
HAL Id: tel-04431095
https://theses.hal.science/tel-04431095

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Parallel In Time Algorithms for Data Assimilation
Rishabh Bhatt

To cite this version:
Rishabh Bhatt. Parallel In Time Algorithms for Data Assimilation. Modeling and Simulation. Uni-
versite Grenoble Alpes, 2023. English. �NNT : �. �tel-04431095�

https://theses.hal.science/tel-04431095
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques Appliquées
Unité de recherche : Laboratoire Jean Kuntzmann

Algorithmes parallèles en temps pour l'assimilation de données

Parallel In Time Algorithms for Data Assimilation

Présentée par :

Rishabh BHATT
Direction de thèse :

Laurent DEBREU
DIRECTEUR DE RECHERCHE, INRIA CENTRE GRENOBLE-RHONE-
ALPES

Directeur de thèse

Arthur VIDARD
CHARGE DE RECHERCHE HDR, INRIA CENTRE GRENOBLE-RHONE-
ALPES

Co-directeur de thèse

Rapporteurs :
ANTOINE ROUSSEAU
DIRECTEUR DE RECHERCHE, CENTRE INRIA D'UNIVERSITE COTE D'AZUR
JULIEN SALOMON
DIRECTEUR DE RECHERCHE, INRIA CENTRE DE PARIS

Thèse soutenue publiquement le 23 novembre 2023, devant le jury composé de :
ANTOINE ROUSSEAU
DIRECTEUR DE RECHERCHE, CENTRE INRIA D'UNIVERSITE
COTE D'AZUR

Rapporteur

JULIEN SALOMON
DIRECTEUR DE RECHERCHE, INRIA CENTRE DE PARIS

Rapporteur

CAROLINE JAPHET
MAITRE DE CONFERENCES, UNIVERSITE SORBONNE PARIS
NORD

Examinatrice

MARTIN SCHREIBER
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE
ALPES

Président

EHOUARN SIMON
MAITRE DE CONFERENCES, INP - ENSEEIHT TOULOUSE

Examinateur

LAURENT DEBREU
DIRECTEUR DE RECHERCHE, INRIA CENTRE GRENOBLE-
RHONE-ALPES

Directeur de thèse

ARTHUR VIDARD
CHARGE DE RECHERCHE HDR, INRIA CENTRE GRENOBLE-
RHONE-ALPES

Co-directeur de thèse

Acknowledgements

I would first like to thank my supervisors Dr. Laurent Debreu and Dr. Arthur Vi-

dard for their constant support and encouragement throughout my PhD journey.

I am grateful for the opportunity they gave me to carry out research on a very

interesting topic which involved some nice discussions. I feel this experience has

taught me a lot and I have become more mature as a young researcher. I am also

very grateful to the Agence Nationale de la Recherche (ANR) for providing the

funding to make this PhD possible. My appreciation extends to the jury members

of my thesis, for taking out their time to review my work and providing me some

invaluable comments.

The past 4 years in France has been nothing short of wonderful and I had a

great time meeting some great people. My smooth integration into the lab would

not have been possible had it not been the colleagues from the AIRSEA team

and office 196. I had some memorable time in the office all because of you guys.

Not to forget my colleagues and friends from LJK who have a lot of energy and

enthusiasm to keep the spirits high and maintain a lovely environment in the lab.

I would certainly miss the volleyball and football sessions, trying out new cuisines

in the city, and the regular meetup at Ève.

Special thanks to my friends outside the lab who have always been there for

me from day one till now, helping me in all sort of situations and making me feel

at home in Grenoble.

Lastly, I would like to thank my mom, my dad and my brother for their

unwavering support and belief in me. This thesis is dedicated to you.

iii

Contents

Acknowledgements iii

Abstract xii

Résumé xiv

Introduction 1

I State of the art: Data assimilation and parallel-in-

time (PinT) methods 7

1 Data Assimilation 8

1.1 Error Statistics . 9

1.2 3D-Var and 4D-Var . 12

1.3 Incremental 4D-Var . 16

1.4 Weak constraint 4D-Var . 23

1.5 Adjoint method . 25

1.6 Minimisation methods . 27

2 Parallel in Time algorithms: Parareal method 32

2.1 Introduction to time parallelisation 34

2.2 Multiple shooting method . 35

2.3 Parareal method . 36

2.4 Convergence properties of Parareal 39

2.5 Analysis of the eigenvalues of F−G 50

2.6 Speedup and Efficiency . 57

iv

CONTENTS v

2.7 Typical problems with Parareal and modifications 59

II Coupling Parareal and data assimilation 66

3 Introducing Parallel In Time in data assimilation 67

3.1 Previous works on a parallel 4D-Var 68

3.2 Time parallelisation with Parareal in forward model 76

3.3 Inexact conjugate gradient method 78

3.4 Inexact conjugate gradient and Parareal 84

3.5 Parareal in both directions (forward and adjoint) 95

4 Applications: Numerical experiments 100

4.1 Shallow water equations . 103

4.2 Parareal parameters and propagators 111

4.3 Data assimilation . 114

4.4 Krylov subspace enhanced Parareal 123

4.5 Results . 130

4.6 Using multiple observations . 155

Conclusion and further remarks 159

Bibliography 163

List of Algorithms

1 gauss-newton algorithm . 17

2 incremental 4d var . 21

3 conjugate gradient algorithm 29

4 parareal algorithm . 39

5 krylov-enhanced parareal algorithm 63

6 icg: inexact conjugate gradient 81

7 icg with ‖Ejpj‖A−1 as parareal stopping criterion 87

8 approximation for FNpj . 92

9 icg para prac . 92

10 separate forward and adjoint parareal run 97

11 coupled forward and adjoint Parareal run 98

12 cgs method with reorthogonalisation step 129

13 cg with parareal . 133

14 approximation for ‖pj‖A . 150

15 icg with all approximations for 2d-swe 153

vi

List of Figures

I The ORCA tripolar grid . 2

II List of the 5 most powerful commercially available computer sys-

tems as of June 2023 . 3

III Horizontal decomposition of an ocean domain (in red). Subdomains

(in blue) are associated to one computational core. 4

1.1 A simple schematic of data assimilation 11

1.2 Diagram depicting the 3D-Var algorithm 13

1.3 Diagram depicting the 4D-Var algorithm 15

1.4 On the left the function is quadratic and has a unique global mini-

mum; on the right the function is highly non-linear has many local

minima . 18

1.5 Diagram depicting the incremental 4D-Var algorithm 20

1.6 The same non-linear cost function where the red dashed curve

shows the linearisation of J around the model state x
(k)
0 22

2.1 Illustration of the Parareal algorithm on a subinterval Ωi = [ti, ti+1] 38

2.2 Parareal error ekN for successive iterates k as a function of a∆t . . 43

2.3 |f | and |g| as a function of ω∆t with varying θ; N = 10, γ = 10 . . 44

2.4 Norm of f − g as a function of ω∆t with varying θ; N = 10, γ = 10 45

2.5 Parareal error ekN for successive iterates k as a function of ω∆t when

θ = 0.55 . 46

2.6 Parareal error ekN for successive iterates k as a function of ω∆t when

θ = 0.8 . 47

2.7 (From left to right) The coarse initialisation and first 8 Parareal

iterations for the Lorenz model (2.32) 49

2.8 Error in the Lorenz model as a function of Parareal iterations . . 50

2.9 The shaded region of consideration where <(µC) ≤ 0 53

vii

viii LIST OF FIGURES

2.10 Contour plot of the modulus of the eigenvalues of Z for ωmax =

0.6, γ = 5, θ = 0.6 . 54

2.12 Contour plot of the modulus of the eigenvalues of Z for ωmax =

0.6, γ = 10, θ = 0.51 . 54

2.11 Contour plot of the modulus of the eigenvalues of Z for ωmax =

0.6, γ = 10, θ = 0.8 . 55

2.13 Comparison of the contour plots of the modulus of the eigenvalues

of F and G for ωmax = 0.6, γ = 5, θ = 0.6 56

2.14 Comparison of the contour plots of the relative arguments of the

eigenvalues of F and G with respect to the argument of the exact

propagator for ωmax = 0.6, γ = 5, θ = 0.6 57

3.1 Estimates and bounds for icg-iteration j when Parareal is applied

to the 1D shallow water model (4.16). The number of time windows

N is equal to 20. 89

3.2 Comparison of the exact (solid lines) and approximate (dashed

lines) ‖Ejpj‖A−1 for given icg-iterations j 91

3.3 Synchronous run of the forward and adjoint Parareal 98

4.1 A typical one dimensional shallow water system with a flat bottom 104

4.2 Staggered grid discretisation for 1D shallow water model 105

4.3 The discretised grid along with the boundary values u0 and uNx .

The grid points on the dashed line represents values outside the

computational domain. 107

4.4 Arakawa C-grid discretisation for 2D shallow water model 110

4.5 Parareal iterations needed as a function of the explicit diffusion

constant µ . 113

4.6 Average number of GMRES iterations per Parareal iteration (on

y-axis) for each CG iteration j. 114

4.7 Free surface (left) and velocity (right) values at the initial time for

the reference (solid red) and for the optimised (blue dashdot) states 117

4.8 Free surface (left) and velocity (right) values at time = 50s for the

reference (solid red) and for the optimised (blue dashdot) states . 117

4.9 Free surface (left) and velocity (right) values at time = 100s for the

reference (solid red) and for the optimised (blue dashdot) states . 118

LIST OF FIGURES ix

4.10 η values at different time windows. Reference (left) and optimised

(right) η for 1/2 (first row) and for full (second row) period of

integration . 121

4.11 u values at different time windows. Reference (left) and optimised

(right) u for 1/2 (first row) and for full (second row) period of

integration . 122

4.12 v values at different time windows. Reference (left) and optimised

(right) v for 1/2 (first row) and for full (second row) period of

integration . 122

4.13 Error plots of different variants of Parareal using x0 as the initial

condition . 125

4.14 Error plots of different variants of Parareal using −b as the initial

condition . 125

4.15 The loss of orthogonality in Krylov basis vectors. The solid lines

represent when CGS is used while the dashed lines depict CGS used

with a reorthogonalisation step. Blue and red colour are for x0 and

−b as initial conditions respectively 130

4.16 CG without using Parareal . 133

4.17 CG with matrix-vector product from Parareal, εp = 10−6 134

4.18 Relative error in the 2-norm of the residual (left) and the corre-

sponding Parareal iterations k (right) for different fixed values of

εp when using CG . 135

4.19 Inexact CG with the Parareal stopping criterion ‖Ej‖A−1,A ≤ ωj . 136

4.20 Inexact CG with the Parareal stopping criterion ‖Ejpj‖A−1 ≤ ξj . 137

4.21 Inexact CG with the approximated ‖Ejpj‖A−1 139

4.22 Inexact CG with all practical approximations 140

4.23 Modified practical inexact CG with Krylov subspace enhanced Parareal141

4.24 Exact CG without using Parareal 142

4.25 Exact CG with matrix-vector product from Parareal, εp = 1.d− 1 143

4.26 Relative error in the 2-norm of the residual (left) and the corre-

sponding Parareal iterations k (right) for different fixed values of

εp when using CG . 143

4.27 Inexact CG with the Parareal stopping criterion ‖Ejpj‖A−1 ≤ ξj . 144

4.28 Comparison of the exact ‖Ejpj‖A−1 (plain line) with its approxi-

mation (dashed line) by using the last Parareal iterate 146

x LIST OF FIGURES

4.29 Comparison of exact ‖b‖A−1 with its approximation for inexact CG

iterations j . 147

4.30 Relative error in ξj as a function of Parareal iteration k. The ap-

proximate and exact values of ‖b‖A−1 and ‖pj‖A are used respec-

tively to compute ξ̃j . 148

4.31 Relative error in ‖pj‖A as a function of Parareal iteration k . . . 150

4.32 Relative error in ξj as a function of Parareal iteration k. The ap-

proximate ‖pj‖A and exact ‖b‖A−1 are used to compute ξ̃j 151

4.33 Relative error in ξj as a function of Parareal iteration k. Both

approximate ‖b‖A−1 and ‖pj‖A are used to compute ξ̃j 151

4.34 Exact and approximate values of ‖Ejpj‖A−1 as opposed to the exact

and approximate values of ξj . 152

4.35 Minimisation results using ICG Para Prac (on left) and a compari-

son of the Parareal iterations between ICG Para and ICG Para Prac

(on right) . 153

4.36 Inexact CG with Parareal stopping criterion ‖Ejpj‖A−1 ≤ ξj when

multiple observations are used . 157

4.37 Evolution of ‖Eipj‖A−1 when observations are at time windows Ni

as a function of the inexact CG iteration j 158

List of Tables

3.1 Table of all the versions of the conjugate gradient used 94

4.1 Domain and physical parameters for the linearised 1D shallow water

model . 105

4.2 Domain and physical parameters for the linearised 2D shallow water

model . 109

4.3 Parareal parameters for the linearised 1D and 2D shallow water

model . 112

4.4 Data assimilation parameters for the 1D shallow water model . . . 116

4.5 Data assimilation parameters for the 2D shallow water model . . . 120

4.6 The classical and modified Gram-Schmidt algorithm 128

xi

Abstract

Four dimensional variational data assimilation (4DVAR) which is based on opti-

misation algorithms is used by the leading meterological institutions as a means of

initialising the numerical climate models. The optimal initial condition is found

by minimisng a cost function which accounts for the misfits of the model tra-

jectory with the observations of the system over a given time window. In its

incremental formulation, the integration of the forward and adjoint version of the

original model is required in order to compute the gradient. A common issue in

the retreival of the initial condition is the enormous size of the state variable (109)

which makes the minimisation an expensive and time consuming task. Moreover

4DVAR is an inherently sequential algorithm and to use it in parallel architec-

tures, the models are clasically parallelised only in the spatial dimension. This

limits the scope of further speed up once spatial saturation is reached and also

the maximum number of computing cores that one can use. The objective of this

PhD is to introduce an additional time-paralllelisation in the data assimilation

framework by using the well known parareal method. Our approach is used here

for running the forward integration. We use a modified version of the inexact

conjugate gradient method where the matrix-vector multiplications are supplied

through the parareal and thus are not exact. The associated convergence con-

ditions of the inexact conjugate gradient allows us to use parareal adaptively by

monitoring the errors in the matrix-vector product and obtaining the same levels

of accuracy as with the usual conjugate gradient method at the same time. To

ensure the feasibility and a practical implementation, all the norms which are

hard to compute are replaced by the easily computable approximations. The re-

sults are demonstrated by considering the one and two dimensional shallow water

model. They are presented in terms of the accuracy (in comparison with the orig-

inal exact conjugate gradient) and in terms of the number of required iterations

of the parareal algorithm. For the more complex two dimensional model we use

xii

Abstract xiii

a Krylov enhanced subspace parareal version which accelerates the convergence

of the parareal and brings down the number of iterations. In the end, the ways

to time-parallelise the adjoint version is also discussed as a further avenue for

research.

Résumé

L’assimilation variationnelle de données (4DVAR), basée sur des algorithmes

d’optimisation, est utilisée par les principales institutions météorologiques pour

initialiser les modèles climatiques numériques. La condition initiale optimale est

trouvée en minimisant une fonction de coût qui prend en compte les écarts entre

la trajectoire du modèle et les observations du système sur une période donnée.

Dans sa formulation incrémentale, l’intégration de la version directe et adjointe

du modèle original est nécessaire pour calculer le gradient. Un problème courant

dans l’identification de la condition initiale est la très grande taille de la variable

d’état (109), ce qui rend très couteuse la tâche de minimisation. De plus, la tech-

nique 4DVAR est un algorithme intrinsèquement séquentiel et, pour l’utiliser dans

des architectures parallèles, les modèles sont généralement parallélisés uniquement

dans la dimension spatiale. ceci limite l’accélération (scalabilité) possible une fois

que la saturation spatiale est atteinte et ainsi le nombre maximal de cœurs de

calcul pouvant être utilisés est également restreint. L’objectif de cette thèse est

d’introduire une parallélisation supplémentaire de la dimension temporelle dans

le cadre de l’assimilation de données en utilisant la méthode Parareal. Notre ap-

proche est utilisée ici pour l’intégration directe. Nous utilisons une version mod-

ifiée de la méthode du gradient conjugué inexact où les multiplications matrice-

vecteur sont effectuées par l’algorithme parareal et ne sont donc pas exactes. Les

conditions de convergence associées du gradient conjugué inexact nous permet-

tent d’utiliser l’algorihtme Parareal de manière adaptative en régulant les erreurs

dans le produit matrice-vecteur et en obtenant les mêmes niveaux de précision

qu’avec la méthode du gradient conjugué avec gradient exact. Pour garantir la

faisabilité et une mise en œuvre pratique, les normes intervenant dans la méthode

du gradient conjugé inexact sont remplacées par des approximations facilement

calculables. Les résultats sont démontrés en considérant un modèle en eau peu

profonde en dimension 1 et 2. Ils sont présentés en termes de précision (en com-

xiv

Résumé xv

paraison avec la méthode exacte du gradient conjugué) et du nombre d’itérations

requises par l’algorithme Parareal. Pour le modèle en dimension 2, plus com-

plexe, nous utilisons la technique de sous-espaces de Krylov afin d’accélèrer la

convergence du parareal et réduire le nombre d’itérations. Enfin, les moyens de

paralléliser temporellement la version adjointe sont aussi discutés comme une voie

de recherche supplémentaire.

xvi Résumé

Introduction

The advancements in modern computational architectures have enabled us to

perform extremely large sized computational simulations such as those related

to climate modelling. However, the evolution of these architectures must be ac-

companied by a consideration of the used mathematical algorithms in order to

optimise their potential.

Ocean modelling is important from the view point of climate studies as the

ocean circulation has a strong influence on the weather/climate patterns. As

explained in [Griffies, 2018] the ocean provides a large reservoir for heat and other

constituents of the earth’s climate system and through its buffering abilities and

slow time scales, the ocean represents the flywheel of the earth’s climate system.

An example of where ocean models are used, coupled with the atmosphere,

is in the seasonal climate forecast. The associated simulations lie at an interface

between weather prediction and climate forecasting as described in [Palmer and

Anderson, 1994]. On one hand it is an initial value problem where most of the

predictability comes from the initial state. On the other hand apart from having

a longer period of integration it is also an atmospheric-oceanic coupled model

so as to make reliable seasonal predictions. On the seasonal timescale the atmo-

spheric initial conditions start to get less important and instead the low frequency

forcing from the ocean starts to provide dominant contributions to the weather

predictability [Harris, 2018].

The global seasonal forecasts made by the European Centre for Medium-Range

Weather Forecasts (ECMWF) uses the Integrated Forecasting System (IFS) for

the atmospheric model coupled to the Nucleus for European Modelling of the

Ocean (NEMO) [Madec et al., 2017] for the ocean model. A global simulation

of NEMO using the ORCA-R025 which is a global ocean configuration with a

tripolar grid (Fig. I) uses the pre-defined horizontal grid resolution of 1/4◦ at the

equator leading to the horizontal dimensions of 1442×1021 grid points (along with

1

2 Introduction

75 vertical levels). Several leading meteorological institutes like Météo France, the

Source: http:geomar.de/en/ocean-models/

Figure I: The ORCA tripolar grid

ECMWF, the Met Office, use variational data assimilation algorithms like the 3D

or 4D-Var to obtain optimal initial states for making short term and medium

range weather forecasts. Data assimilation is essentially an initial condition con-

trol problem which combines all the information from the model trajectory, the

observations and some error statistics to give an optimal initial state of the atmo-

sphere/ocean. The observations in data assimilation are accessible through two

major sources: in-situ measurements and satellite data.

The evolving nature of the numerical models and the observations in terms

of quality and size pose a challenge to the data assimilation systems with the

demands to make faster and accurate predictions. The state vector in ocean data

assimilation is usually of the order O(106 − 109) and the observation vector of

the order O(106). This increases the overall computational cost and the only

way to deal with this challenge is to improve the use of the massively parallel

supercomputers. The incredibly rapid growth in the processing power of the high

performance computers is associated to a very large increase of the number of

computational units (CPU / GPU cores). This can be seen by looking at the

list of the top 5 most powerful supercomputers in the world in Fig. II with the

number of cores exceeding the million mark.

http:geomar.de/en/ocean-models/

Introduction 3

Source: http://top500.org/

Figure II: List of the 5 most powerful commercially available computer systems

as of June 2023

In the past, traditional ways of harnessing the power of supercomputers had

largely focused on taking benefit from an increase in the performance of the in-

dividual units (measured in terms of floating points operations per second) rather

than from an increase in the number of these units. The recent changes in the

evolution of the architectures have emphasised the need to refine mathematical

algorithms so that they can achieve a much higher degree of parallelism.

As an example we again consider the ORCA-R025 ocean model grid with a

horizontal domain of 1442×1021 grid points and 75 vertical levels. The usual way

to parallelize ocean models is to apply a spatial domain decomposition [Toselli and

Widlund, 2004, Dolean et al., 2015] method and to assign the resulting domains

to individual cores. For numerical reasons, this spatial decomposition is most of

the time only performed in the horizontal dimension (see Fig. III). Most ocean

models utilise minimum domain sizes of 20 × 20 grid points, beyond which the

http://top500.org/

4 Introduction

Figure III: Horizontal decomposition of an ocean domain (in red). Subdomains

(in blue) are associated to one computational core.

simulation time increases, with the communication time becoming predominant

over the computation time within each subdomain. For the ORCA-R025 grid,

we would end up using approximately a maximum of 3672 cores. This means

that even if the simulation could have access to more cores, after some point the

spatial parallelisation would reach saturation and we would not be able to use

them effectively.

In large time-dependent problems such as the one described in the above ex-

ample, it is tentative to use the time dimension as an additional direction of

parallelism. This is one of the main reasons behind turning our attention to the

parallel-in-time (PinT) methods [Gander, 2015] in addition to spatial domain de-

composition. This observation applies to direct modelling, but also, and this is

what will be of interest in this thesis work, to data assimilation algorithms. If we

take a look at the incremental 4D-Var (see Chapter 1, Sec. 1.3) which is a practical

method of running a 4D-Var data assimilation scheme, the computational costs

involved in its full single iteration is largely down to:

• One forward integration of the non-linear model in the outer loop

• Forward and backward integrations of the tangent linear model and its cor-

responding adjoint model times the number of minimisation iterations in

Introduction 5

the inner loop

The main objective in this PhD work is to study the exploitation of time

parallelism by combining a parallel-in-time method with the incremental 4D-Var.

The manuscript is divided in two parts.

The first part consists of two chapters which are dedicated to the fundamen-

tals required to understand the concepts on data assimilation and parallel-in-time

methods. A concise review of the previous major studies and results in the re-

spective domains is introduced gradually to make the reader aware about the

current state of the art and also about addressing the shortcomings where there

is a further scope of research.

In Chapter 1 we briefly describe what data assimilation is from the point of

view of the variational approach. The concept of the variational data assimi-

lation is explained with the help of the error statistics leading to the problem

of the minimisation of a cost function. Depending on how the cost function is

defined, different formulations of the variational data assimilation are explained

such as the 3D-Var, the 4D-Var, the incremental 4D-Var and the weak constraint

4D-Var. Our main focus of this manuscript will be on the incremental 4D-Var

algorithm. We will also talk about the adjoint method which is one of the most

powerful techniques for obtaining the cost function gradient and thus allowing the

application of efficient minimisation procedures. An overview of the minimisation

methods used in data assimilation is given in the last section and in particular

the conjugate gradient method.

Chapter 2 begins with an introductory section on the idea of time parallelisa-

tion and a historical account of the parallel-in-time or PinT algorithms. A broad

classification of the PinT methods is stated from which we shift our attention

to the parallel multiple shooting methods. Our focal point of discussion will be

on the Parareal algorithm. The Parareal’s convergence properties, speedup and

efficiency are discussed. We end this chapter by citing some of the common issues

that Parareal faces related to specific problems and the modifications which have

been proposed in the literature to accelerate its performance.

The second part of the manuscript is devoted to our contribution towards the

theoretical and numerical aspects of the coupling of the two iterative incremental

4D-Var and Parareal methods. Chapter 3 is dedicated to the methodology of

6 Introduction

formulating the inner loop problem of the incremental 4D-Var when the Parareal

operator replaces the sequential forward integration. We begin with a short litera-

ture review on the previously made attempts on exploiting the time parallelisation

in 4D-Var. We then define our Parareal operator, set up the data assimilation

problem and show that the coupling leads to solving an approximate linear system

where the error in the matrix depends on the Parareal’s accuracy. To solve this

linear system, we discuss the inexact conjugate gradient method which is a version

of the conjugate gradient method with the presence of inaccurate matrix-vector

products. In the end we make use of a modified version of the inexact conjugate

gradient which allows to obtain an adaptive tolerance criterion for the Parareal

method.

Chapter 4 deals with the applications part of the methodology discussed in

Chapter 3. This is illustrated with the help of the numerical experiments on

the one and the two dimensional linearised shallow water equations which are

widely used for modelling important geophysical phenomena. Throughout the

applications, we elaborate on several crucial aspects regarding the Parareal al-

gorithm itself (choice of the coarse solver, use of the Krylov subspace enhanced

acceleration, reducing the cost of the fine solver ...), as well as the adaptation of

the implementation of the inexact conjugate gradient algorithm to our specific

problem.

We conclude the manuscript by giving some perspectives on our work in order

to envision more realistic applications.

Part I

State of the art: Data

assimilation and parallel-in-time

(PinT) methods

7

Chapter 1

Data Assimilation

Contents

1.1 Error Statistics . 9

1.2 3D-Var and 4D-Var . 12

1.3 Incremental 4D-Var . 16

1.3.1 Gauss-Newton Method 16

1.3.2 Implementation issues with 4D-Var 18

1.3.3 Incremental 4D-Var formulation 19

1.3.4 Performance and convergence 22

1.4 Weak constraint 4D-Var 23

1.5 Adjoint method . 25

1.6 Minimisation methods 27

1.6.1 Krylov subspace methods 27

1.6.2 Conjugate gradient method 28

1.6.3 Link to data assimilation 30

The concept of data assimilation can be explained as the science of combining all

the available information in terms of observations and the time-evolving numerical

model and associated error statistics with the aim of improving the model output.

Or as put plainly by Daley [Daley, 1997] “data assimilation is a discipline which

naturally integrates theory (via models) with sampled reality (via instruments)”.

In Numerical Weather Prediction (NWP) which is an initial value problem,

data assimilation is used as the technique of retrieving the optimal initial condi-

8

1.1. Error Statistics 9

tion approaching the true state of the atmosphere/ocean. The numerical model

incorporates the discretised form of all the physical laws governing the dynamics

of the fluid such as the laws of conservation of mass and momentum. The obser-

vations provide real time information/snapshots about the atmosphere/ocean and

are accessible through satellite data, in-situ measurements or other sources. There

is a vast amount of literature explaining the fundamentals and the state of the art

of data assimilation. For introductory texts, one can look at [Daley, 1993,Kalnay,

2003, Asch et al., 2016]. An overview of the development of data assimilation

can be found in [Rabier, 2005, Navon, 2009, Bannister, 2017]. For more details

see [Ghil and Malanotte-Rizzoli, 1991,Daley, 1997,Talagrand, 1997,Bouttier and

Courtier, 2002,Carrassi et al., 2018].

Data assimilation is studied following two different approaches: the ensemble

and the variational approach. The ensemble methods on one hand make use

of an ensemble of the previous forecasts which contain valuable flow-dependent

information about the background error statistics [Bannister, 2017]. The predicted

ensemble of forecasts will contain a similar a priori error statistics and will be used

for the future forecasts. The variational methods on the other hand use iterative

minimisation algorithms on a cost function containing the discrepancies between

the observations and the corresponding values from the model trajectory. Our

topic of concern will be specifically on the variational approach and in this chapter

we will talk about the most common variational data assimilation algorithms such

as the 3D-Var, 4D-Var and the incremental 4D-Var used operationally in various

meteorological institutes.

We start by first defining the notation for quantities involving the error statis-

tics to get the cost function and later in the subsequent sections we describe the

various methods. To maintain consistency in the remainder of the text we use the

unified notation from [Ide et al., 1997].

1.1 Error Statistics

We begin by defining some important quantities. To describe the state of the at-

mosphere at some instant, we use the vector x as a collection of all the parameter

values on which it depends. The aim is to determine numerically the best approx-

10 Chapter 1. Data Assimilation

imation for the state vector x which we call the analysis xa. To distinguish the

analysis from the reality, we denote xt as the true state vector which is the closest

representation of the atmosphere at the time of analysis. The analysis ideally

depicts the accurate image of the true state of the atmosphere. It is the starting

point of a new forecast for the next assimilation cycle which gives us subsequent

analysis [Schlatter, 2000].

We define the background state xb as some a priori information for the data

assimilation system and is generally obtained from a previous forecast or analysis

for the same system. We suppose that the background is an approximation to the

true state and has some errors, say εb. It can be written as

xb = xt + εb (1.1)

All the observation data available at a given time can be collected together in a

single vector and it is represented by yo. A very large volume of data ingested by

the NWP data assimilation systems comes from the satellite data which is not in

the same space as the model state is [Thépaut, 2003]. The satellite data we have

is in the form of radiances reflected by the earth’s surface which is captured by

the satellite sensors. In order to quantify the differences between what we observe

and what we get from the model we use an observation operator H which maps

the state space to the observation space.

As an example, let us consider a typical radiative model which uses an at-

mospheric radiative transfer equation [Saunders et al., 1999]. The top of the

atmosphere upwelling radiance L(ν, θ) with frequency ν and viewing angle θ (ne-

glecting scattering affects) is given as

L(ν, θ) = (1−Nc)L
Clr(ν, θ) +Nc L

Cld(ν, θ) (1.2)

where LClr(ν, θ) and LCld(ν, θ) are the clear sky and fully cloudy top of atmo-

sphere upwelling radiances and Nc is the fractional cloud cover. For the sake of

completeness see [Eyre, 1991,Matricardi et al., 2004]. In this case our observation

operator Hν,θ(x) would take the geophysical quantities of the model and give us

the radiances following the radiative transfer equation (1.2).

The observation data yo itself is not entirely reliable and suffers from the

so called representation and measurement errors. In brief, the representation

errors encompass the error due to mismatch in the scales between the observations

1.1. Error Statistics 11

and the model fields, error in the observation operator itself or due to the pre-

processing of the observations [Janjić et al., 2018]. The measurement errors can be

attributed to the problem with the machines/sources providing the observations.

One example can be some defect with the sensor of a satellite sending remotely-

sensed images. Together we denote the representation and measurement error as

εo and the relation between the observation and model state can be written as

yo = H (xt) + εo (1.3)

For a basic understanding we can look at Fig. 1.1 which describes a simple data

assimilation schematic. The starting background term xb is assimilated with the

observations yo along with the corresponding errors εb and εo to give an analysis

xa or an improved forecast of the background. We now derive the variational

Figure 1.1: A simple schematic of data assimilation

equation for the best analysis using the ideas of Bayesian statistics and probability

distribution functions (pdf) following [Lorenc, 1986]. We are interested in finding

the conditional probability of being at the analysis state given a set of observations.

In other words we want to maximise p(x|yo). We recall the Bayes’ theorem which

states that the posterior probability of any event occurring is proportional to the

prior probability multiplied by the likelihood probability.

p(x|yo) ∝ p(yo|x)p(x) (1.4)

where p(yo|x) is the likelihood pdf of the observations given model state and p(x)

is the prior pdf of the model state which is at best represented by some background

12 Chapter 1. Data Assimilation

information. Assuming that the errors follow a Gaussian distribution, we have

εb ∼ N (0,B) and εo ∼ N (0,R) (1.5)

where N (0,Q) represents a normal distribution centered at 0 with covariance

matrix Q. In our multi-dimensional case, B and R are the background and

observation covariance matrices respectively. Thus,

B =
〈

(εb)T (εb)
〉

R =
〈

(εo)T (εo)
〉 (1.6)

and the prior and the likelihood pdfs can be expressed as

p(yo|x) ∝ exp

{
−1

2
(H (x)− yo)T R−1(H (x)− yo)

}
p(x) ∝ exp

{
−1

2
(x− xb)T B−1(x− xb)

} (1.7)

Using the above relations in (1.4) we have

p(x|yo) ∝ − exp

{
1

2
(x− xb)T B−1(x− xb)

+
1

2
(H (x)− yo)T R−1(H (x)− yo)

} (1.8)

In order to maximise the posterior pdf p(x|yo), we take the negative logarithm of

the above relation (1.8) to obtain a cost function of the form

J (x) =
1

2
(x− xb)T B−1(x− xb) +

1

2
(H (x)− yo)T R−1(H (x)− yo) (1.9)

This turns out to be the cost function for one of the most basic variational data

assimilation algorithms called the 3D-Var which we discuss next.

1.2 3D-Var and 4D-Var

The three dimensional variational data assimilation or 3D-Var [Lorenc et al.,

2000,Courtier et al., 1998] aims to determine the best state of the atmosphere/o-

cean at a particular time by considering just the spatial variables and not the

1.2. 3D-Var and 4D-Var 13

dynamical model evolution. In other words, 3D-Var minimises the cost function

without including the time dimension as a part of the control variable i.e. it is a

stationary assimilation method. During the whole assimilation period window the

observations which are distributed in time are assumed to be measured at a par-

ticular time (called the analysis time). All the observations are treated as if they

were observed at the analysis time while calculating the cost function. Suppose

Figure 1.2: Diagram depicting the 3D-Var algorithm

we have a model state x ∈ Rn (obtained by discretising the partial differential

equation using a suitable numerical method like finite differences, finite element,

or spectral methods). For some a priori information xb ∈ Rn, a set of observations

yo ∈ Rm and the observation operator H : Rn → Rm, the 3D-Var cost function is

given as

J (x) =
1

2
(x− xb)T B−1 (x− xb) +

1

2
(H (x)− yo)T R−1 (H (x)− yo) (1.10)

The errors in the background and the observations are characterised by the cor-

responding covariance matrices B and R. The covariances are weighted inversely

which means that more weight will be given to the more reliable information and

vice-versa.

The cost function J is minimised by an appropriate gradient based minimisa-

tion algorithm. In that case the 3D-Var cost function gradient is given as

∇J (x) = B−1(x− xb) + HTR−1(H (x)− y) (1.11)

14 Chapter 1. Data Assimilation

where H is the linearised observation operator. For example, the 3D-Var imple-

mentation by the European Centre for Medium-Range Weather Forecasts (ECMWF)

[Courtier et al., 1998] considered a 6-hour time window from t − 3 to t + 3 and

the observations were assimilated at the central synoptic analysis time t+ 0 (Fig.

1.2). For a detailed information about 3D-Var, see [Rabier et al., 1998,Andersson

et al., 1998].

We saw that 3D-Var lacks the knowledge about a time evolving model and

a natural extension to improve it can be done by adding the fourth dimension

(time) to the 3D-Var cost function resulting in another variational data assimila-

tion method known as the 4D-Var.

