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Abstract

Low carbon strategies promote the use of renewable energy carriers and biomaterials originating, inter

alia, from dedicated and residual forestry and agricultural biomass (e.g. energy crops, woody

residues), as allegedly carbon neutral options displacing/offsetting an energetically equivalent amount

of fossil carbon, thus resulting in zero net CO2 emissions. Current modelling approaches in Life Cycle

Assessment (LCA) and carbon footprint methodologies are static. The life cycle inventory relies on

simplified aggregation of all carbon flows from different process units, disregarding the temporal

variability of biogenic flows, thus justifying the carbon neutrality hypothesis.

The main purpose of this work is to provide the tools to build dynamic inventories and analyse how

the dynamic impact assessment results and conclusions differ from static ones. A proposed modelling

framework considers: a) upstream models for non-linear biomass growth, above- and belowground

biogenic carbon (Cbio) sequestration, soil organic carbon (SOC) dynamic associated to land uses,

including management practices; and b) downstream models for case-specific end-of-life pathways,

eventually delaying emissions. Moreover, the dynamic models were designed to be coupled with

outputs from any demand model (e.g. technical flows specifying the amount of biomass supply/use in

a studied system or bioproduct) to develop complete dynamic carbon inventories (fossil + biogenic). A

partial-equilibrium model was used throughout the case studies to estimate the consequences of

policy-induced changes (i.e. energy transition).

The overall results showed that modelling both Cbio sequestration and SOC dynamic reduced

uncertainty and bias of mitigation effects. Upstream modelling is dependent on biomass type and

sensitive to the timing of the first sequestration flow, rotation lengths and variations in the residue

removal rates. The modelling approaches can be further refined to site- and/or case-specific settings.

This dissertation thus bridges the gap between the time dimension in LCA and dynamic Cbio

modelling, thus contributing to the improvement of the LCA methodology, towards more robust

decision support in defining actions to mitigate climate change.

Keywords: life cycle assessment, dynamic modelling, biogenic carbon, forestry and agricultural

biomass, climate change, time dimension.
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Résumé

Les stratégies bas carbone favorisent l'utilisation de sources d'énergie renouvelable et de biomatériaux

provenant, entre autres, de la biomasse forestière et agricole dédiée et résiduelle, pour atteindre la

neutralité carbone, qui se traduit par une compensation entre émissions et captations de CO2. Les

approches actuelles de modélisation en analyse du cycle de vie (ACV) et pour l'empreinte carbone

sont statiques, représentant les systèmes à l'état d'équilibre. L'inventaire du cycle de vie repose sur une

agrégation simplifiée de tous les flux de carbone provenant de différentes unités de processus, ignorant

la variabilité temporelle des flux biosourcés. Cela justifie l'hypothèse de neutralité carbone.

L'objectif principal de ce travail est de fournir les outils permettant de décrire des inventaires

dynamiques et d'analyser en quoi les résultats et conclusions issus d’évaluations dynamiques diffèrent

de ceux obtenus par les approches statiques. Le cadre de modélisation proposé tient compte : a) des

modèles en amont (production), non linéaires, de la croissance de la biomasse et de la séquestration du

carbone organique du sol (COS) associé à l'utilisation des terres, y compris les pratiques de gestion

culturale, ainsi que b) des modèles en aval pour des options de fin de vie spécifiques (gestion des

déchets et résidus), qui retardent éventuellement les émissions. Les modèles dynamiques mis en jeu

ont été conçus pour être couplés aux résultats de n'importe quel modèle de demande (fournissant des

flux techniques précisant la quantité de biomasses fournie/utilisée dans un système étudié) afin

d'élaborer des inventaires dynamiques complets du carbone (fossiles + biogéniques). Un modèle

d'équilibre partiel pour l’évaluation des scénarios prospectifs de bioénergie a été utilisé à travers des

études de cas pour l’estimation des conséquences des changements induits par les politiques publiques

(transition énergétique).

Les résultats globaux ont montré que la modélisation de la séquestration du carbone biogénique (Cbio)

et de la dynamique du COS fournit une représentation plus précise des flux de Cbio et des effets

d'atténuation. La modélisation en amont dépend du type de biomasse et est sensible au moment du

premier flux de séquestration, aux longueurs de rotation des cultures et aux variations des taux

d'exportation des résidus. Les approches de modélisation peuvent être affinées pour tenir compte des

contextes propres à un site ou à un cas particulier. Ce travail permet donc une meilleure prise en

compte du Cbio et contribue à l'amélioration de la méthodologie ACV. Cela est particulièrement

pertinent pour la définition des actions à mettre en œuvre face au changement climatique.

Mots clés : analyse du cycle de vie, modélisation dynamique, carbone biogénique, biomasse forestière

et agricole, changement climatique, dimension temporelle.
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Resumen ejecutivo

Las estrategias bajas en carbono promueven el uso de fuentes de energía renovable y biomateriales que

se originan, entre otros, de la biomasa forestal y agrícola dedicada y residual (ej. cultivos energéticos,

residuos leñosos), como opciones supuestamente neutras en carbono que desplazan o compensan una

cantidad energéticamente equivalente de carbono fósil, lo que resulta en cero emisiones netas de CO2.

Los enfoques actuales de modelización en las metodologías del análisis de ciclo de vida (ACV) y de la

huella de carbono son estáticos. El inventario del ciclo de vida se basa en la agregación simplificada

de todos los flujos de carbono de diferentes unidades de proceso, ignorando la variabilidad temporal

de los flujos biogénicos, lo que justifica la hipótesis de neutralidad de carbono.

El objetivo principal de este trabajo es proporcionar las herramientas para construir inventarios

dinámicos y analizar en qué se diferencian los resultados y conclusiones de las evaluaciones de

impacto dinámicas y estáticas. El método de modelización propuesto considera: a) modelos de

crecimiento de biomasa no lineales, secuestro aéreo y subterráneo de Cbio, dinámica del carbono

orgánico del suelo (COS) asociada a los usos de la tierra, incluidas las prácticas de gestión; y b)

modelos para trayectorias de fin de vida específicas, que retrasan eventualmente las emisiones.

Además, los modelos dinámicos se diseñaron para acoplarse a los resultados de cualquier modelo de

demanda (ej. flujos técnicos que especifican la cantidad de biomasa requerida por un sistema) para

desarrollar inventarios de carbono dinámicos completos (fósiles + biogénicos). En todos los estudios

de caso se utilizó un modelo de equilibrio parcial para elaborar inventarios Cbio a partir de escenarios

bioenergéticos prospectivos del subsector del transporte y estimar las consecuencias de los cambios

inducidos por las políticas (es decir, la transición energética).

Los resultados generales mostraron que la modelización, tanto del secuestro de Cbio como de la

dinámica de COS, proporciona una representación más precisa de los flujos de Cbio y de los efectos de

mitigación. La modelización aguas arriba depende del tipo de biomasa y es sensible al momento en

que se produce el primer flujo de secuestro, a las longitudes de rotación y a las variaciones en las tasas

de remoción de residuos. Los enfoques de modelización se pueden refinar aún más para adaptarlos a

los entornos específicos de cada emplazamiento y/o caso. Esta disertación cierra así la brecha entre la

dimensión temporal del ACV y la modelización dinámica de la Cbio, contribuyendo así a la mejora de

la metodología del ACV, hacia un apoyo más sólido a la toma de decisiones en la definición de

acciones para mitigar el cambio climático.

Palabras clave: análisis del ciclo de vida, modelización dinámica, carbono biogénico, biomasa

forestal y agrícola, cambio climático, dimensión temporal.
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Zusammenfassung

Eine CO2-arme Entwicklung fördert die Nutzung einerseits von erneuerbaren Energieträgern und

andererseits von Erzeugnissen von Produckten aus der Biomasse (beispielsweise Energiepflanzen,

Resthölzer). Diese erneuerbaren Rohstoffe gelten als klimaneutrale Optionen (null CO2-Ausstoß),

wobei eine energetisch äquivalente Menge an fossilem Kohlenstoff aus Verbrennung ausgleichen

wird. Die Ansätze der Ökobilanz oder Klimabilanz basieren auf einer vereinfachten Aggregation aller

Treibhausgasemissionen aus verschiedenen Prozesseinheiten. Dieser CO2 Modellierung-Ansatz ist

statisch, da die Zeitdifferenzierung dynamischer Ströme, also wann eine Emission stattfindet, nicht

berücksichtigt wird. Somit wird die Klimaneutralität in der Gesamtbilanz gerechtfertigt.

Die Hauptziele dieser Dissertation sind der Aufbau von dynamischen Klimabilanzen und das Erproben

von Hilfsmitteln zur Analyse biogener Ströme aus Biomassenutzung. Ebenfalls sollen statische

Schlussfolgerungen von dynamischen Folgenabschätzungen abgegrenzt werden. Eine vorgeschlagene

Herangehensweise in dieser Arbeit berücksichtigt eine dynamische Bestandsaufnahme im

Zusammenhang mit Landnutzungen in der Forst- und Agrarwirtschaft, aus: a) nichtlinearem

Wachstum und CO2 Bindung in den Pflanzen, sowie dem CO2 Ausstoß von organischem Kohlenstoff

im Boden; und b) Ausstoßemissionen mit möglicher Verzögerung durch eine lange Lebensdauer eines

Produktes. Darüber hinaus, werden die dynamischen Modelle so konzipiert, dass sie mit einem

beliebigen Nachfragemodell gekoppelt werden können (beispielswiese bezüglich zukünftiger

Biomasseversorgung bzw. –nutzung). Infolgedessen werden vollständige dynamische Klimabilanzen

aus fossilen und biogenen Kohlenstoffträgern entwickeln. In den Fallstudien wurde ein partielles

Gleichgewichtsmodell verwendet, um dynamische Bilanzen aus prospektiven Bioenergieszenarien zu

entwickeln und die Folgen politisch bedingter Veränderungen (z.B. Energiewende) abzuschätzen.

Das Gesamtergebnis zeigt, dass die Modellierung von folgenden Aspekten abhängig ist: die Art der

Biomasse, der Zeitpunkt der ersten CO2 Bindung, die Änderung der Rotationslänge und die

Reststoffnutzung. Die Modellierungsansätze können zu standort- und/oder fallspezifischen Studien

weiterentwickelt werden. Diese Dissertation schließt somit die Forschungslücke zwischen der

Zeitdimension und den dynamischen biogenen Strömen. Sie trägt daher zur Verbesserung der

Ökobilanzmethodik bei, eine robustere Entscheidungsunterstützung bezüglich der Definition von

Maßnahmen zur Minderung des Klimawandels.

Stichworte: Ökobilanz, dynamische Modellierung, biogener Kohlenstoff, forstwirtschaftliche und

landwirtschaftliche Biomasse, Klimawandel, Zeitdimension.
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Résumé substantiel

Contexte

Face à la nécessité d’agir pour lutter contre le changement climatique, l’utilisation de la biomasse est

au premier plan du fait de son caractère renouvelable. Les pouvoirs publics tendent de plus en plus à

favoriser le remplacement du carbone (C) d'origine fossile par du carbone issu de biomasse pour une

large gamme d’utilisations (bioénergie, biomatériaux et biochimie intermédiaire). .

Le carbone biogénique (Cbio) représente le C issu de la biomasse (animale et végétale). Il est échangé

avec l’atmosphère à plusieurs niveaux : absorption sous forme de CO2 par la photosynthèse, et

(ré)émission principalement sous forme de CO2, mais aussi de CH4, par des processus naturels (e.g.

respiration) ou des activités humaines (e.g. combustion). Le carbone issu de biomasse morte est en

grande partie incorporé dans le sol sous forme de Carbone Organique du Sol (COS), et participe aussi

au cycle du carbone biogénique.

L’impact sur le changement climatique des émissions de CO2 d'origine biogénique est le plus souvent

considéré comme nul. L’hypothèse sous-jacente à cette approche est que la neutralité carbone équivaut

à une neutralité climatique. Cela signifie qu’une quantité de CO2 émise par combustion ou incinération

puis (ré)séquestrée pendant la (re)pousse des plantes n’a pas d’influence sur le changement climatique,

ce qui permet d’omettre le CO2 biogénique dans l'inventaire des émissions de Gaz à Effet de Serre

(GES). La plupart des approches de modélisation de carbone d’origine biogénique actuellement

utilisées dans les politiques climatiques s'appuient sur cette hypothèse de neutralité climatique du

carbone biogénique pour promouvoir l’utilisation et le développement de produits issus de la

biomasse.

Cette neutralité a été remise en question à différentes échelles par plusieurs chercheurs, notamment en

termes d'effets non nuls sur le changement climatique pour des forêts avec de longues durées de

rotation. Des conclusions sous-évaluant le changement climatique ont pu être présentées amenant par

exemple à des recommandations en faveur de la déforestation de forêt tropicale pour la bioénergie.

Cette controverse porte en particulier sur le fait qu’il faut parfois plusieurs décennies pour

(re)séquestrer le CO2 émis par la combustion de biomasse issue de forêts.

Plusieurs chercheurs reconnaissent la nécessité de tenir compte des variations temporelles des

émissions négatives (absorption lors de la photosynthèse) et positives (émissions par respiration ou

combustion par exemple) de CO2 biogénique, notamment par la prise en compte des potentiels délais

entre stockage et déstockage de Cbio dans la biomasse, et les effets sur le changement climatique

induits.
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Toutefois, il n'existe pas de consensus sur la façon de modéliser ces flux dynamiques et de les intégrer

dans les méthodes d’évaluation environnementale existantes comme l'Analyse de Cycle de Vie

(ACV). L'ACV offre un cadre normalisé pour évaluer les impacts environnementaux potentiels lié à la

fabrication d’un produit ou à la fourniture d’un service. L’approche dresse un inventaire détaillé de

toutes les ressources consommées et des émissions associées à une unité fonctionnelle d’un produit

tout au long de son cycle de vie.

L’ACV est également connue comme une approche du berceau à la tombe (cradle-to-grave), car

l’inventaire vise à quantifier tous les flux extraits de l'environnement et réémis dans l'environnement

pendant toutes les différentes étapes du cycle de vie d’un produit : extraction des matières premières,

fabrication, utilisation, traitement des déchets par valorisation ou élimination finale des matériaux en

fin de vie, en intégrant le transport tout au long de la chaîne d'approvisionnement.

Si la méthodologie de l'ACV aborde plusieurs indicateurs d'impact, cette thèse se focalise uniquement

sur la catégorie d'impact « changement climatique », au regard des enjeux liés à la dynamique du Cbio.

Cet impact est traditionnellement évalué avec les Potentiels de Réchauffement Global (PRG) établis

par le groupe d'experts intergouvernemental sur l'évolution du climat (GIEC). L’impact alors obtenu

est une mesure relative, calculée à partir de la somme pondérée par les PRG de toutes les émissions de

GES (en masse). Cette agrégation ne tient pas compte de la variabilité temporelle des flux

d'émissions. L'information temporelle est donc perdue, car il n'est pas précisé quand les émissions ont

eu lieu. Cette approche statique se heurte à deux grandes limites :

Les flux biogéniques de séquestration et d’émission s’annulent, justifiant ainsi l'hypothèse de

la neutralité climatique du carbone biogénique. Mais cela ne permet pas de prendre en compte

l’effet sur le bilan GES des variations temporelles.

L’application d'un horizon temporel fixe pour calculer le bilan GES, et donc une inconsistance

temporelle possible entre l’horizon temporel couvert par l’inventaire et celui couvert par

l’impact évalué.

La temporalité des flux de carbone biogénique, y compris les délais d'émission de carbone consécutifs

à une immobilisation du carbone dans des produits à longue durée de vie, peut varier

considérablement, ce qui constitue une source essentielle d'incertitude dans les résultats statiques.

Les objectifs de thèse

Cette thèse contribue à associer la dimension temporelle en ACV et la modélisation dynamique du Cbio

des produits provenant de la biomasse.
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L'objectif principal de cette thèse est donc de fournir les outils permettant de décrire des inventaires

dynamiques et d'analyser comment les résultats ainsi calculés diffèrent de ceux obtenus par les

approches statiques.

Le cadre de modélisation proposé tient compte :

des modèles en amont (production), non linéaires, de la croissance de la biomasse, de la

séquestration du COS associé à l'utilisation et la gestion des terres, ainsi que

des modèles en aval pour des voies de fin de vie spécifique (gestion des déchets et résidus),

qui retardent éventuellement les (ré)émissions de carbone biogénique dans l’atmosphère.

Approche

Cette thèse s’inscrit dans un contexte pluridisciplinaire (écologie, sylviculture, agriculture, économie

et sciences environnementales) afin d'évaluer les conséquences du changement climatique de produits

issus de la biomasse, en combinant un cadre d'ACV dynamique et la modélisation de la mise en œuvre

des politiques climatiques.

La structure des chapitres (sept au total) est organisée pour que l'état de l'art mette en lumière les

approches existantes et les enjeux de la recherche par rapport à celles-ci. Celui-ci permet de définir le

cadre de modélisation qui est mise en œuvre sur des études de cas. L'applicabilité et les limites sont

ensuite discutées.

Cette thèse est construite sur trois articles acceptés (en tant qu'auteur principal), et deux articles en

cours de soumission (un article de revue en tant que co-auteur, et un article en tant qu’auteur

principal). Les spécifications des données de la modélisation sont présentées en annexes, dont l’une a

été valorisée sous forme d’un data paper accepté (en tant qu’auteur principal).

Le chapitre 1 présente brièvement le contexte, les objectifs et la stratégie de recherche.

Le chapitre 2 présente les fondements théoriques de ce travail. Il expose les principes de l’évaluation

du changement climatique et de l’ACV. Il met en avant les limites, les implications temporelles et les

méthodes actuellement proposées pour évaluer les flux dynamiques du carbone. Cela permet de définir

les bases nécessaires à la modélisation du Cbio en ACV.

Le chapitre 3 décrit en détail le cadre de modélisation dynamique proposé. Celui-ci est aligné sur les

grandes étapes de l'ACV, avec un accent particulier sur la phase d'inventaire du cycle de vie. Une

étude détaillée sur un produit de bois d'œuvre est incluse à titre d’exemple. Ce cadre décrit en chapitre

3 est ensuite utilisé dans deux études de cas, au chapitre 4 (secteur forestier) et au chapitre 5 (secteur

agricole),
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Le chapitre 4 est consacré à la modélisation dynamique des systèmes forestiers. La séquestration du

carbone dans la biomasse est quantifiée par des modèles dynamiques de croissance et de relations

allométriques. Ce travail se prolonge par l'analyse des différentes perspectives temporelles de

modélisation et de leurs implications pour l'ACV.

Le chapitre 5 porte sur les systèmes agricoles. Il s’intéresse à la modélisation dynamique du carbone

organique du sol, provenant de la biomasse résiduelle de cultures énergétiques, annuelles et pérennes.

Ceci est abordé à travers la productivité primaire nette et la répartition du carbone dans les différents

organes de la plante. Avec des profils de séquestration à court terme et d’émission de CO2 associés au

sol, la modélisation des productions en est ainsi améliorée.

Le chapitre 6 présente une synthèse et une discussion des principaux résultats en identifiant les

difficultés de mise en œuvre, les incertitudes et les limites.

Le chapitre 7 termine cette thèse par un bilan et fournit les orientations et les perspectives pour la

poursuite de ces travaux.

Modélisation dynamique et ACV

Ce travail contribue, sur la base des connaissances actuelles, au développement méthodologique de

l'ACV dynamique. Il existe déjà une méthode d'ACV dynamique pour la catégorie d'impact du

changement climatique. Cette méthode, construite à partir d’inventaires des émissions de GES

différenciés annuellement, permet l'évaluation de l'impact en fonction du temps, avec des horizons

temporels flexibles. Même si définir un horizon temporel est inévitable, il permet de tester la

sensibilité des différents choix et leurs conséquences sur les résultats.

Il est donc nécessaire de disposer d’un inventaire dynamique pour obtenir un impact en fonction du

temps. Ceci implique la prise en compte de flux de carbone non agrégés issus de la biomasse dans

l’étape de l’inventaire. Il faut alors tenir compte de profils d'émissions temporels (flux de stockage et

déstockage) à toutes les étapes du cycle de vie. L'objectif est donc le développement de bilans carbone

complets et dynamiques (impliquant du carbone fossile et biogénique), et de mettre en évidence les

éléments clés dépendant du temps.

Le calcul des flux dynamiques de carbone biogénique avec l’environnement peut être couplé à

n'importe quel modèle de demande (flux techniques de biens et de services). Cela peut être fait pour

des scénarios (prédictifs, exploratoires ou normatifs) basés sur les flux socio-économiques :
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Évolution des marchés, innovation technologique et parcours/filières énergétiques

prospectifs ;

Analyse des politiques climat-énergie et stratégies d'atténuation pluriannuelles envisagées ;

Différenciation spatio-temporelle des productions ;

Externalités et données marginales

Dans cette thèse, le modèle d'équilibre partiel TIMES MIRET a été utilisé dans les études de cas pour

développer des inventaires Cbio à partir de scénarios prospectifs relatifs au secteur énergétique français.

Des focus ont été réalisés sur différents sous-secteurs liés aux bioénergies (biocarburants pour le

transport, ou biomasse pour la chaleur et l’électricité par exemple). Ceci permet d’estimer les

implications des politiques publiques en termes d’impact sur le changement climatique (comme la loi

relative à la transition énergétique pour la croissance verte dans un contexte français).

Les matières premières comprennent deux grandes catégories de biomasse :

i. Issue de cultures dédiées : cultures amylacées (blé, maïs), cultures sucrières (betterave sucrière),

graines oléagineuses (colza, tournesol), biomasse lignocellulosique (miscanthus, switchgrass,

peuplier, saule, bois des forêts) et algues. L’ensemble de ces ressources est résumé sous les

termes génériques suivants : cultures annuelles, cultures pérennes, et biomasses aquatiques.

ii. Résiduelle : résidus lignocellulosiques (par exemple rémanents forestiers, autres résidus

ligneux), résidus herbacés et agricoles, et résidus agro-industriels.

La modélisation de la séquestration du Cbio est liée à la modélisation de la croissance des plantes. Des

approches dynamiques de la croissance sont utilisées ici pour prédire le développement des plantes, et

leur rendement potentiel. Les paramètres sont ajustés à l'aide de régressions non linéaires à partir de

tables de rendement. Cette approche est complétée par des relations allométriques pour pouvoir

quantifier les dynamiques de croissance des arbres forestiers (i.e. les liens entre la croissance en âge et

en taille des plantes).

La modélisation du COS renvoie au C ajouté au sol à partir de différentes fractions de cultures

considérées par unité de surface en fonction des scénarios d'occupation du sol. Si la neutralité carbone

peut s'appliquer aux produits végétaux exportés et rapidement utilisés (par exemple, la betterave

sucrière pour la production de bioéthanol), d'autres parties de la plante restent à la parcelle et

contribuent au renouvellement voire à l’accumulation de la matière organique du sol.

Ce travail est basé sur un modèle du COS de la littérature à deux compartiments qui analyse : i) les

apports de matière organique fraîche provenant de résidus de culture, des parties de racines mortes et

rhizomes et des apports organiques exogènes (par ex. amendements/engrais), et ii) l’horizon actif

(couche du sol jusqu'à 30 cm de profondeur) où le COS est dégradé plus ou moins rapidement et
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ensuite réémis dans l’atmosphère. Un bilan entrée / sorties du COS est ainsi possible à chaque pas de

temps, ce qui permet de quantifier au final les teneurs en carbone organique des compartiments aériens

et souterrains liées à une année particulière de culture.

Principaux résultats

Plusieurs points ont été abordés à travers ces travaux de thèse. L’article de la section 4.2 propose une

approche de couplage (ici avec un modèle économique d'équilibre partiel, TIMES MIRET) pour

évaluer des scénarios prospectifs pour le secteur des transports, en tenant compte des bilans

dynamiques de Cbio des résidus de biomasse forestière pour la production de bioéthanol. Le couplage

permet d'établir des bilans complets de C et de tenir compte des avantages potentiels de la

séquestration de Cbio dans les arbres forestiers, représentés par des flux négatifs. Une analyse de

sensibilité souligne que les résultats sont sensibles à la réduction de la longueur de rotation : plus la

longueur de rotation modélisée est raccourcie, plus le bénéfice est faible.

Dans un l’article de la section 4.3, nous analysons les résultats du couplage du modèle d'équilibre

partiel avec le modèle de croissance de biomasse forestière face à différentes perspectives temporelles

de modélisation et nous discutons des défis de mise en œuvre, en particulier en ce qui concerne le

choix de l’ordre de modélisation du cycle du carbone (séquestration-émission ou émission-

séquestration, aussi représenté par le paradoxe de l'œuf et la poule). Des recommandations pour les

praticiens sont proposées selon un ensemble de règles dans un arbre décisionnel. Les principaux

éléments dépendent des changements entre les états précédents de la forêt (naturelle ou artificielle), en

séparant les systèmes gérés des systèmes non gérés et en déterminant si les terres sont destinées à être

reboisées après la récolte ou non.

L'article de la section 5.2 aborde la modélisation du COS pour différentes biomasses agricoles, afin de

prendre plus précisément en compte les émissions de CO2 dans l'atmosphère liée à la décomposition

du COS au cours du temps. Cette approche est ici aussi couplée au modèle d'équilibre partiel du

secteur énergétique français TIMES MIRET. Les dynamiques du COS de différentes cultures

énergétiques ont été évaluées à partir de différents scénarios de déploiement des biocarburants. L'étude

a démontré que les proportions de C ajouté au sol varient selon les différents types de biomasses

agricoles et dépendent des pratiques de gestion des résidus en place (taux d'enlèvement des résidus en

particulier), y compris la substitution partielle des engrais minéraux par des engrais organiques.

L'analyse de sensibilité suggère que les forçages négatifs liés au COS diminuent considérablement

avec la température et l'augmentation du taux d'enlèvement des résidus.

L’article de la section 5.3 est une étude de cas non publiée permettant d’aborder un autre domaine

d’application. Le système étudié est la production d’un intermédiaire chimique (surfactant pour les

produits d'hygiène personnelle), partiellement fabriqué à base d'alcool gras issu d’huile de palme. La
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modélisation du Cbio et du SOC en amont et en aval, associé à une étude d'ACV statique traditionnelle

"cradle-to-gate" (données fournies par un partenaire industriel), permet de comparer les résultats

statiques et dynamiques. L'approche consiste en une intégration de tous les modèles déjà élaborés,

mais avec une complexité accrue dans la modélisation de la croissance de tous les compartiments de la

culture du palmier à huile, incluant tous les sous-produits.

Les défis de mise en œuvre

Les principales difficultés de mise en œuvre rencontrées dans le cadre de ces travaux sont données ci-

dessous :

Le paradoxe de l'œuf et la poule dans la séquestration de Cbio, un problème d'allocation : Les

profils de séquestration à long terme ont un impact considérable, selon que la séquestration est

prise en compte dans une perspective historique (avantage carbone) ou future (dette carbone).

Cette décision de modélisation (relation physique causale de l'attribution de Cbio en amont ou

en aval d’une activité de récolte) a été identifiée comme un défi d'allocation pour l'ACV

attributionnelle.

Impacts climatiques relatifs statiques ou dynamiques : Les comparaisons entre les résultats

statique et dynamique de forçage radiatif relatif (exprimés en kg CO2-eq) doivent être

effectuées avec prudence, les deux métriques représentant des impacts différents. La

principale incohérence réside dans les différents horizons temporels sous-jacents. La

comparaison devient particulièrement difficile pour les études dont les limites temporelles ou

les années d'inventaire sont différentes. Contrairement à la mesure relative, la mesure

cumulative du forçage radiatif (exprimée en W yr m-2) permet des comparaisons entre

différents scénarios, avec différentes limites temporelles ou différentes années d'inventaire.

Choix inévitable d'un horizon temporel dans l'analyse d'impact : Pour comparer une approche

dynamique à une approche statique, un horizon temporel est nécessaire. Pourtant, l'approche

dynamique exprime l'effet de forçage radiatif entre l'année d’une émission et la fin de

l’horizon (par exemple 100 ans après le début du scénario étudié). Cela permet de voir les

séquestrations dans leurs durées et les conséquences sur le réchauffement, contrairement à une

approche statique.

Coupure temporelle : Même si les inventaires dynamiques peuvent couvrir toutes les

émissions potentielles décrites dans le temps, les émissions ayant lieu après la fin de l’horizon

temporel ne sont pas prises en compte. Il est donc recommandé de fixer un horizon temporel

de l'impact qui englobe la dernière émission dans l’inventaire.

Les principales sources d'incertitude dans ce travail sont listées ici :

Données et accessibilité des données : Il n'est souvent pas facile d'obtenir des données précises

pour la modélisation du Cbio par espèce végétale. En raison de l'absence de données
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spécifiques au contexte français pour les rendements forestiers, des données provenant d'autres

régions géographiques d'Europe ont été utilisées comme approximations, correspondant a

minima aux conditions climatiques tempérées. De même, il n'est pas aisée d'obtenir des

données sur la proportion de CH4 provenant de la décomposition du COS en raison de manque

des études sur cette source d'émissions de GES. Les modélisations de la croissance de la

biomasse et de COS sont basées sur des données de la littérature, ce qui entraine une

incertitude sur les résultats.

Dynamique spatiale - Données dites site-generic et site-specific : Cette thèse porte

principalement sur la dynamique temporelle des ressources biotiques pour réduire les

incertitudes liées aux modèles linéaires et à la neutralité carbone. Les paramètres des modèles

Cbio et COS de ce travail sont liés à des données dites site-dependent. Cela montre une relation

étroite entre les dimensions temporelle et spatiale pour la modélisation des systèmes de la

biomasse. Les conditions locales, c'est-à-dire les variables propres au site (p. ex. maladie,

incendie, sécheresse, mortalité), jouent un rôle essentiel dans la modélisation des systèmes

forestiers et agricoles. Cependant, l’aspect spatial ne pouvait être abordé dans le temps

imparti.

Définition des limites du système : La définition des limites du système peut représenter une

source d'incertitude, car elle déterminera si tous les flux de Cbio et de COS en amont et aval

sont pris en compte. Néanmoins, l'augmentation du nombre de sous-processus entraine donc

une augmentation naturelle de l'incertitude des processus, des données et de la modélisation.

Le but et la portée de l'étude détermineront si un niveau élevé de détail dans la modélisation

est nécessaire.

Les conclusions et perspectives

Cette thèse porte sur la façon de modéliser les effets du changement climatique à partir de flux de

carbone biogénique provenant de systèmes forestiers et agricoles, et sur l’intégration de ces derniers

dans le cadre de l’ACV dynamique. Les résultats ont montré l'importance de développer des

inventaires dynamiques exhaustifs de carbone, biogénique et fossile, en s'appuyant sur les flux annuels

de séquestration et d’émission tout au long du cycle de vie d'un bioproduit.

Les approches de modélisation ont contribué à l'élaboration d'une méthodologie d'ACV dynamique

évaluant les effets climatiques des produits issus de la biomasse. Ces approches permettent de tenir

compte des flux biogéniques, ce qui fournit une aide à la décision plus robuste dans la définition des

mesures à prendre en réponse au changement climatique.
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Le cadre proposé montre comment éviter les coupures temporelles dans d'inventaire, évaluer les

émissions négatives, comparer les résultats dynamiques aux résultats des impacts statiques et

comprendre l'évolution des émissions de GES à différents moments dans le temps.

La modélisation en amont de la séquestration du Cbio et du carbone du sol fournit une représentation

plus précise des flux d'origine biogénique et de leurs potentiels effets d'atténuation du changement

climatique. La prise en compte de la fin de vie a montré qu'il est essentiel d'effectuer une comptabilité

dynamique sur toute la durée de vie pour capturer tous les échanges de carbone avec l'atmosphère et la

technosphère dans le temps.

La modélisation de la croissance et de la séquestration du Cbio dépend du type de biomasse et n'est

donc pas nécessaire dans tous les cas (récoltes de cultures annuelles par exemple). Cependant, la

dynamique du COS doit être prise en compte pour tous les types de biomasses, si les résidus aériens et

souterrains sont laissés sur le champ, et si les émissions liées à ces résidus n’ont pas lieu

instantanément. La biomasse morte a sa propre dynamique, car elle subit des processus de dégradation

pouvant différer selon les conditions pédoclimatiques.

L’ACV dynamique réduit donc le biais dans les résultats d'atténuation du changement climatique.

Cependant, le choix d’un horizon temporel reste inévitable et des analyses de sensibilité doivent être

réalisées pour mieux interpréter les résultats finaux, en particulier en ce qui concerne la séquestration

du Cbio de biomasse à longue rotation issue de la forêt.

Pour les études futures, il est recommandé d'inclure la dynamique spatiale dans les approches de

modélisation du carbone, en spécifiant en particulier les rendements en fonction du site pour mieux

comprendre comment les dimensions temporelle et spatiale doivent être réalisées ensemble pour le

développement de l'ACV dynamique. Il peut s'agir d'une considération essentielle également pour

d'autres catégories d'impact. D'autres progrès sont nécessaires pour quantifier les effets du changement

climatique qui sont liés aux changements d’usages des sols, directs ou indirects, souvent en relation

avec l'expansion de la biomasse pour la bioénergie ou vers le développement de la bioéconomie.
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1.1 Background: the global carbon cycle

Human activities contribute to the increasing Greenhouse Gas (GHG) concentration in the atmosphere,

causing Earth’s surface temperature rise leading to climate change – a global threat, with ultimate

damages to human health and ecosystems. The growing need to reduce GHG emissions to mitigate

climate change and associated risks demands alternative solutions, among others, deriving from

renewable energy carriers, carbon capture and storage, sustainable consumption and production

patterns, sustainable lifestyle, for present and future generations.

Global commitments have implemented ambitious climate targets and intervention policies in the

frame of the Kyoto Protocol mechanisms and Paris Agreement towards low-carbon nations and low-

throughput societies, to not overstepping the 450 ppm or the 2°C limit (UNFCCC, 2018).

The effects from alternative energy carriers and materials on the global system require a better

understanding of what low-carbon, carbon neutral or negative emissions means to support the

transition towards renewable energy carriers.

Carbon (C) releases have a direct effect on the net energy balance of the Earth climate system due to

increased atmospheric concentration of GHGs. The global carbon cycle plays an essential role in the

Earth climate feedback mechanisms, representing the exchanging carbon flows between the carbon

pools atmosphere, biosphere, pedosphere, hydrosphere and lithosphere (Fig. 1-1). The carbon pools

act as carbon sinks with different turnover times (i.e. mass of carbon relative to the exchange rate),

ranging from a few days to millions of years. The atmosphere, ocean and freshwater, vegetation and

soils have a fast turnover time as compared to the slow lithosphere pool (Ciais et al. 2013, IPCC AR4,

Chapter 6).

The atmospheric pool, comprises GHGs such as carbon dioxide (CO2), followed by methane (CH4),

carbon monoxide (CO), nitrous oxide (N2O), hydrocarbons, ozone, water vapour, and particulate

matter (e.g. black carbon, aerosols). The substances have different turnover times, referred to as

atmospheric lifetimes, ranging from days for Near-term climate forcers to centuries for CO2. The

terrestrial biological pool comprises the carbon fixed in plants (living biomass) within the biosphere

and in the soil organic matter (dead biomass) within the pedosphere. Atmospheric CO2 is fixed in the

biomass through photosynthetic processes and released back by autotrophic and heterotrophic

respiration. The oceanic pool is the largest carbon sink, composed of both dissolved inorganic and

organic carbon compounds, which are transferred between different oceanic layers. The turnover time

in the upper layer is fast, while the sea floor stores C in the sediments for centuries to millennia due to
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biological processes. The lithospheric pool refers to the geological sink (fossil carbon) with long

turnover time.

Note: Natural flows prior to the Industrial Era (1750) in black, anthropogenic flows (2000 -2009) in red, and
sinks expressed in PgC [1 PgC=10E15 gC = 1GtC]

Fig. 1-1: Simplified scheme of the carbon pools in the global carbon cycle, adapted from Ciais et al. (2013, p.

471, IPCC AR5)

Since the pre-industrial era (year 1750), carbon has been transferred from a slow turnover

compartment (lithosphere) into a fast one (atmosphere) due to anthropogenic activities, principally

driven by fossil fuel combustion (Forster et al. 2007; Myhre et al. 2013a).

Biomass, in the terrestrial biological carbon pool, has gained attention in the climate mitigation

context, given that this feedstock can be regrown, referring to it as a renewable resource. It can

displace fossil C for a wide range of products and derivatives towards future multiproduct biorefinery

(bioenergy, biomaterials and intermediate biochemicals), as the C stored in the biomass (referred to as

Cbio – biogenic carbon) is an essential building block, representing about half of the dry mass in the

vegetation, as a default value (FAO, 2005). Climate mitigation incentives thus turn to

crediting/offsetting the avoided equivalent fossil C by the renewable feedstock.
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Cbio emissions from bioenergy systems are considered to be zero under the carbon neutral

hypothesis, i.e. one unit of carbon released to the air is balanced out through the same unit of carbon

fixed in the biomass during plant growth and regrowth. That is to say, the same amount of CO2

emitted from combustion or incineration has been or will be removed from the atmosphere during

plant growth or regrowth, which thus allows omitting the related biogenic CO2 from the GHG

inventories. Most of currently applied modelling approaches used in science and policy rely on this

hypothesis.

The carbon neutral assumption has been questioned by several scholars across scales (Benoist and

Dron, 2009; Johnson, 2009; Schulze et al., 2012) and confronted in terms of long-term climate change

effects and mitigation projects. It has been stated that carbon neutrality leads to absurd conclusions

favouring burning tropical forests (Rabl et al., 2007) and incorrect treatment of, for instance, forest-

sourced bioenergy (Searchinger et al., 2009). The International Energy Agency (IEA) Task 38 group

(http://task38.ieabioenergy.com/) has been formed to enhance the understanding on the subject,

particularly concerned with climate effects of biomass and bioenergy systems to overcome current

research gaps, among others, on the timing of forest carbon stocks (Cowie et al., 2013).

While there is a fundamental difference between GHG inventories at national, landscape/project or

product level, this dissertation centres on the last one in the context of Life Cycle Assessment (LCA),

facing the assessment limitations describe in the next section.

1.2 Current assessment limitations under carbon neutrality assumptions

Climate change impacts have steady-state representations of the cause-effect relationship between an

anthropogenic activity and an emission release. The effects from an activity are commonly scaled by

means of static emission factors (Heijungs and Suh, 2002).

The commonly used method to assess climate change impacts is the IPCC Global Warming Potential

(GWP) metric (Myhre et al., 2013a). The metric represents a relative measure of the weighted sum (in

mass values) of all inventoried GHG emissions (i), resulting from an anthropogenic activity (e.g. by

the provision of goods and services), over a fixed time horizon (TH), as shown in Eq. 1-1.

Eq. 1-1

In LCA or carbon footprint approaches, all GHG emissions from different process activities are added

up, after being weighted by the corresponding static GWP factor (or characterisation factor in LCA

terminology), ignoring the temporal variability of emission flows and their actual impacts. Temporal

information is lost, as it does not specify when in time an emission takes place (Benoist, 2009; Collet,

2012; Hellweg and Frischknecht, 2004; Levasseur et al., 2010a).
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The static approach excludes dynamic Cbio flows, with no effect on the GHG balance, thus resulting in

zero CO2 emissions, justified by the carbon neutral hypothesis (Cherubini et al., 2011a). The net

carbon exchange with the atmosphere may be neutral; however, the timing of the carbon sequestration

and storage, as well as emission delays may vary substantially, depending on the product type,

constituting in an essential source of uncertainty in the results.

The accounting problematic and challenges associated with Cbio and the time dimension were

thoroughly discussed in expert meetings (Agostini et al., 2014; Brandão and Levasseur, 2010). New

approaches, methods or tools were then proposed, such as DynCO2 tool for dynamic LCA by

Levasseur et al. (2010), GWPBio metric for bioenergy systems by Cherubini et al. (2011), or the

DyPLCA tool for dynamic processes by Tiruta-Barna et al. (2016), to name a few. However, despite

these different contributions, no consensus has been established in the LCA community on how to

treat and account time-dependent flows in LCA of biomass-based systems or products.

Appropriate Cbio modelling approaches in LCA are still lacking, opening the following research

questions:

How to define temporal carbon profiles of disaggregated flows?

What approaches enable dynamic accounting for Cbio from the biotic production?

How can dynamic approaches be implemented in the LCA framework?

Can negative Cbio emissions be valued? Or is carbon neutrality of Cbio inherently justifiable?

1.3 Thesis overview

1.3.1 Research objectives and scope

Given the current static assessment limitations, this PhD dissertation is devoted to bridging the gap

between the time dimension and carbon modelling within the dynamic LCA framework and climate

change impact category, under the given hypothesis: “Temporal biogenic emission profiles provide a

more accurate picture of actual climate change and mitigation potentials, for instance, towards climate

targets, and are thus non-negligible.”

Fig. 1-2 exemplarily illustrates a system under study with temporal differentiation of the flows

concerning positive emission (fossil- or biogenic-sourced) to the atmosphere and negative fixation into

the biomass, as well as two assessment approaches in LCA concerning static classic and dynamic

methods. The main objective of this dissertation is thus to assess time-sensitive climate change

effects and mitigation potentials from biogenic and fossil C sources, and analyse whether static

and dynamic carbon neutral results are considerably affected under temporal considerations.
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Fig. 1-3. Strategic approach of the thesis

1.3.3 Thesis structure

The dissertation is composed of seven chapters illustrated in Fig. 1-4. The structure of the chapters is

organised in a way that the state of the art, highlighting existing approaches and research gaps, feeds a

framework proposal for dynamic carbon modelling, which is further explored by means of case

studies, addressing the framework elements, and finally identify the applicability and implementation

challenges of the framework proposal.

Fig. 1-4: Simplified structure of the thesis with chapter and paper contents
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The Chapter contents, including published papers and submitted manuscripts, as well as modelling

data and specifications outlined in the Appendices, consist of:

Chapter 1 Introduction: provides a short introduction of the research context and further detailing the

objectives and envisioned strategy on how this work intends to bridge current gaps between the time

dimension and LCA.

Chapter 2 Literature review: From static to dynamic carbon modelling: presents the theoretical

foundation of this work, including background information from climate science and climate change

(the priority set to for the impact category), followed by a holistic review of the LCA framework,

current general temporal limitations and existing methodological developments, particularly

concerning time implications in the assessment of dynamic carbon flows, with special emphasis on

biogenic and soil organic carbon modelling. Some of the reviewed elements concerning the temporal

limitations in LCA are partial contributions to a Review Paper as second co-author (Manuscript 1 in

Appendix A: Paper 4 – Review paper on the time consideration in LCA).

Chapter 3 A framework for dynamic carbon modelling: describes in detail a framework proposal, prior

to the elaboration of case studies in Chapter 4 (forestry-related) and Chapter 5 (agriculture-related),

with the purpose of consolidating and detailing the main findings from literature on existing dynamic

elements and gaps, required for conducting time-dependent carbon modelling approaches. The

framework is aligned to the LCA phases, with special focus on the life cycle inventory phase. This

Chapter includes a detailed cradle-to-gate study on a wood lumber co-product as an implementation

example of the framework proposal.

Chapter 4 Forestry: growth modelling: commits to dynamic upstream modelling of forestry systems

and bioenergy to capture carbon sequestration in the biomass through dynamic growth models and

allometric relations, as well as to analyse different modelling time perspectives (historic and future

accounting flows) and their implications in dynamic LCA. The modelling approach delivers three

published papers:

Data paper (Appendix D: Data paper on forest models): Data and non-linear models for the

estimation of biomass growth and carbon fixation in managed forests. Publication alongside

the Supplementary Material accessible in the Journal Data in Brief, issued on 16 March 2019

(https://doi.org/10.1016/j.dib.2019.103841).

Paper 1 (section 4.2): Coupling partial-equilibrium and dynamic biogenic carbon models to

assess future transport scenarios in France. Publication accessible in the Journal Applied

Energy, issued on 2 February 2019 (https://doi.org/10.1016/j.apenergy.2019.01.186).

Paper 2 (section 4.3): Back to the future: Dynamic full carbon accounting applied to

prospective bioenergy scenarios: Publication alongside the Supplementary Material (Appendix
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E: SM of Paper 2) accessible in the in International Journal of Life Cycle Assessment, issued

on 23 October 2019 (https://doi.org/10.1007/s11367-019-01695-7).

Chapter 5 Agriculture: Soil organic carbon modelling: focuses on agricultural systems and dynamic

soil organic carbon modelling of dead biomass from energy crops of annual and perennial species by

means of the approaches: net primary productivity, carbon fractioning and partitioning. It aims at

further improving upstream modelling of carbon releases to the atmosphere from the soil and land uses

with potential sequestration profiles. The modelling approach delivers one published papers and one

unpublished manuscript:

Paper 3 (section 5.2): Modelling dynamic soil organic carbon flows of annual and perennial

energy crops to inform energy-transport policy scenarios in France. Publication alongside the

Supplementary Material informing on SOC modelling and data estimates (Appendix F: SM of

Paper 3) accessible in the Journal Science of the Total Environment, issued on 23 November

2019 (https://doi.org/10.1016/j.scitotenv.2019.135278).

Manuscript 2 (section 5.3): Model integration of oil palm production and consumption in the

chemical industry and different pathway scenarios; including specification on dynamic oil

palm models (Appendix G: SM of Manuscript ).

Chapter 6 Discussion: elements of dynamic carbon cycle modelling: provides a synthesis and

discussion of the main findings and results involving implementation challenges and uncertainties.

Chapter 7 Conclusions and directions for further research: summarises and concludes on the lessons

learned and additionally provides directions for further research not elaborated in this work.
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2 Literature review: From static to dynamic carbon modelling

2.1 Chapter context

The purpose of this Chapter is to provide a detailed literature review on the state of the art of the

research topic: from static to dynamic carbon modelling approaches for climate change impact

assessment in the context of life cycle assessment tools. It does not focus on the underlying biomass-

related sciences (e.g. forestry, agronomy, soil science), but on the state of the art of carbon modelling

in environmental impact assessment.

The review draws on background information concerning the climate system and perturbation of the

net energy balance, key drivers and policy interventions, further providing details on the universally

used static methods from the Intergovernmental Panel on Climate Change (section 2.2). Moreover, it

introduces to the life cycle thinking concept, the LCA framework, main LCA modelling approaches

and generally existing limitations (section 2.3), as well as the state of the art of assessment approaches

associated with the lacking temporal consideration in current assessment methods (section 2.4), and

methodological developments towards alternative metrics (section 2.5). Finally, it provides an

extended overview of existing modelling approaches for dynamic carbon accounting from different

disciplines and applications in LCA; thus linking biogenic carbon, soil carbon, and land use with

climate change impact (section 2.6.3).

2.2 Climate system and climate change mitigation strategies

2.2.1 Net global energy balance

The Earth climate system, as defined by Baede et al. (2001), is an “interactive system […] forced or

influenced by various external forcing mechanisms, the most important of which is the Sun, [and] the

direct effect of human activities […]”. The net radiation balance (or net energy balance) of the Earth

climate system is defined by the rate of energy exchange per unit area, expressed in watts per square

meters [Wꞏm-2].

The net global energy balance accounts for the incoming solar radiation of about 342 Wꞏm-2 minus

about one third that is directly reflected back by clouds, the atmosphere and aerosols without reaching

the Earth’s surface and the outgoing radiation of about 235 Wꞏm-2 from long-waved thermal infrared

radiation, sensible heat and evapotranspiration (Cubasch et al., 2013), as illustrated in Fig. 2-1. Some

of the thermal radiation is absorbed and re-emitted by the atmospheric greenhouse gases (GHG). The

atmospheric GHGs are known as external forcing compounds/agents, which are responsible for the

natural greenhouse gas effect, warming up the Earth’s surface at a mean temperature of 14 degree

Celsius.
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Fig. 2-1: Estimate of the Earth’s annual and global mean energy balance. Source: (Cubasch et al. 2013, IPCC

AR5, Chapter 1)

Changes in the net radiation balance are referred to as radiative forcing (RF) (Forster et al., 2007).

Increased concentrations of the external forcing compounds in the atmosphere are one of the major

drivers of radiative forcing, and the amount of substances determine the magnitude of the impact given

by the atmospheric concentration and the turnover time, i.e. the residence time in the atmosphere

(IPCC, 2013a).

The external climate forcing compounds can have global or local climate effects, depending on their

atmospheric lifetimes, as differentiated in Fig. 2-2. The most abundant forcing compounds in the

atmosphere are the Well-Mixed GHGs (WMGHG) with atmospheric lifetimes greater than one year

and therefore distributed globally. The most dominant well-mixed GHGs are: water vapour (H2O),

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluorocarbons (CFCs) and

hydrofluorocarbons (HFCs). The relative impacts of the emission of these substances due to human

activities (e.g. combustion) are assessed by means of the Global Warming Potential (GWP) or Global

Temperature Potential (GTP) metrics (Myhre et al. 2013a, IPCC AR5, Chapter 8), further detailed in

section 2.2.5.

Other anthropogenic drivers of radiative forcing are the Near-Term Climate Forcers (NTCF), which

have atmospheric lifetimes less than one year, and biogeophysical forcers, which have regional or

local climate effects. Near-term forcing compounds include, for instance, carbon monoxide (CO),



Chapter 2: Literature review: From static to dynamic carbon modelling

13 PhD Dissertation, 2019

nitrogen oxides (NOx), sulphur oxides (SOx), non-well mixed methane (CH4), volatile organic

compounds (VOCs), black carbon, organic carbon, water vapour (H2O), aerosols and ozone (O3)

precursors. The biogeophysical forcers refer to land surface cover changes (e.g. surface albedo

change).

Fig. 2-2: Climate forcing compounds at global and local scales. Source: adapted from Levasseur et al. (2016),

and Cherubini et al. (2016)

Forcing drivers have warming (positive) or cooling (negative) feedback mechanisms, depending on

the capacity of the driver to absorb or reflect radiation. For instance, the emissions of WMGHGs have

warming effects. Other substances such as aerosols (e.g. dust from volcanos) have cooling effects due

to their capacity to reflect back the incoming radiation. Positive RF values lead to warming of the

Earth climate system and vice-versa for negative RF (Cubasch et al., 2013).

From last measurements in 2011, the RF was estimated at +2.3 Wꞏm-2 (uncertainty range: 1.1 to 3.3

Wꞏm-2) (IPCC, 2013a). The perturbation on the net energy balance is driven by anthropogenic

activities, as confirmed with high certainty by climate scientists, and further detailed in the next

section.

2.2.2 Key drivers of and main contributing sectors to climate change

CO2 is the world’s dominant radiative forcing driver, accounting for almost 80% of all anthropogenic

GHG emissions (EPA, 2017). Main drivers of CO2 emissions are fossil fuel combustion, deforestation

and other land-use changes (Forster et al., 2007; IPCC, 2013a). Other dominant non-CO2 emissions

derive from agricultural activities such as CH4 (e.g. enteric fermentation rice production) and N2O

(e.g. mineral fertilisers).
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The net global GHG emission share (in reference to the year 2010) by the main economic sectors are

shortly introduced, as follows (EPA, 2017):

Electricity and heat production (25% share): electricity and heat consumed in the industry and

building sectors. These sectors are the principal consumer of oil, natural gas and coal with

over 40% of the primary energy share.

Agriculture, Forestry, and Other Land Use (24%): includes agricultural crop cultivation,

livestock and deforestation.

Industry (21%): includes the manufacturing and construction industry, as well as on-site

energy generation, combustion and transformation processes (chemical, metal and

mineral/cement); and excludes waste management activities and other energy uses.

Transport (14%): emissions are associated with the fossil fuel combustion (mainly gasoline

and diesel) for road, rail, air, and marine transportation.

Building (6.4%): accounts for energy generation and combustion within households,

commerce and institutes for heating or cooking.

Other energy sectors (9.6%): accounts for indirect emissions not associated with heat and

electricity (e.g. fuel extraction, refining, processing, and transportation).

The main source of GHG emissions is linked with energy consumption. The latest global statistical

energy review (BP, 2018) reported that the year 2017 accounted for the highest mean global primary

energy consumption since 2013 from 1.2% up to 2.2% growth rate, with China being the largest

consumer. About 60% of the growth is associated mainly with natural gas and renewable energy use,

particularly wind and solar power. The per million tonnes oil equivalent (mtoe) amount of primary

energy consumed in the world is about 13.5 Kmtoe.

Fig. 2-3 shows the global primary energy consumed per fuel source in the year 2017 here compared to

France. Oil (4622 mtoe) is the main fuel consumed in most regions of the world, followed by natural

gas (3156 mtoe) and coal (3732 mtoe). France’s main fuel source is nuclear energy (90 mtoe), oil (79

mtoe) and natural gas (39 mtoe) (BP, 2018).
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Fig. 2-3. Global primary energy consumption by fuel source compared to France’s in the year 2017.
Source: (BP, 2018)

The EU-28 GHG inventories are treated by the European Environment Agency (EEA) in partnership

with the European Statistical System (Eurostat, 2019). The sectoral representation of EU GHG

emissions is based on fuel combustion in energy (electricity and heat), transport, buildings

(households, commerce and institutes) and industry (manufacturing and construction) sectors. Almost

80% of the EU GHG emissions are due to fuel combustion, as shown in Fig. 2-4. Other sectors, not

related to fuel combustion, involve sub-sectors from industrial processes and product uses, agricultural

activities, and waste management. The remaining 2% derive from fugitive emissions associated with

leakage, for instance, from fuel storage tanks.

Fig. 2-4. Greenhouse gas emissions by IPCC sector of the EU-28 in the year 2016. Source: (Eurostat, 2019)

From 1990 to 2013, EU-28 GHG emissions have generally decreased in most of the sectors (Eurostat,

2019). It is attributable to changes in the energy mix, reducing fuel combustion and improving energy



Chapter 2: Literature review: From static to dynamic carbon modelling

Ariane Albers 16

efficiency. However, the transport sector has increased by 26% due to lacking efficiency

improvements and minimal shift towards renewable energy carriers, compared to other sectors. Major

sources of GHG emissions in other sectors derived from the sub-sector product use relating with

refrigeration and air conditioning (substituting ozone depleting fluorinated gases).

In France, GHG emissions from fuel combustion account for about 70%. The transport sector is the

main contributor with almost 30%, followed by the building, agricultural and industry sectors (all with

contributions of around 20%) (SDES, 2019).

The land-use, land-use change and forestry (LULUCF) sector is not included in the EU-28 GHG

inventories, because it is considered to be a carbon sink/stock, due to negative emissions from CO2

removals from the atmosphere and storage in the vegetation (biosphere). In the international Paris

Climate Agreement, forestry has been considered to contribute to about 25% of climate mitigation

targets by 2030 (Grassi et al., 2017). Consequently, since 2018 LULUCF also forms part of the 2030

EU Climate and Energy Framework, as a climate change mitigation strategy, demanding EU Member

States to compensate land-use emissions by and equivalent CO2 removal within the same LULUCF

sector (e.g. cropland, grassland, forestry).

Anthropogenic GHG emissions and the growing need to reduce them is a global concern, setting

international climate targets and mitigation mechanisms since the early 90s, shortly introduced in the

next section.

2.2.3 Climate policy context and mitigation initiatives

The warming of Earth surface temperature is unquestionable, as the evidence from observations and

measurements by climate scientists shows.

At international level, the United Nations Framework Convention on Climate Change (UNFCCC) was

ratified in 1994, from Earth Summit agreements in Rio de Janeiro. The convention formulated binding

climate targets and operational rules under the Kyoto Protocol and Marrakesh Accords, respectively

(UNFCCC, 2014). The main objective of the convention is to “stabilize atmospheric concentrations of

GHGs at a level that will prevent dangerous interference with the climate system” (UNFCCC, 2008),

and thus deal with climate change mitigation (reduce GHG emissions) and adaptation (anticipate

and prevent damages). Sustainable consumption and production towards low-carbon economies is an

essential component of the mitigation efforts.

The Conference of the Parties (COP) is the ultimate decision-making body, responsible for the

effective implementation of the convention agreements. Moreover, the Paris Agreement, adopted in

2015, formulates climate targets aiming at not surpassing the 2°C limit and further encourages

reductions to 1.5°C mean temperature levels (UNFCCC, 2018). Therefore, GHG emissions must stop
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rising until 2020 and need to be reduced by 60% until 2050, in reference to 2010 levels (EC, 2018a).

Therefore, the second UNFCCC commitment period was initiated from 2013 to 2020.

Annex I Parties are committed to the global climate agreements under the development of national

climate policies and they can voluntarily engage in the Kyoto mechanisms, namely: Certified

Emission Reduction (trade emission units among the Annex I Parties), Joint Implementation (JI: credit

for net carbon removal projects in another Annex I Party) and Clean Development Mechanism (CDM:

afforestation and reforestation projects within the LULUCF sector, or emission reduction projects in

developing countries), including renewable energy projects in non-Annex I Parties (IPCC, 2000;

UNFCCC, 2019). New market mechanisms are envisioned to replace CDM and JI after 2020.

At EU level, the Climate and Energy Framework sets the binding multiannual climate targets up to the

year 2050 towards competitive low-carbon economy (EC, 2018a). The 2020 targets encompass

reduction of GHG emissions and increase the share of renewable energy and energy efficiency, each

by 20% (also referred to as the 20’-20’-20’ targets). The 2030 targets increase these objectives to 40%

GHG reductions, 27% of renewable-energy and energy efficiency share. The GHG emissions should

further be reduced by 80% to 95% until 2050.

Some examples related to the EU legislation for the implementation of the given climate targets are

listed below (EC, 2019):

Energy Efficiency (Directive 2012/27EU): efficiency improvements envisioned, for instance,

through refurbishing public buildings, by applying industrial energy audits and management

systems, energy efficiency obligations schemes, developing smart power grids, etc.

Renewable Energy (Directive 2009/28/EC): implementation of alternative energy carriers such

as wind, solar or biomass to attain renewable energy share of 20% in the final energy

consumption by 2020, with 10% transport fuels from renewable sources.

Biofuel Directive (Directive 2003/30/EC): targeting at substituting fossil-based fuels, as the

transport accounts for one of the main contributing sectors to climate change.

EU Emissions Trading System (EU-ETS, Directive 2018/410/EU): allowing an international

trading market (carbon pricing system) under a limited number of emissions allowances.

Non-ETS sectors (Effort Sharing Regulation): sectors not covered by the EU-ETS involving

housing, agriculture, waste and transport (except air transportation means).

Low carbon technologies (no Directive): development of carbon capture and storage (CCS) or

carbon capture and utilisation (CCU) technologies for power stations, steel mills, and cement

factories.

At national levels, action roadmaps formulate the climate targets of each EU Member State. For

instance, the 2015 French National Low-Carbon Strategy aims at reducing GHG emissions by 40% in
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2030 and by 75% in 2050 compared to 1990 levels (MTES, 2017). The strategic implementations

focus the climate targets on the Circular Economy and Decarbonisation concepts of the energy mix

share (electricity and heat), as well as use of renewable energy, clean technologies, and biomass-based

materials.

At sectoral level, the French Transition for Green Growth Act, for instance, further formulates targets

for the transport sector being the principal contributor, accounting for one third of the national net

GHG balance. Potentials for offsetting national GHG emissions by 15 to 20% have been recognised

for the forest-timber-biomass sector due to carbon sequestration in forestry, substitution and carbon

storage in wood materials, as well as energy recovery from wood-to-waste initiatives (MTES, 2015).

A large number of mitigation initiatives have been launched within the EU to meet the climate targets.

Particularly, in the bioenergy context, the EU Industrial Bioenergy Initiative (EIBI, 2019), as well as

certification schemes of bioenergy/biofuels, introduced the consideration of sustainability criteria

(food security, protection of biodiversity and ecosystems, minimisation of land use and land use

change impacts), further promoting (i.e. double crediting) advanced biofuels (Scarlat et al., 2015).

Advanced biofuels are increasingly recognised substitutes for fossil fuels, encompassing alternative

energy carriers based on dedicated and residual lignocellulosic biomass (e.g. forest wood, short

rotation coppice, maize stover, wheat straw, perennial grasses) to displace fossil fuels, reduce land use

and food competition with first generation energy crops (Harvey and Pilgrim, 2011; Rathmann et al.,

2010; Wise et al., 2009).

Fig. 2-5 shows the biomass use (solid, gaseous and liquid forms) in the electricity, heating and cooling

and transport energy share in the European Union, further projected to rise in the year 2020.

Fig. 2-5. Final EU biomass use in electricity, heating and cooling and transport, with achieved values in 2005-

2012 and projections in 2020. Source: Adapted from Scarlat et al., (2015)
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Moreover, the “4 per 1000” initiative was proposed in the 21st Conference of the Parties (COP21,,

which led to the 2015 Paris Agreement), aiming at increasing carbon stocks in the agricultural and

forestry soils, annually by 0.4% (CGIAR, 2018; INRA, 2019; Minasny et al., 2017). The initiative has

increasingly gained attention in the last few years.

Further research is needed to estimate the carbon sequestration and storage potentials in the

vegetation/crops and in soils. Biomass carbon models and valuing options associated with bioenergy

in the EU are currently being reviewed, given the increasing concern that carbon neutrality is an

incorrect hypothesis for bioenergy systems (Agostini et al., 2014).

The modelling framework used in policy and science to assess the effects from human activities on

Earth climate system is based on the cause-effects approach, further detailed in the next section.

2.2.4 Climate change policy framework

Climate scientist compare the change in atmospheric concentration due to external forcing compounds

(e.g. GHG) with historical observations prior to the industrial era (backward-looking approach), or by

conducting future scenarios on potential changes (forward-looking approach), to better understand

climate change and anthropogenic drivers (Myhre et al., 2013a).

The Intergovernmental Panel on Climate Change (IPCC), created in 1988, serves as a scientific

reference by providing information on climate change and related environmental and socio-economic

impacts, as well as formulating response strategies (IPCC, 2018). The IPCC Working Group I

publishes periodically (every five to six years) the Assessment Reports (AR) containing updated

information on the Earth climate system changes.

Several metrics and climate parameters were developed to quantify GHG contributions to climate

change based on modelling frameworks along the cause-effect chain or so called impact

environmental mechanisms– involving physical processes of the forcing-responses.

The cause-effect chain, as illustrated in Fig. 2-6, refers to: GHG emissions (or removals) lead to

changes in the atmospheric concentration, which has a radiative forcing effect due to larger absorption

capabilities of infrared radiation. This radiative forcing causes atmospheric temperature rise (or

eventually temperature cooling by negative forcing compounds), affecting the terrestrial surface and

water compartments (melting of land ice and permafrost, sea-level rise, changes in precipitation

patterns, extreme weather events) leading to flooding, droughts, diseases, malnutrition effects, and

ultimately damaging the areas of protection (loss of human life and ecosystem species (see Box

2-1)). Droughts alone cause 83% of climate change-induced agricultural losses (FAO, 2018a).
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Fig. 2-6: The cause–effect chain from GHG emissions to climate change, impacts and damages. Source: (Myhre

et al., 2013a) adapted from Fuglestvedt et al. (2003)

The consequences of radiative forcing, in particular temperature rise, are natural responses of the

climate system in order to reach a new radiative equilibrium (Myhre et al., 2013a). The adjustment

response at the stratospheric level is much faster (extended to a few months), whereas at the

tropospheric-surface level the thermal transfer capacity of the ocean pool has a long response time

(Baede et al., 2001) .

Policy relevancy and mitigation strategies increase further downwards the chain (Fig. 2-6) by linking

emissions to societal and ecosystem impacts and finally to economic damage (e.g. welfare loss)

(Fuglestvedt et al., 2003; Shine et al., 2005).

Quantifying these effects and damages, however, increase the uncertainty, as a higher number of

assumptions and models are used. Some uncertainties relate, for instance, with background conditions

of atmospheric concentrations held constant, indirect effects from chemical processes (e.g. ozone),

quantification of carbon-cycle dynamics, radiative efficiencies and lifetimes of forcing compounds, as

well as response timescales on temperature change (Plattner et al., 2009).

Yet, the external forcing compounds are not the only elements causing changes in the net radiative

equilibrium, as different processes and interactions among the system components of the global carbon

cycle are dynamic and complex. It means that there is no simple proportional relationship between the

cause and effect of these non-linear processes (IPCC 2013, Glossary, Annex III).
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The two main radiative forcing metrics, namely the Global Warming Potential (GWP) and Global

Temperature change Potential (GTP), whose values are reported and updated periodically by the

IPCC, are introduced in the next section. The latter was recently included in the Assessment Report 5

of the IPCC (referred to as IPCC AR5) (Myhre et al., 2013a), although it was long discussed among

climate scientists (Shine et al., 2005).

2.2.5 IPCC climate metrics used in policy and tools

This section will introduce and compare the Global Warming Potential (GWP) and the Global

Temperature change Potential (GTP) metrics.

Global warming potential (GWP) metric

The GWP metric relies on the radiative forcing (RF) concept, which expresses the perturbation on the

Earth energy balance due to external changes (see section 2.2.1). The GWP equivalency factors are the

integrals of the GHG effect on radiative forcing over the Time Horizons (TH) 20 and 100 years,

whereas 100-year TH is the most common one. The emission factors over the 500-year TH have been

removed in the IPCC AR5 due to the weight of integrated uncertainties for long-integration periods.

Box 2-1. Areas of protection

The terminology “Areas of Protection (AoP)” is used in Life Cycle Assessment (introduced in the section 2.3).

AoP are safeguard subjects of the cause–effect chain/impact pathways, defined as: human health, ecosystem

quality/natural environment and biotic/natural resources and ecosystem services (Rosenbaum et al., 2018).

Impacts on AoP are quantified through damage indicators, also referred to as endpoint indicators. Fig. 2-7 shows

how the elementary flows from the GHG inventories are linked in a sequence of environmental mechanisms

from midpoint to enpoints indicators (loss of hunam life and ecosystem damage due to climate change).

Fig. 2-7. Simplified impact pathways for climate change linking elementary flows for the inventory to the areas

of protection. Source: (Hauschild and Huijbregts 2015, p. 9)
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The TH has been defined as “the length of time over which impacts of climate forcers are integrated

for cumulative metrics, or the number of years into the future at which an instantaneous metric is

evaluated” (Levasseur et al., 2016).

The GWP metric (Eq. 2-1), is given by the absolute global warming potential (aGWP) of an

atmospheric gas of interest (i) relative to the aGWP of the CO2 reference gas. The relative difference

allows expressing all assessed atmospheric GHG emission in a common unit [i.e. in kg CO2-eqꞏkg 1]

(IPCC, 1990; Joos et al., 2013):

Eq. 2-1

The aGWPi of non-CO2 emissions (Eq. 2-2) is the time-integrated RF of a pulse emission of this

compound over a fixed TH. The RF is a function of the radiative efficiency (ai) in watts per square

meter and per ppm or ppb of concentration [W m 2 ppm-1 or W m 2 ppb-1] and the atmospheric first-

order decay function Ci(t) per unit increase of the atmospheric concentration of compound i:

Eq. 2-2

The aGWPCO2 (Eq. 2-3) of the reference CO2 gas is a sum of the same analytical forms (Forster et al.,

2007), with a radiative efficiency aCO2 (Eq. 2-4) of 1.37 x 10-5 Wꞏm-2ꞏppb-1 (Myhre et al., 2013b), and

atmospheric decay of CO2 following a pulse emission by means of the impulse response function

IRFCO2 (Eq. 2-5) (Joos and Bruno, 1996).

The IRFCO2 (Eq. 2-5) predicts the decay of CO2 in the atmosphere as a non-zero asymptote (i.e. the

integral goes from zero to infinity), determining the evolution of the atmospheric abundance, whereas

an initial CO2 fraction remains always in the atmosphere. The function defines the re-distribution of

the atmospheric CO2 given by the equilibrium mechanisms of the global carbon cycle (Archer et al.,

1997), which is based on the global Bern carbon cycle model, the pulse magnitude and the

atmospheric CO2 background concentration.

Eq. 2-3

Eq. 2-4

Eq. 2-5
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where in aCO2 the numerator (CO2*) represents the atmospheric CO2 concentration after a small

perturbation of 1ppm and the denominator (CO2) the background CO2 concentration (compared to the

remaining atmospheric CO2 fraction of the pre-industrial era) estimated in the year 2011 at 430 ppm

(±340 to 520 ppm uncertainty range); in the IRFCO2 the amplitude a0 (asymptotic airborne fraction)

describes the fraction of CO2 remaining in the atmosphere and the other amplitudes ax the relative

capacity of the other carbon sinks (Joos et al., 2013), with coefficient ax [unitless]: a0 = 0.2173; a1 =

0.2240; a2 = 0.2824; a3 = 0.276, and respective time constants x 1 = 394.4; 2 = 36.54; 3 =

4.304.

Global Temperature change Potential (GTP) metric

More recently, a temperature-based metric, the Global Temperature change Potential (GTP), has

gained recognition as a metric further down the cause-effect chain (Allen et al., 2016; Cherubini et al.,

2016; Shine et al., 2005). The GTP metric was included in the IPCC AR5 (Myhre et al., 2013a),

providing equivalency factors for the THs 20, 50 and 100 years.

The GTP is to some extend based on the RF concept due to the response of the climate system to

temperature change (Shine et al., 2005). The analytical formulation (Eq. 2-6, Eq. 2-7 and Eq. 2-8) is

similar to that of the GWP metric, in which the absolute global mean temperature change aGTPi of a

gas of interest (i) is relative to the absolute global mean temperature change aGTPCO2 of a reference

gas (CO2), to express all assessed GHG emissions in a common unit [kg CO2-eqꞏkg 1].

Eq. 2-6

Eq. 2-7

Eq. 2-8

where RT is the climate response to a pulse emission, described by the sum of exponentials, Cj the

components of the climate sensitivity and dj the response time, with the coefficients Cj [in W m-2]: C1 =

0.631, C2 = 0.429, and response time dj [in years]: d1 = 8.4 and d2 = 409.5.

Comparison of IPCC metrics

Table 2.1 compares atmospheric lifetimes of the three main GHGs (CO2, CH4 and N2O) and both

GWP and GTP factors over their respective THs. A complete list of the lifetimes and equivalency

factors of different GHGs are published in the IPCC (2013), AR5, Chapter 2.
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Table 2.1: Atmospheric lifetime, GWP and GTP factors of three main climate forcers

GHGs lifetime GWP GTP

20 years 100 years 20 years 50 years 100 years

CO2 * 1 1 1 1 1

CH4, non-fossil 12.4 84 28 67 14 4

N2O 114 264 265 277 282 234

* CO2 response function is based on a series of coefficients and time scales (see Eq. 2-5) from
carbon cycle feedbacks of the Bern carbon model and updated background concentration.
Source: (Myhre et al. 2013b, IPCC AR5, Chapter 8)

The main difference between GWP and GTP is that the former represents the cumulative impact of

the time-integrated RF over a fixed TH, and the later the instantaneous difference in mean

temperature change at a specific year (future reference point in time); both in response to a pulse

emission relative to that of the CO2 gas.

The cumulative GWP metric considers short-lived gases over the entire TH, as an integral sum of all

instantaneous values. This metric is referred to as having the capacity to “remember short-lived gases”

(Levasseur et al., 2016). Consequently, all radiative forcing effects occurring after the TH have zero

weight. On the other hand, the GTP represents the instantaneous effects with “no memory capacity of

short-lived gases” (Fuglestvedt et al., 2010; Myhre et al., 2013a). The GTP approach is constrained to

only one specific year, the warming for previous and subsequent years have a zero weight (Tol et al.,

2012).

In such context, the GTP provides a better time-relation between the emission pulse and the mean

temperature change of the Earth climate system (physical relevance of the climate system response

and climate sensitivity). According to Shine et al. (2005, 2007) the GTP metric may be used to

develop future climate scenarios with regard to the remaining time before overstepping the climate

tipping points.

Sophisticated environmental assessment frameworks, such as the Life Cycle Assessment (LCA) and

related software tools (e.g. SimaPro or Gabi) use the GWP emission factors to quantify the potential

climate change impacts or carbon footprints from products and services. However, only a few LCA

studies have applied the GTP metric (Cherubini et al., 2013; Ericsson et al., 2013; Giuntoli et al.,

2015; Porsö et al., 2018)

2.3 Life cycle assessment: concept and framework

The LCA methodology has continuously evolved and gained increasing recognition over the last two

decades as a framework for analysing the potential environmental impacts of products (here referred to

goods and services), initially focusing on the industry sector and further also involving the
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principles, taking into account processes outside the company’s boundaries (Jolliet et al., 2005;

UNEP/SETAC, 2005). LCM is a flexible and integrated framework that systematically implements the

LCT at the management level, comparable with the concepts of continuous improvement: Quality

Management System (ISO 9000 family) and Environmental Management (ISO 14000) in the frame of

the Plan-Do-Check-Act approach.

At the EU level, the Product Environmental Footprint Category Rules (PEFCRs) and

Organisation Environmental Footprint Sector Rules (OEFSRs) are ongoing initiatives of the

European Commission (EC) and the Joint Research Centre (JRC) (EC, 2018b), consisting of a

selection of methods for estimating environmental impacts under the LCA framework, towards a

homogenisation of the life cycle impact assessment in Europe. The initiative aims at enhancing

international cooperation and coordination concerning development of methods and data accessibility

of different life cycle approaches. A number of pilot projects under PEFCR are being carried out by

several private companies and research institutions for polishing and refining PEFCR Guidelines. It

represent one of various EU initiatives aimed to further standardise and homogenise LCA in Europe

(EC-JRC, 2013; EC, 2015).

Ongoing LCA framework developments include life cycle costing (LCC) and social LCA (sLCA),

which have emerged since the 1980s and 1990s, respectively. An upcoming assessment method

towards the three dimensions of sustainability is the life cycle sustainability assessment (LCSA = LCA

+ LCC + sLCA), is still facing implementation challenges (Klöpffer, 2003; Sala et al., 2012a; Wood

and Hertwich, 2012; Zamagni et al., 2013).

2.3.2 The standardised framework

The standardised LCA framework by the International Organisation for Standardisation (ISO, 2006a,

2006b), ISO 14040/44, enhances the credibility and supports a consistent application of the LCA

methodology. The framework encompasses four phases, as illustrated in Fig. 2-9 and subsequently

explained.
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Fig. 2-9: LCA stages and direct applications. Source: (ISO, 2006a)

Goal and
scope
definition:

Phase 1, requires a detailed description of the product system, defining the purpose of

the study (e.g. individual or comparative assessment, public or private/internal use,

attributional or consequential perspectives (see 2.3.3), the technical specification of

the studied system and the product alternatives (system boundaries, reference flow

and functional unit), and specifies several decisions on the practical implementation

of the LCA, for instance, concerning the collection of primary or secondary data, data

assumptions and limitations, the use of accounting approaches/models (referring to

phase 2) as well as the selection of the impact categories, metrics/indicators or

characterization models (referring to phase 3).

Life Cycle
Inventory
(LCI):

Phase 2, initiates the inventory development of substance masses of the predefined

product system and processes by an extended data collection on energy and resource

inputs (e.g. water, raw materials) as well as waste/emissions (to air, water and soil

compartments) outputs. The mass flows are usually illustrated in a flow chart,

visualising the system boundaries of the study and supply chain activities, including

allocation specifications of multifunctional unit processes.
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Life cycle
Impact
Assessment
(LCIA):

Phase 3, assigns all aggregated inventory results to one or several impact categories

and translates them into potential impacts and/or damages per functional unit

(characterisation). This step involves classifying all substances from different

processes, according to the impact categories to which they contribute, adding up and

multiplying them by the corresponding characterisation factors (CFs). The

characterisation profile represents the environmental performances of the product.

Grouping, weighting or normalisation of the impacts can be included optionally.

Interpretation: Phase 4, summarises and evaluates the results by referring to the goal and scope, LCI

and LCIA phases. Conclusions and recommendations for decision-makers can be

formulated, for instance, in policy development, labelling of products, etc.

Various LCIA methods are available, such as the ReCiPe method (Huijbregts et al., 2016), referring to

midpoint (potential impacts) and endpoint (damages to the three AoP) indicators along the impact

pathway (see example in Box 2-1). ReCiPe 2016 is an LCIA method deriving from two of the most

widely used methods in LCA: Ecoindicator99 (Goedkoop and Spriemsma, 2001) and CML (Guinée et

al., 2001). Other LCIA methods include, for instance, the Japanese LIME, IMPACT World+, LC-

IMPACT or IMPACT 2002+, thoroughly described in Rosenbaum et al. (2018).

Although the LCA methodology addresses several impact indicators, this dissertation refers only to the

climate change impact category, similar to carbon footprinting concerning the life cycle perspective (

Fig. 2-10).

Fig. 2-10. Difference in scope and completeness between LCA and carbon footprint, yet both applying the life

cycle perspective. Source: (Rosenbaum et al. 2018, Chapter 10)

LCA results provide useful information on a product's environmental performance/profiles enabling

comparisons to alternative products by means of the functional unit (Klöpffer, 2008). The holistic

assessment of each life cycle step enables identifying hotspots and thus avoids problem shifting along

the supply chains . Hotspot identification can lead, for instance, to redesigning

products and processes (e.g. eco-design) in a manufacturing unit to improve the environmental
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performance of a product (Rebitzer et al., 2004). However, the LCA methodology also faces

drawbacks and limitations, described in section 2.3.4.

