depending on
x̂ = [x̂ ŷ] and computed by:

ψ̂i(x̂) = mod(atan2(yi − ŷ, xi − x̂), 2π) (5.15)

Treating the phase shift vector kDoA as unknown parameters and ignoring their depen-
dence on the noise, the measurement vector ϕ̂ is Gaussian with mean vector of f and
covariance matrix CDoA, we have the probability density function (pdf) [21]:

p
(
ψ̂|x,kDoA

)
=

(2π)−
N
2

|CDoA|
1
2

exp
[
−1
2 (ψ̂−fDoA)TC−1DoA(ψ̂−fDoA)

]
(5.16)

where CDoA = diag(σ2DoA,1, σ
2
DoA,2, . . . , σ

2
DoA,N ).

Maximizing the pdf in (5.16) is equivalent to

x̂, k̂ = arg min
x,k

(ψ̂ − fDoA(x,kDoA))TC−1DoA(ψ̂ − fDoA(x,kDoA)) (5.17)

which we shall perform alternatingly.
The Gauss Newton algorithm [22] is applied for x̂. At the iteration (u+1):

x̂(u+1)= x̂(u)+
(
GT

DoAC
−1
DoAGDoA

)−1
GT

DoAC
−1
DoA

(
ψ̂−f

(
x̂(u),k

(u+1)
DoA

))
(5.18)

where GDoA is the Jacobian matrix.

GDoA = G
(
x̂(u),k

(u+1)
DoA

)
, G(x,k) =

∂f(x,k)

∂xT
. (5.19)

At this point, it is important to determine the value of ki. As we do not know the
additive noise in each DoA measurement, ki cannot be determined by equation (5.4).
From (5.3), we have

|nDoA,i| = |ψ̂i − ψi − kDoA,i2π| (5.20)

We assume nDoA,i small enough, |nDoA,i| < π. Thus k̂DoA,i is estimated by

k̂
(u+1)
DoA,i = arg min

kDoA,i∈{0;±1}
|ψ̂i
(
x̂(u)

)
− ψ̂i − kDoA,i2π| (5.21)

where x̂(u) = [x̂(u) ŷ(u)] is the estimated coordinate vector of the mobile device at the
u-th iteration.

In a nutshell, we propose the Algorithm 4, a Gauss-Newton iterative solution for the
Maximum Likelihood estimator.
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Algorithm 4: Proposed Maximum Likelihood estimator with phase correction k̂

1 Take the measured DoA ϕ̂i as the trigonometric angle of the incident wave from
i-th base station to the mobile device.

2 Assign u = 1 and εDoA sufficiently small.

3 Compute the estimation ω̂DoA by (5.12), then assign x̂(1) =
[
[ω̂DoA]1 [ω̂DoA]2

]T
as the first estimated coordinates of the mobile device.

4 repeat

5 Compute the estimated Direction of Arrival ψ̂i by (5.3).

6 if |ψ̂i
(
x̂(u)

)
− ψ̂i ≥ π then

7 k̂DoA,i = sign
(
ψ̂i
(
x̂(u)

)
− ψ̂i

)
8 else

9 k̂DoA,i = 0 ;

10 Compute x̂(u+1) by (5.18).
11 u = u+ 1;

12 until ‖x̂(u) − x̂(u−1)‖2 < εDoA or u > 1000 or ‖x̂(u)‖2 = ±∞;

13 if u > 1000 or ‖x̂(u)‖2 = ±∞ then

14 x̂(1) is the estimated position of the mobile device;
15 else

16 x̂(u) is the estimated position of the mobile device;
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5.4 Localization based on DDoA

5.4.1 Direction of Arrival

We define ϕi to be the trigonometric angle between the x axis and the signal ray
received at the mobile station. Let (x, y) be the coordinates of the mobile station and
(xi, yi) be the coordinates of the i-th base station. We then have the real DoA of the
signal from the i-th base station:

ψi = atan2(yi − y, xi − x) . (5.22)

In the presence of estimation errors, the measured value of i-th DoA shall be:

ψ̂i = ψi + nDoA,i = atan2(yi − y, xi − x) + nDoA,i (5.23)

where nDoA,i is the error in DoA estimation. The authors of [47] illustrates that when
there is Gaussian noise in received signal, the error in estimation is asymptotically
Gaussian distributed with zero-mean. As a result, we can assume that nDoA,i is Gaussian
distributed with zero-mean and variance of σ2DoA,i.

5.4.2 Direction Difference of Arrival

As ψi ∈ [0; 2π), we have the difference dψi,j = ψi − ψj ∈ (−2π; 2π). However, the
value of an angle must be predefined in a 2π-long range. Therefore, we state the Direction
Difference of Arrival (DDoA) between signal ray from i-th base station and signal ray
from j-th base station (where i from 1 to N , j from 1 to N , i 6= j, N is the number of
base stations) as follows:

φi,j = mod (ψi − ψj , 2π) = mod(dψi,j , 2π)
= mod (atan2(yi−y, xi−x)−atan2(yj−y, xj−x), 2π)

(5.24)

where for the last equality and below we assume the absence of errors. In terms of the
arctan function, we get with (2)

φi,j = arctan
yi − y
xi − x − arctan

yj − y
xj − x +m1π

= arctan
(yi−y)(xj−x)−(xj−x)(yj−y)
(yi−y)(yj−y)+(xi−x)(xj−x)

+m2π
(5.25)

where m1 and m2 are integers. Hence we get

tanφi,j =
(yi − y)(xj − x)− (xi − x)(yj − y)

(yi − y)(yj − y) + (xi − x)(xj − x)
. (5.26)

x[−yi + yj + (xi + xj) tan(φi,j)] + y[xi − xj + (yi + yj) tan(φi,j)]− (x2 + y2) tan(φi,j)
= −xjyi + xiyj + (xixj + yiyj) tan(φi,j) .

(5.27)
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Figure 5.3: Sensitivity to noise of an angle’s measured value

In the presence of errors, the DDoA measurements, which are the practical estimated
values of the DDoAs, also in range of [0; 2π) and denoted by {φ̂i,j}, are modeled as

φ̂i,j = mod
(
ψ̂i − ψ̂j , 2π

)
= φi,j + ki,j2π + nDDoA,i,j (5.28)

where nDDoA,i,j = nDoA,i − nDoA,j ∼ N(0, σ2DoA,i + σ2DoA,j) and the modulo induced noise
term ki is defined as:

kDDoA,i,j =



1 ,

{
dϕi,j ≥ 0 and dϕi,j + nDDoA,i,j < 0

or dϕi,j + nDDoA,i,j < −2π

−1 ,

{
dϕi,j < 0 and dϕi,j + nDDoA,i,j ≥ 0

or dϕi,j + nDDoA,i,j ≥ 2π

0 otherwise.

(5.29)

5.4.3 Estimating position by Least Squares method

Regardless of kDDoA,i,j , for small enough nDDoA,i,j we get

tan φ̂i,j = tan(φi,j + kDDoA,i,j2π + nDDoA,i,j) ≈ tanφi,j + nDDoA,i,j . (5.30)

(5.27) is a 2-variable quadratic equation, which is satisfied by (xi, yi), (xj , yj) and
(x, y). In other words, (5.27) is the equation of a circle passing through the positions of
i-th BS, j-th BS and the mobile. With 2 base stations and a DDoA, the locus of all the
possible positions of the mobile device is a circle and the DDoA is an inscribed angle.
When φi,j is close to 0, the noise term nDDoA,i,j can make a huge change to the circle.
For example, in Fig. 5.3, with two base stations BS1 and BS2, the dash blue circle is
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the estimate of the solid blue one in noisy scenario. Thus, the estimated position of the
mobile device (ÛE) is very far from its true position (UE).

With N BSs, we get N(N − 1)/2 circles.
In matrix notations, we define ωDDoA = [x y x2 + y2]T . In addition, Â and b̂ are

defined by (5.31) and (5.32) respectively, which are illustrated in the beginning of the
following page.

ÂDDoA =


−y2 + y1 + (x2 + x1) x2 − x1 − (y2 + y1) − tan(φ̂2,1)

−y3 + y1 + (x3 + x1) x3 − x1 − (y3 + y1) − tan(φ̂3,1)
. . .

−yN + yN−1 + (xN + xN−1) xN − xN−1 − (yN + yN−1) − tan(φ̂N,N−1)


(5.31)

b̂DDoA =


−x1y2 + x2y1 + (x2x1 + y2y1) tan(φ̂2,1)

−x1y3 + x3y1 + (x3x1 + y3y1) tan(φ̂3,1)
. . .

