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Titre: Techniques d’inference topologique pour fonctions periodiques avec variation de phase
Mots clés: variation de phase, statistiques non-paramétriques, analyse topologique des données, odométrie

Résumé: Les outils statistiques modernes permettent
de comparer des données temporelles comportant des
variations de phase, souvent en les alignant. Nous
proposons des techniques pour l’analyse d’une observa-
tion qui est composée de plusieurs périodes d’une fonc-
tion périodique, avec variation de phase. Ce cadre
est motivé par un problème de positionnement de
voiture. D’abord, nous montrons que des constructions
de l’Analyse Topologique des Données contiennent des
informations sur la période et le nombre de ses occur-
rences. Dans une première contribution, nous proposons
un descripteur d’une période de la fonction construit à
partir d’un signal bruité contenant plusieurs périodes de
celles-ci. On montre que ce descripteur converge quand
le nombre de périodes observées augmente. Dans une
seconde contribution, on estime le nombre de période que

contient une observation. On montre que l’estimation
est correcte pour une classe de fonctions assez large,
généralisant ainsi un estimateur basé sur les lignes de
niveau. De notre méthode découle également une seg-
mentation du signal en périodes qui utilise les extrema
locaux. Finalement, nous appliquons cette dernière au
signal magnétique enregistré dans une voiture en mou-
vement. Affecté par l’empreinte magnétique du pneu,
ce signal contient l’information sur la position angu-
laire d’une des roue et par conséquent sur la dynamique
du véhicule. Nos expériences montrent que la méthode
de segmentation proposée permet d’estimer la distance
parcourue par le véhicule. De plus, elle localise les
révolutions de manière précise, ouvrant ainsi la voie pour
une méthode d’odométrie magnétique simple et accessi-
ble.

Title: Topological techniques for inference on periodic functions with phase variation
Keywords: phase variation, non-parametric statistics, topological data analysis, odometry

Abstract: Modern statistical techniques allow to com-
pare or summarize temporal data with phase variation,
often by aligning the trajectories. We propose techniques
to analyse a single observation of a periodic function with
phase variations, a setting motivated by a car position-
ing problem. We show that tools from topological data
analysis can capture information about both the periodic
function and the number of observed periods, quantify-
ing the repetitive structure. In a first contribution, we
propose a descriptor of a single period constructed from
a noisy observation of several periods. We prove that
it converges as the number of periods in the observa-
tion increases. In a second contribution, we estimate the
number of periods contained in the observation. Based

on similar topological tools, we prove that our estima-
tor is correct for a wide class of functions, generalizing
the zero-crossings estimator. We also give a method,
guided by the topological estimator, to segment the sig-
nal into periods using local extrema. Finally, we apply
this method to the magnetic signal recorded in a moving
car. Composed of a tyres’ magnetic fingerprint, the sig-
nal reflects the angular position of the wheel and hence
the dynamics of the vehicle. Preliminary experiments
show that the proposed segmentation method allows to
estimate the distance travelled by the vehicle. More in-
terestingly, it locates the revolutions of that wheel pre-
cisely, paving a way to straightforward and accessible
odometry.
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Introduction en français

Dans cette thèse, nous étudions des données temporelles avec une structure récurrente et sujettes
à des variations de phase. Les données temporelles prennent souvent la forme d’une fonction con-
tinue S : [0, T ] → R, représentant par exemple la taille d’un enfant mesuré au cours du temps,
ou les fluctuations du prix d’une action à la bourse. Un des enjeux en Statistique est l’extraction
d’information portant sur la distribution sous-jacente des données. Un problème standard est
la construction d’intervalles de fluctuation à partir de la donnée de M réalisations S1, . . . , SM

d’un même processus. Ces intervalles peuvent être construits ponctuellement, pour tout t ∈ [0, T ]
séparément, en utilisant l’échantillon (Sm(t))Mm=1. Une telle procédure ponctuelle attribue cepen-
dant toute la variance au sein de la population à la variation d’amplitude, sans prendre en compte
la variation de phase. Cependant, une partie de cette variance peut être expliquée en ajustant
l’axe du temps des observations, menant à analyser les données temporelles comme trajectoires.

Pour le premier exemple, le but d’une analyse ponctuelle serait de déterminer ce qu’est la taille
normale d’un enfant d’âge donné, et parallèlement, ce qu’est une anomalie. Même si plusieurs âges
t1, . . . tn sont considérés, une estimation ponctuelle ne prend pas en compte les différences entre le
développment des individus. En d’autres termes, le fait qu’un enfant soit de taille plus petite que
son âge pourrait le prédire ne devrait pas susciter d’inquiétude. En revanche, une différence dans
la forme de la courbe de croissance (t, S(t)) le devrait, par exemple, si sa taille venait à baisser
soudainement.

Cette situation illustre de manière typique l’intêret de prendre en compte les variations de
phase dans l’étude de données temporelles. Dans ce contexte, on dit souvent que S est une courbe
et une réalisation est appelée trajectoire. Une courbe peut-être à valeur dans Rd ou sur une
variéte (par exemple, des trajectoires d’avions ou des parcours migratoires d’oiseaux, projetés sur
la surface terrestre). Les outils statistiques modernes incluent souvent la variation de phase par
l’alignement (de phase). Aligner deux trajectoires S1 et S2 consiste à trouver un homéomorphisme
γ : [0, T ]→ [0, T ] tel que S1 et S2◦γ soient proches. L’alignement entre deux courbes de croissances
donne une correspondance entre les maturations des deux enfants, un objet qui pourrait être
utile en soi pour la comparaison de l’évolution d’autres quantités biologiques. Lorsque toutes les
trajectoires sont alignées, il est possible de calculer une statistique sur cette population, comme
une trajectoire moyenne.

Le prix d’une action au cours du temps est un long processus qu’on suppose souvent régie par
un modèle paramétrique ou une équation différentielle stochastique. Ici, une analyse statistique
visant à estimer les paramètres d’un tel modèle ou même identifier son type utiliserait des portions
de la donnée temporelle. Par exemple, un estimateur pour le modèle paramétrique est construit
sur S|[t,t+τ ], avec 0 ≤ t ≤ T − τ . Une fois les paramètres identifiés, le modèle peut être utilisé pour
quantifier les risques ou gains de certaines positions.

Ces deux exemples montrent que les données temporelles peuvent être analysées avec des points
de vue différents. Cela n’est pas surprenant, car les quantités d’intérêt dépendent du cadre statis-
tique choisi. Dans l’exemple des courbes de croissance, les observations Si, Sj sont vues comme
des trajectoires. Pour la fluctuation d’indices boursiers, les propriétés locales du processus sont
souvent plus pertinentes que les propriétés de la trajectoire globale.

Dans cette thèse, on s’intéresse aux données temporelles qui ont à la fois une structure interne
et une variation de phase, et pour lequelles l’étude des deux est importante. Plus précisémment,
on considère une fonction périodique ϕ : R → R de période 1, ainsi qu’un homéomorphisme
(strictement) croissant γ : [0, T ]→ [0, R], appelé reparamétrisation. On dira que

S : [0, T ] → R
t 7→ ϕ(γ(t)) +W (t),

(1)

7
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Figure 1: Deux fonctions périodiques, ϕ0 et ϕ1, reparamétrisées par γ0 et γ1, et perturbées par du
bruit additif.

est une fonction périodique reparamétrisée corrompue par une fonction continue aléatoire W :
[0, T ] → R, qu’on identifiera comme du bruit. On nommera également S fonction périodique
avec variation de phase. Figure 1 montre quatres exemples, obtenus en composant des fonctions
périodiques ϕ1, ϕ2 avec des reparamétrisations γ1 : [0, 1]→ [0, 3] et γ2 : [0, 1]→ [0, 4] et en ajoutant
du bruit.

Dans cette thèse, on suppose que ϕ, γ et W sont inconnues, mais on va toujours s’intéresser
au cas où on observe au moins une période (γ(T ) ≥ 1) et où ∥W∥∞ est toujours faible devant
l’amplitude de ϕ. On étudie deux problème sur des données issues du modèle (1). Bien que
simples à formuler, ceux-ci nécessitent d’analyser la structure répétitive dans S.

Problème 1. À partir de données temporelles (1), estimer γ(T )− γ(0) et γ.

Problème 2. À partir de données temporelles (1), construire une signature de ϕ, telle que pour
deux reparamétrisations γ1, γ2, les signatures S1 = ϕ ◦ γ1 et S2 = ϕ ◦ γ2 soient similaires.

Informellement, le Problème 1 consiste à estimer le nombre de périodes de S. Par exemple,
et même sans être expert, on peut intuiter que les signaux de la première et deuxième ligne de
la Figure 1 contiennent 3 et 4 périodes respectivement, et de localiser celles-ci sur l’intervalle
[0, 1]. Une segmentation en périodes donne déjà une première estimation de γ. Une solution au
Problème 2 permet d’identifier si deux signaux S1, S2 proviennent d’observations de la même
fonction périodique ϕ. L’enjeu dans le Problème 2 est de construire un descripteur statistique de
ϕ à partir de S: en observant un nombre important de périodes, on souhaite être en mesure de
caractériser ϕ, au moins grossièrement. Par exemple, ϕ0 et ϕ1 représentées en Figure 1 possèdent
deux et trois ‘grandes variations’ par période. Un descripteur qui décrirait l’amplitude et le nombre
de ces variations pourrait ainsi distinguer les signaux de la colonne de droite de ceux de la colonne
de gauche. Une propriété fondamentale d’un bon descripteur est donc l’invariance par rapport à
la reparamétrisation et en particulier, le nombre de périodes observées. Précisons qu’il ne s’agit
tout de même pas d’estimer ϕ comme fonction, ce problème n’étant pas bien posé.

Les données de la forme (1) ainsi que le Problème 1 sont motivés par une question de position-
nement de véhicule à partir de données inertielles, posée par Sysnav1, une entreprise française
spécialisée dans les techniques de positionnement et navigation. Bien que la technologie de
Géolocalisation et Navigation par Système de Satellites (GNSS) soit omniprésente, elle n’est pas

1https://www.sysnav.fr/
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Figure 2: Reproduction de Le Goff et al. (2012, Figure 2) qui montre un exemple de ϕ, avec de
nombreux extrema locaux. Les fonctions périodique qu’on rencontrera seront souvent plus simples.

sans faille. Le signal satellite nécessaire pour le positionnement n’est pas toujours disponible et
peut même être facilement bruité. Pour atteindre le niveau de robustesse requis dans des applica-
tions sensibles, une idée consiste à développer plusieurs estimateurs de positions et de les agréger.
Si les sources de données qui alimentent ces estimateurs sont de natures diverses, leurs failles sont
indépendantes, augmentant ainsi la robustesse de l’estimateur agrégé. On peut, par exemple, es-
timer le déplacement d’une voiture en intégrant les mesures d’accélération et de vitesse angulaire
fournies par une centrale à intertie (IMU). Dans ce travail, on construit un odomètre à partir des
mesures d’intensité du champ magnétique. En effet, le pneu d’une voiture possède une empreinte
magnétique (Le Goff et al., 2012), représentée dans la Figure 2. Un magnétomètre positionné à
proximité de la roue d’un véhicule en mouvement enregistre cette empreinte, à une fréquence pro-
portionnelle à la vitesse de rotation de la roue et donc à l’allure du véhicule. Cette dernière étant
variable, l’empreinte observée comporte des variations de phase. Par rapport au modèle (1), ϕ
représente l’empreinte magnétique de la roue et γ la phase de celle-ci. Une solution au Problème 1
fournit donc une estimation de la distance parcourue par le véhicule.

Analyse de données temporelles avec variation de phase

Nous décrivons quelques méthodes développées spécifiquement pour l’analyse de données tem-
porelles avec variation de phase. Souvent, plusieurs trajectoires S1, . . . , SM d’une même fonc-
tion inconnue ϕ sont observées via des reparamétrisations γ1, . . . , γM différentes. Notre but est
d’illustrer comment le problème de variation de phase est traité ainsi que la particularité du cas
où ϕ est périodique.

Une première façon de comparer des courbes avec variation de phase est de les considérer dans
un espace quotient par l’action de la reparamétrisation. En définissant les espaces et la métrique, on
peut munir cet espace d’une structure suffisante pour y définir des statistiques, comme la moyenne.
C’est le point de vue adopté dans Srivastava et al. (2011) et le Square-root velocity (SRV). Les
auteurs considèrent deux actions sur l’espace des courbes C = {α : S1 → RD}: la reparamétrisation
(α, γ) 7→ α ◦ γ et la rotation (Q,α) 7→ Qα, avec γ : S1 → S1 un homéomorphisme et Q ∈ SO(RD)
une matrice de rotation. La fonction t 7→ ln(∥α′(t)∥) et la courbe t 7→ α′(t)/

√
∥α′(t)∥ sont deux

coordonnées qui s’avèrent bien décrire ces actions. En particulier, la deuxième coordonnée donne
son nom au SRV et permet de montrer que l’espace quotient est une variété Riemannienne. Cette
théorie a été étendue aux trajectoires sur des variétés Riemanniennes par Su et al. (2014) et a vu
de nombreuses applications.

Certaines propriétés du SRV, intéressantes par natures, sont contraignantes dans notre cas.
Par exemple, Srivastava et al. (2011, Figure 4) montre plusieurs courbes en forme d’hélice avec des
nombres de spirales différents. La représentation dans l’espace quotient permet de partitionner ces
courbes en fonction du nombre de spirales, ce qui montre que la métrique est sensible au nombre
de répétitions d’une structure bien plus qu’à la reparamétrisation. Pour autant, elle ne permet pas
d’obtenir γ(T )− γ(0) directement.

Un autre outil qui incorpore les variations de phase dans l’analyse de données temporelles sont
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les path signatures. Introduits dans le cadre de la théorie des chemins rugueux (Lyons et al.,
2007), celles-ci sont également utilisées pour l’apprentissage statistique (Fermanian, 2021). La
signature d’une courbe de variation bornée α = (α1, . . . , αD) : [0, 1] → RD est une suite formelle
de tenseurs, S(α) = (a0, a1, . . . , an, . . .), où an ∈ (RD)⊗n est obtenu en intégrant différentes
coordonnées les unes contre les autres. Par exemple, a1 = (

∫
dα)Dd=1 = (αd(1)− αd(0))Dd=1, tandis

que a2 = (
∫
0<s<t<1

dαi(s)dαj(t))1≤i,j≤D. Ainsi, l’invariance S(α) = S(α ◦ γ) par rapport à la
reparamétrisation γ : [0, 1] → [0, 1] découle du changement de variable. De manière encore plus
importante dans notre contexte, l’identité de Chen exprime la signature d’un signal en fonction
des signatures de ses composantes: si on note α|I la restriction de α à un intervalle I ⊂ [0, 1],
alors on a l’égalité S(α|[0,1]) = S(α|[0,1/2]) ⊗ S(α|[1/2,1]), où ⊗ désigne le produit tensoriel. En
particulier, cette identité permet de reconstruire une fonction linéaire par morceaux à partir de sa
signature (Fermanian, 2021, Chapitre 6). Dans le contexte de (1), elle donne une relation explicite
entre la signature de ϕ ◦ γ et celle de ϕ|[0,1]. Cependant, à notre connaissance, cette identité n’a
pas été exploitée pour l’étude de fonctions périodiques.

Kneip and Gasser (1992) adoptent une approche plus directe, en alignant des fonctions p̀artir
des ‘points de repère’. Ils localisent certains extrema locaux ainsi que des grandes variations de la
fonction étudiée via, respectivement, les e-fonctionnelles et les p-fonctionnelles. Étant donné une
collection de N ∈ N telles fonctionnelles, un signal S : [0, T ] → R est encodé par les repères
(Tn(S))Nn=1, avec 0 ≤ T1(S) ≤ . . . ≤ TN (S) ≤ T . Ainsi, pour synchroniser deux fonctions
S1, S2 : [0, T ] → R, il suffit de trouver une correspondance monotone entre les deux vecteurs
correspondants. Dans un modèle semi-paramétrique et sous une hypothèse d’unicité de locali-
sation des points de repère, la procédure est consistente: quand la fréquence d’échantillonnage
augmente, les points de repère sont localisés avec toujours plus de précision, permettant d’inférer
les paramètres t0 et t1 de γ(t) = (t − t0)/t1. Il est à noter que les résultats sont conditionnés au
fait que les points de repères ont été au moins partiellement identifiés. Dans le cas des fonctions
périodiques, les repères se répètent et les conséquences de cela ne sont pas claires pour nous.

Le Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978) est une mesure de dissimilarité
adaptée à la comparaison de courbes avec variations de phase. Elle est définie pour des séries
temporelles: si on note Sn = S(tn) pour 0 ≤ t1 < . . . < tN ≤ T , alors la DTW est la solution du
problème d’optimisation

DTW((S1
n)Nn=1, (S

2
m)Mm=1) = min

i,j

∑
k=1K

|S1
i(k) − S2

j(k)|, (2)

où le minimum est pris sur des fonctions i : {1, . . . ,K} → {1, . . . , N} et j : {1, . . . ,K} →
{1, . . . ,M}, avec K ∈ N. Des contraintes telles qu’un module de croissance et la surjectivité
sont habituellement imposées sur i et j. De nature explicite et simple à calculer, la DTW est un
outil priviligié pour comparer ou aligner des séries temporelles. En incorporant les dérivées de S
dans le critère à optimiser, les solutions i, j de (2) alignent S1 et S2 sur leurs points de repères
donnés par les e- et p-fonctionnelles (Gasser and Wang, 1997).

En traitement du signal, le problème d’estimation de la modulation de la phase d’une fonction
périodique est connu sous le nom de instantaneous phase estimation (Boashash, 2015, Chapitre
10). Pour des fonctions “simples”, comme ϕ(x) = a sin(2π(x − b)), la solution exacte est γ(t) =
arctan(H(S)(t)/S(t)), où H est la transformée de Hilbert (Boashash et al., 1990). Pour traiter
un signal complexe, on analyse sa décomposition temps-fréquence avec des techniques comme la
détéction d’extrema (Rankine et al., 2007). De telles procédures sont mêmes extensibles à des sig-
naux qui sont des sommes de composantes avec différentes phases, pourvu que celles-ci soient bien
séparées dans le spectre des fréquences (Khan and Boashash, 2016, Hussain and Boashash, 2002).
C’est le point de vue adopté dans Bristeau (2012), Zabulon et al. (2019) pour le positionnement
de véhicule à partir de signaux magnétiques.

Une autre technique reposant sur des ‘repères’ est celle des zero-crossings. Elle consiste à utiliser
S−1(α) pour déterminer le nombre de périodes et la phase, pour α ∈ R, et souvent α = 0. En
l’absence de bruit, le nombre de fois que le graphe de S traverse le niveau α est proportionnel au
nombre de périodes dans le signal et S−1(α) permet de retrouver une segmentation qui correspond
à ces dernières. Cette méthode simple nécessite seulement de choisir α. Elle n’est cependant
pas stable par rapport aux perturbations de S par du bruit additif W , ni adaptée à l’étude de
fonctions dont la période contient plusieurs passages par le niveau α, comme il en sera discuté
dans le Chapitre 5.

Il est alors intéressant de se demander si les outils introduits pour la comparaison de courbes
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avec variation de phase sont adaptables au comptage du nombre de périodes ou à la quantification
des répétitions. Le zero-crossing n’est qu’un exemple de ‘repère’. De telles adaptations nous sont
inconnues, sauf dans des rares cas où la fonction est effectivement périodique (Stefan et al., 2013),
mais on en mesure pourtant la difficulté sur l’exemple des e-fonctionnelles de Kneip and Gasser
(1992), pourtant ci efficaces. La n-ième e-fonctionnelle détecte la position du n-ième plus petit
minimum. Pour une fonction périodique reparamétrisée (1), le nombre d’extrema locaux dépend
du nombre de périodes, et leur ordre est arbitraire et instable: toute perturbation même minime
peut placer le minimum global dans la première ou la dernière période de S.

Dans notre travail, nous proposons des ‘repères’ et descripteurs issus de l’Analyse Topologique
des Données (TDA). Ceux-ci sont stables et plus spécifiques que, par exemple, les zero-crossings et
les e-fonctionnelles. Ils permettent aussi de cerner la structure répétitive des signaux observés, avec
une complexité algorithmique linéaire en la longueur du signal (Glisse, 2023) et au plus quadratique
en le nombre d’extrema locaux.

Analyse topologique des données

L’Analyse Topologique des Données est un domaine récent et désigne également un ensemble
de techniques qui décrivent la forme des données par l’extraction de quantités géométriques ou
topologiques (Chazal and Michel, 2021). Ces techniques s’appliquent à des données de natures di-
verses, souvent complexes: des nuages de points, des graphes (Hofer et al., 2020, Lasalle, 2023), des
images (Bleile et al., 2021, Garin and Tauzin, 2019) et également des séries temporelles (Fernández
and Mateos, 2022, Gidea and Katz, 2018, Gidea et al., 2020, Perea, 2019). Pour un panorama plus
complet de ce domaine, nous renvoyons le lecteur à la revue Chazal and Michel (2021).

Un des outils phares de la TDA est l’homologie persistante. L’homologie est un invariant
topologique qui qualifie rigoureusement la notion intuitive de ‘trou’: un trou de dimension 1 cor-
respond à un cycle, et de dimension 2 - à une cavité. L’homologie persistante permet d’étudier
l’évolution de l’homologie à travers une suite d’espaces : de leur apparition à leur disparition. Ceci
définit la notion de persistance: savoir à quels moments ce ‘même trou’2 est présent. L’homologie
persistante est typiquement vue comme un version multi-échelle de l’homologie. En effet, l’estimation
de l’homologie à partir de données discrètes (tel un nuage de points) passe souvent par la construc-
tion d’un complexe simplicial, ou l’estimation de sous-niveaux d’une densité; qui nécessitent le
choix d’un paramètre d’échelle. Comment choisir cette échelle est compris dans un cadre théorique
et pour des modèles géométriques, mais les applications de l’homologie comme descripteur des
données vont au-delà. L’introduction de la persistance permet de contourner ces questions, en
décrivant l’évolution de l’homologie à travers les échelles.

L’homologie persistante des sous-niveaux d’une fonction continue f : [0, T ] → R décrit les
extrema locaux de f et leur ordre. Informellement, dans ce cadre simple, on peut la comprendre
par l’analogie suivante illustrée par la Figure 3. Supposons que f représente un profil d’altitude
et qu’on examine la formation de réservoirs d’eau au fur et à mesure que le niveau de mer monte.
Des réservoirs se forment dans les minima globaux, puis dans d’autres minima locaux, tandis que
les maxima locaux deviennent des ı̂lots. Lorsque le niveau d’eau franchit le niveau d’un maximum,
l’̂ılot disparait et deux réservoir adjacents fusionnent pour n’en former plus qu’un: le plus profond
des deux absorbe l’autre. L’homologie persistante décrit l’évolution de ces réservoirs, composantes
connexes, dans (f−1(]−∞, α]))α∈R, ici représentés par des intervalles verticaux. Une représentation
différente de ces intervalles est le diagramme de persistance, un (multi-)ensemble de R2, où chaque
intervalle d’extremités (y1, y2) est associé à un point de coordonnées (y1, y2).

L’homologie persistante des sous-niveaux associe donc une notion de persistance aux minima
locaux. Des intervalles courts, ou de façon équivalente, des points près de la diagonale ∆ =
{(y, y) ∈ R2 | y ∈ R} représentent des oscillations de faible amplitude, souvent assimilés à du bruit
de haute fréquence ou à un manque de regularité de f . En effet, la p-persistance totale, définie
comme la somme des (y2 − y1)p avec (y1, y2) les points du diagramme, est finie pour les fonctions
α-Hölder dès que p > 1/α (Perez, 2023).

2Plus rigoureusement, la persistance est une notion attribuée aux générateurs de l’homologie, car les ‘troux
géometriques’ varient au cours dans la suite d’espaces.
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Figure 3: Une représentation graphique d’une séquence de sous-niveaux de f , croissants de gauche
à droite et de haut en bas. Les intervalles verticaux à coté de chaque graphique représentent les
composantes connexes et la figure en bas à droite - le diagramme de persistance de f .

TDA pour les données temporelles

Il existe de nombreuses techniques d’analyse de données temporelles avec l’homologie persistante.
Souvent, une structure combinatoire telle qu’un complexe simplicial est d’abord définie, de sorte à
ce que l’homologie de celle-ci soit un invariant intéressant du problème.

La technique sans doute la plus répandue pour l’étude de série temporelles est le plongement
de Takens. Takens (1981) donne un plongement simple et explicite de l’attracteur d’un système
dynamique dans RD, défini en terme d’une trajectoire de ce système, et l’attracteur étant un
sous-espace spécifique de l’espace des phases. Les propriétés fractales de l’attracteur qui sont de
grand intérêt pour détérminer si le système est chaotique ou périodique peuvent alors être étudiées
avec l’homologie. En TDA, cette application de plongement est souvent utilisée pour extraire de
l’information sur le comportement d’une série temporelle. On construit SWE(S) ∈ Rd×(N−(d−1)τ)

en faisant glisser une fenêtre de taille d sur la série temporelle S = (Sn)Nn=1,

SWE(S)n = (Sn, Sn+τ , . . . , Sn+(d−1)τ ) ∈ Rd, (3)

pour un certain τ ∈ N. Si S est périodique, l’homologie persistante d’un complexe sur SWE(S)
ressemble à celle du cercle S1 : en particulier, elle contient un générateur persistent en dimension
1. Cette idée a été mise en œuvre pour classifier des systèmes climatiques (Ghil and Sciamarella,
2023), comme un indicateur de volatilité des produits financiers (Gidea et al., 2020, Ruiz-Ortiz
et al., 2022), pour détécter des vibrations dans un processus de fabrication (Khasawneh et al.,
2018), la reconnaissance de syllabes dans le chant d’oiseaux (Fernández et al., 2023). Cette liste
non-exhaustive témoigne du succès que rencontre cette méthode.

Cependant, lorsqu’on introduit la variation de phase, le signal observé n’est plus périodique. La
longueur de la structure récurrente de ϕ◦γ varie selon γ, ce qui casse la géométrie de SWE, comme
illustré par la Figure 4. Les paramètres d, τ ∈ N doivent être choisis en fonction de la période, ce
qui n’est pas possible quand la longueur de celle-ci change. Les résultats de Perea (2019), Kim and
Jung (2022) reliant la décomposition de Fourier de S à la géométrie de SWE(S) et son homologie
persistante quantifient indirectement ce problème. D lotko et al. (2019) propose une méthode qui
s’adapterait à des variations de phase.

Bien que répandue, la technique du plongement n’est pourtant pas la seule approche topologique
pour l’étude de données temporelles périodiques ou récurrentes. Khasawneh and Munch (2018)
s’intéressent à des signaux binaires, constants par morceaux, sujets à un bruit qui introduit des
transitions parasites entre les deux états. Souhaitant compter le nombre de “vraies” transitions,
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Figure 4: En haut, de gauche à droite, le graphe d’une fonction périodique, la projection de
SWE(S) sur deux composantes principales et le diagramme de persistence en dimension 1 du
complexe de Vietoris-Rips construit sur SWE(S). En bas, les graphiques correspondants pour une
reparamétrisation du signal en haut. La géométrie du plongement est différente pour le signal
reparamétrisé, comme en témoigne l’homologie persistante qui ne contient plus de générateur
persistant.

qui sont généralement plus longues, les auteurs attribuent une notion de persistance aux transi-
tions, ce qui leur permet d’éliminer celles qui sont parasites. Erden and Cetin (2017) considèrent
(nT
N , S(nT

N ))Nn=1 comme un nuage de points. Les oscillations de S donnent lieu à des générateurs de
l’homologie en dimension 1, et les auteurs obtiennent une variante plus robuste des zero-crossings.
Finalement, Bois et al. (2022) utilisent la construction des sous-niveaux décrite en Figure 3 pour
caractériser la marche de patients atteints de maladies neuro-dégénératives. Ils constatent que le
nombre de répétitions d’un intervalle reflète le nombre de pas dans l’enregistrement. Après l’avoir
formalisé, nous exploitons cette observation.

Analyse topologique des données aléatoires et statistiques

L’homologie et sa version persistante contiennent des informations pertinentes sur des structures
complexes, mais en pratique, celles-ci ne sont observées qu’à travers des réalisations aléatoires.
Dans le cadre de (1), on dira par exemple qu’on observe ϕ seulement à travers S, avec γ et W
aléatoires. Il est donc important de comprendre comment l’homologie persistante se comporte pour
des données aléatoires, corrompues ou incomplètes.

Un cadre statistique commun en TDA est celui de l’inférence de l’homologie d’une variété à
partir d’un échantillon de points. Une solution consiste à construire un complexe simplicial sur ce
nuage de points, à la bonne échelle. Ceci permet aussi d’estimer le diagramme de persistance de
façon consistante (Chazal et al., 2015). En pratique, les données sont souvent bruitées (Aamari
et al., 2023) ou corrompues (Vishwanath et al., 2022).

Au-delà de l’inférence, l’homologie persistante est également souvent utilisée comme un de-
scripteur des données structurées, même si le modèle n’introduit pas explicitement de géométrie
ou de topologie. Dans ce cas, on est souvent intéréssé par la distribution des caractéristiques
topologiques multi-échelle. Par exemple, en apprentissage statistique, Garin and Tauzin (2019)
proposent d’extraire d’une image plusieurs descripteurs topologiques, une procédure qui permet de
classifier le jeux de données MNIST.

On distingue deux cadres statistiques. Dans le premier, on observe une collection i.i.d d’un
certain type de données, par exemple des images. On décrit la distribution empirique de ces im-
ages par la biais de celles des diagrammes de persistance. C’est souvent le cas dans l’apprentissage
statistique, et c’est ce cadre qui est à l’origine du développement des méthodes de représentation
des diagrammes de persistance. En effet, en tant que multi-ensembles, ces derniers ne sont pas
adaptés à l’apprentissage et un vecteur leur est souvent associé (Bubenik, 2015, Zielinski et al.,
2021, Adams et al., 2017, Reininghaus et al., 2014). Pour la plupart, les constructions proposées
convergent asymptotiquement : quand la taille de l’échantillon (nombre d’images) crôıt, la vec-
torisation empirique moyenne converge vers son espérance et on peut approcher sa distribution
par des techniques de bootstrap (Chazal et al., 2014, Berry et al., 2020). Ces résultats sont une
conséquence de la théorie générale des processus empiriques (Kosorok, 2008) et reposent sur la
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donnée de plusieurs diagrammes de persistance indépendants.
La limite de ces processus est parfois étudié dans un deuxième cadre, qui consiste en l’observation

d’une structure qui grandit ou qui est échantillonnée de plus en plus finement. Un exemple typique
est la convergence de descripteurs géométriques quand la taille d’un nuage de points augmente.
Décrire un diagramme aléatoire qui a un caractère ‘global’ à travers des interactions et propriétés
statistiques locales n’est pas simple. La distribution moyenne des descripteurs topologiques et leur
estimation a été abordée dans Kahle (2011), Divol and Polonik (2019). Récemment, Roycraft et al.
(2023) proposent des techniques de bootstrap pour construire des intervalles de confiance sur ces
descripteurs. Pour les données temporelles, Krebs (2021) établit la convergence (en espérance)
de l’homologie persistante du SWE d’une châıne de Markov, sous certaines hypothèses portant
sur le noyaux de transition. Bobrowski and Borman (2012) détérmine l’espérance du nombre de
certaines barres pour les (sous-niveaux de) processus Gaussians, Divol and Chazal (2019) pour le
mouvement Brownien et Perez (2022b) pour des processus de Markov plus généraux.

Contributions

Dans cette thèse, on propose des techniques de TDA pour l’analyse de fonctions périodiques avec
variation de phase (1), par le biais des problèmes 1 et 2. D’une part, on compare deux signaux
avec des nombres de périodes différents et de l’autre, on compte le nombre de celles-ci dans le cas
où ϕ est inconnue. On applique nos méthodes pour le problème de positionnement décrit ci-dessus.

1. Additivité des diagrammes de fonctions périodiques (Chap. 3)
On montre que l’homologie persistante des sous-niveaux d’un signal de forme (1) est additive. On
note D(ϕ|I) le diagramme de persistance de ϕ|I , la restriction d’une fonction 1-périodique ϕ à un
intervalle I ⊂ R. Alors, le diagramme de persistance est additif.

1. Si R ∈ N, alors
D(ϕ̄

∣∣
[0,R]

) = RD(ϕ̄
∣∣
[0,1]

), (4)

où ϕ̄ désigne une version de ϕ adaptée aux traitement des bords de l’intervalle.

2. Pour tout R > 1,
D(ϕ|[0,R]) = ⌊R− 1⌋D∗ +D′, (5)

où D∗ = D(ϕ̄
∣∣
[0,1]

) et D′ sont deux diagrammes de persistance. De plus, la persistance totale

de D′ est majorée par (le double de) celle de D∗, donc D′ peut être considéré comme un
“reste”.

Une identité qui exprime D(ϕ|[0,R]) à l’aide de D(ϕ|[0,1]) ne surprendra pas les lecteurs familiers de
l’homologie persistante. On prend soin de formaliser celle-ci, avec une attention particulière pour
les conditions de bord: même avec R ∈ N∗, D(ϕ|[0,R]) ̸= RD∗.

Les deux identités (4, 5) sont à la fondation de nos deux contributions principales. Une, qui
repose sur le fait que le nombre de périodes apparait explicitement dans (4), et l’autre, où nous
caractérisons ϕ via D∗.

2. Segmentation d’un signal périodique avec variation de phase (Chap. 5)
Quand ϕ est une fonction ‘simple’, les zero-crossings segmentent [0, T ] en périodes de ϕ. Par
contre, ni le nombre de périodes obtenu ni cette segmentation ne sont stables par rapport aux
perturbations de S. On propose une solution en deux étapes au Problème 1 quand le nombre de
périodes N := γ(T )− γ(0) ∈ N est un entier.

D’abord, on estime le nombre de périodes avec N̂(S, τ), qui compte les multiplicités des points
dans le diagramme et repose sur (4). Cet estimateur dépend d’un paramètre d’échelle τ > 0, qui
détermine un seuil en dessous duquel deux points sont considérés proches. On montre que si cette
échelle est bien choisie et que le bruit est d’amplitude suffisamment petite, alors N̂(S, τ) = N . On
propose deux adaptations de N̂ , qui s’avèrent plus robustes que N̂ dans nos études numériques,
mais pour lesquelles les garanties restent encore à établir. Les estimateurs généralisent l’approche
zero-crossings, car card(S−1(α)) se lit dans D(S).

Dans un deuxième temps, on construit une segmentation de [0, T ] en périodes de ϕ. Si N̂(S, τ) =
N , par construction de N̂ , on peut extraire exactement NK points du diagramme de S, pour un
K ∈ N. Si on considère (xi)

NK
i=1 les minima locaux associès à ces NK points, alors (x1+K(n−1))

N
n=1

segmente l’intervalle [x1, xNK−K+1] ⊂ [0, T ] en périodes de ϕ.
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3. Odométrie magnétique (Chap. 7)
En s’appuyant sur l’algorithme topologique de segmentation, nous développons un odomètre magnétique.
Pour des trajectoires simples, celui-ci détermine la phase d’une roue de manière plus fiable qu’un
estimateur basé sur les zero-crossings, surtout quand l’empreinte magnétique du pneu possède
plusieurs extrema locaux. Nous étudions également ses limitations sur des trajectoires et environ-
nements plus complexes. Le bruit de basse ou de haute fréquence casse la structure répétitive,
qui néanmoins peut être parfois retrouvée en analysant le champ magnétique selon une bonne
direction, ou en utilisant le gradient de ce dernier.

4. Signatures topologiques de fonctions périodiques (Chap. 4)
De nombreuses méthodes existent pour comparer des signaux avec variations de phase. Par contre,
n’exploitant pas la structure répétitive des fonctions périodiques, elles ne sont pas adaptées au cas
où les signaux contiennent des nombres de périodes différents.

Nous proposons une signature F (S) de S, qui caractérise ϕ. Nous la définissons comme la
moyenne de fonctions associées à des points du diagramme de persistance D(S). Grâce à (5), on
montre que cette signature converge quand R→∞ et W = 0. De plus, dans un cadre stochastique
où γ1 et γ2 sont aléatoires avec γ1(0) = γ2(0) et γ1(T ) = γ2(T ), nous contrôlons la distance
entre F (S1) et F (S2) par une distance entre les distributions de γ1 et γ2. Bien que la nature des
descripteurs s’y prête, nous ne démontrons pas la stabilité pour des nombres de périodes différents
entre les signaux.

Calculer la signature de S = (Sn)Nn=1 demande de connâıtre sa loi et n’est donc pas possible
à partir d’une seule observation. Nous proposons d’utiliser la signature F (X) d’un processus
plus court X = (Sm)Mm=1, pour M < N , qui décrit bien la structure de ϕ également. Nous
montrons qu’une méthode de bootstrap permet d’estimer F (X) à partir d’une collection de fenêtres
(Xk)N−M+1

k=1 avec Xk = (Sk+m)M−1
k=0 , pourvu que la dépendance dans le signal décroit suffisamment

vite. Motivé par le cadre industriel où γ représente le déplacement d’un véhicule au cours du temps,
nous spécifions γ comme une châıne de Markov et montrons qu’une mesure de la dépendance décroit
suffisamment vite pour guarantir la validité de la méthode bootstrap.

5. Fonctionnelles normalisées et persistance tronquée (Chap. 4)
Les représentations vectorielles et fonctionnelles des diagrammes de persistance sont souvent linéaires
et leur continuité est bien comprise. Elle dépend de la p-persistance totale, dont la continuité et
convergence sont régies par la régularité de la fonction et la dimension du domaine, pour un
diagramme des sous-niveaux d’une fonction.

On introduit des représentations normalisées des diagrammes ainsi qu’une version tronquée de
la persistance totale. On montre dans la Section 4.3 que la troncature rend la persistance continue
sur une classe de fonctions plus large. Il en est de même pour les représentations normalisées, ce
qui est un élément fondamental pour la stabilité des signatures F (S).

Structure

La Figure 5 est une représentation schématique du contenu (contributions) et des liens de dépendance
entre les chapitres de cette thèse. Le Chapitre 2 introduit le bagage technique de cette thèse et
ne contient pas nos contributions. Dans les Sections 2.1 à 2.4, nous rappelons des notions de
mesurabilité de processus stochastiques et des résultats de convergence. La présentation est dense
et s’adresse à des experts. La Section 2.5 introduit l’homologie, l’homologie persistante et discute
ses propriétés. Notre but principale est de rendre précise l’intuition établie dans la Figure 3 et
présenter notre utilisation de la théorie de la persistance. En particulier, cette section contient les
détails techniques sollicités dans le Chapitre 3.

Dans le Chapitre 3, nous montrons les propriétés additives des diagrammes de persistance de
fonctions périodiques de la contribution 1. Même si les discussions sont principalement algébriques,
nous illustrons les parties clés. Le Chapitre 4 introduit les signatures. La première partie de ce
chapitre est dédiée à l’étude de leur continuité et de leurs propriétés statistiques. La deuxième
partie, en Section 4.3, présente la contribution 5. Dans le Chapitre 5, nous étudions le Problème 1,
que nous proposons de résoudre comme décrit dans la contribution 2. Le Chapitre 6 explicite
comment appliquer les algorithmes d’estimation du nombre de périodes et de segmentation sur
des signaux de dimension 3 - une question venant de l’application étudiée dans le Chapitre 7. Ce
dernier présente le contexte du positionnement de véhicule suivi de l’étude de la performance de
certaines méthodes du Chapitre 5 appliquées aux données magnétiques.
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Figure 5: Un schéma de la structure de cette thèse, avec (n) faisant référence à la contribution n
et les flèches indiquent la dépendances entre les chapitres. Par exemple, le Chapitre 3 repose sur
le bagage introduit dans le Chapitre 2.



Chapter 1

Introduction

In this thesis, we study temporal data with recurrent structure and phase variation. Temporal
data can be a random continuous function S : [0, T ] → R, for example the height of a child over
time, or the price of a stock market share. One of the main concerns in Statistics is extracting
information about the underlying distribution modelling a phenomenon, from observed data. A
typical problem is the construction of prediction intervals based on M different realizations of the
same process, S1, . . . , SM . They can be constructed point-wise, for each t ∈ [0, T ] separately, based
on (Sm(t))Mm=1. It attributes all variance to amplitude variations among individual realizations,
but it does not include phase-variation. Some of the variations in a point-wise analysis can indeed
be explained by adjusting the time axis of the observation, what leads to the idea of analysing
temporal data as a trajectory.

Going back to the first example, a point-wise analysis would aim to determine what constitutes
a ‘normal’ height for a child at a given age, and, as a consequence, what is a worrying anomaly.
Even if not one, but the heights at a few, fixed time points were considered, it does not take
into account the variations in the maturation tempi between individuals, of which age is only a
proxy. In laymans’ terms, it should not be worrying if an child is too short and falls outside of
classically-constructed prediction intervals. However, more abnormal are differences in the ‘shape’
of the growth curve, (t, S(t)). An example would be if its height suddenly started to decrease.

This is the prototypical motivation to introduce phase variation in the study of temporal data.
In this context, S is sometimes called a curve and its realization a trajectory : the same limitations
of a pointwise, or fixed-time analysis are valid for temporal data with values in Rd or a manifold
(for example, plane trajectories projected on the Earths’ surface). Modern statistical methods take
phase variation into account, often by curve (or phase) registration: ‘aligning’ the observations by
finding a homeomorphism γ : [0, T ]→ [0, T ] such that S1 and S2 ◦ γ are close, in some sense. The
interpretation in the example with children is finding a correspondence between the maturation
tempi of two children. Once all curves are synchronized, it is for example possible to define and
compute an average trajectory: a statistic of a population.

Consider now the example of stock prices. For a given stock, only a single, long process of
prices is observed. Often, it is assumed that the price is somehow ‘stationary’ and that it follows
a parametric model, or satisfies a differential equation driven by a stochastic term. A statistical
analysis which aims to infer the parameters of that model is conducted on ‘some pieces’ of the
temporal data. For example, a statistic is computed on S|[t,t+τ ] for all 0 ≤ t ≤ T − τ and some
τ > 0, and the values are used to construct an estimator for the parametric model. Practically, once
the parameters are known, one can assess the risk, estimate prospective gains, and even provide
an interpretation about what drives the price in certain situations.

The two examples show that temporal data can be analysed from different points of view. In
a way, our examples state the obvious: the quantities of interest depend on the data model. In
the first setting, observations Si, Sj are analysed as whole trajectories and it makes little sense to
‘cut’ out a piece of a given length or analyse the ‘internal structure’. The opposite can be said
of stock market prices, where the stochastic term has some local or regularity properties, but the
trajectory is not shared across realizations.

In this thesis, we study temporal data which has both internal structure and phase variation,
which we are interested in analysing. Specifically, consider ϕ : R → R a periodic function with
period 1, and γ : [0, T ] → [0, R] an increasing homeomorphism for some R > 1, also called a
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Figure 1.1: Two periodic functions, ϕ0 and ϕ1, reparametrised by γ0 and γ1, with some additive
noise.

reparametrisation. Then, we say that

S : [0, T ] → R
t 7→ ϕ(γ(t)) +W (t),

(1.1)

is a reparametrized periodic function corrupted by noise W : [0, T ] → R, a random continuous
function. We will also call S a periodic function with phase variation and often omit the noise in
the terminology. Figure 1.1 shows an example of four different signals S, obtained by composing
the periodic functions ϕ1 and ϕ2 with two parametrisations γ1 : [0, 1]→ [0, 3] and γ2 : [0, 1]→ [0, 4],
with some additive noise.

In this thesis, we will assume that ϕ, γ and W are all unknown, although ∥W∥∞ will always
be small compared to the variations of ϕ. We focus on two, simple to formulate problems on data
of form (1.1), both of which require analysing the ”repetitive structure” of S.

Problem 1.1. Given temporal data S of the form (1.1), estimate γ(T ) − γ(0) and construct an
estimator of γ.

Problem 1.2. Given temporal data S of the form (1.1), construct a signature of ϕ, such that for
any two reparametrisations γ1, γ2 : [0, T ] → R, the signatures of S1 = ϕ ◦ γ1 and S2 = ϕ ◦ γ2 are
similar.

Informally, Problem 1.1 consists in counting the number of periods. For example, asked to
determine the number of periods in Figure 1.1, a non-expert would clearly identify them as 3 and
4 in the top and bottom rows respectively, and would segment [0, T ] into the periodic structure
without much difficulty. From such a segmentation, one could construct an estimator of γ.

Roughly speaking, a solution to Problem 1.2 indicates whether two signals S1 and S2 are
observations with the same underlying periodic function ϕ. It involves constructing a statistical
descriptor of ϕ, based on an observation of S: as we observe an increasing number of periods of ϕ,
we should be able to characterize ϕ, at least roughly. Clearly, the point is not to estimate ϕ as a
function, because estimating the phase in model (1.1) is an ill-posed problem, but only characterize
some of its features. For example, ϕ0 and ϕ1 from Figure 1.1 have two and three large ‘variations’
in a single period respectively. A descriptor that captures the number of such variations per period
could distinguish the left column from the right one. For a descriptor to characterize ϕ, it needs
to be invariant with respect to the reparametrisation, as formalized in Problem 1.2.



1.1. ANALYSIS OF TEMPORAL DATA WITH PHASE VARIATION 19

Figure 1.2: Figure 2 from Le Goff et al. (2012) which shows an example of ϕ with numerous
local extrema. It is rather complicated and the periodic functions we encounter in practice have a
simpler form.

Data of the form (1.1) and Problem 1.1 in particular are motivated by a car positioning prob-
lem, introduced to us by Sysnav1, a French company specialized in positioning systems. While
ubiquitous, the Global Navigation Satellite System (GNSS) is not entirely reliable: certain appli-
cations require constant positioning and the satellite signal might be temporarily not available or
even jammed. To increase robustness, it is common to augment the Global Navigation Satellite
System (GNSS) with other position estimators, all of which are then aggregated to produce a
single estimator, whose reliability does not depend on a single source of data. As an example, an
estimator of the displacement of a car is constructed by integrating the accelerations and angular
velocities, acquired by an Inertial Measurement Unit (IMU). In this thesis, we are interested in
exploiting the magnetic signal. A car’s tire is magnetised, so its revolution has a magnetic fin-
gerprint (Le Goff et al., 2012), as shown by Figure 1.2. When a magnetometer is placed inside a
moving car and near one of its wheels, the fingerprint is observed with frequency corresponding to
the speed of that car. The last not being constant, the fingerprint is observed with some variation
in the phase. In terms of our model, ϕ is the magnetic fingerprint projected along one direction,
and γ represents the angular phase of a wheel in time. A solution to Problem 1.1 is an estimator
of the number of revolutions of one of the cars wheels, and hence of its displacement.

1.1 Analysis of temporal data with phase variation

We describe quite extensively a few selected methods developed specifically to analyse temporal
data with phase variation. Most often, the data consists of several curves, S1, . . . , SM with common
ϕ but different phases γ. Our aim is to show how phase variation is usually circumvented and how
it is different for recurrent structures.

One way to compare curves with phase variation is to consider temporal data as a quotient
space by the action of reparametrisation. By appropriately defining the considered spaces and the
metric, one can push statistical constructions, like that of a mean, on that quotient space. This is
the point of view adopted in the popular Square-root velocity (SRV) framework (Srivastava et al.,
2011). Consider two actions on the space of curves C = {α : S1 → RD}: that of reparametrisation
(α, γ) 7→ α◦γ and that of rotation (Q,α) 7→ Qα, for γ : S1 → S1 a homeomorphism and Q ∈ SO(D)
a rotation matrix. The authors represent a curve α by two “coordinates”: a function t 7→ ln(∥α′(t)∥)
and a curve t 7→ α′(t)/

√
∥α′(t)∥, for which it is more natural to describe those actions. The

second ‘coordinate’ gives the framework its name and allows to show that the quotient space has a
Riemannian structure. This framework has been extended to trajectories on Riemannian manifolds
in Su et al. (2014).

Certain properties, desirable in SRV by design, are not suitable for our setting. Srivastava et al.
(2011, Figure 4) shows a collection of helices with varying numbers of spirals. The developed
metric allows to cluster these helices based on their winding numbers. It shows that the metric is

1https://www.sysnav.fr/
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more sensitive to the number of repetitions of a pattern than to the reparametrisation, but it does
not allow to explicitly obtain γ(T )− γ(0).

Another tool for analysis with phase variation are path signatures. Introduced in the 1960s
and exploited in the rough-path theory (Lyons et al., 2007), signatures are popular in the machine
learning community (Fermanian, 2021). The idea is to map a curve α = (α1, . . . , αD) : [0, 1]→ RD

(of bounded variation) to a formal sequence of tensors, S(α) = (a0, a1, . . . , an, . . .), for an ∈
(RD)⊗n, by integrating different coordinates against each other. For example, a1 = (

∫
dα)Dd=1 =

(αd(1) − αd(0))Dd=1, while a2 = (
∫
0<s<t<1

dαi(s)dαj(t))1≤i,j≤D. Then, the invariance S(α) =
S(α ◦ γ) to reparametrisation γ : [0, 1]→ [0, 1] is a consequence of the change of variables formula.
More importantly for our context, the signature satisfies Chens’ identity : if we denote by α|I
the restriction of α to an interval I ⊂ [0, 1], then S(α|[0,1]) = S(α|[0,1/2]) ⊗ S(α|[1/2,1]), where ⊗
denotes the tensor product. Apart from the numerous theoretical implications, Chens’ identity
allows to reconstruct piecewise linear curves from their signatures (Fermanian, 2021, Chapter 6).
In the context of (1.1), it gives an explicit relation between the signature of ϕ ◦ γ and that of its
constituent pieces, ϕ. However, we are not aware of work that would exploit this relation for the
analysis of periodic functions.

Kneip and Gasser (1992) adopt a more direct point of view, aligning ‘visual features’. Specif-
ically, they define e-functionals and p-functionals which localize certain local extrema and large
variations of the curves, respectively. Considering a collection of, say, N ∈ N such functionals, a
signal S : [0, T ] → R is encoded by 0 ≤ T1(S) ≤ . . . ≤ TN (S) ≤ T . This transforms the problem
of synchronizing two functions S1, S2 : [0, T ]→ R into finding a monotone mapping between their
corresponding encodings. In a semi-parametric model and under the assumption that the features
are ‘uniquely localized’, the authors prove consistency of a procedure based on two features. They
show that as the sampling (in time) increases, the features are localized increasingly finely, allow-
ing to infer the parameters of a linear reparametrisation, γ(t) = (t − t0)/t1. It is observed that
the behavior of the method is unknown if such features were missed. The incidence of potentially
repeated features (ubiquitous in periodic functions) is not discussed.