2.3.3 Main modelling approaches

There are two main analytical modelling approaches in LCA: attributional and consequential,

defined as follows:

Attributional LCA (ALCA) is an approach, assessing the potential environmental impacts,

directly related with process and resource (material and energy) flows of a product’s life cycle,

using mostly averaged data (Brander et al., 2009), without the considering any market changes

or other indirect effects. The assessment intents to respond to the question “‘how are things

(pollutants, resources, and exchanges among processes) flowing within the chosen temporal

window?” (Curran et al., 2005) or more precisely “what are the potential environmental life

cycle impacts of a product system (e.g. 1kW of electricity at grid in France in 2006)?”

(Frischknecht and Stucki, 2010).

Consequential LCA (CLCA) is a forward-looking approach, expanding the system boundary

by including casual economic market effects, which alter the relative demand of a product

(e.g. price increase, transformation in land use) or casual environmental effects (e.g. emissions

increase) to assess the consequences/ effects of a change or how a flow changes in response to

a (policy) decision (Brander et al., 2009; UNEP, 2011; Weidema et al., 2018; Zamagni et al.,

2012). CLCA responds to the question “what are the consequences of an increased demand of

a product system in a specific country (e.g. increased demand of rapeseed in the bioenergy

system due to the EU strategy on biofuel)?” (Schmidt, 2010). In other words, CLCA is

flows that a given life cycle may have on other life cycles, be it downstream or upstream ones

(Vázquez-Rowe et al., 2014).

Long-standing debates have been conducted in the LCA community about whether to use attributional

or consequential approaches, particularly in specific contexts, such as biomass supply chains of

bioenergy systems and land transformation (Brandão et al., 2014; Guinée et al., 2018). The main

differences between the two approaches are shortlisted in Table 2.2.

Table 2.2. Main differences between attributional and consequential LCA

ALCA CLCA

Goal and scope Assessment of goods and services Assessment of a change (buying decision, policy

implementation)

Technical system Energy and material flows physically

linked to the product system

Energy and material flows affected by marginal

changes
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Dealing with

multifunctionality

Mass, energy or economic allocation System expansion

Data

requirements

Mean data Marginal data (Site-, process-, product-specific)

Indirect effects Not considered Considered (e.g. indirect land use change due to

additional use for biofuel production)

Economic effects Not considered Considered

Uncertainty

sources

From empirical data (production, use

and disposal)

From empirical data and assumptions regarding

the development of market and society

Source: adapted from Brander et al. (2009); Schweinle et al. (2015)

There is a growing body of literature on the consequential approach, including many applications to

the energy, transportation and agricultural sectors (Frischknecht et al., 2016). In these sectors, a key

indicator is land use change: if a certain amount of land occupation currently devoted to one activity

(e.g. food crops) is converted to another activity (e.g. energy crops), the overall demand/supply would

be affected in such a way that a) the biofuels would displace an equivalent amount of fossil fuels,

while b) another food crop system would have to increase its production (by enhanced

productivity/intensification) or an additional land use is required to compensate (elsewhere) for the

reduction in food crop production (see also Box 2-11).

Many modelling aspects are taken into consideration in CLCA, such as the magnitude of the change

(Ekvall et al., 2016), indirect effects (Schmidt et al., 2015), and the handling of co-products

(Weidema, 2000; Weidema and Schmidt, 2010). Regarding the latter, CLCA is characterised by never

applying allocation, but always system expansion (often with substitution). Under system expansion, a

multi-functional system is treated as a whole, without allocating the overall impacts among the co-

products. If substitution is applied to isolate the impacts of a single co-product, the impacts of an

alternative system providing the co-products are subtracted from the un-allocated system of interest,

leaving the impacts corresponding to the single co-product of interest (Fig. 2-11).
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Fig. 2-11. Management of multi-functionality: a) allocation vs. b) system expansion

In recent years, other approaches beyond the well-known ALCA and CLCA have emerged,

independently from the ISO standard and guidelines, which have been listed, compared, discussed and

classified by Guinée et al., (2018) as “LCA modes” and “X-LCA modes”.

The authors identified that attributional, consequential and decision LCA focus on existing products

on the market, while anticipatory, prospective and scenario-based LCA focus more on emerging

products and novel technologies (not yet commercialised).

Moreover, all LCA modes, except attributional, envision future/forward-looking systems, involving

possible consequences of changes. The allocation method used is variable for all, but for decision and

consequential LCA is always system expansion with substitution.

The authors concluded that rather than focusing on the differences of the modes and models, it might

be more appropriate to recognise the “multi-model multi-paradigm approach” of LCA studies,

which require to explicitly stating the questions and objectives addressed, to justify the use of multi-

models.

Table 2.3 provides an overview of these LCA modes and the questions addressed by each.
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2.3.4 General limitations

The LCA methodology is considered as rather mature thanks to a continuous development and

refining process over more than three decades (Guinée et al., 2011). Nonetheless, it still features a

number of technical problems, data gaps and choice elements, thoroughly discussed in (Reap et al.,

2008a, 2008b). Solutions and strategies to overcome some of these issues have been proposed during

the last ten years, but certain challenges remain, as shortly introduced in this section:

The functional unit definition does not fully reflect the studied product system and all its

functions. Often, only the primary function of the product is included and both temporal and

quality constraints are excluded (Bellon-Maurel et al., 2013; Tyszler et al., 2014).

The ISO allocation hierarchy poses fundamental theoretical and practical implementation

problems, and thus the choice of an allocation approach among co-products is one of the most

difficult and often controversial methodological aspects of LCA, because it may dramatically

alter the results (Ardente and Cellura, 2012; Ekvall and Finnveden, 2001; Pelletier et al., 2015;

Schrijvers et al., 2016; Weidema, 2000).

Lacking consideration of dynamic features at temporal and spatial scales and of local

environmental uniqueness (Jeswani et al., 2010). The information when and where the

emissions and pollutants occur on the “temporospatial landscape” (Jolliet et al., 2015) still

faces challenges in modelling complex realities linked to wide ranging uncertainties.

Adaptability to scales beyond the production systems, such as regional/territorial or

institutional is still work in progress, but several solutions have been proposed for both

regional and spatialised LCA (Avadí et al., 2017; Loiseau et al., 2012; Morais et al., 2016;

Mutel and Hellweg, 2009; Nitschelm et al., 2016; Sala et al., 2012b).

Data gaps, uncertainty and bias regarding aspects such as toxicity (Rosenbaum et al., 2008)

and normalisation (Sleeswijk et al., 2008). Pedigree indicators for the data used in LCIs are

commonly used (e.g. by ecoinvent), and further pedigree-related data protocols have been

suggested for primary, secondary and background data management (Henriksson et al., 2013).

Data uncertainty in particular is a great issue in LCA, and a number of approached have been

developed to address it, propagate it and communicate it (Ciroth et al., 2013; Heijungs and

Huijbregts, 2004; Imbeault-Tétreault et al., 2013; Niero et al., 2015; Smith Cooper and Kahn,

2012).

Other aspects, including the customary exclusion of capital goods without proper analysis

(Frischknecht et al., 2007), the implications for application in business (Baitz et al., 2013), and

LCA’s use and usability in international supply chains (Freidberg, 2013).

From the above list of shortcomings, this dissertation is concerned with the temporal limitations in

LCA. While increasingly more studies have addressed spatial limitations, less research has been

conducted regarding the temporal dynamics (Collet et al., 2014).
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Section 2.4 outlines in more detail the lack of consideration of the time dimension in LCA, and the

wide-ranging practical implementation challenges of temporal considerations in LCA methodology.

2.4 Life cycle assessment: temporal limitations

2.4.1 Static/linear computational structure of LCA

The computational structure of LCA (Box 2-2) is a simplified linear approximation of the

environmental effects. It refers to the mathematical foundation of the LCA method by Heijungs and

Suh (2002) describing a process matrix in a linear space in which all flows —both economic and

elementary flows— are multiplied, transposed and inversed. The matrix represents the production

system as input and output flows, which scales the impacts to a reference flow, subsequently

multiplied by respective characterisation factors.

Consequently, the temporal information a specific emission takes place (e.g. calendar year, sequence,

range of time steps) is lost (Hellweg and Frischknecht, 2004; Levasseur et al., 2010a). For this reason,

it is commonly stated that the environmental performance of a product results in a “snapshot in time”

(Bright et al., 2012; Finkbeiner et al., 2013; Heijungs and Suh, 2002; Klöpffer, 2014; Levasseur et al.,

2016; Owens, 1997a; Vigon et al., 1993). All flows outside the studied system are held constant.

In the real world, however, the actual effects from product systems are not linear as they might have

different time implications and are often a function of the cumulative background concentrations

(Finnveden et al., 2009; Hauschild, 2005).

Box 2-2. Computational structure of life cycle assessment

The process matrix (P) (Eq. 2-9) is partitioned in the technology matrix (A) and intervention matrix (B),

representing both the economic/technology (exchanging between unit processes) and the

elementary/environmental (exchanging with the environment) flows respectively:

Eq. 2-9

The scaling factor is the inverse of the technology matrix (A-1), representing the exchanges between unit

processes and the final demand vector (f) of the reference flow (Eq. 2-10):

Eq. 2-10

The inventory vector (g) is given by a scaled intervention matrix (B) (Eq. 2-11). The sum of the economic

flows is restricted to a mass load aggregation of all unit processes per reference flow. The aggregation ignores

the temporal variability of flows.

Eq. 2-11

Impact vector is given by multiplying the inventory vector with a characterisation matrix to translate

and impact score in a common unit (Eq. 2-12). The impacts are assumed to be linearly proportional to the

aggregated emissions.

Eq. 2-12
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2.4.2 Background system modelling and datasets featuring linear coefficients

Generic data sets (e.g. ecoinvent database) provide data for modelling background systems (e.g.

primary materials, processing machinery, harvesting equipment, infrastructure), and intermediary

flows (e.g. raw material extraction, electricity-mix, fuel supply). The unit processes are modelled with

constant coefficients describing linear technology models. Yet, technology applications for similar

processes along the value chains are not always equivalent, due to large variability in technological

performance and evolution (Jolliet et al., 2015).

Moreover, according to Heijungs and Suh (2002a), it is required to specifying product processes at the

time they are “active”. Active time relates, for instance, to waiting times in manufacturing (e.g.

between the production of product components and its assembly) or to temporal variability in the

energy sector (e.g. changes in the electricity mix), technological performance and innovation (e.g.

conversion efficiencies) as well as associated with atmospheric characteristics (e.g. temperature

change due to climate change and its effects).

Pinsonnault and colleagues (2014) added temporal information to background and intermediate unit

processes of almost one fourth of the ecoinvent v2.2 database and tested the method Enhanced

Structure Path A (Beloin-Saint-Pierre et al., 2014)

temporally differentiate the inventory flows in accordance to the time-dependent climate change

impact category. The test has demonstrated that time sensitive unit processes were associated with

wood and biofuels. Other impact categories have not been tested, requiring further research.

2.4.3 Static modelling of elementary flows in LCI

Substances can generate different impacts and damages at different points in time. It means that

impacts can vary significantly over time due to complex environmental mechanisms and

biogeochemical processes, depending on different parameters, such as, the lifetime of substances, the

adaptability or resilience of ecosystems to cope and recover from environmental pressures (Lenzen et

al., 2006).

Adding temporal information to foreground data requires supplementary data to describe and define

the time dependency, sensitivity and relevancy of elementary flows of unit and/or system processes.

Collet et al. (2014) previously proposed a method for selecting the time steps, within the whole

process network, and defining time-sensitive flows, for which dynamics need to be considered, while

others can be approximated by steady-state representations.

Time steps for dynamic modelling can be drawn from inherent time scales of impact categories

(Collet, 2012; Owens, 1997b); i.e. defining the temporal frequency of emissions (e.g. with daily,

monthly or yearly time constraints). LCA methods encompass different impact categories, with
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potentially different temporal implications in the modelling, as shown in Fig. 2-12. This dissertation is

concerned solely with the climate change category, for which modelling time steps are recommended

at annual frequencies (Collet et al., 2014; Levasseur et al., 2010a).

Fig. 2-12. Dynamic time steps of elementary flows inherent to the climate change impact category. Source:

adapted from Collet et al. (2014)

Temporal modelling frequencies can also be differentiated, for instance, as “episodic (e.g. once only,

land clearing), cyclical (e.g. seasonal water use), stochastic with a certain recurrence interval (e.g. 1 in

20 year waste discharge), or continual” (Lenzen et al. 2006 p.248). Cyclical or seasonal variations and

changes, concerning sunlight, temperature and precipitation on the calendar year (e.g. winter vs

summer time), might be relevant, for instance, for the impact categories, aquatic eutrophication (Udo

de Haes et al., 2002), water scarcity (Boulay et al., 2015), human toxicity (Manneh et al., 2012) and

photochemical oxidant formation (Shah and Ries, 2009).

Moreover, Liao et al. (2015) found that the common seeding-to-harvest assessment period in

agricultural LCA does not correspond to the actual dynamics of fertilising substances, some of which

contribute to eutrophication during the next crop in the rotation.

2.4.4 Time horizon choice in LCIA

Generally, the characterisation of impacts requires an analytical time horizon (TH) for the impact

characterisation: either fixed-finite (with temporal cut-offs) or infinite (steady-state representation).
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To date, the choice of a TH remains a wide topic of discussion within the LCA community (Reap et

al., 2008c).

The fixed 100-year TH is the most used and recommended in practice for the climate change impact

category, but also applied to stratospheric ozone depletion, ionizing radiation and toxicity impact

categories, based on the ReCiPe method (Huijbregts et al., 2016). The selection of 100 years is a non-

scientific time preference (Reap et al., 2008c; Shine, 2009; Vogtländer et al., 2014), implicitly

subjective by and for decision/policy making (Brandão and Levasseur, 2010; Fearnside, 2002),

referred to the “middle way” (Shine et al., 2005) between the 20 and 500 years.

Dyckhoff and Kasah (2014) recommended a time dominance criteria approach from decision theory in

the context of dynamic LCA to reduce the decision problem on a particular value. The setting of an

infinite TH does not solve the temporal issue, as valuable temporal information is lost and in the

specific case of biogenic carbon or mitigation projects, carbon sequestration is regarded as a static

approach over an infinite TH (Levasseur et al., 2012c).

For this reason, other authors consider choosing a TH as unavoidable (Fearnside, 2002). However, the

assessment with a fixed TH does not prevent from assigning the same impact characterisation to all

emissions, disregarding the dynamic features of substances and the consequences beyond the selected

TH.

The principal aspects challenging the fixed TH are:

Inconsistency within temporal boundaries: LCI elementary flows (e.g. emissions) can occur at

different points in time, potentially creating an inconsistency between the timeframe of the

studied product system and the timeframe covered by the impact characterisation (Benoist,

2009). Actual emission releases mostly do not correspond to the chosen TH, as highlighted

and demonstrated by several authors (Brandão et al., 2019; Cherubini et al., 2016; Jørgensen

and Hauschild, 2013; Kendall et al., 2009; Levasseur et al., 2016, 2010a; O’Hare M. et al.,

2009).

Different THs generate different metric values: the homogenous time-integration of

substances with high temporal variations in the characterisation (i.e. linked to the lifetime or

fate) may bias the results. For instance, climate forcers have different atmospheric lifetimes

(residence time) which can cause important variations in characterisation factors. As an

example, the atmospheric lifetime of CH4 is 12.4 years with characterisation factors [kg CO2-

eq] of 84 for TH 20 years and 28 for TH 100 years (Myhre et al., 2013a) (see section 2.2.5).

The climate effect measured through the GWP declines with growing TH, as the denominator

is the long-lived CO2 reference gas. It means that by rising integrals the RF of long-lived

climate forcers have higher weight than short-lived ones (Cherubini et al., 2016). The shorter
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the TH, the higher is the impact of short-lived gases (Levasseur et al., 2010a). Consequently,

the weight of climate forcers with very short atmospheric residence time decreases with

increasing TH, and vice versa (Levasseur et al., 2016; O’Hare M. et al., 2009). For toxic

substances, Huijbregts et al. (2001) demonstrated that the selection of a fixed TH for assessing

metal toxicity potentials results in changes with up to 6.5 orders of magnitude. The high

dependency on the TH is given due to long residence times in the fate models, in which the

impact increases over time due to metal run-offs and leaching potentials into other aquatic and

soil compartments.

Temporal cut-offs beyond the TH: Implications from substances occurring outside the fixed

TH, particularly concerning long-lived products or long-term emissions, are ignored (Hellweg

and Frischknecht, 2004). Therefore impacts further shifting into the future (e.g. due to

physical storage) are not coherently assessed with the GWP metric.

To reduce inconsistencies with the fixed TH, different approaches have been developed and proposed.

For the characterisation of climate change, TH dependent metrics were created based on time-adjusted

warming potential factors for various THs and GHG emissions (Kendall, 2012) and time correction

factors for amortised CO2 emissions and fixed THs (Kendall and Price, 2012) (further detailed in

section 2.5).

O’Hare and colleagues (2009) defined a conceptual framework to reflect the importance of early

emissions and cumulative warming from substitutes of biofuels. For the characterisation of

acidification at endpoint level, Van Zelm et al. (2007) proposed the computation of characterisation

with various THs.

2.4.5 Temporal boundaries: time preferences

Defining the temporal boundaries of a study, related with the choice of TH, gives a value to time and

the accounting process (Levasseur et al., 2010a). Long-standing debates discuss about trade-off

between time preferences given to short or long term effects, also linked with the TH choice.

The ReCiPe method (Huijbregts et al., 2016) offers three cultural time perspectives (individualist,

hierarchist and egalitarian), each one associated with a different set of assumptions that include TH for

each impact category (Box 2-3). The hierarchist perspective, for instance, retains a 100-year-TH for

the climate change, stratospheric ozone depletion, ionizing radiation, and toxicity impact categories.

Box 2-3. Cultural perspectives in LCA

Cultural perspectives in LCA refer to different value laden choices about the temporal preferences inherent in

impact modelling (Hofstetter et al., 2000). The ReCiPe method (Huijbregts et al., 2016a) provides

characterisation factors for different cultural perspectives, introduced as follows:

Individualist: considers short-term/immediate effects, as the assumptions are optimistic about the
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stable natural environment and assume that environmental risks in the distant future can be tackled

through technological innovation.

Hierarchist: seeks scientific consensus between short- and long-term perspectives, and consideration

of default models, as it assumes that the natural environment is resilient to some extent.

Egalitarian: considers long-term effects based on the precautionary thinking and intergenerational

equity, assuming that the natural environment is fragile.

In terms of sustainable development and the climate change impact category, temporal cut-offs are

two-fold between short- (<100 years) and long-to-infinite- (>100 years) terms, as shown in Fig. 2-13.

Short-term perspectives are ethically questioned in terms of intergenerational equity (Hellweg et al.,

2003), and long-term perspectives might ignore the pressing issues, such as climate-tipping points, and

further shift the burden into the future.

Fig. 2-13: Short- to long-term time preferences by cultural perspectives associated with the climate change

For instance, displacing fossil fuel emissions poses significant challenges, when the future releases are

not accounted for. Disregarding long-term effects eventually does not allow crediting temporary

storage and emission delays (Brandão and Levasseur, 2010; Jørgensen et al., 2015). On the one hand,

it has been argued that delaying RF due to temporary carbon stocks reduces the cumulative impacts by

further postponing the impacts to “buy time” for technological innovation. Thus, valuing biogenic

flows in the context of carbon sequestration (e.g. in long-lived products) to offset fossil fuel

counterparts remains an important research gap.

Yet, offsetting concerns have been raised by Kirschbaum (2003) with regards to future emissions that

may occur at one point in time, for instance, due to instantaneous releases (e.g. combustions). Long-

term climate effects from temporary carbon offsetting of delayed emissions may be considerably

magnified at some point in the future. The long-term cumulative warming declines over a given TH

due to temporal carbon sequestration and storage, however the instantaneous short-term emissions are

eventually higher than before the carbon storage.
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Moreover, the economic concept of discounting (Box 2-4) has been discussed in the past for LCA

applications, to reduce time related value choices or trade-offs between the present cause and the

future effects (Hellweg et al., 2003). The authors argued that a finite/fixed TH is an implicit form of

discounting long-term impacts with a zero discounting rate. Yet, they concluded that discounting in

LCA should be applicable only when temporally differentiated data is available, for instance, under

consideration of new technology developments.

Yuan et al. (2015) developed a theoretical framework for temporal discounting to overcome overall

time implications (temporal homogeneity) due to inventory aggregations in the traditional LCA

approach and resulting uncertainties. The framework describes time relevancy in the life cycle phases

(as a step-by-step approach) for a temporal differentiation of emission profiles, which are than

discounted to a reference time. The approach is similar to the dynamic LCA framework, however the

link between the discounting and reference time is missing.

Box 2-4. Time-discounting preferences

The discounting concept is used, for instance, in the context of climate mitigation mechanisms, such as EU

carbon trading system and mitigation projects. The method adjusts a future event to a present value by a

discount rate (net present value) based on negative exponential decay (Fig. 2-14).

Fearnside (2002a) defined “the importance of time will be expressed in two decisions: time preference

weighting (for example by discounting) and choice of a time horizon”. The author argued that discount rate is

the most common means for time preference weighting of future events. Rising discount rates (and thus

shortening the TH) gives a higher value to time and thus to policy decisions, increasingly considered issue in

the context of climate change abatement efforts with temporary or immediate consequences (Fearnside et al.,

2000). For climate change impact assessment, it is particularly challenging due to long-term effects and global

scale. Given long-term TH, the investment in mitigation is less worth today.

Fig. 2-14. Discount rate equivalent to a time horizon. Source: Fearnside (2002a)
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2.4.6 Prospective time horizon and scenario-driven perspectives

Another form of temporal consideration is increasingly performed by means of scenario-driven case

studies, particularly regarding time series modelling. For instance, time has been taken into

consideration by means of scenario-bound CFs, in water use studies, where each scenario represents a

different prospective TH (Núñez et al., 2015).

In the specific context of market penetration or expansion of emerging bioenergy pathways, LCA has

been combined with prospective energy system models (e.g. partial-equilibrium/techno-economic

models) (see Box 2-5), such as the TIMES model framework, to forecast energy and process pathways

under the consideration of constraints (e.g. policy-driven objectives) (Levasseur et al., 2017; Menten

et al., 2015; Vázquez-Rowe et al., 2013).

Nonetheless, even when dynamic inventories are built, time is not properly considered, if the impact

assessment remains static.

Box 2-5. Energy system models (prospective scenarios)

Energy system models explore technology pathways and the cost of responding to climate targets. The

analytical fashion of energy system models are differentiated in three main groups, often relying on historic

data (Böhringer and Rutherford, 2008; Hall and Buckley, 2016; Hourcade and Robinson, 1996):

Top-down models or general equilibrium models, involve macro-economic metrics to analyse

economy-wide responses induced by policies. They are referring to pessimistic paradigm.

Bottom-up models or partial equilibrium models are technologically explicit at system level,

involving policy constraints, as well as costs and emissions implications. They are referring to

optimistic (engineering) paradigm.

Hybrid models combine both top-down and bottom-up models or blend features of both into a

single integrated model.

Bottom-up models are used to analyse national policies and decarbonisation pathway planning (Hall and

Buckley, 2016), many of them based on “perfect-foresight cost-optimizing models” evolving to highly

parametrised complex constructions (Trutnevyte, 2016). Commonly known optimistic models are, among

others, TIMES/TIAM (Loulou et al., 2016), OSEMoSYS (Howells et al., 2011), MESSAGE (Keppo and

Strubegger 2010(Trutnevyte, 2016)), LEAP (Heaps, 2016), and Temoa (Hunter et al., 2013). The approach

usually relies on linear programming with the objective of optimising the total costs of the analysed energy

system by exploring trade-offs among the standard and emerging technologies of all energy consuming

sectors (considered as a whole) (Li and Trutnevyte, 2017; Subramanian et al., 2018).

Recently studies (Cherubini et al., 2016; Levasseur et al., 2016) discussed the shortcomings in LCA

concerning climate change impact assessment by using a single GWP metric, for instance, in the

context of temporal and spatial variability of substances, climate mitigation and (emerging) bioenergy

systems. Methodological developments and proposed methods are further detailed in the next section.
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2.5 Methodological developments for climate change in life cycle impact

assessment

According to Myhre et al. (2013a, p. 669), “the actual impact on climate depends on both the temporal

and spatial structure of the forcing and the rate of response of various portions of the climate system”.

It means that climate response depends on time and spatial variations. The UNEP/SETAC (2016)

global guidance on impact indicators for LCA (pre-publication review), concluded that no metric is

available to inform on the dynamic climate effects, and thus proposed using complementary metrics

for different purposes.

A number of research initiatives have contributed to add both spatial and temporal dynamicity to LCA,

especially to the climate change impact category.

2.5.1 Spatial-dynamic oriented

Global climate models and methods, such as the GWP and GTP, account for well-mixed GHGs at

mostly at global scales, poorly considering short-lived substances (atmospheric residence time <1

year) or the spatial distribution, and thus ignoring most of local or site-specific climate effects

(Cherubini et al., 2016; Myhre et al., 2013b). The spatial distribution of emissions (i.e. how the forcing

compounds are geographically spread) is difficult to model and quantify due to different climate

response patterns. Near-term Climate Forcers (see section 2.2.1) have a close connection to the

hydrological cycle, affecting directly cloud properties and water vapour (Myhre et al., 2013a).

Some LCA studies for bioenergy systems have applied methods addressing Near-Term Climate

Forcers (e.g. Giuntoli et al. 2015; Giuntoli et al. 2016; Iordan et al. 2016) and more specifically

concerning surface albedo effects (changes in surface reflectivity) due to land cover changes (Bright et

al., 2012; Cherubini et al., 2012; Holtsmark, 2015). Bright et al. (2012) developed a GWP metric

integrating the albedo effects of forest biofuel systems in LCA.

2.5.2 Climate target oriented

It has also been discussed whether to include approaches relevant to specific climate policy targets

(Jørgensen et al., 2014; Kirschbaum, 2014). Target-dependent timeframes have the potential to

estimate emissions within the climate change policy frameworks to predict climatic thresholds

(temporal peaks) (Cherubini et al., 2016), as proposed by the following metrics:

Climate tipping point potential (CTP): aims at assessing the atmospheric capacity to receive

GHG emissions, defined by a target level (e.g. 450 ppm CO2-eq.), referred to as the climate

tipping point, which is the limiting factor to a global threat (Jørgensen et al., 2014, 2015;

Lenton et al., 2008). This metric was developed to make a link between the climate change

impact assessment and planetary boundaries concept towards climate policy targets
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(Rockström et al., 2009). Thus, CTP considers the timing of an emission occurrence relative to

the climate target (so called target time approach).

Climate-change impact potential (CCIP): proposed by Kirschbaum (2014), aims at supporting

climate targets and mitigation efforts allowing the comparison of the marginal GHG effects

over 100 years and the impacts from adding a unit pulse emission, based on the setting

atmospheric background conditions. Different climate impacts are addressed related with

temperature rise, rate of warming and the cumulative warming.

2.5.3 Biogenic carbon oriented

Benoist and Bessou (2018) provided an extensive review and an evaluation on methodological

developments in LCA, determining and linking land use and land use change (LULUC) and biogenic

carbon flows with climate change, as well as the implications on soil quality, including soil organic

carbon (SOC). This summary provides an overview of some of the methods analysed, with particular

emphasis on biogenic carbon.

The authors evaluated among the LULUC and climate change methods, the stock-difference and gain-

loss approaches in the IPCC Guidelines (IPCC, 2006a), as well as the methods by Müller-Wenk and

Brandão (2010), Benoist and Cornillier, (2016), and Schmidinger and Stehfest, (2012). A few major

groups were identified linking biogenic carbon with climate change, shown in (Fig. 2-15), and

described as follows:

1. IPCC metrics involving GWP and GTP (previously described in section, differentiated by

their static (S) and/or dynamic (D) modelling features 2.2.5),

2. Further developments based on the IPCC GWP metric considering the time dimension (e.g.

Time-adjusted GWP (Kendall et al., 2009), Dynamic LCA (Levasseur et al., 2010a)), as well

as specific to biogenic carbon (e.g. Lashof tonne-year method (Fearnside et al., 2000), GWPBio

(Cherubini et al., 2011a)), soil carbon sequestration (Petersen et al., 2013), and temporary C

storage and delayed emissions from the ILCD handbook (EC-JRC, 2010) and PAS 2050

standard (BSI, 2008)),

3. Other non-IPCC based developments, such as Biogenic Assessment Factors (BAF) (EPA,

2014) referring to biogenic stationary emissions, and

4. Carbon sequestration consideration at product level based on global mass balance of forest

systems, including land use change correction factors (Vogtländer et al., 2014).
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Fig. 2-15. Mapping static (S) and dynamic (D) methods, linking fossil and biogenic carbon, soil organic carbon

and climate change. Source: adapted from Benoist and Bessou (2018)

More recently Brandão et al. (2019) described 15 climate change assessment methods, in the specific

context of bioenergy systems, most of which are depicted in Fig. 2-15, including among others, Moura

Costa and Wilson (2000), Clift and Brandão (2008), and O’Hare et al. (2009).

In this dissertation, climate change oriented methodological LCA developments are grouped based on

their consideration of three key aspects: Cbio, SOC and land use (methods focusing on land use

change are excluded). Most methods are transversal across these three considerations (Fig. 2-16).

Some of these methods are discussed in the following sub-sections, regarding their usefulness for

modelling Cbio and SOC associated with land use in the context of climate change impacts from bio-

sourced materials and energy.
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emissions and crediting its storage over the time C is retained in the anthroposphere/technosphere. The

method is applied to fossil and biogenic sources, although the products may have different carbon

content ratios (Brandão and Levasseur, 2010).

The emission delay refers to Cbio temporally stored in products, thus the carbon is kept in the

technosphere. The CO2 benefit is linearly distributed by means of -1% C accounting per year up to 100

years, in the ILCD handbook implemented as “correction elementary flows”. The TH for accounting is

differentiated between short- -term (>100 years) time perspectives, whereas

long-term storage beyond one century is not accounted for, but reported separately. Thus, the approach

is restricted to 100-year cut-off period.

Tonne-year approaches (at project level): originally presented in the context of Land-use, Land use

change and Forestry (LULUCF) sector, to offsetting fossil fuel CO2 emissions for the number of years

the biogenic carbon is stored in vegetation/biomass. These metrics have also been discussed for the

application in LCA (at product level). The Moura-Costa (Moura Costa and Wilson, 2000) and Lashof

(Fearnside et al., 2000) approaches are based on cumulative radiative forcing effect (see section 2.2.2)

for 1 tonne of pulse CO2 integrated over 100 years. They assign a benefit per tonne of CO2 stored over

52-years, given by the area below the CO2 decay curve in the atmosphere over the residence time of

100 years (Brandão et al., 2019). For Moura-Costa and Wilson, the accounting year of the pulse

emission and the storage are equally set at year 0 (t0), while for the Lashof method the initial storage

starts 52 years (t52) after the pulse (t0). A longer storage period would compensate a pulse emission

greater than 1 t CO2 under the Moura-Costa approach, thus overestimating storage benefits (Brandão

and Levasseur, 2010; Levasseur et al., 2012b).

2.5.5 Biogenic and soil-sourced carbon emissions and storage from bioenergy

Biogenic assessment factors (BAF) (at stationary source): proposed by the US Environment

Protection Agency EPA (2014) to assess atmospheric contributions of biogenic CO2 emissions from

both production (biomass production and processing) and consumption in stationary sources (biomass

combustion, digestion, fermentation or decomposition). The factor [unitless] represents the ratio

between the net biogenic CO2 emissions (associated with biomass production, processing and use in

stationary sources) relative to the potential gross emissions (biogenic feedstock carbon at different

supply chain stages and the stationary source process). The metric allows assessing biogenic CO2

emissions based on carbon mass balances.

The BAF factors express the following: exactly offsetting the biogenic CO2 at stationary source (BAF

= 0), contribution of biogenic CO2 to the atmosphere due to upstream processes (BAF = 1), partially

offsetting biogenic CO2 at stationary source (0 < BAF < 1), fully counterbalanced biogenic CO2 at

stationary source (BAF < 0), net CO2 increase due to upstream processes (BAF > 1).



Chapter 2: Literature review: From static to dynamic carbon modelling

Ariane Albers 47

Biogenic Global Warming Potential – GWPBio (at product level): Cherubini and colleagues (2011)

developed a biogenic GWP metric (GWPBio) to assess the biogenic CO2 flows from biomass-sourced

bioenergy systems, as a function of rotation dynamics of any terrestrial aboveground biomass.

The GWPBio undertakes carbon neutrality assumptions, that is to say, one unit of CO2 release from

biomass combustion equals the same unit of CO2 removed from the atmosphere during regrowth.

However, it considers the RF effects and thus climate change impacts caused by one unit CO2 pulse

emission release from biomass combustion (a) and the time it takes for the same unit of CO2, directly

after harvest, to be re-sequestered during biomass growth over a given rotation (b), as shown in Fig.

2-17. The rotation assumes even-aged vegetation stands with clear-cut harvest and immediate

replantation, where the same unit released will be re-sequestered.

Fig. 2-17: GWPBio approach with a) clear cut harvest and combustion, and b) immediate regrowth over a full

rotation period. Source: Cherubini, 60th LCA forum presentation (2015)

The method incorporates biogenic CO2 flows from the terrestrial biological pool into GWP calculation

— and expresses the absolute contribution of biogenic CO2 (aGWPBioCO2) (Eq. 2-13) relative to the

absolute contribution of fossil-sourced CO2 (aGWPFossilCO2), formulated with the Impulse Response

Function (IRF) previously described in section 2.2.5.

The atmospheric CO2 decay function f(t) following a pulse emission consists here of a convolution

between two functions expressing the rate of biomass regrowth (t') and the CO2 removal rate from the

atmosphere from the global carbon cycle, shown in Eq. 2-14.
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Eq. 2-13

Eq. 2-14

The GWPBio factors are available over the integration time horizons 20, 100 and 500 years, up to a

rotation length of 100 years, depending on the vegetation type. The characterisation factors increase

with increasing rotation length (i.e. longer vegetation regrowth cycles). It means that the fast growing

species (e.g. annual crops) have lower climate change impacts than biomass species with long rotation

lengths (e.g. forest trees).

The GWPBio has been mentioned in the IPCC AR5 (IPCC, 2013a), highlighting the limitations of the

carbon neutrality hypothesis undertaken for Cbio flows. However, similar to the IPCC GWP metric (see

section 2.2.5), any RF effect beyond the selected TH is neglected. Moreover, the method assumes that

harvest activities are performed before the regrowth of the vegetation (Cornillier and Benoist, 2015).

Thus, the applicability and robustness of the method needs further research (Benoist and Bessou,

2018).

Soil carbon changes (at product level): Petersen et al. (2013) proposed a dynamic approach to

account for possible changes in soil carbon in LCA. The approach combines a process-based soil

carbon model (C-Tool) for timing soil-sourced CO2 releases due to degradation with the CO2 decay

curve (described in the Bern carbon cycle model to determine the CO2 fraction remaining in the

atmosphere over time). The soil C balance demonstrated soil carbon sequestration potentials over 20

years associated with crop residues.

Both GWPBio and soil carbon changes approaches take into account the temporal aspects of CO2

releases to the atmosphere and their atmospheric evolution (Bern carbon cycle model). The methods

allow accounting for CO2 emissions from biomass sources in LCA to assess their potential climate

change effects. Yet, both methods do not fully represent a dynamic approach with annual frequences,

as the impacts representation is based on a fixed TH.

2.5.6 Dynamic LCA

Various levels of dynamic LCA have been identified in the literature, as summarised in Table 2.4,

ranging from fully static to fully dynamic at LCI and LCIA levels.
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Table 2.4. Main approaches for Cbio modelling and assessment in attributional LCA

Static LCI and
LCIA

Static LCI and
LCIA, with credits

Dynamic LCI and
Static LCIA

Dynamic LCI and
LCIA

Assumption of carbon
neutrality

Yes No No No

Assumption of emission
at harvest

Yes No No No

Credits for
temporary C storage

No Yes No: Sequestration
and temporary
storage are
considered in the
dynamic LCI

No: Sequestration
and temporary
storage are
considered in the
dynamic LCI

Treatment of time in
LCI

Aggregated as a
pulse emission at
time 0

Aggregated as a
pulse emission at
time 0

Dynamic Varies: Some
approaches use a
dynamic LCI,
other include time
considerations
directly in LCIA

Treatment of time in
LCIA

Fixed time
horizon

Fixed time
horizon

Fixed time
horizon

Fixed time
endpoint

Source: Breton et al. (2018)

A systematic comparison between static and dynamic LCA framework performed by Su et al. (2019)

is shown in Table 2.5, based on four main dynamic assessment elements, namely consumption, basic

inventory datasets, characterisation factors and weighting factors, which were formalised in the

context of dynamic LCA methodology for buildings.

Table 2.5. Operational difference between static and dynamic LCA

Assessment element Static LCA Dynamic LCA

Consumption Consumption over the entire life cycle

stays at current (evaluation point) level

Consumption varies over time

Basic inventory

datasets

Static basic inventory datasets at the

evaluation point are adopted in the

assessment

Temporal basic inventory datasets are

adopted in the assessment

Characterisation

factors

Assumes that emissions throughout the

whole life cycle occur at a single point in

time

Characterization factors are time-

dependent, and vary with the moment

when the pollutant is emitted

Weighting factors Weighting factors remain constant during

the life cycle

Weighting factors change over time

Source: Su et al. (2019)

Time-dependent radiative forcing or dynamic LCA (at product level) is a dynamic LCIA method

for the climate change impact category developed by Levasseur et al. (2010). It is based on the

radiative forcing concept, like the IPCC GWP metric (see previous section 2.2.5), however with
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integration boundaries set for one-year time steps. The dynCO2 tool for dynamic impact assessment

has been developed by the authors for the implementation of the dynamic impact assessment (Box

2-6)

The method considers a pulse emission that occurred tn years before the RF. For instance, the RF (or

Global warming impact – GWI) occurring at year 40 is caused by an emission released at year 40, the

emission is multiplied by a dynamic characterisation factor of year 40. If the RF occurring at year 60

is caused by an emission released in year 20, the emission is multiplied by the dynamic

characterisation factor of year 20, and so forth, exemplarily illustrated in Acronyms: E = Emission, CF

= characterisation factors equivalent to emission factor in LCA language, GWI = Global Warming

Impact

Fig. 2-18.

Acronyms: E = Emission, CF = characterisation factors equivalent to emission factor in LCA language, GWI =
Global Warming Impact

Fig. 2-18. Time-dependent radiative forcing approach. Source: Annie Levasseur, CIRAIG

The instantaneous Radiative Forcing (RFinst), in Wꞏyrꞏm-2 (Eq. 2-15), is formulated based on the

aGWP (see Eq. 2-2 section 2.2.5), however with annual integration steps. The cumulative RF (RFcum),

in Wꞏyrꞏm-2 is the sum of the instantaneous RF at time (t) caused by the each emission of all previous

years, thus representing the derivative of RFinst (Eq. 2-16).
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Levasseur et al. (2010) suggested the development of relative values to make the results comparable

with static CO2-equivalent values (e.g. with the static IPCC GWP results) by means of the relative RF

(RFrel) metric. Therefore, RFcum values of one pulse emission are divided by the RFcum of one pulse

emission of the CO2 reference gas (Eq. 2-17). The RFcum of CO2 is computed by means of the IRF (see

Eq. 2-5). The relative assessment still dependents on the choice of a TH over which the RF is

integrated. Yet, the selection of a TH can be flexible, by setting a “fixed future reference time”

(Levasseur et al., 2016).

Eq. 2-17

Different LCA scholars have found that the results with the dynamic LCA approach provide relevant

case specific temporal information for decision making, among others, on: “the intensity, extent and

frequency of the impacts” (Lebailly et al., 2014), the sensitivity of the results to various THs choices

(Levasseur et al., 2012b), as well as the optimisation and mitigation options from scenario-bound

simulations (Shimako et al., 2017).

The dynamic LCA method builds on a scientific foundation for temporal considerations relevant to

other impact categories, as recently also applied to aquatic ecotoxicity of metals (Lebailly et al., 2014).

Another toxicity-related initiative is being carried out by the USEtox team (Rosenbaum et al. 2008),

which presented at the 25th SETAC conference (Fantke et al., 2015) a dynamic version of USEtox,

allowing for the user to determine a specific time horizon, instead of the steady-state perspectives used

in the USEtox model for human toxicity and freshwater aquatic ecotoxicity.

Moreover, Shimako et al., (2017) developed a dynamic fate model and combined it with USEtox, to

perform dynamic toxicity modelling and integrate it into the DyPLCA model (Tiruta-Barna et al.,

2016), implemented as a proof-of-concept (see Box 2-6).

Box 2-6. Available tools for dynamic LCA

A few tools have been developed for the computation of dynamic LCA, some of which are listed below:

DynCO2 is accessible as an Excel tool at http://www.ciraig.org/en/tools.php and implemented with
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the support of the documentation manual in Levasseur et al. (2010b). The tool has been tested in

several case studies for which dynamic inventories were required to be built before the application of

the tool.

DyPLCA is implemented and accessible as an online tool at http://dyplca.univ-lehavre.fr/ and

http://dyplca.pigne.org/, yet it is not fully documented. The formal description of the tool and its

underlying specifications were introduced as a proof-of-concept in Tiruta-Barna et al. (2016), and

will be shortly extended in the upcoming publication Pigné et al. (submitted) “A tool to compute fully

time-differentiated life cycle environmental impacts of production-consumption systems” (Negishi et

al., 2019, 2018).

Temporalis is an open source software package for the development of dynamic LCI (Cardellini et

al., 2018) based on the Brightway2 LCA framework (Mutel, 2017), using Python language. The tool

is accessible at https://temporalis.readthedocs.io/en/latest/ and it is well documented with technical

guidance, however it is not readily operational.

To summarise, the LCIA part of dynamic LCA is somewhat covered by the Levasseur et al. (2010)

model for climate change, and by other ongoing developments for other impact categories such as

toxicity.

Nonetheless, the LCI component is less developed, in the sense that no consensus or widely used

approach exists yet. Several approaches for carbon accounting (including biogenic and soil carbon)

have been proposed, as discussed in the next section.

2.6 Carbon modelling for life cycle inventories

The Product Environmental Footprint Category Rules, referred to as the PEFCR Guidance (EC,

2018b), include three sub-categories for carbon in LCA linked with climate change:

Climate change – fossil: GHG emissions originating from fossil fuels by means of their

transformation or degradation (e.g. combustion, digestion, landfilling, etc.).

Climate change – biogenic: carbon sequestration (CO2 fixation from the atmosphere through

photosynthesis during biomass growth) and carbon release emissions due to transformation or

degradation (e.g. combustion, digestion, composting, landfilling). It represents the embedded

carbon within bioproducts or biofuels.

Climate change – land use and land transformation: carbon sequestration and release

originating from carbon stock changes caused by land-use and land use change, including

deforestation, road construction or other soil activities.

Fossil-sourced emissions have been computed in the past by means of the IPCC GWP (section 2.2.5),

without the consideration of the time dimension, because it is argued that their turnover time into the

geological pool is considerably slow (see section 1.1), and thus upstream carbon modelling approaches

are static.



Chapter 2: Literature review: From static to dynamic carbon modelling

Ariane Albers 53

Yet, in the last decade the temporal differentiation of the release flows has been questioned, eventually

delaying emissions (e.g. temporary storage in products and emission delay, see previous section 2.5.3).

Further challenges in carbon modelling have been recognised in the context of biogenic carbon (Cbio),

including carbon from soils and its associated land use/land occupation.

As highlighted in sections 1.2 and 2.4, the temporally differentiated modelling approaches for Cbio and

C in the soils need further refinement in LCA, regarding linking with climate change impacts.

Therefore, this section explores carbon modelling approaches used in science, as well as current

applications in LCA.

2.6.1 Modelling biogenic carbon from biomass

Biogenic carbon (Cbio) represents the C in the biosphere and its exchange with the atmospheric pool

(see section 1.1). CO2 is fixed and sequestered into the living biomass (above- and belowground) by

photosynthesis, and (re)emitted to the atmosphere at some point in time due to natural processes (e.g.

respiration, degradation) or human activities (e.g. combustion). So far, there is no consensus in place

on how to treat and value dynamic Cbio in LCA and how to model dynamic Cbio flows. Modelling

approaches from static to dynamic are presented in this section.

Static biogenic carbon inventories and associated challenges

Biogenic carbon has increasingly gained importance in the context of climate mitigation and low-

carbon economy, crediting the displacement of an energetically equivalent fossil-sourced C. Two main

static accounting approaches for biogenic carbon exist, namely: exclusion from the inventories (carbon

neutral) or taking into account changes in carbon stock. The former is the most commonly applied

approach for bioenergy systems, and the latter relates mainly to national GHG inventories, although its

application has been adopted to product level (Pawelzik et al., 2013):

Carbon neutrality assumes a net zero CO2 emission in the GHG inventories of bioenergy:

The hypothesis relies on the assumption that the previously emitted carbon emission to the

atmosphere is re-sequestered/fixed (instantly after emission) into the biomass (not necessarily

related with the same product system boundary), balancing out fixation and release emissions.

It thus neglects potential temporal climate change impacts from Cbio.

Carbon stocks implicitly related with land use change (FAO, 2004) in the national GHG

inventory reports (IPCC, 2006a), accounting for upstream carbon stocks in the LULUCF

sector by means of the IPCC carbon stock change method (IPCC, 2006b). Carbon stocks,

changes in stocks and resulting CO2 emissions per unit of area (e.g. forestry, agriculture) are

reported at the national level, but not at the product level (bioenergy), to avoid double

counting (Zanchi et al., 2010). Consequently, CO2 emissions from biofuels are excluded from

the EU Emission Trading Scheme (Zetterberg and Chen, 2015). However, more recently EU
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Member States can compensate LULUCF emissions within the same sectoral activity, as

shortly introduced in section 2.2.3.

At the product level, some carbon stock accounting approaches and factors have been developed to

estimate the C imbalance associated with bioenergy systems and their expansion due to displacement

activities, most of which relating with carbon debt from LUC or forgone sequestration as well as the

benefits from displacing energetically equivalent fossil C (see Box 2-7).

Box 2-7. Biogenic carbon stock approaches of bioenergy and fossil carbon displacement

Some terms or definitions relate to C imbalance of terrestrial C stocks due to bioenergy systems compared

with fossil C, are introduced as follows:

Ecosystem carbon payback time (ECPT) is a concept developed to estimate the time in years

required to compensate for ecosystem carbon loss due with direct land use change, including forgone

sequestration (see Box 2-11) attributable to crop-based bioenergy system expansion (e.g. conversion

from forestry to energy crop production) (Gibbs et al., 2008). ECPT takes into account the net C

changes in a terrestrial carbon stock (C imbalance) relative to the carbon benefits/savings obtained

from fossil C displacement. Short payback time has been linked with the conversion of degraded

land, while the ECPT from annual biofuel expansion into tropical forests has been estimated between

40-120 years, and production on deforested land or peat land, for instance, between 300-1500 years to

compensate for the ecosystem loss (Gibbs et al., 2008). LUC due to food-crop-based biofuels may

thus cause a permanent loss of within the terrestrial biological carbon stock (Pingoud et al., 2012).

Nonetheless, the payback time may also decrease over time due to increases in carbon savings

emerging from technology, efficiency and yield improvements (Yang and Suh, 2015).

Upfront carbon debt: similar to the ECPT concept from LUC, yet related with forestry bioenergy

and the accounting for the post-regrowth after harvest (Pingoud et al., 2012; Zanchi et al., 2010). It

refers to modelling an existing forest carbon stock after the harvest activity, creating an initial carbon

debt that is repaid/ restored by re-growth or by compensation with an equivalent reference case. The

delay to repay for the consumed carbon creates an upfront debt that substantially reduces the potential

of bioenergy systems to reduce the present GHG concentration in the atmosphere in the short to

medium term (Lamers and Junginger, 2013; Mitchell et al., 2012).

Fossil carbon displacement factor (DF): estimates the GHG balance and C mitigation efficiency of

bioenergy as compared with fossil energy by means of the: a) avoided equivalent fossil C emissions

relative to the biogenic C of the used biomass for bioenergy (direct energy substitution) or b)

indirectly the avoided use of energy-intensive materials by biomass (indirect energy substitution)

(Schlamadinger et al., 1997; Schlamadinger and Marland, 1996).

Carbon neutrality (CN) factor (Zanchi et al., 2010), where CN factors represents GHG emissions

from carbon stock changes of a bioenergy system in relation to a reference fossil fuel system at

different time scales. Factor values indicate whether a bioenergy system emits more GHG emissions

(CN < 0), saves emissions (CN > 0) or reduces or replaces fossil fuels (CN > 1).
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Given the generalised carbon neutral assumption and static Cbio accounting of carbon stocks, three

main challenges are recognised:

CO2 emissions have an effect on the atmospheric GHG concentration and thus on the RF,

regardless of its origin, whether it is biogenic- or fossil-sourced (Cherubini et al., 2011a;

Haberl et al., 2012).

Cbio releases emitted as non-CO2 GHGs and are not equivalent to the same unit of

sequestered/reduced CO2 in the atmosphere may have higher atmospheric perturbation

capacities. Atmospheric CH4, although difficult to quantify, mainly originates from biogenic

sources such as wetlands, ruminant animals, rice cultivation, biomass burning, and to some

extend from fossil fuel-related emissions (IPCC, 2013a). The ISO 14067 standard for carbon

footprints (ISO, 2013) recognises zero net CO2 emissions from complete oxidation, unless

“when biomass carbon is converted into methane, non-methane volatile organic compounds

(NMVOC) or other precursor gases”.

Disregarding temporal effects from CO2 (re-)sequestration into the biomass over a full

rotation length (eventually over several decades) affects atmospheric GHG concentration and

thus alters RF effects. Applying carbon neutrality to biomass with long rotation lengths, for

instance, from forest wood, is criticised as an erroneous accounting approach (Haberl et al.,

2012; Searchinger et al., 2009). CO2 neutrality for forest wood-based bioenergy has been

justified so far, as stated by Zetterberg and Chen (2015): “…the carbon that was once bound in

the growing forest is released, thus closing the biogenic carbon cycle”. This approach,

moreover, ignores the long-term storage of carbon in the wood (Leturcq, 2014).

The temporal dynamic of CO2 sequestration in the biomass is modelled in ecology by means of growth

analysis, shortly summarised below.

From static to dynamic biogenic carbon inventories

Estimating the temporal dynamic of Cbio sequestration in biomass is closely linked with plant growth

modelling carried out in functional ecology and growth analysis, one of the aspects of ecological

modelling. Growth is defined as the increase in size or weight (biomass) of a vegetation over all stages

of growth (juvenile, adolescent, mature and senescent) (Pretzsch, 2009). Growth modelling

approaches are used to predict the plant development and potential growth and yield classes.

The biomass growth curve of plants with related allometric variables such as height and diameter,

mostly describe an initial rapid growth and the slowing or eventually falling thereafter in the senescent

stage (Fekedulegn et al., 1999; Paine et al., 2012). Meaning that with increase in size, plants become

inefficient (e.g. due to self-shading, tissue aging and turnover), with consequential reduction of

Relative Growth Rate (RGR) over time (Rees et al., 2010).
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RGR based on nonlinear growth models represents a flexible approach, accounting for varying growth

rates (Pommerening and Muszta, 2016). Paine et al., (2012) claimed that traditional methods with

linear (referring to constant absolute plant growth) and exponential (referring to loglinear with

constant RGR) predictions are less adequate (see Box 2-8), since statistical computations fitting

parameters using nonlinear regression (involving complex experiments) have matured and thus better

capture the temporal dynamic/variations of growth (i.e. dependency of growth in age-and size).

Self-starting routines with initial parameter/starting values are required to fit non-linear regression

models for the analytical computation of derivatives (Fekedulegn et al. 1999, Arne Pommerening,

pers. comm. 2018). In different scientific fields it is common to use self-starting-functions with

different parameters for the same model (datascience+, 2018). Archontoulis and Miguez (2015)

provide guidance for fitting non-linear models primarily for agricultural research studies, however also

applicable to forestry. Self-starting routines and solutions for the R language have been developed to

enable model convergence (Paine et al., 2012).

Box 2-8. Biomass growth modelling

Classical plant growth analysis data draws back to the 1920s (Rees et al., 2010). Analytical tools via growth

analysis have long been used for plant growth approximations (Hoffmann and Poorter, 2002). It allows fitting

the growth curve from a small number of observations by means of absolute (AGR) and relative (RGR)

growth rates, formulated in and , respectively:

where M represents the change in mass over a given time interval. Two points in time are considered in the

computation of AGR, while RGR allows comparing individuals with different initial sizes (i.e. ratio of final to

initial mass) (Hoffmann and Poorter, 2002; Rees et al., 2010). Thus, ARG represents the derivative of biomass

as a function of time and RGR equals the AGR divided by the current biomass (i.e. growth per unit of mass).

Yet, linear regression and (log)linear functions have been used are used to fit the curve (size vs time), while

assuming exponential growth (Paine et al., 2012). Traditional approach have thus failed to consider the

temporal dynamic (Rees et al., 2010).

Many methods have been proposed to describe growth models. There are two basic model

classifications for growth, concerning asymptotic (limit in growth) and non-asymptotic (indefinite

growth) growth curves (Paine et al., 2012). These classifications are briefly described below by

highlighting some of the existing models.

(Log)Linear –non-asymptotic: The modelling approaches refer to two parameters: initial biomass

and absolute (for linear) or relative (for exponential) biomass increase rate per unit of time:
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Linear models where the absolute growth rate is constant, meaning that the biomass change is

proportional to time. They are less used in growth modelling due to their simplicity and

because they fail at modelling the temporal dynamic, assuming infinite plant growth. To

avoid negative initial values the biomass is set to zero (no-intercept model), yet affecting R2.

Loglinear (exponential) models provide better fits than the linear models by using linear

regression to fit the logarithm of biomass yields, commonly used for species with

unrestrained growth, such as algae boom.

Polynomial models predict smooth growth curves within the linear modelling framework.

However the model faces challenges regarding the interpretation of the parameters, selection

of the order and unrealistic predictions upwards and downwards. For this reasons it has been

recommended to avoiding polynomial functions (Paine et al., 2012).

Non-linear –non-asymptotic: refer to power-law (algometry) models, which yield better R2, as they

facilitate slowing the curve while biomass increases by decreasing the RGR with an exponent ( )

formulation smaller than zero or larger than < 0;

linear and = 1 for exponential models).

Non-linear –asymptotic: these models have a point of inflections and are sigmoid (Zhao-gang and

Feng-ri, 2003), except for monomolecular models, shortly listed, as follows:

Monomolecular (e.g. Mitscherlich): originates from physical chemical reactions by means of

first order decay function with no point of inflection and always concave-down.

Logistic models: the frequently applied three-parameter and four-parameter logistic models

provide good fit with some limitations regarding the asymptote where the inflection point

happens at one half of the maximum biomass, whereas models with five-parameter are more

flexible. Examples are:

o Chapman-Richards: this model is known for being very flexible and accurate on the slight

expense of biological realism (Pommerening, 2017). It has been used for animal growth

and increasingly applied in the forestry context to model potential cumulative tree growth

(Fekedulegn et al., 1999; Pienaar and Turnbull, 1973; Pommerening and Muszta, 2016;

Pretzsch, 2009; Zhao-gang and Feng-ri, 2003).

o Weibull: Although originally intended to describe a probability distribution, the Weibull

function has turned out to be a very reliable empirical model for tree growth

(Pommerening and Muszta, 2016; Zeide, 1993).

o Gompertz: differs from three-parameter logistic models concerning the inflection point

approximating the asymptote 37% of the maximum biomass. The model is used in

biology to refer to the exponential decay, however it was initially used to describe

distribution of age in human populations (Pommerening and Muszta, 2016).
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Power-law and asymptotic models are preferred options over (log)linear and polynomial models,

overcoming the described limitations and providing more flexibility, as they can be generalised to

avoid initial negative mass values and allow variation in the inflection point (Paine et al., 2012).

Data for informing modelling biomass growth rate (and related Cbio sequestration) is obtained via

destructive or non-destructive methods (Tackenberg, 2007). The former refers to cultivation and

sampling of individuals (fresh or oven-dried biomass) for constant measurements, while the latter uses

time and cost effective techniques (e.g. visual obstruction sampling, vertical and horizontal image

analysis, satellite remote sensing) with decreased number of samplings. Non-destructive methods were

developed to follow the mean development of individual plants, mostly based on allometric

relationships, particularly used for forest wood species.

Allometry, in the field of relative growth, analyses the empirical relation between size and shape

(Mosimann, 1970; Pommerening and Muszta, 2016). Allometric equations allow estimating the

correlation, for instance, between age and height and/or diameter or entire plant organs, thus the

coefficients are interpreted as compound growth rates (Hunt, 1990, 1982). The international database

GlobAllomeTree (http://globallometree.org/) (Henry et al., 2013) with several contributing institutions

such as the FAO and CIRAD, comprise more than 23.5k allometric equations for different tree species

(involving above-and belowground plant compartments) in different ecological zones or geographical

locations of the world.

Although growth rate models provide empirical evidence and thus adequate predictions of mean

biomass/plant development, they are often limited to experimental data retained under standard or

optimal condition, lacking variations on environmental effects (e.g. temperature, competitors, etc.)

(Marcelis and Heuvelink, 2007; Tackenberg, 2007).

Ongoing research developments in RGR and non-linear regression have been oriented towards

modelling, for instance, plant mortality and reproduction, climate change and biomass decline effects,

particularly in forestry (Pommerening and Muszta, 2016).

Cbio sequestration can be estimated from biomass growth modelling for the entire plant or among

plant compartments by means of carbon partitioning among the plant organs/compartments (i.e.

carbon content per plant part). However, carbon partitioning among plant organs is challenging and

represents a source of uncertainty (Henson, 2007; Marcelis and Heuvelink, 2007).

Beyond partitioning, by default, carbon content in biomass is assumed to represent around 50% of dry

mass in all compartments (Aalde et al., 2006; FAO, 2005; Macías et al., 2017; Pretzsch, 2009).
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Biogenic carbon modelling in LCA – temporal considerations

For bioenergy systems, most of the LCA bioenergy studies have used the carbon neutral hypothesis

analogously to climate neutral, to express a zero net climate effect (Cherubini et al., 2011a; Guest and

Strømman, 2014; Liu et al., 2019). The carbon neutral approach exclude Cbio fixation and release flows

with EOL modelled as combustion or incineration, but includes fossil C emissions for biomass

cultivation and biofuel production (Agostini et al., 2014; Johnson, 2009; Wiloso et al., 2016).

Several LCA scholars however have recognised the need for taking into account the time lag between

the carbon sequestration and release, denoting temporary carbon storage, understood as the period over

which Cbio remains in the technosphere/anthroposphere. During that period, radiative forcing is

postponed (for biomass resources with long rotation lengths and long-lived products) or eventually

avoided through permanent stocks (Christensen et al., 2009; Vogtländer et al., 2014).

The temporary carbon storage may account for a CO2 benefit resulting from delaying emissions for a

specific number of years from the Cbio embedded/retained in biomass-sourced products (P Pawelzik et

al., 2013). This temporal consideration in the modelling of Cbio and its challenges has been thoroughly

discussed in the past by the LCA community (Brandão and Levasseur, 2010).

Up to now, LCA guidelines and LCA software allow considering this dynamic by means of the

temporary carbon storage and delayed emissions as a correction factor in LCIA (e.g. applicable to

long-lived bioproducts such as wood materials), described in section 2.5.4. Other LCIA methods for

valuing carbon storage have been suggested in the frame of tonne-year approaches (section 2.5.4).

Yet, none of the recommended approaches is dynamic, facing the main controversy for valuing the

time lag, as the “temporary carbon storage is, by definition, reversible”, as stated by Levasseur et al.

(2012a).

Efforts towards developing dynamic Cbio accounting approaches have recently emerged, specific to the

construction and building sector (Box 2-9). These approaches have been developed in response to the

insufficiency for decision-making of static estimates concerning temporary Cbio storage in products

with long service life, often combined with the dynamic LCA method (section 2.5.6) (Beloin-Saint-

Pierre et al., 2017; Peñaloza et al., 2016).

Box 2-9. Dynamic carbon accounting in LCA of buildings

Given the long lifecycle of buildings, static LCA is not well equipped to deal with time-dependent parameters

associated with buildings (Negishi et al., 2018). Various efforts in the direction of defining a dynamic LCA

framework for buildings have been carried out (Beloin-Saint-Pierre et al., 2017; Breton et al., 2018; Negishi et

al., 2019; Pauliuk et al., 2013; Su et al., 2019; Wu et al., 2017).

The approach presented in Negishi et al. (2018, 2019), for instance, identifies the key dynamic characteristics
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of a buildings’ lifecycle (behaviour of dwellers, building products, energy infrastructure, energy mix, carbon

uptake/releases from building materials, and EOL pathways). They used the DyPLCA tool (see Box 2-6). Su

et al. (2019), on the other hand, classified the building’s characteristics according to their embeddedness

(embedded, such as materials, and operational, such as energy and water). Wu et al. (2017) also based their

approach on the relative embeddedness of factors, over five building phases (materials, transport,

construction, operation and maintenance and EOL), and compared the performance of “green” and

conventional buildings taking into consideration the temporal shift in carbon intensity (i.e. green buildings

have more embedded C than conventional ones in the construction phase, and less in the operational one). In

their highly cited article, Pauliuk et al. (2013) combine material flow analysis with LCA to estimate the

impacts of future building scenarios in Norway, by focusing on energy. Their approach features both temporal

and spatial dynamics. Peñaloza et al. (2016) compared different types of buildings featuring forestry materials

using dynamic LCA and Cbio accounting, using an approach and rationale very similar to the one presented in

this dissertation (Fig. 2-19).

Fig. 2-19. Dynamic Cbio exchanges between production system and atmosphere. Source: Peñaloza et al. (2016)

Beloin-Saint-Pierre et al. (2017) combined the dynamic LCIA model by Levasseur et al. (2010) with the

Enhanced Structural Path Analysis (ESPA) method by Beloin-Saint-Pierre et al. (2014) to describe flows by

temporal distributions (i.e. temporally differentiating background LCI data), thus performing a fully dynamic

LCA to a building-related case study, namely the comparison of alternative systems for the provision of

domestic hot water.

The majority of discussed articles contrasted multiple scenarios, and most of the proposed approaches are

specific to the building sector.

It seems that most efforts to model the temporal dynamic in LCI are associated with the time lag from

long-lived products, particularly forest wood-based materials for buildings, as well as their time-

sensitive energy demand, as identified in a search in Web of Science (TS=(("life cycle assessment"

OR "footprint") AND carbon AND building AND dynamic AND "climate change"); from year 2000

onwards). From the resulting 17 articles, eight relate to the time dynamic (see Box 2-9). Follow-up
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searches in Web of Science, excluding building-oriented articles, yielded just a handful of articles

dealing with dynamic Cbio accounting in contexts other than building-related (mainly bioenergy).The

consideration of Cbio dynamic for all types of biomass-based products is less common than in buildings

LCAs.

One of the few dynamic LCI approaches modelling Cbio dynamic as a function of time has been carried

out by De Rosa et al. (2017). The authors have developed a user-friendly and flexible tool, based on a

parametric model allowing for time-dependent modelling of Cbio sequestration and release flows from

forest wood, including decay emissions. The dynamic inventory for Cbio fixation and storage in wood

is applicable in both the bioenergy and biomaterial sectors.

The modelling of dynamic Cbio flows, independent from the sectoral implementation, faces one

particular issue, namely the setting of the temporal boundary for the initial Cbio sequestration flow, i.e.

defining the first year of CO2 removal during biomass growth over a given rotation length, either

before (historic) or after (future) the final harvest activity. This phenomenon is known as the “chicken

or egg causality dilemma” (Levasseur et al., 2012c).

Case studies have applied the historic (Vogtländer et al. 2014; Zetterberg and Chen 2015; Demertzi et

al. 2018), future (Cherubini et al., 2011b, 2011a; De Rosa et al., 2017; Levasseur et al., 2012b;

Pingoud et al., 2016; Repo et al., 2015) and occasionally both (Fouquet et al., 2015; Levasseur et al.,

2012c; Peñaloza et al., 2018) time perspectives, not necessarily within the LCA framework. Other

works have discussed the problem (Matthews et al. 2014; Cornillier and Benoist 2015; Thrän et al.

2015), however, no guideline exists to date on how to justify the use of one modelling approach over

the other.

To overcome these challenges for all types of biomass-based products, more research is needed on

how to bridge the gap between carbon neutrality and the challenges associated with the temporal

considerations of carbon sequestration and storage flows. The need for taking into account the

temporal dynamic of negative and positive Cbio emissions and their time-sensitive climate change

effects require establishing a better understanding of dynamic modelling approach.

An additional source of biogenic carbon is associated with the soil activities (referring to soil organic

carbon), likewise Cbio increasingly gaining attention in the climate mitigation context, for instance, in

the frame of the “4 per mille” initiative (section 2.2.3). Details on modelling approaches and its

applications in LCA are further outlined in the next section.

2.6.2 Modelling soil organic carbon in the context of land use/land use change

Soil is considered as a non-renewable (finite) natural resource, as its time to regenerate from

disturbances is slow, which is subject to competition between different land uses for cropping,
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grazing, forestry, and urbanisation. More than one third of the world’s soils are degraded through

erosion, canalisation, compaction, pollution and nutrient depletion (FAO, 2019).

Soil is based on living and dead biomass, including particulate organics, humus and charcoal, soil

microbes and fine plant roots (living) (Stockmann et al., 2013). The heterogeneous function

(multifunctionality) of soils provide the physical, biological, chemical, and hydrologic basis for a wide

range of ecosystem services (e.g. food, feed, fibre, fuel, medicine, habitat, nutrient cycling, water

regulation, recreation).

Adhikari and Hartemink (2016) developed a conceptual overview on linking key soil properties (e.g.

SOC, soil type, pH value, bulk density, soil biota, soil temperature, clay mineralogy) to ecosystem

services through soil functions (e.g. carbon pool, source of raw material, biomass production, nutrient

and water store, filtration and transformation). Their functions determine biomass yields in agricultural

and forestry systems contributing to food, feed, fibre, and fuel production.

Soil organic matter (SOM) generally consists of about 50% to 58% of carbon (Duparque et al., 2007;

Stockmann et al., 2013). The carbon content in the soil, the so called soil organic carbon (SOC), is an

essential indicator to estimate the amount of soil organic matter (Lal, 2005; Meersmans et al., 2013).

Carbon sequestration potentials under consideration of the plant-soil system have been linked to

management practices (Lal, 2004; Minasny et al., 2017). Yet, it has been stated that the sequestration

requires increases in added C to the soil over a defined period of time (Lal, 2008).

The SOC stored in the pedosphere is four times larger than that on the biosphere (see section 1.1); thus

representing the largest terrestrial carbon pool (Luo et al., 2016). Large amounts of SOC are found in

cool and humid regions, particularly in the northern circumpolar permafrost region (˜1672 Pg C),

amounting half of the global SOC stock within the belowground compartment (Tarnocai et al., 2009).

The region is very vulnerable to increases in surface temperature, accelerating decomposition and thus

increasing CO2 and CH4 releases.

There is a close relationship between carbon and nitrogen cycle in the soil, which has been studied

since the late 1920s (Luo et al., 2016). As stated by Schweinle et al. (2015), the availability of SOM

“is the end-result of previous processes of organic matter contribution, removal of organic matter, and

mineralization”. Plant senescence and dead biomass mobilise carbon (sequestered previously through

photosynthesis) and nitrogen to the soil, where a larger fraction of the C is lost through initial

humification, while a smaller portion of the carbon and nitrogen are mineralised.

Bacteria and fungi are the decomposers of organic matter, contributing to breaking down recalcitrant

organic materials (lignin, cellulose and hemicellulose) (De Boer et al., 2005). The complex “fungal-

bacteria interaction” was found not to be always competitive, which is further studied by

microbiologists.
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A general consideration by the scientific community is that SOM decomposition and organic

mineralisation are basically controlled by biological/biotic (living microorganisms and composition of

plant residues) and environmental/abiotic (e.g. humidity, precipitation and temperature, soil properties,

and N availability) factors (Schmidt et al., 2011; Shibu et al., 2006; Stockmann et al., 2013). Despite

these research advances, the community still faces the challenge of understanding climate feedbacks

and SOC flows in numerical models (Luo et al., 2016).

Soil organic matter modelling approaches

Modelling soil dynamic demands both understanding of soil science. Luo et al. (2016) summarised in

Fig. 2-20 the main SOM transformation processes and controlling factors to predict SOC dynamics

determined by environmental variables, litter quality, soil properties, microbial attributes and external

disturbances. The complex dynamic interaction of SOC emerges exclusively from C inputs to the soil

and its transformations into SOC, regulated by environmental and biological variables.

Fig. 2-20. Main variables and processes,for dynamic soil organic carbon modelling. Source: adapted from Luo

et al. (2016)
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Since the 1940s a large number of models were developed to predict SOM and its associated dynamic:

from simple mono-compartment models based on first order decay function to model time-dependent

decomposition rates (mostly fitting models to experimental data) in the 1960s, followed by multi-

compartment simulations models in the 1980s (see Box 2-10) based on long-term experiments and

complex process-based models in the late 1990s, mostly incorporating principles from analytical

models (Shibu et al., 2006).

Box 2-10. The pioneering Hénin and Dupuis soil carbon model and multiple pool modelling

The pioneering model from Hénin and Dupuis (1945) described the dynamic decomposition of SOM of C

inputs to the soil by means of the first-order decay function of the mass of C, formulated in Eq. 2-20 and

solved analytically in Eq. 2-21:

Eq. 2-20

Eq. 2-21

where Y is the SOM content [gꞏkg-1] at time t; Y0 is the SOM content at time zero and k is the relative

decomposition coefficient [yr-1].

When modelling multiple pools, the C transfer within the pools, formulated in Eq. 2-22, where Y(t) is the

vector of pool sizes, B is a vector of partitioning coefficients among plant pools, A is a square matrix of

transfer coefficients, is a diagonal matrix of environmental scalars, k is diagonal matrix of exit rates (first

order decomposition rate), Yo is a vector initial pool sizes (Luo et al., 2016, 2003):

Eq. 2-22

Most recognised SOC modelling approaches follow the structure of the IPCC guidelines (IPCC,

2006a) by means of a three level approach depending primarily on the study’s purpose, data

availability and spatial scale. Modelling approaches have been described in three levels: empirical,

process-oriented and ecosystem models (further detailed in Appendix B: SOM models) (FAO, 2018b;

Shibu et al., 2006; Stockmann et al., 2013):

Level 1: Empirical models (analytical models). Applied to calculate the SOC stock changes

based on the difference between a reference carbon stock and the carbon loss due to an

intervention (e.g. land use change). The IPCC default period after SOC stock change

intervention is 20 years, assuming that a new equilibrium is achieved within that period, yet

the steady-state may require several decade. This approach is a linear representation of SOC

stock changes and the data is mostly restricted to specific geographical regions (North

America and EU), disregarding temporal and spatial dynamics from site-specific or local

conditions (e.g. temperature and variability). The static approach does not allow assessing site-

dependent effects of management practices on the SOC dynamic.
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Level 2: Process-oriented models (conceptual models). Used to predict SOC dynamic and

stability based on multiple conceptual C pools/compartments to identify SOC changes from

the past to the future. The complexity of the model increases with increasing number of pools.

Each pool returns the C to the atmosphere with different turnover times. The active/labile

pools (plant litter, microbial biomass) have a time steps of days to a few years, while

passive/stable pool has time steps over decades, centuries up to millennia. The models run on

site-specific or site-dependent variables involving climate conditions, soil type/properties, land

use and management. They have been developed to assess the effects of different agricultural

practices on yield crops, C/N dynamics, nutrient cycling. However, plant growth and yield

production are not modelled, requiring data on C inputs to the soil.

Level 3: Ecosystem models (summary models). Expand process-oriented models involving

sub-models (plant growth, carbon and nutrient dynamic, soil water dynamics, and

environmental/ecosystem interactions) calibrated to local and site-specific conditions (climate

conditions, soil type/properties, land use and management), which influence the

decomposition rates in the different carbon pools. These models require high level of data

inputs, measurements or initial values whose application is very specific to an experimental

site or approach (e.g. trade-off between SOC change and other environmental indicators).

Process-oriented and ecosystem models require more expertise and considerable amount of data inputs

(i.e. biomass input and quality, initial carbon, soil type, climate conditions, management practices,

etc.) to simulate, among others, the dynamics of SOC, nutrient cycling and the associated emissions to

the air (CO2, N2O, CH4).

According to Luo et al. (2016), not all variables and elements can be addressed in dynamic modelling,

which require to explicitly state which processes and factors are incorporated or ignored.

Wiesmeier et al. (2019) recently published a review to identify key factors for SOC stock at different

spatial scales, which can serve as a guidance to develop a system of indicators. For instance, climatic

condition (temperature and precipitation), is generally recognised as a key influencing factor SOC at

regional to global scales. Yet, the climatic factor becomes less important with increasing soil depth.

Soil texture (for stabilisation) and C-input to the soil depend on key controlling factors related with

land use/management/vegetation characteristics.

Spatial and temporal variability of soil organic matter

According to Cowell and Clift (2000), assessing soil quantity (e.g. loss from degradation and erosion)

and soil quality (e.g. living organisms, non-living organic matter, trace substances, soil texture and

structure) in agricultural systems require the incorporation of the temporal and spatial dimension
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concerning the beginning and the end of a sequence of agricultural activities. The authors recommend

analysing the whole system (e.g. involving subsoil compaction and nutrient leaching).

The temporal variability of the SOM decomposition is defined by the turnover time with rates within

the different soil pools, ranging from 1-2 years in the active/labile pool (about 1/4 to 2/3 of the initial

C is lost), to 10 to 100 years by a slow decomposition rates (about 90% of C loss), followed by the

very slow decomposition rates in the stable pool with turnover times from 100 to more than 1000

years, where the OM is stabilised (protected from mineralisation) (Lützow et al., 2006). Charcoal, for

instance has been estimated to have a mean residence time of 500 to 10 000 years. That is why the

stable pool is often referred to as the inert pool.

Garrigues et al. (2012, 2013) highlighted the temporal and spatial variability as a major issue that lacks

consideration of indicators to quantify the impacts on soil quality in LCA. Goglio et al. (2015b)

recommends taking into account the timing of soil emissions in LCA.

Soil organic carbon modelling in life cycle assessment

Several LCA methods and models have been developed to assess the effects of agriculture, livestock

or bioenergy production systems on soils. Up to now, there is no framework consensus in LCA on

how to quantify and how to allocate soil-sourced emissions in the LCI and how to develop a

consistent impact pathways in the LCIA (Goglio et al., 2015; Schweinle et al., 2015; Vidal Legaz et

al., 2016).

Milà i Canals et al. (2007b) consider SOM as an indicator for soil quality and potential changes

associated with land use. Other multi-indicator soil models for site-specific soil properties (e.g.

SALCA-SQ (Oberholzer et al. 2012)), soil functions (LANCA (Beck et al. 2010; Bos et al. 2016)),

soil ecological functions addressing ecosystem damage (Saad et al., 2011), as well as methods to

quantify soil compaction (Garrigues et al., 2013), and soil carbon loss through soil erosion (Núñez et

al., 2013, 2010), have been proposed within the framework of land occupation and transformation.

Recently, the Product Environmental Footprint Guide (EC, 2018b) adopted and recommended the

LANCA method.

Vidal Legaz et al. (2017) conducted a sound evaluation of eleven (out of 31 models) soil-related

models under different criteria (i.e. scientific soundness, stakeholders' acceptance, reproducibility, and

applicability) in an effort to improve available models to quantify soil quality, properties and functions

in LCA. The authors have created a new impact pathway with pre-selected models, including

biodiversity as end-point indicator (Fig. 2-21).

SOC changes have been proposed as a standalone midpoint indicator (expressed in t Cꞏyr-1 ha-1) also

linked with land occupation and transformation activities (Brandão and Milà i Canals, 2013), and
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ultimately as an indicator for ecosystem services (Brandão et al., 2011; Milà i Canals and de Baan,

2015). Moreover, the PEF Guide (EC-JRC, 2013) listed SOC deficit as a default indicator for the land

transformation impact.

Fig. 2-21. Impact pathways for land use of pre-selected models in LCA. Source: (Vidal Legaz et al., 2016)

Other LCA scholars have also focused on the contribution of land use and soil C changes to the overall

atmospheric GHG concentration, detailed in the next section.

2.6.3 Linking land use, soil organic carbon and climate change in life cycle assessment

Soil acts as a carbon sink/pool, but is also a source of GHG emissions (mainly CO2, CH4 and N2O).