−xN−1yN + xNyN−1 + (xNxN−1 + yNyN−1) tan(φ̂N,N−1)

 (5.32)

We have
ÂDDoAωDDoA = b̂DDoA (5.33)

Therefore, the estimate of ω is calculated by

ω̂DDoA = Â†DDoAb̂DDoA (5.34)

where A† = (ATA)−1AT is the Moore-Penrose pseudo inverse of matrix A.
The estimated coordinates of the mobile device are the two first elements of ω̂:

x̂ =
[
[ω̂DDoA]1 [ω̂DDoA]2

]T
(5.35)

To further optimize the estimation of the mobile’s position, this can be taken as
initialization of an iterative procedure discussed next.

5.4.4 Iterative Maximum Likelihood Procedure

To optimize x̂ obtained in (5.35), an iterative Maximum Likelihood estimator is
applied.

In vector form, we denote

φ̂ =
[
φ̂2,1 φ̂3,1 . . . φ̂N,1

]T
(5.36)

fDDoA(x,kDDoA) =


φ2,1(x) + kDDoA,2,12π
φ3,1(x) + kDDoA,3,12π

. . .
φN,1(x) + kDDoA,N,12π

 (5.37)
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where kDDoA = [kDDoA,2,1 kDDoA,3,1 · · · kDDoA,N,1]
T , x = [x y]T and φi,1(x) is the

estimated DDoA between the 1st and the i-th incident waves (i ≥ 2) and computed by

φi,j(x) = mod (atan2(yi−y, xi−x)−atan2(y1−y, x1−x), 2π) (5.38)

We denote the vector of error estimation as nDDoA

nDDoA =
[
nDDoA,2,1 nDDoA,3,1 . . . nDDoA,N,1

]
(5.39)

The covariance matrix of all the additive errors is

CDDoA = E(nDDoAn
T
DDoA) = σ2DoA,1 • 1 • 1T + diag(σ2DoA,2, σ

2
DoA,3, . . . , σ

2
DoA,N ) (5.40)

where 1 =
[
1 1 . . . 1

]T
is the all-one vector.

Treating the phase shift vector k as unknown parameters and ignoring their depen-
dence on the noise, the measurement vector φ̂ is Gaussian with mean vector of f and
covariance matrix CDDoA, we have the probability density function (pdf) [21]:

p
(
φ̂|x,kDDoA

)
= (2π)−

N
2

|CDooA|
1
2

exp
[
−1
2 (φ̂−fDDoA)TC−1DDoA(φ̂−fDDoA)

]
(5.41)

Maximizing the pdf in (5.41) is equivalent to finding

x̂, k̂DDoA = arg min
x,kDDoA

(φ̂− fDDoA(x,kDDoA))TC−1DDoA(φ̂− fDDoA(x,kDDoA)) (5.42)

which we shall perform alternatingly. We consider Gauss Newton [22] for x. At iteration
(u+1)

x̂(u+1)= x̂(u)+
(
GT

DDoAC
−1
DDoAGDDoA

)−1
GT

DDoAC
−1
DDoA

(
φ̂−fDDoA

(
x̂(u),k

(u+1)
DDoA

))
(5.43)

where GDDoA is the Jacobian matrix of fDDoA(x)

GDDoA = G
(
x̂(u),k

(u+1)
DDoA

)
, G(x,k) =

∂f(x,k)

∂xT
. (5.44)

At this point, it is important to determine the value of kDDoA. As we do not know the
additive noise in each DoA measurement, kDDoA,i,1 cannot be determined by equation
(5.29). From (5.28), we have

|nDDoA,i,1| = |φ̂i,1(x̂)− φi,1 − kDDoA,i,12π| (5.45)

We assume that nDDoA,i,1 is small enough, so |nDDoA,i,1| < π with the probability almost

1. Thus k̂i,1 can be estimated by

k̂
(u+1)
i,1 = arg min

ki,1∈{0;±1}

∣∣∣φ̂i,1 − φi,1 (x̂(u)
)
− ki,12π

∣∣∣ (5.46)

where φ̂i,1
(
x̂(u)

)
is the estimated value of φi,1 at the u-th iteration.
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A procedure is expected to terminate when ‖x̂(u)− x̂(u−1)‖2 < εDDoA, for the stopping
value εDDoA sufficiently small. Then, the final position of the procedure is considered to
be the coordinates of the mobile device in the xy plane.

However, the iterative procedures do not always converge. The possible outcomes of
an iterative procedure and how the estimated position of the mobile device is taken from
that procedure are carefully analyzed in section 3.3.4.

In a nutshell, we propose the Algorithm 5, a Gauss-Newton iterative solution for the
Maximum Likelihood estimator.

Algorithm 5: Proposed Maximum Likelihood estimator with phase correction k̂

1 Take the measured DDoA φ̂i,j as the trigonometric angle of the incident wave
from i-th base station and the incident wave from j-th base station.

2 Assign u = 1 and εDDoA sufficiently small.
3 Compute the estimation ω̂DDoA by (5.34), then assign

x̂(1) =
[
[ω̂DDoA]1 [ω̂DDoA]2

]T
as the first estimated coordinates of the mobile

device.
4 repeat

5 Compute the estimated Direction Difference of Arrival φ̂i,1 by (5.38).

6 if |φ̂i,1(x̂(u))− φ̂i,1 ≥ π then

7 k̂DDoA,i,1 = sign(φ̂i,1(x̂
(u))− φ̂i,1)

8 else

9 k̂DDoA,i,1 = 0 ;

10 Compute x̂(u+1) by (5.43).
11 u = u+ 1;

12 until ‖x̂(u) − x̂(u−1)‖2 < εDDoA or u > 1000 or ‖x̂(u)‖2 = ±∞;

13 if u > 1000 or ‖x̂(u)‖2 = ±∞ then

14 x̂(1) is the estimated position of the mobile device;
15 else

16 x̂(u) is the estimated position of the mobile device;

5.5 Simulation Results

To compare the quality among of algorithms and CRB, we use Root Mean Square
Position Error (RMSE) which is defined by

RMSE =
√

E(‖x̂− x̄‖2) (5.47)

where x̄ is the true position of the mobile device and X̂ is its estimate. In the xy plane,
RMSE averaging is over 1000 mobile positions picked randomly in a square of 1000m
x 1000m centered in the circle of BSs. The network of 8 Base stations (numbered from
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Figure 5.4: Map of base stations’ network and random positions of mobile device in 2D

1 to 8) forms the circumscribed circle of this square (Fig. 5.4). The value for ε in the
stopping criterion of the ML estimator is 0.01.

In the figures, “initial point” refers to the position found by Least Squares method in
section 5.3.1, whereas “iterative procedure” refers to the pseudo Maximum Likelihood
algorithm.

Instead of comparing the MSEs to the CRB, we compare their square roots: The
Root Mean Square Error (RMSE) =

√
MSE and square root of CRB (

√
CRB). In the

simulations, all the DoA estimations are assumed to have the same standard deviation:
σDoA,1 = σDoA,2 = · · · = σDoA,N = σDoA.

5.5.1 DDoA-based localization

Fig. 5.5 illustrates the results when the common standard deviation of DoA estimations
(σDoA) varies from 0.5◦ to 4◦. More comprehensively, Fig. 5.5a compares the RMSEs of
the 4 algorithms:

(a) The initial point obtained by Least Squares method shown in section 5.3.1.

(b) Gauss-Newton iterative procedures using arctan function [9], by replacing atan2 by
arctan in (5.38) (this corresponds to (4.7), (4.12) and (4.20) in [9]).

(c) Gauss-Newton iterative procedures using atan2 function without k-correction.

(d) Gauss-Newton iterative procedures using atan2 function with k-correction.

The
√

CRB is also added to validate their performances. Fig. 5.5b compares the
average number of iterations of the three algorithms (b), (c) and (d).
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Figure 5.5: Comparisons among the algorithms when N = 8 BSs, standard deviation of
DOA measurements varies from 0.50 to 40

In Fig. 5.5a, there is no difference among the RMSEs of (a), (b) and (c). Undoubtedly,
all the iterative procedures with algorithm (b) and (c) diverge or oscillate so that the
ML estimator has no effect. On the otherhand, the RMSE of (d) is much smaller than
the common RMSE of (a), (b) and (c), which means ML estimator plays an important
role in position optimization. The RMSE of (d) is still higher than the

√
CRB, which

demonstrates that this estimator is unbiased.

In Fig. 5.5b, the average number of iterations of (b) is about 900, which means
that 90% of the procedures oscillate and only 10% of them diverge. As for (c), this
average number is smaller than 10, because most of the procedures diverge. Our proposed
algorithm (d) has the smallest average number of iterations, so it can give a remarkable
reduction of the time delay for localization processes.