Initially proposed in engineering sciences (Sakoe and Chiba, 1978), Dynamic-Time Warping
(DTW) is a dissimilarity measure tailored to comparing time series, samples of curves with phase
variation. If we let Sn = S(tn) for 0 ≤ t1 < . . . < tN ≤ T , then the DTW is determined by solving
an optimization problem for a reparametrisation,

DTW((S1
n)Nn=1, (S

2
m)Mm=1) = min

i,j

K∑
k=1

|S1
i(k) − S2

j(k)|, (1.2)

where the minimum is taken over warping functions of the form i : {1, . . . ,K} → {1, . . . , N} and
j : {1, . . . ,K} → {1, . . . ,M}, for varying K ∈ N, satisfying some constraints. Typically, i, j are
required to be non-decreasing and surjective. The explicit nature of the method and its compu-
tational simplicity make it very appealing both for comparing time series or phase registration,
especially in applications. Changing the cost function (1.2) to interpolate between matching the
signals and their derivatives, one can also align on structural characteristics, e- and p-locations
from Gasser and Wang (1997).

In signal processing, the problem of estimating the phase, γ, which modulates a periodic func-
tion is known as instantaneous phase estimation (Boashash, 2015, Chapter 10). Originally studied
for periodic functions of a simple form, for example ϕ(x) = a sin(2π(x − b)), the exact solution
is given in terms of the Hilbert transform H, by γ(t) = arctan(H(S)(t)/S(t)) (Boashash et al.,
1990). Such models were motivated by applications in communications, where the carrier and
signal waves have a single sinusoidal component. For more complex signals, one can analyze the
time frequency representations, for example with image processing techniques like peak detec-
tion and component linking (Rankine et al., 2007). This procedure is even extended to sums of
independently-parametrized functions, under hypothesis of separation of different components in
the frequency spectrum (Khan and Boashash, 2016, Hussain and Boashash, 2002). In the context
of positioning with magnetic signals, it has been the point of view adopted in Bristeau (2012)
and Zabulon et al. (2019).

A simple method from signal processing which relies on ‘visual’ and not spectral characteristics
is zero crossings. It consists of counting the number of times that the graph of S crosses a certain
level α ∈ R, often zero (Boashash et al., 1990). In noiseless conditions, it is proportional to the
number of periods in the signal and the times of the zero-crossings segment the signal. This is a
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very straightforward method for which we only need to choose α. As we will see in Chapter 5, it
is not stable with respect to perturbations of S by additive noise W .

An interesting question is whether any methods of comparing curves with phase variation can
also be used to count or quantify repetition. A zero-crossing is just one specific feature. We do
not know of such adaptations, except in the rare cases where the curve is actually periodic, see for
example Stefan et al. (2013). We illustrate a difficulty on the e-functionals from Kneip and Gasser
(1992). In general, the n-th e-functional detects the position of the n-th smallest local minimum,
for n ∈ N∗. Consider a reparametrized periodic function (1.1) with no noise. The number of local
extrema with a given value depends on the number of periods, but their order by value is unstable:
a small perturbation can place the global minimum in the first or in the last period of S.

In our work, we use constructions from Topological Data Analysis (TDA) to propose descrip-
tors more specific and stable, while similar in spirit to the visual features like zero-crossings or
the e-locations used in analysis of samples of curves. While TDA tools are notorious for high
computational complexity, our estimators are computable in time linear in the length of the time
series (Glisse, 2023) and at most quadratic in the number of local extrema.

1.2 Studying the shape of data with Topological Data
Analysis

Topological Data Analysis (TDA) is a recent field and also an umbrella term used to designate
techniques that describe the ‘shape of data’, often by extracting geometric or topological infor-
mation from observations (Chazal and Michel, 2021). Such techniques are applicable to a variety
of data types: point clouds, graphs (Hofer et al., 2020, Lasalle, 2023), images (Bleile et al., 2021,
Garin and Tauzin, 2019) and also time-series (Perea, 2019, Gidea and Katz, 2018, Gidea et al.,
2020, Fernández and Mateos, 2022). We recommend Chazal and Michel (2021) for a thorough
review.

One of the most popular tools from TDA is persistent homology. Homology is a topological
invariant, rigorously defining the intuitive notion of holes, in different dimensions: a 0-hole is a
connected component, a 1-hole - a loop, a 2-hole - a cavity etc. Persistent homology is associated
to a sequence of spaces, allowing the study of the evolution of those holes: when they appear, and
when they disappear in that sequence. This also gives the notion of persistence: for how long a
‘hole’2 is present. Persistent homology is typically advertised as a multi-scale version of homology
for point clouds. Indeed, in a practical setting, estimating the homology of an underlying manifold
from a sample passes through level set (or support) estimation. Usually, that involves the choice
of a meaningful ‘scale’ or threshold. Persistent homology allows to circumvent that, by describing
a point-cloud by its homology at all scales.

Interestingly, the persistent homology of sub level sets3 of a continuous function f : [0, T ]→ R
captures the structure of local extrema of f : their values, but also their order. Very informally,
persistent homology in this simple setting can be understood via a ‘raising sea level’ analogy.
If we let f represent a landscape profile as illustrated in Figure 1.3, small reservoirs (connected
components) appear in deepest valleys (global minima). As the level raises further, other reservoirs
appear in local minima and some merge, at levels of local maxima. When two reservoirs merge, it
is the shallower one that ceases to exist. Persistent homology in dimension 0 in this case tracks the
evolution of connected components in (f−1(]−∞, α]))α∈R, here represented by vertical intervals.
A different representation of these intervals, the persistence diagram is a (multi-)set of points,
where each point with coordinates (y1, y2) corresponds to an interval with coordinates (y1, y2).
The setting of persistent homology is introduced precisely in Section 2.5.

It is clear that persistent homology of sub level sets of a function assigns a notion of ‘persistence’
to local extrema. Short bars, or equivalently points near the diagonal ∆ = {(x, x) ∈ R2 | x ∈ R}
represent ‘wiggles’ of small amplitude, often associated to high frequency noise. The total p-
persistence is the sum of p-powers of the lengths of all bars. For persistence diagrams of sublevel
sets, whether the total persistence is finite reflects the regularity of the function (Perez, 2023):
typically, an α-Hölder function on [0, T ] will have finite p-persistence for p > 1/α.

2Technically, it is the homology generators which are persistent. The geometric ‘holes’ will inevitably vary with
the filtration.

3In dimension zero.
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Figure 1.3: A sequence of graphical representations of sub level sets of f , with the level increasing
from left to right and top to bottom. Besides each representation is a collection of vertical bars,
representing the different connected components.

1.2.1 TDA for temporal data

Persistent homology has been applied in time series analysis in very different ways. A combinatorial
structure, usually a weighted simplicial complex, is defined in such a way that its homology is an
interesting invariant for a particular problem.

The arguably most popular topological technique for studying temporal data consists of calcu-
lating the persistent homology of a Takens Embedding. Takens (1981) showed that an attractor
of a dynamical system, a specific subspace of the phase-space, can be embedded in RD via a simple
and explicit map of a trajectory from that system. The fractal properties of the attractor, which
determine whether that dynamical system is periodic or chaotic, can be probed with the homology
of that embedding. In applications, that embedding is used to extract some information about
the phase space, most often its periodicity. To do so, one constructs the sliding-window embedding
(SWE) SWE(S) ∈ Rd×(N−(d−1)τ) of the time series S = (Sn)Nn=1,

SWE(S)n = (Sn, Sn+τ , . . . , Sn+(d−1)τ ) ∈ Rd, (1.3)

for some τ, d ∈ N. If S is periodic, the persistent homology (of a complex) on SWE(S) should
contain persistent generators in dimension one. This idea has been used to classify climate sys-
tems (Ghil and Sciamarella, 2023), as a volatility indicator in finance (Gidea et al., 2020, Ruiz-Ortiz
et al., 2022), chatter detection in an industrial cutting process (Khasawneh et al., 2018), pattern
recognition in birdsongs (Fernández et al., 2023) or periodicity detection and quantification (D lotko
et al., 2019). This list is not exhaustive, due to the numerous applications.

Reparametrized periodic functions are not periodic. As it is the case in the industrial context
at hand, the length of the periodic structure in ϕ ◦ γ changes according to γ, what in turn breaks
the geometry of the embedding (1.3). We illustrate this in Figure 1.4. It can be understood thanks
to the relation between the geometry of SWE(S) and to the Fourier decomposition of S described
in Perea (2019), Kim and Jung (2022).

Three topological techniques for the study of ‘recurrent’ time series have been proposed. In Kha-
sawneh and Munch (2018), authors count the number of transitions in a piecewise constant, binary
signal. The noise model meant that several spurious transitions could occur near a true transi-
tion and a persistent homology based technique was used to discard those. The second method
proposed in Erden and Cetin (2017) consists of analysing the graph (nT

N , S(nT
N )) with persistent

homology, obtaining a more robust variant of zero-crossings. In Bois et al. (2022), authors use the
construction from Figure 1.3 to analyze the gait of patients. They recognize that the multiplicity
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Figure 1.4: On the top row, from left to right, a periodic function, a projection of the SWE4,1 on
the first two principal components, and the persistence diagram in dimension 1 of the Vietoris-
Rips complex of the embedding. The top row shows that periodic temporal data has a circular
embedding (for a suitable choice of parameters), what is reflected in the persistence diagram: there
is one, persistent generator in homology of dimension one. The bottom row shows the analogue,
for a reparametrisation of the signal in the top row. Due to the homeomorphism, the (projection
of the) embedding looks different and this is also reflected in the diagram, which is not that of a
closed curve.

of certain bars reflect the number of steps in the recording. We will formalize and exploit this
observation.

1.2.2 TDA of random data and Statistics

While homology and its persistent version might contain relevant information about a geometric
object of interest, in practical scenarios, that object is only observed through a random realisation.
In our case, for example, we can say that we ‘observe ϕ only through the temporal data S’, with
random γ and W . Therefore, it is important to understand how persistent homology behaves for
random data, potentially corrupted or incomplete.

A popular TDA setting is data sampled from a certain distribution on a manifold. As mentioned
before, one way to infer the homology of that manifold is to build a complex on the sample
point cloud, at a right scale. With such a construction, one estimates the persistence diagram
consistently (Chazal et al., 2015). In practice, data is often corrupted, so situations with additive
noise (Aamari et al., 2023) or outliers/out of distribution samples (Vishwanath et al., 2022) are
also studied.

Persistent homology is also often used as a descriptor of random, structured data, even when
the statistical model does not introduce geometry or topology explicitly. In such a scenario, one is
rather interested in capturing the distribution of geometric features at different scales. An example
from statistical learning is classification of digits from Garin and Tauzin (2019), where authors use
topological features extracted from images to classify handwritten digits.

We distinguish two statistical settings. In the first, we observe an i.i.d collection of such struc-
tures, say images. We describe this empirical distribution by a distribution of persistent diagrams,
or features thereof. Common in statistical learning, this setting has fuelled the development of
feature-extraction methods from persistence diagrams. Indeed, multi-sets are not suited for statis-
tical learning, so several ways of representing them as vectors (Bubenik, 2015, Zielinski et al., 2021),
images (Adams et al., 2017) or elements of a Banach space (Reininghaus et al., 2014) have been pro-
posed. Such constructions converge asymptotically: as the sample size grows, the empirical mean
representation of a persistence diagram converges to the its expectation and the distribution of the
empirical mean can be approximated by bootstrap techniques (Chazal et al., 2014, Berry et al.,
2020). These results follow from the quite general machinery of empirical process theory (Kosorok,
2008) and rely on the asymptotics of many, independent realizations of persistence diagrams.

The limit of these processes is sometimes characterized in a second setting, which consists of the
observation of a structure that grows in size or is sampled increasingly-finely. A typical example
is a large point-cloud, and the convergence of the topological representation is studied as the
size of that point cloud increases. Establishing strong statistical guarantees is then considerably
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harder. In this case, the expected number of topological features and its estimation have been
characterized (Kahle, 2011, Divol and Polonik, 2019). Recently, Roycraft et al. (2023) construct
confidence sets on those descriptors with bootstrap techniques. Overall, characterising a single
diagram requires understanding what is the ‘distance’ at which interactions take place and it is
challenging given the global nature of persistent homology. We are aware of several results on
temporal data, albeit only in expectation. First, Krebs (2021) shows that the persistent homology
of SWE of a Markov chain converges, under some assumptions on the Markov kernel. It is the only
work we are aware of that considers estimation guarantees for topological descriptors on time series.
For random processes, Bobrowski and Borman (2012) gives an explicit characterisation of persistent
homology for Gaussian processes, Divol and Chazal (2019) for Brownian motion and Perez (2022b)
for more general Markov processes.

1.3 Contributions

In this thesis, we show how TDA can be used to analyse periodic functions with phase varia-
tion (1.1), and in particular, we study Problems 1.1 and 1.2. We introduce tools to compare
signals with different number of periods through descriptors thereof and to count the number of
periods in an unknown signal. We apply this last to the car positioning problem mentioned above.

1. Additivity of the persistence diagram for periodic functions (Chap. 3)
We show that persistent homology of sub level sets of a signal (1.1) captures its recurrent nature.
Specifically, let ϕ : R → R be a one-periodic, continuous function. We denote by D(ϕ|I) the
persistence diagram of ϕ|I , the restriction of ϕ to an interval I ⊂ R. Then, the persistence diagram
is additive in the following sense:

1. if R ∈ N, then
D(ϕ̄

∣∣
[0,R]

) = RD(ϕ̄
∣∣
[0,1]

), (1.4)

where ϕ̄ denotes a version of ϕ, adapted to periodic boundary conditions.

2. For any R > 1,
D(ϕ|[0,R]) = ⌊R− 1⌋D∗ +D′, (1.5)

where D∗ = D(ϕ̄
∣∣
[0,1]

) and D′ are two persistence diagrams. We also show that D′ has total

persistence smaller than D∗, so it can be treated as a remainder term.

Additive relations between D(ϕ|[0,R]) and D(ϕ|[0,1]) are not surprising for readers familiar with
persistent homology. However, we formalize them with particular care for the boundary conditions:
even if R ∈ N, we have in general D(ϕ|[0,R]) ̸= RD∗.

The above are the building blocks of our two main contributions: one, which relies on the fact
that the number of periods appears explicitly in (1.4) and the other one, which characterizes ϕ
through D∗ from (1.5).

2. Segmenting a periodic signal with phase variation (Chap. 5)
When ϕ is a ‘simple’ function, zero-crossings of ϕ◦γ segment [0, T ] into periods of ϕ. However, the
so-obtained number of periods, or the segmentation are not stable with respect to perturbations
of S. We propose a solution to Problem 1.1 with stability guarantees, valid when the number of
observed periods N := γ(T )− γ(0) ∈ N is an integer. We proceed in two steps.

First, we propose an estimator of the number of periods, N̂(S, τ), which counts the multiplicity
of points in the persistence diagram, relying crucially on (1.4). The estimator depends on a scale
parameter τ > 0 that defines a threshold for points to be considered close. We show that if the scale
is chosen appropriately and the noise W is small enough, the estimation is correct N̂(S, τ) = N .
We also propose two adaptations of N̂ , which prove more robust in our simulation studies than N̂ ,
but for which any guarantee remain to be established.

In the second step, we construct a segmentation of [0, T ] into periods of ϕ. If N̂(S, τ) = N is
correct, by construction of N̂ , the persistence diagram D(ϕ̄◦γ) contains NK persistent points, for
some K ∈ N. We can retrieve all local minima corresponding to those points, and by taking every
K-th minimum, we obtain the desired segmentation.

Our method generalizes the zero-crossings estimator. Specifically, the number of zero-crossings
can be expressed as the number of points in a certain region in the persistence diagram.



1.4. STRUCTURE 25

3. Magnetic odometry (Chap. 7)
We develop a magnetic odometry method based on our segmentation algorithm. In simple sce-
narios, it counts revolutions of a wheel more reliably than an estimator based on zero-crossings,
especially for non-trivial magnetic fingerprints and it localizes periods more precisely. We study
its limitations for more complex trajectories and environments. There, the repetitive structure in
the signal is obfuscated by the high- or low-frequency noise, but can sometimes still be detected
correctly: by projecting the magnetic signal along a suitable direction or analysing the gradient of
the magnetic field.

4. Topological signature of a reparametrized periodic function (Chap. 4)
Several metrics or notions of discrepancy to compare signals up to phase variation have been
proposed. However, they are not adapted to comparing two observations of reparametrized periodic
functions with different numbers of periods, as they do not exploit the recurrent structure of the
signal.

We construct a signature F (S) of S, which is somehow characteristic of ϕ. It is defined by
averaging elements of persistence diagrams, in a functional space. Thanks to (1.5), we show that
the signature converges as R → ∞ when W = 0. Also, when the reparametrisations γ1, γ2 are
random with γ1(0) = γ2(0) and γ1(T ) = γ2(T ), a distance between F (S1) and F (S2) is controlled
by the distance between the distributions of γ1 and γ2. Equality of the endpoints of γ1 and γ2
implies that the number of periods of ϕ is the same in both signals. We explain what is missing for
the general setting of a different number of periods, and we show an upper-bound on the distance,
which includes a bias term between the signatures.

The signature of the whole process is not computable from a single observation S = (Sn)Nn=1.
Instead, we propose to compute a signature of a shorter process X = (Sm)Mm=1 of length M < N ,
which still accurately describes the structure of ϕ. We show that F (X) can be estimated from
a collection of windows (Xk)N−M+1

k=1 , where Xk = (Sk+m)M−1
m=0 , provided that the dependence

structure in the signal is not too long. Part of the dependence is hidden in the reparametrisation
process. We consider a Markov chain model for the raparametrisation γ, motivated by the industrial
application where γ represents the displacement of a vehicle in time. We show that the dependence
decreases exponentially fast and this justifies a bootstrap procedure.

5. Normalized functionals and truncated total p-persistence (Chap. 4)
Considered most often in the literature are functionals ‘linear’ in the persistence diagram, and their
continuity has been fully characterized. It depends on the total p-persistence of the persistence
diagram, which is not necessarily continuous, nor even finite: for a diagram of sub level sets of
a function, these properties depend on the dimension of the domain and the regularity of that
function.

We introduce normalized functionals of persistence diagrams and a truncated version of total
persistence. In Section 4.3, we show that it is lower- and upper-bounded, and, more importantly,
enjoys better continuity properties than the non-truncated counter-part. With this notion of
truncated persistence, the normalized functionals are continuous. Overall, this contribution is
crucial in establishing the stability of the signatures.

1.4 Structure

An overview of the dependence between chapters and their content in terms of contributions is
provided in Figure 1.5. Chapter 2 introduces the technical tools used throughout this thesis and
does not contain our contributions. The aim of Sections 2.1 to 2.4 is to introduce measurability and
convergence results from stochastic processes and time series. The presentation is rather dense and
oriented to an expert reader. Section 2.5 retraces the construction of homology, persistent homology
and its resulting properties. While not fully accessible to a non-expert audience, our goal is to
make precise the intuition conveyed with Figure 1.3 and how we use persistent homology. It also
provides technical details necessary for Chapter 3.

In Chapter 3, we show the additive properties of persistence diagrams for periodic functions.
We state (1.4) and (1.5) in more precise terms and give the corresponding proofs. While the tech-
nical discussion is algebraic, we illustrate the key parts. In Chapter 4, we present our contributions
on signatures. The first part of the chapter is devoted to stability and statistical properties (con-
tribution 4). The second part, Section 4.3, presents contribution 5. In Chapter 5, we present the
estimators and segmentation algorithm mentioned in contribution 2. In Chapter 6, we consider
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Chapter 3 (1 )

Chapter 4 (4, 5 ) Chapter 5 (2 )

Chapter 6

Chapter 7 (3 )

Chapter 2

Figure 1.5: A schematic illustration of the structure of this thesis. The numbers in parentheses
refer to the contribution. The arrows outline the dependence structure between the chapters: the
solid arrow between Chapters 2 and 3 indicates that Chapter 3 crucially relies on the results or
methods introduced in Chapter 2.

how to apply those estimators to three-dimensional signals - a question stemming from the ap-
plication. Chapter 7 presents the background on positioning and motivates the need for another
position estimator. Crucially, it contains the application of the methods developed in Chapters 5
and 6.



Chapter 2

Background

2.1 Measure theory and stochastic processes

We call a stochastic process S = (St)t∈I : (Ω,A)→ (RI , σ(RI))) a random variable on a measure
space (Ω,A, η), for I ⊂ R an interval or a subset of Z. A major appeal of stochastic processes is
that they model temporal data, but can be also thought of as random functions. To justify this
point of view, we explicit the notions of measurability.

We denote by σ(RI) the σ-algebra generated by the product topology on RI . Specifically, it is
the topology which makes the projections S 7→ St measurable, for all t ∈ I. In this manuscript,
we are mostly interested in the case where S is C(I)-valued, that is, for all ω ∈ Ω, t 7→ St(ω) is
a continuous function. For this reason, we will think of S as a ‘function-valued’ random variable,
what we justify that in this section.

The space of continuous functions (C(I), ∥·∥∞), equipped with the supremum norm is a Banach
space when I is a compact interval. The Borel σ-algebra B(∥ · ∥∞), is the smallest σ-algebra
containing all the open sets for the topology generated by that norm. The product topology on
RI is coarser than that of ∥ · ∥∞, and therefore, σ(RI) ⊂ B(∥ · ∥∞). While S is a (RI , σ(RI)-valued
random variable, it is not clear that it is measurable with respect to B(∥ · ∥∞). Theorem 2.1 tells
us that it is, justifying considering S a ‘function-valued’ random variable.

Theorem 2.1. Assume that I ⊂ R is a compact interval, t 7→ St(ω) is continuous for all ω ∈ Ω
and St : (Ω,A) → (R,B(R)) is a random variable for all t ∈ I. Then, S = (St)t∈I is B(∥ · ∥∞)-
measurable.

Proof (taken from Steinwart (2022)). By definition, S is a Carathéodory function, that is, S·(ω) :
I → R is continuous, and St : Ω → R is measurable. If S is a Carathéodory function, then
S : (Ω× I,A⊗ B(∥ · ∥∞))→ (R,B(R)) is measurable (Aliprantis and Border, 2006, Lemma 4.51).
By Steinwart (2022, Lemma 5.1.5), S is weakly-measurable. That is, for any x′ ∈ C(I)′, the dual
of C(I), x′S : Ω → R is measurable. We conclude the proof by applying Pettis’ measurability
theorem.

Lemma 2.2 (Pettis’ measurability theorem). Consider h : Ω → E, where (E, dE) is a Banach
space. If E is separable as a metric space and h is weakly-measurable, then h is measurable with
respect to the Borel σ-algebra induced by dE.

Because I is compact, (C(I), ∥ · ∥∞) is complete and separable. We can therefore apply Pettis’
theorem to S weakly-measurable.

Gaussian processes are an important example of stochastic processes. We say that S is a Gaus-
sian process if (St)t∈K is a Gaussian random variable, for every finite subset K ⊂ I. A centered
Gaussian process is entirely characterized by its covariance functions, (s, t) 7→ E[SsSt] (Steinwart,
2022, Theorem 4.4.5). Indeed, for a Gaussian process S and x′ ∈ C(I)′, x′S is also Gaussian and
it is determined by its mean and variance.

Definition 2.3. We say that a sequence of stochastic processes (Sn)n∈N converges weakly to a
stochastic process S if for all x′ ∈ C(I)′, x′Sn → x′S in R.

27
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If the distribution of x′S1 and x′S2 is the same for all x′, then S1 and S2 are the same as weakly-
measurable variables. By Kosorok (2008, Lemma 7.1), two Borel-measurable processes equal as
weakly-measurable processes, induce the same measures on the measure-space, (C(I),B(| · |∞)).

As we will see in Section 2.5.3, the descriptors that we will consider are defined for continuous
functions. When evaluating the descriptors on random function, to show their continuity, bound-
edness or discuss their stability, we might need to control two key quantities of the stochastic
process: its supremum and its regularity.

The supremum MI := supt∈I St is a random variable. For a Gaussian process, we can bound
the deviations of MI using its covariance function. We will use the following result in Chapter 5.

Proposition 2.4 (Azäis and Wschebor (2009, Proposition 4.1)). Consider a centred Gaussian
process S with covariance Cov(s, t) such that Cov(t, t) = 1, for all t ∈ I. Then,

P (MI > u) ≤ exp(−u2/2)

2π

∫
I

√
∂2Cov

∂s∂t
(r, r)dr + 1− ϕ(u),

where ϕ is the cumulative distribution function of a standard normal random variable.

For topological descriptors to be continuous or bounded, it is necessary for the functions to
be more regular than just continuous. We recommend Azäis and Wschebor (2009, Sections 4.2
and 4.3), which contains results on the regularity of sample paths. As an example, for Gaussian
processes, it is enough for the mean to be Ck and the covariance to be C2k for the paths to
be (almost-surely) Ck. Our work is not restricted to Gaussian processes and we impose weaker
regularity conditions, typically Lipschitz or Hölder regularity.

Definition 2.5. We say that S is α-Hölder if there is Λ : Ω→ R, such that

|Ss(ω)− St(ω)| ≤ Λ(ω)|s− t|α, for all s, t ∈ I,

and we say that S is Lipschitz if it is 1-Hölder.

Notice that we do not require Λ to be uniformly bounded. In fact, it is not immediately clear
that it is a random variable. For it to be the case, it suffices for the increments to be bounded.
Specifically, we assume that for some 0 < r1 < r2, there exists K = Kr2,r1 such that for all s, t ∈ I,

E[|St − Ss|r2 ] ≤ Kr2,r1 |t− s|1+r1 . (2.1)

The following proposition is known as the Kolmogorov continuity theorem.

Proposition 2.6 (Azäis and Wschebor (2009, Proposition 1.11)). Suppose S satisfies (2.1) with
Kr2,r1 and let α ∈]0, r1r2 [. Then, there exists a modification (Xt)t∈[0,1] of S and a random variable
ΛX,α : Ω→ R∗

+, such that for all s, t ∈ [0, 1],

P (|Xt −Xs| ≤ ΛX,α|t− s|α) = 1.

Recall that a process X is said to be a modification of S, if P (St = Xt) = 1, for all t ∈ I.
A modification therefore prescribes the evaluations, but does not directly imply equality in terms
of paths. We say that X and S are indistinguishable, if P ({ω | St(ω) = Xt(ω), ∀t ∈ I}) = 1.
If S and X are modifications of each other and are continuous (almost everywhere), then they
are indistinguishable, so there is a unique ‘modification’ of S which has continuous paths. In
Section 4.H, we will show that we can upper-bound the moments of ΛX,α.

We show an example of an explicit upper-bound of the constant in (2.1) for processes other than
Gaussian. Instead, we require the increments of the process to be sub-Gaussian, with a controlled
constant.

Proposition 2.7. Assume that the increments of S are sub-Gaussian,

P (|St − Ss| > u) ≤ 2 exp
(
− u2

2d2(s,t)

)
. (2.2)

Then, for any 0 < r1 and r1 + 1 < r2, we have

Kr2,r1 ≤ Cr2diam(I)r2−1−r1 .
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Proof. Recall that for a positive random variable X with cumulative distribution function FX , we
have E[Xk] =

∫∞
0
uk−1(1−FX(u))du. For X = |Ss−St|, we use that FX is lower-bounded by (2.2)

to obtain that

E[|St − Ss|r2 ] ≤
∫ ∞

0

ur2−1P (|St − Ss| > u)du

≤ 2

∫ ∞

0

ur2−1 exp
(
− u2

2d2(s,t)

)
du

= 2d(s,t)
√
π√

2

∫ ∞

0

ur2−1
√

2
d(s,t)π exp

(
− u2

2d2(s,t)

)
du.

We recognize that the integral is the (r2 − 1)-th moment of a half-normal random variable with
variance d(s, t)2, which is Cr2d(s, t)r2−1, where

Cr2 =


r2!

( r2
2 )!

2−r2/2, if r2 is even

2(r2−1)/2 r2−1
2 !
√

2
π , if r2 is odd.

Hence,
E[|St − Ss|r2 ] ≤

√
2π · Cr2d(s, t)r2 .

2.2 Markov chains

Time series, a sequence of random variables (Xn)n∈N on a common measureable space, are a
stochastic process indexed by a discrete set. Time series could be thought of as a discretization of
a random function, but this does not reflect the more fine structure of the σ-algebra permitted by
a countable index set, nor the breadth of applications. A common structure is that of a system
or phenomenon represented using a state and a law governing transitions to the next state. In
a Markov chain, the transitions depend only on the previous state and such models have found
numerous applications (storage models, population growth, exchange rates). The theory of Markov
chains is most widely known for finite or countable state-space X . However, the intuitions and
developments in the countable setting have been adapted to general state spaces, where X is only
assumed measurable and sometimes topological. In this section, we introduce elements from the
general state space theory, because, in this thesis, we use Markov chains on real intervals to model
the displacement of a vehicle over time. We rely on Meyn and Tweedie (1993).

Definition 2.8. A Markov chain is a time series (Xn)n∈N which satisfies the Markov property,

P (Xn ∈ A | Xj , j ≤ n− 1) = P (Xn ∈ A | Xn−1).

In other words, the future value of the process is independent on the past, conditioned on the
present value. We will be only interested in homogeneous processes, where these probabilities do
not depend on the time index n. A homogeneous Markov chain on a space (X , σ(X )) is specified
by an initial distribution and, thanks to the Markov property, the transition probabilities.

Definition 2.9. The initial distribution is simply a probability measure on X , µ. The transition
probability kernel, is a map P : X × σ(X )→ R+, such that

1. for each A ∈ σ(X ), P (·, A) is σ(X )-measurable,

2. for each x ∈ X , P (x, ·) is a probability measure on (X , σ(X )).

The n-transition kernel is defined recursively as a product: for n = 0, P 0(x,A) = 1x(A) and
for n ≥ 1,

Pn(x,A) =

∫
X
P (x, dy)Pn−1(y,A). (2.3)

The transition probability kernel can be thought of as the probability of X1 ∈ A, conditional on
X0 = x. With the initial distribution and the transitions, we can characterize the distribution of
the Markov chain, P(Xn ∈ A) =

∫
X µ(dx)Pn(x,A).
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Because Markov chains are used to model an extremely wide range of phenomena, they naturally
exhibit different behaviors. We introduce three different properties: stationarity, irreducibility and
recurrence, each corresponding to a different aspect of the behavior of a Markov chain.

Recall that a time series is called stationary if, for any k ∈ N, (Xn, . . . Xn+k) has the same
distribution for all n ∈ N. The distribution of Xn is µPn, so the time series is stationary if and
only if µPn does not change with n. An invariant measure π : A → R is a σ-finite measure such
that π(A) =

∫
X π(dx)P (x,A). An important question is thus whether the transition probability

kernel admits an invariant measure.
Theorem 2.11 relates the concept of invariance to that of recurrence, but before we state it,

we need to introduce irreducible chains. The chain is said to be ρ-irreducible, if for any x ∈ X
and A ∈ σ(X ) with ρ(A) > 0, the probability of (Xn)n∈N ever falling in A, having started from
x, is positive, Px(∃n,Xn ∈ A) > 0. Among ρ-irreducible measures, Meyn and Tweedie (1993,
Proposition 4.2.2) allows to choose the maximal one, ψ, for which (Xn) is said to be ψ-irreducible.

Definition 2.10. We say that (Xn) is recurrent, if it is ψ-irreducible, and, for every x ∈ X and
A ∈ σ(X ) such that ψ(A) > 0, we have

∑∞
n=1 P

n(x,A) =∞.

On finite state spaces, a chain is irreducible if we cannot partition the states in such a way
that the chain does not transition between different sets of the partition. It is recurrent if a
typical realization passes infinitely often by any particular state. On general spaces, the notion of
a ‘state’ is replaced by that of a set of positive ψ-measure: the chain is recurrent if, from every
initial condition, the expected number of visits to any set A of positive ψ-measure is unbounded.
Example 2.12 shows a simple, recurrent process.

Theorem 2.11 (Meyn and Tweedie (1993, Theorem 10.0.1)). A recurrent chain (Xn)n∈N admits
an invariant measure, π.

Note that a ψ-irreducible chain is either recurrent or transient (Meyn and Tweedie, 1993,
Theorem 8.3.4). A chain is transient if there is a finite cover, X1, . . .XD of X , such that for all
d = 1, . . . , D, there is 0 < Md < ∞ such that the expected number of returns to Xd is finite, ie∑

n≥1 Pn(x,Xd) < ∞, for every x ∈ Xd. An standard example of a transient Markov chain is a
random walk on Z, with biased transitions.

Example 2.12 (Random walk on R+). Consider a chain defined inductively by Xn = max(Xn−1+
Wn, 0), where W1, . . . ,Wn are all iid distributed as W . The chain X is called a random walk on
R+ and it is recurrent if E[W ] < 0 or if both E[W ] = 0 and E[W 2] <∞ (Meyn and Tweedie, 1993,
Propositions 8.5.1 and 8.5.4).

For a stationary process, convergence to an invariant measure is implied by the Doeblin condi-
tion.

Definition 2.13. A stationary process X with TPK P satisfies the Doeblin condition if there
exists r ∈ N∗ and a measure ν (non-trivial, ν(X ) > 0) such that

P r(x,A) ≥ ν(A), for any x ∈ X , and A ∈ σ(X ). (2.4)

A weaker version of (2.4) is a consequence of ϕ-irreducibility. By Meyn and Tweedie (1993,
Theorem 5.22), any ϕ-irreducible chain admits a small set : a set C, for which (2.4) is satisfied for
x ∈ C. The Doeblin condition is thus the small-set condition for C = X .

2.3 Measures of dependence

We can now model complex phenomena or systems, by introducing dependence between random
variables. In this section, we present ways to measure that dependence. These notions allow to
generalize the estimation guarantees from Section 2.4 from independent, to depend data. For
further reading, we recommend Doukhan (1995), Dedecker et al. (2007) and the review Bradley
(2005).

Consider a probability space (Ω,A,P) and recall that two σ-algebras A1, A2 ⊂ A are indepen-
dent if

P(A1 ∩A2) = P(A1)P(A2), for all A1 ∈ A1, A2 ∈ A2. (2.5)
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Definition 2.14. Denoted by σ(X), the σ-algebra generated by a random variable X : (Ω,A)→
(X,B) is the smallest one which contains {X−1(B) | B ∈ B}. Two random variables X1, X2 defined
on a common probability space are independent, if σ(X1) and σ(X2) are independent.

For (Xn)n∈Z a sequence of random variables on (Ω,A), we denote by σX
a,b = σ(Xa, . . . , Xb) the

σ-algebra generated by Xa, . . . Xb, for some a ≤ b ∈ Z. For simplicity, we will focus on stationary
sequences (Xn)n∈Z.

Definition 2.15. A time series is m-dependent if there is m ∈ N, such that σX
−∞,k and σX

k+m,∞
are independent, for all k ∈ Z.

Common examples are processes of the form Xn = f(Zn, . . . , Zn+m), for (Zn)n∈Z independent
and are often obtained through transformations, like renormalization or centering, of an other-
wise independent process. However, m-dependence is a very strong notion. Mixing coefficients
quantifying how far certain equations, usually satisfied by independent σ-algebras, are from being
satisfied. We will work with β-mixing coefficients which quantify the deficit in (2.5). In Chapter 4,
we will also be interested in how fast these coefficients decay.

Definition 2.16 (Dedecker et al. (2007, Section 1.2)). The k-th β-mixing coefficient of (Xn)n∈N
is defined as

βX(k) := sup
A1,A2

∑
A1∈A1,A2∈A2

|P(A1 ∩A2)− P(A1)P(A2)|, (2.6)

where the supremum is taken over all finite partitions A1 ⊂ σX
−∞,0 and A2 ⊂ σX

k,∞ of Ω. We will
say that the process is β-mixing or absolutely regular if limk→∞ βX(k) = 0.

Trivially, an m-dependent sequence is absolutely regular, as β(k) = 0 for k ≥ m + 1. Let us
compare the two notions for stationary Gaussian sequences. Then, m-dependence is equivalent to ϕ-

mixing, where the ϕ-coefficients are analogue to βX(k), except for a normalization, | P(A∩B)
P(A)P(B) − 1|.

Recall that the spectral density, f , of a covariance function is f(λ) =
∑

t∈Z Cov(0, t)eiλt, for
λ ∈ [0, 2π]. A sequence of stationary, Gaussian random variables is absolutely regular if and only
if the spectral density of the covariance, can be written as f(λ) = |p(eiλ)|2 exp(

∑
j∈Z aje

iλj), with∑
j∈Z |j||aj |2 < ∞ and the roots of the polynomial p all lie on the unit circle (Bradley, 2005,

Theorem 7.1). As mentioned in the remark after Doukhan (1995, Theorem 3), βX(n) = O(n2−α)
if Cov(0, t) = O(t−α).

Another example of absolutely regular processes are Markov chains, which satisfy the Doeblin
condition. We will use this characterization in Chapter 4.

Theorem 2.17 (Doukhan (1995, Section 2.4, Theorem 1)). If a stationary Markov chain X
satisfies (2.4), then X is absolutely regular and βX decays exponentially fast.

A big benefit of working with mixing coefficients is that they are defined through σ-algebras.
This means that any point-wise mapping of the chain cannot increase the dependence between
variables. We will call such propeties mixing-preservation and, as we will see, it will be particularly
important in Chapter 4, where h = ϕ is a continuous, periodic function.

Proposition 2.18. For any h : X → Y measurable and h(X) := (h(Xn))n∈N, we have βh(X)(k) ≤
βX(k)

Proof. By definition, P(h(X) ∈ A) = P(X ∈ h−1(A)). Any partition A of σ(Y) gives a partition
of h∗A := {h−1(A) | A ∈ A} ⊂ σ(X ). So,

βh(X)(k) = sup
A1,A2

partitions of σ(Y)

∑
A1∈A1,A2∈A2

|P(A1 ∩A2)− P(A1)P(A2)|

= sup
A1,A2

partitions of σ(Y)

∑
B1∈h∗A1,B2∈h∗A2

|P(B1 ∩B2)− P(B1)P(B2)|

≤ sup
A1,A2

partitions of σ(X )

∑
A1∈A1,A2∈A2

|P(A1 ∩A2)− P(A1)P(A2)|

= βX(k).
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Another way to quantify dependence is via weak-dependence coefficients. In the same way as
mixing is related to a lack of independence (2.5), these coefficients quantify a deficit in orthogonality
between the random variables. Even though we do not use this framework further, we give a general
outline, which we hope motivates working with mixing coefficients instead. We refer to Dedecker
et al. (2007) for a thorough presentation of the theory and examples. see Bobbia et al. (2022)
for a recent review. Consider F , G two families of functions and c which maps two functions to a
positive scalar. A sequence X is (c,F ,G, (ϵk)k∈N)-weakly-dependent, if for any k ∈ N, df , dg ∈ N+,
f : Rdf → R, g : Rdg → R and i1,≤ . . . ≤ idf

≤ j1 − k ≤ . . . ≤ jdg
, we have

|Cov(f(Xi1 , . . . Xidf
), g(Xj1 , . . . Xjdg

))| ≤ c(f, g)ϵk, (2.7)

and limk→∞ ϵk = 0. For example, η-dependence corresponds to F = G being L-Lipschitz functions
with L < 1 and sup-norm 1, while c(f, g) = dfLip(f) + dgLip(g). Clearly, the ‘preservation
properties’ depend on the regularity of the function h.

2.4 Empirical processes

Consider the standard statistical problem of determining whether and how an estimator converges
as the sample size increases. When the estimated quantity is finite-dimensional, the law of large
numbers (LLN) or the central limit theorem (CLT) provide answers. Empirical process theory
allows us to answer similar questions when the estimated quantities are functions. We first recall
the general setting for indepedent data, and we provide two results for dependent sequences. For
a detailed introduction to empirical process theory, we refer to Kosorok (2008).

Consider a probability measure P on (X , σ(X )) and let X1, . . . , XN be an i.i.d N -sample from P.

We call PN := 1
N

∑N
n=1 δXn

the empirical distribution associated to that sample. For f : X → R
a measurable function, we denote by PNf := 1

N

∑N
n=1 f(Xn) the empirical mean of f over the

sample and we assume that the mean Pf := EX∼P[f(X)] exists. As the sample size increases,
the empirical mean converges to the true mean. Specifically, when Pf2 < ∞, the LLN implies
that PNf → Pf in probability and the CLT states that

√
N(PNf − Pf) → N (0,Pf2). Analogue

conclusions also hold in RD, for a function f = (f1, . . . , fD), for fd : X → R measurable and
1 ≤ d ≤ D.

If we now have a family of functions, F , the collection of random variables (PNf)f∈F forms a

stochastic process, which we call the empirical process. A realization of the empirical measure P̂N

(that is, of the random variables X1, . . . , XN ) gives a path (PNf)f∈F . The question of convergence
of that process as a stochastic process is central in empirical process theory, motivated initially by
the following example.

Example 2.19. Consider the classic question of determining whether the empirical distribution
function of a real-valued random variable, FN (t) := 1

N

∑N
n=1 1Xn≤t converges to the distribution

function F . In the language of empirical process theory introduced above, X = R, ft = 1]−∞,t]

and F = {ft | t ∈ R}. The LLN and the CLT imply convergence of FN (t) to F (t) for any t ∈ R (or
any finite collection of evaluations points), but do not specify whether the convergence is uniform
over t ∈ R.

Definition 2.20. The functional family F is P-Glivenko-Cantelli if supf∈F |PNf−Pf | → 0 almost

surely. The functional family is said to be P-Donsker if
√
N(PNf − Pf)→ G converges weakly to

a Gaussian process G with mean 0 and covariance Cov(f, g) = P(fg)− (Pf)(Pg).

Being Glivenko-Cantelli (resp. Donsker) is analogous to satisfying the LLN (resp. CLT) in the
finite-dimensional setting. To pass from the finite-dimensional convergence to the functional one,
it is common to quantify the ‘complexity’ of F using one the two notions of entropy, uniform and
bracketing entropy. We focus on the latter in this manuscript.

Definition 2.21. We consider Lp(P) = {f : X → R | P|f |p < ∞}, for some 1 ≤ p < ∞. A pair
of functions l, u ∈ Lp(P) is an ϵ-bracket, [l, u], if P(l(X) ≤ u(X)) = 1 and (P|l − u|p)1/p ≤ ϵ. We
write f ∈ [l, u] if P(l(X) ≤ f(X) ≤ u(X)) = 1. The bracketing number of F , N[](ϵ,F , Lp(P))
denotes the least number of ϵ-brackets which cover F . The bracketing integral is J[](F , Lp(P)) =∫∞
0

√
N[](ϵ,F , Lp(P))dϵ.
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By Kosorok (2008, Theorems 2.2 and 2.3), a family of measurable functions F is Glivenko-
Cantelli if its ϵ-bracketing number is finite for every ϵ > 0 and it is Donsker if its bracketing
integral is finite. The family (1]−∞,t])t∈R of point-wise evaluations from Example 2.19 has bounded
bracketing integral, so it is Donsker. Many other, natural classes of functions have finite bracketing
numbers or even bracketing integrals. In Chapter 4, we study a particular class of empirical
processes and we show in Proposition 4.21 that it has a finite bracketing integral.

The Donsker property is related to weak-convergence, a mode particularly adapted to empirical
processes with continuous paths. Consider functionals of the form ft : X → R, for t ∈ I ⊂ R.
Assume that t 7→ ft(x) is continuous for each x ∈ X and that ft is measurable. By Theorem 2.1,
the empirical process (ft)t∈I is Borel-measurable and, moreover, equality of processes (ft(X))t∈I

in the weak sense implies that the measures they induce on C(I,R) are the same.
A motivation for establishing Gaussian approximation for empirical processes was justifying

the construction of confidence bands and hypothesis testing. One technique to construct such
intervals is called bootstrapping. We construct the bootstrap sample Xb

1, . . . , X
b
N , by sampling

from X1, . . . , XN uniformly and with replacement. Let P̂N :=
∑N

n=1 δXb
n

be the empirical mea-
sure associated with the bootstrap sample. The bootstrap is automatically consistent, in that
it provides an approximation of PNf : if F is Donsker, then

√
N(P̂Nf − PNf) converges weakly

in probability to the Gaussian process G (Kosorok, 2008, Theorem 2.6). In such a case, we
will say the bootstrap is valid. The ‘weak convergence’ here is with respect to the resampling,
limN→∞ P⊗N (suph∈Cb(X)

√
N |EBh(P̂Nf) − h(PNf)| > ϵ) = 0, where EB denotes the expectation

taken with respect to the sampling, with initial data X1, . . . , XN fixed.
Suppose that we want to construct a confidence interval for (Pf)f∈F , at level α ∈]0, 1[. The

Gaussian approximation implies that [PNf − cα,PNf + cα] is such an interval, where cα is the
α-quantile of supf∈F

√
N(PNf − Pf). Naturally, the distribution of that last is not directly ac-

cessible, but, by validity of the bootstrap, we can approximate that distribution, and in partic-
ular, cα. Specifically, consider ĉα, the empirical α-quantile of a large number of realisations of

supf∈F
√
N(P̂Nf − PNf). Then,

[
PNf − ĉα√

N
,PNf + ĉα√

N

]
is a valid confidence interval, in that

P⊗N
(
Pf ∈

[
PNf − ĉα√

N
,PNf + ĉα√

N

])
≥ α+ O(1).

In Chapter 4, we will study X1, . . . , XN which are not independent. Under additional assump-
tions, analogue convergence results hold and bootstrap techniques can be used. The covariance of
the limiting Gaussian process has a different form, which takes into account the dependence,

(f, g) 7→ lim
k→∞

∞∑
n=1

cov(f(Xk), g(Xn)). (2.8)

If the chain X is absolutely regular, with coefficients decreasing sufficiently fast, it is Donsker.

Theorem 2.22 (Kosorok (2008, Theorem 11.22)). Let X be a stationary sequence and F with
finite bracketing entropy. Suppose there exists r ∈]2,∞[, such that

∞∑
k=1

k
2

r−2 βX(k) <∞, (2.9)

Then,
√
N(PNf − Pf) converges to a tight, zero–mean Gaussian G process with covariance (2.8).

However, the bootstrap technique needs to be adapted, as the resampling in the standard boot-
strap breaks the dependence structure. We will use the moving block bootstrap (MBB) (Bühlmann,
2002), which we now describe. Like in the standard bootstrap, we sample a total N values, but
we do so by sampling B = N/L blocks, where L = L(N) ∈ N is the number of variables in each
block. Each block is composed of L consecutive elements from X: that is, (Xn, . . . , Xn+L−1), for
n ∈ {1, . . . N − L+ 1}. The MBB sample is then

X∗
1 , . . . , X

∗
N = Xn1

, . . . , Xn1+L, Xn2
, . . . , Xn2+L, . . . , XnB

, . . . XnB+L,

where n1, . . . nB ∼ U(1, . . . , N − L+ 1) are independent and we define

P∗
Nf =

1

N

N∑
n=1

f(X∗
n).



34 CHAPTER 2. BACKGROUND

Theorem 2.23 (Bühlmann (1995, Theorem1)). In addition to assumptions from Theorem 2.22,

suppose that βX(k)
k→∞−−−−→ 0 exponentially, i.e.

βX(k) ≤ a exp(−ck), for some a, c > 0.

Let the block size L(n) in the MBB satisfy L(n)→∞ and L(n) = O(n1/2−ϵ), for some 0 < ϵ < 1
2 .

Then, √
N(P∗

Nf − PNf)→ G, P-almost surely,

where G is the zero-mean Gaussian Process with the covariance (2.8).

Theorem 2.23 gives conditions under which MBB is a valid technique to construct confidence
intervals or perform statistical tests using functionals of dependent data.

2.5 Persistent homology and its functional representations

Homology is a topological invariant and formalizes the intuitive notion of a “hole”, defining it as
“a cycle which is not a boundary” through an algebraic construction. An extension of homology,
persistent homology encodes the evolution of those “holes”, as the underlying topological space
changes. We first introduce singular homology, a flexible and general theory which we will use
throughout this work. Then, we introduce simplicial homology, a more computable version, which
coincides with singular homology in numerical settings. The exposition of the persistence theory
is standard, although we emphasize the importance of persistence diagrams constructed from
measures, as we will use this in Chapter 3. Section 2.5.4 points to the link between the theory from
Sections 2.5.1-2.5.3 and the intuitive picture of persistence from Figure 1.3. We recommend Hatcher
(2002) for an introduction to general algebraic topology, Chazal et al. (2016) for the theory of
persistence modules, and finally Chazal and Michel (2021) for a broader picture of the developments
and applications of persistent homology.

2.5.1 Singular homology

For n ∈ N∗, the standard n-simplex is ∆n = {(t0, . . . , tn) | 0 ≤ tk ≤ 1,
∑n

k=0 tk = 1}, with the
standard topology induced by Rn+1. The standard 0-simplex is a point ∆0 = {1}. A singular
n-simplex in a topological space X is a continuous map σ : ∆n → X. For example, a singular
1-simplex is a map σ : [0, 1] → R and a singular 0-simplex, σ : ∆0 = {1} → X can be identified
with a point, σ(1) ∈ X.

Definition 2.24. The boundary of σ is the alternating formal sum of restriction maps

∂nσ =

n∑
k=0

(−1)kσk, (2.10)

where σk : ∆n−1 → X is the restriction to the k-th face,

σk(t0, . . . , tn−1) = σ(t0, . . . , tk−1, 0, tk+1, . . . , tn−1).

The interpretation of this construction is that σ is a (possibly degenerate) realization of an
n-dimensional structure in X. Since ∆n−1 is a face of ∆n, σi is the realisation of the restriction
of σ to that face.

Example 2.25. By (2.10), the boundary of a 1-simplex σ is a sum of 0-simplices ∂1σ = σ0 − σ1.
Because the domain of σ0 and σ1 is a point, we can identify the boundary with a formal sum of
points from X,

∂1σ = σ0 − σ1 = σ(0, 1)− σ(1, 0).

Let now X = S1 be the unit circle seen in the complex plane and consider the following 1-simplices

σ1(t0, t1) = exp(πi), σ2(t0, t1) = exp(πit1), σ3(t0, t1) = exp(2πit1).