The four-dimensional variational data assimilation or 4D-Var [Thepaut and Courtier,

1991,Thépaut et al., 1993,Rabier et al., 2000] minimises the cost function based on

the discrepancies between the model trajectory and the observations and between

the obtained analysis and the previous known background state (Fig. 1.3). For

the model state vector x we consider the following discrete non-linear dynamical

model
x0 = x(t0)

xi = Mi(xi−1) i = 1, 2, . . . , N
(1.12)

where Mi : Rn → Rn is the model operator describing the state evolution from

time ti−1 to ti and N is the total number of time windows. Given we have access to

some prior estimate/background state xb ∈ Rn and a set of observations yoi ∈ Rm

at time ti, the 4D-Var cost function can be written as

J (x0) =
1

2
(x0 − xb)T B−1 (x0 − xb)

+
1

2

N∑
i=0

(Hi(xi)− yoi)
T R−1

i (Hi(xi)− yoi)

(1.13)

Here Hi : Rn → Rm maps the evaluated model state xi to the observation yoi at

the correct time ti.

Remark 1.1. In meteorological data assimilation the role of the background term

can be explained by the fact that the observations are often scarcely and irregularly

distributed in time and space. This could be because the satellite covers/observes

only a part of the earth (spatial domain) and so only some areas are observed dur-

ing a given assimilation window. Here the covariance matrix B helps to extrapolate

1.2. 3D-Var and 4D-Var 15

information from the observed regions to the unobserved areas and therefore main-

taining the quality of the analysis in the areas with few observations available. In

mathematical terms the problem would be under-determined in those areas in the

absence of a background term [Trémolet, 2006].

Figure 1.3: Diagram depicting the 4D-Var algorithm

Remark 1.2. Since M and H are non-linear, from (1.13) we can say that 4D-Var

is essentially a weighted non-linear least-squares fitting problem constrained by the

model evolution equation (1.12). This goes by the sense that we are assuming that

the model is exact or the model has no errors.

In terms of operational implementation, it is assumed that the model error in

(1.12) is small enough to be ignored and in this sense 4D-Var is sometimes also

called as the strong constraint 4D-Var formulation [Sasaki, 1970]. Due to this

assumption the whole model trajectory can be traced just from its initial condition

x0 leading to the reduction of the control variable to a three-dimensional state.

xi = Mi(xi−1) = MiMi−1 . . .M1(x0) (1.14)

Thus (1.13) can be re-written as

J (x0) =
1

2
(x0 − xb)T B−1 (x0 − xb)

+
1

2

N∑
i=0

{Hi [Mi . . .M1(x0)]− yoi}
T R−1

i {Hi [Mi . . .M1(x0)]− yoi}
(1.15)

16 Chapter 1. Data Assimilation

The minimisation of the cost function (1.15) now represents an unconstrained

weighted non-linear least-squares problem with the initial states being the control

variables.

Lorenc and Rawlins [Lorenc and Rawlins, 2005] explained that the difference

between 3D-Var and 4D-Var is how the time dimension is treated and taken into

account while assimilating the observations. In terms of producing an accurate

analysis, 4D-Var has an edge over 3D-Var as it allows the comparison of each ob-

servation in full fields at the proper times and it lets the time-evolved covariances

improve the quality of the analysis for longer forecasts. For more details about the

operational implementation of 4D-Var in the ECMWF see [Mahfouf and Rabier,

2000,Klinker et al., 2000] and in the UK Met Office [Rawlins et al., 2007].

1.3 Incremental 4D-Var

1.3.1 Gauss-Newton Method

Solving the 4D-Var problem can prove to be very challenging because of the

extremely large size of the control variable x (∼ O(107 − 109)) and the immense

computational resources required to run it operationally. One generally makes use

of the Gauss-Newton algorithm which can be described as a modified Newton’s

method for solving a general non-linear least-squares problem, see [Björck, 1996,

Nocedal and Wright, 1999]. We show that how this method can be adapted for

solving the 4D-Var problem as done in [Gratton et al., 2007]. Notice that the

4D-Var cost function can be written as

J(x0) =
1

2
‖f(x0)‖2

2 =
1

2
f(x0)Tf(x0) (1.16)

where f : Rn → RN+n is a non-linear twice continuously Fréchet differentiable

function and

f(x0) =


B−1/2(x0 − xb)

R
−1/2
1 (H1(x1)− yo1)

...

R
−1/2
N (HN(xN)− yoN)

 (1.17)

1.3. Incremental 4D-Var 17

Let Ĵ be the Jacobian of f . Then the gradient and Hessian of J are written as

∇J(x0) = Ĵ(x0)Tf(x0)

∇2J(x0) = Ĵ(x0)T Ĵ(x0) +
N+n∑
i=1

fi(x0)∇2fi(x0)
(1.18)

with fi being the ith component of f and

Ĵ =


B−1/2

R
−1/2
1 H1M1

...

R
−1/2
N HNMN

 . (1.19)

H =
∂H

∂x

∣∣
x(l) and M =

∂M

∂x

∣∣
x(l) are the linearised observation operator and the

linearised model around the linearisation state x(l) which we will discuss in detail

in the next section.

For large scale problems such as 4D-Var, the individual second order terms

fi∇2fi of the Hessian ∇2J are impractical to calculate and that is where the

Newton’s method is approximated by neglecting those second order terms and

giving the Gauss-Newton method. Therefore,

∇2J(x0) ≈ Ĵ(x0)T Ĵ(x0) (1.20)

Algorithm 1 describes the steps for executing the Gauss-Newton algorithm. Note

Algorithm 1 gauss-newton algorithm

1. Choose an initial guess x0 ∈ Rn.

2. Repeat until convergence:

(a) Solve Ĵ(x(l))T Ĵ(x(l)) s(l) = −Ĵ(x(l))Tf(x(l))

(b) Set x(l+1) = x(l) + s(l)

(c) Linearise H and M around x(l+1) for the computation of Ĵ(x(l+1))

that at each iteration of the step 2.(a) corresponds to solving the linearised least

squares problem [Gratton et al., 2007]

min
s

1

2

∥∥Ĵ(x(l)) s + f(x(l))
∥∥2

2
(1.21)

18 Chapter 1. Data Assimilation

In the next section we are going to talk about the incremental 4D-Var in great

length and we are going to see how the Gauss-Newton algorithm is intimately

related to it.

1.3.2 Implementation issues with 4D-Var

In the last section we said that implementing the full 4D-Var algorithm requires

an immense amount of computational resources. One reason is that the model

state usually has the number of degrees of freedom. For instance, just for a simple

latitude-longitude model with a resolution of 1◦ and 20 vertical levels we would

have 360×180×20 = 1.3×106 grid points [Kalnay, 2003]. If at each grid point we

would like to store the values of the prognostic variables (two horizontal velocities,

temperature, moisture) and the surface pressure for each column, we would have

around 5 million variables to provide to the initial state. Another reason is the

Figure 1.4: On the left the function is quadratic and has a unique global minimum;

on the right the function is highly non-linear has many local minima

presence of the non-linear operators M and H which makes the cost function

highly non-linear. Trying to directly minimise a fully non-linear cost-function is

an arduous task where one can be in a situation of being stuck in one of the many

local minima and never reaching the true optimum (Fig. 1.4). In order to use 4D-

Var at an operational level, instead of minimising the full non-linear cost function

1.3. Incremental 4D-Var 19

at once, the problem is reduced to a series of successive minimisations of much

simpler quadratic cost functions. This formulation is known as the Incremental

4D-Var [Courtier et al., 1994].

1.3.3 Incremental 4D-Var formulation

The incremental 4D-Var formulation is obtained by linearising the model and ob-

servation operators around the model state. For a sequence of the linearisation

states x(0),x(1), . . .x(l) with corresponding increments δx(0), δx(1), . . . δx(l) the fol-

lowing tangent linear hypothesis (a first order Taylor’s expansion) is made

M (x(l) + δx(l)) ≈ M (x(l)) + M δx(l)

H (x(l) + δx(l)) ≈ H (x(l)) + H δx(l)
(1.22)

where M and H are the linearisation of the model and observation operators

respectively around the linearisation state x(l); that is,

M =
∂M

∂x

∣∣
x(l) H =

∂H

∂x

∣∣
M (x(l))

(1.23)

The control variable now changes from the initial model state x0 to the initial

increment δx0 of the model state. Using the above assumption we write our cost

function as

J(δx0) =
1

2
{x0 − (xb − δx0)}T B−1 {x0 − (xb − δx0)}

+
1

2

N∑
i=0

{Hi(xi + δxi)− yoi}T R−1
i {Hi(xi + δxi)− yoi}

(1.24)

and which can be written in more simplified form after applying the tangent linear

approximation

J(δx0) =
1

2
{δx0 − (xb − x0)}T B−1{δx0 − (xb − x0)}

+
1

2

N∑
i=0

(Hiδxi − di)
TR−1

i (Hiδxi − di)

(1.25)

where di = Hi(xi)− yi is called the innovation vector or just departures. Clearly

one has to run the non-linear model integration and store the trajectory to com-

pute the departures since the non-linear model M is embedded within δxi. The

20 Chapter 1. Data Assimilation

minimisation is generally carried out using low resolution linear models to further

cut the computing costs. The increment vector evolves in time through the tangent

linear model (TLM) which is the obtained by linearising the discrete non-linear

model.

δxi+1 =
∂M [x(ti)]

∂x
δxi = Miδxi (1.26)

There is another way to obtain the discrete model using the perturbation forecast

Figure 1.5: Diagram depicting the incremental 4D-Var algorithm

model (PFM) [Lawless et al., 2003] where first the continuous non-linear model

is linearised to obtain a continuous linear model and then it is discretised. In a

nutshell the incremental 4D-Var involves running a high resolution model, which

retains all the physics, to compare the model state trajectory with the observations

as part of the evaluation of the cost function and running a low resolution model

with simplified physics, to minimise the cost function [Rabier et al., 2000]. An

algorithmic implementation of incremental 4D-Var given below in Algorithm 2 is

adopted from [Lawless et al., 2005]. For better visualisation, the first few inner and

outer loop steps with the linearised cost functions, linearised states and increments

are shown in Fig. 1.5.

1.3. Incremental 4D-Var 21

Algorithm 2 incremental 4d var

initialisation

• Start with an initial guess x
(l)
0 . Usually for l = 0 we set x

(0)
0 = xb.

outer loop begins

• Run the non-linear model (1.12) and store the model trajectory {x(l)
i }. Cal-

culate the innovation vector d
(l)
i = Hi(x

(l)
i)− yoi

• Define the increment vector δx
(l)
0 = x

(l+1)
0 − x

(l)
0

inner loop starts

• Solve the minimisation problem

J (l)[δx
(l)
0] =

1

2
(δx

(l)
0 − (xb − x

(l)
0))TB−1(δx

(l)
0 − (xb − x

(l)
0))

+
1

2

N∑
i=0

(Hiδx
(l)
i − d

(l)
i)TR−1

i (Hiδx
(l)
i − d

(l)
i)

(1.27)

subject to (1.26)

inner loop ends

• Update the guess using

x
(l+1)
0 = x

(l)
0 + δx

(l)
0 (1.28)

• Repeat until a given convergence criterion is satisfied or a fixed number of

iterations has been performed.

outer loop ends

Remark 1.3. The incremental 4D-Var algorithm is equivalent to solving the it-

erative Gauss-Newton algorithm for non-linear least squares problem as shown

in [Lawless et al., 2005].

Remark 1.4. An incremental 4D-Var iteration is identical to a Gauss-Newton

iteration if an exact TLM is used. Whereas if an approximated TLM or PFM

is used, then the incremental 4D-Var iteration can be seen as an inexact Gauss

Newton iteration which makes use of an approximate Jacobian [Lawless et al.,

2005, Gratton et al., 2007].

22 Chapter 1. Data Assimilation

1.3.4 Performance and convergence

As the system evolves to higher and higher resolution, the effects of small scales

and the non-linear physics become even more important. In order to properly

resolve them, one needs to run more outer loops because that is where the non-

linearities are taken into consideration in the assimilating model [Trémolet, 2007].

The inner loop is generally run at a lower resolution with the help of a trunca-

tion operator while the inverse of the same operator is used to bring back the low

resolution increment to the high resolution for updating the control variable. This

results in the relative error due to the resolution difference between the inner and

the outer loops. The error can be reduced by the presence of linearised physics

and by adding more physical processes or by increasing the inner loop resolution

which would then reduce the length of the assimilation window [Trémolet, 2004].

Experimental results have shown that the incremental 4D-Var can start to diverge

Figure 1.6: The same non-linear cost function where the red dashed curve shows

the linearisation of J around the model state x
(k)
0

after more than two outer loops when the TLM is too approximated. A key fac-

tor which affects the convergence behaviour is the resolution at which the inner

and outer loops are run and not the linearisation itself. In fact, it is more of the

temporal resolution which causes the anomaly in obtaining increments as one do

more outer loops [Trémolet, 2007]. However, there is no guarantee that even after

1.4. Weak constraint 4D-Var 23

using the incremental 4D-Var one can reach the global minimum. Instead there

can be a situation where after we linearise the cost function around a model state,

the minimisation iteration points us towards one of the local minima and we get

stuck there as shown in Fig. 1.6. A lot depends on the starting position of the

initial guess, if it is closer to the global minimum then we are likely to reach it.

The primary reason we use the incremental 4D-Var is to be able to use minimisa-

tion methods such as the Conjugate Gradient which is a far more efficient method

than the quasi Newton methods when the cost function J is quadratic.

1.4 Weak constraint 4D-Var

So far we have talked about the data assimilation methods where the model is

assumed to be perfect. A more general approach is to consider the fact that

the model (1.12) is imperfect and so the presence of model errors needs to be

accounted for. This leads to another formulation known as the weak constraint

4D-Var first introduced by Sasaki [Sasaki, 1970]. In this formulation the model

is only imposed as a weak constraint in the optimisation problem because the

minimising solution x does not satisfy the model exactly [Trémolet, 2006]. The

cost function (1.13) gets an additional term due to the model error constraint.

Since the values of model state are needed at all time steps, the control variable

becomes the full four dimensional model state x = (x0,x1, . . . ,xN) giving the

following weak constraint 4D-Var cost function

J (x) =
1

2
(x0 − xb)T B−1 (x0 − xb) +

1

2

N∑
i=0

(Hi(xi)− yoi)
TR−1

i (Hi(xi)− yoi)

+
1

2

N∑
i=1

{xi −Mi(xi−1)}T Q−1
i {xi −Mi(xi−1)}

(1.29)

where Qi is the model error covariance matrix. One thing to observe is the

presence of the intermediate model states in the control variable means that the

model operator is now only present in the last term of the cost function.

The error constraint term in the cost function can also be written in terms of

24 Chapter 1. Data Assimilation

model error forcing which is given as

xi = Mi(xi−1) + ηi (1.30)

where ηi represents the three-dimensional model error at time ti. This gives rise

to an another way of formulating the weak constraint problem through the change

of variables in (1.30). The control variable x now consists of the 3D initial state

x0 and the model error forcing term ηi [Trémolet, 2006] and the cost function

becomes

J (x0,η) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

N∑
i=1

ηTi Q−1
i ηi

+
1

2

N∑
i=0

(Hi(xi)− yoi)
T R−1

i (Hi(xi)− yoi)

(1.31)

Alternatively, the model-error constraint can also be expressed in terms of model

bias by taking the difference between the perfect model trajectory and the model

state at each time step obtained from a given initial condition. It is represented

as β1, · · · ,βN . Then (1.30) can also be written as

xi = Mi,0(x0) + βi (1.32)

where Mi,0 is the model integrated from time t0 to time ti. With this change

of variable, there is yet another control variable for the weak constraint 4D-Var.

The model bias is generally taken as a constant over the assimilating window due

to the ergodic assumption [Trémolet, 2006]. The corresponding cost function is

written as

J (x0,β) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

N∑
i=1

βT Q−1 β

+
1

2

N∑
i=0

(Hi(Mi,0(x0) + β)− yoi)
T R−1

i (Hi(Mi,0(x0) + β)− yoi)

(1.33)

Remark 1.5. Although the above approaches for the weak constraint formulations

in (1.29), (1.31) and (1.33) are mathematically equivalent, they however lead to

very different minimisation procedure and preconditioning techniques.

1.5. Adjoint method 25

1.5 Adjoint method

In variational data assimilation the gradient-based minimisation techniques [Lewis

and Derber, 1985, Le Dimet and Talagrand, 1986, Talagrand and Courtier, 1987,

Courtier and Talagrand, 1990] are most commonly used to minimise the cost

function J . Finding the gradient of the cost function points to finding the Jacobian

matrix with respect to the control variable x = (x1, x2, . . . , xn)T

∇J (x0) =



∂ J

∂ x1

(x0)

...

∂ J

∂ xn
(x0)


=



J (x0 + αe1)− J (x0)

α

...

J (x0 + αen)− J (x0)

α


(1.34)

One way of calculating the Jacobian is through finite differences which will re-

quire at least n + 1 model runs. As discussed before in this chapter, the model

state vector is usually of O(107 − 109) and one cannot afford to find the gradient

through growth rates along all the possible directions. An alternative way which

is extremely efficient in terms of making it possible to do real-time predictions is

through the use of the adjoint method [Le Dimet and Talagrand, 1986].

The adjoint method makes use of the adjoint model which cannot be explained

without talking first about its corresponding tangent linear model (TLM). TLM

can also be represented as the Jacobian matrix around the linearisation state.

It maps the variations of the control variable onto the variations in the model

prediction. The adjoint model is just the adjoint of this Jacobian matrix and it

maps in the reverse direction determining the effect of the control variables on a

given perturbation in the model output [Giering and Kaminski, 1998].

Given the TLM in discrete form as in (1.26), the computation of the gradient

requires the backward integration of the adjoint model in the sense that one starts

with the final solution of the tangent linear model as the initial condition and

evaluates in the reverse order with the help of the chain rule. Computation of the

gradient by the backward adjoint integration is equivalent to the cost of around

2-5 model forward model runs which is extraordinarily less than the cost of n+1

model runs through finite differences. The adjoint equations for calculating the

gradient of the 4D-Var cost function (1.13) are given by [Griffith and Nichols,

26 Chapter 1. Data Assimilation

2000]

uN = 0

ui = MT
i (ui+1)−HT

i R−1
i (Hi(xi)− yoi), i = N − 1, · · · , 0

(1.35)

where ui ∈ Rn is the adjoint variable and Mi ∈ Rn×n and Hi ∈ Rn×m are the

Jacobians of M and H with respect to the model state xi. Then the gradient of

the cost function (1.13) is given with respect to the initial state x0 is given by

∇J(x0) = B−1(x0 − xb)− u0 (1.36)

The optimality condition requires that the gradient is equal to zero. If not, the

gradient produces a local descent direction to provide an improved optimal esti-

mate [Griffith and Nichols, 2000]. The adjoint model in its discrete form can be

written as

u(tN) = uN

ui = MT
i (ui+1) i = N − 1, · · · , 0

(1.37)

where MT
i : Rn → Rn is now the adjoint model operator or the adjoint of the

tangent linear model (TLM) (1.26) describing the adjoint state evolution from

time ti+1 to ti. A detailed explanation about the adjoint methods and how to

code them can be found in [Giering and Kaminski, 1998].

The adjoint is a powerful method for obtaining the exact gradient however a

lot depends on the validity of the tangent linear approximations. There are cases

when the perturbation size is large, the higher order terms in the tangent linear

approximations become more and more significant and can no longer be neglected.

The linearisation might become unreliable in the sense that both the tangent-linear

and the adjoint model may fail to satisfy and give no meaningful results. Generally

there is a time where almost any perturbation enters a non-linear regime in most

atmospheric models rendering the adjoint applications limited to short time spans

[Errico, 1997]. In the case of incremental 4D-Var, it is also recommended that the

inner loop minimisation should yield small increments otherwise there is a high

possibility that the algorithm diverges.

1.6. Minimisation methods 27

1.6 Minimisation methods

From section 1.5 on the adjoint method we see that (1.35), (1.36) and (1.37)

point out that setting the cost function gradient ∇J(x0) to zero leads to solving

a system of equations linear in x0. In this section we are going to talk about the

minimisation techniques used in variational data assimilation such as the Krylov

subspace methods for solving the linear system. In particular we will explain the

conjugate gradient method which is a type of Krylov subspace method and we

will show how it is linked to solving the inner loop problem of the incremental

4D-Var.

1.6.1 Krylov subspace methods

Consider the linear system

Ax = b (1.38)

where A ∈ Rn×n is a large and sparse coefficient matrix and b ∈ Rn. When

solving such system there is often the case where the access to the matrix is

implicit in the form of a subroutine which gives out the matrix-vector product

for a given vector as an input. Using a suitable Krylov subspace method, which

has the matrix-vector multiplication as its most dominant operation, is a logical

option [Ipsen and Meyer, 1998].

Krylov subspace methods [Freund et al., 1992,Saad, 2003,Simoncini and Szyld,

2007,Liesen and Strakos, 2013] are projection based methods which find a sequence

of approximate solutions xj from an affine subspace x0 + Kj (j = 1, 2, · · ·) of

dimension j by constraining the jth residual rj = b−Axj to satisfy the Petrov-

Galerkin condition

b−Axj ⊥ Lj (1.39)

where x0 is some initial guess and Lj ⊆ Rn is another subspace of dimension j.

The subspace Kj(A,v) is called a Krylov subspace of order j which is generated

by the repeated multiplication of the coefficient matrix A with a vector v. That

is,

Kj(A,v) = span{v,Av, · · · ,Aj−1v} (1.40)

28 Chapter 1. Data Assimilation

Note that Krylov subspaces are nested i.e. Kj ⊆ Kj+1. Also note that for the

Krylov subspace methods, the affine subspace x0 + Kj(A, r0) is used with r0 =

b−Ax0 being the initial residual. Usually the initial guess is taken to be x0 = 0

(i.e. r0 = b) since the space Kj(A,b) is a good space to search for the approximate

solution and it is closely linked to the inverse of the matrix A. The eigenvalues of

A play an important role in determining the dimension of the space K and hence

the number of iterations it would take since it is determined from the degree of

the minimal polynomial of A [Ipsen and Meyer, 1998].

Different Krylov methods can be obtained depending upon the choice of the

subspace Lj [Van der Vorst, 2003]. For Lj = AKj we get GMRES [Saad and

Schultz, 1986] which is one of the most well known methods for solving non sym-

metric systems. For our discussion, we are going to talk about the Conjugate

Gradient method which one gets when Lj = Kj and is a popular choice for solv-

ing symmetric systems.

1.6.2 Conjugate gradient method

The conjugate gradient method (or simply CG) is a kind of an iterative Krylov

subspace method [Axelsson, 1996,Kelley, 1999,Golub and Van Loan, 2013] which

was introduced by Hestenes and Stiefel [Hestenes et al., 1952] to solve symmetric

positive definite linear systems

Ax = b, A ∈ Rn×n and b ∈ Rn. (1.41)

The problem (1.41) can be stated equivalently as a convex quadratic minimisation

problem

min
x

q(x) =
1

2
xTAx− bTx (1.42)

as (1.41) and (1.42) have the same unique solution. Since CG is a Krylov pro-

jection method, it satisfies the Petrov-Galerkin condition for Lj = Kj(A, r0) also

called the Ritz-Galerkin condition [Van der Vorst, 2003]

b−Axj ⊥ Kj(A, r0). (1.43)

The search directions pj are constructed using the residual rj at each iteration j

so that they are A-conjugate to all the previous search directions. That is, a given

1.6. Minimisation methods 29

set of search directions {p0,p1, · · ·pi} is conjugate with respect to the matrix A

if

pTj Apk = 0 when j 6= k. (1.44)

Moreover, the residuals have a nice property that they are orthogonal to all the

previous residuals and thus one always gets a linearly independent set of search

directions unless the residual becomes zero [Shewchuk, 1994]. This leads to a very

important result that CG is guaranteed to converge in at most n iterations when

A ∈ Rn×n.

Algorithm 3 conjugate gradient algorithm

1: Given: Symmetric positive-definite matrix A ∈ Rn×n, right hand side vector b ∈
Rn, stopping tolerance εcg

2: Set x0 = 0, r0 = b, p0 = −b

3: j = 0

4: while true do

5: αj = rTj rj/pjApj

6: xj+1 = xj + αjpj

7: rj+1 = rj − αjApj

8: if ‖rj+1‖2 ≤ εcg then

9: break

10: end if

11: pj+1 = −rj+1 +

(
rTj+1rj+1

rTj rj

)

12: j = j + 1

13: end while

The convergence of the CG algorithm depends on the distribution of the eigen-

values of the coefficient matrix A. If A has r distinct eigenvalues then the method

will converge in at most r iterations [Nocedal and Wright, 1999] which becomes

very handy for the case when n is very large. A convergence bound for the CG

depending upon the condition number κ(A) is useful in the case when we only

have knowledge about the extreme eigenvalues of A [Greenbaum, 1997] and it is

given by

‖ej‖A
‖e0‖A

≤ 2

[(√
κ− 1√
κ+ 1

)j
+

(√
κ+ 1√
κ− 1

)j]−1

≤ 2

(√
κ− 1√
κ+ 1

)j
(1.45)

30 Chapter 1. Data Assimilation

where ‖e0‖A and ‖ej‖A are the error at the initial step and at iteration j respec-

tively.

1.6.3 Link to data assimilation

In this subsection we relate how the conjugate gradient method can be used for

the incremental 4D-Var. We note that the gradient of the inner loop cost function

(1.25) of incremental 4D-Var is given by

∇J(δx0) = B−1{δx0 − (xb − x0)}+
N∑
i=0

HT
i R−1

i (Hiδxi − di) (1.46)

Rearranging the right hand side terms we get

∇J(δx0) =
(
B−1 +

N∑
i=0

HT
i R−1

i HiMiMi−1 · · ·M1

)
δx0 −B−1(xb − x0)

−
N∑
i=0

HT
i R−1

i di

=
(
B−1 + Ĥ

T
R̂
−1

Ĥ
)
δx0 −B−1(xb − x0)− Ĥ

T
R̂
−1

d̂

(1.47)

where

Ĥ =


H0

H1M1

...

HNMN · · ·M1

 , R̂ =


R0

R1

. . .

RN

 , d̂ =


d0

d1

...

dN

 (1.48)

Setting the gradient (1.47) equal to zero we have(
B−1 + Ĥ

T
R̂
−1

Ĥ
)
δx0 = B−1(xb − x0) + Ĥ

T
R̂
−1

d̂ (1.49)

which can be put together as a linear system

AInc 4dvarδx0 = b (1.50)

where

AInc 4dvar = B−1 + Ĥ
T
R̂
−1

Ĥ, b = B−1(xb − x0) + Ĥ
T
R̂
−1

d̂ (1.51)

1.6. Minimisation methods 31

Note that the matrix B−1 + Ĥ
T
R̂
−1

Ĥ is symmetric. Therefore we can use CG

for solving the linear symmetric system (1.50) and which is equivalent to solving

a convex quadratic minimisation problem where the quadratic is given as

q(δx0) =
1

2
δxTAInc 4dvarδx0 − bT δx0 (1.52)

Chapter 2

Parallel in Time algorithms:

Parareal method

Contents

2.1 Introduction to time parallelisation 34

2.2 Multiple shooting method 35

2.3 Parareal method . 36

2.4 Convergence properties of Parareal 39

2.4.1 Convergence for scalar ODE 39

2.4.2 Numerical experiments for the scalar equation 41

2.4.3 Non-linear convergence 47

2.4.4 A numerical example . 48

2.5 Analysis of the eigenvalues of F−G 50

2.6 Speedup and Efficiency 57

2.7 Typical problems with Parareal and modifications . 59

2.7.1 PITA algorithm . 60

2.7.2 Krylov subspace enhanced Parareal 62

2.7.3 An adaptive Parareal 63

The solution to large scale time-dependent problems on parallel architectures is

commonly achieved by using domain-decomposition methods exploiting space par-

allelisation [Toselli and Widlund, 2004, Dolean et al., 2015]. A classical domain-

32

33

decomposition method partitions the whole spatial domain into smaller subdo-

mains which results in a coupled system. To each subdomain multiple cores are

assigned which are run independently of one another and with the only synchro-

nisation point during the exchange of information at the interfaces. There is

however a limitation to using the spatial parallelisation when the communication

overhead becomes large enough to the extent that it starts dominating the overall

computation time.

In this chapter we will introduce the idea of time parallelisation and show how

despite of the causality property of time domain one can exploit it as an alter-

native source of parallelism. The so called parallel-in-time or PinT algorithms

are discussed while restricting ourselves to the category of parallel multiple shoot-

ing methods. Out of these methods our main topic of discussion will be on the

well known Parareal algorithm in section 2.3. It can be thought of a two-level

prediction-corrector algorithm which uses a sequential coarse propagator G and a

parallel fine propagator G in an alternative fashion. Parareal will be talked about

comprehensively for the linear problems in the rest of the chapter and we sum up

some of the most important points here.

In terms of convergence properties Parareal admits a superlinear convergence

(section 2.4) for the time bounded linear scalar ODEs and non-linear ODEs. A fur-

ther scalar convergence analysis shows that Parareal works well for the parabolic

problems but not for the hyperbolic problems in spite of a superlinear conver-

gence. From the general Parareal error expression, we see that the term F −G

plays a significant role in governing the evolution of the Parareal error. This

fact has been scrutinised by studying the eigenvalues of F −G with the help of

an implicit theta scheme in section 2.5. The error manifests as a result of the

difference in the dissipation rates and dispersion between F and G. A speedup

analysis is also done and some bounds are provided which point out that in order

to obtain a reasonable speedup one has to run as few Parareal iterations as pos-

sible. Section 2.7 talks about some of the other common challenges that Parareal

faces such as the cost of the coarse solver, cost of the fine solver, computational

implementation along with the modifications provided in the literature to tackle

them. We end this chapter by briefly talking about the PITA algorithm, Krylov

subspace enhanced Parareal and an adaptive Parareal.

34 Chapter 2. Parallel in Time algorithms: Parareal method

2.1 Introduction to time parallelisation

The concept of time parallelisation might sound counter-intuitive but it is one of

the very active areas of research for the past few decades now. Parallelisation in

the time domain is a different prospect than parallelisation in the spatial domain.

Time domain has the inherent property of causality which means that in order

to predict the future one must know some information about the past. For the

numerical solution of a simple time-dependent model, one needs to know the

solution at the previous time step to proceed for the time integration and find

out the solution at the next time step. This is where the so called parallel-in-time

algorithms come to circumvent the causality principle and enable us to provide

some additional parallelism opportunity in the time domain.

The first ideas could be traced back to the 1960s when Nievergelt [Nievergelt,

1964] introduced a naive approach of integrating a simple ODE problem parallel

in time. His idea was to do an initial prediction with a one-step method and then

running multiple integrations of the neighbouring points around the solutions

simultaneously for each subinterval. The global solution was then be obtained by

doing a simple interpolation between the clusters of the obtained trajectories. An

another early work can be found in [Miranker and Liniger, 1967] talking about a

class of numerical methods for time parallel integrations. The literature review

paper by Gear [Gear, 1988] and a book by Burrage [Burrage, 1995] talk in detail

about the “parallelism across the methods” for initial value problems in ODEs.

Gander [Gander, 2015] has done an intensive research in a monograph combining

all the major works in the field of parallel-in-time (PinT) methods from the last

5 decades. He has ordered his chapters by classifying the PinT methods into

four broad categories on their mode of application : multiple shooting methods,

waveform-relaxation methods, multigrid methods and direct methods. Our focus

is on one of the multiple shooting methods called the Parareal algorithm which

is probably the most studied PinT algorithm in this domain. For a more general

introduction about the different PinT algorithms see [Ong and Schroder, 2020,

Gander et al., 2022].

2.2. Multiple shooting method 35

2.2 Multiple shooting method

The concept of multiple shooting stems from the classical shooting methods which

are used to treat boundary value problems as an initial value problem (IVP) by

using a shooting parameter [Keller, 2018]. The approach of a time-parallel solution

of an IVP by Nievergelt [Nievergelt, 1964] can be considered as a multiple shoot-

ing algorithm which was further improved by the ideas in [Bellen and Zennaro,

1989,Khalaf and Hutchinson, 1992,Chartier and Philippe, 1993,Kiehl, 1994]. We

consider an IVP of the form

x′(t) = f(t,x(t)), t ∈ [0, T],

x(0) = x0

(2.1)

where f : Rn → Rn and x ∈ Rn, i.e. the size of the problem is n. We introduce

intermediate targets αi by partitioning the time domain [0, T] into subintervals

[ti, ti+1], i = 0, .., N − 1 with 0 = t0 < t1 < · · · < tN = T and solving the original

problem (2.1) as

x′i(t,αi) = f(t,xi(t,αi)), t ∈ [ti, ti+1]

xi(ti,αi) = αi

(2.2)

with x0(t0,α0) = α0 = x0. To solve the above sub-IVPs we need to know the

value of the intermediate targets αi called the shooting parameters which must

satisfy the system of equations

α0 = x0(t0,α0) = x(0) = x0

α1 = x0(t1,α0)

...

αN = xN−1(tN ,αN−1)

(2.3)

Combining the shooting parameter values in a vector of vectors α = (α0,α1, . . . ,αN)T

we solve for a non-linear system of equations

f̂(α) =


α0 − x0

α1 − x0(t1,α0)
...

αN − xN−1(tN ,αN−1)

 = 0 (2.4)

36 Chapter 2. Parallel in Time algorithms: Parareal method

where f̂ : Rn.N+1 → Rn.N+1 and thus (2.4) becomes a root-finding problem which

can be solved through Newton’s method. We start with an initial guess α̂ and

solve for k = 0, 1, 2, · · ·

f̂ ′(αk)(αk+1 −αk) = −f̂(αk) (2.5)

with f̂ ′(α) as the Jacobian

f̂ ′(αk) =



I

− ∂x0

∂α0

(t1,α
k
0) I

.

− ∂xN−1

∂αN−1

(tN ,α
k
N−1) I


(2.6)

Multiplying the Newton iteration (2.5) with the Jacobian matrix on both the sides

we have the following recurrence relation for α0 = α̂ and for k = 0, 1, 2, · · ·

αk+1
0 = x0

αk+1
i+1 = xi(ti+1,α

k
i) +

∂ xi
∂αi

(ti+1,α
k
i)(α

k+1
i −αk

i), i = 0, · · · , N − 1
(2.7)

where
∂ xi
∂αi

is the Jacobian matrix evaluated at αk
i .

The multiple shooting algorithm (2.7) has a locally quadratic convergence if

the function f(t,x(t)) is twice continuously differentiable in the second argument

[Chartier and Philippe, 1993].

2.3 Parareal method

In this section and the remaining part of the chapter we are going to talk about

the Parareal method which is one of the most extensively studied parallel-in-time

algorithm. We are going to use Parareal as our source of time parallelism in all

of our studies and analysis.

The Parareal algorithm was introduced by Lions, Maday and Turinici [Lions

et al., 2001] (also in [Maday and Turinici, 2002,Maday, 2008]) with the objective

of solving evolution problems parallel in time. It is widely used with applications

in fractional differential equations [Xu et al., 2015, Wu and Zhou, 2017, Wu and

2.3. Parareal method 37

Zhou, 2018], Navier-Stokes equation [Trindade and Pereira, 2004, Fischer et al.,

2005, Steiner et al., 2015], optimal control [Mathew et al., 2010, Maday et al.,

2013], plasma turbulence [Samaddar et al., 2010, Reynolds-Barredo et al., 2012],

quantum control [Maday et al., 2007,Maday and Turinici, 2003].