According to Kirschbaum (2000) a small change of about 10% in the SOC could have a considerable

effect on the atmospheric concentration of carbon equivalent to 30 years of anthropogenic emissions,

and thus it is concerned with climate change.

Linking land, soil and climate change has been addressed since the initial days of LCA, but only in the

last decade, operational approaches have been created to estimate some of these linkages (Fig. 2-16).

Soil quality or properties are modelled in LCA from the effects of land occupation and transformation.
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The approach, as well as most other published ones, is based on the seminal work on land use

modelling in LCA by Milà i Canals et al. (2007).

Changes in SOC are often linked with land use (i.e. assessment effects of land use and management on

soil). About 39% of the studies reviewed by Goglio et al. (2015), accounted for SOC change due to

land transformation and 21% due to land transformation and land management change (LMC).

Land use modelling in LCA (expressed in unit of area per year) covers land occupation (land use) and

land transformation (land use change), and also land relaxation (see Box 2-11 for the relevant

terminology).

The land use framework proposed by Milà i Canals et al. (2007a) and recommended by the

UNEP/SETAC Life Cycle Initiative highlight the three main impacts pathways associated with land

use: biodiversity, biotic production and regulating functions of the natural environment. The Müller-

Wenk and Brandão (2010) method tackles the regulation function of the natural environment pathway

by assessing the impacts from CO2 releases to the atmosphere from the global terrestrial biological

carbon stocks (vegetation and soils from selected biomes) and the mean time the CO2 remains in the

air as a consequence from land use and land use change.

Box 2-11. Main terminology associated with land use and land use change

Land cover: defined as the “observed (bio) physical cover on the Earth’s Surface”, synthesising several

processes (natural and artificial) within the land activities (Di Gregorio, 2016).

Land use (occupation): as defined by the IPCC (2013b, Annex III), land use refers to the total of

arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The

term land use is also used in the sense of the social and economic purposes for which land is managed

(e.g., grazing, timber extraction and conservation).

Land use change (transformation): refers to a human-induced changes in the use or management,

leading to changes in in land cover having different effects on local and global climate (surface albedo,

evapotranspiration, GHG emissions) (IPCC 2013b, Annex III). It may also lead to changes in ecosystem

quality (e.g. biodiversity loss) postponing land recovery (Goglio et al., 2015; Koellner et al., 2013b).

The effects of change are differentiated in direct and indirect, defined in ISO Standard (ISO, 2013), as

follows:

o Direct land use change (dLUC): “change in human use or management of land within the

product system”.

o Indirect land use change (iLCU): “change in the use or management of land which is a

consequence of direct land use change, but which occurs outside the product system being

assessed”. It means that the consequence from land cover change due to another crop

production system retains the demand for the displaced land somewhere else (Koponen and

Soimakallio, 2015). It relates to competing land use and displacement effects, involving socio-

economic and externalities (market mediated indirect effects), which have been assessed with
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CLCA (Schmidt et al., 2015; Searchinger et al., 2008).

Land relaxation/regeneration: abandoned land is an example of how a system regenerates back

towards its natural state over time, yet the time for relaxation (i.e. the time to recover) mostly goes

beyond the considered LCA THs (Koellner et al., 2013a). It thus refers to a time required for a system

to recover. It would describe a baseline situation (Soimakallio et al., 2016) referring to a theoretical

potential of a land use system to regenerated back to its quasi-initial natural steady state (Milà i Canals

et al., 2007a).

Land use reference/baseline: describes a reference system other than the studied product system, i.e.

in absence of human intervention thus segregating technosphere from ecosphere/natural processes. A

baseline thus allows identifying the emissions emerging from the production system. For ALCA the

land use baseline is recognised in the previously described natural regeneration/relaxation (Milà i

Canals et al. 2007a), and in term of physical flows both from natural sand product systems should be

contrasted to assess the impacts on ecosystem quality (e.g. biodiversity, carbon sequestration). A zero

baseline situation, on the other hand, does account only for “absolute (observable) emissions”

(Soimakallio et al., 2016), disregarding the effect of postponing natural regeneration, for instance, in

bioenergy systems causing foregone carbon sequestration (i.e. a temporary reduction of Cbio and

increase in emission), as compared with a no bioenergy situation (Koponen and Soimakallio, 2015).

Specific to bioenergy systems, the baseline constitutes both reference comparisons equivalent fossil

fuels systems and natural regeneration (no provision of a function).

Land management changes (LMC): refers to be changes in agricultural cultivation practices of crops,

excluding permanent changes in land cover (i.e. land use change). For instance, Goglio et al., (2015)

reviewed the effects of SOC dynamic due to LCM associated with: crop selection, crop rotations with

high-biomass crops, shifting crops (annual from or to perennials), change in bare fallow area, reduction/

avoidance of biomass burning, tillage or not tillage, crop residue management, nutrient and water

management, use of organic fertilisers, and management of organic soils and degraded land. Modelling

LMC can be performed in different special scales using site-specific, site-dependent or site-generic

data. The level of applicability and uncertainty differs among these scales, increasing and decreasing for

site-generic modelling respectively.

Impacts from land use are complex and difficult to quantify, as they vary over time and space and

are partially determined by other drivers/causes affecting water, soil and air quality, and producing

carbon and biodiversity losses (e.g. forestland conversion to cropland or grassland, soil

degradation/erosion) as well as ecosystem service degradation (Koellner and Scholz, 2007; Vidal

Legaz et al., 2016).

On-site changes (direct due to conversion or changes in management practices) or off-site (indirect

due to market-mediated and displacement effects) can have a wide range of short-to-long-term

consequences on the global carbon and hydrological cycles, and thus on the Earth’s climate system.
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A harmonised classification of land use and land cover types elementary flows at global scales is

under current development by a working group in the frame of the UN Environment-SETAC Life

Cycle Initiative (Koellner et al., 2013b). The guidelines described principles for in the land use impact

pathways (based on Koellner et al. (2013a)), in which land use is modelled as an intervention (LCI

level) and the impacts result from different land uses.

Both the UNEP-SETAC principles and the widely used ReCiPe method (Huijbregts et al., 2016b)

links direct LUC to effects on biodiversity, via loss of habitat and soil disturbance, but excludes

indirect LUC effects on biodiversity via land use-induced climate change (Goedkoop et al., 2013;

Huijbregts et al., 2016).

Indirect land use change remains a controversial concept (Muñoz et al., 2015; Zilberman and

Hochman, 2010). Nonetheless, various approaches have been proposed despite the lack of consensus

on its reliability and interest in LCA (Gnansounou et al., 2008; Schmidt et al., 2015).

Methodological development enables the estimation, with increasing accuracy, of the impacts from

land use, especially linking SOC and climate change (an often-neglected pathway, due to the

complexity of its modelling) and biodiversity (for which multiple methods compete (Gabel et al.,

2016)). The effects of land use on climate change have been modelled by means of complex

simulation models, but an operational LCIA method is still missing (Cherubini et al., 2016).

Oertel et al. (2016) discussed soil-related processes and their influencing parameters that drive GHG

emissions. The authors claimed that current global datasets lack spatial variability, as they are mostly

restricted to some specific geographical areas. Besides the abiotic conditions (temperature and

humidity), influencing factors or key drivers of GHG emissions relate to land use, land cover and

vegetation. For instance, food systems contribute to about one third to GHG emissions, whereof 80 –

86% relates to agricultural land use.

Land transformation (i.e. land use change) may change land cover and the associated SOC stock. A

meta-analysis of 74 studies indicated that largest SOC gains were achieved, for instance, through

transformation from crop to pasture (+19%) or crop to forest (+53%), and vice versa highest SOC

losses occurred from native forest to crop (-42%) and pasture to crop (-59%) (Gou and Gifford, 2002).

2.6.4 Current carbon modelling standards and guidelines

A variety of methods, technical standards and guidelines are available to quantify the environmental

performance of organisations and products, many of which refer to carbon footprint, listed in Table

2.6. These carbon footprint approaches share a reliance on the reference IPCC GWP equivalency

factors, including the 100 years perspective, as well as a generalised exclusion of offsetting

mechanisms. Their treatment of biogenic carbon, carbon storage and delayed emissions is different, as
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is their consideration of indirect LUC, as no widely accepted methodology is available. When biogenic

carbon is recommended to be accounted for, it is mostly done separately.

Many comparative analyses have been published, highlighting the mutual alignment or lack thereof of

the various approaches available (Bolwig and Gibbon, 2009; Cornillier et al., 2015; Gao et al., 2014;

Pandey et al., 2011; Pelletier et al., 2013; Soode et al., 2013). The PAS 2050 standard (BSI, 2008) for

products and the GHG Protocol (WRI/WBCSD, 2011) for organisations are among the most widely

used ones, but choosing one standard often depends on the consideration of what the specific sector is

doing, as well as on ongoing market and governmental initiatives. Current technical standards and

guidelines, listed in Table 2.6, have different considerations and generally do not provide specifics on

the temporal variability and dynamic carbon modelling approaches.
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2.7 Chapter conclusion

This literature review chapter provided theoretical foundation and background information on the state

of the art of research developments and gaps relevant for this dissertation.

Two fundamental elements have been outlined in detail, namely the generalised lack of consideration

of the temporal dynamic in LCA, and the exclusion of dynamic biogenic carbon flows associated with

climate change. The latter is a direct consequence of the former: existing modelling approaches, based

on a simplified aggregation of carbon flows with no temporal differentiation, are static, thus justifying

carbon neutrality of biomass-derived carbon. Moreover, an essential temporal consideration has been

identified by linking Cbio, SOC and land use.

The review on the temporal limitations in LCA (described in section 2.4), and methodological

developments in LCIA (section 2.5) have partially been used as contributing elements to a Review

Paper in preparation (the draft is included in Appendix A: Paper 4 – Review paper on the time

consideration in LCA).

Table 2.7 summarises the general temporal limitations and proposed approaches in LCA, including the

main findings of section 2.5 and 2.6. Relevant research elements in this work are highlighted and

assigned to the following ranking: not relevant (-), relevant (+), very relevant (++), and indispensable

(+++). It has been identified that less research has been conducted on the modelling of dynamic carbon

flows than on other temporal aspects in LCA. Despite the variety of proposed methods linking Cbio,

SOC, land use, land use change and climate change, no comprehensive dynamic framework for

carbon modelling in LCA context is available. No single one among the proposed method and

approaches takes into consideration all aspects of carbon modelling and dynamic assessment.

The next Chapter outlines a proposed framework for dynamic carbon modelling. It aims at

contributing to the dynamic LCA methodology, particularly emphasising on how dynamic LCIs could

be obtained, by the temporal consideration in the modelling of biogenic-sourced flows.



C
ha
pt
er
2:
L
it
er
at
ur
e
re
vi
ew

:F
ro
m
st
at
ic
to
dy
na
m
ic
ca
rb
on

m
od
el
li
ng

74
P
hD

di
ss
er
ta
ti
on
,2
01
9

T
ab
le
2.
7.
T
em

po
ra
ll
im
it
at
io
n
in
L
C
A
w
it
h
sp
ec
ia
lf
oc
us

on
cl
im
at
e
ch
an
ge
,p
er
sp
ec
ti
ve
s
an
d
re
le
va
nc
e

Is
su
es

C
on
ce
rn
ed

ph
as
es

D
es
cr
ip
ti
on

E
xa
m
pl
es
of
cu
rr
en
td
ev
el
op
m
en
ts

R
el
ev
an
ce

fo
r
th
es
is

G
&
S
L
C
I
L
C
IA

I

C
om

pu
ta
ti
on

te
ch
ni
qu
es
of
th
e

te
m
po
ra
ld
yn
am

ic

x
x

T
he

co
m
pu
ta
ti
on

di
sr
eg
ar
ds

te
m
po
ra
l

in
fo
rm
at
io
n
(e
.g
.t
im
in
g
of
em

is
si
on
s,
ti
m
e
la
gs
,

va
ri
ab
il
it
y)
w
it
hi
n
th
e
pr
oc
es
s
m
at
ri
x.
T
he

im
pa
ct
s
ar
e
as
su
m
ed

to
be

li
ne
ar
ly
pr
op
or
ti
on
al

to
th
e
ag
gr
eg
at
ed

em
is
si
on
s,
an
d
th
us

to
th
e

re
fe
re
nc
e
fl
ow

.

E
S
P
A
fo
r
te
m
po
ra
ll
y
de
fi
ne
d
pr
oc
es
se
s
(B
el
oi
n-
S
ai
nt
-P
ie
rr
e
et
al
.,

20
14
)

D
yP
L
C
A
to
ol
(T
ir
ut
a-
B
ar
na

et
al
.2
01
6)

T
em

po
ra
li
s
to
ol
(C
ar
de
ll
in
ie
ta
l.,
20
18
)

–

B
ac
kg
ro
un
d
da
ta
se
ts

x
C
ha
ll
en
ge
s
co
ns
id
er
ed

fo
r
te
m
po
ra
ld
at
a

va
ri
ab
il
it
y
in
ex
is
ti
ng

da
ta
ba
se
s

T
em

po
ra
ld
if
fe
re
nt
ia
ti
on

of
da
ta
se
ts
(P
in
so
nn
au
lt
et
al
.,
20
14
)

–

D
yn
am

ic
m
od
el
li
ng

x
T
em

po
ra
lv
ar
ia
bi
li
ty
of
su
bs
ta
nc
es
du
e
to

co
m
pl
ex

en
vi
ro
nm

en
ta
lm

ec
ha
ni
sm

s
de
pe
nd
in
g

on
di
ff
er
en
tp
ar
am

et
er
s,
su
ch

as
,t
he

li
fe
ti
m
e
of

su
bs
ta
nc
es
an
d
th
e
re
si
li
en
ce

of
ec
os
ys
te
m
s

T
im
e
in
he
re
nt
se
ns
it
iv
it
y
in
th
e
pr
oc
es
s
tr
ee

(C
ol
le
te
ta
l.,
20
14
)

M
od
el
li
ng

fr
eq
ue
nc
ie
s
(L
en
ze
n
et
al
.,
20
06
).

+
+
+

M
od
el
li
ng

sy
st
em

ev
ol
ut
io
n

x
x

E
va
lu
at
io
n
of
em

er
gi
ng

sy
st
em

s,
ad
op
ti
on

to
ne
w
te
ch
no
lo
gi
es
an
d
ch
an
ge
s
ov
er
ti
m
e

co
nt
ra
di
ct
s
im
pl
ic
it
st
ea
dy
-s
ta
te
pe
rs
pe
ct
iv
es

A
ge
nt
-b
as
ed

m
od
el
li
ng

(D
av
is
et
al
.,
20
09
;K

no
er
ie
ta
l.,
20
13
;

M
il
le
r
et
al
.,
20
13
;N

oo
ri
an
d
T
at
ar
i,
20
16
)

P
ar
ti
al
-e
qu
il
ib
ri
um

m
od
el
s
(L
ev
as
se
ur
et
al
.,
20
17
;M

en
te
n
et
al
.,

20
15
;V

áz
qu
ez
-R
ow

e
et
al
.,
20
13
)

S
ce
na
ri
o-
bo
un
d
m
od
el
li
ng

(N
úñ
ez

et
al
.,
20
13
;P
eh
nt
,2
00
6)

+
+

T
em

po
ra
lb
ou
nd
ar
ie
s,

ti
m
e
pr
ef
er
en
ce
s

x
x

x
V
al
ue
-l
ad
en

an
d
su
bj
ec
ti
ve

ch
oi
ce

of
T
H

P
ro
bl
em

at
ic
of
br
id
gi
ng

vs
su
st
ai
na
bl
e
so
lu
ti
on
s:

w
ha
ti
m
pa
ct
s
ha
ve

hi
gh
er
ti
m
e
re
le
va
nc
y

T
H
do
m
in
an
ce

cr
it
er
ia
(D
yc
kh
of
f
an
d
K
as
ah
,2
01
4)

T
he
or
et
ic
al
fr
am

ew
or
k
fo
r
di
sc
ou
nt
in
g
(Y
ua
n
et
al
.,
20
15
)

+

T
em

po
ra
l

in
co
ns
is
te
nc
y
of
th
e

st
at
ic
G
W
P

x
x

In
co
ns
is
te
nc
y
be
tw
ee
n
st
ud
y
bo
un
da
ry
an
d

L
C
IA

ti
m
ef
ra
m
es

T
im
e-
de
pe
nd
en
tC

F
an
d
D
yn
C
O
2
to
ol
(L
ev
as
se
ur
et
al
.,
20
10
a)

T
im
e-
co
rr
ec
te
d
m
et
ri
c
(K
en
da
ll
,2
01
2;
K
en
da
ll
et
al
.,
20
09
)

+
+

B
io
ge
ni
c
ca
rb
on

x
x

x
C
ar
bo
n
ne
ut
ra
li
ty
hy
po
th
es
is
ex
cl
ud
es
im
pa
ct
s

fr
om

bi
og
en
ic
bi
om

as
s
so
ur
ce
s

G
W
P
B
io
m
et
ri
c
(C
he
ru
bi
ni
et
al
.,
20
11
a)

T
on
ne
-y
ea
r
m
et
ho
ds

(F
ea
rn
si
de

et
al
.,
20
00
;M

ou
ra
C
os
ta
an
d

W
il
so
n,
20
00
)

C
ar
bo
n
se
qu
es
tr
at
io
n
(V
og
tl
än
de
r
et
al
.,
20
14
)

F
or
es
tm

od
el
fo
r
bi
og
en
ic
ca
rb
on

ba
la
nc
e
(D
e
R
os
a
et
al
.,
20
17
)

+
+
+

S
ou
rc
e:
ow

n
el
ab
or
at
io
n.
A
cr
on
ym

s:
G
&
S
:G

oa
la
nd

sc
op
e
de
fi
ni
ti
on
;L

C
I:
li
fe
cy
cl
e
in
ve
nt
or
y;
L
C
IA
:l
if
e
cy
cl
e
im
pa
ct
as
se
ss
m
en
t;
I:
In
te
rp
re
ta
tio
n;
T
H
:T

im
e
ho
ri
zo
n;

E
S
P
A
:
E
nh
an
ce
d
S
tr
uc
tu
ra
lP
at
h
A
na
ly
si
s;
G
W
I:
G
lo
ba
lw

ar
m
in
g
im
pa
ct
s;
G
W
P
:G

lo
ba
lw

ar
m
in
g
po
te
nt
ia
l;
iL
U
C
:i
nd
ir
ec
tl
an
d
us
e
ch
an
ge

R
el
ev
an
c y
:n
ot
re
le
va
nt
(-
),
re
le
va
nt
(+
),
ve
ry
re
le
va
nt
(+
+
),
in
di
sp
en
sa
bl
e
(+
+
+
)



Chapter 3:
A framework for dynamic

carbon modelling



Chapter 3: A framework for dynamic carbon modelling

76 PhD dissertation, 2019

3 A framework for dynamic carbon modelling in LCA

3.1 Chapter context

The previous chapter provided a theoretical overview and description of the relationship of climate

change assessment with biomass-derived products. It also highlighted the relevance of dynamic carbon

modelling, thus contributing to establish the context of the thesis and the current gaps being addressed

in this work.

Building on prior scholarship, this chapter proposes a framework, contributing to the methodological

development of dynamic LCA in terms of dynamic carbon modelling and climate change: i.e. the

development of dynamic carbon inventories (including Cbio and SOC) of different types of biomass-

sourced process and product pathways (i.e. associated with biomass supply chains) under the

consideration of the temporal carbon emission profiles throughout the LCA phases.

The main objective of this chapter is thus to propose a comprehensive framework integrating all

aspects of carbon modelling alongside the LCA phases (described from section 3.3.1 to 3.3.4), generic

enough to build a methodological basis for dynamic carbon inventories, underlying the following

aspects:

Defining terminologies throughout the LCA phases;

Describing the dynamic character of biogenic carbon and the timing of emission flows;

Determining the main time-dependent modelling elements (from upstream to downstream).

The purpose of the framework is to support the development of complete carbon balances (fossil and

biogenic-based) of biomass-based systems, and to highlight key elements, which require dynamic

modelling. A simplified cradle-to-grave example (section 3.4) delivers a better understanding of

dynamic modelling and the temporal consideration, in contrast with the static classic LCA modelling

approach. It is to mention that this approach does not stress on full LCA studies, as it centers solely on

the dynamic elements of biogenic- and fossil-sourced carbon flows along the life cycle.

The dynamic elements are further elaborated and tested in the frame of case studies carried out in

Chapters 4 and 5, to further support the recommendations made.

3.2 Framework proposal: dynamic carbon modelling for dynamic LCA

The proposed framework for dynamic carbon modelling incorporates the time dimension in the

environmental assessment of biomass-based products, deriving from dedicated forestry and

agricultural systems, and involving residual matter and biowaste.
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Fig. 3-1 provides an overview of the proposed framework aligned with the classic LCA framework,

encompassing the four LCA phases, but emphasising the LCI phase, with the purpose of modelling

time dynamic Cbio flows throughout the life cycle of biomass-sourced products, including soil organic

carbon (SOC), to fulfil climate change mitigation potentials. The priority is thus to set on the climate

change impact category applying dynamic methods, for which dynamic characterisation factors

already exist.

Moreover, the dynamic inventory modelling in the framework can be coupled with any demand

model, informing on time-dependent scenarios (e.g. predictive, explorative or normative) based on

socio-economic flows, including:

Evolving markets, technological innovation and prospective pathways;

Climate-energy policies analysis and multi-annual mitigation strategies;

Temporal-spatial differentiation (site-dependent and site-specific parameters);

Externalities and marginal data.



C
ha
pt
er
3:
A
fr
am

ew
or
k
fo
r
dy
na
m
ic
ca
rb
on

m
od
el
li
ng

78
P
hD

di
ss
er
ta
ti
on
,2
01
9

F
ig
.3
-1
.P
ro
po
se
d
fr
am

ew
or
k
fo
r
dy
na
m
ic
ca
rb
on

m
od
el
li
ng

in
li
fe
cy
cl
e
as
se
ss
m
en
t



Chapter 3: A framework for dynamic carbon modelling

Ariane Albers 79

3.3 Elements for dynamic modelling along the life cycle phases

3.3.1 Goal and scope phase: consideration of the time dimension

Defining biomass-based products and carbon dynamics

The biotic products addressed by the framework originate from managed forests and agricultural

systems within the technosphere/anthroposphere. The technosphere includes cultivated biomass

systems, featuring high levels of human intervention (Lindeijer et al., 2002), and linked with various

economic activities (processes and services) throughout the biomass value and supply chains. These

types of bioproducts play an increasing role in climate mitigation strategies and in the context of bio-

economy and biorefinery in industrial systems.

The raw material/feedstock of bioproducts originates from biomass (vegetation) from the

aboveground (stem, branches, leaves) and belowground (roots) plant compartments. It is characterised

by its high carbon content (about 50% by default) and its natural renewability. Biomass can be

regrown and it may eventually represent a carbon sink, in contrast with the abiotic fossil-derived

counterpart, which is non-renewable and represents a carbon source (e.g. petroleum fuels, mineral

fertilisers, synthetic materials).

The term bioproduct encompasses bioenergy (e.g. transport biofuels, electricity and heat) and

biomaterials (e.g. wood lumber for construction housing, polymers, intermediate chemical compounds

solvents, plastics, adhesives, personal-care products). It also includes biowastes with an economic

value (wood chips, soil amendments, organic fertilisers, cooking oil, sewage sludge, etc.) not

necessarily linked with downstream processes (waste treatment), as they represent co- or by-products

emerging from processes at any life cycle stage.

Fig. 3-2 provides an overview of the biomass sources linking different processes pathways to the end

use bioenergy and biomaterials. More details on the processes and pathways along the life cycle

phases are provided in Appendix C: Biomass pathways.
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Biomass feedstock deriving from agriculture/aquaculture or managed commercial forestry includes

two main categories:

i. Dedicated: starch crops (e.g. wheat, corn), sugar crops (e.g. sugar beet), oil seeds (e.g.

rapeseed, sunflower), lignocellulosic biomass (e.g. miscanthus, switchgrass, poplar, willow,

forest wood), algae (here also summed up as annual and perennial crops, woody and aquatic

biomass), and

ii. Residues or biowaste: lignocellulosic residues (e.g. forest brushwood, other woody residues),

herbaceous and agricultural residues, agro-industrial residues.

Residues/biowaste can be further categorised between primary (agricultural and forestry raw material)

and secondary (manufacturing processes) and tertiary (consumer/household) feedstock (Odegard et al.,

2012). Biomass feedstock not accounting as primary, are, for instance: fats and oils (animal fat,

cooking oil), other organic waste and residues (e.g. various manure, urban waste), industrial biomass

and biomass mixtures (e.g. paper-pulp sludge, sewage sludge, refuse-derived fuel, paper wastes, saw

dust) (Cherubini et al., 2009b; Vassilev et al., 2010).

Biomass features vary in compositions (e.g. concentrations of protein, fatty acids, carbohydrates,

fibres as well as the moisture content) (Vassilev et al., 2010), thus undergoing different conversion

methods and technologies: physical/mechanical, thermal, thermo-chemical, chemical, bio-thermo-

chemical and electro-chemical processes. More detailed classification of biomass feedstock and

process pathways was discussed in Cherubini et al. (2009b).

This framework deals primarily with the dynamic of carbon naturally embedded in primary biomass

sources. More precisely, with the time-dependent carbon exchange flows originating from biotic

resources hereafter referred to as biogenic carbon (Cbio). The carbon considered as input to the soil,

hereafter referred to as soil organic carbon (SOC) should also be modelled, because it likewise

originates from biotic resources. In the global carbon cycle, Cbio and SOC exchange flows are

associated with the biosphere and pedosphere respectively (i.e. terrestrial biological carbon cycle).

Dynamic Cbio refers to the living biomass in the aboveground and belowground plant compartments,

while SOC accounts for the dead biomass, involving residual plant fractions in the aboveground (e.g.

brushwood, litter), dead roots in the belowground and biowaste used to produce organic fertilisers and

soil amendments (e.g. animal effluents, compost, vinasse, biological sludge, press cakes, etc.), which

in turn are exogenous inputs to the soil.

Purpose of modelling dynamic carbon flows

There is an urgent need for climate change mitigation, and dynamic carbon profiles, which may

provide a more accurate picture of “real” mitigation potentials, for instance towards climate targets.

The consideration of the temporal dimension requires the development of temporal emission profiles,
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dealing with temporally differentiated elementary and technical flows. Biomass as a resource derives

from dynamic systems, and is thus time-dependent (e.g. growth dynamic of plants, product-related life

cycle carbon flows); while other systems may be modelled with static or steady-state approximations

(e.g. industrial systems).

The temporal consideration through dynamic modelling has three main purposes:

i. Model the Cbio and SOC dynamics, not considered under the carbon neutral hypothesis, and

account for the time the carbon accumulates and remains in the technosphere, thus

contributing to either climate change or climate change mitigation.

ii. Account for the temporal variation of all carbon flows of a specific biomass type and

derivative bioproducts from and to the atmospheric pool.

iii. Develop complete dynamic carbon inventories, including both biogenic and fossil sourced

emissions.

Defining the modelling time step

The time step for dynamic carbon flows is set to be annual. As described in section 2.4, the temporal

frequency of emissions and substances is an inherent temporal characteristic of the impact category.

The assessment of climate change effects assumes well-mixed forcing compounds having atmospheric

lifetimes longer than one year and thus distributed globally. The annual time step is thus recommended

for the computation of technical and elementary flows.

Setting the temporal study boundaries

For time-dynamic LCA, it is essential to define the temporal boundaries beyond the requirements

from the LCA ISO 14040/14044 standard (ISO, 2006a, 2006b), referring to the TH of the impact

characterisation (here IPCC GWP over 20 or 100 years for the climate change impact category). In the

classic (static) LCA and carbon footprint approaches, there is no temporal discrimination of the

emission flows, given the aggregation of all inventoried GHG elementary flows, which are then

characterised in the same way, due to the application of a fixed TH.

In contrast, the dynamic framework proposes to specify a study TH by: a) describing the temporal

emission profiles of the modelled system and thus defining a LCI TH, and b) determining a future

reference year of the impact assessment by means of the flexible/variable LCIA TH. By setting the

LCIA TH, for instance over 100 years (most commonly use TH) or any end-year along the impact

assessment timeline (possible with the dynamic approach), it will be transparent whether temporal

cut-offs are carried out in the assessment of the time-dependent GHG inventories.

Fig. 3-3 illustrates the two available options with dynamic LCA, primarily determined by setting an

end-year to the impact assessment timeline and thus defining an LCIA TH, which in turn determines
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whether all inventoried carbon emissions described within the LCI TH (temporal emission profiles)

are covered by the characterisation. Temporal cut-offs are given in the opposite case of LCIA TH

lower than LCI TH and no temporal cut-offs are given in the case of LCIA TH larger or equal than

LCI TH (all inventoried emissions are considered). Finally, the setting of an end-year for the impact

assessment (a future reference year) will ultimately define whether all inventoried dynamic carbon

emissions (given by the LCI TH) are covered or not.

Fig. 3-3. Main temporal implications of classical static and dynamic LCA approaches at the inventory and

impact assessment level

The setting of a LCIA TH is mainly carried out to enable the comparison with static approaches.

3.3.2 Dynamic LCI: timing of the emission flows

Dynamic models describe the carbon flows along the product’s life cycle through time, specifying

when in time the emissions take place. It allows developing temporal emission profiles of bioproducts,

accounting for the temporal variation of the carbon exchanges from and to the atmosphere. The

temporal emission profiles build the bases for dynamic inventories in the context of dynamic LCA.

The dynamic inventory associated with biomass and the respective derived bioproducts, represents a

full lifetime carbon accounting.

Fig. 3-4 illustrates the Cbio and SOC exchanges to be considered between the atmosphere and the

technosphere, along the life cycle phases of a product. The removal of carbon from the atmospheric

pool and fixation in biomass through photosynthesis during growth, describes the carbon fixation and

sequestration flow (green arrow). The same unit of sequestered carbon may be emitted back to the

atmospheric pool by means of one or several carbon release flows (orange arrows), occurring at the
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EOL phase or from any process emissions along the product life cycle phases before the EOL. The

carbon embedded in the intermediate or final product may represent a carbon stock (black arrows), if

the carbon release is delayed through time and thus postponing radiative forcing. Additional carbon

flows may be considered (dashed black arrow), for instance, to capture carbon inputs to the soil (i.e.

SOC) at the upstream, as well as eventual loop-cycling processes within the life cycles (e.g. recycling,

reuse).

Note: Arrows (orange coloured) from the atmosphere to the biomass or soil represent fixation and sequestration
flows, arrows (green coloured) leaving to the atmosphere represent release flows, and arrows (black coloured)
between the life cycles represent the exchange flows between processes or eventually carbon stock due to a delay

Fig. 3-4: Carbon exchange flows between the atmosphere, biomass compartments and soil along the bioproducts

life cycle phases

Computation of negative and positive carbon flows

Carbon emissions released to the atmosphere represent positive, while carbon removals from the

atmosphere represent negative radiative forcing effects. Therefore, the exchanging carbon flows are

inventoried as: a) negative flows for all carbon sequestration, representing a cooling effect due to

removal of carbon from the atmospheric pool (contributing negative radiative forcing), and b) positive

flows for all carbon releases, representing the warming effect due to carbon re-emission to the

atmosphere. The computation of both negative and positive flows represents the net dynamic

biogenic carbon balance of the studied systems (i.e. annually disaggregated inventories).

A complete dynamic carbon balance (“C-complete”, as opposed to “C-neutral”, which disregards

biogenic carbon) does include carbon exchange flows from abiotic resources, i.e. the fossil carbon

emissions resulting from the production and consumption processes of bioproducts. In contrast to

biotic resources, fossil-sourced releases are inventoried as positive emissions only, as there turnover

rates into the geological pool are considerably slow.
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Key elements in the dynamic life cycles

Fig. 3-5 shows the classic LCA approach involving the main phases of the life cycle, here biomass

extraction, transformation use and end-of-life disposal. The temporal information referres to each

phase, however, the dynamic is particulary linked to the upstream and downsteam modelling,

eventually involving an emission dely may during transformation and use phases. Temporal carbon

profiles are thus exclusively associated with three key features along the life cycle phases:

Rotation lengths and growth dynamic (upstream): referring to carbon fixation and

sequestration dynamic during plant biomass growth.

Service life (use phase): referring to potential carbon stocks delaying carbon releases.

Release pathways (downstream or during any product life cycle phase): referring to carbon

releases contributing to atmospheric GHG emissions. The releases are associated with two

phenomena: product end-of-life (EOL) emissions and/or process emissions happening at any

time before the product EOL phase.

Fig. 3-5. Dynamic life cycles of biomass-based products featuring the classic phases associated with biomass

extraction, transformation use and end-of-life and the inclusion of the time dimention (highlighted with the

upwards file) at each phase from upstream to downstream modelling, whereas a emission delay (i.e. carbon

storage) inbetween may emerge.

The abovementioned key features identify where dynamic carbon modelling plays an important role,

and how to differentiate the carbon flows along the life cycle phases. However, the use phase is

mainly characterised for delaying radiative forcing applicable to long-lived products (i.e. featuring a

long service life), persisting in the technosphere over a longer period time (e.g. construction material),

creating a temporary carbon stock. The delay does not per se represent a dynamic; however, it may

have a considerable cooling effect, as the temporary stock avoids the return of Cbio to the atmosphere.

Short-lived products (e.g. bioenergy), on the other hand, are not characterised by this feature.
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As illustrated in Fig. 3-5, the key features for dynamic carbon modelling stress the upstream and

downstream from the product’s use phase, for which different dynamic elements need further

consideration.

Upstream modelling

The upstream processes to be considered encompass all dynamic flows linked with the cultivation/

production of biomass in agricultural (crops, perennial grasses) or forestry systems (including short

rotation coppice). It is primarily concerned with the dynamic Cbio fixation and sequestration of

biomass with long rotation lengths (growth time), over which incoming flows from the atmosphere are

captured, as shown in Fig. 3-6.

Upstream modelling should also take into account the release flows from the biomass growth and

cultivation, referring to decay or on-site combustion of dead biomass. Upstream systems include

biowastes as contributors to SOC.

Fig. 3-6. Temporal consideration in biomass systems, upstream

When attempting dynamic modelling of biomass-based systems, several key modelling elements,

listed in Table 3.1, should be accounted for.
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Table 3.1. Key design questions in dynamic biomass-based carbon models

System/modelling

aspects

Key data points

Sequestration and SOC

modelling

How long is the rotation length?

How many rotation cycles are accounted for?

Are thinning/ trimming operations performed periodically or annually?

Is the sequestration considered at stand, landscape or national/regional level?

When does the initial/first sequestration flow start, i.e. is the sequestration

accounted before or after the final harvest?

How should the sequestration be allocated to the harvest activity? Or how should

the first year of sequestration be defined?

Is the biomass allowed to regrow after harvest?

How to define a baseline situation ?

How does forest residue removal affect soil organic carbon losses over time?

Management practices What is the tree density or yield per unit of area or plot?

What plant parts are exported/ harvested and what fractions are incorporated in

the soil?

Is the dead biomass left on the floor or exported as co-product?

Is exogenous matter added as soil amendment or fertiliser?

Is the current harvest affected by losses and mortalities?

Land cover and

management changes

What was the previous land occupation?

Is the current modelling system affected by changes in cover or management or

in land use?

Does the study aim at modelling indirect effects or externalities?

Downstream modelling

The downstream processes define when in time the EOL pathway of the bioproduct takes place. The

EOL phase captures the last carbon release flow to the atmosphere (if applicable), which may take

over several centuries.

The EOL biomass pathways may be explored individually (specific to a case) or through a

combination of different scenarios to evaluate mitigation options. The European Commission

promotes life-cycle thinking in the frame of European waste management policies under the Waste

Framework Directive 2008/98/EC (EC, 2010). The Directive is targeted at developing a resource and

energy efficient culture considering the waste hierarchy, in which waste prevention is the ultimate

goal, followed by waste reuse/recycling and other forms of material or energy recovery, and as a last

option waste disposal at the landfill site.



Chapter 3: A framework for dynamic carbon modelling

88 PhD dissertation, 2019

EOL scenario building may be inspired by the bio-cascading principle with the purpose of optimising

the use of biomass products by displacing the emissions continuously before the final energy use,

increasing the value of energy, as well as the exploring all possible EOL options (e.g. Odegard et al.

(2012); Cowie et al. (2013)).

Temporal profiles of EOL pathway scenarios may be affected by net energy recovery and efficiencies,

recycling loops (both closed- and open loops) (Schrijvers et al., 2016; Wolf and Chomkhamsri, 2014),

as well as the generation of secondary materials entering other life cycles (e.g. fertilisers, soil

amendment, animal feed, wood fibres, etc.), which avoid or displace the use of primary raw materials.

The EOL of most biogenic products takes place via waste management and wastewater treatment

technologies, as well as via energy-recovery. For biofuels, the EOL is combustion for

transport/mobility. The main EOL pathways of other non-transport bioproducts can be summarised

exemplarily into seven modelling scenarios, combining different waste treatment processes (Fig. 3-7):

Scenario 1 - Landfill without energy recovery: Waste is directly landfilled and/or buried. The

landfill gas (LFG) is captured and burnt in flares to reduce GHG emissions; however, no

energy recovery is performed. The remaining LFG (about 50-60% consisting of CH4) is

released into the atmosphere. Landfill leachate may be treated in the wastewater treatment

plants (WWTP).

Scenario 2 - Landfill with energy recovery: About 50% of LFG is captured and burnt in gas

engines for energy recovery (electricity generation) at conversion efficiencies between 28-

35% (Cherubini et al., 2009a). The remaining LFG is emitted to the atmosphere or partially

flared. Landfill leachate may be treated is treated in the WWTP.

Scenario 3 - Waste-to-energy: Separation of combustible waste fractions from the recyclable

secondary materials, either from waste management or WWTP, and incineration of it.

Technologies considered for incineration are thermal waste treatment process using fossil fuel

to start-up the incineration process (without waste pre-treatment) for electricity and/or heat

generation (Zaman, 2010). In the case of large organic waste fraction in the waste mixture the

incineration is performed with high moisture content with lower energy recovery efficiencies

(Mendes et al., 2004). The cleaning of the flue gas depends on the technology (water absorber

or filters) and furnace type used for the incineration. Bottom ash is either landfilled or used as

a road and cement aggregate.

Scenario 4 - Recycling: Separation of combustible fraction (RDF-refused derived fuel) to

recover energy (electricity production) from the recyclable secondary materials, either from

waste management or wastewater treatment.

Scenario 5 - Anaerobic Digestion: The organic wet fraction is pre-treated and used as

feedstock in an anaerobic digester, under biological treatment processes. The generated biogas
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is captured and used equivalent to natural gas for energy recovery (e.g. through combined heat

and power- CHP). The by-product digestate is equivalent to chemical soil fertiliser or soil

amendment.

Scenario 6 - Composting by means of aerobic digestion: The organic fraction is composted

under aerobic biological treatment processes, whereas CO2 and CH4 emissions are emitted into

the atmosphere. The compost serves as soil amendment.

Scenario 7 - incineration: energy generation by means of combustible waste fractions (RDF-

refused derived fuel).

Fig. 3-7. Temporal consideration in biomass systems by means of scenarios, downstream

3.3.3 Dynamic LCIA: time-dependent characterisation factors

Having temporally disaggregated carbon exchange flows is an essential pre-condition to perform a

dynamic impact assessment. The annualised dynamic inventories enable computing climate change

impacts as a function of time by means of the dynamic characterisation method proposed by

Levasseur et al., (2010a) (see section 2.5.6), and directly applicable with the dynCO2 tool (Box 2-6).

This method is currently the most recognised and sophisticated approach in dynamic LCA, featuring

both the annually differentiated GHG emission inventories and the time-dependent characterisation
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with flexible/variable THs. The method allows consistency between temporal boundaries of the

studied system by timing the emissions and the characterisation.

The main limitation of the dynamic method is the choice of a LCIA TH (end-year of the impact

assessment or so called future reference year), which is unavoidable for comparison purposes, under

for instance a policy context. When matching the study TH by means of LCIA TH and LCI TH being

equal (see section 3.3.1) the radiative forcing effects from the last emissions are not considered into

the future. Therefore, it is recommended to choose an end-year/reference future year of the dynamic

impact assessment that goes beyond the last inventoried emission (i.e. LCIA TH > LCI TH).

Yet, in contrast to the static method, it allows testing the sensitivity of different TH choices and their

influence on the results and mitigation options. Moreover, under consideration of no-TH the dynamic

method allows following the evolution of the emissions and their radiative forcing effects, which can

also be used for comparison of different temporal evolutions.

3.3.4 Life cycle interpretation

The interpretation of the results should be accompanied with a sensitivity analysis concerning the

model parameters used for dynamic carbon modelling, or under comparison of the different potential

temporal boundaries for LCI THs (e.g. timing of the sequestration, rotations, thinning operations,

service life, etc.) and LCIA THs (i.e. setting different end-years of the dynamic impact assessment).

3.4 Simplified cradle-to-grave carbon cycle model example

3.4.1 Introduction

An exemplary case study of sawn mill wood co-products is presented here, supporting the proposed

framework, to better understand the time dynamic LCA approach and its implementation in contrast

with the currently used static classic LCA modelling one. For simplicity, the data for the life cycle

processes derive exclusively from literature. In the absence of primary data, assumptions were built

upon surveys and life cycle assessment inventory data from the Consortium for Research on

Renewable Industrial Materials (CORRIM) and other studies from the Pacific Northwest region of the

United States (Puettmann and Wilson 2005; Milota et al. 2006; Ingerson 2009; Bergman et al. 2012;

Lippke and Puettmann 2013).

Fig. 3-8 shows a map of different timber assessment regions in the United States (Adams et al. 2006),

highlighting the Pacific Northwest region selected for this example. The region belongs to the world’s

largest temperate rain forest biome (from Alaska to California). Annual softwood production rate of

coniferous trees, amounts for 21 billion m3 (Puettmann and Wilson 2005). Among a large variety of

products (e.g. glued-laminated timbers, plywood, and oriented strand board), structural lumber
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accounts for 13% in this region, most of which is commonly used as structural wood framing in

residential buildings.

Fig. 3-8. U.S. Forest Service Resources Planning Act timber assessment regions (Adams et al. 2006)

3.4.2 Goal and scope

The purpose of this study is to model the dynamic biogenic carbon (Cbio) balance of a multifunctional

sawmill production system by contrasting: a) main product lumber, and b) co-production lumber and

wood chips. The functional unit is one tonne of biogenic carbon (1 t Cbio) sequestered and released

over time. The primary aim of this assessment is to draft a simple modelling approach of the products’

life cycle, capturing the years of 1 t of Cbio sequestration in the biomass over a given rotation length,

and the subsequent years when that same unit of 1 t of Cbio embedded in the wood biomass is released

to the atmosphere and/or delayed and/or stored. The atmospheric impact from Cbio release flows are

mass allocated to the lumber only or for the co-production respective to their proportional

contributions.

The two Cbio balances are expressed in their respective biogenic-sourced GHG emissions (here Cbio-

CO2 and Cbio-CH4) to convert them into dynamic GHG inventories and assess their time-dependent

effects on the atmospheric GHG concentration, by means of the dynamic method proposed by

Levasseur et al. (2010). The dynamic results are compared with the classical static LCA approach

using the IPCC Global Warming Potential (GWP) factors for both THs 20 and 100 years (Myhre et al.

2013a).

The scope of the example encompasses exclusively Cbio flows throughout the entire products life

cycle, from cradle-to-grave (upstream to downstream) processes, namely: coniferous forest growth,

log harvest, lumber manufacture with on-site energy generation at the sawn mill and wood chip co-

production, assembly of the frame structure and landfill disposal with no energy recovery.
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The main life cycle phases linking processes and mass flows (in percentage) of lumber and co-

production are illustrated Fig. 3-9. Throughout the phases, the time-dynamic emission flows can be

described: i.e. carbon fixation and sequestration (by forest tree growth dynamic and rotation length)

and carbon releases instantly or gradually distributed over time. The dynamic carbon balance (LCI)

consists exclusively of temporally differentiated Cbio flows. Fossil-sourced carbon, any carbon losses

within the life cycle processes, as well as other LCA inventories (e.g. resource and energy

consumption, emissions, etc.) are excluded from this example, as the primary aim lies in the

accounting of the lifetime of 1 t Cbio flows through all given life cycle stages.

Fig. 3-9. Life cycle processes of wood construction materials with assumptions undertake
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Temporal emission profiles

The dynamic Cbio flows are described with one-year time steps. The temporal emission profiles are

dependent on the timing of the emission occurrence primarily determined throughout the main life

cycle phases, detailed as follows:

Forestry: 1 t of Cbio is fixed in the tree biomass (i.e. up-taken through photosynthesis during

growth) over a 45-year rotation length (from t0 to t45). Note that the sequestration cycle of 45

years has been arbitrarily chosen to represent a forest management of a medium intensity class

with fertilisation (represented by 46% in the Pacific Northwest region) (Bergman et al. 2012).

In the subsequent year (t46), the logs are harvested. The logging process generates 0.3 t Cbio of

forest residues, of which 50% consists of aboveground biomass (e.g. litter, limps) and 50%

belowground (e.g. stump, roots). It is assumed both compartments undergo decay, whereas

Cbio-CO2 emissions only are considered.

Sawmill: the round wood logs are processed into 0.5 t Cbio kiln-dried lumber. 0.16 t Cbio of the

sawn wood waste (bark, hog fuel and sawdust) is burned in tank on-site boiler for the wood

drying process. Moreover, 0.34 t Cbio of an economic valuable co-product (wood chips) is

generated. The wood chips are assumed to be burned within the t46. For combustion-related

emissions we considered Cbio-CO2 only.

Use: it is assumed that lumber assembled (it was assumed that no residues were generated

during assembly) for structural house framing has a service life of 40 years (from t46 to t86),

and that no Cbio emissions are released over the entire use phase.

End of life treatment (disposal): at the end of the service life, the residential framing structure

is demolished (it was assumed that 100% of the wood is recovered during demolition) and

landfilled as wood waste, of which 25% is presumed to be degradable organic carbon,

undergoing aerobic and anaerobic decay, converted into landfill gas without energy recovery,

consisting of 60% Cbio-CH4 and 40% Cbio-CO2 (Börjesson and Gustavsson 2000). The non-

decomposable portion (75%) remains in the landfill, representing a permanent carbon stock.

Carbon modelling approach

A summary of all assumptions, including key years, is illustrated in Fig. 3-10.
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3.4.3 Dynamic LCI

Dynamic life cycle inventory time horizon

The detailed description of the temporal emission profiles allows defining a dynamic LCI TH of the

Cbio balance. The emissions from the last life cycle stage (i.e. landfilling) start at t86; however, the

decaying Cbio-CH4 and Cbio-CO2 are continuously released to the atmosphere over longer time lengths.

To avoid temporal cut-offs, the chosen LCI TH is long enough to cover all Cbio flows. Consequently,

the LCI TH is set from t0 to t200, given that the decaying emissions for the two systems accounts for

1E-4 t Cbio at t200, here considered close enough to zero.

Visualisation of inventory results

Fig. 3-11 provides a detailed overview of such dynamic Cbio inventories concerning lumber (Fig.

3-10a) and the co-production (Fig. 3-10b), visualising when in time the carbon emissions take place.

Cbio fixed and cumulated in the tree biomass from year t0 to t45, as well as the Cbio stock in the landfill

at t86 is computed as negative. All release emissions (from year 46 onwards) are computed as positive.

Combustion of sawdust from onsite co-generation processes are released instantly (one Cbio-CO2-pulse

at t46), while decay emissions gradually (Cbio-CO2 starting at t46 due to logging operations and Cbio-CO2

and Cbio-CH4 at t86 due to EOL landfilling), both decreasing over time towards equilibrium.

The main difference between the two Cbio balances (lumber and co-production) are the Cbio-CO2

releases, including decay-related, at the sawmill (t46) and landfill (from t86 onwards), which are higher

by about 31% for co-production (Fig. 3-10b) due to the accounted wood chip combustion. On the

other hand, the co-production reveales lower decay emissions by 41%. This is due to the mass-

allocation in the lumber case (Fig. 3-10a), which attributes a higher Cbio contribution to the EOL than

in the co-production.

Account needs to be taken for a given permanent Cbio stock at the EOL landfill phase, not shown in

Fig. 3-11. The flow cannot be inventoried as negative, to avoid double-counting, as the value is

already proportionally accounted for in the total Cbio sequestration. Moreover, it is not accountable as

positive, as it does not represent a release flow to the atmosphere. In this example, the Cbio remains in

the technosphere. Therefore, the stock flow is excluded from the impact assessment, but noted as a

reduction of outflowing carbon from the technosphere (favouring climate change mitigation).
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Fig. 3-11. Dynamic LCI results of both emissions biogenic CO2 (in red, left-handed y-axe) and biogenic CH4 (in

blue, right-handed y-axe) from the cradle-to-grave lumber product [t C bio]

Sensitivity of inventory results to temporal cut-offs

To test the sensitivity of the TH selection at the inventory level, three different LCI TH are compared,

namely t0-t86, t0-t100 and t0-t200. Table 3.2 and Table 3.3 shows all cumulative negative (Cbio-CO2) and

positive (Cbio-CO2 and Cbio-CH4) flows over the defined LCI THs. The negative Cbio sequestration is

the same in all LCI THs, as the fixation occurs from year t0-t45. The positive Cbio releases, on the other

hand, increase with increasing LCI TH, except for the permanent Cbio stock (single value at t86). The
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stock flow will be excluded from the assessment, but for checking the net zero Cbio balance, that is to

say, the dynamic input flows (1 t Cbio) of sequestration is equal to all dynamic output and/or stock

flows (1 t Cbio).

The net Cbio balance in Table 3.2 and Table 3.3 is not equal to zero for the LCI THs of total 86 and

total 100 years. Thus, the longer time length reduces the temporal cut-offs from the inventory, as more

or almost all Cbio flows covered –i.e. not temporal cut-offs of inventories. Moreover, even though the

net Cbio balance decreases with increasing LCI TH, the values are higher for the lumber than for the

co-production in t86 and t100 by +30% and -28% respectively, because i) the Cbio-CO2 emission releases

from combustion are higher for the co-production (single pulse emission), and ii) Cbio-CH4 releases

from EOL landfill gas are higher for lumber, due to mass allocation.

Table 3.2. Biogenic carbon flows and net balance for lumber over three life cycle inventory time horizons

LCI TH Cbio-CO2

sequestration

Cbio-CO2

release

Cbio-CH4

release

Cbio-CO2 stock

(landfill)*

Net

Cbio balance

86 years -1.00 0.37 0.00 (0.45) -0.18

100 years -1.00 0.41 0.04 (0.45) -0.11

200 years -1.00 0.47 0.09 (0.45) 0.00

* value shown for checking net zero balance, but excluded from the impact assessment

Table 3.3. Biogenic carbon flows and net balance for co-production over three life cycle inventory time horizons

LCI TH Cbio-CO2

sequestration

Cbio-CO2

release

Cbio-CH4 release Cbio-CO2 stock

(landfill)*

Net

Cbio balance

86 years -1.00 0.61 0.00 (0.26) -0.12

100 years -1.00 0.64 0.02 (0.26) -0.08

200 years -1.00 0.68 0.05 (0.26) 0.00

* value shown for checking net zero balance, but excluded from the impact assessment

3.4.4 Dynamic LCIA

The Cbio balance requires conversion into their respective GHG emissions, CO2 and CH4 multiplying

by 44/12 and 44/16 respectively. The potential climate change effects are assessed by means of both

static and dynamic LCIA methods, using the relative equivalent climate change metric, expressed in t

CO2-eq.

Dynamic life cycle impact assessment time horizon

For the static assessment, the GWP metric over 20 and 100 years is chosen. The same references

LCIA THs are retained for the dynamic impact assessment. However, to make the dynamic approach

comparable with the static, time coherent LCIA THs have are determined. It implies that to overall
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dynamic LCI TH, previously set to 200 years in total to avoid temporal inventory cut-offs, needs to be

extended by 20 and 100 years. Thus, coherent dynamic LCIA TH (coherent with the static

applications) results in 220 and 300 years, as shown in Fig. 3-12.

Fig. 3-12. Dynamic impact assessment of the lumber and co-production system denoting LCIA TH of 220 and

300 years

Comparison of static and dynamic approaches

The quantitative results of static and dynamic impact assessment approaches for the lumber and the

co-production are shown in Table 3.4 and Table 3.5 respectively. The results are provided here for

sequestration and releases as well as for the net balance of all Cbio flows.

The overall results do not differ considerably for the sequestration between static and dynamic

approaches and between the two LCIA THs, but, considerably more for the releases, particularly Cbio-

CH4 related, consequently reflected on the net balance. Comparing static and dynamic CO2-eq results

from Cbio-CO2 releases, Cbio-CH4 releases and the net balance, the impacts differ for lumber and co-

production by about 20%, 80% and 100% respectively with LCIA TH 20; and by 20%, 50% and 150%

respectively with LCIA TH 100.
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Table 3.4 Static vs dynamic climate change impacts of lumber over impact time horizon of 20 and 100 years

LCIA

approach

LCIA TH LCI

TH

Cbio-CO2

sequestration

Cbio-CO2

release

Cbio-CH4

release

Net balance

t CO2-eq t CO2-eq t CO2-eq t CO2-eq

Static LCIA TH 20 0 -3.667 1.721 9.784 7.838

Dynamic LCIA TH = LCI +20 200 -3.380 1.305 1.949 -0.126

Static LCIA TH 100 0 -3.667 1.721 3.261 1.316

Dynamic LCIA TH = LCI TH +100 200 -3.458 1.421 1.613 -0.424

Cbio: biogenic carbon, CO2: carbon dioxide, CH4: methane, LCI: life cycle inventories, TH: time horizon

Table 3.5 Static vs dynamic climate change impacts of co-production over impact time horizon of 20 and 100

years

LCIA

approach

LCIA TH LCI

TH

Cbio-CO2

sequestration

Cbio-CO2

release

Cbio-CH4

release

Net balance

t CO2-eq t CO2-eq t CO2-eq t CO2-eq

Static LCIA TH 20 0 -3.667 2.506 5.753 4.592

Dynamic LCIA TH = LCI +20 200 -3.380 1.984 1.146 -0.250

Static LCIA TH 100 0 -3.667 2.506 1.918 0.757

Dynamic LCIA TH = LCI TH +100 200 -3.458 2.128 0.948 -0.381

Cbio: biogenic carbon, CO2: carbon dioxide, CH4: methane, LCI: life cycle inventories, TH: time horizon

Fig. 3-13 shows a direct comparison of the impact results for lumber and co-production over the

different LCIA THs of 20 and 100 years, previously listed in Table 3.4 and Table 3.5. There is no

difference for sequestration values between lumber and co-production systems per assessment

approach and LCIA TH. However, CO2-eq results from co-production across approaches and LCIA

THs have higher impacts by about 30% associated with Cbio-CO2 release, and lower impacts by about

40% from Cbio-CH4 releases.

For the net balance results between lumber and co-production, the static results differ by about 40%

for both LCIA THs, however the dynamic impacts by 50% and by 10% at LCIA TH 20 and 100 years

respectively.



Chapter 3: A framework for dynamic carbon modelling

100 PhD dissertation, 2019

Fig. 3-13. Static and dynamic impact assessment of lumber and co-production over LCIA THs 20 and 100 years

Long-term effects

Even though both approaches are compared with a coherent LCIA TH, the static and dynamic impact

results are considerably different. The main difference between both approaches is given in the net

balance results, which are negative for dynamic and positive for static approaches.

Why are the forcing effects of the Cbio balance negative, in the dynamic approach? As shown in Fig.

3-12, the negative forcing effects never really reach positive values. The negative values from the

sequestration are reduced due to the positive releases up to a peak between the t160 and t180, where the

values are close to zero for co-production and zero for the lumber case. The lumber reveals higher

impacts as the co-production; however, the curve drops again to the same values as co-production t280.

The setting of a very long-term LCIA TH, for Fig. 3-14

allows following the course of the curve. The long-term time perspective denotes the decreasing

forcing effects related with the permanent Cbio stock, not accounted for in the assessment, but resulting

from the unbalanced returns to the atmosphere, i.e. 1 t Cbio sequestration (as input) and 0.55 or 0.74 t

Cbio releases (as outputs) for lumber or co-production respectively.
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Fig. 3-14. Long-term dynamic forcing effects over a LCIA TH of 500 year of lumber and co-production

3.4.5 Interpretation and conclusions

Under the classic static LCA approach, no timing of the emission occurrence is taken into

consideration, due to the aggregation of all emission flows. The carbon neutral approach relies on the

same method, hypothesising that the Cbio balance is zero, as the same unit of Cbio fixed from the

atmosphere into the plant biomass will be emitted back to the atmosphere.

Under consideration of the temporal dimension, the carbon neutral assumption may only be valid

when the considered Cbio sequestration and release flows take place in the same year (e.g. use of

biomass from specific annual crops), and no gradual decay releases are accounted for at the upstream

(e.g. by ignoring SOC flows from dead above- and belowground biomass).

The illustration of this simplified carbon cycle example demonstrates that radiative forcing effects are

time-dependent and therefore the timing of the emission occurrence is relevant, particularly when the

biomass-sourced product (here lumber material and bioenergy from wood chips and sawdust) has:

Long rotation lengths (here forest wood growth over 45 years).

Long service life (here structural framing of residential buildings with service life of 40 years).

Temporally differentiated EOL pathways (energy co-generation at t46 and gradual decay

partially from t46 at forest field and from t86 at landfill).

Moreover, the accounting for other non-CO2 GHG emissions has relevant implications. The Cbio-CH4,

for instance, is a short-lived gas, whose radiative forcing effects are higher than long-lived CO2 with
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very long atmospheric perturbation time. The use of the static relative impact method implies that the

forcing effects decrease with increasing LCIA TH (i.e. end-year of the impact assessment far into the

future) or vice versa the shorter the impact assessment time length the higher the effects. The values

are relativised by 1 given that CO2 is the reference gas whose characterisation factor is always 1 in the

static approach.

The climate effects are not accurately assessed under the static characterisation applying the IPCC

GWP impact factors. The static results are inconsistent with i) the LCI TH, because the emissions are

characterised the same way, as no timing is considered, ii) and the impact representation based on the

fixed LCIA TH, because each emission is integrated over 20 or 100 years and thus the effects are

further shift in time.

Thus, the time-aggregated values and the fixed LCIA TH deliver inconsistent and biased results. From

the example with lumber and co-production, it was identified that the last release takes place in the

year 200. The integration with the static approach over 20 or 100 years would actually represent the

forcing effects for the year 220 or 300 respectively. That is the reason why the dynamic LCIA TH was

aligned to the static representation of results to consistently compare both static and dynamic impacts.

The dynamic approach, on the other hand, does not depend on any TH. The characterisation is thus

consistency in terms of the inventoried temporal boundaries of the LCI TH and variable/flexible LCIA

TH of the impact assessment.

To conclude, the dynamic method allows a better representation of climate change impacts from

biomass-based products, however, setting the temporal boundaries is unavoidable and needs to be

defined with precaution, particularly concerning temporal cut-offs. In this example it was shown that

in the downstream phase, Cbio is partially and permanently stocked in the landfill. Excluding the EOL

treatment final Cbio releases and/or stocks are ignored. Thus, the final results on the chosen TH and its

sensitivity.
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3.5 Chapter conclusion

This chapter introduced a framework for dynamic carbon modelling, providing details on how to

account for temporal Cbio emission profiles from forestry resources, how to avoid temporal inventory

cut-offs and how to compare dynamic with static impact results, alongside a simplified cradle-to-grave

example.

The results have shown the importance of developing dynamic Cbio balances built on annual Cbio

sequestration and Cbio release flows along the entire life cycle of a bioproduct. The EOL phase showed

that eventually not all embedded Cbio embedded in the lumber bioproduct does return to the

atmosphere. Thus, it is essential to perform a full lifetime dynamic Cbio accounting to capture all

carbon exchanges with the atmosphere through time.

However, the sequestration curve in the cradle-to-grave example was approximated by means of the

Gaussian function, which does not accurately represent the dynamic growth curve of trees (as

reviewed in section 2.6.1). It introduces bias in the timing of sequestration flows of forest biomass

with long-term rotation lengths, and thus misinforms on the actual radiative forcing effects.

The elements of the proposed framework are addressed in detail in subsequent chapters, via scientific

articles, as depicted in Fig. 3-15. The papers focus on specific elements, differentiated by colour.
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4 Forestry: growth modelling

4.1 Chapter context

This chapter deals primarily with modelling Cbio sequestration dynamic of forestry systems. The

objective is to develop a dynamic modelling framework for time-dependent forest Cbio sequestration

(i.e. annual stocking factors) and its application to bioenergy inventories. The main emphasis lies on

upstream modelling, involving Cbio accumulating in the biomass as a function of time by means of

non-linear tree growth modelling of different tree species with different rotation lengths and

management practices. The consideration temporal dynamic in the modelling of wood-to-bioenergy

pathways compared with the classical static approaches are expected to deliver a better understanding

for valuing Cbio in forest-sourced bioenergy.

The papers in this chapter respond to the dynamic modelling and impact assessment questions and

implications under the consideration of the time dimension, further discussed in the interpretation of

the results. The framework elements (Chapter 3) addressed by Paper 1 and Paper 2 and their associated

materials (Appendix D: Data paper on forest models) are indicated in Fig. 3-15.

All forest Cbio sequestration modelling details are compiled in the Data paper to inform on non-linear

forest tree growth dynamic and management practices, and thus delivering the necessary data pre-

treatment and data inputs to the dynamic computation of Cbio sequestration models. The annual flows

are expressed in t Cbio ꞏyr-1 per t of forest wood consumed for bioenergy. The forest models cover the

main tree species of the wood supply chain in France. Approximately 31% (16.9 million hectares) of

the French territory is forest, standing for the second most important land-use after agricultural and

grassland, occupying 57% of the territory. Three-quarters of the forest area in France is privately-

owned and the remaining is public/ communal. The distribution per forest area coverage is primarily

represented by broadleaved/deciduous (64%) and conifers/evergreen (36%) trees. Half of the

population in forest stands is monospecific (single species stands) and the other half are mixed stands

of two-species (33%), three species (12%) and four or more species (4%) (IGN, 2017).

Paper 1 proposes a coupling approach with a partial-equilibrium model (see classification in Box 2-5)

to evaluate prospective energy-transport scenarios under the consideration of the forest wood

commodity outputs and develop dynamic wood Cbio balances, included in the carbon footprint

inventories. The same coupling framework is applied in Paper 2, however, with the purpose

discussing modelling implementation challenges of forest Cbio, particularly concerning the setting of

the initial sequestration flow (chicken-egg dilemma). Thus, each paper responds to different research

questions, detailed as follows:

Paper 1 (section 4.2):
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How are the final static climate change results of the energy-transport system affected by the

dynamic forest-sourced Cbio balances?

Do the results with Cbio balances considerably differ by changing the system boundary, i.e.

transport sub-sector vs biofuel system?

Are the results sensitive to changes in the modelling parameters for the Cbio sequestration (e.g.

forest growth parameter, rotation length)?

Paper 2 (section 4.3):

Does the chicken-egg dilemma, i.e. the timing of forest-Cbio sequestration with two opposed

time perspectives (historic or future) affect the final results, and how?

To which modelling approaches or system boundaries can the historic or future time

perspectives be associated? How can the chicken-egg dilemma issue be solved?

The developed dynamic Cbio modelling framework for forest Cbio sequestration and the coupling with

technical flows from the partial-equilibrium model for bioenergy (not restricted to this model outputs),

is illustrated in Fig. 4-1. The scheme shows the parameters and data requirements, here referring to

secondary data, yield tables, and national statistics; yet not excluding the use of primary data if

available for case and/or site-specific studies.
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An overview of the model technical and coupling specifications, building the basis of this work and

the research articles, is shortly described, as follows:

1. Process demand model outputs (partial-equilibrium) by exporting forest wood commodity

technical flows, annualising values with linear interpolation, and quantify carbon content of

annual values

2. Modelling growth of time-dependent tree development per species using the Chapman-Richard

model by means of non-linear regression analysis fitting growth parameters age (A) [year] to

height (H) [m] and diameter breast height (DBH) [cm] and/or circumference (Ci) [cm].

3. Modelling biomass [t ha-1] development based on allometric relations between growth variables

(H and DBH/Ci) to stem and stand volume per unit of area [m3 ha-1] and conversion to biomass

through species-specific wood density properties [t ha-1].

4. Modelling forest stand management by means of yield tables (data specified in Box 4-1).

5. Quantifying Cbio sequestration [tCbio ha-1] biogenic flows by means of species-specific or carbon

partitioning among tree compartments.

6. Computation of Cbio derivative values to obtain dynamic biogenic carbon stocking factors

[tCbioꞏyr-1] per tree species or mean of all species.

Box 4-1. Data specification on yield tables

Yield tables tabulate the mean tree development and productivity dependent from age of fully stocked

managed stands, and thus serve as guidance for potential forestry growth and yield modelling. The yield table

data comprises the following data specifications for both the growth predictions and biomass yield estimations

For growth development:

o Age-height growth relation per species (meters per year increase)

o Age-circumference growth relation per species (centimetres per year increase)

For volume estimations from stem to stand:

o Initial density of the forest stand (seedlings/ha)

o Age of the thinning operations (year of cutting)

o Rotation cycles of the thinning operations (frequency of each cutting period)

o Total thinning interventions including final harvest (total number of cuttings)

o Age of final intervention (clear-cut)
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4.2 Paper 1: Model coupling in the context of forest bioenergy demand

This paper analyses dynamic Cbio flows of prospective consumption of forest wood residue commodity

for advanced biofuels and proposes a coupling strategy with demand model (here partial-equilibrium

model) to develop complete carbon balances; published in the Applied Energy journal

(https://doi.org/10.1016/j.apenergy.2019.01.186), received 10 November 2018, revised 15 January

2019, accepted 21 January 2019, available online 2 February 2019].

Objective Develop forest-related Cbio balances of energy-policy scenarios and emerging biofuel

pathways, to:

Evaluate complete carbon balances (fossil + biogenic flows)

Compare with the static approach

Assess the model’s sensitivity to Cbio parameters and rotation cycles

Approach Coupling forest wood commodity outputs from partial-equilibrium model with dynamic

forest Cbio model

Sector (product) Transport (advanced biofuel)

Biomass Forest wood residues

Supporting data Data Paper in Appendix D: Data paper on forest models: Cbio growth and sequestration

dynamic

Coupling partial-equilibrium and dynamic biogenic carbon models to

assess future transport scenarios in France

Ariane Albers a,b,c,*, Pierre Collet a, Daphné Lorne a , Anthony Benoist c,d, Arnaud Hélias b,c,e

a IFP Energies nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France

b LBE, Montpellier SupAgro, INRA, UNIV Montpellier, Narbonne, France

c Elsa, Research group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France
d CIRAD - UPR BioWooEB, Avenue Agropolis, F-34398 Montpellier, France

e Chair of Sustainable Engineering, Technische Universität Berlin, Berlin, Germany

* Corresponding author

Highlights

Coupling economic and biogenic carbon models to assesses energy policy scenarios.

Complete GHG life cycle inventories of the French transport sub-sector are built.

Dynamic approach is needed for transport GHG emissions and impact determinations.

The mitigation is 462% higher than the static assumption for 2G bioethanol.

The model is sensitive to forest rotation length, robust to tree growth parameters.
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Abstract

Bioenergy systems are promoted in an effort to mitigate climate change, and policies are defined

accordingly to be implemented in the coming decades. Life Cycle Assessment (LCA) is used to assess

the environmental performance of bioenergy systems, yet subject to the limitations of static

approaches. In classical LCA, no temporal differentiation is undertaken: all inventoried instant to

long-term greenhouse gases emissions (GHG) are aggregated and characterised in the same way, over

a fixed time horizon, by means of fixed characterisation factors. Positive and negative impact

contributions of dynamic biogenic carbon (Cbio) sum up to zero, yielding the same result as carbon

neutral estimates. Climate mitigation results are biased without the temporal consideration of these

flows. The purpose of the study is to highlight the time-sensitive potential climatic consequences of

policy-driven transport strategies for metropolitan France, in the specific context of the dynamic LCA

framework and climate change mitigation. We therefore propose a dynamic approach coupling a

partial-equilibrium model (PEM) with dynamic Cbio models. The PEM analyses in detail the techno-

economic performance of the metropolitan French energy-transport sector. It explores prospective

optimisation options (supply-demand equilibrium) of emerging commodity and energy process

pathways in response to a policy in question. The Cbio model generates dynamic inventories of the Cbio

embedded in the primary renewable biomass outputs of the PEM. It captures the dynamic Cbio

exchange flows between the atmosphere and the technosphere over time: negative emissions from

fixation (sequestration) and positive emissions from release (e.g. combustion or decay). A dynamic

impact method is applied to evaluate the mitigation effects of Cbio from forest wood residues by

comparing the climate change impacts from complete carbon (fossil + biogenic) with carbon neutral

inventories across scenarios. Two sets of results are computed concerning the overall transport (all

emissions) and bioethanol (wood-to-fuel emissions) systems. The mitigation effect from long-term

historic sequestration allocated to bioethanol (462%) is significantly larger than for transport (3%),

expressed as the difference with carbon neutral estimates. The fossil-sourced emissions from

bioethanol production represent only 5.4%. In contrast, a comparison with an alternative reference

scenario involving wood decay demonstrated higher impacts (i.e. an increase of 316%) than carbon

neutral estimates. The representation of the actual climatic consequences depends on the chosen fixed

end-year of the dynamic impact assessment. Moreover, the mitigation effect is proven sensitive to the

rotation length of forestry wood: the shorter the length the lower the mitigation from using renewable

forest resources. Other energy-policy scenarios, Cbio modelling approaches and consequences of

indirect effects should be further studied and contrasted.

Keywords: biogenic carbon, climate change mitigation, time-dynamic LCA, transport sector, partial-

equilibrium model
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1. Introduction

The energy sector is the main contributor to global anthropogenic greenhouse gas (GHG) emissions

[1]. In France, energy for transport is the principal emitter, accounting for almost one-third of the

national emissions [2]. Policy planning faces the challenge of responding to climate change threats and

secure future energy supply. Ambitious political targets enforce transitioning into renewable resources

and increased energy efficiency, to limit temperature rise to 1.5 to 2 degrees Celsius [1]. The French

Energy Transition for Green Growth Act), adopted in 2015, directs the energy sector towards low-

carbon strategies and multi-annual energy programs [2]. France anticipates major renewable shares in

radually increasing up to the year

2050.

Energy modelling has become a key instrument to inform robust decision-making in energy system

planning [3]. A wide variety of prospective models have emerged in the last half-century to support

multilateral cooperation in macroeconomic energy system analysis. Top-down general-equilibrium

models analyse the energy systems of a whole economy to identify cross-sectoral substitution

alternatives [4]. In contrast, bottom-up partial-equilibrium models (PEM) analyse in detail the techno-

economic performance of single energy sub-sectors [5,6]. Among the most used model generators

featuring detailed technology databases are the MARKAL (MARKet ALlocation) and TIMES (The

Integrated Markal-Efom System) of the International Energy Agency’s Energy Technology System

Analysis Program [7–9]. More recently, hybrid models combine economy-wide perspectives with

neoclassical growth models, sectoral and technological details [10,11]. Coupling with macroeconomic

models at global scales, in the view of decarbonisation mechanisms to internationalise environmental

externalities, is commonly discussed in climate change abatement efforts [8].

Biofuels are promoted as low carbon energy carriers to meet climate change and energy policy targets.

However, these substitution alternatives have been questioned in the past. Environmental and social

concerns have arisen from expanding food crop based biomass (e.g. corn, wheat, rapeseed),

Nomenclature
1G First generation GWP Global warming potential
2G Second generation IPCC International Panel on Climate Change
BAU Business-as-usual LCA Life cycle assessment
C Carbon LGC Lignocellulosic
Cbio Biogenic carbon LCI Life cycle inventory
CF Characterisation factor LCIA Life cycle impact assessment
CH4 Methane gas MARKAL Market Allocation
CLCA Consequential life cycle assessment N2O Nitrous oxide
CO2-eq Carbon dioxide equivalent PEM Partial-equilibrium model
EC-JRC European Commission Joint Research Centre RE Renewable energy
FoWooR Forest wood residues TH Time horizon
GHG Greenhouse gases TIMES The Integrated Markal-Efom System
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particularly concerning land use and food security [12–16]. Dedicated or residual lignocellulosic

biomass (e.g. forest wood, agricultural straw, miscanthus) are non-food alternatives to energy crops

feeding a wide range of emerging energy pathways for heat, electricity or transport fuels. Techno-

economic and environmental research has been conducted linked to bioenergy from innovative

biomass supply chains, for instance, from forest wood residues [17–19], crop-residues [20–22], and

miscanthus [23,24]. Advanced transport biofuels, from dedicated or residual lignocellulosic biomass,

are under development to partially substitute petroleum fuels [25]. From 2020 onwards, it is expected

that second generation (2G) biofuel pathways will generate cellulosic ethanol and Fischer-Tropsch

biodiesel, at commercial scales, competitive with conventional fuels [26–28].

Life Cycle Assessment (LCA) is widely used to assess the climate change impacts and other potential

environmental effects of bioenergy systems. Several bioenergy LCA studies have been carried out

concerned with lignocellulosic biomass for electricity and heat generation, as reviewed by Muench

and Guenther [29]. LCA has been increasingly combined with PEM in consequential LCA (CLCA)

studies [30–38]. CLCA quantifies the environmental burden, and its variation, associated with changes

in demand, often driven by policy decisions, beyond the boundaries of a particular production system

[39]. It studies how flows change in response to a prior (retrospective) or future (prospective) decision

[40]. The environmental consequences of a change in bioenergy systems are linked with expansion,

displacement [41,42] or intensification [41,43].Combined LCA and PEM has been applied to assess

the prospective consequences of emerging markets (advanced commodity and bioenergy pathways), to

estimate how future decisions would change material and energy flows. Menten and colleagues

applied the French TIMES-MIRET model to improve consistency in prospective CLCA studies of

biofuels and biomass-to-liquid processes [31]. Levasseur and colleagues used the Canadian TIMES

NATEM model and complemented its outputs with LCA of alternative butanol from forest biomass

pathways [30].

However, combined LCA and PEM approaches are usually static. The assessment of GHG emissions,

for instance, focus on fossil fuels, while disregarding the time-sensitive climate change effects of

biogenic carbon (Cbio) embedded in biofuels. Cbio refers to the carbon fixed in the biomass/plant

resource through photosynthesis. The Cbio is temporally sequestered and stored in biomass and

released back to the atmosphere at the end-of-life (e.g. through combustion or decay). The climate

change impact category is based on the IPCC Global Warming Potential (GWP) metric [44]. The

GWP method represents the weighted sum of all GHG emissions, such as carbon dioxide (CO2),

methane (CH4) and nitrous oxide (N2O), over a 20 or 100-year time horizon (TH), relative to the CO2

reference gas, computed by means of characterisation factors (CFs). The GHG emissions are then

expressed per functional unit of a product or service (e.g. per km driven by an average passenger car).

This static method disregards the time dimension affecting climate change results [45–52]. In other

words, GHG emissions are not differentiated through time.
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The exclusion of dynamic Cbio elementary flows in the GHG inventories is justified by the carbon

neutral hypothesis. This simplification based on the classical static approach, balances out the

sequestration and release flows through the weighted sum of all emissions at time zero [53–55]. The

bio-sourced GHG emissions, thus, yield zero climate change impact. However, this static

methodological choice has been challenged for biomass resources with long rotation lengths,

particularly from forestry [54,56,57]. Long CO2 (re-)sequestration periods (e.g. forest trees) have

time-sensitive effects, whereby rotation lengths lower than one-year (e.g. annual crops) may have

small to zero impacts (equivalent to carbon neutral estimates) [58,59]. Long-term carbon stocks (e.g.

forest trees) have a negative atmospheric impact, however they are reversible (i.e. reemitted) at some

point in time, making it highly debatable whether or not assigning a value to it is justifiable [55,60,61].

Non consideration of long-term Cbio sequestration and the timing of this emissions release thus

produce biased results [62].

In the last decade, new dynamic LCA approaches have emerged focused on time-sensitive climate

change effects from bioenergy [47,49,51,63–65], and more specifically, linked to biogenic carbon

accounting and forest resources [64,66–71]. Cherubini and colleagues proposed the biogenic global

warming potential (GWPbio) metric for bioenergy systems, using the impulse response function [72], to

predict the biogenic CO2 decay, as a function of biomass rotation dynamics [57]. The factors assign

lower impacts to fast-growing vegetation and vice-versa. Yan developed CFs for different rotation

lengths and harvest intensities based on forest-specific carbon cycle models [73]. The dynamic LCA

method by Levasseur and colleagues enables assessing temporal emission profiles of fossil or biogenic

flows, as a function of time [47]. The dynamic method computes time-dependent CFs for any year

following an emission. Its application requires dynamic inventories, differentiating each emission flow

from and to the atmosphere through time. Time-explicit Cbio inventories of forestry resources have

been proposed by De Rosa and colleagues, through a simplified parametric model for aboveground

and belowground forest carbon stocks [68]. To this day, no consensus exists on how to model dynamic

Cbio inventories from renewable resources.