5.5.2 Localization with orientation estimation

We compare DDoA-based approach to the DoA-based approach in different mobile
orientations. Fig. 5.6 demonstrates the RMSEs of Least Squared method and Maximum
Likelihood estimator of the two approaches. It is clear that

• When the absolute value of the orientation is small (like π/18 or 10◦), the DoA
approach gives a more accurate position location than the DDoA approach, because
the error of orientation estimation is not considerable.

• When the absolute value of the orientation is large (like −4π/9 or −80◦), the DDoA-
based localization is more precise, because there is significant error in orientation
estimation, which noticeably affects the position estimation of DoA approach.
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(b) Mobile orientation θ = 120◦
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(c) Mobile orientation θ = −80◦

Figure 5.6: Self-positioning with joint orientation estimation
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• When the mobile orientation is not in the interval [−π/2;π/2], the orientation
estimation is not correct so the ML estimator of the DDoA approach cannot have
a correct iterative equation. As a result, its iterations do not converge at all. The
DDoA-based RMSE is thus much lower than the DoA-based RMSE.

5.6 Conclusions

This chapter thoroughly analyzes self-positioning in 2D scenarios with 2 approaches:
DDoA-based localization and DoA-based localization with joint mobile orientation esti-
mation.

The DDoA-based positioning algorithms using atan2 function and the k-correction
to overcome the troubles caused by noises in angle measurements. The simulations
demonstrate the superior properties of our proposed algorithm: unbiasedness (in certain
conditions) with the most accurate results and the shortest time delay.
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Chapter 6

Direction-based localization at mobile
device in 3D scenarios

6.1 Introduction

6.1.1 Related works

Several papers illustrates their researches and results. In [45], the authors showed
an position algorithm using the DDoAs by a gradient iterative procedure. However,
they did not show how to get the initial point for the procedure, as well as what to do
if the procedure does not converge. The authors in [48] works about DDoA but the
tilt of receiver is already given. In [8], a DDoA positioning algorithm is studied. The
sensor determines its position by the Visible Light Communications (VLC) emitted from
the light-emitting diodes (LEDs) around. Nevertheless, the authors assume that all the
LEDs are collinear and the z-coordinate of the sensor is always lowers than the common
z-coordinate. These assumptions reduce the complexity for the problem, but also lose
the generality for the solution. In addition, the authors of [9] suggest using the difference
between the azimuths and the difference between the elevations to localize the mobile
device. However, these differences are not constants when the orientation of the device
changes.

6.1.2 Our constributions

In this chapter, we form an algorithm using the DDoAs for position estimation by
Least Squares method. This algorithm does not require any additional assumption.
Afterwards, a Maximum Likelihood estimator is obtained by optimizing a cost function.

6.2 Problem Formulation of localization at Mobile device

Direction-based localization at the mobile device is much more complicated than one
at the base stations.

The mathematical problems are still challenging to solve.
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Fig. 6.1 shows the DoA expression in the true Cartesian coordinate system. The true
azimuth angle and elevation angle of the incident wave from the i-th base station are
ψi and ϑi, respectively. However, at the relative coordinate system with regard to the
mobile device, the relative azimuth angle is ϕi and and elevation angle is θi (Fig. 6.2).
As the tilt of the mobile device is undefined, it is likely impossible to compute (ψi, ϑi)
from (ϕi, θi). It is essential to find a solution which can estimate the mobile position by
(ϕi, θi).

Let (x, y, z) be the coordinates of the mobile device and (xi, yi, zi) be the coordinates
of the i-th base station in the true Cartesian coordinate system. In the rotated relative
coordinate system with regard to the mobile device, the coordinates of the mobile device
are (xr, yr, zr); meanwhile the coordinates of the i-th base station are (xri , y

r
i , z

r
i ). We

then have the azimuth of DoA of the signal from the i-th base station:

ϕi = atan2 (yri − yr, xri − xr) (6.1)

The elevation angle:

θi = arctan
zri − zr√

(xri − xr)
2 + (yri − yr)

2
(6.2)

In practical measurements, the measured value of i-th azimuth and elevation are:

ϕ̂i = ϕi + ϕ̃i + ki2π (6.3)

θ̂i = θi + θ̃i (6.4)

where ϕ̃i is assumed to be an additive Gaussian noise with zero-mean and variance ν2

and θ̃i is assumed to be an additive Gaussian noise with zero-mean and variance µ2. The
authors of [49] prove that these noises are zero-mean and Gaussian distributed.

We name the action of adding a correction of ki2π as k-correction. We have the
definition of ki

ki =


1 , ϕi + ϕ̃i < −π
−1 , ϕi + ϕ̃i ≥ π
0 otherwise.

(6.5)

6.3 Mobile-based localization by DoA-based algorithm when the
orientation is given

6.3.1 Analysis of mobile orientation

A common way to express the orientation of a rigid object like a mobile device in 3D
is quaternion [50].
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Quaternion provides a convenient mathematical notation for representing spatial
orientations and rotations of elements in three dimensional space. Specifically, they
encode information about an axis-angle rotation about an arbitrary axis.

In 3-dimensional space, according to Euler’s rotation theorem, any rotation or sequence
of rotations of a rigid body or coordinate system about a fixed point is equivalent to a
single rotation by a given angle ξ about a fixed axis (called the Euler axis) that runs
through the fixed point. The Euler axis is typically represented by a unit vector −→v in the
picture). Therefore, any rotation in three dimensions can be represented as a combination
of a vector −→v and a scalar ξ (Fig. 6.3).

A rotation of angle ξ around the axis defined by the unit vector. In addition, ξ is
supposed to be in [0; 2π).

As −→v = (vx, vy, vz) is a unit vector, v2x + v2y + v2z = 1.

The quaternion q = [q0 q1 q2 q3] is defined, where

q0 = cos
ξ

2
, q1 = vx sin

ξ

2
, q2 = vy sin

ξ

2
, q3 = vz sin

ξ

2
(6.6)

Then, the rotation matrix described by the quaternion is given as below

R =

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 (6.7)

If a position has the coordinates p = [px py pz]
T in the true coordinate system, and

the coordinates in relative rotation coordinate system is pr = [prx pry prz]
T , their relation

will be:

pr = Rp (6.8)

p = R−1pr (6.9)

6.3.2 Estimating position by Least Squares method

We have the relation between the coordinates and the meausured DoA in rotated
coordinate system

tanϕi =
yri − yr

xri − xr
(6.10)

xr sinϕi − yr cosϕi = xri sinϕi − yri cosϕi (6.11)

As ϕ̃i is very small, we approximate that sin ϕ̃i ≈ 0 and cos ϕ̃i ≈ 1. Thus

sinϕi = sin(ϕ̂i − ϕ̃i − ki2π) = sin(ϕ̂i − ϕ̃i) ≈ sin ϕ̂i (6.12)

cosϕi = cos(ϕ̂i − ϕ̃i − ki2π) = cos(ϕ̂i − ϕ̃i) ≈ cos ϕ̂i (6.13)
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Hence, from (6.11), it is approximated that

xr sin ϕ̂i − yr cos ϕ̂i = xri sin ϕ̂i − yri cos ϕ̂i (6.14)

Moreover, we have

tan θi =
zri − zr√

(xri − xr)
2 + (yri − yr)

2
=

(zri − zr) cosϕi
xri − xr

(6.15)

As θ̃i is very small, we approximate that sin θ̃i ≈ 0 and cos ϕ̃i ≈ 1, so tan θ̃i ≈ 0.
Thus tan θi ≈ tan θ̂i

We have the approximation

tan θ̂i =
(zri − zr) cos ϕ̂i

xri − xr
(6.16)

xr tan θ̂i − zr cos ϕ̂i = xri tan θ̂i − zri cos ϕ̂i (6.17)

In matrix approach

Â1 =



sin ϕ̂1 − cos ϕ̂1 0
sin ϕ̂2 − cos ϕ̂2 0
. . . . . . . . .

sin ϕ̂N − cos ϕ̂N 0

tan θ̂1 0 − cos ϕ̂1

tan θ̂2 0 − cos ϕ̂2

. . . . . . . . .

tan θ̂N 0 − cos ϕ̂N


; b̂1 =



xr1 sin ϕ̂1 − yr1 cos ϕ̂1

xr2 sin ϕ̂2 − yr2 cos ϕ̂2

. . .
xrN sin ϕ̂N − yrN cos ϕ̂N
xr1 tan θ̂1 − zr1 cos ϕ̂1

xr2 tan θ̂2 − zr2 cos ϕ̂2

. . .

xrN tan θ̂1 − zrN cos ϕ̂1



xr =
[
xr yr zr

]T
We have Â1x

r = b̂1 so the estimate of xr is

x̂r = min
xr
‖Â1x

r − b̂1‖2 (6.18)

leading to the estimate of xr being calculated by Least-Squares estimation of xr

x̂r = A†1b̂1 (6.19)

where A† = (ATA)−1AT is the Moore-Penrose pseudo inverse of matrix A.
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6.3.3 Optimizing position estimation by the true Maximum Likelihood estima-
tor

To optimize x̂r obtained in (6.55), an iterative Maximum Likelihood estimator is
applied.