Parareal can be considered as a kind of a multiple shooting method where one

can think of the subinterval solution xi(ti+1,α
k
i) in (2.7) being approximated by a

fine solver F (ti+1, ti,α
k
i) and the Jacobian matrix being replaced by the difference

between the coarse approximations from the current and previous iteration using

a coarse propagator G [Gander and Vandewalle, 2007]. That is,

∂ xi
∂αi

(ti+1,α
k
i)(α

k+1
i −αk

i) ≈ G(ti+1, ti,α
k+1
i)−G(ti+1, ti,α

k
i) (2.8)

We formally introduce the method by considering a general class of ODE

x′(t) = f(t,x(t)), t ∈ (0, T], x(0) = x0 (2.9)

where x ∈ Rn and f : Rn → Rn.

Let us consider a partition of the time domain [0, T] by 0 = t0 < t1 < · · · <
tN = T so we have N subintervals Ωi = [ti, ti+1] with i = 0, · · · , N − 1. As

described in [Baffico et al., 2002] in order to solve (2.9) for each subinterval Ωi

with xi as the initial condition (x(ti) = xi), the method employs two propagators:

• a cheap coarse propagator G(ti+1, ti,xi) which is fast but gives a rough

solution at ti+1 from the initial condition xi.

• a fine propagator F (ti+1, ti,xi) which is computationally expensive but gives

very accurate solution (in theory the exact solution).

The trick is to apply the coarse solver G on the given initial condition x0
0 = x0 to

obtain a quick initial configuration across the whole time-integration domain. So

the initial Parareal iteration k = 0 looks like

x0
i+1 = G(ti+1, ti,x

0
i) (2.10)

Though this step is purely sequential, it circumvents the causality principle by pro-

viding initial conditions at all the intermediate subintervals so they are no longer

dependent on the previous solutions for performing independent time-integrations.

This is where the fine propagator F comes into the picture to do all the

heavy fine integrations in parallel. The differences between the fine and coarse

38 Chapter 2. Parallel in Time algorithms: Parareal method

integrations or the jumps are then added to the next iteration. The iterations

k = 0, 1, · · · , N − 1 are given by

xk+1
i+1 = G(ti+1, ti,x

k+1
i)︸ ︷︷ ︸

Prediction

+ F (ti+1, ti,x
k
i)−G(ti+1, ti,x

k
i)︸ ︷︷ ︸

Correction

(2.11)

In other words, Parareal can be described as a predictor-corrector algorithm where

at a particular iteration, the prediction made by the coarse solver is corrected by

the difference between the solution of the fine and the coarse solver from the

previous iteration. Fig. 2.1 illustrates a correction step of the Parareal for a

Figure 2.1: Illustration of the Parareal algorithm on a subinterval Ωi = [ti, ti+1]

given iteration k on a subinterval Ωi = [ti, ti+1]. The coarse solver G propagates

with time-step ∆t and the fine solver F propagates with the time-step δt. The

difference of the fine and coarse solutions at ti+1 will be used for correcting the

next prediction xk+1
i+1

Also an algorithmic representation of Parareal is provided in Algorithm 4.

Inside the algorithm the stopping criterion of Parareal is taken to be the L∞

norm of the error between the two successive Parareal iterates. That is for some

tolerance εp,

max
1≤i≤N

|xk+1 − xk| < εp (2.12)

The reason we use this here is that the important convergence results for Parareal

which we are going to discuss in the next section use the above stopping criterion.

2.4. Convergence properties of Parareal 39

Algorithm 4 parareal algorithm

1: Given: initial condition x0, Parareal tolerance εp or maximum iterations kmax

2: Initialisation:

3: x0
0 = x0

4: for i = 0 to N − 1 do

5: x0
i+1 = G(ti+1, ti,x

0
i)

6: end for

7: Iterations:

8: k = 0

9: repeat

10: Parallel fine integrations:

11: for i = 0 to N − 1 do

12: x̃k+1
i+1 = F (ti+1, ti,x

k
i)

13: end for

14: Sequential correction step:

15: for i = 0 to N − 1 do

16: xk+1
i+1 = G(ti+1, ti,x

k+1
i) + x̃k+1

i+1 −G(ti+1, ti,x
k
i)

17: end for

18: k = k + 1

19: until k = kmax or max
1≤i≤N

|xk+1 − xk| < εp

2.4 Convergence properties of Parareal

2.4.1 Convergence for scalar ODE

In the original Parareal publication [Lions et al., 2001] the convergence property

has been studied on a scalar linear equation by taking a fixed number of iterations

k. For a given scalar linear ODE

dx

dt
= ax, x(0) = x0, t ∈ [0, T] with a ∈ C (2.13)

we state below the convergence result in a simplified form as a proposition [Gan-

der and Vandewalle, 2007,Nielsen, 2012].

40 Chapter 2. Parallel in Time algorithms: Parareal method

Proposition 2.1. Let ∆t = T/N, ti = i∆t for i = 0, .., N . Consider the IVP

(2.13) for a ∈ R and let us assume that the fine propagator F(ti+1, ti,x
k
i) is ex-

act with the initial condition x(ti) = xki . Let G(ti+1, ti,x
k
i) be the corresponding

backward Euler approximation with time step ∆t. Then

max
1≤i≤N

|x(ti)− xki | ≤ Ck∆t
k+1 (2.14)

The proposition says that the for a fixed iteration k the error of the Parareal

algorithm behaves as an O(∆tk+1) method in ∆t. This result was later extended

to a more general higher order time-integration schemes for the coarse integrator

G in [Bal and Maday, 2002, Bal, 2005]. In those articles it was shown that if an

iterative scheme of order m is taken to be the coarse propagator, then the Parareal

algorithm obtained is of order O(∆tm(k+1)) after k iterations. This approach used

a fixed number of Parareal iterations since the constant Ck grows with k.

Instead of fixing k, the convergence for the same scalar ODE (2.13) was studied

in a different manner by Gander and Vandewalle [Gander and Vandewalle, 2007]

by fixing the time-step ∆t and letting k go to infinity. The coarse propagator

was taken as a one step method G(ti+1, ti,x
k
i) = R(a∆t) xki where R(z) is the

stability function for some z ∈ C. With the help of the powers of a strictly lower

triangular Toeplitz matrices T(β) of size N , (whose elements are fully defined by

the values of the first column elements) defined as

Ti1 =

0 if i = 1,

βi−2, β ∈ C if 2 ≤ i ≤ N
(2.15)

a superlinear convergence was shown in the case of bounded time intervals and

a linear convergence was shown in the case of infinitely long time intervals. The

following theorem states the result for the bounded time interval case [Gander

and Vandewalle, 2007].

Theorem 2.1. Let T < ∞,∆t = T/N, and ti = i∆t for i = 0, 1, · · · , N . Let

F(ti+1, ti,x
k
i) be the exact solution of (2.13) with x(ti) = xki and let G(ti+1, ti,x

k
i) =

R(a∆t) be a one-step method. Then, with T(β) defined in (2.15) we have the

bound

max
1≤i≤N

|x(ti)− xki | ≤ |ea∆t −R(a∆t)|k ‖Tk(R(a∆t))‖∞ max
1≤i≤N

|x(ti)− x0
i | (2.16)

2.4. Convergence properties of Parareal 41

In particular, when we consider a one step method in its region of absolute

stability i.e. |R(a∆t)| < 1 we obtain the following bound using the above theorem

Corollary 2.4.1. In Theorem 2.1 if we assume that G(ti+1, ti,x
k
i) = R(a∆t) xki

is a one-step method in its region of absolute stability then we have the bound

max
1≤i≤N

|x(ti)− xki | ≤
|ea∆t −R(a∆t)|k

k !

k∏
p=1

(N − p) max
1≤i≤N

|x(ti)− x0
i | (2.17)

If the local truncation error of G is bounded by C∆tm+1, with m > 0 and C a

constant, then for ∆t small enough we have

max
1≤i≤N

|x(ti)− xki | ≤
(CT)k

k !
∆tmk max

1≤i≤N
|x(ti)− x0

i | (2.18)

Remark 2.1. Looking at the product term in (2.17) it can be said that the Parareal

algorithm converges to the fine solver solution after N − 1 iterations for any ∆t

irrespective of the choice of R(a∆t) or the coarse propagator G. However, this

is undesirable since N − 1 Parareal iterations are equivalent to a sequential fine

solver run giving us no speedup.

Remark 2.2. The presence of the k ! term in the denominator of (2.17) is of our

interest since it indicates a superlinear convergence. The Parareal will take much

fewer number of iterations than N − 1 resulting in speedup gains.

In the next subsection we are going to discuss in more detail about the evolu-

tion of the Parareal error in scalar equations using numerical experiments.

2.4.2 Numerical experiments for the scalar equation

In this subsection we are going to talk about the convergence results of the scalar

equation for two cases: a diffusive scalar equation (parabolic equation in PDEs)

and a scalar wave equation (hyperbolic equation in PDEs). Let us assume the

scalar fine and coarse propagators to be f and g with time-steps δt and ∆t re-

spectively. To quantify and obtain a closed form expression of the error for the

42 Chapter 2. Parallel in Time algorithms: Parareal method

linear system when Parareal is used, we go back to the Parareal correction step

xki = g xki−1 + (f − g)xk−1
i−1 . (2.19)

Let xf,i be the reference solution at the start of the time window i obtained by

integrating the model using the fine solver f (i.e. xf,i = f ix0). Then the error at

the kth iteration is defined as eki = xf,i − xki which satisfies

eki = geki−1 + (f − g)ek−1
i−1 . (2.20)

Expanding the above recurrence relation we have

eki = (f − g)
i−1∑
p=k

gi−p−1ek−1
p (2.21)

where we have e0
0 = 0 and also by theory, eki = 0 for i ≤ k. Now if the initial states

are obtained by a coarse grid integration (i.e. x0
i = gix0), we have e0

i = (f − g)x0
i

and we get a general expression for eki [Staff and Rønquist, 2005]

eki =
i∑

p=k+1

Ci
p(f − g)pgi−p, i > k (2.22)

where Ci
p =

i !

p !(i− p) !
is the binomial coefficient.

Remark 2.3. In a similar manner, the error expression eki can be obtained for

the matrix form given as

eki =
i∑

p=k+1

Ci
p(F−G)pGi−p, i > k (2.23)

From the expression (2.22) we see that the eki is the sum of the products

involving the powers of (f − g) and g. In practice (2.22) shows that when the

original system is dissipative, it is much easier for Parareal to solve the system

since in that case |g| < 1. To see that we consider the scalar equation

dx

dt
= −ax, a ∈ R+. (2.24)

We take the total number of time windows to be N , each of length ∆t so that we

have only one coarse time step per time window and we have the total time period

2.4. Convergence properties of Parareal 43

of integration T = N∆t. Let γ be the ratio of the number of fine time-steps per

time window to the number of coarse time-steps per time window. If δt is the fine

time-step then δt = ∆t/γ. Using a simple backward Euler method to discretise

the above equation yields the propagators

g(a∆t) =

(
1

1 + a∆t

)
, f(a∆t) =

(
1

1 + a(∆t/γ)

)γ
(2.25)

Fig. 2.2 below shows the Parareal errors ekN at the end of the integration time for

the cases when γ = 20 (left) and γ = 10 (right) with N = 10. We observe that

Figure 2.2: Parareal error ekN for successive iterates k as a function of a∆t

even after using a large value of γ the Parareal error is very small and at k = 4

the error is almost equal to zero. This confirms the results obtained in [Gander

and Vandewalle, 2007] of a quick Parareal convergence for the diffusion equation.

Next we move to the case of a simple scalar wave equation

dx

dt
= iωx, t ∈ [0, T] (2.26)

where ω is some real frequency. We define the Parareal propagators for (2.26)

using the implicit θ-scheme which we write as

xq+1 − xq

∆t
= iω (θxq+1 + (1− θ)xq) (2.27)

44 Chapter 2. Parallel in Time algorithms: Parareal method

where θ is a parameter and 0 ≤ θ ≤ 1. The propagators are given as

f(ω∆t; θ) =

1 + iω
∆t

γ
(1− θ)

1− iθω∆t

γ


γ

g(ω∆t; θ) =

(
1 + iω∆t(1− θ)

1− iθω∆t

) (2.28)

For the given scalar wave equation (2.26) the exact value of the propagator over

∆t is eiω∆t, so in theory we expect our propagators to have the norm equal to

1. Numerically speaking, the propagators are expected to be dissipative (the

modulus of f and g can be less than one) and dispersive (the argument of f and

g is different from ω∆t) depending upon the numerical scheme and time-stepping

used.

We check the behaviour of the two propagators in Fig. 2.3 where the norms

of f and g are plotted as a function of ω∆t with the varying values of θ. The

total time windows are N = 10 and γ = 10. Naturally the coarse propagator has

Figure 2.3: |f | and |g| as a function of ω∆t with varying θ; N = 10, γ = 10

a larger time-step and is more dissipative than the fine solver as can be observed

in Fig. 2.3. We also notice that f and g become less and less dissipative when

2.4. Convergence properties of Parareal 45

the value of θ is close to 0.5, the value for which we recover the Crank-Nicholson

scheme which is known to be non-dissipative.

Next we plot the norm of the difference between the propagators |f − g| for

the same parameter values (N = 10, γ = 10) in Fig. 2.4. We see that |f − g|

Figure 2.4: Norm of f − g as a function of ω∆t with varying θ; N = 10, γ = 10

increases as θ goes to 1 and this indicates that the difference in the dissipation

rates of the propagators start to vary sharply even at the relatively smaller scales.

Thus |f − g| will have the largest value if the backward Euler scheme is used for

the propagators (θ = 1).

Note that the norm of f − g and the norm of g play an important role in

determining the error in the Parareal. From the expression (2.22), it can be seen

that the error will decrease quickly with increasing k if |f − g| � 1 which simply

means that the coarse solver is essentially the fine solver. In practice we need to

wisely choose the ratio γ and the θ parameter. We want γ to be large enough so

that we have a low-accuracy coarse solver and a small |f − g| at the same time.

Also we want a value of θ between 0.5 and 1 for which both |f − g| and |g| are

small.

We consider two instances of the Parareal error for the given scalar wave

equation (2.26). The errors are for the initial prediction made by the coarse

46 Chapter 2. Parallel in Time algorithms: Parareal method

solver (k = 0) and the first 4 Parareal iterations when the propagators are defined

using θ = 0.55 in Fig. 2.5 and θ = 0.8 in Fig. 2.6. The left side of both the images

shows the error for a coarse solver with low accuracy (γ = 10) while the right side

shows the error for a coarse solver with high accuracy (γ = 2).

Figure 2.5: Parareal error ekN for successive iterates k as a function of ω∆t when

θ = 0.55

As expected, we see that the Parareal error is comparatively small for the

large value of θ = 0.8 (see Fig. 2.6) due to the implicit diffusion. We also see

that for all Parareal iterations the error first follows a gradual increase, reaches

a peak and then decreases. This is explained in [Gander and Vandewalle, 2007]

that for an advection equation even though there is a superlinear convergence, the

convergence factors of various one-step methods do not allow Parareal to converge

any faster. To maintain the error to be less than 1 when γ is large (like Fig 2.5,

γ = 10) we need to use a very small value of ω∆t.

In the next subsection we are going to state the convergence result for the case

of non-linear ODEs along with a numerical example.

2.4. Convergence properties of Parareal 47

Figure 2.6: Parareal error ekN for successive iterates k as a function of ω∆t when

θ = 0.8

2.4.3 Non-linear convergence

The convergence study for a general non-linear system of ODE (2.9) was studied

by Gander and Hairer [Gander and Hairer, 2008]. They showed that the Parareal

exhibits a superlinear convergence on bounded intervals by using generating func-

tions on an error recurrence relation. The following theorem states this result

with the following assumptions

1. The difference between the approximate solution from G and the exact

solution can be expanded for ∆t small

F (ti+1, ti,x)−G(ti+1, ti,x) = cm+1(x)∆tm+1 + cm+2(x)∆tm+2 + . . . (2.29)

2. G satisfies the Lipschitz condition

‖G(ti+1, ti,x)−G(ti+1, ti,y)‖ ≤ (1 + C2∆t)‖x− y‖ (2.30)

Theorem 2.2. Let F (ti+1, ti,x
k
i) be the exact solution on the time subdomain

Ωi and let G(ti+1, ti,x
k
i) be an approximate solution with local truncation error

48 Chapter 2. Parallel in Time algorithms: Parareal method

bounded by C3∆tm+1 and satisfying (2.29) where cj, j = m + 1,m + 2, . . . are

continuously differentiable, and assume that G satisfies (2.30). Then at the kth

Parareal iteration we have

‖x(ti)− xki ‖ ≤
C3

C1

(C1∆tm+1) k+1

(k + 1)!
(1 + C2∆t)i−k−1

k∏
j=0

(i− j)

≤ C3

C1

(C1ti)
k+1

(k + 1)!
eC2(ti−tk+1)∆tm(k+1)

(2.31)

The superlinear bound in (2.31) is evident from the presence of the (k + 1)!

term in the denominator.

2.4.4 A numerical example

As an example for demonstrating the Parareal algorithm on a non-linear ODE we

consider the Lorenz equations which were introduced by Edward Lorenz [Lorenz,

1963] in 1963 as a simplified convection model. These equations are frequently

used for numerical weather prediction (NWP) experiments [Palmer, 1993] and

they are a system of 3 non-linear ODEs given by

dx

dt
= σx+ σy, x(0) = x0

dy

dt
= −xz + ρx− y, y(0) = y0

dz

dt
= xy − βz, z(0) = z0

(2.32)

where x, y, z are the state variables and σ, ρ, β are the physical parameters. For

the specific parameter values of σ = 10, ρ = 28, β = 8/3 we get the famous

Lorenz attractor which has the shape of a butterfly’s wings. We use the explicit

Euler scheme to construct our fine and the coarse propagator. The time period

of integration is taken to be [0, 5] with N = 500 time windows so that we have

the coarse time step ∆t = 0.01. The fine time step is taken as δt = 0.001 and the

initial condition is chosen to be (x0, y0, z0) = (20, 5,−5).

Fig 2.7 shows the coarse initialisation and the first 8 iterations out of the total

18 Parareal iterations when a tolerance of εp = 10−6 is used. The blue solid

lines represent the reference solution while the yellow dots represent the Parareal

2.4. Convergence properties of Parareal 49

Figure 2.7: (From left to right) The coarse initialisation and first 8 Parareal

iterations for the Lorenz model (2.32)

solution. We see in the first subfigure that the initial states obtained from the

coarse solver are nowhere near the reference solution. It takes almost 7 Parareal

iterations to correct and bring the solution closer to the reference solution.

Fig. 2.8 shows the maximum error one gets at the kth Parareal iteration (k =

1, · · · , 18). The back dashed line is the Parareal tolerance εp. It can be seen

that after the 6th iteration the error starts following a superlinear convergence as

described in [Gander and Hairer, 2008] in the previous section. We have seen in

this section that the Parareal error depends upon the term f − g when solving

scalar equations. In the next section we will do a more in depth analysis and

illustrations of how the eigenvalues of F−G affect the Parareal convergence when

Parareal is used for a more general case of system of linear ODEs.

50 Chapter 2. Parallel in Time algorithms: Parareal method

Figure 2.8: Error in the Lorenz model as a function of Parareal iterations

2.5 Analysis of the eigenvalues of F−G

Our objective in this section is to investigate how the eigenvalues of F−G affect

the Parareal convergence. Let us consider the following linear system

dx

dt
= Cx (2.33)

where the matrix C comes from the spatial discretisation of a PDE and x ∈ Rn.

We consider an implicit θ-scheme (0 ≤ θ ≤ 1) for the temporal integration of

(2.33)

xq+1 − xq

∆T
= (1− θ) Cxq + θCxq+1

=⇒ [I− θ∆T C]xq+1 = [I + (1− θ)∆T C] xq

(2.34)

and which could also be written as

xq+1 = D xq (2.35)

with

D = [I− θ∆T C]−1 [I + (1− θ)∆T C] . (2.36)

2.5. Analysis of the eigenvalues of F−G 51

We first note that D and C share the same eigenvectors. Indeed, if (µC,xC) is

an eigenpair of C then

D xC = [I− θ∆T C]−1 [I + (1− θ)∆T C] xC

= [I− θ∆T C]−1 [xC + (1− θ)∆T CxC]

= [1 + (1− θ)∆TµC] [I− θ∆TC]−1 xC

= [1 + (1− θ)∆TµC] [1− θ∆TµC]−1 xC

= µDxC

(2.37)

where we used the fact that if µC is an eigenvalue of C, then (1− θ∆TµC) is an

eigenvalue of (I− θ∆TC) and therefore,

(I− θ∆TC)−1xC =
1

(1− θ∆TµC)
xC (2.38)

Thus (µD,xC) is an eigenpair of D with

µD =
1 + (1− θ)∆T µC

1− θ∆TµC

(2.39)

Let us suppose that the fine solver F and the coarse solver G will both use

this θ-scheme with different time steps (and with the same spatial discretisation

corresponding to C). On a given time window of length ∆T , we assume that

the fine solver performs Nfine time steps ∆tF and that the coarse solver performs

Ncoarse time steps ∆tG. That is,

∆tF =
∆T

Nfine

, ∆tG =
∆T

Ncoarse

(2.40)

On the similar lines it can be shown that C, F and G have the same eigenvectors.

We have for the corresponding eigenpairs (µF,xC) and (µG,xC)

µF =
1 + (1− θ)∆tF µC

1− θ∆tF µC

µG =
1 + (1− θ)∆tG µC

1− θ∆tG µC

=
1 + (1− θ)

(
Nfine

Ncoarse

)
∆tF µC

1− θ
(

Nfine

Ncoarse

)
∆tF µC

.

(2.41)

What we would like to estimate is the norm of the matrix

Z = FNfine −GNcoarse (2.42)

52 Chapter 2. Parallel in Time algorithms: Parareal method

which can be done by considering the maximum of the modulus of the eigenvalues

of Z. Matrix Z is the difference between the fine and the coarse solver at the end

of a time window. The eigenvalues of Z are given by

µZ = µNfine
F − µNcoarse

G . (2.43)

In our experiments, the time step of the fine solver ∆tF is defined according to

the following criterion

∆tF max |µC| ≤ ωmax (2.44)

for some constant ωmax. It implies that for a given eigenvalue µC of the matrix C

written in the exponential form we have

∆tFµC = reiβ (2.45)

with modulus 0 ≤ r ≤ ωmax and polar angle β. Moreover, we assume that the

eigenvalues of C have a negative real part i.e. <(µC) ≤ 0 and so β ∈ [π/2, 3π/2].

And due to symmetry when computing the modulus, it is sufficient to consider

β ∈ [π/2, π]. To explain why we take <(µC) ≤ 0 let us consider the eigenvector

xC of C corresponding to the eigenvalue µC. We have

dxC

dt
= C xC = µC xC. (2.46)

The solution to the above scalar equation is x(t) = x(0) eµCt which implies that

|x(t)| = |x(0)| e<(µC)t. Now for any kind of discretisation method to be stable

and for the solution to not blow up, we must have the condition that <(µC) ≤ 0

(Fig. 2.9). In this case there are two situations when we have a wave propagation

problem:

For the pure wave propagation problem (which is a hyperbolic case), all the

eigenvalues of the matrix C are purely imaginary i.e. <(µC) = 0 or β = π/2. For

the case when the problem is slightly parabolic (which has implicit dissipation),

<(µC) = −σ2 for some σ ∈ R which means <(µC) < 0.

Now for given values of ωmax, Nfine, Ncoarse, θ, the maximum of the modulus of

µZ can be obtained by

max |µZ| = max
r∈[0,ωmax], β∈[π/2,π]

|µNfine
F − µNcoarse

G | (2.47)

which can be found numerically.

2.5. Analysis of the eigenvalues of F−G 53

Figure 2.9: The shaded region of consideration where <(µC) ≤ 0

Let γ be the ratio of the number of fine steps per time window to the number of

coarse steps per time window i.e. γ = Nfine/Ncoarse. We consider 3 instances of the

contour plot of |µZ| with different combinations of the values of ωmax, Nfine, Ncoarse,

and θ.

Plot 1

For the first example we consider the values ωmax = 0.6, Nfine = 20, Ncoarse = 4

and θ = 0.6. We get max |µZ| = 0.9865 . . . for r = 0.48 and β = π/2. This is

illustrated in Fig. 2.10.

Plot 2

As a second example shown in Fig. 2.11, for another set of values ωmax = 0.6, Nfine =

20, Ncoarse = 2 and θ = 0.8 we get max |µZ| = 0.790 . . . for r = 0.255 and again at

β = π/2.

Plot 3

Changing the value of θ greatly impacts the maximum eigenvalue. For another

set of values ωmax = 0.6, Nfine = 20, Ncoarse = 2 and θ = 0.51, we get max |µZ| =

1.912 . . . for r = 0.376 and at β = π/2. This result is shown in Fig. 2.12.

54 Chapter 2. Parallel in Time algorithms: Parareal method

Figure 2.10: Contour plot of the modulus of the eigenvalues of Z for ωmax =

0.6, γ = 5, θ = 0.6

Figure 2.12: Contour plot of the modulus of the eigenvalues of Z for ωmax =

0.6, γ = 10, θ = 0.51

It seems that, even if we did not try to prove it, the maximum for |µZ| is

always attained at β = π/2, which corresponds to a purely imaginary eigenvalue

2.5. Analysis of the eigenvalues of F−G 55

Figure 2.11: Contour plot of the modulus of the eigenvalues of Z for ωmax =

0.6, γ = 10, θ = 0.8

of Z. For example we see from Plot 3 that max |µZ| ≈ 2 for µZ = 0.376 i which

is the “most dangerous” eigenvalue impeding the convergence of the algorithm.

In practice, we would like to see how the error projects on the most dangerous

eigenvalues. We have for xC

(F−G)xC = µZxC (2.48)

If {(xpC, µ
p
Z)}p=1,...,n is the set of all the eigenpairs of C, then for any vector x

(F−G)x =
n∑
p=1

αp µ
p
Z xpC (2.49)

and if the eigenvectors are normalised then

‖(F−G)x‖2 =
n∑
p=1

α2
p (µpZ)2 (2.50)

What remains is to find the weights αp which correspond to the amplitudes of the

projection of the Parareal error on the eigenvectors associated with the “danger-

ous” eigenvalues.

Moreover it is well known that the potentially large differences between coarse

and fine solver are also due to the dispersion error. Looking at (2.41), we can

56 Chapter 2. Parallel in Time algorithms: Parareal method

write

µF = µF(r, β) = r1e
i β1 , µG = µG(r, β) = r2e

i β2 (2.51)

for 0 ≤ r ≤ ωmax, π/2 ≤ β ≤ π and r1, r2, β1, β2 ∈ R. In addition to the

plots of µZ, we also present the individual plots for the modulus and the relative

arguments of µNfine
F and µNcoarse

G to clearly see the difference in terms of dissipation

and dispersion.

Fig. 2.13 compares the modulus of µNfine
F (on the left) with the modulus of

µNcoarse
G (on the right) for given values of ωmax = 0.6, Nfine = 20, Ncoarse = 4 and

θ = 0.6. The next figure (Fig. 2.14) compares the relative argument of µNfine
F (on

the left) and the relative argument of µNcoarse
G (on the right) with respect to the

argument of the exact propagator. Note that for the ODE

dxC

dt
= µCxC (2.52)

the exact propagator is given as

eµC∆t = exp{Nfine ×∆tFµC} = exp{Nfine × reiβ}. (2.53)

The analysis of µZ has been done when the original Parareal version is used for

constructing the fine and coarse solver. There are several ways to which the

Parareal can be modified to accelerate the convergence and this is a topic of

further discussion in section 2.7.

Figure 2.13: Comparison of the contour plots of the modulus of the eigenvalues

of F and G for ωmax = 0.6, γ = 5, θ = 0.6

2.6. Speedup and Efficiency 57

Figure 2.14: Comparison of the contour plots of the relative arguments of the

eigenvalues of F and G with respect to the argument of the exact propagator for

ωmax = 0.6, γ = 5, θ = 0.6

2.6 Speedup and Efficiency

In this section we derive the theoretical speedup and efficiency which can be

achieved by using the Parareal algorithm. We assume that the we have N number

of cores available so that each core can be assigned to one time window. We also

assume that the communication time during the prediction step between any two

cores is so small that it can be ignored. The theoretical speedup S can be defined

as the ratio of the time it takes to perform a task sequentially to the time it takes

to do the same task in parallel. In other words,

S =
Serial computation time

Parallel computation time
(2.54)

To derive the speedup for the Parareal algorithm we follow along the lines of

[Minion, 2011]. We begin by defining Nfine and Ncoarse to be the number of fine

and coarse time steps per time window respectively. Let τF and τG be the time

taken by a core to perform a single step of the numerical scheme for the fine

propagator F and for the coarse propagator G respectively. Thus for a single

time window, NfineτF is the total cost of F and NcoarseτG is the total cost of G .

58 Chapter 2. Parallel in Time algorithms: Parareal method

To simplify notations, let γF = NfineτF and γG = NcoarseτG .

Over the whole period of integration, the cost of the serial computation is the

time taken by the fine solver to solve the problem sequentially which is NNfineτF =

NγF . The initial configuration for the Parareal is fed through a serial coarse

integration, it is given by NγG . Now one iteration of Parareal involves a prediction

by G which is again sequential and the correction step in parallel. The total cost

per Parareal iteration is given as NγG + γF . Therefore for k Parareal iterations,

S =
NγF

NγG + k(NγG + γF)

=
1

γG
γF

+ k

(
γG
γF

+
1

N

) . (2.55)

Looking at (2.55) some upper bounds can be derived for the speedup [Ruprecht

and Krause, 2012]

S ≤ N

k
, S ≤ γF

k γG
. (2.56)

From the second bound, we see that in order to get some speedup it is required

that
γF
k γG

> 1 =⇒ γG <
γF
k
. (2.57)

The two bounds compete with each other in the sense that the coarse propagator

should be really cheap and fast in order to get a good speedup according to the

second bound but at the same time if the coarse approximation is too accurate

there will be more Parareal iterations which will reduce the speedup according

to the first bound. Ideally we would like the Parareal iterations to be as few as

possible (k � N) if not equal to 1. Thus the optimal speedup must balance the

two bounds in the best possible way. The Parareal efficiency is given as

E =
Parareal speedup

Number of cores used
=
S

N
. (2.58)

Using (2.55) we get

E =
1[

N
γG
γF

(k + 1)

]
+ k

.
(2.59)

Clearly, the Parareal’s efficiency is bounded by 1/k. Since k is usually at least 2

this means that Parareal is already at most 50% efficient by the end of the second

iteration. For a more rigorous explanation about the speedup and efficiency of

the Parareal see [Bal, 2003,Maday, 2008].

2.7. Typical problems with Parareal and modifications 59

2.7 Typical problems with Parareal and modifi-

cations

From our discussion in section 2.4 we saw that Parareal provides nice convergence

results with parabolic problems or highly dissipative systems. But we also saw that

the Parareal algorithm faces instability issues when it comes to solving hyperbolic

systems [Farhat and Chandesris, 2003,Bal, 2005,Staff and Rønquist, 2005,Eghbal

et al., 2017]. We list some of the studies which have been done to identify the

causes of the algorithm’s inability to be attractive for hyperbolic problems.

In particular Gander and Vandewalle [Gander and Vandewalle, 2007] showed

that for the system of ODEs with purely imaginary eigenvalues there is a degra-

dation in the convergence which is achieved only when the fine solver has been

computed through sequentially. A similar issue of dominant imaginary eigenvalues

causes numerical instability when Parareal is used to solve the non-linear Navier

Stokes equation with a high Reynolds number [Steiner et al., 2015]. Dai and

Maday [Dai and Maday, 2013] reported for the hyperbolic systems that it is the

regularity of the initial condition and the preservation of the invariant quantities

which affect the convergence. Ruprecht [Ruprecht, 2018] did an analysis on how

the Parareal propagates wave like solutions and triggers instabilities by considering

a semi-discrete dispersion relation for a one dimensional linear advection-diffusion

equation. The instability is caused by the difference in the phase speed in high

frequency modes due to different discretisations of the fine and coarse propaga-

tors. There have been several approaches to modify Parareal and make it more

attractive for tackling different types of problems which we list below:

• Coarse solver’s accuracy and cost: To improve the cost and accuracy

of the coarse solver in particular for the hyperbolic problems, the PITA

algorithm [Farhat and Chandesris, 2003] was proposed and later analysed

as the Krylov subspace enhanced method [Gander and Petcu, 2008] which

builds the coarse propagator by reusing all the information from the previ-

ously computed fine evaluations. A coarse solver based on a reduced basis

approximation in space was utilised in [He, 2010, Chen et al., 2014] to ac-

celerate the performance of Parareal.

• Fine solver’s cost: An adaptive Parareal where the fine solver runs adap-

60 Chapter 2. Parallel in Time algorithms: Parareal method

tively depending on the minimum required accuracy was presented in [Ma-

day and Mula, 2020].

• Computational implementation: Aubanel [Aubanel, 2011] presented a

detailed study of the scheduling of tasks within Parareal and showed bet-

ter efficiency results than the original algorithm. The idea of a pipelined

Parareal implementation [Minion, 2011] and an event-based implementation

[Berry et al., 2012] was studied to further improve and optimise Parareal’s

speedup and efficiency. The cost of Parareal can also improved by us-

ing a reduced spatial resolution within the coarse propagator and using

interpolation to match the solution with the fine solver in the correction

step [Ruprecht, 2014]. The update iteration then becomes

xk+1
i+1 = IG(ti+1, ti, Rxk+1

i) + F (ti+1, ti,x
k
i)− IG(ti+1, ti, Rxki) (2.60)

where I and R denote the interpolation and the restriction operator re-

spectively. The convergence of Parareal then depends on the order of the

interpolation used.

In particular we are going to discuss the PITA algorithm, the Krylov subspace

enhanced Parareal and the adaptive Parareal in more detail in the next subsec-

tions.

2.7.1 PITA algorithm

The parallel implicit time-integrator or PITA was introduced as a variant of the

Parareal algorithm where the correction procedure is carried out by Newton-like

iterations on a coarse time-grid [Farhat and Chandesris, 2003]. We consider a

linear system of first order ODE

x′(t) = D x(t) + d(t) (2.61)

with D ∈ Rn×Rn and d ∈ Rn. As usual the time domain [0, T] is discretised into

N subintervals Ωi of size ∆t. Let δt be the fine time-step with γ partitions of the

each subinterval this way obtaining a fine grid. The PITA algorithm is described

in the following steps.

2.7. Typical problems with Parareal and modifications 61

• Step 0: Provide initial values x̃0
i , i = 0, · · ·N by solving the model (2.61)

using a sequential iterative time-integration algorithm (ITA) on the coarse

grid.

For k = 0, 1, · · ·

• Step 1: Using the updated values as initial conditions, solve on each subin-

terval Ωi the following IVP by applying ITA on a fine grid

(xki)
′(t) = D xki (t) + d(t) on Ωi

xki (ti) = x̃ki

(2.62)

Note that all these computations are done in parallel.

• Step 2: Calculate the jumps

ski = xki−1(ti)− x̃ki , 1 ≤ i ≤ N (2.63)

on the coarse grid. If the jumps are small enough, the algorithm terminates.