The purpose of this study is thus to assess, ex-ante, the time-sensitive potential climatic consequences

of policy-driven transport strategies for France, by means of a full carbon accounting approach. We

propose the coupling of a techno-economic and biogenic carbon models in the specific context of the

dynamic LCA framework and climate change mitigation. The novel model coupling bridges the gap

between research, development of emerging bioenergy systems and their actual mitigation effects.

2 Material and method

The proposed model-coupling of the PEM and the dynamic Cbio model is shown in Fig. 1. The overall

coupling strategy is as follows: The renewable commodity forest wood residues (hereafter referred as

FoWooR), described by the PEM, is selected for the first coupling attempt. The dynamic biogenic
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carbon is assessed through a Cbio modelling tool developed for this coupling strategy. It models the

dynamic Cbio exchange between the atmosphere and the technosphere over time: negative emissions

from fixation (sequestration) and positive emissions from release (e.g. combustion or decay). The

model generates dynamic inventories of the Cbio embedded in the renewable FoWooR biomass

(hereafter referred to as Cbio balance. For the climate change impact assessment, a dynamic method is

applied to compare the climatic consequences of carbon neutral (without Cbio: hereafter referred to as

“C neutral”) and complete carbon balances (with Cbio: hereafter referred to as “complete C”) in

response to policy scenarios. The complete C balance is built upon both fossil and biogenic material

and energy flows from production and consumption of petroleum fuels and biofuels, while the C

neutral approach accounts for the fossil ones only. The coupled model thus produces a dynamic

climate change impact assessment of prospective renewable biomass and energy pathways driven by

and representing policy decisions. All sections, following the classical LCA steps: goal and scope, life

cycle inventories (LCI), and life cycle impact assessment (LCIA).

Fig. 1. Conceptual diagram of the model coupling strategy of the TIMES-MIRET partial-equilibrium model with

dynamic biogenic carbon modelling

2.1. Goal and scope: temporal boundaries

The goal of the present study is to highlight the time-sensitive potential climatic consequences of

policy-driven transport strategies for France. The system boundary is the transport sub-sector, with

special focus on 2G biofuels. Energy services from electricity and heat for other end-users (e.g.
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industrial, domestic) are excluded from the study. The Cbio balance represents the supply of FoWooR,

as a primary renewable resource for biofuel production. The LCIA is based on time-dependent CFs

[47] and is expressed here in mega-tonnes of carbon dioxide equivalent. Other LCA environmental

impact categories are outside the scope of the study, as the main focus is the time sensitive clime

change impact assessment of dynamic Cbio flows and its comparison with C neutral approaches.

The dynamic LCA approach, aims at developing a dynamic complete C balance (fossil + biogenic

emissions). Therefore, the temporal differentiation of all emission flows, particularly of biogenic

origin, is a fundamental precondition. The temporal system boundary requires all necessary time

specifications of the entire study under assessment, namely the time step as well as both the LCI time

horizon (LCI TH) and the LCIA time horizon (LCIA TH), specified below.

The time step defines the temporal frequencies over which the emissions are inventoried and assessed

(e.g. per minute, hour, day or year). It is set by the inherent time scales of the impact categories

[74,75]. Inherent features of impact categories (e.g. climate change, acidification, eutrophication, etc.)

relate to several biogeochemical processes, defining the temporal resolution at which dynamic

inventories can be modelled. LCA methods encompass different impact categories; however, the

present study is only concerned with climate change category. For this impact category, the time scale

of the flows is recommended at annual frequencies [48,76]. Therefore, the dynamic computation of the

technical flows and elementary flows are modelled on an annual basis.

The LCI TH defines the timeline over which the GHG emissions are considered in the study,

describing each emission flow through time. We perform a full-time inventory of all GHG emission

with no temporal cut-offs. Since the model-coupling in this study aims at assessing the PEM outputs,

the negative and positive flows are aligned with the TH of the PEM simulation. TIMES-MIRET runs

over multiple-periods (3 to 5 years) until the year 2050. For this study the PEM outputs from 2019 to

2050 are taken into consideration. A linear-interpolation is performed to track the multi-period outputs

on an annual basis and develop annual values for the dynamic inventories. The LCI TH of all negative

emission flows is defined by the chosen modelling approach taking into account historic or future Cbio

fixation time perspectives (described in section 2.3.1).

We inventoried the Cbio sequestration flows before the final harvest of FoWooR (historic perspective).

A full rotation length accounts for 200 years in this study. The long-sequestration period follows the

Cbio model [77], as detailed in section 2.3.1. It represents all main tree species of the French wood

industry, with Sessile Oak (Quercus petraea) having the longest sequestration length. For the historic

Cbio computation, the TH of the PEM simulation represents the last year of the Cbio fixation, at which

final harvest of FoWooR occurs. For instance, for the period 2019-2050, the first fixation flow starts

200 years in the past (year 1819) for the year 2019, 1820 for the year 2020 and so forth until 1850 for

the last simulation year (2050).
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The LCIA TH, likewise, defines the period over which the climate change impact is considered by

means of setting a fixed reference year or an end-year of the impact assessment. The commonly use

TH for the climate change characterisation in LCA is one century, as per the default GWP metric

[45,78,79]. We therefore fix a future reference year to 2119, 100-years after the first PEM simulation

year (2019). Yet, any end-year or TH can be chosen when dynamic LCIA is performed with time-

dependent CFs.

Finally, the temporal system boundary for the entire study under assessment can be described. The

annual time step consideration of a full-time accounting approach with historic fixation flows and a

fixed future reference year, sets the overall temporal system boundary over the period 1819 to 2119:

300 years in total. This temporal specification provides transparency and allows a systematic

comparison among all assessed PEM policy scenarios. Moreover, the selected period represents

consistency between the LCI and the LCIA TH, with no temporal cut-offs. Accordingly, we ensure

that all inventory flows are projected over the same TH into the future.

2.2. Life cycle inventories: partial-equilibrium model outputs

2.2.1. Description of the key elements

The economic partial-equilibrium model used in this study is the TIMES-MIRET, adapted to the

modelling framework from the MARKAL/TIMES family of models [7–9]. TIMES-MIRET analyses

the energy-transport system of metropolitan France over a multiple-period horizon based on

prospective demographic and economic projections [79]. The model conducts a detailed bottom-up

techno-economic analysis, describing the primary resource supply (petroleum fuels and biomass), its

transformation to secondary fuels via different process pathways (refinery), and the final energy

consumption (electricity, heat and transport fuels) [8]. Petroleum- and biomass-based commodities

represent the supply of energy sources to meet the future energy demand. Each source has an attribute,

detailing the availability/import, capacity and marginal cost. The demand curve is represented by the

energy services in transportation (automobiles, trucks, rail, and aviation), domestic and commercial

(space heating, lightning, cooling), industry (chemicals, steel) and agriculture segments [9]. In

TIMES-MIRET the assessed useful energy includes electricity and heat (hereafter referred to as

“energy mix”), and transport fuels (hereafter referred to as “transport sub-sector”). The output from

the supply-demand equilibrium assumes a perfectly competitive market, in which producers and

consumers maximise their net total surplus or minimise their net total costs, while meeting several

(policy) constraints [5,9].

The TIMES-MIRET PEM scenario simulations disregard cross-sectoral interactions within a whole

economy (in contrast to general-equilibrium models). However, each scenario explores the linear

programming optimisation of supply-demand in detail based on a technology-explicit database linked
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with different commodities. For instance, for the transport sub-sector the functional unit of the sectoral

output is the kilometres travelled by a specific transportation means (e.g. average passenger car, heavy

trucks, etc.). In bottom-up PEM models, the existing and future technologies to produce that given unit

are explicitly specified [9].

2.2.2. Definition of policy scenarios

TIMES-MIRET outputs are scenario-dependent. The assessed policy scenarios are compared with a

reference policy scenario (business-as-usual, BAU). The BAU scenario represents a baseline against

which alternative policy scenarios are compared. BAU is formulated from historical and established

norms considered valid until the end of the PEM simulation TH. The reference policy draws back to

the 2009 EU Directive and National Renewable Energy Action Plan, pursuing renewable energy

targets in the gross final energy consumption by the year 2020. Therefore, the initial period of the

TIMES-MIRET is calibrated to the year 2009, fixing the historic values and main variables, yet

considering changes in future demand.

The alternative policy scenario assessed in the present study is named 15Bio. It corresponds to the

national long-term, multiannual energy transition plan, partly formulated from the French Energy

Transition for Green Growth Act. For the 15Bio scenario, we adopted the 15% RE share in the

transport sub-sector by 2030, in reference to the year 2012. This specific target for the transport sector

was subjected to the EU Renewable Energy Directive legally binding Member States to increase the

RE share in addition to limiting food crop-based biofuels (first generation, 1G) to 7% by 2020. For the

French national energy plan, this target remains effective up to the year 2030. Hence, the 15Bio

scenario involves all constraints of the BAU reference, including the new set of policies (i.e. limiting

1G biofuel share to 7% and increasing the renewable energy share by 15% by 2030). A comparison

with the BAU scenario, allow identifying the policy-induced consequences of energy-transport

pathways in response to fossil fuel and energy-crop substitution targets to mitigate climate change.

2.2.3. Selection of the model outputs

In the LCA context, the PEM commodities represent the technical flows, while all life cycle carbon

and GHG emissions the elementary flows. For the model coupling, the technical and elementary flows

of the PEM are exported per BAU and 15Bio policy scenarios. All flows associated with the transport

sub-sector are separated from the pathways for other end-users. For instance, cogeneration processes

(heat and electricity generation) and biochemical or thermo-chemical processes (bioethanol

production) are both linked to FoWooR commodity in the 15Bio scenario. For the present study, we

exclusively focus on the pathways associated with transport fuels only.

Concerning the technical flows for modelling Cbio inventories, the selection of the biomass commodity

followed two main criteria: lifespan of the vegetation with a full rotation length longer than one year
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and contribution to 2G transport biofuels. FoWooR is an energy carrier with mid- to long-term

sequestration periods, and under the new set of policies, it is expected to contribute to 2G bioethanol

with mayor shares. Annual crops are excluded from the Cbio modelling, as their Cbio fixation-release

dynamics occur within one year (equivalent to carbon neutral approaches), thus no climate change

impact is estimated. Other long-lived renewable biomass resources, such as short-rotation coppices or

perennial crops, could have been modelled to include their Cbio balances in the dynamic GHG

inventories. However, their contribution to 2G biofuels is comparatively small or absent in the 15Bio

scenario, and thus negligible for the Cbio analysis under the assessed 15Bio policy scenario.

The PEM input data for FoWooR in the 15Bio policy scenario is based on national forest inventories

for the French wood supply chain and a roadmap 2035 study made about the future availability of this

renewable resource in France [78]. The prospective assumptions consider, among others, harvest

losses amounting 8% for merchantable wood, 15% for merchantable and residues and 50% when

FoWooR are harvest separately [78].

Regarding elementary flows for modelling carbon neutral GHG inventories, fossil-based CO2 and N2O

elementary flows are provided by the PEM associated with all production and consumption pathways:

biomass cultivation, transportation, (bio-)refinery, industry, tailpipe, and trade. However, all

elementary flows of the transport-pathways are re-calculated, using the updated emission factors of the

European Commission Joint Research Centre (EC-JRC) based on the JEC Well-To-Wheels (WTW)

method [80]. The emission factors are expressed in equivalent CO2 emissions per MJ petroleum- or

biomass-sourced fuels. To recalculate the CO2-equivalent values into the respective GHG elementary

flows, the values are divided by the IPCC GWP equivalent factors [44]. The proportions of the CO2,

N2O and CH4 GHG emission per specific fuel are also taken from the EC-JRC [80]. The fossil-sourced

elementary flows from the transport sub-sector are combined with the biogenic-sourced flows to

develop a complete C balance and compare its climate change impact with C neutral approaches.

2.3. Life cycle inventories: biogenic carbon model outputs

The technical flow (i.e. the FoWooR commodity) is coupled with the Cbio models to compute time-

explicit Cbio inventories. The mass of FoWooR is expressed in Cbio by means of a wood-specific

carbon content factors (0.4952) denoting the weighted mean of all assessed forest tree species of the

French wood supply chain [77]. The Cbio elementary flows represent the Cbio embedded in the

primary FoWooR supply flows per tonne of FoWooR [t Cbio]. The coupling with dynamic Cbio models

further generates annual fixation and release flows. The dynamic Cbio balance is converted into

biogenic CO2 and CH4 for the impact characterisation by multiplying the molecular weight of CO2 or

CH4 to the atomic substance of C (44/12) or (16/12) respectively. CH4 is considered for decay

estimates only [81–83].
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For the Cbio balance, the belowground tree compartment (roots and stump) is also considered, to

include both aboveground and belowground Cbio dynamic. This implies allocating a proportion of

belowground biomass to the FoWooR. The aboveground compartment represents about 80% of the

tree (63% stem and 37% FoWooR). 20% of the tree consists of belowground biomass, as computed

with our Cbio modelling tool. The values are congruent with other studies (e.g. [84]). The allocation

factor for the belowground biomass corresponding to FoWooR was estimated at 0.25 of FoWooR,

which represents 7.4% of the total tree biomass.

2.3.1. Computation of carbon fixation from forestry resources

Fixation represents the withdrawal of CO2 from the atmosphere due to photosynthesis. The dynamic

Cbio modelling of the FoWooR applied dynamic growth models from forestry science, elaborated for

the French forest wood industry. The modelled data supports and informs dynamic modelling

approaches to predict mean growth and Cbio fixation dynamics of a tree or forest stand over a given

rotation length. All data and modelling steps for the Cbio fixation flows were obtained from yield tables

per unit area of forest stands, non-linear growth models and allometric relations (see Table 2 in [77].

The tabulated yield table data based on empirical evidence originated from long-standing experimental

forest plot surveys of managed forests throughout France [85] or other regions when not available for

France [86,87]. The non-linear growth curve is represented by the often used Chapman-Richards (CR)

model, a sigmoid and asymptotic curve [88–90]. The CR equation (Eq. 1) expresses the potential

-breast-height or circumference (response growth

variables) at age t (independent variable), with species- and site-

(1)

with

For the Cbio fixation dynamics, we used annual stocking values from all assessed tree species (Table 2

in [77]) and the weighted mean based on the standing wood production volumes and distribution from

national statistics and surveys [92] (see Table 3, 5 and 6 in [77]). The annual stocking factors are

expressed in tonnes of Cbio. Note that the dynamic Cbio fixation model represents monospecific

(individual-species) uneven-aged forest stands with homogenous growth. Other site-dependent

dynamic elements related with, for instance, mixed forest stands (two or more species per forest

stand), and losses from mortalities, including those unexpected due to natural events (e.g. wildfires,

diseases, winds) and soil organic carbon, were not modelled. For modelling site or case-specific

fixation dynamic, these site-specific parameters would further complement and improve dynamic

approaches.
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For the computation of Cbio fixation, two time-dependent accounting approaches can be followed for

the first Cbio fixation flow: a) a full rotation length starting after the wood-use, in the same year of final

wood harvest, when trees are removed from the forest stand and new seedlings are re-planted; or b) a

full rotation length starting before the wood use. The former refers to Cbio fixation flows with future

timelines and the latter to historic ones. In previous LCA studies, future [68,93], historic [94–96], and

both [67,97], Cbio fixation time perspectives were tested. In the present study, we computed Cbio

fixation flows with historic timelines. The reasoning behind this modelling approach is based on the

assumption that the provision of FoWooR as biofuel feedstock is retained from sustainably managed

forests in the French/EU context. According to Lindeijer and colleagues, the origin of the biotic

resource defines whether the modelled systems is man-made controlled or a natural ecosystem [98].

The biogenic carbon fixation dynamic [t Cbio y-1] is defined by:

(2)

(3)

where cb the rel

with a set of parameters of the Chapman-

final cut time (i.e. harvest at the end of the rotation length).

The coupling with the partial-equilibrium model is carried out following Eq. 4 and Eq. 5, where C is

the total biogenic carbon, E(t*) is the biogenic carbon output from the partial-equilibrium model,

expressed in tonnes, at a given time t*. The fixation dynamic at t* is computed following the

computation in Eq. 6:

(4)

with t the a time of the MIRET scenario and

(5)

Thus,

(6)
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2.3.2. Computation of carbon release from forestry products

The Cbio release to the atmosphere is positive, because it contributes to the atmospheric GHG

concentration and thus to the radiative forcing effect. The flow occurs when the Cbio is emitted back at

the EOL of the biomass product. For bioenergy systems, the EOL is the combustion process. EOL

combustion of bioenergy is linked with internal combustion engines (transport tailpipe) or

cogeneration processes (energy mix). In the present study, it is assumed that the biomass is harvested,

processed and used within the same year. This means that the total embedded Cbio in the FoWooR,

including co-products and wastes, is emitted back to the atmosphere within the same year of harvest.

However, when the residual part from logging operation are not used for the bioenergy market (e.g.

2G bioethanol), they are left in the forest. The alternative EOL pathway corresponds to a reference

scenario in which FoWooR are left behind and excluded from economic activities. For comparison

purposes, the selection of an adequate reference system was already highlighted by other authors

[99,100]. For the alternative EOL pathway, the left behind FoWooR are subjected to onsite natural

decay processes by microbes in the soil in forest ecosystems. After harvest aboveground residues and

belowground biomass are assumed to decay completely over time [101]. Emissions due to decay occur

over long periods of time, gradually decreasing towards zero. The decay curve of residual dead wood

biomass can be estimated via a first-order exponential decay equation (Eq. 7), where M_t is the

-life estimates.

(7)

The negative exponential decay model is commonly used and recommended to estimate forest wood

degradation [19,21,102,103]. Half-

we used eight years for coarse woody debris and thirty years for dead stumps and roots [104]. A part

of the embedded Cbio in FoWooR is emitted as CH4 (due to anaerobic degradation), ranging between

0% and 3% (we used 1.5%) for coarse woody debris (branches, twigs and foliage) and 10% for

belowground dead stumps and roots [105]. The CH4 releases are very uncertain and site-dependent.

CH4 ratios for belowground degradation are not easily available, thus we used 10% as a proxy from

mulched wood and following a root-shoot rational [101].

2.4. Life cycle impact assessment: dynamic climate change

For the dynamic LCIA of the climate change characterisation, time-dependent CFs proposed by

Levasseur and colleagues were applied [47]. The time-dependent CFs assess the annual GHG emission

profiles from fossil or biogenic sources as a function of time. The method is based on the radiative



Chapter 4: Forestry: growth modelling

124 PhD dissertation, 2019

forcing (RF) concept, similar to the IPCC default GWP metric [44]. However, the assessment is based

on instantaneous RF values with no fixed TH. The CFs have variable THs, as they assess the impact of

GHG emissions for any year following the emission at the year of its release to the atmosphere. This

dynamic method, thus, allows assessing different THs generated by different emission years [47].

The cumulative annual values of the RF are expressed in watts year per square meter [Wꞏyrꞏm-2]. The

values can further be expressed in equivalent CO2 climate change impact per unit mass assessed. The

dynamic characterisation, yet implies a “fixed future reference time” [106], meaning that even though

the TH is variable, a reference TH is required. Thus, the dynamic climate change impact expresses the

effects between the GHG year (i.e. the time when emissions is released to the atmosphere) and the

chosen fixed reference year [107]. In a classic LCA approach, no temporal differentiation is

undertaken at both the LCI and LCIA phases: all inventoried GHG emissions are aggregated and

characterised in the same way. Positive and negative impact contributions of biogenic emissions sum

up to zero, yielding the same result as C neutral estimates. For static climate change impact via the

default IPCC GWP thus yield zero for biogenic flows. Many LCA studies use this static approach

analogously to climate neutral [108], to express a zero climatic effect from bioenergy systems.

However, in recent years, this approach has been questioned and criticised [59,109], as a pulse

emission of a given substance into the atmosphere has an effect on the atmospheric concentration and

thus on the radiative forcing, regardless whether it originates from biogenic or fossil fuel sources.

2.5. Summary of all steps for the model coupling and computation

A summary of the described model-coupling steps is shown in Fig. 2. Each technical and elementary

flow of the PEM (detailed in section 2.2.3) is treated separately. The annual biomass technical flows

per PEM scenario are transformed into Cbio elementary flows according to biomass-specific carbon

content values (see section 2.3.1). The annual Cbio elementary flows are computed with the dynamic

Cbio models to capture the dynamic of Cbio fixation flows from the atmosphere [t Cbioꞏyr-1] (detailed in

section 2.3.1), and the Cbio release flows to the atmosphere (detailed in section 2.3.2). The annual Cbio

release factors are specific to the EOL option chosen (e.g. combustion for bioenergy, decay for left-

behind biomass). The time-explicit computation of the fixation and release flows forms a dynamic Cbio

balance [tꞏyr-1]. The Cbio balance is subsequently transformed into the corresponding biogenic GHG

emissions (here CO2 and CH4). The fossil source GHG emissions (here fossil CO2, CH4 and N2O),

corresponding to the C neutral approach, are included in the assessment. For a full-time accounting

with no temporal cut-offs, all GHG emissions are inventoried over the respective LCI TH. For the

LCIA characterisation, all dynamic inventories are computed with time-dependent CFs (detailed in

section 2.4). The variable future fixed reference year, and therefore the LCIA TH, is set by the user.

Subsequently, the impact results from a complete C balance (fossil + biogenic) are compared with the

C neutral (fossil) flows per policy scenario.
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3. Results and discussion

The results of applying the coupled model are presented in this section, for both the dynamic LCI and

LCIA of the BAU and 15Bio scenarios. The dynamic inventories, based on the TIMES-MIRET PEM

outputs, were constructed around the primary biomass supply for all end-users, as well as the

mobilisation of renewable commodities and the final energy consumption (petroleum fuels and

biofuels) to the transport sub-sector. The dynamic inventories for the Cbio balance demonstrate all

sequestration and release flows from the FoWooR transport pathway. Additionally, all dynamic

inventories of transport were plotted in a Sankey-style diagram specific to the year 2030. For the

dynamic impact assessment two systems were computed: i) the transport sub-sector in terms of GHG

emissions from all transport pathways, and ii) bioethanol, encompassing GHG emissions from the

FoWooR-to-bioethanol pathway only. The results per system and scenario were compared under two

distinctive accounting approaches, corresponding to the relative climate change impact based on the C

neutral (fossil-only) and complete C (fossil + biogenic) inventories. This comparison strategy is used

to identify whether the inclusion of the Cbio dynamic, represented with the complete C inventories,

leads to climate mitigation effects compared to C neutral estimates. Additionally, the impact of a

hypothetical reference system (BAU* scenario) featuring an alternative EOL decay pathway for

FoWooR was computed and compared with the EOL combustion pathway. Finally, a sensitivity

analysis was carried out to assess the robustness of the applied Cbio model as well as the sensitivity of

the mitigation results with respect to the chosen rotation/sequestration length.

3.1. Dynamic inventory results

3.1.1. Partial-equilibrium model biomass outputs and energy pathways

Fig. 3 shows the primary biomass supply outputs [in Mt], from the PEM, of the BAU and 15Bio

scenarios from 2019 to 2050, whereby Fig. 3a relates to energy mix + transport and Fig. 3b to the

transport sub-sector. The biomass commodities described in the PEM were dedicated energy crops

(corn, triticale, wheat, sugar beet, rapeseed, sunflower, palm oil, soybean), dedicated lignocellulosic

material (LGC: miscanthus and other perennial crops), and residual biomass (FoWooR, from forestry

and agriculture). The commodity category “energy crops” includes renewable resources associated

with first generation (1G) biofuels, while dedicated LGC material and residual biomass associate with

2G biofuels. All described commodity were first exported from the PEM, as shown in Fig. 3a, to

identify the pathways linked to transport end-users. The commodity with the largest primary biomass

share of the biomass supply was FoWooR, with proportions of up to 68% and 71% for BAU and

15Bio respectively. Annual mean values for FoWooR were estimated at 32 Mt for BAU and 34 Mt for

15Bio. The new set of policy constraints did not significantly change the FoWooR outputs over the

PEM simulation TH, as compared with BAU. However, LGC material was introduced as a new

commodity in the 15Bio scenario.
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Fig. 3. TIMES-MIRET primary biomass supply from 2019 to 2050 per BAU and 15Bio scenarios of a) Energy

mix (heat and electricity) and transport, and b) Transport sub-sector only

An in-depth assessment of the transport sub-sector pathways, demonstrated a shift of the biomass

commodities from the energy mix + transport to the transport sub-sector between BAU and 15Bio.

FoWooR and agricultural residues, as well as LGC material, were mobilised for transport fuel

processes, as shown in Fig. 3b. The LGC material commodity was introduced to feed the transport

sub-sector, as compared with all commodities in the energy mix + transport PEM outputs (Fig. 3b). A

comparison among the scenarios, demonstrated that under BAU conditions, transport biofuels would

exclusively be produced from energy-crops. 1G biofuels would remain the only substitute to

petroleum fuel. The other biomass commodity pathways in BAU would feed the energy mix (i.e.

electricity heat cogeneration processes for other end-users) only. In the 15Bio scenario, the

mobilisation of FoWooR supply to transport was linked to the production of cellulosic bioethanol. It

represented the only feedstock for 2G bioethanol. Peak 2G bioethanol production values were

estimated in the year 2030, amounting up to 21 Mt (35% of the total biomass share for transport).

Fig. 4 shows the final energy consumption share [in MJ] of the transport sub-sector, per scenario, from

2019 to 2050. The depicted energy carriers represent the end-user energy demand by a wide range of

transport means. The prospective supply is based on the number of kilometres travelled per transport

means. It is expected that the final energy share will slightly decrease under the given assumptions, as

more passengers would travel per trip of all transport means. The bioethanol energy carrier includes

both 1G and 2G biofuels, whereas FoWooR represented the main feedstock for 2G cellulosic

bioethanol production (in the 15Bio-transport scenario). Other potential biofuel pathways and process

outputs, such as Fisher-Tropsch biodiesel, were not simulated under the new set of policies. In

contrast, under BAU constraints, only 1G bioethanol from energy crops would be produced.
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Fig. 4. Final energy consumption in the transport sub-sector per energy carrier and per scenario

The new commodity and energy pathways in the transport sub-sector were created in response to the

new policy constraints (15Bio scenario). Compared with the BAU reference, the energy-market

dynamics changed in response to the policy constraint by optimising the outputs to secure energy

supply by cost-effective means. These outputs are supposed to partially substitute 1G biofuels and

petroleum fuels. Yet, the overall share of FoWooR, and thus that of 2G bioethanol to the transport sub-

sector, remained less significant than the share of energy crops for 1G biofuels, up to the year 2050.

3.1.2. Biogenic carbon balance from forest wood residues

Fig. 5 shows the Cbio balance results of FoWooR for the transport sub-sector, under both BAU and

15Bio scenarios, expressed in Mt Cbio. The Cbio flows for the BAU reference were zero, as no FoWooR

were accounted for the transport pathway (Fig. 5a). The flows from the historic Cbio fixation were

inventoried as negative (sequestration) and the Cbio combustion as positive (release back to the

atmosphere). A full-time accounting with no temporal cut-offs, allowed differentiating all Cbio flows of

fixation and release through time. The LCI TH was defined as the 1819 to 2050 period. The PEM

simulation TH (2019 to 2050) represented the years of final harvest (final fixation flow) and the years

of production and consumption of FoWooR-based 2G bioethanol (release flows). The first Cbio

fixation flow started in the year 1819, due to the application of a historic full-rotation length of 200

years (see section 2.3.1). From the year 1819 onwards, the Cbio fixation values were accumulated until

the final harvest in the year 2019. This has been repeated for each following simulation year until

2050, which is the end year of the Cbio balance for both negative and positive emission flows.
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Fig. 5. Dynamic biogenic carbon (Cbio) balance of residual forest wood biomass [Mt Cbioꞏyr-1] in the transport

sub-sector with historic fixation (positive) and EOL combustion (negative) flows of a) BAU scenario, and b)

15Bio scenario

Under the assumption of combustion as EOL, the total Cbio fixation bio) and release

(+1.01E8 Mt Cbio) flows sum up to zero, with no temporal cut-offs. The area below the curve is equal

for both flows, meaning that the total Cbio embedded in the FoWooR is emitted back to the atmosphere

during 2019 and 2050. This confirms that 100% of fixed Cbio is released back, as presumed under the

carbon neutral hypothesis. Yet, the annual biogenic values are not carbon neutral and, therefore, not

zero. The time-explicit differentiation of the Cbio flows, describes the temporal Cbio emission profiles

on an annual basis. The sum of negative and positive Cbio values per year, form the Cbio balance,

representing the dynamic biogenic inventories that can subsequently be assessed by means of the

dynamic LCIA method.

3.1.3. Complete carbon flows of a specific year

The dynamic inventories, both from fossil and biogenic sources, can be presented for a specific year of

the modelled period. The calendar year representation is informative, as it details the flows and stocks

of materials and energy on a key year of the policy-based scenario. We selected the year 2030, a future

key target-year of the EU and national climate-energy policy [110], generating top FoWooR supply

estimates in the 15Bio scenario of the transport sub-sector. All fossil and biogenic input and output

flows were expressed in Mt C. Conversion factors from the EC-JRC [80] were used to express all

inventoried petroleum and biomass feedstocks as C. For the FoWooR commodity, we used the

weighted mean of C content in wood (0.4952) from the Cbio model [77]. The elementary C flows from

the feedstock supply, transformation, use and EOL, were plotted in a Sankey-style diagram, using the

STAN v6.2 software [111]. The incoming C embedded in petroleum fuels and biofuels equals the

outgoing C embedded in atmospheric emissions. Losses from biochemical or thermochemical

processes in biofuel production pathways are presented here as wastes. The biofuel from residual

lignocellulosic material yield of biochemical processes generates between 110 and 300 litres [26] of
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bioethanol per dry tonne of wood, with low heating values between 21.1 [26] and 26.8 MJ per litre

[112]. The overall conversion efficiency of biochemical process pathway (likewise thermo-chemical

processes) is about 35%.

The C flows (fossil + biogenic) of the transport sub-sector under the BAU and 15Bio scenarios are

shown in Fig. 6a and Fig. 6b, respectively. The biogenic flow (5.3 Mt C) shown in Fig. 6b

corresponded to the Cbio balance of fixation + release dynamics at the year 2030. The total emitted Mt

of C, including the biogenic flows, is higher for the 15Bio scenario by 4.5 Mt C. Without the biogenic

flows, C outputs would be lower for 15Bio. For the specific calendar year 2030, the Cbio balance

results revealed the highest value from fixation and release, which then decreased to zero in the year

2050. The comparison among the scenarios showed that biogenic flows were only linked with the

15Bio for the transport sub-sector. This questions whether the comparison with the BAU reference is

valid. This issues is further addressed in section 3.3 with the introduction of a hypothetical BAU*

scenario associated with a Cbio balance featuring an alternative EOL pathway.

Fig. 6. Carbon flows [Mt C] of the year 2030, as Sankey-type diagrams, from biogenic and fossil sources of the

transport sub-sector of a) BAU and b) 15Bio scenarios. Advanced second generation biofuels are not accounted

for in the BAU scenario
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3.2. Dynamic climate change impact results from the transport and bioethanol systems

The dynamic impact assessment of the inventoried GHG emissions was performed with time-

dependent CFs [47], expressed as relative climate change impact in Mt CO2-eq. The LCIA TH is

variable in the dynamic method, and therefore an end year for the characterisation must be chosen by

the practitioner to compare the results. We set the end year to 2119, 100-years into the future from the

first PEM simulation year (2019). The climate impact is computed per scenario as shown in Fig. 7, for

both the transport sub-sector (Fig. 7a) and the FoWooR-based 2G bioethanol (Fig. 7b). The impacts

per system and scenario were compared as per two sets of results, namely one based on C neutral

estimates (without Cbio) and on complete C estimates (with Cbio). Note that the BAU scenario revealed

no climate change impact from Cbio, since no Cbio balance (i.e. from 2G bioethanol) has been

accounted in the reference simulations.

Fig. 7. Relative climate change impact [Mt CO2-eq], assessed by means of time-dependent characterisation

factors based on the radiative forcing method for a) the transport sub-sector, and b) the bioethanol systems

The climate change impact shown in Fig. 7a was based on all GHG emissions of the overall transport

flows (i.e. production and consumption of petroleum fuels and biofuels). The climate change impact in

2119 would result in 1.19E3 and 1.11E3 Mt CO2-eq, for BAU and 15Bio respectively. The new set of

policies mitigates the climate change effects by 7% more, compared to BAU in the year 2119. The

impacts remained under the BAU curve, even with projections beyond the selected chosen end year

(not shown in Fig. 7a). Yet, fossil-based results of both scenarios demonstrated a continuous increase

of the atmospheric impacts. This is due to the annually accumulated impacts and the long-term

persistency of the dominant gas in the atmosphere (CO2). Even though CH4 and N2O have a higher

perturbation capacity in the atmosphere, the atmospheric residence lifetime (i.e. removal time in the

atmosphere) of the reference CO2 gas is in the order of thousands of years [44].

A comparison between the C neutral and the complete C results for transport, across scenarios (Fig.

7a), revealed that the climate change impact, and thus the mitigation effect from Cbio estimates from
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the BAU reference scenario, are zero (as no FoWooR have been accounted for). Therefore, the

comparison between C neutral and complete C was only valid for the 15Bio scenario. The 15Bio

complete C impacts amount to 1.08E3 Mt CO2-eq in the year 2019. Compared with the 15Bio C

neutral impact (1.11E3 Mt CO2-eq), it results in a mitigation effect of about 3%. This means that the

inclusion of the dynamic Cbio would lead to a higher mitigation effect than for 15Bio C neutral

estimates. The reduction draws back to the inventoried historic long-term sequestration period. This

effect is sustained far into the future, until a steady-state is achieved after about one thousand years

(not shown in Fig. 7a). That is to say, in the distant future the complete C impacts become equivalent

to the C neutral impacts.

Such a small estimated mitigation effect from the 15Bio complete C of the transport sub-sector, is due

to the dynamic Cbio balance corresponding exclusively to the FoWooR-based 2G bioethanol pathway,

which is minimal compared with all fossil sourced emissions from the entire transport sector. The total

15Bio contributions of FoWooR to the transport sub-sector, in the peak year 2030, amounted to 17%

of the primary biomass share and 3% of the final energy consumption. The allocation of Cbio emissions

to the overall transport system were thus not significantly contributing in the 15Bio simulations.

Therefore, an allocation of the Cbio emissions restricted to the FoWooR-bioethanol pathway was

undertaken to provide insights into the climate change impact and mitigation effect of the bioethanol

system.

Results from the bioethanol system are shown in Fig. 7b. For the impact assessment of bioethanol, the

following conversion factors were applied to the 15Bio FoWooR outputs: low heating value of 18.5

MJꞏkg-1, bioethanol yield of 0.3428 MJEtanolꞏMJwood-1, and fossil-based GHG emission factor of

19.5 g CO2-eqꞏMJEthanol-1. The CO2-equivalent values were recalculated proportional to the

respective CO2, CH4 and N2O elementary flows given by the EC-JRC [80] and divided by the default

IPCC GWP100 equivalent factors [44]. The complete C balance included the dynamic biogenic

emissions from Cbio fixation and Cbio combustion EOL of FoWooR. The C neutral estimates from

bioethanol production were calculated using the EC-JRC WTW method for EU farmed or waste

wood-to-bioethanol pathways [80]. The cumulative bioethanol production from the FoWooR output

associated with the 15Bio scenario over the entire PEM simulation TH amounted to 1.04E12 MJEthanol,

which corresponds to a carbon footprint of 2.03E7 Mt CO2-eq (when using the static GWP100). A

comparison between the absolute value of the total dynamic biogenic emissions from either Cbio

fixation or combustion (3.72E2 Mt CO2-eq) and the total fossil emissions from bioethanol production

(2.03E7 Mt CO2-eq), demonstrated that the fossil sourced emissions represented only about 5.4% of

elementary flows are summed up in the year

the outcomes have shown the difference in orders of magnitude between the fossil and biogenic

emissions in the bioethanol system.
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The relative climate change results from bioethanol (Fig. 7b) in the year 2119 resulted in 7.55E0 Mt

CO2-eq for C neutral and -2.74E1 Mt CO2-eq for complete C. Note that for the BAU scenario has zero

impact, as no Cbio balance from FoWooR was accounted for and thus no production of bioethanol was

modelled. A comparison between the two results for 15Bio Bioethanol showed that the climatic

impacts for complete C are negative, implying that the sequestration is larger than the positive impact

from the release. These complete C results would reduce those of C neutral results by 462%. Such

high mitigation effect is explained by the low contribution (5.4%) of fossil sourced emissions to the

total bioethanol emissions, and the duration of inventoried (historic) long-term sequestration.

Projections beyond the year 2119, revealed that the complete C results would continuously converge

towards the C neutral curve. The climate mitigation effect is thus sensitive to a specific year or

selected future reference year (i.e. end year of the LCIA impact assessment), as the LCIA TH is

variable.

Additionally, we calculated a dynamic emission factor for bioethanol from FoWooR. First, the relative

climate impact for the Cbio balance (i.e. biogenic only) was computed the year 2119, resulting in -

3.49E7 Mt CO2-eq. This negative value was subsequently divided by the total FoWooR-bioethanol

production (1.04E12 MJEthanol). The resulting dynamic emission factor (-33.6 g CO2-eqꞏMJEthanol-1)

was contrasted with the EC-JRC static emission for wood residues from farmed forestry (19.5 g CO2-

eqꞏMJEthanol-1). A comparison between these factors demonstrates that the dynamic factor is

negative, which would imply that the climate impact from bioethanol production could be reduced by

272%, an almost three-fold reduction for this specific policy scenario. This negative factor derives

from the historic long-term Cbio sequestration period assessed in this study. However, the more distant

into the future the reference year is set to, the lower the mitigation effect becomes, as the impact from

biogenic sources approach C neutral results. That is to say, the negative atmospheric impact from

sequestration is reduced thorough the positive impact from combustion.

3.3. Comparison of bioethanol impacts with an alternative reference scenario

For the bioethanol system a comparison was undertaken between the 15Bio scenario and a

hypothetical BAU* reference scenario featuring a Cbio balance with an alternative EOL pathway. This

comparison was performed because the previous BAU reference results were zero due to the absence

of a Cbio balance estimate. We therefore assumed a reference system, in which FoWooR from logging

operations are left behind instead of being used for the transport sub-sector. The hypothetical Cbio

balance for the BAU* scenario was composed from Cbio fixation and Cbio decay flows. It accounted for

the same mass of FoWooR described in the 15Bio scenario with the same historic full-rotation length

of 200 years (see section 2.3.1).

Fig. 8a shows the Cbio balance from BAU* and 15Bio. The BAU* Cbio fixation values were equal to

those inventoried in the Cbio balance of the 15Bio scenario. The flows from the EOL options however
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differed for combustion and decay. A comparison between the two inventoried EOL flows, indicated

that the BAU* gradual decay of FoWooR shifted the release of emissions further into the future, as

compared with the instant emissions from combustion. The last release flow from combustion

occurred in the year 2050. For the decay, the last flow was estimated in the year 2119, although

<0.01% of the carbon remained in the technosphere. We neglected those remaining emissions and

assumed that until the year 2119 the total embedded carbon in the FoWooR returned to the

atmosphere.

Fig. 8b shows the relative climate change impact from the bioethanol system for BAU* and 15Bio.

For bioethanol C neutral results (i.e. fossil based) are equal for both BAU* and 15Bio, amounting to

7.55E0 Mt CO2-eq in the year 2119. The impact results of the complete C estimates would attain in Mt

CO2-eq 3.14E1 and -2.74E01 for BAU* and 15Bio respectively. The results for the BAU* with EOL

decay are positive compared to those of 15Bio with combustion. This implies that the C neutral results

from BAU*or 15Bio would be increased by 316%. This large difference compared to 15Bio derived

from the presence of short-lived CH4, with high perturbation capacity, that was only considered in the

EOL of BAU*. The CH4 decay emissions amounted to 10% of the total emissions associated with

belowground biomass ratio, corresponding to the aboveground FoWooR, with a half-life of 30 years.

Fig. 8: a) Dynamic biogenic carbon [Cbio] balance of forest wood residues [Mt Cbioꞏyr-1] with fixation and two

EOL options concerning combustion (15Bio scenario) and decay (BAU* alternative scenario), and b) relative

climate change impact [Mt CO2-eq] of the bioethanol system of both scenarios BAU* and 15Bio

3.4. Sensitivity analysis

To test the sensitivity of the Cbio model to the values of its key parameters, such as the growth rate, we

recalculated tree growth for all species with extreme initial values for all the parameters (from the

acceptable range of values indicated in the literature). The acceptable range of values for the growth

rate parameter k (growth rate) lied between 0.2 and 2.5. The CR model is rather robust and converges
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towards the originally computed results. The model is thus very flexible and accurate, yet it confirms

its validity to the “slight expense of biological realism” [113].

Additionally, a sensitivity analysis was performed concerning the rotation length for the Cbio fixation

of the 15Bio scenario. The previously applied 200-year full rotation length was contrasted against 131

years, which is the weighted mean of rotation lengths of all tree species assessed in the Cbio fixation

model. For differentiation purposes, the scenario with the alternative full rotation length was named

15Bio*. Fig. 9 shows the sensitivity between the two rotation lengths for both systems under

assessment, namely, the transport sub-sector and the bioethanol. The dynamic climate change impact,

as per the complete C balance, was compared for 15Bio and 15Bio*. The alternative rotation length

generated a new LCI TH, as the first fixation year shifted from 1819 to 1888. The end year 2119

would generate the following climate change impact in Mt CO2-eq: for the transport sub-sector 1.08E3

(15Bio) and 1.36E3 (15Bio*), and for bioethanol -2.74E1 (15Bio) and 7.28E1 (15Bio*). The outcomes

revealed high sensitivity for the rotation length of the Cbio fixation: the shorter the length the lower the

mitigation effect (expressed as the difference with C neutral estimates).

Fig. 9. Sensitivity analysis of the 15Bio scenario concerning the full rotation lengths applied for modelling Cbio

fixation. Compared are the climate change impact [Mt CO2-eq] from the complete carbon [C] balance, involving

a full rotation length of 200 years and 131 years for a) transport sub-sector and b) bioethanol system. The first

year of the 200-year rotation length is 1819, and for the 131-year it is 1888

3.5. Overall discussion

The comparison between TIMES-MIRET PEM scenarios revealed relevant insights into the changes

of energy-transport dynamics induced by new policy constraints associated with climate change

mitigation and low-

biofuel share to 7% and increasing

the changes in the new biomass commodity and energy pathways for the production of advanced

biofuels. Non-food crop-based biomass resources (i.e. FoWooR, agricultural residues and dedicated
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LGC material) were introduced to the transport sub-sector as renewable resources linked with

competitive biofuel processes. The mobilisation of FoWooR supply to the transport was linked to

cellulosic bioethanol, the main 2G transport biofuel under the 15Bio scenario.

The dynamic accounting of Cbio allowed a complete assessment of both fixation and release flows of

FoWooR over time. Dynamic Cbio modelling and coupling with the PEM (in principle replaceable with

other economic models) demonstrated the relevance of including Cbio emissions in the assessment of

bioenergy systems. The annual biogenic values are not carbon neutral and, therefore, not zero. The

historic rotation length in this study was based on a 200-year period, which is the maximum

sequestration period in the French forest wood supply chain. However, the sensitivity analysis has

proven that the mitigation effect from sequestration is sensitive to chosen rotation length modelling.

The shorter the length the lower is the difference between the C neutral and complete C estimates.

To date, no modelling consensus exists for the initial Cbio fixation flow when assessing forest wood

use from managed or non-managed systems. The first year of the Cbio fixation flow confronts the so-

called chicken-or-egg causality dilemma [107]. We accounted for historic Cbio flows, as practiced by

other authors [67,94–97,107], following an economic point of view of the technosphere. The residues

from logging operation are considered as a co-product from the forest wood supply chain, when

collected for the energy sector. The co-product is thus destined to meet the raw material requirements

of emerging 2G biofuels. The selection of the modelling perspective is thus based on the origin of a

biotic resource. That is to say, to meet the market requirements for future advanced biofuel production,

the biotic resource extraction (e.g. FoWooR) derives from “man-made controlled culture” and not

from nature [98]. Controlled cultures are, for instance, agriculture, aquaculture and

silviculture/forestry. These systems experience a higher level of human interventions to meet the

requirements of the market demand, and are thus considered as a part of the technosphere. For valuing

Cbio fixation and sequestration and appropriately assess climate change mitigation targets, the different

modelling approaches should be further studied and contrasted.

Furthermore, the Cbio model relied on empirical data from long-term field studies, tabulated into yield

tables, to predict the mean tree growth dynamic and carbon fixation. The sensitivity analysis has

demonstrated the robustness and flexibility of the Cbio model tool developed for this study. It is

operational for any type of wood-based products, also cross-sectoral (e.g. wood for construction or

paper industry). However, the model did not consider site-specific parameters, such as unexpected

losses (e.g. diseases, wildfires). Potential losses from mortality and diseases, for France, where taken

into consideration in the input data of the PEM. However, for other case specific applications, these

site-dependent parameters would further improve dynamic approaches and reduced uncertainties.

Further studies should be conducted to extend Cbio modelling to other biomass types (e.g. short

rotation coppice and perennial crops) and alternative EOL pathways.
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The relative climate change results demonstrated that the substitution of fossil fuel feedstock by

renewables contributes to climate change mitigation. The inclusion and assessment of the Cbio balance

further reduced the carbon neutral estimates. The mitigation effect of the bioethanol systems was

significantly larger than that of the overall transport sub-sector: the 15Bio C neutral results would be

lowered by 462% and 3% for bioethanol and transport respectively. The high mitigation effect for the

bioethanol is explained by the relative contribution of the fossil sourced GHG emissions in the two

systems, and the historic long-term sequestration period of wood. For bioethanol, fossil emissions

represented only 5.4% of the total emissions. The negative impact, implying sequestration, gradually

increases with projections beyond the end year 2119, as they are reduced by the positive fossil and

biogenic emissions from the release. In contrary, the hypothetical BAU* scenario with decay EOL

revealed higher impact for the complete C, meaning that the C neutral estimates would be increased by

316%.

Moreover, for FoWooR-based 2G bioethanol, a dynamic emissions factor was computed and

compared with the static EC-JRC emission factor. This representation requires careful interpretation.

A direct comparison between the relative impact from static (GWP100) and dynamic (time-dependent

CFs) methods is not directly possible, as both have different impact representations. The main

inconsistency lies between the different time horizons generated by the different emission years

[47,51]. The static approach assigns the same impact characterisation to all emissions. That is to say,

all inventoried GHG emissions are aggregated and characterised in the same way. The GWP100

results express the effects of all aggregate GHG emissions in year zero (in static inventories with no

time consideration) and the year 100. The fixed TH ignores the temporal variability of the flows and

their time-sensitive impact.

The dynamic method, on the other hand, has no fixed TH and is thus variable, representing the actual

impact for any given characterisation TH. A reference year, or end year of the LCIA TH, needs to be

defined to enable a comparison among different scenario results, as done in the present study. The end

year of the assessment thus expresses the climatic effects between the year of each GHG emission and

the chosen reference year. For instance, with the chosen end year 2119, the LCIA TH of the impact

representation for the GHG emissions inventoried in the year 2019 is 100 years (2119 minus 2019),

for those inventoried in the year 2050 is 69 years (2119 minus 2050), and so forth. Thus, the

representation of the impact differs from that of static approaches.

For valuing the temporary Cbio fixation and sequestration in emerging bioenergy systems, the use of

dynamic impact assessment approaches is more appropriate, as demonstrated with the model coupling.

Recent studies [76,106] thoroughly discuss the shortcomings of using the single GWP metric and

encourage the use of different metrics to more accurately assess climate change and mitigation efforts.

We recommend the dynamic method to take into account the temporal GHG emission profiles of Cbio
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and fossil sources. If time is not taken into consideration, positive and negative impact contributions of

biogenic emissions sum up to zero, thus yielding the same steady state result as carbon neutral

estimates. Further research is needed to address the spatially-explicit dynamic impacts for forest

bioenergy applications (e.g. concerning albedo effects, land-use change, soil organic carbon), as

highlighted in various studies [64,114–117]. This implies the assessment of other impact categories, as

intended by LCA.

Higher mitigation targets and restrictions of 1G biofuels may mobilise larger quantities of FoWooR or

other biomass resources for the production of 2G biofuels. This raises the question: what would be the

consequences of a demand change in other sectors or economies, if the demand for a specific biomass

(e.g. energy crops, dedicated wood) increases significantly? Cross-sectoral interactions are not

analysed in the PEM. This could be addressed by means of full CLCA, which intends to determine the

biophysical changes that one life cycle could have on other life cycles (including indirect effects such

as land use change) as a consequence of a decision [118]. Consequential approaches would further

complement the analysis and provide meaningful insights into the shifting market- and

macroeconomic dynamics (i.e. the effects that the substitution of fossil fuels by biofuels could have on

other life cycles or sectors.

4. Conclusions

The proposed model coupling was successfully implemented, yielding meaningful information on how

to assess biogenic carbon of bioenergy systems and emerging renewable energy pathways in response

to any policy scenario. The coupled model combines crosscutting aspects of energy system analysis

and forest carbon modelling in the specific context of dynamic LCA and climate change mitigation.

The proposed strategy challenges the current static carbon neutral and renewable energy displacement

approaches by means of dynamic assessment of biogenic carbon and time sensitive climate change

impacts. The biogenic carbon models are applicable to specific cases and the parametrisation can be

refined to site-specific conditions if needed. The Cbio modelling tool developed for this study is

available upon request to the corresponding author.

Prospective models of emerging markets support policy-decision making of a specific sector by means

of different scenario comparisons. The consideration of technological innovation and market dynamics

in a transitioning energy system expands the assessment boundaries commonly used in attributional

LCA. The PEM provides insights into economic optimisation of energy-transport pathways and

climate change mitigation potentials. Studies should be further complemented with other

environmental impact categories and other externalisations involving indirect effects (e.g. land use

change and soil organic carbon). Future refinements of spatially-explicit dynamics and other impact

categories should follow suit.
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4.3 Paper 2: Chicken-egg dilemma in the context forest carbon accounting

This paper contrasts the historic and future time perspectives of dynamic Cbio sequestration and discusses

the modelling choice, to be published in the International Journal of Life Cycle Assessment (DOI:

10.1007/s11367-019-01695-7), received 14 February 2019, accepted 23 September 2019].

Objective Assess the chicken-egg dilemma (opposed modelling time perspectives) linked with the timing

of forest-related Cbio sequestration, to:

Identify the implications on the system boundaries

Evaluate the effects on the final dynamic results

Compare to biomass reference scenarios (“no use”)

Propose generalised rules for choosing a time perspective

Approach Application of the same coupling strategy of Paper 2 to assess prospective forest wood

consumption

Sector (product) Energy-mix and Transport (bioenergy)

Biomass Forest wood residues

Supporting data Data Paper on Cbio growth and sequestration dynamic Appendix D: Data paper on forest models

Paper 1 in section 4.2: Model coupling strategy

Back to the future: Dynamic full carbon accounting applied to prospective
bioenergy scenarios
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Abstract

Purpose: Ongoing debates focus on the role of forest-sourced bioenergy within climate mitigation efforts,

due to the long rotation lengths of forest biomass. Valuing sequestration is debated due to its reversibility;

however, dynamic modelling of biogenic carbon (Cbio) flows captures both negative and positive

emissions. The objective of this work is to respond to the key issue of timing sequestration associated with

two opposed modelling choices (historic vs. future) in the context of dynamic life cycle assessment

(LCA).

Methods: The outputs of a partial-equilibriummodel are used to inform prospective evaluations of the use

of forest wood residues in response to an energy transition policy. Dynamic forest carbon modelling

represents the carbon cycle between the atmosphere and technosphere: Cbio fixation and release through

combustion and/or decay. Time-dependent characterization is used to assess the time-sensitive climate

change effects. The two Cbio sequestration perspectives for bioenergy (forest biomass use) and reference

(no use) scenarios are contrasted to assess (i) their temporal profiles, (ii) their climatic consequences

concerning Ccomplete (fossil + biogenic C) vs. C-neutral (fossil C) approaches, and (iii) the implications

of comparing the two approaches with dynamic LCA.

Results and discussion: Full lifetime carbon accounting confirms that Cbio entering the bioenergy system

equals the Cbio leaving it in the net balance, but not within annual dynamic balances, which alter the

atmospheric greenhouse gas composition. The impacts of the historic approach differed considerably from

those of the future. Moreover, the “no use” scenario yielded higher forcing effects than the “bioenergy”

due to the higher methane proportions. The chickenegg dilemma arises in attributional LCA: as the

forcing depends on the timing of the Cbio sequestration and its allocation to a harvest activity. A decision

tree supported by case study applications provides general rules for selecting the adequate time-related

modelling approach based the criteria of provision of wood and regrowth from managed and unmanaged

forests, determined by the origin of biotic resources and related spheres.

Conclusions: Excluding dynamic Cbio introduces under- (future) or over- (historic) estimation of the

results, misleading mitigation decisions. Further research is needed to close the gap between forest stand

and landscape level, addressing issues beyond the chicken-egg dilemma and developing complete

dynamic LCA studies.

Keywords: bioenergy; biogenic carbon; carbon sequestration; climate change; dynamic LCA
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List of acronyms

C Carbon GHG Greenhouse Gas
Cbio Biogenic carbon LTECV French Energy Transition for Green Growth Act
CDM Clean Development Mechanism LULUCF Land Use, Land Use Change and Forestry
CER Certified Emission Reduction N2O Nitrous Oxide
CFs Characterisation Factors PEM Partial-equilibrium model
CH4 Methane RF Radiative Forcing
CO2 Carbon dioxide TH Time Horizon
CO2-eq Carbon Dioxide Equivalent TIMES The Integrated Markal-Efom System
EOL End-of-life UNFCCC United Nations Framework Convention on

Climate ChangeFoWooR Forest Wood Residues

1 Introduction

1.1 Carbon accounting

The growing demand for alternative renewable energy carriers, to support a transition towards low carbon

economies, has been supported since the 90s under the Kyoto Protocol, by international mechanisms such

as the Clean Development Mechanism (CDM) and Certified Emission Reduction (CER) (UNFCCC 2019),

as well as by EU legislation setting ambitious targets to reduce greenhouse gas (GHG) emissions (EC

2009; Scarlat et al. 2015). Incentives encourage the displacement of fossil carbon by means of biogenic

carbon (Cbio), thus crediting (e.g. carbon offsets) the avoided equivalent fossil sourced emission.

Carbon flows are differentiated by their source of origin, as fossil from non-renewable and biogenic from

renewable biomass sources. Alternative bioenergy pathways based on dedicated and residual

lignocellulosic biomass (e.g. forest wood, short rotation coppice, maize stover, wheat straw, perennial

grasses) are increasingly recognised as competitive advanced substitutes to displace fossil carbon and

reduce the use of first generation energy crops, a desirable evolution under land-use and food security

concerns (Wise et al. 2009; Rathmann et al. 2010; Harvey and Pilgrim 2011).

Ongoing debates focus on the role of forest-based bioenergy within the climate mitigation efforts, due to

its long rotation lengths and thus long sequestration periods (Haberl et al. 2012; Cowie et al. 2013a).

Despite the end-of-life (EOL) of biomass as biofuel combustion or wood incineration represents an instant

release, the timing of Cbio sequestration in biomass may stretch over several decades (Zetterberg and Chen

2015). Yet, valuing temporary carbon sequestration (carbon removal from the atmosphere and fixation in

the biomass through photosynthesis) and storage (carbon retention in the technosphere) for bioenergy

systems has long been questioned (Levasseur et al. 2012a; Brandão et al. 2013).



Chapter 4: Forestry: growth modelling

Ariane Albers 151

The Life Cycle Assessment (LCA) framework allows for a holistic assessment of potential climate change

impacts (and other environmental impacts) of bioenergy systems, but conventionally from a static

perspective (Guinée et al. 2002). Originally, temporal information is not processed by the computational

structure of LCA (Heijungs and Suh 2002) and is excluded from the ISO standard (ISO 2006a, b). The

global warming potential (GWP) method represents a relative measure of the sum of all inventoried

instant to long-term GHG emissions fixed over a time horizon (TH), regardless of when in time the

emissions occur (Benoist 2009; Levasseur et al. 2010). This static quality concerns also the Cbio flows,

often excluded from life cycle inventories (LCI) (Pawelzik et al. 2013). The conventional LCA approach

is restricted to linear simplification and thus an inherent carbon neutrality (i.e. one unit of Cbio release is

balanced thorough the same unit of Cbio sequestered) is associated with the use of any type of biomass.

Two main approaches for biomass-sourced products are well discussed in LCA literature, namely carbon

neutral and carbon storage (Pawelzik et al. 2013), respectively applied to short-lived (bioenergy) and long-

lived (e.g. wood construction materials) products. For bioenergy systems, the widely used carbon neutral

approach is based on the abovementioned steady state assumption.

The carbon neutral (C-neutral) approach excludes Cbio emissions from bioenergy with EOL modelled as

combustion/ incineration, but includes fossil emissions for biofuel production (Johnson 2009; Agostini et

al. 2014; Wiloso et al. 2016). Nonetheless, for forestry resources it has long been criticised as an

erroneous accounting approach (Searchinger et al. 2009; Haberl et al. 2012), because “closing the biogenic

carbon cycle” (Zetterberg and Chen 2015) does not necessarily mean CO2 neutral. Given the generalised

C-neutral assumption, conventional LCA approaches disregard the temporal effects from sequestration in

forestry systems, thus failing at linking both bioenergy and forest carbon modelling (Searchinger et al.

2009; Newell and Vos 2012; Røyne et al. 2016). From a national viewpoint, forest Cbio flows are ignored

downstream (bioenergy combustion), as the C losses are accounted for at the upstream (i.e. land use, land

use change and forestry - LULUCF) by means of the stock change method for global carbon pools used in

national GHG inventory reports (IPCC 2006a; UNFCCC 2014). That is to say, emissions reported at the

LULUCF are not reported in the bioenergy sector, to avoid double counting (Zanchi et al. 2010). For

instance, CO2 emissions from biofuels are excluded from the EU Emission Trading System (Zetterberg

and Chen 2015).

The temporary carbon storage approach, on the other hand, is optional for long-lived bioproducts (e.g.

wood construction material), providing a benefit to delayed emissions from Cbio embedded in biomaterials.

The ILCD Handbook (EC-JRC 2010) and the PAS2050 (BSI 2008) standard allow the accounting of

emission delays over 100 years (i.e. postponement of radiative forcing - RF). Long-term storage beyond

one century is not accounted for, but reported separately. The tonne-year-based Moura-Costa (Moura
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Costa and Wilson 2000) and Lashof (Fearnside et al. 2000) approaches, initially introduced in the context

of LULUCF, have been discussed for product level applications (Korhonen et al. 2002; Levasseur et al.

2012b).

An alternative dynamic approach has been proposed in the context of the dynamic LCA method

(Levasseur et al. 2010), featuring time-sensitive climate change impacts via the timing of fossil and

biogenic flows. The timing difference of Cbio flows between sequestration and release, from and to the

atmosphere, defines the period over which the carbon is embedded in the technosphere. During that

period, the RF is postponed (for biomass resources with long rotation lengths and long-lived products) or

eventually avoided through permanent stocks (Christensen et al. 2009; Vogtländer et al. 2014). The

dynamic method was contrasted with the tonne-year approaches (Levasseur et al. 2012b) as well as with

the GWP metric and other methods from the ILCD Handbook and PAS2050, used in classical LCA,

showing significant variations in the results (Levasseur et al. 2012c).

1.2 Dynamic approaches for timing biogenic carbon

Available methods, including the dynamic one, have been thoroughly discussed for valuing temporary

carbon sequestration and storage for LCA bioenergy (Brandão et al. 2013, 2019), yet it was concluded that

none of the current methods is preferred over the other, as the results still depend on a time horizon (TH)

for the characterisation. Nonetheless, a few methodology reports, such as the CML Handbook (Guinée et

al. 2002), the ReCiPe methodology (Hischier et al. 2010) and the FAO EX-ACT tool (Grewer et al.

the importance of accounting for CO2 of biogenic origin in specific studies.

The dynamic LCA method appears to be adequate, tackling the issue of timing biogenic elementary flows,

as applied in several other studies of forest bioproducts (Fouquet et al. 2015; Daystar et al. 2016; Peñaloza

et al. 2016, 2018; Demertzi et al. 2018), and more specifically of forest-bioenergy (Zetterberg and Chen

2015; Albers et al. 2019a). As highlighted by Levasseur et al. (2012c), none of the current carbon

accounting methods consider the temporal profiles of Cbio flows.

Temporary carbon storage is diluted by subtracting the amount of sequestered carbon from the emissions

occurring at the end of the storage period, thus yielding a net zero emission. In contrast, carbon storage is

reversible (i.e. reemitted) at some point in time, making it highly debatable whether or not assigning a

value to it is justifiable (Levasseur et al. 2012a; Brandão et al. 2013). Yet, the dynamic method captures

all the lifecycle emissions, including delays through time, by taking into account both the upstream

(sequestration) and downstream (e.g. combustion/incineration, decay) flows.
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1.3 Challenges of timing forest carbon sequestration

The application of a dynamic LCA requires temporal emission profiles, i.e. the development of dynamic

inventories by timing each elementary flow (Collet et al. 2011). Cbio sequestration related with forest tree

growth has been modelled, for instance, by means of a net carbon balance and linear distribution

(Levasseur et al. 2012b), Gaussian normal distribution (Cherubini et al. 2011a; Cardellini et al. 2018),

non-linear growth models such as the CARBINE model (De Rosa et al. 2017), the Schnute model

(Cherubini et al. 2011b), or the Chapman-Richards model (Yan 2018; Albers et al. 2019a).

Whatever modelling approach applied, the dynamic Cbio sequestration flows face a key accounting

challenge, the so-called “chicken-and-egg dilemma” (Levasseur et al. 2012c). It refers to an allocation

issue to a harvest activity: the dynamic LCI can be modelled by considering a full biomass growth/rotation

length before or after the harvest of said biomass. The former accounts for historic Cbio sequestration flows

(forest growth occurs before logging) and the latter for future Cbio sequestration flows (forest re-regrowth

occurs after logging by replanting new seedlings).

Published studies have applied the historic (Vogtländer et al. 2014; Zetterberg and Chen 2015; Demertzi

et al. 2018; Albers et al. 2019a), future (Cherubini et al. 2011b, a; Levasseur et al. 2012b; Repo et al.

2015; Pingoud et al. 2016; De Rosa et al. 2017) and occasionally both (Levasseur et al. 2012c; Fouquet et

al. 2015; Peñaloza et al. 2018) approaches. These opposed time perspectives yield different results, which

require careful justification of the modelling choice. Future-oriented sequestration has been recommended

for consequential LCA, and historic accounting for attributional LCA modelling (De Rosa et al. 2017). No

universal guideline exists to date, on how to set the temporal boundaries of forest resource modelling or

how to justify the use of one modelling approach over the other.

The objective of this study is thus to contrast both time-related modelling choices (before/historic vs.

after/future) for Cbio sequestration of forestry resources related with prospective bioenergy scenarios, to

better comprehend the time-sensitive climate change effects in the context of the dynamic LCA

framework. Consequently, a detailed discussion is intended to deliver transparency and broaden

understanding by exploring different cases, to support robust decision-making on the modelling choice.

2 Materials and methods

This study challenges the C neutral and static assumptions for forest biomass resources with long rotation

lengths by timing both Cbio sequestration and release flows (dynamic Cbio balance). An illustrative case

study was developed based on data from a partial-equilibrium model (PEM) for the entire energy-transport

sector in France. The model-coupling principle, described in detail in Albers et al. (2019a), combines
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prospective energy system analysis with Cbio models to assess the time-sensitive potential climatic

consequences of any energy policy scenario by means of a fossil + biogenic (C-complete) accounting. It

enables accounting and characterising time-dependent Cbio flows from emerging renewable energy

pathways (i.e. biomass commodities) in the specific context of the dynamic LCA framework proposed by

Levasseur et al. (2010).

Unlike classical LCA approaches, the functional unit expresses the national (here France) prospective

energy demand, in GJ, per policy constraint and per year, over a given simulation period (here from 2019

to 2050), required to satisfy the energy consumption of end-users (industry, transport and households)

across scenarios: the energy-mix (electricity and heat) and transport-biofuels (i.e. GJ per km travelled by a

specific transportation means). The dynamic Cbio balance refers to the PEM functional unit by modelling

the biogenic elementary flows, in t Cbio yr-1, of the supply commodity output forest wood residue

(hereafter referred to as FoWooR), a biomass-sourced energy carrier used as a renewable raw material.

The two Cbio sequestration time perspectives for FoWooR are assessed, by contrasting: i) the different

temporal profiles, ii) their time-dependent climatic consequences computed by C-complete vs C-neutral

approaches and iii) the implications of comparing the two approaches with dynamic LCA.

2.1 Data from a prospective partial-equilibrium model

LCA studies have previously been combined with PEM models to identify emerging technologies and

energy pathways as well as to carry out consequential modelling in LCA implying changes in demand

(Eriksson et al. 2007; Earles et al. 2013; Marvuglia et al. 2013; Vázquez-rowe et al. 2014; Menten et al.

2015a; Levasseur et al. 2017; Albers et al. 2019a).

PEM models are key instruments to support robust decision-making by assessing in detail substitution

alternatives and potential future energy pathways and their consequences on the market dynamic on

specific sub-sectors (from the supply-and demand-side) and the environment (Gargiulo and Brian 2013;

Nicolas et al. 2014). A commonly used PEM model generator is TIMES (MARKet Allocation-EFOM

System; https://iea-etsap.org/). The model framework explores bottom-up linear optimisation pathways

with a detailed technology database linking petroleum and biomass commodities with diverse

conventional and refinery and innovative biomass conversion processes (Loulou et al. 2016).

We used the PEM model TIMES-MIRET, analysing the energy-mix (electricity and heat network) and

transport sectors of metropolitan France (Lorne and Tchung-Ming 2012), following Albers et al. (2019a),

to obtain prospective scenarios on the FoWooR commodity supply and the net GHG emissions (here
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fossil-sourced CO2 and N2O) of the entire energy-transport system assessed (detailed in the

Supplementary Material).

The provision of energy services to end-users encompasses biomass and crude oil extraction, refinery and

bioprocess, combustion at tailpipe, as well as heat and electricity network; including import-exports

to/from other sectors. Besides conventional and renewable energy technologies, the TIMES-MIRET

database contains emerging biomass conversion processes for second and third generation biofuels.

Advanced biofuels from FoWooR, for instance, involve biochemical (ethanol) or thermo-chemical

(synthetic/Fisher-Tropsch diesel) processes, depending on scenario simulations. Process pathways for

other lignocellulosic biomass or algae involve transesterification or hydro treated pyrolysis oil.

TIMES-MIRET is calibrated to a reference policy scenario based on the 2009/28/EC Directive and

National Renewable Energy Action Plan, as the business-as-usual (BAU) policy scenario. The policy

scenario assessed in this study is based on the multi-annual energy programming of the 2015 French

Energy Transition for Green Growth Act (MTES 2017) – referred here as LTECV scenario. The LTECV

scenario contains all constraints from BAU, including the updated targets for the transport sector: by 2030

minimum 15% renewable energy share and 30% reduction of fossil fuels, from 2020 maximum 7% share

of first generation biofuels, and intermediate targets from 2018-2023 for advanced biofuels.

2.2 Biogenic carbon modelling: full lifetime accounting

The dynamic Cbio balance represents the cycling carbon between the atmosphere and technosphere: Cbio

fixation into the biomass through photosynthesis and the Cbio release through combustion and/or decay.

Cbio fixation and Cbio decay gradually extend over longer periods, while Cbio combustion represents

instant release emissions.

The Cbio fixation dynamic is computed by means of the forest carbon modelling approach of all main tree

species of the wood supply chain in France, following Albers et al. (2019a), to predict the annual Cbio

fixation from the atmosphere [t Cbioꞏyr-1] over a given rotation length (provided in the Supplementary

Material). The Cbio model refers to non-linear mean forest tree growth (Fekedulegn et al. 1999; Pretzsch

2009; Pommerening and Muszta 2015) based on the Chapman Richards model (Richards 1959) and

allometric relations (Henry et al. 2013), including operationalised yield tables from long-term

experimental forest plots (INRA/ONF/ENGREF 1984), featuring management regimes (e.g. thinning

periods, rotation lengths and number of trees per plot). The growth, is characterised by a diminishing rate

of Cbio sequestration as the tree matures, represented by a (classical) asymptotic and sigmoid growth

curve. The modelling is based on homogenous growth of un-even aged and mixed management practices
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per forest stand. A key choice affecting the Cbio sequestration model concerns the data and models used to

compute fixation (e.g. level of local-specificity of data used to fit the growth models, etc.), as well as the

computation of the timing of sequestration.

Cbio decay dynamic is computed by a simple negative exponential equation, described in Albers et al.

(2019a). CH4 emissions are estimated at 1.5% and 10%, respectively, for coarse woody debris and roots

(Ros et al. 2013). The half-life decay values for aboveground and belowground are assumed at 8 and 30

years respectively (Montes and Cañellas 2006).

This study covers all FoWooR commodity outputs described in the TIMES-MIRET LTECV scenario,

deriving from logging and thinning operations of commercial forests in France and collected for bioenergy

use (i.e. cogeneration and transport biofuels). Additionally, a reference scenario is defined, against which

the bioenergy is compared to evaluate potential climate change mitigation. According with Cowie et al.

(2013), the reference may include forest management (e.g. for a different mix of products and services, or

for conservation), but should exclude bioenergy. The Cbio reference in this study is referred to as “no use”

of FoWooR for bioenergy, which implies 100% of FoWooR left behind in the forest floor and emitted as

CO2 and CH4, from both aerobic and anaerobic degradation.

Fig. 1 shows a full lifetime accounting of Cbio flows (fixation and releases), under two scenarios

concerning bioenergy and the no use (reference) scenarios of the commodity. In the bioenergy scenario,

30% of FoWooR are accounted as non-collectable left behind biomass (Cacot et al. 2006; Lippke et al.

2011) and the collected portion (70% of logging residues) is further processed into advanced biofuels and

electricity-heat cogeneration. The biofuel combustion is assumed to be emitted as CO2, while the Cbio

decay releases from non-collectable/left-behind wood as CO2 and CH4 (to 30% in the bioenergy and to

100% in the no use scenarios). The Cbio flows from the belowground biomass corresponding to FoWooR

are included by mass allocation of the residual part (37%) to the belowground root part (20%), resulting in

7.4% (Albers et al. 2019a).
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Fig. 1. Full lifetime accounting of biogenic carbon (Cbio) from forest wood residues includes fixation, sequestration

and end-of-life releases through decay and/or combustion. The system boundary features two scenarios, the

bioenergy (70% of logging residues are combusted and 30% left behind to decay) and the reference “no use” (all

residues are left in the forest floor to decay)

2.3 Temporal boundaries in dynamic LCA

Defining the temporal boundaries is as a key issue when describing the emission flows through time,

particularly concerning Cbio from forestry resources (Levasseur et al. 2012b; Peñaloza et al. 2018). The

LCA ISO 14040/14044 standard (ISO 2006a, b) refers to the setting of a time horizon (TH) for the impact

characterisation (e.g. in the climate change category) in the goal and scope phase, but excludes any

specification on the temporal emission profiles (i.e. temporally-differentiated LCI) of the modelled

system.

Dynamic LCA implies defining a study TH, to establish the timing of the emission flows and impact

representations in the characterisation, by specifying: i) an inventory TH (hereafter referred to as LCI TH),

and ii) an impact assessment TH (hereafter referred to as LCIA TH). The LCI TH describes when in time

negative (Cbio sequestration) and positive (fossil and Cbio releases) flows occur over which the dynamic

inventories are built. The LCIA TH is variable for time-dependent characterisation factors (CFs), when the

evolution of the RF is evaluated and observed over time. By setting a specific end-year to the LCIA TH

-off is performed,

which is an unavoidable for comparison purposes and capturing the Cbio benefits (temporary sequestration)

or impacts.
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2.3.1 The dynamic inventory time horizon: Timing biogenic and fossil carbon emissions

When coupling with any demand model, in this study with the PEM TIMES-MIRET, all Cbio emissions

are aligned with the model’s simulation years. The first carbon release represents t0, starting with the first

combustion release (i.e. 2019) and ending with last year at t31 (i.e. 2050) of the PEM simulation.

All negative emissions from sequestration are adapted to the PEM simulation period going backwards or

forward in time, depending on modelling approach applied. The historic approach allocate a full rotation

length before the final harvest (preceding the wood harvest: first forest growth then tree felling) and the

latter after (following the harvest: tree felling first then seeding new trees). The applied forest carbon

model by Albers et al. (2019b) describes a maximum 200-year rotation length. Each PEM simulation year,

within the range of t0-t31, represents a new harvest activity with its own sequestration curve. The total

sequestration length for both historic and future perspectives sums up to 231 years, as shown in Fig. 2.

Fig. 2. Defining the time horizon of dynamic life cycle inventories concerning two opposed modelling time

perspectives for biogenic sequestration

All positive biogenic and fossil releases from combustion (e.g. cogeneration or tail pipe) are instant,

occurring within the same harvesting years over the range 0 to 31 years, while wood decay are long-term

emissions distributed over several years, similar to Cbio sequestration. Under given half-life assumptions

(see section 2.2) at least 60 years are required for the Cbio belowground biomass to decay. To avoid

temporal cut-offs from long-term Cbio releases, it is recommended to extend the LCI TH, for instance, by

adding 100 years to the last Cbio release (Fig. 2). Under such considerations, the net Cbio balance generates

different LCI TH for historic and future time perspectives with 331 and 231 years respectively. Note that

the 100-year TH is arbitrary, referring to the commonly reported TH in the IPCC Guidelines for National

GHG Inventories (IPCC 2006b), following a political (e.g. UNFCCC Kyoto Protocol: CDM or CER
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projects) rather than a scientific decision (Fearnside 2002; Shine et al. 2005). For a full lifetime carbon

accounting a generic approach is thus proposed by means of Eq. 1 for the historic and Eq. 2 for future

sequestration.

Eq. 1

Eq. 2

2.3.2 The dynamic impact assessment time horizon: setting a reference end-year

The static method by means of the IPCC GWP metric (IPCC 2013) is not considered appropriate for

dynamic carbon modelling, due to the fixed LCIA TH of 20 or 100 years. It assigns the same impact

characterisation to all emissions, thus disregarding: i) the emission timing of each GHG emission in the

atmosphere, ii) impacts beyond the fixed TH, providing a time preference to impacts (e.g. climate tipping

points vs buying time for innovation), and iii) the inconsistency between LCI TH and LCIA TH; as

confirmed by several authors (Kendall et al. 2009; O’Hare M. et al. 2009; Levasseur et al. 2010, 2016;

Jørgensen and Hauschild 2013; Cherubini et al. 2016).

On the other hand, the time-dependent CFs by Levasseur et al. (2010) are variable, with no fixed TH,

representing the actual impacts for any given characterisation TH. The method assesses each emission

flow following the year of its fixation or release. It overcomes the inconsistency between the different THs

generated by the different emission years, thus enabling a consistent assessment between LCI TH and

LCIA TH. Yet, the dynamic characterisation does imply setting an end-year to the impact assessment to

account for the Cbio sequestration benefits and allow transparent comparability among different scenarios.

The end-year of the impact assessment would thus express the RF effects between the year of the emission

release and the chosen fixed end-year (Levasseur et al. 2012c).