The map σ1 is constant, so ∂1σ1 = 0. The function σ2 maps the unit interval to the upper-half
circle. Its boundary is ∂1σ2 = σ2(0, 1) − σ2(1, 0) = [−1] − [1], where the notation [x] refers to
the algebraic element (0-simplex) corresponding to a point x ∈ C. So, the formal sum ∂1σ2 is not
trivial. The simplex σ3 represents a full revolution around S1. Even though it is not constant, we
have σ3(0, 1) = σ3(1, 0), so its boundary is trivial.
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We can now introduce singular homology. Let F be a field. We call n-chains the elements of
Cn, the free abelian F-module generated by the singular n-simplices of X. We extend the definition
of the boundary ∂n from the basis to the whole module by linearity and we call ∂n : Cn → Cn−1

the boundary map, where we set C−1 := 0.

Definition 2.26. A n-cycle is an element of ker ∂n and a n-boundary an element of im∂n+1.

From (2.10), it is clear that ∂n ◦ ∂n+1 = 0, so im∂n+1 ⊂ ker ∂n and a n-boundary is a n-cycle.
The sequence ((Cn)n≥−1, (∂n)n≥0) is a chain complex. So, we can define the n-th homology group
of X as the quotient module

Hn(X) := ker ∂n/im∂n+1. (2.11)

Homology is a topological invariant, in that it satisfies several, natural properties and reflects
the relationships between topological spaces. First, a continuous function f : X1 → X2 induces a
morphisms between homology groups of those spaces. Indeed, for any n ∈ N and any n-simplex
σ in X1, f ◦ σ : ∆n → X2 is an n-simplex of X2. We can extend f to Cn(X1) → Cn(X2)
by linearity. By definition, it commutes with the boundary maps ∂n(f ◦ σ) = f(∂nσ), so, in
particular, it maps ker ∂n(X1) to ker ∂n(X2) and im∂n+1(X1) to im∂n+1(X2). It therefore extends
to a morphism f : Hn(X1) → Hn(X2). This is one of numerous, natural properties satisfied by
singular homology. Singular homology satisfies the Eilenberg-Steenrod axioms, some of which we
recall in Proposition 2.27.

Proposition 2.27.

2.27a. If f : X1 → X2 is a homeomorphism (bijective, continuous function, with a continuous
inverse), then the homology groups of X1 and X2 are isomorphic Hn(X1) ≃ Hn(X2).

2.27b. If X =
⊔K

k=1Xk, then Hn(X) ≃⊕K
k=1Hn(Xk).

2.27c. The homology of a point is trivial: for X = {x}, we have Hn(X) = 0 for n ≥ 1 and
H0(X) = F.

Take X and the simplices from Example 2.25. We have established that σ1, σ3 ∈ ker(∂1) and it
is clear that σ1 ∈ im∂2, so its image in the homology group H1(S1) is trivial. However, σ3 ∈ ker ∂1
and it is known that σ3 /∈ im∂2. It is, in fact, a generator of H1(S1), which is of rank 1. The fact
that σ3 is not a boundary is not direct from the definition of singular homology groups, but it can
be shown if we admit the remaining Eilenberg-Steenrod axioms or using homotopy theory1 One
can also use other homology theories (cellular or simplicial) to study the homology of S1.

2.5.2 Simplicial homology

Apart from some particular cases (like finite spaces or small topologies), there are uncountably
many distinct n-singular simplices so Cn(X) is huge, making direct computations of homology
prohibitive. Some natural spaces (like a sphere or a torus) have a decomposition (for example,
CW-complexes), and then theoretical machinery can be used to determine homology groups. The
spaces that arise in practical and numerical applications are often discrete and represented in such
a decomposition: graphs, polyhedra, or their generalizations, simplicial complex of finite size. This
reduces the computation of homology to linear algebra.

Definition 2.28. Consider a finite set S. A simplex σ is a tuple (ordered set) from S. We say
that another simplex σ′ is a face of σ if σ′ ⊆ σ. An abstract simplicial complex K is a family of
simplices such that

• K contains all the singletons: for all x ∈ S, [x] ∈ K,

• all the faces of a simplex from K are also in K: (σ ∈ K and σ′ is a face of σ) =⇒ σ′ ∈ K.

If we denote by | · | the cardinality of a set, we call |σ| − 1 the dimension of σ and the dimension
of the complex is the largest dimension of a simplex of K.

1It suffices to show that σ3([1− t, t]) is not homotopy equivalent to a constant map.
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A

B
C

DE

Figure 2.1: Simplicial complex K from Example 2.30.

Example 2.29. A finite graph G = (V,E) is an example of an abstract simplicial complex of
dimension one. Indeed, let S = V , so that the 0-simplices correspond to the graphs’ vertices and
E are precisely the 1-simplices, and that K = S ∪ E. The faces of an edge [v1, v2] are the vertices
[v1], [v2], so K trivially verifies the two properties and is indeed an abstract simplicial complex.
Example 2.30 shows a simplicial complex of dimension 2.

The definition of the boundary of a simplex, chains, cycles, boundaries and homology groups
is analogue to the singular setting. For σ = [x0, . . . xn], we define its boundary as the alternating
sum of faces,

∂nσ =

n∑
k=0

(−1)k[x0, . . . , xk−1, xk+1, . . . , xn],

similarly to the singular case. By linearity, we can extend this boundary operator to n-chains
Cn, the F-module generated by n-simplices of K. We also obtain a chain complex of which the
homology is defined as in (2.11).

Singular and simplicial homologies capture the same information, although via different con-
structions. For abstract simplicial complexes and their geometric realizations, the two constructions
coincide (Hatcher, 2002, Theorem 2.27). However, the notable advantage of simplicial homology
is that, for a finite set S, the chain complex is finite-dimensional. Hence, we can represent ∂n as a
matrix using the n- and (n−1)-simplices as bases and use linear algebra to calculate the homology
of K. In addition, the field is often set to F = Z2 and in that case, a n-chain can be interpreted as
a collection of n-simplices and a sum of two n-chains as their symmetric difference.

Example 2.30. Consider the following simplicial complex from Figure 2.1

K = {A, B, C, D, E, [A,B], [B,C], [C,D], [D,E], [E,A], [B,E], [A,B,E]}.

We can represent the boundary operators as matrices

∂1 =

[A,B] [B,C] [C,D] [D,E] [E,A] [B,E]


−1 0 0 1 1 0 A
1 −1 0 0 0 −1 B
0 1 −1 0 0 0 C
0 0 1 −1 0 0 D
0 0 0 1 −1 1 E

, ∂2 =

[A,B,E]


1 [A,B]
0 [B,C]
0 [C,D]
0 [D,E]
1 [E,A]
1 [B,E]

From the reduced form of ∂1, we can see that rank(∂1) = 4 and that ker ∂1 = Span(c1, c2), with
c1 = [A,B]+[B,C]+[C,D]+[D,E]+[A,E] and c2 = [A,B]+[B,E]+[E,A]. However, c2 ∈ im∂2.
So,

H0(K) = F, H1(K) = F, Hn(K) = 0 for n ≥ 2, (2.12)

which gives the same homology groups as those of S1.

2.5.3 Persistent homology

In applications, the data often consists of an isolated set of points, or a graph, and its ‘topological
features’ (number of connected components, cycles) depend on the scale at which it is considered.
Persistent homology encodes how the topology changes as the scale varies. Specifically, it allows to
study the evolution of homology groups for a parametrized family of spaces. Part of the appeal of
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that theory resides in the celebrated decomposition theorem, which gives the interpretation that
the module is characterized by some persistent homological generators. We present the theory
from Chazal et al. (2016).

A persistence module over R is a collection of vector spaces (Vt)t∈R along with morphisms
(ιts : Vs → Vt)s≤t∈R, such that ιts ◦ ιsr = ιtr and ιtt = idVt

. The interpretation of the persistence
module is that it allows us to see the evolution of an element of v ∈ Vs through R, by looking at
its image ιts(v) for any t ≥ s.

A standard example of a persistence module from topological data analysis is that of homology
of sub level sets of some continuous function, f : X → R. For any t ∈ R, we consider the closed sub
level sets Xt = f−1(]−∞, t]) and we call (Xt)t∈R the sub level set filtration of X. We will sometimes
call f the filter function. For each level, we define Vt := Hn(Xt), where Hn denotes n-dimensional
singular homology. A natural map between any two level sets is the inclusion Xs ↪−→ Xt, for s ≤ t.
By the functorial properties of homology mentioned in Section 2.5.1, this induces morphisms ιts at
the homology level, so ((Vt)t∈R, (ι

t
s)s≤t∈R) is a persistence module. We elaborate on this example

in Section 2.5.4. Another closely related example is the terminated persistence module.

Definition 2.31. The terminated persistence module of f , denoted V̄(f) is defined by

V̄t(f) =

{
H0(Xt), if t < max f

0, otherwise.
(2.13)

The morphisms ιts are induced by inclusions for s ≤ t < max f and are 0 for t ≥ max f .

The terminated persistence module differs from the homology module of sub level sets in that
it is 0 once the maximum of f is reached. We will argue that it shares many properties of the
non-terminated module, with the notable exception that all generators disappear eventually.

In general, persistence modules can have complicated structure, but, in certain cases of partic-
ular interest, they are remarkably simple: they decompose as a sum of interval modules

V =
∑
I∈B

1I(t), (2.14)

where B is a collection of intervals and the interval module 1I is defined as

1I(t) =

{
F if t ∈ I
0 otherwise,

ιts =

{
id if s, t ∈ I
0 otherwise.

When such a decomposition exists, it is unique up to isomorphism of persistence modules (Chazal
et al., 2016, Theorem 2.7), so we can use the intervals as a representation of a module.

Definition 2.32. A morphism between two persistence modules V,W is a collection of maps
ρt : Vt →Wt such that the following diagram commutes

Vs Vt

Ws Wt

ιts

ρs ρt

ιts

and it is an isomorphism if ρt is an isomorphism for all t.

It is particularly important in the scope of this thesis that the intervals in B are not necessarily
unique, so we treat this collection as a multiset. There are two graphical representations of B in
the plane. One is a vertical stack of intervals in R2, called the persistence barcode

{I × {n} | n ∈ N, I ∈ B},

and the other, the persistence diagram is a multiset of points in R2,

{(b, d) the endpoints of I | I ∈ B}.
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Remark 2.33. Note that the persistence diagram as defined above is not a complete invariant of
the module, as it does not capture whether the endpoints are included or not in the interval. The
decorated persistence diagram is a version of the diagram which contains that information Chazal
et al. (2016).

We discuss the interpretation of decomposition (2.14) in the context of a sub level set filtration.
If f is bounded, there is t0 ∈ R sufficiently small such that Xt = ∅ for any t ≤ t0 and t1 ∈ R
such that Xt1 = X for any t ≥ t1. So, persistent homology interpolates between Hn(∅) = 0 and
Hn(X), and what happens in between is specified by f . Typically, if X is an interval and the
interval decomposition exists, the homology of Xt changes at t only when t is a critical value of f ,
so the endpoints of the intervals correspond to critical values of f . Consider an interval I = [b, d[.
It corresponds to a homological feature which appears for the first time in Xb, exists for all t < d
and which disappears in Xd. It is particularly important that it does not exist after d. We say
that the generator is born at time b, dies at time d, and that b and d are its birth and death times.

The interval decomposition of a module exists when the module is indexed by a finite set
(instead of R), or, when Vt is of finite dimension for all t ∈ R (Chazal et al., 2016, Theorem 2.8).
We mentioned already in Section 2.5.2 that in case we have a finite simplicial complex, the space
of chains (and therefore also the homology groups) is of finite dimension. Therefore, in practical
computations, the persistence modules are decomposable, what justifies the above definition of
persistence diagrams. Algorithmically, the persistence diagrams can be computed using linear
algebra, not unlike in the case of non-persistence case, although the reduction algorithm has to be
adapted to respect the order in which the simplices appear in the filtration (Herbert Edelsbrunner
and John Harer, 2010).

The vector spaces Vt are not finite-dimensional in general, and the persistence diagram of a
general function f is constructed using the theory developed in Chazal et al. (2016). The idea
is that we can associate to a persistence module V a measure µV on rectangles in R2, in such a
way that it characterizes the number of generators with life-span constricted by that rectangle.
Specifically, by Chazal et al. (2016, Proposition 3.8), the persistence measure µV is

µV([s1, s2]× [t1, t2]) = dim

(
im(ιt1s2) ∩ ker(ιt2t1)

im(ιs2s1) ∩ ker(ιt2t1)

)
. (2.15)

The numerator represents the non-trivial generators which exist already at s2 (were born earlier
than that) and die after t1, but before t2. The denominator2 cancels those generators which satisfy
the criterion above, but which were actually born even before s1. With that interpretation, we can
see that the persistence measure µV of an interval decomposable module V counts the number of
points in the persistence diagram which are contained in a given rectangle.

Chazal et al. (2016, Theorem 3.12) show the equivalence between persistence measures and
multi-sets in the plane, as long as both are ‘finite3 and Lemma 3.16 gives an explicit way to
associate a persistence diagram D to a persistence module V, which we adapt for our purposes
of undecorated diagrams. For any non-increasing sequences (ϵk)∈N, (ηk)∈N converging to 0, the
multiplicity of (b, d) in the persistence diagram D of V is

mD(b, d) = mV(b, d) = lim
k→∞

µV([b− ϵk, b+ ϵk]× [b− ηk, b+ ηk]). (2.16)

The finiteness conditions are satisfied as soon as the module is q-tame, that is, when rank(Vs → Vt)
is finite for any s < t ∈ R. The sub level set persistence module is q-tame when X is compact and
f continuous (Chazal et al., 2016, Theorem 3.33), what guarantees that the persistence diagram is
well-defined. The same is true for the terminated persistence module. The persistence diagram of
the persistence measure associated to an interval-decomposable module coincides with the diagram
as defined from the decomposition.

2.5.4 Persistent homology of a filtered interval or circle

The persistent homology of a function on an interval is a simple illustration of the theory introduced
in the previous section. In fact, in this thesis, we will almost exclusively be interest in the filtration
of either the circle or of a compact interval and homology dimension n = 0 (for n ≥ 1, the homology

2Note that the quotient is algebraic, so it is a difference between dimensions of vector spaces.
3In the sense of ‘finite measure’ for the measure and ‘locally finite’ for the multiset
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Figure 2.2: On the left, the graph of a function, with sub level sets in red, for the level t given
by the dashed gray line. On the right, the persistence diagram of that function. Delimited by the
gray dashed lines and with lower-right vertex (t, t), the unbounded region contains points which
correspond to the connected components visible in red.

is trivial). Chapter 3 is dedicated to studying the structure of the persistence module when f is a
periodic function.

Let X be a circle or a compact interval. The persistence diagram of f : X → R, contains
information about the values and order of local extrema of f . The morphism ιts in homology is
an isomorphism if f has not critical points in [s, t]. If x ∈ X is an isolated local minimum, f(x)
is a critical value and σ ≡ x ∈ C0(Xf(x)) generates a non-trivial homology class. Hence, a local
minimum of f leads to a new connected component. Analogously, a local maximum leads to the
death of one. A point in the persistence diagram can be interpreted as a pair of a local minimum
and a local maximum. Figure 2.2 depicts sub level sets and the corresponding diagram.

As observed in the previous section, H0(Xt) = H0(X) for any t ≥ max f . In particular, for an
interval and the circle, this implies that there is one connected component that has no death time.
In the decomposition (2.14), it corresponds to an unbounded, half-open interval [b,∞[, and in the
persistence diagram, it is often represented as a point (b,∞). For practical purposes, it is often
convenient to either discard such points, or to assign them a finite death value. The terminated
persistence module (2.13) is a way to do so algebraically. The persistence diagrams of so-modified
modules are contained in a bounded region, as formalized in Proposition 2.34.

Proposition 2.34. Let M := max f , m := min f and denote by D(f) the persitence diagram of
V̄(f). Then, the birth (resp. death) of any point is lower (resp. upper) bounded by m (resp. M),

D(f) ⊂ {(b, d) | m ≤ b, d ≤M}.

This modification does not impact the invariance properties. In particular, the persistent
homology is invariant with respect to homeomorphisms.

Proposition 2.35 (Invariance to reparametrisation). Consider a continuous function f : X → R
and let γ1, γ2 : [0, T ]→ X be a homeomorphism such that γ1(0) = γ2(0) and γ1(T ) = γ2(T ). Then,

D(f ◦ γ1) = D(f ◦ γ2).

Proof. For any t ∈ R, the homeomorphism g := (γ−1
1 ◦ γ2) : [0, T ]→ [0, T ] maps the t-sublevel set

of f ◦ γ2 to that of f ◦ γ1. Indeed,

(f ◦ γ1)−1(]−∞, t]) = {y ∈ [0, T ] | (f ◦ γ1)(y) ≤ t}
= {y = g(x) | (f ◦ γ1)(g(x)) = (f ◦ γ2)(y) ≤ t}
= g({y ∈ [0, T ] | (f ◦ γ2)(y) ≤ t}).

By Proposition 2.27a, g induces an isomorphism between the two corresponding persistence mod-
ules. So, the corresponding persistence diagrams are the same (as well as any invariants there–
of).

2.5.5 Persistent homology of a time series

When the data is not a continuous function but a vector S ∈ RN , a time series of length N ∈ N,
we can define its diagram in two ways which can be shown to coincide.



40 CHAPTER 2. BACKGROUND

First, we define a continuous function f by discretizing [0, 1], prescribing the values at the nodes
and linearly interpolating between,

f(t) =

N−1∑
k=0

1[ k
N , k+1

N [(t)N
((
t− k

N

)
Sk+1 +

(
k+1
N − t

)
Sk

)
.

Then, we can define the persistence module of S as the singular homology of the sub level sets of
f . Because every Vt is of finite dimension, that persistence module has an interval decomposition
and thus, a persistence diagram.

The second construction consists in defining a simplicial complex, K = {(k), (k, k + 1) | k =
1, . . . N}, and a function f : K → R by f(σ) = maxk∈σ Sk. Then, we define the persistence module
of S as the simplicial homology module of (f−1(]−∞, t]))t∈R. Each space is finite dimensional, so
it also admits an interval decomposition.

The two construction coincide, which allows us to use them interchangeably. The singular
point of view allows us to show that the diagram of a function and of a time series of samples
thereof, are close in bottleneck distance (defined in Section 2.5.6). The latter point of view allows
us to actually compute the persistence diagram: Algorithm 1 is an example. In general, persistent
homology is notorious for having high computational complexity. However, it is not the case for
a time series, as the algorithm recently proposed by Glisse (2023) to calculate the persistence
diagram has time-complexity O(N).

Algorithm 1: Computing the persistence diagram of dimension 0 of a sublevel set filtra-
tion of f

Data: A time series or a function f with a finite number of local extrema

D ← {};
for c a local extremum of f , ordered by ascending value of f do

if c is a local min then
Push (f(c), ∗) to D with key c.;

end
else

/* c is a local max */

I ← connected component of c in f−1(]−∞, f(c)]).;
c1, c2 ← argminx<c f(I), argminx>c f(I).;
i← argmax{f(c1), f(c2)};
Set the second coordinate of D(ci) to f(c).;

end

end
Set the second coordinate of D(argmax(s)) to max(f).;
return D

2.5.6 Stability of persistence diagrams

The persistent homology module of sub level sets is stable with respect to perturbations of a
function. It justifies the use of persistence as an invariant in practical scenarios, where only a noisy
or partial observation (for example, on a fine mesh) of that function is available. In this section,
we recall the celebrated bottleneck-stability result and also the algebraic ingredients of the proof:
the interleaving distance, to justify the terminated modules’ stability.

Definition 2.36. We call a ϵ-matching between two persistence diagrams D and D′ a bijection
Γ : A→ A′ between some subsets of A ⊂ D and A′ ⊂ D′, considered with multiplicity, if

• all matched points are ϵ-close: for any a ∈ A, d∞(a,Γ(a)) ≤ ϵ,

• all non-matched points are ϵ-close to the diagonal: for any a ∈ (D\A)∪(D′\A′), d∞(a,∆) ≤ ϵ,

where ∆ = {(x, x) ∈ R2} denotes the diagonal. The bottleneck distance (Herbert Edelsbrunner and
John Harer, 2010, VIII.2), db(D,D′) is the infimum ϵ > 0 such that there exists and ϵ-matching
between D and D′.
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Figure 2.3: On the left, the graph of a function f and a noisy version, g. On the right, the
persistence diagrams. The dashed lines between points represent a matching Γ that realizes the
bottleneck distance.

Theorem 2.37 (Bottleneck stability of diagrams). Let f, g : X → R be two continuous functions
on a compact space X. Then,

db(D(f), D(g)) ≤ ∥f − g∥∞.

Note that we will often abuse notation and see an ϵ-matching as defined on the whole diagram
Γ : D ∪ ∆ → D′ ∪ ∆, with the diagonal with infinite multiplicity. In that case, we require that
Γ−1

∣∣
∆\Γ(D)

and Γ|∆\Γ−1(D′) are both the identity. Figure 2.3 shows an example of a function f

and a noisy version g, their respective persistence diagrams and a grapical representation of a
matching. In Chapters 3 and 4, we will use the terminated persistence module whose diagram is
also stable.

Proposition 2.38 (Stability of the terminated persistence module). Let f, g : X → R be two
continuous functions on a compact space X. If we denote by D(f) and D(g) the persistence
diagrams of µV̄f and µV̄g respectively, then

db(D(f), D(g)) ≤ ∥f − g∥∞.

To show that the terminated module is also stable, we need to understand where the stability
in Theorem 2.37 comes from. As such, it is a consequence of two elements: interleavings and the
isometry theorem. We call ρ = (ρt : Vt → Wt+ϵ)t∈R an ϵ-morphism between V and W if it is
a morphism between persistence modules (Vt)t∈R and (Wt+ϵ)t∈R. In other words, we require the
following diagram to commute

Vs Vt

Ws+ϵ Wt+ϵ

ιts

ρs ρt

ιt+ϵ
s+ϵ

An ϵ-interleaving is a tuple of ϵ-morphisms, ((ρt : Vt →Wt+ϵ)t∈R, (ρ′ : Wt → Vt+ϵ)t∈R)) which are
inverse of one another up to a 2ϵ-shift: for all s ≤ t, also the following diagrams commute

Vt Vt+2ϵ

Wt+ϵ

ιt+2ϵ
t

ρt ρ′
t+ϵ

Vt+ϵ

Wt Wt+2ϵ

ρt+ϵ

ιt+2ϵ
t

ρ′
t

Using interleavings, we define the interleaving distance di,

di(V,W) := inf{ϵ > 0 | there exists an ϵ-interleaving between V and W}. (2.17)

The isometry theorem relates the interleaving and bottleneck distances (Chazal et al., 2016, The-
orem 5.14).
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Theorem 2.39 (Isometry theorem). Let V, W be q-tame modules. Then,

di(V,W) = db(D(µV), D(µW)). (2.18)

Proof of Proposition 2.38. The proof follows the standard proof of Theorem 2.37. Let ϵ := ∥f −
g∥∞. For t < min(max f,max g − ϵ), the inclusion f−1(] −∞, t[) ⊂ g−1(] −∞, t + ϵ[) induces a
morphism ρt : V̄ (f)t = V (f)t → V (g)t+ϵ = V̄ (g)t+ϵ. If we set ρt ≡ 0 for t ≥ min(max f,max g−ϵ),
then (ρt)t∈R is an ϵ-morphism. We proceed similarly for ρ′. The two morphisms are an ϵ-
interleaving. Since V(f) and V(g) are q-tame, so are V̄(f) and V̄(g) and we conclude by The-
orem 2.39.

While the bottleneck distance is natural because of its relation with the algebraic interleaving
distance, another popular distance is the p-Wasserstein distance,

dp(D,D′) = inf
Γ:A→A′

∑
a∈A

d(a,Γ(a))p +
∑

a∈D′\A′∪D\A
d(a,∆)p

1/p

, (2.19)

where the infimum is taken over matchings of D and D′ as above. It is considered a natural
generalization of db, which is d∞. However, it is not always well-defined.

2.5.7 Total persistence and functional representations of persistence di-
agrams

For p ∈ N∗, the total p-persistence of a persistence diagramD is defined as persp(D) = (
∑

(b,d)∈D(d−
b)p)1/p. The space Dp = {D | persp(D) <∞} of persistence diagrams with the total p-persistence
is finite is a Polish metric space for the p-Wasserstein metric (Divol and Lacombe, 2021, Proposi-
tion 3.3). For the persistence diagram of a function, D = D(f), the total p-persistence is related
to the regularity of that function and to its total variation (Perez, 2022a, Theorem 3.7 and Propo-
sition 3.6): typically, if f defined on a subset of Rd is α-Hölder, its total p-persistence is finite,
for any p > d/α. Continuity of total persistence was initially obtained in Cohen-Steiner et al.
(2010) for Lipschitz functions. In Chapter 4, we introduce a weaker variant of total persistence,
the ϵ-truncated persistence, which we show to be continuous for less regular functions.

The space of persistence diagrams is not a vector space and is ill-suited for statistical learning.
It is common to map diagrams to a functional space, often Banach (Chazal and Michel, 2021).

Definition 2.40. Consider (T, d) a Euclidean space and let H ⊂ RT be a functional Banach
space. A functional representation of persistence diagrams with finite total p-persistence is a
function ρ : Dp → H.

Numerous functionals have been proposed in the literature (Carrière et al., 2020, Bubenik,
2015, Adams et al., 2017, Chung and Lawson, 2022). Many functionals are of the form

ρ(D)(t) =
∑

(b,d)∈D

(d− b)pk(b, d)(t),

where k : R2 → H is a map, which to a point (b, d) in the plane associates a function k(b, d) : T→ R.
They are called ‘linear’, as ρ(D1 ⊔D2) = ρ(D1) + ρ(D2), where ⊔ denotes the union of multisets.
We provide Examples 2.41 and 2.42, to which we will come back to in Chapter 4 and of which
Figure 2.4 is a graphical representation.

Example 2.41 (Persistence Silhouette). The persistence silhouette (Chazal et al., 2014) is a
weighted sum of ‘tent’ functions Λ(b,d)(t) =

(
d−b
2 − |t− b+d

2 |
)
+

, for (T, d) = (R, | · |). The kernel

t 7→ Λb,d(t) is piecewise linear and 1-Lipschitz.

Example 2.42 (Persistence Image). The kernel that corresponds to the persistence image (Adams

et al., 2017) is kpi(b, d)(x, y) = 1
2πσ2 exp

(
− (b−x)2+(d−y)2

2σ2

)
, for some σ > 0 and (T, d) = (R2, ∥ · ∥2)

The function (x, y) 7→ exp(−(x2 + y2)) is (4/e)-Lipschitz.
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Figure 2.4: Illustration of functionals for diagrams of the two functions from Figure 2.3. On the
left, persistence images with p = 1 and σ = 1. On the right, the persistence silhouettes.

The properties of certain classes of functionals have been fully characterized (Divol and Polonik,
2019, Divol and Lacombe, 2021). Their convergence can be studied using empirical process theory,
as introduced in Section 2.4. We particularly emphasize the regularity of the kernels, which is
often used to bound the covering number of the functional family (Chazal et al., 2014, Berry et al.,
2020). Asymptotic results are available also for other topological descriptors. Stabilization theory
have been leveraged to show convergence of topological descriptors: Betti numbers of simplicial
complexes over point processes in Rd (Roycraft et al., 2023). Functional representations are also
flexible, in that it is also possible to optimize them for a statistical task at hand (Carrière et al.,
2020, Hacquard, 2023).
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Chapter 3

Persistent homology of periodic
functions

Consider a signal S : [0, T ] → R of the form (1.1), that is S(t) = (ϕ ◦ γ)(t), where ϕ : R → R is a
1-periodic continuous function and γ : [0, T ]→ [0, R] is a continuous and increasing bijection. We
say that S is a reparametrized periodic function. A way to extract from S information about ϕ or
γ is to look at level sets. For example, zero-crossings is the cardinality of S−1({0}). It is clear that
this number reflects the number of periods of ϕ in S if 0 is in the range of ϕ.

It is also clear that a similar relation generalizes to connected components in the sub level sets,
and so, to persistent homology. In contrast to cardinalities of level sets, persistence is stable with
respect to perturbations, so we expect to obtain a descriptor with similar properties but more
robust and versatile. Describing a signal with a recurrent structure by its persistence diagram has
already been used in a medical context, to characterize the gait (Bois et al., 2022).

In this section, we formalize this intuition and we show two additivity properties of persistence
modules and diagrams. Specifically, in Section 3.1, we deal with the case when the number of
observed periods is exact, in which case the diagram is exactly additive. We will see how to
exploit that further in Chapter 5. In Section 3.2, we consider signals with a non-integral number
of periods. We show that the diagram satisfies the desired property, up to a remainder which has
small persistence. In both cases, we adapt the standard persistence modules slightly.

We also present some perspectives on further results. Notably, generalizations of the properties
mentioned above to functions on higher-dimensional domains (Section 3.3.1) and refining stability
to perturbations (Section 3.3.2), which leads us to discuss a different potential characterization of
total persistence.

3.1 Filtering the circle: no boundary effects

The signal S contains an integral number of periods if γ(T ) − γ(0) ∈ N∗. In that case, we can
see S as defined on the circle S1 ≃ [0, T ]/(0∼T ). We will denote by ϕ̄ : S1 → R a version of ϕ
defined on the circle, via the canonical projection R → S1 ≃ R/Z, t 7→ (cos(2πt), sin(2πt)). We
denote by D(ϕ̄) the persistence diagram (in 0-homology) of S1 filtered by ϕ̄, where we have set
the death of the essential component to maxϕ. For a multiset D and N ∈ N, we define ND to
be a multi-set with the same points as D, except with all multiplicities increased by a factor N ,
mND(b, d) := NmD(b, d).

Proposition 3.1. For N ∈ N, consider ϕN which realizes N periods of ϕ,

ϕN : [0, 1]→ R, t 7→ ϕ(Nt).

If ϕ1 has a finite number of local extrema, then

D(ϕ̄N ) = ND(ϕ̄1). (3.1)

Proof. Consider π : S1 → S1 defined by z 7→ zN . It defines an N -cover of S1 by itself1 and satisfies
ϕ̄N = ϕ̄ ◦ π. In the proof, we characterize the persistence module (H0

(
(ϕ̄ ◦ π)−1(]−∞, t])

)
t∈R ,

(ιt
′

s )s≤t′).

1For z ∈ S1, card(π−1(z)) = N .

45
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Figure 3.1: A graph of several periods a periodic function. The signal is observed on [0, R], but only
N = 4 periods are fully included and are marked in green on the graph. The red parts correspond
to the remainder. The intervals [c − 1, c] and [R, c + N + 1] used in the proof of Proposition 3.3
are included as hatched regions.

Let M = max(ϕ̄) and k =
∣∣ ϕ̄−1(M)

∣∣. Since ϕ̄ has a finite number of critical points, we
can choose a small constant ϵ > 0 such that ϕ̄−1([M − 2ϵ,M [) contains no critical points. The
space ϕ̄−1(] −∞,M − 2ϵ]) has k connected components. Because π is an N -cover, we have that
|(ϕ̄ ◦π)−1(M)| = Nk, so that (ϕ̄ ◦π)−1(]−∞,M − 2ϵ]) has Nk connected components. Therefore,
for any t < M ,

H0((ϕ̄ ◦ π)−1(]−∞, t])) = ⊕N
n=1H0(ϕ̄−1(]−∞, t])),

and the morphisms (ιts)s≤t′<M are induced by direct sums. In particular, at the level of persistence

measures, it implies that µϕ̄◦π(A) =
∑N

n=1 µϕ̄(A), for any rectangle A ⊂ Ω1 =]−∞,M [×]−∞,M [.
The measures of µϕ̄◦π and µϕ̄ are supported on Ω1 ⊔ Ω2, where Ω2 = {(u,M) | u ∈ [−∞,M [},

so it remains to consider A ⊂ Ω2. The circle S1 = (ϕ̄ ◦ π)−1(] −∞,M ]) has a single connected
component, so that

dim(ker ιMM−ϵ) = Nk − 1.

In addition, since the death of the essential component is set to M , at the level of persistence
measures, we have µϕ̄◦π(Ω2) = (Nk− 1) + 1 = NK. Since the local minimal values of ϕ̄ and ϕ̄ ◦ π
are the same, by the additivity of the persistence measure,

µϕ̄◦π(A) = µϕ̄◦π(A ∩ Ω1) + µϕ̄◦π(A ∩ Ω2)

= Nµϕ̄(A ∩ Ω1) +Nµϕ̄(A ∩ Ω2)

= Nµϕ̄(A).

Because the persistence measures are equal, so are the persistence diagrams, by the characterisa-
tion (2.16).

3.2 Filtering an interval: boundary effects

In this section, we use the terminated persistence module (2.13), because it helps us to systemat-
ically deal with the essential generators. Here, D(ϕ) will refer to the persistence diagram of the
persistence measure µV̄(ϕ). That diagram exists, is stable by Proposition 2.38, and Proposition 2.35
also holds. It differs from the diagram of sub level sets of ϕ except that the point (minϕ,∞) has
now coordinates (minϕ,maxϕ).

We are now ready to study the structure of the persistence diagram of a periodic function,
evaluated on a compact interval [0, R]. Consider ϕ : R→ R a 1-periodic and continuous function.
We denote by ϕ|A the restriction of ϕ to A ⊂ R and by D⊔D′ the union of two multisets: for each
(b, d) ∈ D ∪D′, mD⊔D′(b, d) = mD(b, d) +mD′(b, d).

Proposition 3.2 (Additivity of diagrams). For any R > 1, there exist persistence diagrams D1

and D′, such that

D(ϕ|[0,R]) = (⌊R− 1⌋D1) ⊔D′. (3.2)

The idea of the proof consists in first choosing c ∈ [0, 1] a global maximum of ϕ and defining
“the period” to be ϕ|[c,c+1]. This allows us to decompose the diagram as a sum of diagrams of

individual periods. Thanks to the periodicity of ϕ, these diagrams are the same and we obtain (3.2).
Figure 3.1 illustrates the proof.
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Proof. Let M := maxϕ and c := inf{x ∈ [0, 1] | ϕ(x) = M}. Since ϕ−1(M) is closed, then
of course ϕ(c) = M . This defines “the start of a period” and also the cutting point. Now, let
N = max{n ∈ N | c+ n ≤ R}, which corresponds to the number of whole periods in the signal.

Let us first fix t ∈ R and consider V̄t(ϕ|[0,c]), V̄t(ϕ|[c,c+N ]) and V̄t(ϕ|[c+N,R]). If t < M , then

ϕ|[0,c]
−1

(]−∞, t]) ∩ ϕ|[c,c+N ]
−1

(]−∞, t]) ⊂ {c}

and ϕ(c) = M , so that intersection is empty. The same holds for ϕ|[c+N,R] and ϕ|[c,c+N ]. Therefore,
by Proposition 2.27b

V̄t(ϕ|[0,R]) = H0(ϕ|[0,R]
−1

(]−∞, t])) ≃H0(ϕ|[0,c]
−1

(]−∞, t]))⊕H0(ϕ|[c,c+N ]
−1

(]−∞, t]))
⊕H0(ϕ|[c+N,R]

−1
(]−∞, t]))

=V̄t(ϕ|[0,c])⊕ V̄t(ϕ|[c,c+N ])⊕ V̄t(ϕ|[c+N,R]).

(3.3)

Since the isomorphism is induced by inclusions, it is an isomorphism between the persistence
modules restricted to t ∈] − ∞,M [. By (2.13), the persistence modules are all 0 for t ≥ M , so
V̄t(ϕ|[0,R]) and V̄t(ϕ|[0,c])⊕ V̄t(ϕ|[c,c+N ])⊕ V̄t(ϕ|[c+N,R]) are trivially isomorphic for t ≥M and the

morphisms commute. Therefore, the two persistence modules are isomorphic (on t ∈ R).
By repeating the same argument as above, we can decompose V̄(ϕ|[c,c+N ]) as the direct sum

of (V̄(ϕ|[c+n,c+n+1]))
N−1
n=0 . For any n = 0, . . . , N − 1, gn : x 7→ x+ n is a homeomorphism between

the sub level set of ϕ|[c,c+1] and ϕ|[c+n,c+n+1], so V̄(ϕ|[c,c+N ]) ≃
⊕N−1

n=0 V̄(ϕ|[c,c+1]). Thus, (3.3)
becomes

V̄(ϕ|[0,R]) ≃ V̄(ϕ|[0,c])⊕
N−1⊕
n=0

V̄(ϕ|[c,c+1])⊕ V̄(ϕ|[c+N,R])

The second crucial observation is that the diagram of a direct sum of two persistence modules
is the union of diagrams. For decomposable modules, since the decomposition is unique, it is
straightforward (Chazal et al., 2016, Proposition 2.16). The persistence modules that we consider
are not-necessarily interval decomposable, so the diagrams are defined through persistence mea-
sures (2.16). For any two persistence modules V = (Vt)t∈R, W = (Wt)t∈R and any s, t ∈ R, we
have that

im (V⊕W)ι
t
s = (im Vι

t
s)⊕ (im Wι

t
s), ker (V⊕W)ι

t
s = ker Vι

t
s ⊕ ker Wι

t
s.

Hence, the persistence measures (µV +µW) and µV⊕W are equal, as they are characterized by ranks
of certain maps (2.15). Their persistence diagrams, defined from persistence measures (2.16), are
therefore equal. If we denote by D1 := D(ϕ|[c+n,c+n+1]) and by D′ = D(µV̄(ϕ|[c+N,R])

+ µV̄(ϕ|[0,c]))

the diagram of the sum of the rectangle measures of the ϕ|[0,c] and ϕ|[c+N,R], then (3.2) follows.

From the proof, we immediately see that D1 = D(ϕ|[c,c+1]): it is realized as the diagram of “the
period” of ϕ. We can further characterize the remainder: we show that it can be truly considered
a remainder, as each of the left and right parts have persistence less than that of D1.

Proposition 3.3. With the same notation as in Proposition 3.2, for any p ≥ 1,

persp(D′) ≤ 2persp(D1),

where persp(D) =
(∑

(y1,y2)∈D(y2 − y1)p
)1/p

.

Proof. The period ϕ|[0,c] is part of that of ϕ|[c−1,c], so, for any t ∈ R, ϕ|[0,c]
−1

(] − ∞, t]) ⊂
ϕ|[c−1,c]

−1
(]−∞, t]) induces a map V̄t(ϕ|[0,c])→ V̄t(ϕ|[c−1,c]). We claim that it is an injective mor-

phism between persistence modules. Hence, rank(V̄s(ϕ|[0,c]) → V̄t(ϕ|[0,c])) ≤ rank(V̄s(ϕ|[c−1,c]) →
V̄t(ϕ|[c−1,c])) for any s < t ∈ R and both are finite because the modules are q-tame. Hence, to

every point (b, d) ∈ D(ϕ|[0,c]) with 0 < t− s < d− b, we can assign a point (b′, d′) ∈ D(ϕ|[−1+c,c])

in such a way that this assignment is injective (considered with multiplicity) and such that
b′ ≤ b < d ≤ d′. So, perspp,ϵ(D(ϕ|[0,c])) ≤ perspp,ϵ(D(ϕ|[−1+c,c])). A similar argument shows

that perspp,ϵ(D(ϕ|[c+N,R])) ≤ perspp,ϵ(D(ϕ|[c+N,c+N+1])).



48 CHAPTER 3. PERSISTENT HOMOLOGY OF PERIODIC FUNCTIONS

1 2 3 4 5 6 7

Persistence barcode

0
1
2

Figure 3.2: On the left, an image representing a filtration on a torus. The lighter colors correspond
to smaller values. In the center, an image with n1 = 2 and n2 = 3. On the right, the persistence
barcode associated with the image in the center.

3.3 Perspectives

There are several natural questions about extensions of the results presented above. Proposition 3.1
describes the structure of a diagram of ϕ : SD → R for D = 1, but can we devise similar properties
for D ≥ 2? Second, the noiseless results trivially extend to the noisy case by bottleneck stability
Theorem 2.37. However, bottleneck stability does not reflect that a localized perturbation leaves
several periods intact and that the corresponding points might still appear in the diagram. This
section presents partial results and observations which are not used in the remaining of this thesis.
In particular, its content is not a prerequisite for other sections and will not be referred to, except
for Figure 3.3.

3.3.1 Periodic functions of several variables

It is convenient to consider periodic functions in D ≥ 1 variables as defined on (S1)D. For ϕ :
(S1)D → R and γ : (γd : S1 → S1)1≤d≤D, each a nd-cover of S1, is D(ϕ ◦ γ) a (ΠD

d=1nd)-multiple
of D(ϕ)? We start the section by the analysis of an example for D = 2, which shows that the
answer to the above is negative2. Then, we point to the Mayer-Vietoris sequence in persistent
homology, which we believe to be the right tool to study the problem further. Finally, we provide
a characterization for functions with a particular structure.

Example 3.4. Consider the function whose representation is shown in the left panel of Figure 3.2.
The central panel shows a function which features n1 = 2 horizontal and n2 = 3 vertical repetitions.
We can read from the barcode that all the bars have multiplicity n1n2 = 6, until t = 6, after
which n2 = 3 additionnal bars in dimension 1 appear. Those bars correspond to the 3 dark-blue,
horizontal lines, which create cycles (due to periodic boundary conditions). The multiplicity of
these bars reflect only n2, but not n1. Crucially, one of those 3 generators is one of the two
generators of H1(S1 × S1) that appear as the semi-finite bars.

Conjecture. Let f(x, y) = ϕ(γ1(x), γ2(y)) and denote by Un = (Hn(f−1(] −∞, t])))t∈R and Vn =
(Hn(ϕ−1(] − ∞, t])))t∈R the singular persistence homology modules for n = 0, 1. If we let t1 :=
mins rank(V(ϕ)s → V(ϕ)maxϕ+1) ≥ 1, then for any s ≤ t < t1, we have

rank(Un
s → Un

t ) = n1n2rank(Vn
s → Vn

t ).

The value t1 is the birth of the first essential generator of S1 × S1. Based on Example 3.4,
we believe that the additive property expressed above holds until t1. In that case, a reasoning
analogue to that for D = 1 should be valid for n = 0. We believe that a proof could be established

2We use cubical complexes and cubical homology for illustration purposes; see Kaczynski et al. (2011, Section 2)
for an introduction.
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for n = 1 using the Mayer-Vietoris sequence for persistent homology and Di Fabio and Landi (2011,
Theorem 3.7). Characterising the module beyond t1 seems more complex.

We give a more complete characterization in case ϕ has more structure. Consider two continuous
functions ϕ1, ϕ2 : S1 → R and let

ϕ : S1 × S1 → R
(x, y) 7→ max(ϕ1(x), ϕ2(y)).

(3.4)

We will also need to consider fd := ϕd ◦ γd and the modules Vn,d, Wn,d for fd and ϕd respectively.

Proposition 3.5. Assume that maxϕ1 ≤ maxϕ2. Then,

rank(U0
s → U0

t ) =


n1n2rank(W0,1

s →W0,1
t )rank(W0,2

s →W0,2
t ) if t < maxϕ1

n2rank(W0,2
s →W0,2

t ) if maxϕ1 ≤ t < maxϕ2

1 if maxϕ2 ≤ t,

rank(U1
s → U1

t ) =


0 if s < maxϕ1

n2rank(W0,2
s →W0,2

t ) if maxϕ1 ≤ s ≤ t < maxϕ2

1 if maxϕ1 ≤ s < maxϕ2 ≤ t
2 if maxϕ2 ≤ s < t.

rank(U2
s → U2

t ) =

{
1 if maxϕ2 ≤ s,
0 otherwise.

Proof. The sub level sets of f are the product of those of f1 and f2: for any t ∈ R,

(x, y) ∈ f−1(]−∞, t) ⇐⇒ max(f1(x), f2(y)) ≤ t ⇐⇒ (f1(x) ≤ t) and (f2(y) ≤ t).

Then, the Künneth formula for persistent homology (Gakhar and Perea, 2019, Proposition 4.3)
shows that for any s, t ∈ R,

rank(Un
s → Un

t ) =
∑

i+j=n

rank(Vn,1
s → Vn,1

t )rank(Vn,2
s → Vn,2

t ).

For n = 0, we have simply

rank(U0
s → U0

t ) = rank(V0,1
s → V0,1

t )rank(V0,2
s → V0,2

t ).

Fix d = 1, 2. For t ≤ maxx∈S1 ϕd(x), Proposition 3.1 implies that

rank(V0,d
s → V0,d

t ) = ndrank(W0,d
s →W0,d

t ).

Hence, for t < mind=1,2 maxx∈S1 ϕd(x), we recover an additive property

rank(U0
s → U0

t ) = n1n2rank(W0,1
s →W0,1

t )rank(W0,2
s →W0,2

t ).

For maxx∈S1 ϕ1(x) ≤ t < maxx∈S1 ϕ2(x), we have rank(V0,1
s → V0,1

t ) = 1[minϕ1,∞[(s) = rank(W0,1
s →

W0,1
t ), so

rank(U0
s → U0

t ) = n2rank(W0,1
s →W0,1

t )rank(W0,2
s →W0,2

t ).

Finally, for maxx∈S1 ϕ2(x) ≤ t, rank(U0
s → U0

t ) = 1.

Consider higher homology dimensions. Recall that rank(W1,d
s → W1,d

t ) = 1[maxϕd,∞[(s) =

rank(V1,d
s → V1,d

t ). Assuming maxx∈S1 ϕ1(x) < maxx∈S1 ϕ2(x), the Künneth formula implies that
for n = 1,

rank(U1
s → U1

t ) = rank(V1,1
s → V1,1

t )rank(V0,2
s → V0,2

t ) + rank(V0,1
s → V0,1

t )rank(V1,2
s → V1,2

t )

= 1[maxϕ1,∞[(s)rank(V0,2
s → V0,2

t ) + rank(V0,1
s → V0,1

t )1[maxϕ2,∞[(s)

= 1[maxϕ2,∞[(s) +
(
n2rank(W0,2

s →W0,2
t )1]−∞,maxϕ2[(t) + 1[maxϕ2,∞[(t)

)
1[maxϕ1,∞[(s)

=


0 if s < maxϕ1

n2rank(W0,2
s →W0,2

t ) if maxϕ1 ≤ s ≤ t < maxϕ2

1 if maxϕ1 ≤ s < maxϕ2 ≤ t
2 if maxϕ2 ≤ s < t.
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For n = 2, we have rank(V1,2
s → V1,2

t ) = 0 = rank(V2,2
s → V2,2

t ) for any s < t, so

rank(U2
s → U2

t ) =rank(V0,1
s → V0,1

t )rank(V2,2
s → V2,2

t ) + rank(V2,1
s → V2,1

t )rank(V0,2
s → V0,2

t )

+ rank(V1,1
s → V1,1

t )rank(V1,2
s → V1,2

t )

=1[maxϕ1,∞[(s)1[maxϕ2,∞[(s)

=1[maxϕ2,∞[(s).

This simple case shows that the vertical and horizontal multiplicities appear, but at times
which are characteristic to functions f1 and f2: there might exist bars with multiplicity n1n2
if [minϕ1,maxϕ1] ∩ [minϕ2,maxϕ2] has non-empty interior. However, if maxϕ1 ≤ minϕ2, the
function f is degenerate in that f(x, y) = f2(y).

Proposition 3.5 shows that for functions of the form (3.4), homology in dimension n = 1 is
sensitive to multiplicity only in one of the directions. In particular, the image in Figure 3.2 has
n1n2 bars [3, 7[, which shows that it cannot be of the form (3.4).

3.3.2 Persistent homology of noisy signals: an alternative characteriza-
tion of total persistence

We numerically illustrate how persistence diagrams of sub level sets change when the periodic signal
is perturbed in different ways. One of those observations leads us to conjecture a characterization
of total persistence, which might provide an alternative bound to that of Proposition 4.13.

We illustrate how different types of noise change the structure of the persistence diagram. The
first row in Figure 3.3 shows ϕ with Gaussian noise with square-exponential covariance with time
scale 0.15 and standard deviation 0.1. The noise has a higher frequency than the oscillations in ϕ,
what produces a persistence diagram with points clustered around those of D(ϕ). In the second
and third rows, we show ϕ corrupted by punctual noise. The comparison between the second and
third diagrams shows that the location of the perturbation matters little, confirming the ‘global’
character of persistent homology. The interesting observation is that such a ‘sparse’ perturbation
produces outliers in the persistence diagram, but numerous points corresponding to the periodicity
of ϕ are left un-perturbed. While the amplitude of the noise is high, the Wasserstein distance (2.19)
between the diagrams is small. The fourth figure shows ϕ superimposed with a drift. The drift is
slow enough for local minima of ϕ to appear, and in the persistence diagram, almost all points lie
on segments parallel to the diagonal. The exception is the pair of global extrema, which is far from
all points. Finally, we picture an amplitude-modulated signal. Points in the persistence diagram
lie on segments, whose extension intersects the diagonal at (0, 0).

Remark 3.6. Amplitude modulation occurs as a consequence of frequency modulation and a fixed
sampling frequency. Because the extrema are never attained when sampling, the signal is atten-
uated: for a signal with a highest frequency component fmax sampled at rate fs, the attenuation
is of the order cos(fmax/fs). Hence, while the persistence diagram of a function is invariant to
reparametrisation, it is not true for the diagram of its sampled version. We quantify that distance
in Proposition 5.12.

The observations from the localized perturbation scenario remind of the sought-after Wasser-
stein stability of persistence diagrams. Here, ∥W∥L1 is much smaller than ∥W∥∞, leading to a
poor bottleneck stability bound. The total p-persistence is the p-Wasserstein distance to the empty
diagram. We now present a different notion of “variation”, which we believe is related to the total
p-persistence: an observation that we do not prove.

Definition 3.7. Let a ≤ b ∈ R and a ≤ ak ≤ bk ≤ b ∈ R, for k = 1, . . . ,K ∈ N. A collection
of tuples I = ((ak, bk))Kk=1 is a nested sequence for [a, b] if for any k, k′, intervals ]ak, bk[ and
]ak′ , bk′ [⊂ [a, b] are disjoint or nested (one is included in the other).

In the standard notions of p-variation, the considered sequences are partitions, whereas here,
the intervals can be nested. To ensure that the variation does not increase as we keep adding
nesting elements, we orient the intervals.