• Step 3: Propagate the jumps by applying ITA on the coarse grid to the

correction problem

(cki)
′(t) = D xki (t), ck0(t0) = 0, cki (ti) = cki−1(ti) + ski (2.64)

and compute the correction c̃ki = cki−1(ti).

• Step 4: Update the approximate solution

x̃k+1
i = xki−1(ti) + x̃ki

= x̃ki + ski + x̃ki , 1 ≤ i ≤ N
(2.65)

Remark 2.4. The PITA algorithm and Parareal are equivalent for the linear

problems [Gander and Petcu, 2008].

Just like Parareal, PITA was shown to give good speedup for first order ODEs

but for the second-order structural dynamics problem PITA fell short due to the

beating phenomenon [Farhat and Chandesris, 2003]. A modification to PITA

was made in [Farhat et al., 2006] as a remedy to this problem which also works

well for the linear second order hyperbolic systems in structural dynamics. It

was later extended and applied to the non-linear systems in [Cortial and Farhat,

2009]. The next subsection talks about the Krylov subspace enhanced Parareal

algorithm which is based on the idea of PITA.

62 Chapter 2. Parallel in Time algorithms: Parareal method

2.7.2 Krylov subspace enhanced Parareal

Notice that in the original Parareal method, all the fine evaluations are only used

as correction terms. To improve convergence issues, Gander and Petcu [Gander

and Petcu, 2008] used the idea from the modified PITA in [Farhat et al., 2006]

to improve the coarse solver for linear first order hyperbolic equations and second

order ODEs. They proposed to project the coarse solver solution onto a subspace

spanned by all the previous and current snapshots of the fine evaluations at each

subinterval. We explain the method following [Chen et al., 2014, Ruprecht and

Krause, 2012]. We denote the space as Sk and it is given by

Sk = span
{

xli : i = 0, · · · , N − 1; l = 0, · · · k
}

(2.66)

A basis for Sk (say Sk = {s1, · · · , sr}) can be found by using the Gram-Schmidt

process. If we let Pk to be the projection matrix at Parareal iteration k then we

can write Pk = (Sk)TSk and the improved coarse solver K can be written as

K(ti+1, ti,x
k
i) = F(ti+1, ti,P

kxki) + G(ti+1, ti, (I−Pk)xki) (2.67)

The modified coarse solver consists of two parts where the part of the solution

which lies on the projection is propagated by the fine solver while the rest (pro-

jection error) is done by the coarse solver. For linear problems the fine solver part

can be computed as

F(ti+1, ti,P
kxki) = F

(
ti+1, ti,

r∑
p=1

cpsp

)
=

r∑
p=1

cpF(ti+1, ti, sp) (2.68)

where F(ti+1, ti, sp) are known from the space F(Sk) spanned by applying the fine

propagator on Sk. The modified Parareal correction procedure looks like

xk+1
i+1 = F(ti+1, ti,x

k
i) + K(ti+1, ti,x

k+1
i − xki)

= F(ti+1, ti,x
k
i) + F(ti+1, ti,P

k(xk+1
i − xki))

+ G(ti+1, ti, (I−Pk)(xk+1
i − xki))

= F(ti+1, ti,P
kxk+1

i) + G(ti+1, ti, (I−Pk) xk+1
i)

(2.69)

where we have used the fact that Pkxki = xki .

Algorithm 5 describes the required steps to implement the Krylov enhanced

subspace method. We see that to run the Krylov subspace enhanced version no

2.7. Typical problems with Parareal and modifications 63

extra manipulations are required as the fine evaluations are already available. The

only cost is to compute the projection matrix by singular value decomposition or

a Gram-Schmidt procedure. Since all vectors are stored at each Parareal itera-

tion, the size of the subspace increases by the factor of the number of the time

windows and the size of the problem. For a large scale problem this might become

computationally inefficient. It is a topic which is further discussed in chapter 4.

Algorithm 5 krylov-enhanced parareal algorithm

1: Initialisation:

2: x0
0 = x0

3: for i = 0 to N do

4: x0
i+1 = G(ti+1, ti,x

0
i)

5: end for

6: Iterations:

7: k = 0

8: repeat

9: Parallel fine integrations:

10: for i = 0 to N do

11: x̃ki+1 = F(ti+1, ti,x
k
i)

12: end for

13: Sequential correction step:

14: Update Sk−1 → Sk, F(Sk) and Pk

15: for i = 0 to N do

16: xk+1
i+1 = K(ti+1, ti,x

k+1
i) + x̃ki+1 −K(ti+1, ti,x

k
i)

17: end for

18: k = k + 1

19: until k = kmax or max
1≤i≤N

|xk+1 − xk| < εp

2.7.3 An adaptive Parareal

In the classical Parareal algorithm, the accuracy of the fine solver is fixed across

all Parareal iterations and is generally taken to be that of the sequential solver.

It is one of the major obstacles for achieving higher parallel efficiency. A way

64 Chapter 2. Parallel in Time algorithms: Parareal method

to improve the Parareal’s performance is by adapting the fine solver accuracy

depending upon the Parareal iteration [Maday and Mula, 2020].

Let E : [0, T]× [0, T]×Rn → Rn be the exact propagator. Then the idealised

Parareal version using the exact propagator looks like

x0
i+1 = G(ti, ti+1,x

0
i)

xk+1
i+1 = G(ti, ti+1,x

k+1
i) + E(ti, ti+1,x

k
i)−G(ti, ti+1,x

k
i)

(2.70)

This ideal version may not be implementable because of the exact propagator E .

Any approximation to E (t, s,x) ∈ Rn can be done by using an approximate solver

[E (t, s,x); ζki)] where ζki is some accuracy which needs to be chosen carefully at

each iteration k. A feasible instance of the above algorithm is to replace the exact

propagator E in (2.70) by [E (ti, ti+1,x
k
i); ζ

k
i)] which leads to

x0
i+1 = G(ti, ti+1,x

0
i)

xk+1
i+1 = G(ti, ti+1,x

k+1
i) + [E (ti, ti+1,x

k
i); ζ

k
i]−G(ti, ti+1,x

k
i)

(2.71)

Maday and Mula [Maday and Mula, 2020, §2.3] have shown that the minimum

accuracy ζki required at each iteration k to achieve the target accuracy ζ is bounded

as

ζpi ≤ ζp :=
E p+2
G

(k + 1)! νp
∀k ≥ 0, 0 ≤ p < k (2.72)

where EG is the accuracy of the coarse solver G and

νp =
max0≤i≤N(1 + ‖xpi ‖)

max0≤i≤N(1 + ‖x(T)‖)
(2.73)

The above bound shows that one does not need to run the fine solver with a very

high accuracy in the initial iterations and avoid unnecessary oversolving. Since

the accuracy ζki has to improve with the increasing iteration k, the subsequent

approximations to [E (ti, ti+1,x
k
i); ζ

k
i)] can be built using the adaptive techniques

with the help of the posteriori error estimates.

The original Parareal version is obtained when [E (ti, ti+1,x
k
i)] is approximated

by a fixed accuracy ζki = ζF across all the Parareal iterations. Also by definition

the fine solver accuracy is more than the coarse solver accuracy i.e. ζF < ζG .

Thus we have [E (ti, ti+1,x
k
i); ζF] = F (ti, ti+1,x

k
i) and

x0
i+1 = G(ti, ti+1,x

0
i)

xk+1
i+1 = G(ti, ti+1,x

k+1
i) + F (ti, ti+1,x

k
i)−G(ti, ti+1,x

k
i)

(2.74)

2.7. Typical problems with Parareal and modifications 65

In theory, one gets the exact solution at the kth time window at the kth Parareal

iteration i.e. xkk = x(tk), 0 < k ≤ N . Using the adaptive Parareal scheme can

help to achieve faster convergence and also reduce the number of iterations since

now we only look for the approximated solutions with the minimal accuracies ζki

to maintain the target accuracy ζ.

Remark 2.5. When the cost of the coarse solver is negligible and there are no

communication delays, the adaptive Parareal efficiency is independent of the num-

ber of Parareal iterations [Maday and Mula, 2020].

Part II

Coupling Parareal and data

assimilation

66

Chapter 3

Introducing Parallel In Time in

data assimilation

Contents

3.1 Previous works on a parallel 4D-Var 68

3.1.1 Parallel weak-constraint 69

3.1.2 ParaOpt algorithm . 73

3.2 Time parallelisation with Parareal in forward model 76

3.3 Inexact conjugate gradient method 78

3.3.1 Formulation . 79

3.3.2 A practical implementation of inexact CG 82

3.3.3 Inaccuracy budget . 83

3.4 Inexact conjugate gradient and Parareal 84

3.4.1 Controlling error with Parareal stopping criteria 84

3.4.2 Illustration of the modified criterion 88

3.4.3 Approximation to ‖Ejpj‖A−1 89

3.5 Parareal in both directions (forward and adjoint) . . 95

3.5.1 Forward first, then adjoint 96

3.5.2 A single forward and adjoint run 96

3.5.3 Simultaneous forward and backward Parareal 98

67

68 Chapter 3. Introducing Parallel In Time in data assimilation

In the first part of this manuscript, we have introduced the variational data as-

similation method and the Parareal algorithm, two methods which are iterative

in nature. (Variational) data assimilation on one hand is based on sequential

minimisation of a cost function while Parareal on the other hand is an iterative

algorithm to take profit from time parallelism.

In this chapter we describe the way in which these two iterative methods can

be coupled together. We begin in Section 3.1 with a brief state of the art on

some previous attempts made for a time parallel 4D-Var. Next we introduce a

framework consisting of introducing the Parareal algorithm within the inner loop

of the incremental 4D-Var in Section 3.2. In this work, we restrict ourselves to

the integration of the direct model with Parareal.

One central question in our work is how the use of an approximated forward

model impacts the convergence of the data assimilation minimisation step. To ad-

dress this question, we rely on the inexact conjugate gradient algorithm proposed

by Gratton and co-authors in [Gratton et al., 2021] and presented in Section 3.3.

By its nature, this algorithm effectively allows controlling the necessary precision

of matrix-vector products involved in a conjugate gradient algorithm. In addition

the algorithm can also adaptively manage the unused inaccuracies obtained from

the difference between the maximum allowed error and the actual error in the

matrix-vector product. This inaccuracy budget management gives the possibility

choose where/when to spend the computing power. In the following section 3.4,

we explain the adaptations required within the inexact conjugate gradient to ad-

just it for the Parareal operator. This results in the derivation of a Parareal

stopping criterion which can guarantee, in a minimum of Parareal iterations, the

convergence of the (inexact) conjugate gradient. The practical estimation of this

stopping criterion is finally addressed.

3.1 Previous works on a parallel 4D-Var

The inner loop of the incremental 4D-Var remains the least scalable part due

to the usage of lower resolution models [Isaksen, 2012]. This means that we

are with fewer grid points to provide to the processors which leads to not being

3.1. Previous works on a parallel 4D-Var 69

able to exploit all the processors for producing the analysis increment. In fact

parallelising the inner loop is by no means trivial. The most obvious choice of

the minimisation method is the conjugate gradient method which is one of the

Krylov-subspace based methods. It is constructed on the principle of finding the

higher level Krylov subspaces at each iterations which rely on the initial gradient

(residual) of the cost function. These gradients are updated at the end of the

iteration to provide it for building the next Krylov subspace [Fisher et al., 2012].

This process is sequential which leaves with parallelising the computations within

the iteration as the only way rather than trying to parallelise the minimisation

iterations themselves.

In this section we are going to discuss some of the previous works which found

a way to implement a “time parallel 4D-Var”. First the notion of a parallel weak-

constraint 4D-Var which has a four dimensional initial state as its control variable

is presented. The outer loop of this problem is shown to be easily parallelised while

the inner loop is solved in parallel by treating it as a saddle point problem. Then

a different approach of finding time parallelism through a coupling of the forward

and adjoint model together is discussed where the obtained non-linear system

is solved by approximating the Jacobian matrix through a derivative variant of

Parareal.

3.1.1 Parallel weak-constraint

The weak-constraint formulation of the 4D-Var with the full state vector (dis-

cussed in Sec. 1.4) as the control variable opens up a way of introducing potential

parallelism. Looking at the corresponding cost function (1.29)

J (x) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

N∑
i=0

(Hi(xi)− yoi)
TR−1

i (Hi(xi)− yoi)

+
1

2

N∑
i=1

{xi −Mi(xi−1)}T Q−1
i {xi −Mi(xi−1)}

(3.1)

we can see that there is no model integration required for the observation cost

function; it is only present for the model-error cost function term. Note again

that the control variables are the intermediate model states x1, . . . ,xN where N

is the total time windows. An incremental formulation for the weak-constraint

70 Chapter 3. Introducing Parallel In Time in data assimilation

4D-Var (3.1) can be obtained as for its natural extension for the “classical” strong

constraint 4D-Var. For the control variable δx = (δx1, . . . , δxN)T and outer loop

index l we have the cost function

J (l)(δx) =
1

2
(δx0 − b(l))TB−1(δx0 − b(l))

+
1

2

N∑
i=1

(δηi − c
(l)
i)TQ−1

i (δηi − c
(l)
i)

+
1

2

N∑
i=0

(H
(l)
i δxi − d

(l)
i)TR−1

i (H
(l)
i δxi − d

(l)
i)

(3.2)

where H
(l)
i is the linearised observation operator and

b(l) = xb − x
(l)
0

c
(l)
i = η̄ − x

(l)
i −Mi(x

(l)
i−1)

d
(l)
i = yoi − Hi(x

(l)
i)

(3.3)

with η̄ = 1/N
∑N

i=1δηi is the mean model-error. The model-error correction

increment δηi is defined through the linearisation of equation (1.30)

δxi = M
(l)
i δxi−1 + δηi (3.4)

where M
(l)
i is the linearisation of the non-linear model Mi about the initial state

x
(l)
i−1. The inner loop produces a four dimensional increment δx(l) and the outer

loop is updated by adding this increment to the existing four dimensional model

state x(l). In other words

x
(l+1)
i = x

(l)
i + δx

(l)
i (3.5)

Fisher et al. [Fisher et al., 2012, Fisher and Gürol, 2017] gave insight into how

the weak-constraint 4D-Var can be parallelised. Once x
(l+1)
i are calculated it is

required that the quantities b(l+1), c
(l+1)
i and d

(l+1)
i are computed for the next

outer loop. The new linearised operators H
(l+1)
i and M

(l+1)
i are also needed to

be updated for the new linearisation state x
(l+1)
i . All these computations need

the integration of the non-linear model Mi(x
(l+1)
i) which can be done in parallel

because the initial condition for each subinterval [ti, ti+1] is x
(l+1)
i is already known.

Thus the outer loop of the incremental weak-constraint 4D-Var can be inherently

parallelised.

3.1. Previous works on a parallel 4D-Var 71

For parallelising the inner loop, consider the cost function in a more simplified

vectorial form

Ĵ =
1

2
(δx− b̂)T B̂

−1
(δx− b̂) +

1

2
(Ĥδx− d̂)T R̂

−1
(Ĥδx− d̂) (3.6)

where

B̂ =


B

Q1

. . .

Qn

, R̂ =


R0

R1

. . .

Rn



Ĥ =


H0

H1

. . .

Hn


(3.7)

and

d̂ =


d0

d1

...

dn

 , b̂ =


b

c1

...

cn

 (3.8)

In vectorial form the discrete relation (3.4) can be written as

δx = M̂ δη (3.9)

where

M̂ =



I

M1,1 I

M1,2 M2,2 I
...

...
.

M1,N M2,N . . . MN,N I


(3.10)

and Mi,j = Mj · · ·Mi denotes the linear model integration from time ti−1 to time

tj. Rearranging the relation (3.4) we have

δηi = δx
(l)
i −Miδx

(l)
i−1 (3.11)

72 Chapter 3. Introducing Parallel In Time in data assimilation

It is clear that M̂ is invertible and

M̂
−1

=



I

−M1 I

−M2 I
.

−MN I


(3.12)

Depending on the choice of the control variable δx or δη, the cost function can

be written in two different ways:

Ĵ(δx) =
1

2
(M̂

−1
δx− b̂)T B̂

−1
(M̂

−1
δx− b̂) +

1

2
(Ĥδx−d)T R̂

−1
(Ĥδx−d) (3.13)

and

Ĵ(δη) =
1

2
(δη − b̂)T B̂

−1
(δη − b̂) +

1

2
(ĤM̂δη − d)T R̂

−1
(ĤM̂δη − d) (3.14)

First for the cost function with respect to control variable δx in (3.13) the model

computations M̂
−1
δx can be done in parallel. Second if the cost function is

represented as a function of δη as in (3.14) then the calculation of δx from M̂δη

becomes sequential.

However the parallel implementation (3.13) suffers from a setback of pre-

conditioning and it is in practice hard to find one. A way out is to consider

the saddle point formulation of the inner loop cost function proposed by Fisher

and Gürol [Fisher and Gürol, 2017]. By introducing two additional variables

δw = Ĥδx and δη = M̂
−1
δx a Lagrangian can be defined as

L =
1

2
(δη − b̂)T B̂

−1
(δη − b̂) +

1

2
(δw− d̂)T R̂

−1
(δw− d̂)

+ uT (δη − M̂
−1
δx) + vT (δw− Ĥδx)

(3.15)

Finding the stationary points of the Lagrangian means setting its derivatives with

respect to δη, δw, δx,u and v to zero, giving

B̂
−1

(δη − b̂) + u = 0

R̂
−1

(δw− d̂) + v = 0

(M̂
−1

)Tu + (Ĥ
−1

)Tv = 0

δη − M̂
−1
δx = 0

δw− Ĥδx = 0.

(3.16)

3.1. Previous works on a parallel 4D-Var 73

Eliminating the variables δη and w from (3.16) leads to a system of the form B̂ 0 M̂
−1

0 R̂ Ĥ

(M̂
−1

)T Ĥ
T

0


 u

v

δx

 =

b̂

d̂

0

 . (3.17)

It can be seen form the above system that nowhere in the matrices there is a

sequential term involving M̂ and instead there are terms M̂
−1

and (M̂
−1

)T which

are all parallel evaluations. Moreover the quantities B̂u, M̂
−1
δx, R̂v, Ĥδx, (M̂

−1
)Tu

and Ĥ
T
v can all be computed simultaneously because the vectors u,v and δx are

already available before the start of the computation. Interestingly, two out of

these quantities M̂
−1
δx and (M̂

−1
)Tu are the tangent-linear model and the ad-

joint model calculations respectively, indicating that the these integrations can be

done in parallel.

3.1.2 ParaOpt algorithm

The ParaOpt algorithm introduced by Gander et al. [Gander et al., 2020] for

PDE constrained optimisation problems aims to solve the coupled system of the

forward and backward evolution problems in time with the help of the Parareal

algorithm. The algorithm is illustrated by considering the control problem of the

form

J(β) =
1

2
‖xN − y‖2

2 +
α

2

N∑
i=1

‖βi‖2
2 (3.18)

where α is a regularisation parameter and y is an observation at the end of the

integration time. The evolution of the state vector x : Ω = [0, T] → Rn is

described by the discrete non-linear model

xi = Mi(xi−1) + βi, x(0) = x0 (3.19)

where βi is the control which is assumed to enter the forcing term linearly. The

corresponding optimality system is then given by

xi = Mi(xi−1)− ui
α
, ui = −(Mi)

Tui+1 (3.20)

with the final condition uN = xN−y. Now equations (3.19)-(3.20) form a coupled

system and the parallelisation is introduced as follows.

74 Chapter 3. Introducing Parallel In Time in data assimilation

Let {xi}i=0,...,N and {ui}i=1,...,N be the intermediate states corresponding to the

model state and the adjoint state at times t0, · · · , tN and t1, · · · , tN respectively.

Let Pi+1 and Qi be the non-linear operators solving the boundary value problem

(3.20) in the subinterval Ωi = [ti, ti+1] for initial condition x(ti) = xi and final

condition u(ti+1) = ui+1. Assume that Pi+1 solves the forward problem to ti+1

and Qi solves the adjoint problem to ti. That is,(
x(ti+1)

u(ti)

)
=

(
Pi+1(xi,ui+1)

Qi(xi,ui+1)

)
(3.21)

These boundary value problems can be put together as a system of subproblems

which satisfy

x0 − x0 = 0,

x1 − P1(x0,u1) = 0, u1 −Q1(x1,u2) = 0

x2 − P2(x1,u2) = 0, u2 −Q2(x2,u3) = 0

...
...

xN − PN(xN−1,uN) = 0, uN − xN + y = 0

(3.22)

This is a non-linear system of equations which is solved by using the Newton’s

method. If the unknowns are collected in the vectors x = (xT0 , · · ·xTN) and u =

(uT1 , · · · ,uTN) then

F̂

(
x

u

)
:=



x0 − x0

x1 − P1(x0,u1)

x2 − P2(x1,u2)
...

xN − PN(xN−1,uN)

u1 −Q1(x1,u2)

u2 −Q2(x2,u3)
...

uN − xN + y



= 0 (3.23)

The Newton update iteration can be written as

J

(
xl

ul

)(
xl+1 − xl

ul+1 − ul

)
= −F̂

(
xl

ul

)
(3.24)

3.1. Previous works on a parallel 4D-Var 75

where J =

I

−(P1)x(x0,u1) I −(P1)u(x0,u1)
.

−(PN)x(xN−1,uN) I −(PN)u(xN−1,uN)

−(Q1)x(x1,u2) I −(Q1)u(x1,u2)
.

−(QN)x(xN−1,uN) I −(QN)u(xN−1,uN)

−I I


is the Jacobian matrix. The idea of ParaOpt is to approximate the true Jacobian

J using a derivative-variant of the Parareal algorithm. This is done by approxi-

mating the derivatives inside J with a coarse run of the Parareal giving

JG =

I

−(Pi)
G
x (x0,u1) I −(Pi)

G
u (x0,u1)

.

−(Pi)
G
x (xN−1,uN) I −(Pi)

G
u (xN−1,uN)

−(Q1)Gx (x1,u2) I −(Q1)Gu (x1,u2)
.

−(QN)Gx (xN−1,uN) I −(QN)Gu (xN−1,uN)

−I I


where JG is the approximation to the true Jacobian J. The propagators (Pi)

G
x ,

(Pi)
G
u , (Qi)

G
x and (Qi)

G
u are the Parareal coarse propagators for the derivatives

obtained from the coarse discretisation of the (now linear) subproblem by using

the length of the subinterval as the time-step. The remaining non-linear solvers on

the right hand side of (3.24) are the fine grid operations which can be performed

by Parareal in parallel.

The computation of the product of the approximated Jacobian matrix with

a vector is now embarrassingly parallel since it only involves solving the local

linear derivative problems. However the resulting inexact Newton iteration now

converges linearly instead of quadratically.

ParaOpt allows us to decouple the forward and adjoint computations globally

by using cores in both the directions and doubling the level of parallelism. Also

the only point of synchronicity involved is in the Krylov subspace method itself

to solve the Jacobian system. Where ParaOpt becomes interesting is for the

situations when we want to control some model parameters. But it is not easy

to use it for controlling the initial condition of the model which is the core data

assimilation problem we are interested in and we have to study another possibility.

76 Chapter 3. Introducing Parallel In Time in data assimilation

Let us consider a cost function of the form

J(x0, β) =
1

2
‖xN − y‖2

2 (3.25)

where x evolves following the discrete non-linear model

xi = Mi(xi−1) + β, i = 1, · · · , N (3.26)

assuming that the parameter β is constant in time. Then the gradients with

respect to β and x0 are given as

∇βJ = (xN − y)

∇x0J = MT
NMT

N−1 · · ·MT
1 (xN − y)

(3.27)

Clearly, the gradient∇βJ only requires xN which can be easily parallelised whereas

the gradient ∇x0J has implicit compositions of MT
i making it harder to parallelise

in a coupled system using ParaOpt.

3.2 Time parallelisation with Parareal in forward

model

Each minimisation iteration of an incremental 4D-Var (or inner loop) cycle begins

with the forward integration of the linear model (1.26) to calculate the quadratic

cost function value. An immediate way to introduce time parallelisation is thus

to apply the Parareal algorithm to the forward model integration. The adjoint

model can be treated similarly once we have an initial adjoint state at the end of

the integration time. In fact there is also a possibility of making use of the asyn-

chronicity when both the forward and the adjoint model are run using Parareal.

We refer to section 3.5 at the end of the manuscript for a topic of further discus-

sion. For the moment and the rest of the manuscript we restrict ourselves only to

the Parareal run for the tangent linear model.

To see how this could be done, let us suppose the length of one data assimila-

tion cycle to be T which is made up of N time windows. Let us place ourselves

in the case of a linear forward model for state vector δx ∈ Rn

δx0 = δx(t0)

δxi+1 = Fiδxi, i = 1, . . . N
(3.28)

3.2. Time parallelisation with Parareal in forward model 77

The model operator Fi : Rn → Rn is the same as the one used in (1.26) and so

Fi =
∂F

δx

∣∣∣
x=xi

(3.29)

We now set up our data assimilation problem. For the sake of simplicity we

remove the background term xb from the cost function since it is not affected by

the time integration. We also assume that there is only one observation y ∈ Rn

of the whole state vector at the end of the integration time tN = T . Doing so the

observation operator H is an identity map for each time ti and the minimisation

problem is well posed. To further simplify the covariance matrix Ri is set to be

equal to the identity matrix. Thus our cost function can be written as

J(δx0) =
1

2

∥∥∥(N∏
i=1

Fi

)
δx0 − y

∥∥∥2

2
(3.30)

Remark 3.1. In the rest of the thesis instead of writing the composition of the

discrete model operators Fi at a model state δxi as
N∏
i=1

Fi each time we are going

to use the block FN for F1F2 · · ·FN for convenience and it is just an abuse of the

notation.

We thus have,

J(δx0) =
1

2
‖FNδx0 − y‖2

2 (3.31)

with gradient,

∇J(δx0) = (FN)T (FNδx0 − y) (3.32)

where (FN)T is the adjoint of the operator FN . As stated before, if we now

carry out the computation of the forward model (involved in the misfit between

the model trajectory and the observation) by a Parareal based operator P̃, the

gradient of the cost function will be approximated by

∇J(δx0) ≈ (FN)T (P̃ δx0 − y)

def
= ∇̃J(δx0)

(3.33)

Also we have kept the same adjoint for the gradient i.e. (FN)T and not the adjoint

of P̃. Minimising the original cost function in (3.31) requires finding δx0 such that

the gradient ∇J(δx0) to 0 which is equivalent to solving the linear system

Aδx = b (3.34)

78 Chapter 3. Introducing Parallel In Time in data assimilation

where A = (FN)TFN , b = (FN)Ty. The corresponding approximate linear sys-

tem writes

Aparaδx = b (3.35)

where Apara = (FN)T P̃.

Since the cost function observes y only at the end of the integration time

tN = T , we accordingly define a Parareal based integrator P(k) over [0, T] by

P(k) δx0 = δxkN (3.36)

which acts on an initial condition δx0 and gives the Parareal solution at the last

time window N after k iterations. Then the Parareal error at the end of the

integration time can be written as

ekN = FNδx0 −P(k) δx0 (3.37)

and if we recall the definition of ekN from (2.23) we have

FN −P(k) =
N∑

p=k+1

CN
p (F−G)p GN−p (3.38)

P̃ will now be denoted P(k) with k being the number of Parareal iterations.

Now the exact linear system Ax = b can be solved using the conjugate gradient

(CG) method since the matrix A is symmetric. But the corresponding approxi-

mate matrix Apara = (FN)TP(k) is now non-symmetric, there is a big possibility

that the CG will not give the desired solution and thus the gradient of our cost

function. One way of tackling this problem is by using the inexact version of CG

which is a kind of inexact Krylov subspace method [Golub and Ye, 1999, Bouras

and Frayssé, 2005]. We first briefly talk about the inexact conjugate gradient

method, what are the motivation behind using it and then introduce our own

modified version of the inexact CG with the Parareal operator P(k) embedded in

it.

3.3 Inexact conjugate gradient method

Solving the approximated linear system 3.35

Aparaδx = b, Apara = (FN)TP(k) (3.39)

3.3. Inexact conjugate gradient method 79

with the Parareal operator P(k) instead of the exact system 3.34

Aδx = b, A = (FN)TFN (3.40)

results in solving a linear system using approximate matrix-vector products. In

the literature, this is the purpose of the inexact Krylov subspace methods. They

are based on a counter-intuitive principle that the error in the matrix-vector mul-

tiplication is permitted to grow as we move ahead with the iterations [Simoncini

and Szyld, 2003,Van Den Eshof and Sleijpen, 2004]. By doing so, the same level of

accuracy for the minimisation process can be maintained as expected by using the

usual (exact) Krylov subspace methods. In the following, we focus on the inexact

conjugate gradient method described in [Gratton et al., 2021], the objective being

to derive an optimal stopping criterion for the Parareal algorithm.

3.3.1 Formulation

The inexact conjugate gradient method (from now on inexact CG) proposed by

Gratton et al. [Gratton et al., 2021] offers a way of allowing inaccuracies in the

matrix-vector multiplications for solving convex optimisation problems

q(δx) =
1

2
δxTAδx− bT δx (3.41)

They have specifically focused on monitoring the decrease in the quadratic q. The

quadratic change has a direct relationship with the energy norm of the residual

which provides better stopping minimisation criterion in terms of under- or over-

solving. Let r(δx) = b −Aδx be the residual and suppose that δx∗ = A−1b is

the exact solution of the minimisation of the quadratic. Then this relationship

can be described as

1

2
‖r(δx)‖2

A−1 =
1

2
(Aδx− b)TA−1 (Aδx− b)

=
1

2
(δx− δx∗)TA (δx− δx∗)

=
1

2
(δxTA δx− 2δxTA δx∗ + δxT∗A δx∗)

=

(
1

2
δxTA δx− bT δx

)
+

1

2
bT δx∗

= q(δx)− q(δx∗)

(3.42)

80 Chapter 3. Introducing Parallel In Time in data assimilation

since q(δx∗) = −1

2
bT δx∗.

Now let Ej be the error in the matrix-vector product at inexact CG iteration

(from now on icg-iteration) j. Thus for a given icg-iteration j and its correspond-

ing conjugate direction vector pj (see Algorithm 3 for the presentation of CG) we

have access to the matrix-vector product in the form of

(A + Ej) pj (3.43)

The presence of error Ej at each icg-iteration j also results in the computed resid-

ual rj being different from the exact residual r(δxj) = b −Aδxj. The objective

of paper [Gratton et al., 2021] is to appropriately bound the residual gap norm

‖r(δxj)−rj‖ in A−1 norm. This is provided in the form of a lemma as stated below

Lemma 3.3.1. Suppose at the icg-iteration j we have,

max
[
‖r(δxj)− rj‖A−1 , ‖rj‖A−1

]
≤
√
ε

2
‖b‖A−1 (3.44)

for some ε > 0. Then

|q(δxj)− q(δx∗)| ≤ ε |q(δx∗)| (3.45)

Since the residual gap norm is bounded in the dual space (A−1 norm), the size of

the perturbation matrix Ej is measured in the primal-dual norm defined as

‖Ej‖A−1,A = sup
δx 6=0

‖Ejδx‖A−1

‖δx‖A
= ‖A−1/2EjA

−1/2‖2 (3.46)

Now for some permissible bound on the error norm ‖Ej‖A−1,A at icg-iteration j,

if the inexact residual norm ‖rj‖A−1 and the residual gap norm ‖r(δxj)− rj‖A−1

can be suitably bounded, then the change in the quadratic can be controlled. The

following theorem captures the essence of the above idea.

Theorem 3.1 (From [Gratton et al., 2021]). Let ε > 0 and let φ = (φ0, φ1, · · · , φj−1)T ∈
Rj be a positive vector satisfying

j∑
i=1

1

φi
≤ 1 (3.47)

3.3. Inexact conjugate gradient method 81

Suppose that

‖Ei‖A−1,A ≤ ωi =

√
ε ‖b‖A−1‖pi‖A

2φi+1‖ri‖2
2 +
√
ε ‖b‖A−1‖pi‖A

(3.48)

for all i ∈ {0, ..., j − 1}, with pi being the conjugate direction at icg-iteration i.

Then

‖r(δxj)− rj‖A−1 ≤
√
ε

2
‖b‖A−1 (3.49)

Additionally if

‖rj‖A−1 ≤
√
ε

2
‖b‖A−1 (3.50)

then |q(δxj)− q(δx∗)| ≤ ε|q(δx∗)|.

Remark 3.2. Looking at (3.48), the error in the matrix-vector product ‖Ej‖A−1,A

is allowed to grow as the residual norm ‖rj‖2 gradually decreases with the icg-

iterations. The maximum permissible error at worst could be ωj = 1 when ‖rj‖2 =

0.

We refer to Algorithm 6 below for the implementation of the inexact CG encap-

sulating theorem 3.1.

Algorithm 6 icg: inexact conjugate gradient

1: Given: Symmetric positive definite matrix A ∈ Rn×n, right hand side vector b ∈
Rn, tolerance εicg

2: Set δx0 = 0, r0 = −b, p0 = b, β0 = ‖b‖22, u1 = b/β0

3: for j = 0, 1, · · · , do

4: Determine ωj from the equation (3.48)

5: Compute the product cj = (A + Ej)pj with ‖Ej‖A−1,A ≤ ωj .
6: αj = βj/p

T
j cj

7: δxj+1 = δxj + αjpj

8: rj+1 = rj + αjcj

9: if ‖rj‖A−1 ≤
√
εicg

2
‖b‖A−1 then

10: break

11: end if

82 Chapter 3. Introducing Parallel In Time in data assimilation

12: if (reorth) then

13: for i = 1, · · · , j do

14: rj+1 = rj+1 − (uTi rj+1)ui

15: end for

16: βj+1 = rTj+1rj+1

17: uj+1 = rj+1/
√
βj+1

18: else

19: βj+1 = rTj+1rj+1

20: end if

21: pj+1 = −rj+1 + (βj+1/βj)pj

22: end for

Remark 3.3. As a consequence of the increasing error in the matrix-vector prod-

uct, the search directions pj are no longer conjugate to each other and the (inexact)

residuals lose their orthogonality. In the theorem it is assumed that the inexact

residual norm ‖rj‖A−1 eventually becomes smaller but it is not guaranteed. Adding

a reorthogonalisation step could ensure that the residuals converge to zero after at

most n steps.

3.3.2 A practical implementation of inexact CG

So far the method has been discussed from a theoretical point of view with an

assumption that the quantities or norms concerning the matrix A and its inverse

are accessible. But realistically one might not even have access to the matrix A,

let alone its inverse. Thus in practice Gratton et al. [Gratton et al., 2021] have

proposed the following approximations:

•

‖pj‖A ≈
√

1

n
Tr(A) ‖pj‖2 (3.51)

•

q(δxj) ≈ qj
def
= −1

2
bT δxj (3.52)

3.3. Inexact conjugate gradient method 83

•

‖b‖A−1 ≈


‖b‖2

µmax(A)
, j = 0√

2 |qj|, j = 1, · · · , jmax

(3.53)

• Termination criterion (3.50) by

qj−d − qj ≤
1

4
ε|qj| (3.54)

3.3.3 Inaccuracy budget

Till now there has been no talk about the role of φj which can be used to manage

the inaccuracy budget as discussed in [Gratton et al., 2021, §3.1]. By definition

the values of φj are constrained by the condition (3.47) and choosing a constant

value of φj = jmax (as in Algorithm 6) limits the possibility of a larger error

allowance ωj. In fact the φ values can be used adaptively and the smaller the

value of φj+1, the larger the bound for ωj will be. This can be done by managing

the inaccuracies obtained from the difference between the computed bounds for

ωj from (3.48) and the actual allowed inexactness ω̂j (the value of ‖Ej‖A−1,A).