Consequently the study TH may cover (LCIA TH > LCI TH) or not (LCIA TH < LCI TH) all studied

flows by the chosen end-year of the time-dependent characterisation, as exemplary shown in with the

impulse-response function (Joos and Bruno 1996), predicting the decay of CO2 in the atmosphere. It will

state, whether all flows are accounted for (full lifetime accounting), and which are eventually excluded

(cut-off) from the study. A temporal cut-off appears when an LCIA TH is set for 100 years (Fig. 3a),

while the LCI TH accounts for 131 years. It is to remark that matching THs (LCIA TH = LCI TH) may

not project the forcing effect of the last emission at year 131, requiring the LCIA TH to be larger than LCI

TH, as shown in Fig. 3b. For the present study, we defined a matching study TH (i.e. LCIA TH = LCI

TH) per Cbio sequestration time perspective.
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7

Fig. 3. Defining the study TH (temporal boundaries) by means of the life cycle inventory time horizon (LCI TH) and

life cycle impact assessment time horizon (LCIA TH), illustrated with the impulse response function (IRF) of carbon

dioxide (CO2). The chosen LCIA TH may a) not cover or b) cover the elementary flows described within the LCI TH

3 Results

3.1 Dynamic inventory of biogenic carbon balance

Fig. 4 shows the Cbio balance of the FoWooR outputs from the LTECV policy scenario, contrasting both

scenarios bioenergy and no use reference per historic and future modelling approach. The Cbio balance

(darker shaded area in Fig. 4) consists of the sum of all negative and positive Cbio-CO2 and Cbio-CH4 flows

(lighter shaded areas in Fig. 4) from Cbio fixation and release (combustion and/or decay). The Cbio flows

are not yet converted into GHG emissions in this representation.
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Fig. 4. Life cycle carbon flows from dynamic biogenic carbon (Cbio), in t Cbioꞏyr-1, accounting for forest wood

residues under the “bioenergy” (a, b) and “no use” reference (c, d) scenarios per historic (a, c), and future (b, d)

carbon sequestration time perspectives

The temporal profiles for bioenergy and reference scenarios have different LCI THs (see Fig. 2): for the

historic 331 years (Fig. 4 a,c) and for the future 231 years (Fig. 4 b,d), representing the PEM simulations

period 1819-2150 and 2019-2250, respectively. The described LCI THs cover close to 100% of all

emissions in the Cbio balance (remaining ±1E-3 and 4E-5 t Cbio, depending on the scenario). The Cbio

balance thus represents a full lifetime carbon accounting with no inventory cut-offs, as all embedded Cbio

in the FoWooR is released back to the atmosphere. The chosen LCI TH confirm that the amount of Cbio

entering the system is equal to the amount of Cbio leaving the system, which means that Cbio emissions can
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be considered neutral in the net balance, however not in the annual dynamic balance, ultimately affecting

the atmospheric GHG composition.

3.2 Dynamic impact assessment of carbon flows

Fig. 5 shows the dynamic climate change impact assessment results of the LTECV policy per historic and

future time perspectives, featuring C-neutral (fossil-sourced CO2 and N2O outputs from TIMES-MIRET),

C-biogenic (Cbio balance) and C-complete (fossil + biogenic-sourced) curves for both bioenergy and no

use FoWooR scenarios. Prior to the dynamic impact assessment all Cbio-CO2 and Cbio-CH4 flows were

converted into the respective CO2 and CH4 GHG emissions, according to C-content in the molecules,

44/12 g CO2 g C-1 and 16/12 g CH4 g C-1 respectively. The instantaneous RF, in Fig. 5a,d describes the

external net change in energy flows per watts square meter at the tropopause [Wꞏm-2], while the integral is

given as cumulative RF [Wꞏyrꞏm-2] in Fig. 5b,e and their relativisation to the cumulative CO2 as the

relative RF [t CO2-eq] in Fig. 5c,f. Note that the impact representation of the two opposed modelling

approaches have different t0 with different absolute calendar years of the PEM (i.e. 1819 for the historic

and 2019 for the future approach).

The results of the C-biogenic flows per scenario and time perspective differ considerably. For the

bioenergy scenario, the historic approach never fully reached positive, while the future approach never

reached negative forcing effects. For the future approach, the instant and gradual releases from

combustion and decay start simultaneously with the sequestration flows. The re-sequestration time of the

emitted emissions is slow at the beginning and takes over two centuries (full rotation length) to

compensate for the positive Cbio releases. For the historic approach, one full sequestration cycle is

accounted before the first positive emission. Yet, the difference between the Cbio fixation and release

curves decrease with increasing LCIA TH. Consequently, the further into the future the end-year of the

impact assessment is set, the less significant do climatic benefits from Cbio sequestration become.

Analogously, as demonstrated in the sensitivity analysis in Albers et al. (2019a), the shorter the rotation

length of Cbio sequestration, the less significant are the negative forcing effects from Cbio.

The accounting of the Cbio balance modifies the impacts of C-neutral assumptions, as shown in the C-

complete curves in Fig. 5. The C-complete curves resemble the C-neutral ones, but with increasing or

decreasing magnitude, given the two sequestration time perspectives. The same conclusions are drawn

from the previous Cbio balance results (Fig. 4). The future sequestration lags behind the releases, while the

opposite is the case for the historic perspective. The choice whether sequestration occurs before or after

emissions thus considerably influences the results.
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Fig. 5. Instantaneous [Wꞏm-2], cumulative [Wꞏyrꞏm-2], and relative [t CO2-eq] radiative forcing (RF) effects from

carbon (C) emissions assessed for C-biogenic from forest wood residues, C-fossil (carbon neutral) and C-Complete

(fossil + biogenic) under given “bioenergy” and “no use” (reference) scenarios and sequestration modelling time

perspectives (historic and future rotation cycles).
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Moreover, a comparison between the bioenergy and the no use scenarios of both C-biogenic and C-

complete, demonstrated that the impacts from 100% left behind FoWooR in the forest floor (reference),

yielded higher forcing effects than for the bioenergy scenario in both historic and future modelling

approaches. The emission flows are differentiated by their temporal distribution, which is either

instantaneous (bioenergy) or gradual (decay). The anaerobic degradation processes produce CH4

emissions with higher radiative efficiency than CO2. Bioenergy and no use situations consider CH4, as

shown in Fig. 1, but the reference has a higher proportion of CH4 emissions, as 100% of logging residues

(including belowground biomass corresponding to FoWooR) are exposed to decay, compared to 30% for

bioenergy. Consequently, the forcing effects of no use are higher than the bioenergy curve, as shown in

Fig. 5.

3.3 Comparison of the two different temporal boundaries

The question arises on how to compare two opposing modelling approaches with different t0 and LCI THs

(i.e. inventory time lengths). The application of the instantaneous or cumulative RF metrics allow a direct

comparison between the historic or future time perspectives and scenarios, regardless when t0 is set for the

inventory and impact assessment. The results represent the actual impacts for any given GHG. On the

other hand, the relative RF is based on the cumulative RF results relativized with the cumulative RF of the

CO2 reference gas, fixed to an initial year (t0). The relative characterisation thus depends on the

computation of a fixed t0. Consequently, the two time perspectives with different t0 for Cbio sequestration

are not comparable with the relative RF metric. It is most noticeable in the C-neutral curves in Fig. 5c, e,

for instance by fixing the LCIA TH to 131 years, the impact would result in completely different

magnitudes (i.e. 3.3E+9 for historic and 6.7E+9 for future perspectives). Following the complex

comparison with dynamic CO2-eq results, the relative RF metric is excluded from the comparison

undertaken in this section.

Fig. 6 shows a comparison of the instantaneous (Fig. 6a) and cumulative (Fig. 6b) RF effects of the

historic and future C-complete results, including C-neutral, highlighting the choice of reference LCIA THs

aligned with both historic LCI TH (331 years) and future LCI TH (231 years). Aligning the LCIA THs is

performed to ensure a consistent comparison of results with different LCI THs in a specific year, and test

the time-sensitivity due to the choice of the LCIA TH. In this comparison, t0 for historic is the year -200

and for future it the year 0. However, t0 for future could also refer to the year -200 (equal to the historic

one), as the range between -200 and 0 for the future perspective does not account for any emissions, and is

therefore not assessed with the dynamic characterisation.
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Concerning the cumulative results in Fig. 6b, an overall comparison denotes that the forcing effects for

LCIA TH 231 are lower than for 331 years by around 60% for historic bioenergy (7.2E-4 and 1.1E-3

Wꞏyrꞏm-2) and no use (7.7E-4 and 1.2E-3 Wꞏyrꞏm-2), by around 70% for future bioenergy (8.9E-4 and

1.3E-3 Wꞏyrꞏm-2) and no use (9.4E-4 and 1.3E-3 Wꞏyrꞏm-2), and by 65% for C-neutral (7.6E-4 and 1.2E-3

Wꞏyrꞏm-2). The cumulative RF will continue increasing the longer the LCIA TH is set, due to the

cumulated fraction of the CO2 gas remaining in the atmosphere, which has a very long residence time. For

the dynamic results, the highest difference was thus found, as expected, among the historic and future

modelling time perspectives. However, the margin between both FoWooR scenarios itself is considerable

small ranging between 4% and 7%, depending on the LCIA TH and time perspective.

Fig. 6. Instantaneous [Wꞏm-2] and cumulative [Wꞏyrꞏm-2] radiative forcing (RF) effects from carbon (C) neutral

(fossil emissions only) and C-complete (fossil + biogenic flows from forest wood residues) under given “bioenergy”

and “no use” (reference) scenarios and sequestration modelling time perspectives (historic and future rotation

cycles). The arrows represent the setting of a life cycle impact assessment time horizon (LCIA TH) representing 231

and 331 years, for comparison purposes.

4 Discussion

4.1 Framing the carbon sequestration discussion

The results in this study demonstrated that the modelling choice for timing forest growth and thus Cbio

sequestration, before or after, matters. It was also demonstrated that Cbio accounting differs from C-neutral

assumptions (Fig. 6), as Cbio sequestration can have a cooling (negative RF) effect with an historic
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perspective. However, when the sequestration lags behind release emissions in the future approach, a

warming effect is observed, as pointed out by Helin et al. (2013) and confirmed in this study. After harvest

activities, forest biomass needs to be replenished, which may take up to several centuries. Thus, modelling

a full rotation length before the harvest yields a temporal carbon credit/benefit from an existing carbon

stock, while modelling it after implies a temporal carbon debt/loss. In other words, carbon neutral results

have been overestimated (historic) or underestimated (future) by the inclusion of dynamic Cbio flows.

4.2 Generalising rules for choosing a carbon sequestration modelling perspective: an allocation issue

The philosophical question from ancient Greece of whether the egg (sequestration) or the chicken (wood)

comes first corresponds in the LCA methodology to an allocation issue: which sequestration, either before

(historic) or after (future), should be attributed to a specific harvest? In this context, the chicken-egg

dilemma arises in attributional LCA. In consequential LCA, the LCI modelling does not aim at allocating

specific processes, such as Cbio sequestration, to specific products, such as harvested wood, but at

representing the consequences of a change in decision or demand for the functional unit (Ekvall and

Weidema 2004; Weidema et al. 2018). Therefore, the modelling principle for consequential LCA is to

include all changes in Cbio flows related to a specific change and its effects on other systems,

independently of their timing before or after the harvest. If the studied change relates to forest

management (e.g. decrease of fertilisation rates), some modifications in Cbio flows can occur before

harvest, but if this change relates to the harvest itself, consequences are likely to occur after harvesting

(De Rosa et al. 2017).

In attributional LCA, the main consensual recommendation, e.g. from the ISO standard (ISO 2006a, b) or

the ILCD handbook (EC-JRC 2010) to address an allocation issue, is to consider, when possible, an

underlying causal physical relationship. In the case of managed forests, wood harvesting is possible

because of the prior human activity of forest management; in that case, the time-related modelling should

adopt an historic perspective. Conversely, in the case of non-managed forests, biomass growth and harvest

are not linked by a causal relationship, but if the forest is allowed to re-grow after harvest, this regrowth

and the related Cbio sequestration occur because of the harvest; the time-related modelling should then

adopt a future perspective. Fig. 7 provides a decision tree for the choice of time-related modelling based

on these criteria, which generalises the proposed set of decision rules. Solving the chicken-egg dilemma is

closely linked with another well-known issue in the LCA community, i.e. determining whether biotic

resources are part of the ecosphere or the technosphere, further explored in this section.
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Fig. 7. Decision tree for the allocation of carbon sequestration to a harvest activites

4.3 Defining the origin of the biotic resource: ecosphere or technosphere

The origin of a biotic resource is likely the most dominant question for Cbio modelling through time,

together with identifying the appropriate Cbio sequestration approach. According with Lindeijer and

colleagues, the origin of the biotic resource defines whether the modelled system stems from a “man-made

controlled culture” (e.g. agriculture, aquaculture and silviculture) or from a natural ecosystem (Lindeijer et

al. 2002). The authors applied an established definition for aquaculture (FAO 1997) to specify intensity of

human activities in controlled systems, narrowing it down to two key interventions: increasing

reproduction/yield rate (e.g. plant seedlings, supply hatcheries, irrigation, fertilisation) and mean life

expectancy (e.g. mechanical or chemical weed control, phytosanitary control). The question on where the
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biotic resource extraction originates from, thus segregates the technosphere (anthropogenic) from the

ecosphere (nature), and responds to which system the impacts from the extraction are allocated. The limits

between the two spheres may therefore be determined to the level of human activities/interventions.

In the context of forest systems, managed and un-managed (including natural) forests should thus be

differentiated. Managed forests imply ownership and are “primarily designated for the production of

wood, fibre, bioenergy and/or non-wood forest products (e.g. arabic gum, latex, resin, Christmas trees,

cork, bamboo)” (FAO 2010). The extraction of the biotic resource is possible due to planted seedlings

(Lindeijer et al. 2002), meaning that the Cbio stocks are replenished and allowed to regrow. Additionally,

in managed forests, species diversity is low. More than half of the French forests are monospecific and

homogenous (IGN 2017). The human activity corresponds to reforestation, i.e. the reestablishment of a

forest where it previously occurred, in contrast to afforestation where none previously existed (Lund et al.

2014). In sustainably managed forests, the carbon inventory does not decrease over time, as no more

timber is removed than regrown (Lippke et al. 2011), as the aim is to “conserve and maintain forest

ecosystems for the benefit of present and future generations” (FAO 2017).

In contrast to managed forests, natural forests “evolved and reproduced [regenerated] itself naturally from

organisms previously established [native species], and that has not been significantly altered by human

activity [ecological process are not significantly disturbed]” (FAO 2000, 2010). Natural forests are thus

understood as previously/naturally existing, with insignificant or low level of human intervention. The

same applies to un-managed forests, referring to abandoned/degraded forest or open woodland. A

degraded forest features a reduction in quality, biomass, and species diversity induced by human activities

(e.g. overexploitation, mismanagement) or natural disturbances (e.g. disease, pests, fires, windbreaks)

(FAO 2000, 2011; Lund 2009, 2014).

From an economic/life cycle thinking viewpoint, managed forests (i.e. commercial forests) may be

considered within the technosphere with the objective of providing and maximising the provision of biotic

resources to meet future market demand. Un-managed forests (e.g. abandoned or degraded) may be

considered as part of the ecosphere with no major economic intention. From an LCA viewpoint, un-

managed forests could be considered equivalent to natural ones, as long as they are not part of a

production system.4.4 System changes beyond the chicken-egg dilemma

As per the previous segregation by the origin of the biotic resource between managed (technosphere) and

un-managed/natural (ecosphere) forests, changes in land occupation are additional influencing criteria for

modelling of Cbio sequestration (Fig. 7). Specific cases may be linked, for instance, to tree replacement

with no forest covers (e.g. agriculture) and vice versa. Since prehistoric times, (agro)silvo-pastoral land
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use systems (i.e. wood-pasture habitats) have been performed in Europe, yet banned since the 1800s

(Bergmeier et al. 2010). It confirms that forest landscapes have been exploited and modified far back in

history, disturbed by clear-cuts, agricultural practices and active restorations (Vasseur 2012).

For these specific cases, a land-use baseline is necessary, particularly when assessing systems producing

food, feed, fibre, timber and biofuels (Soimakallio et al. 2015). This baseline describes the dynamic

development of ecosystem towards the achievable “quasi-natural steady state” (Milà i Canals et al. 2007;

Koellner et al. 2013). Among the different approaches proposed to establish a land-use baseline, for the

selection of which there is no established guidance (Koponen et al. 2018), it has been argued that the most

adequate one consists in using the ecosystem’s natural regeneration (also referred to as natural relaxation)

to estimate impacts from land use in attributional LCA (Soimakallio et al. 2015, 2016). A study of wood

production across Canada (Head et al. 2018) suggested that the use of natural forest as a baseline may take

1000 years without anthropogenic disturbance to approximate the steady-state carbon stock associated

with a natural forest. Changes in land use and/or forest cover are beyond the scope of this work, as the

chicken-egg dilemma does not apply to it.

4.4 System changes beyond the chicken-egg dilemma

As per the previous segregation by the origin of the biotic resource between managed (technosphere) and

un-managed/natural (ecosphere) forests, changes in land occupation are additional influencing criteria for

modelling of Cbio sequestration (Fig. 7). Specific cases may be linked, for instance, to tree replacement

with no forest cover (e.g. agriculture) and vice versa. Since prehistoric times, (agro)silvo-pastoral land use

systems (i.e. wood-pasture habitats) have been performed in Europe, yet banned since the 1800s

(Bergmeier et al. 2010). It confirms that forest landscapes have been exploited and modified far back in

history, disturbed by clear-cuts, agricultural practices and active restorations (Vasseur 2012).

For these specific cases, a land-use baseline is necessary, particularly when assessing systems producing

food, feed, fibre, timber and biofuels (Soimakallio et al. 2015). This baseline describes the dynamic

development of ecosystem towards the achievable “quasi-natural steady state” (Milà i Canals et al. 2007;

Koellner et al. 2013). Among the different approaches proposed to establish a land-use baseline, for the

selection of which there is no established guidance (Koponen et al. 2018), it has been argued that the most

adequate one consists in using the ecosystem’s natural regeneration (also referred to as natural relaxation)

to estimate impacts from land use in attributional LCA (Soimakallio et al. 2015, 2016). A study of wood

production across Canada (Head et al. 2018) suggested that the use of natural forest as a baseline may take

1000 years without anthropogenic disturbance to approximate the steady-state carbon stock associated
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with a natural forest. Changes in land use and/or forest cover are beyond the scope of this work, as the

chicken-egg dilemma does not apply to it.

4.5 Different cases of dynamic carbon sequestration from forests and pertinent modelling perspective,

excluding land use change situations

Different combinations of wood origin (ecosphere or technosphere), land cover (forest or non-forest) and

type of forest (managed, unmanaged, natural, etc.) may be present on any particular Cbio sequestration

modelling case study (Fig. 8).

Fig. 8. Possible cases (A to F) of carbon accounting scenarios associated with the provision of forest regrowth (forest

system) and no provision of forest regrowth (no forest system). The direction of the arrows represents the relation

between the previous and the current life cycles

Fig. 8 reflects the reference frame of a forest wood providing system under study, highlighting the

relevance of identifying the previous state of land occupation. Based on the circumstances (state) of the

previous life cycle, a rationale for applying the historic or future modelling approaches may be derived:

In cases A and B, harvested wood comes from a managed or unmanaged system, where the

previous situation was a managed (i.e. in the technosphere) forest. In both cases, as there has been

a human-induced Cbio sequestration, its modelling should be historical, as there is a history of
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sequestration. In case A, even if there are management changes among rotations, historical

sequestration should be applied, as there is no land use change (forest to forest).

In case C, a special case of case A, in which a managed forest is harvested, and no provisions for

regrowth are considered. As there is a history of sequestration, C accounting should be historical.

In case D, a natural forest is harvested, and no provisions for regrowth are considered. Therefore,

no Cbio sequestration can be attributed to the harvested wood, but a total loss of the C stocked in

the natural forest.

In case E, a natural forest is harvested and eventually converted into a managed technosphere

system (forest to forest), and therefore no Cbio sequestration can be attributed to the harvested

wood, but a total loss of the C stocked in the natural forest. After the management change is

consolidated, for instance during a second cycle of technosphere forest, the situation would

resemble case A.

In case F, a natural forest is harvested and allowed to regrow without interventions such as

reforestation, and no intention to turn the system into a managed forest. A future accounting of the

natural regrowth should be carried out. In case that the regrowth is subject to interventions, that

would be case E.

4.6 The case of bioenergy from residual forest biomass

The case of bioenergy in this study can be identified with case A in Fig. 8, as the biotic resource (here

FoWooR) originates from a managed forest that has a history of consecutive sequestration cycles, and thus

forms part of the technosphere. The modelling choice for sequestration we consider more coherent for this

case, at least pertaining sustainable managed forests in France, is the historic perspective. Managed forests

required long-term planning due to their nature of long rotation lengths, which should be credited with the

historic sequestration accounting approach.

The forest cover in France has annually increased by 0.7% since 1985 (IGN 2017). It implies that

managed forest is a net carbon sink rather than a net emitter. Future projections on standing wood volumes

are based on historical datasets from long term field studies (yield tables with age and productivity

classes) over the past centuries (INRA/ONF/ENGREF 1984) and statistical evaluations on potential future

national availabilities from harvest behaviours and current production volumes, including losses and

mortalities (Colin and Thivolle 2016). The additional annual carbon stocked per ha of land is expected to

satisfy the anticipated increase in wood demand. A comparison with the TIMES-MIRET business as usual

policy outputs (reference), following Albers et al. (2019a), showed that the FoWooR supply would

increase gradually in the LTECV scenario, by 2.5% in the year 2030 and up to 17% in the year 2050. This
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increment reflects the actual potential availability of French forests to sustainably supply 12 additional

Mm3 of wood (Valade et al. 2018).

The wood supply chain in France amounts for 57.3 Mm3ꞏyr-1 (~16 Mha of which are managed forest,

accounting for 31% of the land use), with 53% of the wood used for lumber, paper and pulpwood and 47%

(~27.3 Mm3) for various bioenergy pathways (Agreste 2016; Valade et al. 2018). The wood residues from

logging or thinning operations, when collected for the bioenergy sector, are considered as co-products

from the forest wood supply chain. The co-product are destined to meet the raw material requirements of

second generation biofuels and the energy mix, with on-site co-generation and other sectors such as

domestic heating with pellets and wood chips, or blended transport-fuels with bioethanol and biodiesel.

A continuous sustainable forest growth and harvest will most likely not increase the removal of FoWooR

due to displacement of fossil fuels (Lippke et al. 2011). It has been stated that increases in wood use for

bioenergy beyond the transition policy targets (here LTECV scenario) are “unrealistic”, as it depends on

the carbon stock and actual production (Valade et al. 2018). However, it may lead to intensifying forest

management practices and any additional mobilisation may imply the use of quality wood with high added

value (dedicated biomass) for bioenergy.

5 Conclusions

Accounting for dynamic biogenic flows from forest biomass allows valuing Cbio sequestration of forest-

bioenergy systems. Cbio sequestration postpones RF over several decades (cooling effect). The negative

forcing effects, however, depend on the timing of sequestration. When the sequestration lags behind the

releases (future sequestration cycle), the positive emissions overtake the negative with subsequent

opposite effects, namely warming (positive RF). A carbon debt is created and it takes a full rotation length

to compensate for the caused GHG costs. As demonstrated in this study, excluding the dynamic features

of Cbio flows introduces bias and may mislead decision support. Forest ecosystems are dynamic and

mitigation targets require dynamic approaches, showcasing time-dependency of carbon flows, as well as

the time-sensitive implications for climate change. Carbon neutrality is not an option for modelling biotic

resources with long rotation lengths. The dynamic LCA method is a constructive approach for timing

fossil and Cbio flows both upstream and downstream the supply chain/life cycle of bio-based products.

Dynamic models are closer to real applications compared with linear assumptions or default carbon stock

values.

This study was concerned with finding a solution to the allocation issue associated with the chicken-egg

dilemma of Cbio sequestration, attributing a future or historic perspective to a specific forestry biomass

harvest. This study did not address modelling challenges associated with land use change, as those are
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beyond the chicken-egg dilemma. A decision tree (Fig. 7) supports the choice of time-related modelling

based on a generalised set of decision rules for attributional approaches underlined by different cases (Fig.

8).

Our proposals are limited to the comparison of prospective bioenergy scenarios at the product level. The

dynamic at the landscape level may differ from those at the product level, and therefore further research is

needed to close the gap between forest stand and landscape levels. Moreover, consequences on the soil

organic carbon dynamic over time due to an increased demand of forest wood residues have not been

considered. In a broader sense, such exploitation might affect forest ecosystem services involving

biodiversity and the sustainable provision of goods and services (e.g. soil productivity and ecosystem

functioning) in the long term. Further research is needed to respond to this concern, by addressing changes

of carbon stock in the soil (in this study, for instance, we included decay of wood biomass in soil), but also

by performing a complete LCA study including other impact categories.
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4.4 Chapter conclusions

This chapter demonstrated that accounting for forest-Cbio sequestration challenges the current static

carbon neutral and renewable energy displacement approaches by means of timing biogenic carbon

flows (both sequestration and release) and time-sensitive climate change impacts. The consumption of

forest wood feedstock for the energy-transport sector has a net zero CO2 balance, in the long-term

featuring the same results as the classical static carbon footprint results. However, the timing of the

Cbio flows allows taking into account the temporal sequestration effect of the forest-sourced biomass.

The sequestration depends on the tree species and forest management practices (i.e. thinning,

rotation length) and the chosen modelling approach (future or historic time perspective). Long-term

sequestration further postpones radiative forcing, thus increasing the mitigation effect. Yet, the

mitigation effect is sensitive on the rotation length: the shorter the growth/rotation length the lower the

mitigation effect. Changes of the growth parameter, on the other hand, have not affected the results,

given the robustness of the model.

On the other hand, the timing of the first Cbio sequestration with historic or future modelling time

perspectives determines whether there is an initial carbon benefit or debt. The chicken-egg-dilemma

of Cbio sequestration is rooted in physical causal relationship handled in attributional LCA (attribution

of historic or future Cbio sequestration to a harvest activity). Generalised rules have been developed to

recommend the appropriate dynamic Cbio modelling relevant for both LCI modelling approaches

(attributional and consequential). The recommendations intended to support the justification of

applying one approach over the other based on the discrepancy between wood provision from

managed and un-managed (i.e. identifying the previous state of the land occupation) and defining

whether the harvest wood biomass is allowed to regrow.

The two case studies in Paper 1 and Paper 2, however, focused only on forest-sourced biomass for the

bioenergy sector and Cbio sequestration due to tree (re)growth, excluding biomass demand from other

biotic resources (e.g. annual or perennial energy crops) from agricultural systems and their dynamic

features. Wood decay was modelled based on a simplified method, ignoring other dynamic influencing

factors of potential C inputs to soil in the context of the soil organic carbon (SOC) dynamic as well as

potential carbon sequestration in the soil. The next chapter contributes to integrating the dynamic of

SOC in the proposed modelling framework, involving dynamic land use implications, linked with the

climate change impact category.
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5 Agriculture: Soil organic carbon modelling

5.1 Chapter context

The Cbio balance of bioenergy from annual energy crops is usually considered carbon neutral, as the Cbio

sequestration during plant growth and the Cbio releases from end-of-life (EOL) combustion takes place

within the one year time step. While this may be applicable for crop products (e.g. sugar beet for

bioethanol production), other remaining plant parts (in the above- and belowground plant compartments)

usually contribute to soil organic matter, as they are left on the field, incorporated to the topsoil, and

eventually contributing to soil organic carbon (SOC). The dead biomass has its own dynamic, as it

undergoes decay processes, affecting the atmospheric GHG composition over time.

The purpose of this chapter is thus modelling of dynamic SOC flows upstream of different agricultural

bioenergy substrates and evaluates the temporal carbon effects of these flows on the atmospheric GHG

composition, linking climate change impacts. Analogously to the Cbio sequestration dynamic of forest-

sourced biomass (Chapter 4), time-sensitive effects from biogenic sources (here SOC flows) modelled,

involving biomass growth dynamic for energy crops with rotation lengths longer than one year (e.g.

perennial grasses).

The framework elements (Chapter 3) addressed by Paper 3 and Manuscript 4 and their supplementary

materials (Appendix F: SM of Paper 3 and Appendix G: SM of Manuscript ) are indicated in Fig. 3-15.

The case study in Paper 3 aims at modelling the C inputs to the soil from different biomass commodities

(energy crops) from a partial-equilibrium model (here TIMES-MIRET) for transport-biofuels, by applying

the same coupling approach proposed in Paper 1 (section 4.2). The SOC modelling refers to C inputs to

the soil from different crop fractions considered as residues, including external C inputs from biowastes

(organic fertilisers), per unit of area under consideration of land occupation scenarios.

Manuscript 4 is a short case study of an intermediate chemical product (surfactant for self-care products)

partially based on fatty alcohol from palm kernel oil (PKO). The purpose of the case study is to model the

dynamic Cbio and SOC upstream and downstream flows of PKO, described in an existing classical static

“cradle-to-gate” LCA study (provided by the French chemical company Solvay), and compare static with

dynamic results. The approach is a model integration of all previously developed case studies, increasing

the complexity in growth modelling all oil palm crop compartments.

Paper 3 and Manuscript 4 respond to the following research questions:
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Paper 3 (section 5.2):

Do complete carbon balances (involving SOC flows) of biofuels differ from balances based on

carbon neutral assumptions (considering only fossil C)? To what extent?

Are complete carbon balances sensitive to the SOC modelling parameters and/or changes in C

inputs to soil?

What plant fractions from above- and belowground compartments do contribute to higher levels C

inputs to the soil? Is this specific to the source crop?

Manuscript 4 (section 5.3):

How can the dynamic Cbio and SOC flows be coupled with classical static LCA approaches? What

are the restrictions or limitations?

How are the classical static LCA results influenced by the full lifetime biogenic accounting of the

surfactant product? Does accounting for Cbio of this type of product matter? Are the results

sensitive to changes in model parameters?

Do the results differ significantly under consideration of hypothetical scenarios variations (e.g.

assuming extended service-life, other EOL scenarios)?

The main technical specifications on modelling steps building the basis of the modelling framework

applied in the research paper and manuscript are shortly summarised, as follows. A detail modelling

scheme has been included in Paper 3.

Pre-treatment steps for the model coupling:

1. Export demand model outputs linking energy crop commodity [t], annualising the values with linear

interpolation, and quantify carbon content of annual values [t Cyr-1].

2. Compute land use/occupation per unit of area requirements [ha] of the energy crop demand based

on yield proportions [tꞏha-1] (crop product or residues) and chemical composition of crops (sugar,

oil, starch) [tꞏt-1].

3. Compute final energy supply [MJ] per process pathway based on low-heating value, yield

efficiencies and well-to-wheel approaches and associated greenhouse gas emissions [t CO2eqꞏMJ-1]

Dynamic soil organic carbon modelling steps:
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4. Model C inputs to the soil originating from dead organic matter (i.e. plant residues above- and

belowground and external inputs) using soil organic carbon (SOC) modelling approaches by

Hénin and Dupuis (1945) and AMGv2 (Clivot et al., 2019) models.

5. Model soil parameters based on soil texture, soil type and climate typology for national crops

6. Model plant C allocation/partitioning among different plant compartments based on the net

primary productivity (see Box 5-1) approaches.

7. Model potential C of exogenous biowaste inputs (organic soil amendment/fertiliser) [t C ha-1].

8. Quantify C input flows [t C ha-1] by means correction factors on the C allocated values to specific

plant compartments, determining management practices or scenarios (residue removal rate, root

incorporation, exogenous input).

9. Compute the derivative values to obtain dynamic soil organic carbon factors [t Cꞏyr-1] per crop

species or the mean of all species.

Box 5-1. Net Primary Production

Net primary production (NPP) can be understood as the net amount of energy stored in the biomass. It reflects the

balance between the net carbon gain in the plant thorough photosynthesis during plant growth and the carbon

release through plant respiration/metabolism and biological residue in form of CO2. It includes the NPP of new

biomass (40-70%), root secretions (20-40%), transfer microbes by symbiosis (10-30%), losses (1-40%) and volatile

emissions (0-5%) (Chapin III and Eviner, 2007; Clark et al., 2001; Gower et al., 2001).
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5.2 Paper 3: Soil organic carbon in the context of energy crops

This paper assesses the soil organic carbon dynamic and land occupation from agricultural energy crops

(annual and perennial) and the time-sensitive climate change consequences from emerging transport

biofuels by contrasting both carbon neutral with and without SOC inventories, published in the Journal

Science of Total Environment (https://doi.org/10.1016/j.scitotenv.2019.135278), received 19 August

2019, accepted 28 October 2019.

Objective Develop dynamic SOC inventories from the provision of agricultural substrates to

transport biofuels, to:

Evaluate implications of SOC on climate change

Compare and discuss the SOC-climate consequences from different energy policy

scenarios and biofuel pathways

Identify the main sources of mitigation potentials (i.e. emission delay)

Approach Coupling annual and perennial biomass commodity outputs from a partial-equilibrium

model with dynamic SOC models

Sector (product) Transport (bioethanol and biodiesel)

Biomass Annual crops (rapeseed, maize, triticale, wheat, sunflower, sugar beet and soybean)

Perennial grasses (miscanthus and switchgrass)

Biowastes from livestock farming

Supporting data Data Paper in section Appendix D: Data paper on forest models: Model coupling strategy

SOC modelling data as Supplementary Martial in Appendix F: SM of Paper 3
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Graphical abstract

Highlights

Dynamic accounting of SOC from land use activities linked with energy crops for transport

biofuels

The modelling framework contributes to complete GHG inventories including biogenic C and

SOC

Mitigation potentials are sensitive to residue management (C inputs to the soil vs. removal rates)

Temperature affects organic matter decay and thus mitigation effects

Soil C sequestration from perennial is higher than that from annual crops

Abstract

Low carbon strategies recently focus on soil organic carbon (SOC) sequestration potentials from

agriculture and forestry, while Life Cycle Assessment (LCA) increasingly becomes the framework of

choice to estimate the environmental impacts of these activities. Classic LCA is limited to static carbon

neutral approaches, disregarding dynamic SOC flows and their time-dependent GHG contributions. To

overcome such limitation, the purpose of this study is to model SOC flows associated with agricultural

land use (LU) and the provision of agricultural substrates to transport biofuels, thus generating dynamic

inventories and comparatively assessing energy policy scenarios and their climate consequences in the

context of dynamic LCA. The proposed framework allows computing SOC from annual and perennial

species under specific management practices (e.g. residue removal rates, organic fertiliser use). The results

associated with the implementation of three energy policies and two accounting philosophies (C-neutral
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and C-complete) show that shifting energy pathways towards advanced biofuels reduces overall resource

consumption, LU and GHG emissions. The French 2015 Energy Transition for Green Growth Act

(LTECV) leads towards higher mitigation targets compared with business-as-usual (BAU) and

intermediate (15BIO) policy constraints. C-neutral results show reduced radiative forcing effects by 10%

and 34% for 15BIO and LTECV respectively, but not for BAU. C-complete (i.e. dynamic assessment of

all biogenic- and fossil-sourced C flows) results reveal further mitigation potentials across policies,

whereof 50%-65% can be attributed to temporal C sequestration in perennial rhizomes. A sensitivity

analysis suggests important SOC variations due to temperature increase (+2°C) and changes in residue

removal rates. Both factors affect mitigation and the latter also LU, by a factor of -0.56 to +5. This article

highlights the importance of SOC modelling in the context of LU in LCA, which is usually disregarded, as

SOC is considered only in the context of land use change (LUC).

Keywords: Biofuels; dynamic life cycle assessment; energy policy scenarios; land use; residue

management; SOC modelling

1 Introduction

1.1 Energy policies and low carbon mitigation strategies

Greenhouse Gas (GHG) emissions need to be reduced by 60% until 2050 (EC, 2018a; UNFCCC, 2018).

Between 1990 and 2016, GHG emissions of EU-28 showed a relative reduction by 22% in most economic

sectors, due to efficiency increases and changes in the energy mix, however, for the transport sector

including international aviation, they have increased by 26% (EUROSTAT, 2019). In France, 70% of

GHG emissions are attributed to fuel combustion, of which about 30% derive from the transport sub-

sector (SDES, 2019). Climate-energy policy targets promote a shift towards renewable energy (RE) and

advanced biofuels. French policy formulates increasing RE-shares in the energy mix and transport sectors,

by 32% and 15% (from a 2012 baseline (MTES, 2018)) respectively, as well as reducing GHG emissions

by 40% (from a 1990 baseline (IPCC, 2006)).

Low carbon strategies include the use of energy crops for producing transport-biofuels, as they are RE

carriers considered as carbon neutral GHG inventories. Most of these feedstock consist of dedicated food-

crop based annual species (e.g. rapeseed, wheat), as well as lignocellulosic dedicated perennial species

and residual matter, among other non-food crop derived biomass such as algae. Advanced second

generation (2G) biofuels, i.e. based on perennial grasses, woody residues, and agricultural straw, are

increasingly encouraged, as they do not displace food production, regardless of their alleged potential

contribution to indirect LUC (Harvey and Pilgrim, 2011).
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Additional mitigation strategies focus on the potential of carbon sequestration in soils through agricultural

practices (Goglio et al., 2015), promoted for instance under the “4 per mille Soils for Food Security and

Climate” initiative presented at the 21st Conference of the Parties of the UNFCCC, which resulted in the

2015 Paris Climate Agreement (CGIAR, 2018; Derrien et al., 2016; INRA, 2019; Minasny et al., 2017;

Zanella et al., 2018). This initiative faces nonetheless some criticism on the extent to which soil can

sequester carbon (e.g. White et al. 2018) and the concept of soil carbon sequestration itself, as the release

of nutrients is one of the key functions of soil organic matter (SOM) (Lehmann and Kleber, 2015).

Therefore, the dynamic of soil organic carbon (SOC), as influenced by biomass production and use, needs

further research when modelling climate benefits of future energy scenarios.

Prospective bottom-up energy system models are instruments assessing policy scenarios and their effects

on a (sub-) sector, by means of linear programming and optimisation (Loulou et al., 2016). Scenario

simulations from these models are built on least cost and low carbon energy pathways, involving

technological innovation, efficiency and RE from fossil and biomass sources. The dynamic of SOC and

LU are however not considered in energy system models (Frank et al., 2015).

1.2 Soil organic carbon modelling and application in life cycle assessment

SOC is the main component of SOM, accounting for 55-60% by mass, divided among three pools:

fast/labile/active (turnover time of 1-2 years), intermediate (turnover time of 10-100 years), and

slow/refractory/stable (turnover time of >100 years) (FAO, 2017). The turnover rate plays a key role in the

functioning (e.g. health) of the soil ecosystem, as well as on climate change, as C is eventually released to

the atmosphere, as it undergoes continuous decomposition in the soil under influence of soil fauna activity

(Kwiatkowska-Malina, 2018; Lehmann and Kleber, 2015; Campbell and Paustian, 2015; FAO, 2017).

Several physical and biochemical mechanisms may influence the decomposition rate, and these

mechanisms can be in turn influenced by management (e.g. to increase C sequestration) (Wiesmeier et al.,

2019; Zomer et al., 2017).

In general, SOC models take into consideration soil temperature, water, and clay content; as main drivers

for changes in C stocks (Bockstaller and Girardin, 2010; Ci et al., 2015; FAO, 2017; Han et al., 2018;

Zhong et al., 2018). They are usually based on the assumption that SOM decomposes following first order

kinetics (Smith et al., 2012), initially proposed in the 1945 pioneering model from Hénin and Dupuis

(Henin and Dupuis, 1945; Shibu et al., 2006), where the decomposition rate constant corresponds to the

pedoclimatic condition-dependent annual mineralisation rate. Mineralisation coefficients can be estimated

from measured data (e.g. Delphin 2000) or modelled (Benbi and Richter, 2002; Bockstaller and Girardin,

2010), and are often available in the literature (e.g. Gobin et al. 2011).
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SOC modelling in agriculture, livestock, climate mitigation and LCA are carried out by means of different

methods depending on the purpose of the study, data availability and spatial scales (i.e. site-specific, site-

dependent or site-generic variables). Common classifications involve three levels of complexity (Bolinder

et al., 2006; Campell and Paustian, 2015; FAO, 2018; Goglio et al., 2018, 2015; Shibu et al., 2006; Smith

et al., 2012): i) analytical/empirical models, mostly based on the factors from IPCC Guideline for National

GHG Inventories (IPCC, 2006), ii) process-oriented/conceptual models, with increasing complexity

according with the number of pools considered, and iii) ecosystem/summary models, i.e. multi-

compartment models involving sub-models such as plant growth, dynamic crop-soil-crop models etc.

Analytical modelling methods are based on two main rationales: gain-loss, where processes altering C

content of pools are considered, and stock-difference, most common in LCA, where C stocks in pools are

measured at two points in time (Benoist and Bessou, 2018; IPCC, 2006). Empirical models, such as the

Campbell model (Campell and Paustian, 2015), use two functions to describe changes in SOC: one to

model C dynamics associated with organic inputs (i.e. residues) and another for the decomposition of pre-

existing SOC (Liang et al., 2005; Smith et al., 2012). These models have also been used to assess the C

sequestration potentials of specific crops, such as the one proposed in Grogan and Matthews (2002) for

energy crops (short rotation coppice willow). Other analytical models include the two-compartment (i.e.

active and stable) Introductory Carbon Balance Model (ICBM) (Andrén and Kätterer, 1997) and

variations of the three-compartment model first presented by Andriulo et al., (1999a), such as the AMG

model (Clivot et al., 2019; Duparque et al., 2013; Saffih-Hdadi and Mary, 2008). The use of such models

requires site-dependent coefficients (e.g. degradation rates; effects of clay, humidity and temperature).

Complex dynamic models, on the other hand, aim at answering questions beyond C or N sequestration:

their goal is to predict the performance of specific agricultural systems involving site-specific (i.e. local)

calibrations.

LCA generally requires simple, site-generic models, which are useful under a variety of conditions and

require a minimal amount of input data. Two models widely used in LCA, the monthly time-stepped C-

TOOL (Petersen, 2003) and the daily to annually time-stepped RothC (Coleman and Jenkinson, 2014),

demand a larger number of input parameters than ICBM or AMG models (Campell and Paustian, 2015;

Goglio et al., 2015). Complex agro-ecosystem models such as CANDY, CENTURY, CERES-EGC,

DAYCENT, DAISY, DNDC and STICS have been occasionally used in LCA (Brilli et al., 2017;

Campbell and Paustian, 2015; Goglio et al., 2015; Gueudet, 2012), but the required level of expertise and

data hinder their widespread applicability.



Chapter 5: Agriculture: Soil organic carbon modelling

192 PhD dissertation, 2019

1.3 Land activities in the context of soil organic carbon modelling

In LCA, two types of activities are modelled in relation with SOC, namely LUC and LU, the latter

referring to use of a land over time not involving LUC. LUC is associated with “transformation” and LU

to “occupation”, two keywords used in LCA software to identify these two elementary flows. Depending

on methods and data availability, land management changes (LMC) can be modelled as either

transformation or occupation processes (Benoist and Bessou, 2018). LMC-related agricultural practices

potentially affecting SOC dynamics include management of agricultural residues, organic fertilisation and

the selection of high-biomass crops and rotations (Goglio et al., 2015, 2014).

The original ILCD handbook (EC-JRC, 2010) recommended a widely used single-indicator model for

calculating the impacts of transformation and occupation, based on changes in soil quality, expressed in

terms of SOM (Milà i Canals et al., 2007a, 2007b). More recently, the Product Environmental Footprint

(EC, 2018b; Sala S. et al., 2019) suggested the multi-indicator models LANCA (Bos et al., 2016) and

latest LANCA v2.5 (Horn and Maier, 2018). Regarding SOC modelling itself, mostly characterisation

factors and simple models are used in LCA, yet no recommended or consensus model exists (Goglio et al.,

2018, 2015). For instance, the PEFCR guidelines (EC, 2018b) recommend the PAS 2050 approach (BSI,

2011) to be used for all C emissions and removals arising from LUC, but PAS 2050 does in turn

recommend using IPCC methods (for LCIs) and reporting SOC-related results separately. The IPCC

approaches for SOC modelling (Tiers 1 and 2, and characterisation factors), include only the topsoil (first

30 cm), thus disregarding intermediate and stable pools.

The UN Environment (formerly UNEP-SETAC) Life Cycle Initiative recommends the same SOM-based

approach to occupation and transformation of land as IPCC, yet it also recommends a specific method for

SOC impacts on C sequestration and climate change (Koellner et al., 2013). This method, described in

Müller-Wenk and Brandão (2010), provides factors for C losses to air, from an initial stock in soil

(estimated per biome), associated to various types of occupation and transformation. It is one of the few

approaches, together with Schmidinger and Stehfest (2012), a method under development (Benoist and

Cornillier, 2016), and project-oriented methods based on IPCC (e.g. under the Kyoto Protocol’s Clean

Development Mechanism, https://cdm.unfccc.int/methodologies/index.html), considering the impacts on

climate change via C sequestration and release of both transformation and occupation of soils (Benoist and

Bessou, 2018). Table 1 summarises the features of some of these modelling approaches used in LCA.



Chapter 5: Agriculture: Soil organic carbon modelling

Ariane Albers 193

Table 1. Comparison of recommended static modelling approaches for calculating soil quality SOM/SOC changes

associated with land use (occupation) and land use change (transformation) in LCA

Method Recommending
guideline

Land activities
included

Usefulness
for LCIA

Notes

SOM/SOC change
(Brandão and Milà i
Canals, 2013; Milà i Canals
et al., 2007a, 2007b)

International Reference
Life Cy cle Data
System (EC-JRC,
2010)

T+O CF available,
limited linking
to AoP

Informing soil quality, site-
dependent or -generic, but not
climate change

LANCA (Beck et al., 2010;
Bos et al., 2016; Horn and
Maier, 2018)

Product Environmental
Footprint Category
Rules (EC, 2018b)

T+O CF available Informing soil functions, data
intensive, suitable for site-
dependent or generic
assessment

SALCA-SQ (Oberholzer et
al., 2012, 2006)

ecoinvent v2 (Nemecek
et al., 2011; Nemecek
and Kagi, 2007)

O CF available,
limited linking
to AoP

Informing soil properties and
treats, site-dependent or site-
specific (plot level)

Müller-Wenk and Brandão
(2010)

UNEP-SETAC
(Koellner et al., 2013)

T+O CF available Informing climate change, site-
generic (6 biomes over the
world)

PAS 2050 standard (BSI,
2011) and IPCC Guideline
for National GHG
Inventories (IPCC, 2006)

Product Environmental
Footprint Category
Rules (EC, 2018b)

T N/A Dynamic modelling in the
context of CDM
methodologies, but site-
dependent

Acronyms. AoP: Area of Protection, SOC: Soil Organic Carbon, SOM: Soil Organic Matter, T: Transformation; O:
Occupation, LCIA: Life Cycle Impact Assessment, CF: characterisation factors, GHG: Greenhouse Gas, CDM:
Kyoto Protocol’s Clean Development Mechanism
Sources: Benoist and Bessou (2018)

Regarding biofuels, the effect of LU and LUC on soil C dynamics, as well as that of residue management

practices (i.e. removal rates of residues exploited as RE carriers), are of key interest (Brandão et al., 2011;

Caldeira-Pires et al., 2018; Smith et al., 2012). The overall potential C sequestration of energy crops is

computed and estimated to be positive (Lemus and Lal, 2005; Mi et al., 2014; Zang et al., 2018).

Moreover, the need for time dynamic SOC modelling in LCA has been highlighted (Brandão et al., 2013,

2011; Sommer and Bossio, 2014). A first effort in that direction is the approach to include SOC changes

in LCA proposed by Petersen et al. (2013), which relies on the Bern Carbon Cycle Model to determine

degradation curves, the superposition of which allows, by mass-balance, to estimate the amount of C

remaining in soils by the end of the assessment time horizon (TH).
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1.4 Goal and scope of the study

Based on such environment of evolving SOC modelling approaches and applications in LCA, the goal of

this work is to propose a dynamic SOC modelling approach for life cycle inventories associated with LU

and agricultural substrates to biofuels. The proposed approach would contribute to overcoming identified

gaps of SOC modelling in LCA, namely, the consideration of: SOC associated with LU, SOC dynamic

within a given reference TH, and the need for accessible SOC models in LCA. Furthermore, the resulting

dynamic SOC inventories are integrated into a dynamic model-coupling framework with a partial-

equilibrium model (PEM) as proposed in Albers et al., (2019a), to comparatively assess future energy-

transport scenarios and climate change consequences associated with SOC. A key aspect of the proposed

approach is its dynamic representation of SOC associated with the dynamic technical flows of the system,

to more accurately estimate climate change impacts.

The functional unit in this study represents the annual energy demand, in MJ, over the prospective PEM

simulation period (2019 to 2050), defined per policy constraint, here to satisfy the energy consumption of

transport end-users, in this study referring to bioethanol and biodiesel from agricultural energy crops

2 Material and methods

The construction of dynamic SOC inventories associated with energy policy scenarios and LU, follows the

model-coupling framework specified in Fig. 1. The framework allows computing dynamic SOC flows

from agricultural annual and/or perennial energy crops under specific (yet variable) management practices

(e.g. residue removal, or organic fertiliser use). The SOC model includes C inputs to the soil stemming

from aboveground (AG) and belowground (BG) plant compartments, as well as from exogenous (EX)

sources (i.e. organic fertilisers). Site-dependent coefficients, such as temperature and soil characteristics,

relate to the crop cultivation in France, except for soybean, which is assumed to be imported from Brazil.

Firstly, the technical flows obtained from the energy system model (it could have been any other demand

model) are exported to a) inform SOC modelling on the biomass commodity supply, b) compute LU

requirements, and c) represent the results specific to two selected transport-biofuel (bioethanol and

biodiesel) pathways per biomass commodity. Secondly, annualised “C-complete” balances are built by

combining dynamic accounting of biogenic- (here referring to SOC flows) and fossil- (referring to C

neutral flows without biogenic flows) sourced CO2 elementary flows, which are subsequently assessed

with time-dependent characterisation factors in the context of dynamic LCA (Levasseur et al., 2010). This

study does not represent a complete LCA, as it solely focuses on modelling dynamic life cycle inventories

of SOC and their climate change consequences.
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2.1 Processing model outputs from the energy system model

2.1.1 Demand model informing policy scenarios for the transport sub-sector

Prospective bottom-up energy system models are instruments assessing policy scenarios and their effects on a

(sub-) sector by means of linear programming and optimisation (Loulou et al., 2016). Scenarios are built on least

cost and low carbon energy pathways, involving technological innovation, efficiency and RE from fossil and

biomass sources. The dynamic of SOC are not usually considered in these types of models (Frank et al., 2015).

For this study, we exported the outputs from the TIMES-MIRET model (Lorne and Tchung-Ming, 2012), over

the timeline of the simulation period 2019 to 2050. TIMES-MIRET is a partial-equilibrium model (PEM), also

referred as techno-economic model, covering the energy-transport sector of metropolitan France. Further

specifications on the model were previously introduced in Albers et al. (2019a).

The TIMES-MIRET calibration is the 2009 EU Directive and National Energy Plan with climate targets by

2020, serving as a reference in the business-as-usual (BAU) policy scenario. BAU is contrasted with new targets

by 2030 from the 2015 French Energy Transition for Green Growth Act for the transport sub-sector. The new

constraints are 15% renewable energy share in the transport-subsector and maximum 7% 1G biofuels (here

analysed with the 15BIO scenario), and in addition to it, 30% fossil fuel reductions and intermediate targets for

advanced biofuels (here analysed in the LTECV scenario) (MTES, 2018).

2.1.2 Biomass-to-biofuel commodities and land use

Biomass-to-biofuel pathways, retrieved from the PEM, depend on the policy constraints given to the model. The

following biomass commodities flows [kt] were considered: first generation (1G) crop-based starch (wheat,

rapeseed, maize and triticale), oil (rapeseed, sunflower and soybean), sugar (sugar beet), as well as second

generation (2G) residual lignocellulosic straw (wheat, rapeseed, maize and triticale) and dedicated

lignocellulosic perennial grasses (miscanthus and switchgrass as a proxy for dedicated lignocellulosic biomass).

Other commodities (e.g. algae, yeast, palm oil, sewage sludge, and spent cooking oil) are excluded due to their

comparatively low to null contributions to the overall biofuel transport sector in the three analysed policy

scenarios. The biofuel pathways included in this study refer to transport bioethanol and biodiesel.

We computed the LU requirements [ha yr-1] in terms of the equivalent agricultural area. Such conversion is

based on statistics and literature on agricultural data of potential yields per area [tꞏha-1] revealing the amount of

crop product that is exported from the field and the chemical composition of the harvested crop product,

determining its starch, sugar or oil contents [%]. Residues (straw) are computed based on the residue yield of the

whole plant times the residue removal rate (if any), while dedicated perennials represent 100% of the

lignocellulosic commodity. Detailed specification on the computation and methods used for biomass-to-biofuel,

LU and GHG emission conversion are provided in the Supplementary Material.
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2.2 Dynamic soil organic carbon modelling

We adapted the relatively simple, yet appropriate for modelling dynamic inventories, SOC model of Hénin and

Dupuis (1945). The model runs with a time step of one year compatible with the time-dependent climate change

characterisation. Hénin and Dupuis’ model is based on the interaction of C between two soil compartments: i)

fresh organic matter input from AG (crop residues) and BG plant parts (dead roots and rhizomes), as well as

exogenous organic inputs (e.g. soil amendments/fertilisers), and ii) the active pool (soil layer up to 30 cm depth)

(see Supplementary Material). The C balance represents the difference between the dynamic C input [t Cꞏha-1]

from a flow of organic matter (m) entering the active pool at a given time (t0), as well as the losses from C

output flows (here as CO2 flows) determined by instant releases determined by the isohumic coefficient (h) and

the gradual decay determined by the mineralisation coefficient (k). The model has been developed into a long-

term SOC model, referred to as the AMG model (Andriulo et al., 1999), undergoing continuous refinements

stable deeper layers (>30 cm). It has been integrated in the STICS model (Saffih-Hdadi and Mary, 2008) and

implemented into the SIMEOS-AMG tool (Bouthier et al., 2014).

For the model coupling (here with an energy model), it is required to assess the technical flows of a product

system (here biofuels) for any given calendar simulation year, independent from C stocks or C losses from

previous LU or LUC. In contrast to the long-term AMG model, we aim at modelling the added C to the soil

given by the technical flows and its time-dynamic decay within the active pool (i.e. the annual difference

between the remaining C from a single-year input and the C releases over time until the SOC balance equals

zero). Thus, initial stable C stocks from long-term crop cultivation systems associated with the same LU over

several consecutive years are not modelled and it is assumed that the stable pool does not change over several

centuries (Kwiatkowska-Malina, 2018; Shibu et al., 2006).

The modelling of the soil C balance is computed with Eq. 1 , according with Hénin and Dupuis (1945), however

fractioning the C input from m into AG (crop residues including exogenous matter) and BG (root system)

compartments. The integral for the net annual flows for AG and BG are given in Eq. 2 and Eq. 3 respectively:
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Eq. 1

Eq. 2

Eq. 3

where CAP [t Cꞏha-1] is the carbon content in the active pool from AG and BG compartments, m is the added

carbon at time t [yr], RL the rotation length [yr], h [unitless] is the humification coefficient, and k [yr-1] the

mineralisation coefficient. The rationale behind dividing CA into AB and BG is the dynamic character of

perennial grasses, as the rhizomes remains in the soil in the long-term (i.e. C is stored over the entire

cultivation/RL period), while AG residues contribute to annual C inputs (i.e. AG biomass is harvested every year

like annual crops) (Beuch et al., 2000). The long-term model, on the other hand, does not allow assessing

perennial species (Clivot et al., 2019).

2.2.1 Humification coefficient

The isohumic coefficient h (by some authors also referred to as k1) represents the ratio between the added SOM

contributing to SOC increase and the total amount of the added SOM (Hénin and Dupuis, 1945). It thus

represents the fraction of SOM transformed into humified C (i.e. available to plants), while the remaining C is

released to the atmospheric pool, via mineralisation (Kwiatkowska-Malina, 2018). High h values mean that the

organic matter decomposes easily (e.g. 15% for straw compared with up to 70% for some soil amendments) (Le

Villio et al., 2001). For this study, h values and C contents per crop type and EX matter were taken from the

literature (Supplementary Material).

2.2.2 Mineralisation coefficient

The initial SOC stock is continuously reduced by mineralisation, over time (i.e. a flow, represented by positive

emissions), until the net balance reaches zero. The mineralisation coefficient k (also referred to as k2 by some

authors) represents the annual decay of SOM as GHG emissions, such as CO2, and the release of nutrients into

plant-assimilable forms, and depends heavily on soil type, soil characteristics, and other pedoclimatic conditions.

Saffih-Hdadi and Mary (2008) demonstrated that C mineralisation of crop residues (and by extension of any

exogenous organic matter) is driven by the substrate quality rather than by the soil type (under the same

humidity and temperature conditions). The C:N ratio also plays a key role in SOM mineralisation (Nicolardot et
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al., 2001), but this parameter is not directly used in this model, as its influence is captured in the humification

coefficient.

In France, the mean annual mineralisation constant rate is often estimated at 2% (Frisque, 2007; Le Villio et al.,

2001; UNIFA, 1998). A review (see the Supplementary Material) of several site-specific studies (with k

calibrated to specific locations) indicated a range between 0.7% and 9%, with mean values at 4%. For computing

k, the updated method proposed in the AMGv2 model (Clivot et al., 2019), takes under consideration soil mean

temperature, clay and calcium carbonate (CaCO3) contents. Our k estimates excluded soil moisture, pH and C/N

ratio, as the scope of the study disregards site-specific parameters, focusing primarily on the C flows. Soil

temperature, clay and CaCO3 content are the key parameters in this study, providing close approximations for a

usable mineralisation rate. We computed k for eight climate types in France, referring to the classification by

Joly et al. (2010), for which a dominant soil type can be roughly assigned. For the model coupling, we chose

climate Type 3 (Central France) featuring a mean temperature of 11°C and mean clay content of 16.8%, as this

climate type represents an important agricultural area for cereals and oil crops. For the imported soybean, we

used the same method, based on the reference soil temperature of 27°C, representing about 2°C higher for

surface soils in soybean cropland in Mato-Grosso, Brazil (Nagy et al., 2018). All specifications are provided in

the Supplementary Material.

2.3 Modelling carbon inputs to the soil from aboveground, belowground and exogenous matter

The net C inputs to the soil dependent on management practices defining removal/export rates from the AG

compartment (crop products, residues) and BG compartment (rhizomes and roots), as well as the incorporation

of non-mineral exogenous matter (organic fertiliser). Therefore, methods were adapted to model the partitioning

of C in the different crop fractions, to determine what proportion of AG and BG plant are incorporated in the soil

and whether EX matter is added.

2.3.1 Rhizomes growth and carbon fixation of perennial grasses

Dynamic growth and carbon sequestration of annual crops are commonly excluded from dynamic carbon

modelling, as their C fixation and release flows occur within one year, equivalent to carbon neutrality (Guest et

al., 2013). The same applies to the AG perennial grasses, harvested annually. However, growth dynamics of the

BG biomass fraction require an additional modelling step, given that the C fixation in the rhizomes occurs over

several years, in contrast to annual crops.

We considered the miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum), which are

perennial rhizomatous C4 grasses. These grasses have extensive root systems, which may increase in the long-

term (Agostini et al., 2015). However, dynamic growth models for root system are not accessible, as they tend to

be very complex and species-specific (Dupuy et al., 2010). A meta-analysis by Agostini et al. (2015) highlighted

that the biomass growth from the BG compartment and the C inputs to the soil are mainly based on several
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single observations with variable stand age, depths and sampling frequencies, making it difficult to model the

time series of the root system. Yet, it has been demonstrated that the C fixation increase with increasing

cultivation period (Arevalo et al., 2011; Rehbein et al., 2015).

Rehbein et al. (2015) calculated the miscanthus-derived C for different soil depths/layers up to 100 cm and

and deeper soil layers (0-100 cm), whereas 60 to 80% of the C is associated to the top soil. Based on the results

from Rehbein et al. (2015) and meta-analysis from Agostini et al. (2015), we distributed the total C over the

entire rotation length linearly to represent the rhizomes growth and C fixation in the biomass. Consequently, the

time-dependent CBG inputs to the soil (Eq. 3) from miscanthus and switchgrass take place after the end of the

rotation length at 20 and 15 years respectively. Both C fixation and SOC release flows are allocated accordingly.

2.3.2 Plant fractioning and carbon partitioning

For computing the C inputs to the soil from AG and BG compartments, the approach of Bolinder et al. (2007),

applied in other studies (Clivot et al., 2019; Wiesmeier et al., 2014), was adopted. The authors conceptualise the

C input to the soil as a proportion of net primary productivity (NPP), summing up four plant fractions per unit of

area [t Cꞏha-1]:

CP: the C in the agricultural product (P) in the AG (e.g. seed, grain, perennial grasses, and forage crops)

or BG (e.g. tuber) compartments, representing the primary economic value, not incorporated into the

soil.

CS: C in the residual (S) AG fraction (e.g. straw, stover) incorporated into soil after harvest.

CR: C in root (R) tissue (rhizome) in the BG, physically recoverable plant materials (excluding products

such as tuber from sugar beet), mostly incorporated in the soil after harvest.

CE: C in extra-root (E) matter (rhizome deposition), involving root exudates and plant materials

physically not easily recoverable, mostly incorporated in the soil after harvest.

C partitioning per plant fraction and per crop follows the method from Bolinder et al., (2007), including data

from the literature (mean annual yield per crop and relative C allocation coefficients), both presented in the

Supplementary Material. The C inputs to the soil depend on the annual yield estimates at field scales, obtained

from statistics and literature. These values can be adapted to site-specific evaluations.

2.3.3 Estimation of exogenous inputs

Exogenous C inputs consist of added organic matter, under the form of amendments and fertilisers (Saffih-Hdadi

and Mary, 2008). Based on French statistics on crop production (surfaces, yields) and organic fertiliser use

(AGRESTE, 2019, 2014, 2011), as well as on the composition of French organic fertilisers (Avadí, 2019),
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average French fertilisation practices for each crop of interest were constructed. For Brazilian soybean, data was

retrieved from FAO (2004).

2.3.4 Variations of carbon inputs to the soil

Not all the C embedded in plant fractions is returned to the soil. The net C inputs from AG, BG and EX matter

depend on agricultural management practices. Consequently, four different scenarios are analysed and contrasted

in this study, which could eventually be associated with residue management practices:

Scenario S1_TOT: Total C inputs to soil (aboveground + belowground + exogenous carbon)

Scenario S2_AG: C from aboveground plant residues

Scenario S3_BG: C from belowground plant residues

Scenario S4_EX: C from exogenous matter

The resulting scenarios are based on the origin of C from different plant fractions (AG and BG) and EX matter,

whereas S1_TOT represents the sum of all added C to the soil. These scenarios represent highly contrasted

extremes of management practices. In reality, these practices are likely to be more nuanced (e.g. partial

combinations of AG, BG, EX added to the soil). The high contrast allows identifying the origin of C and their

proportional contributions to the total SOC input.

We assumed that the total Cp is harvested. However, CS, CR and CE inputs are adjusted with correction factors

ranging between 0 (no C input) and 1 (100% C input) to specify the C plant proportion added to the soil (more

details provided in the Supplementary Material). In France, common CS removal rates from cereals and oily

seeds are in the order of 0.5, while for vegetables, protein crops and perennials they are in the order of 1,

whereas CS from switchgrass is zero (ADEME, 2017). CR and CE are assumed to be wholly incorporated into

the soil (except for sugar beet root, which is exported from the fields).

3 Results and discussion

3.1 Policy scenario simulations from the partial-equilibrium with static GHG emissions

Fig. 2 shows a comparative overview of the three analysed policy scenarios (BAU, 15BIO and LTECV) of the

transport sub-sector from 2019 to 2050, analysed with the PEM, denoting LU requirements [ha], biomass

commodity supply [kt], final energy supply [MJ], and associated GHG emissions [kt CO2-eq] of the simulations

represent the pathways of bioethanol and biodiesel demand only.

A general comparison among the three policy scenarios shows a clear shift from 1G to 2G energy carriers for the

transport sub-sector, particularly evident for the LTECV scenario. The shifting energy-pathways reduce the

overall resource consumption and LU demand, particularly for 1G energy crops, that consequently reduce the

GHG emissions to meet the mitigation targets. It is noticeable that the prospective evaluations assume increased

number of passengers per km driven per transport means, and thus reduced future fuel demand. The 15BIO
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scenario shows sudden increases between the years 2030 and 2040, responding to the constraint of limiting 1G

share to 7% from 2020, remaining effective in the 2030s, concerning the multi-annual energy program in the

transport sector. The scenario simulations return to a new equilibrium, as no further constraints are specified for

advanced biofuels, yet the values remain under BAU evaluations. In contrast, LTECV takes into account all

policy constraints from the French law for the transport sub-sector, such as intermediate targets for advanced

biofuels and 30% reduction of fossil fuels in the final net energy share.

Results for LU requirements (Fig. 2a), reveal the equivalent agricultural area requirements associated with the

biomass commodity supply of 1G and 2G transport biofuels. A comparison with BAU, shows that while LU for

1G decrease, they increase for 2G due to the shifting energy pathways towards more advanced biofuels. Yet, the

overall LU decreases per policy scenario with 50%, 41% and 9% for BAU, 15BIO and LTECV respectively. The

proportion of the derivative commodities (starch, sugar, oil) to the equivalent harvested energy crop yields vary

considerably between 18% and 64%, and therefore represent higher equivalent agricultural area demand,

compared with the residual and dedicated lignocellulosic commodities.
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Fig. 2. Policy scenario simulations (BAU, 15BIO, LTECV) linked with first (1G) and second (2G) generation bioethanol

and biodiesel pathways in terms of a) land use requirements in ha, b) biomass commodity supply in kt, c) equivalent energy

supply in MJ, and d) associated Greenhouse Gas emissions in kt CO2-eq

The biomass commodity supply (Fig. 2b) ollow the multi-annual energy

program for the transport sub-
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(60%), rapeseed (17%), and wheat (13%). 15BIO policy increases the 2G-share by 15%, yet sugar beet (44%),

rapeseed (22%) and wheat (9%) remain the main supply sources. The LTECV policy further increased the 2G-

share up to 17%, of which perennial grasses (miscanthus and switchgrass) contribute to 90%. 1G soybean and

1G sugar beet would be displaced completely; yet 1G rapeseed (55%) and wheat (17%) will remain the main

supply sources.

The net final energy supply (Fig. 2c) represents the bioethanol and biodiesel yield per dry matter of the

commodity. Conversion efficiencies vary strongly among the different renewable energy carriers, whereby

oleaginous crops have higher yield efficiencies. The main contributor to the net biodiesel supply will

increasingly be rapeseed oil with up to 41%, 49% and 77% for BAU, 15BIO and LTECV respectively, and for

bioethanol sugar beet with up to 36% and 23% in BAU and 15BIO respectively (yet 0% for LTECV). With the

upcoming technological innovation for advanced biofuels, LTECV scenarios showed that advanced biofuels

(involving synthetic biofuels) will play a major mitigation role, with up to 10% share in the net final energy.

The GHG emission estimates (Fig. 2d) linked with fossil fuels only are based the EC JRC well-to-wheel method

(Edwards et al., 2014), for bioethanol and biodiesel and the static IPCC GWP metric. The highest mitigation

targets are achievable by means of the LTECV scenario. All emissions in the BAU scenario derive from 1G

biofuels, whereas 4% and 3% originate from 2G in 15BIO and LTECV respectively. 1G source are the main

contributors to GHG emissions, particularly rapeseed oil (up to 43%, 53% and 73% for BAU, 15BIO and

LTECV respectively) and sugar beet (up to 28% and 19% in BAU and 15BIO respectively). The lower impact

contributions from 2G biofuels are due to reduced emission factors in g of CO2eqꞏMJ-1, as compared with

conventional fuels and 1G biofuels.

3.2 Parameters for soil organic carbon computation

Table 2 provides an overview of data and coefficients used to compute the C inputs to the soil, associated with

crop C content, humification coefficients, yields, carbon partitioning per relative plant fraction, NPP, and

exogenous inputs, per ha, at field scales. C fractioning among plant parts and C partitioning from NPP are

calculated here from annual yield estimates at field scales, per ha. For miscanthus, for which few data is

available, dry matter yields range between 16.1 and 28.5 in France (AGRESTE, 2019; Strullu et al., 2014) and

globally between 14.8 and 33. 5 (Rehbein et al., 2015). We used the mean 22.8 t DM ha-1 based on measured

values by Strullu et al. (2014). EX matter represents mean French agricultural practices regarding fertilisation of

cultivation of energy crops. The mineralisation coefficients resulted in 0.1176 for French cereals and oily seeds

and 0.0733 for Brazilian soybean, based on the regional mean temperature estimated at 25°C and a clay content

of about 43%. The computation, underlying data and assumptions are further detailed in the Supplementary

Material.
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3.3 Carbon inputs to the soil

Fig. 3 shows the relative C added to the soil per energy crop in proportion to the AG and BG plant fractions, as

well EX matter. The C inputs vary considerably among the different energy crop types, yet BG and AG have

highest contributions to SOC, as compared with organic fertilisers.

In this study, the comparatively higher C contributions are associated with BG (Fig. 3), ranging (from smaller to

higher) between 20% and 30% for sunflower and sugar beet, between 35% and 45% for soybean and triticale,

between 50% and 60% for rapeseed, wheat, maize and miscanthus, and up to 100% for switchgrass. Switchgrass

has no residues (except for a disregarded minor amount of stubble), while the AG proportion of other crop types

range between 16% and 31% for sugar beet and maize, between 40% and 50% for miscanthus, wheat, rapeseed

and triticale, and the highest contribution from sunflower (60%) and soybean (65%). The remaining proportions

associated with EX is rather low, yet with considerable differences per crop type, highest for sugar beet (57%),

sunflower (17%), maize (12%) and triticale (9%). Note that the inputs are rather case- and site-specific,

management practices may involve higher EX inputs due to displacement of inorganic fertilisers or higher/lower

removal rates for AG/BG matter

Fig. 3. Soil carbon inputs per biomass commodity from above- and belowground plant compartments, including exogenous

matter. Pie chart represents the average proportions

Fig. 4 shows the dynamic SOC inventories associated with policy and C input scenarios. It represents the

dynamic elementary flows resulting from the coupling with the PEM biomass commodity outputs (technical

flows) per policy scenario, i.e. BAU (Fig. 4a), 15BIO (Fig. 4b) and LTECV (Fig. 4c). The flows are expressed in
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t CO2 according to the C content in the compound (44/12 g CO2 g-1). Other GHG emissions from decay, such as

methane, are not accounted for, but should be considered in future studies.

The net annual SOC balance adds up all C inputs (negative values) per simulation year and the subsequent

gradual releases (positive values) from decay of all previous and consecutive years. The end-year 2050 shows an

“artificial cut-off” due to the ending of the prospective assessment of the PEM with no further biomass

mobilisation. Therefore, the year 2050 reveals peaking positive values.

For this study, the selected TH projects the last year of the PEM simulation period over an additional century,

that is to say from 2050 to 2150. The TH generally defines the length of time over which the GHG emissions are

integrated (Levasseur et al., 2016) (in static methods fixed to 20 or 100 years), however is flexible in dynamic

LCA (Levasseur et al., 2010) and can be adapted to any dynamic inventory TH, as discussed in (Albers et al.,

2019b). The determination of a TH remains subjective, as no theoretical foundation has been identified, but only

a political one (the widely accepted IPCC 100 years TH). The chosen TH over 100 years is valid here for the

SOC inventory flows as well as for the subsequent impact assessment. The temporal cut-off for SOC inventories

at year 2150 is justifiable: after the first century, the remaining SOC-sourced CO2 range between 6E-5and 4E-5,

assuming here at the given TH that an equivalent zero net C balance is reached (i.e. carbon neutrality). The first

SOC input in the year 2019 represents the highest SOC sequestration potential, decreasing with increasing

inventory time horizon (LCI TH).

A comparison among variations of TIMES-MIRET scenarios featuring the origin of different C inputs denotes a

particular SOC dynamic associated with S3_BG in 15BIO and LTECV. Note that S3_BG has a longer

sequestration curve and extended release flows, as compared with the S2_AG and S4_EX contributions. This

phenomenon relates with the perennial grasses introduced for advanced biofuels to respond to the new policy

constraints. This type of energy crop involves biomass growth and carbon fixation dynamic of rhizomes during

the rotation length. Moreover, the proportions of the AG and BG SOC flows (S2_AG and S3_BG) in the first

inventory year 2019, demonstrated that the two input variations contribute to SOC in similar proportions for

BAU (32% and 38%, 15BIO (36% and 41%) and LTECV (44% and 49%). In contrast, S4_EX considerably

decreases for 15BIO (22%) and LTECV (7%) compared with BAU (29%). The cumulative sum of all C inputs

(referring to S1_TOT) represented SOC contributions of about 40%, 34%, and 26% for BAU, 15BIO and

LTECV scenarios respectively.
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Fig. 4. Soil organic carbon inventories over a time horizon of 100 years [kt CO2] per TIMES-MIRET (BAU, 15BIO,

LTECV) and C input (S2_AG, S3_BG, S4_EX) scenarios

3.4 Dynamic impact assessment: Radiative forcing effects per policy and management scenario

Fig. 5 shows the instantaneous [in Wꞏm-2] and cumulative [Wꞏyrꞏm-2] radiative forcing (RF) effects per policy

and C input scenarios over a 100-year LCIA TH. The 100-year reference is recommended by the IPCC

guidelines (Myhre et al., 2013) and most commonly used in LCA, yet any future reference year could be chose

with dynamic LCA (Levasseur et al., 2016, 2010). The RF effects are given for SOC (i.e. biogenic-sourced), C-

neutral (i.e. fossil-sourced), as well as the C-complete (i.e. SOC + C-neutral). The overall results show

considerable variations between C-neutral and C-complete effects, due to SOC accounting.

Instantaneous RF (Fig. 5a, b, and c) refers to the GHG concentrations and their induced net concentration change

(Myhre et al., 2013). It allows describing the net changes through time. The “artificial cut-off” at year 2050 is

evident. For SOC emissions, it means that no further inputs are computed and therefore the positive emissions

outrange the negative ones until equilibrium is reached and all emissions are returned back to the air (referred

here as a net zero C-balance). The annual cumulative RF effect (Fig. 5d, e, and f) of a pulse emission is given by

integrating the instantaneous forcing, allowing a direct comparison among scenarios. Firstly, it is identifiable

that the C-neutral effects are considerably lower for LTECV than for BAU and 15BIO. It reveals that the

constraints lead towards higher climate mitigation targets. Secondly, the annual negative effects from SOC-CO2

flows further reduce the C-neutral results in all analysed policy scenarios within the first century, contributing to

climate mitigation. The mitigation is higher for S3_BG (and consequently S1_TOT) in 15BIO (Fig. 5b) and

LTECV (Fig. 5c).
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A quantitative comparison of the cumulative RF of C-neutral and C-complete results per policy scenario can

only be undertaken by selecting an end-year of the impact assessment (reference year), here 2150. The C-neutral

results of 15BIO (2.5E-8 Wꞏyrꞏm-2) and LTECV (1.8E-8 Wꞏyrꞏm-2) show reduced forcing effects by about 10%

and 34% respectively compared with the BAU reference (2.8E-8 Wꞏyrꞏm-2). The accounting of SOC flows

further reduce the cumulative RF effects, as highlighted with C-complete results. S1_TOT (S2_AG + S3_BG +

S4_EX) represents the highest reduction potentials for 15BIO (2E-8 Wꞏyrꞏm-2) and LTECV (1.4E-8 Wꞏyrꞏm-2)

versus BAU (2.5E8_Wꞏyrꞏm-2), whereof 50% and 65% are BG contributions given in 15BIO and LTECV

scenarios respectively (see also the Supplementary Material).

However, SOC benefits decrease with increasing LCIA TH, that is to say, the more into the future the reference

end-year is set, the lower are the contributions to climate mitigation. Firstly, this is due to the artificial cut-off

associated to the PEM analysis. Secondly, in the long-term (beyond a 100-year LCIA TH), all SOC-sourced CO2

emissions converge to equilibrium, reaching a steady state, as all emissions return to the air. Yet, without the

consideration of SOC emissions, the negative RF (cooling effects), and thus the temporary climate benefits, are

not account for, leading to biased net C balance results over time..
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The forcing contribution of the different SOC compartments become more evident by taking a closer

look into the cumulative RF effect of AG (Fig. 6a), BG (Fig. 6b) and EX (Fig. 6c) per policy

constraint. The highest contributions to climate mitigation are associated with S3_BG in both 15BIO

and LTECV, reducing BAU by 150% and 170% respectively. This is due to biomass growth of

rhizomes of perennial grasses that are not incorporated into the soil until the end of the rotation length,

and thus represent temporal C-stock delaying degradation emissions. Consequently, the temporary

sequestration and storage has climatic benefits due to postponement of positive RF (warming effects).

The negative RF effects from perennial grasses and their derivative biofuels may represent a better

alternative to annual crops in terms of climate change mitigation.

Fig. 5 2. Cumulative radiative forcing [Wꞏyrꞏm-2] per policy (BAU, 15BIO and LTECV) and C input (S2_AG,

S3_BG, S4_EX) scenarios

3.5 Sensitivity analysis

We conducted a sensitivity analysis for the LTECV policy scenario concerning i) the SOC model k

coefficient (uncertainty due to site-dependent pedoclimatic conditions), and ii) the C inputs to the soil

(variations in residue removal rates from the field). Therefore, k for type 3 pedoclimatic conditions

were recalculated, assuming a temperature increase of 2°C (referred to as SOC K+2°C) due to climate

change, resulting in 0.1485, similar to k for oceanic climate type 5. k for SOC K +2°C in Brazil is

0.0924, yet soybean is excluded in the LTECV simulations. The removal rates concerned the S2_AG

compartment (and consequently S1_TOT), for which we run the SOC simulations, assuming two

variations equally applied to all energy crops, namely 90% (referred to as SOC_AG 90%) and 10%

(referred to as SOC_AG 10%) C input to the soil.