Definition 3.8. An oriented pair (a, b, v) is a pair (a, b) with an orientation v ∈ {0, 1}. We call
a pair (ak′ , bk′) a maximal element of (ak, bk) if it is maximal with respect to the order in I. A
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Figure 3.3: On the left, a periodic function, perturbed using several kinds of noise. On the right,
the corresponding persistence diagrams.
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nested, alternating sequence for [a, b] is a nested sequence of oriented pairs, Ī = ((ak, bk, vk))Kk=1,
such that if (ak′ , bk′) is a maximal element of (ak, bk), then vk′ = 1− vk.

Example 3.9. Consider the sequence Ī = ((1, 8, 0), (2, 3, 1), (4, 7, 1), (5, 6, 0)) for the interval
[1, 8]. It is a nested sequence, because ]5, 6[⊂ ]4, 7[ and ]2, 3[, ]4, 7[⊂ ]1, 8[. It is also alternating:
pairs (2, 3) and (4, 7) are maximal elements of (1, 8), and they have orientations opposite to that
last.

Definition 3.10. Let S : [a, b]→ R be a continuous function and Ī a nested alternating sequence
for [a, b]. For p ∈ N∗, the p-variation of S associated to Ī is

V (S, Ī) :=

K∑
k=0

w(S(bk)− S(ak), vk), where w(x, v) := |x|p(−1)v(−1)x<0,

and the p-variation of S is
V (S) := max

Ī
V (S, Ī),

where the maximum is taken over all finite, nested and alternating sequences Ī.

Example 3.11. Consider S : [1, 8] → R a continuous, piecewise linear function, defined by pre-
scribing (S(k))8k=1 = (0, 4, 1, 6, 3, 5, 2, 7), and the nested alternating sequence shown at the bottom
of Figure 3.4. Its p-variation is

V (S, ((1, 7, 1), (3, 4, 0), (5, 6, 0))) = w(−2, 1) + w(5, 0) + w(2, 0) = 2p + 2p + 5p.

Notice that the p-variation of a nested alternating sequence is not necessarily positive, as w(x, 0)
has the same sign as x. The p-variation of S defined above is certainly not the same as the notions
of p-variation from probability or the one studied in persistence theory. If we denote that last
by p-var, then Perez (2022b, Proposition 3.6) states that p-var(S) ≤ 2perspp(S). This shows that
persistence is ‘more-efficient’ at capturing variation than p-var3. The nested alternating sequences
are more flexible than p-var, so we believe that the following relation might hold.

Conjecture. Let S : [0, T ] → R be a continuous function, such that S(0) = minS and S(T ) =
maxS. If S has a finite number of critical points, then perspp(S) = V (S).

Example 3.12 motivates that statement. The pairing of critical points from the persistence
module gives a nested alternating sequence. However, it is not immediately clear to us why that
particular sequence maximizes the p-variation.

Example 3.12. Let S be as in Example 3.11, illustrated on Figure 3.4. The persistence diagram
defined in Section 2.5.4 in the simplicial setting is D(S) = {(1, 4), (3, 5), (2, 6), (0, 7)}. We notice
that the same pairs are realized by the sequence Ī from Example 3.9, so

V (S, Ī) = w(7, 0) + w(−3, 1) + w(−4, 1) + w(2, 0) = 7p + 3p + 4p + 2p = perspp(S).

Note that p-var(S) = 4p + 3p + 5p + 3p + 2p + 3p + 5p ≤ 2 · (7p + 3p) + 5p < 2perspp(S).

The nested alternating sequences introduced above are similar to “windows with wave”, pre-
sented in Sebastiano Cultrera di Montesano et al. (2023), Biswas et al. (2023). There are two
main differences. The windows are two-dimensional, [ak, bk]× [minS|[ak,bk]

,maxS|[ak,bk]
], with the

second coordinate taking into account the values of the function on [ak, bk]. The second difference
is that the windows are partitioned into 3 sub-windows, which allow to characterize their mutual
relations and nesting. In particular, the set of windows for piecewise linear functions is shown
to contain information to recover the diagrams. The framework of windows and windows with
waves might be adapted to showing the conjecture, and also allow to remove the assumption on
the maxima of S being attained on the boundaries of the interval.

The fact that such a relation might hold came to us when working on a lower bound for
perspp(S), alternative to Proposition 4.13. In that lower–bound, we rely on the bottleneck stability
of the persistence diagram, which is most pessimistic. In particular, in the case of high amplitude
and localized noise (see bottom graphs in Figure 3.3 for an example), the bound is trivial. If the
characterization conjectured above was true in a more general form, we hoped to lower bound
perspp(S) with a term that would feature perspp(W ) instead.

3The factor 2 is natural, as the variation is counted ‘once’ in total persistence, but twice in p-var.
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1 2 3 4 5 6 7 8

Figure 3.4: A graphical representation of S from Example 3.12, and of two alternating sequences.
Green and red segments represent orientations 0 and 1 respectively.
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Chapter 4

Topological signatures

In Chapter 3, we have established that the persistence diagram of a periodic signal with phase
variation contains repeated points. The coordinates of those points are certain local extrema of
the signal and the number of repetitions is proportional to the number of observed periods. In
the present chapter, we leverage the repetitive character (Proposition 3.2) and stability (Propo-
sition 2.38) of persistence diagrams to propose a descriptor of a periodic function, calculated on
a noisy observation of several periods. Specifically, we assume that ϕ is 1-periodic and we let
γ : [0, T ] → [0, R] be an increasing bijection, W : [0, 1] → R a continuous noise process. We
consider an observation S of the form

S : [0, T ]→ R, t 7→ (ϕ ◦ γ)(t) +W (t). (4.1)

Our aim is to construct a signature F : S 7→ F (S) which contains information about ϕ while
remaining somehow robust to W and to changes in γ, both assumed random. The signature we
propose is an average of topological features of S, putting weight on repeated and persistent pairs
of local extrema.

Related literature

Time series or functional observations of the form (4.1) appear in many applications, where
ϕ is somehow characteristic of a population: child growth dynamics (Ramsay and Silverman,
2002), physiological signals (Goldberger et al., 2000), bird migration curves (Su et al., 2014). The
reparametrisation γ is the main source of variability in the pointwise evaluations of the signals, as
in the ‘phase variation’ model in Functional data analysis (FDA), see Marron et al. (2015) for a
review. The problems typically considered in FDA consist in aligning a population of curves or
computing a representative curve, for which methods with guarantees have been proposed (Gasser
and Wang, 1997, Khorram et al., 2019, Tang and Muller, 2008). Underlying most of the models is
the assumption that the start and end points (γ(0) and γ(T ) here) are common for all curves.

In gait analysis (Bois et al., 2022) or in the positioning problem motivating this thesis, a single
observation is composed of several periods of ϕ and the number of periods varies across observations.
In the latter, there is little reason for two observations to have the same number of periods, unless
the initial angular position of the wheel and the trajectory are exactly the same across those
two observations. Therefore, in contrast with FDA, the assumption of common endpoints is not
satisfied. In fact, the problem changes from describing the whole signal, to that of describing its
constituent parts, that is, the periods of ϕ.

Techniques from topological data analysis (TDA) have been increasingly used to extract ge-
ometric or topological information from observations (Chazal and Michel, 2021). The arguably
most popular TDA technique for analyzing a time series consists in computing the homology of
the sliding-window embedding (SWE) of the time series, and indicates whether the underlying
phenomenon is periodic or not (Perea, 2019). It has been used in many applications (Ghil and
Sciamarella, 2023, Gidea and Katz, 2018, Fernández and Mateos, 2022). The SWE of a time se-
ries (Sn)Nn=1 is a point cloud in Rd, where each point is of the form (Sn, Sn+τ , . . . , Sn+(d−1)τ ) for
parameters d, τ ∈ N. If S is periodic, a simplicial complex constructed on the SWE at the right
scale will have a non-trivial homology group in dimension one, as illustrated in the top row in Fig-
ure 1.4. In signals with phase variation however, the length of the periodic structure changes and
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so does the geometry of the SWE, as shown in the bottom row in Figure 1.4. This is corroborated
by the fact that the geometry of the delay embedding contains information about the frequencies
supporting the signal (Perea, 2019, section 5).

Techniques other than the SWE have been proposed to extract topological information from
time series, but they either already assume that the signal is of a specific form (Khasawneh and
Munch, 2016), that it is periodic (Erden and Cetin, 2017), or are not concerned with extracting a
signature thereof (Kennedy et al., 2018).

Building on the properties of persistent homology of periodic function proved in Chapter 3, we
propose to use the persistent homology of sublevel sets of the signal to describe this last. This
descriptor summarizes the height, order and number of local extrema. The idea of quantifying the
shape of the curve is not new: for example, the landmark method extracts visual features like local
extrema or inflection points (Perng et al., 2000).

In many statistical applications, it is convenient to map a persistence diagram to a vector
or a function, via a functional representation (Chazal and Michel, 2021). Numerous function-
als (Carrière et al., 2020, Adams et al., 2017) are ‘linear in the diagram’ and their properties have
been well-studied (Divol and Polonik, 2019). In our case, it seems natural to renormalize the
functionals by the total persistence of the diagram, a proxy for the number of periods. Building
on Divol and Polonik (2019) and a recent characterization of the stability of total persistence for
Hölder regular processes (Perez, 2022a), we study the robustness of the signatures we propose.

Guarantees on the estimation of functionals of persistence diagrams, in both asymptotic and
non-asymptotic cases, have been provided in Chazal et al. (2014), Berry et al. (2020), under
the assumption that the persistence diagrams (or functionals thereof) in the collection are all
independent. In a setting motivated by the industrial context of this thesis, we have a single time
series of which we would like to estimate the signature. The natural procedure is to construct a
sample by taking contiguous vectors from that observation, what leads to a collection of shorter
and dependent observations. We study two reparametrisation models inspired by Marron et al.
(2015) and, building on the theory of strong mixing (Doukhan, 1995, Dedecker et al., 2007), we
show that the dependence between observations decreases. When the β-mixing coefficients decrease
sufficiently fast, the estimators of the functionals also converge in the dependent setting (Radulović,
1996, Bühlmann, 1995, Kosorok, 2008), not unlike in the independent setting (Chazal et al., 2014).
So far, estimation of topological signatures from dependent data has been less explored: Krebs
(2021) gives a concentration inequality for persistent Betti numbers from dependent data.

Contributions and structure

In Section 4.1, we concisely introduce the signature and show its key invariance properties. In
Section 4.2, we introduce models for reparametrisations and we discuss the guarantees of estimation
of the signatures defined for time-series. Section 4.3 contains additional results on persistent
homology, essential for the previous sections. The main contributions can be summarized as the
following.

1. We demonstrate that the signature converges as the number of observed periods grows, in
case there is no additive noise (Theorem 4.2). We rely on Propositions 3.2 and 3.3, which
characterize the persistence diagram of sublevel sets of several periods of a function.

2. We show that the signature is invariant under changes of the distribution of γ for fixed
endpoints γ(0) and γ(T ) (Theorem 4.3). Recent results on regularity of total persistence
allow us to obtain quantitative stability bounds.

3. We provide a technique to estimate the signature from a single time–series observation (The-
orem 4.7). We show that the moving block bootstrap technique allows us to construct
confidence intervals around the the signature, for two reparametrisation models.

Finally, Section 4.4 provides a simple numerical illustration of the signature and its invariance
properties.



4.1. SIGNATURES OF REPARAMETRIZED PERIODIC FUNCTIONS AND THEIR PROPERTIES57

0.0 0.2 0.4 0.6 0.8 1.0
10

5

0

5

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
10

5

0

5

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

Figure 4.1: An example of a noisy observation of a reparametrised periodic function (left), its
persistence diagram (center) and a functional summary (right): the persistence silhouette.

4.1 Signatures of reparametrized periodic functions and their
properties

The signatures we propose are functions constructed using the local minima and maxima of the
signal. We define those signatures with persistent homology of the sublevel sets of the signal and its
functional representations. For the sake of readability, we defer the justification of some properties
of persistence diagrams and the corresponding functionals to Sections 4.3 and 4.3.2. We include
an illustration of these concepts in Figure 4.1.

4.1.1 Normalized functionals of truncated persistence

Let D(S) denote the persistence diagram of the truncated module (2.13) of S ∈ C([0, T ],R). It is
a multiset of points in R2, where the coordinates are the values of local extrema of S. Each point
can be interpreted as a local minimum paired with a local maximum. That pairing is constructed
by tracking the evolution of connected components in sublevel sets S−1(]−∞, t]) as t changes. We
use the terminated persistence modules from Section 2.13. The pairing is consistent in that if S
is reparametrised, the persistence diagram remains unchanged, see Proposition 2.35. In addition,
if S is periodic, the multiplicity of any point in the diagram reflects the number of periods in S,
except for some extra points due to incomplete periods close to the lower- and upper- endpoints of
the domain [0, T ], see Proposition 3.2. Therefore, for a periodic function ϕ, the only component of
the parametrisation that the persistence diagram depends on is the starting point, γ(0), and the
number of observed periods, γ(T )− γ(0).

To gain algebraic and statistical properties, it is often convenient to map the diagram to a
functional representation, as motivated in Section 2.5.7. In such a representation, we typically
associate to each point (y1, y2) from the persistence diagram a function, ky1,y2

: T → R, for some
metric space T. A functional representation is then a weighted sum of such functions, where the
weights are commensurate with a measure of importance of each point.

Definition 4.1. The ϵ-truncated persistence of a point (y1, y2) ∈ R2 is wϵ(y1, y2) = max(y2− y1−
ϵ, 0) for some ϵ > 0. The normalized functional of ϵ-truncated p-persistence, for some p > 1 and
for any t ∈ T, is

ρk,ϵ,p(S)(t) =

∑
(y1,y2)∈D(S) wϵ(y1, y2)pky1,y2(t)∑

(y1,y2)∈D(S) wϵ(y1, y2)p
, (4.2)

if the denominator is positive and ρk,ϵ,p(S)(t) = 0 otherwise. We omit the dependence of ρ on
k, ϵ, p, writing ρ = ρk,ϵ,p.

We defer the proof of the fact that ρ is well-defined and we now introduce the topological
signature. When γ ∼ µ and W ∼ ν are independent random variables, S is also random. For each
path and t ∈ T, we can calculate ρ(S)(t) ∈ R. We define the signature of S point-wise as

F (S)(t) := E[ρ(S)(t)], (4.3)

where the expectation is taken with respect to the law of the process, induced by the product
measure of µ and ν.

It is clear that ρ(S)(t) is a real-valued random variable, but it is less clear whether ρ(S) ∈
C(T,R) can be seen as a random variable: is it B(∥ · ∥∞)-measurable? Appendix 4.A and results
from Section 2.1 give a positive answer. We will see in Sections 4.1.2 and 4.1.3 that the normaliza-
tion of the functional makes it robust to the number of periods of ϕ in S to a certain extent. The
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details of the construction of the persistence diagram, examples of ρ and a study of the properties

of the truncated persistence persp,ϵ(D) :=
(∑

(y1,y2)∈D wϵ(y1, y2)p
)1/p

are included in Section 4.3.

4.1.2 Properties of functionals of a periodic function

We examine the consistency of the signature (4.3) and its invariance with respect to reparametri-
sations for noiseless observations. That is, we consider the case W = 0, so that (4.1) becomes
S(t) = ϕ(γ(t)). Recall that γ : [0, T ]→ R is a continuous and increasing function.

For consistency, normalizing the functional by the total truncated p-persistence is akin to nor-
malizing by the number of periods. As γ(T ) − γ(0) increases, the contribution of the boundary
effects becomes less significant and we gain invariance to the number of observed periods. Theo-
rem 4.2 is in fact a corollary of Proposition 3.2. It also justifies calling the limit the “signature of
a periodic function”.

Theorem 4.2 (Consistency). Assume that k satisfies (4.16) and (4.17). Then, as R→∞,

ρϵ,p,k(D(ϕ|[0,R]))
∥·∥∞−−−→ ρϵ,p,k(D(ϕ|[c,c+1])).

Proof. We have fixed ϵ, p and k and we will denote ρϵ,p,k by ρ. Let D1 = D(ϕ|[c,c+1]), D
′ be

given by Proposition 3.2 and let DR = D(ϕ|[0,R]). In addition, we will write ρ(D) = ρk,ϵ,p(D) =∑
x∈D wϵ(x)pkx(t) for the linear (non-normalized) version of the functional ρ. Then, for any t ∈ T,∣∣∣ρ((R−1)D1)+ρ(D′)

perspp,ϵ(DR)
− ρ(D1)

perspp,ϵ(D1)

∣∣∣ ≤ ∣∣∣ ρ(D′)
perspp,ϵ(DR)

∣∣∣+
∣∣∣ρ((R−1)D1)
perspp,ϵ(DR)

− ρ(D1)
perspp,ϵ(D1)

∣∣∣ ,
and ∣∣∣ρ((R−1)D1)

perspp,ϵ(DR)
− ρ(D1)

perspp,ϵ(D1)

∣∣∣ ≤ ∣∣∣perspp,ϵ(D1)ρ((R−1)D1)−(perspp,ϵ((R−1)D1)+perspp,ϵ(D
′))ρ(D1)

perspp,ϵ(DR)perspp,ϵ(D1)

∣∣∣
≤ |perspp,ϵ(D′)ρ(D1)|

perspp,ϵ(DR)perspp,ϵ(D1)
,

where we have used that for any N ∈ N,

perspp,ϵ(ND1)ρ(D1) = Nperspp,ϵ(D1)ρ(D1) = perspp,ϵ(D1)ρ(ND1).

Now, we observe that perspp,ϵ(DR) = perspp,ϵ(⌊R − 1⌋D1) + perspp,ϵ(D
′) ≥ (R − 2)perspp,ϵ(D1) and

perspp,ϵ(D
′) ≤ 2perspp,ϵ(D1) to obtain that

∥ρ(D(ϕ|[0,R]))− ρ(D(ϕ|[c,c+1]))∥∞ ≤
|ρ(D′)|

perspp,ϵ(DR)
+

|perspp,ϵ(D′)ρ(D1)|
perspp,ϵ(DR)perspp,ϵ(D1)

≤ |ρ(D′)|+2|ρ(D1)|
(R−2)perspp,ϵ(D1)

(4.4)

Using the Minkowski inequality,

|ρt(D′)| = |
∑
x∈D′

wϵ(x)pkx(t)| ≤
∑
x∈D′

|wϵ(x)p|max
x∈D′

|kx(t)| ≤ perspp,ϵ(D
′) max

x∈D′
∥kx∥∞.

Because k is Lk-Lipschitz by (4.16), for any x ∈ D′, we have ∥kx∥ ≤ Lk∥x−π(x)∥+∥kπ(x)∥, where

π(b, d) = ( b+d
2 , b+d

2 ). Using (4.17) on one hand, and the fact that the distance of any point in the

diagram to ∆ is bounded by Aϕ, we obtain ∥kx∥ ≤ LkAϕ

2 + C. A similar bound holds for ρt(D1).
Going back to (4.4), we have that

∥ρ(D(ϕ|[0,R]))− ρ(D(ϕ|[c,c+1]))∥∞ ≤
(2|perspp,ϵ(D1)|+ |perspp,ϵ(D1)|) maxx∈D′ ∥kx∥∞

(R− 2)perspp,ϵ(D1)

≤ 4(C + LkAϕ)

R− 2
,

what converges uniformly to 0 as R→∞.

Without noise, Proposition 3.2 implies that the functional depends only on the number of peri-
ods and γ(0). As a consequence, the signature F is also robust to the distribution of reparametri-
sations, but only to a certain extent. Consider γ1 ∼ µ1 and γ2 ∼ µ2 such that the distributions of
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endpoints (γ1(0), γ1(T )) and (γ2(0), γ2(T )) are the same. When µ1 and µ2 are such that we can
condition on the endpoints, then

F (ϕ ◦ γ1) = F (ϕ ◦ γ2). (4.5)

In light of Proposition 2.35, (4.5) is not surprising, but we cannot show it without a strong dis-
integration condition. That condition holds when µ1, µ2 are measures on a closed subspace of
(C([0, T ]), ∥ · ∥∞). An example of such a space is

Γvmin
= {γ ∈ C([0, T ],R) | γ(s)− γ(t) ≥ vmin(s− t), for all s ≥ t}, (4.6)

for any vmin > 0. We give more details in Appendix 4.B, notably, we restate (4.5) in more precise
terms in Proposition 4.23.

We stress that relaxing the assumption on the equality of distributions is not straightforward.
In short, the main problem lies in obtaining a fine control on the persistence diagram when ‘cutting’
a domain, [0, T2], into [0, T1] and [T1, T2], for any 0 < T1, T2. Specifically, we need to consider the
difference between D(ϕ|[0,T2]

) and D(ϕ|[0,T1]
) ∪D(ϕ|[T1,T2]

). When T1 is a global maximum of ϕ,
we can reason as in the proof of Proposition 3.2. However, this is far from the general situation,
in which case the cut at T1 might induce some spurious points in the diagram.

4.1.3 Properties of functionals of noisy periodic functions

Consider now the noisy observations as in (4.1). As explained in Section 3.3.2, we loose the
structural property Proposition 3.2 and the invariance with respect to γ. We now obtain two bounds
using different strategies. For fixed endpoints, we control the differences produced by the noise
(Theorem 4.3). Otherwise, more generally, we can compare the functionals of noisy observations
with the signature of the periodic function (Proposition 4.5). Let us detail the assumptions on W
and γ.

We impose three conditions on the noise W , whose distribution we will denote by ν. First,
we assume that ∥W∥∞ is almost–surely bounded by a constant smaller than the amplitude of the
signal: there is q > 0 such that ∥W∥∞ ≤ (A(ϕ)− ϵ− q)/2, where A(ϕ) = maxϕ−minϕ. Second,
we assume that W is independent of γ. It implies that the law of S is the image measure of
the product of µ and ν by the map (x, y) 7→ ϕ(x) + y. Finally, we assume that W satisfies the
regularity condition (2.1). Difficulties in treating W come both from controlling its amplitude and
the regularity. The tools that we use are sensitive to many, small fluctuations. Condition (2.1)
allows us to control the regularity, without imposing a uniform Hölder constant on all paths. We
refer to Section 2.1 for a discussion of this condition and examples of processes which satisfy it.

For Theorem 4.3, we assume that γ has a lower-bounded modulus of variation and fixed end-
points. Specifically, let 0 < T,R and consider

ΓT,R,vmin
:= {γ ∈ C([0, T ], [0, R]) | γ(0) = 0, γ(T ) = R, 0 ≤ vmin(t− s) ≤ γ(t)− γ(s),∀s ≤ t}.

The set ΓT,R,vmin
is convex. It is also included in C([0, T ],R), so it can be naturally endowed

with the sup-norm ∥ · ∥∞, for which it is a closed, complete and separable space. In particular, it
is a Radon space, so that all measures on (ΓT,R,vmin ,B(ΓT,R,vmin)) are inner–regular and locally-
finite. Hence, we can equip the space of probability measures on (ΓT,R,vmin

,B(ΓT,R,vmin
)) with the

Wasserstein distance W1 (Panaretos and Zemel, 2020). Another reason for working with ΓT,R,vmin

is that γ−1 all have the same domain, what allows us to take full advantage of the invariance
properties of homology. Finally, the lower–bound on the modulus provides a relation between
∥γ−1

1 − γ−1
2 ∥∞ and ∥γ1 − γ2∥∞. The proof of Theorem 4.3 is deferred to Appendix 4.C.

Theorem 4.3 (Stability). Let µ1, µ2 be two probability measures on ΓT,R,vmin
and let γk ∼ µk,

for k = 1, 2. If p ≥ 1 + max(r2, r2/(r1 − 1)), ρ = ρϵ,p,k,

∥E[ρ(ϕ ◦ γ1 +W )]− E[ρ(ϕ ◦ γ2 +W )]∥∞ ≤
C̃(Kr2,r1)

vαmin

W1(µ1, µ2)α,

where C̃(x) = O(x1/r2(1 + x1/(r1−1))) depends on ϕ, ϵ, p, q, k and Kr1,r2 .

Two cases show that the control in Theorem 4.3 is useful. First, suppose that µk = δγk

for k = 1, 2, for some fixed γ1, γ2 ∈ ΓT,R,vmin . Then, we obtain that the normalized truncated
silhouette is Hölder, with respect to the distance ∥γ1 − γ2∥∞. It is expected that we do not have
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complete invariance: for a fixed path W , the reparametrisation γ can influence how the points in
the persistence diagram are displaced, as shows Figure 3.3. Consider now the case of vanishing
noise. If Kr2,r1 decreases to zero, then so does the Hölder constant ΛW and we have indeed that
the right-hand side vanishes.

Note that controlling ∥W∥∞ is not sufficient for the stability. When A(W ) < ϵ, the constant

factor in C̃(x) is CΛW
= Lk(1+

8p2A(ϕ)(A(ϕ)−ϵ)persp−2
p−2,ϵ(ϕ)

(R−2)qp ). We can take the truncation parameter ϵ

small, in which case q = (A(ϕ)− ϵ) and so, for ϕ with a single maximum and minimum per period,
we have CΛW

≈ Lk(1 + 8p2) > 0, which is not zero. Even though the amplitude of the noise is
smaller than the cut-off ϵ, it still has an influence on the signature. Therefore, it is important that
as the amplitude decreases, the noise does not become increasingly irregular: it is the case of aW ,
with a → 0+. We require the almost-sure bound on ∥W∥∞ for a different reason: it gives us the
lower–bound on perspp,ϵ(ϕ ◦ γ +W ), which appears in the denominator of ρ.

For processes of decreasing amplitude but increasing irregularity, it is more advantageous to
bound ∥Wγ−1

1
− Wγ−1

2
∥∞ ≤ 2∥W∥∞ in the proof. In such a scenario however, we ignore the

reparametrisations so the distance ∥γ−1
1 − γ−1

2 ∥∞ disappears from the bound.

Remark 4.4. When both endpoints are fixed and common to all reparametrisations, there is no
reason to normalize by the total persistence. The stability comes from the continuity of the
functional, not the renormalisation. Proposition 4.19 states that linear functionals of the form∑

x∈D wϵ(x)pkx are also continuous for Hölder functions, so a statement analogue to Theorem 4.3
also holds for such un-normalized functionals.

We now discuss relaxing some assumptions in Theorem 4.3. First, note that the lower–bound on
the modulus of continuity (vmin > 0) allows us to upper–bound ∥γ−1

1 − γ−1
2 ∥∞ by 1

vmin
∥γ1− γ2∥∞.

But, if we remove this assumption (vmin = 0), it is not clear whether ΓT,R,0 is a complete space
for ∥γ−1

1 − γ−1
2 ∥∞.

Second, we could also allow R to vary. A simple example is to let γk = Rγ̃k, where R is a
random variable on a compact set of ]0,∞[ and γ̃k ∼ µ̃k is a random element of ΓT,1,vmin

, with γ̃
independent of R. In that case, we do obtain the distance W1,∥·∥∞(µ̃1, µ̃2) in the bound, but it is
not clear that it lower–bounds W1,∥·∥∞(µ1, µ2). For it to be the case, a ‘good’ coupling of µ1 and
µ2 would need to be approximated using ν and a coupling of µ̃1 and µ̃2: we do not know if such
an approximation can be constructed.

The final extension is robustness in the case where the distributions of γk(T ) − γk(0) are not
the same for k = 1, 2. However, we are short of understanding it already in the noiseless case, as
stated in Section 4.1.2 and Appendix 4.B.

Proposition 4.5. Let (γk : [0, T ] → [0, Rk])k=1,2 be two fixed reparametrisations, for Rk > 2.
Consider perturbations W1,W2 ∈ Cα

Λ([0, T ],R), with ∥Wk∥∞ < A(ϕ)/2. Then,

∥ρ(ϕ ◦ γ1 +W1)− ρ(ϕ ◦ γ2 +W2)∥ ≤ Lk

(
4A(ϕ)

min(R1,R2)−2 + P (max(∥W1∥∞, ∥W2∥∞))
)
,

where the expression of P (x) = O(x) is given explicitly in Lemma 4.24.

Proposition 4.5 is much weaker and deterministic, but valid under milder hypotheses. The proof
is in Appendix 4.D. Note that the right–hand side is strictly positive, even in the noiseless case
W = 0 and µ1 = µ2. It is not surprising, because the bounds we use are very crude: we remove the
noise and we compare the respective functionals to the limit object ρ(ϕ). The (uniform) Hölder
regularity assumption on the noise stems from the statement being deterministic and pathwise: a
similar proof could be carried out for signatures (in expectation), using regularity assumption (2.1).

4.2 Statistical inference for signatures from time–series

We have defined the signature and studied its properties for continuous observations. In practical
applications, we do not have access to S, but to observations in the form of a time–series (Sn)Nn=1.
In our case, this time series is composed of samples from a continuous process. In some situations,
it is reasonable to assume that we have access to a collection of independent time–series from the
same model, what allows to conveniently estimate F . We consider the case in which we observe
a single time series. The purpose of this section is to show asymptotic statistical guarantees for
signatures of windows of a discretized signal.
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Figure 4.2: On the left, the truncated Gaussian Kernel centered at different point in I, with η = 2.
In the center, several reparametrisation paths, integrated from the Markov chain realisations on
the right, generated as specified in Example 4.6 with η = 1.1.

4.2.1 Time series model

Similarly to the continuous model (4.1), the observations are a reparametrisation of a 1-periodic
function ϕ

Sn = ϕ(γn) +Wn ∈ R, n = 1, . . . , N, (4.7)

where (γn)Nn=1 is a strictly increasing time series and (Wn)n∈N is a stationary noise time series
satisfying E[Wn] = 0. It is also convenient and straightforward to consider the limit of a time
series of infinite length, (Sn)n∈N.

In the industrial setting motivating this thesis, γ represents the displacement of a vehicle. We
introduce two reparametrisation processes, defined as discrete integrals of another, positive time
series Vn. Specifically, let

γn+1 = γn + hVn = γ0 + h

n∑
k=0

Vk, (4.8)

where (Vn)Nn=0 is a sequence of random variables in I := [vmin, vmax], independent of γ0 and 0 < h
is a time step. This model is inspired by dynamics, where the sequence (γn)n∈N could model the
displacement of a body over time and Vn should be thought of as the instantaneous speed and
h = T

N . We will consider two models for (Vn)n∈N.

Model 1 ((Vn)n∈N i.i.d). We assume that Vn are independent and follow the same, unknown
distribution on R∗

+, which satisfies the following property: there exists 0 < a, b, c such that, for all
A ∈ B(]a, b[) measurable, P (Vk ∈ A) ≥ cµ(A), where µ is the Lebesgue measure.

Model 2 ((Vn)n∈N a Markov Chain). Let (Vn)n be a Markov Chain with transition probability
kernel P (Definition 2.9). We assume that P (x, ·) is a probability measure that has a density fx
with respect to µ and that

1. the density is lower–bounded in a small neighborhood: there exists η, µ0 > 0, such that

fv|[v−η,v+η]∩I ≥ µ0, (4.9)

2. v 7→ fv(x) is continuous for any x ∈ I.

Note that if fx = f, for all x ∈ I, model 2 reduces to a particular case of model 1, where P has
density f, a = vmin, b = vmax and c = µ0.

Example 4.6. Set V0 ∼ U(I) and let 0 < η < vmax−vmin

4 . An example of a kernel satisfying the
above assumption is a truncated Gaussian kernel. The truncation is such that the support is I and
σ = η. In Figure 4.2, we show the kernel and several sample trajectories from this model.

4.2.2 Estimation of signatures

Consider the situation where we observe a single time–series (Sn)Nn=1, Sn ∈ R. On a technical
level, we can calculate the persistence diagram of a time series as explained in Section 2.5.5 and

the resulting functional in the same way, ρt((Sn)n) = ρt(D((Sn)Nn=1)) =
∑

x∈D wϵ(x)
pkx(t)∑

x∈D wϵ(x)p
. However,

with a single observation, we cannot expect to reliably estimate ρ(S). Persistent homology is a
global descriptor, which can link two events, even if they happen far in time. Even though the
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Figure 4.3: A schematic representation of the MBB, for M = 5 and L = 3.

descriptor ρ effectively represents the average homological feature, it is not immediately clear that
it benefits from the same properties as the empirical mean. Understanding this poses the same
challenges as those explained at the end of Section 4.1.2 and Appendix 4.B.

We fix a window length M ∈ N and we use as a signature FM (S) := F (X) = E[ρ(X)],
where X = (S1, . . . SM ). It is a quantity which we can estimate with an empirical mean, whose
distribution we can also characterize by bootstrap techniques. In the noiseless case, Theorem 4.2
shows that FM (S) converges to F (S), as M → ∞. This justifies replacing the ‘global’ signature
with a local version, when the number of periods observed in each window is sufficiently large.

From (Sn)Nn=1, we construct the empirical measure

PN−M+1 = 1
N−M+1

N−M+1∑
n=1

δXn
, where Xn = (Sn, . . . , Sn+M−1). (4.10)

The empirical counter-part of FM (S) is the empirical mean

F̂M (S) := PN−M+1ρ = 1
N−M+1

N−M+1∑
n=1

ρ(Xn).

We will estimate its distribution by Moving Block Bootstrap (MBB), as described in Section 2.4.
It is applied here to windows (X1, . . . , XN−M+1) as illustrated in Figure 4.3. If we denote by
L = L(N −M + 1) ∈ N the block length, the MBB sample is then

X∗
1 , . . . , X

∗
N−M+1 = Xn1

, . . . , Xn1+L, Xn2
, . . . , Xn2+L, . . . , XnB

, . . . XnB+L,

where n1, . . . nB ∼ U(1, . . . , N −M + 1) are independent and we define

F ∗
M (S) = P̂N−M+1ρ = 1

N−M+1

N−M+1∑
n=1

ρ(X∗
n).

The purpose of this section is to prove that the empirical mean F̂M (S) converges to FM (S)
and that we can approximate the distribution of F̂M by that of F ∗

M , as N →∞. The core idea is
to control how the dependence between X1 and X1+k changes as k increases. We do so using the
β-mixing coefficients (Definition 2.16).

Theorem 4.7. Consider (γn)Nn=1 as in (4.8) with (Vn)Nn=1 from Model 1 or 2. Assume that W is
exponentially β-mixing. Then,

√
N −M + 1(F̂M − FM )→ G (4.11)
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where G is a zero–mean Gaussian process with covariance

(s, t) 7→ lim
k→∞

∞∑
n=1

cov(ρ(Xk)(s), ρ(Xn)(t)).

Then, if L(N)→∞ and L(N) = O(N1/2−ϵ) for some ϵ > 0 as N →∞, then

√
N −M + 1(F̂ ∗ − F̂ )→∗ G in probability, (4.12)

This result is a functional central limit theorem, similar to many in the literature of topo-
logical data analysis, see for example Chazal et al. (2014) and Berry et al. (2020, Proposition 2
and 3), except that the samples are not independent. For i.i.d data, it is sufficient to control
the complexity of the functional family. Since this aspect has been covered extensively, we only
recall Proposition 4.21 for completeness. The novel aspect of Theorem 4.7 is the consideration of
dependence and it is what we treat with more care. The rest of this section is devoted to a proof
of Theorem 4.7, with details being deferred to appendices.

Sketch of proof of Theorem 4.7. Consider (γn)n∈N as in (4.8) with model 1 or 2. Notice that this
series is not stationary, because P (γn < γn+1) = 1. Crucially though, the composition (ϕ(γn))n∈N
is stationary. In fact, it can be written as ϕ(x) = ϕ(frac(x)), through frac(x) = x−⌊x⌋ the fractional
part of a real number. In Appendix 4.E, we show that (frac(γn))n∈N is exponentially β-mixing
(Proposition 4.25). While this is not a surprising result, it is the most technical part of the proof.
We show the Doeblin condition (2.4): in model 1, γ is a random walk, so the distribution of Pn

can be written as a convolution. For model 2, we need to consider the joint process (frac(γn), Vn),
which is a Markov chain. We show that for a sufficiently large n ∈ N, we can lower-bound Pn by a
measure uniform on [x, x+ 1] and [x, x+ 1]× I for models 1 and 2 respectively. The push-forward

by frac of that measure gives a lower–bound for the distribution of ( (
γ n

))n∈N) on [0, 1] and for the

distribution of ( (
γ n

), Vn)n∈N on [0, 1]×I respectively, uniform with respect to the initial conditions.

Next, we analyze how the dependence of (ϕ(γn))n∈N and (Wn)n∈N shapes the dependence of
(Sn)n∈N and that between the windows X1, . . . , XN−M+1. Specifically, Appendix 4.F contains a
proof of the following inequality

βX(k) ≤ βS(k − (M + 1)) ≤ βfrac(γ)(k − (M + 1)) + βW (k − (M + 1)), for k ≥M + 1.

Since (Wn)n∈N is exponentially mixing by assumption, (Xn)n∈N is exponentially-mixing.
The Gaussian approximation (4.11) is a consequence of Theorem 2.22. By the arguments above,

the mixing condition (2.9) is verified for X for any r > 2. It remains to verify that the bracketing
entropy of the functional family {ρt}t∈T is controlled. This is done in Proposition 4.21.

The approximation of the distribution of the empirical mean by the bootstrap distribution (4.12)
is a consequence of Theorem 2.23, for which we only need the aforementioned results.

We do not give a procedure to choose the block length L, although it has been observed that,
in general, L ≃ (N −M + 1)1/3 works well in practice (Bühlmann and Künsch, 1999).

Remark 4.8. The literature of functional central limit theorems for dependent data is rich in results
for various functional classes and dependence assumptions. We believe it might be possible to use
more recent and stronger results than Bühlmann (1995, Theorem1), stated here Theorem 2.23.
This would allow us to relax the decay of βW from an exponential to a polynomial one. For
instance, (Radulović, 1996, Theorem 1) is written for VC-classes functionals, but the proof seems
to rely on the bracketing entropy bound that the functionals considered in the present work also
satisfy.

4.2.3 Discussion

Theorem 4.7 motivates the use of ρ as a descriptor of a phase–modulated, periodic signal. A possible
application of the asymptotic guarantees is the construction of asymptoticlly valid confidence
intervals. Consider a situation when S1 and S2 are observed, Sk = ϕk(γk) + Wk, where γk ∼ µk.
It is tempting to use the proposed framework to test for ϕ1 = ϕ2 based on observations S1 and S2.
Such a test is justified if µ1 = µ2, but we do not provide theoretical guidance on how to calibrate
such a test otherwise.
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We do not present a theory for the choice of the window length M . Increasing M reduces the
probability of not capturing a whole period in a window of length M and the impact of potential
boundary effects. On the other hand, the amplitude of a noisy signal is increasing as the window
size increases, and Figure 3.3 shows how sensitive persistence diagrams are.

Model 2 introduces dependence between consecutive velocities (Vn)n∈N, but it is a very simple
model. For applications where γn represents a position in time, a more realistic model would assume
that (Vn)n∈N is itself an integrated process, for example, Vn+1 = Vn +han with (an)n∈N modelling
the acceleration. A reasonable assumption would be that the acceleration is a hidden Markov
chain. Under ergodicity assumptions akin to (4.9), we believe that arguments from Appendix 4.E
could be used to show that the reparametrisation sequence (frac(γn))n is mixing.

4.3 Total truncated persistence and functional representa-
tions of persistence diagrams

To show the invariance and statistical properties outlined in Sections 4.1 and 4.2 respectively, we
have used a certain number of assumptions on the regularity of the normalized functionals, both
as functions t 7→ ρt(S) for a fixed signal S, as well as S 7→ ρt(S) for a fixed t. In this section,
we introduce a continuous variant of the total p-persistence, namely the ϵ-truncated p-persistence,
and show some of its continuity properties. Then, we show what effect using it as weights in ρ and
ρ has on the properties of those functionals. We rely on the background provided for persistent
homology in Section 2.5 and on the terminated persistence modules from Section 3.2.

4.3.1 Total truncated persistence

The total p-persistence of the persistence diagram of sub level sets of a function quantifies the
oscillations of that function. It is similar to total variation for functions on the interval (Plonka
and Zheng, 2016). For p ∈ R+, the total p-persistence of a persistence diagram D is the sum of

p-powers of the lifetimes of points, persp(D) =
(∑

(x,y)∈D w(b, d)p
)1/p

, where w(b, d) := d − b is

the persistence of a point (b, d) ∈ R2.

In the case of sublevel set persistence, points with small persistence might be attributed to
noise and quantify the regularity of the function, while the more persistent ones capture the
biggest oscillations of ϕ. The functionals we propose in Section 4.3.2 use persistence and total
persistence to give different weights to certain features, reflecting the intuition given above. The
stability of the signatures with respect to the generating process depends on the stability of the
weights with respect to the input functions, as well as lower- and upper-bounds thereof.

Continuous functions on compact domains are bounded and attain their extremal values, but,
similarly to total variation, that is not enough to bound their total persistence because of possible
small oscillations. An α−Hölder function has total p-persistence bounded by a constant, for p >
1/α (Perez, 2022a), but there are functions for which it is not finite for p < 1/α. For example,
consider the function with Hödler constant Λ composed of ‘teeth’ with height ϵ and width 2(ϵ/Λ)1/α

each. The interval [0, T ] can be covered with T (Λ/ϵ)1/α/2 such tents, so that the total p-persistence
of this function is TΛ1/αϵp−1/α, which is unbounded as ϵ→ 0 when α < 1/p. As a remedy, Perez
(2022a) suggests to consider the persistence of the truncated diagram D ∩ ∆ϵ, for some ϵ > 0,
where ∆ϵ := {(b, d) ∈ D | d − b ≥ ϵ}. This leads to a bounded total persistence, but continuity
with respect to the sup norm is lost, even on very regular functions. Namely, consider fϵ′ the
Lipschitz function composed of TΛ/ϵ′ “teeth”, each of height ϵ′. Then,

perspp(Dfϵ′ ∩∆ϵ) =

{
TΛϵ′p−1 if ϵ ≤ ϵ′,
0 if 0 < ϵ < ϵ,

since Dfϵ′ ∩ ∆ϵ is empty in the latter case. The total persistence is continuous for Lipschitz
functions, with the modulus of continuity depending on the Lipschitz constant (Cohen-Steiner
et al., 2010, Total Persistence Stability Theorem), but this truncation prevents continuity.

To guarantee both boundedness and continuity, we introduce the ϵ-truncated p-persistence. We
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define the ϵ-truncated total p-persistence as

persp,ϵ(D) =

 ∑
(x,y)∈D

wϵ(b, d)p

1/p

and supp(wϵ) ⊂ ∆ϵ := {(b, d) ∈ R2 | d− b ≥ ϵ}.
The ϵ-truncated persistence is the persistence of a diagram shifted by (ϵ/2,−ϵ/2), perspp,ϵ(D) =

perspp,0({(b + ϵ/2, d − ϵ/2) | (b, d) ∈ D}). Alternatively, we can think of shifting the diagonal, as
illustrated in Figure 4.4. Proposition 4.9 shows that truncated persistence is continuous in the
bottleneck distance between diagrams. Note that the modulus of continuity in the proof is not
uniform, since it depends on the number of points and the maximal persistence of a point in the
diagram.

Proposition 4.9. The ϵ-truncated p−persistence is continuous with respect to the bottleneck dis-
tance, for every persistence diagram of a continuous function h : [0, T ]→ R.

Proof. The persistence diagram D1 = D(h) is contained in [minh,maxh] × [minh,maxh]. Since
the module is q-tame, rank(V(h)s → V(h)s+ϵ/8) < ∞, so M := card(D1 ∩ ∆ϵ/4) < ∞ and
max(b,d)∈D1

d − b ≤ U < ∞, for some U ∈ R. Let D2 be such that dB(D1, D2) < ϵ/4. Then,
card(D2∩∆ϵ) ≤ card(D1∩∆ϵ/2) ≤M and the persistence of a point in D2 is bounded by U + ϵ/2.
Trivially, the truncated persistence of a point is 2-Lipschitz,

|wϵ(b, d)− wϵ(b
′, d′)| ≤ (d− b− ϵ)+ − (d′ − b′ − ϵ)+ ≤ |d− b− (d′ − b′)| ≤ 2∥(b, d)− (b′, d′)∥∞.

Then, we use the technique from the proof of the (Cohen-Steiner et al., 2010, Total Persistence
Stability Theorem): writing |xp2 − xp1| = |p

∫ x2

x1
tp−1dt| ≤ p|x2 − x1|max(xp−1

1 , xp−1
2 ), we get∣∣∣∣∣ ∑

x∈D1

wϵ(x)p − wϵ(Γ(x))p

∣∣∣∣∣ ≤p∑
D1

|wϵ(x)− wϵ(Γ(x))|(wϵ(x)p−1 + wϵ(Γ(x))p−1)

≤4pM(U + ϵ/2)p−1dB(D1, D2).

By abuse of notation, we will define persp,ϵ(h) := persp,ϵ(Dh). Unsurprisingly, the ϵ-truncated
total p-persistence of a Hölder function on [0, T ] is bounded.

Proposition 4.10. Let h ∈ Cα
Λ([0, T ],R). For p > 1 + 1/α,

perspp,ϵ(h) ≤ (A(h)− ϵ)p
(

1 + pT
(
2Λ
ϵ

)1/α)
=: Cp,Λ,α,T ,

where A(h) := maxh−minh is the amplitude of h.

Proof of Proposition 4.10. We first note that when A(h) ≤ ϵ, then perspp,ϵ(h) = 0. For the non-
trivial case, we follow Perez (2022a, proof of Theorem 4.13). An upper-bound of the covering
number of the image of h, at radius τ > 0 is T (2Λ/τ)1/α + 1, so that

perspp,ϵ(h) ≤ p
∫ A(h)

ϵ

(
T

(
2Λ

τ

)1/α

+ 1

)
(τ − ϵ)p−1dτ

= (A(h)− ϵ)p + pT (2Λ)1/α
∫ A(h)

ϵ

(τ − ϵ)p−1

τ1/α
dτ

We recall that since A(h)
τ ≥ 1 and 1

α ≤ p− 1, (A(h)
τ )1/α ≤ (A(h)

τ )p−1, so

(τ − ϵ)p−1

τ1/α
=

1

A(h)1/α

(
A(h)

τ

)1/α

(τ − ϵ)p−1 ≤ A(h)p−1−1/α
(

1− ϵ

τ

)p−1

.
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∆ϵ

∆
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d

wϵ
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L U

Figure 4.4: On the left, a persistence diagram and ∆ϵ, the diagonal shifted by (−ϵ/2, ϵ/2). The
truncated persistence wϵ is the distance to ∆ϵ. The points in the shaded region have zero truncated
persistence. On the right, illustration of the projection in (4.18). Points from a diagram and their
projections are illustrated with circular and square markers.

Finally, by recognizing that 1− ϵ/τ ≤ 1− ϵ/A(h), we obtain

perspp,ϵ(h) ≤ (A(h)− ϵ)p + pT (2Λ)1/αA(h)p−1−1/α(1− ϵ/A(h))p−1(A(h)− ϵ)
≤ (A(h)− ϵ)(1− ϵ/A(h))p−1[A(h)p−1 + pT (2Λ)1/αA(h)p−1−1/α]

≤ (A(h)− ϵ)p
(

1 + pT
(

2Λ
A(h)

)1/α)
≤ (A(h)− ϵ)p

(
1 + pT

(
2Λ
ϵ

)1/α)
,

where we have used that ϵ1/α ≤ A(h)1/α

By Hölder continuity, A(h) ≤ TαΛ, so the ratio TΛ1/α

A(h)1/α
≥ 1 denotes how small the amplitude

of h is relative to what it could be, under the Hölder assumption. Interestingly, that term increases
as A(h) gets smaller, but the whole bound is indeed increasing in A(h), which is of the order of
A(h)p +A(h)2p−1/α.

Remark 4.11. Using the proof of Proposition 4.10, we can also upper-bound the total ϵ-truncated
p-persistence by perspp,ϵ(h) ≤ TαpΛp(1 + p21/α).

With A(h) finite and using Proposition 4.9, we could immediately show that total p-persistence
is also continuous with respect to the input function. However, we can even show that it is
Lipschitz, following the proof of (Perez, 2022a, Lemma 3.20). The argument is based on a Hölders’
inequality and the uniform upper-bound on persistence from Proposition 4.10.

Proposition 4.12 (Continuity of truncated p–persistence). The total ϵ-truncated p-persistence
perspp,ϵ : C([0, T ],R)→ R is continuous. In addition, perspp,ϵ is Lipschitz over Hölder functions:

for any f, g ∈ Cα
Λ([0, T ]) such that p− 2 > 1

α ,

|perspp,ϵ(f)− perspp,ϵ(g)| ≤ p∥f − g∥∞
(

persp−1
p−1,ϵ(f) + persp−1

p−1,ϵ(g)
)

≤ Cp−1,Λ,α,T ∥f − g∥∞.

Finally, we give a lower–bound for the truncated persistence. Such a result will be necessary
to show the continuity of the class of normalized functionals ρ, which we define in Section 4.3.2.

Proposition 4.13 (Lower-bound on p−persistence). For continuous functions f,W : [0, T ]→ R,

perspp,ϵ(f +W ) ≥ perspp,ϵ+A(W )(f).

Proof. Since pers is translation-invariant (persp,ϵ(f + c) = persp,ϵ(f), for any constant c > 0),
we can assume that A(W ) = 2∥W∥∞. Let Γ : D(f) → D(f + W ) be a matching between
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the diagrams and denote by c(Γ) the associated cost. Thanks to the bottleneck stability theorem
(Proposition 2.38), infΓ c(Γ) ≤ ∥W∥∞. Then, for any (b, d) ∈ D(f) and (b′, d′) = Γ((b, d)) ∈ D(f+
W ), we have d′ − b′ ≥ d− b− 2c(Γ) and, for any δ > 0, D(f) ∩∆2c(Γ)+δ ⊂ Γ−1(D(f +W ) ∩∆δ).
Then,

perspp,ϵ(f +W ) =
∑

(b′,d′)∈D(f+W )

wϵ(b
′, d′)p

≥
∑

(b′,d′)∈D(f+W )∩∆δ

wϵ(b
′, d′)p

≥
∑

(b,d)∈Γ−1(D(f+W )∩∆δ)

wϵ((b, d)− c(Γ)(−1, 1))p

≥
∑

(b,d)∈D(f)∩∆2c(Γ)+δ

wϵ+2c(Γ)(b, d)p.

For δ = ϵ, the last quantity is equal to perspp,ϵ+2c(Γ)(f). By taking the infimum over all matchings

Γ, we obtain perspp,ϵ(f +W ) ≥ perspp,ϵ+2∥W∥∞
(f).