This difference is unused and could be utilised by distributing to the subsequent

icg-iterations.

Suppose for a given φj+1 we obtain, ‖Ej‖A−1,A = ω̂j ≤ ωj. The corresponding

φ̂j+1 can be obtained from ω̂j = ωj(φ̂j+1) in (3.48) as

φ̂j+1 =
(1− ω̂j)
ω̂j

√
ε‖b‖A−1‖pj‖A

2‖rj‖2
2

> φj+1 (3.55)

Like in the original method, we define

Φj
def
= 1−

j∑
i=1

φ̂−1
i (3.56)

and we can distribute the unused inaccuracy evenly in the remaining jmax− j− 1

iterations as

φp =

(
jmax − j − 1

Φj+1

)
, p = j + 2, · · · , jmax (3.57)

Thus the resulting values of φp will be smaller which allows to have a larger

perturbation and thus we end up using fewer Parareal iterations. Also the updated

84 Chapter 3. Introducing Parallel In Time in data assimilation

φj still satisfies (3.47) as shown below

jmax∑
p=1

φ−1
p =

j+1∑
p=1

φ−1
p +

jmax∑
p=j+2

φ−1
p

=

j+1∑
p=1

φ−1
p + (jmax − j − 1)

(
Φj+1

jmax − j − 1

)

=

j+1∑
p=1

φ−1
p + 1−

j+1∑
p=1

φ̂−1
p

< 1

(3.58)

since φ̂j > φj.

3.4 Inexact conjugate gradient and Parareal

In the case of the use of the Parareal operator for the forward model, by construc-

tion, the E matrix at any Parareal iteration k can be written as

E(k) = Apara −A

= (FN)TP(k)− (FN)TFN

= −(FN)T (FN −P(k))

(3.59)

Remark 3.4. Since the inexactness is introduced by another iterative method

(Parareal in this case), each CG minimisation iteration j involves some iterations

of the Parareal method. The number of Parareal iterations depends on the stop-

ping criteria (3.48) as ‖Ej‖A−1,A involves P(k) and the number of minimisation

iterations on ‖rj‖A−1 in equation (3.50).

3.4.1 Controlling error with Parareal stopping criteria

In the previous section in Theorem 3.1, the residual gap is kept under con-

trolled precision provided that the primal-dual norm of the perturbation matrix

3.4. Inexact conjugate gradient and Parareal 85

‖Ej(k)‖A−1,A is bounded by the quantity ωj. It can also be said that ωj acts as a

threshold for how large an error can be allowed at a particular icg-iteration j by

controlling the number of Parareal iterations k. As it will be seen in our numeri-

cal experiments (section 4.5.1), the direct use of ‖Ej(k)‖A−1,A, does not provide

a refined enough stopping criterion for our application. We show in the following

that it is preferable to bound the product of the error matrix E by the vector

pj and that an estimate for this product can be easily obtained in the context of

Parareal.

In the proof of Theorem 3.1, the bound (3.49) is obtained by using the in-

equality

‖Ejpj‖A−1 ≤ ‖Ej‖A−1,A‖pj‖A ≤ ωj‖pj‖A (3.60)

We noticed that utilising ‖Ejpj‖A−1 instead of ‖Ej‖A−1,A for the Parareal stop-

ping criterion gives us much better results. To bound our new norm we introduce

a new quantity ξj which satisfies,

‖Ejpj‖A−1 ≤ ωj‖pj‖A = ξj (3.61)

Thus from (3.48) the value of ξj can be obtained as

ξj =

√
ε ‖b‖A−1‖pj‖2

A

2φj+1‖rj‖2
2 +
√
ε ‖b‖A−1‖pj‖A

(3.62)

The following theorem encapsulates the modifications discussed above

Theorem 3.2. In theorem 3.1, condition (3.48) is replaced by

‖Ej(k)‖A−1,A = sup
δx 6=0

‖Ej(k) δx‖A−1

‖δx‖A
≤ ξj/‖pj‖A (3.63)

However, using the fact that

‖Ej(k)pj‖A−1 ≤ ‖Ej(k)‖A−1,A‖pj‖A (3.64)

we can get a tighter bound, while retaining the validity of the theorem.

Proof. The proof is almost identical to the proof of theorem 1 in [Gratton et al.,

2021], and for this we will use Lemma 2 of the same paper:

Lemma 3.4.1. The residual gap in the inexact CG algorithm satisfies

r(δxj)− rj = −
k−1∑
j=0

αjEjpj (3.65)

86 Chapter 3. Introducing Parallel In Time in data assimilation

Therefore one gets:

‖r(δxj)− rj‖A−1 ≤
k−1∑
j=0

‖αjEjpj‖A−1

≤
k−1∑
j=0

|αj| ‖Ejpj‖A−1

(3.66)

By definition

αj =
‖rj‖2

2

pTj (A + Ej)pj
(3.67)

while

pTj Ejpj = pTj A1/2A−1/2Ejpj = (A1/2pj)
TA−1/2Ejpj (3.68)

and using Cauchy-Schwarz inequality

|pTj Ejpj| ≤ ‖A1/2pj‖2‖A−1/2Ejpj‖2 = ‖pj‖A‖Ejpj‖A−1 (3.69)

Hence,

αj =
‖rj‖2

2

pTj Apj + pTj Ejpj

≤ ‖rj‖2
2

‖pj‖2
A − ‖pj‖A‖Ejpj‖A−1

(3.70)

Now going back to

‖r(δxj)− rj‖A−1 ≤
k−1∑
j=0

(‖rj‖2
2 ‖Ejpj‖A−1

‖pj‖2
A − ‖pj‖A ‖Ejpj‖A−1

)

≤
k−1∑
j=0

(
‖rj‖2

2 ξj
‖pj‖2

A − ‖pj‖A ξj

)

=
k−1∑
j=0

‖rj‖2
2

‖pj‖A

(
ξj

‖pj‖A − ξj

)
(3.71)

The definition of ξj in (3.62) gives

ξj
‖pj‖A − ξj

=

√
ε ‖b‖A−1‖pj‖A
2φj+1 ‖rj‖2

2

(3.72)

3.4. Inexact conjugate gradient and Parareal 87

Putting this value back in (3.71) leads to

‖r(δxj)− rj‖A−1 ≤
k−1∑
j=0

‖rj‖2
2

‖pj‖A

(√
ε ‖b‖A−1‖pj‖A
2φj+1 ‖rj‖2

2

)

=
k−1∑
j=0

(√
ε ‖b‖A−1

2φj+1

)

≤
√
ε

2
‖b‖A−1

(3.73)

Remark 3.5. ‖Ej(k)pj‖A−1 involves the product of the error matrix Ej and the

conjugate direction vector pj at a given Parareal iteration k. This means that pj

is the initial condition for the Parareal algorithm. The modified criterion does

not make use of ‖Ej(k)‖A−1,A anywhere in the algorithm. Thus, we don’t need

to know the perturbation matrix explicitly. It is sufficient for us if we know it

indirectly in the form of a matrix vector product. With a given conjugate direction

pj the product (FN)TP(k)pj −Apj is nothing but Ej(k)pj.

Algorithm 7 shows the inexact CG when the modified Parareal criterion is used.

Algorithm 7 icg with ‖Ejpj‖A−1 as parareal stopping criterion

1: Given: Symmetric positive definite matrix A ∈ Rn×n, right hand side vector b ∈
Rn, tolerance εcg

2: initialisation:

3: Set δx0 = 0, r0 = −b, p0 = b, β0 = ‖b‖22, u1 = b/β0

4: icg iterations:

5: for j = 0, 1, · · · , do

6: Determine ξj from the equation (3.62)

7: Compute the product cj = (A + Ej)pj with ‖Ejpj‖A−1 ≤ ξj .
8: αj = βj/p

T
j cj

9: δxj+1 = δxj + αjpj

10: rj+1 = rj + αjcj

88 Chapter 3. Introducing Parallel In Time in data assimilation

11: if ‖rj‖A−1 ≤
√
ε

2
‖b‖A−1 then

12: break

13: end if

14: if (reorth) then

15: for i = 1, · · · , j do

16: rj+1 = rj+1 − (uTi rj+1)ui

17: end for

18: βj+1 = rTj+1rj+1

19: uj+1 = rj+1/
√
βj+1

20: else

21: βj+1 = rTj+1rj+1

22: end if

23: pj+1 = −rj+1 + (βj+1/βj)pj

24: end for

3.4.2 Illustration of the modified criterion

To illustrate how the new Parareal stopping criterion performs we consider the

case when the matrix A comes after discretising the linearised 1D shallow water

model, which we are going to discuss in detail in chapter 4, section 4.3. Fig. 3.1

below shows the comparison of the two norms used for the stopping criteria.

The comparison is done by checking the number of Parareal iterations when the

original criterion (involving ‖Ej‖A−1,A) is used on the left and when the modified

criterion (involving ‖Ejpj‖A−1) is used on the right for a given icg-iteration j.

The blue lines and the black dashed lines on both the images are the norm values

and the corresponding tolerance respectively.

It can be seen that there is a huge difference between the two criteria. On

the left image we see that the criterion ‖Ej(k)‖A−1,A ≤ ωj is satisfied only at

the second last Parareal iteration whereas on the right image, the one based on

‖Ej(k)pj‖A−1 ≤ ξj is already satisfied in 6 Parareal iterations. If we look at the

definition,

‖Ej(k)‖A−1,A = sup
δx 6=0

‖Ej(k) δx‖A−1

‖δx‖A
(3.74)

3.4. Inexact conjugate gradient and Parareal 89

the relatively high values of the first criterion can be explained by the fact

that it does not take into account the actual value of pj and somehow is the most

pessimistic one.

Figure 3.1: Estimates and bounds for icg-iteration j when Parareal is applied to

the 1D shallow water model (4.16). The number of time windows N is equal to

20.

3.4.3 Approximation to ‖Ejpj‖A−1

We end this presentation by providing a practical estimate for ‖Ejpj‖A−1 . It

turns out that we can replace ‖Ejpj‖A−1 by another equivalent and computable

quantity as proved in the theorem below.

Theorem 3.3. If F is invertible, ‖Ej(k)pj‖A−1 and ‖P(k)pj−FNpj‖2 are rigor-

ously the same whatever “the Parareal approximation” is. P(k)pj is the Parareal

approximation at iteration k with pj as the initial condition and FNpj is the

corresponding exact solution.

90 Chapter 3. Introducing Parallel In Time in data assimilation

Proof. We have,

‖Ej(k)pj‖A−1 =
〈
Ej(k)pj,A

−1Ej(k)pj

〉
=
〈

(FN)TFN − (FN)TP(k)] pj, [(FN)TFN]−1 [(FN)TFN − (FN)TP(k)] pj

〉
=
〈

(FN)T [(FN −P(k)) pj], [(FN)TFN]−1 (FN)T [(FN −P(k)) pj]
〉

=
〈

(FN −P(k)) pj , FN [(FN)TFN]−1 (FN)T [(FN −P(k)) pj]
〉

=
〈

(FN −P(k)) pj , [FN(FN)†] [(FN −P(k)) pj]
〉

where (FN)† is the Moore-Penrose generalised inverse or pseudo-inverse of FN .

Thus when F is invertible (i.e. (FN)† = (FN)−1) we have

‖Ej(k)pj‖A−1 =
〈

(FN −P(k)) pj , (FN −P(k)) pj)
〉

=
〈
FNpj −P(k)pj , FNpj −P(k)pj

〉
= ‖P(k)pj − FNpj‖2

In the general case there is no guarantee that F is invertible so we can only

say that ‖P(k)pj − FNpj‖2 may be a good approximation for ‖Ejpj‖A−1 . We

managed to replace a quantity which involves the A−1 norm to a quantity which

needs the 2-norm. Obviously, what remains is to find an approximation for FNpj.

The idea is that we approximate ‖Ejpj‖A−1 as

‖Ejpj‖A−1 = ‖P(k)pj − FNpj‖2 ≈ ‖P(k)pj −P(k + 1)pj‖2 (3.75)

which done by taking the difference of the successive Parareal iterates in 2-norm.

As the Parareal iterations k keep increasing the iterate P(k + 1)pj will keep get-

ting closer and closer to FNpj and thus we only have to run Parareal iterations to

a point where the Parareal stopping criterion is satisfied (bounded by the value

of ξj). That is, at each icg-iteration j we keep incrementing Parareal iterations k

by 1 till the time the condition ‖P(k)pj −P(k + 1)pj‖2 ≤ ξj is satisfied.

However as a compensation of using an approximation, we end up using one more

Parareal iteration than needed since the latest Parareal iterate P(k+1)pj replaces

FNpj to compute the difference with the last Parareal iterate P(k)pj. Fig. 3.2

3.4. Inexact conjugate gradient and Parareal 91

Figure 3.2: Comparison of the exact (solid lines) and approximate (dashed lines)

‖Ejpj‖A−1 for given icg-iterations j

illustrates the idea where the exact ‖Ejpj‖A−1 values are plotted against the ap-

proximations from the last Parareal iterate for the case of the 1D shallow water

model which will be our centre of discussion in Chapter 4. The norm values are

chosen for icg-iterations 1, 2, 10, 15, 20 and 24 with the respective Parareal itera-

tions k (on the x-axis) needed to satisfy the Parareal stopping criterion by ξj. It

can be seen that the both the values follow closely to each other and we have a

very nice approximation of ‖Ejpj‖A−1 at the end of the Parareal iteration.

Switching to the modified Parareal criterion also changes the way of computing

the inaccuracy budget which was discussed in subsection 3.3.3. Suppose now for

a given φj+1 we obtain ‖Ejpj‖A−1 = ξ̂j ≤ ξj. The corresponding ξj is obtained

from ξ̂j(φ̂j+1) in (3.62) as

φ̂j+1 =
(‖pj‖A − ξ̂j)

ξ̂j

√
ε‖b‖A−1‖pj‖A

2‖rj‖2
2

> φj+1 (3.76)

Everything else is computed in the same manner as for the original criterion except

for (3.76) which replaces (3.55).

92 Chapter 3. Introducing Parallel In Time in data assimilation

Remark 3.6. After satisfying the Parareal stopping tolerance ξj, we already have

a part of the matrix-vector product in the form of the last Parareal iterate P(k)pj.

We just need to store it and apply (FN)T to it to obtain the full-matrix vector

product [(FN)TP(k)]pj. Algorithm 8 explains how everything is implemented.

Algorithm 8 approximation for FNpj

1: Given: icg-iteration j, direction vector pj

2: Run 2 Parareal iterations for initial state pj

3: Set k = 1

4: while true do

5: Compute e = ‖P(k)pj −P(k + 1)pj‖2
6: if e > ξj then

7: Run one more Parareal iteration and set k = k + 1

8: else

9: Set ξ̂j = ‖P(k)pj −P(k + 1)pj‖2
10: end if

11: end while

12: Store the Parareal iterate P(k)pj for computing the matrix-vector product

The final algorithm (Algorithm 9) shows all the manipulations done by in-

cluding the inaccuracy budget (3.76), approximations from subsection 3.3.2 and

Parareal stopping criterion involving ‖Ejpj‖A−1 .

Algorithm 9 icg para prac

1: Given: Symmetric positive definite matrix A ∈ Rn×n, right hand side vector b ∈
Rn, tolerance εicg

2: Set δx0 = 0, r0 = −b, p0 = r, β0 = ‖b‖22, u1 = b/β0, φ0 = jmax, Φ0 = 1

3: for j = 0, · · · jmax do

4: Compute the approximation to ‖pj‖A
5: Determine ξj from the equation (3.62)

6: for k = 1, · · · , N − 1 do

7: Run Parareal with k + 1 iterations

3.4. Inexact conjugate gradient and Parareal 93

8: Calculate e = ‖P(k + 1)pj −P(k)pj‖2
9: if e < ξj then

10: Set ξ̂j = e

11: break

12: end if

13: end for

14: Compute the product cj = (FN)TP(k)pj

15: Find φ̂j from ξ̂j

16: Φj+1 = Φj − φ̂−1
j

17: if j < jmax then

18: φj+1 = (jmax − j)/Φj+1

19: else

20: φj+1 = φj

21: end if

22: αj = βj/p
T
j cj

23: δxj+1 = δxj + αjpj

24: rj+1 = rj + αjcj

25: Jj+1 = 1
2bT δxj+1

26: if (Jj+1−d − Jj+1) ≤ 1
4 εicg|Jj+1| then

27: break

28: end if

29: if (reorth) then

30: for i = 1, · · · , j do

31: rj+1 = rj+1 − (uTi rj+1)ui

32: end for

33: βj+1 = rTj+1rj+1

34: uj+1 = rj+1/
√
βj+1

35: else

36: βj+1 = rTj+1rj+1

37: end if

38: pj+1 = −rj+1 + (βj+1/βj)pj

39: end for

In the next chapter we are going to analyse the results of the Parareal and

data assimilation coupling using various settings of the minimisation algorithm.

We put all the variants of the conjugate gradient method together in the Table

3.1 describing the names, their acronyms and their meanings.

94 Chapter 3. Introducing Parallel In Time in data assimilation

Name Acronym Meaning

Conjugate gradient

method

CG This is the usual

algorithm which uses

exact matrix-vector

products.

Conjugate gradient

method using Parareal

CG Para This algorithm uses the

same framework of CG

except that the

matrix-vector products

are used by Parareal. A

fixed tolerance εp for

Parareal is used.

Inexact conjugate

gradient method using

Parareal

ICG Para In this variant of the

algorithm ‖Ejpj‖A−1 is

computed exactly

which serves as the

stopping criterion of

Parareal

Inexact conjugate

gradient method using

Parareal with

approximated

‖Ejpj‖A−1

ICG Para Approx This variant uses the

approximation of

‖Ejpj‖A−1 using the

last Parareal iterate

Inexact conjugate

gradient method using

Parareal with all

approximations

ICG Para Prac This version uses all

the practical

approximations along

with the approximated

‖Ejpj‖A−1

Table 3.1: Table of all the versions of the conjugate gradient used

3.5. Parareal in both directions (forward and adjoint) 95

3.5 Parareal in both directions (forward and ad-

joint)

In this manuscript, we focus on the integration of the forward model by a time

parallel method (Parareal). In the context of variational data assimilation, a

realistic application would also require the parallelisation of the adjoint model to

compute the gradient of the cost function. In this section, we propose some ways

to extend our work to the adjoint model.

So far when we calculate the gradient of the cost function (3.33) using the

Parareal algorithm for the forward integration, we use the exact adjoint (FN)T .

Our modified inexact CG method is designed accordingly in a way that all the

manipulations and approximations are done for the case when the forward model

integration is done parallel in time.

The original cost function is defined by

J(x0) =
1

2
||FNx0 − y||2

and can be approximated by

J̃(x0) =
1

2
||P(k)x0 − y||2,

whose gradient is given by

∇J̃(x0) = [P(k)]T (P(k)x0 − y).

In this formulation the adjoint of the Parareal integrator P(k) is used for the

backward integration. This formulation provides some advantages, in particular

that the corresponding matrix [P(k)]TP(k) is exactly symmetric and so is appro-

priate for a conjugate gradient method.

But more generally, the gradient of the original cost function

∇J(x0) = (FN)T (FNx0 − y)

can be approximated by

∇J(x0) ≈ P∗(k∗)P(k)x0 − (FN)Ty (3.77)

96 Chapter 3. Introducing Parallel In Time in data assimilation

where P∗(k∗) is another backward Parareal operator which has a different stopping

criterion (not the same number of iterations, for instance). Thus, we can write

our gradient as

∇J(x0) ≈ P∗(k)[P(k)x0 − y] (3.78)

The following presents three possible ways of adressing the integration of the

adjoint model.

3.5.1 Forward first, then adjoint

The most intuitive implementation of the forward and the adjoint Parareal is to

first perform the forward Parareal till we reach convergence and then use the

solution at the end of the last time window as the initial condition for the adjoint

Parareal. Here two different stopping criterion can be used, one for the forward

run εfwd and one for the adjoint run εadj. We have for k = 1, 2, · · ·

xk+1
0 = x0

xk+1
i+1 = Gxk+1

i + (F−G)xki , i = 0, · · · , N − 1
(3.79)

The converged Parareal solution at the end of the time window after k̄ iterations,

xk̄N = uN (say) would serve as the initial condition for the adjoint run. Thus, the

adjoint Parareal is given as

uk+1
N = uN

uk+1
i = GTuk+1

i+1 + (FT −GT)uki+1, i = N − 1, · · · , 0
(3.80)

The steps to carry out this idea is provided in Algorithm 10. It can be seen that

we do not gain more degrees of parallelism compared to the case when we use

Parareal only for the forward integration since the same N number of cores are

used by Parareal to do the backward integration. But we still reduce the overall

computation time since the adjoint is also parallelised.

3.5.2 A single forward and adjoint run

Instead of waiting for the accurate forward solution to proceed for the backward

run like in the previous method, we can do a single Parareal run cycling both the

3.5. Parareal in both directions (forward and adjoint) 97

Algorithm 10 separate forward and adjoint parareal run

Given: Initial condition x0, propagators F and G

• “Parareal for the forward model”

– Coarse initialisation

x0
i = Gix0, i = 0, · · · , N (3.81)

– Run forward Parareal using (3.79) for given tolerance εfwd

• At convergence (say at k̄ iterations), set uk̄N = uN

• “Parareal for the adjoint model”

– Coarse initialisation

u0
i = (GT)N−iuN , i = N − 1, · · · , 0 (3.82)

– Run adjoint Parareal using (3.80) for given tolerance εadj.

forward and backward integrations. This can be visualised as if we have spread

the cycle in a single interval where the Parareal is run for 2N time windows and

the propagators are changed in between (see Fig. 3.3). The difference here is that

we start the adjoint computation as soon as we receive the forward solution. The

initialisation is done as follows

x0
i+1 =

Gx0
i , 0 ≤ i ≤ N

GTx0
i , N ≤ i ≤ 2N − 1

(3.83)

and the iterates are updated as

xk+1
i+1 =

Gxk+1
i + (F−G)xki , 0 ≤ i ≤ N

GTxk+1
i + (FT −GT)xki , N ≤ i ≤ 2N − 1

(3.84)

This implementation is described in Algorithm 11. If we use Parareal for both the

directions as a single loop we can use twice more the number of cores compared to

the previous case of individual Parareal forward and adjoint runs. An important

thing to note is that this approach will lead to a synchronous implementation

since the coarse solvers G and GT still have to integrated sequentially.

98 Chapter 3. Introducing Parallel In Time in data assimilation

Figure 3.3: Synchronous run of the forward and adjoint Parareal

Algorithm 11 coupled forward and adjoint Parareal run

1: Given: Initial condition x0, propagators F and G, stopping tolerance εp

2: k = 0

3: for i = 0, · · · , 2N − 1 do

4: Obtain initial Parareal configuration using (3.83)

5: end for

6: for k = 1, · · · , N do

7: Run the coupled Parareal using (3.84)

8: if |xk+1
2N − xk2N | ≤ εp then

9: break

10: end if

11: end for

3.5.3 Simultaneous forward and backward Parareal

Our final approach is to first run the sequential coarse solver for initialising the

forward and the backward states and then perform one forward Parareal iteration.

Once this has been done, the second forward Parareal iteration and the first back-

ward Parareal iteration can be run independently of each other. The backward

model can use the latest initial condition from the forward iteration and it can

catch up on its own pace. This kind of implementation is asynchronous in nature

because we are now not waiting for the current parallel forward run to update our

initial condition for the backward run. We just take whatever we have from the

previous iterates. The first few steps of this idea are described below:

3.5. Parareal in both directions (forward and adjoint) 99

• Run forward coarse initialisation G

• Run adjoint coarse initialisation GT

• Compute fine solutions Fx0
0 and FTx0

N

• Run the coarse propagators G and GT

• synchronise

• Compute fine solutions Fx1
0 and FTx1

N

• Continue till convergence

With this implementation after one global Parareal iteration (both forward and

backward), the coarse propagators can also be run in parallel. Thus the prediction

step at each Parareal update iteration is no longer sequential and can be run in

parallel. A synchronisation point can be added after certain Parareal iterations

to use the latest iterate for the backward coarse integration.

It is also known that the cost of the adjoint run is 2-3 times more than the

tangent linear run so load balancing could be done by assigning more number of

processors for the adjoint run.

So far what we described in the above three approaches is simply a Parareal

algorithm for a parallel forward-adjoint run. What has not been described yet

is how to actually use them in the context of the data assimilation problem. If

we are going to use the inexact CG, it is crucial that we find an estimate for

‖Ejpj‖A−1 and also an another alternative for the other approximations.

Chapter 4

Applications: Numerical

experiments

Contents

4.1 Shallow water equations 103

4.1.1 1D shallow water model 104

4.1.2 2D shallow water model 107

4.1.3 Temporal discretisation 111

4.2 Parareal parameters and propagators 111

4.3 Data assimilation . 114

4.3.1 1D case . 115

4.3.2 2D case . 118

4.3.3 Approximating the gradient 123

4.4 Krylov subspace enhanced Parareal 123

4.4.1 Using (or not) a coarse solver 124

4.4.2 Practical implementation of the Krylov subspace en-

hanced method . 126

4.5 Results . 130

4.5.1 Analysis for the 1D case 132

4.5.1.1 Conjugate gradient (CG) 132

4.5.1.2 Conjugate gradient with Parareal 133

100

101

4.5.1.3 Inexact conjugate gradient using Parareal . . . 135

4.5.1.4 Inexact conjugate gradient with practical es-

timates . 138

4.5.1.5 Unsuitability of Krylov subspace enhanced Parareal

for 1D case . 140

4.5.2 Analysis for 2D model 141

4.5.2.1 Conjugate gradient (CG) 141

4.5.2.2 Conjugate gradient with Parareal 142

4.5.2.3 Inexact conjugate gradient with Parareal . . . 144

4.5.2.4 Inexact conjugate gradient with practical es-

timates . 145

4.5.2.5 A computable estimate for ‖Ejpj‖A−1 146

4.5.2.6 The ‖b‖A−1 146

4.5.2.7 A computable estimate for ‖pj‖A 148

4.6 Using multiple observations 155

Chapter 3 established all the methodology of incorporating both the Parareal time

parallelisation method and the incremental 4D-Var data assimilation framework.

To recollect, the use of Parareal for the forward integration leads to solving a

linear system through an inexact conjugate gradient (inexact CG) method where

the error in the matrix-vector product is controlled by the Parareal’s accuracy.

For a practical implementation we also provided some feasible estimates for the

various norms involved in the inexact CG method. In this chapter, we move to

the application part by running different versions of the exact and the inexact CG

(see the list given in table 3.1 on some numerical applications, comparing them

and presenting the results. For our illustrations we are going to use the linearised

1D and 2D shallow water equations since they are one of the simplest models

which can describe some of the very important geophysical phenomena.

We start off by explaining briefly how the shallow water equations are derived

from the Navier-Stokes equations in section 4.1. As required by the incremental

4D-Var procedure, we linearise the obtained non-linear equations (here around a

state of rest) to get the linearised forms of the 1D and 2D shallow water equa-

tions. We then set up our 1D and 2D numerical models by first semi-discretising

102 Chapter 4. Applications: Numerical experiments

the equations in space and then utilising the implicit theta scheme for the tem-

poral discretisation. Section 4.2 describes the Parareal propagators which are

constructed using the same implicit temporal scheme.

In the next section 4.3 we define the respective data assimilation problems for

the 1D and the 2D case. In both the problems we want to retrieve the initial state

when the system observes the full state vector only at the end of the integration

time. In section 4.4 we discuss in much detail about the Krylov subspace enhanced

Parareal which we use for the more complex and larger sized 2D problem. In

particular, we address the relevancy of using a coarse solver (in addition to the

Krylov basis) and we also detail the practical construction of the orthonormal

basis required by the Krylov procedure. We show that a Gram-Schmidt algorithm

with an additional reorthogonalisation step allows to maintain the accuracy for a

reduced computational cost.

Section 4.5 is dedicated to the results of the numerical experiments carried

out on the 1D and 2D models by running the different variants of the (inexact)

conjugate gradient method. We first try to use Parareal without using the inexact

CG bounds, i.e. with a fixed (and arbitrarily chosen) Parareal tolerance. By hit

and trial we choose a Parareal stopping criterion where the method exhibits almost

the same behaviour than the exact CG till convergence. Next we take benefit from

the theoretical results of the inexact CG method to adopt an adaptive stopping

criterion for Parareal. To check the relevancy of the approach, we start with a case

where all the required norms are exactly computed. We then move to a practical

implementation and show how the different norms are approximated and how it

affects the behaviour of the method. The final result shows that after applying all

the proposed approximations to the various norms for a practical implementation,

inexact CG retains the same level of performance. The performances are measured

in terms of the total number of Parareal iterations, the average number of Parareal

iterations per exact/inexact CG iterations and the parallel speedup.

Before we proceed, we make the reader aware that we are going to use the

notation “x” for the increment “δx” throughout the chapter for simplicity.

4.1. Shallow water equations 103

4.1 Shallow water equations

The shallow water equations [Holton, 1973, Gill, 1982, Vallis, 2017] are a set of

equations which describe a thin layer of a homogeneous fluid in hydrostatic balance

derived from the rotating Navier-Stokes equations. The name shallow water also

emphasise the assumption that the horizontal length scale is much larger than the

vertical scale (called the long-wave approximation in literature) in order for the

hydrostatic approximation to be valid.

Remark 4.1 (Hydrostatic approximation). The hydrostatic assumption states

that when the fluid is static in the vertical direction z, the pressure gradient force

is balanced by the force due to gravity. In other words,

dp

dz
= −ρg (4.1)

where p is the pressure and ρ is the fluid’s density.

We consider the case of a single layer fluid of constant density ρ0. In this

approximation, the pressure is simply given by p(x, z, t) = p0 + ρ0g(η(x, t) − z)

where η(x, t) is the free surface elevation. The horizontal pressure gradient is

thus proportional to the horizontal free surface gradient. The total depth of the

fluid h(x, t) is given by h(x, t) = H + η(x, t) where H is a constant reference

depth (flat bottom). The shallow water equations for the horizontal velocity

u = (u(x, t), v(x, t))T are written as

Dh

Dt
+ h∇ · u = 0 (continuity equation)

Du

Dt
+ f × u = −g∇η (momemtum equation)

(4.2)

where f = f k̂ is the force due to earth’s rotation and

D

Dt
≡ ∂

∂t
+ u · ∇ (4.3)

is the material derivative.

104 Chapter 4. Applications: Numerical experiments

4.1.1 1D shallow water model

First we consider the one dimensional case (See Fig. 4.1) in the absence of rotation

(f = 0) and thus equations (4.2) become

∂h

∂t
+ u

∂h

∂x
= −h ∂u

∂x

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x

(4.4)

Figure 4.1: A typical one dimensional shallow water system with a flat bottom

Since we use the tangent linear model in the incremental 4D-Var approach, we

linearise the above equations around a state at rest (u0 = 0). That is we use the

perturbation forms of the dependent variables and assume that the fluid surface

is at rest (no initial velocity)

h = H + η, u = u0 + u′ = u′, |η| � H, |u′| � 1 (4.5)

Using the values of u, v and h from (4.5) we get

∂η

∂t
+ u′

∂η

∂x
= −(η +H)

∂u′

∂x

∂u′

∂t
+ u′

∂u′

∂x
= −g ∂η

∂x

(4.6)

Neglecting the smaller value terms and replacing u′ by u, the linearised one-

dimensional shallow water equations are given by

∂η

∂t
= −H∂u

∂x

∂u

∂t
= −g ∂η

∂x

(4.7)

4.1. Shallow water equations 105

Lastly, we add an explicit diffusion term to the velocity equation with the help

of averaging or smoothing operators [Reynolds, 1895] This is done in order to

account for the affects of the unresolved small scales in terms of the resolved large

scales also known as the closure of the system [Cushman-Roisin and Beckers,

2011,Wilcox et al., 1998]. In the end our model is

∂η

∂t
= −H∂u

∂x

∂u

∂t
= −g ∂η

∂x
+ µ

∂2u

∂x2

(4.8)

where µ is the diffusion constant. The physical domain Λ = [0, L] is closed and

the following physical values have been chosen and provided in table 4.1:

Length of the basin L = 120m

Reference depth H = 0.9m

Gravity g = 10m.s−2

Diffusion constant µ = 0.15m2.s−1

Table 4.1: Domain and physical parameters for the linearised 1D shallow water

model

Spatial discretisation

We here introduce the spatial discretisation of the shallow water model (4.8). To

achieve this we are going to consider a staggered grid discretisation [Durran, 2013]

as shown in Fig. 4.2.

Figure 4.2: Staggered grid discretisation for 1D shallow water model

Let ∆x be the spatial stepping size and Nx be the total number of spatial grid

points. Keeping the index l for the spatial grid and using a second order centered

106 Chapter 4. Applications: Numerical experiments

finite difference scheme in space leads to

d

dt
(ηl+1/2) = −H

(
ul+1 − ul

∆x

)
, l = 0, · · · , Nx − 1

d

dt
(ul) = −g

(
ηl+1/2 − ηl−1/2

∆x

)
+ µ

(
ul+1 − 2ul + ul−1

∆x2

)
,

l = 1, · · · , Nx − 1

(4.9)

The above discretisation (4.9) can be expressed as an ODE system

dx

dt
= C x (4.10)

where

and x =
(
η1/2, . . . ηNx−1/2, u1, . . . uNx−1

)T
.

Note that in our computational grid, the velocity values are placed on the

boundary. We use the closed boundary conditions for our shallow water dis-

cretisation and therefore the velocity values on the boundary are set to zero i.e.

u0 = uNx = 0 (See Fig. 4.3). For this reason we do not include the boundary values

in the state vector x when we do the computation for the inner grid point values.

Thus x contains Nx grid point solutions of η and Nx− 1 grid point solutions of u

and so the size of x becomes n = Nx +Nx − 1 = 2Nx − 1.

4.1. Shallow water equations 107

Figure 4.3: The discretised grid along with the boundary values u0 and uNx . The

grid points on the dashed line represents values outside the computational domain.

In the numerical experiments, we will use a number of grid points Nx equal

to 120 (∆x = L/Nx = 1m). The dimension of the state vector is thus equal to

n = 2Nx − 1 = 239.

4.1.2 2D shallow water model

The 1D shallow water model is useful to illustrate the methodology but is sim-

plified both in terms of physical phenomena included (gravity waves) and also in

terms of computational requirements (low dimension). A more challenging ap-

plication of studying the oceanic phenomena is the extension to a linearised 2D

shallow water model which brings in more parameters to play with and also more

complexity in terms of solving it numerically.

Now instead of having only horizontal velocity u in the x-direction in our model

we also have a horizontal velocity v in the y-direction. Since we are no longer in

one dimension we have to incorporate the apparent forces due to the rotation of

the earth (thus considering a rotating reference frame) most notably the Coriolis

force f [Persson, 1998]. As a result some important geophysical phenomena such as

the propagation of Kelvin waves and geostrophic balance can be modelled. Since

we will use a constant Coriolis parameter, the model will however not include

Rossby waves.