The cumulative RF results from 2019 to 2150 (in Fig. 7a), demonstrate significant variations between

model parameter and C input to the soil. A quantitative comparison at year 2150 (in Fig. 7b) per C

input scenario, shows a difference between the original values and SOC K+2°C results by 122%,



Chapter 5: Agriculture: Soil organic carbon modelling

212 PhD dissertation, 2019

127%, 119% and 127% for S1_TOT, S2_AG, S3_BG, and S4_EX respectively. Two major

interpretations are drawn. Firstly, SOC benefits decrease with increasing temperature (climate

change), because the decay rate increases with temperature and thus C releases to the atmosphere

occur over a shorter TH. Secondly, exogenous inputs (S4_EX) are more affected by temperature

changes, because they already have high h values and thus lower initial SOC. Regarding the C input

variations from SOC_AG residues at year 2150 (in Fig. 7c) S1_TOT original values increase with

SOC_AG 90% (due to S2_AG benefit contribution by almost 60%) and decrease with SOC_AG 10%

(due S2_AG deficit contributions by about 500%). Fig. 7b and c additionally show the minimum

attainable values, representing the peak sequestration potential attributable to the year 2074 (Fig. 7a).

This sensitivity is given due to the selected end-year 2150, which results in lower climatic benefits

than the year 2074, linked with the artificial cut-off of the PEM simulation at year 2050

Fig. 7. Cumulative radiative forcing [Wꞏyrꞏm-2] from the sensitivity analysis results a) over the time horizon

2019 to 2119, b) quantitative uncertainty concerning k coefficient and temperature variations, and c) effect from

changes in C inputs. b) and c) represent the year 2019 including uncertainty (error bar represent the minimum

attainable value)

The variations of residue removal rates have significant consequences on the LU requirements (see

Sensitivity analysis on LU in the Supplementary Material). The residue removal rate for energy is an

important consideration, as it defines the equivalent agricultural area requirements to meet the energy

demand of 2G biofuels. SOC_AG 90% represent minimum and SOC_AG 10% maximum values in

terms of residue export from the fields and the inverse for C inputs to the soil. The higher the residue

removal rate for energy the higher per unit of area demand: for SOC_AG 10% (i.e. 90% removal rate)

LU requirements increase by a factor of 5, while for SOC_AG 90% (i.e. 10% removal rate) decrease

by a factor of 0.56. Consequently, trade-off results for the same unit of energy [MJ] produced between

higher removals rates versus climate benefits from C inputs to the soil. Note that other relevant factors

(e.g. effects on biodiversity, N-

essential role.
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3.6 Limitations of the proposed approach

The coupling framework is generic enough to be used in combination with any demand model or life

cycle inventory; however, other essential soil quality indicators and impacts from LUC are not

included in the proposed SOC modelling approach. The dynamic of these indicators (e.g. the set of

indicators included in LANCA) also needs to be developed to improve the results from soil activities

modelling.

Furthermore, it is encouraged to use primary data when available to reduced uncertainties from

averaged values. The use of secondary data or parameters may compound the overall (data + model)

uncertainty, yet it can be in principle be reduced by data processing and model calibration. Model

calibration in particular, which implies the selection of starting values (even for primary data), may

nonetheless be biased, and thus self-starting models may be used to find initial conditions for the main

models, or, even better, observations data should be used if available.

Data processing should aim to improve the statistical representativeness and coherence of the data.

The presented SOC model could be replaced by or combined with alternative models with different

model structure, or contrasted with other models, for ultimately more robust findings and low

uncertainty in predicting C dynamics in the soil (Shi et al., 2018).

4 Conclusions

The overall comparison among the policy and C input scenarios to the soil shows achievable climate

mitigation targets in the transport sub-sector by means of shifting 1G-biomass share towards 2G

(advanced) biofuels, particularly given the LTECV policy. Dynamic SOC accounting makes a

considerable difference in the C-complete assessment. Without its modelling, temporary mitigation is

ignored, thus biasing GHG emission results. Highest mitigation contributions are attributed to

perennial grasses, further delaying radiative forcing due to C sequestration in the rhizomes fraction

during the entire rotation length. Yet, cooling effects from SOC decrease with increasing LCIA TH, as

all emissions return to the atmospheric pool in the long-term. A sensitivity analysis confirmed the

SOC variability due to temperature (+2°C increase) and residue removal rates changes. Both affect

climate mitigation and the latter also LU by a factor of -0.56 to +5. In the context of LCA, the

consideration of other direct and indirect impacts associated with changes in LU, management (e.g.

tillage and land preparation, fertiliser use, crop and yield protection, erosion measures) and LUC,

including biodiversity should follow suit to better understand trade-offs.
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5.3 Manuscript 5: Model integration in the context of oil palm-based surfactants

This manuscript (not submitted to any Journal) represents a model integration applied to a partially oil

palm- and petroleum-sourced surfactant used in personal care products. The case study couples static

LCA results with dynamic Cbio impacts. Therefore, a full lifetime dynamic Cbio accounting approach of

all oil palm crop fractions is developed, involving SOC. The purpose is to identify whether dynamic

modelling significantly influences the final results and whether mitigation potentials are accountable

for biochemical products.

Objective Perform a model integration, by considering modelling approaches developed in previous

case studies to asess dynamic carbon footprint of biochemical sulfactants linked with palm

kernerl oil consumption, by:

Accounting for all biogenic elementary flows from the upstream to the

downstream

Computing Cbio factors applicable to any technical flow or mass flow

Comparing with static GWP results

Approach Develop a Cbio balance by means of a full lifetime accounting approach, involving Cbio

sequestration, SOC dynamic and remaining Cbio releases from mill and end-of-life

processes by means of non-destrutive methods of previous mi

Sector (product) Oleochemical derivativas

Biomass Oil palm

Supporting data Dynamic Cbio flows and biogenic factors provided in the Supplementary Material

Appendix G: SM of Manuscript

Dynamic full lifetime biogenic carbon modelling of oil palm: A simplified

case study applied to a derived biochemical surfactant
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Abstract

Oil palm accounts for 34% of the total global production of vegetable oils. Certification schemes for

sustainable oil palm production take into account dynamic biogenic carbon (Cbio) sequestration from

biomass growth. However, soil organic carbon (SOC) dynamics and Cbio releases are not accounted

for, thus excluding end-of-life emissions to the atmosphere. In the context of dynamic life cycle

assessment (LCA), this study aims at developing a full lifetime accounting approach, including

upstream and downstream processes, based on a simplified case study of an oleochemical derivative

from palm kernel oil, namely Sodium Lauryl Ether Sulphate (SLES). Dynamic Cbio flows are coupled

with technical flows from a previous conventional LCA study of SLES, to generate a complete time

depended carbon balance (fossil + biogenic). The dynamic biogenic impacts resulted in -0.06 kg CO2-

eq kg-1 SLES over a fixed time horizon of 100 years, reducing the conventional carbon neutral impacts

by 3%. A sensitivity analysis on the model parameters, based on variations between minimum and

maximum values for fresh fruit bunch yield (8 to 40 t ha-1), rotation length (20 to 30 years), palm tree

density (100 and 200 trees ha-1), and k decomposition (mineralisation) coefficient (multiplied by a

factor of 0.5 and 2). It was demonstrated that C-complete (fossil + biogenic) accounting estimates

higher climate mitigation effects with increasing yield, rotation length and number of trees, due to

higher Cbio values embedded in the biomass over a longer period of time. Moreover, a scenario

comparison of other Cbio release pathways showed the variability of the results in the short-term. The

model estimations can be further refined to site-specific parameters and oil palm-derived products.

Keywords: biogenic carbon; dynamic modelling; dynamic LCA; surfactant; oil palm; SOC

Acronyms

Cbio Biogenic Carbon MIPB Male Inflorescence Plant Biomass
CPO Crude Palm Oil PKO Palm Kernel Oil
DBH Diameter-Breast-Height PKS Palm Kernel Shell
EFB/FFB Empty/Fresh Fruit Bunches POME Palm Oil Mill Effluent
FBB Fronds Base Biomass RF Radiative Forcing
GHG Greenhouse Gas Emissions SLES Sodium Lauryl Ether Sulphate
H Height SOC Soil Organic Carbon
MFF Mesocarb Fruit Fibres SOM Soil Organic Matter

1 Introduction

Oil Palm (Elaeis guineensis), a perennial crop producing edible vegetable oil, was discovered in the

13th century in West Africa (Corley and Tinker, 2003). The main producing countries are Indonesia

and Malaysia, representing 90% of total global production with volumes up to 43 and 21 million

tonnes, respectively, in 2018 (IndexMundi, 2019). Mean crude palm oil (CPO) yields range between 2

and 10 t ha-1 yr-1, depending on the region, eventually attaining peak values of 12 t ha-1 yr-1, whereof

the global mean yield is 3 t ha-1 yr-1 (Woittiez et al., 2017). Today, palm oil is one of the most
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produced vegetable oils in the world, with a total share of the global production of about 34% (OECD-

FAO, 2013).

Oil palm feedstock has increasingly gained importance in non-food related industries, as a substrate

for chemicals (cosmetics, detergents) and biofuels. A large number of oil palm related life cycle

assessments (LCA) and carbon footprint studies have been performed, including studies of mill

production systems (Stichnothe and Schuchardt, 2011), comparative studies with other vegetable oils

(Schmidt, 2015, 2010), palm kernel oil application in cosmetic creams (Martinez et al., 2017), crude

palm oil refinement into biodiesel (Castanheira and Freire, 2017; Choo et al., 2011; Hansen et al.,

2012; Rivera-Méndez et al., 2017), methodological LCI and parameter choices (Archer et al., 2018),

carbon reduction potentials (Patthanaissaranukool et al., 2013), biogas production from palm oil mill

effluents (Nasution et al., 2018), and combined LCA/techno-economic analysis of empty fruit bunches

for bioenergy (Vaskan et al., 2018); among other subjects.

Expansion of oil palm plantations has driven to critical deforestation, associated with land use change

and peat soil oxidation from peat swamp forests draining, further affecting biodiversity, carbon stock

losses and emissions, water filtration and pest control (Koh et al., 2011). The consequences remain

largely unquantified and concerns have been raised regarding peat lands considered as degraded or

marginal lands disposable for agriculture (Koh et al., 2011).

Oil palm plantations on peat soils have continuously increased since the 80s (Henson, 2004). CO2

emissions from peat oxidation have been estimated at about 37 t CO2 ha-1 (Schmidt, 2007). More

recently a LCA study in Malaysia, where 13% of oil palm is planted on peat, estimated GHG

emissions from land use change and peat soil ranging between 12.4 t CO2-eq ha 1 (best case with low

peat oxidation) to 76.6 t CO2-eq ha 1 (worst case with highest peat oxidation). The large variations are

attributed to previously carbon stocks, depth and time length of drainage, nitrogen emissions from

mineral fertiliser and CH4 capture and use at mill (Hashim et al., 2018).

International efforts have been conducted to support sustainable oil palm production. A voluntary

certification scheme is handled by the Roundtable on Sustainable Palm Oil (RSPO), which has

certified about 19% of the global oil palm production (https://www.rspo.org/). The RSPO certification

applies a cradle-to-gate LCA approach (i.e. involving agriculture and mill life cycle phases) for the

calculation of GHG emissions via the PalmGHG tool (Chase et al., 2012).

Pilot implementations have demonstrated mean GHG emissions of 1.67 t CO2-eq t-1 from CPO

production, with large variations ranging between -0.02 and 8.32 t CO2-eq t-1 CPO (Bessou et al.,

2014), whereas negative values represent a net GHG sink, as the avoided emissions from mill are

higher than the emitted ones. Higher levels of GHG emissions have been attributed to land clearing,

proportion of peat soil and no CH4 capture and use. Plantations on mineral soils and mill facilities with
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on-site energy from CH4-capture can achieved net GHG emissions below 0.5 t CO2-eq t-1 CPO (Chase

et al., 2012).

Annual carbon sequestration models have been developed, such as the OPRODSIM and OPCABSIM

models by Henson (2005, 2009), to estimate the biogenic carbon (Cbio) stocks in aboveground oil palm

biomass. These modelling data is applicable in the RSPO PalmGHG calculator when site-specific

measurements are not available (Chase et al., 2012). However, the modelling approach excludes

belowground biomass (i.e. roots) (Henson, 2009) and the upstream soil organic carbon (SOC) dynamic

from the dead/residual biomass added to the soil. Moreover, the scope of the study involves cultivation

of oil palm and processes at the mill facility, excluding Cbio releases to the atmosphere at the end-of-

life (EOL) phase of CPO derivatives. Thus, the GHG calculations do not represent the technical flows

(i.e. mass flows) of CPO or palm kernel oil (PKO) -based end-products.

Given these shortcomings concerning Cbio modelling, this study aims at developing a dynamic full

lifetime Cbio accounting approach, including upstream and downstream processes, to account for the

biogenic-sourced emissions, involving Cbio sequestration and soil organic carbon (SOC) dynamics

associated with the consumption of oil palm feedstock (crude palm or palm kernel oil) in an end-

product, here applied to an oleochemical derivative (surfactant for personal care products).. The

computation of the dynamic Cbio flows is constructed in a way that any technical flow (here amount of

palm oil) can be assessed with the dynamic Cbio model to evaluate both static and dynamic carbon

footprints. The case study is based on a simplified representation of the surfactant product, as the

primary objective is to explore and development of dynamic Cbio inventories.

2 Material and methods

The purpose of this study is to develop a dynamic Cbio modelling approach of all life cycle phases of

an oleochemical derivative, partially based on palm kernel oil (PKO) and petroleum feedstocks. The

final product is Sodium Lauryl Ether Sulphate (SLES), used as surfactant in personal care products

(e.g. shampoos and shower gels). Data from a previous conventional LCA study is used and further

processed to generate a complete carbon balance (fossil + biogenic carbon emissions) associated to the

SLES end-product pathway.

The LCA study involves a cradle-to-gate approach, using 1 kg SLES surfactant partially PKO-sourced

as the functional unit. The ecoinvent v3 database was used for the inventory and the characterisation

was based on the ReCiPe 2016 midpoint v1.03 (Huijbregts et al., 2016) method, using SimaPro. From

the original LCA study we take into account the global warming potential (GWP) results estimated at

1.77 kg CO2-eq kg-1 SLES, and exclude all other impact categories.

The calculated GHG emissions are based on the carbon neutral hypothesis. The results are therefore

static, as the time-dependent Cbio and SOC flows are not inventoried. This study thus adds the missing
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biogenic-sourced flows to the carbon neutral GHG inventories by applying a coupling approach earlier

presented in Albers et al. (2019a). The coupling allows coupling Cbio models with the outputs of any

demand model (in this case with the static inventories). A scenario comparison is further performed by

modifying the Cbio modelling assumption and SLES pathways to test the sensitivity of the results.

2.1 Study scope of biogenic carbon modelling

The dynamic Cbio modelling approach covers all life cycle phases: from the crop cultivation and

harvesting activities, through oil palm extraction and co-production at mill, with further refinements to

produce fatty alcohols and SLES, to the EOL of SLES, as illustrated in Fig. 1.

The modelling approach considers the time-dependent Cbio flows by means of a full lifetime Cbio

accounting from upstream to downstream, by involving:

i) oil palm growth and Cbio sequestration over the entire rotation length of different plant

organs (i.e. all crop fraction in the above- and belowground biomass compartments),

ii) SOC dynamic representing the Cbio releases from dead biomass and organic fertilisers or

soil amendments (milling organic co-products), and

iii) EOL Cbio releases from the SLES at the wastewater treatment facility, because the

surfactant is contained in self-care products such as shampoo or shower gels.
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* assuming an instant Cbio release to the atmosphere

Fig. 1. Study scope of biogenic carbon and soil organic carbon (SOC) upstream to downstream dynamic

modelling to assess the atmospheric carbon exchanges from life cycle of Sodium Lauryl Ether Sulphate (SLES)

product pathway based on palm kernel oil. Source: adapted from Choo et al. (2011) and Bessou (2016)

2.2 Time modelling in the inventory

The net Cbio balance from sequestration and releases add up to zero at some point in time, yet the Cbio

flows are temporally differentiated and thus distributed over the entire rotation period and EOL

releases of the PKO. The rotation length of oil palm plantations varies typically between 20 and 30

years (Henson, 2004), whereas a mean rotation cycle of 25 years is used in this work.

The first harvest year of the fresh fruit bunch (FFB) starts in year 4 (Khamis et al., 2005) and ends

with the final rotation cycle in year 25. The harvesting activities are thus carried out each year, where

the FFB is further processes at mill and delivered to the refinery for the production of the surfactant.
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Starting with the first harvest, biomass residues are generated and incorporated to the soil annually

contributing to SOC. The final year (25) represents the end-year of the rotation length with additional

contributions of stem and roots to SOC.

No temporal dynamic is accounted for during the use phase (regarding carbon storage and emission

delay) and the EOL releases are assumed to be instantaneous, i.e. the consumption of the SLES in the

final product (shampoo or shower gel) represents the EOL estimated to occur in the same year of the

manufacturing of the SLES with no further time lags.

Fig. 2a. shows the Cbio life cycle inventory of the oil palm cultivation and harvest activities over 25

years. Cbio sequestration is modelled for the 25-year cycle (including SLES manufacture, use and

EOL) by applying the following approach illustrated in Fig. 2b.: an inventory year (tinv) represents a

mixed production system aged between 4 and 25 years and the corresponding timeframe is spread over

46 years. SOC flows follow the same approach, however stem and root fraction represent a temporary

carbon storage and with the final harvest in year 25, the dead biomass is incorporated in the soil.

Furthermore, all inventoried life cycle Cbio flows of the palm oil plantation are attributed to the harvest

activity proportionally to the annual yields (i.e. annual harvest of FFB divided by the cumulative sum

of all FFB yields of the 25-year cycle).

Fig. 2. Modelling scheme of a) the dynamic of an oil palm plantation and b) corresponding dynamic of palm

kernel oil consumption (at the instant tinv)
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2.3 Product specifications and functional unit

SLES is a secondary oleochemical derivative. For this study, we analysed a partially petroleum- and

biomass-sourced surfactant (Fig. 3) produced by the French chemical company Solvay. The molecule

consists of C16 C-chain fatty alcohol [CH3(CH2)11(OCH2CH2)2OSO3Na], whereof C12 are PKO-

sourced (i.e. to 75% bio-sourced). The molecular weight of the compound is 376.49 g mol-1 and the

final product is diluted in water to 70%. The equivalent CO2 content of the C16 C-chain (non-diluted

in water) is about 1.87 kg CO2-eq kg-1 SLES (16 ꞏ 44.009 / 376.49).

Fig. 3. Sodium lauryl ether sulphate molecule

A comparison of the main refining process pathways of fatty alcohols from PKO and petroleum-based

feedstocks is shown in Fig. 4. The PKO-sourced processes involve hydrolysis of PKO into fatty acids,

its conversion into methyl ester and finally its hydrogenation into fatty alcohol. The conversion yield

of PKO to fatty alcohol is 0.999:1 (Shah et al., 2016). The final product contains 0.42 kg fatty alcohol

per kg of product. The Cbio balance is aligned to these conversion factors. Regarding the goal and

scope of this case study (exploring dynamic Cbio models), all data and conversion estimates of the

surfactant SLES consists of a simplified representation of the product.

Fig. 4. Value chain of fatty alcohol from palm kernel oil- and petroleum-based feedstocks. Source: (Shah et al.

2016)
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2.4 Dynamic upstream modelling

2.4.1 Modelling framework and assumptions

The dynamic upstream modelling is aligned with the carbon modelling framework proposed by

Henson (2004), however involving dynamic SOC. The dynamic upstream flows are closely interlinked

with the fresh fruit bunch (FBB) mill processes, as with its co-products, such as palm oil mill effluents

(POME), mesocarp fruit fibres (MFF) and empty fruit bunches (EFB), are commonly returned to the

field as organic fertilisers, mulching material and soil amendments (C. Bessou, pers. comm., 2019).

The Cbio fixation model involves all crop fractions of the standing living biomass. The SOC model, on

the other hand, comprises SOM from the dead biomass contributing to C inputs to the soil from

pruning and shedding of FBB, POME, EFB, as well as the dead roots and stem biomass, are left-

behind at the end of the rotation period.

The retained modelling assumptions were obtained from literature in the context of oil palm

plantations in Indonesia and Malaysia, and personal communication with Cécile Bessou, as follows:

Planting density varies considerably, yet in Indonesia and Malaysia common densities are

between 142 to 148 palm trees per ha (Martinez et al., 2017; Sung, 2016), for the model

assuming a mean value is used (145 palmsꞏha-1).

FBB comprises leaflets, rachis and petiole in the proportions of 0.29:0.29:0.42 (Henson and

Chang, 2007). About 80% of the total frond biomass is pruned, according to Henson (2004).

Additionally, palm trees shed their fronds naturally (from about year 5). Both pruned and shed

fronds represent litter contributing to soil organic matter (SOM), modelled separately.

Male inflorescence plant biomass (MIPB) is included in the Cbio balance for the sake of

completeness, even though the Cbio in the biomass represents a small fraction of the total crop

biomass, ranging between 0.8% and 1.4% (Henson, 2004).

FFB is the crop product, amounting 20% of the total standing biomass, according to data

collected in Indonesia (Sung, 2016). FFB is further processed at mills for the extraction of

crude palm oil (CPO) and palm kernel oil (PKO). Mill main products, co-products and

emissions depend on the FFB yield:

o CPO and PKO final crop products, account for about 21% of the FFB (Sung, 2016),

representing about 10% of total palm tree. Mean PKO yields account for about 12% of

FFB (Abdullah and Sulaiman, 2016; Berger, 2003).

o POME co-product, estimated at 58% of FFB (Sung, 2016), is difficult to assess, as it

is site-specific concerning the processes employed in each mill.
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o EFB co-product, estimated at 22% of FFB (Sung, 2016), is uniformly applied in the

model.

o Palm kernel shell (PKS) co-product, represents 6% of FFB (Sung, 2016)

o Mesocarp fruit fibre (MFF) co-product, represents 15% of FFB (Sung, 2016)

All co-products, except for PKS (here assumed to be incinerated at mill for on-site energy generation),

are thus returned to the field as organic fertilisers and mulching material/soil amendment. Other SOM

sources are the stem and the root system, as well as non-pruned FBB, all of which remain at the field

until the end of the rotation length (year 25), representing a temporary carbon stock. At the end of the

cycle, the stem is chopped or shredded (here we assumed shredding) to accelerate its decomposition

processes and the mineralisation of nutrients.

Moreover, CH4 emissions deriving from anaerobic pond treatment of POME are accounted for at

12.36 kg CH4 t-1 POME, based on the estimates by Yacob et al. (2006). Other CH4 values were not

found in literature. It is assumed that CH4 is not collected for energy recovery, and thus directly

emitted to the atmosphere. Other CH4 sources are not accounted for in the dynamic Cbio model, yet

they may arise from peat and waterlogged soils (Henson, 2004).

The dynamic Cbio model excludes site-specific modelling assumptions, concerning unexpected events

(e.g. diseases and pests, wild fires, mortality), nutrient cycling (as the focus lies on the carbon flows

only), and Cbio inputs to the soil from other exogenous sources (e.g. leguminous cover crops often

applied in oil palm plots). Moreover, changes due to land transformation or management are not

modelled. However, CO2 emissions from land transformation are considered in the original LCA study

(in which this study is based on), and thus included in the static final GHG emission results.

2.4.2 Modelling mean palm growth and carbon fixation

Dynamic Cbio modelling of the oil palm fractions follows the same approach from previous studies

concerning forest tree modelling (Albers et al., 2019b). The model estimates are based on secondary

data from destructive methods and/or empirical studies. Fig. 5 provides an overview of mean oil palm

growth development models and allometric relation to estimate biomass accumulation per crop

fraction as a function of time (age).

For modelling the correlation between age and height (Age-H) as well as age and diameter-breast-

height (Age-DBH) of oil palm, data was retained from field studies (2011-2012) by Tan et al. (2014),

tabulated in Appendix G: SM of Manuscript . The sampling accounted for 118 plots (22 m ꞏ 22 m)

with different age classes within three estates in the Peninsula Malaysia, covering about 50% (2.56

Mha) of the total oil palm production in the country.
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Age-H mean values were fitted by means of non-linear regression using the Chapman’s Richards (CR)

model, previously applied to predict mean forest tree growth (Albers et al., 2019b). The same initial

non-self-starting parameters were used, with 0.02 for k, 2 for p and A twice the maximum age (i.e. 50

years for oil palm). The model proved to be applicable for oil palm with strong goodness of fit (GoF =

1), as shown in Fig. 5a. Yet, the CR model is not applicable for Age-DBH, because DBH barely

changes over time and therefore the correlation with age is weak. Parameters were fitted with linear

(R2 = 0.995) and exponential (R2 = 0.995) models, both models demonstrating a strong correlation, as

shown for the linear fit in Fig. 5b.

For the Cbio modelling of other crop fractions, a comparison between different models from Henson et

al. (2012), Corley and Tinker (2003), Khamis et al. (2005),(Syahrinudin, 2005)), Tan et al. (2014), and

Sung (2016) was undertaken, when applicable, involving the following crop fractions: aboveground

stem (Fig. 5c), FFB (Fig. 5d), FBB (Fig. 5e), shed FBB (Fig. 5f), MIPB (Fig. 5g), and belowground

roots (Fig. 5h).
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Fig. 5. Estimation of mean oil palm growth development and carbon fixation of different crop fractions,

measured vs. fitted data
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Table 1 lists all selected models and their respective parameters. For the sake of simplification all

parameter notations are expressed as a (replacing A), b (replacing k) and c (replacing p). The carbon

contents per crop fraction retained in this study, from Sung, (2016), range between 32% and 49%

(Table 2.1), with the mean value calculated at 45%. Other values vary between 40% and 57.6%.

According with Henson (2004) the approximation of carbon content remains a source of uncertainty,

as further measurements are required.

Table 1. Model and parameter estimates for oil palm crop fractions including carbon content

Crop fractions Model selection Model parameters C-content
a b c

H 25.840 0.035 1.578 a N/A -
DBH 77.578 0.009 N/A a N/A -
Stem 0.777 0.001 -0.003 b 34% e

FBB 37.08 4.810 -0.780 c 45% e

FFB y (t) = at2 + bt - c -0.086 2.893 -6.696 d 49% e

Shed FBB y (t)= at2 + bt - c -0.003 0.267 -1.638 d 49% e

MIPB y (t)= at2 + bt - c -0.001 0.024 -0.034 d 45% e

Roots -6.307 0.053 -N/A a 45% e

POME N/A -N/A N/A -N/A 32% e

EFB N/A -N/A N/A -N/A 49% e

Abbreviations: H: Height, DBH: Diameter Breast Height, FFB: Fresh fruit bunch, FBB: Frond Base
Biomass, MIPB: Male Inflorescence Plant Biomass; N/A: not applicable
Sources: a Tan et al. (2014), b (Corley and Tinker, 2003), c Khamis et al. (2005), d Henson et al. (2012),
e (Sung, 2016) with 0.45 t C t-1 representing the calculated mean value

The selection of the multiple compared models (in Fig. 5c, d, h), is based on the following reasons:

The allometric relations for stem mean growth has a better representation in terms of stem growth, as

the polynomial approximation converges to unrealistic negative values. For FFB yield the logistic

model by Khamis et al. (2005) is chosen, because it is first ranking according to the authors, although

the yield estimates are high peaking with 37 t ha-1. The logarithmic model by Tan et al. (2014), on the

other hand, does not represent the yield curve accurately, as the values continue rising even for mature

palm trees. However, yield is age-dependent, decreasing towards the end of the rotation length the

more mature the palm tree becomes (Henson, 2007).

In general, polynomial models predict smooth growth curves within the linear modelling framework.

However, the models face challenges regarding the interpretation of parameters, and the unrealistic

growth predictions with negative mass values upwards and downwards. Therefore, these traditionally

used growth functions, namely linear (referring to constant absolute plant growth) and exponential

(referring to loglinear with constant RGR) models, are not recommended (Paine et al., 2012).

Nonlinear predictions are increasingly recognised in growth analysis since fitting parameters using

nonlinear regression have matured, better capturing the temporal dynamic/variations of growth (i.e.

dependency of growth in age-and size) (Archontoulis and Miguez, 2015; Paine et al., 2012).
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This study is limited to the use of existing models from literature due to lacking primary or

experimental data on specific oil palm fractions (e.g. frond base biomass). Future studies should stress

on further exploring modelling improvements for mean growth development of different oil palm crop

fractions, to provide more accurate predictions and thus enhance the modelling of Cbio sequestration

dynamic.

2.4.3 Modelling soil carbon

The SOC modelling framework developed in Albers et al. (2019d), based on the pioneering model by

Hénin and Dupuis (1945), was used. As described in the previous study, the SOC model describes the

C inputs to the top soil from the dead biomass at a given time and the C losses/releases over time due

to degradation. All C inputs are returned to the atmosphere, denoting a temporary sequestration, until

the SOC balance equals zero.

The dynamic SOC approach models the C inputs to the soil from aboveground (AG) and belowground

(BG) compartments separately. The AG biomass accounts here for FBB, MIPB, stem, including co-

products from the mill POME, EFB, and MFF, while the BG for the root system. The discrete

treatment of both AG and BG allows modelling biomass feedstocks with rotation lengths >1 year, such

as perennial oil palm species, implies that some biomass fractions are not added to the soil the same

year they are harvested. Oil palm stem and roots are accounted for at the end of the rotation length.

Other biomass fractions are added to the soil annually, starting from the first year of FFB harvest (i.e.

year 4).

The humification coefficient (h) is estimated at 0.3 for all crop residual fractions, except for POME,

EFB, and MFF, estimated at about 0.7 (Bonten et al., 2014). Moreover, values for the mineralisation

rate or decomposition (k, not to be confused with the k parameter of palm tree partitioning, yet both

referring the negative exponential decay rate), representing the decomposition rate constant, are

retrieved from studies in Indonesia (Gao et al., 2016; Sung, 2016) (Table 2). The carbon content is

predefined by the growth and sequestration curve (Table 2).
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Table 2. Soil organic carbon parameters

Crop fractions Humification coefficient (h)a Mineralisation coefficient (k)b

[unitless] [yr-1]

Leaflets 0.3 0.26

Rachis 0.3 0.12

Petiole 0.3 0.15

Stem (shredded) 0.3 0.11

Male inflorescent 0.3 0.26

Roots 0.3 0.07

Palm oil effluent 0.7 0.26*

Empty fresh fruit bunch 0.7 0.20*

Mesocarb fruit fibre 0.7 0.26*

Sources: a (Bonten et al. 2014), b (Gao et al. 2016; Sung 2016), * estimated values

3 Results and discussion

3.1 Dynamic biogenic carbon flows and temporal distribution

Fig. 6 shows the dynamic inventories [t C ha-1] of Cbio fixation modelled by means of biomass growth

per crop fraction (Fig. 6a) and the respective proportions of Cbio added to the soil modelled by means

of SOC degradation (Fig. 6b).

Fig. 6. Oil palm upstream flows from a) dynamic biogenic carbon (Cbio) fixation from different plant fractions

over the rotation length, and b) soil organic carbon (SOC) including mill co-products over the assessment period

The Cbio fixation and SOC dynamic represent almost 90% of the total oil palm biomass, the remaining

flows are associated with instantaneous release flows from PKS incineration ( 4%) and EOL of PKO

in SLES product ( 1%). No particular Cbio dynamic is associated to the use and EOL phases, occurring

both within a one-year time step. The temporal variability of the Cbio flows is thus exclusively
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associated with the upstream modelling phase (all Cbio values are provided in Appendix G: SM of

Manuscript ).

Mean annual FFB harvested over the 25-year rotation length was estimated at about 4.55% of total

aboveground biomass, starting in year 4, based on which the harvest activity of the dynamic flows is

allocated.

Fig. 7a. shows the dynamic flows resulting from Cbio fixation, SOC balance, PKS incineration and

EOL releases from SLES use, where the curve represents the integral of the dynamic full lifetime

accounting balance [t C] in Fig. 7b. divided by mean annual yields to obtain the annual Cbio elementary

flows [ t C yr-1] that can be coupled with the amount of palm oil used in the end-product.

Fig. 7. Full lifetime carbon accounting flows oil palm surfactant product life cycle a) dynamic full lifetime

carbon accounting flows [t Cꞏyr-1] for oil palm surfactant product life cycle computed from b); b) dynamic

biogenic carbon (Cbio) and soil organic carbon (SOC) balance [t C]
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3.2 Dynamic impact assessment

The dynamic carbon flows (in Fig. 8a) are converted into CO2 and CH4 elementary flows, multiplying

them by the molecular weight conversion factors 44/12 for CO2 and 16/12 for CH4, to subsequently

assess the time-dependent climate change impact assessment (Levasseur et al., 2010). Fig. 8 shows the

instantaneous radiative forcing (RF) in W m-2 (Fig. 8a), its integral as the cumulative RF in W yr m-2

(Fig. 8b), and the relative RF in kg CO2-eq (Fig. 8c), per tonne of palm oil consumed via the SLES

surfactant product pathway, i.e. accounting for no temporary storage in the use phase and instant EOL

releases. The timeline starts in year -25 due to the dynamic oil palm modelling approach applied in

this study (see Fig. 2).

The relative impact results in negative emissions of -2.58 and -1.07 kg CO2-eq per kg of PKO over the

fixed reference years t = 20 and t = 100 respectively, denoting climate benefits from the life cycle

pathways of SLES. The chosen fixed years are adapted to the time horizons (TH) from the static IPCC

GWP factors. The end-year is set by counting from the last dynamic inventory flow (Cbio + SOC) in

the year 25, as illustrated in Fig. 2, to avoid temporal inventory cut-offs and englobe the forcing

effects from the last emission flow. Fixing an end-year in the dynamic impact assessment by defining

an LCIA TH equivalent to the static C-neutral results allows a comparison between the two

approaches (details provided in Albers et al., (2019b)).

Fig. 8. Dynamic impact assessment per tonne of oil palm consumed and SLES product pathway

3.3 Comparison of GHG emissions from SLES and sensitivity analysis

The time-dependent annual Cbio impact factors [t CO2-eq t-1] can be coupled with any technical flow

by scaling them to the amount of PKO feedstock consumed in the end-product (here SLES). Thus,

applying the dynamic Cbio factors to the surfactant inventory, namely 0.42 kg PKO per kg SLES, the

biogenic GHG emissions are negative with -1.08 and -0.45 kg CO2-eq kg-1 SLES over 20 and 100

years, respectively.
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The C-neutral results from the static LCA study were estimated at 1.77 kg CO2-eq kg-1 SLES with

GWP factors over 100-years. By summing up the static and dynamic results, both over the same LCIA

TH (here 100 years), a comparison can be undertaken between C-neutral and complete carbon (C-

complete) impacts. C-neutral is lower by 25% (1.32 kg CO2-eq) due to the full lifetime accounting of

oil palm sequestration and release flows. Setting the LCIA TH from year -25 to 75 would result in

1.07 kg CO2-eq kg-1 or from years 0 to 100 in 1.22 kg CO2-eq kg-1, with a difference to the static value

of 40% and 31% respectively. Which LCIA TH to choose for the comparison with the static results is

critical, as the C-complete results may vary significantly. However, it is recommended to account

from the year of the last emission of the dynamic inventory to assess the effects from all Cbio and SOC

emission flows.

C-complete results can vary due to the modelling assumptions from the Cbio balance. Therefore, a

sensitivity analysis was performed to test the variations in the C-complete results due to changes in the

model parameter. Minimum and maximum possible key parameter values were tested, namely

variations in mean FFB yield (8 - 40 t ha-1), rotation length (20 - 30 years), palm density (100 - 200

trees ha-1), and the decomposition rate constant (k) (multiplied by 2 or by 0.5), as shown in Fig 9.

The mean FFB yield modelled in this study was 36 t ha-1, which is higher than most of the values

reported in literature for Indonesia and Malaysia, whose range lies between 17 and 25 t ha-1 (Choo et

al., 2011; Corley and Tinker, 2003; Henson, 2007; Schmidt, 2007; Shah et al., 2016; Woittiez et al.,

2017). However, more recent studies on the yield gaps of oil palm have reported attainable yields at

26-31 t FFB ha-1 in Southeast Asia (Hoffmann et al., 2017) and comparing with other regions of the

world between 8 and 40 t ha-1 (Woittiez et al., 2017), which make the yield estimates very uncertain

due to several influencing factors (e.g. geographical location, management practices, etc.). The

sensitivity analysis demonstrated that systems with lower FFB yields feature significantly lower

climate benefits from Cbio modelling and vice versa.

Concerning the rotation length or replanting cycles of oil palm plantations, the 25-year cycle has been

set as a default parameter by RSPO certification scheme (Bessou, 2016), and is the most used estimate

(Choo et al., 2011; Schmidt, 2007). Yet the cycles may vary between 20 and 30 years (Henson, 2004).

From the sensitivity analysis, it was identified that longer rotation lengths increase, while shorter

decrease the net climate benefit from Cbio. Nonetheless, as abovementioned, yields are affected by

palm maturity, which has an economic impact on the long run.

Changes in the number of palms per hectare also influence the computation of Cbio benefits via the C-

complete results. Increasing the density implies higher climate benefits, while decreasing it revealed

the opposite. However, higher densities lead to higher vulnerability to mortality, for instance, due to

water deprivation during dry seasons (Corley and Tinker, 2003; Sung, 2016; Wang et al., 2017).
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The sensitivity results demonstrated that increasing yield, rotation length and number of palms slightly

contribute to higher climate mitigation effects, attributed to higher Cbio values sequestered in the

biomass over a longer period of time. The largest variation is given by decreasing yields, as the

computation of the dynamic flows is dependent on this variable. The results are thus sensitive to the

yields. In contrast, variations in the decomposition rate constant (k) do not to contribute to changes and

are thus within statistical error.

Fig. 9. GHG emission of SLES under carbon neutral and complete carbon estimates, with sensitivity analysis

3.4 Scenario comparisons of dynamic biogenic impacts from oil palm

Moreover, a scenario comparison was performed by modifying the assumptions undertaken for Cbio-

CH4 releases arising from POME, the product service life and EOL emissions to assess potential

variations in GHG emissions associated with dynamic flows from oil palm. The results are not directly

linked with the SLES surfactant, but rather highlight the effect of changes in the Cbio results due to

changes in the estimates or release pathways of the dynamic Cbio model.

The modifications carried out are as follows. For POME CH4 releases, it was assumed that a) 100% is

collected for energy recovery and emitted as CO2 to the atmosphere and b) CH4 emissions from

POME are twice the amount estimated by Yacob et al. (2006), i.e. at 24.72 kg CH4 t-1. Moreover, a

service life of 10 and 20 years was assumed as a temporary delay of Cbio emissions embedded in bio-

products (e.g. bioplastics from oil palm feedstock). Finally, the EOL was assumed not to emit GHG

instantaneously, but gradually due to decomposition processes (pertaining no dynamic in the use phase

like the original assumptions).
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Fig. 10 shows the relative GHG emissions assessed with the time-dependent characterisation factors

over the LCIA THs of 20 and 100 years. The original values (- 2.58and -1.07 kg CO2-eq kg-1 palm oil

over 20 and 100 years respectively) are based on the modelling pathway of the SLES surfactant. A

general overview of the scenario comparisons with the original Cbio results, shows, as highlighted in

previous studies (Albers et al., 2019a, c, d), that the Cbio benefits decrease with increasing TH. The Cbio

balances (if no permanent sequestration is considered) converge to zero at some point in time. Thus,

the variations between the 100-year results are less significant than those over the LCIA TH 20 years.

When CH4 releases are increased by a factor of 2, the negative impacts increase by 4% (-2.57 kg CO2-

eq kg-1 PKO) compared with the original in the short-term (LCIA TH 20 years), most likely deriving

from the higher radiative forcing effects from the short-lived gas, yet less significant (1% of the

original value) for the LCIA TH 100 years (-1.09 kg CO2-eq kg-1 PKO). The service life, on the other

hand, demonstrated almost the same results as the original values with differences between 0.13 and

0.44%. The negligible impacts of temporary sequestration and delay due to the consideration of

service life (>1 year) are due to the low proportions from FFB yield biomass ( 4.55%) to the total

palm biomass. The EOL decay assumptions produce higher negative forcing effects, by 8% for LCIA

TH 20 (-2.77 kg CO2-eq kg-1 palm oil) and 100 (-1.16 kg CO2-eq kg-1 palm oil) years respectively, as

compared with the original values. It is attributed to the releases over a longer period than for

instantaneous emissions.

Overall scenario comparisons demonstrated that GHG emissions from the original dynamic palm oil

impacts do not significantly differ due to modifying the Cbio pathways concerning releases due to CH4,

service life or EOL. The largest variation was given by the EOL decay assumptions as compared to the

original EOL instantaneous releases.

Fig. 10. Scenario comparison with modification of Cbio model assumptions and pathways
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4 Conclusions

This study was concerned with full lifetime accounting applied to a partially oil palm-sourced

surfactant used in personal care products by means of a model integration approach coupling a

conventional LCA with dynamic Cbio models. The purpose was to include the dynamic flows in the

static assessment of GHG emissions. The dynamic Cbio inventories consisted of modelling growth and

Cbio sequestration of all crop fractions from oil palm, involving SOC dynamic from the biomass return

to the soil, and the further processing pathways into the surfactant and final Cbio releases at the end-of-

life.

The Cbio impact per kg SLES resulted in -1.08 6 kg CO2-eqkg-1 SLES (or -0.45 kg CO2-eqꞏkg-1 PKO),

which has been aggregated to the C-neutral estimates from the LCA study, reducing the GWP results

by 25%. The computed negative emissions are sensitive to the chosen LCIA TH. The combination of

the static and dynamic results is possible, as long as the same unit and temporal boundary are

considered. Yet, it does not represent a full dynamic study, as the fossil-sourced inventories were

computed with the static GWP metric, which delivers inconsistencies with the actual climate change

impacts under consideration of the time dynamic carbon footprints. Moreover, disaggregated

inventories (i.e. elementary flows) were not available. General conclusions on higher mitigation

potentials could be drawn from increasing FFB yields, palm planting density and rotation lengths, due

to higher Cbio sequestration over a longer period. Yet, whether this is realistically achievable is

questionable. Moreover, scenario developments modifying the SLES pathway (e.g. involving time

lags in the use phase), have not significantly affected the results.

The climate benefits computed from the full lifetime Cbio flows are significant for the SLES surfactant

pathway. For other products with considerable higher PKO requirements per unit of product or for the

assessment of Cbio flows at larger scales (e.g. at landscape, national level), dynamic full lifetime

accounting of Cbio might result in noteworthy climate mitigation potential.

The proposed dynamic modelling Cbio approach for perennial oil palm species provided good

approximations, when primary data from samplings or field measurements are not available or

specifically required. It is consistent with an attributional LCA modelling context, where mean

estimations are standard. The evaluation of the environmental profiles of the oil palm system should,

however, encompass all other effects associated with deforestation, peat oxidation, land use change

and biodiversity. Site-specific (i.e. spatial-dynamic of the modelling data) variability should be further

refined for case specific studies.
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5.4 Chapter conclusion

Like for the study results of Chapter 4, this chapter revealed the importance of dynamic full lifetime

accounting of Cbio as compared with carbon neutrality, particularly in the context of the soil

compartment, previously not adequately assessed. Modelling C inputs to the soil from above- and

belowground energy crop residues, as well exogenous matter and the dynamic gradual releases to the

atmosphere, demonstrated temporary sequestration of C in the soil, gradually delaying the release. All

residual crop fractions, when incorporated in the soil represent carbon releases to the atmosphere

distributed over several years.

Combining the dynamic of SOC and associated land uses with prospective bioenergy scenarios is a

novel approach. Without the modelling of SOC, temporary mitigation effects from agricultural annual

and perennial energy crops are ignored. Perennial species, however, demonstrated higher mitigation

potentials due to the Cbio stock in the rhizomes remaining in the production system during the entire

rotation length. The SOC dynamic has proven sensitive to temperature and residue removal rates.

The case of the Cbio dynamic of perennial oil palm, showed a “loop-closing” system between the

plantation site and mill unit in terms of reintegration of the Cbio from mill co-production in the soil.

Moreover, variations in the model parameters have shown the dependency of the results on the FFB

yields, tree planting density and rotation lengths.
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6 Discussion: elements of dynamic carbon cycle modelling

6.1 Chapter context

Without the consideration of time, positive and negative contributions of Cbio and SOC emissions to

the atmosphere add up to zero. Dynamic carbon modelling approaches related with forestry (Chapter

4) and agriculture (Chapter 5) demonstrated that annual biogenic C flows may not be carbon neutral.

Moreover, it has been shown that time-dependent accounting of both biogenic and fossil sources

delivers closer approximations of the actual climate change impacts per functional unit of a system.

This Chapter further discusses the main time-related elements and modelling approaches resulting

from this work and the case studies conducted, summarised in Fig. 6-1, intended to support the

framework proposed in Chapter 3. Therefore, a synthesis of the main findings is provided (section

6.2), followed by a short discussion on the main implementation challenges and sources of uncertainty

in the results (section 6.3), and finally underlining why other methods were not considered in this

work (section 6.4).

Fig. 6-1. Selected time-dynamic elements addressed (boxes third row) in this dissertation according to the

identified issues (boxes middle row) along the life cycle phases (boxes first row)
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6.2 Synthesis of the main findings

6.2.1 Dynamic upstream carbon modelling

Gaps have been identified regarding upstream modelling, concerning biomass growth, sequestration

and SOC dynamics. The main elements are briefly described below.

Sequestration dynamic

Modelling time-dependent Cbio sequestration flows allows accounting for potential mitigation benefits,

represented as negative flows. The removal of CO2 from the atmosphere decreases the GHG

concentration, inducing negative forcing effects. Throughout the methods and case studies in this

work, it has been recognised that modelling dynamic sequestration is biomass/type of plant species

dependent.

The main sequestration modelling criterion is the time required for a biomass to (re)grow. The

established point of divergence is 1 year, splitting static (growth < 1 year) from dynamic (growth > 1

year) modelling requirements. The 1-year divergence separates short- from mid- to long-term Cbio

sequestration, and is adapted to the time step of the radiative forcing metric at global scale, referring to

well-mixed forcing agents with atmospheric lifetimes longer than 1 year (section 2.2.1).

Specifications on modelling requirements per biomass type are detailed, as follows:

Annual species (growth cycle < 1 year) do not require modelling dynamic Cbio sequestration.

The annual accumulation of Cbio in the biomass can be estimated, for instance, by means of the

net primary productivity (NPP) indicator. It allows partitioning Cbio among the different plant

fractions for modelling subsequent Cbio releases in other life cycle phases associated with the

exported/harvested dedicated and residual biomass fraction (e.g. for bioenergy combustion),

and the remaining residual biomass incorporated in the soil (SOC dynamic).

Perennial species/short rotation coppice (growth cycle > 1 year) require modelling time-

depended Cbio sequestrations. Perennial grasses resemble annual species, in terms of the

aboveground compartment harvested annually as a crop product. However, the belowground

part involves biomass growth and Cbio sequestration dynamic of rhizomes during the rotation

length, representing a carbon stock, in contrast with annual crops. Perennial trees or short

rotation coppice (e.g. oil palm), on the other hand, have sequestration dynamics associated to

both above- and belowground compartments.

Forest tree species (growth > 1 year) require modelling time-depended Cbio sequestration. Tree

growth to maturity requires up to several decades, further postponing radiative forcing, thus

featuring long-term sequestration potentials compared with any other biomass types.
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Rotation lengths and mitigation potentials

The two forestry-related bioenergy case studies in Paper 1 (4.2) and Paper 2 (4.3) considered a rotation

length up to 200 years, representing the longest growth curve tabulated in historic yield tables of the

French forest wood supply chain. A sensitivity analysis in Paper 1 (4.2), however, suggests that the

mitigation effect from long-term Cbio sequestration depends considerably on the modelled rotation

length. The C-complete results were sensitive to shortening the rotation length: the shorter the

modelled rotation length, the lower the carbon benefit from postponement of radiative forcing.

Soil organic carbon dynamic

Agricultural crops, particularly annual species, are considered C-neutral in the context of temporal

dynamic, due to their short-term growth time, yet excluding temporal emission profiles linked with the

SOC dynamic.

C inputs to the soil derive from above- and belowground plant fractions considered as dead biomass

(crop residues and dead roots), and eventually also from inputs of exogenous organic matter (organic

fertilisers). It was identified that the soil carbon sequestration effect is given due to the C added to the

soil at a given year, followed by mineralisation and C releases. Thus, the release back to the

atmosphere is not instantaneous, but the net return is gradually delayed over several years, with high

intensity of releases (e.g. pulse emissions) in the first year and decreasing releases over time.

Paper 3 (5.2) demonstrated that the proportions of added C to the soil vary across different agricultural

biomass types, and depend on residue management practices (removal rates) in place, including the

partial displacement of mineral fertilisers by organic ones.

The outcomes of Paper 3 demonstrated that the C-complete balance with SOC flows is sensitive to i)

changes in the decomposition rate constant and ii) variations in the aboveground removal rates. SOC

benefits decrease considerably with temperature increase (e.g. due to climate change), because the

decay rate rises with temperature and thus C releases to the atmosphere occur over a shorter period.

Moreover, increased residue removal rates considerably reduce C inputs to the soil and thus also

reduce the mitigation effect from SOC.

Moreover, a close causal relationship between land occupation and residue management was

recognised. The sensitivity analysis of the case study in Paper 3 (5.2) demonstrated that the higher the

residue removal rate, the higher the LU demand for crop production, and vice versa.

Upstream modelling of both Cbio sequestration and soil carbon

Modelling both Cbio sequestration and SOC dynamics provides a more accurate representation of

biogenic-sourced flows and their mitigation effects. It has been partially demonstrated in the forestry-
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related case studies with tree growth and simple decay functions Paper 1 (4.2) and Paper 2 (4.3). The

modelling approach was improved by means of the dynamic SOC model assessing any biomass type

in Paper 3 (5.2), capturing all positive upstream releases to the atmosphere.

From these findings, it can be stated that modelling growth and Cbio sequestration is biomass type

dependent, and therefore not required in all cases. However, the SOC dynamic should be accounted

for all biomass types, if above- and belowground residues are left on the field to decay, and the related

upstream releases are not instantaneous (e.g. burning sugarcane residues at field).

Biogenic reference system – “no use”

A reference system/scenario, against which biomass supply chains can be compared, is required. For

the forest-sourced bioenergy case study the reference system was defined by an alternative EOL

pathway resembling a situation/scenario without human intervention (i.e. natural processes), including

forest management (e.g. rotation lengths and thinning periods) but excluding bioenergy combustion.

The reference to residual wood demand for bioenergy thus represents the same amount of wood left

behind on the forest floor after logging operations with a “no use” pathway, which does subsequently

undergo degradation/decay processes. From this point of view, the same applies to agricultural

systems, as demonstrated with the SOC modelling. All crop fractions not exported from the field for

food, feed, bioenergy or biomaterials, are left behind, undergoing mineralisation. For instance, current

developments in advanced biofuels increase the demand of lignocellulosic residues (e.g. straw), which

would eventually have “no use” other than contributing to SOC and nutrient cycling.

6.2.2 Coupling carbon modelling with demand models

Paper 1 (4.2), Paper 2 (4.3), and Paper 3 (5.2) feature a demand model as the source of inventories,

representing biomass use scenarios for bioenergy. The simulations demonstrated that the multi-annual

energy program formulated in the energy transition policy, with additional constraints in the transport

sector, meets the GHG mitigation targets due to shifting energy-pathways and overall reductions in

energy demand.

The mitigation constraints lead to increased demand for advanced biofuels (as compared to the BAU

policy scenario), which in consequence mobilise the biomass supply towards dedicated or residual

lignocellulosic biomass. For the transport sub-sector this type of biomass supply represents a new

commodity pathways (e.g. woody residues, perennial grasses), linked with non-food crop-based

biomass resources and new biofuel markets (involving synthetic biofuels). Advanced biofuels are thus

expected to increase in the final energy share in the years to come.

The GHG inventories of the PEM TIMES MIRET (the demand model) are C-neutral, estimating

fossil-sourced emissions from the JRC well-to-wheel approach for blended biofuels, however
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excluding Cbio sequestration and release flows. The coupling of PEM with Cbio and SOC models allows

assessing the missing dynamic Cbio balance from the biomass commodity demand and thus developing

C-complete GHG inventories. From the results, it derives that additional mitigation effects in

bioenergy systems are linked with further postponing of radiative forcing due to historic Cbio

sequestration and C inputs to the soil.

The framework proposed in Chapter 3 does not exclude using other demand models or combining Cbio

models with LCA studies (e.g. as illustrated in Manuscript 4 in section 5.3), as the dynamic Cbio

factors are modelled in way that they can be coupled with any flow of materials consumed in the

studied system (i.e. physical flow) or elementary (e.g. CO2) at any given year.

General advantages of the coupling of C models with PEM are, among others:

Retrieval of dynamic inventories (i.e. annualised technical flows), analysing demand-supply

pathways from the feedstock extraction to the finale energy services within one market/sector.

Consideration of a detailed techno-economic database of key economic variables, such as

demand, supply and market equilibrium and changes in response to external (e.g. policy

induced) constraints/scenarios. Insights into system behaviour of prospective energy demand

and emerging process pathways – an essential consideration of emerging market penetration

and the future energy transition, informing policy decision making (Subramanian et al.,

2018).

Combining energy and land use/occupation scenarios from biomass commodity supply as

bioenergy substrates. Paper 3 (5.2) revealed that the overall land occupation in the new policy

scenarios decreases considerably, as the proportion of the derivative commodities (starch,

sugar, oil) have a higher equivalent unit of area demand than the residual and dedicated

lignocellulosic commodities.

General limitations associated with PEM include:

Prospective simulations are determined by a start year (here the year 2007) to a specific end-

year (here up to the year 2050), representing larger differences in the first years until achieving

a new equilibrium and a drastic cut-off in the inventories with no further biomass

mobilisation. To overcome this limitation, the coupling was performed some years after the

start year of the simulation (here the year 2019), excluding the previous simulation years.

Higher challenges are associated with the end-year of the simulation TH. One option is to

assume a constant state afterward, to avoid the unrealistic cut-off.

The model inner working environment is not detailed and data is not publicly available, thus

lacking transparency and accessibility, introducing uncertainty, particular with increasing

complexity (Lopion et al., 2018; Morrison, 2018; Pfenninger et al., 2014; Trutnevyte, 2016).

The model outputs analysed in this work required data pre-treatment and recalculation of final
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energy consumption and GHG emissions releases due to unclear/intransparent linkage

between the individual process pathways and data, associated with the lack of documentation.

Exclusion of economic cross-sectoral interactions (e.g. effect of change on other markets, as

only one market is analysed) with limited assumptions (Loulou et al., 2016). For instance, the

consequences from substitution of fossil fuels by biofuels on other life cycles or sectors are

not analysed. Consequential LCA approaches, broadening the system boundaries, may involve

direct and indirect effects on other life cycles (e.g. product displacement, land use change),

and further analyse the effects, for instance, of a demand change in other sectors or economies,

if the demand for a specific biomass (e.g. energy crops, dedicated wood) increases

significantly (i.e. non-marginal changes). Thus PEM model does not necessarily fulfil the

objectives of consequential LCI, yet it analyses socio-economic mechanisms conducting

towards consequential objectives (Guinée et al., 2018; Marvuglia et al., 2013; Vázquez-Rowe

et al., 2013).

6.3 General implementation challenges and sources of uncertainty

6.3.1 Modelling challenges

The main implementation challenges faced in this work are shortlisted for both the inventory and the

impact assessment, as follows:

The chicken-egg dilemma on Cbio sequestration – an allocation issue: Long-term sequestration

profiles have a considerable impact on the C-neutral results, depending on whether the timing

of the sequestration is accounted for under a historic (carbon benefit) or future (carbon debt)

time perspective. This modelling decision was identified as an allocation challenge for

attributional LCA, referring to the causal physical relationship of attributing Cbio to a harvest

activity, thoroughly discussed in Paper 2 (4.3). Recommendations were provided based on a

set of decision rules and established definitions to justify choices. The main criteria are rooted

in the discrepancy between the previous state and sphere of forests (managed or un-managed),

and whether the biomass is/was allowed to re-grow after the harvest activity. The

consequences of management changes in the harvest itself may occur after the harvest

(future), relating to other than the allocation issue (e.g. consequential modelling approach).

Static versus dynamic relative impacts: As already highlighted in the proposed framework

(Chapter 3) and underlined in Paper 2 (4.3), a comparison between static and dynamic relative

radiative forcing results [kg CO2-eqꞏkg-1] should be implemented with caution, as the two

metrics have different impact representations. The main inconsistency lies on the different

time horizons generated by the different emission years. The framework example showed how

to conduct a consistent comparison under consideration of the same temporal boundary.

Comparing relative results becomes particularly challenging for studies with different
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temporal boundaries, as demonstrated with the two opposed (historic and future) modelling

time perspectives in Paper 2 (4.3). The same applies to LCA studies with different inventory

years. In contrast to the relative metric, the cumulative RF metric [W yr m-2] allows

comparisons among different scenario with different temporal boundaries or inventory years.

Unavoidable choice of a TH for comparison purposes: Throughout the case studies, the

commonly used 100-year TH was retained. This choice remains subjective, based on the IPCC

and UNFCCC choice. As discussed previously, the dynamic LCA approach likewise faces the

challenge of choosing an LCIA TH for comparison purposes. Yet, the LCIA TH in the

dynamic approach expresses the forcing effect between the year of the GHG release and a

chosen future reference year. It is thus more consistent with the actual atmospheric

contribution of GHG emissions concerning the temporal boundaries and chosen TH. It further

allows analysing the evolution of GHG contribution and the respective radiative forcing effect

over very long-term periods. For Cbio balances, reference years far into the future, featuring

several centuries are not recommended, as the Cbio flows converge to an equilibrium reaching

steady-state representations (i.e. carbon neutral). Thus, setting a LCIA TH, allows capturing

temporary Cbio sequestration and analysing the timeframes with higher negative forcing effects

or their time-sensitive effects on the results, which is not possible with the static approach.

Temporal cut-offs: Even though dynamic inventories of both biogenic and fossil sources of a

study may cover all potential emissions described through time, temporal cut-offs depend on

the chosen future reference year of the dynamic impact assessment, i.e. to the setting of the

LCIA TH. Therefore, the LCIA TH may be set over an additional number of years into the

future accounting from the last emission release. Throughout all case studies, it was identified

that all long-term inventoried Cbio release flows exclusively related with decay have a long

persistency in the technosphere until approaching net zero.

6.3.2 Sources of uncertainty and limitations

Uncertainty from input data and data availability

Modelling dynamic Cbio flows has been challenging due to additional data requirements per vegetation

species, often not readily available. Due to lacking forest yield data for some forest tree species, data

from other geographical locations in Europe were used as a proxy, at least also corresponding to

temperate climatic conditions.

Modelling non-linear biomass growth (forest tree, perennial grasses or oil palm growth) was based on

secondary data and allometric relations with parametrised values, which may increase the uncertainty

in the results. The growth of miscanthus and switchgrass rhizomes was approximated with linear

correlations between age and biomass growth, as justified by Rehbein et al. (2015) and a meta-analysis
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by Agostini et al. (2015); however it may represent a bias in the time-dependent Cbio sequestration

results.

Moreover, the CH4 ratio from biomass sources, for instance from above- and belowground anaerobic

conditions of biomass decay, peat land, POME, etc., was not easily available due to the scarcity of

studies on this source of GHG emission.

Uncertainty from spatial dynamic – Site-generic, site-dependent and site-specific data

This dissertation focused on the temporal dynamic of biotic resources to reduce the uncertainties

linked with linear models and C-neutrality. Yet, biomass yield and land management practices can

vary, depending on spatial dynamic, such as pedoclimatic conditions. LCA studies often use site-

generic averaged data (e.g. from national statistics) or proxy approximations to represent potential

environmental impacts, evoking uncertainty and eventually introducing bias in the results.

The Cbio and SOC model parameters of this work used site-dependent data, revealing a close

relationship between the temporal and spatial dimensions for modelling biomass systems. Local

conditions, i.e. site-specific variables, do play an essential role in modelling forestry and agricultural

systems (i.e. products with a function per unit of area). However, the level of detail in site-specific

surveys for estimating Cbio dynamics was beyond the scope of this work.

The forestry modelling data (Appendix D: Data paper on forest models) relied on empirical data from

long-term field studies, tabulated in yield tables and national forest inventories, to predict the mean

tree growth dynamic and carbon fixation. The forest model itself proved to be robust enough regarding

growth parameters (see sensitivity analysis in Paper 1, section 4.2) and flexible due to its applicability

to any technical flows or sectors. However, the model did not consider unexpected events and losses

(e.g. disease, wildfire, drought, mortality). Statistical estimates on tree mortality in France were

indirectly considered in technical outputs from the partial equilibrium model, yet at larger spatial

scales (i.e. averaged to the national level). Moreover, Pretzsch et al. (2014) demonstrated substantial

changes from growth and yield rate accelerations of standing stocks within Central Europe due to

climate change, which depends on the geographical locale.

The SOC modelling data in this work (section 5.2) relied on site-dependent, but not site-generic data,

because the parameters of pedoclimatic conditions, involving soil temperature and texture were based

on averaged values for continental France. Moreover, residue management practices were estimated

from national statistics. However, SOC modelling reveals site-specific complex processes and sub-

processes affecting soil quality and quantity (e.g. erosion, texture, humidity, C/N relation, living

organisms, and nutrient leaching). Paper 3 (5.2) demonstrated the sensitivity of the decomposition rate

constant (k) to changes in temperature. Process-oriented soil models commonly use short-termed time
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steps (hour or day) to capture the temporal variability of parameters. Yet, time steps lower than 1 year

are not relevant for impact assessments at global scale (e.g. climate change).

More complex or multi-compartment models would further improve site-specific simulation

approaches. LCA practitioners can refine the Cbio model parameterisation if needed in their particular

cases.

Uncertainty from system boundary definition

Defining the system boundary can represent a source of uncertainty, as it will determine whether all

upstream and downstream Cbio and SOC flows are taken into account. The framework example in

section 3.4 showed a full lifetime accounting approach of a biomaterial (lumber and coproduction)

from cradle-to-grave, modelling upstream sequestration flows, emission delays during the use phase as

well as the release flows and potential permanent Cbio stock in the EOL phase.

Moreover, the mitigation effect from C-complete results differed considerably when the dynamic Cbio

balance accounts for all transport fuels (i.e. fossil and biogenic-sourced) or for a specific product

system (e.g. bioethanol). In Paper 1 (4.2) the wood-to-bioethanol pathway from the PEM simulations

resulted in negative climate effects over 400% larger than C-neutral results (over a LCIA TH of 100

years). On the other hand, when accounting for all biomass-to-fuel pathways, the mitigation effect

from wood-related Cbio sequestration resulted in about 3%. The considerable difference for bioethanol

was explained by the relative low contribution of the fossil-sourced GHG emissions (5.4%) to the net

emissions of bioethanol and the modelled historic long sequestration period.

Nonetheless, increasing the number of sub-processes thus leads to a natural increase in process, data

and modelling uncertainty. The goal and scope of the study will define whether a high level of detail

in the modelling is required, depending on the system boundary set.

Modelling limitations concerning other methods

An essential limitation concerns the goal and scope definition of this research taking into account the

temporal consideration of Cbio flows and the time-sensitive climate change effects under the dynamic

LCA method and not further exploring other existing biogenic-sorced methods involving climate

forcers (e.g. mean global surface temperature change, surface albedo effects) and their temporal

considerations/interpretation in dynamic modelling. Details on such issue are provided in directions

for further research in section 7.2.1.

6.4 Identified limitations from the GWPBio due to dynamic carbon modelling

The proposed framework (Chapter 3) is based on the dynamic LCA approach for temporal

consideration of emission profiles developed by Levasseur et al. (2010a, b). It is the only method used
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in this work because it features both the timing of an emission occurrence by means of temporal

differentiated emission profiles (i.e. annually differentiated GHG emission inventories) and time-

dependent CFs with flexible time horizons (TH). It thus enables assessing dynamic Cbio inventories in

a consistent manner with the respective to the temporal boundaries of the studied systems.

The alternative GWPBio metric, developed by Cherubini et al. (2011a), challenges the assumption that

carbon-neutral is equivalent to climate-neutrality, as it demonstrates that CO2 releases from biogenic

sources have an impact on the overall atmospheric concentration (Guest et al., 2012). The approach

feature dynamic modelling of aboveground biomass and the impact factors directly applicable in LCA

bioenergy studies, yet the method faces the following dynamic modelling limitations:

GWPBio factors are applicable to bioenergy systems only, disregarding other Cbio pathways or

EOL options (e.g. decay), including SOC dynamic or delays (e.g. extended service life of

biomaterials).

The biogenic CO2 emissions are neutralised when the biomass is regrown, and when no

regrowth occurs the emissions equal anthropogenic fossil ones (Brandão and Levasseur, 2010;

Guest et al., 2012).

The modelling approach for biomass growth uses a dynamic approximation by fitting a normal

curve, which is not an accurate approximation for dynamic Cbio sequestration of biotic

resources, as explained in section 2.6.1. The same normal curve is applied to any biomass type

differentiated by a rotation length to represent the biomass growth curve, limited to 100 years,

and thus ignoring longer sequestration periods. As demonstrated with the forest and perennial

species in this work, dynamic growth is specific to each species and the rotation length may go

beyond 100 years.

The general biomass-to-bioenergy model pictures future time perspectives only, i.e. harvest

activities are modelled before biomass growth, consequently implying a carbon debt. This

modelling approach is applied to all biomass types, from sustainably managed systems.

Timing possibilities of the harvest activates after the growth are not further discussed. This

missing consideration has been criticised by Cornillier and Benoist (2015) and Benoist and

Bessou (2018). Furthermore, Paper 2 (4.3) discussed the option of modelling historic time

perspectives for managed forestry systems.

The LCIA THs are fixed to 20, 100 and 500 years, like for the static GWP metric approach,

featuring the same inconsistency between the different emission years and the impact

representation. The method thus does fully address dynamic LCA.

It does not provide the option of comparing the bioenergy system with a respective reference

system, such as highlighted in Paper 2 (4.3) with the “no use” scenarios, denoting forest wood
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residues left on the forest floor to decay. This has further implications on the consideration of

other non-CO2 emissions.

6.5 Chapter conclusion

The modelling choices and exclusions made in this work have been discussed and supported, thus

paving the way for overall conclusions and offering directions for further research aiming at

complementing the proposed modelling framework, and reducing its associated uncertainty.
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7 Conclusions and directions for further research

7.1 Overall conclusion

7.1.1 Conclusions on the proposed modelling framework

This dissertation aimed at answering two key questions: i) how to model time-sensitive climate change

effects from disaggregated positive and negative biogenic-sourced carbon flows (i.e. quantify temporal

carbon profiles) from managed forestry and agricultural systems, and ii) how to apply/operationalise

such modelling approaches within the dynamic LCA framework to further contribute to the dynamic

LCA methodology development for biomass systems and reconsider or re-evaluate carbon neutrality

and climate mitigation approaches.

It was found that many existing methods often use top-down approaches to account for carbon stocks

functional unit. This work, in contrast, used a bottom-up approach to quantify the Cbio flows associated

with any technical flow (i.e. amount of biomass consumed to fulfil a function), as well as its coupling

with outputs of any demand model, here tested with the TIMES-MIRET partial equilibrium model.

Such model integration enables, for instance, the prospective evaluation of emerging biofuel demand

under consideration of the economic equilibrium theory. Both approaches lead to the assessment of a

functional unit within the LCA methodology, yet the proposed approach facilitates the dynamic

modelling of these flows, directly applicable with the help of an operational tool.

The overall application of Cbio modelling within the dynamic LCA framework was elaborated in

Chapter 3. The proposed framework allows implementing a full lifetime carbon accounting approach,

as the sequestered and/or stored carbon is (re-)emitted back to the atmosphere, either instantaneously

or gradually, thus taking into account all Cbio flows throughout the life cycle. Accounting carbon from

biotic resources requires inventorying both negative and positive emissions, to avoid misleading

decision support. By describing all carbon flows throughout the life cycle of a product or service, it

will be transparent when carbon is (re-)emitted and (re-) sequestered along the timeline, as well as how

much Cbio and how long it is stored in the technosphere contributing eventually to climate change

mitigation.

As highlighted in the proposed framework, the temporal profiles of disaggregated C-complete flows

per species and functional unit rely on three main dynamic elements by means of which the temporal

variability is described: i) biomass growth and SOC sequestration modelling of forest tree and

perennial species, ii) temporary carbon stock accounting during transformation and use phase of long-

lived bioproducts, and iii) EOL modelling. Temporary carbon storage during the transformation and
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use phase is determined by the type of bioproduct itself, without requiring any additional modelling

step. It defines whether the carbon releases to the atmosphere are instantaneous (e.g. bioenergy

systems) or further delayed/postponed into the future (e.g. embedded carbon in long-lived biomaterials

in buildings).

The dynamic modelling requirements are thus particularly associated with upstream and downstream

phases/systems specific to each type of biomass species (e.g. forest tree, annual crops, perennial

grasses, etc.), mainly with biomass production (upstream), involving several dynamic elements

regarding: plant growth, yield assumptions, land use requirements and land use management or

changes in land management (including residue removal rates), whose dynamics cannot be modelled

in a generalised manner, but case-specific.

The forest-sourced biomass dynamic assessed in Chapter 4, is associated with variable long rotation

lengths, with some species (i.e. forest trees) featuring growth cycles over one century. The dynamic

growth and Cbio sequestration models in this dissertation are applied to harvested round wood and

residues, under the simplified assumption that growth and sequestration curves are the same for all tree

fractions (above- and belowground). The model can further be improved by modelling the growth and

thus carbon sequestration dynamic individually for each tree fraction.

Describing the time dimension in the GHG inventory of forest biomass is necessary to overcome the

(inherently erroneous) carbon neutrality assumption, given large time gap between the Cbio

sequestration and the release. Statistical computation fitting parameters with nonlinear regression and

allometric relations to predict the temporal dynamic of mean forest tree growth/development (i.e.

dependency of growth in age-and size) and the accumulation of Cbio in the biomass is an increasingly

used and accepted approach in forest ecology and growth analysis. The statistical progress and

maturity in growth analysis better captures the temporal dynamic than, for instance, normal,

(log)linear or polynomial models. The positive Cbio return from wood decay likewise requires a long

period, particularly for the belowground root fraction.

As suggested in this dissertation, energy crops or annual species do not require growth modelling

when they are harvested within a one year period. The Cbio embedded in the biomass does not have a

particular time dynamic. However, including SOC flows in GHG inventories is an essential dynamic

component, because it takes into account the gradual release flows from the biomass fractions

(referring to above- and belowground residual plant parts) that are usually ignored. The particular case

of perennial oil palm showed that almost all the biomass contributes to SOC, as nearly all plant

fractions are systematically returned to the soil (see section 5.3).

An essential consideration in the context of SOC modelling of biogenic sources, are the increasing

removal rates of wood residues for bioenergy, which reduce the Cadded to the soil, thus affecting the
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SOC dynamic, representing a different EOL dynamic than in absence of bioenergy (i.e. instantaneous

release with no delay due to combustion or incineration).

By modelling the Cbio release and EOL pathways, the net Cbio balance will reach a net zero value at

some point in time, as long as there is no permanent storage involved in the studied system. While the

sequestration reduces C in the atmosphere, each carbon release contributes to increases in the

atmospheric concentration thus to radiative forcing. The atmosphere does not distinguish between

fossil or biogenic sourced emissions. The forcing effects from releases may be worse when non-CO2

GHG are emitted, such as CH4, typically associated with biomass decay, as demonstrated in the

reference case with the no use/reference scenarios (i.e. in the absence of bioenergy pathways, see

sections 4.2 and 4.3).

Concluding on the proposed modelling framework, in response to an essential question of whether it is

worth the additional effort for dynamic Cbio modelling under the temporal consideration, depends

highly on the goal and scope of the system under study and the inherent dynamic. In the context of

LCA, aiming at representing the impacts of a functional unit of a system (i.e. product or service

scales), it is recommended to account for dynamic Cbio flows for the following reasons: accounting for

Cbio sequestration and SOC flows, reducing the uncertainty in climate change impact assessment of

biomass use, and providing better decision-support. On the other hand, studies at landscape, national

or even global levels, the goal and scope of the study is different, as the inventories are built on annual

carbon stocks and changes (e.g. land use change due to deforestation). Consequently, dynamic Cbio

modelling is less relevant because the sum of all carbon stocks of the same land use at larger scales

tend to equilibrium, even though the systems are dynamic under temporal considerations (i.e. different

age classes and harvesting periods).

7.1.2 Remarks on climate change and mitigation approaches

The question on whether biogenic-sourced products should be used to compensate for C fossil-sourced

ones remains open. Derivatives from renewable feedstock have lower energy density and efficiency,

which requires higher amounts of biomass to offset an energetically equivalent unit of C fossil. These

biomass-based products are associated with specific land use requirements, which increase with

increasing dedicated or residual feedstock demand. Current climate-energy policies promote an

augmentation of the biomass share of lignocellulosic residual biomass, due to competing land use

requirements for other demand (e.g. food).

However, each unit of Cbio emitted to the atmosphere contributes to radiative forcing and the re-

sequestration in the biomass can take up to several decades for forest trees. The consideration of this

time lag is crucial to draw conclusions on climate change mitigation efforts under short- or long-term

time preferences. Even if a historic modelling perspective is justifiable for Cbio sequestration in an
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attributional LCA context, and the biomass is allowed to regrow, emitting the sequestered or stored

carbon in the biomass or biomaterials contributes to the GHG mass, which may be questioned,

regarding the urgency of climate change mitigation (given eventually irreversible consequences such

as permafrost melt and ice-sheet melting).

The consideration of the time dimension in the evaluation of biomass-based products in this

dissertation highlights how dynamic modelling alters static results, particularly showing the

importance of biomass with long rotation cycles, the sensitive SOC effects on land use requirements,

and the consequences on the Earth climate system from increasing the removal rate of residual

biomass. A technically-decided balance between dedicated and residual biomass, to feed the biofuel

industry, should be the basis for decision-making (and EU policy) on that regard.

Climate mitigation should aim at keeping CO2 off the atmospheric pool, which goes beyond product

level evaluations in LCA. The question then arises on how to choose the best climate change

mitigation alternative. The response would intuitively be the preservation of carbon stocks, i.e. not

cutting down forest trees or other existing natural biotic resources, as any change affects the terrestrial

carbon stocks. There is no doubt that biomass with long rotation lengths, such as forests, are beneficial

for coping with the climate tipping points, as the carbon is retained in vegetation for longer periods. If

trees achieve maturity, the growth curve shows an asymptotic development, slowing to stopping CO2

fixation; however, the carbon will remain stored in the tree organs over decades.

Additional efforts, such as increasing terrestrial carbon stocks, particularly by forestry, may represent

the most important mitigation alternative in combination with technological innovation (e.g. carbon

capture and storage, efficiency gains). Offsetting mechanisms per unit of Cbio should consist of

restoring/replanting that unit of emitted Cbio in addition to the unit of Cbio used to substitute or displace

one unit of C fossil, for the sake of the urgent need for mitigation. It means that in the absence of

bioenergy or biomaterials, additional CO2 sequestration should be considered for C fossil

compensation. Artificially doubling the Cbio accounting benefit to increase the demand for residual

biomass, as currently incentivised in EU initiatives, is not an adequate option, as it may conflict with

SOC and land use dynamic.

7.2 Directions for further research

Modelling recommendations have been made for solving the issue of dynamic Cbio modelling of

biomass-based products, aiming at assessing the time-sensitive climate change effects. The purpose of

the dissertation has been achieved by evaluating and proposing dynamic peer-reviewed models

published in scientific journals, which contributed to further developing the dynamic LCA approach.

All dynamic Cbio inventories used in this dissertation were built with a proprietary tool developed for

IFPEN, implemented in Excel. However, the practical application requires further development of the
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Excel file to make it accessible to LCA practitioners. The construction of a user-friendly tool to enable

Cbio inventorying of biomass-based products would be relatively easy for a dedicated team, and such

an endeavour is thus a key recommendation from this work.

Further, it is recommended to incorporating missing elements into the dynamic LCA framework to

provide a “better” (i.e. more accurate and comprehensive) response to the question on whether

increasing the production of biomass or residues for biofuels and/or biomaterials (including

intermediate chemicals) contributes to reducing GHG emissions, and ultimately slowing down or

halting climate change. Some of elements concerning specific topics/research directions are listed and

detailed in the next sections.