The result is very weak, but it is tight. If we take f such that max f − min f = 2∥f∥∞ and
W = −αf , then f +W = (1−α)f and ∥W∥∞ = α∥f∥∞. Then, perspp,ϵ((1−α)f) = perspp,ϵ+2α(f).

Proof of Proposition 4.12. Let f, g ∈ C([0, T ]) such that ∥f − g∥∞ < ϵ/4. Let Γ : D(f) → D(g)
be a matching. Recall that |wϵ(b, d) − wϵ(ηb, ηd)| ≤ |b − ηb| + |d − ηd| ≤ 2∥(b, d) − (ηb, ηd)∥∞. In
addition, if d − b < ϵ/2, then both wϵ(b, d) = 0 = wϵ(Γ(b, d)). Using the bound on the difference
of p-powers as in the proof of Proposition 4.9,∣∣∣∣∣∣

∑
(b,d)∈D(f)

wϵ(b, d)p −
∑

(b′,d′)∈D(g)

wϵ(b
′, d′)p

∣∣∣∣∣∣ ≤ p
∑

(b,d)∈D(f)

|wϵ(b, d)− wϵ(Γ(b, d))| max
x∈{(b,d),Γ(b,d)}

wϵ(x)p−1

≤ 2p∥f − g∥∞
∑

(b,d)∈D(f)
d−b≥ϵ/2

max
x∈{(b,d),Γ(b,d)}

wϵ(x)p−1

≤ p∥f − g∥∞
∑

(b,d)∈D(f)
d−b≥ϵ/2

(wϵ(b, d) + 2ϵ/4)p−1.

Since f is continuous on a compact domain, it is uniformly continuous, so the right-hand side is
finite and depends only on f .

For the Lipschitz character, we follow the proof of (Perez, 2022a, Lemma 3.20). For f, g ∈
Cα

Λ([0, T ]),∣∣∣∣∣∣
∑

(b,d)∈D(f)

wϵ(b, d)p −
∑

(b′,d′)∈D(g)

wϵ(b
′, d′)p

∣∣∣∣∣∣ ≤ p
∑

(b,d)∈D(f)

|wϵ(b, d)− wϵ(Γ(b, d))| max
x∈{(b,d),Γ(b,d)}

wϵ(x)p−1

≤ 2p∥f − g∥∞

 ∑
(b,d)∈D(f)

wϵ(b, d)p−1 +
∑

(b′,d′)∈D(g)

wϵ(b
′, d′)p−1


= 2p(persp−1

p−1,ϵ(D(f)) + persp−1
p−1,ϵ(D(g))∥f − g∥∞.

By Proposition 4.10, persp−1
p−1,ϵ(D(f)) ≤ Tα(p−1)Λp−1(1 + (p− 1)21/α), so that

|perspp,ϵ(D(f))− perspp,ϵ(D(g))| ≤ 4pTα(p−1)Λp−1(1 + (p− 1)21/α)∥f − g∥∞.

4.3.2 Linear and normalized functionals

We have discussed functional representations of persistence diagrams in Section 2.5.7. Many pop-
ular functionals are linear, while in the context of signatures of periodic functions, it makes sense
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to normalize by the total persistence. As it is usually the case with functionals of persistence, we
present a general set of assumptions and we show examples of functionals from the literature (or
of their adaptation) which fit within the prescribed framework.

Consider (T, d) a Euclidean space and let H be a Banach space of functions T → R. Finally,
let k : R2 → H be a map, often called ‘kernel’, which to a point (b, d) in the plane associates a
function k(b, d). For a persistence diagram D with persp,ϵ(D) > 0, the linear and the normalized
functionals are of the form

ρ(D) =
∑
x∈D

wϵ(x)pk(x), ρ(D) =
ρ(D)∑

x∈D wϵ(x)p
. (4.13)

Otherwise, ρ(D) = 0 = ρ(D). We will abuse notation and write ρ(f) := ρ(D(f)). Compared
to how the functionals are usually introduced, we use the ϵ-truncated p-persistence instead of p-
persistence. As shown below in Proposition 4.19, this guarantees their continuity but leads to some
problems, notably because truncation can make non–empty diagrams empty.

Proposition 4.14. For any continuous function f : [0, T ]→ R with max f −min f > ϵ, the linear
and normalized functionals are well-defined.

Proof. Since f is continuous on a compact domain, it is also uniformly continuous and bounded.
Let δ > 0 be such that |f(t) − f(s)| < ϵ, whenever |s − t| < δ. By the reasoning of the proof
of (Cohen-Steiner et al., 2010, Persistence Cycle Lemma), |ω−1(]ϵ,∞[) ∩ D(f)| ≤ T

δ + 1. Let
Mf = max(f), mf = min(f). Then,

∥ρ(D(f))∥∞ ≤
∑

(b,d)∈D(f)

wϵ(d− b)p∥k(b, d)∥∞

≤ (T
δ + 1) · wϵ(Mf −mf )p max

(b,d)∈D(f)∩∆+
ϵ

∥k(b, d)∥∞.

As stated above, the number of points is bounded from above, and so is the total persistence. For
the normalized functional,

∥ρ(D)∥ ≤ (T
δ + 1) max

(b,d)∈D(f)∩∆+
ϵ

∥k(b, d)∥∞

≤1︷ ︸︸ ︷
wϵ(Mf−mf )

p∑
x∈D wϵ(x)p

.

We consider functionals ρ with a kernel k that satisfies the following assumptions:

1. k(x) has a uniformly bounded support, for all x ∈ R2

∃K ⊂ T compact, k(x)|T\K ≡ 0, ∀x. (4.14)

2. k(x) is Lipschitz, uniformly over x ∈ R2

∃L > 0, |k(x)(t)− k(x)(s)| ≤ Ld(s, t), ∀x ∈ R2, ∀s, t ∈ T. (4.15)

3. x 7→ k(x) is Lipschitz

∃Lk > 0, ∥k(x)− k(x′)∥H ≤ Lk∥x− x′∥∞, ∀ x, x′ ∈ R2. (4.16)

4. k(x) is uniformly-bounded on the diagonal

∃C ≥ 0, ∥k|∆∥∞ ≤ C. (4.17)

Hypotheses (4.16,4.17) ensure continuity of the functional, while (4.14,4.15) control the bracketing
entropy of the family of functionals.

Many functionals proposed in the literature do not satisfy (4.14) as is. To adapt them to this
assumption, we precompose the usual kernels with a projection, which we illustrate in Figure 4.4.
Specifically, let L < U ∈ R and consider πL,U : ∆≥0 → ∆≥0 the operator which maps points above
the diagonal, onto the upper triangle with corner at (L,U)

πL,U : ∆≥0 → ∆≥0

(b, d) 7→ (b, d) + (1,−1) min(max(d− U,L− b, 0), d−b
2 ).

(4.18)
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Remark 4.15. It is common in the topological data analysis literature that the proposed function-
als do not satisfy (4.14). Instead, it is assumed that all realizations of functionals have a compact
support (Berry et al., 2020) or that all diagrams have uniformly bounded birth and death val-
ues (Chazal et al., 2014). While in some cases, such assumptions are compatible with the model
for the data, we have not made such assumptions in Section 4.2.

We go back to Examples 2.41 and 2.42, which we adapt so that they satisfy the hypotheses
above. The calculations of the Lipschitz constants are carried out in Appendix 4.G.

Example 4.16 (Persistence Silhouette). The persistence silhouette (Chazal et al., 2014) is a
weighted sum of landscape functions Λ(b,d)(t) =

(
d−b
2 − |t− b+d

2 |
)
+

, for T = R. We set ks(b, d)(t) =

Λ(πL,U (b,d))(t), so that supp(ks(b, d)) ⊂ supp(Λs(L,U)) = [L,U ]. Since t 7→ ks(b, d) is piece–wise
linear with slopes 0, 1 and −1, we have L = 2 = Lk. The kernel is zero on the diagonal, so C = 0
is enough to satisfy (4.17).

Example 4.17 (Persistence Image). The kernel that would correspond to the persistence im-

age (Adams et al., 2017) is kpi(b, d)(x, y) = 1
2πσ2 exp

(
− (b−x)2+(d−y)2

2σ2

)
, for some σ > 0. We pro-

pose to modify this functional to have bounded support. Unfortunately, a simple truncation is
not enough, because the kernel would not be continuous at the truncation interface. In order to
preserve the Lipschitz character, we propose to multiply by the distance to a square of size 2σ to
(b, d), namely, for some r > 1, set

kpi,r(b, d)(x, y) =
(

2− ∥πL,U (b,d)−(x,y)∥∞
σ

)r
+
kpi(πL,U (b, d))(x, y)

Thus, the original persistence image kernel corresponds to r = 0 and L =∞, U =∞. The function

(x, y) 7→ exp(−(x2+y2)) is (4/e)-Lipschitz and (x, y) 7→
(

2− ∥(b,d)−(x,y)∥∞
σ

)r
+

is (r2r/σ)-Lipschitz,

for the Minkowski distance. Hence, Lkpi,r = 2r−1

πσ3 (r + 2) and L = 2r+1

πeσ3 .

Remark 4.18. We note a few differences with PersistenceCurves introduced in Chung and Lawson
(2022). In that article, the aggregation operator can be different from the sum used here. However,
the vectorizations are only curves, i.e T = R. In addition, for normalized functionals, the authors
restrict themselves to kernels of the form k(b, d)(t) = c1[b,d](t), for some c > 0.

Continuity of functionals has been studied, notably in Divol and Polonik (2019) and Chung
and Lawson (2022). In the first, it was fully characterized, but only for linear functionals. In the
latter, functionals were considered under the L1 metric. Due to the nature of the statistical results
in Section 4.2, we are particularly interested in ∥·∥∞, so we repeat the proof of (Divol and Polonik,
2019, Theorem 3) for linear functionals ρ and we derive results for normalized functionals ρ.

Proposition 4.19. Suppose that the persistence of any point in D1 and D2 is bounded by a uniform
constant U and that k satisfies (4.14), (4.16) and (4.17). Then,

∥ρ(D1)− ρ(D2)∥∞ ≤

Lkperspp,ϵ(D1) + p(LkU + C)
∑
k=1,2

persp−1
p−1,ϵ(Dk)

 dB(D1, D2), (4.19)

∥ρ(D1)− ρ(D2)∥∞ ≤
(
Lk + 2p(LkU + C)

persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)

perspp,ϵ(D1)

)
dB(D1, D2). (4.20)

Proof. Let Γ : D1 → D2 be a matching between the two diagrams. For any t ∈ T,

|ρ(D1)(t)− ρ(D2)(t)| ≤
∑
x∈D1

wϵ(x)p|k(x)(t)− k(Γ(x))(t)|+ k(Γ(x))(t)|wϵ(x)p − wϵ(Γ(x))p|

≤ sup
x∈D1

|k(x)(t)− k(Γ(x))(t)|
∑
x∈D1

wϵ(x)p

+ sup
x∈D1

|k(Γ(x))(t)|
∑
x∈D1

|wϵ(x)p − wϵ(Γ(x))p|

≤ LkdB(D1, D2)perspp,ϵ(D1)

+ p(LkU + C)
∑
x∈D1

|wϵ(x)− wϵ(Γ(x))|(wϵ(x)p−1 + wϵ(Γ(x))p−1),
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where in the last inequality, we used that

∥k(Γ(x))∥∞ ≤ Lk∥(x1, x2)− (x1+x2

2 , x1+x2

2 )∥∞ + ∥k
(
x1+x2

2 , x1+x2

2

)
∥∞ = Lk

x2−x1

2 + C.

The sum in the second term can be bounded from above by

max
x∈D1

|wϵ(x)−wϵ(Γ(x))|
∑
x∈D1

(wϵ(x)p−1+wϵ(Γ(x))p−1) ≤ dB(D1, D2)(persp−1
p−1,ϵ(D1)+persp−1

p−1,ϵ(D2)).

Consider now the normalized version.

|ρ(D1)(t)− ρ(D2)(t)| ≤|ρ(D1)(t)− ρ(D2)(t)|∑
x∈D1

wϵ(x)p
+ ρ(D2)

|∑x∈D1
wϵ(x)p −∑y∈D2

wϵ(y)p|∑
x∈D1

wϵ(x)p

≤dB(D1, D2)

(
Lk + p(LkU + C)

persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)

perspp,ϵ(D1)

)

+ p(LkU + C)dB(D1, D2)
persp−1

p−1,ϵ(D1) + persp−1
p−1,ϵ(D2)

perspp,ϵ(D1)

≤
(
Lk + 2p(LkU + C)

persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)

perspp,ϵ(D1)

)
dB(D1, D2).

Combine persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2) ≤ 2 maxk=1,2 persp−1
p−1,ϵ(Dk) with the observation that the

bound is symmetric so that we can have perspp,ϵ(D2) in the denominator.

Remark 4.20. The result we give for ρ is a special case of (Divol and Polonik, 2019, Theorem
3). To see this, notice that using the notations of that article, Lip(ϕ) = Lk, A = p, and α = p,
where ‘p’ is from our work. In their article, p = ∞ and a = 1. In particular, we see exactly that
∥k∥∞ ≤ LkU + C.

By Proposition 2.34, all points in the persistence diagram of a function f have birth value at
least min f and a death value of at most max f , so that U = 2A(f) is sufficient. Using Proposi-
tion 4.9, we can conclude from (4.19) (resp. (4.20)) that ρ (resp. ρ) is continuous with respect to
the bottleneck distance, on the space of persistence diagrams. Via stability of the diagram with
respect to the input from Proposition 2.38, it translates to continuity with respect to the input
function.

In Section 4.2, we show convergence of functionals of time series. These results are a consequence
of the bracketing entropy of F := (ρt)t∈K , ρt : RM → R being finite. It is a well-known result and
consequence of (4.14, 4.15).

Proposition 4.21. Let N[](ϵ,F , ∥ · ∥) denote the bracketing number of F , with brackets [u, l] of
size ∥u − l∥ ≤ ϵ. Consider ρ as in (4.2) with k satisfying (4.14, 4.15). Then, for any probability
measure P on RM and r ≥ 1,

N[](ϵ, {ρt}t∈T, ∥ · ∥Lr(P )) ≤
2D+1LD diam(K)

ϵD
,

where D is the dimension of T. As a consequence, the bracketing entropy J[](∞,F , ∥ · ∥Lr(P )) is
finite

J[](∞,F , ∥ · ∥Lr(P )) :=

∫ ∞

0

√
logN[](ϵ,F , ∥ · ∥Lr(P ))dϵ <∞.

Proof. First, since P is a probability measure, ∥ρt∥Lr(P ) =
(∫
|ρt|rdP

)1/r ≤ ∥ρt∥∞ ∫ dP = ∥ρt∥∞,
so N[](ϵ, {ρt}t∈T, ∥ · ∥Lr(P )) ≤ N[](ϵ, {ρt}t∈T, ∥ · ∥∞). Combining (4.15) with the fact that ρ(x) is a
weighted average of k, for any S ∈ RM and s, t ∈ T, the normalized functional is L-Lipschitz in
the following sense

|ρt(S)− ρs(S)| ≤ Ld(t, s).

Let K be given by (4.14). Then, (Kosorok, 2008, Theorem 9.22) states that

N[](2ϵL, {ρt}t∈K , ∥ · ∥∞) ≤ N(ϵ,K, d),
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where N(ϵ,K, d) is the covering ϵ-number of (K, d). By assumption, T is of finite dimension that
we will denote by D. By compacity of K, it has a finite diameter, say U . Therefore, N(ϵ,K, d) ≤
max(1, U

ϵD
).

Let t0 /∈ K, t1 ∈ K. We have that ρt1 is uniformly bounded,

|ρt1(S)| ≤ |ρt0(S)|+ Ld(t0, t1) = Ld(t0, t1),

so that ρt0 = 0 ∈ [ρt1 − ϵL, ρt1 − ϵL], for ϵ > d(t0, t1). The brackets in the proof of (Kosorok,
2008, Theorem 9.22) are of the form [ρt− ϵL, ρt + ϵL], so that N[](2ϵL, {ρt}t∈T, ∥ ·∥∞) ≤ N(ϵ,K, d)

for ϵ > d(t0, t1). In particular, one bracket is enough for ϵ > max(U1/D, d(t0, t1)), while, for
ϵ ≤ max(U1/D, d(t0, t1)), we have N[](2ϵL, {ρt}t∈T, ∥ · ∥∞) ≤ 1 + N[](2ϵL, {ρt}t∈K , ∥ · ∥∞) ≤ 1 +
N(ϵ,K, d) ≤ 2N(ϵ,K, d).

Finally, since Lr(P ) is dominated by ∥ · ∥∞ for any probability measure P ,

J[](δ, {ρt}t∈T, Lr(P )) =

∫ δ

0

√
log(N[](ϵ, {ρt}t∈T, Lr(P )))dϵ

≤
∫ δ

0

√
log(N[](ϵ, {ρt}t∈T, ∥ · ∥∞))dϵ

≤
∫ min(δ,2Lmax(U1/D,d(t0,t1)))

0

√
log(N( ϵ

2L ,K, d))dϵ

≤
∫ min(δ,2Lmax(U1/D,d(t0,t1)))

0

√
log (2D+1ULD)− 1

D
log(ϵ)dϵ.

As limδ→0

∫ 1

δ

√
− log(ϵ)dϵ <∞, we conclude that J[](δ, {ρt}t∈T, Lr(P )) <∞.

4.4 Numerical illustration

To illustrate the signatures and their stability, we propose to estimate the signatures of processes
with different periodic functions. Then, we compare the estimate to the signature of a process
with a different reparametrisation.

We will consider periodic functions ϕ1 and ϕ4 defined by

ϕθ = θ(sin(6πt) + |t− ⌊t⌋ − 1
2 | − 1

2 ) + 5 sin(4πt), for θ ∈ R.

The observed signal follows the discrete model (4.7), with T = 30 and a sampling rate of 50Hz.
The reparametrisations are generated by integrating twice a Markov chain of accelerations, with a
truncated Gaussian transition kernel. The noise is a Gaussian process with covariance

Γ(s, t) = σ2 exp

(
− (s− t)2

2τ2

)
.

We fix the temporal scale τ , but we vary σ = 0.1, 0.5, 2. to illustrate the impact of noise on the
signature.

For ρ, we take the silhouette introduced in Example 4.16, where the weights are the 0.2-
truncated 1-persistence (ϵ = 0.2, p = 1) and we use the projection π−9,9 as in (4.18). We infer
the signatures on 3-second windows (M = 3 · 50). We construct the 1%-confidence intervals by
resampling 200 times, with block lengths of 2 seconds (L = 2 · 50).

In Figure 4.5, for the same random realization γ1, we calculate the empirical signature F̂ for
ϕ1 and ϕ4, and estimate the corresponding confidence intervals for F . For low noise levels, the
variance due to the number of observations and the variability in the endpoints is small, compared
to the difference between the functionals. As the noise level increases, the observed function looses
its recurrent appearance and the signatures become dominated by the noise.

Consider now two observations with the same periodic function ϕ1, but different reparametri-
sations γ1, γ2. In Figure 4.6, we can see that for small values of noise, the signatures are close,
what confirms their invariance to reparametrisation. It is worth noting that the signals contain
different numbers of periods. For more noisy observations, the signatures lose the robustness.
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Figure 4.5: Signatures of ϕ1 and ϕ4, estimated on reparametrized signals described above. The top
row shows the first 3-second window from the 30-second signal, for both functions. The bottom
row shows the estimated signatures and the confidence intervals.
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Figure 4.6: Signatures of ϕ1, estimated on two different reparametrized observations. The top
row shows the first 3-second window from the two observed signals. The bottom row shows the
estimated signatures and the confidence intervals.



Appendix

4.A Measurability of functionals

The functionals are of the form ρt : C([0, T ],R)→ R, t ∈ T, where the index set T is a (compact)
metric space. Then, we will apply these functions pathwise and study the random variable ρ(S),
where ρ is seen as a map C([0, T ],R) to RT. Since ρt is applied pathwise, it is not obvious under
what conditions ρ(S) is a random variable. Such considerations could be circumvented by using
outer probabilities (Radulović, 1996, Kosorok, 2008), but we address them in Proposition 4.22.

As a stochastic process, S : (Ω,A)→ (C([0, T ], σ(R[0,T ]))) is a random variable on the measured
space (Ω,A, η), where σ(R[0,T ]) is the σ-algebra generated by the product topology on R[0,T ] and
η is the law of S. In our model, η is determined by ϕ, µ and ν.

Proposition 4.22. Consider two independent random variables

γ : (Ωr,Ar)→ (C([0, T ],R), σ(∥ · ∥∞)), W : (Ωn,An)→
(
C([0, T ],R), σ(R[0,T ])

)
,

and S = ϕ ◦ γ + W as in (4.1). If f : C([0, T ],R) → C(T,R) is continuous and C(T,R) is
∥ · ∥∞-separable, then f(S) is (C(T,R), ∥ · ∥∞)-measurable.

Proof (proposition 4.22). First, assume that S is weakly-measurable on E = C([0, T ],R) and that
(C([0, T ],R), ∥ ·∥∞) is separable. Using lemma 2.2, we get that S is σ(∥ ·∥∞)-measurable. Because
f : C([0, T ],R) → C(T,R) is continuous, it is measurable for the two σ-algebras on the domain
and co-domain. This allows us to conclude that f(S) is (C(T,R), σ(∥ · ∥∞))-measurable.

Let us now verify the assumptions of Lemma 2.2. By continuity of ϕ, the composition ϕ ◦ γ
is σ(R[0,T ])-measurable. As a sum of two (independent) random variables, S = ϕ ◦ γ + W is
σ(R[0,T ])-measurable for (Ω,A), where Ω = Ωr × Ωn and A = Ar ⊗ An. The product σ-algebra
σ(R[0,T ]) coincides with that of weak measurability on R[0,T ]. The space C([0, T ],R) with the
topology induced by ∥f∥∞ := supx∈[0,T ] |f(x)| is a Banach, separable space. Any subspace of a
separable metric space is separable, so S(Ω) is also separable.

4.B Invariance of the signature to reparametrisation

Consider (C([0, T ],R), ∥ · ∥∞) with the Borel σ-algebra. We assume that µ1, µ2 are Borel measures
on the restriction of that σ-algebra to a closed subspace Γ ⊂ C([0, T ]). We denote by δt : γ 7→ γ(t)
the evaluation map, we let (δt)⋆µ1 = µ1 ◦ (δt)

−1 be the measure which characterizes the marginal
distribution of γ1(t) and we proceed similarly for µ2. Note that the evaluation is measurable, as it
corresponds to weak-measurability. Similarly, we denote δ0,T = (δ0, δT ) : γ 7→ (γ(0), γ(T )) ∈ R2.

Proposition 4.23. If the marginals (δ0,T )⋆µ1 and (δ0,T )⋆µ2 are equal, then

F (ϕ ◦ γ1) = F (ϕ ◦ γ2).

Proof. We first need to show that we can condition on (γ(0), γ(T )). The space of continuous
functions C([0, T ],R) is Polish, and so is Γ, because it is a closed subspace. Let A = σ(δ0,T ) be the
σ-algebra generated by the evaluations. By (Bogachev, 2007, Corollary 10.4.6), there is a regular
conditional measure ((µ1)x(dγ))x∈R2 .

73
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Proposition 2.35 implies that γ 7→ ρt(ϕ ◦ γ) is constant on δ−1
0,T (x), for any x = (s, r) ∈ R2. For

any t ∈ T, using the regular conditional measure property (Bogachev, 2007, Definition 10.4.1),

Ft(ϕ ◦ γ1) =

∫
Γ

ρt(ϕ ◦ γ)µ1(dγ)

=

∫
R2

∫
δ−1
0,T (x)

ρt(ϕ ◦ γ)(µ1)x(dγ)(δ0,T )⋆µ1(dx)

=

∫
R2

∫
δ−1
0,T (x)

ρt(ϕ ◦ γ)(µ2)x(dγ)(δ0,T )⋆µ2(dx)

= Ft(ϕ ◦ γ2).

Since γ1, γ2 are reparametrisations, we require Γ to be included in the space of injective func-
tions. An example is given in (4.6).

While it is disappointing to require equality of the marginals (δ0,T )⋆µ1 and (δ0,T )⋆µ2 in Propo-
sition 4.23, removing this assumption poses a difficulty which we now discuss. Consider γ1 and γ2
fixed, assume that R := R1 < R2 and let T1 = γ−1

2 (R). For continuous functions on an interval,
we can only control the stability of the persistence diagram in the bottleneck distance dB (see
Proposition 2.38).

As an example, consider the case when R2 = R+1. Then, the distance between the persistence
diagrams dB(D(ϕ ◦ γ1), D(ϕ ◦ γ2)) is of the order of the amplitude A(ϕ) := maxϕ − minϕ, as
the multiplicity of the point (minϕ,maxϕ) differs by at least one between both diagrams. The

term
perspp,ϵ(ϕ◦γ1)+perspp,ϵ(ϕ◦γ2)

perspp,ϵ(ϕ◦γ1)
is roughly constant (1 ≤ R1+R2

R1
≤ 3). Therefore, the fact that the

difference between ρ(ϕ ◦ γ1) and ρ(ϕ ◦ γ2) will be small is not reflected by Proposition 4.19 which
gives a trivial bound. Instead, let D1 = D((ϕ ◦ γ2)|[0,T1]

), D2 = D((ϕ ◦ γ2)|[T1,T ]) and consider

∥ρ(ϕ ◦ γ1)− ρ(ϕ ◦ γ2)∥∞ ≤ ∥ρ(D1)− ρ(D1 ⊔D2)∥∞ + ∥ρ(D1 ⊔D2)− ρ(ϕ ◦ γ2)∥∞. (4.21)

Conveniently, a normalized functional of a union of diagrams is a weighted average of the normalized
functionals of the individual diagrams

ρ(D1 ⊔D2)(t) = ρ(D1)(t)
perspp,ϵ(D1)

perspp,ϵ(D1 ⊔D2)
+ ρ(D2)(t)

perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)
,

so that∣∣∣∣ρ(D1)(t)− ρ(D1 ⊔D2)(t)

∣∣∣∣ =

∣∣∣∣ρ(D1)(t)

(
perspp,ϵ(D1)

perspp,ϵ(D1 ⊔D2)
− 1

)
+ ρ(D2)(t)

perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)

∣∣∣∣
= |ρ(D1)(t)− ρ(D2)(t)| perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)

≤ (LkAϕ + C)
perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)

≤ (LkAϕ + C)
perspp,ϵ(D2)

perspp,ϵ(D1)
,

what is on the order of O(R2/R− 1).

The second term in (4.21) is more problematic. Thanks to Proposition 4.19, it is the error made
when approximating the diagram of ϕ|[0,R2]

by the union of diagrams of ϕ|[0,R] and ϕ|[R,R2]
. For

a particularly good cutting point R, that is, when R is a global maximum, D1 ⊔D2 = D(ϕ ◦ γ2).
However, in general, the support of the union of diagrams differs from the diagram of the whole
interval. To show stability, we miss the study of dB(D1⊔D2, D(ϕ◦γ2)). A possible avenue is given
by the tools introduced in Herbert Edelsbrunner et al. (2023).
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4.C Proof of Theorem 4.3

We start by treating S path–wise. Using Proposition 4.19 and the bottleneck stability of persistence
diagrams,

∥ρ(ϕ ◦ γ1 +W )− ρ(ϕ ◦ γ2 +W )∥ = ∥ρ(ϕ+Wγ−1
1

)− ρ(ϕ+Wγ−1
1

)∥

≤ Lk

(
1 + 4pU max

k=1,2

persp−1
p−1,ϵ(ϕ+W

γ
−1
k

)

perspp,ϵ(ϕ+W
γ
−1
k

)

)
∥Wγ−1

1
−Wγ−1

2
∥∞,

(4.22)

where Lk is a regularity constant of the kernel and U is an upper-bound on the persistence of
any point in both diagrams. The persistence of any point in the diagram D(h) of a function h
is bounded by Ah. Hence, the persistence of a point in D(ϕ + W ) is bounded by U = Aϕ+W ≤
Aϕ +AW ≤ Aϕ + (Aϕ − ϵ− q) ≤ 2Aϕ.

Next, we obtain an upper–bound of maxk=1,2

persp−1
p−1,ϵ(ϕ+W

γ
−1
k

)

perspp,ϵ(ϕ+W
γ
−1
k

)
. By Proposition 2.6, we can

assume that W has α-Hölder paths with a (random) constant ΛW , for α := min(1,r1−1)
r2

. This

implies that 1
α + 1 < p and we use the continuity of truncated persistence from Proposition 4.12

to obtain

persp−1
p−1,ϵ(ϕ+Wγ−1

k
) ≤ persp−1

p−1,ϵ(ϕ|[0,T ]) + (p− 1)∥W∥∞(persp−2
p−2,ϵ(ϕ|[0,T ]) + persp−2

p−2,ϵ(Wγ−1
k

)).

(4.23)
For any x ∈ [0, 1] and p ≥ 0, the function p 7→ xp is decreasing, so that

persp−1
p−1,ϵ(ϕ|[0,T ]) = (Aϕ − ϵ)p−1

∑
(b,d)∈D

max
(

d−b−ϵ
Aϕ−ϵ , 0

)p−1

≤ (Aϕ − ϵ)p−1
∑

(b,d)∈D

max
(

d−b−ϵ
Aϕ−ϵ , 0

)p−2

= (Aϕ − ϵ)persp−2
p−2,ϵ(ϕ).

Since ∥W∥∞ < (Aϕ − ϵ)/2 and the persistence does not depend on the parametrisation, equa-
tion (4.23) becomes

persp−1
p−1,ϵ(ϕ+Wγ−1

k
) ≤ (Aϕ − ϵ)persp−2

p−2,ϵ(ϕ)

(
1 + p−1

2

(
1 +

persp−2
p−2,ϵ(W )

persp−2
p−2,ϵ(ϕ)

))
≤ p(Aϕ − ϵ)persp−2

p−2,ϵ(ϕ)

(
1 + 1

2

persp−2
p−2,ϵ(W )

persp−2
p−2,ϵ(ϕ)

)
.

An upper–bound for the persistence of W is given in Proposition 4.10

perspp,ϵ(W ) ≤ (AW − ϵ)p
(

1 + pT
(
2ΛW

ϵ

)1/α)
,

where ΛW is the path–wise Hölder constant of W . The amplitude Aϕ upper–bounds the persistence
of a point and it is also realized as the persistence of a pair of a global minimum and a global
maximum, so persp−2

p−2,ϵ(ϕ|[0,R]) ≥ (R− 2)(Aϕ − ϵ)p−2 and hence

perspp,ϵ(W )

persp−2
p−2,ϵ(ϕ)

≤
(

AW−ϵ
Aϕ−ϵ

)p−2

(AW − ϵ)2 T
R−2

(
1 + p

(
2ΛW

ϵ

)1/α)
.

Putting the above together, with p ≥ 2,

persp−1
p−1,ϵ(ϕ+Wγ−1

k
) ≤ p(Aϕ − ϵ)persp−2

p−2,ϵ(ϕ)

×
(

1 +
(

AW−ϵ
Aϕ−ϵ

)p−2

(AW − ϵ)2 T
R−2 max

(
1, p

(
2ΛW

ϵ

)1/α))
.
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We have therefore an upper–bound for the numerator. To lower–bound the denominator, we use
Proposition 4.13:

perspp,ϵ(ϕ+Wγ−1
k

) ≥ perspp,ϵ+AW
(ϕ)

≥ (R− 2)(Aϕ − (AW + ϵ))p

≥ (R− 2)(Aϕ − (Aϕ − ϵ+ q + ϵ))p = (R− 2)qp.

We conclude that CΛW
upper-bounds maxk

persp−1
p−1,ϵ(ϕ+W

γ
−1
k

)

perspp,ϵ(ϕ+W
γ
−1
k

)
,

CΛW
:= Lk

(
1 +

8p2Aϕ

(R−2)qp (Aϕ − ϵ)persp−2
p−2,ϵ(ϕ)

×
(

1 +
(

AW−ϵ
Aϕ−ϵ

)p−2

(AW − ϵ)2 T
R−2 max

(
1, p

(
2ΛW

ϵ

)1/α)))
.

As AW ≤ Aϕ − ϵ − q, the only remaining stochastic term in CΛW
is Λ

1/α
W . Also, the bound only

depends on R (which is fixed), but not on γ itself.
Let π : Ar,1×Ar,2 → R be a coupling of µ1 and µ2. Specifically, π is a measure on the product

space (G × G,Ar,1 ⊗Ar,2), such that π(A,G) = µ1(A) and π(G, A) = µ2(A), for all A ∈ A. Then,
π ⊗ ν : ((A1, B1), (A2, B2)) 7→ π(A1, A2)ν(B1 ∩B2) is a coupling of µ1 ⊗ ν and µ2 ⊗ ν. Using the
coupling and (4.22),

|E[ρ(ϕ ◦ γ1 +W ) |W ]− E[ρ(ϕ ◦ γ2 +W ) |W ]| = |Eπ[ρ(ϕ ◦ γ1 +W )− ρ(ϕ ◦ γ2 +W ) |W ]|
≤ Eπ [|ρ(ϕ ◦ γ1 +W )− ρ(ϕ ◦ γ2 +W )| |W ]

≤ CΛW
E[∥Wγ−1

1
−Wγ−1

2
∥∞ |W ],

≤ CΛW
ΛWE[∥γ−1

1 − γ−1
2 ∥α∞].

We have thus completely separated the bound into a product, with terms depending on ν and
(µ1, µ2).

On one hand, it remains to take the expectation with respect to W . We bound the moments
of ΛW using Theorem 4.32, obtaining

E[ΛW ] ≤ 16α+1
α (Kr2,r1)1/r2

E[Λ
1+1/α
W ] ≤ 6r2+2K(1/r2+1/(r1−1))

r2,r1 .

On the other hand, by Jensens’ inequality, E[∥γ−1
1 − γ−1

2 ∥α∞] ≤ E[∥γ−1
1 − γ−1

2 ∥∞]α. Using the
lower–bound on the modulus of continuity,

sup
r∈[0,R]

|γ−1
1 (r)− γ−1

2 (r)| = sup
t∈[0,T ]

|t− γ−1
2 (γ1(t))| ≤ sup

t∈[0,T ]

1

vmin
|γ2(t)− γ1(t)|.

Taking the infimum over couplings, we obtain the 1-Wasserstein distance W1(µ1, µ2).

4.D Proof of Proposition 4.5

We start by proving a lemma.

Lemma 4.24 (Perturbed, path–wise version). Consider W ∈ Cα
Λ([0, T ],R) and set δ := ∥W∥∞.

If 2δ ≤ maxϕ−minϕ, then

∥ρ(ϕ+W )− ρ(ϕ)∥∞ ≤ Lk(P1δ + P2δ
2 + P3δ

3) =: LkP (δ),

where

P1 =1 + 4AϕCTC
ϵ
p−1,p(ϕ),

P2 =8CTC
ϵ
p−1,p(ϕ) + 4pAϕ(CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)
),

P3 =4p
(
CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)

)
,

and

CT =
⌈T ⌉
⌊T ⌋ − 2

, Cϵ
p,p′(ϕ) =

perspp,ϵ(ϕ)

persp
′

p′,ϵ(ϕ)
, Aϕ = ∥ϕ∥∞.
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Proof. By the diagram stability theorem, dB(D(ϕ + W ), D(ϕ)) ≤ ∥W∥∞ ≤ δ. The persistence of
a point in D(ϕ) and D(ϕ + W ) is bounded by 2Aϕ and 2Aϕ+W ≤ 2(Aϕ + δ) respectively. Using

Proposition 4.12, we also bound persp−1
p−1,ϵ(ϕ+W ) ≤ persp−1

p−1,ϵ(ϕ)+pδ(persp−2
p−2,ϵ(ϕ)+persp−2

p−2,ϵ(W )).

Using the uniform bound on persistence from Proposition 4.10, persp−2
p−2,ϵ(W ) ≤ Cp−3,Λ,α,T . Finally,

putting these together with Proposition 4.19, we obtain:

∥ρ(ϕ)− ρ(ϕ+W )∥ ≤ Lk

(
1 + 2pU

persp−1
p−1,ϵ(ϕ) + persp−1

p−1,ϵ(ϕ+W )

perspp,ϵ(ϕ)

)
dB(D(ϕ), D(ϕ+W ))

≤ δLk

(
1 + 4p(∥ϕ∥∞ + δ)

2⌈T⌉persp−1
p−1,ϵ(ϕ|[c,c+1])+pδ(persp−2

p−2,ϵ(ϕ)+Cp−3,Λ,α,T )

(⌊T⌋−2)perspp,ϵ(ϕ)

)
≤ δLk

[(
1 + 4AϕCTC

ϵ
p−1,p(ϕ)

)
+(

8CTC
ϵ
p−1,p(ϕ) + 4pAϕ(CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)
)
)
δ1 +

4p
(
CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)

)
δ2
]
.

Proof of Proposition 4.5. Combining lemma 4.24 and theorem 4.2,

∥ρ(ϕ ◦ γ1 +W1)− ρ(ϕ ◦ γ2 +W2)∥ ≤ ∥ρ(ϕ+ (W1)γ−1
1

)− ρ(ϕ|[0,R1]
)∥

+ ∥ρ(ϕ|[0,R1]
)− ρ(ϕ|[0,R2]

)∥
+ ∥ρ(ϕ|[0,R2]

)− ρ(ϕ+ (W2)γ−2
2

)∥
≤ Lk(P (δ1) + P (δ2) + 2 4

min(R1,R2)
ρ(ϕ|[c,c+1]))

≤ Lk

(
P (δ1) + P (δ2) + 8

min(R1,R2)−2
Aϕ

2

)
≤ Lk

(
P (max(δ1, δ2)) +

4Aϕ

min(R1,R2)−2

)
.

4.E Exponential mixing of the reparametrisation process

Proposition 4.25. Consider (γn)Nn=1 as in (4.8) with (Vn)Nn=1 as in Model 1 or 2. Then,
βfrac(γ)(k)→ 0 exponentially fast.

The proof of this proposition relies on the continuity of the transition kernel with respect to
the Lebesgue measure and the use of Theorem 2.17. In order to apply it, we need to verify (2.4)
called a Doeblin condition. It consists in providing a non-trivial lower–bound on the family of
measures (P r(z,A))z. We first treat the case where (Vn)n∈N are all i.i.d. The case where (Vn)n∈N
is a Markov Chain is similar, but technically more difficult.

4.E.1 Model 1

In Model 1, (γn)n∈N is a Markov chain. Indeed, γn = γn−1 + Vn−1, where Vn is independent from
(Vk)k<n and γ0. We will now verify (2.4). Let r := ⌈2/(b− a)⌉ and ϵ = ⌊ b−a

r ⌋.

Lemma 4.26. Consider two measures µ1, µ2 such that µk(A) ≥ ckµ(A), for A ∈ B([ak, bk]).
Then, for any 0 < ϵ < min(b1 − a1, b2 − a2), we have that (µ1 ⋆ µ2)(A) ≥ c1c2ϵµ(A), for any
A ∈ B([a1 + a2 + ϵ, b1 + b2 − ϵ]).

We now apply this Lemma 4.26 inductively to µ1 and µ2 the measures of
∑r1

n=1 Vn and Vr1+1

respectively, for 1 ≤ r1 ≤ r − 1. We conclude that P (
∑r

n=1 Vn ∈ A) ≥ cµ(A) for all A ∈ B(B),
where B := [r(a+ ϵ)− ϵ, r(b− ϵ) + ϵ] and c := c1c2ϵ

r−1. Thanks to our choice of r and ϵ, B is an
interval of length at least 1.
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Let x0 ∈ [0, 1[ andA ∈ B([0, 1]). We write frac−1(A) = ∪k∈ZA+k, whereA+k = {a+k | a ∈ A}.
Then,

P (frac(γr) ∈ A | γ0 = x0) = P

(
x0 +

r∑
n=0

Vn ∈ frac−1(A)

)

= P

(
r∑

n=0

Vn ∈
⋃
k∈Z

(A+ k)− x0
)

≥ P
(

r∑
n=0

Vn ∈
⋃
k∈Z

(A+ k − x0) ∩B
)

≥ cµ
(⋃

k∈Z
(A+ k − x0) ∩B

)
= c

∑
k

µ(A+ k − x0 ∩B),

where the last equality follows from the fact that µ(A ∩ (A + 1)) = 0, because A ⊂ [0, 1]. Notice
that for any set A+ z ∩B = (A ∩ (B − z)) + z and that µ(A+ z) = µ(A), for any z ∈ R. Hence,
for any k ∈ Z,

µ (A+ k − x0 ∩B) = µ(k − x0 + (A ∩ (B − k + x0))) = µ(A ∩ (B − k − x0)).

Recall that B is an interval of length greater than 1, so (B − k − x0)k∈Z is a cover of R. Hence,

P (frac(γr) ∈ A | γ0 = x0) ≥ c
∑
k

µ(A ∩ (B − k − x0))

≥ cµ
(
A ∩

⋃
k

(B − k − x0)

)
= cµ(A).

We can therefore set µ := cµ. The measure does not depend on x0 and it has total mass c > 0.
We now show that (frac(γn))n∈N is strictly stationary: for anyK ∈ N∗, τ ∈ N and n1, . . . nK , the

vectors (frac(γn1
), . . . , frac(γnK

)) ∼ (frac(γn1+τ ), . . . , frac(γnK+τ )), where X ∼ Y is a shorthand
notation for “X and Y have the same distribution”. It is enough to show that for any K ≥ 1,
(frac(γ0), . . . , frac(γK)) ∼ (frac(γn), . . . frac(γn+K)), for any n ≥ 0. We write

(frac(γn), . . . frac(γn+K)) = frac(frac(γ0 +

n−1∑
r=0

Vr) + frac(0, Vn, . . . ,

n+K−1∑
r=n

Vr)),

and we analyze the two terms separately. Here, frac is applied component–wise. First, because

(Vn)n∈N are i.i.d,
(∑k

r=0 Vr

)
∼
(∑n+k

r=n Vr

)
, for any n, k ∈ N. Therefore, (0, V0, . . . ,

∑n−1
r=0 Vr) ∼

(0, Vn, . . . ,
∑n+K−1

r=n Vr). It also remains true when we apply frac component–wise, because it is a
measurable mapping RK+1 → RK+1. Second, we claim the following lemma on the sum of two
random variables, one of which is uniform.

Lemma 4.27. If U ∼ U([0, 1]) and Z is a real–valued random variable independent of U , then
frac(U + Z) ∼ frac(U) ∼ U .

Before showing Lemma 4.27, we conclude the proof by applying it to U = γ0 and Z =
∑n−1

r=0 Vr.

Indeed, γ0 is independent from (Vr)n−1
r=0 , so we obtain that frac(γ0) ∼ frac(γ0 +

∑n−1
r=0 Vr). Finally,

combining the above with frac((0, V0, . . . ,
∑n−1

r=0 Vr)) ∼ frac((0, Vn, . . . ,
∑n+K−1

r=n Vr)), we have that
frac(γ0, . . . , γK) ∼ frac(γn, . . . , γn+K).

Proof of Lemma 4.27. First, it is clear that for s ≤ 0, P (frac(U + Z) < s) = 0 and that for s > 1,
1 ≥ P (frac(U + Z) < s) ≥ P (frac(U + Z) ≤ 1) = 1. For 0 < s < 1,

P (frac(U + Z) ≤ s) = P

(
U + Z ∈

⋃
k∈Z

[k, k + s]

)
=
∑
k∈Z

P (U + Z ∈ [k, k + s]). (4.24)
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Because U and Z are independent, P (U +Z ∈ [k, k+ s]) = (µU ⋆ µZ)([k, k+ s]), where µU and µZ

are the probability measures of U and Z respectively and ⋆ denotes their convolution. Note that
since µ is translation–invariant,

(µU ⋆ µZ)([k, k + s]) =

∫
R

∫ 1

0

1[k,k+s](z + u)dudµZ(z)

=

∫
R
µ([0, 1] ∩ [k − z, k + s− z])dµZ(z)

=

∫
R
µ([−k,−k + 1] ∩ [−z,−z + s])dµZ(z)

=

∫
R
µ([−k,−k + 1[∩[−z,−z + s])dµZ(z)

Going back to (4.24),

P (frac(U + Z) ≤ s) =
∑
k∈Z

∫
R
µ([−k,−k + 1[∩[−z,−z + s])dµZ(z)

=

∫
R

∑
k∈Z

µ([−k,−k + 1[∩[−z,−z + s])dµZ(z)

=

∫
R
µ([−z,−z + s])dµZ(z)

= µ([0, s])

∫
R
dµZ(z).

= s.

Therefore, the distribution function of frac(U + Z) is uniform on [0, 1] and therefore also equal to
that of frac(U).

4.E.2 Model 2

The process (frac(γn))n∈N is defined in (4.8), via the Markov chain (Vn)n∈N. Recall that this
Markov chain has a transition probability kernel P , with support included in I = [vmin, vmax].
Therefore, (frac(γn))n∈N is not itself a Markov Chain (of order 1). However, the process ((γn, Vn))n∈N
is a Markov Chain. We characterize its distribution and we verify that it satisfies the Doeblin con-
dition (2.4) and this takes the remaining of this section.

Consider now (R,B(R)) and let (x,A) 7→ 1A(x), which is also a transition probability kernel.
We define a product kernel on R := R × I, where I = [vmin, vmax]. It is characterised by the
following measure on rectangles

((y, v), (A×B)) 7→ 1A(y)P (v,B).

More generally, it extends to any set A ∈ B(R) as ((y, v), (A×B)) 7→ P (v,Ay), where

Ay = {v ∈ I | (y, v) ∈ A} (4.25)

is the projection of A ∩ {x = y} onto the second coordinate. We define the map T

T : R2 → R2

(x, v) 7→ (x+ hv, v),

and we let P̃ be the pull-back of the product kernel P by this map. Explicitly, for A ∈ B(R),

P̃ ((u, v), A) = P (v,Au+hv). (4.26)

In what follows, we show (2.4) for the Markov chain ((fracγn, Vn))n∈N, which has transition prob-
ability kernel frac⋆P̃ . Figure 4.E.1 illustrates the proof. For (u, v) ∈ R, we show that P̃n((u, v), ·))
is lower–bounded by a uniform measure of which we carefully characterise the support, Ωn

u,v. In

Steps 1-6, we show that for a certain nu,v ∈ N, the support of this uniform measure, Ω
nu,v
u,v , is

large enough. In 7, we show that nu,v ≤ N ∈ N, for all (u, v) ∈ R. We conclude in Step 8 by
showing (2.4). Compared with the i.i.d case treated in Section 4.E.1, Step 1 is the analogue of
Lemma 4.26, except that the iteration requires the additional Steps 2-5.
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y = vmin

y = vmax

(u, v)

(u+ hv, v − η)

(u+ hv, v + η)

(u+ hv, v)

(u+ 2hv, v)

Ω̃2
u,v

Step 2

(u+ n0hv, v)

Ω̃n0
u,v

Steps 3-4

(u+ n1hv, v)

Ω̃n1
u,v

Step 5

(u+ nu,vhv, v)

Ω̃nu,v
u,v

≥ 1

≥ 1
Step 6

Figure 4.E.1: A schematic illustration of the form of a density’s support. The density lower–bounds
P̃n((u, v), ·)).

Step 1 (lower–bound for P̃ 2((u, v), ·)). For (u, v) ∈ R and (z1, z2) ∈ R, according to (4.25),

([0, z1]× [vmin, z2])u+h(v+y) =

{
[vmin, z2], if u+ h(v + y) ∈ [0, z1],

∅, otherwise.

In (4.26), we observe that integrating with respect to P̃ 2 amounts to integrating P along a vertical
strip, so marginalizing with respect to (γ1, V1),

P̃ 2((u, v), ]−∞, z1]× [vmin, z2]) =

∫
R

P̃ ((u, v), dxdy))P̃ ((x, y), ]−∞, z1]× [vmin, z2])

=

∫
I

P (v, dy)P (y, (]−∞, z1]× [vmin, z2])u+h(v+y))

=

∫ max((z1−u)/h−v,vmax)

vmin

P (v, dy)P (y, [vmin, z2])

Differentiating the above expression with respect to z1 and then z2, for z1 ≤ u + h(v + vmax), we
get

∂P̃ 2((u, v), ]−∞, z1]× [vmin, z2])

∂z1
= fv

(
z1−u

h − v
)
P
(
z1−u

h − v, ]vmin, z2]
)

f⋆2(u,v)(z1, z2) =
∂2P̃ 2((u, v), ]−∞, z1]× [0, z2])

∂z1∂z2
= fv

(
z1−u

h − v
)
f z1−u

h −v
(z2).

As fv(y) ≥ µ01[v−η,v+η](y), we have f⋆2(u,v)(z1, z2) ≥ µ2
0, if

z1 − u
h
− v ∈ [max(vmin, v − η),min(vmax, v + η)],

z2 ∈
[
max

(
vmin,

z1 − u
h
− v − η

)
,min

(
vmax,

z1 − u
h
− v + η

)]
.

The above is equivalent to{
z1 = u+ 2hv + khη

z2 = v + (k + l)η,
for some l ∈ [−1, 1], k ∈ [−1, 1] ∩

[
vmin−v

η , vmax−v
η

]
. (4.27)

So, P̃ 2((u, v), ·) has a density f⋆2(u,v) with respect to the Borel measure on R2. That density is

lower–bounded: for (z1, z2) ∈ R ∩ Ω2
(u,v), we have f⋆2(u,v) (z1, z2) ≥ µ2

0, where

Ω2
(u,v) := {(u+ 2hv, v) + k(hη, η) + l(0, η) | k, l ∈ [−1, 1]}. (4.28)

When vmin−v
η < −1 and 1 < vmax−v

η , then Ω2
(u,v) ⊂ R and we carry on with the induction to 2.

Otherwise, we go directly to 3 as Ωn+1 ∩Rc ̸= ∅.
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(u, v)

y = vmin

y = vmax

y = v0

y = v + 2η

y = v − 2η

Ω2
(u,v)

x
=
x
0
+
h
(2
v 0
−
η
)

T 2(u, v)

(0, η)
v2

P0 = T−1(z1, z2)

P1

P−1

Pλ

Ω3
(u,v)

T (
Ω
2
(u,
v)
)

T 3(u, v)

(0, η)

v3

(z1, z2)

Figure 4.E.2: Illustration of Ωn
(u,v) for n = 2, 3 and of the segment Pλ. Our argument consists

in showing that for any (z1, z2) ∈ Ωn+1
(u,v), the length of the intersection of Pλ with Ωn

(u,v) is at

least ηϵ/2. While the dark green region is Ω3, the lighter colour shows a larger region where the
lower–bound is valid.