In vector form, we denote

ϕ̂ =
[
ϕ̂1 . . . ϕ̂N θ̂1 . . . θ̂N

]T
(6.20)

f(xr,k) =



ϕ1(x
r) + k12π

ϕ2(x
r) + k22π
. . .

ϕN (xr) + kN2π
θ1(x

r)
θ2(x

r)
. . .

θN (xr)


(6.21)

where k = [k1 k2 · · · kN ]T ; ϕi(x
r) and θi(x

r) are the estimated azimuth and elevation
angles, respectively, depending on xr = [xr yr zr]T and are computed by

ϕi(x
r) = atan2 (xri − xr, yri − yr) (6.22)

θi(x
r) = arctan

zri − zr√
(xr − xri )2 + (yr − yri )2

(6.23)

Treating the phase shift vector k as unknown parameters and ignoring their dependence
on the noise, the measurement vector ϕ̂ is Gaussian with mean vector of f and covariance
matrix C, we have the probability density function (pdf) [21]:

p(ϕ̂|xr,k) = (2π)−N

|C|1/2 exp
[−1

2 (ϕ̂−f)TC−1(ϕ̂−f)
]

(6.24)

Maximizing the pdf in (6.24) is equivalent to

x̂r, k̂ = arg min
x,k

(ϕ̂− f(xr,k))TC−1(ϕ̂− f(xr,k)) (6.25)

which we shall perform alternatingly. We consider Gauss Newton [22] for x̂r. At the
iteration (u+1):

x̂r
(u+1)

= x̂r
(u)

+
(
GT

1C
−1G1

)−1
GT

1C
−1
(
ϕ̂−f

(
x̂r

(u)
,k(u+1)

))
(6.26)

where G1 is the Jacobian matrix.

G1 = G
(
x̂r

(u)
,k(u+1)

)
, G(x,k) =

∂f(x,k)

∂xT
. (6.27)
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At this point, it is important to determine the value of ki. As we do not know the
additive noise in each DoA measurement, ki cannot be determined by equation (6.5).
From (6.3), we have

|ϕ̃i| = |ϕ̂i − ϕi(xr)− ki2π| (6.28)

We assume ϕ̃i small enough, so |ϕ̃i| < π with the probability almost 1. Thus k̂i can be
estimated by

k̂
(u+1)
i = arg min

ki∈{0;±1}

∣∣∣ϕ̂i − ϕi (x̂r(u))− ki2π∣∣∣ (6.29)

where x̂(u) is the estimated coordinate vector of the mobile device at the u-th iteration.

The procedure is expected to terminate when ‖x̂(u) − x̂(u−1)‖2 < ε1, for the stopping
value ε sufficiently small. Then, the final position of the procedure is considered to be
the coordinates of the mobile device. The possible outcomes of an iterative procedure
and how the estimated position of the mobile device is taken from that procedure are
carefully analyzed in section 3.3.4.

In a nutshell, we propose the Algorithm 6, a Gauss-Newton iterative procedure of
Maximum Likelihood estimator.

6.4 Mobile-based localization by Downlink DoA

6.4.1 Problem Formulation

Direction-based localization at the mobile device is much more complicated than one
at the base stations. As the orientation of the mobile device is unknown, the azimuth and
elevation angles of the incident wave are not able to be estimated. The DoA estimations
at mobile device are more erroneous, because of its limitation in size. However, there
are the angles remain unchanged regardless of the mobile device’s orientation. The
mathematical problems are still challenging to solve.

6.4.2 Linking the DDoA to the related azimuth and elevation angles

The azimuth and elevation angles are defined similarly to the section 4.4, but the
(xy) plane and the z-axis are attached to the mobile device.

We define βi,j as the Direction Difference of Arrival (DDoA) between incident waves
from i-th base station and j-th base station, di and dj are the distance from the mobile
device to i-th base station and j-th base station.

To calculate βi,j , we use scalar product of
−→
di and

−→
dj , the vector demonstrating the

incident signal from i-th and j-th base station, respectively.

We have−→
di = (di cos θi cosϕi, di cos θi sinϕi, di sin θi)−→
dj = (dj cos θj cosϕj , dj cos θj sinϕj , dj sin θj)
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Algorithm 6: Proposed Maximum Likelihood estimator with estimation of k

1 Take the measured Direction of Arrival: azimuth ϕ̂i and elevation θ̂i.
2 Take the orientation of the mobile device via vector −→v and angle ξ.
3 Compute the rotation matrix R by (6.7)
4 Compute the coordinates of all the base station in rotation coordinate system by

(6.8)
5 Assign u = 1 and ε1 sufficiently small.
6 Assign the coordinate vector computed by (6.55) as the first estimated coordinate

vector x̂r
(1)

of the mobile device.
7 repeat

8 Compute the estimated azimuth ϕ̂i and elevation θ̂i by (6.22) and (6.23),
respectively.

9 if |ϕi(x̂(u))− ϕ̂i| ≥ π then

10 k̂i = sign(ϕi(x̂
(u))− ϕ̂i)

11 else

12 k̂i = 0 ;

13 Compute the following estimated coordinate vector x̂(u+1) of the mobile
device by (6.26).

14 u = u+ 1;

15 until ‖x(u) − x(u−1)‖2 < ε1 or u > 1000 or ‖x(u)‖2 = ±∞;

16 if u > 1000 or ‖x̂(u)‖2 = ±∞ then

17 x̂(1) is the estimated position of the mobile device;
18 else

19 x̂(u) is the estimated position of the mobile device;

20 Compute the coordinate of the mobile device in true coordinate system by (6.9).

Figure 6.1: Localization at a base station
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Figure 6.2: Incident wave from i-th base station to the mobile device in the relative
coordinate system

Figure 6.3: Quaternion with a unit vector −→v and a rotation angle ξ to express the
orientation of the mobile device in 3D space.
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Figure 6.4: Localization at mobile device with Direction Difference of Arrival (DDoA)

Thus

−→
di .
−→
dj

= didj(cos θi cosϕi cos θj cosϕj + cos θi sinϕi cos θj sinϕj + sin θi sin θj)
= didj(cos θi cos θj cos(ϕj − ϕi) + sin θi sin θj)

(6.30)

where di and dj are the length of two vectors
−→
di and

−→
dj , respectively

The definition of scalar product of two vectors:

−→
di .
−→
dj = di.dj . cosβi,j (6.31)

Thus

cosβi,j = cos θi cos θj cos(ϕj − ϕj) + sin θi sin θj (6.32)

Considering that βi,j ∈ [0;π], we have

βi,j = arccos (cos θi cos θj cos(ϕi − ϕj) + sin θi sin θj) (6.33)

Let γi,j = cosβi,j
(6.33) reveals the relationship between the measured DOAs θi, ϕi, θj , ϕj and the

DDoA βi,j
Value of βi,j always remains unchanged when the mobile device rotates. [51] proves

that the DDoA is unchanged no matter which coordinate system is chosen.
In practice, the estimated γ̂i,j is computed by (D.1) in Appendix D.

6.4.3 Least Squares method

We have−→
di = (xi − x, yi − y, zi − z)
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−→
dj = (xj − x, yj − y, zj − z)
The DDoA between the incident waves from i-th base station and j-th base station

does not depend on the orientation of the mobile device.