7.2.1 Explore other impact methods for GHG and non-GHG climate forcers

The dissertation focused on the GWP metric and its dynamic interpretation by means of the time-

dependent CFs (i.e. dynamic radiative forcing concept), but further considerations are required

regarding the GTP metric, as applied by Shimako et al. (2016), and its dynamic interpretation as a

function of time in terms of dynamic negative and positive carbon emissions. The GTP assesses the

variations in global mean surface temperature for a specific chosen year, as an instantaneous metric;

however, current factors by the IPCC are available for fixed THs. The dynamic LCA framework for

the climate change impact category should include the dynamic GTP and an assessment tool for

dynamic inventories, thus complementing the temporal consideration of well-mixed GHGs further

down the cause-effect chain by means this second climate metric.

The primary orientation of this work was the modelling of dynamic carbon inventories and their time-

sensitive climate change effects associated with the radiative forcing concept. The applied dynamic

LCIA method with annual time steps refers to well-mixed GHG emissions only assessed via global

climate models. The proposed framework did, however, not further explore the time dynamic

implications of other non-GHG climate forcers, such as the near-term/short-lived climate forcers with

inter-annual time steps (e.g. ozone, biogenic volatile organic compounds) and biogeophysical climate

forcers associated with land use and land surface cover changes (e.g. surface albedo). Even though the

dynamic modelling and temporal consideration of such climate forcers may not directly be involved

with C flows, it is indirectly linked with biomass and land use. Therefore, further research is needed to

develop dynamic models (eventually also involving the hydrological cycle affecting the climate

system) and its implementation in dynamic LCA framework. As highlighted in the state of the art of

this dissertation, some LCA studies for bioenergy systems have addressed this issue. The dynamic

interpretation and operationalisation, however, needs to be investigated in the context of indirect

effects from biomass and land use under consideration of the spatial dimension.
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7.2.2 Combine spatio-temporal modelling approaches

Time and space dynamic are found to be essential variables when modelling biomass supply chains,

which require better understanding in the development and improvement of models, applicable within

the dynamic LCA framework. The land use/occupation factor involves site-dependent or site-specific

data (e.g. described in yield tables) and model parameters (e.g. temperature, soil texture, etc.).

For instance, crop yield is area dependent [t ha-1], which was considered constant every year in the Cbio

sequestration and SOC modelling of prospective studies. However, yield or productivity of biomass

may potentially vary over time, increasing due to improvements in land management practices, or

declining due to increased droughts (e.g. climate change related) or unexpected events (e.g. diseases,

wildfires, etc.), or even due to natural variability. The carbon benefit is thus directly affected by the

biomass production/yield per unit of area.

For future studies, it is recommended to include the spatialised component of carbon modelling

approaches, specifying the site-dependent or site-specific model parameters and data. Even though the

proposed models can be refined for specific case studies, more research is needed to better understand

how to simultaneously assess and implement the temporal and spatial dimensions of technical flows,

to further improve the dynamic LCA approach (recent advances on the integration of the spatial

differentiation in LCA are discussed in Patouillard et al. (2018)). It is an essential consideration for

impact categories beyond the climate forcers (including the aforementioned near-term and

biogeophysical climate forcers), such as biodiversity, water footprinting and ecotoxicity (e.g. Payen et

al. 2018; Viveros Santos et al. 2018; Vrasdonk et al. 2019).

7.2.3 Develop integrated multi-criteria modelling approaches

From a wider perspective, the coupling of LCA with demand models can be further improved across

temporal and spatial scales, for instance, by using flexible hybrid models of bottom-up and top-down

economic-wide effects, involving indicators from Input-Output tables, System Dynamics, and Agent-

Based models (as recently reviewed in Beaussier et al. (2019)).

Such modelling approaches could further be combined with consequential LCA. Consequential LCA

studies have included socio-economic indicators by expanding the system boundaries of the study and

relying on economic models (such as input-output tables and partial or general equilibrium models) to

model, for instance, the effects from emerging markets, product substitution and externalities.

With the growing political interest towards the development of bio-economies, taking into account the

consequences from (i)LUC of biomass supply chains remains an important research direction in LCA.

Direct and indirect LUC (iLUC), often related with the expansion of biomass production for

bioenergy, may also be further developed under temporal considerations of associated time-sensitive
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climate change consequences. For instance, it can be questioned how far into the past and/or into the

present are LUC drivers and effects traceable or predictable. Concerning biogenic flows, LUC might

be linked with negative emissions (e.g. afforestation of marginal or degraded lands), or, on the

contrary, severe damaging effects (e.g. deforestation of tropical rainforest) over time. Modelling iLUC

has been far more challenging: for over a decade this aspect has been discussed by the LCA

community, however, it lacks scientific consensus (e.g. Finkbeiner 2013; Muñoz et al. 2015; Schmidt

et al. 2015). In terms of mass flows and stocks (carbon input and output), a similar bottom-up

approach, as proposed in this work, could be used for (i)LUC, to assess the carbon dynamic from a

biomass demand and the time required to restore a pre-existing carbon stock compared to the time of

relaxation towards natural regeneration.

The purpose of such a multi-criteria model would represent the effects or consequences on the

environment in response to political constraints, with feedback loops. The results remain sensitive to a

number of indicators, assumptions and sub-processes made due to the rising modelling complexity,

leading to increasing uncertainty in the results. However from an LCA perspective it would provide a

holistic prospective evaluation of the environmental state by a given action, and on how policies can

better respond to it before defining targets and actions.

7.2.4 Support LCA guideline through dynamic approaches and results

Dynamic LCA may be regarded as an appropriate tool for defining guidelines for conventional/static

LCA. Given that dynamic modelling increases complexity and working-time (e.g. due to more data

requirements, identifying and testing adequate models, etc.), which may not be available or feasible

for many LCA practitioners (e.g. due to higher time and resource investments), dynamic LCA can at

least contribute to improve LCA guidelines, by pinpointing at key dynamic elements contributing to

impacts, which may not be obvious under a static approach.

In the context of Cbio, as highlighted in this dissertation, it is essential to account for the temporal

variability of both negative and positive flows; meaning that a simple carbon neutral assumption is not

appropriate for the following reasons: a) the time lag between release and biomass regrow, b) the delay

and (permanent) storage of carbon, and c) the land use requirements and SOC contributions. For some

systems unders study a temporal consideration may not be as relevant as for others. The results from

the dynamic assessment would thus feed the development of guidelines for biomass-systems with

more holistic understanding and provide the necessary information when temporal consideration is

pertinent.

7.2.5 Conduct multi-indicator dynamic soil (carbon) modelling

The SOC model in Chapter 5 represents an oversimplification of the actual dynamic mechanisms in

the soil. However, it complies with the objective of modelling the added C to the soil from biogenic
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sources and its gradual return/evolution to the atmosphere as a function of time; applicable to the LCA

framework. Yet, soil and soil carbon science reveal a higher level of complexity in upstream

modelling, involving various parameters and processes accross different soil layers, affecting soil

quality and quantity (e.g. erosion, texture, humidity, C/N ratio, living organisms, soil aggregates and

nutrients leaching), some of which are still not fully understood. Therefore, substantial research is

needed to further explore the dynamics of soil to define the relevant indicators to conduct appropriate

impact evaluations of SOC flows. Ongoing research in soil quality indicators, for instance, has failed

to date to produce a comprehensive and consensual soil quality indicators or indicator set.

7.2.6 Integrate land-use modelling in policy scenarios

The dynamic SOC model proposed in this dissertation partially responds to the current EU climate

change mitigation initiatives such as the “4 per 1000”, aiming at increasing carbon stocks in

agriculture and forestry soils. The perception of soil carbon and land use needs to be reconsidered and

further understood, because the more residues are removed per unit of area, for instance, for

lignocellulosic-based bioenergy, the higher the area requirements for Cbio sequestration and added C to

the soil, as concluded from the SOC modelling simulations (section 5.2). A minimum requirement of

SOC is necessary for soil functioning and yield achievements. That added C is provided from the

residual fractions of the crops and/or exogenous matter (i.e. organic fertilisers) proportional to the

biomass exports from the field.

It is thus recommended to include the proposed dynamic modelling approach in land use modelling

approaches, and not only in the context of land use change (which has been far more widely

researched). The coupling of carbon models with (prospective) bioenergy scenarios supports a more

holistic understanding of SOC and land use implications from future biomass use. The scenarios

would take into account different coefficients and variables concerning changes in land management

practices, involving not only residue removal rates, but also the use of organic fertilisers, divers

farming activities influencing soil properties and function, etc. The land use bound scenarios can be

further contracted with conventional practices for comparison reasons.

7.2.7 Other considerations

Other considerations include indirect effects (i.e. externalities) induced by biomass expansion, forgone

sequestration in the absence of harvest activity of forest trees at maturity, allocation of secondary

biomass-sourced products, climate effects from increasing demand of long-lived products, and the

reintegration of secondary or tertiary biomass-sourced materials (loop-closing effects).

Moreover, complementing dynamic approaches with uncertainty analysis would provide more robust

assessment and better decision-support. Dynamic modelling particularly integrated with other models

(e.g. partial-equilibrium) increase the uncertainty due to a higher number of parameters used



Chapter 7: Conclusions and directions for further research

270 PhD dissertation, 2019

(background concentration, mean temperature, carbon content, growth rate, etc.) and assumptions

made (e.g. time preferences, yields, demand, etc.). The results are thus sensitive with increasing

model complexity. The performed case studies in this dissertation included sensitivity analysis

concerning some model parameters and assumptions. However, the robustness of the proposed models

requires analysing the results with a larger database to identify the data margins and gaps.
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Abstract

Purpose In life cycle assessment (LCA), temporal considerations for modelling resource extractions,

usage and emissions are usually lost during the life cycle inventory calculation, resulting in a

“snapshot in time” of the potential impacts. However, disregarding temporal considerations has

previously been underlined as an important source of uncertainty. A growing number of approaches

and tools are recently developed, but their adoption and implementation by LCA practitioners are still

uncommon, which raises concerns about the representativeness of current LCA results. Furthermore, it

appears that a wide range of terms related to temporal considerations is used sometimes with different

meanings for the same term. The purpose of this review is thus to present key terms, find a common

ground, identify implementation challenges and propose development pathways.

Methods To build a common understanding of key concepts and to facilitate non-ambiguous

discussions, this paper introduces a glossary of the most frequently used terms related to temporal

considerations in LCA. We perform a review of the level of integration of temporal considerations in

different LCA phases (goal and scope definition, life cycle inventory analysis and life cycle impact

assessment), analysing each temporal consideration with respect to relevant conceptual developments

in LCA and its level of operationalization.

Results and discussion The presented development pathways derive from our review for the

identified issues. We propose three key focal areas for integrating temporal considerations within the

LCA framework: i) define the temporal scope over which temporal distributions of emissions are

occurring, ii) use calendar-specific information to model systems and associated impacts, and iii)

select the appropriate level of temporal resolution to describe the variations of flows and

characterisation factors.

Conclusions Addressing more temporal considerations within a dynamic LCA (DLCA) framework is

expected to reduce uncertainties and increase the representativeness of results, but possible trade-offs

between additional data collection efforts and the increased value in the representation of the results

should be kept in mind.

Keywords: dynamic LCA, temporal considerations, review, recommendations
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(mainly for the energy and building sectors) may have significant effects on LCA results [18-23]. It

seems important to identify the current implementation challenges that prevent LCA practitioners in

all sectors of the economy from more frequent temporal considerations. To our knowledge, only one

recent work proposes a global overview of the temporal aspects that could arise in LCA (Sohn et al.,

2019). In their work, three types of dynamisms are assessed: dynamic process inventory, dynamic

systems inventory and dynamic characterization. We choose a different perspective on dynamic

classification, and also suggest practical development pathways in DLCA. Consequently we are

convinced that both papers bring added value on temporal consideration in LCA.

The aim of this review is therefore to: i) present an overview of key terms related to temporal

considerations in LCA, ii) find a common ground between the existing DLCA approaches, iii) identify

the current implementation challenges in LCA studies, and iv) propose development pathways for the

goal and scope definition, representativeness of the results, and consideration of system dynamics. The

structure of the review follows the general phases of the LCA framework [1, 2].

2 Proposed Glossary

Table 1: proposes key term and definitions to discuss temporal considerations within the LCA

framework. These terms are used throughout this review to ensure a consistent and non-ambiguous

discussion for future developments. It is also the authors’ hope that this glossary might bring some

consistency in future discussions. Words in brackets are synonyms from the literature. Definitions

have also been recently proposed for DLCA and four sub-types (Sohn et al., 2019). Most of the

proposed terms below are new, and when not are aligned with these definitions.
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Table 1: List of proposed terms defining key temporal considerations in the LCA framework. Links between

terms are highlighted with italic font.

Term Definition

Dynamic LCA

(DLCA)

LCA studies where relevant dynamic of systems or temporal differentiation of flows

are explicitly defined and considered.

Dynamic LCI

(DLCI)

Life cycle inventory that is calculated from supply and value chains where dynamic

of systems or temporal differentiation are considered, resulting in temporal

distributions to describe elementary flows.

Dynamic LCIA

(DLCIA)

Characterisation models of environmental mechanisms that take the time dimension

into account and are therefore able to use temporal information of DLCIs. The

temporal differentiation (e.g. day, season, and year) depends on the impact

categories. Both case specific and calendar-based characterisations can be used,

depending on the chosen indicators.

Dynamic of systems
System modelling that considers inherent variations, periods of occurrence or

evolutions within the temporal scope of models’ components.

Evolution
Changes of process, structure or state models’ components (e.g. technology

replacement, pollutant concentration in a compartment of the environment).

Inherent variations
Variations of flows in the models’ components (e.g. cycles of solar energy

production). The discontinuities of flow rates are also part of such changes.

Models’ components

Information structuring all models. At the technosphere level, components are

elementary flows, product flows and processes. At the ecosphere level, components

of LCIA models differ between impact categories. For example, components for

freshwater ecotoxicity can be environmental fate, ecosystem exposure and

ecotoxicological effects [24].

Period of occurrence
The moment when a model’s component is starting, modified or finishing over time

(e.g. lifespan of a building, beginning of waste management, start of a life cycle).

Period-specific

characterisation factor

(CF)

CF for a given temporal scope or period of occurrence. It results from the dynamic

of systems in the ecosphere and can be calendar-specific, relative to the length of

the temporal scope, or defined by a TH.

Period of validity

The period over which datasets, LCIs or LCIA methods are considered valid

representations. This information should be calendar-based. [Time context (ILCD),

time frame, range of time, period of time, time period, timespan, temporal

boundary, time scale and time horizon]

Prospective modelling

A prospective LCA addresses future life-cycle impacts using different modelling

strategies (e.g. scenario-based, technology development curves and agent- or

activity-based models). The evolution of systems is thus defined and/or simulated

using a list of explicit assumptions regarding the future. Prospective modelling can

be applied to both the technosphere and ecosphere and is a subset of the dynamic of

systems, which only concerns predictions for the future.
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Temporal considerations

Any aspects (i.e. information) described in relation to the time dimension or

dynamic of systems in the LCA framework. This is the overarching term relating to

all other terms of the glossary. [Time-aspect in ILCD documents]

Temporal scope
Defines any type of period, which is covered by a LCA study (e.g. temporal

considerations along a life cycle, service life of a product, data collection date).

Temporal differentiation

The action of distributing the information on a time scale related to the models’

components. For example, elementary flows could be described per day, month or

year. Different processes representing yearly average are another example.

[Temporal segmentation in ILCD]

Temporal resolution

Describes the time granulometry when temporal differentiation is carried out. For

instance, a monthly or daily resolution can be used to describe the flows in

technosphere models. The same term can also be used to describe the time step for

period-specific characterisation factors (CFs). [Time step]

Temporal

representativeness

Qualitative or quantitative assessment of data, processes or LCIA methods in

relation to how appropriate their information fits with their temporal scope. [Time-

related representativeness (ILCD), Time-related coverage (ISO14044)]

Temporalisation
Attribution of temporal properties to the models’ components.

(e.g. definition of temporal scopes)

Time horizon (TH)
Relative temporal scope over which environmental impacts are cumulated to

provide LCA results.

3 Temporal considerations in different LCA phases

Many temporal considerations have been described in previous publications, reports and standards to

develop the general LCA framework [1, 2, 25] and its dynamic counterpart. An interesting analysis of

DLCA studies is done in the supplementary information of Sohn et al, (2019). They classify the

reviewed publications by their technological domains and by their types of assessed dynamisms

(dynamic process inventory, dynamic systems inventory and dynamic characterization). In this paper,

the level of relevance, conceptual development and operationalization are qualitatively assessed with

scores ranging from A (highest) to C (lowest) (detailed in table 2) to evaluate the state-of-the-art

shown in table 3. The given overview organises the temporal considerations by the main purposes and

the LCA phases. A more detailed description, including examples, is provided in the following

subsections to clarify the qualitative appraisal of table 3. Possible temporal feedback between the LCI

and LCIA are not assessed, although they may influence LCA results [26]. The interpretation phase is

excluded because specific temporal considerations have not been identified.
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Table 2. Definitions of different scores for the qualitative assessment of temporal considerations in LCA

Ranking categories A B C

Relevance
Demonstrated at least in
some LCA studies

Expected by authors of
this article

Unknown

Conceptual development
A standard method
accepted by the LCA
community

At least one method for
consideration has been
proposed

Theory or concepts have
been explained

Operationalisation
Available in the data of
most LCA studies when
relevant

Some examples have
been published

Not found in the
literature

3.1 Phase of goal and scope definition

In the goal and scope definition, temporal considerations can be introduced by the modelling

assumptions, data quality requirements (DQRs) and model limitations. They mostly offer insights on

the temporal scope in which LCA studies are representative and useful. This temporal scope also

provides an indication of when dynamic of systems should be considered.

3.1.1 Modelling assumptions

Definition of lifetime

The lifetime of systems or products [7, 9, 27-32] is probably the most common temporal consideration

in LCA studies, which frames the use phase of the life cycle. This temporal scope, which is relative to

the overall life cycle, has often been used to ensure a fairer comparison [25, 33]. However, more

comprehensive temporal information on the full life cycle, which is not mandatory in international

LCA standards [1, 2], would be necessary to explicitly frame the full temporal scope over which

elementary flows and impacts might occur. For example, a house can be used for a lifetime of 50 years

[34], but this temporal scope does not include the phase of forest growth, providing wood for the

fabrication of the building’s components [35, 36].

Temporal aspects considered in functional units

Some practitioners have suggested that the temporal scope should always be provided with the

definition of questions [5, 37, 38] and functional units (FUs) [39, 40]. The concept of dynamic FUs

has been proposed [41] which could consider the evolution of products and would explicitly define the

period of validity for a LCA study when the behaviour of consumers and markets have changed. For

example, the rapid evolution of technologies for mobile phones has changed their functionalities and

demand, which then has modified their global production volumes.
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Table 3: List of key temporal considerations in the life cycle assessment framework. Rankings for relevance,

conceptual development and operationalization are provided for each type of consideration on a scale from A to

C (explanation in Table 2). Horizontal arrows show time considerations that have more than one purpose. The

numbers for rows are text’s subsections.

Section in present study Temporal
considerations

Purposes of the temporal considerations

Defining the
temporal
scope

Increasing the temporal
representativeness

Considering the
dynamics of
systems

3.1 Phase of goal and scope definition [relevance/conceptual development/operationalisation]

3.1.1 Modelling
assumptions

Lifetime definition [A/A/A]

Dynamic FU [A/B/B]

3.1.2 Data quality
requirements (DQR)

Age of data [A/A/B]
Technology level [A/B/B]

Sources of data [A/C/A]
Uncertainty
definition

[A/B/B]

3.1.3 Limitations

Life cycle phases [A/A/A]
Short- vs Long-
term

[A/C/B]

Life cycle
inventories

[A/B/B]

3.1.4 Return of
investment indicators
(ROI)

Payback time [B/B/B]

Discounting [C/B/C]

3.2 Phase of life cycle inventory: System modelling [relevance/conceptual development/operationalisation

3.2.1 Dynamic of
systems

Evolution [A/B/B]

Inherent variations [A/B/B]
Temporal
resolution

[B/B/B]

3.2.2 Prospective
modelling

Historical trends [A/B/B]
Simulation
approaches

[B/B/B]

Use of scenarios [A/B/B]

3.3 Phase of life cycle inventory: LCI computation [relevance/conceptual development/operationalisation]

3.3.1 Framework
Matrix-based [A/B/B]

Graph traversal [A/B/B]

3.3.2 Approach and
Tool

DyPLCA [A/B/B]
Temporalis [A/B/B]

3.4 Phase of life cycle impact assessment phase [relevance/conceptual development/operationalisation]

3.4.1. Modelling
choices

Time Horizons [A/A/A]
Period of validity [B/B/B]

3.4.2 Variations of
substances in the
environment

Elementary
concentration

[B/B/C]

Non-linear
mechanisms

[B/B/C]

Specific resolution [B/C/C]
3.4.3 Prospective
modelling

Evolution
scenarios

[B/B/B]
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3.4.4 Computational
framework

Period-specific
CFs

[B/B/B]

Characterisation
functions

[C/C/C]

3.1.2 Data quality requirements (DQR)

Age of data

Temporal representativeness of data and datasets, which should be defined in the DQR [1, 25],

informs on the age of data and minimum length of time for data collection. Potential temporal

discrepancies between used datasets and the targeted temporal scope of a modelled system can thus be

partially evaluated with this metadata. Such information also provides some insights on the temporal

scope within a system model when it represents human activities [9, 42]. For example, the description

of solar energy installations from the 1990s would probably be relevant for LCA of solar energy

before 2000, but this period of validity requires expert opinion, thus limiting the usefulness of this

metadata.

Technology coverage

In some cases, the definition of technology coverage in the DQR of data and datasets can inform on

the actual temporal scope of the study [1, 2, 25] with the ensuing qualitative assessment of temporal

representativeness. For example, ecoinvent [43] uses five levels of technology (new, modern, current,

and out-dated) to describe transforming activities. Using datasets with new or modern technology

levels should therefore be relevant for LCA studies on future products. However, this information is

relative to each sector, as the modern level could be representative for 10 years of technology

evolution in an established sector, whereas fast-paced sectors like electronics could use modern

technologies for only 1 year before switching to new options.

Sources of data

The choice of data sources and the qualitative assessment of their overall representativeness provide

an indirect assessment of the temporal scope for modelled systems and LCA studies. For example,

when data are sourced from scientific journals, date of publication is the primary indication for its

period of validity. Temporal information that is more precise is also often provided in case studies of

systems with longer lifetimes or for DLCA studies [4-9, 18, 19, 27, 30, 32, 38, 44-56]. The use of up-

to-date LCA databases can bring a false sense of security on the temporal scope and representativeness

of the data for recent products or systems. Indeed, database updates do not always follow the changes

in market shares or evolution of technology because of the lack of new data. Nevertheless, different

temporal metadata are given for most datasets. For instance, ecoinvent guidelines [43] require the

definition of the date of generation, the date of review and the period of validity with a start date and

end date for any dataset. These temporal considerations fulfil most of the requirements of ISO 14044

[1] except for the definition of the averaging period of dataset inputs. The ILCD handbook has set
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further requirements defining temporal properties: the expiring year of datasets and the duration of the

lifecycle, which respectively relates to the period of validity for LCI datasets and the temporal scope

of elementary flows for a dataset. These metadata are available in most datasets of the ELCD [57].

Many of these temporal metadata are more relevant to assess the temporal scopes of studies than the

choice of a database and its version, but the place (e.g. in dataset descriptions) and the different

definition under which they can be found prevent their use in most LCA studies.

Uncertainty definition

The description of the uncertainty associated with flows (e.g. in ecoinvent [43]) is another indirect

source of information to clarify the temporal scope and period of validity. Indeed, the temporal

correlation indicator provides a quantitative assessment of the discrepancy between the time when the

data was acquired and the intended temporal scope for the dataset [58]. For example, a product flow

with a temporal correlation indicator of 3 means that its value has been gathered between 6 and 9 years

before or after the targeted temporal scope of the dataset. With the current definition of the temporal

correlation indicator, the precision of this temporal information is rather low (i.e. >3-year period) and

is largely missing in LCA databases and studies, limiting its applicability.

3.1.3 Model limitations

The definition of limitations in the stage of goal and scope definition is probably the step where

temporal scopes are defined with higher precision and clarity in LCA studies, even more so in recent

DLCA studies. While this is useful, typical LCA reports mainly offer qualitative definitions, which are

not sufficiently transparent to describe the considered period in assessed life cycles.

Considered phases of the life cycle

LCA studies can limit the temporal scope of their systems and LCIs by considering only a part of the

life cycle. Setting the end-of-life outside the boundaries is an example of such a limited temporal

scope. The ISO 14044 [1] allows this limitation, but only if they do not significantly change the

overall conclusions of a study because such phases are not linked to significant impacts. Most of the

LCA reports clearly state the ignored life cycle phases, but it only provides an imprecise description

for the limitation of the temporal scope. The specification of the considered phases of a life cycle will

neither explicitly state the temporal scope in which elementary flows are considered (e.g. 2 years) nor

a calendar-based period of occurrence (e.g. from January 2019 to December 2020).

Short- vs long-term analysis

Several publications [4, 5, 8, 19, 32, 53, 54, 59-63] describe temporal scopes with adjectives such as

short-, medium- or long-term. These qualitative and relative attributes can inform about the considered

periods for the modelled system or impacts, but are still vague. This lack of a precise temporal

definition for short-, medium- and long-term can be partly explained by the differences in time scales
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of life cycles and environmental impacts for different systems, but it also provides evidence that no

consensus has been reached on the definition of relevant temporal scopes.

Temporal description of life cycle inventories

More specific and precise descriptions of temporal scopes for LCI have been provided in recent

scientific publications that focus on some temporal considerations (i.e. DLCA). For example, relative

temporal scopes have been used to define the periods of LCIs for many studies on different products

[10, 16, 19, 48-51, 64, 65] with descriptions like “a 100-year period” because of its link with the

typical CFs for the assessment of global warming potential (GWP). In these cases, the LCIs are

enclosed within a quantified period of time that can be relevant for some impact categories, but they

lack any reference to a calendar year or period. Other DLCA [17, 18, 23, 32, 38, 44, 45, 55, 56, 66-68]

provide calendar-based temporal scopes for LCI but discussions on the potential usefulness of this

contextual information could be enriched.

3.1.4 Indicators for return on investment (ROI)

Two main ROI indicators provide specific types of temporal scopes: the payback time (used mainly to

analyse renewable energies) and the discounting rates (used for impact assessment).

Payback time

The basic idea of a payback time, in the LCA framework, is to calculate the necessary period during

the use phase to compensate for the “cradle-to-gate” impacts of any system. It has mainly been used to

analyse renewable energy options [69-74] to evaluate the time it takes to produce the amount of

electricity that compensates the production energy for the infrastructure. Results from this indicator

are always expressed in months or years. They could thus provide another type of temporal scope to

analyse some products, services or systems in the future.

Discounting

This concept was discussed to value time in LCIA [75, 76] and to deal with the uncertainties

associated to time preferences and future emissions. The setting of finite THs is an implicit form of

discounting long-term impacts, using a zero discount rate; setting infinite THs is the opposite.

Discounting offers a trade-off between giving a higher value to present or future impacts.

3.2 Phase of life cycle inventory: System modelling

In the system-modelling step of the LCI phase, temporal considerations are found in the descriptions

of the system inherent variations and evolutions. These considerations define the dynamics of systems

and can improve the temporal representativeness of models for technosphere activities (i.e. network of

processes). Although the considered system evolutions and inherent variations in both the foreground

and the background data are still not a common practice, its importance has long been acknowledged
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in ISO 14040 [2], stating that “all significant system variations in time should be considered to get

representative results”.

3.2.1 Dynamics of systems

The periods of occurrence, inherent variations and evolutions are key temporal considerations in LCA

models. Strategies considering these changes have been proposed by different authors, mainly in the

energy [20], transport [77], agricultural [78] and waste management [79] sectors. For example, the

energy share of electricity production in a country varies throughout days, weeks, months and seasons

[80, 81]. LCA case studies have shown that the inherent temporal variations of production can have

significant effects on results, mainly when consumption of these products is not constant over time.

Modelling evolutions with process differentiation

The basic strategy to describe such inherent variations is to differentiate processes when a system is

considered to change substantially over time. The key challenge here is to identifying when changes

are significant enough without expert opinion on the modelled product. A simple application can be

performed, if calendar-based periods of validity are consistently provided for all datasets in LCA

databases; they could then be changed automatically when they are no longer valid representations

over the full life cycle of any system. Such metadata is, however, required only in the (discontinued)

ELCD database (see subsection 3.1.2) and, currently cannot be easily integrated in LCA software.

Collet et al. [82] proposed an approach to tackle this problem and identify where temporal

differentiation of processes during system modelling is needed. Their general idea is to recognise

when the combined emission and impact dynamics justify the additional effort for temporal

differentiation. Moreover, the selective introduction of the time dimension in background processes

has been studied by Pinsonnault et al. [64] and more recently by Pigné et al. [76]. The authors have

shown that the temporal variations of, respectively a selection of background processes and the entire

ecoinvent database, can significantly affect the climate change impact of processes in some sectors

(e.g. transport and building).

Modelling inherent variations with flow differentiation

Inherent variations can be modelled with temporal differentiation of elementary flows. For example,

electricity consumption in buildings varies between hours, days, weeks and seasons [17, 18, 21, 44,

45, 80]. The modelling approach converts the amounts of flows into temporal distributions, thus

supplementing temporal properties to the core data of the model components in the LCA framework.

The dynamics of flows have recently been used in DLCA studies to describe the electricity use of

specific buildings [18, 45, 80], while reducing the need to define new foreground processes for each

time step. The applicability in other LCA studies is limited because the temporal information is valid

only within the temporal scope of a given case study. Conceptually, a way to address these issues is by

defining a “time 0” in the temporal distribution as a period of occurrence relating to a starting period
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of a process [67, 83]. This “time mark” creates process-relative descriptions, which can be reused in

any period of a life cycle or even for different life cycles. Tiruta-Barna et al. [67, 76] provided

process-relative temporal distribution archetypes for ecoinvent v3.2, applicable to foreground and

background datasets. As underlined by Beloin et al. [83], the additional efforts needed to provide

temporal information for all the flows of LCA databases are still significant and the prioritisation of

data-gathering remains important.

Temporal resolution

The level of temporal resolution to models the dynamics of systems depends on the sector and the

modelling approach. For instance, hourly resolutions have been chosen for electricity production and

consumption [20] or the transportation sector [77]. For assessing long-term emissions, for instance

from waste treatment, a temporal resolution of centuries is more appropriate [79]. Some authors have

proposed a temporal differentiation based on archetypes. For example, archetypal weather days [84]

have been developed to contrast the relative importance of episodic wet weather versus continuous

dry-weather loads. So far, studies about the consequences for choosing different temporal resolutions

to describe the flows are limited: only two examples are found for the building sector where a monthly

resolution is deemed sufficient to consider most of the temporal variability [44, 81].

3.2.2 Prospective modelling

Modelling future evolutions of systems is another common example of temporal considerations that is

often performed under the umbrella of DLCA studies. Indeed, many DLCA studies have explored

different prospective models for a range of products like photovoltaic panels [85, 86], buildings [87-

90], bioethanol [91], passenger vehicles [92-94] or ammonia [95]. Any temporal assumptions made to

define future evolutions are thus considered for system modelling and LCI calculations. While major

advances have been made to offer explicit descriptions of assumptions made for temporal

considerations in DLCA, e.g. [17, 19, 21, 86, 96], they are currently not the standard. Prospective

modelling assumptions can be grouped within three categories that have fundamental differences on

how they justify their previsions or predictions of the future.

Predictions based on historic trends

Some data sources (e.g. statistics on energy production) describe historic trends from which

predictions are made by extra- or interpolation, assuming that paradigm shifts will not occur. For

instance, regression analysis was used to assess the evolution of energy systems [86, 97, 98] and the

construction sector [99]. The main strength of this approach is its simplicity and the potential to assess

the observed level of variability of historic trends. It can thus provide averaged predictions of future

trends and the expected variability (uncertainty). The main weakness, on the other hand, is the implicit

assumption that historic trends are representative of the future, which is not always the case,

particularly for emerging systems and technologies.
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Simulation approaches

Economic models, such as partial equilibrium models (PEM) or general equilibrium models (GEM),

are frequently used in, but not limited to, consequential LCA modelling to simulate potential future

evolutions to assess direct and indirect consequences of decisions (e.g. climate policies) on large scale

systems. The former generally focuses on one particular economic sector with a higher level of detail

(i.e. technology rich), while the latter covers the whole economy with a lower level of detail (typically

30–50 economic sectors). PEMs have been used to model the energy sector in France [19, 100], or

biogas production in Luxembourg [101]. GEMs have been used to evaluate the consequences of

different energy scenarios on the whole economy in Europe [102]. PEM and GEM have also been

coupled together to model the consequences of energy policy scenarios in an integrated manner [103].

The lacking consideration of human behaviour in PEM or GEM has recently been pointed out as a

potential issue for the validity of the predictions [104]. The use of agent- or activity-based models

have therefore been proposed to model the agent-agent and agent-environment interactions; both in the

foreground and in the background systems. This approach has been used in consequential LCIs

relating with transport policies [105], regional market penetration of electric vehicles [106], switch

grass-based bioenergy systems [107] or raw materials criticality [108]. Deeper analysis of differences

and similarities of consequential LCA and DLCA can be found in Sohn et al. (2019).

Using scenarios to explore potential futures

Scenario-based modelling has been used in waste management [109], water consumption [110],

bioenergy [19, 61, 111-114], renewable energy, [115], chemical production [116] and building [21]

sectors. Pesonen et al. [117] defined that the scenarios describe possible future situations based on

assumptions about the future and include developments from the present to the future. The authors

distinguished between “what-if” and “cornerstone” scenarios [117], depending on the need to consider

short- or long-term planning. What-if scenarios are often based on the field-specific expertise of LCA

practitioners. Cornerstone scenarios explore many options with very different assumptions on the

future to identify potential development paths. Another category is legally bound scenarios that

explore future paths under the restriction of regulations. A general idea behind modelling scenarios is

that exploring potential future paths may be simpler to justify than proposing future predictions.

3.3 Phase of life cycle inventory: LCI computation

The computation of LCI transforms the information of the systems’ models into a set of elementary

flows whose quantities are in relation to the FU of the assessed systems. The computation traditionally

aggregates all flows of the same type over the entire life cycle. The DyPLCA and Temporalis tools

(introduced in section 4.3.2) have been proposed to modify the computational framework to avoid

losses of temporal information. Both approaches are now available within different software tools and

approaches for a comprehensive consideration of temporal descriptions in LCA studies.
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3.3.1 Framework

Matrix-based computation

The conventional matrix-based computational approach can still be used but with larger technosphere

and ecosphere matrixes [118]. Collinge et al. [17, 119] used this approach on foreground processes to

calculate the LCI for each year of a building’s life cycle. They concluded, similarly to Heijungs et al.

[118], that the implementation brings significant challenges in data management when background

databases are used. The challenges are twofold. Firstly, the temporal description of a system needs to

be re-informed when the periods of assessment differ (e.g. 1900-2000 vs 2005-2025), if the considered

impacts are calendar-based. Secondly, the amount of data and the computational effort depend on the

required temporal precision (e.g. day vs. year) to describing all flows.

Graph-based approaches

In the Enhanced Structure Path Analysis (ESPA) approach [83], the computational framework

convolves process-relative temporal distributions (see subsection 3.2.1) to propagate the temporal

descriptions of flows. The general concept behind the ESPA framework [83, 120] relates to one

strategy of graph traversal algorithm (i.e. breadth-first), but other options have been also explored. The

depth-first search strategy [67] recommends a different traversal of supply chains, which is normally

linked to lower memory requirements. The best-first search strategy [68] is another option that

propagates the temporal information by prioritising the temporal distribution with relative higher

contributions to impacts. All these options use process-relative temporal distributions, thus profiting

from their reusability and the potential for higher temporal precision.

3.3.2 Approaches and tools

Some commercial software tools use matrix-based computation (e.g. Simapro, Umberto) and could

thus work with the process differentiation framework for the calculation of temporally differentiated

LCI. To our knowledge, this option has not been implemented in DLCA studies because LCA

databases do not offer temporal details. The ESPA method has also not been developed into a

computational tool and its implementation has been limited to one simplified case study [23].

Nevertheless, two options currently exist for DLCI computation introduced as follows.

DyPLCA

DyPLCA has been implemented as a web tool (available at http://dyplca.univ-lehavre.fr/), originally

presented in [67], using the depth-first graph search strategy. The main parameters that balance

accuracy vs. computation time in this tool are the temporal resolution of function integrals and the

back time span. Common values for both are respectively 1

period of occurrence for the FU). The computational intensity of the DLCI calculation has thus been

resolved by a trade-off between accuracy and cut-offs. The process-relative temporal distributions can

have different levels of detail to describe the flows in the system models. For instance, they can be
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detailed for foreground processes, as presented in Shimako et al. [121], and rather generic for the

background datasets.

DyPLCA currently works with a temporal differentiated ecoinvent v3.2 [76], providing generic

temporal descriptions to most background inventory processes. The DLCI results can be further used

with static or DLCIA methods, as shown in studies on bioenergy production from microalgae [122]

and on grape production [123].

Temporalis

Temporalis [68] is a free and open source package of the Brightway2 LCA tool [124], using the best-

first search strategy. The tool is fully compatible with many existing commercial LCA databases, but

temporal descriptions of datasets are currently not provided. Temporalis does not require a fixed and

continuous temporal resolution over any system models to provide DLCI or results for the impact

assessment. Nevertheless, a DLCIA method for GWP based on the IPCC methodology [125], is

included. A simple case study for the temporal consideration of biogenic carbon flows was carried out

with the method of Cherubini et al. [126, 127]. It has shown that the LCI computation can be resolved

on a regular laptop within a short time. Nevertheless, further developments still need to be completed

before LCA practitioners can use the tool.

3.4 Phase of life cycle impact assessment

In the LCIA phase, temporal considerations can describe the evolutions or inherent variations of

impacts over time and eventually define temporal scopes of some categories. Changes of

environmental mechanisms (i.e. impact pathways) over time and the selection of a time horizon (TH)

are key modelling choices to characterise impacts in the LCA framework.

3.4.1 Modelling choices

LCIA is a complex task, which requires many assumptions (e.g. the future state of the environment)

and choices that sometimes limit the validity of results to a specific temporal scope and introduce

uncertainty in the results. One of the most explicit and commonly used temporal considerations in

LCIA methods is the TH, restricting the impact assessment to a specific period. The defined periods of

validity, on the other hand, can be used to explain when LCIA methods must be updated to reduce

uncertainty.

Time Horizon (TH)

A common type of temporal considerations, in most of the current LCIA methods, is performed by

choosing between a finite or infinite TH over which environmental effects are integrated in cumulative

metrics such as the GWP. To date, the choice of a TH remains a topic of discussion within the LCA

community [4]. In the case of GWP, the 100-year TH is the most used and recommended choice. This



Appendices

316 PhD dissertation, 2019

preference is, however, not justified by scientific facts [4, 128, 129] and is implicitly subjective for

decision-making [130, 131]. Indeed, the 100-year TH differentiates short- from long-term perspectives

particularly when valuing and incentivising temporary or permanent carbon storage and delayed

emissions of biogenic and/or fossil sources [132]; whereas delays above 100 years are not considered

[133, 134]. Another option for the consideration of different THs is given by the ReCiPe method

[135]. It builds on three cultural perspectives, proposed by Hofstetter et al. [136], which are associated

with a different set of calculation assumptions, including different THs for each impact category. For

example, the “hierachist” perspective retains a 100-year TH for GWP and other categories, while

“Individualist” and “egalitarian” perspectives use THs of 20 and 1000 years respectively.

Two critical aspects are still challenging the current use of fixed and finite THs in LCIA methods. The

first aspect is the inconsistency between the temporal boundaries of the studied systems and the TH of

the LCIA methods [10, 137, 138]. It could be understood that the effects from elementary flows

beyond chosen TH should not be considered. However, the effects are ultimately modelled over an

invariable temporal scope, even if they occur at different periods during a life cycle (e.g. 100 years).

THs may thus lead to misrepresentations of impacts and their period of occurrence [139], for instance,

misinterpreting temporary storage and emission delays [131, 140]. It can be particularly relevant for

intermitting emissions like pesticides, where an arbitrary cut-off of emissions after pesticide

application should influence how each emission contributes to related impacts of human toxicity [141]

and ecotoxicity [142]. Furthermore, currently there is no standard on how to deal with long-term

impacts and related uncertainties within all categories. For instance, the 5th IPCC assessment report

[143] removed the 500-year TH due to high uncertainties associated with the assumption of constant

background concentrations.

The second aspect refers to the time integration of substances with highly variable environmental

effects over their lifetime (e.g. aging effects reducing bioavailability and related effects of metals

[144]), which can significantly bias the conclusions of LCA studies [59]. In the case of GWP, the

weight of forcers with very short atmospheric residence time decreases with an increasing TH [145,

146], while a shorter TH increases the impact for short-lived gases. For example, methane (CH4),

whose atmospheric lifetime is about 12.4 years, goes from a factor of 84 CO2-eq for the 20-year TH to

a factor of 28 CO2-eq for 100-year TH [143]. For further examples on this subject, Levasseur, et al.

[146] present various approaches that have been proposed for TH definition. For toxic substances,

Huijbregts et al. [147] demonstrated that TH variations can change impacts by up to 6.5 orders of

magnitude for metal toxicity. In this case, the high dependency between CFs and the chosen TH is due

to long residence times (i.e. persistence) in fate models, which increase metal run-offs and leaching

potentials to global marine and soil compartments.
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Temporal cut-offs from THs are further ethically questioned in the context of intergenerational equity

[75]. A “simple” solution to remove such time preferences and value choices has been recommended

by setting infinite THs. For instance, some LCIA methods (e.g. EDIP2003 [148], IMPACT 2002+

[149], ReCiPe 2016 [135]) use infinite or indefinite THs as a standard for stratospheric ozone

depletion, human toxicity and ecotoxicity. Moreover, some methods, such as ReCiPe 2016 [135]

consider very long THs for climate change (i.e. 1000 years) and ionising radiation (i.e. 100 000 years).

The ILCD handbook [134] and the SimaPro Database Manual [150] give more insights into the use of

such THs in different LCIA methods.

Period of validity for LCIA methods

Calendar-based period of validity for selected LCIA methods in LCA studies are not often defined, but

they can inform on the temporal scopes [38, 52, 58]. For example, the choice of THs would suggest an

implicit definition of the considered temporal scope. In an ideal world, the temporal scope of obtained

LCIs and chosen LCIA methods should fit. Such a correspondence is desirable if CFs that vary

significantly over time, but it is currently difficult to implement in the available databases and

software tools.

3.4.2 Variations of substances in the environment

In conventional LCIA methods, CFs have been determined with average or marginal approaches that

model changes in the impact according to a change in the inventory [151, 152]. With the /average

approach, the environmental disturbances from different process activities are aggregated, historically

referred to as “snapshots” of a studied system [118, 146, 153-156]. For example, most existing models

for characterising toxic impacts [157] assume constant environmental conditions for the assessment of

health impacts. With this approach, inherent variations or evolutions are not considered.

On the other hand, the marginal approach addresses an impact resulting from a small change to a given

background concentration. The impact is therefore positioned in relation to the current environmental

state. For example, studies of human health impacts from exposure to fine particulate matter (PM2.5),

where indoor, outdoor, urban and rural locations have shown significant differences in PM2.5

background levels [158]. A non-linear exposure-response model thus accounts for these differences in

PM2.5 levels, reflecting a slope for low concentrations that are substantially higher than for high

concentrations [159].

Considering variations of concentration for substances in the environment

Impact assessment models are representations of complex environmental mechanisms that depend on a

long list of parameters, such as the lifetime of substances in the environment and the sensitivities of

ecosystems over different temporal scopes [160]. Consequently, elementary flows may have different

levels of effect, depending on the timing of emissions. For instance, impacts characterisation methods
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often use an effect factor for a given concentration of pollutants in the background environment [5,

161]. Thus, the same amount and type of elementary flows (i.e. equivalent LCIs) can generate

different levels of impacts because they have been emitted at different periods of occurrence (e.g. 2016

or 2017), with varying flows (i.e. inherent variations) and geographies, requiring both temporal and

spatial differentiation.

Temporal considerations of environmental mechanisms in LCA studies are challenging because the

current state of practice rarely allows accounting for the periods of occurrence of emissions related to

a product’s life cycle [4, 10, 139, 162-164]. In fact, LCI flows are given as simple values that are

considered to be a representation of steady or pulsed flows from and to the environment by most LCIA

models.

Non-linear mechanisms

In many LCIA methods, CFs are defined from generic parameters values in stationary conditions, (e.g.

intervention quantity, baseline for target substances, and profile of the soil composition) or for a given

TH. In reality, the involved environmental mechanisms are dynamic and often highly complex. They

depend on the physical-chemical and biological phenomena occurring in nature and are consequences

of the elementary flows generated by human activities. Independently from the CF definitions, impacts

are assumed linearly proportional to the inventoried emissions, which enable the scaling of impacts to

any functional unit.

Time-dependent impact characterisation has been performed in some cases by modelling the dynamics

for one or more of the three factors influencing an impact (i.e. environmental fate, exposure, and

effects), thus creating DLCIA methods. Effect data are typically not easily linked to temporal

properties, allowing for temporal considerations in effect modelling (e.g. dose response for human

effects or concentration response for ecological effects). Hence, time-dependent characterisation is

usually only facilitated by considering the dynamics of systems in the fate and exposure factors of an

impact pathway, which is usually enabled by models of the underlying mass balance for a given

impact pathway. This has been implemented, for example, in toxicity-related impacts [59], where the

system dynamics of the environmental fate part are either solved via numerical integration (e.g. [123]),

or via matrix decomposition (e.g. [165]).

Specific temporal resolution for each elementary flow

The consideration of environmental impact variations over time within LCIA models may follow

specific frequencies (i.e. how often it is performed), as well as temporal-inherent features deriving

from dynamic biogeochemical processes. The frequency can be differentiated, for instance, as

responding to episodic (e.g. initial land clearing), cyclical (e.g. seasonal water and pesticide use),

stochastic with a certain recurrence interval (e.g. 1 in 20 years' waste discharge), or continual (e.g.
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fisheries yields) variations in the studied system [160]. Such frequencies therefore highlight relevant

temporal resolutions for the temporal differentiation of elementary flows in databases and DLCIs.

The temporal scope of impact assessment itself may be aligned with the dynamics of governing

biogeochemical processes to more accurately represent certain fate dynamics. For instance, Liao, et al.

[166] found that common seeding-to-harvest assessment periods in agricultural LCAs do not

correspond to the actual dynamics of fertilising substances, some of which contribute to eutrophication

during the next crop rotation. The same concerns agricultural pesticides, where the time between the

application and crop harvest drives related residues leading to human exposure [167]. However, such

fate dynamics can still be analysed and parameterised to fit steady-state characterisation models and

associated impact pathways, such as human toxicity [14, 165]. Cyclical or seasonal variations

concerning sunlight, temperature and precipitation on the calendar year (e.g. winter vs summer time)

are other examples of temporal considerations that could be relevant for impact categories like aquatic

eutrophication [168], water scarcity [169], human toxicity [12] and photochemical oxidant formation

[13]. Moreover, temporal patterns of characterisation can be drawn from inherent temporal variability

linked with hourly, daily, monthly or yearly constraints [154, 170].

3.4.3 Modelling prospective time horizons

Another form of temporal considerations in LCIA is increasingly performed on scenario-driven case

studies. It has been applied to water use impacts by means of scenario-bound CFs, where each

scenario represents a different prospective TH [171]. It is a step towards temporal variability of

environmental indicators, as most LCIA methods make the implicit assumption that the environment

and its properties will not evolve.

3.4.4 Computational framework

Recently, some DLCIA methods have been developed with different computational frameworks.

These approaches are key to understand the links between DLCIs and DLCIA methods, while offering

potential pathways for future developments.

Period-specific characterisation factors

In the last decade, LCA researchers have developed DLCIA methods addressing time dependent

impacts as a function of time, yet they are mainly restricted to the GWP indicator. These DLCIA

methods consider the periods of occurrence for emissions by providing different period-specific CFs

to assess their impacts. These CFs thus bring consistency between the temporal scopes of DLCI and

impacts [10]. Different LCA scholars found that the results based on such DLCIA methods provide

useful examples for decision-making, among others, on: “the intensity, extend and frequency of the

impacts” [65], the sensitivity of the results to various TH choices [174], and the optimisation options

from scenario-bound simulations [123]. The DLCIA method developed by Levasseur et al. [10] is
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currently one of the most recognised and sophisticated approaches, featuring period-specific CFs. In

addition, calendar-specifications can be relevant to assess and compare the evolution of impacts and/or

background concentrations over time (e.g. 1990 Kyoto Protocol and 1750 IPCC reference years for

climate change).

Time-dependant characterisation functions

Recent works [121-123] have proposed to come back to the origins of impact simulation tools and

adapt them by adding temporal information in the LCIA phase. The idea is to consider the

opportunities of using DLCIs as inputs for DLCIA models. Such a DLCIA model has been proposed

to assess toxicity impacts (human and ecotoxicity) by Shimako et al. [123] and applied in a full DLCA

study. The model reintroduces the time dimension for fate modelling of substances in the environment,

providing the temporal distributions of substances in different environmental compartments. The

physical parameters for the calculation of fate, exposure and effect factors were taken from the

USEtox model. This method doesn’t propose period-specific CFs, but directly calculates the impacts

by coupling the impact model with all the available information in DLCIs.

The definition of ecotoxicity according to time also allows to evaluating the intensity of the impact for

different periods of occurrence, which supports the identification of critical periods for potential

impacts. The cumulated toxicity then represents the total damage generated over a TH. When

compared with conventional USEtox results, obtained in steady state conditions, the DLCA results are

systematically lower, but toxicity tends towards the conventional results for an infinite TH. Non-

persistent substances (generally organic) generate almost all their hazard potential during their periods

of emission and disappear more or less rapidly due to the degradation or transfer to sink compartments

(removal). In contrast, persistent substances accumulate in environmental compartments during the

emission periods and their toxicity potentials remain high after the emissions stop, potentially

affecting many human generations.

4 Proposed Development Pathways

It is rather straightforward to identify temporal considerations within the DLCA framework when the

challenges of data availability and management are overlooked. Indeed, the general goal can be

summarised by the desire to reach the highest level of temporal representativeness and to provide

useful information, when considering the dynamics of system in all of the model components. It would

seem relevant for:

Firstly, clearly define calendar-based temporal scopes for all flows of a DLCI to outline the period

of occurrence to justify the choice of specific DLCIA methods. The temporal information would

set a clear temporal frame of reference of key interest for all stakeholders who want to identify the

future effects of their decisions. A period of validity for the results of a LCA study should be set
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as mandatory information to offer an explicit estimation of the period of the representativeness of

the results and when updates would be necessary.

Secondly, system and impact models should be based on calendar-specific information. As the

models evolve beyond the defined temporal scope, this specification would thus highlight the

proportion of impacts that will occur after the publication of a LCA study. Historic data could be

used to model processes and impacts that happened before the publication date of the study.

Prospective data based on forecasting strategies and CFs representing future impacts that will

occur after the publication date would explicitly be reported to substantiate the basis for evolution

of processes. A clear separation between historic and future-related results would explicitly show

the proportion of impacts that can only be based on forecasting assumptions.

Finally, the inherent variations of flows and CFs over a life cycle should be described with the

necessary level of detail to minimise the temporal uncertainty on results. Temporal distributions of

flows would be defined relative to systems' components for a common framework of assessment,

which considers the dynamics of system that need to be modelled.

These conceptual targets for temporal considerations would increase our ability to differentiate the

impacts of different systems by reducing temporal uncertainties, but the current challenge lies mainly

in finding the right balance between additional efforts for data collection, data modelling and required

temporal resolution levels. The search for such “simple-enough” implementation strategies is therefore

the key to propose the next development steps for temporal considerations in DLCA.

4.1 Temporal considerations in the goal and scope definition

Temporal considerations, presented in section 3.1, mostly offer partial, implicit and qualitative

information about when LCA studies have temporal representativeness or for when impacts are

occurring. Temporal scopes of results in LCA studies are sometimes more explicitly defined, but they

are not commonly provided, which hinders transparent and fair comparisons among results of other

studies [5, 37, 55, 56, 61, 175]. Lack of consistency in the vocabulary that describes the models'

components and the linked LCIs or LCIA methods also brings some issues to simplify the exchange of

temporal information. These obstacles should be addressed access the wealth of information and

metadata that is actually provided in LCA databases and studies. Two propositions are thus made for

potential development pathways:

1. Recognition and use of a common structure and vocabulary to discuss and exchange on the subject

of temporal considerations in the DLCA framework (section 2)

2. Automation for the management of information on temporal considerations should be pursued

because significant increase in data need is to be expected for this subject.
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A specific example is the development of guideline to consistently define the different temporal

scopes and periods of validity that should be provided in LCA databases and studies. The authors are

well aware of the challenge in asking a community to accept a common framework for such a broad

subject, but data providers would benefit from the identification of common patterns and of

"translation" options between data format.

4.2 Time dependent modelling of human activities

Strategies to account for inherent variations and future evolutions of systems and impacts have always

been implicitly considered in LCA. The mere goal of integrating elementary flows over the full life

cycle is a testament of this. Nevertheless, most of the current studies show an implicit assumption that

human activities and associated elementary flows and impacts will not change significantly over their

temporal scopes or that such changes do not have to be considered to differentiate the environmental

impacts of two products with equivalent functions.

Alternatively, DLCA studies start from the assumption that inherent variations, periods of occurrence

and evolutions need to be considered. The basic principle that has been used in DLCA studies is to

consider such levels of temporal considerations with process differentiation, which turns out to be

challenging whenever a comprehensive and detailed description of the life cycle is expected because a

large amount of temporal information needs to be defined in each LCA study. The differentiation of

flows with process-relative temporal distributions is feasible but has yet not been implemented in

commercial databases.

The second option should thus be combined with calendar-specific processes that are changed when

they are no longer representative of the technology or activity over the considered life cycle (i.e.

period of validity). The challenge in both cases is to identify the level of temporal resolution that is

sufficient for minimising the temporal uncertainty while balancing the efforts to describe the models

of human activities (i.e. data management and gathering). Some components might also have a fixed

temporal definition to represent part of the human activities that will not change in relation to the

temporal scope of the LCA study. For example, all elementary flows that are linked to the construction

phases of hydro power plants in a country will not happen in different periods if they are linked to past

or future products.

Given the current options, the next steps of development for system modelling are suggested, as

follows:

1. Carrie out a comprehensive research of methodologies and approaches where dynamic modelling

is considered (e.g. dynamic MFA or dynamics of system, as it has been done with a simplified

framework in DyPLCA) to identify strategies that might not yet be proposed for the DLCA

framework.
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2. Perform discussions with impact modelling experts to evaluate an acceptable level of temporal

resolution for all elementary flows with the clear goal of minimising the temporal uncertainty on

the CFs of newly developed DLCIA methods.

3. Provide process-relative temporal distributions to describe all flows and use these distributions

within new computational tools and DLCA. The identification of key sources for temporal

variability within systems is probably the best way to start this work and will increase our

knowledge on the question in an iterative manner.

Moreover, the correlation of flows in current databases is mostly not defined (i.e. the output of a

process is not an explicit function of the inputs, and emissions are not related to the consumption) even

if this is possible in some LCI databases. From a mechanistic point of view, these relationships exist

(e.g. carbon content in CO2 from tailpipe emission depends on fuel consumption) and LCA

practitioners when creating datasets can use them. However, this information is commonly left out

from the LCA databases and only the results (i.e. the quantities of flows) are kept in the process

description. By making these relationships explicit, one could simplify the introduction of time

consideration in datasets, as some are intrinsically linked over time (e.g. nitrate emissions at the crop

level are strongly related to the crop production cycle).

Another issue appears at the system level with co-product management. Indeed, the avoided product

approach raises the question of how the avoided product(s) can be modelled in time. Should it be

simultaneous to the co-product or following the co-product production, assuming that the replacement

will take place afterwards?

A non-physical allocation also raises questions about temporal considerations. For instance, to ensure

carbon balance, corrections are made when multi-output processes are split into several single-output

processes. Artificial positive and negative CO2 emissions are added up to match the carbon fixations

to the carbon content of a product (Weidema, 2018). This approach is, for example, used in the

ecoinvent database under “At Point Of Substitution (APOS)” and “Cut-off” system models [43]. It

questions whether to maintain these flows in DLCI, and if so, how to position these artificial flows

over time. Therefore the period of occurrence will be difficult to justify in DLCA. This matter should

further be addressed to identify if some rules can be developed.

The use of prospective models in LCA studies could also be improved. The reason for using such

models has always been to offer a perspective of the future that fits more with the expectations of LCA

practitioners. It is important to recognise that it is currently challenging to find a consensus on a “best”

option for any case study. In such a context, a more achievable goal is to ensuring maximum

transparency of all choices made. It would also be useful to separate the impacts that are linked to past

and present processes from the ones that are based on prospective models. This would clarify the share

of impacts issued from modelling assumptions projected to the future.
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4.3 Inventory calculation: keeping time in the modelling

The recently developed conceptual frameworks and tools (see subsections 3.3.1 and 3.3.2) employ a

common computational structure based on graph search algorithms to calculate DLCIs. This structure

uses process-relative temporal distributions to describe the flows within system models. Such a

consensus suggests that the computational structure for DLCA and the corresponding tools could

become a standard, but implementation challenges are still limiting their use in the LCA community.

Overall, more DLCA studies should be carried out with these tools to increase the understanding of

the LCA community and to develop the process-relative descriptions in LCA databases.

DLCA is intrinsically rooted on modelling the dynamics of systems. The many models' components

describe a large system, featuring several thousands of processes in the technology matrix and many

hundreds of elementary flows in the intervention matrix. The introduction of timed variables in the

matrixes and vectors of calculation can induce non-linear trends, in the causal relationships. Delays

might appear in the datasets (e.g. storage processes) or in the interventions (buffer zones at

technosphere/ecosphere interface). The discontinuities form due to temporal switch between technical

flows (e.g. seasonal supply) or abrupt release could also arise. All these aspects cause a real issue for

solving, simulating and providing DLCA results under a reasonable computation time. Nonetheless,

system dynamics is a well-studied topic in applied mathematics and control theory. The introduction

of temporal considerations into the field of LCA would thus benefit from the knowledge of these

research areas or disciplines.

Temporal resolution of flows in DLCI is another important aspect that will need further

considerations. One LCA system can represent many dynamics, because of the size of the system and

the inherent variations of the production processes, emissions and resource consumption, as well as of

the environmental mechanisms. This issue has already been identified and discussed in some LCA

studies where process dynamics are relevant. Collet et al. [176] discussed the necessary match

between the emission dynamic and the impact category to justify such temporal considerations.

Shimako et al. [121] dealt with the time step of simulations regarding the impact features and showed

the gap between examples of climate change (year) and ecotoxicity (day). Urban traffic is another

example of the time-resolution aspect that shows the relevance of intraday dynamic for commuters

since they mainly travel at the beginning and the end of the working period. Moreover, let's consider,

for the sake of clarity, that carbon dioxide and particulate matter both have an intraday emission

dynamic. If this resolution seems suitable for the fate of particulate matter, it is clearly too short for

climate change mechanisms, where a yearly resolution would be sufficient. The transportation activity

also needs infrastructure, which is defined over decades, adding an even slower dynamics to the

system. Consequently, urban traffic is a good example of a system that merges multiple time

resolutions with fast and slow environmental effects. Consequently, the analysis of different systems
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will be relevant to identify the temporal consistency in different subsystems (Kuehn 2015; Bertram

and Rubin 2017).

4.4 Dynamics of impact assessment

Temporal considerations in methods for impact characterisation can also be introduced with the choice

of specific THs. The recent developments in DLCIA methods have focused on the impact categories

of climate change, toxicity and ozone depletion.

As explained before, environmental mechanisms for different impacts of substances will occur within

diverse temporal scopes. These specific periods for each impact category can therefore provide

guidance on the required resolution of temporal distributions to describe the elementary flows of LCIs,

while minimising the temporal uncertainty. A clear list of the relevant time scales for each LCIA

category would thus be useful to fix database requirements in the definition of elementary flows for

any datasets.

Prospective modelling of CFs should also be considered based on, for example, projections of

population density, or estimated particulate matter background concentrations. A clear identification of

temporal parameters that affect the calculation of the CFs for the different impacts covered in LCA

could thus be of an important added value for both prospective and retrospective modelling.

Identifying the parameters that will be affected by future modifications of the environment could

therefore be particularly relevant.

In addition, a clear definition of the temporal scope covered by the LCIA methods should be added for

impacts with strong time dependency. The choice of a TH should be based on the case study goal and

scope and impact category. Background concentrations should—where available and relevant—also

be updated with different frequencies, depending on the impact category. Sensitivity analyses could be

performed on concentration levels, in order to assess temporal variability of CFs, and to propose, if

necessary, updated values for prospective and/or retrospective studies.

To carry out any of these developments, collaboration between experts of LCA databases, LCI

computation and LCIA methods should be strengthened to develop a common framework for temporal

considerations of any indicator.

4.5 Summary of potential development paths for temporal considerations

Table 4 presents a summary of the proposed developments from sections 4.1 to 4.4 with their main

purposes and a qualitative assessment of the expected level of challenge to reach these targets. This

assessment goes from + (i.e. basic efforts) to +++ (significant efforts). Separations between temporal

considerations in the different phases of the DLCA framework are, once again, used to structure this

summary.
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Table 4: Summary of proposed development paths for temporal consideration in a DLCA framework

Proposed development paths Purposes of the targets Challenge
levelDefining

the
temporal
scope

Increasing the
temporal
representativene
ss

Considering
the dynamics
of systems

4.1 Time in the goal and scope definition

Use of a standard glossary to describe temporal
considerations in DLCA databases and studies

X X ++

Use of common metadata descriptions to
automate the exchange of temporal information

X X ++

4.2 Time dependent modelling of human activities for LCI calculations
Test the use of process-relative temporal
distributions in DLCA studies to describes
flows

X ++

Identify the relevant levels of resolution for
different flows in the technosphere models

X X +++

Offer more explicit and complete list of choices
made for prospective modelling

X X X ++

Split results between past and future impacts for
the entire system and life cycle

X +++

4.3 Inventory calculation with temporal properties

Gather more information on the dynamics of
systems for future DLCA studies

X X +++

Investigate the field of system dynamics to find
useful ideas for the DLCA framework

X +

Simplify the use of current approaches and tools
to reach more LCA practitioners

X X +++

4.4 Dynamics of impact assessment
Identify methods to consistently consider THs
in DLCA studies for all impact categories

X X +++

Identify the relevant levels of resolution for
different flows in the ecosphere models

X X ++

Assess the variations of impacts over different
temporal scopes for uncertainty analysis

X +++

Propose strategies for transparent use of
prospective assumptions in the ecosphere
models

X X +++

5 Conclusions

Considerable efforts have been made in the last 20 years to include temporal considerations within the

LCA framework and to show that accounting for such aspects significantly affects the results of, at

least, some case studies. For instance, LCA studies on systems with long lifespan (e.g. buildings) can

benefit from models and tools where the dynamics of energy flows are considered more details (i.e.

variations and evolutions). Periods of validity for datasets, which represent rapidly progressing

technologies (e.g. photovoltaic cells), are important temporal information, provided in some LCA

databases. Furthermore, dynamic LCIA methods have now been developed to account for impacts that
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vary significantly when the timing of emission change. Overall, the suggested approaches, tools and

strategies increase the temporal representativeness of LCA studies and decrease the temporal

uncertainty of models for systems and impacts. Nevertheless, their uses in current LCA studies are still

uncommon, which can be explained by a lack of consistent descriptions and the challenges of

gathering temporal information.

With that in mind, we offer some propositions for the next steps of developments in the DLCA

framework. A glossary is proposed to build a common and consistent understanding on the key

concepts that often come up in discussions on the subject. It should help in the use of the already

available information that can be found in LCA databases and studies under different names. The

consistent description of this metadata should also simplify the automated exchange of information

between different software options and practitioners. Our overview on temporal considerations in the

LCI phase suggests that a preferred pathway seems to emerge in the computational approach (i.e.

graph search algorithms) for DLCA, but it will require the use of process-relative temporal

distributions to describe flows in datasets (i.e. input format). This information should then provide

temporal distributions for all elementary flows. The temporal boundaries DLCI (i.e. temporal scope)

should aim at being defined within a calendar-based description (e.g. between 1990 and 2020) to

improve the potential for representativeness of the impact assessments. A balance between necessary

data collection efforts and reduction of uncertainties should define the temporal resolution of such

distributions. It will also be important to consider the chosen DLCIA methods when selecting the

temporal resolutions of flows. Lastly, the current development of the DLCIA methods should continue

by pursuing the estimation of uncertainty and variability that comes up in all impact categories when

temporal information is not provided to describe the input LCI. It is then recommended to identify a

relevant level of temporal resolution that would minimise the temporal uncertainty of the models for

impact assessments.
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Appendix D: Data paper on forest models

This Appendix contains a Data Article, informing on forest tree growth and forest stand management

practices for modelling Cbio fixation/sequestration flows of forest-based products, published in the Journal

Data in Brief, open access article (https://doi.org/10.1016/j.dib.2019.103841) [received 3 April 2018,

received in revised form 6 April 2018, accepted 25 April 2018, available online 9 May 2018].

Objective Compilation of data supporting and informing dynamic modelling to predict biomass growth

and carbon fixation dynamics, of a tree or forest stand, over specific rotation lengths.

Approach Non-linear growth model and allometric relations

Sector (product) N/A

Biomass Forest wood

Referred to Supplementary Material online available (https://doi.org/10.1016/j.dib.2019.103841)

Paper 1 (section 4.2) and Paper 2 (section 4.3)

Data and non-linear models for the estimation of biomass growth and carbon
fixation in managed forests

Ariane Albers a,b,c,*, Pierre Collet a, Anthony Benoist c,d, Arnaud Hélias b,c,e

a IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France

b LBE, Montpellier SupAgro, INRA, UNIV Montpellier, Narbonne, France

c Elsa, Research Group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France

d CIRAD – UPR BioWooEB, Avenue Agropolis, F-34398 Montpellier, France
e Chair of Sustainable Engineering, Technische Universität Berlin, Berlin, Germany

* Corresponding author

Abstract

The data and analyses presented support the research article entitled “Coupling partial-equilibrium and

dynamic biogenic carbon models to assess future transport scenarios in France” [1]. Carbon sequestration

and storage in forestry products (e.g. transport fuels) is sough as a climate change mitigation option. The

data presented support and inform dynamic modelling approaches to predict biomass growth and carbon

fixation dynamics, of a tree or forest stand, over specific rotation lengths. Data consists of species-specific

yield tables, parameters for non-linear growth models and allometric equations. Non-linear growth models

and allometric equations are listed and described. National statistics and surveys of the wood supply chain

serve to identify main tree species, standing wood volumes and distributions within specific geographies;

here corresponding to managed forests in France. All necessary data and methods for the computation of

the annual fixation flows are presented.
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Keywords: biogenic carbon modelling; carbon fixation; forestry biomass; non-linear growth

Specification table

Subject area Biology, Ecological modelling

More specific

subject area

Dynamic modelling of forest biomass growth and annual carbon fixation

Type of data Text, figures, tables

How data was

acquired

Combination of secondary sources from public datasets available online and peer-

reviewed literature, including national statistics and surveys, yield tables, non-linear

growth parameters and allometric relations.

Data format Filtered and analysed secondary data.

Experimental

factors

Some data was re-expressed into different units when necessary to inform the models.

Experimental

features

Non-linear growth was computed using data retrieved from yield tables. Initial parameters

were compiled from literature to fit the non-self-starting non-linear regression model used

for growth. Allometric equations were compiled and selected for tree volume estimations.

Finally, mean biomass growth and carbon fixation was computed per one tonne of forestry

biomass of interest.

Data source

location

Managed forest systems in France or from other regions when data was not available for

France (see Table 1).

Data accessibility All data used and generated is included in this article and in its Supplementary Material

Related research

article

A. Albers, P. Collet, D. Lorne, A. Benoist, A. Hélias, Coupling partial-equilibrium and

dynamic biogenic carbon models to assess future transport scenarios in France, Appl.

Energy. 239 (2019) 316–330. doi:10.1016/j.apenergy.2019.01.186

Value of the Data

A large compilation of secondary data, useful to facilitate dynamic carbon modelling of biomass

growth and carbon fixation in managed forest systems.

Part of the data is generic enough to be used to model stands of unknown or mixed species.

The proposed modelling approach is flexible and applicable to any tree species and management

practice (R script to fit non-self-starting non-linear regression growth parameters included).

Annual carbon stocking factors are provided for all tree species of the French wood supply chain.
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1 Data

The data presented provides the basis for a non-linear forestry biomass growth model, whose outputs were

used for modelling time-dependent carbon fixation in forest biomass [1]. This data article aggregates data

from various datasets, including national statistics and surveys, yield tables, non-linear growth parameters

and allometric relations (Table 1). The wood supply chain in France is represented by 12 main forest tree

species (Table 2). National surveys and statistical results describe the distribution per tree species, used for

weighted mean estimates (Table 3). Yield tables tabulate the age-dependent mean tree development and

productivity of fully stocked managed stands, measured largely from long-standing experimental forest

stand surveys. Yield table data is used to estimate i) initial parameters to fit non-self-starting non-linear

regression models to predict tree growth, ii) age-dependent growth variables, and iii) site-dependent

management practices (e.g. thinning periods, rotation cycles). Allometric models are used for volume

estimation. All data sources primary originate from French studies, for geographical coherence. However,

adequate European studies were retained when French data was unavailable (Table 4). Biomass yield and

carbon content were obtained by applying specific conversions factors (Table 5). The Supplementary

Material provides technical guidance and data for all assessed tree species concerning selected yield

tables, regression analysis and parameters, biomass yield calculations, and annual carbon stocking factors.

It includes a R [2] script to compute the regression parameters for running the growth model, applicable to

future studies.

Table 1. General sources

Specific data Databases Source

Species traits Global TRY Plant Trait Database (https://www.try-
db.org/TryWeb/Home.php)

[3]

National forestry
inventories

National Institute of Geographic and Forest Information, Ministry of
Agriculture, Agro-food and Forests

[4]

Wood density International DRYAD Global Wood Density Database
(http://datadryad.org/)

[5]

Allometric
equations

GlobAllomeTree international database platform
(http://www.globallometree.org/about/)

[6]

Carbon content Food and Agricultural institute (FAO), Forestry Commission, and other [7,8]
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Table 2. Species traits of forest species wood supply chain in France

Common name Species
botanical name

Family Genus Species
epithet

Leaf
type

Leaf
Phenology

Douglas fir Pseudotsuga menziesii Pinaceae Pseudotsuga menziesii needle evergreen
Norway spruce Piceaabies Pinaceae Picea abies needle evergreen
Maritime pine Pinus pinaster Pinaceae Pinus pinaster needle evergreen
Silver fir Abies alba Pinaceae Abies Alba needle evergreen
Scots pine Pinus sylvestri Pinaceae Pinus sylvestri needle evergreen
Sweet chestnut Castanea sativa Fagacea Castanea sativa broadleaf deciduous
Hornbeam Carpinusbetulus Corylaceae Carpinus betulus broadleaf deciduous
Ash Fraxinus excelsior Oleaceae Fraxinus excelsior broadleaf deciduous
European beech Fagus sylvatica Fagacea Fagus sylvatica broadleaf deciduous
Sessile oak Quercus petraea Fagacea Quercus petraea broadleaf deciduous
English oak Quercus robur Fagacea Quercus robur broadleaf deciduous
White oak Quercus pubescens Fagacea Quercus pubescens broadleaf deciduous
Source: Global TRY Plant Trait Database [3]

Table 3.National inventory (2012-2016) and distribution of living standing volume per forest tree species in France

Common name Species Distribution standing
volume [Bm3]

Distribution standing
volume [%]

Douglas fir P. menziesii 106 4
Norway spruce P. abies 213 8
Maritime pine P. pinaster 133 5
Silver fir A. alba 213 8
Scots pine P. sylvestri 160 6
Other conifers Pinaceae spp 146 6
Sweet chestnut C. sativa 135 5
Hornbeam C. betulus 108 4
Ash F. excelsior 108 4
European beech F. sylvatica 297 11
Sessile oak Q. petraea 297 11
English oak Q. robur 297 11
White oak Q. pubescens 108 4
Other broadleaved Fagacea spp 365 14
Source: [4]
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Table 4. Specifications on analysed yield tables per forest tree species

Common
name

Species Country Eco-region Geographical specifications Yield
class

Source Page in
source
document

Douglas fir P. menziesii France West Massif
Central

Creuse, Corrèze et Haute-Vienne 2 [9] 50

Norway
spruce

P. abies France South Massif
Central

Montagne Noire, Monts de
Lacune-Sommail-Espinouse,
Levezou and Aigoual

16 [9] 134

Maritime pine P. pinaster France South-West Landes de Gascogne 3 [9] 54
Silver fir A. alba France Jura N/A 12 [9] 112
Scots pine P. sylvestri France Sologne N/A 3 [9] 20
Other conifers C. sativa Spain North Spain N/A 4 [10] 131
Sweet
chestnut

C. betulus N/A European part Eco-regions of deciduous forests
and forest steppe

2 [11] 375

Hornbeam F. excelsior N/A Northern
Eurasia

N/A 2 [11] 108

Ash F. sylvatica France North-West N/A 6 [9] 84
European
beech

Q. petraea France Loire N/A

Sessile oak Q. robur N/A European part Eco-regions of mixed forests,
deciduous forests and forest steppe

1a [9] 294

English oak Q. pubescens N/A European part Eco-regions of mixed forests,
deciduous forests and forest steppe

2 [11] 295

Table 5. Wood density and carbon content per forest tree species

Common name Species Wood density [tꞏm-3] Carbon content [Cꞏt-1]
Douglas fir P. menziesii 0.4533 0.5280
Norway spruce P. abies 0.3700 0.4980
Maritime pine P. pinaster 0.4140 0.5212
Silver fir A. alba 0.3530 0.4750
Scots pine P. sylvestri 0.4219 0.5036
Other conifers Pinaceae

spp
0.4024 0.5052

Sweet chestnut C. sativa 0.4400 0.5010
Hornbeam C. betulus 0.7060 0.4899
Ash F. excelsior 0.5597 0.4918
European beech F. sylvatica 0.5855 0.4709
Sessile oak Q. petraea 0.5597 0.4970
English oak Q. robur 0.5597 0.5016
White oak Q.

pubescens
0.5597 0.4948

Other broadleaved Fagacea spp 0.5672 0.4924

Note: General recommended factors are 0.5 tꞏm-3 for conifers/evergreen and 0.6-0.7
tꞏm-3 for broadleaves/deciduous. The carbon content for all tree organs (different tree
compartments), can be estimated with a factor of 0.5, by neglecting the lower carbon
concentration in the needles/leaves [12].
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2 Experimental Design, Materials, and Methods

The presented data is used to inform the models described in the following sub-sections.

2.1 Modelling non-linear growth

The cumulative tree growth is represented by the non-linear Chapman-Richards (CR) curve. The CR

equation (Eq. 1) is based on species- and site-dependent parameters and one independent variable, with

the following notation [13]:

(1)

with

growth of a tree species i in height and circumference (response growth

c constant m fixed to 0.5 (0<m<1)

[13]. CR forms a sigmoid and asymptotic curve with a point of inflection determined by the allometric

constant p, approaching a maximum threshold of the response variable, the asymptote A. The empirical

growth parameter k scales the absolute growth, governing the rate at which A approaches its potential

maximum.

2.2 Initial parameters to fit non-self-starting non-linear regression model

-linear combination of the parameters. Initial

parameters to fit the non-self-starting non-linear regression model (Table 6) were developed for k and p.

Values for k lie between 0.02 and 0.04, depending on the studied species and for p 2. The acceptable

values for k range between 0.2 and 2.5. A is estimated as twice the maximum value given for age in the

species-specific yield tables.
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Table 6. Initial parameter for Chapman-Richards non-linear regression

Common name Species Initial parameters
A k p

Douglas fir P. menziesii 140 0.03 2
Norway spruce P. abies 172 0.03 2
Maritime pine P. pinaster 140 0.03 2
Silver fir A. alba 326 0.03 2
Scots pine P. sylvestri 180 0.03 2
Other conifers Pinaceae spp 172 0.03 2
(Sweet) Chestnut C. sativa 120 0.03 2
Hornbeam C. betulus 200 0.02 2
Ash F. excelsior 320 0.03 2
European Beech F. sylvatica 300 0.02 2
White oak Q. petraea 240 0.04 2
English oak Q. robur 320 0.02 2
Sessile oak Q. pubescens 400 0.04 2
Other broadleaves Fagacea spp 300 0.04 2

Sources: A. Pommerening, pers. comm.; H. Pretzsch, pers. comm
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2.4. Mean biomass growth development of all species

Figure 1 shows the non-linear mean biomass growth per tree species. For the computation of annual Cbio

fixation flows [t Cbioꞏyr-1] in biomass (as presented with the stocking factors in the Supplementary material)

see section 2.3.1 in the companion research article [1]. Data from Table 3 to Table 7 are used for these

calculations.