Step 2 (Lower–bound for n ≥ 3, while Ωn
(u,v) ∩ Rc = ∅). We start by defining the parallelograms

Ωn
(u,v) and showing some properties of the vectors that generate them. Then, by induction for

n ≥ 2, we will show the following statement:

For 0 < ϵ < min
(
1
4 ,

η
2 (vmax − vmin)

)
and η < (vmax − vmin)/2,

P̃n has a density f⋆n lower–bounded by
(
ηϵ
2

)n−2
µn
0 on Ωn

(u,v).
(4.29)

Our induction is valid while Ωn
u,v ⊂ R and Step 3 shows how to modify it when it ceases to be the

case. Our arguments become progressively more geometric, for what we find the illustration of the
proof in Figure 4.E.2 helpful.

To define Ωn
(u,v), let v2 := T (0, η) = (hη, η) and for n ≥ 3,

vn = (1− ϵ) (T (0, η) + T (vn−1)) ∈ R2. (4.30)

For n ≥ 3, we define

Ωn
(u,v) := {Tn (u, v) + l (0, η) + kvn | l, k ∈ [−1, 1]} . (4.31)

Notice that if we take n = 2 in (4.31), we get Ω2
(u,v) from as defined in (4.28).

While one can obtain an explicit expression of vn, it is of little pratical interest: we only need
to ensure that the horizontal component of vn remains sufficiently large. This is detailed in the
proof of Lemma 4.28.

Since we have shown the statement (4.29) for n = 2, we proceed with the induction step. For
(z1, z2) ∈ Ωn+1

(u,v) ∩R, we calculate

P̃n+1((u, v), ]−∞, z1]× [vmin, z2]) =

∫
R∩{x+yh≤z1}

P̃n((u, v), dxdy)P (y, [vmin, z2])

=

∫
R∩{x+yh≤z1}

f⋆n(u,v)(x, y)P (y, [vmin, z2])dxdy.

We can rewrite R∩{x+ yh ≤ z1} = {(x, y) ∈ R | y ∈ I, x ≤ z1− yh}. Differentiating with respect
to z1, we obtain

∂P̃n+1((u, v), ]−∞, z1]× [vmin, z2])

∂z1
=

∫
y

f⋆n(u,v)(z1 − yh, y)P (y, [vmin, z2])dxdy,
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where fv is defined in (4.9). For z2 ≥ vmin, we get

f⋆n+1
(u,v) (z1, z2) =

∂2P̃n+1((u, v), ]−∞, z1]× [vmin, z2])

∂z1∂z2
=

∫
I

f⋆n(u,v)(z1 − yh, y)fy(z2)dy. (4.32)

The expression in (4.32) is similar to that from Step 1, except that it is integrated over I. We can

lower–bound the integrand: f⋆n(u,v) is lower–bounded by
(
ηϵ
2

)n−2
µn
0 on Ωn

(u,v) for n ≥ 2 and fy by µ0

on [y−η, y+η]∩I. To lower-bound f⋆n+1
(u,v) , it remains to lower–bound the length of the integration

domain. For the calculations, we take the following parametrisation of [z2 − η, z2 + η] ∩ I,{
λ ∈ [−1, 1] | Pλ := P0 + λη(−h, 1) ∈ Ωn

(u,v)

}
, where P0 = T−1(z1, z2). (4.33)

Lemma 4.28. The length of the segment (4.33) is at least ϵ
2 .

For the sake of readablity, we differ the proof of Lemma 4.28 to Section 4.E.2. Finally, going
back to (4.32), we have the desired lower–bound

f
⋆(n+1)
(u,v) (z1, z2) ≥

(
ηϵ
2

)n−2
µn
0 × µ0 ×

(
ηϵ
2

)
=
(
ηϵ
2

)(n+1)−2
µn+1
0 , for (z1, z2) ∈ Ωn+1

u,v .

In addition, for ϵ < 1
/(

1 + 3(vmax−vmin)
2η

)
,

(0, 1) · (vn+1 − vn) = (1− ϵ)η − ϵ(0, 1) · vn > (1− ϵ)η − ϵ(vmax − vmin) > ϵvmax−vmin

2 .

The height of Ωn
u,v grows with n, by at least a constant, positive term. Hence, it eventually reaches

vmax − vmin, in which case Ωn ∩Rc ̸= ∅.
Step 3 (First non–empty intersection with the boundary). Let n0 := min{n ∈ N | µ(Ωn∩Rc) > 0}.
Without loss of generality, Ωn0 extends beyond vmin. We will now construct a region Ω̃n0+1 ⊂ R

such that f
⋆(n0+1)
(u,v) ≥

(
ηϵ
2

)n0−2
µn0
0 on Ω̃n0+1 and for which Ω̃n0+1∩ (R×{vmin}) is lower–bounded.

Since we can choose η arbitrarily small, we can treat the lower and upper boundaries independently,
so we focus on the construction of Ω̃n0+1

u,v on the boundary R× {vmin} first.
For P ∈ R × {vmin}, we consider Pλ as in (4.33), under the constraint that the integration

segment lies within R, that is, {λ ∈ [0, 1] | Pλ ∈ Ωn0}. We denote the length of this segment by
L(P ),

L(P ) := |{λ ∈ [−1, 1] | P + ηλ (−h, 1) ∈ Ωn0 ∩R}| ,
and we let A,B be the endpoints of Ωn0 ∩ (R × {vmin}). We rely on the following claim, whose
proof is in Section 4.E.2. Figure 4.E.3 illustrates the situation.

The set {P ∈ Ωn0 ∩ R× {vmin} | L(P ) ≥ ϵ
2} is not empty. If we denote by

D = A+ (xD, 0) and E = A+ (xE , 0) its right- and left-endpoints, then for
some c0 > 0 independent of (u, v), we have

xB + c0 ≤ xD − xE .
(4.34)

In particular, L(P ) ≥ ϵ
2 implies that f⋆n0+1

(u,v) (P ) ≥
(
ηϵ
2

)n0−1
µn0+1
0 . By convexity of Ωn0 ∩ R, we

have L(P ) ≥ ϵ
2 for P on the segment T (E)T (D), so we can include that segment in Ω̃n0+1. As

L(E) = L(P ), where P = E + (1 − ϵ/2)kη (−h, 1) , for k ∈ [0, 1], we have the same lower–bound
on the density holds on T (P ). So, we can include a segment of height η(1 − ϵ/2) above T (E) in
Ω̃n0+1. Therefore, we can define Ω̃n0+1 as the polygon with vertices T (E) + (0, η(1− ϵ/2)), T (E),
T (D), Tn0+1 (u, v)− (0, η) + vn0+1 and Tn0+1 (u, v) + (0, η) + vn0+1.

We have obtained a convex pentagon Ω̃n0+1 on which P̃n0+1((u, v), ·) is lower–bounded by a

measure with density lower–bounded by
(
ηϵ
2

)n0−1
µn0+1
0 . Because T preserves lengths on horizontal

cross-sections, (4.34) implies that the length of T (D)T (E) is equal to that of ED, which is longer
by c0 = ηh/4 than the intersection at n0.

Step 4 (Induction for n > n0 + 1). Assume that Ω̃n0+1 ∩ (R × {vmax}) = ∅. As a consequence of
calculations for Step 2, Ω̃n

u,v is growing upwards. Indeed, the calculations rely on Assumption (4.9)
and the fact that vn has a horizontal component whose length we control. Therefore, they adapt
to Ω̃n

u,v, with vn being the vector from T (D) to Tn0+1 (u, v)− (0, η) + vn0+1.
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y = vmin

y = vmax

Ωn0−1
(u,v)

Ωn0

(u,v)

A BE D

Dλ

Ωn0

(u,v)

A B E D A B

A + (0, η(1− ϵ/2))

Ω̃n0+1
(u,v)

E D

Figure 4.E.3: Illustration of 3 and the proof of (4.34). The leftmost polygon represents Ωn0−1,
at the iteration before the first non-trivial intersection occurs. The two middle parallelograms
illustrate the two cases, xE ≤ xB and xB ≤ xE respectively, from the proof of (4.34). On the
right, the bottom part of the polygon Ω̃n0+1 as constructed in 3. The dashed lines represent the
integration segments, whose length is measured by L.

In addition, (4.34) still holds. Indeed, redefine A, B, D and E, except with n0 replaced by
n0 +1 in the expression of L. We notice that A, B coincide with T (E) and T (D) from the previous
iteration. Because AB is now of length at least c0 = hη/4, the proof is easier as we fall in the first
case from Section 4.E.2. We define Ω̃n0+2 as in Step 3.

We can now iterate this procedure, obtaining a lower–bound of f⋆nu,v by a uniform constant,

on a convex and polygonal domain Ω̃n. Crucially, both the height of Ω̃n and the length of its
intersection with R× {vmin} grow, by uniformly lower–bounded amounts.

Step 5 (Intersection with both boundaries). For some n1 ∈ N, the intersection Ω̃n1
u,v ∩ (R∩{vmax})

is not trivial. By a procedure analogue to that in Step 3, we can define Ω̃n1+1, which non–trivially
intersects both boundaries. Using the procedure from Step 4, it is clear that the intersection will
not only remain non–trivial with n, but also increase.

Step 6 (Cross-sections with length at least 1). By definition, Ω̃n is delimited by a convex, polygonal
domain. The length of any horizontal cross-section of Ω̃n is lower–bounded by the minimum of the
lengths of the intersections with the lower and upper boundaries1. Recall that by Step 4, these two
are increasing, and this by at least hη/4 at each iteration. Hence, for some n = nu,v, all horizontal

sections of Ω̃
nu,v
u,v are of length at least 1.

By construction of Ω̃n
(u,v), we have obtained a region such that for any n ≥ nu,v,,

1. P̃n((u, v), ·) is lower–bounded by
(
ηϵ
2

)n−2
µn
0µ on Ω̃n

u,v, (µ being the Lebesgue measure)

2. {Ω̃n
(u,v) + (k, 0)}k∈Z is a cover of R.

Step 7 (Uniform lower–bound). We now show that we can choose a uniform N ∈ N, such that
nu,v ≤ N for all (u, v) ∈ R. Fix (u, v) ∈ R and let Ω̄2

u,v be defined as in (4.27), except with η
2

instead of η. We can then perform Steps 1 to 6, so we obtain a domain Ω̄
n̄u,v
u,v with cross-sections

of length at least 1, for some n̄u,v ≥ nu,v.

Notice that the shrinked parallelogram at n = 2 is contained in parallelograms for different
initial conditions. Specifically, we have Ω̄2

u,v ⊂ Ω2
x,y for (x, y) ∈ Cu,v, where Cu,v = T−2(Ω̄2

u,v).
In particular, nx,y ≤ n̄u,v, for all (x, y) ∈ Cu,v. Since (int(Cu,v))(u,v)∈[0,1]×I is an open cover of
[0, 1]×I, by compacity, we can find a finite cover {Cuk,vk}Kk=1. Clearly, N = max1≤k≤K n̄uk,vk <∞
gives a uniform bound on (nu,v)(u,v)∈[0,1]×I . The bound is also valid on R× I, because the whole
construction is invariant with respect to horizontal translations.

Finally, for (u, v) ∈ R, we have that P̃N ((u, v), ·) is lower–bounded by
(
ηϵ
2

)N−2
µN
0 µ, on Ωu,v

and {Ω(u,v) + (k, 0)}k∈Z is a cover of R, where Ωu,v := Ω̃N
u,v.

Step 8 (Conclusion). We can now go back to (frac(γn), Vn). By lower–bounding P̃N with a uniform
measure, we can use the same arguments as in Section 4.E.1 to conclude. For A ∈ B([0, 1]× I), we

1To see this, consider the parallelogram on the 4 vertices of Ω̃n which belong to the boundary. That parallelogram
is included in Ω̃n by convexity, so the lengths of the horizontal sections is between the lengths of both bases.
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have

frac⋆P̃
N ((u, v), A) = P̃N ((u, v), frac−1(A))

≥ P̃N ((u, v), frac−1(A) ∩ Ω(u,v))

≥ Cµ(frac−1(A) ∩ Ω(u,v)) (minorating on Ω(u,v))

= Cµ(∪k∈ZA+ (k, 0) ∩ Ω(u,v)) ({A+ (k, 0)}k disjoint)

= C
∑
k∈Z

µ(A+ (k, 0) ∩ Ω(u,v))

= C
∑
k∈Z

µ(A ∩ (Ω(u,v) − (k, 0))) (µ translation–invariant)

≥ Cµ(∪k∈ZA ∩ (Ω(u,v) − (k, 0)))

= Cµ(A) ({Ω(u,v) + (k, 0)}k∈Z is a cover of R),

where C = Cη,ϵ,µ0,N :=
(
ηϵ
2

)N−2
µN
0 . The lower–bound is uniform in (u, v) and also shows that

the measure is non-trivial. We conclude the proof of Proposition 4.25 by applying Theorem 2.17.

Proof of Lemma 4.28

We recall that for some l, k ∈ [−1, 1],

(z1, z2) = Tn+1 (u, v) + l (0, η) + kvn,

where vn is given in (4.30), so

Pλ := T−1 (z1, z2 + λη) = Tn (u, v) + η(l + λ) (−h, 1) + k(1− ϵ) ((0, η) + vn) . (4.35)

For a parallelogram Ω generated by vectors x, y and centered around the origin, we have

P ∈ Ω ⇐⇒
{

xT y⊥ ≤ PT y⊥ ≤ −xT y⊥
−yTx⊥ ≤ PTx⊥ ≤ yTx⊥,

(4.36)

where (x1, x2)⊥ = (x2,−x1). Combining (4.35) with (4.36), we have that Pλ ∈ Ωn
(u,v) if and only

if {
η(0, 1) · v⊥n ≤ η(l + λ)(−h, 1) · v⊥n + k(1− ϵ)(η (0, 1) + vn) · v⊥n ≤ −η(0, 1) · v⊥n

−ηvn · (0, 1)⊥ ≤ η2(l + λ)(−h, 1) · (0, 1)⊥ + k(1− ϵ)(η2 (0, 1) + ηvn) · (0, 1)⊥ ≤ ηvn · (0, 1)⊥

⇐⇒
{

(1, 0) · vn(−1 + k(1− ϵ)) ≤ −(l + λ)(1, h) · vn ≤ (1, 0) · vn(1 + k(1− ϵ))
vn · (1, 0)(−1− k(1− ϵ)) ≤ (−hη)(l + λ) ≤ vn · (1, 0)(1− k(1− ϵ)).

As (1, h) · vn > 0 and denoting

an :=
1

hη
(1, 0) · vn, bn := 1− (0, h) · vn

(1, h) · vn
,

we have

Pλ ∈ Ωn ⇐⇒
{
bn(−1− k(1− ϵ))− l ≤ λ ≤ bn(1− k(1− ϵ))− l
an(−1 + k(1− ϵ))− l ≤ λ ≤ an(1 + k(1− ϵ))− l.

Finally, taking into account that λ ∈ [−1, 1], we obtain that

λ ∈ [max(− 1, bn(−1− k(1− ϵ))− l, an(−1 + k(1− ϵ))− l),
min(1, bn(1− k(1− ϵ))− l, an(1 + k(1− ϵ))− l)],

which is of length

min(1, bn(1− k(1− ϵ))− l, an(1 + k(1− ϵ))− l)+
+ min(1, bn(1 + k(1− ϵ)) + l, an(1− k(1− ϵ)) + l) =

= min(2 min(1, an, bn), (an + bn)(1− k(1− ϵ)), 1 + bn(1 + k(1− ϵ)) + l,

1 + an(1− k(1− ϵ)) + l, 1 + bn(1− k(1− ϵ))− l, 1 + an(1 + k(1− ϵ)− l)
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We claim that for n ≥ 2,

an ≥ 1, bn ≥
1

2
. (4.37)

Combining (4.37) with l, k ∈ [−1, 1], 0 < ϵ ≤ 1
2 , we conclude that the length of (4.33) is at least ϵ

2 .

It remains to show (4.37). For an, we proceed by induction. Using v2 = T (0, η) for n = 2 and
v3 = (1 − ϵ)η (3h, 2), we verify that a2, a3 ≥ 1. Notice that (T (x, y)) · (1, 0) = ((x, y) + (yh, 0)) ·
(1, 0) = (x, y) · (1, h). Then,

vn+1 · (1, 0) = (1− ϵ)(T (0, η) + T (vn)) · (1, 0) = (1− ϵ) [hη + vn · (1, h)] .

Using the induction hypothesis, vn · (1, 0) ≥ hη combined with vn · (0, h) ≥ 0,

vn+1 · (1, 0) ≥ 2hη(1− ϵ) ≥ hη,

since ϵ ≤ 1
2 .

For bn, we can calculate directly b2 = hη
hη+hη = 1

2 . For n ≥ 3, we can express vn using (4.30),
so that

(1, 0) · vn
(1, h) · vn

=
(1, 0) · (T (0, η) + T (vn−1))

(1, h) · (T (0, η) + T (vn−1))

=
hη + (1, 0) · T (vn−1)

2hη + (1, h) · T (vn−1)

=
1

2
+

1

2

((1, 0)− (0, h)) · T (vn−1)

2hη + (1, h) · T (vn−1)

≥1

2
,

where the last inequality follows from

((1, 0)− (0, h)) · T (vn−1) = (1, 0) · vn−1 + (0, h) · vn−1 − (0, h) · vn−1 ≥ 0.

Proof of (4.34)

Notice first that L(A) = 0 and L(P ) = 0 for any P ∈ R × {vmin} to the left of A, so that

0 ≤ xB , xD, xE . Second, consider P = A+
(
xB + (1− ϵ/2)ηh 1

1−b , 0
)

. As L(P ) = ϵ
2 , we have that

{P | L(P ) ≥ ϵ
2} ≠ ∅, so D and E exist. In addition, we know that xD ≥ xB + (1− ϵ/2)ηh 1

1−b . In
particular, b ≤ 1 implies that xB < xD.

Since A ∈ Ωn0
u,v, we can write A = Tn0 (u, v) + lAη (0, η) − vn0 . By definition, n0 is the first

time such that Ωn
0 ∩Rc has non-trivial measure, so, using the relation between Ωn0−1 and Ωn0 , we

can conclude that lA ≤ 0 ≤ 1− ϵ/2.

We distinguish two cases, depending which one of ηϵh/2 or xB is greater. First, if ηhϵ/2 ≤
xB , then xE = ηhϵ/2. Indeed, the triangle formed by A, E and A + (0, ηϵ/2) is in Ωn0 , so
L (A+ (ηhϵ/2, 0)) ≥ ϵ/2. Therefore,

xD − xE ≥ xB + (1− ϵ
2 )ηh 1

1−b − ηh ϵ
2

≥ xB + ηh(2(1− ϵ
2 )− ϵ

2 )

≥ xB + 5
4ηh,

where in the last two inequalities, we have use that 1
2 ≤ b and ϵ ≤ 1

2 .

Next, if xB < ηhϵ/2, then ηhϵ/2 ≤ xE . So, for x ≤ ηh,

L (A+ (x, 0)) =
1

ηh

(
x− (0,h)·vn

(1,h)·vn (x− xB)+

)
=

1

ηh
(xb− xB(1− b)). (4.38)
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Notice that L (A+ (ηh, 0)) ≥ ϵ
2 for ϵ ≤ 2

5 small enough,

L (A+ (ηh, 0))− ϵ

2
=

1

ηh
(ηhb− xB(1− b))− ϵ

2

= b− (1− b)xB
ηh
− ϵ

2

≥ b− (1− b) ϵ
2
− ϵ

2

= b
(

1 +
ϵ

2

)
− 3

2
ϵ

≥ 1

2

(
1− 5

2
ϵ

)
,

so xE ≤ ηh. Using (4.38), we find that xE = 1
b (ηhϵ/2 + xB(1− b)). Finally,

xD − xE − xB = xB
(
1− 1−b

b

)
+ ηh 1−ϵ/2

1−b − 1
bηhϵ/2− ηh ϵ

2

= xB(2− 1
b ) + ηh

(
1

1−b + ϵ
2 ( 1

b − 1
1−b )

)
− ηh ϵ

2

= xB(2− 1
b ) + ηh

1−b

(
1− ϵ

b (b− 1
2 ))
)
− ηh ϵ

2 .

Since 1
2 ≤ b ≤ 1, we have b−1/2

b ≤ 1 and 1
1−b ≥ 2, so that

xD − xE − xB ≥ 2(1− ϵ)ηh− ηhϵ/2 ≥ ηh(1− 3
2ϵ).

Combining the two cases with ϵ < 1
2 , we conclude that

xD − xE ≥ xB + ηhmin
((

1− ϵ
2

)
, 54
)
≥ xB + 1

4ηh.

4.F Mixing-preserving operations: mixing coefficients of (Xn)n∈N

We show that the mixing coefficients of X can be upper-bounded by those of frac(γ) and W .

Proposition 4.29. Let Xn be as in(4.10). For any k ∈ N,

βX(k +M − 1) ≤ βS(k) ≤ βfrac(γ)(k) + βW (k).

Since ϕ is continuous, Proposition 2.18 implies that βϕ(γ)(k) ≤ βfrac(γ)(k). Applying Lemma 4.30
to (ϕ(γn))n∈N and (Wn)n∈N, we obtain βS(k) ≤ βfrac(γ)(k) + βW (k). With Lemma 4.31, we bound
βX(k) ≤ βS(k −M + 1), for k ≥M . The proofs of the two lemmata essentially consist in manip-
ulating the definitions.

Lemma 4.30. For two random variables U : (ΩU , σ
U )→ R, V : (ΩV , σ

V )→ R, we have

βU+V (k) ≤ βU (k) + βV (k),

if (βU (k))k∈N, (βV (k))k∈N ∈ ℓ1. Moreover, the same holds true if U and V are defined on the same
probability space, but are independent.

Proof. Define Z := U + V . Then, Z is (ΩZ , σ
Z)-measurable, where ΩZ = ΩU × ΩV and σZ =

σU ⊗ σV . As σZ is generated by products of elements from σU and σV , we only need to consider
(countable) partitions AU ,BU and AV ,BV of σU

−∞,0, σ
U
k,∞ and σV

−∞,0, σ
V
k,∞ respectively. For any

AU ∈ AU , AV ∈ AV and BU ∈ BU , BV ∈ BV , by definition of the product probability measure,

P ((AU×AV )∩(BU ×BV ))−P (AU×AV )P (BU×BV ) =

= (PU (AU ∩BU )−PU (AU )PU (BU ))PV (AV ∩BV )

+PU (AU )PU (BU )(PV (AV ∩BV )−PV (AV )PV (BV )).
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Since βU is is summable,
∑

AU ,BU
|PU (AU ∩BU )−PU (AU )PU (BU )| <∞ (idem for V ), so we can

regroup terms and∑
AU∈AU ,AV ∈AV ,
BU∈BU ,BV ∈BV

P ((AU×AV ) ∩ (BU×BV ))− P (AU×AV )P (BU×BV )

=
∑

AU∈AU , BU∈BU
(PU (AU ∩BU )−PU (AU )PU (BU ))

×∑AV ∈AV , BV ∈BV
PV (AV ∩BV ) (= 1)

+
∑

AU∈AU , BU∈BU
PU (AU )PU (BU ) (= 1)

×∑AV ∈AV , BV ∈BV
(PV (AV ∩BV )−PV (AV )PV (BV ))

≤ βU (k) + βV (k).

We conclude by taking the sup over partitions of ΩZ .

Lemma 4.31. Consider S = (Si)i∈N with coefficients βS(k) and define Xn = (Sn, . . . , Sn+M−1).
Then,

βX(k +M − 1) ≤ βS(k).

Proof. First, note that the σ-algebra generated by a vector coincides with the σ-algebra generated
by its components

σ(Xn1
, . . . Xn2

) = σ((Sn1
, . . . , Sn1+M−1), . . . , (Sn2

, . . . , Sn2+M−1))

= σ(Sn1
, . . . , Sn2+M−1)

= σS
n1,n2+M−1.

Then, any partition A ⊂ σX
n1,n2

is also in σS
n1,n2+M−1. Since βX is defined as a sup over such

partitions, βX(k + M − 1) ≤ βS(k). For k ≤ M , we can take A = B ⊂ σ(Sk). Since Sk is a
continuous random variable, βX(k) = 1.

4.G Lipschitz constant for kpi and kpi,t

First, (x, y) 7→ exp(−(x2+y2)) is 2
√
2

e −Lipschitz with respect to the Euclidean norm, so 4
e−Lipschitz

for the Minkowski norm. Consider the kernel

kpi,t(b, d)(x, y) = 1
2πσ2

(
2− ∥(b,d)−(x,y)∥∞

σ

)r
+

exp
(
− (b−x)2+(d−y)2

2σ2

)
.

Then, for r > 1, the first term is 2rr
σ -Lipschitz,∣∣∣∣(2− ∥(b,d)−(x,y)∥∞

σ

)r
+
−
(

2− ∥(b′,d′)−(x,y)∥∞
σ

)r
+

∣∣∣∣
=

∣∣∣∣∫ 1

0

d
dt

(
2− ∥(b,d)+(b′−b,d′−d)t−(x,y)∥∞

σ

)r
+
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣r (2− |b+(b′−b)t−x|
σ

)r−1

+
(−1)b−x>b′−bt (b

′−b)
σ 1|b+(b′−b)t−x|≥|d+(d−d′)t−y|

+ r
(

2− |d+(d′−d)t−y|
σ

)r−1

+
(−1)d−y>d′−dt (d

′−d)
σ 1|b+(b′−b)t−x|≤|d+(d−d′)t−y|

∣∣∣∣ dt.
≤
∫ 1

0

r
σ

((
2− |b+(b′−b)t−x|

σ

)r−1

+
|b− b′|+ r

(
2− |d+(d′−d)t−y|

σ

)r−1

+
|d− d′|

)
dt

≤ r
σ

(
(2− min(|b−x|,|b′−x|)

σ )r−1
+ |b− b′|+ r(2− min(|d−y|,|d′−y|)

σ )r−1
+ |d− d′|

)
≤ 2r

σ (2− min(∥(b,d)−(x,y)∥∞,∥(b′,d′)−(x,y)∥∞)
σ )r−1

+ ∥(b, d)− (b′, d′)∥∞
≤ 2rr

σ ∥(b, d)− (b′, d′)∥∞.
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Then, we obtain

|kpi,t(b, d)(x, y)− kpi,t(b′, d′)(x, y)|

≤ 1
2πσ2

∣∣∣∣(2− ∥(b,d)−(x,y)∥∞
σ

)r
+
−
(

2− ∥(b′,d′)−(x,y)∥∞
σ

)r
+

∣∣∣∣ exp
(
− (b−x)2+(d−y)2

2σ2

)
+ 1

2πσ2

(
2− ∥(b′,d′)−(x,y)∥∞

σ

)r
+

∣∣∣exp
(
− (b−x)2+(d−y)2

2σ2

)
− exp

(
− (b′−x)2+(d′−y)2

2σ2

)∣∣∣
≤ 1

2πσ2
2rr
σ ∥(b, d)− (b′, d′)∥∞ + 1

2πσ2 2r 4
e

∥∥∥( b−x
σ , d−y

σ

)
−
(

b′−x
σ , d

′−y
σ

)∥∥∥
∞

≤ 2r−1

πσ3 (r + 2) ∥(b, d)− (b′d′)∥∞.

4.H Moments of the Hölder constant of a stochastic process

In Section 2.1, we gave sufficient conditions for paths of a stochastic process to be Hölder-
continuous. In particular, Proposition 2.6 shows that the Hölder constant is a random variable.
We now give an upper-bound of its moments.

Theorem 4.32 (Shevchenko (2017)). Let r2 ∈ N be such that Kr2,αr2 <∞ and 1−α > 1
r2
, r2 ≥ 2,

E[ΛW ] ≤ 16 α+1
α TK

1/r2
r2,r2α+1.

In addition,

E[Λk
W ] ≤


(

23+2/r2 α+2/r2
α

)k
K

k/r2
r2,r2α+1, for 0 < k ≤ r2,(

23+2/r2 α+2/r2
α

)k
Kk,k(α+2/r2)−1, for k > r2.

Lemma 4.33 (Garsia–Rodemich–Rumsey Inequality (Hu and Le, 2013, Lemma 1.1)). Let G :
R+ → R+ be a non–decreasing function with limx→∞G(x) =∞ and δ : [0, T ]→ [0, T ] continuous
and non–decreasing with δ(0) = 0. Let G−1 and δ−1 be lower–inverses. Let f : [0, T ] → R be a
continuous functions such that∫ T

0

∫ T

0

G

( |f(x)− f(y)|
δ(x− y)

)
dxdy ≤ B <∞.

Then, for any s, t ∈ [0, T ],

|f(s)− f(t)| ≤ 8

∫ |s−t|

0

G−1(4B/u2)dδ(u).

Proof of Theorem 4.32. Consider a path W (ω) of the stochastic process and set

B(ω) :=
∫ T

0

∫ T

0
G
(

|Wt(ω)Ws(ω)|
δ(t−s)

)
dtds, where G(u) = ur2 and δ(u) = uα+2/r2 . Then, G−1(u) =

u1/r2 and d
duδ = (α+ 2/r2)uα+2/r2−1. Applying Lemma 4.33,

|Wt(ω)−Ws(ω)| ≤ 8

∫ |s−t|

0

G−1(4B(ω)/u2)dδ(u)

≤ 8

∫ |t−s|

0

(
4B(ω)

u2

)1/r2

(α+ 2/p)uα+2/r2−1du

≤ 8(4B(ω))1/r2(α+ 2/r2)

∫ |t−s|

0

uα−1du

= 8(4B(ω))1/r2 α+2/r2
α |t− s|α.

As this is valid for any s, t ∈ [0, T ], ΛW (ω) ≤ 8(4B(ω))1/r2 α+2/r2
α . By Jensens’ inequality,

E[ΛW ] ≤ 23+2/r2 α+2/r2
α E[B(ω)1/r2 ] ≤ 23+2/r2 α+2/r2

α E[B(ω)]1/r2 . (4.39)
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By linearity of expectation,

E

[∫ T

0

∫ T

0

G

( |Wt(ω)Ws(ω)|
δ(t− s)

)
dtds

]
=

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|r2 ]

δ(t− s)r2 dtds

=

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|r2 ]

|t− s|pα+2
dtds

≤
∫ T

0

∫ T

0

Kp,pα+1dtds

= T 2Kr2,r2α+1.

Finally, E[ΛW ] ≤ 23+2/r2 α+2/r2
α T 2/r2K

1/r2
r2,r2α+1, as long as r2α + 1 ≤ r2 and we can simplify the

constants if r2 > 2. Consider now the higher moments. If k ≤ r2, we can still apply Jensens’
inequality in (4.39):

E[Λk
W ] ≤

(
23+2/r2 α+2/r2

α

)k
E[B(ω)k/r2 ]

≤
(

23+2/r2 α+2/r2
α

)k
E[B(ω)]k/r2

≤
(

23+2/r2 α+2/r2
α

)k
K

k/r2
r2,r2α+1.

However, if k ≥ r2,

E

(∫ T

0

∫ T

0

G

( |Wt(ω)Ws(ω)|
δ(t− s)

)
dtds

)k/r2
 =

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|k]

δ(t− s)k dtds

=

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|k]

|t− s|kα+2k/r2
dtds

≤
∫ T

0

∫ T

0

Kk,k(α+2/r2)−1dtds

= T 2Kk,k(α+2/r2)−1.
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Chapter 5

Segmentation of periodic-like
signals

Zero-crossings and local extrema appear repeatedly in periodic signals with phase variation. The
number of occurrences of both of these elements can be read in the persistence diagram, which is
thus a more general feature that also shares their additive properties, as established in Chapter 3.
Both zero-crossings and local extrema are used for Problem 1.1: segmenting a reparametrized
periodic signal into its constituent periods. In this chapter, we propose to use the persistence
diagram to count the number of periods and guide that segmentation.

Let ϕ be a one–periodic, continuous function, γ : [0, 1]→ [0, N ] an increasing bijection for some
N ∈ N∗ and consider

S : [0, 1]→ R
t 7→ (ϕ ◦ γ)(t) +Wt,

(5.1)

where (Wt)t∈[0,T ] is a stochastic process. We consider the setting where ϕ, γ and N are unknown.
Figure 1 illustrates the model with an example of ϕ featuring six local extrema per period, a
non–linear γ and Wt = 0.

Problem 5.1. Given S, estimate N .

Problem 5.2 (Odometry). Given S and N , find (ti)
N
i=1, such that

γ(ti)− γ(ti−1) = 1, ∀ i = 2, . . . , N.

Such a sequence will be called an odometric sequence.

Problem 5.1 consists of estimating how many periods of ϕ are present in an observed signal S.
Problem 5.2 is a segmentation task, where the number of segments is given. This segmentation,
which we call an odometric sequence, thus contains finer information: if we know that (ti)

N
i=1 is an

odometric sequence for S, then S|[t1,tN ] contains N − 1 periods. We therefore include the number
of periods N as part of the input data to Problem 5.2.
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Figure 1: On the left, an example of a noise–free observed function ϕ ◦ γ, where a one–periodic ϕ
has been composed with γ depicted on the right. On both graphs, γ−1(N) are marked by the gray
dashed lines.
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This work is motivated by the magnetic positioning problem described in Chapter 1. A solution
to Problem 5.2, odometric sequence (tn)Nn=1, gives us an approximation of γ:

γ̂(t) =

N∑
n=1

1tn≤t. (5.2)

We will explore numerical applications of odometry in Chapter 7.

Related literature

Inverse problems similar to Problems 5.1 and 5.2 have been studied in different contexts. In signal
processing, the instantaneous phase estimation (Boashash, 2015, Chapter 10) is concerned with
recovering t 7→ γ(t) when ϕ is known to belong to a family of functions of simple form, for ex-
ample ϕ(x) = a sin(2π(x − ϕ)). The work has led to two types of methods. Spectral methods
consist of using a frequency representation of S to recover the phase: the exact solution is given
by γ(t) = arctan(H(S)(t)/S(t)), where H is the Hilbert transform (Boashash et al., 1990). For
more complex signals, one can analyze time frequency representations of the signal, using image
processing techniques like peak detection and component linking (Rankine et al., 2007). This pro-
cedure is even extended to sums of independently-parametrized functions (Khan and Boashash,
2016, Hussain and Boashash, 2002). These methods are aimed at estimating γ′ and it is shown
possible under hypothesis of separation of different components in the frequency spectrum. An-
other type of method is concerned with geometric properties of the signal. The simplest example,
called the zero crossings method relies on counting the number of times that the graph of S
crosses zero (Boashash et al., 1990). This principle is generalized to other forms via intrinsic mode
functions (Huang et al., 1998). With the empirical mode decomposition algorithm (Huang et al.,
1998), ϕ can be decomposed into more elementary functions, connecting local maxima and min-
ima using cubic splines. This algorithm decomposes the signal into multiple, independent, simple
components. On one hand, the setting considered in our work is easier than that for the spectral
methods, because (5.1) implies two properties of the signal. First, it has constant amplitude. Sec-
ond, if ϕ is decomposed into multiple components, those components share a reparametrisation.
On the other hand, nothing other than that is known about ϕ and the observations are corrupted
by additive noise W , which adds spurious local extrema.

The time-delay embedding technique is known to capture the recurrent structure in dynamical
systems (Perea, 2019) and has been applied in various contexts, for example Fernández and Mateos
(2022), Gidea et al. (2020). As shown in (Gakhar and Perea, 2019), the geometric and topological
features depend not only on the periodic function, but also on the frequencies in the signal (see
Figure 1.4 for an illustration). The Hilbert transform embedding method proposed in Kennedy
et al. (2018) is a different embedding method inspired by the analytic signal transformation found in
the signal processing literature. It is shown to maximize the topological signal of a reparametrized,
sinusoidal function. In our context, the time delay embedding technique is not adapted, because
the frequencies of the signal vary in a range we do not control. The signature of a path (Hambly
and Lyons, 2010) is a bounded sequence, which is invariant to any reparametrisation. However, we
are not aware of any relation between the signature of a single period and that of multiple periods
of a function.

An alternative line of work at the intersection of signal processing and topological methods
consists of studying a one dimensional signal directly. Similarly to the zero crossings or empirical
mode decomposition from signal processing, it consists of looking at the shape of the signal. More
precisely, it is based on the homology of the sublevel sets of the signal. This approach led to
a denoising method (Plonka and Zheng, 2016) and also to confidence intervals on a topological
descriptor (Myers et al., 2020). In Khasawneh and Munch (2018), the authors propose a period
counting method for binary functions ϕ. Similar to the zero crossings, the method counts the
number of changes in a binary signal, but discards those which last for only a short period of time.
As shown experimentally by the authors, this makes it more robust than the spectral methods.
That method solves both Problems 5.1 and 5.2, but in the simple case where ϕ is a binary signal.

As an example, Figure 2 shows three functions ϕ. The two on the left come from the model
for the zero crossings method and the topological method from Khasawneh and Munch (2018)
respectively. Neither of the two methods was designed for continuous signals with many local
extrema per period, as presented on the right, which we attempt to study.
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Figure 2: On the left, the graphs of signals from models which the zero crossings and the
topological method (Khasawneh and Munch, 2018) respectively, were designed for. On top, a
sinusoidal function with one pair of extrema per period. On the bottom, a noisy binary signal. On
the right, a signal following the model (5.1) studied in this work.

Contributions

In this work, we propose to use topological methods for Problems 5.1 and 5.2 on γ. We work under
genericity assumptions on ϕ and an upper bounded noise W . In Section 5.2, we define an estimator
of γ(1) based on the insight from Proposition 3.1. We show this estimator solves Problem 5.1 under
genericity assumptions on ϕ and on the amplitude of the noise. We propose a robust alternative
suitable in practice in Section 5.4.1 and test its performance in Section 5.4.2. Problem 5.2 is tackled
in Section 5.3, where we introduce a method to calculate an odometric sequence from the data
contained in the persistence diagram. We test the estimator for Problem 5.1 on synthetic signals.
We study the applicability of the odometric sequence in practice in Chapter 7.

5.1 Estimation of N in the noiseless setting

Let ϕ : R→ R be one–periodic and γ : [0, 1]→ [0, N ] an increasing bijection for N ∈ N∗, as above.
In this section, we consider the noiseless setting S = ϕ ◦ γ. Points in the persistence diagram of
sub level sets of a periodic function have multiplicity, as described precisely in Proposition 3.1.

Recall from Section 3.1 that ϕ̄ : S1 → R is the periodic function defined on the circle. Filtering
the circle instead of the interval circumvents problems with boundary conditions, as shown in
Proposition 3.1. The persistence diagrams that we consider have points with multiplicity greater
than one and so we will identify them with the persistence measures (2.15). We denote by mϕ(p)
the multiplicity of a point p in the diagram of ϕ, also expressed using the persistence measure µϕ

with (2.16). In this case, we have

µϕ =
∑

p∈supp(µϕ)

mϕ(p)δp.

For a set A ⊂ N, the greatest common divisor gcd(A) is the largest k ∈ N such that for all
a ∈ A, k divides a. For A ⊂ N∗ non empty, 1 ≤ gcd(A) < ∞. We adopt the convention that
gcd(∅) = 1. We introduce the following estimator of N

N(ϕ) = gcd{mϕ(p) | p ∈ supp(µϕ)}.

The proposed estimator satisfies a homogeneity property, in the sense detailed by Proposition 5.1.

Proposition 5.1. Suppose that γ(1) = N . Then,

N(ϕ ◦ γ) = N ·N(ϕ|[0,1]).

Proof. Consider ϕN as defined in Proposition 3.1. The sublevel sets

(ϕ ◦ γ)−1(]−∞, a]) = {t | ϕ(γ(t)) ≤ a} = γ−1({x | ϕN (x) ≤ a})
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Figure 3: Graphs of two degenerate one–periodic functions and their persistence diagrams.

are homeomorphic to ϕ−1
N (] −∞, a]). Hence, the persistence modules are isomorphic by Proposi-

tion 2.27a, so µϕN
= µϕ◦γ and supp(µϕN

) = supp(µϕ1
). By Proposition 3.1, we obtain µϕ◦γ =

µϕN
= Nµϕ1

= Nµϕ|[0,1] , so that

N(ϕ ◦ γ) = gcd{mϕ◦γ(p) | p ∈ supp(µϕN
)}

= gcd{Nmϕ1
(p) | p ∈ supp(µϕ1

)}
= N ·N(ϕ|[0,1]).

The estimator N(ϕ) is correct only up to a multiplicative constant N(ϕ|[0,1]), so we need to
introduce the notion of non–degenerate functions.

Definition 5.2. We call a 1-periodic function ϕ : R→ R non–degenerate if

N(ϕ|[0,1]) = 1. (5.3)

A function ϕ : R→ R which does not satisfy (5.3) will be called degenerate.

The non-degeneracy of a function ϕ is a condition on the set of pairs of local extreme values
and Proposition 5.3 provides a justification for restricting our considerations to non-degenerate
functions. If ϕ is non-degenerate, the statement is vacuous. However, if ϕ is a degenerate function,
then there exists a function ϕ2, which has the same persistence measure as ϕ, but for which
Problem 5.1 is not identifiable using only the persistence measure.

Proposition 5.3. Let ϕ : R→ R be a one–periodic function. There exists a 1/N(ϕ|[0,1])–periodic
function ϕ2 : R→ R, such that

µϕ|[0,1] = N(ϕ|[0,1])µϕ2|[0,1] .

We discuss the identifiability of the problem and the degeneracy in Figure 3, which shows the
graphs and persistence diagrams of two degenerate functions. For ϕ in the top row, the problem of
inference on N is not identifiable, since ϕ|[0,1/2] could be re–parametrized to have the same graph

as ϕ|[1/2,1]. In particular, the function ϕ is degenerate. The function ϕ2 is also degenerate, because
it induces the same persistence measure as ϕ. However, its extremal values occur in a different
order, so the same re-parametrisation trick cannot be applied and the problem is identifiable. This
situation exemplifies a limitation of our method and more generally, of inference based only on
persistence measures. In Section 5.5, we comment on the implications. Non–degeneracy (5.3)
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Figure 4: On the left, graphs of f0|[0,1] and f1|[0,1]. On the right, their persistence diagrams.

restricts the class of considered functions, but it does not quantify the difficulty of the problem of
estimation of N . Figure 4 illustrates two functions from a family of functions (ϕr)r≥0

ϕr(x) =

{
sin(4πx), x ∈ [0, 1/2]

(1 + r) sin(4πx), x ∈]1/2, 1]
,

and extended by 1-periodicity to R. Here, ϕ0 is 1
2 -periodic and degenerate, while ϕr, r > 0 is not.

Indeed, the persistence measure µϕr
is supported on the points (−1−r, 1+r) and (−1, 1), each with

multiplicity 1. As r → 0, ϕr
∥·∥∞−−−→ ϕ0 and, while db(D(ϕr), D(ϕ0)) → 0, we have N(ϕr|[0,1]) = 1

for all r > 0. To quantify degeneracy, we introduce δ which measures the separation of points in
a diagram µ, from each other and from the diagonal

δ = min({d(p, q) | p, q ∈ supp(µ), p ̸= q} ∪ {d(p,∆) | p ∈ supp(µ)}). (5.4)

The next proposition lower–bounds how far a non–degenerate function is from a degenerate func-
tion, in terms of its separation δ.

Proposition 5.4. Let ϕ : R→ R be a non–degenerate function and δ > 0 be the separation of µϕ.
For any degenerate ϕ2 : R→ R with N(ϕ2|[0,1]) = n ≥ 2,

db(µϕ|[0,1] , µϕ2|[0,1]) ≥
δ

2
.

Proof. For this proof, we consider the diagram as a multi–set. In the argument below, we need to
make a distinction between a point p in a diagram, and its geometric realization in R2, which we
denote by p, as there can be multiple points in D(ϕ) which have the same geometric realizations.
Let Γ : (D(ϕ|[0,1]) ∪ ∆) → (D(ϕ2|[0,1]) ∪ ∆) be a matching between the persistence diagrams

(Definition 2.36).

As N(ϕ2|[0,1]) = n does not divide 1 = N(ϕ|[0,1]), there is p0 ∈ supp(D(ϕ|[0,1])) such that

n does not divide mϕ|[0,1](p0). (5.5)

Let us denote by P = {p ∈ D(ϕ) | p = p0} the set of points from the diagram, which have the
same geometric realization as p0 and Q = Γ(P ) = {Γ(p) | p ∈ P} ⊂ R2 the image of these points
by the matching.

Consider Q′ = {q′ ∈ D(ϕ2|[0,1]) | ∃q ∈ Q, q = q′} the subset of D(ϕ2|[0,1]) with geometric

realizations in Q, and the set P ′ = Γ−1(Q′) \ P . Let us show that P ′ ̸= ∅. Since Γ(P ) = Q ⊂ Q′,
if P ′ = ∅, then P = Γ−1(Q′). The bijectivity of the matching Γ implies that |P | = |Q′|. However,
n divides |Q′| = P = ⟨p0⟩ϕ|[0,1] , so we obtain a contradiction with (5.5).

Consider p1 ∈ P ′. As Γ(p1) ∈ Q′, there is q ∈ Q such that Γ(p1) = q. Since Q = Γ(P ),
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Γ(p2) = q, for some p2 ∈ P . Since p1 ̸= p2, ∥p1 − p2∥∞ ≥ δ, so that

max
p∈D(ϕ|[0,1])∪∆

∥p− Γ(p)∥∞ ≥ max(∥p1 − Γ(p1)∥∞, ∥p2 − Γ(p2)∥∞)

≥ 1

2
(∥p1 − q∥∞ + ∥p2 − q∥∞)

≥ δ

2
.

Since the bottleneck distance db(D(ϕ|[0,1]), D(ϕ2|[0,1])) is an infimum over matchings Γ, it is

also lower–bounded by δ/2.

For instance, taking the example from Figure 4, µϕr|[0,1] is supported on {(−1−r, 1+r), (−1, 1)},
so that δ = min(r, 12 ). However, the closest persistence measure of a degenerate function is µ =
2·1(−1−r/2,1+r/2), which, by Proposition 5.3 is realizable as the measure of a function ϕ2 : [0, 1]→ R.

In Section 5, we mentioned the zero–crossings method in the context of estimating N . The
number of times that the graph of a periodic function ϕ crosses y = 0 can be read from the
diagram. For a periodic function, a zero-crossing occurs between two local extrema, both of which
have values different from zero. By periodicity, such a pair of extremal values generates exactly
two zero-crossings. Hence, the number of zero–crossings is exactly 2µϕ(] −∞, 0[×]0,∞[). Using
zero-crossing based estimators leads to even more pronounced identifiability issues. In addition,
the number of zero-crossings is not stable with respect to perturbations of the signal.

5.2 Estimation of N in the presence of noise

Suppose now that we observe S = ϕ◦γ+W , where ∥W∥ < ϵ is a continuous function W : [0, 1]→ R.
In the previous section, since ϕ had a finite number of critical points, the persistence module
actually had an interval decompositon. Here, we need to rely on the rectangle measures and the
measure diagram, which exists, as argued in Section 2.5.3. In particular, since the module is q-
tame, for any τ > 0, the number of points more persistent than 2τ is finite, µS(R2 \∆τ ), where
∆τ = {(b, d) | pers(b, d) ≤ 2τ} is the τ -thickening of the diagonal.

In the case whenW is a stationary random process and eachWt is a continuous random variable,
we cannot expect the extrema of S to all have the same value. Counting the multiplicity of points
in ϕ|[0,1] introduced in Section 5.1 needs to be adapted. We replace the notion of multiplicity by

that of measures of neighborhoods. For a parameter τ > 0, and p = (x, y),

mS,τ (p) = µS([x− τ, x+ τ ]× [y − τ, y + τ ])

is the number of points from µS in B(p, τ), the ∥ · ∥∞-ball of radius τ centered at p. We generalize
the definition of N(S) to

N̂(S, τ) = gcd{mS,τ (p) | p ∈ supp(µS) \∆τ}. (5.6)

Notice that in this second version, the gcd is computed only on points further than τ from the
diagonal (in the Chebyshev distance). In the noise–free setting W = 0, we have N̂(ϕ ◦ γ, 0) =
N(ϕ ◦ γ). In general, τ needs to be sufficiently large compared to the noise ϵ, to account for the
local displacement of points. It also needs to be bounded in terms of τ , not to confound the global
structure of the diagram. We make those conditions explicit in Proposition 5.5.

Proposition 5.5. Suppose that ϕ is non–degenerate and that ϵ < δ/6, where δ is the separation
constant introduced above. Then, for τ > 0 satisfying 2ϵ < τ < δ/3, we have that

N(ϕ ◦ γ) = N̂(S, τ).

The lemma below formalizes the intuition that if points in the diagram are well-separated, then
the mass of ϵ-balls does not change.

Lemma 5.6. Suppose that τ > 0 satisfies 2ϵ < τ < δ/3. Then, for any p ∈ supp(µϕ◦γ) and
q ∈ B(p, ϵ),

µS(B(q, τ)) = µϕ◦γ(B(p, τ)).
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Figure 5: On the left, the graph of a sample from S = ϕ ◦ γ + W , with γ(1) = 3, δϕ = 1.37 and

∥W∥∞ ≤ ϵ = 0.16. On the right, the graph of the piecewise-linear function τ 7→ N̂(S, τ). Marked
in green is the guarantee from Proposition 5.5.

Proof (Lemma 5.6). For any 0 < r < δ, the separation of points in the diagram of ϕ ensures that

µϕ◦γ(B(p, r)) = mϕ◦γ(p). (5.7)

By stability of the persistence measure of ϕ ◦ γ, mϕ◦γ(p) ≤ µS(B(p, τ)). As d(p, q) < ϵ implies
B(p, ϵ) ⊂ B(q, 2ϵ), we get µS(B(p, ϵ)) ≤ µS(B(q, 2ϵ)) ≤ µS(B(q, τ)).

For the inequality in the other direction, we use stability, µS(B(q, τ)) ≤ µϕ◦γ(B(q, τ + ϵ)) ≤
µϕ◦γ(B(p, τ + 2ϵ)). Since τ + 2ϵ ≤ 2τ ≤ δ, we can apply (5.7) for r = τ + 2ϵ and r = τ
µϕ◦γ(B(p, τ + 2ϵ)) = mϕ◦γ(p) = µϕ◦γ(B(p, τ)).