−→
di .
−→
dj = x2 − (xi + xj)x+ xixj + y2 − (yi + yj)y + yiyj + z2 − (zi + zj)z + zizj

(6.34)
−→
di .
−→
dj = didj cosβi,j = didjγi,j

Thus

x2 − (xi + xj)x+ xixj + y2 − (yi + yj)y + yiyj + z2 − (zi + zj)z + zizj = didjγi,j
(6.35)

Moreover,

di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (6.36)

As a result

x2 − (xi + xj)x+ xixj + y2 − (yi + yj)y + yiyj + z2 − (zi + zj)z + zizj
=
√

(xi − x)2 + (yi − y)2 + (zi − z)2
√

(xj − x)2 + (yj − y)2 + (zj − z)2γi,j
(6.37)

It is very difficult to solve the equation (6.37) with 3 variables x, y, z, but we can
have an estimation. We take the square of (6.37). Let

a(i,j) =



1
(xi + xj)

2

(yi + yj)
2

(zi + zj)
2

−2(xi + xj)
−2(yi + yj)
−2(zi + zj)

2(xi + xj)(yi + yj)
2(yi + yj)(zi + zj)
2(zi + zj)(xi + xj)

2(xixj + yiyj + zizj)
−2(xi + xj)(xixj + yiyj + zizj)
−2(yi + yj)(xixj + yiyj + zizj)
−2(zi + zj)(xixj + yiyj + zizj)



T

; ω =



(x2 + y2 + z2)2

x2

y2

z2

x(x2 + y2 + z2)
y(x2 + y2 + z2)
z(x2 + y2 + z2

xy
yz
zx

x2 + y2 + z2

x
y
z


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b(i,j) =



1
4xixj
4yiyj
4zizj

−2(xi + xj)
−2(yi + yj)
−2(zi + zj)

4(xiyj + yixj)
4(yizj + ziyj)
4(zixj + xizj)

x2i + y2i + z2i + x2j + y2j + z2j
−2xi(x

2
j + y2j + z2j )− 2xj(x

2
i + y2i + z2i )

−2yi(x
2
j + y2j + z2j )− 2yj(x

2
i + y2i + z2i )

−2zi(x
2
j + y2j + z2j )− 2zj(x

2
i + y2i + z2i )



T

Noting that a(i,j) = a(j,i) and b(i,j) = b(j,i).
Therefore, by taking the square of the left hand side and the right hand side of

equation (6.37), we have:

a(i,j)ω + (xixj + yiyj + zizj)
2 = γ2i,jb

(i,j)ω + γ2i,j(x
2
i + y2i + z2i )(x2j + y2j + z2j ) (6.38)

In matrix formulation, we denote

Â =


a(1,2) − γ̂21,2b(1,2)
a(1,3) − γ̂21,3b(1,3)

. . .

a(i,j) − γ̂2i,jb(i,j)

 (6.39)

ĥ =


(γ̂21,2)(x

2
1 + y21 + z21)(x22 + y22 + z22)− (x1x2 + y1y2 + z1z2)

2

(γ̂21,3)(x
2
1 + y21 + z21)(x23 + y23 + z23)− (x1x3 + y1y3 + z1z3)

2

. . .
(γ̂2i,j)(x

2
i + y2i + z2i )(x2j + y2j + z2j )− (xixj + yiyj + zizj)

2

 (6.40)

where i from 1 to N − 1, j from 2 to N , i < j
We have the equation of approximation

Â ω = ĥ (6.41)

We have
ω̂ = min

ω
‖Âω − ĥ‖2 (6.42)

leading to the estimate of ω being calculated by
Least-Square estimation of ω

ω̂ = A†ĥ (6.43)
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Figure 6.5: Scenario when all the base stations are co-planar. Blue dots stand for base
stations. Red dots stand for mobile devices. The yellow plane is the plane containing all
the base stations.

where A† = (ATA)−1AT

Estimated coordinate vector of the mobile device are the 3 last elements (the 12-th,
13-th and 14-th elements) of ω̂

x̂ =
[
[ω̂]12 [ω̂]13 [ω̂]14

]T
(6.44)

6.4.4 Conditions for DDoA-based positioning

Placement of the base stations

All the base stations must not be co-planar.

When all the base stations are co-planar (Fig. 6.5), we take the point which is the
symmetry of the mobile device with respect to the plane containing all the base stations,
and put another mobile device at that point. All the DDoAs to the new point are exactly
the same as the DDoAs to the original point. There is absolutely no method to distinguish
the two points just by the set of DDoAs.

Therefore, the first condition is that there must be no plane that can contain all the
base stations.

Number of base stations

As ω has 14 elements, at least 14 DDoAs are required to make (6.41) not an
underdetermined system. βi,j = βj,i so with N base stations, we have N(N−1)/2 DDoAs.
Therefore N(N − 1)/2 ≥ 14 or N ≥ 6. The minimum number of base stations for the
Least Squares method to be feasible is 6.

86



Chapter 6. Direction-based localization at mobile device in 3D scenarios

6.4.5 Optimizing position by an iterative Maximum Likelihood procedure

To optimize x̂ obtained in (6.44), an iterative Maximum Likelihood estimator is
applied.

In vector formulation, we denote

γ̂ =
[
γ̂1,2 γ̂1,3 . . . γ̂1,N

]T
(6.45)

fγ(x) =
[
γ1,2(x) γ1,3(x) . . . γ1,N (x)

]T
(6.46)

γi,j(x) =
x2 − (xi + xj)x+ xixj + y2 − (yi + yj)y + yiyj + z2 − (zi + zj)z + zizj√

(xi − x)2 + (yi − y)2 + (zi − z)2
√

(xj − x)2 + (yj − y)2 + (zj − z)2
(6.47)

where x = [x y z]T .

We have

Cγ = cov(γ̂) =


s21,2 s21,2,3 . . . s21,2,N
s21,2,3 s21,3 . . . s21,3,N
. . . . . . . . . . . .
s21,2,N s21,3,N . . . s21,N

 (6.48)

where s2i,j and s2i,j,l are expressed in the Appendix D.

The measurement vector γ̂ is Gaussian distributed with mean vector of f and
covariance matrix Cγ , we have the probability density function (pdf):

p(γ̂|x) =
(2π)−N/2

|Cγ |1/2
exp

[
−1
2 (γ̂−fγ)TC−1γ (γ̂−fγ)

]
(6.49)

Maximizing the pdf in (6.49) is equivalent to finding

x̂ = arg min
x

(γ̂ − fγ(x))TCγ(γ̂ − fγ(x)) (6.50)

which we shall perform alternatingly.

The possible outcomes of an iterative procedure and how the estimated position of
the mobile device is taken from that procedure are carefully analyzed in section 3.3.4.

In a nutshell, the Algorithm 7 is proposed for the Gauss-Newton iterative procedure
of minimizing the Cost Function.

6.5 Hybrid ToA-DDoA localization

In this section, ToA estimation is added to simplify the computation. When di and
dj are already estimated by the related ToA, the equation (6.35) can be utilized for
estimating position.
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Algorithm 7: Proposed Maximum Likelihood estimator

1 Take the measured Direction of Arrival: azimuth ϕ̂i and elevation θ̂i.
2 Compute γi,j by (D.1).
3 Assign u = 1 and εγ sufficiently small.
4 Assign the coordinate computed by (6.44) as the first estimated coordinate vector

x̂(1) of the mobile device.
5 repeat
6 Compute the estimated DDoA by (6.57)

7 Compute the following estimated coordinate vector x̂(u+1) of the mobile
device by (6.66).

8 u = u+ 1;

9 until ‖x̂(u+1) − x̂(u)‖2 < εγ or u > 1000 or ‖x̂(u+1)‖ = ±∞;

10 if u > 1000 or ‖x̂(u+1)‖2 = ±∞ then

11 x̂(1) is the estimated position of the mobile device;
12 else

13 x̂(u) is the estimated position of the mobile device;

6.5.1 Least Squares method

In matrix formulation, we denote

Ahyb =


−(x1 + x2) −(y1 + y2) −(z1 + z2) 1
−(x1 + x3) −(y1 + y3) −(z1 + z3) 1

. . . . . . . . . . . .
−(x1 + xN ) −(y1 + yN ) −(z1 + zN ) 1



ωhyb =


x
y
z

x2 + y2 + z2

 ; b̂hyb =


d̂1d̂2γ̂1,2
d̂1d̂3γ̂1,3
. . .

d̂1d̂N γ̂1,N


where d̂i = ct̂i and γ̂i,j is estimated by (D.1).