Fig. 1: Mean biomass growth in tonnes of carbon per tree species
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Appendix E: SM of Paper 2

This appendix contains the Supplementary Material of Paper 2 (section 4.3): Back to the future: Dynamic

full carbon accounting applied to prospective bioenergy scenarios

1 Static versus dynamic LCA approaches

Comparison between classical and dynamic LCA approaches concerning the time dimension, biogenic

carbon and climate change.

Classical LCA approach Dynamic LCA approach

Approach Aggregation of all carbon flows Temporal differentiation of carbon flows

LCI
Carbon neutral
(sequestration and release sum up to zero)

Biogenic carbon accounting
(timing all sequestration and release flows)

LCIA
Static, with fixed time horizon (GWP 20
or 100 years)

Time-dependent, with flexible/variable time
horizon

2 Partial-equilibrium model (TIMES-MIRET) outputs

2.1 Biomass commodity outputs

Fig 1. shows all biomass commodity outputs of TIMES-MIRET partial-equilibrium model of the LTECV

scenario simulation. This study was concerned with modelling the dynamic biogenic carbon flows of the

commodity forest wood residue. The annual mean FoWooR supply, described in the LTECV scenario, is

estimated at 34 Mt from 2019 to 2050. The mean share to the final energy consumption (energy and transport

fuels) amounted to 65%, with higher shares up to 76% during the first decade and subsequent drops to 54%

in the year 2050. The decreasing FoWooR share was traced back to the increasing biomass shares from other



Appendices

354 PhD dissertation, 2019

2G feedstocks, involving agro-industrial residues and dedicated lignocellulosic material in response to the

new set of policy targets. A significant portion of the FoWooR share is mobilised to the transport sub-sector,

amounting between 40-50% from the year 2030 to 2050). The FoWooR commodity was linked to Fisher-

Tropsch processes for transport fuels (biodiesel and biojet fuels), as well as methanisation and cogeneration

for the energy mix.

Fig. 1. Biomass supply outputs [per kt] from the partial-equilibrium model in response LTECV scenario

2.2 Greenhouse gas emissions outputs from the partial-equilibrium model

Fig. 2 shows the greenhouse gas emission outputs of the entire energy-transport sector of France (electricity,

heat and transport fuels), based on the fossil-sourced CO2 and N2O elementary flows, assessed in the partial-

equilibrium model with the LTECV scenario simulation. Biogenic flows are excluded in this representation,

as it represents a static assessment, providing carbon neutral results, without timing the emissions, based on

the static IPCC GWP metric 100 years.
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3 Outputs from forest carbon modelling

Fig. 3 shows the dynamic outputs from biogenic carbon sequestration modelling for a) historic and b) future

time perspectives.

Table 1 and Table 2 show the dynamic stocking/fixation factors for biogenic carbon sequestration of forestry

wood residues per modelling approach (historic or future); as means value from all tree species of the French

wood supply chain. Values are retrieved from the study (Albers et al. 2019).

Table 1. Historic biogenic carbon (Cbio) fixation factors in t Cbio yr-1 over a maximum rotation length of 200 years

yr t Cbioꞏyr-1 yr t Cbioꞏyr-1 yr t Cbioꞏyr-1 yr t Cbioꞏyr-1 yr t Cbioꞏyr-1

-200 0.0000E+0 -155 -1.1959E-4 -110 -1.0002E-3 -65 -3.5930E-3 -20 -1.7049E-2
-199 -4.1275E-8 -154 -1.3411E-4 -109 -1.0256E-3 -64 -3.7246E-3 -19 -1.7752E-2
-198 -2.3716E-7 -153 -1.4987E-4 -108 -1.0513E-3 -63 -3.8478E-3 -18 -1.8396E-2
-197 -5.8325E-7 -152 -1.6662E-4 -107 -1.0774E-3 -62 -3.9743E-3 -17 -1.9097E-2
-196 -1.0666E-6 -151 -1.8413E-4 -106 -1.1036E-3 -61 -4.1015E-3 -16 -1.9810E-2
-195 -1.6776E-6 -150 -2.0225E-4 -105 -1.1300E-3 -60 -4.2270E-3 -15 -2.0575E-2
-194 -2.4075E-6 -149 -2.2239E-4 -104 -1.1565E-3 -59 -4.3936E-3 -14 -2.1364E-2
-193 -3.2485E-6 -148 -2.4265E-4 -103 -1.1830E-3 -58 -4.4943E-3 -13 -2.2108E-2
-192 -4.1927E-6 -147 -2.6363E-4 -102 -1.2094E-3 -57 -4.6534E-3 -12 -2.2903E-2
-191 -5.2330E-6 -146 -2.8507E-4 -101 -1.2384E-3 -56 -4.8055E-3 -11 -2.3699E-2
-190 -6.3624E-6 -145 -3.0682E-4 -100 -1.2656E-3 -55 -4.9620E-3 -10 -2.4490E-2
-189 -7.5769E-6 -144 -3.2875E-4 -99 -1.3118E-3 -54 -5.1295E-3 -9 -2.5381E-2
-188 -8.8773E-6 -143 -3.5072E-4 -98 -1.3234E-3 -53 -5.2895E-3 -8 -2.6111E-2
-187 -1.0257E-5 -142 -3.7264E-4 -97 -1.3574E-3 -52 -5.4567E-3 -7 -2.6931E-2
-186 -1.1710E-5 -141 -3.9440E-4 -96 -1.3948E-3 -51 -5.6276E-3 -6 -2.7752E-2
-185 -1.3230E-5 -140 -4.1592E-4 -95 -1.4350E-3 -50 -5.8072E-3 -5 -2.8572E-2
-184 -1.4811E-5 -139 -4.3716E-4 -94 -1.4783E-3 -49 -6.0256E-3 -4 -2.9386E-2
-183 -1.6448E-5 -138 -4.5823E-4 -93 -1.5223E-3 -48 -6.2159E-3 -3 -3.0192E-2
-182 -1.8134E-5 -137 -4.8052E-4 -92 -1.5682E-3 -47 -6.4213E-3 -2 -3.0988E-2
-181 -1.9867E-5 -136 -5.0178E-4 -91 -1.6152E-3 -46 -6.6318E-3 -1 -3.1771E-2
-180 -2.1640E-5 -135 -5.2256E-4 -90 -1.6627E-3 -45 -6.8501E-3 0 -3.2540E-2
-179 -2.3453E-5 -134 -5.4289E-4 -89 -1.7252E-3 -44 -7.0819E-3
-178 -2.5315E-5 -133 -5.6275E-4 -88 -1.7756E-3 -43 -7.3097E-3
-177 -2.7219E-5 -132 -5.8214E-4 -87 -1.8328E-3 -42 -7.5451E-3
-176 -2.9162E-5 -131 -6.0105E-4 -86 -1.8915E-3 -41 -7.8381E-3
-175 -3.1138E-5 -130 -6.1945E-4 -85 -1.9579E-3 -40 -8.1133E-3
-174 -3.3144E-5 -129 -6.3738E-4 -84 -2.0186E-3 -39 -8.4205E-3
-173 -3.5175E-5 -128 -6.5494E-4 -83 -2.0824E-3 -38 -8.6982E-3
-172 -3.7227E-5 -127 -6.7212E-4 -82 -2.1489E-3 -37 -9.0030E-3
-171 -3.9297E-5 -126 -6.8899E-4 -81 -2.2168E-3 -36 -9.3261E-3
-170 -4.1382E-5 -125 -7.0721E-4 -80 -2.2855E-3 -35 -9.6454E-3
-169 -4.3481E-5 -124 -7.2421E-4 -79 -2.3575E-3 -34 -1.0014E-2
-168 -4.5603E-5 -123 -7.4065E-4 -78 -2.4293E-3 -33 -1.0361E-2
-167 -4.7745E-5 -122 -7.5662E-4 -77 -2.5069E-3 -32 -1.0734E-2
-166 -4.9902E-5 -121 -7.7215E-4 -76 -2.5839E-3 -31 -1.1126E-2
-165 -5.2071E-5 -120 -7.8734E-4 -75 -2.6612E-3 -30 -1.1528E-2
-164 -5.4250E-5 -119 -8.0548E-4 -74 -2.7400E-3 -29 -1.2035E-2
-163 -5.6434E-5 -118 -8.2250E-4 -73 -2.8166E-3 -28 -1.2445E-2
-162 -5.8882E-5 -117 -8.4118E-4 -72 -2.8941E-3 -27 -1.2949E-2
-161 -6.7272E-5 -116 -8.6075E-4 -71 -2.9738E-3 -26 -1.3468E-2
-160 -7.2937E-5 -115 -8.8115E-4 -70 -3.0501E-3 -25 -1.4015E-2
-159 -7.8597E-5 -114 -9.0252E-4 -69 -3.1574E-3 -24 -1.4599E-2
-158 -8.5887E-5 -113 -9.2678E-4 -68 -3.2456E-3 -23 -1.5191E-2
-157 -9.5252E-5 -112 -9.5079E-4 -67 -3.3528E-3 -22 -1.5793E-2
-156 -1.0656E-4 -111 -9.7528E-4 -66 -3.4663E-3 -21 -1.6418E-2
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Table 2. Future biogenic carbon (Cbio) fixation factors in t Cbio yr-1 over a maximum rotation length of 200 years

yr t Cbioꞏyr-1 yr t Cbioꞏyr-1 yr t Cbioꞏyr-1 yr t Cbioꞏyr-1 yr t Cbioꞏyr-1

0 -7.5020E-4 45 -1.2957E-2 90 -2.3455E-3 135 -9.3193E-4 180 -1.3466E-4
1 -7.5679E-4 46 -1.2974E-2 91 -2.3155E-3 136 -9.2938E-4 181 -1.3442E-4
2 -1.3531E-3 47 -1.3033E-2 92 -2.3086E-3 137 -9.2680E-4 182 -1.3418E-4
3 -2.0956E-3 48 -1.2674E-2 93 -2.3016E-3 138 -9.2419E-4 183 -1.3394E-4
4 -2.9539E-3 49 -1.2711E-2 94 -2.2946E-3 139 -9.1815E-4 184 -1.3370E-4
5 -3.9067E-3 50 -1.1308E-2 95 -2.1995E-3 140 -7.1356E-4 185 -1.3345E-4
6 -4.9356E-3 51 -1.0587E-2 96 -2.1943E-3 141 -7.1130E-4 186 -1.3319E-4
7 -6.0243E-3 52 -1.0607E-2 97 -2.1891E-3 142 -7.0902E-4 187 -1.3294E-4
8 -7.1579E-3 53 -1.0622E-2 98 -2.1034E-3 143 -7.0673E-4 188 -1.3268E-4
9 -8.3228E-3 54 -1.0162E-2 99 -2.0981E-3 144 -7.0443E-4 189 -1.3242E-4
10 -9.0555E-3 55 -9.0962E-3 100 -1.8611E-3 145 -6.9905E-4 190 -1.2433E-4
11 -1.0183E-2 56 -9.0878E-3 101 -1.8573E-3 146 -6.9676E-4 191 -1.2408E-4
12 -1.1309E-2 57 -9.0767E-3 102 -1.8535E-3 147 -6.9446E-4 192 -1.2382E-4
13 -1.2424E-2 58 -8.7384E-3 103 -1.8361E-3 148 -6.9214E-4 193 -1.2357E-4
14 -1.3522E-2 59 -8.5835E-3 104 -1.8325E-3 149 -6.8982E-4 194 -1.2331E-4
15 -1.4199E-2 60 -6.8758E-3 105 -1.7964E-3 150 -3.4721E-4 195 -1.2305E-4
16 -1.4211E-2 61 -6.8554E-3 106 -1.7164E-3 151 -3.4443E-4 196 -1.2279E-4
17 -1.5168E-2 62 -6.8281E-3 107 -1.7133E-3 152 -3.4385E-4 197 -1.2252E-4
18 -1.6095E-2 63 -6.8057E-3 108 -1.7102E-3 153 -3.4325E-4 198 -1.2226E-4
19 -1.6991E-2 64 -6.7822E-3 109 -1.7070E-3 154 -3.4265E-4 199 -1.2199E-4
20 -1.6613E-2 65 -5.9234E-3 110 -1.5543E-3 155 -3.4203E-4 200 0.0000E+0
21 -1.7414E-2 66 -5.7354E-3 111 -1.5508E-3 156 -3.4141E-4
22 -1.8183E-2 67 -5.6130E-3 112 -1.5473E-3 157 -3.4078E-4
23 -1.8919E-2 68 -5.5856E-3 113 -1.5437E-3 158 -3.4013E-4
24 -1.9048E-2 69 -5.5578E-3 114 -1.4637E-3 159 -3.3948E-4
25 -1.9275E-2 70 -4.6162E-3 115 -1.4287E-3 160 -1.7288E-4
26 -1.9897E-2 71 -4.5883E-3 116 -1.4258E-3 161 -1.7251E-4
27 -2.0486E-2 72 -4.2611E-3 117 -1.4229E-3 162 -1.7215E-4
28 -2.0696E-2 73 -4.2346E-3 118 -1.4199E-3 163 -1.6366E-4
29 -2.1229E-2 74 -4.2079E-3 119 -1.4169E-3 164 -1.6347E-4
30 -1.7333E-2 75 -4.0691E-3 120 -1.2375E-3 165 -1.6326E-4
31 -1.7711E-2 76 -4.0446E-3 121 -1.2349E-3 166 -1.6305E-4
32 -1.8066E-2 77 -4.0201E-3 122 -1.1819E-3 167 -1.6284E-4
33 -1.8400E-2 78 -3.8910E-3 123 -1.1793E-3 168 -1.6262E-4
34 -1.8480E-2 79 -3.7195E-3 124 -1.1767E-3 169 -1.6239E-4
35 -1.6965E-2 80 -3.3894E-3 125 -1.1693E-3 170 -1.5000E-4
36 -1.6828E-2 81 -3.3698E-3 126 -1.1666E-3 171 -1.4978E-4
37 -1.6287E-2 82 -3.3503E-3 127 -1.1587E-3 172 -1.4956E-4
38 -1.6481E-2 83 -3.3309E-3 128 -1.1561E-3 173 -1.4933E-4
39 -1.6661E-2 84 -3.2260E-3 129 -1.1534E-3 174 -1.4910E-4
40 -1.5169E-2 85 -3.0888E-3 130 -9.4843E-4 175 -1.4887E-4
41 -1.5303E-2 86 -2.7642E-3 131 -9.4595E-4 176 -1.4863E-4
42 -1.5064E-2 87 -2.7536E-3 132 -9.4345E-4 177 -1.4838E-4
43 -1.4534E-2 88 -2.7430E-3 133 -9.4092E-4 178 -1.4813E-4
44 -1.4034E-2 89 -2.7325E-3 134 -9.3837E-4 179 -1.4788E-4
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Appendix F: SM of Paper 3

This Appendix contains the Supplementary Material of Paper 3 (section 5.2): Modelling dynamic soil

organic carbon flows of annual and perennial energy crops to inform energy-transport policy scenarios in

France

1 Pre-treatment of techno-economic data for the coupling

1.1 Details on the biomass commodities outputs from the techno-economic model

The following considered dedicated annual and perennial energy crops, including residues, associated with

the techno-economic outputs of biomass commodity supply the transport sub-sector, are listed in Table 1.

Table 1. Specifications of analysed energy crops in TIMES-MIRET

Country Energy crop Feature Crop type Biomass
commodity

Commodity
type

TIMES-
MIRET Code

France Wheat Annual Grain Starch D BIOSTAWHE
Grain Straw R BIORESWHE

France Rapeseed Annual Oil crops Oil D BIOOILRAP
Straw R BIORESRAP

France Maize Annual Grain Starch D BIOSTACOR
Straw R BIORESCOR

France Sunflower Annual Oil crops Oil D BIOOILSUN
France Triticale Annual Grain Starch D BIOSTATRI

Straw R BIORESTRI
France Sugar beet Annual Vegetable Sugar D BIOSUGFS
France Miscanthus Perennial LGC grass LGC D BIOLGCMIS
France Other LGC

(Switch grass)
Perennial LGC grass LGG D BIOLGCOTH

Brazil Soybean Annual Protein crops Oil D BIOOILSOY

D = Dedicated; R = Residue; LGC = Lignocellulose

1.2 Data on chemical composition of energy crops

Table 2. Nutritional values and equivalent residual fraction

Energy crops Fresh matter Starch Sugar Oil
tꞏt-1 tꞏha-1 tꞏha-1 tꞏha-1

Maize 0.8630 0.6380 0.0170 0.0360 a
Rapeseed 0.9240 0.0360 0.0550 0.4400 a
Wheat 0.8780 0.5630 0.0280 0.0180 a
Triticale 0.8680 0.5880 0.0300 0.0120 a
Sunflower 0.9280 0.0120 0.0250 0.4460 a
Sugar beet N/A N/A 0.1750 N/A b
Soybean 0.8950 0.0520 0.0750 0.1840 a
Sources: a (INRA-CIRAD-AFZ, 2017), b (Zabed et al., 2017)
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1.3 Computation of land occupation requirements

Calculation of land occupation of biomass commodities outputs from the techno-economic model supply

associated with dedicated annual crops and perennial grasses as well as residual straw is carried out by

means of Eq. 1 to Eq. 2. The computation is based on yield proportions (crop products or residual) as well as

corresponding chemical contents (starch, sugar or oil), retained from Table 2.

E q. 1

Eq. 2

Eq. 3

1.4 Computation of final energy supply

1.4.1 Biofuel supply and greenhouse gas emissions

Conversion factors concerning low heating values (LHV) and biofuel yields per biomass commodity and

biofuel pathways, as well as GHG emission factors are estimated from the Well-To-Wheel (WTW) method

for transport fuels by the scientific reference of the European Commission Joint Research Centre (EC-JRC)

(Edwards et al., 2014) and adjusted to wet matter. The latter provides a relevant widely used assessment,

although it does not involve emission from building facilities, vehicle productions nor end-of-life paths

(https://ec.europa.eu/jrc/en/jec/activities/wtw).

Finally, we re-expressed all CO2-eq values into CO2, CH4 and N2O elementary flows based on the

proportional values provided in the EC-JRC report appendices (Edwards et al., 2014) and IPCC Global

Warming Potentials (GWP) factors (Myhre et al., 2013). The fossil-sourced GHG inventories per biomass-

to-biofuel pathway form part of the complete dynamic carbon balance (fossil + biogenic), were assessed with

the dynamic LCA method by Levasseur et al. (2010).

Low heating value (LHV) estimates, in MJꞏkg-1, for bioethanol is 27 and for biodiesel 37 (Edwards et al.,

2014). Yield efficiencies vary for bioethanol between 0.31 and 0.62 kgEthanolꞏkgGrain-1, and less for biodiesel

between 0.99 and 1 MJBiodieselꞏMJOil-1, as shown in Table 3.
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Table 3. Ethanol and Biodiesel yields

Ehtanol Yield Biodiesel Yield

[kgEtOHꞏkgGrain DM-1] [MJBioDSLꞏMJOil-1]

Maize 0.62 Rapeseed 1.019

Wheat 0.31 Soybean 0.999

Sugar beet 0.33 Sunflower 0.999

Dedicated 0.43 HPOFS* 1.006

Straw 0.43

*Hydro-treated pyrolysis oil from straw

1.4.2 Computation of greenhouse gas emissions

The following estimates are based on the carbon neutral approach. GHG emissions of bioethanol vary

considerably among the different commodities, whereas the emission factor for dedicated (22.8 g CO2-eq)

and residual (9.2 g CO2-eq) lignocellulose are lower than from sugar beet (40.3 g CO2-eq), wheat (69.4 g

CO2-eq) or maize (80.3 g CO2-eq). Biodiesel GHG emissions from oleaginous crops range between 46 to 55

g CO2-eq. The emission factor 11.5 g CO2-eq by O’Connell et al., (2019) was considered in the LTECV

scenario for hydro treated pyrolysis of oil from residual straw given pathway. IPCC GWP factors are used: 1

g of CO2-eq per 1 g CO2, 28 g of CO2-eq per 1 g CH4 and 265 g of CO2-eq per 1 g N2O (Myhre et al., 2013).

Table 4. Well-to-wheels GHG emission factors in gCO2eqꞏMJ-1, including carbon dioxide (CO2), methane (CH4) and

nitrous oxides (N2O) proportions

Code g CO2eqꞏMJ-1 CO2 CH4 N2O

EU sugar beet to ethanol SBET1a 40.3 83% 5% 12%

EU wheat to ethanol WTET1a 69.4 70% 4% 25%

Corn (maize) (average used in EU) to ethanol CRET2a 80.31 71% 5% 24%

EU farmed (WF) or waste (WW) wood to ethanol WFET1 22.8 85% 3% 12%

EU wheat straw to ethanol STET1 9.19 94% 3% 3%

Rapeseed to biodiesel (Rapeseed Methyl Ester) ROFA1 53.88 50% 3% 47%

Sunflower to biodiesel (Sunflower seed Methyl Ester) SOFA3 45.9 51% 3% 46%

Soybeans to biodiesel (Soy Methyl ester) SYFA3a 55.13 50% 3% 47%

Source: (Edwards et al., 2014)

2 Soil organic carbon modelling

2.1 Structure of the model

The structure of the two-compartment model adopted from Hénin and Dupuis (1945) is illustrated in Fig. 1
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France Clay-limestone N/A 0.007 b

France N/A Climate Picardie 0.048 c

France limestone Climate Picardie 0.037 c

France Pergamino soil
series

N/A 0.070 e

France Temperate general 0.020 bf

France Mediterranean
general

0.030 bf

Argentina N/A N/A 0.060 g

Brazil N/A N/A 0.100 g

Sources : a. (Saffih-Hdadi and Mary, 2008), b. (Le Villio et al., 2001), c. (Duparque et al.,
2007a) d. (Moreno et al., 2016), e. (Irizar et al., 2015), f. (Henin and Dupuis, 1945) g.
(Piccolo et al., 2008).

To compute the k coefficient we used Eq. 4 of the AMGv2 model (Clivot et al., 2019), dependent on soil

temperature (T), clay content (A) and calcium carbonate (CaCO3):

Eq. 4

with K0 = 0.290 [yr-1].

K0 [yr-1] is the potential mineralisation rate in the reference condition, ranging between 0.165 and 0.290 [yr-

1]. The formulation for temperature in Eq. 5 allows accounting for a quasi-exponential effect of mean

temperature in France (up to 25 ).

Eq. 5

with aT = 25, cT = 0.120K-1 and TRef = 15°C

The effect of clay (A) content [gꞏg-1 soil] on mineralisation is described by an exponential law, according to

Eq. 6, with constant a [gꞏg-1 soil] assumed to be 2.519 (Clivot et al., 2019).

The effect of calcium carbonate (CaCO3) is computed with Eq. 7.

Eq. 7

with cm=1.67 and 1.50 [gꞏg 1 soil]

2.2.1 Soil texture, soil type and climate typology of France

Data for clay contents in France according to main soil texture and types are listed in Table 6.
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Table 6. Clay content according to main soil texture and types in France

Soil texture Soil type Clay (%) Sand (%) Silt (%)
min min min max min max

Clayey Clay 30 55 55 70 55 80
Silty clay 30 55 55 70 80 100
Heavy clay 45 0 0 55 0 100
Sandy clay 25 55 55 75 0 55

Silty Clayey silt 18 70 70 82 85 100
Medium silt 8 82 82 92 85 100
Light silt 0 92 92 100 85 100

Balanced Light sandy silt 0 92 92 100 45 85
Clayey-sandy silt 18 70 70 82 65 85
Medium sandy silt 8 82 82 92 65 85
Sandy silt 8 82 82 92 45 65
Sandy-clayey silt 18 70 70 82 45 65

Sandy Sand 0 90 90 100 0 20
Clayey sand 10 75 75 90 0 45
Silty sand 0 88 88 100 20 45

a) b)

Fig. 3. a) Climate typology of the French territory in 8 classes, adapted from Joly et al. (2010), and b) Calcium

carbonate content [%] concerning calcium carbonate [CaCO3] of agricultural soils in France, adapted from Gis Sol

(2011)

2.2.2 Calculated values for national crops

Mineralisation coefficient k is based on mean clay content and climatic typology computed with Eq. 4 to Eq.

6. Results from the computation are given in Table 7 for all climatic types of France. Assumption for the

coupling: Consideration of the mineralisation constant for type 3 due to the largest area of cereals and oily

seeds production in France.
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Table 7. Climate typology in France with mean temperature, clay and calcium carbonate contents to calculate the soil

mineralisation coefficient

Type Name Temperatur
e [°C]

Clay
[%]

Calcium
carbonate [%]

Minerasilsation
coefficient (k) [y-1]

Type 1 Mountain climate 9 18.5 5 0.0841
Type 2 Semi-continental climate and

mountain margin climate
10 25.2 5 0.0799

Type 3 Degraded oceanic climate of the
Central and Northern Plains

11 16.8 1 0.1176

Type 4 Altered oceanic climate 12.5 22.0 5 0.1160
Type 5 Oceanic climate 12.5 14.9 1 0.1470
Type 6 Altered Mediterranean climate 12.5 15.6 35 0.0961
Type 7 Climate of the South-western Basin 13 42.6 5 0.0731
Type 8 Mediterranean climate 13 15.6 35 0.1018

2.2.3 Calculated values for imported soybean

The k coefficient of imported soybean is also based Eq. 4 to Eq. 6, with reference soil temperature at 27°C,

representing about 2°C higher temperature of surface soils in soybean cropland (Nagy et al., 2018).

Table 8. Mean temperature and clay content to calculate the mineralisation coefficient

Country Crop Temperature [°C] Clay
[%]

Calcium
carbonate [%]

Mineralisation
coefficient (k) [y-1]

Brazil Soybean 25 43 4 0.07332
Sources: (Ensinas et al., 2016; Nagy et al., 2018)

3. Calculation of plant carbon allocation and soil organic carbon inputs

3.1 Relative plant C allocation coefficients

Eq. 3
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Table 9. Relative plant carbon (C) allocation coefficients

Crop Yield a Relative plant C allocation coefficients b

Yi [t ha-1] RP RS RR RE
Wheat 6.410 0.298 0.426 0.166 0.11
Rapeseed 11.980 0.107 0.576 0.191 0.126
Maize 22.788 0.325 0.352 0.194 0.129
Sunflower 3.655 0.360 0.540 0.100 0.000
Triticale 3.479 0.260 0.506 0.142 0.092
Sugar beet 95.240 0.872 0.048 0.048 0.032
Soybean 2.720 0.304 0.455 0.146 0.095
Miscanthus 15.714 0.268 0.303 0.322 0.107
Switchgrass (proxy
grass species)

5.190 0.441 0.000 0.308 0.200

Sources: a (Besnard et al. 2014; Strullu et al. 2014; Cattelan and Dall’Agnol 2018; AGRESTE 2019), b (Bolinder et
al. 2007b; Strullu 2011; Strullu et al. 2014; Wiesmeier et al. 2014 (from 1995 to 2010); Agostini et al. 2015; Carvalho
et al. 2017), for miscanthus aboveground inputs between 40% and 67% (Carvalho et al., 2017; Strullu, 2011; Strullu et
al., 2014) and perennial belowground proportions of rhizomes 75% and roots 25% (Agostini et al., 2015).
Descriptions of sub-indices: P - agricultural aboveground product, S - residual aboveground compartment, R -
root/rhizome tissue, E - extra-root material

3.2 Net primary productivity

The C proportion in four plant fractions is defined by Eq. 9 (M. A. Bolinder et al., 2007):

Eq. 4

For this study, the carbon content of the product was calculated from mean annual yield values of the

product and the respective carbon content given in Eq. 10. The proportions of the other crop plant

fractions are estimated by means of the relative plant C allocation coefficients Table 9 respectively applying

Eq. 11 to Eq. 13 (Wiesmeier et al., 2014).

Eq. 10

Eq. 11

Eq.12

Eq. 13

3.3 Details on exogenous inputs

Organic soil amendment/fertiliser input is estimated based on the following data and assumptions.
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Table10. N content of main organic fertilisers used in France

Organic amendments use in France

(contribution)

Average

N

content

% kgꞏt-1

Cattle manure and slurry 59% a 4.4 b

Poultry manure and droppings 11% a 17.4 b

Swine manure and slurry 10% a 5.4 b

Others (compost as proxy) 20% a 11.6 b

Sources: a (AGRESTE, 2014), b (Avadí, 2019)

Table 11. National French averages of N inputs to crops (representing the organic fertiliser inputs to the average ha of

crop)

N
requirements
of crops
from
exclusively
mineral
sources

N
require
ments of
crops
from
mineral
sources

N
requireme
nts of
crops from
organic
sources

Cattle
manure
and slurry
delivered

Poultry
manure
and
droppings
delivered

Swine
manure
and slurry
delivered

Compost
delivered

Percentage
of crops
applying
organic
fertilisers

kgꞏha-1 kgꞏha-1 tꞏha-1 tꞏha-1 tꞏha-1 tꞏha-1 tꞏha-1 %

Wheat 169 140 81 0.82 0.04 0.11 0.10 8%
Triticale 107 87 122 5.26 0.25 0.72 0.67 32%
Maize 133 92.5 144 11.07 0.52 1.51 1.41 57%
Rapeseed 169 153 87 3.99 0.19 0.55 0.51 34%
Sugar beet 123 95 126 9.52 0.45 1.30 1.21 56%
Sunflower 56 45 124 2.84 0.13 0.39 0.36 17%
Miscanthus 52 21 31 1.51 0.07 0.21 0.19 36%
Switch grass 65 38 27 0.98 0.05 0.13 0.13 27%

Sources a a a b b b b a
Sources: a (AGRESTE, 2014), b Computed from average N contents, % of crops applying organic fertilisation, and
contribution of organic fertilisers to national use Table 11

The input of organic fertiliser (i) per energy crop (j) is computed by means of Eq. 14:

Eq. 14

3.4 Correction factor for carbon inputs to the soil

The carbon inputs per plant fraction may be adjusted by means of correction factors (S), according to

Eq. 15 (Wiesmeier et al., 2012) as not all the crop plant fractions return to the soil.

Eq. 15







Appendices

Ariane Albers 369

Table 13. Scenario 2 SOC flows [t Cꞏha-1 ꞏyr-1]

Annual Crops Perennial grasses
yr Total

Annual
Wheat Rape-seed Maize Sun-

flower
Triticale Sugar beet Soy-bean Miscan-

thus
Switch
grass

-20 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-19 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-18 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-17 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-16 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-15 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-14 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-13 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-12 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-11 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-10 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-9 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-8 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-7 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-6 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-5 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-4 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-3 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-2 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
-1 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0 0.000E+0
0 -2.457E-1 -4.193E-1 -1.248E+0 -5.170E-1 -1.795E-1 -3.180E-1 -1.903E-1 -1.932E+0 -5.645E+0 0.000E+0
1 2.889E-2 4.931E-2 1.468E-1 6.080E-2 2.111E-2 3.740E-2 2.239E-2 1.417E-1 6.639E-1 0.000E+0
2 2.549E-2 4.351E-2 1.295E-1 5.365E-2 1.863E-2 3.300E-2 1.975E-2 1.313E-1 5.858E-1 0.000E+0
3 2.250E-2 3.839E-2 1.143E-1 4.734E-2 1.644E-2 2.912E-2 1.743E-2 1.217E-1 5.169E-1 0.000E+0
4 1.985E-2 3.388E-2 1.009E-1 4.177E-2 1.451E-2 2.570E-2 1.538E-2 1.127E-1 4.561E-1 0.000E+0
5 1.752E-2 2.989E-2 8.900E-2 3.686E-2 1.280E-2 2.267E-2 1.357E-2 1.045E-1 4.025E-1 0.000E+0
6 1.546E-2 2.638E-2 7.853E-2 3.253E-2 1.129E-2 2.001E-2 1.198E-2 9.681E-2 3.551E-1 0.000E+0
7 1.364E-2 2.328E-2 6.929E-2 2.870E-2 9.966E-3 1.765E-2 1.057E-2 8.971E-2 3.134E-1 0.000E+0
8 1.203E-2 2.054E-2 6.114E-2 2.532E-2 8.794E-3 1.558E-2 9.324E-3 8.314E-2 2.765E-1 0.000E+0
9 1.062E-2 1.812E-2 5.395E-2 2.235E-2 7.760E-3 1.375E-2 8.228E-3 7.704E-2 2.440E-1 0.000E+0
10 9.370E-3 1.599E-2 4.761E-2 1.972E-2 6.847E-3 1.213E-2 7.260E-3 7.139E-2 2.153E-1 0.000E+0
11 8.268E-3 1.411E-2 4.201E-2 1.740E-2 6.042E-3 1.070E-2 6.406E-3 6.616E-2 1.900E-1 0.000E+0
12 7.295E-3 1.245E-2 3.707E-2 1.535E-2 5.331E-3 9.444E-3 5.653E-3 6.131E-2 1.676E-1 0.000E+0
13 6.437E-3 1.099E-2 3.271E-2 1.355E-2 4.704E-3 8.333E-3 4.988E-3 5.681E-2 1.479E-1 0.000E+0
14 5.680E-3 9.695E-3 2.886E-2 1.195E-2 4.151E-3 7.353E-3 4.401E-3 5.264E-2 1.305E-1 0.000E+0
15 5.012E-3 8.554E-3 2.547E-2 1.055E-2 3.663E-3 6.488E-3 3.884E-3 4.878E-2 1.152E-1 0.000E+0
16 4.423E-3 7.548E-3 2.247E-2 9.307E-3 3.232E-3 5.725E-3 3.427E-3 4.521E-2 1.016E-1 0.000E+0
17 3.903E-3 6.661E-3 1.983E-2 8.213E-3 2.852E-3 5.052E-3 3.024E-3 4.189E-2 8.967E-2 0.000E+0
18 3.444E-3 5.877E-3 1.750E-2 7.247E-3 2.516E-3 4.458E-3 2.668E-3 3.882E-2 7.912E-2 0.000E+0
19 3.039E-3 5.186E-3 1.544E-2 6.395E-3 2.220E-3 3.934E-3 2.354E-3 3.597E-2 6.982E-2 0.000E+0
20 2.681E-3 4.576E-3 1.362E-2 5.643E-3 1.959E-3 3.471E-3 2.077E-3 3.334E-2 6.161E-2 0.000E+0
21 2.366E-3 4.038E-3 1.202E-2 4.979E-3 1.729E-3 3.063E-3 1.833E-3 3.089E-2 5.436E-2 0.000E+0
22 2.088E-3 3.563E-3 1.061E-2 4.393E-3 1.526E-3 2.703E-3 1.618E-3 2.863E-2 4.797E-2 0.000E+0
23 1.842E-3 3.144E-3 9.360E-3 3.877E-3 1.346E-3 2.385E-3 1.427E-3 2.653E-2 4.233E-2 0.000E+0
24 1.625E-3 2.774E-3 8.259E-3 3.421E-3 1.188E-3 2.104E-3 1.259E-3 2.458E-2 3.735E-2 0.000E+0
25 1.434E-3 2.448E-3 7.288E-3 3.018E-3 1.048E-3 1.857E-3 1.111E-3 2.278E-2 3.296E-2 0.000E+0
26 1.266E-3 2.160E-3 6.431E-3 2.663E-3 9.248E-4 1.638E-3 9.806E-4 2.111E-2 2.908E-2 0.000E+0
27 1.117E-3 1.906E-3 5.674E-3 2.350E-3 8.161E-4 1.446E-3 8.653E-4 1.956E-2 2.566E-2 0.000E+0
28 9.854E-4 1.682E-3 5.007E-3 2.074E-3 7.201E-4 1.276E-3 7.635E-4 1.813E-2 2.264E-2 0.000E+0
29 8.695E-4 1.484E-3 4.418E-3 1.830E-3 6.354E-4 1.126E-3 6.737E-4 1.680E-2 1.998E-2 0.000E+0
30 7.672E-4 1.309E-3 3.898E-3 1.615E-3 5.607E-4 9.932E-4 5.945E-4 1.557E-2 1.763E-2 0.000E+0
31 6.770E-4 1.155E-3 3.440E-3 1.425E-3 4.947E-4 8.764E-4 5.246E-4 1.443E-2 1.556E-2 0.000E+0
32 5.974E-4 1.020E-3 3.035E-3 1.257E-3 4.365E-4 7.733E-4 4.629E-4 1.337E-2 1.373E-2 0.000E+0
33 5.271E-4 8.997E-4 2.678E-3 1.109E-3 3.852E-4 6.824E-4 4.084E-4 1.239E-2 1.211E-2 0.000E+0
34 4.651E-4 7.938E-4 2.363E-3 9.789E-4 3.399E-4 6.021E-4 3.604E-4 1.148E-2 1.069E-2 0.000E+0
35 4.104E-4 7.005E-4 2.085E-3 8.637E-4 2.999E-4 5.313E-4 3.180E-4 1.064E-2 9.430E-3 0.000E+0
36 3.622E-4 6.181E-4 1.840E-3 7.622E-4 2.647E-4 4.688E-4 2.806E-4 9.857E-3 8.321E-3 0.000E+0
37 3.196E-4 5.454E-4 1.624E-3 6.725E-4 2.335E-4 4.137E-4 2.476E-4 9.135E-3 7.343E-3 0.000E+0
38 2.820E-4 4.813E-4 1.433E-3 5.934E-4 2.061E-4 3.650E-4 2.185E-4 8.465E-3 6.479E-3 0.000E+0
39 2.488E-4 4.247E-4 1.264E-3 5.236E-4 1.818E-4 3.221E-4 1.928E-4 7.844E-3 5.717E-3 0.000E+0
40 2.196E-4 3.747E-4 1.116E-3 4.620E-4 1.604E-4 2.842E-4 1.701E-4 7.269E-3 5.045E-3 0.000E+0
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3 2.980E-2 4.975E-2 1.258E-1 8.688E-2 6.044E-3 2.693E-2 2.905E-2 6.444E-2 -1.290E+0 -7.463E-1
4 2.630E-2 4.390E-2 1.110E-1 7.666E-2 5.333E-3 2.377E-2 2.563E-2 5.971E-2 -9.051E-1 -4.431E-1
5 2.320E-2 3.874E-2 9.796E-2 6.765E-2 4.706E-3 2.097E-2 2.262E-2 5.534E-2 -5.465E-1 -1.583E-1
6 2.048E-2 3.418E-2 8.644E-2 5.969E-2 4.152E-3 1.851E-2 1.996E-2 5.128E-2 -2.113E-1 1.102E-1
7 1.807E-2 3.016E-2 7.627E-2 5.267E-2 3.664E-3 1.633E-2 1.761E-2 4.752E-2 1.032E-1 3.644E-1
8 1.594E-2 2.661E-2 6.730E-2 4.648E-2 3.233E-3 1.441E-2 1.554E-2 4.403E-2 3.993E-1 6.059E-1
9 1.407E-2 2.348E-2 5.939E-2 4.101E-2 2.853E-3 1.271E-2 1.371E-2 4.081E-2 6.793E-1 8.363E-1
10 1.241E-2 2.072E-2 5.240E-2 3.619E-2 2.517E-3 1.122E-2 1.210E-2 3.781E-2 9.450E-1 1.057E+0
11 1.095E-2 1.828E-2 4.624E-2 3.193E-2 2.221E-3 9.899E-3 1.068E-2 3.504E-2 1.198E+0 1.269E+0
12 9.665E-3 1.613E-2 4.080E-2 2.818E-2 1.960E-3 8.735E-3 9.421E-3 3.247E-2 1.440E+0 1.473E+0
13 8.528E-3 1.424E-2 3.600E-2 2.486E-2 1.729E-3 7.708E-3 8.313E-3 3.009E-2 1.673E+0 1.670E+0
14 7.525E-3 1.256E-2 3.177E-2 2.194E-2 1.526E-3 6.801E-3 7.335E-3 2.788E-2 1.896E+0 1.861E+0
15 6.640E-3 1.108E-2 2.803E-2 1.936E-2 1.347E-3 6.001E-3 6.473E-3 2.584E-2 2.112E+0 1.642E+0
16 5.859E-3 9.781E-3 2.473E-2 1.708E-2 1.188E-3 5.295E-3 5.711E-3 2.394E-2 2.322E+0 1.449E+0
17 5.170E-3 8.631E-3 2.183E-2 1.507E-2 1.048E-3 4.673E-3 5.040E-3 2.219E-2 2.525E+0 1.279E+0
18 4.562E-3 7.616E-3 1.926E-2 1.330E-2 9.252E-4 4.123E-3 4.447E-3 2.056E-2 2.723E+0 1.128E+0
19 4.026E-3 6.720E-3 1.699E-2 1.174E-2 8.164E-4 3.638E-3 3.924E-3 1.905E-2 2.917E+0 9.957E-1
20 3.552E-3 5.930E-3 1.500E-2 1.036E-2 7.203E-4 3.210E-3 3.462E-3 1.766E-2 2.573E+0 8.786E-1
21 3.134E-3 5.232E-3 1.323E-2 9.137E-3 6.356E-4 2.833E-3 3.055E-3 1.636E-2 2.271E+0 7.753E-1
22 2.766E-3 4.617E-3 1.168E-2 8.063E-3 5.609E-4 2.500E-3 2.696E-3 1.516E-2 2.004E+0 6.841E-1
23 2.440E-3 4.074E-3 1.030E-2 7.115E-3 4.949E-4 2.206E-3 2.379E-3 1.405E-2 1.768E+0 6.036E-1
24 2.153E-3 3.595E-3 9.091E-3 6.278E-3 4.367E-4 1.946E-3 2.099E-3 1.302E-2 1.560E+0 5.326E-1
25 1.900E-3 3.172E-3 8.021E-3 5.539E-3 3.853E-4 1.717E-3 1.852E-3 1.207E-2 1.377E+0 4.700E-1
26 1.677E-3 2.799E-3 7.078E-3 4.888E-3 3.400E-4 1.515E-3 1.634E-3 1.118E-2 1.215E+0 4.147E-1
27 1.479E-3 2.470E-3 6.246E-3 4.313E-3 3.000E-4 1.337E-3 1.442E-3 1.036E-2 1.072E+0 3.659E-1
28 1.305E-3 2.179E-3 5.511E-3 3.806E-3 2.647E-4 1.180E-3 1.273E-3 9.602E-3 9.458E-1 3.229E-1
29 1.152E-3 1.923E-3 4.863E-3 3.358E-3 2.336E-4 1.041E-3 1.123E-3 8.898E-3 8.346E-1 2.849E-1
30 1.016E-3 1.697E-3 4.291E-3 2.963E-3 2.061E-4 9.186E-4 9.908E-4 8.245E-3 7.364E-1 2.514E-1
31 8.969E-4 1.497E-3 3.786E-3 2.615E-3 1.819E-4 8.106E-4 8.743E-4 7.641E-3 6.498E-1 2.218E-1
32 7.914E-4 1.321E-3 3.341E-3 2.307E-3 1.605E-4 7.153E-4 7.715E-4 7.080E-3 5.734E-1 1.958E-1
33 6.983E-4 1.166E-3 2.948E-3 2.036E-3 1.416E-4 6.311E-4 6.807E-4 6.561E-3 5.060E-1 1.727E-1
34 6.162E-4 1.029E-3 2.601E-3 1.796E-3 1.250E-4 5.569E-4 6.007E-4 6.080E-3 4.464E-1 1.524E-1
35 5.437E-4 9.077E-4 2.295E-3 1.585E-3 1.103E-4 4.914E-4 5.300E-4 5.634E-3 3.939E-1 1.345E-1
36 4.798E-4 8.009E-4 2.025E-3 1.399E-3 9.730E-5 4.336E-4 4.677E-4 5.221E-3 3.476E-1 1.187E-1
37 4.234E-4 7.067E-4 1.787E-3 1.234E-3 8.585E-5 3.826E-4 4.127E-4 4.838E-3 3.067E-1 1.047E-1
38 3.736E-4 6.236E-4 1.577E-3 1.089E-3 7.576E-5 3.376E-4 3.641E-4 4.484E-3 2.707E-1 9.240E-2
39 3.296E-4 5.503E-4 1.392E-3 9.610E-4 6.685E-5 2.979E-4 3.213E-4 4.155E-3 2.388E-1 8.153E-2
40 2.909E-4 4.855E-4 1.228E-3 8.480E-4 5.899E-5 2.629E-4 2.835E-4 3.850E-3 2.107E-1 7.194E-2
41 2.567E-4 4.284E-4 1.083E-3 7.482E-4 5.205E-5 2.320E-4 2.502E-4 3.568E-3 1.859E-1 6.348E-2
42 2.265E-4 3.781E-4 9.560E-4 6.602E-4 4.593E-5 2.047E-4 2.208E-4 3.306E-3 1.641E-1 5.602E-2
43 1.998E-4 3.336E-4 8.436E-4 5.826E-4 4.053E-5 1.806E-4 1.948E-4 3.064E-3 1.448E-1 4.943E-2
44 1.763E-4 2.944E-4 7.444E-4 5.141E-4 3.576E-5 1.594E-4 1.719E-4 2.839E-3 1.278E-1 4.362E-2
45 1.556E-4 2.597E-4 6.568E-4 4.536E-4 3.155E-5 1.406E-4 1.517E-4 2.631E-3 1.127E-1 3.849E-2
46 1.373E-4 2.292E-4 5.796E-4 4.003E-4 2.784E-5 1.241E-4 1.338E-4 2.438E-3 9.947E-2 3.396E-2
47 1.211E-4 2.022E-4 5.114E-4 3.532E-4 2.457E-5 1.095E-4 1.181E-4 2.259E-3 8.777E-2 2.997E-2
48 1.069E-4 1.784E-4 4.513E-4 3.116E-4 2.168E-5 9.661E-5 1.042E-4 2.094E-3 7.745E-2 2.644E-2
49 9.433E-5 1.575E-4 3.982E-4 2.750E-4 1.913E-5 8.525E-5 9.195E-5 1.940E-3 6.834E-2 2.333E-2
50 8.323E-5 1.389E-4 3.514E-4 2.426E-4 1.688E-5 7.522E-5 8.113E-5 1.798E-3 6.030E-2 2.059E-2
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11 1.179E-2 1.359E-3 6.616E-3 1.836E-2 4.715E-3 8.732E-3 5.787E-2 0.000E+0 9.153E-3 5.979E-3
12 1.040E-2 1.199E-3 5.838E-3 1.620E-2 4.160E-3 7.705E-3 5.106E-2 0.000E+0 8.076E-3 5.276E-3
13 9.179E-3 1.058E-3 5.151E-3 1.429E-2 3.671E-3 6.799E-3 4.506E-2 0.000E+0 7.126E-3 4.655E-3
14 8.099E-3 9.336E-4 4.546E-3 1.261E-2 3.239E-3 5.999E-3 3.976E-2 0.000E+0 6.288E-3 4.108E-3
15 7.147E-3 8.238E-4 4.011E-3 1.113E-2 2.858E-3 5.294E-3 3.508E-2 0.000E+0 5.549E-3 3.625E-3
16 6.306E-3 7.269E-4 3.539E-3 9.821E-3 2.522E-3 4.671E-3 3.096E-2 0.000E+0 4.896E-3 3.198E-3
17 5.564E-3 6.414E-4 3.123E-3 8.666E-3 2.226E-3 4.122E-3 2.732E-2 0.000E+0 4.320E-3 2.822E-3
18 4.910E-3 5.660E-4 2.756E-3 7.647E-3 1.964E-3 3.637E-3 2.410E-2 0.000E+0 3.812E-3 2.490E-3
19 4.333E-3 4.994E-4 2.432E-3 6.747E-3 1.733E-3 3.209E-3 2.127E-2 0.000E+0 3.364E-3 2.197E-3
20 3.823E-3 4.407E-4 2.146E-3 5.954E-3 1.529E-3 2.832E-3 1.877E-2 0.000E+0 2.968E-3 1.939E-3
21 3.373E-3 3.888E-4 1.893E-3 5.254E-3 1.349E-3 2.499E-3 1.656E-2 0.000E+0 2.619E-3 1.711E-3
22 2.977E-3 3.431E-4 1.671E-3 4.636E-3 1.191E-3 2.205E-3 1.461E-2 0.000E+0 2.311E-3 1.510E-3
23 2.627E-3 3.028E-4 1.474E-3 4.091E-3 1.051E-3 1.946E-3 1.289E-2 0.000E+0 2.039E-3 1.332E-3
24 2.318E-3 2.671E-4 1.301E-3 3.609E-3 9.270E-4 1.717E-3 1.138E-2 0.000E+0 1.799E-3 1.175E-3
25 2.045E-3 2.357E-4 1.148E-3 3.185E-3 8.180E-4 1.515E-3 1.004E-2 0.000E+0 1.588E-3 1.037E-3
26 1.805E-3 2.080E-4 1.013E-3 2.810E-3 7.218E-4 1.337E-3 8.858E-3 0.000E+0 1.401E-3 9.152E-4
27 1.592E-3 1.835E-4 8.937E-4 2.480E-3 6.369E-4 1.179E-3 7.816E-3 0.000E+0 1.236E-3 8.076E-4
28 1.405E-3 1.620E-4 7.886E-4 2.188E-3 5.620E-4 1.041E-3 6.897E-3 0.000E+0 1.091E-3 7.126E-4
29 1.240E-3 1.429E-4 6.958E-4 1.931E-3 4.959E-4 9.184E-4 6.086E-3 0.000E+0 9.626E-4 6.288E-4
30 1.094E-3 1.261E-4 6.140E-4 1.704E-3 4.376E-4 8.103E-4 5.370E-3 0.000E+0 8.494E-4 5.548E-4
31 9.653E-4 1.113E-4 5.418E-4 1.503E-3 3.861E-4 7.150E-4 4.739E-3 0.000E+0 7.495E-4 4.896E-4
32 8.518E-4 9.818E-5 4.781E-4 1.327E-3 3.407E-4 6.309E-4 4.181E-3 0.000E+0 6.613E-4 4.320E-4
33 7.516E-4 8.663E-5 4.218E-4 1.171E-3 3.006E-4 5.567E-4 3.690E-3 0.000E+0 5.836E-4 3.812E-4
34 6.632E-4 7.645E-5 3.722E-4 1.033E-3 2.653E-4 4.913E-4 3.256E-3 0.000E+0 5.149E-4 3.364E-4
35 5.852E-4 6.745E-5 3.284E-4 9.114E-4 2.341E-4 4.335E-4 2.873E-3 0.000E+0 4.544E-4 2.968E-4
36 5.164E-4 5.952E-5 2.898E-4 8.042E-4 2.065E-4 3.825E-4 2.535E-3 0.000E+0 4.009E-4 2.619E-4
37 4.557E-4 5.252E-5 2.557E-4 7.096E-4 1.822E-4 3.375E-4 2.237E-3 0.000E+0 3.538E-4 2.311E-4
38 4.021E-4 4.634E-5 2.257E-4 6.262E-4 1.608E-4 2.978E-4 1.974E-3 0.000E+0 3.122E-4 2.039E-4
39 3.548E-4 4.089E-5 1.991E-4 5.525E-4 1.419E-4 2.628E-4 1.742E-3 0.000E+0 2.754E-4 1.799E-4
40 3.131E-4 3.608E-5 1.757E-4 4.875E-4 1.252E-4 2.319E-4 1.537E-3 0.000E+0 2.431E-4 1.588E-4
41 2.762E-4 3.184E-5 1.550E-4 4.302E-4 1.105E-4 2.046E-4 1.356E-3 0.000E+0 2.145E-4 1.401E-4
42 2.437E-4 2.810E-5 1.368E-4 3.796E-4 9.749E-5 1.806E-4 1.197E-3 0.000E+0 1.892E-4 1.236E-4
43 2.151E-4 2.479E-5 1.207E-4 3.350E-4 8.602E-5 1.593E-4 1.056E-3 0.000E+0 1.670E-4 1.091E-4
44 1.898E-4 2.188E-5 1.065E-4 2.956E-4 7.591E-5 1.406E-4 9.316E-4 0.000E+0 1.473E-4 9.625E-5
45 1.675E-4 1.930E-5 9.399E-5 2.608E-4 6.698E-5 1.240E-4 8.221E-4 0.000E+0 1.300E-4 8.493E-5
46 1.478E-4 1.703E-5 8.293E-5 2.301E-4 5.910E-5 1.095E-4 7.254E-4 0.000E+0 1.147E-4 7.494E-5
47 1.304E-4 1.503E-5 7.318E-5 2.031E-4 5.215E-5 9.658E-5 6.401E-4 0.000E+0 1.012E-4 6.613E-5
48 1.151E-4 1.326E-5 6.457E-5 1.792E-4 4.602E-5 8.522E-5 5.648E-4 0.000E+0 8.933E-5 5.835E-5
49 1.015E-4 1.170E-5 5.698E-5 1.581E-4 4.061E-5 7.520E-5 4.984E-4 0.000E+0 7.882E-5 5.149E-5
50 8.958E-5 1.033E-5 5.028E-5 1.395E-4 3.583E-5 6.636E-5 4.397E-4 0.000E+0 6.955E-5 4.543E-5

4.5 Comparison of all scenarios

Fig. 8. SOC flows [tꞏCꞏha-1ꞏyr-1] per perennial energy crops and per management-driven variations
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Appendix G: SM of Manuscript 5

This Appendix contains the Supplementary Material of Manuscript 4 (5.3): Full lifetime dynamic

biogenic carbon modelling of oil palm applied to biochemical surfactant

1 Biomass proportions

Table 1. Biomass values and its proportions per crop fraction

Crop fractions Biomass [t ha-1] Proportion [%]

Stem 38.8 29%
FFB 22.9 38%

CPO 6.8 19%
POME 15.8 17%
EFB 6.0 43%
MFF 1.8 11%
PKS 0.7 5%

FBB 11.6 15%
Shed FBB 1.4 1.8%
MIPB 0.4 0.4%
Roots 13 15%
Total 82 100%

2 Biogenic carbon fixation during biomass growth

Table 2. Oil palm growth and carbon fixation per crop fraction (tree organs)

Age H DBH Stem FBB Shed FBB MIPB FFB Root Total
[yr] [m] [cm] [t Cꞏha-1] [t Cꞏha-1] [t Cꞏha-1] [t Cꞏha-1] [t Cꞏha-1] [t Cꞏha-1] [t Cꞏha-1]
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1251 76.8829 0.1573 0.0000 0.0000 0.0000 5.1655 2.9676 8.2904
2 0.3636 76.1941 0.4866 0.0000 0.0000 0.0000 8.2392 3.1292 11.8550
3 0.6712 75.5114 0.9504 0.6015 0.0000 0.0195 11.3225 3.2995 16.1934
4 1.0289 74.8349 1.5337 1.7429 0.0000 0.0320 13.6622 3.4791 20.4498
5 1.4247 74.1644 2.2256 2.7981 0.0000 0.0448 15.0890 3.6684 23.8261
6 1.8499 73.4999 3.0167 3.7672 0.0000 0.0582 15.8464 3.8681 26.5566
7 2.2980 72.8414 3.8980 4.6501 0.0592 0.0720 16.2190 4.0787 28.9769
8 2.7636 72.1887 4.8612 5.4467 0.1736 0.0862 16.3954 4.3007 31.2638
9 3.2426 71.5419 5.8980 6.1572 0.2853 0.1009 16.4774 4.5347 33.4536
10 3.7313 70.9010 7.0004 6.7815 0.3944 0.1160 16.5152 4.7816 35.5891
11 4.2267 70.2657 8.1607 7.3197 0.5007 0.1316 16.5325 5.0418 37.6871
12 4.7264 69.6362 9.3715 7.7716 0.6044 0.1476 16.5405 5.3163 39.7518
13 5.2281 69.0122 10.6257 8.1373 0.7053 0.1641 16.5441 5.6056 41.7821
14 5.7301 68.3939 11.9163 8.4169 0.8036 0.1810 16.5458 5.9107 43.7743
15 6.2308 67.7811 13.2371 8.6103 0.8991 0.1984 16.5466 6.2324 45.7238
16 6.7288 67.1738 14.5817 8.7174 0.9920 0.2162 16.5469 6.5717 47.6259
17 7.2230 66.5720 15.9445 8.7384 1.0822 0.2344 16.5471 6.9294 49.4760
18 7.7125 65.9755 17.3201 8.6733 1.1697 0.2531 16.5472 7.3065 51.2698
19 8.1962 65.3844 18.7032 8.5219 1.2544 0.2723 16.5472 7.7042 53.0032
20 8.6736 64.7986 20.0893 8.2843 1.3365 0.2919 16.5472 8.1236 54.6727
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21 9.1441 64.2180 21.4738 7.9606 1.4159 0.3119 16.5472 8.5657 56.2751
22 9.6071 63.6427 22.8527 7.5506 1.4927 0.3324 16.5472 9.0320 57.8076
23 10.0621 63.0724 24.2223 7.0545 1.5667 0.3533 16.5472 9.5236 59.2676
24 10.5090 62.5073 25.5792 6.4722 1.6380 0.3747 16.5472 10.0419 60.6532
25 10.9473 61.9473 26.9201 5.8037 1.7066 0.3965 16.5472 10.5885 61.9626

3 Biogenic carbon to the soil

Table 3. Soil organic carbon balance

TimeLeaflets Rachis Petiole Stem
(shred)

Roots POME EFB MFF MIPB

[yr] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ] [t C ha-1 ]
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 -0.0419 -0.0436 -0.0606 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0419
4 -0.1523 -0.1624 -0.2272 0.0000 0.0000 -4.4375 -1.6832 -1.1476 -0.1523
5 -0.3074 -0.3416 -0.4752 0.0000 0.0000 -8.1846 -3.1045 -2.1167 -0.3074
6 -0.4897 -0.5678 -0.7836 0.0000 0.0000 -11.2036 -4.2496 -2.8975 -0.4897
7 -0.6912 -0.8348 -1.1423 0.0000 0.0000 -13.5586 -5.1429 -3.5065 -0.6912
8 -0.9057 -1.1363 -1.5418 0.0000 0.0000 -15.3585 -5.8257 -3.9720 -0.9057
9 -1.1236 -1.4621 -1.9672 0.0000 0.0000 -16.7172 -6.3410 -4.3234 -1.1236
10 -1.3377 -1.8030 -2.4054 0.0000 0.0000 -17.7348 -6.7270 -4.5866 -1.3377
11 -1.5429 -2.1511 -2.8455 0.0000 0.0000 -18.4936 -7.0148 -4.7828 -1.5429
12 -1.7353 -2.4993 -3.2782 0.0000 0.0000 -19.0576 -7.2287 -4.9287 -1.7353
13 -1.9118 -2.8414 -3.6956 0.0000 0.0000 -19.4761 -7.3875 -5.0369 -1.9118
14 -2.0705 -3.1719 -4.0909 0.0000 0.0000 -19.7864 -7.5052 -5.1172 -2.0705
15 -2.2096 -3.4860 -4.4585 0.0000 0.0000 -20.0163 -7.5924 -5.1766 -2.2096
16 -2.3282 -3.7795 -4.7934 0.0000 0.0000 -20.1865 -7.6569 -5.2206 -2.3282
17 -2.4252 -4.0487 -5.0916 0.0000 0.0000 -20.3125 -7.7047 -5.2532 -2.4252
18 -2.5001 -4.2903 -5.3495 0.0000 0.0000 -20.4058 -7.7401 -5.2774 -2.5001
19 -2.5523 -4.5014 -5.5641 0.0000 0.0000 -20.4748 -7.7663 -5.2952 -2.5523
20 -2.5816 -4.6795 -5.7330 0.0000 0.0000 -20.5259 -7.7857 -5.3084 -2.5816
21 -2.5876 -4.8224 -5.8539 0.0000 0.0000 -20.5637 -7.8000 -5.3182 -2.5876
22 -2.5702 -4.9280 -5.9250 0.0000 0.0000 -20.5917 -7.8106 -5.3254 -2.5702
23 -2.5293 -4.9947 -5.9447 0.0000 0.0000 -20.6124 -7.8185 -5.3308 -2.5293
24 -2.4646 -5.0209 -5.9118 0.0000 0.0000 -20.6277 -7.8243 -5.3347 -2.4646
25 -2.4772 -5.0053 -5.9713 -8.0760 -3.1765 -20.6390 -7.8286 -5.3377 -2.4772
26 -1.8331 -4.4046 -5.0756 -7.1877 -2.9542 -15.2729 -5.7932 -3.9499 -1.8331
27 -1.3565 -3.8761 -4.3143 -6.3970 -2.7474 -11.3019 -4.2869 -2.9229 -1.3565
28 -1.0038 -3.4109 -3.6671 -5.6933 -2.5551 -8.3634 -3.1723 -2.1630 -1.0038
29 -0.7428 -3.0016 -3.1171 -5.0671 -2.3762 -6.1889 -2.3475 -1.6006 -0.7428
30 -0.5497 -2.6414 -2.6495 -4.5097 -2.2099 -4.5798 -1.7372 -1.1844 -0.5497
31 -0.4068 -2.3245 -2.2521 -4.0136 -2.0552 -3.3891 -1.2855 -0.8765 -0.4068
32 -0.3010 -2.0455 -1.9143 -3.5721 -1.9113 -2.5079 -0.9513 -0.6486 -0.3010
33 -0.2227 -1.8001 -1.6271 -3.1792 -1.7775 -1.8558 -0.7039 -0.4800 -0.2227
34 -0.1648 -1.5841 -1.3831 -2.8295 -1.6531 -1.3733 -0.5209 -0.3552 -0.1648
35 -0.1220 -1.3940 -1.1756 -2.5182 -1.5374 -1.0163 -0.3855 -0.2628 -0.1220
36 -0.0903 -1.2267 -0.9993 -2.2412 -1.4298 -0.7520 -0.2853 -0.1945 -0.0903
37 -0.0668 -1.0795 -0.8494 -1.9947 -1.3297 -0.5565 -0.2111 -0.1439 -0.0668
38 -0.0494 -0.9500 -0.7220 -1.7753 -1.2366 -0.4118 -0.1562 -0.1065 -0.0494
39 -0.0366 -0.8360 -0.6137 -1.5800 -1.1501 -0.3047 -0.1156 -0.0788 -0.0366
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40 -0.0271 -0.7356 -0.5216 -1.4062 -1.0695 -0.2255 -0.0855 -0.0583 -0.0271
41 -0.0200 -0.6474 -0.4434 -1.2515 -0.9947 -0.1669 -0.0633 -0.0432 -0.0200
42 -0.0148 -0.5697 -0.3769 -1.1139 -0.9251 -0.1235 -0.0468 -0.0319 -0.0148
43 -0.0110 -0.5013 -0.3203 -0.9913 -0.8603 -0.0914 -0.0347 -0.0236 -0.0110
44 -0.0081 -0.4412 -0.2723 -0.8823 -0.8001 -0.0676 -0.0256 -0.0175 -0.0081
45 -0.0060 -0.3882 -0.2314 -0.7852 -0.7441 -0.0500 -0.0190 -0.0129 -0.0060
46 -0.0044 -0.3416 -0.1967 -0.6989 -0.6920 -0.0370 -0.0140 -0.0096 -0.0044
47 -0.0033 -0.3006 -0.1672 -0.6220 -0.6435 -0.0274 -0.0104 -0.0071 -0.0033
48 -0.0024 -0.2646 -0.1421 -0.5536 -0.5985 -0.0203 -0.0077 -0.0052 -0.0024
49 -0.0018 -0.2328 -0.1208 -0.4927 -0.5566 -0.0150 -0.0057 -0.0039 -0.0018
50 -0.0013 -0.2049 -0.1027 -0.4385 -0.5176 -0.0111 -0.0042 -0.0029 -0.0013
51 -0.0010 -0.1803 -0.0873 -0.3902 -0.4814 -0.0082 -0.0031 -0.0021 -0.0010
52 -0.0007 -0.1587 -0.0742 -0.3473 -0.4477 -0.0061 -0.0023 -0.0016 -0.0007
53 -0.0005 -0.1396 -0.0631 -0.3091 -0.4164 -0.0045 -0.0017 -0.0012 -0.0005
54 -0.0004 -0.1229 -0.0536 -0.2751 -0.3872 -0.0033 -0.0013 -0.0009 -0.0004
55 -0.0003 -0.1081 -0.0456 -0.2448 -0.3601 -0.0025 -0.0009 -0.0006 -0.0003
56 -0.0002 -0.0951 -0.0387 -0.2179 -0.3349 -0.0018 -0.0007 -0.0005 -0.0002
57 -0.0002 -0.0837 -0.0329 -0.1939 -0.3115 -0.0013 -0.0005 -0.0003 -0.0002
58 -0.0001 -0.0737 -0.0280 -0.1726 -0.2897 -0.0010 -0.0004 -0.0003 -0.0001
59 -0.0001 -0.0648 -0.0238 -0.1536 -0.2694 -0.0007 -0.0003 -0.0002 -0.0001
60 -0.0001 -0.0571 -0.0202 -0.1367 -0.2505 -0.0005 -0.0002 -0.0001 -0.0001
61 0.0000 -0.0502 -0.0172 -0.1217 -0.2330 -0.0004 -0.0002 -0.0001 0.0000
62 0.0000 -0.0442 -0.0146 -0.1083 -0.2167 -0.0003 -0.0001 -0.0001 0.0000
63 0.0000 -0.0389 -0.0124 -0.0964 -0.2015 -0.0002 -0.0001 -0.0001 0.0000
64 0.0000 -0.0342 -0.0106 -0.0858 -0.1874 -0.0002 -0.0001 0.0000 0.0000
65 0.0000 -0.0301 -0.0090 -0.0763 -0.1743 -0.0001 0.0000 0.0000 0.0000
66 0.0000 -0.0265 -0.0076 -0.0679 -0.1621 -0.0001 0.0000 0.0000 0.0000
67 0.0000 -0.0233 -0.0065 -0.0605 -0.1507 -0.0001 0.0000 0.0000 0.0000
68 0.0000 -0.0205 -0.0055 -0.0538 -0.1402 0.0000 0.0000 0.0000 0.0000
69 0.0000 -0.0181 -0.0047 -0.0479 -0.1304 0.0000 0.0000 0.0000 0.0000
70 0.0000 -0.0159 -0.0040 -0.0426 -0.1213 0.0000 0.0000 0.0000 0.0000
71 0.0000 -0.0140 -0.0034 -0.0379 -0.1128 0.0000 0.0000 0.0000 0.0000
72 0.0000 -0.0123 -0.0029 -0.0338 -0.1049 0.0000 0.0000 0.0000 0.0000
73 0.0000 -0.0108 -0.0024 -0.0301 -0.0975 0.0000 0.0000 0.0000 0.0000
74 0.0000 -0.0095 -0.0021 -0.0267 -0.0907 0.0000 0.0000 0.0000 0.0000
75 0.0000 -0.0084 -0.0018 -0.0238 -0.0844 0.0000 0.0000 0.0000 0.0000
76 0.0000 -0.0074 -0.0015 -0.0212 -0.0784 0.0000 0.0000 0.0000 0.0000
77 0.0000 -0.0065 -0.0013 -0.0189 -0.0730 0.0000 0.0000 0.0000 0.0000
78 0.0000 -0.0057 -0.0011 -0.0168 -0.0679 0.0000 0.0000 0.0000 0.0000
79 0.0000 -0.0050 -0.0009 -0.0149 -0.0631 0.0000 0.0000 0.0000 0.0000
80 0.0000 -0.0044 -0.0008 -0.0133 -0.0587 0.0000 0.0000 0.0000 0.0000
81 0.0000 -0.0039 -0.0007 -0.0118 -0.0546 0.0000 0.0000 0.0000 0.0000
82 0.0000 -0.0034 -0.0006 -0.0105 -0.0508 0.0000 0.0000 0.0000 0.0000
83 0.0000 -0.0030 -0.0005 -0.0094 -0.0472 0.0000 0.0000 0.0000 0.0000
84 0.0000 -0.0027 -0.0004 -0.0083 -0.0439 0.0000 0.0000 0.0000 0.0000
85 0.0000 -0.0023 -0.0003 -0.0074 -0.0408 0.0000 0.0000 0.0000 0.0000
86 0.0000 -0.0021 -0.0003 -0.0066 -0.0380 0.0000 0.0000 0.0000 0.0000
87 0.0000 -0.0018 -0.0003 -0.0059 -0.0353 0.0000 0.0000 0.0000 0.0000
88 0.0000 -0.0016 -0.0002 -0.0052 -0.0328 0.0000 0.0000 0.0000 0.0000
89 0.0000 -0.0014 -0.0002 -0.0047 -0.0305 0.0000 0.0000 0.0000 0.0000

90 0.0000 -0.0012 -0.0002 -0.0041 -0.0284 0.0000 0.0000 0.0000 0.0000

91 0.0000 -0.0011 -0.0001 -0.0037 -0.0264 0.0000 0.0000 0.0000 0.0000
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92 0.0000 -0.0010 -0.0001 -0.0033 -0.0246 0.0000 0.0000 0.0000 0.0000

93 0.0000 -0.0008 -0.0001 -0.0029 -0.0228 0.0000 0.0000 0.0000 0.0000

94 0.0000 -0.0007 -0.0001 -0.0026 -0.0212 0.0000 0.0000 0.0000 0.0000

95 0.0000 -0.0007 -0.0001 -0.0023 -0.0198 0.0000 0.0000 0.0000 0.0000

96 0.0000 -0.0006 -0.0001 -0.0021 -0.0184 0.0000 0.0000 0.0000 0.0000

97 0.0000 -0.0005 0.0000 -0.0018 -0.0171 0.0000 0.0000 0.0000 0.0000

98 0.0000 -0.0004 0.0000 -0.0016 -0.0159 0.0000 0.0000 0.0000 0.0000

99 0.0000 -0.0004 0.0000 -0.0015 -0.0148 0.0000 0.0000 0.0000 0.0000

100 0.0000 -0.0003 0.0000 -0.0013 -0.0137 0.0000 0.0000 0.0000 0.0000

4 Dynamic full lifetime carbon accounting factors

Table 4. Dynamic full lifetime carbon accounting factors

Time Biogenic carbon
from CO2

Biogenic carbon
from CH4

Time Biogenic
carbon from
CO2

Biogenic
carbon from
CH4

[yr] [t C-CO2ꞏyr-1] [t C-CH4ꞏyr-1] [yr] [t C-CO2ꞏyr-1] [t C-CH4ꞏyr-1]
-25 0.0000E+00 0.0000E+00 56 6.5085E-08 2.3667E-08

-24 -8.6158E-02 0.0000E+00 57 4.8163E-08 1.7514E-08

-23 -1.2320E-01 0.0000E+00 58 3.5641E-08 1.2960E-08

-22 -1.6829E-01 0.0000E+00 59 2.6374E-08 9.5906E-09

-21 -1.7788E-01 -2.0727E-04 60 1.9517E-08 7.0970E-09

-20 -2.0977E-01 -3.8230E-04 61 1.4442E-08 5.2518E-09

-19 -2.3659E-01 -5.2331E-04 62 1.0687E-08 3.8863E-09

-18 -2.6108E-01 -6.3331E-04 63 7.9087E-09 2.8759E-09

-17 -2.8462E-01 -7.1739E-04 64 5.8524E-09 2.1282E-09

-16 -3.0734E-01 -7.8085E-04 65 4.3308E-09 1.5748E-09

-15 -3.2957E-01 -8.2838E-04 66 3.2048E-09 1.1654E-09

-14 -3.5142E-01 -8.6382E-04 67 2.3715E-09 8.6238E-10

-13 -3.7291E-01 -8.9016E-04 68 1.7549E-09 6.3816E-10

-12 -3.9403E-01 -9.0970E-04 69 1.2987E-09 4.7224E-10

-11 -4.1472E-01 -9.2418E-04 70 9.6101E-10 3.4946E-10

-10 -4.3488E-01 -9.3488E-04 71 7.1114E-10 2.5860E-10

-9 -4.5441E-01 -9.4276E-04 72 5.2625E-10 1.9136E-10

-8 -4.7307E-01 -9.4849E-04 73 3.8942E-10 1.4161E-10

-7 -4.9049E-01 -9.5249E-04 74 2.8817E-10 1.0479E-10

-6 -5.0587E-01 -9.5496E-04 75 2.1325E-10 7.7545E-11

-5 -5.1780E-01 -9.5569E-04 76 1.5780E-10 5.7383E-11

-4 -5.2395E-01 -9.5388E-04 77 1.1677E-10 4.2463E-11

-3 -4.6270E-01 -9.4757E-04 78 8.6413E-11 3.1423E-11

-2 -4.4174E-01 -9.3276E-04 79 6.3946E-11 2.3253E-11

-1 -4.1555E-01 -9.0261E-04 80 4.7320E-11 1.7207E-11

0 -4.1626E-01 -7.0661E-04 81 3.5017E-11 1.2733E-11

1 2.1646E-01 -2.9132E-04 82 2.5912E-11 9.4227E-12

2 2.4325E-01 2.6117E-05 83 1.9175E-11 6.9728E-12

3 2.6785E-01 2.6599E-04 84 1.4190E-11 5.1599E-12

4 2.9145E-01 4.4585E-04 85 1.0500E-11 3.8183E-12

5 3.1423E-01 5.8004E-04 86 7.7702E-12 2.8255E-12

6 3.3648E-01 6.7985E-04 87 5.7500E-12 2.0909E-12

7 3.5832E-01 7.5393E-04 88 4.2550E-12 1.5473E-12

8 3.7978E-01 8.0886E-04 89 3.1487E-12 1.1450E-12
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9 4.0082E-01 8.4955E-04 90 2.3300E-12 8.4728E-13

10 4.2143E-01 8.7968E-04 91 1.7242E-12 6.2699E-13

11 4.4154E-01 9.0197E-04 92 1.2759E-12 4.6397E-13

12 4.6109E-01 9.1845E-04 93 9.4418E-13 3.4334E-13

13 4.8000E-01 9.3059E-04 94 6.9869E-13 2.5407E-13

14 4.9814E-01 9.3945E-04 95 5.1703E-13 1.8801E-13

15 5.1528E-01 9.4575E-04 96 3.8261E-13 1.3913E-13

16 5.3097E-01 9.4984E-04 97 2.8313E-13 1.0296E-13

17 5.4428E-01 9.5162E-04 98 2.0951E-13 7.6187E-14

18 5.5329E-01 9.5026E-04 99 1.5504E-13 5.6378E-14

19 5.5413E-01 9.4360E-04 100 1.1473E-13 4.1720E-14

20 5.3962E-01 9.2718E-04 101 8.4900E-14 3.0873E-14

21 4.9891E-01 8.9339E-04 102 6.2826E-14 2.2846E-14

22 1.8180E-03 6.6111E-04 103 4.6491E-14 1.6906E-14

23 1.3453E-03 4.8922E-04 104 3.4404E-14 1.2510E-14

24 9.9556E-04 3.6202E-04 105 2.5459E-14 9.2577E-15

25 7.3671E-04 2.6790E-04 106 1.8839E-14 6.8507E-15

26 5.4517E-04 1.9824E-04 107 1.3941E-14 5.0695E-15

27 4.0342E-04 1.4670E-04 108 1.0316E-14 3.7514E-15

28 2.9853E-04 1.0856E-04 109 7.6342E-15 2.7761E-15

29 2.2092E-04 8.0333E-05 110 5.6493E-15 2.0543E-15

30 1.6348E-04 5.9446E-05 111 4.1805E-15 1.5202E-15

31 1.2097E-04 4.3990E-05 112 3.0936E-15 1.1249E-15

32 8.9520E-05 3.2553E-05 113 2.2892E-15 8.3245E-16

33 6.6245E-05 2.4089E-05 114 1.6940E-15 6.1601E-16

34 4.9021E-05 1.7826E-05 115 1.2536E-15 4.5585E-16

35 3.6276E-05 1.3191E-05 116 9.2765E-16 3.3733E-16

36 2.6844E-05 9.7615E-06 117 6.8646E-16 2.4962E-16

37 1.9865E-05 7.2235E-06 118 5.0798E-16 1.8472E-16

38 1.4700E-05 5.3454E-06 119 3.7591E-16 1.3669E-16

39 1.0878E-05 3.9556E-06 120 2.7817E-16 1.0115E-16

40 8.0496E-06 2.9271E-06 121 2.0585E-16 7.4853E-17

41 5.9567E-06 2.1661E-06 122 1.5233E-16 5.5391E-17

42 4.4080E-06 1.6029E-06 123 1.1272E-16 4.0990E-17

43 3.2619E-06 1.1861E-06 124 8.3414E-17 3.0332E-17

44 2.4138E-06 8.7775E-07 125 6.1726E-17 2.2446E-17

45 1.7862E-06 6.4953E-07

46 1.3218E-06 4.8065E-07

47 9.7813E-07 3.5568E-07

48 7.2382E-07 2.6321E-07

49 5.3562E-07 1.9477E-07

50 3.9636E-07 1.4413E-07

51 2.9331E-07 1.0666E-07

52 2.1705E-07 7.8926E-08

53 1.6062E-07 5.8406E-08

54 1.1886E-07 4.3220E-08

55 8.7953E-08 3.1983E-08