Proof (Proposition 5.5). Consider q ∈ supp(µS)\∆τ . By stability of the persistence diagram, there
is p ∈ supp(µϕ◦γ), such that q ∈ B(p, ϵ). Lemma 5.6 states that µS(B(q, τ)) = µϕ◦γ(B(p, τ)), so

that N(ϕ◦γ) divides N̂(S, τ). For any p ∈ supp(µϕ◦γ), by Lemma 5.6, µϕ◦γ(B(p, τ)) = µS(B(p, τ)),

so that N̂(S, τ) divides N(ϕ ◦ γ). Thanks to the non–degeneracy of ϕ and by Proposition 3.1, we
conclude that N̂(S, τ) = N(ϕ ◦ γ) = N.

Figure 5 shows an example of S, where ϕ, δ and ∥W∥∞ are known. The graph on the right
shows that the proposed estimator N̂(S, τ) is correct (= 3) for τ ∈ [0.16, 1.35], which almost covers
[ϵ, δ]. The guarantee given by Proposition 5.5, marked in green, is much more pessimistic.

We propose to apply Proposition 5.5 in a random setting, with (Wt)t∈[0,1] being a Gaussian
process. One case of practical interest in signal processing is that of white noise. However, we
cannot treat it in the continuous setting. We refer the reader to Appendix 5.B, where we first
discretize the signal and then devise guarantees. Instead, we propose to examine here the case
of a regular Gaussian process. While the noise is now no longer bounded, we can calculate the
probability that it remains bounded and that is the basis of our guarantee. We consider regular
processes - that is, processes, which have a differentiable covariance function (Azäis and Wschebor,
2009, section 4.3).

Proposition 5.7. Consider S = ϕ ◦ γ + W , with (Wt)t∈[0,1] a Gaussian process with covariance
function of the form Cov(s, t) = Γ(|t− s|), where

Γ(t) = σ2 exp

(
− t2

2l2

)
, for some σ, l > 0. (5.8)

Then, for any τ ≤ δ/3,

P (N̂(S, τ) = N) ≥ 1−
(

1

l2π
exp

(
−κ2

2

)
+ 2ϕ (−κ)

)
, (5.9)

where κ = τ
2σ and ϕ is the cumulative distribution function of a normal random variable.

Proof. Proposition 5.5 states that N̂(S, τ) = N whenever S is τ
2–close to ϕ ◦ γ, what translates to

the following inclusion between the events

{∥ϕ ◦ γ − S∥∞ ≤ τ
2} ⊆ {N̂(S, τ) = N}.
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Define Z = W
σ , where σ =

√
Γ(0). Then,

P (∥ϕ ◦ γ − S∥∞ ≤ τ
2 ) = P

(
sup

t∈[0,1]

|Wt| ≤ τ
2

)

= P

(
sup

t∈[0,1]

|Zt| ≤ τ
2σ

)
.

Set u = τ
2σ . Since supt∈[0,1] |Zt| = max(supt∈[0,1] Zt, supt∈[0,1]−Zt), the events {supt∈[0,1] Zt > u}

and {supt∈[0,1]−Zt > u} are a cover of supt∈[0,1] |Zt| > u.

P

(
sup

t∈[0,1]

|Zt| ≤ τ
2σ

)
= 1− P (| sup

t∈[0,1]

Zt| > u),

≥ 1− (P ( sup
t∈[0,1]

Zt > u) + P ( sup
t∈[0,1]

(−Zt) > u))

≥ 1− 2P ( sup
t∈[0,1]

Zt > u),

where the ultimate inequality follows from the fact that Z(t) and −Z(t) have equal distributions.

Let r(s1, s2) = E[Zs1Zs2 ] and r1,1(s, t) = ∂2

∂s1∂s2
r(s, t). By Proposition 2.4,

P

(
sup

t∈[0,1]

Zt > u

)
≤ exp(−u2/2)

2π

∫ 1

0

√
r1,1(t, t)dt+ 1− ϕ(u). (5.10)

Here, r(s1, s2) = Γ(s1 − s2) = exp
(
− (s1−s2)

2

2l2

)
, so computing the derivative of the covariance

function

r1,1(s, t) =
∂2

∂s1∂s2
r(s, t) =

s− t+ 1

l2
exp

(
− (s− t)2

2l2

)
.

For s = t,

r1,1(t, t) =
1

l2
.

Computing the right–hand side of (5.10) and putting it all together, we obtain

P (N̂(S, τ) = N) ≥ 1−
(

1

l2π
exp

(
−κ2

2

)
+ 2ϕ (−κ)

)
.

Let us analyze the bound (5.9). The parameter l in (5.8) quantifies the horizon of dependence
of the stochastic process. The bound is increasing in l, implying that a long dependence (large
l) yields a simpler structure for the method. In the limit l → ∞, the expression on the right,
P (N̂(S, τ) = N) ≥ 1 − 2ϕ (−κ), is the same as the probability that ∥(ϕ ◦ γ)(0) − S(0)∥∞ < τ/2.
On the other hand, when the interactions become short-term (l small), the bound becomes trivial:
there is a constant l0 depending on κ, such that for l ∈]0, l0], the bound is 0. The other governing
parameter is κ - the ratio between the chosen scale τ and the standard deviation σ of the process.
So, since τ ≤ δ

3 has to be smaller than a fraction of the separation of f , κ ≤ δ
6σ is also bounded.

Regardless of how good of a method to choose τ we have, we obtain the best lower–bound of
the probability of correctness only in terms of the quantities characteristic of the signal and the
stochastic process. Experimental observations regarding l are discussed in Section 5.4.2.

5.3 Inference of an odometric sequence

In this section, we propose an odometric sequence for Problem 5.2, which we take as a subset of
the local minima of the signal, chosen using the estimator of N proposed in Section 5.2. We first
examine the noiseless case ϕ ◦ γ, with γ : [0, 1]→ [0, N ]. Let C be the set of local minima of ϕ ◦ γ.
If K is the number of local minima in a single period of ϕ, then card(C) = NK. By picking every
K-th minimum in C, we obtain an odometric sequence. More precisely, we lexicographically index
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Figure 6: Example of an odometric sequence. On the left, an observed signal, with N = 3. In
the center figure, its persistence diagram, with ∥ · ∥∞-balls of radius 0.7, marking the sets whose
measure is evaluated. On the right, the observed signal with the odometric sequences stemming
from persistent local minima. For each k = 0, 1, 2, (t̂n,k)3n=1 is an odometric sequence.

the ordered minima C = (tn,k)n=1,...,N
k=1,...,K

and then, for any k = 1, . . . ,K, and n = 2, . . . , N , we have

γ(tn,k) = γ(tn−1,k) + 1.
Notice that since N is part of the data in Problem 5.2, we do not even need to assume that ϕ

is non–degenerate. If we wanted to use the same technique with N unknown, we would need to
estimate it and the non–degeneracy of f is necessary for Proposition 5.1.

Let us consider the case of a signal corrupted by noise S = ϕ ◦ γ + W . While the location of
the local minima of S is slightly different than those of ϕ ◦ γ, we can expect to be able to find
a set of ‘persistent’ minima, in one-to-one correspondence with those of C. Thus, the odometric
property will not be exactly satisfied. An example is shown in Figure 6. We observe a signal, where
γ(1) = 3. Note that two points lie between the diagonal and it’s offset, marked by the dashed
lines. These are not used in the estimation of N and the corresponding local minima are ignored
when selecting the odometric sequences, shown on the right. Proposition 5.8 makes precise the
guarantees on the existence of the sequence. It also states that it satisfies the odometric property,
up to a constant which depends on ϕ, τ and ϵ.

Proposition 5.8. Let τ > 0 and Ĉτ be the set of local minima of S, corresponding to points in
the diagram with persistence exceeding τ . If τ ∈]2ϵ, δ/3[, then

card(Ĉτ ) = NK.

In addition, if we order the minima Ĉτ = {t̂1,1, . . . t̂1,K , t̂2,1, . . . , t̂N,K}, then

|γ(t̂n,k)− γ(t̂n−1,k)− 1| ≤ 2R(τ + 2ϵ),

where
R(ν) = sup

x∈γ(C)
inf
r>0
{r | ϕ(x+ r)− ϕ(x) > ν, ϕ(x− r)− ϕ(x) > ν}

is a constant depending on ϕ and not depending on γ and N .

Before we proceed to the proof, we recall a result from the theory of persistence: between any
two consecutive local minima of ϕ, there is a local maximum, larger than those minima by at least
δ, of which we provide a short proof.

Lemma 5.9. Let x1 < x2 be two, consecutive local minima of ϕ and suppose that the separation
constant (5.4) for µϕ is δ > 0. Then,

[min(ϕ(x1), ϕ(x2)),max(ϕ(x1), ϕ(x2)) + 2δ] ⊂ ϕ([x1, x2]).

Proof of Lemma 5.9. The lemma is in fact a direct consequence of Chazal et al. (2016, Lemma
3.38). Consider the 0-simplices σ1 ≡ x1 and σ2 ≡ x2, let r = min(ϕ(x1), ϕ(x2)), s = max(ϕ(x1), ϕ(x2))
and t := maxϕ|[x1,x2]

. Because x1 and x2 are isolated local minima, the homology class of σ1 − σ2
is non trivial in H0(ϕ−1(]−∞, s])∩ [x1, x2]). However, ιts(σ1− σ2) is trivial in H0(ϕ−1(]−∞, t])∩
[x1, x2]). The morphism ιts is therefore not injective and the rectangle ] − ∞, s] × [t,∞[ in the
diagram of ϕ|[x1,x2]

is not empty by Chazal et al. (2016, Lemma 3.38 (2)). On the other hand, by
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Figure 7: The figure shows an example of the graphs of ϕ and S ◦ γ−1, with local minima of both
functions and R−

k , R
+
k from (5.11) illustrated.

(1) from that same Lemma, there is no point in [r, s]× [s,∞], because ιsr is surjective. Therefore,
there must be a point in the triangle defined by the vertices (s, s), (s, t), (t, t) and which is not on
the diagonal ∆. Finally, the separation constant δ lower-bounds the distance of any point in the
diagram to the diagonal, so in particular, δ < (t− s)/2 and therefore t ≥ s+ 2δ.

Proof of Proposition 5.8. When 2ϵ < τ < δ/3,

card(Ĉτ ) = µS(R2 \∆τ )

= µϕ◦γ(R2 \∆)

= card(C)
= NK,

where the second inequality follows from Lemma 5.6. This yields the first statement.
For the second part, let us start by defining xk = γ(t1,k) ∈ [0, 1]. By definition, γ(tn,k)−γ(tn−1,k) =
xk + (n− 1)− (xk + (n− 2)) = 1, so

|γ(t̂n,k)− γ(t̂n−1,k)− 1| = |γ(t̂n,k)− γ(t̂n−1,k)− (γ(tn,k)− γ(tn−1,k))|
≤ |γ(t̂n,k)− γ(tn,k)|+ |γ(t̂n−1,k)− γ(tn−1,k))|.

Let us introduce Rk = max(R−
k , R

+
k ), with

R−
k = sup

r
{r | ∀y ∈ [xk − r, xk], ϕ(y) ≤ ϕ(xk) + τ + 2ϵ},

R+
k = sup

r
{r | ∀y ∈ [xk, xk + r], ϕ(y) ≤ ϕ(xk) + τ + 2ϵ},

(5.11)

which upper–bounds how far one needs to look in either direction from xk, so ϕ leaves the interval
[ϕ(xk), ϕ(xk) + δ]. We now need to show that, for all n, k,

|γ(t̂n,k)− γ(tn,k)| ≤ max{R+
k , R

−
k }.

More specifically, we show that for any n, k, card(Ĉτ∩In,k) = 1. Since there are exactly card(Ĉτ ) =
NK intervals In,k, t̂n,k ∈ In,k. We illustrate this in Figure 7 and conclude by setting R(τ + 2ϵ) =
maxk{R−

k , R
+
k }.

We now show card(Ĉτ ∩ In,k) = 1. Observe that since S is continuous, it has a minimum a∗ over
In,k. This minimum is not achieved at the extremities of In,k, since

S(γ−1(γ(tn,k) +R+
k ))− S(tn,k) ≥ τ + 2ϵ+ (Wγ−1(γ(tn,k)+R+

k ) +Wtn,k
) > τ.

S(γ−1(γ(tn,k)−R−
k ))− S(tn,k) ≥ τ + 2ϵ+ (Wγ−1(γ(tn,k)−R−

k ) +Wtn,k
) > τ.

The inequalities above also show that the a∗ has a persistence greater than τ , so a∗ ∈ Ĉτ .
Suppose now that two elements a∗ < b∗ ∈ Ĉτ are contained in the same interval In,k. Lemma 5.9
states that there is a local maximum c∗ ∈]a∗, b∗[⊂ In,k. If tn,k < c∗, S(c∗)−S(a∗) > δ contradicts
the minimality of R+

k and therefore a∗ = b∗. If tn,k > c, we obtain a contradiction of the minimality
of R−

k since S(c∗)− S(b∗) > δ.
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Proposition 5.8 is similar in spirit to Chazal et al. (2017, Lemma 17). It is interesting to note
that the guarantee is not cumulative: more specifically, for any 0 ≤ n,m ≤ N , we have

|γ(t̂n,k)− γ(t̂m,k)− (n−m)| ≤ 2R(τ + 2ϵ).

The relative error is therefore small for m− n large.
As we would expect, the more strictly convex ϕ is around prominent local minima, and the

smaller τ and ϵ, the smaller Rk is. On the other hand, convexity of ϕ implies that the sampling
error of ϕ will be greater.

5.4 Numerical experiments

We introduce more robust versions of N̂ and we quantify their performance on synthetic signals.

5.4.1 Practical adaptations of N̂

We introduce N̂c, obtained by replacing in (5.6) the number of points in neighborhoods by the
sizes of some partitions, and N̂T

c , which does not require a selection of τ . Specifically, let Aτ be a
partition of supp(µS)∪∆ obtained via single–linkage hierarchical clustering with a scale-parameter
τ . We define

N̂c(S, τ) = gcd{µS(A) | A ∈ Aτ , A ∩∆ = ∅}. (5.12)

Let us now consider the map hS : τ 7→ N̂c(S, τ), for τ ∈ R∗
+, with the convention that gcd(∅) = 1.

The map hS is piece–wise constant and equal to 1 on ](max(S)−min(S)),∞[, since the persistence
of all points is bounded by (max(S) −min(S))/2. Let In be the collection of maximal intervals,
where hS(τ) = n. Finally, we set N̂T

c to the value which is realized over the longest interval

N̂T
c (S) = hS(τ), for τ ∈ argmax

I∈In

length(I). (5.13)

Let us motivate the introduction of N̂c. Experiments show that points in the diagrams µS form
non–overlapping clusters. The diameters of those clusters can be greater than the distance which
separates them (when the condition 6ϵ < δ is not satisfied). In such a situation, the estimator (5.6)
will be incorrect, even if, to the human eye, the clusters are easily identifiable. In the proof of
Lemma 5.6, we notice that if the upper bound of noise ϵ is smaller than the separation δ/3, the
points in the persistence diagram are partitioned into neighborhoods of size τ . In particular, if
two points in the diagram share a neighbor at distance no greater than τ , their τ -neighborhoods
are equal due to the separation property satisfied by ϕ. This is exactly the property satisfied by
a partition produced by single–linkage clustering. Namely, that algorithm produces the coarsest
partition Aτ of R2 such that: for any p1, p2 ∈ supp(µS), if there exists q ∈ supp(µS) such that
d(p1, q) < τ and d(q, p2) < τ , then there exists A ∈ A such that p1, p2 ∈ A. This motivates
replacing (B(p, τ))p∈supp(µS\∆τ ) with a partition Aτ from a single-linkage algorithm, leading to an
algorithm more robust to noise and to the choice of τ .

The second estimator N̂T
c allows us to avoid the selection of τ : it takes the value for which hS

is constant for the longest interval. Suppose there exists τ0 > 0 such that hS(τ0) = N and that
no point in Aτ is isolated. Then N divides hS(τ), for all τ ∈]τ0, τmax[, where τmax is the smallest
value of τ such that Aτ contains a single cluster, intersecting the diagonal. By a similar argument
as in Proposition 5.5, hS(τ) = N for τ ∈]2ϵ, δ/3[. So, there exists I ∈ IN such that ]2ϵ, δ/3[⊂ I.
Usually, this inclusion will be strict, because the clustering scheme is less sensitive to ϵ.

The automatic choice of τ comes with some limitations. Since we set the domain of hS in a
data–driven way to [0, (maxS − minS)/2], we encounter problems when δ is small compared to
the amplitude of the signal. It is particularly visible when the signal ϕ is close to a degenerate–
function, even in the noiseless setting. For ϕr from Figure 4, we have δ = min(∥(−1− r, 1 + r)−
(−1, 1)∥∞, ∥(−1− r, 1 + r)∥∞) = min(r, 1− r), so

hϕr|[0,1](τ) =


1 for τ < r,

2 for r ≤ τ < 1− r,
1 for 1− r ≤ τ ≤ 1,

if 0 ≤ r < 1
2 ,
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Figure 9: The success rates for estimating N , while varying the noise level σ (top row) and the
time–scale l (bottom row) of the Gaussian process W with covariance (5.8).

and hϕr|[0,1](τ) ≡ 1 for 1
2 ≤ r ≤ 1. Therefore, N̂T

c (ϕr|[0,1]) = 1 if and only if r > 1/3. When

r ≤ 1/3 is too small, the function looks like a degenerate function for a range of scale τ too large.
Such behavior is to be expected from any method of automating the choice of τ : estimating N
amounts to looking for symmetries in the diagram of S, so if the true symmetry is present only for
a narrow range of scales τ , it will be harder to capture that scale correctly and automatically.

Ultimately, we are often interested in computing the odometric sequence for which a value of
τ is needed. We take τ to be the middle of the longest interval on which hS is constant, so that
N̂c(S, τ) = N̂T

c (S).

5.4.2 Estimating N on synthetic data

We choose five template functions ϕ0, . . . , ϕ4 and we picture their periods in Figure 8. The functions
ϕ0, ϕ3 and ϕ4 all have a single pair of extrema per period, while ϕ1 and ϕ2 have two and three
pairs per period respectively. All the functions are normalized so that their range is [−1, 1], but
their separation parameters δ differ: δ0 = 1 = δ3 = δ4, δ1 = 0.21 and δ2 = 0.13. We generate
100 reparametrisations γ with the following procedure: sample Nk uniformly from {5, . . . , 50} and
(tkl )Nk

l=1 uniformly in [0, 1], then linearly interpolate (tkl , l)
Nk

l=1 to obtain γk. Ordered ascendingly,

(tkl )Nk

l=1 define the starts of the periods. This yields a collection of 500 signals, that we perturb with
noise (Wt)t∈[0,1], a Gaussian process with covariance as in (5.8), with parameters σ ∈ [0.0001, 6]
and γ ∈ [0.01, 0.4].

We compare two estimators. We define an oracle, based on the zero crossings method, by
specifying the number of zero crossings in a period of ϕk - information that is inaccessible in
practice. We benchmark N̂T

c against this zero crossings oracle, with the fraction of samples for
which N was estimated correctly as a metric. We present the results for each template function
fk in Figure 9. Globally, the performance of both estimators is increasing as the SNR increases
(σ decreases). The estimator N̂T

c outperforms the oracle in all scenarios. The sensitivity of the
zero–crossings method to local extrema close to zero is confirmed by the poor performance on ϕ1:
a noise of small amplitude can create additional zero–crossings. Even though N̂T

c also shows a
degraded performance for this periodic function, it outperforms the benchmark and that by the
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and hS .

biggest margin. The difference in performance between the two methods is also most noticeable
on ϕ1. At high noise levels, the pairs of local and global extrema get identified as the same, as it
would be the case for a degenerate function.

Since ∥W∥ is decreasing in the time–scale l, we expect the success rate to be monotonously
increasing in l. However, it decreases and reaches a minimum at around l = 0.1. We believe that
the initial increase is indeed due to the decrease in ∥W∥∞. In this range of l, the noise is high–
frequency and of small amplitude, leading to many points in the diagram, as shown in the top row
in Figure 10. The difficulty in estimating N comes essentially from the presence of many points
close to the diagonal. However, the points corresponding to minima of ϕ are generally separable
from those spurious points. When the time scale increases to around 0.05 - 0.1, the noise has lower
frequencies, almost in the range of γ′. Looking at the graph on the left, the noise shifts some
periods vertically, creating isolated points in the persistence diagram. For a wide range of scales,
those points are isolated instead of being clustered with the rest. When l increases even further,
the induced oscillations are generally of smaller amplitude and resemble a slow drift of the period.
In the diagram, such a drift manifests itself as a densely–sampled line, which can be identified as
a single cluster.

5.5 Conclusion and perspectives

We formulated two inverse problems: estimation of N and finding odometric sequences. We use the
homogeneity property to propose an estimator of N , which generalizes that of zero-crossings. We
prove that the estimation is correct for a wide class of functions, even when the signal is obfuscated
with additive noise. We propose a more robust variant N̂c and a parameter–free version N̂T

c . We
show that for certain types of functions that we describe, this estimator perform similarly to a
standard approach. Using the estimation of N , we propose a method of obtaining odometric
sequences, which are stable with respect to perturbations of the input signal.

From a theoretical perspective, using the persistence diagrams as the sole descriptor of a signal
limits identifiability, as explained via Figure 4. A richer descriptor which does not suffer from
similar problems is the merge tree, see for example Pegoraro and Secchi (2021). However, we are
not aware of a way to exploit trees for the problem of estimating N . A possible avenue suggested
to us would be to use merge trees to validate the segmentation: compare merge trees associated
to each period. If the edit distance between the trees is greater than the separation, it indicates
that the periodic structure has not been well-identified.

In practical scenarios, we never observe an exact number of revolutions, so the assumption
that N ∈ N is a significant limitation of our work. It is not a noticeable problem in the case of
the numerical experiments, because that constraint is satisfied for the synthetic examples, and the
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magnetic signals encountered in the application motivating this thesis often have a single pair of
local extrema per period.

Another limitation is the use of the greatest common divisor in (5.6). It is not robust to any
perturbation: a change in a single value in the set leads to the gcd being 1. For this reason, the
whole procedure is very sensitive to outliers. Algorithms which solve the approximate common
divisor (ACD) problem, like the Simultaneous Diophantine approximation (SDA) (Galbraith et al.,
2016), could be used instead of the gcd. They are shown to be stable with respect to perturbations
of the individual elements, and, preliminary tests on a handful of examples show that the estimation
is much more robust. However, the algorithms require additional information: for example, before
applying SDA in our case, we would need to give an integer lower–bound for log2(N). While
the bound should be sharp in theory, our preliminary experiments on a handful of examples have
shown promise. However, a drawback is the increased computational complexity in the number of
points. A more serious problem is how to adapt the segmentation method. In the definition of the
odometric sequence, we heavily rely on the fact that there are exactly NK persistent points in the
persistence diagram, while with these algorithms, it is not necessarily the case.

Finally, the presented method is designed for univariate data. While it can be applied to a
single covariate from a multi–variate signal, a well–designed approach for several variables could
make the estimation more robust. The restriction to univariate data is related to how we construct
the persistence diagram and it is not immediately clear how to generalize for multi–variate data
while preserving properties like those shown in Chapter 3. We explore this aspect in Chapter 6.



Appendix

5.A Proof of Proposition 5.3

Before the proof Proposition 5.3, we show that certain multi-sets can be realized as the persistence
diagrams of sub level sets of a continuous function. Lemma 5.10 is similar to Lesnick (2015,
Proposition 5.8), but we include the proof for two reasons: first, to be self–contained and, second,
to provide a simple construction specific to our case, where we characterize the period of ϕ.

Lemma 5.10. Let D be a non–empty persistence diagram with a unique, most persistent point
p0 = (b0, d0). Assume that D\∆ is finite and D ⊂ [b0, d0]×[b0, d0]. Then, there exists a continuous
function ϕ : R→ R with period 1, such that D = D(ϕ|[0,1]), ϕ(0) = ϕ(1).

Proof. We first construct a candidate function ϕ as shown in Figure 5.A.1 and then, prove that
it satisfies the desired properties. Let us enumerate the points in D \∆, in lexicographic order of
increasing birth and decreasing death values: (b0, d0), . . . (bK−1, dK−1), where K = |D \∆|. Then,
consider the function

ϕK : {0, . . . , 2K} → R

k 7→
{
dk/2, if k is pair

b(k−1)/2, otherwise,

with the convention dK = d0, and the linear interpolation ϕ : [0, 1]→ R.
First, note that ϕ is continuous and that ϕ(0) = ϕK(0) = d0 = dK = ϕK(2K) = ϕ(1). The

sequence of extrema is aperiodic if either K = 0 or (b0, d0) ̸= (bK , dK). An aperiodic sequence
leads to ϕK aperiodic and so ϕ can be extended to R to have period 1. If (b0, d0) = (bK , dK),
modify the subdivision of [0, 1] to be non–uniform, in which case the period of ϕ is also 1.

We argue that D = D(ϕ). It can be seen by noticing that every local minimum is paired with
the local maximum on its left. Formally, we calculate D(ϕ) with Algorithm 1. The local minima
and maxima of ϕ are (xbk)Kk=1, (xdk

)Kk=1 respectively. We only need to consider, for every dk,
what point it is the second coordinate of. The connected component I of xdk

in ϕ−1(]−∞, dk]) is
partitioned into two non–empty sets I− = [0, xdk

] ∩ I and I+ = [xdk
, 1] ∩ I. Denote M := max(ϕ)

and suppose that dk < M . Then, since the values of the local minima are increasing by definition
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∆
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Figure 5.A.1: Illustration of the function ϕ.
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of ϕ, minϕ|I− < minϕ|I+ and xbk = argminϕ|I+ , so dk becomes the second coordinate of bk.

Therefore, there are exactly N copies of each point (bk, dk), such that dk < M . If dk = M , the
second coordinate of a point whose second coordinate has not been set yet, is set to dk.

Proof of Proposition 5.3. Let µ = 1
N(ϕ|[0,1])

µϕ|[0,1] . Then, µ is a persistence measure: by definition,

it is a finite sum of weighted point measures. The weights are integral, because N(ϕ|[0,1]) divides
the multiplicity of every point.

Thanks to Proposition 2.34, we can apply Lemma 5.10to the persistence diagram of µϕ|[0,1] ,

which gives us ϕ2 : R→ R such that µϕ2|[0,1] = µ = 1
N(ϕ|[0,1])

µϕ|[0,1] .

5.B N̂(S) for a signal with white noise

In Section 5.2, we discuss the estimation of γ(1) in the presence of noise. The aim of this section
is to derive guarantees in the case where the noise entries are independent. Such noise is called
”white noise” and it is often considered in applications. Continuous equivalents of white noise
processes exist, but they are difficult to analyze and many objects, like persistence diagrams, are
not defined for such processes. Since this consideration is motivated by practical considerations, we
choose to derive guarantees on a discrete-time signal, obtained by sampling the continuous signal
at a frequency ω > 0. For example, in magnetic odometry motivating this work, ω = 125Hz.

Let M = ⌊ω⌋. We define the sampling operator L : C0([0, 1]) → RM and the piecewise linear
interpolation operator F : RM+1 → C0([0, Mω ]). Specifically, for h ∈ C0[0, 1] and a ∈ RM+1,

L(h) := (h(m
ω ))Mm=0,

F (a)(t) := am(ωt− (m− 1)) + am−1(m− ωt), for any t ∈ [m−1
ω , mω [.

We denote the composition of the two by T = F ◦ L : C3([0, 1]) → C0([0, Mω ]). We examine the
approximation obtained by interpolating a uniform sample from f ◦ γ.

Lemma 5.11. Suppose that ϕ and γ are C3. Then, for t ∈
[
0, Mω

[
,

|T (ϕ ◦ γ)(t)− (ϕ ◦ γ)(t)| ≤ 2
ω2 (∥ϕ′′∥∞∥γ′∥2∞ + ∥ϕ′∥∞∥γ′′∥∞) +O(ω−3).

Proof. Let h = ϕ◦γ. First, we show that |T (h)−h| = O
(

∥h′′∥∞
ω2

)
. For m such that t ∈

[
m−1
ω , mω

[
,

|T (h)(t)− h(t)| =
∣∣(h (mω )− h(t))(ωt− (m− 1)) +

(
h
(
m−1
ω

)
− h(t)

)
(m− ωt)

∣∣
=|(h′(m

ω )(t− m
ω ) + 1

2h
′′(t∗m)

(
t− m

ω

)2
)(ωt− (m− 1))

+ (h′
(
m−1
ω

) (
t− m−1

ω

)
+ 1

2h
′′(t∗m−1)

(
t− m−1

ω

)2
)(ωt− (m− 1))|,

where t∗k−1 ∈ [m−1
ω , t], t∗k ∈ [t, mω ] are given by the Taylor–Lagrange expansion of h. By an

expansion of h′ around m−1
ω ,

|T (h)(t)− h(t)| ≤ 1
ω2

(∣∣h′′ (m−1
ω

)∣∣+ |h′′(t1)|+ 1
2ωh

′′′(t2)
)

≤ 1
ω2

(
2∥h′′∥∞ +O

(
1
ω

))
.

The following proposition is an application of the stability result to [0, Mω ].

Proposition 5.12. Let ϕ, γ be C3 as above. In addition, suppose that ω is large enough so that
[0, Mω ] contains all the local extrema of ϕ ◦ γ. Then,

db(D(T (ϕ ◦ γ)), D(ϕ ◦ γ)) ≤ 2
ω2 (∥ϕ′′∥∞∥γ′∥2∞ + ∥ϕ′∥∞∥γ′′∥∞) +O(ω−3).

Proof. Since all extrema of ϕ◦γ are included in I = [0, Mω ], we have equality between the diagrams
D (ϕ ◦ γ|I) = D(ϕ ◦ γ). Using the stability of the persistence diagram, on the filtrations induced
by Tω(ϕ ◦ γ) and ϕ ◦ γ on I, we conclude with the Lemma 5.11.
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Proposition 5.12 relates the diagram of the noise–less signal to the sampled version. Let us now
consider a noisy sample from p ◦ γ. More precisely,

(Sm)Mm=1 = (ϕ(γ(m−1
ω )) +Wm)Mm=1,

where Wm are independent, identically distributed centered Gaussian random variables with stan-
dard deviation σ.

Proposition 5.13. Let ω > 0 and 0 < τ < δ/3 be such that α := τ/2− 1
ω2Cϕ,γ > 0, where

Cϕ,γ =∥ϕ′′∥∞∥γ′∥2∞ + ∥ϕ′∥∞∥γ′′∥∞
+ 1

2 (∥ϕ′′′∥∞∥γ′∥3∞ + 3∥ϕ′′∥∞∥γ′∥∞∥γ′′∥∞ + ∥ϕ′∥∞∥γ′′′∥∞).

Then,
P (N̂(F ((Sm)Mm=1)) = N, τ) ≥ (1− ϕ(α

σ ))ω.

Proof. We show that the linear approximation of the exact signal is good enough, so that the entries
can be perturbed with noise. Indeed, ∥F ((Sm)Mm=1)− ϕ ◦ γ∥∞ ≤ ∥(Wm)∥∞ + ∥T (ϕ ◦ γ)− f ◦ γ∥∞.
By Lemma 5.11, ∥F ((Sm)Mm=1) − ϕ ◦ γ∥∞ ≤ ∥(Wm)∥∞ + 1

ω2Cϕ,γ . Since Wm are independent,
centered normal variables with variance σ2, P (Wm ≤ α) = (1 − ϕ(α

σ ))ω. For α = τ/2 − 1
ω2Cϕ,γ ,

∥F ((Sm)Mm=1)−ϕ◦γ∥∞ ≤ α with probability (1−ϕ(α
σ ))ω. By Proposition 5.5, P (N̂(F ((Sm)Mm=1)) =

N, τ) < (1− ϕ(α
σ ))ω.

The bound in Proposition 5.13 is decreasing in ω, as soon as the approximation is good enough:
α > 0. There is a trade-off between the probability of N̂ being correct and the precision of the
odometric sequence, which increases with w.
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Chapter 6

From periodic functions to curves

In the previous chapters, we have considered two problems on uni-dimensional signals, samples from
a reparametrized periodic function. In the car positioning application that motivates this thesis,
there are several magnetometers, each providing a three-dimensional signal. In this chapter, we
discuss strategies to apply the estimators of the number of periods developed in Chapter 5 to the
three-dimensional data from a single magnetometer,

S : [0, T ] → R3

t 7→ ϕ(γ(t)) + W(t),
(6.1)

where ϕ : S1 → R3 and W : [0, T ] → R3 are continous and the latter represents noise. Some
assumptions and methods developed in this chapter are specific to the application. We also em-
phasize that this chapter is more exploratory in nature and guided by experimental results. It is
certainly less complete than Chapters 3-5.

Our point of view is to reduce the problem to the one-dimensional Problem 5.1. To do so,
we use linear projections R3 → R which are a simple, yet sufficient family of functions. Indeed,
historically, the procedures from Le Goff et al. (2012) and Zabulon et al. (2019) use the intensity
of the magnetic field measured only along a single axis, which is chosen to maximize the signal
amplitude. A second reason is specific to the structure of the magnetic signal S: there exists
v⋆ ∈ S2, such that the projection along v⋆ annihilates a major component of the noise W. Our
driving question is deciding between two concurring approaches: maximize the signal or minimize
the noise, explored in Sections 6.1 and 6.2 respectively. We propose several computable choices in
Section 6.3, and we evaluate their performance in a simple numerical experiment in Section 6.4.

We propose strategies to choose a single projection or a measure, from which to sample pro-
jections, with the goal of maximizing the performance of an estimator, N̂ : C([0, T ],R) → N. To
a vector v ∈ S2, which we will also call direction, we can associate a projection R3 → R and we
denote by Sv : [0, T ] → R the signal S projected along v. For a probability measure ν on S2, we
define the estimator

I(S, ν) := maxL(N̂(Sv)), v ∼ ν. (6.2)

Note that S is considered fixed and the mode is taken with respect to the distribution on N induced
by v 7→ N̂(Sv). Recall that the mode of an N-valued random variable X distributed according to
P is mode(X) := argmaxx P(X = x) and the maximum extends (6.2) to cases where the mode is
not unique. Our goal in this chapter is to propose a data-driven choice of a probability measure
ν = ν(S) on S2 which minimizes the risk PS(|I(S, ν(S))− (γ(T )−γ(0))| < 1), where S is a random
signal from (6.1).

We will consider two particular types of distributions ν. First, ν can be a discrete measure,
sometimes supported on a singleton: to v ∈ S2, we can associate ν = δv. Second, distributions
with a density with respect to the uniform measure µ on S2, with µ(S2) = 4π. For a non-negative
and measurable function1 f : S2 → R with

∫
fdµ > 0, we denote by fµ a measure with density

f∫
S2 fdµ

with respect to µ.

1In cases that we will consider, f is continuous.
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6.1 Maximizing the signal: projecting along directions with
high amplitude

In Tazaki et al. (2001), the authors place the magnetic sensor in an orientation which maximizes
the amplitude of the signal. Since projections are linear, a heuristic to maximize the signal is to
select ν = δvA , where vA ∈ argmaxv∈S2 A(ϕv) and A(ϕv) := maxϕv −minϕv. Depending on the
curve, the true maximum might not be unique. With noise and the optimization error, the results
of such a selection procedure have large variability. Hence, instead of selecting the maximum, we
propose to sample v ∈ S2 proportionally to A(ϕv). Specifically, we define µϕ := (v 7→ A(ϕv))µ.

In one-dimensional odometry, estimators N̂ and N̂c require choosing a parameter τ > 0. It is
related to the separation constant introduced in (5.4),

δ(ϕv) = min({d(p, q) | p, q ∈ D(ϕv), p ̸= q} ∪ {d(p,∆) | p ∈ D(ϕv)}),

which quantifies the difficulty of Problem 5.1, as stated by Propositions 5.4 and 5.5. The purpose
of this section is to present and show Proposition 6.5, which establishes a heuristic for selecting τ
in terms of Cϕ, a quantity related to the geometry of the curve.

Let us for now fix v ∈ S2 and reason on uni-dimensional signals, ϕv and Sv. Recall the estimator
N̂c(Sv, τ) first introduced in (5.12).

Definition 6.1 (N̂c from (5.12)). Let D(Sv) be the persistence diagram of Sv with periodic
boundary conditions, as defined in Section 3.1. We denote by Cτ the clusters obtained by single
linkage at scale τ > 0 on the persistence diagram D(Sv) ⊔∆. Then, we define

N̂c(Sv, τ) = gcd{card(D(Sv) ∩ C) | C ∈ Cτ , C ∩∆ = ∅}.

Consider δ(ϕv)τ = minC,C′∈Cτ {d(p, q) | p ∈ C, q ∈ C ′}, the minimum separation between any
two clusters C, C ′ ∈ Cτ . We introduce two multi-scale versions of (5.4),

δ(ϕv)⋆ = max
τ

δ(ϕv)τ , δ(ϕv)† = max
τ |N̂(ϕv,τ)=1

δ(ϕv)τ .

The separation constant δ(ϕv)⋆ is the maximal separation of clusters, achieved for clustering at a
certain scale. The second constant is similar, although it takes into account the symmetries in the
function. Figure 1 illustrates the clustering for different values of τ and the separation constants
on an example. Let f : S1 → R be a continuous function.

Proposition 6.2. If f is non–degenerate in the sense of Definition 5.2, then

δ(f) ≤ δ(f)† ≤ δ(f)⋆.

Proof. For any τ > 0, the minimum in δ(f)τ is taken only on a subset of pairs of points, so

δ(f) ≤ δ(f)τ . Suppose that δ(f) > 0. Then, for τ = δ(f)
2 , the clusters in Cτ are of cardinality

1 and therefore, N̂(f, τ) = 1 so δ(f)τ ≤ δ(f)†. The inequality δ(f)† ≤ δ(f)⋆ follows from the
definitions.

Figure 1 shows that the separation constants differ in situations where a single period of f is
close in the sup norm to several periods of another function, f̃ . The particularity of δ(f)⋆ is that
it upper-bounds nearest-neighbor distances.

Proposition 6.3. Let x0 := (min f,max f). If x0 /∈ ∆, then

0 < min
x1∈D(f)⊔∆\{x0}

d(x0, x1) ≤ δ(f)⋆ ≤ A(f)
2 .

Proof. Let τ > 0 and consider the associated single-linkage partition Cτ of D(f). For any two
distinct clusters C,C ′ ∈ Cτ , we have d(C,C ′) ≥ τ by definition of the clustering, so δ(f)τ ≥ τ .
Since A(f) > 0, we have x0 /∈ ∆. Because the persistence module associated to f is q-tame, x0 is
isolated: there is τ > 0, such that d(x0, x1) > τ for any x1 ∈ D(f), q ̸= p. Therefore, Cτ contains
at least two distinct clusters, namely Cx0 = {x0} and C∆. The upper-bound is straightforward:

for any point x ∈ D(f), d(x,∆) ≤ A(f)
2 , so that δ(f)τ ≤ A(f)

2 for any τ ≥ 0.
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Figure 1: On the top left, the graphs of a one-periodic function f and a 0.5-periodic function f̃ .
Below, D(f) clustered at different scales τ , with the constants δ(f)τ marked by the arrow. On the
right, the persistence diagrams D(f) and D(f̃), with the separation constants δ, δ† and δ⋆ marked
for the former.

Let us now go back to the three-dimensional curve ϕ. We will establish a link between
(δ(ϕv)⋆)v∈S2 , the length of ϕ, denoted by L(ϕ), and Ā(ϕ) := 1

4π

∫
S2 A(ϕv)dµ. We introduce a

regularity parameter of ϕ,

Cϕ := L(ϕ)/2Ā(ϕ)− 1.

Informally, Cϕ quantifies how “twisted” ϕ is. Later, in (6.8), we will see a different interpretation
of Cϕ which shows that it is at least 1.

Example 6.4. Let ϕ be a circle of radius 1 contained in the x-y-plane. The length is L(ϕ) = 2π
and the amplitude along v is A(ϕv) = 2 sin θ1, for v = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) which
makes an angle of π

2 − θ1 with the plane that contains ϕ. Then,

Ā(ϕ) =
1

4π

∫ π

0

∫ 2π

0

2 sin θ1 sin θ1dθ2dθ1 =
2π

4π

∫ π

0

2 sin2(θ1)dθ1 =
π

2
,

so that Cϕ = 2π
2π/2 − 1 = 1.

We are now ready to state the main result of this section, which relates τ , µϕ and Cϕ. Recall
that µϕ is the probability measure on S2, with density with respect to µ proportional to v 7→ A(ϕv).

Proposition 6.5. For any ξ ∈ [0, 12 [, let τv ≤ min
(

1−2ξ
2Cϕ−(1+2ξ) , 1

)
A(ϕv)

6 . Then

µϕ

(
τv ≤ δ(ϕv)

⋆

3

)
≥ 1

2
+ ξ. (6.3)

For ϕ as in Example 6.4, for any ξ, 1−2ξ
2Cϕ−(1+2ξ) = 1, so for any τv ≤ A(ϕv)

6 , we obtain that

µϕ

(
τv ≤ δ(ϕv)

⋆

3

)
= 1. It confirms that for the circle, only the amplitude along v is needed to set

τv.

An immediate corollary is that if we choose τv = A(ϕv)
6(2Cϕ−1) , then τv ≤ δ⋆v

3 for at least half of

the directions. If we decrease the scale further, the lower–bound in (6.3) increases at the expense
of robustness to noise. The implication for estimation of N is that we can set the scale τv to a
constant fraction ρ ∈]0, 1[ of the amplitude Aϕv

. Unfortunately, δ(f)⋆ is not the right separation
constant, so no estimation guarantee can be provided. In addition, τv is chosen in terms of Cϕ

which is unknown in practice.

Remark 6.6. In many practical cases of interest, the curve lacks large-scale self-symmetry. Then,
δ(ϕv)⋆ should be close to δ(ϕv)†, which is related to the correctness of N̂c. We will see that the
regularity constant is also not too large, typically, Cϕ ∈ [1., 1.5].
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Figure 2: Magnetic signal recorded during a full, right-hand side turn. On the right, the 3-
dimensional curve, with color denoting the time. On the right, the projection along the x-axis.

6.2 Minimizing noise via local to global stability: directions
normal to heading

The algorithms described in Chapter 5 are tailored to reparametrised periodic functions and they
are sensitive to noise in the supremum norm. We present two modelling assumptions which will
help us decompose noise and reduce one of its components. For more details about the nature and
the structure of magnetic measurements in a moving car, see Sections 7.1.1 and 7.1.2.

6.2.1 Noise decomposition

First, what we considered noise in (6.1), W : [0, T ] → R3, can be decomposed into a heading
component and the fingerprint of external phenomena. Specifically, by (7.1) and (7.2), we have

W(t) = ϕE(γh(t)) + W0(t) + BHI , (6.4)

where ϕE : S1 → R3 is an ellipse, γh : [0, T ] → S1 represents the heading of the vehicle, W0 is
residual noise and BHI ∈ R3 a constant. As the heading of the car changes, its orientation with
respect to the Earths’ magnetic field changes. Combined with the distortions of magnetic intensity
in certain directions, we observe an ellipse, ϕE . Residual noise coming from passing vehicles or
nearby electric infrastructure has in general amplitude smaller than the diameter of ϕE . Figure 1
shows an example of real data, where, the trajectory is almost constant on the left, and the car
has a circular trajectory on the right.

Let us denote by v1, v2 unit vectors corresponding to principal axes of the ellipse ϕE and by
v⋆ a unit vector normal to the direction of the plane containing ϕE . That last is orthogonal to
the changes in the heading: specifically, t 7→ ϕE(γh(t))v⋆ is constant. Setting ν = δv⋆ removes a
major component of the noise. Unfortunately, estimating v⋆ is not straightforward. In fact, it is
the most difficult in the seemingly simplest scenario: when γh is constant or varies very little. On
the other hand, in that case, S(t) = ϕ(γ(t)) +W0(t) + const, so for any direction v ∈ S2, Sv looks
like a reparametrized periodic function.

6.2.2 Minimal turning radius

A second insight from the model is that there exists C > 1, such that

C|γh(s)− γh(t)| < |γ(s)− γ(t)|. (6.5)

The constant C is proportional to the minimal turning radius. It implies that whenever the heading
changes, γ has changed by a greater amount. Another way of saying this is that the heading changes
t 7→ ϕE(γh(t)) are in lower frequencies than t 7→ ϕ(γ(t)). Figure 2 shows an example. In realistic
scenarios, the heading variations are generally subtle and the larger ones are localized in time.

6.2.3 Identifying directions normal to heading changes

From Section 6.2.1, we conclude that it is important to choose directions v ∈ S2, which are
orthogonal to the heading changes. Section 6.2.2 shows that heading changes and angular rotations
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of the wheels occur at different time scales. It gives a heuristic to choose a direction v ∈ S2, by
considering the signal at shorter and longer time scales. Indeed, if the signal at both time scales
“look similar”, it means that either the heading has not changed, or that v is orthogonal to those
changes. Therefore, we propose to choose v for which Sv “looks most similar” at shorter and longer
time-scales. We quantify that similarity through some descriptors of the signal.

As an example, consider Figure 5 where five shorter series are pictured by colored windows and
the longer series is the whole signal. The descriptors, which we will define shortly are shown on
in the bottom row: the lower-frequency signals shift the signal or change its amplitude slightly,
making the descriptors less aligned.

A suitable descriptor will satisfy a property like Proposition 4.5. Examples of such descriptors
are those from Chapter 4, but also simpler ones, like the amplitude of the signal. In fact, Propo-
sition 4.5 is a consequence of convergence to a limit descriptor as the number of periods increases,
and of stability with respect to additive noise, so any descriptor with similar properties will be
suitable.

We now describe the construction, which is summarized in the pseudo-code in Algorithm 2. In
what follows, the data is a time series (Sn)Nn=1, where Sn = S(tn) is a sample from the continuous
model (6.1). Consider F :

⊔
n∈N Rn → (H, d), a descriptor of (Sn)Nn=1, where (H, d) is a metric

space. We choose N1 < N ∈ N and we compare the descriptor of the whole signal (of length N)
with that computed on a window of length N1. If F satisfies an analogue of Proposition 4.5, we
expect d(F ((⟨Sn, v⟩)N1

n=1), F ((⟨Sn, v⟩)Nn=1)) to be small exactly when v ∈ S2 is close to orthogonal
to the heading-induced shifts. We generate a uniform grid on S2 and we choose v among the
elements of the grid which minimize the difference between the two descriptors.

We will consider two kinds of descriptors. The topological descriptor is the persistence silhouette
evaluated on a fixed grid,

Fρ((S1, . . . ,SN1
)v) = ρks,0,2(D((S1, . . . ,SN1

)v)),

where ρ has been introduced in Chapter 4 and D denotes the persistence diagram of the sub level
sets on an interval. In this case, (H, d) = (C(R,R), ∥ · ∥∞). The topological descriptor is sensitive
to a wide range of changes in the underlying periodic signal. Since the noise is additive (6.4), a
change in the heading shifts ϕ, and is already captured by the extremal values of the observation.
Therefore, we also consider simpler descriptors, the difference and the mean of global extremal
values,

FA((S1, . . . ,SN1
)v) =A(Sv) = max

n
(Sn)v −min

n
(Sn)v,

FL((S1, . . . ,SN1
)v) =

maxn(Sn)v + minn(Sn)v
2

,

for which H = R. We also combine the two in FAL = (FA, FL), for which H = R2 with the Eu-
clidean norm. These descriptors share the invariance properties of topological descriptors (analogue
to Propositions 2.35 and Theorem 4.2), even though they are less expressive. In addition, they do
not depend on any parameters and are also faster to compute than the topological counterpart.

Remark 6.7. The limit of Fρ as p→∞ is closely related to FAL. For a continuous function f , we

have ρks,0,p(D(f))
∥·∥∞−−−→ Λmin f,max f as p→∞. For two functions f and g,

∥Λmin f,max f − Λmin g,max g∥∞ = |A(f)−A(g)|+ 2|min f+max f
2 − min g+max g

2 |
= |FA(f)− FA(g)|+ 2|FL(f)− FL(g)|.

Before moving to estimation of N using v̂, we illustrate the computation of v̂ for different
descriptors on an example. We randomly generate ϕ and we show its image and the projections
in Figure 3. We generate a random, 30-second reparametrisation γ with R = 40 full revolutions
and random heading, γh a path from a Gaussian process. We let S as in (6.1) and (6.4), with ϕE

randomly oriented, with axes of diameters 6 and 0.2 respectively. Q a random rotation matrix,
a = 3., b = 0.1 and W0 = 0 and Figure 4 shows the considered sample realization. Figure 5 shows
the windows and descriptors thereof from Algorithm 2, for F = ρ. The left and right columns
correspond to projections along two different directions.

The left column in Figure 6 shows a representation of v 7→ d(supn=1,...,Nw
(d(F ((Xn)v), F (Sv)))),

for Fρ, FA and FAL. The shapes of the loss functions are roughly similar for the 3 descriptors:
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Algorithm 2: Choosing a direction normal to heading changes

Data: An observation (Sn)Nn=1

Input: A descriptor F , integers N1, Nw,M

/* Generate windows */

for n ∈ {1, . . . , Nw} do
Draw k ∼ U(1, . . . , N −N1 + 1);
Set Xn = (Sk, . . . ,Sk+N1−1);

end
/* Create a grid on the sphere */

Generate v1, . . . , vM , a uniform grid on the sphere;
/* Compare the descriptors along different directions */

for m ∈ {1, . . . ,M} do
dm = supn=1,...,Nw

(d(F ((Xn)vm), F ((S)vm)));

end
Set m = argminmdm and v̂ = vm;
return v̂
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Figure 3: In the top left corner, a randomly-generated closed curve. The three other plots represent
one-dimensional projections of ϕ, along the x-, y- and z-axis respectively.

there is a pronounced global maximum and a one-dimensional space where that distance is small.
However, the global minimum for Fρ is far from those of FA and FAL, which happen to estimate
v⋆ very well. In any case, all three minimizers of the respective criteria reduce the heading noise,
as is shown on the projected signals in the middle column of Figure 6.