We have

d̂id̂j γ̂i,j = (di + d̃i)(dj + d̃j)(γi,j + γ̃i,j) ≈ didjγi,j + d̃idjγi,j + did̃jγi,j + didj γ̃i,j
(6.51)

As a result, b̂hyb = bhyb + b̃hyb where

bhyb =


d1d2γ1,2
d1d3γ1,3
. . .

d1dNγ1,N

 ; b̃hyb ≈


d̃1d2γ1,2 + d1d̃2γ1,2 + d1d2γ̃1,2
d̃1d3γ1,3 + d1d̃3γ1,3 + d1d3γ̃1,3

. . .

d̃1Nγ1,N + d1d̃Nγ1,N + d1dN γ̃1,N


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The covariance matrix of b̂hyb

E
(
b̃hybb̃

T
hyb

)
=

σ2
1d

2
2γ

2
1,2 + σ2

2d
2
1γ

2
1,2 + s21,2d

2
1d

2
2 σ2

1d2d3γ1,2γ1,3 + s21,2,3d
2
1d2d3 . . . σ2

1d2dNγ1,2γ1,N + s21,2,Nd
2
1d2dN

σ2
1d2d3γ1,2γ1,3 + s21,2,3d

2
1d2d3 σ2

1d
2
3γ

2
1,3 + σ2

3d
2
1γ

2
1,3 + s21,3d

2
1d

2
3 . . . σ2

1d3dNγ1,3γ1,N + s21,3,Nd
2
1d3dN

. . . . . . . . . . . .

σ2
1d2dNγ1,2γ1,N + s21,2,Nd

2
1d2dN σ2

1d3dNγ1,3γ1,N + s21,3,Nd
2
1d3dN . . . σ2

1d
2
Nγ

2
1,N + σ2

Nd
2
1γ

2
1,N + s21,Nd

2
1d

2
N


(6.52)

The Weighted Least Square (WLS) cost function

JWLS = (Ahybωhyb − bhyb)TWhyb(Ahybωhyb − bhyb) (6.53)

where Whyb is a symmetric weighting matrix.

We choose Whyb =
[
E
(
b̃hybb̃

T
hyb

)]−1
with E

(
b̃hybb̃

T
hyb

)
is expressed by (6.52).

The WLS estimate of ωhyb is

ω̂hyb =
(
AT

hybWhybAhyb

)−1
AT

hybWhybb̂hyb (6.54)

The estimated coordinate vector of the mobile device comprises the 3 first elements
of ω̂hyb:

x̂ =
[
[ω̂hyb]1 [ω̂hyb]2 [ω̂hyb]3

]T
(6.55)

6.5.2 Iterative Maximum Likelihood Procedure

We propose an iterative Maximum Likelihood estimator, which uses the positioning
result in (6.55) as its initialization, to optimize the estimation.

Linking the distance to the coordinates, we have:

di(x) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (6.56)

From the equation (6.35), we have the relation between the DDoA and the coordinates:

γi,j(x) = cosβi,j(x) =
x2−(xi+xj)x+xixj+y2−(yi+yj)y+yiyj+z2−(zi+zj)z+zizj√

(xi−x)2+(yi−y)2+(zi−z)2
√

(xj−x)2+(yj−y)2+(zj−z)2
(6.57)

with i from 1 to N − 1 and j from i+ 1 to N .
Then, we denote

d̂ =
[
d̂1 d̂2 . . . d̂N

]T
(6.58)

γ̂ =
[
γ̂1 γ̂2 . . . γ̂N

]T
(6.59)

r̂ =
[
d̂ γ̂

]T
(6.60)
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fr(x) =



√
(x− x1)2 + (y − y1)2 + (z − z1)2√
(x− x2)2 + (y − y2)2 + (z − z2)2

. . .√
(x− xN )2 + (y − yN )2 + (z − zN )2

γ1,1(x)
γ1,2(x)
. . .

γ1,N (x)


(6.61)

where γi,j(x) is defined in (6.57).

We have cov(d̂) = Cd and

Cγ = cov(γ̂) =


s21,2 s21,2,3 . . . s21,2,N
s21,2,3 s21,3 . . . s21,3,N
. . . . . . . . . . . .
s21,2,N s21,3,N . . . s21,N

 (6.62)

where s2i,j and s2i,j,l are expressed in the Appendix D.
The covariance matrix of r̂

Cr = cov(r̂) =

[
Cd 0N×(N−1)

0(N−1)×N Cγ

]
(6.63)

where 0a×b is the null matrix of the size a× b.
The measurement vector r̂ is Gaussian distributed with mean vector of f and

covariance matrix Cr, we have the probability density function (pdf):

p(r̂|x) =
(2π)−N/2

|Cr|1/2
exp

[
−1
2 (r̂−fr)TC−1r (r̂−fr)

]
(6.64)

Maximizing the pdf in (6.64) is equivalent to finding

x̂ = arg min
x

(r̂ − fr(x))TCr(r̂ − fr(x)) (6.65)

which we shall perform alternatingly. We consider Gauss-Newton procedure [22] for x̂.
At iteration (u+1):

x̂(u+1)= x̂(u)+
(
GT
r CrGr

)−1
GT
r Cr

(
r̂−f(x̂(u)

)
(6.66)

where Gr is the Jacobian matrix of fr(x)

Gr = G
(
x̂(u)

)
, G(x) =

∂f(x)

∂xT
. (6.67)

A procedure is expected to terminate when ‖x̂(u+1) − x̂(u)‖2 < εr, for the stopping
criterion εr sufficiently small. Then, the final position of the procedure is considered to
be the coordinates of the mobile device in the xyz space.

In a nutshell, the Algorithm 8 is proposed for the Gauss-Newton iterative procedure
of Maximum Likelihood estimator.

90



Chapter 6. Direction-based localization at mobile device in 3D scenarios

Algorithm 8: Proposed Maximum Likelihood estimtor with Gauss-Newton pro-
cedure

1 Take all the estimated ToAs and then compute the corresponding d̂1, d̂2, . . . , d̂N .

2 Take the measured Direction of Arrival: azimuth ϕ̂i and elevation θ̂i.
3 Compute γ̂i,j by (D.1).
4 Assign u = 1 and ε sufficiently small.
5 Compute the estimation x̂ by (6.55) as the first estimated coordinates of the

mobile device.
6 repeat

7 Compute the following estimated coordinates x̂(u+1) of the mobile device by
(6.66).

8 u = u+ 1;

9 until ‖x̂(u+1) − x̂(u)‖2 < ε or u > 1000 or ‖x̂(u+1)‖2 = ±∞;

10 if u > 1000 or ‖x̂(u+1)‖2 = ±∞ then

11 x̂(1) is the estimated position of the mobile device;
12 else

13 x̂(u) is the estimated position of the mobile device;

6.6 Results

We simulate the algorithms in some scenarios, each scenario has a particular mobile
orientation. In each scenario, we run simulations when the mobile orientation is known
or unknown. If the mobile orientation is known, DoA-based algorithm in section 6.3
will be applied. Otherwise, DDoA-based algorithm in section 6.4 will be considered. It
is expected that the DoA-based algorithm always gives a higher accuracy for location,
because it requires the knowledge of mobile orientation.

We assume that all the estimations of azimuth and elevation angles have the same
standard deviation: µ1 = µ2 = · · · = µN = ν1 = ν2 = · · · = νN = σ.

6.6.1 DDoA-based localization

Fig 6.7a, 6.7b and 6.7c illustrate the RMSEs of LS method and the ML estimator
when the mobile orientation is taken and not taken into account, in 3 different mobile
orientations. The results are summarized in Table 6.1.

From the figures, it is obvious that in most of the cases, a prior knowledge of mobile
orientation increases noticeably the accuracy of position location. However, in some
certain orientation, estimations of DDoA-based positioning algorithm are marginally
more precise than those of DoA-based localization.

6.6.2 Hybrid DDoA-ToA localization

The standard deviations of all ToA measurements are also assumed to have the same
value: σToA,1 = σToA,2 = · · · = σToA,N = σToA.
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(a) View from top (b) View from one side

Figure 6.6: Map of base stations and random positions of the mobile device

Scenario Unit vector −→v Rotation angle ξ Results

1 [1 0 0] 0◦
DoA-based algorithm is much more

accurate than DDoA-based

2
[

1√
3

1√
3

1√
3

]
120◦

DDoA-based results are slighty more
accurate the DoA-based results

3
[
−1√
3
−1√
3
−1√
3

]
60◦

DoA-based algorithm is much more
accurate than DDoA-based

Table 6.1: Testing scenarios of different mobile orientations

We compare the RMSE of the four different scenarios, where in each scenario, the
standard deviation of ToA measurements (σToA) varies from 2.5 ns to 30 ns; the Weighted
Least Squares (WLS) method and the Maximum Likelihood (ML) estimator are applied
for localization (Fig. 6.8).

(a) ToA-based positioning algorithm given in [52].

(b) Hybrid positioning algorithm when σ = 0.5◦.

(c) Hybrid positioning algorithm when σ = 1◦.

(d) Hybrid positioning algorithm when σ = 1.5◦.