The Coriolis force is expressed as f = (−fv, fu)T where f ≡ 2Ω sinϕ is the

vertical component of the rotation vector Ω and is called the Coriolis parameter.

ϕ is the latitude and Ω = 7.292 × 10−5 rad s−1 is the angular speed of rotation

108 Chapter 4. Applications: Numerical experiments

of the Earth. In the mid latitude regions the Coriolis force varies a lot with a

slight change in the latitude. Two approximations can be made depending on

the curvature of the earth by the f -plane and the β-plane approximations. The

f -plane approximation assumes that the Coriolis parameter is a constant value

i.e. f = f0. The β-plane approximation allows the Coriolis parameter to change

linearly in y (latitude). To do so we use the Taylor’s expansion on f about a

reference latitude ϕ0. We have

f = 2Ω sin(ϕ0 + ϕ) ≈ 2Ω sinϕ0 + 2Ω(ϕ− ϕ0) cosϕ0 ≡ f0 + βy (4.11)

where

β =
∂f

∂y

∣∣
ϕ0

=
2Ω

a
cosϕ0 (4.12)

Here a is the Earth’s radius and we have related y to the latitude ϕ using the

relation dy = adϕ. As mentioned above, in our study we are going to use the

f -plane approximation. Now considering the shallow water model (4.2) for the

case of 2 dimensions we have

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= −h

(
∂u

∂x
+
∂v

∂y

)
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
+ f0v

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g∂η

∂y
− f0u

(4.13)

As done for the 1D model, we linearise (4.13) around the state of rest (u0 =

(u0, v0)T = (0, 0)T)

h = H + η, u = u0 + u′, v = v0 + v′, |η| � H, |u′| � 1, |v′| � 1 (4.14)

to get

∂η

∂t
+ u′

∂η

∂x
+ v′

∂η

∂y
= −(η +H)

(
∂u′

∂x
+
∂v′

∂y

)
∂u′

∂t
+ u′

∂u′

∂x
+ v′

∂u′

∂y
= −g ∂η

∂x
+ f0v

′

∂v′

∂t
+ u′

∂v′

∂x
+ v′

∂v′

∂y
= −g∂η

∂y
− f0u

′

(4.15)

Neglecting the small value quantities, the 2D linearised shallow water equations

4.1. Shallow water equations 109

are written as
∂η

∂t
= −H

(
∂u

∂x
+
∂v

∂y

)
∂u

∂t
= f0v − g

∂η

∂x

∂v

∂t
= −f0u− g

∂η

∂y

(4.16)

The physical domain Λ = [0, Lx] × [0, Ly] is closed as well and the following

physical parameters are taken and provided in table 4.2:

Length of the basin Lx = Ly = 2× 105m

Reference depth H = 100m

Gravity g = 2m.s−2

Coriolis parameter f0 = 5× 10−3s−1

Rossby radius
√
gH/f0 = 2828.43m

Table 4.2: Domain and physical parameters for the linearised 2D shallow water

model

Spatial discretisation

To numerically solve (4.16), we use the staggered Arakawa C-grid discretisation

(Fig. 4.4) [Arakawa and Lamb, 1977,Randall, 1994] which leads to

d

dt
(ηl+1/2,m+1/2) = −H

(
ul+1,m+1/2 − ul,m+1/2

∆x
+
vl+1/2,m+1 − vl+1/2,m

∆y

)
,

l = 0, · · · , Nx − 1; m = 0, · · · , Ny − 1

d

dt
(ul,m+1/2) = f0

(
vl−1/2,m + vl+1/2,m + vl−1/2,m+1 + vl+1/2,m+1

4

)
− g

(
ηl+1/2,m+1/2 − ηl−1/2,m+1/2

∆x

)
l = 1, · · · , Nx − 1; m = 0, · · · , Ny − 1

d

dt
(vl+1/2,m) = −f0

(
ul,m−1/2 + ul,m+1/2 + ul+1,m−1/2 + vl+1,m+1/2

4

)
− g

(
ηl+1/2,m+3/2 − ηl+1/2,m+1/2

∆y

)
l = 0, · · · , Nx − 1; m = 1, · · · , Ny − 1

(4.17)

110 Chapter 4. Applications: Numerical experiments

As in the 1D case, the above semi-discretised equations can be written together

as a linear ODE system
dx

dt
= Cx (4.18)

by stacking the discrete grid point unknowns η = (ηl,m), u = (ul,m), and v = (vl,m)

in a single vector x = (η,u,v)T . C is the coefficient matrix of the right hand side

of the semi-discretised equations.

Figure 4.4: Arakawa C-grid discretisation for 2D shallow water model

In the numerical experiments, we will use the same number of grid points for

both the horizontal domain setting Nx = Ny = 80 and thus ∆x = Lx/Nx =

2500m, ∆y = Ly/Ny = 2500m. As we are using closed boundary conditions we

do not include the u and v values at the boundary in our state vector x and so

the dimension of the state vector in this case is equal n = NxNy +Ny(Nx − 1) +

Nx(Ny − 1) = 19040.

Remark 4.2. An important point we make here is that while the 1D shallow water

model has been implemented in Python, the 2D case uses Fortran90. In Python

the matrix C can be stored explicitly and it is convenient to get its inverse and

other related norms. In Fortran the matrix is only accessible through a subroutine

4.2. Parareal parameters and propagators 111

which when passed a vector x returns the output as a matrix-vector product i.e.

x 7→ Cx.

4.1.3 Temporal discretisation

For both the 1D and the 2D shallow water model, we see that doing the spatial

discretisation leads to solving a linear system of ODE of the form x′ = Cx. To

solve this linear ODE numerically in time we introduce the temporal discretisation

with the help of an implicit theta scheme. To do so we let q to be the index for

the temporal grid and ∆T to be the time-stepping size. We have

xq+1 − xq

∆T
= C[θxq+1 + (1− θ)xq], q = 0, 1, · · · (4.19)

where the θ is a parameter such that 0 ≤ θ ≤ 1. We can rewrite (4.19) as

xq+1 = [I− θ∆TC]−1 [I + (1− θ)∆TC] xq, q = 0, 1, · · · (4.20)

According to the above time-stepping scheme in order to march ahead in time,

we need to the invert the matrix [I − θ∆TC] at every time step. When working

for the 1D case this can be easily done since the inverse matrix can be explicitly

computed and stored in the memory. For the 2D case we have to use the GMRES

algorithm (since the matrix C is non-symmetric) to find the inverse and solve the

resulting system. We will explore more about the possibility of an efficient run of

the GMRES in the next section where we talk about the parareal propagators.

4.2 Parareal parameters and propagators

Having obtained a temporal scheme (4.20) to solve the system of linear ODEs for

both the 1D and the 2D case, our next step is to use it to construct the fine and

the coarse propagators for implementing the Parareal algorithm. Let Ω = [0, T]

be the time domain such that T is the total time period of integration. Let N

be the total number of time windows and ∆T be the length of one time window.

Now for each time window, we associate Nfine and Ncoarse as the number of fine

time steps and the number of coarse time steps respectively. Clearly Ncoarse has

112 Chapter 4. Applications: Numerical experiments

to divide Nfine. If δt is the fine step length, then the coarse step length ∆t can be

calculated as

∆t =
∆T

Ncoarse

=
δt×Nfine

Ncoarse

(4.21)

The fine and coarse propagators are defined as

F =
{

[I− θδtC]−1[I + (1− θ)δtC]
}Nfine

G =
{

[I− θ∆tC]−1[I + (1− θ)∆tC]
}Ncoarse

(4.22)

Note that the resulting total length of the numerical integrations for both the 1D

and 2D case is simply

T = Ncoarse∆tN = NfineδtN (4.23)

The Parareal parameter values used for both the models is put in table 4.3.

Parareal parameters 1D model 2D model

Number of time windows, N 20 40

Theta parameter, θ 0.51 0.51

Number of fine time steps per time window, Nfine 100 20

Number of coarse time steps per time window, Ncoarse 20 5

Fine time step, δt 0.05s 68.763s

Coarse time step, ∆t 0.25s 275.053s

Courant number, ωmax 0.29 1.1

Total time period of integration, T 100s 55010.4s

Table 4.3: Parareal parameters for the linearised 1D and 2D shallow water model

In the 1D shallow water model, we have used an explicit diffusion term to

account for the effects of the small scales. The choice of the value of the diffusion

constant also impacts the number of Parareal iterations and we show this in Fig.

4.5 when Parareal is used to solve for the system (4.10).

4.2. Parareal parameters and propagators 113

Figure 4.5: Parareal iterations needed as a function of the explicit diffusion con-

stant µ

Note that the viscosity has to be chosen such that

µδt

∆x2
≤ 1

2
(4.24)

where the quantity on the left is the parabolic Courant number.

It takes 15 Parareal iterations when no diffusion is used as compared to 6

Parareal iterations when µ = 1 corresponding to the parabolic Courant number

equal to 0.05.

For the 2D shallow water model, each time when we use the Parareal propa-

gators we are calling the GMRES for the matrix inversion. We make a small ma-

nipulation within the Parareal algorithm by making use of the previous Parareal

iterate which can improve its overall performance by reducing the number of GM-

RES iterations.

After the first integrations, for the fine parallel simulations, we use the linearity

of F and compute F(xk − xk−1) and deduce

F(xk) = F(xk − xk−1) + F(xk−1) (4.25)

instead of directly computing F(xk). Since ‖xk − xk−1‖ ≤ ‖xk−1‖ this lowers

the number of GMRES iterations required as k increases which in turn allows

114 Chapter 4. Applications: Numerical experiments

to reduce the cost of the fine solver. When near to Parareal convergence, the

successive Parareal iterates are so close that we can assume ‖xk+1 − xk‖ ≈ 0.

Then in that case it means that GMRES should converge in only 1 iteration. We

Figure 4.6: Average number of GMRES iterations per Parareal iteration (on y-

axis) for each CG iteration j.

show the benefit of using this modification by plotting the evolution of the average

number of GMRES iterations per Parareal iteration when used in the context of

a CG run for the 2D shallow water model (See Fig. 4.6). The blue line shows

the average GMRES iterations when no modifications are done and the red line

shows the average GMRES iterations when modifications are applied. Clearly, we

observe that the modifications helps to bring down the average number of GMRES

iterations per Parareal iterations (below 700) and thus reduce the cost of the fine

solver.

4.3 Data assimilation

In this section, we describe the parameters of the data assimilation procedure for

both 1D and 2D case. They essentially differ in the form of the regularisation

4.3. Data assimilation 115

term used. Subsections 4.3.1 and 4.3.2 contain a standard description of the data

assimilation problem for 1D and 2D model respectively without including Parareal

and inexact CG. It is a sanity check and it represents the best we can hope for.

Subsection 4.3.3 talks about approximating the gradients of the cost functions

obtained from the two models by including Parareal and subsequently the inexact

CG.

4.3.1 1D case

When the conditioning of A i.e. κ(A) is large a regularisation term α can be used

in the cost function which depends on the spatial derivative of the initial state

x0. For our case without a regularisation, with the computational parameters

given in section 4.1 and 4.2 κ(A) has an approximate value of κ(A) ≈ 2.98× 1018

which is extremely large. To improve the conditioning, we minimise the following

regularised data assimilation cost function instead:

min J(x0) =
1

2

∥∥FNx0 − y
∥∥2

2
+
α

2

∥∥∥dx0

dx

∥∥∥2

2
(4.26)

We use the finite differences to discretise the spatial derivative of the regularisation

term. With

x0 = ((x0)1, · · · , (x0)l, · · · , (x0)2Nx−1)T

= ((η0)1/2, · · · , (η0)Nx−1/2, (u0)1, · · · , (u0)Nx−1)T
(4.27)

then for l = 1, · · · , Nx,

dx0

dx
=

(η0)m+1/2 − (η0)m−1/2

∆x
, m = 1, · · · , Nx − 1 (4.28)

and for l = Nx + 1, · · · , 2Nx − 1

dx0

dx
=

(u0)m+1 − (u0)m
∆x

, m = 1, · · · , Nx − 2 (4.29)

Putting together we have

dx0

dx
=

1

∆x
Q1x0 (4.30)

116 Chapter 4. Applications: Numerical experiments

where

Q1 =



−1 1

−1 1
.

−1 1

0

0

−1 1

−1 1
.

−1 1


(4.31)

Therefore, ∥∥∥dx0

dx

∥∥∥2

2
=

1

∆x2

〈
Q1x0,Q1x0

〉
= Q2x0 (4.32)

where

Q2 =
1

∆x2
QT

1 Q1 (4.33)

With the addition of the regularisation term to the cost function, the updated

gradient becomes

∇J(x0) = (FN)T (FNx0 − y) + αQ2x0 (4.34)

For data assimilation, the following parameters values are used as shown in ta-

ble 4.4:

Regularisation constant α = 10−5

Initial free surface value η0(x) = exp
{[

(x− L/2)/(L/15)
]2}

Initial velocity value u0(x) = 0 ∀x

Table 4.4: Data assimilation parameters for the 1D shallow water model

Remark 4.3. The cost function (4.26) can be written in the classical form as

in chapter 1 by explicitly writing the inverse background covariance matrix B−1

and the inverse observation covariance matrix R−1. They can also be combined

together and used as a weighed matrix W for the initial state x0. Here Q2 can be

considered as a tridiagonal weighted matrix which acts as a smoother or a diffusion

matrix.

4.3. Data assimilation 117

The conditioning of the regularised cost function after using the regularisation

constant given in table 4.4 is κ(A) ' 106. We now show three figures which

provide a comparison between the free surface and velocity values at different

times using the true initial state and the optimal initial state retrieved after the

optimisation in data assimilation.

Figure 4.7: Free surface (left) and velocity (right) values at the initial time for

the reference (solid red) and for the optimised (blue dashdot) states

Figure 4.8: Free surface (left) and velocity (right) values at time = 50s for the

reference (solid red) and for the optimised (blue dashdot) states

118 Chapter 4. Applications: Numerical experiments

The background term is taken to be the zero vector i.e. xb = (0, 0)T . The first

plot in Fig. 4.7 show the true and optimised initial states themselves and it can be

observed that they are more or less identical. The other two figures show the true

and the optimised free surface and velocity values obtained at time = 50 seconds

(Fig. 4.8) and at time = 100 seconds which is at the end of the time window 20

(Fig. 4.9). Both the true values in solid red line and the optimised values in blue

dashdot line are calculated by using the fine solver starting from the true initial

state and the optimised initial state respectively. We observe here that the true

and the optimised free surface and velocity fit each other well.

Figure 4.9: Free surface (left) and velocity (right) values at time = 100s for the

reference (solid red) and for the optimised (blue dashdot) states

4.3.2 2D case

Before defining the configuration for our data assimilation problem we begin by

first explaining briefly two very important terms and for which we refer to [Mar-

shall and Plumb, 1989,Vallis, 2017].

Rossby number

The ratio between the magnitude of the acceleration due to inertial forces and the

Coriolis acceleration is a dimensionless quantity which is known as the Rossby

4.3. Data assimilation 119

number and is denoted by Ro. If U is the characteristic velocity and L is the

characteristic length of a given flow, then the Rossby number is given by

Ro =
U

f0L
(4.35)

Geostrophic balance

Typically in mid-latitudes for large scale atmospheric and oceanic flows the Rossby

number is quite small (Ro � 1) and so the Coriolis force is balanced by the

horizontal pressure gradient forces. This is known as geostrophic balance. For the

linearised shallow water equations,

f k̂× u = −g∇η (4.36)

which gives

ug = −
(
g

f0

)
∂ηg

∂y
, vg =

(
g

f0

)
∂ηg

∂x
(4.37)

where ug and vg are called geostrophic currents.

For the configuration we consider the case of a shallow layer of fluid in an

initially unbalanced state (by taking an initial Gaussian free surface). We suppose

the state is initially at rest (with zero horizontal velocities). Due to this initial

perturbation to the free surface, the so called gravity-inertia or the Poincaré waves

will be generated which will try to restore the shallow water system back towards

the geostrophic balance also known as geostrophic adjustment. Now if (η, u, v)T

is a solution of the 2D shallow water equations (4.16), then (η+ηg, u+ug, v+vg)T

is also a solution of (4.16) if (ηg, ug, vg)T are in geostrophic balance. Clearly

(ηg, ug, vg)T is divergence free. From (4.37)

∂ug

∂x
+
∂vg

∂y
= −

(
g

f0

)
∂2ηg

∂x∂y
+

(
g

f0

)
∂2ηg

∂x∂y
= 0 (4.38)

which gives
∂(η + ηg)

∂t
+H

(
∂(u+ ug)

∂x
+
∂(v + vg)

∂y

)
= 0 (4.39)

Also,

fvg = g
∂ηg

∂x
and fug = −g∂ηg

∂y
(4.40)

120 Chapter 4. Applications: Numerical experiments

and therefore,
∂(u+ ug)

∂t
= f0(v + vg)− g∂(η + ηg)

∂x

∂(v + vg)

∂t
= −f0(u+ ug)− g∂(η + ηg)

∂y

(4.41)

We want to ensure that we retrieve the optimal values of the free surface height

and the horizontal velocities corresponding to the true initial values after the end

of the minimisation. In our case, since we know that the true values of initial

velocity field are 0, one easy way to remove the indeterminate part is to just

penalize the initial velocity field (in order to constraint ug, vg to be 0). For this

we add a regularisation term which depends on the initial state x0 to our cost

function. For a regularisation constant α our cost function looks like

J(x0) =
1

2
‖FNx0 − y‖2

2 +
α

2
‖Wx0‖2

2 (4.42)

whose gradient is

∇J(x0) = (FN)T (FNx0 − y) + αWx0 (4.43)

and where W is a weighted matrix defined in a way which is driven by the knowl-

edge of the difference in the order of magnitude of the actual variable values. We

use the following parameter values provided in table 4.5 for our setup.

Regularisation constant α = 5

Initial free surface value η0(x, y) = exp
{(x− Lx/2

Lx/10

)2

−
(
y − Ly/2
Ly/10

)2 }
Initial velocity value u0(x, y) = v0(x, y) = 0 ∀x, y

Table 4.5: Data assimilation parameters for the 2D shallow water model

Remark 4.4. The cost function (4.42) can be written in the classical form by

taking diagonal covariance matrices B and R. Assigning values to the individual

variances: σ2
o = 10−3, σ2

b,η = 102, σ2
b,u = 10−1 and σ2

b,v = 10−1 we have

R =
(
σ2
o

)
, B =

σ
2
b,η

σ2
b,u

σ2
b,v

 (4.44)

The resulting inverse matrices R−1 and B−1 are also diagonal and with the above

values we will have a similar regularisation value as given in table 4.5.

4.3. Data assimilation 121

The following figures show the plots of the free surface and the horizontal

velocity values from the initial state obtained by performing data assimilation.

The background term is again taken to be the zero vector i.e. xb = (0, 0, 0)T . The

results from the optimised initial state are compared by running the fine solver for

the true initial state (which is the reference plot). On the first row, the left side

has the reference plot and the right side has the optimised plot for the instance

when the integration has been done for 1/2 of the total period. On the second

row, the left side has the reference plot and the right side has the optimised plot at

the end of the total period of integration. Fig. 4.10 shows the η values, Fig. 4.11

depicts the u values and Fig. 4.12 represents the v values.

As can be observed, the solution values from the optimised initial state after

data assimilation gives too familiar results with only marginal differences with the

corresponding reference solution values.

Figure 4.10: η values at different time windows. Reference (left) and optimised

(right) η for 1/2 (first row) and for full (second row) period of integration

122 Chapter 4. Applications: Numerical experiments

Figure 4.11: u values at different time windows. Reference (left) and optimised

(right) u for 1/2 (first row) and for full (second row) period of integration

Figure 4.12: v values at different time windows. Reference (left) and optimised

(right) v for 1/2 (first row) and for full (second row) period of integration

4.4. Krylov subspace enhanced Parareal 123

4.3.3 Approximating the gradient

We recall from the last two subsections 4.3.1 and 4.3.2 that the 1D and the 2D

problem give rise to slightly different cost function gradients due to the type of

regularisation terms used. We have in (4.34) the gradient for the 1D model which

is written as

∇J(x0) = (FN)T (FNx0 − y) + αQ2x0 (4.45)

Cancelling the gradient (4.34) leads to solving the linear system Ax = b with

A = (FN)TFN + αQ2 and b = (FN)Ty. When Parareal is introduced for the

forward model, the true gradient is approximated by

∇J(x0) ≈ (FN)T (P(k)x0 − y) + αQ2x0 (4.46)

This is equivalent of solving the linear system Ax = b where A is approximated

as

A ≈ (FN)TP(k) + αQ2 , b = (FN)Ty (4.47)

Following along the same lines one can similarly obtain the approximation of the

gradient (4.43) of the 2D shallow water model. This is again equivalent of solving

the linear system Ax = b where A is approximated as

A ≈ (FN)TP(k) + αW , b = (FN)Ty (4.48)

Remark 4.5. We will use the notation A interchangeably for the matrix of the

exact and the approximated gradient and the context will be made clear depending

on the linear system we will solve.

4.4 Krylov subspace enhanced Parareal

The Krylov subspace enhanced Parareal method introduced in section 2.7 will be

used in our experiments. In the 1D case, the very low (and not realistic) dimension

of our toy problem will allow this method to be really efficient. More interest is

to be found in the application of the Krylov subspace enhanced method to the

2D case and in this section we explain the ideas used for its implementation in a

more efficient manner. This includes some important findings on the use or not

124 Chapter 4. Applications: Numerical experiments

the use of a coarse solver, the needed computations of the image of the Krylov

basis vectors projection by the fine solver and a way to obtain orthogonal basis

vectors at a sufficient accuracy.

4.4.1 Using (or not) a coarse solver

The Krylov subspace enhanced method [Gander and Petcu, 2008] constructs an

improved coarse solver K based on previous fine solvers integrations and of an

underlying coarse solver G. In practice there can be several strategies of imple-

menting the Krylov subspace enhanced Parareal. One of the ways is to completely

remove the use of the underlying coarse solver G and just keep it in the beginning

for obtaining the initial states at each time window (at the very first Parareal

iteration). What then remains is a Parareal algorithm where all the computa-

tions are done by the fine solver and thus is fully parallelisable: the sequential

step associated with the integration of the coarse solver is removed. If Pk is the

projection on the subspace of fine evaluations at iteration k then (2.67) becomes,

K(ti+1, ti,x
k
i) = F(ti+1, ti,P

kxki) (4.49)

We test this “fully parallel” Krylov subspace enhanced Parareal version in the 2D

shallow water model. To show its dependency to the initial vector, we perform

the experiments starting with two different initial condition vectors: one with the

initial state x0 and the other with the first direction vector of the inexact CG

(which is −b). Fig. 4.13 starting from x0 and Fig. 4.14 starting from −b shows

the evolution of the error according to the Parareal iterations for 1) the usual

Parareal (i.e. without Krylov subspace enhanced), 2) this “fully parallel” version

(Krylov subspace enhanced with no coarse solver) and 3) for the basic Krylov

subspace enhanced version (i.e. with the use of the underlying coarse solver).

The figure also includes one additional experiment where the underlying coarse

solver is used only in the correction step but only for the first Parareal correction.

With the initial state x0, we encountered that the error shoots up already after

the first Parareal iteration and we were not able to converge. To fix this issue we

got a nice convergence when instead we used the coarse solver only for the first

Parareal iteration. The error plots of the usual Parareal, the Krylov subspace

enhanced Parareal and the Krylov subspace enhanced Parareal with one coarse

4.4. Krylov subspace enhanced Parareal 125

run are shown in Fig. 4.13.

Figure 4.13: Error plots of different variants of Parareal using x0 as the initial

condition

Figure 4.14: Error plots of different variants of Parareal using −b as the initial

condition

For the initial direction vector −b we were able to converge using the fully par-

126 Chapter 4. Applications: Numerical experiments

allel Krylov subspace enhanced Parareal without using the coarse solver. The

corresponding error plots are shown in Fig. 4.14.

To conclude, the two figures illustrate that the answer to the question “Whether

we should use the coarse solver?” is not easy. A closer look at the difference be-

tween the Parareal solutions after two successive iterations gives

xk+1
i+1 − xki+1 = FPkxk+1

i + G(I−Pk)xk+1
i − FPk−1xki −G(I−Pk−1)xki

= F(Pkxk+1
i −Pk−1xki)−G(Pkxk+1

i −Pk−1xki)

+ G(xk+1
i − xki)

= (F−G)[Pkxk+1
i −Pk−1xki] + G(xk+1

i − xki)

(4.50)

If we take norms on both the sides and then use the triangle inequality we get

‖xk+1
i+1 − xki+1‖ ≤ ‖F−G‖‖Pkxk+1

i −Pk−1xki ‖+ ‖G‖‖xk+1
i − xki ‖ (4.51)

The monitoring and approximating of the error requires a thorough study of the

action of F−G on the projection of the vectors (Parareal iterates) and weeding

out the bad basis vectors which are causing the error to shoot. Also by playing

with the accuracy of the coarse solver i.e. using an adaptive coarse solver it can

be identified when and when not to use the coarse solver for Parareal. For now,

we can say that the use of the coarse solver in all Parareal iterations is the safest

choice.

4.4.2 Practical implementation of the Krylov subspace en-

hanced method

Computation of FPx

Here we show a practical implementation of the Krylov subspace enhanced Parareal

and how we get the projections. Suppose we have a set {x1,x2, · · · ,xNr} of Nr

snapshots of the fine evaluation vectors of size n arranged in a matrix S of size

n×Nr. Let us also suppose that the image of these vectors by the application of

the fine solver F is stored in the matrix FS = (Fx1,Fx2, · · · ,FxNr).

As required by the Krylov subspace enhanced method, the objective is to be

able to compute FPx for a given vector x, where P is the projection on S. Then

4.4. Krylov subspace enhanced Parareal 127

the enhanced coarse solver will then be approximated by

K = FPx + G(I−P)x (4.52)

If U is an orthonormal basis of S we can write P = UUT .

FPx = (FU)(UTx) (4.53)

Since P is the projection on S, S = PS = UUTS and therefore taking the inverse

of UTS on both the sides we get

U = S(UTS)−1 (4.54)

and thus FU = FS(UTS)−1 = FS(UTS)−1.

The computation of FPx can thus be obtained by

FPx = FS(UTS)−1(UTx) (4.55)

and note that this expression does not require the integration by F of the vectors

of the orthonormal basis U. We however mention an important point that we

still need to store the vectors for the matrix S and FS and it was fine for our

applications. But it can certainly become a bottleneck once we shift to more re-

alistic applications and in that case one approach could be coupling this practical

implementation with a reduced basis approach [Caldas Steinstraesser et al., 2021].

Remark 4.6. From one CG iteration to another, we completely reset the Krylov

basis for Parareal. The reuse of previous Krylov basis does not seem to produce

improvements. It would be interesting to further explore this point in order to

accelerate the convergence of Parareal. Note that this point is clearly intrinsically

linked to the used minimisation method and may be more efficient with other

methods than the conjugate gradient.”

Derivation of the orthonormal basis: Gram-Schmidt with reorthogo-

nalisation

To obtain the orthogonal basis U, the Gram-Schmidt orthogonalisation (GS) pro-

cess is one of the most widely used orthogonalisation techniques. For a matrix

128 Chapter 4. Applications: Numerical experiments

S = (x1, · · · ,xNr) ∈ Rn×Nr of vectors with rank(S) = Nr, GS produces a QR

factorisation

S = QR (4.56)

where Q = (q1, · · · ,qNr
) is the orthogonal matrix and R ∈ RNr×Nr is an upper-

triangular matrix. GS can be implemented in two ways: one is the Classical Gram-

Schmidt (CGS) method and the other is the Modified Gram-Schmidt (MGS)

method described in table 4.6.

The modified Gram-Schmidt procedure orthogonalises against the current es-

timation of the latest orthogonal basis vector x
(1)
j . Although both algorithms are

mathematically equivalent, MGS has better numerical properties than CGS. In

fact CGS suffers from a bad reputation of lacking numerical stability due to the

occurring of the roundoff errors when cancellation takes place by subtracting the

orthogonal projection [Björck, 1994].

x
(1)
j = x

(1)
j − (xj,qk)qk (4.57)

Classical GS algorithm Modified GS algorithm

for j = 1, · · · , Nr for j = 1, · · · , Nr

x
(1)
j = xj x

(1)
j = xj

for k = 1, · · · , j − 1 for k = 1, · · · , j − 1

x
(1)
j = x

(1)
j − 〈xj,qk〉qk x

(1)
j = x

(1)
j − 〈x

(1)
j ,qk〉qk

end end

qj = x
(1)
j /‖x(1)

j ‖ qj = x
(1)
j /‖x(1)

j ‖
end end

Table 4.6: The classical and modified Gram-Schmidt algorithm

As a result the produced set of vectors gradually lose their orthogonality and

are far from orthogonal. Even if the modified GS algorithm performs better, it

is still not accurate enough to lead to an efficient implementation for the Krylov

subspace enhanced method.

As shown in Algorithm 12, the next step is to perform a reorthogonalisation

step each time, i.e. “twice is enough” to get preserve the orthogonality of the basis

vectors to the precision level [Giraud et al., 2005]. The cost is then doubled (2nNr

floating point operations). Note however, that in comparison with the modified

4.4. Krylov subspace enhanced Parareal 129

Gram-Schmidt with reorthogonalisation the inner loop of the CGS is still fully

parallelised. This can be seen from the table 4.6 where in the scalar products

〈xj,qk〉 computed in CGS do not depend on x
(1)
j whereas they do depend on x

(1)
j

for MGS.

Algorithm 12 cgs method with reorthogonalisation step

1: Initialisation: x
(0)
j = xj

2: for j = 1, . . . , Nr do

3: for i = 1, 2 do

4: x
(i)
j = x

(i−1)
j

5: for k = 1, . . . , j − 1 do

6: x
(i)
j = x

(i)
j − 〈x

(i−1)
j ,qk〉,qk

7: end for

8: end for

9: qj = x
(i)
j /‖x

(i)
j ‖

10: end for

To highlight the impact of the reorthogonalisation step, we ran two exper-

iments of using the Krylov subspace enhanced Parareal where the orthogonal

basis is obtained from one pass and two passes of the Classical Gram-Schmidt

procedure. We check the impact in terms of the loss in orthogonality at CGS

iteration step i defined as

Loss of orthogonality = max
1≤j≤N,j 6=i

{|〈xi,xj〉|}

We again use the 2D shallow water model with the initial condition x0 and −b. In

Fig. 4.15 the solid lines and dashed lines indicate the loss of orthogonality when

CGS and CGS with a reorthogonalisation step is used respectively. The blue

colour is for the initial condition x0 and the red colour is for the initial condition

−b. There is a clear difference with the basis vectors losing their orthogonality

rapidly when CGS is used with an even faster loss when x0 is used. The orthog-

onality is preserved when two passes of CGS are used which clearly asserts the

statement that we have to use two passes of CGS for getting an orthogonal basis.

When this CGS with reorthogonalisation algorithm is used in our 2D shallow wa-

ter model, its cost is fully negligible in comparison to the costs of the fine/coarse

solvers integrations.

130 Chapter 4. Applications: Numerical experiments

Figure 4.15: The loss of orthogonality in Krylov basis vectors. The solid lines

represent when CGS is used while the dashed lines depict CGS used with a re-

orthogonalisation step. Blue and red colour are for x0 and −b as initial conditions

respectively

4.5 Results

We recapitulate so far what we have defined in our 1D and 2D problem.

• A linearised 1D shallow water model (4.8) leading to matrix C of the ODE

(4.10) after semi-discretisation.

• Data assimilation cost function J (x0) in (4.26) for the 1D case and its ap-

proximated gradient in (4.46) with the corresponding matrix A = (FN)TP(k)+

αQ2.

• A linearised 2D shallow water model (4.16) leading to the ODE system

(4.18) after semi-discretisation.

• Data assimilation cost function J (x0) in (4.42) for the 2D case and its ap-

proximated gradient with the corresponding matrix A = (FN)TP(k)+αW.

4.5. Results 131

• Parareal propagators F and G constructed in (4.22) from the ODE (4.10)

using an implicit theta scheme.

In this section we are going to apply the Parareal algorithm in a series of different

conjugate gradient setup and analyse the results to see what differs at each step.

The reader can check all the conjugate gradient versions which we will use from

table 3.1 provided in chapter 3. We will follow a close presentation of the results

for both the 1D and the 2D experiments.

First, for a reference experiment, we are going to minimise the cost function

by the conjugate gradient (CG) method which uses the exact matrix-vector prod-

ucts for constructing the residuals and the search directions. The minimisation

terminates for a given tolerance on based on the 2-norm of the residual ‖r(xj)‖2.

Second, we use the CG version where the matrix-vector products are obtained

through the Parareal algorithm (CG Para). The important point to consider here

is that we don’t know a priori what Parareal precision is exactly required to achieve

the same performance level as the CG with exact matrix-vector product. We run

CG with arbitrary Parareal tolerances and note the corresponding Parareal itera-

tions. This will be used to check the actual required Parareal tolerance when we

use the inexact conjugate gradient.

The next step is to mimic this result by now using the inexact conjugate

gradient (ICG Para) method with the original (using the value of ‖E‖A−1,A) and

the modified (using the value of ‖Ejpj‖A−1) Parareal stopping criterion for the

1D case. The 2D case however is only tested with the modified Parareal stopping

criterion. We reiterate from Remark 3.3 that the computed residuals are no longer

exact and hence not orthogonal to each other which requires a reorthogonalisation

step at each minimisation iteration.

In these sets of experiments we use the exact values of all the norms we require

and we do not use the inaccuracy budget presented in chapter 3 (section 3.3). We

go then one step further, with the (ICG Para Approx) experiment, by just using

the approximate value of ‖Ejpj‖A−1 given chapter 3, subsection 3.4.3 while still

using exact estimates for the other norms.

Finally we present the inexact conjugate gradient method which uses the in-

accuracy budget and all the practical approximations (ICG Para Prac) to see the

impact it has on the total number of Parareal iterations. For the 1D model, we

use all the approximations suggested by Gratton et al. from chapter 3. Since for

132 Chapter 4. Applications: Numerical experiments

2D model in our case, we do not have a direct access to the matrix A, we propose

another feasible alternatives in particular to ‖b‖A−1 and ‖pj‖A in this chapter.

The original CG and the inexact CG use different stopping criteria. The first

is based on the 2-norm of the residual while the other is based on the A−1 norm.

To ensure that the results obtained from both methods follow the same stopping

criterion we see from (3.50) that the inexact conjugate gradient terminates when,

for a given value of εicg,

‖rj‖A−1 ≤
√
εicg

2
‖b‖A−1 (4.58)

If we rearrange the above terms for the equality we obtain

εicg =

(
2 ‖rj‖A−1

‖b‖A−1

)2

(4.59)

To find the value of εicg which corresponds to the stopping tolerance of CG we

just need to store the value of ‖rj‖A−1 at the last CG iteration to deduce εicg from

(4.59).