6.3 Estimation of N̂ with direction selection

Recall that the problem consists of adapting an estimator of N̂ to three-dimensional data. For ν a
probability measure on S2 and an estimator N̂ , we will consider an estimator of the form (6.2). We
now define several choices for ν which fall into 2 categories: maximizing the signal and minimizing
the variability, based on results and heuristics from Sections 6.1 and 6.2 respectively. We make
sure that ν can be computed from S and easily approximated.

Maximizing the signal

The function v 7→ A(ϕv) is not known, so the estimator I(S, µϕ) motivated by Proposition 6.5 is
not computable in practice. Using the most naive approach, we replace A(ϕv) by A(Sv) and we
define

µS := (v 7→ A(Sv))µ.

Unfortunately, the heading and the noise introduce a bias towards directions orthogonal to v⋆. In
an attempt to reduce it, we consider local amplitudes instead,

µS,d := (v 7→ min
n=1,...Nw

A((Xn)v))µ,

where (Xn)Nw
n=1 is as in Algorithm 2.
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Figure 4: In the top left corner, the observation S. The three other plots represent one-dimensional
projections, t 7→ Sv(t), for v1, v2 the principal directions of ϕE and v∗ the normal.
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Figure 5: On the top row, the observation S projected along two different directions v1, v2 ∈ S2,
along with 5 color-marked regions. The direction v1 ∈ Span(v1, v2) is contained in the plane
of the ellipse, while v2 = v∗. The coloured time intervals delimit the windows X1, . . .X5 from
Algorithm 2. The graphs in the bottom rows show the descriptors Fρ((Xn)v) for n = 1, . . . , 5 and
Fρ(Sv), in dashed and solid lines respectively.
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Figure 6: Each row corresponds to a different descriptor, Fρ, FA and FAL respectively. On the
left, a visualization of v 7→ supn=1,...,Nw

(d(F ((X1
n)v), F (Sv))), approximated in Algorithm 2, where

v ∈ S2 is parametrized with two angles. Marked in red by a cross and star respectively are v̂ and
v⋆. The black points are a sample of K = 300 directions from (6.7). The central column shows
Sv̂. On the right, the corresponding persistence diagram.

Minimizing the heading noise

For a descriptor F , Algorithm 2 outputs a single direction, v̂, which is a good candidate to minimize
the amount of noise in Sv. We associate to it the measure

µF = δv̂. (6.6)

We will consider the descriptors FA, FL, FAL as well as Fρ.

We also propose a hybrid approach. While the minimizers v̂ achieved in the example from
Figure 6 seem sensible, it is only an approximation. Not only is the cost function approximated,
but the obtained minimum is also conditioned on the choice of windows X1, . . . ,XN1

. Therefore,
we propose a less degenerate measure: we put mass on directions which also exhibit stability across
time-scales. For any descriptor F , we define µF,A as proportional to

µF,A = (v 7→ exp(−c1∥d(F (Sv)− F (Xv))/FA(Xv)∥ℓp))µ, (6.7)

for some c1, p > 1. In the experiments in the next section, we set p = 10 = c1 and F = FAL. We
will denote the corresponding measure by µAL,A.

Sampling from µF only requires executing Algorithm 2. The other measures are of the form
ν = fµ, defined by the weight function f , in which case we proceed in two stages. We sample
V 0
1 , . . . , V

0
M ∼ µ on S2 and we approximate ν by the empirical measure

ν̂ =
1∑M

m=1 f(V 0
m)

M∑
m=1

f(V 0
m)δV 0

m
.

We justify such a procedure by continuity of f . Algorithm 3 summarizes this in pseudo-code.
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Figure 7: Illustration of 5, randomly generated curves, ϕ1, . . . ,ϕ5 and their projections along the
x-, y- and z-axis respectively.

Algorithm 3: Estimation along random directions I(S, ν̂)

Data: An observation S
Input: A weight function f , a parameter ρ > 0 and integers K,M

/* Draw from µϕ */

Draw V 0
1 , . . . , V

0
M ∼ µ uniformly on S2;

Sample m1, . . . ,mK ∈ {1, . . . ,M}, where m has mass
f(V 0

m)∑M
m=1 f(V 0

m)
;

/* Estimation along each direction */

Initialize Ns = [ ];
for k ∈ {1, . . . ,K} do

Set y = ⟨S, V 0
mk
⟩;

Set A = max y −min y;

Set N̂ = N̂c(y, ρA/2);

if N̂ ̸= 1 then

Append N̂ to Ns;
end

end
return mode(Ns)

6.4 Numerical example: direction selection

We compare the two proposed algorithms on a synthetic dataset. Specifically, we consider the
three proposed estimators, N̂ , N̂c and N̂T

c , used in combination with the direction distributions
from Section 6.3.

We now describe the dataset. We generate 5 curves S1 → R3, shown in Figure 7, and 50
pairs (γ, γh) of random trajectories, with the number of periods in γ, R ∈ [38, 41], not necessarily
an integer. The heading γh : [0, T ] → R is a 0-mean Gaussian process with square exponential
covariance with standard deviation 0.5 and time-scale 15. To sample ϕE , we fix a = 10 and b = 3
and we generate a random rotation matrix, which fixes determines the ellipse. For each curve ϕ
and pair (γ, γh), we generate a sample according to (6.1), where W is sampled from a 0-mean
Gaussian process with square exponential covariance with standard deviation 0.3 and time-scale
τ = 0.5.

Remark 6.8. Note that while we set the timescale in γh to a relatively large value, we do not
enforce (6.5) explicitly.

As in Chapter 5, we use accuracy (proportion of samples for which N was estimated correctly)
as the metric. Here, the number of periods R is not an integer, so we say that the estimation is
correct if |N̂ − R| < 1. We also evaluate the choice of direction using two metrics that measure
the (mean) heading variation and the (mean) angle between the chosen (or sampled) direction
and v⋆. Specifically, since the data is synthetic, we know ϕE and γh, so we measure the heading
variation with the amplitude νAh :=

∫
S2 A(ϕEv ◦ γh)dν. The angle between v⋆ and v is ν∠ :=∫

S2 arccos((v⋆)T v)dν. For both quantities, the lower the better.
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ν N̂T
c N̂ N̂c

µ 0.856 0.756 0.796
µ̂S 0.812 0.740 0.764
µ̂S,d 0.860 0.780 0.808

µ̂A 0.984 0.808 0.816
µ̂AL 0.980 0.812 0.824
µ̂L 0.988 0.812 0.824
µ̂ρ 0.876 0.704 0.724
µ̂AL,A 0.992 0.964 0.988

Table 1: Accuracy for estimation of N for different direction selection methods and N estimators.

ν Ah ∠

µ 9.000 0.999
µ̂S 10.004 1.053
µ̂S,d 8.985 1.006

µ̂AL 0.527 0.132
µ̂A 0.536 0.127
µ̂L 0.536 0.121
µ̂ρ 0.978 0.265
µ̂AL,A 1.760 0.378

Table 2: Metrics for estimation of the direction.

For Algorithm 2, we set the window size N1 such that it corresponds to 4 seconds and we sample
Nw = 20 windows. We use M = 40 points for the optimization in S2. For the random directions,
as described in Algorithm 3, we approximate the density with M = 10000 directions, from which
we sample K = 100 elements. For estimation of N , we vary ρ depending on the estimator, with
ρN̂ = 1

3 and ρN̂c
= 1

6 . The estimator N̂T
c does not require a choice of the scale.

We discuss the experimental results for estimation of N , shown in Table 1. The accuracy
of any estimator combined with µ̂S is worse than uniform sampling µ. This is due to the bias
in the estimation of the amplitude, as corroborated by µ̂SAh ≥ max(µAh, µ̂S,d)Ah in Table 2
and the slightly better performance obtained when using µ̂S,d. That last does not seem to work
particularly well and has performance between that of uniform sampling µ and that of best ‘single-
direction’ methods. Consider now estimators computed on a single direction. The one based on
the topological descriptor, µ̂ρ, has accuracy comparable to the uniform sampling µ. The metrics
for the direction selection µ̂ρAh and µ̂ρ∠ are worse (higher) almost by a factor of 2 than for other
criteria. The other ‘single direction’ methods µ̂A, µ̂L, µ̂AL have comparable metrics, although µ̂L

seems to be slightly better, both on accuracy for all estimators, but also for the direction selection
metrics. The direction selection method which leads to the best accuracy is by far µ̂AL,A. It is the

only method for which the accuracy figures for all three estimators N̂T
c , N̂ and N̂c are so close:

for other methods, the accuracy of N̂T
c exceeds that of N̂c, which is itself greater than N̂ . It is

not the method which shows best metrics for estimation of the direction: sampled directions are
not all close to the minimum, as illustrated in the lower-left graph in Figure 6. We explain the
surprisingly good accuracy in estimation of N by the fact that while the chosen direction might be
close to v⋆, that last might not be the best direction. Since R is not an integer, there are spurious
points in the persistence diagram due to boundary conditions, sometimes most pronounced along a
direction close to v⋆. Using several directions and the mode to aggregate the resulting estimations
increases robustness to the boundary conditions.

6.5 Perspectives

We have considered the problem of applying estimators for Problem 5.1 from Chapter 5 to three-
dimensional curves. Our approach relies on finding suitable directions along which to project the
signal and apply one-dimensional estimators.

Based on our experiments, it is clear that choosing projections which minimize the noise is more
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important than maximizing the amplitude. While the estimator (6.2) with µAL,L and any of N̂ ,

N̂c or N̂T
c performs the best, Algorithm 3 is computationnally expensive, as it requires calculating

K persistence diagrams. Therefore, in case of computational issues, we also recommend to use any
of µA, µL, µAL with N̂T

c .
We have not considered the odometric problem, Problem 5.2, explicitly. For the single-directions

methods, once we have v̂ from Algorithm 2, we apply the odometric method from Chapter 5 to
Sv̂: estimate γ(T ) − γ(0), choose one of the odometric sequences and construct γ̂ the odometric
estimator of γ as in (5.2). When sampling, a straightforward adaptation of Algorithm 3 is to
construct γ̂v for all v = vm such that N̂(Svm) = I(S, ν) and average those sequences.

We have shown a simple connection between Cϕ and δ⋆, which we interpret as a relation between
the geometry of Cϕ and the difficulty of the estimation of N . Formalized in Proposition 6.5, it
gives a heuristic for setting the scale parameter for the estimators from Chapter 5.

We believe that further research could exploit the Euler Characteristic transform (ECT) (Curry
et al., 2022), known to fully characterize certain classes of sets, to further such connections. For a
class of curves, the stability of the ECT and the curvature have been linked in Marsh and Beers
(2023). That last being also related to Cϕ, the structure of the curve revealed in the ECT might
be helpful to fully characterize the difficulty of the problem, not unlike Proposition 5.4 for the
one-dimensional case.



Appendix

6.A Proof of Proposition 6.5

The proof relies on two elements. One, Proposition 6.10, gives a the lower–bound of the separation
constant in terms of persistence and of the amplitude. The other, Proposition 6.9, makes a link
between the integral of pers(ϕv) with respect to µ and the length of the curve. For ρ ∈]0, 1], we

now define Ωρ :=
{
v ∈ S2 | δ(ϕv)∗ ≥ ρA(ϕv)

2

}
. Both v 7→ δ(ϕv)∗ and v 7→ A(ϕv) are continuous,

so Ωρ is measurable.

Proposition 6.9. For any ρ ∈ [0, 1[, we have

µϕ(Ωρ) ≥ 1− ρCϕ

1− ρ .

Proof. We apply Lemma 6.10 pointwise for v ∈ S2,∫
S2

pers1(ϕv)dS2 ≥
∫
S2

A(ϕv)

2

(
A(ϕv)

2δ(ϕv)∗
+ 1

)
dS2

=

∫
S2\Ωρ

A(ϕv)

2

(
A(ϕv)

2δ(ϕv)∗
+ 1

)
dS2 +

∫
Ωρ

A(ϕv)

2

(
A(ϕv)

2δ(ϕv)∗
+ 1

)
dS2.

We have A(ϕv)
2δ(ϕv)

∗ ≥ 1
ρ for v ∈ ΩC

ρ and A(ϕv)
2δ(ϕv)

∗ ≥ 1 for any v ∈ S2, so

∫
S2

pers1(ϕv)dS2 ≥
∫
Ωc

ρ

A(ϕv)

2

(
1

ρ
+ 1

)
dS2 + 2

∫
Ωρ

A(ϕv)

2
dS2

=

∫
S2

A(ϕv)

2

(
1

ρ
+ 1

)
dS2 −

(
1

ρ
+ 1

)∫
Ωρ

A(ϕv)

2
dS2 + 2

∫
Ωρ

A(ϕv)

2
dS2.

Dividing by
∫
S2

A(ϕv)
2 dS2 = 2πĀ(ϕ) and re-arranging the terms,

(
1

ρ
− 1

)
1

2πĀ(ϕ)

∫
Ωρ

A(ϕv)

2
dS2 ≥

(
1 +

1

ρ

)
− 1

2πĀ(ϕ)

∫
S2

pers1(ϕv)dS2.

=
1

ρ
−
(

1

2πĀ(ϕ)

∫
S2

pers1(ϕv)dS2 − 1

)
.

Multiplying by ρ
1−ρ both sides, we have

1

2πĀ(ϕ)

∫
Ωρ

A(ϕv)

2
dS2 ≥ 1− ρC

1− ρ , where C =
1

2πĀ(ϕ)

∫
S2

pers1(ϕv)dS2 − 1.

It remain to show that C = Cϕ. From Cohen-Steiner and Edelsbrunner (2007, Length Inter-

120
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pretation), we recall that

L(ϕ) =
1

π

∫
S2

∫
R

∑
(b,d)∈D0∪D1

1b,d(z)dzdµ(v)

=
1

π

∫
S2

∫
R

1[minϕv,∞](z)− 1[maxϕv,∞](z) +
∑

(b,d)∈D0 finite

1b,d(z)

 dzdµ(v)

=
1

π

∫
S2

maxϕv −minϕv + pers1,finite(ϕv)dµ(v)

=
1

π

∫
S2

pers1(ϕv)dµ(v).

The proof give another interpretation to the constant Cϕ, as the µϕ-mean “excess persistence”,
compared to the one resulting only from the amplitude,

Cϕ =
2πL(ϕ)

4πĀ(ϕ)
− 1

= 2πL(ϕ)/

(∫
S2
A(ϕv)dµ

)
− 1

=

∫
S2

(
2

pers(ϕv)

A(ϕv)
− 1

)
A(ϕv)dµ /

(∫
S2
A(ϕv)dµ

)
= Eµϕ

[
2

pers(ϕv)

A(ϕv)
− 1

]
.

(6.8)

The remaining ingredient for Proposition 6.5 is not specific to the case of curves and we present
it for functions on an interval.

Lemma 6.10. For any continuous function f : X → R on X a circle or a compact interval,

pers1(f) ≥ A(f)

2

(
A(f)

2δ(f)∗
+ 1

)
.

Proof. Let K0 :=
⌊

A(f)
2δ(f)∗

⌋
and let δ0 := A(f)−2K0δ(f)∗. We let K = card(D(f)∩{(b, d) | d− b ≥

δ0}) and we order x0, . . . , xK ∈ D(f) ∩ {(b, d) | d− b ≥ δ0} by decreasing persistence. Then, since
δ(f)∗ designates the maximal separation between points,

pers(xk) ≥ pers((min f,max f)− kδ(f)∗(1,−1)) =
A(f)

2
− 2kδ(f)∗ = δ0 + 2(K0 − k)δ(f)∗.

So,

pers1(f) ≥
K0∑
k=0

pers(xk)

≥
K0∑
k=0

(δ0 + 2(K0 − k)δ(f)∗)

= (K0 + 1)δ0 + 2δ(f)∗
K0∑
k=0

k

= (K0 + 1)(δ0 +K0δ(f)∗)

=

(
A(f)

2δ(f)∗
+ 1− δ0

2δ(f)∗

)(
δ0 +

A(f)

2
− δ0

2

)
=

(
A(f)

2δ(f)∗
+ 1

)
A(f)

2
+
δ0
2

(
1− δ0

2δ(f)∗

)
.
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By definition, 0 ≤ δ0 ≤ 2δ(f)∗, so

pers1(f) ≥
(
A(f)

2δ(f)∗
+ 1

)
A(f)

2
.

Lemma 6.10 is tight for functions f for which the points in the diagram lie evenly spaced
on the segment with endpoints (min f,max f) and ((max f + min f)/2, (max f + min f)/2). A
trivial example is f = sin(2π·), for which δ(f) = 1 = δ(f)⋆. On the other hand, f = sin(4π·) is
degenerate, so the constants δ(f) and δ†(f) are not defined, while δ(f)⋆ = 1, and, naturally the
bound in Lemma 6.10 is not tight. We conclude this section with a short proof of the main result.

Proof of Proposition 6.5. Let ϵ > 0 and set ρ = min
(

1−2ξ
2Cϕ−(1+2ξ) , 1− ϵ

)
. As ρ < 1, by Proposi-

tion 6.9,

µϕ(τv ≤ δ(ϕv)⋆/3) = µϕ

(
ρ
A(ϕv)

2
≤ δ(ϕv)⋆

)
≥ 1− ρCϕ

1− ρ .

Because ρ ≤ 1−2ξ
2Cϕ−(1+2ξ) , we have

1−ρCϕ

1−ρ ≥ 1
2 + ξ.



Chapter 7

Application to vehicle positioning

In this chapter, we return to the magnetic positioning problem that motivates this thesis. Our
experiments show that topological odometry is more accurate than the zero-crossings method,
which we use as a benchmark. First, we introduce the industrial context. Then, we present the
model for the magnetic field which compliments the discussions from Chapters 4 to 6. We formally
state the problem, concisely re-introduce the methods and metrics in Section 7.2. In Section 7.3,
we validate our approach on ‘simple’ scenarios and then apply our methods on more challenging
examples in Section 7.4.

7.1 Industrial context: positioning systems and model for
the magnetic signal

Car positioning systems provide an estimate of the vehicles’ location in a certain frame of refer-
ence. The Global Navigation Satellite System (GNSS) outputs longitude and latitude coordinates.
However, the satellite signal is not available in certain scenarios, for example, under ground, in
buildings, and it is also easy to jam. More advanced and reliable systems are therefore comprised
of multiple estimators, each with their own weaknesses, all aggregated for example via filter-
ing (Haykin, 2001). If the sources of data are independent from each other, those can complement
each other when one is not available. We now give a few examples of such estimators.

In Cruz and Aguiar (2020), it has been proposed to measure the magnetic signal in an area and
construct a “magnetic map”. Urban infrastructure, especially bridges, tunnels and high-voltage
cables, produce disturbances of the magnetic field. Driving in that area, it is possible to locate the
car by comparing the observed signal with the pre-recorded reference magnetic map. However, it
requires the car to remain in the pre-defined area.

The GPS and the magnetic map are examples of positioning systems, where the reference is
external and fixed. Dead reckoning is a different navigation principle, where the displacement from
an initial location is estimated. This amounts to positioning the vehicle with respect to the inertial
frame, fixed by the initial condition. For a car moving on a plane, it is enough to know the heading
t 7→ θh(t) and the forward motion t 7→ θ(t) to reconstruct the displacement vector t 7→ (x(t), y(t))
from that initial point.

A common example of dead reckoning is an Inertial Navigation System (INS). It relies on data
from an Inertial Measurement Unit (IMU), equipped with accelerometers and gyroscopes - motion
and rotation sensors respectively. Combining acceleration and rotation data, one can determine
the position of the IMUs’ frame in the initial, inertial frame of reference (Stovall, 1997). A major
problem in INS is the bias in the motion sensors of the IMU: any bias results in a linear drift in
the velocity estimation and a quadratic error in position estimation. This problem is mitigated in
the most high-precision IMUs, used in military and industrial applications, but such IMUs are too
bulky and expensive for consumer applications.

INS are for scenarios where the drift can be controlled. For example, in positioning of pedestri-
ans with a foot-mounted IMU, the zero-velocity update technique consists in the velocity to zero
at a specific moment in the gait, which can be detected (Ma et al., 2018). Thus, exploiting the
structure of the human gait (Qigao et al., 2018) allows to regularly reduce the drift. While the
same cannot be done for vehicles, an independent estimator of speed available at regularly-spaced

123



124 CHAPTER 7. APPLICATION TO VEHICLE POSITIONING

time intervals could play a similar role.
A source of data which could be used to construct such an estimator is the odometer, which

records the angular position of the cars’ wheels in time. The signal is processed and the computed
speed displayed to the driver, but rarely directly accessible: at best, only a speed estimate can be
read from the cars’ computer. In any case, it requires retro fitting, and in particular, it cannot be
assumed available in location tracking without consent.

As an alternative, Bristeau (2012) and Zabulon et al. (2019) propose estimators of the speed
based on magnetic signal. As we will see in the next section, the magnetic signal recorded in a
moving car contains a signature of the angular position of one of its wheels. In Tazaki et al. (2001),
an odometer based on magnetic signals is proposed.

7.1.1 Model for the magnetic signal

Historically, the Earths’ magnetic field has been used for heading estimation: in an unperturbed
environment, the direction of the intensity vector points (roughly) towards the North (exact refer-
ences are available (Alken et al., 2021)). The magnetic field measured by a magnetometer inside
a moving car is the Earths’ magnetic field BE ∈ R3 affected by three sources of perturbation,
making heading estimation challenging, but magnetic odometry possible.

The first source of perturbation is the rotation of the wheels of a car. The magnetisation of
a wheel comes from the steel components in the tire (Le Goff et al., 2012). As the wheel rotates,
different parts of the tire are closer to the magnetometer, thus, creating a signature

Bu : S1 → R3

θ 7→ Bu(θ).

Figure 1.2 shows an example of Bu, from which we deduce that Bu might have a complex structure.
Since the magnetization is the result of the production process and the history of the steel, it is
individual to each tire and unknown, but it can be assumed invariant on the scale of a trajectory.
Measured right next to the tire, the norm of the signatures’ intensity is of similar magnitude to
the Earths’ magnetic field BE ∈ R3, so it is not negligible in general. The magnetic field intensity
decreases cubically with the distance to the source, so if we place the magnetometer close to one
of the wheels, the magnetic signatures from other wheels are not visible. Apart from the tire,
wheels are usually made of steel or aluminium and only the former is magnetic. Since the wheel
has no electric charge, no additional magnetic field is generated as a result of the angular velocity.
Crucially, Bu depends on the angular position of the wheel, not its speed.

The second source of perturbation is non-controlled: it includes passing vehicles, nearby in-
frastructure (like high voltage cables), tunnels, bridges. These components were used in Cruz and
Aguiar (2020) to create the magnetic map, but are a nuisance in a dead reckoning approach. It
also includes elements in the car which do not depend on its dynamics, like windshield wipers,
electric windows. Some of these components are negligible with respect to Bu and BE , but we will
see examples of perturbations in a tunnel which are not. We will denote this component by W0.

The third source is the distortion of BE by ferromagnetic materials in the car, described
in Bristeau (2012). Typically, the frame and the body of the car are made of a variety of materials,
including steel, aluminium and sometimes carbon. The ferromagnetic materials can be divided
into soft- and hard-iron, each have a different effect on the measured signal. Similarly to the tire,
hard irons can be magnetized in the manufacturing process. If the magnetometer is at rest with
respect to the car, hard irons act by translation on the magnetic signal, by say BHI ∈ R3. Soft
irons amplify the magnetic field intensity in certain directions. The action of both hard and soft
iron depends on the location of the magnetometer inside the car, while its effect on BE depends
on its orientation.

Assume that the magnetometer is positioned and fixed in the car near one of the cars’ wheels,
and that the Earth’s magnetic field is constant. A model for the magnetic signal which includes
the above phenomena is given in Bristeau (2012),

Bm = QSI(QBE + Bu + BHI + W0),

where Q ∈ SO(3) is a rotation matrix determined by the orientation of the car in the inertial frame
and QSI is a real, symmetric matrix representing a homothety due to soft iron effects.

The orientation of the car is determined by the heading, roll and pitch angles. In this work, we
will simplify this model. We will assume that the roll and pitch of the car are constant, that is,



7.1. INDUSTRIAL CONTEXT 125

0.2
0.1

0.0
0.1

0.2
0.05

0.00
0.05

0.10
0.15

0.20
0.25

0.30

0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13

0.2
0.1

0.0
0.1

0.2
0.05

0.00
0.05

0.10
0.15

0.20
0.25

0.30

0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13

Figure 1: A scatter plot of magnetic measurements S, recorded in a moving car. On the left, the
trajectory of the car is almost straight (γh almost constant), so the ellipse is not visible. On the
right, the car is moving in a circular trajectory and the ellipse is identifiable. The color indicates
the time

there is no sideways’ and ‘forward-backwards’ rotation, and we attribute any deviation from this
assumption to the noise W0. This leaves us with two angles, θ, θh ∈ S1, representing the heading
of the vehicle and the angular position of one of the wheels,

Bm(θ, θh) = QSI(Q(θh)BE + Bu(θ) + BHI + W0). (7.1)

The magnetic field intensity is thus a map from the torus S1 × S1 to R3, where one of the circles
is embedded as an ellipse and the other as Bu.

Consider now the situation where the car is moving. If we denote by γh, γ : [0, T ] → R the
heading of the car and the phase of the cars’ wheel respectively, then the data recorded by the
magnetometer is1

S(t) : [0, T ] → R3

t 7→ Bm(γ(t), γh(t)).
(7.2)

An example is shown in Figure 1. For dead reckoning, we are interested in estimating γ, γh.
Le Goff et al. (2012), Bristeau (2012) analyse the magnetic signal and the latter remarks that

heading variations are problematic for the detection of periodicity in (7.2). One solution to this
problem consists of considering the gradient of the magnetic field instead (Tazaki et al., 2001).
Specifically, for two magnetometers measuring magnetic field intensities B1

m, B
2
m, we call the

gradient B2
m − B1

m, and we use (S2 − S1)(t) instead of (7.2). If the magnetometers are close (a
few centimeters apart) and the axes of their reference frames are parallel, then Q2

SI − Q1
SI and

B2
HI −B1

HI will be close to zero. On the other hand, since the magnetic field decreases cubically
with the distance to the source, B2

u −B1
u has a small but non-zero amplitude. Then,

(B2
m −B1

m)(θ, θh) =(Q2
SI −Q1

SI)(Q(θh)BE + W0) +Q2
SIB

2
HI −Q1

SIB
1
HI

+Q2
SIB

2
u(θ)−Q1

SIB
1
u(θ)

= Q2
SIB

2
u(θ)−Q1

SIB
1
u(θ) +O(∥Q2

SI −Q1
SI∥+ ∥B1

HI −B2
HI∥)

= Q1
SI(B2

u −B1
u)(θ) +O(∥Q2

SI −Q1
SI∥+ ∥B1

HI −B2
HI∥).

The disadvantage of using the gradient is the potentially more complicated structure of the em-
bedding of S1 via (B2

u −B1
u).

7.1.2 Dynamics of a vehicle

While S is a trajectory on an immersed torus, (γ, γh) represent the displacement and heading of the
car, so we can make additional assumptions about its structure. First, we will assume that the car
is only moving forward, that is, t 7→ γ(t) is non-decreasing. Reversing is a manoeuvre that often
occurs at the beginning or the end of a typical trajectory, and can be usually detected (Bristeau,
2012).

1We see Bm as a function defined on R× R and 1-periodic in each of the variables.
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When the trajectory is a straight line, S revolves around Bu. When the vehicle is turning,
unless the car is skidding, the variations of γh are upper-bounded by those of γ. For a given
steering angle α, wheelbase LW (distance between the front and rear axles), the turning radius is

W
sin(α) . If we denote the track (distance between the left and right wheel) by LT , then the distance

travelled by the rear, inside wheel, is lower–bounded by the heading change as(
LW

sin(α) − LT

)
1
r |γh(s)− γh(t)| ≤ |γ(s)− γ(t)|, if γ is monotone on [s, t]. (7.3)

In most modern cars, the maximum steering angle is α = 30◦. For the experimental vehicle that
we used, LW ≈ 2.6m, LT ≈ 1.4 and r ≈ 0.33m, so that factor is at least around 11.5. For example,
during a right-hand-side U-turn, the right rear wheel will do 5 revolutions. Looking at the right
plot in Figure 2, it is clear that the wheels induce a frequency higher than that of the heading
changes.

The signal is sampled at ω = 125Hz. The speed of a vehicle varies, from 0 to around 50m/s,
so for our experimental vehicle, the fundamental frequency of Bu ranges from 0 to 23Hz. It is
important to note that the signature itself might contain higher frequencies (as for example shown
in Figure 1.2).

7.2 Magnetic odometry: data, methods and metrics

The magnetic measurement unit records measurements from five magnetometers (Si)i=1,...,5 as well
as inertial data. The aim is to estimate γ, but we consider a proxy: by constructing an odometric
sequence. Recall that (tn)Nn=1 is called an odometric sequence for γ if |γ(tn−1) − γ(tn) − 1| is
small. One can still construct γ̂ from the odometric sequence (for example as shown in (5.2)), as
an estimator of γ.

We consider three methods which, given a one-dimensional time-series S : [0, T ] → R, output
such sequences. We treat those sequences as segmentations of [0, T ] into periods and we construct
estimators of γ only to compute the metrics.

Zero-crossings

We say that tn is a zero-crossing, if S(tn−1) and S(tn) are of different signs. Let (tk)Kk=0 be the
collection of zero-crossings in increasing order. We define ZC(S) = (t2n)Nn=0, for N = ⌊K/2⌋, since
zero-crossings come in pairs.

Persistent local minima

We denote by D(S) the persistence diagram of sublevel sets of S with periodic boundary conditions,
as defined in Section 3.1. For a scale τ > 0, we let Hom0 = (tn)Nn=0 be the local minima which are
associated to points in D(S) \∆τ , that is, more persistent than 2τ .

Remark 7.1. With respect to our considerations from Chapter 5, there is in general no reason for
Hom0 to be a good odometric sequence. However, we will see that it is when the period consists
of a single prominent pair of extrema.

Clustering on persistence diagrams

We define the sequence Hom in terms of the estimator N̂c of γ(T ) − γ(0), introduced in (5.13).
Let Cτ be the partition D(S) obtained by single-linkage clustering at scale τ and denote by C̃τ =
{C ∈ Cτ | C ∩∆τ = ∅} the clusters where all the points have persistence more than τ . Then, let
(tk)Kk=0 be the local minima associated to points in

⋃
C∈C̃τ C. Because N̂c is defined as a greatest

common divisor of cardinalities, we have m := K/N̂c(S, τ) ∈ N. We define Hom = (tmn)
N̂c(S,τ)
n=0 to

be every m-th element from the sequence of all persistent local minima.

7.2.1 Selection of τ

The sequences Hom0 and Hom depend on the parameter τ . We select it for each sample, using
one of the two methods. First, recall that in the process of computing N̂T

c (S) (5.13), we obtain
an interval decomposition of τ 7→ N̂c(S, τ). Let I = [a, b[ be the longest interval for which
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the multi-scale estimation is realized, that is N̂c(S, τ) = N̂T
c (S) for all τ ∈ I. Then, we set

τ1 := τ1(S) = a + (b − a)/4. The second choice that we will use is τ2 := τ2(S) = A(S)/6, where
A(S) = maxS − minS is the amplitude. It is motivated by Proposition 6.5. More generally,
τ ∈ [ 16 ,

1
3 ] seems a reasonable choice.

7.2.2 Projection direction selection

We will consider four ways to define a one-dimensional signal S from the 15-dimensional (Si)i=1,...,5.
At the level of magnetometers, our first approach is to use the magnetic field intensity provided by
one sensor, say S1, as described in Bristeau (2012). A second approach consists in analysing the
gradient of the magnetic field instead (Tazaki et al., 2001). The authors use the axis of symmetry
of the car, which corresponds to the difference S2 − S1 in our setup2. As for the direction v ∈ S2,
we consider two choices. We project along the x-axis as a baseline, v1 = (1, 0, 0). We also consider
the direction selection procedure described in Chapter 6, with ν = µL = δv̂ as defined in (6.6).
Recall that this direction is selected based on three-dimensional data. This yields a total of four
combinations, S1

v1 , S1
v̂(S1), (S2 − S1)v1 , (S2 − S1)v̂(S2−S1).

7.2.3 Metrics

We introduce four metrics to evaluate the quality of our estimators. We assume that a reference
γ : [0, T ]→ R is available, with γ(0) = 0.

To measure the odometric quality of a sequence (tn)Nn=0, we introduce False Positives (FP)
and False Negatives (FN), which count the number of intervals where the error in locating the
endpoints is above 0 < α < 1

FP = card{1 ≤ n ≤ N | γ(tn)− γ(tn−1) ≤ (1− α)},
FN = card{1 ≤ n ≤ N | γ(tn)− γ(tn−1) ≥ (1 + α)}. (7.4)

Unless specified otherwise, we will use α = 0.1. We also define the cumulative error inside (EI)
and outside (EO) of the odometric sequence

EI = |γ(tN )− γ(t0)−N |, EO = γ(t0)− γ(0) + γ(T )− γ(tN ). (7.5)

The first measures the displacement estimation error inside the odometric sequence, while the
latter - the displacement on [0, t0] and [tn, T ], which is undetected.

The metrics are complimentary. Indeed, while FN and FP measure the quality of the odometric
sequence, they fail to capture large errors. For example, a single mislocalized element tn, or missing
10 periods between tn−1 and tn both contribute equally to FN only by 1. For this purpose, we
introduce EI , which is a metric on γ̂. Our estimators are based on the principle of odometry and,
if integrated in a navigation system, could be used as such. For example, if the odometric sequence
was used to correct the drift in an INS, then FN and FP are more relevant. If however, γ̂ was
used as an estimator of travelled distance γ, alongside an INS, then EI measures its performance
better.

7.3 Magnetic odometry on straight lines

We validate our procedures on a collection of straight-line trajectories in a controlled environment.
We fix the direction to v = v1 and we evaluate the performance of odometry on the magnetic
measures S1

v1 and their gradients (S2 − S1)v1 .

Data: experimental setup and preprocessing

The data consists of a two-hour recording, from which 20-minutes partitioned into 24 configurations
are extracted. In each configuration the vehicle traverses a segment (A or B) in either direction (0 or
1) at a certain speed (10, 30, 50 km/h). The measurements are performed with the magnetometer
in one of two positions: it is situated above the rear axle of the vehicle, either in the center or near

2The gradient along a different direction, differentiating between other magnetometers, say S3 − S1, produced
signals of very similar form and amplitude, and in this setting, result in the same performance figures. Therefore,
we restrict our gradient based considerations to S2 − S1.
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the rear right wheel of the vehicle (CR or RR). The partitioning of the recording into segments is
performed manually, based on the GPS position.

Remark 7.2. The experiments were performed in normal traffic conditions, so the experimental
protocol could not be perfectly fulfilled. Specifically, the speed had to be adjusted to traffic
conditions and the heading of the car is not exactly constant on each of the segments, due to
a vehicle parked alongside on segment B. Finally, segment A contains a speed hump, which
introduces pitch variations and the suspension movement causes changes in the distance between
the magnetometer and the wheel, thus violating our assumptions from Section 7.1.1 in two ways.

To reduce the influence of these phenomena, we preprocess each series with a high-pass filter:
we subtract from the signal its 5-second rolling median. This allows us to remove part of the
heading noise without sacrificing the ability to work with low speed scenarios3.

Results and discussion

Table 1 shows summary statistics of the performance of the different methods. First, we note that
the topological methods (Hom and Hom0) have in general lower FP and FN than ZC. This is a
consequence of local extrema reflecting the angular position more precisely than the zero-crossings,
which are susceptible to low-frequency shifts. This is clearly visible in Figure 2, where the slope
of γ̂− γ varies more for ZC than for the topological estimators. The few exceptions to FP and FN
being worse for topological methods occur for Hom0 in the CR position. In these particular cases,
the scale τ seems to be underestimated, leading to local minima due to noise not being removed.
Here, we can see the particularity of Hom. In contrast to Hom0, points of small persistence are
not removed prior to clustering, so a segmentation is produced only when there is a big enough
gap in the persistence diagram between the noise and the prominent local extrema. It makes Hom
more fragile to noise, as it does not always provide a sequence, as clearly shown by the high values
of EO. When a sequence is provided, it is more accurate: FP, FN and EI are all lower for Hom
than Hom0.

Using the gradient (S2 −S1)v instead of the series S1
v boosts the performance of all estimators

in all settings. The amplitude of the series is much smaller, but part of the influence of the Earths’
magnetic field has been removed. We observe that it is particularly beneficial for Hom, which
is sensitive to lower-frequency variations4. On the other hand, the differentiated signal contains
small local extrema, visible for example in the left graph of Figure 3. While such extrema do not
impact the topological methods provided that τ is chosen sufficiently large, they induce spurious
elements in the ZC sequence. The presence of these extrema is more frequent in the RR position,
leading to a FP higher for ZC in that setting. The fact that FP for ZC is worse in the CR setting
is due only to a particularly irregular series, where the periodicity seems to change.

7.4 Magnetic odometry: complex trajectories

We apply our method on recordings from three more challenging scenarios: on a rough road, in
a tunnel and on circular trajectories. The last is known as particularly challenging for frequency-
decomposition based methods, but we also consider the first two since the methods we study are
of a different nature.

In contrast to the previous section, an accurate reference γ̂ is not generally not available. On
the one hand, it is due to losses of GPS measurements, sometimes on periods too long for the
reference to be considered reliable. On the other, it is a result of a lack of synchronization of the
magnetic measurements with the GPS-based position estimate or readings from an odometer.

7.4.1 Rough road

The dataset consists of measurements performed on a rough, country-side road. Although paved,
the 2.5 kilometre long road is dense in patches and holes. It also features a gentle 45 degree turn
around the middle. The data consists of three recordings of a total of thirty minutes during which

3A 5-second rotation period corresponds to a velocity of less than 2 km/h, so we can still detect velocities above
5 km/h.

4We point to the forth row in Figure 3.3 for an illustration of the effect of low frequency noise on the persistence
diagram.
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Figure 2: Examples of two recordings from the straight lines dataset with the segmentations
provided by the different methods, as well as the resulting estimators γ̂. The sequences from
topological methods all coincide, except Hom with τ2 in the second signal.
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FP FN EO EI nb detected
Series Position Method

S1
v1 CR Hom τ1 2 1 1254.27 87.07 647

Hom τ2 1 1 1572.72 86.62 333
Hom0 τ1 5 130 24.27 339.06 1629
Hom0 τ2 2041 2 14.27 1888.83 3862
ZC 299 132 22.81 241.78 1947

RR Hom τ1 0 1 15.75 3.02 1990
Hom τ2 0 2 749.17 78.60 1181
Hom0 τ1 0 1 15.75 3.02 1990
Hom0 τ2 0 1 15.75 3.02 1990
ZC 12 15 9.91 6.35 1993

(S2 − S1)v1 CR Hom τ1 2 2 16.46 4.00 1973
Hom τ2 2 2 356.52 2.85 1633
Hom0 τ1 2 2 16.36 4.00 1973
Hom0 τ2 2 2 16.36 4.00 1973
ZC 103 25 9.47 48.49 2028

RR Hom τ1 0 1 16.66 3.01 1989
Hom τ2 0 1 16.66 3.01 1989
Hom0 τ1 0 1 16.66 3.01 1989
Hom0 τ2 0 1 16.66 3.01 1989
ZC 35 5 5.62 16.51 2014

Table 1: Metrics of different methods for sequences computed on the straight line dataset. For all
methods, lower is better.

the road was traversed at different speeds and directions. Such a setting allows us to determine the
sensitivity of the methods to the working of the cars suspension and to sensitivity of the heading.

We present the results in Table 2. We exclude the FP and FN metrics, because of a lack
of reliable reference. We use EO and EI , since the speed of the vehicle was kept approximately
constant and we believe the misalignment to be only on the order of a few seconds, which does not
severely affect the global metrics.

Among the topological methods, Hom0 with τ1 seems to best identify the number of wheel
revolutions. The more sensitive method Hom fails due to outliers5 and some discontinuities in the
time series. The ZC method shows poor performance in two scenarios. Aside from the gradient-
induced local extrema described previously, spurious zero-crossings are detected when the vehicle
is at rest or driving at very low speeds. We note that v⋆(S1) seems to point to a direction normal
to the heading, as shown on Figure 4. Combining the gradient S2 − S1 with v⋆ does not seem
better than v1 geometrically, although it improves the metrics.

7.4.2 Tunnel

As discussed in Section 7.1.1, power-lines, cables and other electric infrastructure generate a mag-
netic field, and metallic structures further alter it. Tunnels are thus a very challenging environment
with many sources of noise. We obtain two, 6-minute recordings of a car driven on a high-speed
road and through a tunnel. Unfortunately, no reliable reference is available for those recordings.
In the following, we only inspect subsets of the series and the resulting segmentations.

The recurrent character of the signal is clearly identifiable when the vehicle is on the high-
speed road. Inside the tunnel, the series is dominated by the noise. All methods fail completely
in analysing S1, along any direction v ∈ S2. In the differentiated signal S2 − S1, the recurrent
structure is identifiable, although some high-frequency noise persist.

We focus on S = (S2 − S1)v̂(S2−S1), an excerpt of which we show in Figure 5. The odometric
sequence obtained on with Hom0 with τ1 on the first recording seems generally correct. However,
τ1 chosen on the second recording is too large, leading to an odometric sequence that is too sparse.

5Due to their short duration (only 2-4 consecutive values) and very high values, we believe these are reading
errors.
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EO EI nb detected
Series v method

S2 − S1 v1 Hom τ1 1318.08 1.23 2702
Hom0 τ1 10.04 2.27 4009
ZC 0.90 363.58 4384

v̂ Hom τ1 12.50 3.81 4005
Hom0 τ1 11.83 1.73 4010
ZC 0.65 259.54 4279

S1 v1 Hom τ1 17.04 2.98 4005
Hom0 τ1 17.04 2.98 4005
ZC 2.83 55.90 4072

v̂ Hom0 τ1 2707.67 0.65 1312
Hom τ1 11.71 5.98 4007
ZC 1.12 110.81 4131

Table 2: Metrics for three methods on the rough road.
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Figure 4: The magnetic signal recorded when traversing the rough road segment. In the top row,
on the left, a subsample of S1, with the two directions, v1 and v̂, along which the signal is projected.
In the bottom row, analogue figures for the differentiated series S2 − S1.
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Figure 5: A projection of S2 − S1 along v̂ outside and inside the tunnel. The markers show the
detected sequences.

FP FN EO EI nb detected
Series v method

S2 − S1 v1 Hom τ1 410 334 13.92 10.71 1922
Hom0 τ1 412 335 12.73 9.94 1924
ZC 561 312 4.96 107.54 2036

v̂ Hom τ1 411 331 15.56 10.85 1921
Hom0 τ1 413 331 15.56 9.85 1922
ZC 485 320 4.73 68.73 1992

S1 v1 Hom τ1 0 34 606.52 1284.90 43
Hom0 τ1 316 372 32.23 235.52 1667
ZC 498 333 7.96 46.92 1965

v̂ Hom τ1 334 276 109.75 211.42 1624
Hom0 τ1 410 332 14.58 10.29 1921
ZC 485 331 6.13 54.00 1974

Table 3: Metrics for three methods on the turns dataset.

Exactly the opposite is true of τ2, where τ2 is too small on the first recording and suitable for the
second. We do not have enough data to be confident about the performance of our approach in
tunnels.

7.4.3 Circular trajectories

The “turns” dataset is composed of 9 recordings of a total of over 16 minutes, during which
almost 4km are travelled. A total of five trajectories are recorded on round-abouts: two and three
recordings on roundabouts of diameters 35m and 70m respectively. The remaining four trajectories
are tight turns on a parking lot, executed in both directions. The fundamental frequencies of the
heading changes and the rotations of the wheels are separated by factors of around 100 and 10 in
the “big roundabout” and “parking lot” settings respectively, the latter being much harder from
a spectral point of view.

In order to determine the relevance of differentiating the series and of using the direction v̂,
we do not apply the high-pass filter as a preprocessing step for the topological methods. We still
apply it prior to ZC in order to center the signal.

Table 3 shows the metrics for odometric sequences obtained using the different methods. When
we examine EO and EI , the best results for Hom and Hom0 are obtained for the differentiated
signal, where the choice of direction does not matter. Interestingly, ZC performs better on non-
differentiated series, rivaling the topological sequences. Examining the zero-crossings reveals a
few spurious detections of the local minima, as shown in Figure 3. Some zero-crossings are also
detected at very low speeds of the vehicle. While the sequences “look” correct, the FP and FN
metrics do not reflect it. We believe that this is due to the difficulty of constructing a precise and
well-synchronized ground-truth for γ in this setting.

Remark 7.3. Constructing a reference for trajectories with tight turns and abrupt heading changes
is more delicate. The speed measurements provided by the GPS are the norm of the velocity
vector of the antenna, which is usually positioned on the axis of symmetry of the car y = 0.
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Figure 6: Magnetic signals recorded a left-hand side, circular trajectory. The top two rows show
the magnetic field and its gradient, recorded with the magnetometer in position “CR”, in the
center of the vehicle. The bottom two rows show analogous data, except that the magnetometer
was on the right of the vehicle ‘RR’.

During a turn, the inside (resp. outside) wheel travels a smaller (resp. greater) distance than
the reference constructed by integrating the GPS. For tight turns, this difference becomes non-
negligible. Mathematically, creating a suitable ground-truth requires calculating the velocity of the
wheel, what can be done using angular velocities measured by the IMU and the relative position
of the wheel with respect to the GPS antenna.

We believe it is also interesting to qualitatively examine the impact of the signal-to-noise ratio.
Specifically, we have two signals recorded through comparable trajectories of tight turns on a
parking lot. The magnetic measurement unit was positioned in the settings ”CR” and ”RR”
respectively. Figure 6 shows four signals, S2 − S1 and S1 for each of the configurations, and the
odometric sequences ZC and Hom0 with τ1. In the end, for both ”CR” and ”RR”, the combination
of not differentiating and projecting along v1 results in erroneous sequence from Hom0. The right-
most configuration illustrates a problem with using Hom0: the scale τ1 has been chosen reasonably,
but a single period features two prominent pairs of extrema, which are counted as two realizations
of the same pair by Hom0. The ZC method seems to perform reasonably well, what indicates that
influence of the heading can be eliminated for this kind of method and can be well-isolated using
either the gradient or by choosing a projection appropriately.
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7.5 Discussion and perspectives

Our results confirm that magnetic odometry has potential. In straight-line trajectories, rotations of
the wheels are well-identified and the resulting sequences provided by Hom and Hom0 are accurate.
For circular trajectories, the methods are successful provided that the influence of the heading noise
is reduced, by a low-pass filter, by choosing the projection appropriately or analysing the gradient
of the magnetic field instead of the field itself. That last also reduces the high-frequency witnessed
in a tunnel, but at the expense of complicating the structure of ϕ.

In the perspective of integration in a positioning system, the topological methods present an
interesting trade-off. The odometric sequences produced by Hom are precise (low FN and FP), but
are not always available, especially in challenging environments. On the other hand, Hom0 almost
always provides a sequence, but its precision is more questionable: it is sensitive to the choice of
the scale τ and does not always capture the right modes.

We find that using the gradient of the magnetic field is preferable to using the magnetic field
intensity. We also confirm the observations from Tazaki et al. (2001) that, with the gradient, the
choice of the projection is not particularly important. On the other hand, if measurements from a
single magnetometer are available, it is crucial to select the direction appropriately and v̂ is often a
sensible way to reduce the heading noise. The low-pass filtering is a reasonable addition, to which
we found little disadvantage.

More data should be acquired to calculate estimate the errors in the odometric sequences
produced by the proposed methods. A first step would be to construct a ground-truth from
an odometer measuring the angular position of the same wheel as the magnetometer, and well-
synchronized with that last. Second, different vehicles and tires should be used. Our tests were
conducted using a single vehicle, and over a relatively short time. We should expect that using
newer tires or other a different vehicle will reveal other magnetic signatures, what might be more
challenging to some methods than others.

We are interested whether magnetic odometric sequences constructed independently on the left
and right-hand sides could be used to determine the heading of the vehicle.

Finally, it should be noted that other approaches could be considered, two of which we mention.
First, the spectral method from Bristeau et al. (2010) might show better performance on well-
selected directions on (S2 − S1)v̂. Second, a geometric approach based on estimating the support
of Bu could be developed. Such an approach would probably be more robust in low-noise scenarios.
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Azäıs/Level Sets and Extrema of Random Processes and Fields. John Wiley & Sons, Inc.,
Hoboken, NJ, USA.

Berry, E., Chen, Y.-C., Cisewski-Kehe, J., and Fasy, B. T. (2020). Functional summaries of
persistence diagrams. Journal of Applied and Computational Topology, 4(2):211–262.

Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., and Saghafian, M. (2023). Geometric
characterization of the persistence of 1D maps. Journal of Applied and Computational Topology.

Bleile, B., Garin, A., Heiss, T., Maggs, K., and Robins, V. (2021). The Persistent Homology
of Dual Digital Image Constructions. In Research in Computational Topology 2, pages 1–26.
Springer International Publishing, Cham.

Boashash, B. (2015). Time-Frequency Signal Analysis and Processing : A Comprehensive Refer-
ence. Elsevier Science, 2 edition.

Boashash, B., O’Shea, P., and Arnold, M. (1990). Algorithms for instantaneous frequency esti-
mation: A comparative study. In Advanced Signal Processing Algorithms, Architectures, and
Implementations, volume 1348, pages 126–148. SPIE.

Bobbia, B., Doukhan, P., and Fan, X. (2022). A Review on some weak dependence conditions.
HAL, 03325994v2.

Bobrowski, O. and Borman, M. S. (2012). Euler Integration of Gaussian Random Fields and
Persistent Homology. Journal of Topology and Analysis, 04(01):49–70, 1003.5175.

Bogachev, V. I. (2007). Measure Theory. Springer, Berlin ; New York.

135



136 BIBLIOGRAPHY

Bois, A., Tervil, B., Moreau, A., Vienne-Jumeau, A., Ricard, D., and Oudre, L. (2022). A topo-
logical data analysis-based method for gait signals with an application to the study of multiple
sclerosis. PLOS ONE, 17(5):e0268475.

Bradley, R. C. (2005). Basic Properties of Strong Mixing Conditions. A Survey and Some Open
Questions. Probability Surveys, 2:107–144.

Bristeau, P.-J. (2012). Techniques d’estimation du déplacement d’un véhicule sans GPS et autres
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