From Fig. 6.8, it is clear that the ML estimator considerably enhance the accuracy
of WLS estimations. In addition, the advantage of the proposed hybrid positioning
algorithm depends on the accuracy of DoA estimations. The more precise the DoA
estimation is, the more useful the hybrid algorithm is, especially when the standard
deviation of ToA estimation increases.
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(a) −→v = [1 0 0], ξ = 0◦ and σ varies from 0.5◦ to 4◦.
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, ξ = 120◦ and σ varies from 0.5◦ to 4◦.
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Figure 6.7: Comparison of RMSE in DDoA-based localization
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Figure 6.8: Localization at mobile device with hybrid ToA-DDoA
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Chapter 7

Conclusions and Future works

In this dissertation, we looked at various aspects of positioning algorithms. In this
final chapter, we provide some concluding remarks for each types of algorithms of the
dissertation. Furthermore, we look at various possible straightforward extensions to the
current work here and also some future topics which needs to be explored. We try to
highlight both the pros and cons of our various proposed solutions and some possible
future directions to circumvent the disadvantages associated with them.

7.1 Conclusion

This dissertation studies and analyzes the three main types of positioning algorithms.

7.1.1 Trilateration

In chapter 2, Trilateration is quite completely analyzed. In geometric approach, we
propose an algorithm that can be applied for all the possible subcases. The matrix
formulation with Least Squares method is much more accurate and less complicated than
geometric approach.

In the range of trilateration positioning, the chapter proposes a new geometric
method that can be applied in all measurement error cases. The numerical results shows,
compared to the centroid algorithm and the Fermat Point algorithm, that the proposed
approach helps to significantly improve the accuracy in localization and reduce the
complexity by avoiding case division. Furthermore, experimental results also demonstrate
that integrating path loss estimation can make the position estimation more accurate.
Nevertheless, only results in 2D simulation are shown. As for 3D models, algorithms are
more complicated and are currently being investigated.

7.1.2 Multilateration

In chapter 3, we continue to compare geometric approach and Least Squares method.
The Maximum Likelihood estimator is applied with initialization by the both algorithms
above. Practice-like simulations are implemented to verify the theory in practice.
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This chapter also robustifies the accuracy of TDoA-based localization by a proposed
ML estimator, whose performance is also facilitated by a more precise initialization
acquired from the LS method. All the results are based on data obtained from realistic
ray-tracing simulations, integrated in a MatLab environment.

Practical implementation is currently being carried out, to evaluate all the related
positioning algorithms as realistically and objectively as possible.

7.1.3 Triangulation

Triangulation is the most complicated type of positioning algorithms which have the
most sub-scenarios. We carefully study all the sub-scenarios.

• In chapter 4, the Network-Positioning problems are studied. The azimuth angle is
defined in a new way, with the atan2 function and phase jump corrections. This
new definition makes the position estimation much more precise, as well as reduce
noticeably the time delay for localization processes.

This chapter thoroughly analyzes a ML estimator with the DoA-based positioning
algorithms using atan2 function and the k-correction in 2D scenarios. Moreover,
an approximate ML estimator is also proposed. The simulations demonstrate the
superior properties of our proposed algorithm: maintaining the unbiased property
with the most accurate results and the shortest time delay. The approximate ML
gives a better initialization for the true ML, which can augment the accuracy.

In addition, the simulations demonstrate the superior properties of our proposed
algorithm: maintaining the unbiased property with the most accurate results and
the shortest time delay.

• In two-dimensional Self-Positioning which is studied in chapter 5, the new definition
still brings a large enhancement in localization accuracy. Moreover, the new analysis
for Least Squares method is investigated, which gives the ML iterative estimator a
suitable initialization to converge.

This chapter thoroughly analyzes the DDoA-based positioning algorithms using
atan2 function and the k-correction to overcome the troubles caused by noises in
angle measurements. The simulations demonstrate the superior properties of our
proposed algorithm: unbiasedness (in certain conditions) with the most accurate
results and the shortest time delay.

• In chapter 6 about Self-Positioning in 3D, we compute the DDoA from all the
DoAs concerned, and then link the DDoA to the coordinates. ML estimator is also
studied.

This chapter studies direction-based self-positioning problems at mobile devices, in
2 scenarios: The orientation of the mobile device is known and unknown. When
this orientation is undefined, the positioning problem is much more challenging.
Consequently, a DDoA-based positioning algorithm is researched, because only
the DDoAs do not change when the mobile device rotates. Analytical solution for
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Least Squares method is presented. Moreover, a Maximum Likelihood estimator to
optimize the position location is also applied.

The results show that Least Squares method is feasible and Maximum Likelihood
estimator enhance the position estimation. Generally, a prior knowledge of mobile
device’s orientation gives more rigorous position estimations. However, in some
certain orientations, the localization from DDoA-based algorithms is more accurate.

7.2 Future developments

Practical implementations are necessary in general. We believe that there is a great
potential in this approach as it shows good generalization capability.

In Trilateration, the positioning algorithms are well studied in general. Practice-like
simulations are also implemented to test the Multilateration positioning algorithms.
However, practical measurements are still important.

In Triangulation, problems in multi-path and NLoS environment needs to be investi-
gated.

Furthermore, diverse other location methods are also interesting to study: Mapping,
Finger-Printing,. . . ; Machine Learning, Deep Learning can also be utilized to improve
the accuracy.
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Appendix A

Vector Calculus

A.1 Hessian matrix

Suppose f : Rn → R is a function taking as input a vector x ∈ Rn and outputting a
scalar f(x) ∈ R. If all second partial derivatives of f exist and are continuous over the
domain of the function, then the Hessian matrix H of f is a square n× n matrix, usually
defined and arranged as follows:

Hf =



∂2f
∂x21

∂2f
∂x1∂x2

. . .
∂2f

∂x1∂xN
∂2f

∂x2∂x1
∂2f
∂x21

. . .
∂2f

∂x2∂xN
. . . . . . . . . . . .

∂2f
∂xN∂x1

∂2f
∂x1∂xn

. . .
∂2f
∂x2N


(A.1)

or, by stating an equation for the coefficients using indices i and j:

(Hf )i,j =
∂f

∂xi∂xj
(A.2)

A.2 Jacobian matrix

Suppose f : Rn → Rm is a function taking as input a vector x ∈ Rn and outputting
a scalar f(x) ∈ R. If all second partial derivatives of f exist and are continuous over
the domain of the function, then the Jacobian matrix J of f is a square m× n matrix,
usually defined and arranged as follows:
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Jf =



∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

. . . . . . . . . . . .

∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn


(A.3)

or, by stating an equation for the coefficients using indices i and j:

(Jf )i,j =
∂fi
∂xj

(A.4)

A.3 Gradient vector

The gradient of a scalar-valued differentiable function f of several variables is the
vector field (or vector-valued function) ∇f whose value at a point p is the vector whose
components are the partial derivatives of f at p.

That is, for f : Rn → R, its gradient ∇f : Rn → Rn is defined at the point p =
(x1, . . . , xn) in n-dimensional space as the vector:

∇f(p) =



∂f
∂x1

∂f
∂x2

. . .

∂f
∂xn


(A.5)
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Expected value and Variance of d2
i in

RSS-based localization

B.1 Expected value of d2
i

From (2.20), we have

−(ln 10)ζRSS,i

5αi
= 2(ln 10)(log di) +

−(ln 10)nRSS,i

5αi
= 2(ln di) +

−(ln 10)nRSS,i

5αi
(B.1)

As nRSS,i ∼ N (0, σ2RSS,i),
−(ln 10)ζRSS,i

5αi
has the mean value of 2(ln di) and the

variance of
(ln 10)2

25α2
i

σ2RSS,i.