4.5.1 Analysis for the 1D case

4.5.1.1 Conjugate gradient (CG)

To begin our analysis we first check how our data assimilation problem performs

with the shallow water model when CG is used. That is, we use the exact matrix-

vector multiplication and therefore we have A = (FN)TFN + αQ2. Recall that

the CG stopping criterion for a given tolerance εcg requires that

‖r(xj)‖2 ≤ εcg (4.60)

where the quantity ‖r(xj)‖2 is the 2-norm of the residual vector for solution guess

xj at the jth iteration. Fig. 4.16 below shows the evolution of ‖r(xj)‖2 (blue line)

according to the CG iterations. The tolerance εcg (black dashed line) was here

set to the value of 10−4. The residual norm eventually decreases and the stopping

criterion is satisfied after 24 minimisation iterations.

4.5. Results 133

Figure 4.16: CG without using Parareal

4.5.1.2 Conjugate gradient with Parareal

We now run CG where the matrix-vector product comes through the Parareal

(CG Para) with a fixed Parareal stopping tolerance εp. The problem is then to

fix the value of εp. Here we compare different choices for εp. In the first one, we

choose εp = 10−6. This corresponds to the minimum of the values {ξj}j which

are produced, at each CG iterations, by the inexact CG algorithm as a stopping

criterion for Parareal (see next subsection 4.5.1.4). Obviously, this choice is only

for comparison since this value is not accessible without running the inexact CG.

Results are shown in Fig. 4.17 following algorithm 13.

Algorithm 13 cg with parareal

1: Given: Right hand side vector b ∈ Rn, CG tolerance εcg, Parareal tolerance εp

2: Set x0 = 0, r0 = b, p0 = −b

3: j = 0

4: while true do

5: Run Parareal with tolerance εp and initial condition pj to give P(k)pj .

6: Compute the matrix-vector product Apj = (FN)TP(k)pj .

7: αj = rTj rj/pjApj

134 Chapter 4. Applications: Numerical experiments

8: xj+1 = xj + αjpj

9: rj+1 = rj − αjApj

10: if ‖rj+1‖2 ≤ εcg then

11: break

12: end if

13: pj+1 = −rj+1 +

(
rTj+1rj+1

rTj rj

)

14: j = j + 1

15: end while

For the same CG tolerance εcg = 10−4 we perform again 24 minimisation

iterations, which means that the stopping criterion for parareal was indeed small

enough and we end up using 191 Parareal iterations in total. We recall (see

table 4.3) that we have a total number of time windows N equal to 20 in these 1D

experiments. On average 7.96 Parareal iterations per CG iteration are performed

which will be shown to be slightly higher than the average of 6.25 Parareal iteration

when using the inexact CG. This emphasises the need for an adaptive Parareal in

the framework of inexact CG.

Figure 4.17: CG with matrix-vector product from Parareal, εp = 10−6

4.5. Results 135

To check how CG performs in terms of the relative error in the 2-norm of

the residual and the total number of Parareal iterations we show in Fig. 4.18 the

results of CG when εp = 10−5, 10−6 and 10−7 are used. The relative error in the

2-norm of the residual is given as

Relative error in the 2-norm of residual =

∣∣ ‖rj‖2 − ‖r(xj)‖2

∣∣∣∣ ‖r(xj)‖2

∣∣
where ‖r(xj)‖2 is the 2-norm of the residual obtained when CG is used. Initially

we see that the relative error is low and almost the same for all the 3 cases. After

a few CG iterations the relative error starts to vary and is smaller for a smaller

εp. The relative error also gradually increases with the CG iteration suggesting

that a lower Parareal precision is needed near the end of the minimisation. Also

as one would expect a smaller εp implies more Parareal iterations and vice-versa.

Figure 4.18: Relative error in the 2-norm of the residual (left) and the corre-

sponding Parareal iterations k (right) for different fixed values of εp when using

CG

4.5.1.3 Inexact conjugate gradient using Parareal

Now we keep the result from CG as the reference for performing similar experi-

ments with the inexact CG. As mentioned previously, the stopping criterion for

136 Chapter 4. Applications: Numerical experiments

inexact CG is deduced from the one from CG using (4.59) leading to a value of

εicg = 1.12× 10−7.

We first show the results of the ICG Para when the primal-dual norm of the

perturbation matrix ‖Ej‖A−1,A bounded by ωj in (3.48) is used as the stopping

criterion for the Parareal. Algorithm 6 describes in detail the way to imple-

ment this version of the inexact CG. Fig. 4.19 below demonstrates the result.

Figure 4.19: Inexact CG with the Parareal stopping criterion ‖Ej‖A−1,A ≤ ωj

On the left image, the solid red line depicts the residual norm ‖rj‖A−1 at icg-

iteration j and the black dotted line represents the inexact CG stopping tolerance

(1
2

√
εicg ‖b‖A−1) which ‖rj‖A−1 has to satisfy. The quantity ωj in the violet is the

bound for the error norm ‖E‖A−1,A; the cyan solid line is the residual gap norm

‖r(xj)−rj‖A−1 and the yellow solid line is the cost function change |J (xj)−J (x∗)|
which is bounded by the quantity εicg|J (x∗)| in the black dashdot line. The right

image shows the evolution of the corresponding Parareal iterations k with the

icg-iterations j in a blue dashed line with a blue circle marker.

Remark 4.7. Throughout the manuscript we are going to follow the same colour

coding for quantities used in Fig. 4.19 for the different inexact CG configurations.

4.5. Results 137

As a reminder from Theorem 3.1 the inexact CG stops when both

‖rj‖A−1 ≤
√
εicg

2
‖b‖A−1 and ‖r(xj)− rj‖A−1 ≤

√
εicg

2
‖b‖A−1 (4.61)

and we have |J (xj) − J (x∗)| ≤ εicg |J (x∗)|. We can observe that from Fig 4.19

that at the end of the minimisation the conditions of Theorem 3.1 are well satisfied.

In this experiment, the minimisation ends after 24 icg-iterations at the expense

of a total of 437 Parareal iterations. This means that on an average we use 18.2

Parareal iterations per icg-iteration which is almost equal to the total number

of time windows N = 20. This means that we are not gaining any speedup out

of it since we are only able to converge to the solution after the second-last or

the last iteration. This emphasises the fact that making use of an estimate of

the ‖E‖A−1,A norm when deriving the stopping criterion leads to a suboptimal

algorithm. The only positive point of using inexact CG in this case can be seen

by observing the values of ωj which gradually increase and the values of ‖rj‖A−1

decrease at the same time as we proceed with the icg-iterations.

The next result in Fig. 4.20 shows the impact of using the modified Parareal

stopping criterion (3.61) based on ‖Ejpj‖A−1 within ICG Para on the number of

Parareal iterations.

Figure 4.20: Inexact CG with the Parareal stopping criterion ‖Ejpj‖A−1 ≤ ξj

138 Chapter 4. Applications: Numerical experiments

Algorithm 7 shows the implementation of this method which is same as algo-

rithm 6 except that the Parareal stopping criterion is different. The new quantity

in the orange solid line represents ξj which is the bound for ‖Ejpj‖A−1 . The

minimisation again ends in 24 iterations and the total Parareal iterations goes

significantly down to 134 resulting in an average of 5.5 Parareal iterations per

icg-iteration.

The use of ICG Para allows us to use Parareal in an adaptive sense since its

tolerance ωj or ξj is changing with every icg-iteration j. We still keep the quantity

ωj in Fig. 4.20 as it helps us to see if the permissible error in the matrix-vector

product is gradually increasing. Looking back at the Parareal iteration evolution

we can say that ‖Ejpj‖A−1 provides a much more efficient Parareal stopping

criterion than ‖Ej‖A−1,A.

4.5.1.4 Inexact conjugate gradient with practical estimates

We now use an estimate for ‖Ejpj‖A−1 instead of an exact computation in the

previous paragraph. In the chapter 3, section 3.4.3 we found a way to have a

feasible approximation for ‖Ejpj‖A−1 as the difference between the successive

Parareal iterates in the 2-norm. We state the approximation here for reference,

‖Ejpj‖A−1 ≈ ‖P(k + 1)pj −P(k)pj‖2 (4.62)

We show in Fig. 4.21 the results of using this approximation for ICG Para Approx.

The algorithm is given below. After closely examining the two plots of ICG Para

in Fig. 4.20 and ICG Para Approx in Fig. 4.21 we see almost no difference on the

left side within the various quantities and only a marginal difference on the right

side where ICG Para Approx takes one less Parareal iteration (133 in total) at

the last minimisation iteration. From this we can conclude that the we have a

very good and valid approximation to ‖Ejpj‖A−1 .

Finally we show the main result by using the practical estimates for all the re-

maining norms used in subsection 3.3.2, the inaccuracy budget in subsection 3.3.3.

We briefly explain how we get an estimate for the termination criterion (3.50) fol-

lowing [Gratton et al., 2021]. The ‖rj‖A−1 is estimated as

1

2
‖rj‖2

A−1 ≈ J (xj)− J (x∗) ≈ J (xj−d)− J (xj) (4.63)

4.5. Results 139

Figure 4.21: Inexact CG with the approximated ‖Ejpj‖A−1

where d is any integer, d < j. Using (3.50) to replace ‖rj‖A−1 and then subse-

quently (3.53), (3.52) in the above equation we get

J (xj−d)− J (xj) ≤
εicg

8
‖b‖2

A−1

=⇒ Jj−d − Jj ≤
εicg

4
|Jj|

(4.64)

We require to store the values of the approximate quadratic Jj to use them later

for the termination of the ICG Para Prac starting from j = d. For this case we

choose d = 2 and plot the results in Fig. 4.22 following algorithm 9. What we

observe is that we have a very gradual decrease in the Parareal iterations even

after using different approximations. In fact ICG Para Prac gives similar results

as seen before with the previous results of the conjugate gradient variants. The

minimisation takes 24 iterations using a total of 126 Parareal iterations. On an

average, the number of Parareal iterations per icg-iteration slightly decreases to

6.25. The theoretical speed up is given by

S =
number of time windows

average Parareal iterations per icg-iteration
=

20

6.25
≈ 3.2 (4.65)

140 Chapter 4. Applications: Numerical experiments

Figure 4.22: Inexact CG with all practical approximations

4.5.1.5 Unsuitability of Krylov subspace enhanced Parareal for 1D

case

We run the previous experiment of inexact CG with practical estimates using the

same parameter values except that we now use the Krylov subspace enhanced

Parareal version. As a result the total number of Parareal iterations drops sig-

nificantly to 70 with an average of 2.69 Parareal iterations per icg-iteration (see

Fig. 4.23). This extremely quick convergence is the small size of the 1D problem.

Now the result in Fig. 4.23 may suggest that Krylov subspace enhanced Parareal

should be used for the 1D problem. But this is misleading because the total time

to compute the Krylov basis is quite more than the time to actually solve the

minimisation problem.

At Parareal iteration k, the size of subspace S containing the fine evaluations

used to build the projection matrix Pk is equal to kN , N being the number of

time windows. A simple computation shows that the dimension of the Krylov

basis (assuming linearly independent vectors in S) becomes rapidly larger than

the dimension of the problem itself. Our problem size is Nx = 120 and only 3

Parareal iterations are needed for the size of the basis (120) to match the problem

size. Thus, Pk is rapidly close to the identity.

4.5. Results 141

Figure 4.23: Modified practical inexact CG with Krylov subspace enhanced

Parareal

4.5.2 Analysis for 2D model

We now turn our attention to the case of the 2D shallow water model. In compar-

ison to the 1D case, the model incorporates new kind of waves but also has a much

higher dimension which will result in the need for additional approximations. All

the tests performed in this subsection uses the Krylov subspace enhanced method,

the practical implementation of which has been described in Section 4.4.

4.5.2.1 Conjugate gradient (CG)

For CG the stopping criterion depends on the 2-norm of the residual ‖r(xj)‖2 and

for a tolerance of εcg = 1., the minimisation process takes 11 iterations (Fig. 4.24).

This gives a starting point or a reference to how our coupling of Parareal with the

inexact CG is done.

142 Chapter 4. Applications: Numerical experiments

Figure 4.24: Exact CG without using Parareal

4.5.2.2 Conjugate gradient with Parareal

Having calculated the number of minimisation iterations we need for CG, we now

use CG with Parareal (CG Para) with the only modification that the matrix-

vector multiplication uses the Parareal algorithm for the forward model. Again

the crucial point here is to chose a fixed stopping criterion tolerance for Parareal

iterations. Just like in subsection 4.5.1.2 we compare here different choices for

εp. We choose εp = 1.d − 1 which is the minimum of the values {ξj}j which

are produced, at each CG iterations, by the inexact CG algorithm as a stopping

criterion for Parareal (see next subsection 4.5.2.4).

Fig. 4.25 shows that CG Para takes 11 minimisation iterations with the total

of 82 Parareal iterations. That means CG with Parareal requires on an average of

7.45 Parareal iterations per CG iteration. In this case the choice of εp is arbitrary,

we know after hit and trial that the value of εp is optimal and it does not affect

the convergence of CG. Actually this particular value of εp is fully dependent on

the configuration of our problem. The value can definitely change if we make any

changes to the current configuration by for instance changing the value of Nx or

the gravity g.

4.5. Results 143

Figure 4.25: Exact CG with matrix-vector product from Parareal, εp = 1.d− 1

Figure 4.26: Relative error in the 2-norm of the residual (left) and the corre-

sponding Parareal iterations k (right) for different fixed values of εp when using

CG

Since we do not know in advance the tolerance εp we perform numerical exper-

144 Chapter 4. Applications: Numerical experiments

iments for 3 different values of εp. The idea is to see the difference in the number

of Parareal iterations and the relative error in the 2-norm of the residual at each

CG iteration. Fig. 4.26 is about the plot of CG with parareal for the values of

εp to be 1.d0, 1.d− 1 and 1.d− 2. Evidently a smaller value of εp implies a more

accurate residual value and more Parareal iterations and vice versa. The slight

increase in the relative error with the CG Para iterations is an indication of a

higher Parareal precision required in the beginning than in the end of CG Para.

This will reflect the performance of the inexact CG in coming sub-subsections

where we will be able to see inexact CG adapt the Parareal’s precision.

4.5.2.3 Inexact conjugate gradient with Parareal

Now we run the ICG Para and we present the results only for the case where the

Parareal stopping criterion is based on ‖Ejpj‖A−1 (see Fig. 4.27), whose values

are here computed exactly. Relation (4.59) leads to a stopping criterion for the

inexact CG of εicg = 1.075× 10−2.

As a reminder we state again the colour coding for the quantities used in the

Figure 4.27: Inexact CG with the Parareal stopping criterion ‖Ejpj‖A−1 ≤ ξj

plot. The black dashed and the black dotted line are the stopping tolerance

for the minimisation and the bound for the quadratic change respectively. For

4.5. Results 145

this particular case we can see only one of them because they have almost the

same value. The red solid line represents the ‖rj‖A−1 which ends the minimisation

when its value is less than than the stopping tolerance. The yellow solid line is the

quadratic change |J(xj)− J(x∗)|. The violet solid line is the level of permissible

error in the matrix vector product measured by ‖Ej‖A−1,A. The cyan solid line

represents the residual gap norm ‖r(x)j − rj‖A−1 which is supposed to stay below

the black dashed line.

The quantity ξj is assigned the orange solid line which depicts the stopping

tolerance for the Parareal for each minimisation iteration. Values of ξj for the

inexact CG can be compared with the fixed εp in the CG case.

From Fig. 4.27 we see it takes the same number of minimisation iterations (11)

as in the above two cases of CG and CG Para but there is a substantial decrease

in the total number of Parareal iterations (66) which is nearly by a factor of 2. As

a result the average Parareal iterations per icg-iteration for ICG Para is 6 which

gives a speedup of 40/6 = 6.67. This is some significant improvement given the

fact that the use of ICG Para with a varying εp is almost twice as more efficient

in terms of the total Parareal iterations as the use of CG Para with a fixed εp.

The next step now is to replace the theoretical estimates with the approxima-

tions from subsection 3.3.2 and use our approximations for ‖Ejpj‖A−1 and check

whether the same performance levels can be replicated.

4.5.2.4 Inexact conjugate gradient with practical estimates

As a reminder from chapter 3 that for a practical implementation of our modi-

fied inexact CG we need approximations for the various norms used. In realistic

applications we don’t have access to the matrix A but only to its product with

a vector Ax. To be able to apply the modified inexact CG for a more com-

plicated 2D model, we reconsider the previous approximations from chapter 3

subsection 3.3.2 by providing some more reasonable alternatives for ‖b‖A−1 and

‖pj‖A. Moreover if we recall from section 3.4, equation (3.62) we have

ξj =

√
ε‖b‖A−1‖pj‖2

A

2φj+1‖rj‖2
2 +
√
ε‖b‖A−1‖pj‖A

(4.66)

The above definition clearly indicates that we also need to know a priori the

estimates for ‖b‖A−1 and ‖pj‖A for estimating ξj. We are going to talk about

this in the following sub-subsections.

146 Chapter 4. Applications: Numerical experiments

4.5.2.5 A computable estimate for ‖Ejpj‖A−1

The approximation for the ‖Ejpj‖A−1 is done in the same way as in the preceding

chapter (Ch. 3, Subsec. 3.4.3) by using the difference from the last Parareal iterate

in the 2-norm. That is,

‖Ejpj‖A−1 = ‖P(k)pj − FNpj‖2 ≈ ‖P(k + 1)pj −P(k)pj‖2 (4.67)

We verify our estimates for the 2D case by plotting the exact and the approximate

‖Ejpj‖A−1 for given icg-iterations in in Fig. 4.28. Just like in the 1D case, both the

quantities become reasonably close to each other after a few Parareal iterations.

Figure 4.28: Comparison of the exact ‖Ejpj‖A−1 (plain line) with its approxima-

tion (dashed line) by using the last Parareal iterate

4.5.2.6 The ‖b‖A−1

The approximation for ‖b‖A−1 as per subsection 3.3.2 Gratton et al. is given as

‖b‖A−1 ≈


‖b‖2√
µmax(A)

for j = 0

√
2 |Jj|, for j = 1, · · · jmax

(4.68)

4.5. Results 147

with Jj = −1

2
bTxj being the approximate quadratic q(xj) and µmax(A) being the

maximum eigenvalue of A. Finding the approximation of ‖b‖A−1 is troublesome

only at the beginning of the minimisation i.e. at icg-iteration j = 0. From

equation (4.68), we see that the estimate at j = 0 requires itself an estimate of

the maximum eigenvalue µmax(A) of the matrix A which is difficult to obtain when

we do not have access to the full matrix A. The simplest solution that we will take

in our experiments is just to use the exact matrix-vector multiplications during

the first minimisation iteration. This means we make no use of Parareal and we

instead run the fine solver F sequentially to only exploit the space parallelisation

here. Only, the subsequent icg-iterations j = 1, · · · , jmax will be based on Parareal.

Fig 4.29 shows the comparison of the approximate and the exact values of

‖b‖A−1 with respect to the icg-iterations j. The crude estimates for ‖b‖A−1

during the first few icg-iterations can be attributed to the less accurate solution

guess xj which is used to calculate Jj in (4.68). We also take the opportunity

to visualise how the approximation made to ‖b‖A−1 alone affects the calculation

of ξj, i.e. we keep the exact value of ‖pj‖A. To do so we plot the relative error

|ξ̃j − ξj|/|ξj| in Fig. 4.30 where ξ̃j is the approximated ξj.

Figure 4.29: Comparison of exact ‖b‖A−1 with its approximation for inexact CG

iterations j

148 Chapter 4. Applications: Numerical experiments

Figure 4.30: Relative error in ξj as a function of Parareal iteration k. The ap-

proximate and exact values of ‖b‖A−1 and ‖pj‖A are used respectively to compute

ξ̃j

We see that we have a higher relative error during the starting icg-iterations

as compared to the relative error in the last icg-iterations. This pattern can be

justified by the same argument made for Fig. 4.29 that the accuracy of the ‖b‖A−1

approximation improves with the succeeding icg-iterations.

We now turn our attention to providing an estimate to ‖pj‖A.

4.5.2.7 A computable estimate for ‖pj‖A

Once more from subsection 3.3.2, the approximation suggested for the ‖pj‖A
requires the information about the trace of A, Tr(A) given below

‖pj‖A ≈
√

1

n
Tr(A) ‖pj‖2 (4.69)

which is not accessible without having access to the full matrix A. As a conse-

quence of not knowing the trace note that we cannot acquire an estimate for ξj

since it is only obtained if we have access to ‖pj‖A.

To get around this issue, we propose an alternative by approximating ‖pj‖A

4.5. Results 149

with the help of the Parareal operator P(k). By definition ‖pj‖A is given by

‖pj‖A =
√

pTj Apj (4.70)

We see that evaluating ‖pj‖A implicitly involves the dot product of pj with the

matrix-vector product Apj. Since pj is the initial condition for the Parareal

during icg-iteration j, we can make use of this Parareal run to approximate ‖pj‖A
without any extra cost. Indeed the moment when the stopping condition for the

Parareal (here for the approximated ‖Ejpj‖A−1)

‖Ejpj‖A−1 ≈ ‖P(k)pj −P(k + 1)pj‖2 ≤ ξj (4.71)

is satisfied, we can use the latest Parareal iterate P(k + 1)pj such that

‖pj‖A =
√

pTj Apj

=
√

pTj [(FN)TFN + αW]pj

=
√

(FNpj)
T (FNpj) + αpTj Wpj

≈
√

[P(k + 1)pj]
T [P(k + 1)pj] + αpTj Wpj

(4.72)

We emphasize the fact that in this formulation the computation of ‖pj‖A and ξj

are interlinked. Let us denote the approximation for ‖pj‖A and ξj by ‖̃pj‖A and ξ̃j

respectively. For a given icg-iteration j, with each Parareal iteration k the value of

‖̃pj‖A(k) and thereafter the value of ξ̃j(k) are updated till the Parareal stopping

criterion is satisfied. We refer to Algorithm 14 which provides the required steps

to correctly compute the approximate ‖pj‖A.

To verify our estimates the relative errors in ‖pj‖A and ξj are plotted as a function

of the Parareal iteration k in figures Fig. 4.31 and Fig. 4.32 respectively. The

relative error in ξj is shown only using the ‖pj‖A estimate i.e. the exact value of

‖b‖A−1 is used. The values are plotted for the icg-iterations j = 1, 3, 5, 7, 9 and

11.

Looking at the two figures we see that the both relative errors follow an almost

similar decrease with the increasing Parareal iterations which one would normally

expect. The relative error in ξj at the last Parareal iteration in Fig. 4.32 (the

one which we actually use) is low and we can say that ξj is well approximated

when exact ‖b‖A−1 is used. Again if we look at Fig. 4.30 the relative error in ξj is

150 Chapter 4. Applications: Numerical experiments

Algorithm 14 approximation for ‖pj‖A
1: Given: icg-iteration j = 1, · · · , jmax

2: for k = 1, · · · , kmax − 1 do

3: Run Parareal for k + 1 iterations

4: Find ‖̃pj‖A =
√

[P(k + 1)pj]
T [P(k + 1)pj] + αpTj Wpj

5: Get the corresponding ξ̃j using (4.66)

6: if ‖P(k + 1)pj −P(k)pj‖2 ≤ ξ̃j then

7: break

8: else

9: k = k + 1

10: end if

11: end for

high in the initial icg-iterations and this can affect ξ̃j when the approximations for

‖pj‖A and ‖b‖A−1 are used. To see the impact of using both ‖b‖A−1 and ‖pj‖A
approximations on ξ̃j we plot again the relative error in ξj in Fig. 4.33.

Figure 4.31: Relative error in ‖pj‖A as a function of Parareal iteration k

4.5. Results 151

Figure 4.32: Relative error in ξj as a function of Parareal iteration k. The ap-

proximate ‖pj‖A and exact ‖b‖A−1 are used to compute ξ̃j

Figure 4.33: Relative error in ξj as a function of Parareal iteration k. Both

approximate ‖b‖A−1 and ‖pj‖A are used to compute ξ̃j

152 Chapter 4. Applications: Numerical experiments

Figure 4.34: Exact and approximate values of ‖Ejpj‖A−1 as opposed to the exact

and approximate values of ξj

In Fig. 4.34 above the exact and approximate values of ξj are plotted with

the exact and approximate values of ‖Ejpj‖A−1 and we see how it is consistently

lower than ξj.

Finally we present our result after combining all the practical estimates for the

inexact CG by using the ICG Para Prac algorithm outlined in Algorithm 15. This

is illustrated in Fig. 4.35 which shows the plot of the minimisation quantities on the

left hand side and a comparison of Parareal iteration evolution of ICG Para Prac

(in blue) with that of ICG Para (in green) from Fig. 4.27 on the right hand side.

We show the approximations starting from icg-iteration 1 since we run the icg-

iteration 0 with exactly using the fine solver. Note that the practical minimisation

criterion (3.54)

(Jj−d − Jj) ≤
1

4
εicg|Jj| (4.73)

requires an integer d which is used to measure the quadratic difference between the

d successive icg-iteration steps. We choose d = 2 and the minimisation terminates

at icg-iteration 11 with a total of 76 Parareal iterations. Thus, on an average it

takes 6.91 Parareal iterations per icg-iteration giving us a speedup of 40/6.91 =

5.788.

4.5. Results 153

Figure 4.35: Minimisation results using ICG Para Prac (on left) and a comparison

of the Parareal iterations between ICG Para and ICG Para Prac (on right)

By a comparison of the Parareal iteration evolution on the right image our

motive is to show the impact of using practical estimates in ICG Para Prac on

the Parareal iterations as opposed to using the exact values of all the quantities in

ICG Para. We draw attention to the fact that by approximating p∗ using the last

Parareal iterate in ICG Para Prac we end up using one more Parareal iteration

than needed (see equation (4.67)). Consequently, there is an addition to the total

number of Parareal iterations by 1 for each minimisation iteration.

We observe from Fig. 4.35 that if we remove the additional 1 Parareal iteration

from each icg-iteration we get a total of 65 Parareal iterations which is almost the

same when we use ICG Para (66).

Algorithm 15 icg with all approximations for 2d-swe

1: Given: Symmetric positive definite matrix A ∈ Rn×n, right hand side vector b ∈
Rn, tolerance εicg

2: Set x0 = 0, r0 = −b, p0 = r0, β0 = ‖b‖22, u1 = b/β0, φ0 = jmax, Φ0 = 1, reorth =

True

3: for j = 0, . . . jmax do

4: if j = 0 then

154 Chapter 4. Applications: Numerical experiments

5: Call the exact matrix-vector subroutine and set cj = Apj

6: else

7: Jj = 1
2bTxj

8: ‖b‖A−1 =
√

2|Jj |
9: for k = 1, · · · , N − 1 do

10: Run Parareal with k + 1 iterations

11: Find the approximation ‖̃pj‖A(k) using (4.72)

12: Compute the corresponding ξ̃j(k) from (4.66)

13: e = ‖P(k + 1)pj −P(k)pj‖2
14: if e < ξ̃j(k) then

15: Set ξ̂j = e

16: c1 = (FN)TP(k + 1)pj

17: break

18: end if

19: end for

20: Compute φ̂j from ω̂j

21: Φj+1 = Φj − φ̂−1
j

22: if j < jmax then

23: φj+1 = (jmax − j)/Φj+1

24: else

25: φj+1 = φj

26: end if

27: end if

28: αj = βj/p
T
j cj

29: xj+1 = xj + αjpj

30: rj+1 = rj + αjcj

31: if (Jj+1−d − Jj+1) ≤ 1
4 εicg|Jj+1| then

32: break

33: end if

34: if (reorth) then

35: for i = 1, · · · , j do

36: rj+1 = rj+1 − (uTi rj+1)ui

37: end for

38: βj+1 = rTj+1rj+1

39: uj+1 = rj+1/
√
βj+1

40: else

41: βj+1 = rTj+1rj+1

42: end if

43: pj+1 = −rj+1 + (βj+1/βj)pj

44: end for

4.6. Using multiple observations 155

4.6 Using multiple observations

In the entire manuscript our idea has been to devise a strategy for running a

time-parallel incremental 4D-Var. The methodology and experiments have been

shown for a simple data assimilation problem where the system observes the true

state at the last time window.

To generalise our approach for multiple observations independently of the

model we add a test case where we use more than one observation scattered

at different times. We observe the full state vector and keep the same total pe-

riod of integration. In practice this should improve the performance. If we have

observations yi at time ti we have the modified cost function

J(x0) =
1

2p

p∑
i=1

‖FNix0 − yi‖2
2 (4.74)

and the gradient

∇J(x0) =
1

p

p∑
i=1

(FNi)T (FNix0 − yi) (4.75)

Again we approximate the gradient by doing the forward integration using the

Parareal algorithm, but now the Parareal operator Pi(k) is the solution of P(k)

at the end of the time window Ni, Ni ≤ N .

∇J(x0) ≈ 1

p

p∑
i=1

(FNi)T (Pi(k)x0 − yi) (4.76)

The linear system we are supposed to solve as a result of setting the gradient to

zero is

Ax0 = b (4.77)

where A =
1

p

p∑
i=1

(FNi)TPi(k) and b =
1

p

p∑
i=1

(FNi)Tyi. And now for the ‖Ejpj‖A−1

and its approximation we have

Ejpj =
1

p

p∑
i=1

(FNi)T (FNi −Pi(k))pj

=
1

p

p∑
i=1

Eipj

(4.78)

156 Chapter 4. Applications: Numerical experiments

where Ei = (FNi)T (FNi − Pi(k)). Taking the A−1 norm on both the sides and

using the triangle inequality we obtain

‖Ejpj‖A−1 ≤ 1

p

p∑
i=1

‖Eipj‖A−1 (4.79)

We know from (4.67) that in similar manner for each i, ‖Eipj‖A−1 can be approx-

imated as

‖Eipj‖A−1 = ‖Pi(k)pj − FNipj‖2 ≈ ‖Pi(k + 1)pj −Pi(k)pj‖2 (4.80)

Putting the approximations back into (4.79) we find

‖Ejpj‖A−1 ≤ 1

p

p∑
i=1

‖Pi(k + 1)pj −Pi(k)pj‖2 (4.81)

Now if we impose the summation term on right hand side of (4.81) with the

condition
p∑
i=1

‖Pi(k + 1)pj −Pi(k)pj‖2 ≤ p ξj (4.82)

then we have ‖Ejpj‖A−1 ≤ ξj and so the Parareal’s accuracy is controlled by the

quantity ξj for a given icg-iteration j.

Apart from the change in the ‖pj‖A estimate in particular for the 2D model

provided in sub-subsection 4.5.2.7 which we explain next, the approximations for

the other norms remain unchanged. Following along the lines of (4.72) we have

‖pj‖A =

√√√√pTj

(
1

p

p∑
i=1

(FNi)TFNi + αW

)
pj

=

√√√√1

p

p∑
i=1

(FNipj)
T (FNipj) + αpTj Wpj

≈

√√√√1

p

p∑
i=1

[Pi(k + 1)pj]
T [Pi(k + 1)pj] + αpTj Wpj

(4.83)

We run a test case with the 1D model by running the ICG Para using the same

parameter values from sub-subsection 4.5.1.3 except that we observe the full state

vector at time windows Ni, i = 4, 8, 12, 16 and 20. The results of the test run

are plotted in Fig. 4.36 and are compared with Fig. 4.20 which contains the

4.6. Using multiple observations 157

plot of ICG Para with one observation. When multiple observations are used

the minimisation ends after 16 minimisation iterations and uses an average of 4

Parareal iterations per icg-iteration as compared to the 24 icg-iterations and an

average of 5.58 Parareal iterations per icg-iteration when only one observation is

used. The relatively rapid convergence of the inexact CG and parareal is expected

Figure 4.36: Inexact CG with Parareal stopping criterion ‖Ejpj‖A−1 ≤ ξj when

multiple observations are used

due to the presence of some observations at times which are closer to the initial

time. Theoretically the Parareal error is supposed to be smaller at the initial

times compared to the error at the last time window. Therefore the weight of

the term ‖Eipj‖A−1 from the initial times is smaller than that of the last time

window.

To demonstrate this, the evolution of ‖Eipj‖A−1 with respect to the icg-

iteration j is plotted in Fig. 4.37 where the norm values are smaller when the

observations are closer to the initial time than when they are at the end of the

integration time.

158 Chapter 4. Applications: Numerical experiments

Figure 4.37: Evolution of ‖Eipj‖A−1 when observations are at time windows Ni

as a function of the inexact CG iteration j

Conclusion and further remarks

Conclusion

The objective of this PhD thesis is to explore the idea of introducing time paral-

lelisation to the data assimilation algorithms. In this manuscript we present a way

of coupling a parallel-in-time method (Parareal) with variational data assimila-

tion (incremental 4D-Var). An overview of the state of the art for variational data

assimilation is provided in chapter 1 and for time parallel methods in chapter 2.

Our presentation focusses on time parallelising the inner loop of the incremen-

tal 4D-Var by utilising Parareal for the tangent-linear model integration. The

study is done in two phases: by first establishing a methodology in chapter 3 and

then validating it through numerical experiments in chapter 4. When Parareal

is used for minimising the inner loop cost function it results in an approximate

linear system. The system is solved by using an inexact version of the conjugate

gradient (CG) method proposed by Gratton et al [Gratton et al., 2021]. The

advantage of using the proposed method over the usual CG is that it allows us

to adaptively control the required Parareal’s accuracy. The usage of the inexact

CG with the settings as in Gratton et al paper showed that the original precision

criterion is not sharp enough. We proposed a modified precision criterion (3.61)

based on the original criterion which significantly reduces the required number of

required Parareal iterations. Also in theory the inexact CG employs the norms

of the quantities (including the modified stopping criterion) which are not easy

to obtain in practice. To deliver a feasible implementation of the inexact CG, we

used some of the easy to compute approximations suggested in [Gratton et al.,

2021] and proposed our own approximations for some of the other quantities.

Next we performed a series of numerical experiments on the linearised 1D and

2D shallow water equations. These equations are widely used for modelling im-

159

160 Conclusion and further remarks

portant geophysical phenomena. Also the 1D and 2D model provide a challenge

to Parareal in terms of the level of complexity and the number of physical pa-

rameters to play with. For the 2D model, a variant of the usual Parareal called

the Krylov subspace enhanced Parareal is used which is known for accelerating

the convergence of hyperbolic problems. For the experiments we used different

versions of CG and inexact CG (table 3.1) for both models. We compared the

performances by noting the total number of Parareal iterations, the average num-

ber of Parareal iterations per CG/inexact CG iterations and the parallel speedup.

On one hand for running CG with Parareal we had to resort to a hit-and-trial

approach for finding a fixed Parareal tolerance. On the other hand the different

inexact CG versions using Parareal automatically provided a Parareal tolerance

using the original (only for 1D case), the modified and the approximated modified

precision criterion. In the end we presented the crux of our analysis by running the

inexact CG version comprising all the approximations and modifications discussed

in the manuscript.

We conclude by mentioning the most important point that of our study. Us-

ing our modified inexact CG with all the approximations outperforms CG with

Parareal (with the correct fixed Parareal tolerance) for both 1D and 2D model by

achieving higher parallel speedups.