It is already proved in [53] that if q is a Gaussian distributed variable, the mean and

variance of q will be E(eq) = exp
(
µ+ σ2

2

)
and var (eq) =

(
eσ

2 − 1
)
e2µ+σ

2
. Applying

those results, the mean and variance of exp

(
−(ln 10)ζRSS,i

5αi

)
are computed as:

E

(
exp

(
−(ln 10)ζRSS,i

5αi

))
= exp

(
2 ln di +

(ln 10)2σ2RSS,i

50α2
i

)
(B.2)

and

var

(
exp

(
−(ln 10)ζRSS,i

5αi

))
=

(
exp

(
(ln 10)2

25α2
i

σ2RSS,i

)
− 1

)
exp

(
4 ln di +

(ln 10)2

25α2
i

σ2RSS,i

)
(B.3)

Thus, from (B.2), we get

E

(
exp

(
−(ln 10)ζRSS,i

5αi

))
= d2i exp

(
(ln 10)2σ2RSS,i

50α2
i

)
(B.4)
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Consequently, expected value of d2i is

d̂2i = E(d2i ) = exp

(
−(ln 10)ζRSS,i

5αi
−

(ln 10)2σ2RSS,i

50α2
i

)
(B.5)

B.2 Estimation of var(d2
i )

Furthermore, from (B.3), we have:

var

(
exp

(
−(ln 10)ζRSS,i

5αi

))
= d4i exp

(
(ln 10)2

25α2
i

σ2RSS,i

)[
exp

(
(ln 10)2

25α2
i

σ2RSS,i

)
− 1

]
(B.6)

From (B.1), we have

−(ln 10)ζRSS,i

2.5αi
= 4(ln di) +

−(ln 10)nRSS,i

2.5αi
(B.7)

Hence,
−(ln 10)ζRSS,i

2.5αi
has the mean value of 4(ln di) and the variance of

(ln 10)2

6.25α2
i

σ2RSS,i

Similarly to the section B.1, we can compute the mean of exp

(
−(ln 10)ζRSS,i

2.5αi

)
by

applying the results in [53].

E

(
exp

(
−(ln 10)ζRSS,i

2.5αi

))
= exp

(
4 ln di +

(ln 10)2σ2RSS,i

12.5α2
i

)
= d4i exp

(
(ln 10)2σ2RSS,i

12.5α2
i

)
(B.8)

Thus, the estimated value of d4i is

d̂4i = E(d4i ) = exp

(
−(ln 10)ζRSS,i

2.5αi
−

(ln 10)2σ2RSS,i

12.5α2
i

)
(B.9)

(B.5) gives us the unbiased estimate of d2i , so its variance can be computed by

var(d2i ) = var

(
exp

(
−(ln 10)ζRSS,i

5αi

))
exp

(
−(ln 10)2σ2RSS,i

25α2
i

)
(B.10)

Using (B.6), we have

var(d2i ) = d4i exp

(
(ln 10)2

25α2
i

σ2RSS,i

)[
exp

(
(ln 10)2

25α2
i

σ2RSS,i

)
− 1

]
exp

(
−(ln 10)2σ2RSS,i

25α2
i

)
= d4i

[
exp

(
(ln 10)2

25α2
i

σ2RSS,i

)
− 1

]
(B.11)
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Since the expected value of d4i is given in (B.9), we have the equation of var(d2i ):

var(d2i ) = exp

(
−(ln 10)ζRSS,i

2.5αi
−

(ln 10)2σ2RSS,i

12.5α2
i

)[
exp

(
(ln 10)2

25α2
i

σ2RSS,i

)
− 1

]
(B.12)
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Appendix C

Mathematical derivation of equation
(5.5)

Referring to 5.5, we have

(xi − x) tan(ϕi + θ) = yi − y (C.1)

According to a trigonometric identity, it becomes

tanϕi + tan θ

1− tanϕi tan θ
(xi − x) = yi − y (C.2)

(tanϕi + tan θ)(xi − x) = (yi − y)(1− tanϕi tan θ) (C.3)

xi tanϕi + xi tan θ − x tanϕi − x tan θ = yi − y − yi tanϕi tan θ + y tanϕi tan θ (C.4)

tanϕi(x+ y tan θ)− (y − x tan θ)− (xi + yi tanϕi) tan θ = xi tanϕi − yi (C.5)
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Appendix D

Expected value and Variance of γi,j

In [54], it is proved that if x ∼ N (x0, ς
2) then

E(sinx) = e−ς
2/2 sinx0

E(cosx) = e−ς
2/2 cosx0

var(sinx) = var(cosx) = 1
2

(
1− e−2ς2

)
E(sin2 x) = 1

2 −
1
2e
−2ς2 + e−2ς

2
sin2 x0

E(cos2 x) = 1
2 −

1
2e
−2ς2 + e−2ς

2
cos2 x0

D.1 Expected value of γi,j

(6.33) shows the equation of γi,j = cosβi,j in terms of the related DoAs: ϕi, ϕj , θi, θj .
Therefore, the estimated value of the γi,j is:

γ̂i,j = E(γi,j) = E(cosβi,j) =
(
e−µ

2
i /2 cos θi

)(
e−µ

2
j/2 cos θj

)(
e−(ν

2
i +ν

2
j )/2 cos(ϕi − ϕj)

)
+

(
e−µ

2
i /2 sin θi

)(
e−µ

2
j/2 sin θj

)
= e−(µ

2
i+µ

2
j)/2 (cos θi cos θj) e

−(ν2i +ν
2
j )/2 cos (ϕi − ϕj) + e−(µ2

i+µ
2
j )/2 sin θi sin θj

(D.1)

D.2 Variance of γi,j

With i 6= j, the variance of γi,j is:

s2i,j = var(γi,j) = var(cosβi,j) = E(cos2 βi,j)− (E(cosβi,j))
2 (D.2)

where E(cosβi,j) is expressed in (D.1) and

cos2 βi,j = (cos θi cos θj cos(ϕi − ϕj) + sin θi sin θj)
2

= cos2 θi cos2 θj cos2(ϕi − ϕj) + sin2 θi sin2 θj + 1
4 sin(2θi) sin(2θj) cos(ϕi − ϕj)

(D.3)

As a result,

E(cosβ2i,j) = h1h2h3 + h4h5 +
1

4
h6h7h8 (D.4)
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where

h1 = E(cos2 θi) =
1

2
−1

2
e−2µ

2
i +e−2µ

2
i cos2 θi ; h2 = E(cos2 θj) =

1

2
−1

2
e−2µ

2
j+e−2µ

2
j cos2 θj ;

h3 = E(cos2(ϕi − ϕj)) =
1

2
− 1

2
e−2(ν

2
i +ν

2
j ) + e−2(ν

2
i +ν

2
j ) cos2(ϕi − ϕj) ;

h4 = E(sin2 θi) =
1

2
− 1

2
e−2µ

2
i + e−2µ

2
i sin2 θi ;

h5 = E(sin2 θj) =
1

2
− 1

2
e−2µ

2
j + e−2µ

2
j sin2 θj ; h6 = E(sin(2θi)) = e−2µ

2
i sin(2θi) ;

h7 = E(sin(2θj)) = e−2µ
2
j sin(2θj) ; h8 = E(cos(ϕi − ϕj)) = e−(ν2i +ν2j )/2 cos(ϕi − ϕj) ;

D.3 Covariance of γi,j and γi,l

With i, j and l are different one by one, the covariance of γi,j and γi,l is

s2i,j,l = cov(γi,j , γi,l) = E(γi,jγi,l)− E(γi,j)E(γi,l) (D.5)

where E(γi,j) is expressed in (D.1) and

γi,jγi,l = (cos θi cos θj cos(ϕi − ϕj) + sin θi sin θj)(cos θi cos θl cos(ϕi − ϕl) + sin θi sin θl)
= 1

2 cos2 θi cos θj cos θl(cos(2ϕi − ϕj + ϕl) + cos(ϕj − ϕl)) + 1
2 sin(2θi) sin θj cos θl cos(ϕi − ϕl)

+ 1
2 sin(2θi) cos θj sin θl cos(ϕi − ϕj) + sin2 θi sin θj sin θl

(D.6)

As a result,

E(γi,jγi,l) =
1

2
m1m2m3(m4 +m5) +

1

2
m6m7m8m9 +

1

2
m10m11m12m13 +m14m15m16

(D.7)
where

m1 = E(cos2 θi) = h1 ; m2 = E(cos θj) = e−µ
2
j/2 cos θj ; m3 = E(cos θl) = e−µ

2
l /2 cos θl ;

m4 = E(cos(2ϕi − ϕj + ϕl)) = e−(4ν2i +ν2j+ν2l )/2 cos(2ϕi − ϕj + ϕl) ;

m5 = E(cos(ϕj − ϕl)) = e−(ν2i +ν2j )/2 cos(ϕj − ϕl) ;

m6 = E(sin(2θi)) = h6 ; m7 = E(cos θl) = e−µ
2
l /2 cos θl; m8 = E(cos θl) = m3 ;

m9 = E(cos(ϕi − ϕl)) = e−(ν2i +ν2l )/2 cos(ϕi − ϕl) ;

m10 = E(sin(2θj)) = h7 ; m11 = E(cos θj) = m2 ; m12 = E(sin θl) = e−µ
2
l /2 sin θl ;

m13 = E(cos(ϕi − ϕj)) = h8;

m14 = E(sin2 θi) = h4 ; m15 = E(sin θj) = e−µ
2
j/2 sin θj ; m16 = E(sin θl) = m12
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