Perspectives

There are still a few gaps and unexplored ideas which could lead to further research

directions. In the manuscript all the results have been shown by the inexact CG

method proposed by Gratton et al. [Gratton et al., 2021] which adaptively controls

the Parareal’s accuracy. One idea has been to reuse the information from the

Parareal iterates of the previous icg-iterations. One instance is that when we use

the Krylov subspace enhanced Parareal we build our Krylov subspace basis all

over again after every icg-iteration. Reusing the existing previous Krylov basis

vectors for building the next Krylov subspace basis proved to be unsuccessful.

This is specific to CG since we know that it has a property that all the direction

vectors pj are A-conjugate. However, the problem remain to solve remain quite

similar from one minimisation iteration to next and so it should be possible to

Conclusion and further remarks 161

extract useful information from pervious Krylov bases if a different minimisation

method is used. This leads to another point that we have not investigated other

minimisation algorithms. We can adapt the results from the Gratton et al. paper

to another minimisation algorithms where we can take more benefit from the

coupling of Parareal and data assimilation. Moreover the linear system which

we solve for the inner loop using inexact CG is non-symmetric and is the reason

why we have to use reorthogonalisation at the end of each icg-iteration. There

are more robust methods present in the literature for dealing with non-symmetric

matrices such as the GMRES, for which we would need to derive a similar inexact

method.

Another point of interest is the introduction of time parallelism in the adjoint

direction where we already discussed some preliminary ideas in chapter 3. What

remains as an obstacle is implementing the inexact CG when all approximations

are used. The existing approximation for ‖Ejpj‖A−1 is no longer valid since it

requires that we use the exact adjoint. But once the estimate is found the imple-

mentation should be straightforward. A natural extension to this idea is making

use of the asynchronous Parareal iterations [Magoulès et al., 2018, Magoulès and

Gbikpi-Benissan, 2018] where the algorithm has no synchronisation point. In that

case the forward and adjoint parallel runs are done simultaneously and they do not

wait for sharing any information. This way there is no communication overhead

and we obtain an even higher parallel speedup.

One of the biggest blocking factors in improving the Parareal’s speedup is the

cost of the coarse solver which justifies the future research directions for the de-

velopment of adaptive coarse solvers. In section 4.4 we tried to use the Krylov

enhanced Parareal without using the coarse solver. We did not get any concrete

results and what we observed in (4.50) is that the Parareal error was more de-

pendent on the initial condition used. The understanding of the behaviour of the

error in Krylov enhanced Parareal would require somehow being able to compute

(at least) an estimate of (F−G) applied to the current vector x.

From the perspective of the parallel architecture performance we have not

talked about the scaling properties of our coupling. Scaling usually refers to

the ability of a hardware or a software to handle more work as the size of the

problem or the number of cores are varied. The scaling for a certain application

can be studied and tested using two ways: by doing the strong and the weak

scaling. In strong scaling the problem size is kept constant and the number of

162 Conclusion and further remarks

cores are increased. The total workload per core gets reduced and as a result an

important question can be asked: If the number of cores are doubled, would the

total computation time be cut in half? Amdahl [Amdahl, 1967] pointed out that

the reduction in the execution time has an upper limit and it depends on how

much the part of the code is parallelisable. This is known as the Amdahl’s law

and for an application with p as the parallel part, 1− p as the serial part and N

as the number of cores it is written as

S =
1(

1− p+
p

N

) (4.84)

Strong scaling becomes important in our case since we are adding more cores to

our fixed problem through time parallelisation. But it is hard to achieve due to

the fact that the communication overhead becomes large enough and the classical

domain decomposition methods reach saturation. But as discussed above the use

of an adaptive coarse solver together with the asynchronous Parareal iterations

can help us to remove the communication overhead and to perform strong scaling.

The applications where our method can be applied is restricted to seasonal

forecasts where the model is integrated for short to medium range of time (a few

weeks to a few months). The seasonal prediction is an initial condition problem

which makes use of the data assimilation algorithms. An extension to this can

be towards applications in climate modelling where the time period of integration

is for several decades. In that case we can no longer control the initial condition

as it is forgotten by the system and it will not have any impact on long time

integrations. A different strategy needs to be applied by controlling the parameters

of the numerical methods for instance or by controlling the tendencies, taking

averages over a period.

Bibliography

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor approach

to achieving large scale computing capabilities. In Proceedings of the April

18-20, 1967, spring joint computer conference, pages 483–485.

[Andersson et al., 1998] Andersson, E., Haseler, J., Undén, P., Courtier, P., Kelly,

G., Vasiljevic, D., Brankovic, C., Gaffard, C., Hollingsworth, A., Jakob, C.,

et al. (1998). The ecmwf implementation of three-dimensional variational as-

similation (3d-var). iii: Experimental results. Quarterly Journal of the Royal

Meteorological Society, 124(550):1831–1860.

[Arakawa and Lamb, 1977] Arakawa, A. and Lamb, V. R. (1977). Computational

design of the basic dynamical processes of the ucla general circulation model.

General circulation models of the atmosphere, 17(Supplement C):173–265.

[Asch et al., 2016] Asch, M., Bocquet, M., and Nodet, M. (2016). Data assimila-

tion: methods, algorithms, and applications. SIAM.

[Aubanel, 2011] Aubanel, E. (2011). Scheduling of tasks in the parareal algorithm.

Parallel Computing, 37(3):172–182.

[Axelsson, 1996] Axelsson, O. (1996). Iterative solution methods. Cambridge uni-

versity press.

[Baffico et al., 2002] Baffico, L., Bernard, S., Maday, Y., Turinici, G., and Zérah,

G. (2002). Parallel-in-time molecular-dynamics simulations. Physical Review

E, 66(5):057701.

[Bal, 2003] Bal, G. (2003). Parallelization in time of (stochastic) ordinary differ-

ential equations. Math. Meth. Anal. Num.(submitted).

163

164 BIBLIOGRAPHY

[Bal, 2005] Bal, G. (2005). On the convergence and the stability of the parareal

algorithm to solve partial differential equations. In Domain decomposition meth-

ods in science and engineering, pages 425–432. Springer.

[Bal and Maday, 2002] Bal, G. and Maday, Y. (2002). A “parareal” time dis-

cretization for non-linear pde’s with application to the pricing of an american

put. In Recent developments in domain decomposition methods, pages 189–202.

Springer.

[Bannister, 2017] Bannister, R. (2017). A review of operational methods of vari-

ational and ensemble-variational data assimilation. Quarterly Journal of the

Royal Meteorological Society, 143(703):607–633.

[Bellen and Zennaro, 1989] Bellen, A. and Zennaro, M. (1989). Parallel algo-

rithms for initial-value problems for difference and differential equations. Jour-

nal of Computational and applied mathematics, 25(3):341–350.

[Berry et al., 2012] Berry, L. A., Elwasif, W., Reynolds-Barredo, J. M., Samad-

dar, D., Sanchez, R., and Newman, D. E. (2012). Event-based parareal: A

data-flow based implementation of parareal. Journal of Computational Physics,

231(17):5945–5954.

[Björck, 1994] Björck, Å. (1994). Numerics of gram-schmidt orthogonalization.

Linear Algebra and Its Applications, 197:297–316.

[Björck, 1996] Björck, Å. (1996). Numerical methods for least squares problems.

SIAM.

[Bouras and Frayssé, 2005] Bouras, A. and Frayssé, V. (2005). Inexact matrix-

vector products in krylov methods for solving linear systems: a relaxation strat-

egy. SIAM Journal on Matrix Analysis and Applications, 26(3):660–678.

[Bouttier and Courtier, 2002] Bouttier, F. and Courtier, P. (2002). Data assimi-

lation concepts and methods march 1999. Meteorological training course lecture

series. ECMWF, 718:59.

[Burrage, 1995] Burrage, K. (1995). Parallel and sequential methods for ordinary

differential equations. Clarendon Press.

BIBLIOGRAPHY 165

[Caldas Steinstraesser et al., 2021] Caldas Steinstraesser, J. G., Guinot, V., and

Rousseau, A. (2021). Modified parareal method for solving the two-dimensional

nonlinear shallow water equations using finite volumes. The SMAI journal of

computational mathematics, 7:159–184.

[Carrassi et al., 2018] Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.

(2018). Data assimilation in the geosciences: An overview of methods, issues,

and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5):e535.

[Chartier and Philippe, 1993] Chartier, P. and Philippe, B. (1993). A parallel

shooting technique for solving dissipative ode’s. Computing, 51(3):209–236.

[Chen et al., 2014] Chen, F., Hesthaven, J. S., and Zhu, X. (2014). On the use

of reduced basis methods to accelerate and stabilize the parareal method. In

Reduced Order Methods for modeling and computational reduction, pages 187–

214. Springer.

[Cortial and Farhat, 2009] Cortial, J. and Farhat, C. (2009). A time-parallel

implicit method for accelerating the solution of non-linear structural dynam-

ics problems. International Journal for Numerical Methods in Engineering,

77(4):451–470.

[Courtier et al., 1998] Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D.,

Hamrud, M., Hollingsworth, A., Rabier, F., Fisher, M., and Pailleux, J. (1998).

The ecmwf implementation of three-dimensional variational assimilation (3d-

var). i: Formulation. Quarterly Journal of the Royal Meteorological Society,

124(550):1783–1807.

[Courtier and Talagrand, 1990] Courtier, P. and Talagrand, O. (1990). Varia-

tional assimilation of meteorological observations with the direct and adjoint

shallow-water equations. Tellus A: Dynamic Meteorology and Oceanography,

42(5):531–549.

[Courtier et al., 1994] Courtier, P., Thépaut, J.-N., and Hollingsworth, A. (1994).

A strategy for operational implementation of 4d-var, using an incremental ap-

proach. Quarterly Journal of the Royal Meteorological Society, 120(519):1367–

1387.

166 BIBLIOGRAPHY

[Cushman-Roisin and Beckers, 2011] Cushman-Roisin, B. and Beckers, J.-M.

(2011). Introduction to geophysical fluid dynamics: physical and numerical

aspects. Academic press.

[Dai and Maday, 2013] Dai, X. and Maday, Y. (2013). Stable parareal in time

method for first-and second-order hyperbolic systems. SIAM Journal on Sci-

entific Computing, 35(1):A52–A78.

[Daley, 1993] Daley, R. (1993). Atmospheric data analysis. Number 2. Cambridge

university press.

[Daley, 1997] Daley, R. (1997). Atmospheric data assimilation (gtspecial issuelt-

data assimilation in meteology and oceanography: Theory and practice). Jour-

nal of the Meteorological Society of Japan. Ser. II, 75(1B):319–329.

[Dolean et al., 2015] Dolean, V., Jolivet, P., and Nataf, F. (2015). An introduction

to domain decomposition methods: algorithms, theory, and parallel implemen-

tation. SIAM.

[Durran, 2013] Durran, D. R. (2013). Numerical methods for wave equations in

geophysical fluid dynamics, volume 32. Springer Science & Business Media.

[Eghbal et al., 2017] Eghbal, A., Gerber, A. G., and Aubanel, E. (2017). Accel-

eration of unsteady hydrodynamic simulations using the parareal algorithm.

Journal of Computational Science, 19:57–76.

[Errico, 1997] Errico, R. M. (1997). What is an adjoint model? Bulletin of the

American Meteorological Society, 78(11):2577–2592.

[Eyre, 1991] Eyre, J. (1991). A fast radiative transfer model for satellite sounding

systems. ECMWF Tech. Memo 176.

[Farhat and Chandesris, 2003] Farhat, C. and Chandesris, M. (2003). Time-

decomposed parallel time-integrators: theory and feasibility studies for fluid,

structure, and fluid–structure applications. International Journal for Numerical

Methods in Engineering, 58(9):1397–1434.

[Farhat et al., 2006] Farhat, C., Cortial, J., Dastillung, C., and Bavestrello, H.

(2006). Time-parallel implicit integrators for the near-real-time prediction of

BIBLIOGRAPHY 167

linear structural dynamic responses. International journal for numerical meth-

ods in engineering, 67(5):697–724.

[Fischer et al., 2005] Fischer, P. F., Hecht, F., and Maday, Y. (2005). A parareal

in time semi-implicit approximation of the navier-stokes equations. Lecture

Notes in Computational Science and Engineering, 40:433–440.

[Fisher and Gürol, 2017] Fisher, M. and Gürol, S. (2017). Parallelization in the

time dimension of four-dimensional variational data assimilation. Quarterly

Journal of the Royal Meteorological Society, 143(703):1136–1147.

[Fisher et al., 2012] Fisher, M., Tremolet, Y., Auvinen, H., Tan, D., and Poli, P.

(2012). Weak-constraint and long-window 4D-Var. ECMWF Reading, UK.

[Freund et al., 1992] Freund, R. W., Golub, G. H., and Nachtigal, N. M. (1992).

Iterative solution of linear systems. Acta numerica, 1:57–100.

[Gander and Petcu, 2008] Gander, M. and Petcu, M. (2008). Analysis of a krylov

subspace enhanced parareal algorithm for linear problems. In ESAIM: Proceed-

ings, volume 25, pages 114–129. EDP Sciences.

[Gander, 2015] Gander, M. J. (2015). 50 years of time parallel time integration.

In Multiple shooting and time domain decomposition methods, pages 69–113.

Springer.

[Gander and Hairer, 2008] Gander, M. J. and Hairer, E. (2008). Nonlinear con-

vergence analysis for the parareal algorithm. In Domain decomposition methods

in science and engineering XVII, pages 45–56. Springer.

[Gander et al., 2020] Gander, M. J., Kwok, F., and Salomon, J. (2020). Paraopt:

A parareal algorithm for optimality systems. SIAM Journal on Scientific Com-

puting, 42(5):A2773–A2802.

[Gander et al., 2022] Gander, M. J., Lunet, T., Ruprecht, D., and Speck, R.

(2022). A unified analysis framework for iterative parallel-in-time algorithms.

arXiv preprint arXiv:2203.16069.

[Gander and Vandewalle, 2007] Gander, M. J. and Vandewalle, S. (2007). Anal-

ysis of the parareal time-parallel time-integration method. SIAM Journal on

Scientific Computing, 29(2):556–578.

168 BIBLIOGRAPHY

[Gear, 1988] Gear, C. W. (1988). Parallel methods for ordinary differential equa-

tions. Calcolo, 25(1):1–20.

[Ghil and Malanotte-Rizzoli, 1991] Ghil, M. and Malanotte-Rizzoli, P. (1991).

Data assimilation in meteorology and oceanography. In Advances in geophysics,

volume 33, pages 141–266. Elsevier.

[Giering and Kaminski, 1998] Giering, R. and Kaminski, T. (1998). Recipes

for adjoint code construction. ACM Transactions on Mathematical Software

(TOMS), 24(4):437–474.

[Gill, 1982] Gill, A. E. (1982). Atmosphere-ocean dynamics, volume 30. Academic

press.

[Giraud et al., 2005] Giraud, L., Langou, J., and Rozloznik, M. (2005). The loss

of orthogonality in the gram-schmidt orthogonalization process. Computers &

Mathematics with Applications, 50(7):1069–1075.

[Golub and Van Loan, 2013] Golub, G. H. and Van Loan, C. F. (2013). Matrix

computations. JHU press.

[Golub and Ye, 1999] Golub, G. H. and Ye, Q. (1999). Inexact preconditioned

conjugate gradient method with inner-outer iteration. SIAM Journal on Sci-

entific Computing, 21(4):1305–1320.

[Gratton et al., 2007] Gratton, S., Lawless, A. S., and Nichols, N. K. (2007). Ap-

proximate gauss–newton methods for nonlinear least squares problems. SIAM

Journal on Optimization, 18(1):106–132.

[Gratton et al., 2021] Gratton, S., Simon, E., Titley-Peloquin, D., and Toint,

P. L. (2021). Minimizing convex quadratics with variable precision conjugate

gradients. Numerical Linear Algebra with Applications, 28(1):e2337.

[Greenbaum, 1997] Greenbaum, A. (1997). Iterative methods for solving linear

systems. SIAM.

[Griffies, 2018] Griffies, S. (2018). Fundamentals of ocean climate models. Prince-

ton university press.

BIBLIOGRAPHY 169

[Griffith and Nichols, 2000] Griffith, A. K. and Nichols, N. K. (2000). Adjoint

methods in data assimilation for estimating model error. Flow, turbulence and

combustion, 65:469–488.

[Harris, 2018] Harris, C. (2018). Coupled atmosphere-ocean modelling. New Fron-

tiers in Operational Oceanography, pages 445–464.

[He, 2010] He, L. (2010). The reduced basis technique as a coarse solver for

parareal in time simulations. Journal of Computational Mathematics, pages

676–692.

[Hestenes et al., 1952] Hestenes, M. R., Stiefel, E., et al. (1952). Methods of con-

jugate gradients for solving linear systems. Journal of research of the National

Bureau of Standards, 49(6):409–436.

[Holton, 1973] Holton, J. R. (1973). An introduction to dynamic meteorology.

American Journal of Physics, 41(5):752–754.

[Ide et al., 1997] Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C. (1997). Unified

notation for data assimilation: Operational, sequential and variational (gtspe-

cial issueltdata assimilation in meteology and oceanography: Theory and prac-

tice). Journal of the Meteorological Society of Japan. Ser. II, 75(1B):181–189.

[Ipsen and Meyer, 1998] Ipsen, I. C. and Meyer, C. D. (1998). The idea behind

krylov methods. The American mathematical monthly, 105(10):889–899.

[Isaksen, 2012] Isaksen, L. (2012). Data assimilation on future computer archi-

tectures. In Proc. ECMWF Seminar on Data Assimilation for Atmosphere and

Ocean, pages 301–322.

[Janjić et al., 2018] Janjić, T., Bormann, N., Bocquet, M., Carton, J., Cohn, S.,

Dance, S. L., Losa, S., Nichols, N. K., Potthast, R., Waller, J. A., et al. (2018).

On the representation error in data assimilation. Quarterly Journal of the Royal

Meteorological Society, 144(713):1257–1278.

[Kalnay, 2003] Kalnay, E. (2003). Atmospheric modeling, data assimilation and

predictability. Cambridge university press.

[Keller, 2018] Keller, H. B. (2018). Numerical methods for two-point boundary-

value problems. Courier Dover Publications.

170 BIBLIOGRAPHY

[Kelley, 1999] Kelley, C. T. (1999). Iterative methods for optimization. SIAM.

[Khalaf and Hutchinson, 1992] Khalaf, B. and Hutchinson, D. (1992). Parallel

algorithms for initial value problems: parallel shooting. Parallel computing,

18(6):661–673.

[Kiehl, 1994] Kiehl, M. (1994). Parallel multiple shooting for the solution of initial

value problems. Parallel computing, 20(3):275–295.

[Klinker et al., 2000] Klinker, E., Rabier, F., Kelly, G., and Mahfouf, J.-F. (2000).

The ecmwf operational implementation of four-dimensional variational assimi-

lation. iii: Experimental results and diagnostics with operational configuration.

Quarterly Journal of the Royal Meteorological Society, 126(564):1191–1215.

[Lawless et al., 2005] Lawless, A., Gratton, S., and Nichols, N. (2005). An in-

vestigation of incremental 4d-var using non-tangent linear models. Quarterly

Journal of the Royal Meteorological Society: A journal of the atmospheric sci-

ences, applied meteorology and physical oceanography, 131(606):459–476.

[Lawless et al., 2003] Lawless, A. S., Nichols, N., and Ballard, S. (2003). A com-

parison of two methods for developing the linearization of a shallow-water

model. Quarterly Journal of the Royal Meteorological Society: A journal

of the atmospheric sciences, applied meteorology and physical oceanography,

129(589):1237–1254.

[Le Dimet and Talagrand, 1986] Le Dimet, F.-X. and Talagrand, O. (1986). Vari-

ational algorithms for analysis and assimilation of meteorological observa-

tions: theoretical aspects. Tellus A: Dynamic Meteorology and Oceanography,

38(2):97–110.

[Lewis and Derber, 1985] Lewis, J. M. and Derber, J. C. (1985). The use of ad-

joint equations to solve a variational adjustment problem with advective con-

straints. Tellus A, 37(4):309–322.

[Liesen and Strakos, 2013] Liesen, J. and Strakos, Z. (2013). Krylov subspace

methods: principles and analysis. Oxford University Press.

[Lions et al., 2001] Lions, J.-L., Maday, Y., and Turinici, G. (2001). Résolution

d’edp par un schéma en temps pararéel. Comptes Rendus de l’Académie des

Sciences-Series I-Mathematics, 332(7):661–668.

BIBLIOGRAPHY 171

[Lorenc et al., 2000] Lorenc, A., Ballard, S., Bell, R., Ingleby, N., Andrews, P.,

Barker, D., Bray, J., Clayton, A., Dalby, T., Li, D., et al. (2000). The met.

office global three-dimensional variational data assimilation scheme. Quarterly

Journal of the Royal Meteorological Society, 126(570):2991–3012.

[Lorenc, 1986] Lorenc, A. C. (1986). Analysis methods for numerical weather pre-

diction. Quarterly Journal of the Royal Meteorological Society, 112(474):1177–

1194.

[Lorenc and Rawlins, 2005] Lorenc, A. C. and Rawlins, F. (2005). Why does 4d-

var beat 3d-var? Quarterly Journal of the Royal Meteorological Society: A

journal of the atmospheric sciences, applied meteorology and physical oceanog-

raphy, 131(613):3247–3257.

[Lorenz, 1963] Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of

atmospheric sciences, 20(2):130–141.

[Maday, 2008] Maday, Y. (2008). The parareal in time algorithm.

[Maday and Mula, 2020] Maday, Y. and Mula, O. (2020). An adaptive parareal

algorithm. Journal of computational and applied mathematics, 377:112915.

[Maday et al., 2013] Maday, Y., Riahi, M.-K., and Salomon, J. (2013). Parareal

in time intermediate targets methods for optimal control problems. Control and

optimization with PDE constraints, pages 79–92.

[Maday et al., 2007] Maday, Y., Salomon, J., and Turinici, G. (2007). Monotonic

parareal control for quantum systems. SIAM Journal on Numerical Analysis,

45(6):2468–2482.

[Maday and Turinici, 2002] Maday, Y. and Turinici, G. (2002). A parareal in

time procedure for the control of partial differential equations. Comptes Rendus

Mathematique, 335(4):387–392.

[Maday and Turinici, 2003] Maday, Y. and Turinici, G. (2003). Parallel in time

algorithms for quantum control: Parareal time discretization scheme. Interna-

tional journal of quantum chemistry, 93(3):223–228.

172 BIBLIOGRAPHY

[Madec et al., 2017] Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C.,

Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso,

D., et al. (2017). Nemo ocean engine.

[Magoulès and Gbikpi-Benissan, 2018] Magoulès, F. and Gbikpi-Benissan, G.

(2018). Asynchronous parareal time discretization for partial differential equa-

tions. SIAM Journal on Scientific Computing, 40(6):C704–C725.

[Magoulès et al., 2018] Magoulès, F., Gbikpi-Benissan, G., and Zou, Q. (2018).

Asynchronous iterations of parareal algorithm for option pricing models. Math-

ematics, 6(4):45.

[Mahfouf and Rabier, 2000] Mahfouf, J.-F. and Rabier, F. (2000). The ecmwf

operational implementation of four-dimensional variational assimilation. ii: Ex-

perimental results with improved physics. Quarterly Journal of the Royal Me-

teorological Society, 126(564):1171–1190.

[Marshall and Plumb, 1989] Marshall, J. and Plumb, R. A. (1989). Atmosphere,

ocean and climate dynamics: an introductory text. Academic Press.

[Mathew et al., 2010] Mathew, T. P., Sarkis, M., and Schaerer, C. E. (2010).

Analysis of block parareal preconditioners for parabolic optimal control prob-

lems. SIAM Journal on Scientific Computing, 32(3):1180–1200.

[Matricardi et al., 2004] Matricardi, M., Chevallier, F., Kelly, G., and Thépaut,

J.-N. (2004). An improved general fast radiative transfer model for the assimi-

lation of radiance observations. Quarterly Journal of the Royal Meteorological

Society, 130(596):153–173.

[Minion, 2011] Minion, M. (2011). A hybrid parareal spectral deferred corrections

method. Communications in Applied Mathematics and Computational Science,

5(2):265–301.

[Miranker and Liniger, 1967] Miranker, W. L. and Liniger, W. (1967). Parallel

methods for the numerical integration of ordinary differential equations. Math-

ematics of Computation, 21(99):303–320.

[Navon, 2009] Navon, I. M. (2009). Data assimilation for numerical weather pre-

diction: a review. Data assimilation for atmospheric, oceanic and hydrologic

applications, pages 21–65.

BIBLIOGRAPHY 173

[Nielsen, 2012] Nielsen, A. S. (2012). Feasibility study of the parareal algorithm.

Technical University of Denmark.

[Nievergelt, 1964] Nievergelt, J. (1964). Parallel methods for integrating ordinary

differential equations. Communications of the ACM, 7(12):731–733.

[Nocedal and Wright, 1999] Nocedal, J. and Wright, S. J. (1999). Numerical op-

timization. Springer.

[Ong and Schroder, 2020] Ong, B. W. and Schroder, J. B. (2020). Applications

of time parallelization. Computing and Visualization in Science, 23:1–15.

[Palmer, 1993] Palmer, T. N. (1993). Extended-range atmospheric prediction and

the lorenz model. Bulletin of the American Meteorological Society, 74(1):49–66.

[Palmer and Anderson, 1994] Palmer, T. N. and Anderson, D. L. T. (1994). The

prospects for seasonal forecasting—a review paper. Quarterly Journal of the

Royal Meteorological Society, 120(518):755–793.

[Persson, 1998] Persson, A. (1998). How do we understand the coriolis force?

Bulletin of the American Meteorological Society, 79(7):1373–1386.

[Rabier, 2005] Rabier, F. (2005). Overview of global data assimilation develop-

ments in numerical weather-prediction centres. Quarterly Journal of the Royal

Meteorological Society: A journal of the atmospheric sciences, applied meteo-

rology and physical oceanography, 131(613):3215–3233.

[Rabier et al., 2000] Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J.-F.,

and Simmons, A. (2000). The ecmwf operational implementation of four-

dimensional variational assimilation. i: Experimental results with simplified

physics. Quarterly Journal of the Royal Meteorological Society, 126(564):1143–

1170.

[Rabier et al., 1998] Rabier, F., McNally, A., Andersson, E., Courtier, P., Undén,

P., Eyre, J., Hollingsworth, A., and Bouttier, F. (1998). The ecmwf implemen-

tation of three-dimensional variational assimilation (3d-var). ii: Structure func-

tions. Quarterly Journal of the Royal Meteorological Society, 124(550):1809–

1829.

174 BIBLIOGRAPHY

[Randall, 1994] Randall, D. A. (1994). Geostrophic adjustment and the finite-

difference shallow-water equations. Monthly Weather Review, 122(6):1371–

1377.

[Rawlins et al., 2007] Rawlins, F., Ballard, S., Bovis, K., Clayton, A., Li, D.,

Inverarity, G., Lorenc, A., and Payne, T. (2007). The met office global four-

dimensional variational data assimilation scheme. Quarterly Journal of the

Royal Meteorological Society: A journal of the atmospheric sciences, applied

meteorology and physical oceanography, 133(623):347–362.

[Reynolds, 1895] Reynolds, O. (1895). Iv. on the dynamical theory of incom-

pressible viscous fluids and the determination of the criterion. Philosophical

transactions of the royal society of london.(a.), (186):123–164.

[Reynolds-Barredo et al., 2012] Reynolds-Barredo, J. M., Newman, D. E.,

Sánchez, R., Samaddar, D., Berry, L. A., and Elwasif, W. R. (2012). Mecha-

nisms for the convergence of time-parallelized, parareal turbulent plasma sim-

ulations. Journal of Computational Physics, 231(23):7851–7867.

[Ruprecht, 2014] Ruprecht, D. (2014). Convergence of parareal with spatial coars-

ening. PAMM, 14(1):1031–1034.

[Ruprecht, 2018] Ruprecht, D. (2018). Wave propagation characteristics of

parareal. Computing and Visualization in Science, 19(1):1–17.

[Ruprecht and Krause, 2012] Ruprecht, D. and Krause, R. (2012). Explicit

parallel-in-time integration of a linear acoustic-advection system. Computers &

Fluids, 59:72–83.

[Saad, 2003] Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

[Saad and Schultz, 1986] Saad, Y. and Schultz, M. H. (1986). Gmres: A general-

ized minimal residual algorithm for solving nonsymmetric linear systems. SIAM

Journal on scientific and statistical computing, 7(3):856–869.

[Samaddar et al., 2010] Samaddar, D., Newman, D. E., and Sánchez, R. (2010).

Parallelization in time of numerical simulations of fully-developed plasma tur-

bulence using the parareal algorithm. Journal of Computational Physics,

229(18):6558–6573.

BIBLIOGRAPHY 175

[Sasaki, 1970] Sasaki, Y. (1970). Some basic formalisms in numerical variational

analysis. Monthly Weather Review, 98(12):875–883.

[Saunders et al., 1999] Saunders, R., Matricardi, M., and Brunel, P. (1999).

An improved fast radiative transfer model for assimilation of satellite ra-

diance observations. Quarterly Journal of the Royal Meteorological Society,

125(556):1407–1425.

[Schlatter, 2000] Schlatter, T. W. (2000). Variational assimilation of meteorolog-

ical observations in the lower atmosphere: A tutorial on how it works. Journal

of Atmospheric and Solar-Terrestrial Physics, 62(12):1057–1070.

[Shewchuk, 1994] Shewchuk, J. R. (1994). An introduction to the conjugate gra-

dient method without the agonizing pain.

[Simoncini and Szyld, 2003] Simoncini, V. and Szyld, D. B. (2003). Theory of in-

exact krylov subspace methods and applications to scientific computing. SIAM

Journal on Scientific Computing, 25(2):454–477.

[Simoncini and Szyld, 2007] Simoncini, V. and Szyld, D. B. (2007). Recent com-

putational developments in krylov subspace methods for linear systems. Nu-

merical Linear Algebra with Applications, 14(1):1–59.

[Staff and Rønquist, 2005] Staff, G. A. and Rønquist, E. M. (2005). Stability

of the parareal algorithm. In Domain decomposition methods in science and

engineering, pages 449–456. Springer.

[Steiner et al., 2015] Steiner, J., Ruprecht, D., Speck, R., and Krause, R. (2015).

Convergence of parareal for the navier-stokes equations depending on the

reynolds number. In Numerical Mathematics and Advanced Applications-

ENUMATH 2013: Proceedings of ENUMATH 2013, the 10th European Confer-

ence on Numerical Mathematics and Advanced Applications, Lausanne, August

2013, pages 195–202. Springer.

[Talagrand, 1997] Talagrand, O. (1997). Assimilation of observations, an in-

troduction (gtspecial issueltdata assimilation in meteology and oceanography:

Theory and practice). Journal of the Meteorological Society of Japan. Ser. II,

75(1B):191–209.

176 BIBLIOGRAPHY

[Talagrand and Courtier, 1987] Talagrand, O. and Courtier, P. (1987). Varia-

tional assimilation of meteorological observations with the adjoint vorticity

equation. i: Theory. Quarterly Journal of the Royal Meteorological Society,

113(478):1311–1328.

[Thépaut, 2003] Thépaut, J.-N. (2003). Satellite data assimilation in numerical

weather prediction: An overview. In Proceedings of ECMWF Seminar on Re-

cent Developments in Data Assimilation for Atmosphere and Ocean, ECMWF,

Reading, UK, pages 8–12.

[Thepaut and Courtier, 1991] Thepaut, J.-N. and Courtier, P. (1991). Four-

dimensional variational data assimilation using the adjoint of a multilevel

primitive-equation model. Quarterly Journal of the Royal Meteorological So-

ciety, 117(502):1225–1254.

[Thépaut et al., 1993] Thépaut, J.-N., Hoffman, R. N., and Courtier, P. (1993).

Interactions of dynamics and observations in a four-dimensional variational as-

similation. Monthly Weather Review, 121(12):3393–3414.

[Toselli and Widlund, 2004] Toselli, A. and Widlund, O. (2004). Domain decom-

position methods-algorithms and theory, volume 34. Springer Science & Business

Media.

[Trémolet, 2004] Trémolet, Y. (2004). Diagnostics of linear and incremental ap-

proximations in 4d-var. Quarterly Journal of the Royal Meteorological Soci-

ety: A journal of the atmospheric sciences, applied meteorology and physical

oceanography, 130(601):2233–2251.

[Trémolet, 2006] Trémolet, Y. (2006). Accounting for an imperfect model in

4d-var. Quarterly Journal of the Royal Meteorological Society: A journal

of the atmospheric sciences, applied meteorology and physical oceanography,

132(621):2483–2504.

[Trémolet, 2007] Trémolet, Y. (2007). Incremental 4d-var convergence study. Tel-

lus A: Dynamic Meteorology and Oceanography, 59(5):706–718.

[Trindade and Pereira, 2004] Trindade, J. and Pereira, J. (2004). Parallel-in-time

simulation of the unsteady navier–stokes equations for incompressible flow. In-

ternational journal for numerical methods in fluids, 45(10):1123–1136.

BIBLIOGRAPHY 177

[Vallis, 2017] Vallis, G. K. (2017). Atmospheric and oceanic fluid dynamics. Cam-

bridge University Press.

[Van Den Eshof and Sleijpen, 2004] Van Den Eshof, J. and Sleijpen, G. L. (2004).

Inexact krylov subspace methods for linear systems. SIAM Journal on Matrix

Analysis and Applications, 26(1):125–153.

[Van der Vorst, 2003] Van der Vorst, H. A. (2003). Iterative Krylov methods for

large linear systems. Number 13. Cambridge University Press.

[Wilcox et al., 1998] Wilcox, D. C. et al. (1998). Turbulence modeling for CFD,

volume 2. DCW industries La Canada, CA.

[Wu and Zhou, 2017] Wu, S.-L. and Zhou, T. (2017). Fast parareal iterations for

fractional diffusion equations. Journal of Computational Physics, 329:210–226.

[Wu and Zhou, 2018] Wu, S.-L. and Zhou, T. (2018). Parareal algorithms with

local time-integrators for time fractional differential equations. Journal of Com-

putational Physics, 358:135–149.

[Xu et al., 2015] Xu, Q., Hesthaven, J. S., and Chen, F. (2015). A parareal

method for time-fractional differential equations. Journal of Computational

Physics, 293:173–183.

	Acknowledgements
	Abstract
	Résumé
	Introduction
	I State of the art: Data assimilation and parallel-in-time (PinT) methods
	Data Assimilation
	Error Statistics
	3D-Var and 4D-Var
	Incremental 4D-Var
	Weak constraint 4D-Var
	Adjoint method
	Minimisation methods

	Parallel in Time algorithms: Parareal method
	Introduction to time parallelisation
	Multiple shooting method
	Parareal method
	Convergence properties of Parareal
	Analysis of the eigenvalues of F-G
	Speedup and Efficiency
	Typical problems with Parareal and modifications

	II Coupling Parareal and data assimilation
	Introducing Parallel In Time in data assimilation
	Previous works on a parallel 4D-Var
	Time parallelisation with Parareal in forward model
	Inexact conjugate gradient method
	Inexact conjugate gradient and Parareal
	Parareal in both directions (forward and adjoint)

	Applications: Numerical experiments
	Shallow water equations
	Parareal parameters and propagators
	Data assimilation
	Krylov subspace enhanced Parareal
	Results
	Using multiple observations

	Conclusion and further remarks
	Bibliography

